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Abstract

Energy consumption is an emerging concern in multiple domains and fields, including ICT and
data centers. In fact, the energy consumption of data centers has drastically increased in the
last decade for both hardware and software entities, especially due to the democratization of
cloud services and the huge amount of transiting data. Formerly, The energy consumption was
mainly related to the used hardware, and its capacity to maintain a low power consumption
while achieving tasks. However, the running software is in fact as important as hardware, and
is as responsible for very substantial gains or drawbacks in energy consumption.

The ultimate goal of this thesis is to help developers and practitioners understand and
actively think about green software design in their work, in order to reduce the energy
consumption of their software and deliver energy efficient products. We thus contribute to
supplement green software design knowledge.. To achieve this, we start with conducting a
qualitative study with developers, to discuss the multiple hurdles they are facing and their
requirements to promote green software design within companies.

To reduce software energy consumption, practitioners have to measure it and track its
evolution first. In our second contribution we investigate the problem of energy consumption
variations. We provide guidelines on controllable factors that one could easily tune to reduce
this variation and conduct steady and reproducible energy measurements.

Once practitioners are able to measure the energy consumption of their software, they
can work on reducing it and produce energy efficient software. Thus, this thesis delivers 3
more contributions, focusing on the Java language. The first contribution aims at helping
developers choose and configure their execution environment. We identified substantial
differences in energy consumption using multiple JVM platforms with different JIT and GC
configurations for different use cases. The second and third contributions study the impact on
energy consumption of small changes that developers often apply on their source code (code
refactoring and API/methods substitutions respectively). We show through these studies that
structure oriented code refactorings do not substantially alter software energy consumption.
On the other hand, Java I/O methods substitution drastically changed the energy consumption
depending on the use case.

This thesis contributes to enrich the knowledge on green software design and provides
insights and approaches to enhance the energy efficiency at multiple levels of software devel-
opment.





Résumé

La consommation d’énergie est une préoccupation émergente dans de nombreux domaines, y
compris pour les technologies d’informations et communications et les centres de données.
En effet, la consommation d’énergie des centres de données a considérablement augmenté
au cours de la dernière décennie, tant pour les entités matérielles que logicielles, notamment
en raison de la démocratisation des services en ligne et de l’énorme quantité de données
qui transitent. Auparavant, la consommation d’énergie était principalement liée au matériel
utilisé, et à sa capacité à maintenir une faible consommation d’énergie pour réaliser des tâches.
En réalité, le logiciel est aussi important que le matériel, et il est autant responsable d’une
diminution ou augmentation de l’énergie consommée.

L’objectif ultime de cette thèse est d’aider les développeurs et les praticiens à comprendre et
à introduire la conception de logiciels verts dans leur travail, afin de réduire la consommation
d’énergie de leurs logiciels et de fournir des produits économes en énergie. Nous contribuons
ainsi à compléter les connaissances sur la conception de logiciels verts. Pour y parvenir, nous
commençons par mener une étude qualitative auprès des développeurs, afin de discuter
des multiples obstacles auxquels ils sont confrontés et de leurs besoins pour promouvoir la
conception de logiciels verts au sein des entreprises.

Pour réduire la consommation énergétique des logiciels, les praticiens doivent d’abord
être capable de la mesurer et suivre son évolution. Dans notre deuxième contribution, nous
étudions le problème des variations de la consommation d’énergie. Nous fournissons des
lignes directrices sur des facteurs contrôlables que l’on peut facilement actionner pour réduire
cette variation et effectuer des mesures énergétiques stables et reproductibles.

Une fois que les praticiens sont capables de mesurer la consommation d’énergie de leurs
logiciels, ils peuvent procéder à sa réduction et à produire des logiciels économes en énergie.
Ainsi, cette thèse apporte 3 contributions centrées sur le langage Java. La première contribution
vise à aider les développeurs à choisir et à configurer leur environnements d’exécution. Nous
avons identifié d’importantes différences dans la consommation d’énergie en utilisant dif-
férentes plateformes JVM avec différentes configurations JIT et GC. Les deuxième et troisième
contributions étudient l’impact sur la consommation d’énergie de petits changements que les
développeurs appliquent souvent sur leur code source (refactoring de code et remplacement
d’API/méthodes respectivement). Nous montrons à travers ces études que le refactoring
structurel du code source n’impacte pas la consommation énergétique des logiciels de manière
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considérable. En revanche, le remplacement des méthodes de lecture/écriture dans Java
impacte considérablement la consommation d’énergie selon le cas d’utilisation.

Cette thèse contribue à enrichir les connaissances sur la conception de logiciels verts et
fournit des approches et des conclusions pour améliorer l’efficacité énergétique à plusieurs
niveaux du développement de logiciels.
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OSS Open Source Software
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Chapter 1

Introduction

Modern times and lifestyle created numerous needs and usages, especially in the digital sector:
among others, one could easily mention connected devices, wearables, Internet of Things,
smartphones, tablets, etc. At the same time, many existing services have migrated, at least
partially and sometime even totally, their activities to the Internet : online retailers, banking,
advertising, video and music consumption and even public services. All these new activities
have increased the overall environmental footprint of the Information and Communication
Technology (ICT) sector, which is estimated to be responsible for approximately 4% of the
greenhouse gaz (GHG) emissions worldwide in 2020 with a worrying 8% growth rate, accord-
ing to the French think tank The Shift Project [137], or 2% according to [13], a similar number to
the aviation sector contribution.

Energy consumption is one of the reasons for this environmental footprint, and it has quite
logically increased as well. Consumers devices (household equipments, computers, mobile
devices, etc.) are responsible for some part of this increase, while the networks, especially
mobile radio networks, also share a large responsibility. For data-centers, however, which
provide the storage and computing power required by all these services, things are not very
clear ; the evolution of their energy consumption is still subject to debate today. While
some assume a significant increase in the energy requirements of energy data centers [55],
others [86] argue that their energy consumption has been stable in the last 10 years, even
though storage and computing capacities have known a tremendous increase during the same
period, thanks to the improvements that have been made to achieve better energy efficiency in
these infrastructures.

In any case, one can easily argue that stable consumption is not really such a good news,
when the objective is to actually reduce the global footprint of every sector, including the
ICT one. There is also a fear that energy efficiency improvements of the last years will not be
sustained in the future, as the "low hanging fruits" have already been harvested, and that the
continued increase in computing power might not be offset in the coming years.
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Ultimately, the purpose is to reduce the digital energy consumption and/or its increasing
cadence. For data centers, multiple actions can be discussed in order to improve their energy
efficiency. These actions can take place at multiple stages in data centers’ life cycle. During
the acquisition phase, one can limit the purchase of components to the minimum needed,
choosing components with low power consumption and a least consuming manufacturing
process when possible. During the transportation and installation phase, the acquisition of
components can be grouped together in order to reduce the transportation CO2 cost, for
example. In the usage phase, multiple solutions are possible: using green energy sources,
lowering the energy cost of cooling, prioritizing repair to replacement, etc. Finally, the end-
of-life recycling phase can also be tuned to be energy efficient. However, existing Life Cycle
Assessments demonstrate that for data centers [151], the usage phase is responsible for the vast
majority of their environmental impact, mainly due to the electricity consumption. Therefore,
reducing that energy consumption is one of the most important factors to reduce the overall
environmental footprint of data centers.

Most current and past work on data center energy efficiency have focused on the infras-
tructure, the hardware, and its optimization. This includes, for example, reducing the energy
consumption of servers, cooling systems and other hardware components that are essential
for the proper functioning of the data center. These improvements are reflected in substantial
progress made on the Power Usage Efficiency (PUE) [95], an indicator commonly used to
measure how efficiently a data center uses energy.

However, as it is based on server energy consumption, the PUE only measures the efficiency
of the data center infrastructure; it does not take into account the efficiency of the servers
themselves, or more precisely, of the software running in these servers. Indeed, a modern data
center running only highly inefficient and badly written software can still have a very good
PUE. Thus, the software part should actually be considered as important as hardware and
infrastructure. In fact, the software running within servers and the data volumes transiting
between storage bays, switches and routers are responsible for using the hardware resources.
This usage can for example increase the clock frequency of the hardware and/or increase the
temperature of the data center, which requires more energy for the hardware components and
cooling.

Reducing software energy consumption (SEC) is thus very important to enhance the energy
efficiency of a data center and its CO2 impact. Numerous researches provided studies to
reduce SEC [35, 62]. These studies focused on multiple aspects of the assessment of software
energy, such as the accuracy and granularity of the measurements [53, 150], or the different
ways of reducing SEC [52, 126], for example.

The main purpose of our thesis is to help developers to produce software that consumes
less energy. We believe that promoting GSD (Green Software Design) and SEC considerations
should go through an important educational phase, to ensure that the community in general
and developers, in particular, are well motivated and aware of the stakes of GSD and their
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prominent role in reducing SEC and building less consuming software. This is easier said
than done, as there is not enough knowledge on how to build "green" software that can carry
developers’ choices for every use case. However, the man who moves a mountain begins
by carrying away small stones. Small enhancements and insights in this topic are still very
welcome to constitute a broad and robust set of knowledge that can be used to reduce SEC.

The remainder of this chapter is as follows. Section 1.1 states the main problems of green
software design. Section 1.2 expresses the objectives of this thesis. Finally, Section 1.3 explains
the organization of this document, including some contributions of the main chapters.

1.1 Problem Statement

The problem of digital energy consumption is critical. Numerous research and estimations
highlighted the urgent situation that needs to be truly considered. In fact, future ICT infras-
tructures can hardly slow their overall electricity use until 2030, and they will keep on using
more energy than today, despite the decrease of the energy cost per operation [8, 9]. Moreover,
data centers are estimated to account for around 1% of worldwide electricity use [95].

Although the PUE for data centers and the cost per computation / terabyte storage tends
to decrease [86, 95], the service demand is estimated to largely increase, including the global
data centers traffic, the global storage capacity, servers count, and data centers workload [95].

Similarly to hardware, software energy consumption plays a crucial role in the global
energy consumption of data centers. It is however a very complex problem to identify the
hotspots of software and reduce its energy consumption. SEC is mostly considered as a young
topic. Many researchers have been actively contributing during the last decade to tackle these
issues and disseminate the considerations of green software design among users, developers,
and other entities. However, the current situation is still not mature enough to provide concrete
solutions for multiple use cases, and guide developers to reduce the energy consumption of
the produced software.

Ultimately, SEC should have a similar importance and significance as software performance.
This is, however, far from being the case today. One major reason is that software performance
was prioritized for a long time. Seeking fast software and reducing the execution/response
time was always requested, as the results were immediately perceived. On the other hand,
the energy resource was not considered to be as critical as execution time for quite a while.
Now that the myth of infinite resources is not really arguable, and even with renewable
energy sources, developers should put more attention to the energy efficiency of what they are
producing.

One major problem next to the lack of knowledge is the bad communication and pop-
ularization of the acquired knowledge. In fact, many studies results are not intended for
developers. This implies that no mature tool is made available to developers to assist them in
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reducing the energy consumption of their software as it is the case for performance (such as
Sonarqube, for example).1

In this thesis, we try to tackle some of the previous problems, by first understanding
developers’ needs. Then, by extracting concrete guidelines from the studies/contributions we
conduct during the thesis.

1.2 Objectives

Our main goal is to help developers to reduce the energy consumption of the developed
software. To approach this, we constitute a set of sub-objectives that will drive our thesis.

The first objective of this thesis is to cover developers’ understanding and awareness of
GSD. This includes their sensitivity to the topic, their willingness to improve the current
situation and what they require to achieve it. Concerning the last point, we aim at identifying
the hurdles that developers are facing against a proper consideration of SEC, their tooling
needs, as well as ways to broadly improve and promote GSD within companies.

Next, we aim at delivering some insights on software energy consumption for Java and
Java Virtual Machine (JVM). First, we intend to investigate how to conduct robust and repro-
ducible experiments. For this, we need to ensure the accuracy and steadiness of the energy
measurements.

Then, we evaluate the behavior of different execution environments in terms of energy
consumption. The purpose is to investigate whether changing or tuning the execution
environment—particularly the Java environment—can substantially alter SEC.

Finally, we also aim at delivering insights and guidelines for Java GSD at source code level.
Especially the impact of some minor changes that developers often apply on their source code,
such as code refactoring or libraries substitution.

Concretely, we want to answer the following research questions:

RQ 1: How do developers perceive GSD? what are the requirements to promote its considera-
tion?

RQ 2: How to conduct robust, steady and accurate energy consumption measurements?

RQ 3: What is the impact of the JVM choice/configuration on SEC?

RQ 4: Does code refactoring have a substantial impact on the evolution of SEC?

RQ 5: Do minor changes on source code such as methods or libraries refactoring have a
substantial impact on SEC?

1https://www.sonarqube.org/

https://www.sonarqube.org/
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Figure 1.1: The organization of the different chapters of the document

1.3 Organization

Figure 1.1 depicts the organization of the chapters. The remainder of the document can be
summarized as follows.

• Chapter 2 summarizes the state of the art on software energy consumption. It introduces
numerous hardware and software tools used in the literature to measure SEC. Then, it
discusses developers understanding and awareness of SEC. Finally, the chapter presents
solutions of some studies aiming at improving software energy efficiency at execution
environment level and source code level.

• Chapter 3 investigates developers’ knowledge and awareness on SEC and highlights the
motivation of our work regarding the immaturity of the topic. The purpose of the chapter
is to identify developers’ requirements in terms of green software design (GSD) tooling,
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but also how to promote GSD within companies and among developers. This chapter
stipulates implications for developers, decision makers, tool creators, and researchers.

• Chapter 4 is motivated by the lack of convenient tools that was reported in the previous
chapter. Energy measurement being the first brick of GSD tools, this chapter shows how
energy measurements can vary and deliver inconsistent results for the same job, executed
on similar nodes or even on the same node. This chapter also provides guidelines on
controllable factors that practitioners can easily tune to tame this variation and conduct
more robust and stable energy measurement experiments, which will substantially
benefit the next chapters studies.

• Chapter 5 introduces one of the runtime platforms adopted by developers, "the JVM",
and focuses —similarly to the next chapters—on Java. It studies the impact that the
choice of a JVM platform and its configuration could have on the energy consumption
of software. Concretely, it investigates the differences in terms of energy consumption
between multiple versions of JVMs of several constructors, along with the JIT and GC
configurations that could reduce the SEC. It delivers insightful advices on how to set up
the JVM execution environment to reduce the SEC before deployment.

• Chapter 6 represents a study of SEC at code level. The purpose of this chapter is to
track the evolution of SEC of some Github projects and check whether structural code
refactorings can enhance or deteriorate the energy consumption of software over the
years. The conclusions of the study show that the SEC of projects functionalities trends
to decrease over time, and that structural code refactorings have a very mitigated impact
on SEC and could thus be applied without substantial drawbacks.

• Chapter 7 more specifically evaluates the impact that the choice of the Java I/O library
could have on SEC. 27 different I/O methods and multiple scenarios and use cases have
been considered to evaluate the most/least consuming ones. Refactoring the default I/O
methods of real Java projects/libraries proved to be energy efficient, with up to 30% of
savings in energy consumption.

• Chapter 8 presents our concluding remarks, contributions, and perspectives.

The main chapters of this thesis have been published in major software engineering con-
ferences as full papers: ESEM’20, ESEM’21, and ICSME’21. Concretely, Chapter 3 has been
published in ESEM 2020 [109]. Chapter 4 and Chapter 5, in collaboration with another thesis,
are published as ICPE 2020 [108] and ESEM 2021 [110] papers, respectively. Chapter 6 has
been published in ICSOFT 2021 [112], while chapter 7 has been accepted at ICSME 2021 [111].
These chapters have been revised and updated when writing this thesis.



Chapter 2

State of the Art on Software Energy
Consumption

Energy consumption efficiency is a well-known concept. In most domains, the purpose is to
reduce the consumption of the electronic devices/parts. Modern times even witness energy
classification (A, B . . . F) for many electric and electronic devices, such as screens and household
appliances, to give the consumer an idea of the energy consumption of his devices, which will
reflect on his electricity bill afterwards.

In computer science, the purpose is pretty much the same. Many researches have been
carried out on energy optimization. Some of these works are focusing on reducing the energy
consumption at the hardware level, while others focus on optimizing software’s consumption.

Figure 2.1 depicts the distribution of the digital energy consumption in 2017 [8] ("p" for
production and "u" for usage). It shows that the impact of both production and usage phases
are extensive. Moreover, the usage costs of data centers, networks, and terminals are all
significant (19%, 16% and 20% respectively).

For data centers, Avgerinou et al. [13] studied the evolution of power usage effectiveness
(PUE) for some companies participating in the European code of conduct for data center energy
efficiency program. The study reported on a slow decrease in the PUE of data centers which
represents the ratio of the total facility energy to the IT equipment energy. A low PUE indicates
that most of the energy is used for data centers IT equipment, and only little energy is used for
other purposes such as cooling and lights.

In this thesis, we focus on the energy efficiency induced by the software part rather
than hardware. Green software design can be defined as the energy consumption induced
from software lifecycle, including the planning, design, development, installation, use, and
decommissioning phases. The purpose of GSD is the development of a manageable software
that meets the present needs in a defined context, fulfilling a function over a time span with
the minimum environmental and ecological impact.

Reducing SEC is a part of GSD that focuses on the usage phase of a software.
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Figure 2.1: Distribution of the digital energy consumption in 2017

The second decade of the 21th century knew a recognition of software energy consumption
as a key topic by some researchers and entities [119, 121].

This chapter aims to summarize the state of the art on SEC by highlighting some of the
progress achieved in the topic. The first major requirement towards reducing SEC is to
be able to accurately measure the consumed energy. Section 2.1 reports thus on software
energy measurements. It includes examples of software and hardware measurement tools and
indicates the differences, advantages and disadvantages of these tools. It also discusses the
causes of energy measures variations, that constitutes a key challenge to reason upon accurate
measurements.

Section 2.2 discusses studies that cover developers and users’ needs and understanding
of SEC, and how to sensitize them about the importance of such considerations. In fact, such
knowledge is very important to collect developers requirements and needs, which can be used
to guide and shape further work. Finally, Section 2.3 reports on contributions to reduce SEC
at execution environment level and source code level. Studies at the execution environment
level help developers configuring and optimizing their infrastructure and execution environ-
ment, so their software consume less energy (with a focus on the JVM platform). Studies at the
code level, on the other hand, concern optimizations and changes on the source code of the
software itself to reduce its energy consumption. Including frequent changes that developers
often apply on the source code such as code refactoring.
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2.1 Measuring Software Energy Consumption

Achieving software energy efficiency is an iterative process that consists in many enhancements
and improvements to obtain a better source code and/or better execution environment without
impacting software functionalities, evolution and maintainability.

In order to produce an energy-efficient software, one first needs to faithfully assess software
energy consumption and record its evolution over time.

Numerous tools have been presented in the literature to measure software energy con-
sumption. One can distinguish 2 categories of tools: hardware tools and software tools.

2.1.1 Hardware tools

This category of tools requires a dedicated hardware to measure the energy consumption,
generally known to be very precise, but not fine-grained (give the general EC) and incur an
instrumentation phase, possibly an additional financial cost. In most cases, they are digital
measurement devices/boards that assess the energy consumed from the power supply in joules
or Wh. Similar tools have been used in the literature to measure software energy consumption.
The way these tools are used consists of measuring the energy consumption of a computer
or a server before and during the software’s execution. Software energy consumption is thus
inferred by subtracting the extra energy consumption that was induced by the software.

First, WattsUp Pro [56] is a device that has been used in several works [62, 96]. It is usually
installed between each computer/server and its power source to record the total energy
consumption at a maximum sampling rate of 1 sample per second and a maximum current
of 15 amperes. The device has an internal memory that can be used to log the measures. The
measures can cover a wide variety of data, including maximum potential, current, power,
and cumulative costs. The memory-stored data can be downloaded to a computer via a USB
cable. The product also works with a separate computer software Logger Pro or LabQuest
App to create graphs, calculations, and device profiles. If the need is to measure the energy
consumption of a cluster simultaneously, many WattsUp Pro devices might be necessary. The
price of a WattsUp Pro device fluctuates between 50$ and 120$.1 It can thus be very expensive
for a large project to acquire a set of devices.

PowerMon [20] and PowersMon2 [19] are other examples of hardware energy measure-
ment boards. These power monitoring devices operate between a system’s power supply and
a motherboard, to analyze the power consumption tradeoffs in software and computer applica-
tions. PowerMon monitors voltage and current on six DC rails and reports measurements at a
rate of up to 50 samples per second through a USB interface, allowing monitoring by the target
host or a separate host. PowerMon2 is a bit smaller, compared to its predecessor, allowing it to
be used in a 1U server chassis in the same 3.5 inch hard drive form factor. It also has 2 more

1https://camelcamelcamel.com/product/B000CSWW92

https://camelcamelcamel.com/product/B000CSWW92
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DC rails (for a total of 8) for additional peripherals, such as disks and GPUs. PowerMon2 also
uses a USB cable to report the power measurements at a maximum rate of 3 KHz. The price of
a single PowerMon device is higher than 150$.2

Similarly to PowerMon devices, PowerInsight [75] is another tool built on an external
board based on an ARM Cortex Processor. It is designed by Penguin Computing to accomplish
component-level power and energy instrumentation of commodity hardware. PowerInsight
can be connected to up to 15 components (disks, GPUs, etc.). It is also designed to work within
a cluster.

Each board inserted between a computer’s motherboard and its power supply is equipped
with an Ethernet port. This port is used to send and acquire data from/to the main node that
aggregates and saves data for the cluster’s energy consumption. Measurements have been
tested with the PowerInsight tool with a sampling rate of 1 sample per second.

GreenMiner [54] is a well-known measurement tool used in the literature, mainly to
measure the energy consumption of mobile applications [52, 134]. It is a hardware/software
test suite that runs tests on numerous devices and measures the energy consumption and the
power usage of the entire device. The GreenMiner client side is a Raspberry Pi that acts as a
testbed. It uses an Android test device to run the tests and collects the results from an Arduino
board that monitors the energy consumption. Energy is measured via an INA219 energy
measurement chip that samples and aggregates measurements with a frequency of 5 MHz.
The testbed records and uploads the INA219 measurements to the GreenMiner web service
that represents the server side, responsible for treating and analyzing the energy measurement
data.

Other works have also used some other hardware tools to measure the software energy
consumption in their studies, such as a 1500$ analog-to-digital data acquisition (DAQ) card (Na-
tional Instruments USB-6215) that samples the amount of power consumed by the component
at a 10 KHz frequency [90].

