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Quantifying co-occurrence between bottlenose dolphins and fisheries in the

Gulf of Lion, French Mediterranean Sea with multispecies integrated

occupancy models

Target journal: Short communication in Marine Ecological Progress Series

Valentin Lauret, Hélène Labach, Léa David, Matthieu Authier, Olivier Gimenez

Abstract

In the Mediterranean Sea, interactions between marine species and human activities are prevalent. The coastal

ecology of bottlenose dolphins and the depredation pressure they put on fishing stocks lead them to regular interactions

with fisheries. Mapping the risks of interactions is a preliminary step in managing anthropic pressures. However,

quantifying interactions is hampered by the issue of false negatives whereby dolphins and trawlers may go undetected

despite being present and co-occurring. Here, we develop an integrated multispecies occupancy model to quantify spatial

co-occurrence between trawlers and bottlenose dolphins in the Gulf of Lion, French Mediterranean Sea. We combined

bottlenose dolphin and trawler detections from both aerial surveys and boat surveys in the Gulf of Lion. Multispecies

modeling opens promising avenues in the study of interactions between human activities and marine mammals.
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1 Introduction

Identifying threats to marine ecosystems and species is one of the objectives of ecological monitoring programs (Lindenmayer
& Likens (2010)). The Mediterranean, being the busiest sea on Earth, is especially affected by anthropic pressures (Coll et
al. (2012), Giakoumi et al. (2017)).In particular, there are increasing interactions between marine species and human
activities.

Among other species, the coastal ecology of bottlenose dolphins (Tursiops truncatus) and the depredation pressure they put
on fishing stocks lead them to regular interactions with human recreational activities and fisheries (Queiros et al. (2018),
Bearzi et al. (2009), Leone et al. (2019))). Bottlenose dolphins are often observed in close proximity to fishing activities,
and depredation or bycatch interactions pose conservation concerns (Lewison et al. (2004)).

Mapping interactions is a preliminary step to better understand and manage human-animal interactions. This is usually
achieved by calculating the overlap between a species distribution map and a map of human pressure. This approach raises
two issues. First, when modelling species distribution, failure to account for interspecific interactions between co-occurring
species may lead to biased inference, which arise when modelling only abiotic and habitat associations (Rota, Wikle,
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et al. (2016)). Second, another challenge when quantifying species interactions is to account for imperfect detection,
e.g. when species do co-occur but one or several of the species involved go undetected by sampling (Rota, Ferreira, et al.
(2016), Fidino et al. (2019)). Ignoring imperfect detection leads to underestimation of species distribution and imprecise
quantification of species interactions (MacKenzie (2006)).

To account for these issues, multispecies occupancy models have been developed to estimate occupancy probabilities of two
or more interacting species while accounting for imperfect detection (Rota, Wikle, et al. (2016)). One caveat of multispecies
models is that they require substantial data to produce robust ecological inference(Clipp et al. (2021)). To overcome data
scarcity, several authors have suggested to combine multiple datasets into an integrated modelling framework (see Kéry &
Royle (2020) for a review). In that spirit, we previously developed a single-species integrated occupancy model to study
common bottlenose dolphins (Lauret et al. (2021)).

Here, we extend this single-species integrated occupancy model to an integrated multispecies occupancy models to study
interactions between common bottlenose dolphins and fisheries in the Gulf of Lion (French Mediterranean Sea). Our main
objective was to provide a statistical framework for maping co-occurrence between fisheries and bottlenose dolphins. Our
second objective was to test, based on field observations, the hypothesis that dolphins are likely to be more detected where
fishing boats are active.

2 Material and Methods

2.1 Data

We combined bottlenose dolphin and fisheries data extracted from SAMM aerial surveys and from GDEGeM monitoring
restricted to the Gulf of Lion (see Thesis manuscript Section 2.3).

We used GDEGeM data collected by EcoOcean Institut https://ecoocean-institut.or in the Gulf of Lion between 2013
and 2015. We extracted detections of common bottlenose dolphin (Tursiops truncatus), and that of trawlers which we
considered as a proxy of fisheries. We used data on fishing trawlers only as we focused on fishing areas and not traveling
routes between harbour and fishing areas. In parallel, we used detections of bottlenose dolphins and of fishing trawlers
from the 2011-2012 SAMM project. We divided the study area into 397 contiguous grid-cells for the statistical analysis.
Below, we provide a visualization of the study area, the detections, and the sampling effort for the two datasets (Figure 1).

Figure 1: Gulf of Lion detections of bottlenose dolphins and trawlers by aerial surveys (SAMM) and boat surveys (GDEGeM)
along with the sampling effort for each monitoring program.

