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Introduction

The production of energy features among the central issues of our time. In the face of
the imminent scarcity of fossil fuels and the reality of global warming, finding new sources
of energy respectful of our environment is becoming a matter of urgency. France features
among the countries investing heavily into the development of renewable energies. Given its
geographical situation and the extent of its maritime area, marine renewable energies play
an important part in this mix. After offshore wind energy development which is set to play
a significant part in the near future with seven offshore parks currently under way, tidal
and marine current energy displays the second most important exploitable energy source,
with many potential energy locations under consideration. The french companies Sabella
and Hydroquest have already deployed functioning prototypes in the sites of the Fromveur
straight and Paimpol-Bréhat respectively. However the cost of technological development
to pursue the highest level of Technology Readiness Level and the technical complications
associated with the installation and maintenance of tidal turbine prototypes in very high
current and difficult accessibility conditions remain somewhat prohibitive. While scaled
flume tank models can provide many more detailed measurements and show interesting
results within their specific controlled conditions, they remain limited in scale and accurate
depiction of site conditions. It is therefore of great importance and current interest to also
dispose of an arsenal of numerical solutions for the simulation of tidal turbine farms, with
the ability to cover as many aspects of their functioning and realistic conditions as possible.

The scale of these simulation tools can vary from that of a whole tidal farm site
including coastal topology and marine environment, to that of the detailed design of a
turbine blade. With an expectation of reasonable computational costs, an array of methods
can be considered, each better suited to one of these scales and with its own strengths
and weaknesses. For instance, Blade Element Momentum Theory (BEM/BEMT) is a low
cost method best suited to a general picture of energy output [1–4], while Large Eddy
Simulation (LES) or full Computational Fluid Dynamics (CFD) will allow for a highly
detailed account of the flow surrounding a turbine but require very high computational
costs [5, 6]. Lagrangian methods are less common, and could be estimated as a middle of
the pack type method in terms of compromise between detailed results and computational
efficiency.

The Dorothy simulation code is a Lagrangian simulation code, developed in collabo-
ration between IFREMER (Institut Français de Recherche pour l’Exploitation de la Mer)
and LOMC (Laboratoire Ondes et Milieux Complexes) for the computation of tidal tur-
bines. The development of this code has played an important role in the three back to
back PhDs of Fabrice Maganga [7], Paul Mycek [8] and Clément Carlier [9]. While each
of these research projects has focused on different aspects of the code and often been pai-
red with experimental considerations, some basic principles remain unchanged, which is
why Mycek and Carlier in particular will be often cited in the course of this continuation
of their work. Aside from the constant and fruitful efforts towards the optimization of
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Introduction

the Dorothy software in collaboration with the CRIANN (Centre Régional Informatique
et d’Applications Numériques de Normandie), it has been the object of many successive
add-ons and improvements. The long term goal of these undertakings is to dispose of a
comprehensive and eventually open-sourced tool for the simulation of tidal turbines, yiel-
ding results as accurate and representative as possible and encompassing as many of the
conditions present and important to tidal sites as can be incorporated into the software.
The first Chapter will provide a general description of the software’s current capabilities
and the Vortex Particle Method on which it is based.

Among the key conditions important to its continued development, the primary areas
of focus of the work presented here have been the computation of efforts and the account for
ambient turbulence, both integral to the estimation of the power output of a tidal turbine
array. The first step consists in the simulation of a single turbine including its power output
depending on the configuration of the upstream incoming flow, as well as the configuration
of its wake and surrounding flow, which will be essential later on in order to account for
turbine interactions. Most of the methods commonly used for these types of simulations
will have a stronger emphasis on either the computation of efforts or of the fluid wake
configuration. In the former category, BEM can easily provide good quality power results,
as shown for instance in the works of Bahaj [10] or Batten [11], although it is limited by
the fact that it relies on tabulated values. It is often paired with other methods necessary
to obtain information on the wake, such as CFD in the works of Malki [12], or lifting line
analogies. In the latter category, LES can provide highly detailed depictions of turbine
wakes, however its computational cost remains prohibitive to its use for the computation
of multi-turbine arrays. Other possibilities include potential codes, which can provide both
wake and performance results, but require additional viscous corrections in order to operate
in many conditions, as shown by Salvatore [13]. The Vortex Particle Method (VPM) used
in the scope of this work performs well in terms of accurate depiction of turbine wakes, as
has been shown by comparison with flume tank results [14]. However while the singularity
method included within this framework could inform a detailed computation of localised
efforts, it has shown to require additional developments to be fully satisfactory.

In the previous work of Mycek [8] and Carlier [9], an infinitely thin representation
was used for the turbine blades. This infinitely thin representation of the blade is rather
uncommon in the Lagrangian community where most prefer a full three dimensional re-
presentation of the blade [13,15–17], often coupling source and dipole distributions. These
infinitely thin blades have allowed for very interesting results in terms of wake computa-
tions, together with the use of the Vortex Blob representation giving the opportunity to
study very interesting features in terms of diffusion and turbulence modelling. However,
from the earlier works of Pinon et al. [18] on, some discrepancies were identified regar-
ding the evaluation of force and hence, the power and thrust coefficients of the turbine.
The previous attempts in the PhD of Clément Carlier [9] focusing on refining this already
existing thin blade representation did not solve the problem of performance evaluation.
Furthermore, even if a solution could be found to overcome this issue, for the time being
and to the best of our knowledge, the modelling of stall is not possible with such a re-
presentation. Therefore, in order to give this simulation code a chance to compute the
power and thrust coefficients more accurately than is presently the case, and considering
the possibility of the treatment of stall in a near future, the choice was made to move on
to a full three-dimensional representation of the blades using an adapted panel method
combining source and dipole distributions.

The first part of this manuscript will cover the basic methods used in the pre-existing
software as well as those considered for this new adaptation. Chapter 1 will explain the
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Introduction

functioning of the "Dorothy" simulation code and the Vortex Particle Method on which it is
based. Chapter 2 will then present the first key milestones towards a full three dimensional
representation of turbine blades within this Lagrangian Vortex Blob framework.

Once it can be ensured that individual turbines are correctly accounted for, the next
step consists in the simulation of tidal turbine arrays. With the increase of pre-commercial
tidal farms (EnFAIT project, Meygen , etc.), it is becoming urgent to have tools to mo-
del such configurations with an accurate account of wake-turbine interactions. Karsten et
al. [19] recently simulated hundreds of tidal turbines in the Bay of Fundy, Canada, with
a linear momentum actuator disc theory in a regional code. Such studies were interesting
for global resource assessment, and also possible global impact, but the methodology and
discretisation used were not accurate enough to study turbine interactions. Similar conclu-
sions could be drawn for the work of Divett et al. [20] using the Gerris code, even if the
size of the farm was smaller (about 15 turbines) and using an adaptive mesh refinement.
One of the first attempts very relevant for these types of pre-commercial farms was the
study of Churchfield et al. [21], who computed 3D configurations of layouts with up to 5
turbines and using an LES code. However, the mesh was quite large (with up to 11 × 106

cells approximately) and, unfortunately at the time, the results were not compared to
experimental data. Interactions between two aligned turbines to compare with the expe-
rimental results of Mycek et al. [22] were already attempted by the same research group
using the Lagrangian Vortex framework (Mycek et al. [8]). These preliminary results were
really promising, even though a better account of the blade was already invoked. This
motivated us to enhance the software [18] so that the computations could be improved :
larger array, finer discretisation, account of ambient turbulence, etc.

This last topic of ambient turbulence assessment in tidal energetic sites is of growing
importance. Following the pioneering works of Osalusi et al. [23, 24] measuring ambient
turbulence characteristics in the Fall of Warness at EMEC in Scotland, several research
teams have carried on such investigations with increasing precision. Notable works include
those of Thomson et al. [25] in the Puget Sound in western Canada, Milne et al. [26] in
the Sound of Islay in the UK or even McCaffrey et al. [27] reanalysing some of Thomson et
al.’s results with increased insights into the physics. These works paved the way for more
recent studies such as [28–30]. Very recently, and very interestingly for a part of this PhD
work pertaining to the Alderney Race, the results originating mainly from two French
research programs (THYMOTE and HYD2M) were published, most of them in a special
issue of the Philosophical Transaction of the Royal Society A [31–38]. All these works
will be extremely valuable for the upcoming computations applied to farm configurations
in the Alderney Race, and especially for the configuration which will be treated in the
present work.

However simulating ambient turbulence can be a significant challenge. Most of the
numerical codes being based on the Eulerian approach, the majority of the attempts were
in this category. Therefore in most cases, an initialisation of the inlet boundary condition
is necessary using a synthetic approach, being either the Synthetic Eddy Method (SEM)
of Jarrin et al. [39], the Mann algorithm, or even predefined toolboxes such as TurbSim
for instance. When using this technique, it is very complicated to maintain the ambient
turbulence level over the entire computational domain, as was already largely highlighted
for instance in the work of Jarrin et al.. Some research teams are trying to mitigate this
phenomenon by either increasing the order of the numerical scheme and/or reducing the
size of the mesh cells. Very interesting works in this respect were performed by Bernard et
al. [40] in the wind energy sector, Ahmed et al. [6] in the tidal energy sector or even Mer-
cier et al. [30, 41] also in the tidal energy sector using Lattice Boltzmann Method for the
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last one. However the Lagrangian approach considered here is a very different formalism
requiring an entirely different treatment. Chatelain et al. [42] have already performed com-
putations with ambient turbulence in their Vortex-in-cell formalism. Bossy et al. [43] also
applied a similar stochastic approach for computing interaction of wind turbines. Within
this context, an adaptation of the SEM based on the initial works of Jarrin et al. [39] was
integrated into the present Lagrangian Vortex software [44]. One of the major advantages
of this approach is that the ambient turbulence level and characteristics are fully preser-
ved throughout the entire computational domain, with no numerical damping whatsoever.
This recently implemented ambient numerical approach combined with the accurate and
fast numerical treatment of turbine-turbine interactions [45] make the Dorothy code a
good candidate for computations of wake-turbine interactions in a farm.

This will be demonstrated in the second part of this manuscript, focusing on the addi-
tion of the account for ambient turbulence within the Dorothy simulation code. Chapter 3
will elaborate on the initial integration presented in the PhD work of Clément Carlier [9],
detailing the formalism adapted from the work of Jarrin et al. [39] along with its thorough
validation and the study of its impact on physical characteristics of the flow. Chapter 4
will show a similar study of an alternative implementation, based on a Diverge Free revi-
sion of Jarrin’s initial SEM, namely the DFSEM of Poletto et al. [46], further improving
on the physics of the method. Chapter 5 will demonstrate the effectiveness of the use of
the present VPM software together with the initially integrated SEM for the simulation
of turbine wakes and wake interactions, using the characteristics of a real considered test
configuration within the Alderney Race.
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Numerical methods for tidal
turbine simulation
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Chapter 1

Vortex Particle Method and
DOROTHY simulation code

1.1 Introduction

Particle methods were among the first techniques to ever be used for the numerical
simulation of fluids, starting in the 1930s with the pioneering calculations by hand of the
evolution of a vortex sheet by Rosenhead [47] and continuing at the advent of Computa-
tional Fluid Dynamics in the 1970s with the works of Chorin [48] and Leonard [49]. The
Vortex Particle Method originating with works such as those of Rehbach [50] describes
the evolution of vortical flows. This allows for the restriction of computations to the sole
areas where vorticity is present, easily adaptable to any configuration or combination of
lifting bodies and obstacles to the flow.

These obstacles are accounted for using a singularity method, also known as boundary
element or boundary integral method. Hess [51] was among the first to use this type of
method for the computation of potential flows. Widely popularized as of the 1970s, a
history of these methods and their origins can be found in Cheng and Cheng [52]. A later
book by Bousquet [53] describes the thorough mathematical derivation of the singularity
methods used in this current work.

Several developments have been undertaken at the LOMC in Le Havre for the past
few decades, based on the Vortex Particle Method applied to Navier-Stokes’ equations for
an incompressible fluid, and later on combined with a singularity method for the account
of obstacle surfaces. They have resulted in the simulation of vortex rings [54], marine
propellers and wind turbines [55], boat sails [56, 57], transversal jets [58, 59], and now
finally three-bladed horizontal axis tidal turbines [8, 18]. This latest iteration has lead to
a collaboration with IFREMER, resulting in the creation of a dedicated simulation code
named Dorothy.

1.2 Vortex Particle Method

This Section will present an overview of both the Vortex Particle and singularity me-
thods as well as their numerical implementations, as used in the simulation code Dorothy.
Many of these elements have already been described in the theses of Paul Mycek [8] and
Clément Carlier [9], of which this work is the continuation. Chapter 2 will provide more
details on the derivation of the singularity method specifically, along with an alternative
to its current approach.
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Chapter 1. Vortex Particle Method and DOROTHY simulation code

1.2.1 Navier-Stokes equations and velocity decomposition
Navier-Stokes Equations

The Navier-Stokes equations describe the velocity and pressure fields (u, p) of an in-
compressible unsteady flow :





∇ · u = 0
∂u

∂t
+ (u · ∇)u + 1

ρ
∇p = νΔu

(1.1)

(1.2)

with ρ the fluid density and ν the cinematic viscosity.
Applying the rotational operator ∇× to the second equation leads to an alternative

equivalent formulation in terms of velocity u and vorticity ω = ∇× u :




∇ · u = 0
Dω

Dt
= (ω · ∇)u + νΔω

(1.3)

(1.4)

where the material derivative Dω
Dt denotes :

Dω

Dt
= ∂ω

∂t
+ (u · ∇)ω . (1.5)

Velocity decomposition

Helmotlz’s theorem states that any sufficiently smooth vector field u in a three-
dimensional space can be written as the sum of an irrotational (curl-free) vector field
and a solenoidal (divergence-free) vector field. If u is differentiable then there exist a
scalar potential ϕ and vector potential ψ such that :

u = ∇ϕ + ∇× ψ . (1.6)

These potentials satisfy the relations :

∇2 ϕ = θ , (1.7)

where θ = ∇· u is the expansion of the velocity field u (with θ = 0 for the case of an
incompressible flow as prescribed by Equation (1.3)), and

∇2 ψ = −ω . (1.8)

For the sake of convenience, we can isolate an additional part of the velocity corres-
ponding to the upstream incoming velocity, considered for the time being to be a fixed
uniform constant value u∞. Thus in the current chapter we consider u the entirety of the
velocity field to be written as :

u = uϕ + uψ + u∞ , (1.9)

with uϕ = ∇ϕ the potential component of the velocity field, uψ = ∇× ψ its rotational
component, and u∞ the constant value of the irrotational upstream velocity.

The treatment of this decomposition will be covered once more in the following chapter,
where a mathematical reasoning can lead to an interpretation of the potential component
uϕ slightly different from the one presented hereafter. However these interpretations are
not incompatible, as the method presented here and currently used for all turbine simu-
lations can be considered as a particular case of the more general framework derived in
Section 2.2.
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Chapter 1. Vortex Particle Method and DOROTHY simulation code

1.2.2 Rotational velocity component
Formulation

The rotational component uψ of the velocity is derived from the vector potential ψ.
As stated in Equation (1.8), we have :

∇2 ψ = −ω . (1.10)

With the assumption that ω vanishes at infinity with order r−3, adding the condition that
ψ goes to zero at infinity, the solution to Equation (1.10) is unique and given by :

ψ(x) = −
�

y∈R3

1
4π

1
|y − x| ∇y× u(y)dy

= −
�

y∈R3
G(x, y)ω(y)dy ,

(1.11)

with G the Green function :
G(x, y) = 1

4π

1
|y − x| . (1.12)

The rotational velocity component uψ is then obtained by taking the rotational of the
potential ψ :

uψ(x) = 1
4π

�

y∈R3
∇x

� 1
|y − x|

�
× ω(y)dy

= 1
4π

�

y∈R3

y − x

|y − x|3 × ω(y)dy .

(1.13)

Noting K the Biot and Savart kernel :

K(x, y) = 1
4π

y − x

|y − x|3 , (1.14)

we have finally :
uψ(x) =

�

y∈R3
K(x, y) × ω(y)dy . (1.15)

Regularisation

The Biot and Savart kernel K has a singular behavior when r = y − x tends to
zero. This singularity must be regularised for the sake of numerical computations. This
is accomplished by introducing a desingularised Biot and Savart kernel K � replacing the
kernel K defined in Equation (1.14), such that :

lim
�→0

K� = K , (1.16)

where � is a regularisation parameter to be specified as a parameter of the computations,
depending on the chosen spacial discretisation.

Many possible expressions exist for regularisation functions and associated kernels [60].
In the present computations, the formulation chosen is that of Moore-Rosenhead :

K�(x, y) = − 1
4π

y − x

(|y − x|2 + �2)3/2 . (1.17)
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Paul Mycek’s thesis [8] provides more detailed information on the choice and use of regu-
larisation kernels in the simulation code Dorothy, as formulated for instance in the works
of Beale and Majda [61].

From this point on, the rotational velocity component uψ is reconsidered accordingly :

uψ(x) �
�

y∈R3
K�(x, y) × ω(y)dy . (1.18)

Discretisation

With the continuous expression for the rotational velocity established by Equation (1.18),
it must now be transformed into a discrete formulation for the sake of numerical compu-
tations. To this end, the fluid domain is considered as a collection of individual subsets
(Pi)N

i=1 ⊂ R3, viewed as the supports of N fluid particles i. The rotational velocity uψ

given by Equation (1.18) can be rewritten :

uψ(x) �
N�

i=1

��

y∈Pi

K�(x, y) × ω(y)dy

�
. (1.19)

On the support Pi of each fluid particle i, the vorticity ω is approximated by a constant
Ωi :

Ωi =
�

y∈Pi

ω(y)dy . (1.20)

Each fluid particle i is also assigned a central point :

xi =

�

y∈Pi

y dy
�

y∈Pi

dy
, (1.21)

and a volume :
Vi =

�

y∈Pi

dy . (1.22)

Finally, the discrete approximation of the rotational velocity uψ is given by :

uψ(x) �
N�

i=1
K�(x, xi) × Ωi . (1.23)

This choice of representation of the fluid domain as an assembly of evolving and in-
teracting particles is the key element of the Vortex Particle Method. This choice presents
some notable advantages over its Eulerian counterparts, such as the ease and adaptability
of the shape of the wake when interacting either with itself or with other turbines.

1.2.3 Potential velocity component
Formulation

As stated previously, the potential velocity component uϕ originating from the Helm-
holtz decomposition (1.9) derives from a velocity potential ϕ solution of the Poisson equa-
tion :

∇2 ϕ = 0 . (1.24)

10
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Figure 1.1: Schematic representation of the passage from the "true" thick geometry of
a turbine blade to the thin profile mean camber surface used in the simulations carried out
with the Dorothy simulation code.

One possible solution to this equation can be obtained by applying a singularity me-
thod [53] to the boundary surfaces of the objects placed in the flow, in this case tidal
turbines. In the existing simulation code Dorothy, the tidal turbine and more specifically
each turbine blade is approximated by its singular zero-thickness mean camber surface, as
represented in Figure 1.1. This approximation allows for a simplification of the process of
vorticity shedding into the turbine wake at the trailing edges of the mesh, where there is
only one mesh face to consider per vorticity emission line, as will be seen later on.

Let SB denote the grouping of all obstacle body surfaces in the flow. One possible
solution to the Poisson Equation (1.24) is given by the velocity potential ϕ induced by a
normal dipole distribution of intensity γ = µn, where n is the normal to the surface SB

and µ a scalar distribution on the surface SB :

ϕ(x) =
�

y∈SB

K(x, y) · (µ(y)n(y)) dy , (1.25)

with K the Biot and Savart kernel defined in Equation (1.14). Within this framework,
the distribution µ on SB is treated as an unknown quantity. However it can be shown
that the value of µ in this Equation corresponds to the potential jump over its surface of
discontinuity SB : µ = Δϕ (see for instance Appendix H of Paul Mycek’s thesis [8]).

From this potential is derived the potential velocity component :

uϕ(x) = ∇x

��

y∈SB

K(x, y) · (µ(y)n(y)) dy

�

=
�

y∈SB

µ(y) ∇x [K(x, y) · n(y)] dy .
(1.26)

Boundary condition

The unknown scalar dipole intensity µ is calibrated so as to ensure that the entire fluid
velocity u verifies a slip condition along the surface SB. Noting uB the relative velocity
at each point of the surface SB, this slip condition can be written as :

∀x ∈ SB, u(x) · n(x) = uB(x) · n(x) . (1.27)

When replacing the velocity field u by its Helmholtz decomposition (1.9) we obtain :
�
uϕ(x) + uψ(x) + u∞

�
· n(x) = uB(x) · n(x) , (1.28)

i.e.
uϕ(x) · n(x) =

�
−uψ(x) − u∞ + uB(x)

�
· n(x) . (1.29)

For the case of a classic horizontal axis tidal turbine, the relative velocity uB felt on
the surface SB is induced by the rotation of the turbine :

∀x ∈ SB, uB(x) = φ × OX , (1.30)

with O the center of rotation of the turbine, X the point of vector coordinates x, and the
vector φ denoting the rotational speed of the turbine.

11
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Figure 1.2: Example of discretisation of a three-bladed horizontal axis tidal turbine into
a zero-thickness quadrangular surface mesh.

Discretisation

With the continuous expression for the rotational velocity established by Equation (1.26),
it must also be transformed into a discrete formulation for the sake of numerical compu-
tations. To this end, the turbine body surface SB is separated into mesh faces : SB =
∪Nf

j=1Sj . Figure 1.2 shows an example of this discretisation for a single tidal turbine. The
potential velocity uϕ of Equation (1.26) can then be written as :

uϕ(x) =
Nf�

j=1

��

y∈Sj

µ(y) ∇x [K(x, y) · n(y)] dy

�
. (1.31)

Each mesh face Sj is assigned a central point xj . Within the mesh face j, the normal
n is assumed to be a constant value nj = n(xj), as is the dipole intensity µj . With these
approximations, we now have :

uϕ(x) =
Nf�

j=1

�
µj

�

y∈Sj

∇x [K(x, y) · nj ] dy

�
. (1.32)

Through a series of mathematical and geometrical manipulations, the semi-discrete above
expression is transformed into a fully discrete formulation, assuming an entirely quadran-
gular mesh :

uϕ(x) = 1
4π

Nf�

j=1

�
µj

4�

k=1
αk

j (x)
�

. (1.33)

Using the notations shown in Figure 1.3 : X is the point of coordinates x where the
velocity is being evaluated, Cj the central point of coordinates xj of the mesh face Sj ,
(P k

j )4
k=1 its four corner points, and the vectors rk

j = XP k
j ; the vector coefficient αk

j can
be written as :

αk
j (x) =

�
|rk

j | + |rk+1
j |

� �
1 −

rk
j · rk+1

j

|rk
j ||rk+1

j |

�
rk

j × rk+1
j

|rk
j × rk+1

j |2
, (1.34)

where k + 1 is defined modulo 4. The passage from the semi-discrete formulation of Equa-
tion (1.32) to the fully discrete formulation of Equation (1.33) is detailed in pages 305-338
of Bousquet’s book [53].
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Sj

Cj

P 4
j

X

P 3
j

P 1
jP 2

j

r4
j

r1
j

Figure 1.3: Schematic representation of a mesh face Sj showing the notations used to
compute its interaction with a distant point X.

Dipole intensities

The last remaining step for the definition of the potential velocity component uϕ is
the calculation of the dipole intensities µj on each mesh face j. To this end, the slip
condition (1.29) is applied to each mesh face center point xj :

∀j ∈ �1, Nf �, uϕ(xj) · nj =
�
−uψ(xj) − u∞ + uB(xj)

�
· nj . (1.35)

This condition can be written in the form of a linear system of size Nf × Nf and
unknown µ = (µj)Nf

j=1 :
Aµ = b . (1.36)

The coefficients Aij of the influence matrix A are given by :

Aij = 1
4π

4�

k=1
αk

j (xi) · ni , (1.37)

and the coefficients bi of the vector b :

bi =
�
uB(xi) − uψ(xi) − u∞

�
· ni . (1.38)

All of these quantities are known or can be computed. Thus, the resolution of this linear
system will provide dipole intensities µj to be entered into the discrete formulation (1.33)
for the potential velocity component uϕ. This completes the definition of the potential
component uϕ and ensures that the fluid velocity will respect the slip condition along
obstacle surfaces as formulated in Equation (1.27).

Mycek et al. [45] provide more details on the numerical treatment of the resolution of
this linear system in the Dorothy simulation code.

