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Mme Donatella Iacono Università degli Studi di Bari Aldo Moro rapporteuse

M. François Loeser Sorbonne Université examinateur
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Craindre l’erreur et craindre la vérité est une

seule et même chose. Celui qui craint de se

tromper est impuissant à découvrir. C’est quand

nous craignons de nous tromper que l’erreur qui

est en nous se fait immuable comme un roc. Car

dans notre peur, nous nous accrochons à ce que

nous avons décrété “vrai” un jour, ou à ce qui

depuis toujours nous a été présenté comme tel.

Quand nous sommes mûs, non par la peur de

voir s’évanouir une illusoire sécurité, mais par

une soif de connâıtre, alors l’erreur, comme la

souffrance ou la tristesse, nous traverse sans se

figer jamais, et la trace de son passage est une

connaissance renouvelée.

Alexandre Grothendieck, Récoltes et semailles
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considéré comme une première étape vers la route de la recherche fascinante mais pleine

de difficultés et de défis. On dit souvent qu’il n’y a que le premier pas qui coûte et c’est lui
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éclairé et la motivation coulait fortement voire violemment dans mon sang. Je le remer-

cie encore une fois pour ses instructions enthousiastes, son soutien continu, sa patience

admirable. Sans lui, ma vie de recherche ne pourrait être que d’erreurs.

Ensuite, je remercie chaleureusement Professeur Laurent Meersseman et Professeure

Donatella Iacono pour avoir accepté d’être les rapporteurs de ma thèse. Leurs travaux
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cipalement pour quelques explications sur leurs travaux. Je voudrais envoyer un grand
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comme un guerrier romain, en plus du rôle d’un distributeur de bureaux professionnel. Avec

le visage un peu froid, Mathieu m’a fait en quelque sorte peur la première fois que l’on s’est
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Déformations équivariantes (dérivées) de schémas
algébriques et de variétés complexes compactes

Résumé

Cette thèse est dédiée à une étude complète des déformations G-équivariantes de

schémas algébriques (resp. variétés compactes complexes) dans le cadre classique ainsi

que dans celui qui est dérivé où G est un groupe algébrique linéaire défini sur un corp

de caractéristique 0 (resp. un groupe de Lie complexe). Quant à l’aspect classique, les

points centraux sont l’existence d’une déformation semi-universelle G-équivariante où G

est réductif et la non-existence de telles déformations au cas où G est non-réductif, tandis

qu’à l’égard de l’aspect dérivé, la semi-proreprésentabilité du problème de modules formel

associé est prise en compte.

Mots-clés

Théorie des déformations, Structure equivariante, Problèmes de modules formels, Semi-

universalité, Semi-proreprésentabilité.

ix



x



Equivariant (derived) deformations of algebraic

schemes and of complex compact manifolds

Abstract

This thesis is dedicated to a complete study of G-equivariant deformations of alge-

braic schemes (resp. complex compact manifolds) in the classical setting as well as the

derived one where G is a linear algebraic group defined over a field of characteristic 0

(resp. a complex Lie group). In the classical aspect, the central points are the existence

of a G-equivariant semi-universal deformation where G is a reductive group and the non-

existence of such deformations in the non-reductive case, while in the derived one, the

semi-prorepresentability of the associated formal moduli problem is taken into account.

Keywords

Deformation theory, Equivariant structure, Formal moduli problem, Semi-universality,

Semi-prorepresentability.
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Introduction - Version française

Le contenu principal de cette thèse concerne le développement moderne de la théorie

des déformations de variété complexes compactes et de celles qui sont algébriques, initiée

par K. Kodaira, D. C. Spencer, M. Artin, A. Grothendieck, M. Schlessinger et d’autres

dans les années 60. Nous nous concentrons surtout sur les façons de déformer un objet

géométrique en présence de symétries. Ce problème est bien plus difficile car les symétries

ne sont pas toujours préservées par petit déplacement, et il faut comprendre comment les

propager.

Tout d’abord, nous commençons par introduire ce qu’est la théorie des déformations

sur un exemple simple. Nous considérons tous les anneaux de type

A(r,R) = {z ∈ C | r < |z| < R}

dans le plan complexe. Il est bien connu que la condition nécessaire et suffisante pour que

deux anneaux A1(r1, R1) = {z ∈ C | r1 < |z| < R1} et A2(r2, R2) = {z ∈ C | r2 < |z| <
R2} de ce type soient biholomorphes est

R1

r1
=
R2

r2
.

Par exemple, deux anneaux A(1, 2) et A(2, 4), comme illustré ci-dessous, sont biholomor-

phes. Un biholomorphisme explicite entre eux est donné par

0 21

A(1, 2)

0 42

A(2, 4)
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γ : A(1, 2)→ A(2, 4)

z 7→ 2z.

La quantité ln(R) − ln(r) est appelée le module de l’anneau, elle varie dans (0,+∞) et

classifie toutes les classes de déformations. Le but de la théorie des déformations est de

comprendre en quelque sorte de combien de paramètres dépend une figure géométrique

munie d’une certaine structure, ici une structure de variété complexe ou bien une structure

conforme. Dans l’exemple ci-dessus, à première vue, chaque anneau est apparemment

déterminé de manière unique par r et R. Cependant, sa classe d’isomorphismes ne dépend

en fait que d’un paramètre : le module.

Un point essentiel de cette théorie est la capacité à linéariser le problème : on peut

dériver une déformation de façon appropriée et il s’avère que la variation infinitésimale de

l’objet géométrique considéré est assez souvent encodée dans un objet algébrique beaucoup

plus simple : un espace vectoriel de dimension finie. Dans l’aspect formel, la théorie de

la déformation est un analogue de la théorie des développements limités lorsque nous

remplaçons des fonctions par des objets géométriques : les coefficients du développement

limité sont des classes de cohomologie vivant dans certains espaces vectoriels de dimension

finie familiers. De plus, l’analogue d’une fonction constante est une structure géométrique

rigide : une déformation dont la dérivée s’annule est constante. Une illustration vivante

pour cela est le travail fondateur de Kodaira-Spencer à propos des déformations de variétés

complexes compactes. Soit X0 une variété complexe compacte. Une déformation de X0

selon eux est une application holomorphe, propre et submersive ν : X → (B, 0) où B,X
sont des variétés complexes et 0 est un point dans B tel que ν−1(0) = X0. Étonnamment,

chaque déformation de X0 correspond à une classe de cohomologie dans le premier groupe

de cohomologie H1(X0,ΘX0) du fibré tangent holomorphe ΘX0 . Ce groupe de cohomologie

est en fait un C-espace vectoriel de dimension finie. De plus, trouver une déformation deX0

équivaut à trouver une série convergente φ(t) à coefficients dans H1(X0,ΘX0), satisfaisant

l’équation de Maurer-Cartan, c’est-à-dire

∂φ(t) =
1

2
[φ(t), φ(t)].

En résolvant cette équation, Kodaira et Spencer ont prouvé l’existence d’une variété com-

plexe (plus précisément, un voisinage ouvert de l’origine dans Cn où n = dimCH
1(X0,ΘX0))

qui contient toutes les petites déformations de X0, sous l’hypothèse que

H2(X0,ΘX0) = 0 (0.0.1)

(cf. [17]). La famille correspondant à cette variété a la propriété que toute autre déformation

de X0 est obtenue par le tiré en arrière de cette famille par une application holomorphe.

Cette application n’est pas unique en général mais sa différentielle au point de référence
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est unique. Plus tard, Kuranishi a pu supprimer l’hypothèse (0.0.1) (cf. [19]). Cependant,

le prix à payer est un assouplissement de la définition des déformations. Une déformation

de X0 est maintenant un morphisme holomorphe plat et propre d’espaces analytiques

ν : X → (B, 0) avec le diagramme cartésien suivant

X0 X

· (B, 0).

ι

ν

“L’espace de modules local” obtenu par Kuranishi (souvent appelé l’espace de Kuranishi)

est singulier en général et en fait bien défini seulement près du point de référence. La famille

de variétés complexes compactes associée est appelée la déformation semi-universelle (ou

la famille de Kuranishi) de X0. Dans le cadre algébrique, lorsque X0 est un schéma

affine avec au plus des singularités isolées ou un schéma complet défini sur un corps de

caractéristique zéro, le même résultat est obtenu par M. Schlessinger au moyen du langage

des foncteurs artiniens (voir [31] or [32]).

Le problème est beaucoup plus compliqué lorsque la symétrie entre en jeu : si X0 est en

outre doté d’une action d’un certain groupe G, G n’agit plus sur les petites déformations

de X0. L’exemple le plus simple de ce phénomène est lorsqu’on déforme une courbe

hyperelliptique de genre au moins 3 : l’involution hyperelliptique ρ ne se propage pas à

travers des déformations. Plus précisément, soit γ : X → (B, 0) une déformation verselle

de X0 (c’est-à-dire une déformation dont l’application de Kodaira-Spencer est surjective).

Si l’action s’étendait, alors l’image de l’application de Kodaira-Spencer serait fixée par ρ.

Par conséquent, ρ agirait trivialement sur H1(X0,ΘX0), ce qui n’est évidemment pas le

cas. Cependant, il y a encore un peu d’espoir que G agisse sur l’espace de Kuranishi : de

petites déformations de X0 sont permutées entre elles sous l’action de G. Concrètement,

soit π : X → (S, 0) la déformation semi-universelle de X0 où X0 est muni d’une G-action.

On considère alors le problème suivant

Problème I. Existe-t-il une G-action sur S et une G-action sur X prolongeant la G-

action initiale sur X0 de telle sorte que π soit G-equivariant par rapport à ces G-actions

?

En d’autres termes, on se demande s’il existe des morphismes de groupes Ψ : G →
Aut(X ) et ψ : G→ Aut(S) tel que pour tout σ, τ ∈ G, on ait les diagrammes commutatifs

suivants
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X0 X0

X X

. .

(S, 0) (S, 0),

σ−1

ι ι

Ψ(σ)

ψ(σ)

π π

X X

X

(S, 0) (S, 0).

(S, 0)

Ψ(στ)

Ψ(τ)
π π

Ψ(σ)

ψ(στ)

ψ(τ) ψ(σ)

π

Comme on pouvait s’y attendre, si la famille π : X → S est universelle, c’est-à-dire que

l’application du tiré en arrière est en fait unique, la réponse au problème ci-dessus est

sans aucun doute positive. Ceci résulte du fait qu’à chaque fois que l’on change la fibre

centrale de la famille localement universelle par un automorphisme de X0, on obtient une

autre famille universelle de X0

X0 X0 X

· · (S, 0)

σ−1

∼=

ι

π

qui est canoniquement isomorphe à l’ancienne. Malheureusement, une telle famille existe

rarement en raison de l’existence d’automorphismes non triviaux de X0.

Le problème I a d’abord été considéré dans un travail pionnier de Pinkham dans lequel

il a donné une réponse affirmative lorsque X0 est un cône affine avec Gm-action (cf. [26]).

Plus tard, Rim a obtenu un résultat plus poussé dont la preuve est basée sur le langage

des catégories et sur des représentations rationnelles des groupes algébriques (cf. [30]).

Théorème I. Si G est un groupe algébrique linéairement réductif et X0 est un schéma

affine avec au plus des singularités isolées ou un schéma complet. Alors, il existe une

déformation semi-universelle G-équivariante de X0, unique à isomorphismes G-équivariants

non-canonicaux près .

L’objectif principal de notre travail est de traiter les problèmes qui se posent na-

turellement autour de ce théorème. La structure de cette thèse contient trois chapitres

correspondant à nos trois articles [7], [8] and [9]. Dans le chapitre 1, nous montrons que

dans le théorème I, l’hypothèse que G est réductif est vraiment optimale. Pour le dire

autrement, nous proposons un schéma projectif X0 sur lequel un groupe non-réductif G

agit algébriquement de telle sorte que l’action de G ne s’étende pas à sa déformation

semi-universelle formelle. À savoir, soit F2 la deuxième surface de Hirzebruch

F2 := {([x : y : z], [u : v]) ∈ P2 × P1|yv2 = zu2}
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et considérons son groupe d’automorphismes

G := Aut(F2) ∼= (C3 oGL(2,C))/I

où

I =

{(
µ 0

0 µ

)
| µ ∈ C, µ2 = 1

}
.

Il est facile de voir que G est non réductif. Puis nous commençons notre histoire par le

résultat suivant (cf. Theorem 1.5.1).

Théorème A. L’action de G sur F2 ne s’étend pas à la déformation semi-universelle

formelle de F2

Intuitivement, lorsque X0 est une variété complexe compacte, une version appropriée

du théorème I devrait toujours être valable, mais cela n’apparâıt pas dans la littérature ex-

istante. De plus, il existe une différence cruciale entre le monde algébrique et le monde an-

alytique. Dans le cadre algébrique, la déformation semi-universelle de X0 et les G-actions

étendues, construites par Rim dans le théorème I, ne sont que formelles. Néanmoins,

dans le cadre analytique, sa déformation semi-universelle est une vraie déformation (une

déformation convergente). Ainsi, si X0 est une variété complexe compacte projective,

une application du résultat de Rim nous donne une famille de Kuranishi G-équivariante

dont les G-actions étendues ne sont que formelles, c’est-à-dire ce sont des séries formelles

dont la convergence n’est pas garantie. Alors, cela nous motive à prouver, au chapitre

2, les deux résultats suivants dont l’ingrédient principal des preuves est une combinaison

délicate d’une version G-équivariante de la construction classique de l’espace de Kuran-

ishi de variétés complexes compactes (cf. [18]) et des représentations des groupes de Lie

complexes réductifs (cf. Corollaire 2.4.1 et Théorème 2.5.2, respectivement).

Théorème B. Soit X0 une variété complexe compacte X0 munie d’une action K, où

K est un groupe de Lie réel compact. Alors il existe une déformation semi-universelle

K-équivariante de X0.

Théorème C. Soit X0 une variété complexe compacte munie d’une action holomorphe

d’un groupe de Lie complexe réductif G. Alors il existe une déformation semi-universelle

G-équivariante locale de X0.

Le langage des foncteurs artiniens développé par M. Schlessinger (voir [31]) permet

de réécrire le théorème I comme suit. Soit Artk la catégorie des k-algèbres artiniennes

locales de corps résiduel k. Le foncteur FX0 : Artk → Sets qui associe à chaque k-algèbre

artinienne locale A, l’ensemble des morphismes plats de schémas X → Spec(A) avec

un isomorphisme X ×Spec(A) Spec(k) ∼= X0 a un élément semi-universel formel qui peut

encore être rendu équivariant si l’hypothèse qu’un groupe algébrique linéairement réductif

5



G agit algébriquement sur X0 est ajoutée. Le chapitre 3 traite la semi-proreprésentabilité

du problème de modules formel étendu DefX0 de FX0 dans le contexte des théories de

déformations dérivées (rappelons qu’un problème de modules formel est un∞-foncteur de

dgArtk → SEns satisfaisant certaines conditions d’exactitude, où dgArtk est la catégorie

des k-algèbres artiniennes différentielles graduées augmentées sur k et SEns est la ∞-

catégorie des ensembles simpliciaux). Pour être plus précis, nous introduisons d’abord

la notion de semi-proreprésentabilité des problèmes de modules formels qui ne semble

pas exister dans le cadre dérivé. Cette nouvelle notion est la version plus faible de la

proreprésentabilité et une généralisation naturelle de la notion de semi-universalité au sens

de M. Schlessinger (cf. Définition 3.3.2 ci-dessous). Ensuite, au moyen de l’équivalence

bien connue entre la ∞-catégorie des problèmes de modules formels et celle des algèbres

de Lie différentielles graduées, un critère simple pour qu’un problème de modules formels

soit semi-proreprésentable est fourni (cf. Théorème 3.3.2).

Théorème D. Soit F un problème de modules formel dont l’algèbre de Lie différentielle

graduée associée g∗ est cohomologiquement concentrée dans [0,+∞). Supposons en outre

que H i(g∗) soit un espace vectoriel de dimension finie pour chaque i ≥ 0. Alors F est

semi-proreprésentable.

Le foncteur DefX0 : dgArtk → SEns, qui associe à chaque k-algèbre artinienne

différentielle graduée augmentée, le nerf de la catégorie des morphismes plats de schémas

dérivés sur Spec(A), dont la fibre homotopique au point k de Spec(A) est X0, est en fait

un problème de modules formel qui étend FX0 , c’est-à-dire

π0(DefX0) = FX0 .

Il est bien connu que l’algèbre de Lie différentielle graduée associée à DefX0 est

RΓ(X0,TX0/k)

où TX0/k est le complexe tangent de X0 et RΓ(X0,TX0/k) est l’espace des sections globales

dérivées de TX0/k (cf. Théorème 3.4.2). Lorsque X0 est un schéma affine avec au plus

des singularités isolées ou un schéma projectif défini sur k, la semi-proreprésentabilité

de DefX0 découle du fait que RΓ(X0,TX0/k) est cohomologiquement concentrée dans

[0,+∞) et que H i(RΓ(X0,TX0/k)) est un espace vectoriel de dimension finie pour chaque

i ≥ 0. Autrement dit, DefX0 possède un “élément semi-universel dérivé” dont les com-

posantes connexes restituent l’élément semi-universel classique. Dans l’esprit du problème

I, il est naturel de se demander si cet élément semi-universel dérivé peut être rendu G-

équivariant dans un certain sens, où G est un groupe algébrique linéairement réductif

agissant algébriquement sur X0 . La réponse est donnée par le théorème suivant qui est

une généralisation naturelle du théorème I dans le cadre dérivé. (cf. Théorème 3.4.6).
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Théorème E. Il existe une structure G-équivariante sur l’élément semi-universel dérivé

de DefX0. Par conséquent, le foncteur artinien classique FX0 = π0(DefX0) a un élément

semi-universel G-équivariant.

Enfin, lorsque X0 est une variété complexe compacte sur laquelle un groupe de Lie

complexe réductif agit de façon holomorphe, nous voudrions fournir une version formelle

du théorème C en utilisant l’approche purement algébrique que nous développons plus

tôt dans le même chapitre. Soit DefX0
: ArtC → Sets (resp. DefGX0

: ArtGC → Sets)

le foncteur qui associe à chaque k-algèbre artinienne locale A, la classe d’isomorphismes

de morphismes (resp. morphismes G-équivariants) propres et plats d’espaces analytiques

X → Spec(A) avec un isomorphisme (resp. un isomorphisme G-équivariant)

X ×Spec(A) Spec(C) ∼= X0.

L’algèbre de Lie différentielle graduée contrôlant les déformations de X0 est

g∗ := Γ(X0,A0,0(TX0))
∂̄→ Γ(X0,A0,1(TX0))

∂̄→ Γ(X0,A0,2(TX0))
∂̄→ · · ·

avec le crochet de Lie défini par

[φdz̄I , ψdz̄J ] = [φ, ψ]′dz̄I ∧ z̄J

où φ, ψ ∈ A0,0(TX0) sont des champs de vecteurs sur X0, [−,−]′ est le crochet de Lie

des champs de vecteurs habituel, I, J ⊂ {1, . . . , n} et z1, . . . , zn sont des coordonnées

holomorphes locales. Par conséquent, le problème des modules formel qui étend DefX0
est

MapLieC(D(−), g∗)

où D est la dualité de Koszul (cf. Proposition 3.2.4 et Théorème 3.2.3). Il est évident que

g∗ est cohomologiquement concentrée en degrés positifs. De plus, g∗ reçoit une G-action

naturelle induite par celle sur X0. Puis nous concluons ce dernier chapitre par le résultat

suivant (cf. Théorème 3.4.9).

Théorème F. Il existe une structure G-équivariante sur l’objet semi-proreprésentable

de MapLieC(D(−), g∗) par rapport à l’action de G prescrite sur g∗. Par conséquent, le

foncteur classique des déformations G-équivariantes DefGX0
de X0 a un élément semi-

universel G-équivariant formel.
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Introduction - English version

The main content of this thesis concerns the modern development of the theory of de-

formations of compact complex manifolds and algebraic varieties, initiated by K. Kodaira,

Spencer, M. Artin, A. Grothendieck, M. Schlessinger and other people in the 1960s. We

mainly focus on understanding how one can deform a geometric object with an additional

symmetry. This problem is somehow difficult due to the fact that the symmetry is not

always preserved through small deformations.

First of all, we introduce briefly what the deformation theory is by a simple example.

We consider all rings of type

A(r,R) = {z ∈ C | r < |z| < R}

in the complex plan. It is well-known that the necessary and sufficient condition for two

rings A1(r1, R1) = {z ∈ C | r1 < |z| < R1} and A2(r2, R2) = {z ∈ C | r2 < |z| < R2} of

this type to be biholomorphic to each other is

R1

r1
=
R2

r2
.

For example, two rings A(1, 2) and A(2, 4), as pictured below are biholomorphic. An

0 21

A(1, 2)

0 42

A(2, 4)
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explicit biholomorphism between them is given by

γ : A(1, 2)→ A(2, 4)

z 7→ 2z.

The quantity ln(R)−ln(r) is called the moduli of the ring which varies in (0,+∞) and which

classifies all the classes of deformations. The principal purpose of the deformation theory

is the study of how many parameters a geometric object equipped with some structure, in

this case a complex structure or a conformal structure, depends on. In the above example,

at first glance, each ring is apparently uniquely determined by r and R. However, its

isomorphism class in fact depends only on one parameter which is their moduli.

One essential point of this theory is the capability of linearizing the problem: one

can derive a deformation in an appropriate way and it turns out quite often that the in-

finitesimal variation of the considered geometric object is encoded in a much more simple

algebraic object - a finite dimensional vector space. In the formal aspect, deformation the-

ory is an analog of Taylor’s expansion when we replace functions by geometric objects: the

coefficients of the power series are cohomology classes lying in some familiar finite dimen-

sional vector spaces. Moreover, the similarity of a constant function is a rigid geometric

structure: a deformation whose derivative vanishes is constant. One vivid illustration for

this is the foundational work of Kodaira-Spencer on deformations of compact complex

manifolds. Let X0 be a compact complex manifold. A deformation of X0 in their sense

is a proper and submersive holomorphic map ν : X → (B, 0) where B,X are complex

manifolds and 0 is a point in B such that ν−1(0) = X0. Surprisingly, each deformation of

X0 corresponds to a cohomology class in the first cohomology group H1(X0,ΘX0) of the

holomorphic tangent bundle ΘX0 . This cohomology group is actually finite dimensional as

a C-vector space. Furthermore, finding a deformation of X0 is equivalent to finding a con-

vergent power series φ(t) with coefficients in H1(X0,ΘX0), satisfying the Maurer-Cartan

equation, i.e.

∂φ(t) =
1

2
[φ(t), φ(t)].

By solving this equation, Kodaira and Spencer proved the existence of a complex manifold

(more precisely, an open neighborhood of the origin in Cn where n = dimCH
1(X0,ΘX0))

which contains all small deformations of X0, under the assumption that

H2(X0,ΘX0) = 0 (0.0.2)

(cf. [17]). The family corresponding to this manifold has the property that any other

deformation of X is obtained by the pullback of this family by a holomorphic map. This

map is not unique in general but its differential at the reference point is unique. Later,

Kuranishi was able to remove the hypothesis (0.0.2) (cf. [19]). However, the price to pay

10



is a loosening of the definition of deformations. A deformation of X0 now is a proper flat

holomorphic map ν : X → (B, 0) between complex spaces with the following cartesian

diagram

X0 X

· (B, 0).

ι

ν

The “local moduli space” obtained by Kuranishi (often called Kuranishi space) is sin-

gular in general and actually only well-defined near the reference point. The associated

family of compact complex manifolds is called the semi-universal deformation (or Kuran-

ishi family) of X0. In the algebraic setting, when X0 is an affine scheme with at most

isolated singularities or a complete scheme defined over a field of characteristic zero, the

same result is obtained by M. Schlessinger by means of the language of Artinian functors

(see [31] or [32]).

The problem is much more complicated when symmetry enters the game: if X0 is

further equipped with an action of some group G, G no longer acts on small deformations

of X0. The most simple example of this phenomenon is when one deforms a hyper-

elliptic curve of genus at least 3: the hyperelliptic involution ρ does not propagate through

deformations. More precisely, let γ : X → (B, 0) be a versal deformation of X0 (i.e. a

deformation whose Kodaira-Spencer map is surjective). If the action extended, then the

image of the Kodaira-spencer map would be fixed by ρ. Therefore, ρ would act trivially

on H1(X0,ΘX0) which is obviously not the case. However, there is still some hope that G

acts on Kuranishi space: small deformations of X0 are permuted among them under the

G-action. Specifically, let π : X → (S, 0) be the semi-universal deformation of X0 where

X0 is equipped with a G-action. Then we consider the following problem.

Problem I. Does there exist a G-action on S and a G-action on X extending the initial

G-action on X0 such that π is G-equivariant with respect to these G-actions?