To describe spatial variation in occupancy of bottlenose dolphins and trawlers, we used two environmental covariates:
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• Bathymetry
• Sea Surface Temperature (SST) averaged monthly between 2011 and 2015

Below, Below, we represent the value of each covariate in space (Figure 2).

Figure 2: Spatial variation in bathymetry and Sea Surface Temperature (SST) over our study area

2.2 Multispecies occupancy

We consider a two-species static occupancy model à la Rota et al. (2016).

Ignoring the site index, we use the following notation for the occupancy probabilities:

• ψ11 is the prob. that species A and species B are both present;
• ψ10 is the prob. that species A is present and species B is absent;
• ψ01 is the prob. that species A is absent and species B is present;
• ψ00 is the prob. that species A and species B are both absent,

with ψ11 + ψ10 + ψ01 + ψ00 = 1.

The marginal probabilities of occupancy are:

• Pr(zA = 1) = Pr(species A is present) = ψ10 + ψ11

• Pr(zB = 1) = Pr(species B is present) = ψ01 + ψ11

• Pr(zA = 0) = Pr(species A is absent) = ψ01 + ψ00

• Pr(zB = 0) = Pr(species B is absent) = ψ10 + ψ00

And the conditional probabilities (reminder: Pr(A|B) = Pr(A and B)/ Pr(B)):

• Pr(zA = 1|zB = 0) = ψ10/(ψ10 + ψ00) = Pr(species A is present given species B is absent);
• Pr(zA = 1|zB = 1) = ψ11/(ψ11 + ψ01) = Pr(species A is present given species B is present);
• Pr(zB = 1|zA = 0) = ψ01/(ψ01 + ψ00) = Pr(species B is present given species A is absent);
• Pr(zB = 1|zA = 1) = ψ11/(ψ11 + ψ10) = Pr(species B is present given species A is present).

2.2.1 Dolphins detection probability conditional on trawlers presence

Our second objective was to test whether trawlers presence would affect dolphins detection probability. This hypothesis
comes from at-sea observations. People performing at-sea monitoring of marine mammals in our study area reported that
dolphins were often detected following fishing trawlers. In statistical terms, this could be translated in dolphins detection
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would be higher at grid-cells where trawlers are present. To formally assess the relationship between trawlers presence and
dolphins detection in the multispecies occupancy model, we proceed as follows. While detection probabilities for both
dolphins and fishing boats depend on the sampling effort (sites and occasions), we built another multispecies occupancy
model in which dolphin detection probability was a function of presence or absence of fishing boats. To do so, we used the
formulation in Waddle et al. (2010):

logit(Pr(dolphin is detected|dolphin is present)) = β1zfishing boats + β2(1 − zfishing boats) + β3sampling effort

where the β’s are unknown regression parameters to be estimated, with β1 capturing the effect of the presence of boats,
and β2 their absence. We provide the results of this test in the Supplementary results (see Figure 8).

2.3 Integrated mutlispecies occupancy model

Here, we extend the multi-species occupancy model of Rota, Ferreira, et al. (2016) to integrate two datasets in the spirit
of Lauret et al. (2021). We consider dataset S (e.g SAMM aerial line transects), and dataset G (e.g. GDEGeM boat
search-encounter program). Both monitoring collected detection / non-detection about species A (i.e. bottlenose dolphin)
and B (i.e. trawlers). Then, each species has a different detection probability depending on the monitoring program
considered. For example, p_AˆG is the probability of detecting species A by monitoring program ‘g’. Then, 16 observation
‘events’ can occur. We coded them as follow:

• 1 for none species detected neither by G nor S
• 2 for species A detected by G, nothing by S
• 3 for species B detected by G, nothing by S
• 4 for both species detected by G, nothing by S
• 5 for none species detected neither by G, species A detected by S
• 6 for species A detected by G, species A detected by S
• 7 for species B detected by G, species A detected by S
• 8 for both species detected by G, species A detected by S
• 9 for none species detected neither by G, species B detected by S
• 10 for species A detected by G, species B detected by S
• 11 for species B detected by G, species B detected by S
• 12 for both species detected by G, species B detected by S
• 13 for none species detected neither by G, both species detected by S
• 14 for species A detected by G, both species detected by S
• 15 for species B detected by G, both species detected by S
• 16 for both species detected by G, both species detected by S

From the 4 ecological states (in rows) and the 16 observation events (in columns), we get the observation process with the
following (transposed) 4x16 matrix.

t(θ) =
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We estimated 4 occupancy probabilities for each cell of the study area :

• the prob. that only bottlenose dolphins use the cell, psi1
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• the prob. that only trawlers use the cell, psi2

• the prob. that both dolphins and trawlers use the cell, psi3

• the prob. that neither dolphins nor trawlers use the cell, which correspond to the probability that none of the
previous events occur, psi0.

