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Résumé : La performance attendue d’un système
peut généralement différer de sa performance opé-
rationnelle en raison de la variabilité de certains
paramètres. Habituellement, la phase de concep-
tion est divisée en deux phases différentes. La pre-
mière phase consiste à déterminer la conception pré-
optimale. Grâce à l’utilisation de logiciels numé-
riques, la meilleure conception possible est choisie.
Il s’agit de tenir compte de certaines performances
idéales à atteindre en formulant des hypothèses –
qui peuvent être subjectives– traduisant la varia-
bilité de certains paramètres. La deuxième phase
consiste, quant à elle, à certifier par des expériences
à taille réelle que la conception déterminée précé-
demment est valide. De cette façon, la conception
post-optimale est spécifiée. Cette deuxième phase est
la plus coûteuse ; c’est pourquoi les industriels, no-
tamment dans le domaine aéronautique, cherchent
à réduire le recours aux expériences à taille réelle.
L’Optimal Uncertainty Quantification (OUQ) est un
outil mathématique puissant qui peut être utilisé
pour borner rigoureusement la probabilité de dépas-
ser un seuil de performance donné pour des condi-
tions opérationnelles ou des caractéristiques de sys-
tème incertaines. Cet outil conduit à la résolution
d’un problème d’optimisation sur l’ensemble des me-
sures de probabilités admissibles, permettant ainsi
de ne pas à avoir à formuler des hypothèses subjec-
tives qui peuvent être fortes. Ce problème d’optimi-
sation est a priori un problème non-convexe et forte-
ment contraint, dans un espace de dimension infinie.
Ainsi, il est généralement difficile à résoudre sur le
plan numérique. Néanmoins, il peut être réduit à un
problème d’optimisation équivalent en dimension fi-
nie.

Ce travail de thèse porte, dans un premier temps,
sur l’application de l’outil OUQ concernant notam-

ment des cas issus du domaine de l’aéronautique
permettant de borner rigoureusement la variation
de fonctions de performance classiquement étudiées
en aérodynamique, telles que la portance ou la trai-
née. Néanmoins, même après réduction du problème
d’optimisation, cette approche demeure complexe et
l’exactitude des résultats obtenus en est ainsi impac-
tée.

Afin de pallier cette difficulté, un algorithme per-
mettant d’assurer la validité de ces résultats numé-
riques a été par la suite formulé. Cet algorithme est
analogue à la régression isotonique mais diffère sur
les hypothèses établies. La convergence de cet algo-
rithme a été démontrée. L’algorithme a été ensuite
validé sur des cas tests numériques ainsi que sur un
cas aérodynamique. Quoi qu’il en soit, l’application
de la méthode OUQ nécessite d’évaluer la fonction
de performance du système plusieurs dizaines de mil-
liers de fois. De fait, l’usage d’un modèle peu coûteux
en termes de temps est requis.

Dans cette optique, plusieurs méthodes qui per-
mettent de construire des modèles de substitution
rapides à évaluer sont finalement présentées. Une
première méthode fondée sur l’algorithme Kernel
Flow, initialement appliquée à un problème de clas-
sification, est étendue à un problème de régression
permettant la détermination du noyau d’un modèle
de substitution de type processus gaussien. Puis,
deux nouveaux algorithmes sont présentés. Ces algo-
rithmes utilisent l’équivalence qui existe entre l’ap-
proche processus gaussien et l’approche par espace
de Hilbert à noyau reproduisant (Reproducing Ker-
nel Hilbert Space, RKHS) afin de déterminer le
noyau adéquat. Ces différentes méthodes de modèles
de substitution sont appliquées au travers de diffé-
rents cas tests dont des cas du domaine aérodyna-
mique.
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Abstract : The expected performance of engi-
neering systems can significantly differ from their
operational performance due to the variability of
some parameters they depend on. Usually, the de-
sign stage of these systems is divided into two dif-
ferent phases. The first phase consists in determi-
ning the pre-optimal design. Through the use of
numerical simulations, for example, the best pos-
sible design is chosen. The issue is to take into
account the ideal performances to be attained by
formulating hypotheses—which can be subjective—
characterizing the variability of different parameters.
The second phase consists in certifying through full-
scale experiments that the design achieved in the
first phase is valid. In this way, the post-optimal de-
sign is specified. This second phase is the most ex-
pensive one; that is why manufacturers, especially
in the aeronautical sector, are trying to reduce the
number of full-scale experiments. Optimal Uncer-
tainty Quantification (OUQ) is a powerful mathema-
tical tool that can be used to rigorously bound the
probability of exceeding a given performance thre-
shold for uncertain operational conditions or sys-
tem characteristics. This approach leads to the solu-
tion of an optimization problem on a set of admis-
sible probability measures, thus avoiding the need
to make subjective assumptions that can be signifi-
cant. The optimization setting is a non-convex and
strongly constrained problem, in a space of infinite
dimension. Thus, it is generally difficult to solve nu-
merically. Nevertheless, it can be reduced to an equi-
valent finite-dimensional optimization problem.

This thesis work focuses, in a first step, on the
application of the OUQ tool concerning, in parti-
cular, cases from the aeronautical domain, in order

to rigorously bound the variations of performance
functions classically studied in aerodynamics, such
as the lift or the drag. Nevertheless, even after re-
duction of the optimization problem, this approach
remains complex and the accuracy of the obtained
results is thus impacted.

In order to overcome this difficulty, an algo-
rithm has been formulated that allows to ensure
the validity of these numerical results. This algo-
rithm is analogous to isotonic regression but dif-
fers from the assumptions made. Its convergence has
been demonstrated, and it has been validated on
simple validation test cases as well as on a more
complex aerodynamic case. Nevertheless, the appli-
cation of the OUQ framework requires to evaluate
the performance function of the system several tens
of thousands of times. Therefore, the use of a time-
consuming model is not feasible and a computatio-
nally cheap model is required.

With this in mind, several methods are finally
presented for the construction of surrogate models
that are simple to evaluate. A first approach ba-
sed on the Kernel Flow algorithm initially applied
to a classification problem is extended to a regres-
sion problem for the determination of the kernel (co-
variance) function in Gaussian process regression.
Then, two new algorithms are presented. These al-
gorithms use the equivalence between the Gaussian
process regression approach and the Reproducing
Kernel Hilbert Space (RKHS) approach to deter-
mine the appropriate kernel function. These different
constructions of surrogate models are applied to va-
lidation test cases and more complex objective func-
tions pertaining to aerodynamic applications.
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Introduction

The greening of air transport and the improvement of its cost efficiency are major
challenges facing the aviation industry and the regulatory government agencies,
both at the national and international levels. The Advisory Council for Aviation
Research and Innovation in Europe (ACARE)1 for instance produced a Strategic
Research and Innovation Agenda2 (SRIA) in 2012 that defined the path to reach
the ambitious goal set out in 2011 by a European group of personalities with the
publication of Flightpath 2050.3 SRIA specified that aircraft technologies in 2020
shoul have reduced their fuel consumption and CO2 emissions by 50% per passenger-
kilometer, NOx emissions by 80%, and perceived noise by 50% in comparison to year
2000. More recently, ACARE has set new environmental goals towards year 2050: a
75% reduction in CO2 emissions per passenger-kilometer, a 90% reduction in NOx
emissions, and a 65% reduction in perceived noise emission relative to the capabilities
of typical new aircraft in 2000. The Clean Sky project,4 launched in 2008, aims at
developing technologies and demonstrators that will allow future aircraft to target the
ACARE environmental goals. Following the success of Clean Sky I, Clean Sky II has
been launched in 2014 with the objective of reaching the 2050 environmental goals
set by ACARE. In the United States, the Continuous Lower Energy, Emissions and
Noise (CLEEN) program5 initiated by the Federal Aviation Administration (FAA)
aims at accelerating the development of new aircraft and engine technologies, and
advancing sustainable alternative jet fuels. This five-year program in collaboration
with, among others, Boeing, Rolls-Royce and Pratt & Whitney, was first launched in
2010. It was sought to develop new technologies in order to reduce noise, emissions,
and fuel burn. For instance, a 40% reduction in fuel burn was targeted at the end
of the program in comparison to year 2000 best-in-class in-service aircraft. In 2020,
building upon the success of the first two CLEEN programs, the FAA initiated a
third CLEEN program, which continues efforts to achieve the same targets.

Either in Europe or the United States, the objectives of reduction of noise,
emissions, and fuel burn are in common and at the heart of designing new aircraft
for the next decades. Whether the safe and economic operation of such a complex
system can be certified with sufficient confidence to warrant continued operation is a
fundamental question in engineering. These objectives rely for a significant part on
design processes based on virtual prototyping through the intensive use of numerical
simulation tools and computers for the prediction of loads, stresses, temperatures,
emissions, noise levels, efficiency, etc. The potential to achieve them is strongly
dependent on the robustness of the virtual prototyping chain, that is, its ability to

1ACARE, Advisory Council for Aviation Research and Innovation in Europe.
http://www.acare4europe.org

2Strategic Research and Innovation Agenda, ACARE.
3Flightpath 2050: Europe’s vision for aviation.
4Clean Sky I: 2008-2017. Clean Sky II: 2014-2024. http://www.cleansky.eu
5CLEEN I: 2010-2015. CLEEN II: 2015-2020. CLEEN III: 2020-2025.

http://www.acare4europe.org
https://www.acare4europe.org/sria
https://op.europa.eu/fr/publication-detail/-/publication/7d834950-1f5e-480f-ab70-ab96e4a0a0ad
http://www.cleansky.eu
http://www.faa.gov/about/office_org/headquarters_offices/apl/research/aircraft_technology/cleen
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cope with errors during execution, and with erroneous inputs.
The certification of the performance of an aircraft, or a system more generally, is

often formulated using statistical concepts, where the objective functions are the mean
and standard deviation of the objective functions assigned to deterministic or worst-
case scenarios. However, it is not enough to probe the system by performing a limited
number of so-called “hero calculations”, or even computing the mean performance
and design margins by means of extensive sampling. Instead, it is essential to be
able to predict the system performance with rigorously quantified uncertainties. By
rigorous we specifically mean that the performance measures (outputs) assigned
to the design processes are certified by mathematically provable bounds, of which
sharpness is not jeopardized by the aggregate of multiple sources of uncertainties.
In this context, certification is understood as the process of guaranteeing that the
probability of exceeding a given threshold a is below an acceptable tolerance ε, which
is typically small. That is, one wants to certify that PX∼µ† [F (X) ≥ a] ≤ ε, where F

is the performance function and X are the random variables following the probability
measure µ†, which influence the performance F . The probability PX∼µ† [F (X) ≥ a]

will be called “probability of failure” in this work. The acceptable tolerance ε vastly
differs from one application to another: ε = 10−9 in the aviation industry (crash
of an aircraft) [3, 13], ε = 0 in the seismic design of nuclear power plants [43, 50],
ε = 0.5 for bridges, etc. In practical cases, the performance function F and/or the
probability measure µ† may not be known, or only partially. For robust certification,
it is thus desirable to develop concepts and methods by which the variability or
uncertainty affecting the operational or embedded inputs of the design processes
are rigorously taken into account and quantified. Determining how likely certain
outputs are if some aspects of the system are not exactly known is the main topic
of the so-called science of Uncertainty Quantification (UQ). An UQ analysis can
be described as in Figure 1. Given some input random variables X following the
probability measure µ†, determine some output functions of interest such as the
probability of failure, i.e. PX∼µ† [F (X) ≥ a], or the probability density function
(PDF) through the performance function F .

Process of an UQ analysis.

Depending on the available information, different methods exist in certification
context in order to handle uncertainties: Monte-Carlo processes [89], Bayesian
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inference [9, 88], stochastic expansion methods [5, 39, 56, 57, 87], antioptimization
[48], etc. However, these methods require assumptions that are often not met in
practice and even vary from one system to another. The main goal of this thesis is
to develop a rigorous approach of UQ in order to robustly certify the operational
efficiency of an aircraft. For instance, concentration-of-measure inequalities [16] are a
powerful tool for rewording these needs into rigorous and precise mathematical terms,
though they are seldom used in engineering applications at this time. Actually,
thanks to the increase of computational power, the use of powerful software to
simulate, notably, the flight of an aircraft and design its shape has been on a sharp
rise during the last decades. In that respect, a numerical model is built in order
to mimic the reality and to account for physical phenomena underlying the system.
The mathematical formulation of a numerical model can be represented as

F : X ⊂ Rd → Y ⊂ R
X 7→ F (X) = Y,

where F is a quantity of interest given by the numerical model, and X is a vector
of the d input variables living in X , the input set. The numerical model and the
performance function share the same notation because the performance function is
computed through the numerical model in practical cases. The input variables X

gather the parameters of the system, which can be geometrical parameters, physical
parameters, operational conditions, numerical error sources, etc. In aerodynamics,
the input parameters are classically the angle of attack of the airfoil, the Mach
number, the shape of the airfoil, etc. In this thesis, the numerical model F is
considered to be deterministic. That is, running it twice with exactly the same
inputs yields the same output. Assuming that the numerical model F is deterministic
does not prevent from studying the effect of the input uncertainties on the output
given by F . Of course, the quality of the output will have an impact on the fidelity
of the system representation. For high-fidelity numerical model, a standard run
can last from a few hours to a few days. In that respect, the costly, high-fidelity
numerical model F can be replaced by a low-cost model G to bypass this obstacle.
This is what is called surrogate modeling. Such methods allow to simplify the model
F in order to considerably reduce the running time without loosing too much fidelity.
Ideally, the low-cost numerical model G must be built such that G ≡ F . Nevertheless,
engineers or regulatory agencies do not totally trust the results obtained through
these simulations so far. Thus certification by means of costly full-scale experiments
is still vastly used. In terms of security and environmental policy, the rules of
certification are very conservative. Feedback from experiments acquired over a long
period of time are used. Hence, design of aircraft has seen very little change over
the last half-century, as demonstrated by the sketch below: Airbus’ and Boeing’s
aircraft are actually very similar to each other.

In recent years, UQ and robust design methodologies have been addressed by a
growing number of researchers and applications. An exponential growth of the number
of publications is observed in this emerging area, of major importance for the future of
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Boeing’s and Airbus’ airplanes picture comparison.

virtual prototyping and risk management. The Optimal Uncertainty Quantification
(OUQ) framework recently developed by Owhadi et al. [2, 64, 72, 75, 112, 144]
could fill the gap between numerical modeling and rigorous certification. It provides
mathematically rigorous tools that can be important assets for robust certification
through numerical modeling.

Outline of the thesis

This thesis work is first focused on the application of the OUQ framework in
Chapter 1. In Section 1.1, we remind concentration-of-measure inequalities of the
McDiarmid type, which can be used in a robust design certification context. Then we
recall the OUQ framework in Section 1.2. In Section 1.2.1, we apply this framework
in the case of McDiarmid’s inequality, and then in Section 1.2.2 we recall that this
framework can be applied in much more general cases. It arises as an optimization
problem and can be solved thanks to the reduction Theorem 1 stated on page 12.
A specific software to solve this optimization problem as well as several examples
are presented in Section 1.3. The mystic framework is presented in Section 1.3.1.
Then, several cases are considered. Firstly, the bending of a circular clamped beam
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is studied in Section 1.3.2 to figure out simply the OUQ framework. Secondly, cases
from the aeronautical domain are considered in Section 1.3.3 and Section 1.3.4 in
order to rigorously bound the variations of performance functions classically studied
in aerodynamics, such as the lift or the drag. Nevertheless, even after reduction of
the optimization problem, this approach remains complex and the accuracy of the
obtained results is thus impacted.

Then in Chapter 2, an algorithm is formulated that allows to ensure the validity of
the numerical results obtained in Chapter 1. This algorithm is analogous to isotonic
regression but differs on the assumptions made—see Section 2.1. An overview of the
problem considered is presented in Section 2.2. Several useful notations are defined
in Section 2.3. The mathematical convergence of the algorithm is demonstrated in
Section 2.4. In Section 2.5, it is validated on simple validation test cases. Then,
it is tested on a more complex aerodynamic case in Section 2.6. Nevertheless, the
application of the OUQ framework requires to evaluate the performance function F of
the system several tens of thousands of times. Therefore, the use of a time-consuming
model is not feasible and a computationally inexpensive model is required.

Chapter 3 outlines different methods to build surrogate models. The general
problem considered in regression is first introduced in Section 3.1. Then several
methods are presented in Section 3.2 for the construction of surrogate models that
are inexpensive to evaluate in a regression context. In Section 3.3, a first approach
based on the Kernel Flow algorithm initially applied to a classification problem is
extended to a regression problem for the determination of the kernel (covariance)
function in Gaussian process regression. Then two new algorithms are presented
in Section 3.4: the sparse spectral kernel ridge regression algorithm detailed in
Section 3.4.3.2, and the non-sparse spectral kernel ridge regression algorithm detailed
in Section 3.4.3.3. These two algorithms are based on a kernel function built within
Mercer’s framework, of which a brief summary is first given in Section 3.4.1. They
also rely on the equivalence between the Gaussian process regression approach and
the Reproducing Kernel Hilbert Space (RKHS) approach to determine an appropriate
kernel. In Section 3.5, a remainder about the Polynomial Chaos Expansion (PCE)
method is given for completeness. Finally, these different constructions of surrogate
models are applied to synthetic test cases in Section 3.6 and more complex objective
functions pertaining to aerodynamic applications in Section 3.7.
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In this chapter, an approach for the certification of a system under uncertainties is
outlined. In Section 1.1 we will first show that certification can be achieved resorting
to Concentration-of-Measure inequalities, more particularly of the McDiarmid type.
Then we will introduce in Section 1.2 the Optimal Uncertainty Quantification (OUQ)
framework developed by Owhadi and his colleagues in the early 2010s. This framework
allows us to obtain optimal bounds on the probability of occurrence of a given scenario
given a certain class of assumptions on the system by transforming an optimization
problem in an a priori infinite-dimensional set to a finite-dimensional one through
a reduction theorem. In Section 1.3, the mystic numerical framework is presented,
which is used to solve the newly obtained finite-dimensional optimization problem.
Then several numerical examples including aerodynamic test cases are carried out
using the OUQ and mystic frameworks.

1.1 Certification using concentration-of-measure inequa-
lities

Concentration-of-measure phenomenon refers to the observation that functions
depending on a large number of variable parameters with controlled oscillations
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in each variable are almost constant. The fluctuations about that constant mean
values are in addition certified by rigorous inequalities, the so-called Concentration-
of-Measure (CoM) inequalities [16, 84] (a nice survey on CoM is also given by T. Tao
on his blog [148]). In this thesis, we shall mainly work with bounded-differences
inequalities of the McDiarmid type [100], which bounds the fluctuations of a real
function X 7→ F (X) away from its mean E{F (X)} without a priori knowledge of the
probability measure P of the random variables X = (X1, . . . , Xd). Assuming that the
latter are mutually independent and take their values in the set X = X1 × . . .×Xd,
where, say, Xj ⊂ R, for j = 1, . . . , d, one has for all a > 0:

P [|F (X)− E{F (X)}| ≥ a] ≤ exp

(
−2 a2

D2
F

)
, (1.1)

where DF = (
∑d

j=1D
2
Fj
)
1
2 is the verification diameter [92] of the function F , and

DFj , j = 1, . . . , d, are its subdiameters defined by:

DFj = sup
x∈X

sup
x′
j∈Xj

∣∣F (x1, . . . xj−1, xj , xj+1, . . . xd)− F (x1, . . . xj−1, x
′
j , xj+1, . . . xd)

∣∣ .
(1.2)

This is the range of fluctuations of F if one freezes all but its j-th variable for some
1 ≤ j ≤ d. These subdiameters can be viewed as nonlinear sensitivity indices. They
can be used to quantify the range of variation of the performance function F from
the ranges of variation of the input parameters X.

To figure out what is meant by this result, one may wish to apply it for the
simple case F (X) = 1

d

∑d
j=1Xj and Xj = [aj , bj ], for which DF j =

1
d(bj − aj) and

the following Hoeffding’s inequality holds [66]:

P [|F (X)− E{F (X)}| ≥ a] ≤ exp

(
−2a2d2∑d

j=1(bj − aj)2

)
.

So if the random variables Xj roughly have the same ranges of variation bj − aj ≃ ∆,
the above bound is exp(−2d(a/∆)2). It says that the probability to deviate from
the mean is exponentially decreasing with d, the number of random variables. This
fundamental result questions the relevance of the objective of handling many sources
of uncertainty simultaneously. In addition, the fact that these inequalities do not
require any information on the marginal probability density functions (PDFs) of the
random variables X is clearly an advantage in design processes of complex systems,
where experimental data may often be scarce. Indeed, the sole data about the
random variables X that are strictly necessary in the above estimates are their
ranges of variation X , independently of their marginal distributions.

Remark 1. If the marginal distribution of each input parameter is known, Equa-
tion (1.1) can be improved by partitioning the input parameter domain. Sullivan et
al. [143] have shown that successive well-chosen divisions generate upper bounds of
the “probability of failure” (1.1) that converge to the exact probability of failure in the
limit of smaller and smaller divisions.
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1.1.1 Application to post-optimization design

Assume now that F is a performance measure of the system under consideration,
such as a drag coefficient for a profile which has to be controlled for varying operational
conditions (Mach number or wind speed, angle of attack, etc.), varying geometries
resulting from manufacturing tolerances, impacts or icing, numerical error sources,
or uncertain physical model parameters, for example [27, 36, 67]. The performance
is formulated as the objective F (X) ≤ a where a is the threshold for the economic
operation of the system. The parameters X are the aforementioned sources of
uncertainties. Then a direct application of McDiarmid’s inequality (1.1) yields the
following certification criterions

P[F (X) ≥ a] ≤ exp

(
−2

(a− E{F (X)})2+
D2

F

)
, (1.3)

P[F (X) ≤ a] ≤ exp

(
−2

(E{F (X)} − a)2+
D2

F

)
, (1.4)

where x+ := max(0, x) (this cutting stems from the fact that if the mean performance
is E{F (X)} ≥ a then very little chance remains to certify the system). Introducing the
design margin M = (a− E{F (X)})+ and the uncertainty measure U = DF of that
system, it follows that the latter is guaranteed to achieve the desirable performance
criterion with the tolerance ε provided that the confidence factor δ = M

U [92, 151]
satisfies exp(−2δ2) ≤ ε, or δ ≥ (−1

2 log ε)
1
2 . Thus not only do CoM inequalities

provide with rigorous certification criteria, but they also yield rigorous quantitative
definitions of design margins, system uncertainties, and confidence factors [92, 151].
The above bound (1.3) ensures that the mean performance E{F (X)} achieved by
the design after, say, optimization processes involving various design parameters,
remains within an acceptable range once variable operational and/or geometrical
conditions are envisaged—hence the terminology post-optimization design.

1.1.2 Post-optimization using simulations

Actually it is expected in the above that the behavior of the system as embodied
in the performance function X 7→ F (X) is known extensively, including its mean
performance E{F (X)}, in order to compute its diameter DF . For example, it could be
assessed through intensive experiments or high-fidelity numerical simulations. Both
approaches are highly expensive and one may wish to achieve robust certification in a
post-optimization process using cheaper tools, such as a lower-fidelity numerical model
or a surrogate model. Denoting the latter by X 7→ G(X), the “true” performance
obtained by experiments or high-fidelity simulations yields different outcomes from
this numerical surrogate—in other words, G(X) ̸= F (X) in general. Consequently
E = F − G may be regarded as the modeling error function of the system. This
function can be used to estimate the verification diameter DF by simply observing
that owing to a standard triangular inequality one has DF ≤ DG +DF−G [75]. Thus
DF is replaced by DG +DF−G in Equation (1.3) and Equation (1.4) above to bound
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the certification criterion. Indeed, applying once again McDiarmid’s inequality (1.1)
to the system response F with reference to its surrogate G it is deduced that:

P[F (X) ≥ a] ≤ exp

(
−2

(a− E{F (X)})2+
D2

F

)
≤ exp

(
−2

(a− E{F (X)})2+
(DG +DF−G)2

)
, (1.5)

and

P[F (X) ≤ a] ≤ exp

(
−2

(E{F (X)} − a)2+
D2

F

)
≤ exp

(
−2

(E{F (X)} − a)2+
(DG +DF−G)2

)
. (1.6)

In this setting DF−G stands for the validation diameter [92] that measures the
discrepancies between the surrogate predictions and the experimental observations
or high-fidelity simulations. Interestingly, one may expect that the error function
E is better behaved than F or G separately because it should vary only slightly—
see Figure 1.1. Hence the computation of DF−G may be performed by means of
rapidly converging iterative schemes with a minimum recourse to evaluations of F
(experiments or high-fidelity simulations). Besides, the computation of DG is based
on intensive calls to the surrogate G, which is however presumably inexpensive to
evaluate.

Figure 1.1: Error function E = F − G. The response function G is close to the “true”
performance F except at some localized areas.

1.2 Optimal concentration inequalities

1.2.1 Optimal McDiarmid’s inequality

In pratical problems, we often do not exactly know the performance function F

and the probability measure µ† of X (hence PX∼µ†). This absence of information,
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usually called epistemic uncertainty, means that we have to consider not an unique
pair (f, µ) which could be the reality (F, µ†) but an admissible set A of measures
µ and functions f . This admissible set A does not uniquely determine the pair
(f, µ) but yields admissible scenarios (f, µ) which could be (F, µ†) given the available
information that one has about the problem. Available information could be obtained
for example from expert judgement or experimental data. In a robust certification
mindset, this leads naturally to compute the best and worst cases of the true
probability PX∼µ† [F (X) ≥ a] given the information included in A. That is, one
seeks to compute the optimal lower and upper bounds:

inf
(f,µ)∈A

PX∼µ[f(X) ≥ a] ≤ PX∼µ† [F (X) ≥ a] ≤ sup
(f,µ)∈A

PX∼µ[f(X) ≥ a]. (1.7)

Throughout this thesis, we simply denote PX∼µ† by P for the true probability measure,
and EX∼µ† by E for the true expected value. Also the probability P[F (X) ≥ a] is
called the “probability of failure” for it is the quantity of interest one aims at bounding.
First, we define the admissible set AMcD which corresponds to the assumptions of
McDiarmid’s inequality [100] as follows:

AMcD =

(f, µ)

∣∣∣∣∣∣∣∣∣
f : X1 × · · · × Xd → R

µ =
⊗d

j=1 µj

EX∼µ{f(X)} = E{F (X)}
Dfj ≤ DFj , j = 1, . . . , d

 . (1.8)

AMcD is the set of response functions f and probability measures µ that could be
X 7→ F (X) and µ† given the information about the constraints imposed by the
verification diameters {DFj}dj=1, the expected value E{F (X)} of the performance
function F , and the independence of the input variables X. The admissible set
AMcD represents here epistemic uncertainty because the response function F and the
PDFs of the input parameters X are not exactly known. Recalling Equation (1.1),
concentration-of-measure inequalities lead to suboptimal bounds. Indeed, it has been
shown in [112] that we can obtain the optimal upper bounds of the probability of
failure P[F (X) ≥ a] by resorting to an optimization problem. By optimal, we mean
that we cannot tighten anymore the upper bounds of the probability of failure given
the information included in AMcD. In that way, we want to determine the least
upper bounds of that probability given the information included in AMcD. Thus, we
are seeking to calculate

U(AMcD) = sup
(f,µ)∈AMcD

PX∼µ[f(X) ≥ a] , (1.9)

where:

P[F (X) ≥ a] ≤ U(AMcD) ≤ exp

(
−2

(a− E{F (X)})2+
D2

F

)
. (1.10)

The solution of Equation (1.9) is generally not tractable because the admissible set
AMcD is possibly infinite-dimensional. Nevertheless, Owhadi et al. have demonstrated
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in [112] that the computation of U(AMcD) can be reduced to a finite-dimensional
admissible set of convex combinations of Dirac masses. This set, denoted by A∆, is
defined as follows:

A∆ =

(f, µ) ∈ AMcD

∣∣∣∣∣∣∣
µk = αkδxk

1
+ (1− αk)δxk

2
, k ∈ J1; dK

αk ≥ 0

xk1, x
k
2 ∈ Xk

 , (1.11)

with [112]:
U(AMcD) = U(A∆).

For an input vector parameter X of dimension one, two and three, one can exhibit
the explicit value of U(AMcD). For higher dimensions, the solution can be found in
[112, Prop. 5.7]. For instance, in the case of dimension two and when E{F (X)} ≤ a,
we have [112, Th. 5.2]:

U(AMcD) =


0 if DF1 +DF2 ≤ a− E{F (X)} ,

(DF1
+DF2

−a+E{F (X)})2

4DF1
DF2

if |DF1 −DF2 | ≤ a− E{F (X)} ≤ DF1 +DF2 ,

1− a−E{F (X)}
max(DF1

,DF2
) if 0 ≤ a− E{F (X)} ≤ |DF1 −DF2 | .

(1.12)
For this specific case, one can note that if 0 ≤ a − E{F (X)} ≤ |DF1 − DF2 |, the
optimal bound does not depend on min(DF1 , DF2). In other words if, for instance,
most of the uncertainty comes from the first variable (i.e. DF1 ≥ a−E{F (X)}+DF2),
then the uncertainty associated with the second variable does not contribute to the
global uncertainty. In order to reduce the least upper bound, a reduction in DF1 is
required. The inequality Df2 ≤ DF2 in AMcD is a non-binding information. We have
a “screening effect” [145, Example 14.26].

1.2.2 General case

This framework can be applied to more general types of admissible sets. However,
in most of these cases, no analytical expression such as Equation (1.12) can be
given. Nevertheless, one can solve the associated optimization problem through the
reduction theorem and the mystic framework [101, 102]. This framework will be
more detailed in Section 1.3.1. The reduction theorem is stated as follows:

Theorem 1 (Reduction theorem [112, 145]). Suppose that X := X1 × · · · × Xd is a
product of Radon spaces. Let A be a moment admissible set:

A =


(f, µ)

∣∣∣∣∣∣∣∣∣∣∣

f : X1 × · · · × Xd → R is a measurable function;
some conditions on f alone;

µ =
⊗d

k=1 µk ∈
⊗d

k=1M1(Xk) and for each f ;

EX∼µ{ϕj} ≤ 0 , for j ∈ J1;n0K;
EXk∼µk

{ϕ(k)
j } ≤ 0 , for j ∈ J1;nkK and for k ∈ J1; dK


, (1.13)

where M1(Xk) is the set of all probability measures on Xk [145, Definition 2.3],
ϕj : X → R and ϕ

(k)
j : Xk → R are prescribed measurable functions. Let U(A) be
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the optimal upper bound of the probability of failure P[F (X) ≥ a] given the available
information in the the admissible set A, that is

U(A) = sup
(f,µ)∈A

PX∼µ[f(X) ≥ a] , (1.14)

then we have U(A) = U(A∆) where:

A∆ =


(f, µ) ∈ A

∣∣∣∣∣∣∣∣∣∣∣
µk =

Nk∑
ik=1

αk
ik
δxk

ik

where Nk = 1 + n0 + nk with k ∈ J1; dK;

αk
ik
≥ 0 ,

∑
ik

αk
ik

= 1;

xkik ∈ Xk


.

(1.15)

Remark 2. The more general reduction theorem [145, Theorem 14.16] says, loosely
speaking, that if for each f defined on X ⊂ Rd, {µ ∈M1(X ) | (µ, f) ∈ A} is specified
by a system of m equality or inequality constraints on expected values of arbitrary
test functions under µ, then for the determination of U(A) it is sufficient to consider
only distributions µ that are convex combinations of at most m+ 1 point masses; the
optimization variables are then the m independent weights and m+ 1 locations in X
of these point masses. If µ factors as a product of distributions (i.e. X is a vector
with independent components), then the reduction theorems apply componentwise.

Remark 3. From Theorem 1, a probability measure µ ∈ A∆ has the following form

µ =

d⊗
k=1

Nk∑
ik=1

αk
ik
δxk

ik

=

(N1,...,Nd)∑
i=(1,...,1)

αiδxi

where

αi = α1
i1α

2
i2 . . . α

d
id
≥ 0,

xi = (x1i1 , x
2
i2 , . . . , x

d
id
) ∈ X .

That is, the support of µ is a rectangular grid in X .

Remark 4. Theorem 1 has been formulated for the optimal upper bound U(A), but
likewise, it is also applicable for the optimal lower bound L(A) = inf(f,µ)∈A PX∼µ[f(X) ≥
a].

Remark 5. Theorem 1 is not limited to the case where the joint law is a product
measure ( i.e. mutually independent random variables). This assumption was used
because this piece of information is vastly encountered in practical problems. One
can integrate other kinds of constraints such as the variance of one of the random
input variable, the mean of another one, the correlations between inputs, etc. More
information can be found in [145, Theorem 14.16].
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Remark 6. If one is interested in certifying that the probability of the performance
function F is below a specified threshold a is below a tolerance ε, that is P[F (X) ≤
a] ≤ ε, instead, Theorem 1 is also applicable. In this case, we are seeking to determine
the optimal lower and upper bounds define as

inf
(f,µ)∈A

PX∼µ[f(X) ≤ a] ≤ P[F (X) ≤ a] ≤ sup
(f,µ)∈A

PX∼µ[f(X) ≤ a], (1.16)

and Theorem 1 holds by simply replacing PX∼µ[f(X) ≥ a] by PX∼µ[f(X) ≤ a].

