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Avant tout,

Craindre l'erreur et craindre la vérité est une seule et même chose. Celui qui craint de se tromper est impuissant à découvrir. C'est quand nous craignons de nous tromper que l'erreur qui est en nous se fait immuable comme un roc. Car dans notre peur, nous nous accrochons à ce que nous avons décrété "vrai" un jour, ou à ce qui depuis toujours nous a été présenté comme tel.

Quand nous sommes mûs, non par la peur de voir s'évanouir une illusoire sécurité, mais par une soif de connaître, alors l'erreur, comme la souffrance ou la tristesse, nous traverse sans se figer jamais, et la trace de son passage est une connaissance renouvelée.

Alexandre Grothendieck, Récoltes et semailles

Introduction -Version française

Le contenu principal de cette thèse concerne le développement moderne de la théorie des déformations de variété complexes compactes et de celles qui sont algébriques, initiée par K. Kodaira 

A(r, R) = {z ∈ C | r < |z| < R}
dans le plan complexe. Il est bien connu que la condition nécessaire et suffisante pour que

deux anneaux A 1 (r 1 , R 1 ) = {z ∈ C | r 1 < |z| < R 1 } et A 2 (r 2 , R 2 ) = {z ∈ C | r 2 < |z| < R 2 } de ce type soient biholomorphes est R 1 r 1 = R 2 r 2 .
Par exemple, deux anneaux A(1, 2) et A [START_REF] Blanc | Finite subgroups of the Cremona group of the plane[END_REF][START_REF] Calaque | Formal moduli problems and formal derived stacks[END_REF], comme illustré ci-dessous, sont biholomorphes. Un biholomorphisme explicite entre eux est donné par 0 2 1

A(1, 2) 0 4 2 A(2, 4) γ : A(1, 2) → A(2, 4) z → 2z.
La quantité ln(R) -ln(r) est appelée le module de l'anneau, elle varie dans (0, +∞) et classifie toutes les classes de déformations. Le but de la théorie des déformations est de comprendre en quelque sorte de combien de paramètres dépend une figure géométrique munie d'une certaine structure, ici une structure de variété complexe ou bien une structure conforme. Dans l'exemple ci-dessus, à première vue, chaque anneau est apparemment déterminé de manière unique par r et R. Cependant, sa classe d'isomorphismes ne dépend en fait que d'un paramètre : le module.

Un point essentiel de cette théorie est la capacité à linéariser le problème : on peut dériver une déformation de façon appropriée et il s'avère que la variation infinitésimale de l'objet géométrique considéré est assez souvent encodée dans un objet algébrique beaucoup plus simple : un espace vectoriel de dimension finie. Dans l'aspect formel, la théorie de la déformation est un analogue de la théorie des développements limités lorsque nous remplaçons des fonctions par des objets géométriques : les coefficients du développement limité sont des classes de cohomologie vivant dans certains espaces vectoriels de dimension finie familiers. De plus, l'analogue d'une fonction constante est une structure géométrique rigide : une déformation dont la dérivée s'annule est constante. Une illustration vivante pour cela est le travail fondateur de Kodaira-Spencer à propos des déformations de variétés complexes compactes. Soit X 0 une variété complexe compacte. Une déformation de X 0 selon eux est une application holomorphe, propre et submersive ν : X → (B, 0) où B, X sont des variétés complexes et 0 est un point dans B tel que ν -1 (0) = X 0 . Étonnamment, chaque déformation de X 0 correspond à une classe de cohomologie dans le premier groupe de cohomologie H 1 (X 0 , Θ X 0 ) du fibré tangent holomorphe Θ X 0 . Ce groupe de cohomologie est en fait un C-espace vectoriel de dimension finie. De plus, trouver une déformation de X 0 équivaut à trouver une série convergente φ(t) à coefficients dans H 1 (X 0 , Θ X 0 ), satisfaisant l'équation de Maurer-Cartan, c'est-à-dire

∂φ(t) = 1 2 [φ(t), φ(t)].
En résolvant cette équation, Kodaira et Spencer ont prouvé l'existence d'une variété complexe (plus précisément, un voisinage ouvert de l'origine dans C n où n = dim C H 1 (X 0 , Θ X 0 )) qui contient toutes les petites déformations de X 0 , sous l'hypothèse que H 2 (X 0 , Θ X 0 ) = 0 (0.0.1) (cf. [START_REF] Kodaira | Complex Manifolds and Deformation of Complex Structures[END_REF]). La famille correspondant à cette variété a la propriété que toute autre déformation de X 0 est obtenue par le tiré en arrière de cette famille par une application holomorphe.

Cette application n'est pas unique en général mais sa différentielle au point de référence est unique. Plus tard, Kuranishi a pu supprimer l'hypothèse (0.0.1) (cf. [START_REF] Kuranishi | New proof for the existence of locally complete families of complex structures[END_REF]). Cependant, le prix à payer est un assouplissement de la définition des déformations. Une déformation de X 0 est maintenant un morphisme holomorphe plat et propre d'espaces analytiques ν : X → (B, 0) avec le diagramme cartésien suivant X 0 X

• (B, 0). ι ν "L'espace de modules local" obtenu par Kuranishi (souvent appelé l'espace de Kuranishi) est singulier en général et en fait bien défini seulement près du point de référence. La famille de variétés complexes compactes associée est appelée la déformation semi-universelle (ou la famille de Kuranishi) de X 0 . Dans le cadre algébrique, lorsque X 0 est un schéma affine avec au plus des singularités isolées ou un schéma complet défini sur un corps de caractéristique zéro, le même résultat est obtenu par M. Schlessinger au moyen du langage des foncteurs artiniens (voir [START_REF] Schlessinger | Functors of Artin rings[END_REF] or [START_REF] Sernesi | Deformations of algebraic schemes[END_REF]).

Le problème est beaucoup plus compliqué lorsque la symétrie entre en jeu : si X 0 est en outre doté d'une action d'un certain groupe G, G n'agit plus sur les petites déformations de X 0 . L'exemple le plus simple de ce phénomène est lorsqu'on déforme une courbe hyperelliptique de genre au moins 3 : l'involution hyperelliptique ρ ne se propage pas à travers des déformations. Plus précisément, soit γ : X → (B, 0) une déformation verselle de X 0 (c'est-à-dire une déformation dont l'application de Kodaira-Spencer est surjective).

Si l'action s'étendait, alors l'image de l'application de Kodaira-Spencer serait fixée par ρ.

Par conséquent, ρ agirait trivialement sur H 1 (X 0 , Θ X 0 ), ce qui n'est évidemment pas le cas. Cependant, il y a encore un peu d'espoir que G agisse sur l'espace de Kuranishi : de petites déformations de X 0 sont permutées entre elles sous l'action de G. Concrètement, soit π : X → (S, 0) la déformation semi-universelle de X 0 où X 0 est muni d'une G-action.

On considère alors le problème suivant (S, 0)

Ψ(στ ) Ψ(τ ) π π Ψ(σ) ψ(στ ) ψ(τ ) ψ(σ) π
Comme on pouvait s'y attendre, si la famille π : X → S est universelle, c'est-à-dire que l'application du tiré en arrière est en fait unique, la réponse au problème ci-dessus est sans aucun doute positive. Ceci résulte du fait qu'à chaque fois que l'on change la fibre centrale de la famille localement universelle par un automorphisme de X 0 , on obtient une autre famille universelle de X 0

X 0 X 0 X • • (S, 0) σ -1 ∼ = ι π
qui est canoniquement isomorphe à l'ancienne. Malheureusement, une telle famille existe rarement en raison de l'existence d'automorphismes non triviaux de X 0 .

Le problème I a d'abord été considéré dans un travail pionnier de Pinkham dans lequel il a donné une réponse affirmative lorsque X 0 est un cône affine avec G m -action (cf. [START_REF] Pinkham | Deformations of algebraic varieties with G m -action[END_REF]).

Plus tard, Rim a obtenu un résultat plus poussé dont la preuve est basée sur le langage des catégories et sur des représentations rationnelles des groupes algébriques (cf. [START_REF] Rim | Equivariant G-structure on versal deformations[END_REF]).

Théorème I. Si G est un groupe algébrique linéairement réductif et X 0 est un schéma affine avec au plus des singularités isolées ou un schéma complet. Alors, il existe une déformation semi-universelle G-équivariante de X 0 , unique à isomorphismes G-équivariants non-canonicaux près .

L'objectif principal de notre travail est de traiter les problèmes qui se posent naturellement autour de ce théorème. La structure de cette thèse contient trois chapitres correspondant à nos trois articles [START_REF] Doan | A counter-example to the equivariance structure on semi-universal deformation[END_REF], [START_REF] Doan | Equivariant Kuranishi family of complex compact manifolds[END_REF] and [START_REF] Doan | Semi-prorepresentability of formal moduli problems and equivariance structure[END_REF]. Dans le chapitre 1, nous montrons que dans le théorème I, l'hypothèse que G est réductif est vraiment optimale. Pour le dire autrement, nous proposons un schéma projectif X 0 sur lequel un groupe non-réductif G agit algébriquement de telle sorte que l'action de G ne s'étende pas à sa déformation semi-universelle formelle. À savoir, soit F 2 la deuxième surface de Hirzebruch Il est facile de voir que G est non réductif. Puis nous commençons notre histoire par le résultat suivant (cf. Theorem 1.5.1).

Théorème A. L'action de G sur F 2 ne s'étend pas à la déformation semi-universelle formelle de F 2

Intuitivement, lorsque X 0 est une variété complexe compacte, une version appropriée du théorème I devrait toujours être valable, mais cela n'apparaît pas dans la littérature existante. De plus, il existe une différence cruciale entre le monde algébrique et le monde analytique. Dans le cadre algébrique, la déformation semi-universelle de X 0 et les G-actions étendues, construites par Rim dans le théorème I, ne sont que formelles. Néanmoins, dans le cadre analytique, sa déformation semi-universelle est une vraie déformation (une déformation convergente). Ainsi, si X 0 est une variété complexe compacte projective, une application du résultat de Rim nous donne une famille de Kuranishi G-équivariante dont les G-actions étendues ne sont que formelles, c'est-à-dire ce sont des séries formelles dont la convergence n'est pas garantie. Alors, cela nous motive à prouver, au chapitre 2, les deux résultats suivants dont l'ingrédient principal des preuves est une combinaison délicate d'une version G-équivariante de la construction classique de l'espace de Kuranishi de variétés complexes compactes (cf. [START_REF] Kuranishi | Deformations of compact complex manifolds[END_REF]) et des représentations des groupes de Lie complexes réductifs (cf. Corollaire 2.4.1 et Théorème 2.5.2, respectivement).

Théorème B. Soit X 0 une variété complexe compacte X 0 munie d'une action K, où K est un groupe de Lie réel compact. Alors il existe une déformation semi-universelle K-équivariante de X 0 .

Théorème C. Soit X 0 une variété complexe compacte munie d'une action holomorphe d'un groupe de Lie complexe réductif G. Alors il existe une déformation semi-universelle G-équivariante locale de X 0 .

Le langage des foncteurs artiniens développé par M. Schlessinger (voir [START_REF] Schlessinger | Functors of Artin rings[END_REF]) permet de réécrire le théorème I comme suit. Soit Art k la catégorie des k-algèbres artiniennes locales de corps résiduel k. Le foncteur F X 0 : Art k → Sets qui associe à chaque k-algèbre artinienne locale A, l'ensemble des morphismes plats de schémas X → Spec(A) avec un isomorphisme X × Spec(A) Spec(k) ∼ = X 0 a un élément semi-universel formel qui peut encore être rendu équivariant si l'hypothèse qu'un groupe algébrique linéairement réductif Le foncteur Def X 0 : dgArt k → SEns, qui associe à chaque k-algèbre artinienne différentielle graduée augmentée, le nerf de la catégorie des morphismes plats de schémas dérivés sur Spec(A), dont la fibre homotopique au point k de Spec(A) est X 0 , est en fait un problème de modules formel qui étend F X 0 , c'est-à-dire

π 0 (Def X 0 ) = F X 0 .
Il est bien connu que l'algèbre de Lie différentielle graduée associée à Def X 0 est 

RΓ(X 0 , T X 0 /k ) où T X 0 /k est le complexe tangent de X 0 et RΓ(X 0 , T X 0 /k ) est
X → Spec(A) avec un isomorphisme (resp. un isomorphisme G-équivariant) X × Spec(A) Spec(C) ∼ = X 0 .
L'algèbre de Lie différentielle graduée contrôlant les déformations de X 0 est 

g * := Γ(X 0 , A 0,0 (T X 0 )) ∂ → Γ(X 0 , A 0,1 (T X 0 )) ∂ → Γ(X 0 , A 0,2 (T X 0 )) ∂ → • • • avec le crochet de Lie défini par [φdz I , ψdz J ] = [φ, ψ] dz I ∧ zJ où φ, ψ ∈ A

Introduction -English version

The main content of this thesis concerns the modern development of the theory of deformations of compact complex manifolds and algebraic varieties, initiated by K. Kodaira, Spencer, M. Artin, A. Grothendieck, M. Schlessinger and other people in the 1960s. We mainly focus on understanding how one can deform a geometric object with an additional symmetry. This problem is somehow difficult due to the fact that the symmetry is not always preserved through small deformations.

First of all, we introduce briefly what the deformation theory is by a simple example.

We consider all rings of type

A(r, R) = {z ∈ C | r < |z| < R}
in the complex plan. It is well-known that the necessary and sufficient condition for two

rings A 1 (r 1 , R 1 ) = {z ∈ C | r 1 < |z| < R 1 } and A 2 (r 2 , R 2 ) = {z ∈ C | r 2 < |z| < R 2 } of this type to be biholomorphic to each other is R 1 r 1 = R 2 r 2 .
For example, two rings A(1, 2) and A(2, 4), as pictured below are biholomorphic. An

0 2 1 A(1, 2) 0 4 2 A(2, 4)
explicit biholomorphism between them is given by

γ : A(1, 2) → A(2, 4) z → 2z.
The quantity ln(R)-ln(r) is called the moduli of the ring which varies in (0, +∞) and which classifies all the classes of deformations. The principal purpose of the deformation theory is the study of how many parameters a geometric object equipped with some structure, in this case a complex structure or a conformal structure, depends on. In the above example, at first glance, each ring is apparently uniquely determined by r and R. However, its isomorphism class in fact depends only on one parameter which is their moduli.

One essential point of this theory is the capability of linearizing the problem: one can derive a deformation in an appropriate way and it turns out quite often that the infinitesimal variation of the considered geometric object is encoded in a much more simple algebraic object -a finite dimensional vector space. In the formal aspect, deformation theory is an analog of Taylor's expansion when we replace functions by geometric objects: the coefficients of the power series are cohomology classes lying in some familiar finite dimensional vector spaces. Moreover, the similarity of a constant function is a rigid geometric structure: a deformation whose derivative vanishes is constant. One vivid illustration for this is the foundational work of Kodaira-Spencer on deformations of compact complex manifolds. Let X 0 be a compact complex manifold. A deformation of X 0 in their sense is a proper and submersive holomorphic map ν : X → (B, 0) where B, X are complex manifolds and 0 is a point in B such that ν -1 (0) = X 0 . Surprisingly, each deformation of X 0 corresponds to a cohomology class in the first cohomology group H 1 (X 0 , Θ X 0 ) of the holomorphic tangent bundle Θ X 0 . This cohomology group is actually finite dimensional as a C-vector space. Furthermore, finding a deformation of X 0 is equivalent to finding a convergent power series φ(t) with coefficients in H 1 (X 0 , Θ X 0 ), satisfying the Maurer-Cartan equation, i.e.

∂φ(t) = 1 2 [φ(t), φ(t)].
By solving this equation, Kodaira and Spencer proved the existence of a complex manifold (more precisely, an open neighborhood of the origin in

C n where n = dim C H 1 (X 0 , Θ X 0 ))
which contains all small deformations of X 0 , under the assumption that [START_REF] Kodaira | Complex Manifolds and Deformation of Complex Structures[END_REF]). The family corresponding to this manifold has the property that any other deformation of X is obtained by the pullback of this family by a holomorphic map. This map is not unique in general but its differential at the reference point is unique. Later, Kuranishi was able to remove the hypothesis (0.0.2) (cf. [START_REF] Kuranishi | New proof for the existence of locally complete families of complex structures[END_REF]). However, the price to pay is a loosening of the definition of deformations. A deformation of X 0 now is a proper flat holomorphic map ν : X → (B, 0) between complex spaces with the following cartesian diagram

H 2 (X 0 , Θ X 0 ) = 0 (0.0.2) (cf.
X 0 X • (B, 0). ι ν
The "local moduli space" obtained by Kuranishi (often called Kuranishi space) is singular in general and actually only well-defined near the reference point. The associated family of compact complex manifolds is called the semi-universal deformation (or Kuranishi family) of X 0 . In the algebraic setting, when X 0 is an affine scheme with at most isolated singularities or a complete scheme defined over a field of characteristic zero, the same result is obtained by M. Schlessinger by means of the language of Artinian functors (see [START_REF] Schlessinger | Functors of Artin rings[END_REF] or [START_REF] Sernesi | Deformations of algebraic schemes[END_REF]).

The problem is much more complicated when symmetry enters the game: if X 0 is further equipped with an action of some group G, G no longer acts on small deformations of X 0 . The most simple example of this phenomenon is when one deforms a hyperelliptic curve of genus at least 3: the hyperelliptic involution ρ does not propagate through deformations. More precisely, let γ : X → (B, 0) be a versal deformation of X 0 (i.e. a deformation whose Kodaira-Spencer map is surjective). If the action extended, then the image of the Kodaira-spencer map would be fixed by ρ. Therefore, ρ would act trivially on H 1 (X 0 , Θ X 0 ) which is obviously not the case. However, there is still some hope that G acts on Kuranishi space: small deformations of X 0 are permuted among them under the G-action. Specifically, let π : X → (S, 0) be the semi-universal deformation of X 0 where X 0 is equipped with a G-action. Then we consider the following problem.

Problem I. Does there exist a G-action on S and a G-action on X extending the initial G-action on X 0 such that π is G-equivariant with respect to these G-actions?

In other words, we ask whether there exist group homomorphisms Ψ : G → Aut(X ) and ψ : G → Aut(S) such that for all σ, τ ∈ G, we have the following commutative diagrams X 0 X 0 X X . .

(S, 0) (S, 0),

σ -1 ι ι Ψ(σ) ψ(σ) π π X X X (S, 0) (S, 0).
(S, 0)

Ψ(στ ) Ψ(τ ) π π Ψ(σ) ψ(στ ) ψ(τ ) ψ(σ) π
As might be expected, if the family π : X → S is universal i.e. the pullback map is actually unique then the answer to the above problem is undoubtedly yes. This follows from the fact that each time we change the central fiber of the locally universal family by an automorphism of X 0 , we obtain another universal family of X 0

X 0 X 0 X • • (S, 0) σ -1 ∼ = ι π
which is canonically isomorphic to the old one. Unfortunately, hardly does such a family exist due to the existence of non-trivial automorphisms of X 0 .

Problem I was first considered in a pioneering work of Pinkham in which he gave an affirmative answer when X 0 is an affine cone with G m -action (cf. [START_REF] Pinkham | Deformations of algebraic varieties with G m -action[END_REF]). Later on, Rim obtained a more far-reaching result whose proof is based on the language of categories and rational representations of algebraic groups (cf. [START_REF] Rim | Equivariant G-structure on versal deformations[END_REF]).

Theorem I. Let G be a linearly reductive algebraic group and X 0 an affine scheme with at most isolated singularities or a complete scheme. Then, there exists a G-equivariant semi-universal deformation of X 0 , unique up to G-equivariant morphism.

The main focus of our work is to deal with problems naturally arising around this theorem. The structure of this thesis contains three chapters corresponding to our three papers [START_REF] Doan | A counter-example to the equivariance structure on semi-universal deformation[END_REF], [START_REF] Doan | Equivariant Kuranishi family of complex compact manifolds[END_REF] and [START_REF] Doan | Semi-prorepresentability of formal moduli problems and equivariance structure[END_REF].

In Chapter 1, we show that in Theorem I, the assumption that G is reductive is really optimal. To put it another way, we provide a projective scheme X 0 on which a nonreductive group G acts algebraically such that the G-action does not extend to its formal semi-universal deformation. Namely, let F 2 be the second Hirzebruch surface

F 2 := {([x : y : z], [u : v]) ∈ P 2 × P 1 |yv 2 = zu 2 }
and consider its automorphism group

G := Aut(F 2 ) ∼ = (C 3 GL(2, C))/I
where

I = µ 0 0 µ | µ ∈ C, µ 2 = 1 .
It is easy to see that G is non-reductive. Then we start our story by the following result (cf. Theorem 1.5.1).

Theorem A. The action of G on F 2 does not extend to the formal semi-universal deformation of F 2 .

Intuitively, when X 0 is a complex compact manifold, an appropriate version of Theorem I should still hold, but this is not contained in the existing literature. Moreover, there is a crucial difference between the algebraic world and the analytic one. In the algebraic setting, the semi-universal deformation of X 0 and the extended G-actions, constructed by Rim in Theorem I, are just formal. Nevertheless, in the analytic setting, its semiuniversal deformation is a true deformation (a convergent deformation). So, if X 0 is a projective complex compact manifold, an application of Rim's result gives us a Gequivariant Kuranishi family whose the extended G-actions are only formal, i.e. they are formal power series whose convergence is not guaranteed. Thus, it motivates us to prove, in Chapter 2, the following two results of which the main ingredient of the proofs is a delicate combination of a G-equivariant version of Kuranishi's classical construction of semi-universal deformations of complex compact manifolds (cf. [START_REF] Kuranishi | Deformations of compact complex manifolds[END_REF]) and representations of reductive complex Lie groups (cf. Corollary 2.4.1 and Theorem 2.5.2, respectively).