Probabilities psi1, psi2, and psi3 are modelled as logistic functions of environmental covariates (bathymetry and SST) as
in:

logit(ψ) = θ0 + θ1Bathymetry + θ2SST

Data and code may be found on GitHub at https://github.com/oliviergimenez/human-tursiops-twospeciesoccupancy.

To address our two objectives, first we estimated the relationship between occupancy and environmental covariates
(bathymetry and SST). We displayed on a map an estimate of psi3 the probability of having both species using a cell.
Second, to get a better understanding of the observation process, we estimated detection probability of trawlers and
dolphins which we made monitoring program-specific and a function of sampling effort.

3 Results

3.1 The latent ecological process

We found that the probability of having neither species was independent of bathymetry, while co-occurrence increased with
decreasing depth (Figure 3). Dolphins and trawlers displayed an important overlap in their occupancy according to these
simple results (Figure 3).

Figure 3: Occupancy probabilities estimated from the integrated multispecies model as function of bathymetry. For better
readibility, we do not represent credible intervals here, but see Figure 4

This latter pattern is confirmed in Figure 4, which shows that co-occurrence probability is mainly driven by bathymetry.

3.2 Probability of detecting dolphins and trawlers

Both dolphins and trawlers detection probabilities increased when sampling effort increased. Boat surveys had higher
detection probabilities than aerial surveys (Figure 5).

4 Discussion

We predicted a high co-occurrence probability throughout our study area (Figure 4). The Gulf of Lion waters are of critical
importance for French fisheries and for bottlenose dolphins. However, fishing pressure is not homogeneous over the study
area, a pattern that did not transpire in our data. Despite combining two datasets, we still miss data to produce precise
estimates of trawlers occupancy. Including more data about trawlers would be valuable to better delineate fishing areas and
hence better estimates of co-occurrence probability. Our results also underline that bathymetry drives co-occurrence but it
is likely that more environmental variables contributed to spatial variation in occupancy (e.g. prey availability, distance to
coast, salinity). A more detailed analysis of the ecological process would allow to better investigate potential interactions.
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Figure 4: Co-occcurence probability between dolphins and trawlers. Left panel shows estimated probability and right
panels display lower and upper bounds of 80% credible intervals.

Figure 5: Estimated detection probability of dolphins and trawlers as function of sampling effort of each monitoring
program. We provide posterior medians (solid line) and 80% credible intervals.
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Several assumptions need to be valid to safely apply multispecies occupancy models (similar assumptions to those of the
single-species occupancy) : i) geographic and demographic closure, ii) independence of the detections over space and time,
iii) accurate identification (i.e. no misidentification). In our case study, dolphins and trawlers obviously moved in and out
grid-cells during the sampling period making the geographic closure unlikely to be respected. Thus, we are interpreting the
occupancy as “space-use”, that is the probability that the species uses the grid-cell given it is present in the study area,
hence reflecting the usage a species makes of the different components of the study area.

Overall, our results suggest that an integrated multispecies occupancy modelling approach could contribute in the study of
the interactions between human activities and bottlenose dolphins in the French Mediterranean. Our approach echoes
recent work integrating human activities into multispecies models to identify and quantify threats of anthropic pressures
on the environment (Marescot et al. (2019)).

5 Supplementary results

First, we display in Figure 6 and Table 1 estimates of the regression parameters θ’s for probabilities psi1, psi2, and psi3.

Figure 6: Parameters of the logistic regression relationships for occupancy probabilities for the integrated multispecies
occupancy model between dolphins and trawlers.

Table 1: Values represent the mean estimates and its 80% associated
credible intervals.

Parameter Dolphins only ψ1 Trawlers only ψ2 Coocurrence ψ3

Intercept θ0 0.633 (-0.83; 2.10) - 0.74 (-1.90; 0.40) - 1.35 (-2.46; -0.23)
Bathymetry effect θ1 - 0.77 (-1.95; 0.41) 0.06 (-1.27; 1.39) 1.79 (0.94; 2.65)

SST effect θ2 0.37 (-0.72; 1.475) 0.82 (-0.22; 1.89) - 0.48 (-1.30; 0.30)

Second, to look at the occupancy probability of dolphin (or trawlers), we used psi1 + psi3 (or psi2 + psi3). In Figure
7, the maps reflect the influence of bathymetry on dolphins and trawlers occupancy.