In other words, we ask whether there exist group homomorphisms Ψ : G → Aut(X )

and ψ : G → Aut(S) such that for all σ, τ ∈ G, we have the following commutative

diagrams

X0 X0

X X

. .

(S, 0) (S, 0),

σ−1

ι ι

Ψ(σ)

ψ(σ)

π π

X X

X

(S, 0) (S, 0).

(S, 0)

Ψ(στ)

Ψ(τ)
π π

Ψ(σ)

ψ(στ)

ψ(τ) ψ(σ)

π
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As might be expected, if the family π : X → S is universal i.e. the pullback map is

actually unique then the answer to the above problem is undoubtedly yes. This follows

from the fact that each time we change the central fiber of the locally universal family by

an automorphism of X0, we obtain another universal family of X0

X0 X0 X

· · (S, 0)

σ−1

∼=

ι

π

which is canonically isomorphic to the old one. Unfortunately, hardly does such a family

exist due to the existence of non-trivial automorphisms of X0.

Problem I was first considered in a pioneering work of Pinkham in which he gave an

affirmative answer when X0 is an affine cone with Gm-action (cf. [26]). Later on, Rim

obtained a more far-reaching result whose proof is based on the language of categories and

rational representations of algebraic groups (cf. [30]).

Theorem I. Let G be a linearly reductive algebraic group and X0 an affine scheme with

at most isolated singularities or a complete scheme. Then, there exists a G-equivariant

semi-universal deformation of X0, unique up to G-equivariant morphism.

The main focus of our work is to deal with problems naturally arising around this

theorem. The structure of this thesis contains three chapters corresponding to our three

papers [7], [8] and [9].

In Chapter 1, we show that in Theorem I, the assumption that G is reductive is really

optimal. To put it another way, we provide a projective scheme X0 on which a non-

reductive group G acts algebraically such that the G-action does not extend to its formal

semi-universal deformation. Namely, let F2 be the second Hirzebruch surface

F2 := {([x : y : z], [u : v]) ∈ P2 × P1|yv2 = zu2}

and consider its automorphism group

G := Aut(F2) ∼= (C3 oGL(2,C))/I

where

I =

{(
µ 0

0 µ

)
| µ ∈ C, µ2 = 1

}
.

It is easy to see that G is non-reductive. Then we start our story by the following result

(cf. Theorem 1.5.1).
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Theorem A. The action of G on F2 does not extend to the formal semi-universal defor-

mation of F2.

Intuitively, whenX0 is a complex compact manifold, an appropriate version of Theorem

I should still hold, but this is not contained in the existing literature. Moreover, there

is a crucial difference between the algebraic world and the analytic one. In the algebraic

setting, the semi-universal deformation of X0 and the extended G-actions, constructed

by Rim in Theorem I, are just formal. Nevertheless, in the analytic setting, its semi-

universal deformation is a true deformation (a convergent deformation). So, if X0 is

a projective complex compact manifold, an application of Rim’s result gives us a G-

equivariant Kuranishi family whose the extended G-actions are only formal, i.e. they are

formal power series whose convergence is not guaranteed. Thus, it motivates us to prove,

in Chapter 2, the following two results of which the main ingredient of the proofs is a

delicate combination of a G-equivariant version of Kuranishi’s classical construction of

semi-universal deformations of complex compact manifolds (cf. [18]) and representations

of reductive complex Lie groups (cf. Corollary 2.4.1 and Theorem 2.5.2, respectively).

Theorem B. Let X0 be a complex compact manifold X0 with a K-action, where K is a

compact real Lie group. Then there exists a K-equivariant semi-universal deformation of

X0.

Theorem C. Let X0 be a complex compact manifold with a holomorphic action of a

complex reductive Lie group G. Then there exists a local G-equivariant semi-universal

deformation of X0.

The language of Artinian functors developed by M. Schlessinger (see [31]) allows us to

rewrite Theorem I as follows. Let Artk denote the category of local artinian k-algebras

with residue field k. The functor FX0 : Artk → Sets which associates to each local

artinian k-algebra A, the set of flat morphisms of schemes X → Spec(A) with an iso-

morphism X ×Spec(A) Spec(k) ∼= X0 has a formal semi-universal element which can be

further made equivariant if an assumption that a linearly reductive algebraic group G

acts algebraically on X0 is added. Chapter 3 deals with the semi-prorepresentability of

the extended formal moduli problem DefX0 of FX0 in the context of derived deformation

theories (recall that a formal moduli problem is an ∞-functor from dgArtk → SEns sat-

isfying certain exactness conditions, where dgArtk is the category of differential graded

commutative artinian augmented k-algebras and SEns is the ∞-category of simplicial

sets). To be more exact, we first introduce the notion of semi-prorepresentability of for-

mal moduli problems which does not seem to exist in the derived setting. This new notion

is the weaker version of prorepresentability and a natural generalization of the notion of

semi-universality in Schlessinger’s sense (cf. Definition 3.3.2 below). Afterward by means

of the well-known equivalence between the ∞-category of formal moduli problems and
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that of differential graded Lie algebras, a simple criterion for a formal moduli problem to

be semi-prorepresentable is provided (cf. Theorem 3.3.2).

Theorem D. Let F be a formal moduli problem whose associated differential graded Lie

algebra g∗ is cohomologically concentrated in [0,+∞). Assume further that H i(g∗) is a

finite dimensional vector space for each i ≥ 0. Then F is semi-prorepresentable.

The functor DefX0 : dgArtk → SEns, which associates to each differential graded

commutative artinian augmented k-algebra A, the nerve of the category of flat morphisms

of derived schemes over Spec(A), whose homotopy fiber at the k-point of Spec(A) is X0,

is actually a formal moduli problem which extends FX0 , i.e.

π0(DefX0) = FX0 .

It is well-known that the differential graded Lie algebra associated to DefX0 is

RΓ(X0,TX0/k)

where TX0/k is the tangent complex of X0 and RΓ(X0,TX0/k) is the derived global sec-

tion of TX0/k (cf. Theorem 3.4.2). When X0 is an affine scheme with at most isolated

singularities or a projective scheme defined over k, the semi-prorepresentability of DefX0

follows from the fact that RΓ(X0,TX0/k) is cohomologically concentrated in [0,+∞) and

that H i(RΓ(X0,TX0/k)) is a finite dimensional vector space for each i ≥ 0. In other words,

DefX0 has a “derived semi-universal element” whose connected components give back the

classical semi-universal one. In the spirit of Problem I, it is natural to wonder whether

this derived semi-universal element can be made G-equivariant in some sense, where G is

a linearly reductive group acting algebraically on X0. The answer is the content of the

following theorem which is a natural generalization of Theorem I in the derived literature.

(cf. Theorem 3.4.6).

Theorem E. There exists a G-equivariant structure on the derived semi-universal element

of DefX0. Consequently, the classical deformation functor FX0 = π0(DefX0) of X0 has a

G-equivariant semi-universal element.

Finally, when X0 is a complex compact manifold on which a reductive complex Lie

group acts holomorphically, we would like to provide a formal version of Theorem C by

using the purely algebraic approach that we develop earlier in the same chapter. Let

DefX0
: ArtC → Sets (resp. DefGX0

: ArtGC → Sets) be the functor which associates to

each local artinian C-algebra A, the isomorphism class of (resp. G-equivariant) flat proper

morphisms of analytic spaces X → Spec(A) with an isomorphism (resp. a G-equivariant

isomorphism)

X ×Spec(A) Spec(C) ∼= X0.

14



The dgla controlling deformations of X0 is

g∗ := Γ(X0,A0,0(TX0))
∂̄→ Γ(X0,A0,1(TX0))

∂̄→ Γ(X0,A0,2(TX0))
∂̄→ · · ·

with the Lie bracket defined by

[φdz̄I , ψdz̄J ] = [φ, ψ]′dz̄I ∧ z̄J

where φ, ψ ∈ A0,0(TX0) are vector fields on X0, [−,−]′ is the usual Lie bracket of vector

fields, I, J ⊂ {1, . . . , n} and z1, . . . , zn are local holomorphic coordinates. Therefore, the

formal moduli problem which extends DefX0
is

MapLieC(D(−), g∗)

where D is the Koszul duality (cf. Proposition 3.2.4 and Theorem 3.2.3). It is obvious

that g∗ is cohomologically concentrated in positive degrees. Besides, g∗ receives a natural

G-action induced from the one on X0. Then we conclude this final chapter by the following

result (cf. Theorem 3.4.9).

Theorem F. There exists a G-equivariant structure on the semi-prorepresentable object

of MapLieC(D(−), g∗) with respect to the prescribed G-action on g∗. Consequently, the

classical functor of G-equivariant deformations DefGX0
of X0 has a formal G-equivariant

semi-universal element.
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Chapter 1

A counter-example to the

equivariance structure on

semi-universal deformation

1.1 Introduction

Let X0 be an algebraic variety defined over a field k of characteristic zero. Due to

Schlessinger’s work in [31], the existence of a formal semi-universal deformation (unique up

to non-canonical isomorphism), which contains all the information of small deformations

of X0, is assured provided that H1(X0, TX0) and H2(X0, TX0) are finite dimensional vector

spaces. These conditions realize for example, if X0 is a complete scheme over k or an affine

scheme with at most isolated singularities (see [32, Corollary 2.4.2]). Now, we equipe X0

with an action of an algebraic group G defined over k. One question arising naturally is

whether there exists a formal semi-universal deformation π : X → S of X0, on which we

can provide a G-action extending the given one on X. The answer is positive in the case

that G satisfies some vanishing conditions on its cohomology groups, i.e. H1(G,−) = 0 and

H2(G,−) = 0 for a class of G-modules determined by X0. In particular, these vanishing

conditions hold for linearly reductive groups (see [30] or Theorem I above). However, we

do not know if there exists a non-reductive group whose action on X0 does not extend to

the formal semi-universal deformation of X0. Therefore, we wish to give an example which

illustrates this phenomenon. More precisely, we prove that the action of the automorphism

group of the second Hirzebruch surface F2 does not extend to its formal semi-universal

deformation.

Our proof goes as follows. First, we find a nice presentation of G := Aut(F2). Then we

construct a formal semi-universal deformation X̂ of F2. It turns out that G is non-reductive

and that the Lie algebra of G is a 7-dimensional vector space. As a matter of fact, we

obtain seven vector fields on F2 with Lie bracket relations induced by those in Lie(G).
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Next, we describe the general form of formal vector fields on X̂ . Finally, we conclude the

chapter by means of contradiction. Suppose that the G-action on F2 does extend to a

G-action on X̂ then we also have seven formal vector fields on X̂ whose restrictions on

the central fiber are nothing but our initial ones on F2. By manipulating these vector

fields with a filtration F given by the vanishing order at 0, we obtain the existence of a

3-dimensional abelian Lie subalgebra in sl2(K)×sl2(K), where sl2(K) is the special linear

group and K is the field of formal Laurent power series C[[t, t−1]], which is not the case. A

remark is in order. Since the semi-universal family of F2 is in fact not universal, another

possible way to obtain a contradiction is to use Wavrik’s criterion (see [35, Theorem 4.1])

but the calculations are rather complicated.

1.2 Formal schemes and formal deformations

In this section, by k, we always mean a field of characteristic zero. We begin by

recalling the definition of formal schemes. For more details, the readers are referred to

[13, Chapter III. 9].

Definition 1.2.1. Let X be a noetherian scheme and let Y be a closed subscheme defined

by a sheaf of ideals I. Then we define the formal completion of X along Y , denoted

(X̂,O
X̂

) (sometimes just X̂), to be the following ringed space. We take the topological

space Y , and on it the sheaf of rings O
X̂

= lim←−OX/I
n. Here we consider each OX/In as

sheaf of rings on Y

Remark 1.2.1. For each n, let Xn = (X,OX/In). Then we obtain a sequence of closed

immersions of schemes

X1 → X2 → · · · → Xn → · · · .

This expression is helpful in the sequel.

Definition 1.2.2. A noetherian formal scheme is a locally ringed space (X,OX) which

has a finite open cover {Ui} such that for each i, the pair (Ui,OX |Ui) is isomorphic, as

a locally ringed space, to the completion of some noetherian scheme Xi along a closed

subscheme Yi. A morphism of noetherian formal schemes is a morphism as locally ringed

spaces.

Example 1.2.1. If X is any noetherian scheme, and Y is a closed subscheme then the

formal completion X̂ of X along Y is a formal scheme.

Example 1.2.2. For X = C1 = Spec(C[t]) and Y = {0}, the formal scheme X̂ is

the locally ringed space (Y,O
X̂

), where the structure sheaf O
X̂

is C[[t]]. We denote

Specf(C[[t]]) := (Y,O
X̂

).
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Let (X,OX) be a noetherian formal scheme. We would like to define formal vector fields

on X. Let {Ui} be a finite open cover of X such that for each i, the pair (Ui,OX |Ui) is the

formal completion (X̂i,OX̂i) of some noetherian scheme Xi along a closed subscheme Yi.

By Remark 1.2.1, for each i we have a sequence of closed immersions of schemes

Xi1 → Xi2 → · · · → Xin → · · · .

Definition 1.2.3. A formal vector field on a noetherian formal scheme X is a sequence

of vector fields {vi,n} such that

(i) Each vi,n is a usual vector field on the scheme Xi,n,

(ii) vi,n induces vi,n−1 via the natural inclusion Xi,n−1 → Xi,n,

(iii) vi,n |Xi,n∩Xj,n= vj,n |Xj,n∩Xi,n.

Next, we turn to the notion of infinitesimal deformations and that of formal defor-

mations. Let X0 be an algebraic scheme and let A be an artinian local k-algebra with

residue field k. An infinitesimal deformation of X0 is a deformation of X0 over the scheme

Spec(A), i.e. a commutative diagram

X0 X

Spec(k) Spec(A)

i

π

where π : X → Spec(A) is a flat surjective morphism of schemes.

Now, let A be a complete local noetherian k-algebra with the unique maximal ideal m

and with residue k.

Definition 1.2.4. A formal deformation of X0 over A is a sequence {νn} of infinitesimal

deformations of X, in which νn is represented by a deformation

X0 Xn

Spec(k) Spec(An)

fn

πn

where An = A/mn+1, such that for all n ≥ 1, νn induces νn−1 by pullback under the natural

inclusion Spec(An−1)→ Spec(An), i.e. νn−1 is also represented by the deformation
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X0 Xn ×Spec(An) Spec(An−1)

Spec(k) Spec(An−1)

fn−1

πn−1

In the language of formal schemes, we can write {νn} as the morphism of formal

schemes

π̂ : X̂ → Specf(A)

where

X̂ = (X, lim
←
OXn) and π̂ = lim

←
πn.

Here, OXn is the structure sheaf on Xn and Specf(A) is the formal scheme obtained by

completing Spec(A) along its closed point, which corresponds to the unique maximal ideal

of A. The easiest way to construct formal deformations is to build out of usual ones. This

leads to the definition of formal deformation associated to a given deformation. Let X0

be a projective scheme and let ν be a deformation represented by

X0 X

Spec(k) (S, s)

f

π

where S = Spec(B) for some k-algebra of finite type B and s is a k-rational point of S.

Definition 1.2.5. The formal deformation associated to ν is defined to be the sequence of

deformations {νn} where each νn is the pullback of ν under the natural closed embedding

Sn := Spec(OS,s/mn+1
s )→ S

where ms is the unique maximal ideal of the local ring OS,s.

Remark 1.2.2. Note that {νn} is formal because of the isomorphism

OS,s/mn+1
s
∼= ÔS,s/m̂n+1

s

for all n.

To end this section, we introduce a very interesting kind of (formal) deformations,

namely, the kind of G-equivariant (formal) ones, which is of central interest of this chapter.

Let G be a k-algebraic group acting algebraically on a projective variety X0 and A an

artinian local k-algebra.
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Definition 1.2.6. A G-equivariant infinitesimal deformation of X0 over Spec(A) is a

usual deformation of X0, i.e. a commutative diagram

X0 X

Spec(k) Spec(A)

i

π

where X and Spec(A) are equipped with G-actions in a way that any map appearing in the

above diagram is G-equivariant. In particular, the restriction of the G-action on X on the

central fiber is nothing but the initial G-action on X0.

Finally, we give the definition of G-equivariant formal deformations and then we show

how to produce formal vector fields from G-equivariant formal deformations.

Definition 1.2.7. A G-equivariant formal deformation of X0 over a complete local noethe-

rian k-algebra A with the unique maximal ideal m is a formal deformation of X0, i.e. a

sequence {νn} of infinitesimal deformations of X0, in which νn is represented by a G-

equivariant infinitesimal deformation

X0 Xn

Spec(k) Spec(An)

fn

πn

where An = A/mn+1, such that for all n ≥ 1, the G-equivariant deformation νn induces

the G-equivariant deformation νn−1 by pullback under the natural inclusion Spec(An−1)→
Spec(An).

As before, we can write {νn} as the G-equivariant morphism of formal schemes

π̂ : X̂ → Specf(A)

where

X̂ = (X, lim
←
OXn) and π̂ = lim

←
πn.

Here, the G-equivariance of π̂ means that π̂ is an inverse limit of G-equivariant morphisms

of schemes πn. On one hand, on each nth-infinitesimal neighborhood, G-actions on Xn and

on Spec(An) induce vector fields on Xn and on Spec(An), respectively. They are related by

the fact that the differential of πn always maps the former ones to the latter ones. On the

other hand, these induced vector fields on Xn and on Spec(An) are also induced by those on

Xn+1 and on Spec(An+1), respectively, via the natural inclusion Spec(An)→ Spec(An+1).
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Therefore, we obtain formal vector fields, induced by the G-actions, on X̂ and on Specf(A),

respectively.

1.3 The second Hirzebruch surface and its automorphism

group

For the rest of the paper, we assume that k is the field of complex numbers C. The

general linear group GL(2,C) has an obvious linear action on C2. This induces an action

on the C-vector space of polynomials in two variables C[X,Y ]. Since the subspace of

homogeneous polynomials of degree 2, denoted by C[X,Y ]2, is GL(2,C)-invariant then

we have a GL(2,C)-action on C[X,Y ]2. More precisely, for g =

(
a b

c d

)
∈ GL(2,C)

and f = a0X
2 + a1XY + a2Y

2 ∈ C[X,Y ]2, the action of g on f is given by the linear

substitution (
X

Y

)
:=

(
a b

c d

)(
X

Y

)
,

i.e.

g.f = a0 (aX + bY )2 + a1 (aX + bY ) (cX + dY ) + a2 (cX + dY )2

=
(
a2a0 + aca1 + c2a2

)
X2 + (2aba0 + (ad+ bc)a1 + 2cda2)XY +

(
b2a0 + bda1 + d2a2

)
Y 2.

Identifying C[X,Y ]2 with C3, the corresponding action on C3 can be written as

g.(a0, a1, a2) =

 a2 ac c2

2ab ad+ bc 2cd

b2 bd d2


a0

a1

a2

 .

This action gives rise to an algebraic group H which is the semi-product of C3 and

GL(2,C), i.e.

H := C3 o GL(2,C).

This is a non-reductive linear group. Recall that an algebraic group K is reductive if the

greatest connected normal subgroup Ru(K) of K is trivial. In our case, Ru(H) = C3.

Next, we recall the definition of the second Hirzebruch surface. Let P(OP1(2) ⊕ OP1)

be the projectivization of OP1(2)⊕OP1 , where OP1 is the structure sheaf of the projective

space P1.

Definition 1.3.1. The second Hirzebruch surface is defined to be P(OP1(2)⊕OP1).

Proposition 1.3.1. The second Hirzebruch surface is isomorphic to the variety

F2 := {([x : y : z], [u : v]) ∈ P2 × P1|yv2 = zu2}.
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Proof. Let σ: P(OP1(2) ⊕ OP1) → P1 be the canonical projection of the projectivization

P(OP1(2) ⊕ OP1), let U = Spec(C[v]) and U ′ = Spec(C[v′]) such that v′v = 1 on U ∩ U ′.
Then P(OP1(2)⊕OP1) has the following presentation

P(OP1(2)⊕OP1) = σ−1(U) ∪ σ−1(U ′) = (U × P1) ∪ (U ′ × P1).

such that on the intersection of the affine open sets V = Spec(C[v, y]) ⊂ U × P1 and

V ′ = Spec(C[v′, y′]) ⊂ U × P1, we havevv′ = 1

y′ = yv2
.

So, an open covering of F2 is given by the open embeddings

ρ1 : U × P1 → F2

(v, [x : y]) 7→ ([x : y : yv2], [1 : v])

and

ρ2 : U ′ × P1 → F2

(v′, [x′ : y′]) 7→ ([x′ : y′v′2 : y′], [v′ : 1]),

which glue to give an isomorphism ρ : P(OP1(2)⊕OP1)→ F2.

Now, the algebraic group H acts on the second Hirzebruch surface

F2 = {([x : y : z], [u : v]) ∈ P2 × P1|yv2 = zu2}

in the following manner: for p = ([x : y : z], [u : v]) ∈ F2 and g =

(
(a0, a1, a2)t,

(
a b

c d

))
∈

H,

g.p =


([
xu2 + y(a0v

2 + a1uv + a2u
2) : y(au+ bv)2 : y(cu+ dv)2

]
, [au+ bv : cu+ dv]

)
if u 6= 0([

xv2 + z(a0v
2 + a1uv + a2u

2) : z(au+ bv)2 : z(cu+ dv)2
]
, [au+ bv : cu+ dv]

)
if v 6= 0

.

The following theorem is well-known (see [2, Section 6.1]).

Theorem 1.3.1. The group of automorphisms of F2 is exactly the quotient of H by the

subgroup I consisting of diagonal matrices of the form

(
µ 0

0 µ

)
where µ ∈ C such that

µ2 = 1.
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1.4 A formal semi-universal deformation of F2 and formal

vector fields on it

1.4.1 Construction of the semi-universal deformation of F2

We shall follow the construction given in [32, Example 1.2.2.(iii)]. Consider two copies

of C× C× P1 given by W := Proj(C[t, v, x, y]) and W ′ := Proj(C[t′, v′, x′, y′]) (note that

these two rings are graded with respect to x, y and x′, y′, respectively). Consider the affine

subsets Spec(C[t, v, y]) ⊂ W , Spec(C[t′, v′, y′]) ⊂ W ′ and then glue them along the open

subsets

Spec(C[t, v, v−1, y]) ⊂ Spec(C[t, v, y])

and

Spec(C[t′, v′, v′−1, y′]) ⊂ Spec(C[t′, v′, y′])

by the rules 

vv′ = 1

x′ = x

y′ = yv2 − tvx

t′ = t.

(1.4.1)

This gives a gluing of W and W ′ along

Proj(C[t, v, v−1, x, y]) and Proj(C[t′, v′, v′−1, x′, y′]).

We denote the resulting scheme byW. In other words, if we let (t, v, [x : y]) and (t′, v′, [x′ :

y′]) be the coordinates on W = C× C× P1 and on W ′ = C× C× P1, respectively. Then

W is obtained by glue W and W ′ according to the rules (1.4.1). Now, let π : W → C be

the morphism induced by the projections.

Theorem 1.4.1. The family π : W → C = Spec(C[t]) is a semi-universal deformation of

F2. Moreover,

π−1(t) =

 F2 if t = 0

P1 × P1 otherwise.

Proof. The map π is obviously surjective by construction. Since π is locally a projection, it

is a flat morphism. Moreover, by Proposition 1.3.1, W0 = π−1(0) = F2. Then π : W → C
is a deformation of F2. Next, let W∗ = π−1(C∗) and π∗ : W∗ → C∗ is the restriction of

π on C∗ = Spec(C[t, t−1]). We shall prove that W∗ is in fact isomorphic to C∗ × P1 × P1.
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Indeed, consider the following open embeddings

φ : C∗ × C× P1 → C∗ × P1 × P1

(t, v, [x : y]) 7→ (t, [1 : v], [ty : vy − tx])

and

φ′ : C∗ × C× P1 → C∗ × P1 × P1

(t′, v′, [x′ : y′]) 7→ (t′, [v′ : 1], [t′v′y′ + t′2x′ : y′]).

By the gluing condition (1.4.1), we have that

(t′, [v′ : 1], [t′v′y′ + t′2x′ : y′]) = (t′, [v′ : 1], [t′v′(yv2 − tvx) + t′2x′ : yv2 − tvx])

= (t′, [v′ : 1], [t′yv : yv2 − tvx])

= (t, [1 : v], [ty : yv − tx]).

Hence, the above two morphisms glue to give an isomorphism

W∗ C∗ × P1 × P1

C∗,

∼=

pr1
π∗

which means precisely that π∗ : W∗ → C∗ is the trivial family whose fibers are all

isomorphic to P1 × P1. In particular, for t ∈ C∗, π−1(t) = (π∗)−1(t) = P1 × P1.

