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Résumé

Le lentillage gravitationnel faible est l’une des sondes cosmologiques les plus prometteuses pour
contraindre les paramètres de l’énergie noire. Il correspond à la modification de l’image d’une
source, induite par la courbure de l’espace-temps, et donc du passage des rayons lumineux, générée
par la présence de masse le long de la ligne de visée. Cet effet est cependant très faible et ne peut
être détecté qu’en mesurant la corrélation des formes d’un ensemble de sources en arrière-plan. La
valeur de cette corrélation donne la mesure du cisaillement gravitationnel.

Plusieurs relevés dédiés à son étude vont bientôt démarrer, tels que le Vera Rubin Legacy Survey
of Space and Time (LSST), et Euclid. Ces relevés ont été construits avec des exigences particulières,
notamment sur le traitement des erreurs systématiques, afin d’atteindre une précision extrême sur
les paramètres de l’équation d’état de l’énergie noire.

Cette thèse s’est déroulée dans le contexte de la Dark Energy Science Collaboration (DESC),
au sein de l’expérience LSST. Elle se focalise sur la problématique de la superposition de sources.
Cet effet génère une incertitude systématique qui est dominante dans la mesure du cisaillement
gravitationnel. Cette systématique impacte à la fois les mesures de forme et celles du décalage vers
le rouge des galaxies, deux mesures nécessaires à l’étude du lentillage gravitationnel faible.

Nous proposons deux solutions basées sur les méthodes bayésiennes d’apprentissage profond.
La première est un algorithme de séparation de galaxies qui utilise un réseau de neurones génératif
appelé autoencodeur variationnel. Ce réseau de neurones permet l’apprentissage d’un prior pour
la génération d’images de galaxies isolées. Celui-ci est utilisé dans un second réseau qui effectue la
séparation de la galaxie centrale sur des images de galaxies simulées. Nous montrons que l’analyse
jointe des pixels des données LSST et Euclid permet une diminution de l’erreur médiane de recon-
struction des formes des galaxies de 8 à 47%. La superposition de sources étant étroitement liée
à l’étape de détection, nous démontrons la robustesse de notre méthode à de petits décentrages.
Nous avons aussi testé notre méthode sur des images de vraies galaxies artificiellement superposées,
montrant l’intérêt du transfert d’apprentissage à partir d’un réseau de neurones entraîné sur des
images de galaxies simulées. Un processus itératif est ensuite mis en place afin de pouvoir séparer
toutes les galaxies d’une image en passant par des étapes de détection, classification, et séparation
des sources. Enfin, cet algorithme de séparation de galaxies est testé sur des images extraites de la
simulation DC2, générée au sein de la collaboration DESC dans le but de préparer à l’analyse des
futures images prises par LSST. Nos résultats montrent une amélioration de 70 à 120% sur l’erreur
médiane de reconstruction des formes de galaxies comparée à la méthode générique utilisée dans la
pipeline LSST actuellement.

Ensuite, inspirés de cette première méthode, nous proposons un réseau de neurones permettant
de faire directement l’estimation des paramètres de forme et de décalage vers le rouge d’une galaxie
à partir des images DC2, sans appliquer de méthode de séparation de sources. Nous montrons que
ce réseau permet des mesures précises de ces paramètres, même lorsque les sources sont superposées,
et comparons ces résultats à ceux obtenus avec séparation de source. Par la suite, nous présentons
une première application d’un réseau de neurones bayésiens à l’estimation de formes des galaxies.
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Ce type de réseau permet l’estimation de l’incertitude épistémique qui représente l’incertitude liée
à l’échantillon d’entraînement. Celle-ci peut être vue comme un niveau de confiance dans la mesure
réalisée par le réseau, une information cruciale à l’utilisation des réseaux de neurones en science
et en cosmologie. Elle permet de diminuer l’importance d’une mesure qui a de fortes probabilités
d’être erronée dans l’analyse, voire de la rejeter.

Mots-clés : cosmologie - energie noire - relevés de galaxies - lentillage faible - appentissage pro-
fond - apprentissage profond bayésien - traitement d’images - traitement de données astronomiques
- LSST - synergie LSST-Euclid
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Abstract

Weak gravitational lensing is one of the most promising probes to constrain dark energy parameters.
It corresponds to the distortion of a source image, induced by the bending of space-time, thus of
the light path, generated by the presence of mass along the line of sight. This effect is small and
can only be detected measuring the correlation of the shapes of a group of background galaxies.
The value of this correlation yields the value of the cosmic shear.

Several surveys dedicated to its study are going to start soon, such as the Vera Rubin Legacy
Surveys of Space and Time (LSST), and Euclid. These surveys have been built with particular
requirements, especially about the treatment of systematic errors, in order to reach an extreme
precision on the dark energy equation of state parameters.

This thesis happened in the context of the Dark Energy Science Collaboration (DESC), inside
the LSST experiment. It focuses on the issue of blending, the overlap of astronomical sources. The
blending of galaxies introduces a dominant systematic uncertainty on the cosmic shear measure-
ment. This systematic effect impacts the shape and the redshift measurements, both necessary for
weak gravitational lensing analysis.

We propose two avenues based on Bayesian deep learning methods. The first one is a deblending
algorithm which uses a deep generative network called variational autoencoder. This neural network
allows to learn a prior for the generation of isolated galaxy images. The latter is used in a second
network to perform the deblending of the centred galaxy on images of simulated galaxies. We
show that the pixel joint analysis of LSST and Euclid data decreases the median error on galaxy
shape reconstruction from 8 to 47%. Blending of source being closely linked to detection, we
demonstrate that our method is robust to small decentring. Also we test our method on images
of real galaxies artificially blended showing the interest of transfer learning from a neural network
trained on simulated galaxy images. An iterative process is then designed in order to separate all
the galaxies in an image going through detection, classification and deblending of sources. Finally
this deblending algorithm is tested on images extracted from the DC2 simulation, generated within
the DESC to prepare for the analysis of futures images taken by LSST. Our results show an
improvement of 70 to 120% on the median ellipticity error compared to the generic method used
in the current LSST pipeline.

Then, inspired by this first method, we propose a neural network allowing for the direct es-
timation of galaxy shape and redshift parameters from DC2 images, without going through the
deblending. We show that this neural network allows for a precise measurement of these param-
eters, even when sources are blended, and we compare these results to the ones obtained with
deblending. Then we present the first application of a Bayesian neural network to galaxy shapes
estimation. This kind of network provides the estimation of the epistemic uncertainty which char-
acterizes the uncertainty coming from the training sample. It can be viewed as a confidence level in
the measurement performed by the network, a primordial information for the application of neural
networks in science and in cosmology. It can be used to decrease the importance (or reject) of an
incorrect measurement in the analysis.
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Résumé substanciel du manuscrit

Lentillage gravitationnel faible et superposition de sources pour le
Legacy Survey of Space and Time (LSST) de l’observatoire Vera
Rubin
Modèle standard de la cosmologie et énergie noire
La cosmologie moderne s’appuie sur le modèle standard, ΛCDM, qui peut être décrit par six
paramètres et considère une équation d’état de l’énergie noire avec un paramètre w constant : p =
wρ, avec w = −1. Il est aujourd’hui corroboré par les différents résultats des expériences et relevés
cosmologiques passés, notamment par ceux, très précis, de l’expérience Planck.

L’énergie noire représente la majorité (≈ 70%) de l’énergie totale de notre Univers, mais sa
nature est à l’heure actuelle encore inconnue. Ainsi, son étude est l’un des grands défis de la
cosmologie moderne. Pour tester une éventuelle déviation au modèle standard, il est possible de
reparamétriser l’équation d’état de l’énergie noire. Le paramètre w est alors défini comme w = w0 +

wa
z

1+z , z étant le décalage vers le rouge, ce qui permet d’appliquer des contraintes observationnelles
sur les paramètres w0 et wa.

Les progrès effectués sur la précision des contraintes appliquées aux paramètres de l’énergie
noire peuvent être quantifiés via une figure de mérite définie comme : FoM = 1

σ(w0)×σ(wa) . Plus
la valeur de cette FoM est élevée, plus les incertitudes sur les paramètres de l’énergie noire sont
faibles, et donc plus les contraintes sont élevées. L’objectif des futures expériences, dont le Vera
Rubin Legacy Survey of Space and Time (LSST), est de multiplier la FoM par un facteur 10 si on
la compare aux expériences aujourd’hui terminées.

Différentes sondes cosmologiques sont utilisées dans ce but (BAOs, Clusters, Supernovae par
exemple). Cette thèse se concentre sur l’une des plus prometteuses: le lentillage gravitationnel
faible. Pour LSST par exemple, la FoM avec le lentillage gravitationnel faible seul devrait permettre
d’atteindre, au minimum, une valeur de 52. Cette valeur représente une augmentation d’un facteur
deux par rapport aux résultats obtenus avec les expériences en cours d’acquisition de données.

Vera Rubin Legacy Survey of Space and Time
Le Simonyi Survey Telescope qui sera utilisé dans le cadre du relevé LSST est actuellement en
construction sur le site du Vera C. Rubin Observatory à Cerro Pachón au Chili. L’observatoire
Vera Rubin devrait commencer à prendre des données en 2023. Il utilisera un système à trois
mirroirs, avec un mirroir primaire de 8.4m qui permettra de couvrir un large champ de ciel de
9.6 deg2. Il comportera, de plus, une caméra de 3.2 gigapixels permettant d’observer le ciel dans six
bandes de fréquences différentes. Grâce à ces caractéristiques, il pourra observer la même partie du
ciel environ 100 fois par an atteignant ainsi des magnitudes très élevées, jusqu’à 27.5 dans la bande
r. L’observation d’une grande surface du ciel à ces magnitudes élevées permettra d’augmenter
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drastiquement le nombre de galaxies utilisables pour l’analyse du lentillage gravitationnel faible
et devrait donc permettre d’améliorer la précision des contraintes sur les paramètres de l’énergie
noire.

Le lentillage gravitationnel faible
Le lentillage gravitationnel correspond à la modification de l’image d’une source induite par la
courbure locale de l’espace-temps, et donc du trajet des rayons lumineux, dûe à la présence de
masse le long de la ligne de visée.

Il est possible de définir deux grandeurs qui caractérisent le potentiel de lentillage le long
de la ligne de visée : la convergence, κ, et le cisaillement gravitationnel, γ. Ces deux paramètres
permettent de décrire la transformation de l’image de la source par l’effet de lentillage gravitationnel
dans l’hypothèse de sources petites devant l’échelle angulaire sur laquelle la distribution de masse
évolue.

Dans son régime faible, cet effet ne peut cependant pas être détecté sur une seule source. Il
est alors nécessaire d’estimer la corrélation des formes d’un ensemble de galaxies d’arrière-plan. La
fonction de corrélation à deux points du cisaillement peut en effet être estimée à partir des ellipticités
(formes) des galaxies observéee et il est ainsi possible de calculer son spectre de puissance. Des
contraintes peuvent alors être appliquées sur les paramètres cosmologiques, notamment ceux de
l’énergie noire, en utilisant entre autres l’égalité entre le spectre de puissance du cisaillement et
celui de la convergence.

Comme mentionné précedemment, le lentillage gravitationnel faible constitue aujourd’hui l’une
des sondes les plus prometteuses pour contraindre les paramètres de l’énergie noire et plusieurs
relevés dédiés à son étude, dont LSST, vont bientôt débuter. Ils sont spécifiquement conçus pour
optimiser les contraintes obtenues avec cet effet : ils ont été construits avec des exigences par-
ticulières, notamment sur le traitement des erreurs systématiques, afin d’atteindre une précision
extrême sur les paramètres de l’équation d’état de l’énergie noire.

Le problème de la superposition de sources astrophysiques
De nombreux biais peuvent intervenir dans la mesure du cisaillement gravitationnel faible, no-
tamment lors du traitement des images permettant de mesurer les formes des galaxies. En effet,
différents éléments tels que la détection de sources, la fonction d’étalement du point ( Point Spread
Function ou PSF) ou la méthode de mesure peuvent influencer et biaiser la mesure finale du ci-
saillement. Ces effets systématiques doivent être corrigés ou calibrés afin de diminuer leur impact
sur l’analyse, ce qui peut souvent être fait en utilisant des simulations ou des algorithmes dédiés
(par exemple METACALIBRATION).

Cette thèse se focalise sur une autre incertitude systématique qui est considérée comme domi-
nante dans la mesure du cisaillement gravitationnel pour LSST : la superposition de sources. Cet
effet impacte à la fois les mesures de forme et celles du décalage vers le rouge des galaxies, deux
mesures nécessaires à l’étude du lentillage gravitationnel faible.

Comme mentionné précédemment, la prochaine génération de relevés de galaxies dont fait partie
LSST, va observer le ciel bien plus profondément que les précédents relevés. La densité de galaxies
utilisables dans les analyses de lentillage gravitationnel augmente alors drastiquement, mais avec
elle la probabilité d’observer des objets superposés. Un exemple peut être donné par le relevé HSC
(Hyper Suprime-Cam Subaru Strategic Survey) qui produit aujourd’hui les images les plus proches
de celles que va produire LSST. Parmi les sources observées par ce relevé, 58% sont superposés à
d’autres objets. Cette expérience observe des objets jusqu’à des magnitudes de l’ordre de 26 en
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bande i, alors que LSST va observer jusqu’à une magnitude ≈ 26.8 dans cette même bande (≈ 27.5
en bande r). Le taux d’objets correspondant à des sources astrophysiques superposées devrait alors
atteindre environ 62%.

Il n’est donc pas possible d’exclure ces objets des l’analyses de lentillage gravitationnel, sous
peine de diminuer largement le nombre de galaxies utilisables. Il existe alors deux solutions au
biais apporté par cet effet systématique : calibrer les mesures en utilisant des simulations ou des
algorithmes tel que METADETECTION, ou effectuer la séparation de sources à partir des images.

Pour cette seconde solution, de nombreux algorithmes ont déjà été proposés. Une des méthodes
les plus utilisées jusqu’ici est SExtractor qui permet de faire de la segmentation entre différentes
sources (chaque pixel est associé à une source particulière) sur des images mono-bande (une seule
bande de fréquences observée). Plus récemment de nouvelles techniques ont été développées pour
séparer différentes sources sur des images multi-bandes en associant une portion du flux de chaque
pixel à différentes sources (PHOTO, algorithmes utilisés pour la Dark Energy Survey - DES, SCARLET
par exemple). Enfin, des méthodes d’apprentissage profond ont également été appliquées à ce
genre de problème, mais principalement dans un objectif d’estimation du flux des sources, ou de
classification de ces sources. Seul un premier travail utilisant un algorithme d’apprentissage profond,
un GAN (Generative Adversarial Network) en l’occurrence, a cherché à réaliser la séparation de
sources pour permettre une mesure de forme et de flux des galaxies.

La première méthode proposée dans cette thèse est basée sur un autre type de réseau de neurones
génératif, les autoencodeurs variationnels.

Apprentissage profond pour la cosmologie
Eléments de base de l’apprentissage profond
Les méthodes utilisées dans cette thèse et appliquées aux images issues des relevés cosmologiques
sont basées sur des méthodes d’apprentissage profond, et principalement sur les réseaux de neurones
artificiels.

Un réseau de neurones est un empilement de couches de neurones artificiels permettant de
d’apprendre une tâche spécifique. Ces couches peuvent être de différents types (denses ou convo-
lutionnelles par exemple) et ont chacune une fonction particulière. Pour l’application de réseaux
de neurones artificiels à des images (ce qui est notre cas dans ce manuscrit), les couches convolu-
tionnelles sont les plus aptes à extraire les informations pertinentes d’une image, et ce à différentes
échelles.

Ce travail est particulièrement basé sur un type de réseau de neurones, les réseaux de neurones
génératifs, et notamment les autoencodeurs variationnels (VAE). Un tel réseau est, dans notre cas,
constitué d’un encodeur et d’un décodeur composés de couches convolutionnelles. Il permet, à
partir d’une image, d’encoder l’information nécessaire à sa reproduction par le décodeur, dans un
espace latent de faible dimension. La particularité de l’autoencodeur variationnel est de considérer
une couche probabiliste pour l’espace latent : les différents neurones de cette couche ne sont pas
fixés à des valeurs singulières mais des distributions de probabilité leur sont plutôt associées. Ces
distributions sont échantillonnées à chaque passage d’un nouvel exemple dans le réseau. Une image
donnée plusieurs fois en entrée du VAE permettra donc la génération d’images légèrement différentes
en sortie du réseau.
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Introduction aux réseaux de neurones bayésiens
Ces couches probabilistes permettent donc de prendre en compte et de mesurer une certaine sorte
d’incertitude, l’incertitude aléatoire, intrinsèque au données. En effet, aux données fournies au
réseau, une incertitude est associée qui impacte les résultats obtenus en sortie d’un réseau de
neurones.

Cependant, elles ne permettent pas d’estimer l’incertitude épistémique, apportée par le réseau
de neurones lui-même. Cette incertitude est liée en partie à l’architecture du réseau et, de façon plus
importante, aux données sur lesquelles il a été entrainé. Prenons l’exemple d’un réseau entrainé à
classer des images de sources astrophysiques dans les catégories étoiles ou galaxies. Dans le cas où
l’on présente une image d’un autre objet (par exemple la trace laissée par le passage d’un satellite),
il serait souhaitable que le réseau présente une très forte incertitude puisqu’il n’a jamais rencontré
ce genre d’exemples lors de son entraînement. Cependant, ce n’est pas possible avec des réseau
”classiques” ou ”déterministes” et il faut pour cela utiliser des réseaux de neurones bayésiens. Dans
ce type de réseaux de neurones, les poids et les biais ne sont plus fixés à des valeurs précises mais
une distribution de probabilité leur est associée et ce sont ces distributions qui sont apprises lors
de l’entrainement.

L’entrainement de ces réseaux constitue une difficulté de part leur nature probabiliste. Cepen-
dant il est rendu possible, notamment en utilisant des méthodes d’inférence variationnelle, et
plusieurs approximations permettent d’obtenir des résultats satisfaisants. Les distributions apprises
sur les poids permettent alors d’évaluer l’incertitude épistémique en donnant au réseau plusieurs
fois le même exemple et en estimant la variance des mesures (ou prédictions).

Apprentissage profond appliqué à la cosmologie
L’estimation de cette incertitude épistémique parait d’autant plus importante que l’apprentissage
profond est de plus en plus utilisé en astrophysique et plus particulièrement en cosmologie. En effet,
elle permet d’éviter d’utiliser des réseaux de neurones pour des cas non adaptés mais également
d’apporter une information améliorant l’interprétation des résultats obtenus avec ces réseaux.

Un reproche classique fait aux réseaux de neurones tient justement à ce manque d’interprétabilité.
L’incertitude épistémique est donc un outil permettant d’améliorer cet aspect bien que d’autres out-
ils existent pour améliorer la compréhension d’un résultat obtenu avec un réseau de neurones. Par
exemple, les ”saliency maps” permettent d’identifier quelles parties d’une image ont été utilisées
par le réseau pour effectuer sa prédiction. La problématique de l’interprétabilité des réseaux de
neurones est un domaine de recherche actif et de plus en plus de méthodes sont développées pour
améliorer la compréhension du fonctionnement des réseaux de neurones artificiels. L’argument de
la boite noire opposé à ce type d’algorithmes devient donc de moins en moins pertinent.

De plus, il est intéressant de noter qu’utiliser des méthodes d’apprentissage profond en cos-
mologie peut permettre de produire des avancées dans chacun des deux domaines. Les réseaux de
neurones artificiels peuvent parfois produire des résultats plus précis que les méthodes classiques
pour des tâches spécifiques sur des données cosmologiques, notamment du fait qu’un réseau de
neurones peut, en théorie, apprendre une fonction arbitrairement complexe à partir de ces données.
Inversement, les données issues de relevés cosmologiques offrent des cas d’applications particulière-
ment complexes pouvant aboutir à de nouvelles techniques d’apprentissage profond.

Les résultats présentés dans cette thèse ont été obtenus en appliquant certaines de ces méthodes
au problème de la superposition de galaxies.
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Méthodes d’apprentissage profond bayésien appliquées à la super-
position de galaxies
Deux solutions basées sur les méthodes bayésiennes d’apprentissage profond sont proposées dans
cette partie.

Séparation de galaxies à l’aide d’autoencodeurs variationnels
La première est un algorithme de séparation de galaxies qui utilise des VAEs. Dans un premier
temps un VAE est entrainé à générer des images de galaxies isolées. Cela permet d’utiliser le
décodeur entrainé de ce VAE comme un prior pour la génération d’images de galaxies isolées dans
un second réseau, d’architecture similaire, pour faire la séparation de galaxies. Ce second réseau est
alimenté par des images simulées de galaxies superposées et a pour objectif d’extraire uniquement
l’image de la galaxie centrée sur l’image d’entrée, qui est aussi la plus brillante. Pour cela il utilise
le prior entrainé précedemment comme décodeur, avec ses poids fixés. Seul l’encodeur est entraîné
pour apprendre à encoder uniquement les informations nécessaires à la reproduction de l’image de
la galaxies centrée dans l’espace latent. La séparation de galaxies est donc réalisée lors de cette
étape d’encodage.

Nous montrons dans un premier temps que cette méthode fonctionne sur des simulations
d’images multi-bandes LSST pour la séparation de galaxie : elle permet une reconstruction précise
de la forme et du flux des galaxies. Afin d’évaluer l’apport d’une analyse jointe de données issues de
LSST et d’un téléscope spatial, ces dernières ne souffrant pas de la PSF due à l’atmosphère, nous
avons réalisé l’analyse conjointe des pixels d’images simulées pour LSST et Euclid. Cela permet
une diminution de l’erreur médiane de reconstruction des formes des galaxies allant de 8 à 47%.
Ensuite, la superposition de sources étant étroitement liée à l’étape de détection, nous démontrons
la robustesse de notre méthode à de petits décentrages, en testant deux configurations : une config-
uration supposant une détection parfaite mais un décentrage dû à la pixelisation de l’image, et une
configuration prenant en compte les décentrages obtenus avec un algorithme de détection. Pour
finir, et montrer la possibilité d’appliquer notre méthode à de vraies données, nous avons artifi-
ciellement superposé des images de vraies galaxies et montré l’intérêt du transfert d’apprentissage
à partir d’un réseau de neurones entraîné sur des images de galaxies simulées.

J’ai par la suite encadré le stage de Thomas Sainrat lors duquel nous avons mis au point
un processus itératif afin de séparer toutes les galaxies d’une image en passant par des étapes de
détection, classification, et séparation des sources. Des réseaux de neurones sont également utilisées
pour les étapes de détection et de classification. La mise en place de ce processus itératif a permis
d’obtenir des résultats préliminaires sur des champs de galaxies simulées.

Enfin, pour se rapprocher un peu plus des futures images LSST, cet algorithme de séparation
de galaxies est testé sur des images extraites de la simulation DC2 (Data Challege 2), générée
au sein de la collaboration DESC dans le but de préparer à l’analyse des futures images prises
par LSST. Les résultats obtenus montrent une amélioration de 70 à 120% sur l’erreur médiane de
reconstruction des formes de galaxies comparée à la méthode générique utilisée dans la pipeline
LSST actuellement. Ces résultats préliminaires devront être confrontés aux résultats qui seront
obtenus avec l’autre algorithme de séparation de sources récemment implémenté dans la pipeline
LSST, SCARLET.
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Réseaux de neurones bayésiens pour l’estimation de paramètres sur des galaxies
superposées: mesures d’éllipticité et de décalage vers le rouge
Les résultats précédents montrent donc qu’il est possible, à partir d’une image contenant des sources
superposées, d’encoder dans un espace latent les informations nécessaires à la reconstruction de la
galaxie centrée sur cette image, par un décodeur entrainé. L’espace latent contient donc, entre
autres, les informations de forme et de décalage vers le rouge de cette galaxie, les deux paramètres
nécessaires à l’analyse du lentillage gravitationnel faible.

Par conséquent, nous proposons un réseau de neurones permettant de faire directement l’estima-
tion combinée de ces paramètres à partir des images DC2, sans appliquer de méthode de séparation
de sources. L’architecture du réseau est reprise de celle de l’encodeur précédemment implémenté
(réseau de neurones convolutif) et les résultats montrent une estimation précise des paramètres
pour des réseaux de neurones déterministes, du même ordre de grandeur, pour la mesure de forme,
que ceux obtenus avec l’algorithme de séparation de sources précédemment décrit.

Cet algorithme ne permettant pas d’avoir une estimation de l’incertitude épistémique, nous
appliquons ensuite un réseau de neurones bayésiens à l’estimation de formes des galaxies. Ce
réseau permet d’évaluer la distribution de probabilité à posteriori des paramètres de forme d’une
galaxie, ce qui permet d’obtenir une diminution de 50% de l’erreur médiane pour l’estimation des
ellipticités. Par ailleurs, il est possible d’utiliser l’estimation de l’incertitude épistémique pour
diminuer l’importance d’une mesure qui a de fortes probabilités d’être erronée dans l’analyse,
voire de la rejeter. Ainsi il est possible, par exemple, de diminuer l’erreur moyenne sur la mesure
d’ellipticité d’un échantillon de galaxies. Nous montrons donc que cette incertitude apporte une
information cruciale à l’utilisation des réseaux de neurones en cosmologie.

La future mesure combinée des distributions de probabilité a posteriori des paramètres d’éllipti-
cité et de décalage vers le rouge des galaxies, à l’aide d’un réseau de neurones bayésiens, permettra
donc d’obtenir des mesures précises des deux paramètres nécessaires à l’analyse du lentillage grav-
itationnel faible.

Les deux méthodes developpées dans ce manuscrit montrent l’intérêt des techniques d’apprenti-
ssage profond bayésien pour des problématiques spécifiques à la cosmologie comme l’effet systéma-
tique de superposition de galaxies, pour lequel elles présentent des résultats probant. L’utilisation
croissante de ces techniques en cosmologie montre l’intérêt porté par le communauté scientifique
à leur égard et suggère qu’elles seront des outils important pour relever les défis de la cosmologie
moderne.
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Introduction

...; the chance of unfavourable weather is the chief but by no means the only apprehension.

A.S. Eddington, The Observatory, March 1919, Vol 42, pages 119-122

This is full of hope that A.S. Eddington starts the conclusion of his paper detailing the moti-
vations for the two expeditions sent to observe the total solar eclipse of the 29th of May 1919. He
finishes by detailing the major consequences that this observation could lead to:

The present eclipse expeditions may for the first time demonstrate the weight of light; or they may
confirm Einstein’s weird theory of non-Euclidean space; or they may lead to a result of yet more
far-reaching consequences - no deflection.

A.S. Eddington, The Observatory, March 1919, Vol 42, pages 119-122

In a paper published in 1920, Dyson, Eddington, and Davidson presented their results, measur-
ing that light coming from stars behind the sun was deflected from an amount in agreement with
the predictions of Einstein’s theory of General Relativity (and in disagreement with the two other
hypotheses).

The first use of gravitational lensing, the deflection of light due to the bending of space-time
induced by mass along the line of sight, was to prove General Relativity. Its observation was a
turning point in our understanding of the Universe, and it is at the core of this thesis.

Gravitational lensing is one of the major probes to study dark matter and dark energy, the two
main components of our standard cosmological model, or ΛCDM model. Today, this model, which
can be defined using only six parameters, stands on solid ground. One of the major argument
in its favour comes from the measurements on the Cosmic Microwave Background (CMB) by the
Planck satellite. Initially discovered by Penzias and Wilson in 1964, the CMB has been measured
by several instruments, and in particular by the FIRAS instrument on the COBE satellite, which
measured its spectrum to be extremely close to a black-body spectrum, and detected the CMB
anisotropies. These anisotropies result from density perturbations in the early Universe that froze
at recombination, and they carry a lot of information about the physics of that period. They were
measured by Planck with an extremely high precision, allowing to apply strong constraints on the
cosmological parameters, particularly through the computation of the temperature and E-modes
power spectra. Both these measurements were found in excellent agreement with the ΛCDM model.

The history of the Universe can also be probed by large scale structures. Historically, the
expansion of the Universe was discovered by Hubble who, observing galaxies, noticed that the ones
which are the further from us are also moving away the fastest. He derived a linear relationship
between the recession velocities of galaxies, measured through their redshift, and their distances,
measured using the work of Henrietta Leavitt on Cepheids, known as Hubble’s law. The acceleration
of this expansion was discovered around 70 years later by the High-Z Supernova Search Team,
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Figure 1: Image of the eclipse of 1919 taken with a photographic plate by one of the two expeditions.
The red circles show five of the seven stars used to measure the deflection of light by the sun’s
gravitational field. Credit: Dyson, Eddington and Davidson (1919)

simultaneously with the The Supernova Cosmology Project, using supernovae, bright explosions of
white dwarfs in binary systems1, to probe higher redshifts. Similarly to the CMB, the study of
large scale structures probes, such as galaxy clustering, clusters of galaxies, or gravitational lensing
for example, allow to apply constraints on the cosmological parameters. Until now, no observation
showed a significant deviation from the standard model.

Nevertheless, and fortunately, there is still a lot that we don’t know. First, the origin of the
fluctuations observed in the CMB at large angular scales is unknown, and even if inflation is the
favoured hypothesis today, no conclusive proof has been observed yet. Finding the B-modes in
the polarisation of the CMB would be a major step in that regard, and lots of future surveys are
devoted to this task (QUBIC, Simons Array, POLARBEAR). Then, the nature of dark energy,
accounting for about 70% of the total energy of the Universe according to the ΛCDM model, is
unknown. Again, several large galaxy surveys (LSST, Euclid, Roman) are specifically designed to
apply tight constraints on the parameters of the dark energy equation of state in a beyond-ΛCDM
model (allowing for a time varying proportionality coefficient in the dark energy equation of state),
and they should soon start recording data.

This is where gravitational lensing comes back in the forefront, as a powerful probe to constrain
dark energy parameters. In particular, the weak regime of gravitational lensing, weak lensing for
short, already showed promising results from surveys like CFHTLens, KiDS, HSC, or DES. It is
one of the major probes for future Stage IV galaxy surveys and one of the four major scientific
goals of the Vera C. Rubin Legacy Survey of Space and Time (LSST). These surveys are specifically
designed for weak lensing, with wide observed sky areas, and depths never reached before, leading
cosmology into the so-called ”precision era”. With these surveys the main source of uncertainties
in the weak lensing analysis will not be the statistical uncertainty any more, it will come from

1Note that this is the current consensus. Parts of this mechanism are still unknown.
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Figure 2: Portion of a tract of LSST after five years of operation simulated in the Data Challenge
2 (DC2) for the LSST Dark Energy Science Collaboration. Numerous objects appear overlapped
with other objects, they are blended. Credit: Jim Chiang (LSST Dark Energy Science Collaboration
(LSST DESC) et al., 2021)

systematic errors.
The work presented in this thesis was done in the context of the LSST Dark Energy Science

Collaboration (DESC), and is particularly focused on a dominant systematic effect for weak lensing
analysis: the overlap of sources on an image, an effect called blending (see fig. 2). Due to its
characteristics, the LSST will face an unprecedented and concerning proportion of blended objects.

Cosmological constraints coming from weak lensing rely on statistical measurements of shapes,
or galaxy ellipticities, and photometric redshifts2. Obviously, measuring the shape or the flux of
a galaxy is much more difficult if it is blended and state-of-the-art shape measurement methods,
for example, fail when applied to blended objects (see fig. 3). To handle blended sources, one
usually turns to deblending algorithms: algorithms that can separate the objects while conserving
the shape and flux of each of them, before doing the shape, or flux measurement.

In this thesis, I propose two avenues to this systematic effect, both based on neural networks.
The first one is a deblending algorithm that I implemented using a kind of deep generative models,
namely variational autoencoders (VAE). This method works in two steps: first, a VAE learns the
features of isolated galaxy images and their representation in a latent space. Then, the decoder of
the trained VAE is used as a prior in a second VAE-like network, which learns to deblend images of
blended scenes by encoding the centred galaxy representation into the latent space. This method
naturally generalises to multi-band and multi-instrument data, a major advantage of our algorithm
compared to other state-of-the-art methods, that I tested simulating LSST and Euclid-like data.

The second solution that I propose is a galaxy parameters estimation algorithm that can perform
as good on isolated galaxies as on blended scenes, without the need for a deblending algorithm. It
is inspired from the architecture of the previous algorithm. Since the encoder of the deblender is

2In the case of photometric surveys, the redshift of a galaxy can be obtained by measuring its flux in different
bands and by fitting (or learning) a redshifted spectral energy distribution model, a measure called photometric
redshift.
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Figure 3: Toy example of the impact of blending on shape measurement. The shape measurement
method used here is the KSB algorithm, a moment-based method. On the two panels, the light
profile of the two sources is plot, the one from the centred galaxy is in red, the one from it companion
is in green, and the total light profile is in blue. In the top left corner, the corresponding scene is
showed. One the right is displayed the values of the two ellipticity parameters (ϵ1, ϵ2). (ϵtrue

1 , ϵtrue
2 )

are the true values, (ϵtrue
1 , ϵtrue

2 ) are the values measured by the KSB algorithm, and (δϵ1, δϵ2) are
the errors in percentage. In the case where the galaxies are blended (right panel), the light profiles
overlap leading to large errors on the ellipticity parameters estimation. Credit: Thomas Sainrat.

able to extract from a blended scene, the relevant parameters required for the image generation of
the centred galaxy, an encoder-like neural network should be able to provide a direct estimation of
the weak lensing relevant parameters, namely the ellipticity and redshift of the galaxy. I test this
hypothesis using a convolutional neural network (CNN) and a Bayesian neural network (BNN).
The latter presents the advantage of providing an estimation of the epistemic uncertainty, the
one coming from the model, allowing to yield a reliable estimation of the full predictive posterior
distribution of the measured parameters.

This thesis is divided into three parts. The first one is dedicated to cosmology with an intro-
duction to the standard model, a description of weak lensing and how to constrain cosmological
parameters using the cosmic shear. A focus is made on blending as a systematic error, since it
will be a dominant source of bias for cosmic shear analysis. The second part is dedicated to deep
learning and its application to cosmology. I first give some elements of deep learning before intro-
ducing to the formalism and methods used to train Bayesian neural networks. I conclude this part
by discussing the need for deep learning in cosmology. Finally, my work is described in the third
part with two chapters dedicated to each of the two projects presented above.
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Part I

Weak lensing with the LSST
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Chapter 1

The standard cosmological model

1.1 A Universe in accelerated expansion
This section is inspired from Peter and Uzan (2013), Dodelson (2003), Baumann (2018), Peacock
(1999) and Schneider, Kochanek, and Wambsganss (2006).

At the beginning of the twentieth century, physics needed a new theory of gravity since Newto-
nian physics was failing at different levels. Einstein proposed in 1915 the theory of general relativity
(GR), which is at the origin of modern cosmology.

1.1.1 General relativity
This theory describes space-time as a four-dimensional manifold which relies on a metric, gµν,
allowing to measure space-time intervals. Two events in space-time are separated by a distance

ds2 = gµνdxµdxν (1.1)

Here µ and ν describe the four dimensions of space-time, they can range between 0 and 3. In
classical mechanics, the equivalence principle states that, if no external force acts on a particle, its
trajectory follows a straight line. In general relativity, space-time is curved but this principle holds
as particles only subject to gravity move along geodesics, according to the equation:

d2Xα

dτ2
+ Γαµν

dXµ

dτ
dXν

dτ
= 0 (1.2)

where Xµ(τ) is the trajectory, τ the proper time, i.e. the time measured in the referential of the
object, and Γαµν is the Christoffel symbol. The latter is defined as

Γαµν =
gαβ

2

[
∂gµβ
∂xν
+
∂gνβ
∂xµ
−
∂gµν
∂xβ

]
(1.3)

Hence the equation of motion of a light particle, which follows geodesics, only depends on the
metric g, which defines the geometry of space-time. Light paths follow the curvature of space-time.

The dynamic of the metric is governed by Einstein’s field equations, relating the Einstein tensor,
Gµν, which depends on the metric gµν, to the stress-energy tensor, which describes the energy content
of the Universe, Tµν:

Gµν + Λgµν =
8πG
c4 Tµν (1.4)

where the cosmological constant Λ arises. In this equation, G is Newton’s gravity constant, and c
the speed of light in vacuum.
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1.1.2 Cosmology
The cosmological principle states that on large scales, the Universe is homogeneous and isotropic.
Combining this affirmation with eq. (1.1), one can define the FLRW metric (for Friedmann-
Lemaître-Robertson-Walker) as

ds2 = −c2dt2 + a2(t)
[
dχ2 + f 2

K(χ)dΩ2
]

(1.5)

where χ is the comoving distance, t is the cosmic time, a(t) the scale factor, and fK(χ) the comoving
angular distance defined as

fK(χ) =


sin

(√
Kχ

)
/
√

K , if K > 0
χ , if K = 0
sinh

(√
−Kχ

)
/
√
−K , if K < 0

(1.6)

and which depends on the curvature of space-time, K. The comoving distance is the distance
between two observers statics in space, i.e. with comoving coordinates (blind to the expansion of
the Universe). The curvature is positive, null, or negative respectively for open, flat, or close space.

The scale factor, a, describes how space is expanding or contracting over time. The definition
of the physical distance between two objects is then

r(t) = a(t)χ . (1.7)

χ is the comoving distance.
Following the cosmological principle, one can consider the content of the Universe as a perfect,

homogeneous and static fluid. The stress-energy tensor then becomes a diagonal matrix with

• T00 = ρ, ρ being the energy density of the fluid (considering c = 1 here and in the following),

• and Tii = p, p being the pressure of the fluid.

Then, using Einstein’s equations one can derive the Friedmann equations:

H2 =

( ȧ
a

)2
=

8πG
3
ρ +
Λ

3
− K

a2 (1.8)

and
ä
a
= −4πG

3
(ρ + 3p) +

Λ

3
(1.9)

where H = ȧ/a is the Hubble parameter. It represents the expansion rate of our Universe at a
particularly time t.

The critical density ρc can be defined from eq. (1.8) as

ρc =
3H2

8πG
(1.10)

and allows for the definition of the density parameters. They can be written, in the case of flat
space:

Ωx =
ρx(a)
ρc

(1.11)

where x ∈ {rad, γ, ν,m, b, c}, with rad standing for radiation, γ for photons, ν for neutrinos, m for
matter, b for baryonic matter, and c for cold dark matter. Ωrad is the total radiation density,
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gathering neutrinos and photons. Ωm is the total matter density, gathering baryonic and cold dark
matter. It is also possible to define ΩΛ = Λ/3H2 and Ωk = −K/a2H2 to re-write the first Friedmann
equation, eq. (1.8), as a function of these density parameters only:

Ωm + Ωrad + ΩΛ + Ωk = 1 (1.12)

This equation can be modified to include the scale factor and the Hubble parameter as:(
H
H0

)2

= Ωm0

(
a
a0

)−3

+ Ωrad0

(
a
a0

)−4

+ Ωk0

(
a
a0

)−2

+ ΩΛ0 (1.13)

with the subscript 0 indicating that the values of the density parameters are taken today. In the
following this subscript is assumed even if it is not written for density parameters. To obtain
eq. (1.13) one uses the relation

ρ(t) ∝ a(t)−3(1+w) (1.14)

for fluids with an equation of state p = wρ, w being constant. It is the solution of the equation

ρ̇ + 3H(ρ + p) = 0 (1.15)

derived from the conservation equation, ∇µT µν = 0. Note that for a flat Universe, the term in Ωk

vanishes, this hypothesis is considered in the rest.
Equation (1.13) introduces the parameter H0 called the Hubble constant, it is the Universe

expansion rate, today. In section 1.2.3, I discuss the current tension that different measurements
of this parameter, apart from each other, has generated and ways to solve it.

This equation also presents the ΛCDM parametrisation with a value of w = 0 for the radiation,
w = 1/3 for the matter and w = −1 for the cosmological constant, which defines a fluid with negative
pressure called dark energy.

Other models exist to parametrise the equation of state of dark energy. In the wCDM models
for example, w is a free parameter that can be different from −1. Last results from the Dark Energy
Survey give w = −0.98+0.32

−0.20 (DES Collaboration et al., 2021). It is also possible to consider the w
parameter as evolving through time, for example linearly as a function of redshift, with w = w0+w1z
(Cooray and Huterer, 1999). However this grows increasingly unsuitable at redshifts larger than
one, so other parametrisation have been proposed, the most simple and most used being

w = w0 + wa
z

1 + z
(1.16)

proposed by Chevallier and Polarski (2001) and Linder (2003). Here, z is the redshift defined as:

1 + z =
a(t0)
a(t)

. (1.17)

Hence the equation of state of dark energy could evolve through time. Constraining the parameters
of this equation of state are a major challenge of current cosmology (see section 1.2.2). Nowadays,
the ΛCDM model is favoured for its simplicity and as no cosmological result permits to discard it.

1.1.3 Density perturbations and matter power spectrum
Even though the cosmological principle holds at large scales, to allow for the formation of structures
in the Universe it is assumed that there were small fluctuations at early times, supposedly originated
from quantum fluctuations during the early Universe, that grew by gravitational interaction through
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time. They remained small, i.e. the density contrast (defined below) is much smaller than unity,
and linear perturbations theory suffices for their description. Here we consider non-relativistic
perturbations on scales smaller than the horizon1. The matter fluctuations can be characterized
by the density contrast δ,

δ(x, a) =
ρ(x, a) − ρ̄(a)
ρ̄(a)

(1.18)

ρ̄ being the mean matter density.
With linear perturbation theory, it is then possible to describe the growth of density perturba-

tions as
δ(a) = δ0ag(a) (1.19)

with δ0 the density contrast linearly extrapolated to present time and g the density-dependent
growth function, which depends on the scale factor and the density parameters.

Assuming that the density field is a Gaussian random field, the statistics of the density fluctu-
ations at a position x can be fully characterized by its power spectrum. It can be computed from
the two point correlation function:

ξδ(x, x′) = ⟨δ(x)δ(x′)⟩ (1.20)

which can be linked to the power spectrum by going to Fourier space:

⟨δ(k)δ∗(k′)⟩ = δ(3)(k − k′)P(k) (1.21)

where the power spectrum is defined as

Pδ(k) =
∫

d3rξ(r)eikr (1.22)

The latter equation can be inverted to express the correlation function as a function of the power
spectrum:

ξ(r, t) =
∫ ∞

0

dk
2π2 k2Pδ(k, t)

sin(kr)
kr

(1.23)

The primordial power spectrum can be predicted from inflation theory for example, leading, for
scalar modes, to

Pζ = As

(
k
kp

)(ns−1)

(1.24)

with As the amplitude of the power spectrum, ns the spectral index which governs the balance
between small and large scales, with value close to 1, and kp a pivot scale. ζ is called the curvature
perturbation which corresponds, at early times, to the common perturbations for all components
of the Universe. It is commonly normalised using the parameter σ8 representing the root mean
square (RMS) of the density contrast within spheres of radius 8 h−1Mpc, h the dimensionless Hubble
constant (the Hubble constant is defined as H0 = 100h km.s−1.Mpc−1, see section 1.2.3).

The power spectrum can be linked to the cosmological density parameters and its measure-
ment allows to apply constraints on them (see section 2.1.4). The correlation function of density
fluctuations is, therefore, a powerful probe, and it can be measured using the different observable
phenomenons that the Universe offers.

1The horizon defines a causally connected region which size is set by the distance that a photon can have travelled
in the time t since the Big Bang.
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Figure 1.1: Map of the temperature anisotropies of the CMB, showing the density fluctuations in
the early Universe. The scale shows the amplitude of these anisotropies around the mean value
2.725K. This map has been masked (grey lines) and inpainted where residuals from foreground
emission are expected to be important. Credit: Planck Collaboration et al., 2020a

1.2 Different probes for different epochs
Using eq. (1.14) combined with eq. (1.8) and eq. (1.9), allows to describe the three major era of
our Universe for three different values of w:

• the radiation-dominated era for w = 1/3: the energy decreases as ρ(a) ∝ a−4 as photons are
diluted with the expansion of the Universe. The scale factor goes as a(t) ∝

√
t.

• the matter-dominated era for w = 0: matter starts dominating radiation density around
60 000 years after the Big Bang. The energy density goes as ρ(a) ∝ a−3 and the scale factor
increases as a(t) ∝ t2/3

• the dark energy-dominated era for w = −1: it started about 9 billions years after the Big
Bang. The expansion becomes exponential with a(t) ∝ eH0t

Consequently, in theory the expansion rate evolved through times, from the radiation-dominated
era to the dark energy-dominated era. To probe those different times, several physical processes
produced observable phenomenons that can be used to constrain cosmological parameters. I will
now briefly describes few of the main probes that are used nowadays.

1.2.1 Early Universe: the cosmic microwave background
The large scale structures that can be observed today, such as galaxies and galaxy clusters for
example, result partially from the propagation of small density perturbations occurring at early
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Figure 1.2: (left) Temperature power spectrum obtained by Planck 2018. The flat ΛCDM the-
oretical best fit to Planck data is shown in blue in the upper panel. Lower panel shows the
residuals. (right) Contours obtained using a flat ΛCDM model in the (Ωm, σ8Ω

0.25
m ) plane. Planck

TE (Temperature - E-modes), TT (Temperature-Temperature) and lensing likelihoods overlap and
the combination give tight constraints. Credit: Planck Collaboration et al., 2020b

times in the Universe. At the beginning of the matter era, 380 000 years after the Big Bang,
photons and baryonic matter decoupled as the Universe was expanding. From there, photons started
following null geodesics, forming the first electromagnetic radiation in the Universe, a radiation bath
called the cosmic microwave background (CMB). They were emitted at a temperature of about 3
000K and reach us at T0 = 2.725K, leading to zCMB ≈ 1090.

The CMB represents a map of the matter density at decoupling, with the density perturbations
imprinted on it. These density anisotropies translate in temperature anisotropies of the order of
10−5 (see fig. 1.1) and are carrying a lot of information about the primordial Universe.

Most recent results come from the Planck Collaboration (Planck Collaboration et al., 2020b).
The left panel of fig. 1.2 shows the power spectrum computed from the auto-correlation function of
the temperature, in excellent agreement with the flat ΛCDM model theoretical best fit (in blue).
The small discrepancies of the fit with data at small scales are due to cosmic variance (the limited
number of modes at low l), preventing to precisely constrain models. The CMB provides the tightest
constraints on cosmological parameters today.

Fluctuations in the baryon-photon plasma generated acoustic waves that froze at recombina-
tion (baryon-photon decoupling). The wavefronts created over-densities of baryons and photons,
followed by under-dense regions. The combination of these density modes at recombination created
peaks in the power spectrum. The oscillations correspond to a defined acoustic angular scale on
the sky θ∗ = r∗/DM, with r∗ the sound horizon at recombination and DM the comoving angular
diameter distance. Planck measured the acoustic angular scale to be 100θ∗ = 1.04097±0.0004. This
value can be compared to the results obtained with baryonic acoustic oscillations (BAO, see next
section and left pannel of fig. 1.3).

In addition to the temperature, the CMB provides information about the polarization of light.
Light is polarized into E and B modes and the E-modes auto-correlation, or its cross-correlations
with temperature, can help tighten cosmological constraints as shown on the right panel of fig. 1.2.
B modes amplitude is below the systematics of Planck and have not been discovered yet. The search
for these modes is a major challenge of nowadays cosmology and most of future CMB surveys such
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as Simons observatory (Ade et al., 2019), Qubic (Hamilton et al., 2020) or POLARBEAR-2 (Suzuki
et al., 2016) are looking for them. The discovery of these modes would indicate the presence of
primordial gravitational waves, another clue in favour of inflation and of the standard cosmological
model.

Finally, travelling along geodesics from the last scattering surface, photons from the CMB are
lensed (see chapter 2) by the large scale structures in the Universe and one can use CMB lensing
as a probe of matter distribution (Planck Collaboration et al., 2020c). As shown on the right panel
of fig. 1.2, it provides additional information to the temperature and E-modes correlation functions
and can be combined with them to decrease the likelihood surface.

1.2.2 Large Scale Structures
With the discovery of CMB’s B-modes, learning about the nature of dark energy is the other major
challenge of nowadays’ cosmology. In that sense, the Dark Energy Task Force (DETF) (Albrecht et
al., 2006) defined a Figure of Merit (FoM) in order to quantify improvements and set requirements
for future surveys that will try to constrain the dark energy equation of state. It is defined as a
function of the dark energy parameters as

FoM =
1

σ(w0) × σ(wa)
. (1.25)

The FoM increases as the confidence limits in the (w0,wa) plane decrease. Surveys with higher FoM
consequently give tighter constraints on the dark energy parameters. For stage IV surveys, surveys
that will start in the next few years (LSST, Euclid, Roman), the DETF set the goal of multiplying
by ten the FoM compared to stage II surveys, surveys which have ended (CHFTLens, SDSS-II,
etc), to reach a value above 500 (for a list of surveys for each stage, see appendix X of Albrecht
et al., 2006). However, note that this figure of merit does not allow for the discrimination between
all dark energy models, and is particularly not suited to test other hypotheses about dark energy
such as modified gravity models for example. It is used here as the simplest Figure of Merit able
to point out a divergence from the ΛCDM model and an evolution of the dark energy parameters
through time.

Baryonic acoustic oscillations

As explained before, the over-densities produced by acoustic oscillations in the baryon-photon
plasma, or baryonic acoustic oscillations (BAO), froze at recombination. From this point, photons
follow null geodesics while baryons slowly interact with dark matter through gravity until they
completely match at low redshift. The temperature power spectrum of the CMB permits to compute
the acoustic angular scale, resulting from the preferred scale at which acoustic waves froze.

Since it represents the preferred scale of both temperature and matter density fluctuations at
recombination, tracers of the large-scale structures (LSS) should also exhibit a BAO peak in their
correlation functions. A scale, corresponding to the CMB θ∗, called θdrag = rdrag/DM with rdrag

the comoving sound horizon at the end of the baryonic-drag epoch2, can be determined using the
galaxy-galaxy correlation function, a method called galaxy clustering. This scale can be used as a
standard ruler, i.e. a scale that can be compared to the size of the detected BAO peak providing a
measurement of cosmological distance. It can be related to the values of the expansion rate, H(z),
and to the angular diameter distance dA(z) = fK(χ(z))/(1 + z) via the comoving scales measured

2The end of the baryonic-drag epoch is the moment at which the baryons decouple from the drag of the photons,
i.e. the baryon optical depth is equal to one.
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Figure 1.3: (left) Acoustic scale distance measurements. Measurements of each surveys are added
with their 1σ error bars as a function of redshift. The grey bands show the 68% and 95% confidence
ranges allowed by the combination of Planck TT+TE+EE+lowE+lensing. Credit: Planck Collab-
oration et al., 2020b. (right) BAO peak detection: measurement of the galaxy-galaxy correlation
function as a function of the angular separation. Credit: Eisenstein et al., 2005

along the line of sight and perpendicular to it: rdrag⊥ = θdragdA(z)(1 + z) and rdrag∥ =
c∆z
H(z) . BAOs can

consequently probe the expansion rate at different redshifts.
Different tracers of LSS have been used to measure BAOs. It was first detected using galaxy

surveys with the Sloan Digital Sky Survey (SDSS, Eisenstein et al., 2005) and 2dF Galaxy Redshift
Survey (Cole et al., 2005). The measurement with galaxies at low redshift has been extended to
higher redshift using quasars3 (from the extended Baryon Oscillation Survey (eBOSS) for example)
and Lyman-α4 spectra of quasars. Planck Collaboration et al. (2020b) present a summary of these
measurements at different redshifts and compare them with the prediction from the CMB power
spectrum (see fig. 1.3). BAOs obtained from galaxy surveys, quasars and Lyman-α spectra of
quasars are in good agreement with the Planck results. The apparent discrepancy between Planck
and the Lyman-α spectra of quasars (in orange) is not large enough to conclude to a tension. These
results are consistent within 1.7-σ (de Sainte Agathe et al., 2019).