Finally, we provide in Figure 8 the detection probabilities of dolphins and trawlers obtained from the integrated multispecies
occupancy model with the Waddle et al. (2010) parametrization to test for a dependence between dolphins detection and
trawlers presence. With the conditional parametrization of the observation process, the ecological process is the same as
displayed in the Results section (Figure 3 & Figure 4).
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Figure 7: Occupancy probability of dolphins and trawlers estimated from the integrated multispecies occupancy model

Figure 8: Estimated detection probability of dolphins and trawlers as function of sampling effort for each monitoring
program in the case where dolphins detection is conditional on trawlers presence or absence. We provided posterior medians
(solid line) and 80% credible intervals.
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Our results showed no effect of trawlers presence on dolphins detection. We see several reasons for this result. First,
detections of dolphins remain scarce despite trawlers and dolphins being predicted to occur widely throughout the study
area (Figure 7). Indeed, there are many grid-cells where ztrawlers = 1, zdolphins = 1 and ydolphins = 0, hence negatively
driving dolphins detection probability conditional on trawlers presence. Second, we had insufficient data to correctly specify
the link between dolphins detections and trawlers presence (see Discussion section).
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Introduction 6O!

Cost- and time-effective monitoring programs are urgently needed to inform decision-6P!

making about biodiversity management (Aylesworth et al., 2017; Fraschetti et al., 2002; 6Q!

McCauley et al., 2015). Monitoring programs will be most useful if developed with full <R!

consideration of the ecological uncertainties and for how the resulting information will be used. <"!

Therefore, careful thinking about the expected return on investment for monitoring efforts is <6!

especially important, where return on investment can be measured in terms of the management <<!

objectives, thereby focusing the role of monitoring on addressing the needs of managers (Gibbs <B!

et al., 1999; Lindenmayer & Likens, 2010; Nichols & Williams, 2006; Runge et al., 2011). <M!

Monitoring is critical for evaluating the efficacy of management (Fulton et al., 2015; Gibbs et <N!

al., 1999) and for improving the identification of optimal policies (Baxter & Possingham, 2011; <O!

Williams et al., 2018). Monitoring for conservation in a protected area is typically performed <P!

in a cost-constrained environment with limited funding and human resources. Furthermore, it <Q!

is common for a monitoring objective to be multi-faceted, i.e., to have several objectives in a BR!

single monitoring plan. B"!

In real-world ecological monitoring, many species of interest are elusive, and data can be B6!

costly to obtain (Authier et al., 2017; Aylesworth et al., 2017; NRC, 2001). To be effective, B<!

monitoring needs to be flexible enough to adapt to changes in the ecological system being BB!

monitored, and to changes in management objectives and monitoring abilities (Authier et al., BM!

2017; Heylen, 2017; Williams, 2011). For example, it is not uncommon for funding availability BN!

to change over time. In this context, several studies have promoted a framework in which BO!

monitoring adapts in response to the dynamics of ecosystems and to socio-economic changes BP!

(Lindenmayer & Likens, 2009; Nichols & Williams, 2006). The notion of adaptive monitoring BQ!

(AM) is increasingly used in wildlife management to optimize the design of monitoring efforts MR!

(Lindenmayer et al., 2011; Lindenmayer & Likens, 2009, 2010). The underlying idea is that all M"!
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steps of the monitoring approach (e.g., objective setting, data collection, data analyses, and M6!

statistical design of surveys) evolve jointly without threatening the usefulness of previously M<!

collected data. Monitoring is adapted as newly collected information reduces uncertainties MB!

about ecosystem functioning, or when MM!

new questions or monitoring MN!

conditions emerge (Baxter & MO!

Possingham, 2011; Costello et al., MP!

2010; Lyons et al., 2008). A main MQ!

challenge is to adapt monitoring while NR!

maintaining the overall value of the N"!

data series.  N6!

The management of protected N<!

areas is economically costly and the NB!

structure and functioning of wildlife NM!

populations remain the source of NN!

many uncertainties (McIntosh et al., NO!

2018). AM has the potential to lead to NP!

substantial management benefits in NQ!

protected areas systems (Fulton et al., OR!

2015; McIntosh et al., 2018). AM has O"!

been effective in broad-scale O6!

monitoring of terrestrial ecosystems O<!

(Lindenmayer et al., 2011; Ringold et OB!

al., 1996), and for rare plant species OM!

(Pacifici et al., 2016), terrestrial ON!

!
!
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wildlife (Gibbs et al., 1999), and partially terrestrial marine species (McIntosh et al., 2018; OO!

