
HAL Id: tel-03554009
https://theses.hal.science/tel-03554009v1

Submitted on 3 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The traveling salesman problem in constraint
programming

Nicolas Isoart

To cite this version:
Nicolas Isoart. The traveling salesman problem in constraint programming. Data Structures and
Algorithms [cs.DS]. Université Côte d’Azur, 2021. English. �NNT : 2021COAZ4084�. �tel-03554009�

https://theses.hal.science/tel-03554009v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Le problème du voyageur de commerce

en programmation par contraintes

Nicolas ISOART

Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)
UMR7271 UCA CNRS

Présentée en vue de l’obtention du
grade de docteur en INFORMATIQUE

d’Université Côte d’Azur

Dirigée par : Jean-Charles RÉGIN,
Professeur, Université Côte d’Azur
Soutenue le : 19 novembre 2021

Devant le jury, composé de :
David COUDERT, Directeur de recherche, INRIA Sophia Antipolis
Claude-Guy QUIMPER, Professeur, Université Laval
Willem-Jan VAN HOEVE, Professeur, Carnegie Mellon University
Xavier LORCA, Professeur, IMT Mines Albi-Carmaux
Hadrien CAMBAZARD, Maître de conférences, Grenoble INP

LE PROBLÈME DU VOYAGEUR DE COMMERCE EN
PROGRAMMATION PAR CONTRAINTES

The Traveling Salesman Problem in Constraint Programming

Nicolas ISOART

▷◁

Jury :

Président du jury
David COUDERT, Directeur de recherche, INRIA Sophia Antipolis

Rapporteurs
Claude-Guy QUIMPER, Professeur, Université Laval
Willem-Jan VAN HOEVE, Professeur, Carnegie Mellon University
Xavier LORCA, Professeur, IMT Mines Albi-Carmaux

Examinateurs
Hadrien CAMBAZARD, Maître de conférences, Grenoble INP

Directeur de thèse
Jean-Charles RÉGIN, Professeur, Université Côte d’Azur

Université Côte d’Azur

Nicolas ISOART

Le problème du voyageur de commerce en programmation par contraintes
xiii+173 p.

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : sommaire.tex – 1/12/2021 – 19:34

Révision pour la classe : these-ISSS.cls,v 2.10 2020/06/24 14:16:37 mpelleau

v

If it disagrees with experiment, it’s wrong. In that simple state-
ment is the key to science. It doesn’t make any difference how
beautiful your guess is, it doesn’t matter how smart you are who
made the guess, or what his name is . . . If it disagrees with exper-
iment, it’s wrong. That’s all there is to it.

— Richard Feynman, Lecture.

v

Le problème du voyageur de commerce en programmation par
contraintes

Résumé

Plusieurs modèles de programmation par contraintes, basés sur la méthode de relaxation la-
grangienne (LR), ont été introduits pour résoudre le problème du voyageur de commerce (TSP).
Dans cette thèse, nous définissons trois nouvelles contraintes et algorithmes de filtrage consid-
érant la structure du graphe. La contrainte k-cutset impose que toute solution contienne un
nombre strictement positif et pair d’éléments dans chaque cutset. La contrainte mandatory
Hamiltonian path est basée sur l’algorithme de recherche locale k-opt. Si un chemin composé
d’arêtes obligatoires n’est pas lui-même optimal (c.-à-d., il existe un k-opt), alors ce chemin
n’appartient à aucune solution optimale. Enfin, la contrainte du 1-tree est basée sur l’idée que
si le problème peut être décomposé en deux sous-problèmes indépendants, alors une partie du
1-tree peut être optimale dans un des sous-problèmes. De plus, nous introduisons l’algorithme
SSSA afin d’améliorer les temps de résolution. SSSA évite les oscillations et les non-variations
de la fonction objective de la LR. Ensuite, nous parallélisons la recherche de solutions avec Em-
barrassingly Parallel Search (EPS). Malheureusement, le mécanisme de décomposition d’EPS
est un processus à profondeur borné, contrairement à la stratégie de recherche utilisée pour
résoudre la TSP qui est en profondeur d’abord. Cela rend difficile l’obtention de bons résultats
en appliquant directement EPS. Afin de diminuer ce défaut, nous introduisons un algorithme
de précalcul. Cependant, des sous-problèmes avec des temps de résolution extrêmement dif-
férents peuvent apparaître. Pour remédier à cela, nous introduisons une méthode procédant à
des redécompositions dans EPS. Finalement, nous expérimentons sur la TSPLib. Nous mon-
trons que les contraintes structurelles permettent de réduire les temps de résolution d’un ordre
de grandeur, et que la parallélisation permet d’obtenir de très bons résultats liés au nombre de
coeurs.

Mots-clés : PPC, TSP, algorithmes, optimisation, parallélisme.

The Traveling Salesman Problem in Constraint Programming
Abstract

Several constraint programming (CP) models, based on Lagrangian relaxation (LR), have been
introduced to solve the traveling salesman problem (TSP). In this thesis, we define three new
constraints and filtering algorithms based on the structure of the graph. First, the k-cutset con-
straint imposes that any solution contains a strictly positive and even number of elements in
each cutset. Then, the mandatory Hamiltonian path constraint is based on the local search k-
opt algorithm. If a path of mandatory edges is not optimal (i.e. it exists a k-opt), then it cannot
belong to any optimal solution. Finally, the 1-tree constraint is based on the idea that if the
problem can be decomposed in two independent sub-problems, then a part of the 1-tree can be
optimal in a sub-problem. In addition, to speed-up the practical performances, we introduce
an algorithm named SSSA to avoid oscillations and non-variations of the objective function of
LR, saving useless solving times. We also parallelize the search for solutions with Embarrass-
ingly Parallel Search (EPS). Unfortunately, a direct application of EPS does not lead to good
results for the TSP. Indeed, the decomposition mechanism of EPS is a depth-bounded process
whereas the search strategy used to solve the TSP is depth-first. Therefore, we define a div-
ing algorithm fixing this issue. However, sub-problems with extremely different solving times
may appear. Thus, we introduce a re-decomposition policy in EPS. Finally, our experiments
on the TSPLib showed that the structural constraints reduce the solving times by an order of
magnitude. Moreover, we show that our version of EPS leads to a huge improvement related
to the number of cores.

Keywords: CP, TSP, algorithms, optimization, parallelism.

Remerciements

Tout d’abord, je souhaiterais remercier très fortement mon directeur de thèse, Jean-Charles Régin,
d’avoir cru en moi depuis le master jusqu’à la fin de ma thèse. Je pense très sincèrement que peu
de doctorants ont la chance d’avoir un directeur de thèse aussi bienveillant, intelligent et présent
que Jean-Charles.

Je remercie tout particulièrement Claude-Guy Quimper, Willem-Jan Van Hoeve et Xavier
Lorca d’avoir accepté de rapporter ma thèse. Par ailleurs, je remercie David Coudert et Hadrien
Cambazard d’avoir participé à mon jury de thèse.

Ensuite, je tiens à remercier les doctorants du laboratoire ayant rendu mes années de thèse
plus qu’agréable. En commençant par les plus vieux, Ophélie Guinaudeau et Ingrid Grenet, merci
pour toutes les discussions que nous avons pu avoir avant et pendant la thèse. Merci à Jonathan
Behaegel et Heytem Zitoun. Merci à Adrien Gausseran et Laetitia Laversa pour tous ces bons
(et moins bons) moments passés en master, puis en thèse. Merci tout particulièrement à Rémy
Garcia pour toute l’aide qu’il a pu m’apporter au quotidien durant ma thèse. Enfin, merci à tous
les doctorants et stagiaires du laboratoire Samvel Dersarkissian, Arthur Finkelstein, Sara Riva,
Laetitia Gibart, Diana Resmerita, Loïc Germerie, François Doré, Amélie Gruel, Giulia Rocco,
Bastien Rousseau, Aymeric Picard, Steve Malalel, Alexandre Bonlarron, Florian Régin et à ceux
que je pourrais oublier.

Merci à tous les permanents de l’équipe pour l’accueil durant ces 3 années et pour les nom-
breuses discussions autour de la machine à café. Je tiens particulièrement à remercier Arnaud
Malapert, Marie Pelleau, Cinzia Di Giusto pour l’aide et les conseils qu’ils m’ont apportés au
cours de ma thèse. Aussi, je remercie Enrico Formenti, Bruno Martin et Sandrine Julia.

Je tiens aussi à remercier mes meilleurs amis Etienne Borgella, Laurine Chapelle, Emmanuel
Hebrard et Fanny Spies pour notre amitié. Merci à Alexandre Authier de cultiver mon esprit
de compétition. Je remercie aussi mes amis et compagnons de course à pied du midi, Julien
Depagneux et Michaël Brunengo.

Je remercie ma famille, en particulier mes parents et mes frères pour tout l’amour et le support
qu’ils m’apportent depuis toujours. Enfin, je remercie Carla Vallauri pour son amour et son soutien
lors des moments difficiles de la thèse.

En bref, merci à toutes les personnes qui ont pu croiser mon chemin lors de se long et en-
richissant voyage qu’est le doctorat !

Contents

1 Introduction 1
1.1 Experimental design . 6

2 The Traveling Salesman Problem (TSP) 7
2.1 The problem . 9

2.1.1 Definitions . 9
2.2 Exact solving . 11

2.2.1 Relaxations . 11
2.2.2 LP relaxation . 16

2.3 Heuristic solving . 17
2.3.1 Tour construction algorithms . 17
2.3.2 Tour improvement algorithms . 18
2.3.3 Composite algorithm: Lin-Kernighan 19

3 The TSP in CP 21
3.1 Constraint Programming . 23

3.1.1 Modeling . 23
3.1.2 Filtering . 23
3.1.3 Propagation . 24
3.1.4 Search . 24

3.2 The Weighted Circuit Constraint . 24
3.2.1 Filtering . 25

3.3 The search strategy . 29
3.4 k-cutset constraint . 30

3.4.1 Introduction . 30
3.4.2 The k-cutset constraint and its filtering rules 31
3.4.3 A non-complete quadratic time algorithm 33
3.4.4 A linear time algorithm . 39
3.4.5 Experiments . 47
3.4.6 Conclusion . 54

3.5 Mandatory Hamiltonian path constraint . 55
3.5.1 Consistency Check . 55
3.5.2 Filtering algorithm . 57
3.5.3 Maintenance during the search . 59
3.5.4 Discussion . 62
3.5.5 Experiments . 63
3.5.6 Conclusion . 66

3.6 One-Tree constraint . 68
3.6.1 The constraint . 68
3.6.2 Experiments . 72

xi

xii CONTENTS

3.6.3 Conclusion . 74
3.7 Lagrangian Relaxation . 74

3.7.1 CP-based Lagrangian relaxation . 75
3.7.2 Scope Sizing Subgradient Algorithm 76
3.7.3 Experiments . 77
3.7.4 Conclusion . 83

3.8 General results . 85
3.8.1 Analysis of the instances . 85
3.8.2 Large instances . 85
3.8.3 Experiments . 85

3.9 Conclusion . 91

4 Parallelization of the TSP solving in CP 93
4.1 Introduction . 95
4.2 EPS . 96

4.2.1 Modifications of EPS mechanisms . 96
4.3 Decomposition issue for the TSP and LCFirst 99

4.3.1 Bound-Backtrack-and-Dive and decomposition 100
4.3.2 Experiments . 100
4.3.3 Conclusion . 106

4.4 Performance with a hundred cores . 107
4.4.1 Re-decomposition . 108
4.4.2 Experiments . 113
4.4.3 Conclusion . 118

5 Shaving 119
5.1 Introduction . 121
5.2 Experiments . 121

5.2.1 Check mode . 122
5.2.2 Candidates . 122
5.2.3 Calling mode . 124
5.2.4 Quick shaving . 124
5.2.5 Model . 129
5.2.6 Search strategy . 129

5.3 Conclusion . 135

6 Efficient implementation 137
6.1 Data structures and algorithms . 139

6.1.1 1-tree computation . 139
6.2 Conclusion . 141

7 Conclusion and Perspectives 143
7.1 Conclusion . 143
7.2 Perspectives . 145

7.2.1 Continuation . 145
7.2.2 Extension . 146

xii

CONTENTS xiii

Bibliography 147

List of Figures 155

List of Tables 159

List of definitions 161

Appendix
A Representation of the instance set . 167
B Imposing edges in an MST . 168

xiii

CHAPTER 1
Introduction

The Traveling Salesman Problem (TSP) is a fundamental graph theory problem. It consists in
finding a minimum cost cycle in a graph visiting all nodes (see Figure 1.1 and Figure 1.2). The
TSP appeared in numerous domains such as biology with genome sequencing, industry with scan
chains and electronic component drilling problems, positioning of very large telescopes, data clus-
tering, scheduling problems and many others. The applications of the TSP make it as fundamental
as interesting: it is often an underlying problem of real-world problems.

Figure 1.1: A set of nodes. Figure 1.2: A TSP solution for Figure 1.1.

Like many real-world problems, the search for the existence of a TSP solution is NP-Complete
and finding the optimal solution is NP-Hard. Thus, all classical methods designed for solving NP-
Hard problems have been tried such as Mixed Integer Programming (MIP), Constraint Program-
ming (CP),

In order to solve the optimization version of the TSP without side constraints, the most effi-
cient method is based on MIP: the so-called specialized solver Concorde [Applegate et al., 2006].
It is mainly based on an LP relaxation of the TSP obtained by relaxing the integrity and the sub-
tour constraints in combination with structural cutting planes correcting the structural defects of
the LP relaxation lower bound. Simple ones such as imposing the 2-connectivity of a graph, and
more complex ones such as the so-called Comb inequalities. Nevertheless, no polynomial time
algorithm is known at this time to detect whether a graph does not violate a Comb inequality.
Thus, a large number of polynomial algorithms have been developed in order to consider only par-
ticular cases of Comb inequalities [Edmonds, 1965, Grötschel and Padberg, 1979, Chvátal, 1973,
Letchford and Lodi, 2002] leading to strong computational results. Unfortunately, it cannot deal
with additional constraints that are very common in real-world problems such as Pickup & Deliv-
ery, Dial-a-Ride, automatic harvesting, etc.

Solving the TSP is difficult since it involves finding a single cycle going through all the vertices
of a graph such that the sum of the edges costs of the cycle is minimal. It is quite easy to model

1

2 CHAPTER 1 — Introduction

the fact that each vertex belongs to a cycle. Indeed, it is sufficient that each vertex has at least
two distinct neighbors. In other words, each vertex must be the end of at least two edges. Such
a result can be obtained by modeling the problem as an assignment problem, which is solved
in polynomial time. However, this model is not sufficient to obtain a single cycle in the graph,
because the assignment corresponds to the coverage of the vertices by a set of disjoint cycles.
From this model, we obtain solutions where each vertex belongs to a cycle, but not to a unique
cycle. The covering by a unique cycle can be achieved by imposing that the sub-graph generated
by the selected edges is connected. The combination of these two aspects is what makes the TSP
so difficult.

Unlike the previous approach, a model can be built based on the notion of a connected sub-
graph. It was exactly the idea of Held and Karp [Held and Karp, 1970, Held and Karp, 1971] who
represented this notion by a 1-tree that is a node x, two adjacent edges of x and a spanning tree
of the graph without x. A 1-tree such that each node has exactly two neighbors is a Hamiltonian
cycle, and a minimum 1-tree with these constraints is an optimal solution of the TSP. The use
of a 1-tree is interesting because the minimum 1-tree is a strong lower bound of the TSP. In
addition, its computation is strongly related to the computation of a minimum spanning tree, that
is a polynomial time algorithm.

Held and Karp suggested the relaxation of the degree constraints (i.e. the constraints imposing
that each node must have exactly two neighbors) with a Lagrangian relaxation (LR). A LR is a
relaxation method which approximates P , a difficult problem of constrained optimization, by a
simpler problem [Beasley, 1993]. It consists in removing difficult constraints by integrating them
into the objective function. It is therefore appropriate for solving problems where the constraints
can be partitioned into two parts: a set of constraints that can be easily solved and a set that
contains the other constraints. The constraints of the second group are moved to the objective, so
only constraints that are easy to solve remain. The satisfaction of difficult constraints is achieved
by penalizing them in the objective. A cost for each constraint that measures the distance to
satisfaction multiplied by a multiplier is then introduced. For each set of multipliers, the optimal
solution of the LR of P is a lower bound of the optimal solution of P . These lower bounds are
often used in conjunction with a branch-and-bound algorithm to speed up the search for an optimal
solution of P .

Therefore, the Held and Karp Lagrangian relaxation of the degree constraints for the TSP can
be defined as follows. The set of the hard constraints is the degree constraint of every node. Then,
relaxing these constraints leads in a search for a 1-tree. In short, we have a polynomial problem
to solve and some constraints to penalize (the degree constraints). Thus, for each node v, the
expression µi(degree(v)− 2) with µ ≥ 0 is added to the objective function, where the degree of
v is expressed as the number of the edges in the 1-tree with v as an endpoint.

Since for any set of multipliers µ the optimal value of the LR of P is a lower bound of
the optimal value of P , it can be used to remove some values of the variables. Consider
UB, an upper bound of the optimal solution of P (for example any solution of P , there-
fore not necessarily optimal), and x = a an assignment. If for x = a the optimal value
of the LR of P is greater than UB, then we can remove a from D(x) since we know that
x = a does not belong to the optimal solution. From this idea, the CP-based Lagrangian re-
laxation has been introduced [Sellmann and Fahle, 2003] and successfully used to solve many
problems [Khemmoudj et al., 2005, Menana, 2011, Fontaine et al., 2014, Bergman et al., 2015,
Cambazard and Fages, 2015, Demassey, 2017]. It consists in modeling the problem so that one
or more cost-based filtering algorithms can be used on the easy part of the problem. Difficult con-

1.0 – 3

straints are moved to the objective function and the cost-based filtering algorithms are used when
looking for good multipliers.

The weighted circuit constraint (WCC) [Benchimol et al., 2012] implements this ap-
proach with the Held and Karp Lagrangian relaxation in constraint programming. This
constraint can be considered as the state-of-the-art in CP as mentioned by Ducomman
et al. [Ducomman et al., 2016]: “The best approach regarding the number of instances
solved and quality of the bound is the Held and Karp’s filtering”. In addition to the
WCC, the state-of-the-art search strategy is a graph interpretation of Last Conflict heuris-
tics [Haralick and Elliott, 1979, Lecoutre et al., 2009], named LCFirst [Fages et al., 2016]. This
search strategy selects one node from the graph according to a heuristic. Then, it keeps branching
on the edges adjacent to this node until there are no more edges to branch on around the node, no
matter if a backtrack occurs or not. Hence, this search strategy learns from previous branching
choices and tends to branch in areas which previously lead to a failure. The experiments of Fages
et al. [Fages et al., 2016] show that LCFirst clearly outperforms all other search strategies. So far,
LCFirst beats all other search strategies by one or more orders of magnitude.

In this thesis, we introduce three constraints into the CP model: the k-cutset constraint, the
mandatory Hamiltonian path constraint and the one-tree constraint.

The idea of the k-cutset constraint [Isoart and Régin, 2019, Isoart and Régin, 2021b] is that
each cutset of a graph must contain at least two edges and any solution contains an even num-
ber of elements from this cutset. Actually, the CP model is based on a single graph variable with
mandatory and optional edges. Thus, the k-cutset constraint tries to detect inconsistency in manda-
tory edges and to filter optional edges. We developed two algorithms for this constraint. A first
one with a quadratic complexity dealing with the cutsets of size lower or equal to 3. Then, a linear
algorithm dealing with the cutsets of any size. With a static search strategy, the k-cutset constraint
allows obtaining an improvement of an order of magnitude over the search nodes and a significant
reduction of the solving times. With the state-of-the-art search strategy, it allows a mean reduction
of the solving times by at least a factor of 3.

Next, the mandatory Hamiltonian path constraint [Isoart and Régin, 2021b] is based on a local
search algorithm. More precisely, it is based on the local search tour improvement k-opt algorithm
[Lin, 1965, Lin and Kernighan, 1973]. The idea of this algorithm is to search for k edges in a
given tour (not necessarily optimal) such that swapping them creates a cheaper tour. In contrast
to heuristic methods, the CP method does not improve a tour but builds an optimal tour. Indeed,
the CP model imposes and removes some edges through a branch and bound. The imposed edges,
named mandatory edges, can form paths. Therefore, the purpose of the CP method is to find
a tour going through these paths. However, it can occur that such a path is not itself optimal
(i.e. there exists a k-opt). Thus, any solution going through this path will be sub-optimal. Then, the
mandatory Hamiltonian path constraint uses the k-opt algorithm on the paths of mandatory edges.
More precisely, let us define p, a path composed of mandatory edges going from s to t through
a set of nodes X ′. If p can be improved by another path p′ going from s to t through X ′, then p
cannot belong to any optimal solution and the current branch of the search tree can be pruned. In
addition, we define a filtering algorithm removing edges: if a path can be improved when an edge
is appended, then it cannot exist an optimal solution simultaneously containing that path and that
edge. Experimentally, we show that using a k-opt algorithm with k > 3 is impracticable for this
constraint. In addition, almost all the improvements are found with k ≤ 3. Then, integrating this
constraint to the WCC combined with the k-cutset constraint allows obtaining an improvement of
at least a factor of 3 in solving times.

4 CHAPTER 1 — Introduction

The one-tree constraint is based on the following property: if all nodes of the 1-tree have
exactly two neighbors, then the 1-tree is a solution of the TSP. In some cases, the TSP can be
decomposed into independent sub-problems. For instance, let us take v1 and v2 two nodes such
that removing v1 and v2 from the graph (a 2-vertex-connected graph) disconnects it and creates
the cut (S, T). Then, we note that there are exactly two nodes connecting S and T and any TSP’s
solution contains all the nodes of both S and T in a unique minimum cost cycle. Thus, any TSP’s
solution is a minimum cost Hamiltonian path going from v1 to v2 in S combined with a minimum
cost Hamiltonian path going from v1 to v2 in T . We thus search for 2-cutsets in the graph such
that the 1-tree is a minimum cost Hamiltonian path in S (resp. T) in order to assign the part of the
1-tree belonging to S (resp. T).

On the other hand, we engineered the CP-based Lagrangian relaxation in order to improve
the solving times [Isoart and Régin, 2020a]. Sellmann made two important observations about the
relationship between the LR and the filtering algorithms (FAs) [Sellmann, 2004]:

• Sub-optimal multipliers can be more efficient for filtering than the optimal multipliers for
the original problem.

• It is not clear whether FAs should actually take place during the optimization of the La-
grangian multipliers, because the standard approach for the optimization of the multipliers
are not guaranteed to be robust enough to enable a change (i.e. the removal of a value) of
the underlying sub-problem during the optimization.

These observations show the complexity of the interactions between FAs and multipliers,
which have important consequences, such as losing the monotonicity so dear to CP. Most of the
articles in the literature using CP-based LR do not address this issue and it is only by looking in the
source code of the programs that we discover precisely when FAs are called. We then introduced
Subgradient Scope Sized algorithm (SSSA) in order to dynamically trigger the FAs. It studies the
variation of the value of the LR objective function. Experimentally, we observed that this value
often stagnates or oscillates. Then, we measured that these variations do not bring anything in
terms of filtering. Therefore, we suggest detecting stagnation and oscillations and immediately
stop iterations when they occur. Stopping multipliers computations is not a problem, because con-
vergence towards optimality is done using a search procedure and not only with the LR. However,
it is important to note that stopping multipliers computations prematurely can lead to a weaker
bound leading to a larger search tree. Thus, a good trade-off is mandatory.

Over the last few years, machines with multiple cores have been commercialized. When the
solving time is important, making the best use of your machine is also important. As a result,
parallelism has been widely used to improve the solving of some problems. When the solv-
ing method uses a branch-and-bound, Embarrassingly Parallel Search (EPS)[Régin et al., 2013,
Malapert et al., 2016, Régin and Malapert., 2017] allows parallelism in problem solving in a non-
intrusive way. The idea is to statically decompose the initial problem into a large number of sub-
problems that are consistent with propagation (i.e. running the propagation mechanism on them
does not detect any inconsistency). These sub-problems are added to a queue, which is managed
by a master. Then, each waiting worker takes a sub-problem from the queue and solves it. The
process is repeated until all the sub-problems have been solved. More precisely, EPS decomposes
step by step. At each step, sub-problems are decomposed into other sub-problems. The decompo-
sition of a sub-problem is done by calculating a set of variables to be assigned. Then, it generates
all sub-problems consistent with the propagation assigning the set of variables to be affected. The

1.0 – 5

decomposition is done when a specific number of sub-problems is obtained, therefore EPS repeats
this step in a breadth-first way. Thus, we define an assignment limit in the enumeration mecha-
nism, which we will increase iteratively until we obtain the required number of sub-problems.

Unfortunately, good results are not obtained from a direct application of EPS for the TSP.
Indeed, the state-of-the-art search strategy solving the TSP in CP (LCFirst) is depth-first whereas
the decomposition mechanism of EPS is breadth-first. Therefore, the combination of the search
strategy and the decomposition of EPS is not straightforward. Experiments show that the use of
LCFirst during the decomposition gives results that are not robust. Sometimes the decomposition
will be deep enough for LCFirst, but most of the time this is not the case. This issue leads to a bad
load balancing and harder sub-problems to solve.

The solving of the TSP cannot be performed without LCFirst, since the results would be dete-
riorated by several orders of magnitude. Thus, we introduce Bound-Backtrack-and-Dive, a method
used to approximate the information learned by LCFirst [Isoart and Régin, 2020b]. It consists of
running a sequential execution with a low number of backtrack allowed in order to build an ordered
set containing the nodes selected by LCFirst in the search tree. The order is defined according to
the number of times the nodes are backtracked and how deep they are. Then, the parallel execution
of the TSP is started (decomposition step) such that the LCNodes are chosen accordingly to the
previous defined order. Finally, the solving step is performed with the classical LCFirst algorithm.
The idea comes from our analysis of LCFirst behavior, we notice that it quickly distinguishes
some nodes and then refines its knowledge. We then suggest studying the information learned by
LCFirst at the beginning of the search tree and to use it to simulate the main trends of LCFirst
during the decomposition step of EPS.

EPS is based on the idea that if there are many sub-problems to solve, then the solving times of
the workers will be balanced even if the solving times of the sub-problems are not. Unfortunately,
sub-problems with extremely different solving times may appear with the TSP. For example, one
requiring a huge part of the total solving time. In this case, the load balancing is poor. We show
that a general increase of the number of sub-problems does not solve this imbalance. We thus
introduce a method that identifies the presence of difficult sub-problems during the solving process
and decompose them again. This method keeps the advantages of EPS: the communication is very
reduced (the workers do not communicate with each other) and it is independent of the solver.

Finally, we tried to use a “brutal” approach in order to solve the TSP: the shaving. For each
non-mandatory edge of the graph, it assigns the edge and runs a propagation step. If a failure oc-
curs, then the non-mandatory edge cannot belong to any optimal solution of the TSP. This process
is quite heavy since a propagation step is run for every edge for each search node. Nevertheless,
it reduces the search space by several orders of magnitude. Then, we implemented different vari-
ations of the shaving in order to find a good trade-off. Unfortunately, this method did not also
lead to a reduction of the solving times. However, we believe that a reduction of several orders of
magnitude of the search space is not quite common and should be mentioned.

The thesis is organized as follows. First, we introduce and formally define the TSP in Sec-
tion 2.1. Then, in Section 2.2 and Section 2.3 we present the state-of-the-art for both exact and
heuristic solving methods. Next, in Chapter 3 we introduce the TSP model in CP. To do so, we first
define the CP background and the WCC with the state-of-the-art search strategy. In Section 3.4,
Section 3.5 and Section 3.6 we define respectively the k-cutset constraint, the mandatory Hamil-
tonian path constraint and the one-tree constraint. In addition, we introduce our works on the
CP-based Lagrangian relaxation with SSSA in Section 3.7. Then, in Section 3.8 we show some
general results in order to position our works in the world of TSP solving. Next, we show how to

6 CHAPTER 1 — Introduction

parallelize the search for solutions for the TSP with EPS. In Section 4.2, we formally define EPS
and we give some modifications of EPS in order to deal with the TSP model. Then, we introduce
Bound-Backtrack-and-Dive in Section 4.3 for more robustness and improved results when solv-
ing the TSP with EPS. In order to deal with the extremely heterogeneous problems when solving
with a large number of cores, we give an algorithm in Section 4.4 allowing re-decomposition of
the hardest sub-problems. Then, in Chapter 5 we discuss the shaving method. In Chapter 6, we
give some details on our implementation of the TSP model. Finally, we conclude and give some
perspectives.

Note that most of the works of this thesis come from publications in international
conferences [Isoart and Régin, 2019], [Isoart and Régin, 2020a], [Isoart and Régin, 2020b],
[Isoart and Régin, 2020], [Isoart and Régin, 2021a], [Isoart and Régin, 2021b]. In addition, Sec-
tion 4.4 is still under submission.

1.1 Experimental design

First, all the code of this thesis has been implemented in Java 11. It is integrated in a locally de-
veloped constraint programming solver. We consider the instances of the TSPLib [Reinelt, 1991],
a library of reference graphs for the TSP. In this library, the name of each instance is suffixed by
its number of nodes. For instance, st70 from the TSPLib is a complete graph of 70 nodes. In this
thesis, we only consider symmetric graphs. The experiments were performed on Clear Linux with
two Intel Xeon E5-2696v2 (12 cores and 24 threads per CPU) and 64 GB of RAM. We use such a
machine in order to have stable results. For instance, let us take a laptop on Windows 10 with Intel
Core i7-7820HQ CPU @ 2.90 GHz and 32 Go of RAM. Solving three times st70 from the TSPLib
give the following solving times: 670ms, 722ms and 619ms. On the Clear Linux with the Xeon,
we obtain: 530ms, 524ms, 529ms. Therefore, the machine and the operating system can have an
impact on the reproducibility. Note that the laptop we take for the example is a high-performance
laptop, i.e. a mobile workstation. Later in this thesis we will show results obtained by parallel
computing. For the laptops, loading the CPU at 100% causes the heat to increase, which, due to
the miniaturization of things, is poorly evacuated. It leads to the following issue: CPUs do not
stay at their maximum frequency. Therefore, we observe a decrease of the performance increasing
with the solving time. Conversely, the Intel Xeon E5-2696v2 is designed to be loaded at 100%: it
achieves better intrinsic performance when fully loaded. Indeed, we must carefully interpret the
results when comparing a result on 1 and 100 cores. In addition, Clear Linux allows us to have a
machine minimizing the number of threads running for the OS and the internet. Thus, since our
goal is to improve the solving times of the TSP in CP, we tried to be as rigorous about the way we
experimented as we were about the way we do research.

We run our algorithms on 40 instances from the TSPLib. We do not consider the instances that
are solved in less than 100ms and the instances remaining unsolved in 24h with our best model.
Therefore, we set a timeout t.o. of 24h. In the experimental sections of each chapter, we will
express the solving times in seconds and we will denote by #sn the number of search nodes.

CHAPTER 2
The Traveling Salesman

Problem (TSP)
In this chapter, we introduce the problem that we consider in this thesis: the Traveling
Salesman Problem (TSP). It consists, in a graph, to find the shortest tour going through
all the nodes. Then, we introduce the exact solving methods consisting in finding the op-
timal solution. Finally, we introduce the heuristic solving methods consisting in quickly
finding a good solution.

2.1 The problem . 9
2.1.1 Definitions . 9

2.1.1.1 Graph Theory 9
2.1.1.2 Model . 10

2.2 Exact solving . 11
2.2.1 Relaxations . 11

2.2.1.1 Lagrangian Relaxation 11
2.2.1.2 Subgradient Algorithm 12
2.2.1.3 Held-Karp Relaxation 12
2.2.1.4 Assignment problem relaxation 14

2.2.2 LP relaxation . 16
2.2.2.1 Cutting planes 16
2.2.2.2 Constraint generation 16

2.3 Heuristic solving . 17
2.3.1 Tour construction algorithms 17

2.3.1.1 Nearest neighbor algorithm 17
2.3.1.2 Christofides . 17

2.3.2 Tour improvement algorithms 18
2.3.2.1 3-opt algorithm 18
2.3.2.2 k-opt . 19

2.3.3 Composite algorithm: Lin-Kernighan 19

7

2.1 – The problem 9

2.1 The problem

The origin of TSP is unclear. We do not really know who first introduced it and the origin of
the name is quite obscure. A simple way to define the TSP is the following: for a given set
of cities, find the shortest tour going through each city once. Its statement may be simple, but
its solving is far from simple. In the 1800s a large number of salesmen were on the road and
had to travel to many cities, sometimes very far away, especially when traveling on horseback.
At this time, the interest of visiting a number of cities as quickly as possible was very pro-
nounced. For example, a handbook from 1832 [ein alter Commis-Voyageur, 1832] gives various
hand-calculated heuristic tours through regions of Germany and Switzerland. It appears that many
such handbooks were published in order to guide salesmen through their regions. Today, even if
this profession is not as popular as it used to be, the interest in solving a TSP is still fundamen-
tal. In the context of travel, whether it is to visit monuments of a city or to go to professional
appointment, the TSP is the problem we try to solve. In the 1950s, Flood was one of the first
to be interested in the TSP as a mathematical problem with the application of school bus rout-
ing [Flood, 1956]. Afterwards, TSP appeared in many other domains such as biology with genome
sequencing [Karp and L. Ruzzo, 1996], industry with scan chains [Barbagallo et al., 1996] and
electronic component drilling problems [Grötschel et al., 1991], positioning of very large tele-
scopes [Carlson, 1997], data clustering [Lenstra, 1974], scheduling problems, and many others.

For instance, scheduling problems can be modeled as a TSP such that cities are tasks that
should be performed and arcs are transition times between tasks. An additional node correspond-
ing to the initial state is often added and each node can be reached from the initial node with no
cost. Since each task must be performed, the TSP in this graph is a solution of the scheduling prob-
lem performing each task exactly once such that the transition times are minimized. Figure 2.1
shows an example of such a transformation.

i j

0 1 2
0 0 8 9
1 3 0 2
2 4 1 0 0

1

2

3

8
3 1

4

9

2

Figure 2.1: A transition table giving the transition times between the task i and j and the corre-
sponding graph such that the initial state is the node 3 connected to each other state with gray arcs
and no cost.

The applications of TSP make it as fundamental as interesting: it is often an underlying prob-
lem of real life.

2.1.1 Definitions

2.1.1.1 Graph Theory

The definitions of graph theory are taken from Tarjan’s book [Tarjan, 1983].
A directed graph or digraph G = (X, U) consists of a node set X and an arc set U , where

every arc (xi, xj) is an ordered pair of distinct nodes. A multigraph is a digraph such that there

10 CHAPTER 2 — The Traveling Salesman Problem (TSP)

can exist arcs that are not unique. We let X(G) denote the set of nodes of G such that n = |X(G)|
and U(G) the set of arcs of G such that m = |U(G)|. In addition, U(i) is the set of adjacent edges
of i. The cost of an arc is a value associated with the arc. An undirected graph is a digraph such
that for each arc (xi, xj) ∈ U , (xi, xj) = (xj , xi). If G1 = (X1, U1) and G2 = (X2, U2) are
graphs, both undirected or both directed, G1 is a subgraph of G2 if X1 ⊆ X2 and U1 ⊆ U2. A
path from node x1 to node xk in G is a list of nodes [x1, . . . , xk] such that (xi, xi+1) is an arc for
i ∈ [1..k − 1]. The path contains node xi for i ∈ [1..k] and arc (xi, xi+1) for i ∈ [1..k − 1]. The
path is simple if all its nodes are distinct. The path is a cycle if k > 1 and x1 = xk. A cycle is
Hamiltonian if [x1, . . . , xk−1] is a simple path and contains every node of X . The cost of a path
p, denoted by w(p), is the sum of the costs of the arcs contained in p. An undirected graph G is
connected if there is a path between each pair of nodes, otherwise it is disconnected. A tree is
a connected graph without a cycle. A tree T = (X ′, U ′) is a spanning tree of G if X ′ = X and
U ′ ⊆ U . The U ′ edges are the tree edges T and the U − U ′ edges are the non-tree edges T . A
minimum spanning tree T = (X ′, U ′) is a spanning tree minimizing the cost of the tree edges.
The maximum connected subgraphs of G are its connected components. A partition (S, T) of
the nodes of G such that S ⊆ X and T = X − S is a cut. The set of edges (xi, xj) ∈ U having
xi ∈ S and xj ∈ T is the cutset of the (S, T) cut. A k-cutset is a cutset of cardinality k.

Definition 2.1.1 (TSP). Given a graph G, a solution to the Traveling Salesman Problem (TSP)
in G is a Hamiltonian cycle HC ∈ G minimizing w(HC).

Without loss of generality, we will assume that each arc appears at most once and that there is
no self-loop, i.e. an arc (u, v) such that u = v. Unless specified, we will only consider the search
for TSP in undirected graphs.

2.1.1.2 Model

In the context of a graph, a solution of the TSP is a unique minimum-cost cycle going through
all the nodes. A classical formulation of the TSP with integer variables is given in the following
model:

min
∑
e∈U

w(e)xe (2.1)

s.t. ∑
e∈U(i)

xe = 2 ∀i ∈ X (2.2)

∑
i∈S,j∈S,i<j

x(i,j) ≤ |S| − 1 ∀S ⊂ X, |S| > 2 (2.3)

xe ∈ {0, 1} ∀e ∈ U (2.4)

If e belongs to the solution, then xe = 1. Otherwise, xe = 0. The degree constraint (2.2)
requires that each node i ∈ X has exactly two adjacent arcs in the solution: it means that each
node must belong to a cycle. Next, the subtour constraint (2.3) requires that there is no cycle
formed by a subset of the nodes, except for the subset containing all the nodes of the graph: that
enforces the unicity of the cycle. Finally, the TSP is a minimization problem and the objective
function (2.1) minimize the cost of the solution. Thus, by solving this problem we obtain an
integer solution containing a unique cycle going through all the nodes of the graph.

2.2 – Exact solving 11

2.2 Exact solving

A straightforward method for solving a problem is to try all possible combinations. For the TSP, it
means O(n!) combinations: it quickly turns to be impractical. Indeed, the time complexity for the
optimization version of the TSP is NP-hard while the decision version of the TSP is NP-Complete.

Several algorithms using dynamic programming theory [Bellman et al., 1957] have been de-
veloped to solve the TSP [Bellman, 1958, Gonzales, 1962, Held and Karp, 1962]. In an optimal
solution of the TSP, each sub-path is an optimal path itself. Starting from this remark, the idea
is to compute all sub-paths starting with the smallest sub-path: the one visiting a single node.
Recursively, for each path already computed, we add a node not yet visited at its end. When
all the nodes are visited, we add to the path the cost of the edge returning to the starting node.
Finally, the optimal solution is obtained by taking the smallest computed paths. An analysis led
by Held and Karp shows that this algorithm has a time complexity in O(n22n). Even though the
time complexity is huge for practical applications, it is much better than the factorial obtained by
enumerating all combinations: it saves an exponential in the time complexity. Moreover, it is a
very nice theoretical result: even today, no known algorithm has a better time complexity for the
exact solving of the TSP. However, it remains impractical even for small instances. We will now
describe some exact solving methods giving better practical results.

2.2.1 Relaxations

Another way to solve NP-Hard problems is to relax hard constraints (i.e. the ones making the
problem NP-Hard) in order to exploit substructures of the problem. Looking more closely at the
model given in Section 2.1.1.2, we can relax some constraints in order to obtain a polynomial sub-
problem to solve. Indeed, if we relax the constraint (2.2) by replacing it by 2.5, then the solution
is a minimum-cost connected subgraph without subtours: it is a minimum spanning tree and a
large number of polynomial algorithms have been developed for this problem [Borůvka, 1926,
Kruskal, 1956, Prim, 1957, Karger et al., 1995, Chazelle, 2000].∑

e∈U(i)
xe > 0 ∀i ∈ X (2.5)

If we relax the (2.3) constraint by removing it, then we try to solve a min-cost assignment
problem solved in a polynomial time by a minimum cost flow problem [Edmonds and Karp, 1972]
or the Hungarian algorithm [Kuhn, 1955]. Due to the exponential number of constraints of (2.3),
solving the linear programming relaxation by relaxing (2.4), i.e. replacing (2.4) by 0 ≤ xe ≤ 1,
may take an exponential time. Thus, the combination of (2.2) and (2.3) make the TSP problem
very hard to solve.

2.2.1.1 Lagrangian Relaxation

The Lagrangian Relaxation (LR) procedure uses the idea of relaxing some difficult constraints
by bringing them into the objective function with associated Lagrangian multipliers µ ≥ 0. The
application of LR to a mixed integer program can be defined as follows.

Z = min c· x ZLR(µ) = min c· x + µ(A1· x − b1)

s.t.

{
A1· x ≤ b1
A2· x ≤ b2
x ∈ X

−→ s.t.
{

A2· x ≤ b2
x ∈ X

12 CHAPTER 2 — The Traveling Salesman Problem (TSP)

Assume that the constraint A1·x ≤ b1 is difficult to solve whereas constraint A2·x ≤ b2 is
easy. Then, the LR moves the first one into the objective. If A1·x ≤ b1 is violated, then A1·x > b1
and so d = A1·x−b1 > 0. This value d measures the distance to the satisfaction of this constraint.
Intuitively, the larger d is, the more the constraint should be penalized and the smaller d is, the
less the constraint should be penalized. This result is obtained by adding the value (A1·x− b1) in
the objective function. The Lagrangian relaxation proposes to use a non-negative multiplier µ for
each constraint introduced in the objective.

The interest of the multipliers is shown by the following property:

Property 2.2.1. For any vector µ, the value of ZLR(µ) is a lower bound of Z.

The Lagrangian multiplier problem consists of searching for the best multipliers. The
two most popular types of methods for solving it are the subgradient and the bundle methods
[Frangioni, 2002]. This second type of method converges faster than the first one. Since we only
need to use suboptimal multipliers for our filtering algorithms, we will focus our attention on the
subgradient method.

2.2.1.2 Subgradient Algorithm

Subgradient algorithms work in steps and locally re-optimize the multipliers according to a certain
precision, called agility. We will denote by LR(P, µ) the LR of P associated with the multiplier
set µ. Beasley’s algorithm [Beasley, 1993] is one of the most widely used. Its structure is depicted
in Algorithm 1. It calls Function SOLVELR which computes the optimal value of the LR for a
given set of multipliers and define new multipliers. The number of agility values is defined by
#agility, which is close to 6 most of the time for the TSP solving. Usually, and as mentioned
in Algorithm 1, the agility starts at 2 and is divided by 2 at each iteration. For a given agility
value, #scope is the maximal number of internal iterations of the LR. For each value of scope,
the optimal value of the LR is computed and multipliers are updated accordingly. We have also
added Function STOPCONDITION(...), which takes some parameters and tests if some stopping
conditions of the current loop are met. For instance, the program can be stopped when there is no
more progression of the objective function value.

2.2.1.3 Held-Karp Relaxation

Held and Karp introduced a strong lower bound obtained through a Lagrangian relaxation of the
degree constraint (2.2) [Held and Karp, 1970, Held and Karp, 1971]. It consists in solving a suc-
cession of MST. Nevertheless, they noticed that a TSP is not an MST since deleting an edge of
the TSP does not disconnect the graph. However, deleting an edge of the MST disconnects it:
the MST does not have the notion of a cycle. To fix this issue, they suggested the following pro-
cess for a graph G = (X, U): choose a node u ∈ X , named the 1-node, search for an MST in
G′ = (X−{u}, U) and connect u to the MST by its two lowest cost edges. Thus, we obtain a sub-
graph G1T = (X, U1T) named a 1-tree that contains a unique cycle and cover G with minimum
cost. An example from [Benchimol et al., 2012] is depicted in Figure 2.2.

The last issue is that all the nodes do not necessarily belong to this cycle unless the degree
constraint (2.2) is satisfied. Thus, they suggested to associate for each node i a Lagrangian multi-
plier µi ≥ 0. If U1T (i) > 2, then µi is increased (there must be fewer edges in the neighborhood
of i). Otherwise, if U1T (i) < 2, then µi is decreased (there must be more edges in the neighbor-
hood of i). At each iteration of the Lagrangian relaxation, the edge cost is updated as follows:

2.2 – 2.2.1 Relaxations 13

Algorithm 1: Beasley’s algorithm.

subgradientBeasley (P ,Zub,µ)
Input: A problem P , an upper bound Zub of P and a set of multipliers µ.
Output: A set of multipliers µk+1 and xk the optimal solution of LR(P,µk).
π ← 2 ; // Subgradient agility
k ← 0 ;
µ0 ← µ ; // Start with the current values of multipliers
foreach iterAgility = 1 . . . #agility do

scope← 0 ;
while scope < #scope do

(µk+1, xk, Zk)← SOLVELR(P ,Zub, π, µk, k) ;
// Return the optimal solution of P if reached

if Zk = Zub then return (µk+1, xk);
k ← k + 1 ;
scope← scope + 1 ;
if STOPCONDITION(...) then break;

π ← π/2 ;

return (µk+1, xk)
solveLR (P ,Zub, µk, k)

Input: A problem P , an upper bound Zub of P , the set of multipliers µk obtained in
the kth iteration and k the number of performed iterations.

Output: A set of multipliers µk+1, the optimal solution xk of LR(P,µk) and the
objective value Zk of LR(P,µk).

xk ← solve LR(P, µk) to optimality ;
R← |µ| ; // Number of relaxed constraints

Zk ← obj(xk) +
∑

1≤r≤R µk
robjr(xk) ;

∆k ← π(Zub−Zk)∑
1≤r≤R

(objr(xk))2 ; // Step

// Update of the multipliers

∀1 ≤ r ≤ R : µk+1
r ← max(0, µk

r + ∆kobjr(xk)) ;
return (µk+1, xk, Zk)

14 CHAPTER 2 — The Traveling Salesman Problem (TSP)

A

B C

D E

F

3

8

4

2

3 5

5

6 4

w(MST) = 16

A

B C

D E

F

3

8

4

2

3 5

5

6 4

w(1-tree) = 21

A

B C

D E

F

3

8

4

2

3 5

5

6 4

w(sol) = 24

Figure 2.2: A comparison between an MST, a 1-tree and the optimal tour in a graph.

∀(i, j) ∈ U, w′((i, j)) = w(e) + µi + µj such that the function w(e) returns the initial cost of an
edge e and the function w′(e) is the updated cost of an edge e. Here we look for the set of µ such
that the degree constraint is satisfied. In summary, we compute a succession of minimum 1-tree
with a Lagrangian relaxation. An example [Benchimol et al., 2012] is shown in Figure 2.3.

Experimentally, [Applegate et al., 2006] showed in an example of a problem of 42 cities that
the linear relaxation gives a bound at 9% of the optimal and the computation of a minimum 1-tree
gives a bound at 14% of the optimal. However, the Lagrangian relaxation allows obtaining, with
a modest number of iterations, a bound at 0.4% of the optimal solution. Then, given the quality
of the Held-Karp bound, it is often used to evaluate the quality of heuristic methods. Since the
convergence of a Lagrangian relaxation process can be very slow and the non-monotonicity of
subgradient algorithms, then Held and Karp also suggested to combine this method with a branch-
and-bound [Held and Karp, 1971].

2.2.1.4 Assignment problem relaxation

Another bound is the one obtained by relaxing the constraint (2.3), it allows the graph to be
covered by multiple cycles. As we explained above, solving this relaxed problem is equivalent
to solving the minimum cost assignment problem that can be solved with the Hungarian algo-
rithm [Kuhn, 1955] by searching for each node of the graph a minimum cost assignment with its
successor. Another way to proceed is to create a graph G′ such that for each node x of the initial
graph, we create two nodes x1 and x2. Then, all the nodes of the initial graph are duplicated. For
each edge (a, b) of the initial graph, we create the edges (a1, b2) and (a2, b1). Therefore, G′ is
a bipartite graph such that the nodes with 1 in index belong to a partition and the ones with 2 in
index belong to the other partition. Then, using a flow algorithm [Ford, 1956, Bellman, 1958], we
can compute a minimum cost assignment in by setting the capacity of the edges to 1 and sending

2.2 – 2.2.1 Relaxations 15

A

B C

D E

F

πA = 0

πB = −1.5 πC = 0

πD = 0 πE = 0

πF = 1.5

3

8

4

2

3 5

5

6 4

w(1-tree) = 16

A

B C

D E

F

4.5

6.5

4

3.5

4.5 5

5

4.5 2.5

w(1-tree) = 24

Figure 2.3: An iteration of the Held and Karp Lagrangian relaxation in a graph. In the left graph,
we give a 1-tree and for each node the associated multiplier πi. In the right graph, the edges cost
have been updated and a new 1-tree has been computed leading to a better lower bound.

1 flow unit per node in a part of the bipartite. The issue with these two approaches is that they
allow coverage by cycles of size two, and thus do not give sufficiently good bounds. One way to
fix this issue is to use 2-flow, i.e. to send 2 flow units on each node of a part of the bipartite graph.
Then, it looks for a predecessor and a successor. The solution has 2 ∗ n edges, so it creates two
solutions: one in one direction and one in the other. Thus, the value of the obtained bound must
be divided by two. In practice, the 2-flow gives much better bounds than the 1-flow (sometimes
better than a simple 1-tree). However, when we have a cycle covering, we want to forbid these
cycles in order to obtain only one cycle covering all the nodes. With the Lagrangian relaxation
method, we will add a Lagrangian multiplier per cycle found (potentially an exponential number)
with an inequality constraint. For example, if we the 2-flow generates the cycle a− b− c− a, the
constraint xa + xb + xc < 3 is generated and added into the objective function. Conversely to the
1-tree with the equality degree constraints, we have no longer a link with the objective function
of the initial problem and the relaxed one. It can be annoying for the convergence and for some
applications such that filtering in Constraint Programming. Some methods suggest to dynamically
purging the constraints when they are trivially solved in order to minimize this issue.

A stronger algorithm than the 2-flow is the 2-matching [Edmonds, 1965]. It consists in finding
a matching in the graph, that is a subset of edges, such that each node of the graph has exactly
two adjacent edges in the matching. Jünger et al. [Jünger et al., 1995] wrote: “implementing
an algorithm for the minimum cost 2-matching problem efficiently is not as simple as for the
minimum cost spanning tree problem. The lower bound obtained by finding the minimum cost
2-matching is in general poor”. For these reasons, we did not investigate this idea that much.

16 CHAPTER 2 — The Traveling Salesman Problem (TSP)

2.2.2 LP relaxation

2.2.2.1 Cutting planes

In any relaxation of a problem P into P ′, the optimal solution x∗
P of P is feasible in P ′ but the

optimal solution x∗
P ′ of P ′ is not necessarily feasible in P . Specifically, x∗

P ′ is feasible in P if and
only if x∗

P ′ is the optimal solution of P . With this in mind, for an integer programming problem P
and its linear relaxation P ′, the idea of the cutting planes [Dantzig et al., 1954] is to refine P ′ by
solving it iteratively until x∗

P ′ become a feasible of P . To do so, we create at each iteration some
new constraints such that x∗

P remains valid in P ′ but x∗
P ′ violates one of the created constraints.

In the TSP case, the simple linear relaxation of the problem is not really simpler because there can
be an exponential number of subtours, i.e. an exponential number of constraints. Thus, Dantzig et
al. suggested applying the cutting plane method to the TSP relaxation such that the integrity (2.4)
and subtour (2.3) constraints are relaxed [Dantzig et al., 1954].

2.2.2.2 Constraint generation

Several approaches have been developed in order to generate constraints for the cutting plane
method. In a general context, it can be done for mixed-integer linear programming prob-
lems [Gomory, 1958]. For the TSP solving, Dantzig et al. were interested in the structural de-
fects of the lower bound obtained by the relaxation introduced in Section 2.2.2.1 where the in-
tegrity (2.4) and subtour (2.3) constraints are relaxed [Dantzig et al., 1954]. For example, if x∗

P ′

contains subtours then constraints that forbid them are generated. We note that constraints are gen-
erated as they needed. Moreover, if x∗

P ′ is not a 2-connected graph (deleting 1 node disconnects
the graph), then a constraint enforcing that the graph must be 2-connected is generated. However,
this may not be sufficient to optimally solve the TSP. Thus, more sophisticated constraints named
Comb inequalities are generated.

As stated in Cook’s book [Cook et al., 2011]: "A comb is defined by giving several subsets of
nodes of the graph: We need one nonempty handle H ⊆ V , H ̸= V and 2k + 1 pairwise disjoint,
nonempty teeth T1, T2, ..., T2k+1 ⊆ V. for k at least 1. (So the number of teeth is odd and at least
3.) We also require each tooth to have at least one node in common with the handle and at least
one node that is not in the handle."