1.2.4 Particle emission
The potential velocity component representing the influence of the turbine bodies and

the rotational velocity component representing the influence of their vortical wake are
connected through the emission of fluid particles at the trailing edges of the lifting body
meshes. This release of vortices is caused by the discontinuity of the velocity field between
the innner and outer sides (intrados and extrados) of the surfaces representing the obstacles
to the flow.
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S e : (ϕe, pe)

S i : (ϕi, pi)

Extrados

Intrados

Figure 1.4: Schematic representation of a thin blade profile showing both sides of its
trailing edge mesh face.

Bernoulli relation

This discontinuity is characterized using Bernoulli’s relation, under the assumption
that the fluid velocity is predominantly potential in the vicinity of the lifting body surface
meshes. Bernoulli’s relation, for an unsteady potential irrotational flow uϕ can be written
as formulated by Batchelor [62] :

∂ϕ

∂t
+ 1

2(uϕ)2 + p

ρ
+ gz = f(t) , (1.39)

where the function f(t) depends only on time and not on position in the fluid, z denotes
the altitude and g the gravitational acceleration.

When considering this relation on the extrados and intrados sides S e and S i of the
same emission face S along the blade trailing edge as shown in Figure 1.4 and writing
the difference between the two expressions at any time t, we obtain :

∂

∂t
(ϕe − ϕi) + 1

2
�
(uϕe)2 − (uϕi)2

�
+ pe − pi

ρ
+ g(ze − zi) = 0 . (1.40)

Along the trailing edge, pe = pi and ze = zi. Thus :

∂

∂t
(ϕe −ϕi)+ 1

2
�
(uϕe)2 − (uϕi)2

�
= ∂

∂t
(ϕe −ϕi)+ uϕe + uϕi

2 ·
�
uϕe − uϕi

�
= 0 . (1.41)

Let uϕ
m = uϕe + uϕi

2 denote the average potential flow at the trailing edge. Recalling that
uϕ = ∇ϕ and µ = Δϕ, i.e. at the trailing edge µ = ϕe − ϕi, the previous expression can
be translated as :

∂µ

∂t
+ uϕ

m · ∇µ = 0 , (1.42)

which indicates that the distribution of normal dipoles µ is introduced into the flow with
the initial velocity uϕ

m from the trailing edges.

Configuration

The vorticity induced by the normal dipole distribution is first assumed to be shed in
the form of "imaginary" added mesh faces placed in the continuation of each trailing edge
mesh face. By applying the Kutta condition to these trailing edges, we can establish that
the contribution of the new imaginary wake faces is that of a normal dipole with the same
intensity µk as its corresponding emission face. This reasoning is further detailed in Paul
Mycek’s thesis [8]. These contributions will later on be converted in the forms of vorticity
carrying fluid particles, as formulated in Paragraph 1.2.2.
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n

s
t

dh

dl
µk

µk+1

µk−1

Xk X �
k

Mk

r

l

Figure 1.5: Schematic representation of the emission of an imaginary wake mesh face
S �

k behind the trailing edge mesh face Sk.

For the time being, let us consider a mesh face Sk situated at the trailing edge of
the solid body surface mesh, and S �

k the associated imaginary face placed in its wake,
as shown in Figure 1.5. The points Xk and X �

k of vector coordinates xk and x�
k denote

the centers of Sk and S �
k respectively. Three vectors (s, n, t) form the basis of a frame of

reference linked to the imaginary face S �
k.

The newly emitted imaginary face is considered to be rectangular in shape, driven
by the vectors dl corresponding to the emission segment and dh based on the emission
velocity. The emission velocity uϕ

m defined in the previous paragraph is approximated to :

uϕ
m � u(m) , (1.43)

where the vector m corresponds to the middle point Mk of the emission line, from which
we obtain :

dh = uϕ
mdt , (1.44)

with dt the timestep of the simulation. At the first iteration of the simulation, when the
dipole intensities µ and thus the potential velocity uϕ have yet to be established, the
driving vector dh is assumed instead to prolong the sides r and l of the corresponding
emission face :

dh = r + l

2 . (1.45)

The unit vectors (s, n, t) are deduced from these directions : t = dl

dl
, s = dh

dh
, and

n = t × s.

From mesh faces to particles

The contribution of the mesh faces thus established could be computed as the velocity
induced by a normal dipole distribution of intensities µ�

k on each imaginary face S �
k,

and the turbine wake accounted for as an additional mesh. However for the sake of this
Lagrangian formulation, the contributions of the normal dipoles µ�

k on the faces S �
k must

be converted into equivalent fluid particles P �
k.

To this end, we use the equivalence detailed in the appendices to Paul Mycek’s the-
sis [63]. This reasoning states that the potential velocity uφ induced by a normal dipole
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distribution on any surface S can be equated to the contribution of two distinct vor-
tices [64]. The first vortex sheet of intensity Γ = n × ∇µ is attached to the surface S
itself, while a second vortex line of intensity µdl is concentrated on its contour C . The-
refore, the vortex particle P �

k equivalent to the imaginary mesh face S �
k is attributed a

vortical weight Ω�
k corresponding to the intensity Γ�

k = n × ∇µ integrated on the surface
of the imaginary face S �

k :

Ω�
k =

�

y∈S �
k

n(y) × (∇µ(y)) dy (1.46)

�
�

y∈S �
k

n�
k × (∇µ(xk)) dy (1.47)

= dh dl n�
k × ∇µk , (1.48)

where n�
k = n is the normal to the imaginary face S �

k and ∇µ(xk) = ∇µk is the spacial
gradient of the dipole intensity µ evaluated at the center Xk of the emission face Sk.

The vector intensity Γ�
k = n × ∇µk can be projected onto the local frame of reference

(s, n, t) :

Γ�
k = n × ∇µk

= n × (∇sµks + ∇tµkt + ∇nµkn)
� ∇tµks − ∇sµkt ,

(1.49)

noting the directional direvatives ∇sµk = ∇µk · s etc., and supposing for the last line the
basis (s, n, t) to be close enough to orthonormal. This shows that the vortical intensity
Γ�

k has two components : one tangential (t) and one perpendicular (s) to the trailing edge
in the direction of the emission plane.

The tangential component Γ�
k · t is determined using Equation (1.42) deduced from

Bernoulli’s relation. Given the definition of the direction s = uϕ
m

|uϕ
m| (via Equation (1.45)),

this relation can be translated as :
∂µk

∂t
+ |uϕ

m|s · ∇µk = 0 , (1.50)

i.e. :
∂µk

∂t
+ |uϕ

m|∇sµk = 0 . (1.51)

The tangential component is deduced from Equations (1.49) and (1.51) :

Γ�
k · t = −∇sµk

= 1
|uϕ

m|
∂µk

∂t
.

(1.52)

The time derivative ∂µk

∂t
is estimated using the explicit Euler method :

Γ�
k · t � µk(t) − µk(t − dt)

|uϕ
m|dt

. (1.53)

The perpendicular component Γ�
k · s is approximated by the finite difference scheme :

Γ�
k · s = ∇tµk

� µk+1 − µk−1
2dl

,
(1.54)
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with µk+1 and µk−1 the dipole intensities associated to the neighboring faces Sk+1 and
Sk−1 as shown in Figure 1.5. At the extremities of the turbine blade meshes, this scheme
must be adapted to account for the fact that one of the neighboring faces Sk+1 or Sk−1
does not exist. What’s more, a wide range of investigations beginning with those of Man-
sour [65] have shown that the intensity of the tip vortices released at the tip of an airfoil
or turbine blade exceed by far those generated along its span. The tip vortical intensities
are adjusted accordingly, by considering that if Sk−1 does not exist :

Γ�
k · s = µk + µk+1

2dl
, (1.55)

and if Sk+1 does not exist :

Γ�
k · s = −µk + µk−1

2dl
. (1.56)

Characteristics of the new particles

From the previous paragraphs, we can summarize the characteristics of the new fluid
particles P �

k emitted behind each trailing edge mesh face Sk.
— Central point, using the notations shown in Figure 1.5 :

x�
k = m + |uϕ

m|dt

2 s . (1.57)

— Vortical weight, combining the results of Equations (1.48), (1.53) and (1.54) :

Ω�
k = dh dl

�
µk(t) − µk(t − dt)

|uϕ
m|dt

t + µk+1 − µk−1
2dl

s

�

= [µk(t) − µk(t − dt)] dl t + µk+1 − µk−1
2 |uϕ

m|dt s ,

(1.58)

unless Sk is a tip emission face :

Ω�
k =





[µk(t) − µk(t − dt)] dl t + µk + µk+1
2 |uϕ

m|dt s if Sk−1 does not exist,

[µk(t) − µk(t − dt)] dl t − µk + µk−1
2 |uϕ

m|dt s if Sk+1 does not exist.
(1.59)

— Particle volume :

V �
k � dh dl �

� |uϕ
m|dt dl � ,

(1.60)

with � the regularisation parameter used in the computation of the desingularised
Biot and Savart kernel of Equation (1.17). This regularisation parameter is used
to assign a volume to the new particle by multiplying the area of its equivalent
imaginary face S �

k by an elemental "near-zero" thickness.

Once the new particles (P �
k) have been initialized with these properties, they are

integrated into the set of fluid particles forming the wake of the turbine. As such, they
will contribute to the rotational velocity component described in Paragraph 1.2.2, and be
advected and evolve as will be seen later on.
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Iterative process

However, the particle emission process is not as straightforward as surmising the new
particles from the dipole distribution of the previous iteration and creating them immedia-
tely. The newly emitted particles will affect the residual velocity on the obstacle surface,
as part of the set of particles used for the computation of the rotational velocity (1.23).
This rotational velocity enters into the calculation of the right hand side vector b of Equa-
tion (1.38), thus affecting the linear system (1.36) from which the dipole intensities µ are
deduced. These same dipole intensities are essential to the estimation of the new particle
vortical weights as shown in Equations (1.58) and (1.59). This mutual dependency must
be solved by an iterative process.

The iterative process for the emission of fluid particles is named "sub-iterations" as
it must be realised at each time step of the simulation. The steps involved in the sub-
iterations are summarised in the diagram of Figure 1.6. The three initialisation steps
indicate the computation of terms which will not be modified in the iterative process. For
instance, the emission velocity for a new particle P �

k :

uϕ
mk = u∞ − uB(mk) + uψ(mk) + uϕ(mk) (1.61)

is initialised by adjusting the constant upstream velocity u∞ with the body velocity
uB(mk), and adding the rotational velocity uψ(mk) generated by the particles already
present in the wake (i. e. all fluid particles except for those currently being emitted).
None of these components will be modified by the iterative process. When updating the
emission velocity in the course of the sub-iterations, the variable components can then
be added in : namely the potential velocity uϕ(mk) generated by the dipole distribution
and the missing part of the rotational velocity uψ(mk) generated particles currently being
emitted. The same principle is applied to the characteristics of the new particles and the
right hand side vector b, for which a constant part can also be previously computed.

Moreover instead of solving the linear system Aµ = b (see Equation (1.36)), we solve
instead for a correction :

Aµcorr
(p) = bcorr

(p) . (1.62)

This system is updated at each sub-iteration p of the emission process. In order to ensure
the convergence of this process, a convergence criterium is computed at each sub-iteration
p, evaluating the gain from the previous solution µ(p−1) to the current solution µ(p). The
sub-iteration process is halted once this convergence criterium reaches a target value ξ
specified is a parameter of the simulation :

||µ(p) − µ(p−1)||∞ < ξ , (1.63)

signifying that the convergence is considered to be satisfactory.

1.3 Numerical treatment of the Navier-Stokes equations
This paragraph will focus on the evaluation of the particle derivative Dω

Dt as defined by
Equation (1.5), essential to the resolution of the Navier-Stokes Equations (1.4). This term
describes the evolution of the vortical weights Ωi of the fluid particles used in the Vortex
method. In order to simplify notations, we will consider in this section a vortical flow free
of any obstacle, meaning that the velocity u can be reduced to the sole components :

u = uψ + u∞ . (1.64)
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Initialise emitted particles

Initialise emission velocity

Initialise right hand side vector b

Update right hand side vector b

Solve linear system

Update emission velocity

Update emitted particles

Initialisation

Sub-iterations

[ Convergence criterium satisfied ]
[ Else ]

Figure 1.6: Flowchart representing the steps of the sub-iteration process for the emission
of fluid particles at the trailing edges of the obstacle surface meshes.
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As a reminder, the Navier-Stokes Equations in their velocity-vorticity formulation (1.4)
yield the expression :

Dω

Dt
= (ω · ∇)u� �� �

Stretching term S

+ νΔω� �� �
Diffusion term L

, (1.65)

which can be broken into a stretching term S and a diffusion term L.

1.3.1 Treatment of the stretching term
The Stretching term S of the previous decomposition of Equation (1.65) can be written

as :

S = (ω · ∇) u

= ω · (∇ ⊗ u)

= ω · J
T

u ,

(1.66)

where J
T

u is the transpose of the Jacobian matrix Ju calculated from the velocity u :
�
Ju

�
ij

=
�

∂uj

∂xi

�
. (1.67)

Therefore each component i = 1, 2, 3 of the stretching term S can be expressed as the
following :

Si =
3�

j=1
ωj

∂ui

∂xj
. (1.68)

This stretching term S can also be expressed using two other equivalent formulations to
the expression of Equation (1.68), leading to different discretised expressions (see [60, 63,
66,67]).

Within this framework, the flow is assumed to have no obstacles and the upstream
velocity is a uniform value :

Ju = Juψ . (1.69)

The stretching term S can now be rewritten using the continuous expression for the
rotational velocity uψ of Equation (1.15) :

S(x) =
3�

j=1
ωj(x)∂uψ(x)

∂xj

= ωj(x) ∂

∂xj

��

y∈R3
K(x, y) × ω(y)dy

�

=
�

y∈R3




3�

j=1

�
ωj(x) ∂

∂xj
K(x, y)

�
× ω(y)dy .

(1.70)

This expression has a singularity issue around x = 0 due to the Biot and Savart
kerlenl K. Therefore it is once again necessary to use a desingularised version K � instead,
as prescribed previously in Section 1.2.2. We obtain the desingularised expression :

S�(x) =
�

y∈R3




3�

j=1

�
ωj(x) ∂

∂xj
K�(x, y)

�
× ω(y)dy . (1.71)
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The partial derivatives of the Moore-Rosenhead version of the desingularised kernel K �

are derived in Mycek’s thesis [8] :

S�(x) =
�

y∈R3
χ�(x, y) [(y − x) · ω(y)] [(y − x) × ω(y)]

+ q�(x, y

|y − x|3 (ω(y) × ω(x))dy ,

(1.72)

with χ�(x) and q�(x)/|x|3 defined as :




χ�(x) = 3
4π

1
(|x|2 + �2)5/2

q�(x)/|x|3 = 1
4π

1
(|x|2 + �2)3/2 ,

(1.73a)

(1.73b)

The stretching field S� acting on all N fulid particles Pi of center points xi, vortical
weights Ωi, and volumes Vi, can be discretized as :

�

Pi

S�(x)dx � S�,iVi , (1.74)

with :

S�,iVi =
N�

j=1
χ�(xj , xi) [(xi − xj) · Ωi] [(xi − xj) × Ωj ]

+ q�(xj , xi)
|xi − xj |3 (Ωj × Ωi) .

(1.75)

1.3.2 Treatment of diffusion
The Diffusion term L = νΔω from Equation (1.65) can also be discretized on each of

the N fluid particles Pi of central point xi, vortical weight Ωi and volume Vi :
�

Pi

L(x)dx � ν[Δω]xiVi

= LiVi .

(1.76)

When considering a viscous fluid with a constant viscosity ν, the molecular diffusion
term LiVi can be treated using the Particle Strength Exchange method initially developed
by Degond and Mas-Gallic [68] and Choquin and Huberson [69]. This method provides
the approximation :

LiVi = ν[Δω]x=xiVi � ν
N�

j=1
[ΩjVi − ΩiVj ] ηlap

� (xi − xj) , (1.77)

where ηlap
� is a regularised kernel built in order to approximate the three dimensional

Laplacian operator. In the present study, ηlap
� is defined as :

ηlap
� (x) = 1

�3 ηlap
�

x

�

�
, (1.78)
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with ηlap a second order Gaussian kernel :

ηlap(x) = 4
�2π3/2 exp

�
−|x|2

�
. (1.79)

When developing a method to account for ambient turbulence in the surrounding flow,
it becomes all the more important to account for turbulent diffusion among the Vortex
particles. This is accomplished via the use of a Large Eddy Simulation model, in order
to represent the influence of the non-resolved length scales. LES models are based on the
definition of an eddy viscosity νT , which is usually not constant. The diffusion term LiVi

of Equation (1.77) becomes :

LiVi = [(ν + νT ) Δω + (∇νT ) ∧ (Δu)]x=xi
Vi. (1.80)

Several expressions exist for the eddy viscosity νT , among which can be cited those of
Smagorinsky (as described by Sagaut [70]), Mansfield et al. [71, 72], and Mansour [73].
Sagaut [70] has assembled a synthetic analysis of these various formulations. In the present
study, the turbulent eddy viscosity is computed as defined by Mansour [73] :

νT = (CM Δ)2√
2|ω|, (1.81)

where CM is a constant to be fixed (in the present case at CM = 0.2), and Δ is the average
distance between particles. Thus, the turbulent eddy viscosity νT,i of for the ith-particle
can be expressed as :

νT,i = νT (xi) � (CM Δ)2√
2 |Ωi|

Vi
. (1.82)

An alternative numerical approach for diffusion is possible in the Lagrangian Vortex
framework : the Diffusion Velocity Method (DVM), initially proposed by Ogami and Aka-
matsu [74] and recently analysed by Mycek et al. [75]. This last study also offers some
perspective on the three-dimensional treatment of diffusion with LES using a DVM ap-
proach.

1.3.3 Numerical scheme and optimisations
The computations presented here are run using a second order Runge-Kutta time

stepping scheme, although fourth order and simple Euler versions also exist within the
software. A remeshing of the fluid particles onto a cartesian grid is carried out at regular
intervals throughout the simulation in order to preserve inter-particle distance. In order
to speed up the calculation of particle interactions by the Biot and Savart kernel, a Tree-
code algorithm based on the version of Lindsay and Krasny [76] is used. This "divide and
conquer" type algorithm is highly dependant on the strategy used for dividing and grouping
particles, which was until recently purely geometrical. However profilings of the Dorothy
software have shown higher efficiencies when using a K-means clustering [77] approach
instead. Paul Mycek’s thesis [8] provides more detailed descriptions of these numerical
considerations.

One last significant optimization recently adopted within the software lies in the pro-
gressive dissipation of the fluid wake after a set distance. Careful studies have shown for
instance that introducing such a dissipation as of 12.5 diameters downstream of a tur-
bine has no significant impact on the first 10 diameter area of its wake typically used
for comparison with experimental results. Naturally this distance must be extended when
considering multi-turbine configurations requiring wake interactions. Limiting the number
of fluid particles by discarding the ever extending and less physically relevant end of the
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wake in this way allows for substantial gains in simulation time. This process is descri-
bed in the thesis of Clément Carlier [9], although not yet widely used for most of his
simulations.

Between this shortening of the wakes, the adoption of the K-means rather than geo-
metrical clustering for the treecode speed-up algorithm, and various optimizations and
reorganisations of the code carried out in the contexts of hackathons and profiling sessions,
the average simulation runtime of the Dorothy code has been considerably decreased.

1.4 Simulation of tidal turbines

This Section will showcase numerical results obtained for a single turbine in basic
inflow conditions, i.e. without the contribution of ambient turbulence which will be pre-
sented later on. These preliminary results aim to demonstrate and validate the outcome of
the Vortex Particle Method described in this Chapter, by comparison with experimental
flume tank measurements. The experimental results presented hereafter were gathered at
the IFREMER flume tank in Boulogne-sur-Mer, and presented already in various publi-
cations [18,78,79].

1.4.1 Configuration

Scaling parameters

These experiments were carried out using a scaled turbine model, sized by the combi-
nation of Froude scaling with the Tip Speed Ratio (TSR) intended for the full size turbine.
The Tip Speed Ratio is defined as :

TSR = |φ|R
|u∞| , (1.83)

with φ the rotational speed of the turbine, R its radius and u∞ the upstream velocity.
The Froude number is defined as :

Fr∞ = |u∞|√
gH

, (1.84)

with H being the water depth and g = 9.81m.s−2 the gravitational acceleration. Using
the Froude scaling, a 1 : λ applied to the turbine radius R or the water depth H with
respect to full scale imposes a scaling factor of

√
λ applied to the upstream velocity u∞.

Similarly, a scaling of 1 : λ−1/2 applies to the rotational velocity Φx to both comply with
the Froude scaling and TSR. A Reynolds Re∞ can also be defined based on the turbine
radius R such as :

Re∞ = |u∞|R
ν

, (1.85)

with u∞ still being the upstream velocity and ν the kinematic viscosity of water. Re∞
is reduced by a factor of λ

√
λ at the laboratory scale. Due to the size of the test section

2 m × 4 m (cf. Figure 1.7) and in order to avoid too high a blockage ratio, the turbine
radius was fixed at R = 0.35 m. Therefore, at laboratory scale, the tidal turbine is defined
with a ratio of 1 : 25 with respect to the full scale. The different scaling ratios, model and
prototype scales are summarised in the following Table 1.1.
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Grue mobile (6T)

Passerelles mobiles

Nids d'abeille Tapis roulant Pompes
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Longueur : 18m
Largeur : 4m
Profondeur : 2m

Volume : 700m3

Vitesse de l'écoulement :
de 0.1 à 2.2m/s

Figure 1.7: Schematic representation of the IFREMER flume tank located in Boulogne-
sur-Mer, France.
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Figure 1.8: Definition of the different variables characterising a turbine mesh.
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Variables Scale 1 Scale 1 : 25 Ratio Scaling
Radius R 8.75m 0.35m 1 : λ
Water depth H 50m 2m 1 : λ

Upstream velocity u∞ 4m.s−1 0.8m.s−1 1 :
√

λ Fr∞ ≈ 0.18
Rotational velocity Ωx 16tr/min 80tr/min 1 : λ−1/2 TSR ≈ 3.67
Reynolds Re∞ ≈ 3.5 × 107 ≈ 2.8 × 105 1 : λ

√
λ

Table 1.1: Correspondence between the length scales of the 1 : 25 scaled model and the
full scale prototype.

Identifier Nc NBF Nhub
c Nhub

BF Np dh �

05x05 5 5 58 6 488 0.158 0.236
05x07 5 7 58 8 641 0.113 0.169
05x11 5 11 58 12 964 0.072 0.107
05x15 5 15 58 16 1278 0.053 0.079
05x23 5 23 58 24 1914 0.034 0.051

Table 1.2: Description of the different meshes used to compute tidal turbines.

Turbine model

In Lagrangian Vortex computations, tidal turbines are represented by a surface as
depicted in Figures 1.2 and 1.8. The geometry of the meshes used here was based on that
of IFREMER’s exeperimental tidal turbine model [18,22,63,78,80], as was precisely defined
first in [18] and more recently in [80]. Several turbine meshes are presented in Table 1.2
and the meshes used will usually be designated by there number of chord and trailing edge
elements NC × NBF ("BF" for the french "Bord de Fuite"), as shown in Figure 1.8.

The numerical parameters dh and � of Table 1.2 denote respectively the characteris-
tic mesh length, which also corresponds to the characteristic inter-particle spacing, and
the smoothing paramater used to desingularise the Biot & Savart kernel K (see Equa-
tion (1.17)). These two variables dh and � are related with the overlapping paramater
κ > 1, most commonly chosen as 1.5 :

κ = �

dh
= 1.5. (1.86)

The two following paragraphs will deal with wake computations and performance as-
sessment respectively. In order to showcase the starting point and motivations for the
further developments covered in the following Chapters, the results presented here are
those produced by the simulation code at the very start of this work, in the context of a
preliminary internship. For the wake, these preliminary results do not take into account
any ambient turbulence, this aspect being the major focus of the second part of this PhD
work. As for the performance assessment, after a presentation of the existing method, its
drawbacks will be highlighted as an introduction to the following Chapter 2 dedicated to
an alternative approach to account for the full three-dimensional geometry of the turbine
blades.
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Figure 1.9: Simulated wake downstream of a single turbine, with an upstream velocity
of u∞ and rotational speeds corresponding to TSRs of 2.5 and 3.67.