It remains to prove that the family π : W → C is actually semi-universal. One way

to see it is to compute the Kodaira-Spencer map Kπ,0 of π at 0. This map is uniquely

determined by the element Kπ,0( ddt) in H1(F2, TF2). By definition, Kπ,0( ddt) represents

the first order deformation of F2, obtained by gluing W0 := Proj(C[ε, v, x, y]) and W ′0 :=

Proj(C[ε, v′, x′, y′]) along Proj(C[ε, v, v−1, x, y]) and Proj(C[ε, v′, v′−1, x′, y′]) by the rulesvv′ = 1

y′ = yv2 − εv
,

where C[ε] is the ring of complex dual numbers. Hence, Kπ,0( ddt) ∈ H1(U , TF2) is the

1-cocycle which corresponds to the vector field {−v ∂
∂y} on W0 ∩ W ′0, where U is the

covering {W0,W
′
0}. By [32, Example B.11(iii)], we see that {−v ∂

∂y} is nonzero and

dimCH
1(F2, TF2) = 1. Thus, the Kodaira-Spencer map is an isomorphism and so π :

W → C is semi-universal.
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Another useful presentation of W is given as follows.

Proposition 1.4.1. The scheme W is isomorphic to the surface

X := {([x : y : z], [u : v], t) ∈ P2 × P1 × C | yv2 − zu2 − txuv = 0}.

Proof. We have an open covering of X given by the open embeddings

ρ1 : C× C× P1 → X

(t, v, [x : y]) 7→ ([x : y : yv2 − tv], [1 : v], t)

and

ρ2 : C× C× P1 → X

(t′, v′, [x′ : y′]) 7→ ([x′ : y′v′2 + t′v′ : y′], [v′ : 1], t)

which glue to give an isomorphism W
∼=→ X .

Remark 1.4.1. By Proposition 1.3.1 and by Proposition 1.4.1, from now on, we use inter-

changeably between F2,X and P(OP1(2)⊕OP1),W, respectively.

1.4.2 Formal vector fields on the formal semi-universal deformation of

F2

The formal deformation associated to W, π̂ : Ŵ → Specf(C[[t]]) is a formal semi-

universal deformation of F2 (here C[[t]] is the ring of formal power series in the variable

t). We will give explicit descriptions of formal vector fields on Ŵ. Consider the covering

{W,W ′} where W := Proj(C[t, v, x, y]) and W ′ := Proj(C[t′, v′, x′, y′]), as before. A formal

vector field on W is of the form

g1(v, t)
∂

∂v
+ (α1(v, t)y2 + β1(v, t)y + γ1(v, t))

∂

∂y
+ k1(t)

∂

∂t
(1.4.2)

where g1, α1, β1, γ1, k1 are formal power series in the variable t. Likewise, a formal vector

field on W ′ is of the form

g2(v′, t′)
∂

∂v′
+ (α2(v′, t′)y′2 + β2(v′, t′)y′ + γ2(v′, t′))

∂

∂y′
+ k2(t′)

∂

∂t′
(1.4.3)

where g2, α2, β2, γ2, k2 are formal power series in the variable t′. Therefore, a vector field

on W which is of the form (1.4.2) on W and of the form (1.4.3) on W ′ must satisfy the

relation

26



g1(v, t) ∂∂v + (α1(v, t)y2 + β1(v, t)y + γ1(v, t)) ∂∂y + k1(t) ∂∂t
= g2(v′, t′) ∂

∂v′ + (α2(v′, t′)y′2 + β2(v′, t′)y′ + γ2(v′, t′)) ∂
∂y′ + k2(t′) ∂

∂t′

(1.4.4)

on the overlapping open set W ∩W ′.

Lemma 1.4.1. A global formal vector field on Ŵ whose restriction on W is

g1(v, t)
∂

∂v
+ (α1(v, t)y2 + β1(v, t)y + γ1(v, t))

∂

∂y
+ k1(t)

∂

∂t

must satisfy the following

g1(v, t) = A(t)v2 +B(t)v + C(t)

α1(v, t) = a(t)v2 + b(t)v + c(t)

β1(v, t) = −2[a(t)t+A(t)]v + e(t)

γ1(v, t) = t2a(t) + tA(t)

(1.4.5)

where A,B,C, a, b, c, e, k1 are formal power series in the variable t with a relation

b(t)t2 + e(t)t+B(t)t− k1(t) = 0. (1.4.6)

Proof. By (1.4.1), we have 

y = v′2y′ + tv′

v = 1
v′

t = t′

∂v = −v′2∂v′ + (2y′v′ + t)∂y′

∂y = 1
v′2∂y′

∂t′ = − 1
v′∂y′ + ∂t′ .

(1.4.7)

Substituting (1.4.7) into the left hand side of (1.4.4) and equalizing, we get that

g2(v′, t′) = −v′2g1( 1
v′ , t

′)

α2(v′, t′) = v′2α1( 1
v′ , t

′)

β2(v′, t′) = 2t′v′α1( 1
v′ , t

′) + β1( 1
v′ , t

′) + 2v′g1( 1
v′ , t

′)

γ2(v′, t′) = t′2α1( 1
v′ , t

′) + t′

v′β1( 1
v′ , t

′) + 1
v′2γ1(v′, t′) + t′g1( 1

v′ , t
′)− k1(t′)

v′ ,

(1.4.8)
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which implies that 

g1(v, t) = A(t)v2 +B(t)v + C(t)

α1(v, t) = a(t)v2 + b(t)v + c(t)

β1(v, t) = −2[a(t)t+A(t)]v + e(t)

γ1(v, t) = t2a(t) + tA(t),

where A,B,C, a, b, c, e are formal power series in the variable t with a relation

b(t)t2 + e(t)t+B(t)t− k1(t) = 0.

This constraint comes from the coefficient of 1
v′ in the fourth equation in (1.4.8).

Remark 1.4.2. If t = 0 then (1.4.5) becomes

g1(v) = Av2 +Bv + C

α1(v) = av2 + bv + c

β1(v) = −2Av + e

γ1(v, t) = 0

which agrees with Kodaira’s calculations of vector fields on W0 = F2 (see [17, Page 75]).

In particular, we have seven linearly independent vector fields on F2. If t is non-zero and

fixed then we have six linearly independent vector fields on the fiber Wt, which is due to

the existence of the relation (1.4.6).

1.5 The non-existence of G-equivariant structure on the for-

mal semi-universal deformation

The Lie algebra of G := Aut(F2) is C3 ×M(2,C), which is evidently 7-dimensional .

A C-basis of Lie(G) is given by the following elements

e1 = (1, 0, 0)×

0 0

0 0

 , e2 = (0, 0, 1)×

0 0

0 0

 , e3 = (0, 0, 0)×

0 0

1 0

 ,

e4 = (0, 1, 0)×

0 0

0 0

 , e5 = (0, 0, 0)×

1 0

0 0

 , e6 = (0, 0, 0)×

0 0

0 1

 ,

e7 = (0, 0, 0)×

0 1

0 0

 .

Then the G-action gives us 7 vector fields E′1, . . . , E
′
7 on F2 with the relations
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

[E′1, E
′
2] = 0

[E′1, E
′
3] = −2E′4

[E′1, E
′
4] = 0

[E′1, E
′
5] = 0

[E′1, E
′
6] = −2E′1

[E′1, E
′
7] = 0,



[E′2, E
′
3] = 0

[E′2, E
′
4] = 0

[E′2, E
′
5] = −2E′2

[E′2, E
′
6] = 0

[E′2, E
′
7] = −2E′4,



[E′3, E
′
4] = E′2

[E′3, E
′
5] = −E′3

[E′3, E
′
6] = E′3

[E′3, E
′
7] = E′5 − E′6,


[E′4, E

′
5] = −E′4

[E′4, E
′
6] = −E′4

[E′4, E
′
7] = −E′1,

[E′5, E
′
6] = 0

[E′5, E
′
7] = −E′7,

[E′6, E
′
7] = E′7.

Now, we are in the position to prove the main result of this chapter. Suppose that the

G-action extends on Ŵ. This implies that we also have 7 formal vector fields E1, E2, E3, E4, E5,

E6, E7 on Ŵ with the following Lie bracket constraints



[E1, E2] = 0

[E1, E3] = −2E4

[E1, E4] = 0

[E1, E5] = 0

[E1, E6] = −2E1

[E1, E7] = 0,



[E2, E3] = 0

[E2, E4] = 0

[E2, E5] = −2E2

[E2, E6] = 0

[E2, E7] = −2E4,



[E3, E4] = E2

[E3, E5] = −E3

[E3, E6] = E3

[E3, E7] = E5 − E6,


[E4, E5] = −E4

[E4, E6] = −E4

[E4, E7] = −E1,

[E5, E6] = 0

[E5, E7] = −E7,
[E6, E7] = E7.

These vector fields form a Lie sub-algebra, denoted by g, of the Lie algebra of formal

vector fields on Ŵ. Of course, the restriction of Ei on the central fiber is nothing but E′i
(i = 1, . . . , 7).

From the previous section, we can assume that our seven vector fields are of the form

Ei = gi(v, t)
∂

∂v
+ (αi(v, t)y

2 + βi(v, t)y + γi(v, t))
∂

∂y
+ ki(t)

∂

∂t
,

(cf. Lemma 1.4.1) where A,B,C, a, b, c, e are formal power series in t (i = 1, . . . , 7).

Theorem 1.5.1. The action of G on F2 does not extend to the formal semi-universal
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deformation Ŵ, where G is the automorphism group of F2.

Proof. We denote by v the Lie algebra of formal vector fields in one variable t. Let δ :

g→ v be the map which sends

gi(v, t)
∂

∂v
+ (αi(v, t)y

2 + βi(v, t)y + γi(v, t))
∂

∂y
+ ki(t)

∂

∂t

to

ki(t)
∂

∂t
,

for i = 1, . . . , 7. Since, the first two components ∂
∂v and ∂

∂y contribute nothing to the

component ∂
∂t in the Lie bracket then δ is a well-defined Lie homomorphism. Set Fi :=

δ(Ei) = ki(t)
∂
∂t (i = 1, . . . , 7). Note that the seven formal vector fields Fi (i = 1, . . . , 7)

are nothing but those induced by the G-action on the base Specf(C[[t]]) (cf. the last

paragraph of Section 1). Observe also that v can be equipped with a filtration F given by

the vanishing order at 0 and we have two well-known facts

[F pv, F pv] ⊂ F 2pv, and [F pv, F qv] ⊂ F p+q−1v,

for p, q ≥ 1. Furthermore, the vanishing order of all ki at 0 is at least 1. Let ki(t) =∑∞
j=1 a

i
jt
j (i = 1, 2, 4, 5). Using the first fact and the Lie relations induced by δ:

[F1, F6] = −2F1

[F2, F5] = −2F2

[F1, F3] = −2F4,

we obtain a1
1 = a2

1 = a4
1 = 0. Suppose that k4(t) is not identically zero, then there exists

j∗ ≥ 2 such that a4
j∗ is nonzero. By computing explicitly the Lie relation [F4, F5] = −F4

in terms of power series in t and then by equalizing coefficients, we get that

a4
j [(j − 1)a5

1 − 1] = 0,

for all j ≥ 2. Thus, a5
1 = 1

j∗−1 , which is clearly nonzero. A similar computation for the

relation [F1, F5] = 0 gives

(j − 1)a1
ja

5
1 = 0,

for all j ≥ 2. Hence, all a1
j = 0 so that k1(t) = 0. By the relation [F1, F3] = −2F4,

we deduce that k4(t) = 0, a contradiction. Therefore, k4(t) = 0. From the relations

[F3, F4] = F2 and [F4, F7] = −F1, we obtain that k2(t) = 0 and k1(t) = 0. As a sequence,

E1, E2, and E4 do not have the component ∂
∂t .
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In addition, by the proof of Theorem 1.4.1, as a scheme over C,

W∗ ∼= C∗ × P1 × P1.

Then,

W∗ ∼= P1
L × P1

L,

as a scheme over L, where L := C[t, t−1] and P1
L is the 1-projective space over L. Therefore,

the generic fiber Ŵ∗ of Ŵ is isomorphic to W∗ ×Spec(C[t,t−1]) Spec(C[[t, t−1]]) = P1
K × P1

K ,

as a scheme over K, where K is the field of Laurent formal power series C[[t, t−1]]. Now,

by restricting on the generic fiber of Ŵ, we obtain that E1, E2, and E4 are formal vector

fields on Ŵ∗, considered as a C-scheme. However, by the first paragraph, we have proved

that there is no component ∂
∂t in the expression of Ei (i = 1, 2, 4). So, if we think of E1,

E2 and E4 as vector fields with coefficients in K, then they are definitely vector fields on

Ŵ∗, regarded as a scheme over K. Note that the Lie algebra of vector fields on P1
K×P1

K is

isomorphic to sl2(K)× sl2(K), where sl2(K) is the special linear group. This means that

there exists a 3-dimensional abelian Lie subalgebra of sl2(K)× sl2(K). The image of that

sub-algebra under one of the two canonical projections of the product sl2(K) × sl2(K)

provides a 2-dimensional abelian Lie sub-algebra in sl2(K). This is a contradiction since

rank(sl2(K)) is only 1.

Remark 1.5.1. A naturally posed question is if the G-action extends to Wn over the base

Spec(C[t]/(tn+1)) for small value n. Although the above proof does not give any clue to

reply to this question, the answer is yes for n = 1. More general, if G is an algebraic

group acting algebraically on a projective variety X0 and π : X → S is the semi-universal

deformation of X then the G-action on X0 certainly extends up to the first infinitesimal

deformation X1 over S1. This follows easily from the semi-universality of the family

π : X → S. Unfortunately, our example turns out to be the worst case. More precisely, we

can even show that the G-action on F2 can not extend to the second infinitesimalW2 over

Spec(C[t]/(t3)) by extending E′i (i = 1, . . . , 7) together with their Lie bracket relations,

order by order with respect to t (cf. Theorem 1.6.1). This is the content of the next

sub-section.

1.6 Another proof of Theorem 1.5.1

In this section, we denote by X̂ the formal deformation associated to the semi-universal

deformation of F2 given by the explicit equation in Proposition 1.4.1. On the intersection

of two standard open sets Ux = {x = 1} and U = {u = 1} in P1 × P1 (cf. the proof of
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Proposition 1.3.1), the action of G := Aut(F2) on F2 given by

g.(v, [1 : y]) =

(
c+ dv

a+ bv
,

[
1 :

y(a+ bv)2

1 + y(a0v2 + a1v + a2)

])

where g =

(
(a0, a1, a2)t,

(
a b

c d

))
∈ G and (v, [1 : y]) ∈ F2 under the identification given

in Proposition 1.3.1. The Lie algebra of G is 7-dimensional then we obtain 7 vector fields

on F2 

E′1 = −v2y2∂y

E′2 = −y2∂y

E′3 = ∂v

E′4 = −vy2∂y

E′5 = 2y∂y − v∂v
E′6 = v∂v

E′7 = 2yv∂y − v2∂v

on F2 with the relations

[E′1, E
′
2] = 0

[E′1, E
′
3] = −2E′4

[E′1, E
′
4] = 0

[E′1, E
′
5] = 0

[E′1, E
′
6] = −2E′1

[E′1, E
′
7] = 0

,



[E′2, E
′
3] = 0

[E′2, E
′
4] = 0

[E′2, E
′
5] = −2E′2

[E′2, E
′
6] = 0

[E′2, E
′
7] = −2E′4

,



[E′3, E
′
4] = E′2

[E′3, E
′
5] = −E′3

[E′3, E
′
6] = E3

[E′3, E
′
7] = E′5 − E′6

,


[E′4, E

′
5] = −E′4

[E′4, E
′
6] = −E′4

[E′4, E
′
7] = −E′1

,

[E′5, E
′
6] = 0

[E′5, E
′
7] = −E′7

, [E′6, E
′
7] = E′7

These vector fields correspond to a basis of C3 ×M(2,C) given at the beginning of the

previous sub-section. Suppose that the G-action extends on X̂ . This implies that we also
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have 7 formal vector fields E1, E2, E3, E4, E5, E6, E7 on X̂ with relations

[E1, E2] = 0

[E1, E3] = −2E4

[E1, E4] = 0

[E1, E5] = 0

[E1, E6] = −2E1

[E1, E7] = 0

,



[E2, E3] = 0

[E2, E4] = 0

[E2, E5] = −2E2

[E2, E6] = 0

[E2, E7] = −2E4

,



[E3, E4] = E2

[E3, E5] = −E3

[E3, E6] = E3

[E3, E7] = E5 − E6

,


[E4, E5] = −E4

[E4, E6] = −E4

[E4, E7] = −E1

,

[E5, E6] = 0

[E5, E7] = −E7

, [E6, E7] = E7

and the restriction of these vectors on the central fiber are nothing but E′1, E
′
2, E

′
3, E

′
4, E

′
5, E

′
6, E

′
7.

By the discussion of the previous sub-section, we can assume that our seven vector

fields are of the form (up to the first order with respect to t)

E1 =
(
−v2y2 + p1(v, y)t

)
∂y + q1(v)t∂y + k1t∂t

E2 =
(
−y2 + p2(v, y)t

)
∂y + q2(v)t∂y + k2t∂t

E3 = p3(v, y)t∂y + (1 + q3(v)t) ∂y + k3t∂t

E4 =
(
−vy2 + p4(v, y)t

)
∂y + q4(v)t∂y + k4t∂t

E5 = (2y + p5(v, y)t) ∂y + (−v + q5(v)t) ∂y + k5t∂t

E6 = p6(v, y)t∂y + (v + q6(v)t) ∂y + k6t∂t

E7 = (2yv + p7(v, y)t) ∂y +
(
−v2 + q7(v)t

)
∂y + k7t∂t

where pi, qi are polynomial whose degree with respect to each variable does not exceed 2.

1.6.1 Form of Ei’s on X̂

Since Ei’s are formal vectors fields on X̂ then by Lemma 1.4.1,

Ei = gi(v, t)
∂

∂v
+ (αi(v, t)y

2 + βi(v, t)y + γi(v, t))
∂

∂y
+ ki(t)

∂

∂t

where 

gi(v, t) = Ai(t)v
2 +Bi(t)v + Ci(t)

αi(v, t) = ai(t)v
2 + bi(t)v + ci(t)

βi(v, t) = −2(ai(t)t+Ai(t))v + ei(t)

γi(v, t) = t2ai(t) + tAi(t)
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and Ai, Bi, Ci, ai, bi, ci, ei are formal power series in t with a relation

bi(t)t
2 + ei(t)t+Bi(t)− ki(t) = 0

for i = 1, . . . , 7. Since the restriction of Ei on the central fiber are E′i, respectively, we

have

• E1 |X0= E′1 :(a1(0)v2 + b1(0)v + c1(0))y2 + (−2(a1(0)0 +A1(0))v + e1(0)) y = −v2y2

A1(0)v2 +B1(0)v + C1(0) = 0,

which implies that 

a1(0) = −1

b1(0) = 0

c1(0) = 0

A1(0) = 0

B1(0) = 0

C1(0) = 0

e1(0) = 0.

So, up to the first order, we have that

a1(t) = −1 + a1t

b1(0) = b1t

c1(t) = c1t

A1(t) = A1t

B1(t) = B1t

C1(t) = C1t

e1(t) = e1t

where a1, b1, c1, A1, B1, C1, e1 are constants. Moreover,

β1(v, t) = −2(a1(t)t+A1(t))v + e1(t)

= −2((−1 + a1t)vt+A1t) + e1t

= 2tv(1−A1) + e1t( mod t2).
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Hence,

E1 = {−v2y2 + t[(a1v
2 +b1v+c1)y2 +(2v(1−A1)+e1)y]}∂y+(A1v

2 +B1v
2 +C1)t∂v.

This implies that (up to the first order)p1(v, y) = (a1v
2 + b1v + c1)y2 + (2v(1−A1) + e1)y

q1(v) = A1v
2 +B1v + C1.

• E2 |X0= E′2 :(a2(0)v2 + b2(0)v + c2(0))y2 + (−2(a2(0)0 +A2(0))v + e2(0)) y = −y2

A2(0)v2 +B2(0)v + C2(0) = 0,

which deduces that 

a2(0) = 0

b1(0) = 0

c2(0) = −1

A2(0) = 0

B2(0) = 0

C2(0) = 0

e2(0) = 0.

This gives, up to the first order,

a2(t) = a2t

b2(t) = b2t

c2(t) = −1 + c2t

A2(t) = A2t

B2(t) = B2t

C2(t) = C2t

e2(t) = e2t

where a2, b2, c2, A2, B2, C2, e2 are constants. Furthermore,

β2(v, t = −2(a2(t)t+A2(t))v + e2(t)

= −2(a2t.t+A2t)v + e2t

= −2tvA2 + e2t( mod t2).

35



As a sequence,

E2 = {−y2 + t[(a2v
2 + b2v + c2)y2 + (−2vA2 + e2)y]}∂y + (A2v

2 +B2v
2 + C2)t∂v.

Thus, (up to first order)p2(v, y) = (a2v
2 + b2v + c2)y2 + (−2vA2 + e2)y

q2(v) = A2v
2 +B2v + C2.

1.6.2 Extension of Ei’s on X̂ up to the first order

We would like to see if there exists such Ei (i = 1, . . . , 7) by solving the system of

equations given by the Lie relations between Ei’s order by order with respect to t. An

important remark is in order.

Remark 1.6.1. Note that there is no component c ∂∂t in all Ei (c is a complex number). So,

the Lie bracket between Ei’s are well-defined when we take modulo tn for any n ∈ N.

Now, we wish to find q1, q2 and q4 by explicit computations based on the Lie relations:

•

[E1, E6] =
[
2v2y2 + t

(
−v2y2∂yp6 + 2v2yp6 + 2vy2q6 − v∂vp1 + k1p6 − k6p1

)]
∂y

+ t (q1 − v∂vq1 + k1q6 − k6q1) ∂v

= −2E1

so that k1 = 0.

•

[E3, E4] =
[
−y2 + t

(
−2vyp3 + vy2∂yp3 + ∂vp4 − y2q3 + k3p4 − k4p3

)]
∂y

+ t (∂vq4 + k3q4 − k4q3) ∂v

= E2.

provides k2 = 0 and

∂vq4 + k3a4 − k4q3 = q2. (1.6.1)

•

[E3, E5] = t (2p3 − 2y∂yp3 + ∂vp5 + v∂vp3 + k3p5 − k5p3) ∂y

+ [−1 + t (∂vq5 − q3 + v∂vq3 + k3q5 − k5q3)] ∂v

= −E3

gives k3 = 0.
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•

[E1, E3] =
[
2vy2 + t

(
−v2y2∂yp3 + 2v2yp3 + 2vy2q3 − ∂vp1 + k1p3 − k3p1

)]
∂y

+ t (−∂vq1 + k1q3 − k3q1) ∂v

= −2E4

which implies k4 = 0 and

− ∂vq1 = −2q4. (1.6.2)

•

[E5, E7] =
[
−2vy + t

(
−2y∂yp7 + 2vp5 − 2vy∂yp5 − 2p7 + 2yq5 − v∂vp7 + v2∂vp5

+ k5p7 − k7p5

)]
∂y +

[
v2 + t

(
−2vq5 − v∂vq7 + v2∂vq5 + q7 + k5q7 − k7q5

)]
∂v

= −E7

and thus k7 = 0.

•

[E1, E2] = t
(
−v2y2∂yp2 − 2yp1 + y2∂yp1 + 2v2yp2 + 2vy2q2

)
∂y

= 0.

So, we have

− v2y2∂yp2 − 2yp1 + y2∂yp1 + 2v2yp2 + 2vy2q2 = 0 (1.6.3)

•

[E1, E7] = t
(
−v2y2∂yp7 + 2vp1 − 2vy∂yp1 + 2v2yp7 + 2yq1 + v2∂vp1 + 2vy2q7

)
∂y

+ t(−2vq1 + v2∂vq1 + k1q7 − k7q1)∂v

= 0.

Hence,

− 2vq1 + v2∂vq1 = 0. (1.6.4)

Combining (1.6.4), (1.6.2) and (1.6.1), we have
q1 = µv2

q4 = µv

q2 = µ.
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for some µ ∈ C. By the general form of formal vector fields on X , we must have µ = A1.

By (1.6.3), we have

0 = −v2y2∂yp2 − 2yp1 + y2∂yp1 + 2v2yp2 + 2vy2q2

= v2y(2p2 − y∂yp2)− y(2p1 − y∂yp1) + 2vy2A1( since q2 = A1)

= v2y(−2vA2 + e2)y − y(2v(1−A1) + e1)y + 2vy2A1

= y2
(
v2(−2vA2 + e2)− (2v(1−A1) + e1) + 2A1v

)
= y2

(
−2v3A2 + e2v

2 − 2v(1− 2A1)− e1

)
which implies that 

A2 = 0

e1 = e2 = 0

A1 = 1
2

.

Hence, 
q1 = 1

2v
2

q2 = 1
2

q4 = 1
2v.

Thus, we have E1 =
(
−v2y2 + p1(v, y)t

)
∂y + 1

2 tv
2∂v := E

(1)
1

E2 =
(
−y2 + p2(v, y)t

)
∂y + 1

2 t∂v := E
(1)
2

up to the first order.