Constraints on the dark energy parameters could be improved and next generation of both
galaxy and spectroscopic surveys will allow to increase BAO measurements precision. LSST (see
section 1.3) will provide large amount of photometric data, expecting a FoM of 14 after 10 years,
a nearly 20 times improvement compared to stage III surveys (The LSST Dark Energy Science
Collaboration et al., 2018). Euclid is also optimised for BAOs and will provide photometric and
spectroscopic data, especially measuring the spectroscopic redshift of 50 millions of galaxies in
the redshift range 0.7 < z < 2.1 (Laureijs et al., 2011). The Dark Energy Spectroscopic Instru-

3Quasars, for quasi-stellar astronomical radiosources, are extremely luminous active galactic nuclei (AGN) with
a supermassive black hole in their center. Their large intrinsic luminosity allows to acquire their spectra at high
redshift. eBOSS for example, measured the spectra of about 150 000 quasars (Ata et al., 2018).

4The absorption of the light from quasars at wavelength corresponding to the rest-frame energy transition of
neutral hydrogen in the interstellar medium.

14



Figure 1.4: Constraints on the (w0,w′) plane of the BOSS measurements and of expected DESI
results, including Planck priors. The figure shows the 68% limits of the contours. Credit: DESI
Collaboration et al., 2016

ment (DESI, Levi et al., 2019) should measure the spectra of 20 to 30 millions of galaxies and
quasars at redshifts 0.5 < z < 3.5, drastically increasing the number of spectra available currently
(BOSS+eBOSS produced 2 millions of spectra in 10 years). This should allow DESI to improve
the FoM from more than a factor 3 using BAOs, more than 4 adding Lymann-α forest, and close
to 9 including redshift space distortion in the plane (w0,Ωk) (DESI Collaboration et al., 2016)
(see fig. 1.4). Redshift space distortion is the perturbation of galaxy clustering along the line of
sight, due to peculiar velocities of galaxies coming from attraction by large scale structures. This
anisotropies can be measured in redshift space and give information about the growth of structure
(Reyes et al., 2010).

BAOs are very efficient tracers of the distribution of matter and are expected to apply tight
constraints on the dark energy parameters. To tighten even more those constraints, one can combine
them with other tracers of the distribution of matter such as gravitational lensing.

Gravitational lensing

Gravitational lensing provides a complementary measurement to the one of BAOs. When the latter
traces the distribution of galaxies, weak gravitational lensing probes the complete distribution of
matter (dark and baryonic matter) through the Universe. This probe is at the core of this thesis,
and will be largely discussed in chapter 2. To summarize, the path traveled by light coming
from a background galaxy is modified by the foreground matter. Since photons travel following
null geodesics (see eq. (1.2)), the image of the background galaxy is distorted. The gravitational
potential acts similarly to an optical lens, that is why this effect is called lensing. Two lensing
regimes exist: strong and weak lensing.

The statistics of strong lenses is not large enough nowadays to provide tight constraints on
cosmological parameter but first studies already showed that such an analysis can be performed
(Wong et al., 2020). It is improved by current galaxy surveys like DES and deep learning algorithms
are used to find potential or definite candidates to extend strong lenses catalogs (Jacobs et al., 2019).
Using next generation of surveys such as LSST, it is expected to yield a FoM of 9.4 (The LSST
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Dark Energy Science Collaboration et al., 2018).
On the contrary, weak lensing has already shown extremely promising results and is a major

goal for next generation surveys. It will be much more constraining than strong lensing for dark
energy parameters. The Dark Energy Survey just released its ”year 3” analysis (DES-Y3) pro-
viding tight constraints on cosmological parameters, especially using the 3 × 2-point correlation
function (improving by more than a factor of 3 the FoM obtained from the shear-shear correlation
function, see section 2.3.1). The Rubin Observatory Legacy Survey of Space and Time (LSST, see
section 1.3.1 and Abell et al., 2009), Euclid (see section 1.3.2 and Refregier et al., 2010) and the
Nancy Grace Roman Space Telescope (Roman, see Spergel et al., 2015) are specifically designed to
make the most of this probe. LSST expects a FoM of 52 on dark energy parameters (The LSST
Dark Energy Science Collaboration et al., 2018) using weak lensing while Euclid could go up to
180 (Refregier et al., 2010), combining imaging and spectroscopic data (see section 1.3). Since this
thesis was done within the LSST Dark Energy Science Collaboration (DESC) and that Euclid-like
data are also used in chapter 7, the main characteristics of those two surveys are described in
section 1.3.

Clusters

In addition to these measurements, it is possible to use clusters of galaxies, and in particular cluster
abundance (number counts of galaxy clusters), to constrain cosmology. Being the largest structures
in the Universe, clusters are sensitive to both the expansion history of the Universe and the growth
of structures. Clusters lay in dark matter halos, which abundance at a given redshift, and as
a function of mass, the halo mass function, depends on the density of cosmological parameters.
Measuring the mass and redshift of the detected clusters can hence provide constraints on these
parameters.

The main difficulty resides in the measurement of the halo masses from the different observable
(richness, i.e. count of member galaxies, intensity of the thermal Sunyaev-Zeldovich (SZ) signal,
or X-ray luminosity for example). For photometric surveys for example, the mass of clusters can
be measured using the mass-richness relationship, which needs to be calibrated. Weak lensing is
expected to give a precise calibration of this relationship, as it probes both baryonic and dark
matter, and does not depends on the thermodynamic state of the clusters as X-rays or the SZ
effect. However, it also includes systematics (see section 2.5) that needs to be taken into account.

It has already been used to apply cosmological constraints with the data from SDSS (Costanzi
et al., 2019) or from DES-Y1 (T. M. C. Abbott et al., 2020). The latter presents a tension with
other measurements from Planck or the 3 × 2-pt analysis from DES-Y1, but it has been found to
be due to systematics (Costanzi et al., 2021), namely the modeling of the weak lensing signal.

Stage IV photometric surveys, LSST for example, will produce large catalogs of clusters. Com-
bined with other large scale structure surveys (SKA (Square Kilometre Array Cosmology Science
Working Group et al., 2020), or eROSITA (Predehl et al., 2021) for example), it will allow to
decrease the impact of systematics on measurement, and to precisely calibrate the observable-mass
cluster relationship using gravitational lensing. LSST expects, with cluster alone, to reach a FoM
of 22, which will significantly contributes to the joint-probes analysis as shown on fig. 1.10.

However, BAOs, lensing and clusters are not the only tracers of the distribution of matter. In
the next section, I briefly present the role of Supernovae cosmology and the tension resulting from
the measurement of the Hubble constant using them.
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Figure 1.5: Contours at 68% and 95% of SN only constraints for a non-flat ΛCDM model for the
Pantheon sample (combining systematics and statistical uncertainties in red, with only statistical
uncertainties in grey) and from the sample used to discover the acceleration of the Universe’s
expansion (contours in black) (Riess et al., 1998). Credit: Scolnic et al., 2018

1.2.3 Supernovae and the H0 tension
Supernovae cosmology

Historically, the first probe to demonstrate the accelerated expansion of the Universe is type Ia
Supernovae (SNIa) (Perlmutter et al., 1999; Riess et al., 1998). Measuring the relation between
luminosity distance and redshift obtained by analysis of the SNIa light curves permits to constrain
cosmological parameters. To this effect, SNIa are considered to be standardisable candles, i.e.
objects that have the same intrinsic luminosity. Their large intrinsic luminosity allows to probe
redshift up to about 2. The Pantheon sample (Scolnic et al., 2018) combined measurements from
four different surveys (HST, SDSS, the SuperNova Legacy Survey, SNLS, and Panoramic Survey
Telescope and Rapid Response System, Pan-STARRS1) to yield a little bit more than a thousand
spectroscopically confirmed light curves. Combining these data with BAOs from SDSS and CMB
from Planck yields a FoM of 65 in the (w0,wa) plane. Figure 1.5 shows the constraints on the
(ΩΛ,Ωm) plane for a non-flat model. Once again, results are consistent with the ΛCDM model.

The future of Supernovae cosmology lies in the utilisation of large field of view galaxy surveys
to measure a large number of high-quality light curves. It already benefits from DES (T. M. C.
Abbott et al., 2019) and the future LSST, with its large field of view, its six filters and the repeated
visits at a each location of the southern sky, is expected to provide a catalogue of around 300 000
SNIa light curves (Abell et al., 2009). Providing a correct classification method, since spectroscopic
confirmation will not be possible for such a large sample, these measurements could lead to a FoM of
211 for SNIa only on dark energy parameters (The LSST Dark Energy Science Collaboration et al.,
2018). Supernovae is the largest contributor in the increase of the FoM for LSST, providing correct
light curve classification. In that regard, promising deep learning methods were proposed, as in the
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FINK broker (Möller et al., 2020) developed within the LSST Dark Energy Science Collaboration
(DESC).

H0 tension

SNIa are particularly promising to constrain dark energy equation of state but they can also be
used to constrain other cosmological parameters such as H0.

To use SNIa as standard candles they need to be calibrated, which can be done using Cepheids.
Riess et al. (2019) used the ones of the Large Magellan Cloud (LMC) and measured H0 to be
equal to 74.03 ± 1.42 km s−1 Mpc−1, leading to a 4.4 σ-tension with the value inferred from the
Planck CMB and ΛCDM (Planck Collaboration et al., 2020b). Figure 1.6 shows the discrepancy
between the measurements from the early Universe (CMB), and from the late Universe (Cepheids,
Supernovae). Several re-analysis and separated measurements (with strong lenses for example, see
below) confirmed this tension and no answer has been provided to explain it yet. It leads to two
possibilities: either it comes from the systematics, for example in the process of determining the flux
of the SNIa by subtracting the flux of the host galaxy (Astier et al., 2013), or more interestingly,
from new physics.

The answer will probably come from independent measurements. As we have seen, the mea-
surement of BAOs will drastically improve our knowledge of the expansion rate H(z), especially
thanks to DESI. As shown on fig. 1.6, results from DESI should permit to constrain H(z) on a wide
range of redshifts, permitting to precisely infer the value of H0 (DESI Collaboration et al., 2016).

More exotic but quite interesting too, Strong Lensing Time Delay (SLTD), measuring the time
delay between multiple images of strongly lensed quasars, are expected to be able to constrain H0.
The H0liCOW collaboration already provided a combined measurement with six events presenting
a 5.3 σ-tension with Planck (Wong et al., 2020). Those result are obviously preliminary but
promising, and more events are required to yield a reliable value. As mentioned galaxy surveys as
DES are already increasing statistics (Jacobs et al., 2019) and LSST is expected to provide about
400 time delay measurements over its ten years of operation (Abell et al., 2009).

An even more rare process, only one has been recorded yet, is the detection of gravitational
waves followed by the detection of its electromagnetic counterpart. GW170817 paved the way
for multi-messenger astronomy with a gravitational waves (GW) signal detected by both LIGO
(LIGO Scientific Collaboration et al., 2015) and Virgo (Acernese et al., 2015) from the merger
of a binary neutron-star system. Two seconds after, a gamma-ray burst was detected in a region
of the sky consistent with the GW detection. Astronomical facilities then observed this region
finding a transient signal close from the galaxy NGC 4993. Using the gravitational waves signal
as a standard siren, it is possible to infer the distance from the GW signal and the redshift can
be measured from its electromagnetic counterpart offering a measurement of the distance-redshift
relationship, to constrain H0 (B. P. Abbott et al., 2017) (see fig. 1.7). A single event is obviously not
enough to provide significant constraints but with the development of LIGO and Virgo and with
the future LISA GW detector (Amaro-Seoane et al., 2017), it can be expected that multi-messenger
astronomy will become a independent and very interesting probe for H0 measurement as well as for
cosmology in general.

In conclusion, these are very exciting times for cosmology. Exciting discoveries await at each
scale of the Universe with dedicated surveys that will soon start looking for them. The search for
the B modes of the CMB will help improving our understanding of the inflation period, while BAOs,
Supernovae and weak lensing will apply extremely tight constraints on the dark energy equation of
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Figure 1.6: (left) The 4.4σ tension between measurements of H0 using local measurements (mostly
Cepheids and SNIa), ”Here”, and the measurements from Planck and ΛCDM, ”Planck18+ΛCDM”.
Other results are shown for comparison. Credit: Riess et al., 2019. (right) The expansion rate as a
function of the redshift z. The upper panel shows the measurements from SDSS BAO measurement
(black), the BOSS galaxy BAO measurement (red square), the BOSS Lymann-α measurement (red
circle) and a H0 measurement using Cepheids and SNIa (blue). The lower panel shows the expected
DESI measurement points. Credit: DESI Collaboration et al., 2016
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Figure 1.7: Marginal posterior density for H0 obtained from the analysis of the GW170817 event.
The constraints obtained by the SH0ES collaboration (Riess et al., 2016) and from Planck (Planck
Collaboration et al., 2016) are shown for comparison. Credit: B. P. Abbott et al. (2017)

state, bringing us a step closer to understanding its nature. As dark energy represents about 70% of
the energy budget of the Universe, learning about its nature is of primordial importance. Increased
statistics for the already established Supernovae cosmology will be an interesting avenue to solve
the H0 tension but the answer might come from independent measurements, employing probes
that became usable only recently thanks to improvements in detection technologies. Gravitational
waves astronomy and particularly multi-messenger astronomy seem, to me, extremely promising
and I look forward to new measurements to obtain precise constraints on H0.

In the following, I will focus on weak gravitational lensing which is the subject of this thesis. In
the next section, I start by describing the LSST telescope, since this work was done in the context
of the LSST DESC. Then I present the Euclid telescope, which can provide valuable information
combined with LSST data for weak gravitational lensing analysis, as shown in chapter 7.

1.3 Next generation of surveys
1.3.1 LSST
Characteristics

The LSST, for Legacy Survey of Space and Time will use the Simonyi Survey Telescope located at
the Vera C. Rubin Observaroty at Cerro Pachón in Chile. It will observe the sky through a 3-mirror
system, with a 8.4m primary mirror, enabling a large 9.6deg2 field of view. Such a large field of
view will allow to visit the entire night sky (observable from the Southern Hemisphere) every three
nights (see fig. 1.8). The 3.2 gigapixels camera is composed of 189 4k × 4k pixels CCDs and will
observe the sky in six different photometric bands, ugrizy, in the wavelength range 320 to 1050 nm
(see right panel of fig. 1.9). Observing the sky in six filters will provide important information for
the estimation of photometric redshifts and the large field of view combined with recurrent visits at
every southern sky location will enable the detection of a large number of transients, two important
requirements in order to meet the goal set by the Dark Energy Task Force (see section 1.2.2).
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Figure 1.8: Map of the coadded 5σ depth magnitude for point sources in the r-band after ten years.
This map is obtained via simulation. The red line is the Ecliptic and the blue one is the Galactic
equator. The median value for the Wide, Fast, Deep (WFD) survey (light red) is 27.1. Credit:
LSST Science Collaboration et al., 2017
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Figure 4. from LSST: From Science Drivers to Reference Design and Anticipated Data Products
null 2019 APJ 873 111 doi:10.3847/1538-4357/ab042c
http://dx.doi.org/10.3847/1538-4357/ab042c
© 2019. The American Astronomical Society. All rights reserved.

Figure 1.9: (left) The six LSST bandpass as a function of wavelength. The vertical axis shows the
total throughput. Results include the atmospheric transmission, optics, and the detector sensitivity.
(right) LSST survey parameters. Values are set accordingly to the Science Requirements Document,
and value for the eighth, ninth and last row are on the AB magnitude scale. Credit: Ivezić et al.,
2019

Over its ten years of operation, starting in 2023, LSST is expected to survey ≈ 20 000 deg2 of
the sky visiting each part of the sky about 100 times each year. Each visit will be composed of
15-seconds exposures. This will enable LSST to look deep into the sky, up to a magnitude of ≈ 27.5
in the r-band. The main characteristics such as the number of visits and expected coadded depth
in each filters, are detailed on the right panel of fig. 1.9 (extracted from Ivezić et al. (2019)).

Scientific objectives

LSST is a stage IV survey, and one of its four main scientific goals is to constrain dark energy.
Answering to the DETF objective, the LSST Science Requirements Document (The LSST Dark
Energy Science Collaboration et al., 2018) sets the survey requirements to multiply by ten the FoM
compared to stage II surveys. To that end, LSST will use galaxy clustering, weak lensing and the
3 × 2-point correlation function (see section 2.2.2), galaxy clusters, Supernovae and strong lensing.
The contours obtained for the expected precision on the dark energy parameters for each of the five
probes as well as the results of the joint analysis are shown on fig. 1.10. LSST is expected to yield a
FoM of 711 including Stage III priors, with most of the constraints coming from the Supernovae and
weak gravitational lensing correlated with galaxy clustering. The 3 × 2-point correlation function
alone will improve the stage III surveys (ongoing surveys) value by more than a factor of four, from
20 to 87, with a major contribution from the weak lensing correlation function (shear-shear, see
section 2.2.1) which, if used alone, would set the FoM to 52.

1.3.2 Euclid
Euclid (Refregier et al., 2010) is a space telescope which will be launched in 2023. It will carry
two instruments, a CCD based optical imaging channel in the VIS instrument, and a near-infrared
imaging photometry channel and a near-infrared spectro-photometer in the NISP instrument. It
is designed for weak lensing with a very broad visible band (R+I+Z) and a pixel scale of 0.1
arcsec for the VIS instrument (compared to 0.2 for LSST pixels). NISP is composed of three near-
infrared (NIR) bands with a 0.3 arcsec pixel scale and a spectro-photometer of similar pixel size
and resolution R = 250. It will be in operation for five years and survey 20 000 deg2, i.e. the entire
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Figure 1.10: The forecast dark energy constraints after 10 years of LSST. The contours show the
68% confidence intervals. ∆w0 and ∆wa are the difference between w0 and wa and their fiducial
values, −1 and 0. These contours do not include stage III priors. Credit: The LSST Dark Energy
Science Collaboration et al., 2018
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Figure 1.11: Sky coverage of Euclid and LSST surveys. Credit: Capak et al., 2019

extragalactic sky, up to a redshift of 2. The photometric redshifts (see section 2.2.4) of Euclid are
supposed to be obtained using the three NIR filters but they will also require ground based data,
coming for example from LSST.

The high resolution of the Euclid VIS instrument is a major asset for galaxy shape measure-
ments. Euclid is expected to reach a FoM of 180 with weak lensing only, providing correct mea-
surement of photometric redshifts. All imaging probes combined (adding clustering, clusters and
integrated Sachs Wolfe effects), Euclid should be able to reach a FoM of 400 (Refregier et al., 2010).
This value could be increased when combined with the results of the Euclid spectroscopic survey
which will measure the spectroscopic redshift of 50 millions of galaxies to measure the BAOs. The
combination of the imaging and spectroscopic Euclid surveys are expected to yield a FoM of about
1500 (Laureijs et al., 2011).

Interestingly Euclid and LSST sky coverage will overlap for several thousand square degrees
(see fig. 1.11) which could allow to combine the photometric redshifts estimated from LSST data
and the shape measurements from Euclid. Going further, a joint pixel analysis using data from
both surveys can improve shape and flux reconstruction (Schuhmann, Heymans, and Zuntz, 2019;
Arcelin et al., 2021), as it will be detailed in chapter 7. Benefiting from strength of both telescopes
will increase the FoM of dark energy parameters by several tens of percent, depending of the survey
strategy (Capak et al., 2019).

Weak lensing is consequently a leading probe for future surveys to meet requirements sets by the
Dark Energy Task Force. In the next chapter, I detail the formalism of weak lensing, the important
probes that will help constraining the parameters of dark energy, and how to use observations to
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do so.
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Chapter 2

Weak lensing

Gravitational lensing is the distortion of the image of an observed source, induced by the bending
of space-time, thus of the light path, generated by the presence of mass along the line of sight.

In this chapter, I describe the formalism of weak gravitational lensing, how to estimate the
cosmic shear from the measurement of galaxy shapes, recent cosmological results obtained with
weak lensing, and the different steps and associated biases of a weak lensing pipeline.

2.1 Weak lensing formalism
This chapter is mainly inspired from Kilbinger (2015), Hoekstra and Jain (2008), Peter Schneider,
Kochanek, and Wambsganss (2006), Bartelmann and P. Schneider (2001) and Mandelbaum, 2018.

2.1.1 Deflection from a source
We have seen in section 1.1.3 that fluctuations of the matter density ρ can be parametrised by the
density contrast:

δ =
ρ − ρ
ρ

(2.1)

ρ being the mean matter density. Localised density perturbations on scales much smaller than
the horizon, with peculiar velocities much smaller than the speed of light, can be described by
Newtonian gravity. The density contrast can be related to the gravitational potential through the
Poisson equation:

∇2Φ = 4πGa2ρδ (2.2)

where Φ is the gravitational potential, a the scale factor and G the gravitational constant. Taking
into account the fact that light follows null geodesics, the FLRW metric (eq. (1.5)) can be re-written
as a function of the gravitational potential1:

ds2 = 0 =
(
1 +

2Φ
c2

)
c2dt2 − a2(t)

(
1 − 2Φ

c2

)
dr2 (2.4)

1Note that this metric is usually written:

ds2 = 0 =
(
1 +

2Ψ
c2

)
c2dt2 − a2(t)

(
1 − 2Φ

c2

)
dr2 . (2.3)

Here we considered that Ψ = Φ, i.e. the absence of anisotropic stress on large scales
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Figure 2.1: Deflection of light emitted by a lens plane. The image is seen by an observer at a new
location shifted by dx. Light is emitted with an angle β from a source on the right of the figure,
and observed under an angle θ.

which leads to the light ray travel time:

t =
1
c

∫ (
1 − 2Φ

c2

)
dr (2.5)

By analogy with geometrical optics, the gravitational potential acts like a medium of refractive
index n = 1 − 2Φ

c2 . This is why this effect is called gravitational lensing.
Applying the least action principle, δt = 0, on the previous equation, we obtain the Euler-

Lagrange equations that we can integrate along the line of sight to obtain the deflection angle, α̂:

α̂ = − 2
c2

∫
∇⊥Φdr (2.6)

with ∇⊥Φ gradient of the potential taken perpendicularly to the light path.

2.1.2 Deflection of light in the Universe
To describe a deviation of light rays by a lens, small compared to the scale on which the mass
distribution changes significantly, we consider the comoving separation x0 between two light rays.
In a homogeneous FLRW Universe, it can be expressed as a function of the comoving distance, χ,
from the observer and it is proportional to the comoving angular distance:

x0(χ) = fK(χ)θ (2.7)

where the vector x0 is seen under the small angle θ (see fig. 2.1).
As seen previously, if the light rays are deflected by matter density perturbations while traveling

through the Universe, it is necessary to take into account the deflection angle, α̂. A mass located
at the comoving distance χ′ from the observer, creates a gravitational potential, Φ, which deflects
the lights rays by:

α̂ = − 2
c2∇⊥Φ(x, χ′)dχ′ (2.8)

This induces a change in the separation vector of dx = fK(χ − χ′)α̂ = fK(χ)α (see fig. 2.1). To
quantify the entire deflection along the line of sight, i.e. between 0 and χ, it is necessary to integrate
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over it along χ′. The unlensed separation vector at a comoving distance χ, x(χ), can be written
x(χ) = x0(χ) + dx(χ). Consequently:

x(χ) = fK(χ)θ − 2
c2

∫ χ

0
dχ′ fK(χ − χ′) (∇⊥Φ(x(χ′), χ′) − ∇⊥Φ(0, χ′)

) (2.9)

Also, recalling eq. (2.7), β = x(χ)
fk(χ) , we obtain the lens equation:

β = θ − α with α =
2
c2

∫ χ

0
dχ′

fK(χ − χ′)
fK(χ)

(∇⊥Φ(x(χ′), χ′) − ∇⊥Φ(0, χ′)
) (2.10)

being the scaled deflection angle.
Finally, lensing conserves surface brightness, so the surface brightness in the lens plane, I, is

equal to the surface brightness distribution in the source plane, I(s):

I(θ) = I(s)(β(θ)) (2.11)

2.1.3 Lensing quantities: Shear and convergence
If the source is much smaller than the angular scale on which the mass distribution changes, the
distortion of images can be described by the Jacobian which describes a linear mapping from the
lensed coordinates θ to unlensed coordinates β:

A(θ, χ) = ∇θβ = 1 − ∇θϕ (2.12)

giving A the distortion matrix, and ϕ the lensing potential defined as:

ϕ(θ, χ) =
2
c2

∫ χ

0
dχ′

fK(χ − χ′)
fK(χ) fK(χ′)

Φ
(
fK(χ′)θ, χ′

) (2.13)

To compute this distortion matrix A, the integral in eq. (2.9) has been approximated using the
Born approximation: the potential gradient is integrated along the unperturbed ray, substituting
the separation vector x in the integral by x0 = fK(χ)θ. This approximation is justified in the weak
lensing regime (see distinction between weak and strong regimes below).

The matrix A can then be parametrised as a function of the scalar convergence, κ and the shear,
γ = γ1 + iγ2 = |γ|e2iφ. φ is the polar angle between the two shear components (see fig. 2.2).

A =
(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
(2.14)

The convergence quantifies an isotropic increase or decrease of the size of an object. The shear
component translates into a stretching of the light distribution, going from a circular to an elliptical
one (see fig. 2.2).

Since the shear and the convergence can not be dissociated, and are not directly accessible from
observation, A can be reparametrised as a function of the reduced shear, g, which can be computed
from the shapes of galaxies (see section 2.4.2). The distortion matrix becomes:

A = (1 − κ)
(
1 − g1 −g2
−g2 1 + g1

)
(2.15)

with the reduced shear: g = g1 + ig2 =
γ

1−κ . It is this observable that is used to compute the cosmic
shear from observation (see section 2.4.2).
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Figure 2.2: Transformation of a circular source (on the left) to an elliptical one by the inverse of
the distortion matrix A. Credit: Peter Schneider, Kochanek, and Wambsganss, 2006

Note: The distinction between strong and weak regimes comes from the value of the convergence,
κ(θ). The convergence can be computed from the lensing potential equation and the Poisson equa-
tion obtained from the perturbed Einstein equations. It can be expressed as a function of the
density contrast:

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0

dχ′

a(χ′)
fK(χ − χ′)

fK(χ)
fK(χ′)δ( fK(χ′)θ, χ′) (2.16)

To obtain the mean convergence, this equation is weighted by the source galaxy distribution
n(χ) in comoving distance. A convergence value higher than 1 implies a strong lensing regime (see
right panel of fig. 2.3). The weak regime is when κ << 1, leading to the approximation: g ≈ γ (see
left panel of fig. 2.3). In this regime, the shear and the convergence are much smaller than unity.
The lensing of individual galaxy is not detectable and statistical tools are required to detect and
measure this effect, as discussed in section 2.2.

2.1.4 Convergence power spectrum
Equation (2.16) shows that the convergence depends on the total matter density Ωm and also on
the density contrast δ. Consequently, it is possible to relate the statistics of the convergence to the
one of the density contrast. Similarly to what was done in section 1.1.3 for the density contrast, it
is possible to define the convergence power spectrum, in Fourier space, as:

⟨κ̂(l)κ̂(l′)⟩ = δ(2)(l + l′)Pκ(l) (2.17)

From eq. (2.16), the convergence is the projection of the density contrast and consequently is a
homogeneous and isotropic Gaussian field. We can then define a correlation function, ξκ:

ξκ(θ) = ⟨κ(φ)κ(φ + θ)⟩ (2.18)
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Figure 2.3: (2 panels on the left) These two panels show an example of weak lensing. The left panel
represents sources regularly placed and oriented similarly whereas the middle panel represents the
appearance of the same sources weakly lensed by a cosmic shear field. (right) A quasar being
lensed by a galaxy to produce multiple images of it. This is an example of the strong lensing
regime. Credit: ESA/Hubble, NASA, Suyu et al.

Then, computing this correlation function, one can derive the convergence power spectrum as a
function of the density power spectrum (see Peter and Uzan (2013) for a complete derivation):

Pκ(l) =
9H4

0

4c4 Ω
2
m

∫ χH

0

(
g(χ)
a(χ)

)2

Pδ

(
l

fK(χ)
, χ

)
dχ (2.19)

with
g(χ) =

∫ χH

χ
n(χ′)

fK(χ′ − χ)
fK(χ′)

(2.20)

χH is the size of the observable universe.
We saw in section 2.1.3 that the shear and the convergence are not independent since they

are defined from the second derivative of the lensing potential ϕ. It is possible to show that the
convergence power spectrum is equal to the shear power spectrum (see §6.3 of Peter Schneider,
Kochanek, and Wambsganss (2006) for example):

Pγ(l) = Pκ(l) (2.21)

Pκ and Pγ are related to Ωm and Pδ, which is itself related to ΩΛ and σ8. Consequently, we can use
the shear correlation functions as observable to probe Ωm, ΩΛ and σ8.

2.2 Shear related probes
First, I focus on the shear two-point correlation function (2PCF) and then on its cross correlation
with the galaxy density.

2.2.1 Shear correlation function
Consider a pair of galaxies located at Θ and Θ + θ, with ϕ the polar angle of θ (see fig. 2.4). The
two components of the shear of each galaxy can be decomposed on a new base (ê+, ê×), to define
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Figure 2.4: The components of the shear correlation function are computed between two galax-
ies separated by θ. The shear components are decomposed in the new base (ê+, ê×) defining the
tangential and cross-components of the shear.

the tangential and cross-components, γ+ and γ×, defined as:

γ+(θ) = −Re(γ(θe−2iϕ) and γ×(θ = − Im(γ(θe−2iϕ) (2.22)

with γ = γ1 + iγ2. By convention, tangential shear around overdensities gives ⟨γ+⟩ > 0, and radial
shear around underdensities results in ⟨γ+⟩ < 0.

Combining the tangential and cross components, it is possible to build two non-zeros correlators,
the two components of the shear correlation (or two-point correlation function):

ξ+(θ) = ⟨γγ∗⟩(θ) = ⟨γ+γ+⟩(θ) + ⟨γ×γ×⟩(θ) (2.23)

ξ−(θ) = Re[⟨γγ⟩(θ)e−4iϕ] = ⟨γ+γ+⟩(θ) − ⟨γ×γ×⟩(θ) (2.24)

with the two galaxies separated on the sky from θ = |θ| (see fig. 2.4).
An estimator of these components of the 2PCF for pairs of galaxies (i, j), separated by an angle

θ, is (P. Schneider et al., 2002):

ξ±(θ) =
∑

i j wiw j(ϵ+,iϵ+, j ± ϵ×,iϵ×, j)∑
i j wiw j

(2.25)

Each galaxy has a measured ellipticity ϵi and an associated weight wi which can depend on the
measurement uncertainty including shape noise.

This estimator can be linked to cosmology since ξ± can be obtained as Hankel transforms of the
convergence power spectrum (see section 2.1.4 and fig. 2.5):

ξ±(θ) =
1

2π

∫
ldlJ0/4(lθ)[P(E)

κ (l) ± P(B)
κ (l)] (2.26)

with Jn the Bessel function of the n-th order.
The components of the 2PCF contain both E- and B-modes power spectra. Lensing should

produce only E-modes as it is expected to be a pure gradient field (curl free) and the detection of
significant B-modes usually indicates that systematics remain (note however that B-modes can also
come from physical effects such as intrinsic alignments, see section 2.2.3). It is possible to perform
the E/B-modes decomposition in order to test for systematics (see §3.9 of Kilbinger, 2015).
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Figure 2.5: Cosmic shear two-point correlation functions measured by DES Y3: ξ+(θ) (left) and
ξ−(θ) (right), scaled by the angular separation, θ. The correlation functions are measured for each
redshift bin pair (see section 2.2.4), indicated by the label, and the error bar represents the square
root of the diagonal of the analytic covariance matrix. The green line denotes the best-fit ΛCDM
theoretical prediction from the cosmic shear-only tomographic analysis. Credit: A. Amon et al.,
2021.
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Figure 2.6: The DES-Y1 constraints on the cosmological parameters σ8 and Ωm comparing the
results obtained with the cosmic shear analysis only (green), the galaxy clustering and galaxy-
galaxy lensing (red), and with the 3x2-point correlation function (blue). Contours show the 68%
(inner) and 95% (outer) confidence levels. Credit: Abbott et al., 2018

2.2.2 3x2-point correlation function
A powerful application of the cosmic shear is its cross correlation with the galaxy density. In
addition to the shear-shear correlation function, the 3 × 2-point correlation function takes into
account the shear-galaxy (galaxy-galaxy lensing) and the galaxy-galaxy correlation function (galaxy
clustering). Galaxy-galaxy lensing (GGL) computes the correlation of the shapes of high-redshift
galaxies with positions of galaxies at lower redshift. This is the cross-correlation of lens galaxy
positions and source galaxy shapes. Galaxy clustering is the galaxy two-point correlation function,
describing the galaxy spatial distribution.

These functions are not independent but provide different information allowing to break de-
generacies between cosmological parameters and systematics producing biases. Consequently the
combination of these correlation functions, the 3x2-point correlation function, gives tighter con-
straints on cosmological parameters than the single shear 2PCF (for example, see fig. 2.6 extracted
from Abbott et al., 2018).

2.2.3 Intrinsic alignments: a bias in cosmological parameters estimation
Intrinsic alignments (IA)2 is the correlation of shapes due to gravitational interactions between
galaxies and the surrounding tidal fields. Consequently, even without lensing, the shapes of galaxies
can be correlated. This excess of correlation can induce severe biases on cosmological parameters
(see fig. 2.7) and must be taken into account in the computation of the correlation functions. It is
particularly difficult to predict IA theoretically and several procedures such as the removal of close

2For a complete review of intrinsic alignments in the context of weak lensing, see Troxel and Ishak (2015).
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Figure 2.7: Effect of intrinsic alignment on cosmological parameters with weak lensing in LSST,
using shear-shear correlation only. The black curves represents the case without intrinsic align-
ments, the three other colors are different models of intrinsic alignments. Credit: Krause, Eifler,
and J. Blazek, 2016

pairs of galaxies, joint modeling or the self-calibration using joint analysis of the three correlation
functions, have been proposed to mitigate this effect (for example, Heymans and Heavens (2003)
and Yao et al. (2017)). Self-calibration method has recently been applied to KiDS data (Yao et al.,
2020) and proves to be able to distinguish IA and lensing signals.

As shown on fig. 2.7, intrinsic alignments can have a major impact on cosmological parameter
estimation for LSST survey. However, mitigation strategies are nowadays able to remove biases due
to IA for future stage IV surveys (Krause, Eifler, and J. Blazek, 2016). A drawback is that these
strategies can degrade the constraining power on cosmological parameters up to several tens of
percents in pessimistic cases. More work is currently being done to reduce impact of IA on lensing
measurements, for example providing better IA models (J. A. Blazek et al., 2019).
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Figure 2.8: Normalized redshift distribution of sources of the weak lensing catalogue divided into
four bins for DES-Y3. Credit: Prat et al., 2021

2.2.4 Shear tomography
Redshift binning

As shown on fig. 2.5, in order to measure the evolution of large scale structures, the analysis is
usually performed in redshift bins, a technique called tomography (Hu, 1999). This provides a
lensing field per bin, which gives information about different epochs in the history of the Universe.
We obtain a 3D tomographic view of the mass distribution across the Universe permitting to
apply constraints on the growth of structure or on time-varying dark energy state parameter w(z)
(see section 1.2.2). For a redshift distribution divided into N bins, we can compute a projected
overdensity (or convergence, see section 2.1.2) per bin. This yields N(N−1)

2 power spectra (see
section 2.2.1) Pκ,i j, 1 ≤ i ≤ j ≤ N, including auto-spectra (i = j) and cross-spectra (i , j).

However, distributing the galaxies into strict uncorrelated redshift bins (see fig. 2.8) is not
straightforward. For example, photometric redshift (see next section) errors can cause galaxy dis-
tributions in different bins to overlap, leading to an increase of correlation between them. These
correlations can alter the correlation functions and the convergence power spectra, leading to in-
correct cosmological parameter estimation. Methods re-weighting galaxy redshift distribution have
been proposed to obtain uncorrelated bins (for example, Bernardeau, Nishimichi, and Taruya,
2014) and work is currently being done in order to reduce the systematics on photometric redshift
estimation (see next section).

Instead of using tomographic bins, 3D-lensing (Heavens, 2003, Castro, Heavens, and T. D.
Kitching, 2005, T. D. Kitching, Heavens, and Miller, 2011) proposes to use fully the redshift
information, i.e. the full probability distribution p(z), of each galaxy individually. The major
advantage of 3D-lensing is that it does not require binning, avoiding the loss of information along the
redshift direction that this process implies. The downside is that it relies on a precise measurement
of the full posterior distribution of individual photometric redshifts, which is a very difficult task
(see below). It has already been used on CFHTLenS data (T. D. Kitching et al., 2014) and
LSST might be a good candidate for 3-D lensing since it is expected to reach a good precision on
photometric redshift estimation (The LSST Dark Energy Science Collaboration et al., 2018).

Photometric redshifts

There are two ways of measuring the redshift of a galaxy: the most precise consists in measuring
the spectrum of the galaxy via a spectroscopic survey, this is the spectroscopic redshift, the other
one involves using the color information contained in images of a multi-band photometric survey
to compute the photometric redshift.
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Figure 2.9: (left) Spectral energy distribution of a red sequence galaxy as a function of redshift.
(right) Total throughput, in %, of the ugrizy LSST filters, accounting for the atmospheric, optical
and electronic effects. Credit: Abell et al., 2009

Photometric redshifts are estimated from images using color information (several filters are
necessary). The first step is to measure the flux of the galaxy, or of a subset of the galaxy (chosen
consistently across the bands), in each filter. This gives an estimation of the Spectral Energy
Distribution (SED) of the object (see fig. 2.9). This task is complex as PSF varies with the band
and systematics such as seeing or extinction step in. There are mostly two kinds of methods to
infer photometric redshifts from measured fluxes: template-fitting (for example, ”Le Phare”3 or
Brammer, van Dokkum, and Coppi, 2008) or machine learning algorithms (for instance, Pasquet
et al., 2019). Template-fitting methods rely on a set of templates for galaxies’ SEDs which are used
to predict the galaxy photometry as a function of redshift. On the other hand, machine learning
methods learn from data the relationship between the photometry and the redshift. Both suffer
from almost the same problem: a not good enough representativeness of the real data distribution,
whether it comes from incorrect templates, or from incomplete training samples. The methods
can lead to ”catastrophic” redshift estimations, i.e. errors of a significant amount compared to
the true redshifts. These outliers can lead to large biases in the redshift bin distributions. One
way to reduce these systematics is to use the full probability distribution p(z) for each galaxy,
rather than the most probable redshift (D. Wittman, 2009) (see fig. 2.10). For example, some
of the ”catastrophic” outliers have a multimodal redshift probability (because of color redshift
degeneracies) and considering the complete distribution of redshifts, instead of the most probable
value allows to take into account the different modes.

Spectroscopic data is a solution to calibrate the photometric redshift distribution but even this
avenue collides with an issue of representativeness. The spectroscopy cannot go as faint as the
photometry and even for less deep surveys, the completeness of the sample depends of the type,
magnitude and redshift of the sources (Abell et al., 2009). Stage IV surveys will be able to rely
on already recorded data, such as the one from the Sloan Digital Sky Survey for example (SDSS,
York et al., 2000), which measured around 2 millions of galaxy spectra over a 10 years period
(BOSS + eBOSS) (Ahumada et al., 2020). Future wide spectroscopic surveys will also provide
valuable information. For example, the Dark Energy Spectroscopic Instrument (DESI, Levi et al.,
2019) will give the spectra of 30 million galaxies and quasars covering 14,000 square degrees up to
a redshift of 1.7 for galaxies. The future 4-metre Multi-Object Spectroscopic Telescope (4MOST,

3http://lephare.lam.fr, Arnouts S. and Ilbert O.
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Figure 2.10: Top: each galaxy most probable redshift, zB, as a function of the spectroscopic redshift,
z. Bottom: One Monte-Carlo sample from each galaxy’s redshift distribution, zMC, as a function of
the spectroscopic redshift, z. Sampling the redshift distribution cleans up artefact observed when
considering the most probable photometric redshift. Credit: D. Wittman, 2009.

R. S. de Jong et al., 2019) has, as primary purpose, to provide the spectroscopic information to
large-area surveys like Euclid with more than 20 million spectra. Even if these numbers can seem
small compared to the number of galaxies observed by the photometric surveys (100 millions of
galaxies in the DES-Y3 weak lensing catalog, ten billions of galaxies expected for LSST), they are
sufficient to efficiently calibrate the photometric redshifts (Abell et al., 2009) and the issues mostly
come from representativeness.

Another major issue comes from the blending, or overlap, of sources. Recovering the photometry
of blended sources is naturally very difficult and even having a spectroscopic counterpart might
not be enough to overcome this issue (it is not possible to have spectroscopic data for all blended
objects and even in that case, the spectrum would be composed of the SEDs several sources). In
chapter 7, we present a deblending algorithm that allows to recover galaxy’s photometry, and in
chapter 8, we propose a neural network for galaxy parameters estimation, focused initially on shape
parameters estimation, that can provide a posterior distribution for photometric redshifts.

Now that we have seen how to constrain cosmological parameters from weak lensing and some
of the major difficulties that can arise, I will review recent results obtained from shear analyses.

2.3 Cosmological constraints with weak lensing
2.3.1 Recent results
The detection of weak lensing was first reported by four different groups at the same time, showing
correlations in galaxy ellipticities larger than the expected systematics (Bacon, Refregier, and
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Figure 2.11: The HSC-Y1 constraints on the cosmological parameters σ8 and Ωm compared to DES,
KiDS and Planck results. Top right shows the comparison with DES-Y1. Contours show the 68%
(inner) and 95% (outer) confidence levels. Credit: Hamana et al., 2020

Ellis, 2000; Van Waerbeke et al., 2000; D. M. Wittman et al., 2000; Kaiser, Wilson, and Gerard
A. Luppino, 2000). This was the first time weak lensing analyses could apply constraints on
cosmological parameters, especially Ωm and σ8.

Currently, stage III surveys are paving the way for next generation of surveys such as LSST,
Euclid or Roman. The three mains surveys are the Hyper Suprime-Cam Subaru Strategic Program
(HSC, Aihara et al., 2018), the Kilo-Degree Survey (KiDS, J. T. A. de Jong et al., 2013) and
the Dark Energy Survey Collaboration (DES, The Dark Energy Survey Collaboration, 2005). Fig-
ure 2.11 shows the comparison of two recent results obtained by HSC first year of data (HSC-Y1,
Hamana et al., 2020) and DES year 1 (DES-Y1, Troxel et al., 2018). Since DES-Y1 covers a
much larger area than HSC-Y1 (1321 deg2 against 137 deg2), it presents tighter constraints on the
cosmological parameters. It is also noticeable that HSC-Y1 constraints at least partially overlap
constraints from other surveys (Planck, Planck Collaboration et al. (2020) and KiDS+VIKING-
450 Hildebrandt et al. (2020)), finding no particular tension with Planck results in particular.
More recent result were published by KiDS recently, KiDS-1000, presnting stronger constraints on
S 8 = σ8

√
Ωm/0.3 (Asgari et al., 2021).

The most recent results come from DES-Y3 (including three years of data from DES), which
presents an improvement of these constraints. Left panel of fig. 2.12 shows the results obtained for
the comic shear only analysis. Right panel shows the results obtained with the 3×2-point correlation
functions, tightening the constraints on Ωm and S 8 (A. Amon et al., 2021; DES Collaboration et al.,

42



Figure 2.12: (left) DES-Y3 cosmological constraints on the clustering amplitude, σ8 and the matter
density Ωm in ΛCDM. The contours (inner 68% and outer 95% confidence levels) are shown for the
Fiducial DES-Y3 analysis in green and Planck 2018 CMB in yellow. The black dashed contours
represent the ΛCDM-Optimized analysis. Credit: A. Amon et al., 2021. (right) Comparison of
the marginalized parameter constraints in the ΛCDM model. Results of the 3 × 2-points analysis
of DES-Y3 are shown in black, the prediction from the CMB results of Planck 2018 are shown in
green and the combination if the two are shown in orange. Credit: DES Collaboration et al., 2021

2021). Using the 3 × 2-point correlation functions allows to increase the FoM in the (σ8,Ωm) plane
by a factor of more than 3 compared to the shear-shear correlation function only. The comparison
with the prediction from Planck 2018 (Planck Collaboration et al., 2020) is shown on both panels
and, once again, no particular tension is found. Results are in overall good agreement with the
ΛCDM model.

Stage IV surveys such as LSST will aim tightening even more the constraints on cosmological
parameters. Drastic requirements are imposed on systematics in order to achieve the goal of
multiplying the FoM by 10 compared to stage II surveys (Albrecht et al., 2006). Some of them are
detailed below.
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2.3.2 Expectations for LSST
Since results presented by the DES-Y3 series of papers4 provide the most updated results in weak
lensing, here I compare the LSST and DES requirements for cosmic shear analysis. This will give
a hint of the differences between these two surveys and the challenges that LSST will face. The
requirements for LSST are listed in the Science Requirements Document (SRD) (The LSST Dark
Energy Science Collaboration et al., 2018) and set to meet the goal of increasing by a factor of 10
the FoM on dark energy parameters compared to stage II surveys.

First we have seen that the cosmic shear depends on the estimation of the photometric redshift
distribution. LSST requires the redshift distribution to be known to about 0.001 and 0.003 respec-
tively for the mean and scatter, in each redshift bin, whereas DES-Y3 reached a precision of 0.01
(Myles et al., 2020).

The second parameter that needs calibration for cosmic shear analysis is the shear bias. Indeed,
a lot of systematics can contaminate the shear estimation (see section 2.5) and decreasing their
impact is a major challenge.

Usually shear biases can be characterized, to first approximation, using a multiplicative bias m
and an additive bias c. They are linked to the observed and intrinsic ellipticities, and to shear (see
next section), via the formula:

ϵobs
i = ϵint

i + (1 + mi)γi + ci with i ∈ {1, 2} (2.27)

However, in the case of LSST, the multiplicative bias is expected to vary as a function of redshift.
The LSST SRD considers, for simplicity, that the multiplicative bias depends linearly on redshift:

m(z) = mz

(
2z − zmax

zmax

)
+ mavg, (2.28)

where zmax is the value at the middle of the highest redshift bin, mavg = m(zmax/2) is the average value
of m in the range [0, zmax]. LSST aims at a total systematic uncertainty in the redshift-dependent
shear calibration below 0.3%, meaning that in each redshift bin, the multiplicative bias m(z) must
be below 0.3%. For comparison, a value of about 2 to 3% was taken into account in the calibration
for DES-Y3 (DES Collaboration et al., 2021).

Consequently, LSST has to improve systematics management for both redshift distribution
and shear bias calibration. One of the systematics which is particularly difficult to calibrate, as
it impacts both redshifts and shear biases, is blending, the overlap of sources on an image (see
chapter 3). Interestingly, the DES-Y3 analysis shed light on the impact of blending on both shear
and photometric redshift calibration arguing that they can’t be dissociated (MacCrann et al., 2020).
They argue that for future surveys, instead of the usual multiplicative shear bias, m, (see section 2.5)
the requirements should be set on the effective redshift distribution nγ:

nγ = R̄(z)neff(z) (2.29)

with R̄(z) the mean shear response in case of shear bias (see section 2.5.5), and neff(z), the density
distribution of galaxy usable for weak lensing.

This is a very crucial point for LSST for example. With its increased depth, the survey will
yield a density of galaxies neff of ≈ 40 arcmin−2 (compared to 5.59 arcmin−2 for DES-Y3), having
to deal with much higher levels of blending. Work is being done to address this systematic (see
chapter 3) and the work presented in this thesis focuses on possible avenues using deep learning
algorithms (see chapter 7 and chapter 8).

4https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/
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However, before discussing blending more thoroughly, let’s see how to go from images to the
estimation of cosmic shear.

2.4 Measuring shear from galaxies shapes
As mentioned before, the cosmic shear can be computed from the galaxy shapes. The quantity
measured is the ellipticity and can be computed directly from the image using quadrupole moments
of the surface brightness.

2.4.1 From image to ellipticities
Let be I(θ) the brightness distribution of a source, it is possible to define the tensor of second
brightness moments (or quadrupole moments):

Qi, j =

∫
d2θI(θ)qI(I(θ))(θi − θ̂i)(θ j − θ̂ j)∫

d2θI(θ)qI(I(θ))
i, j ∈ {1, 2} (2.30)

with qI(I(θ)) a chosen weight function, and θ̂, the center of the source. The weight function is
chosen in order to set a range of integration for the surface brightness (see section 2.4.2). It can
be the Heaviside step function, the light profile itself or a gaussian function for example (Kaiser,
Squires, and Broadhurst, 1995a).

Several types of ellipticity parameters exist (see Bonnet and Mellier, 1995). Here, I present two
as they are the most common in cosmology and are used in chapter 7 and chapter 8. They are both
called complex ellipticity and the choice of which is the most convenient depends on the context.
The two parameters are e and ϵ, and are defined as follows:

e =
Q11 − Q22 + 2iQ12

Q11 + Q22
and ϵ =

Q11 − Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 − Q2
12)1/2

(2.31)

The two definitions have the same phase, 2φ, such that:

e = |e| exp 2iφ and ϵ = |ϵ| exp 2iφ (2.32)

The only difference is the module. With b
a , the minor-to-major axis ratio (see fig. 2.13) they can

be expressed as:

|e| =
1 − ( b

a )2

1 + ( b
a )2

and |ϵ| =
1 − b

a

1 + b
a

(2.33)

2.4.2 From ellipticities to the shear
Each galaxy has an intrinsic ellipticity, ϵint, which is modified by cosmic shear. It can be related to
the observed ellipticity ϵobs with:

ϵobs =
ϵint + g

1 + g∗ϵint (2.34)

g is the reduced shear (see section 2.1.3) (”*” means complex conjugate). In the weak lensing
regime, one can consider that κ << 1 and |γ| << 1. Equation (2.34) can be approximated to

ϵobs ≈ ϵint + g ≈ ϵint + γ with g ≈ γ (2.35)
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Figure 2.13: Minor and major axis of a galaxy (respectively a and b) and the polar angle φ.

If the intrinsic ellipticity of galaxies have their orientations randomly distributed, then: ⟨ϵint⟩ = 0.
The observed ellipticity is then an unbiased estimator of the reduced shear:

⟨ϵobs⟩ ≈ ⟨e
obs⟩
2
≈ g ≈ γ (2.36)

Unfortunately, there are parts of the sky where the intrinsic ellipticity does have preferred
orientations, for example in the presence of intrinsic galaxy alignments, but mitigation strategies
are nowadays able to remove biases due to IA for stage IV surveys (see section 2.2.3).

We have seen that, to estimate the reduced shear, and hence the shear, one needs to measure
ellipticities of galaxies. This measurement is one particular stage of a weak lensing pipeline.

2.5 Weak lensing pipeline and associated biases
In this part, I briefly describe the different steps of a weak lensing pipeline and the associated
shear biases that they can introduce. We have seen in section 2.3.2 that shear biases could be
parametrised by a multiplicative bias m, and an additive bias c.

Most of methods used nowadays can generate a multiplicative bias between 10 and 1% of the
shear estimate whereas stage IV surveys requirements aim for a mean shear bias ≈ 10−3. A good
understanding of the different analysis stages at which biases can occur is key to a success in
meeting these requirements.

Note that the processing steps described below can be performed on co-adds (stacked images
of the different exposures), or on individual exposures and that the choice between the two is not
trivial, each option having its pros and cons.