1.4.2 Turbine wake simulation

Apart from the tidal site scaled results shown in the last two Chapters of this manus-
cript, all simulations are habitually run dimensionless. This implies an incoming upstream
velocity of u∞ = (1, 0, 0) compared to the value of u∞ = (0.8, 0, 0) most frequently used
in the experiments, and R = 1 compared to the radius R = 0.35 of the scaled model. Only
the kinematic viscosity ν is adjusted so as to obtain a Reynolds number representative
of the IFREMER flume tank conditions. A more detailed description of the experimental
set-up is presented in Mycek et al. [63, 78] and more recently in Gaurier et al. [80] for
the latest revisions. The values of TSR chosen for the wake maps of Figure 1.9 are those
most commonly tested at IFREMER. Three possible ambient turbulence intensities can
be generated in the flume tank, ranging from I∞ = 1.5% to I∞ = 15%. This ambient
turbulence could not be taken into account in the simulations before the PhD work of
Clément Carlier, at the end of which only the lowest ambient turbulent levels could be
simulated without too much strain on the software capabilities [9]. From the wake velocity
maps shown in Figure 1.9, the velocity deficits are important and obviously too high if
compared with experimental tendencies. These aspects will largely be covered in the se-
cond part of this manuscript, with the continuation of this work on the incorporation of
ambient turbulence generation in this Lagrangian context.
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1.4.3 Performance results
Force computation method

Tidal turbine performances are characterised by a power coefficient CP and a thrust
coefficient CT , defined as :

CP = Mxφx
1
2ρπR2|u∞|3 , (1.87)

CT = Fx
1
2ρπR2|u∞|2 , (1.88)

with Mx being the torque along the x-axis (aligned with the incoming upstream velocity
direction), R = D/2 the turbine radius, φx its rotational speed, ρ the fluid density and Fx

the axial force applied to the whole tidal turbine. Prior to compute these two coefficients,
it is necessary to evaluate the normal force Fn applied to the turbine surfaces. Initially
in the simulation code, following the work from Pinon et al. [18] inspired themselves form
[55], the total normal force Fn applied to a lifting surface S was calculated as :

Fn = ρ

�

y∈S

∂µ(y)
∂t

n(y)dy + ρ

�

y∈S
u(y) × γ(y)dy + 2ρ

�

y∈S
φ × u(y)dy , (1.89)

where γ is the vortex sheet attached to the surface S and the last term 2ρ
�

y∈S φ×u(y)dy
is related to the pseudo-Coriolis force. Numerically speaking, the lifting surface S is
decomposed into Np surface elements Sp as depicted in Figure 1.8. Therefore, the total
normal force Fn applied to the tidal turbine can be computed as the sum of the elementary
normal forces fp acting on each surface elements Sp :

Fn =
Np�

p=1
fp (1.90)

with :

fp = ρ

�

u∈Sp

∂µ(y)
∂t

n(y)dy + ρ

�

y∈Sp

u(y) × γ(y)dy + 2ρ

�

y∈Sp

φ × u(y)dy . (1.91)

Normal forces fp are then approximated by a mid-point quadrature :

fp � ρ

�
∂µ

∂t

�

p
npAp + ρ

3�

k=0
u(Lk

p) × µk
p + 2ρφ × u(xp)Ap , (1.92)

with np the normal vector of any surface element Sp, Ap its area, xp its centre, lkp the
length of each segment vector lk

p and Lk
p their centres. µk

p is vortex attached to each
segment lkp , given by :

µk
p =





Ap

Ap + At,k
p

�
µp − µt,k

p

�
lk
p if lkp has another adjancent surface element S t,k

p

µplk
p otherwise.

(1.93)
The last step to obtain the total normal force Fn of the tidal turbine is to evaluate the

temporal derivative of µ. This is done once again using a simple Euler numerical scheme :
�

∂µ

∂t

�

p
� µp(t) − µp(t − dt)

dt
. (1.94)
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Finally, the total torque MO computed at the centre of rotation O with respect to
the turbine rotational axis is given by :

MO =
Np�

p=1
OCp × fp , (1.95)

with Cp the centre face point of coordinate xp.

Numerical results

An example of this computed power coefficient is presented in Figure 1.10. A fairly
good agreement with the experimental results is obtained for the lower part the TSR curve.
Then from the experimental maximal CP value on, the numerical power curve contirnues
on its upwards trend, which is obviously incorrect. This outcome is surprising, as the
numerical results correlate well with the experimental data for the lowest portion of TSR
values, where the turbine blade should be affected by stall. However the occurrence of
stall is not modelled and cannot be accounted for in this initial approach. Then, from the
maximum CP value at approximately TSR = 3.9 on, the flow is expected to be attached
and adapted over most of the blade span. For higher values of TSR representing the over-
speed region, some blade sections will start to move away from their optimal working point.
At the blade section level, this would mean locally a lower angle of attack which should
be accurately locally modelled but the present numerical approach. This is obviously not
the case here based on the results shown in Figure 1.10. An alternative calculation was
carried out without taking into account for the pseudo-Coriolis force 2ρ

�
y∈S φ×u(y)dy as

included in Equation 1.89. As expected, the large overestimation and eventual divergence
of the CP values for TSR values higher than 3 is no longer visible. This could be considered
as an optimistic and promising tendency, if the power curve was not still so far distant
from the expected result in the over-speed region of TSR.

This issue was already evidenced to some extent in the previous work of Pinon et
al. [18], Mycek [8], and Carlier [9], although no satisfying solution could be found when
still considering an infinitely thin blade. For instance, difficulties were already encountered
for the computation of accurate forces in [44] using a two-dimensional infinitely thin plate,
even though it had been previously established that this method could give accurate results
for a lifting flat plate at low angles of attack.

1.5 Conclusion
Within this context, one of the aims of this PhD work was to move on to a full

three-dimensional representation of the turbine blades. Three-dimensional portrayals of
turbines are widely and commonly used together with vortex sheet representations of the
flow, but to our knowledge, never applied to the Vortex Blob representation. The following
Chapter 2 will present the progress achieved towards the goal of taking into account full
three-dimensional blades with the Vortex Blob representation of the flow.
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Figure 1.10: Current power curve of the IFREMER turbine computed using two dif-
ferent versions of the current Dorothy software power calculation, compared to flume tank
experimental data provided by IFREMER.
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Chapter 2

Alternative decomposition
adapted to a non zero thickness
mesh

2.1 Introduction
The results presented in Section 1.4 have shown that the method described in the

previous Chapter and currently in use in the Dorothy software yields goods results in
terms of turbine wake configuration, but show some issues in terms of the simulated power
curves. However it must be taken under consideration that these results are obtained using
a simplified zero thickness representation of the turbine geometry. In order to improve upon
the current computation of efforts, while also allowing for a generally more detailed and
realistic rendering of the turbine blades, we will describe in this Chapter the formulation
of an alternative method applicable to a fully three-dimensional non-zero thickness mesh.

This transition from a zero-thickness to a fully rendered mesh of the turbine blades
entails first of all a revision of the singularity method to include a second type of singularity
of the source type, in addition to the dipole type already present. The combination of
source and dipole singularities for the representation of turbines meshes is fairly common
among the literature. For instance, Riziotis and Voustinas use both sources and dipoles
computed on turbine blade sections in the elaboration of their dynamic stall model [81].
Many more, such as Salvatore and Greco et al., use a combination of sources and dipoles
for fully potential turbine simulation codes [82–84].

Section 2.2 will describe the manner of combining source and dipole singularities consi-
dered in the scope of this work. This method can be derived directly from the Euler Equa-
tions, just as the dipole-only version considered in the previous Chapter. The mathematical
derivation of this formulation is taken from the work of Morino [85].

Once the integral method for taking into account the full turbine blades has been
formulated, the emission of fluid particles at the trailing edges of the lifting body meshes
remains to be adjusted. The emission method must now take into account not one but two

Figure 2.1: Reverting from the simplified mean camber zero-thickness surface represen-
tation of turbibe blades to a three-dimensional full-thickness rendition.
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mesh faces connected to each trailing edge segment, from the intrados and extrados sides
of the blade mesh. This adaptation can be derived quite naturally based on the emission
model already formulated for the zero thickness mesh, as will be described in Section 2.3.

These elements combined with the fluid model described in the previous Chapter pro-
vide a functioning framework for the simulation of the generation and evolution of the
wake of fully rendered turbines. However, in this updated framework the method descri-
bed in Section 1.4 for the computation of efforts is no longer relevant, as the dipoles are no
longer the only type of singularity used on the mesh. Given that this method additionally
did not provide satisfying results, the choice was made to revise it altogether rather than
attempting to adapt it.

As an alternative, we have chosen a computation of efforts based on Bernoulli’s relation
providing localised pressure based on the velocity potential. This method is widely used in
potential simulation codes, and is known to provide good results outside of the occurrence
of stall [13, 83]. While this method appears in itself way more straightforward than the
previous formulation, it does require the knowledge of the velocity potential on the mesh. In
order to obtain this potential, rather than attempting to derive the potential contributions
of each velocity component, we use a simple spacial integration formulated by Ogami [86].
Ogami’s formulation allows for the computation of velocity potential based solely on the
value of the complete velocity on the mesh, as will be shown in Section 2.4.

The aim of the formulation and combination of these elements was to obtain a reliable
method for the simulation of the full-thickness realistic geometry of turbine blades. Un-
fortunately due to the hurdles of implementing new frameworks in an intricate simulation
code, we have not yet been able to obtain the envisioned pressure coefficients and wake
evolution. However the methods themselves remain of considerable interest, which is why
this Chapter will focus on their description and preliminary validations. We hope in the
near future to be able to demonstrate their full effectiveness.

2.2 Velocity formulation
This Section describes the new velocity decomposition proposed for the computation

of a turbine and its wake. While it is similar to the decomposition currently used in the
simulation code presented in Section 1.2, it incorporates one additional term accounting
for a new source singularity distribution on the solid body mesh.

This alternative velocity decomposition including the new contribution will be approa-
ched differently to the previous Chapter. Rather than describing the resolution of each
velocity term (potential and rotational) in isolation, we have chosen to begin by retracing
the mathematical derivation of this velocity formulation in its entirety, based on the work
of Morino [85]. This will not only prove its validity, but also justify specifically the choice
of source and dipole singularity intensities, which does not always appear very clearly in
most recent literature.

2.2.1 Helmholtz and integral decomposition

We begin once again from the Helmhotlz decomposition of the velocity presented in
Paragraph 1.2.1 :

u = ∇ϕ + ∇× ψ + u∞ , (2.1)

where :
∇2 ϕ = θ , (2.2)
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with θ = ∇· u the expansion of the velocity field (θ = 0 for an incompressible flow),

∇2 ψ = −ω , (2.3)

with ω = ∇× u the fluid vorticity, and lastly u∞ the upstream constant velocity.
As established in Parapgraph 1.2.3, with the assumptions that θ vanishes at infinity

with order r−3, and adding the condition that ϕ tends to zero at infinity, the solution to
Equation (2.2) is unique and given by :

ϕ(x) =
�

y∈R3
G(x, y)θ(y)dy

=
�

y∈R3
G(x, y) ∇y· u(y)dy

(2.4)

with G the Green function :

G(x, y) = 1
4π

1
|y − x| . (2.5)

Similarly, as established in Paragraph 1.2.2, with the assumption that ω vanishes at
infinity with order r−3 and adding the conditions that ψ tends to zero at infinity, the
solution to Equation (2.3) is unique and given by :

ψ(x) = −
�

y∈R3
G(x, y)ω(y)dy

= −
�

y∈R3
G(x, y) ∇y× u(y)dy

(2.6)

When integrating the integral solutions (2.4) and (2.6) into the Helmholtz decomposi-
tion (2.1), we obtain :

u(x) = ∇x

��

y∈R3
G(x, y) ∇y· u(y)dy

�
− ∇x×

��

y∈R3
G(x, y) ∇y× u(y)dy

�
+ u∞ (2.7)

2.2.2 Introduction of an obstacle body

Let us first envision a solid obstacle immersed in the flow immersed in the flow. As
represented in Figure 2.2, the solid body B occupies the volume VB and is bounded by
the surface SB. As such, SB is a surface of discontinuity for the velocity u. VF = R3 \VB

denotes the remaining fluid domain.

33



Chapter 2. Alternative decomposition adapted to a non zero thickness
mesh

VF

VBSB

n

Figure 2.2: Schematic representation of a solid body in a 3D fluid domain

The fluid velocity u is considered null or constant inside the volume VF bounded by
the closed surface SB with SB a surface of discontinuity for u. Using these assumptions,
the integral velocity formulation of Equation (2.7) can be transformed by integration by
parts and additional mathematical manipulations into :

u(x) = ∇x

��

y∈VF

G(x, y) ∇y· u(y)dy

�
− ∇x×

��

y∈VF

G(x, y) ∇y× u(y)dy

�

+ ∇x

��

y∈SB

G(x, y)n(y) · u(y)dy

�
− ∇x×

��

y∈SB

G(x, y)n(y) × u(y)dy

�
+ u∞

(2.8)

2.2.3 Application to the case of an incompressible quasi-irrotational flow
In this Paragraph, we will show how the previous decomposition may be used to analyze

the flow around a body that is moving in arbitrary motion within an otherwise unbounded
incompressible fluid.

Configuration

We consider once again a turbine in the form of the solid body B, occupying the three-
dimensional volume VB and bounded by the surface SB. A schematic representation of
this configuration is shown in Figure 2.3. As a matter of simplicity, we will be showing
hereafter an isolated turbine blade in place of the full three-bladed turbine body and the
associated hub. However all methods described on a single blade can be naturally extended
to the full turbine representation.

The turbine body B moves as a solid indeformable unit with the velocity uB, taking
into account for instance the turbine rotation. Its wake W is often represented as a vortex
layer shed at the trailing edge of the solid body onto a vortex sheet surface. However
within the context of the Vortex Particle Method, there is no need for such an additional
surface, as the fluid vorticity is accounted for in the form of equivalent fluid particles
scattered throughout the fluid volume VF . As this equivalence has already been treated in
Paragraph 1.2.4, we will be focusing only on the surfaces pertaining to the turbine body.
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Figure 2.3: Schematic representation of turbine blade and wake surfaces.

Assumptions

In order to proceed with the refinement of the general velocity formulation of Equa-
tion (2.8), additional assumptions are required of the velocity field u which reflect this
configuration.

1. u is incompressible, i.e. divergence-free :

∀x ∈ R3, θ(x) = ∇x· u(x) = 0 . (2.9)

2. u is irrotational outside of the immediate vicinity of the sheer vortex layer W :

∀x /∈ W, ω(x) = ∇x× u(x) = 0 , (2.10)

or within the Lagrangian framework, outside of the immediate vicinity of the equi-
valent fluid particles.

3. u follows an impermeability condition along the boundary of the solid body :

∀x ∈ SB, u(x) · n(x) = uB(x) · n(x) . (2.11)

If noting ΔSB
u = u − uB the velocity jump between the outer and inner sides of

the surface of discontinuity SB, this condition can also be written as :

∀x ∈ SB, u(x) · n(x) − uB(x) · n(x) = 0
(u(x) − uB(x)) · n(x) = 0
ΔSB

u(x) · n(x) = 0
(2.12)

2.2.4 Velocity decomposition
Once these assumptions have been laid out, we can continue to simplify the integral

velocity formulation of Equation (2.8). To this end, we will be treating one after the other
each of the four integral terms included in this sum :

u(x) = ∇x

��

y∈VF

G(x, y) ∇y· u(y)dy

�

� �� �
0�

− ∇x×
��

y∈VF

G(x, y) ∇y× u(y)dy

�

� �� �
1�

+ ∇x

��

y∈SB

G(x, y)n(y) · u(y)dy

�

� �� �
2�

− ∇x×
��

y∈SB

G(x, y)n(y) × u(y)dy

�

� �� �
3�

+u∞

(2.13)
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Term 0�
Term 0� of the sum can immediately be eliminated due to the incompressibility condi-

tion ∇· u = 0, namely :

∇x

��

y∈VF

G(x, y) ∇y· u(y)dy

�
= 0 . (2.14)

Term 1�
In order to treat term 1�, we begin by entering the rotational operator into the integral,

after which we can apply the vector identity ∇×(αF ) = ∇α×F +α ∇× F , for any scalar
field α and vector field F :

∇x×
��

y∈VF

G(x, y) ∇y× u(y)dy

�

=
�

y∈VF

∇x× [G(x, y) ∇y× u(y)] dy

=
�

y∈VF

[∇xG(x, y) × (∇y× u(y)) + G(x, y) ∇x× (∇y× u(y))] dy

(2.15)

However given the mismatched derivation variables ∇x× (∇y× u(y)) = 0 and thus the
last part disappears :

∇x×
��

y∈VF

G(x, y) ∇y× u(y)dy

�
=
�

y∈VF

∇xG(x, y) × (∇y× u(y)) dy . (2.16)

In this last formulation, we can replace the vorticity ∇y× u(y) by its notation ω(y) and
the gradient of the Green function G by its known quantity, the Biot and Savart kernel
K :

∇x G(x, y) = − ∇y G(x, y) = K(x, y) = 1
4π

y − x

|y − x|3 . (2.17)

Finally we obtain for term 1� :

∇x×
��

y∈VF

G(x, y) ∇y× u(y)dy

�
=
�

y∈VF

K(x, y) × ω(y)dy . (2.18)

We can clearly identify this formulation as the rotational velocity component uψ of Equa-
tion (1.15).

Term 2�
In order to rearrange surface integral term 2�, we begin with the trick of expressing the

velocity on SB as :
∀u ∈ SB, u(x) = u(x) − uB(x) + uB(x)

= ΔSB
u(x) + uB(x)

(2.19)

where as a reminder, ΔSB
u = u − uB denotes the velocity jump from the outer to inner

sides of the discontinuity surface SB. When introducing this substitution, we obtain for
term 2� :

∇x

��

y∈SB

G(x, y)n(y) · u(y)dy

�

=∇x

��

y∈SB

G(x, y)n(y) · (ΔSB
u(y) + uB(y)) dy

�

=∇x

��

y∈SB

G(x, y)n(y) · ΔSB
u(y)dy

�
+ ∇x

��

y∈SB

G(x, y)n(y) · uB(y)dy

�
(2.20)
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Due to the impermeability condition as formulated in Equation (2.12), n(y)·ΔSB
u(y) = 0

and thus the first part of this expression disappears. Term 2� can finally be written as :

∇x

��

y∈SB

G(x, y)n(y) · u(y)dy

�
= ∇x

��

y∈SB

G(x, y)n(y) · uB(y)dy

�
(2.21)

We can identify this formulation as the velocity induced by a source singularity distribution
of intensity σ(y) = n(y) · uB(y) on SB, as will be revisited later on.

Term 3�
The second surface integral term of 3� can also be rearranged using the substitution of

Equation (2.19), leading to :

∇x×
��

y∈SB

G(x, y)n(y) × u(y)dy

�

= ∇x×
��

y∈SB

G(x, y)n(y) × (ΔSB
u(y) + uB(y)) dy

�

= ∇x×
��

y∈SB

G(x, y)n(y) × ΔSB
u(y)dy

�
+ ∇x×

��

y∈SB

G(x, y)n(y) × uB(y)dy

�

(2.22)

The second part of this expression can easily be eliminated if the solid body velocity uB is
a translation or rotation movement. We can then enter the curl operator into the remaining
integral :

∇x×
��

y∈SB

G(x, y)n(y) × u(y)dy

�

= ∇x×
��

y∈SB

G(x, y)n(y) × ΔSB
u(y)dy

�

=
�

y∈SB

∇x× [G(x, y)n(y) × ΔSB
u(y)] dy

(2.23)

We use once more the vector identity ∇×(αF ) = ∇α × F + α ∇× F in order to develop
the expression :

∇x× [G(x, y)n(y) × ΔSB
u(y)]

= ∇x G(x, y) × (n(y) × ΔSB
u(y)) + G(x, y) ∇x× (n(y) × ΔSB

u(y))
(2.24)

where due to the mismatch in integration variables the second part disappears, and we can
once more replace the gradient of G by the Biot and Savart Kernel K of Equation (2.17) :

∇x× [G(x, y)n(y) × ΔSB
u(y)] = ∇x G(x, y) × (n(y) × ΔSB

u(y))
= K(x, y) × (n(y) × ΔSB

u(y))
(2.25)

We obtain for term 3� :

∇x×
��

y∈SB

G(x, y)n(y) × u(y)dy

�
=
�

y∈SB

K(x, y) × (n(y) × ΔSB
u(y)) dy (2.26)

In order to make one last refinement to this formulation, we can assume that the flow u is
irrotational outisde of the wake, as prescribed by Equation (2.10). The velocity u on the
body surface SB can be expressed through its entire potential noted once again ϕ :

∀x ∈ SB, u(x) � ∇x ϕ(x) + u∞ . (2.27)
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The velocity jump along the body surface can then be written as :

ΔSB
u(x) = ΔSB

(∇x ϕ(x))
= ∇x (ΔSB

ϕ(x))
= ∇x µ(x) ,

(2.28)

defining µ on SB as the scalar quantity µ = ΔSB
ϕ. With this substitution, the expression

for term 3� of Equation (2.26) becomes :

∇x×
��

y∈SB

G(x, y)n(y) × u(y)dy

�
=
�

y∈SB

K(x, y) × (n(y) × ∇y µ(y)) dy (2.29)

With additional mathematical developments, this formulation can become :

∇x×
��

y∈SB

G(x, y)n(y) × u(y)dy

�
=
�

y∈SB

K(x, y) × (n(y) × ∇y µ(y)) dy

= ∇x

��

y∈SB

K(x, y) · (µ(y)n(y))dy

� (2.30)

We can identify this formulation as the velocity induced by a dipole singularity distribution
of intensity γ = µn on SB, which can also be described as a normal dipole distribution
of intensity µ.

Final velocity formulation

By assembling the reorganizations of terms 1� 2� and 3� of the intial velocity formulation
of Equation(2.13), given by the expressions (2.18) (2.21) and (2.30) respectively, we obtain
the velocity decomposition :

u(x) = −
�

y∈VF

K(x, y) × ω(y)dy

� �� �
1�

+ ∇x

��

y∈SB

G(x, y)n(y) · uBdy

�

� �� �
2�

− ∇x

��

y∈SB

K(x, y) · (µ(y)n(y))dy

�

� �� �
3�

(2.31)

2.2.5 Treatment of velocity contributions
As evoked in the developments leading to the velocity formulation of Equation (2.31),

each term of this decomposition can be identified as a particular type of contribution. We
can now reiterate and expand on the significance and resolution of each of these terms.

1� The first term :
−
�

y∈VF

K(x, y) × ω(y)dy (2.32)

describes the rotational velocity in the flow, as presented in Paragraph 1.2.2 of
the previous Chapter. Its treatment will remain unchanged : discretization into
vorticity carrying fluid particles emitted from the solid body mesh trailing edges.

2� The second term :

∇x

��

y∈SB

G(x, y) (n(y) · uB(y)) dy

�
(2.33)
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is the velocity deriving from the potential
�

y∈SB

G(x, y) (n(y) · uB(y)) dy =
�

y∈SB

G(x, y)σ(y)dy , (2.34)

which we can recognize as the potential generated by a source distribution of in-
tensity σ(y) = n(y) · uB(y), a known quantity the body surface SB. Its treatment
and discretization will be described in Paragraph 2.4.2.

3� The third term :
− ∇x

��

y∈SB

K(x, y) · (µ(y)n(y))dy

�
(2.35)

is the velocity deriving from the potential

−
�

y∈SB

K(x, y) · (µ(y)n(y))dy , (2.36)

which we can recognize as the potential generated by a normal dipole distribution
of intensity γ(y) = µ(y)n(y), where µ(y) is an unknown quantity on the body
surface SB. This component will be treated as described in Paragraph 1.2.3 of
the previous Chapter : the solution for the value of the dipole intensity µ on each
discretized mesh face is given by the resolution of a linear system ensuring the
verification of the impermeability condition (2.11).

2.3 Fluid particle emission
Once the velocity contributions have been established, the emission of fluid particles at

the now two-sided trailing edge of the mesh must be adapted to take into account the new
configuration. The theoretical framework for the choices made here remains as exposed
previously in Paragraph 1.2.4. We will touch more rapidly onto Bernoulli’s relation sup-
porting the emission model before moving onto the process of incorporating contributions
from both intrados and extrados mesh faces attached to each blade trailing edge segment.

Figure 2.4 will show a schematic representation of this situation, with the letters e and
i denoting quantities associated to the extrados and intrados sides of the turbine blade
respectively, and (n, s, t) a localised frame associated to each trailing edge segment.

2.3.1 Bernoulli relation
Bernoulli’s relation for an unsteady potential irrotational flow is used once again,

applied this time not to the two side of a zero-thickness mesh face but rather to the two
faces S e and S i situated on the intrados and extrados sides of a common trailing edge.

Once again, the conclusion is reached that the newly created fluid particles shed from
the normal dipole distribution µ on the solid body surface are introduced into the flow

with the initial average velocity uϕ
m = uϕe + uϕi

2 .