Theorem B. Let X 0 be a complex compact manifold X 0 with a K-action, where K is a compact real Lie group. Then there exists a K-equivariant semi-universal deformation of X 0 .

Theorem C. Let X 0 be a complex compact manifold with a holomorphic action of a complex reductive Lie group G. Then there exists a local G-equivariant semi-universal deformation of X 0 .

The language of Artinian functors developed by M. Schlessinger (see [START_REF] Schlessinger | Functors of Artin rings[END_REF]) allows us to rewrite Theorem I as follows. Let Art k denote the category of local artinian k-algebras with residue field k. The functor F X 0 : Art k → Sets which associates to each local artinian k-algebra A, the set of flat morphisms of schemes X → Spec(A) with an isomorphism X × Spec(A) Spec(k) ∼ = X 0 has a formal semi-universal element which can be further made equivariant if an assumption that a linearly reductive algebraic group G acts algebraically on X 0 is added. Chapter 3 deals with the semi-prorepresentability of the extended formal moduli problem Def X 0 of F X 0 in the context of derived deformation theories (recall that a formal moduli problem is an ∞-functor from dgArt k → SEns satisfying certain exactness conditions, where dgArt k is the category of differential graded commutative artinian augmented k-algebras and SEns is the ∞-category of simplicial sets). To be more exact, we first introduce the notion of semi-prorepresentability of formal moduli problems which does not seem to exist in the derived setting. This new notion is the weaker version of prorepresentability and a natural generalization of the notion of semi-universality in Schlessinger's sense (cf. Definition 3.3.2 below). Afterward by means of the well-known equivalence between the ∞-category of formal moduli problems and that of differential graded Lie algebras, a simple criterion for a formal moduli problem to be semi-prorepresentable is provided (cf. Theorem 3.3.2).

Theorem D. Let F be a formal moduli problem whose associated differential graded Lie algebra g * is cohomologically concentrated in [0, +∞). Assume further that H i (g * ) is a finite dimensional vector space for each i ≥ 0. Then F is semi-prorepresentable.

The functor Def X 0 : dgArt k → SEns, which associates to each differential graded commutative artinian augmented k-algebra A, the nerve of the category of flat morphisms of derived schemes over Spec(A), whose homotopy fiber at the k-point of Spec(A) is X 0 , is actually a formal moduli problem which extends F X 0 , i.e.

π 0 (Def X 0 ) = F X 0 .
It is well-known that the differential graded Lie algebra associated to Def X 0 is

RΓ(X 0 , T X 0 /k )
where T X 0 /k is the tangent complex of X 0 and RΓ(X 0 , T X 0 /k ) is the derived global section of T X 0 /k (cf. Theorem 3.4.2). When X 0 is an affine scheme with at most isolated singularities or a projective scheme defined over k, the semi-prorepresentability of Def X 0 follows from the fact that RΓ(X 0 , T X 0 /k ) is cohomologically concentrated in [0, +∞) and that H i (RΓ(X 0 , T X 0 /k )) is a finite dimensional vector space for each i ≥ 0. In other words, Def X 0 has a "derived semi-universal element" whose connected components give back the classical semi-universal one. In the spirit of Problem I, it is natural to wonder whether this derived semi-universal element can be made G-equivariant in some sense, where G is a linearly reductive group acting algebraically on X 0 . The answer is the content of the following theorem which is a natural generalization of Theorem I in the derived literature.

(cf. Theorem 3.4.6).

Theorem E. There exists a G-equivariant structure on the derived semi-universal element of Def X 0 . Consequently, the classical deformation functor

F X 0 = π 0 (Def X 0 ) of X 0 has a G-equivariant semi-universal element.
Finally, when X 0 is a complex compact manifold on which a reductive complex Lie group acts holomorphically, we would like to provide a formal version of Theorem C by using the purely algebraic approach that we develop earlier in the same chapter. Let Def X 0 : Art C → Sets (resp. Def G X 0 : Art G C → Sets) be the functor which associates to each local artinian C-algebra A, the isomorphism class of (resp. G-equivariant) flat proper morphisms of analytic spaces X → Spec(A) with an isomorphism (resp. a G-equivariant isomorphism)

X × Spec(A) Spec(C) ∼ = X 0 .
The dgla controlling deformations of X 0 is

g * := Γ(X 0 , A 0,0 (T X 0 )) ∂ → Γ(X 0 , A 0,1 (T X 0 )) ∂ → Γ(X 0 , A 0,2 (T X 0 )) ∂ → • • •
with the Lie bracket defined by

[φdz I , ψdz J ] = [φ, ψ] dz I ∧ zJ
where φ, ψ ∈ A 0,0 (T X 0 ) are vector fields on X 0 , [-, -] is the usual Lie bracket of vector 

9).

Theorem F. There exists a G-equivariant structure on the semi-prorepresentable object of Map Lie C (D(-), g * ) with respect to the prescribed G-action on g * . Consequently, the classical functor of G-equivariant deformations Def G X 0 of X 0 has a formal G-equivariant semi-universal element.

Chapter 1

A counter-example to the equivariance structure on semi-universal deformation

Introduction

Let X 0 be an algebraic variety defined over a field k of characteristic zero. Due to Schlessinger's work in [START_REF] Schlessinger | Functors of Artin rings[END_REF], the existence of a formal semi-universal deformation (unique up to non-canonical isomorphism), which contains all the information of small deformations of X 0 , is assured provided that H 1 (X 0 , T X 0 ) and H 2 (X 0 , T X 0 ) are finite dimensional vector spaces. These conditions realize for example, if X 0 is a complete scheme over k or an affine scheme with at most isolated singularities (see [START_REF] Sernesi | Deformations of algebraic schemes[END_REF]Corollary 2.4.2]). Now, we equipe X 0 with an action of an algebraic group G defined over k. One question arising naturally is whether there exists a formal semi-universal deformation π : X → S of X 0 , on which we can provide a G-action extending the given one on X. The answer is positive in the case that G satisfies some vanishing conditions on its cohomology groups, i.e. H 1 (G, -) = 0 and H 2 (G, -) = 0 for a class of G-modules determined by X 0 . In particular, these vanishing conditions hold for linearly reductive groups (see [START_REF] Rim | Equivariant G-structure on versal deformations[END_REF] or Theorem I above). However, we do not know if there exists a non-reductive group whose action on X 0 does not extend to the formal semi-universal deformation of X 0 . Therefore, we wish to give an example which illustrates this phenomenon. More precisely, we prove that the action of the automorphism group of the second Hirzebruch surface F 2 does not extend to its formal semi-universal deformation.

Our proof goes as follows. First, we find a nice presentation of G := Aut(F 2 ). Then we construct a formal semi-universal deformation X of F 2 . It turns out that G is non-reductive and that the Lie algebra of G is a 7-dimensional vector space. As a matter of fact, we obtain seven vector fields on F 2 with Lie bracket relations induced by those in Lie(G).

Next, we describe the general form of formal vector fields on X . Finally, we conclude the chapter by means of contradiction. Suppose that the G-action on F 2 does extend to a G-action on X then we also have seven formal vector fields on X whose restrictions on the central fiber are nothing but our initial ones on F 2 . By manipulating these vector fields with a filtration F given by the vanishing order at 0, we obtain the existence of a 3-dimensional abelian Lie subalgebra in sl 2 (K) × sl 2 (K), where sl 2 (K) is the special linear group and K is the field of formal Laurent power series C[[t, t -1 ]], which is not the case. A remark is in order. Since the semi-universal family of F 2 is in fact not universal, another possible way to obtain a contradiction is to use Wavrik's criterion (see [START_REF] Wavrik | Obstructions to the existence of a space of moduli[END_REF]Theorem 4.1]) but the calculations are rather complicated.

Formal schemes and formal deformations

In this section, by k, we always mean a field of characteristic zero. We begin by recalling the definition of formal schemes. For more details, the readers are referred to [START_REF] Hartshorne | Algebraic Geometry[END_REF]Chapter III. 9]. Definition 1.2.1. Let X be a noetherian scheme and let Y be a closed subscheme defined by a sheaf of ideals I. Then we define the formal completion of X along Y , denoted ( X, O X ) (sometimes just X), to be the following ringed space. We take the topological space Y , and on it the sheaf of rings O X = lim ← -O X /I n . Here we consider each O X /I n as sheaf of rings on Y Remark 1.2.1. For each n, let X n = (X, O X /I n ). Then we obtain a sequence of closed immersions of schemes

X 1 → X 2 → • • • → X n → • • • .
This expression is helpful in the sequel.

Definition 1.2.2. A noetherian formal scheme is a locally ringed space (X, O X ) which

has a finite open cover {U i } such that for each i, the pair

(U i , O X | U i ) is isomorphic, as
a locally ringed space, to the completion of some noetherian scheme X i along a closed subscheme Y i . A morphism of noetherian formal schemes is a morphism as locally ringed spaces.

Example 1.2.1. If X is any noetherian scheme, and Y is a closed subscheme then the formal completion X of X along Y is a formal scheme.

Example 1.2.2.

For X = C 1 = Spec(C[t]
) and Y = {0}, the formal scheme X is the locally ringed space (Y, O X ), where the structure sheaf

O X is C[[t]]. We denote Specf(C[[t]]) := (Y, O X ).
Let (X, O X ) be a noetherian formal scheme. We would like to define formal vector fields on X. Let {U i } be a finite open cover of X such that for each i, the pair (

U i , O X | U i ) is the formal completion ( X i , O X i ) of some noetherian scheme X i along a closed subscheme Y i .
By Remark 1.2.1, for each i we have a sequence of closed immersions of schemes

X i1 → X i2 → • • • → X in → • • • .
Definition 1.2.3. A formal vector field on a noetherian formal scheme X is a sequence of vector fields {v i,n } such that (i) Each v i,n is a usual vector field on the scheme

X i,n , (ii) v i,n induces v i,n-1 via the natural inclusion X i,n-1 → X i,n , (iii) v i,n | X i,n ∩X j,n = v j,n | X j,n ∩X i,n .
Next, we turn to the notion of infinitesimal deformations and that of formal deformations. Let X 0 be an algebraic scheme and let A be an artinian local k-algebra with residue field k. An infinitesimal deformation of X 0 is a deformation of X 0 over the scheme

Spec(A), i.e. a commutative diagram X 0 X Spec(k) Spec(A) i π
where π : X → Spec(A) is a flat surjective morphism of schemes. Now, let A be a complete local noetherian k-algebra with the unique maximal ideal m and with residue k.

Definition 1.2.4. A formal deformation of X 0 over A is a sequence {ν n } of infinitesimal deformations of X, in which ν n is represented by a deformation X 0 X n Spec(k) Spec(A n ) f n π n
where A n = A/m n+1 , such that for all n ≥ 1, ν n induces ν n-1 by pullback under the natural inclusion Spec(A n-1 ) → Spec(A n ), i.e. ν n-1 is also represented by the deformation

X 0 X n × Spec(An) Spec(A n-1 ) Spec(k) Spec(A n-1 ) f n-1 π n-1
In the language of formal schemes, we can write {ν n } as the morphism of formal schemes

π : X → Specf(A)
where

X = (X, lim ← O Xn ) and π = lim ← π n .
Here, O Xn is the structure sheaf on X n and Specf(A) is the formal scheme obtained by completing Spec(A) along its closed point, which corresponds to the unique maximal ideal of A. The easiest way to construct formal deformations is to build out of usual ones. This leads to the definition of formal deformation associated to a given deformation. Let X 0 be a projective scheme and let ν be a deformation represented by

X 0 X Spec(k) (S, s) f π
where S = Spec(B) for some k-algebra of finite type B and s is a k-rational point of S.

Definition 1.2.5. The formal deformation associated to ν is defined to be the sequence of deformations {ν n } where each ν n is the pullback of ν under the natural closed embedding

S n := Spec(O S,s /m n+1 s ) → S
where m s is the unique maximal ideal of the local ring O S,s .

Remark

1.2.2. Note that {ν n } is formal because of the isomorphism O S,s /m n+1 s ∼ = O S,s / m n+1 s for all n.
To end this section, we introduce a very interesting kind of (formal) deformations, namely, the kind of G-equivariant (formal) ones, which is of central interest of this chapter.

Let G be a k-algebraic group acting algebraically on a projective variety X 0 and A an artinian local k-algebra.

Definition 1.2.6. A G-equivariant infinitesimal deformation of X 0 over Spec(A) is a usual deformation of X 0 , i.e. a commutative diagram X 0 X Spec(k) Spec(A) i π
where X and Spec(A) are equipped with G-actions in a way that any map appearing in the above diagram is G-equivariant. In particular, the restriction of the G-action on X on the central fiber is nothing but the initial G-action on X 0 .

Finally, we give the definition of G-equivariant formal deformations and then we show how to produce formal vector fields from G-equivariant formal deformations.

Definition 1.2.7. A G-equivariant formal deformation of X 0 over a complete local noetherian k-algebra A with the unique maximal ideal m is a formal deformation of X 0 , i.e. a sequence {ν n } of infinitesimal deformations of X 0 , in which ν n is represented by a Gequivariant infinitesimal deformation

X 0 X n Spec(k) Spec(A n ) f n π n
where A n = A/m n+1 , such that for all n ≥ 1, the G-equivariant deformation ν n induces the G-equivariant deformation ν n-1 by pullback under the natural inclusion Spec(A n-1 ) →

Spec(A n ).
As before, we can write {ν n } as the G-equivariant morphism of formal schemes

π : X → Specf(A)
where

X = (X, lim ← O Xn ) and π = lim ← π n .
Here, the G-equivariance of π means that π is an inverse limit of G-equivariant morphisms of schemes π n . On one hand, on each n th -infinitesimal neighborhood, G-actions on X n and on Spec(A n ) induce vector fields on X n and on Spec(A n ), respectively. They are related by the fact that the differential of π n always maps the former ones to the latter ones. On the other hand, these induced vector fields on X n and on Spec(A n ) are also induced by those on X n+1 and on Spec(A n+1 ), respectively, via the natural inclusion Spec(A n ) → Spec(A n+1 ).

Therefore, we obtain formal vector fields, induced by the G-actions, on X and on Specf(A), respectively.

The second Hirzebruch surface and its automorphism group

For the rest of the paper, we assume that k is the field of complex numbers C. The general linear group GL(2, C) has an obvious linear action on C 2 . This induces an action on the C-vector space of polynomials in two variables C[X, Y ]. Since the subspace of homogeneous polynomials of degree 2, denoted by

C[X, Y ] 2 , is GL(2, C)-invariant then we have a GL(2, C)-action on C[X, Y ] 2 . More precisely, for g = a b c d ∈ GL(2, C) and f = a 0 X 2 + a 1 XY + a 2 Y 2 ∈ C[X, Y ] 2 , the action of g on f is given by the linear substitution X Y := a b c d X Y , i.e. g.f = a 0 (aX + bY ) 2 + a 1 (aX + bY ) (cX + dY ) + a 2 (cX + dY ) 2 = a 2 a 0 + aca 1 + c 2 a 2 X 2 + (2aba 0 + (ad + bc)a 1 + 2cda 2 ) XY + b 2 a 0 + bda 1 + d 2 a 2 Y 2 .
Identifying C[X, Y ] 2 with C 3 , the corresponding action on C 3 can be written as

g.(a 0 , a 1 , a 2 ) =    a 2 ac c 2 2ab ad + bc 2cd b 2 bd d 2       a 0 a 1 a 2    .
This action gives rise to an algebraic group H which is the semi-product of C 3 and GL(2, C), i.e.

H := C 3 GL(2, C).
This is a non-reductive linear group. Recall that an algebraic group K is reductive if the

greatest connected normal subgroup R u (K) of K is trivial. In our case, R u (H) = C 3 .
Next, we recall the definition of the second Hirzebruch surface. Let

P(O P 1 (2) ⊕ O P 1 )
be the projectivization of O P 1 (2) ⊕ O P 1 , where O P 1 is the structure sheaf of the projective space P 1 .

Definition 1.3.1. The second Hirzebruch surface is defined to be P(O P 1 (2) ⊕ O P 1 ).

Proposition 1.3.1. The second Hirzebruch surface is isomorphic to the variety

F 2 := {([x : y : z], [u : v]) ∈ P 2 × P 1 |yv 2 = zu 2 }.
Proof. Let σ: P(O P 1 (2) ⊕ O P 1 ) → P 1 be the canonical projection of the projectivization

P(O P 1 (2) ⊕ O P 1 ), let U = Spec(C[v]) and U = Spec(C[v ]) such that v v = 1 on U ∩ U . Then P(O P 1 (2) ⊕ O P 1 )
has the following presentation

P(O P 1 (2) ⊕ O P 1 ) = σ -1 (U ) ∪ σ -1 (U ) = (U × P 1 ) ∪ (U × P 1 ).
such that on the intersection of the affine open sets

V = Spec(C[v, y]) ⊂ U × P 1 and V = Spec(C[v , y ]) ⊂ U × P 1 , we have    vv = 1 y = yv 2 .
So, an open covering of F 2 is given by the open embeddings

ρ 1 : U × P 1 → F 2 (v, [x : y]) → ([x : y : yv 2 ], [1 : v])
and

ρ 2 : U × P 1 → F 2 (v , [x : y ]) → ([x : y v 2 : y ], [v : 1]),
which glue to give an isomorphism ρ :

P(O P 1 (2) ⊕ O P 1 ) → F 2 .
Now, the algebraic group H acts on the second Hirzebruch surface

F 2 = {([x : y : z], [u : v]) ∈ P 2 × P 1 |yv 2 = zu 2 }
in the following manner: for p = ([x :

y : z], [u : v]) ∈ F 2 and g = (a 0 , a 1 , a 2 ) t , a b c d ∈ H, g.p =    xu 2 + y(a 0 v 2 + a 1 uv + a 2 u 2 ) : y(au + bv) 2 : y(cu + dv) 2 , [au + bv : cu + dv] if u = 0 xv 2 + z(a 0 v 2 + a 1 uv + a 2 u 2 ) : z(au + bv) 2 : z(cu + dv) 2 , [au + bv : cu + dv] if v = 0 .
The following theorem is well-known (see [2, Section 6.1]). 

(C[t, v, v -1 , y]) ⊂ Spec(C[t, v, y]) and Spec(C[t , v , v -1 , y ]) ⊂ Spec(C[t , v , y ]) by the rules                vv = 1 x = x y = yv 2 -tvx t = t. (1.4.1) 
This gives a gluing of W and W along

Proj(C[t, v, v -1 , x, y]) and Proj(C[t , v , v -1 , x , y ]).
We denote the resulting scheme by W. In other words, if we let (t, v, 

W → C = Spec(C[t]) is a semi-universal deformation of F 2 . Moreover, π -1 (t) =    F 2 if t = 0 P 1 × P 1 otherwise.
Proof. The map π is obviously surjective by construction. Since π is locally a projection, it is a flat morphism. Moreover, by Proposition 1.3.1,

W 0 = π -1 (0) = F 2 . Then π : W → C is a deformation of F 2 . Next, let W * = π -1 (C * ) and π * : W * → C * is the restriction of π on C * = Spec(C[t, t -1 ]). We shall prove that W * is in fact isomorphic to C * × P 1 × P 1 .
Indeed, consider the following open embeddings

φ : C * × C × P 1 → C * × P 1 × P 1 (t, v, [x : y]) → (t, [1 : v], [ty : vy -tx])
and

φ : C * × C × P 1 → C * × P 1 × P 1 (t , v , [x : y ]) → (t , [v : 1], [t v y + t 2 x : y ]).
By the gluing condition (1.4.1), we have that

(t , [v : 1], [t v y + t 2 x : y ]) = (t , [v : 1], [t v (yv 2 -tvx) + t 2 x : yv 2 -tvx]) = (t , [v : 1], [t yv : yv 2 -tvx]) = (t, [1 : v], [ty : yv -tx]).
Hence, the above two morphisms glue to give an isomorphism

W * C * × P 1 × P 1 C * , ∼ = pr 1 π *
which means precisely that π * : W * → C * is the trivial family whose fibers are all isomorphic to P 1 × P 1 . In particular, for

t ∈ C * , π -1 (t) = (π * ) -1 (t) = P 1 × P 1 .
It remains to prove that the family π : W → C is actually semi-universal. One way to see it is to compute the Kodaira-Spencer map K π,0 of π at 0. This map is uniquely determined by the element K π,0

( d dt ) in H 1 (F 2 , T F 2 )
. By definition, K π,0 ( d dt ) represents the first order deformation of F 2 , obtained by gluing

W 0 := Proj(C[ , v, x, y]) and W 0 := Proj(C[ , v , x , y ]) along Proj(C[ , v, v -1 , x, y]) and Proj(C[ , v , v -1 , x , y ]) by the rules    vv = 1 y = yv 2 -v , where C[ ] is the ring of complex dual numbers. Hence, K π,0 ( d dt ) ∈ H 1 (U, T F 2 ) is the 1-cocycle which corresponds to the vector field {-v ∂ ∂y } on W 0 ∩ W 0 , where U is the covering {W 0 , W 0 }. By [32, Example B.11(iii)], we see that {-v ∂ ∂y } is nonzero and dim C H 1 (F 2 , T F 2 ) = 1.
Thus, the Kodaira-Spencer map is an isomorphism and so π :

W → C is semi-universal.
Another useful presentation of W is given as follows.