On-Chip Power Sensors

On-Chip power sensors constitute a sub-category of hardware measurement tools. These tools
are generally integrated with the underlying hardware and does not require extra boards or
devices.

RAPL [37, 67, 68] (Running Average Power Limit) is an Intel measurement tool. It is the
most commonly used tool to measure software energy consumption. Since sandy-bridge
mirco-architecture, Intel CPUs (but also AMD CPUs since family 17h Zen)3) use dedicated
RAPL registries to retrieve the power consumption every millisecond [58]. As illustrated
in Figure 2.2, RAPL is capable of delivering the energy consumption of the CPU package,

2https://renci.org/technical-reports/tr-09-04/
3http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html

https://renci.org/technical-reports/tr-09-04/
http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
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Figure 2.2: Power domains supported by RAPL [67]

constituted of CPU Core (cores and cache) and the CPU Uncore (LLC, integrated GPU, etc.), in
addition to DRAM. This high accuracy tool [67] is very easy to use as it requires no hardware
modification or extra purchases, as it is integrated within most of the latest Intel and AMD
newest CPU. RAPL also supports power capping to limit CPU energy consumption.

Similarly to RAPL, Nvidia Tesla GPU are equipped with power sensors [27]. These sensors
can be queried through Nvidia Management Library (NVML), which is a C-based program-
matic interface for monitoring and managing various states within NVIDIA Tesla GPUs [41].

2.1.2 Software tools

Software-based measurement tools are not devices, but software plugins and sensors (usually
cost-free), based on some other hardware tools to assess the energy consumption. The main
purpose behind these tools is granularity. In fact, most hardware tools only give the global
energy consumption of the whole system/component (computer, server, motherboard, etc.).
The measures are, however, less accurate than hardware tools as they are often built over
empirical estimations and data learning mechanisms. Many software measurement tools learn
the behavior of a power model and deliver energy consumption estimations. This model is
then used to distribute the observed energy consumption, via a hardware tool, between several
execution entities, at process level, control group, thread, or even code line.

PowerAPI [32] and SmartWatts formula [43] are first examples of software measurement
tools. These tools capture global energy consumption measures from RAPL and use other
system events such as cache misses/hits and CPU frequencies evolution (DVFS) through a
sensor, to build a power model of the control groups (system control groups, docker containers,
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kubernetes pods, etc.) based on a Ridge regression. The model continuously learns and
enhances energy consumption data in real-time with a maximum frequency of to 100hz. The
tool has a lightweight decentralized design. Only the lightweight sensors are installed within
the monitored machines to capture and send data to the main server. The SmartWatts formula
is then run on the main server to build the model that allows assigning the energy consumption
for each running control group. PowerAPI only works on Linux, installed on a bare-metal
physical machine.

WattWatcher [77] is a multi-core power measurement framework that offers fine-grained
energy measurements at process level. This tool is based on power models to estimate the
energy consumption of processes. To build the power model, CPU events are forwarded
from the measured node to a model generator node. It operates by passing event counts and
a hardware descriptor file into a configurable back-end In fact, WattWatcher uses a set of
predefined CPU architectures descriptors. This requires users to have a deep knowledge of
their hardware architecture and provide it by filling the hardware configuration file. The tool
uses several calibration phases to build a robust model. The authors claim an error margin
lower than 3% for the energy consumption measures.

Joulemeter [62, 71] is a windows based software provided by Microsoft that uses power
models (for CPU, memory and disks) to estimate the energy consumption of windows running
applications down to process level. It uses low-overhead power models to infer power
consumption from resource usage at runtime, and offers power capping capabilities for VMs.
Previous experiments with Joulemeter [61] showed that the tool provides a general idea of
energy consumption that differs significantly from the real energy consumption. Joulemeter
first needs a calibrating phase to adapt its models to the hardware it runs on. Only 1 process
can be measured per instance of Joulemeter with a sampling rate of one sample per second.

JRAPL is another example of SEC estimation tool used in numerous works [49, 83, 122]. This
Java framework allows profiling and measuring the energy consumption of Java applications,
functions or even a set of code lines. The measures are highly based on the RAPL provided
data. Thus, the global energy consumption obtained through RAPL between two timestamps
(start and end of the code to measure) is used to deduce the energy consumption of the Java
code. Experiments using JRAPL should be run on a well-configured system to reduce the
overhead of the OS and user processes on the global energy consumption used by JRAPL.
Pyjoules4 offers similar utilities to JRAPL, but for Python. This framework is also based on
RAPL’s global energy consumption, with an integration with Python source code to measure
the energy consumption of a code snippet.

Jolinar [103] is another process-level energy consumption measurement tool. The tool
needs no calibration phase and uses pre-established power models built on some hardware
parameters (TDP, disks I/O rate, etc.). These parameters should be found and provided by the

4https://pyjoules.readthedocs.io/en/latest/

https://pyjoules.readthedocs.io/en/latest/
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user for his hardware. Jolinar can only measure the energy consumption of 1 application at a
time, and only measures the energy consumption of its main process. The results are displayed
at the end of the execution, they include the energy consumption of CPU, DRAM, and disks.

For a Java application, Jalen [102] is able to profile and measure the energy consumption
down to the method level. Jalen can use code instrumentation and statistical sampling at a
specific rate to collect data. The authors advise using the second method due to the overhead
that code instrumentation could add. Jalen captures the JVM’s stack trace with the CPU time
of threads each 10 ms and computes statistics about the method calls. These statistics are then
used to deduce the energy consumption of each method.

2.1.3 Energy Consumption Variations

By energy variations, we refer to the problem of steadiness and stability when measuring
software energy consumption. This means that ruining the exact same job or application
within the exact same environment and configuration can result in different measures in
energy consumption due to many factors [53].

This variation has often been related to the manufacturing process [31] of CPU and com-
ponents, but has also been a subject of many studies, considering several aspects that could
impact and vary the energy consumption across executions. The correlation between the pro-
cessor temperature and the energy consumption was one of the most explored paths. Joakim v
Kisroski et al. reported that identical processors can exhibit significant energy consumption
variation with no close correlation with the processor temperature and performance [63]. The
registered differences in energy consumption were most significant for idle and high load
states with up to 29.6% and 19.5% variations respectively. However, Wang et al. [150] claimed
that the processor thermal effect is one of the most contributing factors to the energy variation,
and that the correlation between the CPU temperature and the energy consumption variation
is very tight. The Spearman correlation coefficient between CPU temperature and energy
consumption was higher than 0.93 for all experiments. This makes the processor temperature
a delicate factor to consider when comparing energy consumption variations.

The ambient temperature was also discussed in other papers as a candidate factor for the
energy variation of a processor. Varsamopoulos et al. [143] claimed that energy consumption
may vary due to fluctuations caused by the external environment. These fluctuations may alter
the processor temperature and its energy consumption. However, the temperature inside a
data center did not show major variations from one node to another.

Diouri et al. [38], the study showed that switching the spot of two servers does not sub-
stantially affect their energy consumption (this was also confirmed by Wang et al. [150], where
the rack placement and power supply only introduced a maximum of 2.8% variation on the
observed energy consumption). Moreover, changing hardware components, such as the hard
drive, the memory or even the power supply, does not affect the energy variation of a node,
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making it mainly related to the processor. The authors also noticed during their experiments
that old CPU versions could constitute a cause for a higher variation.

Beyond hardware components, the accuracy of power meters has also been questioned.
Inadomi et al. [59] used three different power measurement tools: RAPL, Power Insight and
BlueGene/Q EMON. The study showed that the variations in energy consumption are not
related to energy monitoring tools. In fact, all of the three tools recorded the same 10% of
energy variation on the executed benchmarks. The authors related those variations mainly to
the manufacturing process.

Mitigating Energy Variations. By acknowledging the energy variation problem on proces-
sors, some papers proposed contributions to reduce and mitigate this variation.

Inadomi et al. [59] introduced a low-cost scalable variation-aware algorithm that improves
application performance under a power constraint, by determining module-level (individual
processor and associated DRAM) power allocation. The algorithm uses a model to predict
the power consumption of applications. The model is based on the assumption that energy
consumption for both CPU and DRAM is proportional to the CPU frequency. Experiments
recorded up to 5.4× speedup on a 1920 sockets environment.

Acun et al. [4] suggested a way to reduce the energy variation on Ivy Bridge and Sandy Bridge
processors, by disabling the Turbo Boost feature to stabilize the execution time over a set of
processors. They also formalized some guidelines to reduce this variation by replacing the
old/slow chips with recent ones, by load balancing the workload on the CPU cores. They also
claimed that the variation between the CPU cores is insignificant.

Chasapis et al. [28] introduced an algorithm for parallel systems that can be used to
reduce the energy variation by compensating the uneven effects of power capping. The
algorithm needs a calibration phase, its approach considers numerous execution segments
of the application parallel execution and associates each segment with a particular power
and number of active core assignations per socket. It starts with evenly distributing power
and activating all cores and then progressively iterates over a set of available power/#cores
configurations and selects the best one. For each configuration, the targeted application runs
for a certain amount of time called a monitoring window.

Contrary to some paper results [38], Marathe et al. [93] highlighted the increase of energy
variation across some recent Intel micro-architectures by a factor of 4 from Sandy Bridge to
Broadwell. Moreover, they noticed a 15% of run-to-run variation within the same processor
and the increase of the inter-cores variation from 2.5% to 5% due to hardware-enforced
constraints. The authors suggested some recommendations for Broadwell chips to reduce the
energy consumption variations, such as leaving one hyper-thread per core idle for the system
processes, or avoiding co-locating high and low efficiency processors on the same node on
large-scale clusters.
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Tool Kind Granularity Sampling Rate Highlight
WattsUp Pro Hw System 1 sample/sec Pricey, USB connectivity
PowerMon Hw System 50 samples/sec Pricey, up to 6 plugged components
PowerMon2 Hw System 3000 samples/sec Pricey, up to 8 plugged components
PowerInsight Hw System 50 samples/sec Up to 15 plugged components, cluster compatible

WattProf HW System - -
GreenMiner Hw/Sw System 50 samples/sec Designed for Android applications

RAPL Hw System 1000 samples/sec Core, Uncore and DRAM energy consumption
SmartWatts Sw C-group 100 samples/sec Core, client-Server architecture, power estimation model

WattWatcher Sw Process - Several calibration phases, requires a Hw descriptor file
Joulemeter SW Process 1 sample/sec For Windows, one process at a time

JRAPL SW Method 1 sample/sec Java code profiling, based on RAPL
Pyjoules SW Method 1 sample/sec Python code profiling, based on RAPL
Jolinar SW Process 1 sample/sec One process at a time
Jalen SW Method 100 sample/sec Java code profiling

Table 2.1: Energy measurement tools

2.1.4 Summary

As a summary of software energy measurement tools, we distinguish two categories of those
tools. First, hardware tools. They require specific or additional hardware to measure the
energy consumption. The measures are precise but very often global of the whole measured
system. These kinds of tools cannot be used when targeting a fine-grained energy assessment.
Software tools on the other hand come on top of hardware tools to provide fine-grained
energy measurement (processes, C-groups, threads, methods,etc.). These tools are usually not
completely independent and use some measurements or events provided from the hardware.
Mostly built on estimation models, these tools are not as precise as hardware tools for energy
measurements. Fahad et al. [41] conducted a comparison between some of these hardware
tools(external: WattsUp Pro and on-chip: RAPL) and model based software tools (Extrae [6]
and Paraver [92]). They highlighted that these tools can report significant differences in energy
measurements. Table 2.1 lists and summarizes some of the tools described previously.

Many studies showed that software energy measurements are not stable. Numerous papers
approached the problem of SEC variations and tried to identify the causes behind them, such
as components manufacturing process, temperature, age, etc. These variations can be up to
30%, and can be recorded between identical nodes, and even within the same node. They
should thus be carefully considered when conducting SEC measurements.

2.2 Understanding Software Energy Consumption

In order to promote green software design and reduce software energy consumption, it is
important to understand the current situation, including developers and users needs on one
hand, and sensitize/teach them about the subject on the other hand. In the past decade, some



16 State of the Art on Software Energy Consumption

researchers have started such investigations to deliver an understanding on how to enhance
practitioners experience on GSD, especially within companies.

First, Pang et al. [114] surveyed 100 persons. They focused on investigating programmers’
knowledge of software energy consumption. Their results expressed a lack of knowledge
on ways and best practices to reduce software energy consumption, especially for desktop
computers compared to mobile devices. The paper claims that only 10% of the participants try
to measure the energy consumption of their software project, and only 17% consider reducing
software energy consumption as a requirement in software development. Moreover, the
authors mention an urgent need for training and education on software energy efficiency.

Pinto et al. presented an empirical study on how programmers understand software energy
consumption problems [119]. The authors used more than 300 questions and 550 answers
from 800 participants on Stack Overflow (SO) 5 as their primary data source. They stated that
practitioners are aware of software energy consumption problems, but have limited knowledge
and vague answers on how to deal with it. The extracted knowledge was divided into 5 themes:
energy measurement, general knowledge, code design, context specific and noise. The authors
also summarized 7 major causes and 8 common solutions evoked by developers for software
energy consumption problems. One of the encouraging insights of the paper is the yearly
increase of GSD-related questions and answers on SO, with a peak of 180%. 85% of these
questions are answered, 45% are correctly answered with an average of 2.6 answers per
question.

In a later work, Manotas et al. [91] conducted a mixed quantitative and qualitative study,
applied on 464 candidates from ABB, Google, IBM and Microsoft, and 18 from Microsoft
respectively. The study starts with the qualitative study. It consists of 18 semi-structured
interviews of 30-60 minutes each in order to deeply explore and understand participants’
opinions. The interviews were recorded, transcribed and then analyzed using open, axial and
selective coding. Then, a quantitative study is conducted with a larger set of participants in
order to quantitatively assess the quality of information learned from the interviews.

The study provided some interesting results, reporting for example that: i) mobile devel-
opers are more concerned about software energy consumption problems, ii) energy concerns
are largely ignored during maintenance, iii) energy requirements are more often desires rather
than specific targets, iv) developers believe they do not have accurate intuitions about the
energy usage of their code and are undecided about whether energy issues are more difficult to
fix than performance issues, and v) 93% of the survey participants want to learn about energy
issues from profiling and static code analysis.

Interestingly, this last result is in contrast to Johnson et al.’s work [64], in which they
interviewed 20 candidates through a qualitative study. They highlighted that developers do

5https://stackoverflow.com/

https://stackoverflow.com/
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not use static code analysis to find bugs, which adds a question mark on why are developers
more open to static code analysis when it comes to energy considerations.

In another similar work [62], the authors conducted a set of semi-structured interviews
to discuss the added value of an applied energy profiling method across releases of software.
More specifically, this work compares two versions of the same software and interviews the
developers while highlighting the registered increase in the energy consumption of the later
version after specific software changes (add of an encryption module). It discusses how such
a quantification of software energy consumption helps developers to create awareness and
eventually consider energy efficiency aspects when planning software releases.

Nevertheless, only few studies investigated the hurdles against SEC considerations within
companies and among developers [114]. Furthermore, to the best of our knowledge, no study
investigated developer’s requirements and needs in terms of tooling to efficiently track and
reduce software energy consumption.

2.3 Reducing Software Energy Consumption

Even if the topic of SEC is not mature yet, it has become an important topic and the subject of
many researches. The last decade witnessed an emergence of several papers and studies about
software energy efficiency. For the rest of the section, we showcase many of these studies,
organized at 2 different levels.

2.3.1 At Execution Environment Level

Several works have been conducted to improve the energy efficiency of the infrastructure
and the execution environment. The purpose is to set up and configure an environment
where software runs with the least energy consumption. This might include infrastructure
sizing, virtual machines and processes allocation/placement, system configuration, software
execution and scheduling, etc.

For instance, many works have been pursued to extend the battery life and reduce the en-
ergy consumption of mobile applications. Most of these works only focus on achieving battery
life savings, which does not completely reflect the energy efficiency of an application, due to
the high network and back-end cost that it induces. Balasubramanian et al. [15] compared
the energy consumption of 3 networking technologies (3G, GSM, and WiFi). They realized
through comparison that 3G and GSM consume much more energy than WiFi. They also
suggested a protocol TailEnder that reduces SEC by re-scheduling transfers for applications and
packages that accept some delay (such as emails), achieving up to 2 times energy consumption
improvement.

In another example, Othman and Hailes [106] showed through a simulation that users
jobs can be transferred from a mobile host to a fixed host (method offloading) to reduce the
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energy consumption of the mobile application and extend the battery lifetime by up to 20%.
This offloading method reduced both the energy consumption on the mobile devices and the
response time in some cases as the methods are sent to faster servers with higher performance.
However, the global energy consumption when using methods offloading does increase as it
includes the energy consumption of the offloaded methods on the servers and network energy
cost.

Other than mobile applications, Ribic and Liu presented Aequitas [126]. Aequitas is a
framework that helps to co-exist parallel applications on co-managed power domains, i.e.
that share the same resources (CPU cores). The applications cohabitation consists of a energy-
performance trade-off. Aequitas mainly achieves its purpose with a round-robin algorithm
(or other contention policy such as first-come-first-serve, or a policy to average the CPU
frequencies requested by contending parties) that allows the different applications and their
sub-threads to access the underlying hardware power management within their share of time,
with a focus on energy consumption. The experiments reported on up to 12.9% of potential
energy saving against only 2.5% of performance loss.

The energy consumption of VMs allocation and tasks placement has also been studied [97].
The authors suggest an algorithm to map tasks to VMs and VMs to physical machines in an
energy efficient way. Based on the resources requirements of each task, the algorithm selects a
VM then a physical machine where the VM can be deployed. The authors claimed that using
their allocation algorithm ETVMC reduces the number of active physical machines along with
the task rejection rate using a cloud simulator.

In another study on VMs, Kurpicz et al. discussed the total energy consumption of a VM
in a data center while highlighting the static cost [73]. They presented their model EPAVE as
being transparent, reproducible and predictive cost calculator for VM based environments.
EPAVE’s role is to attribute data center’s static and dynamic costs to each VM. The dynamic
cost includes the dynamic energy consumption part of the servers, routers and storage devices,
while the static cost aggregates the idle consumption of nodes and routers, air conditioning,
power distribution, etc.

According to Eddie Antonio Santos et al. [39], the usage of docker containers to run
software does not add a substantial overhead to the energy consumption. Concretely, this
empirical study compared the energy consumption of bare-metal applications against docker
containerized ones. The results reported on a non-substantial difference in energy consumption
except for docker I/O system calls. They advised developers worrying about I/O overhead to
consider bare-metal deployments over docker container deployments.

Java Environment

Java Virtual Machine is one of the most used execution environments to run software from a
wide range of programming languages (Java, Kotlin, Clojure, Scala, etc.).
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Java was originally developed by James Gosling at Sun Microsystems and released in
1995, before being acquired by Oracle in 2010. One key design goal of Java is portability,
which means that Java applications must run identically on any combination of hardware
and operating system with adequate runtime support. This is achieved by compiling the Java
language code to an intermediate representation, called Java bytecode, instead of machine code.
Java bytecode instructions are analogous to machine code, but executed by a JVM, which
is specific to the host machine. For example, Oracle provides the HOTSPOT JVM, while the
official reference implementation is now the OPENJDK JVM—a free and open-source software
used by most developers.

Programs written in Java have a reputation for being slower and requiring more memory
than those written in C++, but Just-in-Time (JIT) compilation, embedded in the JVM, delivers
a boost of performance by opportunistically compiling bytecode to machine code at runtime.
The JIT combines two compilers, C1 and C2 (also known as Client and Server VM), which are
triggered based on the activity of the hosted application. Additionally, Java uses an automatic
garbage collector (GC) to manage memory in the object lifecycle and recover the memory once
objects are no longer in use. Each JVM usually includes multiple GC, each designed to satisfy
different requirements. By default, HOTSPOT uses both C1 and C2 as tiered compilers,6 and
the Garbage-First (G1) GC with a maximum number of GC threads limited by available CPU
resources and heap size, whose initial size is 1/64 of physical memory and maximum size may
reach 1/4 of physical memory.7

Some studies investigated the impact that a JVM and its configuration could have on the
performance and energy consumption of software. Oi [104] conducted a performance analysis
and comparison between two JVMs: HOTSPOT and J9. They discussed in their results that the
relative performance of a JVM depends on the workload. In their experiments, the performance
of HOTSPOT ranged from 44% to 289% of J9, while its dynamic power consumption varied
from 2.7W to 7.2W with the SPECjvm2008 benchmarks.

HotSpot and J9 were also compared in other studies. Chiba et al. [29] evaluated the effect
that those 2 JVM platforms could have on the performance of a combination of big data query
engines (SPARK and TEZ), using TPC-DS benchmark. They reported on a 3-fold drawback that
one JVM can exhibit compared to the other.

On another note, Lafond and Lilius [74] attempted to assign a constant overhead to the JVM
usage and assess the energy cost of atomic bytecode instructions in order to classify the most
and least energy consuming bytecode instructions. The authors used a KVM environnement
and ARMulator to emulate the JVM. One of the reported results is the constant distribution in
energy consumption between the processor and memory over the execution, along with the
high energy consumption of the memory access ( 70%).

6http://www.ittc.ku.edu/~kulkarni/teaching/EECS768/19-Spring/Idhaya_Elango_JIT.
pdf

7https://docs.oracle.com/en/java/javase/15/gctuning/ergonomics.html

http://www.ittc.ku.edu/~kulkarni/teaching/EECS768/19-Spring/Idhaya_Elango_JIT.pdf
http://www.ittc.ku.edu/~kulkarni/teaching/EECS768/19-Spring/Idhaya_Elango_JIT.pdf
https://docs.oracle.com/en/java/javase/15/gctuning/ergonomics.html
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A similar idea was used to design a model for JVM-based software energy consumption,
using a bytecode level model [26]. The authors described their tool OPACITOR — that sums the
energy consumption of each Java bytecode instruction — as being deterministic, accurate, and
robust to the surrounding noise. However, they disabled the JIT and GC in their experiments
to maintain the deterministic behavior of their tool, which does not reflect a real software
execution given all the optimizations that the JVM triggers to optimize the software through
JIT.

2.3.2 At Code Level

This might be the optimization level that has been the focus of most studies and contributions
towards reducing SEC. The opportunities to reduce SEC cover two main axes.