Thanks to this theorem, the infinite-dimensional optimization problem of Equa-
tion (1.14) can be reduced to a finite-dimensional problem where each marginal
measure µk is supported on Nk = 1 + n0 + nk points of the parameter space Xk, for
n0 being the number of global generalized moment constraints, and nk being the
number of local generalized moment constraints for each random input variable Xk.
That is, each µk is the convex combination of Nk Dirac measures. The support of
µ is a rectangular grid in X . In that way, the search over the admissible measures
µ is now finite-dimensional. Only the values of f on the finite support of µ and
nowhere else are relevant. In that respect, we can evaluate the probability of failure
PX∼µ[f(X) ≥ a] as follows:

PX∼µ[f(X) ≥ a] =

(N1,...,Nd)∑
i=(1,...,1)

αi1[a,+∞[[f(xi)], (1.17)

where

1[a,+∞[[y] =

{
1 if y ∈ [a,+∞[,

0 otherwise.
(1.18)

Additionally, the mean performance function can be calculated as follows:

EX∼µ{f(X)} =
(N1,...,Nd)∑
i=(1,...,1)

αif(xi). (1.19)

The computation of the OUQ bounds (see for example Equation (1.14) for the
maximum) amounts now to finite-dimensional optimization problems in which the
optimization variables are with k ∈ J1; dK and ik ∈ J1;NkK:

• the positions of the support points xkik ∈ Xk of the discrete measure µk;

• the weights αk
ik

of the support points xkik ;

• the values of the performance function at the support points f(x1i1 , . . . , x
d
id
).

Example 1 (d = 3). For instance, if one knows the mean M of the performance
function X 7→ F (X) and say the mean m2 of the second input parameter x2 where
X = (X1, X2, X3) ∈ X1 ×X2 ×X3, we can define the admissible set A:

A =

(f, µ)

∣∣∣∣∣∣∣∣
f : X1 ×X2 ×X3 → R

µ =
⊗3

k=1 µk

EX∼µ{f(X)} = M

EX2∼µ2{X2} = m2

 . (1.20)
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Finding the optimum U(A), which is a priori an infinite-dimensional optimization
problem, can be reduced to a finite-dimensional problem by using the reduction
theorem above. The reduced searching space is given by

A∆ =

{
(f, µ) ∈ A

∣∣∣∣ µk ∈ ∆1(Xk), k = 1, 3

µ2 ∈ ∆2(X2)

}
, (1.21)

where:

∆1(Xk) = {αk
1δxk

1
+ αk

2δxk
2
| xk1, xk2 ∈ Xk and αk

1 + αk
2 = 1} for k = {1, 3},

∆2(X2) = {α2
1δx2

1
+ α2

2δx2
2
+ α2

3δx2
3
| x21, x22, x23 ∈ X2 and α2

1 + α2
2 + α2

3 = 1}.

Thus, the probability of failure PX∼µ[f(X) ≥ a] is calculated as follows:

PX∼µ[f(X) ≥ a] =
2∑

i=1

3∑
j=1

2∑
k=1

α1
iα

2
jα

3
k 1[a,+∞[

(
f
(
x1i , x

2
j , x

3
k

))
. (1.22)

The optimization problem amounts now to determine with i ∈ J1; 2K, j ∈ J1; 3K and
k ∈ J1; 2K:

• the positions of the support points
(
x1i , x

2
j , x

3
k

)
∈ X1 ×X2 ×X3 of the discrete

measure µ;

• the weights
(
α1
i , α

2
j , α

3
k

)
∈ [0, 1]3 of the support points;

• the values of the performance function at the support points f
(
x1i , x

2
j , x

3
k

)
.

The support of µ is represented on Figure 1.2.

1.2.3 Canonical moments

Recently, a new method has been developed by J. Stenger et al. [138, 139] in
order to solve the optimization problem detailed in Theorem 1. The main idea
of this method is to transform the optimization of the optimal bounds U(A) and
L(A) under generalized moment constraints on the probability measure µ to an
unconstrainted optimization. In this way, one does not have to resort to numerical
optimization through mystic, for instance. The method is derived from the theory of
canonical moments [37, 134]. It is summarized here following the same structure and
notations as in [138]. For simplicity, we will consider that X = X1 = [a1, b1] ⊂ R with
a1 < b1 ∈ R and µ = µ1 ∈M1(X ). In addition, we will assume that N generalized
moment constraints are imposed on the probability measure µ. From Theorem 1, it
reads

µ =

N+1∑
i=1

αiδxi , (1.23)



16 Chapter 1. Certification with uncertainties

Figure 1.2: Support of µ when d = 3 and when we have one global generalized moment
constraint and one local generalized moment constraint on the second random input variable
X2 corresponding to Example 1. Marginal measures µ1 and µ3 are supported on at most
two Dirac points while the marginal measure µ3 is supported on at most three Dirac points.
The support of µ consists in at most twelve Dirac support points.

where
∑N+1

i=1 αi = 1 with αi ≥ 0 are the weights of the Dirac points, and xi ∈ X are
their corresponding positions. We start first with some generalities about canonical
moments. We denote by M the moment space defined by

M = {c;µ ∈M1(X )}, (1.24)

where c is the sequence of all moments on the probability measure µ. The m-th
moment space Mm is defined by

Mm = {(c1, . . . , cm);µ ∈M1(X )}, (1.25)

where cj =
∫
X xjµ(dx) is the j-th moment on the probability measure µ. For

instance, if m = 2, then c1 = EX∼µ{F (X)} and c2 = EX∼µ{F (X)2} are respectively
the expected value and the variance of the performance function F . Then, we define
the extremes values of the m-th moment as

c+m = max
c∈R
{(c1, . . . , cm−1, c) ∈Mm},

c−m = min
c∈R
{(c1, . . . , cm−1, c) ∈Mm}.

That is, they represent the maximum and minimum values of the m-th moment that
a probability measure µ can have when its m− 1 moments are equal to cm−1. In
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this way, the m-th canonical moment is defined as

pm(c) =
cm − c+m
c+m − c−m

∈ [0, 1]. (1.26)

The canonical moments have as nice properties that they are in [0, 1] and they are
invariant by any affine transformation of the support of the measure µ [37, Theorem
1.3.2]. However, after applying this affine transformation, the values of the classical
moments will be affected. Denote by c̃ = (c̃1, . . .) the values of the classical moments
after the affine transformation on the measure µ, their values can be found in [139,
Theorem 4.1]. In any case, for practical applications, moments of order two are often
considered. The corresponding canonical moments can be calculated as

p1 = c1 and p2 =
c2 − c21

c1(1− c1)
. (1.27)

For higher orders, the values of canonical moments can be found in [37, p. 23]
through a recursive algorithm. From this point, returning to the initial problem,
given the values of the canonical moments computed above, one wishes to obtain
the support of the discrete measure of Equation (1.23); that is, find the positions
of the Dirac points {xi}N+1

i=1 and their corresponding weights {αi}N+1
i=1 . This can be

done through the Stieltjes transform [37]. To summarize, if µ has a finite support,
then the Stieltjes transform S has the following expression

S(z) =

b1∫
a1

µ(dx)

z − x
=

N+1∑
i=1

αi

z − xi
, (1.28)

where z ∈ C \ supp(µ). Equation (1.28) also reads

S(z) =
QN (z)

PN+1(z)
, (1.29)

where PN+1(z) =
∏N+1

i=1 (z − xi) such that its roots are the positions {xi}N+1
i=1 of the

Dirac measures [37, Theorem 3.6.1], and QN (z) =
∑N

i=1 αi
∏

j ̸=i(z − xj) such that

αi =
QN (xi)

dPN+1(x)
dx |x=xi

, i = 1, . . . , N + 1, (1.30)

are the associated weights. The polynomials {Pk}k≥0 and {Qk}k≥1 are obtained
as functions of the canonical moments, of which expressions can be found in [139,
Theorem 4.5]. In fact, the weights {αi}N+1

i=1 can be found by two different ways.
The first one is by solving Equation (1.30). The second one is to notice that N

generalized moment constraints are enforced on the probability measure µ, whose
support is at most N + 1 Dirac points from Theorem 1. These N constraints lead to
N equations on the measure µ. Adding the fact that the sum of the weights {αi}N+1

i=1
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must be equal to one, we obtain the following set of equations:
α1 + . . . + αN+1 = 1

α1x1 + . . . + αN+1xN+1 = c1
...

...
...

...
α1(x1)

N+1 + . . . + αN+1(xN+1)
N+1 = cN ,

(1.31)

As the positions of the support points {xi}N+1
i=1 are distinct, Equation (1.31) is a

Vandermonde system. Therefore, the weights {αi}N+1
i=1 are uniquely determined by

inverting it. Nonetheless, a Vandermonde system is ill-conditioned [55] whenever the
number of generalized moment constraint N is increasing. Thereby, it is advised to
determine the weights {αi}N+1

i=1 by using Equation (1.30). An algorithm describing
the process of determining the positions of the Dirac points {xi}N+1

i=1 and its associated
weights {αi}N+1

i=1 in order to compute the probability of failure (1.17) is given in
[138, 139].

1.3 Numerical examples

In this section, we first describe the mystic framework used throughout the
thesis for the computation of the optimal upper bounds and the subdiameters. This
framework enables us to compute efficiently the upper bound of the probability of
failure of Equation (1.17). Then we show several examples. Firstly, the bending of a
circular clamped beam is chosen to illustrate simply the OUQ framework. Secondly,
we study the lift of a RAE2822 [34] wing profile using Lazereff’s results in [83] and a
Thin Plate Spline (TPS) interpolation method [44, 45]. Finally, we investigate the
lift-to-drag ratio of a RAE2822 wing profile using the software ISES [40, 42] and a
Polynomial Chaos Expansion (PCE) surrogate model. The PCE surrogate is derived
by using a projection approach.

1.3.1 mystic framework

Even after using the reduction theorem, the optimization problem of Equa-
tion (1.17) can be high-dimensional and heavily constrained. A specific framework
has to be used in order to be able to solve it. McKerns et al. [101, 102] have devel-
oped a software framework called mystic for high-dimensional global constrained
optimizations. This framework provides a large number of optimization algorithms,
both global and local, including gradient solvers. The package can be downloaded
on the following link https://github.com/uqfoundation/mystic. The differential evo-
lution (DE) algorithm of Price and Storn [140] is used to compute the subdiameters
{DFj}dj=1—see Equation (1.2)—and to solve the finite-dimensional optimization
problem—see Equation (1.14) and Equation (1.17). Such algorithm1 is known as
metaheuristic because very few or no assumptions are to be made about the op-
timization problem. For instance, the DE algorithm does not use the gradient of

1See for example https://en.wikipedia.org/wiki/Differential_evolution.

https://github.com/uqfoundation/mystic
https://en.wikipedia.org/wiki/Differential_evolution
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the problem, unlike gradient solvers. It means that the optimization problem does
not have to be differentiable. Therefore, the DE algorithm can even be used over
optimization problems which are not continuous or are noisy. Moreover, it is very
suited to massively-parallel optimization, which could be very attractive as usually
the evaluation of the model requires considerable time. A sketch of a DE algorithm
is shown on Figure 1.3. DE algorithm is a part of the more general type of genetic
algorithms. Assume that one wants to minimize a function g : X 7→ Y . The steps of
a DE algorithm can be described as follows:

• Initialization of the trial population;

• Mutation: For each individual x ∈ X in the trial population, select three
different ones (x1,x2,x3) in the trial population at random and distinct from
the individual x. Compose a new vector by combining them, known as the
“donor” vector;

• Crossover: The components of the individual x are randomly changed by the
components of the donor vector. This new vector is known as the “trial” vector
denoted by xt;

• Selection: If g(xt) ≤ g(x) then x is replaced by xt in the trial solution;

• Do the same for each individual in the trial population;

• The best candidate solution from the trial population is taken if the stopping
criterion is reached.

mystic provides flexibility about the choice of how to apply constraints. Two
main type of methods are implemented. The first methods are penalty-based: one
adds a penalty function to the cost function. Then, the constrained optimization
problem is replaced by successive unconstrained problems. The available penalty
methods in mystic are the exterior penalty function method [154], the augmented
Lagrange multiplier method [73] and the logarithmic barrier method [70]. The second
methods the set-based: the constraints are satisfied through kernel methods. That
is, kernel methods apply a transform which reduces the search space so that the
optimizer will only search over the set of candidates that satisfy the constraints.
We use kernel methods because it allows us to separate the constraints from the
optimization problem. Indeed, the evaluations of the constraints are totally decoupled
from the evaluation of the cost function. The optimization is divided into two loops.
The outer loop is over the cost function. The inner loop is over the constraints. In
that way, one may expect that the number of function evaluations is greatly reduced
as these evaluations are usually the most expensive step.
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Figure 1.3: Sketch of a differential evolution algorithm.
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1.3.2 Case 1: Bending of a beam

1.3.2.1 Setup

As a first step, a basic case is chosen to study simply the Optimal Uncertainty
Quantification (OUQ) framework: the bending of a circular clamped beam under
Euler-Bernoulli theory—see Figure 1.4.

Figure 1.4: Setup of the clamped beam.

The objective is to certify that the probability that the maximum deflection of
the beam—this is the performance function F—exceeds a specified threshold a is
below a given tolerance ε. We call this probability the “probability of failure” and
aim at bounding it when some geometrical and mechanical characteristics of the
beam are variable (random inputs) and/or only partial information on F is available.
We choose as the beam’s random inputs the Young’s modulus E and its radius R

with their respective range—see Table 1.1. These ranges were obtained by taking
E = 75 GPa and R = 12.5 mm as mean values for E and R with E ∈ [E ± 5%] and
R ∈ [R± 5%]. Both define the input vector X = (E,R). Actually for this case, an
analytical solution for the function F is available, namely

F (X) =
4PL3

3ER4
. (1.32)

However, it may happen that some characteristics of the beam have not been identified
as variable, or random, or that the boundary conditions are not exactly the specified
ones, or that the material is not isotropic elastic, etc. It may also happen that
no analytical solution is available for the performance function F in more complex
cases. That is why F and µ† may be only partially known because of these epistemic
uncertainties. In the following, several scenarios for the available information on the
random inputs X and the performance function F are thus considered to bound the
probability of failure P [F (X) ≥ a].

As an initial guess (scenario 0), it is assumed that the random input variables
are mutually independent and follow uniform laws µ† ≡ U over their respective
ranges, and that the performance function F is exactly known by (1.32). This
information allows us to compute the expected value of the performance function
E {F (X)} = U and the probability of failure P [F (X) ≥ a] using a Monte-Carlo (MC)
simulation over 106 random samples. In addition, using Equation (1.32) and the DE
algorithm of Price and Storn [140], the verification diameter DF = (D2

F1
+D2

F2
)1/2
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and the associated subdiameters DF1 and DF2 can be computed, where DF1 is the
subdiameter related to the Young’s modulus E and DF2 is the subdiameter related to
the radius R of the beam. These diameters are shown on Figure 1.5. Therein, one can
note that the variation of the radius R of the beam has much more influence on the
performance function F than the variation of Young’s modulus E. Indeed, we have
DF2 ≫ DF1 . Thus, the uncertainty on the maximum of deflection of the beam can
be mostly attributed to the radius of the beam (≈ 92% of D2

F ) and not to Young’s
modulus (≈ 8% of D2

F ). This result could have been intuited because the maximum
deflection of a clamped beam—the function F—as known by Equation (1.32), is
proportional to ( 1

R)
4 while it is only proportional to 1

E .

Input Range
Young’s modulus E (in GPa) [71.25, 78.75]

Radius R (in mm) [11.875, 13.125]

Table 1.1: Range of the random input parameters X.

(a) Evolution of the subdiameters as a function
of the number of iterations of the DE algorithm.

(b) Values of the subdiameters.

Figure 1.5: Subdiameters DFi , i = 1, 2 for case 1. DF1 = 0.223 mm is the subdiameter
related to the Young’s modulus E of the beam. DF2 = 0.772 mm is the subdiameter related
to the radius R of the beam.

1.3.2.2 Scenario 1: McDiarmid’s assumptions

The expected value U of the performance function F and its subdiameters DF1

and DF2 computed in the previous section are used to construct an admissible set
corresponding to McDiarmid’s inequality (1.3), ignoring however the PDFs of the
random inputs which allowed to compute U, and the exact expression (1.32) of F
which allowed to compute DF1 and DF2 . This is the scenario 1. For this scenario,
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Figure 1.6: Probability of exceeding the threshold a for the deflection of a clamped beam.

the admissible set AMcD is defined by

AMcD =

(f, µ)

∣∣∣∣∣∣∣∣
f : X1 ×X2 → R

µ = µ1 ⊗ µ2 ∈M1(X1)⊗M1(X2)

EX∼µ{f(X)} = U

Dfj ≤ DFj , j = 1, 2

 . (1.33)

Using the values of the subdiameters DF1 and DF2 computed in the previous section,
the bounds on the probability of failure obtained by a non-optimal McDiarmid’s
inequality (1.3) and by the optimal McDiarmid’s inequality (1.12) are shown on
Figure 1.6. The probability of failure computed by a MC simulation with 106 samples
corresponding to scenario 0 (known PDFs and performance function F ) is also shown
on Figure 1.6, together with the bound given by Markov’s inequality for comparison
purposes. Markov’s inequality is the optimal upper bound of the probability of
failure if only the mean U ≤ a is known [145, Example 14.18]. As a reminder, it
states that

P [F (X) ≥ a] ≤ U

a
. (1.34)

We can see that the bound given by McDiarmid’s inequality (1.3) is conservative
and indeed non-optimal—recall Equation (1.10). On the contrary, by using the
reduction Theorem 1 and solving the associated optimization problem, the optimal
upper bound of the probability of failure can be obtained. This upper bound is the
sharpest one that can be achieved given the information in the admissible set AMcD.
If one wants to further reduce it, more information has to be given—see the following
scenario.
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1.3.2.3 Scenario 2: F and the expected value of F are known

If, in addition to its expected value U, the performance function F itself is exactly
known, a new admissible set AF can be defined as

AF =

(F, µ)

∣∣∣∣∣∣
F : X1 ×X2 → R is known

µ = µ1 ⊗ µ2

EX∼µ{F (X)} = U

 . (1.35)

This is scenario 2, where we are seeking to determine the optimal upper bound on
the probability of failure given the information contained in AF . In other words, we
want to determine:

U(AF ) = sup
(F,µ)∈AF

PX∼µ[F (X) ≥ a] . (1.36)

A priori, this problem is not computationally tractable because finding the op-
timum requires a search over the space of probability measures on the intervals
[71.25, 78.75]GPa and [11.875, 13.125]mm. Nevertheless, by using Theorem 1, the
search can be reduced to a one over probability measures that are products of
finite convex combinations of Dirac masses where each marginal measure µ1 and
µ2 is supported on at most two Dirac masses of the parameter ranges X1 and X2,
respectively—see Figure 1.7. That is,

U(AF ) = U(A∆) (1.37)

where A∆ is given by

A∆ =

(F, µ) ∈ AF

∣∣∣∣∣∣∣∣
µ1 = α1δx1 + (1− α1)δy1
µ2 = α2δx2 + (1− α2)δy2

α1, α2 ≥ 0

x1, y1 ∈ X1, x2, y2 ∈ X2

 . (1.38)

Although no analytical formula exists for U(AF ), contrary to U(AMcD), see (1.12),
its calculation is made possible by using the equality (1.37) and the mystic framework
[101, 102]. We obtain the following optimal upper bound of the probability of failure
with for example a threshold a = 2.2 mm:

P[F (X) ≥ a] ≤ U(AF ) = U(A∆) = 48.7%. (1.39)

One must not forget that these results are obtained through an optimization process.
Thus, they may depend on the efficiency of the optimization algorithm. The issue of
guaranteeing that the latter yields a satisfactory estimate of the upper bound (1.39)
is addressed in Chapter 2. We observe that the actual number of points forming
the support of µ is lower than the one expected at first from Theorem 1, which
was four points. Figure 1.8 and Figure 1.9 show this numerical collapse. Young’s
modulus marginal collapses to a single Dirac mass at the middle of its range while
the radius marginal is still having support on two points on the two extreme values
of its range. Unfortunately, there is no theoretical result to highlight this hidden
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Figure 1.7: Support of µ for scenario 2 of case 1. The marginal measures µ1 and µ2 are
supported on at most two Dirac points. The support of µ consists in at most four Dirac
support points.

reduction property but one can develop an adequate numerical implementation of
OUQ to detect it. A sketch of this numerical implementation can be found in [112,
Section 6]. Moreover, the support points can help us to identify weak points of the
system for the given threshold a. For instance, the location of the support points
of the radius shows that reducing the range of the latter will decrease the optimal
bound on the probability of failure. On the contrary, the position of the single
Young’s modulus support point shows that reducing its range will not decrease the
optimal bound on the probability of failure. This is a non-binding information to
the optimization problem U(AF ).

1.3.2.4 Summary of the results

The results obtained for scenario 0 (full knowledge of the PDFs of the input
parameters and performance function), scenario 1, and scenario 2 (partial knowledge)
are gathered in Table 1.2. One can see that including more information about the
system in the admissible set lowers the upper bound sup(f,µ)∈A PX∼µ[f(X) ≥ a] of
the probability of failure P[F (X) ≥ a]. First, we can see the difference between the
upper bound given by McDiarmid’s inequality, being 65.1%, which is non-optimal,
and the least upper bound U(AMcD) given by the optimal McDiarmid’s inequality,
being 51.7%. This latter percentage directly stems from the information included
in AMcD. We note in passing that for small values of the threshold a, McDiarmid’s
inequality is even more conservative than Markov’s inequality (1.34). When one
knows not only the subdiameters DF1 and DF2 but the whole function F , an even
sharper bound on the probability of failure can be achieved. This upper bound drops
to 48.7%. This shows that including more information about the problem in the
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(a) Support points at iteration 0. (b) Support points at iteration 50.

(c) Support points at iteration 100. (d) Support points at iteration 862.

Figure 1.8: Evolution of the optimal points as a function of number of iterations of the DE
algorithm after using the reduction set A∆ (1.38) with a = 2.2 mm for scenario 2 of case 1.
The support maximizers of the reduced OUQ problem for the admissible set (1.38) collapses
to a two-point support. The support of Young’s modulus E marginal collapses to a single
Dirac mass while the support of the radius R marginal converges to the extremes of its range.

admissible set leads to a sharper least upper bound on the probability of failure. For
comparison purpose, the probability of failure at a = 2.2 mm using a MC simulation
with 106 samples is shown in the last row. The differences between the probability
of failure P[F (X) ≥ a] given by the MC simulation in scenario 0 and the bounds
computed in scenario 1 and 2 are that, for the MC simulation, the performance
function F and the probability measure µ† of the random input variables X are
exactly known. This is hardly the case in practical applications. Returning to the
initial problem, i. e. certifying that P[F (X) ≥ a] ≤ ε, the values of the upper
bounds computed above can be used. Consider for instance ε = 50%. That is, we
want to certify that the probability of failure remains below 50%. From Table 1.2,
we can assure that, if the assumptions of scenario 2 are known, then the probability
of failure will stay below ε. The beam can be certified with respect to the considered
performance function F . On the contrary, the assumptions of scenario 1 does not
guarantee it.
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(a) Convergence for radius R weight. (b) Convergence for radius R.

(c) Convergence for Young’s modulus E

weight.
(d) Convergence for Young’s modulus E.

Figure 1.9: Evolution of the optimal points as a function of number of iterations of the DE
algorithm after using the reduction set A∆ (1.38) with a = 2.2 mm for scenario 2 of case
1. The support of the Young’s modulus E converges to a single support point at 75.8 GPa.
The support of the radius R converges to the extremes of its range, with a weight of 0.49 at
0.02375 m and a weight of 0.51 at 0.02625 m.

Threshold a = 2.2 (mm)
Admissible scenario sup

(f,µ)∈A
PX∼µ[f(X) ≥ a]

Scenario 1
McDiarmid’s inequality ≤ 65.1%

U(AMcD) = 51.7%

Scenario 2 U(AF ) = 48.7%

Scenario 0 P[F (X) ≥ a] (MC over 106 samples) = 4.4%

Table 1.2: Summary of the upper bounds of the probability of failure with a = 2.2 mm for
several different scenarios for case 1.
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1.3.3 Case 2: Lift coefficient for the RAE2822 wing profile

1.3.3.1 Setup

The following example is taken from the case studied by Lazareff in [83]. Essen-
tially, a near-stall regime of the RAE2822 wing profile is considered. The near-stall
regime of a wing profile is defined as the moment that the lift coefficient is maximal
before it is reduced by increasing the angle of attack beyond its critical value. The
RAE2822 wing profile is a supercritical airfoil which has become a standard test case
for turbulence modeling validation [34]. The geometry of this airfoil can be seen on
Figure 1.10. The flow is modeled by the Reynolds-Averaged Navier–Stokes (RANS)
equations together with Wilcox k–ω turbulence model closure [160] and Menter
Shear Stress Transport (SST) correction for farfield boundary conditions [103]. The
nominal flow conditions are the ones described in [82, 83]. The nominal free-stream
Mach number and angle of attack are M = 0.734 and α = 2.79◦, respectively, and the
Reynolds number is Re = 6.5× 106. Mach-induced stall arises from shock-boundary
layer interaction slightly above the nominal value M (in [82] it is argued that without
the SST correction “the stall tendency is widely under-estimated”).

Figure 1.10: Geometry of the RAE2822 airfoil.

The objective of this section is to certify that the probability that the lift
coefficient of the RAE2822 wing profile—this is the performance function F—exceeds
a specified threshold a is below a given tolerance ε. We call this probability the
“probability of failure” and aim at bounding it when some characteristics of the flow
and/or the profile are variable (random inputs) and/or only partial information on
F is available. We choose as the profile’s random inputs the Mach number M and
the angle of attack α with their respective range; see Table 1.3. Both define the
input vector X = (M,α). However, as in Section 1.3.2, it may happen that some
characteristics of the flow and/or the profile have not been identified as variable,
or random, or that the boundary conditions are not exactly the specified ones, etc.
That is why F and µ† may be only partially known because of these epistemic
uncertainties. For this case, as no analytical solution is available for the performance
function F , a numerical solver has to be used. In that respect, the Computational
Fluid Dynamics (CFD) solver elsA [20] is used to simulate two-dimensional transonic
flows around that airfoil with the numerical parameters described in [82]. elsA is
developed by ONERA and can deal with the low subsonic to the high supersonic flow
regimes. More information can be found at http://elsa.onera.fr. The solver will be
considered as a black-box. However, as one numerical evaluation of F through elsA
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Input Range
Mach number M [0.7216, 0.745]

Angle of attack α (in ◦) [2.49, 2.99]

Table 1.3: Range of each input parameter X.

is costly, a surrogate model G has been built. This surrogate model G has been built
by using 128 points distributed in the input space X computed through elsA—see the
black dots on Figure 1.11—and the Thin Plate Spline (TPS) interpolation method
[44, 45]. The surrogate model G will be assumed accurate enough to state that G is
equivalent to F , namely G ≡ F . Consequently, we will consider that DF−G = 0, see
Equation (1.5). In the context of the NODESIM-CFD project,2 it has been shown
that this case involves shock-boundary layer interaction, characterizing flows with
high Reynolds number. It leads to a canyon-like structure of the surrogate model—see
Figure 1.11. In the following, several scenarios for the available information on the
random inputs X and the performance function F are thus considered to bound the
probability of failure P [F (X) ≥ a].

As an initial guess (scenario 0), it is assumed that the random input variables
are mutually independent and follow uniform laws µ† ≡ U over their respective
ranges, and that the performance function F is exactly known by the TPS surrogate
model. This information allows us to compute the expected value of the performance
function E {F (X)} = L and the probability of failure P [F (X) ≥ a] using a Monte-
Carlo (MC) simulation over 105 random samples. In addition, using the TPS
surrogate model and the DE algorithm of Price and Storn [140], the verification
diameter DF = (D2

F1
+D2

F2
)1/2 and the associated subdiameters DF1 and DF2 can

be computed, where DF1 is the subdiameter related to the Mach number M and
DF2 is the subdiameter related to the angle of attack α. These diameters are shown
on Figure 1.12. In that regard, one can note that the variation of the angle of attack
α has much more influence on the performance function F than the variation of the
Mach number M . Indeed, we have DF2 ≫ DF1 . Thus, the uncertainty on the lift
coefficient of the RAE2822 wing profile mainly stems from the variation of the angle
of attack α (≈ 70% of D2

F ) rather than from the variation of the Mach number M

(≈ 30% of D2
F ).

1.3.3.2 Scenario 1: McDiarmid’s assumptions

The expected value L of the performance function F and its subdiameters DF1

and DF2 computed in the previous section are used to construct an admissible set
corresponding to McDiarmid’s inequality (1.5), ignoring however the PDFs of the
random inputs which allowed to compute L, and the performance function F which
allowed to compute DF1 and DF2 . This is the scenario 1. For this scenario, the

2Non-deterministic simulation for CFD-Based Design methodologies. https://cordis.europa.eu/
result/rcn/47478_ en.html

https://cordis.europa.eu/result/rcn/47478_en.html


30 Chapter 1. Certification with uncertainties

Figure 1.11: Surrogate model obtained by the TPS method in the (M,α) parameter space for
the lift coefficient of the RAE2822 wing profile. The black circles are the 128 data points
available.

(a) Evolution of the subdiameters as a function of
to the number of iterations of the DE algorithm.

(b) Values of the subdiameters.

Figure 1.12: Subdiameters DFi
, i = 1, 2 for case 2. DF1

= 0.06 is the subdiameter related to
the Mach number M . DF2

= 0.09 is the subdiameter related to the angle of attack α.

admissible set AMcD is defined by

AMcD =

(f, µ)

∣∣∣∣∣∣∣∣
f : X1 ×X2 → R
µ = µ1 ⊗ µ2

EX∼µ{f(X)} = L

Dfj ≤ DFj , j = 1, 2

 . (1.40)
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Using the values of the subdiameters DF1 and DF2 computed in the previous section,
the bounds on the probability of failure obtained by a non-optimal McDiarmid’s
inequality (1.5) and by the optimal McDiarmid’s inequality (1.12) are shown on
Figure 1.13. The probability of failure computed by a MC simulation with 105

samples corresponding to scenario 0 (known PDFs and performance function F ) is
also shown on Figure 1.13, together with the bound given by Markov’s inequality
for comparison purposes. Markov’s inequality is the optimal upper bound of the
probability of failure if only the mean L ≤ a is known [145, Example 14.18]. As a
reminder, it states that

P [F (X) ≥ a] ≤ L

a
. (1.41)

We can see that the bound given by McDiarmid’s inequality (1.5) is conservative
and indeed non-optimal—recall Equation (1.10). On the contrary, by using the
reduction Theorem 1 and solving the associated optimization problem, the optimal
upper bound of the probability of failure can be obtained. This upper bound is the
sharpest one that can be achieved given the information in the admissible set AMcD.
If one wants to further reduce it, more information has to be given—see the following
scenarios.

Figure 1.13: Probability of exceeding the threshold a for the lift coefficient of the RAE2822
wing profile.
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1.3.3.3 Scenario 2: F and the expected value of F are known

If, in addition to its expected value L, the performance function F itself is exactly
known, a new admissible set AF can be defined as

AF =

(F, µ)

∣∣∣∣∣∣
F : X1 ×X2 → R is known

µ = µ1 ⊗ µ2

EX∼µ{F (X)} = L

 (1.42)

This is scenario 2, where we are seeking to determine the optimal upper bound on
the probability of failure given the information contained in AF . In other words, we
want to determine:

U(AF ) = sup
(F,µ)∈AF

PX∼µ[F (X) ≥ a] . (1.43)

A priori, this problem is not computationally tractable because finding the optimum
requires a search over the space of probability measures on the intervals [0.7216, 0.745]
and [2.49, 2.99]◦. Nevertheless, by using Theorem 1, the search can be reduced to
a one over probability measures that are products of finite convex combinations of
Dirac masses where each marginal measure µ1 and µ2 is supported on at most two
Dirac masses of the parameter ranges X1 and X2, respectively—see Figure 1.14. In
other words,

U(AF ) = U(A∆) (1.44)

where A∆ is given by

A∆ =

(F, µ) ∈ AF

∣∣∣∣∣∣∣∣
µ1 = α1δx1 + (1− α1)δy1
µ2 = α2δx2 + (1− α2)δy2

α1, α2 ≥ 0

x1, y1 ∈ X1, x2, y2 ∈ X2

 . (1.45)
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Figure 1.14: Support of µ for scenario 2 of case 2. The marginal measures µ1 and µ2 are
supported on at most two Dirac points. The support of µ consists in at most four Dirac
support points.