Proposition 1.4.1. The scheme W is isomorphic to the surface

X := {([x : y : z], [u : v], t) ∈ P 2 × P 1 × C | yv 2 -zu 2 -txuv = 0}.
Proof. We have an open covering of X given by the open embeddings

ρ 1 : C × C × P 1 → X (t, v, [x : y]) → ([x : y : yv 2 -tv], [1 : v], t)
and The formal deformation associated to W, π :

ρ 2 : C × C × P 1 → X (t , v , [x : y ]) → ([x : y v 2 + t v : y ], [v : 1], t) which glue to give an isomorphism W ∼ = → X .
W → Specf(C[[t]]) is a formal semi- universal deformation of F 2 (here C[[t]
] is the ring of formal power series in the variable t). We will give explicit descriptions of formal vector fields on W. Consider the covering {W, W } where W := Proj(C[t, v, x, y]) and W := Proj(C[t , v , x , y ]), as before. A formal vector field on W is of the form

g 1 (v, t) ∂ ∂v + (α 1 (v, t)y 2 + β 1 (v, t)y + γ 1 (v, t)) ∂ ∂y + k 1 (t) ∂ ∂t (1.4.2)
where g 1 , α 1 , β 1 , γ 1 , k 1 are formal power series in the variable t. Likewise, a formal vector field on W is of the form

g 2 (v , t ) ∂ ∂v + (α 2 (v , t )y 2 + β 2 (v , t )y + γ 2 (v , t )) ∂ ∂y + k 2 (t ) ∂ ∂t (1.4.3)
where g 2 , α 2 , β 2 , γ 2 , k 2 are formal power series in the variable t . Therefore, a vector field on W which is of the form (1.4.2) on W and of the form (1.4.3) on W must satisfy the relation

g 1 (v, t) ∂ ∂v + (α 1 (v, t)y 2 + β 1 (v, t)y + γ 1 (v, t)) ∂ ∂y + k 1 (t) ∂ ∂t = g 2 (v , t ) ∂ ∂v + (α 2 (v , t )y 2 + β 2 (v , t )y + γ 2 (v , t )) ∂ ∂y + k 2 (t ) ∂ ∂t (1.4.4)
on the overlapping open set W ∩ W .

Lemma 1.4.1. A global formal vector field on W whose restriction on W is

g 1 (v, t) ∂ ∂v + (α 1 (v, t)y 2 + β 1 (v, t)y + γ 1 (v, t)) ∂ ∂y + k 1 (t) ∂ ∂t must satisfy the following                g 1 (v, t) = A(t)v 2 + B(t)v + C(t) α 1 (v, t) = a(t)v 2 + b(t)v + c(t) β 1 (v, t) = -2[a(t)t + A(t)]v + e(t) γ 1 (v, t) = t 2 a(t) + tA(t) (1.4.5) 
where A, B, C, a, b, c, e, k 

                           y = v 2 y + tv v = 1 v t = t ∂ v = -v 2 ∂ v + (2y v + t)∂ y ∂ y = 1 v 2 ∂ y ∂ t = -1 v ∂ y + ∂ t .
(1.4.7)

Substituting (1.4.7) into the left hand side of (1.4.4) and equalizing, we get that

               g 2 (v , t ) = -v 2 g 1 ( 1 v , t ) α 2 (v , t ) = v 2 α 1 ( 1 v , t ) β 2 (v , t ) = 2t v α 1 ( 1 v , t ) + β 1 ( 1 v , t ) + 2v g 1 ( 1 v , t ) γ 2 (v , t ) = t 2 α 1 ( 1 v , t ) + t v β 1 ( 1 v , t ) + 1 v 2 γ 1 (v , t ) + t g 1 ( 1 v , t ) -k 1 (t ) v , (1.4.8) 
which implies that

               g 1 (v, t) = A(t)v 2 + B(t)v + C(t) α 1 (v, t) = a(t)v 2 + b(t)v + c(t) β 1 (v, t) = -2[a(t)t + A(t)]v + e(t) γ 1 (v, t) = t 2 a(t) + tA(t),
where A, B, C, a, b, c, e are formal power series in the variable t with a relation

b(t)t 2 + e(t)t + B(t)t -k 1 (t) = 0.
This constraint comes from the coefficient of 1 v in the fourth equation in (1.4.8).

Remark 1.4.2. If t = 0 then (1.4.5) becomes                g 1 (v) = Av 2 + Bv + C α 1 (v) = av 2 + bv + c β 1 (v) = -2Av + e γ 1 (v, t) = 0
which agrees with Kodaira's calculations of vector fields on W 0 = F 2 (see [17, Page 75]).

In particular, we have seven linearly independent vector fields on F 2 . If t is non-zero and fixed then we have six linearly independent vector fields on the fiber W t , which is due to the existence of the relation (1.4.6).

1.5 The non-existence of G-equivariant structure on the formal semi-universal deformation

The Lie algebra of

G := Aut(F 2 ) is C 3 × M (2, C), which is evidently 7-dimensional .
A C-basis of Lie(G) is given by the following elements

                           e 1 = (1, 0, 0) ×   0 0 0 0   , e 2 = (0, 0, 1) ×   0 0 0 0   , e 3 = (0, 0, 0) ×   0 0 1 0   , e 4 = (0, 1, 0) ×   0 0 0 0   , e 5 = (0, 0, 0) ×   1 0 0 0   , e 6 = (0, 0, 0) ×   0 0 0 1   , e 7 = (0, 0, 0) ×   0 1 0 0   .
Then the G-action gives us 7 vector fields E 1 , . . . , E 7 on F 2 with the relations

                           [E 1 , E 2 ] = 0 [E 1 , E 3 ] = -2E 4 [E 1 , E 4 ] = 0 [E 1 , E 5 ] = 0 [E 1 , E 6 ] = -2E 1 [E 1 , E 7 ] = 0,                      [E 2 , E 3 ] = 0 [E 2 , E 4 ] = 0 [E 2 , E 5 ] = -2E 2 [E 2 , E 6 ] = 0 [E 2 , E 7 ] = -2E 4 ,                [E 3 , E 4 ] = E [E 3 , E 5 ] = -E 3 [E 3 , E 6 ] = E [E 3 , E 7 ] = E -E 6 ,          [E 4 , E 5 ] = -E 4 [E 4 , E 6 ] = -E 4 [E 4 , E 7 ] = -E 1 ,    [E 5 , E 6 ] = 0 [E 5 , E 7 ] = -E 7 , [E 6 , E 7 ] = E 7 .
Now, we are in the position to prove the main result of this chapter. Suppose that the G-action extends on W. This implies that we also have 7 formal vector fields

E 1 , E 2 , E 3 , E 4 , E 5 , E 6 , E 7 on W with the following Lie bracket constraints                            [E 1 , E 2 ] = 0 [E 1 , E 3 ] = -2E 4 [E 1 , E 4 ] = 0 [E 1 , E 5 ] = 0 [E 1 , E 6 ] = -2E 1 [E 1 , E 7 ] = 0,                      [E 2 , E 3 ] = 0 [E 2 , E 4 ] = 0 [E 2 , E 5 ] = -2E 2 [E 2 , E 6 ] = 0 [E 2 , E 7 ] = -2E 4 ,                [E 3 , E 4 ] = E [E 3 , E 5 ] = -E 3 [E 3 , E 6 ] = E [E 3 , E 7 ] = E -E 6 ,          [E 4 , E 5 ] = -E 4 [E 4 , E 6 ] = -E 4 [E 4 , E 7 ] = -E 1 ,    [E 5 , E 6 ] = 0 [E 5 , E 7 ] = -E 7 , [E 6 , E 7 ] = E 7 .
These vector fields form a Lie sub-algebra, denoted by g, of the Lie algebra of formal vector fields on W. Of course, the restriction of E i on the central fiber is nothing but E i

(i = 1, . . . , 7).
From the previous section, we can assume that our seven vector fields are of the form

E i = g i (v, t) ∂ ∂v + (α i (v, t)y 2 + β i (v, t)y + γ i (v, t)) ∂ ∂y + k i (t) ∂ ∂t ,
(cf. Lemma 1.4.1) where A, B, C, a, b, c, e are formal power series in t (i = 1, . . . , 7).

Theorem 1.5.1. The action of G on F 2 does not extend to the formal semi-universal deformation W, where G is the automorphism group of F 2 .

Proof. We denote by v the Lie algebra of formal vector fields in one variable t. Let δ : g → v be the map which sends

g i (v, t) ∂ ∂v + (α i (v, t)y 2 + β i (v, t)y + γ i (v, t)) ∂ ∂y + k i (t) ∂ ∂t to k i (t) ∂ ∂t ,
for i = 1, . . . , 7. Since, the first two components ∂ ∂v and ∂ ∂y contribute nothing to the component ∂ ∂t in the Lie bracket then δ is a well-defined Lie homomorphism. Set

F i := δ(E i ) = k i (t) ∂ ∂t (i = 1, . . . , 7 
). Note that the seven formal vector fields F i (i = 1, . . . , 7) are nothing but those induced by the G-action on the base Specf(C[[t]]) (cf. the last paragraph of Section 1). Observe also that v can be equipped with a filtration F given by the vanishing order at 0 and we have two well-known facts

[F p v, F p v] ⊂ F 2p v, and [F p v, F q v] ⊂ F p+q-1 v,
for p, q ≥ 1. Furthermore, the vanishing order of all k i at 0 is at least 1. Let k i (t) = ∞ j=1 a i j t j (i = 1, 2, 4, 5). Using the first fact and the Lie relations induced by δ:

         [F 1 , F 6 ] = -2F 1 [F 2 , F 5 ] = -2F 2 [F 1 , F 3 ] = -2F 4 ,
we obtain a 1 1 = a 2 1 = a 4 1 = 0. Suppose that k 4 (t) is not identically zero, then there exists j * ≥ 2 such that a 4 j * is nonzero. By computing explicitly the Lie relation [F 4 , F 5 ] = -F 4 in terms of power series in t and then by equalizing coefficients, we get that

a 4 j [(j -1)a 5 1 -1] = 0,
for all j ≥ 2. Thus, a 5 1 = 1 j * -1 , which is clearly nonzero. A similar computation for the relation [F 1 , F 5 ] = 0 gives (j -1)a 1 j a 5 1 = 0, for all j ≥ 2. Hence, all a 1 j = 0 so that k 1 (t) = 0. By the relation [F 1 , F 3 ] = -2F 4 , we deduce that k 4 (t) = 0, a contradiction. Therefore, k 4 (t) = 0. From the relations [F 3 , F 4 ] = F 2 and [F 4 , F 7 ] = -F 1 , we obtain that k 2 (t) = 0 and k 1 (t) = 0. As a sequence, E 1 , E 2 , and E 4 do not have the component ∂ ∂t .

In addition, by the proof of Theorem 1.4.1, as a scheme over C,

W * ∼ = C * × P 1 × P 1 .
Then,

W * ∼ = P 1 L × P 1 L ,
as a scheme over L, where L := C[t, t -1 ] and P 1 L is the 1-projective space over L. Therefore, the generic fiber

W * of W is isomorphic to W * × Spec(C[t,t -1 ]) Spec(C[[t, t -1 ]]) = P 1 K × P 1
K , as a scheme over K, where K is the field of Laurent formal power series C[[t, t -1 ]]. Now, by restricting on the generic fiber of W, we obtain that E 1 , E 2 , and E 4 are formal vector fields on W * , considered as a C-scheme. However, by the first paragraph, we have proved that there is no component ∂ ∂t in the expression of E i (i = 1, 2, 4). So, if we think of E 1 , E 2 and E 4 as vector fields with coefficients in K, then they are definitely vector fields on W * , regarded as a scheme over K. Note that the Lie algebra of vector fields on

P 1 K × P 1 K is isomorphic to sl 2 (K) × sl 2 (K)
, where sl 2 (K) is the special linear group. This means that there exists a 3-dimensional abelian Lie subalgebra of sl 2 (K) × sl 2 (K). The image of that sub-algebra under one of the two canonical projections of the product sl 2 (K) × sl 2 (K) provides a 2-dimensional abelian Lie sub-algebra in sl 2 (K). This is a contradiction since rank(sl 2 (K)) is only 1.

Remark 1.5.1. A naturally posed question is if the G-action extends to W n over the base Spec(C[t]/(t n+1 )) for small value n. Although the above proof does not give any clue to reply to this question, the answer is yes for n = 1. More general, if G is an algebraic group acting algebraically on a projective variety X 0 and π : X → S is the semi-universal deformation of X then the G-action on X 0 certainly extends up to the first infinitesimal deformation X 1 over S 1 . This follows easily from the semi-universality of the family π : X → S. Unfortunately, our example turns out to be the worst case. More precisely, we can even show that the G-action on F 2 can not extend to the second infinitesimal W 2 over Spec(C[t]/(t 3 )) by extending E i (i = 1, . . . , 7) together with their Lie bracket relations, order by order with respect to t (cf. Theorem 1.6.1). This is the content of the next sub-section. 

F 2                                  E 1 = -v 2 y 2 ∂ y E 2 = -y 2 ∂ y E 3 = ∂ v E 4 = -vy 2 ∂ y E 5 = 2y∂ y -v∂ v E 6 = v∂ v E 7 = 2yv∂ y -v 2 ∂ v on F 2 with the relations                            [E 1 , E 2 ] = 0 [E 1 , E 3 ] = -2E 4 [E 1 , E 4 ] = 0 [E 1 , E 5 ] = 0 [E 1 , E 6 ] = -2E 1 [E 1 , E 7 ] = 0 ,                      [E 2 , E 3 ] = 0 [E 2 , E 4 ] = 0 [E 2 , E 5 ] = -2E 2 [E 2 , E 6 ] = 0 [E 2 , E 7 ] = -2E 4 ,                [E 3 , E 4 ] = E 2 [E 3 , E 5 ] = -E 3 [E 3 , E 6 ] = E 3 [E 3 , E 7 ] = E 5 -E 6 ,          [E 4 , E 5 ] = -E 4 [E 4 , E 6 ] = -E 4 [E 4 , E 7 ] = -E 1 ,    [E 5 , E 6 ] = 0 [E 5 , E 7 ] = -E 7 , [E 6 , E 7 ] = E 7
These vector fields correspond to a basis of C 3 × M (2, C) given at the beginning of the previous sub-section. Suppose that the G-action extends on X . This implies that we also have 7 formal vector fields E 1 , E 2 , E 3 , E 4 , E 5 , E 6 , E 7 on X with relations

                           [E 1 , E 2 ] = 0 [E 1 , E 3 ] = -2E 4 [E 1 , E 4 ] = 0 [E 1 , E 5 ] = 0 [E 1 , E 6 ] = -2E 1 [E 1 , E 7 ] = 0 ,                      [E 2 , E 3 ] = 0 [E 2 , E 4 ] = 0 [E 2 , E 5 ] = -2E 2 [E 2 , E 6 ] = 0 [E 2 , E 7 ] = -2E 4 ,                [E 3 , E 4 ] = E 2 [E 3 , E 5 ] = -E 3 [E 3 , E 6 ] = E 3 [E 3 , E 7 ] = E 5 -E 6 ,          [E 4 , E 5 ] = -E 4 [E 4 , E 6 ] = -E 4 [E 4 , E 7 ] = -E 1 ,    [E 5 , E 6 ] = 0 [E 5 , E 7 ] = -E 7 , [E 6 , E 7 ] = E 7
and the restriction of these vectors on the central fiber are nothing but

E 1 , E 2 , E 3 , E 4 , E 5 , E 6 , E 7 .
By the discussion of the previous sub-section, we can assume that our seven vector fields are of the form (up to the first order with respect to t)

                                 E 1 = -v 2 y 2 + p 1 (v, y)t ∂ y + q 1 (v)t∂ y + k 1 t∂ t E 2 = -y 2 + p 2 (v, y)t ∂ y + q 2 (v)t∂ y + k 2 t∂ t E 3 = p 3 (v, y)t∂ y + (1 + q 3 (v)t) ∂ y + k 3 t∂ t E 4 = -vy 2 + p 4 (v, y)t ∂ y + q 4 (v)t∂ y + k 4 t∂ t E 5 = (2y + p 5 (v, y)t) ∂ y + (-v + q 5 (v)t) ∂ y + k 5 t∂ t E 6 = p 6 (v, y)t∂ y + (v + q 6 (v)t) ∂ y + k 6 t∂ t E 7 = (2yv + p 7 (v, y)t) ∂ y + -v 2 + q 7 (v)t ∂ y + k 7 t∂ t
where p i , q i are polynomial whose degree with respect to each variable does not exceed 2.

Form of E i 's on X

Since E i 's are formal vectors fields on X then by Lemma 1.4.1,

E i = g i (v, t) ∂ ∂v + (α i (v, t)y 2 + β i (v, t)y + γ i (v, t)) ∂ ∂y + k i (t) ∂ ∂t where                g i (v, t) = A i (t)v 2 + B i (t)v + C i (t) α i (v, t) = a i (t)v 2 + b i (t)v + c i (t) β i (v, t) = -2(a i (t)t + A i (t))v + e i (t) γ i (v, t) = t 2 a i (t) + tA i (t)
and A i , B i , C i , a i , b i , c i , e i are formal power series in t with a relation b i (t)t 2 + e i (t)t + B i (t) -k i (t) = 0 for i = 1, . . . , 7. Since the restriction of E i on the central fiber are E i , respectively, we have

• E 1 | X 0 = E 1 :    (a 1 (0)v 2 + b 1 (0)v + c 1 (0))y 2 + (-2(a 1 (0)0 + A 1 (0))v + e 1 (0)) y = -v 2 y 2 A 1 (0)v 2 + B 1 (0)v + C 1 (0) = 0, which implies that                                  a 1 (0) = -1 b 1 (0) = 0 c 1 (0) = 0 A 1 (0) = 0 B 1 (0) = 0 C 1 (0) = 0 e 1 (0) = 0.
So, up to the first order, we have that

                                 a 1 (t) = -1 + a 1 t b 1 (0) = b 1 t c 1 (t) = c 1 t A 1 (t) = A 1 t B 1 (t) = B 1 t C 1 (t) = C 1 t e 1 (t) = e 1 t
where a 1 , b 1 , c 1 , A 1 , B 1 , C 1 , e 1 are constants. Moreover,

β 1 (v, t) = -2(a 1 (t)t + A 1 (t))v + e 1 (t) = -2((-1 + a 1 t)vt + A 1 t) + e 1 t = 2tv(1 -A 1 ) + e 1 t( mod t 2 ).
Hence,

E 1 = {-v 2 y 2 + t[(a 1 v 2 + b 1 v + c 1 )y 2 + (2v(1 -A 1 ) + e 1 )y]}∂ y + (A 1 v 2 + B 1 v 2 + C 1 )t∂ v .
This implies that (up to the first order)

   p 1 (v, y) = (a 1 v 2 + b 1 v + c 1 )y 2 + (2v(1 -A 1 ) + e 1 )y q 1 (v) = A 1 v 2 + B 1 v + C 1 . • E 2 | X 0 = E 2 :    (a 2 (0)v 2 + b 2 (0)v + c 2 (0))y 2 + (-2(a 2 (0)0 + A 2 (0))v + e 2 (0)) y = -y 2 A 2 (0)v 2 + B 2 (0)v + C 2 (0) = 0, which deduces that                                  a 2 (0) = 0 b 1 (0) = 0 c 2 (0) = -1 A 2 (0) = 0 B 2 (0) = 0 C 2 (0) = 0 e 2 (0) = 0.
This gives, up to the first order,

                                 a 2 (t) = a 2 t b 2 (t) = b 2 t c 2 (t) = -1 + c 2 t A 2 (t) = A 2 t B 2 (t) = B 2 t C 2 (t) = C 2 t e 2 (t) = e 2 t
where a 2 , b 2 , c 2 , A 2 , B 2 , C 2 , e 2 are constants. Furthermore,

β 2 (v, t = -2(a 2 (t)t + A 2 (t))v + e 2 (t) = -2(a 2 t.t + A 2 t)v + e 2 t = -2tvA 2 + e 2 t( mod t 2 ).
As a sequence,

E 2 = {-y 2 + t[(a 2 v 2 + b 2 v + c 2 )y 2 + (-2vA 2 + e 2 )y]}∂ y + (A 2 v 2 + B 2 v 2 + C 2 )t∂ v .
Thus, (up to first order)

   p 2 (v, y) = (a 2 v 2 + b 2 v + c 2 )y 2 + (-2vA 2 + e 2 )y q 2 (v) = A 2 v 2 + B 2 v + C 2 .
1.6.2 Extension of E i 's on X up to the first order

We would like to see if there exists such E i (i = 1, . . . , 7) by solving the system of equations given by the Lie relations between E i 's order by order with respect to t. An important remark is in order.

Remark 1.6.1. Note that there is no component c ∂ ∂t in all E i (c is a complex number). So, the Lie bracket between E i 's are well-defined when we take modulo t n for any n ∈ N. Now, we wish to find q 1 , q 2 and q 4 by explicit computations based on the Lie relations:

• [E 1 , E 6 ] = 2v 2 y 2 + t -v 2 y 2 ∂ y p 6 + 2v 2 yp 6 + 2vy 2 q 6 -v∂ v p 1 + k 1 p 6 -k 6 p 1 ∂ y + t (q 1 -v∂ v q 1 + k 1 q 6 -k 6 q 1 ) ∂ v = -2E 1 so that k 1 = 0. • [E 3 , E 4 ] = -y 2 + t -2vyp 3 + vy 2 ∂ y p 3 + ∂ v p 4 -y 2 q 3 + k 3 p 4 -k 4 p 3 ∂ y + t (∂ v q 4 + k 3 q 4 -k 4 q 3 ) ∂ v = E 2 .
provides k 2 = 0 and

∂ v q 4 + k 3 a 4 -k 4 q 3 = q 2 .
(1.6.1)

• [E 3 , E 5 ] = t (2p 3 -2y∂ y p 3 + ∂ v p 5 + v∂ v p 3 + k 3 p 5 -k 5 p 3 ) ∂ y + [-1 + t (∂ v q 5 -q 3 + v∂ v q 3 + k 3 q 5 -k 5 q 3 )] ∂ v = -E 3
gives k 3 = 0.