Formally, Comb inequalities can be defined by Equation 2.6.

∑
e∈U(H)

xe +
2k+1∑
i=1

x(Ti)) ≤ |H|+ k (2.6)

An example is given in Figure 2.4. Given H = {(A, D, E)}, T = {{D, C}, {E, F}, {A, B}} and
k = 1, the Comb inequality is violated since replacing in Equation 2.6 we obtain 3 + 3 ≤ 3 + 1,
which is wrong. Then, the cutting plane

∑
e∈U(H) xe +

∑2k+1
i=1 x(Ti)) ≤ 4 is generated.

Nevertheless, no polynomial algorithm is known at this time to detect whether a subgraph x∗
P ′

violates a Comb inequality. However, many polynomial time algorithms have been developed
to detect particular cases of Comb [Edmonds, 1965, Grötschel and Padberg, 1979, Chvátal, 1973,
Letchford and Lodi, 2002]. For instance, the blossom inequality [Edmonds, 1965] is a Comb
where each tooth of a Comb has exactly two nodes. Finally, all these techniques are efficiently
implemented in the Concorde [Applegate et al., 2006] code, which is to date the best pure TSP
solver.

2.3 – Heuristic solving 17

A B

CD

E F

1. Graph G

A B

CD

E F

2. A feasible solution of G

A B

CD

E F

3. Handle and teeth of G

H

Figure 2.4: An example of comb inequalities. The left graph is the input graph such that each edge
has a cost equal to one. The middle graph is a solution of the relaxation of Dantzig et al. such
that a solid line is equal to one and a dot line is equal to 1/2. The right graph is an example of a
violated comb inequality for the solution of the middle graph.

2.3 Heuristic solving

In contrast to exact algorithms, heuristics compute a TSP tour without a guarantee that the tour
is optimal. However, they are usually much faster. Thus, if a good solution can be accepted,
heuristics can be more suitable. For the TSP, there are three different kinds of heuristics: the tour
construction algorithms iteratively add nodes in the current tour in order to find a solution, the tour
improvement algorithms improve a tour with cities order exchange and composite algorithms, that
combine the two approaches. In this section, we show some heuristics for the three approaches and
we compare them with the Held-Karp bound. More heuristics are detailed in [Gutin et al., 2001,
Rosenkrantz et al., 1997].

2.3.1 Tour construction algorithms

2.3.1.1 Nearest neighbor algorithm

The Nearest Neighbor (NN) algorithm is one of the first, and surely the most natural, heuris-
tic used to solve the TSP. As described by Flood [Flood, 1956], it consists in building a tour
starting from a node and iteratively visit the nearest neighbor not yet visited until all nodes are
visited, then returning to the starting node. It leads to a time complexity in O(n2). This algo-
rithm is quite greedy and often gives solutions such that the returning edge is costly. However,
Rosenkrantz et al. showed that if the triangular inequality is satisfied, then the tour found is at
most O(log(V)) longer than the optimal tour [Rosenkrantz et al., 1974]. This heuristic may be
too greedy, but Johnson and McGeoch showed that the bound is less than 20% above Held-Karp
bound [Johnson and McGeoch, 2008].

2.3.1.2 Christofides

Christofides’ algorithm [Christofides, 1976] was one of the very first approximation algorithms.
It gives a TSP tour which is at most 3/2 longer than the optimal one if the graph is metric and
the triangular inequality holds. For a graph G = (X, U), the algorithm starts by computing
T = (X, U ′), an MST. Then, it computes a minimum weight perfect matching M = (X ′, U ′′)
for the subgraph induced by the nodes with an odd degree in T . Next, it computes H an Eu-
lerian cycle in G′ = (X, U ′ ∪ U ′′). Note that several nodes can be visited more than once in

18 CHAPTER 2 — The Traveling Salesman Problem (TSP)

H . Thus, we delete in the order H the “already visited” nodes, that gives us an approximated
TSP tour. Because of the minimum weight perfect matching, the time complexity of the al-
gorithm is in O(n3). Finally, Christofides’ algorithm may be slower than the nearest neighbor
algorithm but Johnson and McGeoch showed that the bound is less than 10% above Held-Karp
bound [Johnson and McGeoch, 2008].

2.3.2 Tour improvement algorithms

In the previous section, we have presented some TSP tour heuristics. What if we want a better
tour? That is exactly the purpose of tour improvement algorithms. It takes as input a tour and
iteratively tries to improve it. The most popular form of tour improvement is the local search
methods of 2-opt and 3-opt.

x1 x2

y2 y1

Figure 2.5: An example of 2-opt. The circle represents a tour where dashed lines are the suggested
move for the pair of edges ((x1, x2), (y1, y2)).

The 2-opt heuristic proceeds as follows. Given a tour T , for each pair of edges (e1, e2) in T , if
replacing (e1, e2) by another pair of edges (e3, e4) of T leads to a connected and shorter tour, then
we can replace (e1, e2) with (e3, e4) in T . We name such a replacing procedure a move. Note that
some heuristics search for the best improving move and then does not perform the replacement of
a move when found. In addition, for each pair of edges, there exists only one move reconnecting
the graph which is not the null move. The iteration on pairs leads to a time complexity in O(n2).
Figure 2.5 shows an example where e1 = (x1, x2), e2 = (y1, y2) and the move is e3 = (x1, y1),
e4 = (x2, y2). Johnson and McGeoch reported that 2-opt algorithm usually improve the tour such
that the bound is less than 5% above Held-Karp bound [Johnson and McGeoch, 2008].

2.3.2.1 3-opt algorithm

For the 3-opt algorithm, instead of choosing pair of edges, we choose a triplet of edges and, as for
2-opt, we search for moves reducing the overall cost of the tour. In that case, there are seven ways
to reconnect the graph. Note that three of them are simple 2-opt (that is a combination with one
edge of the triplet not moved). Thus, 3-opt allows checking more sophisticated combination than
2-opt and then can potentially find better moves. However, it leads to an algorithm with a time
complexity in O(n3). Figure 2.6 shows an example of all 3-opt moves that are not 2-opt. Johnson
and McGeoch showed that 3-opt algorithm usually improves the tour such that the bound is less
than 3% above Held-Karp bound [Johnson and McGeoch, 2008]. Thus, we notice that increasing
the complexity of checked combination can lead to a slight improvement of the tour quality.

2.3 – 2.3.3 Composite algorithm: Lin-Kernighan 19

x1 x2

y1

y2z1

z2

x1 x2

y1

y2z1

z2

x1 x2

y1

y2z1

z2

x1 x2

y1

y2z1

z2

Figure 2.6: 3-opt moves such that the circle represents a tour where dashed lines are the suggested
move for the triplet of edges ((x1, x2), (y1, y2), (z1, z2)).

2.3.2.2 k-opt

Naturally, the 2-opt and the 3-opt algorithms can be generalized to the k-opt algorithm with a
time complexity in O(nk). Experiments have shown that increasing the value of k improves the
quality of the tours but slows down solving times. Thus, some methods [Or, 1977, Bentley, 1992]
consider some 3-opt and/or 4-opt, but not all, in order to reduce the time complexity and speed up
the solving times.

2.3.3 Composite algorithm: Lin-Kernighan

Lin and Kernighan suggested using a variable k while solving [Lin, 1965, Lin and Kernighan, 1973]
in order to include larger moves. This makes the algorithm more complex, but greatly improves
the results (tour quality and solving times). To do so, they suggested several rules. They restrict
the considered exchanges by looking at the most promising permutations only. In addition,
they allow improving k-opt moves that can be built from a sequence of 2-opt moves such that
some 2-opt moves does not improve the tour. These moves are much more complex and pro-
vide better moves than a simple run of the 2-opt algorithm. Next, Helsgaun reported that the
heuristic of Lin-Kernighan allows obtaining tours very close to optimal with a single run for 50
cities [Helsgaun, 2000]. When 100 cities are involved, a single run allows obtaining tours above
20-30% of the Held-Karp bound. However, multiple runs allow obtaining a tour very close to
optimal. In order to make this algorithm extremely efficient, Helsgaun [Helsgaun, 2000] has
remarkably refined most of the rules given by Lin and Kernighan [Lin and Kernighan, 1973].
Today, the Lin-Kernighan-Helsgaun (LKH) algorithm is considered as one of the most efficient
heuristic solving the TSP and therefore it is embedded in most of the exact methods.

CHAPTER 3
The TSP in CP

The TSP in Constraint Programming (CP) is mainly based on the Weighted Circuit Con-
straint (WCC) itself based on the 1-tree Lagrangian relaxation of Held and Karp. In
combination with this model, a branch and bound is used. Thus, at any moment we
search for a TSP with a lower bound. Then, we introduced three new constraints. First,
the k-cutset constraint looks for the cutsets of the graph and enforces that any solution
has a strictly positive and even number of edges in each cutset. Next, we defined the
Mandatory Hamiltonian path constraint. It uses the well-known local search algorithms
2-opt and 3-opt on the lower bound imposed by the branch and bound and the filtering
algorithms. Then, we defined another structural constraint based on the minimality of
some cut in the graph and the lower bound obtained by the 1-tree. Finally, we engineered
the Lagrangian relaxation in order to speed up the solving times. All of this, leads to
reducing the number of search nodes by several orders of magnitude and therefore im-
proving the solving times.

3.1 Constraint Programming . 23
3.1.1 Modeling . 23
3.1.2 Filtering . 23
3.1.3 Propagation . 24
3.1.4 Search . 24

3.2 The Weighted Circuit Constraint 24
3.2.1 Filtering . 25

3.2.1.1 Marginal cost 25
3.2.1.2 Replacement cost 27
3.2.1.3 Degree constraint 29

3.3 The search strategy . 29
3.4 k-cutset constraint . 30

3.4.1 Introduction . 30
3.4.2 The k-cutset constraint and its filtering rules 31
3.4.3 A non-complete quadratic time algorithm 33

3.4.3.1 CST : Cycled Spanning Tree 33
3.4.3.2 Additional improvement 35
3.4.3.3 Implementation 36

3.4.4 A linear time algorithm . 39

21

22 CHAPTER 3 — The TSP in CP

3.4.4.1 Consistency Check 40
3.4.4.2 Pruning . 41

3.4.5 Experiments . 47
3.4.6 Conclusion . 54

3.5 Mandatory Hamiltonian path constraint 55
3.5.1 Consistency Check . 55
3.5.2 Filtering algorithm . 57
3.5.3 Maintenance during the search 59

3.5.3.1 Consistency check 59
3.5.3.2 Filtering algorithm 60
3.5.3.3 Restoration . 61

3.5.4 Discussion . 62
3.5.5 Experiments . 63
3.5.6 Conclusion . 66

3.6 One-Tree constraint . 68
3.6.1 The constraint . 68
3.6.2 Experiments . 72
3.6.3 Conclusion . 74

3.7 Lagrangian Relaxation . 74
3.7.1 CP-based Lagrangian relaxation 75
3.7.2 Scope Sizing Subgradient Algorithm 76
3.7.3 Experiments . 77
3.7.4 Conclusion . 83

3.8 General results . 85
3.8.1 Analysis of the instances 85
3.8.2 Large instances . 85
3.8.3 Experiments . 85

3.9 Conclusion . 91

3.1 – Constraint Programming 23

3.1 Constraint Programming

In this thesis, we use Constraint Programming (CP) [Rossi et al., 2006] in order to solve the TSP.
The CP is a programmation paradigm designed to solve combinatorial problems. This consists in
modeling the problem under constraints, and using each constraint to reduce the search space of
solutions.

3.1.1 Modeling

A finite constraint network N is defined as a set of n variables X = {x1, . . . , xn}, a set of
current domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set of possible values for
variable xi, and a set C of constraints between variables. We introduce the particular notation
D0 = {D0(x1), . . . , D0(xn)} to represent the set of initial domains of N on which constraint
definitions were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a subset T (C) of the
Cartesian product D0(xi1)× · · · ×D0(xir) that specifies the allowed combinations of values for
the variables xi1 , . . . , xir . An element of D0(xi1)× · · · ×D0(xir) is named a tuple on X(C). A
value a for a variable x is often denoted by (x, a). Let C be a constraint. A tuple τ on X(C) is
valid if ∀(x, a) ∈ τ, a ∈ D(x). C is consistent iff there exists a tuple τ of T (C) which is valid.
A value a ∈ D(x) is consistent with C iff x ̸∈ X(C) or there exists a valid tuple τ of T (C)
with (x, a) ∈ τ . A constraint is arc consistent iff ∀xi ∈ X(C), D(xi) ̸= ∅ and ∀a ∈ D(xi),
a is consistent with C. A set-variable xi is a particular variable such that its domain is a set
of set defined by D(xi) = {S | lb(xi) ⊆ S ⊆ ub(xi)}. The domain can also be represented
by the sets lb(xi) and ub(xi) such that v ∈ lb(xi) iff ∀S ∈ D(xi), v ∈ S and v ∈ ub(xi) iff
∃S ∈ D(xi), v ∈ S. We say that lb(xi) is the set of mandatory elements, and ub(xi)\ lb(xi) is the
set of optional elements. Usually a set-variable is also associated with an interval representing its
cardinality. A graph variable is a variable associated to a graph composed of two set-variables:
one for the nodes, one for the edges.

3.1.2 Filtering

For each constraint, a filtering algorithm is associated. It allows removing the values from the
domain of the variables of the constraint such that the constraint cannot be satisfied with these
values. For instance, if there are two variables x and y such that D(x) = [5, 10] and D(y) = [0, 7]
constrained by x < y, then a filtering algorithm may remove the values from 7 to 10 from D(x)
and the values from 0 to 5 from D(y). Therefore, the problem to solve becomes x < y such
that D(x) = [5, 6] and D(y) = [6, 7]. Thus, there are two valid solutions: S1 = {D(x) =
{5}, D(y) = {6}} and {D(x) = {6}, D(y) = {7}}. In addition, solving optimization problems
such as the TSP introduce an objective function. For instance, if the objective function minimizes
the sum of the values of the domains, S1 would have been the only optimal solution since 5 + 6 <
6 + 7. In the TSP, the objective function minimizes the sum of the mandatory edges cost.

Frequently, cost-based filtering algorithms are developed from the objective function. Given
P a minimization problem, LB(P) and UB(P) a function computing respectively a lower bound
and an upper bound of P and (x, a) a pair (variable,value). If cost(LB(P)) ≤ cost(UB(P))
and cost(LB(Px=a) > cost(UB(P)), then x = a cannot belong to an optimal solution because
there is no lower bound with a cost lower or equal than the upper bound and x = a. Then, a

24 CHAPTER 3 — The TSP in CP

can be safely removed from the domain of x. Conversely, if cost(LB(P)) ≤ cost(UB(P)) and
cost(LB(Px ̸=a) > cost(UB(P)), then x = a is necessary in order to verify cost(LB(P)) ≤
cost(UB(P)). Then, x = a. In the case of a graph variable represented with a set variable (such
as for the TSP), we want to find values to remove from the optional set and to find elements of the
optional set to add in the mandatory set.

3.1.3 Propagation

A variable can belong to several constraints. Therefore, if the filtering algorithm of a constraint
removes some values from the domain of a variable, then the filtering algorithm of other constraints
implying the variable should study the modifications. This mechanism is named the propagation.
For instance, let us take the three variables x, y and z such that D(x) = [5, 10], D(y) = [0, 7] and
D(z) = [5, 7] with the two constraints x < y and y < z. The filtering algorithm of x < y will
deduce that D(x) = [5, 6] and D(y) = [6, 7] and the one of y < z will deduce that D(y) = {6}
and D(z) = {7}. Then, y and z will be assigned. Then, the propagation mechanism allows
studying y again for x < y since D(y) has been modified by y < z. Therefore, x < y will deduce
that D(x) = {5}.

3.1.4 Search

For the Constraint Satisfaction Problem (CSP), a solution is found when all the variables are
assigned. Moreover, the CP can solve optimization problems, which is the case of the TSP. Then,
the solutions solve the CSP while minimizing an objective function. When the propagation step is
over (there is no more deduction to do), a search strategy is used in order to find all the solutions.
To do so, the most common way is to select with some heuristics a pair (variable,value). Then, split
the current problem in two sub-problems: the one with the variable assigned to the value and the
one with the value removed from the domain of the variable. We then perform a complete search
of the solutions set. For instance, the search strategies for the TSP consider edges of the graph.
In the case of the TSP and many other optimization problems, an upper bound of the objective
function is computed. Therefore, if the current values of the domains could not lead to a solution
lower or equal to this upper bound, then the search of solutions in that part of the search tree is
aborted. The process of stopping the search in the search tree is named a failure, it happens when
the current sub-problem is inconsistent.

3.2 The Weighted Circuit Constraint

Nowadays, the Weighted Circuit Constraint (WCC) is the best way to model the TSP in CP. It is
mainly based on the 1-tree Lagrangian Relaxation (LR) of Held and Karp [Held and Karp, 1970,
Held and Karp, 1971] introduced in Section 2.2.1.3. However, experiments show a very slow con-
vergence toward the optimal solution. Thus, the WCC integrates the following filtering algorithms
based on the edges costs:

• Marginal cost: if an edge e does not belong to any 1-tree with cost smaller or equal than a
given upper bound, then e can be safely deleted.

• Replacement cost: if an edge e belongs to all 1-trees with cost smaller or equal than a given
upper bound, then e is mandatory.

3.2 – 3.2.1 Filtering 25

Note that the upper bound can be obtained very efficiently before solving with an LKH run
[Lin and Kernighan, 1973, Helsgaun, 2000].

The WCC also integrates the degree constraint that is a structural constraint imposing that each
node has exactly two neighbors in any solution of the TSP.

In addition, the WCC is modeled with a single undirected graph variable such that all nodes
are mandatory. Without loss of generality, we note Ginit = (X, Minit, Oinit) the input graph such
that Minit is the set of mandatory edges and Oinit is the set of optional edges. While solving,
some edges will be removed or become mandatory. Therefore, we introduce D the set of removed
edges. An edge can become mandatory and therefore it is removed from Oinit and added to Minit.
In addition, a removed edge is removed from Oinit and added to D.

For the sake of clarity, we define G = (X, M, O) as the graph Ginit such that some modi-
fications have been made by the search tree and/or the filtering algorithms. Therefore, we have
Minit ⊆ M ⊆ (Oinit ∪Minit) and O ⊆ Oinit. Note that if G′ = (X, U) is the graph such that
Ginit is its initial graph variable, then O∪M ∪D = U , O∩M = ∅, O∩D = ∅ and M ∩D = ∅.
When a solution is found, |M | = n and O = ∅. In addition, we define Gmand = (X, M, ∅) the
graph of mandatory edges and Gopt = (X, ∅, O) the graph of optional edges. We note M(i) (resp.
O(i)) the set of mandatory (resp. optional) edges having i for extremity in M (resp. O) and γ(i)
the set formed by the union of O(i) and M(i). Unless specified, we will use these notations and
data structures in the next sections.

3.2.1 Filtering

We recall that a 1-tree is a lower bound of the optimal solution of the TSP. Therefore, the general
ideas presented above of the filtering algorithms can be applied. Without loss of generality, we
define UB an upper bound of TSP(G), T(G) a minimum 1-tree of G such that w(T (G)) ≤ w(UB)
and the node 1 is the 1-node.

3.2.1.1 Marginal cost

The idea of this filtering algorithm is to remove, with the marginal costs, the edges that cannot
belong to any solution of the TSP. We can define a first naive filtering algorithm: for each edge
e ∈ O, add e to M , compute the minimum 1-tree T ′(G) and check if w(T ′(G)) < w(UB). How-
ever, this algorithm requires recomputing a 1-tree for each edge of O. With Kruskal’s algorithm
having a time complexity in O(mα(m, n)) such that α(m, n) is the inverse function of Acker-
mann [Chazelle, 2000]), we obtain a time complexity in O(m2α(m, n)). Another way is to use
the marginal costs. For an edge e, we define its marginal cost w(e) as the extra cost due to the
integration of e in T (G). Thus, Benchimol et al. [Benchimol et al., 2012] defined the following
property in order to filter edges:

Property 3.2.1. Given e ∈ O. If w(T (G)) + w(e) > w(UB), then e cannot belong to any TSP
solution.

In order to compute w(e) for each edge e ∈ O, Benchimol et al. [Benchimol et al., 2012]
showed the following property for the edges of O(X − {1}):

Property 3.2.2. Given e = (i, j) ∈ O such that e ̸∈ T (G), i ̸= j ̸= 1 and Pi,j the unique i − j
path in T (G)\{1}. Then, w(e) = w(e)−max{w(a) | a ∈ Pi,j}.

26 CHAPTER 3 — The TSP in CP

Thus, for each edge e = (i, j) ∈ O, we have to find the maximum-cost edge in the path Pi,j .
It can be done with a Depth-First Search (DFS) on T (G) in a time complexity O(n) (DFS time
complexity is O(n + m) but m = n − 1 in a tree). Thus, for each edge e we can run a DFS in
order to compute w(e), it leads to a time complexity in O(nm).

Then, Régin introduced a much more complex algorithm based on the Range Minimum
Query [Régin, 2008]. It has a time complexity in O(n + m + nlog(n)) and is very efficient
in practice. It has also defined an incremental version allowing maintaining w(e) when edges are
deleted or become mandatory. However, the incremental method cannot be used systematically in
the TSP framework because of the Lagrangian relaxation which modifies the cost of the edges at
each iteration and thus changes the problem.

Finally, in order to filter the neighbors of node 1, Benchimol et al. [Benchimol et al., 2012]
have shown the following property:

Property 3.2.3. Given e ∈ γ(1) such that e ̸∈ T (G). Then, w(e) = w(e) −max{w(a) | a ∈
γ(1), a ∈ T (G)}.

In practice, it is sufficient to simply take the maximum cost non-mandatory edge connecting
the 1-node to the MST.

A

B C

D E

F

6.5

4.5 5

4.5 4

3.5 5

4.5 2.5

G1

A

B C

D E

F

4.5 5

4.5 4

3.5 5

4.5 2.5

G2

Figure 3.1: An example from Benchimol et al. [Benchimol et al., 2012] of the marginal costs
filtering algorithm such that w(T (G1)) = 24, w(UB) = 25 and A is the 1-node. G2 represents
the resulting graph from the application of the filtering on G1 with Property 3.2.1 such that T (G1)
is represented by orange edges.

In G1 of Figure 3.1 there are 3 edges outside the 1-tree: one around node 1, and two connecting
two nodes of the MST. Computing all the marginal costs, we get:

• w((A, F)) = 6.5− w((A, B)) = 6.5− 4.5 = 2

• w((B, E)) = 4.5− w((D, F)) = 4.5− 4.5 = 0

• w((C, E)) = 5− w((C, D)) = 5− 5 = 0

3.2 – 3.2.1 Filtering 27

Given w(T (G1)) = 24 and w(UB) = 25, Property 3.2.1 implies that (A, F) cannot belong to
any solution of the TSP because 24 + 2 > 25.

In addition, we proved the following property:

Property 3.2.4. Let T be an MST and I = {e1, e2, ...en} a set of non-tree edges of T such that
TI is the MST containing all the edges of I. Then, w(TI) ≥

∑
e∈I w(e) + cost(T).

Proof.

See Section B. □

Note that this property could be used in order to define a stronger filtering algorithm based
on a combination of edges. For instance, we used this idea in order to generate constraints on
edges set. More precisely, given d = w(UB)− w(LB), for each subset O′ of edges such that the
sum of the marginal costs is greater than d, then integrating O′ in LB leads to an inconsistency.
Unfortunately, we did not obtain great results with this idea. A similar property has been proved
in Benchimol et al. [Benchimol et al., 2012].

3.2.1.2 Replacement cost

The idea of this filtering algorithm is to find the edges that are mandatory for a solution of cost less
than or equal to UB. Thus, for each edge e ∈ O, if w(T (G\{e})) > w(UB), then e is mandatory
(i.e. e can be added to M). Thus, a first naive algorithm is the following: for each edge e ∈ O,
compute T (G\{e}) and check if w(T (G\{e})) > w(UB). This algorithm has a time complexity
in O(m2α(m, n)). It can be improved by noticing that the only way to increase the cost of T (G) is
to remove some edges from T (G). Indeed, for each edge e ̸∈ T (G) we have T (G) = T (G\{e}).
Then, we only need to consider the edges in T (G), that is n edges. For each edge e, we then define
its replacement cost w′(e) as the extra cost due to the removal of e in T (G). Note that for each
e ∈ O we have w′(e) ≥ 0 since T (G) is a lower bound of UB. Thus, if e ∈ O and e ̸∈ T (G),
then w′(e) = 0. We then define Property 3.2.5 leading to an algorithm with a time complexity in
O(nm ∗ α(m, n)) because it only requires n calls to Kruskal’s algorithm.

Property 3.2.5. Given e ∈ T (G). If w(T (G)) + w′(e) > w(UB), then e belong to any TSP
solution.

Next, Benchimol et al. [Benchimol et al., 2012] have shown the following property:

Property 3.2.6. Given e ∈ T (G)\{1}, T 1 and T 2 the two subtrees of T (G)\{e}. Then w′(e) =
w(e)−min{w(i, j) | (i, j) ∈ U, (i, j) ̸= e, i ∈ T 1, j ∈ T 2}

This allows us to set up a more efficient algorithm: first, we sort the non-tree edges of T (G)
by increasing cost. Then, for each non-tree edge e = (i, j), we mark the path going from i to
j in T (G) as visited. For each edge e′ on this path that was not yet visited, we can then set
w′(e′) = w(e′)− w(i, j). For each non-tree edge, we perform a DFS in T (G) (O(n)) in order to
find the unvisited edges in the path going from i to j in T (G) Therefore, this algorithm has a time
complexity in O(nm). A last and more efficient approach is to use the algorithm introduced in
Régin et al. [Régin et al., 2010]. The main idea is to compress the visited paths for each performed
DFS, it allows us to traverse each edge at most once. This yields to a more efficient algorithm
with a time complexity in O(mα(m, n)). However, we must add the time complexity of sorting

28 CHAPTER 3 — The TSP in CP

A

B C

D E

F

6.5

4.5 5

4.5 4

3.5 5

4.5 2.5

G1

A

B C

D E

F

4.5 5

6.5

4.5 4

3.5 5

4.5 2.5

G3

Figure 3.2: An example from Benchimol et al. [Benchimol et al., 2012] of the replacement cost
filtering algorithm. G3 represents the resulting graph from the application of the filtering on G1
with Property 3.2.5 such that T (G1) is represented by orange edges and the blue edges in G2 are
the mandatory edges.

the edges to O(mα(m, n)). Note that it can be reused from the T (G) computation if Kruskal’s
algorithm is used.

Finally, Benchimol et al. [Benchimol et al., 2012] defined the following property for the neigh-
bors of the 1-node:

Property 3.2.7. Given e ∈ γ(1) such that e ∈ T (G). Then, w′(e) = w(e) −min{w(a) | a ∈
γ(1), a ̸∈ T (G)}.

Figure 3.2 represents an application of the replacement cost filtering algorithm. Computing all
the replacement costs, we get:

• w′((A, B)) = w((A, F))− w((A, B)) = 6.5− 4.5 = 2

• w′((A, C)) = w((A, F))− w((A, C)) = 6.5− 4 = 2.5

• w′((B, D)) = w((B, E))− w((B, D)) = 4.5− 3.5 = 1

• w′((C, D)) = w((C, E))− w((C, D)) = 5− 5 = 0

• w′((D, F)) = w((B, E))− w((D, F)) = 4.5− 4.5 = 0

• w′((E, F)) = w((B, E))− w((E, F)) = 4.5− 2.5 = 2

Finally, given w(T (G)) = 24 and w(UB) = 25, Property 3.2.5 implies that (A, B), (A, C)
and (E, F) belong to any solution of the TSP. Thus, they are added to M .

3.3 – The search strategy 29

3.2.1.3 Degree constraint

The filtering algorithm of the degree constraint Equation 2.2 is as follows.

∑
e∈γ(i)

xe = 2 ∀i ∈ X (Equation 2.2)

The degree constraint does not hold if |M(i)| > 2 or |γ(i)| < 2. If |γ(i)| = 2, then the edges
of O(i) become mandatory. Finally, if |M(i)| = 2, then the edges of O(i) are removed. Initially,
we can apply these filtering rules for all the nodes of the graph. Then, we can incrementally check
the nodes. Indeed, the cardinality of a node only changes if an edge adjacent to this node is deleted
or becomes mandatory. Thus, each time we call this filtering algorithm, we can check only the
nodes with a cardinality that has changed since the last call.

3.3 The search strategy

In order to find the solutions of the TSP, the search strategy considers only the edges of the
graph variable. A solution is found when the number of mandatory edges is equal to the num-
ber of nodes such that all the constraints hold. The search tree is a binary tree such that a left
branch is an edge assignment and a right branch is an edge removal. Several search strate-
gies have been designed for the TSP solving. In CP, the most efficient is the search strategy
LCFirst of Fages et al. [Fages et al., 2016] which is an interpretation of Last Conflict heuris-
tics [Haralick and Elliott, 1979, Lecoutre et al., 2009] for graph variables. It selects one edge in
the graph according to a heuristic and keeps branching on all the edges adjacent to one extremity
(the LCNode) of this edge until the LCNode is exhausted. Note that LCFirst keeps the LCNode
even if a backtrack occurs. Thus, it is a highly dynamic search strategy that learns from previous
choices. Algorithm 2 is a possible implementation of the LCFirst search strategy. In addition, an
example is depicted in Figure 3.3. It should be noted that the use of LCFirst makes most of the
search strategies much more efficient (up to an order of magnitude).

Algorithm 2: LCFirst(G)
LCFirst (G = (X, M, O))

Input: The current graph to solve G.
Output: An edge (u, v).
global LCNode;
if LCNode ̸= nil then

// Select an optional edge adjacent to LCNode in G
if O(LCNode) ̸= ∅ then return select(O(LCNode)) ;

// Select an optional edge in G
(u, v)← select(O);
LCNode← u;
return (u, v)

In practice, we observed that the use of LCFirst strongly interferes with Lagrangian relaxation
and filtering algorithms. Indeed, we have shown that an additional constraint leading to a huge

30 CHAPTER 3 — The TSP in CP

fail ...

fail fail fail

fail fail

a; (a, b) e; ¬(a, b)

a; (a, c) d; ¬(a, c) e; (e, b) e; ¬(e, b)

d; (d, e) d; ¬(d, e) d; (d, f) e; ¬(d, f)

e; (e, a) e; ¬(e, a)

Figure 3.3: An example of a search strategy with LCFirst. We note “LCNode; (u, v)” such that
(u, v) is an assigned edge and ¬(u, v) is a removed edge. We observe that when (d, e) and ¬(d, e)
have caused a fail, then d is backtracked as the LCNode choice. We also observe that the choice
of LCNode=e is backtracked from the fail of (e, a) to the first refutation because no choice could
so far exhaust the neighborhood of e.

improvement with a static search strategy (i.e. without LCFirst) such as maxCost (selecting the
edges by decreasing cost) can lead to a degradation of the results with LCFirst maxCost and that
additional constraint [Isoart and Régin, 2019]. Note that LCFirst maxCost is considered as one of
the best search strategies by Fages et al. [Fages et al., 2016]. Nevertheless, we also showed that
the search strategy LCFirst minDeltaDegree (selecting the edges for which the sum of the endpoint
degrees in the upper bound minus the sum of the endpoint degrees in the set-variable lower bound
is minimal) combined with WCC and that additional constraint works well. Therefore, unless
specified, we will use the search strategy LCFirst minDeltaDegree.

3.4 k-cutset constraint

3.4.1 Introduction

In any TSP solution, each cutset of a graph must contain at least two edges. In addition, any
solution contains a positive even number of elements from this cutset. Therefore, we define a
structural based constraint, the k-cutset constraint, based on this idea. For each cutset of size k, it
checks if it can contain an even and strictly positive number of mandatory edges.

For instance, we show two k-cutsets in the graph of Figure 3.4. The 2-cutset K1 contains 2
edges and the 4-cutset K2 contains 4 edges.

First, we introduced a quadratic algorithm for the k-cutset constraint checking the consis-
tency and performing some filtering operations [Isoart and Régin, 2019]. It is based on a 2-edge-
connected subgraph and Tsin’s algorithm [Tsin, 2009]. However, this algorithm only handles the
k-cutset of size lower or equal than 3. Since the number of k-cutsets in a graph is exponential, we

3.4 – 3.4.2 The k-cutset constraint and its filtering rules 31

Figure 3.4: Graph kroA150 from TSPLib [Reinelt, 1991] while solving in a CP solver. K1 is a
2-cutset and K2 is a 4-cutset.

set this limitation. Note that computing all cutsets is equivalent to compute all possible partitions
of the graph nodes, i.e. 2n partitions.

However, in order to deduce something, we are not interested in all of them. The ones we are
interested in are the k-cutsets containing k or k−1 mandatory edges in the graph. In addition, there
are at most n mandatory edges in any TSP solution. Therefore, we introduced an algorithm based
on Tarjan’s bridges algorithm [Tarjan, 1974] performing the consistency check and the pruning in
linear time [Isoart and Régin, 2021b].

In this section, we first introduce the quadratic algorithm with k ≤ 3. Then, we show that it is
sufficient to study a set of k-cutsets lower than or equal to n in order to obtain a complete filtering.
Moreover, we introduce a linear time algorithm for the k-cutset constraint for any k.

3.4.2 The k-cutset constraint and its filtering rules

We previously said that the purpose of the k-cutset constraint is to ensure that for each cutset in G
that a strictly positive and even number of edges are mandatory in any solution.

More formally, we introduce the following proposition:

Proposition 3.4.1. Given K a k-cutset. Then, any Hamiltonian cycle C contains an even and
strictly positive number of edges from K.

Proof.

Consider a k-cutset of a graph G and C a Hamiltonian cycle in G. The k-cutset partition G into
two sets of vertices X1 and X2. Let u be our starting vertex in X1, by definition C visits all
the vertices of G and ends up visiting u (its starting vertex). Thus, visiting the vertices of X2
involves taking one edge of the k-cutset and taking a different one to come back into X1, at that
moment: either all the vertices of X2 have been visited and we end up joining u without using
other edges of the k-cutset, or we have to visit X2 again and return to X1, every time we visit
X2 from X1 we need an edge to go in, and another to go back: this means an even and strictly
positive number of edges and the proposition holds. □

32 CHAPTER 3 — The TSP in CP

Since G contains mandatory and optional edges, a k-cutset of G can be partitioned into two
disjoint subsets of O and M . Therefore, we note a k-cutset K = (M ′, O′) of G such that M ′ ⊂M
and O′ ⊂ O.

Definition 3.4.1 (k-cutset constraint). For each k-cutset K = (M ′, O′), the k-cutset constraint
ensure that |M ′|+ |O′| ≥ 2 and |M ′| is even if O′ = ∅.

From Definition 3.4.1, we can therefore define the following consistency checks:

Corollary 3.4.2. If there is a k-cutset in G such that k < 2, then there is no solution for TSP(G).

Corollary 3.4.3. If there is a k-cutset in G containing only mandatory edges such that k is odd,
then there is no solution for TSP(G).

In addition, we can define from Definition 3.4.1 the following filtering rules:

Corollary 3.4.4. Given a 2-cutset K = (M ′, O′) in G. Then, the edges of O′ must become
mandatory (M ←M + O′).

Corollary 3.4.5. If there is a k-cutset K in G containing k − 1 mandatory edges such that k is
odd, then the non-mandatory edge e of K can be safely deleted (O ← O − {e}).

Corollary 3.4.6. If there is a k-cutset K in G containing k − 1 mandatory edges such that k
is even, then the non-mandatory edge e of K must become mandatory (M ← M + {e} and
O ← O − {e}).

Therefore, Corollary 3.4.2 and Corollary 3.4.3 allow checking the consistency, Corollary 3.4.4
and Corollary 3.4.6 allow finding mandatory edges, Corollary 3.4.5 allows removing edges.

Figure 3.5: Representation of the graph from Figure 3.4 with mandatory edges (blue) and optional
edges (dark). The two k-cutsets K1 and K2 are displayed in red.

For instance, we can deduce in Figure 3.5 that for the 2-cutset K1, all the K1 edges become
mandatory by Corollary 3.4.4 or Corollary 3.4.6. Moreover, the 4-cutset K2 is valid because the
k-cutset constraint is consistent (K2 contains only mandatory edges and |K2| = 4 is even).

3.4 – 3.4.3 A non-complete quadratic time algorithm 33

Given k, a first approach is to enumerate all the k-cutsets of size lower or equal to k and apply
Corollary 3.4.2, Corollary 3.4.3, Corollary 3.4.4, Corollary 3.4.5 and Corollary 3.4.6 to the k-
cutsets. However, it does not seem reasonable since the complexity is related to k for enumeration
algorithms [Yeh et al., 2010]. Therefore, we introduce in the next section a quadratic algorithm
limiting the study to k ≤ 3.

3.4.3 A non-complete quadratic time algorithm

For the k-cutsets such that k ≤ 3, we can split the problem in many cases. First, the 1-cutsets are
bridges in a graph. A bridge is an edge such that its removal increases the number of connected
components. In order to find them, there is Tarjan’s bridges algorithm [Tarjan, 1974] running in
O(n + m) based on a DFS. Then, the 2-cutsets can be found with Tsin’s algorithm [Tsin, 2009]
in O(n + m) which is also based on a DFS. The strength of Tsin’s algorithm is that it allows us
to find bridges and 2-cutsets. Thus, we can manage k = 1, 2 at the same time with a linear time
algorithm. Now, we must manage k = 3. The only 3-cutsets we are interested in are the cutsets
with at least two mandatory edges.

By the definition of a cut in a graph, if we remove an edge of a k-cutset K, then K becomes a
(k − 1)-cutset. With this idea, we then can introduce a first simple algorithm: for each mandatory
edge e ∈ M , we look for the 2-cutsets of G − {e}. In this way, each 2-cutset K ′ found forms
a 3-cutset with at least one mandatory edge if K ′ is not a 2-cutset in G. There are at most n
mandatory edges in the graph, therefore this algorithm run in O(n ∗ (n + m)).

Next, we will use Definition 3.4.2 in order to name the mandatory edges that we consider for
our algorithm.

Definition 3.4.2 (Identification edges). The identification edges are the mandatory edges for
which a 2-cutset algorithm is run.

Definition 3.4.3 (k-edge-connected graph). A k-edge-connected graph is a graph in which there
is no edges set of cardinality strictly less than k disconnecting the graph.

In the next section, we introduce a special data structure named a CST. It is a 2-edge-connected
subgraph of G. Note that the CST is not a required data structure for the proper functioning of the
k-cutset propagator, just an improvement.

3.4.3.1 CST : Cycled Spanning Tree

A CST is a 2-edge-connected subgraph of G. Moreover, for each edge e of G there is a cycle in
G formed only by edges of the CST and e. One way to build a CST is to compute a spanning tree
T . Then, add some edges to T until all the edges, those of T and those outside of T , belong to
a CST cycle. Since T is a spanning tree, any edge e ̸∈ T belongs to a cycle composed of e and
only T edges. For the edges of T , the CST is built by adding edges to the spanning tree such that
each tree edge belongs to a cycle of the CST. This can be done by marking the tree edges each
time a cycle is found. More precisely, we consider three graphs at the same time: G the graph,
T the spanning tree, and CST the CST. Initially, it is T and all the tree edges are unmarked. We
parse the non-tree edges of G until we find eT = (i, j) /∈ T such that there is a cycle formed with
at least one unmarked edge of T . Then, we add eT to CST and we mark all the tree edges of the
cycle. We repeat this operation until there is no more unmarked edge in T . Clearly, at the end,
each tree edge which has been marked belongs to a cycle. In addition, there is at least one tree

34 CHAPTER 3 — The TSP in CP

edge in each cycle, so the number of added edges is bound by n. An example of a construction is
shown in Fig. Figure 3.6. This algorithm can be implemented in linear time, by using a union-find
data structure in order to avoid traversing each edge of each cycle. If we consider first the non-
mandatory edges for the construction of the spanning tree and for the construction of the CST,
then we can expect to reduce the number of mandatory edges in the CST.

Without loss of generality, we assume that G is a connected bridgeless graph. Thus, there
is a CST in G. Note that both Tarjan’s bridges algorithm [Tarjan, 1974] and Tsin’s algorithm
[Tsin, 2009] ensure that the graph is connected and bridgeless.

A

B

C

D

E

1. Graph G

A

B

C

D

E

2. Spanning tree of G

A

B

C

D

E

3. CST of G

Figure 3.6: Example of building a CST.

Corollary 3.4.7. Given k >1. If there is a k-cutset in G, then at least two edges of the cutset are
in the CST.

Proof.

By construction, the CST is connected and covers the graph with cycles. So each cutset has a
cardinality greater than or equal to two. □

Corollary 3.4.8. If there is a 3-cutset containing at least two mandatory edges, then at least one
mandatory edge belongs to the CST.

Proof.

Immediate from Corollary Corollary 3.4.7. □

From Corollary Corollary 3.4.8, the simple algorithm can be improved by reducing the number
of mandatory edges that are considered. Considering the identification edges as each mandatory
edge e of CST, the algorithm becomes: for each identification edges e, search for the 2-cutsets
of G − {e}. For each 3-cutset found, we obtain either a 3-cutset with three mandatory edges,
a 3-cutset with two mandatory edges, or a 3-cutset with one mandatory edge. Then, we apply
Corollary 3.4.3, Corollary 3.4.5 and Corollary 3.4.6 on these 3-cutsets.

Since mandatory edges outside the CST are not considered as identification edges and the
edges in the CST are chosen during construction, it is a good idea to minimize the number of
mandatory edges in the CST in order to reduce the number of iterations of the algorithm.

3.4 – 3.4.3 A non-complete quadratic time algorithm 35

3.4.3.2 Additional improvement

The proposed algorithm is highly dependent on the number of identification edges. From Corol-
lary 3.4.7, if two edges belong to the same 2-cutset and are mandatory, then they are identification
edges. However, when searching for the 3-cutsets with an identification edge, it is not necessary
to repeat the search for all the edges forming a 2-cutset with it. More precisely, the problem of
searching for 3-cutsets with the identification edge e has the same set of solutions as the problem
of searching for 3-cutsets with each edge forming a 2-cutset with e. Figure 3.7 illustrates it well
since the 2-cutset is a path.

A

B

C

D

E

e5
e6

e3

e1

e4

e2

e7

Figure 3.7: {e1,e2} is a 2-cutset. {e1,e4,e5} and {e1,e6,e7} are 3-cutsets including e1. We can
deduce that {e2,e4,e5} and {e2,e6,e7} are 3-cutsets including e2.

Property 3.4.1. Let S1 be a k-cutset and S2 be a 2-cutset such that k > 1 and S2 ̸⊆ S1. If ∃a ∈ S1
such that a ∈ S2 then (S1 ∪ S2)− {a} forms a k-cutset.

Proof.

Given S2 = {e1, e2} a 2-cutset and e1 ∈ S1. Removing S1 from the graph disconnects it into
two connected components. In the modified graph, S2 − {e1} = {e2} is a bridge. Removing
e2 further increases the number of connected components: there are now three. If we put back
e1, G is disconnected into two connected components, its cutset is (S1 − {e1}) ∪ {e2} =
(S1 − {e1}) ∪ (S2 − {e1}) = (S1 ∪ S2) − {e1}. Since S1 is a k-cutset, there is no subset of
it that disconnects the graph other than the k-cutset itself. If (S1 ∪ S2) − {e1} disconnects the
graph then it is a k-cutset because we delete and add an edge in a set of initial cardinality k. □

Consider S1 a 3-cutset, S2 = {e1, e2} and S3 two distinct 2-cutsets. From Property 3.4.1 the
number of identification edges is reduced:

• If e1 ∈ S1, then (S1 − {e1}) ∪ {e2} is a 3-cutset.

• If e1 ∈ S3, then (S3 − {e1}) ∪ {e2} is a 2-cutset.

Thus, the set of identification edges is defined by the mandatory edges of the CST that do not
belong to any 2-cutset and the subset of edges belonging to all 2-cutsets of G that maximizes its
cardinality such that there is no combination of it forming a 2-cutset.

To avoid any inconsistency, all 2-cutsets must be searched before performing the 3-cutset
search. Otherwise, there may be a 2-cutset containing at least one non-mandatory edge. This may
result in an edge being marked as removable when searching for 3-cutsets while it is necessary

36 CHAPTER 3 — The TSP in CP

for the existence of a Hamiltonian cycle. In addition, deleting an edge in a 3-cutset may create a
2-cutset and so either we perform a 2-cutset search immediately or we wait until the end of the
search of all 3-cutsets to make the deletions effective. The first possibility is too time-consuming,
a better solution is to postpone the deletions.

With this method we consider a subset of the identification edges. The higher the mandatory
number of edges required, the more likely it is that the number of edges considered will be reduced.

Finally, CST has another advantage: it is incremental. Indeed, as long as no CST edges are
removed, all edges outside the CST belong to a cycle composed of CST edges, so there is no need
to rebuild it.

3.4.3.3 Implementation

A possible implementation of the k-cutset constraint such that k ≤ 3 is given in Algorithm 3 and
Algorithm 4. The main function is propagKCutset(G). The function propag2Cutset defines a 2-
cutset filtering and the function propag3Cutset defines a 3-cutset filtering. Both filtering functions
use find2Cutset(G, bridgeFunction, 2 − cutsetFunction) which finds all the 2-cutsets in G.
In addition, bridgeFunction and 2-cutsetFunction are functions describing the wanted behavior
when either a bridge or a 2-cutset is found. Note that this function is used as a black box since it
uses Tsin’s algorithm [Tsin, 2009] running in O(n + m) in order to find the 2-cutsets. Next, the
function mergeCutpairs allows the use of the improvement introduced in Section 3.4.3.2. We will
now describe the overall behavior of the algorithm. In propagKCutset(G), we define set as a set of
pairs of edges forming 2-cutsets in G. Then, we use the filtering algorithm propag2Cutset in order
to find and make mandatory all the edges belonging to a 2-cutset in G. Note that the 2-cutsets
are stored in set. The id array represents for each edge its 2-cutset identifier. In order to create
sets of edges forming 2-cutsets between them Function mergeCutpairs is called. Each disjoint set
will finally have a different identifier and each edge belonging to the same set will have the same
identifier. Then, we define an array visited to allow us to consider only one edge per set described
above. The identificationEdges set contains the mandatory edges which are in the CST. Then,
we consider one edge per set calculated by mergeCutpairs and all the edges of the CST not being
in any set. For each of its edges, the filtering propag3Cutset is performed, i.e. the Corollary 3.4.5,
Corollary 3.4.6 and Corollary 3.4.3 are used. As recommended in Section 3.4.3.2, deletions are
postponed. The final complexity of Algorithm 3 is O(k ∗ (n + m)) where k <= |M | <= n:
Tsin’s algorithm in O(n + m) is called k times.

3.4 – 3.4.3 A non-complete quadratic time algorithm 37

Algorithm 3: k-cutset(G = (X, M, O))

propagKCutset (G = (X, M, O))
Input: A graph G = (X, M, O)
Output: A boolean specifying if the constraint is consistent
set← ∅ ; // set of 2-cutsets
if not propag2Cutset(G, M, set) then return False ;
∀e ∈ O ∪M : id[e]← nil ; // 2-cutset identifier of each edge
∀e ∈ O ∪M : visited[e]← False;
G′ = (X ′, M ′, O′)← G;
identificationEdges← CST(G).getMandatoryEdges();
mergeCutpairs(identificationEdges, set, id);
foreach e ∈ identificationEdges do

if id[e] = nil or ¬visited[id[e]] then
if not propag3Cutset(G, M, O, O′, e) then return False ;
if id[e] ̸= nil then visited[id[e]]← True ;

G← G′ ; // Update of G since deletions are postponed
return True;

mergeCutpairs (S,set,id)
Input: The set of identification edges S, the set of 2-cutsets set and the 2-cutset

identifier of each edge id
cpt← 0;
foreach (e1, e2) ∈ set do

// if both e1 and e2 do have an identifier
if id[e1] ̸= nil and id[e2] ̸= nil then

// (e1, e2) is a 2-cutset: id[e1] must be equals to
id[e2] : id are merges

foreach s′ ∈ S do
if id[s′] = id[e1] then

id[s′]← id[e2];

// if both e1 and e2 do not have an identifier
if id[e1] = nil and id[e2] = nil then

id[e1]← id[e2]← cpt;
cpt← cpt + 1;

// if e2 does not have an identifier and e1 have one
if id[e1] ̸= nil and id[e2] = nil then

id[e2]← id[e1];

// if e1 does not have an identifier and e2 have one
if id[e1] = nil and id[e2] ̸= nil then

id[e1]← id[e2];

38 CHAPTER 3 — The TSP in CP

Algorithm 4: k-cutset(G = (X, M, O))

propag2Cutset (G, M, set)
Input: A graph G, its set of mandatory edges M and the set of 2-cutsets set
Output: A boolean specifying whether the graph is 3-edge-connected
// A fail is triggered if a bridge is found and the

2-cutsets become mandatory
return find2Cutset(G,fail(),makeCutsetMandatory(M, set, ..., ...);

propag3Cutset (G, M, O, O′, e)
Input: A graph G, its set of mandatory edges M , its set of optional edges, O, a copy

of O to modify O′ and an identification edge e
Output: A boolean specifying whether the graph contains a 3-cutset with 3

mandatory edges
G′′ ← (X(G), M − {e}, O);
// If a 2-cutset with two mandatory edges are found, then

a failure is triggered
// If a 2-cutset with one mandatory edge is found, then

the other one is removed
return find2Cutset(G′′,pass(),consistencyAndPruningOf3Cutset(M, O′, set, ..., ...));

pass ()
Do nothing;

fail ()
Trigger a failure;

makeCutsetMandatory (M, set, e1, e2)
Input: The set of mandatory edges M , the set of 2-cutsets set, two edges e1 and e2
if e1 /∈M then M ←M ∪ {e1};
if e2 /∈M then M ←M ∪ {e2};
set← set ∪ (e1, e2);

consistencyAndPruningOf3Cutset (M, O′set, e1, e2)
Input: The set of mandatory edges M , the set of 2-cutsets set, two edges e1 and e2
if e1 ∈M and e2 ∈M then fail();
else if e1 ∈M then O′ ← O′ − {e2};
else if e2 ∈M then O′ ← O′ − {e1};

3.4 – 3.4.4 A linear time algorithm 39

3.4.4 A linear time algorithm

In order to improve the previous algorithm, we introduce Definition 3.4.4 and Definition 3.4.5.

Definition 3.4.4 (Failing k-cutset). A k-cutset K = (M ′, O′) is failing if |M ′| = k and k is odd.

Definition 3.4.5 (Prunable k-cutset). A k-cutset K = (M ′, O′) is prunable if k > 1 and |M ′| =
k − 1 and |O′| = 1.

The main issue of the previous algorithm is that it cannot check Corollary 3.4.3, Corollary 3.4.5
and Corollary 3.4.6 for any k in linear time. Looking closely, we notice that there is no need to
enumerate all the k-cutsets. We only need to find the k-cutsets with k or k − 1 mandatory edges.
Therefore, instead of searching the k-cutsets and applying the corollaries to each of them, we will
directly search for the k-cutsets that are in the scope of the corollaries, i.e. the failing and the
prunable k-cutsets.

Therefore, the consistency check will search for failing k-cutsets and the filtering algorithm
will search for both the prunable k-cutsets and 2-cutsets.

Definition 3.4.6 (Mandatory path). A mandatory path of G is a path p = [x1, ..., xk] in G such
that for each i ∈ [1, k − 1], the edge (xi, xi+1) is mandatory.

Definition 3.4.7 (Path-merged graph). A path-merged graph Gp−m of G is the graph G such
that for each mandatory path p = [x1, ..., xk] of G and k > 2, the nodes from x2 to xk−1 are
removed and a mandatory edge (x1, xk) is added.

Definition 3.4.8 (Merge of nodes). Given X ′ a set of nodes. The merge of X ′ is a mapping from
all nodes of X ′ to a single node.

Definition 3.4.9 (Merged graph). Given Gp−m = (Xp−m, Mp−m, O) a path-merged graph. A
merged graph Gm of Gp−m is the multigraph Gp−m such that each connected component of the
subgraph Gopt = (Xp−m, ∅, O) of Gp−m are merged.

Definition 3.4.10 (Optional graph). Given Gp−m = (Xp−m, Mp−m, O) a path-merged graph. We
note Gopt = (Xp−m, ∅, O) the graph of optional edges.

Definition 3.4.11 (2-merged graph). Given Gp−m = (Xp−m, Mp−m, O) a path-merged graph.
A 2-merged graph G2 −m of Gp−m is the multigraph Gp−m such that each 2-edge-connected
component of the subgraph Gopt = (Xp−m, ∅, O) of Gp−m are merged.