• The first one is about the energy efficiency of the produced software, where the aim is to
reduce the energy consumption of the final product with selecting the most adequate
set of programming languages, tools, libraries, etc. It also includes all the efforts and
optimization that developers can apply on source code to enhance the energy efficiency
of the software during the operational phase;

• The second axis focuses on reducing the energy consumption of the coding phase it-
self. It includes all the methods, techniques or tools that can be used to reduce the
energy consumption of the coding phase by limiting the wastes of resources induced
by development and maintenance tasks. An example of such method is choosing green
development tools and procedures.

Reducing SEC at code level includes: i) Identifying the best set/combination of program-
ming languages that will allow producing the least consuming software, ii) Defining and
measure the key performance indicators (KPIs) to evaluate and improve the source code en-
ergy efficiency, iii) Evaluating the development tools (IDE, libraries, APIs) to reduce the energy
consumption of both the development phase and the produced software, iv) Investigating
green coding best practices and guidelines, v) Adapting the source code to the execution
environment capabilities for optimal performances and energy efficiency.

Many works have been conducted in order to reduce the energy consumption at code
level. For the energy efficiency of the coding phase itself, some works have evaluated the
energy consumption of some development tools. Kumar et al. [72] for example present in
their paper an early experience where they compared the energy consumption of some Java
development tools. They claimed across experiments that Intellij consumes less energy for JVM
calls compared to Eclipse and Netbeans. In another example, Strubell et al. [136] compared
the training phase power consumption and carbon footprint of multiple deep neural network
models for natural language processing. The study showed that training an inconvenient
model can cause a huge loss in power consumption and CO2 emission.
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For the energy efficiency of software products, numerous works tried to provide developers
with knowledge and guidelines on how to reduce the energy footprint of their software.
First, some works aimed at helping developers choose an energy-efficient combination of
programming languages for their software development.

Pereira et al. [118] conducted a comparison study of the most used programming languages
in terms of energy consumption. The work also delivers suggestions on how to combine some
of these languages to optimize the code quality considering the execution time, the memory
usage and the consumed energy. Some of the results of this study is the bad energy efficiency
that the interpreted languages—such as python—exhibit, compared to the compiled ones such
as C or Rust. The paper also suggests combinations of languages that developers could use
together to achieve a better energy efficiency, execution time and memory usage.

Other works investigated software energy consumption efficiency through source code
changes and optimizations. For example, some papers [42, 122] studied the effect of Java collec-
tions on energy consumption, with depending on the collection size and/or the most executed
tasks on the collection (insertion, removal, search). They provided some insights on the energy
efficiency of some collections for multiple scenarios. For example, Hasan et al. [52] compared
the energy consumption of several Java data structures, analyzing the bytecode using the
Wala framework8 and assessing the evolution of the energy consumption in different scenarios
(insertion at the beginning, iteration, etc.). They also used some automated replacement of
LinkedList and ArrayList to simulate best- and worst-case energy consumption scenarios
on real production applications. Their study showed that using inappropriate collection can
cause up to 300% of energy consumption inefficiency.

SEEDS and SEEDS-API is a fully automated framework, presented by Manotas et al. [90]
to analyze source code (at bytecode level for Java) and auto-tunes apps to reduce their energy
consumption, with a focus on Java collection tuning. The authors reported on up to 17%
improvement using their framework. For I/O libraries’ energy consumption, Rocha et al. [127]
conducted a comparative study of some I/O methods, mostly I/O classes that inherit from
java.io.In(Out)putStream and java.io.Reader(Writer). This preliminary study offers
some interesting insights on the behavior of some of the most common native Java I/O
methods. Nevertheless, the reported work lacks some of the most used I/O methods, and does
not deliver guidelines to reduce the energy consumption across multiple I/O scenarios and
use cases.

In another work, Pereira et al. [117] presented SPELL, the energy leaks detector tool. The
tool uses JRAPL [7, 122] to measure the energy consumption and instrument the source code.
It detects energy-inefficient code fragments using a statistical spectrum-based energy red spots
localization. The authors describe it as being language and context independent.

8http://wala.sourceforge.net/wiki/index.php

http://wala.sourceforge.net/wiki/index.php
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Jagroep et al. [62] discussed how energy profiling can be applied and provided an in-depth
analysis of SEC across releases. To do so, the authors performed 2 empirical studies: an
experiment to compare the EC of a commercial software Document Generator product across
numerous releases, then a semi-structured interview with stakeholders. Similarly to Mancebo
et al. [87], Sahin et al. showcased in their study how the energy consumption can increase
between software versions due to the insertion of new features. In their study it was the
introduction of an encryption module that caused a noticeable increase in energy consumption
between two versions of the Document Generator software, measured using both WattsUp
(hardware) and Joulemeter (software) tools.

Other works investigated the energy consumption of Java primitive types, operations
on strings, usage of exceptions, loops, and arrays [72, 84]. For example, Kumar et al. [72]
measured the energy consumption of code snippets and micro-benchmarks and presented
some observations, such as string concatenation consuming less than StringBuilder and
StringBuffer, static variables consume 60% more energy compared to instance variables, etc.

Mobile applications also witnessed numerous studies to reduce the energy consumption
and save battery life. Corral et al. [33] implemented software benchmarks issued from the
Computer Language Benchmarks Game (CLBG) in Java (Android App) and C (native and
through JNI) They reported on equivalent energy consumption for small Java and C jobs.
However, deporting some Android Java code and running it as a C code on a server can be
more energy efficient for large jobs (only for battery life as the network/back-end energy
consumption has not been considered).

Banerjee and Roychoudhury presented a lightweight technique that encodes the optimal
usage of energy-intensive hardware resources in an application [17]. The authors claim that
it can assist in energy-aware app development. Their work highlighted 4 main guidelines to
save energy on a mobile application: i) Resources must be acquired as late as possible and
released as early as possible, ii) Resources acquisition should not be nested, iii) QoS can be
traded-off to improve energy-efficiency if the context permits, iv) All resources acquired during
the execution of the app must be released before the app exits. Experiments on open-source
Android applications demonstrated up to 29% of energy savings.

In a similar context, Rodriguez [128] presented some early experiments on different micro-
benchmarks and discussed many coding aspects with a focus on implementation techniques,
such as how to iterate on a matrix, avoid operations with immutable data types, evaluating
strings, or the use of smaller numeric data types to save battery life.

Code Refactoring

Code refactoring encompasses the non-functional changes that developers apply on the source
code to improve various quality aspects, such as readability, maintainability, etc. Achieving
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software energy efficiency through refactorings has been massively studied, especially for
mobile applications [5, 48, 57, 81, 113].

For instance, EARMO proposes a multi-objective refactoring approach to automatically
improve the architecture of mobile applications [99]. The authors conducted an empirical
study to measure the negative impact of 8 anti-patterns on 20 open-source applications. They
then used a multi-objective search-based approach, called EARMO, to correct up-to 84% of the
anti-patterns on the tested applications and increase the battery lifespan by up to 29 minutes.
However, their statistical analyses with a significance level of 5% only showed that half of the
rules can impact energy efficiency in some cases. Moreover, the CPU/chip energy variation
has not been taken into account for the significance level of the comparisons.

In the same context, Cruz et al. [35] present the LEAFACTOR tool to reduce the energy
consumption of Android applications. The tool automatically changes the source code of the
application by applying a set of patterns known to be energy efficient for mobile applications
(such as DrawAllocation, ObsoleteLayoutParam). About 222 changes were submitted to the
original projects repositories, resulting in a total of 59 Pull requests for 140 tested applications
issued from F-droid.9 At least 16 Pull requests have been successfully merged.

Anwar et al. [11] also gave concrete examples on how to save some battery time through
refactoring. They achieved a maximum of 10% of energy savings by refactoring the Duplicated-
Code and TypeChecking code smells. They also reported on a strong correlation between the
impact of a refactoring on the execution time and the energy consumption.

Furthermore, Cruz and Abreu [36] studied the effect of 8 of the best performance-based
practices on the energy efficiency of 6 Android applications. The results of the experiments
showed that some patterns, such as ViewHolder, DrawAllocation, WakeLock, ObseleteLayoutParam
need to be taken into account for a better design of energy-efficient applications, with a
reported impact of 4.5% for the Writeily-Pro application.

Finally, Moreira et al. [100] analyzed a set of 16 tools from the literature that reduce the
energy consumption of software through refactoring, with a list of 11 code smells. They
discussed the weak liveness of the available tools (requires manual tasks to be tuned and
triggered). The paper summarized an average energy impact of 1.9% and a maximum of 4.5%
for the 11 refactorings, but did not discuss the relevance of these impacts neither the eventual
causes nor measurement errors, especially that 30% of the mentioned refactorings have less
than 1% registered impact.

Most of the works reported on the presence of an impact of refactoring rules on energy
consumption. This can be substantial or relatively small depending on the application. Yet,
most of the covered patterns are related to screen/sensors usage that are very specific to mobile
applications and cannot be generalized to other systems/environments.

9https://www.f-droid.org/

https://www.f-droid.org/
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Thus, other works investigated the impact of refactoring on server-side and desktop
applications. Pinto et al. discuss 12 contributions taken from the state of the art on the
refactoring that can be applied to improve software energy efficiency [121]. This literature
review was conducted on the papers that were published in 8 of the top software engineering
conferences prior to 2015. It summarizes some interesting information and practices relating to
CPU offloading, HTTP requests, I/O operations, DVFS techniques, etc. Sahin et al. [130] also
studied the impact of 6 refactoring rules on a total of 197 selections found in 9 Java applications.
Their results showed that the impact of applying the refactoring could be statically significant,
but is not very consistent across the software and platform versions. They suggested that
knowledge on the energy consumption impact of refactoring rules could be integrated within
IDEs to help developers build less energy-bleeding software.

In a more detailed study, the impact of only one refactoring rule "inline method" has been
investigated on 3 Java applications [147]. It reported that the impact on the execution time and
energy consumption that was expected to be positive, was not always true. This means that
the inline method refactoring is not always energy efficient.

Rather than looking for green refactoring rules reducing software energy consumption,
some practitioners chose to conduct wider studies that apply on a much larger set of refactor-
ings to capture a subset of "green" rules. This is exactly what Jae-Jin Park et al. [60] pursued.
They prepared C++ micro-benchmarks of 63 refactoring techniques/design patterns suggested
by Martin Fowler [1], then ran experiments and isolated a set of green refactoring rules based
on the micro-benchmarks for C++. However, the conclusion cannot even be generalized on
C++ applications, as they were built on specific tests that were executed on specific micro-
benchmarks.

Automatic and search-based refactoring is also an interesting topic that has been covered
by many papers to reduce software energy consumption [107]. For example, Moghadam and
Ó Cinnéide [98] presented Code-Imp, which is a Hill Climbing search-based tool that enhances
the application quality at field-level and class-level refactoring, where the fitness function can
be extended for energy consumption purposes.

2.3.3 Summary

This chapter gives an overview on the state of the art of software energy consumption. We
thus reviewed a set of hardware and software tools that allow measuring and assessing SEC.
This measurement phase is subject to instabilities and variations due to multiple factors. These
variations should be carefully taken into account to conduct robust and accurate measurements.

Some of the studies aimed at highlighting developers knowledge and sensitivity to the
topic, so SEC could gain more importance and consideration.

Reducing software energy consumption is a non-trivial topic that has been investigated in
several studies. Many studies investigated ways to reduce SEC through optimizations on the
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source code of the software and/or the execution environment. A set of insights and guidelines
can already be extracted from these studies in order to produce and deploy less consuming
software.





Chapter 3

Understanding the Hurdles and
Requirements to Optimize Energy
Consumption

In the precedent chapter, we reviewed some studies aiming at reducing software energy
consumption. In particular, developers awareness and knowledge about SEC considerations.
This chapter describes the opening work and contribution. Its purpose is to investigate and
discuss the understanding of green software design among developers and within the company.
We believe it is the first element to apprehend in order to define the perimeter of developers
needs and requirements. This qualitative study provides implications for developers, decision
makers, tools creators and researchers to promote green software design. The contribution
covers three main questions: 1) developers understanding and knowledge about SEC and GSD,
2) the constraints and tooling lacks that prevent a good support of GSD, 3) and, how to sensitize
and promote GSD among developers. We start this chapter with an overview in Section 3.1 that
motivates and situates the work that has been achieved. Then, we formalize our methodology
in section 3.2. Section 3.3 analyses and discusses the observations and findings behind the
interview answers. Section 3.4 reports on the implications of our findings.

3.1 Overview

The last decade witnessed several attempts to consider green software design as a core develop-
ment concern to improve the energy efficiency of software systems at large [12, 17, 72, 89, 101].
However, despite previous studies that have contributed to establish guidelines and tools to
analyze and reduce the energy consumption [10, 32, 50, 67, 69, 99, 123], these contributions fail
to be adopted by practitioners till date [62, 114].
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Concretely, both quantitative and qualitative studies [91, 114, 119] previously surveyed
developers to establish assumptions about developers’ knowledge of green software design.
These studies highlight that developers might be aware of software energy consumption
problems, but have a very limited knowledge on how to reduce the energy footprint of their
software product. Understanding the hurdles and requirements to optimize energy consump-
tion. For example, Pinto et al. [119] mentioned collecting "vague" answers from developers
when asked about how to deal with software energy consumption. Pang et al. [114] reported
that, among 100 developers, a small portion are aware of the primary sources of software
energy consumption. Only 10% of the participants try to measure the energy consumption of
their software project, while less than 20% take energy into account in the first place. More-
over, the empirical study of Manotas et al. [91] reported that energy requirements are often
more desires than specific targets. They highlight that developers believe they miss accurate
intuitions about the energy usage of their code, and that energy concerns are largely ignored
during maintenance.

However, to the best of our knowledge, none of these studies discuss

RQ 1: The hurdles that prevent the broader adoption of green software design? and

RQ 2: Developers’ requirements in terms of tooling in an industrial context.

But, we actually believe that both aspects are critical issues to consider when aiming to reach
an adoption of such tools and methods among developers in order to promote green software
design.

This chapter summarizes our qualitative investigation on software energy consumption
considerations among experienced developers at Orange France. Concretely, we conducted
interviews with 10 senior/expert developers with the ambition to cover developers’ opinions,
problems, and requirements to promote the green software design in an industrial context.
The key contributions of this chapter can, therefore, be summarized as:

1. Providing a detailed understanding of the interviewed developers’ awareness and knowl-
edge about green software design,

2. Identifying the main constraints and challenges that developers encounter in their daily
development,

3. Building specifications for the tooling that suits developers expectations and experiences,

4. Investigating the best ways to keep developers aware of software energy consumption
and promote it within a company,

5. Identifying the exact role and responsibilities of the company to promote green software
design,
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Figure 3.1: The qualitative study methodology

3.2 Methodology

In order to achieve our objective, which is to conduct an in-depth qualitative study that en-
compasses developers tooling requirements and awareness, we adopted a qualitative research
approach [34, 116], using straussian grounded theory concepts and components, such as: coding,
memoing and theoretical saturation [135]. Despite being complex and time consuming [18], this
approach has been widely adopted by similar studies and has proved its effectiveness [45, 51].

Figure 3.1 depicts a high-level summary of our qualitative study methodology. Our
methodology starts with an interview phase detailed in Section 3.2.1, followed by the data
analysis phase explained in Section 3.2.3. We discussed our methodology with a qualitative
study expert at Orange to ensure the good usage of the theoretical aspects and other criteria,
such as data confidentiality and integrity.

3.2.1 Interviews

Interviews are the first step and the main data source for our qualitative study. In this study,
we wanted to cover 3 main research questions. The first research question is the awareness and
knowledge of developers with regards to the software energy consumption. Even if this was
the focus of many papers, like [114, 119], it is still very important to investigate participant’s
opinions about software energy consumption, as it helps to better analyze his/her others
answers, depending on what he/she thinks of the problem and how important it is. The
second research question aims to investigate about the hurdles and constraints that prevent
a better consideration of software energy consumption, but also to push the developer to
define and describe the tools that will suit his/her experience, to promote the consideration of
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software energy consumption in his/her daily development. The purpose of the third research
question is to identify the best ways and means to keep developers aware of software energy
consumption, but also to zoom into the responsibility of developers on one hand, and the
decision-makers—or the company—on the other hand.

During the interviews, we wanted to give our participants the freedom to express and
explain their ideas and opinions so we can gather more feedback. Thus, we went for semi-
structured interviews. The following sections provide more details about participant’s selection,
interviews conducting protocol, and the questions we asked.

Participants

The main criterion for the participants’ selection is their experience in software development.
Experienced developers in each technology had more time to cover the details, strengths, and
limitations of the technology they are using. A junior developer in a specific technology or
programming language may not have enough time or experience to cover all the basics, best
practices and go deep into the technical characteristics, and is less likely to include energy
considerations in his/her coding routines. By experience, we do not mean the professional ex-
perience, but a decent amount of time the developer has spent on a technology/programming
language, to have enough knowledge to understand and be able to criticize this technol-
ogy. Thus, our participants have experience of at least 15 years and have worked on both
small/short and long projects. Moreover, our selected participants are volunteers who have
expressed a big interest in our interview invitation to cover developer’s understanding and
requirements regarding software energy consumption considerations and are more involved in
green software design activities in a major European telecommunication company of more than
100000 employees. The rationale behind choosing participants from the same company [47] is
to assess the role of the company in the practice of developers. However, our study focuses on
how to promote green software design within a company and expose a detailed case study but
does not ambition to create a model that could be automatically generalized to companies of
different sizes, activity sectors, or policies.

We broadcasted emails through the internal senior and experts mailing lists, which regroups
experienced developers in a wide range of technologies and projects. Then, we selected our
participants so we can cover numerous technologies, including mobile, web, etc. We were
also careful to select both developers working on long projects and others working on more
frequent short projects. Such a diverse selection process in a qualitative research method has
been described in Patton, Michael Quinn’s book [116]. Table 3.1 summarizes some useful
data to understand the profile of every participant including his/her experience, main used
technologies/programming languages, and projects type. We use the letter "L" for long/big
projects, and "S" for small/short projects.
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Participant Technology Experience Projects

P1 Mobile 10 years LPython 10 years

P2 Mobile 10 years S and LJava 20 years
P3 Java 20 years S

P4 C 10 years S and LJava 10 years

P5 Java 10 years LGolang 5 years
P6 Web 20 years S
P7 Web 20 years L

P8 Java 12 years LWeb 7 years
P9 Java 11 years S

P10 Java 12 years S and LGolang 7 years

Table 3.1: Summary of participants

Instead of rigidly fixing the number of participants, we kept on conducting our interviews
until reaching a level of saturation on the collected data [131]. After 10 interviews, we noticed
a convergence of the collected data and thoughts [145], even considering the difference of
technologies mastered by our participants and the types of projects they usually work on.
Moreover, 10 is a decent number of participants that is close to the studied population by other
similar works [22, 51, 133, 138].

For privacy and confidentiality purposes, we omit the usage of our participant’s names
and every other sensitive information, such as teams or project names, and we rather use code
names ranging from P1 to P10.

Protocol

The interviews were conducted in 3 steps. The first step is a narrative part where we describe
the purpose of our study, what the interview is about, and how it would happen. It also in-
cludes the confidentiality agreement with the participant and some indications of the interview
process.

The second step is the semi-structured interview, starting with questions about participant’s
profile, which cover: participant’s studies, the type and examples of projects he/she worked
on. Then, we continue with the interview questions that focus on the 3 research questions
introduced earlier and listed in Section 3.2.1. Finally, we conclude the interview with a post-
questions step, where we answer participant’s questions and share some information and
references if she/he is more interested in software energy consumption.

Our protocol was checked and assessed by a qualitative studies expert from the company,
before being tested on two developers—whom results are not reported— to apply some
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adjustments on the questions and the interview scenario on one side, and have a better
duration estimation to inform every candidate of the average time before every interview on
the other side.

To make the interview very fluid and capture every information, we recorded (with the
agreement of the participant) the second step of the interview to apply post-in-depth analyses.
We also prepared a quick summary sheet that allowed us to note the key answers for each
question, along with participants’ key thoughts and opinions. This mainly helped us to quickly
detect the data saturation, as suggested by the qualitative studies expert, before the detailed
analysis phase that confirmed it.

Three of the interviews were held face-to-face. The others were conducted via a call due
to the distance between the interviewer and the interviewee sites. Also, all the interviews
were done in the native french tongue of the participants to avoid any misunderstanding
or expression difficulties due to the language. The mean duration time of the interviews is
39 minutes and 36 seconds, with a minimum duration of 28 minutes and 13 seconds, and a
maximum duration of 54 minutes and 09 seconds.

Questions

Using semi-structured interviews was very helpful in our case. It allows identifying the main
questions defining the purposes of our investigation. It was supported by follow-up questions
to adapt to the participant’s answers and let explore more details and directions in their
answers. The main questions have been pre-defined and structured before the interview so the
process goes faster, and to keep track of our baseline questions and concerns. We gave special
attention to the formulation while preparing the questions. We wanted them to be open so
we do not get a “yes” or “no” answer, but also to go deep in every participant’s answer with
the follow-up questions, as long as we maintain the theme of the main question. The main
questions we asked are the following:

1. What do you know about software energy consumption and green software design?
2. What importance do you give to software energy consumption?
3. What are the software energy consumption considerations that you take in your devel-

opments?
4. What do you think are the constraints and hurdles to a better software energy consump-

tion consideration?
5. How ready are you to change your usual programming language, technology, library, for

better software energy consumption?
6. How do you describe perfect tooling that suits your coding requirements for green

software design—you can go deep into technical details?
7. How do you think we should inform about energy software consumption for better

awareness?
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8. Do you think that getting a better software energy consumption consideration is the
responsibility of the developer or the company? How?

9. How can green software design be used as a marketing argument?
The questions (1) to (3) cover participant’s knowledge and awareness of software energy

consumption. The question (3), in particular, investigates any experience with methods, tips or
tools that the participant has used for green software design purposes. Questions (4) to (6) aim
at discovering the constraints that developers encounter and their tooling requirements, for
better software energy consumption considerations. The purpose of the last three questions is
to learn how to improve awareness. For that, we look for the best communication channels that
developers would react to, to promote their consideration of the green software design. The
last question is a more open one that summarizes the participant’s belief and gives him/her
more freedom to discuss some points that we might have missed during the interview.

Depending on the participant’s answers, we ask some follow-up questions which are
guided by the theme of the main question and the content of the answer. One example of
a typical follow-up question we had to ask quite often along with the question (5) is: Have
you questioned the quality of a tool/method/technology you have been using for a long time
during your experience? How was that?