2.3.2 Kutta condition
Let us consider a dummy mesh face S �

k shed along each segment of the trailing edge,
in the wake of each pair of intrados and extrados trailing edge mesh faces S e

k and S i
k . The

dipole intensity µ�
k shed onto this dummy face is calculated based on the dipole intensities

µe
k and µi

k attached to the faces S e
k and S i

k . Recalling that a dipole intensity µ can be

39



Chapter 2. Alternative decomposition adapted to a non zero thickness
mesh

equated to a jump in potential Δϕ, and using the notations shown in Figure 2.4 for all
sets of faces k along the trailing edges :

µe
k = ϕe

+ − ϕe
− , (2.37)

µi
k = ϕi

+ − ϕi
− , (2.38)

µk = ϕ+ − ϕ− . (2.39)

What’s more, as the two trailing edge faces are collapsed into this single infintely thin
dummy face at the trailing edge point, it can also be assumed that :

µk = ϕe
+ − ϕi

+ , (2.40)

or alternately :
ϕ+ = ϕe

+ and ϕ− = ϕi
+ . (2.41)

Finally, the potentials joined on the inside of the mesh are also assumed to be equal :

ϕe
− = ϕi

− . (2.42)

We now obtain :

µk = ϕ+ − ϕ− (2.43)
= ϕe

+ − ϕi
+ (2.44)

= (ϕe
+ − ϕe

−) − (ϕi
+ − ϕe

−) (2.45)
= (ϕe

+ − ϕe
−) − (ϕi

+ − ϕi
−) . (2.46)

= µe
k − µi

k (2.47)

µe

ϕe
+

ϕi
+

ϕe
−

ϕi
−

µi
k

ϕ+

ϕ−

µk

n

s
t

Figure 2.4: Schematic representation of a thick blade trailing edge : side view of the
extrados and intrados faces along the trailing edge, and the dummy face following the
trailing edge at the onset of the wake.

Once we have established the intensity µk of the dipole shed onto each section of the
wake, we can then convert this dipole intensity on a dummy wake face into an equivalent
vorticity carrying particle.

2.3.3 Fluid particle equivalent to the shed dipole
Using the notations shown in Figure 2.5, we now have access to value of the dipole

intensity µk shed onto each dummy wake mesh face S �
k along the trailing edge. According
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to the reasoning beginning with Equation (1.46) of Paragraph 1.2.4, we can deduce from
these dipole intensities the vortical weight Ω�

k of the equivalent fluid particle to each
dummy face S �

k as given by Equation (1.58) :

Ω�
k =

�

S �
k

n(y) × (∇y µ(y)) dy (2.48)

� [µk(t) − µk(t − dt)] dlt + µk+1 − µk−1
2 |uϕ

mk|dts (2.49)

Using relation (2.47), the value of the intensity µk is given by the dipole intensities µe
k and

µi
k attached to the extrados and intrados emission faces :

Ω�
k =

��
µe

k(t) − µi
k(t)

�
−
�
µe

k(t − δt) − µi
k(t − δt)

��
dlt+

(µe
k+1 − µi

k+1) − (µe
k−1 − µi

k−1)
2 |uϕ

mk|dts ,

(2.50)
which can if desired be reordered into :

Ω�
k =

�
(µe

k(t) − µe
k(t − δt)) −

�
µi

k(t) − µi
k(t − δt)

��
dlt+

�
µe

k+1 − µe
k−1

2 − µi
k+1 − µi

k−1
2

�
|uϕ

mk|dts .

(2.51)

n

s
t

dh

dl

µe
k+1

µe
k−1

µe
k

le

re

µi
k+1

µi
k−1

li

ri

µi
k

µk

µk+1

µk−1

Figure 2.5: Schematic representation of a thick blade trailing edge : extrados and in-
trados faces along the trailing edge, with their left and right hand neighbor faces, and the
dummy faces following the trailing edge at the onset of the wake.

2.3.4 Properties of the new particle
The longitudinal direction of the dummy wake face S �

k is the direction of the emission
velocity :

s =
uϕ

mk

|uϕ
mk| . (2.52)

At the first iteration of the simulation code, when the emission velocity has yet to be
established, we consider instead the average direction of the trailing edge faces :

s = 1
4

�
re

|re| + le

|le| + ri

|ri| + li

|li|

�
, (2.53)
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using the notations shown in Figure 2.5. The tangential direction of S �
k is given by the

mesh segment it is attached to :
t = dl

|dl| . (2.54)

The normal to S �
k can then be deduced :

n = t × s . (2.55)

The dummy face S �
k is rectangular in shape, of sizes dl = |dl| and as the new particles

are emitted with the initial velocity uϕ
m :

|dh| = dh =
��uϕ

m

�� dt . (2.56)

The new equivalent fluid particle is positioned at the center of this rectangle, as defined
in the previous Chapter by Equation (1.57). The volume of the equivalent particle also
remains as given by Equation (1.60) :

Vk � dl
��uϕ

m

�� δt � , (2.57)

where � denotes once again the regularisation parameter of the simulation.
Combined with the remaining elements of the simulation code already described in the

previous Chapter, this concludes the description of the alternative velocity decomposition
and fluid particle emission process adapted to a fully rendered turbine mesh configuration.
The next hurdle lies in the computation of efforts, as the previous method yielded unsatis-
factory results and no longer applies given the addition of an extra velocity contribution
on the mesh.

2.4 Velocity potential computations
Bernoulli’s relation gives the value of the pressure distribution on the mesh based

on the value of the velocity potential, as given by Equation (1.39). However the Vortex
Particle Method uses a velocity decomposition, and does not allow for any direct or simple
access to its potential. Therefore, additional calculations are required in order to obtain
the velocity potential on the mesh.

The first possibility for computing the velocity potential on the mesh would be to consi-
der a potential decomposition mirroring the velocity decomposition of Equation (2.31). The
two surface integral terms 2� and 3� are clearly formulated as already deriving directly from
velocity potentials induced by source and dipole distributions respectively. The potentials
induced by source or dipole distributions are well known quantities and used in many po-
tential codes. The calculation and numerical computation of such potential contributions
is covered in detail by Bousquet [53]. However the difficulty of this option lies with the last
term 3�, which unlike the others does not derive directly from a velocity potential. While it
might be possible to retrace the velocity potential induced by vorticity carrying particles,
this subject is much less common in the literature and would require further theoretical
developments and possibly significant additions to the simulation code.

A second and far simpler possibility for the computation of the velocity potential is
given in the recent work of Ogami [86]. By "integrating" the complete velocity on the
obstacle mesh, he is able to obtain an approximation of its potential at the cost of a
matrix resolution. As to our knowledge this method has not yet been picked up outside
of the works of Ogami, we have taken the steps to validate its accuracy for the use we
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are looking to make of it. To this end, we will be considering the simplified and ideal
situation of a sphere in a purely potential flow. This eliminates the need for velocity
contributions pertaining to vorticity, allowing for yet another velocity formulation using
only source singularity contributions. The potential computed from this complete velocity
using Ogami’s approximation can then be compared to the potential induced by a source
distribution as given by Bousquet [53], as well as the analytical reference of the velocity
potential on the surface of a sphere in a potential flow.

Once this method for the computation of potential has proven itself to be satisfactory,
we can then move on to the computation of efforts, which we aim to apply to the full
velocity and turbine blade configuration.

2.4.1 Velocity potential induced by a source distribution

Before moving on to Ogami’s new method for the computation of the velocity po-
tential, we begin by describing the more common reference of the potential induced by
a source singularity distribution of intensity σ on an obstacle surface SB, as given by
Bousquet [53]. This source potential calculation will be used as a comparison point later
on in the validation of Ogami’s approach. Incidentally, this is the potential from which is
derived the source velocity contribution of term 2� from Equation (2.31), as mentioned in
Paragraph 2.2.5.

The velocity potential ϕσ induced by a source distribution σ on a regular bounded
surface SB is given by :

ϕσ(x) =
�

y∈SB

G(x, y)σ(y)dy + C , (2.58)

known up to the constant C.

For the sake of discretization, the value of σ is considered as a constant σj on each of
the Nf faces Sj making up the surface SB. Through some geometrical manipulations, we
can then obtain the discrete formulation :

ϕσ(x) = 1
4π

Nf�

j=1
σjαj(x) + C . (2.59)

αj are coefficients computed from the geometry of the mesh faces, given by :

αj(x) �
4�

i=1
[wi,jΛi,j + hj(arctan(βi,j) + arctan(γi,j))] (2.60)
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nj

Sj

P4,j

P3,j

P2,jP1,j

M
Cj

Figure 2.6: Schematic representation of a quadrangular mesh face Sj of normal nj

and center Cj and the quantities necessary for the computation of the velocity potential at
the evalutaion point M of coordinates x.

where using the notations shown on Figure 2.6 :

hj = |nj · CjM | (2.61)
li,j = Pi,jPi+1,j (2.62)
ri,j = Pi,jM (2.63)

ti,j = Pi,jPi+1,j

li,j
(2.64)

ri,j = |ri,j | (2.65)
ai,j = ri,j · ti,j (2.66)

bi,j = ri+1,j · ti,j (2.67)
wi,j = (ti,j × nj) · ri,j (2.68)

di,j = h2
j + w2

i,j (2.69)

βi,j = −wi,jai,j

di,j + hjri,j
(2.70)

γi,j = wi,jbi,j

di,j + hjri+1,j
(2.71)

Λi,j = log ri,j + ri+1,j + li,j
ri,j + ri+1,j − li,j

(2.72)

The determination of only remaining unknown source singularity intensities σj will be
covered in the next Paragraph.

2.4.2 Velocity induced by a source distribution

This forumlation follows naturally from the velocity potential computation, and will
become relevant later on in the process of validation of Ogami’s method through the
computation of a potential flow. Thus we continue with the description of the velocity
contribution induced by a source singularity distribution of intensity σ on an obstacle
surface SB, as given by Bousquet [53]. Incidentally, a version of this formulation is also
used in order to compute the source singularity term 2� of Equation (2.31).

The velocity uσ induced by a source distribution σ on a regular bounded surface SB

is given by :
uσ(x) = ∇x

��

y∈SB

G(x, y)σ(y)dy

�
. (2.73)
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If once again the value of σ is assumed to be a constant σj on each individual mesh
face Sj , the velocity induced by this source distribution can be approximated as :

uσ(x) = 1
4π

Nf�

j=1
σjvj(x) , (2.74)

with :

vj(y) =
4�

i=1

�
νi,jΛi,j + njSgnj [arctan αi,j + arctan βi,j ]

�
, (2.75)

where using once again the notations of Figure 2.6 :

hj = |nj · CjM | (2.76)
li,j = |Pi,jPi+1,j | (2.77)

ti,j = Pi,jPi+1,j

li,j
(2.78)

νi,j = ti,j × nj (2.79)
ai,j = ri,j · ti,j (2.80)
ωi,j = νi,j · ri,j (2.81)

αi,j = −ωi,jai,j

d2
i,j + hjri,j

(2.82)

Sgnj = sign of (nj · CjM) (= ±1) (2.83)
ri,j = Pi,jM (2.84)
ri,j = |ri,j | (2.85)

bi,j = ri+1,j · ti,j (2.86)
d2

i,j = h2
j + ω2

i,j (2.87)

βi,j = ωi,jbi,j

d2
i,j + hjri+1,j

(2.88)

Λi,j = log ri,j + ri+1,j + li,j
ri,j + ri+1,j − li,j

(2.89)

Two different perspectives remain for the last unknown element of the source intensi-
ties σj . When using the full velocity decomposition of Equation (2.31), we have seen in
Paragraph 2.2.5 that the value of the source distribution σ arises naturally as the prede-
termined quantity σ(y) = n(y) · uB(y) on SB, i.e. :

σj = nj · uB(Cj) . (2.90)

However when using a source velocity uσ as sole form of velocity contribution outside
of the upstream velocity u∞, the source intensities σj must instead be calibrated so as to
ensure the verification of the slip condition on the body surface SB. This condition leads
to the formulation of a linear system much akin to that described in Paragraph 1.2.3 for
the determination of dipole intensities µ (see Equations (1.35)-(1.38)). The resolution of
this linear system gives the values of the discrete source intensities σj to be used in the
source velocity formulation of Equation (2.74).
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2.4.3 Ogami’s integral approach

Ogami [86] proposes a method of calculating the potential ϕ of the complete velocity
u on the body surface, independently from the specifics of the velocity computation. The
potential is calculated after determining the distribution of surface velocity vectors induced
by the surface singularities, the fluid particles, and any other relevant contribution. This is
accomplished by "integrating" the velocity directly on the body mesh surface. By definition,
the velocity field u and its potential ϕ are related by the equation :

u = ∇ϕ . (2.91)

Therefore the potential between two points A and B on the body surface is given by :

ϕAB =
� B

A
u · dr . (2.92)

The value of this integral is independent of the choice of route between A and B.
This relation is applied using as points A and B the centers Ck and Ck+1 of each pair of

neighboring mesh faces Sk and Sk+1, as shown in Figure 2.7. With Mk the middle point of
the common edge separating Sk and Sk+1, we note drk = CkMk and drk+1 = MkCk+1.
Given uk = u(Ck) and uk� = u(Ck�) the velocity vectors at the centers of the respective
mesh faces, the relation (2.92) can be approximated as :

ϕk+1 − ϕk � uk · drk + uk+1 · drk+1 , (2.93)

where ϕk and ϕk+1 denote the velocity potentials at the face centers Ck and Ck+1.

uk uk+1

Ck

Ck+1

Mk

drk
drk+1

ϕk
ϕk+1

Figure 2.7: Schematic representation of the configuration of neighboring mesh faces
used for Ogami’s potential computation [86].

Equation (2.93) is applied to all pairs of neighboring faces on the body surface mesh.
If all mesh faces are quadrangular, this will gives us 4Nf

2 = 2Nf relations. These relations
can be gathered into a set of simultaneous equations for the unknowns potentials :

AX = B , (2.94)
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where the matrix A of size 2Nf × Nf could be for instance :

A =




−1 1 0 · · · 0
−1 0 1 0 · · · 0
0 −1 0 1 0 · · · 0

...

0 · · · 0 −1 1




, (2.95)

with the positions of the −1 and 1 on each line depending on the numbering and structure
of the mesh faces ; X is the vector formed by the unknowns :

X = (ϕk)Nf

k=1 , (2.96)

and the right hand side vector B is given by :

B = (uk · drk + uk+1 · drk+1) . (2.97)

It must be noted that the inversion of the rectangular matrix A require some additional
effort compared to the square matrices treated elsewhere in the simulation code. For the
time being, this resolution is treated via the dgelsd matrix resolution routine of the
Fortran90 library Lapack, which computes the minimum norm solution to a linear least
squares problem using the singular value decomposition of a rectangular matrix.

2.4.4 Centered alternative
Expanding on this concept, we can then consider further spacing out the face centers

used as reference points for the potential calculation. Instead of considering one mesh
face and its immediate neighbor, we will now be considering the trio of one quadrangular
mesh face and two of its neighbors on opposite sides, as shown in Figure 2.8. As each
quadrangular mesh face has 2 pairs of opposing neighbors, the number of equations will
remain 2Nf . We have chosen to refer to this alternative as a "centered" scheme.

uk uk+1

Ck

Ck+1

Mk

drk
drk+1

ϕk

ϕk+1drk�drk−1

uk−1

Ck−1
ϕk−1

Mk−1

Figure 2.8: Schematic representation of the configuration of neighboring mesh faces
used for the alternative potential computation.
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Using the notation shown in Figure 2.8, we now have :

ϕk+1 − ϕk−1 = uk−1 · drk−1 + uk · drk� + uk · drk + uk+1 · drk+1

= uk−1 · drk−1 + uk · (drk� + drk) + uk+1 · drk+1 .
(2.98)

This relation can be expressed similarly to the previous one in the form of a multiplication
by a 2Nf ×Nf rectangular matrix and subsequently solved for the values of the potentials
(ϕk)Nf

k=1.

2.4.5 Calibration of the constant

The previous methods give a solution for the values of the velocity potential on the
mesh, up to a constant. This constant is of significant importance, as its value is different
each time a new system is solved at each time step of the simulation. This prevents the
calculation of the time derivative of the potential needed for the estimation of the pressure
as detailed in the next paragraph.

Therefore, an additional step must be included in order to ensure that the potential
distribution on the mesh is consistent with a null value of the potential perturbation
at "infinity", in order to respect the principle of dissipation at infinity of the disruption
caused by the obstacle. In practice, a point is chosen in the flow "far" from the mesh where
the value of the perturbation potential is imposed as zero. Thus, the value of the velocity
potential at this distant point P is given by the sole potential of the upstream flow velocity
U∞ :

ϕP = U∞ · P . (2.99)

A single face of the solid body mesh is chosen as an arbitrary reference point. Let C
denote the center of this mesh face. With the value of the velocity potential ϕP at the
distant point P being a known quantity, as given by Equation (2.99), the value that the
potential ϕC must take at point C can be determined by the relation :

ϕC − ϕP =
� C

P
u · dr . (2.100)

In order to discretize this relation, the line r = P C joining these two points is divided into
N segments XkXk+1, where X0 = P , XN = C, and the number of segments is chosen
so that their length dr = XkXk+1 matches as closely as possible the spacial discretization
parameter dh : N = E

�
P C
dh

�
and dr = P C

N . Figure 2.9 shows a schematic representation
of this configuration.

Let ϕk denote the value of the velocity potential and uk the value of the velocity at
each point Xk. The potentials at consecutive points are linked by the relation :

ϕk+1 − ϕk =
� Xk+1

Xk

u · dr (2.101)

� uk + uk+1
2 · dr (2.102)

⇒ ϕk+1 � ϕk + uk + uk+1
2 · dr . (2.103)
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P

C

X0

r

X1 X2
...

XN

XN−1

dr

Figure 2.9: Schematic representation of the calculation of the potential constant to add
to the potential distribution on the solid body mesh.

Finally, we obtain :

ϕC = ϕN (2.104)

� ϕ0 +
N−1�

k=0

uk + uk+1
2 · dr (2.105)

= U∞ · P +
�

u0 + uN

2 +
N−1�

k=1
uk

�
· dr . (2.106)

The difference between this velocity potential ϕC calculated to ensure its dissipation at
infinity and the value of the potential at the center of this mesh face previously obtained by
the resolution of the linear system as prescribed by Ogami gives the value of the constant
to be subtracted from the potential previously calculated on each face of the mesh.

2.4.6 Validation on a sphere mesh

These methods are validated on the simple test case of a sphere in an incoming flow.
The sphere is fixed and unmoving, and chosen to have a radius of R = 1. It is represented
by a regular quandrangular mesh, of varying refinements. The surrounding flow has a set
velocity of U∞ = 1 m/s in the direction of the x axis.

The aim of this test is to validate the implementation of the additional source induced
velocity and of the velocity potential, both newly added into the simulation code. In this
simple potential flow configuration, no vorticity is shed from the sphere mesh. Therefore
there are no rotational component given by fluid particles and no dipole induced potential
velocity component to consider. Thus for the sake of this validation only, the velocity field
is reduced to the sole contributions of the upstream velocity u∞ and the source induced
potential velocity uσ :

u = u∞ + uσ . (2.107)

In this case, the source intensities (σj)Nf

j=1 must no longer be taken as the prescribed values
given by Equation (2.90), but rather computed as the unknowns in a system ensuring the
validation of the impermeability condition, as evoked in Paragraph 2.4.2.

Figure 2.10 shows this configuration of the resulting flow, confirming the correct veri-
fication of the impermeability condition on the sphere mesh.
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Figure 2.10: Demonstration of the velocity field resulting of an obstacle sphere in a
potential flow, displayed on a section of the surrounding flow and at the centers of the
sphere mesh faces.
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Analytical references

Let us consider a sphere of radius R, centered at the origin of the coordinate system, in
an incoming flow of velocity U ∞ = (U∞, 0, 0) in the direction of the x axis. The potential
ϕ at any point x of coordinates (x, y, z) on the surface of the sphere is given by :

ϕ(x) = U∞x

�
1 + 1

2
R3

r3

�
+ cst , (2.108)

with r = |x| the distance between the point x and the center of the sphere (see [62]).
The velocity field deriving from this potential is given by U = (Ux, Uy, Uz) with :

Ux =U∞

�
1 + R3

2r3 − 3
2x2 R3

r5

�
, (2.109)

Uy = − U∞xy
3
2

R3

r5 , (2.110)

Uz = − U∞xz
3
2

R3

r5 . (2.111)

Validation of the velocity potential calculation

We now have at our disposal three methods of calculating the velocity potential on
this simple test case :

1. By integrating the velocity between neighboring faces and solving the resulting
linear system as shown by Ogami [86]. This method is declined into a decentered
integration strictly as performed by Ogami (see Paragraph 2.4.3) or a centered
version using faces further removed as a basis for the velocity integration (see
Paragraph 2.4.4).

2. By adding the velocity potentials corresponding components making up the velo-
city : the upstream velocity potential and the potential induced by the distribution
of sources, which can be calculated as given by Bousquet [53] based on the values
of the source singularities and the geometry of the corresponding mesh faces (see
Paragraph 2.4.1).

3. The analytical value of the velocity potential available for this specific configuration
(see Paragraph 2.4.6).

In order to validate the source distribution as well as the first two methods of potential
calculation, they are compared to each other and to the analytical reference. In this pa-
ragraph, the potential computed using these methods will be noted as ϕO for the Ogami,
ϕB the Bousquet, and ϕA for the analytical reference.

As the velocity potential can only be calculated to within a constant at the center of
each mesh face Si, these comparisons must take into account the fact that this additive
constant will differ from one method to another. For the sake of each comparison, these
constants must be computed so as to minimise the distance between the two versions
considered.

Let the distance between two points f = (fi)N
i=1 and g = (gi)N

i=1 be defined as :

d(f, g) =
N�

i=1
(fi − gi)2 . (2.112)
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We must find a constant C so as to minimize the adapted distance :

dC(f, g) =
N�

i=1
(fi − gi + C)2 (2.113)

We search for an extremum of this function dC(f, g) :

∂dC(f, g)
∂C

=
N�

i=1

∂(fi − gi + C)2

∂C
= 2

N�

i=1
(fi − gi + C) = 2N(f − g + C) , (2.114)

where f = 1
N

�N
i=1 fi denotes the average value of f and g the average value of g. The

above expression reaches its minimum for :

C = g − f . (2.115)

By applying this result for instance to the potentials ϕO and ϕA at the center of each
mesh face i, we have an expression for the minimal distance which will be considered as
the error committed on the Ogami based potential calculation :

dC(ϕO, ϕA) =
N�

i=1

�
(φO

i − ϕO) − (ϕA
i − ϕA)

�2
. (2.116)

The corresponding L2 error relative to the analytical potential ϕA is given by :

ErrL2(ϕO, ϕA) =

�������

dC(ϕO, ϕA)
N�

i=1
(ϕA

i − ϕA)2
× 100% . (2.117)

Figure 2.11 shows the values of these errors on sphere meshes of increasing refine-
ment and number of faces N . Both Ogami and Bousquet method potentials show a clear
convergence of the error compared to the analytical reference as well as between each other
with the mesh refinement, all within similar ranges. However the errors committed on the
potential calculation do appear to be slightly higher when using the centered version of
Ogami’s potential integration compared to the decentered version. Bousquet’s method
leads to better results on the coarsest meshes, while Ogami’s decentered version is clearly
favored for greater mesh refinements.

In Ogami’s article [86], four data points are given representing the L1 error of his
decentered potential computation relative to the upstream velocity U∞. The L1 error is
recomputed for all cases for comparison with this reference. It is calculated as given by
Ogami, adding an account for the constant minimalizing the distance between methods,
with for instance :

ErrL1(ϕO, ϕA) = 1
NU∞

N�

i=1

���(φO
i − ϕO) − (ϕA

i − ϕA)
���× 100% . (2.118)

Figure 2.12 shows these errors compared to those given by Ogami. While the errors
appear to be of the same general magnitude, they are all more important than those
obtained by Ogami. This can be attributed in part to the irregularity of the quadrangle
mesh used in these computations compared to Ogami’s perfectly regular triangle meshes.
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Figure 2.11: L2 errors between different version of potential calculations on increasingly
refined sphere meshes, relative to the analytical potential.

1−2

1−1

10

11

12

10 100 1000 10000

L1
re

la
tiv

e
er

ro
r

[%
]

Number of Faces N

Decenterd Ogami/Analytical
Decentered Ogami/Bousquet
Centerd Ogami/Analytical
Centered Ogami/Bousquet
Bousquet/Analytical
Ogami/Analytical reference

Figure 2.12: L1 errors between different version of potential calculations on increasingly
refined sphere meshes, relative to upstream velocity U∞, compared to the results given by
Ogami [86].
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Figure 2.13: Average error on the potential on the mesh faces for various discretisations
of the line along which the potential calibration constant is integrated.