Theorem 1.6.1. The action of G on F2 extends to the formally semi-universal deforma-

tion X̂ only up to order 1.

Proof. By assumption, the vector fields E
(1)
1 , E

(1)
2 (of the first order) can be extended to the

vector fields E
(2)
1 , E

(2)
2 of the second order. In other words, there exists mi(v, y), ni(v), li

(i = 1, 2) such thatE
(2)
1 =

[
−v2y2 + p1(v, y)t+m1(v, y)t2

]
∂y +

[
1
2 tv

2 + n1(v)t2
]
∂y + l1t

2∂t

E
(2)
2 =

[
−y2 + p2(v, y)t+m2(v, y)t2

]
∂y +

[
1
2 t+ n2(v)t2

]
∂y + l2t

2∂t

and the relation

[E
(2)
1 , E

(2)
2 ] = 0( mod t3)

holds true where mi, ni are polynomial in variables v, y whose degrees with respect to v

and y do not exceeds 2 and li’s are complex numbers. However, by direct inspection we
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have that the coefficient of the ∂v-component of [E
(2)
1 , E

(2)
2 ] is

[
−v2y2 + p1(v, y)t+m1(v, y)t2

]
∂y

[
1

2
t+ n1(v)t2

]
−
[
−y2 + p2(v, y)t+m2(v, y)t2

]
×

∂y

[
1

2
tv2 + n1(v)t2

]
+

[
1

2
tv2 + n1(v)t2

]
∂v

[
1

2
t+ n1(v)t2

]
−
[

1

2
t+ n1(v)t2

]
×

∂v

[
1

2
tv2 + n1(v)t2

]
+ l1t

2∂t

[
1

2
t+ n1(v)t2

]
− l2t2∂t

[
1

2
tv2 + n1(v)t2

]
which after simplification is

−1

2
t2v +

l1
2
t2 − l2

2
t2v2( mod t3).

This quantity is never zero ( mod t3) for any choice of l1 and l2. Thus, the Lie relation

[E
(1)
1 , E

(1)
2 ] = 0( mod t2) is not preserved when we extend them to the second order which

is a contradiction. This finishes the proof.
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Chapter 2

Equivariant Kuranishi family of

complex compact manifolds

2.1 Introduction

In this chapter, we would like to reproduce Theorem I when X0 is a complex compact

manifold on which a compact Lie group G acts holomorphically and then try to address

the case that G is a complex reductive Lie group (see Corollary 2.4.1 and Theorem 2.5.2

below). A remark should be in order. The main different point here is that in the algebraic

setting, the semi-universal deformation of X0 and the extended G-actions, constructed by

Rim, are just formal. However, in the analytic setting, its semi-universal deformation

(often called Kuranishi family) is a true deformation (a convergent deformation). So,

an application of Rim’s result gives us a G-equivariant Kuranishi family whose extended

G-actions are only formal, i.e. they are formal power series whose convergence is not

guaranteed. Actually, this way of using Rim’s theorem keeps being repeated several times

for example in the proof of Theorem 4.20 in [12] and in the proof of Proposition 7.1 in [24],

where the convergence is supposedly needed to carry out. Moreover, an extension of the

G-action on the Kuranishi space is immediate if the Kuranishi family is locally universal.

This follows from the fact that each time we change the central fiber of the locally universal

family by a biholomorphism of X0, we obtain another locally universal family of X0 which

is canonically isomorphic to the old one. However, in the proof of Lemma 3.4 in [6], the

author produced a G-action on the base by claiming that there exists a local universal

deformation, which is not true in general even for the type of complex compact manifolds

considered therein. Thus, a very natural wish is to have a convergent G-extension.

Let us now outline the organization of this chapter. First, we give a general picture

of deformations of complex compact manifolds in §2.2. The most important result on

the existence of semi-universal deformation (Kuranishi family) is also included. Next, we

attack the problem by giving a useful existence criterion in §2.3, which turns out to be
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deduced from an elementary lemma on complex structures of real vector spaces. In §2.4,

we treat the case that G is compact, in advance. The key point here is that in place

of imposing an arbitrary Hermitian metric on the holomorphic tangent bundle, we can

impose a G-invariant one for the sake of the compactness of G. In fact, this idea is already

contained in Catanese’s lecture note (see [5, Lecture III, §7]). However, the author uses it

to treat only the case that the actions are required to be trivial on the base. If we take the

set of fixed points by the G-action in the base constructed in our case then the restriction

of our G-equivariant family on this set is nothing but Catanese’s family. Afterward, in

§2.5, we deal with the complex reductive case by means of complexification of compact

groups. Finally, an explicit example of equivariant Kuranishi family of complex compact

manifolds is given in §2.6.

2.2 Deformations of complex compact manifolds

We first recall some basic definitions in deformation theory of compact complex man-

ifolds. Let B be the category of germs of pointed complex space (B, 0) (a complex space

with a reference point) whose associated reduced complex space is a point and let X0 be

a complex compact manifold. An infinitesimal deformation of X0 is a deformation of X0

over a germ of complex space (B, 0) ∈ B, i.e. a commutative diagram

X0 X

· (B, 0)

i

π

where π : X → (B, 0) is a flat proper morphism of complex spaces. For simplicity, we

denote such a deformation by π: X → (B, 0) (or sometimes just X/B). If π: X → (B, 0)

and π′: X ′ → (B′, 0) are two infinitesimal deformations of X0, a morphism of infinitesimal

deformations is a pair (Φ, φ) of two morphisms of complex spaces Φ : X → X ′ and

φ : (B, 0)→ (B′, 0) such that the following diagram commutes

X X ′

X0

(B, 0) (B′, 0).

.

Φ

π π′

φ

i

i′

Kuranishi proves the existence of a semi-universal deformation π: X → (S, 0), called

Kuranishi family, which contains all the information of small deformations of X0 (cf. [18]
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or [19]). Semi-universality here means that any other deformation ρ: Y → (T, 0) of X0 is

defined by the pullback of the Kuranishi family under a holomorphic map from (T, 0) to

(S, 0), whose differential at the reference point is unique.

Next, let us take a moment to recall the definition of group actions on complex spaces.

For the sake of completeness, we recall first that a mapping α from a real analytic (resp.

complex) manifold W to a Fréchet space F over C is called real analytic (reps. holomor-

phic) if for each point w0 ∈ W there exists an open coordinate neighborhood Nw0 and a

real analytic (resp. holomorphic) coordinate system t1, . . . , tn in Nw0 such that ti(w0) = 0

and for all w ∈ Nw0 , we have that

α(w) =
∑

ai1,...,int
i1
1 (w) . . . tinn (w)

where ai1,...,in ∈ F and the convergence is absolute with respect to any continuous semi-

norm on F . Furthermore, by a Cp-map, we insinuate a p-times continuously differentiable

function. Let G be a real (resp. complex) Lie group and X a complex space. A G-action

on X is given by a group homomorphism Φ : G → Aut(X), where Aut(X) is the group

of biholomorphisms of X.

Definition 2.2.1. The G-action determined by Φ is said to be real analytic (resp. holo-

morphic) if for each open relatively compact U b X and for each open V ⊂ X, the

following conditions are satisfied

(i) W := WU,V := {g ∈ G | g · U ⊂ V } is open in G,

(ii) the map

∗ : W → O(U)

g 7→ f ◦ g |U

is real analytic (resp. holomorphic) for all f ∈ O(V ) ,

where U is the closure of U and O(P ) is the set of holomorphic functions on P for any

open subset P of X (O(P ) is equipped with the canonical Fréchet topology).

To end this section, we introduce a very interesting kind of deformations-the kind of

G-equivariant ones, which is of central interest of this chapter. As before, let X0 be a

complex compact manifold equipped with a real analytic (resp. holomorphic) G-action.

Definition 2.2.2. A real analytic (resp. holomorphic) G-equivariant deformation of X0

is a usual deformation of X0 π: X → B equipped with a real analytic (resp. holomorphic)

G-action on X extending the given (resp. holomorphic) G-action on X0 and a real analytic

(resp. holomorphic) G-action on B in a way that π is a G-equivariant map with respect

to these actions. We call these extended actions a real analytic (resp. holomorphic) G-

equivariant structure on π: X → B.

43



Therefore, we can rephrase our objective as finding a real analytic (resp. holomorphic)

G-equivariant semi-universal deformation of a given compact complex manifold with a

real analytic (resp. holomorphic) G-action. Intuitively, the expected extended G-action

on the Kuranishi space permutes the nearby complex structures and keeps the central one

untouched.

Xs

X0

Xgs

X

s

(S, 0)

0

∼=
g

• ••
gs

g∼=

g

g

Remark 2.2.1. For simplicity, by G-actions (resp. G-equivariant deformations), we really

mean real analytic G-actions (resp. real analytic G-equivariant deformations).

2.3 A sufficient condition for the existence of equivariant

structure

In this section, we give a criterion for a complex compact manifold X0 with a G-

action to have a G-equivariant semi-universal deformation. From now on, by complex

compact manifold, we really mean a complex compact connected manifold. First, we

recall a technical result concerning the holomorphicity of real analytic functions defined

on complex spaces (cf. [18, Proposition 2.1]).

Proposition 2.3.1. If V is a complex space and v is a point of V , there exists an integer

α satisfying the following condition: If f : V → V ′ is a Cα-map, where V ′ is another

complex space, such that f is holomorphic at each non-singular point of V then there is

an open neighborhood V of v in V such that the restriction of f on V is holomorphic.

Denote by Diff(X0) the group of diffeomorphisms of X0 where X0 is the underlying

differentiable manifold of X0. For S a complex space, a map γ : S → Diff(X0) is said to
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be of class Ck when the map

Γ : X0 × S → X0

(p, s) 7→ γ(s)(p)

is of class Ck. If this is indeed the case, then for each s0 ∈ S the map

Γs0 : X0 × S → X0

(p, s) 7→ γ(s) ◦ (γ(s0))−1(p)

is a Ck-family of deformations of the identity map of X0 with a parameter in (S, s0). In

particular, for each p ∈ X0, we obtain a Ck-map

Γs0,p : S → X0

s 7→ γ(s) ◦ (γ(s0))−1(p).

Therefore, if we suppose further that s0 is a non-singular point then each L ∈ TZar
s0 S will

give rise to a vector d(Γs0,p)s0(L), in TpX0, where d(Γs0,p)s0 is the differential of Γs0,p at

s0. Thus, the map

X0 → TX0

p 7→ d(Γs0,p)s0(L)

defines a Ck-vector field on X0, which we shall denote by L]s0γ.

Finally, before stating the main result, given a complex compact manifold X0, let

us bring back a celebrated characterization of its deformations and in particular of its

semi-universal deformation (see [18, Theorem 8.1]).

Theorem 2.3.1. A deformation of X0 is entirely encoded by a real analytic map φ : S →
A0,1(Θ) which varies holomorphically in S such that

(i) φ(0) = 0,

(ii) ∂φ(s)− 1
2 [φ(s), φ(s)] = 0 for all s ∈ S,

where A0,1(Θ) is the space of (0, 1)-forms with values in the holomorphic tangent bundle

Θ of X0 and S is a complex space with a reference point 0. Moreover, this deformation is

semi-universal if and only if

(iii) The Kodaira-Spencer map induced by φ is an isomorphism,

(iv) We can find an open neighborhood S′ of 0 in S such that the following conditions hold

true: for any complex space B and for any real analytic map ψ : B → A0,1(Θ), which

varies holomorphically in B, such that ψ(b1) = φ(s1) for a point (b1, s1) ∈ B × S′,
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we can find a neighborhood B′ of b1, a holomorphic map τ : (B′, b1)→ (S′, s1) and

a Cα-map γ : B′ → Diff(X0) such that

(a) φ(τ(b)) = ψ(b) ◦ γ(b) for all b ∈ B′. Here, ψ(b) ◦ γ(b) is the complex structure

induced by the complex structure ψ(b) and the diffeomorphism γ(b),

(b) For each regular point b ∈ B′ and for all L ∈ T 0,1
b B ⊂ TZar

b B = T 1,0
b B ⊕

T 0,1
b B, we have that L]bγ−1 + φ(τ(b)) ◦ L]b(γ−1) = 0 where α is the integer in

Proposition 2.3.1 for (CdimCX0 ×B, 0× b1) and γ−1 is the map B′ → Diff(X0)

which to b ∈ B′, associates (γ(b))−1.

Now, coming back to our case where the group action joins the game, we claim the

following.

Theorem 2.3.2. If the map φ can also be made G-equivariant with respect to some G-

action on S and the G-action on A0,1(Θ), induced by the one on X0, then a G-equivariant

semi-universal deformation of X0 exists.

In order to prove this, let us introduce a lemma on complex structures of real vector

spaces. Let V be a real vector space of even dimension imposed with three different

complex structures J, Jm, Jn and V C be its complexification then we have three complex

vector spaces (V, J), (V, Jm), (V, Jn) and decompositions

V C = V 1,0
J ⊕ V 0,1

J , V C = V 1,0
Jm
⊕ V 0,1

Jm
, and V C = V 1,0

Jn
⊕ V 0,1

Jn

where V 1,0
. and V 0,1

. are eigenspaces attached to the eigenvalues i and −i, respectively.

Let π1,0 : V C → V 1,0
J and π0,1 : V C → V 0,1

J be the canonical projections.

Now, suppose that the restrictions of π0,1 on V 0,1
Jm

and on V 0,1
Jn

are isomorphisms.

Define m,n : V 0,1
J → V 1,0

J by m = π1,0 ◦ (π0,1 |
V 0,1
Jm

)−1 and n = π1,0 ◦ (π0,1 |
V 0,1
Jn

)−1. It is

well-known that

V 0,1
Jm

=
{
u+m(u) | u ∈ V 0,1

J

}
and V 0,1

Jn
=
{
u+ n(u) | u ∈ V 0,1

J

}
.

Lemma 2.3.1. Let ϕ: V → V be an R-linear map such that its complexification ϕC is a

C-linear map from (V, J) to (V, J). Then ϕ is C-linear as a map from (V, Jm) to (V, Jn)

if ϕC ◦m = n ◦ ϕC.

Proof. We claim that ϕC(V 0,1
Jm

) ⊆ V 0,1
Jn

. Indeed, let v ∈ V 0,1
Jm

then v = u + m(u) for some

u ∈ V 0,1
J . So,

ϕC(v) = ϕC(u+m(u))

= ϕC(u) + ϕC ◦m(u)

= ϕC(u) + n ◦ ϕC(u).
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Moreover, since ϕC is a C-linear map from (V, J) to (V, J) then

JϕC(u) = ϕCJ(u)

= ϕC(−iu) since u ∈ V 0,1
J

= −iϕC(u),

which implies that ϕC(u) ∈ V 0,1
J . Hence, ϕC(u) +n ◦ϕ(uC) ∈ V 0,1

Jn
then so is ϕC(v), which

proves the claim.

Now, let v ∈ V 0,1
Jm

, then

Jnϕ
C(v) = −iϕC(v) by the claim,

= ϕC(−iv)

= ϕCJm(v).

Making use of the linear complex conjugation, we also get that

Jnϕ
C(v) = ϕCJm(v)

for all v ∈ V 1,0
Jm

. This ends the proof.

Finally, it is the time for us to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. First of all, by the discussion at the very beginning of this section,

we have a semi-universal deformation π : X → S of X0, associated to φ. Let X0 be

the underlying differentiable manifold of X0. By [5, Theorem 4.5] after shrinking S if

necessary, there exists a real analytic diffeomorphism γ : X0×S → X with π◦γ being the

projection on the second factor of X0 × S, and such that γ is holomorphic in the second

set of variables. Thus, for a point (x, s) ∈ X0×S, we have a decomposition of the tangent

space

TxX0 ⊕ TZar
s S ∼= TZar

γ(x,s)X.

We claim that π : X → S carries a G-equivariant structure. Indeed, for g ∈ G and

(x, s) ∈ X0 × S, define

g.(x, s) = (g.x, g.s)

in which we think of g as just a diffeomorphism of X0. This gives clearly an action of

G on X0 × S. We shall prove that in fact if we think of X as X0 × S with the complex

structure φ(−) then G acts on X by biholomorphisms. This is equivalent to showing that

the differential of g at the point (x, s)

dg(x,s) : TZar
(x,s)X = TxX0 ⊕ TZar

s → TZar
g.(x,s)X = Tg.xX0 ⊕ TZar

gs

47



is C-linear with respect to the complex structure induced by φ on the tangent space

TZar
(x,s)X. Since dg(x,s) = (dgx, dgs) is a diagonal map and g acts holomorphically on S.

Then it is sufficient to check that

dgx : (TxX0, J(x,s))→ (TgxX0, J(gx,gs))

is C-complex linear where J(x,s) and J(gx,gs) are complex structures induced by maps

φ(s)x : T 0,1
x X0 → T 1,0

x X0 and φ(gs)gx : T 0,1
gx X0 → T 1,0

gx X0, respectively. On the other

hand, as φ is G-equivariant then we have

gφ(s) = φ(gs)

for any s ∈ S. This is equivalent to

dgφ(s)dg−1 = φ(gs),

by definition of the action of a diffeomorphism g on a complex structure φ(s). Thus, for

each x ∈ X0,

dgxφ(s)x = φ(gs)gxdgx.

Making use of Lemma 2.3.1 for m = φ(s), n = φ(gs) and ϕ = dgx, we deduce that dgx

is C-complex linear so that g is in fact holomorphic. Thus, we have just extended the

G-action on the central fiber X0 to a G-action the total space X. This action together

with the given G-action on S makes π G-equivariant, which completes the proof.

2.4 The case that G is a compact Lie group

We treat compact group actions first. Let X0 be an n-dimensional complex compact

manifold equipped with a real analytic K-action, where K is a compact real Lie group.

The main result of this section is the following.

Theorem 2.4.1. There exists a complex space (S, 0) and a real analytic map φ : (S, 0)→
A0,1(Θ) which varies holomorphically in S such that the conditions (i), (ii), (iii) and (iv),

listed in Theorem 2.3.1, are fulfilled. Furthermore, φ is K-equivariant with respect to some

K-action on S and the K-action on A0,1(Θ), induced by the one on X0.

Corollary 2.4.1. Let X0 be a complex compact manifold X0 with a K-action, where K is

a compact real Lie group. Then there exists a K-equivariant semi-universal deformation

of X0.

Proof. It follows immediately from Theorem 2.4.1 above and Theorem 2.3.2.

In order to prove Theorem 2.4.1, we shall follow Kuranishi’s method in [18] with some

appropriate modification. First of all, note that we have a natural linear K-action on
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A0,1(Θ) and then on H1(X0,Θ). Moreover, since K is compact, instead of imposing an

arbitrary hermitian metric on Θ as Kuranishi did, we can impose a K-invariant Hermitian

metric 〈·, ·〉 on Θ by means of Weyl’s trick. Therefore, we have a K-invariant metric on

A0,1(Θ). As usual, we find the formal adjoint ∂
∗

of ∂. Since K acts on X0 by biholo-

morphisms then the operator ∂ is K-equivariant. By the adjoint property together with

the fact that the imposed metric is K-invariant, we also have that ∂
∗

is K-equivariant.

Hence, so is the Laplacian � := ∂
∗
∂ + ∂∂

∗
. In addition, it is well-known that � is an

elliptic operator of second order. As a matter of fact, Hodge theory provides us a famous

orthogonal decomposition.

A0,1(Θ) = H0,1
⊕
�A0,1(Θ) (2.4.1)

and two linear operators:

(a) The Green operator G : A0,1(Θ)→ �A0,1(Θ),

(b) The harmonic projection operator H : A0,1(Θ)→ H0,1,

where H0,1 is the vector space of all harmonic vector (0, 1)-form on X0 (this space can

also be canonically identified with H1(X0,Θ)), such that for all v ∈ A0,1(Θ), we have

v = Hv +�Gv. (2.4.2)

Lemma 2.4.1. The linear operators G and H are K-equivariant.

Proof. For any v ∈ �A0,1(Θ) and g ∈ K, gv is also in�A0,1(Θ) for the sake ofK-invariance

of �A0,1(Θ). Thus, by (2.4.2) we have that

v = �Gv and gv = �Ggv.

So, the K-equivariance of � gives us

� (gGv) = g� (Gv) = gv.

Hence,

� (Ggv − gGv) = 0

so that Ggv − gGv ∈ H0,1. On the other hand, gGv ∈ �A0,1(Θ), and so is Ggv − gGv.
Consequently,

Ggv − gGv ∈ H0,1 ∩�A0,1(Θ) = {0}

so that

Ggv = gGv

for any v ∈ �A0,1(Θ) and g ∈ G.

49



Now for any v ∈ A0,1(Θ) and g ∈ K, we have that

gGv = gG(Hv +�Gv)

= gGHv + gG (�Gv)

= gG (�Gv) since GH = 0,

= G (g�Gv) by the above case,

= Gg (v −Hv) by the decomposition (2.4.2),

= Ggv −GgHv

= Ggv since H0,1 is also K-invariant.

Thus, the K-equivariance of G follows.

For the K-equivariance of H, we have that

gHv = g(v −�Gv)

= gv − g�Gv

= gv −�Ggv since �, G are K-equivariant,

= Hgv.

This ends the lemma.

Next, Kuranishi would like to parametrize the set

Φ :=

{
φ ∈ A0,1(Θ) | ∂φ− 1

2
[φ, φ] = 0, ∂

∗
φ = 0

}
which actually forms an effective and complete family. We shall repeat briefly his argu-

ment. For any φ ∈ Φ, we have that

�φ− 1

2
∂
∗
[φ, φ] = 0.

Applying Green’s operator on this, we get

φ− 1

2
G∂
∗
[φ, φ] = Hφ.

Thus, Φ is a subset of

Ψ :=

{
φ ∈ A0,1(Θ) | φ− 1

2
G∂
∗
[φ, φ] ∈ H0,1

}
.

Therefore, it is natural to parametrize Ψ first. Let {Uσ} be a finite covering of X0 and

xσ = (x1σ, · · · , xnσ) be a local chart of X0 on Uσ. Let {fσ} be a smooth partition of unity
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with respect to the covering {Uσ} of X0. We introduce another norm in A0,1(Θ). For

l = (l1, · · · , ln), where lj is some non-negative integer (j ∈ [1, · · · , n]), we denote by Dl
σ,

the partial derivative (
∂

∂x1σ

)l1
· · ·
(

∂

∂xnσ

)ln
and set |l| = l1 + · · ·+ ln. For u ∈ A0,1(Θ) and for an integer k ≥ 0, we set

‖u‖2k =
∑
σ

∑
|l|≤k

∫ 〈
Dl
σfσu(xσ), Dl

σfσu(xσ)
〉
dv

where dv is the volume element of X0. This norm is called Sobolev k-norm. From now on,

we fix once for all a sufficiently large integer k. Let Hk(Θ) be the Hilbert space obtained by

completing A0,1(Θ) with respect to this Sobolev k-norm. Making use of Inverse Mapping

Theorem for Banach manifolds to the map

F : A0,1(Θ)→ A0,1(Θ)

φ 7→ φ− 1

2
G∂
∗
[φ, φ],

there exists a complex Banach analytic map φ : W → Hk(Θ) such that

s = Fφ(s) = φ(s)− 1

2
G∂
∗
[φ(s), φ(s)]

for all s ∈W , where

W :=
{
s ∈ H0,1 | ‖s‖k < ε

}
and ε is sufficiently small. Hence, for s ∈W , we have that

�φ(s)− 1

2
∂
∗
[φ(s), φ(s)] = 0,

which follows from the fact that �G∂
∗

= ∂
∗

and that s is harmonic. By the regularity of

elliptic differential operators, we deduce that φ is holomorphic and that the image of φ is

actually in A0,1(Θ). In other words, we obtain a holomorphic map

φ : W → A0,1(Θ) (2.4.3)

whose image, by construction, covers a neighborhood of 0 in Ψ and so, a neighborhood of

0 in Φ.

Finally, a necessary and sufficient condition on s for φ(s) to be in Φ is thatH[φ(s), φ(s)] =

0. Set S′ := {s ∈W | H[φ(s), φ(s)] = 0}. Restricting on S′, we obtain a holomorphic map

φ : S′ → A0,1(Θ) (2.4.4)
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which satisfies the conditions (i), (ii), (iii) and (iv) in Theorem 2.3.1.