2.5.1 Detection and blending
The first step is the detection and identification of sources. It is necessary to separate stars from
galaxies since the former are required to estimate the Point-Spread-Function (PSF) and the latter
to measure the cosmic shear.

The most used detection software is SExtractor (Bertin and Arnouts, 1996), which looks at
pixels above a certain threshold defined either as a function of the noise level, or at a fixed value:
if a fixed number of contiguous pixels are detected above the threshold, an object is detected. It
was particularly used in the recent DES-Y3 analysis (M. Gatti et al., 2020).
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Figure 2.14: Ambiguous blends in the Musket Ball Cluster seen by the Subaru (first and third
column) and HST (second and fourth column). Subaru is a ground telescope and suffers from the
atmospheric PSF whereas HST is a space telescope. Therefore it benefits a much better resolution.
In red are drawn the objects as detected on the Subaru images, in green the ones detected on the
HST images. The close blends of galaxies are detected as one single object on ground telescope
images. Credit: Dawson et al., 2016

More recent and more complex solutions are proposed either using a convolutional neural net-
works (CNN) (Paillassa, 2020), or embedded in astronomical image generative model (Regier et
al., 2015; Liu, McAuliffe, and Regier, 2021), but none of them has been used in the context of
cosmological analysis yet. They seem quite promising but the ones embedded in astronomical im-
age generative model are, among other things, too computationally costly today to be used in a
processing pipeline. Even though it is quite preliminary, the CNN method could be particularly
interesting since it should be fast and, more interestingly, since CNN simply adapt to multi-band
images, allowing for the use of color information from multi-band data. This kind of method might
help to deal with some of the biases described below (blending in particular).

The detection can introduce a bias because of several effects. First, the detection is shear-
dependent. Indeed, since shear conserve the surface brightness, a galaxy with intrinsic ellipticity
perpendicular to the shear will appear rounder, which will increase its probability to be detected if
the detector uses a circular kernel for detection (such as SExtractor) (Hoekstra, Kannawadi, and
Thomas D. Kitching, 2021). An alignment, or misalignment, with the PSF can produce the same
effect. Then, a selection bias (see section 2.5.4) can arise since some cuts must be set to ensure that
detected objects can be well-measured, typically on SNR. Also, the Point-Spread Function (PSF,
see section below) can impact the detection as shown on fig. 2.14. Objects appearing separated on
data taken from space (HST images on the second and fourth columns) can be detected as a single
one, on images taken from a ground telescope (Subaru images on the first and third columns).
This difference is due to the fact that space data do not suffer from the atmospheric PSF. The
superposition of sources on an image is an effect called blending, and if the objects appear so close
that the pipeline detects one object instead of two, it becomes an unrecognised (or ambiguous)
blend. A large PSF, or objects aligned with the PSF are likely to produce unrecognised blends
and to introduce a bias. Indeed, doing shape measurement on these objects would lead to a wrong
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Figure 2.15: (left) The point spread function of Hubble Space Telescope’s WFPC camera. Credit:
NASA. (3 panels on the right) Atmospheric PSF of the integrated flux in a set of the Differential
Speckle Survey Instrument (DSSI) exposures, from left to right: 0.06s, 0.50s, and 62s. Credit:
Hébert, Macintosh, and Burchat, 2018.

ellipticity estimation. This can be a dominant systematic for shape measurement as 14% of detected
objects in LSST are expected to be unrecognised blends (Dawson et al., 2016), leading to an increase
of 14% in shear noise.

If the different objects of a blend are detected then it is a recognised blend. It is then possible
to discard the scene, or to apply a deblending algorithm in order to separate the different objects.
Deblending permit to obtain higher statistics for shear measurement, but it can introduce a bias of
a few percent, if the deblending algorithm produces objects with a preferred orientation (Arcelin et
al., 2021). Calibrating such bias could however be possible using the METACALIBRATION algorithm
(see section 2.5.5) (E. Huff and Mandelbaum, 2017; Sheldon and E. M. Huff, 2017) or simulations. I
will describe more thoroughly the issue of blending and the different existing avenues in chapter 3.
In the recent DES-Y3 results, a shear bias of about 2% was attributed to blending (MacCrann
et al., 2020).

Notably, these biases due to blending are only a problem if the overlapped objects are located a
different redshifts. In that case they are subject to different amounts of shear and must be separated
to be classified in the correct redshift bins. If they are at a similar redshift and falling in the same
redshift bin, blends would only introduce noise or model bias (see below) and could be probably
calibrated via the METACALIBRATION algorithm. Biases introduced by blending are discussed in
section 3.2.

As mentioned, this step is highly dependent on the survey resolution and consequently on the
PSF, which can also induce shear bias, as described below.

2.5.2 Point-Spread Function modelling
The Point-Spread Function (PSF) is the response of an imaging system to a point source object.
Each element through which the light travels generates a different response. For example, the optics
of the instrument as well as the atmosphere for ground based experiments generate a specific PSF
(see fig. 2.15). These PSFs can alter the objects shapes and corrections must be applied in order
to take this effect into account.

As mentioned above, the PSF can impact the detection process, but it can also induce a bias
during the measurement of galaxy ellipticities. Indeed, a sheared PSF could modify galaxies shapes
and, if not accurately taken into account, introduce a bias in the direction of the PSF’s shear,
particularly for small galaxies. This bias can reach a few percents (Mandelbaum et al., 2018b).

All methods designed to remove the impact of the PSF on shear estimates comes with the
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hypothesis that the PSF is known. Consequently a good PSF modelling is mandatory. Stars are
natural point sources that can be used to create a PSF model to interpolate at any position in the
sky. However, the selection of usable stars does not come without issues, the brighter-fatter effect5

(Antilogus et al., 2014) for example, and the geometry of the camera must be taken into account
(discontinuities between CCDs).

The optical PSF is already quite difficult to model as it needs to consider a lot of different effects
from sensors and from the optical elements that compose the telescope (effect of temperature, tree
rings, etc). The atmospheric PSF adds another layer of difficulty as it varies from an exposure to
the other (see fig. 2.15). In case of surveys with multiple exposures of the same sky area, the PSF is
usually modeled for each exposure and then combined rather than modeled from the co-add images
of stars (Miller et al., 2013; Bosch et al., 2018). Indeed, variation between different exposures
as well as dithers to fill the gaps between CCDs makes the PSF modelling from a co-add almost
impossible (Bosch et al., 2018).

There are many ways of modeling the PSF. Most modeling algorithms employ polynomials both
to fit the PSF models and for the interpolation part. For example, PSFEx (Bertin, 2013), used for
both DES and HSC (M. Jarvis et al., 2016; Bosch et al., 2018), uses this kind of modeling. Other
methods are developed and attention is recently turning to the problem of chromatic PSF: the PSFs
evolve as a function of wavelength. DES-Y3 used the PIFF (PSFs In the Full FOV) algorithm (Jarvis
et al., 2021) which relies on different models to fit the PSF and different interpolation schemes. It
promisingly shows very small systematic errors, drastically improving the results compared to DES-
Y1. Contrary to other systematics, PSF modeling presents the advantage of having well defined
null tests that can point out modeling errors, allowing for corresponding corrections.

In most of the cases, the PSF correction is performed within the ellipticity measurement meth-
ods, which are described in the next section.

2.5.3 Ellipticity measurement
Once the objects are identified and the PSF modeled, one can perform the measurement of galaxy
ellipticities. The measurement of the shear depends highly on the estimation of the galaxy shapes
but a precise measurement of individual shapes is not particularly necessary as the goal is to obtain
an unbiased estimator for a sample of galaxies. Mostly two kinds of methods have been developed
to measure galaxy ellipticities from images: direct estimation of ellipticity on the image (which are
mostly moment-based), and model-fitting methods. For this second kind of methods, the ellipticity
estimation is performed using the fitted models.

Moment-based methods

As seen previously it is possible to define the ellipticity as a function of quadrupole moments of
the surface brightness. Those quadruple moments depends on the integration range set by the
surface brightness of the object through the weight function qI(I(θ)) (see eq. (2.30)). This function
is difficult to define for real data since neighbouring galaxies can modify the shape of the integration
range and the discreteness of pixels makes its definition non-linear. It is usually defined as a function
of the galaxy image coordinates and the galaxy’s size. Once this function is defined, it is possible
to measure weighted second moments on the image previously deconvolved by the measured PSF.
This was firstly done by Kaiser, Squires, and Broadhurst (1995b) (KSB) and improved in several

5The brighter-fatter effect is the linear increase of the size of point sources, mostly stars, as a function of their
flux.
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ways, for example in G. Luppino and Kaiser (1997), Hoekstra et al. (1998) and G. M. Bernstein
and M. Jarvis (2002).

Moment-based methods are used for cosmological surveys: the HSC survey implemented the
re-Gaussianization PSF correction method (Hirata and Seljak, 2003) and used it to create their first-
year catalogue (Bosch et al., 2018; Mandelbaum et al., 2018a). The same method is implemented
in the LSST science pipeline and used in chapter 7 and chapter 8.

Model-fitting methods

Model-fitting methods are using analytic models (for example 2D-gaussian, exponential, or Sérsic
(1963)) to forward fit galaxies. The galaxy light profile, convolved with a PSF profile, is fitted
with the ellipticity as parameter, to approximate the true ellipticity. Most of known model-fitting
methods use two profiles, one for the bulge (central bright part of the galaxy) and one for the disk
of the galaxy (external and more diffuse part).

Several surveys already used model-fitting methods: the CFHTLens survey used the lensfit
method (Miller et al., 2007; T. D. Kitching et al., 2008; T. D. Kitching et al., 2008) and DES used
the ngmix software6 (M. Gatti et al., 2020).

Bayesian inference methods

More recently Bayesian inference techniques were proposed to realise the shear measurement. Con-
trary to previously presented methods, they do not need to go through individual shape measure-
ments.

M. D. Schneider et al. (2015) presented a method to do hierarchical probabilistic inference of
cosmic shear. It is a forward modeling approach with the idea to construct a shear posterior by
marginalizing over all intrinsic galaxy properties that contribute to the pixel data. Nevertheless, it
needs to assume some models for the galaxy profile that can be Sérsic (1963) for example.

A second example is the Bayesian Fourier Domain (BFD, Gary M. Bernstein and Armstrong,
2014). This is a model-free algorithm which does not use individual galaxy shape estimates to
measure cosmic shear. Instead the image is compressed into vectors of moments in order to estimate
the probability of the observed data to be produced for a certain amount of distortion along the
line of sight.

None of these methods has been applied to real data yet, but the BFD method is very promising
and is expected to be applied to the DES-Y6 (six years of data from DES) weak lensing catalog.

Shear bias from measurement methods

However, each type of methods can introduce a shear bias. For example, a model-fitting algorithm
might fail at representing the entire distribution of galaxy shapes if the proposed models are not
complex enough, which can lead to a bias called model bias. This impacts also moment-based
methods via the window function, or the hierarchical probabilistic shear inference method through
the choice of models for galaxy profiles. All these techniques can suffer from model parametrisation:
the choice of analytic model and number of parameters is crucial to be flexible enough in order
to capture the entire range of possible light profiles. Not enough complex models can lead to
underfitting and too many parameters can lead to overfitting. In both cases the shear will suffer
model biases (Voigt and Bridle, 2010, G. M. Bernstein, 2010).

6https://github.com/esheldon/ngmix
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Another bias that affects all measurement methods is the noise bias. It comes from the data
and does not depend on the measurement method: noise captured by the instrument can interfere
with the shape measurement creating noise in the shear estimation. As most of weak lensing signal
is supported by high magnitude, or low SNR, galaxies, and as a large amount of galaxies will
be blended in LSST data (see section 6.1.2), this bias can have a high impact on cosmic shear
estimation. Noise bias can be of the order of tenth to few percents (for example, see Melchior and
Viola, 2012 or Sanchez et al., 2021).

Nevertheless, both noise and model biases can be calibrated by the METACALIBRATION algorithm
(E. Huff and Mandelbaum, 2017; Sheldon and E. M. Huff, 2017) described below.

Finally, most of these methods perform their measurement on isolated galaxy images and rely
on deblending techniques (see section 3.3.2) to tackle the overlapping of sources. In chapter 8 we
propose a new method based on a Bayesian neural network (BNN) (see part II) to perform galaxy
shape measurements directly from the images, whether the galaxies are blended or not.

2.5.4 Selection bias
Selection bias can be introduced at different step of the pipeline. As we have seen, at the detection
stage for example, the removal of close pairs of galaxies can introduce a selection bias.

In the end of the pipeline, to select objects that were well-measured and can enter the weak
lensing analysis, cuts must often be done on the processed data. They can also be a source of
selection bias. For example, if the selection probability depends on the galaxy’s size, its alignment
(or misalignment) with the shear will increase (or decrease) the probability of entering the sample,
creating a bias. This bias can have a significant impact of the 1 to 5% of several percent as shown by
Mandelbaum et al. (2018b) for the HSC survey. This bias can fully be calibrated with simulations.

2.5.5 Shear Calibration
To calibrate this biases several solutions exist. First, it is possible to evaluate some of these biases
using simulation. For example, testing a shear measurement pipeline on simulations of realistic
galaxies can give an estimate of the model bias and provide the corresponding calibration. Selection
bias as well as blending biases can also be characterized and calibrated this way (Mandelbaum et
al., 2018b; MacCrann et al., 2020).

Then, METACALIBRATION (E. Huff and Mandelbaum, 2017; Sheldon and E. M. Huff, 2017)
allows for the calibration of model and noise biases by computing the shear response of the shape
measurement algorithm, using the observed data. Given an ensemble of measurements ei and
response Rγi , an estimated mean shear can be written

⟨γest⟩ ≈ ⟨Rγ⟩−1⟨e⟩ (2.37)

with the average taken over the ensemble of measurements. The shear ⟨γest⟩ is a weighted mean of
the measured ellipticities e, as a function of the shear response defined as

Rγi, j =
e+i − e−i
∆γ j

(2.38)

with e+i and e−i the i-th components of the ellipticities measured on images sheared by an artificial
shear with j-th component equal to ±∆γ j. To perform this shearing, the initial image is deconvolved
by the PSF, sheared and reconvolved by the PSF. The response can then be integrated in the
computation of the shear correlation functions for instance. If selection cuts are applied, it is
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possible to calibrate the selection bias selecting on sheared measurements and re-computing the
new response ⟨Rs⟩. The response matrix ⟨Rs⟩ becomes ⟨R⟩ = ⟨Rγ⟩ + ⟨Rs⟩. The mean shear can then
be computed as in eq. (2.37) replacing ⟨Rγ⟩ by ⟨R⟩.

METACALIBRATION is nowadays widely recognised as very effective to correct for shear biases
and has been used in weak lensing analyses of DES-Y1 and DES-Y3 for example (Zuntz et al.,
2018; DES Collaboration et al., 2021). METADETECTION (Sheldon et al., 2020) is an extension of
METACALIBRATION and adds a correction for the detection bias and specific cases of blending (see
section 3.3.1). Both METACALIBRATION and METADETECTION are very powerful and work extremely
well on isolated galaxy images. As mentioned, METADETECTION does a first step toward the calibra-
tion of the blending bias but as discussed in section 3.3.1, it is not sufficient to deal with blended
objects at different redshifts (or in different redshift bins).

Lots of solutions already exist to address the different kinds of biases that can be introduced
by a weak lensing pipeline. However, LSST asks for an unprecedented level of precision and
will be subject to some systematics, especially blending, at a level never seen before. Efforts are
particularly necessary on the latter as it can be the dominant systematic for shear measurement
for LSST (Dawson et al., 2016). Next chapter will describe more deeply the impact of blending for
future cosmological surveys as well as the different solutions that exist nowadays to address it.
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Chapter 3

The blending systematic for weak
gravitational lensing

The superposition of astronomical sources on an image, an effect called blending, (see fig. 3.1) is
a major systematic for weak gravitational analysis. In this chapter, I first explain why blending
becomes a challenge and how to quantify it. Then, I showcase the different biases that blending
can introduce and I conclude by presenting some of the current avenues to this issue.

3.1 Deep ground-based galaxy surveys: blending as a systematic
3.1.1 Deep surveys
As mentioned in section 1.3, the next generation of ground surveys will look deeper into the sky,
and on broader sky areas, than any other survey before. Those two characteristics will increase
the density of galaxies usable for weak lensing analysis, neff (it can also be defined as a function of
redshift, neff(z)). As neff grows, so does the probability of observing overlapped objects and blending
becomes a dominant source of systematics. LSST will observe to limiting magnitudes of r ≤ 27.5
and i ≤ 26.8 (Ivezić et al., 2019), whereas HSC, which is the current ground survey that is producing
data that looks the most alike the future LSST data, will observe up to magnitude i ≈ 26. Bosch
et al. (2018) states that 58% of the detected objects in HSC will be blended. This number should
reach 62% for LSST (Sanchez et al., 2021).

Other current galaxy surveys such as KiDS (de Jong et al., 2013) or DES (The Dark Energy
Survey Collaboration, 2005) have lower limiting magnitudes (respectively r ≤ 25.2/i ≤ 24.2 and
i ≤ 24) and are consequently less impacted by blending.

This systematic mainly concerns ground surveys since space telescopes do not suffer from the
atmospheric PSF (see section 2.5.1). Euclid and Roman should be only marginally impacted by
this systematic.

Blending is consequently a major issue for deep ground-based surveys. Considering their statis-
tics, discarding all blended objects is not a option and solutions must be provided. To propose
appropriate methods it is first necessary to know what biases blending can introduce. We have
already mentioned some of them on section 2.5.1 and we will detail them in section 3.2. First, I
describe the existing metrics allowing to quantify blending in photometric data.
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Figure 3.1: Part of the COSMOS field observed with HSC. The top left panel is a zoom of the
small patch on the bottom right. Blends of bright and faint galaxies are visible. Bosch et al. (2018)
estimated that 58% of detected objects are blended in HSC. Credit: Princeton University/HSC
Project

3.1.2 Blending metrics
To define the percentages present above and to characterize blends, metrics are required. Several
metrics can be found in the literature, I list them below. Unless stated otherwise, these metrics are
defined for simulated data.

The distance between the studied galaxy and its neighbours can be a first metric to verify if
a galaxy is blended. For example, Chang et al. (2013) (Chang et al., 2015) studied the impact of
blending on neff for LSST. An object is considered blended when companions have their center in a
circle of radius d around the center of the object. They used different distance criteria of 1, 2 and
3 arcseconds to estimate the percentage of blended galaxies that would be observed as a function
of the raw galaxy number density, n.

Another way to define an object as blended is to compute a flux ratio to evaluate how much
neighbours contribute to the observed galaxy flux. Working on simulated data allows to have an
exact estimation of this quantity having access to the true galaxy light profile. For example, a
source’s purity can be defined as (Sanchez et al., 2021):

ρi =

∑
p sip.sip∑

p(sip
∑

j s jp)
(3.1)

with sip the signal value for the studied galaxy of index i in the pixel p. The sum over p represents
the sum over all the pixels of the overlapping group, and the sum over j is the sum over all the
sources in the overlapping group. This group is composed of the galaxy i and all sources that
overlap with it (there can be none). Purity is then the ratio of the flux of the target galaxy i and
the flux of the overlapping group. In our work, we defined a different metric using the definition
proposed in P. Melchior et al. (2018), that can be related to purity. We called it the galaxy’s blend
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Figure 3.2: Blendedness distribution from a sample of image extracted from the DC2 simulation
(LSST Dark Energy Science Collaboration et al., 2021). The top right panel shows a zoom around
the zero value. Some values of blendedness are negative, implying an error in the deblending
process.

rate (Arcelin et al., 2021):

bi = 1 −
∑

p sip.sip∑
p(sip

∑
j s jp)

= 1 − ρi

(3.2)

By construction the purity and the blend rate lay in the interval [0,1]. The purity is equal to 1
when the source is isolated, the blend rate is then null. On the contrary when the galaxy is blended
the purity decreases and the blend rate increases.

Working on real data, the definition must change since the true light profile is unknown. For
the HSC survey (Bosch et al., 2018), a metric called blendedness was used. It is equivalent to the
blend rate for real data. It is defined as:

braw = 1 − g(zc,Q)
g(zp,Q)

(3.3)

with:
g(z,Q) =

∑
r

z(r)
k(Q)

e−
1
2 rT Qr (3.4)

z(r) is the image, centred on the galaxy centroid detected at position r, Q is the source moment
matrix, computed from the deblended image of the central galaxy, and k(Q) is a normalization
constant which disappears in the blendedness computation; zc and zp respectively represent the
image of the source deblended, i.e. with neighbours replaced with noise, and zp is the original
image, possibly with neighbour sources. The blendedness behaves similarly to the blend rate.

Note that this metric depends on the deblending and shape measurement algorithms. Here, Q
is computed as the second-moments of the deblended source image without PSF correction using a
Gaussian weight function. The flux coming from zc and zp depends on Q, which can induce outliers
blendedness values in case of failure of the deblending algorithm for example (Bosch et al., 2018).

The same metric is implemented in the LSST processing pipeline and used to measure blend-
edness on DC2 simulated data (LSST Dark Energy Science Collaboration et al., 2021). Figure 3.2
shows the blendedness distribution for a galaxy sample extracted from DC2 (see section 7.8). Some
values are negative which implies that the deblending process from the LSST pipeline, used to
create the image of the deblended source, failed. This was not further explored but it would be
interesting to verify how blendedness changes running a different deblender on the data.
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Then, to flag an object as blended, one has to define a criterion based on one of the previously
defined metrics.

Criterion for blending

To evaluate the amount of blended objects in LSST, Chang et al. (2013) (Chang et al., 2015) set
a rejection criterion for every object within a 2” circle around a detected object. This value of 2”
is considered as the limit at which deblender would be able to properly separate objects. This is
questionable for several reasons. First it does not take into account the cases of very large and
bright galaxies, which could make deblending impossible even at larger scales, and second, recent
deblending algorithms may be able to perform correctly at smaller distances in some cases. This
could be verified for recent deblenders such as SCARLET (P. Melchior et al., 2018) or the deblender
proposed in this work (see chapter 7), for example using the Blending Tool Kit (see section 3.3.4).
In any case, fixing a hard limit on the distance from the galaxy center seems not flexible enough,
as deblending performance would depend on the method and on the galaxy’s properties.

Sanchez et al. (2021) evaluated the effect of blended galaxies considering an object as blended
if a least 1% of the flux in its pixels is due to overlapping sources. It corresponds to a purity
below 99% or a blend rate above 1%. This is a strict definition which has the advantage of being
independent from the galaxies properties, but is restricted to simulated galaxy images.

Since the HSC pipeline (Bosch et al., 2018) is working on real data, and that the measurement
of blendedness might not be extremely reliable, the criterion to define a blended object is based
on the output of the detection algorithm (see section 3.3.2). The detection algorithm defines
Footprints, one per detected peak, which are regions above the detection threshold on the initial
image convolved with a smoothing filter. These Footprints are then dilated by the Root Mean
Square (RMS) of the PSF to make sure that they represent correctly the region occupied by the
object. Initially there is one Footprint per object but they can be merged if they overlap so that,
in the end, the Footprints in the final set are non-overlapping. If a Footprint contains multiple
peaks, it is considered as a blend. The deblending algorithm, described in section 3.3.2, works from
the images of these Footprints. This procedure is also implemented in the LSST pipeline and
used to produce the catalogs from the DC2 simulations (Korytov et al., 2019) (see chapter 7 and
chapter 8).

Finally, Dawson et al. (2016) focused on unrecognised blends. They consider a blend to be
unrecognised when only one object is detected while there were several. A blend is then unrecognised
as long as the distance between the two objects stays below a deblending threshold (or detection
threshold) fixed by the detection algorithm (here SExtractor, Bertin and Arnouts, 1996). The
results depends on the detection algorithm and on the set of fixed parameters, which means that
improving the deblending algorithm could decrease the number of unrecognised blends.

3.2 Impact of blending
In this part I discuss the different biases that can arise due recognised or unrecognised blends. Two
primordial parameters are impacted by blending: the effective projected number density of lensed
galaxies, neff, and the shear.

3.2.1 Effective number density, neff

Comparing ground and space based surveys allows for a pretty accurate quantification of the pro-
portion of unrecognised blends in ground based data. Dawson et al. (2016) compared the HSC
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Figure 3.3: Distributions of catalogue parameters for detectable galaxies in a simulated LSST full-
depth i-band exposure. The main take-away here is that for magnitudes higher than 24, or similarly
at low SNR, the contribution of low-purity objects is very high. Credit: Sanchez et al., 2021

data, a ground based telescope with a seeing close to the one of LSST, to HST ACS observations,
a space telescope, on the same sky field. They estimated that 14% of detected objects in LSST
data will be unrecognised blends at a magnitude of i ≈ 27. These unrecognised blends, implying
undetected galaxies, lead to a decrease in neff, of ≈ 12%.

Blending consequently impacts neff via unrecognised blends. However, in cases where a rejection
threshold is set to discard recognised blends which are considered too blended to be properly
separated, those can also influence this parameter. This has been evaluated for LSST using 2′′

as the limit at which a deblender would be able to properly separate objects, rejecting every
galaxy with neighbours closer than this distance (Chang et al., 2013; Chang et al., 2015). Sanchez
et al. (2021) used an other method, discarding low-purity galaxies (ρi < 0.98), mostly located
at magnitudes fainter than 24 in the r-band (see fig. 3.3). As expected, in both cases blending
decreases significantly neff, of the order of ≈ 20%.

Sanchez et al. (2021) also studied the impact of blending on neff for DES and HSC and recovered
similar results as previous studies(Jarvis et al., 2016 and Mandelbaum et al., 2018a). The decrease
is of ≈ 5% for DES and ≈ 15% for HSC, which is coherent considering the characteristics of each
survey.

3.2.2 Shear biases
Blending also has an impact on shear estimation. It is for example, the dominant source of detection
bias and even the dominant source of shear bias for DES-Y3 (MacCrann et al., 2020). As explained
in section 2.5.1, when several blended objects are detected as a single one, this creates a detection
bias. This comes from the fact that detection is shear-dependent (Sheldon et al., 2020; Hoekstra,
Kannawadi, and Kitching, 2021). As shown on fig. 3.4, a blend of objects which is detected as
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Figure 3.4: Toy example of shear-dependent object detection in the presence of a PSF. In panel (a)
two objects are present, convolved by a PSF with no shear. Contours represent constant brightness.
In panel (b) the objects are sheared by γ = (0.0, 0.1) after the PSF convolution. In panel (c) the
shear is applied before the PSF convolution, which mimics real sky images. Credit: Sheldon et al.,
2020

one object on a non-sheared image (left panel) can, if sheared before PSF convolution, present two
detected objects (right panel). The opposite effect is then of course possible. This can impact the
ellipticity distribution: blended objects, if recognised as a single one, present a broader light profile
leading to a large estimated ellipticity. The ellipticity distribution of unrecognised blends has a
larger intrinsic dispersion compared to objects that can be deblended, leading to a 14% increase in
shear noise for LSST (Dawson et al., 2016).

Figure 3.5 shows that a negative bias appears when pairs of galaxies are getting closer and closer
(Sheldon et al., 2020; MacCrann et al., 2020; Hartlap et al., 2011). To avoid this, a solution is to
set a limit of distance between the centers of the two galaxies, below which one discard the pair.
Instead of having a hard limit in terms of distance in the sky (Chang et al., 2013; Chang et al.,
2015), this limit can be parametrised as a function of the half-light radius of the galaxy to take into
account different galaxy morphologies (Hoekstra, Kannawadi, and Kitching, 2021). However, doing
so introduces a selection bias. First, blending can lead to a shift in the location of galaxies since
the detected peak could be, in rare cases, in the overlapping region (Hoekstra, Kannawadi, and
Kitching, 2021). Galaxies would then appear closer for the detection algorithm, leading to their
removal. Also, as we have seen above, the distance measured by a detection algorithm between two
peaks is shear-dependent, leading to a higher probability of removing pairs or galaxies with intrinsic
ellipticities aligned with the shear (see fig. 3.4). Finally, such removal strategy creates a bias in
the redshift distribution, as galaxies in the foreground have a higher probability of being blended,
hence of being removed, which is also density-dependent. The number density of sources in the
background gets correlated with the density field in the foreground, less galaxies being selected if an
overdensity field is in the foreground, and vice versa. This creates a scale-dependent bias (Hartlap
et al., 2011). These selection effects can result in a shear bias of several percent to about 10%,
largely exceeding stage IV requirements (< 0.3%).

Consequently, avoiding having to remove these pairs of galaxies would be a major step forward
to deal with this systematic. The solution that we propose in chapter 7 is to deblend a field
galaxy per galaxy optimizing an iterative procedure of detection, classification and deblending.
This could, in theory, help reducing the number of very close pairs of galaxies, and maybe some of
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Figure 3.5: Multiplicative bias for detections corresponding to pairs of objects separated by a given
angle. Comparison of results from MacCrann et al. (2020), ”DES Y3 sims”, and ”Sheldon et al.
(2020)”. Credit: MacCrann et al., 2020

the unrecognised blends.
However, using a deblending algorithm can also introduce a bias. An incorrect flux assignment

for each source might modify the shape and flux distribution (Mandelbaum et al., 2018b). Assigning
extra flux from a bright galaxy to its neighbour might allow faint galaxies to pass above a magnitude
cut, and to be selected for shear analysis, or it could make some galaxies appear more elliptical.
This is why deblending methods must be as precise as possible (even if they cannot be perfect).

In chapter 8, we propose a step forward the resolution of this problem with a method which
bypasses the deblending step and perform galaxy parameters estimation on the images, whether
the galaxies are blended or not.

Finally, blending increases noise bias (see section 2.5.3) as pairs of galaxies get closer (Sanchez
et al., 2021), but the role of blending for this particular bias is small compared to the detection
and selection biases discussed above. It also impacts the measurements of photometric redshifts,
modifying the distribution by making faint galaxies path the magnitude cut as explained before
(Mandelbaum et al., 2018b), or simply rendering almost impossible a correct photometric redshift
estimation since the SED of the blended objects are mixed (see section 2.2.4).

We have seen that blending could be a dominant systematic for shear estimation and accurate
methods to decrease and mitigate this bias are crucial to reach the stage IV requirements. In the
next section I discuss some of the solutions that exist today, and their limits, to provide context
and motivations for the avenues explored in chapter 7 and chapter 8.

3.3 Dealing with blending
Most of the studies presented in the previous section stressed the need for efficient algorithms to
deal with the issue of blending. In this part, I discuss some of the proposed solutions which I split
in two categories: calibration and deblending for shape and redshift measurement.
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3.3.1 Calibration
METADETECTION

METADETECTION (Sheldon et al., 2020) is an update of METACALIBRATION (see section 2.5.5, E. Huff
and Mandelbaum, 2017 and Sheldon and E. M. Huff, 2017) which includes detection. The idea is
to run a detection and measurement step on each sheared image produced by METACALIBRATION.
We have seen previously (section 3.2.2) that the detection is shear dependent. As a result, running
detection on images sheared differently will generate several catalogs with a different number of
sources. The catalogs shear statistics can be then corrected using the linear response computed
following the METACALIBRATION process. Finally, the ensemble mean ellipticities is computed over
the different catalogs. Doing so allows for the reduction of the multiplicative shear bias, whether
a deblending is performed or not, confirming that this bias came from detection. In case where a
sufficiently accurate model for the point spread function is available, using METADETECTION could
lead to a large decrease in average multiplicative biases for DES or LSST (Sheldon et al., 2020).

However, it is important to note that this method works on objects that are supposedly at the
same redshift, i.e. which are sheared by the same amount. It applies the same shear to the entire
image and cannot take into account cases where the blended galaxies would be sheared differently.
Since a large portion of blends comes from the superposition of foreground objects with background
galaxies, METADETECTION is not sufficient and other methods are required.

Simulations

For example, MacCrann et al. (2020) showed that, for two blended galaxies, shearing the galaxy
in the foreground will entail a non-zero shear response (defined as in METACALIBRATION, see sec-
tion 2.5.5) from the galaxy in the background. This has a large impact on nγ(z), the effective
redshift distribution for lensing defined as nγ(z) = R̄(z)neff(z) (see section 2.3.2), with R̄ the shear
response. Using realistic simulations they could reproduce the biases introduced by blending and
establish a protocol to correct for them. They managed to calibrate nγ(z) allowing for the joint
calibration of redshift distribution and shear biases. As mentioned in section 2.3.2, this might be
crucial for LSST since it will yield a very large galaxy density.

Most of recent weak lensing analyses such as HSC (Mandelbaum et al., 2018b) and DES Y1
(Samuroff et al., 2018) also used simulations for calibration. Simulations allow to recover blending-
induced shear biases, such as the broader ellipticity distribution, or the difference in magnitude
distribution mentioned earlier. Methods can then be implemented to correct for them, so that the
resulting bias fits the survey requirements. An overall multiplicative bias of ≈ 10% (at maximum)
due to nearby galaxies and unrecognised blends is observed but it can be calibrated to meet the
surveys’ requirements (of the order of ≈ 1% for stage III surveys).

To correctly calibrate the shear biases, it is crucial for the simulation to be as realistic as possible,
especially that it includes nearby objects in the images. However, even if realistic simulations allow
for a significant decrease in multiplicative bias, all studies affirm that the complementary use of a
calibration scheme, such as METACALIBRATION (E. Huff and Mandelbaum, 2017; Sheldon and E. M.
Huff, 2017) or METADETECTION (Sheldon et al., 2020), is required. Also, even if this calibration
methods are used, the remaining bias is still of the order of 1% while it is supposed to be of the
order of 0.3% for stage IV surveys. One avenue could be to create more realistic simulations using
for example more realistic galaxy models. Bretonnière et al. (2021) proposed a method, based on
the work of François Lanusse et al. (2021), to generate realistic galaxy images from a deep generative
neural network, for the Euclid collaboration. Since the prior for galaxy image generation is learned
from true galaxy images, the method generates more realistic galaxy profiles. I briefly show a way
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Figure 3.6: Schematic image of the deblending algorithm of SExtractor. The light profile of the
object (smooth curve) is described as a tree structure. Determining if a branch should be considered
as a component of the blend depends to its relative integrated density (tinted area). Here the object
is split into two objects A and B. Credit: Bertin and Arnouts, 1996

of doing this in section 4.4 using variational autoencoders. The other avenue is, in addition to the
correction of biases introduced via the processing pipeline, to try to decrease their amount using
more precise methods. In the next section I describe the efforts that have been done in that sens
for deblending algorithms.

3.3.2 Deblending
In this section I define a deblending algorithm as a method which accurately separates overlapped
objects. In this context, accurately means with a precise reproduction of the flux and shape of each
object.

SExtractor

SExtractor (Bertin and Arnouts, 1996) is probably the most used algorithm for detection nowa-
days. It is a peak detection and deblending algorithm. It starts by identifying local maxima above
a pixel count threshold. Each of this peak is then re-thresholded at 30 levels exponentially spaced
between the primary count threshold and its peak value. Then going downward from the maximum
value of the image, a peak is considered as a component of a blend if, at a junction1 (see fig. 3.6),
the integrated pixel intensity of the peak is higher than a fixed fraction of the total intensity of the
composite object, and that at least another peak satisfies the previous condition.

SExtractor has an embedded deblending algorithm. Once a blend is detected, the algorithm
allocates each pixel to a particular object by assigning a probability for each pixel to be a part
of each source. The morphology and flux of each object is then defined by its list of pixels. The
deblending is performed on single band images, band per band if a multi-band image need to be
processed.

1Here a junction is defined as the moment when the level reached, while descending the 30 levels, is lower than
the pixel value separating two peaks.
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By definition this algorithm does not consider that several objects can contribute to the flux in
a pixel, this is a segmentation approach, which is questionable. This approach can be sufficient for
space surveys or for surveys with a very low amount of blended objects, but for ground surveys,
and particularly for the most recent and future surveys, this approach is not satisfactory anymore
since a lot of objects will be blended, with several sources contributing to same pixels. Results
obtained on HSC images, and shown on the third column of fig. 3.7, illustrate this point.

SDSS PHOTO deblender

The SDSS PHOTO pipeline includes a deblender (R. Lupton, in prep.) designed for multi-band images
(SDSS has five bands). It uses as input the peak positions and assumptions about the symmetry
of objects to deblend stars and galaxies.

The procedure starts with identifying all of the peaks in a blend, these peaks define the children.
For each child a template is constructed by looking at pixel pairs symmetrically located around the
peak, and replacing both pixels by the lowest value of the two. A weight is then assigned to each
child template, and optimized to minimize the difference between the reconstructed image from
the templates, and the initial image of the blend. Finally, child images are constructed from the
weighted templates. To generalise to multi-band data, the children are defined by the union of the
peaks found in each band. The templates are defined independently in the different bands.

This algorithm is based on several assumptions namely that the astronomical objects are sym-
metrical, have non-negative fluxes, and are optically thin. The hypothesis of thin objects might be
true for the disk of a galaxy (diffuse, external part) but is questionable for the central part which
is usually much brighter. Also assuming only symmetrical objects works well most of the time
but fails on galaxy with irregular morphologies. Finally, and probably because of the symmetry
hypothesis, it proves to struggle with situations where a central object is symmetrically surrounded
by neighbours.

It is however an interesting approach as it enables several object contributions in a pixel with
few assumptions. The PHOTO deblender was used for SDSS and an improved version of it is used
for HSC Bosch et al. (2018). Some results of its application to HSC data are shown on the right
column of fig. 3.7.

DES algorithms

For DES Y1 (J. Zuntz et al., 2018) a combination of two deblending algorithms was used: the first
one masks pixels close to neighbours (Jarvis et al., 2016), avoiding the possibility to have several
contributions to the flux in one pixel, and the other one which is a multi-object fitting (MOF)
algorithm (Drlica-Wagner et al., 2018). The MOF algorithm is a forward-modelling method fitting
bulge+disk parametric models to each source in the blend. It uses the ngmix “multi-epoch” mode
to fit a model to all available epochs and bands, and combines it with an iterative procedure,
removing the light of fitted models until convergence. The sources in the blend are found using
a friend-of-friend algorithm and they are simultaneously fitted in the g, r, i, z bands. Once all the
sources are modelled, and the convergence is reached, a fraction of the flux in each pixel can be
assigned to a particular object. For DES, this algorithm was used inside the METACALIBRATION
pipeline.

Improvement have probably been done for DES Y3 but the presentation of the deblending
procedure hasn’t been released yet. It should be detailed in Sevilla-Noarbe (in prep.).

As already pointed out in section 2.5.3, using parametric models to fit galaxies might quickly
introduce a bias since the models that are used might not represent the entirety of the shapes that
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Figure 3.7: Comparison of deblending for several deblenders. The left column shows galaxies
detected on an HSC image. The second column from the left presents the results obtained with
SCARLET, the third shows results obtained with Sextractor and the column on the right shows the
object deblended by the SDSS/HSC PHOTO deblender. Credit: P. Melchior et al., 2018

galaxies can take. Same as for PHOTO, an irregular or a spiral galaxy would not be fitted properly.

SCARLET

The baseline algorithm that is being implemented within the LSST science pipeline is the SCARLET
algorithm (P. Melchior et al., 2018). It is based on constrained non-negative matrix factorisation. It
can process multi-band images and performs deblending describing the observed scene as a mixture
of components. The multi-band model M can be written as:

M =
K∑

k=1

AT
k × S k = AS (3.5)

with Ak the spectral energy distribution (SED) of the component k across all bands and S k its
shape.

Then, the scene is fitted minimizing the log-likelihood of the model. In addition to the non-
negativity constraint they apply others, that they use as priors on the solution, turning the max-
imum likelihood estimate into a maximum a posteriori estimate. The SCARLET algorithm requires
a central symmetry of the sources around the peak pixel (inspired from the PHOTO deblender),
declining monotonicity from the peak pixel, and sparsity on the pixel domain.

Other priors and constraints can also be included. For example the possibility of having a
shape prior learned from a deep generative model has already been proposed and tested (Francois
Lanusse, Peter Melchior, and Moolekamp, 2019).

This method has several advantages. It permits to use multi-band images, it uses a non-
parametric constrained morphological model, and it introduces the monotonicity constraint, which
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Figure 3.8: On the left are presented two images of galaxies from Galaxy Zoo which are combined
to create the central blended input image. The predictions from the network are shown on the
right. The image of the blend (center) shows a strange diagonal line coming from the unrealistic
blending procedure: selecting the pixelwise maximum of two preblended images. Credit: Reiman
and Göhre, 2019.

permits to avoid the current failure mode from PHOTO discussed above. Also it enables to take into
account additional constraints that can come, for example from deep generative models. However
it struggles with cases where an undetected source is close from the one that it tries to deblend, as
illustrated by the first row of fig. 3.7, which shows an undetected source on the lower right of the
object labelled 20.

Indeed, all previously presented deblenders require the position of all sources in order to perform
the deblending. In chapter 7, we present an iterative procedure which deblends objects one by one
requiring only the knowledge of the brightest galaxy position on the image. This iterative process
might help to retrieve galaxies which would not be detected by a single detection step. We build our
algorithm on a kind of deep generative models (see section 4.3), namely variational autoencoder,
since they can learn complex features from galaxy images without making any assumptions, while
naturally generalising to multi-band images.

Deblending with deep generative model

Before that, Reiman and Göhre (2019) proposed an approach based on Generative Adversarial
Networks (GANs) for deblending multi-band SDSS images taken from GALAXY ZOO (Lintott
et al., 2008). This approach was an interesting first step but the blend construction was a bit
unrealistic (selecting the pixelwise max of two galaxy images, see fig. 3.8) and the galaxy sample
was not representative of what future surveys will encounter (LSST will look at much higher
magnitude than SDSS). Also, it was trained on real images, which helps to match a realistic shape
distribution, but has downsides such as the difficulty to construct a clean training sample.

In our work presented in chapter 7, we tried to answer several of these issues, starting by using a
more realistic blend construction (adding images of isolated galaxies), and working on simulations
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Figure 3.9: Image of a galaxy from the HST COSMOS catalogue with a residual from segmentation
clearly visible on the top left side of the galaxy. The blue cross is the center of the galaxy and the
red crosses correspond to the positions of galaxies that were added when we tested the deblending
of real images with the deblending algorithm developed in chapter 7.

which reach the magnitudes that LSST will observe, and permit to have a clean training sample.
We then work with real images of isolated galaxies taken from the HST COSMOS catalog, but
even in that case we were faced with a corrupted training sample, i.e. blends that were considered
as isolated galaxies or residuals of image processing altering the shapes of the objects (see fig. 3.9).

Other deep learning approaches

Other works using deep learning include a deblending step. I mention them here even though the
goal of the deblending is always different from what we were trying to achieve previously, i.e. an
accurate recovery of shapes and fluxes. In most of these approaches, the deblending algorithm uses
segmentation.

For instance Boucaud et al. (2020) specifically target the segmentation and photometry mea-
surement of blended pairs of galaxies. They tested two networks, a simple CNN and a U-Net
architecture (Ronneberger, Fischer, and Brox, 2015). This work done on single band images in the
context of the future Euclid survey showed promising results. They use a more realistic blending
procedure than the one used by Reiman and Göhre (2019), similar to the one that we used in
chapter 7: a pair of blended galaxies is created by adding the pixels of two isolated galaxies from
the CANDELS fields (Dimauro et al., 2018), shifting one of the two of a small amount.

Most of the other algorithms including a deblending task are designed for source classification.
For example, another work based on U-Net, MORPHEUS (Hausen and Robertson, 2020), aims at source
detection, segmentation and classification. The main difference with the previous architecture is
that it adds a classification step to output feature maps for each classes (spheroid, disk, irregular,
point source/compact, and background), which is consistent with their different objective.

ASTErIsM (Tramacere et al., 2016) used DBSCAN (Ester et al., 1996) for detection of sources
and DENCLUE (Hinneburg, Keim, et al., 1998) for deblending, which performs segmentation by
associating each pixel to a particular source. This algorithm, particularly focused on galaxies, was
trained on GALAXY ZOO galaxies (SDSS) similarly to the method proposed by González, Muñoz,
and Hernández (2018). Based on the YOLO algorithm (Redmon et al., 2015), the latter performs
detection and classification of sources, but without the deblending step.
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Burke et al. (2019) proposed another source classification algorithm based on the Mask R-
CNN (He et al., 2017) image processing framework, using residual neural networks (ResNets). The
algorithm performs instance segmentation at the final stage: each pixel is assigned to a class (star,
galaxy or noise) which can be used to mask sources and deblend cutouts from the images. This
method interestingly allows for several sources contribution in a single pixel.

Finally, and on a different problematic, Madireddy et al. (2019) proposed a deep learning
pipeline for galaxy-galaxy strong lensing detection, deblending and modelling. They also used
ResNet-based architecture for the denoising and deblending modules. The detection and modelling
tasks are based on variational information bottleneck (VIB) (Alemi et al., 2016) framework, which
allows for uncertainty estimation and accurate classification using latent space representation.

Except this last work, all the previously presented algorithms use a segmentation approach.
Even if segmentation proved to be effective to recover main shape features and fluxes it is probably
not appropriate for astronomical images. Indeed, astrophysical sources are shallow objects and
using segmentation almost inevitably implies a loss of information. Moreover, using segmentation
to separate sources that overlap implies that the shape of at least one of the objects is going to be
strongly modified. For example, fig. 3.9 shows an example of a real galaxy image from the HST
COSMOS catalogue where a residual from segmentation, performed with SExtractor, is clearly
visible. In the context of weak lensing, i.e. where shapes and fluxes of objects must be recovered
accurately, the use of segmentation is questionable.

Also, as we have seen deblending is not always used in the same purpose, which makes deblending
algorithms comparisons very difficult. Each method develops its own metric and no performance
comparison is done even for algorithms that aim for the same objective (except the ”by eye”
comparison presented on fig. 3.7). The Blending ToolKit tries to fill this gap, see section 3.3.4.

3.3.3 Probabilistic cataloging
Another avenue to the blending issue could be probabilistic cataloging. Contrary to traditional
cataloging methods, creating a single catalogue, the idea is to propose a statistical model consist-
ing of a likelihood for the observed image given a catalogue, and a prior distribution over possible
catalogues. A posterior distribution over the set of possible catalogues is then created, which gives
access to uncertainties. PCAT (Portillo et al., 2017; Feder et al., 2020) and StarNet (Liu, McAuliffe,
and Regier, 2021) are two methods of probabilistic cataloging that were tested on crowded starfields.
They respectively used MCMC and Variational inference (VI) in order to produce the posterior dis-
tribution, VI showing, as expected, a much faster convergence. These methods have the advantage
of presenting a fully Bayesian method for deblending, including detection and modelling.

From a SDSS image, StarNet was able to recover a number of stars very close from the truth,
set by the number of stars seen by HST. The application of this method to the blending of galaxies
could be interesting even if this method is still preliminary and computationally costly. They plan
to include galaxies to their method but the priors, for galaxy shapes especially, will have to be
chosen with care. In addition, they foresee to use a prior learned from a variational autoencoder,
which is the kind of generative models that we use in chapter 7.

3.3.4 Blending ToolKit
As mentioned above, it is difficult to compare the performance of different deblending algorithms.
Simultaneously because they are tested on different datasets, with different performance metrics
and do not aim for the same objective.
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Figure 3.10: Portion of the DEEP2-3 field as seen by HSC. Credit: HSC3

The Blending ToolKit2 (BTK) is a framework developed to test deblending algorithms on iden-
tical datasets, offering metrics to evaluate the algorithm performance. It is developed within DESC
and was initiated by Sowmya Kamath together with Cyrille Doux, François Lanusse, Pat Burchat,
Cécile Roucelle and Eric Aubourg. Ismael Mendoza took over the development recently and is
especially helped by Thomas Sainrat, Hironao Miyatake, Maxime Paillassa, Alexandre Boucaud,
and Rémy Joseph.

A lot of work has recently been put into making the framework easy to use and making sure that
it contains every metrics necessary to test and validate a deblending algorithm. Since deblending
can mean several things depending on who is using it, the framework pays a particular attention
to offer performance metrics for each of the possible definition: detection, segmentation, and shape
reconstruction. An extensive review of the literature has been done to this end. A version 1.0 of
this package should be available around July 2021.

3.3.5 Multi-band, multi-instrument analysis
Looking at multi-band images clearly suggests that color can help to discriminate between objects,
even if they are overlapped (see fig. 3.10). Designing a deblending algorithm able to work on
multi-band images allows to make the most of the color information, and is nowadays the preferred
solution for deblending.

For example, SCARLET or the DES multi-object fitting algorithm perform deblending on multi-
band images.

However, as already explained, ”classical” methods needs to make assumptions about the light
profile of the sources they are trying to separate, which can induce model bias. Also they do
not naturally generalise to multi-instrument images, combining images from a ground and a space
telescope for example. Implementing a method able to work on images of different resolutions is
extremely complex and none of the deblenders presented in section 3.3.2, using classical methods,
has implemented this.

Deep learning provides a very simple solution to combine information from several bands and
to build an arbitrary complex model from the data. It also naturally generalises to multi-band and
multi-instrument images. This is a major advantage since it consequently allows for the combination

2https://github.com/LSSTDESC/BlendingToolKit
3https://hsc-release.mtk.nao.ac.jp/hscMap2/
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Figure 3.11: (left) Galaxy cluster Abell S1063 as observed by DES, a ground-based telescope.
Credit: DES data from P. Melchior et al. (2017) (right) Galaxy cluster Abell S1063 as observed by
HST, a space telescope. Credit: CLASH WFC3/IR data, image by Dan Coe

of space an ground data. Combining space and ground data permits to use the high resolution of
space data (space data has usually a higher resolution than ground data due to the atmospheric
PSF, see fig. 2.14 and fig. 3.11), and the color information from ground data (images from ground
data are usually multi-band). Since Euclid and LSST sky coverage will overlap for several thousand
square degrees (see fig. 1.11), synergies between the two surveys are expected (Rhodes et al., 2017;
Jain et al., 2015; Capak et al., 2019). It has already been shown that LSST can benefit from Euclid
data, up to the depth of Euclid, for shape reconstruction (Schuhmann, Heymans, and Joe Zuntz,
2019), and benefits are also expected for deblending.

Combining images from LSST and Euclid to feed a deblending algorithm based on neural
networks can consequently, potentially, help improve the network performance. In chapter 7, we
show that it permits a large increase in the precision of galaxy shape reconstruction using variational
autoencoders.

Thanks to the much higher resolution of Euclid data, source detection is also mentioned as a
task which can benefit from the synergy between Euclid and LSST. Nowadays source detection is
mainly performed on single band images and to my knowledge, no algorithm performs detection
on multi-band images. In section 3.3.2, I presented several deep learning algorithms which perform
detection as one of their processing step, and allow for the use of multi-band images but none of
them was dedicated to detection. Deep learning allows to make the most of the color information
from multi-band images and could probably help to perform accurate detection. It could probably
lead to a decrease in the number of unrecognised blends, potentially decreasing their impact on
shear noise and effective projected number density of lensed galaxies (see section 2.5.1). A test of
this hypothesis is reserved for future work.

In the next part I present some elements of deep learning including deep generative networks
that are used in chapter 7. I briefly introduce Bayesian neural networks as a way to estimate
epistemic uncertainty, the uncertainty coming from the lack of representativeness of the training
sample, and I discuss the need for deep learning in cosmology.
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Part II

Deep learning for cosmology
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In the work presented in chapter 7 and chapter 8, I use Bayesian deep learning algorithms to
address the issue of blending of galaxies. Consequently, in the next three chapters, I introduce
the concepts and methods which are required for this work. I start by providing some elements of
deep learning, especially discussing deep generative models, used in chapter 7. Then I present an
introduction to Bayesian neural networks (BNN) and briefly explain some methods to train them,
since I use a BNN in chapter 8. Finally, the last chapter is a discussion about the interest of using
deep learning for cosmology today.
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Chapter 4

Elements of deep learning

In this chapter I briefly describe the mathematical developments behind neural networks, how to
overcome some common training issues that I ran on, and a particular class of neural networks,
namely generative models. I finish this chapter with an example of galaxy image generation using
the trained decoder of a variational autoencoder. This chapter is largely inspired from I. Goodfellow,
Bengio, and Courville (2016).