Validation of the potential calibration constant calculation

Figure 2.14 shows that the error committed on the potential, progressively increasing
with the distance to the initial upstream reference point, is a direct consequence of the
error committed on the velocity as a result of the discretization, as shown in Figure 2.13.

This concludes the validation of the computation of the velocity potential using Oga-
mi’s method on this simplified test configuration, including the addition of the computation
of the additive constant which is not mentioned in his article.

2.5 Pressure and force computations

2.5.1 Approximation of the pressure force on the solid body mesh

Pressure calculation

Once the value of the potential ϕk is known on each face k of the solid body mesh, the
pressure pk can be computed using Bernoulli’s relation :

pk = −ρ

�
∂ϕk

∂t
+ 1

2 |uk|2
�

(2.119)

where uk is the complete velocity taken at the center of the face k.
The time derivative ∂ϕ

∂t is approximated on each face k by the uncentered difference :

∂ϕk

∂t
=

ϕk |t=t+Δt − ϕk |t=t

Δt
(2.120)

Later on another centered alternative might be considered

∂ϕk

∂t
=

ϕk |t=t+Δt − ϕk |t=t−Δt

2Δt
(2.121)
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Figure 2.14: Error committed on the potential and velocity along the integration seg-
ment.

Force calculation

The pressure force Fk applied to the face k of the mesh is obtained by integrating the
pressure :

Fk = −pknkΔSk
, (2.122)

with ΔSk
the area of the face k.

The pressure force F exerted on the entirety of the solid body then becomes :

F =
Nf�

k=1
Fk = −

Nf�

k=1
pknkΔSk

. (2.123)

2.5.2 Validation of the force calculation on the sphere mesh

In order to validate the implementation of the pressure force calculation, we aim to
reproduce the computations on a sphere mesh realized by Ogami [86].
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Figure 2.15: Value of the total pressure force on the accelerated sphere mesh using
increasingly refined meshes, compared to the analytical value and the result obtained by
Ogami.

Sphere mesh accelerated through fluid at rest

Consider a sphere accelerated backwards in the direction of the axis −x, in a fluid at
rest.

Noting dUsphere
dt

the acceleration of the sphere, we expect on its cumulated surface a
pressure force of :

F = 2
3πρR3 dUsphere

dt
, (2.124)

which is equivalent to the added mass for an accelaration dUsphère
dt

= 1 m/s2. (see [87]).
In order to compare results, we match the parameters used by Ogami :
— density of the fluid : ρ = 1.293 kg/m3.
— radius of the sphere : R = 1 m.
— acceleration of the sphere (for Ogami in the direction of y) : dUsphere

dt
= 1 m/s2.

— timestep : dt = 0.001 s.
— 3 iterations, i.e. computation time t = 0.003 s.
Figure 2.15 confirms the convergence of the result towards the analytical value of the

pressure force. It can however be noted that we do not reach the value obtained by Ogami
even with the higher mesh refinements. This can be explained by the difference in mesh
structures. Ogami uses a triangle mesh, which in addition to being perfectly regular and
symmetrical also requires less conditions given the lower number of neighbors for each
mesh face. The present study uses quandrangular faces, which leads to a less symmetrical
and structured mesh and a higher number of conditions for equal numbers of faces. These
added conditions and irregularities could contribute slightly more errors on the end result
compared to Ogami’s computation. It does still remain clear that all approximation errors
decrease the higher the number of mesh faces.
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Figure 2.16: Value of the total pressure force on the unmoving sphere mesh in an
accelerated flow, using increasingly refined meshes, compared to the analytical value and
the result obtained by Ogami.

Fixed sphere in accelerated fluid

When the sphere is once again unmoving an the surrounded flow is accelerated by
∂U∞

∂t
= 1, the pressure force will be :

F = 2πρR3 dU∞
dt

, (2.125)

using all other same parameters as previously (see once again Batchelor’s book [62] for
reference).

Figure 2.16 shows once again a satisfying convergence towards the expected analytical
value, with the same slight discrepancy compared to Ogami’s stated result due to the less
structured quadrangular mesh used in the present study.

This concludes the validation of the pressure force computation by Ogami’s method,
using Bernoulli’s relation with a potential computed by surface integration of the velocity.

2.6 Conclusion
The aim of the part of the work described within this Chapter was to ascertain and

implement the formalism best suited for a better computation of efforts on a fully-rendered
turbine representation. After many unsuccessful attempts, we believe to have found a
suitable method. While the velocity decomposition using both source and dipole singularity
contributions is more commonly used in potential codes, we have made sure to thoroughly
justify its derivation in terms of velocity. The emission of fluid particles within this new
framework remains near-identical to that already used for the thin blade profile.

To this framework, we have added a recent element of greater interest in the form
of a new and simple method for computing the velocity potential and from then on the
pressure force. We have attempted to further expand on this aspect of Ogami’s proposed
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method, by looking into centered scheme alternatives and the computation of the additive
potential constant. We have also looked to provide additional material for the validation
of the potential and force computations on the same simple test case proposed in his
article [86] : namely more detailed comparisons to analytical and source related potential
values, as well as confirming a convergence based on mesh refinement.

Once both the velocity decomposition and the computation of efforts have been thus
validated, the next step would consist in combining these elements on the target turbine
blade. We aimed to present as a demonstration of this method the simulation of a simple
turbine blade including its vortical wake and the pressure coefficient around its section
consistent with the abundant literature on established airfoils. However we have been
met with some hurdles within the simulation code, which we hope to overcome shortly.
Nevertheless, the methods exposed here remain of considerable interest, and given their
independent validations, are assured to yield compelling results.
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Simulation of ambient turbulence
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Chapter 3

Stochastic representation using
the Synthetic Eddy Method

This Chapter is replicated from an article published in Applied Mathematical Model-
ling [88]. The initial Section present in this publication has been removed, as it described
once more the Vortex Particle Method and its treatment of diffusion, already covered in
Chapter 1. The following Sections provide a detailed analysis of the use of the Synthetic
Eddy Method in order to account for ambient turbulence, newly implemented into the
simulation code.

3.1 Introduction
This Chapter deals with the simulation of ambient turbulence in the framework of the

Lagrangian Vortex. Simulation of turbulence is among the most active current research
topics as many problems remain unresolved, even with the increase of computational capa-
cities. RANS (Reynolds Average Navier-Stokes), and its unsteady version U-RANS, LES
(Large Eddy Simulation) and DNS (Direct Numerical Simulation) are the most frequent
approaches to this problem in the Eulerian framework. DNS does not assume any model
and therefore is the most reliable method, but its CPU time costs are incredibly high. For
the present engineering applications, LES is one of the most popular implementations as it
allows the computation of relatively complex and large configurations within a reasonable
CPU time. Sagaut [70] presents a review of the different procedures commonly used for
Large Eddy Simulation. This LES approach is also possible in the Lagrangian framework :
some researchers [71, 89, 90] have already carried out LES computations using the La-
grangian Vortex Method. In their last configuration, Mansfield et al. [71] computed a 3D
vortex ring collision. Although these computations assessed the influence of turbulence,
no ambient turbulence could be taken into account with this approach.

However, in many industrial applications, the ambient turbulence intensity in the ups-
tream flow plays a determining role. This is especially the case in the fields of wind or tidal
energy, the latter of which is considered in the present document. Velocity fluctuations
induced by ambient turbulence have an impact not only on the performances of an indivi-
dual turbine, but also on the shape and length of its wake. This is of utmost importance
in the design of turbine arrays, when considering the effect of a row of upstream turbines
on the power output of any turbines positioned downstream. Experimental studies in po-
tential tidal sites show that this turbulence intensity can range from approximately 3% to
20% [26,78]. This percentage is calculated from the diagonal components of the Reynolds
shear stress tensor and represents a characteristic percentage of the fluctuating velocity
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component with respect to the averaged incoming velocity field. Such non-negligible va-
riations in inflow conditions must be taken into account when attempting to replicate
numerically the true operating conditions of a tidal turbine.

Therefore, various methods have been developed to emulate the ambient turbulence in
the context of Eulerian simulations, through the use of boundary conditions. The Synthetic
Eddy Method (SEM) proposed by Jarrin et al. [39,91] was initially formulated within this
context : its original purpose is to generate inflow conditions for the Eulerian simulation
of turbulent flows. Jarrin et al. [39] defined a set of turbulent structures to represent a
desired fluctuating velocity field at the inlet of their computational domain. This approach
was already used by several authors such as Afgan et al. [92], or Ahmed et al. [5]. As for
marine current turbine simulations, Togneri et al. [2, 93] investigated a similar Synthetic
Eddy Method in order to generate synthetic turbulent inflow conditions for their BEMT
software. Others use the TurbSim generator from NREL [94] which generates the desired
turbulent inflow conditions from a spectral representation of turbulence. For instance,
Churchfield et al. [21] used TurbSim to generate inflow conditions for their tidal turbine
farm computations. Togneri et al. [4, 95] compare the SEM and spectral based turbulent
inflow generation methods in order to investigate fluctuations in loads on the turbine,
using their BEMT code. Lastly, Mann’s algorithm [96] is another similar approach based
on spectral representation of turbulence. Chatelain et al. [42, 97] used this algorithm to
generate a turbulent inflows for wind turbines simulations. The numerical method used
by Chatelain et al. [42,97] is a particle-mesh method relying on an Eulerian mesh at some
steps of the numerical scheme, which allows turbulent flow states to be used as inflow
boundary conditions. All these cited approaches share the complication of their difficulty
to maintain the chosen inflow ambient turbulence intensity level throughout the whole flow
domain. As mentioned by Jarrin et al. [39, 91], the ambient turbulence intensity usually
decreases as the flow progresses, and the desired input level is generally not recovered in
the area of interest of the computational domain.

None of these above mentioned methods can be applied as such to a pure Lagrangian
Vortex framework, and the adaptation of one of them is the topic of this work. Our nu-
merical model represents the vortical flow field by means of a set of Lagrangian Vortex
particles and the velocity field is obtained via the Biot & Savart equation. This Chapter
presents an adaptation of the initial SEM method of Jarrin et al. which maintains the
turbulence intensity level over the entire flow domain, ensured by the advection of turbu-
lent structures with no stretching or diffusion. This can be of major importance for the
simulation of wind or tidal turbine farms, to ensure that turbines perceive similar levels
of turbulent intensity throughout the entire farm area and all the way downstream to
the last row of turbines. Additionally the method presented here can function together
with both of the most common treatments of diffusion in Lagrangian Vortex methods, na-
mely the Particle Strength Exchange (PSE) [68,69,98] and the Diffusion Velocity Method
(DVM) [74]. These methods can integrate turbulent diffusion models, such as Large Eddy
Simulation [71,75,89,90], to better represent all turbulent length scales.

The adapted SEM is presented and analysed on a simple study case. Finally the com-
bination of adapted SEM and Vortex methods is applied to the simulation of a simplified
marine current turbine in varying turbulent conditions.

3.1.1 Synthetic Eddy Method for simulating ambient turbulence
The aim of this study is to account for ambient turbulence in the fluid, with any

given turbulence parameters and at any point in the study space. The Synthetic Eddy
Method formulated by Jarrin et al. [39, 91] allows the generation of an input flow with
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any given turbulent intensity I∞ and anisotropic ratio (σu :σv :σw). Within Jarrin’s initial
formulation, these turbulence conditions are only verified at the inlet of the fluid domain.
In the present study, this method is adapted in order to cover the entirety of a given study
space. The ambient turbulence intensity percentage I∞ quantifies the velocity fluctuations
in a three-dimensional flow (u∞, v∞, w∞) as the following :

I∞ = 100

�����
1
3
�
σ2(u∞) + σ2(v∞) + σ2(w∞)

�

ū2
∞ + v̄2

∞ + w̄2
∞

(3.1)

In the Synthetic Eddy Method proposed by Jarrin, ambient turbulence in the upstream
flow is accounted for by modifying the upstream velocity component u∞. This upstream
velocity is rewritten via the Reynolds decomposition :

u∞(x) = u∞ + ũ(x) (3.2)

where u∞ is the mean velocity of the flow and ũ a perturbation term encompassing the
fluctuations due to ambient turbulence. The perturbation term ũ is calculated as the in-
fluence of N "turbulent structures", also called "eddies", randomly positioned throughout a
three-dimensional study space of volume Ṽ . Each "turbulent structure" k is characterized
by its position xk and its intensity ck, defined in the following paragraphs. The perturba-
tion induced by N turbulent structures is computed as the sum of the influences of each
structure k :

ũ(x) =
N�

k=1
ũk(x), (3.3)

with x a point of the fluid domain and ũk the perturbation velocity induced by a single
turbulent structure k. This individual perturbation velocity is expressed as :

ũk(x) =

�
Ṽ

N
ckFλ(x − xk) ∀k ∈ �1, N�, (3.4)

where Fλ is a shape function, discussed further below. As for the intensity ck, its three
components are defined as :

ck
i =

3�

j=1
ai,j�k

i,j ∀i ∈ {1, 2, 3}, ∀k ∈ �1, N�. (3.5)

All instances of �k
i,j are random sign variables of values of 1 or −1, representing the random

aspect of turbulence. The terms ai,j are the elements of the Cholesky decomposition matrix
A of the Reynolds Stress Tensor R :

R =




R1,1 R1,2 R1,3
R2,1 R2,2 R2,3
R3,1 R3,2 R3,3


 = AA

T
with A =

�
ai,j

�
(3.6)

Through Equations (3.5) and (3.6), the link between the intensities ck of the turbulent
structures and the Reynolds Stress Tensor R ensures the generation of a velocity field that
statistically replicates any given turbulence intensity I∞ and any given anisotropic ratio
(σu :σv :σw) [39, 99]. Indeed the three components of the anisotropic ratio (σu :σv :σw)
are given by the square roots of the diagonal components of the Reynolds Stress Tensor
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R. Moreover the turbulent intensity I∞ can be rewritten as a function of the trace of the
Reynolds Stress Tensor R :

I∞ = 100
�

1/3
�
σ2(u∞) + σ2(v∞) + σ2(w∞)

�

ū2∞ + v̄2∞ + w̄2∞

= 100
|u∞|

�
R1,1 + R2,2 + R3,3

3

= 100
|u∞|

����tr
�
R
�

3

(3.7)

This last Equation (3.7) ensures that the turbulent field will have the desired turbulent
intensity I∞ and anisotropic ratio (σu :σv :σw).

The shape function Fλ appearing in Equation (3.4) is defined as prescribed by Jarrin
et al. :

Fλ(y) =
3�

i=1
fλi

(yi). (3.8)

λ determines the size of the area of influence of each turbulent structure k. This size
could be interpreted naively as a turbulent length scale (such as the Taylor or Kolmogorov
length scales), but its implementation is not as straightforward. The structure sizes λ are a
user-defined parameter which can be chosen based on characteristics of the turbulent flow
which is to be reproduced. Additional information on the choice of the parameter λ can be
found in the following Sub-Section 3.2.2. The fact the λ is defined as a vector allows the
area of influence to have different sizes λi in each direction i. Each individual turbulent
structure k could also have its own vector size λk, as will also be discussed in the following
Sections. The sub-function fλ used in the evaluation of the shape function Fλ must meet
certain requirements in order to ensure that the ambient turbulence is generated with the
chosen characteristics :

argmax
y

(fλ(y)) = 0, (3.9a)

fλ(y) = fλ(−y), (3.9b)
� λ

−λ
f2

λ(y)dy = 1. (3.9c)

These three Equations (3.9a), (3.9b) and (3.9c) are of crucial importance to the proper
functioning of the numerical model.

For the preliminary results presented in Section 3.2, a basic shape function Fλ given
by Jarrin et al. is used. Its sub-function fλ is a tent function, here a triangular function
centered around zero with a base of 2λ :

fλ(y) =
� �

3
2λ3 (λ − |y|) if |y| < λ

0 otherwise.
(3.10)

This basic tent function belongs to the C0-class functions : it is continuous but its first
derivative presents large discontinuities. In the framework of Lagrangian Vortex computa-
tions, such discontinuities in the velocity derivatives can be problematic, more specifically
for the evaluation of the stretching term S as presented in Paragraph 1.3.1. Following
the conditions cited in Equations (3.9a) (3.9b) and (3.9c), smoother alternative shape
functions fλ can be defined. Three examples of class C1 or more are considered :
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— A sinusoidal shape function :

fλ(y) =





1√
3λ

�
cos(π

λ
y) + 1

�
if −λ ≤ y ≤ λ

0 otherwise
(3.11)

— A polynomial shape function :

fλ(y) =





�
315

256λ

�
y4

λ4 − 2y2

λ2 + 1
�

if −λ ≤ y ≤ λ

0 otherwise
(3.12)

— A Gaussian shape function :

fλ(y) =





c(λ)
�

1 − exp(1) y2

λ2 exp
�

−y2

λ2

��
if −λ ≤ y ≤ λ

0 otherwise
(3.13)

where c (λ) = 1�
L (25

8 + 3 exp(2)
√

π ∗ erf(
√

2)
16

√
2

− exp(1)
√

π ∗ erf(1) )
.

Figure 3.1a depicts the four kernels for λ = 1, and Figure 3.1b the Gaussian kernel for
different values of λ.
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Figure 3.1: The four different kernels for λ = 1 and the Gaussian kernel for different
sizes λ of turbulent structures.

Lastly, the theory of turbulent scales dictates that every turbulent flow contains a wide
range of magnitudes of turbulent behavior. Despite its purely mathematical nature, the
purpose of this model remains to best represent the true physical phenomenon of turbulent
agitation. Thus a standard deviation of the size of turbulent structures, denoted σ(λ), is
added as a parameter of the model. At deviation zero, all turbulent structures k have the
same size λ. A non-zero value of deviation results in a term σ(λ) being added into the
size of each turbulent structure (independantly in each direction i = 1, 2, 3), generating
turbulent structures ranging in size. The added term σ(λ) is computed so as to ensure that
these sizes are normally distributed around a certain average value : λ ∼ N (λ, σ2(λ) ),
as illustrated in Figure 3.2. The standard deviation σ(λ) is expressed as a percentage of
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the variable λ, for instance : σ(λ) = 10% = 0.1 λ. In all cases, this results in a more or less
wide spread of turbulent structure sizes, centered around the average given by the initially
prescribed values of λ.

0 0.2 0.4 0.6 0.8 1

ϕ
(λ

)

λ

σ(λ) = 10%
σ(λ) = 20%
σ(λ) = 30%
σ(λ) = 40%
σ(λ) = 50%

Figure 3.2: Normal distributions centred around λ = 0.5.

If the normal law is not limited, λ could potentially reach negative values, which has
no physical meaning. With a heightened value of the standard deviation, it could also lead
to the generation of structures of abnormally large size. To solve this problem, boundaries
are introduced to the values that λ can take within the prescribed standard deviation. A
lower boundary ensures that the size of the turbulent structures can only be positive, while
an upper boundary restricts these sizes to under twice the prescribed average value. If the
randomly generated size does not meet these criteria, i.e if λ /∈ ]0 : 2λ], it is not taken into
account and a new structure size is generated. This upper boundary was selected so that
the average size of all structures remains substantially equal to the prescribed value λ.

3.1.2 Integration of the Synthetic Eddy Method into the Vortex method
The Vortex Particle Method is an unsteady Lagrangian method in an unbounded do-

main, where the fluid domain is considered to be infinite. However as mentioned previously,
the Synthetic Eddy Method requires the definition of a set volume Ṽ containing all the
turbulent structures, defined as the volume of a box-shaped space Ẽ. A second space ES

is considered within Ẽ as the actual area of interest inside which the ambient turbulence
is desired. In order to obtain statistically correct velocity fluctuations all over the study
space ES , enough buffering space must be left over between Ẽ and ES to ensure the uni-
formity of the fluctuations all over the area of interest. This can be written as the following
conditions :

min
�
xi ∈ Ẽ

�
≤ min (xi ∈ ES) − 2λi ∀i ∈ {1, 2, 3}, (3.14a)

max
�
xi ∈ Ẽ

�
≥ max (xi ∈ ES) + 2λi ∀i ∈ {1, 2, 3} (3.14b)

with x a position vector and λ = λi (i = 1, 3) the size vector of the turbulent structures,
as illustrated in Figure 3.3. From this point onwards, in all subsequent Figures the flow
direction is represented from the left to the right. The upstream velocity field u∞ is shown
in the direction of the flow and applied throughout the entire domain ES .

N turbulent structures k are generated within the chosen space Ẽ, at random initial
positions and of sizes distributed around the average vector size λ, as discussed in the
previous Paragraph. The saturation level of turbulent structures is described by a filling
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Ẽ
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2λ1 2λ1

2λ2

2λ2

Figure 3.3: Schematic view of the integration of the Synthetic-Eddy-Method into the
Vortex method

ratio Rf :

Rf =
N�

k=1

Vk

Ṽ
(3.15)

where Vk is the volume of the area of influence of the structure k (i.e., Vk = 4
3πλ1λ2λ3).

The algorithmic procedure of the SEM progresses as such : each turbulent structure
k is characterized at the moment of its generation by an intensity ck calculated using
Equation (3.5), and a random value �k

i,j with equal probabilities of being 1 or −1. After
their initialization, the turbulent structures are advected with the flow as the simulation
proceeds. If during the course of the simulation a turbulent structure is advected outside of
the boundaries of the space Ẽ, it is deleted, and replaced by a newly generated structure
at the inlet of the space, i.e. the leftmost boundary of the schematic representation of
Figure 3.3.

Different strategies can be considered for the advection of turbulent structures, with
varying levels of coupling and complexity. First of all, the structures can be advected
either with the constant average upstream velocity u∞ or with the complete flow velocity
u. However, if the structures were to be advected with the flow velocity u, several questions
would arise. As the validity of the Synthetic Eddy Method relies on the randomness of
the locations of the turbulent structures, it is unclear whether this property would remain
valid if the turbulent structures were advected with a non uniform velocity. Additional
tests would need to be carried out in order to ensure that the Reynolds Stress Tensor is
still satisfyingly replicated.

Secondly, the added turbulent velocity term ũ(x) could be included in the computation
of the stretching and diffusive terms of the Navier-Stokes equation (first and second terms
of the right side of Equation (1.4), explicited in Section 1.3). In this preliminary study,
the simplest options are selected : advecting the turbulent structures with the constant
velocity u∞, and omitting their influence in the calculation of stretching and diffusive
terms of the Navier-Stokes equation.

3.2 Numerical reconstruction of turbulent velocity fields
In order to study the turbulent flows generated by the Synthetic Eddy Method and

the influence of its various parameters, numerically generated flows are investigated with
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basic inflow conditions. Throughout this Section, unless stated otherwise the mean inflow
velocity is chosen as |U ∞| = 1 m/s, and the anisotropic ratio as (σu : σv : σw) = (1 :
0.75 : 0.56) based on the observations of Milne et al. [26]. For ease of notation, when the
average turbulent structure size vector λ has the same value in each direction i = 1, 2, 3,
this size will be referred to as the single value λ (i.e. λ1 = λ2 = λ3 = λ or λ = (λ, λ, λ)).

3.2.1 Analysis of the velocity fields
Figure 3.4 shows examples of turbulent flow fields generated with the Synthetic-Eddy-

Method for different values of turbulent intensity I∞. At first glance, these flows appear
to be very realistic, with the disruptions to the flow field increasing with the value of the
turbulent intensity. The size of the turbulent structures, set to λ = 1, is not immediately
apparent. Figure 3.5 shows the influence of this size parameter, for a fixed value of the tur-
bulent intensity and no variance on the structure sizes. When the turbulent structures are
small, each structure can be clearly identified ; whereas when the sizes increase, individual
structure shapes are lost in the overlap. Figure 3.6 shows the influence of anisotropy in the
set value of turbulent structure sizes λ, with no variance allowed. The outlined turbulent
structures clearly take on a more elongated oval shape as prescribed by their dimensions.
Figure 3.7 shows the influence of the variation σ(λ) allowed around the prescribed ave-
rage turbulent structure sizes λ. For higher variations σ(λ), the shapes of the turbulent
structures become increasingly eclectic and diverse, as these variations are independent in
each dimension.
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Figure 3.4: Examples of velocity fields provided by the Syntehtic Eddy model for N =
1000 structures of fixed size λ = 1 (Rf = 19.4) and different values of I∞. Slice at z = 0
of the 3D reconstructed velocity field of size 6 × 6 × 6.