•

[E 1 , E 3 ] = 2vy 2 + t -v 2 y 2 ∂ y p 3 + 2v 2 yp 3 + 2vy 2 q 3 -∂ v p 1 + k 1 p 3 -k 3 p 1 ∂ y + t (-∂ v q 1 + k 1 q 3 -k 3 q 1 ) ∂ v = -2E 4
which implies k 4 = 0 and

-∂ v q 1 = -2q 4 .
(1.6.2)

• [E 5 , E 7 ] = -2vy + t -2y∂ y p 7 + 2vp 5 -2vy∂ y p 5 -2p 7 + 2yq 5 -v∂ v p 7 + v 2 ∂ v p 5 + k 5 p 7 -k 7 p 5 ∂ y + v 2 + t -2vq 5 -v∂ v q 7 + v 2 ∂ v q 5 + q 7 + k 5 q 7 -k 7 q 5 ∂ v = -E 7
and thus k 7 = 0.

•

[E 1 , E 2 ] = t -v 2 y 2 ∂ y p 2 -2yp 1 + y 2 ∂ y p 1 + 2v 2 yp 2 + 2vy 2 q 2 ∂ y = 0.
So, we have

-v 2 y 2 ∂ y p 2 -2yp 1 + y 2 ∂ y p 1 + 2v 2 yp 2 + 2vy 2 q 2 = 0 (1.6.3) • [E 1 , E 7 ] = t -v 2 y 2 ∂ y p 7 + 2vp 1 -2vy∂ y p 1 + 2v 2 yp 7 + 2yq 1 + v 2 ∂ v p 1 + 2vy 2 q 7 ∂ y + t(-2vq 1 + v 2 ∂ v q 1 + k 1 q 7 -k 7 q 1 )∂ v = 0.
Hence,

-2vq 1 + v 2 ∂ v q 1 = 0. (1.6.4)
Combining (1.6.4), (1.6.2) and (1.6.1), we have

         q 1 = µv 2 q 4 = µv q 2 = µ.
for some µ ∈ C. By the general form of formal vector fields on X , we must have µ = A 1 .

By (1.6.3), we have

0 = -v 2 y 2 ∂ y p 2 -2yp 1 + y 2 ∂ y p 1 + 2v 2 yp 2 + 2vy 2 q 2 = v 2 y(2p 2 -y∂ y p 2 ) -y(2p 1 -y∂ y p 1 ) + 2vy 2 A 1 ( since q 2 = A 1 ) = v 2 y(-2vA 2 + e 2 )y -y(2v(1 -A 1 ) + e 1 )y + 2vy 2 A 1 = y 2 v 2 (-2vA 2 + e 2 ) -(2v(1 -A 1 ) + e 1 ) + 2A 1 v = y 2 -2v 3 A 2 + e 2 v 2 -2v(1 -2A 1 ) -e 1 which implies that          A 2 = 0 e 1 = e 2 = 0 A 1 = 1 2 . Hence,          q 1 = 1 2 v 2 q 2 = 1 2 q 4 = 1 2 v.
Thus, we have

   E 1 = -v 2 y 2 + p 1 (v, y)t ∂ y + 1 2 tv 2 ∂ v := E (1) 1 E 2 = -y 2 + p 2 (v, y)t ∂ y + 1 2 t∂ v := E (1) 2 
up to the first order.

Theorem 1.6.1. The action of G on F 2 extends to the formally semi-universal deformation X only up to order 1.

Proof. By assumption, the vector fields E

1 , E

2 (of the first order) can be extended to the vector fields

E (2) 1 , E (2) 
2 of the second order. In other words, there exists

m i (v, y), n i (v), l i (i = 1, 2) such that    E (2) 1 = -v 2 y 2 + p 1 (v, y)t + m 1 (v, y)t 2 ∂ y + 1 2 tv 2 + n 1 (v)t 2 ∂ y + l 1 t 2 ∂ t E (2) 2 = -y 2 + p 2 (v, y)t + m 2 (v, y)t 2 ∂ y + 1 2 t + n 2 (v)t 2 ∂ y + l 2 t 2 ∂ t and the relation [E (2) 
1 , E

2 ] = 0( mod t 3 ) holds true where m i , n i are polynomial in variables v, y whose degrees with respect to v and y do not exceeds 2 and l i 's are complex numbers. However, by direct inspection we have that the coefficient of the

∂ v -component of [E (2)
1 , E

2 ] is

-v 2 y 2 + p 1 (v, y)t + m 1 (v, y)t 2 ∂ y 1 2 t + n 1 (v)t 2 --y 2 + p 2 (v, y)t + m 2 (v, y)t 2 × ∂ y 1 2 tv 2 + n 1 (v)t 2 + 1 2 tv 2 + n 1 (v)t 2 ∂ v 1 2 t + n 1 (v)t 2 - 1 2 t + n 1 (v)t 2 × ∂ v 1 2 tv 2 + n 1 (v)t 2 + l 1 t 2 ∂ t 1 2 t + n 1 (v)t 2 -l 2 t 2 ∂ t 1 2 tv 2 + n 1 (v)t 2
which after simplification is

- 1 2 t 2 v + l 1 2 t 2 - l 2 2 t 2 v 2 ( mod t 3 ).
This quantity is never zero ( mod t 3 ) for any choice of l 1 and l 2 . Thus, the Lie relation

[E (1) 
1 , E

2 ] = 0( mod t 2 ) is not preserved when we extend them to the second order which is a contradiction. This finishes the proof.

Chapter 2

Equivariant Kuranishi family of complex compact manifolds 2.1 Introduction

In this chapter, we would like to reproduce Theorem I when X 0 is a complex compact manifold on which a compact Lie group G acts holomorphically and then try to address the case that G is a complex reductive Lie group (see Corollary 2.4.1 and Theorem 2.5.2 below). A remark should be in order. The main different point here is that in the algebraic setting, the semi-universal deformation of X 0 and the extended G-actions, constructed by Rim, are just formal. However, in the analytic setting, its semi-universal deformation (often called Kuranishi family) is a true deformation (a convergent deformation). So, an application of Rim's result gives us a G-equivariant Kuranishi family whose extended G-actions are only formal, i.e. they are formal power series whose convergence is not guaranteed. Actually, this way of using Rim's theorem keeps being repeated several times for example in the proof of Theorem 4.20 in [START_REF] Graf | Algebraic approximation of Kähler threefolds of Kodaira dimension zero[END_REF] and in the proof of Proposition 7.1 in [START_REF] Laza | A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold[END_REF],

where the convergence is supposedly needed to carry out. Moreover, an extension of the G-action on the Kuranishi space is immediate if the Kuranishi family is locally universal. This follows from the fact that each time we change the central fiber of the locally universal family by a biholomorphism of X 0 , we obtain another locally universal family of X 0 which is canonically isomorphic to the old one. However, in the proof of Lemma 3.4 in [START_REF] Cao | On the approximation of Kähler manifolds by algebraic varieties[END_REF], the author produced a G-action on the base by claiming that there exists a local universal deformation, which is not true in general even for the type of complex compact manifolds considered therein. Thus, a very natural wish is to have a convergent G-extension.

Let us now outline the organization of this chapter. First, we give a general picture of deformations of complex compact manifolds in §2.2. The most important result on the existence of semi-universal deformation (Kuranishi family) is also included. Next, we attack the problem by giving a useful existence criterion in §2.3, which turns out to be deduced from an elementary lemma on complex structures of real vector spaces. In §2.4, we treat the case that G is compact, in advance. The key point here is that in place of imposing an arbitrary Hermitian metric on the holomorphic tangent bundle, we can impose a G-invariant one for the sake of the compactness of G. In fact, this idea is already contained in Catanese's lecture note (see [5, Lecture III, §7]). However, the author uses it to treat only the case that the actions are required to be trivial on the base. If we take the set of fixed points by the G-action in the base constructed in our case then the restriction of our G-equivariant family on this set is nothing but Catanese's family. Afterward, in §2.5, we deal with the complex reductive case by means of complexification of compact groups. Finally, an explicit example of equivariant Kuranishi family of complex compact manifolds is given in §2.6.

Deformations of complex compact manifolds

We first recall some basic definitions in deformation theory of compact complex manifolds. Let B be the category of germs of pointed complex space (B, 0) (a complex space with a reference point) whose associated reduced complex space is a point and let X 0 be a complex compact manifold. An infinitesimal deformation of X 0 is a deformation of X 0 over a germ of complex space (B, 0) ∈ B, i.e. a commutative diagram

X 0 X • (B, 0) i π
where π : X → (B, 0) is a flat proper morphism of complex spaces. For simplicity, we denote such a deformation by π: X → (B, 0) (or sometimes just X/B). If π: X → (B, 0) and π : X → (B , 0) are two infinitesimal deformations of X 0 , a morphism of infinitesimal deformations is a pair (Φ, φ) of two morphisms of complex spaces Φ : X → X and φ : (B, 0) → (B , 0) such that the following diagram commutes

X X X 0 (B, 0) (B , 0). . Φ π π φ i i
Kuranishi proves the existence of a semi-universal deformation π: X → (S, 0), called Kuranishi family, which contains all the information of small deformations of X 0 (cf. [START_REF] Kuranishi | Deformations of compact complex manifolds[END_REF] or [START_REF] Kuranishi | New proof for the existence of locally complete families of complex structures[END_REF]). Semi-universality here means that any other deformation ρ: Y → (T, 0) of X 0 is defined by the pullback of the Kuranishi family under a holomorphic map from (T, 0) to (S, 0), whose differential at the reference point is unique.

Next, let us take a moment to recall the definition of group actions on complex spaces.

For the sake of completeness, we recall first that a mapping α from a real analytic (resp. complex) manifold W to a Fréchet space F over C is called real analytic (reps. holomorphic) if for each point w 0 ∈ W there exists an open coordinate neighborhood N w 0 and a real analytic (resp. holomorphic) coordinate system t 1 , . . . , t n in N w 0 such that t i (w 0 ) = 0 and for all w ∈ N w 0 , we have that

α(w) = a i 1 ,...,in t i 1 1 (w) . . . t in n (w)
where a i 1 ,...,in ∈ F and the convergence is absolute with respect to any continuous seminorm on F . Furthermore, by a C p -map, we insinuate a p-times continuously differentiable function. Let G be a real (resp. complex) Lie group and X a complex space. A G-action on X is given by a group homomorphism Φ : G → Aut(X), where Aut(X) is the group of biholomorphisms of X. 

(i) W := W U ,V := {g ∈ G | g • U ⊂ V } is open in G, (ii) the map * : W → O(U ) g → f • g | U is real analytic (resp. holomorphic) for all f ∈ O(V ) ,
where U is the closure of U and O(P ) is the set of holomorphic functions on P for any open subset P of X (O(P ) is equipped with the canonical Fréchet topology).

To end this section, we introduce a very interesting kind of deformations-the kind of G-equivariant ones, which is of central interest of this chapter. As before, let X 0 be a complex compact manifold equipped with a real analytic (resp. holomorphic) G-action.

Definition 2.2.2. A real analytic (resp. holomorphic) G-equivariant deformation of X 0 is a usual deformation of X 0 π: X → B equipped with a real analytic (resp. holomorphic)

G-action on X extending the given (resp. holomorphic) G-action on X 0 and a real analytic (resp. holomorphic) G-action on B in a way that π is a G-equivariant map with respect to these actions. We call these extended actions a real analytic (resp. holomorphic) Gequivariant structure on π: X → B.

Therefore, we can rephrase our objective as finding a real analytic (resp. holomorphic)

G-equivariant semi-universal deformation of a given compact complex manifold with a real analytic (resp. holomorphic) G-action. Intuitively, the expected extended G-action on the Kuranishi space permutes the nearby complex structures and keeps the central one untouched.

X s X 0 X gs X s (S, 0) 0 ∼ = g • • • gs g ∼ = g g Remark 2.
2.1. For simplicity, by G-actions (resp. G-equivariant deformations), we really mean real analytic G-actions (resp. real analytic G-equivariant deformations).

A sufficient condition for the existence of equivariant structure

In this section, we give a criterion for a complex compact manifold X 0 with a Gaction to have a G-equivariant semi-universal deformation. From now on, by complex compact manifold, we really mean a complex compact connected manifold. First, we recall a technical result concerning the holomorphicity of real analytic functions defined on complex spaces (cf. [18, Proposition 2.1]). Proposition 2.3.1. If V is a complex space and v is a point of V , there exists an integer α satisfying the following condition: If f : V → V is a C α -map, where V is another complex space, such that f is holomorphic at each non-singular point of V then there is an open neighborhood V of v in V such that the restriction of f on V is holomorphic.

Denote by Diff(X 0 ) the group of diffeomorphisms of X 0 where X 0 is the underlying differentiable manifold of X 0 . For S a complex space, a map γ : S → Diff(X 0 ) is said to be of class C k when the map

Γ : X 0 × S → X 0 (p, s) → γ(s)(p)
is of class C k . If this is indeed the case, then for each s 0 ∈ S the map

Γ s 0 : X 0 × S → X 0 (p, s) → γ(s) • (γ(s 0 )) -1 (p)
is a C k -family of deformations of the identity map of X 0 with a parameter in (S, s 0 ). In particular, for each p ∈ X 0 , we obtain a C k -map

Γ s 0 ,p : S → X 0 s → γ(s) • (γ(s 0 )) -1 (p).
Therefore, if we suppose further that s 0 is a non-singular point then each L ∈ T Zar s 0 S will give rise to a vector d(Γ s 0 ,p ) s 0 (L), in T p X 0 , where d(Γ s 0 ,p ) s 0 is the differential of Γ s 0 ,p at s 0 . Thus, the map

X 0 → T X 0 p → d(Γ s 0 ,p ) s 0 (L)
defines a C k -vector field on X 0 , which we shall denote by L s 0 γ.

Finally, before stating the main result, given a complex compact manifold X 0 , let us bring back a celebrated characterization of its deformations and in particular of its semi-universal deformation (see [START_REF] Kuranishi | Deformations of compact complex manifolds[END_REF]Theorem 8.1]).

Theorem 2.3.1. A deformation of X 0 is entirely encoded by a real analytic map φ : S → A 0,1 (Θ) which varies holomorphically in S such that

(i) φ(0) = 0, (ii) ∂φ(s) -1
2 [φ(s), φ(s)] = 0 for all s ∈ S, where A 0,1 (Θ) is the space of (0, 1)-forms with values in the holomorphic tangent bundle Θ of X 0 and S is a complex space with a reference point 0. Moreover, this deformation is semi-universal if and only if (iii) The Kodaira-Spencer map induced by φ is an isomorphism, (iv) We can find an open neighborhood S of 0 in S such that the following conditions hold true: for any complex space B and for any real analytic map ψ : B → A 0,1 (Θ), which varies holomorphically in B, such that ψ(b 1 ) = φ(s 1 ) for a point (b 1 , s 1 ) ∈ B × S , Moreover, since ϕ C is a C-linear map from (V, J) to (V, J) then

Jϕ C (u) = ϕ C J(u) = ϕ C (-iu) since u ∈ V 0,1 J = -iϕ C (u), which implies that ϕ C (u) ∈ V 0,1 J . Hence, ϕ C (u) + n • ϕ(u C ) ∈ V 0,1 Jn then so is ϕ C (v), which proves the claim. Now, let v ∈ V 0,1
Jm , then

J n ϕ C (v) = -iϕ C (v) by the claim, = ϕ C (-iv) = ϕ C J m (v).
Making use of the linear complex conjugation, we also get that

J n ϕ C (v) = ϕ C J m (v) for all v ∈ V 1,0
Jm . This ends the proof.

Finally, it is the time for us to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. First of all, by the discussion at the very beginning of this section, we have a semi-universal deformation π : X → S of X 0 , associated to φ. Let X 0 be the underlying differentiable manifold of X 0 . By [START_REF] Catanese | Moduli of algebraic surfaces[END_REF]Theorem 4.5] after shrinking S if necessary, there exists a real analytic diffeomorphism γ : X 0 × S → X with π • γ being the projection on the second factor of X 0 × S, and such that γ is holomorphic in the second set of variables. Thus, for a point (x, s) ∈ X 0 × S, we have a decomposition of the tangent space

T x X 0 ⊕ T Zar s S ∼ = T Zar γ(x,s) X.
We claim that π : X → S carries a G-equivariant structure. Indeed, for g ∈ G and

(x, s) ∈ X 0 × S, define g.(x, s) = (g.x, g.s)
in which we think of g as just a diffeomorphism of X 0 . This gives clearly an action of G on X 0 × S. We shall prove that in fact if we think of X as X 0 × S with the complex structure φ(-) then G acts on X by biholomorphisms. This is equivalent to showing that the differential of g at the point (x, s)

dg (x,s) : T Zar (x,s) X = T x X 0 ⊕ T Zar s → T Zar g.(x,s) X = T g.x X 0 ⊕ T Zar
gs is C-linear with respect to the complex structure induced by φ on the tangent space T Zar (x,s) X. Since dg (x,s) = (dg x , dg s ) is a diagonal map and g acts holomorphically on S. Then it is sufficient to check that dg x : (T x X 0 , J (x,s) ) → (T gx X 0 , J (gx,gs) ) is C-complex linear where J (x,s) and J (gx,gs) are complex structures induced by maps φ(s) x : T 0,1

x X 0 → T 1,0 x X 0 and φ(gs) gx : T 0,1 gx X 0 → T 1,0 gx X 0 , respectively. On the other hand, as φ is G-equivariant then we have

gφ(s) = φ(gs)
for any s ∈ S. This is equivalent to dgφ(s)dg -1 = φ(gs), by definition of the action of a diffeomorphism g on a complex structure φ(s). Thus, for each x ∈ X 0 ,

dg x φ(s) x = φ(gs) gx dg x .
Making use of Lemma 2.3.1 for m = φ(s), n = φ(gs) and ϕ = dg x , we deduce that dg x is C-complex linear so that g is in fact holomorphic. Thus, we have just extended the G-action on the central fiber X 0 to a G-action the total space X. This action together with the given G-action on S makes π G-equivariant, which completes the proof.

The case that G is a compact Lie group

We treat compact group actions first. Let X 0 be an n-dimensional complex compact manifold equipped with a real analytic K-action, where K is a compact real Lie group.

The main result of this section is the following. Theorem 2.4.1. There exists a complex space (S, 0) and a real analytic map φ : (S, 0) → A 0,1 (Θ) which varies holomorphically in S such that the conditions (i), (ii), (iii) and (iv), listed in Theorem 2.3.1, are fulfilled. Furthermore, φ is K-equivariant with respect to some K-action on S and the K-action on A 0,1 (Θ), induced by the one on X 0 . Corollary 2.4.1. Let X 0 be a complex compact manifold X 0 with a K-action, where K is a compact real Lie group. Then there exists a K-equivariant semi-universal deformation of X 0 .

Proof. It follows immediately from Theorem 2.4.1 above and Theorem 2.3.2.

In order to prove Theorem 2.4.1, we shall follow Kuranishi's method in [START_REF] Kuranishi | Deformations of compact complex manifolds[END_REF] with some appropriate modification. First of all, note that we have a natural linear K-action on A 0,1 (Θ) and then on H 1 (X 0 , Θ). Moreover, since K is compact, instead of imposing an arbitrary hermitian metric on Θ as Kuranishi did, we can impose a K-invariant Hermitian metric •, • on Θ by means of Weyl's trick. Therefore, we have a K-invariant metric on A 0,1 (Θ). As usual, we find the formal adjoint ∂ * of ∂. Since K acts on X 0 by biholomorphisms then the operator ∂ is K-equivariant. By the adjoint property together with the fact that the imposed metric is K-invariant, we also have that

∂ * is K-equivariant.
Hence, so is the Laplacian := ∂ * ∂ + ∂∂ * . In addition, it is well-known that is an elliptic operator of second order. As a matter of fact, Hodge theory provides us a famous orthogonal decomposition.

A 0,1 (Θ) = H 0,1 A 0,1 (Θ) (2.4.1)
and two linear operators:

(a) The Green operator G : A 0,1 (Θ) → A 0,1 (Θ), (b) The harmonic projection operator

H : A 0,1 (Θ) → H 0,1 ,
where H 0,1 is the vector space of all harmonic vector (0, 1)-form on X 0 (this space can also be canonically identified with H 1 (X 0 , Θ)), such that for all v ∈ A 0,1 (Θ), we have

v = Hv + Gv. (2.4.2)
Lemma 2.4.1. The linear operators G and H are K-equivariant.

Proof. For any v ∈ A 0,1 (Θ) and g ∈ K, gv is also in A 0,1 (Θ) for the sake of K-invariance of A 0,1 (Θ). Thus, by (2.4.2) we have that v = Gv and gv = Ggv.

So, the K-equivariance of gives us

(gGv) = g (Gv) = gv.
Hence, (Ggv -gGv) = 0 so that Ggv -gGv ∈ H 0,1 . On the other hand, gGv ∈ A 0,1 (Θ), and so is Ggv -gGv.

Consequently,

Ggv -gGv ∈ H 0,1 ∩ A 0,1 (Θ) = {0}
so that Ggv = gGv for any v ∈ A 0,1 (Θ) and g ∈ G.