Now, we add the K-action. Recall that the Lie bracket [·, ·] on A0,1(Θ) is defined as

follows. For two element α, β ∈ A0,1(Θ) given in local coordinates

α =
∑

mu
i dz

i
⊗ ∂

∂zu
and β =

∑
nvjdz

j
⊗ ∂

∂zv

then

[α, β] :=
∑

dzi ∧ dzj
⊗[

mu
i

∂

∂zu
, nvj

∂

∂zv

]′
where [·, ·]′ is the usual Lie bracket for the Lie algebra of vector fields on X0. Let g ∈ K
then

g.α :=
∑

g∗
(
dzi
)⊗

g∗

(
gui

∂

∂zu

)
where g∗ and g∗ are the pull-back of differential forms and the push-forward of vector fields,

respectively. With this definition, the G-action clearly commutes with the Lie bracket, i.e.

g[·, ·] = [g·, g·]

because the wedge product ∧ and the Lie bracket [·, ·]′ do. Moreover, G and ∂
∗

are

K-equivariant. Thus, F is also K-equivariant.

Lemma 2.4.2. There exists an open neighborhood U of 0 contained in W such that U is

K-invariant.

Proof. For each g ∈ K, there exists a neighborhood Vg of g and Kg of 0 such that Vg.Kg ∈
W . By the compactness of K, there exists a finite set I ⊂ K such that K =

⋃
g∈I Vg. Let

P =
⋂
g∈I Kg then P is an open neighborhood of 0 in H0,1. Thus,

K.P =

⋃
g∈I

Vg

 .

⋂
g∈I

Kg

 ⊆W.
Finally, set U :=

⋃
g∈K VgK. This is the desired K-invariant open neighborhood of 0

contained in W .

Now, restricting the map (2.4.3) on this U , we obtain a map

φ : U → φ(U) ⊆ A0,1(Θ) (2.4.5)

which is K-equivariant because it is the inverse of the K-equivariant map F on U . Finally,

set S := S′ ∩ U .

Lemma 2.4.3. S is K-invariant and this K-action is real analytic.
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Proof. Let s ∈ S′ ∩ U and g ∈ K then we have

H[φ(g.s), φ(g.s)] = H[g.φ(s), g.φ(s)] since φ is K-equivariant on U,

= Hg.[φ(s), φ(s)] since the action commutes with the bracket,

= gH[φ(s), φ(s)] by Lemma 4.1,

= g.0 since s in S′,

= 0.

Thus, g.s ∈ S′. Moreover, g.s ∈ U by the construction of U . Hence, g.s ∈ S′ ∩ U so that

S is K-invariant. The part that this K-action on S is real analytic follows from the fact

that it is the restriction of a linear K-action on U .

Proof of Theorem 2.4.1. The restriction of the map φ in (2.4.5) on S gives us a map

φ : S → A0,1(Θ)

which satisfies all the conditions given in the theorem.

2.5 The case that G is a complex reductive Lie group

In this final section, we would like to extend Corollary 2.4.1 to the case that G is a

complex reductive Lie group.

We begin by introducing the definition of holomorphic local (G,K)-action on a complex

space X where K is a compact subgroup of G. Denote by
∏
X the collection of all pair

π = (Uπ, Vπ), where Uπ and Vπ are open subsets in X such that Uπ b Vπ. Suppose that

for each π ∈
∏
X we have an open neighborhood Gπ of K and a mapping Φπ : Gπ →

Ho(Uπ, Vπ) where Ho(Uπ, Vπ) is the set of all holomorphic functions from Uπ to Vπ.

Definition 2.5.1. One says that the system {Φπ} defines a local (G,K)-action on X if

the following conditions are satisfied.

(a) For all g, h ∈ G such that k := gh ∈ Gπ, we have

Φπ(g) ◦ Φπ(h) |Uπ,h= Φπ(k) |Uπ,h

where Uπ,h := {x ∈ Uπ | Φπ(h)(x) ∈ Uπ};

(b) Φπ(1G) = id;

(c) for all π, ρ ∈
∏
X and g ∈ Gπ ∩Gρ we have

Φπ(g) |Uπ∩Uρ= Φρ(g) |Uπ∩Uρ

so that gx := Φπ(g)x is independent of the choice of π with x ∈ Uπ, g ∈ Gπ;
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(d) for any two open sets U b Uπ and V b Vπ, the set

W := WU,V := {g ∈ Gπ | g · U ⊂ V }

is open in Gπ and the map

∗ : W → O(U)

g 7→ f ◦ g |U

is continuous for all f ∈ O(V ) where U is the closure of U and O(P ) is the set of

holomorphic functions on P for any open subset P of X;

(e) The restriction of the system {Φπ} on K gives a global K-action on X, i.e. a

homomorphism of topological groups Φ : K → Aut(X).

Moreover, if G is a real (resp. complex) Lie group and if ∗ and Φ are real analytic (resp.

holomorphic), then the local (G,K)-action is called real analytic (resp. holomorphic). Two

local (G,K)-actions defined by two systems {Φπ} and {Φ′π} are said to be equivalent if for

all π ∈
∏
X , the mappings Φπ : Gπ → Ho(Uπ, Vπ) and Φ′π : G′π → Ho(Uπ, Vπ) coincide

on a sub-domain Gπ ∩G′π containing K and their restrictions on K give the same global

K-action.

As before, by local G-action, we really mean real analytic local G-action. If we let K

be the identity element of G in Definition 2.5.1 then we recover the usual definition of

(holomorphic) local G-action on complex spaces (see [1, Section 1.2 ] for more details). In

this case, we have the following theorem ([1, Page 25, Corollary]).

Theorem 2.5.1. Let G be a (complex) Lie group, g the Lie algebra of G, and S a complex

space. Then we have two bijections{
equivalence classes of

local G-actions on S

}
←→

{
Lie algebra homomorphisms

g→ TS(S)

}


equivalence classes of

holomorphic local

G-actions on S

←→
{

complex Lie algebra

homomorphisms g→ TS(S)

}

where TS(S) is the set of holomorphic vector fields on S.

Corollary 2.5.1. Let K be a connected compact real Lie group acting on a complex space

X and G be the complexification of K. There exists a holomorphic local (G,K)-action on

X extending the initial global K-action.

Proof. By Theorem 2.5.1, the initial K-action gives us a Lie algebra homomorphism ϕ :

Lie(K) → TX(X). Since TX(X) is a complex Lie algebra, the C-linear extension of ϕ
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gives us a complex Lie algebra homomorphism ϕC : Lie(K)C = Lie(G) → TX(X). An

application of Theorem 2.5.1 again provides a holomorphic local G-action on X. Note

that the restriction of this holomorphic local G-action on K gives a local K-action on X,

which in fact is equivalent to the initial global one on X. This follows from the fact that

they correspond to the same Lie algebra homomorphism ϕ : Lie(K) → TX(X). Thus, it

allows us to define a holomorphic local (G,K)-action on X as follows. If g ∈ K then the

action of g is determined by the initial global K-action. If g ∈ G \K then the action of g

is determined by the extended holomorphic local G-action. This ends the proof.

The two following lemmas are helpful in the sequel.

Lemma 2.5.1. Let f : X → Y be a proper surjective flat map of complex spaces whose

geometric fibers are all connected complex compact manifolds. Then the natural maps

OY → f∗OX is an isomorphism.

Proof. For y ∈ Y , we have that H0(Xy,Oy) = C since Xy is a compact complex manifold.

So, the base change morphism

φ0(s) : (f∗OX)x ⊗OY,y C→ H0(Xy,Oy) = C

is clearly surjective. By [3, Chapter III, Theorem 3.4], φ0(s) is an isomorphism. Note

that φ−1(s) is trivially surjective. So, an easy application of [3, Chapter III, Corollary

3.7] gives us the freeness of the OY -module f∗OX in a neighborhood of y. As φ0(y) is an

isomorphism then f∗OX is free of rank 1 in a neighborhood of y. But this holds for any

y ∈ Y . Thus, f∗OX is locally free of rank 1 and then the map OY → f∗OX turns out to

be an isomorphism. This completes the proof.

Lemma 2.5.2. Let G be a complex reductive group and let K be a connected real maximal

compact subgroup such that KC = G. Let Q be open subset of G. Let g be a point in

G such that the K-orbit K.g intersects every connected component of Q. Then if f is a

holomorphic function on Q such that f |K.g∩Q= 0 then f ≡ 0 on Q.

Proof. See [14, Page 634, Identity Theorem].

Now, we are ready to state the second main result of this paper.

Theorem 2.5.2. Let X/S be the Kuranishi family of a complex compact manifold X0

with a holomorphic action of a complex reductive Lie group G. Then we can provide

holomorphic local G-actions on X/S extending the holomorphic G-action on X0.

Proof. Let K be a connected real maximal compact subgroup whose complexification is

exactly G. By Corollary 2.4.1, we obtain a K-equivariant Kuranishi family π : X → S.

If we can extend the K-actions on X and on S to holomorphic local (G,K)-actions such
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that π is G-equivariant with respect to these holomorphic local (G,K)-actions then our

result follows immediately since any local (G,K)-action is obviously a local G-action.

By Corollary 2.5.1, we obtain a holomorphic local (G,K)-action on X. Note that the

restriction on K of this local (G,K)-action is nothing but the initial global K-action on

X.

Let g ∈ N(K) \ K where N(K) is a neighborhood of K. We shall prove that g, as

a biholomorphism on X, swaps fibers of π. Indeed, recall that by construction, S is an

analytic subset defined in a open subset U ⊂ Cn where n := dimCH
1(X0,Θ). Consider

the following holomorphic function

ρi : X
g→ X

π→ S
ι→ Cn πi→ C

where ι is the inclusion and πi is the ith-projection. Lemma 2.5.1 tells us that π∗OX = OS
which means precisely that any holomorphic function from X to C factors through π. So,

for each i, there exists a holomorphic function σi : S → C such that ρi = σi ◦ π. So, σi’s

together form a holomorphic function σ : S → Cn which then is lifted to a holomorphic

function νg : S → S. More precisely, we have the following commutative diagram

X X

S S

Cn

π

g

π

ι
σ

νg

which means in particular that g exchanges fibers of π. Since g is a biholomorphism then

so is νg. On one hand, νg is uniquely determined by g. This follows from the fact that X

is constructed from X × S, as the underlying differentiable manifold, and the fact that g

swaps fibers of π. On the other hand, since the local (G,K)-action on X is holomorphic

then νg(−) varies holomorphically with respect to the variable g. Hence, the map g 7→ νg

defines a holomorphic local (G,K)-action on S, which extends the initial K-action on S.

Finally, we shall prove that the restriction of the holomorphic local (G,K)-action of

X on the central fiber X0 is the initial G-action on X0. In order to do it, we first show

that the holomorphic local (G,K)-action on S fixes the reference point 0. Let N(K) be a

connected open neighborhood of K. Note that the holomorphic function

χ : G→ (S, 0)

g 7→ νg(0)
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is constant on K, i.e. χ(k) = 0 for all k ∈ K. Consider the holomorphic function

µi : G
χ→ (S, 0)

ι→ (Cn, 0)
πi→ C

where ι is the inclusion and πi is the ith-projection. Hence, we also have µi(k) = 0 for all

k ∈ K. Applying Lemma 2.5.2 with g = 1G and Q = N(K), we obtain that µi is zero on

N(K). But this holds for any i and so χ(g) = 0 for all g ∈ N(K). This justifies the claim.

Therefore, the local (G,K)-action on X preserves the central fiber X0, i.e. gX0 ⊂ X0 for

g ∈ G whenever it is defined. Consequently, we have a holomorphic local (G,K)-action

on X0, which is the restriction on X0 of the one on X. Because X0 is compact then this

action turns out to be global and it contains the initial K-action on X0. As a matter of

fact, it must coincide with the initial G-action on X0 because the action of G on a complex

compact manifold is uniquely determined by the one of K.

In summary, what we have just done is to equip holomorphic local (G,K)-actions on

X and on S in a way that the map π : X → S is G-equivariant with respect to these

holomorphic local (G,K)-actions and that the restriction on the central fiber X0 of the

holomorphic local (G,K)-action on X is nothing but the initial holomorphic G-action on

X0. This finishes the proof.

2.6 An example of G-equivariant Kuranishi family

In this final section, we shall show that the local actions in Theorem 2.5.2 can not be

global in general by giving a detailed example.

The Hirzebruch surface F2 and its Kuranishi familly π : X → C, introduced in Chapter

1 are once again taken into account. We consider further an action of G := C∗×C∗ on F2

as follows. C∗ × C∗ can be embedded into GL(2,C) as a subgroup of invertible diagonal

matrices. In particular, its action on F2 given by

g(p) =


([
xu2 : ya2u2 : yd2v2

]
, [au : dv]

)
if u 6= 0([

xv2 : za2u2 : zd2v2
]
, [au : dv]

)
if v 6= 0

,

or equivalently

g(p) =
([
x : ya2 : zd2

]
, [au : dv]

)
,

where p = ([x : y : y] , [u : v]) ∈ F2.

An application of Theorem 2.5.2 gives us a local G-equivariant structure on π : X → C.

We shall first show that if there is any extended G-action on X , then G can not act trivially

on the Kuranishi space. Indeed, on the intersection of two standard open sets Ux = {x = 1}
and U = {u = 1} in P1 × P1 (cf. the proof of Proposition 1.3.1 , the action of G on F2
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given by

g.(v, [1 : y]) =

(
dv

a
,
[
1 : ya2

])

where g =

(
a 0

0 d

)
∈ G and (v, [1 : y]) ∈ F2 under the identification given in Proposition

1.3.1. So, we obtain two commuting vector fields on F2E′5 = 2y∂y − v∂v
E′6 = v∂v.

Suppose for the moment that the G-action on F2 = X0 could be lifted to a G-action on

X , then we have two commuting vector fields on X , say E5 and E6. We can assume that

our two vector fields are of the form (up to the first order with respect to t)E5 = (2y + p5(v, y)t) ∂y + (−v + q5(v)t) ∂y + k5t∂t

E6 = p6(v, y)t∂y + (v + q6(v)t) ∂y + k6t∂t,

where pi, qi are polynomials whose degree with respect to each variable does not exceed

2 (cf. Proposition 1.4.1). Note that the restriction of these above vector fields on the

central fiber are nothing but E′5, E
′
6 respectively. In other words, we have E5 |X0= E′5

which implies(a5(0)v2 + b5(0)v + c5(0))y2 + (−2(a5(0)0 +A5(0))v + e5(0)) y = 2y

A5(0)v2 +B5(0)v + C5(0) = −v.

In particular, 
b5(0) = 0

B5(0) = −1

e5(0) = 2.

Expanding these functions in power series up to the first order provides
b5(0) = b5t

B5(t) = −1 +B5t

e5(t) = 2 + e5t.

where b5, B5, e5 are constants. The obstruction of lifting vector fields (1.4.6) forces k5 = 1.
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Thus, E5 is vertical. Likewise, we have E6 |X0= E′6 which implies(a6(0)v2 + b6(0)v + c6(0))y2 + (−2(a6(0)0 +A6(0))v + e6(0)) y = 0

A6(0)v2 +B6(0)v + C6(0) = v.

In particular, 
b6(0) = 0

B6(0) = 1

e6(0) = 0.

Expanding these functions in power series up to the first order provides
b6(0) = b6t

B6(t) = 1 +B6t

e6(t) = e6t,

where b6, B6, e6 are constants. Once again, the obstruction of lifting vector fields (1.4.6)

forces k6 = 1. Thus, E6 is not vertical as well. Therefore, if the G-action was extended

then, G (more precisely, two subgroups C∗ × {1} and {1} ×C∗) could not act trivially on

the base.

A possible G-action on X that extends the initial G-action on F2 given by

g(p) =
([
x : ya2 : zd2

]
, [au : dv] , adt

)
for p := ([x : y : z], [u : v], t) ∈ X and g = (a, d) ∈ C∗ × C∗. For C∗-action, we can restrict

the C∗×C∗-action on its subgroup {(α, 1) | α ∈ C∗}. Evidently, this C∗-action can not be

global on the germ of complex space (C, 0).
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Chapter 3

Semi-prorepresentability of formal

moduli problems and equivariance

structure

3.1 Introduction

The theory of deformations of algebraic schemes with algebraic group actions is first

studied by the voluntary work of Pinkham (see [26]) in which affine cones with Gm-actions

are taken into account. Six years later, Rim obtains a far-reaching result which claims

that if G is a linearly reductive group acting algebraically on an algebraic scheme X0

where X0 is supposed to be either an affine scheme with at most isolated singularities

or a complete algebraic variety then a G-equivariant formal semi-universal deformation

of X0 exists, unique up to G-equivariant isomorphism (see [30]). In the language of

functors of Artin rings, this result can be rephrased as follows. Let k be an algebraically

closed field and Artk (resp. Ârtk) be the category of local artinian k-algebras (resp.

complete local noetherian k-algebras) with residue field k. The functor FX0 : Artk → Sets

which associates to each local artinian k-algebra A, the set of flat morphisms of schemes

X → Spec(A) with an isomorphism X ×Spec(A) Spec(k) ∼= X0 has a formal semi-universal

element, i.e. there exists a pro-object R in Ârtk and an element û ∈ F̂X0(R) such that

the morphism of functors

Hom
Ârtk

(R,−)→ FX0

defined by û is smooth and such that

Hom
Ârtk

(R, k[ε]/(ε2))→ FX0(k[ε]/(ε2))

is bijective, where F̂X0 is the extension of FX0 on Ârtk (see [32, §2.2] for more details)

and k[ε]/(ε2) is the ring of dual numbers. Furthermore, this formal semi-universal element
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can be made G-equivariant. A recently-constructed counter-example in [7] has shown that

the reductiveness assumption on G turns out to be optimal. In general, FX0 is hardly

prorepresentable by a pro-object due to the existence of non-trivial automorphisms of X0

as always. Therefore, the smooth morphism

Hom
Ârtk

(R,−)→ FX0

can be considered the best formal approximation of FX0 that we can expect. A similar

result on the existence of G-equivariant Kuranishi family of compact complex manifolds

is obtained as well in Chapter 2 (see also [8]). The main difference here is that on the

analytic side, all deformations are required to be convergent.

Besides, a well-known philosophy of Drindfeld states that: “If X is a moduli space

over a field k of characteristic zero, then a formal neighborhood of any point x ∈ X is

controlled by a differential graded Lie algebra” of which Lurie’s famous thesis (cf. [21])

has given a rigorous formulation. Namely, instead of working with Artk, he works with

the category of differential graded commutative artinian augmented k-algebras, denoted

by dgArtk and a formal moduli problem in his sense is defined to be a functor from

dgArtk → SEns satisfying certain exactness conditions, where SEns is the ∞-category

of simplicial sets. Then he proves that there is an equivalence of∞-categories between the

homotopy category of formal moduli problems and that of differential graded Lie algebras.

Furthermore, the prorepresentability (which corresponds to the notion of universality in

the classical sense) of a formal moduli problem is reduced to checking some cohomological

conditions on its associated differential graded Lie algebra, which is feasible for most of

natural formal moduli problems that we encounter in reality. This can be viewed as an

extremely astonishing generalization of Schlessinger’s work on functors of artinian rings

(cf. [31]).

However, the notion of semi-universality apparently does not exist in the derived lit-

erature. Therefore, in this final chapter, our aim is to introduce such a notion which we

shall call “semi-prorepresentability”. This notion should generalize the notion of semi-

universality given by M. Schlessinger. Then we prove the semi-prorepresentability for a

class of formal moduli problems of which the formal moduli problem DefX0 associated

to derived deformations of algebraic schemes or to those of complex compact manifolds

(which is a natural extension of the functor FX0 in the derived literature) is a typical

example. This gives us an algebraic way to recover the formal existence of semi-universal

deformations in the classical setting. At last, we will prove a theorem of Rim’s type. More

precisely, we would like to provide a G-equivariant structure to the pro-object in dgArtk,

which semi-prorepresents DefX0 . Inspired by the spirit of Lurie’s equivalance, we shall

carry things out on the corresponding differential graded Lie algebra. Once again, Rim’s

result in the non-derived setting is just an immediate corollary of this.
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Let us now outline the organization of this chapter. We first, in §3.2, give an overview

of the ∞-equivalence between formal moduli problems and differential graded Lie alge-

bras. The representations of differential graded Lie algebras, which are one of the es-

sential tools for the rest of the chapter, is recalled as well. In §3.3, we shall introduce

the notion of semi-prorepresentability and a criterion for a formal moduli problem to be

semi-prorepresentable. If further the associated differential graded Lie algebra of this

formal moduli problem is equipped with an action of some linearly reductive group G,

we show that the corresponding semi-prorepresentable pro-object can be equipped with

a versal compatible G-action (cf. Definition 3.3.3 below). What concerns us first in §3.4

is a folklore, in derived deformation theory, which says that the differential graded Lie

algebra corresponding to the derived deformation functor DefX0 of an algebraic scheme is

the derived global section of TX0/k where TX0/k is the tangent complex of X0 over k. It

is well-known but we can not find a literature that contains a proof of it. Therefore, our

aim is to give a detailed proof, with the help of Lurie’s general results on representations

of differential graded Lie algebras. Afterward, we give a characterization of G-equivariant

derived deformations of X0 in terms of this differential graded Lie algebra. Next, we recall

also the famous differential graded Lie algebra which controls analytic deformations of a

given complex compact manifold. Finally, the existence of (G-equivariant) formal semi-

universal deformation of algebraic schemes and that of complex compact manifolds are

just immediate consequences of what we have done in §3.3.

Conventions and notations:

• A field of characteristic 0 will be always denoted by k.

• dgla is the abbreviation of differential graded Lie k-algebra while cdga means com-

mutative differential graded augmented k-algebra.

• Modk is the category of chain complexes of k-modules and Modk is the correspond-

ing ∞-category.

• Liek is the category of differential graded Lie k-algebras and Liek is the corresponding

∞-category.

• cdgak is the category of commutative differential graded augmented k-algebras and

cdgak is the corresponding ∞-category.

• dgArtk denotes the full sub-category of cdgak consisting of commutative differential

graded artinian algebras cohomologically concentrated in non-positive degrees.

• Artk denotes the category of local artinian k-algebras with residue field k.

• SEns is the category of simplicial sets.

• fmp is the abbreviation of formal moduli problem.

• FMP is the homotopy category of formal moduli problems.
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3.2 Formal moduli problems revisited

3.2.1 Presentable ∞-categories

A glimpse on presentable ∞-categories is provided in this section. Let ∆ be the

category of finite ordinal numbers with order-preserving maps between them. Concretely,

the objects of ∆ are strings

n : 0→ 1→ · · · → n

where n is a positive integer and morphisms of ∆ are order-preserving set functors m→ n.

For each n ∈∆, consider the following morphisms:

di : n− 1→ n

(0→ 1→ · · · → n− 1) 7→ (0→ 1→ · · · → i− 1→ i+ 1→ · · · → n)

and

sj : n + 1→ n

(0→ 1→ · · · → n+ 1) 7→ (0→ 1→ · · · → j→j → · · · → n) .

The former ones are called cofaces while the latter ones are called codegeneracies. They

satisfies the following cosimplicial identities

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = Id = sjdj+1

sjdi = di−1sj if i > j + 1

sjsi = sisj+1 if i ≤ j.

(3.2.1)

The maps di, sj together with these relations constitute a set of generators and relations

for ∆ (cf. [20]).

Definition 3.2.1. A simplicial set is a contravariant functor X : ∆→ Sets. A map of

simplicial sets f : X → Y is simply a natural transformation of contravariant set-valued

functors defined over ∆.

Using the generators di, sj and the relations (3.2.1), to give a simplicial set Y is

equivalent to giving sets Yn, n ≥ 0 together with mapsdi : Yn → Yn−1, 0 ≤ i ≤ n (faces)

sj : Yn → Yn+1, 0 ≤ j ≤ n (degeneracies)
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satisfying the simplicial identities

didj = dj−1di if i < j

disj = sj−1di if i < j

djsj = Id = dj+1sj

disj = sjdi−1 if i > j + 1

sisj = sj+1si if i ≤ j.

We denote the category of simplicial sets by SEns and refer the reader to [11] for a complete

study of this category.

Definition 3.2.2. (1) The standard n-simplex in the category SEns is defined by

∆n = Hom∆(·,n).

(2) Denote by ιn the standard simplex Idn ∈ Hom∆(n,n). For 0 ≤ k ≤ n, the k-horn

Λnk of ∆n is the union of all the faces dj(ιn) except dk(ιn).

0 1

2

0 1

2

⊂
Λ2

2 ∆2

d0(ι2)d1(ι2)

d2(ι2)

d1(ι2) d0(ι2)

Definition 3.2.3. An ∞-category is a simplicial set K which has the following property:

for any 0 < k < n, any map f0 : Λnk → K admits an extension f : ∆n → K

Λnk K

∆n

ι

f0

f

(cf. [23, Definition 1.1.2.4]). A functor (often called∞-functor) between two∞-categories

is simply a map of simplicial sets.

To end this section, we introduce the notion of presentability of∞-categories. (cf. [23,

Definition 5.4.2.1, Proposition 5.4.2.2 and Definition 5.5.0.1]).
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Definition 3.2.4. Let C be a category (or an ∞-category). We say that C is presentable

if C admits small colimits and is generated under small colimits by a set of κ-compact

objects, for some regular cardinal number κ. Here, an object C ∈ C is said to be κ-compact

if the functor HomC(C,−) preserves κ-filtered colimits

Remark 3.2.1. We often omit the cardinal number κ and say simply “compact” and “fil-

tered” for simplicity.