Beyond controlling the appearance of the turbulent velocity fields, the main function
of the Synthetic Eddy Method is its ability to reproduce any given Reynolds Stress Tensor.
This ensures the correct representation of any given turbulence intensity I∞ and aniso-
tropic ratio (σu :σv :σw), as their direct link to the Reynolds Stress Tensor is made clear
in Equation (3.7). It is important to verify the accuracy of this reproduction. In order to
simplify this verification, one unique quantity is examined : the Turbulent Kinetic Energy
(TKE) K as defined by the following Equation :

K = 1
2(σ2

u + σ2
v + σ2

w). (3.16)

The value of K is calculated based on the velocity time series recorded at a single point
in a turbulent flow, as it would be in the context of an experimental study. To this end, a
turbulent space Ẽ is built around the sampling point. Turbulent structures evolve within
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Figure 3.5: Example of velocity fields provided by the Synthetic Eddy model for
I∞ = 15%, N = 1000 structures and different structure sizes (Rf = 0.3, 2.4 and 19.4
respectively). Slice at z = 0 of the 3D reconstructed velocity field of size 6 × 6 × 6.
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Figure 3.6: Example of velocity field provided by the ambient turbulence model for
I∞ = 15%, N = 1000 structures and different structure sizes (Rf = 1.9, 1.5 and 1.0
respectively). Slice at z = 0 of the 3D reconstructed velocity field of size 6 × 6 × 6.

this space, advected with the prescribed upstream velocity of |U ∞| = 1 m/s. Various
parameters are tested, such as the size of turbulent structures λ, the variation on the size
of the turbulent structures σ(λ), and the filling ratio Rf as defined in Equation (3.15).

Each time series is generated over a simulated period of 12 hours, with a sampling
interval of dt = 0.1 seconds. Figure 3.8 shows examples of the time series obtained in
the "best" and "worse" case scenarios. In the "worse" case, the value of K appears to
stabilise eventually at a lower value compared to the target value of 1.35 × 10−3. As a
stochastic method, the SEM is designed so as to ensure an eventual convergence towards
this theoretical value. However this convergence is very slow, as there is no evidence of
it after 12 hours of simulated time. In this case the filling ratio Rf is low, and since the
structures are of larger size λ this means that they are fewer in number. Fewer structures
leads to less regeneration of turbulent structures exiting the study space, which causes a
slower convergence of the statistical method. Furthermore with the low filling ratio, the
sampling point is likely to not be covered by any turbulent structures for a significant part
of the time, which explains the lower initial value of K. In the "best" case scenario, the value
of K converges and stabilises rapidly at the target value. Due to the probabilistic nature of
the Synthetic Eddy Method, these examples of results are not strictly reproducible when
repeating the test with the same sets of parameters, but the general tendencies remain.

In order to obtain an accurate representation of the value of K to be expected, 50
time series are computed for each set of parameters. The average and maximal errors on
the value of K out of the 50 trials are measured for each set of parameters. Figure 3.9
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Figure 3.7: Example of velocity field provided by the ambient turbulence model for
I∞ = 15%, N = 1000 structures of average sizes λ = 0.5 and increasing variations allowed
around this average (Rf = 2.4). Slice at z = 0 of the 3D reconstructed velocity field of size
6 × 6 × 6.
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Figure 3.8: Time series of the current values of the TKE K computed at a single point
over 12 hours of simulated time, for the low turbulence intensity I∞ = 3%. On the left :
an example of very slow convergence, with few turbulent structures of large size λ. On the
right : an example of fast convergence, with a high saturation Rf of structures of small
size λ.

shows the average and maximal errors on the reconstructed TKE for different values of the
turbulent structure sizes λ and filling ratios Rf . For all structure sizes λ, the average error
on the TKE is at its lowest value for the higher filling ratios Rf . Additionally, the relative
position of each average error curve shows that the error on the TKE is lower for smaller
structure sizes λ. Figure 3.10 shows the same average and maximal errors on the TKE for
different structure sizes λ, plotted now over a variance σ(λ) allowed around the average
sizes λ. This graph shows a slight increase in the value of the errors for higher variances
σ(λ). The difference between the curves corresponding to different average sizes λ is no
longer evident. The blurring of these differences could be explained by the introduction of
size variation σ(λ), meaning that turbulent structures are no longer all of the exact same
size λ for each curve. In both Figures, the higher and lower turbulent intensity levels show
the same general tendencies. The values of the error committed on the TKE are higher
for the higher turbulence intensity value I∞ = 15%. However the value of the TKE is
also increased with the higher turbulence intensity, which means that the relative error
committed is still comparable.
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Figure 3.9: Average error (full lines) and maximal error (dashed lines) on the value
of the TKE K plotted against the filling ratio Rf , for various size of turbulent structures
λ. For both the cases of low turbulence intensity (a) and high turbulence intensity (b) :
σ(λ) = 0%, and the sub-function fλ uses the Gaussian kernel.

These tests show that for all sets of parameters, the error committed on the value of
the TKE is always satisfyingly low compared to the expected values. However it can be
concluded that the Reynolds Stress Tensor is more accurately reproduced when using a
high number of turbulent structures of small size λ. Introducing variation on the sizes of
the turbulent structures also slightly disrupts its components.

3.2.2 Physical properties of the flow

In order to pursue the analysis of numerical flows generated by the Synthetic Eddy
Method, velocity spectra can also be considered, as is done by Medina [100]. In the follo-
wing paragraphs, two characteristic physical behaviors of the turbulent flow are analysed.
Firstly the time-averaged instantaneous power spectral density (PSD) of the velocity field
in the Fourier space illustrates the principle of energy decay in a turbulent flow. Secondly
the integral length scale of the flow, also called Taylor macroscale, gives a representation
of the size of the generated turbulent structures.

As described in the previous Section, the synthetic turbulence generation method is
based on a stochastic algorithm. The statistical properties of turbulent kinetic energy
can be described by energy distribution spectra, commonly represented in a logarithmic
scale over the wavenumber of the turbulent structures. The concept of energy cascade,
as formulated in the work of Richardson and Kolomogorov (see Batchelor [101]), is that
kinetic energy enters the turbulent flow at the largest scales to then be transferred to
smaller scales, until it is dissipated at the smallest scales by viscous effects. Figure 3.11
illustrates this principle.

The purpose of this study is not to measure the kinetic energy along the wavenumber,
but rather to paint a picture of the global behaviour of the kinetic energy in the numeri-
cally generated turbulent flow. We focus here on the velocity fluctuations at a single central
point in the flow, caused by the presence of N generated turbulent structures, as shown
in Figure 3.12. As expected, the axial velocity variation uσ(t) at this point cycles through
unpredictable values in an irregular fashion. These variations are caused by turbulent
structures passing successively over the measuring point. Each passing structure causes
a velocity fluctuation, the amplitude of which depends on the intensity of the turbulent
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Figure 3.10: Average error (full lines) and maximal error (dashed lines) on the value of
the TKE K plotted against the variance σ(λ) allowed around average turbulent structure
sizes λ, for various size of turbulent structures λ. In all cases : I∞ = 3%, Rf = 5, and
the sub-function fλ uses the Gaussian kernel.

Figure 3.11: Diagram of the principle of
energetic decay E(k) along the wavenumber
k
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Figure 3.12: Temporal measurements of
velocity fluctuations uσ (t) at one point, for
different kernel functions fλ (with I∞ =
15%, λ = 0.25, σ(λ) = 25%, Rf = 1).

structure and the distance to its center. Distinctive occurrences of the triangle and Gaus-
sian kernels can be identified, indicating the passage of individual turbulent structures
close to the measuring point. These temporal records are used to calculate the spectrum,
based on the variations in the driving axis of the flow. Figure 3.13 shows the power spectral
density for fixed sizes of turbulent structures (i.e. σ(λ) = 0%), for the four sub-functions
fλ.
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Although the choice of sub-function alters the pattern of the spectrum, the four curves
decrease in similar ways. Additionally, it must be noted that the random nature of the
stochastic model can cause each of these curves to slightly vary with repeated simulations.
While this figure shows the evidence of a general energy decay, this decay is not linear,
but disrupted by recurring "bumps". These "bumps" can be explained by the nature of the
Fourier transform used to compute the PSD. In the simplest case of the triangular kernel,
the Fourier transform of a triangle function is a well-known result :

Δ(f) = F (Triangle(t)) = sinc2(f). (3.17)

As a sum of triangle functions of identical width λ, the velocity signal is transformed into
a sum of proportional square cardinal sinus functions. Figure 3.14 verifies the alignment
of the square cardinal sinus function with the calculated PSD.

When the standard deviation σ(λ) on the size of turbulent structures is nonzero, the
flow is filled with a range of structures of different sizes. This affects the energy decay
represented by the PSD, as shown in Figure 3.15. The Fourier transform of the new
velocity signal becomes a sum of "bumpy" elements which do not align, leading to a
smoother and more realistic curve. This PSD appears to converge with respect to the
variation σ(λ) as of σ(λ) = 75%, towards a quasi-linear energy decay. The quality of
the PSD curves obtained with sufficient variation on the size of the turbulent structures is
further validated by comparison with experimental spectra provided by Medina et al. [102].
While the correspondence between numerical and experimental data is not complete, the
similarities between these curves is sufficient to conclude that the SEM is capable of
accurately representing the energy behaviour of a real turbulent flow. At this point, it
is worth remembering that the smaller the variation σ(λ), the better the convergence of
the numerical TKE towards the target value (see Fig. 3.10 above). Therefore, for further
applications, a trade-off will have to be made when weighing the importance of both these
elements in the choice of the parameter σ(λ).
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Figure 3.15: Influence of σ(λ) on the spectral representation for a Gaussian kernel
(λ = 0.5 and Rf = 2) and comparison with experimental data provided by Medina et
al. [102] (for I∞ = 15% and U∞ = 0.8 m/s).

True physical turbulent motions occur over a wide range of time and length scales,
with the largest scales accounting for the largest transports of momentum and energy. As
a second physical analysis of the numerically generated turbulent flows, we attempt to
liken the spatial scale of the turbulent behavior to the prescribed sizes λ of the turbulent
structures. There are many possible methods to measure the scales of turbulent behavior
in a given flow. Among these measures, the Taylor macroscale L gives an estimate of the
characteristic size of turbulent eddies. L is calculated using the autocorrelation method
based once again on the fluid velocity measured at a single point over a period of time :

L = u

� ∞

0
R(τ)dτ, (3.18)

with R(τ) the autocorrelation function. In the present case of a statistically stationary
process, the autocorrelation is defined as a function of the time lag τ :

R(τ) = �u(t) u(t + τ)� (3.19)

The value of the autocorrelation begins at 1 and then decays with increasing time lag τ ,
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Figure 3.16: Sample plot of an autocorrelation function R(τ) calculated with the nu-
merically generated velocity field

as shown in Figure 3.16. As the turbulent velocity fluctuations are randomly generated,
the autocorrelation converges towards zero.
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The characteristic length L of the flow is calculated for varying turbulent structure
sizes λ, at first with no variance σ(λ) allowed. The results displayed in Figure 3.17 show
near-perfect linear relationships obtained between the prescribed sizes λ and the resulting
turbulent spatial scales L , for all types of kernel sub-functions fλ. The turbulent scales L
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Figure 3.17: Linear relation between L et λ using different kernel functions fλ.

are then recalculated with the introduction of variances σ(λ) around the average structure
sizes λ. Table 3.1 shows that this results in only small disruptions of the value of the scale
L . It can thus be assumed that with or without variation on the size λ of the turbulent
structures, λ is proportional to the scale of the turbulent behavior in the generated flow.

σ(λ) (%) 0 25 50 75 100
L (λ = 0.25) 0.163 0.163 0.162 0.162 0.169
L (λ = 0.5) 0.330 0.336 0.310 0.327 0.328
L (λ = 0.75) 0.496 0.478 0.474 0.486 0.518

Table 3.1: Influence of the variation on the structure sizes σ(λ) on the value of the
Taylor macroscale L with Rf = 1 and the Gaussian kernel.

3.3 Application to marine current turbine simulation
The properties of turbulent flows generated by the SEM have been thoroughly studied

in the absence of turbines. As an illustrative application of the adapted SEM, two sim-
plified turbine simulations are carried out with turbulent intensities I∞ ranging from 0 to
15%. Though the results are qualitative, they demonstrate the influence of the ambient
turbulence created using the adapted SEM throughout the surrounding flow. The aim of
this trial is to reproduce the behavior observed in experimental studies, such as Mycek et.
al [78].

These simulations are carried out with a simplified turbine model : only the three
turbine blades are represented. The geometry and specifications of the turbine blades
used in these simulations are those of the IFREMER-LOMC turbine model used in [78].
In these computations, in addition to the SEM module presented here, the diffusion model
described in Paragraph 1.3.2 (PSE method using an LES formulation) is used to account for
an eddy viscosity affecting the Lagrangian Vortex particles. 90 to 120 seconds of physical
time are simulated, and velocity averages are post-treated over the last 50 to 80 seconds
once the turbine wake is stabilised. The velocity component ũ produced by the SEM, as
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mentioned in Equation (3.2), is omitted from this post-treatment, in order to emulate the
effect of a longer time average. With a longer time average, this fluctuating component
would even itself out and have no influence on the averaged end result. In all cases,
the average upstream velocity remains at U∞ = 1 m/s and gravity was neglected. Two
turbine rotation speeds are considered, characterized by Tip Speed Ratios TSR = 2.5 and
TSR = 3.67 (TSR = ΩR

U∞
, with Ω the rotation speed and R the radius of the turbine).

The study space ES in which the SEM is applied is extended to 1 turbine diameter ups-
tream of the turbine center, 3 diameters above and below, and 12.5 diameters downstream.
Experimental data for later comparison is only available up to the cutoff of 10 diameters
downstream of the turbine. This allows the wake to be artificially dissipated later on, in
order to maximize computational efficiency. The same basic set of SEM parameters is used
to obtain the Figures presented hereafter : λ = 0.5, σ(λ) = 0, and Rf = 1.
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Figure 3.18: Velocity maps in the wake of a single turbine, averaged over a period of
50 to 80 seconds, for varying levels of turbulent intensity. The x and y axis were made
dimensionless with respect to the turbine diameter D. ū∗ stands for the dimensionless
velocity field and is defined as |ū|/U∞.

Figure 3.18 shows dimensionless velocity maps of turbine wakes obtained in these
conditions for varying turbulent intensities I∞. Despite the evidence of the missing hub
in the form of a heightened velocity at the center of the wake, satisfying tendencies can
be observed. First of all, in the absence of ambient turbulence, the turbine wakes extend
to approximately 10 diameters downstream of the rotor, which is the correct behaviour
expected in low turbulence conditions [103]. Secondly, when using and progressively increa-
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sing the ambient turbulence intensity generated by the SEM, the turbine wake becomes
progressively shorter. This is further evidenced when considering the velocity deficits inte-
grated in the wake of the turbine. By the relative positioning of the velocity deficit curves,
Figure 3.19 confirms the ever faster wake recovery as the turbulent intensity is increased.
For instance for the case of the lower rotation speed TSR = 2.5, the velocity in the wake
of the turbine reaches the ratio of 0.9 times the upstream velocity U∞ at approximately
3.5 diameters downstream of the turbine with the highest turbulence intensity I∞ = 15%,
7.5 and 5 respectively for turbulence intensities of I∞ = 10% and 5%, a value which is not
reached within the study space with no turbulence intensity. Computational times were
increased by 100 to 200% when using the SEM ambient turbulence generation module
with the aforementioned parameters, with respect to the basic case run using no ambient
turbulence I∞ = 0%. For base computational times of approximately 10 hours with 252
cores, the additional CPU cost of this development is not considered to be critical conside-
ring the advantages it procures. And a better integration, especially with respect to load
balance in the parallel MPI framework, is much probably possible that may drastically
diminish this increase.
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Figure 3.19: Velocity integrated in the wake of a single turbine, on a disc of the same
width as the turbine and at given distances downstream of its centre. These curves are
produced using the numerical wake velocities shown in map form in the previous Figure.

The Synthetic Eddy Method thus proves its compatibility with the full marine turbine
Vortex simulation software. In addition to its ability to reproduce physical properties of
experimental flows, it can also have the correct influence on the wake of the turbine, in
the form of the shortening of its wake, also observed in experimental studies conducted
at IFREMER [78]. It must however be noted that some sets of turbulent parameters may
lead to less satisfying results (not presented here) : large turbulent structures tend to not
have sufficient mixing properties, while small structures may cause important and non
physical velocity fluctuations, and a number of any size of turbulent structures can have
a strong dissipative effect on the wake regardless of turbulence level.

3.4 Conclusions and Further work

The Synthetic Eddy Method (SEM) initially proposed by Jarrin et al. [39] [91] is
successfully adapted to the Lagrangian Vortex framework. The present implementation
gives satisfying results regarding the important role played by the ambient turbulence
intensity in the behavior of turbine wakes. To the authors’ knowledge, this work represents

77



Chapter 3. Stochastic representation using the Synthetic Eddy Method

one of the first attempts to account for ambient turbulence in a purely Lagrangian Vortex
representation.

The present ambient turbulence model is able to generate a perturbed flow verifying
any given turbulence intensity I∞ and any anisotropic ratio (σu :σv :σw). The study of
the Power Spectral Densities (PSD) shows that the introduction of a variation in the sizes
of the turbulent structures smoothes the PSD curve of the perturbed flow. This allows
for the reproduction of an energy cascade scheme close to experimental measures taken
in real turbulent flows. Measuring the Taylor macroscale in the generated flows shows
that the scale of the turbulent behavior depends exclusively on the prescribed turbulent
structure sizes. For each considered kernel shape function, there exists a remarkable linear
relationship between these two quantities.

As an application example, the compatibility of this method with a Vortex code for the
simulation of turbine wakes is verified. The results show that for certain turbulence para-
meters, the qualitative influence of the turbulent intensity can be accurately reproduced :
the turbine wake is dissipated sooner the higher its value.

A limitation of this present implementation of the Synthetic Eddy Method lies in the
fact that the added perturbation term is not divergence-free. However for the turbulent
intensities considered here, the error introduced in the flow poses no considerable issue.
Further work is needed in order to reformulate the velocity perturbation term ũ in a way
that is better compatible with the present Vortex formulation. The divergence-free alter-
native implementation of the SEM suggested by Poletto et al. [104] is under consideration
in the pursuit of this study, as their rotational representation of the perturbation velocity
could be better suited to the Lagrangian Vortex framework.

Another avenue of investigation lies in the degree of integration of the perturbation
velocity ũ in the Lagrangian algorithm. In the present implementation, it is only added
in the advection step but it could also be integrated into the stretching step or even the
diffusion step when using the Diffusion Velocity Method (DVM). This increased integration
could be valid for both Jarrin’s initial formulation and Poletto’s more recent version.

Even in the form of this initial investigation, this new implementation possesses the
important advantage over its Eulerian counterparts of allowing the ambient turbulence
level to be maintained throughout the entire computational domain, regardless of its size.
This is of a crucial importance when considering an array of tidal turbines, to ensure
that the same levels of upstream ambient turbulence are perceived by rows of turbines
positioned anywhere in the array. This represents a significant step towards the final goal
of computing an entire farm of turbines in any realistic operating conditions.
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Chapter 4

Divergence free adaptation of the
Synthetic Eddy Method

4.1 Introduction

As described in the previous Chapter, the Synthetic Eddy Method (SEM) uses ran-
domly positioned eddies to generate a perturbation term ũ added to the upstream velocity
term u∞ as the fluctuationg part of its Reynolds decomposition (see Equation (3.2)). It
is able to generate velocity fluctuations ũ guaranteed to reproduce any given Reynolds
stress tensor, via the use of the coefficients of its Cholesky decomposition along with an
appropriate shape function, as formulated in Equations (3.3) and (3.4).

In his PhD thesis [46], Poletto aims to create an alternative form for the velocity
fluctuations of Equation (3.4) which in addition to the reproduction of the Reynolds stress
tensor would also ensure a divergence free velocity field. His method, dubbed Divergence
Free Synthetic Eddy Method (DFSEM), uses the same framework as the SEM : a collection
of turbulent structures, initially randomly placed and then progressing throughout a given
study space, each having an individual area of influence. However in this new DFSEM,
the turbulent structures are reshaped and the perturbation velocity reformulated in order
to ensure a divergence free velocity field respectful of the base incompressibility condition
of Navier-Stokes’ equations.

After an overview of the reasoning leading to Poletto’s suggestion for a divergence
free turbulent velocity formulation, this Chapter will detail the aforesaid formulation. As
performed in the previous chapter for Jarrin’s original SEM, the reproduction of various
turbulent field characteristics with Poletto’s DFSEM will be verified, as well as its behavior
when interacting with the wake of turbine blades.

A more detailed account of the mathematical derivation of Poletto’s formulation can
be found in his PhD thesis [46].

4.2 Poletto’s formulation

In this divergence free adaptation of the original SEM, the same basic framework is used
as presented previously in the previous Chapter. A chosen number of turbulent structures
are placed randomly within a given study space, advected with the average upstream
velocity, and replaced at the inlet of the study space as the simulation progresses. Each of
these turbulent structures generates a disruption to the velocity field in an area of influence
surrounding its center. The particulars of this disruption are given by a formulation for
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Figure 4.1: Schemtic representation of the turbulent structures immersed in the inco-
ming flow.

the perturbation velocity, now more closely related to a true "eddy" formulation than the
SEM’s velocity sources and sinks, and modulated by a shape function. Figure 4.1 shows
the new representation of this situation. The combination of these elements is expected to
verify the following conditions :

— must be divergence free.
— must ensure the reproduction of a given Reynolds Stress Tensor (which guarantees

the reproduction of any prescribed turbulent intensity and anisotropic ratio).

This Section presents an overview of the reasoning followed by Poletto in order to
obtain these elements, leading to the formulation for the DFSEM added turbulent pertur-
bation velocity noted once again ũ. For a better understanding of the somewhat delicate
mathematical processes involved in this derivation, see Chapter 6 of Poletto’s thesis [46].

4.2.1 From vorticity to velocity

Poletto’s reformulation of the perturbation velocity is obtained by applying fluctuations
similar to those used in the SEM framework to the vorticity field rather than the velocity.
The vorticity field thus obtained can then be integrated into a divergence free velocity field
(as suggested by Winckelmans and Leonard [60]). These vorticity fluctuations are given
by :

ω̃(x) =
�

1
N

N�

k=1
ckFλ(x − xk) , (4.1)

with N the number of turbulent structures k, λ the prescribed sizes of turbulent structures,
and ck and Fλ a structure intensity and an appropriate shape function which have yet to
be defined in this context.

In order to obtain a divergence free velocity field ũ corresponding to this vorticity, we
begin from the vector calculus identity :

∇× ω̃ = ∇×(∇× ũ))
= ∇(∇· ũ) − Δũ .

(4.2)

80



Chapter 4. Divergence free adaptation of the Synthetic Eddy Method

Under the hypothesis of a divergence free velocity field ∇· ũ = 0, this leads to the Poisson
equation :

Δũ = − ∇× ω̃ , (4.3)
of which a solution is given using the Biot Savart kernel :

ũ(x) =
�

y∈R3
K(x, y) × ω̃(y)dy (4.4)

=
�

1
N

N�

k=1

�

y∈R3
K(x, y) ×

�
ckFλ(y − xk)

�
dy (4.5)

=
�

1
N

N�

k=1

��

y∈R3
Fλ(y − xk)K(x, y)dy

�
× ck . (4.6)

when substituting the vorticity disruption ω̃ by its expression given in Equation (4.1).
After grouping most of the integral part of the above expression into a single unknown
quantity, Poletto rearranges this formulation to depend on a radial vector rk = x−xk

λ
normalized by the structure size λ and dk = |rk| the corresponding distance. After these
rearrangements, the velocity disruption ũ of Equation (4.6) can be rewritten under the
form :

ũ(x) =
�

1
N

N�

k=1

Qλ(rk)
(dk)3 rk × ck , (4.7)

with Qλ now the new unknown shape function. For each dimension i = 1, 2, 3, the com-
ponent ũi of the velocity disruption is finally expressed as :

ũi(x) =
�

1
N

N�

k=1

qλ(dk)
(dk)3 (rk × ck)i , (4.8)

where (rk ×ck)i denotes the i-th component of the results of this cross product (or �ijlr
k
j ck

l

using the Levi-Civita notation), and qλ is now the final purely scalar form of the shape
function to be determined.

4.2.2 Shape function qλ

Basic conditions

Within this context, the as yet undefined shape function qλ must verify the following
conditions :

1. First of all, turbulent velocity field ũ resulting from the three components described
by Equation (4.8) must verify the incompressibility condition. The differentiation
of these components shows that by using the same shape function qλ for the three
directions i = 1, 2, 3 (or x, y and z) and depending only on the radial distances
dk, the resulting velocity field ũ is assured to be divergence free as long as it is
continuous and differentiable.

2. Following this previous point, the shape function qλ is required to make up for the
singularity around 0 inherent to the expression of Equation (4.8) :

lim
x→xk

qλ(dk)
(dk)3 ∼ C(dk)n, with C �= 0 and n ≥ 0 , (4.9)

in order to prevent a singular behaviour around the center of each turbulent struc-
ture.
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Figure 4.2: Shape function qλ as defined in Equation (4.12), for a sample volume size
Ṽ = 1 and varying turbulent structure sizes λ.