Even though no analytical formula exists for U(AF ), contrary to U(AMcD),
see (1.12), its calculation is made possible by using the equality (1.44) and the
mystic framework [101, 102]. We obtain the following optimal upper bound of the
probability of failure with for example a threshold a = 0.79:

P[F (X) ≥ a] ≤ U(AF ) = U(A∆) = 53.6%. (1.46)

One must not forget that these results are obtained through an optimization process.
Thus, they may depend on the efficiency of the optimization algorithm. The issue of
guaranteeing that the latter yields a satisfactory estimate of the upper bound (1.46)
is addressed in Chapter 2. We observe that the actual number of points forming
the support of µ is lower than the one expected at first from Theorem 1, which was
four points. Figure 1.15 and Figure 1.16 show this numerical collapse. Mach number
marginal collapses to a single Dirac mass at the lowest value of its range while
the angle of attack marginal is still having support on two points. Unfortunately,
there is no theoretical result to highlight this hidden reduction property but one can
develop an adequate numerical implementation of OUQ to detect it. A sketch of this
numerical implementation can be found in [112, Section 6]. In addition, the support
points can help us to identify weak points of the system for the given threshold a.
For instance, the location of the support points of the Mach number shows that
increasing the lower value of the range of the latter will decrease the optimal bound
on the probability of failure. On the contrary, the position of the angle of attack
support points shows that reducing its range will not decrease the optimal bound
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on the probability of failure. This is a non-binding information to the optimization
problem U(AF ).

(a) Support points at iteration 0. (b) Support points at iteration 100.

(c) Support points at iteration 200. (d) Support points at iteration 572.

Figure 1.15: Evolution of the optimal points as a function of number of iterations of the DE
algorithm after using the reduction set A∆ (1.45) with a = 0.79 for scenario 2 of case 2.
The support maximizers of the reduced OUQ problem for the admissible set (1.45) collapses
to a two-point support. The support of the Mach number M marginal collapses to a single
Dirac mass while the support of the angle of attack α marginal converges to two support
points.

1.3.3.4 Scenario 3: F , the expected value of F , and the expected value
of α are known

If, in addition to its expected value L and the performance function F itself is
exactly known, the expected value of the angle of attack α is known, a new admissible
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(a) Convergence for Mach number M weight. (b) Convergence for Mach number M .

(c) Convergence for angle of attack α weight. (d) Convergence for angle of attack α.

Figure 1.16: Evolution of the optimal points as a function of number of iterations of the
DE algorithm after using the reduction set A∆ (1.45) with a = 0.79 for scenario 2 of case
2. The support of the Mach number M converges to a single support point at 0.7216. The
support of the angle of attack α converges to two support points, one with a weight of 0.54
at 2.9036◦ and the other one with a weight of 0.46 at 2.49◦.

set AFα can be defined as

AFα =

(F, µ)

∣∣∣∣∣∣∣∣
F : X1 ×X2 → R is known

µ = µ1 ⊗ µ2

EX∼µ{F (X)} = L

EX2∼µ2{X2} = α

 . (1.47)

This is scenario 3, where we are seeking to determine the optimal upper bound on
the probability of failure given the information contained in AFα . In other words,
we want to determine:

U(AFα) = sup
(F,µ)∈AFα

PX∼µ[F (X) ≥ a] . (1.48)

We add one moment constraint (the expected value) on the second input variable
X2 = α. Therefore, the support of µ2 is now made of at most three Dirac support



36 Chapter 1. Certification with uncertainties

points and µ1 is still made of at most two Dirac support points. We proceed as
in scenario 2 to compute the upper bound of the probability of failure given the
information of the admissible set AFα . That is, we have the following equality

U(AFα) = U(A∆) (1.49)

where A∆ is given by

A∆ =

(F, µ) ∈ AFα

∣∣∣∣∣∣∣∣
µ1 = α1δx1 + (1− α1)δy1

µ2 = α2δx2 + α3δy2 + (1− α2 − α3)δz2
α1, α2, α3 ≥ 0

x1, y1 ∈ X1, x2, y2, z2 ∈ X2

 . (1.50)

The calculation of the upper bound U(AFα) is made possible by using the equality
(1.49) and the mystic framework [101, 102]. We obtain the following optimal upper
bound of the probability of failure with for example a threshold a = 0.79:

P[F (X) ≥ a] ≤ U(AF ) = U(A∆) = 45.9%. (1.51)

1.3.3.5 Scenario 4: F , the expected value of F , and the expected value
of M are known

If, in addition to its expected value L and the performance function F itself, the
expected value of the Mach number M is known, a new admissible set AFM

can be
defined as

AFM
=

(F, µ)

∣∣∣∣∣∣∣∣
F : X1 ×X2 → R is known

µ = µ1 ⊗ µ2

EX∼µ{F (X)} = L

EX1∼µ1{X1} = M

 . (1.52)

This is scenario 4, where we are seeking to determine the optimal upper bound on
the probability of failure given the information contained in AFM

. In other words,
we want to determine:

U(AFM
) = sup

(F,µ)∈AFM

PX∼µ[F (X) ≥ a] . (1.53)

We add one moment constraint (the expected value) on the first input variable
X1 = M . Therefore, the support of µ1 is now made of at most three Dirac support
points and µ2 is still made of at most two Dirac support points. We proceed as in
scenario 2 and scenario 3 to compute the upper bound of the probability of failure
given the information of the admissible set AFM

. That is, we have the following
equality

U(AFM
) = U(A∆) (1.54)

where A∆ is given by

A∆ =

(F, µ) ∈ AFα

∣∣∣∣∣∣∣∣
µ1 = α1δx1 + α2δy1 + (1− α1 − α2)δz1

µ2 = α3δx2 + (1− α3)δy2
α1, α2, α3 ≥ 0

x1, y1 ∈ X1, x2, y2, z2 ∈ X2

 . (1.55)
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The calculation of the upper bound U(AFM
) is made possible by using the equality

(1.54) and the mystic framework [101, 102]. We obtain the following optimal upper
bound of the probability of failure with for example a threshold a = 0.79:

P[F (X) ≥ a] ≤ U(AF ) = U(A∆) = 46.0%. (1.56)

1.3.3.6 Summary of the results

The results obtained for scenario 0 (full knowledge of the PDFs of the input
parameters and performance function), scenario 1, scenario 2, scenario 3, and
scenario 4 (partial knowledge) are gathered in Table 1.4. One can see that including
more information about the system in the admissible set lowers the upper bound
sup(f,µ)∈A PX∼µ[f(X) ≥ a] of the probability of failure P[F (X) ≥ a]. First, we
can see the difference between the upper bound given by McDiarmid’s inequality,
being 80.8%, which is non–optimal, and the least upper bound U(AMcD) given by
the optimal McDiarmid’s inequality, being 60.7%. This latter percentage directly
stems from the information included in AMcD. We note in passing that for small
values of the threshold a, McDiarmid’s inequality is even more conservative than
Markov’s inequality (1.41). When one knows not only the subdiameters DF1 and
DF2 but the whole function F , a sharper bound on the probability of failure can be
achieved. This upper bound drops to 53.6%. Finally, adding the knowledge of either
the expected value of the angle of attack or the expected value of the Mach number,
an even sharper bound on the probability of failure can be achieved, being 45.9%

and 46.0% respectively. The information of knowing either the expected value of the
angle of attack or the expected value of the Mach number is equivalent for the upper
bound of the probability of failure—45.9% versus 46.0%. This shows that including
more information about the problem in the admissible set leads to a sharper least
upper bound on the probability of failure. For comparison purpose, the probability
of failure at a = 0.79 using a MC simulation with 105 samples is shown in the last
row. The differences between the probability of failure P[F (X) ≥ a] given by the
MC simulation in scenario 0 and the bounds computed in scenario 1, 2, 3 and 4
are that, for the MC simulation, the performance function F and the probability
measure µ† of the random input variables X are exactly known. This is hardly the
case in practical applications. Returning to the initial problem, i. e. certifying that
P[F (X) ≥ a] ≤ ε, the values of the upper bounds computed above can be used.
Consider for instance ε = 50%. That is, we want to certify that the probability of
failure remains below 50%. From Table 1.4, we can assure that, if the assumptions
of scenario 3 or 4 are known, then the probability of failure will stay below ε. The
RAE2822 wing profile can be certified with respect to the considered performance
function F . On the contrary, the assumptions of scenarios 1 and 2 do not guarantee
it. To compute the subdiameters DF1 and DF2 , 6, 360 function evaluations of F
were needed. To compute the upper bounds U(AF ), U(AFα), and U(AFM

), 35, 580,
50, 760, and 73, 200 function evaluations of F were needed respectively.
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Threshold a = 0.79

Admissible scenario sup
(f,µ)∈A

PX∼µ[f(X) ≥ a]

Scenario 1
McDiarmid’s inequality ≤ 80.8%

U(AMcD) = 60.7%

Scenario 2 U(AF ) = 53.6%

Scenario 3 U(AFα) = 45.9%

Scenario 4 U(AFM
) = 46.0%

Scenario 0 P[F (X) ≥ a] (MC over 105 samples) = 6.8%

Table 1.4: Summary of the upper bounds of the probability of failure with a = 0.79 for several
different scenarios for case 2.

1.3.4 Case 3: Lift-to-drag ratio for the RAE2822 wing profile

1.3.4.1 Setup

We consider a case close to the one of Section 1.3.3. The RAE2822 wing profile is
again studied, where its geometry can be seen on Figure 1.10. The objective of this
section is to certify that the probability that the lift-to-drag ratio of the profile—this
is the performance function F—is below a specified threshold a is below a given
tolerance ε. We call this probability the “probability of failure” and aim at bounding
it when some characteristics of the flow and/or the profile are variable (random
inputs) and/or only partial information on F is available. One notices that contrary
to Section 1.3.2 and Section 1.3.3, the probability of failure is now P[F (X) ≤ a].
We choose as the profile’s random inputs the Mach number M , the angle of attack
α, and the geometrical imperfection t with their respective ranges; see Table 1.5.
These three parameters define the input vector X = (M,α, t). The geometrical
imperfection t is a parameter which takes into account the uncertainty on the exact
dimensions of the RAE2822 wing profile. It is considered by modifying the thickness
of the profile and its influence can be seen on Figure 1.17. t = 0 corresponds to the
nominal thickness.

Along the same lines as in Section 1.3.2 and Section 1.3.3, it may happen that
some characteristics of the flow and/or the profile have not been identified as variable,
or random, or that the boundary conditions are not exactly the specified ones, etc.
That is why F and µ† may be only partially known because of these epistemic
uncertainties. For this case, as in Section 1.3.3, as no analytical solution is available
for the performance function F , a numerical solver has to be used. In that respect,
ISES [40, 42] is used to simulate two-dimensional transonic flows around that airfoil.
ISES is a 2D aerodynamic code developed by Mark Drela and Michael B. Giles at
MIT. In more details, the inviscid flow is represented by the steady Euler equations
in integral form. As for the boundary layers and the wakes, a compressible lag-
dissipation integral method is used. Instead of iterating between the viscous and
inviscid solvers via an approximate interaction law, a global Newton-Raphson method
is used to solve simultaneously the coupled viscous-inviscid equations. Nevertheless,
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Figure 1.17: Dimensions of the RAE2822 profile for different geometrical imperfection values
t.

as one numerical evaluation of F by using ISES can be costly, a surrogate model G
of F has been built. The generalized Polynomial Chaos (gPC) expansion method is
chosen to build the surrogate model G [49, 56, 87, 135, 162]. A quick reminder of
this approach is given here.

Consider an orthogonal polynomial basis B of L2(X , µ), the Hilbert space of
square integrable functions on X with respect to the probability measure µ. Assuming
that the performance function x 7→ G(x) is in L2(X , µ), that is∫

X

|G(x)|2 µ(dx) = EX∼µ

{
|G(X)|2

}
< +∞, (1.57)

then it can be expanded on the basis B = {ϕj}j∈N. Thus, one can build a polynomial
surrogate model G of F by an L2 projection on a finite dimensional subspace
of L2(X , µ) spanned by a truncated family of d-variate orthonormal polynomials
denoted by Bp = {ϕj}Pj=0. The orthonormalization of this basis is done through

⟨ϕi, ϕj⟩L2 =

∫
X

ϕi(x)ϕj(x)µ(dx) = δij , 0 ≤ i, j ≤ P, (1.58)

where δij is the Kronecker symbol such that δij = 1 if i = j, and δij = 0 otherwise.
Then, the polynomial surrogate model G of F using the truncated basis Bp is

G(x) =

P∑
i=0

Fiϕi(x) =

P∑
i=0

⟨F, ϕi⟩L2ϕi(x). (1.59)
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Here the expansion coefficients ⟨F, ϕi⟩L2 are computed by numerical quadratures.
More details on this technique are given in Section 3.5. The surrogate model G
will be assumed accurate enough to state that G is equivalent to F , namely G ≡ F .
Consequently, we have that DF−G = 0—see Equation (1.6). In the following, several
scenarios for the available information on the random inputs X and the performance
function F are considered to bound the probability of failure P [F (X) ≤ a].

As an initial guess (scenario 0), it is assumed that the random input variables are
mutually independent and follow uniform laws µ† ≡ U over their respective ranges,
and that the performance function F is exactly known by the polynomial surrogate
model. First, this information allows us to choose the Legendre polynomials as
the basis Bp in order to compute the expansion coefficients {Fj}Pj=0. The values
of these coefficients can be found on Figure 1.19. An example of the polynomial
surrogate model G can be seen on Figure 1.18. Secondly, this information allows
us to compute the expected value of the performance function E {F (X)} = L/D

and the probability of failure P [F (X) ≤ a] using a Monte-Carlo (MC) simulation
over 105 random samples. We note that E {F (X)} = ⟨F, ϕ0⟩L2 using the gPC
expansion. Finally, using the polynomial surrogate model and the DE algorithm of
Price and Storn [140], the verification diameter DF = (D2

F1
+D2

F2
+D2

F3
)1/2 and

the associated subdiameters DF1 , DF2 , and DF3 can be computed, where DF1 is the
subdiameter related to Mach number M , DF2 is the subdiameter related to the angle
of attack α, and DF3 is the subdiameter related to the geometrical imperfection
t. These diameters are shown on Figure 1.12. One can see that the uncertainty
in our model mainly stems from the variation of the angle of attack α (≈ 92% of
D2

F ) rather than from the variation of the Mach number M (≈ 7.4% of D2
F ) or

from the variation of the geometrical imperfection t (≈ 0.6% of D2
F ). Moreover, the

subdiameter DF3 is way below the other ones that is, DF3 ≪ DF1 and DF3 ≪ DF2 .

(a) Slice at α = 1◦. (b) Slice at t = −5%.

Figure 1.18: Two slices of the polynomial surrogate model obtained by gPC for the lift-to-drag
ratio of the RAE2822 wing profile.
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Input Range
Mach number M [0.55, 0.65]

Angle of Attack α (in ◦) [0.5, 1]

Geometrical Imp. t (in %) [−5, 5]

Table 1.5: Range of each input parameter X.

Figure 1.19: Coefficients {Fj}Pj=0 associated to the Legendre polynomials.

(a) Evolution of the subdiameters with respect
to the number of iterations of the DE algorithm.

(b) Value of the subdiameters.

Figure 1.20: Subdiameters DFi
, i = 1, 2, 3 for case 3. DF1

= 2.435 is the subdiameter related
to the Mach number M . DF2

= 8.579 is the subdiameter related to the angle of attack α.
DF3

= 0.708 is the subdiameter related to the geometrical imperfection t.
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Figure 1.21: Probability of being below the threshold a for the lift-to-drag ratio of the
RAE2822 wing profile.

1.3.4.2 Scenario 1: McDiarmid’s assumptions

The expected value L/D of the performance function F and its subdiameters DF1 ,
DF2 , and DF3 computed in the previous section are used to construct an admissible
set corresponding to McDiarmid’s inequality (1.6), ignoring however the PDFs of
the random inputs which allowed to compute L/D, and the performance function
F which allowed to compute DF1 , DF2 , and DF3 . This is the scenario 1. For this
scenario, the admissible set AMcD is defined by

AMcD =

(f, µ)

∣∣∣∣∣∣∣∣
f : X1 ×X2 ×X3 → R

µ = µ1 ⊗ µ2 ⊗ µ3

EX∼µ{f(X)} = L/D

Dfj ≤ DFj , j = 1, 2, 3

 . (1.60)

Using the values of the subdiameters DF1 , DF2 , and DF3 computed in the previous
section, the bounds on the probability of failure obtained by a non-optimal McDi-
armid’s inequality (1.6) and by the optimal McDiarmid’s inequality (1.12) are shown
on Figure 1.21. The probability of failure computed by a MC simulation with 105

samples corresponding to scenario 0 (known PDFs and performance function F ) is
also shown on Figure 1.21. We can see that the bound given by McDiarmid’s inequal-
ity (1.6) is conservative and indeed non-optimal—recall Equation (1.10). On the
contrary, by using the reduction Theorem 1 and solving the associated optimization
problem, the optimal upper bound of the probability of failure can be obtained. This
upper bound is the sharpest one that can be achieved given the information in the
admissible set AMcD. If one wants to further reduce it, more information has to be
given; see the following scenario.
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1.3.4.3 Scenario 2: F and the expected value of F are known

If, in addition to its expected value L/D, the performance function F itself is
exactly known, a new admissible set AF can be defined as

AF =

(F, µ)

∣∣∣∣∣∣
F : X1 ×X2 ×X3 → R is known

µ = µ1 ⊗ µ2 ⊗ µ3

EX∼µ{F (X)} = L/D

 . (1.61)

This is scenario 2, where we are seeking to determine the optimal upper bound on
the probability of failure given the information contained in AF . In other words, we
want to determine:

U(AF ) = sup
(F,µ)∈AF

PX∼µ[F (X) ≤ a] . (1.62)

A priori, this problem is not computationally tractable because finding the optimum
requires a search over the space of probability measures on the intervals [0.55, 0.65],
[0.5, 1]◦, and [−5, 5]%. Nevertheless, by using Theorem 1 and Remark 6, the search
can be reduced to a one over probability measures that are products of finite
convex combinations of Dirac masses where each marginal measure µ1, µ2, and µ3

is supported on at most two Dirac masses of the parameter ranges X1, X2, and X3

respectively; see Figure 1.22. In other words,

U(AF ) = U(A∆) (1.63)

where A∆ is given by

A∆ =


(F, µ) ∈ AF

∣∣∣∣∣∣∣∣∣∣∣

µ1 = α1δx1 + (1− α1)δy1
µ2 = α2δx2 + (1− α2)δy2
µ3 = α3δx3 + (1− α3)δy3

α1, α2, α3 ≥ 0

x1, y1 ∈ X1, x2, y2 ∈ X2, x3, y3 ∈ X3


. (1.64)

Even though no analytical formula exists for U(AF ), contrary to U(AMcD),
see (1.12), its calculation is made possible by using the equality (1.63) and the
mystic framework [101, 102]. We obtain the following optimal upper bound of the
probability of failure with for example a threshold a = 35:

P[F (X) ≤ a] ≤ U(AF ) = U(A∆) = 65.5%. (1.65)

One must not forget that these results are obtained through an optimization process.
Thus, they may depend on the efficiency of the optimization algorithm. The issue of
guaranteeing that the latter yields a satisfactory estimate of the upper bound (1.65)
is addressed in Chapter 2. We observe that the actual number of points forming the
support of µ is lower than the one expected at first from Theorem 1, which was eight
points. Figure 1.24 and Figure 1.23 show this numerical collapse. Two marginals,
Mach number and geometrical imperfection, collapse to a single Dirac mass while
the angle of attack marginal is still having support on two points. Unfortunately,
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Figure 1.22: Support of µ for scenario 2 of case 3. The marginal measures µ1, µ2 and µ3

are supported on at most two Dirac points. The support of µ consists in at most eight Dirac
support points.

there is no theoretical result to highlight this hidden reduction property but one can
develop an adequate numerical implementation of OUQ to detect it. A sketch of this
numerical implementation can be found in [112, Section 6]. In addition, the support
points can help us to identify weak points of the system for the given threshold a.
Their locations show that rising the minimum angle of attack value, reducing the
maximum geometrical imperfection and rising the range of Mach number will not
decrease the optimal bound on the probability. These are non-binding information
to the optimization problem U(AF ). That is, instead of considering 2×2×2 support
points of µ, we performed the algorithm with 1× 2× 1 support points.

1.3.4.4 Summary of the results

The results obtained for scenario 0 (full knowledge of the PDFs of the input
parameters and performance function), scenario 1, and scenario 2 (partial knowledge)
are gathered in Table 1.6. One can see that including more information about the
system in the admissible set lowers the upper bound sup(f,µ)∈A PX∼µ[f(X) ≤ a] of
the probability of failure P[F (X) ≤ a]. First, we can see the difference between the
upper bound given by McDiarmid’s inequality, being 83.0%, which is non-optimal,
and the least upper bound U(AMcD) given by the optimal McDiarmid’s inequality,
being 68.2%. This latter percentage directly stems from the information included
in AMcD. When one knows not only the subdiameters DF1 , DF2 , and DF3 but the
whole function F , a sharper bound on the probability of failure can be achieved.
This upper bound drops to 65.5%. Unlike previous cases, the upper bound of the
probability of failure obtained in scenario 2 is very close to the one obtained in
scenario 1. It may indicate that in this case, knowning the entire function instead
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of the subdiameters does not affect much the upper bound of the probability of
failure. For comparison purpose, the probability of failure at a = 35 using a MC
simulation with 105 samples is shown in the last row. The differences between the
probability of failure P[F (X) ≤ a] given by the MC simulation in scenario 0 and
the bounds computed in scenario 1 and scenario 2 are that for the MC simulation,
the performance function F and the probability measure µ† of the random input
variables X are exactly known. This is hardly the case in practical applications.
Returning to the initial problem, i. e. certifying that P[F (X) ≤ a] ≤ ε, the values
of the upper bounds computed above can be used. Consider for instance ε = 70%.
That is, we want to certify that the probability of failure remains below 70%. From
Table 1.6, we can assure that if the assumptions of scenario 1, using the Optimal
McDiarmid’s inequality, or scenario 2 are known, then the RAE2822 wing profile
can be certified with respect to the considered performance function F . To compute
the subdiameters DF1 , DF2 , and DF3 , 36, 330 function evaluations of F were needed.
To compute the upper bound U(AF ), 30, 016 function evaluations of F were needed.

Threshold a = 35

Admissible scenario sup
(f,µ)∈A

PX∼µ[f(X) ≤ a]

Scenario 1
McDiarmid’s inequality ≤ 83.0%

U(AMcD) = 68.2%

Scenario 2 U(AF ) = 65.5%

Scenario 0 P[F (X) ≤ a] (MC over 105 samples) = 16.3%

Table 1.6: Summary of the upper bounds of the probability of failure with a = 0.35 for several
different scenarios for case 3.
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(a) Convergence for Mach number M weight. (b) Convergence for Mach number M .

(c) Convergence for angle of attack α weight. (d) Convergence for angle of attack α.

(e) Convergence for geometrical imperfection t

weight.
(f) Convergence for geometrical imperfection t.

Figure 1.23: Evolution of the optimal points as a function of number of iterations of the DE
algorithm after using the reduction set A∆ (1.64) with a = 0.35 for scenario 2 of case 3.
The support of the Mach number M converges to a single support point at 0.65. The support
of the angle of attack α converges to two support points, one with a weight of 0.65 at 0.54◦

and another one with a weight of 0.35 at 1.0◦. The support of the geometrical imperfection t

converges to a single support point at −5%.
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(a) Support points at iteration 0. (b) Support points at iteration 100.

(c) Support points at iteration 200. (d) Support points at iteration 937.

Figure 1.24: Evolution of the optimal points as a function of number of iterations of the DE
algorithm after using the reduction set A∆ (1.64) with a = 0.35 for scenario 2 of case 3.
The support maximizers of the reduced OUQ problem for the admissible set (1.64) collapses
to a two-point support for scenario 2 of case 3. The supports of the Mach number M and
the geometrical imperfection t marginals collapse to a single Dirac mass while the support of
the angle of attack α marginal converges to two support points.
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1.4 Conclusions

In this chapter, we have seen that McDiarmid’s inequality given by Equation (1.1)
can be used in a certification context considering varying, possibly random inputs to
the system to be certified. Here certification is defined as the process of guaranteeing
that the probability of failing to satisfy a given mission, target, or scenario is below
an acceptable small tolerance ε. Owhadi et al. have shown in [112] that McDiarmid’s
upper bound of the probability of failure is not optimal given the related assumptions,
namely knowning the expected value of the performance function F and its associated
subdiameters, and can be improved through an optimization problem [112, Prop.
5.7]. These optimal bounds are not exclusive to McDiarmid’s inequality but apply to
much more general classes of assumptions. That is, they can be extended to problems
over admissible classes of distributions µ and functions f defined by constraints
on their generalized moments, which defines an admissible set A containing all the
information we have about the system. This is the Optimal Uncertainty Quantifiation
(OUQ) framework proposed in [112]. At first, this optimization problem is infinite-
dimensional but can be reduced to a finite-dimensional one thanks to the reduction
Theorem 1. For that purpose, numerical optimizations have to be carried out. The
mystic framework [101, 102] has been used in order to solve these optimization
problems. Several examples have been studied to showcase the OUQ framework
[112]: the bending of a clamped beam, the lift of a RAE2822 wing profile, and
the lift-to-drag ratio of a RAE2822 wing profile. We have also seen that the OUQ
framework allows us among others to determine weak points of the system. One
of the main drawbacks of the OUQ framework and the reduction theorem is that
the resulting optimization problem to solve can be non-linear, non-convex, non-
continuous and heavily constrained. That is, classical optimization algorithms such
as gradient descent are not possible and thus differential evolution algorithms have
been implemented. However, such kind of algorithms does not guarantee that an
optimal solution is ever found. Therefore, a procedure has to be developed in order to
verify that the optimums picked by the differential evolution algorithms are relevant
estimates. This is the topic of the next chapter.
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The work presented in this chapter is based on the article corresponding to [15],
and was done in collaboration with Jean-Luc Akian (ONERA), Éric Savin (ONERA)
and Tim J. Sullivan (University of Warwick/Zuse Institute Berlin).
This chapter considers the problem of adaptively reconstructing a monotonically
increasing function F† from imperfect pointwise observations of this function. In
the statistical literature, the problem of estimating a monotone function is commonly
known as isotonic regression, and it is assumed that the observed data consist of noisy
pointwise evaluations of F†. However, we consider this problem under assumptions
that differ from the standard formulation, and these differences motivate our algorith-
mic approach to the problem. This chapter is structured as follows. In Section 2.1
the motivations for developing such an adaptive reconstruction algorithm are outlined.
The links with Chapter 1 are explained in the short Section 2.2. Section 2.3 introduces
the problem description and notations, after which the proposed adaptive algorithm for
the reconstruction of F† is detailed in Section 2.4. The algorithm itself is described
in Section 2.4.1, and its convergence properties are proven in Section 2.4.2. Then
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we study its performance on several analytically tractable test cases in Section 2.5.
Finally Section 2.6 details the application of the algorithm to a challenging problem
drawn from aerodynamic design. Some closing remarks are given in Section 2.7.

2.1 Motivations

Our two motivating examples are that

F†(x) := PX∼µ† [F (X) ≤ x] (2.1)

is the cumulative distribution function (CDF) of a known real-valued function F of
a random variable X with known distribution µ† (denoted in short by P[F (X) ≤ x]

as in Chapter 1), or that

F†(x) := sup
(f,µ)∈A

PX∼µ[f(X) ≤ x] (2.2)

is the supremum of a family of such CDFs over some class A. We assume that
we have access to a numerical optimization routine that can, for each x and some
given numerical parameters q (e.g. the number of iterations or other convergence
tolerance parameters), produce a numerical estimate or observation G(x, q) of F†(x);
furthermore, we assume that G(x, q) ≤ F†(x) is always true, i.e. the numerical
optimization routine always under-estimates the true optimum value, and that the
positive error F†(x)−G(x, q) can be controlled to some extent through the choice of
the optimization parameters q, but remains essentially influenced by randomness
in the optimization algorithm for each x. The assumption G(x, q) ≤ F†(x) is for
example coherent with either Equation (2.1), which may be approached by increasing
the number of iterations (say q) in an iterative algorithm, or Equation (2.2), which is
a supremum over a set that may be explored only partially by the algorithm. A single
observation G(x, q) yields some limited information about F†(x); a key limitation
is that one may not even know a priori how accurate G(x, q) is. Naturally, one
may repeatedly evaluate G at x, perhaps with different values of the optimization
parameters q. However, a key observation is that a suite of observations G(xi, qi),
i = 1, . . . , I, contains much more information than simple estimates of F†(xi),
i = 1, . . . , I, and this information can and must be used. For example, if the values
(G(xi, qi))Ii=1 are not increasing, e.g. because G(xi, qi) > G(xi′ , qi′) and xi < xi′

then the observations are inconsistent with the axiomatic requirement that F† is an
increasing function. It follows that, while the observation at xi may be good or bad,
the observation at xi′ is even worse in the sense that it gives no more information
about F†(xi′) than the observation at xi does; the observation at xi′ is thus a good
candidate for repetition with more stringent optimization parameters q—and this is
not something that could have been known without comparing it to the rest of the
data set.

The purpose of this chapter is to leverage this and similar observations to define
an algorithm for the reconstruction of the function F†, repeating old observations of
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insufficient quality and introducing new ones as necessary. The principal parameter
in the algorithm is an “exchange rate” E that quantifies the degree to which the
algorithm prefers to have a few high-quality evaluations versus many poor-quality
evaluations. Our approach is slightly different from classical isotonic (or monotonic)
regression, which is understood as the least-squares fitting of an increasing function
to a set of points in the plane. The latter problem is uniquely solvable and its solution
can be constructed by the pool adjacent violators algorithm (PAVA) extensively
studied in [7]. This algorithm consists of exploring the data set from left to right until
the monotonicity condition is violated, and replacing the corresponding observations
by their average while back-averaging to the left if needed to maintain monotonicity.
Extensions to the PAVA have been developed in [85] to consider non least-squares
loss functions and repeated observations, in [150] to consider “nearly-isotonic” or
“nearly-convex” fits, and in [71] to consider general loss functions and partially ordered
data sets. Useful references on isotonic regression also include [124] and [58].

2.2 The Optimal Uncertainty Quantification framework

In Chapter 1 we are interested in the probability that a system, whose output is
a function F : X → R of inputs X distributed according to a probability measure
µ† on an input space X , satisfies F (X) ≤ x, where x is a specified performance
threshold value. We emphasise that although we focus on a scalar performance
measure, the input X may be a multivariate random variable. In practice, µ† and F

are not known exactly; rather, it is only known that (µ†, F ) ∈ A for some admissible
subset A of the product space of all probability measures on X with the set of all
real-valued functions on X . Thus, one is interested in

L(A)(x) := inf
(µ,f)∈A

PX∼µ[f(X) ≤ x] and U(A)(x) := sup
(µ,f)∈A

PX∼µ[f(X) ≤ x].

The inequality
0 ≤ L(A)(x) ≤ P[F (X) ≤ x] ≤ U(A)(x) ≤ 1

is, by definition, the tightest possible bound on the quantity of interest P[F (X) ≤ x]

(where P ≡ PX∼µ† as reminded above) that is compatible with the information used
to specify A. Thus, the Optimal Uncertainty Quantification (OUQ) perspective
enriches the principles of worst- and best-case design to account for distributional
and functional uncertainty. We concentrate our attention hereafter, without loss
of generality, on the least upper bound U(A)(x) ≡ F†(x), where this dependency
on x is the main application we have in mind in this chapter. As a function of the
performance threshold x, U(A)(x) is an increasing function, and so it is potentially
advantageous to determine U(A)(x) jointly for a wide range of x values using the
algorithm developed above. Indeed, determining U(A)(x) for many values of x,
rather than just one value, is desirable for multiple reasons:

1. Since numerical optimization to determine U(A)(x) may be affected by errors,
computing several values of U(A)(x) could lead to validate their consistency
as the function x 7→ U(A)(x) must be increasing;
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2. The function U(A)(x) can be discontinuous. Thus, by computing several values
of U(A)(x), one can highlight potential discontinuities and can identify key
threshold values of x 7→ U(A)(x).

In practice, an underlying task is, for any individual x, reducing the calculation
of U(A)(x) to a tractable finite-dimensional optimization problem. In the OUQ
paradigm presented in Chapter 1, upper and lower bounds on the performance of
an incompletely-specified system are calculated via optimization problems. The
estimates G(x, q) are such results of the optimization routine run for different opti-
mization parameters q.

2.3 Notations and problem description

In the following, the “ground truth” performance function that we wish to
reconstruct is denoted by F† : [a, b] → R and has inputs x ∈ [a, b] ⊂ R. It is
assumed that F† is monotonically increasing and non constant on [a, b]. In contrast,
G : [a, b] × R+ → R denotes the numerical process used to obtain an imperfect
pointwise observation y of F†(x) at some point x ∈ [a, b] for some numerical parameter
q ∈ R+. Here, on a heuristic level, q > 0 stands for the “quality” of the noisy
evaluation G(x, q). The main aim of this chapter is to show the effectiveness of the
proposed algorithm for the adaptive reconstruction of F†, which could be continuous
or not, from imperfect pointwise observations G(xi, qi) of F†, where we are free to
choose xi+1 and qi+1 adaptively based upon xj , qj , and G(xj , qj) for j ≤ i.