Williams et al., 2018).  OP!

To our knowledge, there has been no attempt to formalize the implementation of AM through OQ!

precise example, and ecological monitoring programs have sometimes been characterized as PR!

AM only post hoc. Likely explanations for the dearth of fully conceptualized AM programs is P"!

that these programs are more technically challenging to implement than non-adaptive P6!

monitoring, because of a lack of familiarity with AM in the management community, and P<!

because monitoring itself is sometimes treated as an afterthought rather than as a key part of PB!

management. Here, we showcase the implementation of AM to assist protected area PM!

management with marine realms in mind.  PN!

As a potential candidate for AM implementation, the EU Marine Strategy Framework PO!

Directive (MSFD 2008/56/EC) requires that all EU member states reach a ‘good environmental PP!

status’ in their marine waters by 2020, and further mandates ongoing assessment of the status PQ!

of these waters (Authier et al., 2017; Baudrier et al., 2018; Marine Strategy Framework QR!

Directive, 2008). In this context, marine monitoring programs of the MSFD are being Q"!

developed across European seas to inform and guide marine management strategies (Baudrier Q6!

et al., 2018; Lehtiniemi et al., 2015; Van Hoey et al., 2010). The functioning of MSFD is based Q<!

on iterative cycles every 6 years, and aims to reevaluate the monitoring and management QB!

practices based on information collected during previous cycles. QM!

Methods QN!

We used a virtual ecologist approach to illustrate AM and evaluate its performance. This QO!

approach is increasingly used in the ecological literature to assess the performance of sampling QP!

designs and modeling tools (Zurell et al., 2010). We simulated a species occurring in a restricted QQ!

area – the ecological system – and mimicked the detection of this species through monitoring "RR!
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– the observation process. Then, based on these simulated ecological data, we evaluated the "R"!

performance of different monitoring strategies (Zurell et al., 2010). Adopting a virtual ecologist "R6!

approach through simulations allows the analyst to have perfect knowledge about the fictive "R<!

species and hence to draw solid conclusions about the effectiveness of sampling and modelling "RB!

methods (Zurell et al., 2010). "RM!

We illustrate an AM approach built following a structured decision-making process "RN!

(Gregory et al., 2013; Martin et al., 2009). We distinguished a setup phase, and an iterative loop "RO!

(Figure 1). During the setup phase, 1) we formulated monitoring objectives and defined the "RP!

time horizon within which the monitoring is performed, and 2) we listed the components of the "RQ!

monitoring strategies that could be used to reach the objectives: where to monitor, which ""R!

monitoring methods (aerial survey, boat survey, etc), and what sampling effort (frequency, """!

labor forces, working hours). Then, the iterative phase runs through successive time steps. At ""6!

each time t: 3) we analyzed ecological data with statistical models, 4) we selected the ""<!

monitoring strategy that best fits with the predicted species status at time t+1, then 5) we ""B!

implemented the selected monitoring strategy and collected the data.  ""M!

Below, we introduce the AM framework in more details. We consider a fictive area of ""N!

400 contiguous sites within which the target species occurs. Spatial habitat heterogeneity in the ""O!

study area is implemented through a continuous site-specific covariate that varies over fictive ""P!

unit ‘m’ over a range of 0 to 2000 m across the study area; this is a simplification of what is ""Q!

often a more complex relationship between species presence and multiple environmental "6R!

covariates for purposes of illustration. We assumed a quadratic relationship between the "6"!

covariate and species presence – with maximum occupancy at intermediate values of the "66!

covariate around 1000 m – but we allowed the parameters of the quadratic relationship to "6<!

change over the course of the monitoring period (thus changing the value of the covariate at "6B!

which occupancy probability is maximized, simulating a dynamic ecological system). Once this "6M!
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underlying system model was in place, we simulated a presence-absence dataset with an "6N

optimum of presence around 1000m over 3 seasons. Then, to V&(! (/&! )T&$! (/$(! $T$H()4&!"6O

@3')(3,)'V!;$'!T&$%!X)(/!;/$'V)'V!&;3%3V);$%!;3'T)()3'5-!we changed the relationship between "6P

the covariate and occupancy probability adjusting the optimum of species occurrence around "6Q

1500 m from season 3 to season 5. We displayed the two ecological preferences of the fictive "<R

species in Figure 2. This 5-season presence-absence dataset is the ‘true’ ecological data upon "<"

which AM strategies are to be determined."<6

Step 1: Defining the monitoring objective"<<

Here, we showcase monitoring objectives that we believe to be relevant and common "<B

when monitoring in protected areas. Defining monitoring objectives should be the result of a "<M

consultative process involving multiple stakeholders, managers, statisticians. The monitoring "<N

objective in our fictive protected area is to maximize the precision of the estimated species "<O

distribution. We also assume that monitoring resources are fixed, such that no more than 100 "<P

sites can be monitored at each sampling occasion. "<Q

D)V+,&!6a!SX3!5&(5!3W!^+$T,$();!,&%$()3'5/)H!:&(X&&'!3;;+H$';J!H,3:$:)%)(J!and a fictive covariate (‘m’) 
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Step 2: Defining the monitoring strategies "BR!