Now for any v ∈ A 0,1 (Θ) and g ∈ K, we have that gGv = gG(Hv + Gv)

= gGHv + gG ( Gv)
= gG ( Gv) since GH = 0, = G (g Gv) by the above case, = Gg (v -Hv) by the decomposition (2.4.2),

= Ggv -GgHv = Ggv since H 0,1 is also K-invariant.
Thus, the K-equivariance of G follows.

For the K-equivariance of H, we have that

gHv = g(v -Gv) = gv -g Gv = gv -Ggv since , G are K-equivariant, = Hgv.
This ends the lemma.

Next, Kuranishi would like to parametrize the set

Φ := φ ∈ A 0,1 (Θ) | ∂φ - 1 2 [φ, φ] = 0, ∂ * φ = 0
which actually forms an effective and complete family. We shall repeat briefly his argument. For any φ ∈ Φ, we have that

φ - 1 2 ∂ * [φ, φ] = 0.
Applying Green's operator on this, we get

φ - 1 2 G∂ * [φ, φ] = Hφ.
Thus, Φ is a subset of

Ψ := φ ∈ A 0,1 (Θ) | φ - 1 2 G∂ * [φ, φ] ∈ H 0,1 .
Therefore, it is natural to parametrize Ψ first. Let {U σ } be a finite covering of X 0 and

x σ = (x 1σ , • • • , x nσ ) be a local chart of X 0 on U σ .
Let {f σ } be a smooth partition of unity with respect to the covering {U σ } of X 0 . We introduce another norm in A 0,1 (Θ). For

l = (l 1 , • • • , l n )
, where l j is some non-negative integer (j ∈ [1, • • • , n]), we denote by D l σ , the partial derivative

∂ ∂x 1σ l 1 • • • ∂ ∂x nσ ln and set |l| = l 1 + • • • + l n .
For u ∈ A 0,1 (Θ) and for an integer k ≥ 0, we set

u 2 k = σ |l|≤k D l σ f σ u(x σ ), D l σ f σ u(x σ ) dv
where dv is the volume element of X 0 . This norm is called Sobolev k-norm. From now on, we fix once for all a sufficiently large integer k. Let H k (Θ) be the Hilbert space obtained by completing A 0,1 (Θ) with respect to this Sobolev k-norm. Making use of Inverse Mapping Theorem for Banach manifolds to the map

F : A 0,1 (Θ) → A 0,1 (Θ) φ → φ - 1 2 G∂ * [φ, φ],
there exists a complex Banach analytic map φ :

W → H k (Θ) such that s = F φ(s) = φ(s) - 1 2 G∂ * [φ(s), φ(s)]
for all s ∈ W , where

W := s ∈ H 0,1 | s k <
and is sufficiently small. Hence, for s ∈ W , we have that

φ(s) - 1 2 ∂ * [φ(s), φ(s)] = 0,
which follows from the fact that G∂ * = ∂ * and that s is harmonic. By the regularity of elliptic differential operators, we deduce that φ is holomorphic and that the image of φ is actually in A 0,1 (Θ). In other words, we obtain a holomorphic map

φ : W → A 0,1 (Θ) (2.4.3)
whose image, by construction, covers a neighborhood of 0 in Ψ and so, a neighborhood of 0 in Φ.

Finally, a necessary and sufficient condition on s for φ(s) to be in Φ is that H[φ(s), φ(s)] = 0. Set S := {s ∈ W | H[φ(s), φ(s)] = 0}. Restricting on S , we obtain a holomorphic map

φ : S → A 0,1 (Θ) (2.4.4)
which satisfies the conditions (i), (ii), (iii) and (iv) in Theorem 2.3.1. Now, we add the K-action. Recall that the Lie bracket [•, •] on A 0,1 (Θ) is defined as follows. For two element α, β ∈ A 0,1 (Θ) given in local coordinates

α = m u i dz i ∂ ∂z u and β = n v j dz j ∂ ∂z v then [α, β] := dz i ∧ dz j m u i ∂ ∂z u , n v j ∂ ∂z v
where [•, •] is the usual Lie bracket for the Lie algebra of vector fields on X 0 . Let g ∈ K then

g.α := g * dz i g * g u i ∂ ∂z u
where g * and g * are the pull-back of differential forms and the push-forward of vector fields, respectively. With this definition, the G-action clearly commutes with the Lie bracket, i.e.

g[•, •] = [g•, g•]
because the wedge product ∧ and the Lie bracket [•, •] do. Moreover, G and ∂ * are K-equivariant. Thus, F is also K-equivariant.

Lemma 2.4.2.

There exists an open neighborhood U of 0 contained in W such that U is

K-invariant.
Proof. For each g ∈ K, there exists a neighborhood V g of g and K g of 0 such that V g .K g ∈ W . By the compactness of K, there exists a finite set I ⊂ K such that K = g∈I V g . Let P = g∈I K g then P is an open neighborhood of 0 in H 0,1 . Thus,

K.P =   g∈I V g   .   g∈I K g   ⊆ W.
Finally, set U := g∈K V g K. This is the desired K-invariant open neighborhood of 0 contained in W . Now, restricting the map (2.4.3) on this U , we obtain a map

φ : U → φ(U ) ⊆ A 0,1 (Θ) (2.4.5)
which is K-equivariant because it is the inverse of the K-equivariant map F on U . Finally, set S := S ∩ U .

Lemma 2.4.3. S is K-invariant and this K-action is real analytic.

(d) for any two open sets U U π and V V π , the set

W := W U ,V := {g ∈ G π | g • U ⊂ V } is open in G π and the map * : W → O(U ) g → f • g | U is continuous for all f ∈ O(V )
where U is the closure of U and O(P ) is the set of holomorphic functions on P for any open subset P of X;

(e) The restriction of the system {Φ π } on K gives a global K-action on X, i.e. a homomorphism of topological groups Φ : K → Aut(X).

Moreover, if G is a real (resp. complex) Lie group and if * and Φ are real analytic (resp. holomorphic), then the local (G, K)-action is called real analytic (resp. holomorphic). Two local (G, K)-actions defined by two systems {Φ π } and {Φ π } are said to be equivalent if for all π ∈ X , the mappings where T S (S) is the set of holomorphic vector fields on S.

Φ π : G π → Ho(U π , V π ) and Φ π : G π → Ho(U π , V π ) coincide on a sub-domain G π ∩ G π containing K
Corollary 2.5.1. Let K be a connected compact real Lie group acting on a complex space X and G be the complexification of K. There exists a holomorphic local (G, K)-action on X extending the initial global K-action.

Proof. By Theorem 2.5.1, the initial K-action gives us a Lie algebra homomorphism ϕ :

Lie(K) → T X (X). Since T X (X) is a complex Lie algebra, the C-linear extension of ϕ that π is G-equivariant with respect to these holomorphic local (G, K)-actions then our result follows immediately since any local (G, K)-action is obviously a local G-action.

By Corollary 2.5.1, we obtain a holomorphic local (G, K)-action on X. Note that the restriction on K of this local (G, K)-action is nothing but the initial global K-action on X.

Let g ∈ N (K) \ K where N (K) is a neighborhood of K. We shall prove that g, as a biholomorphism on X, swaps fibers of π. Indeed, recall that by construction, S is an analytic subset defined in a open subset U ⊂ C n where n := dim C H 1 (X 0 , Θ). Consider the following holomorphic function

ρ i : X g → X π → S ι → C n π i → C
where ι is the inclusion and π i is the i th -projection. Lemma 2.5.1 tells us that π * O X = O S which means precisely that any holomorphic function from X to C factors through π. So, for each i, there exists a holomorphic function which means in particular that g exchanges fibers of π. Since g is a biholomorphism then so is ν g . On one hand, ν g is uniquely determined by g. This follows from the fact that X is constructed from X × S, as the underlying differentiable manifold, and the fact that g swaps fibers of π. On the other hand, since the local (G, K)-action on X is holomorphic then ν g (-) varies holomorphically with respect to the variable g. Hence, the map g → ν g defines a holomorphic local (G, K)-action on S, which extends the initial K-action on S.

σ i : S → C such that ρ i = σ i • π. So, σ i '
Finally, we shall prove that the restriction of the holomorphic local (G, K)-action of X on the central fiber X 0 is the initial G-action on X 0 . In order to do it, we first show that the holomorphic local (G, K)-action on S fixes the reference point 0. Let N (K) be a connected open neighborhood of K. Note that the holomorphic function

χ : G → (S, 0) g → ν g (0)
is constant on K, i.e. χ(k) = 0 for all k ∈ K. Consider the holomorphic function

µ i : G χ → (S, 0) ι → (C n , 0) π i → C
where ι is the inclusion and π i is the i th -projection. Hence, we also have µ i (k) = 0 for all k ∈ K. Applying Lemma 2.5.2 with g = 1 G and Q = N (K), we obtain that µ i is zero on N (K). But this holds for any i and so χ(g) = 0 for all g ∈ N (K). This justifies the claim.

Therefore, the local (G, K)-action on X preserves the central fiber X 0 , i.e. gX 0 ⊂ X 0 for g ∈ G whenever it is defined. Consequently, we have a holomorphic local (G, K)-action on X 0 , which is the restriction on X 0 of the one on X. Because X 0 is compact then this action turns out to be global and it contains the initial K-action on X 0 . As a matter of fact, it must coincide with the initial G-action on X 0 because the action of G on a complex compact manifold is uniquely determined by the one of K.

In summary, what we have just done is to equip holomorphic local (G, K)-actions on X and on S in a way that the map π : X → S is G-equivariant with respect to these holomorphic local (G, K)-actions and that the restriction on the central fiber X 0 of the holomorphic local (G, K)-action on X is nothing but the initial holomorphic G-action on X 0 . This finishes the proof.

An example of G-equivariant Kuranishi family

In this final section, we shall show that the local actions in Theorem 2.5.2 can not be global in general by giving a detailed example.

The Hirzebruch surface F 2 and its Kuranishi familly π : X → C, introduced in Chapter 1 are once again taken into account. We consider further an action of G := C * × C * on F 2 as follows. C * × C * can be embedded into GL(2, C) as a subgroup of invertible diagonal matrices. In particular, its action on F 2 given by

g(p) =    xu 2 : ya 2 u 2 : yd 2 v 2 , [au : dv] if u = 0 xv 2 : za 2 u 2 : zd 2 v 2 , [au : dv] if v = 0 , or equivalently 
g(p) = x : ya 2 : zd 2 , [au : dv] ,
where p = ([x :

y : y] , [u : v]) ∈ F 2 .
An application of Theorem 2.5.2 gives us a local G-equivariant structure on π : X → C.

We shall first show that if there is any extended G-action on X , then G can not act trivially 

F 2    E 5 = 2y∂ y -v∂ v E 6 = v∂ v .
Suppose for the moment that the G-action on F 2 = X 0 could be lifted to a G-action on X , then we have two commuting vector fields on X , say E 5 and E 6 . We can assume that our two vector fields are of the form (up to the first order with respect to t)

   E 5 = (2y + p 5 (v, y)t) ∂ y + (-v + q 5 (v)t) ∂ y + k 5 t∂ t E 6 = p 6 (v, y)t∂ y + (v + q 6 (v)t) ∂ y + k 6 t∂ t ,
where p i , q i are polynomials whose degree with respect to each variable does not exceed 2 (cf. Proposition 1.4.1). Note that the restriction of these above vector fields on the central fiber are nothing but E 5 , E 6 respectively. In other words, we have

E 5 | X 0 = E 5 which implies    (a 5 (0)v 2 + b 5 (0)v + c 5 (0))y 2 + (-2(a 5 (0)0 + A 5 (0))v + e 5 (0)) y = 2y A 5 (0)v 2 + B 5 (0)v + C 5 (0) = -v.
In particular,

         b 5 (0) = 0 B 5 (0) = -1 e 5 (0) = 2.
Expanding these functions in power series up to the first order provides

         b 5 (0) = b 5 t B 5 (t) = -1 + B 5 t e 5 (t) = 2 + e 5 t.
where b 5 , B 5 , e 5 are constants. The obstruction of lifting vector fields (1.4.6) forces k 5 = 1.

Thus, E 5 is vertical. Likewise, we have

E 6 | X 0 = E 6 which implies    (a 6 (0)v 2 + b 6 (0)v + c 6 (0))y 2 + (-2(a 6 (0)0 + A 6 (0))v + e 6 (0)) y = 0 A 6 (0)v 2 + B 6 (0)v + C 6 (0) = v.
In particular,

         b 6 (0) = 0 B 6 (0) = 1 e 6 (0) = 0.
Expanding these functions in power series up to the first order provides

         b 6 (0) = b 6 t B 6 (t) = 1 + B 6 t e 6 (t) = e 6 t,
where b 6 , B 6 , e 6 are constants. Once again, the obstruction of lifting vector fields (

forces k 6 = 1. Thus, E 6 is not vertical as well. Therefore, if the G-action was extended then, G (more precisely, two subgroups C * × {1} and {1} × C * ) could not act trivially on the base.

A possible G-action on X that extends the initial G-action on F 2 given by g(p) = x : ya 2 : zd 2 , [au : dv] , adt can be made G-equivariant. A recently-constructed counter-example in [START_REF] Doan | A counter-example to the equivariance structure on semi-universal deformation[END_REF] has shown that the reductiveness assumption on G turns out to be optimal. In general, F X 0 is hardly prorepresentable by a pro-object due to the existence of non-trivial automorphisms of X 0 as always. Therefore, the smooth morphism

Hom Art k (R, -) → F X 0
can be considered the best formal approximation of F X 0 that we can expect. A similar result on the existence of G-equivariant Kuranishi family of compact complex manifolds is obtained as well in Chapter 2 (see also [START_REF] Doan | Equivariant Kuranishi family of complex compact manifolds[END_REF]). The main difference here is that on the analytic side, all deformations are required to be convergent.

Besides, a well-known philosophy of Drindfeld states that: "If X is a moduli space over a field k of characteristic zero, then a formal neighborhood of any point x ∈ X is controlled by a differential graded Lie algebra" of which Lurie's famous thesis (cf. [START_REF] Lurie | Derived Algebraic Geometry X: Formal Moduli Problems[END_REF]) has given a rigorous formulation. Namely, instead of working with Art k , he works with the category of differential graded commutative artinian augmented k-algebras, denoted by dgArt k and a formal moduli problem in his sense is defined to be a functor from dgArt k → SEns satisfying certain exactness conditions, where SEns is the ∞-category of simplicial sets. Then he proves that there is an equivalence of ∞-categories between the homotopy category of formal moduli problems and that of differential graded Lie algebras.

Furthermore, the prorepresentability (which corresponds to the notion of universality in the classical sense) of a formal moduli problem is reduced to checking some cohomological conditions on its associated differential graded Lie algebra, which is feasible for most of natural formal moduli problems that we encounter in reality. This can be viewed as an extremely astonishing generalization of Schlessinger's work on functors of artinian rings (cf. [START_REF] Schlessinger | Functors of Artin rings[END_REF]).

However, the notion of semi-universality apparently does not exist in the derived literature. Therefore, in this final chapter, our aim is to introduce such a notion which we shall call "semi-prorepresentability". This notion should generalize the notion of semiuniversality given by M. Schlessinger. Then we prove the semi-prorepresentability for a class of formal moduli problems of which the formal moduli problem Def X 0 associated to derived deformations of algebraic schemes or to those of complex compact manifolds (which is a natural extension of the functor F X 0 in the derived literature) is a typical example. This gives us an algebraic way to recover the formal existence of semi-universal deformations in the classical setting. At last, we will prove a theorem of Rim's type. More precisely, we would like to provide a G-equivariant structure to the pro-object in dgArt k , which semi-prorepresents Def X 0 . Inspired by the spirit of Lurie's equivalance, we shall carry things out on the corresponding differential graded Lie algebra. Once again, Rim's result in the non-derived setting is just an immediate corollary of this.

Let us now outline the organization of this chapter. We first, in §3.2, give an overview of the ∞-equivalence between formal moduli problems and differential graded Lie algebras. The representations of differential graded Lie algebras, which are one of the essential tools for the rest of the chapter, is recalled as well. In §3.3, we shall introduce the notion of semi-prorepresentability and a criterion for a formal moduli problem to be semi-prorepresentable. If further the associated differential graded Lie algebra of this formal moduli problem is equipped with an action of some linearly reductive group G, we show that the corresponding semi-prorepresentable pro-object can be equipped with a versal compatible G-action (cf. Definition 3.3.3 below). What concerns us first in §3.4

is a folklore, in derived deformation theory, which says that the differential graded Lie algebra corresponding to the derived deformation functor Def X 0 of an algebraic scheme is the derived global section of T X 0 /k where T X 0 /k is the tangent complex of X 0 over k. It is well-known but we can not find a literature that contains a proof of it. Therefore, our aim is to give a detailed proof, with the help of Lurie's general results on representations of differential graded Lie algebras. Afterward, we give a characterization of G-equivariant derived deformations of X 0 in terms of this differential graded Lie algebra. Next, we recall also the famous differential graded Lie algebra which controls analytic deformations of a given complex compact manifold. Finally, the existence of (G-equivariant) formal semiuniversal deformation of algebraic schemes and that of complex compact manifolds are just immediate consequences of what we have done in §3.3.

Conventions and notations:

• A field of characteristic 0 will be always denoted by k.

• dgla is the abbreviation of differential graded Lie k-algebra while cdga means commutative differential graded augmented k-algebra.

• Mod k is the category of chain complexes of k-modules and Mod k is the corresponding ∞-category.

• Lie k is the category of differential graded Lie k-algebras and Lie k is the corresponding ∞-category.

• cdga k is the category of commutative differential graded augmented k-algebras and cdga k is the corresponding ∞-category.

• dgArt k denotes the full sub-category of cdga k consisting of commutative differential graded artinian algebras cohomologically concentrated in non-positive degrees.

• Art k denotes the category of local artinian k-algebras with residue field k.

• SEns is the category of simplicial sets.

• fmp is the abbreviation of formal moduli problem.

• FMP is the homotopy category of formal moduli problems.

Formal moduli problems revisited 3.2.1 Presentable ∞-categories

A glimpse on presentable ∞-categories is provided in this section. Let ∆ be the category of finite ordinal numbers with order-preserving maps between them. Concretely, the objects of ∆ are strings

n : 0 → 1 → • • • → n
where n is a positive integer and morphisms of ∆ are order-preserving set functors m → n.

For each n ∈ ∆, consider the following morphisms:

d i : n -1 → n (0 → 1 → • • • → n -1) → (0 → 1 → • • • → i -1 → i + 1 → • • • → n)
and

s j : n + 1 → n (0 → 1 → • • • → n + 1) → (0 → 1 → • • • → j→j → • • • → n) .
The former ones are called cofaces while the latter ones are called codegeneracies. They satisfies the following cosimplicial identities

                     d j d i = d i d j-1 if i < j s j d i = d i s j-1 if i < j s j d j = Id = s j d j+1 s j d i = d i-1 s j if i > j + 1 s j s i = s i s j+1 if i ≤ j. (3.2.1)
The maps d i , s j together with these relations constitute a set of generators and relations for ∆ (cf. [START_REF] Lane | Categories for the Working Mathematician[END_REF]). Using the generators d i , s j and the relations (3.2.1), to give a simplicial set Y is equivalent to giving sets Y n , n ≥ 0 together with maps

   d i : Y n → Y n-1 , 0 ≤ i ≤ n (faces) s j : Y n → Y n+1 , 0 ≤ j ≤ n (degeneracies) Definition 3.2.4.
Let C be a category (or an ∞-category). We say that C is presentable if C admits small colimits and is generated under small colimits by a set of κ-compact objects, for some regular cardinal number κ. Here, an object C ∈ C is said to be κ-compact if the functor Hom C (C, -) preserves κ-filtered colimits Remark 3.2.1. We often omit the cardinal number κ and say simply "compact" and "filtered" for simplicity.

The (1) The functor F has a right adjoint if and only if it preserves small colimits.

(2) The functor F has a left adjoint if and only if it preserves small limits and filtered colimits.

There is a general effective method to construct presentable ∞-categories via combinatorial model categories (see [START_REF] Hovey | Model Categories[END_REF] for the notion of combinatorial model category) and Dwyer-Kan simplicial localization ( [START_REF] Dwyer | Kan Simplicial localizations of categories[END_REF]), which we shall use several times in the sequel.

We recall it here for completeness. Let C be a model category and N(C) its associated nerve category (cf. [START_REF] Lurie | Higher Topos Theory[END_REF]Definition 1.1.5.5]). Concretely, the simplices of N(C) can be explicitly described as follows.

• 0-simplices are objects of C,

• 1-simplices are morphisms of C.

• • •

• n-simplices are strings of n composable morphisms

C 0 f 1 → C 1 f 2 → • • • f n-1 → C n-1 fn → C n
which the face map d i and the degeneracy map s j carry to The reader is referred to [START_REF] Hovey | Model Categories[END_REF]Chapter 3.3.2] for a detailed treatment of this proposition.

C 0 f 1 → C 1 f 2 → • • • f i-1 → C i-1 f i+1 •f i → C i+1 f i+2 → • • • f n-1 → C n-1 fn → C n and C 0 f 1 → C 1 f 2 → • • • f j → C j Id C j → C j f j+1 → • • • f n-1 → C n-1 fn → C n ,
We denote the associated presentable ∞-category of SEns by SEns.