The following two lemmas concerning adjoint functors of ∞-categories are useful in

the sequel (cf. [27, Corollary 2.1.65] and [23, Corollary 5.5.2.9], respectively).

Lemma 3.2.1. Let g : D → C be a functor of ∞-categories and f : C → D a right adjoint

of g. Then f is an equivalence if and only if

(1) f reflects equivalences,

(2) the unit transformation IdD → f ◦ g is an equivalence.

Lemma 3.2.2. Let F : C → D be a ∞-functor between two presentable ∞-categories.

(1) The functor F has a right adjoint if and only if it preserves small colimits.

(2) The functor F has a left adjoint if and only if it preserves small limits and filtered

colimits.

There is a general effective method to construct presentable ∞-categories via combi-

natorial model categories (see [16] for the notion of combinatorial model category) and

Dwyer-Kan simplicial localization ([10]), which we shall use several times in the sequel.

We recall it here for completeness. Let C be a model category and N(C) its associated

nerve category (cf. [23, Definition 1.1.5.5]). Concretely, the simplices of N(C) can be

explicitly described as follows.

• 0-simplices are objects of C,

• 1-simplices are morphisms of C.

· · ·

• n-simplices are strings of n composable morphisms

C0
f1→ C1

f2→ · · · fn−1→ Cn−1
fn→ Cn

which the face map di and the degeneracy map sj carry to

C0
f1→ C1

f2→ · · · fi−1→ Ci−1
fi+1◦fi→ Ci+1

fi+2→ · · · fn−1→ Cn−1
fn→ Cn

and

C0
f1→ C1

f2→ · · ·
fj→ Cj

IdCj→ Cj
fj+1→ · · · fn−1→ Cn−1

fn→ Cn,

respectively.
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By formally inverting the class WC of weak equivalences in C, we obtain a category

N(C)[W−1
C ] which is the associated ∞-category of C. The presentability of N(C)[W−1

C ]

follows immediately from the following theorem (cf. [22, Proposition 1.3.4.22]).

Theorem 3.2.1. Let C be a combinatorial model category. Then the associated∞-category

of C is presentable.

As a fundamental example, we shall mention the associated presentable∞-category of

the category SEns of simplicial sets.

Proposition 3.2.1. The category SEns of simplicial sets admits a combinatorial model

category structure where

(W ) A map of simplicial sets f : X → Y is a weak equivalence if and only if its geometric

realization is a weak homotopy equivalence of topological spaces.

(F ) A map of simplicial sets f : X → Y is a fibration if and only if it satisfies the Kan

condition, i.e. for any 0 ≤ k ≤ n and any diagram

Λnk X

∆n

∃f0

Y

fι

of maps of simplicial sets, there exists a map f0 such that the above diagram com-

mutes.

The reader is referred to [16, Chapter 3.3.2] for a detailed treatment of this proposition.

We denote the associated presentable ∞-category of SEns by SEns.

3.2.2 Differential graded Lie algebras and its ∞-category

Definition 3.2.5. A differential graded Lie algebra (or briefly dgla) over k is a chain

complex (g∗, d) of k-vector spaces equipped with a Lie bracket [−,−] : gp ⊗k g∗ → gp+q

satisfying the following conditions:

(1) For x ∈ gp and y ∈ gq, we have [x, y] + (−1)pq[y, x] = 0.

(2) For x ∈ gp, y ∈ gq and z ∈ gr, we have

(−1)pr[x, [y, z]] + (−1)pq[y, [z, x]] + (−1)qr[z, [x, y]] = 0.

(3) The differential d is of degree 1 and is a derivation with respect to the Lie bracket.

That is, for x ∈ gp and y ∈ gq,

d[x, y] = [dx, y] + (−1)p[x, dy].
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Given a pair of dglas (g∗, d) and (g′∗, d
′), a map of dglas from (g∗, d) to (g′∗, d

′) is a map

of chain complexes F : (g∗, d)→ (g′∗, d
′) such that

F ([x, y]) = [F (x), F (y)]

for x ∈ gp and y ∈ gq.

The collection of all dglas over k forms a category, which we shall denote by Liek.

Proposition 3.2.2. The category Liek of dglas over k admits a combinatorial model

category structure where

(W ) A map of dglas f : g∗ → g′∗ is a weak equivalence if and only if it is a quasi-

isomorphism of chain complexes.

(F ) A map of dglas f : g∗ → g′∗ is a fibration if and only if it is degree-wise surjective.

Proof. See [21, Proposition 2.1.10].

By the construction mentioned at the end of the previous sub-section, we obtain an

∞-category N(Liek)[W
−1], denoted simply by Liek. As an immediate consequence, we

have the following.

Corollary 3.2.1. The ∞-category Liek is presentable.

3.2.3 Commutative differential graded algebras and its ∞-category

Definition 3.2.6. A commutative differential graded algebra (or briefly cdga) over k is a

chain complex (A, d) equipped with a morphism of chain complexes (multiplication map)

µ : A⊗k A→ A and with a 0-cocycle 1 (neutral element) such that

(1) µ (a, µ(b, c)) = µ (µ(a, b), c) (associativity),

(2) µ(a, b) = (−1)pqµ(b, a) (commutativity),

(3) µ(a, 1) = µ(1, a) = a,

for any a ∈ Ap and b ∈ Aq. A morphism of cdgas is a morphism of chain complexes

commuting with multiplication maps. The collection of all cdgas over k forms a category,

which we shall denote by CAlgk.

Proposition 3.2.3. The category CAlgk of dglas over k possesses a combinatorial model

category structure where

(W ) A map of cdgas f : g∗ → g′∗ is a weak equivalence if and only if it is a quasi-

isomorphism of chain complexes.

(F ) A map of cdgas f : g∗ → g′∗ is a fibration if and only if it is degree-wise surjective.
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The same construction as in the case of dglas gives us the associated∞-category CAlgk

of CAlgk. Let us denote by cdgak the full sub-category of CAlgk consisting of cdgas A

with an additional augmented map A → k. This sub-category inherits a combinatorial

model category structure from CAlgk, which permits us to talk about its corresponding

∞-category, denoted by cdgak. Finally, we introduce a sub-category of cdgak, on which

formal moduli problems are defined.

Definition 3.2.7. A commutative differential graded augmented k-algebra A ∈ cdgak is

said to be artinian if the three following conditions hold:

(1) The cohomology groups Hn(A) = 0 for n positive and for n sufficiently negative.

(2) All cohomology groups Hn(A) are of finite dimension over k.

(3) H0(A) is a local artinian ring with maximal ideal m and the morphism

H0(A)/m→ k

is an isomorphism.

We denote the full sub-category of cdgak consisting of artinian commutative differential

graded augmented k-algebras by dgArtk.

3.2.4 Chevalley-Eilenberg complex of dglas and Koszul duality

Definition 3.2.8. Let (g∗, d) be a differential graded Lie algebra over a field k. The cone

of g∗, denoted by Cn(g)∗, is defined as follows:

(1) For each n ∈ Z, the vector space Cn(g)∗ is gn⊕gn−1. A general element of Cn(g)n

is of the form

x+ εy,

where x ∈ gn, y ∈ gn−1 and ε is a formal symbol of degree 1 such that ε2 = 0.

(2) The differential of degree 1 on Cn(g)∗ is given by the formula

d(x+ εy) = dx+ y − εdy.

(3) The Lie bracket on Cn(g)∗ is given by

[x+ εy, x′ + εy′] = [x, y] + ε([y, x′] + (−1)p[x, y′]).

By definition, Cn(g)∗ is also a differential graded Lie algebra. Moreover, its underlying

chain complex can be identified with the mapping cone of the identity: g∗ → g∗. In

particular, 0 → Cn(g)∗ is a quasi-isomorphism of dglas. Note that the zero map g∗ → 0

induces a map of differential graded algebras U(g∗) → U(0) = k, where U(g∗) and U(0)

are the universal enveloping differential graded algebras of g∗ and that of 0, respectively.

Another evident map of dglas is the inclusion g∗ → Cn(g)∗.
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Definition 3.2.9. The cohomological Chevalley-Eilenberg complex of g∗ is defined

to be the linear dual of the tensor product

U(Cn(g)∗)⊗L
U(g∗)

k,

which we shall denote by C∗(g∗).

There is a natural multiplication on C∗(g∗). More precisely, for λ ∈ Cp(g∗) and

µ ∈ Cq(g∗), we define λµ ∈ Cp+q(g∗) by the formula

(λµ)(x1 · · ·xn) =
∑
S,S′

ε(S, S′)λ(xi1 · · ·xim)µ(xj1 · · ·xjn−m),

where xi ∈ gri , the sum is taken over all disjoint sets S = {i1 < · · · < im} and S′ =

{j1 < · · · < jn−m} and ri1 + · · · + rim = p, and ε(S, S′) =
∏
i∈S′,j∈S,i<j(−1)rirj . This

multiplication imposes a structure of cdga on C∗(g∗).

Proposition 3.2.4. With above notations, we have the followings:

(1) The construction g∗ 7→ C∗(g∗) sends quasi-isomorphisms of dglas to quasi-isomorphisms

of cdgas. In particular, we obtain a functor between ∞-categories Liek → cdgaopk ,

which, by abuse of notation, we still denote by C∗.

(2) Let V∗ be a chain complex of vector spaces and Free(V∗) be the free dgla generated

by V then we have a map

C∗(Free(V∗))→ k ⊕ V ∨∗ [−1]

which is a quasi-isomorphism of cdgas, here V ∨∗ is the linear dual of V∗.

(3) The ∞-functor C∗ preserves small co-limits. Thus, C∗ admits a right adjoint D:

cdgaopk → Liek to which we refer as Koszul duality.

(4) The unit map

A
'→ C∗D(A)

is an equivalence in dgArtk and

DC∗D(A)
'→ D(A)

in Liek.

Proof. For the first three statements, see [21, Chapter 2, Proposition 2.2.6, Proposition

2.2.7, Proposition 2.2.17]. For the last one, see [27, Chapter 4, Proposition 4.3.5].

Definition 3.2.10. We say that an object g∗ in Liek is good if it is cofibrant with respect

to the model structure on Liek and there exists a graded vector subspace V∗ ⊂ g∗ such that

(1) For every integer n, Vn is of finite dimension.
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(2) For every non-positive integer n, Vn is trivial.

(3) As a graded Lie algebra, g∗ is freely generated by V∗, i.e. g∗ = Free(V∗).

Denote the full subcategory of Liek spanned by those good objects by C◦.

3.2.5 Mapping spaces in Liek and in cdgak

For each n ∈ N, the algebraic simplex ∆n of dimension n is the sub-variety of the

affine space An+1, defined by the equation
∑

i xi = 1. Let L and L′ be two dglas then the

simplicial set of morphisms from L to L′ is the simplicial set

Hom∆(L,L′) : [n] 7→ HomLiek(L,L′ ⊗k C∗(∆n))

where C∗(∆n) is the de Rham differential graded algebra on the algebraic simplex ∆n

and HomLiek(L,L′ ⊗k C∗(∆n)) is the usual set of morphisms between two dglas L and

L′ ⊗k C∗(∆n).

Definition 3.2.11. With the above notations, the mapping space MapLiek(L,L′) between

two dglas L and L′ is the simplicial set Hom∆(QL,L′) where QL is a cofibration replace-

ment of L.

Remark 3.2.2. In particular, π0(MapLiek(L,L′)) = HomLiek(QL,L′).

The mapping space Mapcdgak(A,A′) between two cdgas A and A′ can be defined in a

very similar way.

3.2.6 Formal moduli problems for cdgak

In this subsection, we shall work with the deformation context (cdgak, {k⊕k[n]}n∈Z).

Here, the cdga k ⊕ k[n] is the square extension of k by k[n].

Definition 3.2.12. A functor X : dgArtk → SEns is called a formal moduli problem if

the following conditions are fulfilled.

(1) The space X(k) is contractible.

(2) For every pullback diagram

R R0

R1 R01

in dgArtk, if π0(R0) → π0(R01) ← π0(R1) are surjective, then the diagram of

spaces
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X(R) X(R0)

X(R1) X(R01)

is also a pullback diagram.

Remark 3.2.3. We can equivalently replace the condition (2) in the above definition by

the following condition: for every pullback diagram

R k

R′ k ⊕ k[n]

in dgArtk, the diagram of spaces

X(R) X(k)

X(R′) X(k ⊕ k[n])

is also a pullback diagram for any n ≥ 1 (see [4, Remark 1.5 and Corollary 1.6] for a

proof).

We would like to study the full∞-subcategory FMP ⊂ Fun(dgArtk,SEns) spanned

by formal moduli problems.

Theorem 3.2.2. The functor D : cdgaopk → Liek in Proposition 3.2.4 satisfies the fol-

lowing conditions

(i) The ∞-category Liek is presentable.

(ii) The functor D admits a left adjoint C∗ : Liek → cdgaopk .

(iii) The full subcategory C◦ of Liek in Definition 3.2.10 fulfills the following conditions

(a) For every object g∗ in C◦, the unit map g∗ → DC∗(g∗) is an equivalence in

Liek.

(b) The initial object 0 of Liek is in C◦.

(c) For every n ∈ Z, let Kn = Free(k[−n − 1]) ∈ C◦, then C∗(Kn) ' k ⊕ k[n] in

cdgak.

(d) For every push-out diagram
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Kn K

0 K ′

if K ∈ C◦ then so is K ′.

Proof. (i) is essentially Corollary 3.2.1. (ii) follows from Proposition 3.2.4. For a detailed

proof of (iii) see [21, Proposition 2.3.4].

Remark 3.2.4. In general the pair

D : cdgak Lieopk : C∗

does not induce an equivalence of categories. However, its restriction to the sub-categories

dgArtk and C◦ really does, i.e. the following pair

D : dgArtk C◦ : C∗

is indeed an equivalence for the sake of Proposition 3.2.4 and Theorem 3.2.2. In addition,

C◦ contains essentially compact objects of Liek (cf. Definition 3.2.4 for the notion of

compact object).

Now, we are in a position to give a sketch for the proof of the following very well-known

fundamental result in derived deformation theory, proved independently by Lurie in [21]

and Pridham in [28].

Theorem 3.2.3. The functor

Ψ : Liek → FMP

g∗ 7→ MapLiek(D(−), g∗)

induces an equivalence of ∞-categories between Liek and FMP.

Proof. First, we verify that for each g∗ ∈ Liek, the functor MapLiek(D(−), g∗) defines

a formal moduli problem in the sense of Definition 3.2.12. Indeed, it is obvious that

MapLiek(D(k), g∗) is contractible due to the fact that D(k) ' 0. It remains to verify the

condition (2) in Definition 3.2.12. By Remark 3.2.3, we can consider the cartesian diagram

N k

M k ⊕ k[n]
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in dgArtk. Applying the functor D, we get a cartesian diagram

D(N) D(k)

D(M) D(k ⊕ k[n])

in Lieopk by Remark 3.2.4 and therefore a cartesian diagram

MapLiek(D(N), g∗) MapLiek(D(k), g∗)

MapLiek(D(M), g∗) MapLiek(D(k ⊕ k[n]), g∗).

This justifies MapLiek(D(−), g∗) being a formal moduli problem.

Next, Ψ preserves small limits by its definition. Moreover, for each A ∈ dgArtk, D(A)

is a compact object (cf. Definition 3.2.4) in Liek by Remark 3.2.4. Hence, Ψ preserves

also filtered colimits in Liek. Therefore, the adjoint functor theorem 3.2.2 guarantees the

existence of a left adjoint Φ of Ψ. By Lemma 3.2.1, it is reduced to showing that

(1) Ψ reflects equivalences,

(2) the unit transformation IdFMP → Ψ ◦ Φ is an equivalence.

To prove (1), let f : g∗ → h∗ be a morphism of dglas, inducing an equivalence Ψ(g∗) '
Ψ(h∗) of formal moduli problems. In particular, for n positive,

MapLiek(D(k ⊕ k[n]), g∗) ' MapLiek(D(k ⊕ k[n]), h∗)

⇔ MapLiek(DC∗(Free(k[−n− 1])), g∗) ' MapLiek(DC∗(Free(k[−n− 1])), h∗)

⇔ MapLiek(Free(k[−n− 1]), g∗) ' MapLiek(Free(k[−n− 1]), h∗)

⇔ MapModk(k[−n− 1], g∗) ' MapModk(k[−n− 1], h∗)

⇔ MapModk(k, g∗[n+ 1]) ' MapModk(k, h∗[n+ 1])

where the second and the third line follow from Theorem 3.2.2(iii)(c) and Remark 3.2.4,

respectively (here, Modk is the ∞-category of chain complexes of k-vector spaces). As

a sequence, we have a quasi-isomorphism of chain complexes g∗[n + 1] ' h∗[n + 1], or

equivalently, a quasi-isomorphism g∗ ' h∗. Thus, (1) follows.

By a smooth hypercovering argument (see [21, Proposition 1.5.8]), it is sufficient to

prove (2) for representable formal moduli problems, i.e. formal moduli problems of the

form Spec(A) := Mapcdgak(A,−) where A ∈ dgArtk. For representable fmps, Φ can be
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explicitly described. Indeed, for any g∗ ∈ Liek,

MapLiek(Φ(Spec(A)), g∗) ' MapFMP(Spec(A),Ψ(g∗))

' MapFMP(Mapcdgak(A,−),MapLiek(D(−), g∗))

' MapFMP(MapLiek(D(−), D(A)),MapLiek(D(−), g∗))

' MapLiek(D(A), g∗)

which gives an equivalence

Φ(Spec(A)) ' D(A).

So, to finish the verification, we just need to show that the morphism Spec(A)→ Ψ(D(A))

is an equivalence. This is indeed the case since for each B ∈ dgArtk, the following chain

of equivalences

MapLiek(D(B), D(A)) ' Mapcdgak(A,C∗D(B))

' Mapcdgak(A,B)

' Spec(A)(B)

is available again by Remark 3.2.4.

3.2.7 Representations of dglas

Definition 3.2.13. Let g∗ be a dgla over a field k. A representation of g∗ is a differential

graded vector space V∗, equipped with a map

g∗ ⊗k V∗ → V∗

such that [x, y]v = x(yv) + (−1)pqy(xv) for x ∈ gp and y ∈ gq.

A morphism between two representations V∗ and W∗ of g∗ is a morphism of differential

graded vector spaces f : V∗ →W∗ such that the following diagram is commutative

g∗ ⊗k V∗ V∗

g∗ ⊗k W∗ W∗

Idg∗ ⊗ f f

The representations of g∗ comprise a category which we will denote by Repdgg∗ .

Proposition 3.2.5. The category Repdgg∗ of representations of a dgla g∗ admits a combi-

natorial model structure, where:

(1) A map f : V∗ → W∗ of representations of g∗ is a weak equivalence if and only if

it is an isomorphism on cohomology.
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(2) A map f : V∗ → W∗ of representations of g∗ is a fibration if and only if it is

degreewise surjective.

We denote Repg∗ to be the corresponding ∞-category of Repdgg∗ with respect to this model

structure.

Proof. See [21, Chapter 2, Proposition 2.4.5.].

Definition 3.2.14. Let g∗ be a dgla and V∗ ∈ Repdgg∗ . The cohomological Chevalley-

Eilenberg complex of g∗ with coefficients in V∗ is defined to be the differential graded vector

space of U(g∗)-module maps from U(Cn(g)∗) into V∗.

Observe that C∗(g∗, V∗) has the structure of a module over the differential graded

algebra C∗(g∗). The action is given by k-bilinear maps

Cp(g∗)× Cq(g∗, V∗)→ Cp+q(g∗, V∗)

which send λ ∈ C∗(g∗) and µ ∈ Cq(g∗, V∗) to the element λµ ∈ Cp+q(g∗, V∗) provided by

(λµ)(x1 · · ·xn) =
∑
S,S′

ε(S, S′)λ(xi1 · · ·xim)µ(xj1 · · ·xjn−m),

as in the construction of multiplication on C∗(g∗).

Let g∗ be a dgla and ModdgC∗(g∗) be the category of differential graded modules over

C∗(g∗).

Theorem 3.2.4. The functor

C∗(g∗,−) : Repdgg∗ →ModdgC∗(g∗)

V∗ 7→ C∗(g∗, V∗)

preserves weak equivalences and fibrations. Moreover, it has a left adjoint F given by

F : ModdgC∗(g∗) → Repdgg∗

M∗ 7→ U(Cn(g)∗)⊗C∗(g∗) M∗.

Thus, C∗(g∗,−) is a right Quillen functor, which induces a map between ∞-categories

Repg∗ and ModC∗(g∗).

Proof. See [21, Chapter 2, Proposition 2.4.10 and Remark 2.4.11].

Definition 3.2.15. Let g∗ be a dgla and V∗ be a representation of g∗. V∗ is said to

be connective if the cohomology groups of the chain complex V∗ are concentrated in non-

positive degrees. Let Modcng∗ denote the full subcategory of Repg∗ spanned by the connective

g∗-modules.
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Theorem 3.2.5. Let f be the corresponding ∞-functor of F in Theorem 3.2.4, then f

induces an equivalence of ∞-categories

ModcnC∗(g∗) →Modcng∗

which sends M∗ to

U(Cn(g)∗)⊗L
C∗(g∗)

M∗,

i.e. f is the left derived functor of F .

Proof. See [21, Chapter 2, Proposition 2.4.16].

To end this section, we recall a little bit about tensor products of representations.

Definition 3.2.16. Let V∗ and W∗ be two representations of g∗, then tensor product

V∗ ⊗k W∗ can be considered a representation of g∗ with action given by the formula

x(v ⊗ w) = (xv)⊗ w + (−1)pqv ⊗ (xw)

for homogeneous elements x ∈ gp, v ∈ Vq and w ∈Wr.

By a general theorem of Lurie, we can prove that the construction

W∗ 7→ V∗ ⊗k W∗

preserves quasi-isomorphisms. Consequently, the ∞-category Repg∗ inherits a symmetric

monoidal structure.

3.2.8 Derived schemes

Let sCommk be the ∞-category of simplicial commutative rings (some authors use

the terminology “derived rings”).

Definition 3.2.17. A derived scheme is a data (X,OX) where X is a topological space

and OX is a stack of derived rings on X such that two following conditions are satisfied

(1) The truncation (X,π0(OX)) is a scheme.

(2) For all i the sheaf of π0(OX)-modules πi(OX) is quasi-coherent.

We denote the ∞-category of derived schemes by dSchk. We let also dAffk be the full ∞-

sub-category of dSchk consisting of derived schemes whose truncation π0(X) is an affine

scheme.

In the world of derived schemes, we also have a derived version of the global section

functor which we denote by RΓ(−,−). This functor takes a derived scheme (X,OX) to

the space of global functions RΓ(X,OX) on X. The following theorem is fundamental (see

[33, Page 186]).
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Theorem 3.2.6. There is an equivalence of ∞-categories

RΓ(−,−) : dAffop
k → sCommk

whose inverse functor is denoted by Spec(−). Moreover, for any derived scheme X and any

derived affine scheme Spec(A) where A ∈ sCommk, we have an equivalence of simplicial

sets

MapdSchk(X,Spec(A))
'→ MapsCommk

(A,RΓ(X,OX)).

3.3 Semi-prorepresentability of formal moduli problems

3.3.1 Smooth and étale morphisms of formal moduli problems

Definition 3.3.1. Let X and Y be fmps and u : X → Y be a map between them.

(i) u is said to be smooth if for every small map φ : A → B in dgArtk, the natural

map

X(A)→ X(B)×Y (B) Y (A)

is surjective on connected components.

(ii) u is étale if it is smooth and furthermore π0(X(k ⊕ k)) → π0(Y (k ⊕ k)) is an

isomorphism.

Remark 3.3.1. Let g∗ and h∗ be the dglas associated to X and Y , respectively. Then the

condition that π0(X(k ⊕ k)) ∼= π0(Y (k ⊕ k)) is equivalent to the more explicit condition

that

HomLiek(D(k ⊕ k), g∗) ∼= HomLiek(D(k ⊕ k), h∗),

on the side of dglas.

Proposition 3.3.1. Using the same notations as in Definition 3.3.1. The following con-

ditions are equivalent:

(i) u is smooth.

(ii) for every n > 0, the homotopy fiber of X(k ⊕ k[n])→ Y (k ⊕ k[n]) is connected.

Proof. See [21, Proposition 1.5.5].

The following statement gives an explicit criterion for a morphism of fmps to be étale,

on the side of corresponding dglas.