3.2.2 Transcription

After each interview comes the transcription phase and we opted for a denaturalism approach
to transcribe our records. This method has been used in similar works [51], and allows putting
a focus on the interview content while being lighter, but as complete and trustful as other
methods, like Verbatim [105].

The transcription was made in the same language of the interview, but we translated some
parts in English to quote participant’s opinions in Section 3.3.

Some of the participants agreed only on sharing the results of the study, but not the raw
data (recordings and transcripts). Nevertheless, we worked on preserving the participants’
privacy, by omitting project names for example.

3.2.3 Analysis

We based our data analysis on the Straussian grounded theory coding procedure [135, 148].
First, we started with the open coding phase, where we read our transcripts several times and
tried to summarize every chunk of data into a label, based on the meaning interpretation of the
text. These labels are called “open codes”. Next, we used axial coding to identify the connections
among the previously extracted open codes. Then, we used selective coding to figure out the
core ideas, which cover all the data we collected. Finally, we read the transcripts again and
selected any data that relates to the core ideas so the content segments of the transcripts will
be all assigned to a core idea.
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The analysis has been independently conducted by two different persons to increase the
accuracy and hinder the subjective interpretation overhead. The results were then compared
and discussed for a consensual decision.

3.3 Observations and Findings

Table 3.2 summarizes the key results of our study, with the core ideas that also match our main
objectives. The check-mark (✓) in each cell indicates a positive response from the participant
regarding every idea that the core idea encompasses. This section discusses our observations,
each subsection covering a reported idea. Every single idea of Table 3.2 is then discussed in
a dedicated paragraph. Ideas that express close meanings and purposes are grouped within
the same category. We provide a discussion at the end of every category to summarize the
observations and findings of the detailed ideas and to add our thoughts and recommendations.
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Core ideas Ideas P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Developers aware-
ness
& knowledge
about SEC

I already know about SEC ✓ ✓ ✓ ✓ ✓ ✓
I already considered SEC in my projects ✓ ✓ ✓ ✓
SEC is an important subject to consider ✓ ✓ ✓ ✓ ✓ ✓ ✓
SEC should be a high priority ✓ ✓ ✓ ✓
SEC might cause conflicts with other coding metrics/aspects ✓ ✓

Constraints
& tooling prob-
lems

No time to think about SEC ✓ ✓
No tools ✓ ✓ ✓ ✓
The main problem is not at the developer level ✓ ✓ ✓ ✓ ✓
Ignorance ✓ ✓ ✓ ✓ ✓
Enhancing performance often enhances the SEC ✓ ✓ ✓
Need for a SEC score/KPI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Include SEC among tests/CI ✓ ✓ ✓ ✓ ✓ ✓ ✓
Static code analysis ✓ ✓ ✓
Simple tool with simple outputs ✓ ✓ ✓ ✓ ✓ ✓ ✓
In Favor of Moving to Other Technologies / Tools ✓ ✓ ✓ ✓ ✓

Promoting SEC

The company has most of the responsibility compared to devs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
The company should put objectives around SEC ✓ ✓ ✓ ✓ ✓ ✓
The communication about SEC should be improved ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Need for training ✓ ✓
Simple presentations are effective ✓ ✓ ✓ ✓ ✓ ✓ ✓
Let’s put green labels on software ✓ ✓ ✓ ✓ ✓

Table 3.2: Summary of our interview analysis.



36 Understanding the Hurdles and Requirements to Optimize Energy Consumption

3.3.1 Developers Awareness and Knowledge About Software Energy Consump-
tion

Developers Knowledge About SEC

The level of knowledge of the participants on software energy consumption is disparate. Some
of the interviewees reported having some knowledge about green software design, or even
considered it in their projects, while others reported complete ignorance on the topic.

I already know about SEC Software energy consumption is a relatively recent subject that
people may or may not know about. For some of our participants, they heard about it on
many occasions lately. “I have attended several talks on software energy consumption problems, and
have seen several things” reported P1. Some of the participants reported never hearing about
software energy consumption (P3, P4, P5) with answers like “nothing” or “absolutely no idea”.
Others have shown a very recent interest in the subject using expressions, such as “I became
interested in software energy consumption a couple of months ago” (P6, P7, P10).

However, even among developers who answered the question affirmatively, some had a
hard time explaining what do they know about software energy consumption and gave global
optimization examples, which are not specifically related to energy consumption. “I know that
reducing code size is good for energy consumption” said P6, while P7 reported “I have some ideas
about web applications, such as reducing the size of data we send to the user”.

I already considered SEC in my projects Among the participants who reported knowing
about SEC problems, 4 claimed they have already applied software energy consumption
related practices in their projects. P2, for instance, witnessed "I try, but it is not easy [. . . ] we
avoid to do useless animations [. . . ] limit the access to servers [. . . ] we keep an eye on the battery so our
software does not drain it too fast". P6, P7, and P8 reported on attempts to reduce the software
energy consumption through enhancing the performance, "We try to cache data and limit the
transfers [. . . ] the main focus is the performance but also the energy by chain effect" said P6. For P7,
he/she is trying to get more involved in considering green software design in his/her projects.
"I think making sure the mobile application works on old phones is a good example" he/she shared,
confirmed by P2.

Discussion Developers confront numerous kinds of information from multiple sources. Such
sources do not always constitute a valid/correct set of knowledge. In the case of our study,
some of the participants heard about software energy consumption, but could not provide a
correct formulation of their knowledge without diverging from the energy consumption.

We argue that developers awareness can be classified into 4 different levels: 1. not knowing
about software energy consumption, 2. having wrong/incomplete knowledge about the issue,
3. stacking theoretical knowledge with no application, and 4. knowing and applying SEC
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considerations. We evaluate most of our participants to be at the 2nd stage, while proper
communication and training programs should be established to help developers reaching the
4th stage.

SEC Importance Among Developers

Our study shows that not all the participants give the same importance to green software
design. The participants reported different levels of awareness, from being not important to be
one of the highest priorities in software development.

Importance of SEC While most participants think that software energy consumption is an
important issue, some think that little attention is generally given to it: “Pretty low importance”,

“None, absolutely none” and “The most important thing is to deliver the service to the consumer” (P1,
P4 and P8, respectively). These answers are more related to their professional environment
and work, rather than their own opinion and personal considerations. P8 added “If we are
talking at the societal level, then energy consumption is important, but it is not the case for what we are
producing at work”. The other participants feel like the matter is quite important and should
be more considered at work. P5 and P10 even shared that the professional environment can
support the movement even better “As we trend to sobriety” said P5, pointing at the company’s
objectives towards sobriety and greenness. “It is part of the current challenges” reported P10 in
the same context, referring to the newly announced environmental objectives of the company.

Priority of SEC Being important is a thing, but being a priority is different. Among the
participants who reported the importance of software energy consumption, P2, P9, and P10
think that it is important but, at the time of the interview, not a priority in the company. “It is
one of the main challenges but it will be utopian to think it is a priority” argued P10. “From a company
point of view, it is not the priority” added P2. This shows a different understanding of company
strategy and priorities. P4 symbolizes it, by answering “Zero, but I might change my mind if I get
persuaded that it is not the case” when asked about his perception of the current priority level of
green software design within the company. On the other hand P2, P6 and P7 see it as a priority
that the company has pushed in the last decade. “The green aspect is ubiquitous” said P6.

Discussion While discussing the value and the significance of software energy consumption,
we got more evidence about the problem of communication. We can see that not all developers
were on the same level of awareness, knowledge, and even trust towards the company [114].
While all of our participants claim to be in favor of green considerations in their personal lives,
some developers do not think the matter of software energy consumption is important in the
current software development processes at the company. Some participants think it should be
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a high priority in daily coding tasks, while others give it the same importance as several other
code-related aspects (security, maintenance, etc.).

This also highlights the differences in the trust in the company. While some participants
are in favor of the strategy of the company, others think that it should be improved. For this
matter, we think that the company should conduct a large transparent internal campaign, to
precisely identify the objectives and requirements towards the employees, and clarify any
misleading ideas, thus ensure the same comprehension inside the company.

SEC Might Conflict with Other Considerations

P2 and P8 reported that software energy consumption considerations might cause potential
conflicts with other software metrics and cause a lower rate of maintainability, security, scala-
bility, etc. On this matter, P2 reported "today, if I have to choose one thing over the other, I would
choose code maintainability over a lower energy consumption". P8 has also a similar opinion "I
would only consider software energy consumption in a third position, once we ensured that the service
is well optimized, and the security is guaranteed, which is one of our biggest concerns". Some other
participants as P6 did not evoke conflict and talked about including the new metric among the
other existing metrics.

Discussion While most of our interviewees are confident about software energy consump-
tion integration within the daily coding considerations, some legitimate questions arise on how
this integration would happen. We are not safe from conflicts that might occur. Choosing a less
consuming, but harder-to-maintain programming language, or substituting some consuming
security methods, are examples of those potential conflicts. Hence, a need for a well-designed
strategy is required within projects. This strategy could include a set of objectives and valida-
tion steps per project, that derives for a more global set of objectives, to ensure taking the same
choices and achieving the same purposes, as defined in the global strategy.

3.3.2 Constraints and Tooling Problems

Work Constraints

Some challenges have been raised by our participants to express the difficulties regarding
software energy consumption considerations.

No time to think about SEC “No time”, is the answer that two of our participants provided.
P1 reported “In our projects, we do not have any free time”, meaning that with all the considerations
that a developer has to take into account in a project, he/she cannot afford any extra time to
deal with software energy consumption issues, at least not if no time was specifically allocated
for that purpose. P8 mentioned the same issue, highlighting the potential conflict between
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the extra development time required when using less energy-intensive technologies, and
the allocated time: “The time factor is never negligible in our projects, and the least consuming
technologies tend to require more time”.

No tools P3, P7, P8 and P9 miss the appropriate tools to dive further into software energy
consumption problems. “I never heard of such tools or what they do” is what they reported. This
lack of tooling, and the related lack of feedback on actual energy consumption, hinder the
analysis of the root causes of SEC, and thus the potential actions they could do to recover from
bad energy practices. For example, P7 reported: “we do not have any feedback or indicators”. “The
main problem for me is the lack of tools, we do not have automatic tools for green code quality” shared
also P9 to express some frustration due to the absence of tools for green software design.

The main problem is not at developer level For some of our participants, the main problem
is not at the developer level. In fact, for P8, P9 and P10 the problem is at decision-making
level. The developers being only the execution unit, they do not have much impact once the
decisions have been made: “we do not have full decision power” said P2. P8 reported “I am not
sure if this is the crux of the problem, but we should be able to provide the developers with the proper
tools first so they can achieve this purpose”. This points to a lack of tools, but more importantly,
to the role of the whole chain to organize and define the work conditions, towards a green
software design.

Ignorance By "ignorance", the participants refer to the lack of knowledge, but also the lack
of awareness about software energy consumption. P2, for example, reported a problem when
designing mobile application interfaces. “I have some requests to put animations all over the screen,
which does consume a lot of energy and does not improve the user experience by much” he/she said.
This ignorance is also illustrated among some developers, “Ignorance is the first reason, I did not
know a thing myself, developers do not know what they can achieve and the impact they could have”
claimed P7. P9 and P6 share the same opinion, “People think resources are endless” reported P6.
For P10, this ignorance problem might even dissuade good-wills who want to change “The
problem is that we do not all share the same green culture at the company, if the team we work with is
not on the same page, nothing will happen. We need to be all on the same level”.

Discussion The participants we interviewed expressed a list of constraints and hurdles
that prevent software energy consumption considerations. Among these constraints, we can
identify the lack of time, tools, and awareness. Indeed, the developers would feel much more
comfortable about green software design if they had dedicated tools that support that activity,
and a decent awareness so they can set software energy consumption related objectives at the
beginning of every project for example. A dedicated time is also required. By this, we mean
allocating a specific period so the developers would be able to set up the green software design
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environment and checks, but also allocating the time that developers need to get acquainted
with the potentially new aspect of energy in software development.

The inclusion of the decision-makers when talking about software energy design has also
been a matter of discussion in some interviews. Some project’s key decisions may have a big
impact on the energy efficiency of the final product. Choosing the proper technologies and
allocating the proper time can be good examples of that, where developers do not have much
choice and just try to deal with the constraints and deadlines.

Enhancing Performance Often Enhances SEC

While most of the participants diverged into performance metrics when asked about energy,
some of them reported a correlation between the performance of software and its energy
consumption. “There is certainly a direct link between performance and energy consumption, for
mobile applications. The more we ask the phone to do the quicker it drains the battery” claimed P2, and
“Theoretically performance and energy consumption are not the same things, but in practice, they are”
reported P4. For other developers, like P3 and P9, the causality relationship is not that evident:

“Sometimes we spend a lot of extra energy while trying to enhance the performance”. They even gave
some examples like allocating more servers to go faster while requiring more energy.

Discussion Our participants have mainly experienced dealing with performance instead of
energy consumption. Thus, they referred to performance several times instead and tried to
replicate their knowledge on energy consumption. We think that “performance vs energy” is
a mandatory topic that should be discussed when promoting software energy consumption,
as all the developers should be able to distinguish the slight difference and knowingly take
action that can favor performance over energy and vice-versa when there is a room for conflict.

Tooling Specifications

Gathering requirements for tools that would match developers’ requirements is one of the
priorities of this study. Fortunately, we identified some specifications that should help to
design the next set of SEC optimization tools.

Need for a global score / KPI This has been the most requested and discussed specification.
Almost all the participants mentioned the need for a global score or Key Performance Indicator
(KPI) for the total software energy consumption evolution. “We need to have indicators with a
ranking system”, “consumption summary”, “We do not have any KPI”, “We need KPIs” and “track
the evolution using simple KPI” are claims from P1, P3, P6 and P7, respectively. P4 and P9 went a
bit further and assimilated it to the consumption ranking that is used for household appliances,
like washing machines: “energy consumption classes like A, B, C, etc.”
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Include SEC among tests/CI This also was a common proposition for many participants
when asked about how they describe a tool that would measure and track the evolution of
software energy consumption. They suggested for software energy consumption reports to
be integrated within the existing system platforms that the developers are using, “It would
be a tool that is integrated with my CI chain to track the consumption evolution of my software”
reported P7. However, some developers do not think software energy consumption can be
measured/tracked at the code level, as it dependents of the running environment that must be
be modeled and simulated through testing and continuous integration, “we could imagine the
usage of micro-benchmarks to test the code quality on the same execution environment, which is not
possible on the development station” stated P5.

Static code analysis Some developers assimilated a part of green software design tooling to
static code analysis tools, such as the Sonarqube tool, “we could assimilate it to a Sonarqube to
apply a first static audit and check some well-known bad practices” mentioned P8. Others think that
static code analysis is quite irrelevant for this purpose. P7, for example, does not believe in
static code analysis as SEC is very dependent on the execution environment. “We cannot have
generic practices, we should specify the target, the platforms, etc.” said P2. “It is also dependent on
run-time” reported P3. This shows that not all developers have the same trust towards static
code analysis to diagnose software energy consumption issues.

Simple tools with simple outputs Participants also asked for simple tools with simple
outputs, with the use of graphical interfaces to track the software global energy consumption’s
evolution, "[. . . ] with graphical output [. . . ] that lets me notice the 10% energy difference" reported
P10. "I should not need a Ph.D. to understand the outputs of the tool" said P7 to illustrate his/her
frustration with complex tools overloaded with too many details and no single score that
defines the global status.

Discussion The participant’s feedback about the tools was very rich and converged to the
same main ideas, where usability seems to be the key concern. Developers expressed their
requirements in terms of tooling, focusing on the simplicity of the outputs, which should
include global KPIs/scores. When talking about energy consumption, the participants are very
used to this kind of score in their daily life, with energy labels for household appliances, bulbs,
house isolation, etc. Moreover, the same kind of scores is also routinely used in their daily
development work with scores on CPU consumption, memory and disk usage, response time,
etc. This global indicator should allow them to track the energy consumption evolution of
their source code and would be an entry point to dive into the details about the consumption
of a more specific code part, like a method or an algorithm. The static code analysis was a
bigger question mark to some developers when speaking of its effectiveness. While it could
be very beneficial to establish some rules about bad practices and common energy bugs [115]
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through linters for example, it still delivers limited feedback on the actual energy consumption
at run-time. We argue that the discussed aspects should be taken into account by tools creators,
where we could imagine a tool that applies static code analysis rules during the development
phase (integrated with the IDE (Integrated development environment) for example), an energy
profiler for code tuning, followed by a run-time energy tracking, integrated with CI/CD, and a
dashboard for data visualization. The displayed information could be scores calculated from
run-to-run evaluation, energy details/guidelines about the used technologies, etc.

In Favor of Moving to Other Technologies / Tools

Considering switching to another programming language, for example, is a legit question to ask
when talking about a new aspect as software energy consumption. Some of the participants
(P3, P5, P6, P7 and P10) reported no resistance for change. This openness is justified by
the recurrent changes of technologies in their previous projects. “I very often move from one
technology to another, I have no problem with that”, “It would not even be a difficulty” and “Yes, it is a
good thing” reported P7, P6 and P10 to express their confidence in being able to move to other
technologies for green software design purposes. Meanwhile, some developers worry more
about this change: P9 explained that the choice of technologies is also related to the developer
profile, and going for more energy-efficient but less used/famous technologies would be a bad
decision for his/her career. For P1, software energy consumption is not important enough
to justify such a delicate thing as changing the used technologies, “It is hard to say, especially
to re-develop the already existing software, choosing the programming language, for example, is very
delicate, especially when software energy consumption is not a priority”.

Discussion It is not surprising that some developers will express reluctance to change, as
it is a delicate process that is influenced by both technical and social factors [76]. Especially
if developers do not have enough knowledge of what they can do, how they can do it, and
the reasons for such a change. It was however interesting to observe that some developers
are in favor of such changes. This gives hope towards applying green software design. We
argue that these changes should not be done in one shot, but in a couple of steps to make the
adaptation easier for developers, especially after a good awareness and teaching campaign
within the company.

3.3.3 Promoting SEC

The Role of the Company

As for the developers, the role of the company is important to establish green software design
practices.
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The company bear most of the responsibility compared to developers Except for P6 who
does not believe in “forcing” the developers, but in “If each person is aware, the collective will
thrive” instead. All other participants assigned the major responsibility to the company, to
guide the application of green software design. According to P4, software energy consumption
will never be a long term consideration if the company does not take the lead, "We cannot have
a hundred ways of doing, it has to be guided” he/she added. "You cannot stay in a corner and hope it
will work, it has to be applied and guided through the whole chain" argued P2. P3 compared the
roles of the company and developers to a garbage selection process, where he/she assimilated
developers role to "putting the trash in the specific bins" (small but important responsibility) and
the company role to the recycling that is done afterward (big responsibility).

The company should include SEC objectives One of the company’s roles that were fairly
repeated during the interviews is setting objectives about software energy consumption and
green software design. Many participants reported that setting objectives is a good way to
promote SEC considerations. P5 argued “we should have objectives around that, this would allow
developers to see what they are doing and what they can achieve”. Moreover, having objectives will
give more credibility to the task, as it has been specified by products owners, “having objectives
will give more sense to green software design, and it will be one of the aspects that developers are going
to be judged on by the end of the semester, as it has been specified by product owners” reported P7.
Those objectives could be related to the KPIs, “identify some KPIs, and set some objectives around
those KPIs” reported P9.

Discussion Establishing green software design in the company is a matter that has to be
supported by both decision-makers and developers. The company certainly has a backbone
role in this process, starting with keeping the developers aware of green software design,
providing them with the needed tools, and identifying global and project-related objectives.
Setting objectives is very important for various reasons. First, it shows the dedication of the
company towards green software design, which will transfer to the employees afterward.
Then, defining a milestone would help developers to be more motivated to unlock a new
achievement every semester/year regarding software energy consumption.

Communication Means

Now that we have seen the relative lack of awareness and knowledge many times across the
previous discussions, we asked the developers what should be done to reach them.

The communication should be improved As pointed many times in multiple discussions
in this chapter, the communication around software energy consumption and green software
design should be improved. All our participants brought the communication problem at some
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point of the interview, by evoking the ignorance of the employees on these subjects (P2, P6, P7,
P9, P10), or by describing the company as the guide to raise awareness about green software
design (P1, P4, P5, P7, P8, P9).

The participants also gave some examples of the kind of communication they think they
will be receptive to, like training programs, presentations, and conferences. P5, for example,
proposed the usage of the company social network that is “used by most of the employees”.

Need for training Two of our participants reported a crucial need for training to learn the
specificity of software energy consumption and how to manage it. P4 argued that training is
very important if software energy consumption is a real concern today, “A training over a couple
of days to learn how to do things at developer level would be very welcome. We do training for other
code aspects such as security, why not for software energy consumption”. For P10, one solution is
to train a group of developers to be experts in software energy consumption. These experts
would then integrate project teams and would have a mission to help the other developers
learn and apply green software design. “Training all the developers would cost a lot of time and
money” added P10.

Presentations are very effective Many participants argued that presentations (informal
presentations, presentations in conferences, etc) are effective to keep developers aware and
inform them about software energy consumption and green software design. According to
P3, “I attended a presentation lately about green challenges and I found it very interesting, with real
examples”. The presentations should be instructive but simple “including comparisons, pictures”
said P6. “Ideally provide some tips with the related impacts, I have a book that enumerates 115 web
best practices, that is huge, it should have 15, even 15 is still quite a lot” added P7.

Discussion Communication is the keystone of every activity inside the company, and pro-
moting green software design is no exception to the rule. The company should amplify and
refine the communication around green software design, so it can be much deeper than just an-
nouncing a global plan. It has to allow the developer to act on the project he/she is working on,
and to see his/her impact whenever possible. Our participants mainly mentioned two means
of communication. First, the presentations should be very brief, very recurrent, and should
include more examples and tips rather than flat knowledge. The presentations should be used
mainly for awareness rather than knowledge transfer. Training is the second evoked way of
communication, which is more knowledge-based, with more details than just tips, due to the
specificity of training (much more time and fewer participants compared to presentations).
We argue that a wise combination of these two means of communication would be a good
start towards promoting green software design, as it allows having recurrent communication
that involves most of the employees, to keep them informed about the objectives and the
main guidelines. This can be achieved through presentations, meetings, and other formal
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or informal communication means. The second part of communication should provide the
employees with the necessary knowledge to achieve that task efficiently, through training and
workshops, etc.