Differential graded Lie algebras and its ∞-category

Definition 3.2.5. A differential graded Lie algebra (or briefly dgla) over k is a chain complex (g * , d) of k-vector spaces equipped with a Lie bracket [-, -] : g p ⊗ k g * → g p+q satisfying the following conditions:

(1) For x ∈ g p and y ∈ g q , we have [x, y] + (-1) pq [y, x] = 0.

(2) For x ∈ g p , y ∈ g q and z ∈ g r , we have

(-1) pr [x, [y, z]] + (-1) pq [y, [z, x]] + (-1) qr [z, [x, y]] = 0.
(3) The differential d is of degree 1 and is a derivation with respect to the Lie bracket.

That is, for x ∈ g p and y ∈ g q , d[x, y] = [dx, y] + (-1) p [x, dy].

The same construction as in the case of dglas gives us the associated ∞-category CAlg k of CAlg k . Let us denote by cdga k the full sub-category of CAlg k consisting of cdgas A with an additional augmented map A → k. This sub-category inherits a combinatorial model category structure from CAlg k , which permits us to talk about its corresponding ∞-category, denoted by cdga k . Finally, we introduce a sub-category of cdga k , on which formal moduli problems are defined. Definition 3.2.7. A commutative differential graded augmented k-algebra A ∈ cdga k is said to be artinian if the three following conditions hold:

(1) The cohomology groups H n (A) = 0 for n positive and for n sufficiently negative.

(2) All cohomology groups H n (A) are of finite dimension over k.

(3) H 0 (A) is a local artinian ring with maximal ideal m and the morphism

H 0 (A)/m → k is an isomorphism.
We denote the full sub-category of cdga k consisting of artinian commutative differential graded augmented k-algebras by dgArt k . (1) For each n ∈ Z, the vector space Cn(g) * is g n ⊕ g n-1 . A general element of Cn(g) n is of the form x + y, where x ∈ g n , y ∈ g n-1 and is a formal symbol of degree 1 such that 2 = 0.

Chevalley-Eilenberg complex of dglas and Koszul duality

(2) The differential of degree 1 on Cn(g) * is given by the formula d(x + y) = dx + y -dy.

(3) The Lie bracket on Cn(g) * is given by

[x + y, x + y ] = [x, y] + ([y, x ] + (-1) p [x, y ]).
By definition, Cn(g) * is also a differential graded Lie algebra. Moreover, its underlying chain complex can be identified with the mapping cone of the identity: g * → g * . In particular, 0 → Cn(g) * is a quasi-isomorphism of dglas. Note that the zero map g * → 0 induces a map of differential graded algebras U (g * ) → U (0) = k, where U (g * ) and U (0) are the universal enveloping differential graded algebras of g * and that of 0, respectively. Another evident map of dglas is the inclusion g * → Cn(g) * .

Definition 3.2.9. The cohomological Chevalley-Eilenberg complex of g * is defined to be the linear dual of the tensor product

U (Cn(g) * ) ⊗ L U (g * ) k,
which we shall denote by C * (g * ).

There is a natural multiplication on C * (g * ). More precisely, for λ ∈ C p (g * ) and

µ ∈ C q (g * ), we define λµ ∈ C p+q (g * ) by the formula

(λµ)(x 1 • • • x n ) = S,S (S, S )λ(x i 1 • • • x im )µ(x j 1 • • • x j n-m ),
where x i ∈ g r i , the sum is taken over all disjoint sets S = {i

1 < • • • < i m } and S = {j 1 < • • • < j n-m } and r i 1 + • • • + r im = p,
and (S, S ) = i∈S ,j∈S,i<j (-1) r i r j . This multiplication imposes a structure of cdga on C * (g * ).

Proposition 3.2.4. With above notations, we have the followings:

(1) The construction g * → C * (g * ) sends quasi-isomorphisms of dglas to quasi-isomorphisms of cdgas. In particular, we obtain a functor between ∞-categories Lie k → cdga op k , which, by abuse of notation, we still denote by C * .

(2) Let V * be a chain complex of vector spaces and Free(V * ) be the free dgla generated by V then we have a map

C * (Free(V * )) → k ⊕ V ∨ * [-1]
which is a quasi-isomorphism of cdgas, here V ∨ * is the linear dual of V * . (3) The ∞-functor C * preserves small co-limits. Thus, C * admits a right adjoint D: Proof. For the first three statements, see [ (1) For every integer n, V n is of finite dimension. (2) the unit transformation Id F MP → Ψ • Φ is an equivalence.

K n K 0 K if K ∈ C • then so is K . Proof. (i)
To prove (1), let f : g * → h * be a morphism of dglas, inducing an equivalence Ψ(g * ) Ψ(h * ) of formal moduli problems. In particular, for n positive,

Map Lie k (D(k ⊕ k[n]), g * ) Map Lie k (D(k ⊕ k[n]), h * ) ⇔ Map Lie k (DC * (Free(k[-n -1])), g * ) Map Lie k (DC * (Free(k[-n -1])), h * ) ⇔ Map Lie k (Free(k[-n -1]), g * ) Map Lie k (Free(k[-n -1]), h * ) ⇔ Map Mod k (k[-n -1], g * ) Map Mod k (k[-n -1], h * ) ⇔ Map Mod k (k, g * [n + 1]) Map Mod k (k, h * [n + 1])
where the second and the third line follow from Theorem 3. 

(Φ(Spec(A)), g * ) Map F MP (Spec(A), Ψ(g * )) Map F MP (Map cdga k (A, -), Map Lie k (D(-), g * )) Map F MP (Map Lie k (D(-), D(A)), Map Lie k (D(-), g * )) Map Lie k (D(A), g * )
which gives an equivalence Φ(Spec(A)) D(A).

So, to finish the verification, we just need to show that the morphism Spec(A) → Ψ(D(A)) is an equivalence. This is indeed the case since for each B ∈ dgArt k , the following chain of equivalences

Map Lie k (D(B), D(A)) Map cdga k (A, C * D(B)) Map cdga k (A, B) Spec(A)(B)
is available again by Remark 3.2.4.

Representations of dglas

Definition 3.2.13. Let g * be a dgla over a field k. A representation of g * is a differential graded vector space V * , equipped with a map

g * ⊗ k V * → V * such that [x, y]v = x(yv) + (-1
) pq y(xv) for x ∈ g p and y ∈ g q .

A morphism between two representations V * and W * of g * is a morphism of differential graded vector spaces f : V * → W * such that the following diagram is commutative

g * ⊗ k V * V * g * ⊗ k W * W * Id g * ⊗ f f
The representations of g * comprise a category which we will denote by Rep dg g * .

Proposition 3.2.5. The category Rep dg g * of representations of a dgla g * admits a combinatorial model structure, where:

(1) A map f : V * → W * of representations of g * is a weak equivalence if and only if it is an isomorphism on cohomology.

(2) A map f : V * → W * of representations of g * is a fibration if and only if it is degreewise surjective.

We denote Rep g * to be the corresponding ∞-category of Rep dg g * with respect to this model structure.

Proof. See [21, Chapter 2, Proposition 2.4.5.]. Definition 3.2.14. Let g * be a dgla and V * ∈ Rep dg g * . The cohomological Chevalley-Eilenberg complex of g * with coefficients in V * is defined to be the differential graded vector space of U (g * )-module maps from U (Cn(g) * ) into V * .

Observe that C * (g * , V * ) has the structure of a module over the differential graded algebra C * (g * ). The action is given by k-bilinear maps

C p (g * ) × C q (g * , V * ) → C p+q (g * , V * ) which send λ ∈ C * (g * ) and µ ∈ C q (g * , V * ) to the element λµ ∈ C p+q (g * , V * ) provided by (λµ)(x 1 • • • x n ) = S,S (S, S )λ(x i 1 • • • x im )µ(x j 1 • • • x j n-m ),
as in the construction of multiplication on C * (g * ).

Let g * be a dgla and Mod dg C * (g * ) be the category of differential graded modules over C * (g * ). 

V * → C * (g * , V * )
preserves weak equivalences and fibrations. Moreover, it has a left adjoint F given by

F : Mod dg C * (g * ) → Rep dg g * M * → U (Cn(g) * ) ⊗ C * (g * ) M * .
Thus, C * (g * , -) is a right Quillen functor, which induces a map between ∞-categories To end this section, we recall a little bit about tensor products of representations.

Definition 3.2.16. Let V * and W * be two representations of g * , then tensor product V * ⊗ k W * can be considered a representation of g * with action given by the formula

x(v ⊗ w) = (xv) ⊗ w + (-1) pq v ⊗ (xw)
for homogeneous elements x ∈ g p , v ∈ V q and w ∈ W r .

By a general theorem of Lurie, we can prove that the construction

W * → V * ⊗ k W *
preserves quasi-isomorphisms. Consequently, the ∞-category Rep g * inherits a symmetric monoidal structure.

Derived schemes

Let sComm k be the ∞-category of simplicial commutative rings (some authors use the terminology "derived rings").

Definition 3.2.17. A derived scheme is a data (X, O X ) where X is a topological space and O X is a stack of derived rings on X such that two following conditions are satisfied

(1) The truncation (X, π 0 (O X )) is a scheme.

(

) For all i the sheaf of π 0 (O X )-modules π i (O X ) is quasi-coherent. 2 
We denote the ∞-category of derived schemes by dSch k . We let also dAff k be the full ∞sub-category of dSch k consisting of derived schemes whose truncation π 0 (X) is an affine scheme.

In the world of derived schemes, we also have a derived version of the global section functor which we denote by RΓ(-, -). This functor takes a derived scheme (X, O X ) to the space of global functions RΓ(X, O X ) on X. The following theorem is fundamental (see [START_REF] Toën | Derived algebraic geometry[END_REF]Page 186]).

and that for all i ≥ 0 H n (g(i) * ) 0, ∀n ≥ 1.

For each n ∈ Z, we pick a finite-dimensional graded subspace V n ∈ g n consisting of cycles which maps isomorphically onto the homology H n (g * ). We think of V * as a differential graded vector space with the trivial differential. Let g(1) * denote the free differential graded Lie algebra generated by V * and let φ(1) : g(1) * → g * be the canonical map. By construction, we have that

H n (g(1) * ) 0, ∀n ≥ 1
and that the inclusion V 0 → g(1) 0 induces an isomorphism

V 0 → H 0 (g(1) * ).
Now, suppose that i ≥ 1 and that we have built a map φ(i) : g(i) * → g * extending φ(1).

Then φ(i) induces a surjection

θ(i) : H * (g(i) * ) → H * (g * ).
Choose a collection of cycles x α ∈ g(i) nα whose images form a basis for ker(θ). So, we can write φ(i)(x α ) = dy α for some y α ∈ g nα+1 . Let g(i + 1) * be the differential graded Lie algebra obtained from g(i) * by freely adding elements Y α (in degrees n α + 1) such that dY α = x α . We let φ(i + 1) : g(i + 1) * → g * denote the unique extension of φ(i) satisfying

φ(i + 1)(Y α ) = y α .
We shall prove that by induction on i that H n (g(i) * )) 0, ∀n ≥ 1 and that the inclusion V 0 → g(i) 0 induces an isomorphism

V 0 → H 0 (g(i) * )
for each i ≥ 1. The case i = 1 is obvious by the above explanation. Suppose that it holds for i, we must prove that it also holds for i + 1. Indeed, by construction, we have the following commutative diagram

V 0 H 0 (g * ) H 0 (g(i) * ) ∼ = θ(i) ∼ =
Hence, φ(i) is an isomorphism in degrees ≥ 0. Thus, g(i + 1) * is obtained from g(i) * by freely adding generators Y α in degree ≤ 0, which implies that H n (g(i + 1) * ) 0 for all n ≥ 0. Furthermore, we can write g(i + 1) 0 g(i) 0 ⊕ W where W is the subspace generated by the elements Y α with n α = -1, constructed as above. Note that the differential on g(i + 1) * induces an injective map d : W → g(i) -1 /dg(i) 0 because by construction the set of dY α = x α form a basis for ker(θ) ⊂ g(i) -1 /dg(i) 0 .

Therefore, H 0 (g(i) * ) = H 0 (g(i + 1) * ) so that the inclusion V 0 → g(i + 1) 0 induces an isomorphism V 0 → H 0 (g(i + 1) * ). This finishes the induction argument.

Finally, we let g * denote the colimit of the sequence {g(i) * } i≥0 . The canonical map g * → g * is surjective on homology since the map g(1) * → g * is surjective on homology. Let η ∈ ker(H * (g * ) → H * (g * )) then η is represented by a class η ∈ ker(H * (g(i) * ) → H * (g * ))

for i is sufficiently large. By construction, the image of η vanishes in H * (g(i + 1) * ). Thus, η = 0 so that g * = colim -→ g(i) * .

This ends the proof. Let T n+1 be the vector space generated by y n+1 α 's and z n+1 α,g 's. On the other hand, since g n+1 is a rational G-module then the sub-representation of G generated by y n+1 α 's is a finite-dimensional vector space, which we shall call T n+1 . Clearly, T n+1 is included in T n+1 . Hence, T n+1 is also finite-dimensional. Moreover, it is easy to see that T n+1 is also G-invariant, by construction. Let W n+1 be a vector space identical to T n+1 , as Grepresentations. Let Y n+1 α 's and Z n+1 α,g 's be elements in W n+1 corresponding to y n+1 α 's and z n+1 α,g 's, respectively. Finally, for each n, define g(i + 1) * to be the differential graded Lie algebra obtained from g(i) * by freely adding a basis of W n+1 (in degrees n + 1) such that It is not difficult to see that d and φ(i + 1) defined in this way are G-equivariant.

We shall prove by induction on i that H n (g(i) * )) 0, ∀n ≥ 1 and that the inclusion V 0 → g(i) 0 induces an isomorphism

V 0 → H 0 (g(i) * )
for each i ≥ 1. The case i = 1 is obvious by the above explanation. Suppose that it holds for i, we must prove that it also holds for i + 1. Indeed, by construction, we have the following commutative diagram

V 0 H 0 (g * ) H 0 (g(i) * ) ∼ = θ(i) ∼ =
Hence, φ(i) is an isomorphism in degrees ≥ 0. Thus, g(i + 1) * is obtained from g(i) * by freely adding generators Y n+1 α and Z n+1 α,g in degree ≤ 0, which implies that H n (g(i + 1) * ) 0 for all n ≥ 0. Furthermore, we can write

g(i + 1) 0 g(i) 0 ⊕ Y 0 ⊕ Z 0
where Y 0 and Z 0 are the subspaces generated by the elements Y 0 α and Z 0 α,g , constructed as above. Note that the differential on g(i + 1) * induces an injective map d : Y 0 → g(i) -1 /dg(i) 0 because by construction the set of dY 0 α = x -1 α form a basis for ker(θ) -1 ⊂ g(i) -1 /dg(i) 0 ⊆ g(i + 1) -1 /dg(i + 1) 0 .

This guarantees that there are no new cycles coming from Y 0 . However, the space Z 0 consists merely of new cycles on g(i + 1) 0 by (3.3.3). Therefore, in general, V 0 ∼ = H 0 (g(i) * ) = H 0 (g(i + 1) * ).

Finally, we let g * denote the colimit of the sequence {g(i) * } i≥0 . The canonical map g * → g * is surjective on homology since the map g(1) * → g * is surjective on homology. Let η ∈ ker(H * (g * ) → H * (g * )) then η is represented by a class η ∈ ker(H * (g(i) * ) → H * (g * ))

for i sufficiently large. By construction, the image of η vanishes in H * (g(i + 1) * ). Thus, η = 0 so that g * = colim -→ g(i) * .

This ends the proof. as simplicial sets. This completes the proof. Now, we deal with the general case where X 0 is an arbitrary scheme.

Theorem 3.4.2. The dgla corresponding to the derived deformation functor Def X 0 of a scheme X 0 is RΓ(X 0 , T X 0 /k ) where T X 0 /k is the tangent complex of X 0 over k.

sense. By Theorem 3.4.5, any G-equivariant derived deformation X → Spec(A) of X 0 corresponds to a (non-homotopic) G-equivariant map of dglas: QD(A) → RΓ(X 0 , T X 0 /k ) which then corresponds to a G-equivariant map of dglas QD(A) → k * . Finally, the last map gives rise to a G-equivariant map of cdgas QK → A.

For the last statement, restricting our fmp on the category of local artinian rings

Art k and unwinding the definition of versality mentioned in the previous paragraph, we can see that H 0 (QK) is nothing but the base space of the G-equivariant semi-universal constructed by Rim in Theorem I.

Equivariant deformations of complex compact manifolds

Let X 0 be a complex complex manifold and T X 0 be its holomorphic tangent bundle.

Denote by A p,q the sheaf of differential forms of type (p, q) and by A p,q (T X 0 ) the sheaf of differential forms of type (p, q) with values in T X 0 . Let g * be the following differential graded Lie algebra Γ(X 0 , A 0,0 (T

X 0 )) ∂ → Γ(X 0 , A 0,1 (T X 0 )) ∂ → Γ(X 0 , A 0,2 (T X 0 )) ∂ → • • •
with the Lie bracket defined by [φdz I , ψdz J ] = [φ, ψ] dz I ∧ zJ where φ, ψ ∈ A 0,0 (T X 0 ) are vector fields on X 0 , [-, -] is the usual Lie bracket of vector fields, I, J ⊂ {1, . . . , n} and z 1 , . . . , z n are local holomorphic coordinates. Note that g * is concentrated in degrees ≥ 0. It is well-known that deformations of X 0 is governed by this g * . Furthermore if there is a reductive Lie group acting holomorphically on X 0 , then g * receives naturally an induced linear G-action and any G-equivariant deformation of X 0 is controlled by g * equipped with this induced G-action (for a quick review of (equivariant) deformations of complex compact manifolds, we refer the reader to Chapter 2). Now, we would like to recall the classical deformation functor MC g * associated to g * , defined via the Maurer-Cartan equation (see [25, §6] for more details). We have two functors:

(1) The Gauge functor

G g * : Art C → Grp A → exp(g 0 ⊗ m A )
where m A is the unique maximal ideal of A and Grp is the category of groupoids. This completes the proof. shown in Chapter 2 is given by a purely algebraic method except the step in which we used Hodge decomposition. This reflects a natural phenomenon when dealing with analytic deformations of geometric objects, i.e. a formal solution is always somewhat easy to produce.

Problème I.

  Existe-t-il une G-action sur S et une G-action sur X prolongeant la Gaction initiale sur X 0 de telle sorte que π soit G-equivariant par rapport à ces G-actions ? En d'autres termes, on se demande s'il existe des morphismes de groupes Ψ : G → Aut(X ) et ψ : G → Aut(S) tel que pour tout σ, τ ∈ G, on ait les diagrammes commutatifs suivants

F 2 :

 2 = {([x : y : z], [u : v]) ∈ P 2 × P 1 |yv 2 = zu 2 } et considérons son groupe d'automorphismes G := Aut(F 2 ) ∼ = (C 3 GL(2, C)µ ∈ C, µ 2 = 1 .

Theorem 1 . 3 . 1 .

 131 The group of automorphisms of F 2 is exactly the quotient of H by the subgroup I consisting of diagonal matrices of the form µ 0 0 µ where µ ∈ C such that µ 2 = 1. 1.4 A formal semi-universal deformation of F 2 and formal vector fields on it 1.4.1 Construction of the semi-universal deformation of F 2 We shall follow the construction given in [32, Example 1.2.2.(iii)]. Consider two copies of C × C × P 1 given by W := Proj(C[t, v, x, y]) and W := Proj(C[t , v , x , y ]) (note that these two rings are graded with respect to x, y and x , y , respectively). Consider the affine subsets Spec(C[t, v, y]) ⊂ W , Spec(C[t , v , y ]) ⊂ W and then glue them along the open subsets Spec

  [x : y]) and (t , v , [x : y ]) be the coordinates on W = C × C × P 1 and on W = C × C × P 1 , respectively. Then W is obtained by glue W and W according to the rules (1.4.1). Now, let π : W → C be the morphism induced by the projections. Theorem 1.4.1. The family π :

Remark 1 . 4 . 1 .

 141 By Proposition 1.3.1 and by Proposition 1.4.1, from now on, we use interchangeably between F 2 , X and P(O P 1 (2) ⊕ O P 1 ), W, respectively.

1. 4 . 2

 42 Formal vector fields on the formal semi-universal deformation ofF 2

1. 6

 6 Another proof of Theorem 1.5.1 In this section, we denote by X the formal deformation associated to the semi-universal deformation of F 2 given by the explicit equation in Proposition 1.4.1. On the intersection of two standard open sets U x = {x = 1} and U = {u = 1} in P 1 × P 1 (cf. the proof of Proposition 1.3.1), the action of G := Aut(F 2 ) on F 2 given by g.(v, [1 : y]) = c + dv a + bv , 1 : y(a + bv) 2 1 + y(a 0 v 2 + a 1 v + a 2 )where g = (a 0 , a 1 , a 2 ) t , a b c d ∈ G and (v, [1 : y]) ∈ F 2 under the identification given in Proposition 1.3.1. The Lie algebra of G is 7-dimensional then we obtain 7 vector fields on

Definition 2 . 2 . 1 .

 221 The G-action determined by Φ is said to be real analytic (resp. holomorphic) if for each open relatively compact U X and for each open V ⊂ X, the following conditions are satisfied

Theorem 2 . 5 . 1 .