Proposition 3.3.2. Let X and Y be fmps whose associated dglas are g∗ and h∗, respec-

tively and u : X → Y be a map between them, inducing a map u∗ : g∗ → h∗ of dglas . If

H i(g∗) ∼= H i(h∗) for any i > 0 then u is étale.
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Proof. Note that we always have thatHn−i(g∗) = πiX(k ⊕ k[n− 1])

Hn−i(h∗) = πiY (k ⊕ k[n− 1])

for any i, n ≥ 0. In particular,Hn+1(g∗) = π0X(k ⊕ k[n]), Hn+1(h∗) = π0Y (k ⊕ k[n]) if n ≥ 0

Hn(g∗) = π1X(k ⊕ k[n]), Hn(h∗) = π1Y (k ⊕ k[n]) if n > 0.

Consider the homotopy pull-back

F X(k ⊕ k[n])

∗ Y (k ⊕ k[n])

whose corresponding homotopy fiber sequence is

· · · → π1(X(k ⊕ k[n]))→ π1(Y (k ⊕ k[n]))→ π0(F )

→ π0(X(k ⊕ k[n]))→ π0(Y (k ⊕ k[n]))→ 0.

By assumption we have that

π1(X(k ⊕ k[n]))→ π1(Y (k ⊕ k[n]))

and

π0(X(k ⊕ k[n]))→ π0(Y (k ⊕ k[n]))

are all isomorphisms for n > 0. Thus, π0(F ) = 0 and then F is connected so that u is

smooth by Proposition 3.3.1. Besides,

π0(X(k ⊕ k)) = H1(g∗) ∼= H1(h∗) = π0(Y (k ⊕ k)).

Hence, u is étale.

Remark 3.3.2. The notion of smoothness and the one of étaleness are in fact a generaliza-

tion of those introduced by M. Schlessinger (cf. [31])

3.3.2 Semi-prorepresentable formal moduli problems

One of the corollaries of Theorem 3.2.3 is the following criterion for a fmp to be

prorepresentable (cf. [21, Corollary 2.3.6]).
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Theorem 3.3.1. A fmp F is prorepresentable by a pro-object in dgArtk if and only if

the corresponding dgla g∗ is cohomologically concentrated in degrees [1,+∞).

However, in reality there are many fmps which are not prorepresentable due to the

fact that their associated dglas have some components in negatives degrees. The typical

example is the derived deformation functor DefX0 of a given algebraic scheme X0. The 0th-

cohomology group of the associated dgla of DefX0 is nothing but the vector space of global

vector fields on X0, which is not vanishing in general (cf. Theorem 3.4.2). This leads us to

a weaker notion of prorepresentability, which in fact generalizes that of semi-universality

in the classical sense.

Definition 3.3.2. A fmp F is said to be semi-prorepresentable if there exists a pro-object

in dgArtk and a morphism of fmps u : MapdgArtk(A,−)→ F such that u is étale.

Remark 3.3.3. In particular, if F is a semi-prorepresentable fmp in the sense of Definition

3.3.2 then the functor of artinian rings E := π0(F ) is semi-prorepresentable by H0(QA)

in Schlessinger’s sense:

(a) the morphism of functors Hom
Ârtk

(H0(QA),−)→ E is smooth,

(b) Hom
Ârtk

(H0(QA), k[ε]/(ε2))→ E(k[ε]/(ε2)) is bijective

where QA is the cofibrant replacement of A (cf. [31] or [32] for more details).

3.3.3 A criterion for semi-prorepresentability

In this section we try to give a sufficient condition for a given fmp whose associated

dgla is cohomologically concentrated in [0,+∞) to be semi-prorepresentable.

Theorem 3.3.2. Let F be a fmp whose associated dgla g∗ is cohomologically concentrated

in [0,+∞). Assume further that H i(g∗) is a finite dimensional vector space for each i ≥ 0.

Then F is semi-prorepresentable.

Proof. We first treat the case when each gi is finite-dimensional. Denote B1(g∗) and

Z1(g∗) to be the first space of boundaries and the one of cycles, respectively. Since, g1 is

finite-dimensional we can choose the following splittings:

g1 = Z1(g∗)⊕ E1, Z1(g∗) = B1(g∗)⊕H1(g∗).

Define a new dgla k∗ 
ki = 0 if i ≤ 0

k1 = E1 ⊕H1(g) if i = 1

ki = gi if i > 1,
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whose Lie bracket and differential are induced by those of g∗. The natural inclusion

u : k∗ → g∗ induces isomorphisms

H i(k∗)→ H i(g∗),

for i > 0 by construction. For the sake of Proposition 3.3.2, the corresponding map of

fmps

MapLiek(D(−), k∗)→ MapLiek(D(−), g∗) = F (−)

is étale. Moreover, k∗ is cohomological concentrated in [1,+∞), by construction. Thus,

the fmp MapLiek(D(−), k∗) is prorepresentable by a pro object in dgArtk, let’s say K, i.e.

MapLiek(D(−), k∗) = Mapcdgak(K,−)

by Theorem 3.3.1. Therefore, F is semi-prorepresentable, which finishes the proof of this

case.

For the general case, we have that g∗ = colimi g(i)∗ where each g(i)k is of finite

dimension and g(i)∗ is cohomologically concentrated in [0,+∞). This fact will be proved

in Lemma 3.3.1 below. Then for each dgla g(i)∗, we repeat the above procedure to obtain

k(i)∗. Denote k∗ := colimi k(i). Then, the induced map

MapLiek(D(−), k∗)→ MapLiek(D(−), g∗) = F (−)

is étale. Furthermore, since each MapLiek(D(−), k(i)∗) is prorepresentable then so is

MapLiek(D(−), k∗).

Remark 3.3.4. The dgla k∗ constructed in Theorem 3.3.2 is unique up to quasi-isomorphism

in Liek.

Lemma 3.3.1. Let g∗ be a dgla which is cohomologically concentrated in [0,+∞). If all

the cohomology groups of g∗ are of finite dimension then

g∗ = colimi g(i)∗

where each g(i)k is finite-dimensional and g(i)∗ is cohomologically concentrated in [0,+∞)

Proof. Dually, we can assume equivalently that the homology Hi(g∗) ' 0 for all i ≥ 1.

We aim to construct by induction a sequence of dglas

0 = g(0)∗ → g(1)∗ → g(i)∗ → · · ·

equipped with maps φ(i) : g(i)∗ → g∗ such that

g∗ = colim
−→

g(i)∗
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and that for all i ≥ 0

Hn(g(i)∗) ' 0,∀n ≥ 1.

For each n ∈ Z, we pick a finite-dimensional graded subspace Vn ∈ gn consisting of cycles

which maps isomorphically onto the homology Hn(g∗). We think of V∗ as a differential

graded vector space with the trivial differential. Let g(1)∗ denote the free differential

graded Lie algebra generated by V∗ and let φ(1) : g(1)∗ → g∗ be the canonical map. By

construction, we have that

Hn(g(1)∗) ' 0, ∀n ≥ 1

and that the inclusion V0 → g(1)0 induces an isomorphism

V0 → H0(g(1)∗).

Now, suppose that i ≥ 1 and that we have built a map φ(i) : g(i)∗ → g∗ extending φ(1).

Then φ(i) induces a surjection

θ(i) : H∗(g(i)∗)→ H∗(g∗).

Choose a collection of cycles xα ∈ g(i)nα whose images form a basis for ker(θ). So, we can

write

φ(i)(xα) = dyα

for some yα ∈ gnα+1. Let g(i + 1)∗ be the differential graded Lie algebra obtained from

g(i)∗ by freely adding elements Yα (in degrees nα + 1) such that dYα = xα. We let

φ(i+ 1) : g(i+ 1)∗ → g∗ denote the unique extension of φ(i) satisfying

φ(i+ 1)(Yα) = yα.

We shall prove that by induction on i that

Hn(g(i)∗)) ' 0, ∀n ≥ 1

and that the inclusion V0 → g(i)0 induces an isomorphism

V0 → H0(g(i)∗)

for each i ≥ 1. The case i = 1 is obvious by the above explanation. Suppose that it holds

for i, we must prove that it also holds for i + 1. Indeed, by construction, we have the

following commutative diagram
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V0 H0(g∗)

H0(g(i)∗)

∼=

θ(i)∼=

Hence, φ(i) is an isomorphism in degrees ≥ 0. Thus, g(i + 1)∗ is obtained from g(i)∗ by

freely adding generators Yα in degree ≤ 0, which implies that

Hn(g(i+ 1)∗) ' 0

for all n ≥ 0. Furthermore, we can write

g(i+ 1)0 ' g(i)0 ⊕W

where W is the subspace generated by the elements Yα with nα = −1, constructed as

above. Note that the differential on g(i+ 1)∗ induces an injective map

d : W → g(i)−1/dg(i)0

because by construction the set of dYα = xα form a basis for ker(θ) ⊂ g(i)−1/dg(i)0.

Therefore,

H0(g(i)∗) = H0(g(i+ 1)∗)

so that the inclusion V0 → g(i+ 1)0 induces an isomorphism

V0 → H0(g(i+ 1)∗).

This finishes the induction argument.

Finally, we let g′∗ denote the colimit of the sequence {g(i)∗}i≥0. The canonical map

g′∗ → g∗ is surjective on homology since the map g(1)∗ → g∗ is surjective on homology. Let

η ∈ ker(H∗(g
′
∗) → H∗(g∗)) then η is represented by a class η ∈ ker(H∗(g(i)∗) → H∗(g∗))

for i is sufficiently large. By construction, the image of η vanishes in H∗(g(i+ 1)∗). Thus,

η = 0 so that

g∗ = colim
−→

g(i)∗.

This ends the proof.

Remark 3.3.5. The finiteness condition on the cohomology groups of g∗ can be seen as

a generalization of Schlessinger’s finiteness condition on the tangent space of a classical

functor of artinian rings.
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3.3.4 Semi-prorepresentability and G-equivariant structure

In this subsection, we intend to generalize the notion of G-equivariant structure on

versal deformations initiated by D. S. Rim in [30] (see also Introduction), in the world of

formal moduli problems.

Let F be a fmp and let g∗ be its corresponding dgla. Suppose that F is semi-

prorepresentable and that g∗ is prescribed an action of some group G.

Definition 3.3.3. F is said to have a G-equivariant structure if there exists a pro-object

K in dgArtk such that the following conditions are satisfied.

(i) F is semi-prorepresentable by K,

(ii) Denote the associated dgla of K by k∗. Then we can equip k∗ with a compatible

G-action such that

(a) the natural morphism of dglas Φ : k∗ → g∗ is G-equivariant with respect to the

prescribed G-action on g∗,

(b) k∗ is versal in the following sense: for any A ∈ dgArtk and any G-equivariant

map φ : QD(A) → g∗ with respect to the given G-action on g∗, there exists a

G-equivariant map τ : QD(A)→ k∗ such that the following diagram commutes

QD(A) k∗

g∗

τ

Φ
φ

where QD(A) is a cofibrant replacement of D(A),

(c) the construction in (b) is a bijection on the tangent level. In other words,

HomG
Liek

(D(k ⊕ k), k∗) ∼= HomG
Liek

(D(k ⊕ k), g∗)

where HomG
Liek

(D(k⊕k), k∗) and HomG
Liek

(D(k⊕k), k∗) are sets of G-equivariant

maps of dglas into g∗ and k∗ with the prescribed G-actions, respectively.

Remark 3.3.6. If F has a G-equivariant structure then K in the above definition will

naturally carry a G-action. So, the map τ : QD(A) → k∗ in (b) will correspond to a

G-equivariant map of cdgas: QK → A, as well.

A criterion for a semi-prorepresentable formal moduli problem to have a G-equivariant

structure will be given by the following.

Theorem 3.3.3. Let F be a fmp whose associated dgla g∗ is cohomologically concentrated

in [0,+∞) and G be a linearly reductive algebraic group defined over k, acting on g∗.

Assume further that H i(g∗) is a finite-dimensional vector space for each i ≥ 0 and that

the following colimit is available

g∗ = colimi g(i)∗ (3.3.1)
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where

(i) each g(i)k is finite-dimensional,

(ii) g(i)∗ is cohomologically concentrated in [0,+∞),

(iii) each g(i)∗ carries an algebraic G-action and the colimit of these G-actions gives back

the initial G-action on g∗.

Then F admits a G-equivariant structure.

Proof. As usual, we first deal with the case where each gi is finite-dimensional. Denote

B1(g∗) and Z1(g∗) to be the first space of boundaries and the one of cycles, respectively.

Note that B1(g∗) and Z1(g∗) are also G-invariant. Since g1 is a finite-dimensional rational

G-module and G is reductive, we can choose the following splittings:

g1 = Z1(g∗)⊕ E1, Z1(g∗) = B1(g∗)⊕H1(g∗)

as G-modules. Define a new dgla k∗
ki = 0 if i ≤ 0

k1 = E1 ⊕H1(g) if i = 1

ki = gi if i > 1,

whose Lie bracket and differential are induced by those of g∗. It is clear that k∗ inherits

an algebraic G-action. By the proof of Theorem 3.3.2, the fmp F = MapLiek(D(−), g∗) is

semi-propresentable by a pro-object K whose associated dgla is exactly k∗. Moreover, the

natural map of dglas Φ : k∗ → g∗ is G-equivariant, by construction. It is left to verify the

versality of k∗. However, this follows immediately from the étaleness of the map

MapLiek(D(−), k∗)→ MapLiek(D(−), g∗) = F

and the injectivity of the natural map Φ : k∗ → g∗.

To deal with the general case, we shall make use of the assumption (3.3.1). For each

dgla g(i)∗, we repeat the above procedure to obtain k(i)∗. Finally, the desired k∗ is nothing

but colimi k(i)∗.

Remark 3.3.7. The approximation (3.3.1) in fact can be done in several specific situations,

for example, if we make a condition that each G-module gi is rational G-module (this will

be proved in Lemma 3.3.2 below) or when g∗ is the Kodaira-Spencer dgla that controls

deformations of compact complex manifolds equipped with an appropriate holomorphic

action of a reductive complex Lie group (cf. Lemma 3.4.1 below). These two cases cover

all the deformation functors that we would like to treat in this chapter.
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Lemma 3.3.2. Let g∗ be a dgla which is cohomologically concentrated in [0,∞). If all

the cohomology groups of g∗ are finite-dimensional and each component gi is a rational

G-module then

g∗ = colimi g(i)∗

where

(i) each g(i)k is finite-dimensional,

(ii) g(i)∗ is cohomologically concentrated in [0,+∞),

(iii) each g(i)∗ carries an algebraic G-action and the colimit of these G-actions gives back

the initial G-action on g∗.

Proof. Dually, we can assume equivalently that the homology Hi(g∗) ' 0 for all i ≥ 1.

We aim to construct by induction a sequence of dglas

0 = g(0)∗ → g(1)∗ → g(i)∗ → · · ·

equipped with maps φ(i) : g(i)∗ → g∗ such that

g∗ = colim
−→

g(i)∗

and that for all i ≥ 0

Hn(g(i)∗) ' 0,∀n ≥ 1.

For each n ∈ Z, we pick a finite-dimensional graded subspace Vn ∈ gn consisting of

cycles which maps isomorphically onto the homology Hn(g∗). Since each Hn(g∗) is a

G-module then so is Vn. We think of V∗ as a differential graded vector space with the

trivial differential. Let g(1)∗ denote the free differential graded Lie algebra generated by

V∗ and let φ(1) : g(1)∗ → g∗ be the canonical map. By construction, we have that φ(1) is

G-equivariant and that

Hn(g(1)∗) ' 0, ∀n ≥ 1

and that the inclusion V0 → g(1)0 induces an isomorphism

V0 → H0(g(1)∗).

Now, suppose that i ≥ 1 and that we have built a G-equivariant map φ(i) : g(i)∗ → g∗

extending φ(1). Then φ(i) induces a surjection

θ(i) : H∗(g(i)∗)→ H∗(g∗).

For each n, since nth-component ker(θ)n of ker(θ) is a G-invariant finite-dimensional sub-

vector space of Hn(g(i)∗), we choose a collection of cycles {xnα}α∈An ⊂ g(i)n whose images

86



form a basis for ker(θ)n, where An is a finite index set. For each α ∈ An and g ∈ G, we

write g.xnα =
∑

β∈An λ
g
αβx

n
β,

φ(i)(xnα) = dyn+1
α

for some yn+1
α ∈ gn+1. On one hand, we have that

d(g.ynα) = gdyn+1
α , since d is equivariant,

= gφ(i)(xnα) by construction,

= φ(i)(gxnα) by the equivariance of φ(i),

= φ(i)(
∑
β∈An

λgαβx
n
β)

=
∑
β∈An

λgαβφ(i)(xβ)

=
∑
β∈An

λgαβd(yn+1
β )

= d

∑
β∈An

λgαβy
n+1
β

 .

Denote zn+1
α,g = g.yn+1

α −
∑

β∈An λ
g
αβy

n+1
β then

dzn+1
α,g = 0 (3.3.2)

Let Tn+1 be the vector space generated by yn+1
α ’s and zn+1

α,g ’s. On the other hand, since

gn+1 is a rational G-module then the sub-representation of G generated by yn+1
α ’s is a

finite-dimensional vector space, which we shall call T ′n+1. Clearly, Tn+1 is included in

T ′n+1. Hence, Tn+1 is also finite-dimensional. Moreover, it is easy to see that Tn+1 is

also G-invariant, by construction. Let Wn+1 be a vector space identical to Tn+1, as G-

representations. Let Y n+1
α ’s and Zn+1

α,g ’s be elements in Wn+1 corresponding to yn+1
α ’s and

zn+1
α,g ’s, respectively. Finally, for each n, define g(i + 1)∗ to be the differential graded Lie

algebra obtained from g(i)∗ by freely adding a basis of Wn+1 (in degrees n+ 1) such thatd(Y n+1
α ) = xnα

d(Zn+1
α,g ) = 0

(3.3.3)

and let φ(i+ 1) : g(i+ 1)∗ → g∗ denote the unique extension of φ(i) satisfyingφ(i+ 1)(Y n+1
α ) = yn+1

α

φ(i+ 1)(Zn+1
α,g ) = zn+1

α,g .
(3.3.4)
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It is not difficult to see that d and φ(i+ 1) defined in this way are G-equivariant.

We shall prove by induction on i that

Hn(g(i)∗)) ' 0, ∀n ≥ 1

and that the inclusion V0 → g(i)0 induces an isomorphism

V0 → H0(g(i)∗)

for each i ≥ 1. The case i = 1 is obvious by the above explanation. Suppose that it holds

for i, we must prove that it also holds for i + 1. Indeed, by construction, we have the

following commutative diagram

V0 H0(g∗)

H0(g(i)∗)

∼=

θ(i)∼=

Hence, φ(i) is an isomorphism in degrees ≥ 0. Thus, g(i + 1)∗ is obtained from g(i)∗ by

freely adding generators Y n+1
α and Zn+1

α,g in degree ≤ 0, which implies that

Hn(g(i+ 1)∗) ' 0

for all n ≥ 0. Furthermore, we can write

g(i+ 1)0 ' g(i)0 ⊕ Y0 ⊕ Z0

where Y0 and Z0 are the subspaces generated by the elements Y 0
α and Z0

α,g, constructed

as above. Note that the differential on g(i+ 1)∗ induces an injective map

d : Y0 → g(i)−1/dg(i)0

because by construction the set of dY 0
α = x−1

α form a basis for

ker(θ)−1 ⊂ g(i)−1/dg(i)0 ⊆ g(i+ 1)−1/dg(i+ 1)0.

This guarantees that there are no new cycles coming from Y0. However, the space Z0

consists merely of new cycles on g(i+ 1)0 by (3.3.3). Therefore, in general,

V0
∼= H0(g(i)∗) 6= H0(g(i+ 1)∗).
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In order to remedy this situation, we note that there is a canonical isomorphism

θ(i) : H0(g(i)∗ → H0(g∗)

as G-representations. By (3.3.2), z0
α,g ∈ g0 is a cycle. Let z0

α,g denote its homology class

in H0(g∗). So, there exists a unique homology class z′
0
α,g ∈ H0(g(i)∗) such that

θ(i)(z′
0
α,g) = z0

α,g.

On the other hand, we have a decomposition of

g(i)0 = E0 ⊕Z0(g(i)∗)

where E0 is some subspace and Z0(g(i)∗) is the space of cycles. Thus,

g(i+ 1)0 ' E0 ⊕Z0(g(i)∗)⊕ Z0 ⊕ Y0

Let π : Z0(g(i)∗)→ H0(g(i)∗) denote the canonical projection. We define a linear map

Φ : Z0(g(i)∗)⊕ Z0 → H0(g(i)∗)

as follows: Φ(x) = π(x) if x ∈ Z0(g(i)∗),

Φ(Z0
α,g) = z′

0
α,g for any Z0

α,g ∈ Z0.

Therefore, we have a decomposition

Z0(g(i)∗)⊕ Z0 = ker(Φ)⊕Z0(g(i)∗)⊕ Z0

where Z0(g(i)∗)⊕ Z0 is isomorphic to the quotient (Z0(g(i)∗)⊕ Z0)/ ker Φ. If we denote

by g(i+ 1)0 the minimal G-stable sub-vector space generated by E0⊕Z0(g(i)∗)⊕ Z0⊕Y0

under the G-action on g(i + 1)0 then g(i+ 1)0 is in general not a Lie sub-algebra of

g(i + 1)0. Let ˜g(i+ 1)0 be the Lie sub-algebra generated by g(i+ 1)0 under the Lie

bracket of g(i+ 1)0. Replace the 0th-component g(i+ 1)0 of g(i+ 1)∗ by ˜g(i+ 1)0 with the

induced differential map and the induced map of φ(i+ 1). Note that these induced maps

are well-defined by construction (3.3.3) and (3.3.4). Now, with this new dgla g(i+ 1)∗, we

have at last that

H0(g(i)∗) ∼= H0(g(i+ 1)∗)

because on the homological level, each new cycle in Z0 is eventually some cycle coming

from g(i)0, by construction. In other words, there is no new homology class created by Z0

in H0(g(i+ 1)∗). This finishes the induction argument.
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Finally, we let g′∗ denote the colimit of the sequence {g(i)∗}i≥0. The canonical map

g′∗ → g∗ is surjective on homology since the map g(1)∗ → g∗ is surjective on homology. Let

η ∈ ker(H∗(g
′
∗) → H∗(g∗)) then η is represented by a class η ∈ ker(H∗(g(i)∗) → H∗(g∗))

for i sufficiently large. By construction, the image of η vanishes in H∗(g(i + 1)∗). Thus,

η = 0 so that

g∗ = colim
−→

g(i)∗.

This ends the proof.

3.4 Applications: Derived deformations of some geometric

objects

3.4.1 Semi-universal deformation of algebraic schemes

Let X0 be an algebraic scheme defined over k. For each A ∈ dgArtk, denote CA the

category of flat morphisms of derived schemes X → Spec(A). A morphism between two

objects X → Spec(A) and Y → Spec(A) in CA is a commutative square

X Y

Spec(A) Spec(A)

in dSchk. Consider the functor

Def : dgArtk → SEns

A 7→ N (CA/quasi-isomorphisms)

where N is the nerve of the category CA. Let φ: A→ A′ be a morphism in dgArtk, then

we have an induced morphism

Def(φ) : Def(A)→ Def(A′)

(X → Spec(A)) 7→ (X ×Spec(A) Spec(A′)→ Spec(A′))

which clearly preserves the quasi-isomorphisms. The fact that X0 ∈ Def(k) allows us to

define a new functor

DefX0 : dgArtk → SEns

which sends (A
φA→ k) to the homotopy fiber at X0, i.e. Def(A) ×Def(k) X0 which is

equivalent to the following cartesian diagram
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Def(A)×Def(k) X0 X0

Def(A) Def(k)

i

Def(φA)

Thus, DefX0 is the derived deformation functor of X0 and DefX0 ∈ FMP. If X0 =

Spec(B0) is an affine scheme, DefX0(A) is simply the set of cofibrant flat commutative

A-dg-algebras B such that we have the following cartesian diagram

B B0

A k

i

φA

in cdgak.

Remark 3.4.1. The formal moduli problem DefX0 defined as above is the natural extension

of the functor of artinian rings FX0 discussed in the introduction of this chapter.

Using the setting of Section 3.2, we now compute the dgla associated to DefX0 . The

case that X0 = Spec(B0) is an affine scheme shall be treated in advance. We follow strictly

the sketch of proof given by B. Toën in [34, Page 1111-30]. Theorem 3.2.5 turns out to be

the key tool. Let gA∗ := D(A) for each A ∈ dgArtk, and f be the ∞-functor defined as in

Theorem 3.2.5.

Theorem 3.4.1. The dgla corresponding to the derived deformation functor of an affine

scheme X0 = Spec(B0) is

Derk(B
′
0, B

′
0)

the dg-derivations of B′0, where B′0 is a cofibration replacement of (k → B0).