Green Software Marketing

The purpose of the last question of the interview is to summarize every participant’s belief
in software energy consumption. The answers were split between two main ideas. While
some interviewees (P1, P3, P6, P7, P9) did not hesitate to say that putting green labels on
the produced software should create another selling argument, Other participants were very
cautious about that label. P4, for example, reported “I am worried about greenwashing, we have to
be very careful about that”. In the same context, P2 reported “I am kind of worried that it will be
used a little bit too easily, we have to be green and not pretend it”.

Discussion The two keywords that summarize what developers—who represent the produc-
tion unit—think of green software marketing, are integrity and transparency. The participants
argue that selling green software should even be more attractive and could constitute a good
marketing argument that differentiates the product from other providers, even if there is no
direct pressure from the consumer to build more energy efficient software [21].

However, this marketing has to be very transparent towards both developers and end-users
and avoid misleading communication and greenwashing.

To answer RQ 1, we identified many hurdles that prevent a wider adoption of green soft-
ware design, including the lack of knowledge, awareness, time, tools and communication.

To answer RQ 2, we conclude that developers main requirements for tooling are the
simplicity of interaction and integration with current procedures such as CI/CD, and
global scores and KPIs to track the evolution of SEC.

3.4 Implications

We summarize the results of our study as sets of implications for developers, the company,
tool creators, and researchers. We argue that these implications constitute a rich knowledge
base that could guide understanding and promoting software energy consumption and green
software design.

3.4.1 For Developers

Developers have been the data source of our study. Hence, we can retrieve a couple of
implications for them:
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• Given the observed level of awareness in our interviews, we suggest that developers
should seek more information on environmental issues in general and the impact of the
IT sector in particular. This would help the developers to grasp the importance of these
issues and motivate them to work on them;

• Some developers seem to consider the changes implied by green software design as
threats to their careers. We advocate instead that it could be an opportunity for profes-
sionals in the IT sector: skills in this emerging domain will be in short supply in the
future while demands will probably increase substantially, especially with the growing
concern about green technologies and energy consumption. Therefore, we encourage
developers to invest time now in these key skills and argue that it will pay off quickly
enough;

• Developers seem to be more receptive to messages coming from their peers. Therefore,
developers with better knowledge about green software design should volunteer to
help to inform and teach, both in their project team and to the whole IT community.
Organizing presentations, submitting talks to developers conferences and frequently
posting on the public and company social networks are effective ways of doing it;

3.4.2 For Decision Makers

We can extract many implications and responsibilities for decision-makers—a.k.a companies—
from our results, including:

• The main role of the company is to maintain a large communication campaign about
SEC that encompasses: i) ensuring a high level of transparency with the employees
regarding the "green" vision and objectives, ii) running a long-term awareness program
(with presentations for example), and iii) providing the developers with the necessary
knowledge (through training programs, workshops, etc.);

• Developers described the identification of green objectives for development projects
as one of the most efficient ways to motivate employees about green software design
and clarify the company’s position and engagements. These objectives would create
additional motivation for developers, and would define entries that developers and
product owners would discuss, validate and readjust, at every period;

• Developers also requested for necessary resources so they can achieve green software
design objectives. The resources include the tools (and/or budget) that allow monitoring
the software energy consumption and the necessary time to do it. Yet, there is already
exploitable resources that the company could make use of, such as i) developers who
already know green software design who could help in the communication/teaching
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process and ii) the ability of developers to adapt to different technologies, to attribute the
human resource in the most convenient project;

• Marketing the green aspect of the software is also a major sector that the company should
prioritize, as it would help to get clients’ feedback regarding the market and the products.
This would help to readjust the objectives and product specifications if necessary.

3.4.3 For Tool Makers

Our study provides numerous guides and specifications for tool creators:

• Developers ask for tools that can output a global score / KPI to summarize the energetic
footprint of the source code. This score can then be used for communication with other
stakeholders in the projects, to check that energy efficiency targets have been met, but also
to easily follow the evolution of the energy consumption of software through commits,
for example using graphical representations;

• At the same time, more advanced tools are also needed, that provide more detailed infor-
mation to allow low-level diagnosis of the source code and identify the exact problems
and solutions. This family of tools must however still be simple to use and provide
graphical representations to simplify the interaction with the displayed information.
Therefore, we argue that toolmakers must pay close attention to the usability of their
tools, which is paramount to ensure that developers will be confident about using them;

• While there is at this time no clear consensus on the effectiveness of static code analysis
for energy efficiency purposes, developers could be persuaded to use energy-focused
linters, designed to flag bad practices and common "energy bugs" [115], as long as
their benefits are demonstrated. To better convince developers of using such linters,
toolmakers should concentrate on demonstrating the effectiveness of this approach, and
integrate them in commonly used editors and IDE;

• The developers expect these tools to integrate seamlessly with available tool-chains,
especially for Continuous Integration and Continuous Delivery (CI/CD), to automate the
analysis and report on the energy footprint along with other metrics like code quality,
performance, and tests reports.

3.4.4 For Researchers

Our study confirms previous work results—such as Pang et al. [114]—that highlighted the
lack of knowledge and awareness among developers. Moreover, we present a new set of
information that could be considered and extended in further research about green software
design:
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• The correlation between the technologies developers use and their level of awareness
on green software design is an interesting research topic, like Manotas et al. [91] who
stated that mobile developers are more concerned about software energy consumption
problems. In our study, there seems to be no consensus among developers, even those
coming from the same technical background. This implies there is no strong correlation
between developers’ awareness, and the technology they use. Some empirical studies
with a larger population should be conducted to investigate the correlation between
developers considerations and their background;

• We discuss a specific case study to understand the state of mind of a set of experienced
developers in a large company of more than 100,000 employees in the telecommunication
sector. However, it does not make our study automatically generalizable for other
companies operating in a different sector, or companies of a different size, or even
companies located in a different geographical area. Further empirical studies can be
conducted on other samples, such as startups, collaborative projects, open-source projects,
etc. across different regions and with numerous domains of activity. Quantitative studies
are more adapted to conduct this kind of studies with much bigger samples to track the
different axes that may change developers’ opinions and constraints regarding green
software design;

• Our study highlights the need for KPIs/scores about software energy consumption.
Hence, considerable research work is still needed to build the theoretical knowledge on
the right set of KPIs and visualization formats that tool creators could implement, and
that would speak better to both developers and decision-makers;

• We noticed during our study that a couple of trade-offs should be considered along with
green software design. Not all developers fully distinguish software energy consumption
from its performance, thus multiple works that could help developers to make choices
and to deal with the slight difference when it occurs can still be done. Moreover, the
participants foresee a trade-off between the development time and using less consuming
programming languages which should be proven or denied in further research.

3.5 Threats To Validity

A couple of issues may affect the validity and the generalizability of our work. First, our
population might not be representative of all kinds of populations for several reasons. Starting
with the sample size, which offered a certain level of data saturation [135, 145], but is still
not quite large for better generalizability to other populations. Conducting, transcribing, and
analyzing the interviews are tedious manual tasks that are very time and energy-consuming.
Hence, considering a much bigger sample size would have massively increased the workload
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for a qualitative study and would have implied considering diverse company types, regions,
participants’ profiles, etc. This is in contrast to our study’s purpose to deliver a concrete
case study to understand and promote green software design within a company. Moreover,
considering a population of only experts and experienced developers that are likely more
interested in the topic than average is not the best representation of all scenarios, as junior
developers could have caused a slower data saturation, for example. The purpose behind
selecting experienced and expert developers with a certain level of awareness is however
to conduct a study that delivers insightful and high-quality findings and implications. This
would highlight the most relevant issues and build a decent strategy to promote green software
design within the company, even if it does not make it trivially generalizable. Another possible
threat is the specificity of the region. All of our participants are from the same country and the
same company. While this is useful to build an understanding of developers’ opinions within
the same company, our study may have missed other opinions from other countries/regions.

Other issues may be related to the qualitative study process such as the validity of our par-
ticipants’ answers. We tried to avoid “yes or no” questions and we encouraged our participants
to argue on their opinions so we can have more details and alleviate any misleading expres-
sions or misunderstanding/misinterpretation from us. Unfortunately, most of our participants
were located on remote sites. Hence, we conducted those interviews through calls, which does
not allow capturing as many details as live interviews, such as the interviewee’s behavior
and gestures. Moreover, our analysis and interpretation can be a threat to the validity of our
findings. To alleviate this issue, we were two persons to code and analyze the data separately
so we can offer more credible results.

3.6 Summary

Our study of the state of the art revealed the lack of a full qualitative study that conducts an
in-depth analysis of practitioners’ requirements and comprehensions. Most of the studies we
encountered focused on presenting a survey of what developers know about green software
design. While this is very important, it does not deliver a better understanding of what are the
developer’s requirements and how to get his/her attention to the problem.

This chapter rather conducts an in-depth qualitative study about software energy con-
sumption considerations among a population of experienced and expert developers in a large
company. This constitutes a solid case study that exposes key implications to be considered
within the company, but also preliminary findings that could be checked across other compa-
nies’ profiles. Our study investigates 3 major questions: 1) What do our participants know
about software energy consumption? 2) what are the main hurdles that prevent green soft-
ware design considerations? including the main specifications for tooling (or tool set) that
matches developers’ expectations and experience with other software metrics, such as CPU
consumption or execution time? 3) What are the most efficient ways to reach the developers
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and the deciders, and keep them aware of the importance of energy considerations in software
development and their role to promote it? The answer to the first question confirms the results
of the many papers[114, 119] regarding the moderate awareness and lack of knowledge of
developers on green software design. This also means that in at least 6 years, the situation has
not really evolved and developers are still struggling to handle software energy consumption
issues. Moreover, our participants reported on a very mitigated consideration of static code
analysis as it does not consider the execution environment, in contrast to the results of Manotas
et al. [91].

The novelty exposed in this chapter is mainly related to the second and third questions, in
which we seek to understand developers’ requirements to better digest green software design
and include it in their development routines and considerations. We highlight many points
that should be enhanced to achieve a certain level of maturity of SEC considerations, such
as: 1) setting individual and global objectives about green software design, 2) encouraging
presentations and training to raise awareness and remedy to lack of knowledge, 3) including
SEC in projects planning with dedicated time, tools and budget, and 4) developing and using
dedicated tools, which must facilitate the integration of SEC considerations in the developers’
daily activity and whose specifications can be drafted from this work.



Chapter 4

Controlling the Measurement of
Energy Consumption

One of the most discussed issues during the interviews of the qualitative study is the lack
of tools, especially tools and ways that allow to accurately measure the software energy
consumption and ensure the reproducibility of experiments/measures. Indeed, measuring
the energy consumption of a software system remains a tedious task for practitioners. In
particular, the energy measurement process may be subject to a lot of variations that hinder
the relevance of potential comparisons. While the state of the art mostly acknowledges
the impact of hardware factors (chip printing process, CPU temperature, etc.), this chapter
investigates the impact of controllable factors on these variations. More specifically, we conduct
an empirical study of multiple controllable parameters that one can easily tune to tame the
energy consumption variations when benchmarking software systems.

The main factors we studied encompass: experimental protocol, CPU features (C-states,
Turbo Boost, core pinning) and generations, as well as the operating system. Our experiments
showed that, for some workloads, it is possible to tighten the energy variation by up to 30×.
Finally, we summarize our results as guidelines to tame energy consumption variations and
conduct accurate energy consumption measurements.

The remainder of this chapter is organized as follows. Section 4.1 gives an overview on the
chapter Section 4.2 formalizes our research questions. Section 4.3 reports on the experimental
setup (hardware, benchmarks, tools and methodology) we used in this work. Section 4.4
analyzes the causes of the variations we observed during experiments. Finally, we discuss
the results of the different experimented factors, and their impact on the energy variation in
Section 4.5.
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Figure 4.1: CPU energy variation for the benchmark CG

4.1 Overview

To conduct robust evaluations, practitioners often try to ensure reproducible environmental
conditions in order to properly benchmark their software systems. In this area, reproducibility
might be achieved by ensuring the same execution settings of physical nodes, virtual machines,
clusters or cloud environments. Recently, the research community has been investigating
typical "crimes" in systems benchmarking and established guidelines for conducting robust
and reproducible evaluations [142].

In theory, using identical CPU, same memory configuration, similar storage and networking
capabilities, should favour reproducible experiments. However, when it comes to measur-
ing the energy consumption of a system, applying acknowledged guidelines and carefully
repeating the same benchmark can nonetheless lead to different energy footprints not only
on homogeneous nodes, but even within a single node. This difference—also called energy
variation (EV)—has become a serious threat to the accuracy of experimental evaluations.

Figure 4.1 illustrates this variation problem as a violin plot of 20 executions of the bench-
mark Conjugate Gradient (CG) taken from the NAS Parallel Benchmarks (NBP) suite [14], on 4
nodes of an homogeneous cluster (the cluster Dahu described in Table 4.1) at 50 % workload.
One can observe a large variation of the energy consumption, not only among homogeneous
nodes, but also at the scale of a single node, reaching up to 25% in this example.
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Most of the state of the art has been investigating this power consumption issue from
a hardware perspective [24, 141] and reported that the causes of such energy variations are
CMOS manufacturing process of transistors in a chip, differences in node assembly and data
center hot spots. Additionally, Heinrich et al. [53] described it as a combination of parameters,
mentioning a list of candidate factors, such as the thermal effect or the CPU frequency, but
did not to deliver a deeper analysis of these factors. Unfortunately, not all hardware factors
can be tuned to tame the energy variation that can be observed in experiments. For example,
managing the CPU temperature or a server position in a cluster, are not actions that one can
easily do, especially on the modern data centers and cloud platforms. Therefore, the goal of
this chapter is to investigate the spectrum of factors that can cause or increase the variability
of energy consumption in experiments and systems benchmarking, and to propose effective
guidelines to control such factors in order to mitigate this variability. While this chapter
does not question the benefits of established CPU features, like C-states or Turbo Boost, it
delivers a deeper analysis of the effects they may introduce on a wide set of experiments
and nodes. By quantifying potential energy variations induced by controllable factors, we
intend to identify the proper configurations that minimize energy variations, depending on the
workload characteristics. These guidelines aim at supporting practitioners in conducting more
accurate experiments and reporting reproducible energy consumption.The key contributions
of this chapter can therefore be summarized as:

1. Providing a better understanding of the energy variation, by using different generations
of CPU deployed in 4 clusters with more than 100 physical nodes, and by considering
existing systems benchmarks with diverse workloads;

2. Identifying controllable factors that contribute to the variation in CPU energy consump-
tion, comparing them against the state of the art, and completing them with other
uncovered assumptions;

3. Reporting on some guidelines on how to conduct reproducible experiments with less
energy variations;

4. Discussing the differences between inter-nodes and intra-nodes energy variations.

4.2 Research Questions

Part of the energy consumption variation is due to chip manufacturing differences or some of
the previously discussed enforced factors, such as the thermal effect or the servers placement.
Those parameters are often tricky to manage, as we cannot have a perfect chips manufacturing
process, or assume that two identical processors have the same thermal behavior. We will
therefore focus on providing the practitioners with an empirical study of some controllable
parameters that can be tuned to conduct experimental evaluations of the energy consumption
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Cluster Processor Nodes RAM
Dahu 2× Intel Xeon Gold 6130 32 192 GiB
Chetemi 2× Intel Xeon E5-2630v4 15 768 GiB
Ecotype 2× Intel Xeon E5-2630Lv4 48 128 GiB
Paranoia 2× Intel Xeon E5-2660v2 8 128 GiB

Table 4.1: Description of clusters included in the study

with less variation. Especially if the practitioners do not have physical access to the data center
or BIOS configuration, which is the case on most of the modern cloud platforms and data
centers. These parameters span the choice of the benchmarking protocol, processor frequen-
cies management, operating system tuning or some other parameters. Heinrich et al. [53]
mentioned some of these potential parameters.

In this chapter, we will therefore investigate the following controllable factors, which we
formalize as 4 research questions:

RQ 1: Does the benchmarking protocol affect the energy variation?

RQ 2: How important is the impact of the processor features on the energy variation?

RQ 3: Does the choice of the processor matter to mitigate the energy variation? and finally

RQ 4: What is the impact of the operating system on the energy variation?

4.3 Experimental Setup

This section describes our detailed experimental environment, covering the clusters and nodes
configuration, the benchmarks we used and justifying our experimental methodology.

4.3.1 Hardware Platform

We considered 4 distinct clusters of variable sizes and different generations of CPU, as sum-
marized in Table 4.1. In particular, we used the Grid5000 (G5K) platform in our experi-
ments [16, 94]. G5K is a bare metal cloud platform that can be used to provision clusters of
identical nodes. In our study, we mainly used the cluster Dahu located in Grenoble to run most
of our tests, as it has one of the newest Xeon CPUs. We also used the clusters Chetemi, Ecotype
and Paranoia in some of our experiments. Table 4.1 describes the configurations of the clusters
we considered.

As most of the nodes are equipped with two sockets (physical processors), we use the
acronym CPU or socket to designate one of the two sockets and PU for the operating system
processing unit. The number of PU often doubles the number of available cores because of
the hyper-threading support, as the OS considers 2 hyper-threads sharing the same core as 2
different PU. Figure 4.2 illustrates a detailed topology of a node belonging to the cluster Dahu.
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Figure 4.2: Topology of the nodes of the cluster Dahu

4.3.2 Systems Benchmarks

Our first criterion to choose the systems benchmarks was the scalability, as we need to run
tests at different workloads by choosing the right number of used PU. The other criteria are
the documentation, the accuracy and the references to the benchmark. NAS Parallel Benchmark
(NPB v3.3.1) [14] is one of the most used suite of benchmarks in the HPC literature and
it fulfills our benchmarking requirements. We mainly used the pseudo application Lower-
Upper symmetric Gauss-Seidel (LU), the Conjugate Gradient (CG) and Embarrassingly Parallel (EP)
computation-intensive benchmarks in our experiments, with the C data class. These are the
main benchmarks used in many similar works [53]. Nonetheless, in order to validate our results
on a wider set of benchmarks and applications, we also used Stress-ng v0.10.0,1 pbzip2
v1.1.9,2 linpack3 and sha256 v8.264 as representative systems benchmarks to conduct our
experiments with a broad diversity of workloads.

1https://kernel.ubuntu.com/~cking/stress-ng
2https://launchpad.net/pbzip2/
3http://www.netlib.org/linpack
4https://linux.die.net/man/1/sha256sum

https://kernel.ubuntu.com/~cking/stress-ng
https://launchpad.net/pbzip2/
http://www.netlib.org/linpack
https://linux.die.net/man/1/sha256sum
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4.3.3 Measurement Tools and Methodology

To study the energy consumption of nodes, we considered Intel RAPL [37, 67], which is
one of the most accurate tools to report the CPU/DRAM global energy consumption. We
also used POWERAPI [32], which is a power monitoring toolkit that builds a model over
RAPL to compute the energy consumption at process-level when we needed to isolate energy
consumption of a single process. Our clusters are provisioned with a minimal version of
Debian 9 (4.9.0 kernel version) where we installed Docker (version 18.09.5), which will be used
to run the RAPL sensor and the benchmark itself. The energy sensor collects RAPL reports
and stores them in a remote MONGODB instance, allowing us to perform post-mortem analysis
in a dedicated environment. Using Docker makes the deployment process easier on the one
hand, and provides us with a built-in control group encapsulation of the conducted tests on
the other hand. This allows POWERAPI to measure all the running containers, even the RAPL
sensor consumption, as it is isolated in a container. One potential threat covers the impact of
Docker on the energy variation. We therefore conducted a preliminary experiment by running
the same benchmarks LU, CG and EP in a Docker container and a flat binary format on 3 nodes
of the cluster Dahu to assess if Docker induces an additional variation. Figure 4.3 reports that
this is not the case, as the energy consumption variation does not get noticeably affected by
Docker while running a same compiled version of the benchmarks at 5 %, 50 % and 100 %
workloads. In fact, while Docker increases the energy consumption due to the extra layer it
implements [39], it does not noticeably affect the energy variation. The STD is even slightly
smaller (STDDocker = 192mJ,STDBinary = 207mJ).

Every experiment is conducted on 100 iterations, on multiple nodes and using the 3 NPB
benchmarks we mentioned, with a warmup phase of 10 iterations for each experiment. In
most cases, we were seeking to evaluate the STD, which is the most representative factor of the
energy variation. We tried to be very careful, while running our experiments, not to fall in the
most common benchmarking "crimes" [142]. As we study the STD difference of measurements
we observed from empirical experiments, we use the bootstrap method [40] to randomly build
multiple subsets of data from the original dataset, and we draw the STD density of those sets,
as illustrated in Figure 4.3.

We mainly consider 3 different workloads in our experiments: single process, 50 %, and
100 %, to cover the low, medium and high CPU usage when analyzing the studied parameters
effect, respectively. These workloads reflect the ratio of used PU count to the total available
PU.
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Figure 4.3: Comparing the variation of binary and Docker versions of aggregated LU, CG and
EP benchmarks

4.4 Energy Variation Analysis

In this section, we aim to establish experimental guidelines to reduce the CPU energy variation.
We therefore explore many potential factors and parameters that could have a considerable
effect on the energy variation.

4.4.1 RQ 1: Benchmarking Protocol

To achieve a robust and reproducible experiment, practitioners often tend to repeat their tests
multiple times, in order to analyze the related performance indicators, such as execution time,
memory consumption or energy consumption. We therefore aim to study the benchmarking
protocol to identify how to efficiently iterate the tests to capture a trustable energy consumption
evaluation.

In this first experiment, we investigate if changing the testing protocol affects the energy
variation. To achieve this, we considered 3 execution modes: In the "normal" mode, we
iteratively run the benchmark 100 times without any extra command, while the "sleep" mode
suspends the execution script for 60 seconds between iterations. Finally, the "reboot" mode
automatically reboots the machine after each iteration. The difference between the normal
and sleep modes intends to highlight that the CPU needs some rest before starting another
iteration, especially for an intense workload. Putting the CPU into sleep for several seconds
could give it some time to reach a lower frequency state or/and reduce its temperature, which



58 Controlling the Measurement of Energy Consumption

normal sleep reboot

Modes

7250

7500

7750

8000

8250

8500

8750

9000

E
n
er

g
y 

C
on

su
m

p
ti

on
 (

m
J)

STD=290.85mJ STD=242.23mJSTD=260.6mJ

SingleProcess

normal sleep reboot

Modes

1700

1800

1900

2000

2100

STD=70.38mJ STD=80.39mJSTD=77.48mJ
50%

normal sleep reboot

Modes

5750

6000

6250

6500

6750

7000

7250

STD=123.78mJ STD=321.57mJSTD=125.48mJ

100%

Figure 4.4: Energy variation with the normal, sleep and reboot modes

could have an impact on the energy variation. The reboot mode, on the other hand, is the most
straightforward way to reset the machine state after every iteration. It could also be beneficial
to reset the CPU frequency and temperature, the stored data, the cache or the CPU registries.
However, the reboot task takes a considerable amount of time, so rebooting the node after
every single operation is not the fastest nor the most eco-friendly solution, but it deserves to
be checked to investigate if it effectively enhances the overall energy variation or not.