First, we associate with I imperfect pointwise observations {xi, yi = G(xi, qi)}Ii=1 ⊂
[a, b]×R, positive numbers {qi}Ii=1 ⊂ R+ which we will call qualities. The quality qi
quantifies the confidence we have in the pointwise observation yi of F†(xi) using the
numerical process G(xi, qi). The higher this value, the greater the confidence. We
divide this quality as the product of two different numbers ci and ri, qi = ci × ri,
with the following definitions:

• Consistency ci ∈ {0, 1}: This describes the fact that two successive points
must be monotonically consistent with respect to each other. That is, when
one takes two input values x2 > x1, one should have y2 ≥ y1 as y must be
monotonically increasing. There is no consistency associated with the very
first data point as it does not have any predecessor.

• Reliability ri ∈ R+: This describes how confident we are about the numerical
value. Typically, it will be related to some error estimator if one is available,
or the choice of optimization parameters. It is expected that the higher the
reliability, the closer the pointwise observation is to the true value, in average.

Typically, if the observation yi+1 = G(xi+1, qi+1) is consistent with regard to the
observation yi = G(xi, qi) where xi+1 > xi, the quality qi+1 associated with yi+1

will be equal to qi+1 = ri+1 ∈ R∗
+ since ci+1 = 1 in this case. If the value is not

consistent, we have qi+1 = ri+1 × ci+1 = 0. Finally, if x = a there is no notion of
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(a) Possible ground truth functions between
two consecutive points x1 and x2. The ground
truth function must lie in the area formed by
these two points.

(b) Right-continuous piecewise constant inter-
polation function.

Figure 2.1: Possible ground truth functions between two consecutive points x1 and x2, and
our choice of piecewise constant interpolant.

consistency as there is no point preceding it. Thereby, the quality associated with
this point is only equal to its reliability.

Moreover, we associate to these pointwise observations a notion of area, illustrated
in Figure 2.1 and defined as follows. Consider two consecutive points xi and xi+1

with their respective observations yi and yi+1, the area ai for these two points is

ai = (xi+1 − xi)× (yi+1 − yi) . (2.3)

Thus, we can define a vector a = {ai}I−1
i=1 which contains all the computed areas

for the whole dataset. In addition, we can assure that if we take two points x1 and
x2 > x1 with y1 = F†(x1) and y2 = F†(x2)—namely, the error at these point is
equal to zero, the graph of the ground truth function F† must lie in the rectangular
area spanned by the two points (x1,F†(x1)) and (x2,F†(x2)).

To adopt a conservative point of view, we choose as the approximating function
F of F† a piecewise constant interpolation function, say:

F(x) =
I−1∑
i=1

yi1[xi,xi+1)(x) , (2.4)

where 1I denotes the indicator function of the interval I. We do not want this
interpolation function to overestimate the true function F† as one knows that the
numerical estimate in our case always underestimates the ground truth function F†.
See Figure 2.1 for an illustration of this choice, which can be viewed as a worst-case
approach. Indeed, this chosen interpolation function is the worst possible function
underestimating F† given two points x1 and x2 and their respective observations y1
and y2.
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2.4 Reconstruction algorithm

The reconstruction algorithm that we propose, Algorithm 1, is driven to produce
a sequences of reconstructions that converges to F† by following a principle of area
minimisation: we associate to the discrete data set {xi, yi}Ii=1 ⊂ [a, b]× R a natural
notion of area (2.3) as explained above, and seek to drive this area towards zero. The
motivation behind this objective is in Proposition 2 which states that the area goes
to 0 as more points are added in the data set. However, the objective of minimising
the area is complicated by the fact that evaluations of F† are imperfect. Therefore,
a key user-defined parameter in the algorithm is E ∈ (0,∞), which can be thought
of as an “exchange rate” that quantifies to what extent the algorithm prefers to redo
poor-quality evaluations of the target function versus driving the area measure to
zero.

2.4.1 Algorithm

The main algorithm is organized as follows, starting from I(0) ≥ 2 points and a
dataset that is assumed to be consistent at the initial step n = 0. It goes through
N iterations, where N is either fixed a priori, or obtained a posteriori once a
stopping criterion is met. Note that qnew stands for the quality of a newly generated
observation ynew for any new point xnew introduced by the algorithm. The latter is
driven by the user-defined “exchange rate” E as explained just above. At each step
n, the algorithm computes the weighted area WA(n) as the minimum of the quality
times the sum of the areas of the data points:

WA(n) = q
(n)
− ×A(n) , (2.5)

where

q
(n)
− = min

1≤i≤I(n)
{q(n)i } , A(n) =

I(n)−1∑
i=1

a
(n)
i , (2.6)

a
(n)
i is the area computed by Equation (2.3) at step n—see also Equation (2.9), and

I(n) is the number of data points. Then it is divided into two parts according to the
value of WA(n) compared to E .

• If WA(n) < E , then the algorithm aims at increasing the quality q
(n)
− of the worst

data point (the one with the lowest quality) with index i
(n)
− = argmin1≤i≤I(n){q(n)i }

at step n. It stores the corresponding old value yold, searches for a new value
ynew by improving successively the quality of this very point, and stops when
ynew > yold.

• If WA(n) ≥ E , then the algorithm aims at driving the total area A(n) to zero.
In that respect, it identifies the biggest rectangle

a
(n)
+ = max

1≤i≤I(n)−1
{a(n)i } (2.7)
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and its index

i
(n)
+ = argmax

1≤i≤I(n)−1

{a(n)i } (2.8)

and adds a new point xnew at the middle of this biggest rectangle. Then, it
computes a new data value ynew = G(xnew, qnew) with a new quality qnew.

In both cases, the numerical parameters qnew (for example a number of iterations,
or the size of a sampling set or a population) are arbitrary and any value can be
chosen in practice each time a new point xnew is added to the dataset. They can
be increased arbitrarily as well each time such a new point has to be improved.
Indeed, the numerical parameters q of the optimization routine we have access to
can be increased as much as desired, and increasing them will improve the estimates
G(x, q) of the true function F†(x) uniformly in x; see Assumption 1. The algorithm
then verifies the consistency of the dataset by checking the quality of each point. If
there is any inconsistent point, the algorithm computes a new value until obtaining
consistency by improving successively the corresponding reliability. This is achieved
in a finite number of steps starting from an inconsistent point and exploring the
dataset from the left to the right.

Finally, the algorithm updates the quality vector {q(n+1)
i }I(n+1)

i=1 , the area vector
{a(n+1)

i }I(n+1)

i=1 , the worst quality q
(n+1)
− and the index i

(n+1)
− of the corresponding

point, the biggest rectangle a
(n+1)
+ and its index i

(n+1)
+ , and then the new weighted

area WA(n+1).
The stopping criterion could be a maximum number of iterations or a maximum

time of computation, for example.

2.4.2 Proof of convergence

We denote by I(n) the number of data points, and {x(n)i , y
(n)
i , q

(n)
i }I

(n)

i=1 the posi-
tions of the data points, the observations given by the optimization algorithm at these
positions, and the qualities associated with the optimization algorithm at the step n

of Algorithm 1. For each i = 1, . . . , I(n) − 1, we define s
(n)
i = [x

(n)
i , x

(n)
i+1[ ⊂ [a, b] and

the vector containing all rectangle areas {a(n)i }
I(n)−1
i=1 by:

a
(n)
i = (x

(n)
i+1 − x

(n)
i )× (y

(n)
i+1 − y

(n)
i ) . (2.9)

The pointwise observation y
(n)
i = G(x(n)i , q

(n)
i ) is thus associated to the quality

q
(n)
i ∈ R+, which quantifies the confidence we have in this observation as outlined in

the problem description in Section 2.3. This number can represent the inverse error
achieved by the optimization algorithm, for example, or the number of iterations,
or the number of individuals in a population, or any other numerical parameter
pertaining to this optimization process. The higher it is, the closer the observation
is to the true target value. Therefore we consider the following assumption on the
numerical process G.
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Algorithm 1: Adaptive algorithm to reconstruct a monotonically increasing
function F†.

Input: I(0) ≥ 2, {x(0)
i , y

(0)
i , q

(0)
i }I

(0)

i=1 and E .
Output: {x(N)

i , y
(N)
i , q

(N)
i }I(N)

i=1 with I(N) ≥ I(0).

1 Initialization:
2 Get the worst quality point and its index:

• q
(0)
− = min

1≤i≤I(0)
{q(0)i };

• i
(0)
− = argmin

1≤i≤I(0)

{q(0)i }.

Compute the area of each pair of data points: a
(0)
i = (x

(0)
i+1 − x

(0)
i )× (y

(0)
i+1 − y

(0)
i ).

Get the biggest rectangle and its index:

• a
(0)
+ = max

1≤i≤I(0)−1
{a(0)i };

• i
(0)
+ = argmax

1≤i≤I(0)−1

{a(0)i }.

Define the weighted area at step n = 0 as WA(0) = q
(0)
− ×

I(0)−1∑
i=1

a
(0)
i .

while n < N do
if WA(n) < E then

Data points are unchanged: I(n+1) = I(n) and {x(n+1)
i }I(n+1)

i=1 = {x(n)
i }I

(n)

i=1 ;
Store the old value yold = y

(n)

i
(n)
−

;

while ynew ≤ yold do
Compute a new value ynew = G(x(n)

i
(n)
−

, qnew);

end
else

Introduce a new point at the middle of the biggest rectangle:
I(n+1) = I(n) + 1, xnew = 1

2 (x
(n)

i
(n)
+

+ x
(n)

i
(n)
+ +1

), and

(x
(n+1)
1 , . . . , x

(n+1)

i
(n)
+

, x
(n+1)

i
(n)
+ +1

, x
(n+1)

i
(n)
+ +2

, . . . , x
(n+1)

I(n+1)) =

(x
(n)
1 , . . . , x

(n)

i
(n)
+

, xnew, x
(n)

i
(n)
+ +1

, . . . , x
(n)

I(n));

Compute the new value ynew = G(xnew, qnew);
end
Verify consistency of the pointwise observations {y(n+1)

i )}I(n+1)

i=1 by checking
their quality. If there are not consistent, recompute them until obtaining
consistency and then update the quality vector;
Compute the new quality vector {q(n+1)

i }I(n+1)

i=1 and area vector {a(n+1)
i }I(n+1)

i=1 ;
Update q

(n+1)
− , i

(n+1)
− , a

(n+1)
+ and i

(n+1)
+ ;

Compute WA(n+1) = q
(n+1)
− ×

I(n+1)−1∑
i=1

a
(n+1)
i ;

n = n+ 1;
end
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Assumption 1. G(x, q) converges to F†(x) as q → +∞ uniformly in x ∈ [a, b], that
is:

∀ε > 0 , ∃Q > 0 such that ∀q ≥ Q , ∀x ∈ [a, b] ,
∣∣∣G(x, q)−F†(x)

∣∣∣ ≤ ε .

Moreover, we can guarantee that:

∀x ∈ [a, b] , ∀q ∈ R+ , G(x, q) ≤ F†(x). (2.10)

That is, the optimization algorithm will always underestimate the true value F†(x).
In this way, one can model the relationship between the numerical estimate G and
the true value F† as:

∀x ∈ [a, b] , ∀q ∈ R+ , G(x, q) = F†(x)− ε(x, q) , (2.11)

where ε is a positive random variable. These assumptions imply some robustness
and stability of the algorithm we use.

In the following, we will assume that I(0) ≥ 2. That is, we have at least two data
points at the beginning of the reconstruction algorithm. Also among these points,
we have one point at x = a and another one at x = b. Moreover, we will assume
that the initial dataset is consistent. Since Algorithm 1 recomputes the inconsistent
points at all steps, we can also consider in the following that any new numerical
observation is actually consistent. Also, we need to guarantee that the weighted area
WA(n) will permanently oscillate about E as the iteration step n is increasing; this is
the purpose of Assumption 3 below as shown in the subsequent Proposition 1. Then
from these properties it will be shown that Algorithm 1 is convergent, as stated in
Theorem 2.

Assumption 2. Any new numerical value obtained by Algorithm 1 is consistent.

Assumption 3. q
(n)
− → +∞ as n→∞.

Within Assumption 2 all points have a consistency of 1, and therefore q = r > 0

the reliability. Besides, one has G(x(n)i , q
(n)
i ) ≤ G(x(n)i+1, q

(n)
i+1), that is, y

(n)
i ≤ y

(n)
i+1

for all points i and steps n. We finally define the sequence of piecewise constant
reconstruction functions F (n) as follows.

Definition 1. For each x ∈ [a, b], we define the reconstructing function F (n) at step
n as:

F (n)(x) =

I(n)−1∑
i=1

y
(n)
i 1

s
(n)
i

(x) ,

and F (n)(x
(n)

I(n)) = F (n)(b) = y
(n)

I(n).

Now let:

E+ = {n ∈ N ; WA(n) ≥ E} , E− = {n ∈ N ; WA(n) < E} , (2.12)
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which are such that E+ ∪ E− = N and E+ ∩ E− = ∅. In order to prove the
convergence (in a sense to be given) of Algorithm 1, we first need to establish the
following intermediate results, Proposition 1, Proposition 2, and Proposition 3. They
clarify the behaviour of the sequence WA(n) when points are added to the dataset
and the largest area a

(n)
+ is divided into four parts at each iteration step n; see

Figure 2.2.

Proposition 1. E+ is infinite.

Proof. Let us assume that E+ is finite: ∃N such that ∀n ≥ N , n ∈ E−. Therefore
we are in the situation WA(n) < E , the minimum quality q

(n)
− of the data goes to

infinity, and the total area A(n) is modified although the evaluation points {x(n)i }I
(n)

i=1

and their number I(n) are unchanged; thus they are independent of n. Repeating
this step yields

lim
n→∞

A(n) =

I−1∑
i=1

(xi+1 − xi)(F†(xi+1)−F†(xi)) = A > 0

since F† is monotonically increasing and non constant on [a, b], and Assumption 1 is
used. Consequently WA(n) → +∞ as n→∞, that is WA(n) ≥ E ∀n ≥ N1 for some
N1, which is a contradiction.

The set E+ is therefore of the form:

E+ =
⋃
k≥1

Jmk, nkK , Jmk, nkK = {n ∈ N ; mk ≤ n ≤ nk} .

Let us introduce the strictly increasing application φ : N→ N such that φ(p) is the
p-th element of E+ (in increasing order), and Jmk, nkK = φ(Jpk + 1, pk+1K). p is the
counter of the elements of E+, and n is the corresponding iteration number.

Proposition 2. Let I(φ(p)) = I(φ(0)) + p. Then

A(φ(p)) =

I(φ(p))−1∑
i=1

a
(φ(p))
i = O

(
1
√
p

)

as p→∞, and A(n) → 0 as n→∞.

Proof. Let k ≥ 1 and n = φ(p) ∈ Jmk, nkK, where p ∈ Jpk + 1, pk+1K. Let A(n)

be given by Equation (2.6), a(n)+ be given y Equation (2.7), and i
(n)
+ be given by

Equation (2.8). At iteration n+ 1 one has:

x
(n+1)
i =


x
(n)
i for 1 ≤ i ≤ i

(n)
+ ,

1

2

(
x
(n)

i
(n)
+

+ x
(n)

i
(n)
+ +1

)
for i = i

(n)
+ + 1,

x
(n)
i−1 for i

(n)
+ + 2 ≤ i ≤ I(n+1).
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i
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+
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Figure 2.2: New area when one adds a point at the middle of the biggest rectangle.

Also y
(n+1)
i ≤ y

(n+1)
i+1 for 1 ≤ i ≤ I(n+1) − 1. One may check that a

(n)
+ =

2a
(n+1)

i
(n)
+

+ 2a
(n+1)

i
(n)
+ +1

(see Figure 2.2) and therefore:

A(n+1) = A(n) − a
(n)
+ + a

(n+1)

i
(n)
+

+ a
(n+1)

i
(n)
+ +1

= A(n) − 1

2
a
(n)
+ . (2.13)

Besides A(n) ≤ (I(n) − 1)a
(n)
+ so that one has:

A(n+1) ≤ A(n) − A(n)

2(I(n) − 1)

≤ A(n)

(
2(I(n) − 1)− 1

2(I(n) − 1)

)
,

or:

A(φ(p)+1) ≤ A(φ(p))

(
2(I(φ(p)) − 1)− 1

2(I(φ(p)) − 1)

)
. (2.14)

At this stage two situations arise:

• either p ∈ Jpk + 1, pk+1 − 1K, in which case φ(p) + 1 = φ(p+ 1);

• or p = pk+1, in which case by our algorithm A(n) is kept constant from
n = nk + 1 to n = mk+1; that is A(nk+1) = A(mk+1), or:

A(φ(pk+1)+1) = A(φ(pk+1+1)) .

The choice of k being arbitrary, one concludes that Equation (2.14) also reads
∀p ∈ N:

A(φ(p+1)) ≤ A(φ(p))

(
2(I(φ(p)) − 1)− 1

2(I(φ(p)) − 1)

)

≤ A(φ(p))

(
2(I(φ(0)) + p− 1)− 1

2(I(φ(0)) + p− 1)

)
.
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Thus:

A(φ(p)) ≤ A(φ(1))
p−1∏
i=1

(
2(I(φ(0)) + i− 1)− 1

2(I(φ(0)) + i− 1)

)

≤ A(φ(1))
p−1∏
i=1

(
1 + α

i

1 + β
i

)
,

letting α = I(φ(0)) − 3
2 and β = I(φ(0)) − 1. However,

p∑
i=1

log
(
1 +

α

i

)
= α

p∑
i=1

1

i
+ C ′′

p

where limp→∞C ′′
p = C ′′, and

p∑
i=1

1

i
= log p+ γ + ε′p ,

where γ is the Euler constant and limp→∞ ε′p = 0. Consequently:

p−1∑
i=1

log
(
1 +

α

i

)
−

p−1∑
i=1

log

(
1 +

β

i

)
= (α− β) log(p− 1) + C ′

p

= (α− β)

[
log p+ log

(
1− 1

p

)]
+ C ′

p

= log

(
1
√
p

)
+ Cp ,

since α−β = −1
2 ; again Cp and C ′

p are sequences with constant limits limp→∞Cp = C

and limp→∞C ′
p = C ′. Therefore,

p−1∏
i=1

(
1 + α

i

1 + β
i

)
=
C
√
p
(1 + εp)

where C is a constant, and limp→∞ εp = 0. One also concludes that A(n), which is
either kept constant or equal to A(φ(p)), converges to 0 as n→∞. Hence the claimed
results hold.

Proposition 3. E− is infinite.

Proof. Let us assume that E− is finite: ∃N such that ∀n ≥ N , n ∈ E+. Therefore
we are in the situation WA(n) ≥ E > 0, and φ(n) has the form φ(n) = n− n0, n ≥ N

for some n0 ∈ N. From Proposition 2:

A(n−n0) = O

(
1√
n

)
,

thus A(n) → 0 and WA(n) → 0 as n →∞ since q
(n)
− is kept unchanged, which is a

contradiction.
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We now provide three results on the convergence of Algorithm 1. As is to be
expected, the algorithm can only be shown to converge uniformly when the target
response function F† is sufficiently smooth; otherwise, the convergence is at best
pointwise or in mean.

Theorem 2 (Algorithm convergence). Assume that F† is strictly increasing. Then,
for any choice of E > 0, Algorithm 1 is convergent in the following senses:

• If F† is piecewise continuous on [a, b], then limn→∞F (n)(x) = F†(x) at all
points x ∈ [a, b] where F† is continuous;

• If F† is continuous on [a, b], then convergence holds uniformly: ∥F (n) −
F†∥∞ −−−→

n→∞
0.

Proof. Let E > 0. We know from Propositions 1 and 3 that WA(n) will oscillate about
E in the iterating process as n→∞, while limn→∞ q

(n)
− = +∞ from Assumption 3.

Besides let:
∆(n) = sup

1≤i≤I(n)−1

∣∣∣x(n)i+1 − x
(n)
i

∣∣∣ .
Assuming for example that for some j, s(n)j = [x

(n)
j , x

(n)
j+1) is never divided in two

in the iteration process and is thus independent of n, it turns out that a
(n)
j →

(xj+1 − xj)(F†(xj+1)−F†(xj)) > 0 as n → ∞, which is impossible because A(n)

goes to 0 as n → ∞ from Proposition 2. Therefore there exists some m ∈ N∗

(depending on n) such that ∆(n+m) ≤ 1
2∆

(n); also the sequence ∆(n) is decreasing,
hence ∆(n) → 0 as n→∞.

Now let x ∈ [x
(n)
i , x

(n)
i+1), then:∣∣∣F (n)(x)−F†(x)
∣∣∣ = ∣∣∣G(x(n)i , q

(n)
i )−F†(x)

∣∣∣
≤
∣∣∣G(x(n)i , q

(n)
i )−F†(x(n)i )

∣∣∣+ ∣∣∣F†(x(n)i )−F†(x)
∣∣∣ .

But x
(n)
i → x as n → ∞ because ∆(n) → 0; thus if F† is continuous at x, the

second term on the right hand side above goes to 0 as n → ∞. However, if F†

is continuous everywhere on [a, b], it is in addition uniformly continuous on [a, b]

by Heine’s theorem, and the second term goes to 0 as n → ∞ uniformly on [a, b].
Finally, invoking Assumption 1, the first term on the right hand side above also
tends to 0 as n→∞. This completes the proof.

Proposition 4 (Convergence in mean). Let F† : [a, b]→ R be piecewise continuous.
Then Algorithm 1 is convergent in mean in the sense that∥∥∥F (n) −F†

∥∥∥
1
−−−→
n→∞

0.

Proof. We can check that the sequence F (n) is monotone. Indeed, if WA(n) < E ,
then by construction we have

F (n+1)(x)−F (n)(x) ≥
(
y
(n+1)

i
(n)
−

− y
(n)

i
(n)
−

)
1
s
(n)
−

(x) ≥ 0
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where s
(n)
− =

[
x
(n)

i
(n)
−

, x
(n)

i
(n)
− +1

)
. However, if WA(n) > E , then consistency implies that

F (n+1)(x)−F (n)(x) ≥
(
y
(n+1)

i
(n)
+ +1

− y
(n)

i
(n)
+

)
1
s
(n+1)
+

(x) ≥ 0

where s
(n+1)
+ =

[
x
(n+1)

i
(n)
+ +1

, x
(n+1)

i
(n)
+ +2

)
. The claim now follows from the monotone conver-

gence theorem and the fact that F (0) is integrable.

2.5 Analytical test cases

To show the effectiveness of Algorithm 1, we try it on two cases, in which F† is
a continuous function and a discontinuous function respectively. For both cases, the
error between the numerical estimate and the ground truth function is modelled as a
random variable following a Log-normal distribution. That is,

∀x ∈ [a, b], ε(x) ∼ LogN (µ(x), σ2), (2.15)

with σ2 = 1 and µ(x) is chosen as P[0 ≤ ε(x) ≤ 0.1 · F†(x)] = 0.9. Thus, the mean µ

is different for each x ∈ [a, b]. As we have access to the ground truth function and for
validation purpose, the quality value associated to a numerical point is the inverse
of the relative error. Moreover, we assume that the initial points are consistent.
For illustrative purposes, we set the parameter E = 15 for the examples considered
below.

2.5.1 F † is a continuous function

First, consider the function F† ∈ C0([1, 2], [1, 2]) defined as follows:

F†(x) =

{
F†
1(x) if x ∈ [1, 32 ] ,

F†
2(x) if x ∈ [32 , 2] ,

with

F†
1(x) = a1 exp(x

3) + b1 , (2.16)

F†
2(x) = a2 exp((3− x)3) + b2 ,

where:

a1 = −
1

2(exp(1)− exp(27/8))
, b1 =

3− 2 exp(19/8)

2(1− exp(19/8))
,

a2 = −a1 , b2 = 2a1 exp(27/8) + b1 .

The target function F† and the reconstructions F (n) obtained through the algorithm
for several values of the step n are shown on Figure 2.3. For each n, the reconstruction
F (n) is increasing and the initial points are consistent. The ∞-norm and 1-norm
of the error appear to converge to zero with approximate rates −0.512 and −0.534
respectively.
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(a) n = 0. (b) n = 10. (c) n = 100.

(d) n = 300. (e) ∞-norm error. (f) 1-norm error.

Figure 2.3: Evolution of F (n) and the ∞- and 1-norms of the error F† −F (n) as functions
of the iteration count n for a smooth ground truth F†.

2.5.2 F † is a discontinuous function

Now, consider the discontinuous function F† defined as follows:

F†(x) =

{
F†
1 if x ∈

[
1, 32
]
,

F†
2 if x ∈

(
3
2 , 2
]
,

where F†
1 and F†

2 are given by (2.16), and:

a1 = −
1

2(exp(1)− exp(27/8))
, b1 =

3− 2 exp(19/8)

2(1− exp(19/8))
,

a2 =
2

5(exp(8)− exp(27/8))
, b2 =

10− 8 exp(37/8)

5(1− exp(37/8))
.

Here, F† is piecewise continuous on [1, 32 ] and (32 , 2]. In this case, one can apply
Proposition 4. The target function F† and the reconstructions F (n) obtained through
the algorithm for several values of the step n are shown on Figure 2.4. Observe
that the approximation quality, as measured by the ∞-norm of the error F† −F (n),
quite rapidly saturates and does not converge to zero. This is to be expected for
this discontinuous target F†, since closeness of two functions in the supremum norm
mandates that they have approximately the same discontinuities in exactly the
same places. The 1-norm error, in contrast, appears to converge at the rate −0.561.
Regarding computational costs, the number of calls to the numerical model is lower
when F† is continuous than when it is discontinuous. For both examples above and
for the same number of data points, the number of evaluations of the numerical
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(a) n = 0. (b) n = 10. (c) n = 100.

(d) n = 300. (e) ∞-norm error. (f) 1-norm error.

Figure 2.4: Evolution of F (n) and the ∞- and 1-norms of the error F† −F (n) as functions
of the iteration count n for a discontinuous ground truth F†.

model (analytical formula in the present case) in the discontinuous case is about
six times higher than the number of evaluations in the continuous case. This is
because the algorithm typically adds more points near discontinuities and making
them consistent increases the number of calls to the model.

2.5.3 Influence of the user-defined parameter E

We consider the case in which F† is discontinuous, as in Section 2.5.2. We will
show the influence of the choice of the parameter E on the reconstruction function
F (n).

2.5.3.1 Case E ≪ 1

Let us consider the case E = 10−4 ≪ 1. This choice corresponds to the case
where one wishes to split over redo the worst quality point. This can be seen on
Figure 2.5 where the worst quality is almost constant over 100 steps while the sum
of areas strongly decreases; see Figure 2.5(e) and Figure 2.5(f) respectively. At each
step, the algorithm is adding a new point by splitting the biggest rectangle. One
can note on Figure 2.5(f) that the minimum of the quality is not constant. It means
that when the algorithm added a new data point, the point with the worst quality
was not consistent any more and had to be recomputed. In summary, in this case,
we obtain more points but with lower quality values.
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(a) n = 0. (b) n = 10. (c) n = 50.

(d) n = 100. (e) Minimum of the quality. (f) Total area.

Figure 2.5: Evolution of F (n) and the minimum of the quality and the total area as functions
of the iteration count n for a discontinuous ground truth F† with E = 10−4.

2.5.3.2 Case E ≫ 1

We now consider the case E = 104 ≫ 1. This choice corresponds to the case
where one wishes to redo the worst quality point over split. This can be seen on
Figure 2.6 where the sum of areas stays more or less the same over 100 steps while
the minimum of the quality surges; see Figure 2.6(f) and Figure 2.6(e) respectively.
There is no new point. The algorithm is only redoing the worst quality point to
improve it. To sum up, we obtain fewer points with higher quality values.

2.6 Application to RAE2822 airfoil performance in tran-
sonic flows

For the application of Algorithm 1 to OUQ, we study the influence of geometrical
imperfections of the two-dimensional RAE2822 airfoil [34, Appendix A6] on its
aerodynamic performance using ONERA’s CFD software elsA [20]. This example
is taken from [46] where all numerical parameters for elsA runs are detailed. More
particularly, the transonic flow is modeled by the steady-state Reynolds-Averaged
Navier-Stokes (RANS) equations together with a Spalart-Allmaras turbulence model
closure [136]. The baseline conditions of the flow are those described in [34] for the
test case #6 together with the wall interference correction formulas derived in [53, pp.
386–387] and their slight modifications suggested in [59, pp. 130]. The operational
parameters considered here are thus M = 0.729 for the free-stream Mach number,
α = 2.31◦ for the angle of attack, and Re = 6.50 × 106 for the Reynolds number
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(a) n = 0. (b) n = 10. (c) n = 50.

(d) n = 100. (e) Minimum of the quality. (f) Total area

Figure 2.6: Evolution of F (n) and the minimum of the quality and the total area as functions
of the iteration count n for a discontinuous ground truth F† with E = 104.

based on the chord length c, fluid velocity, temperature, and molecular viscosity at
infinity. They arise from the corrections ∆M = 0.004 and ∆α = −0.61◦ given in
[59, pp. 130] for the test case #6 outlined in [34], for which M = 0.725, α = 2.92◦,
and Re = 6.50 × 106. The shape of the original RAE2822 is subsequently altered
using four bumps located at four different locations: 5%, 20%, 40%, and 60% of the
way along the chord c—see Figure 2.7. These bumps are characterized by B-splines
functions.

The lift-to-drag ratio L/D = CL/CD of the RAE2822 wing profile (for CL and
CD being its lift and drag coefficients, respectively; see Figure 2.8) at the baseline
Reynolds Number Re, Mach number M , and angle of attack α is chosen as the
performance function F with inputs X = (X1, X2, X3, X4), where {Xi}4i=1 are the
amplitudes of the bumps. They will be considered as random variables over their
respective range given in Table 2.1. Moreover, we will assume that {Xi}4i=1 are
mutually independent.

Remark 7. The ground truth law µ† of each input variable given in Table 2.1 is
only used to compute the expected value E{F (X)} = L/D. This expected value is
computed through a MC simulation with 104 random samples. It is analogous to
scenario 0 defined in the numerical examples in Section 1.3.

An ordinary Kriging procedure has been chosen to build a surrogate model G of
F . More details about ordinary Kriging will be given in Section 3.2.5. A tensorized
grid of 9 evenly distributed abscissas for each parameter is used. The surrogate
model is then based on N = 94 = 6561 observations. In that respect, a Gaussian
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Figure 2.7: Black lines: Maximum and minimum deformation of the RAE2822 profile. Red:
Maximum deformation of the third bump alone. Blue: Minimum deformation of the third
bump alone. This image is taken from [46].

Input Range Law
Bump 1: X1 [-0.0025c; +0.0025c] µ†

1: Beta law with α = 6, β = 6

Bump 2: X2 [-0.0025c; +0.0025c] µ†
2: Beta law with α = 2, β = 2

Bump 3: X3 [-0.0025c; +0.0025c] µ†
3: Beta law with α = 2, β = 2

Bump 4: X4 [-0.0025c; +0.0025c] µ†
4: Beta law with α = 2, β = 2

Table 2.1: Range of each input parameter X.

kernel

K(X,X′) = exp

(
−1

2

4∑
i=1

(Xi −X ′
i)
2

γ2i

)

Figure 2.8: Picture depicting the lift CL and the drag CD of an airfoil.
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has been chosen, where X = (X1, X2, X3, X4) and X′ = (X ′
1, X

′
2, X

′
3, X

′
4) are inputs

of the function G, and where γ = (γ1, γ2, γ3, γ4) are the parameters of the kernel.
These parameters are chosen to minimize the variance between the ground truth
data defined by the N observations and their Kriging metamodel G. The response
surfaces in the (X1, X3) plan for two values of (X2, X4) are shown on Figure 2.9. The
surrogate model G will be assumed accurate enough to state that G is equivalent to F ,
namely G ≡ F . Consequently, we will assume that DF−G = 0—see Equation (1.6).
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(a) X2 = −0.0025, X4 = 0.

-0.0025
-0.0015

-0.0005
 0.0005

 0.0015
 0.0025

y1

-0.0025
-0.0015

-0.0005
 0.0005

 0.0015
 0.0025

y3

 40

 50

 60

 70

 80

Cl/Cd

 35

 40

 45

 50

 55

 60

 65

(b) X2 = 0.0025, X4 = 0.

Figure 2.9: Response surface in the (X1, X3) plane with (X2 = −0.0025, X4 = 0) (a) and
(X2 = 0.0025, X4 = 0) (b). These images are taken from [46].

One seeks to determine U(A)(x) := supµ∈A PX∼µ[F (X) ≤ x], where the admissi-
ble set A is defined as follows:

A =

(f, µ)

∣∣∣∣∣∣∣∣∣
X ∈ X = X1 ×X2 ×X3 ×X4

f : X 7→ Y is known equal to F

µ = µ1 ⊗ µ2 ⊗ µ3 ⊗ µ4

EX∼µ[f(X)] = L/D

 . (2.17)

A priori, finding U(A)(x) is not computationally tractable because it requires a search
over a infinite-dimensional space of probability measures defined by A. However,
as outlined in Chapter 1, this optimization problem can be reduced to a finite-
dimensional one, where now the probability measures are products of finite convex
combinations of Dirac masses.

Remark 8. The admissible set A from (2.17) can be understood as follows:

• One knows the range of each input parameter {Xi}4i=1;

• f is exactly known as f = F ;

• {Xi}4i=1 are mutually independent;

• Only the expected value of f is known: EX∼µ[f(X)].