 251 and their restrictions on K give the same global K-action. As before, by local G-action, we really mean real analytic local G-action. If we let K be the identity element of G in Definition 2.5.1 then we recover the usual definition of (holomorphic) local G-action on complex spaces (see [1, Section 1.2 ] for more details). In this case, we have the following theorem ([1, Page 25, Corollary]). Let G be a (complex) Lie group, g the Lie algebra of G, and S a complex space. Then we have two bijections equivalence classes of local G-actions on S ←→ Lie algebra homomorphisms g → T S (S)

  s together form a holomorphic function σ : S → C n which then is lifted to a holomorphic function ν g : S → S. More precisely, we have the following commutative diagram

  on the Kuranishi space. Indeed, on the intersection of two standard open sets U x = {x = 1} and U = {u = 1} in P 1 × P 1 (cf. the proof of Proposition 1.3.1 , the action of G on F 2 G and (v, [1 : y]) ∈ F 2 under the identification given in Proposition 1.3.1. So, we obtain two commuting vector fields on

  for p := ([x : y : z], [u : v], t) ∈ X and g = (a, d) ∈ C * × C * . For C * -action, we can restrict the C * × C * -action on its subgroup {(α, 1) | α ∈ C * }. Evidently, this C * -action can not be global on the germ of complex space (C, 0).

Definition 3 . 2 . 1 .

 321 A simplicial set is a contravariant functor X : ∆ → Sets. A map of simplicial sets f : X → Y is simply a natural transformation of contravariant set-valued functors defined over ∆.

  respectively. By formally inverting the class W C of weak equivalences in C, we obtain a category N(C)[W -1 C ] which is the associated ∞-category of C. The presentability of N(C)[W -1 C ] follows immediately from the following theorem (cf. [22, Proposition 1.3.4.22]). Theorem 3.2.1. Let C be a combinatorial model category. Then the associated ∞-category of C is presentable. As a fundamental example, we shall mention the associated presentable ∞-category of the category SEns of simplicial sets. Proposition 3.2.1. The category SEns of simplicial sets admits a combinatorial model category structure where (W ) A map of simplicial sets f : X → Y is a weak equivalence if and only if its geometric realization is a weak homotopy equivalence of topological spaces. (F ) A map of simplicial sets f : X → Y is a fibration if and only if it satisfies the Kan condition, i.e. for any 0 ≤ k ≤ n and any diagram simplicial sets, there exists a map f 0 such that the above diagram commutes.

Definition 3 . 2 . 8 .

 328 Let (g * , d) be a differential graded Lie algebra over a field k. The cone of g * , denoted by Cn(g) * , is defined as follows:

  cdga op k → Lie k to which we refer as Koszul duality. (4) The unit map A → C * D(A) is an equivalence in dgArt k and DC * D(A) → D(A) in Lie k .

Theorem 3 . 2 . 4 .

 324 The functor C * (g * , -) : Rep dg g * → Mod dg C * (g * )

Remark 3 . 3 . 5 .∈

 335 The finiteness condition on the cohomology groups of g * can be seen as a generalization of Schlessinger's finiteness condition on the tangent space of a classical functor of artinian rings. form a basis for ker(θ) n , where A n is a finite index set. For each α ∈ A n and g ∈ G, g n+1 . On one hand, we have thatd(g.y n α ) = gdy n+1 α , since d is equivariant, = gφ(i)(x n α ) by construction, = φ(i)(gx n α) by the equivariance of φ(i), = φ(i)(

  φ(i + 1) : g(i + 1) * → g * denote the unique extension of φ(i) satisfying   φ(i + 1)(Y n+1 α ) = y n+1 α φ(i + 1)(Z n+1 α,g ) = z n+1 α,g .(3.3.4) 

3. 4

 4 Applications: Derived deformations of some geometric objects 3.4.1 Semi-universal deformation of algebraic schemes Let X 0 be an algebraic scheme defined over k. For each A ∈ dgArt k , denote C A the category of flat morphisms of derived schemes X → Spec(A). A morphism between two objects X → Spec(A) andY → Spec(A) in C A is a commutative square X Y Spec(A) Spec(A) in dSch k . Consider the functor Def : dgArt k → SEns A → N (C A /quasi-isomorphisms)where N is the nerve of the category C A . Let φ: A → A be a morphism in dgArt k , thenwe have an induced morphismDef(φ) : Def(A) → Def(A ) (X → Spec(A)) → (X × Spec(A) Spec(A ) → Spec(A ))which clearly preserves the quasi-isomorphisms. The fact that X 0 ∈ Def(k) allows us to define a new functor Def X 0 : dgArt k → SEns which sends (A φ A → k) to the homotopy fiber at X 0 , i.e. Def(A) × Def(k) X 0 which is equivalent to the following cartesian diagram By the definition of B, this is just the image B 0 in the homotopy category of cdgas. In other words, if we take B 0 a cofibrant replacement of B 0 then f (B) B 0 . Therefore, we have an equivalence Def B 0 (A) Map Lie k (g A * , Der k (B 0 , B 0 ))

( 2 )

 2 The Maurer-Cartan functor M C g * : Art C → Sets defined by M C g * : Art C → Grp Theorem 3.3.3, there exists a compatible G-action on k * which is also versal in the sense mentioned therein. Equivalently, there exists a compatible G-action on K which is versal in the following sense. For each A ∈ dgArt C , denote by Q(A) any cofibrant replacement of A. Then any (non-homotopic) G-equivariant map of dgla: QD(A) → g * which then corresponds to a G-equivariant map of cdgas from QK → A. Note also that H 0 (QK) is a pro-object in Art G C . For the last statement, we claim that Def G X 0 is semi-prorepresentable by H 0 (QK). It is equivalent to proving that (a) the morphism of functors HomArt G k (H 0 (QK), -) → Def G X 0 defined by û is surjective where û ∈ Def G X 0 (H 0 (QK)), (b) Hom Art G k (H 0 (QK), k[ ]/( 2 )) → Def G X 0 (C[ ]/( 2 )) is bijective (cf. Remark 3.3.3 above). Let X → Spec(A) be an element of Def G X 0 where A ∈ Art G C . By Theorem 2.3.2, it corresponds to a G-equivariant map Φ A : Spec(A) → g 1 with respect to the action on g * , induced by the fixed one on X 0 such that the following conditions are satisfied:(i) Φ A (0) = 0, (ii) Φ A (a) + 1 2 [Φ A (a), Φ A (a)] = 0 for all a ∈ Spec(A). This is equivalent to a G-equivariant mapφ A : QD(A) → g * by Theorem 3.4.7, isomorphisms 3.4.1, 3.4.2. Hence, by the previous paragraph, we have that φ A corresponds to a G-equivariant map of cdgas σ A : QK → A. However, A is concentrated in degree 0. Thus, σ A can be given as a G-equivariant map H 0 (QK) → A. Hence (a) is proved. Finally, (b) can be deduced from the fact that Hom Art k (H 0 (QK), k[ ]/( 2 )) = π 0 (Map Lie C (D(k[ ]/( 2 )), g * )) = Hom Lie C (D(k[ ]/( 2 )), g * ).

Remark 3 . 4 . 5 .

 345 Once again a formal version of the existence G-equivariant Kuranishi space

  , D. C. Spencer, M. Artin, A. Grothendieck, M. Schlessinger et d'autres dans les années 60. Nous nous concentrons surtout sur les façons de déformer un objet géométrique en présence de symétries. Ce problème est bien plus difficile car les symétries ne sont pas toujours préservées par petit déplacement, et il faut comprendre comment les propager.

Tout d'abord, nous commençons par introduire ce qu'est la théorie des déformations sur un exemple simple. Nous considérons tous les anneaux de type

  G agit algébriquement sur X 0 est ajoutée. Le chapitre 3 traite la semi-proreprésentabilité du problème de modules formel étendu Def X 0 de F X 0 dans le contexte des théories de déformations dérivées (rappelons qu'un problème de modules formel est un ∞-foncteur de dgArt k → SEns satisfaisant certaines conditions d'exactitude, où dgArt k est la catégorie des k-algèbres artiniennes différentielles graduées augmentées sur k et SEns est la ∞catégorie des ensembles simpliciaux). Pour être plus précis, nous introduisons d'abord la notion de semi-proreprésentabilité des problèmes de modules formels qui ne semble pas exister dans le cadre dérivé. Cette nouvelle notion est la version plus faible de la proreprésentabilité et une généralisation naturelle de la notion de semi-universalité au sens de M. Schlessinger (cf. Définition 3.3.2 ci-dessous). Ensuite, au moyen de l'équivalence bien connue entre la ∞-catégorie des problèmes de modules formels et celle des algèbres

de Lie différentielles graduées, un critère simple pour qu'un problème de modules formels soit semi-proreprésentable est fourni (cf. Théorème 3.3.2).

Théorème D. Soit F un problème de modules formel dont l'algèbre de Lie différentielle graduée associée g * est cohomologiquement concentrée dans [0, +∞). Supposons en outre que H i (g * ) soit un espace vectoriel de dimension finie pour chaque i ≥ 0. Alors F est semi-proreprésentable.

  Il existe une structure G-équivariante sur l'élément semi-universel dérivé de Def X 0 . Par conséquent, le foncteur artinien classique F X 0 = π 0 (Def X 0 ) a un élément semi-universel G-équivariant.Enfin, lorsque X 0 est une variété complexe compacte sur laquelle un groupe de Lie complexe réductif agit de façon holomorphe, nous voudrions fournir une version formelle du théorème C en utilisant l'approche purement algébrique que nous développons plus tôt dans le même chapitre. Soit Def X 0 : Art C → Sets (resp. Def G X 0 : Art G C → Sets) le foncteur qui associe à chaque k-algèbre artinienne locale A, la classe d'isomorphismes de morphismes (resp. morphismes G-équivariants) propres et plats d'espaces analytiques

l'espace des sections globales dérivées de T X 0 /k (cf. Théorème 3.4.2). Lorsque X 0 est un schéma affine avec au plus des singularités isolées ou un schéma projectif défini sur k, la semi-proreprésentabilité de Def X 0 découle du fait que RΓ(X 0 , T X 0 /k ) est cohomologiquement concentrée dans [0, +∞) et que H i (RΓ(X 0 , T X 0 /k )) est un espace vectoriel de dimension finie pour chaque i ≥ 0. Autrement dit, Def X 0 possède un "élément semi-universel dérivé" dont les composantes connexes restituent l'élément semi-universel classique. Dans l'esprit du problème I, il est naturel de se demander si cet élément semi-universel dérivé peut être rendu Géquivariant dans un certain sens, où G est un groupe algébrique linéairement réductif agissant algébriquement sur X 0 . La réponse est donnée par le théorème suivant qui est une généralisation naturelle du théorème I dans le cadre dérivé. (cf. Théorème 3.4.6).

Théorème E.

  following two lemmas concerning adjoint functors of ∞-categories are useful in the sequel (cf. [27, Corollary 2.1.65] and [23, Corollary 5.5.2.9], respectively). Let g : D → C be a functor of ∞-categories and f : C → D a right adjoint of g. Then f is an equivalence if and only if (1) f reflects equivalences, (2) the unit transformation Id D → f • g is an equivalence. Lemma 3.2.2. Let F : C → D be a ∞-functor between two presentable ∞-categories.

	Lemma 3.2.1.

  21, Chapter 2, Proposition 2.2.6, Proposition 2.2.7, Proposition 2.2.17]. For the last one, see [27, Chapter 4, Proposition 4.3.5]. Definition 3.2.10. We say that an object g * in Lie k is good if it is cofibrant with respect to the model structure on Lie k and there exists a graded vector subspace V

* ⊂ g * such that

  Proof. First, we verify that for each g * ∈ Lie k , the functor Map Lie k (D(-), g * ) defines a formal moduli problem in the sense of Definition 3.2.12. Indeed, it is obvious that

	in dgArt k . Applying the functor D, we get a cartesian diagram
	D(N )	D(k)
	D(M )	D(k ⊕ k[n])
	is essentially Corollary 3.2.1. (ii) follows from Proposition 3.2.4. For a detailed
	proof of (iii) see [21, Proposition 2.3.4]. in Lie op k by Remark 3.2.4 and therefore a cartesian diagram
	Remark 3.2.4. In general the pair	
	D : cdga k k : C Map Lie k (D(k), g * ) is contractible due to the fact that D(k) 0. It remains to verify the Lie op Map Lie k (D(N ), g * ) Map Lie k (D(k), g
	condition (2) in Definition 3.2.12. By Remark 3.2.3, we can consider the cartesian diagram
	N	k
	M	k ⊕ k[n]

*

does not induce an equivalence of categories. However, its restriction to the sub-categories dgArt k and C • really does, i.e. the following pair

D : dgArt k C • : C *

is indeed an equivalence for the sake of Proposition 3.2.4 and Theorem 3.2.2. In addition, C • contains essentially compact objects of Lie k (cf. Definition 3.2.4 for the notion of compact object). Now, we are in a position to give a sketch for the proof of the following very well-known fundamental result in derived deformation theory, proved independently by Lurie in

[START_REF] Lurie | Derived Algebraic Geometry X: Formal Moduli Problems[END_REF] 

and Pridham in

[START_REF] Pridham | Unifying derived deformation theories[END_REF]

.

Theorem 3.2.3. The functor

Ψ : Lie k → FMP g * → Map Lie k (D(-), g * )

induces an equivalence of ∞-categories between Lie k and FMP. * )

Map Lie k (D(M ), g * ) Map Lie k (D(k ⊕ k[n]), g * ).

This justifies Map Lie k (D(-), g * ) being a formal moduli problem.

Next, Ψ preserves small limits by its definition. Moreover, for each

A ∈ dgArt k , D(A)

is a compact object (cf. Definition 3.2.4) in Lie k by Remark 3.2.4. Hence, Ψ preserves also filtered colimits in Lie k . Therefore, the adjoint functor theorem 3.2.2 guarantees the existence of a left adjoint Φ of Ψ. By Lemma 3.2.1, it is reduced to showing that (1) Ψ reflects equivalences,

  Rep g * and Mod C * (g * ) .Theorem 3.2.5. Let f be the corresponding ∞-functor of F in Theorem 3.2.4, then f induces an equivalence of ∞-categories

	Proof. See [21, Chapter 2, Proposition 2.4.10 and Remark 2.4.11]. C * (g * ) → Mod cn g * which sends M * to U (Cn(g) * ) ⊗ L C * (g * ) M * , i.e. f is the left derived functor of F . Definition 3.2.15. Let g Mod cn Proof. See [21, Chapter 2, Proposition 2.4.16].

* be a dgla and V * be a representation of g * . V * is said to be connective if the cohomology groups of the chain complex V * are concentrated in nonpositive degrees. Let Mod cn g * denote the full subcategory of Rep g * spanned by the connective g * -modules.

Remerciements

we can find a neighborhood B of b 1 , a holomorphic map τ : (B , b 1 ) → (S , s 1 ) and a C α -map γ : B → Diff(X 0 ) such that Now, coming back to our case where the group action joins the game, we claim the following.

Theorem 2.3.2. If the map φ can also be made G-equivariant with respect to some Gaction on S and the G-action on A 0,1 (Θ), induced by the one on X 0 , then a G-equivariant semi-universal deformation of X 0 exists.

In order to prove this, let us introduce a lemma on complex structures of real vector spaces. Let V be a real vector space of even dimension imposed with three different complex structures J, J m , J n and V C be its complexification then we have three complex vector spaces (V, J), (V, J m ), (V, J n ) and decompositions

Jm , and

Jn

where V 1,0

. and V 0,1

.

are eigenspaces attached to the eigenvalues i and -i, respectively.

Let π 1,0 : V C → V 1,0 J and π 0,1 : V C → V 0,1 J be the canonical projections. Now, suppose that the restrictions of π 0,1 on V 0,1 Jm and on V 0,1 Jn are isomorphisms. Define m, n : V 0,1

Lemma 2.3.1. Let ϕ: V → V be an R-linear map such that its complexification ϕ C is a C-linear map from (V, J) to (V, J). Then ϕ is C-linear as a map from (V, J m ) to (V,

Proof. We claim that ϕ C (V 0,1 Jm ) ⊆ V 0,1 Jn . Indeed, let v ∈ V 0,1 Jm then v = u + m(u) for some u ∈ V 0,1 J . So, Thus, g.s ∈ S . Moreover, g.s ∈ U by the construction of U . Hence, g.s ∈ S ∩ U so that S is K-invariant. The part that this K-action on S is real analytic follows from the fact that it is the restriction of a linear K-action on U .

Proof of Theorem 2.4.1. The restriction of the map φ in (2.4.5) on S gives us a map

which satisfies all the conditions given in the theorem.

2.5

The case that G is a complex reductive Lie group

In this final section, we would like to extend Corollary 2.4.1 to the case that G is a complex reductive Lie group.

We begin by introducing the definition of holomorphic local (G, K)-action on a complex space X where K is a compact subgroup of G. Denote by X the collection of all pair π = (U π , V π ), where U π and V π are open subsets in X such that U π V π . Suppose that for each π ∈ X we have an open neighborhood G π of K and a mapping Φ π : G π → Ho(U π , V π ) where Ho(U π , V π ) is the set of all holomorphic functions from U π to V π .

Definition 2.5.1. One says that the system {Φ π } defines a local (G, K)-action on X if the following conditions are satisfied.

(a) For all g, h ∈ G such that k := gh ∈ G π , we have

(c) for all π, ρ ∈ X and g ∈ G π ∩ G ρ we have

so that gx := Φ π (g)x is independent of the choice of π with x ∈ U π , g ∈ G π ;

gives us a complex Lie algebra homomorphism ϕ C : Lie(K) C = Lie(G) → T X (X). An application of Theorem 2.5.1 again provides a holomorphic local G-action on X. Note that the restriction of this holomorphic local G-action on K gives a local K-action on X, which in fact is equivalent to the initial global one on X. This follows from the fact that they correspond to the same Lie algebra homomorphism ϕ : Lie(K) → T X (X). Thus, it allows us to define a holomorphic local (G, K)-action on X as follows. If g ∈ K then the action of g is determined by the initial global K-action. If g ∈ G \ K then the action of g is determined by the extended holomorphic local G-action. This ends the proof.

The two following lemmas are helpful in the sequel.

Lemma 2.5.1. Let f : X → Y be a proper surjective flat map of complex spaces whose geometric fibers are all connected complex compact manifolds. Then the natural maps

So, the base change morphism Lemma 2.5.2. Let G be a complex reductive group and let K be a connected real maximal

Now, we are ready to state the second main result of this paper.

Theorem 2.5.2. Let X/S be the Kuranishi family of a complex compact manifold X 0 with a holomorphic action of a complex reductive Lie group G. Then we can provide holomorphic local G-actions on X/S extending the holomorphic G-action on X 0 .

Proof. Let K be a connected real maximal compact subgroup whose complexification is exactly G. By Corollary 2.4.1, we obtain a K-equivariant Kuranishi family π : X → S.

If we can extend the K-actions on X and on S to holomorphic local (G, K)-actions such Chapter 3

Semi-prorepresentability of formal moduli problems and equivariance structure

Introduction

The theory of deformations of algebraic schemes with algebraic group actions is first studied by the voluntary work of Pinkham (see [START_REF] Pinkham | Deformations of algebraic varieties with G m -action[END_REF]) in which affine cones with G m -actions are taken into account. Six years later, Rim obtains a far-reaching result which claims that if G is a linearly reductive group acting algebraically on an algebraic scheme X 0 where X 0 is supposed to be either an affine scheme with at most isolated singularities or a complete algebraic variety then a G-equivariant formal semi-universal deformation of X 0 exists, unique up to G-equivariant isomorphism (see [START_REF] Rim | Equivariant G-structure on versal deformations[END_REF]). In the language of functors of Artin rings, this result can be rephrased as follows. Let k be an algebraically closed field and Art k (resp. Art k ) be the category of local artinian k-algebras (resp.

complete local noetherian k-algebras) with residue field k. The functor F X 0 : Art k → Sets which associates to each local artinian k-algebra A, the set of flat morphisms of schemes X → Spec(A) with an isomorphism X × Spec(A) Spec(k) ∼ = X 0 has a formal semi-universal element, i.e. there exists a pro-object R in Art k and an element û ∈ F X 0 (R) such that the morphism of functors

defined by û is smooth and such that

is bijective, where F X 0 is the extension of F X 0 on Art k (see [32, §2.2] for more details)

and k[ ]/( 2 ) is the ring of dual numbers. Furthermore, this formal semi-universal element satisfying the simplicial identities

We denote the category of simplicial sets by SEns and refer the reader to [START_REF] Goerss | Simplicial Homotopy Theory[END_REF] for a complete study of this category.

Definition 3.2.2. (1) The standard n-simplex in the category SEns is defined by

(2) Denote by ι n the standard simplex Id n ∈ Hom ∆ (n, n). For 0 ≤ k ≤ n, the k-horn

3. An ∞-category is a simplicial set K which has the following property:

is simply a map of simplicial sets.

To end this section, we introduce the notion of presentability of ∞-categories. (cf. [ (F ) A map of cdgas f : g * → g * is a fibration if and only if it is degree-wise surjective.

(2) For every non-positive integer n, V n is trivial.

(3) As a graded Lie algebra, g * is freely generated by V * , i.e. g * = Free(V * ).

Denote the full subcategory of Lie k spanned by those good objects by C • .

Mapping spaces in Lie k and in cdga k

For each n ∈ N, the algebraic simplex ∆ n of dimension n is the sub-variety of the affine space A n+1 , defined by the equation i x i = 1. Let L and L be two dglas then the simplicial set of morphisms from L to L is the simplicial set

where C * (∆ n ) is the de Rham differential graded algebra on the algebraic simplex ∆ n and Hom

is the usual set of morphisms between two dglas L and The mapping space Map cdga k (A, A ) between two cdgas A and A can be defined in a very similar way.

Formal moduli problems for cdga k

In this subsection, we shall work with the deformation context

Here, the cdga

Definition 3.2.12. A functor X : dgArt k → SEns is called a formal moduli problem if the following conditions are fulfilled.