Figure 4.4 reports on 300 aggregated executions of the benchmarks LU, CG and EP, on 4
machines of the cluster Dahu (cf. Table 4.1) for different workloads. We note that the results
have been executed with different datasets sizes (B, C and D for single process, 50 % and
100 % respectively) to remedy to the brief execution times at high workloads for small datasets.
This justifies the scale differences of reported energy consumptions between the 3 modes in
Figure 4.4. As one can observe, picking one of these strategies does not have a strong impact
on the energy variation for most workloads. In fact, all the strategies seem to exhibit the same
variation with all the workloads we considered—i.e., the STD is tightly close between the three
modes. The only exception is the reboot mode at 100 % load, where the STD is 150 % times
worse, due to an important amount of outliers. This goes against our expectation, even when
setting a warm-up time after reboot to stabilize the OS.

In Figure 4.5, we study the standard deviation of the three modes by constituting 5,000
random 30-iterations sets from the previous executions set and we compute the STD in each
case, considering mainly the 100 % workload as the STD was 150 % higher for the reboot mode
with that load. We can observe that the considerable amount of outliers in the reboot mode is
not negligible, as the STD density is clearly higher than the two other modes. This makes the
reboot mode less appropriate for the energy variation at high workloads.

To answer RQ 1, we conclude that the benchmarking protocol partially affects the energy
variation, as highlighted by the reboot mode results for high workloads.
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4.4.2 RQ 2: Processor Features

The C-states provide the ability to switch the CPU between more or less consuming states upon
activities. Turning the C-states on or off has been subject of many discussions [144] because of
its dynamic frequency mechanism, but, to the best of our knowledge, there have been no fully
conducted C-states behavior analysis on CPU energy variation.

We intend to investigate how much the energy consumption varies when disabling the
C-states (thus, keeping the CPU in the C0 state) and at which workload. Figure 4.6 depicts the
results of the experiments we executed on three nodes of the cluster Dahu. On each node, we
ran the same set of benchmarks with two modes: C-states on, which is the default mode, and
C-states off. Each iteration includes 100 executions of the same benchmark at a given workload,
with three workload levels. We note that our results have been confirmed with the benchmarks
LU, CG and EP.

We can clearly see the effect that has the C-states off mode when running a single-process
application/benchmark. The energy consumption varies 5 times less than the default mode. In
this case, only one CPU core is used among 2 × 16 physical cores. The other cores are switched
to a low consumption state when C-states are on, the switching operation causes an important
energy consumption difference between the cores, and could be affected by other activities,
such as the kernel activity, causing a notable energy consumption variation. On the other
hand, switching off the C-states would keep all the cores—even the unused ones—at a high
frequency usage. This highly reduces the variation, but causes up to 50 % of extra energy
consumption in this test (MeanC−states−o f f = 11,665mJ,MeanC−states−on = 7,641mJ).
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Figure 4.6: Energy variation when disabling the C-states

At a 100 % workload, disabling the C-states seems to have no effect on the total energy
consumption nor its variation. In fact, all the cores are used at 100 % and the C-states module
would have no effect, as the cores are not idle. The same reason would apply for the 50 % load,
as the hyper-threading is active on all cores, thus causing the usage of most of them. This leads
to mainly two questions: Can a process pinning method reduce/increase the energy variation?
And, how does the energy consumption variation evolve at different PU usage levels?

Cores Pinning

To answer the first question, we repeated the previous test at 50 % workload. In this experiment,
we considered three cores usage strategies, the first one (S1) would pin the processes on all
the PU of one of the two sockets (including hyper-threads), so it will be used at 100 %, and
leave the other CPU idle. The second strategy (S2) splits the workload on the two sockets
so each CPU will handle 50 % of the load. In this strategy, we only use the core PU and not
the hyper-threads PU, so every process would not share its core usage (all the cores are being
used). The third strategy (S3) consists also on splitting the workload between the two sockets,
but considering the usage of the hyper-threads on each core—i.e., half of the cores are being
used over the two CPU. Figure 4.7 reports on the energy consumption of the three strategies
when running the benchmark CG on the cluster Dahu. We can notice the big difference between
these three execution modes that we obtained only by changing the PU pinning method (that
we acknowledged with more than 100 additional runs over more than 30 machines and with
the benchmarks LU and EP). For example, S2 is the least power consuming strategy. We argue
that the reason is related to the isolation of every process on a single physical core, reducing
the context switch operations. In the first and third strategy, 32 processes are being scheduled
on 16 physical cores using the hyper-threads PU, which will introduce more context switching,
and thus more energy consumption.

We note that even if the first and third strategies are very similar (both use hyper-threads,
but only on one CPU for the first and on two CPU for the third), the gap between them is
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Figure 4.7: Energy variation considering the three cores pinning strategies at 50 % workload

considerable variation-wise, as the variation is 30 times lower in the first strategy (STDS1 =

116mJ,STDS3 = 3,452mJ). This shows that the usage of the hyper-threads technology is not
the main reason behind the variation, the first strategy has even less variation than the second
one and still uses the hyper-threading.

The reason for the S1 low energy consumption is that one of the two sockets is idle and
will likely be in a lower power P-state, even with the disabled C-states. The S2 case is also low
energy consuming because by distributing the threads across all the cores, it completes the
task faster than in the other cases. Hence, it consumes less energy. The S3 is a high consuming
strategy because both sockets are being used, but only half the cores are active. This means
that we pay the energy cost for both sockets being operational and for the experiments taking
longer to run because of the recurrent context switching.

Our hypothesis regarding the worst results that we observed when using the third strategy
is the recurrent context switching, added to the OS scheduling that could reschedule processes
from a socket to another, which invalids the cache usage as a process can not take profit of the
socket local L3 cache when it moves from a CPU to another (cf. Figure 4.2).

Moreover, the fact that the variation is 4–5 times higher when using the strategy S2 com-
pared to S1 (STDS1 = 116mJ, STDS3 = 575mJ), gives another reason to believe that swap-
ping a process from a CPU to another increases the variation due to CPU micro differences,
cache misses and cache coherency. While the mean execution time for the strategy S3 is
very high (MeanTimeS3 = 46s) compared to the two other strategies (MeanTimeS1 = 11s,
MeanTimeS2 = 7s), we see no correlation between the execution time and the energy vari-
ation, as the S1 still give less variations than S2 even if it takes 36 % more time to run.

Table 4.2 reports on the average results for the STD comparison on four other nodes of the
cluster Dahu at 50 %, with the benchmarks LU, CG and EP. In fact, the CPU usage strategy S1 is
by far the experimentation mode that gave the least variation. The STD is almost 5 times better
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Strategy S1 S2 S3
Node 1 88 270 1,654
Node 2 79 283 2,096
Node 3 58 287 1,725
Node 4 51 229 1,334

Table 4.2: STD (mJ) comparison for 3 pinning strategies

than the strategy S2, but is up to 10 % more energy consuming (MeanS1 = 4469mJ, MeanS2 =

4016mJ). On the other hand, the strategy S3 is the worst, where the energy consumption can
be up to 5 times higher than the strategy S2 (MeanS2 = 4016mJ, MeanS3 = 21645mJ) and the
variation is much worst (30 times compared to the first strategy). These results allow us to have
a better understanding of the different processes-to-PU pinning strategies, where isolating
the workload on a single CPU is the best strategy. Using the hyper-threads PU on multiple
sockets seems to be a bad recommendation, while keeping the hyper-threading enabled on
the machine is not problematic, as long as the processes are correctly pinned on the PU. Our
experiments show that running one hyper-thread per core is not always the best to do, at the
opposite of the claims of Marathe et al. [93].

Processes Threshold

To answer the second question regarding the evolution of the energy variation at different
levels of CPU usage, we varied the used PU’s count to track the EV evolution. Figure 4.8
compares the aggregated energy variation when the C-states are on and off using 2, 4 and
8 processes for the benchmarks LU, CG and EP. This figure confirms that disabling the CPU
C-states does not decrease the variation for all the workloads.When running only 2 processes,
turning off the C-states reduces the STD up to 6 times, but consumes 20 % more energy
(MeanC−states−on = 10,334mJ, MeanC−states−o f f = 12,594mJ). This variation is 4 times lower
when running 4 processes and almost equal to the C-states on mode when running 8 processes.
In fact, running more processes implies using more CPU cores, which reduces the idle cores
count, so the cores will more likely stay at a higher consumption state even if the C-states
mechanism is on.

We note that disabling the C-states is not recommended in production environments, as it
introduces extra energy consumption for low workloads (around 50 % in our case for a single
process job). However, our goal is not to optimize the energy consumption, but to minimize the
energy variation. Thus, disabling the C-states is very important to stabilize the measurements
in some cases when the variation matters the most. Comparing the energy consumptions of
two algorithms or two versions of a software system is an example of use case benefiting from
this recommendation.
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Figure 4.8: C-states effect on the energy variation, regarding the application processes count

Turbo Boost

The Turbo Boost—also known as Dynamic Overclocking—is a feature that has been incorporated
in Intel CPU since the Sandy Bridge micro-architecture, and is now widely available on all of
the Core i5, Core i7, Core i9 and Xeon series. It automatically raises some of the CPU cores’
operating frequency for short periods of time, and thus boosts performance under specific
constraints. When demanding tasks are running, the CPU decides on using the highest
performance state of the processor.

Disabling or enabling the Turbo Boost has a direct impact on the CPU frequency behavior,
as enabling it allows the CPU to reach higher frequencies in order to execute some tasks for a
short period of time. However, its usage does not have a trivial impact on the energy variation.
Acun et al. [4] tried to track the Turbo Boost impact on the Ivy Bridge and the Sandy Bridge
architectures. They concluded that it is one of the main factors responsible for the energy
variation, as it increases the variation from 1 % to 16 %. In our study, we included a Turbo Boost
experiment in our testbed, to check this property on the recent Xeon Gold processors, covering
various workloads.

The experiment we conducted showed that disabling the Turbo Boost does not exhibit a
trivial positive or negative effect on the energy variation. Table 4.3 compares the STD when
enabling/disabling the Turbo Boost, where the columns are a combination of workload and
benchmark. In fact, we only got some minor measurements differences when switching on and
off the Turbo Boost, and were in favor or against the usage of the Turbo Boost while repeating
tests, considering multiple nodes and benchmarks. This behavior is mainly related to the
thermal design power (TDP), especially at high workloads. When a CPU is used at its maximum
capacity, the cores would be heating up very fast and would hit the maximum TDP limit. In
this case, the Turbo Boost cannot offer more power to the CPU because of the CPU thermal
restrictions. At lower workloads, the tests we conducted showed that the Turbo Boost impact
on energy variation is not trivial or predictable. We cannot affirm that the Turbo Boost does not
have an impact on all the CPU, as we only tested on two recent Xeon CPU (clusters Chetemi
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Turbo Boost Enabled Disabled
EP / 5 % 310 308

CG / 25 % 95 140
LU / 25 % 204 240
EP / 50 % 84 79
EP / 100 % 125 110

Table 4.3: STD (mJ) comparison when enabling/disabling the Turbo Boost

Cluster Dahu Chetemi Ecotype Paranoia
Arch Skylake Broadwell Broadwell Ivy Bridge
Freq 2.1 GHz 2.2 GHz 1.8 GHz 2.2 GHz
TDP 125 W 85 W 55 W 95 W
5% 364 210 75 76
50% 98 86 49 244
100% 119 116 106 240

Table 4.4: STD (mJ) comparison of experiments from 4 clusters

and Dahu). We confirmed our experiments on these machines 100 times at 5 %, 25 %, 50 % and
100 % workloads.

We conclude that CPU features highly impact the energy variation as an answer for RQ 2.
Especially by disabling the C-states for low workloads and correctly pining the processes
on the available PU.

4.4.3 RQ 3: Processor Generation

Intel microprocessors have noticeably evolved during these last 20 years. Most of the new
CPU come with new enhancements to the chip density, the maximum Frequency or some
optimization features like the C-states or the Turbo Boost. This active evolution caused
different generations of CPU to handle a task differently. The aim of this experiment is not
to justify the evolution of the variation across CPU versions/generations, but to observe if
the user can choose the best node to execute his/her experiments. Previous papers have
discussed the evolution of the energy consumption variation across CPU generations and
concluded that the variation is getting higher with the latest CPU generations [93, 149], which
makes measurements stability even worse. In this experiment, we therefore compare four
different generations of CPU with the aim to evaluate the energy variation for each CPU and
its correlation with the generation. Table 4.4 indicates the characteristics of each of the tested
CPU.

Table 4.4 also shows the average energy variation of the different generations of nodes
for the benchmarks LU, CG and EP. The results attest that the latest versions of CPU do not
necessarily cause more variation. In the experiments we ran, the nodes from the cluster Paranoia
tend to cause more variation at high workloads, even if they are from the latest generation,
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Figure 4.9: Energy consumption STD density of the 4 clusters

while the Skylake CPU of the cluster Dahu cause often more energy variation than Chetemi
and the Ecotype Broadwell CPU. We argue that the hypothesis "the energy consumption on
newer CPU varies more" could be true or not depending on the compared generations, but most
importantly, the chip’s energy behaviors. On the other hand, our experiments showed the
lowest energy variation when using the Ecotype CPU, these CPU are not the oldest nor the latest,
but are tagged with "L" for their low power/TDP. This result raises another hypothesis when
considering CPU choice, which implies selecting the CPU with a low TDP. This hypothesis has
been confirmed on all the Ecotype cluster nodes, especially at low and medium workloads.

Figure 4.9 is an illustration of the aggregated STD density of more than 5,000-random
values sets taken from all the conducted experiments. This shows that the cluster Paranoia
reports the worst variation in most cases, and that Ecotype is the best cluster to consider to get
the least variations, as it has a higher density for small variation values.

We conclude on affirming RQ 3, as selecting the right CPU can help to get less variations.

4.4.4 RQ 4: Operating System

The operating system (OS) is the layer that efficiently exploits the hardware capabilities. It has
been designed to ease the execution of most tasks with multitasking and resource sharing. In
some delicate tests and measurements, the OS activity and processes can cause a significant
overhead and therefore a potential threat to the validity. The purpose behind this experiment
is to determine if the sampled consumption can be reliably related to the tested application,



66 Controlling the Measurement of Energy Consumption

especially for low-workload applications where CPU resources are not heavily used by the
application.

The first way to do this is to evaluate the OS idle activity consumption, and to compare it
to a low workload running job. Therefore, we ran 100 iterations of a single process benchmark
EP, LU and CG on multiple nodes from the cluster Dahu, and compared the energy behavior
of the node with its idle state on the same duration. The results showed that idle energy
variation is up to 140 % worse than when running a job, even if it consumes 120 % less energy
(MeanJob = 8,746mJ, MeanIdle = 3,927mJ). In fact, for the three nodes, randomly picked from
the cluster Dahu, the idle variation is way more important than when a test was running,
even if it is a single process on a 32-cores node. This result shows that OS idle consumption
varies widely, due to the lack of activity and the different CPU frequencies states, but it does
not mean that this variation is the main responsible for the overall energy variation. The OS
behaves differently when a job is running, mainly because the system can maintain a steady
performance state while the job is running..

Inspecting the OS idle energy variation is not sufficient to relate the energy variation to
the active job. In fact, the OS can behave differently regarding the resource usage when
running a task. To evaluate the OS and the job energy consumption separately, we used
the POWERAPI toolkit. This fine-grained power meter allows the distribution of the RAPL
global energy across all the Cgroups of the OS using a power model. Thus, it is possible
to isolate the job energy consumption instead of the global energy consumption delivered
by RAPL. To do so, we ran tests with a single process workload on the cluster Dahu, and
used the POWERAPI toolkit to measure the energy consumption. Then, we compared the job
energy consumption to the global RAPL data. We calculated the Pearson correlation [2] of
the energy consumption and variation between global RAPL and POWERAPI, as illustrated
in Figure 4.10. The job energy consumption and variation are strongly correlated with the
global energy consumption and variation with the coefficients 93.6 % and 85.3 %, respectively.
However, this does not completely exclude the OS activity, especially if the jobs have tight
interaction with the OS through the signals and system calls. This brings a new question on
whether applying extra-tuning on a minimal OS would reduce the variation? As well as what
is the effect of the Meltdown security patch—that is known to be causing some performance
degradation [70, 82]—on the energy variation?

OS Tuning

An OS is a pack of running processes and services that might or not be required for its execution.
In fact, even using a minimal version of a Debian Linux, we could list many OS running services
and processes that could be disabled/stopped without impacting the test execution. This
extra-tuning may not be the same depending on the nature of the test or the OS. Thus, we
conducted a test with a deeply-tuned OS version. We disabled all the services/processes
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Figure 4.10: The correlation between the RAPL and the job consumption and variation

Node EP CG LU
N1 1370 -9 % 78 +7 % 128 +2 %
N2 1278 -7 % 64 -1 % 120 +9 %
N3 1118 +1 % 83 +2 % 93 +7 %

Table 4.5: STD (mJ) comparison before/after tuning the OS

that are not essential to the OS/test running, including the OS networking interfaces and
logging modules, and we only kept the strict minimum required to the experiment’s execution.
Table 4.5 reports on the results for running single process measurements with the benchmarks
CG, LU and EP, on three servers of the cluster Dahu, before and after tuning the OS. Every cell
contains the STD value before the tuning plus/minus a ratio of the energy variation after the
tuning. We notice that the energy variation varies less than 10 % after the extra-tuning. We also
notice that this variation is not stable from a node to another. Moreover, 10 % of variation is not
a representative difference, due to many factors that can affect it such as the CPU temperature
or the measurement errors.

Speculative Executions

Meltdown and Spectre are two of the most famous hardware vulnerabilities discovered in
2018, and exploiting them allows a malicious process to access others processes data that is
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supposed to be private [70, 82]. They both exploit the speculative execution technique where
a process anticipates some upcoming tasks, which are not guaranteed to be executed, when
extra resources are available, and revert those changes if not. Some OS-level patches had been
applied to prevent/reduce the criticality of these vulnerabilities. On the Linux kernel, the
patch has been automatically applied since the version 4.14.12. It mitigates the risk by isolating
the kernel and the user space and preventing the mapping of most of the kernel memory
in the user space. Simakov et al. have studied [132] the impact of patching the OS on the
performance. The results showed that the overall performance decrease is around 2–3 % for
most of the benchmarks and real-world applications, only some specific functions exhibited
a high performance decrease. In our study, we are interested in the applied patch’s impact
on the energy variation, as the performance decrease could induce an energy consumption
increase. Thus, we ran the same benchmarks LU, CG and EP on the cluster Dahu with different
workloads, using the same OS, with and without the security patch. Table 4.6 reports on the
STD values before disabling the security patch. A minus means that the energy varies less
without the patch being applied, while a plus means that it varies more. These results help us
to conclude that the security patch’s effect on the energy variation is not substantial and can be
absorbed through the error margin for the tested benchmarks. In fact, the best case to consider
is the benchmark LU where the energy variation is less than 10 % when we disable the security
patch, but this difference is still moderate and not stable from a node to another due to other
factor’s impact such as CPU temperature. The little performance difference [70, 82] may only
be responsible for a small variation, which will be absorbed through the measurement tools
and external noise error margin in most cases.

Node EP CG LU
N1 269 +2 % 83 +1 % 108 -6 %
N2 195 +1 % 84 -5 % 121 -9 %
N3 223 +/-1 % 72 -4 % 117 +8 %
N4 276 +3 % 60 +0 % 113 -3 %

Table 4.6: STD (mJ) comparison with/without the security patch

To answer RQ 4, we conclude that the OS should not be the main focus of the energy
variation taming efforts.

4.5 Experimental Guidelines

To summarize our experiments, we provide some experimental guidelines in Table 4.7, based
on the multiple experiments and analysis we did. These guidelines constitute a set of minimal
requirements or best practices, depending on the workload and the criticality of the energy
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measurement precision. It therefore intends to help practitioners in taming the energy variation
on the selected CPU, and conduct experiments with the least variations.

Guideline Load Gain
Use a low TDP CPU Low and medium Up to 3×
Disable the CPU C-states Low Up to 6×
Use the least of sockets in a
case of multiple CPU

Medium Up to 30×

Avoid the usage of hyper-
threading whenever possible

Medium Up to 5×

Avoid rebooting the machine
between tests

High Up to 1.5×

Do not relate to the machine
idle variation to isolate a test
EC, the CPU/OS changes its
behavior when a test is run-
ning and can exhibit less varia-
tion than idle

Any —

Rather focus the optimization
efforts on the system under test
than the OS

Any —

Execute all the similar and
comparable experiments on
the same machine. Identical
machines can exhibit many dif-
ferences regarding their energy
behavior

Any Up to 1.3×

Table 4.7: Experimental Guidelines for Energy Variations

Table 4.7 gives a proper understanding of known factors, like the C-states and its variation
reduction at low workloads. However, it also lists some new factors that we identified along
the analysis we conducted in Section 4.4, such as the results related to the OS or the reboot
mode. Some of the guidelines are more useful/efficient for specific workloads, as shown in
our experiments. Thus, qualifying the workload before conducting the experiments can help
in choosing the proper guidelines to apply. Other studied factors have not been mentioned in
the guidelines, like the Turbo Boost or the Speculative execution, due to the small effect that
has been observed in our study.

In order to validate the accuracy of our guidelines among a varied set of benchmarks on
one hand, and their effect on the variation between identical machines on the other hand,
we ran seven experiments with benchmarks and real applications on a set of four identical
nodes from the cluster Dahu, before (normal mode where everything is left to default and to
the charge of the OS) and after (optimized) applying our guidelines. Half of these experiments
have been performed at a 50 % workload and the other half on single process jobs. The choice
of these two workloads is related to the optimization guidelines that are mainly effective at
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low and medium workloads. We note that we used the cluster Dahu over Ecotype to highlight
the guidelines effect on the nodes where the variation is susceptible to be higher.