4.1 Components of a neural network
A neural network is usually a stack of different layers which can be formed of several neurons. They
can be of different types, each of them being suited for specific tasks. In the following I describe
the two most commonly used layer kinds to give a hint of what layers are composed of, but much
more possibilities exist.

4.1.1 Dense layers - fully connected layers
Fully connected layers or dense layers are a combination of activation layers and linear feed-forward
layers, which are themselves a combination of bias and linear layers. Here, I will take the example
of a single neuron layer, i.e. a neuron.

Neurons

A linear feed-forward neuron is the combination of a bias neuron, z = b, which can learn an offset or
the mean of a sample, and a linear neuron, z = x×w, which can learn an average rate of correlation
between the network input and output. Here, z is the neuron’s output, b is the bias, x is the
neuron’s input, and w is the average rate, or the weight. Combined together, a linear feed-forward
neuron can be written as:

z = x × w + b (4.1)

It provides a way to learn about a bias and a correlation rate between the neuron’s input and the
output. It can then be used to learn a linear relationship between the input or the output, or to
scale data before feeding a neural network for example.

The problem with this kind of neuron is that, per construction, it does not deal with non-
linearity and its applications are consequently very limited. To add non-linearity in the process, the
feed-forward neuron output needs to be transformed by a non-linear function called the activation
function.
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Figure 4.1: Example of activation functions: sigmoid (left), hyperbolic tangent (center) and ReLU
function (right).

Activation functions

The activation function, a, applies non-linear transformation to the output of a neuron. In the case
of the linear feed-forward neuron, the output becomes:

z = a(x × w + b) (4.2)

Training the network still consists in learning w and b, but thanks to the activation function it
is possible to learn non-linear relationship between the neuron’s input and output (respectively x
and z). A lot of different activation functions can be used and some of the most common are shown
on fig. 4.1.

Layers

Until now, I only described single neuron layers. However, layers usually contain a lot of neurons,
and each of them outputs a different value. For neural networks composed of dense layers, every
neuron of each layer is connected to every neuron of the previous and of the next layer (see fig. 4.2.
This is why these layers are also called fully connected layers. In the example of the 3 layers neural
network shown on fig. 4.2, the output y would be computed as:

z3
1 = a2

(
z2

1 × w2,3
1,1 + z2

2 × w2,3
2,1 + z2

3 × w2,3
3,1 + z2

4 × w2,3
4,1 + z2

5 × w2,3
5,1 + b2

1

)
(4.3)

where al is the activation function of layer l, z(l)
i the value of neuron i in layer l, wl,l+1

i, j the weight
applied between the neuron i in layer l and the neuron j of layer l + 1, and bl

j, the bias applied
between the layer l and the neuron j of layer l+ 1. An activation function is usually applied on the
last neuron value to yield the output: y = a3(z3

1).
Here, I specifically detailed the computation for a very small neural network. However, this

is a lot of subscripts and superscripts to handle. We can write this more clearly as a matrix
operation: Z3 = a2(W2 ×Z2 + B2), with W2 ×Z2 being a matrix multiplication. Since neural networks
are often composed of a lot of layers with a lot of neurons, computations are done with matrix
operations. Stacking dense layers can quickly become computationally costly. Here, there are
already 21 parameters to learn for a 3 layers network respectively composed of two, five, and one
neurons. This number increases very quickly with wider layers (more neurons in each layer) and
deeper networks (more layers).

To train these networks, one consequently needs specialised hardware. One of the reasons of
the success of Graphical Processing Units (GPU) to train neural networks, are their specialisation
in doing parallel processing which allows them to perform extremely fast matrix multiplications.
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Figure 4.2: Three dense layers neural network. One input layer (green), one hidden layer (blue)
and the output layer (yellow). They are respectively composed of two, five and one neurons.

In appendix A, I present a comparison of the performance of a GPU with an other hardware
specialised for deep learning applications, the Intelligence Processing Units (IPU). I tested their
performance for two cosmological applications: the generation of galaxy images and the training a
neural network for galaxy shape parameters estimation.

4.1.2 Convolutional layers
Dense layers are not well-suited for every task. To work on images for example, one usually turns
to an other type of layers, convolutional layers.

The use of convolutional layers first appears in Fukushima (1979) for pattern recognition but
LeCun et al. (1999) are the first to stack several layers to create a convolutional neural network
(CNN) and to show that it can be trained to produce high performance in pattern recognition.

As expected, convolutional layers apply convolution operations on their inputs instead of matrix
multiplications. The aim, is to learn convolutional kernels (or filters) which will be applied to the
data and will learn its specific features.

As we mostly use 2D-convolution, I focus on the example of convolving an image I with a
2D-kernel K. This would give an output S defined as:

S (i, j) = (I ∗ K)(i, j) =
∑

m

∑
n

I(m, n)K(i − m, j − n)

=
∑

m

∑
n

I(i − m, j − n)K(m, n)
(4.4)

as convolution is commutative. (i, j) is the pixel coordinates of S and (m, n), the coordinates of I
or K (respectively for the first and second line). Usually the second expression is implemented to
have smaller variation ranges for m and n.

Here, the aim is to learn the bias and weights of the convolution kernels K. For example for
a 3 × 3 pixels kernel, ten parameters (9 weights + 1 bias) would have to be learned. Those will
assign importance to different features in images preserving spatial relationship between pixels and
creating a feature map. An example is shown on fig. 4.3 going from a 2D matrix (in blue) to a
feature map (in red) through the 3 × 3 kernel (or filter) matrix.
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Figure 4.3: Example of 3 × 3 kernel being applied to a 2D-matrix.

Different values in the kernel matrix will produce different feature maps and the training consist
in finding the values which reveal the most meaningful features to propagate through the network.
For each convolution layer, it is possible to use several kernels, generating several feature maps
from the input. Also, the learned kernels are invariant by translation: one kernel can be applied
to any part of the image. Thus convolutional layers contain less trainable parameters than dense
layers and are, in addition to being more suited to extract important features, less computationally
costly when applied to images.

Convolutional layers are often used in combination with pooling layers. The latter allow to
reduce the 2D matrix dimensions, giving access to main features at different scales. Different type
of pooling layers exist, depending on the feature one wants to propagate: the maximum value in a
portion of the image (Max Pooling), or the average value (Average Pooling) for example.

Finally, it is interesting to note that images are not the only type of data with a known, grid-like
topology, for which convolutional layers are particularly suited. Time-series data, for example, can
also be processed very efficiently with 1D-convolution layers as in Gabbard et al. (2019) who used
it to estimate the source parameters of a gravitational waves event.

4.1.3 Other types of layer
There exists lots of different kind of neural network layers, each of them with a particular purpose:
layers to process data (see Batchnormalization, Ioffe and Szegedy, 2015), to add non-linearity with
specific activation functions (see PReLu, He et al., 2015b), or to realise operation between layers
(addition, multiplication, concatenation...).

Similarly to CNN, there are also layers suited to particular kind of data such as Long short
term memory (LSTM) network (Hochreiter and Schmidhuber, 1997) particularly suited for time
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Figure 4.4: Diagram of the last layers, of a neural network composed of i single neuron layers. The
loss L is computed from the output of the network, ai(zi), and the target y.

series. It is a type of recurrent neural network (RNN) and is broadly used in Natural Language
Processing (NLP) for example (Sak, Senior, and Beaufays, 2014, for instance). More recently,
transformers (Vaswani et al., 2017) using attention layers (Bahdanau, Cho, and Bengio, 2014) have
been proposed and improved state-of-the-art results in NLP (Devlin et al., 2018 or Radford et al.,
2019, for example). Attention layers can also be used for other tasks such as image generation
(Zhang et al., 2019).

To summarize, multiple kinds of layers exist, each particularly good at a specific task. It is not
possible to be exhaustive on such topic but most of current algorithms, and particularly the ones
I implemented in part III, are based on the two types detailed previously.

Stacking more and more layers, more and more complex mathematical models can be generated
and more and more complex mathematical functions can be fitted. The ”deep” in deep-learning
comes from this notion of increased complexity by adding layers. Now that we have an idea of what
artificial neural networks are made of, it is necessary to understand how they are trained. In the
next section, I briefly describe the backpropagation algorithm which allows the neural networks to
learn from the data. Then, I describe some common issues to train neural networks, that I have
encountered.

4.2 The Backpropagation algorithm
4.2.1 A simple example: single-neuron layers neural network
Here, we consider a neural network composed of i single neuron layers (see fig. 4.4). This is a
simpler example than the one presented previously which is chosen for the sake of clarity of the
following explanation.

Here, an artificial neuron zk from layer k receives information from different sources. We will
focus on the neuron in the last layer of the network, zi, which receives information from zi−1, a
weight wi and a bias bi. The output of the network is ai(zi): the value of the neuron zi transformed
by an activation function ai.

The value of the neuron zi is equal to:

zi = ai−1(zi−1) × wi + bi (4.5)

If we consider ai(zi) as the output of our network, and y the label that needs to be recovered by
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the network, then L, the loss (or cost1) function used to train the network, is computed from these
two values, L(y, ai(zi)). This function can be the mean squared error, the binary cross-entropy, or
any other cost function. The choice mostly depends on the targeted task (regression, classification,
etc.) and on the range of output values.

Since the cost depends on ai(zi), it also depends on the values of wi, bi and ai−1(zi−1). The value
of ai−1(zi−1) in turn depends on the values of wi−1, bi−1 and ai−2(zi−2). If the network is composed
of N layers, the output and hence, the cost, depends on the values of the weights and biases of
the N layers. To minimize the cost, biases and weights need to be updated and optimized using
stochastic gradient descent (SGD). During training, the gradient is computed and the trainable
parameters (the weights and biases) are updated, using the learning rate (as shown in eq. (4.11)
and eq. (4.12)), after each data sample (or batch of examples).

4.2.2 Optimisation with stochastic gradient descent
To use SGD, it is necessary to compute the gradient of the cost, ∇L, as a function of each parameter
of the neural network. To do so, each term of the gradient can be decomposed using the chain rule.
When training a neural network this is obviously a large matrix computation. Here, for the sake of
simplicity, I will continue with the example of a neural network composed of i single neuron layers.
We can start by computing the term of the gradient as a function of the weight wi for example.
For a training example k, it can be decomposed as:

∂Lk

∂wi
=
∂Lk(y, ai(zi))
∂ai(zi)

∂ai(zi)
∂zi

∂zi

∂wi
(4.6)

Replacing each component by its expression in the right term of the equation:

∂Lk

∂wi
= L′k(ai(zi))a′i(zi)ai−1(zi−1) (4.7)

Similarly you can compute the derivative of the loss, Lk, as a function of the bias and the previous
neuron output ai−1(zi−1):

∂Lk

∂bi
= L′k(ai(zi))a′i(zi) (4.8)

∂Lk

∂ai−1(zi−1)
= L′k(ai(zi))a′i(zi)wi (4.9)

This is the derivative of the cost for a single training example k, to compute the derivative of the
full cost function the only thing to do is to average over all the training examples. For the derivative
as a function of wi, it becomes:

∂L
∂wi
=

1
N

k=N−1∑
k=0

∂Lk

∂wi
(4.10)

Remember that this is only for a network composed of single neuron layers. This derivative of
the full cost function as a function of the weight wi is only one element of the gradient of the cost
function, ∇L. The latter is composed of all the derivatives of the cost as a function of each weight
and bias of the neural network.

To obtain all these derivatives, it is possible to iterate this chain rule idea used for wi or
bi backward to compute how sensitive is the cost to every previous trainable parameters (wi−1,
bi−1...) and update them accordingly. The algorithm performing the automatic differentiation for

1I will equivalently use cost function or loss function as well as cost or loss through this manuscript.
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calculating gradients in a neural network is called the backpropagation algorithm. The network can
then be optimized, updating the parameters, through SGD.

To modify the parameter’s value, a hyperparameter called the learning rate, l, is used. It is
a coefficient applied to the gradient in order for the parameter’s value to change of a reasonable
amount. It is set arbitrarily before training, a common choice is 10−3. We previously showed the
computation of the gradient for one example but it is usually done per batch of examples. The
update of the weights and biases, between the batch (k − 1) and (k), can then be computed as:

w(k)
i = w(k−1)

i − l
∂L
∂w(k−1)

i

(4.11)

b(k)
i = b(k−1)

i − l
∂L
∂b(k−1)

i

(4.12)

It is possible to extrapolate these formula for networks with more complicated architectures but
the main idea remains the same.

As we have seen, this backpropagation process depends on a lot of parameters. The choice of
the loss function, the number of parameters to train, the choice of activation functions (among
other things), can all have an impact on the training of a neural network. I briefly describe two of
issues that can arises, as well as corresponding solutions, in the next part.

4.2.3 Training issues and examples of regularisation
Vanishing gradient

As previously explained, the update of a parameter depends directly on the corresponding gradient
value. A problem can occur if the gradient becomes extremely small: the weights are not updated
any more and, in the worst case, the neural network may stop learning.

This issue arises mainly from using specific activation functions such as the hyperbolic tangent
or sigmoid function (see fig. 4.1). The derivative of these functions can be almost equal to zero
in some intervals. If several layers use one of these activation functions for example, the function
derivative arises several time in the computation of the gradient of the cost function. Consequently,
if it is close to zero, the gradient becomes exceedingly small and vanishes. The weights or biases
are not updated any more and the network stops learning.

A simple solution is to use other activation functions such as the Rectified Linear Unit (ReLU)
which does not cause small derivative. Another common avenue is to use residual neural networks
(ResNet He et al., 2015a). In this particular architecture, skip or residual connection are used: it
connects an early layer to a deeper one, skipping one or two layers in the process (see fig. 4.5). It is
then possible to propagate the gradient information straight to earlier layers without going through
many activation functions, preventing the gradient from vanishing.

Consequently, this problem can be easily dealt with once it is detected.

Overfitting

Another common issue when training neural networks (and for machine learning in general) is over-
fitting. Usually, when we train a neural network, the goal is to make predictions or measurements
on data for which we do not have the truth. We hope that the network will be able to generalise to
previously unseen data, i.e. not seen during training. The ability of a network to generalise can be
monitored during training by splitting the dataset, for which we know the truth, in three samples:
the training, validation and test samples. Only the training and validation samples are used during
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Figure 4.5: Block with a skip connection from an early layer to a deeper one, skipping two layers.
Source: He et al., 2015a.

training, and the training sample is the one used for backpropagation. The gradient of the loss
function is computed from the performance of the network on this sample. We need to assume
that these samples are independently drawn from the same data-generating process, which has a
defined probability distribution (the samples are independent and identically distributed, i.i.d.).
At each epoch, i.e. when the network saw all the training sample once, the loss is also computed
on the validation sample (without updating the weights). Consequently, at the end of an epoch we
have two values for the training loss and the validation loss, that can be compared. The problem
of overfitting appears when a network learns too precisely the training data so that it loses its
generalisation power.

An example is presented on the left panel of fig. 4.6. At first the network learns features from
the training data and is able to generalise: the training and validation losses decrease at the same
rate. Then, the network becomes too specialised on learning features of the training data. It is
not able to generalise anymore and the validation loss stops decreasing and starts increasing (after
about 30 epochs on fig. 4.6).

The result of overfitting is illustrated on the right panel of fig. 4.6: overfitting takes the network
away from the optimum solution. On the contrary, underfitting is when the network is not able to
learn enough features to give correct predictions.

The ability of a model to overfit or underfit depends on its capacity, which itself depends on
the network’s architecture, the number of trainable parameters, and the number of examples in
the training sample. If the capacity of the model is too low, the model will underfit. On the
contrary if it is too high, it will overfit. Trying to reduce overfitting is equivalent to reduce the
network’s capacity. Studying the capacity of models helped justifying the fact that machine learning
algorithm such as neural networks can work. Important results in statistical learning theory show
that the discrepancy between training error and generalisation error, which characterises overfitting,
is bounded from above by a quantity that grows as the model capacity increases but shrinks as the
number of training examples increases (V. N. Vapnik and Chervonenkis, 2015; V. Vapnik, 1982;
Blumer et al., 1989; V. Vapnik, 2013).

All the strategies in machine learning which are explicitly designed to overcome this issue, are
known as regularisation. I briefly present two examples of regularisation that I used in my work:
data augmentation and dropout.
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Figure 4.6: Example of overfitting. (left) The evolution of the training and validation loss in case
of overfitting after about 30 epochs. (right) Illustration of what happens in case of overfitting,
optimum learning and underfitting.

Data augmentation

As mentioned above, overfitting shrinks as the number of independent training examples increases.
That is pretty straightforward since, to generalise, the network needs to learn a larger part of
the probability distribution of the data-generating process. Learning on larger samples obviously
permits to cover a larger part of this distribution.

Since the amount of available data is limited, one solution could be to create new data from
simulation. However this solution requires the knowledge of the probability distribution that is
learned by the network, which is not always the case. Another solution is to apply transformation
to the data for which the response of the desired output is known. For instance, if the desired
output is the ellipticity parameter e1 of a galaxy (see section 2.4.1), it is invariant if the galaxy
image is flipped horizontally. One can use this property to increase the number of galaxy images
in the training sample. This technique is commonly used and I personally use it in part III.

Dropout regularisation

Another strategy to mitigate overfitting is to use dropout (Srivastava et al., 2014). At first ap-
proximation, dropout can be seen as making bagging, i.e. train multiple neural network models,
evaluate them on a test sample and combine the outputs. Bagging can become very computation-
ally consuming, and dropout provides an inexpensive approximation of it by randomly removing,
dropping, non-output units (neurons) from an underlying neural network model. This removal is
most commonly done by multiplying some neuron’s outputs by zero. Figure 4.7 shows different
sub-networks, created from one underlying architecture. Also, bagging requires training different
neural networks on different samples, which is realized in the dropout approximation by working
on minibatch of data: the removed neuron outputs are randomly changed after every minibatch
provided to the network. The main difference from bagging is that the models are not independent,
all different sub-networks share parameters. Dropout can also be seen as regularising every units in
order to select features which are relevant in most context, which is highly important when aiming
for generalisation.

Srivastava et al. (2014) showed that dropout is very efficient, computationally cheap, and works
well with numerous different types of model (for an example on RNN see Bayer et al., 2013).
However, dropout can also lead to underfitting as it may reduce too much the effective capacity
of a model trained on a small training sample. It often results in an increased complexity of the
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Figure 4.7: Ensemble of sub-networks from a single network architecture which can be created and
trained using dropout by randomly removing non-output units. Credit: I. Goodfellow, Bengio, and
Courville, 2016

neural network, with more layers and more neurons, to compensate.

In the work presented in chapter 7 and chapter 8, I faced several times overfitting that I
managed to overcome with data augmentation or decreasing the capacity of my network (reducing
the number of trainable parameters) for example. Discussing training issues here aimed at giving a
hint of the difficulties that can arise with deep learning, but also at understanding a little bit more
deeply how neural networks are actually trained. Deep learning can be very powerful, but knowing
what to monitor, and the different solutions to avoid issues when training your network, is key to
use it correctly.

4.3 Generative models
In this part, I describe some of the generative models which exist in deep learning literature.
The main advantage over classical generation methods is that these generative models are directly
learned from data, and allow for more complex models, closer to the data. I will describe in detail
Variational Autoencoder (VAE), as it is at the core of one of my projects, and briefly discuss two
other kinds of generative models: Generative Adversarial Networks (GAN) and normalizing flows.

4.3.1 Variational Autoencoder (VAE)
Variational autoencoders (VAE) (Kingma and Welling, 2014) are generative models that learn prob-
abilistic mappings between a data space, where samples usually have a very complex distribution,
and a latent space of well-distributed variables. As the work presented in this manuscript is mainly
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oriented toward using cosmological surveys images, I focus on the case of image data sets, even if
VAEs have been successfully applied to various types of data (for examples, see Wang et al., 2019;
Roche et al., 2018).

More formally, image samples are denoted x and latent variables are denoted z with a known
prior p(z) chosen to be a standard multivariate gaussian (a common choice in the literature, see
Kingma and Welling, 2014; Semeniuta, Severyn, and Barth, 2017, for examples). The generative
model is a conditional distribution pθ(x|z) (the likelihood) which can be parametrised by a dense or
convolutional neural network with weights θ called the decoder. The latter computes parameters of
this distributions from input latent variables z. The marginal likelihood pθ(x) (or evidence) needs
to be as close as possible to the real data distribution, so the parameters θ are trained to maximise:

pθ(x) =
∫

p(z)pθ(x|z)dz (4.13)

Unfortunately this integral is most of the time intractable, as well as the true posterior density
pθ(z|x) = pθ(x|z)pθ(z)/pθ(x). To estimate this posterior, Monte Carlo methods could be used, but it
is computationally costly. To get around this issue, the idea proposed by Kingma andWelling (2014)
is to use variational inference. They introduce a second neural network (see fig. 4.8), the encoder,
with weights denoted ϕ, to approximate the intractable posterior pθ(z|x) by another distribution
qϕ(z|x), which is trained using the reparameterisation trick (see section 5.3.2).

The VAE then maximises the evidence of the training sample pθ(x), which cannot be computed
exactly, but can be bounded from below by the Evidence Lower BOund (ELBO, see section 5.3.2
and Blei, Kucukelbir, and J. D. McAuliffe, 2016),

log pθ(x) ≥ −DKL(qϕ(z|x)||p(z)) + Eqϕ(log pθ(x|z)), (4.14)

which defines the variational loss function of the VAE. This loss receives two contributions. The
first one is the Kullback-Leibler (KL) divergence between the approximate posterior and the prior.
If this prior p(z) is a normal distribution p(z) ∼ N(0, 1), a common choice in the literature, the KL
divergence ensures that the latent variables are following the gaussian distribution, and acts as a
regularisation term. This divergence can be viewed as a measure of the information loss. If this
part of the loss becomes null, the approximate posterior matches perfectly both the real posterior
and the prior and then, with Baye’s rule: p(x) = p(x|z). This is exactly what one would wish from
a generative model.

The second loss term is given by the expectation value of the log-likelihood and is a reconstruc-
tion term. It requires sampling latent variables according to the approximate posterior specified
by the encoder.

When training a VAE with galaxy images (see chapter 7), the KL term outweighs the recon-
struction term and the network is unable to learn important features (galaxies shapes in our case).
The network struggles to learn features due to the strong constraints coming from the prior dis-
tribution, an effect that appears rapidly with complex datasets (Higgins et al., 2016). It can be
necessary to move to a β-VAE (Higgins et al., 2016) which adds a β coefficient (lower than 1) in
front of the KL term to reduce its impact during learning.

The work presented in part III and in Arcelin et al. (2021) is based on this kind of generative
models and uses the β-VAE.

4.3.2 Generative Adversarial Networks (GAN)
GANs (I. J. Goodfellow et al., 2014) are also latent space based generative models but the learning
process is different. It is also composed of two neural networks (see fig. 4.8): a generative network,
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Figure 4.8: Architectures of the three presented kind of generative models. From top to bot-
tom: Generative Adversarial Network, Variational AutoEncoder and generative models based on
normalizing flows. Credit: Lilian Weng

creating a image from a latent space, and a discriminative network, which aims at distinguishing
between data generated from the generative network and data from the true data distribution. The
objective of the generative model is to increase the error rate of the discriminative network. Both
networks are competing during training and the convergence is reached when the discriminator can
not distinguish between samples from the generator and real data any more.

The discriminator gives a probability D(x), that x comes from real data and the generator
generates an image G(z), z being the latent space. The generative network is trained to maximise
the probability that the discriminator fails to distinguish between true and generated data, i.e.
minimise log(1 − D(G(z)), while the discriminator aims at maximising the probability of assigning
the correct label. This is a minimax game with value function V(D,G):

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (4.15)

Similarly to VAE, most of the time the latent space, z, is considered to be a multivariate
Gaussian distribution.

GAN show great performance at generating all kinds of data and it was the first kind of deep
generative models used to be used for the deblending of galaxies, as mentioned in section 3.3.2
(Reiman and Göhre, 2019).

4.3.3 Normalizing flows
Finally, normalizing flows (see Kobyzev, Prince, and Brubaker, 2019 or Papamakarios et al., 2019
for reviews) are stacks of invertible and differentiable transformations, f , which map a simple
probability distribution into a more complex one. The new, complex density can then be sampled
from by sampling the initial simple density, and applying transformations. A major benefit of
normalizing flows is that likelihood can be exactly computed, contrary to VAEs where it is bounded
from below. The trick is to make a neural network invertible by using coupling functions. The neural
network is then called a conditioner, and the whole process is a coupling flow (Kobyzev, Prince,
and Brubaker, 2019). The power of this method is that the conditioner can then be arbitrarily
complex and can map any complex function.
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Auto-regressive normalizing flows add the auto-regressive constraint: each output only depends
on the previously observed data and not on future inputs. Stated differently, the probability
of observing xi is only conditioned by x1, x2, ..., xi−1, i.e. it is a regression of the variable against
itself. Auto-regressive networks are mostly used for time series but van den Oord, Kalchbrenner,
and Kavukcuoglu (2016) established a method that proves to be highly performing at processing
images. The difference with coupling flows is that the conditioner is now an auto-regressive neural
network (see for examples Papamakarios, Pavlakou, and Murray, 2017 or Kingma et al., 2016).

In the next section I present an example where I used normalising flows to learn the latent space
distribution of a trained VAE in order to generate galaxy images.

4.4 Example: Generate images from a VAE latent space
The work presented in this section was done in the context of a study comparing the performance
of Nvidia Graphical Processing Units (GPUs) and Graphcore Intelligence Processing Units (IPUs)
for cosmological applications. To know more about the hardware comparison, please refer to ap-
pendix A.

The generation of galaxy images using deep generative models is more and more considered
as a credible option for image simulation (Regier, J. McAuliffe, and Prabhat, 2015; Ravanbakhsh
et al., 2016; Lanusse et al., 2021). Recently, Bretonnière et al. (2021) used a VAE coupled with
normalising flows to propose a galaxy image generative model to simulate the sky as it will be seen
by Euclid. This is why I chose the generation of galaxy images using deep generative models as
example to compare the performance of the hardware for inference.

In this section, I use the VAE presented in section 7.3 with corresponding results shown in
section 7.4.2. I do not present the architecture of the network or its training procedure in detail,
as I focus on the generation process here. To summarize, both the encoder and the decoder of the
VAE are convolutional neural networks and the VAE is trained using the β coefficient in front of
the KL divergence as explained above (see section 4.3.1).

In this example, the generation process requires the sampling of the approximate posterior
distribution, qϕ(z|x), over the latent space of the trained VAE. This sample is then fed to the
decoder to generate the likelihood pθ(x, |z). For our VAE we consider the output distribution as the
output image of noiseless galaxy generated by the network.

The first subsection presents how the latent space dimensions are distributed after the VAE
training and some outputs from the decoder when the latent space is sampled using normal distri-
butions, which is the prior used for training. The second subsection shows that using normalizing
flows permits to learn the latent space distribution and to sample it properly.

4.4.1 Direct sampling of the latent space
In the case of a VAE trained to reproduce noiseless isolated galaxy images, sampling the latent space
to feed the trained decoder should allow for the production of noiseless, isolated galaxy images.
To train this VAE we considered a normal distribution p(z) ∼ N(0, 1) as prior for the approximate
posterior distribution of each of the latent space dimensions. However, because of the β coefficient
in front of the KL divergence, even though the distributions of the latent space dimensions resemble
the normal distribution, they are not exactly normally distributed (see upper panel of fig. 4.9). The
β coefficient in front of the KL term in the loss decreases the influence of the prior sufficiently for the
distribution to be slightly different, i.e. mainly with a larger variance than the normal distribution.

However, to generate galaxy images, one must sample the approximate posterior distribution
over the latent space qϕ(z|x) to feed the decoder. Since we do not know the exact distribution, the
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Figure 4.9: (Upper panel) Distribution obtained via sampling the dimensions 18, 19 and 20 of the
latent space of a trained VAE (in blue). In red the normal distribution used as prior to train the
VAE is drawn. (Lower panel) Distribution obtained via sampling the dimensions 18, 19 and 20
of the latent space of a trained VAE (in blue). In orange, the distribution obtained via sampling
the normalizing flow. Both distribution overlap for latent space dimensions 18, 19 and 20, showing
that the normalizing flow accurately learned the mapping from the normal distribution to the
distribution of the latent space dimensions.

closest thing that we can do, since the prior p(z) is a normal distribution, is sample a multivariate
Gaussian distribution (normally distributed) which dimension fits the dimension of the latent space,
and feed the sample to the decoder. The upper panel of fig. 4.10 shows images generated by the
trained decoder when fed with a 32-vector, with each term sampled from a normal distribution.
Since the distributions of latent space dimensions are not exactly normal, the decoder produces
weirdly shaped galaxy images. Of course, these images can not be used to simulate real galaxies
for a cosmological analysis.

4.4.2 Sampling with Normalizing flows
Lanusse et al. (2021) faced a similar issue and used normalizing flows to learn the approximate
posterior distribution over latent space, and sample from it. As described in section 4.3.3, normal-
izing flows are able to learn how to map any distribution into another thanks to a series of small
invertible transformations.

Based on this work, I use Masked Autoencoder for Distribution Estimation (MADE, Germain
et al., 2015) to build the normalizing flow. It is trained to learn the mapping between a multivariate
Gaussian distribution of size 32 and the variational posterior distribution qϕ(z|x) of the latent space.
From there, it is possible to sample the latent space distribution via the normalizing flow and use
the decoder to generate galaxy images.

The lower panel of fig. 4.9 shows the distributions learned by the normalising flow compared
to the corresponding distributions over three selected dimensions of the latent space. It shows
that the normalising flow accurately learned how to map the multivariate Gaussian distribution
into the variational posterior distribution for 3 of the 32 dimensions. The lower panel of fig. 4.10
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Figure 4.10: (Upper panel) Images obtained via feeding the decoder of a trained VAE with a vector
from which each term is sampled from the normal distribution. (Lower panel) Images obtained via
feeding the decoder of a trained VAE with the sample produced by the normalizing flow.

presents three galaxy images generated via feeding the trained decoder with a sample from the
latent space obtained through the normalising flow. The galaxy shapes look much more reasonable
than previously, qualitatively showing that this step is necessary if this kind of methods is used
for cosmological simulations in the future. Bretonnière et al. (2021) use the same process for their
galaxy image generation for Euclid.

4.4.3 Conclusion
This work aimed at designing a toy model for galaxy image generation using a trained VAE for
hardware performance comparison (see appendix A). It presents a very simple example of how
galaxies can be simulated from the latent space of a trained VAE using normalizing flows.

As already mentioned, generating galaxy images with deep generative models is a more and more
considered option as deep learning offers the possibility of fast inference, permitting the generation
of a lot of galaxy images in a very short amount of time. The recent example of Bretonnière
et al. (2021), based on the work of Lanusse et al. (2021), who implemented a method for galaxy
image simulation for the Euclid survey, is the first to be implemented within a cosmological survey
simulation pipeline.

In this chapter, we saw some of the basics elements of deep learning, how to train a model, and
different kinds of deep generative models. Deep learning is a very vast field of research and I only
gave a tiny glimpse of what can be done with it. In the next chapter, we will see what Bayesian
neural networks are, how to train them, and most importantly what additional information they
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can provide.
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Chapter 5

Introduction to Bayesian neural
networks

As described in the previous section, deep neural networks are a powerful tool to create models
of high complexity enabling the execution of complicated tasks. However, the process described
above does not provide a way to estimate the uncertainty introduced by the choice of the neural
network architecture or the composition of the training sample, on the output. This part presents
Bayesian deep learning, a way to characterise both the uncertainty introduced by the architecture
and the training sample, the epistemic uncertainty, and the one intrinsic of the data, the aleatoric
uncertainty.

This chapter is mostly inspired from Charnock, Perreault-Levasseur, and Lanusse (2020) and
Valentin Jospin et al. (2020).

5.1 Uncertainties for neural networks
To model the PSF of an astronomical image, one needs to identify the stars on this image (see
section 2.5.2). Imagine that we use a neural network to classify stars and galaxies by feeding
patches of the image centred on sources detected by a detection algorithm. The neural network
would provide a probability for each object to be in both categories, either a star or a galaxy. Now
what happens if the network is fed with a patch that contains a satellite trail ? Ideally, one would
want the network to tell us that it does not know what it is seeing, it never saw a similar example
in its training sample and it is uncertain about its prediction. Most of neural networks are not
equipped to provide information about outlier data, but Bayesian neural networks (BNN), fill this
gap by providing the measurement of this uncertainty.

5.1.1 Aleatoric and Epistemic uncertainty
Uncertainties can be categorised in two classes: aleatoric and epistemic uncertainties. The former
is the uncertainty which is intrinsic of the data, it comes from the random nature of the data-
generating process and the way we perform experiments.

The latter, epistemic uncertainty, is coming from everything we ignore but could, in principle,
learn about. By increasing our knowledge, for example via a better theoretical understanding of a
data-generating process or a model more suited to the process that is analysed, we could in principle
decrease this uncertainty.
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Figure 5.1: (left) A dataset generated by a model that we are trying to learn with neural networks.
(center) The results from a point estimate neural network predicting a Gaussian distribution. The
mean of this distribution is plotted in red, and its uncertainty (here the standard deviation) is
shown in light red. This network only learns the aleatoric uncertainty. Even though the model is
equally noisy everywhere, the network is only able to learn this uncertainty correctly in the center,
where there are enough data points. (right) Results obtained with a Bayesian neural network
predicting a Gaussian distribution. Its mean is plotted in red. The uncertainty (light red) shown
on this panel is the epistemic uncertainty. It is composed of the different means that predict the
network when fed several times with the test sample. It shows that the network is able to provide
information about the confidence level in its network’s prediction. As expected, the uncertainty is
high (low confidence level) where there are few data points. Credit: Justine Zeghal.

Training a neural network is equivalent to fitting a model to realise a specific task, consequently
the choice of the neural network architecture, all the hyperparameters coming with it (cost function,
size of the network, choice of activation layers...), and most importantly the parameters space
covered by the training sample (for example the size, shapes, or redshifts of galaxies), are taking
part in the epistemic uncertainty. It provides information about the ability of the neural network
to generalise (see section 4.2.3). If an element from the test sample is outside the parameters space
covered by the training sample, the network will measure a high epistemic uncertainty. On the
contrary, it should be small if the test sample lays in the training sample parameters space.

5.1.2 Example: fit a dataset
This is illustrated on fig. 5.1. The dataset shown on the left panel is fitted with two neural networks,
one ”classical”1 and one Bayesian, i.e. with distributions over the weights instead of point estimates
(see below). They both output a Gaussian distribution, N(µ, σ).

On the center panel, we show the results from the point estimate neural network. The mean
of the predicted distributions for a test sample is shown in red, and the uncertainty measured by
the network in light red. Here, since it is a point estimate neural network, this uncertainty is
only coming from the data, it is the aleatoric uncertainty. The data-generating process generates a
similar amount of noise on each portion of the data set but, as we can see, the network is only able
to correctly measure this uncertainty where there is a large enough number of data points. Where
the density is lower, it predicts an incorrectly small uncertainty, not large enough to represent the

1In the rest of this manuscript I will equivalently use the terms ”deterministic”, ”classical”, or ”point estimate”
network to refer to a neural network which has point estimate weights.
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predictive error. For example, the points around x ≈ 1.75 are outside the 1σ confidence interval.
This is not acceptable if one wants to use the output of the neural network in a scientific analysis,

in cosmology for example. This is why we need to estimate the epistemic uncertainty, shown on
the right panel. Here, we plotted the mean of the distributions predicted by the Bayesian neural
network when fed several time with the test sample. In darker red is the mean of these samples.
The network measures a high uncertainty when there are few data points and small uncertainty
where there are a lot, showing that this uncertainty can provide information about when to trust,
or not, the predictions of the network.

To use neural network predictions for scientific studies, it is necessary to fully characterise and
understand this uncertainty. The Bayesian neural network formalism described below provides
means to estimate and study it.

5.2 Bayesian neural networks: Definition
In their review, Valentin Jospin et al. (2020) define Bayesian neural networks as stochastical neural
networks trained using Bayesian inference. In the next sections, I will try to describe both parts of
this definition. This section will explain how we can consider neural networks as statistical models,
and in the next section, I will describe some methods to train stochastical neural networks.

5.2.1 Bayes’ rule
The point of Bayesian statistics is to be able to update our prior state of knowledge to a more
accurate posterior one, using data. This principle can be summarised in the Bayes’ theorem formula:

P(Y |X) =
P(X|Y)P(Y)

P(X)
(5.1)

P(Y |X) is called the posterior, P(Y) is the prior, P(X|Y) is the likelihood, and P(X) is the evidence.
In the context of neural networks, X would be the data and Y would be the target prediction of the
model.

As mentioned earlier, training a deep neural network is optimising the set of parameters θ,
using the data X, to predict Y. In the last chapter, we considered those weights and biases as
point estimates and trained them with the backpropagation algorithm (see section 4.2). This is the
standard approach to train a network, but doing so, all other weights and biases parametrisations
are discarded. Also, in theory, the fact that the architecture chosen for the neural network allows
to learn the target distribution is not guaranteed. Consequently, the probability, p(α), that the
architecture of the neural network allows for the reproduction of the target distribution, α, must
be considered.

5.2.2 Neural networks as statistical models
Taking these elements into account, and if we do not discard all possible parametrisations of the
weights and biases, but rather try to learn Bayesian posterior distributions over these parameters
(see fig. 5.2), it is possible to consider neural networks as statistical models.

To obtain this posterior, we need to chose a prior distribution Pα(θ) for the weights, which
depends on the distribution α which can be modeled by the chosen neural network architecture.
Then, for a training set D = (X,Y), X being the input and Y the network target prediction, the
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Figure 5.2: (left) Point estimate neural network, the weights have a fixed value learned from
backpropagation. (right) A Bayesian neural network, each weights has an learned probability
distribution. Credit: Blundell et al. (2015)

Bayesian posterior distribution on the weights can be written as:

P(θ|D) =
P(Y |X, θ)Pα(θ)

P(D)
(5.2)

P(θ|D) represents the posterior distribution of the parameters knowing the data, and P(D|θ) =
P(Y |X, θ) is the corresponding likelihood.

Given this definition, it becomes possible to evaluate the posterior predictive distribution,
P(y|x,D), x ∈ X1 , X and y ∈ Y1 , Y, from a test set (X1,Y1), and characterise the epistemic
uncertainty of our model. To do so, it is necessary to marginalise over all possible distributions
that can be fitted by a neural network, i.e. over all possible architectures and over all weights and
biases possible parametrisation:

P(y|x,D) =
∫

A

∫
Θ

dθdαP(y|x, θ)Pα(θ|D)P(α) (5.3)

with A and Θ the ensemble of values that α and θ can take.
Here, an issue arises: in theory, it would be necessary to marginalise over all possible neural

network architectures to accurately estimate the epistemic uncertainty, but this is obviously not
feasible. In practice, only one particular model is chosen depending on the task that is targeted.
This is a common approximation as neural networks are, in general, able to fit arbitrarily complex
distribution. Equation (5.3) then becomes:

P(y|x,D) =
∫

A

∫
Θ

dθdαP(y|x, θ)Pα(θ|D)δ(α − α′)

=

∫
Θ

dθP(y|x, θ)Pα(θ|D)
(5.4)

However, even after choosing one particular architecture for the neural network, the marginal
distribution P(y|x,D) in eq. (5.2) is still intractable. Indeed, the posterior distribution P(θ|D) is
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most of the time not tractable because computing the evidence P(D) is very difficult. Instead, it
is possible to approximate the posterior distribution Pα(θ|D) ∼ p(θ|D) by a tractable distribution q
using variational inference, or to approximate the integral using Monte Carlo methods.

Note: to go back to point estimate neural networks, considering only one model and one version of
the weights in the previous integral yields:

P(y|x,D) =
∫

A

∫
Θ

dθdαP(y|x, θ)δ(θ − θ′)δ(α − α′) = P̂|α′=α(y|x, θ′) (5.5)

Maximizing this probability is equivalent to computing the maximum likelihood estimate of the
parameters distribution. The set of parameters which best describes the event (y|x) is:

θ̂ = argmax P(y|x, θ). (5.6)

However, to do Bayesian inference, the aim is to find the set of parameters which yields the
most likely point estimate from the posterior distribution, and not from the likelihood, which is
(with eq. (5.2)):

θ̂ = argmax
θ

P(θ|D) = argmax
θ

P(y|x, θ)P(θ)
P(D)

= argmax
θ

P(y|x, θ)P(θ) (5.7)

P(θ) being the prior distribution of the parameters. This is the maximum a posteriori (MAP)
estimate. Going to log-likelihood formulation this expression becomes:

θ̂ = argmax
θ

P(y|x, θ)P(θ) = argmin
θ

(−log (P(y|x, θ)) − log(P(θ))) = argmin
θ

lossy,x(θ) + reg(θ) (5.8)

loss being the loss function and reg being a regularisation function. This familiar formulation
results from applying a regularisation with a prior of the form: P(θ) ∝ e−reg(θ)+cst.

5.3 Approximate inference: Monte-Carlo and Variational Infer-
ence

Here, I will mostly describe how to approximate p(θ|D) thanks to variational inference (VI) and
Monte Carlo methods. I will emphasize more on VI avenues as these are the methods that I
used in my work. The part on Monte-Carlo methods mostly comes from Goodfellow, Bengio,
and Courville (2016) and the one on VI is based on Blei, Kucukelbir, and McAuliffe (2016) and
Charnock, Perreault-Levasseur, and Lanusse (2020).

5.3.1 Monte-Carlo methods
The principle of Monte-Carlo methods is to sample distributions in order to approximate inte-
grals over these distributions. In our case it is used to approximate the intractable integral over
the posterior distribution p(θ|D). The idea is to view the integral as an expectation under some
distribution and to approximate the expectation by a corresponding average:

s =
∫

p(θ) f (θ)dθ = Ep[ f (θ)] (5.9)

with p the probability distribution over θ. To refer to eq. (5.4), here s corresponds to P(y|x,D), p(θ)
to pα(θ|D) and f (θ) to P(y|x, θ).
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It is then possible to approximate s by drawing n samples (θ1, θ2, ..., θn) from p and averaging:

ŝn =
1
n

n∑
i=1

f (θi) (5.10)

If θi are independent and identically distributed (i.i.d.), and if the variance of individual terms,
Var[ f (θi)], is bounded, the sum converge to the expected value s as n increases. The central limit
theorem states that the distribution of ŝn converges to a Gaussian distribution with mean s and
variance Var[ f (θ)]

n . It is then possible to have an estimation p̂n(y|x,D) of p(y|x,D) with corresponding
asymptotic confidence intervals.

However, to do so we must be able to sample p(θ) (or p(θ|D) in our case), which is not always
possible. It is then possible to use Monte-Carlo Markov Chain, for example. The principle is to
form a sequence of estimators that converge toward the distribution of interest. I won’t go into
more details as I am not using this kind of methods in my work but Koller and Friedman (2009)
give a detailed description of Monte Carlo methods for machine learning.

5.3.2 Variational inference
While the posterior distribution might be approximated by Monte-Carlo methods, it is compu-
tationally costly. In variational inference, the idea is to approximate the intractable posterior
distribution p(θ|D) with a chosen, tractable, variational distribution qϕ(θ). One aims at finding the
variational parameters ϕ which minimise the difference between p(θ|D) and qϕ(θ). To quantify this
difference, the Kullback-Leibler divergence (KL divergence, DKL) is commonly used in VI. The cost
function now includes this new term (see for example Blei, Kucukelbir, and McAuliffe, 2016):

ELBO = −DKL(qϕ(θ)||p(θ|D)) + log p(D) (5.11)

As in section 4.3.1, the KL term measures the loss of information between the two distributions.
The objective is to find parameters ϕ for the distribution qϕ(θ) as close as possible to the true
posterior p(θ|D). As the evidence, p(D) does not depend on ϕ, maximising the ELBO (for Evidence
Lower BOund, as it is a lower bound of the evidence) is equivalent to minimising the KL divergence.

The ELBO can also be written as:

ELBO = Eqϕ(θ)(log p(D|θ)) − DKL(qϕ(θ)||p(θ)) (5.12)

with p(θ), the prior distribution for the variational posterior, qϕ(θ). Most of the time these terms
can not be computed analytically and are estimated through Monte-Carlo sampling during training:

ELBO ≈ 1
L

L∑
l=1

[log p(D|θ(l)) − log qϕ(θ(l)) + log p(θ(l))] (5.13)

with θ(l) ∼ qϕ(θ) being the l-th Monte-Carlo sample drawn from the variational posterior.
Now, to learn the posterior, one needs to backpropagate using the gradient of the loss that we

just computed, with respect to each parameter. However, taking the gradient of the Monte-Carlo
estimate of the loss with respect to ϕ, and especially computing ∇ϕqϕ(θ), is most of the time not
possible. Stochasticity stops backpropagation from working.

To circumvent this issue, several methods exist and I describe few of them below. Note that
these methods are only a small part of the methods that can be used. They are however among
the most popular, and I present these ones in particular since I used them in my work or in works
with collaborators.
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Figure 5.3: Diagram explaining the reparametrisation trick and the local reparametrisation trick.
The main idea is to shift the randomness to another distribution by reparametrising the weight
distributions or the implied activation distributions.

Reparameterisation trick

The method known as Bayes-by-backprop is based on the reparameterisation trick. It was presented
by Kingma and M. Welling (2014), initially to train variational autoencoder (see section 4.3.1, I use
it in chapter 7 to train a galaxy deblender based on variational autoencoders). Applied to Bayesian
neural network in Blundell et al. (2015), the idea here is to ”move” the randomness from the weight
distribution, to an other distribution that parametrises the weight distribution (see middle panel of
fig. 5.3). It is this parametrising distribution that is sampled during training and backpropagation,
allowing to backpropagate until the parameters of the weight distribution.

More formally, it is possible to reparametrise the variable θ̃ ∼ qϕ(θ) (or z̃ ∼ qϕ(z|x) for VAE)
using a differentiable deterministic function g(ϵ, ϕ) with ϵ being an independent and non-variational
noise variable.

The most common example is to reparametrise a Gaussian distribution with parameters ϕ =
(µ, σ):

θ̃ ∼ qϕ(θ) = N(µ, σ)

= µ + σϵ
(5.14)

with ϵ ∼ N(0, 1) an independent noise variable. Here, θ is a random variable parameter of the neural
network (or a latent space for a VAE). This reparameterisation is done for each parameter and it
is then possible to maximise the ELBO via backpropagation.

An issue with Bayes-by-backprop is that it is very costly to draw different parameters for each
example in the training data. Consequently, the training data is usually split into batches of a fix
number of elements and a single sample of the weight distributions is done per batch. However,
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since elements in a batch might not well represent the variability of the parameters distribution,
using a single sample of the weights to backpropagate often leads to high variance of the gradient
estimate.

The local reparameterisation trick

The local reparameterisation trick (Kingma, Salimans, and Max Welling, 2015) aims for improve-
ment in speed and for variance reduction. The idea is to transform the perturbation on parameters
to a perturbation on the activation matrix A, which has a much lower dimension than the parame-
ters matrix. For example, if we assume Gaussian posterior distribution for the weights and biases,
then the posterior on the activation is also a factorized Gaussian. Sampling this implied Gaussian
distribution allows to reduce the drastically the computational cost.

To illustrate this, let’s look at the right part of fig. 5.3. Here, and in the case of a neural network
composed of fully connected layers, the last layer l is composed of only one neuron, but it receives
input from the N neurons from the layer (l − 1). If the reparametrisation trick is used, a sample
must be drawn for each weight involved in the computation of the value of zl, that is N times. On
the contrary, if the local reparametrisation trick is applied, only one sample of the activation layer
al is required.

Putting this into equation, for a Gaussian posterior on the weights and biases, the posterior on
the activation, conditioned on the layer input Z, is also a factorized Gaussian.

f (θl, j) =N(µl, j, σ
2
l, j), ∀θl, j ∈ Θ =⇒ f (am, j | Z) = N(γm, j, δm, j)

γm, j =
∑
l=1

zm,lµl, j, and δm, j =
∑
l=1

z2
m,lσ

2
l, j

(5.15)

with j the j-th parameter of the l-th layer and m the m-th element of the input minibatch. And it
can then be sampled as:

am, j = γm, j +
√
δm, jϵm, j, ϵm, j ∼ N(0, 1) (5.16)

The number of operation is then highly reduced compared to a case where the sampling is done
for each weight and bias. It also leads to an estimator of lower variance of the gradient than the
reparametrisation trick.

Flipout

Flipout, presented in Wen et al. (2018), is a different way to overcome this issue of high variance
in gradient estimate, by perturbing the parameters quasi-independently within a batch. Flipout
comes back to the pertubations on the weights, written the distribution of the weights as a mean µ
to which a perturbation δθ, centred around zero, is added. This perturbation is sampled once per
batch (until here, this looks a lot like the reparametrisation trick). Then, to have quasi-independent
perturbation within a batch, the idea is to multiply the perturbation by a pseudo-random value,
sampled in {−1, 1}, for each example of the batch.

Formally, if the parameter distribution, θ, can be decomposed as a sum of a mean value, µ, and
a perturbation, δθ, which has a symmetric distribution around zero:

θ = µ + δθ (5.17)

Then the parameter perturbation can be multiplied by a pseudo-random sign matrix (which leaves
the perturbation distribution invariant), which creates a different perturbation matrix for each
training example:

δθi = δθ ∗ ris
⊺
i (5.18)
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Figure 5.4: Illustration of the sampling process to generate a distribution using MC-Dropout.
Each dropout realisation generates an output and the resulting distribution can be interpreted as
a Gaussian distribution.

ri and si being random vectors whose entries are sampled uniformly from ±1, δθ is sampled only
once for the whole batch. Flipout allows for a large decrease of the variance in the stochastic
gradient by a factor of ∼ 1/nelems, nelems the number of elements in a batch. Thanks to matrix
multiplication this operation is quick even though it is more computationally costly than methods
with shared parameters value in a batch. This is the method that I use in chapter 8 to train a
BNN for galaxy parameters estimation.

MC-Dropout

Contrary to previous methods which add a perturbation term on parameters, MC-Dropout uses a
different approach: it multiplies them by a mask matrix.

Dropout is initially presented as a regularisation method for regularisation during training
(Srivastava et al., 2014) (see section 4.2.3). The idea is to apply multiplicative noise to the output
of the previous layer. Most of the time Bernouilli noise is used, but other kinds such as Gaussian
noise can also be used.

Instead of using it only during training, Gal and Ghahramani (2015) proposed to use it also dur-
ing prediction to generate a probability distribution of the output. On fig. 5.4, we show a simplified
view of this process. N predictions are being performed with N different dropout configurations,
i.e. different neurons are dropped every time. This produces different outputs which distribu-
tion can be interpreted as a Gaussian posterior distribution. Indeed, Gal and Ghahramani (2015)
showed that using dropout and the l2 regularisation on the weights is equivalent to minimising the
Kullback–Leibler divergence between an approximate distribution and a normal prior.

This method is called Monte-Carlo Dropout or MC-Dropout and allows for an approximation
of variational inference.

The approximation of the variational posterior can be parametrised as, for each layer i, with
weights matrix Wi of size Ki × Ki−1:

Wi = Θi.diag([zi, j]
Ki
i=1) with zi, j ∼ Bernouilli(p) (5.19)
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with zi, j the random activation or inactivation coefficients with associated probability p, Θi the
weights matrix before dropout and Wi the weights matrix afterward. As mentioned, with this
formulation it is possible to approximate the KL divergence, with respect to an normal prior, as a
simple l2 regularisation term. It is then possible to maximise the ELBO and perform variational
inference very efficiently.