For instance, Figure 3.8 shows an example of Definition 3.4.7, Definition 3.4.9 and Defini-
tion 3.4.11.

Without loss of generality, we will consider that G is connected. In addition, we will use
Gp−m = (Xp−m, Mp−m, O) the path merged graph of G, Gm = (Xm, Mm, ∅) the merged graph
of Gm and Gopt = (Xp−m, ∅, O) the subgraph Gp−m containing only optional edges. Each
removed node of G in Gp−m is connected with exactly two mandatory edges (thanks to the degree
constraint of the WCC) and each path is replaced by a single mandatory edge. Therefore, we will
often consider Gp−m instead of G.

40 CHAPTER 3 — The TSP in CP

A

B

C

D

E

F

G

H I

J

K

G

A

B

C

D

E

F

G

H I

Gp−m
A′ D′

Gm

C ′ D′

H ′

G2−m

Figure 3.8: Given G a 2-edge-connected graph. Gp−m is the path-merged graph of G such that
the mandatory paths are p1 = [A, J, H] and p2 = [B, K, D]. Gm is the merged graph of Gp−m.
G2−m is the 2-merged graph of Gp−m.

3.4.4.1 Consistency Check

In order to determine whether G is consistent with the k-cutset constraint, we must check Corol-
lary 3.4.2 and Corollary 3.4.3. We can check Corollary 3.4.2 with Tarjan’s bridges algorithm
[Tarjan, 1974]. Using a DFS, it finds all the bridges of a graph (i.e. the 1-cutsets) in O(n + m).
Checking Corollary 3.4.3 requires to check for the existence of a failing k-cutset. We will show
that it can be done in a linear time with Proposition 3.4.9.

Definition 3.4.12 (Outgoing mandatory edges of a nodes set). Given X ′ a set of nodes. We note
M+(X ′) = {(i, j) | (i, j) ∈ M, i ∈ X ′, j ̸∈ X ′} the set of outgoing mandatory edges of X ′ in
M .

Proposition 3.4.9. There is no failing k-cutset in Gp−m if and only if there is no connected com-
ponent X ′ in Gopt such that |M+(X ′)| is odd.

Proof.

We note (i) there is no failing k-cutset in Gp−m and (ii) there is no connected component X ′

in Gopt such that |M+(X ′)| is odd.

(i) ⇒ (ii) By definition, if there is no failing k-cutset in G, then there is no connected compo-
nent X ′ in Gopt such that |M+(X ′)| is odd.

(i) ⇐ (ii) If a non-empty k-cutset K cuts a connected component of Gopt, then K contains
optional edges since Gopt is the graph of optional edges. Therefore, a k-cutset containing only
mandatory edges cannot cut a connected component of Gopt. Then, the failing k-cutsets are
obtained by partitioning the connected components of Gopt in Gp−m, i.e. all the k-cutsets of the
merged graph.

For each S ⊂ Xm, the cutset size of the cut (S, Xm−S) can be computed as follows: (1) make
the sum of the number of adjacent edges of each node of S, then (2) subtract twice the number
of edges (i, j) such that i and j belong to S (an edge connecting two nodes of S is counted
twice in (1)). Since we consider that (ii) is true, the sum obtained by (1) is even. (2) subtract
an even number to the sum obtained by (1). Therefore, the cutset size is even and there is no
failing k-cutset in Gp−m. □

3.4 – 3.4.4 A linear time algorithm 41

Figure 3.9: Representation of Gopt such that G is the graph of Figure 3.5.

For instance, in Figure 3.9, we notice that there are two connected components connected by 4
mandatory paths in Figure 3.5, so the k-cutset constraint is consistent with the graph of Figure 3.5.
In addition, if we consider Gm of Figure 3.8, there is no failing k-cutset and each node has an even
number of adjacent edges.

Then, we can describe an algorithm. First, compute the connected components of Gopt. Then,
for each mandatory edge of M having its two endpoints in two different connected components
of Gopt, we increase the number of mandatory outgoing edges for these connected components.
Finally, we iterate on the connected components. If there is a connected component with an odd
number of mandatory outgoing edges, then there is a failing k-cutset in G. The computation of
the connected components of Gopt can be done in O(n + m) with a DFS. The iteration over the
mandatory edges of M can be done in O(n). The check of the number mandatory outgoing edges
for the connected components can be done in O(n). Thus, we can test the consistency of the
k-cutset constraint in O(n + m).

3.4.4.2 Pruning

Corollary 3.4.4, Corollary 3.4.5 and Corollary 3.4.6 define filtering rules for the k-cutset con-
straint. First, Corollary 3.4.4 can be enforced with Tsin’s algorithm [Tsin, 2009]. It performs
a single DFS in order to find all the 2-cutsets in a given graph, so it has a time complexity in
O(n + m).

In order to enforce Corollary 3.4.5 and Corollary 3.4.6, we need a method finding all k-cutsets
having exactly k − 1 mandatory edges, i.e. the prunable k-cutsets. Given a prunable k-cutset
K = (M ′, O′) of G. If M ′ is removed, then the edge of O′ is a bridge of G since |O′| = 1.
Formally, we define it in Proposition 3.4.10. We will exploit those bridges in order to enforce
Corollary 3.4.5 and Corollary 3.4.6.

Proposition 3.4.10. If K = (M ′, O′) is a prunable k-cutset of G, then the edge of O′ is a bridge
in G′ = (X, M −M ′, O).

Proof.

42 CHAPTER 3 — The TSP in CP

A prunable k-cutset K = (M ′, O′) contains exactly k−1 mandatory edges and 1 optional edge.
Thus, removing the k − 1 mandatory edges in G transform K in a 1-cutset, i.e. in a bridge. □

Corollary 3.4.11. If K = (M ′, O′) is a prunable k-cutset of G, then the edge of O′ is a bridge in
Gopt.

Proof.

For each prunable k-cutset K = (M ′, O′), M ′ ⊆ M . Thus, from Proposition 3.4.10, the edge
of O′ is a bridge in G′ = (X, ∅, O). Therefore, it is a bridge in Gopt = (Xp−m, ∅, O). □

From Corollary 3.4.11, we find the edges belonging to some prunable k-cutsets in G by search-
ing for bridges in Gopt. It can be done with Tarjan’s bridges algorithm [Tarjan, 1974] in O(n+m).
Next, we must determine for each bridge whether it should be deleted or become mandatory. We
therefore need to retrieve the set of prunable k-cutsets that contain each bridge.

Without loss of generality, we will consider that G is 2-edge-connected, i.e. G is connected and
bridgeless. Note that it can be checked in O(n+m) with Tarjan’s bridges algorithm [Tarjan, 1974].
In addition, we note Xi(G′) the connected component of G′ containing the node i.

Proposition 3.4.12. Given e ∈ O a bridge in the connected component X ′ of Gopt connecting
(X1, X ′ −X1). Then, the k-cutset K = (M+(X1), {e}) is a prunable k-cutset of G.

Proof.

In order to disconnect X1 in G, the edges having exactly one end in X1 must be removed, i.e. the
k-cutset K = (M ′, O′) of (X1, X −X1). It means M ′ = M+(X1) and O′ = O+(X1). Since
e ∈ O is the bridge in X ′ of Gopt connecting (X1, X ′ −X1), O′ = {e}. Otherwise, e is not a
bridge in Gopt. Finally, G is 2-edge connected, then |M ′| > 0. Thus, K is a prunable k-cutset
of G. □

Proposition 3.4.13. Given e ∈ O a bridge in Gopt and a prunable k-cutset K ′ = (M ′, {e}). If
there are no failing k-cutsets in G, then there are no prunable k-cutsets K ′′ such that the pruning
of e with K ′ and K ′′ is different.

Proof.

For any k-cutset K ′′ = (M ′′, {e}) such that M ′ ̸= M ′′, we can build a k-cutset K ′′′ = (M ′ ∪
M ′′, ∅) containing only mandatory edges. In addition, if K ′′′ is not a cutset, then e is not a
bridge for M ′ or M ′′. If K ′′′ is not a failing k-cutset, then M ′ ∪M ′′ is even. Therefore, M ′

and M ′′ are either even or odd. Thus, if there are no failing k-cutsets in G, then there are no
prunable k-cutsets K ′′ such that the pruning of e with K ′ and K ′′ is different. □

From Proposition 3.4.12 and Proposition 3.4.13, we can describe a first algorithm: for each
bridge of the connected component X ′ of Gopt connecting (X1, X ′ − X1), count the number of
mandatory edges having one end in X1 and the other in X − X1. If there is an even number of
mandatory edges, then delete e. Otherwise, add e to the mandatory edges. Thus, for each bridge,
we parse at most all the mandatory edges. There are at most n − 1 bridge in a graph and at most
n mandatory edges. Therefore, this algorithm finds all the prunable k-cutsets in O(n2). Next, we

3.4 – 3.4.4 A linear time algorithm 43

show how to improve this algorithm in order to obtain a linear time complexity. However, note that
this algorithm is already much better than the one of Section 3.4.3 because we find the k-cutsets
for all k with a better time complexity.

A

B

C D

E

G1

Figure 3.10: G1 represents the 2-merged graph of the path-merged graph of Figure 3.5. Blue edges
are mandatory paths and dark edges are bridges.

In Figure 3.10, the 2-merged graph of Figure 3.5, we notice that some prunable k-cutsets
are much simpler than others to find. Indeed, for (A, B) there are two prunable k-cutsets:
K1 = (M1, {(A, B)}) where M1 = {(A, E), (A, E)} and K2 = (M2, {(A, B)}) where
M2 = {(B, E), (D, E)}. In order to find M1, we can simply search for the mandatory edges
having one end in A and the other in {B, C, D, E}. In order to find M2, we have to search for the
mandatory edges having one end in {B, C, D} and the other in {A, E}. The difference between
M1 and M2 is that we can simply find M1 by considering the mandatory edges with exactly one
end in a single component. Thus, if for each bridge there is such a prunable k-cutset, then we sim-
ply must count the number of outgoing mandatory edges of each 2-edge-connected components
of Gopt in G. It leads to an algorithm with a linear time complexity. Unfortunately, this algorithm
may not handle all the prunable k-cutsets. For instance, there are two prunable k-cutsets contain-
ing (B, C): K3 = (M3, {(B, C)}) such that M3 = {(D, E)} and K4 = (M4, {(B, C)}) such
that M4 = {(B, E), (A, E), (A, E)}. In that case, we cannot simply look at the neighbors of B or
C to find the prunable k-cutsets containing (B, C). Indeed, B and C have more than one optional
neighbor. It means that the bridge (B, C) disconnect Gopt in ({A, B}, {C, D}). Therefore, both
connected components are not 2-edge-connected. Thus, we show in Corollary 3.4.14 that for a
bridge e connecting (X1, X2) in Gopt, if X1 (resp. X2) is 2-edge-connected, then there exists a
prunable k-cutset containing e and all the mandatory edges having exactly one end in X1 (resp.
X2).

Corollary 3.4.14. Given X ′ a connected component of Gopt. If e ∈ O is a bridge in X ′ of Gopt

connecting (X1, X ′ − X1) such that X1 is 2-edge-connected, then there is a prunable k-cutset
K = (M+(X1), {e}).

Proof.

Immediate from Proposition 3.4.12. □

The advantage of Corollary 3.4.14 over Proposition 3.4.12 is that the 2-edge-connected com-
ponent X1 of Corollary 3.4.14 are disjoint nodes sets. Thus, parsing the neighbors of the 2-
edge-connected components consider at most twice the total number of mandatory edges whereas
Proposition 3.4.12 can reconsider for each component all the mandatory edges of the 2-merged
graph. We will use this idea in order to obtain a linear time algorithm.

44 CHAPTER 3 — The TSP in CP

In Figure 3.10, all the k-cutsets formed by the neighborhood of a component are:
KA = ({(A, E), (A, E)}, {(A, B)}), KB = ({(B, E)}, {(B, A), (B, C)}), KC =
(∅, {(C, B), (C, D)}) and KD = ({(D, E)}, {(D, C)}). Among them, KA and KD are prunable
k-cutsets, then we can immediately deduce for K1 that (A, B) is deleted (by Corollary 3.4.5)
and for KD that (D, C) becomes mandatory (by Corollary 3.4.4 or Corollary 3.4.6). If we
update the k-cutsets we have: KA = ({(A, E), (A, E)}, ∅}), KB = ({(B, E)}, {(B, C)}),
KC = ({(C, D)}, {(C, B)}) and KD = ({(D, E), (D, C)}, ∅). We notice that both KB and
KC become prunable k-cutsets. Thus, (C, B) becomes mandatory for both KB and KC (by
Corollary 3.4.4 or Corollary 3.4.6). Finally, all bridges of G1 have been solved.

Note that the subgraph of optional edges of the 2-merged graph can be more sophisticated than
a simple path of bridges edges: it can be a tree. However, it cannot exist a cycle in this subgraph
since the 2-edges-connected components are merged in the 2-merged graph. For example, (1)
of Figure 3.11 shows a 2-merged graph such that the subgraph of optional edges is not a single
path. We note that (1) is rooted in A and each node of the set of nodes S = {B, F, G, H, I, J}
has exactly one optional neighbor. Thus, we can start by applying Corollary 3.4.14 on S, i.e. the
leaves of the tree. Leaves are always valid candidates for Corollary 3.4.14 because they have no
optional child and a single optional parent. Then, either there are no more leaves and therefore
there are no more prunable k-cutsets or there are leaves and we can apply Corollary 3.4.14 to these
leaves. Finally, we suggest to recursively apply this process until there are no more leaves in the
tree. A sketch of the algorithm is:

• Find bridges in Gopt with Tarjan’s bridges algorithm.

• Mark the 2-edge-connected components in postorder, i.e. the order of a node is set when it
is backtracked in the DFS.

• For each mandatory edge (i, j), increase the number of outgoing mandatory edges of the
2-edge-connected component of i and j.

• Iterate over the 2-edge-connected components Ci of the 2-merged graph with the defined
postorder and prune the bridge connected to Ci.

For instance, Figure 3.11 shows an execution of the algorithm in a 2-merged graph. Tarjan’s
bridges algorithm allows us to create the 2-merged graph where black edges are bridges and blue
edges are mandatory edges. In this tree, the postorder traversal is {B, F, G, D, H, I, J, E, C, A}.
Note that the postorder is used to guarantee that for each node considered in the execution of the
algorithm, all its children have already been pruned. From (1) to (10), we show the iteration
over the 2-edge-connected components Ci marked as red nodes. Finally, the bridges are found in
O(n + m), parsing the mandatory edges is performed in O(n) and parsing the 2-edge-connected
components is performed in O(n). Thus, our algorithm finds the prunable k-cutsets for all k in
O(n + m).

We show a possible implementation in Algorithm 5. It takes as input G = (X, M, O). We note
CC the set of connected components in Gopt and 2CC the set of 2-edge-connected components
in Gopt such that 2CCi is the 2-edge-connected component containing the node i. First, we start
by searching the bridges with the DFS-based Tarjan’s bridges algorithm in order to build CC and
2CC. Within the DFS, 2CC is constructed with respect to the postorder tree traversal. Thus,
iterating on 2CC, we obtain the postorder tree traversal of the 2-merged graph of G. In Tarjan’s
bridges algorithm, a 2-edge connected component C is found when a bridge e is found. Thus,

3.4 – 3.4.4 A linear time algorithm 45

Algorithm 5: Perform the consistency check and the pruning of k-cutset constraint

k-cutset (G = (X, M, O))
Input: A graph G=(X,M, O).
Output: A boolean specifying whether G contains a failing k-cutset
// CC : connected components of G−M (Gopt)
// 2CC : postorder 2-edge-connected components of G−M

(Gopt)
computeBridgesDFS(G−M, CC, 2CC) ;
foreach connected components C ∈ CC do

if |C| > 1 then
foreach node i ∈ C do

if |M(i)| = 1 then
(i, j)←M(i).firstEdge();
if not C.isIn(j) then

M+(C)←M+(C) + 1;

if not 2CCi.isIn(j) then
M+(2CCi)←M+(2CCi) + 1;

// Consistency check
foreach connected components C ∈ CC do

if M+(C) is odd then return False ;

// Pruning
foreach 2-edge-connected components C ∈ 2CC do

if C.bridge ̸= nil then
(i, j)← C.bridge;
if M+(C) is odd then

M+(2CCi)←M+(2CCi) + 1;
M+(2CCj)←M+(2CCj) + 1;
M ←M + (i, j);

O ← O − (i, j);

return True;

46 CHAPTER 3 — The TSP in CP

A

B C

D E

F G H I J

(1)

A

B C

D E

F G H I J

(2)

A

B C

D E

F G H I J

(3)

A

B C

D E

F G H I J

(4)

A

B C

D E

F G H I J

(5)

A

B C

D E

F G H I J

(6)

A

B C

D E

F G H I J

(7)

A

B C

D E

F G H I J

(8)

A

B C

D E

F G H I J

(9)

A

B C

D E

F G H I J

(10)

Figure 3.11: Example of an execution of the k-cutset pruning algorithm on the graph (1). Blue
edges are mandatory paths, dark edges are bridges. The red node is the current 2-edge-connected
component of the algorithm step.

we associate e with C by setting C.bridge=e. For instance, in (1) of Figure 3.11, each node is
a 2-edge-connected component knowing its parent, i.e. a bridge. Thus, the only node having no
parent is the root node and all the other nodes have a single parent that is an optional edge.

Secondly, we count the number of outgoing mandatory edges for each connected component
of CC and for each 2-edge-connected component of 2CC. We then consider the connected com-
ponents C ∈ CC such that |C| > 1. If |C| = 1, then C has two adjacent mandatory edges
and C contains a single node. Thus, considering C such that |C| > 1 is equivalent of consid-
ering the path-merged graph of G. In addition, we know that each node i of C has at most one
adjacent mandatory edge (i, j). Therefore, |M(i)| ≤ 1. Otherwise, the node i would not be-
long to C. We note M(i).firstEdge() the first edge in the list of the adjacent mandatory edges
of i. Since we are looking for the outgoing mandatory edges, we only consider the nodes with
M(i) = 1. If j is an outgoing edge of C, then we increase the number of outgoing mandatory
edges of C noted M+(C). If i and j do not belong to the same 2-edge-connected component, then
we increase the number of outgoing mandatory edges of 2CCi noted M+(2CCi) (M+(2CCj)
is increased when the node j is considered by the foreach). Note that we can check if the node i
belongs to the nodes set C ′ with the function C ′.isIn(i). In (1) of Figure 3.11, there is a single
connected component C so M+(C) = 0. However, there are 10 2-edge-connected components
({A, B, C, D, E, F, G, H, I, J}). For example, M+(2CCA) = 1 and M+(2CCB) = 3. After-
wards, we check the consistency. If there is C ∈ CC such that M+(C) is odd, then there is a
failing k-cutset and we return False. In (1) of Figure 3.11, there is no C ∈ CC such that M+(C)
is odd, so (1) is consistent with the k-cutset constraint.

Thirdly, we perform the pruning step. We iterate on all the 2-edge connected components
C of 2CC. We note (i, j) the bridge associated to C. If M+(C) is odd, then (i, j) becomes
mandatory (i.e. it is added to M) and M+(2CCi) and M+(2CCj) are increased by 1. Whether

3.4 – 3.4.5 Experiments 47

M+(C) is even or odd, (i, j) is removed from O. Indeed, if the edge becomes mandatory, then it
must not be in the set of the optional edges. For instance, in (1) of Figure 3.11, we consider the
node B and the bridge (B, A). Note that in (1), M+(2CCA) = 1 and M+(2CCB) = 3. Since
M+(2CCB) is odd, (B, A) becomes mandatory and M+(2CCA) = 2 and M+(2CCB) = 4.
Next, we consider the node F and its bridge (F, D). M+(2CCF) = 2 so (F, D) is removed and
M+(2CCF) remains unchanged. Then, we repeat this process until (10). We note that the nodes
are chosen in the postorder.

3.4.5 Experiments

In this section we will experimentally show that using the k-cutset constraint reduces the search
space and therefore it improves the solving times. To do so, we use the configuration introduced in
Section 1.1. Specifically, we always use WCC. We will compare WCC combined with the k-cutset
constraint with different search strategies in order to discuss the improvements. In addition, we
will study the size of the founded k-cutsets.

Table 3.1 shows the solving times and the number of search nodes for the WCC (1), the WCC
and the non-complete quadratic algorithm for the k-cutsets of Section 3.4.3 (2) and the WCC and
the complete linear algorithm for the k-cutsets of Section 3.4.4 (3). A ratio column display both
solving times and backtrack numbers gain for the k-cutset constraint over the WCC only. We use
the static search strategy max cost, selecting edges by decreasing costs. Note that a static search
strategy allows us to compare the performance of the filtering without any disruption due to the
search strategy.

For the 40 considered instances, we observe that (1) solve 29 instances, (2) solve 32 instances
and (3) solve 33 instances. Therefore, the use of the k-cutset constraint allows solving more prob-
lems. For instance, gr229 remains unsolved in 86,400s with (1) whereas it is solved in 2,291s with
(2) and 1,506s with (3). For most instances, the use of the k-cutset constraint allows improving
both the solving times and the number of search nodes. For a280, using (2) instead of (1) leads
to a gain of a factor 10.5 in solving time and 33.7 in search nodes. Note that (3) allows obtaining
a factor 56.4 in solving time and 170.7 in search nodes. In addition, the geometric mean of (1) is
at least 175.4s, (2) is at least 74.2 and (3) is at least 53.5. Moreover, we observe that both (2) and
(3) allow reducing the number of search nodes. Therefore, it is clear that the use of the k-cutset
constraint is interesting in order to improve the overall solving times with this search strategy.

Comparing (2) and (3), we observe that the results are quite close. Indeed, if we do not
consider the instances that have reached the timeout, (2) has a mean solving time of 820s and (3)
has a mean solving time of 548s. That is an average gain in solving time of 33% and in number
of search nodes of 18%. One would have expected that finding the k-cutsets for any k would lead
to much more filtering, but it is not the case. Therefore, it suggests that most of the cutsets are in
fact k-cutsets with k ≤ 3, and therefore (2) already finds most of the cutsets. However, (3) finds it
faster since it is on average more improved in solving time than in search space reduction.

Nevertheless, the WCC includes a Lagrangian relaxation and the relation between the filtering
algorithms and the Lagrangian relaxation is not clear [Sellmann, 2004, Isoart and Régin, 2020a].

Next, we show the results of the integration of the k-cutset constraint with the state-of-the-art
search strategy LCFirst. In the paper of Fages et al. [Fages et al., 2016], there are two dominant
search strategy: LCFirst maxCost and LCFirst minDeltaDeg. Then, we show the results of the
integration of the k-cutset constraint with these search strategy in Table 3.2 and Table 3.3. In
Table 3.2, we observe that a lot of instances are not solved faster using the k-cutset constraint.

48 CHAPTER 3 — The TSP in CP

WCC + non-complete WCC + complete
WCC (1) quadratic k-cutset (2) ratio (1)/(2) linear k-cutset (3) ratio (1)/(3)

Instances time(s) #sn time(s) #sn time #sn time(s) #sn time(s) #sn
a280 485.2 687,129 46.0 20,381 10.5 33.7 8.6 4,025 56.4 170.7

ali535 t.o. t.o. t.o. t.o. - - t.o. t.o. - -
bier127 0.3 361 0.3 133 1.0 2.7 0.2 71 1.5 5.1
brg180 51.4 573,417 92.6 522,873 0.6 1.1 62.3 519,033 0.8 1.1
ch130 5.8 11,851 3.3 2,555 1.8 4.6 2.2 2,071 2.6 5.7
ch150 3.9 5,901 2.4 1,817 1.6 3.2 2.0 1,669 2.0 3.5
d198 128.4 175,719 66.8 52,619 1.9 3.3 45.0 41,433 2.9 4.2
d493 t.o. t.o. t.o. t.o. - - t.o. t.o. - -
eil101 0.2 189 0.3 159 0.7 1.2 0.1 66 2.0 2.9
gil262 t.o. t.o. t.o. t.o. - - 68,772.4 36,507,158 > 1.3 -
gr120 2.7 4,669 1.6 1,579 1.7 3.0 1.1 1,311 2.5 3.6
gr137 8.1 12,309 7.8 7,351 1.0 1.7 5.8 6,441 1.4 1.9
gr202 5.6 9,309 3.0 2,151 1.9 4.3 2.4 1,933 2.3 4.8
gr229 t.o. t.o. 2,291.1 1,955,539 > 37.7 - 1,505.7 1,607,301 > 57.4 -
gr431 t.o. t.o. t.o. t.o. - - t.o. t.o. - -
gr666 t.o. t.o. t.o. t.o. - - t.o. t.o. - -
gr96 3.5 14,847 1.2 1,599 2.9 9.3 1.0 1,225 3.5 12.1

kroA100 24.4 99,523 6.1 11,165 4.0 8.9 4.9 8,585 5.0 11.6
kroA150 317.3 616,773 53.8 55,941 5.9 11.0 39.1 49,017 8.1 12.6
kroA200 t.o. t.o. 3,086.3 1,944,313 > 28.0 - 1,641.9 1,209,137 > 52.6 -
kroB100 54.1 281,123 4.6 7,641 11.8 36.8 3.8 7,057 14.2 39.8
kroB150 4,923.0 9,356,117 384.2 344,441 12.8 27.2 286.8 299,729 17.2 31.2
kroB200 1,873.4 2,972,339 482.2 333,441 3.9 8.9 358.5 303,319 5.2 9.8
kroC100 1.8 3,887 1.5 1,627 1.2 2.4 1.3 1,465 1.4 2.7
kroD100 0.4 485 0.4 229 1.0 2.1 0.3 211 1.3 2.3
kroE100 298.9 1,532,813 7.8 11,329 38.3 135.3 3.9 6,137 76.6 249.8
lin318 217.4 232,321 64.8 21,293 3.4 10.9 13.6 5,935 16.0 39.1
pcb442 t.o. t.o. t.o. t.o. - - t.o. t.o. - -
pr124 0.6 499 0.8 317 0.8 1.6 0.6 295 1.0 1.7
pr136 852.2 2,635,755 86.5 86,861 9.9 30.3 69.7 86,095 12.2 30.6
pr144 0.9 503 0.8 417 1.1 1.2 0.8 393 1.1 1.3
pr264 6.1 2,119 6.1 903 1.0 2.3 6.0 749 1.0 2.8
pr299 t.o. t.o. t.o. t.o. - - t.o. t.o. - -
rat195 630.4 806,785 448.1 372,439 1.4 2.2 343.3 358,937 1.8 2.2
rat99 0.1 51 0.1 43 1.0 1.2 0.1 41 1.0 1.2
rd400 t.o. t.o. t.o. t.o. - - t.o. t.o. - -
si175 79,753.5 252,129,109 4,175.9 4,661,507 19.1 54.1 3,105.8 4,305,209 25.7 58.6
st70 0.2 379 0.2 105 1.0 3.6 0.1 75 2.0 5.1

tsp225 t.o. t.o. 14,928.6 11,579,075 > 5.8 - 10,010.5 9,209,293 > 8.6 -
u159 0.3 243 0.2 39 1.5 6.2 0.2 41 1.5 5.9
mean > 26,001.3 > 17,936.4 > 17,277.5

geo mean > 175.4 > 74.2 > 53.5

Table 3.1: Comparison of a static strategy (maxCost) with the integration of the k-cutset constraint.

3.4 – 3.4.5 Experiments 49

For instance, gr431 is solved in 3,572s without the k-cutset constraint whereas it is solved in
7,944s with the k-cutset constraint. Here, we obtain a case that we frequently encountered while
experimenting in this thesis, leading to giving up a lot of ideas: more pruning does not mean
a reduction of the search space in the case of the TSP. Indeed, the Lagrangian relaxation leads
to loss the monotonicity so dear to CP. In addition, the “learning” strategy such as LCFirst has
a complex behavior in the search tree since the next branching choice is influenced by all the
previous branching choice, who are themselves influenced by the filtering algorithms.

Then, we study the second search strategy that is more suited to the k-cutset constraint:
LCFirst minDeltaDeg. We recall that given an edge e = (i, j), minDeltaDeg selects the edge with
the minimum difference between the sum of the number of optional neighbors of i and j and the
sum of the number of mandatory neighbors of i and j. Indeed, the more there are mandatory edges
in the graph, the more we get a chance to find a pruning or a failing k-cutset. Then, in Table 3.3,
we show the impact of the integration of the k-cutset constraint with LCFirst minDeltaDeg. We
notice that the search space reduction is quite good for most of the instances. For instance, a gain
of a factor 11.6 is observed for a280, 3.6 for ch150. Since the search space reduction is significant,
the solving times are also reduced. For instance, a gain of a factor 5.5 is observed for a280, 1.9
for ch150. In addition, we notice that some problem such as gr431 remain unsolved without the
k-cutset constraint in 24h whereas it is solved in 1,308s with the k-cutset constraint. That is at
least a gain of a factor 66.1. Then, the search strategy LCFirst minDeltaDeg is well suited for the
integration of the k-cutset constraint.

In Table 3.4, we compare the WCC with the best search strategy from the paper of Fages et
al. [Fages et al., 2016] and the WCC with LCFirst minDeltaDeg (also from Fages et al.) with the
k-cutset constraint. We notice that a clear improvement for most of the instances is obtained for
both solving times and reduction of the search space. Note that in (2) all the instances are solved
whereas in (1) 2 instances remain unsolved. Most of the time, we obtain a good reduction of the
solving times. Considering the mean time of (1) and (2) without considering the instances that
have reached the timeout in (1), we obtain 826s for (1) and 158s for (2). The search space is
also greatly reduced on average: 946,296 search nodes for (1) and 90,160 search nodes for (2).
Looking more closely the results, it seems that the k-cutset constraint allows a better solving of
the larger instances. Indeed, on small instances the overhead of the k-cutset constraint sometimes
led to slower solving times. Note that most of the time the difference is marginal. On “medium”
instances the results are quite good, except for si175. Nevertheless, there is an initial huge differ-
ence for this instance without the k-cutset constraint for LCFirst maxCost (67.5s) and for LCFirst
minDeltaDeg (1,004s). In Table 3.3, the k-cutset constraint allows reducing the solving time by
a factor of 3.6. However, it is not sufficient to overcome the bad branching choice obtained by
LCFirst minDeltaDeg.

In Table 3.5, we study the size of the found k-cutsets in linear full k-cutset with LCFirst
minDeltaDeg. We can observe that the mean size the found k-cutsets is 2.7. It confirms the fact
that the quadratic algorithm for the k-cutset constraint algorithm already finds a large part of the
k-cutsets. However, larger k-cutsets exist: the average number of maximum sizes of the k-cutsets
is 10.8. This is why we obtain a more interesting gain for the number of search nodes than for the
basic model whereas the average k-cutset size is 2.7.

Finally, our linear full k-cutset algorithm is simple to implement and allows us to obtain an
improvement of the solving times and the number of backtracks.

50 CHAPTER 3 — The TSP in CP

WCC WCC + k-cutset
LCFirstMaxCost (1) LCFirstMaxCost (2) ratio (1)/(2)

Instances time(s) #sn time(s) #sn time #sn
a280 10.3 15,199 5.3 2,507 1.9 6.1

bier127 0.3 245 0.2 59 1.5 4.2
brg180 1.4 6,481 1.6 5,075 0.9 1.3
ch130 1.5 2,255 2.6 2,407 0.6 0.9
ch150 1.7 2,257 2.2 2,269 0.8 1.0
d198 20.2 21,297 46.5 46,957 0.4 0.5
d493 t.o. t.o. t.o. t.o. - -
eil101 0.1 91 0.1 67 1.0 1.4
gil262 21,002.6 26,099,327 61,778.6 39,576,851 0.3 0.7
gr120 0.7 773 0.6 477 1.2 1.6
gr137 2.8 3,379 2.8 2,361 1.0 1.4
gr202 2.1 2,583 2.7 2,369 0.8 1.1
gr229 588.6 852,371 459.7 422,953 1.3 2.0
gr431 3,571.6 1,140,159 7,944.1 1,686,323 0.4 0.7
gr96 0.6 813 0.9 1,099 0.7 0.7

kroA100 1.5 3,159 2.7 4,413 0.6 0.7
kroA150 5.6 7,569 32.6 40,761 0.2 0.2
kroA200 2,099.6 2,882,359 1,250.8 925,947 1.7 3.1
kroB100 2.2 5,255 5.7 9,159 0.4 0.6
kroB150 148.7 250,253 300.5 314,805 0.5 0.8
kroB200 94.5 113,679 308.1 266,233 0.3 0.4
kroC100 0.6 799 1.5 1,895 0.4 0.4
kroD100 0.5 355 0.3 163 1.7 2.2
kroE100 1.6 3,883 2.6 3,967 0.6 1.0
lin318 16.1 9,563 12.7 6,315 1.3 1.5
pcb442 t.o. t.o. t.o. t.o. - -
pr124 0.6 503 0.7 507 0.9 1.0
pr136 111.8 231,171 107.7 143,517 1.0 1.6
pr144 0.6 353 0.9 335 0.7 1.1
pr264 4.4 599 6.1 1,033 0.7 0.6
rat195 48.1 55,613 242.6 242,079 0.2 0.2
rat99 0.1 55 0.1 49 1.0 1.1
si175 67.5 133,667 528.5 589,901 0.1 0.2
st70 0.1 129 0.1 61 1.0 2.1

tsp225 283.4 327,727 2,167.7 1,881,733 0.1 0.2
u159 0.3 137 0.3 71 1.0 1.9
mean > 5,580.3 > 6,889.4

geo mean > 11.1 > 16.6

Table 3.2: Comparison of LCFirst maxCost with the integration of the k-cutset constraint.

3.4 – 3.4.5 Experiments 51

WCC WCC + k-cutset
LCFirstMinDeltaDeg (1) LCFirstMinDeltaDeg (2) ratio (1)/(2)

Instances time(s) #sn time(s) #sn time #sn
a280 30.6 28,789 5.6 2,485 5.5 11.6

bier127 0.3 153 0.3 71 1.0 2.2
brg180 0.4 95 0.4 95 1.0 1.0
ch130 2.6 3,661 1.3 1,069 2.0 3.4
ch150 2.5 3,187 1.3 873 1.9 3.7
d198 6.5 4,573 7.8 4,783 0.8 1.0
d493 t.o. t.o. 67,961.8 11,346,181 > 1.3 -
eil101 0.1 89 0.1 65 1.0 1.4
gil262 7,160.4 6,345,749 2,842.1 1,711,411 2.5 3.7
gr120 0.6 585 0.5 279 1.2 2.1
gr137 2.2 3,135 1.4 1,083 1.6 2.9
gr202 2.0 2,023 1.4 831 1.4 2.4
gr229 382.8 437,417 132.5 114,435 2.9 3.8
gr431 t.o. t.o. 1,307.9 247,091 > 66.1 -
gr96 0.6 555 0.6 549 1.0 1.0

kroA100 2.1 4,469 1.1 1,259 1.9 3.5
kroA150 5.8 7,277 3.0 2,799 1.9 2.6
kroA200 2,639.3 2,846,977 312.6 200,393 8.4 14.2
kroB100 2.2 4,087 2.6 3,309 0.8 1.2
kroB150 113.7 169,545 146.0 154,003 0.8 1.1
kroB200 189.7 189,965 127.1 109,323 1.5 1.7
kroC100 0.8 1,259 0.9 1,035 0.9 1.2
kroD100 0.3 283 0.4 247 0.8 1.1
kroE100 3.2 9,947 1.7 2,213 1.9 4.5
lin318 33.7 17,601 10.3 3,457 3.3 5.1
pcb442 t.o. t.o. 15,578.5 5,555,757 > 5.5 -
pr124 1.7 2,031 2.6 2,483 0.7 0.8
pr136 12.3 18,075 16.8 21,447 0.7 0.8
pr144 1.0 795 1.3 975 0.8 0.8
pr264 3.4 679 4.3 643 0.8 1.1
rat195 23.0 22,583 32.9 27,513 0.7 0.8
rat99 0.1 95 0.1 81 1.0 1.2
si175 1,003.7 2,044,011 276.4 358,677 3.6 5.7
st70 0.1 87 0.2 77 0.5 1.1

tsp225 266.7 267,537 128.3 89,947 2.1 3.0
u159 0.5 459 0.6 421 0.8 1.1
mean > 7,530.4 2,469.8

geo mean > 12.6 8.0

Table 3.3: Comparison of LCFirst minDeltaDeg with the integration of the k-cutset constraint.

52 CHAPTER 3 — The TSP in CP

WCC WCC + k-cutset
LCFirstMaxCost (1) LCFirstMinDeltaDeg (2) ratio (1)/(2)

Instances time(s) #sn time(s) #sn time #sn
a280 10.3 15,199 5.6 2,485 1.8 6.1

bier127 0.3 245 0.3 71 1.0 3.5
brg180 1.4 6,481 0.4 95 3.5 68.2
ch130 1.5 2,255 1.3 1,069 1.2 2.1
ch150 1.7 2,257 1.3 873 1.3 2.6
d198 20.2 21,297 7.8 4,783 2.6 4.5
d493 t.o. t.o. 67,961.8 11,346,181 > 1.3 -
eil101 0.1 91 0.1 65 1.0 1.4
gil262 21,002.6 26,099,327 2,842.1 1,711,411 7.4 15.3
gr120 0.7 773 0.5 279 1.4 2.8
gr137 2.8 3,379 1.4 1,083 2.0 3.1
gr202 2.1 2,583 1.4 831 1.5 3.1
gr229 588.6 852,371 132.5 114,435 4.4 7.4
gr431 3,571.6 1,140,159 1,307.9 247,091 2.7 4.6
gr96 0.6 813 0.6 549 1.0 1.5

kroA100 1.5 3,159 1.1 1,259 1.4 2.5
kroA150 5.6 7,569 3.0 2,799 1.9 2.7
kroA200 2,099.6 2,882,359 312.6 200,393 6.7 14.4
kroB100 2.2 5,255 2.6 3,309 0.8 1.6
kroB150 148.7 250,253 146.0 154,003 1.0 1.6
kroB200 94.5 113,679 127.1 109,323 0.7 1.0
kroC100 0.6 799 0.9 1,035 0.7 0.8
kroD100 0.5 355 0.4 247 1.3 1.4
kroE100 1.6 3,883 1.7 2,213 0.9 1.8
lin318 16.1 9,563 10.3 3,457 1.6 2.8
pcb442 t.o. t.o. 15,578.5 5,555,757 > 5.5 -
pr124 0.6 503 2.6 2,483 0.2 0.2
pr136 111.8 231,171 16.8 21,447 6.7 10.8
pr144 0.6 353 1.3 975 0.5 0.4
pr264 4.4 599 4.3 643 1.0 0.9
rat195 48.1 55,613 32.9 27,513 1.5 2.0
rat99 0.1 55 0.1 81 1.0 0.7
si175 67.5 133,667 276.4 358,677 0.2 0.4
st70 0.1 129 0.2 77 0.5 1.7

tsp225 283.4 327,727 128.3 89,947 2.2 3.6
u159 0.3 137 0.6 421 0.5 0.3
mean > 5580.3 2469.8

geo mean > 11.1 8.0

Table 3.4: Comparison of the state-of-the-art model with its best search strategy (WCC and
LCFirstMaxCost) and the WCC with the k-cutset constraint and its best search strategy (LCFirst
minDeltaDeg).

3.4 – 3.4.5 Experiments 53

k-cutset size
Instances mean max

a280 3.31 9
bier127 2.53 6
brg180 0 0
ch130 2.46 7
ch150 3.32 10
d198 2.4 13
d493 2.43 26
eil101 2.4 4
gil262 2.55 17
gr120 2.5 6
gr137 2.5 8
gr202 2.57 9
gr229 3.08 14
gr431 2.45 16
gr96 2.29 8

kroA100 2.46 6
kroA150 2.86 8
kroA200 2.79 10
kroB100 2.63 7
kroB150 2.21 11
kroB200 2.96 13
kroC100 2.19 6
kroD100 2.39 6
kroE100 2.72 7
lin318 5.47 14
pcb442 3.53 24
pr124 2.5 10
pr136 2.57 14
pr144 2.49 8
pr264 2.48 25
rat195 4.77 26
rat99 2.75 6
si175 2.63 13
st70 2.68 4

tsp225 2.93 13
u159 2.28 6
mean 2.7 10.8

Table 3.5: Comparison of mean and max k-cutsets size.

54 CHAPTER 3 — The TSP in CP

3.4.6 Conclusion

In this section, we introduced the k-cutset constraint that is a constraint based on the cutsets in a
graph. It enforces that each cutset of the graph has a positive even number of edges in any TSP
solution. For this constraint, we explained our first works, that is a quadratic algorithm handling
the k-cutset constraint such that k ≤ 3 [Isoart and Régin, 2019]. Next, we introduced a linear
algorithm handling any k [Isoart and Régin, 2021b]. With a static search strategy, we observed
that the number of search nodes is reduced by an order of magnitude and the solving times are
globally significantly reduced. In addition, we have shown that on average most of the cutsets
are of size 2.7 even if we found some much larger cutsets. In future works, we hope that a better
understanding between LCFirst and the k-cutset constraint will be achieved. It should also be
noted that correcting structural defects of the LP relaxation is the game changer for Concorde
[Applegate et al., 2006] and the k-cutset constraint which is based on the structure of the graph
allows a great improvement of the results. Thus, there is a strong relationship between solving the
TSP and used the structural property of the TSP [Isoart and Régin, 2020].

3.5 – Mandatory Hamiltonian path constraint 55

3.5 Mandatory Hamiltonian path constraint

In this section, we introduce our works on another structural constraint [Isoart and Régin, 2021a].
This constraint is based on the integration of 2-opt and 3-opt concepts into CP. Unlike tour im-
provement algorithms, the CP model does not have a tour to improve. However, the CP model has
mandatory edges that can form paths and try to find a tour going through these paths. Therefore,
we introduce the search for 2-opt and 3-opt in the paths of mandatory edges.

For each node i, |M(i)| ≤ 2 because of the degree constraint. Thus, the mandatory edges
form disjoint paths. Without loss of generality, we assume that the current assignment of G is
consistent with the degree constraint.

Definition 3.5.1 (Mandatory Hamiltonian path). A mandatory Hamiltonian path p is a path such
that p is a Hamiltonian path in a subgraph of G and for each edge e = (xi, xi+1) of p, e ∈M .

We note p1 = [x1, x2, . . . , xt] a mandatory Hamiltonian path of G.

3.5.1 Consistency Check

In this section, we will study if the current assignment of the mandatory edges can lead to optimal
solutions in G.

Definition 3.5.2 (Alternative path). An alternative path p2 = [x′
1, x′

2, . . . , x′
t] of p1 is a permu-

tation of the nodes of p1 such that p1 ̸= p2, x1 = x′
1, xt = x′

t and for each i ∈ [1, k − 1],
(x′

i, x′
i+1) ∈ U .

x3 x4

x1 x2
1

10

1 10

1

1
x3 x4

x1 x2

Figure 3.12: The left graph is a subgraph of G. The blue edges are from M , they form a mandatory
Hamiltonian path going from x3 to x4. The dashed edges are from D (the deleted edges). The red
edges from the right graph represent an alternative path of the blue edges from left graph.

Figure 3.12 shows an example of an alternative path. Thus, an alternative path can be com-
posed of edges in M ∪O ∪D, i.e. in U .

Definition 3.5.3 (Minimal mandatory Hamiltonian path). The mandatory Hamiltonian path p1 is
minimal if and only if there is no alternative path p2 of p1 such that w(p2) < w(p1).

In Figure 3.12, the mandatory Hamiltonian path going from x3 to x4 is not minimal. The
right graph represents an alternative path with a cost of 3 whereas the mandatory Hamiltonian
path has a cost of 12. The idea is to search for a non-minimal mandatory Hamiltonian path p2 in

56 CHAPTER 3 — The TSP in CP

the connected components of Gmand = (X, M, ∅). In Proposition 3.5.1, we show that if such a
path p2 exists, then the cost of the TSP in G = (X, M, O) is greater than the cost of the TSP in
Ginit = (X, Minit, Oinit).

Proposition 3.5.1. If there is a mandatory Hamiltonian path p1 that is not minimal, then p1 cannot
belong to any optimal solution of TSP (Ginit).

Proof.

Given w(TSP (Ginit + p1)) the cost of the optimal solution of TSP (Ginit) such that p1 is in
the solution. If there is no solution for TSP (Ginit + p1), then p1 cannot belong to any solution
TSP (Ginit). Otherwise, if p1 is not minimal, then there is an alternative path p2 of p1 such that
w(p2) < w(p1). Thus, w(TSP (Ginit + p2)) < w(TSP (Ginit + p1)) and therefore p1 cannot
belong to any optimal solution of TSP (Ginit). □

In the context of a branch and bound, if there is a mandatory Hamiltonian path p that is not
minimal, then from Proposition 3.5.1 we can trigger a failure because the current solution is not
minimal. Moreover, it raises a question: how do we verify if a mandatory Hamiltonian path is
minimal? A first algorithm consists in checking all the possible permutations for each mandatory
Hamiltonian path. Unfortunately, checking all the permutations leads to an impractical algorithm.
However, many heuristics improving tours have been designed. Among them, there are the ones
introduced in Section 2.3.2. Thus, we can use any of these heuristics on the mandatory Hamil-
tonian paths. If it finds an improvement, then a mandatory Hamiltonian path is not minimal and
therefore we can trigger a failure.

In this paper, we use k-opt heuristics as tour improvement since they are very efficient and
easy to implement. In Section 3.5.5, we will show that 2-opt and 3-opt are enough in order to
obtain good results.

Definition 3.5.4 (Mandatory Hamiltonian path constraint). Given the set of mandatory Hamil-
tonian paths P and an integer k. For each mandatory Hamiltonian path p ∈ P , the mandatory
Hamiltonian path constraint ensures that there is no alternative path p′ obtained by swapping k
edges of p such that w(p′) < w(p).

Therefore, we define the mandatory Hamiltonian path constraint in Definition 3.5.4 such that
if its consistency is not verified, then we trigger a failure.

Algorithm 6: Consistency check of the mandatory Hamiltonian paths.

ConsistencyCheck (Ginit, Gmand, k)
Input: The initial graph Ginit, the graph of mandatory edges Gmand and an integer k.
Output: A Boolean specifying whether Gmand contains a mandatory Hamiltonian

path that is not minimal.
P ← computeMandatoryHamiltonianPaths(Gmand) ;
foreach path p ∈ P do

if k-optPath(Ginit, p) then
return False ;

return True ;

3.5 – 3.5.2 Filtering algorithm 57

In Algorithm 6, we introduce an implementation of the algorithm checking the consistency
of the mandatory Hamiltonian path constraint. We assume that k-optPath(Ginit, p) returns true if
and only if the mandatory Hamiltonian path constraint with the given k is inconsistent. Internally,
k-optPath(Ginit, p) uses a k-opt heuristic. Then, for each mandatory Hamiltonian path p, we run
k-optPath(Ginit, p) in O(|p|k).

Proposition 3.5.2. Given P the set of mandatory Hamiltonian paths. Then,
∑

p∈P |p| ≤ n and
|P | ≤ n.

Proof.

By definition, each node can only be contained in one mandatory Hamiltonian path and there
are n nodes in G. Thus,

∑
p∈P |p| ≤ n. In addition, if each node is contained in a different path,

then there are n paths and then therefore |P | ≤ n. □

Each p of P are disjoint. From Proposition 3.5.2, the sum of |p| for all p ∈ P is lower or equal
to n. Finally, the time complexity of Algorithm 6 is in O(

∑
p∈P |p|k) < O(nk).

3.5.2 Filtering algorithm

In this section, we will consider that the consistency has been checked. An edge e = (xt, xi) is a
successor of p1 and an edge e = (xi, x1) is a predecessor of p1. In addition, we note xi + p1 =
[xi, x1, x2, . . . , xt] and p1 + xi = [x1, x2, . . . , xt, xi].

From Proposition 3.5.1, we have the two following corollaries:

Corollary 3.5.3. For each edge e ∈ O such that e is a predecessor of p1, if i + p1 is not a minimal
mandatory Hamiltonian path, then e cannot belong to any optimal solution of TSP (G).

Corollary 3.5.4. For each edge e ∈ O such that e is a successor of p1, if p1 + i is not a minimal
mandatory Hamiltonian path, then e cannot belong to any optimal solution of TSP (G).

Thus, in order to define a filtering algorithm, we are interested in the minimality of p1 + i
and i + p1. If the minimality of p1 has already been checked, then we can avoid the permutations
containing only the elements of p1. We impose i to be in the considered permutations and we
look for permutations of size (k − 1) in p1. Then, for a mandatory Hamiltonian path p and a
single successor or predecessor, we can filter the edge in O(|p|k−1) < O(nk−1). Performing the
filtering for all predecessors and successors of p can be done in O(|O(p)||p|k−1) < O(nk). From
Proposition 3.5.2, there can be at most n paths and the sum of the size of all paths is smaller than
or equal to n. Thus, from Corollary 3.5.3 and Corollary 3.5.4 we can filter the edges of all paths
with a complexity in O(

∑
p∈P O(|O(p)||p|k−1)) < O(nk+1). Note that the number of checked

permutations in practice is much smaller.
A mandatory Hamiltonian path p1 can have a successor or a predecessor e connecting another

mandatory Hamiltonian path p2. Then, adding e to the solution leads to a minimality check in
p1 + p2. We can then extend the two previous corollaries:

Corollary 3.5.5. For each edge e = (xi, x1) ∈ O(x1), if there exists p2 = [x′
1, x′

2, . . . , x′
t] a

mandatory Hamiltonian path of G such that xi = x′
t and p2 + p1 is not a minimal mandatory

Hamiltonian path, then e cannot belongs to any optimal solution of TSP (G).

58 CHAPTER 3 — The TSP in CP

Corollary 3.5.6. For each edge e = (xi, xt) ∈ O(xt), if there exists p2 = [x′
1, x′

2, . . . , x′
t] a

mandatory Hamiltonian path of G such that xi = x′
1 and p1 + p2 is not a minimal mandatory

Hamiltonian path, then e cannot belongs to any optimal solution of TSP (G).

Given a mandatory Hamiltonian path p2 of G connected to p1 with e ∈ O. Then, we have
to check if p1 + p2 is minimal in order to determine whether e can be in a solution of TSP (G).
It can be done with Corollary 3.5.5 and Corollary 3.5.6 in O((|p1| + |p2|)k − |p1|k − |p2|k) <
O(nk). The number of predecessors and successors of p1 is at most 2n. If P (p1) is the set of
mandatory Hamiltonian paths such that each path of P (p1) is connected to p1 with a successor or
a predecessor of p1, then the filtering on p1 can be done in O(

∑
p2∈P (p1)(|p1| + |p2|)k − |p1|k −

|p2|k) < O(nk+1). Given P the set of mandatory Hamiltonian paths. The filtering for all paths of
P can be done in O(

∑
p1∈P

∑
p2∈P (p1)(|p1|+ |p2|)k− |p1|k− |p2|k) < O(nk+2). Note that when

we solve the TSP, the number of mandatory edges is often much smaller than n. In fact, when
the number of mandatory edges is close to n then the problem is almost solved. Algorithm 7 is a
possible implementation.

For the sake of clarity, we will use the following notations in the algorithms:

• P : contains all the mandatory Hamiltonian paths of the graph G.

• P [i]: if there is a path p containing the node i, then it returns p. Otherwise, it returns i.

• p.first(): returns the first node of the path p.

• p.last(): returns the last node of the path p.

Algorithm 7: Filtering algorithm for the mandatory Hamiltonian paths.

Filter (Ginit, G = (X, M, O), P, k)
Input: The initial graph Ginit, a graph G, the set of mandatory Hamiltonian paths P

and an integer k.
foreach p1 = [x1, x2, . . . , xt] ∈ P do

foreach edge e = (x1, j) ∈ O(x1) do
p2 ← P (j) ;
if p2.last() ̸= j then reverse(p2);
if (p1 = p2 and |M | ≠ n− 1) or k-optPath(Ginit, p2, p1) then

O ← O − e ;

foreach edge e = (xt, j) ∈ O(xt) do
p2 ← P (j) ;
if p2.first() ̸= j then reverse(p2);
if (p1 = p2 and |M | ≠ n− 1) or k-optPath(Ginit, p1, p2) then

O ← O − e ;

Given P the set of the mandatory Hamiltonian paths. For each path p1 ∈ P , we perform the
filtering on all the predecessor and successor e of p1. We note p2 the path connected to p1 by e
(p2 can be a single node). In addition, we note k-optPath(graph, p1, p2) the k-optPath algorithm
considering the permutations of p1 + p2 such that each permutation contains at least one element

3.5 – 3.5.3 Maintenance during the search 59

of p1 and at least one element of p2. When two paths are merged, they must be in the right order.
If p2 must be inserted in front of p1, then the node j must be the last node of p2. Otherwise, j
must be the first node of p2. Thus, p2 is reversed if needed. Note that we can save the reversed
path in order to avoid redundant computations. If an improvement is found when p1 and p2 are
merged, then from Corollary 3.5.5 or Corollary 3.5.6 the edge e cannot belong to a solution of
TSP (G) and therefore e is removed from the optional edges of G. In addition, if p1 = p2 and
|M | ̸= n− 1, then there exists an edge e = (i, j) such that i and j belong to the same mandatory
Hamiltonian path and therefore the edge closes a cycle with a size lower than n. Thus, adding e to
the solution creates a sub-cycle and then e is removed from the optional edges of G. Finally, we
could improve the efficiency of our algorithms by considering only the closest neighbors of each
node in the k-opt algorithm such as LKH [Lin and Kernighan, 1973, Helsgaun, 2000].