To meet the monitoring objective, managers can survey 100 of the 400 sites in the study "B"!

area at each survey. At the beginning of each monitoring season, managers decide which sites "B6!

they will monitor that season. Chosen sites will be sampled 3 times during the sampling season "B<!

to mimic the repeated visits needed when monitoring for occupancy modelling. Over the 100 "BB!

sites to be monitored, managers chose to monitor 50 sites where the species is most likely to "BM!

occur, and 50 sites randomly. After each monitoring season made of 3 sampling per site, data "BN!

will be analyzed, species distribution predicted, and sampling effort re-allocated following the "BO!

same rule but according to the new prediction of species distribution. "BP!

Step 3: Modeling the ecological system "BQ!

We modeled the ecological system with a dynamic species distribution model in which "MR!

each site can be either occupied or unoccupied by the species. Accounting for imperfect "M"!

detection while estimating species distribution, which is especially relevant for monitoring "M6!

elusive species (Issaris et al., 2012; MacKenzie et al., 2003), can be accomplished with "M<!

occupancy models (Mackenzie et al., 2002). The occupancy status of each site (i.e., occupied "MB!

or unoccupied by the species) changes between seasons through local colonization and "MM!

extinction events. We estimated model parameters – the proportion of sites occupied and the "MN!

probabilities of colonization and extinction – using the R package ‘unmarked’ (Fiske & "MO!

Chandler, 2011). We fitted occupancy models considering 3 possible ecological relationships "MP!

between occupancy and the environmental covariate, i.e., a null model, a linear model, and a "MQ!

quadratic model. We compared the occupancy models using the Akaike Information Criterion "NR!

- AIC (Akaike, 1998). We model-averaged the estimated occupancy parameters across the 3 "N"!

occupancy models and used these to predict species distribution. "N6!
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Step 4: Decision-making: selecting the monitoring strategy "N<!

After each monitoring season, we added the last 3 sampling occasions to the dataset "NB!

from the previous sampling season. We analyzed this new dataset with the modeling process "NM!

described in Step 3 and used the prediction to choose the monitoring strategy to apply during "NN!

the subsequent season. To select the monitoring strategy for next season, we identified the sites "NO!

in which the species was most likely to occur and allocated 50% of the sampling effort to these "NP!

sites and the remaining 50% randomly. "NQ!

Run the monitoring and evaluate monitoring strategy "OR!

]&! )%%+5(,$(&T! (/&! U=! H,3;&55! :$5&T! 3'! M! 5&$53'5! 3W! (,+&! &;3%3V);$%! T$($-! X/);/!"O"!

;3,,&5H3'T!(3!M!@3')(3,)'V!5&$53'5!X)(/!<!5$@H%)'V!3;;$5)3'5!H&,!5&$53'1!U5!T&($)%&T!$:34&-!"O6!

T+,)'V!(/&!(/,&&!W),5(!@3')(3,)'V!5&$53'5-!(/&!H,&W&,,&T!&;3%3V);$%!;3'T)()3'!3W!(/&!5H&;)&5!)5!"O<!

$,3+'T!"RRR!@-!X/)%&!W3,!(/&!@3')(3,)'V!5&$53'5!B!$'T!M!(/&!H,&W&,,&T!&;3%3V);$%!;3'T)()3'!)5!"OB!

$,3+'T!"MRR@! ZD)V+,&!6[1!S3! $55&55! (/&!H,&;)5)3'!3W! (/&!H,&T);(&T!3;;+H$';J-!X/);/! )5! (/&!"OM!

@3')(3,)'V!3:`&;()4&!T&W)'&T!)'!.(&H!"-!X&!&5()@$(&T!(/&!F33(!=&$'!.^+$,&!C,,3,!ZF=.C[!$'T!"ON!

(/&!F&%$()4&!b)$5!ZFb[!3W!(/&!H,&T);(&T!3;;+H$';J!H,3:$:)%)(J!4&,5+5!(/&!(,+&!3;;+H$';J1!"OO!