This method presents the advantages of being quite straightforward to implement, since it
only requires dropout layers, and cheap to compute. On the downside, to obtain well-calibrated
uncertainty, the dropout rate must be adapted as a variational parameter to the data. Nevertheless,
since it works quite well, several works have already used it in cosmology (for example, Walmsley
et al., 2020), and we used it in Theobald, Arcelin et al. (2021) to train a BNN for galaxy shape
estimation. This paper can also be found on appendix B.

5.3.3 Training BNNs
Previously presented methods work well in theory but training a neural network to predict epistemic
uncertainty is often difficult. One point that I did not mention yet is the choice of prior. Indeed,
I mainly talk about Gaussian priors previously but the parameters distribution is likely to be non-
trivial and there is no guarantee that the Gaussian prior, which is the most commonly used, is
relevant. In practice, priors are set empirically, which can make the training quite difficult.

Sticking to Gaussian priors, and assuming mean-field variational inference, a common approx-
imation saying that the distributions of the weights are independent from each other qϕ(θ) =∏m

i=1 qϕi(θi), might lead the KL divergence term of the loss function to outweigh the likelihood
term. This prevent the network from learning, and indicates that the chosen prior distribution
might not be the most relevant. This issue can be overcome by several tricks which require to
adapt the training procedure: it is for example possible to use KL-annealing. This method works
in two steps. First, the network is trained cancelling the KL term, i.e. adding a null coefficient in
front of the KL term in the loss, keeping only the likelihood. It is equivalent to training a point
estimate neural network. Then, the coefficient in front of the KL term is gradually increased from
0 to 1 in order to learn the epistemic uncertainty. This method is quite empirical but proved to
work most of the time. This is also a possible avenue to the problem described in section 4.3.1 to
train VAEs, and that we solved using a β-VAE (Higgins et al., 2016) in chapter 7.

Another lead is to use other kinds of variational approximations such as restricted variational
distributions. The k-tied normal distribution is based on an experimental founding that converged
posterior standard deviations under Gaussian mean-field VI consistently display a strong low-rank
structure (Swiatkowski et al., 2020). By factorizing the parametrization of posterior standard
deviations, it allows for equivalent model performance compared to Gaussian mean-field VI while
decreasing the number of trainable parameters and improving signal-to-noise ratio of stochastic
gradients, leading to faster convergence. It is used as prior for the BNN presented in chapter 8 for
galaxy parameters estimation. In the end, a training procedure can always be established to train
a BNN and the methods presented previously work most of the time.

In this chapter we saw the motivations for using BNNs and that it was possible to train them
quite efficiently. They can provide a valuable amount of information which is crucial for the
utilisation of neural networks in cosmology. However, the training difficulties previously described
combined with the struggle to fully grasp the complexity of a neural network model can lead to
question the necessity and relevance of using deep learning for cosmology. In the next part I discuss
this question.
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Chapter 6

Cosmology with deep learning

6.1 The growing use of deep learning for cosmology
In 2020 in the astro-ph section of arxiv1, 463 paper were mentioning ”neural networks” and/or
”deep learning” in their abstract, 109 in the cosmology sub-section. It was 319 in 2019 and 142
in 2018 (respectively 78 and 22 in the cosmology sub-section). There clearly is a growing trend in
using this tool for cosmology and astrophysical applications but a fair question to ask would be: is
this really justified ? Is deep learning really necessary and can it be used to increase knowledge in
cosmology ?

First, let’s not forget that neural networks are used for a long time in cosmology, for exam-
ple Bertin and Arnouts (1996) used a small neural network for galaxy/star classification in their
SExtractor algorithm.

Then, Ntampaka et al. (2019) and Kremer et al. (2017), from which this part is partially inspired,
present two main reasons for this recent increase in interest: the growing data production from
large surveys and the fact that both fields can benefit from each other. Indeed, future cosmological
surveys will generate large amounts of data (see section 6.1.2), often requiring fast processing, and
cosmology will look for more and more complex features in data, offering new challenging and
demanding problems for deep learning.

However, deep learning is often disregarded, especially for science applications, because it is
viewed as a ”black box”, i.e. it is not possible to trace back which feature leads to which prediction.
This lack of interpretability entails a lack of confidence in the inference produced by a deep learning
algorithm. So first, let see if this argument is relevant.

6.1.1 Interpretability of neural networks
This argument is probably the most common regarding neural networks and is absolutely not
specific to its application to cosmology. However it has a particular impact in science, as it is
mandatory to control and justify every step of the analysis to generate reliable results. Even if the
section title asks for a yes or no answer, it is obviously not that simple and I describe below some
of the pros and cons arguments.

Nowadays interpretability or explainability is an open research area in the machine learning
community. One could think that since we know how backpropagation works, then we know how
a neural network learns, so neural networks are not black boxes. Yet, this argument can obviously
not be satisfying: if the model contains several millions of parameters, it is not possible to interpret

1https://arxiv.org/
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Figure 6.1: (a) and (g): original images from a cat and a dog. (b) and (h): results obtained with
Guided Backpropagation (Springenberg et al., 2014), a methods which highlights contributions
features. (c) and (i): results obtained with Grad-CAM which localizes class-discriminative regions
of the image. Credit: Selvaraju et al., 2016

and explain the behavior of each of them. Studying interpretability is necessary and it is, moreover,
not only a problem of social acceptance, it can help prevailing biases and rendering models more
accurate.

Several approaches exist to model interpretability and I will not describe them in details here,
as I am not familiar with them. Alongside image analysis, I can just mention that methods exist in
computer vision to visualise which part of the input image is the most significant for the network
to make its predictions via so-called salience maps (Simonyan, Vedaldi, and Zisserman, 2013) (see
fig. 6.1 for example, from Buhrmester, Münch, and Arens, 2019 and Selvaraju et al., 2016). Closer
to cosmology, Cranmer et al. (2020a) developed a technique using graph neural networks learning
a dataset, from which they extract symbolic equation describing the physical laws embedded in
the dataset. They provide an analogy between the different part of the graph neural network and
Newtonian dynamics offering an other way of interpreting neural networks.

As described in section 5.1, BNNs provide another kind of information about the network,
allowing for the quantification of the epistemic uncertainty. The estimation of epistemic uncertainty
is a necessary step for the use of neural networks measurements in a science pipeline. It provides
information about the confidence level of the network in the prediction and it is perfectly suited
to identify outliers and anticipates high predictive errors (see chapter 8, Theobald, Arcelin et al.
(2021) and appendix B). From the perspective of interpretability, it is also possible to use salience
maps to probe a BNN and see from where, on a test image, the uncertainty is mostly coming from
(Kendall and Gal, 2017 and Murugamoorthy and Khan, 2020 for examples). This can be used to
identify images to label and to add to the training sample in order to improve the network’s ability
to generalise, a process known as active learning (see Prince, 2004).

These examples show that even if much still remains to be done, the ”black box” argument is
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less and less relevant as the interpretability of neural networks is a more and more explored research
subject. There exist methods that can provide meaningful insight on how artificial neural networks
work. Particularly and more interestingly for my work, which features of an image are relevant for
prediction.

Now let’s focus on arguments in favour of the use of deep learning in cosmology, for future
surveys.

6.1.2 Large and deep surveys
Several large surveys such as Hyper-Suprime Cam Subaru Strategic Program survey (HSC-SSP2)
or Dark Energy Survey (DES3) are already generating a lot of data: HSC is producing around 300
gigabytes (GB) of data per night (Furusawa et al., 2008) and DES can go up to 2.5 terabytes (TB)
(DES Data Management webpage n.d.).

However these numbers are small compared to what is expected of future surveys. The Rubin
Observatory Legacy Survey of Space and Time (LSST) will produce a volume of 20 terabytes (TB)
of raw data per night and will collect around 60 petabytes (PB) of data over its ten years of
operation4. Also, the Euclid survey (Refregier et al., 2010) will produce up to 26 PB per year of
operation (de Teodoro, Nieto, and Altieri, 2017), over the 6 years of operation. The Nancy Grace
Roman Space Telescope (former WFIRST, Spergel et al., 2013) will produce 20 PB of data over
the whole survey5 (five years). These large amount are partially due to the quality and nature of
the data recorded: large sky images.

Of course, to process these large amounts of data, deep learning, with its ability to perform fast
inference, is an appropriate and common tool to turn to. For example, for LSST, a nightly pipeline
will look for transients. It will have to send an alert to the community within 60 seconds of image
readout. The alert system is supposed to produce around 10 million alerts per night and deep
learning is proposed to accelerate parts of the process such as the classification of events (Möller
et al., 2020).

Also, deep learning can be used to generate mock data to test processing pipelines or analysing
techniques (Bretonnière et al., 2021). Lanusse et al. (2021) use Variational AutoEncoder (VAE) as
generative model to simulate galaxy images with more complex shapes that what can be achieved
with classical methods.

Nowadays, there is no discussion about the speed up that deep learning can bring to processing
or generating large amount of data, providing that the training is done. This is clearly a major
point in favour of the usage of deep learning for future cosmological surveys.

6.1.3 Interaction between cosmology and deep learning
The other argument in favour of deep learning is that it can perform better, or at least as good as
traditional methods with a shorter time to execute (see Ntampaka et al., 2019 for a detailed list of
examples). Regarding galaxy modeling for deblending or image generation for instance, traditional
methods used mathematical models and known properties of galaxies. Deep neural networks can
create galaxy models based on data, including complex features which cannot be captured in usual
parametric models (Regier, McAuliffe, and Prabhat, 2015, Ravanbakhsh et al., 2016, Lanusse et al.,

2https://hsc.mtk.nao.ac.jp/ssp/survey/
3https://www.darkenergysurvey.org/
4https://www.lsst.org/about/dm
5https://svs.gsfc.nasa.gov/13667
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2021, Arcelin et al., 2021 or Bretonnière et al., 2021). This allows for model bias reduction and
more realistic galaxy image simulations.

Not only neural network methods can lead to improvements in cosmology, but the inverse also
applies. For instance, Kremer et al. (2017) present several examples of their work where cosmo-
logical data analysis can trigger advancements in machine learning. An example being the use of
nearest neighbour approach to estimate weights to apply in an importance-weighting procedure, in
order to alleviate selection bias for photometric redshift estimation (Kremer et al., 2015). Cranmer
et al. (2020b) is another example of this relationship between cosmology and deep learning. Here,
authors present a new type of neural network: Lagrangian neural networks. These networks aim
at parametrising Lagrangians using neural networks to create symmetric and energy conserving
models.

Cosmology create new challenges which can be quite different from the usual test cases of
deep learning. It is consequently a field of application that could lead to interesting developments.
Difficulties generated by cosmology comes from different sources: there is only one Universe, so only
one experiment, we do not have a complete knowledge of the truth, making supervised learning
difficult, and we are dealing with unusual, transients, and sometimes shallow, objects that can
prove to be very difficult to model.

Those interactions combined with the benefits brought by Bayesian deep learning lead me to
think that using these tools for cosmology is extremely promising. In parallel of the progresses made
in interpretability of neural networks, works have already shown that BNN can produce promising
results for cosmology.

6.2 Cosmology examples
Selecting examples of deep learning use cases for cosmology is inevitably arbitrary: here, I will
mention examples related to key points highlighted previously.

As mentioned in section 6.1.2: an alert system is necessary for LSST to produce one alert within
60s of image readout, and deep learning is a great avenue to accelerate parts of the process. The
FINK broker6 was designed in that purpose and includes deep learning and adaptative learning
technologies (Möller et al., 2020). Especially, it uses SuperNNova (Möller and de Boissière, 2020),
an algorithm designed as a recurrent neural network (RNN), to perform supernova light-curve
classification using photometric information only. They achieved high accuracy performances even
for light-curves which do not have reached their maximum peak. In this work they used MC-
Dropout and Bayes-by-backprop (see section 5.3.2) to implement a Bayesian RNN. It was then used
to estimate uncertainties reflecting the confidence in predictions, exhibiting an expected behaviour
of epistemic uncertainties.

Another example of MC-Dropout used to approximate Bayesian posterior is the work of Walm-
sley et al. (2020). They used a Bayesian convolutional neural network to improve classification
of galaxies using the Galaxy Zoo dataset. This algorithm obtains reliable results in estimating
the probability of a galaxy morphology label (see fig. 6.2). Interestingly they showed that, using
active learning, less labelled data would be required than when using classical supervised learning
to perform an identical level of performance.

Even if MC-Dropout is the most frequent solution for probabilistic modeling using neural net-
works, it is also possible to use Flipout or the reparameterisation trick. In their work, Hortúa et al.
(2020) compare the performances of these three probabilistic modeling approach for cosmological

6https://fink-broker.org/
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Figure 6.2: Posterior distribution for k of N volunteers answering ’smooth’ to the question ’smooth
or featured’ regarding the galaxy morphology. The left column is the galaxy as input of the network,
the center column is the posterior distribution predicted by a single network, and the right column
presents the posterior marginalised (averaged) over 30 MC-dropout samples (or ’networks’) (in
green) as well as each posterior for each ’network’ (in grey). The red line is the actual k measured
for N = 40 volunteers. Credit: Walmsley et al., 2020
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Figure 6.3: Comparison of marginal Multi-mode (M) (left), intensity (I) (center) and deviation (D)
(right) statistics evaluated on parametric galaxies, on real COSMOS galaxies and on a sample from
the generative model. Credit Lanusse et al., 2021

parameters estimation from Cosmic Microwave Background (CMB) temperature and polarisation
maps. They compare Dropout, Dropconnect, Flipout and the reparameterisation trick (RT) find-
ing that Flipout outperforms other methods regardless of network architecture, providing tighter
constraints on parameters. In chapter 8, this is what we use to implement a BNN which performs
galaxy parameters estimation.

Finally, Lanusse et al., 2021 demonstrate the ability of generative models to generate realistic
galaxy image with accurate parameter distribution, outperforming state-of-the-art methods such
as parametric fits (see fig. 6.3). The architecture proposed is a Flow-VAE: it is based on VAE
(see section 4.3.1) and completed with a normalising flow (see section 4.3.3). As mentioned in
section 4.3.1, when training a VAE, the matching between posterior and prior distribution is, most of
the time not perfect. This is not always problematic, but a requirement for the generation of galaxy
images from a latent space is that it must be easily sampled, the latent space distribution must
be known. To do so, authors used a conditional normalising flow in order to sample conditionally
to relevant parameters, a multivariate Gaussian latent space. Even if this method does not use
Bayesian neural network as defined in section 5.2, VAE training is often considered as a Bayesian
method since variational inference is used via the reparametrisation trick to learn an approximated
posterior distribution over the latent space.

Following these examples, the next chapters will describe the work that I did using Bayesian
deep learning to address the issue of blending for weak gravitational lensing studies.
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Part III

Bayesian deep learning applied to
blended galaxies
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In this part, I present the work that I did during the three years of this thesis. The first chapter
focuses on designing a deblending algorithm using Variational AutoEncoders (VAE) (chapter 7). In
the second chapter, I propose a solution for shape and redshift parameter estimation from images
of galaxies, whether they are blended or not (chapter 8).
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Chapter 7

Variational AutoEncoders for
deblending

This chapter describes the work that I did during the first part of my thesis. It led to a publication
in the MNRAS (Arcelin et al., 2021). This chapter presents the main ideas from this paper (until
section 7.6) and some further improvements and developments (from section 7.7).

7.1 Introduction
Main motivations for this work have already been presented through chapter 3 and chapter 6.
To summarize, blending is a major challenge for current and especially future galaxy surveys.
Existing deblending solutions all rely on assumptions for the shape or light profiles of objects,
possibly leading to model bias. Also even though some approaches are multi-band, none of them
provides the ability to combine data from several instruments. Variational AutoEncoders (VAEs)
(section 4.3.1) based on CNNs provide both the ability to learn complex galaxy shapes from the
data and to use multi-channels images. The latter naturally allows for the use of multi-band images
from several instruments.

The method is divided in two steps:
1. First, we train a VAE to learn the features of isolated galaxy images and their representation

in a latent space. The aim of this network is to build a generative model for isolated galaxy
images directly from the (here simulated) data. The images are generated with LSST and
Euclid bandpass filters with fixed PSF (see section 7.2.1).

2. Second, we use this trained VAE to create a second neural network, with a similar architecture,
in charge of performing the deblending task. The generative component of the VAE is used
with fixed parameters (i.e. non-trainable) and the recognition model is retrained, though with
noisy images of blended galaxies as input. This method allows us to use the generative model
previously built as a prior for isolated galaxies images and consequently to perform deblending.
The artificially blended images are also generated with LSST and Euclid bandpass filters.

We evaluate the performance of the method in terms of errors introduced on intrinsic ellipticities
(deconvolved from the PSF) and fluxes (or magnitudes) per band, which are relevant parameters
for weak lensing studies. We first perform a multi-band analysis using the six LSST bandpass filters
jointly. Then, based on the idea initially developed by Schuhmann, Heymans, and Zuntz (2019),
we combine the LSST and Euclid filters in ten-band images to quantify the extent to which LSST
can benefit from Euclid in a joint-pixel analysis, for the sake of deblending galaxies.
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The analysis presented in this chapter is realised on images where, in the fiducial case, the
target galaxy is perfectly centred on isolated galaxy images as well as on blended images. However
this ideal case is very unlikely in reality as noise, pixelisation or geometric properties of the galaxy
(e.g. asymmetry) and its neighbours, for example, impact the target galaxy centring even in the
case of an extremely accurate detection algorithm. Consequently, we also estimate the impact of
decentring with two other cases: the first one supposing a perfect detection algorithm and taking
into account only noise and pixelisation, and the second one using a basic detection algorithm to
centre our stamps, as could be performed on real data (see fig. 7.2).

Note that only galaxy-galaxy separation is studied in this paper as star-galaxy separation is
considered in the literature (Melchior et al., 2018, SCARLET) to be less difficult (shapes and light
profiles of stars being arguably simpler). Nevertheless, as our method focuses on recovering the
centred galaxy and removing all other components, we expect it should generalise to star-galaxy
separation, provided stars are included in the training sample.

7.2 Simulated images
7.2.1 Datasets
This work is based on simulated images generated with GalSim1 (Rowe et al., 2015). They are
based on parametric models fitted to real galaxies observed by Hubble Space Telescope (HST)
in the COSMOS field. The observed images and the corresponding models are recorded in the
HST COSMOS catalog containing 81 500 images with F814W<25.2 (Mandelbaum et al., 2012).
The fits were done for the third Gravitational Lensing Accuracy Testing (GREAT3) Challenge
(Mandelbaum et al., 2014, see Appendix E.2). Each COSMOS galaxy is fitted twice – once with
a Sérsic profile (with index, n, free), and once with a de Vaucouleurs (n = 4) bulge profile plus
an exponential (n = 1) disk profile – and the best of the two fits is kept. In addition to central
position and ellipticities, the free parameters for Sérsic profiles are effective radius Reff, intensity
I1/2 and index n. GalSim can generate multi-band images with PSF models and pixel noise chosen
to simulate LSST-like and Euclid-like images, based on parametric profiles fitted to observations.

Two sets of images have been generated for the training phase: a training (100 000 images) and
a validation sample (20 000 images). A third independent test sample (10 000 images) has been
generated with 5000 COSMOS galaxies that were not used for the training and validation samples.
The performance of our networks is measured on this test sample. For each sample, we simulate
both noisy and noiseless images, the former being used as inputs and the latter as targets (i.e.
images to reproduce, used for computation in the loss function) of the neural networks.

Point-Spread-Function and noise

For LSST bandpass filters, we use a fixed Kolmogorov point-spread function (PSF), implemented
in GalSim, using a full width at half maximum (FWHM) of 0.65′′, which is the median value of
the expected FWHM distribution, as shown in Ivezić et al. (2008). This is an approximation as
our LSST images are a stack of a large number of exposures in each filter. In practice, the PSF is
varying, due to changing weather conditions on each frame, and potentially anisotropic. Therefore,
the effective PSF on a stacked image would not exactly be the median of the distribution and would
vary from one stacked image to another. We reserve this question for future work but note that,
for practical applications, two options exist: images could be deconvolved from the measured PSF

1https://github.com/GalSim-developers/GalSim
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Figure 7.1: Distributions of observed ellipiticity, r-band magnitude (a cut is applied at 27.5) and
redshift for galaxies in the test sample.

and reconvolved with the fixed PSF we use, before being passed into the deblender network or the
training sample could be augmented with multiple realisations of the PSF for each scene.

For Euclid instruments, the PSF is much more stable as it is a space-based experiment and it
can be considered fixed to a very good approximation. The PSF is applied to the filters using the
Moffat model from GalSim with an FWHM of, respectively, 0.22′′ and 0.18′′ (Refregier et al., 2010)
for the NISP and VIS instruments.

For each of the ten bandpass filters, Poisson noise is added, taking into account the background
sky level2 (appropriately scaled to account for exposure time and instrument properties). The
expected value of the Poisson distribution is then subtracted from the image in order to centre
the noise distribution around 0. We note that noise in the actual Euclid and LSST stacks may
significantly be correlated from pixel to pixel due to image resampling, an effect that we do not
consider in this work.

Training set 1: isolated galaxies

Using the galsim.COSMOSCatalog class, we generate images of isolated galaxies from the parametric
models that have been fitted to the COSMOS catalogue. During image generation, the dataset of
81 500 galaxies is randomised by applying rotations before rendering and drawing Poisson noise
realisations. In addition, during training and validation runs, we randomly flip images horizontally
and vertically and rotate them by 90◦ on the fly since these operations require no resampling. The
spectral energy distributions (SED), profiles and shapes of each galaxy are directly extracted from
the catalogue (see fig. 7.1).

Images are generated for the six LSST bandpass filters (u, g, r, i, z and y) as defined in GalSim
and for the four Euclid bandpass filters3 (three for the Near Infrared Spectrometer and Photometer,

2Data is available at https://smtn-002.lsst.io/ for LSST.
3Available at http://svo2.cab.inta-csic.es/svo/theory/fps/index.php?mode=browse&gname=Euclid.
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NISP, one for the visible instrument, VIS). Note that since we use parametric profiles, channels only
differ by flux and noise realisations, i.e. we do not simulate colour gradients in this work although
it might help improving the deblending performance. Image size is fixed to 64 × 64 pixels for
each instrument which corresponds to, respectively, 19.2′′, 12.8′′ and 6.4′′-wide images for the NIR
filters, for the LSST filters and for the VIS instrument, given their resolutions of 0.3, 0.2 and 0.1
arcsecond per pixel. This fixed stamp size was chosen to work with simple network architectures,
although in future work, several stamp sizes might be used for each instrument.

For each galaxy, we consider a stack of four 450 s exposures for Euclid (see Images Simulations
in Refregier et al., 2010), and a stack of 824 15-second exposures for LSST, split unevenly between
bands, though constant between samples, to match the projected full LSST survey mean exposure
(specifically, we use respectively 56, 80, 184, 184, 160 and 160 exposures for the ugrizy bands as in
Ivezić et al., 2008, table 1). The flux of each galaxy is rescaled from HST COSMOS observations
to account for exposure time, number of exposures, pixel size and primary mirror area of each
instrument. Finally, we apply a cut in the LSST r-band magnitude of 27.5, the LSST fiducial
depth4.

Training set 2: blended galaxies

The deblender network is trained and validated on samples of artificially blended galaxies obtained
by adding images of isolated galaxies, produced as described above. Thus we neglect galaxy opacity,
as done in most of the deblending literature at this point, which could impact our method by
decreasing the amount of color information usable for the networks. This effect will have to be taken
into account in future studies. The number of galaxies on each image is randomly chosen between
1 and 4 with uniform probabilities. From these galaxies, the one with the smallest magnitude is
centred in the blended image and is the network’s target for reconstruction (see next section). As for
images of single galaxies, a cut of r < 27.5 is applied to all galaxies added to the blend. Non-centred
galaxies are randomly positioned in an annulus around the centred galaxy, with inner radius equal
to half of the expected median LSST PSF full-width-at-half-maximum (that is, 0.325′′) and outer
radius equal to 2′′. This choice allows us to obtain highly blended galaxies while avoiding cases
where non-centred galaxies completely overlap the centred one.

Note that for these samples, signal-to-noise ratio (SNR, see section 7.4.1) and magnitude distri-
butions are slightly shifted to higher SNR/smaller magnitudes since we always choose the smallest
magnitude galaxies as targets, but the ranges of SNR and magnitudes remain unchanged. This
might impact the performance of our method at low SNR since the statistics is reduced in this
range. Results presented here might be improved by increasing the number of examples at low
SNR, this analysis is reserved for future work.

Finally, as for isolated galaxy images generation, we apply randomisation to the dataset before
rendering, and data augmentation (random flips and 90◦ rotations) during training.

Decentring

In the fiducial case, considered as reference, target galaxies are perfectly centred on the stamp (at
the intersection of the four central pixels). In order to evaluate the impact of decentring, we created
two additional configurations (see fig. 7.2), which are defined as follows.

1. The first one aims at simulating a perfectly accurate peak detection algorithm where decen-
tring is only due to pixelisation. It considers that target galaxies are identified as the ones

4See, for instance, https://www.lsst.org/scientists/keynumbers
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First configuration:  
Pixelisation decentering

Second configuration:  
Detection algorithm decentering

-1 0 1

Figure 7.2: Two configurations of decentring to simulate isolated galaxy images. In black are
represented the four central pixels of the image. On the left, configuration 1 simulates a perfect
detection and accounts only for decentring due to pixelisation. The central galaxy is shifted in
a square of size one pixels around the center of the image (in red). On the right, configuration
2 simulates the decentring due to the pixelisation as well as the error coming from the detection
algorithm. In that case the galaxy is shifted twice, once in the square of size one pixel around the
image center, and a second time with a value sampled from a distribution fitting centring errors in
the blending sample. This gives a circular distribution around the center of the image, decreasing
exponentially from the border of the square used to represent pixelisation errors. On the top are
drawn a simplified view of the decentring distributions.

with smallest magnitudes. Their centres are shifted uniformly around the stamp centre within
a square of size 0.2′′, i.e. the size of LSST’s pixels. The shift is applied to isolated galaxies
images as well as for blended galaxies images.

2. In the second configuration, we aim at simulating a more realistic case, taking into account
decentring from pixelisation and coming from errors of a detection algorithm. We start
by producing blended images as in the first configuration, albeit with 128x128 pixels, and
subsequently process them with the peak detection algorithm from the photutils5 library.
We identify the galaxy to be deblended as the galaxy with the brightest detected centroid
in the r-bandpass filter. We then determine the closest pixel intersection and crop 64 × 64
images centred on this point. For isolated galaxy images, the galaxies are shifted from the
stamp centre a first time, as in the first configuration, for pixelisation. They are then shifted
a second time with a value sampled from a distribution fitting centring errors in the blended
sample (in practice, a beta prime distribution Johnson, Kotz, and Balakrishnan, 1995), before
images are finally drawn. This case is meant to mimic more closely a detection-deblending
pipeline that could be applied to real data where we do not know a priori which galaxy is
the brightest within a blended scene. It is fairly conservative in terms of decentring as we
used a basic peak detection algorithm on the r bandpass filter only. Note, however, that this
procedure slightly redefines the objective of the deblender network as we are now targeting the
galaxy with the brightest detected centroid which is different from the one with the smallest
magnitude in about 20% of cases in our samples. We discuss these points in greater detail in
section 7.5.1.

5https://photutils.readthedocs.io/en/stable/
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7.2.2 Blendedness metrics
To characterise how much galaxies are blended we defined several metrics, all of which are computed
in the LSST r-band (on which we will perform ellipticity and magnitude measurements) on PSF-
convolved images.

1. First the blending rate of the centred galaxy with its closest neighbour is defined as

Bc =
⟨Icentred, Iclosest⟩√

⟨Icentred, Icentred⟩ ⟨Iclosest, Iclosest⟩
(7.1)

where the dot product is defined as 〈
I, I′

〉
=

∑
p∈{pixels}

IpI′p. (7.2)

Icentred represents the noiseless image of the centred galaxy and Iclosest represents the noiseless
image of the closest (centre-wise) blended galaxy.

2. Second, we use the total blending rate as defined in section 3.1.2:

Btot = 1 − ⟨Icentred, Icentred⟩
⟨Icentred, Itotal⟩

. (7.3)

These quantities characterise the blendedness of the centred galaxy within a blended scene
and have values between 0 and 1. A blend rate close to 0 indicates almost no blending and a
blend rate close to 1 indicates that the (closest) neighbouring galaxies and the centred one overlap
almost completely. The shifts applied to neighbouring galaxies (see section 7.2.1) was purposefully
chosen to obtain a significant amount of highly blended scenes (under those metrics). Note that
the hypotheses for images generation are not meant to reproduce the distribution of real blends
but rather to allow to train and test our network on relevant blended scenes, albeit in a simplified
framework (fixed PSF, simulated parametric images). In section 7.8, we apply this method on a
much more realistic distribution of blends, using images extracted from a simulation produced in
the Data Challenge 2 (DC2) for LSST Dark Energy Science Collaboration, (Korytov et al., 2019;
LSST Dark Energy Science Collaboration (LSST DESC) et al., 2021). This simulation aims at
producing images as close as possible from what the future LSST data will look like, especially
using realistic galaxy distribution.

7.2.3 Image preprocessing
The networks are fed with batches of images randomly chosen from the training sample, that are
also randomly flipped and rotated by 90◦ on the fly, as explained previously. Both noisy and
noiseless images were preprocessed by applying, in each band b, the following normalisation,

xb = tanh
(
sinh−1

(
β

xraw,b〈
max(xraw,b)

〉
b

))
, (7.4)

where 〈
max(xraw,b)

〉
b is the mean of the distribution of maximum pixel values in the b band of input

images (therefore a constant defined for each bin). β is an arbitrary constant set to 2.5 for our study
allowing our training sample to have maxima well-distributed in the range [0,1]. This processing
is necessary because of the large dynamic range of astronomical images, to ensure that images of
bright galaxies do not cause numerical instability during training. Even though this normalisation
constrains the choice of likelihood distribution (see next section), we have experimented with non-
normalised images and more general distributions and ran into numerical issues, i.e. the loss function
diverged.
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Figure 7.3: Architectures of the VAE and the deblender. The weights of the VAE’s trained decoder
are loaded and fixed in the deblender network before training.

7.3 Method
7.3.1 Variational autoencoders
For a detailed explanation of VAEs (Kingma and Welling, 2014), see section 4.3.1. To summarize, a
VAE is divided into a latent space, z, a decoder, or generative model, with conditional distribution
pθ(x|z) (the likelihood), and an encoder, or likelihood model, which approximates the intractable
posterior pθ(z|x) by another distribution qϕ(z|x) (see fig. 7.3).

In this work, the latent variables are parametrised with a known prior p(z) chosen to be a
standard multivariate gaussian. The generative model and the encoder are parametrised by CNNs,
respectively with weights θ and ϕ.

Recall that the VAE maximises the evidence of the training sample pθ(x), which cannot be
computed exactly, but can be bounded from below,

log p(x) ≥ −DKL(qϕ(z|x)||p(z)) + Eqϕ(log pθ(x|z)), (7.5)

which defines the variational loss function of the VAE.
In our case we use a denoising VAE. It only differs from usual VAE by the fact that the input

x̃ is a noisy version of the target image x. In that case, x̃ is used in the regularisation term (as
the encoder input) and x is used in the reconstruction, but the variational loss does not change
otherwise (Im et al., 2017).

7.3.2 Implementation and architecture
In our implementation, the approximate posterior qϕ(z|x) is modelled by a product of univariate
Gaussians with mean µϕ(x) and variance σ2

ϕ(x), computed by the encoder (with trainable weights ϕ),
so that the KL divergence can be computed analytically. The decoder then maps latent variables
z onto the expectation values of independent Bernoulli distributions (in each pixel and for each
band) which is interpreted as the output image to be compared to the target. This is technically an
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Figure 7.4: Corner plot of the five first dimensions of the latent space of a VAE trained on images
composed of the LSST ugrizy filters. All components show similar trends.

abuse as the Bernoulli distribution is formally defined for binary variables rather than continuous
variables in the range [0,1] where our rescaled images live (see section 7.2.3) and it formally breaks
the variational objective in eq. (7.5). However, this is an empirical choice that is commonly found
in the literature, including highly cited papers (Kingma and Welling, 2014; Larsen et al., 2016;
Sønderby et al., 2016; Jiang et al., 2017; Dilokthanakul et al., 2016). The reader can take a
look at Loaiza-Ganem and Cunningham (2019) for a detailed study of the consequences of this
implementation and section 7.5 for a discussion about possible improvements.

In order to optimise the reconstruction performance, we used a β-VAE (Higgins et al., 2017), i.e.
we decrease the weight of the Kullback-Leiber divergence in the loss by scaling it with a coefficient
β. Without this modification, the regularisation term prevails over the reconstruction term and
prevents the network to learn to reproduce the input, a longstanding issue with vanilla VAEs. In
principle, this further entails the loss of the generative property of our model as this modification
relaxes the regularisation on latent variables. However, we found that a value β = 10−2 yields
acceptable reconstruction quality while, given the flexibility of the model, allowing latent variables
to have a distribution very close to the Gaussian prior as shown on fig. 7.4 (that could be further
improved with regaussianisation techniques, see section 4.4).

Our implementation is based on the Keras library6 and the TensorFlow framework7 (version
1.13.1) and uses a sequential network architecture presented in fig. 7.3 with four sets of two con-
volutional layers in the encoder and symmetrically in the decoder (with transposed convolutional
layer). In each set, both layers have the same number of filters but they have strides of, respectively
(1,1) and (2,2), which allows us not to use pooling layers and thus reduces information loss, while
downgrading the image (Springenberg et al., 2014). The convolutional layers have respectively
32, 64, 128 and 256 filters and all use 3x3 kernels. We added hidden dense layers of 256 units in
both the encoder and the decoder. All these layers use parametric rectified linear unit (PReLU)
activations. Finally, the encoder ends with two parallel dense layers (µϕ(x) and σ2

ϕ(x)) with 32

6https://keras.io/
7https://www.tensorflow.org/
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units, corresponding to the dimension of the latent space. In total, the encoder and the decoder
have respectively 2.5 million and 3.3 million trainable parameters for the models trained on LSST
ugrizy bands and on all LSST and Euclid bands.

To create the multi-band images, filters are simply combined in a three dimensional array with-
out further processing, making the images multi-resolution. As the multi-band images processed
by the network are multi-resolution (they are composed of the six LSST filters and four Euclid
filters), the information from each band is extracted by a particular set of convolutional filters for
each convolutional layer. It is then concatenated when the last convolutional layer is flattened, just
before the hidden dense layer.

7.3.3 Deblender
The architecture of the deblender network is chosen to be the same as that of the VAE. Before
training, we will load decoder weights θ from a pretrained VAE and hold them fixed during training,
i.e. only the encoder weights ϕ′ are trainable. The encoder learns a mapping from blended images to
the posterior parameters µϕ′ and σϕ′ used to draw latent variables. Those are then used as input to
the fixed decoder, which outputs the likelihood parameters, needed to evaluate the reconstruction
term in the loss, together with the target noiseless image of the isolated central galaxy. Therefore
the encoder learns to separate the central galaxy from every other part of the input image (noise
and neighbouring galaxies) and to map it into the latent space. The encoding must be done in a
way that permits the decoder to reproduce the centred galaxy accurately. As a consequence, our
method can be considered as operating deblending in latent space with a mapping created from a
prior generative model of isolated galaxies.

For the deblender, we also keep the Kullback-Leiber divergence and the reconstruction term in
the loss, which reads

L(ϕ′, xin, xtarget) =βDKL
(
qϕ′(z|xin)||p(z)

)
− Eqϕ′

[
log pθ(xtarget|z)

]
,

(7.6)

but here we minimise over the mapper weights ϕ′. Here xin is the noisy input and blended image
and xtarget is the noiseless target image of the central galaxy. Note that we tried to initialise those
weights either randomly or from the trained encoder and obtained the same results.

7.4 Results
7.4.1 Reconstruction metrics
Since weak lensing is our main focus, we assess the performance of our method by measuring
how well shape parameters and magnitudes can be recovered by the deblender (see definitions
below). We first measure ellipticities and magnitudes of the noiseless, denormalised, target images
in the test sample, described in section 7.2.1. Then, when training is finished, we run the VAE
or the deblender on the test sample and repeat those measurements on the denormalised output
of the network. Finally, we compute errors on ellipticities and magnitudes between the target and
output images and use them to compute performance metrics. We present the distribution of the
measured errors as functions of other relevant quantities, such as signal-to-noise ratio, in order to
gain intuition about the assets and limitations of our method. More precisely, we measure:

1. the PSF-corrected ellipticity defined as the reduced shear estimator |e| ≡ (a−b)/(a+b), where a
and b are the semi-major and semi-minor radii. The measurement is performed in the LSST r-
band from PSF-convolved images using the HSM module in GalSim and the EstimateShear()
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Figure 7.5: Distributions of output shape parameters as a function of parameters measured on
target images (e1, e2 and |e| from the leftmost panel to the third one). The rightmost panel shows
the mean offset on e1 and e2 in the (e1, e2) plane with arrows pointing to the average output values
of these components (with the same scale as the axes).

function with the Kaiser-Squires-Broadhurst method (KSB, Kaiser, Squires, and Broadhurst,
1995), to which we provide the fixed PSF used to generate the images.

2. the magnitude in the r-band, computed from the total flux, itself obtained by simply summing
the number of photons from every pixel. We have verified that we obtain very similar results
in all bands.

In order to demonstrate and quantify the benefits of using multiple bands and multiple instruments,
we repeat the training of both networks and the analysis for images consisting of

1. the six LSST bandpass filters (ugrizy, 6 bands), and

2. all LSST and Euclid bandpass filters together (10 bands).

Finally, we also evaluate the robustness of our networks to signal-to-noise ratio (SNR) as it is
expected to have a significant impact on the performance. We define the SNR as

S/N =

√√√ ∑
p∈pixels

I2
p

σ2(Ip)
, (7.7)

where Ip is the intensity of the signal, i.e. the flux from the noiseless galaxy image, in pixel p in
the r-band and the variance σ2(Ip) is the sum of the flux from the noiseless galaxy and from the
sky background. This ratio is measured on isolated galaxy images and this definition is therefore
valid for individual objects. Nevertheless, we use the same values when objects are blended for
our shape and magnitude reconstruction tests, which over-evaluates the signal-to-noise ratios that
could be reached. Therefore, figures concerning deblending performance involving SNR bins present
conservative results.

7.4.2 Prior for single galaxies with a VAE
The first network, the prior model, is intended to learn a generative model of multi-band images of
isolated galaxies. As a probabilistic model, the output is conditioned on a random draw in latent
space, therefore we do not compare measurements on individual galaxies but rather the statistical
properties of errors on the test sample.

In fig. 7.5, we first show errors for both ellipticity components (e1, e2) in the prior model, finding
no particular difference in reconstruction between the ellipticities along the pixel grid (e1) and at
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Figure 7.6: Distributions of differences in absolute observed ellipticity |e| (left) and r-band magni-
tude (right) between target and output images from the test sample. Results for the VAE trained
on LSST bands only are shown in blue and those obtained when including Euclid bands are shown
in red. The distributions are computed on subsets of the test sample split in bins of signal-to-noise
ratio S/N (left) and r-band magnitude (right). In each plot, the top panel shows the distribution
over the test sample of the quantity on the x-axis, the middle panel shows the distribution of errors
when the test sample is split in bins of this particular quantity, and the bottom panel shows the
median error. In the middle panel, the boxes show the median and ±1σ percentiles and the whiskers
show the ±2σ percentiles.

45◦ (e2), which is not guaranteed a priori. This figure also shows on the right the mean offset on
e1 and e2 in the plane (e1, e2) with arrows pointing to the output values of these components (with
the same scale as the axes). We find offsets to be very small around the centre (round galaxies)
and to increase for more elliptical galaxies, which are also less represented in the training sample.
More surprisingly, we find an asymmetry in the (e1, e2) plane for more elliptical galaxies, and that
the network outputs galaxy images with ellipticities slightly biased towards the directions (−1, 1)
and (1,−1). Note, however, that results are symmetric by swapping components.

Since we have shown that the network has similar reconstruction error on the two components,
we now focus on the errors on the absolute ellipticity |e| =

√
e2

1 + e2
2 and r-band magnitude, in

particular on the median error and the width of the distributions. Figure 7.6 shows those distri-
butions in both configurations when splitting the test sample in ten bins of SNR. Boxes show the
median and percentiles corresponding to ±1σ of a gaussian, the whiskers show ±2σ percentiles.
We find the distributions of ellipticity errors to be centred around zero with small deviations as
the median is contained within ±0.025. Increased spread around the median arises at low SNR,
typically below 50, particularly for the VAE trained on LSST bandpass filters only, which is likely
due to the blurring of object edges in the presence of noise. The network produces on average an
output image that is slightly rounder (closer to the average image) than the input image, which
creates a small negative bias. The median and spread then reduce as SNR increases, even in the
high SNR region which is sparsely populated. We find similar trends for both tested configurations,
although the median and spread of the error distributions decrease by, respectively, 22% and 47%
on average, when using Euclid bandpass filters (multi-instruments approach) in addition to the six
LSST bandpass filters. The improvement is even more significant at low SNR where the median
(respectively spread) is reduced by 81% (59%) on average for galaxies with S/N < 100. The right
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panel of fig. 7.6 presents the error distributions on the reconstruction of the r-band magnitude as
a function of SNR. We find that our models reproduce magnitudes with errors below 0.2 at 2σ and
median within ±0.025, reducing in the middle range of magnitudes and increasing for very bright
objects that are outliers in the training sample. Adding Euclid bandpasses reduces the median and
spread on the magnitude error by respectively 72% and 21% on average for galaxies with S/N < 100.
However, on the entire sample, the spread on the magnitude error is reduced by 12% but we do
not observe any improvement on the median error, probably due to very bright outliers.

From these results, we conclude that our model is able to learn features from noisy images and
accurately reproduce parameters relevant for weak lensing studies. They also show that the VAE is
able to integrate information from observations in multiple bands and instruments to learn tighter
posterior and likelihood distributions, leading to more accurate results across all bands. It is likely
that extra information provided by Euclid filters mainly comes from the VIS instrument, which
collects information on a very broad bandpass with higher resolution than LSST (0.1′′/pixel for
VIS vs. 0.2′′/pixel for LSST), yielding significant reductions of errors on galaxy shapes, especially
at low SNR. These results are consistent with the findings of Schuhmann, Heymans, and Zuntz
(2019), i.e. that a pixel-level joint analysis of LSST and Euclid data yields significant improvements
of shape measurements.

7.4.3 Deblending performance
As explained in section 7.3.3, we now instantiate a second neural network to perform deblending,
with the same architecture, and reusing the generative model trained and tested in the previous
section. The decoder weights are loaded from the trained prior models and held fixed during
training so that only the deblender’s encoder parameters are optimised. In this section, we present
results obtained on images using the same two previous configurations where target galaxies are
perfectly centred. A random sample of the deblender’s input and output images is shown in fig. 7.8.

Figure 7.7 shows the distributions of errors on target galaxy ellipticity and magnitude as a func-
tion of signal-to-noise ratio (S/N), magnitude difference with the closest neighbour galaxy (∆magc)
and the two blendedness metrics defined in section 7.2.2 (Bc and Btot). For both configurations, we
find the median errors to be within ±0.015 and ±0.08 for ellipticity and magnitude respectively,
across the entire test sample. As expected, we find the largest median errors and spread at low
SNR, small difference in magnitude with the closest neighbour and high blend rates. In these
regimes, median errors are negative, meaning that the network produces rounder and brighter im-
ages, picking up flux from neighbouring galaxies. However, median errors remain limited even in
critical cases. For example, at blend rates Bc of 80%, median errors on ellipticity and magnitude
are respectively below 0.008 and 0.035.

Comparing both configurations, we observe some significant improvements when including Eu-
clid filters. The largest observed effect is the reduction of the median error on ellipticities by 40 to
47% and of the spread by about 33% on average, which is visible when the test sample is split in
bins of SNR, magnitude difference and blend rate with closest neighbour (three top rows in fig. 7.7).
A smaller improvement is observed when the data is split in bins of total blend rate Btot, with gains
around 8% on the mean and 36% on the spread of the error distribution. Magnitude errors are
also reduced across blend rates, SNR and magnitude difference: 27 to 63% for the median and 17
to 33% for the spread of the distribution.

We also characterise the impact of our deblending method on shear measurements. To do so,
we generate five test samples of 10 000 input and target images. Each sample is made of the same
sets of galaxies (identical profiles, positions and rotations) and noise realisations, but with different
amounts of constant shear applied, namely (0, 0), (+0.01, 0), (−0.01, 0), (0,+0.01) and (0,−0.01).

131



SNR
P(

S/
N

)

0.2

0.1

0.0

0.1

0.2
El

lip
tic

ity
 e

rro
r 

|e
| LSST ugrizy

LSST + Euclid

102 103

Signal-to-noise ratio S/N

0.01
0.00
0.01

m
ed

ia
n

delta_mag_closest

P(
m

ag
)

0.2

0.1

0.0

0.1

0.2

El
lip

tic
ity

 e
rro

r 
|e

|

0 1 2 3 4 5 6
Magnitude difference with closest magc

0.01
0.00
0.01

m
ed

ia
n

blendedness_closest_lsst

P(
B c

)

0.2

0.1

0.0

0.1

0.2

El
lip

tic
ity

 e
rro

r 
|e

|

0.0 0.2 0.4 0.6 0.8
Blend rate with closest Bc

0.01
0.00
0.01

m
ed

ia
n

blendedness_total_lsst

P(
B t

ot
)

0.2

0.1

0.0

0.1

0.2

El
lip

tic
ity

 e
rro

r 
|e

|

0.0 0.1 0.2 0.3 0.4 0.5
Total blend rate Btot

0.01
0.00
0.01

m
ed

ia
n

a) Error in ellipticity

SNR

P(
S/

N
)

0.2

0.0

0.2

M
ag

ni
tu

de
 e

rro
r 

m
ag

102 103

Signal to noise ratio S/N

0.05
0.00
0.05

m
ed

ia
n

delta_mag_closest

P(
m

ag
)

0.2

0.0

0.2

M
ag

ni
tu

de
 e

rro
r 

m
ag

0 1 2 3 4 5 6
Magnitude difference with closest magc

0.05
0.00
0.05

m
ed

ia
n

blendedness_closest_lsst
P(

B c
)

0.2

0.0

0.2

M
ag

ni
tu

de
 e

rro
r 

m
ag

0.0 0.2 0.4 0.6 0.8
Blend rate with closest Bc

0.05
0.00
0.05

m
ed

ia
n

blendedness_total_lsst

P(
B t

ot
)

0.2

0.0

0.2

M
ag

ni
tu

de
 e

rro
r 

m
ag

0.0 0.1 0.2 0.3 0.4 0.5
Total blend rate Btot

0.05
0.00
0.05

m
ed

ia
n

b) Error in magnitude

Figure 7.7: Distributions of errors on absolute ellipticity |e| (left) and r-band magnitude (right) for
the deblenders trained on LSST (blue) and LSST+Euclid (red) images. These distributions are
shown as a function of the signal-to-noise ratio S/N of the target galaxy, the magnitude difference
with the closest galaxy ∆magc, the blendedness with the closest neighbour Bc and the total blend-
edness Btot. In each plot, the top panel shows the distribution over the test sample of the quantity
on the x-axis, the middle panel shows the distribution of errors when the test sample is split in bins
of this particular quantity, and the bottom panel shows the median error. In the middle panel,
the boxes show the median and ±1σ percentiles. The whiskers show the ±2σ percentiles. In each
column, all plots have the same vertical scales to facilitate comparison.
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Figure 7.8: Random sample of normalised images processed by the deblender trained on both LSST
and Euclid bandpass filters, where the target galaxy is perfectly centred on the stamp. We show
two examples per row, with the first image showing the noisy input image, the second the output of
the deblender and the third the noiseless target. These images are all shown in the gri bands using
the normalisation defined in section 7.2.1. On each image, the blue cross indicates the centroid of
the target galaxy and the red ones those of other galaxies in the scene. Images have been cropped
to 50% for improved visualisation. 133



We decompose the ellipticities measured on output images eout
i , for each component i = 1, 2, as a

function of the target image ellipticity (considered as the intrinsic ellipticity of the galaxy) and of
the true shear γ applied to the sample, as

eout
i ≈ (1 + αi)ein

i + (1 + mi)γi + ci, (7.8)

where αi is the mean ellipticity bias when zero shear is applied (its measurement is presented in
section 7.4.4), mi is the multiplicative shear bias, and c is the additive shear bias. In order to
measure the shear biases mi, we start by computing the average ellipticity, denoted

〈
eout

i

〉
±, of the

samples where a constant shear γi = ±0.01 has been applied (with the other component unsheared).
Shear biases can then be obtained by differentiating eq. (7.8), where intrinsic input ellipticities ein

i
are equal for all samples, leading to

mi ≈

〈
eout

i

〉
+
−

〈
eout

i

〉
−

∆γ
− 1 (7.9)

with ∆γ = 0.02. This method resembles the metacalibration algorithm (E. Huff and Mandelbaum,
2017; Sheldon and E. M. Huff, 2017) to quantify shear responses, except that we apply shear directly
to the image model and not to a noisy image. We find uncalibrated multiplicative shear biases of
the order of 1 to 4% for both LSST and LSST+Euclid configurations on deblended images. These
values are to be compared with biases of 4 to 6% measured on target images, characterising the
bias due to the shear estimator alone on our test sample. We interpret this result as a percent-level
negative bias introduced by the deblending method, consistent with previous observations. The
observed additive bias, measured on the (0, 0)-sheared sample, is consistent with zero (up to the
sampling error). Note that these are uncalibrated biases, measured on a sample of highly blended
galaxies scenes, unrepresentative of the full sample. As such, they are not directly comparable
to the values set by the LSST Science Requirements Document (The LSST Dark Energy Science
Collaboration et al., 2018). Nevertheless, following the principle used here for this measurement,
the calibration of this multiplicative bias could be achieved with the metacalibration algorithm,
which we reserve for future work.

7.4.4 Effect of decentring
In this section, we study the impact of decentring on deblending performance. We compare results
obtained in the previous section on perfectly centred images to the two decentring configurations
discussed in section 7.2.1, i.e. either a shift within a square of side 0.2′′ around the centre or a shift
applied after centroid location obtained with a basic peak detection algorithm. In this part, images
are composed of the 6 LSST bandpass filters only. We first train VAE on isolated galaxies in a
similar fashion to our fiducial case, except that they are now off-centre. We have obtained error
distributions qualitatively and quantitatively very similar to those presented in section 7.4.2 and
fig. 7.6, with median errors and distribution width only degraded by a few percents in both cases.
We therefore directly present results on deblending performance.

Figure 7.9 shows the impact of decentring on the distributions of ellipticity and magnitude
errors as a function of SNR and total blend rate Btot. In the first decentring configuration, the
impact is relatively limited. Quantitatively, the ellipticity and magnitude median errors increase
by a factor 1.4 to 3.5 and 1.4 to 2.8 respectively, but mostly remaining within ±0.02 and ±0.05
(except for the two last bins in total blend rate and first bin in signal-to-noise-ratio) and the spread
of error distributions increase by 12% and 22% on average respectively for ellipticity and magnitude
errors. In the second decentring configuration, we observe a general increase of the width of error
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Figure 7.9: Comparison of results for LSST deblenders trained with three different centring config-
urations: the first one is perfectly centred on the stamp, the second one has its centre in a square
of size 0.2′′ around the stamp centre, and the third one has its centre computed by a simple peak
detection algorithm (from the photutils library) on blended galaxies images (see section 7.2.1).
The poor performance of the peak finder hamper those of the deblender network, which, in contrast,
seems robust to decentring only due to pixelisation.

distributions. While it performs similarly at S/N ≳ 60 or blend rates below 25%, we observe
significantly degraded performance at low SNR or high blend rates. Overall, the median errors on
the whole test sample are increased by a factor of 2 to 6.5 and 1.6 to 3.2 respectively for ellipticity
and magnitude. The spread is then increased by 39% for ellipticity and 53% for magnitude in
average.