The optimization problem of determining U(A)(x) for each chosen x was solved
using the DE algorithm of [140] within the mystic optimization framework [102] (see
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Section 1.3.1). Ten iterations of Algorithm 1 have been performed using E = 1× 104.
The evolution of U(A)(x) as function of the iteration count n is shown on Figure 2.10.
At n = 0 two consistent points are present at x = 57.51 and x = 67.51; see
Figure 2.10(a). At this step, WA(0) = 35289. As WA(0) ≥ E , at next step n = 1, the
algorithm adds a new point at the middle of the biggest rectangle; see Figure 2.10(b)
and Figure 2.11(b). After n = 10 steps, eight points are now present in total with a
minimum quality increasing from 5000 to 11667 and with a total area decreasing
from 7.05 to 0.84; see Figure 2.11(a) and Figure 2.11(b), respectively.

(a) n = 0. (b) n = 1.

(c) n = 5. (d) n = 10.

Figure 2.10: Evolution of F(x) = U(A)(x) as function of the iteration count n.

The number of iterations in this complex numerical experiment has been limited
to 10 because obtaining new or improved data points consistent throughout the
optimization algorithm may take up to two days (wall-clock time on a personal
computer equipped with an Intel Core i5-6300HQ processor with 4 cores and 6 MB
cache memory) for one single point. This running time is increased further for data
points of higher quality. However this experiment shows that the proposed algorithm
can be used for real-world examples in an industrial context.
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(a) Evolution of the minimum of the quality. (b) Evolution of the total area.

Figure 2.11: Evolution of the minimum of the quality and the total area as function of the
iteration count n.

2.7 Conclusions

In this chapter we have developed an algorithm to reconstruct a monotonically
increasing function such as the cumulative distribution function of a real-valued
random variable, or the least upper bound of the performance criterion of a system
as a function of its performance threshold. In particular, this latter setting has
relevance to the Optimal Uncertainty Quantification (OUQ) framework of Chapter 1
we have in mind for applications to real-world incompletely specified systems. The
algorithm uses imperfect pointwise evaluations of the target function, subject to
partially controllable one-sided errors, to direct further evaluations either at new sites
in the function’s domain or to improve the quality of evaluations at already-evaluated
sites. It allows for some flexibility at targeting either strategy through a user-defined
“exchange rate” parameter, yielding an approximation of the target function with
few high-quality points or alternatively more lower-quality points. We have studied
its convergence properties and have applied it to several examples: known target
functions that are either continuous and discontinuous, and a performance function
for aerodynamic design of a well-documented standard profile in the OUQ setting.

Algorithm 1 is reminiscent of the classical PAVA approach to isotonic regression
that applies to statistical inference with order restrictions. Examples of its use can
be found in shape constrained or parametric density problems as illustrated in e.
g. [58]. In any case, in order to obain one data point using mystic and Price and
Storn’s DE algorithm, for instance U(A)(x), several tens of thousands of evaluations
of the performance function are required. Therefore, the use of a surrogate model
is highly desirable, as in the aerodynamic test case of Section 2.6. Consequently,
the value of the upper bound of the performance function obtained through the
optimization process will strongly depend on the quality of this surrogate model.
Building an accurate surrogate model is the topic of the next chapter.
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In this chapter, we will present different kernel regression methods to build a
surrogate model from limited knowledge of a performance function F . In Section 3.1,
the motivations of building surrogate models are exposed and the problem considered
is defined. Section 3.2 presents classical kernel regression methods together with their
connections. These methods raise the issue of finding a “best” kernel function, which
is addressed here in two ways. First, the Kernel Flow algorithm initially implemented
in a classification context [31, 114] is extented to the regression context and applied to
an aerodynamic case in Section 3.3. Second, a spectral version of the classical Kernel
Ridge Regression algorithm within the framework of Mercer’s theorem is developed in
Section 3.4. Mercer’s framework is reminded in Section 3.4.1, and subsequently used
in Section 3.4.3.2 and Section 3.4.3.3 to introduce two algorithms based on regression
and projection approaches. The Polynomial Chaos Expansion (PCE) method is briefly
reviewed in Section 3.5 for completeness. The proposed algorithms are finally tested
on synthetic examples in Section 3.6 and on a more complex aerodynamic example
in Section 3.7.

3.1 Motivations

In the OUQ framework of Chapter 1 several tens of thousands function evaluations
are required to obtain one optimal bound, by using mystic [101, 102] for instance.
In aerodynamic applications, one function evaluation can take up to several hours.
It is not conceivable to use this type of complex models for every single function
evaluation. Thus, a middle ground has to be found. One way to solve this issue
is to accept to evaluate the complex model at some sample points but using an
approximation of the model at the remaining points to mimic the behavior of the
complex model. That is called a metamodel or a surrogate model. Obviously, the
quality of the model will strongly influence the trustworthiness of the obtained
optimum bound. In that respect, the surrogate model has to verify the following
two properties:

• It has to be low-cost to evaluate in order to be able to obtain tens of thousands
function evaluations in a reasonable time. Typically, an evaluation should be
less than 1 second;

• It has to be the most accurate possible given a metric to have confidence in
the computations.

The problem can be summed up as follows:

Problem 1. Let d be the dimension of the input space X . Let F : X ⊂ Rd → Y = R
be a smooth function. Given I observations of the function F , denoted by (X,Y) =

(Xi, Yi)i=1,...,I , approximate F .
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Here, F can be for instance a very complex model requiring several hours
to obtain one output data. There exists many different methods to construct
a surrogate model. These methods depend on the available information and to
cite a few among others: Polynomial Chaos Expansion (PCE) and polynomial
regression [49, 56, 87, 111, 120, 135, 162], Proper Orthogonal Decomposition (POD)
[11, 19, 28, 78, 97], Kriging [51, 77, 79, 80, 98, 99, 127, 128], Artificial Neural Networks
[10, 14, 110, 133, 146, 149, 155, 166] (ANN), more recently Physics Informed Neural
Networks (PINN) for PDEs [54, 74, 147], etc. In the following chapter, we will focus
on one specific method to construct a surrogate model: Gaussian Process Regression
(GPR) [122]. GPR has been chosen because this method is quite flexible, it has a
solid theoretical background, and it has an interesting connection with Reproducing
Kernel Hilbert Spaces [118] and Kriging; see for example [164]. Besides, the link
between ANN and Reproducing Kernel Hilbert Spaces is outlined in [115].

3.2 The regression setting

3.2.1 Reproducing Kernel Hilbert Space

This section follows [118, Chapter 1 and 2] and is a short reminder about
Reproducing Kernel Hilbert Spaces (RKHS). We denote by F(X ,R) the set of
functions from X to R. F(X ,R) is a vector space over R with the operations of
addition and scalar multiplication.

Definition 2 (RKHS). Let X be a non-empty set. We will call a subset H ⊆ F(X ,R)
a Reproducing Kernel Hilbert Space (RKHS) on X if

• H is a vector subspace of F(X ,R);

• H is endowed with an inner product ⟨·, ·⟩H, with respect to which H is a Hilbert
space;

• for every x ∈ X , the linear evaluation functional Ex : H → R defined by
Ex(f) = f(x) is bounded: ∃Cx > 0, ∀f ∈ H, |f(x)| = |Ex(f)| ≤ Cx ∥f∥H,
where ∥f∥H =

√
⟨f, f⟩H.

If H is a RKHS, then the Riesz representation theorem shows that the linear
evaluation functional Ex is given by the inner product with a unique vector in H.

Definition 3 (Reproducing kernel). A function K : X × X → R is called a
reproducing kernel of H if

• ∀x ∈ X , K(x, ·) ∈ H;

• ∀x ∈ X , ∀f ∈ H, ⟨f,K(x, ·)⟩H = f(x) (reproducing property).

More particularly, for any x, y ∈ X ,

K(x,y) = ⟨K(x, ·),K(y, ·)⟩H .

Following the previous definition, we introduce a kernel function as follows:
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Definition 4 (Kernel function [118]). Let X be a non-empty set and let K : X ×X →
R be a function. K is called a kernel function if it is positive semi-definite that is,
for any m ≥ 1, for any (a1, . . . , am) ∈ Rm, for any distinct (x1, . . . ,xm) ∈ Xm,

m∑
i=1

m∑
j=1

aiajK(xi,xj) ≥ 0 . (3.1)

Proposition 5. Let X be a non-empty set and let H be an RKHS on X with
reproducing kernel K. Then K is a kernel function.

Proof. Let (x1, . . . ,xm) ∈ Xm, (a1, . . . , am) ∈ Rm, and m ≥ 1. One has

m∑
i=1

m∑
j=1

aiajK(xi,xj) =

〈
m∑
i=1

aiK(xi, ·),
m∑
j=1

ajK(xj , ·)

〉
H

=

∥∥∥∥∥
m∑
i=1

aiK(xi, ·)

∥∥∥∥∥
2

H
≥ 0 .

In addition, let x,y ∈ X ; one has

K(x,y) = ⟨K(x, ·),K(y, ·)⟩H = ⟨K(y, ·),K(x, ·)⟩H = K(y,x),

which shows that K is symmetric. From Proposition 5, a RKHS H defines a
reproducing kernel K which is a symmetric kernel function. Although Proposition 5
is quite elementary, it has a deep converse known as the Moore-Aronszajn theorem.

Theorem 3 (Moore-Aronszajn [4, 106]). Let X be a non-empty set and let K :

X × X → R be a function. If K is a kernel function, then there exists a unique
RKHS H of functions on X such that K is the reproducing kernel of H.

Therefore, Proposition 5 and Theorem 3 shows there is an one-to-one correspondence
between RKHS on a set and kernel functions on this set. In the following, we will
denote by HK the unique RKHS associated with the reproducing kernel K, and
⟨·, ·⟩HK

its inner product with its associated norm ∥·∥HK
.

Definition 5. Given a kernel function K : X × X → R, HK denotes the unique
RKHS with reproducing kernel K.

For the remainder of this chapter, we will make one more assumption about the
kernel function K which will be useful:

Assumption 4 (Positive definite). Let X be a non-empty set and let K : X ×X → R
be a kernel function. K is assumed positive definite, or non-degenerate, that is, for any
m ≥ 1, for any a = (a1, . . . , am) ∈ Rm, a ̸= 0, for any distinct (x1, . . . ,xm) ∈ Xm,

m∑
i=1

m∑
j=1

aiajK(xi,xj) > 0 .
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3.2.2 The Optimal Recovery Solution

Let K : X × X → R be a positive definite kernel. Using ∥·∥HK
as the loss, the

Optimal Recovery Solution (ORS) of Problem 1 is the minimizer [113, Theorem 12.4
and 12.5] of {

min
F∈HK

∥F∥2HK
,

subjected to F (Xi) = Yi, i = 1, . . . , I,
(3.2)

where the functional space HK is the RKHS associated with the kernel K. This
regression provides a minimax optimal approximation of F in HK [104]. From the
representer theorem [105], the solution of Equation (3.2) is

G(x) =
I∑

i=1

αiK(x,Xi). (3.3)

The coefficients α = {αi}Ii=1 are obtained by solving the following equation

K(X,X)α = Y, (3.4)

where K(X,X) is the block matrix defined as

K(X,X) =

K(X1,X1) · · · K(X1,XI)
...

. . .
...

K(XI ,X1) · · · K(XI ,XI)

 , (3.5)

and Y = (Y1, . . . , YI)
T . Thus, one has:

F (x) ≈ G(x) = K(x,X)K(X,X)−1Y (3.6)

where
K(x,X) =

(
K(x,X1) . . . K(x,XI)

)
. (3.7)

Equation (3.6) implies that the ORS is interpolant. That is,

∀i = 1, . . . , I, G(Xi) = Yi. (3.8)

In some cases, depending on the position of the data points X and their number, the
kernel matrix K(X,X) might be ill-conditioned and thus numerically non-invertible.
Therefore, Kernel Rigde Regression is often preferred because it ensures that the
kernel matrix is indeed invertible by adding a smoothing term.

3.2.3 The Kernel Ridge Regression solution

Let λ > 0. The Kernel Ridge Regression (KRR) solution of Problem 1 is [115]

min
F∈HK

I∑
i=1

(Yi − F (Xi))
2 + λ ∥F∥2HK

, (3.9)
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where the functional space HK is the RKHS associated with the kernel K. The
parameter λ controls the smoothness of the KRR solution. This parameter is useful
to avoid overfitting and is often called nugget. From the representer theorem [105],
the solution of Equation (3.9) is

Gλ(x) =
I∑

i=1

αiK(x,Xi). (3.10)

The coefficients α = {αi}Ii=1 are given by

(K(X,X) + λII)α = Y, (3.11)

where K(X,X) is the block matrix defined by Equation (3.5) and II is the I × I

identity matrix. The matrix K(X,X)+λII is invertible if λ > 0. Thus, the prediction
at an unobserved point x has the following expression:

F (x) ≈ Gλ(x) = K(x,X) (K(X,X) + λII)
−1Y. (3.12)

The main difference with Equation (3.2) is that the KRR solution is not interpolant
because of the addition of the parameter λ, which controls the overfitting of the
solution. In practical cases, this parameter is usually chosen as λ≪ 1. For λ = 0,
G0 ≡ G.

3.2.4 Deterministic error estimation of the KRR solution

Let F ∈ HK be the ground truth function and let Gλ be its KRR approximation
(3.12) with λ ≥ 0. From [115, Theorem 8.4], one has for any x ∈ X ,

|F (x)−Gλ(x)| ≤ σ(x) ∥F∥HK
with ∥F∥HK

< +∞, (3.13)

and

|F (x)−Gλ(x)| ≤
√
σ2(x) + λ ∥F∥HK+λ

with ∥F∥HK+λ
< +∞, (3.14)

where HK is the RKHS associated with the kernel K, HK+λ is the RKHS associated
with the kernel K + λ, and

σ2(x) = K(x,x)−K(x,X) (K(X,X) + λII)
−1K(X,x), (3.15)

with K(X,x) = K(x,X)T . Thus, Equation (3.13) and Equation (3.14) provide
with bounds on the deterministic error |F (x)−Gλ(x)|, which depend on the norms
∥F∥HK

, ∥F∥HK+λ
, and σ2(x). Therefore, reducing the discrepancy between the

ground truth function F and its approximation Gλ at some point x ∈ X amounts to
finding the “best” kernel K in a sense that will be elaborated further on in Section 3.3
and in Section 3.4.
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3.2.5 Equivalence with Kriging

Kriging was first developed by Krige [79, 80] in mining exploration in a geostatis-
tical approach. In his first studies, he was searching for estimating the distribution
of gold at the Witwatersrand reef complex in South Africa. Then Matheron [98, 99]
studied Krige’s work and generalized it. Since then, many people have been working
on this approach to expand it to further fields, among others: engineering design opti-
mization [12], topology optimization [165] or uncertainty quantification [47, 108, 159].
The essential idea of Kriging is that the function F is not deterministic but can
be viewed as a stochastic process. That is, the stochastic process F over X is a
collection of random variables {F (x); x ∈ X}. In this way, we decompose F as
follows:

∀x ∈ X , F (x) = m(x) + Z(x), (3.16)

where m(x) is the deterministic contribution or the mean function, and Z(x) is
the fluctuation contribution or residual. The random process associated with Z

is zero-mean second order stationary. That is to say, the mean of the process
is constant equal to zero E [Z(x)] = 0 and the variance is constant E

[
Z(x)2

]
=

σ2, for all x ∈ X . Also the covariance function between two points (x,y) ∈ X 2,
Cov[Z(x), Z(y)] = E [(Z(x)− E [Z(x)])(Z(y)− E [Z(y)])] = E [Z(x)Z(y)], depends
only on x− y. In summary,

∀x ∈ X , E [F (x)] = m(x), Var [F (x)] = σ2,

where Var [F (x)] = E
[
(F (x)−m(x))2

]
= Cov[Z(x), Z(x)] = E

[
Z(x)2

]
. Moreover,

we define the covariance matrix of a vector X ∈ X I the I × I matrix denoted by
K(X,X) such that

∀X ∈ X I , (K(X,X))i,j = K(Xi,Xj) = Cov[F (Xi), F (Xj)]. (3.17)

The matrix K(X,X) needs to be positive definite and it is symmetric by definition.
That is,

∀m ∈ N∗, ∀a ∈ Rm, a ̸= 0, aTK(X,X)a > 0, and (positive definite)

∀i, j, K(Xi,Xj) = K(Xj ,Xi). (symmetric)

We keep the same notations as in Section 3.2.1 but here K(X,X) is built from a
covariance function and not from a kernel. Then one can compute the Best Linear
Unbiased Predictor (BLUP).

Definition 6. (BLUP) A predictor G(x) of a random variable F (x) is said to be
the Best Linear Unbiased Predictor (BLUP) if the following properties are verified:

• The predictor G(x) is a linear combination of the observations Y: G(x) =∑I
i=1 ωi(x)Yi;

• The predictor G(x) is unbiased: E [G(x)− F (x)] = 0;
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• The predictor G(x) minimizes the mean squared error (or variance in this case):
E
[
(G(x)− F (x))2

]
= Var[G(x)− F (x)].

Two different types of Kriging will be studied:

• Simple Kriging: The mean function m is assumed to be constant and known
for the whole domain X . That is, for any x ∈ X , m(x) = E[F (x)] = m with
m known;

• Ordinary Kriging: The mean function m is assumed to be constant but unknown.
That is, for any x ∈ X , m(x) = E [F (x)] = m with m unknown. This case is
the most commonly used.

A third type is also often used: co-Kriging. One also knows secondary or auxiliary
information at the observation points, or at other locations, such as the partial
gradients of the function of interest F . In this case, co-Kriging is also known
as gradient-enhanced Kriging. Gradient-enhanced Kriging has been successfuly
applied in a robust design optimization context in [132] for example. Co-Kriging
will not be further developed here but additional information can be found in e.g.
[33, 81, 86, 90, 94, 167] and references therein.

3.2.5.1 Simple Kriging

Assumption 5. In the simple Kriging framework, the assumptions are the following:

• The mean m ∈ R is constant and known;

• The covariance function K associated with the random process Z is known.

One seeks the BLUP of F at a point x. The predictor, denoted by G(x), is
supposed to be a linear combination of the observed values {Yi}Ii=1

G(x) = α(x) +

I∑
i=1

ωi(x)Yi, (3.18)

where ω(x) =
(
ω1(x) . . . ωI(x)

)
T ∈ RI are the weights to be determined, and

α(x) ∈ R is a function to be determined. In an equivalent way, the predictor G can
be written as:

G(x) = α(x) + ω(x)TY. (3.19)

Determination of the weights ω(x) First, the predictor G must be unbiased:

E [G(x)− F (x)] = α(x) +

I∑
i=1

ωi(x)E [Yi]︸ ︷︷ ︸
=m

−E [F (x)]︸ ︷︷ ︸
=m

= α(x) +

I∑
i=1

ωi(x)m−m

= 0.

(3.20)
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Thus, Equation (3.20) yields

α(x) = m

(
1−

I∑
i=1

ωi(x)

)
. (3.21)

In the Kriging framework, “best” has to be understood as the predictor which
minimizes the variance (the BLUP):

ω(x) = argmin
ω∈RI

Var[F (x)−G(x)], (3.22)

under the assumption that the predictor G is unbiased. One has

E
[
(G(x)− F (x))2

]
= E

( I∑
i=1

ωi(x)Yi +m

(
1−

I∑
i=1

ωi(x)

)
− F (x)

)2


=

I∑
i=1

I∑
j=1

ωi(x)ωj(x)E [(m− Yi)(m− Yj)]

−2
I∑

i=1

ωi(x)E [(m− Yi)(m− F (x)] + E
[
(m− F (x))2

]
,

or
E [(m− Yi)(m− Yj)] = Cov[Yi, Yj ] = K(Xi,Xj).

Thus

E
[
(G(x)− F (x))

2
]
=

I∑
i=1

I∑
j=1

ωi(x)ωj(x)K(Xi,Xj)− 2

I∑
i=1

ωi(x)K(Xi,x) +K(x,x).

Finally,

σ2
SK(x) = E

[
(G(x)− F (x))2

]
= K(x,x)− 2ω(x)TK(X,x) + ω(x)TK(X,X)ω(x),

(3.23)

where K(X,X) is given by Equation (3.5) (or Equation (3.17)) and K(X,x) =

K(x,X)T is given by Equation (3.7). Now, we want to minimize the prediction
variance σ2

SK(x) with respect to the weights ω(x). The minimum can be found by
setting to zero the first derivate of σ2

SK(x) with respect to ω(x) under the condition
that the Hessian matrix is positive definite. One has first:

∇ωσ
2
SK = −2K(X,x) + 2K(X,X)ω(x). (3.24)

Setting Equation (3.24) to zero yields:

K(X,X)ω(x) = K(X,x). (3.25)

It is solvable because K is a positive definite matrix from Assumption 4, thus it is
invertible. Let us verify that it is indeed a minimum by determining the Hessian
matrix:

1

2
∇ω ⊗∇ωσ

2
SK = K(X,X),
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which is positive definite for every ω because K(X,X) is. Thereby, if ω(x) is solution
of Equation (3.25), then ω(x) is a global minimum of σ2

SK(x). Therefore,

ω(x) = K(X,X)−1K(X,x). (3.26)

Determination of Kriging variance σ2
SK(x) Following Equation (3.23), the

expression of the prediction variance σ2
SK(x) is

σ2
SK(x) = K(x,x)− 2ω(x)TK(X,x) + ω(x)TK(X,X)ω(x), (3.27)

with ω(x) = K(X,X)−1K(X,x) from Equation (3.26). Hence,

σ2
SK(x) = K(x,x)− 2K(X,x)TK(X,X)−TK(X,x)

+K(X,x)TK(X,X)−TK(X,X)K(X,X)−1K(X,x)

= K(x,x)−K(X,x)TK(X,X)−TK(X,x)

= K(x,x)−K(x,X)K(X,X)−1K(X,x),

(3.28)

because K(X,X)−1 is symmetric.

Simple Kriging predictor and variance For every x ∈ Rd, the simple Kriging
predictor G and the prediction variance σ2

SK are equal to

G(x) = ω(x)T (Y − 1m) +m, (3.29)

σ2
SK(x) = K(x,x)−K(x,X)K(X,X)−1K(X,x), (3.30)

with ω(x) given by Equation (3.26) and 1 = (1, . . . , 1)T with I instances. One can
notice that σ2

SK(x) does not depend on the value of the observations Y but only on
the covariance function K and the positions X of the observations. If m = 0, one
finds the classical expression of the predictor

G(x) = ω(x)TY. (3.31)

Remark 9. Another way to directly find the expression of α—see Equation (3.21)—is
to consider for each x, F̃ (x) = F (x)−m instead of F (x). In that way, the process
F̃ is a zero-mean process. The predictor G̃ is searched as a linear combination of
the observations: G̃(x) =

∑I
i=1 ωi(x)F̃ (Xi). It is unbiased because it has zero-mean.

By taking advantage of G̃(x) = G(x)−m and F̃ (Xi) = Yi −m, for all i = 1, . . . , I,
Equation (3.21) is obtained.

Numerical simplification To simplify Equation (3.29), we will assume that
m = 0. When the data set is large and when one wishes to obtain multiple output
values, the weights have to be computed for each output value because K(X,x)

depends on x. To overcome this numerical complication, one can express the weights
into a new basis:

G(x) =
(
ω1(x) . . . ωI(x)

)
Y,
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with
(
ω1(x) . . . ωI(x)

)T
= K(X,X)−1K(X,x). Hence,

G(x) =
(
K(X,X)−1K(X,x)

)T
Y

= K(x,X)K(X,X)−1Y.

Introducing ω̃ =
(
ω̃1 . . . ω̃I

)T such that:

K(X,X)ω̃ = Y (3.32)

which does not depend on x, the predictor G can be expressed for every x ∈ X :

G(x) = K(x,X)ω̃ = ω̃TK(X,x), (3.33)

where only one inversion of a linear system is needed to obtain ω̃ from Equation (3.32).

3.2.5.2 Ordinary Kriging

In most practical cases, the mean m is not known. Thus, simple Kriging is
inapplicable. We introduce an alternative prediction method, called ordinary Kriging,
which unlike simple Kriging does not assume the knowledge of m.

Assumption 6. In the ordinary Kriging framework, the assumptions are the follow-
ing:

• The mean m ∈ R is constant but unknown;

• The covariance function K associated with the random process Z is known.

As earlier, One seeks the BLUP of F at a point x. The predictor, denoted by
G(x), is supposed to be a linear combination of the observed values {Yi}Ii=1:

G(x) =
I∑

i=1

ωi(x)Yi, (3.34)

or in an equivalent way,
G(x) = ω(x)TY. (3.35)

Determination of the weights ω(x) The prediction G must be unbiased,

E [G(x)− F (x)] = E [G(x)]− E [F (x)] =
I∑

i=1

ωi(x)m−m = 0. (3.36)

Equation (3.36) must be true for every m. Thus, it implies that

I∑
i=1

ωi(x) = 1. (3.37)
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One also seeks to minimize the following variance

ω(x) = argmin
ω∈RI

Var[F (x)−G(x)] subjected to
I∑

i=1

ωi(x) = 1. (3.38)

Contrary to simple Kriging, the optimization problem (3.38) is henceforth constrained
to satisfy the unbiased-ness requirement. One can solve it by the method of Lagrange
multipliers. Denoting by Λ(x) ∈ R this Lagrange multiplier, one obtains the
equivalent unconstrained problem

(ω(x),Λ(x)) = argmin
ω∈RI , Λ∈R

Var[F (x)−G(x)] + 2Λ(x)

(
I∑

i=1

ωi(x)− 1

)
. (3.39)

Using Equation (3.23), the optimization problem amounts to solve for

(ω(x),Λ(x)) =

argmin
ω∈RI , Λ∈R

K(x,x)− 2ω(x)TK(X,x)+ω(x)TK(X,X)ω(x)+2Λ(x)(ω(x)T1− 1).

(3.40)

Setting to zero the first derivates with respect to ω(x) and Λ(x) of the hereinabove
expression gives

−2K(X,x) + 2K(X,X)ω(x) + 2Λ(x)1 = 0

ω(x)T1− 1 = 0,
(3.41)

hence [
K(X,X) 1

1T 0

](
ω(x)

Λ(x)

)
=

(
K(X,x)

1

)
.

Finally, the weights ω(x) and the Lagrange multiplier Λ(x) can be found by solving
the following system:(

ω(x)

Λ(x)

)
=

[
K(X,X) 1

1T 0

]−1(
K(X,x)

1

)
. (3.42)

By block matrix inversion, one finds

ω(x) = K(X,X)−1

[
K(X,x) +

(
1− 1TK(X,X)−1K(X,x)

1TK(X,X)−11

)
1

]
,

Λ(x) =
1TK(X,X)−1K(X,x)− 1

1TK(X,X)−11
.

(3.43)

Determination of Kriging variance σ2
OK(x) Now, as for simple Kriging, one

seeks to determine the prediction variance σ2
OK(x) = E

[
(G(x)− F (x))2

]
for ordinary

Kriging. By following the same path as for simple Kriging, one has

σ2
OK(x) = K(x,x)− 2ω(x)TK(X,x) + ω(x)TK(X,X)ω(x)

= K(x,x) + ω(x)T (K(X,X)ω(x)− 2K(X,x)) ,
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where K(X,X)ω(x) = K(X,x)− Λ(x)1 by using the first line of Equation (3.41).
Hence,

σ2
OK(x) = K(x,x)− ω(x)TK(X,x)− Λ(x)ω(x)T1,

where ω(x)T1 = 1 because the predictor is unbiased. Finally,

σ2
OK(x) = K(x,x)− ω(x)TK(X,x)− Λ(x),

where ω(x) and Λ(x) are given by Equation (3.43).

Ordinary Kriging predictor and variance For every x ∈ Rd, the ordinary
Kriging predictor G and the prediction variance σ2

OK are equal to

G(x) = ω(x)TY (3.44)

σ2
OK(x) = K(x,x)− ω(x)TK(X,x)− Λ(x), (3.45)

where ω(x) and Λ(x) are given by Equation (3.43). As for simple Kriging, σ2
OK does

not depend on the value of the observations Y but only on the covariance function
K and the positions X of the observations.

Numerical simplification When the data set is large and when one wishes to
obtain multiple output values, the weights have to be computed for each output
value because K(X,x) depends on x. To overcome this numerical complication, one
can express the weights into a new basis. From the previous section, we have

G(x) =
(
ω1(x) . . . ωI(x) Λ(x)

)(Y
0

)
.

From Equation (3.42), we have(
ω(x)

Λ(x)

)
=

[
K(X,X) 1

1T 0

]−1(
K(X,x)

1

)
= K̃(X,X)−1K̃(X,x),

(3.46)

where

K̃(X,X) =

[
K(X,X) 1

1T 0

]
and

K̃(X,x) =

(
K(X,x)

1

)
.

Hence

G(x) = (K̃(X,X)−1K̃(X,x))T
(
Y

0

)
= K̃(x,X)K̃(X,X)−1

(
Y

0

)
.
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Introducing ω̃ =
(
ω̃1 . . . ω̃I ω̃I+1

)T such that:

K̃(X,X)ω̃ =

(
Y

0

)
(3.47)

which does not depend on x, the predictor G can be expressed for every x ∈ X

G(x) = K̃(x,X)ω̃ = ω̃T K̃(X,x), (3.48)

where only one inversion of a linear system is needed to obtain ω̃ from Equation (3.47).

3.2.5.3 Kriging with noisy data

So far, we have considered noise-free data. In reality, one almost never observes
the function F itself but only a noisy version of it. Now we consider that

∀x ∈ X , F (x) = m(x) + Z(x) + ε(x), (3.49)

where ε is the noise which is such that ∀x, ε(x) is a Gaussian random variable with
zero-mean and variance σ2

ε , ε(x) ∼ N (0, σ2
ε), independent from Z(x). Here N (m,σ2)

stands for the univariate Gaussian distribution with mean m and variance σ2. By
assuming so, one only needs to add σ2

ε to the diagonal of the covariance matrix
K(X,X) in Equation (3.32) or Equation (3.47).

3.2.6 Equivalence with Gaussian process regression

The result obtained by Kriging can be derived in an alternative way by Gaussian
Process Regression (GPR). In that respect, we consider that the function F is not
deterministic but can be viewed as a stochastic process by introducing a prior on it.
In this way, we define a probability distribution on the possible functions F . This
prior assumption is that F is a Gaussian process.

Definition 7. A Gaussian process is a stochastic process such that any finite subcol-
lection of random variables has a multivariate Gaussian distribution.

A Gaussian process is entirely specified by two functions:

• The mean function m : X 7→ R with m(x) = E[F (x)] for any x ∈ X ;

• The covariance function K : X×X 7→ R with K(x,y) = E[(F (x)−m(x))(F (y)−
m(y))] for any x,y ∈ X .

That is, one can write the Gaussian prior process of the process F as follows for
some x ∈ X :

F (x) ∼ N (m(x),K(x, ·)), (3.50)

or equivalently,
F (x) = m(x) + Z(x), (3.51)
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where Z(x) ∼ N (0,K(x, ·)). In that respect, the joint distribution of the observations
and the unobserved point x is(

Y

g(x)

)
∼ N

((
m(X)

m(x)

)
,

[
K(X,X) K(X,x)

K(x,X) K(x,x)

])
, (3.52)

where m(X) = (m(X1), . . . ,m(XI))
T , and N (a,A) stands for the multivariate Gaus-

sian distribution with mean vector a and covariance matrix A. Then, computing the
posterior distribution given the Gaussian prior and conditioned on the observations
yields

g(x)|x,X,Y ∼ N (G(x),Var[g(x)]), (3.53)

with

G(x) = E[F (x)|x,X,Y] = m(x) +K(x,X)K(X,X)−1(Y −m(X))

and
Var[g(x)] = K(x,x)−K(x,X)K(X,X)−1K(X,x).

One can notice that if the mean function m is known and equal to m for every x,
then

G(x) = K(x,X)K(X,X)−1(Y − 1m) +m, (3.54)

which is the expression obtained by simple Kriging, see Equation (3.29). Now,
assume that m = 0, Equation (3.54) is the same as Equation (3.29) and the same
as Equation (3.6). What is interesting to notice is that the covariance function
introduced in Section 3.2.6 and in Section 3.2.5 is actually the reproducing kernel
defined in Section 3.2.1. While the Gaussian process is not in the RKHS HK

associated with the kernel K, the posterior mean G conditioned on the observations
does lie in that RKHS HK . Moreover, the parameter σ2(x) given by Equation (3.15)
has an interesting equivalence with the GPR/Kriging context: it is the variance of the
prediction conditioned on the observations, that is Var[g(x)] given in Equation (3.53).
Additional information can be found in [122, Chapter 2].