]&!$55+@&T!(/$(!:&(X&&'!5&$53'5!"!$'T!<-!(/&!5H&;)&5!)5!\'3X'!(3!/$4&!$'!&;3%3V);$%!"OP!

H,&W&,&';&!W3,!"RRR!@!3W!(/&!;34$,)$(&-!/&';&!(/&!W),5(!@3')(3,)'V!5(,$(&VJ!;3,,&5H3'T5!(3!(/&!"OQ!

$%%3;$()3'!3W!MRc!3W!5$@H%)'V!&WW3,(!$,3+'T!"RRR!@!Z$'T!MRc!,$'T3@%J-!5&&!.(&H!6[1!S/&'-!"PR!

W,3@!@3')(3,)'V!5&$53'!"!(3!<-!@3')(3,)'V!X$5!H&,W3,@&T!)'T)5()';(%J!:&(X&&'!'3'_$T$H()4&!"P"!

$'T! $T$H()4&! $HH,3$;/&5! :&;$+5&! '3! &;3%3V);$%! ;/$'V&5! 3;;+,,&T! (/$(! ;$'! @3()4$(&! (/&!"P6!

,&$%%3;$()3'!3W!5$@H%)'V!&WW3,(1!b&(X&&'!5&$53'!<!$'T!5&$53'!B-!(/&!5H&;)&5!T)5(,):+()3'!5/)W(&T!"P<!

W,3@!"RRR!@!(3!"MRR!@1!"PB!

S3!)%%+5(,$(&!(/&!:&'&W)(!3W!$T$H()'V!(/&!5$@H%)'V!5(,$(&VJ-!X&!$HH%)&T!$!B(/!,3+'T!$'T!$!"PM!

M(/!,3+'T!3W!@3')(3,)'V!$W(&,!(/&!;/$'V&!)'!&;3%3V);$%!;3'T)()3'1!L+,)'V!(/&5&!'&X!,3+'T5!3W!"PN!

@3')(3,)'V-!X&!;3@H$,&T!)[!$'!$T$H()4&!@3')(3,)'V!$HH,3$;/!(/$(!;$'!,&$%%3;$(&!(/&!5$@H%)'V!"PO!



! Q!

&WW3,(! $;;3,T)'V! (3! (/&! H,&T);()3'! 3W! 3;;+H$';J! H,3:$:)%)()&5! ZW3%%3X)'V! (/&! $%%3;$()3'! ,+%&!"PP!

T&W)'&T!)'!.(&H!B[-!$'T!))[!$!'3'_$T$H()4&!$HH,3$;/!)'!X/);/!X&!\&&H!(/&!5$@&!5$@H%)'V!T&5)V'!"PQ!

W3,!@3')(3,)'V!5&$53'5!"!(3!<1!]&!H,34)T&!(/&!H,&T);(&T!,&%$()3'5/)H!:&(X&&'!3;;+H$';J!$'T!"QR!

(/&!W);()4&!;34$,)$(&-!$'T!(/&!F=.C!$'T!Fb!W3,!&$;/!@3')(3,)'V!5&$53'!$'T!W3,!&$;/!3W! (/&!"Q"!

@3')(3,)'V!5(,$(&VJ!)'!D)V+,&!<1!"Q6!

Results  "Q<!

U;,355!(/&!<!W),5(!@3')(3,)'V!5&$53'5-!F=.C!$'T!Fb!T&;,&$5&T1!S/)5!)';,&$5&!)'!H,&;)5)3'!)5!"QB!

%)\&%J!T+&!(3!(/&!$+V@&'($()3'!3W!T$($!()@&!5&,)&51!73X&4&,-!$W(&,!&;3%3V);$%!;3'T)()3'5!;/$'V&T!"QM!

:&(X&&'!5&$53'5!<!$'T!B-!(/&!$T$H()4&!5(,$(&VJ!Z,&$%%3;$()'V!5$@H%)'V!&WW3,([!&Y/):)(&T!/)V/&,!"QN!

H,&;)5)3'! (/$'! (/&!'3'_$T$H()4&!5(,$(&VJ! Z5$@&!5$@H%)'V!&WW3,(!$%%3;$()3'[! ZD)V+,&!<[1! K'! (/&!"QO!

$T$H()4&!$HH,3$;/-!(/&!,&$%%3;$()3'!3W!(/&!5$@H%)'V!&WW3,(!(3!5)(&5!X/&,&!(/&!5H&;)&5!)5!%)\&%J!(3!"QP!

3;;+,!)';,&$5&!(/&!'+@:&,!3W!T&(&;()3'!X/&'!@3')(3,)'V-!X/);/!)5!\'3X'!(3!/$4&!$!H35)()4&!"QQ!