We further evaluate the impact of decentring by computing mean multiplicative ellipticity biases
αi for i = 1, 2, defined in eq. (7.8), by fitting a linear regression between output and input ellipticities
at zero shear. We compute these biases introduced by our deblender as a function of SNR, which
is shown on fig. 7.10 for the four tested configurations. We find negative biases that decrease in
amplitude for higher SNR and increase as we probe more complex decentring procedures. In the
case of perfectly centred galaxies, we obtain an overall bias of −0.056 for LSST alone, which is
significantly reduced to −0.016 for LSST+Euclid. On the decentred configurations, we measure
biases of −0.081 and −0.084.

This confirms that the deblender network can exploit colour information from the six LSST
bands to perform deblending to a reasonable accuracy. In addition, it can benefit from additional
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information provided by Euclid filters to improve shape reconstruction. Finally, we have assessed
the robustness of our method to decentring, whether it is due to pixelisation or to the accuracy of the
peak detection algorithm. These results thus emphasise the importance of an accurate detection
pipeline for our method (as for any deblending technique) to work properly. In particular, the
second case, which is strongly impacted by unrecognised blends, provides conservative performance
tests. Our measurements might reveal the poor quality of the detection algorithm in case of blends
rather than the actual performance of our deblender, as discussed further in section 7.5.1.

7.5 Discussion
7.5.1 Detection and decentring
As mentioned in section 7.4.4, deblending is in practice closely tied to the detection pipeline. Indeed,
blending affects both the pipeline’s ability to detect multiple components and to locate centroids.
In severe cases, two (or more) blended objects may be detected as a single one (unrecognised blends),
in which case the centroid is likely off by a significant amount to any true centroids (see Dawson
et al., 2016, for a study using the HST and the Subaru telescope). In this paper, we have proposed
a method for deblending, which like most deblenders, requires some information about centroids.
In our case, we only need the centroid of the galaxy to be deblended –but not the number of objects
or their centres, which is a strong asset of our method.

However, centroids necessarily include some error. We therefore studied the impact of decentring
by considering two cases: an optimistic case including pixelisation where errors have a uniform
distribution of about one LSST pixel, and a more conservative case based on a simple, single-band
peak detector used to both detect the brightest galaxy within a blended scene and locate its centroid.
The first configuration leads to only slightly degraded errors, demonstrating that our method can
deal with sub-pixel decentring. The second configuration results in more significant impacts on the
spread of reconstruction errors, especially for critically blended scenes and at low SNR. However,
several comments can be made. First, we underline that we considered a simple peak detection
algorithm and one might naturally assume that a more elaborate detection algorithm making use of
multiple bands (and/or instruments) could perform better in blended scenes, leading to improved
deblending performance. Second, we also used this algorithm to generate the training samples
(to the exception of rejecting galaxies too close to each other), which is not optimal as difficult
cases may hamper optimisation. In particular, unrecognised blends often entail large decentring,
yet, they form a large portion of the training sample, especially at low SNR, due to the poor
performance of the detection algorithm. At last, another caveat is that the network’s objective is
also modified to deblend the brightest detected centroid galaxy in the r-bandpass filter instead of
the smallest magnitude one, which we found to differ in 20% of the training sample. Taking these
different considerations into account, we suspect that the performance of our deblending method are
indirectly degraded by those of the detection algorithm. We expect that they would be improved
by an algorithm suited to deal with blended scenes, potentially one based on neural networks as
well. We therefore consider those results to be somewhat of a lower bound on the performance of
our method.

Furthermore, we envisage the optimal way to isolate every galaxy within a blended scene with
our method would involve an iterative procedure of peak detection and deblending. With this
procedure, one does not need to make assumptions about the number of objects in the first pass,
unlike most other deblending algorithms, such as SCARLET, for instance. This process might be
helpful in unrecognised blend cases, where faint, undetected galaxies could be identified after a few
iterations. We explore this avenue in section 7.7.
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Figure 7.10: (left) Multiplicative ellipticity bias (averaged over the two ellipticities components)
between target and deblenders’ output images, as a function of SNR in the four tested config-
urations: LSST and LSST+Euclid filters on perfectly centred target galaxies and two decentring
configurations (simulating pixelisation and a simple peak finder algorithm, see section 7.2.1). (right)
Multiplicative ellipticity bias (averaged over the two ellipticity components) between target and
deblenders’ output images, as a function of SNR in three tested configurations: LSST+Euclid fil-
ters trained and tested on parametric images (in red), LSST+Euclid filters trained on parametric
images and tested on real images (in grey), and LSST+Euclid filters first trained on parametric
images, then on real images (applying transfer learning) and tested on real images (in orange).
This figure is realised for galaxies with a minimal magnitude of 26 in the r-band filter.

Finally, we have made the assumption that all galaxies in our sample have a counterpart in
both LSST and Euclid, regardless of their magnitude or other properties. For galaxies between the
Euclid and LSST magnitude limits, Euclid images are noise-dominated and therefore do not carry
much information. However, Euclid images could be used in blended scenes to obtain centroids for
galaxies above the Euclid magnitude threshold and facilitate deblending, thus making the most of
the high resolution of the VIS instrument for a joint, pixel-level analysis.

7.5.2 Challenges with real data
In this work, we have used simulated images allowing us to compare our results to a ground
truth, a common practice to calibrate and validate algorithms in weak lensing studies (see, for
instance, Mandelbaum et al., 2018b). However, the driving motivation in employing machine-
learning techniques in general is to use real data to build more realistic models that reproduce the
diversity of galaxy morphologies (including colour gradients) and observational systematic effects.

We have therefore tested our deblender network on more realistic images. In concrete terms,
we have generated images with GalSim from the COSMOS catalogue, but this time using the real
images of galaxies to capture more complex morphologies, which we then rescaled in different bands
to reproduce the flux of their parametric counterparts. We input those to trained deblenders and
obtained promising results (see fig. 7.11). We also trained deblender networks on a sample of
”real” images, using networks that were pretrained on parametric images, a technique known as
transfer learning (see, for instance, Domı́nguez Sánchez et al., 2019, for an application in galaxy
classification).
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Figure 7.11: Sample of images processed with the LSST+Euclid deblender networks, before and
after applying transfer learning. The first column shows the noisy input image and the fourth one
the target galaxy image. As mentioned in section 7.5.2 correlated noise and residuals of images
processing appear in target images. The middle columns show the output of the network when only
trained on simulated images (second from left) and after retraining on a sample including 20% of
real images (third from left).
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Transfer learning significantly improves reconstruction, decreasing the multiplicative ellipticity
bias by a factor of about 2 on the entire test sample (r-band magnitude < 27.5) and by a factor
of about 4 when considering only galaxies with r-band magnitude < 26 (see fig. 7.10). However,
a major obstacle is that HST images have a limiting depth of 25.2 (i-band), making it difficult to
produce effectively noiseless target images, and they present correlated pixel noise that cannot be
straightforwardly corrected for with GalSim, making adaptation difficult. Moreover, this sample
still contains clear blends and residuals of image processing, despite exclusion cuts already available
in GalSim (see, for instance, the last two rows of fig. 7.11).

This test suggests that assembling a clean and complete training sample from observations is
challenging, as deep field data, which have higher SNR, also present more blending in the first place.
Moreover, selecting isolated objects could introduce selection biases, for instance isolated galaxies
are harder to find in high density regions such as galaxy clusters. Nevertheless, a plausible avenue
will be to first assemble a small training sample of images of confirmed isolated galaxies, possibly
through visual inspection or another network specialised in detecting blends. Then, this could be
combined with a larger sample of realistic simulated images, in order to properly apply transfer
learning. Large, realistic image simulations including all known instrumental and observational
effects (e.g. quantum efficiency of CCDs, electronic read-noise, brighter-fatter effect, persistence of
IR detectors, asteroids, cosmic rays) are already being produced for upcoming surveys (as part of
the Data Challenge 1 and 2 simulations for LSST Dark Energy Science Collaboration, see Sánchez
et al. (2020) and Korytov et al. (2019)), from which it will be possible to compile high-quality
training samples for blending-related algorithms. I investigate deblending with VAEs on DESC
Data Challenge 2 (DC2) images in section 7.8.

Finally, we note that another possible avenue to test the deblender on more realistic scenes
consists in injecting simulated galaxy images in real ones. This method does not solve the problem
of training a generative model on real galaxies, but it would assess the ability of the network to
recover the learned parametric model from images including other real galaxies, but also stars and
any observational defects.

7.5.3 Towards a Bayesian weak-lensing analysis
As explained in section 7.3.1, the variational autoencoder output consists of a distribution over
image space (usually taken as the product of independent distributions for each pixel in each band).
The input should therefore be compared to samples drawn from the output distribution. However,
as explained in section 7.3.2, we interpreted, as it is common practice, the networks’ output as an
image. We therefore commit an abuse as the Bernoulli distribution does not correspond to our
data which is distributed in the range [0,1].

The output of our method is probabilistic in the sense that we do sample latent variables
according to the approximate posterior. We show in fig. 7.12 examples of such sampling which
allow us to obtain a posterior distribution on the ellipticity and magnitude of a target, deblended
galaxy. Note, however, that the approximate posterior is computed from blended galaxy images
while the decoder computes a posterior from a prior trained on isolated galaxy images. This
difference breaks the Bayesian property of the loss function and consequently, authors warn that
using the deblender’s output to feed a Bayesian pipeline could lead to misleading results.

A solution to both aforementioned issues, which will be studied in subsequent work, is to directly
generate multivariate posteriors on shape and flux parameters. This path is explored in chapter 8.
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Figure 7.12: Distributions of ellipticity and magnitude errors for individual images (shown on the
left) passed 10 000 times in the LSST and LSST+Euclid deblenders. For each image, the encoder
parametrises the approximate posterior from which latent variables are sampled.
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7.6 Summary
Blending of galaxies will have a major impact on weak lensing studies of future surveys, especially
deep, ground-based ones such as LSST. In the previous sections, we have investigated a new method
based on deep, probabilistic neural networks, namely variational autoencoders (VAE), to learn a
generative model of isolated galaxy images, that we then use as a prior to performing deblending
itself. For this second step, we create another network, similar to the VAE, where the generative
model is kept fixed. This amounts to perform deblending in a latent space where data is embedded
in a probabilistic manner. Our study is meant as a proof of concept and used simulated images
emulating observations from the LSST and the Euclid surveys. They are generated with the GalSim
software and based on a public catalogue from observations of the COSMOS field by the Hubble
Space Telescope.

We found that VAEs parametrised by convolutional neural networks (CNN) provide powerful
models able to learn features of galaxy images from a noisy sample with sufficient accuracy to recover
ellipticities and magnitudes. Variational autoencoders have been used in the literature as denoisers,
a feature of potential interest for weak lensing measurement pipelines that proves to work on isolated
galaxy images. Then, the second network learns to deblend input images by recovering posterior
parameters, that is, the distribution of latent variables encoding the target galaxy. We evaluated
the performance of the deblender neural network in terms of statistical reconstruction errors on
ellipticities and magnitudes, and demonstrated that the network was able to isolate galaxies and
recover their properties with low biases. In particular, we found that the deblender network trained
on LSST ugrizy images was able to reach a median error on shapes contained within ±0.01 and
on r-band magnitudes within ±0.05, stable across signal-to-noise ratios spanning the range 10 to
3000. We were able to further decrease the shape median error by 8 to 47% and of the widths of
error distributions by about 33% when using 10-band images using all of LSST and Euclid filters
(including visible and near-infrared filters). We also measured multiplicative ellipticity biases of
respectively 5.6% and 1.6% for LSST and LSST+Euclid images, and uncalibrated multiplicative
shear bias of the order of 1 to 4% for both configuration, averaged over the full test sample of blended
images. Therefore, we have shown that our deblender networks are able to make the most of multi-
band and multi-instrument images to retrieve tighter posterior and likelihood distributions. The
higher resolution of the Euclid VIS instrument provides additional information to LSST bandpass
filters, yielding significant reductions of errors and biases on galaxy shapes even at high blend
rates and low SNR. We hope our results can encourage collaborations between future photometric
surveys and the development of joint-pixel analysis and simulation tools.

We then studied the impact of decentring due to pixelisation and errors in peak detection and
centroid measurement. We considered two cases, one optimistic, addressing mostly pixelisation and
supposing accurate centroid localisation, and a more conservative case where we applied a simple
peak finder on highly blended scenes. Even in the conservative case, our method produces a mean
ellipticity bias on the measured ellipticities of 8.4%, improving with signal-to-noise ratio, which
is slightly reduced to 8.1% in the optimistic case. The latter yields accurate ellipticities |e| and
magnitude with median errors below 0.03 and 0.2 (in absolute value), stable with signal-to-noise
ratio and blending rates. Our method is consequently robust to pixelisation-related and/or modest
decentring. It degrades, particularly for the spread of the distributions, with larger decentring
errors caused by the associated peak detection algorithm, but would likely improve along with a
more accurate detection pipeline suited to blended images. A potential avenue to measure and
mitigate those biases, which we explore in section 7.4.2, is to apply a technique resembling the
metacalibration (E. Huff and Mandelbaum, 2017; Sheldon and E. M. Huff, 2017) and metadetection
algorithms (Sheldon et al., 2020) once training is complete. Moreover, the envisaged procedure
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to isolate every galaxy within a blended scene would involve iterations of peak detection and
deblending. This procedure, contrary to most other deblending algorithms, presents the major
advantage of not needing to make assumptions about the number of objects in the first pass. The
first steps in the implementation of this solution are presented in section 7.7.

Next, we need to adapt our method to real images. We have outlined challenges in assembling
a clean training sample without unrecognised or unprocessed blends. We nonetheless conducted
preliminary tests by applying transfer learning techniques with COSMOS data, as described in
section 7.5.2, and obtained promising results. We therefore strongly recommend to explore this
direction for learning-based deblending algorithms. A first step toward more realistic images is
explored in section 7.8 with the test of this method on DC2 simulations.

Finally, another avenue, that is explored in chapter 8, is to use an encoder-like network to predict
the joint posterior probability of the ellipticities and redshift, and potentially other quantities such
as the magnitude in each band.

Please note that, from this point, next sections and chapter are ongoing work based on the
method presented in previous sections and published in Arcelin et al., 2021.

7.7 Deblending pipeline
As explained in section 7.5.1, the optimal way to isolate every galaxy within a blended scene with
our deblending algorithm would involve an iterative procedure. A major advantage of this kind of
procedure is that we do not need to make assumptions about the number of objects in a blend since
the deblending is done one galaxy after the other. Such procedure could be especially interesting
in the case of unrecognised blends and might be able to reduce their impact on shear estimation.
This part presents the first attempt at implementing it. Same as in previous sections, stars are not
yet considered in this work.

This work was carried out with Thomas Sainrat, intern at the APC between July and December
2020, whom I mainly supervised with the help of Eric Aubourg, Cécile Roucelle and Alexandre
Boucaud.

7.7.1 Pipeline structure
General description

The structure of the pipeline is presented on the left side of fig. 7.13. When a field of an arbitrary
size is fed to the pipeline, the first step is to detect the lowest magnitude galaxy on the image (see
section 7.7.2. Then a patch of the field, of size 64 × 64 pixels, and centred on this galaxy is cut.
The centred galaxy is then deblended with our network and subtracted to the initial field image.
This process is performed several times until no galaxies are detected any more.

If the detection and deblending steps were perfect, this procedure would be sufficient. However,
both of them are not (see section 7.4 and next section), and it is possible that the subtraction
of a deblended galaxy generates residuals on the image (see right side of fig. 7.13). If they are
brighter than the noise level, those residuals could be detected instead of galaxies at some step
in the process. Consequently, a procedure to deal with these residuals is necessary. We designed
one including the classification of the detected object and the masking of residuals. I describe in
section 7.7.3 several explored avenues for these steps.
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Field image

Detection of brightest object

Classification: galaxy, residual or noise

Deblending Masking

Subtraction to field

noisegalaxy
residual

object found

End of procedure

no object found

max(Ifield(iter)) > 5σnoise

False
True

Figure 7.13: (left) Deblending pipeline including detection, classification of detected object, and
deblending or masking. (bottom right) Example of residual image after the removal of a deblended
galaxy.
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64 × (128 × 128)

32 × (128 × 128)
16 × (128 × 128)

1 × (128 × 128)

DSNT

Figure 7.14: Architecture of the detection algorithm. It is composed of four convolutional layers of
kernel sizes (5, 3, 3, 3), with strides of (1, 1), and number of filters (64, 32, 16, 1), followed by a DSNT
layer.

The method provides two stopping criteria. First, if at the detection step, no peak is detected,
the deblending process stops. Then, an arbitrary threshold of 5σnoise is set as the minimum value
at which a peak can be detected, with σnoise the square root of the noise level. Consequently if the
maximum pixel value in the field image, I f ield, is below 5σnoise, the deblending process also stops.
The first criterion allows to avoid having to go through each step in the case of an empty field,
and the second one prevents the detection algorithm to look for galaxies with SNR lower than 5,
as it only sees galaxy with a higher SNR during training (see section 7.7.2). Note that SNR > 5 is
different from having the maximum pixel value of an image above 5σnoise. However, it is a sufficient
approximation in our case, where this criterion is not limiting for the procedure.

Simulated images

Images used in this section are produced similarly to what is described in section 7.2.1. The only
difference is that galaxies are positioned randomly on the images. They are all shifted from a
random amount within half the image size, to avoid having galaxies partially cut at the image
edges. The blending process consists in adding shifted images of isolated galaxies and we use a
fixed Kolmogorov PSF using a FWHM of 0.65′′. We did not take it into account in our procedure
and reserve the inclusion of PSF treatment in the pipeline for future work. Details about the images
used to train the detection and classification algorithms are respectively presented in section 7.7.2
and section 7.7.3.

7.7.2 Detection
This section presents the implementation of the detection algorithm. To make the most of the color
information, a neural network is used since, as explained previously, it allows very simply for the
use of multi-channel images. Even though most used detection algorithms are not NN based, we
saw that all the detection algorithms presented in section 3.3.2 are based on neural networks which
demonstrates the growing interest in using them for detection.

To perform deblending, the deblender algorithm requires an image centred on the galaxy of
lowest magnitude. Consequently the target for the detection network is set to be the center of this
particular galaxy in the field. This is a very clear and simple target for the network to learn but
note that it might be too simple for specific cases: the network might get confused in cases like
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very close galaxies of same SED and at same redshift. Yet, this target is considered sufficiently
precise for our purpose with this procedure.

Architecture and implementation

To implement the detection network, convolutional layers are a natural choice since we are dealing
with images. It is composed of a CNN and a differentiable spatial to numerical transform (DSNT)
layer (Nibali et al., 2018) as output. This layer adds no trainable parameter and allows for regression
on the coordinate values, which is an improvement compared to other detection algorithms (using
dense layers or heatmap matching).

The detection network is composed of a first layer of Dropout, with a rate fixed at 0.1, followed
by four convolutional layers of kernel sizes (5, 3, 3, 3), with strides of (1, 1), and number of filters
(64, 32, 16, 1). The last layer is the DSNT layer (see fig. 7.14).

Training, validation and test sets

The training, validation and test sets are simulated with GalSim. They are LSST-like, multiband
images (u,g,r,i,z,y). The generated galaxies used for training all have a SNR (defined as in sec-
tion 7.4.1) higher than 5, which sets our detection threshold. The galaxy models, PSF, noise and
blending process are simulated similarly to what is presented in section 7.2.1. We trained this algo-
rithm on artificially blended scenes of size 128×128 pixels, with the center of the lowest magnitude
galaxy as target. There are four galaxies per scene, uniformly distributed around the center in a
square of 64 × 64 pixels. The training set is composed of 1000 scenes, same for validation and test
sets.

Detection results

The detection algorithm gives satisfying results, the network is able to detect the center of the
brightest galaxy around 76% of the time and in more than 91% of the time it is one of the two
brightest galaxies (see fig. 7.15). Most of the confusions between the two brightest galaxies occur
when the magnitude values of those galaxies are close from each other. The network also struggles
as expected on highly blended scenes. However, the mean precision of the detection compared to
the closest galaxy is below half a pixel. Since we already showed that our deblending method is
robust to small decentring (see section 7.4.4), these performance are considered to be sufficient for a
first step and we did not spend more time on this step, even though it could probably be improved.

The detection algorithm outputs the coordinates of the detected peak. Then, to perform the
deblending, an image of size 64 × 64 pixels is cut using the closest intersection from this peak as
center. Once the deblending is done, the deblended galaxy image is subtracted to the image used
for peak detection.

7.7.3 Classification and residual masking
After the subtraction of the brightest galaxy, residuals can remain. To check if the next detected
object is a galaxy or a residual we add a classification step using, once again, a neural network.
The network is composed of a first layer of Dropout, with a rate fixed at 0.1, followed by eight
convolutional layers split into groups of 2, of kernel sizes (5, 5, 3, 3), strides of (1, 1), and number of
filters (128, 64, 32, 16) (see fig. 7.16). The network ends with two dense layers. It looks at patches
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Figure 7.15: Results for the detection algorithm. In 91.5% of the time, one of the two brightest
galaxies, within the four galaxies distributed uniformly on the image, are detected. Credit: Thomas
Sainrat.

of 16 × 16 pixels around the detected center and outputs the probability for it to be a galaxy, a
residual or just noise. We defined three classes: galaxy, residual and noise.

Labelling training data

In order to train the network we had to construct and label patches for each categories. To do so
we performed the galaxy deblending of 1000 fields without the classification step, i.e. considering
each detection as the detection of a galaxy. This process ensures to obtain residuals in the image. If
we define a step of the deblending process as: starting from the field image to deblending a galaxy;
then for each step a patch of size 16 × 16 pixels is created, centred on the detected peak. To label
the patch, we used the remaining field image and the corresponding segmentation maps as in most
of the classification algorithms mentioned in section 3.3.2. The segmentation maps of the blended

128 × (16 × 16) 128 × (16 × 16)

64 × (16 × 16) 64 × (16 × 16)

32 × (16 × 16) 32 × (16 × 16)

16 × (16 × 16) 16 × (16 × 16)

(256) (256)

(3)

Figure 7.16: Architecture of the classification neural network. It is composed of eight convolutional
layers followed by three dense layers.
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scenes are created from the light profile of the noiseless galaxies.
The patch is labelled as:

• galaxy if the detected peak is at less than 1.5 pixel from the center of a true galaxy. Then
the segmentation map of this galaxy is subtracted to the field one for the next step.

• residual if:

– the detected peak is outside of the segmentation map,
– or if the detected peak is in a pixel with intensity above 5σnoise after removal of the true

remaining galaxy images from the field image at this step.

• noise if the detected peak is inside the segmentation map but further than 1.5 pixel from the
closest galaxy center and with a pixel value below 5σnoise

The patches extracted are always centred on the detected peak. However we needed more patches
of noise and residual in order to avoid having a majority of galaxy patches. We had to create noise
patches artificially by taking patches centred on pixels at a 2 pixel distance from a true galaxy
center, and residual patches by drawing patches centred on pixels with intensity higher than 5σnoise

on the remaining image after the complete deblending process.
Overall 30000 patches are used to train the classification algorithm: around 4000 of galaxies,

6500 of residuals and the rest containing only noise. We tested different proportion of the three
classes in the training data and this is the one that gave the best results.

Classification results

To classify a patch as galaxy, residual or noise in the deblending process, we set criteria on the
probability predicted by the network. We define Cgalaxy and Cresidual as the probability above which
a patch is respectively classified as a galaxy or a residual. The classification is done by first verifying
if presidual > Cresidual, in that case it is classified as a residual. If not, one check if pgalaxy > Cgalaxy,
in that case it is classified as a galaxy. If pgalaxy < Cgalaxy and presidual < Cresidual, the patch is
classified as noise and is masked as explained below. This classification scheme is probably not the
most relevant at it looks at the predicted probabilities one by one instead of assigning conditions
considering all of them. This entailed difficulties to obtain accurate results, as explained below.

Setting values for these criteria is not a simple task. First tests integrating this process in the
deblending pipeline led to the results presented in table 7.1. On the two sets of criteria tested the
(Cgalaxy = 0.5; Cresidual = 0.2) configuration presents much more acceptable results allowing for less
than 15% of errors for the galaxy class and less than 20% of errors for the residual class. Here the
percentage of error is defined as the percentage of objects wrongly classified in a class. The issue
with the (0.5; 0.5) configuration comes from the classification scheme described above. Since almost
none of the patches had a probability of residual classification higher than 0.5, they were proposed
at the next condition, for the galaxy class. Most of the true residuals also yield a high probability
of being classified as a galaxy, residuals and galaxies look alike, so most of them were. For true
galaxies, almost none of them have a probability of being a classified as a residual higher than 0.5
and consequently they were almost all classified as galaxy.

Decreasing the criterion value for the residual class helped correctly classifying more of the true
residuals. However, some true galaxies probably fell into the residual class since, as explained,
residuals and galaxies look alike and some galaxies might yield a high probability of being classified
as a residual. The reason why true residuals do not present high probability of being classified as
a residual needs to be explored further but could be explained by the resemblance with galaxies.
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(Cgalaxy; Cresidual) Error for the class galaxy Error for the class residual
(0.5; 0.5) 1% > 90%
(0.5; 0.2) 14.5% 19.9 %

Table 7.1: Results for the classification algorithm included into the deblending pipeline for different
criteria. Here, 14.5% of error for the class galaxy means that 14.5% of the objects classified as
galaxies are not galaxies. Setting the threshold at a probability of 0.2 rather than 0.5 for the
classification of residuals allows for much better results.

I did not present results for the noise class as we did not find large differences between the two
tested configurations, the percentage of error was below 1%.

Masking strategy

Once an object is classified as residual or noise, it needs to be masked in order for the deblender
procedure to continue. Several avenues have been tested such as setting the value of the detected
pixel or a group of pixels of a specific shape around it at zero. This has two major downsides: it is
impossible to find a shape for all the residuals since they all are different, and setting pixels to 0
might cancel the flux of a galaxy blended with the residual.

The masking strategy that we chose consists in using the classification algorithm to detect all
the pixels belonging to the residual: starting from the peak classified as residual, we look at all
the neighbouring pixels and run the classification algorithm on them. If they are also classified as
residual we continue around these pixels until no other pixel is classified as residual.

Instead of setting the pixel value to 0, we subtract a fraction, here 50%, of each pixel intensity
to avoid losing to much information. If the detected peak is classified as noise, the value of this
pixel only is modified.

7.7.4 Pipeline results
As explained, steps in this pipeline require more work before being able to assess performance on
shapes or fluxes recovery. However, we managed to implement a pipeline with all the required
steps in order to do deblending on a large field. We managed to make it work on small fields (see
fig. 7.17) and were able to point out steps requiring improvements. We especially showed that the
classification step is primordial for this process and that the stopping criterion of max(I f ield) < 5σnoise

is not the most relevant since several iterations occur detecting only noise if we use it. Setting the
detection of noise as a stopping criterion instead decreases drastically the number of non-necessary
iterations.

7.7.5 Discussion and Future work
As mentioned before, the performance of the deblending process really depends on the results of the
classifier. We will consequently focus on this particular step for future work. The definition of clas-
sification criteria might require refinement but other classification techniques are also considered.
For example we could use the representation of galaxies and residuals in the latent space of a VAE
to separate these two categories. Works to use the latent space representation for classification
have already shown conclusive results (Higgins et al., 2016 or Norlander and Sopasakis, 2019 for
examples).

Also, even though the masking strategy is now working correctly, it could certainly be improved.
An interesting path could be to train a VAE to reproduce residuals and to use it for masking.
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Figure 7.17: (left) Field to deblend with different peaks detected during the iterative process (blue
crosses). The pink crosses are the true center of the galaxies. (right) Description of the eight steps
necessary to obtain the complete deblending of the scene. Five of them are deblending steps, the
other three are masking of residuals. The first and fourth rows represent the subtracted image, the
second and fifth rows the image for the closest galaxy from the detected peak, and the third and
last rows are the remaining field after subtraction. At step eight (bottom right), the remaining
field is empty. However all deblending steps are not perfect as shown on the last step for example:
the deblended galaxy is quite different from the target.
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Figure 7.18: (left) Overview of the pipeline for the production of the DC2 Extragalactic Catalog.
Credit: Korytov et al., 2019. (right) A zoom in the upper quadrant of tract 3828 in gri, from the
DC2 simulated sky survey. Credit: LSST Dark Energy Science Collaboration (LSST DESC) et al.,
2021

Obviously the PSF should be taken into account in this pipeline. A possibility is to take the
measured PSF as input using well established PSF measurement methods.

Finally, and since using deblended objects that produces residuals above the noise level is not
conceivable for weak lensing studies, we consider doing optimisation of the deblending process. The
iterative procedure would be repeated several times until convergence to an optimal solution. An
example of convergence criterion could be that no masking step is required during the deblending
process.

These possible improvements will mainly be explored in the future by other members of the
Astrodeep team at APC. Biswajit Biswas, PhD student starting in October 2021 in the team, will
focus on this part.

7.8 Application to DC2 simulations
In section 7.5.2 we also mention the importance of focusing on more realistic data in order for
our algorithm to be used for cosmological surveys. In this part I explored the adjustment of the
method to images produced in the Data Challenge 2 (DC2) for the LSST Dark Energy Science
Collaboration, (Korytov et al., 2019; LSST Dark Energy Science Collaboration (LSST DESC) et
al., 2021).

7.8.1 DC2 simulations
DC2 simulations are based on a N-body (gravity only) simulation (the Outer Rim run carried out
using HACC from Habib et al., 2016), and empirical (using UniverseMachine from Behroozi et al.,
2019) and semi-analytic models (using AlphaQ simulation) of galaxy formation for the construction
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of the catalog (see left side of fig. 7.18 for an overview of the pipeline). The combination of these
different simulations produces a catalog: the Extragalactic catalog. It covers 440 deg2 of sky area
up to a redshift of z = 3 and to a magnitude of 28 in r-band. It contains all the properties of the
galaxies that are required for image simulation (Korytov et al., 2019).

This catalog serves as input for the generation of the DC2 images which covers an area of
300 deg2 of the Wide-Fast-Deep (WFD) area in the six LSST optical bands (LSST Dark Energy
Science Collaboration (LSST DESC) et al., 2021). Data are simulated as if they were the product of
the first 5 years of the planned 10-year survey. The images are produced using the imSim8 software
package which itself calls on GalSim (Rowe et al., 2015) for astronomical object rendering (see
right side of fig. 7.18 for an example). This package was designed to be able to produce simulation
of the sky as it will be seen by LSST. The simulations takes into account information from the
several LSST software libraries to simulate realistic images. For example, for each visit, the OpSim
database gives information about the seeing conditions and the sky brightness, the atmospheric
and optical PSF are precisely simulated, and defaults due to CCDs are also taken into account
(brighter-fatter or tree rings for example).

From this simulation it is possible to extract cutouts centred on the galaxies detected by the
LSST pipeline (section 7.8.2) (Bosch et al., 2018). However, the noiseless images of these galaxies
are not available and I need to simulate them using GalSim (section 7.8.2). Since galaxies identified
on the DC2 simulation by the LSST pipeline are registered in the catalog coming out of the LSST
pipeline, the Object catalog, and that the true parameters given as input for the DC2 simulation
are registered in an other catalog, the Extragalactic catalog, it is necessary to match both
catalogs to have the correct information on the observed galaxy. Both are accessible through the
python package GCRCatalogs9.

7.8.2 DC2 images for training
Cutouts in DC2 and catalog matching

To extract cutouts from the DC2 sky simulation, the sky coordinates from the target galaxy are
required. For this work, two samples of target galaxies are defined, respectively with cuts in the
r-band magnitude at 24.5 and 26.5. First the method is applied to galaxies with a magnitude below
24.5. It will be applied to fainter galaxies in a second step, once the method is set.

The (ra, dec) coordinates of the objects detected with a magnitude lower than the defined
threshold are first extracted from the Object catalog. In order to avoid obtaining very large
output, the objects are required to come from a particular tract (part of the simulated sky, see
fig. 7.19), which number is specified when extracting the parameters. It also defines intervals in ra
and dec which are used as limits to extract all the source’s parameters, for sources respecting the
magnitude criterion, from the Extragalactic catalog.

Then the catalogs are matched in order to extract, from the Extragalactic catalog, the parame-
ters of the galaxies extracted from the DC2 sky simulation (from the Object catalog). To do so,
the algorithm FoFCatalogMatching10 (Mao et al., 2021), based on the friend-of-friend method, is
used. Finally, all the parameters required to simulate the noiseless images of the selected galaxies,
are extracted from the Extragalactic catalog (see section 7.8.2). Similarly, other parameters are
extracted from the Object catalog such as the SNR in the r-band, the blendedness (cf. definition
presented in section 3.1.2) and the ellipticity parameters measured by the LSST pipeline with HSM

8https://github.com/LSSTDESC/imSim
9https://github.com/LSSTDESC/gcr-catalogs

10https://github.com/yymao/FoFCatalogMatching
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Figure 7.19: Illustration of the area of the DC2 simulation. The left panel shows the different
tracts on the simulated area. The middle panel shows the upper quadrant of the tract 3828 in
gri. The right panel shows a zoom on the extracted image. Credit: LSST Dark Energy Science
Collaboration (LSST DESC) et al., 2021

(for the pipeline see Bosch et al., 2018, for the HSM algorithm see Hirata and Seljak, 2003). Those
parameters are used to assess the performance of the deblending algorithm.

Once the catalogs are matched, the (ra, dec) coordinates of the matched objects are used to
extract cutouts from the DC2 sky centred on these objects. Both a stamp centred on the galaxy
and a stamp of the PSF at this point, measured by the LSST pipeline, are extracted. Indeed, the
PSF varies for each image and in each band here, contrary to what has been done in section 7.2.1.
The deblender architecture presented in section 7.3.2 might not be sufficient to take into account
this effect. This is why I also require stamps of PSF, to test a different architecture which could
be fed with both images of galaxies and the corresponding PSF. I present this architecture in
section 7.8.3.

The training sample is built generating 100000 cutouts centred on galaxies from ten different
tracts. The validation and test samples are respectively composed of 20000 cutouts from two tracts
and 10000 cutouts from one tract. The tracts used to generate validation and test samples are
different from the one used for the training sample. Figure 7.20 shows the distribution of the
absolute ellipticity, |e|, the r-band magnitude, and the redshift, z, for the sample with a magnitude
cut at 24.5 in r-band magnitude.

This method of image extraction prevents a strong assumption that we had set in section 7.2.1:
the galaxy in the center might not be the brightest one on the image. Consequently, this adaptation
on DC2 images also proposes a generalisation of our method. Note also that the relaxation of this
assumption would entail a modification of the deblending procedure (see section 7.7). It could be
easily modified by defining a step in the procedure as 1) a detection run, looking for every objects,
2) the classification of these objects (galaxy, star, residual, noise) and 3) the deblending or masking
of each of these objects.

Noiseless galaxy images simulation

In order to train the VAE and the deblender, target noiseless and non-blended images of the
galaxies detected on the DC2 images are required. To simulate them, the galaxy parameters were
collected from the Extragalactic catalog and the PSF was extracted from the cutouts. GalSim is
used to reproduce the galaxy image. The galaxy is simulated using bulge+disk models and the
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Figure 7.20: Distributions of observed ellipiticity, r-band magnitude (a cut is applied at 24.5) and
redshift for galaxies in the test sample from the DC2 simulation.

properties from the Extragalactic catalog, especially bulge and disk half-light radii, ellipticities,
and the flux in each bands. It is then convolved with the measured PSF. The image generation
is visually checked by subtracting the generated isolated galaxy image to the initial image (see
fig. 7.21). The code to collect the required parameters and generate the image is available here:
https://github.com/BastienArcelin/dc2_img_generation.

Note that the PSF used for the image generation is measured by the LSST pipeline. It is
not the exact PSF used in the DC2 simulation (which was unavailable). The noiseless isolated
galaxy images produced are then slightly different from the ones used as input for the DC2 image
generation. However, since the weak lensing parameters (galaxies shapes and fluxes) are used to
simulate the noiseless images, which are the target for the deblender, these small differences are
assumed to have a negligible impact on the deblending performance.

Finally, the galaxy is perfectly centred on the simulated noiseless images. It is not necessarily
the case for the detected galaxy on the DC2 cutouts since it depends of the performance of the
detection and astrometry algorithms used within the LSST pipeline. It should not be a problem to
ask the decoder to generate the image of the galaxy on the center of the stamp but an additional
step might be necessary in order to slightly shift the deblended image before subtracting it to the
field in the deblending procedure.

Data augmentation

The data augmentation is done similarly to what is presented in section 7.2.3: random flips of
images horizontally and vertically and rotation by 90 deg on the fly. The normalisation is slightly
different, in each band b, both noisy and noiseless images are normalised following,

xb = tanh
(
sinh−1 (

xraw,b
))
, (7.10)
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Figure 7.21: Examples of cutouts from the DC2 simulation (left), the corresponding noiseless
images of the centred galaxy simulated with GalSim used as target for the networks (center), and
the subtractions of the simulated noiseless galaxies from the cutouts (right).
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with xraw,b the raw noisy or noiseless image.

7.8.3 Network architecture choice and training procedure
Network architecture

As mentioned previously, the deblender architecture presented in section 7.3 might not be sufficient
to take into account varying PSF. This is why two different architectures, based on the one used
in section 7.3, are tested:

• the first one adds a similar encoder in parallel of the first one, to take into account the
varying PSF. One is fed with the image of the galaxy and the other one with the image of
the corresponding PSF. The two encoders merge via a concatenation layer which is flattened
to feed the dense layer located before the latent space (see fig. 7.22). The decoder does not
change from the one presented in section 7.3.3. The idea behind this architecture is that the
network could learn information from the PSF image, how to encoder it in the latent space,
and how to use it to help the decoder reproducing an accurate deblended galaxy image. The
architecture is called the DEVAE (for Double Encoder VAE) in the following.

• the second one is similar to the one presented in section 7.3.3.

The DEVAE is designed with two encoders to take into account the PSF and encode necessary
information into the latent space. However, this second encoder might not be necessary as the VAE
architecture could be sufficient to extract this information directly from the DC2 images. The loss
function used for the VAE and DEVAE is eq. (7.5) The performance of those two architectures are
compared at the VAE step, results are presented in section 7.8.4.

The two deblenders are implemented similarly to the VAE and DEVAE and, as in section 7.3,
the trained decoder from the VAE and DEVAE are used as decoders of the deblenders. Their
weights are fixed during training, the deblenders only learning to map the parameters from the
centred galaxy into the latent space. The equation used for the deblenders is eq. (7.6).

Training procedure

The training procedure is almost the same as the one presented in section 7.2.1 and section 7.3. The
difference is that here, the VAE and the DEVAE are first trained on noiseless images of isolated
galaxies and not on noisy images. This allows the encoder part to learn very accurate prior without
being disturbed by the noise.

The idea of learning the galaxy image prior from noisy images of isolated galaxies came from
the will of being able to learn from real data. It avoids denoising data which is not a simple task,
and might entail a loss of information and impact galaxy shapes. Here the hypothesis is different: it
is assumed that the true distribution of galaxy shapes and fluxes is fully represented by the models
used to generate the noiseless images. This is true in our case since the Extragalactic catalog
is used as input of the noiseless image generation. In the case of real data it would obviously be
wrong and two options could be explored to build the training set:

• using more realistic galaxy image simulations such as Illustris (Vogelsberger et al., 2014)
for example, could provide noiseless images of galaxies with complex shapes. They could be
used to learn a prior for isolated galaxy images which includes more diverse and complex
shapes than the ones from the DC2 images,
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Figure 7.22: Architecture of the DEVAE for DC2 images. Two encoders are working in parallel,
one for the galaxy image and the other one for the corresponding PSF image. Both images are in
the six LSST bands. The outputs of these two encoders are concatenated, and then flattened to
feed a dense layer.

• using a denoising algorithm (for example Starck, Donoho, and Candès, 2003, or more recently
with deep learning, Vojtekova et al., 2021) on true images of isolated galaxies in order to obtain
a training set. Variational autoencoders have also been used as denoiser in the literature and
could maybe also be used in the context of astronomical images.

Comparing both approaches, i.e. learning from noiseless images and denoising DC2 images, could
be interesting and is reserved for future work.

The deblender, on the other hand, is trained similarly to what is presented in section 7.3.3. It
takes the galaxy image extracted from the DC2 simulation (and the corresponding PSF as input
for the DEVAE deblender), and tries to reproduce the noiseless image of the centred galaxy. The
only difference, as explained before, is that this target galaxy is not always the brightest on the
image.

7.8.4 Results
The results presented in this section are preliminary and more refinements might be required. The
first subsection presents the results of the two architecture on noiseless images of isolated galaxies,
allowing to chose between the two. Then, the performance of the deblender are presented.

Prior for single galaxy

Similarly to section 7.4.2, I present here the statistical properties of errors on the test sample.
On fig. 7.23, the error on the absolute ellipticity |e| =

√
e2

1 + e2
2 and on the r-band magnitude are

shown splitting the test sample in bins of r-band magnitude of the noiseless target galaxy and of
input absolute ellipticity. Again, boxes show the median and percentiles corresponding to ±1σ of
a gaussian, the whiskers show ±2σ percentiles.

Distribution of ellipticity errors are centred around zero with small deviations and the median
is contained with ±0.01. As expected, the spread increases as the magnitude increases, objects
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becoming fainter. The network not taking into account the PSF produces on average galaxies
rounder than expected at low magnitudes and the network taking it into account produces more
elliptical objects than expected at high magnitudes, struggling with faint objects. As a function of
input ellipticity, both networks produces galaxies more elliptical at low ellipticity and performance
of the network taking into account the PSF worsen with the increase in ellipticity.

The errors in magnitude are stable across ellipticity range. Slight difference are visible for low
magnitude galaxies where the network trained with PSF seems to provide a better reconstruction
of the flux at low magnitude but a worse one a high magnitude.

For both ellipticities and magnitudes, the differences in performance between the networks with
and without PSF do not permit to conclude about the best architecture. Both provide similarly
accurate results. The DEVAE was proposed to verify if it would be able to take into account
information coming from the PSF image, learns the convolution relationship between the PSF
image and the galaxy image, and hence generalise to images of galaxies convolved with a PSF
that it never saw before. Consequently, we ran a test on a sample generated with a fixed PSF
with a larger FWHM (full width at half maximum) than the ones used for DC2 (accessible via
the GCRCatalogs). It shows that both networks perform poorly when fed with images convolved
with unknown PSF. Both the VAE and the DEVAE are in fact learning from the galaxy image,
which includes the PSF information, but are not able to generalise to unknown models of PSF.
The DEVAE is not using the information coming from the provided PSF image. Note that we also
tried with more than one dense layer after concatenation (indeed, one layer is probably not enough
to take into account the PSF information), or going to Fourier space to perform the deconvolution,
founding each time similar results. This is unexpected, and maybe suggesting that something else
was wrong in the test of these architectures. More work on these avenues is required. In the
following, I stick to the architecture presented in section 7.3 for both the VAE and deblender.

A better way to take into account the PSF could be to add a first layer taking as input the
image of the galaxy and the image of the PSF, and performing the deconvolution of the galaxy
image by the PSF. The encoder would then learn to map the representation of the deconvolved
galaxy image in the latent space. The decoder could then reproduce the deconvolved galaxy image
that we would reconvolved with the PSF, using the PSF image before, at the last layer of the
network. This would, in theory allow the network to be insensitive to the PSF model.

These results lead to the conclusion that the VAE is able to learn a tight prior on both shape
and magnitude distribution for isolated galaxy images. Comparing with the results presented in
section 7.4.2, the spread and mean or the errors in both ellipticity an magnitude seem to be smaller.
This could indicate that learning from noiseless images allows to yield a tighter prior than learning
from noisy ones. However, the results presented here are obtained for galaxies with magnitude in
the r-band below 24.5, which could explain the increase in performance. More work to test these
models on a sample of galaxies selected with magnitude in the r-band below 26.5 for example, is
necessary to conclude. Comparison with a prior model trained on images denoised with denoising
algorithms might be also an interesting avenue to explore. Another solution to conclude on this
could be to learn the single galaxy image prior from noisy images of isolated galaxies extracted
from DC2, discarding images with a blendedness above a fixed threshold. This will be explored in
future work.

Deblender

In the following, the deblender algorithm is called DebVAder, for Deblending with Variational
Autoencoder.

The performance of DebVAder is presented on fig. 7.24. It shows the distribution of errors on
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Figure 7.23: Distributions of differences in absolute observed ellipticity |e| (left) and r-band
magnitude (right) between target and output images from the test sample. Results for both VAE
architectures with (in blue) and without (in red) taking into account the PSF. Networks are trained
on the six LSST bands. The distributions are computed on subsets of the test sample split in bins
of r-band magnitude (top) and input absolute ellipticity |e| (bottom). In each plot, the top panel
shows the distribution over the test sample of the quantity on the x-axis, the middle panel shows
the distribution of errors when the test sample is split in bins of this particular quantity, and the
bottom panel shows the median error. In the middle panel, the boxes show the median and ±1σ
percentiles and the whiskers show the ±2σ percentiles.
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Figure 7.24: Distributions of differences in absolute observed ellipticity |e| (left) and r-band
magnitude (right) between target and output images from the test sample. Results for DebVAder
trained on the six LSST bands. The distributions are computed on subsets of the test sample split
in bins of signal-to-noise ratio S/N (top) and blendedness (bottom).

target galaxy ellipticity and magnitude as a function of signal-to-noise ratio, S/N, and blendedness,
braw, as defined in section 3.1.2. Results show median errors within ±0.025 and ±0.05 for ellipticity
and magnitude respectively. As expected, the largest spread and median errors appear at low SNR
for both ellipticity and magnitude errors. The underestimation of the ellipticity of faint galaxies can
be explained by the blurring of the image due to noise. As in section 7.4.2, the network produces
a slightly rounder galaxy image, closer to the average image. Similar underestimation is observed
for the flux, the network probably confusing part of the galaxy’s flux with noise.

Interestingly, contrary to the spread that increases with the blendedness, the median error in
both ellipticity and magnitude is not impacted by this parameter. This means that DebVAder
performs as well on an isolated galaxy as on a blended scene.

Finally, comparing the results to section 7.4.3, both median errors and spreads are at a sim-
ilar order of magnitude. The initial assumption to deblend the brightest galaxy on the image is
consequently not necessary to yield accurate shape and flux reconstruction.
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Comparison with LSST pipeline measurement

The LSST pipeline provides an ellipticity measurement on the detected galaxies. This measurement
is realised after a deblending step using an improved version of the PHOTO algorithm as presented in
Bosch et al. (2018) and section 3.3.2. It is done in the reference band, which differs for each object
and is chosen as a function of whether or not the object is detected in this band, the SNR and the
success of the PSF and photometry algorithms. Bosch et al. (2018) indicates that for HSC, the i-
band is favoured at 57%. In the final shear analysis they use the i band for every galaxy with a SNR
larger than 10 in this band (Mandelbaum et al., 2018a). Consequently, the shape measurement
is performed in the i-band for the sake of comparison with the LSST pipeline measurement (it is
performed in the r-band in the other sections).

Until now, the ellipticity definition used was ϵ = 1− b
a

1+ b
a

exp(2iφ), since the KSB implementation in
GalSim, used in the processing for shape reconstruction, uses this definition. The LSST pipeline
uses the REGAUSS implementation of the GalSim package (Bosch et al., 2018). On fig. 7.25 the
comparison of the results obtained by the LSST pipeline are compared with the results obtained
by the networks presented previously are shown, using the REGAUSS implementation of GalSim
in the results processing for shape reconstruction. It uses the second ellipticity definition, e =
1−( b

a )2

1+( b
a )2 exp(2iφ), which explains the differences in median errors and spreads magnitude. Similarly

to section 7.4.2, the ellipticity error is defined as the difference between the measurement obtained
from the pipeline and the measurement obtained using the REGAUSS implementation in GalSim on
the noiseless image of the galaxy.

The results show that DebVAder performs better than the LSST pipeline deblender, in median
errors and in spread. This is particularly true at low SNR and for large blendedness, where galaxies
are considered to be more elliptical than they are in reality, by the pipeline. At low SNR, the increase
in performance probably comes from the fact that DebVAder also act as a denoising algorithm,
allowing for an easier shape measurement. On the complete test sample, it improves performance,
compared to the LSST pipeline, of 70% and 120% for the median of the distribution of errors in
ellipticity as a function of SNR and blendedness respectively.

Note that the REGAUSS shape measurement method used by the LSST pipeline fails on the
deblended images in some cases as already pointed out in Bosch et al. (2018). It was the case for
less than 1% (24 galaxies) of the galaxies in our test sample. Also, for a slightly larger fraction of the
sample, 1.4% (141 images), the REGAUSS shape measurement method gave non physical ellipticity
values, i.e. larger than one in absolute value. For all these objects our algorithm performs as well
as for any other galaxy image.

7.8.5 Conclusion
As mentioned earlier, the work presented in section 7.8 is in progress and some improvements are
required. However, the results presented in this section permit to draw several conclusions.

First both VAE architectures presented in section 7.8.3 are able to learn features of galaxy
images from noiseless sample with very high accuracy. It allows for a precise reconstruction of
both ellipticities and magnitudes. Median errors and spreads in ellipticities and magnitudes seem
to be smaller than when the prior is learned from noisy images (see section 7.4.2). If this result is
confirmed with the galaxy sample generated with a r-band magnitude cut at 26.5, paths should be
explored to generate noiseless training samples, using realistic galaxy image simulations or denoising
algorithms.

A test using different PSFs from the ones of the DC2 training sample showed that the DEVAE
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Figure 7.25: Distributions of differences in absolute observed ellipticity |e| between target and
output images from the test sample. Results for DebVAder are shown (in red), the measurements
from the LSST pipeline (in blue). The distributions are computed on subsets of the test sample
split in bins of signal-to-noise ratio S/N (left) and blendedness (right).

was unable to take into account information from the PSF image. Both the VAE and DEVAE learn
the PSF effect on an image from the galaxy image meaning that augmenting the PSF variation
in the training sample would allow for more generalization. Since the DEVAE does not increase
performance and is more computationally costly, the VAE architecture should be favoured. As
mentioned in section 7.2.1, another avenue to take into account PSF unseen during the training,
could be to deconvolve images from the measured PSF and reconvolved with a fixed PSF we learned,
before being passed into the deblender network.

Then, DebVAder is able to deblend input images recovering the latent space distribution en-
coding the target galaxy. It shows almost null biases as a function of SNR and blendedness, as
well as performance similar to what was obtain in section 7.4.3. This proves that the assumption
of deblending first the lowest magnitude galaxy can be relaxed without decreasing the performance
level of our method. The performance of our method would allow for the use of all galaxies in the
test sample, as they can all be accurately deblended. This is an improvement compared to what
was done for the HSC calibration with simulation for example, which discarded all galaxies with a
blendedness higher than 10−0.375 ∼ 0.42 (Mandelbaum et al., 2018a; Bosch et al., 2018).