3.2.7 Examples of kernel

We denote by ∥x∥p =
(∑d

j=1 |xj |
p
) 1

p
, p > 0 with ∥x∥0 = #{j ;xj ̸= 0} the

p-norm of the vector x. For practical cases, many different kernels K are available
and for citing the most encountered ones [122, 137]:

• Polynomial kernel defined as

K(x1,x2) =
(
b+ xT

1 x2

)p
, (3.55)

where b ≥ 0 and p > 0 are parameters;
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• Gaussian kernel (also known as squared exponential) defined as

K(x1,x2) = exp

(
−
∥x1 − x2∥22

γ2

)
, (3.56)

where γ > 0 is called the length scale. Alternatively, different length scales can
be chosen for the input dimensions:

K(x1,x2) = exp

(
−

d∑
i=1

|x1,i − x2,i| 2

γ2i

)
; (3.57)

• Matérn-like kernels defined as

K(x1,x2) =
21−ν

Γ(ν)

(√
2ν ∥x1 − x2∥2

γ

)ν

Bν

(√
2ν ∥x1 − x2∥2

γ

)
, (3.58)

where γ > 0 is called the length scale, ν is a positive parameter, and Bν is a
modified Bessel function [1]. The most used ones are for ν = 3/2 and ν = 5/2.
Note that for ν → +∞, the Gaussian kernel (3.56) is recovered. Stein in [137]
named this type of kernels after the work of Matérn [95];

• Rational Quadratic (RQ) kernel defined as

K(x1,x2) =

(
1 +
∥x1 − x2∥22

2αγ2

)−α

, (3.59)

with a > 0 and γ > 0. The case α→ +∞ corresponds to the Gaussian kernel
(3.56).

Stein in [137] argues that the Gaussian kernel is too smooth for modelling many
physical systems and recommands to use Matérn-like kernels.

3.3 The Kernel Flow algorithm

A certain number of parameters have to be determined for each type of kernel,
for instance the kernels presented in Section 3.2.7. They are often called the
hyperparameters of the kernel. One of the most challenging aspect of Kriging is to
determine these free parameters, or even more generally which kernel K to select, in
order to approximate the function F : X 7→ Y given I observations. In that regard,
multiple methods exist including maximum likelihood [161] (choosing the parameter
which maximizes the probability of observing the data), Bayesian approach [131]
(placing a prior on the kernel and conditioning with respect to the data), etc. Here, we
follow another approach to find the “best” kernel K: the Kernel Flow (KF) algorithm
[114]. It was first used in a machine learning context (see [114]) for classification
and more recently in geophysical forecasting [63] and in dynamical systems [62].
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(a) (b)

Figure 3.1: (a) Gf : Interpolating F with kernel K and If observations. (b) Gc: Interpolating
F with kernel K and Ic = round( If2 ) observations.

The main aim of the Kernel Flow algorithm is, for instance, to learn kernels of the
following form, by denoting by n the iteration number of this algorithm

Kn(X1,X2) = K(fn(X1), fn(X2)), (3.60)

where K is a kernel, for instance the Gaussian kernel defined by Equation (3.56),
and fn : X 7→ X is called the flow in the input space at iteration n. This can be
understood as a non-parametric approach to find the “best” kernel K. Instead of
searching for a single parameter, for instance γ, we search for a whole function fn.
The Kernel Flow algorithm can also be used in a parametric approach where one
seeks to learn hyperparameters θ of the kernel K, for example the parameter γ of a
Gaussian kernel. That is,

Kn(X1,X2) = K(X1,X2,θn), (3.61)

where θn is the value of the parameters θ at iteration n of the parametric KF
algorithm.

3.3.1 What is the “best” kernel?

First, we have to define when a kernel is considered as the “best”. Here, the kernel
K is defined as “best” if the number of regression points can be halved without losing
too much accuracy, where the latter is measured with the RKHS norm defined by
the kernel.

We introduce the following function ρn to quantify the accuracy of the surrogate
model at iteration n as

ρn(Xπn
f
,Xπn

c
) =
∥Gf −Gc∥2Hn

∥Gf∥2Hn

∈ [0, 1], (3.62)
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where the functional space Hn is the unique RKHS associated with the kernel Kn,
Gf is the approximation of F with kernel Kn and the If ≤ I observations, and Gc is
the approximation of F with kernel Kn and the Ic = round( If2 ) observations. At last,
πn
f and πn

c are the indices corresponding to the If and Ic observations respectively
at iteration n, and Xπn

f
and Xπn

c
are the corresponding inputs. In that way, the

smaller ρn is, the better the kernel Kn. That is, if ρn is close to zero, the kernel Kn

is the “best” according to the definition stated above. In [114], it has been shown
that ρn in Equation (3.62) reads

ρn(Xπn
f
,Xπn

c
, fn) = 1−

YT
πn
c
K(fn(Xπn

c
), fn(Xπn

c
))−1Yπn

c

YT
πn
f
K(fn(Xπn

f
), fn(Xπn

f
))−1Yπn

f

(3.63)

for the non-parametric case, and

ρn(Xπn
f
,Xπn

c
,θn) = 1−

YT
πn
c
K(Xπn

c
,Xπn

c
,θn)

−1Yπn
c

YT
πn
f
K(Xπn

f
,Xπn

f
,θn)−1Yπn

f

(3.64)

for the parametric case, where Yπn
f

and Yπn
c

are the observations corresponding to the
indices πn

f and πn
c , respectively. Also K(fn(Xπn

f
), fn(Xπn

f
)) and K(fn(Xπn

c
), fn(Xπn

c
))

for the non-parametric case, and K(Xπn
f
,Xπn

f
,θn) and K(Xπn

c
,Xπn

c
,θn) for the para-

metric case, are the matrices (3.5) constructed with the kernel Kn and the inputs
Xπn

f
and Xπn

c
, respectively. These formulas enable the numerical computation of the

accuracy ρn in both cases, and stem from the identity ∥G∥2HK
= YTK(X,X)−1Y

whenever G(x) = K(x,X)K(X,X)−1Y.

3.3.2 The non-parametric Kernel Flow algorithm

The learning process for the non-parametric algorithm can be seen on Figure 3.2
from iteration n to iteration n+ 1. fn is known at iteration n. To describe it simply:

1. Select If ≤ I observations at random among the I observations;

2. Among these If observations, we select now Ic = round( If2 ) observations;

3. The If and Ic observations allow us to compute the accuracy ρn(Xπn
f
,Xπn

c
, fn)

given by Equation (3.62). The Ic observations are only used to compute
ρn(Xπn

f
,Xπn

c
, fn). Then we form the gradient of ρn with respect to the positions

of the If observations: ∇Xπn
f
ρn;

4. Move the positions of the If observations in the gradient descent direction of
ρn computed in the previous step;

5. Move the remaining positions of the I − If observations by interpolation with
kernel Kn and the moved If observations. In this way, one gets fn+1 and
thus Kn+1. For any observation X outside of the If observations, move it by
interpolating the I observations using the kernel Kn+1.

6. Return to step 1.
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In fact, the accuracy given by Equation (3.62) is doubly randomized: by choosing
at random the If points among the I points and then by choosing at random the
Ic points among the If points. To sum up, the non-parametric KF algorithm will
deform the input space X through the flow function fn in order to minimize the
accuracy ρn.

3.3.3 The parametric Kernel Flow algorithm

The parametric KF algorithm is similar to its non-parametric counterpart. Indeed,
we are not seeking to determine an entire function fn but one or more parameter of
the kernel. Consider a family of kernels Kθ(X1,X2) = K(X1,X2,θ) parameterized
by the parameters θ. The parametric version of the KF algorithm can be described
as follows from iteration n to n+ 1:

1. Select If ≤ I observations at random among the I observations;

2. Among these If observations, we select now Ic = round( If2 ) observations;

3. The If and Ic observations allow us to compute the accuracy ρn(Xπn
f
,Xπn

c
,θn)

given by Equation (3.62). The Ic observations are only used to compute
ρn(Xπn

f
,Xπn

c
,θn). Then we form the gradient of ρn with respect to the param-

eters θ : ∇θρn;

4. Move θ in the gradient descent direction ∇θρn of ρn computed in the previous
step;

5. Return to step 1.

3.3.4 A numerical example

3.3.4.1 Case setting

The objective of this section is to build a surrogate model of the lift-to-drag
ratio of a RAE2822 wing profile—this is the function F of Problem 1—when some
characteristics of the flow and/or the profile are variable and only a finite number of
observations of F is available. We choose as the profile’s inputs the Mach number
M and the angle of attack α with their respective ranges—see Table 3.1. These two
parameters define the input vector X = (M,α) ∈ X = X1 ×X2. For this case, as no
analytical solution is available for the performance function F , a numerical solver
has to be used. In that respect, the Computational Fluid Dynamics (CFD) solver
MSES [41] is used to simulate two-dimensional transonic flows around that airfoil.
MSES is an updated version of the CFD code ISES presented in Section 1.3.4. It is a
2D coupled viscous/inviscid fluids CFD code developed by Mark Drela at MIT. The
inviscid flow is solved using the steady Euler equations and a finite volume method.
The viscous flows in the boundary layer and wake are solved using 2D integral
boundary layer equations in a very similar way to ISES. A global Newton-Raphson
method is used to solve simultaneously the coupled viscous-inviscid equations.
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I observation points. Step 1: Select If observation points at ran-
dom out of I with If ≤ I.

Step 2: Select Ic = round( If2 ) observation
points at random out of I.

Step 3: Compute ρn =
||Gf−Gc||2Hn

||Gf ||2Hn

and its
gradient w.r.t. the positions of the If points.

Step 4: Move the If points in the gradient
descent direction of ρn.

Step 5: Move the remaining I − If points
using interpolation with kernel Kn. This is
fn+1.

Figure 3.2: The non-parametric Kernel Flow algorithm.
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Input Range
Mach M [0.69255, 0.76545]

Angle of attack α (in ◦) [2.2638, 2.3562]

Table 3.1: Range of each input.

Nevertheless, one numerical evaluation of F by using MSES can be costly.
Therefore, a surrogate model Gλ of F has been built, using I = 81 observations
denoted by {F (Xi) = Yi}Ii=1 and computed through MSES with {Xi}Ii=1 evenly
chosen in X , and the KRR method outlined in Section 3.2.3 with the nugget λ > 0.
A Gaussian kernel (3.57) is used

K(x,y) = exp

(
−

2∑
i=1

|xi − yi|2

γ2i

)
,

where x = (x1, x2), y = (y1, y2) ∈ X 2, and γi the length scale with respect to the
dimension i of the inputs. Due to the limited number I of available data, we use a
three-fold cross-validation procedure in order to tune the hyperparameters of the
parametric and non-parametric KF algorithms. In other words, the data set is
successively split into three different sets of same size, where two of them constitute
the learning set while the third one is used as the validation set. That is, for every
fold:

• The learning set gathers IL = 54 observations out of the I = 81 observations
of F ;

• The validation set gathers IV = 27 observations out of the of the I = 81

observations of F .

This splitting is done three times so that each split set is used once as validation
set. As the KF algorithm can be seen as an equivalent of cross-validation, what we
are doing is actually a double cross-validation or nested cross-validation [8, 91]. In
the case of the parametric KF algorithm, we seek to minimize the average of the
accuracies ρ on the folds with respect to the length scales (γ1, γ2) of the Gaussian
kernel and to the nugget λ: θ = (λ, γ1, γ2). In the case of the non-parametric KF
algorithm, we seek now to minimize the average of the accuracies ρ on the folds
with respect to fn, which is the flow such that Kn(x,y) = K(fn(x), fn(y)). For the
parametric case and the non-parametric case, we initialize the length scales (γ1, γ2)

as

γ1 = γ2 =
2

I(I − 1)

I∑
i=1

I∑
j=i+1

∥Xi −Xj∥2 , (3.65)

and the nugget as λ = 1 × 10−4. We also choose If = IL and Ic = If/2 in both
cases. For comparison purpose, we carry out a classical Marginal Log-Likelihood
(MLL) maximization on θ using the same cross-validation setup to construct a third
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surrogate model. The KRR surrogate models are numerically built by using the
framework GPyTorch [52]. The plateform PyTorch [117] is used to compute the
gradients by automatic differentation [116]. The optimization of the parameters in
the parametric case is done by using the optimizer Adam [76] implemented in PyTorch.
To assess the performance of the surrogate models obtained by the KF algorithms
and the MLL maximization, we draw IT = 25 observations of F at random. These
IT = 25 observations define the test set. We use the empirical Mean Squared Error
(MSE) eMSE defined by

eMSE =
1

IT

IT∑
i=1

(Yi −Gλ(Xi))
2 , (3.66)

the Maximum Relative Error (MRE) eMRE (in %) defined by

eMRE = max
i=1,...,IT

(
|Yi −Gλ(Xi)|

|Yi|

)
× 100, (3.67)

and the Normalized Mean Squared Error (NMSE) eNMSE defined by

eNMSE =

IT∑
i=1

(Yi −Gλ(Xi))
2

IT∑
i=1

(
Yi −

1

IT

IT∑
i=1

Yi

)2 . (3.68)

Here Gλ(X) is the KRR surrogate model optimized by either the parametric KF
algorithm or the non-parametric KF algorithm, or the MLL maximization. The only
difference between the error eMSE and the error eNMSE is that eNMSE is divided by
the variance of the test set to avoid any scaling effect of the performance function F .

3.3.4.2 Parametric KF algorithm

First, the evolution of the accuracy ρ for the parametric KF algorithm of each
fold together with its average with respect to the number of iterations n every
100 iterations is given on Figure 3.3. One can see that the values of ρ are quickly
decreasing as the algorithm goes on, reaching a stabilized value at iteration n ≈
1× 104.
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Figure 3.3: Evolution of ρ on each fold and its average with respect to the number n of
iterations for the parametric KF algorithm.

The evolutions of the nugget λ and length scales (γ1, γ2) with respect to the
number of iterations n of the parametric KF algorithm are shown on Figure 3.4(a),
Figure 3.4(b), and Figure 3.4(c) respectively. One can notice that the length scale
γ2, which is the one corresponding to the angle of attack α, is higher than the length
scale γ1, which is the one corresponding to the Mach number M . It may mean that
the surrogate shows lower amplitude oscillations in the direction of α than in the
direction of M . A summary of the results on the test set is shown in Table 3.2. The
KF algorithm yields slightly better results than the MLL optimization, while being
both very close to each other. The main discrepancies between KF and MLL results
are the second length scale γ2 and the nugget λ. What is interesting to notice is
that both methods do not yield the exact same result. First, one can notice the
difference between the length scales γ2 for KF and MLL. The length scale given by
the MLL maximization γ2 = 42.5350 is much bigger than the length scale given by
the parametric KF algorithm γ2 = 2.9695. Second, the nugget is larger in the KF
case λ = 1.000× 10−4 than in the MLL case λ = 1.1995× 10−6. In any case, thanks
to the parametric KF algorithm, we manage to divide eNMSE by a factor of about
7, namely from 3.572× 10−4 to 5.187× 10−5. Nevertheless, eMRE is slightly worse
than at the beginning, from 0.922% to 1.156%. It means that the parametric KF
surrogate model approximates better F for the majority of points except for a few.

3.3.4.3 Non-parametric KF algorithm

Along the same lines as in Section 3.3.4.2, we learn now the flow function
fn : X 7→ X instead of parameters. Between the iterations n and n+1, the locations
of the If observations are translated so that the absolute translation is less than a
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(a) Nugget λ. (b) Length scale γ1. (c) Length scale γ2.

Figure 3.4: Evolutions of the nugget λ (a) and the length scales (γ1, γ2) (b)–(c) with respect
to the number n of iterations for the parametric KF algorithm.

Iteration n = 0 Iteration n = 3× 104

Kernel Flow Marginal Likelihood
(γ1, γ2) (1.3024, 1.3024) (0.6513, 2.9695) (0.5912, 42.5350)

λ 1.000× 10−4 8.000× 10−4 1.1995× 10−6

eMSE 0.104 0.0151 0.0167

eMRE (in %) 0.922 1.156 1.134

eNMSE 3.572× 10−4 5.187× 10−5 5.721× 10−5

Table 3.2: Summary of the results on the test set for the parametric KF algorithm.

specified constant δ:
max
i∈πn

f

∥fn+1(Xi)− fn(Xi)∥2 ≤ δ, (3.69)

with δ = 1× 10−6. The evolution of the accuracy ρ for each fold and its average with
respect to the number n of iterations of the non-parametric KF algorithm is shown
on Figure 3.5 for 1 × 105 iterations. The accuracy ρ is slowly decreasing until it
stabilizes at n ≈ 8× 104. The translation of the I observations corresponding to the
flow function fn between the initial and final iterations is shown on Figure 3.6. One
can notice that the translations are mainly with respect to the Mach number M .

A summary of the results on the test set is given in Table 3.3. The performance
of the surrogate model is worsen between the initial iteration n = 0 and the last one
n = 1× 105. The non-parametric KF algorithm may not be suitable for regression
and when the available data are scarce. It confirms the results found in [35] where a
similar conclusion was reached.

3.3.5 Concluding remarks

In this section, we have seen two methods to determine the “best” kernel K with
respect to the available observations of the ground truth function F : the parametric
KF algorithm and the non-parametric KF algorithm, where the latter has previously
been validated on a classification example [114]. We have seen that the parametric
KF algorithm yields promising results and it could be an interesting equivalent of
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Figure 3.5: Evolution of ρ on each fold and its average with respect to the number n of
iterations for the non-parametric KF algorithm.

(a) Iteration n = 0. (b) Iteration n = 1× 105.

Figure 3.6: The translation of the I observations corresponding to the flow function fn
between the initial iteration n = 0 and the final iteration n = 1× 105. The black dots • are
for the initial positions of the observations and the red crosses + are for the moved positions.

Iteration n = 0 Iteration n = 1× 105

Kernel Flow
(γ1, γ2) (1.3024, 1.3024) (1.3024, 1.3024)

λ 1× 10−4 1× 10−4

eMSE 0.104 0.789

eMRE (in %) 0.922 4.274

eNMSE 3.572× 10−4 2.703× 10−3

Table 3.3: Summary of the results on the test set for the non-parametric KF algorithm. The
nugget and the length scales are unchanged by the non-parametric KF algorithm.
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cross-validation in regression context. However, the non-parametric version of the
KF algorithm yields worse results and it may be not suitable for regression when
data is scarce. This confirms the results obtained in [35]. Another approach to
determine the “best” kernel is outlined in the next section.

3.4 Spectral Kernel Ridge Regression algorithms

In this section, new algorithms that we will call Spectral Kernel Ridge Regression
(SKRR) are introduced to determine the “best” kernel. Recalling Section 3.2.4,
the deterministic errors in (3.13) and (3.14) are bounded if the norms ∥F∥HK

and
∥F∥HK+λ

are bounded as well. Therefore, we suggest to study the effect of the kernel
K on the norm ∥F∥HK

and in this way to find the “best” kernel by minimizing the
latter with respect to K. That is, we aim at finding the kernel K⋆ such that:

K⋆ = argmin
K

∥F∥HK
. (3.70)

3.4.1 Mercer’s theorem

This section is a brief summary about Mercer’s framework, which allows us to
express a Mercer kernel as a function of eigenvalues and eigenvectors of its associated
integral operator.

Definition 8. Let X be a compact subset of Rd. A function K : X × X → R is
called a Mercer kernel if it is continuous, symmetric, and positive semi-definite in
the sense of Equation (3.1).

This definition allows us to state the Mercer’s theorem [118, Chapter 11]:

Theorem 4 (Mercer’s theorem). Let µ be a finite Borel measure with support X
and let L2(X , µ) be the set of square integrable functions on X with respect to µ.
Let K be a Mercer kernel on X and let TK : L2(X , µ)→ L2(X , µ) be the associated
integral operator defined by ∀f ∈ L2(X , µ), ∀x ∈ X , TKf(x) =

∫
X K(x,y)f(y)µ(dy).

Then there exists a countable collection of orthonormal functions {ei}i∈N of L2(X , µ)
which are eigenvectors of TK with associated non-negative eigenvalues {σi ≥ 0}i∈N.
Moreover, taking the eigenvectors corresponding to the non-zero eigenvalues, they
are continuous functions on X and K(x,y) has the following representation

K(x,y) =

+∞∑
i=0

σiei(x)⊗ ei(y),

where the series converges absolutely and uniformly:

lim
n→+∞

sup
x,y∈X

∣∣∣∣∣K(x,y)−
n∑

i=0

σiei(x)⊗ ei(y)

∣∣∣∣∣ = 0.
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From Mercer’s theorem, TK is a trace class operator with

Tr(TK) =

∫
X

K(x,x)µ(dx) =
+∞∑
i=0

σi < +∞. (3.71)

Remark 10. Since TK is self-adjoint and compact, {ei}i∈N is a basis of L2(X , µ).
We remind that a family of functions {ei}i∈N is a basis of a Banach space H if
∀f ∈ H, ∃!{αi}i∈N such that ∀ε > 0, ∃N such that ∀n ≥ N∥∥∥∥∥f −

n∑
i=0

αiei

∥∥∥∥∥
H

≤ ε.

Mercer’s theorem also allows us to define explicitly the RKHS functional space
HK associated with the kernel K, on the condition that K is a Mercer kernel. Indeed,
one has [118, Theorem 11.18]

HK =

{
f ∈ L2(X , µ), f =

+∞∑
i=0

⟨f, ei⟩L2 ei with
+∞∑
i=0

⟨f, ei⟩2L2

σi
< +∞

}
,

where ⟨·, ·⟩L2 is the inner product of L2(X , µ). The inner product of HK is given as
∀(f, g) ∈ HK ×HK ,

⟨f, g⟩HK
=

+∞∑
i=0

⟨f, ei⟩L2 ⟨g, ei⟩L2

σi
.

One can notice that ⟨f, ei⟩L2 = σi ⟨f, ei⟩HK
, so one also has

⟨f, g⟩HK
=

+∞∑
i=0

σi ⟨f, ei⟩HK
⟨g, ei⟩HK

.

In this way, the norm ∥f∥2HK
reads

∥f∥2HK
=

+∞∑
i=0

⟨f, ei⟩2L2

σi
, (3.72)

which gives us its expression in terms of the eigenvalues and eigenvectors of K.

Remark 11. The functional space HK does not depend on the measure µ, actually.
Only the eigenvalues {ei}i∈N and the eigenvectors {σi ≥ 0}i∈N do.

Remark 12. It can be shown that {√σiei}i∈N is an orthonormal basis of HK ; see
[118, Theorem 11.18].

Remark 13. In the sequel µ will be a Borel probability measure, that is µ(X ) = 1.
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3.4.2 Minimizing the norm ∥F∥HK
: the SKRR core

We assume that a basis {ei}i∈N of L2(X , µ) is given (these are the “features” in
machine learning techniques, for example), and we aim at constructing a Mercer
kernel K =

∑
i σiei⊗ei where the {σi > 0}i∈N are to be chosen such that, if F ∈ HK ,

its norm ∥F∥HK
is minimal. The latter reads:

∥F∥2HK
=

+∞∑
i=0

|Fi| 2

σi
, (3.73)

where Fi = ⟨F, ei⟩L2 , i ∈ N, such that
∑

i |Fi| 2 < +∞ because F ∈ L2(X , µ). The
minimization problem thus reads:

min
{σi}i

∑
i

|Fi| 2

σi
subjected to

∑
i

σi = κ, (3.74)

where 0 < κ < +∞; this condition arises from Equation (3.71). This minimization
problem can be solved by the method of Lagrange multipliers. Let ν be a Lagrange
multiplier and {σ⋆

i }i∈N be the solution of Equation (3.74), one has

∂

∂σk

[∑
i

|Fi| 2

σ⋆
i

+ ν

(∑
i

σ⋆
i − κ

)]
= 0 for k = 0, 1, 2, . . . ,

∂

∂ν

[∑
i

|Fi| 2

σ⋆
i

+ ν

(∑
i

σ⋆
i − κ

)]
= 0.

Then one finds that

ν =
1

κ2

(∑
i

|Fi|

)2

, σ⋆
i =
|Fi|√
ν
, i = 0, 1, 2, . . . , (3.75)

or
σ⋆
i =

κ|Fi|∑
j
|Fj |

, i = 0, 1, 2, . . . (3.76)

In this way we built a Mercer kernel K⋆ =
∑

i σ
⋆
i ei ⊗ ei which minimizes the norm

∥F∥HK
. Practically, the sum extends up to a finite rank R. It remains to compute the

expansion coefficients {Fi}i∈N: two approaches based on regression and projection
are outlined in the next section.

3.4.3 Computing the expansion coefficients

Again, we assume that an orthornomal basis {ei}i∈N of L2(X , µ) is available and
that F ∈ L2(X , µ). One has thus the following expansions:

F (Xj) =

+∞∑
i=0

⟨F, ei⟩L2 ei(Xj) = Yj , for j = 1, . . . , I.
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Let K be a set of indices such that #K = R and let the corresponding orthonormal
vectors {ek}k∈K ⊂ {ei}i∈N in L2(X , µ) be the basis BR. Let Θ be the measurement
matrix and c be the expansion coefficients vector such that

Θ =

ek1(X1) · · · ekR(X1)
...

. . .
...

ek1(XI) · · · ekR(XI)

 , c =

ck1
...

ckR

 =

⟨F, ek1⟩L2

...
⟨F, ekR⟩L2

 , (3.77)

one arrives at the following I ×R system

Y = Θc+ η, (3.78)

where η =
(
η1 . . . ηI

)T is the error vector with ∥η∥2 ≤ η accounting for the
truncation of the exact function F on the set of R orthonormal vectors {ek}k∈K, and
possible noise.

3.4.3.1 Regression approach

We first assume that I ≥ R. Finding the expansion coefficients c can be done
through a regression approach formulated as a least-squares minimization problem
that is, solving the following problem:

c⋆ = argmin
h∈RR

(Y −Θh)T (Y −Θh) . (3.79)

This approach is detailed in [60] and references therein. Here, we are more interested
in the case where I < R or even I ≪ R, namely when the number of “features” R is
way more larger than the number of observations I of F . This is the topic of the
following section.

3.4.3.2 Sparse regression by ℓ1-minimization

We now assume that I ≪ R. Actually, the “features” are chosen such that the
ground truth function F is expected to be sparse or nearly sparse on this basis. That
is, many components of the vector c of the expansion coefficients are negligible. Such
expansion is known as compressible in the terminology of the theory of compressed
sensing, or compressive sampling (CS) [22, 23, 24, 38]; see for instance [129] in an
aerodynamics context or [24] in a data acquisition context. Thus one introduces the
sparsity S defined by

S = # {i; |ci| > δ} , (3.80)

where δ > 0 is some tolerance, and assume that S ≪ R. In other words, only a small
number of vectors within the basis BR is relevant to reconstruct the ground truth
function F without much loss, and this number is that sparsity S. We outline below
how to solve Equation (3.78) in this context.
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Noiseless observations We first consider that η = 0, such that Equation (3.78)
reads

Y = Θc. (3.81)

This system is ill-posed as R ≫ I if no additional constraint on the solution is
enforced. Regularized versions of Equation (3.81) exist in order to ensure its well-
posedness by imposing a sparsity constraint. For instance, Equation (3.81) can be
regularized as the following l0-minimization problem where solutions are found by
solving

min
h∈RR

∥h∥0 subjected to Θh = Y, (3.82)

where ∥h∥0 is the number of non-zeros entries of the vector h. The main disadvantages
of Equation (3.82) are that this problem is non-convex and NP-hard combinatorial
[38]. It can be relaxed by considering the following convex ℓ1-minimization known
as Basis Pursuit (BP) [29]:

min
h∈RR

∥h∥1 subjected to Θh = Y. (3.83)

Equation (3.83) is now a convex optimization that can be solved numerically. In [24],
it has been shown that Equation (3.83) shares the same solution as Equation (3.82)
if the measurement matrix Θ obeys the condition known as the Restricted Isometry
Property (RIP) [6, 21, 24].

Definition 9 (Restricted Isometry Property (RIP)). For each integer m ∈ N∗, the
retricted isometry constant (RIC) δm of the measurement matrix Θ is defined as the
smallest number such that

(1− δm) ∥hm∥22 ≤ ∥Θhm∥22 ≤ (1− δm) ∥hm∥22

holds for all m-sparse vectors hm ∈ {h ∈ RR; ∥h∥0 ≤ m}.

The matrix A is said to obey the RIP of order m if δm is not too close to one
[25]. In fact, it has been proved that δ2m < 1 is a necessary and sufficient condition
for Equation (3.82) to yield an unique solution [21]. This definition allows us to state
the following theorem that bounds the recovery error:

Theorem 5 (Noiseless recovery [24]). Assume that δ2S ≤
√
2 − 1 and that the

measurement matrix Θ obeys the RIP. Then the solution c⋆ to Equation (3.83) obeys

∥c⋆ − c∥1 ≤ C0 ∥cS − c∥1

and
∥c⋆ − c∥2 ≤ C0s

−1/2 ∥cS − c∥1
for a positive constant C0 > 0 depending only on δ2S. The vector cS corresponds to
the vector c with all but the S largest components set to 0. Moreover, the constant
C0 is equal to

C0 = 2
1− (1−

√
2)δ2S

1− (1 +
√
2)δ2S

.
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In particular, if the vector c is exactly S-sparse the recovery is exact, that is the
solution c⋆ to Equation (3.83) is equal to c. But we can go even further. Even if the
vector c is not exactly S-sparse, we know from this theorem that we are guaranteed
to recover the S-largest coefficients of c. Given a measurement matrix Θ, computing
the RIC may be difficult in practical cases, so that verifying the RIP condition is
difficult as well.

If the vector c is S-sparse in the basis BR, then a lower bound exists on the
minimum number I of observations of F required to exactly obtain c with high
probability. First, we define the coherence parameter [26].

Definition 10 (Coherence parameter). Let Θ be a measurement matrix. Then, the
coherence parameter is defined as

C(Θ) = max
i,j

(
|Θij |2

)
.

Namely, the coherence parameter C(Θ) is the largest squared component of the
measurement matrix Θ. The following theorem holds which gives us the minimum
number of observations to recover exactly the expansion coefficients c in the noiseless
case.

Theorem 6 (Noiseless Incoherent Sampling [26]). Let c be an arbitrary S-sparse
vector and pick any scalar β > 0. Then with probability at least 1− 5/R− exp(−β),
the solution of Equation (3.83) is unique and equal to c provided that

I ≥ C(1 + β)C(Θ)S log(R)

for some positive constant C, where the I observations have been drawn randomly
following the probability measure µ.

Contrary to Theorem 5, the required minimal number of observations given by
Theorem 6 does not yield deterministic results. That is, we are not sure to exactly
recover the vector c even if it is exactly S-sparse.

Noisy observations We now consider that η > 0 so that ∥η∥2 ≤ η in order to
take into account the truncation error. Equation (3.78) can be regularized as the
following l0-minimization problem where solutions can be found by solving:

min
h∈RR

∥h∥0 subjected to ∥Θh−Y∥2 ≤ η with 0 ≤ η ≪ 1. (3.84)

As in the noiseless case, Equation (3.84) can be relaxed by considering the following
convex ℓ1-minimization known as Basis Pursuit Denoising (BPDN) [30]:

min
h∈RR

∥h∥1 subjected to ∥Θh−Y∥2 ≤ η. (3.85)

Under the same hypotheses as in Theorem 5, one has the following theorem:
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Theorem 7 (Noisy recovery [24]). Assume that δ2S ≤
√
2− 1. Then the solution c⋆

to Equation (3.85) obeys

∥c⋆ − c∥2 ≤ C0S
−1/2 ∥cS − c∥1 + C1η,

for some positive constants C0, C1 > 0 depending only on δ2S and where the vector cS
corresponds to the vector c with all but the S largest components set to 0. Moreover,
one has the following expressions for the constants C0 and C1

C0 = 2
1− (1−

√
2)δ2S

1− (1 +
√
2)δ2S

and C1 = 4

√
1 + δ2S

1− (1 +
√
2)δ2S

. (3.86)

The constants C0 and C1 are typically small. For instance, if δ2S = 0.2, we have
C0 ≈ 4.2 and C1 ≈ 8.5 [24]. The bound

√
2 − 1 on δ2S , initially proposed in [25],

can be improved. Such improvements can be found in [107], where δ2S ≤ 0.4931

and even δ2S ≤ 0.6569 for some specific cases. This topic is currently an active field
of research. Notice that the sparsity of a quantity of interest is seen a posteriori
and not a priori. If the set of orthonormal vectors {ek}k∈K and η are well chosen,
Equation (3.85) will yield a sparse solution which approximates well the ground
truth function F , i.e. a solution where only a few terms are non vanishing. In this
research, the selection of the value η is done arbitrarily but this selection can be
done through cross-validation [17, 39, 157].

Sparse SKRR algorithm We propose the following algorithm named Sparse
Spectral Kernel Ridge Regression (SSKRR) which couples the sparse reconstruction
by ℓ1-minimization presented in the foregoing section, and the KRR approximation
detailed in Section 3.2.3. The main idea of this algorithm is to minimize the RKHS
norm of the ground truth function F with respect to the eigenvalues of a Mercer kernel,
which are obtained by Equation (3.76) where the expansion coefficients {Fi}i∈K in
a finite basis BR are computed by ℓ1-minimization. The sketch of this algorithm
can be seen in Algorithm 2 on page 104. It is organized as follows. First, starting
from a set of R orthonormal vectors BR ≡ {ek}k∈K in L2(X , µ), I observations of F ,
and the parameter η, the BPDN minimization of Equation (3.85) is solved to find
a solution denoted by c⋆. If the set BR of “features” is well chosen, only a limited
number of terms of the vector c⋆ is not close to zero. Then one solves the KRR
equation (3.9), which allows us to get a prediction of the ground truth function F at
an unobserved location x with the parameter λ and using the kernel determined at
the previous step. One of the main advantages of the proposed algorithm is that
it provides the prediction variance σ2(x) at the unobserved point x, such as in the
Gaussian Process Regression framework.