3.5.3 Maintenance during the search

In this section, we will consider the incremental aspect of this constraint, i.e. the consistency of
this constraint and its filtering when some edges become mandatory or deleted. Moreover, we
will consider the restoration of the data structures introduced for the incremental aspect when a
backtrack occurs. In this study, an edge can be deleted or an edge becomes mandatory.

Proposition 3.5.7. Given O′ ⊆ O. If each mandatory Hamiltonian path of G is minimal and O′

is removed from G, then each mandatory Hamiltonian path of G remain minimal.

Proof.

By definition, the alternative paths can contain removed edges. Therefore, if a mandatory Hamil-
tonian path p is minimal, then removing some edges from the graph does not affect the mini-
mality of p. □

From Proposition 3.5.7, if we know that all the mandatory Hamiltonian paths of G are minimal
and then some edges are removed, then the mandatory Hamiltonian paths of G remain minimal.
In addition, removing some edges does not change the result of the filtering algorithm since new
alternative paths cannot be created from removal. Thus, the consistency test and the filtering
algorithm are only triggered when there are new mandatory edges.

In the following algorithms, we use the following data structures:

• candidates: a stack of graph nodes such that each node is adjacent to edges that can be
filtered.

• deltaMand: a set of the new mandatory edges since the last call of the constraint for the
current search node.

3.5.3.1 Consistency check

When an edge e becomes mandatory, there are three cases:

1. e is not connected to any path.

2. e is connected to a mandatory Hamiltonian path p.

60 CHAPTER 3 — The TSP in CP

3. e is connected to two mandatory Hamiltonian paths p1 and p2.

In case 1, e creates a new path only containing its two endpoints. Note that a mandatory
Hamiltonian path with two nodes is necessarily minimal.

In case 2, p and e are merged in a not necessarily minimal mandatory Hamiltonian path because
new alternative paths may exist.

In case 3, p1 and p2 are merged in a not necessarily minimal mandatory Hamiltonian path
because new alternative paths may exist.

Thus, for consistency check, we only consider the paths that must be merged. In addition,
given a new mandatory edge e connecting p1 and p2, we note p3 the merged path of p1 and p2.
When two paths are merged, we assume that the minimality check has been performed on the two
paths. Therefore, when the k-optPath algorithm is checking the minimality for the path p3, it can
avoid the permutations containing elements belonging to either p1 or p2. Then, we consider the
permutations that contain at least one element of p1 and at least one element of p2. For cases 2
and 3, if the filtering algorithm has been run on the same paths connected to e, then we know
that the mandatory Hamiltonian path created when e became mandatory is consistent since e was
not removed by the pruning algorithm. Note that if a path connected to e has been modified (a
node has been appended to it), then we do not know without running a consistency check if the
mandatory Hamiltonian path created when e become mandatory is consistent.

In Algorithm 8, we give a possible implementation of the incremental algorithm checking the
minimality of the mandatory Hamiltonian paths. For each edge (i, j) newly mandatory, we have
p1 and p2 the mandatory Hamiltonian paths such that i and j are respectively an extremity of p1
and p2. Therefore, the edge (i, j) merge p1 and p2 and p1 and/or p2 are accordingly reversed. Note
that the candidates stack is filled for the filtering algorithm. Then, we run the k-optPath algorithm
in order to find alternative paths in p1 + p2. Note that we only consider permutations such that
each permutation contains at least one element of p1 and at least one element of p2. Finally, if no
alternative path is found, p1 + p2 is a minimal mandatory Hamiltonian path and we merge p1 and
p2 in P . Otherwise, we return False and a failure is triggered.

The overall time complexity of Algorithm 8 is O(
∑

(i,j)∈deltaMand(|P [i]|+|P [j]|)k−|P [i]|k−
|P [j]|k) < O(nk). Note that Algorithm 6 has a time complexity in O(

∑
p∈P |p|k) < O(nk) when

all paths are already merged which is equivalent to O(
∑

(i,j)∈deltaMand(|P [i]|+ |P [j]|)k) if paths
are not merged. Thus, the incremental algorithm improves the time complexity for checking the
minimality of the mandatory Hamiltonian paths.

3.5.3.2 Filtering algorithm

When an edge e becomes mandatory, we have the same three cases as for the consistency check.
Thus, we will only consider the merged mandatory Hamiltonian paths in the previous consistency
check. More precisely, we will only consider the neighborhood of the first node and the last node
of these paths.

Algorithm 9 is a possible implementation of an incremental algorithm performing the filtering.
First, we iterate on candidates. Every time two paths are merged in Algorithm 8, the first and last
nodes of the merged path are pushed in candidates. Thus, candidates contains the first node and
last nodes of all merged paths. In addition, candidates may contain some nodes that are “inter-
mediate” merged paths. For example, if merging p1 and p2 results in p3 such that p3.first() = x
and p3.last() = y, then x and y are pushed in candidates. Merging p3 with p4 results in p5 such

3.5 – 3.5.3 Maintenance during the search 61

Algorithm 8: Incremental minimality check of the mandatory Hamiltonian paths

IncrementalConsistencyCheck (Ginit, P, deltaMand, candidates, k)
Input: The initial graph Ginit, the set of mandatory Hamiltonian paths P , the set of

new mandatory edges deltaMand, candidates a filtering used stack and an
integer k.

Output: A Boolean specifying whether P contains a mandatory Hamiltonian path
that is not minimal.

foreach (i, j) ∈ deltaMand do
p1 ← P [i] ;
p2 ← P [j] ;
if p1.last() ̸= i then reverse(p1);
if p2.first() ̸= j then reverse(p2);
candidates.push(p1.first()) ;
candidates.push(p2.last()) ;
if k-optPath(Ginit, p1, p2) then

return False ;

// merge p1 and p2 in P
merge(P, p1, p2) ;

return True ;

that p5.first() = x′ and p5.last() = y′. Then, x′ and y′ are pushed in candidates. However, x
and y still are in candidates while x or y is no longer the first node or the last node of a merged
path. Then, while we iterate on candidates, we need to avoid these nodes. To do so, for each node
i of candidates, we check if i is either the first node or the last node of the mandatory Hamiltonian
path containing i. Note that we could also delete these nodes when the paths are merged with a
proper data structure. Finally, if a node i is an endpoint of a mandatory Hamiltonian path, then we
check in the neighborhood of the node i (same as for Algorithm 7).

If P (i) is the set of mandatory Hamiltonian paths such that each path of P (i) is con-
nected with a successor or a predecessor of P [i], then the time complexity of Algorithm 9 is
in O(

∑
i∈candidates

∑
p2∈P (i)(|P [i]|+ |p2|)k − |P [i]|k − |p2|k)) < O(nk+2).

3.5.3.3 Restoration

In order to save more computations, we maintain the set P of mandatory Hamiltonian paths. When
a backtrack occurs, the difference between the backtracked state and the current state is that some
mandatory edges could have been found and therefore some mandatory Hamiltonian paths of P
could have been merged. Thus, in order to restore P , the merged mandatory Hamiltonian paths
should be split. To do so, we define a stack S such that S contains the added mandatory edges
from the root to the current state. In addition, we save the size of the stack for each open search
node. Then, when a backtrack occurs, we iteratively pop the mandatory e edges of S until the
wanted size is obtained. For each e, we split the mandatory Hamiltonian path in P containing e.

62 CHAPTER 3 — The TSP in CP

Algorithm 9: Incremental filtering of the mandatory Hamiltonian paths.

IncrFiltering (Ginit, G = (X, M, O), P, candidates, k)
Input: The initial graph Ginit, a graph G, the set of mandatory Hamiltonian paths P ,

the stack of nodes to consider for the filtering candidates and an integer k.
while candidates.isNotEmpty() do

i← candidates.pop() ;
p1 ← P [i] ;
if i = p1.first() or i = p1.last() then

foreach edge e = (i, j) ∈ O(i) do
p2 ← P [j] ;
if p1.last() ̸= i then reverse(p1);
if p2.first() ̸= j then reverse(p2);
if (p1 = p2 and |M | ≠ n− 1) or k-optPath(Ginit, p1, p2) then

O ← O − e ;

3.5.4 Discussion

For this constraint, we used the k-opt algorithm in order to find if a mandatory Hamiltonian path
is minimal. However, we could have used any other tour improvement algorithm.

This idea can be generalized for many other optimization problems. Indeed, the purpose is to
detect if the current solution can be re-optimized. If it does, then the current solution cannot be
the optimal one.

For instance, consider the linear ordering problem. Given a cost matrix Cn,n and list L of n
elements, it consists in finding an order L such that

∑n
i=1

∑n
j=i ci,j is minimized or maximized.

As an example, let us take L = [3, 5, 2, 1, 4]. Then, if we expand the sum of the objective function
we obtain:

c3,5 + c3,2 + c3,1 + c3,4 + c5,2 + c5,1 + c5,4 + c2,1 + c2,4 + c1,4 (3.1)

In the minimization variant of this problem, a classical dominance rule is that if ci,j < cj,i and
both i and j are consecutive in L, then i must be placed before j in L.

Then, considering i = L[2] = 2 and j = L[3] = 1, swapping i and j, we obtain the list
L′ = [3, 5, 1, 2, 4]. Again, if we expand the sum of the objective function we obtain:

c3,5 + c3,1 + c3,2 + c3,4 + c5,1 + c5,2 + c5,4 + c1,2 + c1,4 + c2,4 (3.2)

We observe here that the only difference in the sum is that L considers c2,1 whereas L′ con-
siders c1,2. Therefore, if c2,1 < c1,2, then the cost of the objective function of L will be lower than
the one of L′.

Thus, we can apply the idea we used for the mandatory Hamiltonian path constraint for this
problem. In CP, we will model this problem with n variables such that each variable has an initial
domain in [1, n] that is the position in L. Then, an allDifferent constraint [Régin, 1994], on these
variables will be added. Therefore, through the solving process, variable assignment will be made
thanks to the branch-and-bound and the filtering algorithm of the allDifferent constraint. The idea
is then to use the dominance rule on the assigned variables, if a re-optimization is found, then

3.5 – 3.5.5 Experiments 63

the current branch of the search tree can be safely aborted. For instance, imagine that 5, 2, 1 are
assigned in L = [3, 5, 2, 1, 4]. If c5,2 > c2,5 or c5,1 > c1,5 or c2,1 > c1,2, then the current branch
of the search tree can be safely aborted.

This dominance rule can be generalized using any local search heuristic: if any heuristic shows
that 5,2,1 is not optimal, then the current search tree branch can be aborted. For instance, make
the hypothesis that 1,2,5 has a cost lower than 5,2,1 and that 1,5,2 is in the optimal solution. Then,
finding that 1,2,5 has a cost lower than 5,2,1 is enough in order to prune the search tree: the optimal
solution is not needed. In the same spirit of the mandatory Hamiltonian path constraint, a filtering
algorithm can be developed. For each non-assigned variable x, for each value v of x such that v is
consecutive to an assigned value in L. If assigning x to v leads to a re-optimization, then v can be
safely removed from x. Note that an incremental algorithm can be easily developed.

Finally, we believe that this method could be extended to many other problems and that many
constraints based on local search heuristics could be developed.

3.5.5 Experiments

In this section we will experimentally show that the mandatory Hamiltonian path constraint al-
lows reducing the search space and therefore improve the solving times. To do so, we use the
configuration introduced in Section 1.1. Specifically, we always use WCC and the k-cutset con-
straint, named “basic model”. In addition, we note “MHP 2-opt” the basic model combined with
the mandatory Hamiltonian path constraint searching for 2-opt and “MHP 3-opt” the basic model
combined with the mandatory Hamiltonian path constraint searching for 3-opt. Unless specified,
we will use the implementation given in Algorithm 8 and 9.

Table 3.6 shows the solving times and the number of search nodes for the basic model, MHP
2-opt and MHP 3-opt. In addition, we display a ratio column in order to show the gain factor for
each instance by using 2-opt and 3-opt.

For the basic model, we notice that 4 instances over 40 have reached the timeout. For MHP
2-opt, we notice that no instance has reached the timeout. Indeed, ali535 is solved in 14,659s,
gr666 is solved in 55,898s, pr299 is solved in 8,773s and rd400 is solved in 13,605s with 2-opt
whereas they remain unsolved in 86,400s with the basic model. Most of the time, we notice that
the use of 2-opt allows us to improve the solving times. For example, gr431 is improved by a
factor of 3.0 in solving time and by a factor of 3.8 in search nodes. Some problems have higher
gain factors: d493 gains a factor 5.4 in solving time and a factor 4.5 in search nodes. Moreover,
38 over 40 instances have improved solving times. Only two instances have a degraded solving
time when used 2-opt: brg180 is 0.1s slower and pcb442 is 24% slower. As we previously said
in Section 3.4.5, the Lagrangian relaxation interferes with the filtering algorithms, and the search
strategy is dynamic, it can happen that more pruning does not leads to a reduction of the search
space.

The mandatory Hamiltonian path constraint combined with 3-opt allow us to obtain an addi-
tional improvement to the use of 2-opt only. Indeed, 3-opt can be slower than 2-opt in terms of
search nodes/second but it greatly reduces the number of search nodes. Note that in the paper
introducing the Mandatory Hamiltonian path constraint [Isoart and Régin, 2021a], we were able
to solve larger instances only with the use of 3-opt by considering a timeout of 1 week. Some in-
stances are solved much faster with 3-opt than with 2-opt: gr666 reach the timeout with the basic
model, it is solved in 55,899s with 2-opt and 19,102s with 3-opt. Some other instances are solved
with almost the same number of search nodes for 2-opt and 3-opt: for ali535 with 2-opt there are

64 CHAPTER 3 — The TSP in CP

Basic model (1) MHP 2-opt (2) ratio (1)/(2) MHP 3-opt (3) ratio (1)/(3)
Instances time(s) #sn time(s) #sn time #sn time(s) #sn time(s) #sn

a280 5.6 2,485 4.7 2,027 1.2 1.2 3.6 1,267 1.6 2.0
ali535 t.o. 14,658.8 2,442,469 > 5.9 - 23,757.1 2,716,581 > 3.6 -

bier127 0.3 71 0.2 53 1.5 1.3 0.2 53 1.5 1.3
brg180 0.4 95 0.5 101 0.8 0.9 1.1 101 0.4 0.9
ch130 1.3 1,069 0.7 389 1.9 2.7 0.8 401 1.6 2.7
ch150 1.3 873 1.0 523 1.3 1.7 0.9 493 1.4 1.8
d198 7.8 4,783 6.3 3,451 1.2 1.4 6.6 2,791 1.2 1.7
d493 67,961.8 11,346,181 12,508.3 2,523,995 5.4 4.5 7,715.3 746,881 8.8 15.2
eil101 0.1 65 0.1 65 1.0 1.0 0.2 65 0.5 1.0
gil262 2,842.1 1,711,411 4,159.0 2,518,087 0.7 0.7 2,792.2 1,519,741 1.0 1.1
gr120 0.5 279 0.5 263 1.0 1.1 0.5 285 1.0 1.0
gr137 1.4 1,083 1.0 711 1.4 1.5 1.1 721 1.3 1.5
gr202 1.4 831 1.3 517 1.1 1.6 1.3 531 1.1 1.6
gr229 132.5 114,435 45.2 32,363 2.9 3.5 40.2 27,725 3.3 4.1
gr431 1,307.9 247,091 429.2 65,549 3.0 3.8 379.2 51,317 3.4 4.8
gr666 t.o. 55,898.6 5,741,233 > 1.5 - 19,101.7 1,669,653 > 4.5 -
gr96 0.6 549 0.5 311 1.2 1.8 0.5 283 1.2 1.9

kroA100 1.1 1,259 0.7 557 1.6 2.3 0.7 425 1.6 3.0
kroA150 3.0 2,799 3.0 2,395 1.0 1.2 2.6 2,035 1.2 1.4
kroA200 312.6 200,393 58.3 35,821 5.4 5.6 70.6 39,305 4.4 5.1
kroB100 2.6 3,309 1.3 1,387 2.0 2.4 1.1 1,271 2.4 2.6
kroB150 146.0 154,003 10.7 8,745 13.6 17.6 10.8 8,481 13.5 18.2
kroB200 127.1 109,323 18.3 12,851 6.9 8.5 14.9 10,045 8.5 10.9
kroC100 0.9 1,035 0.5 305 1.8 3.4 0.6 305 1.5 3.4
kroD100 0.4 247 0.3 173 1.3 1.4 0.4 159 1.0 1.6
kroE100 1.7 2,213 0.9 889 1.9 2.5 0.9 793 1.9 2.8
lin318 10.3 3,457 5.6 1,711 1.8 2.0 4.7 1,341 2.2 2.6
pcb442 15,578.5 5,555,757 19,319.6 6,784,259 0.8 0.8 79,639.0 11,865,739 0.2 0.5
pr124 2.6 2,483 1.3 1,037 2.0 2.4 1.3 915 2.0 2.7
pr136 16.8 21,447 7.7 7,557 2.2 2.8 8.9 8,899 1.9 2.4
pr144 1.3 975 1.0 579 1.3 1.7 1.1 557 1.2 1.8
pr264 4.3 643 4.0 825 1.1 0.8 3.4 397 1.3 1.6
pr299 t.o. 8,772.9 3,040,171 > 9.8 - 2,429.7 737,971 > 35.6 -
rat195 32.9 27,513 23.3 17,915 1.4 1.5 15.4 10,661 2.1 2.6
rat99 0.1 81 0.1 75 1.0 1.1 0.2 75 0.5 1.1
rd400 t.o. 13,604.8 4,140,613 > 6.4 - 6,496.9 1,882,547 > 13.3 -
si175 276.4 358,677 168.8 196,943 1.6 1.8 169.9 163,917 1.6 2.2
st70 0.2 77 0.1 73 2.0 1.1 0.2 73 1.0 1.1

tsp225 128.3 89,947 76.2 44,567 1.7 2.0 30.1 16,129 4.3 5.6
u159 0.6 421 0.4 203 1.5 2.1 0.4 193 1.5 2.2
mean > 10,862.8 3,244.9 690,794.0 3,567.7 537,278.1

Table 3.6: General results comparing the mandatory Hamiltonian path constraint combined with
either 2-opt or 3-opt and the basic model.

3.5 – 3.5.5 Experiments 65

3,442,470 search nodes and there are 2,716,582 search nodes with 3-opt. However, it has a much
slower solving time with 3-opt than with 2-opt: 14,658s vs 23,757s. In addition, pcb442 is solved
faster with 2-opt than with 3-opt: 19,320s vs 79,639s. This can be due to several reasons: the
extra cost of using an algorithm in O(n3) compared to an algorithm in O(n2). Therefore, if the
solving of an instance does not contain that much Mandatory Hamiltonian path with lower cost
alternative path, some solving time can be lost. The Lagrangian relaxation can also be impacted
by the filtered edges. In addition, LCFirst can be disrupted by this filtering algorithm. Note that
some instances such as pcb442 are very particular problems (drilling problem). However, since
3-opt allows a better reduction of the number of search nodes (especially on the larger instances),
we will consider the version with 3-opt. Note that we could use some other heuristics such as
2.5-opt that compute 2-opt and some 3-opt. The improvement over the number of search nodes
is not as much important as for the 3-opt method but the number of search nodes per second is
higher. In practice, we have observed on average a 10% difference on the solving times between
3-opt and 2.5-opt.

(1) 3-opt (2) 3-opt ratio
not incremental incremental (1) / (2)

Instances time(s) time(s) time
a280 6.0 3.6 1.7

ali535 t.o. 23,757.1 > 3.6
brg180 4.0 1.1 3.6
d493 t.o. 7,715.3 > 11.2
eil101 0.3 0.2 1.5
gil262 3,785.7 2,792.2 1.4
gr120 0.7 0.5 1.3
gr202 1.8 1.3 1.4
gr229 59.4 40.2 1.5
gr431 554.1 379.2 1.5

pcb442 t.o. 79,639.0 > 1.1
pr136 15.7 8.9 1.8
rat195 19.4 15.4 1.3
rat99 0.3 0.2 1.5
si175 333.7 169.9 2.0
u159 0.8 0.4 2.0
mean > 16,498.9 7,157.8

Table 3.7: Comparison of solving times for the non-incremental and the incremental version of
the mandatory Hamiltonian path constraint.

In Table 3.7, we show the impact of using the incremental version of the mandatory Hamil-
tonian path constraint on the instances of Table 3.6 such that there is at least 30% of gain. Note
that almost half of the instances are solved at least 30% faster with the incremental version of the
algorithm. With the incremental version, the solving times of some instances such as rat195 are
improved of 30% whereas for other instances such as si175 the solving times are improved by
a factor of 2. In addition, some instances of this instance set reached the timeout with the non-
incremental version such as ali535, d493 and pcb442 and it is on average at least 2.3 times faster

66 CHAPTER 3 — The TSP in CP

than the non-incremental one. Thus, the benefit of avoiding recalculations is interesting for this
constraint due to the time complexity of the k-opt algorithm.

In Table 3.8, we are interested in the use of k-opt algorithms with k greater than 3. For the
number of search nodes, we notice that the number of search nodes is comparable for 3-opt, 4-opt
and 5-opt. For instance, kroB200 is solved with 10,045 search nodes for 3-opt, 10,779 search
nodes for 4-opt and 12,707 search nodes for 5-opt. The main difference is that it is solved in 14.9s
for 3-opt, 55.8s for 4-opt and 8,423s for 5-opt. Therefore, we notice that the use of 4-opt and 5-opt
degrades the solving times compared to 2-opt and 3-opt. Indeed, for 4-opt we observe a loss of at
least a factor almost equal to 3 in mean. For 5-opt, we observe a loss of at least a factor almost
equal to 7 in mean with huge loss factor for some instances: 6,704 for a280, 12,722 for br180.
Thus, the solving times and number of search nodes trade-off is bad when k > 3.

3.5.6 Conclusion

In this section, we introduced a new constraint based on the k-opt algorithm, named mandatory
Hamiltonian path constraint, into to the TSP model in CP. We also introduced an incremental
version of this constraint. Experiments have shown that the use of this constraint leads to an
improvement of at least a factor of 3 in solving times. In addition, it shows that the use of 3-
opt is well suited for our constraint. Moreover, we have been able to solve some instances that
remains unsolved with the WCC in combination with the k-cutset constraint. The k-opt algorithm
is embedded in most of the solving methods of the TSP and therefore now in the CP. In future
work, we would like to study an extension of this constraint not only considering the mandatory
Hamiltonian paths but the mandatory cutsets in the graph.

3.5 – 3.5.6 Conclusion 67

2-opt 3-opt 4-opt 5-opt
time(s) #sn time(s) #sn time(s) #sn time(s) #sn

a280 4.7 2,027 3.6 1,267 448.3 2,349 24,132.9 2,491
ali535 14,658.8 2,442,469 23,757.1 2,716,581 t.o. t.o. t.o. t.o.

bier127 0.2 53 0.2 53 0.9 53 12.8 71
brg180 0.5 101 1.1 101 64.2 101 13,994.3 101
ch130 0.7 389 0.8 401 5.1 449 425.9 375
ch150 1.0 523 0.9 493 3.9 593 581.7 569
d198 6.3 3,451 6.6 2,791 80.1 2,945 15,659.4 3,415
d493 12,508.3 2,523,995 7,715.3 746,881 t.o. t.o. t.o. t.o.
eil101 0.1 65 0.2 65 0.9 65 43.2 65
gil262 4,159.0 2,518,087 2,792.2 1,519,741 11,572.2 1,351,149 t.o. t.o.
gr120 0.5 263 0.5 285 1.3 273 225.3 297
gr137 1.0 711 1.1 721 2.2 513 308.8 945
gr202 1.3 517 1.3 531 26.1 655 2,060.6 531
gr229 45.2 32,363 40.2 27,725 176.3 18,145 26,460.4 24,579
gr431 429.2 65,549 379.2 51,317 3,497.2 29,159 t.o. t.o.
gr666 55,898.6 5,741,233 19,101.7 1,669,653 t.o. t.o. t.o. t.o.
gr96 0.5 311 0.5 283 1.1 347 61.9 273

kroA100 0.7 557 0.7 425 1.6 499 9.7 591
kroA150 3.0 2,395 2.6 2,035 3.6 1,175 210.1 1,209
kroA200 58.3 35,821 70.6 39,305 112.1 43,041 2,840.0 55,619
kroB100 1.3 1,387 1.1 1,271 2.3 1,451 58.1 1,441
kroB150 10.7 8,745 10.8 8,481 20.4 7,113 747.6 8,985
kroB200 18.3 12,851 14.9 10,045 55.8 10,779 8,423.0 12,707
kroC100 0.5 305 0.6 305 1.9 319 4.6 285
kroD100 0.3 173 0.4 159 1.5 173 12.9 173
kroE100 0.9 889 0.9 793 2.0 713 18.6 795
lin318 5.6 1,711 4.7 1,341 14.9 1,737 10,004.7 1,743
pcb442 19,319.6 6,784,259 79,639.0 11,865,739 t.o. t.o. t.o. t.o.
pr124 1.3 1,037 1.3 915 3.9 775 87.4 2,043
pr136 7.7 7,557 8.9 8,899 98.3 6,745 22,868.5 9,971
pr144 1.0 579 1.1 557 2.1 551 59.9 971
pr264 4.0 825 3.4 397 33.0 475 23,430.6 477
pr299 8,772.9 3,040,171 2,429.7 737,971 5,907.2 1,073,671 t.o. t.o.
rat195 23.3 17,915 15.4 10,661 85.3 7,677 11,374.0 6,645
rat99 0.1 75 0.2 75 0.8 75 19.5 75
rd400 13,604.8 4,140,613 6,496.9 1,882,547 10,317.5 1,410,859 t.o. t.o.
si175 168.8 196,943 169.9 163,917 1,389.8 149,541 t.o. t.o.
st70 0.1 73 0.2 73 0.7 73 15.1 73

tsp225 76.2 44,567 30.1 16,129 81.6 15,339 4,410.7 14,465
u159 0.4 203 0.4 193 6.1 183 858.8 183
mean 3,244.9 3,567.7 > 9,490.6 >23,675.5

Table 3.8: Comparison of solving times for mandatory Hamiltonian path constraint with 2-opt,
3-opt, 4-opt and 5-opt.

68 CHAPTER 3 — The TSP in CP

3.6 One-Tree constraint

In this section, we will define a constraint based on the 2-cutsets and the 1-tree. As we stated in
Section 2.2.1.3, the cost of any solution of the TSP is greater than or equal to the cost of a 1-tree.
In addition, a strong property of the 1-tree is the following: if all nodes of the 1-tree have exactly
two neighbors, then the 1-tree is a solution to the TSP. In some cases, the TSP can be decomposed
into independent sub-problems. Therefore, we will use this property in order to define a filtering
algorithm.

3.6.1 The constraint

Definition 3.6.1 (Minimum cost Hamiltonian path). A Minimum cost Hamiltonian path
MHP (G, i, j) is the Hamiltonian Path P in G going from i to j such that the cost of P is
minimized.

Definition 3.6.2 (k-vertex-connected graph). A connected graph is k-vertex-connected if it re-
mains connected whenever fewer than k nodes are removed.

Definition 3.6.3 (k-vertex-cutset). A k-vertex-cutset of a connected graph is a subset of nodes S
such that |S| = k and removing S from the graph disconnects it.

Without loss of generality, we will consider that G is 2-vertex-connected.
In Proposition 3.6.1, we show that if there is a 2-vertex-cutset disconnecting the graph in

more than 2 connected components, then there is no TSP solution in this graph. Without loss
of generality, we will consider that each 2-vertex-cutset of the graph disconnect it in exactly two
connected components.

Proposition 3.6.1. Given the 2-vertex-cutset {i, j} ∈ X2. If G − {i, j} is disconnected in more
than two connected components, then there is no TSP solution in G.

Proof.

For each subset of nodes C in a graph, any TSP solution contains at least two edges with exactly
one endpoint in C. Let k be the number of connected components of G − {i, j}. If we have k
connected components in G−{i, j}, then we have at least 2k edges with one endpoint in C and
the other in {i, j}. Thus, it means that we have 2k edges connected to {i, j}.
The degree constraint of the TSP enforces that each node has two adjacent edges in the solution.
Thus, there are at most four edges connected to {i, j} in any TSP solution. However, if k > 2,
then 2k > 4 and therefore if G−{i, j} is disconnected in more than two connected components,
then there is no TSP solution in G. □

In Proposition 3.6.2, we show that if a pair of nodes {i, j} is a 2-vertex-cutset of G and
(G′, G′′) its cut (both containing i and j), then the solutions set of the TSP (G) is equivalent to
the Cartesian product of the solutions set of MHP (G′, i, j) and the solutions set MHP (G′′, i, j).
An example is depicted in Figure 3.13.

Proposition 3.6.2. Given the 2-vertex-cutset {i, j} ∈ X2 of the cut (G′, G′′). Then, the solutions
set of both TSP (G) and MHP (G′, i, j)×MHP (G′′, i, j) are equivalent.

Proof.

3.6 – 3.6.1 The constraint 69

By definition of a cutset, G′ and G′′ are independent and all the nodes of G′ and G′′ must
be visited to obtain a solution to the TSP. In addition, each solution of the TSP is 2-vertex-
connected. Since {i, j} is a 2-vertex-cutset, each solution of the TSP must use i and j to go from
G′ to G′′. Thus, each solution of TSP (G) can be constructed by a combination of solutions of
MHP (G′, i, j) and MHP (G′′, i, j).

Next, each solution of TSP (G) necessarily contains a Hamiltonian path from i to j in G′ and
a Hamiltonian path from i to j in G′′. Moreover, these two Hamiltonian paths are minimal
cost paths. Otherwise, the cost of the TSP solution could be decreased, which is not possible
since the cost of the TSP is minimized. Thus, each solution of TSP (G) gives the solutions of
MHP (G′, i, j) and of MHP (G′′, i, j).

Finally, given the 2-vertex-cutset {i, j} ∈ X2 of the cut (G′, G′′), the solutions set of both
TSP (G) and MHP (G′, i, j)×MHP (G′′, i, j) are equivalent. □

A

B C

Di

j

1

1

2

2

1

1

2

2

1
1

Figure 3.13: In this graph, we consider the 2-vertex-cutset {i, j} and its cut (G′, G′′) such that
the nodes set of G′ is {i, j, A, B} and the nodes set of G′′ is {i, j, C, D}. The optimal solution
of the TSP is [i, A, B, j, D, C, i]. The optimal solution of MHP (G′, i, j) is [i, A, B, j] and the
optimal solution of MHP (G′′, i, j) is [j, D, C, i]. Therefore, we can see that the solutions set of
the TSP (G) is equivalent to the Cartesian product of the solutions set of MHP (G′, i, j) and the
solutions set MHP (G′′, i, j) for the a 2-vertex-cutset {i, j} in G.

Moreover, we note that a Hamiltonian path from i to j is a spanning tree such that all nodes of
the spanning tree have exactly two neighbors except i and j which have only one neighbor. Thus,
an MST is a lower bound on a minimum cost Hamiltonian path.

Proposition 3.6.3. Given T (G) the minimum spanning tree of G. If each node of G has exactly
two adjacent edges in T (G) except for i and j having exactly one adjacent edge, then T (G) is a
solution of MHP (G, i, j).

Proof.

By definition, if each node of G has exactly two adjacent edges in T (G) except for i and j
having exactly one adjacent edge, then T (G) is a Hamiltonian path going from i to j in G. In
addition, since the total cost is minimized in a minimum spanning tree, then this Hamiltonian
path has a minimum cost. Thus, T (G) is a solution of MHP (G, i, j). □

In addition, if the MST is a solution of MHP, then all the edges of the MST can safely become
mandatory edges. In order to define a filtering algorithm, we define this properly in Proposi-
tion 3.6.4.

70 CHAPTER 3 — The TSP in CP

Definition 3.6.4 (Graphs intersection). Given G1 = (X1, U1) and G2 = (X2, U2). We define
G3 = G1 ∩G2 such that G3 = (X1 ∩X2, U1 ∩ U2).

Proposition 3.6.4. Given T (G) the minimum spanning tree of G, the 2-vertex-cutset {i, j} ∈ X2

of the cut (G′, G′′). If T (G) ∩G′ (resp. T (G) ∩G′′) is a Hamiltonian path in G′ (resp. G′′), then
it is a solution of MHP (G′, i, j) (resp. MHP (G′′, i, j)).

Proof.

The 1-tree ensures a minimal coverage of G′ and the existence of a single cycle. Since G′ is
independent of G′′, if it has existed a cover of G′ with a cost lower than T (G) ∩ G′, then this
cover would belong to T (G) in order to reduce the global cost of T (G). Thus, if T (G)∩G′ is a
Hamiltonian path in G′, then it is a solution of MHP (G′, i, j). Note that the proof is the same
for G′′. □

For instance, in Figure 3.14 we show a graph and its minimum 1-tree. We notice that there is a
Hamiltonian path in the component induced by the red circle. By Proposition 3.6.4, all the orange
edges in the red circle can become mandatory.

In order to find the 2-vertex-cutsets, we can use a SPQR tree [Hopcroft and Tarjan, 1973,
Gutwenger and Mutzel, 2000]. It is a linear time algorithm decomposing a graph in 3-vertex-
connected components. However, the algorithm is not trivial and the trade-off filtering/solving
times is not as good as we expected.

Therefore, we consider the 2-cutsets (i.e. cutsets of edges of size 2). Indeed, if a 3-vertex-
connected component C is connected to the whole graph by a 2-cutset, then the nodes of C con-
nected to the 2-cutset are a 2-vertex-cutset. Thus, 2-cutset is a special case of 2-vertex-cutset. We
can then introduce Corollary 3.6.5.

Corollary 3.6.5. Given T (G) the minimum spanning tree of G, the 2-cutset of the cut (G′, G′′) and
{i,j} the nodes belonging to both the 2-cutset and G′ (resp. G′′). If T (G)∩G′ (resp. T (G)∩G′′) is a
Hamiltonian path in G′ (resp. G′′), then it is a solution of MHP (G′, i, j) (resp. MHP (G′′, i, j)).

For instance, Figure 3.14 shows a case such that Corollary 3.6.5 can be applied if G′ is the
graph induced by the nodes in the red circle and the 2-cutset is the set of edges crossing the red
circle.

In practice, the 2-cutsets are already computed in the k-cutset constraint. A first idea is to keep
the 2-cutsets between the call of the k-cutset constraint and the call of this constraint. In a more
intrusive but more efficient way, we can perform the filtering of this constraint while performing
the k-cutset constraint. This approach results in a very efficient algorithm with a much better
trade-off filtering/solving times.

The main advantage of this filtering algorithm is that it avoids the branching choices in areas
where the 1-tree already "knew" the solution and therefore it reduces the search space. Moreover,
it reduces the number of optional edges in the input graph. This leads to a slight improvement of
the computation times of the side algorithms (1-tree computations, k-cutset constraint, mandatory
Hamiltonian path constraint, . . .).

One could now ask the following question: what if we have a k-cutset with k > 2 and k
mandatory edges?

If k is odd, then the k-cutset constraint handles this (a failure is triggered). Without loss of
generality, we assume that k is even.

3.6 – 3.6.1 The constraint 71

Figure 3.14: An example of a graph where the blue edges are mandatory, the dark edges are
optional and the orange edges are optional edges belonging to the 1-tree.

First, for each cut (S, T) associated with the k-cutset K, a solution of the TSP goes through
all nodes of S and T . If K contains k mandatory edges, then S and T are connected to the whole
graph by |K| connection points that can be split into exactly |K|/2 entry points and |K|/2 exit
points. Thus, the optimal solution of the TSP is composed of |K|/2 disjoint paths in S and |K|/2
disjoint paths in T .

If |K| = 2, then the TSP solutions are composed of exactly |K|/2 = 1 path from one connec-
tion point to the other in S and in T . In this case, we have shown in Corollary 3.6.5 that if we find
a Hamiltonian path of minimum cost going from one connection point to the other, then this path
necessarily belongs to the optimal solution.

If |K| > 2, then the TSP solutions are composed of exactly |K|/2 disjoint paths in S and T .
However, finding the |K|/2 disjoint paths of minimal cost covering the whole component is not
enough. Indeed, the choice of entry points and exit points in a component rely on the choices of
edges in the 1-tree outside this component. In Figure 3.15, we show two examples and we give
the solution of the TSP in this graph. In OT1, we notice that the coverage obtained by the 1-tree is
not minimal in the cut represented by a red circle (3+3 > 2+2). In OT2, we notice that even if the
coverage is minimal (1+1 < 2+2), these edges do not belong to the global optimal solution. Indeed,
the “good” edges are the edges whose cost is 2. However, constructing the 1-tree all the edges with
a cost equal to 1 are added in OT1 and OT2. We then can see in both 1-trees that adding the “good”
edges will close a cycle and therefore will never be added to the 1-tree. Thus, for |K| > 2, we
cannot naively assign the paths of a cut if they all verify the degree constraint because we do not
know which points are the entry and the exit points for every disjoint path. Splitting the problem
in two parts is therefore non-trivial when |K| > 2. For this reason, the filtering algorithm of this
constraint only consider the case of |K| = 2.

72 CHAPTER 3 — The TSP in CP

A B C D E F

G

H I

J K L M N

OT1

1

1

1

1
1

1

2
3

3
2

1

1
1

2

10
4

4

A B C D E F

G

H I

J K L M N

OT2

1

1

1

1
1

1

2
1

1
2

1

1
1

2

10
4

4

A B C D E F

G

H I

J K L M N

solution

1

1
1

1

2 2
1

2

4
4

Figure 3.15: An example of a graph where the blue edges are mandatory, the gray edges are
optional and the orange edges are optional edges belonging to the 1-tree. Note that OT1 and OT2
are two 1-trees such that the 1-tree edges in the red circle of both OT1 and OT2 are different. The
bottom graph is an optimal solution of both OT1 and OT2. The choice of the 1-tree edges in the
red circle does not depend on the cost of the edges but on the choices that we have made outside of
the red circle. Thus, the 1-tree does not choose in any case the edges of cost 2 even if they belong
to the TSP solution.

Definition 3.6.5 (One-tree constraint). For each cut (S, T) associated with the k-cutset K such
that |K| = 2, the one-tree constraint ensure that each TSP solution contains a single minimum
cost Hamiltonian path in both S and T .

3.6.2 Experiments

In this section we will experimentally show that the one-tree constraint allows a slight reduction of
the search space leading to a reduction of solving times. To do so, we use the configuration intro-
duced in Section 1.1. Specifically, we always use WCC, the k-cutset constraint and the mandatory
Hamiltonian path constraint with 3-opt, named “basic model”.

In Table 3.9, we observe a slight improvement of the solving times for most instances (from
10% to 80%). In mean, the solving times are reduced of 5% and the number of search nodes are
reduced of 1%. However, the geometric mean is reduced of 1% in solving time and the number of
search nodes of 14%. Note that the geometric is less sensitive to huge difference between values.
Obtaining such a little improvement is not unexpected here. Indeed, this constraint only enforces
paths in order to avoid wrong branching choice and reduce a little bit the number of considered
edges for the algorithms. This constraint is therefore not essential, but it cost almost nothing in
computation time: it can be done in the k-cutset constraint and if it leads to a more “stable” search
tree, we should use it. For instance, ali535 is solved in 23,757s with the basic model whereas (2)
allows solving it in 13,014s. Inversely, pcb442 is solved in 79,639s with the basic model whereas it
is solved in 91,138s with (2). Note that there is no timeout for Table 3.9 since only pcb442 reached
it whereas it is solved just after the timeout of 86,400s. Note that the more we add constraints, the
more pcb442 is hard to solve. We will discuss that instance in Section 3.8.

3.6 – 3.6.2 Experiments 73

Basic model (1) One-tree constraint (2) ratio (1)/(2)
Instances time(s) #sn time(s) #sn time #sn

a280 3.6 1,267 8.1 2,351 0.4 0.5
ali535 23,757.1 2,716,581 13,013.9 1,339,925 1.8 2.0

bier127 0.2 53 0.3 53 0.7 1.0
brg180 1.1 101 1.2 101 0.9 1.0
ch130 0.8 401 0.7 383 1.1 1.0
ch150 0.9 493 0.8 303 1.1 1.6
d198 6.6 2,791 7.0 3,093 0.9 0.9
d493 7,715.3 746,881 4,989.9 488,439 1.5 1.5
eil101 0.2 65 0.2 65 1.0 1.0
gil262 2,792.2 1,519,741 2,042.2 1,040,943 1.4 1.5
gr120 0.5 285 0.7 279 0.7 1.0
gr137 1.1 721 1.0 513 1.1 1.4
gr202 1.3 531 1.2 383 1.1 1.4
gr229 40.2 27,725 41.2 26,565 1.0 1.0
gr431 379.2 51,317 520.6 60,537 0.7 0.8
gr666 19,101.7 1,669,653 14,719.6 1,106,125 1.3 1.5
gr96 0.5 283 0.5 227 1.0 1.2

kroA100 0.7 425 0.8 483 0.9 0.9
kroA150 2.6 2,035 1.9 1,269 1.4 1.6
kroA200 70.6 39,305 63.7 35,209 1.1 1.1
kroB100 1.1 1,271 1.0 1,045 1.1 1.2
kroB150 10.8 8,481 8.7 6,165 1.2 1.4
kroB200 14.9 10,045 15.1 9,381 1.0 1.1
kroC100 0.6 305 0.5 233 1.2 1.3
kroD100 0.4 159 0.3 149 1.3 1.1
kroE100 0.9 793 0.9 641 1.0 1.2
lin318 4.7 1,341 6.4 1,817 0.7 0.7
pcb442 79,639.0 11,865,739 91,137.7 14,852,219 0.9 0.8
pr124 1.3 915 1.2 827 1.1 1.1
pr136 8.9 8,899 8.9 7,229 1.0 1.2
pr144 1.1 557 1.0 345 1.1 1.6
pr264 3.4 397 3.8 575 0.9 0.7
pr299 2,429.7 737,971 1,596.5 489,039 1.5 1.5
rat195 15.4 10,661 17.9 11,601 0.9 0.9
rat99 0.2 75 0.2 61 1.0 1.2
rd400 6,496.9 1,882,547 6,721.0 1,727,475 1.0 1.1
si175 169.9 163,917 100.7 92,573 1.7 1.8
st70 0.2 73 0.2 65 1.0 1.1

tsp225 30.1 16,129 23.5 11,557 1.3 1.4
u159 0.4 193 0.4 133 1.0 1.5
mean 3567.7 537278.1 3376.5 533009.4

geo mean 10.5 4208.6 10.0 3621.8

Table 3.9: General results showing the results while integrating the one-tree constraint to the basic
model.

74 CHAPTER 3 — The TSP in CP

3.6.3 Conclusion

In this section, we introduced a new constraint based on the lower bound obtained by the 1-
tree. It uses the fact that the TSP can sometimes be decomposed into independent sub-problems.
Experiments have shown that it leads to a slight improvement by avoiding wrong branching choice.

3.7 Lagrangian Relaxation

In Section 3.2, we introduced the TSP model in CP that is a combination of the Held and Karp
Lagrangian relaxation (LR) and some filtering algorithms (FAs).

For any set of multipliers µ, the optimal value of the LR of a problem P is a lower bound
of the optimal value of P , then it can be used to remove some values of the variables. Con-
sider UB, an upper bound of the optimal solution of P (for example any solution of P , there-
fore not necessarily optimal), and x = a an assignment. If for x = a the optimal value
of the LR of P is greater than UB, then a can be removed from D(x) since we know that
x = a does not belong to the optimal solution. From this idea, the CP-based Lagrangian re-
laxation has been introduced [Sellmann and Fahle, 2003] and successfully used to solve many
problems [Khemmoudj et al., 2005, Menana, 2011, Fontaine et al., 2014, Bergman et al., 2015,
Cambazard and Fages, 2015, Demassey, 2017]. It consists in modeling the problem so that one or
more cost-based FAs can be used on the easy part of the problem. Difficult constraints are moved
to the objective function and the cost-based FAs are used when looking for good multipliers.

Sellmann made two important observations about the relationship between the LR and FAs
[Sellmann, 2004]:

• Suboptimal multipliers can be more efficient for filtering than the optimal multipliers.

• It is not clear whether FAs should actually take place during the optimization of the La-
grangian multipliers, because the standard approach for the optimization of the multipliers
are not guaranteed to be robust enough to enable a change (i.e. the removal of a value) of
the underlying sub-problem during the optimization.

These observations show the complexity of the interactions between FAs and multipliers,
which have important consequences, such as losing the monotonicity so dear to CP∗.

In addition, it is important to note that the CP-based LR is usually associated with a branch-
and-bound algorithm. We therefore have no reason to seek to converge the LR towards the opti-
mum. The lower bound it provides is sufficient for our purpose (i.e. having the most effective FAs)
and we will obtain the optimal solution thanks to the search algorithm.

From these considerations, we can formulate the problem of the interaction between LR and
FAs by the following question: for which set of multipliers should FAs be called and how do we
get them?

Most of the articles in the literature using CP-based LR do not address this issue and it is by
reading the source code of the programs that we discover precisely when FAs are called. Some
authors (L-M Rousseau and X. Lorca) have confirmed that the call conditions were determined
experimentally after numerous tests.

∗Normally, in CP, when F2, a FA, is added to F1, another FA, all values eliminated by F1 are also eliminated by the
combination of F1 and F2.

3.7 – 3.7.1 CP-based Lagrangian relaxation 75

In this section, we study some of the interactions between FAs and LR and introduce a method
determining when FAs should be called.

First, we use a subgradient optimization algorithm, because it gives us access to suboptimal
multipliers that can be quickly computed. The issue of the slow convergence of this type of
algorithm does not arise in our case since we also use a search procedure.

By doing so, the problem that needs to be solved becomes: when are the FAs called in the
subgradient algorithm?

The subgradient algorithms used in CP-based LR are most often variants of Beasley’s algo-
rithm [Beasley, 1993] introduced in Algorithm 1. Conceptually, it proceeds by successive itera-
tions for different calculation accuracy, named agility. At each iteration the agility is divided by a
power of 2. For a given agility value, the subgradient algorithm iteratively adjust the Lagrangian
multipliers to find values that improve the lower bound. For a given agility value, the number of
internal iterations, which we call scope, is the unknown we are looking for.

Thus, the problem becomes: which scope value leads to a set of multipliers making the filtering
efficient?

To answer this question, we suggest studying the variation in the value of the LR objective
function.

3.7.1 CP-based Lagrangian relaxation

According to Sellmann [Sellmann, 2004], CP-based LR consists in the following procedure: As-
suming we are given a linear optimization problem that consists in the conjunction of two con-
straint families A and B for which an efficient filtering algorithm prop(B) is known, we try to op-
timize Lagrangian multipliers for A and use prop(B) for filtering in each Lagrangian sub-problem
LR(P, µ).

It is not necessary for constraints A or B to be linear (something that is not imposed in CP).
We need to ensure that the relaxation we calculate for any multiplier set is a relaxation of P . So,
we just need to make sure that prop(B) remains valid when the objective becomes that of the LR.

Sellmann defined a particular consistency based on the continuous relaxation of P , but it does
not matter in this thesis. He also defined the following property:

Proposition 3.7.1. Suboptimal multipliers can be more efficient for filtering than the optimal mul-
tipliers.

This property is explained by the fact that a value x = a can be removed when the optimal
value of P ∧ (x = a) is greater than UB, a given upper bound. By considering the Lagrangian
relaxation we consider the problem LR(P, µ) and not LR(P ∧ (x = a), µ). Thus, the best
multipliers for LR(P, µ) are not necessarily the best for LR(P ∧ (x = a), µ).

In CP, it is also possible to express the violation of the constraint in different ways, we can also
decide not to measure the distance to the violation [Fontaine et al., 2014]. Since we only relax the
degree constraint that is some equality constraints, we will not detail it.

Finally, very recent works of Boudreault and Quimper improved the CP-based LR applied
to the TSP [Boudreault and Quimper, 2021]. It suggests to temporarily change the Lagrangian
multipliers in order to filter specific values. Note that we did not try this method since it was
published almost at the same time of this thesis.

76 CHAPTER 3 — The TSP in CP

Figure 3.16: Evolution of the LR optimal value (on the y-axis) according to the scope (on the
x-axis). (top graph) Beasley’s algorithm with #scope = 30. A segment between green and dark
squares corresponds to one agility value. Computations after red crosses are identified as useless.
(bottom graph) Scope sizing subgradient algorithm. Computations are stopped at red crosses of
the top graph.

3.7.2 Scope Sizing Subgradient Algorithm

In order to find good scope values for Algorithm 1, we suggest observing the optimal values com-
puted by Algorithm 1 for some “classical” scope values. For instance, the subgradient algorithm
(FLR) used by Fages et al. [Fages et al., 2016] in their experiments corresponds to the values of
the parameters #agility = 5 and #scope = 30 of Algorithm 1 and makes the agility slightly
different since it uses the following update formula: π ← π/β; β ← β/2 with β = 1/2 at ini-
tialization. It should also be noted that Fages et al. repeat the call to the algorithm as long as the
lower bound of the 1-tree is increased and the FAs are triggered for each agility value.

In our experiments, we notice that #agility = 6 tends to give slightly better results, thus we
can define a first configuration of Algorithm 1 which is #agility = 6 and #scope = 30.

Figure 3.16 (top) is quite representative of what is frequently observed, namely:

• a strong variation followed by oscillations (the first two agility values).

• a weak variation followed by oscillations (third agility value).

• almost no variation (the last three agility values).

3.7 – 3.7.3 Experiments 77

We have also observed weak or strong variations without oscillations.
For FAs to be effective, successive FAs must be called with relatively large variations, oth-

erwise it is unlikely that successive filtering will remove more values than the previous ones.
Moreover, in the particular case of the WCC, all the FAs integrated in the LR are based on the
objective value. The orientation of the variations should not play a role since we are mainly look-
ing for various multipliers. It is therefore certainly interesting to trigger the FAs after a strong
variation in the objective value.

What about oscillations? They do not really provide any information. The multipliers are
changed but very slightly between two oscillations. Nor do they provide much in terms of bound-
aries. We therefore suggest avoiding them as much as possible.

There is still the case of the absence of variations or very small variations (i.e. stagnation). It
is in our interest to stop the calculations as soon as possible because the multipliers change very
little.

We therefore propose to proceed as follows: as soon as we measure an oscillation or stagnation
in the objective value, we stop changing the scope value.

We can then decide to call the FAs between the agility rounds or not. We will show in Sec-
tion 3.7.3 that it is more interesting in terms of computation time to call the FAs after all the agility
rounds.

Figure 3.16 represents our choice using red crosses. Indeed, the red crosses mark the end of
the search for new multipliers. If we implement our proposal then we get the results of the bottom
graphic of Figure 3.16 that we made coincide with the top graphic to show the difference. We
can see that there is little difference in the calculated objective values in the end. There is a slight
decrease for many of the avoided calculations. It can be explained by the fact that we stop earlier
the computations and therefore we do not obtain exactly the same sub-problems, and therefore the
LR convergence is impacted.

Algorithm 10 is a possible implementation of the Scope Sizing Subgradient Algorithm
(SSSA). It is a direct adaptation of Beasley’s algorithm (Algorithm 1). Note that the number
of agility values that are considered is 6. We tested different values but we did not observe enough
changes to justify the introduction of an additional parameter. The maximum value of scope is 12
because we almost always observe oscillations or stagnation for larger values. The stop conditions
are not tested for all scope values but only one time out of two (internal loop of the q variable).
This allows us to detect a large part of the oscillations. We measure for two iterations the variations
and if the sum of these two variations does not deviate enough from the value at the beginning of
the two iterations, then we no longer change the scope value. In this case, either an absence of
variations or two variations of the same amplitude in opposite directions (i.e. an oscillation) will
be detected. We empirically defined the minimum deviation as 1% of the difference between the
current upper bound and the current objective value.