Figure 4.11 and 4.12 highlight the improvement brought by the adoption of our guidelines.
They demonstrate the intra-node STD reduction at low and medium workloads for all the
benchmarks used at different levels. Concretely, for low workloads, the energy variation is
2–6 times lower after applying the optimization guidelines for the benchmarks LU and EP,
as well as LINPACK, while it is 1.2–1.8 times better for Sha256. For this workload, the overall
energy consumption after optimization can be up to 80 % higher due to disabling the C-states
that keeps all the unused cores at a high power consumption state (MeanLU−normal−Dahu2 =

11,500mJ, MeanLU−optimized−Dahu2 = 20,508mJ). For medium workloads, the STD, and thus
variation, is up to 100 % better for the benchmark CG, 20–150 % better for the pbzip2 application
and up to 100% for STRESS-NG. We note that the optimized version consumes even less energy
thanks to an appropriate core pinning method.

Figures 4.11 and 4.12 also highlight that applying the guidelines does not reduce the inter-
nodes variation. This variation can be up to 30 % in modern CPU [149]. However, taming the
intra-node variation is a good strategy to identify more relevant mediums and medians, and
then perform accurate comparisons between nodes variation. Even though using the same
node is always better, to avoid the extra inter-nodes variation and thus improve the stability of
measurements.

4.6 Threats to Validity

A number of issues affect the validity of our work. For most of our experiments, we used the
Intel RAPL tool, which has evolved along Intel CPU generations to be known as one of the most
accurate tools for modern CPU, but still adds an important overhead if we adopt a sampling
at high frequency. The other fine-grained tool we used for measurements is POWERAPI. It
allows one to measure the energy consumption at the granularity of a process or a Cgroup by
dividing the RAPL global energy over the running processes using a power model. The usage
of POWERAPI adds an error margin because of the power model built over RAPL. Moreover,
it does not offer a way to separate the static and dynamic power consumption. The RAPL
tool mainly measures the CPU and DRAM energy consumption. However, even running
CPU/RAM intensive benchmarks would keep a degree of uncertainty concerning the hard
disk and networking energy consumption. In addition, the operating system adds a layer of
confusion and uncertainty.

The Intel CPU chip manufacturing process and the materials micro-heterogeneity is one of
the biggest issues, as we cannot track or justify some of the energy variation between identical
CPU or cores. These CPU/cores might handle frequencies and temperature differently and
behave consequently. This hardware heterogeneity also makes reproduction complex and
requires the usage of the same nodes on the cluster with the same OS.
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Figure 4.12: Energy variation comparison with/without applying our guidelines for STRESS-
NG

4.7 Summary

In this chapter, we conducted an empirical study of controllable factors that can increase the
energy variations on platforms with some of the latest CPU, and for several workloads. We
provide a set of guidelines that can be implemented and tuned (through the OS GRUB for
example), especially with the new data centers isolation trend and the cloud usage, even
for scientific and R&D purposes. Our guidelines aim at helping the user in reducing the
CPU energy variation during experiments and systems benchmarking, and conduct more
stable experiments when the variation is critical. For example, when comparing the energy
consumption of two versions of an algorithm or a software system, where the difference can
be tight and need to be measured accurately.

Overall, our results are not intended to nullify the variability of the CPU, as some of this
variability is related to the chip manufacturing process and its thermal behavior. The aim of
our work is to be able to tame and mitigate this variability along controlled experiments. We
studied some previously discussed aspects on some recent CPU, considered new factors that
have not been deeply analyzed to the best of our knowledge, and constituted a set of guidelines
to achieve the variability mitigating purpose. Some of these factors, like the C-states usage, can
reduce the energy variation up to 500 % at low workloads, while choosing the wrong cores/PU
strategy can cause up to 30× more variability.

We believe that our approach can also be used to study/discover other potential variability
factors, and extend our results to alternative CPU generations/brands.



Chapter 5

Measuring and Evaluating the Energy
Consumption of JVMs

Now that we have studied how to conduct robust and reproducible experiments with steady
energy consumption measurements, we dive into the actions and considerations that develop-
ers can take to decrease the energy consumption of their software. For the rest of the document,
we will focus on the Java Virtual Machine, starting with the energy efficiency of the JVM itself as
an execution environment in this chapter. JVM platforms have known multiple evolutions in
the last decades to enhance both the performance they exhibit and the functionalities they offer.
With regards to energy consumption, few studies have investigated the energy consumption
of code and data structures. However, we do miss an evaluation of the energy efficiency of
existing JVM platforms and relevant configurations that can reduce the energy consumption of
software running on the JVM. In this chapter, we thus assess the energy consumption of some
of the most popular and supported JVM platforms using 12 Java benchmarks that explore
different performance objectives. Moreover, we investigate the impact of the different JVM
parameters and configurations on the energy consumption of software. Our results show
that different JVM platforms can exhibit up to 100% more/less energy consumption. JVM
configurations can also play a substantial role to reduce the energy consumption during the
software execution.

The remainder of this chapter is organized as follows. Section 5.1 gives an overview of
the chapter. Section 5.2 introduces the experimental protocol and methodology (hardware,
projects, tools, and methodology) we adopted in this study. Finally section 5.3 analyzes the
results of our experiments on the energy consumption of the different JVM configurations.
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5.1 Overview

Software services are widely deployed to support our daily activities, being mobile or hosted
in the cloud. Yet, beyond this undeniable success, the environmental impact of ICT is raising
concerns and calls for solutions to reduce the energy footprint of software services [137].

Software developers often report that such solutions should come from more energy-
efficient hardware components or software optimization [128, 150] but, given the complexity
of modern software environments, the composition of software layers makes this sustainability
objective particularly challenging.

Given this context, this chapter more specifically investigates the impact of one of these
layers, the runtime environment and its settings, on the energy consumption of hosted soft-
ware service. More precisely, we aim at revealing the importance of carefully selecting and
configuring the Java Virtual Machine (JVM) to reduce software energy consumption.

The empirical study we conduct in this chapter reports on the energy footprint of several
versions of popular JVM distributions that are freely available for download. Beyond the
choice of an appropriate runtime and its most energy-efficient version, we also consider the
impact of exposed JVM settings to maximize the energy savings for a given software service.
The observations of this study aim to quantify the role played by internal JVM mechanisms,
like the Just in Time (JIT) compiler and the Garbage Collector (GC), in the reduction of the energy
consumption of hosted applications. More formally, we formulate the following research
questions:

RQ 1: What is the impact of existing JVM distributions on the energy consumption of Java-
based software services?

RQ 2: What are the relevant JVM settings that can reduce the energy consumption of a given
software service?

By answering these questions, we envision supporting application developers and admin-
istrators in the configuration of their production environment by substantially reducing the
energy consumption of hosted services at large. We also hope that our results will encourage
the JVM developers to keep investing in the integration of further optimizations that can
benefit a large population of software services. This chapter comes with a set of contributions
that can be summarized as:

1. Reporting on the energy-efficiency of a large panel of JVM when running acknowledged
benchmarks,

2. Identifying and assessing the key JVM settings that can influence the energy consumption
of a software service,
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3. Sharing guidelines and prerequisites that will help in configuring the most energy-
efficiency environment before deployment,

4. Providing a JVM benchmarking environment to evaluate the energy-efficiency of upcom-
ing JVM distributions and their settings,

5.2 Experimental Protocol

Hardware Settings. To report on reproducible measurements, we used the cluster Dahu of
the G5K platform [16] for most of our experiments. This cluster is composed of 32 identical
compute nodes, which are equipped with 2 Intel Xeon Gold 6130 and 192 GB of RAM. Similarly
to Chapter 4, our experimental protocol enforces that the software under test is the only the
process executed on the node, configured with a very minimal Linux Debian 9 (4.9.0 kernel
version).

Energy Measurements. We also used Intel RAPL as a physical power meter to analyze the
energy consumption of the CPU package. We note that, due to CPU energy consumption
variations issues (as seen in Chapter 4), we used the same node for all our experiments. To build
robust experiments, every test reports on energy metrics obtained from at least 20 executions
of 50 iterations per benchmarks. Having multiple iterations is useful to report on accurate
measurements for very fast processes and benchmarks.

Java Virtual Machines. The latest JVM version at the time of the study was Java 15, released
in September 2020, while Java 11 is the current Long-Term Support (LTS) version. Since Java 9,
10, 12, and 13 are no longer supported, Oracle advises developers to immediately transition to
the latest version (currently Java 15), or an LTS release. Beyond HOTSPOT, one can observe
that the initial JVM design leads to numerous initiatives to improve the performances of Java
applications, including new hot-swapping strategies—with the Dynamic Code Evolution Virtual
Machine (DCE VM) [152]—or alternative JIT—with GRAALVM.1 This also includes alternative
implementations, like IBM J9 JVM, which is currently distributed as part of the Eclipse foun-
dation, and known as J9.2 Given the wide diversity of distributions and related settings, this
chapter aims to study the impact of the features implemented by available JVM distributions
on the energy consumption of the hosted Java software services. To investigate this impact,
we conducted a wide set of experiments on a cluster of machines, using several established
Java benchmarks and JVM configurations. We considered a set of 52 JVM distributions taken
from 8 different providers/packagers mostly obtained from SDKMAN!,3 as listed in Table 5.1.

1https://www.graalvm.org
2https://www.eclipse.org/openj9
3https://sdkman.io/

https://www.graalvm.org
https://sdkman.io/
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Distribution Provider Support Selected versions
HOTSPOT Adopt OpenJDK ALL 8.0.275, 11.0.9, 12.0.2, 13.0.2, 14.0.2, 15.0.1
HOTSPOT Oracle ALL 8.0.265, 9.0.4, 10.0.2, 11.0.2, 12.0.2, 13.0.2, 14.0.2, 15.0.1, 16.ea.24

ZULU Azul Systems ALL 8.0.272, 9.0.7, 10.0.2, 11.0.9, 12.0.2, 13.0.5, 14.0.2, 15.0.1
SAPMACHINE SAP ALL 11.0.9, 12.0.2, 13.0.2, 14.0.2, 15.0.1

LIBRCA BellSoft ALL 8.0.275, 11.0.9, 12.0.2, 13.0.2, 14.0.2, 15.0.1
CORRETTO Amazon MJR 8.0.275, 11.0.9, 15.0.1
HOTSPOT Trava OpenJDK LTS 8.0.232, 11.0.9

DRAGONWELL Alibaba LTS 8.0.272, 11.0.8
OPENJ9 Eclipse ALL 8.0.275, 11.0.9, 12.0.2, 13.0.2, 14.0.2, 15.0.1

GRAALVM Oracle LTS 19.3.4.r8, 19.3.4.r11, 20.2.0.r8, 20.2.0.r11
MANDREL Redhat LTS 20.2.0.0

Table 5.1: List of selected JVM distributions.

Depending on providers, either all the versions, major or LTS ones, are made available by
SDKMAN!.

Java Benchmarks. We ran our experiments across 12 Java benchmarks we picked from Open-
Benchmarking.org.4 This includes 5 acknowledged benchmarks from the DACAPO benchmark
suite v. 9.12 [23], namely Avrora, H2, Lusearch, Sunflow and PMD, that have been widely used
in previous studies and proven to be accurate for memory management and computer ar-
chitecture communities [65, 78]. It consists of open-source and real-world applications with
non-trivial memory loads. Then, we also considered 7 additional benchmarks from the RE-
NAISSANCE benchmark suite [124, 125], namely ALS, Dotty, Fj-kmeans, Neo4j, Philosophers,
Reaction and Scrabble, which offers a diversified set of benchmarks aimed at testing JIT, GC,
profilers, analyzers, and other tools. The benchmarks we picked from both suites exercise
a broad range of programming paradigms, including concurrent, parallel, functional, and
object-oriented programming. Table 5.2 summarizes the selected benchmarks with a short
description.

5.3 Experiments and Results

5.3.1 Energy Impact of JVM Distributions

Job-oriented applications. To answer our first research question, we executed 62,400 experi-
ments by combining the 52 JVM distributions with the 12 Java benchmarks, thus reasoning on
100 energy samples acquired for each of these combinations. Figure 5.1 depicts the accumu-
lated energy consumption of the 12 Java benchmarks per JVM distribution and major versions
(or LTS when unavailable). Concretely, we measure the energy consumption of each of the
benchmarks and compute the ratio of energy consumption compared to HOTSPOT-8, which

4https://openbenchmarking.org

https://openbenchmarking.org
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Benchmark Description Focus
ALS Factorize a matrix using the alternating least square al-

gorithm on spark
Data-parallel, compute-
bound

Avrora Simulates and analyses for AVR microcontrollers Fine-grained multi-
threading, events
queue

Dotty Uses the dotty Scala compiler to compile a Scala codebase Data structure, synchro-
nization

Fj-Kmeans Runs K-means algorithm using a fork-join framework Concurrent data struc-
ture, task parallel

H2 Simulates an SQL database by executing a TPC-C like
benchmark written by Apache

Query processing,
transactions

Lusearch Searches keywords over a corpus of data comprising the
works of Shakespeare and the King James bible

Externally multi-
threaded

Neo4j Runs analytical queries and transactions on the Neo4j
database

Query Processing,
Transactions

Philosophers Solves dining philosophers problem Atomic, guarded
blocks

PMD Analyzes a list of Java classes for a range of source code
problems

Internally multi-
threaded

Reactors Runs a set of message-passing workloads based on the
reactors framework

Message-passing,
critical-sections

Scrabble Solves a scrabble puzzle using Java streams Data-parallel, memory-
bound

Sunflow Renders a classic Cornell box; a simple scene comprising
two teapots and two glass spheres within an illuminated
box

Compute-bound

Table 5.2: List of selected open-source Java benchmarks taken from DACAPO and RENAIS-
SANCE.

we consider as the baseline in this experiment. Then, we sum the ratios of the 12 benchmarks
and depict them as percentages in Figure 5.1.

One can observe that, along with time and versions, the energy efficiency of JVM distri-
butions tends to improve (10% savings), thus demonstrating the benefits of optimizations
delivered by the communities. Yet, one can also observe that energy consumption may differ
from one distribution to another, thus showing that the choice of a JVM distribution may
have a substantial impact on the energy consumption of the deployed software services. For
example, one can note that J9 can exhibit up to 15% of energy consumption overhead, while
other distributions seem to converge towards a lower energy footprint for the latest version of
Java. As GRAALVM adopts a different strategy focused on LTS support, one can observe that
its recent releases provide the best energy efficiency for Java 11, but recent releases of other
distributions seem to reach similar efficiency for Java 13 and above, which are recent versions
not supported by GRAALVM yet.
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Figure 5.1: Energy consumption evolution of selected JVM distributions along versions.

Interestingly, this convergence of distributions has been observed since Java 11 and co-
incides with the adoption of DCE VM by HOTSPOT. Ultimately, 3 clusters of JVMs that
encompass JVMs with similar energy consumption can be seen through Figure 5.1: J9, the
HOTSPOT and its variants, and GRAALVM.

Then, Figure 5.2 depicts the evolution of the energy consumption of the 12 benchmarks,
when executed on the HOTSPOT JVM. Figure 5.2 reports on the energy consumption evolution
of individual benchmarks, using HOTSPOT-8 as the baseline. Our results show that the choice
od the JVM version can impact the energy consumption of the application. However, unlike
Figure 5.1, one can observe that, depending on applications, latest JVM versions can consume
less energy (60% less energy for Scrabble) or more energy (25% more energy for the Neo4J). It is
worth noticing that the energy consumption of some benchmarks, such as Reactors, exhibit
large variations across JVM versions due to experimental features and changes that are not
always kept when releasing LTS versions (version 11 here). For example, the introduction of
VarHandle to allow low-level access to the memory order modes available in JDK 9 and works
around Unsafe Classe that was removed from from JVM 11.5

Given that the wide set of distributions and versions seems to highlight 3 classes of energy
behaviors, the remainder of this chapter considers the following distributions as relevant
samples of JVM to be further evaluated: 20.2.0.r11-grl (GRAALVM), 15.0.1-open (HOTSPOT-15),
15.0.21.j9 (J9). We also decided to keep the 8.0.275-open (HOTSPOT-8) as a baseline JVM for
some figures to highlight the evolution of energy consumption over time/versions.

Figure 5.3 further explores the comparison of energy efficiency of the JVM distributions
per benchmark. One can observe that, depending on the benchmark’s focus, the energy
efficiency of JVM distributions may strongly vary. When considering individual benchmarks,

5https://blogs.oracle.com/javamagazine/the-unsafe-class-unsafe-at-any-speed

https://blogs.oracle.com/javamagazine/the-unsafe-class-unsafe-at-any-speed
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Figure 5.2: Energy consumption of the HotSpot JVM along versions.
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Figure 5.3: Energy consumption comparison across Java benchmarks for HOTSPOT,
GRAALVM & J9.

J9 performs the worst for at least 6 out of 12 benchmarks—i.e., the worst ratio among the 4
tested distributions. Nevertheless, J9 can still exhibit a significant energy saving for some
benchmarks, such as Avrora, where it consumes 38% less energy than HOTSPOT and others.

Interestingly, GRAALVM delivers good results overall, being among the distributions
with a low energy consumption for all benchmarks, except for Reactors and Avrora. Yet,
some differences still can be observed with HOTSPOT depending on applications. The newer
version of HOTSPOT-15 was averagely good and, compared to HOTSPOT-8, it significantly
enhances energy consumption for most scenarios. Neo4J is the only selected benchmark where
HOTSPOT-8 is more energy efficient than HOTSPOT-15.

Service-oriented applications. In this part, we run the above benchmarks as services for 20
minutes, and we compare the average power and total requests processed by each of the 3 JVM
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Benchmark JVM Avg power (P) Requests (R) P/R ×10−3

Dotty
GRAALVM 45 W 510 req 88 W
HOTSPOT 45 W 597 req 75 W

J9 46 W 381 req 120 W

Scrabble
GRAALVM 109 W 5,336 req 20 W
HOTSPOT 98 W 3,595 req 27 W

J9 92 W 2,603 req 35 W

Table 5.3: Power per request for HOTSPOT, GRAALVM & J9.
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Figure 5.4: Power consumption of Scrabble-as-a-Service for HOTSPOT, GRAALVM & J9.

distributions. Globally, the results showed that the average power when using GRAALVM,
HOTSPOT and OpenJ9 is often equivalent and stable over time. This means that the energy
efficiency observed for some JVM distributions with Job-oriented applications is mainly related
to a reduction in the execution time, which incidentally results in an energy consumption
reduction. Nonetheless, we can highlight 2 interesting observations for 2 benchmarks whose
behaviors differ from others.

First, the analysis of the Scrabble benchmark experiments showed that JVMs can exhibit
different power consumption in some scenarios. Figure 5.4 depicts the power consumed by the
3 JVM distributions for the Scrabble benchmark. One can clearly see that GRAALVM requires
an average power of 109W, which is 9W higher than HOTSPOT-15 and 15W higher than J9.
When it comes to the number of processed Scrabbles requests, during that same amount of time,
GRAALVM completes 5,336 requests against 3,595 for HOTSPOT and 2,603 for J9, as shown
in Table 5.3. The higher power usage for GRAALVM helped in achieving a high amount of
requests and a faster request execution, which was at least 40% faster on GRAALVM compare
to the other two. Thus, GRAALVM was more energy efficient even if it uses more power, which
confirms the results observed in Figure 5.3 for this benchmark.

The second interesting situation was observed on the Dotty benchmark. More specifically,
during the first 100 seconds of the execution of the Dotty benchmark on all evaluated JVMs. At
the beginning of the execution, GRAALVM has a slightly lower power consumption, is faster
and consumes 10% less energy. After about 150 seconds, the power difference between the
3 JVMs is barely noticeable. One can, however, notice the effect of the JIT, as HOTSPOT-15
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Figure 5.5: Power consumptio of Dotty-as-a-Service for HOTSPOT, GRAALVM & J9.

takes the advantage from GRAALVM and becomes more energy efficient. In total, HOTSPOT

completes 597 jobs against 510 for GRAALVM and 381 for J9, as shown in Table 5.3. HOTSPOT

was thus the best choice for the long term, which explains why it is always necessary to
consider a warm-up phase and wait for the JIT to be triggered before evaluating the effect of
the JVM on the performance of an application. This is exactly what we did in our experiments,
and why HOTSPOT was more energy efficient than GRAALVM in Figure 5.3, thus ignoring the
warm-up phase would have been misleading.

To answer RQ1, we conclude that while most of the JVM platforms are very similar, we
still can cluster those JVMs in 3 classes: HOTSPOT, J9, and GRAALVM. The choice of either
of these 3 classes can have a major impact on software energy consumption, but strongly
depends on the application context.

5.3.2 Energy Impact of JVM Settings

The purpose of our study is to investigate the impact of the choice of the JVM platform on
the energy consumption, but also the different JVM parameters and configurations that might
have a positive or negative effect, with a focus on 3 available settings: multi-threading, JIT,
and GC.

Multi-threading Management

The purpose behind this phase is to investigate if JVM threads management and configuration
can have a substantial impact on Java-based software energy consumption. This encompasses
investigating if the management of application-level parallelism (a.k.a. threads) can exhibit a
wide diversity of strategies, depending on the JVM, resulting in different energy efficiencies.

Investigating such a hypothesis requires a selection of highly-parallel CPU-intensive bench-
marks, which is one of the main criteria for our benchmark selection. As no tool is capable of
accurately monitoring the energy consumption at a thread level, we monitor the global power
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consumption and CPU utilization during the execution using RAPL for the energy part, and
several Linux tools for the CPU-utilization part(Htop, CPUfreq, etc). Knowing that most of
the benchmarks are multi-threaded jobs that use multiple cores, a further analysis of thread
management is required to understand the results of our previous experiments. We selected
the benchmarks that highlighted significant differences between the JVM distributions from
Figure 5.3, namely Avrora, Reactors and Scrabble, and studied their multi-threaded behavior to
optimize their energy efficiency.