Finally DebVAder performance are compared to the measurements provided by the LSST
pipeline. Figure 7.25 shows that the method presented in this part performs better than the
deblender implemented in the LSST pipeline (improved version of the PHOTO algorithm (Bosch et
al., 2018)) both at large blendedness as well as at low SNR. The latter is an extra advantage of our
method since the networks also act as denoising algorithms.

Note that in order to confirm these results similar tests should be run on galaxy samples
generated with a r-band magnitude cut at 26.5, but we reserve this for future work.

7.8.6 Future work
Here I describe what I believe could be the next steps to improve DebVAder.

To connect to the training procedure presented above, the GalSim simulation of the noiseless
isolated galaxy images might induce limitations. As mentioned earlier, it is not the true galaxy
image used as input in the DC2 simulation. One of the main differences being that the PSF used
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to convolve the galaxy image comes from the measurement performed by the LSST pipeline, which
is not perfect. Differences can be seen by subtracting the target image to the DC2 image: residuals
(below the noise) are visible (see fig. 7.21). A procedure to obtain clean targets images from noisy
simulated or even real galaxy images should be designed.

Also, the random knots, bright point sources displayed randomly and simulating the star forma-
tion regions in a galaxy, were not simulated on the target images and our deblender is not able to
deblend them together with their host galaxy. Including random knots on galaxies in the training
sample could permit to verify if the color information, contained in these knots, is sufficient for our
method to link them to their host galaxy and to deblend them together. To my knowledge, this
would be the first deblending algorithm able to extract both the host galaxy and the corresponding
random knots.

The approach presented here also allows for the comparison of the performance of the DebVAder
to other deblenders. Since SCARLET will probably be the preferred deblender in the LSST pipeline
it would be interesting to compare performance of both methods on DC2 images and on other
datasets. The Blending Tool Kit (see section 3.3.4) is a perfectly suited tool to compare the
performance using various metrics. Testing our method on real images, for example from HSC, is
another required step to assess the performance of our deblender and validate its architecture.

Finally I did not address the issue raised in section 7.5.3 about the output distribution of the
VAE or deblender. Considering the Bernoulli distribution which does not correspond to our data
is an abuse that must be fixed. A solution could be to apply a different normalisation on the image
allowing for the consideration of another distribution and loss function. Also considering the output
as a distribution and not directly as an image could permit to obtain a probabilistic output, with
both the mean and standard deviation image, allowing for the inclusion of uncertainties.
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Chapter 8

Bayesian neural network for galaxy
parameters estimation in blended
scenes: ellipticity and redshift
measurements

In the previous chapter, we showed that an encoder, implemented as presented in section 7.8.3, was
able to encode, into the latent space, all the information required for the reproduction of the image
of the centred galaxy on a blended and noisy scene. However, to perform weak lensing analysis, only
the shape and redshift of this galaxy are required. In this part, we explore how these parameters
can be estimated by a neural network on blended scenes, without requiring deblending.

This work is ongoing and results presented in this chapter are preliminary. It is realised in
collaboration with Cyrille Doux, and my supervisors Eric Aubourg and Cécile Roucelle.

8.1 Introduction
As we have seen in chapter 2, to perform weak lensing analysis, we need to measure ellipticities
and redshifts of galaxies. However, in future surveys like LSST, blending will be a major issue.
It will dominate the systematic error budget for cosmic shear since it can introduce many biases
at different steps of the analysis, as described in chapter 3. The common solution to deal with a
blended scene nowadays, is to use a deblending algorithm in order to separate the different sources
on the image, before performing measurements. This approach is the base of the work presented
in the previous chapter. Deblending algorithms can be very efficient but they are also likely to
entail a loss of information when extracting the galaxy image, and might introduce biases (see
section 7.4.3). To avoid these undesired effects, this work explores a new avenue: measuring the
weak lensing parameters (ellipticities and redshift) directly from the images, skipping the deblending
step.

Doing these measurements from images of blended scene is particularly difficult for state-of-the-
art methods. The multi-object fitting algorithm used by the DES collaboration(see section 3.3.2
and Drlica-Wagner et al., 2018), manages to realise both deblending and shape measurement (via
the model fitting) simultaneously but, as explained in section 2.5.3, model-fitting methods are
likely to introduce model bias in the cosmic shear analysis. Concerning moment-based methods, a
measurement of galaxy ellipticities from a blended object seems unlikely since it relies on the light
profile of the image. A deblending step is needed before measurement in that case.

166



In this work we propose a deep learning algorithm able to perform galaxy parameters estimation
from images of isolated or blended galaxies, without requiring a deblending step. The method is
inspired from DebVAder and from the work presented in chapter 7. We have shown that an encoder,
implemented as presented in section 7.8.3, was able, from a blended scene, to extract and encode
into the latent space, all the information required for the reproduction of an isolated galaxy image.
In this chapter, we use an encoder-like neural network, i.e. a convolutional neural network (CNN),
to learn the measurement of weak lensing relevant galaxy parameters from images. Using a CNN
allows to learn arbitrarily complex shape and SED models, potentially reducing model bias. It
naturally generalises to multi-band, multi-instrument data, which could be particularly useful in a
potential joint pixel analysis of LSST and Euclid data.

Also, to use a neural network in a science analysis pipeline, it is necessary to provide a mea-
surement of the uncertainty coming from the model, mostly due to the representativeness of the
training sample, called the epistemic uncertainty. As we have seen in chapter 5, Bayesian neural
networks (BNN) can provide an estimation of this uncertainty (see section 5.1). Consequently,
we apply a BNN to galaxy parameters estimation, and explore how the measurement of epistemic
uncertainty could be used in a cosmological analysis.

In this work, we mainly focus on galaxy shape parameters, but we will show in section 8.5,
that this algorithm can also perform a precise joint measurement of both ellipticities and redshift
of a galaxy, providing a full posterior distribution for each of these parameters. This is the first
direct simultaneous measurement of both ellipticities and redshift, the required parameters for weak
lensing analysis. It also shows that this method can be extended to other galaxy parameters.

This chapter is organised as follows. First, we show that galaxy parameters can be estimated
from the latent space of a trained deblender using dense layers. Then, we investigate the possibility
of estimating these parameters directly with a CNN, we present a first implementation of a Bayesian
neural network, which provides an estimation of the epistemic uncertainty, and show the benefits
of its utilisation. Finally, we show that this algorithm is able to learn to measure both ellipticities
and redshift, the parameters relevant for weak lensing, simultaneously.

8.2 Simulated images: DC2 simulation
In this chapter, we use the same training, validation and test samples as the ones presented in
section 7.8.2. However, the targets (or labels) are different. Here, the networks aim at measuring
the lensed ellipticities, e1 and e2, and the redshift, z.

In the first part of this analysis (until section 8.5), only the ellipticities are measured. The net-
work’s labels are consequently the lensed ellipticities. They are not provided by the Extragalactic
catalog but the unlensed ellipticities, the two shear components, the convergence and the redshift
are available. From eq. (2.34), the lensed ellipticities are then computed for each target galaxy as:

ϵ1 = Re
(
ϵint + g

1 + g∗ϵint )
)
≈

(
ϵint + γ

1 + γ∗ϵint

)
, ϵ2 ≈ Im

(
ϵint + γ

1 + γ∗ϵint

)
(8.1)

As explained in section 7.8.4, the Extragalactic catalog provides an ellipticity defined fol-
lowing the second part of eq. (2.33), ϵ = 1− b

a

1+ b
a

exp 2iφ, but the HSM ellipticity measurement provided

by the LSST pipeline uses the other ellipticity definition, e =
1−( b

a )2

1+( b
a )2 exp 2iφ.

To compare the measurements from the networks, to the HSM measurements, we use the
second definition to define the target ellipticities. The amplitude of the ellipticity given by the
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Figure 8.1: Network architecture for parameter estimation from the latent space of a trained VAE.
The trained encoder is extracted from the VAE and the weights are fixed. One dense layer and an
Multivariate normal distribution layer (MVN) are added to perform the parameter estimation. In
the case of ellipticity measurements, the MVN outputs two values for the mean vector, (µe1 , µe2),
and three for the covariance matrix Σ.

Extragalactic catalog needs to be modified following:

e =
2ϵ

1 + ϵ2
(8.2)

In section 8.5, we focus on the addition of redshift as a new parameter to measure. True redshifts
can be extracted from Extragalactic catalog and used as targets.

Images are fed to the network similarly to what is described in section 7.8.2, i.e. with data
augmentation, and the signs of the labels, the ellipticity parameters e1 and e2, are modified accord-
ingly.

8.3 Parameter estimation from the latent space of a trained de-
blender

8.3.1 Architecture
The first step to ensure that it is possible to design a neural network able to do galaxy parameters
estimation from blended scenes, is to check if those parameters can be estimated from the encoder
and latent space of the deblender trained in section 7.8.4. Indeed, once fed with an image, the
encoder is suppose to encode all the required parameters for the generation of the centred galaxy
on the image into the latent space. The galaxy ellipticity parameters, for example, should be
contained within it.

The network is composed of the encoder and latent space of the deblender as input, with the
corresponding weights which are fixed during training. One dense layer is implemented after the
latent space, and the network outputs a multivariate normal distribution (MVN) of dimension two,
to predict the two ellipticity components (see fig. 8.1). The dense layer is composed 5 neurons, two
for the mean of the MVN, (µe1 , µe2), and three for the covariance matrix Σ.

Considering an input image x, whose complex ellipticities are denoted y, and w the weights of
the neural network, the network output is a MVN: N(µ(x,w),Σ(x,w)). The loss function of this
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network is defined as the negative log likelihood:

L = − log(p(y|x,w)) (8.3)

with (x, y) ∈ D the training data. This neural network is a point estimate (or deterministic)
neural network and consequently the covariance of the distribution characterises only the aleatoric
uncertainty, coming from the input data (see chapter 5).

Only the dense layer and the MVN layer are trained to extract from the latent space, the
necessary information for the prediction of the two ellipticity parameters posterior distributions,
p(ei|D), i ∈ {1; 2}.

8.3.2 Results
In this section, we present the results for shape estimation obtained with the network described
above, and compare them with the measurements from the LSST pipeline, and using the DebVAder
algorithm presented in section 7.8.4. Thus, here I compare the results from a network that performs
ellipticity measurement on the image, without deblending, to results that used a deblending step
followed by a shape measurement step, using the REGAUSS implementation of the GalSim package
(Bosch et al., 2018).

The ellipticity error, ∆|e|, is defined as the difference betweeen the absolute value of the measured
ellipticity and the absolute value of the true lensed ellipticity, computed from the Extragalactic
catalog. This is different from what was shown in the previous chapter, and this is why the results
from the LSST pipeline and from the DebVAder might appear slightly dissimilar. To compute the
error for the network, I considered the measured ellipticity to be the mean of the MVN distribution.

Comparison with the LSST pipeline and DebVAder

The errors on the absolute ellipticity |e| =
√

e2
1 + e2

2 are shown splitting the test sample in bins
of SNR and of blendedness, as defined in section 3.1.2, and extracted from the Object catalog.
Again, boxes show the median and percentiles corresponding to ±1σ of a Gaussian, the whiskers
show ±2σ percentiles.

The comparison of the performance of this network, the LSST pipeline and using the DebVAder
are shown on fig. 8.2. Since the deblender presented in section 7.8.4 shows better results than the
LSST pipeline, we expect the same from the shape measurement network presented her. Indeed, we
kept the weights of the encoder fixed and equal to the ones of DebVAder. Consequently we expect
that the information required for the generation of the centred galaxy image, on the scene fed to
the network, is correctly encoded within the latent space. Since measuring two values from the
latent space is expected to be a simpler task than generating an galaxy image from it, we expect
the results from the network to be at least as good as the ones from the DebVAder.

Indeed, it provides more accurate ellipticity measurements, both as a function of SNR and
blendedness, than the LSST pipeline. It follows almost exactly the results obtained by the Deb-
VAder+REGAUSS method. On the complete test sample, the network decreases the median of the
distribution of errors in ellipticity measurement by more than a factor of 6 and 4 compared to the
LSST pipeline, respectively as a function of blendedness and SNR.

It performs as well as using the DebVAder and REGAUSS, showing slightly better performance
if the results are binned as a function of SNR, and slightly worse if they are binned as a function
of blendedness. Consequently, we managed to implement a shape measurement neural network
that is able to perform as good as a combination of a deblender using generative models, and a
state-of-the-art shape measurement method.
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Figure 8.2: Distributions of differences in absolute ellipticity |e| comparing the measurements on
DC2 images to the true lensed ellipticities computed from the Extragalactic catalog. Compari-
son of the results from our network using the trained encoder and latent space of DebVAder, called
”network encoder+LS” here, (in red), using DebVAder and the REGAUSS implementation of GalSim
(in yellow), and from the LSST pipeline (in blue). The distributions are computed on subsets of
the test sample split in bins of signal-to-noise ratio S/N (left) and blendedness (right). In each
plot, the top panel shows the distribution over the test sample of the quantity on the x-axis, the
middle panel shows the distribution of ellipticity errors when the test sample is split in bins of this
particular quantity, and the bottom panel shows the median error. In the middle panel, the boxes
show the median and ±1σ percentiles and the whiskers show the ±2σ percentiles.

Note that the REGAUSS shape measurement method used by the LSST pipeline fails, in some
cases, on images deblended by the PHOTO deblender (as already pointed out in Bosch et al. (2018)).
It is the case for only 0.2% (24 galaxies) of our test sample. Also, for a slightly larger fraction of the
sample, 1.4% (141 images), the REGAUSS shape measurement method gives non physical ellipticity
values, i.e. larger than one in absolute value. For all these objects our algorithm performs as well
as for any other galaxy image.

Moreover, this deterministic network outputs a MVN distribution, providing a measurement of
the aleatoric uncertainty, the uncertainty coming from the data (see top of section 5.1). To verify
the behavior of this uncertainty, a first test is to plot it as a function of SNR. This is presented
on fig. 8.3 and, as expected, aleatoric uncertainty decreases when SNR increases showing that our
network has more difficulties to measure accurately ellipticities in case of noisy data.

To go a step further, when designing the neural network, we have assumed that out measurement
could be represented by a Gaussian multivariate distribution. This can be verified, looking at the
calibration of the MVN distribution. The network’s output can be standardized to see if the
resulting distribution follows the standard distribution. We can define, for an image X and a target
Y,

Z(X,w) = Σpred(X,w)−
1
2 (Y − µ(X,w)) . (8.4)

If our hypothesis is correct, the distributions of the two components z1 ∼ Z(X,w)1 and z2 ∼ Z(X,w)2
should follow the standard distribution N(0, 1). Here Σpred is the predictive uncertainty, only
composed of the aleatoric uncertainty:

Σpred(X,w) = Σal(X,w) (8.5)
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Figure 8.3: (top) Distribution of the standard deviation, σal, of the predicted MVN distributions,
representing the aleatoric uncertainty of the measurement, as a function of signal-to-noise ratio.
As expected the aleatoric uncertainty decreases when SNR increases. (bottom) Standardized dis-
tributions of the network’s output, z1 and z2. These distributions follow the normal distribution,
showing that the aleatoric uncertainty is well calibrated.

171



On the bottom of fig. 8.3, we see that the standardized output follow closely the normal distribution,
showing that the MVN distribution is well calibrated and that the model neither overestimates or
underestimates the predictive uncertainty.

In this section, we showed that a neural network composed of a trained encoder and latent
space from a deblender, was able to measure galaxy ellipticity parameters, without requiring de-
blending, as precisely as using a deblender based on variational autoencoders, and the REGAUSS
shape measurement algorithm.

However, this network includes a layer of complexity that might not be necessary. Indeed, the
latent space is sampled at each measurement, leading to slightly different results if the network
is fed twice with the same image. We saw in section 7.3 that the encoder learns the variational
distribution qϕ(z|x) which is, actually, the multivariate Gaussian latent space. Consequently, the
aleatoric uncertainty, shown on the bottom panel of fig. 8.3, is composed of both the aleatoric
uncertainty from the encoder, sampled via the latent space, and the one from the two layers network
that learns to extract ellipticities from the latent space. This layer of complexity is probably useless,
and a single multivariate Gaussian as output of this network should be enough to capture the
aleatoric uncertainty. Since parameters are supposed to be encoded in this latent space, the output
of the network could be at this depth in the neural network.

In the next section, we use an encoder-like neural network, a CNN, which outputs the mea-
surement at the depth of the latent space in the network presented in this section. This is the
architecture of classical CNNs with a MVN distribution layer as output (see fig. 8.4).

8.4 CNN and BNN for galaxy parameters estimation
This section presents the results for ellipticity parameters estimation from a CNN. First, we present
the results from a deterministic neural network, i.e. with weights being point estimates (”CNN” in
the following). Then we use a Bayesian neural network, which can provide valuable information
for weak lensing analyses (”BNN” in the following).

8.4.1 Architecture
Point estimate CNN

Except from the latent space, the architecture of the CNN is similar to what was presented in
section 8.3.1. It follows the one from the encoder presented in section 7.3.2. It is composed of
8 convolutional layers, divided into four blocks of two layers. For each block, the first layer has
strides of (1, 1) and the second (2, 2). In each block the convolutional layers have respectively 32,
64, 128 and 256 filters and all use 3 × 3 kernels. Two dense layers of 256 and 5 units are added
after the layer that flattens the convolutional output. The output layer of the network is a a MVN
distribution layer (see fig. 8.4).

The loss is the same as in section 8.3.1:

L = − log(p(y|x,w)) , (8.6)

with (x, y) ∈ D the training data. This network, the CNN, is a point estimate neural network.

Bayesian neural network

Instead of point estimates, for a BNN we consider a probability distribution over the weights p(θ|D),
θ being the parameters of the distribution, and D the complete training sample (see chapter 5). It
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Figure 8.4: Network architecture for parameter estimation without the latent space previously
considered. This is a conventional CNN, the latent space is replaced by a 5 neurons dense layer
and the MVN distribution layer.

is used to predict the posterior predictive distribution p(Y |X,D), (X,Y) ∈ Dtest, Dtest being the test
sample, Y the target value of the neural network, here the true lensed ellipticity values, and X the
input fed to the network, here an image extracted from DC2.

However, as explained in chapter 5, the posterior distribution p(θ|D) is often intractable and to
approximate this distribution, one can use variational inference (VI). In VI, p(θ|D) is approximated
with a chosen, tractable distribution qϕ(θ|D) which depends on a set of parameters ϕ. The loss
function (eq. (8.6)) must be modified to take into account the Kullback-Leibler divergence, which
measures the loss of information between the two distributions. For (x, y) ∈ D, and similarly to
what was presented in section 7.3, the networks maximises the evidence lower-bound (ELBO):

logp(y|x) ≥ −DKL(qϕ(θ|x)||p(θ)) + Eqϕ(log p(y|x, θ)) (8.7)

The prior p(θ), is considered to be a k-tied normal distribution (Swiatkowski et al., 2020),
which is a kind of restricted families of distributions, going against the intuitive thinking that
more expressive distributions would lead to a better posterior approximation. Gaussian mean-field
variational inference (see section 5.3.3 and Blei, Kucukelbir, and McAuliffe (2016)), the usual way
of approximating the posterior distribution, implies doubling the number of trainable parameters
compared to a point estimate neural network, and can often suffer from over-regularization leading
to underfitting (Wenzel et al., 2020). The k-tied normal distribution is a more compact approx-
imation of variational distribution based on an experimental founding that converged posterior
standard deviations under Gaussian mean-field VI consistently display a strong low-rank structure.
By factorizing the parametrization of posterior standard deviations, k-tied normal distribution al-
lows for equivalent model performance compared to Gaussian mean-field VI, while decreasing the
number of trainable parameters and improving signal-to-noise ratio of stochastic gradients, leading
to faster convergence.

To learn this approximate posterior distribution we use Flipout (Wen et al., 2018) (see sec-
tion 5.3.2), which allows for a small variance of the stochastic gradient by perturbing the weights
quasi-independently within a mini-batch. This choice was particularly based on the work of Hortúa
et al. (2020) who performed tests on different VI methods for cosmological parameters estimation
from the Cosmic Microwave Background, and found Flipout to outperform other methods.

Previous work has shown that the epistemic uncertainty is mostly located in the deep layers of
a neural network (Gal, Hron, and Kendall, 2017) and that using Bayesian layers only for the deep
layers of the network could suffice for a correct estimation of epistemic uncertainty (Theobald,
Arcelin et al. (2021)). We follow this idea here by only modifying the two dense layers using
Flipout, and convolutional layers are kept as point estimate layers.
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Figure 8.5: Distributions of differences in absolute ellipticity |e| comparing the measurements ob-
tained on DC2 images to the true lensed ellipticities computed from the Extragalactic catalog.
Comparison of the results from our CNN for parameters estimation (in red), and from the LSST
pipeline (in blue). The distributions are computed on subsets of the test sample split in bins of
signal-to-noise ratio S/N (left) and blendedness (right).

8.4.2 Results
The results are computed measuring the difference between the measurements and the true lensed
ellipticity values calculated from the Extragalactic catalog. Unless stated otherwise, the mea-
surements considered for the neural networks presented in this section are the mean of the posterior
distribution measured by the networks.

Point estimate CNN

The results obtained with the point estimate CNN, CNN in the following, are presented on fig. 8.5
and compared with the measurements from the LSST pipeline.

Once again, our network performs much better than the measurements from the LSST pipeline
with an increase of a factor 8 and 5 in the performance on the median of the distribution of
ellipticity errors, respectively as a function of SNR or blendedness. As expected the spread of
the errors increases at low SNR and high blendedness. The median of the distribution of errors is
slightly biased toward negative errors at low SNR and high blendedness indicating that the network
measures rounder galaxies in these cases (see bottom of fig. 8.6). This is expected at low SNR but
more surprising at high blendedness where one would expect galaxies to appear more elliptical. It
is possible that the network, while extracting the information of the target galaxy, considers the
highly blended parts of this object as belonging to the neighbouring galaxies.

However, the results obtained with the CNN are very similar to the ones obtained with the
previous network. They are even slightly better if the performance on the median of the distribution
of ellipticity errors are compared. Therefore I stick to this architecture in the following. Similarly
to the previous network our algorithm performs as well on the galaxies for which the REGAUSS shape
measurement method fails or gives non-physical measurements, as for any other galaxy image.
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Figure 8.6: Distributions of differences in absolute ellipticity |e| measured on DC2 images and
compared to the true lensed ellipticities computed from the Extragalactic catalog. (top row)
Comparison of the results from our CNN for parameter estimation (in red), from the LSST pipeline
(in blue), and from the BNN averaged over 10 samples (yellow). (bottom row) Comparison of the
results from the CNN and BNN only, we have reduced the vertical scale on the ellipticity errors,
for a better visualisation. The distributions are computed on subsets of the test sample split in
bins of signal-to-noise ratio S/N (left) and blendedness (right).

Bayesian neural network

Then, we train a Bayesian neural network, with similar architecture to the CNN, using Flipout
on the two dense layers as described in section 8.4.1. In order to have an approximation of the
epistemic uncertainty computed by the network, we fed it 10 times with the same 3000 images
extracted from DC2. Sampling 10 times the posterior distributions of the weights might not be
enough to get a precise estimation of this uncertainty but, as a first step, we restricted ourselves to
this number.

First, fig. 8.6 shows the results obtained in terms of errors in ellipticity measurement as a
function of SNR and blendedness. For the BNN, we consider the mean of the 10 distribution means
measured by the network (for an image X, µ(X,w) = 1

K
∑K

k=1 µ(X,wk), with K = 10) as the ellipticity
measurement for a galaxy. This figure presents the results for the ellipticity measurements on 3000
images (from the 10000 images of test sample).

The BNN shows better performance compared to the LSST pipeline in both median and spread
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Figure 8.7: Standardized distributions of the network’s output, z1 and z2. These distribution are
slightly more spread than the normal distribution, showing the presence of a non-negligible amount
of epistemic uncertainty.

of ellipticity error distributions. Again, the spread of the ellipticity errors distribution increases as
expected with blendedness and at low SNR. Compared to the CNN, the BNN presents a decrease
of the median of ellipticity errors distribution of the order of 50% as a function of both SNR and
blendedness. As shown on the bottom row of fig. 8.6, this improvement mostly comes from better
ellipticity measurements at low SNR and high blendedness. It can probably be explained by the
fact that sampling the weights distribution allows to take into account the epistemic uncertainty
from the network, which decreases the impact of large measurement errors. This performance
improvement is preliminary and should be confirmed by further work, but it is very promising and
shows the benefits of the estimation of epistemic uncertainty for a neural network.

To confirm that epistemic uncertainty plays a role in this measurement, its presence can be seen
in the standardised outputs of the network defined as in section 8.3.2. For an image X and target
Y,

Z(X,w) = Σpred(X,w)−
1
2 (Y − µ(X,w)) , (8.8)

with the distributions of the two components z1 ∼ Z(X,w)1 and z2 ∼ Z(X,w)2. Here Σpred is the
predictive uncertainty, computed as the sum of the aleatoric and epistemic uncertainties, for K
output samples (here K = 10):

Σpred(X,w) = Σal(X,w) + Σep(X,w)

=
1
K

K∑
k=1

Σ(X,wk) +
K∑

k=1

(µ(X,wk) − µ̄(X))(µ(X,wk) − µ̄(X))T (8.9)

where µ̄(X) = 1
K

∑K
k=1 µ(X,wk). Figure 8.7 shows that the two distributions are slightly more spread

than the normal distribution indicating that the epistemic uncertainty is not negligible.
To test the behavior of this uncertainty we ran a test on one image that we disturbed by two

means:

• first we artificially blended the faint central galaxy with two bright galaxies, largely increasing
the blendedness (see second row of fig. 8.8),

• then we turned off pixels in a square of size 5 × 5 on the lower left from the center of the
image (see third row of fig. 8.8).
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Figure 8.8: Posterior distributions predicted by the BNN in three cases. The first row presents the
case of an unperturbed image of a faint galaxy extracted from the DC2 simulation. The second
row presents the same image where the central galaxy is blended with two bright galaxies. The
third row presents the same image perturbed with turned off pixels in a square of size 5 × 5 on the
lower left from the center of the image. On the center and right columns are shown the measured
posterior distributions of e1 and e2 respectively. The mean measurement is in red and 30 of the 100
measurements that were performed as shown in grey. The true values of the parameters are shown
with a blue vertical line.
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Figure 8.9: Ellipticity error |∆e| as a function of the epistemic uncertainty, σep. The red, blue and
green dots are the measurements performed on the unperturbed image, artificially blended image,
and image with null pixels respectively (from fig. 8.8).

These two perturbed images should be seen by the network as outliers, since it did not see such
examples in the test sample. We expect the network to estimate a large epistemic uncertainty since
it has a large probability of doing an incorrect measurement on these examples.

The epistemic uncertainty on the three cases, unperturbed, artificially blended, and with null
pixels, is computed from 100 samples of the weight distributions, i.e. by feeding the network 100
times with each image. The results are shown on fig. 8.8. On the left column are shown the three
tested images, the unperturbed image being at the top row, the artificially blended at the middle,
and the image with null pixels on the bottom. Next to these images are drawn the e1 and e2
posterior distributions measured by the BNN, respectively on the center column and on the right
column. The mean posterior distribution (the mean distribution of the 100 measurements) is shown
in red. In grey are shown 30 of the 100 measurements and the true ellipticity value are indicated
with a vertical blue line.

As expected, the epistemic uncertainty increases in both perturbed cases with samples that
are further away from each other compared to the unperturbed case. This is particularly true for
the artificially blended case where the measurement is also incorrect. The epistemic uncertainty is
measured for these three cases. It increases by a factor 2.6 for the artificially blended image and by
a factor 1.3 for the image with null pixels, compared to the unperturbed image. This increase in
epistemic uncertainty can be linked to an increase in predictive ellipticity error. On figure fig. 8.9,
the measurements on both perturbed images shift to the top right of the plane constructed from
epistemic uncertainty and absolute value of the ellipticity error. Interestingly, the perturbation
with null pixels does not impact the measurement a lot, and the epistemic uncertainty stays quite
low. On the contrary, for the image with the central galaxy artificially blended, the measurement
is incorrect and the epistemic uncertainty increases drastically reaching the tail of the ellipticity
errors and epistemic uncertainty distributions.

Figure 8.9 also shows a strong correlation between epistemic uncertainty and predictive ellip-
ticity error which can be used to decrease the impact of an incorrect measurement on the weak
lensing analysis. This can be done either by taking into account this uncertainty in the approxi-
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Figure 8.10: Distributions of differences in absolute ellipticity |e| measured on DC2 images and
compared to the true lensed ellipticities computed from the Extragalactic catalog. Comparison
of the results from our BNN for parameters estimation (in yellow), and from DebVAder combined
with the REGAUSS shape measurement algorithm (in red). The distributions are computed on
subsets of the test sample split in bins of signal-to-noise ratio S/N (left) and blendedness (right).

mation of the correlation function, or simply by taking into account the full posterior distribution
measured for the ellipticity parameters. Another common avenue is to select measurements that
are deemed reliable for the analysis in a weak lensing pipeline, applying cuts on the sample, even
though it can introduce selection bias (Mandelbaum et al., 2018). Here, one could use the values of
the epistemic uncertainty to select our data, avoiding measurements that have a high probability
of being incorrect.

To illustrate the relevance of using epistemic uncertainty instead of aleatoric uncertainty to
perform this selection, we applied a cut to large values of aleatoric, epistemic and predictive un-
certainties in order to remove 10% (300 images) of the sample and looked at the resulting mean
ellipticity error over the cropped sample. The mean ellipticity error decreases by 7% when applying
the cut on epistemic uncertainty, and by only 2% when using aleatoric or predictive uncertainty
(since aleatoric uncertainty is on average much larger than the epistemic uncertainty). This is
another argument showing the crucial need for this measurement if we want to use neural networks
in cosmological analyses.

Note that this effect has already been shown in Theobald, Arcelin et al. (2021), where we
trained a BNN to perform galaxy ellipticity measurements on simulated images of isolated galaxies
and test them on blended galaxy images (see appendix B).

Comparison with DebVAder

To conclude, we can compare the results obtained with the BNN to the ones obtained with De-
bVAder combined with the REGAUSS shape measurement algorithm. Figure 8.10 shows the distri-
butions of errors in ellipticity measurement for both methods. These preliminary results suggest
that the BNN performs better as a function of both SNR and blendedness, with particularly better
results at low SNR and high blendedness, an improvement probably also coming from the consid-
eration of the epistemic uncertainty. Note that the difference between the results of the BNN and
DebVAder at high SNR is probably due to the low statistics since this feature does not appear for
DebVAder on fig. 7.25.
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Figure 8.11: Comparison of shape measurement methods. On the left column is shown the image
on which the measurement is done. The centred column shows the results for the measurement of
e1, and the right one the results for e2. The methods compared are the BNN for ellipticity param-
eters estimation (orange), the combination of the DebVAder and the REGAUSS shape measurement
algorithm (red), and the measurement from the LSST pipeline, i.e. the deblender PHOTO and the
REGAUSS shape measurement algorithm (blue). The true value is shown with a vertical green line.
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Our BNN is able to measure the ellipticities of galaxies particularly well, probably even better
than using the combination of a deblender based on a variational autoencoder and of a state-of-the-
art shape measurement method. In any case, it performs much better than the generic deblender
implemented in the LSST pipeline (PHOTO, see section 3.3.2). Contrary to usual shape measurement
algorithms, it provides the full posterior predictive distributions of the two ellipticity parameters,
allowing to take into account the uncertainty associated to each measurement. Also, it provides
another piece of information, namely the epistemic uncertainty, that proves to be primordial for
the use of neural networks in a scientific analysis pipeline.

Examples of measurements are shown on fig. 8.11 for some of the most blended images in the
sub-sample of 3000 examples used for the BNN. The true values of e1 or e2 are shown in blue and
are consistently within the posterior distribution measured by the BNN, whereas the LSST pipeline
is not able to provide a measurement for the image on the third row for example. Measurements
provided by the combination of DebVAder and REGAUSS also give more consistent results than the
LSST pipeline on average.

8.5 Ellipticity and redshift estimation
In this section, we explore the possibility of adding the other required parameter for weak lensing
analysis, i.e. the redshift, as target. We use a deterministic CNN as described in section 8.4 to
measure both the two ellipticity parameters and the redshit, z.

Results on ellipticity parameters are not shown in this section, as they match the results obtained
previously with the CNN network (section 8.4). Figure 8.12 presents the error on the redshift,
splitting the test sample in bins of SNR, blendedness and true redshift.

As a function of SNR and blendedness, distributions of redshift errors are centred around zero
with small deviations, and the median is contained within ±0.025. Once again, the spread increases
at low SNR and high blendedness which is expected as galaxies respectively becomes fainter and
receive fluxes contributions from neighbours. We expect the latter to impact drastically redshift
estimation but the median of the redshift errors distribution remains quite stable, around ∼ −0.01,
at high blendedness. This means that our network is able to perform redshift measurements as
good on blended galaxies as on isolated objects.

The lower panel of fig. 8.12, shows the errors in redshift as a function of the true redshift.
The median of the distribution of redshift errors is strongly correlated with redshift and spreads
on a wider range of values. The network measures higher redshifts than expected at low redshift
and conversely at high redshift. This underestimation at high redshifts can probably partially
be explained by the low statistics in that range. However, more work is overall required to fully
apprehend these results, as this section presents only the first step of the integration of redshift in
our galaxy parameters estimation method.

Nonetheless, this is the first method providing a simultaneous measurement of the galaxy ellip-
ticities and redshift posterior distributions, both parts of the required parameters for weak lensing
analysis. We have seen in section 2.3.2 that these measurements are not independent and that
a joint calibration of shear and redshift is required for future surveys. Providing a method that
estimates both parts of the shear analysis might help in that sens.

Regarding the performance of our redshift estimation, lots of methods, using machine learning
techniques for example, already exist to measure posterior distributions of photometric redshift (see
section 2.2.4), and further work is required to investigate our results and compare our measurements
to state-of-the-art methods.

In the next step, this measurement must be performed with a Bayesian neural network, in
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Figure 8.12: Distributions of differences in redshift z measured on DC2 images and compared to
the true redshift extracted from the Extragalactic catalog. The results presented here were
obtained with our CNN for parameters estimation. The distributions are computed on subsets of
the test sample split in bins of signal-to-noise ratio S/N (left), blendedness (right) and redshift
(bottom).
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order to have a complete characterisation of the measurement uncertainty, and to account for
it in the following pipeline. Since BNNs provide a full posterior distribution of the measured
parameters, they are particularly suited for the estimation of photometric redshifts, which requires
the estimation of the full probability density function (see section 2.2.4). The use of a BNN for the
common estimation of ellipticities and redshift from DC2 images will be explored in future work.

The example presented in this section is a proof of concept showing that our network is able to
perform the joint measurement of ellipticities and redshift. It shows that it is possible to use our
galaxy parameters estimation method to perform the simultaneous estimation of the two elements
required for weak lensing analysis. It could also probably be applied to other galaxy parameters
such as fluxes in the different filters or galaxy size.

8.6 Discussion and future work
8.6.1 Application to real data
Similarly to DebVAder, the main issue of this method is that it is a supervised learning algorithm,
meaning that it requires a training sample labelled with the true galaxy parameters to estimate.

On real data, the true values of galaxy ellipticities for example, are never known. Consequently
our method would mainly rely on simulations and require a high level of realism to be able to
measure ellipticities of objects with more complex shapes than the parametric models used in DC2.
The very realistic Illustris simulation could be used to that extend (Vogelsberger et al., 2014).

However, the main goal of our method is to be able to avoid the deblending step, i.e. to provide
parameters estimation as good on blended scenes as on isolated galaxies. Consequently, the diversity
of galaxy shapes in the simulation would be secondary to the blends density and their variety
of configurations. The introduction of a small model bias might not be a major issue since it
can probably be calibrated using a calibration scheme such as METACALIBRATION (E. Huff and
Mandelbaum, 2017; Sheldon and E. M. Huff, 2017).

Another issue is that our method does not take into account information from the PSF. It
directly learns the models that are used in the simulation it is trained on. Consequently, an avenue,
to apply this method on real data, could be to deconvolve the scene that is going to be fed to
the network by the measured PSF on this scene, and to reconvolve it by a larger PSF used in the
simulation.

Finally, already mentioned in section 7.5.2, a method to test our method on more realistic scenes
could be source injection. It consists in injecting a fake simulated source in a real image, allowing
to control each parameter of the simulation while including true galaxies or stars, and possible
observational defects. Of course we would still be measuring the shape of an artificially simulated
galaxy, but it could make our network robust to potential observational effects that could not be
reproduced on a simulation. Work is currently being done within DESC to perform source injection
in HSC data, as it is very similar to what LSST data will look like.

8.6.2 Bias in ellipticity distribution
As mentioned, our method is based on supervised learning and therefore is highly dependent on
the distribution of the target parameters. To explore this, we can take a look at the distributions
of ellipticity parameters, and see that they are peaked around zero and quickly weaken going to ±1
(see fig. 8.13).

This can introduce a bias in the measurement of highly elliptical galaxies, which is clearly
visible on fig. 8.14 (for the network with the ”no weighting” label). Going higher in ellipticity, the
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Figure 8.13: Distribution of the two ellipticity parameters e1 and e2 for the test sample composed
of 10000 images extracted from the DC2 simulation.

negative bias in ellipticity errors increases. The network measures lower ellipticities than the true
ones, simply because it sees much more example of galaxies with low ellipticity during training.

This is not necessarily a problem here, since weak lensing relies on ensemble measurement, i.e.
the cosmic shear is computed from measurements on a group of galaxies. A high precision on the
measurement of low ellipticity galaxies, which represent the majority of the galaxies sample, and
consequently carry most of the weak lensing signal, might be more important than a high precision,
on average, on the complete range of ellipticities.

To test this hypothesis we trained a network applying weighting to the images. Since the
distribution of ellipticities is peaked around 0, we down-weight the galaxies with low ellipticities
and increase the weight of galaxies with high ellipticities. The weight is simply written as

wi =
|e1i | + |e2i |∑
i(|e1i | + |e2i |)

(8.10)

with (e1i , e2i) the ellipticity parameters of the galaxy i. Note that, in this section, we show the
performance of a network implemented as in section 8.3, i.e. with the trained encoder. Similar
results would be obtained on the CNN.

Figure 8.14 shows the comparison between the weighting and non-weighting configurations.
Results are shown as a function of input absolute ellipticity |e|, SNR, and blendedness. First, as a
function of ellipticity, weighting improves the measurement accuracy for highly elliptical galaxies,
even though it does not fully cancel the bias. However, as a function of SNR or blendedness,
the median of errors on ellipticity measurements is smaller for the network without weighting,
especially at low SNR and high blendedness. On the complete test sample, the network without
weighting performs better than the network with weighting by a factor 2.2 and 2.8 on the median
of the ellipticity errors distribution, as a function of SNR and blendedness respectively. This result
stresses the importance of precise measurements on low ellipticity galaxies rather than on elliptical
galaxies.

More tests should be carried out, for example to compute the shear bias introduced by the two
configurations, but one should probably expect similar results as low ellipticity galaxies represent
the majority of the test sample, and therefore carry most of the weak lensing signal. This result
underlines a major advantage of our method which, since it learns from the data, is able to take
into account these statistical effects. It also insists on the importance of a realistic distribution of
the parameter that we are trying to learn in the training sample.
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Figure 8.14: Distributions of differences in absolute value ellipticity |e|measured on DC2 images and
compared to the true lensed ellipticity computed from the Extragalactic catalog. The results
presented here compare the performance of two CNNs for parameter estimation, one which was
trained without weighting input images (blue), another one trained weighting images as a function
of the galaxies ellipticity (red). The distributions are computed on subsets of the test sample split
in bins of absolute value of ellipticity |e| (top), SNR (bottom left) and blendedness braw (bottom
right).
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Finally, the small ellipticities are always slightly overestimated compared to what they really are.
This could have several explanations, of different nature. First it could be linked to the noise in the
image, it is difficult to measure a perfectly round object in a noisy image since the noise alters the
light profile. However this effect is not seen at low values of SNR for the network without weighting
so this hypothesis must be discarded. Secondly, it could be due to some unrecognised blends which
have a wider light profile, leading to a larger ellipticity estimation. Since this algorithm rely on
inputs from the detection method used by the LSST pipeline, it can be impacted by unrecognised
blends. This hypothesis would need to be verified on simulations. Third, it could be linked to the
training or our neural network. The network usually starts by predicting the mean of the parameters
distribution before learning values in the wings of this distribution. The mean ellipticity of the
galaxies in the test sample being slightly non-zero, it is possible that the non-zero values at low
ellipticities might be a residual of this early convergence to the mean.

8.6.3 Choice of prior
In section 8.4.1 I set the prior for the weights distribution as the k-tied normal distribution
(Swiatkowski et al., 2020), but nothing ensures that this distribution is best fitted for our pur-
pose. As mentioned in section 5.3.3, Gaussian mean-field variational inference, from which the
k-tied normal distribution is derived, might not be the most relevant for our tasks and we should
try different priors to find the most efficient. An avenue could be to try other families or priors
or trainable priors. Indeed it could be possible to learn the mean and the variance of the prior
distribution during training in order to have better performance of our network. However, this
would not make sens as the trainable prior would not really be a prior anymore from a Bayesian
perspective. Another path could be to provide more informative priors that could be built from
expert knowledge. For example, it could be possible to pre-train the model so that the prior pre-
dictive distribution matches a known distribution of the ellipticities and redshift up to a particular
redshift. This distribution could come from the measurements performed on the COSMOS deep
field for example (Mandelbaum et al., 2014). Hence, prior predictive checking (Gelman et al., 2020)
allows to set more informative prior distribution for the weights that comes from measurements
done in previous surveys. This is a very interesting path which would be worth pursuing in the
future.

8.7 Conclusion
To conclude, we showed that a CNN can be used for precise galaxy parameters estimation on DC2
images, requiring no deblending. It is able to reproduce the same level of precision in elliptic-
ity errors as with DebVAder and the REGAUSS shape measurement algorithm, providing accurate
measurements for both isolated and blended galaxies.

We first applied our network for the estimation of galaxy ellipticity parameters and showed that
it improved performance on the median of the distribution of ellipticity errors by a factor 8 and 5
compared to the LSST pipeline, as a function of blendedness and SNR respectively. This network
also provides an estimation of the aleatoric uncertainty which is found to be well calibrated, i.e. the
network does not overestimate neither underestimate the uncertainty. Then we tested a Bayesian
neural network using Flipout (Wen et al., 2018) on the two dense layers of the CNN. This allows
for the measurement of the epistemic uncertainty which characterises the uncertainty coming from
the training sample. This uncertainty is strongly correlated with large measurement errors and can
be used to reduce the impact of (or flag) incorrect measurements. The epistemic uncertainty is a
crucial information for the application of neural networks in cosmology and this work shows that it
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can be measured using a Bayesian neural network for galaxy parameters estimation. The Bayesian
neural network presented in this work provides galaxy parameters posterior distributions that can
be used in a Bayesian analysis of cosmic shear. Finally, we added the redshift as a parameter
to estimate in order to obtain a simultaneous measurement of both ellipticities and redshift, the
two key elements of weak lensing analysis. This point estimate CNN is able to measure posterior
distributions for both ellipticities and redshift without requiring deblending.

We also discussed the difficulties associated with this method and particularly the fact that
this method is based on supervised learning. We underlined the importance of realistic simulations
and briefly presented the possible avenue of using fake source injection to get a step closer to real
data. We discussed the impact of the parameter distribution of the training sample, which plays a
major role on the results obtained with out method. We showed that our algorithm naturally takes
into account the statistical properties of the parameters that we are trying to learn, ellipticities
and redshifts in our case. It is a powerful advantage of our method for weak lensing analysis,
since cosmic shear is computed from measurements on a group of galaxies. However, it also points
out the importance for realistic parameter distributions in the simulation, since any bias in this
simulation will be embedded in our network’s measurements. One of the next steps of this work
will consist in testing this method on a sample of galaxies with higher magnitudes extracted from
the DC2 simulation, in order to confirm the results presented above.

Work remains to be done. We have already mentioned the necessity of using a BNN for the joint
estimation of the posterior distributions of ellipticities and redshifts. This will allow to fully char-
acterise the epistemic uncertainty associated to each measurement, and to decrease the potential
impact of those that are incorrect.

Our method provides full posterior distributions of ellipticities which could be combined, for
galaxies in a particular redshift bin and close from each other, to obtain a posterior distribution
of the cosmic shear at a particular location. This posterior distribution could then be used in a
Bayesian weak lensing analysis. One of the next step of this analysis is consequently to explore
how to combine these posteriors, and to verify that the resulting distribution represents a correct
estimation of the shear posterior distribution.

Before that, it is necessary to characterise the shear bias introduced by this method, and to
calibrate it, if necessary, using for example the METACALIBRATION algorithm (Bosch et al., 2018).

Finally these results, even if they are preliminary, are very promising. We showed that our
parameters estimation algorithm is able to measure both ellipticities and redshifts on blended or
isolated objects, without requiring deblending. We also showed, using a Bayesian neural network,
the relevance of the epistemic uncertainty estimation in our context. It is a necessary information
to yield reliable measurements with neural networks for weak lensing analysis. We hope that out
results can encourage the use of Bayesian neural networks for cosmology.
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Conclusion

In this manuscript, I reported the work that I have carried out between October 2018 and July 2021.
The six first chapters set the context for this work. After introducing the standard cosmological
model and the different observational probes used to constrain its parameters, I focused on weak
lensing, and more particularly on a systematic which will be dominant for future weak lensing
surveys, the blending of sources. Then, I took some time to describe the formalism of the methods
used in this work, presenting in particular, deep generative models and an introduction to Bayesian
neural networks. Finally, these methods were applied to the issue of blending in chapter 7 and
chapter 8.

In chapter 7, I proposed a new method to deblend galaxies using variational autoencoders,
called DebVAder. This method, validated on simulated images, showed good performance in shape
and flux reconstruction, benefiting largely from the joint pixel analysis of LSST and Euclid data. It
was successfully applied to artificially blended images of real galaxies using transfer learning, and to
more realistic simulations resembling the future LSST data, showing better results that the generic
deblender implemented in the LSST pipeline. Finally, DebVAder only deblends one galaxy at a
time, which led us to design an iterative procedure including detection, classification, deblending
and masking steps, a potential solution for the issue of unrecognised blends.

In chapter 8, building on the work done with DebVAder, I presented a new galaxy parame-
ters estimation algorithm able to predict accurately ellipticities and redshifts from DC2 images,
without requiring a deblending step. This algorithm gives precise measurements, similar to the
ones obtained with DebVAder and a state-of-the-art shape measurement method, when applied for
ellipticity measurements. Then, using a Bayesian neural network, I showed that epistemic uncer-
tainty is a crucial information to yield reliable ellipticity measurements. It is strongly correlated
with measurement errors, allowing to decrease the impact of incorrect estimations in the ensemble
measurement for cosmic shear, or even to apply cuts to suppress them. I concluded this chapter by
showing that our method can provide a joint measurement of ellipticity parameters and redshifts,
the two key elements of weak lensing analysis.

However, much is left to be done, and improvements can be made at several stages of these
methods. Concerning the DebVAder algorithm, and the iterative deblending pipeline presented
in chapter 7, I mentioned already that at each stage, refinements are required. The classification
scheme for example, is clearly sub-optimal and work is necessary to improve it. The DebVAder
algorithm itself could also be improved. For example, it does not provide a measurement of the net-
work uncertainty. This requires some work but could provide valuable information to the method.
Finally, a crucial step for the validation of this method is to compare it to other state-of-the-art
methods such as SCARLET, the baseline deblender which will be implemented in the LSST pipeline.
This will be soon possible using the Blending ToolKit presented in chapter 3.

Regarding the galaxy parameters estimation method, the first step is to use a Bayesian neural
network to perform both ellipticity and redshift measurement, allowing for the full characterisation
of the redshift posterior distribution required for weak lensing analysis. One a more technical
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point, the network could be made fully Bayesian by imposing distributions over the weights of the
convolutional layers. This would provide a complete measurement of the epistemic uncertainty but
it might be difficult to implement, especially since adding distributions over each weight in the
network might lead to over-regularisation. It would also be necessary to characterise the shear bias
introduced by our method, and to see if it can be calibrated by METACALIBRATION for example.
Finally, this method needs to be validated on real data and compared to state-of-the-art methods
for both galaxy ellipticity and redshift measurements.

Both these methods are supervised learning algorithms which require labelled data. To that
extent, and particularly for the parameters estimation algorithm, simulations will be key to train
these networks. They will need to be as realistic as possible to avoid the introduction of biases
in the analysis. As explained in chapter 5, deep generative models can be part of the solution to
generate images of galaxies with arbitrarily complex shapes.

The next step of this work would be to go to cosmic shear estimation, which could probably
be possible using our parameters estimation algorithm. Indeed, once this estimator calibrated, the
combination of the measured ellipticity posterior distributions of galaxies in a particular redshift
bin, and close from each other, could provide an estimation of the posterior distribution of the shear
at this particular location. This could allow for a Bayesian analysis of cosmic shear. It would be
even more relevant to use this method knowing that cosmic shear relies on ensemble measurements
and not on the measurement of individual galaxy shapes. Indeed, our method naturally takes into
account the statistical properties of the sample it is trained on, and naturally decreases the impact
of incorrect measurements by providing a posterior distribution, two characteristics that can be
particularly helpful for the estimation of cosmic shear. This path could be explored in future work,
for example by applying a neural network trained on simulations, on real data.

In this work, we only looked at blending through the perspective of shape and flux measure-
ments, but it is also tightly linked to detection, and I think that improvements could probably also
be carried out at this step of the analysis. For example, I would be very interested in exploring
the use of a deep learning algorithm for source detection on multi-band images, to see if it could
decrease the number of unrecognised blends. Since neural networks naturally make the most of the
color information, this kind of methods might be able to perform particularly well at this task. A
first step could be to compare the performance of the detection algorithm presented in chapter 7,
with the SExtractor algorithm.

At this point, I hope that the reader is convinced that Bayesian deep learning can play an
important role to address specific and complex issues for cosmology. The complexity of the models
that can be learned by neural networks, combined with the reliable characterisation of the uncer-
tainty provided by methods like Bayesian neural networks, makes it now conceivable to include
these methods in an cosmological data analysis pipeline. Moreover, it provides the ability to gen-
eralise to multi-band, multi-instrument data, which is a key advantage in the perspective of future
surveys as lot of them will produce multi-band data on wide parts of the sky. The sky coverage of
these surveys will inevitably overlap, encouraging synergies between them.

With LSST and Euclid starting recording data in 2023, the era of wide and deep surveys ahead
of us results in high expectations for new discoveries, and deep learning has a key role to play
in that process. As demonstrated by the success of a conference on Bayesian deep learning for
cosmology and gravitational waves, that we organised at the APC in March 2020, the scientific
community is already well aware of this point and is getting ready to use deep learning to unveil
new secrets of the Universe.
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Appendix A

Comparison of Graphcore IPUs and
Nvidia GPUs for cosmology
applications

Abstract. This paper represents the first investigation of the suitability and performance of
Graphcore Intelligence Processing Units (IPUs) for deep learning applications in cosmology. It
presents the benchmark between a Nvidia V100 GPU and a Graphcore MK1 (GC2) IPU on three
cosmological use cases: a classical deep neural network and a Bayesian neural network (BNN)
for galaxy shape estimation, and a generative network for galaxy images simulation. The results
suggest that IPUs could be a potential avenue to address the increasing computation needs in
cosmology.

A.1 Introduction
Upcoming imaging galaxy surveys, such as the Legacy Survey of Space and Time (LSST, LSST
Science Collaboration et al., 2009) conducted at the future Vera C. Rubin Observatory, ESA’s
Euclid satellite (Refregier et al., 2010) or the Nancy-Grace-Roman Space Telescope (Roman Space
Telescope, former WFIRST, Spergel et al., 2013) will produce an unprecedented amount of obser-
vational data. For instance, LSST will produce 20 Terabytes of data every night and around 60
Petabytes over the its 10 years of service1. These amounts are mainly due to the quality and the
nature of the data recorded: large sky images in different filters (or colors).