3.7.3 Experiments

In the initial published paper [Isoart and Régin, 2020a], we performed the experiments with the
WCC in conjunction with the k-cutset constraint. In this thesis, we perform the experiments
with the up-to-date TSP model in CP, that is the WCC in conjunction with the k-cutset con-
straint [Isoart and Régin, 2021b], the k-opt constraint [Isoart and Régin, 2021a] and the one-tree
constraint.

78 CHAPTER 3 — The TSP in CP

Algorithm 10: Scope Sizing Subgradient Algorithm.

SSSA (P ,Zub,µ)
Input: A problem P , an upper bound Zub of P and a set of multipliers µ.
Output: A set of multipliers µk+1 and xk the optimal solution of LR(P,µk).
π ← 2 ; // Subgradient agility
k ← 0 ;
µ0 ← µ ; // Start with the current values of multipliers
foreach iterAgility = 1 . . . 6 do

scope← 0 ;
while scope < 12 do

mean← 0 ;
d← Zub − Zk ; // Distance to UB
foreach q = 1..2 do

prevBound← Zk ;
(µk+1, xk, Zk)← SOLVELR(P ,Zub, π, µk, k) ;
// Return the optimal solution of P if reached

if Zk = Zub then return (µk+1, xk);
mean← mean + Zk − prevBound ;
k ← k + 1 ;
scope← scope + 1 ;

if |mean/2| ≤ 0.01d then break;

if solver failed then return (nil,nil);
π ← π/2 ;

// trigger the FAs

RUNPROPAGATION(P, xk−1, Zub, µk) ;
return (µk+1, xk)

In Table 3.10, we give the mean and geometric mean of the solving times and the number of
search nodes for different scope values in Algorithm 1. Note that the scope value given in the
first column is always the same for all agility values and therefore there is no attempt to prevent
oscillations in Algorithm 1.

The results show that it is necessary to find a trade-off in the mean time and number of search
nodes. Filtering with refined boundaries (i.e. with the largest scope) reduces the number of search
nodes but increase the solving times. It is also important to note that there is no monotonicity. For
instance, scope equal to 24 leads to fewer search nodes than 22 and 26.

For each instance, Table 3.11 shows solving times for the best scope, the worst scope and the
best mean scope (scope=14) of Table 3.10. We observe that the best scope per instance changes
quite often. It can be a high scope value as 30 for brg180 or a low scope value as 2 for kroE100.
The best mean scope is also clearly dependent on the set of instances considered. For this instance
set, the best scope is 14, but it is easy to build an instance set whose best mean scope value is
not 14. The instances brg180, ch130, gr137, kroB200 form such a set since scope=30 is the best
scope for each of them. In addition, by choosing scope=14, the solving times are in mean 34%
slower than the best scope per instance and in geometric mean 62% slower than the best scope per

3.7 – 3.7.3 Experiments 79

scope mean geo mean
time search nodes time search nodes

2 30.7 22,656.4 5.4 2,105.7
4 20.8 13,098.0 4.5 1,332.6
6 18.9 8,704.1 4.6 1,028.9
8 19.5 9,051.1 4.6 921.8
10 20.4 8,911.1 5.1 943.2
12 18.7 7,866.7 4.5 868.3
14 17.5 7,264.4 4.7 842.0
16 22.9 8,612.8 3.4 800.0
18 21.7 7,003.7 4.0 780.4
20 28.9 8,941.8 4.6 767.0
22 29.8 9,236.4 5.3 786.0
24 22.9 6,096.5 5.1 694.1
26 25.2 6,353.8 5.5 760.7
28 23.0 5,988.9 5.3 686.5
30 21.7 6,294.6 3.8 715.1
50 34.2 6,786.9 4.9 731.7
100 51.5 5,715.6 6.7 684.1

Table 3.10: Comparison of solving times (in s) and the number of search nodes between scope
values for Algorithm 1.

instance. However, in order to find the best mean scope, we have to solve all the instances for a
given instance set. The w/b column indicates the time ratio between the worst and best scope that
is very often beyond the factor 2. All these observations show that it is not easy to determine a
priori a good scope value and that a bad scope value can have a strong impact on solving times.

In Table 3.12, we give the mean and geometric mean of the solving times and the number of
search nodes for different scope values in Algorithm 10. We observe that the results are much
more robust than the ones of Table 3.10. The main reason is that in Algorithm 10 the scope value
is dynamic: if an oscillation or stagnation in the objective value is detected, then we go to the next
agility round. Thus, even for high scope values such as scope=100, we observe a variation of only
51% with the best mean scope value (scope=12) whereas in Table 3.11 we observe a variation of
294%. In addition, scope values higher than 10 achieve similar results and increasing the scope
value beyond 12 does not reduce the number of search nodes.

For each instance, Table 3.13 shows solving times for the best scope, the worst scope and the
best mean scope (scope=12) of Table 3.12. We observe that the best scope per instance is always
greater or equal than 12. It can be explained by the fact that a small scope value is needed when
the objective value tends to oscillate or stagnate: Algorithm 10 prevents this. On the other hand,
a scope value smaller than 12 does not give the algorithm enough flexibility. Indeed, if from one
call to the other not enough iterations in the Lagrangian relaxation have been performed, then
the obtained sub-problem can be very similar to the initial one and therefore the FAs does not
filter much. We also notice that for Algorithm 10 with scope=12, we obtain solving times only
20% (resp. 33%) slower than the best scope per instance on mean (resp. geometric mean). We
recall that we obtained in mean 34% and in geometric mean 62% for Table 3.11. In addition,

80 CHAPTER 3 — The TSP in CP

Instance best time worst time ratio w/b scope=14
scope time scope time time time

a280 16 7.8 2 75.9 9.8 11.2
bier127 16 0.4 2 1.0 2.6 0.8
brg180 30 1.3 4 2.8 2.1 2.3
ch130 30 1.3 26 2.5 1.9 1.8
ch150 20 1.9 14 4.1 2.2 4.1
d198 8 11.4 26 24.3 2.1 15.6
eil101 4 0.3 28 0.8 2.4 0.7
gr120 16 0.5 10 1.8 3.4 1.0
gr137 30 1.4 2 3.0 2.1 2.6
gr202 16 1.9 24 3.3 1.7 3.1
gr229 14 54.1 20 112.2 2.1 54.1
gr96 16 0.6 10 2.0 3.2 1.4

kroA100 16 0.9 28 3.6 3.8 1.9
kroA150 2 4.2 26 8.0 1.9 5.1
kroA200 24 46.8 2 186.5 4.0 111.0
kroB100 16 1.6 26 4.9 3.1 3.5
kroB150 4 13.9 26 51.9 3.7 20.8
kroB200 30 20.3 28 47.7 2.3 21.8
kroC100 16 0.9 26 1.8 2.0 1.5
kroD100 20 0.7 4 1.3 1.8 1.0
kroE100 2 1.5 28 3.6 2.4 1.9
lin318 20 7.1 24 20.4 2.9 14.8
pr124 4 1.9 24 5.4 2.8 3.8
pr136 18 12.7 2 22.4 1.8 15.5
pr144 30 1.3 26 2.6 2.0 2.2
pr264 16 5.6 2 16.3 2.9 7.8
rat195 16 22.5 22 54.3 2.4 33.1
rat99 16 0.2 22 0.6 2.5 0.5
si175 6 159.7 22 410.1 2.6 179.6
st70 18 0.2 24 0.6 2.5 0.5

tsp225 14 32.8 24 88.6 2.7 32.8
u159 16 0.7 26 1.2 1.8 0.8
mean 13.1 36.4 17.5

geo mean 2.9 7.5 4.7

Table 3.11: Comparison of solving times (in s) between best, worst and best mean scope values
for Algorithm 1.

3.7 – 3.7.3 Experiments 81

mean geo mean
search search

scope time nodes time nodes
2 31.1 22,656.4 5.3 2,105.7
4 23.4 16,569.4 4.4 1,244.3
6 17.6 8,932.4 4.1 1,019.1
8 19.6 11,176.5 4.3 948.3
10 15.7 7,543.3 4.4 910.0
12 10.3 6,739.8 2.8 904.1
14 14.8 9,648.5 3.8 831.3
16 16.4 7,390.6 3.1 872.1
18 18.1 8,702.4 3.6 874.7
20 16.9 6,942.1 3.8 868.4
22 17.2 7,800.9 4.0 880.1
24 18.4 8,424.4 4.2 906.5
26 16.3 7,365.4 4.0 831.2
28 16.7 8,284.4 4.3 923.4
30 11.5 7,013.2 2.7 836.2
50 12.3 6,810.1 2.8 825.7
100 15.6 9,559.1 2.9 868.9

Table 3.12: Comparison of solving times (in s) and the number of search nodes between scope
values for Algorithm 10.

Algorithm 10 with scope=12 allows us to obtain a better mean and geometric mean than the best
scope value per instance in Table 3.11.

In Table 3.14, we compare triggering the FAs for each agility round and triggering the FAs at
the end of the optimization phase. We can see that for all scope values > 2, triggering the FAs at the
end of the optimization phase is faster than triggering the FAs for each agility round. In addition,
we can see that the number of search nodes for scope > 10 is quite close. Thus, the overhead
generated by the FAs calls for each agility round does not allow us to obtain a sufficient gain in
the number search nodes to reduce the solving times. This is mainly due to the fact that we obtain
similar filtering by calling the FAs for each agility round and at the end of the optimization phase.
We therefore decide not to call the FAs for each agility rounds but at the end of optimization phase.

Table 3.15 shows the overall improvement. The ratio column shows for each instance the
improvement factor obtained by using Algorithm 10. We note that most of the instances have
improved solving times by huge factor (up to 23.8). SSSA improves the solving times by a factor
9.1 in mean and 3 in geometric mean. In addition, we notice that the number of search nodes in
mean and geometric mean are similar (8,060.6 vs 6,738.8 and 719 vs 904.1). It is a great result
because it means that SSSA avoids many useless computations and therefore SSSA allows us to
obtain a significant improvement factor of solving times.

82 CHAPTER 3 — The TSP in CP

Instance best time worst time ratio w/b scope=12
scope time scope time time time

a280 30 4.5 2 80.7 17.8 8.4
bier127 30 0.3 2 1.2 4.4 0.4
brg180 30 1.3 4 2.9 2.2 1.7
ch130 12 1.3 22 2.0 1.6 1.3
ch150 12 1.3 14 3.2 2.4 1.3
d198 12 8.0 2 22.2 2.8 8.0
eil101 12 0.3 14 0.6 2.2 0.3
gr120 20 0.5 28 1.4 3.0 1.0
gr137 16 1.4 2 3.0 2.1 1.5
gr202 12 1.8 2 3.0 1.7 1.8
gr229 12 41.3 2 109.0 2.6 41.3
gr96 16 0.6 8 1.6 2.7 0.8

kroA100 16 1.0 14 1.9 1.9 1.3
kroA150 12 2.9 24 6.6 2.3 2.9
kroA200 14 21.9 2 182.4 8.3 63.2
kroB100 12 1.7 26 3.5 2.1 1.7
kroB150 12 9.2 24 30.6 3.3 9.2
kroB200 30 12.3 2 43.8 3.6 14.7
kroC100 12 0.8 10 2.0 2.4 0.8
kroD100 30 0.5 2 1.2 2.3 0.6
kroE100 16 1.4 10 2.5 1.8 1.4
lin318 16 5.1 28 11.9 2.3 7.4
pr124 16 1.5 18 4.4 3.0 2.0
pr136 12 10.0 2 22.7 2.3 10.0
pr144 30 1.3 6 2.3 1.8 1.4
pr264 30 4.1 2 16.1 3.9 4.7
rat195 18 14.3 2 50.0 3.5 17.4
rat99 30 0.2 4 0.6 3.0 0.3
si175 12 100.0 4 335.0 3.4 100.0
st70 30 0.2 10 0.5 2.8 0.3

tsp225 12 23.5 2 88.0 3.7 23.5
u159 12 0.6 10 1.4 2.4 0.6
mean 8.6 32.4 10.3

geo mean 2.3 6.5 2.8

Table 3.13: Comparison of solving times (in s) between best, worst and best mean scope values
for Algorithm 10.

3.7 – 3.7.4 Conclusion 83

no FAs between agility rounds FAs between agility rounds
scope mean geo mean mean geo mean

search search search search
time nodes time nodes time nodes time nodes

2 31.1 22,656.4 5.3 2,105.7 27.4 14,901.1 4.9 1,501.9
4 23.4 16,569.4 4.4 1,244.3 21.8 10,336.8 4.3 1,073.6
6 17.6 8,932.4 4.1 1,019.1 22.1 10,371.1 4.7 1,011.7
8 19.6 11,176.5 4.3 948.3 21.2 9,455.6 4.7 920.0
10 15.7 7,543.3 4.4 910.0 21.8 10,206.7 4.9 939.5
12 10.3 6,739.8 2.8 904.1 18.7 7,788.9 5.1 935.1
14 14.8 9,648.5 3.8 831.3 19.9 10,526.1 4.8 925.9
16 16.4 7,390.6 3.1 872.1 18.6 6,684.4 3.4 856.7
18 18.1 8,702.4 3.6 874.7 18.4 6,637.7 3.8 814.4
20 16.9 6,942.1 3.8 868.4 20.3 7,501.3 4.3 865.7
22 17.2 7,800.9 4.0 880.1 23.4 9,153.9 4.7 841.7
24 18.4 8,424.4 4.2 906.5 18.7 6,039.6 4.7 808.7
26 16.3 7,365.4 4.0 831.2 19.5 6,677.3 5.1 813.9
28 16.7 8,284.4 4.3 923.4 18.4 6,701.3 5.0 874.9
30 11.5 7,013.2 2.7 836.2 17.3 7,309.3 4.9 821.1

Table 3.14: Comparison of solving times (in s) and the number of search nodes between scope
values for Algorithm 10 when the FAs are triggered between the agility rounds or not.

3.7.4 Conclusion

Finally, we have introduced SSSA, a Scope Sizing Subgradient Algorithm, which is an adaptive
algorithm for the CP-based Lagrangian relaxation. It stops local multiplier optimization when
the objective value no longer varies or oscillates and trigger the cost-based FAs only at the end
of the optimization phase. In addition, experiments suggest using scope=12 for the TSP. The
experimental results we presented show the interest of our approach. The solving times of the best
CP model known so far for solving TSP are improved by a factor 9.1 in mean and 3 in geometric
mean.

We believe that SSSA is taking a first step towards a better understanding of the interactions
between FAs and LRs and that others will follow.

We hope that it will also allow similar results to be obtained for other problems than the TSP
that may lead to a general improvement of the CP-based LR.

84 CHAPTER 3 — The TSP in CP

Instance FLR SSSA scope=12 ratio
search search search

time nodes time nodes time nodes
a280 36.5 1,873 8.4 2,351 4.3 0.8

bier127 0.4 39 0.4 53 1.0 0.7
brg180 0.7 87 1.7 101 0.4 0.9
ch130 3.2 361 1.3 383 2.6 0.9
ch150 3.7 355 1.3 303 2.9 1.2
d198 48.6 3,057 8.0 3,093 6.0 1.0
eil101 0.3 57 0.3 65 1.1 0.9
gr120 0.8 57 1.0 279 0.8 0.2
gr137 7.5 539 1.5 513 4.8 1.1
gr202 4.3 331 1.8 383 2.4 0.9
gr229 367.7 17,171 41.3 26,565 8.9 0.6
gr96 1.5 137 0.8 227 1.9 0.6

kroA100 2.9 417 1.3 483 2.3 0.9
kroA150 19.1 1,619 2.9 1,269 6.6 1.3
kroA200 362.3 14,527 63.2 35,209 5.7 0.4
kroB100 3.6 567 1.7 1,045 2.2 0.5
kroB150 90.2 7,041 9.2 6,165 9.8 1.1
kroB200 98.2 6,513 14.7 9,381 6.7 0.7
kroC100 2.4 313 0.8 233 3.0 1.3
kroD100 1.1 163 0.6 149 1.8 1.1
kroE100 3.2 439 1.4 641 2.3 0.7
lin318 75.9 1,723 7.4 1,817 10.3 0.9
pr124 7.5 545 2.0 827 3.8 0.7
pr136 31.4 3,977 10.0 7,229 3.1 0.6
pr144 4.4 247 1.4 345 3.1 0.7
pr264 3.4 97 4.7 575 0.7 0.2
rat195 132.6 10,469 17.4 11,601 7.6 0.9
rat99 0.3 55 0.3 61 1.2 0.9
si175 1,137.7 160,297 100.0 92,573 11.4 1.7
st70 0.4 77 0.3 65 1.4 1.2

tsp225 557.9 25,683 23.5 11,557 23.8 2.2
u159 0.9 97 0.6 133 1.5 0.7
mean 94.1 8,091.6 10.3 6,739.8

geo mean 8.4 722.7 2.8 904.1

Table 3.15: Overall improvement. Comparison of solving times (in s) and the number of search
nodes between FLR and Algorithm 10 with scope=12.

3.8 – General results 85

3.8 General results

In this section, we will discuss some general results from before the thesis and now. For the record,
the instances we consider from the TSPLib are: cities in one or more countries in 2D (prefixed by
bier, ch, e, gil, kro, rd and st), drilling problems in 2D (prefixed by a, d, lin, pcb, pr and u), rattled
grid in 2D (prefixed by rat) and 3D cities (prefixed by ali, brg, gr). In Section A, we display all the
nodes set for each instance we considered along this thesis except the 3D cities since displaying
them in 2D is not relevant. Note that all the graphs are initially complete. In order to be as general
as possible, we did not use some Euclidean property for the graph in Euclidean norm: we did not
make any assumption on the instances we consider.

3.8.1 Analysis of the instances

Some problems are structurally more difficult than others. We can see in Section A that the drilling
problems are very particular. Indeed, they are often constructed with some clusters of nodes that
are very close to each other while the clusters can be very far away. Therefore, the cost-based
filtering algorithms do not filter that much in a cluster since introducing an edge in a cluster
often does not lead to a great increase of the lower bound. Another issue is that there are some
pathological cases. For instance, take the left column of Figure A.19. In this column, we observe
that there are many “squares” of points. In practice, the 1-tree handle this really badly since all
the sides of the square have equivalent length and then the Lagrangian relaxation only transfer
the costs from a node to another. In addition, it is really hard to filter the diagonal edge since
adding one diagonal to the lower bound usually did not increase the lower bound that much. Other
solving methods such as the MIP handle that much better since they can add constraints if such a
pathological case occurs. In our case, we can branch on this zone or try to filter them. Branching
on them is a bad idea since it can lead to a combinatorial enumeration of the squares and filtering
them are really hard just as we said. We could try to fix this issue with the Lagrangian relaxation
by integrating some constraints in the objective function. Since it is often inequality constraints,
it introduces a gap in the objective function and therefore the filtering based on the costs become
inefficient.

3.8.2 Large instances

The complexity of most of the algorithms we used is related to the number of edges. The number
of edges in a complete graph grows quadratically with respect to the nodes. Then, a complete
graph with 100 nodes has 4,950 edges whereas a complete graph with 1,000 nodes has 499,500
edges. We mainly focused on the graph from 100 to 1,000 nodes. However, trying to solve
larger graphs, we encountered problems containing 750,000 edges after the first propagation step.
For instance, we need to sort all the edges for Kruskal’s algorithm and then create the spanning
tree at each iteration of the Lagrangian relaxation. In order to obtain good results, systematic
algorithms should no longer be applied. Incremental algorithms, such as the one for the mandatory
Hamiltonian path constraint, should be developed.

3.8.3 Experiments

For the sake of clarity, we will name “best model” the WCC combined with the k-cutset constraint,
the mandatory Hamiltonian path constraint and the one-tree constraint. In addition, we extended

86 CHAPTER 3 — The TSP in CP

the timeout to 100,000s in order to have all the experiments in the scope of the best model (i.e. for
pcb442 which has a solving time that increases strongly when filtering is added).

In Table 3.16, we compare the WCC and the best model. Note that we used the search strat-
egy LCFirst minDeltaDeg for both (1) and (2). First, we notice that 7 over 40 instances remain
unsolved in 100,000s with the WCC whereas with our best model we solve all the instances in
less than 100,000s. Indeed, ali535 is solved in 13,014s, d493 is solved in 4,990s, gr431 is solved
in 521s, gr666 is solved in 14,720s pcb442 is solved in 91,138s, pr299 is solved in 1,596s and
rd400 is solved in 6,721s. In addition, all the instances except the one having a solving time in
less than 0.5s have a greatly reduced solving time with our best model: a factor 3.7 for ch130,
41.4 for kroA200, Thus, we obtain a mean solving time of at least 17,797s for this instance
set whereas our best model obtains a mean solving time of 3,377. That is at least 5.3 times faster.

A lot of work has been done on the implementation of the whole model. There-
fore, in Table 3.17, we compare the state-of-the-art performances obtained by Fages et al.
[Fages et al., 2016], that is the WCC implemented in Choco-3.1.0 in Java, with our implemen-
tation of the WCC. Note that the results for Choco are those they obtained in their paper on a
Macbook Pro with a 6-core Intel Xeon at 2.93 Ghz running MacOS 10.6.8 with Java 1.7. In ad-
dition, they set a timeout of 30,000s. Therefore, we perform the experiments for Table 3.17 and
Table 3.18 with a timeout of 30,000s. In addition to the different implementation, note that we
use SSSA [Isoart and Régin, 2020a] which is helping us to largely improve our solving times. We
observe that a lot of instances have a huge improvement factor for the same model but a different
implementation: a280 is improved by a factor 26.4, ch130 by 27.7, gr229 by 36.6, It leads
to a mean solving time of at least 4,363s for the WCC of Choco and a mean solving time of at
least 2,113s for our implementation of the WCC. For the geometric means, they obtain at least
82.4 whereas we obtain at least 9.4. Here, the geometric is more relevant since many instances are
improved by a huge factor (sometimes more than an order of magnitude) and therefore there is a
lot of variation of the values. In addition, four instances reached the timeout for Choco whereas
only two instances reached the timeout with our implementation.

In Table 3.18, we compare the implementation of the WCC in Choco with our best model.
First, we observe that only one instance remains unsolved (ts225) with our model in the timeout
of Choco (30,000s). Next, we notice that most of the instances are solved with huge improvement
factors going from 1.7 (pr107) to 471 (kroA200). The improvement for the mean and the geometric
mean is quite interesting: at least 4,363 for the mean of Choco and 82 for the geometric mean of
Choco whereas we obtain a mean of at least 998 and a geometric mean of 3.9. In addition, we
solve all the instances but one and Choco do not solve four instances.

In Table 3.19, we compare the MIP solver Concorde [Applegate et al., 2006] and our best
model. Note that the results for Concorde are obtained on our machine. For medium size instances
such as ch130 or d198, the difference between Concorde and us is small. We solve ch130 in 0.7s
whereas Concorde solves it in 0.3s and we solve d198 in 7.0s whereas Concorde solved it in
2.6s. In addition, some instances are solved faster with our best model such as gr202 (1.2s vs
1.9s). Nevertheless, Concorde scales very well. Unfortunately, we did not. Indeed, Concorde
solves d493 in 47.8s whereas we solve it in 4,990s: that is two orders of magnitude. This result
can be seen as a bad result. However, we saw in Table 3.18 that the implementation for this
kind of methods have a huge impact: Concorde has been implemented over several years by
top researchers. Thus, match the Concorde results in a thesis is hard. However, considering the
geometric mean for this instance set, we only lost a magnitude order. It is encouraging since before
the thesis multiple orders of magnitude were observed for the same kinds of problems.

3.8 – 3.8.3 Experiments 87

WCC (1) Best model (2) ratio (1)/(2)
Instances time(s) #sn time(s) #sn time #sn

a280 30.6 28,789 8.1 2,351 3.8 12.2
ali535 t.o. t.o. 13,013.9 1,339,925 > 7.7 -

bier127 0.3 153 0.3 53 1.0 2.9
brg180 0.4 95 1.2 101 0.3 0.9
ch130 2.6 3,661 0.7 383 3.7 9.6
ch150 2.5 3,187 0.8 303 3.1 10.5
d198 6.5 4,573 7.0 3,093 0.9 1.5
d493 t.o. t.o. 4,989.9 488,439 > 20.0 -
eil101 0.1 89 0.2 65 0.5 1.4
gil262 7,160.4 6,345,749 2,042.2 1,040,943 3.5 6.1
gr120 0.6 585 0.7 279 0.9 2.1
gr137 2.2 3,135 1.0 513 2.2 6.1
gr202 2.0 2,023 1.2 383 1.7 5.3
gr229 382.8 437,417 41.2 26,565 9.3 16.5
gr431 t.o. t.o. 520.6 60,537 > 192.1 -
gr666 t.o. t.o. 14,719.6 1,106,125 > 6.8 -
gr96 0.6 555 0.5 227 1.2 2.4

kroA100 2.1 4,469 0.8 483 2.6 9.3
kroA150 5.8 7,277 1.9 1,269 3.1 5.7
kroA200 2,639.3 2,846,977 63.7 35,209 41.4 80.9
kroB100 2.2 4,087 1.0 1,045 2.2 3.9
kroB150 113.7 169,545 8.7 6,165 13.1 27.5
kroB200 189.7 189,965 15.1 9,381 12.6 20.2
kroC100 0.8 1,259 0.5 233 1.6 5.4
kroD100 0.3 283 0.3 149 1.0 1.9
kroE100 3.2 9,947 0.9 641 3.6 15.5
lin318 33.7 17,601 6.4 1,817 5.3 9.7
pcb442 t.o. t.o. 91,137.7 14,852,219 > 1.1 -
pr124 1.7 2,031 1.2 827 1.4 2.5
pr136 12.3 18,075 8.9 7,229 1.4 2.5
pr144 1.0 795 1.0 345 1.0 2.3
pr264 3.4 679 3.8 575 0.9 1.2
pr299 t.o. t.o. 1,596.5 489,039 > 62.6 -
rat195 23.0 22,583 17.9 11,601 1.3 1.9
rat99 0.1 95 0.2 61 0.5 1.6
rd400 t.o. t.o. 6,721.0 1,727,475 > 14.9 -
si175 1,003.7 2,044,011 100.7 92,573 10.0 22.1
st70 0.1 87 0.2 65 0.5 1.3

tsp225 266.7 267,537 23.5 11,557 11.3 23.1
u159 0.5 459 0.4 133 1.3 3.5
mean > 17,797.4 3,376.54

geo mean > 31.2 10.04

Table 3.16: Overall results obtained in this thesis for the sequential solving of the TSP in CP.

88 CHAPTER 3 — The TSP in CP

Choco WCC (1) Thesis WCC (2) ratio (1)/(2)
Instances time(s) time(s) time

a280 806.6 30.6 26.4
bier127 1.8 0.3 6.0
ch130 72.0 2.6 27.7
ch150 28.0 2.5 11.2
d198 76.1 6.5 11.7
eil101 1.0 0.1 10.0
gil262 t.o. 7,160.4 4.2
gr120 3.3 0.6 5.5
gr137 33.7 2.2 15.3
gr202 24.4 2.0 12.2
gr229 14,025.4 382.8 36.6
gr96 3.3 0.6 5.5

kroA100 20.5 2.1 9.8
kroA150 119.9 5.8 20.7
kroA200 t.o. 2,639.3 11.4
kroB100 17.0 2.2 7.7
kroB150 1,609.0 113.7 14.2
kroB200 2,218.9 189.7 11.7
kroC100 5.9 0.8 7.4
kroD100 0.9 0.3 3.0
kroE100 69.2 3.2 21.6

pr107 1.5 0.9 1.7
pr124 12.7 1.7 7.5
pr144 12.9 1.0 12.9
pr152 89.2 4.4 20.3
pr226 6.4 1.1 5.8
pr264 21.6 3.4 6.4
pr299 t.o. t.o. t.o.
rat195 330.5 23.0 14.4
rat99 0.8 0.1 8.0
si175 4,544.1 1,003.7 4.5
ts225 t.o. t.o. t.o.
tsp225 4,171.4 266.7 15.6
u159 7.3 0.5 14.6
mean > 4,362.8 > 2,113.4

geo mean > 82.4 > 9.4

Table 3.17: Comparison of the state-of-the-art code before the thesis and our implementation of
the same model.

3.8 – 3.8.3 Experiments 89

Choco WCC (1) Best model (2) ratio (1)/(2)
Instances time(s) time(s) time

a280 806.6 8.1 99.6
bier127 1.8 0.3 6.0
ch130 72.0 0.7 102.9
ch150 28.0 0.8 35.0
d198 76.1 7.0 10.9
eil101 1.0 0.2 5.0
gil262 t.o. 2,042.2 14.7
gr120 3.3 0.7 4.7
gr137 33.7 1.0 33.7
gr202 24.4 1.2 20.3
gr229 14,025.4 41.2 340.4
gr96 3.3 0.5 6.6

kroA100 20.5 0.8 25.6
kroA150 119.9 1.9 63.1
kroA200 t.o. 63.7 471.0
kroB100 17.0 1.0 17.0
kroB150 1,609.0 8.7 184.9
kroB200 2,218.9 15.1 146.9
kroC100 5.9 0.5 11.8
kroD100 0.9 0.3 3.0
kroE100 69.2 0.9 76.9

pr107 1.5 0.9 1.7
pr124 12.7 1.2 10.6
pr144 12.9 1.0 12.9
pr152 89.2 2.4 37.2
pr226 6.4 1.0 6.4
pr264 21.6 3.8 5.7
pr299 t.o. 1,596.5 18.8
rat195 330.5 17.9 18.5
rat99 0.8 0.2 4.0
si175 4,544.1 100.7 45.1
ts225 t.o. t.o. t.o.
tsp225 4,171.4 23.5 177.5
u159 7.3 0.4 18.3
mean > 4362.8 > 998.4

geo mean > 82.4 > 3.9

Table 3.18: Comparison of the state-of-the-art code before the thesis [Fages et al., 2016] and now.

90 CHAPTER 3 — The TSP in CP

Concorde (1) Best model (2) ratio (1)/(2)
Instances time(s) time(s) time

a280 0.9 8.1 0.1
ali535 5.2 13,013.9 0.0

bier127 0.4 0.3 1.2
brg180 0.3 1.2 0.2
ch130 0.4 0.7 0.6
ch150 0.3 0.8 0.4
d198 2.6 7.0 0.4
d493 47.8 4,989.9 0.0
eil101 0.2 0.2 0.8
gil262 3.7 2,042.2 0.0
gr120 0.3 0.7 0.4
gr137 1.0 1.0 1.0
gr202 1.9 1.2 1.6
gr229 8.7 41.2 0.2
gr431 30.2 520.6 0.1
gr666 13.4 14,719.6 0.0
gr96 0.8 0.5 1.5

kroA100 0.2 0.8 0.3
kroA150 1.0 1.9 0.6
kroA200 1.1 63.7 0.0
kroB100 0.4 1.0 0.4
kroB150 0.8 8.7 0.1
kroB200 0.4 15.1 0.0
kroC100 0.2 0.5 0.3
kroD100 0.2 0.3 0.6
kroE100 0.4 0.9 0.4
lin318 2.6 6.4 0.4
pcb442 13.1 91,137.7 0.0
pr124 0.4 1.2 0.4
pr136 0.6 8.9 0.1
pr144 0.5 1.0 0.5
pr264 0.6 3.8 0.2
pr299 4.2 1,596.5 0.0
rat195 2.6 17.9 0.1
rat99 0.2 0.2 1.1
rd400 23.1 6,721.0 0.0
si175 3.6 100.7 0.0
st70 0.1 0.2 0.7

tsp225 3.9 23.5 0.2
u159 0.2 0.4 0.5
mean 4.5 3376.5

geo mean 1.1 10.0

Table 3.19: Comparison of Concorde and our best model for all the considered graphs of this
thesis.

Moreover, there is no record of a graph with more than 300 nodes solved with CP before this
thesis. Therefore, we still believe that there is a hope to push further the competitiveness of the
TSP model in CP.

3.9 – Conclusion 91

In Table 3.20, we show a comparison between Concorde and our best model for all the in-
stances from the TSPLib with fewer than 100 nodes. For those instances, the results are quite
good: we are in mean two times faster than Concorde (0.05s vs 0.1s). However, these results
should be carefully analyzed since it is very small solving times. Indeed, for small instances,
Concorde can be slower since it can involve more sophisticated methods. Nevertheless, the most
important thing is that the results are comparable for both the CP model and Concorde for the
graphs with fewer than a hundred nodes. Therefore, we are competitive for these graphs size.

Concorde (1) Best model (2)
Instances time(s) time(s)
burma14 0.03 0.00
ulysses16 0.07 0.00

gr17 0.02 0.00
gr21 0.03 0.00

ulysses22 0.12 0.00
gr24 0.03 0.00
fri26 0.03 0.00

bays29 0.02 0.00
dantzig42 0.04 0.03
swiss42 0.03 0.01

att48 0.12 0.03
gr48 0.06 0.08
hk48 0.05 0.00
eil51 0.04 0.05

berlin52 0.06 0.00
brazil58 0.11 0.06

st70 0.13 0.17
eil76 0.04 0.04
gr96 0.75 0.46
rat99 0.20 0.16
mean 0.10 0.05

Table 3.20: Comparison of Concorde and our best model for all the symmetric graphs with fewer
than a hundred nodes in the TSPLib.

3.9 Conclusion

In this section, we introduced and discussed the state-of-the-art TSP model in CP. Then, we in-
troduced the k-cutset constraint, the mandatory Hamiltonian path constraint and the one-tree con-
straints. These three constraints allow improving the results with a factor greater than a magnitude
order in geometric mean on the selected instances set. It should be noted that the three constraints
are based on the fact that there are mandatory edges in the graph: that information is generally
underused. In addition, we studied the variation of the objective function and we engineered the
CP-based Lagrangian relaxation in order to improve solving times. All this work makes the solv-
ing of the TSP much more efficient and improve the competitiveness of the TSP model in CP with
Concorde.

CHAPTER 4
Parallelization of the

TSP solving in CP
Embarrassingly Parallel Search (EPS) parallelizes the search for solutions in CP by de-
composing the initial problem into a huge number of sub-problems that are consistent
with propagation. Then, each waiting worker takes a sub-problem and solves it. The
process is repeated until all the sub-problems have been solved. Unfortunately, EPS
decomposition is a depth-bounded process unlike the search strategy used for solving
the TSP (LCFirst) which is depth-first. We then introduce Bound-Backtrack-and-Dive, a
method which solves this issue. First, we run a sequential solving of the problem with
a bounded number of backtracks in order to extract key information from LCFirst, then
we decompose with EPS using that information rather than LCFirst. The experimental
results show that we obtain almost a linear gain on the number of cores and that Bound-
Backtrack-and-Dive may considerably reduce the number of backtracks performed for
some problems. When hundreds of cores are implied, sub-problems with extremely differ-
ent solving times may appear, for example one requiring a huge part of the total solving
time. In this case the load balancing is poor. We show that a general increase in the
number of sub-problems does not solve this imbalance. We present a method that iden-
tifies the presence of difficult sub-problems during the solving process and decompose
them again. Experimental results for the TSP show a good improvement of load balanc-
ing and a better scaling with a hundred cores.

4.1 Introduction . 95
4.2 EPS . 96

4.2.1 Modifications of EPS mechanisms 96
4.3 Decomposition issue for the TSP and LCFirst 99

4.3.1 Bound-Backtrack-and-Dive and decomposition 100
4.3.1.1 Computation of α 100
4.3.1.2 Decomposition 100

4.3.2 Experiments . 100
4.3.2.1 Behavior of EPS 102
4.3.2.2 Impact of the backtrack limit on the solving . . . 102
4.3.2.3 Impact of the sub-problems per worker on the

solving . 104

93

94 CHAPTER 4 — Parallelization of the TSP solving in CP

4.3.2.4 General results 105
4.3.3 Conclusion . 106

4.4 Performance with a hundred cores 107
4.4.1 Re-decomposition . 108

4.4.1.1 Recovery of previous computations 112
4.4.1.2 Discussion . 112

4.4.2 Experiments . 113
4.4.2.1 Increasing the number of sub-problems for the re-

decompositions 117
4.4.3 Conclusion . 118

4.1 – Introduction 95

4.1 Introduction

In constraint programming, there are two main approaches for solving a problem in parallel:
the search space splitting method (i.e. the work-stealing approach) and problem decomposition
method (i.e. embarrassingly parallel search).

The work-stealing method dynamically splits the search space during the solving
[Burton and Sleep, 1981, Halstead, 1984]. When a worker has finished exploring a sub-problem,
it asks other workers for another sub-problem. If another worker agrees to the demand, then it dy-
namically splits its current sub-problem into two disjoint sub-problems and sends one sub-problem
to the starving worker. The starving worker “steals” some work from the busy one. Several im-
plementations of work stealing approach has been designed [Perron, 1999, Vidal et al., 2010].
The most recent ones such as like Bobpp tries to be as independent as possible from the
solver [Galea and Le Cun, 2007, Le Cun et al., 2007].

The Embarrassingly Parallel Search (EPS) [Régin et al., 2013, Malapert et al., 2016,
Régin and Malapert., 2017] is a more recent method. It statically decomposes the initial problem
into a huge number of sub-problems that are consistent with propagation (i.e. running the propa-
gation mechanism on them does not detect any inconsistency). Then, each waiting worker takes a
sub-problem and solves it. The process is repeated until all the sub-problems have been solved.
The assignment of the sub-problems to workers is dynamic, and there is no communication
between the workers. EPS is based on the idea that if there are many sub-problems to solve, then
the solving times of the workers will be balanced even if the solving times of the sub-problems
are not. In other words, the load balancing should be automatically obtained in a statistical sense.

As EPS gives very good results on many problems, it was legitimate to use it to solve the TSP.
In order to do so, some modifications of the EPS decomposition mechanism have been required
for two reasons. First, the model of the TSP in CP contains a set-variable with the mandatory
edges as lower bound and optional edges as upper bound. Decomposing with a set-variable is
not as trivial as a classical Cartesian product because the order must be carefully handled while
enumerating. Next, a new phenomenon appeared in the decomposition while experimenting: the
increase of the assignment limit in the enumeration may not lead to an increase in the number
of sub-problems. It turns out that the TSP search tree is extremely heterogeneous. Thus, we
introduce an extended mechanism for coherent enumeration of set-variables and for stopping the
decomposition in case of non-progression. Finally, the decomposition mechanism is a depth-
bounded process unlike the LCFirst search strategy which is depth-first. Therefore, we introduced
the method Bound-Backtrack-and-Dive [Isoart and Régin, 2020b]. It proceeds in two steps. A
sequential solving of the problem with a bounded number of backtracks is run to extract key
information from LCFirst. Then, the EPS decomposition uses that information rather than LCFirst.
The experimental results show that almost a linear gain on the number of cores is obtained and
that Bound-Backtrack-and-Dive may considerably reduce the number of search nodes performed
for some problems. For many problems, the same kind of results are obtained when increasing the
number of cores. Unfortunately, this is not true for all problems and often wrong for very difficult
problems. It is precisely for those problems that we would like to be able to use the combined
power of many computational cores. Therefore, we will introduce a method detecting this kind of
difficult problems and to improve their solving in parallel. In other words, we suggest to slightly
modify EPS in order to improve its robustness. EPS has many qualities, such as its simplicity, its
independence from the solvers used and search strategies, the absence of communication between

96 CHAPTER 4 — Parallelization of the TSP solving in CP

workers and weak communication between the master and the workers. It is important to respect
these advantages and not to make any changes that could jeopardize them.

4.2 EPS

Embarrassingly Parallel Search (EPS) decomposes the initial problem into a huge number of
sub-problems that are consistent with propagation (i.e. running the propagation mechanism on
them does not detect any inconsistency). Then, each waiting worker takes a sub-problem and
solves it until all sub-problems have been solved. The main challenge of the decomposition
is not to define equivalent problems, it is to avoid having some workers without work whereas
some others are running during the solving step. In order to increase our chances to obtain well-
balanced activity times for the workers∗, EPS decomposes the initial problem into a lot of sub-
problems. It is usually considered that a good number of sub-problems per worker is between 30
to 300 [Régin et al., 2013, Malapert et al., 2016, Régin and Malapert., 2017].

The generation of q sub-problems is not straightforward because the number of sub-problems
consistent with the propagation may not be related to the Cartesian product of some domains. A
simple algorithm could be to perform a Breadth First Search (BFS) in the search tree until the
desired number of sub-problems consistent with the propagation is reached. Unfortunately, it is
not easy to perform a BFS efficiently mainly because the BFS is not an incremental algorithm
like Depth-First Search (DFS). Therefore, EPS uses a process resembling an iterative deepening
depth-first search [Korf, 1985]: we consider a set Y ⊆ X of variables and we only assign the
variables of Y . The search is stopped when all the variables of Y are assigned. In other words,
we never try to assign a variable that is not in Y . This process is repeated until all assignments
of Y consistent with the propagation have been found. Each branch of a search tree computed
by this search defines an assignment (i.e. a sub-problem). To generate q sub-problems, we repeat
the previous method by adding variables to Y if necessary, until the number of sub-problems is
greater than or equal to q. Note that the decomposition can be performed in parallel.

4.2.1 Modifications of EPS mechanisms

The search strategy for the TSP only considers edges represented by a set-variable. A decompo-
sition for a set-variable works by iteratively increasing its cardinality value (i.e. the assignment
enumeration limit). More precisely, the decomposition starts by setting the cardinality to a chosen
value. Then, it solves the problem with this cardinality value and keep the branches of the search
tree as a sub-problem such that the number of mandatory edges is greater than the cardinality. If
we have obtained q sub-problems, then the decomposition is finished. Otherwise, the cardinality
is increased. Finally, this process is repeated until q sub-problems are found.

In Figure 4.1, we show an example of the decomposition step such that we look for 4 sub-
problems (q = 4). At the beginning, the cardinality is set to 2 and three sub-problems consistent
with the propagation are obtained (i.e. the black squares). Then, as we are looking for 4 sub-
problems, the cardinality is increased. We set it to 4 and we obtain 5 sub-problems (i.e. the orange
squares). Thus, the required number of sub-problems is reached (5 > q). The process is stopped,
and the parallel solving of the sub-problems can begin.

∗The activity time of a worker is the sum of the solving times of its sub-problems.

4.2 – 4.2.1 Modifications of EPS mechanisms 97

K

L M

P

S

U

Y

Z

A1

A3

A5

A6 A7

A

B C

E F G

A4H I

O R W

X

X X

X

X X X

X

Figure 4.1: Search for four sub-problems (q=4). In this search tree, the black squares are the sub-
problems with two mandatory edges assigned by the search (assignment enumeration limit is equal
to two), the orange squares are the sub-problems with four mandatory edges by the search (assign-
ment enumeration limit is equal to four) and the red circles are the inconsistent sub-problems.

In some cases, frequently encountered with the TSP, the increase of variables to Y leads to a
reduction in the number of sub-problems generated. This phenomenon is named: non-monotonic
decomposition. If suddenly many branches fail in the search tree, it may be possible that more
problems have been removed than generated. For special cases such as this one, it is preferable
to stop the decomposition. Indeed, spending a large part the overall solving time in the decom-
position is a bad idea. The main reason is that the decomposition expands the search tree in
breadth, that is hardly incremental. In addition, the decomposition works by step and therefore
at each step it must transmit the sub-problems found to the master which contain a lot of data.
Then, if the non-monotonic decomposition leads to many steps, stopping the decomposition is
worthwhile. Thus, we defined a stopping criterion other than the number of sub-problems gener-
ated [Isoart and Régin, 2020b]: if two successive additions of variables in Y decreases the number
of generated sub-problems, then the decomposition is stopped. An example is given in Figure 4.2
such that q = 4. First, there are 3 sub-problems generated. Since q > 3, the cardinality is increased
to three and 2 sub-problems are generated. Note than the number of sub-problems is decreased.
Again, q > 2 and the cardinality is increased leading to one sub-problem. Therefore, there are two
successions of increasing cardinality leading to a decreasing number of sub-problems. Then, the
decomposition step is stopped, and the solving begin.

98 CHAPTER 4 — Parallelization of the TSP solving in CP

K

L MS

U

Y

Z

A1

A5

A6 A7N

T

A

B C

E F G

A4I

O R

X

X X

X

X

X

Figure 4.2: Search for four sub-problems (q=4). In this search tree, the black squares are the sub-
problems with two mandatory edges by the search, green squares are the sub-problems with three
mandatory edges by the search , the oranges square are the sub-problems with four mandatory
edges by the search and the red circles are the inconsistent sub-problems.

When decomposing with EPS, we have two possibilities for the set-variables: we try to trans-
form them into a set of classic variables and constraints (to break symmetries), or we adapt the
usual algorithm to the set-variables. In the first case, it is important to break the symmetries. In-
deed, a set-variable sx involving the values {a, b, c, d} and whose cardinality is equal to 3 has only
one solution which implies the values a, b and c, whereas if we replace sx by 3 variables x1, x2
and x3 we risk generating the solutions x1 = a, x2 = b, x3 = c, and x1 = b, x2 = a, x3 = c,
etc. The introduction of an order between the variables avoids this concern. Nevertheless, when
the cardinality is not fixed, this transformation is more delicate. It is therefore preferable to adapt
the decomposition algorithm to the set-variable. When we consider a set Y ⊆ X of variables, we
pay attention to the set-variables. A classical variable is instantiated by a single value, whereas
for a set-variable we will determine how many of its values should be instantiated at most. For
instance, sx can be instantiated with at most 1, 2 or 3 values. Its cardinality defines only the max-
imum because we search for partial assignments. In general, all but one set-variable of Y will be
potentially instantiated with their maximum possible values (i.e. the maximum cardinality).

Optimization problems, like the TSP, deserve a little more attention. EPS manages the value
of the objective function as follows: when a worker takes a sub-problem, it also takes the best
objective value that a worker has obtained so far, and when a worker solves a sub-problem, it
communicates the best objective value found in order to update it for the next sub-problems. EPS
does not use any additional communications. Note that it is not possible to use the objective value
while decomposing the problem. Indeed, the objective value associated with the assignment of a
subset of variables is not necessarily a valid bound for the problem in general and that assignment
cannot necessarily be extended to a solution.

4.3 – Decomposition issue for the TSP and LCFirst 99

4.3 Decomposition issue for the TSP and LCFirst

In order to parallelize algorithms, it is important to avoid as much as possible parallel calcula-
tions that would not have been done sequentially. A simple example is the one we gave on the
assignment of the set-variables: we do not want to generate symmetry in the search tree.

As explained in Section 3.3, the search strategy for the TSP uses a graph interpretation of Last
Conflict heuristics named LCFirst. Such a search strategy learns from left branches for the right
branches. If the depth is bounded, such as in the decomposition of EPS, then it can happen that
we do not reach the bottom of the search tree. Therefore, the right branches are performed before
fully exploring the left branches. For LCFirst, it means the use of a different LCNode than the one
used if the left branch is completely performed. This leads to different search tree and therefore
different results (see Figure 4.3).

fail

fail

fail fail

a; (a, b) ?; ¬(a, b)

a; (a, c) a or d?; ¬(a, c)

d; (d, b) d; ¬(d, b)

d; (d, a) d; ¬(d, a)

d; (d, c) d; ¬(d, c)

Figure 4.3: A search tree. The black area is the zone where the cardinality is lower or equal than
2, the blue node represents a search node such that the cardinality is equal to two. If the search
tree is continued after the blue node, then we obtain the gray area of the search tree. Yellow area
needs to know the LCNode of the previous branching node (i.e. d if the gray area is performed, a
otherwise). Orange area needs to know the LCNode from the yellow area.

In Figure 4.3, when the cardinality is set to 2, the gray area is not visited since the size of all
assigned edges ({ab, ac}) is equal to 2. When solving sequentially, the gray area is visited since
there is no assignment enumeration limit. Thus, the LCNode value (yellow zone) for the branch
root− ab− ¬ac depends on the visit of the gray area. If it is visited, then LCNode=d, otherwise
LCNode=a. For the branch root− ¬ab (orange zone) the LCNode value depends on the result of
the previous LCNode value (yellow zone). Hence, the decomposition can generate a very different
search tree than a sequential execution.

One can legitimately ask the following question: how is the solving impacted if we get the
wrong LCNode?

The impact can be very bad. For example, if we take the instance ali535 of
TSPLib [Reinelt, 1991], its sequential solving time is 13, 014s for 1, 339, 925 search nodes,
but its solving time on 8 cores with EPS is 18, 564s for 1, 742, 497 search nodes. So, the parallel
version is 43% slower and it performs 30% more search nodes whereas it involves 8 more cores.
Later, the various experiments will show that this problem is not unusual. These results can be ex-

100 CHAPTER 4 — Parallelization of the TSP solving in CP

plained by the remarks made for Figure 4.3. This shows that a few bad LCNode can significantly
increase combinatorics. In addition, disabling LCFirst from the decomposition strongly degrades
the results. In practice, it leads to a search strategy that jumps in the graph and does not exploit
the structure of the graph.

Thus, the classical EPS decomposition is not enough for a dynamic search strategy such as
LCFirst.

4.3.1 Bound-Backtrack-and-Dive and decomposition

To solve the LCFirst issue in the decomposition, we suggest using a diving heuristic, named
Bound-Backtrack-and-Dive. It consists in running a sequential solving of the problem with a
bounded number of backtracks in order to build an ordered set of nodes, called α, that we will use
to represent the impact of LCNode choice. Then, we run EPS with α as a parameter and we use it
for LCNode selection during decomposition.

4.3.1.1 Computation of α

For each node i ∈ X , let αi be the value representing the failure impact of branching around i.
Thus, the higher αi is, the more important the node is for LCFirst. More exactly, when a node i is
backtracked in the search tree, we update αi with αi ← αi +C/depth2 where C is a constant such
that C > depth2

max. Therefore, a failure thrown at a shallow depth in the search tree will increase
the value of αLCNode much more than if the failure is thrown at a deep depth in the search tree. In
order to represent this priority, a non-linear denominator has been chosen. The idea of prioritizing
LCNodes causing shallow failures in the search tree allows us to narrow the search strategy to the
difficult areas of the graph. Thus, we suggest computing α with the above method for a limited
number of backtracks. When the limit is reached, the solving is stopped and α is returned.

4.3.1.2 Decomposition

After computing α, we decompose the initial problem with a modified LCFirst algorithm. When a
node is emptied (i.e. there are no more optional edges around LCNode) LCFirst will usually look
for an edge in the graph using a heuristic, keep one end and empty it again. Here, we suggest that
when a node is emptied, instead of looking for an edge in the graph and keeping one extremity,
we select the non-emptied node with the highest value in α. Then, with a classical search strategy
(i.e. minDeltaDeg), we select an edge around this node until we have emptied it. A possible
implementation of modified LCFirst is described in Algorithm 11.

At the end of the decomposition, we drop α and go back to classical LCFirst. We mainly use
α because the decomposition is done in breadth and LCFirst gets good LCNode by depth. Thus,
while solving EPS sub-problems we can use depth-based methods (i.e. classical LCFirst) since we
solve them. It allows learning locally about each sub-problem and provide better results.

4.3.2 Experiments

In this section, we will experimentally study Bound-Backtrack-and-Dive method. The paralleliza-
tion is motivated by solving larger instances or solving faster slow instances. Therefore, we con-
sider a subset of the instances of the previous sections. Note that we keep all the instances that
are solved in more than 2 seconds. The Bound-Backtrack-and-Dive algorithm is noted BBD. For

4.3 – 4.3.2 Experiments 101

Algorithm 11: LCFirst(G = (X), α)
decompositionLCFirst (G, α)

Input: The current graph to solve G and an ordered set of nodes α
Output: An edge (u, v)
global LCNode;
if LCNode ̸= nil then

// Select an optional edge adjacent to LCNode in G
if O(LCNode) ̸= ∅ then return select(O(LCNode)) ;

idMax← nil;
valMax← −MAX_VALUE;
foreach αi ∈ α do

// search for the node with the highest αi having
optional neighbors

if αi > valMax and O(i) ̸= ∅ then
idMax← i;
valMax← αi;

if idMax ̸= nil then
(u, v)← select(O(idMax));
LCNode← idMax;

else
(u, v)← select(O);
LCNode← u;

return (u, v)

102 CHAPTER 4 — Parallelization of the TSP solving in CP

these experiments, we used 8 threads on our machine in order to simulate a classical laptop. In the
next section, we will show how to scale to a large number of threads.

Initially, the goal is to make the overall same number of search nodes with and without EPS.
In practice, it is very difficult to achieve it because of the dynamic strategies, the Lagrangian relax-
ation and the order of each sub-problems are taken. However, we show through the experiments
that the use of Bound-Backtrack-and-Dive allows obtaining a comparable/improving number of
search nodes. Because of load balancing problems in parallelism, looking at the number of search
nodes is a good metric.