3. Lastly, for the sake of ease and computational efficiency, the influence of each
turbulent structure should be strictly limited to the radius given by its size λ,
i.e. :

qλ(dk) = 0 for |dk| > 1 . (4.10)

Reproduction of an isotropic Stress Tensor

Next, Poletto begins by searching for a shape function able to ensure that the entire
perturbation velocity ũ is able to produce a diagonal and isotropic Reynolds Stress Tensor
R. This corresponds to the condition that if the average value of the turbulent structure
intensities ck is 1, the average value of the normal stress components ũiũi must be 1 as
well. In verifying this proposition, Poletto obtains an additional condition on the function
qλ. He is then finally able to suggest one simple possible form for a suitable shape function :

qλ(dk) = B
�
sin(πdk)

�2
dk , (4.11)

with B a normalizing constant. While he states that the value of B must be
�

16Ṽ
15πλ3 ,

our tests of the reproduction of the Reynolds Tensor as well as a re-examination of his
reasoning have shown that it is in fact only

�
Ṽ

πλ3 (where Ṽ indicates once more the volume
of the chosen turbulent study space). The justification for this rectification is exposed in
Appendix A, using the notations of Poletto’s thesis. We obtain at last a possible shape
function verifying all the required conditions :

qλ(dk) =





�
Ṽ

πλ3

�
sin(πdk)

�2
dk for |dk| < 1,

0 elsewhere.
(4.12)

The shape of this antisymmetric function is shown in Figure 4.2.
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Calibrating of structure intensities ck

The shape function qλ has now been formulated so as to ensure that the resulting
velocity field ũ will result in a normalized isotropic Reynolds Stress Tensor R. Anisotropy
can then be introduced to this tensor using the last remaining unknown element of the
turbulent structure intensities ck. The value of these intensities must be carefully chosen
so that a specific desired Stress Tensor can be reproduced. The final solution obtained
by Poletto establishes a relation between the eigenvalues ξi of the Reynolds Stress Tensor
R and the average values which must be chosen for the components ck

i of the intensity
vectors ck, for i = 1, 2, 3 :

(ck
i )2 =




3�

j=1
ξj


− 2ξi , (4.13)

i.e.

ck
i = ±

�����




3�

j=1
ξj


− 2ξi . (4.14)

For the case of a diagonal stress tensor matrix, its eigenvalues ξi are simply the normal
stress values making up its diagonal components. However this formulation can also be
used for the case of a non diagonal tensor matrix, as will be covered in the next paragraph.

It must be noted additionally that this last result imposes a mathematical restriction
on the Reynolds Stress Tensors which can be used with this method, for the value under
the square root to remain positive.

Non-diagonal Stress Tensor

With this addition, it has now been established that any suitably chosen diagonal
Reynolds Stress Tensor can be accurately reproduced. In order to move on to the possibility
of reproducing any stress tensor (provided that its eigenvalues remain suitable to the square
root of Equation (4.14)), Poletto uses the trick of a change of referential.

Namely as a 3x3 symmetric matrix, it is always mathematically possible to find a re-
ference system in which the Reynolds Stress Tensor R is diagonal. The average structure
intensities ck can be computed using its eigenvalues, as established in the previous Pa-
ragraph. It is then only a matter of applying the transformation from this local diagonal
referential to the global referential, in order to ensure that the same shift will be translated
to the resulting Reynolds Stress Tensor. This will have the effect of skewing the turbulent
structures to the desired directions, with no other repercussions on the conditions on the
velocity field.

In this case, the components ũi of the turbulent velocity field can be readjusted from
the formulation of Equation (4.8) to :

ũi(x) =
�

1
N

N�

k=1

qλ(dk)
(dk)3 (rk × R(ck))i , (4.15)

with R the rotation corresponding to the transformation from the referential in which the
Reynolds Tensor R is diagonal back into the global referential.

This end result gives the final elements for the implementation of the DFSEM. We
have come to a formulation which could be considered as quasi-vortical for the fluctuating
velocity ũ, which is much closer to the Biot-Savart formulation serving as a basis for the
Vortex Method compared to the sources and sinks and of the SEM.
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4.3 Analysis of the generated velocity fields
While this formulation appears slightly more complex to the initial SEM, we have

been able to implement it into our numerical software and obtain promising results. We
are then able to perform the same analysis and validations as already presented in the
previous Chapter when using the SEM turbulence generation.

4.3.1 Reproduction of the Reynolds Stress Tensor
A convergence analysis of the computed Turbulent Kinetic Energy (TKE) is performed

depending on several numerical parameters, such as the size of the turbulent structures
as well as the number of turbulent structures per volume unit, characterised by the filling
ratio Rf . Due to the restrictions on the anisotropic ratio mentioned previously, a basic
isotropic ratio is used for the computations using the DFSEM : (1, 1, 1).

Based on the time series of the velocity computed at a single point for 6 hours of
simulated time, the evolution of the current Turbulent Kinetic Energy (TKE) is validated,
as well as its convergence towards the target value given by the user-prescribed Reynolds
stress tensor. The time series shown in Figure 4.3 show the disparity of the quality and
speed of this convergence depending on the choice of the parameters Rf and λ. While all
sets of parameters show an eventual satisfying convergence towards the direction of the
target value, this convergence appears to be faster when using the DFSEM compared to
the SEM (as can be recalled from the corresponding Figure 3.8 of the previous Chapter),
and for both methods the convergence is slower as well when using a small number of large
sized turbulent structures compared to a high number of smaller structures.
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Figure 4.3: Example of the time series of the Turbulent Kinetic Energy in the "best"
and "worst" convergence scenarios.

In order to confirm the tendencies noted on the time series of the TKE, and given the
random aspect of each individual simulation using both the SEM and DFSEM, 50 time
series such as those presented in Figure 4.4 are performed for each set of parameters λ
ranging from 0.25 to 1 as well as Rf ranging from 0.1 to 10. The maximal (dotted lines)
and average (full lines) of the errors committed on the 50 final values of the TKE for each
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using 50 sample times series of 6 hours each for each set of parameters).

set of parameters are presented in Figure 4.4. The clear trends mentioned previously can
thus be confirmed : as was the case for the SEM, the higher the filling ratio Rf and the
smaller the length scale λ, the lower the error on the final TKE.

4.3.2 Physical properties of the generated flow

Power Spectral Density

The reconstructed velocity fields can now be further analysed by looking once again
at the Power Spectral Density (PSD) spectra of Figure 4.5. Similarly to the procedure
used during experimental trials, time series of the numerically produced velocities are
recorded now for a duration of one hour of simulated time, and post-processed in order
obtain the PSD spectra. As already observed for Jarrin’s initial SEM formulation, the
choice of a single value for the structure sizes λ leads to a poor reproduction of the
desired Power Spectral Density. The same behaviour is now evidenced for the DFSEM
version of Poletto. However the quality of these PSDs can be largely improved by the
introduction of a statistical variation σ(λ) on the size λ of the turbulent structures. The
size of all turbulent structures are no longer all identical throughout the study space and
simulation, but calculated using a normal distribution law centred around an average value
still noted λ of standard deviation σ(λ). In the present example, introducing a standard
deviation σ(λ) = 100% around the average value λ = 0.5 signifies that the size of a
turbulent structure k can now range from λk = 0 to λk = 1. Even though the PSD spectra
are much improved with the introduction of heterogeneous structure sizes, the curves do
not perfectly fit the experimentally measured values from Gaurier et al. [80] represented
in black in Figure 4.5. This is most likely due to the fact that the turbulent structures
sizes are evenly spread around the central value, which does not represent the physical
phenomenon. A similar but asymmetrical normal distribution will soon be investigated
in order to obtain more of the smaller sizes, which is expected to mathematically better
reproduce the physical turbulent cascade. Additional improvements are expected with the
use of this new spreading function.
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Turbulent length scale

A last physical turbulent characteristic is now analysed in the form of the Taylor macro-
scale L . The same numerical velocity time series as those used to compute the PSD curves
are post-processed in order to evaluate this length scale of the turbulent behaviour in the
generated flow. The auto-correlation function is evaluated and using the first zero-crossing
together with Taylor’s frozen hypothesis, the Taylor macro-scale L is finally obtained. For
both the regular SEM and the recently developed DFSEM, near identical linear behaviours
are obtained as shown in Figure 4.6 : L ≈ 0.65λ for both Jarrin and Poletto’s formulations.
A similar analysis with different values of σ(λ) �= 0 will also be necessary to have a full
understanding of all the parameters used in both formulations.
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4.4 Computation of a turbine wake

Finally, computations of turbine wakes with varying ambient turbulence intensities
ranging from I∞ = 0% to I∞ = 10% are presented in Figure 4.7. An isotropic turbulence
is used once again for Poletto’s DFSEM method, with a turbulent structure size of λ =
R/2 and no variation (σ(λ) = 0%). Additionally, as the fluctuating turbulence has by
definition a zero average (�u�

∞� = 0), this component is once again removed during the
post-processing of the time-averaged velocity maps, to emulate the effect of a much longer
time average than the last 50 seconds of 90 second simulations used here. Only the blades
are considered in these simulations, the nacelle and hub of the turbine being omitted at
this stage. As a matter of reference, these computations are run in approximately 15 hours
on 252 cores of the regional calculator CRIANN.

As the rotor hub and nacelle are not taken into account, a localised velocity increase
can be observed downstream from the center of the turbine. However as further evidenced
by the integrated velocity ratio curves of Figure 4.8, the DFSEM ambient turbulence level
I∞ does not appear to have the desired effect of shortening of the turbine wake, as was
present in the SEM simulations (see the corresponding results of Figure3.19). The ordering
of velocity ratios confirms that the longest wake is obtained without ambient turbulence,
as evidenced by the yellow curve remaining the lowest. After this the curves representing
increasing levels of ambient turbulence do not show any logical progression, with the blue
curve representing the highest turbulence intensity being the second lowest for instance,
and the others following close by in no discernible order.

Although the convergence of the TKE confirmed that we are able to accurately replicate
the ambient turbulence intensity in the incoming flow, we do not yet appear to be able to
obtain its expected influence on the turbine wakes. This remains to be investigated, and
could be explained either by an as yet undetected implementation error or by the choice
of parameters which have not been explored in great detail so far for this formulation.
Still, from this preliminary investigation, this possibility of taking into account divergence
free upstream ambient turbulence in the Lagrangian Vortex Blob formalism is already an
interesting feature.
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4.5 Preliminary conclusion on Poletto’s formulation
We have pursued the study of computations of turbine wakes under the Lagrangian

Vortex blob formalism with an added account for ambient turbulence. A major drawback
of the initially considered version of Jarrin’s Synthetic Eddy Method is that it is based on
velocity sources and sinks that prevent the ensuing velocity fields from being divergence
free. This feature is quite important as the Lagrangian Vortex blob formalism relies on a
divergence free velocity field for the Biot-Savart equation. In practice, this initial formu-
lation of Jarrin et al. did not show any major incompatibility when implemented in the
code, at least for reasonable values of turbulence intensity.

In order to be fully consistent with the Lagrangian Vortex blob hypothesis, a more
recent formulation of the Divergence Free Synthetic Eddy Method was implemented in
the code. Both formulations appear to behave similarly in terms of reconstructed Power
Spectral Densities and Taylor macro-scales from velocity records, although the more recent
version of Poletto’s DFSEM shows an improvement in terms of temporal convergence. Fi-
nally, numerical computations of turbine wakes with different levels of ambient turbulence
are presented, which tend to indicate that Poletto’s formulation of DFSEM seems to be
less diffusive than Jarrin’s regular SEM formulation, although it does not yet show the
expected progression with increasing turbulence intensity levels. Even if more studies with
several parameters variations are still needed to have a better understanding of this mo-
del, Poletto’s DFSEM already shows some very interesting features for modelling ambient
turbulence in a Lagrangian Vortex framework.
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Chapter 5

Simulation of tidal turbines in a
turbulent flow

5.1 Introduction
This Chapter is largely excerpt from a prospective paper aiming to highlight the si-

mulations of wake-turbine interactions in realistic operation conditions, and how they can
be performed using the VPM code combined with the turbulence generation methods
described in the two previous Chapters.

The geometrical configuration considered here is the pre-commercial farm NEPTHYD
that was granted to a subsidiary company of Engie by the French Ministry of Energy and
Environment, via its agency ADEME, in December 2014 (see Figure 5.1). At this time,
Engie had contracted with Alstom the manufacturing of four Oceade™, a three bladed
turbine of 18 m diameter rated at 1.4 MW. Following the purchase of Alstom’s energy
activities by General Electric, the tidal activities of Alstom were rapidly stopped and this
demonstration project did not become a reality. However, in the meantime, Engie had
started the consenting process to the French authorities and some official documents were
issued and made public. Therefore, the farm configuration (number of turbines, turbine
positioning, etc.), velocity value, rotational speed, etc. were taken from the report issued by
the Autorité Environnementale on the 6th of April 2016 [105]. Only the ambient turbulence
values were reproduced from the paper of Sentchev et al. [29]. However, the interesting
aspect of this configuration is that it is a real industrial pre-commercial farm configuration,
very relevant for the scientific community as well as new industrial projects launched for
instance by Hydroquest and Sabella.

Section 5.2 is dedicated to the validation of the SEM implementation, together with
the influence of several of its physical and numerical parameters. Section 5.3 presents the
computations performed on the NEPTHYD configuration with different ambient turbu-
lence levels and length scales. It will also highlight wake-turbine interactions in the case of
asymmetry in the flow, occuring when the tidal flow is not fully bi-directional as is most
often the case.

5.2 Computation of a single tidal turbine
5.2.1 Numerical set-up and tested configurations

The tidal turbine modelled in this study has a diameter D of 18 m. The blades of
Alstom’s Oceade™ turbine are patented so we chose an open configuration, which cor-
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Figure 5.1: Configuration of the NEPTHYD project : a four turbine pre-commercial
farm developped by Engie in 2014 and meant to be equipped with Alstom’s Oceade™ tur-
bine. The image is reproduced from the report [105] of the Autorité Environnementale, an
agency of the French Ministry of Energy and Environment.

responds to IFREMER’s generic turbine. Experimental results obtained for the latter by
Mycek et al. [78] will be used for comparison. More details about the numerical model
and IFREMER’s turbine can be found in [18]. As a reminder, within these simulations
the mesh is still only made up of a zero-thickness surface mesh for the blades and pos-
sibly the turbine nacelle if used. The fluid is represented by Lagrangian vortex particles
freely evolving throughout the computational domain following the Navier-Stokes equa-
tions. When using the SEM for the addition of ambient turbulence, a study space must
be defined where the turbulent structures will be placed, as explained in Chapter 3. Here,
the dimensions of this space are Lx = 243 m = 13.5 D along the main flow direction, and
Ly = Lz = 108 m = 6 D along the horizontal and vertical directions. The blade surface
meshes are defined as those presented in previous studies [18,45,88]. In the present work,
11 mesh elements are discretising the blade along the blade radius and 5 along the blade
chord. A turbine is represented by 210 surface elements without the nacelle and 964 with
the nacelle. The inter-particle spacing is set to dh = 0.6 m, similar to the surface mesh
discretisation along the blade radius, with a smoothing parameter of � = 1.5 dh. In all the
following computations, the upstream incoming velocity is set to U∞ = 3.2 m/s. The Tip
Speed Ratio (defined as TSR = ωR/U∞, where ω and R are the rotational speed and the
turbine radius respectively) is set to 3.67 in Paragraphs 5.2.2 and 5.2.3 for comparison
with the experimental results. In Section 5.2.4, the TSR is set to 4.1 in order to have the
same rotational speed as the one used for the NEPTHYD configuration of Section 5.3. A
time step of dt = 0.044 s is imposed owing to the CFL-like condition for vortex methods
and the simulation time is set to 200 seconds. Finally, an isotropic turbulence is used
and different turbulence intensities I∞, structure sizes λ, standard deviations σ(λ) and
filling ratios Rf are considered. All the results presented here are time-averaged. As the
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Figure 5.2: Time-averaged wakes obtained for I∞=1.5%, TSR=3.67, λ = 4.5 m, σ(λ) =
0% and Rf =1. (a) with nacelle. (b) without nacelle.

fluctuating turbulence has by definition a zero average (ũ = 0), this component is once
again removed during the post-processing of the time-averaged velocity maps, to emulate
the effect of a much longer time average than the last 68 s (90 s to 103 s for Paragraph
5.2.4) of 200 s simulations used here.

5.2.2 Omission of the turbine nacelle

In the previous Chapter, it was noted that the use of the turbine nacelle (referred to
previously as the cylindrical hub) could possibly generate some numerical instabilities.
Even though these instabilities were not entirely resolved, the question of the inclusion of
the turbine nacelle can still be posed. Looking at the numerically computed wake velocity
fields presented in Figure 5.2 would make the answer tend towards the necessity of its
inclusion. The near wake is really different and a much larger velocity deficit is experienced
when using the nacelle. However, the global wake length is near-identical, even for this
low ambient turbulence value of I∞ = 1.5%. Looking at the corresponding velocity profiles
presented in Figure 5.3 comforts this analysis. The first two velocity profiles at x/D = 1.2
and x/D = 2 are very different depending on wether the nacelle is included or not. The
presence of the nacelle markedly improves the result in comparison with the single turbine
wake measurement done at laboratory scale with a similar ambient turbulence intensity
and reproduced from [78]. However, for the four remaining velocity profiles depicted in
Figure 5.3, the differences with and without the nacelle are not very significant. It could
be argued that taking into account the nacelle would be an additional numerical complexity
without a low benefit to the end quality of result, especially in the far wake. On top of
that, the differences are here highlighted by the fact that the turbulence intensity I∞ is
very low, and the reported values are much higher in the Alderney Race as it will be
presented in Section 5.3.

If we now compare the disc integrated velocity profiles normalised by the disc integrated
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Figure 5.3: Comparison of the experimental velocity profiles with the numerical results
obtained with and without nacelle, for I∞=1.5%, TSR=3.67, λ = 4.5 m, σ(λ) = 0% and
Rf =1.
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Figure 5.4: Comparison of the experimental and numerical disc-averaged velocities
(TSR=3.67, λ = 4.5 m, σ(λ) = 0% and Rf =1). (a) I∞=1.5%. (b) I∞=15%.

value of U∞ (see Figure 5.4), the procedure of wake integration being clearly presented
in [78] for the experimental results, the differences are hardly visible. Moreover, both
numerical curves with I∞ = 1.5% are underestimating the experimental integrated velocity
(see Fig. 5.4(a)), which is a problem already identified and possibly due to a too high
numerical dissipation, especially visible at low ambient turbulence. However, for the higher
ambient turbulence value of I∞ = 15%, the comparison of both numerical results and the
experimental one depicted in Figure 5.4(b) are really encouraging us towards the simplest
solution. Therefore, for the remainder of this Chapter, the turbine nacelle will not be taken
into consideration as a matter of numerical simplification and speed-up.

5.2.3 Influence of the filling ratio Rf

This Paragraph focuses on the evaluation of the influence of the filling ratio Rf as
presented in Chapter 3. Due to the nature of the SEM method as a stochastic represen-
tation of the ambient turbulent velocity field, a large number of turbulent structures and
hence a high value of Rf is necessary to statistically represent the turbulent velocity field.
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Figure 5.5: Comparison of the numerical disc-averaged velocities obtained for three
fil ling ratios Rf and two turbulence intensities (TSR=3.67, λ = 4.5 m, σ = 0%). (a)
I∞=1.5%. (b) I∞=15%.
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The numerical assessment on this statistical convergence of the numerically obtained I∞
presented in [88, 106] concluded that a Rf value higher than one is sufficient to have a
statistical convergence, bearing in mind that the total number of structures should not be
too low to have enough statistical representation. However, as the turbulent structure size
λ is increasing to better represent the in-situ turbulence integral length scale L , a higher
value than one may be necessary to have enough structures to ensure the above mentio-
ned statistical representation. In that respect, Figure 5.5 shows the disc-averaged velocity
deficit for turbulence intensities of I∞=1.5% in Fig. 5.5(a) and I∞=15% in Figure 5.5(b).
For the lower I∞ value, the numerical disc-averaged velocity deficit was already too dis-
sipative as indicated in Paragraph 5.2.2 (Figure 5.4(a)). A higher value of Rf is slightly
intensifying the phenomenon of numerical dissipation, and even more for the far wake from
x/D ≥ 5D in Figure 5.5(a). For I∞=15%, the results with Rf = 1 are in accordance with
the experimental results, as highlighted in Figure 5.4(b). However, an overestimation of
the disc-averaged velocity is also visible for Rf ≥ 5 as depicted in Figure 5.5(b). As the
ambient turbulence value is higher and the turbulence structures are more numerous with
Rf > 1, such a phenomenon is understandable and physically interpretable.
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The influence of the turbulent structure size variation, represented by the value of σ(λ),
does not change the tendency as one can observe from the data presented in Figure 5.6 for
I∞=15%. Choma Bex et al. [88, 106] reported that a higher value of σ(λ) would improve
the spectral representation of the turbulent kinetic energy cascade, a −5/3 slope being
nearly obtained from σ(λ) = 75% and above. However, as shown in Figure 5.6, σ(λ) = 75%
still really overestimates the dissipation of the experimental disc-averaged velocity deficit
for the higher values of Rf . As a conclusion on that aspect, the value of σ(λ) does not
have an influence on the velocity deficit and the driving parameter is the filling ratio
Rf , the experimental disc-averaged velocity deficit being accurately reproduced both for
σ(λ) = 75% or σ(λ) = 0% with Rf = 1 and always over-dissipated with higher values of
Rf .

5.2.4 Influence of the turbulent structure size λ

Lastly, the influence of the turbulent structure size λ, and hence the integral length
scale L , is presented in Figure 5.7. To better represent the physical turbulence characte-
ristics of the Alderney Race as reported in the literature [29,31,33,34] for instance, higher
values of λ were evaluated of physically represent the L values of a couple of decametres
as measured in tidal sites. With λ = 4.5 m, Rf = 1 corresponds to N = 7426 turbulent
structures. In order to have a sufficient statistical representation of the flow with higher
values of L or λ, we chose to keep the same number of structures, which increases the
value of the filling ratio Rf .Once again, an over-dissipation phenomenon is obtained for
both σ(λ) = 0% and σ(λ) = 75% as shown in Figure 5.7. The case with σ(λ) = 75% is even
noisier but tremendous turbulent structure sizes of up to 2λ can be regularly obtained in
the flow field with σ(λ) = 75%. This might not be so physical as the integral length scale
is closer to the larger size encountered in the in-situ flow. Therefore, a new asymmetric
law for the distribution of λ is under works to better represent the physical characteristics
that are : a lower number of large structures and much more smaller structures possibly
reproducing the real turbulent cascade structure distribution in homogeneous turbulence.
This will be tested soon but, for the time being, the present implementation is still worth
investigating on a real 4 tidal turbine farm configuration.
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Figure 5.8: Four tidal turbine array configurations : (a) initial configuration (straight
flow), (b) configuration with a yawed flow, (c) configuration with a yawed flow used for
the simulation.

5.3 Four tidal turbine array : the NeptHyd layout

5.3.1 Description of the selected configuration : the NEPTHYD project.

As mentioned in the introduction, the NEPTHYD pre-commercial farm was meant to
be made up of four of Alstom’s Oceade™3-bladed 18 m diameter turbines, with geometrical
characteristics and blade profiles inspired by those of the former TGL turbine. This same
TGL geometry also served as a basis for the open-geometry turbine of IFREMER since
the first work of Maganga et al. [107]. This open-geometry model (defined in [18]) is used
in this work, as indicated in the previous Section. According to the report of the Autorité
Environnementale [105], the optimal production current velocity for the Oceade™ turbine
is higher than 3.1 m/s, which is why we chose an upstream velocity U∞ of 3.2 m/s. The
TSR was set as 4.1, which corresponds to the optimal rotational speed of the device (see
Table 1 of [105]). Following the projected configuration shown in Figure 5.1, the four
turbines are positioned at approximately the same depth of 38 ± 1 m. In order to simplify
this configuration, and as the bathymetry cannot be taken into account in the present
approach, all turbines are set to the same vertical position.