(1) The space X(k) is contractible.

(

is also a pullback diagram.

Remark 3.2.3. We can equivalently replace the condition (2) in the above definition by the following condition: for every pullback diagram

is also a pullback diagram for any n ≥ 1 (see [4, Remark 1.5 and Corollary 1.6] for a proof).

We would like to study the full ∞-subcategory FMP ⊂ Fun(dgArt k , SEns) spanned by formal moduli problems. 

whose inverse functor is denoted by Spec(-). Moreover, for any derived scheme X and any derived affine scheme Spec(A) where A ∈ sComm k , we have an equivalence of simplicial sets

3.3 Semi-prorepresentability of formal moduli problems (i) u is said to be smooth if for every small map φ :

Remark 3.3.1. Let g * and h * be the dglas associated to X and Y , respectively. Then the

on the side of dglas. (i) u is smooth.

(ii) for every n > 0, the homotopy fiber of

The following statement gives an explicit criterion for a morphism of fmps to be étale, on the side of corresponding dglas.

Proposition 3.3.2. Let X and Y be fmps whose associated dglas are g * and h * , respectively and u : X → Y be a map between them, inducing a map u * : g * → h * of dglas . If

Proof. Note that we always have that

for any i, n ≥ 0. In particular,

Consider the homotopy pull-back

whose corresponding homotopy fiber sequence is

By assumption we have that

and

are all isomorphisms for n > 0. Thus, π 0 (F ) = 0 and then F is connected so that u is smooth by Proposition 3.3.1. Besides,

Hence, u is étale. However, in reality there are many fmps which are not prorepresentable due to the fact that their associated dglas have some components in negatives degrees. The typical example is the derived deformation functor Def X 0 of a given algebraic scheme X 0 . The 0 thcohomology group of the associated dgla of Def X 0 is nothing but the vector space of global vector fields on X 0 , which is not vanishing in general (cf. Theorem 3.4.2). This leads us to a weaker notion of prorepresentability, which in fact generalizes that of semi-universality in the classical sense. 

where QA is the cofibrant replacement of A (cf. [START_REF] Schlessinger | Functors of Artin rings[END_REF] or [START_REF] Sernesi | Deformations of algebraic schemes[END_REF] for more details).

A criterion for semi-prorepresentability

In this section we try to give a sufficient condition for a given fmp whose associated dgla is cohomologically concentrated in [0, +∞) to be semi-prorepresentable.

Theorem 3.3.2. Let F be a fmp whose associated dgla g * is cohomologically concentrated in [0, +∞). Assume further that H i (g * ) is a finite dimensional vector space for each i ≥ 0.

Then F is semi-prorepresentable.

Proof. We first treat the case when each g i is finite-dimensional. Denote B 1 (g * ) and

Z 1 (g * ) to be the first space of boundaries and the one of cycles, respectively. Since, g 1 is finite-dimensional we can choose the following splittings:

whose Lie bracket and differential are induced by those of g * . The natural inclusion u : k * → g * induces isomorphisms

for i > 0 by construction. For the sake of Proposition 3.3.2, the corresponding map of fmps For the general case, we have that g * = colim i g(i) * where each g(i) k is of finite dimension and g(i) * is cohomologically concentrated in [0, +∞). This fact will be proved in Lemma 3. 

where each g(i) k is finite-dimensional and g(i) * is cohomologically concentrated in [0, +∞)

Proof. Dually, we can assume equivalently that the homology H i (g * ) 0 for all i ≥ 1.

We aim to construct by induction a sequence of dglas

g(i) *

Semi-prorepresentability and G-equivariant structure

In this subsection, we intend to generalize the notion of G-equivariant structure on versal deformations initiated by D. S. Rim in [START_REF] Rim | Equivariant G-structure on versal deformations[END_REF] (see also Introduction), in the world of formal moduli problems.

Let F be a fmp and let g * be its corresponding dgla. Suppose that F is semiprorepresentable and that g * is prescribed an action of some group G. 

where A criterion for a semi-prorepresentable formal moduli problem to have a G-equivariant structure will be given by the following.

Theorem 3.3.3. Let F be a fmp whose associated dgla g * is cohomologically concentrated in [0, +∞) and G be a linearly reductive algebraic group defined over k, acting on g * .

Assume further that H i (g * ) is a finite-dimensional vector space for each i ≥ 0 and that the following colimit is available

where

(iii) each g(i) * carries an algebraic G-action and the colimit of these G-actions gives back the initial G-action on g * .

Then F admits a G-equivariant structure.

Proof. As usual, we first deal with the case where each g i is finite-dimensional. Denote B 1 (g * ) and Z 1 (g * ) to be the first space of boundaries and the one of cycles, respectively.

Note that B 1 (g * ) and Z 1 (g * ) are also G-invariant. Since g 1 is a finite-dimensional rational G-module and G is reductive, we can choose the following splittings: To deal with the general case, we shall make use of the assumption (3.3.1). For each dgla g(i) * , we repeat the above procedure to obtain k(i) * . Finally, the desired k * is nothing but colim i k(i) * .

Remark 3.3.7. The approximation (3.3.1) in fact can be done in several specific situations, for example, if we make a condition that each G-module g i is rational G-module (this will be proved in Lemma 3.3.2 below) or when g * is the Kodaira-Spencer dgla that controls deformations of compact complex manifolds equipped with an appropriate holomorphic action of a reductive complex Lie group (cf. Lemma 3.4.1 below). These two cases cover all the deformation functors that we would like to treat in this chapter.

Lemma 3.3.2. Let g * be a dgla which is cohomologically concentrated in [0, ∞). If all the cohomology groups of g * are finite-dimensional and each component g i is a rational

(iii) each g(i) * carries an algebraic G-action and the colimit of these G-actions gives back the initial G-action on g * .

Proof. Dually, we can assume equivalently that the homology H i (g * ) 0 for all i ≥ 1.

We aim to construct by induction a sequence of dglas

and that for all i ≥ 0 H n (g(i) * ) 0, ∀n ≥ 1.

For each n ∈ Z, we pick a finite-dimensional graded subspace V n ∈ g n consisting of cycles which maps isomorphically onto the homology H n (g * ). Since each H n (g * ) is a G-module then so is V n . We think of V * as a differential graded vector space with the trivial differential. Let g(1) * denote the free differential graded Lie algebra generated by V * and let φ(1) : g(1) * → g * be the canonical map. By construction, we have that φ(1) is

G-equivariant and that

H n (g(1) * ) 0, ∀n ≥ 1 and that the inclusion V 0 → g(1) 0 induces an isomorphism

Now, suppose that i ≥ 1 and that we have built a G-equivariant map φ(i) : g(i) * → g * extending φ(1). Then φ(i) induces a surjection

For each n, since n th -component ker(θ) n of ker(θ) is a G-invariant finite-dimensional subvector space of H n (g(i) * ), we choose a collection of cycles {x n α } α∈An ⊂ g(i) n whose images

In order to remedy this situation, we note that there is a canonical isomorphism

as G-representations. By (3.3.2), z 0 α,g ∈ g 0 is a cycle. Let z 0 α,g denote its homology class in H 0 (g * ). So, there exists a unique homology class z 0 α,g ∈ H 0 (g(i) * ) such that

On the other hand, we have a decomposition of

where E 0 is some subspace and Z 0 (g(i) * ) is the space of cycles. Thus,

) denote the canonical projection. We define a linear map

as follows:

for any Z 0 α,g ∈ Z 0 .

Therefore, we have a decomposition

where Z 0 (g(i) * ) ⊕ Z 0 is isomorphic to the quotient (Z 0 (g(i) * ) ⊕ Z 0 )/ ker Φ. If we denote by g(i + 1) 0 the minimal G-stable sub-vector space generated by

under the G-action on g(i + 1) 0 then g(i + 1) 0 is in general not a Lie sub-algebra of g(i + 1) 0 . Let g(i + 1) 0 be the Lie sub-algebra generated by g(i + 1) 0 under the Lie bracket of g(i + 1) 0 . Replace the 0 th -component g(i + 1) 0 of g(i + 1) * by g(i + 1) 0 with the induced differential map and the induced map of φ(i + 1). Note that these induced maps are well-defined by construction (3.3.3) and (3.3.4). Now, with this new dgla g(i + 1) * , we have at last that

because on the homological level, each new cycle in Z 0 is eventually some cycle coming from g(i) 0 , by construction. In other words, there is no new homology class created by Z 0 in H 0 (g(i + 1) * ). This finishes the induction argument.

Thus, Def X 0 is the derived deformation functor of X 0 and Def X 0 ∈ F MP. If X 0 = Spec(B 0 ) is an affine scheme, Def X 0 (A) is simply the set of cofibrant flat commutative A-dg-algebras B such that we have the following cartesian diagram

Remark 3.4.1. The formal moduli problem Def X 0 defined as above is the natural extension of the functor of artinian rings F X 0 discussed in the introduction of this chapter.

Using the setting of Section 3.2, we now compute the dgla associated to Def X 0 . The case that X 0 = Spec(B 0 ) is an affine scheme shall be treated in advance. We follow strictly the sketch of proof given by B. Toën in [34, Page 1111-30]. Theorem 3.2.5 turns out to be the key tool. Let g A * := D(A) for each A ∈ dgArt k , and f be the ∞-functor defined as in Theorem 3.2.5. Theorem 3.4.1. The dgla corresponding to the derived deformation functor of an affine

the dg-derivations of B 0 , where B 0 is a cofibration replacement of (k → B 0 ).

Proof. Observe that by definition all the elements of dgArt k are connective (cf. Definition 3.2.15) and then so are those of Def B 0 (A) for each A ∈ dgArt k (by flatness). Let B ∈

. Recall again that Rep g A * has a symmetric monoidal structure. Thus, saying that f (B) is a cdga in Rep g A * is the same as saying that B is a representation of g A * and the "multiplication" map

is a morphism of representations. However, by Definition 3.2.16 about tensor product of two representations, the multiplication map

For A ∈ dgArt k , an object in Def X 0 (A) is a flat morphism of derived schemes X → Spec(A). By Theorem 3.2.6, it corresponds to a flat morphism

By the proof of affine case, it is equivalent to a morphism of dglas:

On the other hand,

where L qcoh (X) is the ∞-category of derived quasi-coherent sheaves of X 0 . Thus, we have just proved that

as simplicial sets. This tells us that the dgla corresponding to Def X 0 is RΓ(X 0 , T X 0 /k ).

Theorem 3.4.3. If X 0 is either an affine scheme with at most isolated singularities or a complete algebraic variety then Def X 0 is semi-prorepresentable. Consequently, the classical functor of deformations π 0 (Def X 0 ) of X 0 has a semi-universal element.

Proof. Since X 0 is either an affine scheme with at most isolated singularities or a complete algebraic variety then all the cohomology groups of RΓ(X 0 , T X 0 /k ) are finite-dimensional vector spaces. Moreover, RΓ(X 0 , T X 0 /k ) is cohomologically concentrated in [0, +∞).

Therefore, Def X 0 is semi-prorepresentable by Theorem 3.3.2. The last statement follows immediately by Remark 3.3.3.

Equivariant semi-universal deformation of algebraic schemes

Now, suppose further that there is an algebraic group G acting algebraically on X 0 .

For A ∈ dgArt k , we consider a special type of derived deformations of X 0 over Spec(A).

Definition 3.4.1. An element π : X → Spec(A) of Def X 0 (A) is said to be G-equivariant if the following conditions are satisfied (i) X and Spec(A) can be equipped with some G-actions with respect to which π is

Remark 3.4.2. For each A ∈ dgArt k , we can define a G-action on Def X 0 (A) by the centralfiber-changing trick as follows. For each g ∈ G and each (X → Spec(A)) ∈ Def X 0 (A), g.(X → Spec(A)) is the following deformation

Hence, we obtain a G-action on Def X 0 , which then gives a G-action on the associated dgla RΓ(X 0 , T X 0 /k ), by Theorem 3.2.3. Moreover, the initial G-action of X 0 induces also a G-action on the derived global section RΓ(X 0 , T X 0 /k ) of its tangent complex T X 0 /k . It can be seen that this G-action coincides with the one induced by the central-fiber-changing trick.

We would like to give a characterization of G-equivariant derived deformation in terms of dglas. As usual, we deal with the affine case first. Let X 0 = Spec(B 0 ) be an affine scheme equipped with an action of some algebraic group G. Proof. For A ∈ dgArt k , let g A * := D(A) and let φ A : A → B be an object in Def G X 0 (A). First, by Theorem 3.4.1, it corresponds to a morphism of dglas

We shall prove that Φ A is G-equivariant with respect to the fixed G-action on Der k (B 0 , B 0 )

and the G-action on g A * , induced from the G-action on A by the functor D. Indeed, let

be a commutative diagram in cdga k where g and h are isomorphisms. Let also f A and f A be the functor f corresponding to g A * and g A * , respectively in Theorem 3.2.5. By Koszul duality, we have a morphism

Note as well that we have a canonical morphism

The functoriality of f A tells us exactly that the differential graded vector space of f A (A ⊗ A B) is nothing but f A (B) with action of g A * given by the morphism

More precisely, if we let

be the representation of g A * corresponding to the arrow φ A : A → B then

is the representation of g A * corresponding to f A (A ⊗ A B). Now, let

be the representation of g A * corresponding to the arrow φ A : A → B. Then h corresponds exactly to a morphism of two representations α and β of g A * , which will be denoted by ρ h : α → β. In other words, for x ∈ g A * and v ∈ f A (B), we have

which is the same as

Now, let µ : G → Aut k (A) and ν : G → Aut k (B) be the G-actions on A and B, respectively. By the functoriality of D and that of f A , we have induced actions on g A * and

f A (B) given by

respectively. Consider the following commutative diagram.

By the previous paragraph, we have

which is the same as

This precisely means the following diagram

Therefore, Φ A is G-equivariant. This ends the proof.

Finally we deal with X 0 a general algebraic scheme. Let T X 0 /k be its tangent complex and RΓ(X 0 , T X 0 /k ) be its derived global section equipped with the G-action in Remark 3.4.2.

Theorem 3.4.5. For A ∈ dgArt k , a G-equivariant derived deformation X → Spec(A) of X 0 corresponds homotopically to a G-equivariant maps of dglas:

Proof. The proof is just an adaptation of the one of Theorem 3.4.4 and that of Theorem 3.4.2, in the equivariant case.

The following theorem generalizes the result of the existence of equivariance G-structure on versal deformations of algebraic schemes, obtained by D.S. Rim, in the derived setting.

Theorem 3.4.6. If X 0 is either an affine scheme with at most isolated singularities or a complete algebraic variety and G is a linearly reductive group acting algebraically on X 0 , there exists a G-equivariant structure on the semi-prorepresentable dg-object of Def X 0 .

Consequently, the classical functor of G-equivariant deformations π 0 (Def X 0 ) of X 0 has a G-equivariant semi-universal element.

Proof. Since G acts algebraically on X 0 then the tangent complex T X 0 /k of X 0 is a complex of G-equivariant quasi-coherent O X 0 -modules (cf. [START_REF] Ricolfi | The equivariant Atiyah class[END_REF] for the notion of G-equivariant sheaves). Let us denote the category of G-equivariant quasi-coherent O X 0 -modules by QCoh G X 0 and the corresponding derived category by D(QCoh G X 0 ). By [START_REF] Ricolfi | The equivariant Atiyah class[END_REF]Lemma 2.13], the derived global section of T X 0 /k can be calculated in D(QCoh G X 0 ). Using [29, Proposition 2.16] for the structure morphism X 0 → k, we have that

where Rep k (G) is the category of rational representations of G and D(Rep k (G)) is its associated derived category. Hence each component of RΓ(X 0 , T X 0 /k ) is a rational Gmodule.

For the sake of Theorem 3.3.2, Def X 0 is semi-prorepresentable by a pro-object K in dgArt k . Let k * be the corresponding dgla of K. By Lemma 3.3.2 and Theorem 3.3.3, there exists a compatible G-action on k * which is also versal in the sense mentioned therein.

Equivalently, there exists a compatible G-action on K which is versal in the following

For each A, the gauge action of G g * (A) on the set M C g * (A) is functorial in A and gives an action of the group functor G g * on M C g * . This allows us to define the quotient functor

be the functor which associates to each local artinian k-algebra (resp. G-local artinian k-algebra) A, the isomorphism (resp. G-equivariant isomorphism) classes of flat proper morphisms of analytic spaces X → Spec(A) with an isomorphism (resp. G-equivariant isomorphism)

The following is fundamental (cf. [25, Theorem V.55]). Theorem 3.4.7. There is an isomorphism

as functors of Artin rings.

On one hand, the classical deformation functor MC g * can be naturally extended to a formal moduli problem in Lurie's sense (cf. §3.2.6) via a simplicial version of the Maurer-Cartan equation (see [START_REF] Hinich | DG coalgebras as formal stacks[END_REF] for such a construction). In other words, we have a fmp

On the other hand, there is an equivalence

as fmps (cf. [21, §2]). Consequently, we can think of Map Lie C (D(-), g * ) as a natural extension of Def X 0 in the derived world. Proof. The first statement follows from the fact that g * is concentrated in degrees [0, +∞) and that all the cohomologies H i (g * ) are finite-dimensional vector spaces. The last statement is the immediate consequence of the following chain of isomorphisms

and of Remark 3.3.3.

Remark 3.4.3. The above theorem gives an algebraic approach to produce a formal solution to the deformation problem of complex compact manifolds. The base of the formal semiuniversal element can be thought of as a formal Kuranishi space in the classical sense.

However, the hardest part is always to ensure that among the formal solutions, there exists at least a convergent one.

Finally, we allow the group action to rejoin the game. The rest of this section is devoted to proving the existence of a formal G-equivariant semi-universal element for the functor Def G X 0 . Recall that g has naturally a G-action induced from the one on X 0 .

Remark 3.4.4. In order to approximate g * , we can not apply directly Lemma 3.3.2 as in the algebraic case since each component of g * is not a rational G-module, in general. This is the reason why we shall make use of a G-equivariant version of Hodge decomposition for complex compact manifolds.

Lemma 3.4.1.

) each g(i) * carries a G-action and the colimit of these G-actions gives back the inital G-action on g * .

Proof. We treat the case when G is a compact Lie group first then the case when G is a reductive complex Lie group will be deduced by a complexification argument.

We aim to construct by induction a sequence of dglas with G-actions

and that for all i ≥ 0 H n (g(i) * ) 0, ∀n ≤ -1.

For each n ∈ Z, we pick a finite-dimensional graded subspace V n ∈ g n consisting of cycles which maps isomorphically onto the cohomology H n (g * ). Since each H n (g * ) is naturally a G-module then so is V n . We think of V * as a differential graded vector space with the trivial differential. Let g(1) * denote the free differential graded Lie algebra generated by V * and let φ(1) : g(1) * → g * be the canonical map. By construction, we have that φ(1) is G-equivariant and that H n (g(1) * ) 0, ∀n ≤ -1

and that the inclusion V 0 → g(1) 0 induces an isomorphism V 0 → H 0 (g(1) * ). Now, suppose that i ≥ 1 and that we have built a G-equivariant map φ(i) : g(i) * → g * extending φ(1). Then φ(i) induces a surjection on cohomologies θ(i) : H * (g(i) * ) → H * (g * ).

For each n, since n th -component ker(θ) n of ker(θ) is a G-invariant finite-dimensional subvector space of H n (g(i) * ), we choose a collection of cycles {x n α } α∈An ⊂ g(i) n whose images form a basis for ker(θ) n , where A n is a finite index set. For each x n α , we choose z α ∈ g n-1 such that φ(i)(x n α ) = ∂z n-1 α .

(3.4.3)

Since G is compact, we can impose a G-invariant Hermitian metric •, • on T X 0 by means of Weyl's trick. Therefore, we have a G-invariant metric on g p = Γ(X 0 , A 0,p (T X 0 )). As usual, we find the formal adjoint ∂ * of ∂. Since G acts on X 0 by biholomorphisms then the operator ∂ is G-equivariant. By the adjoint property together with the fact that the imposed metric is G-invariant, we also have that ∂ * is G-equivariant. Hence, so is the Laplacian := ∂ * ∂ + ∂∂ * . As a matter of fact, Hodge theory provides us an orthogonal decomposition g p = H 0,p g p (3.4.4) as representations of G and two linear operators:

(a) The Green operator G : g p → g p , (b) The harmonic projection operator H : g p → H 0,p , where H 0,p is the vector space of all harmonic vector (0, p)-forms on X 0 (this space can also be canonically identified with H p (X 0 , T X 0 ), such that for all v ∈ g p , we have v = Hv + Gv. It is easy to see that ∂ and φ(i + 1) defined in this way are G-equivariant. The rest of the proof now is identical the the one given in Lemma 3.3.1.

Finally, for G a general reductive complex Lie group, let K be its maximal compact subgroup whose complexification is exactly G. Then by the case of compact groups, we have the limit g * = colim i g(i) * satisfying (i), (ii) and (iii) in Lemma 3.4.1 for K. Complexifying all the maps φ(i) will

give the desired colimit for g * .

Theorem 3.4.9. There exists a G-equivariant structure on the semi-prorepresentable object of Map Lie C (D(-), g * ) with respect to the action on g * , induced by the fixed one on X 0 . Consequently, the classical functor of G-equivariant deformations Def G X 0 of X 0 has a formal G-equivariant semi-universal element.

Proof. For the sake of Theorem 3.3.2, Map Lie C (D(-), g * ) is semi-prorepresentable by a pro-object K in dgArt k . Let k * be the corresponding dgla of K. By Lemma 3.4.1 and