4.3.2.1 Behavior of EPS

In Table 4.1 we compare the sequential solving and EPS without BBD in which we integrate or
not LCFirst for the decomposition step. Compared to the sequential solving, EPS improves the
results on average with or without LCFirst during the decomposition. However, many instances
are solved with more search nodes when EPS is used than without EPS. For example, pr299 is
solved with 489, 039 search nodes for a sequential solving compared to 993, 101 search nodes for
EPS with LCFirst during the decomposition and 753, 791 search nodes for EPS without LCFirst
during the decomposition. Due to the large increase in the number of search nodes, this instance
with these configurations is slower to solve with EPS than in sequential. In addition, we notice
that (1) performs 306 search nodes per seconds whereas (2) performs 314 nodes per seconds and
(3) performs 322 nodes per seconds. However, we use 8 threads therefore we could have expected
a gain of a factor of almost 8 on the performances. Then, the issue is that a bad load balancing is
observed: in practice it is an extremely heterogeneous problem. The last sub-problem is solved on
1 thread whereas the other threads have no more work to do. Note that obtaining a factor gain of the
number of threads is a really hard thing to obtain in parallelism. In addition, the decomposition
of a problem in many sub-problems can be time consuming here since the search tree is very
particular (very deep depth on some branches such that the branches are not that large and shallow
for the others). We will discuss that in the next section. Nevertheless, other instances such as
kroA200 are better parallelized. While its sequential execution performs 35, 209 search nodes,
EPS noDivLCDec performs 30, 421 search nodes and EPS noDiveNoLCDec performs 46, 897
search nodes. Thus, a gain of a factor of 3.8 and 3.0 respectively in solving time is observed with
almost the same number of search nodes. Next, we will see how to improve the results for the
solving times and the robustness with the diving.

4.3.2.2 Impact of the backtrack limit on the solving

In Table 4.2 we introduce BBD and we study the impact of different backtracks limit while com-
puting α.

First, for problems with a low solving time, the time spent diving can become significantly
high compared to the overall solving time. For example, for a280 with limitBk=1, 000, we spend
2.9s in the diving and 3.2s for decomposing and solving the problem. Increasing limitBk here
increases the overall solving time significantly since the value of limitBk exceeds the number of
backtracks performed sequentially. Thus, the instance is completely solved in sequential before
being solved with EPS. The lin318 instance has the same issue, increasing the backtrack limit
fully solves the problem in sequential during diving before doing the decomposition and solving,
which is actually very fast (about 4s) while diving takes 3.8s for limitBk=1, 000, then about 10s for

4.3 – 4.3.2 Experiments 103

Sequential (1) EPS noDiveLCDec (2) ratio (1) / (2) EPS noDiveNoLCDec (3) ratio (1) / (3)
Instances time(s) #sn time(s) #sn time #sn time(s) #sn time #sn

a280 8.1 2,351 3.0 2,255 2.7 1.0 4.2 2,473 1.9 1.0
ali535 13,013.9 1,339,925 3,595.6 2,180,621 3.6 0.6 18,563.7 1,742,497 0.7 0.8
d198 7.0 3,093 10.4 4,331 0.7 0.7 9.5 5,835 0.7 0.5
d493 4,989.9 488,439 8,429.1 912,905 0.6 0.5 4,485.1 637,677 1.1 0.8

gil262 2,042.2 1,040,943 772.5 1,632,833 2.6 0.6 1,514.1 1,271,733 1.3 0.8
gr229 41.2 26,565 24.5 21,793 1.7 1.2 32.2 27,551 1.3 1.0
gr431 520.6 60,537 177.4 27,209 2.9 2.2 294.6 40,851 1.8 1.5
gr666 14,719.6 1,106,125 13,208.1 1,703,945 1.1 0.6 5,533.8 1,244,949 2.7 0.9

kroA200 63.7 35,209 16.8 30,421 3.8 1.2 21.5 46,897 3.0 0.8
kroB150 8.7 6,165 5.2 7,129 1.7 0.9 6.1 11,059 1.4 0.6
kroB200 15.1 9,381 5.7 7,579 2.6 1.2 6.4 9,283 2.4 1.0
lin318 6.4 1,817 6.4 1,643 1.0 1.1 6.2 1,697 1.0 1.1
pcb442 91,137.7 14,852,219 20,481.4 13,183,769 4.4 1.1 17,919.2 15,176,125 5.1 1.0
pr136 8.9 7,229 3.4 7,465 2.6 1.0 3.5 7,905 2.5 0.9
pr264 3.8 575 9.4 2,669 0.4 0.2 10.5 2,797 0.4 0.2
pr299 1,596.5 489,039 3,158.5 993,101 0.5 0.5 2,341.1 753,791 0.7 0.6
rat195 17.9 11,601 14.8 17,397 1.2 0.7 16.1 19,673 1.1 0.6
rd400 6,721.0 1,727,475 3,226.4 1,795,849 2.1 1.0 3,398.2 1,849,117 2.0 0.9
si175 100.7 92,573 17.9 93,929 5.6 1.0 13.2 61,083 7.6 1.5
tsp225 23.5 11,557 14.3 14,431 1.6 0.8 13.0 12,439 1.8 0.9
mean 6,752.3 1,065,640.9 2,659.0 1,132,063.7 2,709.6 1,146,271.6

geo mean 163.1 52,025.9 94.7 62,956.9 103.5 64,659.9

Table 4.1: Comparison of sequential solving, EPS without diving, EPS without diving and without
LCFirst during decomposition. A ratio column compares the sequential method with each EPS
method. Greater ratio is better.

104 CHAPTER 4 — Parallelization of the TSP solving in CP

limitBk=1,000 (1) limitBk=5,000 (2) limitBk=10,000 (3)
Instances div. time(s) time(s) #sn div. time(s) time(s) #sn div. time(s) time(s) #sn

a280 2.9 3.2 2,125 7.1 2.1 853 7.2 2.1 1,041
ali535 26.1 3,339.0 1,049,467 115.7 3,806.8 1,228,463 195.0 3,629.4 1,153,801
d198 3.8 9.5 3,935 6.8 9.8 4,433 6.9 9.0 3,993
d493 12.8 6,451.3 889,805 64.4 6,806.7 999,233 128.1 5,500.2 802,251

gil262 4.3 219.3 535,595 15.4 486.5 798,505 26.4 531.6 899,261
gr229 2.0 47.9 89,257 7.7 40.5 99,817 15.0 27.7 56,253
gr431 11.6 127.4 54,197 45.6 180.1 53,763 88.8 181.8 64,897
gr666 19.4 4,581.1 1,499,235 78.8 3,917.1 1,234,091 149.9 4,368.1 1,207,703

kroA200 2.1 31.6 55,345 9.5 36.0 97,261 17.3 38.4 95,925
kroB150 1.8 10.7 16,437 6.6 9.0 27,181 8.1 10.5 20,945
kroB200 1.8 14.6 27,743 7.5 10.1 13,273 13.7 13.4 14,069
lin318 3.8 4.0 1,055 6.3 3.6 809 6.2 3.8 747
pcb442 5.1 8,240.2 4,251,747 25.6 13,938.6 2,481,369 49.0 9,064.0 1,846,195
pr136 1.2 5.5 9,805 5.4 4.4 6,559 7.7 3.0 5,321
pr264 3.4 8.1 3,331 3.4 8.5 3,379 3.4 8.7 3,397
pr299 5.3 2,313.6 792,041 20.5 691.0 566,139 40.1 683.8 645,759
rat195 1.9 8.6 10,797 7.4 16.0 13,521 14.1 24.8 18,197
rd400 6.0 1,767.1 1,571,817 24.1 900.4 1,526,415 47.7 1,117.2 1,688,565
si175 1.5 15.7 70,297 5.9 22.5 108,157 11.2 23.0 114,971
tsp225 2.1 18.1 30,117 10.2 24.7 26,987 19.1 23.2 27,109
mean 5.9 1,360.8 548,207.4 23.7 1,545.7 464,510.4 42.7 1,263.2 433,520.0

geo mean 3.9 83.8 66,865.1 13.6 83.2 63,945.8 21.8 82.6 61,820.6

Table 4.2: Comparison of the results according to the limit of the number of backtracks allowed
for diving.

limitBk=5, 000 and 10, 000. Thus, it is better to use a very small limitBk for problems having very
low solving times because the diving should not take a significant amount of time from the overall
solving time. To do so, sampling methods could be used. Then, for bigger problems, limitBk also
has an impact. Indeed, we notice that the best mean solving time is obtained with limitBk=10, 000.
However, the geometric mean shows that the differences between them are actually quite small in
terms of solving time and backtracks.

In Table 4.3, we compare the ratio between limitBk of Table 4.2 and the sequential solving.
We observe that the most stable configuration is limitBk=1,000 since it allows us to obtain stable
results on both small and large instances. Thus, we recommend using limitBk=1,000 and use this
configuration for the next experiments.

4.3.2.3 Impact of the sub-problems per worker on the solving

In Table 4.4, we compare the impact of the number of sub-problems per worker (sppw) on the
results. We observe that the mean number of search nodes increases with the number of sppw.
However, it remains quite close (548,201.4 vs 580,782.2 vs 686,760.9). Therefore, the best con-
figuration is on mean sppw=100. However, it is not always the case for all the instances: gil262 is
solved in 219s with sppw=100, 181s with sppw=200 and 221s with sppw=400. This result is quite
interesting since decomposing more does not lead to improved results whereas a better decompo-
sition leads to better results. Therefore, the way we decompose still have an impact on the results.
However, a good improvement is observed for all the sppw.

4.3 – 4.3.2 Experiments 105

Seq./limitBk=1k (1) Seq./limitBk=5k (2) Seq./limitBk=10k (3)
Instances time(s) #sn time(s) #sn time(s) #sn

a280 1.3 1.1 0.9 2.8 0.9 2.3
ali535 3.9 1.3 3.3 1.1 3.4 1.2
d198 0.5 0.8 0.4 0.7 0.4 0.8
d493 0.8 0.5 0.7 0.5 0.9 0.6

gil262 9.1 1.9 4.1 1.3 3.7 1.2
gr229 0.8 0.3 0.9 0.3 1.0 0.5
gr431 3.7 1.1 2.3 1.1 1.9 0.9
gr666 3.2 0.7 3.7 0.9 3.3 0.9

kroA200 1.9 0.6 1.4 0.4 1.1 0.4
kroB150 0.7 0.4 0.6 0.2 0.5 0.3
kroB200 0.9 0.3 0.9 0.7 0.6 0.7
lin318 0.8 1.7 0.6 2.3 0.6 2.4
pcb442 11.1 3.5 6.5 6.0 10.0 8.0
pr136 1.3 0.7 0.9 1.1 0.8 1.4
pr264 0.3 0.2 0.3 0.2 0.3 0.2
pr299 0.7 0.6 2.2 0.9 2.2 0.8
rat195 1.7 1.1 0.8 0.9 0.5 0.6
rd400 3.8 1.1 7.3 1.1 5.8 1.0
si175 5.9 1.3 3.5 0.9 2.9 0.8
tsp225 1.2 0.4 0.7 0.4 0.6 0.4
mean 2.7 1.0 2.1 1.2 2.1 1.3

geo mean 1.7 0.8 1.4 0.8 1.3 0.8

Table 4.3: Ratio of solving time and number of search nodes. It is calculated by respectively divid-
ing the results of a sequential execution with the results of Bound-Backtrack-and-Dive execution.

In order to increase the number of workers, the overall number of sub-problems generally
must be increased. In Table 4.4, we show that the solving times are good for 400 sub-problems
per workers and 8 workers, i.e. 3, 200 sub-problems. In EPS, communication times are negligible.
Then, we observe results of the same order although not as good for up to 64 workers by setting
sppw=50 (64 workers × 50 sub-problems equal 3,200 sub-problems). In the next section we will
try to increase the number of workers to 192 in order to verify that.

4.3.2.4 General results

In Table 4.5, we compare the sequential solving, EPS without BBD and LCFirst for the decompo-
sition step, and BBD with our best configuration. First, we observe that EPS without BBD allows
obtaining a mean improvement of 2.5 in solving time and 0.9 for the search nodes compared with a
sequential execution. The average number of search nodes gain shows a lack of robustness, many
instances are solved with more search nodes in parallel than in sequential, and therefore does not
exploit the set-up resources as desired. Thus, times can be bad with a naive EPS application at the
TSP. Finally, Bound-Backtrack-and-Dive allows a better decomposition of the TSP by simulating
LCFirst. Indeed, EPS with BBD obtain a mean improvement of 4.9 in solving time and 1.9 in for
the search nodes. In the initial paper of Bound-Backtrack-and-Dive [Isoart and Régin, 2020b], we
considered less filtering (only the WCC and the quadratic algorithm for the k-cutset constraint)
and only 4 threads. We observed that for some instances (such as pcb442) the use of EPS noDi-
veLCDec increases the number of search nodes by a factor of 3. With the actual model, it is not
the case: 14,852,219 search nodes in sequential vs 15,176,125 with EPS. It means that the more
we have strong filtering algorithms the less the search strategy could be disrupted. Finally, the ex-

106 CHAPTER 4 — Parallelization of the TSP solving in CP

Diving sppw=100 (1) sppw=200 (2) sppw=400 (3)
Instances time(s) time(s) #sn time(s) #sn time(s) #sn

a280 2.9 3.2 2,125 3.9 2,805 1.7 699
ali535 26.1 3,339.0 1,049,467 4,382.5 1,303,425 2,855.7 1,398,627
d198 3.8 9.5 3,935 9.9 4,339 9.9 4,131
d493 12.8 6,451.3 889,805 9,639.3 1,139,943 9,793.1 1,180,607

gil262 4.3 219.3 535,595 180.6 366,975 220.8 255,185
gr229 2.0 47.9 89,257 39.8 89,445 87.8 189,325
gr431 11.6 127.4 54,197 191.5 61,985 265.8 81,315
gr666 19.4 4,581.1 1,499,235 3,697.1 1,570,529 3,804.1 1,618,883

kroA200 2.1 31.6 55,345 43.3 71,133 74.5 73,977
kroB150 1.8 10.7 16,437 11.7 16,695 10.8 16,381
kroB200 1.8 14.6 27,743 35.7 32,847 28.5 31,083
lin318 3.8 4.0 1,055 4.0 1,065 4.3 951
pcb442 5.1 8,240.2 4,251,747 14,782.1 4,422,705 23,473.0 6,290,959
pr136 1.2 5.5 9,805 6.0 10,377 5.7 10,561
pr264 3.4 8.1 3,331 8.2 3,337 8.2 3,187
pr299 5.3 2,313.6 792,041 2,599.3 882,199 3,282.3 1,137,643
rat195 1.9 8.6 10,797 23.9 18,807 24.5 18,957
rd400 6.0 1,767.1 1,571,817 1,045.8 1,507,043 808.2 1,300,449
si175 1.5 15.7 70,297 20.8 66,769 26.4 75,109
tsp225 2.1 18.1 30,117 40.3 43,221 40.5 47,189
mean 5.9 1,360.8 548,207.4 1,838.3 580,782.2 2,241.3 686,760.9

geo mean 3.9 83.8 66,865.1 104.4 74,333.7 110.2 73,783.1

Table 4.4: Comparison of the number of sub-problems per worker (sppw) with limitBk=1, 000.

periments are slightly different, but the conclusion is the same: the few nodes we perform during
the decomposition are very important for the whole solving.

4.3.3 Conclusion

We have shown that the application of EPS to the TSP is not trivial. Indeed, EPS decomposition
is breadth-based whereas TSP embeds LCFirst, a depth-based search strategy, so the two methods
are incompatible. In order to combine the two approaches, we introduced Bound-Backtrack-and-
Dive, a diving algorithm, which consists in a first step of performing a sequential execution with a
bounded number of backtrack in order to study the behavior of LCFirst. Then, run EPS, simulate
LCFirst during the decomposition using our preliminary study and finally solve with a classical
LCFirst the generated sub-problems in parallel.

Experimental results show that the use of Bound-Backtrack-and-Dive allows obtaining robust
results. Thus, the efficiency of parallelism applied to TSP with Bound-Backtrack-and-Dive allows
a mean gain of a factor 4.9 in solving times and 1.9 in number of search nodes with 8 threads.

We think that this method can sometimes allow us to avoid dynamic learning strategies when
it is an issue, here for the application of parallelism, and obtain a great improvement of solving
times. We hope that similar results will be obtained for other learning search strategies.

4.4 – Performance with a hundred cores 107

Sequential (1) noDiveLCDec (2) ratio (1)/(2) BBD (3) ratio (1)/(3)
Diving Decomp and solve

Instances time(s) #sn time(s) #sn time #sn time(s) time(s) #sn time #sn
a280 8.1 2,351 4.2 2,473 1.9 1.0 2.9 3.2 2,125 1.3 1.1

ali535 13,013.9 1,339,925 18,563.7 1,742,497 0.7 0.8 26.1 3,339.0 1,049,467 3.9 1.3
d198 7.0 3,093 9.5 5,835 0.7 0.5 3.8 9.5 3,935 0.5 0.8
d493 4,989.9 488,439 4,485.1 637,677 1.1 0.8 12.8 6,451.3 889,805 0.8 0.5

gil262 2,042.2 1,040,943 1,514.1 1,271,733 1.3 0.8 4.3 219.3 535,595 9.1 1.9
gr229 41.2 26,565 32.2 27,551 1.3 1.0 2.0 47.9 89,257 0.8 0.3
gr431 520.6 60,537 294.6 40,851 1.8 1.5 11.6 127.4 54,197 3.7 1.1
gr666 14,719.6 1,106,125 5,533.8 1,244,949 2.7 0.9 19.4 4,581.1 1,499,235 3.2 0.7

kroA200 63.7 35,209 21.5 46,897 3.0 0.8 2.1 31.6 55,345 1.9 0.6
kroB150 8.7 6,165 6.1 11,059 1.4 0.6 1.8 10.7 16,437 0.7 0.4
kroB200 15.1 9,381 6.4 9,283 2.4 1.0 1.8 14.6 27,743 0.9 0.3
lin318 6.4 1,817 6.2 1,697 1.0 1.1 3.8 4.0 1,055 0.8 1.7
pcb442 91,137.7 14,852,219 17,919.2 15,176,125 5.1 1.0 5.1 8,240.2 4,251,747 11.1 3.5
pr136 8.9 7,229 3.5 7,905 2.5 0.9 1.2 5.5 9,805 1.3 0.7
pr264 3.8 575 10.5 2,797 0.4 0.2 3.4 8.1 3,331 0.3 0.2
pr299 1,596.5 489,039 2,341.1 753,791 0.7 0.6 5.3 2,313.6 792,041 0.7 0.6
rat195 17.9 11,601 16.1 19,673 1.1 0.6 1.9 8.6 10,797 1.7 1.1
rd400 6,721.0 1,727,475 3,398.2 1,849,117 2.0 0.9 6.0 1,767.1 1,571,817 3.8 1.1
si175 100.7 92,573 13.2 61,083 7.6 1.5 1.5 15.7 70,297 5.9 1.3
tsp225 23.5 11,557 13.0 12,439 1.8 0.9 2.1 18.1 30,117 1.2 0.4
mean 6,752.3 1,065,640.9 2,709.6 1,146,271.6 5.9 1,360.8 548,207.4

geo mean 163.1 52,025.9 103.5 64,659.9 3.9 83.8 66,865.1

Table 4.5: General Results. It shows the differences between sequential execution, naive EPS
application and Bound-Backtrack-and-Dive with limitBk=1, 000 and sppw=100.

4.4 Performance with a hundred cores

As it is usual in parallelism, one has the right to wonder if the scaling we observe for a few
cores can be verified in practice with about a hundred cores. EPS has already been modified for
improving its scaling while used on data centers [Régin et al., 2014]. However, the study of the
behavior of EPS with a hundred cores for the solving of the TSP showed rather unexpected results.
Two major issues were observed:

1. Unstable decomposition. The decomposition is no more stable in the sense that decom-
posing more may lead to a strong degradation of the performance. This means that the
decomposition can interact unfavorably with the increase in the number of cores. In other
words, increasing the number of cores can lead to worse results.

2. Extremely heterogeneous sub-problems. A very small number of sub-problems can take a
very large part of the overall solving time. For instance, the decomposition of the problem
gr431 of the TSPLIB [Reinelt, 1991] into 300 sub-problems, leads to 5 sub-problems which
take 50% of the overall solving time. The consequence is that at the end of the solving, only
5 workers remain active, independently of the number of available workers.

In order to remedy the unstable decomposition issue, we suggest considering it carefully and
avoiding decomposing too much. That is instead of trying to decompose in a lot of sub-problems,
we suggest considering fewer sub-problems. The risk of reducing the number of sub-problems is
that it can be difficult to ensure a good load balancing between the workers. However, when there

108 CHAPTER 4 — Parallelization of the TSP solving in CP

are a hundred workers it is less important to have 2, 5 or 10 workers that are not active than when
you have only 8 workers. For instance, imagine that only 1 worker is working. If the total number
of workers is 100, then 1% of the workers are working whereas if the total number of workers
is 8, then 12.5% of the workers are working. On the other hand, the second problem we have to
solve is that of extremely heterogeneous sub-problems which therefore lead de facto to bad load
balancing.

In order to remedy the bad load balancing caused by the presence of extremely heteroge-
neous sub-problems, we have no choice but to re-decompose these sub-problems into many other
sub-problems which are more homogeneous. In other words, we must be prepared to do several
decomposition steps.

All this must be done without disturbing the functioning of EPS for problems that do not show
these behaviors and that are very well solved by EPS even with a hundred cores. Therefore, sys-
tematically perform several decomposition steps worsens the results. One must identify if there are
some extremely heterogeneous sub-problems and, in this case, prepare to restart a decomposition.

This also must be done while keeping the advantages of EPS: a very reduced communication
(the workers do not communicate with each other) and independence from the solver used.

This approach will lead to many questions that can be summarized in the form of three main
questions:

1. Under which conditions should we re-decompose?

2. How to avoid redoing some part of work already done when decomposing again?

3. What is the right number of sub-problems per worker to consider for a decomposition?

We will answer these questions in the next sections.

4.4.1 Re-decomposition

First, we try to estimate under which conditions it could be worthwhile to re-decompose the un-
solved sub-problems. Then, we try to avoid redoing the same work when the solving of a sub-
problem is interrupted in order to re-decompose.

The challenge can be resumed as follows: if we wait too long for performing a decomposition
then the risk is that very few workers, or even one, will be left to solve a problem while all the
others have no more work to do. However, re-decomposing for better distribution means losing
part of the previous work already done and requires a certain minimum time that may not be
profitable.

Notation 4.4.1 and Notation 4.4.2 describe some information about the search. Note that the
values of Notation 4.4.1 are known and the values of Notation 4.4.2 are unknown.

Notation 4.4.1.

• w: total number of workers.

• a: number of active workers (i.e. workers which are currently solving a sub-problem).

• cR: wall clock solving time of the set of the unsolved sub-problems R. Precisely, this is the
solving time already done for the remaining sub-problems.

Notation 4.4.2.

4.4 – 4.4.1 Re-decomposition 109

• tR: wall clock total solving time for the set of remaining sub-problems R. It is the sum of
the solving times of the sub-problems not yet solved.

• dR: wall clock time needed to decompose the set of remaining sub-problems R. We also
called it the time to re-decompose.

• rtR: wall clock time needed to solve the set of remaining sub-problems R after a re-
decomposition.

We immediately have the following proposition:

Proposition 4.4.1. The minimum remaining computation time is: tR−cR
a

This is undeniably a lower bound of the real value because it assumes that the remaining time
for the set of the remaining sub-problems is perfectly distributed among the workers if a = w and
if a < w then it means that the remaining computation time for each sub-problem is the same.

Proposition 4.4.2. The minimum remaining computation time for re-decomposing and solving the
remaining sub-problems is: rtR

w + dR

From these two propositions we introduce a new proposition:

Proposition 4.4.3. Performing a re-decomposition may become worthwhile if

rtR

w
+ dR <

tR − cR

a
(4.1)

If after a decomposition no work of the stopped worker is recovered, then it means that cR = 0
and rtR = tR. On the other hand, if we recover all the work already done, then we have rtR =
tR − cR. Unfortunately, it is very difficult to obtain this result because EPS is independent from
the solver and from the search. Nevertheless, we can expect to have rtR < tR.

Simplifying this inequality is not simple because we are faced with several unknown variables.
We do not know precisely tR, nor rtR, nor dR and we have no guarantee that the solving process
will be perfectly homogeneous.

Therefore, we suggest making some assumptions:

• We will consider that rtR can be rewritten as tR− qcR with 0 ≤ q ≤ 1 and q corresponds to
the proportion of work already done that we can recover. For practical reasons, we suggest
to simply estimate the value of q from the previous calculations. Let us consider a sub-
problem p ∈ R, we look for the value qp. While solving p, if the search tree proved that
k values can be safely removed from the initial domain of some variables, then we know
that we were trying a (k + 1)th value. Also, avoiding reconsidering the kth values allow
recovering qp = k/(k + 1) from the calculations previously made. However if we look a
little closer, we do not know where we were in the solving of the (k + 1)th branch. On
average, we can consider that we were halfway in the solving of this branch. It means that
we will recover qp = k/(k + 0.5) from the previous calculations. Thus, we suggest taking
as q the average of the values of qp for each sub-problem p.

• We also observed that the decomposition time does not vary that much. We will therefore
consider that it is constant dR = d. In practice, we will consider that a re-decomposition
will take the time of the previous decomposition.

110 CHAPTER 4 — Parallelization of the TSP solving in CP

• Since no solving time is lost when w = a, we only consider a re-decomposition when
w > a.

We can rewrite the previous proposition:

Proposition 4.4.4. Performing a re-decomposition may become worthwhile if

tR >
(w − aq)cR + wad

w − a
(4.2)

Proof.

With Notation 4.4.1, Equation 4.1 can be rewritten as tR−qcR
w + d < tR−cR

a which is equivalent
to (w − a)tR > (w − aq)cR + wad. Since w > a we have (w − a) > 0 and the proposition
holds. □

The main issue is that we do not know the value of tR. However, for a given value of a we can
check whether Equation 4.2 is satisfied or not and stop the computation when it is satisfied. First,
we know that tR ≥ cR. Next, during a wall clock period of time T of computation performed by
a active workers the total solving time computed is aT and so we have tR ≥ aT + cR. Thus if
aT + cR > (w−aq)cR+wad

w−a , then we know that Equation 4.2 is satisfied. So, we can compute the
value of T for which Equation 4.2 is satisfied. This value will become the maximum timeout we
accept without performing a new decomposition.

aT + cR > (w−aq)cR+wad
w−a ⇔ aT > (w−aq)cR+wad

w−a − cR

⇔ aT > (w−aq)cR+wad−(w−a)cR

w−a

⇔ aT > (a−aq)cR+wad
w−a

⇔ aT > a(1−q)cR+wad
w−a

⇔ T > (1−q)cR+wd
w−a

Proposition 4.4.5. Assume that after T units of computation no sub-problem is solved. It is
worthwhile to re-decompose if

T >
(1− q)cR + wd

w − a
(4.3)

Proof.

If after T1 < T units of time we solve 1 task s1, then we can compute the new inequality. We
must consider decrement the number of active workers and work with R1 = R − {s1} and
cR1 = cR + aT1 − t(s1). □

Equation 4.3 suggests that we should wait a certain amount of time to be sure that we should
decompose. However, waiting that time may have a cost that leads to poorer results. Thus, we
suggest using T as an upper bound of the waiting time before re-decomposing.

Indeed, on the one hand, we do not know how to recover all the calculations performed (we
do not recover cr, but only qcr). On the other hand, we do not calculate with the power of all the
workers, which means that we lose a certain amount if the decision is to decompose again. How-
ever, if we re-decompose too early when we should not have, we will also lose time. Therefore,
instead of directly using the formula in Equation 4.3, it is more interesting to introduce a decision
factor α, with 0 ≤ α ≤ 1. The idea behind this value corresponds to a kind of risk sharing.

We have the final proposition:

4.4 – 4.4.1 Re-decomposition 111

Proposition 4.4.6. Assume that after T units of computation no sub-problem is solved. The current
active workers are stopped and decomposition is performed if

T > α
(1− q)cR + wd

w − a
(4.4)

This leads to Algorithm 12. Equation 4.4 will evolve as sub-problems are solved. This will
result in a sequence of inequalities, one for each solved sub-problem. Moreover, we need to make
sure that each inequality holds. Indeed, when a problem p of R is solved, we compute a new
inequality of Equation 4.4 for R − {p}. However, the time between the last task solved and p
can be huge. Therefore, the new timeout must verify the old inequality (i.e. timeout − T) and
the new computed inequality. Thus, we take min(timeout − T, α (1−q)cR+wd

w−a) as the new time-
out. Note that Function checkDecomposition(d, α, q) is run in the main loop of the EPS master
which manages the workers and the sub-problems. If it returns true, then a re-decomposition is
performed.

Algorithm 12: checkDecomposition algorithm

checkDecomposition (d, α, q)
Input: A constant decomposition time d, a decision factor α and the proportion of

work already done that we can recover q
Output: A boolean specifying whether a re-decomposition must be performed
// The sub-problems are currently run in parallel
Wait until it remains only a = w − 1 active workers ;
stopT ime←wallClockTime() ;
R← set of remaining sub-problems ;
C ← Sum of current solving times of the remaining sub-problems ;
timeout← α (1−q)C+wd

w−a ;
foreach sub-problem p ∈ R solved before timeout do

// the timeout evolves according to the solved
sub-problems

R← R− {p} ;
T ← WALLCLOCKTIME()− stopT ime ;
stopT ime←wallClockTime() ;
// t(p) is the solving time of the sub-problem p
C ← C + aT − t(p) ;
a← a− 1 ;
timeout← min(timeout− T, α (1−q)C+wd

w−a) ;

if all sub-problems are solved then return False;
Abort all the remaining active workers. ;
// A re-decomposition will be performed
return True

112 CHAPTER 4 — Parallelization of the TSP solving in CP

4.4.1.1 Recovery of previous computations

When a worker is aborted, it has already performed some work. How can we avoid redoing the
same work that has just been done?

EPS is based on the concept of independence. EPS always tries to be as independent as
possible from solvers, from the search procedure, at least intrusive as possible and to minimize
communications. In order to retrieve part of the previously performed calculations, we could try
to memorize the boundary of the search already made. The problem with this approach is that this
boundary strongly depends on the search strategy. For a DFS the boundary is in O(n), but for other
searches like a Best-First Search it is more complex. In addition, with learning search strategies
it would be necessary to transmit much more information to be able to continue/resume a search
after a stop. Finally, each solver can have its own implementation of the search and resuming a
stopped search should be a function provided by the solver and used by EPS. The communication
may become specific for each solver and for each search, which is precisely what we want to
avoid.

We introduce a simple and general method that requires little intervention in the solver and
practically no more transmission of information. This method only assumes that the search can
be described by a set of decisions and rejections of decisions (which is most often the case).
Conceptually, it is usual to see the search tree as a binary tree where a node has two children: one
applies the decision and the other rejects the decision (usually by imposing the opposite). When a
sub-tree resulting from a decision is completely finished, then we know that the exploration of that
part is completely finished, and we do not need to do it again. We cannot keep all the nodes closed,
but we can simply no longer consider the nodes linked to the root of which only the refutation of
the decision remains. In this case we know that the decision has been fully processed and that it is
not necessary to redo it. This is easy to express because it simply corresponds to the suppression
of a value in the domain of the first assigned variable. In the case of TSP, it corresponds to a set of
edges that should no longer be used for the tour. In order not to redo all the work done the worker
just has to transmit this information to the EPS master. It can be noticed that it is very general and
not very intrusive in a solver.

4.4.1.2 Discussion

Instead of an overall decomposition, it is also possible to study the behavior of EPS at the level
of each of the sub-problems. Thus, one can try to define criteria to try to know whether a sub-
problem should or should not be re-decomposed and then proceed to a specific individual re-
decomposition for some sub-problems. We tried this method, but it is not advantageous and raises
many questions: when should we look to see if the sub-problems are particularly difficult? Should
they be stopped immediately? Moreover, this method leads to a succession of decompositions
(one per sub-problem) which quickly becomes expensive and does not bring any particular gain.
In fact, EPS always tries to consider the solving of sub-problems as global and there seems to be
little interest in questioning this point of view.

In addition, only the master can use such a criterion because we search for sub-problems
that are more difficult than others and only the master can have this information. A worker has
no information about the other workers. Therefore, it is preferable to let the master manage the
solving of the different workers, even if it means interrupting some of them.

4.4 – 4.4.2 Experiments 113

4.4.2 Experiments

In this section, we will experimentally show that EPSrd allow obtaining better solving times and
more robustness. To do so, we will experiment on the selected instances from Section 4.3.2. In
Section 1.1, we said the experiments are performed on Clear Linux with two Intel Xeon E5-2696v2
(12 cores and 24 threads per CPU) and 64 GB of RAM. In this section, the experiments are run
in parallel on 4 machines with the exact same configuration. Therefore, we have 4 machines with
two CPUs and 24 threads per CPU. We will fully load the 4 machines; therefore the experiments
of this section are run on 192 workers.

First, we will search for the best configuration for EPS and EPSrd. In Table 4.6, we consider
the number of sub-problems per workers (#sppw). We observe that #sppw=100 for EPS and
#sppw=10 for EPSrd are the best configurations in order to obtain the best mean solving times.
Note that we used α = 0.1 for EPSrd. We observe that most of the time EPSrd improves the results
of EPS. EPS is based on the idea that for having a good load balancing we need to have a certain
number of sub-problems. The experiments support this idea, even if sometimes decomposing too
much may be time consuming. For instance, pcb442 is solved in 22,800s with #sppw=10, 11,025s
with #sppw=30, 7,686s with #sppw=50 and 5,168.8s with #sppw=100. However, if we carefully
look at the result, we can refine this principle. We observe that when the load balancing is not
an issue for a problem (such as gr229 where #sppw=10 is the best), then a small value of #sppw
is perfectly fine. This means that we need to have a greater value only when the load balancing
is an issue. However, we have no information about the load balancing before the solving, so
we need to use set a value of #sppw between 10 and 100 before the solving. Conversely, EPSrd
tries to identify during the solving whether the load balancing is an issue or not. If it detects a load
balancing issue, then it performs a re-decomposition. Therefore, EPSrd has advantage to start with
a low #sppw. Note that this can be seen as a dynamic increase of the #sspw value. Therefore, we
observe that the mean solving times with #sppw=10 is 2.3 times faster. In addition, the problems
with a huge load balancing issue such as pcb442 are well solved with EPSrd. Indeed, the best
solving time on this instance for EPS is 5,166.8s and 159.5s for EPSrd. Finally, we observe that
the best configuration for EPSrd in this table is 5.3 times faster than the best one for EPS.

In Table 4.7, we consider the α parameter for EPSrd with #sppw=10. We note s.d. the standard
deviation of the solving times for an instance. First, we notice that the importance of the alpha
value relies on the number of re-decompositions. For instance, gr229 is re-decomposed between
0 and 1 time for each alpha value. Then, all the solving times are close to each other, and the
standard deviation is quite low (2.2). Conversely, the standard deviation for gr666 is equal to 54.7
and we have between 5 and 11 re-decompositions for each alpha value. Then, the more the number
of re-decompositions is high the more the alpha value is important. Nevertheless, the alpha value
does not have an impact as important as sppw on the solving times. Finally, considering the mean,
α = 0.3 is the best alpha value whereas considering the geometric mean α = {0.1, 0.5, 0.7} are
the best alpha values.

In Table 4.8, we study the behavior of EPS and EPSrd when the best configuration is set.
That is #sppw=100 for EPS and #sppw=10 and alpha=0.1 for EPSrd. This experiment shows
some drawbacks of EPS for some problems. For EPS, we give some wall clock times (in s): the
decomposition time, the wall clock time of the solving time when all workers are active, the wall
clock time of the solving time when some (or most) workers are inactive and the wall clock time
to solve the problem (total). Note that the wall clock time is the sum of decomp., all workers
are active and not all workers are active. Next, we give some information about EPSrd: the

114 CHAPTER 4 — Parallelization of the TSP solving in CP

Instances EPS(s) EPSrd(s) EPS/EPSrd
#sppw #sppw #sppw

10 30 50 100 10 30 50 100 10 30 50 100
a280 1.8 9.8 17.4 1.7 1.6 1.6 18.3 1.6 1.1 6.2 0.9 1.0

ali535 3,436.0 4,045.6 3,945.4 4,056.3 463.9 1,108.1 560.5 617.5 7.4 3.7 7.0 6.6
d198 12.2 14.6 15.2 14.5 13.3 12.9 12.6 13.5 0.9 1.1 1.2 1.1
d493 4,188.8 4,426.0 3,810.6 2,247.2 1,084.5 1,449.3 2,259.1 3,708.3 3.9 3.1 1.7 0.6

gil262 75.7 79.1 68.9 113.6 30.6 88.5 75.5 106.9 2.5 0.9 0.9 1.1
gr229 12.4 20.3 19.7 41.4 16.2 30.0 35.1 41.3 0.8 0.7 0.6 1.0
gr431 77.6 82.2 105.3 169.4 82.6 91.8 106.3 168.3 0.9 0.9 1.0 1.0
gr666 4,588.5 1,653.5 1,749.0 1,555.2 926.0 998.3 1,122.8 1,075.8 5.0 1.7 1.6 1.4

kroA200 6.4 6.2 7.5 6.1 7.3 7.1 7.4 6.4 0.9 0.9 1.0 0.9
kroB150 2.5 2.3 2.6 2.5 2.6 2.6 2.4 2.5 1.0 0.9 1.1 1.0
kroB200 6.2 5.2 4.4 4.4 6.6 5.6 4.7 4.5 0.9 0.9 0.9 1.0
lin318 3.6 3.9 3.4 3.6 3.4 3.3 3.3 3.7 1.1 1.2 1.0 1.0
pcb442 22,800.1 11,025.4 7,686.4 5,166.8 159.5 289.7 408.9 331.0 143.0 38.1 18.8 15.6
pr136 1.4 1.6 1.8 1.7 1.7 1.6 1.7 1.6 0.8 1.0 1.1 1.1
pr264 11.9 13.8 13.9 12.8 16.5 13.3 13.1 13.8 0.7 1.0 1.1 0.9
pr299 1,345.2 2,183.9 3,807.3 3,160.6 211.3 220.8 303.4 396.8 6.4 9.9 12.6 8.0
rat195 5.9 5.1 5.1 4.8 5.7 4.9 4.4 4.3 1.0 1.0 1.1 1.1
rd400 706.2 496.2 477.7 560.9 135.9 215.9 244.8 816.1 5.2 2.3 2.0 0.7
si175 4.6 6.9 12.2 15.0 5.0 6.7 10.6 13.5 0.9 1.0 1.2 1.1
tsp225 10.5 9.0 8.3 8.8 9.6 8.2 8.1 8.0 1.1 1.1 1.0 1.1
mean 1,864.9 1,204.5 1,088.1 857.4 159.2 228.0 260.1 366.8

Table 4.6: Comparison between EPS and EPSrd for different values of #sppw.

decomposition time, the wall clock time performed between the end of the first decomposition and
the start of the first re-decomposition, the wall clock time of the solving time when all workers are
active, the wall clock time of the solving time when some (or most) workers are inactive and the
wall clock time to solve the problem (total). In this table, we can see that EPSrd allows obtaining
a better load balancing. For instance, with EPS gr666 spend 304.8s with all the workers active
and 1,101s without all the workers active. Conversely, with EPSrd gr666 spend 401.6s with all the
workers active and 142.9s without all the workers active. Then, when the load balancing is going
to be bad, EPSrd quickly performs a first re-decomposition avoiding spending a lot of time with
some inactive workers.

In Table 4.9, we show the general results obtained by EPS and EPSrd with their best con-
figurations. We recall that we use 192 workers. We first notice that both EPS and EPSrd allow
improving the mean solving times. Indeed, a gain of a factor 5.5 is observed with EPS and a
gain of 40.3 is observed with EPSrd compared to the mean sequential solving times. Therefore,
EPSrd is much more efficient than EPS: it is 7.3 times faster and the mean improvement ratio is
of 4.2. We recall that it is very hard in parallelism to obtain such an improvement equal to the
number of workers since in many cases we must perform a warm-up (here, the diving and the de-
composition). In addition, the perfect load balancing is quite hard to obtain since either we must
know how to perfectly decompose a sub-problem with no overhead (we do not) or we use a work
stealing approach that can lead to huge communication times (the purpose of EPS is to avoid the
communication times as much as possible).

In Table 4.10, we compare the robustness of EPS and EPSrd. We run several times each
instance and we compare the minimum solving time, the maximum solving time, the mean solving
time and the standard deviation of the solving times. Note that the best configuration for both EPS

4.4 – 4.4.2 Experiments 115

α

0.1 0.3 0.5 0.7 0.9 #re-decomp. s.d.
a280 1.6 5.2 1.6 1.5 1.5 0 1.6

ali535 463.9 415.2 467.9 471.1 500.0 4 to 7 30.6
d198 13.3 14.5 16.0 12.9 13.2 0 to 2 1.3
d493 1,084.5 1,033.7 1,135.9 1,048.8 1,101.6 6 to 11 41.0

gil262 30.6 26.9 30.0 34.0 31.4 1 to 3 2.6
gr229 16.2 16.4 12.8 11.8 12.6 0 to 1 2.2
gr431 82.6 95.1 86.1 87.2 94.7 1 to 4 5.5
gr666 926.0 822.5 786.9 807.9 810.8 5 to 11 54.7

kroA200 7.3 7.2 7.0 6.8 6.7 0 0.3
kroB150 2.6 2.7 2.7 2.6 2.8 0 0.1
kroB200 6.6 5.6 4.9 6.2 6.7 0 0.8
lin318 3.4 3.3 4.0 3.2 3.5 0 0.3
pcb442 159.5 210.6 243.1 270.4 314.2 5 to 8 58.7
pr136 1.7 1.4 1.8 1.5 1.6 0 to 1 0.2
pr264 16.5 12.0 11.6 11.7 12.9 0 to 1 2.0
pr299 211.3 237.4 236.3 248.3 317.4 8 to 14 40.0
rat195 5.7 5.9 5.0 5.9 6.3 0 0.5
rd400 135.9 132.5 134.0 135.7 140.4 4 to 6 3.0
si175 5.0 5.2 5.5 6.2 4.9 0 to 1 0.5
tsp225 9.6 9.7 10.5 10.4 10.2 0 0.4
mean 159.2 153.1 160.2 159.2 169.7 6.0

geo mean 24.5 25.5 24.5 24.5 25.5

Table 4.7: Impact of the alpha value on the solving times in seconds. We note s.d. the standard
deviation of the solving times.

116 CHAPTER 4 — Parallelization of the TSP solving in CP

EPS time(s) EPSrd time(s)
Instances decomp. all workers not all workers total decomp. before first all workers not all workers total

are active are active re-decomp. are active are active
a280 1.3 0.0 0.3 1.7 1.3 0.3 0.0 0.3 1.6

ali535 30.1 3.7 4,022.5 4,056.3 141.6 9.9 238.9 83.3 463.9
d198 9.3 1.0 4.2 14.5 9.4 3.4 2.4 1.5 13.3
d493 135.7 8.6 2,102.9 2,247.2 178.5 16.6 801.4 104.6 1,084.5

gil262 105.4 6.7 1.5 113.6 17.8 3.8 6.5 6.3 30.6
gr229 20.7 19.2 1.4 41.4 10.8 4.4 3.9 1.6 16.2
gr431 146.4 5.9 17.1 169.4 63.8 8.8 6.8 12.0 82.6
gr666 149.4 304.8 1,101.0 1,555.2 381.5 56.8 401.6 142.9 926.0

kroA200 5.6 0.3 0.1 6.1 6.7 0.6 0.5 0.1 7.3
kroB150 2.3 0.0 0.2 2.5 2.3 0.2 0.1 0.2 2.6
kroB200 4.2 0.2 0.1 4.4 6.1 0.5 0.2 0.3 6.6
lin318 3.4 0.0 0.3 3.6 3.3 0.1 0.0 0.1 3.4
pcb442 80.9 58.5 5,027.4 5,166.8 51.2 18.2 67.8 40.4 159.5
pr136 1.5 0.1 0.2 1.7 1.0 0.7 0.1 0.6 1.7
pr264 10.4 1.1 1.4 12.8 12.0 4.0 2.8 1.7 16.5
pr299 112.9 5.8 3,041.9 3,160.6 80.6 5.4 85.3 45.4 211.3
rat195 4.6 0.1 0.1 4.8 5.5 0.2 0.1 0.2 5.7
rd400 241.2 25.0 294.6 560.9 60.4 17.0 50.5 24.9 135.9
si175 12.7 0.7 1.7 15.0 3.3 1.6 0.9 0.8 5.0
tsp225 8.0 0.2 0.5 8.8 9.0 0.7 0.2 0.4 9.6

Table 4.8: Solving evolution of EPS and EPSrd.

Instances Sequential(s) EPS(s) Seq./EPS EPSrd(s) Seq./EPSrd EPS/EPSrd
a280 8.1 1.7 4.8 1.6 5.0 1.0

ali535 13,013.9 4,056.3 3.2 463.9 28.1 8.7
d198 7.0 14.5 0.5 13.3 0.5 1.1
d493 4,989.9 2,247.2 2.2 1,084.5 4.6 2.1

gil262 2,042.2 113.6 18.0 30.6 66.7 3.7
gr229 41.2 41.4 1.0 16.2 2.5 2.6
gr431 520.6 169.4 3.1 82.6 6.3 2.0
gr666 14,719.6 1,555.2 9.5 926.0 15.9 1.7

kroA200 63.7 6.1 10.5 7.3 8.7 0.8
kroB150 8.7 2.5 3.5 2.6 3.3 1.0
kroB200 15.1 4.4 3.4 6.6 2.3 0.7
lin318 6.4 3.6 1.8 3.4 1.9 1.1
pcb442 91,137.7 5,166.8 17.6 159.5 571.5 32.4
pr136 8.9 1.7 5.1 1.7 5.2 1.0
pr264 3.8 12.8 0.3 16.5 0.2 0.8
pr299 1,596.5 3,160.6 0.5 211.3 7.6 15.0
rat195 17.9 4.8 3.7 5.7 3.1 0.8
rd400 6,721.0 560.9 12.0 135.9 49.5 4.1
si175 100.7 15.0 6.7 5.0 20.2 3.0
tsp225 23.5 8.8 2.7 9.6 2.4 0.9
mean 6,752.3 857.4 5.5 159.2 40.3 4.2

Table 4.9: Comparison between EPS and EPSrd.

4.4 – 4.4.2 Experiments 117

EPS EPSrd
min max mean s.d. max/min min max mean s.d. max/min

a280 1.5 2.0 1.7 0.2 1.3 1.6 1.9 1.7 0.1 1.2
ali535 3,827.2 4,400.1 4,072.5 241.2 1.1 447.5 561.7 478.3 47.0 1.3
d198 13.4 40.0 19.2 11.6 3.0 13.1 14.7 13.8 0.6 1.1
d493 2,247.2 4,784.6 3,229.2 1,175.3 2.1 858.0 1,092.2 979.8 104.8 1.3

gil262 106.0 125.3 115.3 7.0 1.2 28.1 35.1 30.9 2.8 1.2
gr229 39.6 41.4 40.9 0.7 1.0 16.2 18.0 17.0 0.7 1.1
gr431 169.4 180.8 173.8 4.4 1.1 78.9 84.8 82.2 2.6 1.1
gr666 1,003.2 1,555.2 1,180.0 229.1 1.6 854.8 930.0 904.2 30.1 1.1

kroA200 6.1 8.1 6.6 0.9 1.3 5.9 7.3 6.6 0.7 1.2
kroB150 2.5 2.6 2.5 0.0 1.0 2.5 3.0 2.7 0.2 1.2
kroB200 4.2 4.6 4.4 0.1 1.1 5.4 6.6 6.0 0.4 1.2
lin318 3.4 3.6 3.5 0.1 1.1 3.3 4.2 3.5 0.4 1.3
pcb442 3,288.8 23,783.8 11,776.5 8,244.6 7.2 159.5 195.1 180.8 16.4 1.2
pr136 1.7 1.7 1.7 0.0 1.0 1.3 1.7 1.5 0.2 1.3
pr264 12.8 14.2 13.6 0.5 1.1 15.3 17.5 16.3 0.8 1.1
pr299 1,412.1 3,160.6 2,222.7 656.9 2.2 189.9 211.3 198.8 10.1 1.1
rat195 4.5 4.9 4.8 0.2 1.1 5.3 6.4 5.7 0.4 1.2
rd400 560.9 759.9 644.9 74.7 1.4 130.6 142.3 137.6 4.5 1.1

Table 4.10: Comparison of the robustness of EPS and EPSrd.

and EPSrd are used. For EPS, most instances have quite a large variation between min and max
and therefore a huge standard deviation. For instance, with EPS the min and the max solving times
of gr666 are respectively 1,003s and 1,555s. It leads to a standard deviation of 229.1. Moreover,
the max solving time is 55% slower than the min solving time. With EPSrd, the min and the max
solving times of gr666 are respectively 855s and 930s with a standard deviation of 30.1. Then,
the max solving time is 9% slower than the min solving time. Finally, the ratio of max/min for
EPS is between 1.0 and 7.2 whereas it is between 1.1 and 1.3 for EPSrd. Then, EPSrd bring more
robustness in the solving times than EPS.

4.4.2.1 Increasing the number of sub-problems for the re-decompositions

At last, we tried to increase the number of sub-problems each time a new re-decomposition is
performed. We expected to reduce the number of re-decompositions and therefore to reduce the
wall clock solving times. Unfortunately, this is not the case. We obtained a reduction of the number
of re-decompositions (reduction about a factor of 2) with a slight increase of the wall clock solving
times. The advantage of the re-decomposition with a low #sppw is that the re-decompositions are
fast and therefore a re-decomposition does not cost that much. Increasing #sppw each time a
re-decomposition is performed lead to slower re-decompositions. In addition, it does not bring a
better load balancing since in the TSP there are only few problems that are very slow to solve.
Then, it is worthwhile to stick with a low #sppw and wait for the identification of the hardest
sub-problems to solve in order to re-decompose them.

118 CHAPTER 4 — Parallelization of the TSP solving in CP

4.4.3 Conclusion

In this section, we focused on the parallel solving of difficult TSP problems with EPS and many
cores. More precisely, we were interested in two issues: unstable decomposition and extremely
heterogeneous sub-problems. We have shown that EPSrd, which uses a re-decomposition, im-
proves EPS by solving these two issues. Indeed, a re-decomposition allows the use of a small first
decomposition. In addition, it allows avoiding the case of too small proportion of workers working
because of some extremely heterogeneous problems. Experimentally, we have shown that a small
number of sub-problems per worker allows obtaining the best results when using EPSrd because
the load balancing is managed by the re-decomposition. It leads to an overall improvement of the
solving times for EPSrd and much more robustness.

CHAPTER 5
Shaving

In this chapter, we experiment with a shaving method. We show that it reduces the
number of search nodes by several orders of magnitude. It consists in selecting some
pairs (variable, value) and assigning them successively. If an immediate failure occurs,
then the assigned pair cannot belong to any solution of the current sub-tree of the search
tree. In practice, this method reduces the number of search nodes by several orders of
magnitude. However, the direct application of this method is time consuming. Thus, we
introduce some variations of this method in order to find a better trade-off between the
search space pruning and the solving time. Although the use of shaving does not allow
solving instances faster, it is nevertheless very interesting. Indeed, few methods allow
obtaining a reduction of several orders of magnitude of the search space. Thus, this
chapter allows us to share a very interesting way attacking a hard problem.

5.1 Introduction . 121
5.2 Experiments . 121

5.2.1 Check mode . 122
5.2.2 Candidates . 122
5.2.3 Calling mode . 124
5.2.4 Quick shaving . 124
5.2.5 Model . 129
5.2.6 Search strategy . 129

5.3 Conclusion . 135

119

5.2 – Introduction 121

5.1 Introduction

In order to reduce the number of search nodes, we are interested in a higher level of consistency
than the arc consistency: the singleton arc consistency (SAC) [Debruyne and Bessiere, 1997].
Given an arc consistent constraint network N , for each pair of variable and value (xi, a) of N , if
N is arc inconsistent when assigning a to xi, then a can be safely removed from xi. The advan-
tage of this approach is that the filtering is much stronger than a simple arc consistency and thus
it reduces the number of search nodes. However, testing all (xi, a) pairs costs much more than a
simple arc consistency. In this chapter, we will study this level of consistency for the TSP. More
formally, we define SAC in Definition 5.1.1.

Definition 5.1.1 (Singleton arc consistency). A constraint network N = (X, D, C) is singleton
arc consistent iff ∀xi ∈ X,∀a ∈ D(xi) the constraint network N ′ such that D(xi) = {a} is arc
consistent.