The schematic representations of Figure 5.8 show the turbine layout and spacing within
the computed domain. As shown in Figure 5.1, the first front row of three turbines is per-
pendicular to a direction inclined at an angle of 20◦ from the north. This specific direction
corresponds to the main flood and ebb direction at this position of the Alderney Race.
Therefore, the incoming velocity vector is exactly perpendicular to the three upstream
turbines as presented in Figure 5.8(a). Keeping in mind that tidal flows are not always
bi-directional, for instance Maslov et al. [108] reported approximately 15◦ and 35◦ in two
sites of Brittany, an inclination of this velocity vector is indicated in Figure 5.8(b) with an
angle α. In the Alderney Race, tidal angular asymmetry can vary to a great degree. Ho-
wever, as the turbines are equipped with a yaw mechanism, they can rotate to align with
the new flow direction. Therefore, and in the present configuration of Figure 5.8(b), inter-
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Figure 5.9: Time-averaged wakes obtained without ambient turbulence for TSR=4.1.

action will be highly enhanced between the middle upstream turbine and the downstream
one. The higher the angle of the tidal asymmetry, the more intense the interaction will be.
Such configurations will be tested with several tidal angular asymmetry angles, namely 5◦,
10◦, 15◦ and 20◦. These results will be presented in Paragraph 5.3.3. To facilitate the flow
representation for the simulations in Paragraph 5.3.3, the configuration of Figure 5.8(b)
will be rotated by the angle α so that the incoming velocity vector always aligns with
the x-axis, as depicted in Figure 5.8(c). The turbine layout is not modified, the turbines
are only yawed to align with the incoming velocity direction. However, before studying
enhanced wake-turbine interaction, the influence of the ambient turbulence characteristics
will be evaluated in Paragraph 5.3.2.

5.3.2 Initial configuration

For the sake of comparison, Figure 5.9 shows the flow around the four turbines in the
configuration of Figure 5.8(a) without ambient turbulence. For this computation, wake
induced turbulence and dissipation are accounted for unsing only the LES model based
on the Particle Strength Exchange (PSE) method implemented in the code [18]. The
SEM contribution is switched off imposing an absolute constant incoming velocity U∞ =
3.2 m/s. From Figure 5.9, it can be seen that there is hardly any interaction between the
turbines except for a slight wake deflection of the two upstream upper turbines. Besides,
the wake extension is very long and exceeds the 12.5 D length presented in this figure.
This proves the conservation property of the code even on long distances.

The account for ambient turbulence will drastically modify the flow pattern. From the
ample literature existing on the turbulence characterisation of the Alderney Race, only
the ambient turbulence values reproduced from the paper of Sentchev et al. [29] is tested
and presented here. Depending on the ebb or flood conditions and for a distance from
bottom of 16 m (which is close to the hub height), two ambient turbulence intensities
are encountered : I∞ = 10% and I∞ = 14%. The corresponding integral length scales L
are 26.6 m and 30.0 m respectively. As these values are close, we considered the highest
one for the computation but chose to also test out a smaller length scale of L = 18 m.
The selected values, L = 18 m and L = 30 m correspond to λ = 27.5 m and λ = 45.9
m respectively (according to the linear relationship between turbulent structure size and
integral length scale established in Chapter 3).
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Figure 5.10: Time-averaged wakes obtained for two turbulence intensities and two in-
tegral length scales (TSR=4.1, σ(λ) = 75%).
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For the four configurations presented in Figure 5.10, a single value of σ(λ) = 75%
is considered for the variation of the turbulent structure size. Therefore, the only values
that differ are the ambient turbulence intensity I∞ = 10% or 14% and the associated
integral length scale L = 18 m or 30 m. Due to the size of the structures, a filling
ratio Rf of one would have led to an incredibly low number of structures (e.g. N ≈
10 for L = 30 m) which would have compromised the statistical representation of the
flow. Thus, a higher value than Rf = 1 had to be chosen and the decision was made
to fix fix the number of turbulent structures to N = 10472 for all the computations, in
order to avoid too much difference between these configurations. Owing to the size of
the computational study space, this constant number of N = 10472 turbulent structures
leads to the filling ratios Rf = 229 for L = 18 m and Rf = 1059 for L = 30 m.
Following the results presented in Figures 5.5, 5.6 and 5.7 of the previous Section, it is
anticipated that the wake dissipation will be overestimated. In that sense, the results
presented in Figure 5.10 would have a tendency to estimate shorter wakes and hence
lower interactions than would be the case in reality. When compared to the result without
ambient turbulence of Figure 5.9, the wakes of the four configurations in Figure 5.10 are in
fact much shorter. However, mostly due to an increase in wake meandering with ambient
turbulence, higher and more numerous interaction phenomena are encountered. In three
out of the four studied configurations an interaction phenomenon is observed between an
upstream turbine wake and the downstream turbine. Although a higher ambient turbulence
intensity sould reduce the wake length, it is not obviously observable from the wake maps
of Figure 5.10 nor from the wake lines presented in Figure 5.11. Even though these results
are averaged over 188 instantaneous velocity fields, representing an average over 89.6 s of
physical time, this should still not be long enough for such high ambient turbulence levels.

The curves presented in Figure 5.11 are very interesting in the way that axial induction
is well represented in front of each turbine. A small acceleration in the upstream by-pass
can also be observed for the downstream turbine (purple dashed-dotted line). Much longer
computations, possibly with a refined discretisation will be required in a near future to
better identify the inluence of the integral length scale on the turbine wake. As mentioned
in the previous Section, a new asymmetric distribution for the turbulent structure size
λ would also improve the results. Firstly, this would lead to a better representation of
the physical phenomenon, which is to say many more smaller structures than larger ones
for a given central value of λ0 (see also [88]). Also, and this assertion would need to be
further validated, a higher possibility to tend to a filling ratio Rf of one together with a
sufficiently high number of structures to enable a statistical representation. If a Rf of one
is achievable, the overestimation of the dissipation could be avoided leaving more space
for possible variations depending on the integral length scale L and/or a small variation
of ambient turbulence, as it is the case between I∞ = 10% and I∞ = 14% here. However,
the current numerical set-up can already give very interesting insights into interaction
configurations, such as in the case of this NEPTHYD layout with an incoming velocity
yawed with respect to the main flow direction.

5.3.3 Yawed flows
Figure 5.12 shows the wake configurations for an incoming flow inclined with angle

ranging from 5◦ to 20◦ with respect to the main current direction. This representation
follows the methodology proposed in Figure 5.8 and the plots of Figure 5.12 are similar to
the schematic representations of Figure 5.8(c). For these computations, the same numerical
parameters are chosen as for I∞ = 10% and L = 18 m, imposing Rf ≈ 229 with σ(λ) =
75%. All the turbines are rotating at TSR = 4.1.
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Figure 5.11: Time-averaged wake lines obtained for two turbulence intensities and two
integral length scales (TSR=4.1, σ(λ) = 75%). For each turbine, the corresponding line
passes through its centre.
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Figure 5.12: Time-averaged wakes obtained for several yaw angles (I∞ = 10%, L = 18
m, Rf ≈ 229, TSR=4.1, σ(λ) = 75%).
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Figure 5.13: Time-averaged wake lines obtained for four yaw angles (I∞ = 10%, L = 18
m, Rf ≈ 229, TSR=4.1, σ(λ) = 75%). For each turbine, the corresponding line passes
through its centre.

Individually, each turbine wake looks similar to those presented in the previous Pa-
ragraph. However, as the angle increases, more and more interaction can be observed.
At an inclination angle of 10◦, a weak interaction can already be observed on the image
of Figure 5.12 but nothing is observable on the corresponding wake lines of Figure 5.13
(keeping in mind that the wake lines are taken from the turbine center of rotation and
aligned with the turbine direction). Although a weak interaction is visible around the tip
of the blades, nothing is yet visible on the lines. However, for the last two configurations
with 15◦ and 20◦ inclinations of the current, very clear interactions can be observed on
the corresponding plots of Figure 5.12. The induction zone of the downstream turbine is
clearly connected to the wake of the upstream middle turbine. The interaction is higher
for the last 20◦ case, where approximately half of the downstream turbine is perceiving the
upstream wake and also associated additional velocity fluctuations. From the downstream
wake lines (violet dashed-dotted lines of Figure 5.13), a small modification is already visible
upstream of the turbine but a large modification of the downstream wake is evidenced,
the velocity becoming progressively higher for the 15◦ and 20◦ inclinations. Such modi-
fications and impacts on the flow perceived by the downstream turbine were anticipated
but the present numerical approach can now much better quantify these interactions and
even deliver more quantitative information, such as mean velocity deficit, mean shear flow
profile and also additional velocity fluctuations.

To better quantify these aspects, numerical probes are defined in the flow domain and
are represented by the points denoted from 1 to 6 in each plots of Figure 5.12. Probes
1 and 2 are centred one diameter upstream of the upper and middle upstream turbines
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Figure 5.14: Probes I∞ = 10%, L = 18 m, Rf ≈ 229, TSR=4.1, σ(λ) = 75%.

respectively. These probes are included in order to show the incoming flow disrupted only
by ambient turbulence. Probes 4 and 6 are centered one and two diameters upstream of the
downstream turbine respectively, whereas probes 3 and 5 are located in front of the blade
tip of the downstream turbine, still one and two diameters upstream respectively. These
probe locations highly emphasise the tightness of this layout proposed by Engie-Alstom
at the time. As it is an official pre-commercial set-up proposed by real major companies
in the field, it is worth investigating. The 200 s of velocity measurements recorded by
each probe are reproduced for each given configuration in Figure 5.14. This measurement
duration is possibly not long enough to have fully converged mean and standard deviation
values, but clear tendencies can already been observed on the values shown in Figure 5.15.
As anticipated, for a 5◦ yaw angle, no significant impact can be observed : probes 1 and 2
display a mean velocity a little lower than the far upstream incoming velocity of 3.2 m/s
due to axial induction ; probes 3 to 6 display higher values due to a small acceleration in
the by-pass ; and a slightly higher mean velocity than 3.2 m/s is recorded for probes 4 and
6 as expected. What’s more, no conclusions can be drawn from the standard deviations
of these quantities (Figure 5.15(b)). For a 10◦ yaw angle, some interesting phenomena
can be identified. Firstly, probe 2 shows a higher mean velocity value together with a
higher standard deviation. There is no other explanation than the possibility of "natural"
oscillations due to the passing of turbulent structures which cause the velocity to increase,
and were not counterbalanced by a sufficient averaging duration. Probes 3 and 5 show
close to the same mean velocity values (Figure 5.15(a)) but highly impacted standard
deviations (Fig. 5.15(b)). For these two probes, clear explanations can be given : the mean
velocities are not highly impacted because they are at the outer limit of the wake, as
shown in Figure 5.12 but a higher standard deviation is observed because these probes are
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Figure 5.15: Time average and standard deviation of the velocity u, I∞ = 10%, L = 18
m, Rf ≈ 229, TSR=4.1, σ(λ) = 75%.

in the mixing layer of the wake. As a conclusion for the downstream turbine, the mean flow
velocity profile is not highly modified (no real shear in the velocity profile) but the turbine
perceives much higher velocity fluctuations at the tip, possibly leading to advanced ageing
and possible damage of the blades and drive-train.

For the 15◦ and 20◦ yaw angles, these two configurations will be treated together as
the evidenced phenomena are similar, although intensified for the higher angle. Probes 1
and 2 show a close to regular behavior, as shown by the averaged velocity (Figure 5.15(a)).
The major influence of interaction can be observed for probes 3 and 5 directly from the
velocity records of Figure 5.14, showing an important velocity deficit. This deficit trans-
lates into a lower averaged velocity value (Figure 5.15(a)), and even more so for the larger
yaw angle of 20◦. Therefore, the downstream turbine will experience a large shear in the
averaged velocity profile since the mean value of probes 4 and 6 remains unchanged. This
important shear flow only affects one side of the turbine which inevitably creates load
fluctuations. For all four of the tested configurations (from 5◦ to 20◦), these probes are
very little affected by the interaction phenomena. Finally, coming back to probes 3 and 5,
a decrease of the standard deviations can be observed. This is explained by these probes
being situated clearly in the wake of the upstream turbine. This is somewhat obvious,
although an increase of these values in the wake would have been expected instead. This
aspect needs further validation and confirmation, which would be facilitated by longer
simulations : computations run on a longer duration will have much better convergence of
these standard deviations. Computations with smaller inter-particles spacing (the Lagran-
gian equivalent of the mesh size) will also be considered for a better spatial discretisation
of the concerned interaction phenomena.

5.4 Conclusions

This Chapter presented an industrial application of the recent implementation of the
SEM (Synthetic Eddy Method) in the Lagrangian Vortex framework, using the theoreti-
cal basis detailed in Chapter 3. The influence on a turbine wake of parameters such as
the turbulence intensity, turbulence integral length scale, the distribution of the turbulent
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structure sizes and the turbulent structure filling ratio is isolated and thoroughly analysed.
These studies are performed using a 18 m diameter 3 bladed turbine model, of a design
similar to that of Alstom’s Oceade™ turbine. The upstream mean velocity, turbulence in-
tensities and integral length scales are chosen based on recently published works dedicated
to analysing the turbulence characteristics present in the Alderney Race.

The second phase of this study consisted in the simulation and analysis of a four
turbine array. This array is the reproduction of the NEPTHYD pre-commercial farm that
was granted by the French government in the past year to the consortium composed by
Engie-Alstom, just before Alstom-GE decision to stop tidal energy development. In that
respect, the tested farm is truly representative of an industrial configuration, both in
terms of geometrical layout and of the velocity and turbulence characteristics considered.
From the presented results, the individual computed wakes have a downstream extension
of approximately 3 to 4 diameters. However, these computations may be a somewhat too
dissipative as concluded from the aforementioned analysis of the filling ratio parameter.
Unfortunately, the influence of the different turbulence integral length scales did not show
clear tendencies in the present results. Nevertheless, this is the first attempt at taking into
account the integral length scales for such a configuration and several areas of improvement
have been clearly identified. The account for tidal angular asymmetry is also tested on
the NEPTHYD four turbine configuration in order to emphasise possible turbine-turbine
interaction. At a 10◦ yaw angle, the downstream turbine is not clearly in the wake of
the upstream turbine, and the average velocity profile is not largely affected. However
the velocity series computed by numerical probes located 1D and 2D upstream of the
downstream turbine showed increased velocity fluctuations, most probably due to the fact
that the tip of the downstream turbine blades is in the mixing layer of the upstream wake.
For yaw angles increasing up to 20◦, an important shear in the mean velocity profile is
experienced all over the blade on nearly half of the turbine swept area. From these two
configurations, it is clear that the induced blade and drive train fluctuating loads will be
largely affected.
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Conclusion

The numerical developments explored in the scope of this work pave the way for possi-
bilities of more complete and realistic simulations of tidal turbines. Various additions and
adaptations were theoretically justified and implemented into a complex and multi faceted
simulation code, participating to its continuing development and optimisation by adding
to its capabilities. A new method for better taking into account turbine blades was devi-
sed, together with a new possibility for the computation of efforts. Further advancements
were made on the simulation of ambient turbulence, including the validation and use of a
pre-existing method in order to reach important conclusions on its various parameters as
well as a pre-commercial tidal farm configuration, and the preliminary study of a better
physically suited alternative.

The method and preliminary validations presented in the first part of this manuscript
have taken this simulation code to the closest it has ever been to an accurate force com-
putation on a full three-dimensional rendition of turbine blades, after years of unfruitful
attempts. It had become clear leading up to this PhD work that the account for the tur-
bine blades required an in-depth revision : most importantly due to discrepancies in the
computed power curves, but also for a better account of a full detailed turbine geometry,
as well as anticipating the future possibility of the simulation of stall. In the literature,
simulating three-dimensional turbine blades using combinations of source and dipole sin-
gularities appears to be a common practice. However different approaches exist as for the
determination of the intensities of the source and dipole contributions, with varying levels
of complexity. The exact detailed steps used for determining these intensities are rarely
explicited in recent publications, as they are often considered as a long ago established
matter. In this respect, the works of Morino [85] have provided a clear context from which
a mathematical justification could be retraced to ensure that this singularity method is
correctly applied. Thus this work was able to thoroughly detail and justify the implemen-
tation of this alternative decomposition. This framework was completed using Ogami’s
new method for the computation of efforts [86], which allows for a clever work around
the issue of obtaining the velocity potential in order to apply Bernoulli’s relation. The
opportunity was taken to take a closer look into this fairly recent method, by confirming
its validation, and then taking it further with a detailed explanation of the computation of
the integration constant as well as a decentered alternative of the scheme. Preliminary re-
sults and validations of the various implementations added into the code have shown that
these methods appear very promising. Although their combination is still on the verge of
producing complete satisfying results such as a pressure curve around a three-dimensional
turbine blade with an accurate wake, these methods alone are worthy of interest. In order
to complete this study, a closer look into blade mesh configurations and the fluid particle
emission process may be required, which will provide an opportunity to refine these aspects
of the pre-existing simulation code as well.

Also within the aim of better representing all the important factors impacting a real
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tidal turbine, the second part of this PhD work continued the developments and analysis
begun with the works of Clément Carlier [9] on statistical models to represent ambient
turbulence in the Lagrangian framework. Using the adaptation of Jarrin’s SEM [91] already
implemented into the simulation code, an in depth analysis of the convergence of the
method and of the physical properties of reconstructed flows was carried out. This method
was also proven to accurately reproduce the qualitative influence of turbulence intensity
on the shortening of a turbine wake. These results have served to further validate this
unique adaptation of the SEM in a Lagrangian context applied to the entire simulation
domain.

Pursuing this study, the alternative divergence-free adaptation of Poletto’s DFSEM [46]
was explored in order to get closer to a physically consistent representation of a turbulent
flow. This alternative method was adapted as well to the Lagrangian framework so that the
SEM or DFSEM can be used in the simulation software as wished. The same validations of
mathematical and physical properties were performed as for the SEM, concluding that this
method results in a faster statistical convergence and close to identical PSDs and length
scale relations. However despite the accurate verified reproduction of Reynolds Stress
Tensors, the influence of ambient turbulence intensity generated with this method was not
yet well evidenced on turbine wakes. A closer look will be required into the implementation
of this promising new development.

In light of these results, the initial SEM was chosen for pursuing the analysis of all
physical and mathematical parameters of the model on turbine wakes. Some conclusions
were straightforward and other seemed more complex, such as the isolation of the influence
of the turbulent structure size λ from that of the structure filling ratio Rf . A comparison
with flume tank experimental results showed satisfying tendencies for the numerical results,
tampered by the fact that the base simulation code appears to be too dissipative, which is
more disruptive for low turbulence intensities. Several areas of future refinement were also
evidenced, such as the length of the time averages and the distribution of the turbulent
structure sizes.

This study culminated in the simulation of a full tidal turbine farm under realistic
conditions, including the positioning and yaw of the turbines, the upstream velocity and
turbulence intensity, and the turbulent length scales considered in a real pre-commercial
tidal site in the Alderney Race. Incidentally, this result also showcases the increasing
capabilities of the simulation software, from three-turbine simulations at low turbulence
intensities requiring weeks of runtime at the time of Clément Carlier’s thesis to this four-
turbine configuration at high turbulence intensities currently running in under four days.
The end results demonstrated the influence of wake interaction combined with ambient
turbulence, two key factors in simulating turbine farms, to which this Lagrangian frame-
work and turbulence account are particularly well suited : the Lagrangian representation
of the flow allows for an easy adaptability to any interacting multi-turbine configuration,
and the turbulence model guarantees the retention of turbulent intensity throughout any
length of simulated area. Interesting conclusions were reached regarding the significant
impact of yaw on this industrial tidal site configuration. In the future, a greater range of
parameters could be considered, and more complex turbine configurations could be tested
out.

Finally, only a small amount of additional verifications should be required in order
to achieve the driving objective of this work, which is also the ambition of many current
studies : namely the realistic simulation of the influence of ambient turbulence on a fully
rendered tidal turbine, with a more accurate computation of localized efforts, and taking
into account wake interaction together with additional flow conditions present in realistic
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tidal sites. Further developments would then be possible to continue integrating as many
realistic site conditions in the simulation tool as possible. A first step could be the addi-
tion of a vertical velocity gradient in the incoming upstream velocity to emulate real flow
conditions and the effect of bathymetry. The upstream velocity could also be improved
with an account for incoming waves, with the use of a Stokes drift type model for instance.
The effect of waves would add to the fluctuations on turbine loads, which could be further
explored with a structural study of the fatigue and possible deformation of turbine blades
when combined with the accurate localized computation of efforts on their detailed geo-
metry. Within these conditions of incoming waves and ambient turbulence, a control law
could also be introduced on the rotation of the turbine, to emulate the use of Response
Amplitude Operators adapting turbine rotation in response to the fluctuation of loads.
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Appendix A

Deriving coefficients for the shape
function used in Poletto’s DFSEM

Beginning from relation (6.2.10) of Poletto’s thesis [46] :
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This is the ith component of the average of the fluctuations of the turbulent kinetic energy.
However for i = 1, 2 or 3 we have : �u�
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i� = 1. When adding the three components we

obtain :
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qσ(dk) is a radially symmetric function which must verify a number of properties given in
Poletto’s thesis. One such function verifying the appropriate conditions is given by :

qσ(dk) = B
�
sin(πdk)

�2
· dk , (A.6)

with B a constant value to be determined. By replacing the function qσ(dk) in Equa-
tion (A.5) we have :
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We suppose a uniform probability distribution for the average operator < · >.
The shape function qσ(dk) is defined inside a sphere of volume VB and radius σ, thus :
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Appendix A. Deriving coefficients for the shape function used in
Poletto’s DFSEM

By spheric integration, noting dk = r/σ :
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Let u = r/σ, by laking the linearised approximation (sin(πu))4 = (cos(4πu)−4 cos(2πu)+
3)/8 Equation (A.8) becomes :
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By combining this result with Equation (A.5) we deduce the value of the constant B :

B =
�
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πσ3 . (A.11)

Finally when integrating this constant into the formulation of the shape function given by
Equation (A.6), we obtain the finale expression of qσ for this specific function :
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Abstract : In the current context of diversification of renewable energies, tidal turbines
are set to occupy an important niche, and numerical simulation is a crucial tool for their
investigation. The in-house simulation code DOROTHY developed in collaboration bet-
ween IFREMER and LOMC uses the Vortex Particle Method offering a good compromise
between physical realism and and computational time. Some additional developments are
required in order to make of this software a fully rounded numerical tool able to mimic ad-
vanced realistic configurations. Firstly, an important overhaul of its computation of loads
has been undertaken, including a new framework to represent the previously simplified
and now fully-rendered turbine blades. This endeavour includes the mathematical justifi-
cation, investigation, and preliminary validation of additional integral methods accounting
for the turbine body. Secondly, the importance of the impact of ambient turbulence on
the wake interaction and power output within a turbine farm cannot be ignored. This
element is introduced using a Synthetic Eddy Method uniquely adapted to the present
Lagrangian framework. All aspects of this method as well as a promising alternative are
closely examined, culminating in the demonstration of its capabilities for the simulation
of the flow and prediction of detrimental interaction effects throughout a projected four
turbine pilot farm configuration.

Keywords : Numerical simulation, Tidal turbine, Ambient turbulence, Synthetic Eddy
Method, Interaction, Wake, Performance, Integral method, Singularity method

Autrice : Camille Choma Bex

Résumé : Dans le contexte actuel de diversification du panel d’énergies renouvelables,
les hydroliennes sont sur la voie pour occuper une niche importante, et la simulation numé-
rique est un outil essentiel pour leur étude. Le code de simulation DOROTHY développé
en collaboration entre l’IFREMER et le LOMC utilise la méthode Vortex particulaire, qui
offre un bon compromis entre réalisme physique et temps de simulation. Des développe-
ments supplémentaires sont nécessaires pour faire de ce logiciel un outil complet capable
de simuler des configurations réalistes. Tout d’abord, une révision en profondeur du calcul
d’efforts a été entreprise, comprenant un nouveau formalisme pour la représentation jus-
qu’ici simplifiée et à présent fidèlement détaillée des pales de la turbine. Cette contribution
inclut la justification mathématique, l’étude, et la validation préliminaire de méthodes in-
tégrales supplémentaires pour la prise en compte du corps de l’hydrolienne. Par ailleurs,
l’importance de l’impact de la turbulence ambiante sur l’interaction de sillages et la pro-
duction de puissance au sein d’une ferme d’hydroliennes ne peut être ignorée. Cet élément
est introduit avec l’utilisation d’une méthode synthétique de la turbulence, adaptée pour
une prise en compte Lagrangienne. Tous les éléments de cette méthode ainsi qu’une alter-
native prometteuse sont examinés soigneusement, aboutissant à la démonstration de ses
capacités à simuler l’écoulement et prédire des effets indésirables au travers d’une confi-
guration de ferme pilote hydrolienne de quatre machines.

Mots-clé : Simulation numérique, Hydrolienne, Turbulence ambiante, Synthetic Eddy
Method, Interaction, Sillage, Performances, Méthodes intégrales, Méthode des singularités