)'W%+&';&!3'!(/&!H,&;)5)3'!3W!3;;+H$';J!&5()@$(&5!Z=$;d&'A)&-!6RRN[1!S/&!$T$H()4&!$HH,3$;/!6RR!

$%%3X5! (3! :&((&,! 5$@H%&! (/&! 5H&;)&5! T)5(,):+()3'! (3! )';,&$5&! (/&! H,&;)5)3'! 3W! (/&! &;3%3V);$%!6R"!

)'W&,&';&-!X/);/!)5!(/&!@3')(3,)'V!3:`&;()4&!T&W)'&T!)'!(/)5!W);()4&!H,3;&55!Z.(&H!"[1!6R6!

Discussion 6R<!

With our simulations, we intended to illustrate the benefit of an adaptive monitoring 6RB!

framework through an explicit formulation of the analytical process. We pointed out that if 6RM!

ecological conditions changed, the iterative analysis of the ecological system and the 6RN!

reallocation of the sampling effort allow to increase precision in ecological estimates while 6RO!

maintaining the integrity of collected data. To date, we are uncertain this is sufficient to 6RP!

highlight an effective adaptive monitoring implementation. The current work is still ongoing 6RQ!

and clarifications and precisions have to be added.  6"R!
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A limitation of our study lied in the explicit formulation of the monitoring objectives 6""!

and strategies under ecological uncertainty, which should be the result of a consultative process 6"6!

(Lindenmayer & Likens, 2009). To simulate a ‘naïve’ decision-making in the face of 6"<!

uncertainty, we had to design imperfect monitoring strategy on purpose, which was unrealistic 6"B!

as we had access to ‘perfect knowledge’ through the simulation. 6"M!

!
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Overall, defining clear objectives is a critical step of AM (Lindenmayer & Likens, 2009; 6"N!

Ringold et al., 1996). In a protected area, monitoring is one component among a variety of 6"O!

practices (Dunham et al., 2020; Giakoumi et al., 2018; Vimal, 2017), hence management 6"P!

policies should direct targeted monitoring programs (Lindenmayer et al., 2011). Co-6"Q!

construction process between stakeholders, scientists, and modelers (Bolam et al., 2018) would 66R!

be valuable to ensure sustainability and efficiency of monitoring programs (Lindenmayer et al., 66"!

2011; McIntosh et al., 2018). 666!

Adaptive monitoring for wildlife conservation 66<!

Monitoring dynamic ecological processes is gaining attention in the literature (Williams 66B!

et al., 2018) and the production of high quality data with adaptive strategies has been 66M!

emphasized in ecology and other fields (Hooten et al., 2009; Merl et al., 2009; Shea et al., 66N!

2014). However, non-adaptive strategies are widely used in monitoring programs because they 66O!

are simpler and have lower costs than AM (Hooten et al., 2009; Williams et al., 2018). AM 66P!

requires planning, preparation, and modeling. Lindenmayer et al. (2009) underlined that many 66Q!

monitoring programs are poorly designed partly because statistical tools are discarded from 6<R!

designing phases, considered as not worthy to include, or hard to access for managers. Hence, 6<"!

non-adaptive monitoring design are often preferred for geopolitical, geographical, or economic 6<6!

considerations (Walters, 2007; Wikle & Royle, 1999). Consultative processes including 6<<!

multiple stakeholders such AM or adaptive management are seldomly applied in real world 6<B!

(Walters, 2007). On the other hand, when resources are limited (as for monitoring protected 6<M!

area), managers and scientists need to optimize monitoring efficiency and in this situation, 6<N!

targeted AM improves the quality of information obtained with limited survey capacity (Hooten 6<O!

et al., 2009; Williams et al., 2018). Moreover, protected area management requirements might 6<P!

fluctuate (e.g., variations of funding or priorities) and these changes should be carefully 6<Q!

included in the monitoring process to maintain the integrity of long-term ecological datasets 6BR!
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(Williams, 2011). Another strength of AM is that reframing the monitoring objective 6B"!

continuously allow to better fit with updates in conservation policies. 6B6!

Overall, monitoring in the wild is complex, involving environmental uncertainties and 6B<!

cost-constrained conservation contexts. AM is an ideal long-term monitoring strategy that can 6BB!

help in protected area management. To be widely adopted, adequate funding and real 6BM!

motivation for consultative approaches in  conservation policies are required (Ban et al., 2011; 6BN!

Fulton et al., 2015; McIntosh et al., 2018). 6BO!
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