In order to prepare and test future data analysis pipelines, it is necessary to simulate a quality
and a quantity of data as close as what will be recorded. The pipelines will need to process data
with fast and accurate analysis techniques, and to provide reliable uncertainties. When looking for
fast data processing techniques, a now common choice is to turn to deep learning algorithms, which
allow for very fast inference on data once trained.

As an example, a LSST pipeline will be dedicated to look for transients continuously during the
night. It will have to send an alert to the community in within 60 seconds after image readout2.
The alert system is supposed to produce around 10 million alerts per night. A solution proposes
to use deep learning to accelerate parts of the process such as the classification of events (Möller
et al., 2020).

1https://www.lsst.org/about/dm
2https://www.lsst.org/about/dm
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Figure A.1: On the left, the posterior distributions of a galaxy e1 and e2 shape parameters estimated
with a deterministic deep neural network. On the right, two galaxy images generated via sampling
the latent space of a trained VAE.

In order to train deep artificial neural networks, specific hardware are necessary. Graphics
Processing Units (GPU) are the most common technology used nowadays. It evolved a lot over the
years to reach very high performance at the moment and surpasses Central Processing Units (CPU).
Google Tensor Processing Units (TPU), LightOn Optical Processing Units (OPU)3, or Graphcore
Intelligence Processing Units (IPU)4, are more recent examples of hardware developments aiming
for faster computing.

Graphcore’s IPUs have already shown better results than GPUs at language and speech pro-
cessing, computer vision, probabilistic modeling5 and even in some common use cases of particle
physics (Mohan et al., 2020).

This paper presents the benchmark between a Nvidia V100 GPU and a Graphcore MK1 (GC2)
IPU on three cosmological use cases: a deterministic deep neural network and a Bayesian neural
network (BNN) for galaxy shape estimation, and a generative network for galaxy images production.
Figure A.1 shows outputs of the previously mentioned use cases: the posterior distribution of galaxy
ellipticity parameters, estimated from a deterministic network on the left, and isolated galaxy
images generated from a neural network on the right. The code to reproduce this study can be
found on GitHub 6.

This paper represents a first investigation of the suitability and performance of IPUs in deep
learning applications in cosmology. The paper is organised as follows: in appendix A.2, the two
tested hardware are described, appendix A.3.2 presents the results obtained to train a deterministic
and a Bayesian neural network to learn galaxy shape parameters from isolated galaxy images,
appendix A.3.3 compares the performance of the tested hardware in the case of inference, to generate
isolated galaxy images, and finally, appendix A.4 concludes and discusses the different results.

3https://www.lighton.ai/
4https://www.graphcore.ai/
5https://www.graphcore.ai/benchmarks
6https://github.com/BastienArcelin/IPU-GPU
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Single precision Max Power
Processing Unit Cores Memory performance Consumption

GPU Nvidia Tesla V100 PCIe 5120 32000Mb 14 TFLOPS 250 W
IPU Graphcore Colossus™GC2 1216 286Mb 31.1 TFLOPS 120 W

Table A.1: Comparison of IPU7 and GPU8 specification for machines used for this benchmark.

A.2 Hardware description
In this paper I compare the performance of a single first generation MK1 (GC2) IPU7 to the per-
formance of a single Nvidia V100 GPU. Key specifications of the IPU and the GPU8 are presented
in table A.1.

The IPU is a type of processor with a different architecture from the one of the GPU (Jia
et al., 2019). It is specifically designed for machine learning applications as it offers true MIMD
(Multiple Instruction, Multiple Data) parallelism. It is designed to adapt to irregular computation
and sparse data access. Each processor is composed of 1216 cores, called tiles. Each tile contains
256 KiB of local memory and is complex enough to execute distinct programs. It can also support
up to six threads, allowing for 7.296 threads that can be executed in parallel on an IPU. On the
contrary, GPU has a SIMD (Single Instruction, Multiple Data) architecture. The 5120 GPU cores
are grouped in clusters for which all of the cores will execute the same instruction. As threads are
scheduled on clusters, they perform the same operation on independent data.

Two other differences have a direct impact for the user: the memory per processing unit and
the single precision performance. The IPU has a much smaller memory than the GPU. This may
become a bottleneck in case of large neural network, i.e. with a lot of training parameters, or when
processing heavy data, such as imaging survey data.

The other major difference is the single precision performance, IPUs being able to reach 31.1
TFLOPS (TeraFLOPS, Floating-point operation per second), more than twice the GPU value.

Finally, it is significant to notice that the IPU used here reaches the presented level of perfor-
mance while consuming less than half electrical power consumed by the GPU.

Note than more recent and more powerful versions of both Graphcore and Nvidia technologies
have been released: the Colossus™MK2 GC200 at Graphcore, with increased in-processor and
exchange memory, and the A100 GPU at Nvidia, with more memory and higher single precision
performance.

Both GPUs and IPUs support TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al., 2019),
user-friendly frameworks allowing programmers without specific hardware knowledge to access high-
performance computing.

Examples presented in this work are implemented using TensorFlow in its version 2.1.0. Graph-
core provided drivers and its Poplar Software Development Kit (SDK) which is used in its version
1.4.0. The GPU is accessed via the IN2P3 Computing Center (CC-IN2P3–Lyon/Villeurbanne -
France), and runs with Nvidia CUDA version 10.1.105.

7https://www.graphcore.ai/products/ipu
8https://www.nvidia.com/en-gb/data-center/v100/
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A.3 Cosmological use cases
A.3.1 Training data
Images generation uses the same hypothesis as what is described in section 2.1 of Arcelin et al., 2021.
Images of isolated galaxy are simulated using GalSim9 (Rowe et al., 2015) from parametric models
fitted to real galaxies from the HST COSMOS catalogue, containing 81 500 images. These fits were
realised for the third Gravitational Lensing Accuracy Testing (GREAT3) Challenge (Mandelbaum
et al., 2014, see Appendix E.2).

This benchmark is realised on simulations of LSST-like images composed of the six LSST filters
(ugrizy, LSST Science Collaboration et al., 2009) and convolved with a fixed Point-Spread-Function
(PSF). For each filter, Poisson noise is added. Images size is arbitrarily fixed at 64 × 64 pixels and
the pixel size is 0.2 arcsecond. The code for image generation can be found here 10.

Artificial neural networks presented in the next sections are trained by feeding them by batches.
The batch size is not fixed, it is used as a parameter to compare the performance of the two tested
hardware. The dimension of the input tensors is (batchsize, 6, 64, 64).

A.3.2 Galaxy shape parameter estimation
With future galaxy surveys, various probes will be used to study dark energy. One of the most
promising is cosmic shear (Kilbinger, 2015), i.e. the measurement of the coherent distortion of
background galaxies by foreground matter through weak gravitational lensing. To obtain a precise
measurement of this probe, the shape and redshift (or distance) of the observed galaxies must
be accurately measured. Several galaxy shape measurement methods based on model-fitting or
moments measurement already exist, but none of them perform accurately on blended objects,
i.e. overlapping objects on an image. As galaxy surveys observe further in the sky, dealing with
overlapping objects is becoming a major challenge. For example, Bosch et al., 2018 estimated that
58% of detected objects will be blended in the HSC wide survey.

We developed a new technique based on deep neural networks and convolutional layers which
permits to measure shape ellipticity parameters on isolated as well as on blended galaxies (Arcelin
et al., in prep). Our network takes as input the isolated galaxy or blended galaxies scene and
outputs the posterior distribution of the target galaxy ellipticity parameters. First, we tested a
deterministic neural network, and then a BNN. The advantage of BNNs is that they allow for an
accurate characterisation of the epistemic uncertainty, which is necessary to do reliable prediction
that can be used in scientific studies (Charnock, Perreault-Levasseur, and François Lanusse, 2020).

As this work focuses on hardware performance, the network tested here is a simplified version
of the one working on blended scenes and presented in Arcelin et al., in prep. It is trained to
retrieve ellipticity parameters distribution from isolated galaxy images only. It is composed of one
batchnormalization layer, eight stacked convolutional layers, one dense layer and the output is a
multivariate normal distribution layer11 from the TensorFlow Probability library.

Deterministic neural network

The training of a deterministic network performing galaxy shape parameter estimation is the first
test presented here. The network is defined as deterministic since, once trained, trainable pa-
rameters have a fixed value. In other words, the output posterior distributions will not change if

9https://github.com/GalSim-developers/GalSim
10https://github.com/BastienArcelin/image_generation_GalSim
11https://www.tensorflow.org/probability/
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Figure A.2: (left)Training time for a deep deterministic neural network performing galaxy param-
eter estimation as a function of the batch size. (right) Speed ratio of GPU and IPU as a function
of the batch size. The red horizontal line represents the value R = 1, i.e. the network takes the
same amount of time for training in both cases. The neural network is composed of 1.5M trainable
parameters.

the network is fed twice with the same isolated galaxy image. This network is composed of 1.5M
parameters.

During training, the Adam optimizer (Kingma and Ba, 2014) is used and the loss is defined as
the negative log probability of the output:

L = − log(p(x)) (A.1)

Here p is the posterior distribution, output of the multivariate normal distribution layer and x is
the target value.

The training procedure is the same for IPUs and GPUs and the chosen metric is the training
time for 100 epochs. Ten epochs are considered as a warm-up phase. The test is realised for
different batch sizes: from 2 to 14, 14 being the maximum batch size that can be handled by the
IPU before memory is full (see appendix A.2).

The results are presented on fig. A.2. Using IPUs improves the training time compared to GPUs,
especially for very small batch sizes. The network does not learn well for batch sizes lower than
4, but even for greater values, the network is trained at least twice as fast on the IPU compared
to the GPU. This result confirms the already shown efficiency of IPUs on tasks close to computer
vision12.

Bayesian neural network

Then, the same test is run, but this time with a BNN. Instead of learning fixed values for each pa-
rameter, training a BNN consists in learning a posterior distribution over each parameter, knowing
the data, through variational inference (Valentin Jospin et al., 2020 and Charnock, Perreault-
Levasseur, and François Lanusse, 2020). Here the reparameterization trick is used to perform

12https://www.graphcore.ai/mk2-benchmarks
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Figure A.3: (left)Training time for a deep BNN performing galaxy parameter estimation as a
function of the batch size. (right) Speed ratio of GPU and IPU as a function of the batch size. The
red horizontal line represents the value R = 1, i.e. the network takes the same amount of time for
training in both cases. The neural network is composed of 2.7M trainable parameters.

variational inference (Kingma and M. Welling, 2014, Kingma, Salimans, and Max Welling, 2015
and Blundell et al., 2015).

Since the training consists in learning distribution parameters, the number of trainable param-
eters increases to 2.7M. Training BNNs also adds a term in the loss: the sum of all the Kullback-
Leibler (KL) divergences between the parameter posterior distribution and the prior distribution.
Here, this prior distribution is chosen to be the normal distribution, a common choice in literature.
The loss is now defined as

L = − log(p(x)) +
∑

i

KL(p(wi|x)||p(z)) (A.2)

Here wi is the i − th parameter in the network and p(z) is the prior distribution.
Same as previously, this network is trained during 100 epochs on the same images sample, with

a 10 epochs warm-up phase.
As expected, the memory size limitation restrains the training of the BNN to lower batch sizes

than with the deterministic network. The BNN is trained with batch sizes varying from 2 to 8.
IPUs once again outperform GPUs (see fig. A.3) with a training speed at least four time superior.

To summarise, training artificial neural networks on IPUs is much faster than on GPUs. How-
ever, the memory size of IPUs becomes a limitation for large networks as it restrains their training
to small batch sizes. This might become a problem in some cases, if the batch sizes are too small
for the learning to converge. In order to go to higher batch sizes, it would be necessary to split the
network over several IPUs.

A.3.3 Galaxy image generation
Generating large amount of mock data is a major step to test and improve analysis pipelines. Until
now, most galaxy simulations are based on simple analytic profiles such as Sérsic profiles (see for
example Rowe et al., 2015). This is not very fast and is known to increase the risk of introducing
model biases (see Mandelbaum et al., 2015).
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Figure A.4: (left) Inference time, sampling from a trained VAE latent space as a function of
number of image to generate. (right) Ratio of inference time of GPU and IPU. The red horizontal
line represents the value R = 1, i.e. the network takes the same amount of time for inference in both
cases.

Deep learning is a natural choice to turn to when looking for fast data generation methods.
Several generative models based on neural networks already exist and present interesting perfor-
mance (Variational Auto-Encoder (Kingma and M. Welling, 2014), Generative Adversarial Network
(Goodfellow et al., 2014) or Normalizing flow (Dinh, Krueger, and Bengio, 2014), (Jimenez Rezende
and Mohamed, 2015)). In our context, they are also effective tools to learn how to generate com-
plex light profiles and decrease model bias (Francois Lanusse et al., 2020). Using generative neural
networks to model galaxy is seriously considered in different cosmological applications (Francois
Lanusse et al., 2020, Regier, McAuliffe, and Prabhat, 2015 or Arcelin et al., 2021).

Generative model

In this part, the images generation is done by sampling the latent space distribution of a variational
autoencoder (VAE) trained on isolated galaxy images. When training the VAE, variational inference
is used to learn a latent space distribution which encodes the galaxy parameters distribution. The
prior for the latent space is taken as a normal distribution. However with training, the posterior
distribution of the latent space is almost always not exactly normal (see Fig.3 of Arcelin et al., 2021
for instance). It is then possible to use normalizing flows to map this distribution into a normal
one thanks to a series of small invertible transformations. From there, it is possible to trivially
sample the latent space distribution via the normalizing flows and use the decoder to generate
galaxy images. I used Masked Autoencoder for Distribution Estimation (MADE, Germain et al.,
2015) to build the normalizing flows network (similarly to Francois Lanusse et al., 2020). Here I
compare image generation (or inference) speed using IPUs and GPUs. After a warm-up phase of
100 inferences, the measurement is realised on generating 1 to 5000 isolated galaxy images.

Results

Figure A.4 shows that IPUs perform better than GPUs at generating small batches of images.
On the contrary, GPUs outperform IPUs when the number of images to generate increases. The
choice of hardware depends on the number of images to produce, which, in turn, can depend on
the usage of the generated data. To train a network, generating small batches of data on the fly
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can be necessary and IPUs should be used. On the contrary if the goal is to generate a large
amount of data in order to test a data processing pipeline for example, generation on GPUs is more
appropriate. As an example, the CosmoDC2 (Korytov et al., 2019) catalog released which covers
440 deg2 of the sky area, contains around 2.26 billion galaxies. To generate this many galaxies with
the tested generative model, less than 18 days of computing would be required on a single V100
GPU. Scaling this process on multiple GPUs would decrease this duration even more.

A.4 Summary and discussion
Parameter estimation and simulated images generation are typical examples of tasks that will be
required to process and prepare for future imaging galaxy surveys. The increasing use of neural
networks and particularly BNNs in cosmology demonstrates the community’s interest in developing
fast and accurate tools. These tools require particularly suited hardware. In this work I investigated
IPUs and GPUs performance at training neural network and performing inference for cosmology
applications.

In this study, we demonstrated that IPUs performed at least twice as fast as GPUs at training
neural networks with small batch sizes. The restriction to small batch sizes due to the IPU memory
size depends on the number of parameters of the network, leading to greater constraints for Bayesian
neural networks. However, these constraints did not prevent the networks presented in this work
to learn how to perform accurately.

We also presented performance in generating galaxy images from a trained VAE latent space,
a typical inference example. Here, IPUs perform better at small batch sizes but are outperformed
by GPUs at larger ones. The hardware choice depends on the task to accomplish: if the data is
generated on the fly to train a neural network for example, using IPUs is probably more relevant.
On the contrary, if the objective is to generate a large amount of data to test a data processing
pipeline, it is more relevant to use GPUs.

To conclude, this first test of IPUs for deep learning applications in cosmology suggests that
IPUs perform better than GPUs at training neural networks but, regarding inference, the choice
depends on the task to realise. It must be noted that the memory size of IPUs induces a limitation
for training, in network size as well as in batch size, which might be a bottleneck for BNNs. This
limitation might however be alleviated with the new version of Graphcore’s IPUs. In any case,
if these kind of processes are used to analyse cosmological data, scaling them on several IPUs or
GPUs would probably be necessary, which might also solve the IPU memory size issue.
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Abstract. Cosmic shear estimation is an essential scientific goal for
large galaxy surveys. It refers to the coherent distortion of distant galaxy
images due to weak gravitational lensing along the line of sight. It can
be used as a tracer of the matter distribution in the Universe. The
unbiased estimation of the local value of the cosmic shear can be obtained
via Bayesian analysis which relies on robust estimation of the galaxies
ellipticity (shape) posterior distribution. This is not a simple problem as,
among other things, the images may be corrupted with strong background
noise. For current and coming surveys, another central issue in galaxy
shape determination is the treatment of statistically dominant overlapping
(blended) objects. We propose a Bayesian Convolutional Neural Network
based on Monte-Carlo Dropout to reliably estimate the ellipticity of
galaxies and the corresponding measurement uncertainties. We show that
while a convolutional network can be trained to correctly estimate well
calibrated aleatoric uncertainty, -the uncertainty due to the presence
of noise in the images- it is unable to generate a trustworthy ellipticity
distribution when exposed to previously unseen data (i.e. here, blended
scenes). By introducing a Bayesian Neural Network, we show how to
reliably estimate the posterior predictive distribution of ellipticities along
with robust estimation of epistemic uncertainties. Experiments also show
that epistemic uncertainty can detect inconsistent predictions due to
unknown blended scenes.

Keywords: Bayesian Neural Networks · Convolutional Neural Networks
· Epistemic uncertainty · Uncertainty calibration · Cosmology.

1 Introduction

One of the goals of large galaxy surveys such as the Legacy Survey of Space and
Time (LSST, [16]) conducted at the Vera C. Rubin Observatory is to study dark

1 The first author is preparing a PhD thesis at the LORIA Lab in the context of the
AstroDeep Research Project (https://astrodeep.pages.in2p3.fr/website/projects/)
funded by ANR under the grant ANR-19-CE23-0024.
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energy. This component of unknown nature was introduced in the current cosmo-
logical standard model to explain the acceleration of the Universe expansion. One
way to probe dark energy is to study the mass distribution across the Universe.
This distribution mostly follows the dark matter distribution, which does not
interact with baryonic matter (i.e. visible matter) except through gravitation,
as dark matter represents around 85% of the matter in the Universe. Conse-
quently, cosmologists need to use indirect measurement techniques such as cosmic
shear, which measures the coherent distortion of background galaxies images by
foreground matter due to weak gravitational lensing [17]. In astrophysics, gravita-
tional lensing is the distortion of the image of an observed source, induced by the
bending of space-time, thus of the light path, generated by the presence of mass
along the line of sight. The mass acts like a lens, in partial analogy with optical
lenses, as illustrated in Fig.1a. The weak gravitational lensing effect is faint (1%
of galaxy shape measurement) and only statistical tools provide a way to detect
a local correlation in the observed galaxies orientations. This correlation yields a
local value at every point of the observable Universe, defining the cosmic shear
field. As pictured in Fig.1b, in an isotropic and uniform Universe orientations of
galaxies are expected to follow a uniform distribution (left panel). The statistical
average of their oriented elongations, hereafter called complex ellipticities, is
expected to be null. In presence of a lens, a smooth spatial deformation field
modifies coherently the complex ellipticities of neighboring galaxies so that their
mean is no longer zero (right panel).

(a) Gravitational lensing.

Galaxies randomly distributed With shear: slight bias

(b) Cosmic shear.

Fig. 1. (a) Effect of gravitational lensing: the mass bends the light and deforms the
images of the galaxies. (b) Weak lensing: the correlation between orientations and
shapes of neighbour galaxies defines the cosmic shear. In blue: average ellipticity. Left:
the expected ellipticity distribution. Right: the observed ellipticity distribution. Image:
(a) NASA/ESA

The unbiased measurement of cosmic shear is a major ambition of nowadays
cosmology [21]. One avenue to estimate the cosmic shear locally is to combine
individual galaxy ellipticity measurements. By looking deeper into the sky, that
is to older objects, the next generation of telescopes will allow for the detection
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of a very large number of galaxies, potentially leading to very precise shear
measurement and resulting in tight constraints on dark energy parameters.

Methods already exist to estimate galaxy ellipticities through direct mea-
surement on images recorded by telescope cameras ([13] for example). This is
a complex problem as, among other things, the shear signal is carried by faint
galaxies which makes it very sensitive to background noise. Another central issue
for current and coming surveys in galaxy shape determination, is the treatment
of statistically dominant overlapping objects, an effect called blending. A current
survey projects that 58% of the detected objects will appear blended [18] and
this value is expected to reach around 62% for LSST [19]. To overcome this issue,
solutions exist such as deblending [22–24]: the separation of overlapping objects.
Yet, they are not perfect and rely on an accurate detection of blended scenes
which is also a complex problem. As such, in addition to a precise estimation of
the complex ellipticities, a reliable measurement of the uncertainties is crucial in
order to discard, or at least decrease the impact of, unreliable and inaccurate
measurements avoiding as much as possible the introduction of a bias into the
shear estimation.

Classical ellipticity measurement methods usually adopt assumptions about
the shape of the galaxies (for example via the shape of the window function
in [13]) potentially resulting in model bias. In contrast, convolutional neural
networks or CNNs [2] make it possible to learn and recognize complex and diverse
galaxy shapes directly from data without making any other hypothesis than the
representativeness of the training sample. They consequently are appropriate
tools to learn the regression of galaxy ellipticities, even in the presence of noise
and complex distortions. Yet standard CNNs can only measure the aleatoric
uncertainty : the one due to the presence of noise in the data. They are unable
to estimate the epistemic uncertainty, the one due to the limited number of
samples a CNN has been trained with and to the model [1, 9]. This second
type of uncertainty is essential to detect outliers from the training samples,
or formulated accordingly to our problem, to distinguish between reliable or
unreliable galaxy ellipticity estimation. It is only accessible by considering neural
network weights as random variables instead of constants, that is, by adopting a
Bayesian approach. Consequently, we have focused our work on Bayesian Deep
Learning [11] using Monte Carlo dropout (MC dropout) [1] as the mean to apply
Bayesian inference to Deep Learning models.

Foreseeing a Bayesian estimation of the cosmic shear, combining galaxy
ellipticity posteriors estimated directly from images (with blends or not) in
different filters (or bands), this paper focuses on estimating reliable galaxy
ellipticity posteriors from single band images. This is a necessary step to check
that the proposed method efficiently estimates a calibrated aleatoric uncertainty
and is able to minimize the impact of wrongly estimated ellipticity values due to
outliers in the computation of the shear. We compare two networks trained on
isolated galaxy images with or without noise in order to test for the calibration
of aleatoric uncertainty. Regarding outliers, blended scenes are perfect examples.
Note that these are illustrations of aleatoric or epistemic uncertainty sources.
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Most of cosmic shear bias sources such as detection, Point-Spread-Function (PSF)
treatment, or selection for example [17, 21], can fall in one or the other category.
The estimation of galaxy ellipticity posterior from blended scenes in different
bands is a harder problem that we will investigate in further work.

The contributions of this article are 1) to propose a Bayesian Deep Learning
model that solves a complex multivariate regression problem of estimating the
galaxy shape parameters while accurately estimating aleatoric and epistemic
uncertainties; 2) to establish an operational protocol to train such a model based
on multiple incremental learning steps; and 3) to provide experimental evidences
that the proposed method is able to assess whether an ellipticity measurement is
reliable. This is illustrated, in this paper, by the accurate differentiation between
isolated galaxy or blended scenes, considered here as outliers, and the relationship
between epistemic uncertainty and predictive ellipticity error. We also show that
this last result could not be obtained with a classical, non Bayesian network.

The rest of the paper is organized as follows. In Section 2 we briefly describe
the problem to be solved and comment on some of its peculiarities. We detail our
proposed solution in Section 3. We analyse the results obtained on the various
experiments we performed in Section 4, and we conclude and give the directions
of further research in Section 5.

2 Estimating galaxy ellipticity from images

As mentioned previously, it is possible to estimate cosmic shear combining indi-
vidual measurements of galaxy shape. This shape information can be quantified
by the complex ellipticity, which can be defined in cosmology as in Def. 1.

Definition 1. Let E be an ellipse with major axis a, minor axis b, and with θ
as its position angle. The complex ellipticity of E is defined as:

ε = ε1 + ε2 i =
1− q2

1 + q2
e2iθ, (1)

where q = b
a is the axis ratio of the ellipse.

An illustration of the ellipticity parameters is shown in Fig. 2a. The complex
ellipticity defines a bijection between the orientation and the elongation of the
ellipse on one side, and the unit disk on the other side, see Fig. 2b.

However, the process to achieve an unbiased measurement of cosmic shear,
starting with the estimation of ellipticities, is going to be challenging for several
reasons. We test the reliability of our networks prediction on noise and blending,
two of the many possible bias sources in the cosmic shear estimation. Both of
these issues result from the fact that the shear signal is mostly carried by faint
galaxies. By definition, these objects have a low signal-to-noise ratio. The noise
corrupts the galaxy images, making the shape estimation much harder (see Fig.
3b), and can introduce a bias in shear measurement [17].

Also, a large part of these faint objects will appear blended with foreground
galaxies. Even in scenes where objects are only slightly overlapped, the apparent
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(a) Ellipticity parameters: major axis
a, minor axis b, position angle θ.
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(b) Bijective mapping between ellipse
shapes and complex ellipticities.

Fig. 2. Geometric representation of the complex ellipticity. (a) The ellipse parameters.
(b) The complex ellipticity defines a bijection between ellipse shapes and the unit disk.
An ellipticity with low magnitude is close to a circle, while one with a high magnitude
is closer to a straight line. The argument defines the orientation of the ellipse
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(c) Blended noisy galaxies

Fig. 3. Three different types of image complexity for the same galaxy: isolated without
noise, isolated with noise, blended with noise. Notice how the noise slightly deforms the
galaxy (b) and how the blended galaxies makes the ellipticity estimation very difficult
(c) when compared to a simple isolated galaxy without noise (a)

shape of the detected object does not correspond to a single galaxy model and
an ellipticity measurement on this image could give a completely wrong result.
Again, this work is the first step of a longer-term goal. Here, we target a reliable
estimation of galaxy ellipticity posterior from single band images. This includes
obtaining a well calibrated aleatoric uncertainty, tested here with and without
the addition of Poisson noise on images, and an epistemic uncertainty allowing
for minimization of the impact of untrustworthy measurement due to outliers
(here, blended scenes).

We simulate LSST-like images, allowing us to control the parameters of the
scene, e.g., the number of galaxies, their location on the image, and the level
and type of noise applied. We consider four categories of simulated data: isolated
centered galaxies without noise, isolated centered galaxies with noise, and blended
scene with and without noise. Images are 64x64 pixels stamps simulated in the
brightest of the six bands corresponding to the LSST filters, each of them selecting
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a different part of the electromagnetic spectrum. These images are simulated
placing, in their center, a galaxy whose ellipticity is to be measured.

The image generating process relies on the GalSim library [14] and is based on
a catalog of parametric models fitted to real galaxies for the third Gravitational
Lensing Accuracy Testing (GREAT3) Challenge [20]. It consists in 1) producing an
image of a centered noiseless isolated galaxy from a model sampled randomly from
the catalog, with its corresponding physical properties (size, shape, orientation,
PSF, brightness, redshift, etc) 2) measuring the complex ellipticity of the galaxy
with the KSB algorithm [13] on the image and record it as the image label, 3)
possibly adding on random image location other galaxy images (from 0 to 5)
to generate blended scenes 4) possibly adding Poisson noise (as in [24]). In this
study and for sake of interpretability, we only provide as input to our CNN
the reference band (the brightest) which we use to define the target ellipticity,
making our images two-dimensional. Once again, while using multiple bands is
useful for blended galaxies [23, 24], here we focus only on predicting the ellipticity
of a single centered galaxy with a correctly estimated uncertainty.
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(a) Convolutional layers
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(b) Fully connected layers

Fig. 4. Convolutional neural network architecture. (a) The input after augmentation
has dimensions 45x45x1. Each convolutional block starts with a batch normalization
layer and has a PReLU activation. The first convolutional layer is of dimension 45x45x32
with a 5x5 kernel size (in yellow), followed by a 2x2 Max-Pooling operation (in orange).
The second convolutional layer is 22x22x64 with kernel size 3x3, followed by a 2x2
Max-Pooling operation. Then, we add two 11x11x128 convolutional layers with a 3x3
kernel that ends with a final 2x2 Max-Pooling operation, and the resulting feature maps
are flattened into a 3200 fully connected layer (in purple). (b) Each augmented image
gives a 3200 fully connected layer convolutional output (all augmented images share
the same convolutional layers and filters), which are then concatenated into a 12800
fully connected layer. The two final layers have 4096 neurons in the case of an MVN
regression, 2048 else; with Maxout activation [15] and dropout with a rate of 0.5. The
output layer has 5 neurons in the case of an MVN regression
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3 A method to assess uncertainty in ellipticity estimation

3.1 Estimation of noise related uncertainty

Our first goal is to reliably estimate the first layer of complexity in the galaxy
images, the noise. Given the nature of the data, we will be using a CNN [2].
However, training a CNN to solve a standard regression problem with an L2 loss
does not allow us to estimate the uncertainty due to the noise. Therefore, in place
of a complex scalar output, we predict a 2D multivariate normal distribution
(MVN) as an output: given an input image X, whose complex ellipticity is
denoted Y and given weight parameters w, the network outputs an MVN Y ∼
N (µ(X,w), Σ(X,w)). As such, the model is no longer trained on a simple L2
loss but rather on the log-likelihood of the MVN. The mean of the distribution
µ(X,w), which is also the mode, serves as the predicted output, and the covariance
matrix Σ(X,w), which is also an output of the network, represents the so-called
aleatoric uncertainty on the input data X. The model is therefore heteroscedastic,
as Σ(X,w) depends on the input X [9]. This allows our model to estimate the
aleatoric uncertainty for each image individually. The determinant of Σ(X,w),
denoted |Σ(X,w)|, is a scalar measure of uncertainty, as it is directly related to

the differential entropy, ln
(√

(2πe)2|Σ(X,w)|
)

, of an MVN.

The architecture of our network is inspired by the work of Dielman, who
proposed a simple model specifically tuned for the Galaxy Zoo challenge, therefore
adapted to our data [12]. Each image is augmented in four different parts by
cropping thumbnails from high resolution images, centered on spatial modes
of light profile. Then each augmented image is fed to the CNN. The complete
architecture is explained in Fig. 4. More details on the training process are
explained in Section 3.3. Results obtained with this model are given in Section
4.1.

3.2 Estimation of blend related uncertainty

As seen in Section 2, estimating the uncertainty due to the noise in the data is
only one part of the problem. An estimated 60% of the images represent blended
scenes, for which a direct estimation of ellipticity does not make sense in the
context of this work. The uncertainty related to the blended images cannot be
estimated simply with the variance of the MVN distribution. Indeed, in the case
of a blended scene image, the network is not uncertain because of the noise but
rather because this kind of images is not part of the training sample. This can
be characterized by the epistemic uncertainty.

This uncertainty can be estimated using a Bayesian Neural Network (BNN),
which assumes a probability distribution on the weights W of the network instead
of a single point estimate [11]. Given a prior p(w) on W and a set D = {(Xi, Yi)}i
of observations, the resulting posterior distribution p(w|D) ∝ p(D|w) p(w) is
analytically impossible to compute. A variational Bayes optimization method
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is necessary to derive an approximate posterior qθ(w) parameterized by hyper-
parameters θ. In MC dropout [1, 3], the considered search space includes all
approximate posteriors resulting from applying dropout [7], i.e multiplying every
neuron output (of selected layers) by an independent Bernoulli variable. The
dropout rate is set to the conventional value of 0.5, as this leads to an approximate
posterior that can achieve well calibrated uncertainty estimates [1]. However, there
are other ways to define the posteriors such as dropout rate tuning [5], or ensemble
methods by training many networks [6]. During training, standard stochastic
gradient descent techniques can be used, thanks to the reparameterization trick,
to search for an approximate posterior maximizing locally the ELBO [1]. During
testing, the posterior predictive distribution p(Y |X,D) for some input X can be
estimated using Monte Carlo sampling:

p(Y |X,D) ≈
∫
p(Y |X,w)qθ(w)dw ≈ 1

K

K∑
k=1

p(Y |X,wk) , (2)

where (wk)Kk=1 ∼ qθ(w) refer to weights of K independent dropout samples.
In the case of a multivariate regression problem like ours, every distribution

p(Y |X,wk) is a MVN so that the resulting posterior predictive distribution in
Eq. 2 is a Gaussian mixture of order K. The uncertainty underlying this mixture
can be summarized by its covariance matrix Σpred.(X,D) = Cov(Y |X,D). This
matrix accounts for both aleatoric and epistemic uncertainties, whose respective
contributions can actually be separated in a way that generalizes the variance
decomposition described in Depeweg [10]:

Σpred.(X,D) = Σaleat.(X,D) +Σepist.(X,D) , (3)

where the first term represents the aleatoric uncertainty and can be computed as
the mean of the covariance matrices for each of the K output samples:

Σaleat.(X,D) = EW |D(Cov(Y |X,W )) ,

≈ 1

K

K∑
k=1

Σ(X,wk) . (4)

while the second represents the epistemic uncertainty and is estimated as the
empirical covariance matrix of the K mean vectors produced as outputs:

Σepist.(X,D) = CovW |D(E(Y |X,W )) ,

≈ 1

K

K∑
k=1

(µ(X,wk)− µ(X))(µ(X,wk)− µ(X))T . (5)

where µ(X) = 1
K

∑K
k=1 µ(X,wk).

Matrix Σepist.(X,D) defines the epistemic uncertainty as the covariance
matrix of the mean vectors over the posterior. This uncertainty will be high if
the sampled predictions from each model vary considerably with respect to W .
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This would mean that no consistent answer can be deduced from the model and
therefore it would be highly uncertain.

Finally when the context requires to reduce these uncertainty matrices to
uncertainty levels so that they can be compared, their determinants are used to
define two corresponding scalar quantities:

Ualeat.(X,D) = |Σaleat.(X,D)| and Uepist.(X,D) = |Σepist.(X,D)| .

3.3 Training protocol

In order to train a BNN with an MVN output, the model needs to learn both the
mean and the covariance matrix. The network’s training diverges when trying to
learn both at the same time, forcing us to separate the training into two steps.
First, we train a simple neural network without an MVN output - we use only
two output neurons representing the mean - using a L2 loss. Then, we transfer
the filters of the convolutional layers into the model with an MVN output, but
reinitialize the fully connected layers. This allows the model to converge smoothly
as the mean of the MVN distribution has already been learned, allowing the
covariance matrix to be calibrated accordingly.

This protocol works well when training on noiseless images of isolated galaxies
but fails when training on noisy images. Indeed, overfitting occurs during the
training of the network without MVN. When transferring the filters to the MVN
model, the mean of the MVN is not well calibrated enough and the training of the
BNN diverges. To fix this, we adjust the protocol for the model without MVN,
adding noise incrementally during training: we first submit noiseless images, and
modify 5% of the sample, switching from noiseless to noisy images, every 50
epochs for 1000 epochs. This prevents overfitting and allows the MVN model to
converge after the transfer.

4 Experiments

4.1 Estimation of uncertainty related to noise

In this section we show that using an MVN as an output allows for a reliable and
well calibrated estimation of the aleatoric uncertainty, i.e. uncertainty related to
the noise in the data.

In order to show that estimating the ellipticity of galaxies in the presence
of background noise is complex and can induce incorrect predicted ellipticity
values, we first train two simple CNNs without an MVN output: one on noiseless
images and one on noisy images, accordingly tested on noiseless and noisy images
respectively. Figure 5 shows the images of galaxy with their target complex
ellipticity superimposed, as well as the predicted one.

The ellipse represents the estimated shape - with a fixed scale adapted for
visualization - and the arrow is the corresponding complex ellipticity - modified
with half its argument in order to be aligned wih the main axis of the ellipse. On
this example, we can qualitatively see that the galaxy ellipticity on the noisy
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Fig. 5. Galaxy images with the predicted ellipticity superimposed on them. The arrow
and the corresponding elliptic shape are rendered in an arbitrary scale for visualization
purposes. In orange: the true ellipticity. In green: the predicted ellipticity

image is harder to estimate as the noise deforms the shape of the galaxy. Figure
6 generalizes this observation as it shows a sample of the predicted ellipticities
on the complex plane within the unit circle, with the target ellipticity and the
difference between predicted and targeted values.
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(a) Predicted ellipticities without noise
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(b) Predicted ellipticities with noise

Fig. 6. Predicted ellipticities on the complex plane. In red: unit circle. In yellow:
predicted ellipticities. In blue: target ellipticites. In green: difference between true and
predicted values

While the model trained on noiseless data performs really well (Fig. 6a),
it cannot achieve the same level of performance when trained on noisy data,
losing part of its reliability (Fig. 6b). As such, using a simple CNN without any
estimation of aleatoric uncertainty is not satisfying for our application.

We now train two Bayesian Convolutional Neural Networks with an MVN
distribution to estimate both epistemic and aleatoric uncertainties, as seen in
Section 3.2. Like the simple CNN models, we show in Fig. 7, the ellipticities
estimated from the BNNs on the complex plane. We also add the 90% confidence
ellipses of both epistemic, aleatoric and predictive uncertainties. We observe that
in both cases, the epistemic uncertainty is low if not negligible, meaning that
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Fig. 7. Predicted ellipticities on the complex plane. In red: unit circle. In yellow:
predicted ellipticities. In blue: target ellipticites. In light green: difference between true
and predicted values. In pink: 90% epistemic confidence ellipse. In dark green: 90%
aleatoric confidence ellipse. In grey: 90% predictive confidence ellipse

the model is confident in its predictions. Put another way, all K pairs of outputs
µ(X,wk) and Σ(X,wk) are roughly equal to their mean, respectively µ(X,w)
and Σaleat.(X,w), so that, according to Eq. 3 and Eq. 5 , Σepist.(X,w) ≈ 0
and Σpred.(X,w) ≈ Σaleat.(X,w). The aleatoric uncertainty is low for noiseless
images but higher for noisy ones, confirming that the noise corrupting galaxy
images makes it more difficult for the model to consistently give an accurate
ellipticity estimation.

Finally, in order to see if the MVN distribution is well calibrated, we stan-
dardize the output and check if the resulting distribution follows the standard
distribution. More precisely, if we define:

Z(X,w) = Σpred.(X,w)−
1
2 (Y − µ(X,w)) , (6)

then the distributions of its two independent components z1 ∼ Z(X,w)1 and
z2 ∼ Z(X,w)2 should be equivalent to the standard distribution N (0, 1). Note
that this is true only because all K output MVNs are confounded. Figure 8
shows that the standardized distributions for the model trained on noisy images
are indeed well calibrated and therefore the model is neither overestimating nor
underestimating the predictive uncertainty.

4.2 Estimation of uncertainty related to blending

In the previous part we showed that our BNNs are well calibrated. Here we submit
outliers to the networks in order to study the impact on epistemic uncertainty
and whether it can be used to detect them. Our models have only been trained
on images of isolated galaxies, but astrophysical images can contain multiple
overlapped galaxies. In that case, asking the model to measure a single ellipticity
does not make sense. If the epistemic uncertainty behaves as expected, then its
measurement would allow us to detect when a predicted ellipticity is incorrect
due to the presence of multiple galaxies in the image. We fed images of blended
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Fig. 8. Histogram of the standardized distributions on the model trained with noisy
images. In red: standard bell curve. In blue: histogram of the standardized distribution
with the smoothed curve.

scenes to the two models trained on isolated galaxies (with or without noise),
adding noise to the blended scenes only for the model trained on noisy images.

Results shown in Fig. 9 demonstrate that in both cases the predictions are
particularly inexact when compared to the target ellipticity of the central galaxy.
Also, and as expected, the epistemic uncertainty is much higher for these blended
scenes than for isolated galaxy images. However, the aleatoric uncertainty gives
incoherent values as the model has not been trained to evaluate it on blended
images: notice how the aleatoric ellipses are more flattened with a lower area.
Figure 10 permits to visualise the behavior of the epistemic uncertainty. It shows
how the ellipticities sampled with dropout slightly diverge compared to the mean
prediction. Here the model cannot give a consistent answer and therefore its
prediction should be deemed untrustworthy.
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Fig. 9. Predicted ellipticities on the complex plane for blended galaxies images. In red:
unit circle. In yellow: predicted ellipticities. In blue: target ellipticites (label of the
centered galaxy). In light green: difference between true and predicted values. In pink:
90% epistemic confidence ellipse. In dark green: 90% aleatoric confidence ellipse. In
grey: 90% predictive confidence ellipse
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(a) Blended galaxies without noise
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(b) Blended galaxies with noise

Fig. 10. Blended galaxies images with the predicted ellipticity superimposed on them.
The arrow and the corresponding elliptic shape are rendered in an arbitrary scale
for visualization purposes. In orange: the true ellipticity (label for the galaxy in the
center). In green: the predicted ellipticity. In pink: the individual MC dropout predicted
ellipses. The green ellipticity is therefore the mean of the pink ones. On both images
the prediction is uncertain as the individual MC samples slightly diverge from the mean

To quantify the quality of the epistemic uncertainty when it comes to detecting
incoherent predictions due to outliers, we computed the ROC curves for each
uncertainty type. More precisely, we reduce each covariance matrix (aleatoric,
epistemic and predictive) to a scalar by computing its determinant. We interpret
these estimates as a scoring function to assess whether an image is an outlier,
i.e. a blended image: the higher the score, the more likely the image contains a
blend. Finally, we compute for each of these scoring functions its ROC curve. We
repeat that process for both networks trained with noisy and noiseless data. The
results are shown in Fig. 11.

These ROC curves are also summarized by their associated Area Under
Curve (AUC) on Tab. 11c. The epistemic uncertainty clearly appears as the most
consistent “metric” to detect outliers and therefore to give useful information
about the confidence in the model predictions. Even the predictive uncertainty
performs worse than the epistemic one. This is especially true in the presence
of noise since the aleatoric uncertainty then occupies a more important part
of the predictive one compared to the noiseless case. Notice that the aleatoric
ROC curve is mostly below the diagonal with an AUC below 0.5, meaning it
performs worse than a random classifier. This is due to the fact that the model
has not been trained to evaluate aleatoric uncertainty on blended scenes. As seen
in Fig. 9, the aleatoric ellipses are more flattened in the blended cases, meaning
its determinant is lower. Thus the aleatoric uncertainty is on average lower on
blended scenes when compared to isolated ones.

To compensate, results of the complementary classifier for the aleatoric
uncertainty are shown. It is still not as satisfying as the epistemic uncertainty.
While using epistemic uncertainty to identify inconsistent predictions due to a
lack of knowledge is highly effective, we note that few blended images still have
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(a) ROC curve, model without noise
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(b) ROC curve, model with noise

Uncertainty AUC noiseless AUC noise

Epistemic 0.956 0.969
Aleatoric 0.394 0.306
Aleatoric (inverse) 0.606 0.694
Predictive 0.856 0.594

(c) AUC values

Fig. 11. ROC curves for detecting outliers for aleatoric, epistemic and predictive
uncertainty. (a) ROC curve, model without noise. (b) ROC curve model with noise.
Since the aleatoric ROC curve gives incoherent answers on outliers (see Fig. 9), we also
plot the complementary classifier as a dashed line. (c) AUC values for all uncertainties,
for the model with and without noise. Here, the epistemic uncertainty is clearly the best
to detect outliers, as its AUC value is close to 1 in both noisy and noiseless datasets

low epistemic uncertainty due, for instance, to a large galaxy that obstructs all
of the other ones, making the image actually closer to an isolated galaxy image.

Finally, we evaluate how each type of uncertainty is a reliable representation
of the risk of error in ellipticity prediction. Unfortunately, in the presence of
blended images, the predictive distribution is no longer a simple MVN but a
mixture of K well separated Gaussian distributions. The normalization process
that allowed us to obtain the results presented in Fig. 8 is no longer applicable
here. It is still possible to study the relationship between the uncertainty and the
ellipticity prediction error testing a trivial rule: the higher the uncertainty, the
more important we expect the error to be. To do so, we do three sorting of the
images according to each uncertainty type, from the lowest uncertainty to the
highest, on a scale from 0 to 0.4 for isolated objects, and from 0.4 to 1 for blended
scenes. We then compute the mean ellipticity error considering the proportion of
the sorted data from 0 to 1. For blended scenes the ellipticity prediction error is
computed w.r.t. the ellipticity of the centered galaxy. We repeat this experiment
twice, for networks trained on noiseless and noisy data. Finally we add an ”oracle”
curve where the data is sorted directly according to the ellipticity prediction
error which represents a perfect sorting. Results are shown in Fig. 12.

Once again, epistemic uncertainty proves to be best suited to anticipate
ellipticity predictive error. The samples with the lowest epistemic uncertainty
have the lowest mean ellipticity error and conversely, while samples with low
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aleatoric uncertainty can already have high mean error. Consequently, on real
astrophysical data, when the predictive ellipticity error is obviously unknown,
relying on the epistemic uncertainty to reject, or minimize the impact of, a sample
because of its probable predictive error is the best way to go.
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(a) Mean error curve, model without noise
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Fig. 12. Mean error curves w.r.t. data proportion for aleatoric, epistemic and predictive
uncertainty. (a) Mean error curve without noise. (b) Mean error curve with noise. In
black the threshold between the proportion of isolated galaxies: [0, 0.4] and blended
galaxies: [0.4, 1]. In pink the oracle curve, where the data is sorted by the predictive
error. The closest a curve is to the oracle the better

5 Conclusion

We developed a Bayesian approach to estimate the posterior distribution of
galaxy shape parameters using convolutional neural networks and MC-Dropout.
In addition to a precise measurement of the ellipticities, this approach provides
a calibrated estimation of the aleatoric uncertainty as well as an estimation of
the epistemic uncertainty. We showed that the latter is behaving according to
expectations when applied to different kind of galaxy images, and is well-suited
to identify outliers and to anticipate high predictive ellipticity error. These
results confirm the suitability of Bayesian neural networks for galaxy shape
estimation and incite us to continue exploring their use to go from ellipticity
posterior distributions, estimated from multi-band galaxy images, to cosmic shear
estimation.
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Appendix C

Is blending always an issue ?

At the beginning of my thesis in 2018, during a meal initially planned to discuss my future projects,
the discussion shifted a bit and we came at the conclusion that we were all whiskies enthusiast. As
a joke, Eric told me that I should do an appendix where I would list all the whiskies shared during
the thesis. Well, Eric, and since we are close from Christmas 2021, this is my gift for you this year.
This list might not be completely exhaustive but I did my best, merry Christmas !

Distillery
or bottler Edition Origin Comments

France

Bercloux single malt Charente-
Maritime

Bows Distil-
lerie Segal 60 Montauban

Ergaster Nature - 2018 N◦000 Passel

G. Miclo small batch #2 Alsace fût de cerise à l’eau de vie (cherry
cask)

single cask #3 fût de Bourgogne

single cask #4 tourbé, fût de Bourgogne

Home dis-
tillers Classic pure malt Auverge

Celtic
whisky
distillerie

Kornog Sauternes cask
2019

Larmor
Pleubian

Kornog Sant Ivy 2019
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Distillery
or bottler Edition Origin Comments

Kornog Roc’h Hir

Teir Gwech

Michel Cou-
vreur Overaged 54%

Made in Jura Rouget de Lisle Pur
malt 42◦ Jura fût de vin de paille

BM signature fût de Macvin

Twelve n◦10 Laguiole eau de vie de malt

n◦11 eau de vie de malt

Hématite

Uberach ’Au-delà de la rivière’
XIV edition Alsace

Biersky assemblage eau-de-vie de bière et de
malt

X years after non filtré

Volupte de JB... non filtré

Rs fûts de Banyuls, non filtré

R8 mise 2019, non filtré

cask jaune non filtré

cask bleu non filtré

Distillerie du
Vercors Sequoia Vercors tourbé

Warenghem Armorik single malt
millésime 2002 Lannion

Armorik Dervennn

Germany

Slyrs single malt 51

India

Amrut Peated cask strength oak barrels

Ireland

Writer tears Copper pot Cognac cask finish
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Distillery
or bottler Edition Origin Comments

USA

Thomas H.
Handy Sazerac Kentucky rye Whiskey

Sonoma
Straight bourbon
whiskey single bar-
rel reserve

California

Cherrywood rye whiskey

Scotland

Aldelphi’s Breth of the Highland Highland

Ardberg Dark cove Islay

Uigeadail

Adrmore 16 years old Speyside 1990, Whisky magazine

Arran Sauternes Cask Highland

Balblair vintage 1991 Highland

Ben Riach Peated 12 years old Speyside dark rum barrel finish

Benriness 20 years old 1995 Speyside bottled by The Single Malts of Scot-
land

10 years old shiraz wine cask, bottled by Old
Particular

Bladnoch Exotic fruit sorbet 1990 Lowland Wemyss malt

Bowmore 1994 Islay bottled by Berry bro’s and Rudd
Ltd

Double the devil limited release III

Bruichladdich Edition 06.1 1990 Islay 26 years old

Bunnahabain 18 years Islay

Maritime memories
1987 Wemyss malt

Cadenhead’s Blend of Islay

Blend of Campbeltown

Blend of Highland

Blend of Lowland

Blend of Campbeltown sherry cask
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Distillery
or bottler Edition Origin Comments

single malt Islay aged 9
years

Royal Brackla aged 12
years small batch

Miltonduff-Glenlivet
aged 9 years Speyside rum cask

12 years old blend
Balmenach-Glenlivet, Benrinnes,
Dailuaine-Glenlivet, Glenfarclas
and Invergordon grain whisky

Strathclyde aged 28
years Lowland small batch

Tullibardine aged 24
years Highland small batch

Glen-spey Glenlivet
aged 28 years Speyside small batch

Coal Ila 8 year, sherry cask Islay bottled by The Single Malts of Scot-
land

18 years

’Unpeated style’ 15
years old

Craigellachie ’A perfect beginner’ Speyside bottled by distiller’s art

10 years 2007 bottled by Mossburn

Dailuaine 12 years old Speyside sheey butt, bottled by Old paritcu-
lar

Deanstone 9 years old 2008 Bordeaux red wine cask matured

Dufftown 12 years old Speyside The manager’s choice

Edinburgh
Whisky Ltd Highland single malt Highland

Glendronach Allardice 18 years old Highland

Glenfiddich Winter storm 21 years old

Glen Mhor Against the grain 1982 Highland closed distillery

Glen Moray 10 years Speysaide bottled by Berry bro’s and Rudd
Ltd
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Distillery
or bottler Edition Origin Comments

Glen Scotia Ruby port finish 2008
vintage Campbeltown

Imperial 1979 Speyside closed distillery, bottled by
Samaroli, best memory

Laphroaig 25 years old Islay

Ledaig aged 13 years Highland Amontillado cask finish

Littlemill 21 years old Lowland closed distillery

Longrow red 11 years Campbeltown cabernet franc matured

Post Askaig 19 years Islay

Port Ellen 27 years old 1982 Islay closed distillery, connoisseurs choice

Octomore 08.4 Islay

07.3

Old Bothwell single cask malt whisky

Old Pulteney 18 years old Highland

Orkney
islands 18 years old Highland bottled by Berry Bro’s and Rudd

Ltd

Rosebank 12 years old Lowland closed distillery

rare old - 1990 bottled by Godron and Macphail

Springbank The tasting room

Talisker 30 year old Isle of Skye
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