Obviously, the algorithm will strongly depend on the performance of the ℓ1-
minimization to approximate the expansion coefficients {Fi}i∈K. Also, several
remarks can be made about the parameter κ in Equation (3.76). The SSKRR
approximation at an unobserved point x is

G⋆
λ(x) = K⋆(x,X) (K⋆(X,X) + λII)

−1Y. (3.87)
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Then, by using Equation (3.76),

G⋆
λ(x) =

∑
k∈K

κ|Fk|∑
j∈K
|Fj |

ek(x)⊗ ek(X)

∑
k∈K

κ|Fk|∑
j∈K
|Fj |

ek(X)⊗ ek(X) + λII


−1

Y

=
∑
k∈K

|Fk|∑
j∈K
|Fj |

ek(x)⊗ ek(X)

∑
k∈K

|Fk|∑
j∈K
|Fj |

ek(X)⊗ ek(X) +
λ

κ
II


−1

Y.

So, one can see that the SSKRR approximation only depends on the ratio between
the parameter λ and the parameter κ. Likewise for the prediction variance of
Equation (3.15), one has

σ2(x) = K⋆(x,x)−K⋆(x,X) (K⋆(X,X) + λII)
−1K⋆(X,x)

= κ

[∑
k∈K

|Fk|∑
j∈K
|Fj |

ek(x)⊗ ek(x)−
∑
k∈K

|Fk|∑
j∈K
|Fj |

ek(x)⊗ ek(X)

×

∑
k∈K

|Fk|∑
j∈K
|Fj |

ek(X)⊗ ek(X) +
λ

κ
II


−1∑

k∈K

|Fk|∑
j∈K
|Fj |

ek(X)⊗ ek(x)

]

The parameter κ fixing the trace of the integral operator with kernel K⋆ can be
understood as a scaling factor on the prediction variance.

3.4.3.3 Non-sparse spectral kernel ridge regression algorithm

If the ground truth function F is not sparse on the basis BR, one can compute
the expansion coefficients c by projection since BR is orthonormal. We propose
the following Algorithm 3 sketched on page 105 where projections are carried out
iteratively using the iterated surrogate approximations to mimic the ground truth
function F . We call this algorithm Non-sparse Spectral Kernel Ridge Regression
(NSKRR).

3.5 Polynomial Chaos Expansion

The remaining question is: how to choose a basis {ei}i∈N of L2(X , µ)? In this
section, we focus on orthonormal polynomial bases. Such kind of representations are
referred to as Polynomial Chaos Expansion (PCE) in the case where µ is a Gaussian
probability measure [56, 158]. For more general probability measures, they are called
generalized Polynomial Chaos (gPC) expansion [49, 87, 135, 162]. Besides, the use
of polynomial bases in the context of Gaussian process regression is illustrated in
e.g. [164].
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Algorithm 2: Sparse Spectral Kernel Ridge Regression (SSKRR).
Input: Basis {ek}k∈K, I observations of F , parameters η, λ and κ.
Output: SSKRR approximation G⋆

λ and prediction variance σ2(x).
1 Build the observation matrix Θ from the basis {ek}k∈K;
2 Solve the BPDN minimization to find the projection coefficients c⋆:

c⋆ = argmin
h∈RR

∥h∥1 subjected to ∥Θh−Y∥2 ≤ η;

3 Solve σ⋆ = argmin
{σk}k∈K

∥g∥2HK
= argmin

{σk}k∈K

∑
k∈K

c⋆k
2

σk
subjected to

∑
k∈K

σk = κ

following Equation (3.76);
4 Form the new kernel as K⋆(x,y) =

∑
k∈K

σ⋆
kek(x)ek(y);

5 Obtain the SSKRR approximation

G⋆
λ(x) = K⋆(x,X) (K⋆(X,X) + λII)

−1Y (3.88)

and the prediction variance

σ2(x) = K⋆(x,x)−K⋆(x,X) (K⋆(X,X) + λII)
−1K⋆(X,x)

at an unobserved point x.

3.5.1 Polynomial basis

Assume that an orthonormal polynomial basis of L2(X , µ) is available, where the
random input variables X ∼ µ are assumed to be mutually independent with values in
X ⊂ Rd. One can build a polynomial surrogate Gp of F by a standard L2 projection
on a finite dimensional subspace of L2(X , µ) spanned by the truncated family of
d-variate orthonormal polynomials up to total order p denoted by Bp = {ϕi}Pi=0,
where P is given by:

P + 1 =
(p+ d)!

p!d!
. (3.89)

The orthonormalization of this basis is done through:

⟨ϕi, ϕj⟩L2 =

∫
X

ϕi(x)ϕj(x)µ(dx) = δij , (3.90)

where δij is the Kronecker symbol such that δij = 1 if i = j, and δij = 0 otherwise.
Then, one can write the surrogate model Gp using the truncated basis Bp as follows:

Gp(x) =

P∑
i=0

Fiϕi(x) =

P∑
i=0

⟨F, ϕi⟩L2ϕi(x). (3.91)
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Algorithm 3: Non-sparse Spectral Kernel Ridge Regression (NSKRR).

Input: Basis {ek}k∈K, eigenvalues {σ(0)
k }k∈K, I observations of F ,

parameters λ and κ, and the number of iterations N .
Output: NSKRR approximation GN

λ (x) and prediction variance σ2(x).
1 Initialization: At step n = 0, define the initial kernel as

K(0)(x,y) =
∑
k∈K

σ
(0)
k ek(x)ek(y);

2 for n← 1 to N do
3 Approximate F by its NSKRR approximation:

G
(n−1)
λ (x) = K(n−1)(x,X)

(
K(n−1)(X,X) + λII

)−1
Y;

4 for k ∈ K do
5 Compute c

(n−1)
k =

〈
G

(n−1)
λ , ek

〉
L2

;

6 end

7 Solve σ(n) = argmin
{σk}k∈K

∥∥∥G(n−1)
λ

∥∥∥2
HK

= argmin
{σk}k∈K

∑
k∈K

(
c
(n−1)
k

)2

σk
subjected to∑

k∈K
σk = κ ;

8 Form the new kernel as K(n)(x,y) =
∑
k∈K

σ
(n)
k ek(x)ek(y);

9 end
10 Obtain the NSKRR approximation

G
(N)
λ (x) = K(N)(x,X)

(
K(N)(X,X) + λII

)−1
Y

and the prediction variance(
σ(N)(x)

)2
= K(N)(x,x)−K(N)(x,X)

(
K(N)(X,X) + λII

)−1
K(N)(X,x)

at an unobserved point x.

In this framework, finding the coefficients Fi = ⟨F, ϕi⟩L2 is usually done by a
numerical quadrature rule such that∫

X

f(x)µ(dx) ≈
q∑

l=1

ωlf(ϑl), (3.92)

where {ωl}ql=1 are positive weights and {ϑl}ql=1 are nodes in X . Using this quadrature
rule, the coefficients are approximated by

Fi ≈ Fi,q =

q∑
l=1

ωlF (ϑl)ϕi(ϑl). (3.93)

The number of nodes q that is needed is given by the selected quadrature rule. The
classical Gauss-Jacobi (GJ) quadrature rule requires q nodes to exactly integrate
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univariate polynomials up to order 2q− 1 with respect to the Beta law on an interval
I. If one of the end point of I is required to be a fixed quadrature node, the Gauss-
Jacobi-Radau (GJR) rule is obtained, which exactly integrates univariate polynomials
up to order 2q− 2. If both end points of I are required to be fixed quadrature nodes,
the Gauss-Jacobi-Lobatto (GJL) rule is obtained, which exactly integrates univariate
polynomials up to order 2q − 3. The polynomial basis Bp is constituted by d-variate
polynomials {ϕi}i=(i1,i2,··· ,id)∈Nd such that ∥i∥1 =

∑d
j=1 ij ≤ p. The number of such

indices is given by Equation (3.89). Thus, these d-variate polynomials read

ϕi(x) =

d∏
j=1

ϕ
(j)
ij

(xj), (3.94)

where x = (x1, x2, . . . , xj , . . . , xd), i = (i1, i2, . . . , ij , . . . , id) with ∥i∥1 ≤ p, and
{ϕ(j)

i }i∈N are the univariate orthonormal polynomials with respect to the law of
the j-th input variable. In this setting, one needs about

⌊p
2

⌋d sampling points to
exactly integrate d-variate polynomials of total order p. For complex models with
high dimensional input spaces, the expansion (3.91) can be unaffordable; this is
the so-called curse of dimensionality. Sparse quadrature rules based on Smolyak’s
algorithm can be used to circumvent this limitation [129, 163]. In practical examples
though, the ground truth function F is often sparse or nearly sparse owing to a
“sparsity-of-effects” principle whereby the vector c = (c0, . . . , cP ) ≡ (F0, . . . , FP )

of the expansion coefficients of the polynomial surrogate Gp has many negligible
components [32, 121]. In these situations, they can be evaluated within the framework
of compressed sensing outlined in Section 3.4.3.2. This is the approach retained in
e.g. [39, 96, 129]; see also [61] and references therein.

3.5.2 Application to Uncertainty Quantification

Once the projection coefficients c have been computed and the surrogate model
Gp has been chosen, several functions of interest can be derived. Indeed, the following
quantity of interest Q(y) can be estimated as:

E{Q(y)} =
∫
X

Q(y(x))µ(dx) ≃
q∑

l=1

ωlQ(y(ϑl)), (3.95)

where y 7→ Q(y) is a regular function. For instance, the expected value m is obtained
with Q(y) = y, the variance Var is obtained with Q(y) = (y −m)2, the skewness
γ1 with Q(y) = (y−m

Var )
3, etc. Using the orthonormality of the polynomial basis,

Equation (3.90), the expected value m is m = c0 and the variance is Var ≃
∑P

i=1 c
2
i .

Higher moments can be computed with the formulas and codes given in [130] for
orthogonal polynomials of the Askey scheme. Sensitivity indices can be computed
in a similar way [141]. Denoting by Jj the set of indices corresponding to the
polynomials of the basis Bp which only depend on the j-th input variable of the
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ground truth function F , Sobol’ main-effect sensitivity indices are given by:

Sj =
1

Var

∑
i∈Jj

c2i . (3.96)

This can be extended to the m-fold joint sensitivity indices. For instance, denoting
by Jj1j2 the set of indices corresponding to the polynomials of the basis Bp which
only depend on the first and second variables of F , the two-fold joint sensitivity
indices are given by:

Sj1j2 =
1

Var

∑
i∈Jj1j2

c2i . (3.97)

3.6 Numerical examples

We will first study the SKRR algorithm on two different synthetic test functions:

• The three-dimensional (d = 3) Ishigami function in Section 3.6.1;

• The ten-dimensional (d = 10) Rosenbrock function in Section 3.6.2.

For these two examples, a surrogate G is built using four different methods: a
fully tensorized gPC surrogate model (3.91) where the expansion coefficients are
obtained by tensorized GJL quadrature nodes in (3.93), a sparse gPC surrogate
model (3.91) where the expansion coefficients are obtained by solving the problem
(3.85), a classical KRR surrogate model (3.12) using a Gaussian kernel (3.57), and
finally a SSKRR surrogate model obtained by Algorithm 2.

The I observations of the ground truth function F (Ishigami or Rosenbrock) are
obtained by a Latin Hypercube Sampling (LHS) with a minimax criterion using
the package smt [18]. For the fully tensorized gPC surrogate model, the number
of observations is chosen in order to exactly integrate the orthonormality property
given by Equation (3.90) for polynomials of total order up to p. We recall that given
q nodes, the GJL quadrature rule exactly integrates uni-variate polynomials of order
2q − 3. The surrogate models are subsequently tested on a test set consisting of IT
observations. Therefore, we have two sets:

• The learning set which consists of I observations: (X,Y = F (X));

• The test set which consists of IT observations: (XIT ,YIT = F (XIT)).

The test set can be understood as an unseen set and it is used to validate the
surrogate models. For both synthetic test functions, we replicate the four surrogate
models through ten independent runs. As we are considering synthetic test functions,
we are not limited in the choice of the size of the test set. Therefore, we choose
IT = 1× 105 observations taken at random. One can notice that we do not use a
validation set, because we know the ground truth functions F and we assume that
the test set is large enough to ensure generalization.
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The performance of each surrogate model is quantified by computing the empirical
Normalized Root Mean Square Error eNRMSE defined by:

eNRMSE =

√√√√√√√√
IT∑
i=1

(Yi −G(Xi))
2

IT∑
i=1

(Yi)
2

, (3.98)

and the empirical Root Mean Square Error eRMSE defined by:

eRMSE =

√√√√ 1

IT

IT∑
i=1

(Yi −G(Xi))
2. (3.99)

The only difference between eNRMSE and eRMSE is that eRMSE is divided by
∑IT

i=1 (Yi)
2

in order to remove any scaling factor of the ground truth function F . In addition, the
prediction coefficient Q2, also known as the Nash-Sutcliffe coefficient in hydrological
models [109], or more generally the coefficient of determination [142], defined by:

Q2 = 1−

IT∑
i=1

(Yi −G(Xi))
2

IT∑
i=1

(
Yi −

1

IT

IT∑
i=1

Yi

)2 (3.100)

is computed. As a reminder, a prediction coefficient Q2 close to one indicates that
the surrogate model is accurate over the IT test samples. In other words, the closer
Q2 is to one, the more accurate the surrogate model is. All the three metrics above
are computed on the test set. The results concerning the errors eRMSE and eNRMSE

are presented using box plots. In more details, the central horizontal line is the
median value over the ten independent runs, and the edges of the boxes correspond
to the 25th q25 and 75th q75 percentiles. The circles are the outliers defined as being
either smaller than q25 − 1.5(q75 − q25), or larger than q75 + 1.5(q75 − q25).

Here in this research, the Spectral Projected Gradient Algorithm (SPGL1)
developed by van den Berg and Friedlander in python [152, 153] is considered in
order to compute the solution of (3.85). This algorithm is based on primal-dual
interior point methods. In order to tune the nugget λ of the kernel of the SSKRR
surrogate (3.88) in Algorithm 2, we use a grid search algorithm on the IT data points
with the error eRMSE as the metric. That is, we compute eRMSE with respect to λ

and then select the parameter λ = λmin corresponding to the minimum of eRMSE.
This can be done because the ground truth function F is known and inexpensive to
evaluate. In addition, the parameter κ of the kernel of the SSKRR surrogate is set
to κ = Var(Y). Finally, the parameters θ = (λKRR, {γi}di=1) of the Gaussian kernel
of the KRR surrogate are determined using the parametric KF algorithm presented
in Section 3.3.4.2.
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3.6.1 Ishigami function

The Ishigami function [68] is commonly used for benchmarking global sensitivity
analyses and uncertainty quantification. The analytic expression of this three-
dimensional function is:

F (X) = sin(X1) + a sin2(X2) + bX4
3 sin(X1), (3.101)

with a = 7, b = 0.1 [93], and X = (X1, X2, X3) ∈ [−π, π]3. The input variables X

are assumed to be mutually independent and to follow an uniform law:

Xi ∼ U(−π, π) for i = 1, 2, 3. (3.102)

The expected value and variance of F are given by:

E(F ) =
a

2
, (3.103)

and

Var(F ) =
1

2
+

a2

8
+

b2π8

18
+

bπ4

2
. (3.104)

We select polynomials of total order up to p = 10 to form the polynomial basis Bp,
which corresponds to

(
p+d
d

)
=
(
10+3
3

)
= 286 multi-dimensional Legendre polynomials.

Bp is considered for the construction of the fully tensorized gPC, the sparse gPC,
and the SSKRR surrogates. For the fully tensorized gPC surrogate model, N =

123 = 1728 GJL quadrature nodes are needed to exactly recover the orthonormality
property given by Equation (3.90) since we have chosen a total order up to p = 10.
For the sparse gPC and the SSKRR surrogates, two learning sets with I = 50

and I = 100 observations of the ground truth function F are considered to test the
influence of I on the recovery of the expansion coefficients by the BPDN minimization
(3.85). The values I = 50 and I = 100 were chosen because they are significantly
lower than the size of the polynomial basis Bp. Also η = 1× 10−6 has been chosen
in (3.85). Finally, the KRR surrogate is built using the learning set with I = 100

observations.

3.6.1.1 Sparsity on Legendre polynomials

The first step is to determine the sparsity as it is observed a posteriori. In that
respect, we increase the number of observations in the learning set from I = 50 to
I = 100 and keep the expansion coefficients c⋆ solution of Equation (3.85) that do
not significantly change over ten independent runs of the positions of the observations
in either set. One run of the positions of the observations can be seen on Figure 3.7
for I = 50 and I = 100 observations of F .

The evolution of the expansion coefficients c⋆ with respect to the random sampling
of the positions of the observations are shown on Figure 3.8 and Figure 3.9, with
I = 50 and I = 100 observations of F respectively. One can notice that for I = 50, the
coefficients c⋆ are fluctuating greatly from one sampling to another; see for instance
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(a) I = 50 observations. (b) I = 100 observations.

Figure 3.7: One run of the LHS positions with I = 50 and I = 100 observations of F .

(a) Seed 1. (b) Seed 2. (c) Seed 3. (d) Seed 4. (e) Seed 5.

(f) Seed 6. (g) Seed 7. (h) Seed 8. (i) Seed 9. (j) Seed 10.

Figure 3.8: Evolution of the expansion coefficients c⋆ with respect to the random samplings
of the positions of the observations with I = 50 observations of F .

the difference between Figure 3.8(a) and Figure 3.8(c). Now, look at Figure 3.9,
where I = 100 observations. From one sampling to another, one can notice that
the coefficients c⋆ are similar, and that the sparsity is here S ≈ 15. The average of
the coherence parameter C(Θ) over the ten samplings is then C(Θ) ≈ 5.89. Thus,
Theorem 6 yields I ≳ Is ≈ 500 observations up to a constant C. Note that such a
sparsity was expected as the sine function can be well approximated by polynomials.
From now on we choose the learning set with I = 100 observations of F to construct
its sparse gPC, KRR, and SSKRR surrogate models.

3.6.1.2 Comparisons between the surrogate models

In this section, we compare the performance of each surrogate model using the
ten independent runs with IT = 1× 105 samples in the test set. A comparison of
the RMSE error eRMSE and the NRMSE error eNRMSE over ten independent runs
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(a) Seed 1. (b) Seed 2. (c) Seed 3. (d) Seed 4. (e) Seed 5.

(f) Seed 6. (g) Seed 7. (h) Seed 8. (i) Seed 9. (j) Seed 10.

Figure 3.9: Evolution of the expansion coefficients c⋆ with respect to the random samplings
of the positions of the observations with I = 100 observations of F .

is shown on Figure 3.10 and Figure 3.11. The prediction coefficient Q2 for each
surrogate model is given on Table 3.4. One can see that the surrogate model obtained
by the SSKRR Algorithm 2 performs slightly better than the sparse gPC surrogate
model while the KRR surrogate model performs way worse than the others. The fully
tensorized gPC surrogate model performs slightly better than the SSKRR surrogate
model but at a much higher computational cost. Indeed, we only used I = 100

observations of F to obtain the expansion coefficients c⋆ by ℓ1-minimization while
I = 1728 observations of F were needed to obtain the expansion coefficients for
the fully tensorized gPC surrogate model. Notice the circles on Figure 3.10 and
Figure 3.11: they are outliers. It shows that even with I = 100 observations of F ,
one can still deviate from recovering the true expansion coefficients. Moreover, the
low values of the errors eRMSE and eNRMSE of both approaches can be explained by
the fact that the Ishigami function is a smooth function consisting of sine functions,
which can be well approximated by polynomials over a bounded domain.

Figure 3.10: The empirical root mean square error eRMSE over the ten independent runs.
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Figure 3.11: The empirical normalized root mean square error eNRMSE over the ten inde-
pendent runs.

Ishigami function

Median Minimum Maximum
Fully tensorized gPC 0.999997 0.999997 0.999997

Sparse gPC 0.999991 0.999962 0.999993

KRR 0.853325 0.797717 0.902461

SSKRR 0.999993 0.999973 0.999995

Table 3.4: Prediction coefficient Q2 over the ten independent runs.

Now, we compare several quantities of interest of the surrogate models using
the test set over the ten independent runs; namely the expected value, the variance,
and the Kullback-Leibler (KL) divergence. The expected values and the variances
of the fully tensorized and sparse gPC surrogate models are obtained using the
expansion coefficients directly. The KL divergence DKL is computed between each
surrogate model and the ground truth function F by first estimating the PDF from
the IT = 1× 105 observations and then smoothing out the resulting histograms by a
normal kernel density function [156]. An example of such a PDF obtained for one
run is shown on Figure 3.12. The comparison between the surrogate models can
be seen on Table 3.5. One can notice that we obtain roughly the same expected
values, variances, and KL divergences with the SSKRR, the sparse gPC, and the
fully tensorized gPC surrogate models. These values are close to the exact values;
see the last column. Nevertheless, for probabilistic quantities of interest such as the
expected value or the variance, the gPC surrogate models perform better because
these quantities of interest can be directly computed from the expansion coefficients,
see Section 3.5.2; while they were estimated from a Monte-Carlo simulation for the
KRR and SSKRR surrogates. The KRR surrogate with Gaussian kernel gives the
worst results as hinted by the errors eRMSE and eNRMSE computed previously.
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Figure 3.12: PDFs obtained for one run with I = 100 observations of F . The PDFs were
obtained from the IT = 1 × 105 data points and then smoothing out by a normal kernel
density function.

Ishigami function

Expected values
Mean Minimum Maximum Exact

Fully tensorized gPC 3.500 3.500 3.500 3.500

Sparse gPC 3.500 3.498 3.501 3.500

KRR 3.451 3.292 3.760 3.500

SSKRR 3.501 3.490 3.516 3.500

Variance
Fully tensorized gPC 13.844 13.844 13.844 13.845

Sparse gPC 13.819 13.804 13.834 13.845

KRR 11.211 10.198 12.165 13.845

SSKRR 13.775 13.590 13.902 13.845

Kullback-Leibler divergence
Fully tensorized gPC 2.126× 10−6 2.037× 10−6 2.176× 10−6 –

Sparse gPC 1.512× 10−6 9.276× 10−7 2.752× 10−6 –
KRR 0.0186 0.0134 0.0314 –

SSKRR 1.735× 10−6 1.033× 10−6 2.562× 10−6 –

Table 3.5: Expected value, variance, and KL divergence over the ten independent runs for
the different surrogate models.



114 Chapter 3. Building a surrogate model

3.6.2 Rosenbrock function

The Rosenbrock function is a analytical function widely used in benchmarks for
optimization [125]. It is non-convex and reads

F (X) =
d−1∑
i=1

[
100

(
Xi+1 −X2

i

)2
+ (1−Xi)

2
]

(3.105)

with d = 10 and X ∈ [−2, 2]10. The input variables X are assumed to be mutually
independent random variables following an uniform law:

Xi ∼ U(−2, 2) for i = 1, . . . , 10. (3.106)

We proceed as in Section 3.6.1. We select polynomials of total order up to p = 4 to
form the polynomial basis Bp, which corresponds to

(
p+d
d

)
=
(
4+10
10

)
= 1001 multi-

dimensional Legendre polynomials. Bp is considered for the construction of the fully
tensorized gPC, the sparse gPC, and the SSKRR surrogates. For the fully tensorized
gPC surrogate model, N = 610 = 60, 466, 176 GJL quadrature nodes are needed to
exactly recover the orthonormality property given by Equation (3.90) since we have
chosen a total order up to p = 4. The fully tensorized gPC surrogate model is not
douable due to the numbers of points needed: this is the curse of dimensionality
invoked in Section 3.5.1. Therefore this surrogate model will not be considered
for this example. For the sparse gPC and the SSKRR surrogates, one learning set
with I = 400 observations of the ground truth function F is considered. The value
I = 400 was chosen because it is significantly lower than the size of the polynomial
basis Bp. Also η = 1× 10−6 has been chosen in (3.85). Finally, the KRR surrogate
is built using the same learning set.

3.6.2.1 Sparsity on Legendre Polynomials

To determine the sparsity S needed to obtain a lower bound on the number
of observations required to have a successful recovery of the expansion coefficients,
we gradually increase the number of observations and stop when the solution c⋆

of Equation (3.85) do not change significantly over ten independent runs of the
positions of the observations. The foregoing study is carried out and we find that
I = 400 observations are enough to observe sparsity over these ten runs. This
justifies our choice of the size of the learning set picked in the previous section. The
evolution of the expansion coefficients c⋆ with respect to the random samplings of
the positions of the observations are shown on Figure 3.13. Here one can see that
the sparsity is S ≈ 38. One can notice this S = 38 is exactly the number of terms
in the expression of the Rosenbrock function. Then we find that the average of the
coherence parameter C(Θ) over the ten runs is C(Θ) ≈ 0.06. Theorem 6 thus yields
I ≳ Is ≈ 16 observations up to a constant C.



3.6. Numerical examples 115

(a) Seed 1. (b) Seed 2. (c) Seed 3. (d) Seed 4. (e) Seed 5.

(f) Seed 6. (g) Seed 7. (h) Seed 8. (i) Seed 9. (j) Seed 10.

Figure 3.13: Evolution of the expansion coefficients c⋆ with respect to the random samplings
of the positions of the observations with I = 400 observations of F .

3.6.2.2 Comparison between the surrogate models

In this section, we compare the performance of the sparse gPC, KRR, and
SSKRR surrogate models with the IT = 1× 105 observations in the test set over ten
independent runs. Here the fully tensorized gPC surrogate model is not feasible due
to the considerable number of quadrature nodes needed. A comparison of the RMSE
error eRMSE and the NRMSE error eNRMSE over the ten independent runs is shown
on Figure 3.14 and Figure 3.15. The prediction coefficient Q2 for each surrogate
model is given in Table 3.6. Notice that the prediction coefficient Q2 is sometimes
negative for the KRR surrogate model with Gaussian kernel. It means in this case
that the mean of the data provides a better approximation than the KRR surrogate.
One can see that the SSKRR surrogate obtained by our algorithm performs better
than the sparse gPC surrogate while the KRR surrogate performs way worse than
the others. One can notice that only 400 observations of F are enough to obtain the
nearly exact expansion coefficients c⋆ by ℓ1-minimization while N = 610 observations
of F would have been needed to obtain them through the fully tensorized method.
Moreover, the very low values of eRMSE and eNRMSE of the sparse gPC and SSKRR
approaches can be explained by the fact that the Rosenbrock function is a polynomial
expansion. These values are close to machine precision.

Rosenbrock function

Median Minimum Maximum
Fully tensorized gPC – – –

Sparse gPC ≈ 1.00000 ≈ 1.00000 ≈ 1.00000

KRR −0.17561 −0.61829 0.27424

SSKRR ≈ 1.00000 ≈ 1.00000 ≈ 1.00000

Table 3.6: Prediction coefficient Q2 over the ten independent runs.
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Figure 3.14: The empirical root mean square error eRMSE over the ten independent runs.

Figure 3.15: The empirical normalized root mean square error eNRMSE over the ten inde-
pendent runs.
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Figure 3.16: PDFs obtained for one run with I = 400 observations of F . The PDFs were
obtained from the IT = 1 × 105 data points and then smoothing out by a normal kernel
density function.

Now, we compare several quantities of interest of the surrogate models using
the test set over the ten independent runs; namely the expected value, the variance,
and the KL divergence. The expected values and the variances of the sparse gPC
surrogate models are obtained using the expansion coefficients directly. The KL
divergence DKL is computed between each surrogate model and the ground truth
function F by first estimating the PDF from the IT = 1 × 105 observations and
then smoothing out the resulting histograms by a normal kernel density function
[156]. An example of such a PDF obtained for one run is shown on Figure 3.16.
The comparison between the surrogate models can be seen on Table 3.7. The exact
results are computed by taking the mean of the ground truth function F on the test
set for the ten independent runs. One can notice that we obtain similar expected
values, variances, and KL divergences with the SSKRR surrogate compared to the
sparse gPC surrogate. It has to be noted that we only needed 400 observations to
obtain the nearly exact expansion coefficients c. The KRR surrogate with Gaussian
kernel gives the worst results as hinted by the errors eRMSE and eNRMSE computed
previously.

3.7 Application to the RAE2822 transonic airfoil

We apply the same framework as in Section 3.6 on a complex aerodynamic test
case: the two-dimensional RAE2822 airfoil of Figure 1.10 [34]. The quantities of
interest are the lift coefficient CL, the drag coefficient CD, and the pitching moment
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Rosenbrock function

Expected values
Mean Minimum Maximum Exact

Fully tensorized gPC – – – 4101.391
Sparse gPC 4101.000 4101.000 4101.000 4101.391

KRR 3162.772 2847.550 3518.393 4101.391
SSKRR 4101.391 4089.939 4122.100 4101.391

Variance
Fully tensorized gPC – – – 4092724.179

Sparse gPC 4105081.752 4105081.752 4105081.752 4092724.179
KRR 1484933.564 1128976.833 1811692.945 4092724.179

SSKRR 4092724.179 4046013.350 4133221.629 4092724.179
Kullback-Leibler divergence

Fully tensorized gPC – – – –
Sparse gPC ≈ 0 ≈ 0 ≈ 0 –

KRR 0.198 0.142 0.323 –
SSKRR ≈ 0 ≈ 0 ≈ 0 –

Table 3.7: Expected value, variance and KL divergence over the ten independent runs for the
different surrogate models.

coefficient CM as functions of three random input variables: the free-stream Mach
number M , the angle of attack α of the airfoil, and the thickness-to-chord ratio r.
We compare the performances of three surrogate modeling methods: fully tensorized
gPC, sparse gPC, and SSKRR as sketched in Algorithm 2.

3.7.1 Problem setup

The quantities of interest are obtained by solving the steady-state Reynolds-
Averaged Navier-Stokes (RANS) equations together with a Spalart-Allmaras tur-
bulence model closure [136]. The CFD solver elsA [20] is used to simulate two-
dimensional transonic flows around that airfoil and construct the learning set. The
nominal flow conditions correspond to the ones described in [34, Test case #6]
together with the correction formulas for the wall interference derived in [53, pp.
386–387], and their slight modifications proposed in [59]. The operational parameters
considered here are thus M = 0.729 for the free-stream Mach number, α = 2.31◦ for
the angle of attack, and Re = 6.50×106 for the Reynolds number based on the chord
length c, fluid velocity, temperature, and molecular viscosity at infinity. They arise
from the corrections ∆M = 0.004 and ∆α = −0.61◦ given in [59, pp. 130] for the
test case #6 outlined in [34], for which M = 0.725, α = 2.92◦, and Re = 6.50× 106.
More details about this example and the numerical parameters used for elsA runs can
be found in [129]. Denoting by (X1, X2, X3) = (r,M, α) the random input variables,
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they are mutually independent and follow Beta laws of the first kind βI(a, b):

βI(x, a, b) = 1[Xlb,Xub](x)
Γ(a+ b)

Γ(a)Γ(b)

(x−Xlb)
a−1(Xub − x)b−1

(Xlb −Xub)a+b−1
,

where a = (4, 4, 4), b = (4, 4, 4), and [Xlb, Xub] is the compact support of the random
parameter X ∼ βI . Table 3.8 gathers the range of each random input variables and
their associated parameters (a, b).

Xlb Xub (a,b)
X1 = r 0.97× r 1.03× r (4, 4)

X2 = M 0.95×M 1.05×M (4, 4)

X3 = α 0.98× α 1.02× α (4, 4)

Table 3.8: Range and probability law of each input parameter, with r = 1.

For this example, surrogates G are built for the quantities of interest CL, CD,
and CM using three different methods: a fully tensorized gPC surrogate model (3.91)
where the expansion coefficients are obtained by tensorized GJL quadrature nodes
in (3.93), a sparse gPC surrogate model (3.91) where the expansion coefficients are
obtained by solving the problem (3.85), and a SSKRR surrogate model obtained by
Algorithm 2.

The I observations of the quantities of interest used to construct the sparse gPC
and SSKRR surrogates are obtained by random trials following the Beta laws of
the random input variables. For the fully tensorized gPC surrogate, the number
of observations is chosen in order to exactly integrate the orthonormality property
given by Equation (3.90) for polynomials of total order up to p. We recall that given
q nodes, the GJL quadrature rule exactly integrates uni-variate polynomials of order
2q− 3. The surrogates are subsequently validated on a validation set consisting of IV
observations, and tested on a test set consisting of IT observations where the input
variables are again drawn randomly following the Beta laws with parameters as in
Table 3.8. These ITot = I + IV + IT observations are thus split as follows:

• The learning set which consists of I = 80 observations that is 67% of the ITot
observations: (X, CL(X), CD(X), CM (X));

• The validation set which consists of IV = 15 observations that is 12% of the
ITot observations: (XIV , CL(XIV), CD(XIV), CM (XIV));

• The test set which consists of IT = 25 observations that is 21% of the ITot
observations: (XIT , CL(XIT), CD(XIT), CM (XIT)).