However, the CP model of the TSP is composed of a graph variable represented by two set-
variables: one for the edges, one for the nodes. Note that the search strategy only considers the
edges since all the nodes are mandatory for the TSP problem. By definition, an assignment of a
value a to a set-variable xi is equivalent to adding a to lb(xi). Then, we redefine Definition 5.1.1
in Definition 5.1.2.

Definition 5.1.2 (Singleton arc consistency on set-variables). Given a constraint network N =
(X, D, C) such that X is composed of set-variables only. Then, N is singleton arc consistent iff
∀xi ∈ X,∀a ∈ ub(xi) − lb(xi) the constraint network N ′ such that lb(xi) = lb(xi) ∪ {a} is arc
consistent.

In other words, we try to assign successively all the optional edges of the graph variable. If an
assignment leads to an inconsistency, then we remove the optional edge from the graph.

Moreover, this idea has been used in scheduling problems [Carlier and Pinson, 1994,
Martin and Shmoys, 1996] in order to find the position of some tasks (or at least generate
constraints) and to prune the search tree. Usually, they do not enforce SAC but they try some ele-
ments. We will use this approach because testing all the values for all the variables is sometimes
time consuming.

This process is sometimes named “shaving”. Since we will not necessarily enforce SAC, we
will use this terminology.

5.2 Experiments

This chapter is mainly experimental since the general shaving method is already known. In prac-
tice, given a search node, the shaving is performed before the propagation over the search node.
When an optional edge is removed by the shaving, we say that the edge is shaved. We define “can-
didates” as the set of optional edges to be assigned in the shaving. The results are represented in
tables. For each table, we give the time in seconds, the number of search nodes, the number of as-
signed edges in the shaving (#check) and the number of its edges that have been shaved (#shaved).
In addition, we give the arithmetic mean and the geometric mean for each parameter. We have
chosen a subset of the instances considered in this thesis: the easy instances. Indeed, the hardest
instances are very long to solve with shaving. Moreover, the conclusions are the same.

122 CHAPTER 5 — Shaving

5.2.1 Check mode

There are two ways of considering assignments in the shaving. We can assign each edge of can-
didates only once per search node (check: once) or iterate on candidates until a fixed point over
the shaved edges is reached (check: fixed point). Therefore, if candidates contains all the optional
edges and the check mode fixed point is used, then SAC is achieved.

In Table 5.1, we compare the check mode once and fixed point. First, in comparison of the
check mode fixed point, the check mode once is faster by a factor of 2.2 in mean and by a factor
1.4 in geometric mean. However, the check mode fixed point leads to 1.3 times fewer search nodes
on mean and 1.6 times fewer search nodes on geometric mean.

The difference is easily explained with the columns #check and #shaved. Indeed, with the
check mode once, the mean of #check is 24,202.6 for #shaved=2,875.4 while with the check mode
fixed point the mean of #check is 59,823.1 for #shaved=2,533. Thus, the check mode fixed point
checks 2.4 more elements than the check mode once and shave a similar number of elements.

Then, the shaving with the check mode once loss a mean (resp. geo mean) solving time factor
of 6.7 (resp. 3.6) compared to the state-of-the-art (i.e. without the shaving). Nevertheless, it allows
us to reduce the number of search nodes by a factor of 100.3 in mean and by a factor of 60.3 in
geometric mean.

Thus, the shaving is quite an interesting method for the TSP because a single level of higher
consistency leads to a huge reduction of the search space (two orders of magnitude).

Without loss of generality, we will only consider the check mode once.

5.2.2 Candidates

In this section, we consider different sets of candidates (the set of optional edges to be assigned
in the shaving). Indeed, considering all the optional edges of the graph for the shaving is not
mandatory. Thus, we define three modes of selection:

• 1-mand: selects the optional edges having at least one end with an adjacent edge being
mandatory.

• 2-mand: selects optional edges having both ends with an adjacent edge being mandatory.

• LCNode: selects the optional edges around the LCNode if a backtrack has just occurred or
if the LCNode has just been changed.

In Table 5.2, we compare 1-mand, 2-mand and LCNode. For 1-mand and 2-mand, we notice
that the mean solving time is quite close (32.8 and 34.3) while the number of search nodes is very
different (261.1 and 2,357.8). Looking at the geometric mean, we notice that 1-mand does 53.8
search nodes and 1,328.5 checks (i.e. 1,382.3 propagations are triggered) and that 2-mand does
308.2 search nodes and 812.8 checks (i.e. 1,130 propagations are triggered). This represents 22%
more propagations for 1-mand and 23% more in solving time. In addition, most instances are
solved faster with 2-mand than with 1-mand while 2-mand makes 9 times (resp. 5.7) more search
nodes on mean (resp. geometric mean). Next, we can see that the mode LCNode reduces the mean
solving time but increases the number of search nodes. In the shaving, the more the number of
checked edges is high, the more the number of search nodes is reduced and the solving time is
increased. Finally, LCNode allows us to have solving times close to the state-of-the-art without
the shaving method. Additionally, we obtain a gain of a factor of 1.7 on mean and geometric mean

5.2 – 5.2.2 Candidates 123

basic model check: once check: fixed point
search search search

Instance time nodes time nodes #check #shaved time nodes #check #shaved
a280 8.4 2,351 12.0 37 2,522 773 13.6 37 3,698 738

bier127 0.4 53 3.4 3 760 350 4.1 1 827 388
brg180 1.7 101 369.6 87 43,814 201 396.0 85 45,177 202
ch130 1.3 383 2.2 7 654 284 2.1 5 624 267
ch150 1.3 303 2.1 3 461 242 2.5 3 465 242
d198 8 3,093 30.3 57 12,826 2,237 61.7 29 28,298 1,841
eil101 0.3 65 0.9 15 190 34 0.7 15 225 34
gr120 1 279 1.4 1 243 118 1.2 1 243 118
gr137 1.5 513 10.9 29 6,129 777 16.5 7 11,267 694
gr202 1.8 383 3.7 5 821 371 3.7 1 839 364
gr229 41.3 26,565 356.6 269 126,568 17,109 1,102.5 181 412,219 16,379
gr96 0.8 227 3.9 19 2,399 324 7 15 5,055 322

kroA100 1.3 483 6.7 25 4,571 665 10.4 13 10,315 472
kroA150 2.9 1,269 4.7 5 1,765 479 5.8 1 2,423 443
kroA200 63.2 35,209 158.3 81 48,046 5,038 421.6 65 128,725 6,338
kroB100 1.7 1,045 4.8 15 2,695 527 7.6 7 5,600 474
kroB150 9.2 6,165 136.8 201 70,075 8,662 296.5 103 166,759 6,718
kroB200 14.7 9,381 58.0 51 22,487 3,360 159.9 39 72,867 3,090
kroC100 0.8 233 1.6 3 415 222 1.6 1 415 222
kroD100 0.6 149 0.5 1 78 45 0.5 1 78 45
kroE100 1.4 641 3.2 9 1,721 404 6.2 7 3,725 337
lin318 7.4 1,817 19.1 7 3,416 975 50.8 3 13,649 1,027
pr124 2 827 3.4 3 931 456 4.5 1 1,309 557
pr136 10 7,229 72.7 343 58,952 6,349 151.1 249 131,984 5,879
pr144 1.4 345 2.2 1 399 240 2.1 1 399 240
pr264 4.7 575 7.2 1 385 211 7.2 1 385 211
rat195 17.4 11,601 213.3 213 86,666 9,329 416.9 109 171,763 6,935
rat99 0.3 61 0.4 1 60 33 0.3 1 60 33
si175 100 92,573 120.8 303 79,904 9,223 324.9 365 243,729 10,065
st70 0.3 65 0.3 9 53 8 0.3 9 69 8

tsp225 23.5 11,557 598.8 339 194,266 22,860 1,372.2 225 450,928 16,907
u159 0.6 133 1.4 7 210 106 1.7 7 221 106
mean 10.3 6,739.8 69.1 67.2 24,202.6 2,875.4 151.7 49.6 59,823.1 2,553.0

geo mean 2.8 904.1 9.4 15.1 2,686.7 588.1 13.5 9.6 4,310.5 560.6

Table 5.1: Comparison with our CP model (WCC + k-cutset constraint + mandatory Hamiltonian
path constraint + one-tree constraint, named “basic model”) and the shaving method with the check
mode once and fixed point.

124 CHAPTER 5 — Shaving

on the number of search nodes. Unfortunately, this is still far from the factor 100 that we obtained
by checking all the optional edges of the graph.

5.2.3 Calling mode

In this section, we will study the calling mode which is the type of search node for which the
shaving is triggered. In a search tree we can assign a value to a variable (Apply) and we can
remove a value from the domain of a variable (Refute). Thus, we consider three modes: Apply,
Refute and ApplyAndRefute that run the shaving to both the search nodes Apply and Refute. In
Table 5.3, we notice that the mean number of search nodes is very close for Apply and for Refute.
However, it is reduced by about a factor of 2 for ApplyAndRefute. This can be simply explained
by the fact that the combination of the two avoids missing important domain reductions. We note
that the calling mode Refute is the fastest here. This is mainly due to brg180 which is solved 16
times faster. If we look more closely, very few edges are shaved for this instance and this instance
has very few refute search node. Thus, we get a much better trade-off by using the shaving for
Refute search nodes for this instance.

In Table 5.4, we observe similar results to those in Table 5.3. However, we notice that the call-
ingMode Apply is clearly more efficient in terms of the number of search nodes. As for Table 5.3,
ApplyAndRefute tends to be slower but to make fewer search nodes.

In Table 5.5, we notice that we check fewer edges than in Table 5.4 and Table 5.3. Thus, we
observe very close solving times for the three different calling modes. However, we also notice
that ApplyAndRefute allows us to reduce the number of search nodes.

Finally, if the priority is on the number of search nodes, then it is more interesting to use
shaving on apply search nodes and on refute search nodes. If the priority is on the solving time,
then we should either try to estimate the type of search tree we will obtain (i.e. if there is a similar
number of apply and refute search nodes, or if there is a dominance) or naively trigger the shaving
in either apply or refute mode.

5.2.4 Quick shaving

In order to obtain better practical results, we can also use the quick shaving method
[Lhomme, 2005]. A large part of the overhead brought by shaving is due to the fact that we
check many edges and we shave only a small proportion of them. The idea of the quick shaving is
to reuse the information provided by the search tree. Given n a node of the search tree. The quick
shaving exploits the fact that if a value checked in n is not shaved, then it will not be shaved by
the parent of n. Thus, the quick shaving is triggered only when a backtrack occurs in the search
tree. It considers only the shaved edges of its children by maintaining incrementally the set of
candidates. Initially, the set is empty. When a fail occurs in the search tree, the decision is added
to candidates and recursively this set will be modified.

In Table 5.6, we give the results of the quick shaving. Unfortunately, it does not work much
better than checking all edges for the TSP. Compared with Table 5.4, quick shaving is only 1.3
times faster on mean and produces 3.6 times more search nodes on mean and 1.9 times more search
nodes on geometric mean. It can be explained by several reasons. Fist, the quick shaving is based
on the backtrack algorithm. If x = a is a failing choice, the marked elements as “not shaved” will
be backtracked and therefore they will not be tried in x ̸= a. However, we observed that some not
shaved elements of x = a could have been shaved in x ̸= a. Then, the reduction of the number

5.2 – 5.2.4 Quick shaving 125

candidates: 1-mand candidates: 2-mand candidates: LCNode
search search search

Instance time nodes #check #shaved time nodes #check #shaved time nodes #check #shaved
a280 30.8 405 6,648 3,329 11.5 1,659 1,640 1,091 9.3 1,411 1,025 653

bier127 0.6 3 65 44 0.5 7 43 32 0.5 41 19 14
brg180 369.6 87 43,814 201 367.9 87 43,814 201 1.3 87 8 6
ch130 1.8 9 342 187 1.7 71 346 157 1.5 235 179 112
ch150 3.5 35 1,062 303 2.4 217 496 294 2.8 659 319 180
d198 12.5 161 3,222 1,421 9.2 973 1,489 964 12.2 2,561 1,485 804
eil101 0.6 15 146 22 0.4 19 62 27 0.3 59 20 12
gr120 1.2 5 230 142 1.0 51 136 98 1.2 165 93 59
gr137 4.8 51 1,402 613 2.5 267 440 319 2.3 373 313 195
gr202 2.0 17 320 203 2.7 209 319 177 1.7 199 85 58
gr229 122.5 1,179 37,874 16,384 49.4 4,971 13,492 6,099 47.4 13,691 8,420 5,306
gr96 2.6 67 1,034 447 1.3 143 255 173 0.9 113 88 46

kroA100 1.7 31 425 244 1.3 157 171 110 1.3 177 161 98
kroA150 3.2 23 769 339 4.5 415 1,106 671 3.9 821 731 472
kroA200 51.9 433 12,727 6,121 78.8 10,829 23,906 13,962 44.4 9,081 8,454 5,579
kroB100 4.4 69 1,735 720 3.3 677 933 709 2.5 477 458 290
kroB150 36.7 573 14,226 5,822 13.7 2,107 4,318 2,700 13.0 3,749 3,070 1,906
kroB200 23.1 227 6,989 3,160 20.7 2,727 5,788 4,501 13.8 3,859 2,336 1,412
kroC100 1.6 35 492 272 1.1 139 133 111 1.0 149 129 83
kroD100 0.7 5 138 100 0.4 11 52 39 0.4 79 65 43
kroE100 3.5 57 1,410 638 2.2 217 691 464 2.3 495 426 231
lin318 14.8 19 2,316 988 18.6 147 2,511 798 5.6 563 401 284
pr124 7.1 129 1,937 804 2.4 471 323 269 2.2 249 276 199
pr136 19.0 475 8,753 4,240 18.8 2,731 7,630 5,107 12.6 4,497 2,786 1,551
pr144 1.6 13 188 112 1.6 153 199 178 1.5 157 129 85
pr264 5.3 13 210 128 5.4 279 122 85 5.7 185 218 151
rat195 116.2 2,249 44,778 25,025 24.4 4,403 8,192 5,906 12.3 3,611 2,211 1,387
rat99 0.4 2 45 29 0.6 25 60 27 0.3 59 23 13
si175 56.1 259 25,285 5,002 369.6 29,845 191,537 45,648 164.7 72,579 47,256 26,771
st70 0.2 9 40 6 0.4 13 62 28 0.2 51 26 13

tsp225 148.7 1,725 46,593 20,210 77.1 11,439 20,144 11,320 33.1 6,243 4,901 2,981
u159 0.8 9 67 38 0.9 21 46 24 0.8 69 40 26
mean 32.8 262.2 8,290.1 3,040.4 34.3 2,358.8 10,326.8 3,196.5 12.6 3,960.8 2,692.2 1,594.4

geo mean 5.9 53.8 1,328.5 515.9 4.8 308.2 812.8 418.9 3.2 518.3 334.4 208.3

Table 5.2: Comparison of the shaving method with check: once and the candidates mode 1-mand,
2-mand and LCNode.

126 CHAPTER 5 — Shaving

calling: Apply calling: Apply and Refute calling: Refute
search search search

Instance time nodes #check #shaved time nodes #check #shaved time nodes #check #shaved
a280 34.1 1,045 8,040 4,711 30.8 405 6,648 3,329 14.3 387 2,929 1,617

bier127 0.6 9 61 41 0.6 3 65 44 0.5 7 68 47
brg180 369.4 87 43,814 201 369.6 87 43,814 201 23.0 87 3,786 1
ch130 1.6 19 279 165 1.8 9 342 187 1.9 21 285 168
ch150 3.2 77 901 326 3.5 35 1,062 303 3.6 111 989 388
d198 12.2 297 2,721 1,506 12.5 161 3,222 1,421 12.6 375 2,938 1,478
eil101 0.6 15 146 22 0.6 15 146 22 0.4 17 71 19
gr120 1.3 15 232 147 1.2 5 230 142 1.3 17 228 141
gr137 5.8 305 1,706 716 4.8 51 1,402 613 4.4 141 986 439
gr202 2.1 29 270 173 2.0 17 320 203 2.5 39 318 191
gr229 91.9 2,147 28,255 15,328 122.5 1,179 37,874 16,384 62.7 1,319 18,688 9,484
gr96 2.5 173 1,030 481 2.6 67 1,034 447 2.1 99 581 330

kroA100 1.6 69 414 283 1.7 31 425 244 2.3 77 564 343
kroA150 4.3 87 1,242 609 3.2 23 769 339 3.6 53 827 419
kroA200 38.8 827 9,106 5,498 51.9 433 12,727 6,121 56.4 1,017 14,884 8,176
kroB100 4.1 175 1,518 789 4.4 69 1,735 720 5.3 179 1,755 943
kroB150 28.7 1,083 10,591 5,835 36.7 573 14,226 5,822 20.2 709 6,805 3,265
kroB200 24.6 591 7,704 4,025 23.1 227 6,989 3,160 22.6 537 7,044 3,790
kroC100 1.4 63 260 171 1.6 35 492 272 1.4 67 410 237
kroD100 0.7 11 122 87 0.7 5 138 100 0.9 19 152 115
kroE100 3.3 111 1,253 655 3.5 57 1,410 638 3.4 125 1,137 551
lin318 12.6 41 1,760 834 14.8 19 2,316 988 13.8 79 2,101 985
pr124 5.7 237 1,469 875 7.1 129 1,937 804 6.8 303 1,961 1,248
pr136 15.2 1,093 6,424 3,641 19.0 475 8,753 4,240 17.2 1,079 7,705 3,754
pr144 1.6 27 186 113 1.6 13 188 112 1.5 15 149 113
pr264 5.4 23 165 100 5.3 13 210 128 6.1 29 296 192
rat195 72.8 2,941 27,516 17,138 116.2 2,249 44,778 25,025 71.6 2,849 23,090 11,912
rat99 0.4 1 45 29 0.4 1 45 29 0.5 1 45 29
si175 106.0 1,889 59,646 14,254 56.1 259 25,285 5,002 122.3 1,999 62,536 15,895
st70 0.3 9 40 6 0.2 9 40 6 0.1 9 15 5

tsp225 123.3 3,607 38,903 20,535 148.7 1,725 46,593 20,210 119.8 2,901 33,152 16,035
u159 0.7 9 67 38 0.8 9 67 38 0.8 11 60 40
mean 30.5 534.8 7,996.4 3,104.1 32.8 262.1 8,290.1 3,040.4 18.9 458.7 6,142.3 2,573.4

geo mean 5.8 108.1 1,221.5 530.9 5.9 52.7 1,328.5 515.9 5.1 104.0 1,043.2 430.0

Table 5.3: Comparison of the shaving method with check: once, candidates: 1-mand and the
calling mode Apply, ApplyAndRefute and Refute.

5.2 – 5.2.4 Quick shaving 127

calling mode: Apply calling mode: Apply and Refute calling mode: Refute
search search search

Instance time nodes #check #shaved time nodes #check #shaved time nodes #check #shaved
a280 11.6 53 2,537 783 12.0 37 2,522 773 8.5 43 1,748 851

bier127 3.8 3 760 350 3.4 3 760 350 3.7 9 764 353
brg180 369.8 87 43,814 201 369.6 87 43,814 201 23.1 87 3,786 1
ch130 2.3 11 646 280 2.2 7 654 284 2.3 17 594 272
ch150 2.4 3 461 242 2.1 3 461 242 2.2 3 461 242
d198 33.8 231 15,009 3,515 30.3 57 12,826 2,237 28.7 143 10,668 2,825
eil101 0.7 15 190 34 0.9 15 190 34 0.4 15 83 34
gr120 1.4 1 243 118 1.4 1 243 118 1.2 1 243 118
gr137 9.4 57 4,564 830 10.9 29 6,129 777 7.7 47 3,260 835
gr202 3.3 7 784 347 3.7 5 821 371 3.6 11 757 345
gr229 327.3 635 106,280 21,342 356.6 269 126,568 17,109 442.5 765 131,807 23,481
gr96 4.1 59 2,515 328 3.9 19 2,399 324 2.5 47 1,315 344

kroA100 5.9 65 3,452 702 6.7 25 4,571 665 4.6 27 2,205 518
kroA150 4.8 17 1,589 432 4.7 5 1,765 479 4.9 11 1,696 466
kroA200 127.0 187 37,927 5,459 158.3 81 48,046 5,038 133.8 255 40,168 5,040
kroB100 4.7 71 2,466 535 4.8 15 2,695 527 5.2 49 2,854 611
kroB150 105.5 499 52,632 8,816 136.8 201 70,075 8,662 109.3 593 55,566 10,648
kroB200 45.8 115 16,984 3,655 58.0 51 22,487 3,360 56.0 153 20,828 4,015
kroC100 1.7 3 415 222 1.6 3 415 222 1.7 9 407 216
kroD100 0.7 1 78 45 0.5 1 78 45 0.5 1 78 45
kroE100 3.1 21 1,524 364 3.2 9 1,721 404 2.6 17 1,076 305
lin318 18.8 11 3,413 972 19.1 7 3,416 975 16.3 27 2,639 1,068
pr124 3.2 11 898 432 3.4 3 931 456 3.8 5 937 461
pr136 49.3 675 36,695 5,919 72.7 343 58,952 6,349 36.3 531 26,177 4,689
pr144 2.1 1 399 240 2.2 1 399 240 1.9 1 399 240
pr264 7.0 1 385 211 7.2 1 385 211 7.3 1 385 211
rat195 174.3 619 73,328 11,258 213.3 213 86,666 9,329 140.6 607 58,324 10,477
rat99 0.4 1 60 33 0.4 1 60 33 0.3 1 60 33
si175 60.9 339 34,749 7,257 120.8 303 79,904 9,223 200.2 2,403 143,588 24,746
st70 0.2 9 53 8 0.3 9 53 8 0.2 9 29 8

tsp225 395.6 815 131,048 21,153 598.8 339 194,266 22,860 466.6 1,097 156,403 24,433
u159 1.3 7 210 106 1.4 7 210 106 1.3 7 198 106
mean 55.7 144.7 18,003.4 3,005.9 69.1 67.2 24,202.6 2,875.4 53.8 218.5 20,922.0 3,688.7

geo mean 8.6 25.6 2,399.2 596.8 9.4 15.1 2,686.7 588.1 7.6 28.2 2,051.5 523.6

Table 5.4: Comparison of the shaving method with check: once, candidates: full and the calling
mode Apply, ApplyAndRefute and Refute.

128 CHAPTER 5 — Shaving

calling mode: Apply calling mode: Apply and Refute calling mode: Refute
search search search

Instance time nodes #check #shaved time nodes #check #shaved time nodes #check #shaved
a280 5.2 1,107 186 138 9.3 1,411 1,025 653 5.7 821 466 278

bier127 0.5 53 7 5 0.5 41 19 14 0.5 39 4 4
brg180 1.6 101 1 1 1.3 87 8 6 1.6 87 8 6
ch130 1.4 343 71 53 1.5 235 179 112 1.4 217 123 71
ch150 1.8 433 106 73 2.8 659 319 180 2.0 435 195 110
d198 8.8 2,431 363 200 12.2 2,561 1,485 804 10.4 2,171 1,160 694
eil101 0.3 77 5 3 0.3 59 20 12 0.4 61 14 9
gr120 1.2 259 47 26 1.2 165 93 59 1.1 145 64 42
gr137 1.7 353 116 82 2.3 373 313 195 2.2 445 248 139
gr202 1.7 297 45 30 1.7 199 85 58 2.0 339 94 59
gr229 45.7 22,763 3,753 2,719 47.4 13,691 8,420 5,306 47.4 15,313 8,229 5,160
gr96 1.2 267 49 33 0.9 113 88 46 0.9 149 94 48

kroA100 1.2 389 104 78 1.3 177 161 98 1.4 211 166 90
kroA150 3.2 1,293 204 146 3.9 821 731 472 2.8 555 412 244
kroA200 37.1 13,427 3,705 2,858 44.4 9,081 8,454 5,579 44.8 9,993 7,528 4,710
kroB100 1.8 633 178 128 2.5 477 458 290 2.3 549 391 257
kroB150 13.6 7,271 1,600 1,190 13.0 3,749 3,070 1,906 15.3 4,793 3,117 1,835
kroB200 12.5 5,411 943 625 13.8 3,859 2,336 1,412 14.1 4,443 2,352 1,426
kroC100 1.1 207 54 37 1.0 149 129 83 1.1 145 105 68
kroD100 0.6 111 32 26 0.4 79 65 43 0.6 91 40 26
kroE100 1.6 559 156 111 2.3 495 426 231 2.5 591 424 214
lin318 5.4 1,197 76 50 5.6 563 401 284 6.7 937 490 350
pr124 2.0 507 193 153 2.2 249 276 199 3.0 531 426 285
pr136 12.7 7,521 1,206 713 12.6 4,497 2,786 1,551 11.0 3,977 2,223 1,274
pr144 1.6 249 41 29 1.5 157 129 85 1.3 155 87 60
pr264 5.1 229 122 98 5.7 185 218 151 5.7 153 179 80
rat195 12.7 5,823 1,146 814 12.3 3,611 2,211 1,387 15.1 4,727 2,427 1,461
rat99 0.3 51 9 4 0.3 59 23 13 0.3 53 6 3
si175 211.2 158,801 24,062 16,332 164.7 72,579 47,256 26,771 180.3 86,883 47,803 26,414
st70 0.3 63 12 5 0.2 51 26 13 0.4 41 12 7

tsp225 32.4 12,001 2,744 1,953 33.1 6,243 4,901 2,981 39.5 9,657 5,800 3,447
u159 0.8 125 20 12 0.8 69 40 26 0.6 89 33 24
mean 13.4 7,636.0 1,292.4 897.7 12.6 3,960.8 2,692.2 1,594.4 13.3 4,649.9 2,647.5 1,528.0

geo mean 3.0 741.0 131.6 89.6 3.2 518.3 334.4 208.3 3.2 555.3 260.6 159.4

Table 5.5: Comparison of the shaving method with check: once, candidates: LCNode and the
calling mode Apply, ApplyAndRefute and Refute.

5.2 – 5.2.5 Model 129

of search nodes obtained on the TSP is not due to particular edges, but by a set of particular edges
having a strong structural impact. In addition, the Lagrangian relaxation makes the growth of the
lower bound of the TSP non-monotone. Thus, if an edge is not shaved for a search node n, then it
can be shaved in the parent of n and therefore it violates a fundamental rule of the quick shaving.

5.2.5 Model

In this section, we will study shaving with different models in order to better understand the impact
of filtering algorithms on the shaving method. We then define 4 models: (1) WCC, (2) WCC + k-
cutset constraint, (3) WCC + k-cutset constraint + mandatory Hamiltonian path constraint and (4)
WCC + k-cutset constraint + mandatory Hamiltonian path constraint + one-tree constraint. Thus,
there is more and more filtering going from models (1) to (4). For the sake of readability, we split
the results in two tables (Table 5.7 and Table 5.8).

First, we see that adding filtering in the shaving is very efficient. For instance, the average
solving time of (1) is 2.994s while the solving time of (2) is 200.8s, that of (3) is 83s and finally
that of (4) is 69.1s. Compared to (1), we have a gain of a factor of 15 for (2), 36 for (3) and 43
for (4). Regarding the search nodes, we observe a gain factor of 23 for (2), 55 for (3) and 109
for (4). Nevertheless, one instance (brg180) works much better with less filtering. Here, this is
explained by the transition from the model (2) to the model (3). The mandatory Hamiltonian path
algorithm uses the 3-opt which has a complexity in O(n3). In the case of this instance solved with
the shaving method, this filtering algorithm does not filter anything and therefore add an overhead.
Finally, strengthening the filtering generally implies a reduction of the search space. Since the
shaving method is very time consuming, avoiding shaving rounds by reducing the search space
allows us to obtain huge factors improvement.

5.2.6 Search strategy

In Table 5.9, we compare the search strategy minDeltaDeg with and without LCFirst
[Fages et al., 2016]. Similar results are obtained (geometric mean of the solving times equal
to 10 with and without LCFirst) whereas in the initial paper of Fages et al. [Fages et al., 2016],
adding LCFirst clearly improves the results. Thus, with the shaving and minDeltaDeg, we are
able to remove LCFirst. In practice, we had some issues with this search strategy because of its
high dynamicity. For instance, the parallelization of the TSP solving with EPS which decomposes
the search tree in breadth whereas LCFirst needs to learn in depth [Isoart and Régin, 2020b]. In
Table 5.10, we observe similar results but LCFirst still improves the solving times by a factor of
1.5. Thus, the shaving reduces the impact of LCFirst. However, the choice of the search strategy
still has a strong interest in the TSP solving even with the shaving method (there is a 4.4 factor
between LCFirst minDeltaDeg and LCFirst maxCost).

130 CHAPTER 5 — Shaving

search
Instance time nodes #check #shaved

a280 9.3 51 2,162 839
bier127 3.5 9 764 353
brg180 22.2 87 3,786 1
ch130 2.1 17 594 272
ch150 2.4 3 461 242
d198 30.3 179 11,482 2,943

eil101 0.5 15 83 34
gr120 1.3 1 243 118
gr137 8.1 53 3,359 684
gr202 3.8 11 757 345
gr229 272.9 733 91,204 18,930
gr96 2.5 47 1,302 321

kroA100 3.9 27 1,953 452
kroA150 4.7 11 1,671 455
kroA200 97.0 173 28,725 3,593
kroB100 4.1 35 2,286 585
kroB150 110.5 651 55,755 10,040
kroB200 43.3 141 15,137 3,386
kroC100 1.7 9 407 216
kroD100 0.6 1 78 45
kroE100 2.3 13 1,065 298
lin318 17.1 21 2,755 1,058
pr124 3.5 5 937 461
pr136 39.9 737 28,933 4,860
pr144 2.1 1 399 240
pr264 7.2 1 385 211
rat195 190.5 859 81,958 10,583
rat99 0.4 1 60 33
si175 146.9 2,151 112,241 18,364
st70 0.2 9 29 8

tsp225 601.6 1,687 205,431 27,437
u159 1.2 7 198 106
mean 51.2 242.1 20,518.8 3,359.8

geo mean 7.4 28.4 2,015.2 501.2

Table 5.6: Results for the quick shaving method.

5.2 – 5.2.6 Search strategy 131

(1) (2)
search search

Instance time nodes #check #shaved time nodes #check #shaved
a280 208.6 393 81,684 4,622 9.5 39 2,696 819

bier127 3.3 7 1,115 237 3.6 3 768 363
brg180 39.9 87 43,823 210 47.1 87 43,823 210
ch130 21.6 119 19,040 1,508 2.3 7 738 252
ch150 8.9 29 5,342 633 2.3 3 458 211
d198 149.6 253 67,254 6,248 116.3 171 51,385 6,115
eil101 0.5 17 313 42 0.6 15 199 36
gr120 1.6 5 849 193 1.1 1 258 113
gr137 40.7 161 37,069 3,736 12.3 31 7,672 1,124
gr202 42.2 157 28,084 2,458 3.6 5 946 372
gr229 7,572.6 8,771 3,113,639 262,299 1,146.6 1,085 477,521 63,763
gr96 20.2 139 22,348 1,552 10.1 61 9,254 914

kroA100 18.5 91 18,422 2,034 13.5 67 13,444 1,697
kroA150 118.6 371 84,425 7,591 8.7 11 4,053 803
kroA200 59,401.7 125,449 32,686,090 2,501,415 307 155 98,130 9,668
kroB100 29.7 181 33,263 2,957 8 29 5,610 845
kroB150 8,297.0 21,771 5,475,450 455,628 1,048.7 1,889 629,892 72,606
kroB200 1,868.7 3,359 946,174 72,337 514.8 745 261,581 25,620
kroC100 10.5 57 8,977 801 2 5 768 273
kroD100 1.1 3 373 119 0.7 1 130 69
kroE100 32 217 36,388 3,234 9 47 7,264 606
lin318 480.6 311 142,167 13,170 153 45 34,745 4,742
pr124 31.1 73 21,738 1,746 6.2 7 2,069 624
pr136 426.1 3,879 463,644 38,748 144.1 1,059 149,278 12,897
pr144 1.6 3 376 194 1.9 1 357 196
pr264 7.6 3 710 383 7.1 1 370 203
rat195 746.1 1,233 335,858 31,170 308.6 367 130,379 12,435
rat99 0.4 5 206 62 0.3 1 81 41
si175 11,380.5 64,049 10,619,938 804,255 1,515.2 3,547 1,058,812 121,425
st70 0.2 9 62 10 0.2 9 53 8

tsp225 4,843.40 3,645 1,660,106 137,000 1,019.1 677 351,832 35,684
u159 2 13 842 147 1.6 7 252 128
mean 2,994.00 7,339.4 1,748,617.8 136,148.1 200.8 318.1 104,525.6 11,714.4

geo mean 55.9 188.0 31,355.3 3,305.3 16.3 31.8 6,076.2 1,093.6

Table 5.7: Comparison of the shaving method with check: once, candidates: full, calling: Ap-
plyAndRefute and the models (1) and (2)

132 CHAPTER 5 — Shaving

(3) (4)
search search

Instance time nodes #check #shaved time nodes #check #shaved
a280 11.1 35 2,479 770 12 37 2,522 773

bier127 3.6 3 765 362 3.4 3 760 350
brg180 366.6 87 43,814 201 369.6 87 43,814 201
ch130 2.1 7 626 275 2.2 7 654 284
ch150 2.2 3 415 206 2.1 3 461 242
d198 23.7 47 9,373 1,899 30.3 57 12,826 2,237
eil101 0.6 15 199 36 0.9 15 190 34
gr120 1.3 1 265 124 1.4 1 243 118
gr137 10.5 25 5,886 849 10.9 29 6,129 777
gr202 3.5 5 880 384 3.7 5 821 371
gr229 415.4 229 137,450 21,096 356.6 269 126,568 17,109
gr96 5.2 23 3,243 468 3.9 19 2,399 324

kroA100 7.7 35 5,997 809 6.7 25 4,571 665
kroA150 5.5 7 2,180 471 4.7 5 1,765 479
kroA200 135.5 65 41,010 4,493 158.3 81 48,046 5,038
kroB100 5.5 19 3,287 585 4.8 15 2,695 527
kroB150 118.1 179 63,187 8,094 136.8 201 70,075 8,662
kroB200 54.7 51 21,861 3,233 58 51 22,487 3,360
kroC100 1.6 3 436 232 1.6 3 415 222
kroD100 0.6 1 103 60 0.5 1 78 45
kroE100 3.0 7 1,502 322 3.2 9 1,721 404
lin318 20.5 9 4,228 991 19.1 7 3,416 975
pr124 6.2 7 1,969 528 3.4 3 931 456
pr136 72.8 415 63,454 6,405 72.7 343 58,952 6,349
pr144 1.9 1 366 210 2.2 1 399 240
pr264 6.7 1 366 201 7.2 1 385 211
rat195 282.5 327 122,762 12,322 213.3 213 86,666 9,329
rat99 0.3 1 78 40 0.4 1 60 33
si175 512.9 2,315 436,475 38,520 120.8 303 79,904 9,223
st70 0.3 9 53 8 0.3 9 53 8

tsp225 572.5 345 199,901 23,192 598.8 339 194,266 22,860
u159 1.1 7 226 116 1.4 7 210 106
mean 83.0 133.9 36,713.6 3,984.40 69.1 67.2 24,202.6 2,875.4

geo mean 10.4 18.1 3,279.5 675.1 10.0 15.8 2,871.8 617.1

Table 5.8: Comparison of the shaving method with check: once, candidates: full, calling: Ap-
plyAndRefute and the models (3) and (4)

5.2 – 5.2.6 Search strategy 133

minDeltaDeg LCFirst minDeltaDeg
search search

Instance time nodes #check #shaved time nodes #check #shaved
a280 11.4 37 2,522 773 12.0 37 2,522 773

bier127 3.7 3 760 350 3.4 3 760 350
brg180 368.0 87 43,814 201 369.6 87 43,814 201
ch130 2.1 7 654 284 2.2 7 654 284
ch150 2.4 3 461 242 2.1 3 461 242
d198 22.1 45 8,374 1,605 30.3 57 12,826 2,237
eil101 0.8 15 190 34 0.9 15 190 34
gr120 1.4 1 243 118 1.4 1 243 118
gr137 10.4 25 5,729 765 10.9 29 6,129 777
gr202 3.6 5 821 371 3.7 5 821 371
gr229 349.0 263 124,430 16,725 356.6 269 126,568 17,109
gr96 4.0 19 2,399 324 3.9 19 2,399 324

kroA100 6.2 23 3,978 568 6.7 25 4,571 665
kroA150 4.9 5 1,765 479 4.7 5 1,765 479
kroA200 143.0 69 44,354 4,569 158.3 81 48,046 5,038
kroB100 4.9 15 2,563 485 4.8 15 2,695 527
kroB150 145.7 213 73,327 9,122 136.8 201 70,075 8,662
kroB200 71.7 85 31,225 3,257 58.0 51 22,487 3,360
kroC100 1.7 3 415 222 1.6 3 415 222
kroD100 0.5 1 78 45 0.5 1 78 45
kroE100 3.4 9 1,721 404 3.2 9 1,721 404
lin318 18.8 7 3,416 975 19.1 7 3,416 975
pr124 3.6 3 931 456 3.4 3 931 456
pr136 63.2 365 53,378 4,825 72.7 343 58,952 6,349
pr144 2.1 1 399 240 2.2 1 399 240
pr264 7.2 1 385 211 7.2 1 385 211
rat195 126.0 129 50,319 6,684 213.3 213 86,666 9,329
rat99 0.4 1 60 33 0.4 1 60 33
si175 277.2 1,075 213,034 19,689 120.8 303 79,904 9,223
st70 0.3 9 53 8 0.3 9 53 8

tsp225 620.4 327 186,980 20,762 598.8 339 194,266 22,860
u159 1.3 7 210 106 1.4 7 210 106
mean 71.3 89.3 26,843.4 2,966.6 69.1 67.2 24,202.6 2,875.4

geo mean 10.0 16.3 2,871.5 605.9 10.0 15.8 2,871.8 617.1

Table 5.9: Comparison of the shaving method with check: once, candidates: full, calling: Ap-
plyAndRefute and the search strategy minDeltaDeg and LCFirst minDeltaDeg.

134 CHAPTER 5 — Shaving

maxCost LCFirst maxCost
search search

Instance time nodes #check #shaved time nodes #check #shaved
a280 13.4 45 2,672 720 13.0 47 2,915 727

bier127 4.1 3 760 350 4.0 3 760 350
brg180 5,323.8 7363 1108199 113708 390.2 407 100,168 10,420
ch130 2.2 7 596 264 2.2 7 596 264
ch150 2.2 3 461 242 2.3 3 461 242
d198 44.4 99 21,513 2,756 41.3 85 19,435 2,562
eil101 0.8 13 184 34 0.8 13 184 34
gr120 1.3 1 243 118 1.3 1 243 118
gr137 14.1 51 8,773 970 12.9 41 7,642 1,043
gr202 3.7 5 812 366 3.3 5 812 366
gr229 456.9 387 169,173 21,883 909.6 471 288,549 40,534
gr96 2.7 7 1,155 275 2.8 7 1,155 275

kroA100 7.6 31 5,537 588 4.8 11 2,770 587
kroA150 6.0 9 2,609 479 5.7 9 2,501 513
kroA200 1,181.8 819 425,935 24,290 1,289.9 863 447,906 39,340
kroB100 7.2 37 5,148 564 5.7 19 3,364 480
kroB150 581.7 857 313,399 17,569 551.8 835 302,339 22,796
kroB200 526.7 613 238,893 13,719 288.6 323 126,222 12,443
kroC100 1.7 3 408 217 1.7 3 408 217
kroD100 0.6 1 78 45 0.5 1 78 45
kroE100 3.5 15 2,038 302 4.1 15 2,261 357
lin318 25.4 9 5,392 1,454 25.2 9 5,024 1,178
pr124 4.9 5 1,277 565 4.7 5 1,277 565
pr136 123.0 627 103,289 3,970 63.2 251 47,101 4,518
pr144 2.1 1 399 240 2.0 1 399 240
pr264 7.4 1 385 211 7.3 1 385 211
rat195 1,090.8 1,149 475,689 15,659 921.8 1,099 398,060 31,491
rat99 0.5 1 60 33 0.4 1 60 33
si175 195.1 621 135,660 11,260 169.8 435 110,215 10,497
st70 0.3 9 53 8 0.3 9 53 8

tsp225 4,553.0 3,739 1,754,720 113,747 4,935.8 4,435 1,961,234 126,487
u159 1.3 7 210 106 1.4 7 210 106
mean 443.4 516.8 149,553.8 10,834.8 302.1 294.4 119,837.1 9,657.7

geo mean 16.8 30.5 5,045.8 937.6 14.4 24.6 4,329.3 923.2

Table 5.10: Comparison of the shaving method with check: once, candidates: full, calling: Ap-
plyAndRefute and the search strategy maxCost and LCFirst maxCost.

5.3 – Conclusion 135

5.3 Conclusion

In this section, we studied the shaving method. It consists in trying some pairs (variable, value),
to successively assign them. If a failure was triggered by a pair, then that pair cannot belong to
any solution. This method allows a reduction of the search space by several orders of magnitude
when trying each pair (variable,value) for each search node of the search tree. Unfortunately,
it leads to a huge overhead for the solving times. Therefore, we tried a lot of variations of the
shaving. For example, trying only the optional edges having at least one end with an adjacent
edge being mandatory, performing the shaving only for a specific type of search nodes, changing
the model while the shaving is performed, etc. All these results lead to the same conclusions: the
more we check edges, the more the search space is reduced and the more we use strong filtering
algorithms, the more the shaving will be efficient. Thus, a good trade-off is hard to find. If we
relax the filtering algorithm, then we will perform much more search node with a lighter shaving.
In addition, reducing the number of iterations of the Lagrangian relaxation led to weaker bound,
leading to a lighter filtering, leading to an augmentation of the search nodes. It should be noted
that this method is hard to implement: the shaving must be performed between the running of the
next search node and the end of the current search node therefore some data should be backtracked
whereas others do not. Finally, the shaving is a very interesting method obtaining a similar number
of search nodes to Concorde. Therefore, it shows that stronger filtering algorithms could lead to
equivalent performance to Concorde.

CHAPTER 6
Efficient implementation

In this chapter, we present various code optimizations and we show how we implemented
the TSP model in CP.

6.1 Data structures and algorithms 139
6.1.1 1-tree computation . 139

6.1.1.1 Updating the edge costs modified by the La-
grangian relaxation 140

6.1.1.2 Sorting the edges 141
6.2 Conclusion . 141

137

6.1 – Data structures and algorithms 139

6.1 Data structures and algorithms

All the introduced methods of this thesis have been implemented in a locally developed CP solver
in Java 11. First, we had to implement a graph variable. We needed to have access to: the
mandatory edges, the optional edges, the mandatory edges adjacent to a node, the optional edges
adjacent to a node and a delta over the modified edges. In addition, we have a direct access to
the number of neighbors both optional and mandatory for each node. For the various algorithms
we implemented, it was the right granularity. One disadvantage of this implementation is that
sometimes the codes must be duplicated if we want to apply the same things to both mandatory
and optional edges. Nevertheless, it can be hidden with syntactic sugaring.

When an instance is loaded, we construct both the graph variable represented by an adjacency
list and a matrix. Incrementally, we only maintain the adjacency list. The matrix allows us to
retrieve the id of an edge given a pair of nodes. For instance, the Mandatory Hamiltonian path
constraint is much easier to implement if we have the matrix.

Next, we made the decision to convert all the floating-point numbers (i.e. the edge costs mod-
ified by the Lagrangian relaxation) in long integer by multiplying them by a huge number. In
practice, we take the initial cost and we multiply it by 100,000,000. Then, we are dealing only
with long integers. It is much easier to deal with long than with float or double for most of the
algorithms we needed. In addition, it allows us to easily handle the rounding in the multipliers
optimization of the Lagrangian relaxation.

On the other hand, most of the memory we need is allocated at the initialization step. Only
some dynamic arrays allocate memory while solving, but it is quite rare and we carefully control
that. Our experiments are running without the garbage collector so dear to Java.

6.1.1 1-tree computation

Profiling our code, we observed that half of the solving time is spent in the computation of the
1-trees, the other half is for the structural constraints with a little part for the solver internal meth-
ods. Therefore, it is very important to carefully optimize the 1-tree computation. For the MST
computation we can use Kruskal’s or Prim’s algorithm [Cormen et al., 2009]. The filtering algo-
rithm (particularly, the marginal cost filtering) starts by removing a lot of edges in the input graph.
Indeed, it is very common on the graphs of the TSPLib to have at least 80% of the edges removed
at the root of the search tree (see Figure 6.1, 86% of the edges are removed). Note that all the
graphs from the TSPLib are initially complete graphs.

In practice, Prim’s algorithm is usually faster than Kruskal’s algorithm if the graph is dense,
which is not the case here. Therefore, we chose to use Kruskal’s algorithm every time we need to
compute a 1-tree. In addition, the marginal cost filtering algorithm needs to compute a specialized
data structure that is obtained from a Kruskal’s computation. Therefore, there is no interest to con-
sider Prim’s algorithm here. We recall that Kruskal’s starts by sorting the edges and successively
add an edge in the MST if that edge does not create a cycle in the MST. In order to detect if an
edge creates a cycle, we can use a DFS but it leads to poor results. Otherwise, we can use a disjoint
set data structure [Cormen et al., 2009] in order to reduce the time complexity of the algorithm. It
works by creating sets of elements that are connected. Therefore, if an edge has its two endpoints
in the same set, then adding that edge in the MST would create a cycle. In practice, we used a
non-recursive implementation of each algorithm we implemented.

Since we use Kruskal’s algorithm, we can divide the 1-tree computation in three parts:

140 CHAPTER 6 — Efficient implementation

Figure 6.1: Graph kroA100 from TSPLib [Reinelt, 1991] with 100 nodes. The left graph is the
input graph (a complete graph with 4950 edges). The right graph is obtained after propagation
round at the root of the search tree (687 edges).

1. Updating the costs modified by the Lagrangian relaxation

2. Sorting the edges

3. Computing the 1-tree

There is not much to optimize in the point 3. Thus, we will discuss the points 1 and 2.

6.1.1.1 Updating the edge costs modified by the Lagrangian relaxation

In practice, it is easier (and faster) to deal with an array than with an adjacency list. Our exper-
iments shown that it is worth spending times copying the edges in an array and sort the edges
within the array rather than using sorting algorithms dealing with adjacency lists. Note that arrays
allow a better use of the cache of the CPUs and we often call several times the sorting algorithms
on the same array not necessarily modify.

Therefore, we copy the id of each edge of the graph variable in two stacks represented by
arrays. One for the optional edges optEdges, the other for the mandatory edges mandEdges.
We can see optEdges as a “shrinking set” and mandEdges as a “growing set”.

Considering the problem of two successive updating of the costs in the same search node, there
is no need to copy every time all the edges in optEdges and mandEdges. Therefore, we can split
the problem in three cases:

1. Costs have been modified

2. Domains have been modified

3. Costs and domains have been modified

Our experiments shown that saving and restoring optEdges and mandEdges does not im-
prove the solving times. Therefore, at the beginning of each search nodes we copy all the edges in
optEdges and mandEdges. Then, in the search node we maintain the arrays. Since the costs are
modified in the Lagrangian relaxation only, we can initialize optEdges and mandEdges in the
beginning of the first propagation of the LR for each search node. Then, we must maintain them
and update the costs incrementally.

6.2 – Conclusion 141

The difference between two propagations of the LR is that some elements could be removed
or detected mandatory by the other constraints. Therefore, if it is not the first propagation of the
search node of the LR, then we parse the elements of optEdges and we remove the edges that are
no more in the optional edges of the graph. If an edge is removed but is newly a mandatory edge,
then we add it to mandEdges. In order to remove an element of optEdges we can either shift
the elements (we can parse and maintain an offset) or swap the element to remove with the last
element of optEdges. The difference between the two approaches is that swapping lost the order.
Here, there is no need to update the costs since only the LR modifies the costs.

If we are in the optimization step of the LR, then the costs are modified. Then, we simply parse
the edges of optEdges and mandEdges and to update the costs with the cost update function of
the LR. If a pruning algorithm was triggered between two optimization steps, then we must update
the elements of optEdges and mandEdges and update the costs.

These optimizations allow us to reduce by 20% to 30% the overall solving times.

6.1.1.2 Sorting the edges

In order to sort the edges for Kruskal’s algorithm, we tried a lot of sorting algorithms. Experi-
mentally, we defined that two of them are useful in the TSP purpose: the insertion sort in O(n2)
and the radix sort in O(wn) [Cormen et al., 2009] where n is the number of elements and w is the
length of the largest element.

The insertion sort is used when there are very few elements or very few modifications of the
costs. In practice, the insertion sort outperforms a lot of sorting algorithms when there are very few
elements or when the list is almost sorted even if it has a bad worst-case complexity. Otherwise, we
used the radix sort. In practice, we observed that the radix sort is faster than most of the candidates
we considered (quick sort, merge sort, ...). However, the radix sort must be implemented carefully.
First, we can have negative costs and a naive implementation of the radix sort did not handle that
correctly. Indeed, in the binary representation the last bit is the sign bit. Therefore, if the algorithm
sort elements with both negative and positive elements in non-decreasing order without taking care
of the sign bit, then the negative elements will be sorted between them, but they will be after the
positive elements (a negative number have its bit sign equal to 1). There are two ways to get over
this, we can parse the array after we sort the elements and put the elements at the beginning of the
array, or we can identify the negative elements before we sort them and perform the sorting step
over the negative elements then over the positive elements. We chose to use the second method
since we must update the costs, then we identify the negative elements and update the costs at the
same time.

6.2 Conclusion

In this chapter, we presented various optimizations that we implemented in order to obtain an
efficient code. First, we have shown our needs in terms of modeling. Then, we identified that most
of the solving time is used to compute 1-trees. Thus, we focused our attention on this algorithm.
We introduced an efficient way to parse the edges and update the costs modified by the Lagrangian
relaxation. Finally, we have shown the radix sort and the insertion sort perfectly suit for the 1-tree
computations.

CHAPTER 7
Conclusion and

Perspectives
7.1 Conclusion

In this thesis, we considered the TSP in CP. Starting from the state of the art, that is the WCC in
conjunction with the search strategy LCFirst, we defined and implemented three new constraints
and filtering algorithms:

• The k-cutset constraint imposes that any solution contains a strictly positive and even num-
ber of elements in each cutset. We defined a linear time filtering algorithm based on Tarjan’s
DFS for the k-cutset constraint. Given a k-cutset with k − 1 mandatory edges, if k is odd,
then it removes the non-mandatory edge. Otherwise, it makes mandatory the non-mandatory
edge. It also makes mandatory each edge belonging to a 2-cutset of the graph. Moreover,
if there is a k-cutset with k mandatory edges such that k is odd, then it raises a failure and
the current branch of the search tree can be aborted. Integrating this constraint in the WCC
allows obtaining a reduction of the solving times of more than a factor of 2.

• The mandatory Hamiltonian path constraint is based on the local search k-opt algorithm.
If a path of mandatory edges is not itself optimal (i.e. there exists a k-opt), then it cannot
belong to any optimal solution and the current branch of the search tree can be aborted.
Then, we defined a filtering algorithm removing edges: if a path can be improved when an
edge is appended to it, then it cannot exist an optimal solution simultaneously containing
that path and that edge. For this constraint, we defined an incremental version of the filtering
algorithm greatly improving the overall solving times. The integration of this constraint into
the WCC and the k-cutset constraint allows obtaining a reduction of at least a factor of 3.

• The one-tree constraint is based on the idea that if the problem can be decomposed in two
independent sub-problems, then a part of the 1-tree can be optimal in a sub-problem. This
constraint leads to a slight improvement of the results.

In order to improve the practical performances, we introduced SSSA which is an adaptive
algorithm for the CP-based Lagrangian relaxation. It stops local multipliers optimization when
the objective value no longer varies or oscillates and trigger the cost-based FAs at the end of the
optimization phase. We experimentally measured that this part of the optimization step did not
bring anything in terms of filtering. Therefore, using SSSA, the solving times are improved by a
factor 9.1 in mean and 3 in geometric mean.

143

144 CHAPTER 7 — Conclusion and Perspectives

We then use EPS in order to parallelize the search for solutions in parallel. First, we have
shown that the application of EPS to the TSP is not trivial. Indeed, EPS decomposition is breadth-
based whereas TSP embeds LCFirst, a depth-based search strategy. Then, we introduced Bound-
Backtrack-and-Dive, a diving algorithm, which consists in a first step of performing a sequential
execution with a bounded number of backtrack in order to study the behavior of LCFirst. Then,
run EPS, simulate LCFirst during the decomposition using our preliminary study and finally solve
with a classical LCFirst the generated sub-problems in parallel. We have experimentally shown
that the use of Bound-Backtrack-and-Dive improves the results compared to a sequential solving:
the mean solving time is reduced by a factor of 4.9 and the number of search nodes is reduced by
a factor of 1.9. Note that we used 8 workers. Then, we were interested in increasing the number
of workers.