Proof. Observe that by definition all the elements of dgArtk are connective (cf. Definition

3.2.15) and then so are those of DefB0(A) for each A ∈ dgArtk (by flatness). Let B ∈
DefB0(A) then f(B) is a connective gA∗ -module in Modcn

gA∗
. Recall again that RepgA∗

has

a symmetric monoidal structure. Thus, saying that f(B) is a cdga in RepgA∗
is the same

as saying that B is a representation of gA∗ and the “multiplication” map

B ⊗k B → B

is a morphism of representations. However, by Definition 3.2.16 about tensor product of

two representations, the multiplication map

B ⊗k B → B
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being a morphism of representations gA∗ means exactly that each l ∈ gA∗ acts on f(B) by

derivations. Equivalently, there exists a morphism of dglas:

gA∗ → Derk(f(B), f(B)).

In brief, what we have just done is to associate to each element of DefB0(A), an element

of MapLiek(gA∗ ,Derk(f(B), f(B))). Finally, since f is an equivalence of ∞-categories, this

correspondence is an equivalence of simplicial sets.

Now, unwinding the definition of f , we have

f(B) = U(Cn(gA∗ ))⊗L
C∗(gA∗ ) B

The cone Cn(gA∗ ) of gA∗ is a contractible chain complex since its underlying chain com-

plex can be identified with the mapping cone of the identity gA∗ → gA∗ . In particular,

0 → Cn(g∗
A) is a quasi-isomorphism of dglas. Because the universal enveloping alge-

bra construction preserves quasi-isomorphisms, U(0) = k → U(Cn(g∗
A)) is also a weak

equivalence. Thus,

U(Cn(gA∗ ))⊗L
C∗(gA∗ ) B ' k ⊗

L
C∗(gA∗ ) B.

Moreover, by Proposition 3.2.4, we have an equivalence in dgArtk

A
'→ C∗(gA∗ ).

As a consequence,

f(B) ' U(Cn(gA∗ ))⊗L
C∗(gA∗ ) B ' k ⊗

L
A B.

By the definition of B, this is just the image B0 in the homotopy category of cdgas. In

other words, if we take B′0 a cofibrant replacement of B0 then

f(B) ' B′0.

Therefore, we have an equivalence

DefB0(A) ' MapLiek(gA∗ ,Derk(B
′
0, B

′
0))

as simplicial sets. This completes the proof.

Now, we deal with the general case where X0 is an arbitrary scheme.

Theorem 3.4.2. The dgla corresponding to the derived deformation functor DefX0 of a

scheme X0 is

RΓ(X0,TX0/k)

where TX0/k is the tangent complex of X0 over k.
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Proof. For A ∈ dgArtk, an object in DefX0(A) is a flat morphism of derived schemes

X → Spec(A). By Theorem 3.2.6, it corresponds to a flat morphism

A→ RΓ(X,OX).

By the proof of affine case, it is equivalent to a morphism of dglas:

gA∗ → Der(f(RΓ(X,OX)), f(RΓ(X,OX))) ' Der(RΓ(X0,OX0),RΓ(X0,OX0)).

On the other hand,

Der(RΓ(X0,OX0),RΓ(X0,OX0)) = RΓ(X0,Der(OX0 ,OX0))

= RΓ(X0,Der(OX0 ,OX0))

= RΓ(X0,MapLqcoh(X)(LX0 ,OX0))

= RΓ(X0,TX0/k).

where Lqcoh(X) is the∞-category of derived quasi-coherent sheaves of X0. Thus, we have

just proved that

DefX0(A) ' MapLiek(gA∗ ,RΓ(X0,TX0/k)

as simplicial sets. This tells us that the dgla corresponding to DefX0 is RΓ(X0,TX0/k).

Theorem 3.4.3. If X0 is either an affine scheme with at most isolated singularities or a

complete algebraic variety then DefX0 is semi-prorepresentable. Consequently, the classical

functor of deformations π0(DefX0) of X0 has a semi-universal element.

Proof. Since X0 is either an affine scheme with at most isolated singularities or a complete

algebraic variety then all the cohomology groups of RΓ(X0,TX0/k) are finite-dimensional

vector spaces. Moreover, RΓ(X0,TX0/k) is cohomologically concentrated in [0,+∞).

Therefore, DefX0 is semi-prorepresentable by Theorem 3.3.2. The last statement follows

immediately by Remark 3.3.3.

3.4.2 Equivariant semi-universal deformation of algebraic schemes

Now, suppose further that there is an algebraic group G acting algebraically on X0.

For A ∈ dgArtk, we consider a special type of derived deformations of X0 over Spec(A).

Definition 3.4.1. An element π : X → Spec(A) of DefX0(A) is said to be G-equivariant

if the following conditions are satisfied

(i) X and Spec(A) can be equipped with some G-actions with respect to which π is

G-equivariant,

(ii) The isomorphism X ×Spec(A) Spec(k)
∼=→ X0 is G-equivariant.
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Remark 3.4.2. For each A ∈ dgArtk, we can define a G-action on DefX0(A) by the central-

fiber-changing trick as follows. For each g ∈ G and each (X → Spec(A)) ∈ DefX0(A),

g.(X → Spec(A)) is the following deformation

X0 X0 X

· · Spec(A).

g−1

∼=

ι

π

Hence, we obtain a G-action on DefX0 , which then gives a G-action on the associated dgla

RΓ(X0,TX0/k), by Theorem 3.2.3. Moreover, the initial G-action of X0 induces also a

G-action on the derived global section RΓ(X0,TX0/k) of its tangent complex TX0/k. It can

be seen that this G-action coincides with the one induced by the central-fiber-changing

trick.

We would like to give a characterization of G-equivariant derived deformation in terms

of dglas. As usual, we deal with the affine case first. LetX0 = Spec(B0) be an affine scheme

equipped with an action of some algebraic group G. If B′0 is a cofibrant replacement of

k → B0 then by the functoriality of the cofibrant replacement functor, we have an induced

G-action on B′0 and then a G-action on Derk(B
′
0, B

′
0) is given by conjugations, i.e. for

g ∈ G and d ∈ Derk(B
′
0, B

′
0), we have that g.d = g ◦ d ◦ g−1. Hence, Derk(B

′
0, B

′
0) is a

G-object in Liek.

Theorem 3.4.4. For A ∈ dgArtk, a G-equivariant derived deformation X → Spec(A)

of X0 = Spec(B0) corresponds homotopically to a G-equivariant maps of dglas: D(A) →
Derk(B

′
0, B

′
0)

Proof. For A ∈ dgArtk, let gA∗ := D(A) and let φA : A → B be an object in DefGX0
(A).

First, by Theorem 3.4.1, it corresponds to a morphism of dglas

ΦA : gA∗ → Derk(B
′
0, B

′
0).

We shall prove that ΦA is G-equivariant with respect to the fixed G-action on Derk(B
′
0, B

′
0)

and the G-action on gA∗ , induced from the G-action on A by the functor D. Indeed, let

A′ B

A B

g

φA′

h

φA
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be a commutative diagram in cdgak where g and h are isomorphisms. Let also fA and fA′

be the functor f corresponding to gA∗ and gA
′
∗ , respectively in Theorem 3.2.5. By Koszul

duality, we have a morphism

D(g) : gA
′
∗ = D(A′)→ gA∗ = D(A).

Note as well that we have a canonical morphism

A′ → A′ ⊗A B.

Thus, A′⊗AB ∈ModcnA′ so that fA′(A
′⊗AB) is a representation of gA

′
∗ . The functoriality

of fA′ tells us exactly that the differential graded vector space of fA′(A
′ ⊗A B) is nothing

but fA(B) with action of gA
′
∗ given by the morphism

D(g) : gA
′
∗ → gA∗ .

More precisely, if we let

α : gA∗ ⊗k fA(B)→ fA(B)

be the representation of gA∗ corresponding to the arrow φA : A→ B then

β : gA
′
∗ ⊗k fA(B)→ fA(B)

x⊗ v 7→ α(D(g)(x)⊗ v)

is the representation of gA
′
∗ corresponding to fA′(A

′ ⊗A B). Now, let

α′ : gA
′
∗ ⊗k fA′(B)→ fA′(B)

be the representation of gA
′
∗ corresponding to the arrow φA′ : A′ → B. Then h corresponds

exactly to a morphism of two representations α′ and β of gA
′
∗ , which will be denoted by

ρh : α′ → β. In other words, for x ∈ gA
′
∗ and v ∈ fA(B), we have

ρh(α′(x⊗ v)) = β(x⊗ ρh(v))

which is the same as

ρh(α′(x⊗ v)) = α(D(g)(x)⊗ ρh(v)).

Now, let µ : G → Autk(A) and ν : G → Autk(B) be the G-actions on A and B,

respectively. By the functoriality of D and that of fA, we have induced actions on gA∗ and
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fA(B) given by

µ : G→ Autk(g
A
∗ )

g 7→ D(µ(g))

and

µ : G→ Autk(fA(B))

g 7→ ρν(g),

respectively. Consider the following commutative diagram.

A B

A B

µ(g)

φA

ν(g)

φA

By the previous paragraph, we have

ρν(g)

(
α(x⊗ v)

)
= α

(
D
(
µ(g)

)
(x)⊗ ρν(g)(v)

)
,

for x ∈ gA∗ and v ∈ fA(B). Or equivalently,

ρν(g) ◦ ΦA(x) = ΦA(D(µ(g))x) ◦ ρν(g)

which is the same as

ΦA(D(µ(g))x) = ρν(g) ◦ ΦA(x) ◦ ρ−1
ν(g)

But fA(B) is nothing but B′0 so that

ρν(g) = g

for all g ∈ G. So,

ΦA(D(µ(g)(x)) = g.ΦA(x).

This precisely means the following diagram
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gA∗ Derk(B
′
0, B

′
0)

gA∗ Derk(B
′
0, B

′
0)

D(µ(g))

ΦA

g.

ΦA .

Therefore, ΦA is G-equivariant. This ends the proof.

Finally we deal with X0 a general algebraic scheme. Let TX0/k be its tangent complex

and RΓ(X0,TX0/k) be its derived global section equipped with the G-action in Remark

3.4.2.

Theorem 3.4.5. For A ∈ dgArtk, a G-equivariant derived deformation X → Spec(A) of

X0 corresponds homotopically to a G-equivariant maps of dglas: D(A)→ RΓ(X0,TX0/k)

Proof. The proof is just an adaptation of the one of Theorem 3.4.4 and that of Theorem

3.4.2, in the equivariant case.

The following theorem generalizes the result of the existence of equivarianceG-structure

on versal deformations of algebraic schemes, obtained by D.S. Rim, in the derived setting.

Theorem 3.4.6. If X0 is either an affine scheme with at most isolated singularities or a

complete algebraic variety and G is a linearly reductive group acting algebraically on X0,

there exists a G-equivariant structure on the semi-prorepresentable dg-object of DefX0.

Consequently, the classical functor of G-equivariant deformations π0(DefX0) of X0 has a

G-equivariant semi-universal element.

Proof. Since G acts algebraically on X0 then the tangent complex TX0/k of X0 is a complex

of G-equivariant quasi-coherent OX0-modules (cf. [29] for the notion of G-equivariant

sheaves). Let us denote the category of G-equivariant quasi-coherent OX0-modules by

QCohGX0
and the corresponding derived category by D(QCohGX0

). By [29, Lemma 2.13], the

derived global section of TX0/k can be calculated in D(QCohGX0
). Using [29, Proposition

2.16] for the structure morphism X0 → k, we have that

RΓ(X0,TX0/k) ∈ D(QCohGk ) = D(Repk(G))

where Repk(G) is the category of rational representations of G and D(Repk(G)) is its

associated derived category. Hence each component of RΓ(X0,TX0/k) is a rational G-

module.

For the sake of Theorem 3.3.2, DefX0 is semi-prorepresentable by a pro-object K in

dgArtk. Let k∗ be the corresponding dgla of K. By Lemma 3.3.2 and Theorem 3.3.3,

there exists a compatible G-action on k∗ which is also versal in the sense mentioned therein.

Equivalently, there exists a compatible G-action on K which is versal in the following
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sense. By Theorem 3.4.5, any G-equivariant derived deformation X → Spec(A) of X0

corresponds to a (non-homotopic) G-equivariant map of dglas: QD(A)→ RΓ(X0,TX0/k)

which then corresponds to a G-equivariant map of dglas QD(A) → k∗. Finally, the last

map gives rise to a G-equivariant map of cdgas QK → A.

For the last statement, restricting our fmp on the category of local artinian rings

Artk and unwinding the definition of versality mentioned in the previous paragraph, we

can see that H0(QK) is nothing but the base space of the G-equivariant semi-universal

constructed by Rim in Theorem I.

3.4.3 Equivariant deformations of complex compact manifolds

Let X0 be a complex complex manifold and TX0 be its holomorphic tangent bundle.

Denote by Ap,q the sheaf of differential forms of type (p, q) and by Ap,q(TX0) the sheaf

of differential forms of type (p, q) with values in TX0 . Let g∗ be the following differential

graded Lie algebra

Γ(X0,A0,0(TX0))
∂̄→ Γ(X0,A0,1(TX0))

∂̄→ Γ(X0,A0,2(TX0))
∂̄→ · · ·

with the Lie bracket defined by

[φdz̄I , ψdz̄J ] = [φ, ψ]′dz̄I ∧ z̄J

where φ, ψ ∈ A0,0(TX0) are vector fields on X0, [−,−]′ is the usual Lie bracket of vector

fields, I, J ⊂ {1, . . . , n} and z1, . . . , zn are local holomorphic coordinates. Note that g∗ is

concentrated in degrees ≥ 0. It is well-known that deformations of X0 is governed by this

g∗. Furthermore if there is a reductive Lie group acting holomorphically on X0, then g∗

receives naturally an induced linear G-action and any G-equivariant deformation of X0 is

controlled by g∗ equipped with this induced G-action (for a quick review of (equivariant)

deformations of complex compact manifolds, we refer the reader to Chapter 2).

Now, we would like to recall the classical deformation functor MCg∗ associated to

g∗, defined via the Maurer-Cartan equation (see [25, §6] for more details). We have two

functors:

(1) The Gauge functor

Gg∗ : ArtC → Grp

A 7→ exp(g0 ⊗mA)

where mA is the unique maximal ideal of A and Grp is the category of groupoids.

(2) The Maurer-Cartan functor MCg∗ : ArtC → Sets defined by

MCg∗ : ArtC → Grp
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A 7→
{
x ∈ g1 ⊗mA | ∂x+

1

2
[x, x] = 0

}
.

For each A, the gauge action of Gg∗(A) on the set MCg∗(A) is functorial in A and gives

an action of the group functor Gg∗ on MCg∗ . This allows us to define the quotient functor

MCg∗ : ArtC → Sets

A 7→MCg∗(A)/Gg∗(A),

Let DefX0
: ArtC → Sets (resp. DefGX0

: ArtGC → Sets ) be the functor which associates

to each local artinian k-algebra (resp. G-local artinian k-algebra) A, the isomorphism

(resp. G-equivariant isomorphism) classes of flat proper morphisms of analytic spaces

X → Spec(A) with an isomorphism (resp. G-equivariant isomorphism)

X ×Spec(A) Spec(C) ∼= X0.

The following is fundamental (cf. [25, Theorem V.55]).

Theorem 3.4.7. There is an isomorphism

DefX0
∼= MCg∗

as functors of Artin rings.

On one hand, the classical deformation functor MCg∗ can be naturally extended to a

formal moduli problem in Lurie’s sense (cf. §3.2.6) via a simplicial version of the Maurer-

Cartan equation (see [15] for such a construction). In other words, we have a fmp

MCg∗ : dgArtC → SEns

such that

π0(MCg∗) = MCg∗ . (3.4.1)

On the other hand, there is an equivalence

MCg∗ → MapLieC(D(−), g∗) (3.4.2)

as fmps (cf. [21, §2]). Consequently, we can think of MapLieC(D(−), g∗) as a natural

extension of DefX0
in the derived world.

Theorem 3.4.8. The fmp MapLieC(D(−), g∗) is semi-prorepresentable. Consequently, the

classical functor of deformations DefX0
has a formal semi-universal element.

Proof. The first statement follows from the fact that g∗ is concentrated in degrees [0,+∞)

99



and that all the cohomologies H i(g∗) are finite-dimensional vector spaces. The last state-

ment is the immediate consequence of the following chain of isomorphisms

DefX0
∼= MCg∗

∼= π0(MCg∗)
∼= π0(MapLieC(D(−), g∗))

and of Remark 3.3.3.

Remark 3.4.3. The above theorem gives an algebraic approach to produce a formal solution

to the deformation problem of complex compact manifolds. The base of the formal semi-

universal element can be thought of as a formal Kuranishi space in the classical sense.

However, the hardest part is always to ensure that among the formal solutions, there

exists at least a convergent one.

Finally, we allow the group action to rejoin the game. The rest of this section is devoted

to proving the existence of a formal G-equivariant semi-universal element for the functor

DefGX0
. Recall that g has naturally a G-action induced from the one on X0.

Remark 3.4.4. In order to approximate g∗, we can not apply directly Lemma 3.3.2 as in

the algebraic case since each component of g∗ is not a rational G-module, in general. This

is the reason why we shall make use of a G-equivariant version of Hodge decomposition

for complex compact manifolds.

Lemma 3.4.1.

g∗ = colimi g(i)∗

where

(i) each g(i)k is finite-dimensional,

(ii) g(i)∗ is cohomologically concentrated in [0,+∞),

(iii) each g(i)∗ carries a G-action and the colimit of these G-actions gives back the inital

G-action on g∗.

Proof. We treat the case when G is a compact Lie group first then the case when G is a

reductive complex Lie group will be deduced by a complexification argument.

We aim to construct by induction a sequence of dglas with G-actions

0 = g(0)∗ → g(1)∗ → g(i)∗ → · · ·

equiped with G-equivariant maps φ(i) : g(i)∗ → g∗ such that

g∗ = colim
−→

g(i)∗

and that for all i ≥ 0

Hn(g(i)∗) ' 0,∀n ≤ −1.

100



For each n ∈ Z, we pick a finite-dimensional graded subspace Vn ∈ gn consisting of cycles

which maps isomorphically onto the cohomology Hn(g∗). Since each Hn(g∗) is naturally

a G-module then so is Vn. We think of V∗ as a differential graded vector space with the

trivial differential. Let g(1)∗ denote the free differential graded Lie algebra generated by

V∗ and let φ(1) : g(1)∗ → g∗ be the canonical map. By construction, we have that φ(1) is

G-equivariant and that

Hn(g(1)∗) ' 0,∀n ≤ −1

and that the inclusion V0 → g(1)0 induces an isomorphism

V0 → H0(g(1)∗).

Now, suppose that i ≥ 1 and that we have built a G-equivariant map φ(i) : g(i)∗ → g∗

extending φ(1). Then φ(i) induces a surjection on cohomologies

θ(i) : H∗(g(i)∗)→ H∗(g∗).

For each n, since nth-component ker(θ)n of ker(θ) is a G-invariant finite-dimensional sub-

vector space of Hn(g(i)∗), we choose a collection of cycles {xnα}α∈An ⊂ g(i)n whose images

form a basis for ker(θ)n, where An is a finite index set. For each xnα, we choose zα ∈ gn−1

such that

φ(i)(xnα) = ∂̄zn−1
α . (3.4.3)

Since G is compact, we can impose a G-invariant Hermitian metric 〈·, ·〉 on TX0 by means

of Weyl’s trick. Therefore, we have a G-invariant metric on gp = Γ(X0,A0,p(TX0)). As

usual, we find the formal adjoint ∂
∗

of ∂. Since G acts on X0 by biholomorphisms then

the operator ∂ is G-equivariant. By the adjoint property together with the fact that the

imposed metric is G-invariant, we also have that ∂
∗

is G-equivariant. Hence, so is the

Laplacian � := ∂
∗
∂ + ∂∂

∗
. As a matter of fact, Hodge theory provides us an orthogonal

decomposition

gp = H0,p
⊕
�gp (3.4.4)

as representations of G and two linear operators:

(a) The Green operator G : gp → �gp,

(b) The harmonic projection operator H : gp → H0,p,

where H0,p is the vector space of all harmonic vector (0, p)-forms on X0 (this space can

also be canonically identified with Hp(X0, TX0), such that for all v ∈ gp, we have

v = Hv +�Gv. (3.4.5)
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Therefore, we can deduce the following decomposition.

gp = H0,p ⊕ ∂̄gp−1 ⊕ ∂̄∗gp+1. (3.4.6)

Now, setting yn−1
α = ∂

∗Gφ(i)(xnα), we have that

φ(i)(xnα) = �Gφ(i)(xnα), since φ(i)(xnα) has no hamornic part by (3.4.3),

= (∂
∗
∂ + ∂∂

∗
)Gφ(i)(xnα)

= ∂
∗
∂Gφ(i)(xnα) + ∂∂

∗Gφ(i)(xnα)

= ∂
∗G∂φ(i)(xnα) + ∂∂

∗Gφ(i)(xnα), since G commutes with ∂,

= ∂∂
∗Gφ(i)(xnα) by (3.4.3),

= ∂yn−1
α .

Let Tn−1 be the vector space generated by yn−1
α ’s. Since both ∂

∗
and G are G-equivariant

(see Lemma 2.4.1) then Tn−1 is a finite-dimensional sub-representation of G. Let Wn−1 be

a vector space identical to Tn−1, as G-representations. Let Y n−1
α ’s be elements in Wn−1

corresponding to yn−1
α ’s. Finally, for each n, define g(i+ 1)∗ to be the differential graded

Lie algebra obtained from g(i)∗ by freely adding a basis of Wn−1 (in degrees n − 1) such

that

∂(Y n−1
α ) = xnα

and let φ(i+ 1) : g(i+ 1)∗ → g∗ denote the unique extension of φ(i) satisfying

φ(i+ 1)(Y n−1
α ) = yn−1

α .

It is easy to see that ∂ and φ(i+ 1) defined in this way are G-equivariant. The rest of the

proof now is identical the the one given in Lemma 3.3.1.

Finally, for G a general reductive complex Lie group, let K be its maximal compact

subgroup whose complexification is exactly G. Then by the case of compact groups, we

have the limit

g∗ = colimi g(i)∗

satisfying (i), (ii) and (iii) in Lemma 3.4.1 for K. Complexifying all the maps φ(i) will

give the desired colimit for g∗.

Theorem 3.4.9. There exists a G-equivariant structure on the semi-prorepresentable ob-

ject of MapLieC(D(−), g∗) with respect to the action on g∗, induced by the fixed one on

X0. Consequently, the classical functor of G-equivariant deformations DefGX0
of X0 has a

formal G-equivariant semi-universal element.

Proof. For the sake of Theorem 3.3.2, MapLieC(D(−), g∗) is semi-prorepresentable by a

pro-object K in dgArtk. Let k∗ be the corresponding dgla of K. By Lemma 3.4.1 and
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Theorem 3.3.3, there exists a compatible G-action on k∗ which is also versal in the sense

mentioned therein. Equivalently, there exists a compatible G-action on K which is versal

in the following sense. For each A ∈ dgArtC, denote by Q(A) any cofibrant replacement

of A. Then any (non-homotopic) G-equivariant map of dgla: QD(A) → g∗ which then

corresponds to a G-equivariant map of cdgas from QK → A. Note also that H0(QK) is

a pro-object in ArtGC .

For the last statement, we claim that DefGX0
is semi-prorepresentable by H0(QK). It

is equivalent to proving that

(a) the morphism of functors Hom
Ârt

G

k

(H0(QK),−)→ DefGX0
defined by û is surjective

where û ∈ DefGX0
(H0(QK)),

(b) Hom
Ârt

G

k

(H0(QK), k[ε]/(ε2))→ DefGX0
(C[ε]/(ε2)) is bijective

(cf. Remark 3.3.3 above). Let X → Spec(A) be an element of DefGX0
where A ∈ ArtGC .

By Theorem 2.3.2, it corresponds to a G-equivariant map ΦA : Spec(A)→ g1 with respect

to the action on g∗, induced by the fixed one on X0 such that the following conditions are

satisfied:

(i) ΦA(0) = 0,

(ii) ΦA(a) + 1
2 [ΦA(a),ΦA(a)] = 0 for all a ∈ Spec(A).

This is equivalent to a G-equivariant map φA : QD(A) → g∗ by Theorem 3.4.7, isomor-

phisms 3.4.1, 3.4.2. Hence, by the previous paragraph, we have that φA corresponds to a

G-equivariant map of cdgas σA : QK → A. However, A is concentrated in degree 0. Thus,

σA can be given as a G-equivariant map H0(QK)→ A. Hence (a) is proved. Finally, (b)

can be deduced from the fact that

Hom
Ârtk

(H0(QK), k[ε]/(ε2)) = π0(MapLieC(D(k[ε]/(ε2)), g∗))

= HomLieC(D(k[ε]/(ε2)), g∗).

This completes the proof.

Remark 3.4.5. Once again a formal version of the existence G-equivariant Kuranishi space

shown in Chapter 2 is given by a purely algebraic method except the step in which we used

Hodge decomposition. This reflects a natural phenomenon when dealing with analytic

deformations of geometric objects, i.e. a formal solution is always somewhat easy to

produce.
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