These different sets are shown on Figure 3.17. Other splitting choices could have
been made, for instance the classical 60/20/20 splitting (60% for the learning set,
20% for the validation set, 20% for the test set) as in [65].
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The performance of each surrogate model is quantified by computing the empirical
Normalized Root Mean Square Error eNRMSE of Equation (3.98) and the empirical
Root Mean Square Error eRMSE of Equation (3.99) using the validation and test sets.
However the knowledge of eRMSE and eNRMSE might not be enough to assess the
performance of a surrogate model. Indeed, eRMSE only gives the global error over the
whole domain but does not give any information about the distribution. For instance,
two similar values of eRMSE for two different surrogate models can be obtained: in
one case the surrogate provides a reliable approximation of the ground truth function
for the majority of the domain but a poor one for a few points, while in another
case the other surrogate provides a less reliable approximation of the ground truth
function in the entire domain. In that respect, we compute an additional metric, the
maximum relative error eMRE defined by

eMRE = max
i=1,...,IT

(
|Yi −G(Xi)|
|Yi|

)
× 100. (3.107)

Following [129], we choose a total order up to p = 8 which corresponds to(
p+d
d

)
=
(
8+3
3

)
= 165 multi-dimensional Jacobi polynomials. They constitute the

basis Bp considered for the construction of the fully tensorized gPC, the sparse
gPC, and the SSKRR surrogates. Since p = 8, N = 1000 GJL quadature nodes
are needed to exactly recover the orthonormality property given by Equation (3.90)
and are selected to compute the expansion coefficients of the fully tensorized gPC
surrogate by Equation (3.93). SPGL1 in python [152, 153] is again considered in
order to compute the solution of (3.85) for the expansion coefficients in the sparse
gPC surrogate (3.91) and the SSKRR surrogate (3.88) obtained by Algorithm 2. Also
η = 1× 10−5 has been chosen in (3.85). The coherence parameter of Definition 10
is C(Θ) ≈ 270 on the learning set which yields a large theoretical lower bound
in Theorem 6. We observe however that the I = 80 observations of the learning
set yield satisfactory results below. In order to tune the nugget λ of the kernel of
the SSKRR surrogate (3.88), we use the parametric KF algorithm of Section 3.3.3
[31, 114] on the IV data points with eRMSE as the metric, If = I and Ic = If/2, and
the accuracy ρ defined by Equation (3.64). In addition, the trace parameter κ is
chosen as κ = Var(Y).

A pick-freeze estimator [69, 119] is used to compute Sobol’ main-effect sensitivity
indices obtained from the SSKRR surrogate. A matrix size of 1 × 106 samples is
selected, corresponding to a total number of (d + 1) × 106 = 4 × 106 evaluations
of the surrogate model. This method is a Monte-Carlo based one and thus it may
be difficult to obtain accurate estimates of small sensitivity indices. On the other
hand, these indices are directly obtained from the expansion coefficients of the fully
tensorized and sparse gPC surrogates; see Section 3.5.2.

3.7.2 Lift coefficient CL

We first focus on the lift coefficient CL. The expansion coefficients c⋆ given by
ℓ1-minimization are shown on Figure 3.18 using the learning set of Figure 3.17(a).
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(a) (b) (c)

Figure 3.17: Random sampling points used for the learning set (a), the validation test (b),
and the test set (c) with I = 80, IV = 15, and IT = 25 points to compute the expansion
coefficients of CD, CL and CM by ℓ1-minimization.

We notice that only low order polynomials are relevant. Indeed, one can see that:

Gp(x) ≈ c⋆1ϕ(0,0,0)(x) + c⋆2ϕ(1,0,0)(x) + c⋆3ϕ(0,1,0)(x) + c⋆4ϕ(0,0,1)(x)

+ c⋆6ϕ(1,1,0)(x) + c⋆8ϕ(0,2,0)(x) + c⋆17ϕ(0,3,0)(x), (3.108)

where ϕ(i1,i2,i3) is defined as in Equation (3.94) and with |c⋆1| ≫ |c⋆3| ≫ |c⋆4| ≈ |c⋆6| ≈
|c⋆8| ≈ |c⋆17| ≫ |c⋆2|. The highest order polynomial of Gp(x) has order 3 and its
expansion coefficient is small compared to the others. From Figure 3.18, the sparsity
is observed to be S ≈ 7. Therefore Theorem 6 yields N ≳ Is ≈ 10000 observations
up to a constant C, but we observe in practice that the I = 80 observations are
enough for an accurate recovery.

Figure 3.18: Expansion coefficients c⋆ with I = 80 observations of the lift coefficient CL.
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(a) Accuracy ρ. (b) Nugget λ.

(c) Error eRMSE on the validation set.

Figure 3.19: Evolutions of the accuracy ρ of the parametric KF algorithm, the nugget λ,
and the error eRMSE on the validation set as functions of the number of iterations of the
parametric KF algorithm for the lift coefficient CL. The green vertical line corresponds to
the iteration where the error eRMSE is minimal on the validation set.

Lift coefficient CL

SSKRR Sparse gPC Fully tensorized gPC
eRMSE 7.574× 10−5 3.715× 10−4 1.159× 10−4

eNRMSE 1.040× 10−4 5.103× 10−4 8.437× 10−5

eMRE 0.0319% 0.232% 0.0368%

Q2 0.99996 0.99911 0.99995

Table 3.9: Comparison of the errors between the surrogate models for the lift coefficient CL

with I = 80 and IT = 25 sampling points.

The evolutions of the accurary ρ of the parametric KF algorithm, the nugget λ,
and the error eRMSE on the validation set as functions of the number of iterations of
the parametric KF algorithm, are shown on Figure 3.19. We find λmin = 1.30× 10−7,
which corresponds to the green vertical line on Figure 3.19. One can notice that
for the initial choice of λ, the accuracy ρ is already very small (about 1 × 10−3).
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Therefore, the decrease in error eRMSE on the validation set is marginal and the
changes in λ are not substantial. The comparison of the errors eRMSE, eNRMSE and
eMRE between the surrogate models on the test set are given in Table 3.9 where
λ = λmin. Figure 3.20 shows the values of the lift coefficient CL with respect to
the input parameters on the learning set, the verification set, the test set, and the
predictions of the SSKRR surrogate. A strong non-linear dependence between CL

and the Mach number M can be seen on Figure 3.20. The PDFs of CL using the
three surrogate models are estimated from Is = 1× 106 random data points taken at
random following the Beta laws of Table 3.8 and then smoothing out the resulting
histrograms by a normal kernel density function [156]. They are shown on Figure 3.21,
together with their corresponding expected value and variance. The expected values
of the PDFs obtained by each surrogate model are shown on Figure 3.21 with vertical
lines. Notice that we obtain comparable results except at the tails of the distributions
and at their peaks. Finally, Sobol’ main-effect sensitivity indices are gathered in
Table 3.10. As expected from the previous results, the variable X2 = M is more
influential than the variables X1 = r and X3 = α where X1 = r has almost no
influence on CL. The SSKRR surrogate slightly outperforms the fully tensorized one.
Both have a much better performance than the sparse gPC surrogate.

Lift coefficient CL

X1 = h/c X2 = M X3 = α

Fully tensorized gPC 0.00345 0.955 0.0286

Sparse gPC 0.00358 0.953 0.0298

SSKRR 0.00425 0.956 0.0296

Table 3.10: Sobol’ main-effect sensitivity indices of the lift coefficient CL with I = 80

samplings points. For our algorithm, they were estimated from a pick-freeze estimator with a
matrix size of 1× 106 samples. For the sparse and the fully tensorized gPC surrogate models,
they were estimated from the values of the expansion coefficients using Section 3.5.2.

3.7.3 Drag coefficient CD

We now focus on the drag coefficient CD. The expansion coefficients c⋆ given by
the ℓ1-minimization are shown on Figure 3.22 using the learning set on Figure 3.17(a).
In a same way as for the lift coefficient CL, we notice that only a few polynomials
are relevant in the expansion. One has:

Gp(x) ≈ c⋆1ϕ(0,0,0)(x) + c⋆2ϕ(1,0,0)(x) + c⋆3ϕ(0,1,0)(x) + c⋆4ϕ(0,0,1)(x) + c⋆6ϕ(1,1,0)(x)

+ c⋆8ϕ(0,2,0)(x) + c⋆9ϕ(0,1,1)(x) + c⋆14ϕ(1,2,0)(x) + c⋆17ϕ(0,3,0)(x)

+ c⋆27ϕ(1,3,0)(x) + c⋆31ϕ(0,4,0)(x) + c⋆78ϕ(0,6,0)(x),
(3.109)

where ϕ(i1,i2,i3) is defined as in Equation (3.94) and with |c⋆1| ≫ |c⋆3| ≫ |c⋆2| ≈ |c⋆6| ≈
|c⋆8| ≈ |c⋆31| ≫ |c⋆4| ≈ |c⋆9| ≈ |c⋆14| ≈ |c⋆17| ≈ |c⋆27| ≈ |c⋆78|. The highest order polynomial
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Figure 3.20: Distribution of the difference between the prediction given by SSKRR surrogate
and the observations on the test set for the lift coefficient CL with I = 80 and IT = 25

samplings points. The red circles are the observations defining the learning set. The violet
stars are the observations defining the validation set. The green squares are the observations
defining the test set with their corresponding predictions given by the SSKRR surrogate,
depicted by the blue diamonds.

of Gp(x) has order 6 and its expansion coefficient is very small compared to the
others. From Figure 3.22, the sparsity is observed to be S ≈ 12. Therefore Theorem 6
yields N ≳ I ≈ 17000 observations up to a constant C, but we observe in practice
that the I = 80 observations are enough for an accurate recovery.

The evolutions of the accuracy ρ of the parametric KF algorithm, the nugget λ,
and the error eRMSE on the validation set as functions of the number of iterations of
the parametric KF algorithm are shown on Figure 3.23. We find λmin = 3.75× 10−8,
which corresponds to the green vertical line on Figure 3.23. Contrary to the lift
coefficient CL, one can notice that the accuracy ρ was greatly reduced (divided
by about 10) between the initial and convergence iterations. In this way, eRMSE

was divided by about 7 on the validation set. The comparison of the errors eRMSE,
eNRMSE, and eMRE between the surrogate models are given in Table 3.11 where
λ = λmin. Figure 3.24 shows the values of the drag coefficient CD with respect to
the input parameters on the learning set, the verification set, the test set, and the
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(a) PDFs of the lift coefficient CL. The vertical lines corre-
spond to their respective expected value.

Lift coefficient CL

Expected value Variance
Fully tensorized gPC 72.273× 10−2 2.787× 10−4

Sparse gPC 72.278× 10−2 2.782× 10−4

SSKRR 72.274× 10−2 2.777× 10−4

(b) Expected value and variance.

Figure 3.21: The PDFs of the lift coefficient CL (top) using the three surrogate models and
their corresponding expected value and variance (bottom) estimated from the Is = 1× 106

data points.

Figure 3.22: Expansion coefficients c⋆ with I = 80 observations of F for the drag coefficient
CD.

predictions of the SSKRR surrogate. A strong dependece—nearly linear—between
the drag coefficient CD and the Mach number M can be denoted on Figure 3.23.
The PDFs of the drag coefficient CD using the three surrogate models are estimated
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(a) Accuracy ρ. (b) Nugget λ.

(c) Error eRMSE on the validation set.

Figure 3.23: Evolutions the accuracy ρ of the parametric KF algorithm, the nugget λ, and the
error eRMSE on the validation set as a function of the number of iterations of the parametric
KF algorithm for the drag coefficient CD. The green vertical line corresponds to the iteration
where the error eRMSE is minimal on the validation set.

Drag coefficient CD

SSKRR Sparse gPC Fully tensorized gPC
eRMSE 3.722× 10−6 3.323× 10−6 5.171× 10−6

eNRMSE 2.535× 10−4 2.264× 10−4 3.523× 10−4

eMRE 0.0628% 0.0470% 0.0866%

Q2 0.9999989 0.9999991 0.9999979

Table 3.11: Comparison of the errors between the surrogate models with I = 80 and IT = 25

observations for the drag coefficient CD.

from Is = 1× 106 random data points taken at random following the Beta laws of
Table 3.8 and then smoothing out the resulting histograms by a normal kernel density
function [156]. They are shown on Figure 3.25, together with their corresponding
expected value and variance. The expected values of the PDFs obtained by each
surrogate model are shown on Figure 3.25 with vertical lines. Notice that we obtain
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comparable results expect at their peaks where the fully tensorized is a little above.
Finally, Sobol’ main-effect sensitivity indices are gathered in Table 3.12. As expected
from the previous results, the variable X2 = M is much more influential than the
variables X1 = r and X3 = α on the drag coefficient CD, where the latter have
the same influences, as expected from the values of the expansion coefficients c⋆ in
Equation (3.109). The SSKRR surrogate gives similar performance as the sparse
gPC one. Both slightly outperform the fully tensorized surrogate model.

Figure 3.24: Distribution of the difference between the prediction given by our algorithm
and the observations on the test set for the drag coefficient CD with I = 80 and IT = 25

samplings points. The red circles are the observations defining the learning set. The violet
stars are the observations defining the validation set. The green squares are the observations
defining the test set with their corresponding predictions given by the SSKRR surrogate,
depicted by the blue diamonds.
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(a) PDFs of the drag coefficient CD. The vertical lines corre-
spond to their respective expected value.

drag coefficient CD

Expected value Variance
Fully tensorized gPC 133.371× 10−4 1.165× 10−5

Sparse gPC 133.365× 10−4 1.162× 10−5

SSKRR 133.422× 10−4 1.166× 10−5

(b) Expected value and variance.

Figure 3.25: The PDFs of the drag coefficient CD (top) using the three surrogate models and
their corresponding expected value and variance (bottom) estimated from the Is = 1× 106

data points.

drag coefficient CD

X1 = h/c X2 = M X3 = α

Fully tensorized gPC 0.00812 0.989 0.000765

Sparse gPC 0.00806 0.989 0.000761

SSKRR 0.00863 0.989 0.00130

Table 3.12: Sobol’ main-effect sensitivity indices of the drag coefficient CD with I = 80

samplings points. For our algorithm, they were estimated from a pick-freeze estimator with a
matrix size of 1× 106 samples. For the sparse and the fully tensorized gPC surrogate models,
they were estimated from the values of the expansion coefficients using Section 3.5.2.
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3.7.4 Pitching moment coefficient CM

We finally focus on the pitching moment coefficient CM . The expansion coeffi-
cients c⋆ given by the ℓ1-minimization are shown on Figure 3.26 using the learning
set of Figure 3.17. From the values of the expansion coefficients c⋆, we notice that
only low order polynomials are relevant in the expansion coefficients. Indeed, one
has:

Gp(x) ≈ c⋆1ϕ(0,0,0)(x) + c⋆2ϕ(1,0,0)(x) + c⋆3ϕ(0,1,0)(x) + c⋆8ϕ(0,2,0)(x)

+ c⋆14ϕ(1,2,0)(x) + c⋆17ϕ(0,3,0)(x) + c⋆31ϕ(0,4,0)(x), (3.110)

where ϕ(i1,i2,i3) is defined as in Equation (3.94) and with |c⋆1| ≫ |c⋆3| ≫ |c⋆2| ≈ |c⋆8| ≈
|c⋆17| ≈ |c⋆31| ≫ |c⋆14|. The highest order polynomial of Gp(x) has order 4 and its
expansion coefficient is small compared to the others. From Figure 3.26, the sparsity
is observed to be S ≈ 7. Therefore Theorem 6 yields N ≳ I ≈ 10000 observations up
to a constant C, but we observe in practice that the I = 80 observations are enough
for an accurate recovery.

Figure 3.26: Expansion coefficients c⋆ with I = 80 observations of F for the pitching moment
coefficient CM .

Pitching moment coefficient CM

SSKRR Sparse gPC Fully tensorized gPC
eRMSE 7.071× 10−6 8.409× 10−6 8.838× 10−6

eNRMSE 1.525× 10−4 1.813× 10−4 1.906× 10−4

eMRE 0.0436% 0.0473% 0.0602

Q2 0.999996 0.999993 0.999992

Table 3.13: Comparison of the errors between the surrogate models with with I = 80 and
IT = 25 observations for the pitching moment coefficient CM .

The evolutions of the accuracy ρ of the parametric KF algorithm, the nugget λ,
and the error eRMSE on the validation set as functions of the number of iterations of
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(a) Accuracy ρ. (b) Nugget λ.

(c) Error eRMSE on the validation set.

Figure 3.27: Evolutions the accuracy ρ of the parametric KF algorithm, the nugget λ, and
the error eRMSE on the validation set as functions of the number of iterations of the KF
algorithm for the pitching moment coefficient CM . The green vertical line corresponds to the
iteration where the error eRMSE is minimal on the validation set.

the parametric KF algorithm are shown on Figure 3.27. We find λmin = 4.30× 10−9,
which corresponds to the green vertical line on Figure 3.27. One can notice that the
accuracy ρ was greatly reduced (divided by ≈ 10) between the initial iteration and
convergence on the validation set. The error eRMSE was divided by slightly more
than about 12 on the validation set. The comparison of the errors eRMSE, eNRMSE

and eMRE between the surrogate models are given in Table 3.13 where λ = λmin.
Figure 3.28 shows the values of the pitching moment coefficient CM with respect
to the input parameters on the learning set, the verification set, the test set, and
the predictions of the SSKRR surrogate. A dependence—nearly linear—between the
pitching moment coefficient CM and the Mach number M can be denoted for the
highest Mach numbers. The PDFs of the pitching moment coefficient CM using the
three surrogate models are estimated from Is = 1× 106 random data points taken at
random following the Beta laws of Table 3.8 and then smoothing out the resulting
histograms by a normal kernel density function [156]. They are shown on Figure 3.29,
together with their corresponding expected value and variance. The expected values
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Figure 3.28: Distribution of the difference between the prediction given by our algorithm
and the observations on the test set for the pitching moment coefficient CM with I = 80

and IT = 25 samplings points. The red circles are the observations defining the learning set.
The violet stars are the observations defining the validation set. The green squares are the
observations defining the test set with their corresponding predictions given by the SSKRR
surrogate, depicted by the blue diamonds.

of the PDFs obtained by each surrogate model are shown on Figure 3.29 with vertical
lines. Notice that we obtain comparable results except at the tails of the distributions.
Finally, Sobol’ main-effect sensitivity indices are gathered in Table 3.14. As expected
from the previous results, the variable X2 = M is much more influential than the
variables X1 = r and X3 = α on the pitching moment coefficient CM , where the
parameter X3 = α has almost no influence at all, as predicted from the values of the
expansion coefficients c⋆ in Equation (3.110). The SSKRR surrogate gives similar
performance as the sparse gPC one. Both slightly outperform the fully tensorized
gPC surrogate model.

3.7.5 Estimation of prediction variance

The prediction given by the SSKRR surrogate allows us to obtain the prediction
variance σ2(x) (3.15) at an unobserved point x. Figure 3.30 shows this prediction
variance for the lift coefficient CL, the drag coefficient CD, and the pitching moment
coefficient CM at different points. The top row is for the lift coefficient CL, the
middle row is for the drag coefficient CD, and the bottom row is for the pitching
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(a) PDFs of the pitching moment coefficient CM .

pitching moment coefficient CM

Expected value Variance
Fully tensorized gPC −0.0454 1.039× 10−5

Sparse gPC −0.0454 1.039× 10−5

SSKRR −0.0454 1.040× 10−5

(b) Expected value and variance.

Figure 3.29: The PDFs of the pitching moment coefficient CM (top) using the three surrogate
models and their expected value and variance (bottom) estimated from the Is = 1× 106 data
points.

pitching moment coefficient CM

ξ1 = h/c ξ2 = M ξ3 = α

Fully tensorized gPC 0.0269 0.972 3.220× 10−7

Sparse gPC 0.0270 0.972 2.210× 10−7

SSKRR 0.0272 0.972 0.000469

Table 3.14: Sobol’ main-effect sensitivity indices of the pitching moment coefficient CM with
I = 80 samplings points. For our algorithm, they were estimated from a pick-freeze estimator
with a matrix size of 1× 106 samples. For the sparse and the fully tensorized gPC surrogate
models, they were estimated from the values of the expansion coefficients using Section 3.5.2.

moment coefficient CM . The variance is maximal at the edges of the input domain
because it corresponds to the area where the observations are scarce. Contrary to
the sparse gPC or the fully tensorized surrogate model, Algorithm 3 allows us to
obtain such information about the function F . For instance, it can guide us to decide
where a new observation of F could be effective in order to improve the accuracy of
the surrogate model.
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(a) α = 0.99× α. (b) α = α. (c) α = 1.01× α.

(d) α = 0.99× α. (e) α = α. (f) α = 1.01× α.

(g) α = 0.99× α. (h) α = α. (i) α = 1.01× α.

Figure 3.30: log10 of the variance σ2 of the prediction with respect to the input variables
(r,M) at α = 0.99 × α (left column), α = α (middle column) and α = 1.01 × α (right
column) for the lift coefficient CL (top row), the drag coefficient CD (middle row), and the
pitching moment coefficient CM (bottom row).
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3.8 Conclusions

In the OUQ framework presented in Chapter 1 and the algorithm detailed in
Chapter 2, computing an optimal bound demands intensive calculations and an almost
free use of the performance function. This can be done by resorting to a surrogate
model which must be inexpensive to evaluate. We have presented several methods
to build a surrogate model from limited knowledge of a target function F based on
a regression approach. First, we have shown the equivalence of three approaches
in Section 3.2: the functional one based on RKHS for which a brief summary has
been presented in Section 3.2.1, the Kriging one presented in Section 3.2.5, and the
Gaussian process one presented in Section 3.2.6. All these approaches depend on
the selection of a class of functions known as kernels. Following [115, Theorem 8.4],
the bound on the deterministic difference between the ground truth function F and
its surrogate model has been reminded in Section 3.2.4. This bound depends on
two elements: the prediction variance σ2 and the RKHS norm of F . In return they
both depend on the choice of the kernel. The main focus of this chapter has been to
determine the “best” kernel, where “best” has been defined in two ways. First, the
parametric and non-parametric KF algorithms have been presented in Section 3.3,
where “best” has been here defined with respect to a specified accuracy introduced in
Section 3.3.1. These algorithms, which were first developed in a classification context
[31, 114], have been extended to regression. It has been seen that the parametric KF
algorithm could be suitable to build a surrogate model but not the non-parametric
one, confirming in that respect the results obtained in [35]. Then another method
to determine the best kernel has been introduced within Mercer’s framework, of
which an overview has been presented in Section 3.4.1. This framework yields an
explicit expression of the RKHS norm of the target function F through the spectral
decomposition of the integral operator associated with the kernel and the expansion
coefficients of F onto the L2 space. The SSKRR and the NSKRR algorithms have
been presented in Section 3.4.3.2 and in Section 3.4.3.3, respectively. They seek
to minimize the RKHS norm of F with respect to the eigenvalues of the integral
operator associated with the kernel. The performances of the SSKRR algorithm and
its comparison with several other classical surrogate methods have been investigated
on two tractable test cases usually considered in sensitivity analysis in Section 3.6.
An application of the SSKRR algorithm to an aerodynamic case has finally been
considered in Section 3.7.
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In this thesis, we have presented an approach to achieve certification of the
performance of an aircraft, or a system more generally, under uncertainties. Here
certification is understood as the process of guaranteeing that the probability of
occurence of a certain scenario or target, known as the probability of failure, is
below an acceptable (small) tolerance. In Chapter 1, starting from McDiarmid’s
inequality, we have seen in Section 1.2 that the Optimal Uncertainty Quantification
(OUQ) framework [112] is a promising candidate to achieve such certification. This
framework can be applied to much more general classes of hypotheses on the system
than the ones considered in McDiarmid’s inequality. It is based on computing
the optimal bounds of the probability of failure with respect to the information
known about the system. These bounds can be understood as best- and worst-case
approaches. Computing them can be formulated as an optimization problem in an a
priori infinite-dimensional set, but it can be transformed to a finite-dimensional one
through the reduction Theorem 1. In Section 1.3 this finite-dimensional optimization
problem has then been solved by using the mystic numerical framework presented
in Section 1.3.1. The OUQ and mystic frameworks have been successfully applied
on several examples including aerodynamic test cases. However, even after reduction,
the optimization problem is still a priori non-convex and highly constrained. In that
respect, it is not guaranteed that an optimal solution is ever found.

Therefore, a procedure has to be developed to corroborate the numerical optimums
obtained by the computations. This is the topic of Chapter 2, where the problem
of adaptively reconstructing a monotonically increasing function from imperfect
pointwise observations of this function has been considered. The proposed algorithm
is reminiscent of the classical Pool Adjacent Violators Algorithm (PAVA) to isotonic
regression but it differs from the assumptions made as detailed in Section 2.1. This
reconstruction problem is closely linked to certification as shown in Section 2.2. The
algorithm itself has been presented in Section 2.4.1 and its convergence properties
have been proved in Section 2.4.2, which ensure its mathematical relevance. In
Section 2.5, it has been tested on two synthetic cases, that is a continuous and a
discontinuous function, in order to quantify its performance. The algorithm has
also been carried out on a challenging problem taken from aerodynamic design in
section 2.6. Nevertheless, the application of the OUQ framework requires to evaluate
the performance function several tens of thousands of times. Thus the use of a
time-consuming model is not feasible and a computationally inexpensive model is
required. This is the topic of the next chapter.

Several methods have been successively presented in Chapter 3 for the construction
of surrogate models. A short reminder about the theory of Reproducing Kernel Hilbert
Spaces (RKHS) has first been given in Section 3.2.1. It has allowed us to present
the optimal recovery solution and kernel ridge regression methods in Section 3.2.2
together with mathematical bounds (3.2.4) on the error between the ground truth



136 Conclusions and perspectives

function and its surrogate approximation in Section 3.2.4. Kriging methods and
the Gaussian process regression method have been presented in Section 3.2.5 and
Section 3.2.6, respectively. We have seen that all these methods are equivalent
and depend on the choice of the kernel function. Three different algorithms have
been presented to determine the appropriate kernel. The kernel flow algorithms
have first been detailed in Section 3.3. The definition of what an appropriate
kernel is has been given in Section 3.3.1. Two versions of this algorithm exist:
the non-parametric version and the parametric one, described in Section 3.3.2 and
Section 3.3.3 respectively. The latter was originally developed in a classification
context [114]. In this work, we have tested both versions on an aerodynamic case
in a regression context in Section 3.3.4. We have seen that the parametric version
yields promising results while the non-parametric one does not seem to be suitable
for regression, confirming the conclusions reached elsewhere [35]. Then sparse and
non-sparse spectral kernel ridge regression (SKRR) algorithms have been introduced
in Section 3.4. These two algorithms are based on approximating the RKHS norm
of the ground truth function F through its expansion coefficients, but they differ
on the assumptions done about F . The sparse SKRR algorithm assumes that F is
sparse on a given basis while the non-sparse SKRR algorithm does not. The sparse
SKRR algorithm together with several other classical surrogate modeling methods
have been applied to synthetic test cases used in uncertainty quantification, and to
more complex cases pertaining to aerodynamic applications.

The algorithms developed in this thesis are likely to be improved in several ways.
Possible improvements and extensions of Algorithm 1 presented in Chapter 2 are to
weight the areas a

(n)
i as they are summed up to form the total weighted area WA(n)

driving the iterative process, in order to optimally enforce both the addition of “steps”
s
(n)
i in the reconstruction function F (n) of Definition 1, and the improvement of

their “heights” y
(n)
i . This could be achieved considering the following alternative

definition i
(n)
+ = argmaxi{(I(n) − i− 1)a

(n)
i } in Algorithm 1, for example, which

results in both adding a step to the i
(n)
+ -th current one and possibly improving all

subsequent evaluations y
(n+1)
i , i > i

(n)
+ . We may also further envisage to adapt

the ideas elaborated in this chapter to the reconstruction of convex functions by
extending the notion of consistency, for instance.

The non-sparse SKRR algorithm presented in Chapter 3 for the approximation of
non-sparse ground truth function has not yet been tested numerically. Future works
should consider its implementation and analyses of its performance on synthetic and
complex cases. Moreover, only polynomial bases have been considered so far. Thus
it may be interesting to test the sparse SKRR and non-sparse SKRR algorithms
using other types of bases, such as the basis corresponding to the eigenvectors of the
Gaussian kernel for which analytical expressions are available. Actually the choice of
a basis and surrogate model also depends on the available sampling set of the ground
truth function: it may be constituted by either structured nodes on a (possibly
subsampled) quadrature rule, for example, or by (partially) unstructured nodes as in
coherence-optimal, asymptotic, Latin hypercube, or Monte-Carlo and quasi Monte-
Carlo sampling strategies, among others; see e.g. [60]. The KRR surrogates and their
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spectral byproducts considered in this research are quasi interpolant depending on
the strength of the smoothing by the nugget, whereas polynomial chaos expansions
are not. This may impact the choice of a surrogate model as well. One finally
expects that the deterministic bounds on the difference between the ground truth
function F and its surrogate G given in Chapter 3 could be useful to obtain a
bound or an estimate of the validation diameter DF−G used for post-optimization
with simulations or experiments in Chapter 1. This strategy of certification by the
data-on-demand protocol elaborated in [2, 75] has not been explored so far. It should
be considered in future works in connection with the techniques of data assimilation
which have recently emerged in engineering science [123], with noticeable applications
in fluid dynamics [19, 126].
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Résumé étendu

La performance attendue d’un système peut généralement différer de sa perfor-
mance opérationnelle en raison de la variabilité de certains paramètres. Habituelle-
ment, la phase de conception est divisée en deux phases différentes. La première
phase consiste à déterminer la conception pré-optimale. Grâce à l’utilisation de
logiciels numériques, la meilleure conception possible est choisie. Il s’agit de tenir
compte de certaines performances idéales à atteindre en formulant des hypothèses—
qui peuvent être subjectives—traduisant la variabilité de certains paramètres. La
deuxième phase consiste, quant à elle, à certifier par des expériences à taille réelle
que la conception déterminée précédemment est valide. De cette façon, la conception
post-optimale est spécifiée. Cette deuxième phase est la plus coûteuse ; c’est pourquoi
les industriels, notamment dans le domaine aéronautique, cherchent à réduire le
recours aux expériences à taille réelle. L’Optimal Uncertainty Quantification (OUQ)
[112] est un outil mathématique puissant qui peut être utilisé pour borner rigoureuse-
ment la probabilité de dépasser un seuil de performance donné pour des conditions
opérationnelles ou des caractéristiques de système incertaines. Autrement dit, nous
cherchons à certifier que PX∼µ† [F (X) ≥ a] ≤ ε, où F est la fonction performance
et X sont les paramètres incertains suivant la mesure de probabilité µ† qui influent
sur la performance F . La fonction performance F et/ou la mesure de probabilité
µ† peuvent ne pas être connues, ou seulement partiellement. Ainsi, l’outil OUQ
conduit à la résolution d’un problème d’optimisation sur l’ensemble des mesures de
probabilités admissibles, permettant ainsi de ne pas à avoir à formuler des hypothèses
subjectives qui peuvent être fortes. Ce problème d’optimisation est a priori un
problème non-convexe et fortement contraint, dans un espace de dimension infinie.
Ainsi, il est généralement difficile à résoudre sur le plan numérique. Néanmoins,
il peut être réduit à un problème d’optimisation équivalent en dimension finie par
l’intermédiaire d’un théorème de réduction.

Ce travail de thèse porte, dans un premier temps, sur l’application de l’outil OUQ
sur un cas simple : la déformée maximale d’une poutre en flexion sous les hypothèses
d’Euler-Bernoulli. Ensuite, des cas issus du domaine de l’aéronautique permettant
de borner rigoureusement la variation de fonctions de performance classiquement
étudiées en aérodynamique, telles que la portance ou la trainée, sont abordés. Pour
chacun des cas, différents scénarios traduisant différentes hypothèses sur le système
sont considérés. Néanmoins, même après réduction du problème d’optimisation,
cette approche demeure complexe et l’exactitude des résultats obtenus en est ainsi
impactée.

Afin de pallier cette difficulté, un algorithme permettant d’assurer la validité de
ces résultats numériques a été par la suite formulé [15]. Cet algorithme est analogue
à la régression isotonique mais diffère sur les hypothèses établies. La convergence de
cet algorithme a été démontrée. L’algorithme a été ensuite validé sur des cas tests
numériques ainsi que sur un cas aérodynamique. Quoi qu’il en soit, l’application de
la méthode OUQ nécessite d’évaluer la fonction de performance du système plusieurs
dizaines de milliers de fois. De fait, l’usage d’un modèle peu coûteux en termes de
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temps est requis.
Dans cette optique, plusieurs méthodes qui permettent de construire des modèles

de substitution rapides à évaluer sont finalement présentées. Une première méth-
ode fondée sur l’algorithme Kernel Flow, initialement appliquée à un problème de
classification [114], est étendue à un problème de régression permettant la déter-
mination du noyau d’un modèle de substitution de type processus gaussien. Deux
versions de cet algorithme sont présentées : la version paramétrique et la version
non-paramétrique. Puis, deux nouveaux algorithmes sont présentés. Ces algorithmes
utilisent l’équivalence qui existe entre l’approche processus gaussien et l’approche
par espace de Hilbert à noyau reproduisant (Reproducing Kernel Hilbert Space,
RKHS) afin de déterminer le noyau adéquat. Ces différentes méthodes de modèles
de substitution sont appliquées au travers de différents cas tests dont des cas du
domaine aérodynamique.
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