In addition, we identified three major issues in EPS arising while solving the TSP:

• Non-monotonic decomposition.

• Unstable decomposition.

• Extremely heterogeneous sub-problems.

The non-monotonic decomposition issue is solved by using a stopping criterion of the decompo-
sition other than reaching the number of required sub-problems. Then, the two other issues are
solved using EPSrd. That is EPS with a re-decomposition policy of hard sub-problems. It detects
if there is a load balancing issue for a given problem. Then, it re-decomposes the sub-problems
causing that issue in order to better distribute the work to do. Thus, EPSrd use smaller decompo-
sition and re-decomposition steps than EPS and each time there is a huge load balancing issue it
re-decomposes the sub-problems. Therefore, it avoids the cases of both an insufficient proportion
of workers working because of some extremely heterogeneous problems and an unstable decom-
position. Experimentally, we showed that an overall improvement of the solving times for EPSrd
is obtained. In addition, with multiple runs of EPSrd we have shown that it is much more robust
than EPS.

We also studied the shaving method for the TSP. It consists in selecting some pair (variable,
value) and to successively assign them. If running a propagation step on an assignment leads to
a failure, then the value can be safely removed from the domain of the variable. Trying all the
pairs, we obtained a reduction over several orders of magnitude of the search space. However,
this method is quite slow and trying all the pairs leads to an increase of the solving times. Then,
we defined numerous variations of the shaving assigning particular pairs. Unfortunately, a good
trade-off is hard to find. The experiments shown two things. First, the more the number of checked
pairs is high, the more the search space is reduced. In addition, the more we use strong filtering
algorithms, the more the shaving will be efficient. Finally, a method reducing by several orders of
magnitude the search space is quite interesting especially when dealing with a problem that is so
difficult to solve such as the TSP. Thus, it makes us believe that stronger filtering algorithms could
lead to equivalent performance to Concorde.

In short, in this thesis we attacked the TSP with CP by introducing new constraints, engineer-
ing the state of the art constraint, introducing a method improving the parallelization of the TSP
and introducing a method reducing by several order of magnitude the number of search nodes.

In Table 7.1, we give an experiment showing the solving times before and after this thesis.
The column “Choco WCC” represents the solving times obtained with Choco and the WCC

7.2 – Perspectives 145

Choco WCC EPSrd
Instances time(s) time(s)

a280 806.6 1.6
d198 76.1 13.3

gil262 30,000.0 30.6
gr229 14,025.4 16.2

kroA200 30,000.0 7.3
kroB150 1,609.0 2.6
kroB200 2,218.9 6.6

pr264 21.6 16.5
rat195 330.5 5.7
si175 4,544.1 5.0
tsp225 4,171.4 9.6
mean 7,982.1 10.5

Table 7.1: Comparison of Choco WCC and our best configuration with parallelism.

[Fages et al., 2016], and the column “EPSrd” reprents the solving times we obtained with our
best model and EPSrd on 192 workers. For this table, we selected the common solved instances
of Table 3.17 and Table 4.8. We observe that a huge improvement factor is obtained. Indeed, the
mean solving time for Choco WCC is 7,982.1s whereas we obtain a mean solving time of 10.5s.
That is an improvement factor of 760. In order to obtain the best possible results, the model, the
implementation and making the best possible use of our machine are the three most important
things to deal with and this table showed that.

7.2 Perspectives

7.2.1 Continuation

In future works, the shaving method should be studied. Indeed, gain factors of two orders of mag-
nitude on the search space show that more filtering could lead to a comparable search space size
of Concorde. Therefore, it could be very interesting to search for a way to transfer the reduction
of the search space to the solving times.

A programming work should be done in order to consider larger graphs. Indeed, most of the
algorithms used throughout this thesis are systematic and consider all the edges of the graph. Thus,
using incremental algorithms, like the one we used for the mandatory Hamiltonian path constraint,
could greatly improve the solving time, especially for large graphs. For example, in the Lagrangian
relaxation we compute a succession of minimum spanning trees with Kruskal’s algorithm. Then,
one can ask the following question: is it possible to define an incremental algorithm for Kruskal’s
algorithm when the costs are modified? Or, is it possible to use an incremental algorithm in some
cases? It would save a lot of computation if we could do this incrementally.

Then, structural constraints such as the k-cutset constraint has shown a great interest. There-
fore, continuing in this way seems interesting. For instance, we could extend this idea to graph
nodes in order to deduce some filtering on edges.

Next, it could be interesting to split the problem of solving the TSP into some subproblems
consisting in solving a minimum Hamiltonian path problem. In some cases, it is possible. For

146 CHAPTER 7 — Conclusion and Perspectives

instance, if there is a 2-cutset in the graph, then the graph can be cut in two parts with exactly one
entry point and one exit point for each part. Then, each of these part can be solved independently
by solving the minimum Hamiltonian path problem. However, this requires to obtain an upper
bound on each part. This can be done with a modified version of LKH. In addition, we should be
able to split the problem into two independent sub-problems at any time in the search tree. Clearly,
this part is tricky and requires to carefully implement such a mechanism in a solver.

The work done on the mandatory Hamiltonian path constraint should be generalized. Indeed,
it is an original way to integrate local search method within CP solvers. Therefore, trying to
tackle other problems with this idea could be an original and efficient way to solve optimization
problems.

All the experiments of this thesis are performed on the instances of the TSPLib [Reinelt, 1991].
However, almost all the instances are constructed to be hard with pathological cases. Note that in
Section A we displayed all the 2D instances that we considered along this thesis. The Lagrangian
relaxation could be used in order to avoid it. For instance, if we detect that there is a 3-cutset of
optional edges in the graph, then we can add a constraint in the Lagrangian relaxation stating that
the optimal solution with the current assignment contains exactly 2 edges from this cutset.

7.2.2 Extension

The work we have done could be extended to variations of the TSP. For example, a first extension
case could be the extension to asymmetric graphs. In this case, the k-cutset constraint should be
modified to handle asymmetric graphs. For example, if we have a 2-cutset for the cut (S, T), then
there must exist an edge going from S to T and the other going from T to S. For the mandatory
Hamiltonian path constraint, since we check only valid permutations (i.e. we swap the edges only
with existing ones in the initial graph), there is no need to modify the algorithm.

Next, this work could be extended to VRP [Dantzig and Ramser, 1959], in which case the
k-cutset constraint and the mandatory Hamiltonian path constraint could be used without any
modification.

Finally, we could consider the TSPTW, that is a TSP with the constraint specifying that some
cities must be visited within a given time window. For this problem, the k-cutset constraint does
not need any modification, since it enforces the existence of a Hamiltonian path. However, the
mandatory Hamiltonian path should be carefully handled. Indeed, if a k-opt is found on a manda-
tory Hamiltonian path, then the k-opt must be consistent with the time windows constraint.

Bibliography

[Applegate et al., 2006] Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2006). The
traveling salesman problem: a computational study. Princeton university press.

[Barbagallo et al., 1996] Barbagallo, S., Bodoni, M. L., Medina, D., Corno, F., Prinetto, P., and
Reorda, M. S. (1996). Scan insertion criteria for low design impact. In Proceedings of 14th
VLSI Test Symposium, pages 26–31. IEEE.

[Beasley, 1993] Beasley, J. E. (1993). Lagrangian Relaxation, chapter 6, pages 243–303. John
Wiley & Sons, Inc., New York,NY, USA.

[Bellman, 1958] Bellman, R. (1958). Combinatorial processes and dynamic programming. Tech-
nical report, RAND CORP SANTA MONICA CA.

[Bellman et al., 1957] Bellman, R., Bellman, R., and Corporation, R. (1957). Dynamic Program-
ming. Rand Corporation research study. Princeton University Press.

[Benchimol et al., 2012] Benchimol, P., Van Hoeve, W.-J., Régin, J.-C., Rousseau, L.-M., and
Rueher, M. (2012). Improved filtering for weighted circuit constraints. Constraints, 17(3):205–
233.

[Bentley, 1992] Bentley, J. J. (1992). Fast algorithms for geometric traveling salesman problems.
ORSA Journal on computing, 4(4):387–411.

[Bergman et al., 2015] Bergman, D., Cire, A. A., and van Hoeve, W.-J. (2015). Improved con-
straint propagation via lagrangian decomposition. In International Conference on Principles
and Practice of Constraint Programming, pages 30–38. Springer.

[Borůvka, 1926] Borůvka, O. (1926). O jistém problému minimálním.

[Boudreault and Quimper, 2021] Boudreault, R. and Quimper, C.-G. (2021). Improved CP-Based
Lagrangian Relaxation Approach with an Application to the TSP. In Zhou, Z.-H., editor, Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
pages 1374–1380. International Joint Conferences on Artificial Intelligence Organization. Main
Track.

[Burton and Sleep, 1981] Burton, F. W. and Sleep, M. R. (1981). Executing Functional Programs
on a Virtual Tree of Processors. In Proceedings of the 1981 Conference on Functional Pro-
gramming Languages and Computer Architecture, FPCA ’81, pages 187–194, New York, NY,
USA. ACM.

[Cambazard and Fages, 2015] Cambazard, H. and Fages, J.-G. (2015). New filtering for AtMost-
NValue and its weighted variant: A Lagrangian approach. Constraints, 20(3):362–380.

[Carlier and Pinson, 1994] Carlier, J. and Pinson, E. (1994). Adjustment of heads and tails for
the job-shop problem. European Journal of Operational Research, 78(2):146–161. Project
Management and Scheduling.

147

148 BIBLIOGRAPHY

[Carlson, 1997] Carlson, S. (1997). Algorithm of the gods. Scientific American, 276(3):121–123.

[Chazelle, 2000] Chazelle, B. (2000). A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity. J. ACM, 47(6):1028–1047.

[Christofides, 1976] Christofides, N. (1976). Worst-Case Analysis of a New Heuristic for the
Travelling Salesman Problem.

[Chvátal, 1973] Chvátal, V. (1973). Edmonds polytopes and weakly hamiltonian graphs. Math.
Program., 5(1):29–40.

[Cook et al., 2011] Cook, W., Cunningham, W., Pulleyblank, W., and Schrijver, A. (2011). Com-
binatorial Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Intro-
duction to algorithms. MIT press.

[Dantzig et al., 1954] Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of America, 2(4):393–
410.

[Dantzig and Ramser, 1959] Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching
problem. Management science, 6(1):80–91.

[Debruyne and Bessiere, 1997] Debruyne, R. and Bessiere, C. (1997). Some Practicable Filtering
Techniques for the Constraint Satisfaction Problem. In IJCAI.

[Demassey, 2017] Demassey, S. (2017). Compositions and hybridizations for applied combina-
torial optimization.

[Ducomman et al., 2016] Ducomman, S., Cambazard, H., and Penz, B. (2016). Alternative Fil-
tering for the Weighted Circuit Constraint: Comparing Lower Bounds for the TSP and Solving
TSPTW. In AAAI.

[Edmonds, 1965] Edmonds, J. (1965). Paths, Trees, and Flowers. Canadian Journal of Mathe-
matics, 17:449–467.

[Edmonds and Karp, 1972] Edmonds, J. and Karp, R. M. (1972). Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems. J. ACM, 19(2):248–264.

[ein alter Commis-Voyageur, 1832] ein alter Commis-Voyageur (1832). "Der Handlungsreisende
– wie er sein soll und was er zu tun hat, um Aufträge zu erhalten und eines glücklichen Erfolgs
in seinen Geschäften gewiß zu sein – von einem alten Commis-Voyageur".

[Fages et al., 2016] Fages, J.-G., Lorca, X., and Rousseau, L.-M. (2016). The salesman and the
tree: the importance of search in CP. Constraints, 21(2):145–162.

[Flood, 1956] Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research,
4(1):61–75.

BIBLIOGRAPHY 149

[Fontaine et al., 2014] Fontaine, D., Michel, L. D., and Van Hentenryck, P. (2014). Constraint-
based lagrangian relaxation. In Principles and Practice of Constraint Programming - 20th
International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, pages
324–339.

[Ford, 1956] Ford, L. R. (1956). Network Flow Theory. RAND Corporation, Santa Monica, CA.

[Frangioni, 2002] Frangioni, A. (2002). Generalized Bundle Methods. SIAM J. on Optimization,
13(1):117–156.

[Galea and Le Cun, 2007] Galea, Fran c. and Le Cun, B. (2007). Bob++ : a Framework for
Exact Combinatorial Optimization Methods on Parallel Machines. In International Conference
High Performance Computing & Simulation 2007 (HPCS’07) and in conjunction with The 21st

European Conference on Modeling and Simulation (ECMS 2007), pages 779–785.

[Gomory, 1958] Gomory, R. (1958). Outline of an Algorithm for Integer Solutions to Linear
Programs. Bulletin of the American Mathematical Society, 64:275–278.

[Gonzales, 1962] Gonzales, R. (1962). Solution of the Traveling Salesman Problem by Dynamic
Programming on the Hypercube. Interim technical report. Massachusetts Institute of Technol-
ogy.

[Grötschel et al., 1991] Grötschel, M., Jünger, M., and Reinelt, G. (1991). Optimal control of
plotting and drilling machines: a case study. Zeitschrift für Operations Research, 35(1):61–84.

[Grötschel and Padberg, 1979] Grötschel, M. and Padberg, M. (1979). On the symmetric travel-
ling salesman problem I: Inequalities. Mathematical Programming, 16:265–280.

[Gutin et al., 2001] Gutin, G., Punnen, A., Barvinok, A., Gimadi, E., and Serdyukov, A. (2001).
The Traveling Salesman Problem and Its Variations.

[Gutwenger and Mutzel, 2000] Gutwenger, C. and Mutzel, P. (2000). A linear time implementa-
tion of SPQR-trees. volume 1984.

[Halstead, 1984] Halstead, R. (1984). Implementation of Multilisp: Lisp on a Multiprocessor.
In Proceedings of the 1984 ACM Symposium on LISP and Functional Programming, LFP ’84,
pages 9–17, New York, NY, USA. ACM.

[Haralick and Elliott, 1979] Haralick, R. and Elliott, G. (1979). Increasing Tree Search Efficiency
for Constraint Satisfaction Problems. Artificial Intelligence, 14:263–313.

[Held and Karp, 1962] Held, M. and Karp, R. M. (1962). A dynamic programming approach
to sequencing problems. Journal of the Society for Industrial and Applied mathematics,
10(1):196–210.

[Held and Karp, 1970] Held, M. and Karp, R. M. (1970). The Traveling-Salesman Problem and
Minimum Spanning Trees. Operations Research, 18(6):1138–1162.

[Held and Karp, 1971] Held, M. and Karp, R. M. (1971). The traveling-salesman problem and
minimum spanning trees: Part II. Mathematical Programming, 1(1):6–25.

150 BIBLIOGRAPHY

[Helsgaun, 2000] Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan trav-
eling salesman heuristic. European Journal of Operational Research, 126(1):106–130.

[Hopcroft and Tarjan, 1973] Hopcroft, J. E. and Tarjan, R. E. (1973). Dividing a graph into tri-
connected components. SIAM Journal on Computing, 2(3):135–158.

[Isoart and Régin, 2019] Isoart, N. and Régin, J.-C. (2019). Integration of Structural Constraints
into TSP Models. In Schiex, T. and de Givry, S., editors, Principles and Practice of Constraint
Programming, pages 284–299, Cham. Springer International Publishing.

[Isoart and Régin, 2020a] Isoart, N. and Régin, J.-C. (2020a). Adaptive CP-Based Lagrangian Re-
laxation for TSP Solving. In Hebrard, E. and Musliu, N., editors, Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research, pages 300–316, Cham. Springer
International Publishing.

[Isoart and Régin, 2020b] Isoart, N. and Régin, J.-C. (2020b). Parallelization of TSP Solving in
CP. In Simonis, H., editor, Principles and Practice of Constraint Programming, pages 410–
426, Cham. Springer International Publishing.

[Isoart and Régin, 2021a] Isoart, N. and Régin, J.-C. (2021a). A k-Opt Based Constraint for the
TSP. In Michel, L. D., editor, 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021), volume 210 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 30:1–30:16, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[Isoart and Régin, 2021b] Isoart, N. and Régin, J.-C. (2021b). A Linear Time Algorithm for the
k-Cutset Constraint. In Michel, L. D., editor, 27th International Conference on Principles
and Practice of Constraint Programming (CP 2021), volume 210 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 29:1–29:16, Dagstuhl, Germany. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[Isoart and Régin, 2020] Isoart, N. and Régin, J.-C. (EasyChair, 2020). Relationship Between
K-Cutsets and Comb Inequalities. EasyChair Preprint no. 2715.

[Johnson and McGeoch, 2008] Johnson, D. and McGeoch, L. A. (2008). The Traveling Salesman
Problem: A Case Study in Local Optimization.

[Jünger et al., 1995] Jünger, M., Reinelt, G., and Rinaldi, G. (1995). Chapter 4 the traveling
salesman problem. In Network Models, volume 7 of Handbooks in Operations Research and
Management Science, pages 225–330. Elsevier.

[Karger et al., 1995] Karger, D. R., Klein, P. N., and Tarjan, R. E. (1995). A randomized linear-
time algorithm to find minimum spanning trees. J. ACM, 42(2):321–328.

[Karp and L. Ruzzo, 1996] Karp, R. and L. Ruzzo, M. T. (1996). Algorithms in molecular biol-
ogy (course notes). department of computer science and engineering, university of washington,
seattle, waishington, usa.

BIBLIOGRAPHY 151

[Khemmoudj et al., 2005] Khemmoudj, M. O. I., Bennaceur, H., and Nagih, A. (2005). Combin-
ing arc-consistency and dual Lagrangean relaxation for filtering CSPs. In International Con-
ference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques
in Constraint Programming, pages 258–272. Springer.

[Korf, 1985] Korf, R. E. (1985). Depth-First Iterative-Deepening: An Optimal Admissible Tree
Search. Artif. Intell., 27(1):97–109.

[Kruskal, 1956] Kruskal, J. B. (1956). On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem. Proceedings of the American Mathematical Society, 7(1):48–50.

[Kuhn, 1955] Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97.

[Le Cun et al., 2007] Le Cun, B., Menouer, T., and Vander-Swalmen, P. (2007). Bobpp. http:
//forge.prism.uvsq.fr/projects/bobpp.

[Lecoutre et al., 2009] Lecoutre, C., Saïs, L., Tabary, S., and Vidal, V. (2009). Reasoning from
last conflict(s) in constraint programming. Artificial Intelligence, 173(18):1592 – 1614.

[Lenstra, 1974] Lenstra, J. K. (1974). Clustering a data array and the traveling-salesman problem.
Operations Research, 22(2):413–414.

[Letchford and Lodi, 2002] Letchford, A. N. and Lodi, A. (2002). Polynomial-Time Separation of
Simple Comb Inequalities. In Cook, W. J. and Schulz, A. S., editors, Integer Programming and
Combinatorial Optimization, pages 93–108, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Lhomme, 2005] Lhomme, O. (2005). Quick Shaving. In AAAI.

[Lin, 1965] Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44:2245–2269.

[Lin and Kernighan, 1973] Lin, S. and Kernighan, B. (1973). An Effective Heuristic Algorithm
for the Traveling-Salesman Problem. Oper. Res., 21:498–516.

[Malapert et al., 2016] Malapert, A., Régin, J., and Rezgui, M. (2016). Embarrassingly Parallel
Search in Constraint Programming. J. Artif. Intell. Res. (JAIR), 57:421–464.

[Martin and Shmoys, 1996] Martin, P. and Shmoys, D. (1996). A New Approach to Computing
Optimal Schedules for the Job-Shop Scheduling Problem.

[Menana, 2011] Menana, J. (2011). Automates et programmation par contraintes pour la planifi-
cation de personnel. PhD thesis, Université de Nantes.

[Or, 1977] Or, I. (1977). Traveling salesman type combinatorial problems and their relation to the
logistics of regional blood banking.

[Perron, 1999] Perron, L. (1999). Search Procedures and Parallelism in Constraint Programming.
In Principles and Practice of Constraint Programming – CP’99: 5th International Confer-
ence, CP’99, Alexandria, VA, USA, October 11-14, 1999. Proceedings, pages 346–360, Berlin,
Heidelberg. Springer Berlin Heidelberg.

http://forge.prism.uvsq.fr/projects/bobpp
http://forge.prism.uvsq.fr/projects/bobpp

152 BIBLIOGRAPHY

[Prim, 1957] Prim, R. C. (1957). Shortest connection networks and some generalizations. The
Bell System Technical Journal, 36(6):1389–1401.

[Régin, 1994] Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In
Proceedings of AAAI’94, the 12th (US) National Conference on Artificial Intelligence. Citeseer.

[Régin, 2008] Régin, J.-C. (2008). Simpler and Incremental Consistency Checking and Arc Con-
sistency Filtering Algorithms for the Weighted Spanning Tree Constraint. In Perron, L. and
Trick, M. A., editors, Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 233–247, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[Régin and Malapert., 2017] Régin, J.-C. and Malapert., A. (2017). Parallel Constraint Program-
ming. In Handbook of Parallel Constraint Reasoning,. Springer, y. hamadi and l. sais edition.

[Régin et al., 2013] Régin, J.-C., Rezgui, M., and Malapert, A. (2013). Embarrassingly Parallel
Search. In 19th International Conference CP 2013 Uppsala Sweden.

[Régin et al., 2014] Régin, J.-C., Rezgui, M., and Malapert, A. (2014). Improvement of the Em-
barrassingly Parallel Search for Data Centers. In O’Sullivan, B., editor, Principles and Practice
of Constraint Programming, volume 8656 of Lecture Notes in Computer Science, pages 622–
635. Springer International Publishing.

[Régin et al., 2010] Régin, J.-C., Rousseau, L.-M., Rueher, M., and van Hoeve, W.-J. (2010).
The Weighted Spanning Tree Constraint Revisited. In Lodi, A., Milano, M., and Toth, P.,
editors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 287–291, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Reinelt, 1991] Reinelt, G. (1991). TSPLIB—A Traveling Salesman Problem Library. ORSA
Journal on Computing, 3(4):376–384.

[Rosenkrantz et al., 1997] Rosenkrantz, D. E., Stearns, R. E., and Lewis II, P. M. (1997). An
analysis of several heuristics for the traveling salesman problem, volume 6, pages 563–581.

[Rosenkrantz et al., 1974] Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M. (1974). Approxi-
mate algorithms for the traveling salesperson problem. In 15th Annual Symposium on Switching
and Automata Theory (swat 1974), pages 33–42.

[Rossi et al., 2006] Rossi, F., van Beek, P., and Walsh, T., editors (2006). Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier.

[Sellmann, 2004] Sellmann, M. (2004). Theoretical Foundations of CP-Based Lagrangian Relax-
ation. In Principles and Practice of Constraint Programming - CP 2004, 10th International
Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings, pages
634–647.

[Sellmann and Fahle, 2003] Sellmann, M. and Fahle, T. (2003). Constraint Programming Based
Lagrangian Relaxation for the Automatic Recording Problem. Annals OR, 118(1-4):17–33.

[Tarjan, 1974] Tarjan, R. E. (1974). A Note on Finding the Bridges of a Graph. Inf. Process. Lett.,
2:160–161.

7.2 – 7.2.2 Extension 153

[Tarjan, 1983] Tarjan, R. E. (1983). Data Structures and Network Algorithms. CBMS-NSF Re-
gional Conference Series in Applied Mathematics.

[Tsin, 2009] Tsin, Y. H. (2009). Yet another optimal algorithm for 3-edge-connectivity. Journal
of Discrete Algorithms, 7(1):130 – 146. Selected papers from the 1st International Workshop
on Similarity Search and Applications (SISAP).

[Vidal et al., 2010] Vidal, V., Bordeaux, L., and Hamadi, Y. (2010). Adaptive K-Parallel Best-
First Search: A Simple but Efficient Algorithm for Multi-Core Domain-Independent Planning.
In Proceedings of the Third International Symposium on Combinatorial Search.

[Yeh et al., 2010] Yeh, L.-P., Wang, B.-F., and Su, H.-H. (2010). Efficient algorithms for the
problems of enumerating cuts by non-decreasing weights. Algorithmica, 56(3):297–312.

List of Figures

1.1 A set of nodes. 1
1.2 A TSP solution for Figure 1.1. 1

2.1 A transition table giving the transition times between the task i and j and the
corresponding graph such that the initial state is the node 3 connected to each
other state with gray arcs and no cost. 9

2.2 A comparison between an MST, a 1-tree and the optimal tour in a graph. 14
2.3 An iteration of the Held and Karp Lagrangian relaxation in a graph. In the left

graph, we give a 1-tree and for each node the associated multiplier πi. In the
right graph, the edges cost have been updated and a new 1-tree has been computed
leading to a better lower bound. 15

2.4 An example of comb inequalities. The left graph is the input graph such that each
edge has a cost equal to one. The middle graph is a solution of the relaxation of
Dantzig et al. such that a solid line is equal to one and a dot line is equal to 1/2.
The right graph is an example of a violated comb inequality for the solution of the
middle graph. 17

2.5 An example of 2-opt. The circle represents a tour where dashed lines are the
suggested move for the pair of edges ((x1, x2), (y1, y2)). 18

2.6 3-opt moves such that the circle represents a tour where dashed lines are the sug-
gested move for the triplet of edges ((x1, x2), (y1, y2), (z1, z2)). 19

3.1 An example from Benchimol et al. [Benchimol et al., 2012] of the marginal costs
filtering algorithm such that w(T (G1)) = 24, w(UB) = 25 and A is the 1-node.
G2 represents the resulting graph from the application of the filtering on G1 with
Property 3.2.1 such that T (G1) is represented by orange edges. 26

3.2 An example from Benchimol et al. [Benchimol et al., 2012] of the replacement
cost filtering algorithm. G3 represents the resulting graph from the application of
the filtering on G1 with Property 3.2.5 such that T (G1) is represented by orange
edges and the blue edges in G2 are the mandatory edges. 28

3.3 An example of a search strategy with LCFirst. We note “LCNode; (u, v)” such that
(u, v) is an assigned edge and ¬(u, v) is a removed edge. We observe that when
(d, e) and ¬(d, e) have caused a fail, then d is backtracked as the LCNode choice.
We also observe that the choice of LCNode=e is backtracked from the fail of (e, a)
to the first refutation because no choice could so far exhaust the neighborhood of e. 30

3.4 Graph kroA150 from TSPLib [Reinelt, 1991] while solving in a CP solver. K1 is
a 2-cutset and K2 is a 4-cutset. 31

3.5 Representation of the graph from Figure 3.4 with mandatory edges (blue) and
optional edges (dark). The two k-cutsets K1 and K2 are displayed in red. 32

3.6 Example of building a CST. 34

155

156 LIST OF FIGURES

3.7 {e1,e2} is a 2-cutset. {e1,e4,e5} and {e1,e6,e7} are 3-cutsets including e1. We can
deduce that {e2,e4,e5} and {e2,e6,e7} are 3-cutsets including e2. 35

3.8 Given G a 2-edge-connected graph. Gp−m is the path-merged graph of G such that
the mandatory paths are p1 = [A, J, H] and p2 = [B, K, D]. Gm is the merged
graph of Gp−m. G2−m is the 2-merged graph of Gp−m. 40

3.9 Representation of Gopt such that G is the graph of Figure 3.5. 41
3.10 G1 represents the 2-merged graph of the path-merged graph of Figure 3.5. Blue

edges are mandatory paths and dark edges are bridges. 43
3.11 Example of an execution of the k-cutset pruning algorithm on the graph (1). Blue

edges are mandatory paths, dark edges are bridges. The red node is the current
2-edge-connected component of the algorithm step. 46

3.12 The left graph is a subgraph of G. The blue edges are from M , they form a
mandatory Hamiltonian path going from x3 to x4. The dashed edges are from D
(the deleted edges). The red edges from the right graph represent an alternative
path of the blue edges from left graph. 55

3.13 In this graph, we consider the 2-vertex-cutset {i, j} and its cut (G′, G′′) such
that the nodes set of G′ is {i, j, A, B} and the nodes set of G′′ is {i, j, C, D}.
The optimal solution of the TSP is [i, A, B, j, D, C, i]. The optimal solution
of MHP (G′, i, j) is [i, A, B, j] and the optimal solution of MHP (G′′, i, j) is
[j, D, C, i]. Therefore, we can see that the solutions set of the TSP (G) is equiv-
alent to the Cartesian product of the solutions set of MHP (G′, i, j) and the solu-
tions set MHP (G′′, i, j) for the a 2-vertex-cutset {i, j} in G. 69

3.14 An example of a graph where the blue edges are mandatory, the dark edges are
optional and the orange edges are optional edges belonging to the 1-tree. 71

3.15 An example of a graph where the blue edges are mandatory, the gray edges are
optional and the orange edges are optional edges belonging to the 1-tree. Note
that OT1 and OT2 are two 1-trees such that the 1-tree edges in the red circle of
both OT1 and OT2 are different. The bottom graph is an optimal solution of both
OT1 and OT2. The choice of the 1-tree edges in the red circle does not depend
on the cost of the edges but on the choices that we have made outside of the red
circle. Thus, the 1-tree does not choose in any case the edges of cost 2 even if they
belong to the TSP solution. 72

3.16 Evolution of the LR optimal value (on the y-axis) according to the scope (on the
x-axis). (top graph) Beasley’s algorithm with #scope = 30. A segment between
green and dark squares corresponds to one agility value. Computations after red
crosses are identified as useless. (bottom graph) Scope sizing subgradient algo-
rithm. Computations are stopped at red crosses of the top graph. 76

4.1 Search for four sub-problems (q=4). In this search tree, the black squares are
the sub-problems with two mandatory edges assigned by the search (assignment
enumeration limit is equal to two), the orange squares are the sub-problems with
four mandatory edges by the search (assignment enumeration limit is equal to
four) and the red circles are the inconsistent sub-problems. 97

LIST OF FIGURES 157

4.2 Search for four sub-problems (q=4). In this search tree, the black squares are the
sub-problems with two mandatory edges by the search, green squares are the sub-
problems with three mandatory edges by the search , the oranges square are the
sub-problems with four mandatory edges by the search and the red circles are the
inconsistent sub-problems. 98

4.3 A search tree. The black area is the zone where the cardinality is lower or equal
than 2, the blue node represents a search node such that the cardinality is equal to
two. If the search tree is continued after the blue node, then we obtain the gray
area of the search tree. Yellow area needs to know the LCNode of the previous
branching node (i.e. d if the gray area is performed, a otherwise). Orange area
needs to know the LCNode from the yellow area. 99

6.1 Graph kroA100 from TSPLib [Reinelt, 1991] with 100 nodes. The left graph is
the input graph (a complete graph with 4950 edges). The right graph is obtained
after propagation round at the root of the search tree (687 edges). 140

A.1 a280 . 167
A.2 bier127 . 167
A.3 ch130 . 167
A.4 ch150 . 167
A.5 d198 . 167
A.6 d493 . 167
A.7 eil101 . 168
A.8 gil262 . 168
A.9 kroA100 . 168
A.10 kroA150 . 168
A.11 kroA200 . 168
A.12 kroB100 . 168
A.13 kroB150 . 169
A.14 kroB200 . 169
A.15 kroC100 . 169
A.16 kroD100 . 169
A.17 kroE100 . 169
A.18 lin318 . 169
A.19 pcb442 . 170
A.20 pr124 . 170
A.21 pr136 . 170
A.22 pr144 . 170
A.23 pr264 . 170
A.24 pr299 . 170
A.25 rat99 . 171
A.26 rat195 . 171
A.27 rd400 . 171
A.28 st70 . 171
A.29 tsp225 . 171
A.30 u159 . 171

158 LIST OF FIGURES

B.31 Imposition of the non-tree edge {i, j} and {k, l} in T . T is the left graph and
T{i,j} the right graph. The edge re is the support edge of {i, j} and {k, l} in T . . 172

List of Tables

3.1 Comparison of a static strategy (maxCost) with the integration of the k-cutset
constraint. 48

3.2 Comparison of LCFirst maxCost with the integration of the k-cutset constraint. . 50
3.3 Comparison of LCFirst minDeltaDeg with the integration of the k-cutset constraint. 51
3.4 Comparison of the state-of-the-art model with its best search strategy (WCC and

LCFirstMaxCost) and the WCC with the k-cutset constraint and its best search
strategy (LCFirst minDeltaDeg). 52

3.5 Comparison of mean and max k-cutsets size. 53
3.6 General results comparing the mandatory Hamiltonian path constraint combined

with either 2-opt or 3-opt and the basic model. 64
3.7 Comparison of solving times for the non-incremental and the incremental version

of the mandatory Hamiltonian path constraint. 65
3.8 Comparison of solving times for mandatory Hamiltonian path constraint with 2-

opt, 3-opt, 4-opt and 5-opt. 67
3.9 General results showing the results while integrating the one-tree constraint to the

basic model. 73
3.10 Comparison of solving times (in s) and the number of search nodes between scope

values for Algorithm 1. 79
3.11 Comparison of solving times (in s) between best, worst and best mean scope values

for Algorithm 1. 80
3.12 Comparison of solving times (in s) and the number of search nodes between scope

values for Algorithm 10. 81
3.13 Comparison of solving times (in s) between best, worst and best mean scope values

for Algorithm 10. 82
3.14 Comparison of solving times (in s) and the number of search nodes between scope

values for Algorithm 10 when the FAs are triggered between the agility rounds or
not. 83

3.15 Overall improvement. Comparison of solving times (in s) and the number of
search nodes between FLR and Algorithm 10 with scope=12. 84

3.16 Overall results obtained in this thesis for the sequential solving of the TSP in CP. 87
3.17 Comparison of the state-of-the-art code before the thesis and our implementation

of the same model. 88
3.18 Comparison of the state-of-the-art code before the thesis [Fages et al., 2016] and

now. 89
3.19 Comparison of Concorde and our best model for all the considered graphs of this

thesis. 90
3.20 Comparison of Concorde and our best model for all the symmetric graphs with

fewer than a hundred nodes in the TSPLib. 91

159

160 LIST OF TABLES

4.1 Comparison of sequential solving, EPS without diving, EPS without diving and
without LCFirst during decomposition. A ratio column compares the sequential
method with each EPS method. Greater ratio is better. 103

4.2 Comparison of the results according to the limit of the number of backtracks al-
lowed for diving. 104

4.3 Ratio of solving time and number of search nodes. It is calculated by respectively
dividing the results of a sequential execution with the results of Bound-Backtrack-
and-Dive execution. 105

4.4 Comparison of the number of sub-problems per worker (sppw) with limitBk=1, 000.106
4.5 General Results. It shows the differences between sequential execution, naive EPS

application and Bound-Backtrack-and-Dive with limitBk=1, 000 and sppw=100. . 107
4.6 Comparison between EPS and EPSrd for different values of #sppw. 114
4.7 Impact of the alpha value on the solving times in seconds. We note s.d. the

standard deviation of the solving times. 115
4.8 Solving evolution of EPS and EPSrd. 116
4.9 Comparison between EPS and EPSrd. 116
4.10 Comparison of the robustness of EPS and EPSrd. 117

5.1 Comparison with our CP model (WCC + k-cutset constraint + mandatory Hamil-
tonian path constraint + one-tree constraint, named “basic model”) and the shaving
method with the check mode once and fixed point. 123

5.2 Comparison of the shaving method with check: once and the candidates mode
1-mand, 2-mand and LCNode. 125

5.3 Comparison of the shaving method with check: once, candidates: 1-mand and the
calling mode Apply, ApplyAndRefute and Refute. 126

5.4 Comparison of the shaving method with check: once, candidates: full and the
calling mode Apply, ApplyAndRefute and Refute. 127

5.5 Comparison of the shaving method with check: once, candidates: LCNode and
the calling mode Apply, ApplyAndRefute and Refute. 128

5.6 Results for the quick shaving method. 130
5.7 Comparison of the shaving method with check: once, candidates: full, calling:

ApplyAndRefute and the models (1) and (2) . 131
5.8 Comparison of the shaving method with check: once, candidates: full, calling:

ApplyAndRefute and the models (3) and (4) . 132
5.9 Comparison of the shaving method with check: once, candidates: full, calling:

ApplyAndRefute and the search strategy minDeltaDeg and LCFirst minDeltaDeg. 133
5.10 Comparison of the shaving method with check: once, candidates: full, calling:

ApplyAndRefute and the search strategy maxCost and LCFirst maxCost. 134

7.1 Comparison of Choco WCC and our best configuration with parallelism. 145

List of definitions

2.1.1 TSP . 10

3.4.1 k-cutset constraint . 32
3.4.2 Identification edges . 33
3.4.3 k-edge-connected graph . 33
3.4.4 Failing k-cutset . 39
3.4.5 Prunable k-cutset . 39
3.4.6 Mandatory path . 39
3.4.7 Path-merged graph . 39
3.4.8 Merge of nodes . 39
3.4.9 Merged graph . 39
3.4.10Optional graph . 39
3.4.112-merged graph . 39
3.4.12Outgoing mandatory edges of a nodes set . 40
3.5.1 Mandatory Hamiltonian path . 55
3.5.2 Alternative path . 55
3.5.3 Minimal mandatory Hamiltonian path . 55
3.5.4 Mandatory Hamiltonian path constraint . 56
3.6.1 Minimum cost Hamiltonian path . 68
3.6.2 k-vertex-connected graph . 68
3.6.3 k-vertex-cutset . 68
3.6.4 Graphs intersection . 70
3.6.5 One-tree constraint . 71

5.1.1 Singleton arc consistency . 121
5.1.2 Singleton arc consistency on set-variables . 121

161

List of Algorithms

1 Beasley’s algorithm. 13

2 LCFirst(G) . 29
3 k-cutset(G = (X, M, O)) . 37
4 k-cutset(G = (X, M, O)) . 38
5 Perform the consistency check and the pruning of k-cutset constraint 45
6 Consistency check of the mandatory Hamiltonian paths. 56
7 Filtering algorithm for the mandatory Hamiltonian paths. 58
8 Incremental minimality check of the mandatory Hamiltonian paths 61
9 Incremental filtering of the mandatory Hamiltonian paths. 62
10 Scope Sizing Subgradient Algorithm. 78

11 LCFirst(G = (X), α) . 101
12 checkDecomposition algorithm . 111

163

Appendix

A Representation of the instance set

Figure A.1: a280 Figure A.2: bier127

Figure A.3: ch130 Figure A.4: ch150

Figure A.5: d198 Figure A.6: d493

167

168 ANNEXE

Figure A.7: eil101 Figure A.8: gil262

Figure A.9: kroA100 Figure A.10: kroA150

Figure A.11: kroA200 Figure A.12: kroB100

B Imposing edges in an MST

In this section, we are interested in the consequences of imposing edges in T a minimum spanning
tree. We prove that the sum of the marginal costs in T of the imposed edges is a lower bound of
the additional costs. More precisely, given w(T, e) the marginal cost of the edge e in T , we prove
that if we impose a set I of non-tree edges of T , then w(TI) ≥

∑
e∈I w(T, e) + cost(T) such that

TI a minimum spanning tree containing all the edges of I .
We recall the Optimality Conditions of an MST:

Property B.1.

ANNEXE 169

Figure A.13: kroB150 Figure A.14: kroB200

Figure A.15: kroC100 Figure A.16: kroD100

Figure A.17: kroE100 Figure A.18: lin318

• [Path Optimality Condition] A spanning tree T is a minimum spanning tree if and only
if it satisfies the following path optimality conditions: for every non-tree edge {i, j} of G,
cost({i, j}) ≥ cost({u, v}) for every edge {u, v} contained in the path in T connecting
nodes i and j.

• [Cut Optimality Condition] A spanning tree T is a minimum spanning tree if and only
if it satisfies the following cut optimality conditions: for every tree edge {i, j} of G,
cost({i, j}) ≤ cost({u, v}) for every edge {u, v} contained in the cut formed by deleting
edge {i, j} from T .

170 ANNEXE

Figure A.19: pcb442 Figure A.20: pr124

Figure A.21: pr136 Figure A.22: pr144

Figure A.23: pr264 Figure A.24: pr299

For the sake of clarity, we will consider that T is a minimum spanning tree of G and T{i,j} is
the minimum spanning tree containing the edge {i, j}.

Property B.2. Let G = (X, E) be a graph, {i, j} ∈ E be an edge of G. A minimum spanning
T{i,j} in G can be computed by first merging the nodes i and j and then by computing a MST.

The support edge of a non-tree edge is defined as follows:

Property B.3. The support edge se of a non-tree edge {i, j} is the non-mandatory edge with the
maximum cost of the simple path going from i to j in T .

ANNEXE 171

Figure A.25: rat99 Figure A.26: rat195

Figure A.27: rd400 Figure A.28: st70

Figure A.29: tsp225 Figure A.30: u159

Proof.

If the edge {i, j} is added to the tree, then a cycle is created and the Path Optimality Condition
implies that the edge of the cycle having the largest cost must be removed. Therefore, T{i,j} is
obtained by removing the support edge of {i, j} and adding {i, j} in T . □

Note that it is possible that an edge has no support edge by closing a path of mandatory edges.
In this case, we will consider that the marginal cost of this edge is infinite. Note that a filtering
algorithm will remove that edge.

Notation B.1.

172 ANNEXE

re

i j

k l

p q

k l

i j

p q

Figure B.31: Imposition of the non-tree edge {i, j} and {k, l} in T . T is the left graph and T{i,j}
the right graph. The edge re is the support edge of {i, j} and {k, l} in T .

• P (T, {i, j}) the edges of the simple path from i to j in the minimum spanning tree T .

• support(T, {i, j}) is the support edge of the edge {i, j} in the minimum spanning tree T .

• w(T, {i, j}) is the marginal cost of the edge {i, j}. It is defined by w({i, j}) −
w(support(T, {i, j})).

In Property B.4, we will show that imposing an edge {k, l} in T always leads to an increase
smaller or equal than that imposing {k, l} in T{i, j} such that {i, j} is another edge that we previ-
ously imposed.

Property B.4. ∀{k, l} ̸∈ T : w(T{i,j}, {k, l}) ≥ w(T, {k, l})

Proof.

There are two cases: support(T, {i, j}) belongs to P (T, {k, l}) or not.

If support(T, {i, j}) does not belong to P (T, {k, l}), then support(T{i,j}, {k, l}) =
support(T, {k, l}). Thus, the marginal cost is not changed.

Now, consider that support(T, {i, j}) ∈ P (T, {k, l}). T{i,j} is computed by applying the
replacement operation from T : the edge support(T, {i, j}) is removed and {i, j} is added.
Since support(T, {i, j}) ∈ P (T, {k, l}), then the path from k to l in T{i,j} is different from
P (T, k, l) because support(T, {i, j}) ̸∈ T{i,j}. Without loss of generality, we assume that k
can reach i in T when support(T, {i, j}) is removed from T . The path P (T{i,j}, {k, l}) can be
split into three parts: P (T{i,j}, {k, i}), {i, j} and P (T{i,j}, {j, l}). The edge {i, j} cannot be
a support edge because it is imposed in the spanning tree. Thus, the support edge of {k, l} is
either in P (T{i,j}, {k, i}) or in P (T{i,j}, {j, l}).

P (T{i,j}, {k, i}) can also be split into two parts (that can be empty): P (T{i,j}, {k, p})
and P (T{i,j}, {p, i}) where p is the node in P (T, {i, j}) and in P (T, {k, l}) whose re-
moval in T{i,j} disconnects k and i (See Figure B.31)∗. Clearly, we have ∀{u, v} ∈
P (T{i,j}, {p, i}), cost({u, v}) ≤ cost(support(T, {i, j})), because these edges be-
long to P (T, {i, j}) and the support edges have the largest cost. Similarly we
have ∀{u, v} ∈ P (T{i,j}, k, p), cost({u, v}) ≤ cost(support(T, {k, l})). In addi-
tion cost(support(T, {i, j}) ≤ cost(support(T, {k, l})) because support(T, {i, j}) ∈
∗In fact, there are three possibilities: either there is a path from i to j through k, or a path from k to j though i, or a

fork having i and k as extremities with p in the center and path from p to j. We consider only the latter case which is
more general.

ANNEXE 173

P (T, {k, l}). So, every edge in P (T{i,j}, {k, i}) has a cost that is less than or equal to
cost(support(T, {k, l})).

A similar reasoning can be applied to P (T{i,j}, {j, l}). P (T{i,j}, {j, l}) can also be split
into two parts (that can be empty): P (T{i,j}, {j, q}) and P (T{i,j}, {q, l}) where q is the
node in P (T, {i, j}) and in P (T, {k, l}) whose removal in T{i,j} disconnects j and l (See
Figure B.31). We have ∀{u, v} ∈ P (T{i,j}, q, j), cost({u, v}) ≤ cost(support(T, {i, j})),
because these edges belong to P (T, {i, j}) and the support edges have the largest cost.
We also have ∀{u, v} ∈ P (T{i,j}, {l, q}), cost({u, v}) ≤ cost(support(T, {k, l})). In
addition cost(support(T, {i, j})) ≤ cost(support(T, k, l)) because support(T, {i, j}) ∈
P (T, {k, l}). Thus, every edge in P (T{i,j}, {j, l}) has a cost that is less than or equal to
cost(support(T, {k, l})).

Hence, cost(support(T{i,j}, {k, l}) ≤ cost(support(T, {k, l}) so the marginal cost of {k, l}
in T is less than or equal to the marginal cost of {k, l} in T{i,j} . □

We can now define the wanted proposition:

Property B.5. Let T be an MST and I = {e1, e2, ...en} a set of non-tree edges of T . Then,
w(TI , {k, l}) ≥ w(T, {k, l}).

Proof.

We assume it is true for n − 1 edges. From Property B.4 we have w(Te1,e2,...en , {k, l}) ≥
w(Te1,e2,...en−1 , {k, l}). In addition we have w(Te1,e2,...en−1 , {k, l}) ≥ w(T, {k, l}). So, the
proposition holds. □

This means that we have the final proposition:

Property B.6. Let T be an MST and I = {e1, e2, ...en} a set of non-tree edges of T . Then,
w(TI) ≥

∑
e∈I w(T, e) + cost(T).

Le problème du voyageur de commerce en programmation
par contraintes

Nicolas ISOART

Résumé

Plusieurs modèles de programmation par contraintes, basés sur la méthode de relaxation la-
grangienne (LR), ont été introduits pour résoudre le problème du voyageur de commerce (TSP).
Dans cette thèse, nous définissons trois nouvelles contraintes et algorithmes de filtrage consid-
érant la structure du graphe. La contrainte k-cutset impose que toute solution contienne un
nombre strictement positif et pair d’éléments dans chaque cutset. La contrainte mandatory
Hamiltonian path est basée sur l’algorithme de recherche locale k-opt. Si un chemin composé
d’arêtes obligatoires n’est pas lui-même optimal (c.-à-d., il existe un k-opt), alors ce chemin
n’appartient à aucune solution optimale. Enfin, la contrainte du 1-tree est basée sur l’idée que
si le problème peut être décomposé en deux sous-problèmes indépendants, alors une partie du
1-tree peut être optimale dans un des sous-problèmes. De plus, nous introduisons l’algorithme
SSSA afin d’améliorer les temps de résolution. SSSA évite les oscillations et les non-variations
de la fonction objective de la LR. Ensuite, nous parallélisons la recherche de solutions avec Em-
barrassingly Parallel Search (EPS). Malheureusement, le mécanisme de décomposition d’EPS
est un processus à profondeur borné, contrairement à la stratégie de recherche utilisée pour
résoudre la TSP qui est en profondeur d’abord. Cela rend difficile l’obtention de bons résultats
en appliquant directement EPS. Afin de diminuer ce défaut, nous introduisons un algorithme
de précalcul. Cependant, des sous-problèmes avec des temps de résolution extrêmement dif-
férents peuvent apparaître. Pour remédier à cela, nous introduisons une méthode procédant à
des redécompositions dans EPS. Finalement, nous expérimentons sur la TSPLib. Nous mon-
trons que les contraintes structurelles permettent de réduire les temps de résolution d’un ordre
de grandeur, et que la parallélisation permet d’obtenir de très bons résultats liés au nombre de
coeurs.

Mots-clés : PPC, TSP, algorithmes, optimisation, parallélisme.

Abstract

Several constraint programming (CP) models, based on Lagrangian relaxation (LR), have been
introduced to solve the traveling salesman problem (TSP). In this thesis, we define three new
constraints and filtering algorithms based on the structure of the graph. First, the k-cutset con-
straint imposes that any solution contains a strictly positive and even number of elements in
each cutset. Then, the mandatory Hamiltonian path constraint is based on the local search k-
opt algorithm. If a path of mandatory edges is not optimal (i.e. it exists a k-opt), then it cannot
belong to any optimal solution. Finally, the 1-tree constraint is based on the idea that if the
problem can be decomposed in two independent sub-problems, then a part of the 1-tree can be
optimal in a sub-problem. In addition, to speed-up the practical performances, we introduce
an algorithm named SSSA to avoid oscillations and non-variations of the objective function of
LR, saving useless solving times. We also parallelize the search for solutions with Embarrass-
ingly Parallel Search (EPS). Unfortunately, a direct application of EPS does not lead to good
results for the TSP. Indeed, the decomposition mechanism of EPS is a depth-bounded process
whereas the search strategy used to solve the TSP is depth-first. Therefore, we define a div-
ing algorithm fixing this issue. However, sub-problems with extremely different solving times
may appear. Thus, we introduce a re-decomposition policy in EPS. Finally, our experiments
on the TSPLib showed that the structural constraints reduce the solving times by an order of
magnitude. Moreover, we show that our version of EPS leads to a huge improvement related
to the number of cores.

Keywords: CP, TSP, algorithms, optimization, parallelism.

	1 Introduction
	1.1 Experimental design

	2 The Traveling Salesman Problem (TSP)
	2.1 The problem
	2.1.1 Definitions

	2.2 Exact solving
	2.2.1 Relaxations
	2.2.2 LP relaxation

	2.3 Heuristic solving
	2.3.1 Tour construction algorithms
	2.3.2 Tour improvement algorithms
	2.3.3 Composite algorithm: Lin-Kernighan

	3 The TSP in CP
	3.1 Constraint Programming
	3.1.1 Modeling
	3.1.2 Filtering
	3.1.3 Propagation
	3.1.4 Search

	3.2 The Weighted Circuit Constraint
	3.2.1 Filtering

	3.3 The search strategy
	3.4 k-cutset constraint
	3.4.1 Introduction
	3.4.2 The k-cutset constraint and its filtering rules
	3.4.3 A non-complete quadratic time algorithm
	3.4.4 A linear time algorithm
	3.4.5 Experiments
	3.4.6 Conclusion

	3.5 Mandatory Hamiltonian path constraint
	3.5.1 Consistency Check
	3.5.2 Filtering algorithm
	3.5.3 Maintenance during the search
	3.5.4 Discussion
	3.5.5 Experiments
	3.5.6 Conclusion

	3.6 One-Tree constraint
	3.6.1 The constraint
	3.6.2 Experiments
	3.6.3 Conclusion

	3.7 Lagrangian Relaxation
	3.7.1 CP-based Lagrangian relaxation
	3.7.2 Scope Sizing Subgradient Algorithm
	3.7.3 Experiments
	3.7.4 Conclusion

	3.8 General results
	3.8.1 Analysis of the instances
	3.8.2 Large instances
	3.8.3 Experiments

	3.9 Conclusion

	4 Parallelization of the TSP solving in CP
	4.1 Introduction
	4.2 EPS
	4.2.1 Modifications of EPS mechanisms

	4.3 Decomposition issue for the TSP and LCFirst
	4.3.1 Bound-Backtrack-and-Dive and decomposition
	4.3.2 Experiments
	4.3.3 Conclusion

	4.4 Performance with a hundred cores
	4.4.1 Re-decomposition
	4.4.2 Experiments
	4.4.3 Conclusion

	5 Shaving
	5.1 Introduction
	5.2 Experiments
	5.2.1 Check mode
	5.2.2 Candidates
	5.2.3 Calling mode
	5.2.4 Quick shaving
	5.2.5 Model
	5.2.6 Search strategy

	5.3 Conclusion

	6 Efficient implementation
	6.1 Data structures and algorithms
	6.1.1 1-tree computation

	6.2 Conclusion

	7 Conclusion and Perspectives
	7.1 Conclusion
	7.2 Perspectives
	7.2.1 Continuation
	7.2.2 Extension

	Bibliography
	List of Figures
	List of Tables
	Appendix
	A Representation of the instance set
	B Imposing edges in an MST