Figure 5.6 delivers a closer look to the thread allocation strategies adopted by JVM. First,
Figure 5.6a illustrates the active threads count evolution over time (excluding the JVM-related
threads, usually 1 or 2 extra threads depending on the execution phase) for Avrora. One can
notice through the figure that J9 exploits the CPU more efficiently by running much more
parallel threads compared to the other JVMs (an average of 5.1 threads per second for J9 while
the other JVMs do not exceed 1.5 thread per second). Furthermore, the number of context
switches is twice as big for J9, while the number of soft page faults is twice as small. The
efficient J9 thread management explains why running the Avrora benchmark took much less
time and consumed less energy, given that no other difference for the JIT or GC configuration
was spotted between the JVMs. Another key reason for the J9’s efficiency for the Avrora
benchmark is memory allocation, as J9 adopts a different policy for the heap allocation. It
creates a non-collectable thread local heap (TLH) within the main heap for each active thread.
The benefit of cloning a dedicated TLH is the fast memory access for separate threads, as every
thread has its own heap and no deadlock can occur. However, the TLH mechanism is not
always efficient, as dedicating a heap for each thread can also cause some extra memory usage
for data duplication and synchronization, especially if a lot of data is shared between threads.

The second example in Figure 5.6b depicts the active threads evolution over time of the
Reactors benchmark. One can observe that HOTSPOT-15 and J9 run faster, which confirms the
results of Figure 5.3, where both JVMs consume much less energy compared to GRAALVM and
HOTSPOT-8. This difference in energy consumption between benchmarks can be less likely
caused by thread management for the Reactors benchmark, as HOTSPOT-8 reports a higher
average of active threads.

In the case of the Scrabble benchmark illustrated in Figure 5.6c, one can see that GRAALVM
executed the benchmark much faster, and with even fewer threads. With only 5.1 threads/sec,
GRAALVM was able to be 50% faster than HOTSPOT-8 and J9 and consuming the least energy,
while the other JVMs ran more threads per second.

In conclusion, JVMs thread management can sometimes constitute a key factor that impacts
software energy consumption. However, we suggest checking and comparing JVMs before
deploying a software, especially if the target application is parallel and multi-threaded.
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Just-in-Time Compilation

The purpose of experiments on JIT is to highlight the different strategies that can impact
software energy consumption within a JVM and between JVMs. We identified a set of JIT
compiler parameters for every JVM platform.

For J9, we considered fixing the intensity of the JIT compiler at multiple levels (cold, warm,
hot, veryhot, and scorching).6 The hotter the JIT, the more code optimization to be triggered.
We also varied the minimum count method calls before a JIT compilation occurs (10, 50,
100), and the number of JIT instances threads (from 1 to 7). For HOTSPOT-15, we conducted
experiments while disabling the tiered complication (that generates compiled versions of
methods that collect profiling information about themselves), and we also varied the JIT
maximum compilation level from 0 to 4. We also tried out HOTSPOT with a basic GRAALVM
JIT. We note that the level 0 of JIT compilation only uses the interpreter, with no real JIT
compilation. Levels 1, 2, and 3 use the C1 compiler (called client-side) with different amounts
of extra tuning. The JIT C2 (also called server-side JIT) compiler only kicks-in at level 4.

For GRAALVM, we conducted experiments with and without the JVMCI (a Java-based JVM
compiler interface enabling a compiler written in Java to be used by the JVM as a dynamic
compiler). We also considered both the community and economy configurations (no enterprise).
A JIT+AOT (Ahead Of Time) disabling experiment has also been considered for all of the 3 JVM
platforms. Table 5.4 reports on the energy consumption of the experiments we conducted for
most of the benchmarks and JIT configurations under study.

6[https://www.eclipse.org/openj9/docs/jit/]

[https://www.eclipse.org/openj9/docs/jit/]
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JVM Mode ALS Avrora Dotty Fj-kmeans H2 Neo4j Pmd Reactors Scrabble Sunflow

GRAALVM
Default 2848 p-values 3861 p-values 2271 p-values 948 p-values 1959 p-values 3313 p-values 297 p-values 23452 p-values 452 p-values 335 p-values
DisableJVMCI 3099 0.001 4012 0.041 2694 0.001 934 0.011 1771 0.005 5086 0.001 353 0.001 25007 0.007 503 0.002 354 0.227
Economy 4503 0.001 3895 0.793 3466 0.001 1306 0.002 2560 0.001 9525 0.001 270 0.001 30317 0.001 649 0.002 392 0.002

J9

Default 3792 p-values 2122 p-values 3515 p-values 1271 p-values 2426 p-values 4336 p-values 277 p-values 12705 p-values 734 p-values 476 p-values
Thread 1 4157 0.001 2121 0.875 4749 0.001 1297 0.097 2597 0.066 4906 0.001 350 0.001 12800 0.713 948 0.002 626 0.005
Thread 3 3849 0.018 2105 0.713 3574 0.104 1259 0.371 2450 0.637 4477 0.005 294 0.004 12647 0.875 795 0.021 457 0.27
Thread 7 3843 0.041 2386 0.372 3511 0.875 1259 0.25 2424 0.637 4431 0.104 273 0.372 12600 0.875 808 0.055 463 0.372
Count 0 8461 0.001 2425 0.001 4877 0.001 2289 0.002 3212 0.001 10565 0.001 744 0.001 18084 0.001 1476 0.002 922 0.001
Count 1 4281 0.001 2150 0.431 3164 0.001 1841 0.002 2546 0.431 7166 0.001 272 0.128 14715 0.001 1005 0.002 514 0.052
Count 10 3980 0.001 2431 0.713 3771 0.001 1312 0.011 2779 0.003 4979 0.001 299 0.001 12000 0.104 860 0.005 1182 0.001
Count 100 3878 0.007 2141 0.713 3469 0.227 1363 0.523 2513 0.128 4547 0.001 262 0.031 12313 0.024 768 0.16 634 0.004
Cold 6788 0.001 2134 0.637 4855 0.001 1636 0.002 2873 0.001 7250 0.001 275 0.372 20380 0.001 870 0.005 386 0.001
Warm 4594 0.001 2112 0.713 4253 0.001 1244 0.055 2521 0.128 5305 0.001 411 0.001 13726 0.001 913 0.002 336 0.001
Hot 7553 0.001 2310 0.001 12749 0.001 1452 0.002 3973 0.001 8979 0.001 857 0.001 36534 0.001 1180 0.002 506 0.128
VeryHot 15113 0.001 3300 0.001 18235 0.001 2430 0.002 7205 0.001 19359 0.001 793 0.001 38303 0.001 5420 0.002 1692 0.001
Schorching 18316 0.001 3541 0.001 21686 0.001 2514 0.002 7855 0.001 26409 0.014 808 0.001 43929 0.001 5583 0.002 1778 0.001

HOTSPOT

Default 2997 p-values 4014 p-values 2516 p-values 934 p-values 1796 p-values 4787 p-values 323 p-values 11685 p-values 530 p-values 325 p-values
Graal 2999 0.637 3971 0.318 2512 0.318 929 0.609 1662 0.007 4750 0.372 327 0.189 11548 0.523 537 0.701 338 0.564
Lvl 0 491443 / 14484 / 84395 / / / 52344 / 356287 / 1073 / 148381 / / / 14559 /
Lvl 1 / / 3731 0.001 3302 0.001 1256 0.002 2523 0.001 8304 0.001 222 0.001 22410 0.002 735 0.002 277 0.007
Lvl 2 3079 0.004 4110 0.189 3723 0.001 22547 0.002 2840 0.001 19058 0.001 226 0.001 40701 0.002 2291 0.002 4131 0.001
Lvl 3 16375 0.001 7729 0.001 6789 0.001 144914 0.002 4139 0.001 44594 0.001 330 0.005 190124 0.002 9070 0.002 10449 0.001
NotTired 3254 0.001 3901 0.189 3110 0.001 912 0.021 1846 0.227 3844 0.001 933 0.001 11256 0.041 588 0.003 405 0.001

Table 5.4: Energy consumption when tuning JIT settings on HOTSPOT, GRAALVM & J9
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The p-values are computed with the mann-whitney test, with a null hypothesis of the
energy consumption being equal to the default configuration. The p-values in bold show the
values that are significantly different from the default configuration with a 95% confidence,
where the values in green highlight the strategies that consumed significantly less energy than
default (less energy and significant p-value).

For J9, we noticed that adopting the default JIT configuration is often better than specifying
a custom JIT intensity. The warm configuration delivers the closest results to the best results
observed with the default configuration. Moreover, choosing a low minimum count of method
calls seems to have a negative effect on the execution time and the energy consumption. The
only parameter that gave better performance than the default configuration in some cases
is the number of parallel JIT threads—using 3 and 7 parallel threads—but is not statistically
significant.

For GRAALVM, the default community configuration is often the one that consumes
the least energy. Disabling the JVMCI can—in some cases—have a benefit (16% of energy
consumption reduction for the H2 benchmark), but still gave overall worst results (80% more
energy consumption for the Neo4J benchmark). In addition, switching the economy version of
the GRAALVM JIT often results in consuming more energy and delaying the execution.

For HOTSPOT, keeping the default configuration of the JIT is also mostly good. In fact, the
usage of the C2 JIT is often beneficial (JIT level 4) in most cases, while using the GRAALVM JIT
reported similar energy efficiency. Yet, some benchmarks showed that using only the C1 JIT
(JIT level 1) is more efficient and even outperforms the usage of the C2 compiler. 10% on Avrora
and 30% on Pmd are examples of energy savings observed by using the C1 compiler. However,
being limited to the C1 compiler can also cause a huge degradation in energy consumption,
such as 32% and 34% of additional energy consumed for the Dotty and FJ-kmeans benchmarks,
respectively. Hence, if it is a matter of not using the C2 JIT, the experiments have shown that
the level 1 JIT is always the best, compared to levels 2 or 3 that also use the C1 JIT, but with
more options, such as code profiling that impacts negatively the performance and the energy
efficiency. Level 0 JIT compilation should never be an option to consider. No p-value has been
computed for Level 0, due to the limited amount of iterations executed with this mode (very
high execution time, clearly much more consumed energy).

Globally, we conclude through these experiments that keeping the default JIT configuration
was more energy efficient in 80% of our experiments and for the 3 classes of JVMs. This
advocates that using the default JIT configuration can often deliver near-optimal energy
efficiency. Although, some other configurations, such as using only the C1 JIT or disabling the
JVMCI could be advantageous in some cases.
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Policy Description
Balanced Evens out pause times & reduces the overhead of the costlier operations

associated with GC
Metronome GC occurs in small interruptible steps to avoid stop-the-world pauses
Nogc Handles only memory allocation & heap expansion, with no memory

reclaim
Gencon (default) Minimizes GC pause times without compromising throughput, best for

short-lived objects
Concurrent Scavenge Minimizes the time spent in stop-the-world pauses by collecting nursery

garbage in parallel with running application threads
optthruput Optimized for throughput, stopping applications for long pauses while

GC takes place
Optavgpause Sacrifices performance throughput to reduce pause times compared to

optthruput

Table 5.5: The different J9 GC policies

Policy Description
G1GC (default) Uses concurrent & parallel phases to achieve low-pauses GC and main-

tain good throughput
SerialGC Uses a single thread to perform all garbage collection work (no threads

communication overhead)
ParallelGC Known as throughput collector: similar to SerialGC, but uses multiple

threads to speed up garbage collections for scavenges
parallelOldGC Use parallel garbage collection for the full collections, enabling it auto-

matically enables the ParallelGC

Table 5.6: The different HOTSPOT/GRAALVM GC policies

Garbage Collection

Changing or tuning the GC strategy has been acknowledged to impact the JVM perfor-
mances [79]. To investigate if this impact also benefits energy consumption, we conducted a
set of experiments on the selected JVMs. We considered different garbage collector strategies
with a limited memory quantity of 2 GB, and recorded the execution time and the energy
consumption. The tested GC strategies options mainly vary for J9 as detailed in Table 5.5.

For HOTSPOT and GRAALVM, we also considered many GC policies, as described in
Table 5.6. Furthermore, other GC settings have also been tested for all JVM platforms, such as
the pause time, the number of parallel threads, concurrent threads and tenure age.
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JVM Mode ALS Avrora Dotty H2 Neo4j Pmd Reactors Scrabble Sunflow

GRAALVM

Default 2570 p-values 4153 p-values 2223 p-values 1870 p-values 5256 p-values 281 p-values 2611 p-values 410 p-values 353 p-values
1Concurent 2567 0.403 4007 0.023 2220 1.000 1883 0.982 5368 1.000 286 0.182 2664 1.000 413 0.885 347 0.573
1Parallel 2668 0.012 3904 0.008 2228 0.835 2022 0.000 5836 0.012 298 0.000 2869 0.144 561 0.030 317 0.000
5Concurent 2570 0.676 4117 0.161 2215 0.210 1862 0.505 5259 1.000 282 0.980 2611 0.531 414 0.885 362 0.356
5Parallel 2561 0.676 3863 0.012 2237 1.000 1910 0.103 5223 0.403 282 0.538 2682 0.531 424 0.112 353 0.758
DisableExplicitGC 2559 0.210 3911 0.003 2215 1.000 1978 0.018 5106 0.210 281 0.758 2704 0.676 400 0.312 332 0.036
ParallelCG 2720 0.012 4016 0.206 2237 0.531 1945 0.000 13172 0.037 282 0.878 2267 0.022 545 0.030 329 0.003
ParallelOldGC 2715 0.012 4032 0.103 2221 1.000 1925 0.002 13362 / 282 0.918 2514 0.012 535 0.030 329 0.008

J9

Default 3371 p-values 2243 p-values 3237 p-values 2107 p-values 6277 p-values 232 p-values 1644 p-values 589 p-values 510 p-values
Balanced 9012 0.012 2232 0.597 3429 0.012 2247 0.002 8853 0.012 235 0.412 1902 0.020 661 0.061 519 0.505
ConcurrentScavenge 3487 0.012 2270 0.280 3388 0.012 2319 0.001 6857 0.012 233 0.878 1705 0.903 639 0.194 546 0.018
Metronome 2098 0.012 2265 0.505 3815 0.012 2717 0.000 12103 0.012 239 0.022 2089 0.020 758 0.030 422 0.000
Nogc 3454 0.022 2239 0.872 3259 0.144 2207 0.031 61781 0.012 227 0.151 1505 0.066 711 0.030 499 0.720
Optavgpause 3601 0.012 2431 0.370 3425 0.012 2169 0.297 7495 0.012 253 0.000 1772 0.391 1089 0.030 478 0.046
Optthruput 3357 1.000 2432 0.241 3178 0.403 2194 0.139 6324 0.835 232 0.878 1554 0.111 640 0.194 429 0.000
ScvNoAdaptiveTenure 3494 0.012 2253 0.800 3248 0.835 2161 0.103 8442 0.012 228 0.137 1908 0.020 618 0.665 528 0.218

HOTSPOT

Default 2765 p-values 4115 p-values 2492 p-values 1673 p-values 8152 p-values 316 p-values 1546 p-values 484 p-values 347 p-values
1Concurent 2775 0.060 4137 0.346 2493 0.676 1675 0.918 8062 0.531 316 0.383 1533 0.665 478 0.470 334 0.218
1Parallel 2863 0.012 4142 0.800 2526 0.037 1853 0.001 8270 0.676 334 0.000 1747 0.030 592 0.030 320 0.002
5Concurent 2758 0.676 4091 0.872 2485 0.296 1681 0.608 8087 0.835 314 0.330 1497 0.665 469 0.030 336 0.259
5Parallel 2767 0.144 4176 0.077 2473 0.060 1654 0.720 8046 0.835 316 0.573 1546 0.470 489 0.470 342 0.573
DisableExplicitGC 2734 0.012 4062 0.448 2483 0.835 1702 0.248 7710 0.037 312 0.200 1545 0.470 470 0.061 325 0.014
ParallelCG 2653 0.012 4064 0.629 2356 0.012 1602 0.008 8953 0.060 300 0.000 1476 0.885 579 0.030 336 0.081
ParallelOldGC 2764 0.531 4070 0.872 2525 0.802 1675 0.959 7963 0.403 314 0.720 1582 0.194 475 0.470 333 0.151
SerialGC 2593 0.012 4083 0.395 2378 0.012 1620 0.046 5745 0.012 307 0.002 1672 0.061 601 0.030 352 0.473

Table 5.7: Energy consumption when tuning GC settings on HOTSPOT, GRAALVM & J9
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Table 5.7 summarizes the results of all the tested GC strategies with our selected benchmarks
and the p-values of the mann-whitney test, with a null hypothesis of the energy consumption
being equal to the default configuration with a 95% confidence. The p-values in bold show
the values that are significantly different from the default configuration, where the values
in green highlight the strategies that consumed significantly less energy than default. For
GRAALVM, one can see that the GC default configuration is efficient in most experiments,
compared to other strategies. The main noticeable impact is related to the ParallelGC and
ParallelOldGC. In fact, the ParallelGC can be 13% more energy efficient in some applications with
a significant p-value, such as Reactors, compared to default. However, the same GC strategy
can cause the software to consume two times more, as for the Neo4j benchmark, due to the
high communications between the GC threads, and the fragmentation of the memory.

For J9, the default Gencon GC causes the software to report an overall good energy effi-
ciency among the tested benchmarks. However, other GC can cause better or worse energy
consumption than Gencon depending on workloads. Using the Metronome GC consumes 35%
less energy for the ALS benchmark and 17% less energy for the Sunflow benchmark, but it
also consumes twice energy for the Neo4j benchmark and 28% more energy for Reactors. The
reason is that Metronome occurs in small preemptible steps to reduce the GC cycles composed
of many GC quanta. This suits well for real-time applications and can be very beneficial when
long GC pauses are not desired, as observed for ALS. However, if the heap space is insufficient
after a GC cycle, another cycle will be triggered with the same ID. As Metronome supports
class unloading in the standard way, there might be pause time outliers during GC activities,
inducing a negative impact on the Neo4j execution time and energy consumption.

The same goes for the Balanced GC that tries to reduce the maximum pause time on the
heap by dividing it into individually managed regions. The Balanced strategy is preferred to
reduce the pause times that are caused by global GC, but can also be disadvantageous due
to the separate management of the heap regions, such as for ALS where it consumed about
three times the energy consumption, compared to the default Gencon GC. On the other hand,
the Optthruput GC, which stops the application longer and less frequently, gave very good
overall results and sometimes even outperformed the Gencon GC by a small margin. Other
JVM parameters, such as the ConcurrentScavenge or noAdaptiveTenure did not have a substantial
impact during our experiments.

Finally, the results of HOTSPOT shared similarities with GRAALVM. The ParallelGC hap-
pened to give better (6% for Dotty) or worse (10% for Neo4j) energy efficiency compared to the
default GC. On the other hand, ParallelOldGC and Serial GC gave better results than the default
G1 GC. More specifically, the second one consumed 30% and 6% less energy than default GC
for the Neo4j and Dotty benchmarks, respectively. The most interesting result for HOTSPOT is
the 30% energy reduction obtained with the Serial GC. This last was also more efficient on ALS
(6% less energy), compared to the default G1 GC, due to its single-threaded GC that only uses
one CPU core.
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Unfortunately, we cannot convey predictive patterns on how to configure the GC to
optimize energy efficiency. However, some considerations should be taken into account when
choosing the GC, such as the garbage collection time, the throughput, etc. Other settings are
less trivial to determine, such as tenure age, memory size, and GC threads count. Experiments
should thus be conducted on the software to tune the most convenient GC configuration to
achieve a better energy efficiency in production.

Therefore, we noticed during our experiments that, even if using the default GC configura-
tion ensures an overall steady and correct energy consumption, we still found other settings
that reduce that energy consumption in 40% of our experiments. Tuning the GC according to
the hosted app/benchmark is thus critical to reduce the energy consumption.

To answer RQ 2, we conclude that users should be careful while choosing and config-
uring the garbage collector as substantial energy enhancements can be recorded from a
configuration to another. The default GC consumed more energy than other strategies in
multiple situations. On the other hand, keeping the default JIT parameters often delivers
near-optimal energy efficiency. In addition, the JVM platforms can handle multi-threaded
applications differently and thus consume a different amount of energy. Dedicated perfor-
mance tuning evaluations should therefore be conducted on such software to identify the
most energy-efficient platform and settings.

5.4 Threats to Validity

This work shares some of the threats to validity of Chapter 4 such as energy measurements
errors and variability. Moreover, one major threat is benchmarks execution time, especially for
some benchmarks that run fast, such as the Pmd benchmark. We thus gave a lot of attention
on how long the benchmark is running for the hardware we used, and we tuned the input
data workloads to execute benchmarks for at least many (from 10 to hundreds) seconds. Each
experiment ran at least 30 times to compute the average consumption and the associated
standard deviation, therefore reasoning over reasonable dispersion around the average.

5.5 Summary

This chapter reports on an empirical investigation of the key differences in energy consumption
that some of the most famous and supported JVM platforms can exhibit, in addition to the key
settings that can impact this energy consumption positively or negatively. During our exper-
iments, we considered a total of 12 well-known and diversified-purposes Java benchmarks
together with a total of 52 JVMs, including many versions of 11 different distributions. The
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results of our investigations showed that many JVMs share energy efficiencies and can be cate-
gorized into 3 classes: HOTSPOT, J9, and GRAALVM. The 3 selected JVM classes can however
report a different energy efficiency for different software and/or workloads, sometimes by a
large margin. While we did not observe a unique champion when it comes to energy consump-
tion, GRAALVM reported the best energy efficiency for a majority of benchmarks. Nonetheless,
each JVM can achieve better or worse efficiency depending on the hosted application. One
cause can be thread management strategies, as observed with J9 when advantageously run-
ning Avrora. Moreover, some JVM settings can cause energy consumption variations. Our
experiments showed that the default JIT compiler of the JVM is often near-optimal, in at least
80% of our experiments. The default GC, however, was outperforming alternative strategies in
only half of our experiments, with some large gains observed when using some alternative GC
depending on the application characteristics.

Our main conclusions and guidelines can be thus summarized as: i) testing software on the
3 classes of JVM and identifying the one that consumes the least is a good practice, especially
for multi-threading purposes, ii) while the JVM default JIT give often good energy consumption
results, some settings may improve the energy consumption and could be tested, iii) the choice
of the GC may lead to a large impact on the energy consumption in many situations, thus
encouraging a careful tuning of this parameter prior to deployment.





Chapter 6

Evaluating the Impact of Java Code
Refactoring on Energy

Software Energy consumption does not only concern the execution environment and con-
figuration level. In fact, other developers’ actions and choices that might impact the energy
consumption of a software are at source code level. In a typical scenario of software develop-
ment, a developer will have to update and maintain his/her Java software for example, after
deploying it on a proper JVM and with a proper configuration. Software maintenance and
evolution enclose a broad set of actions that aim to improve both functional and non-functional
concerns of a software system. Among the non-functional concerns, the very famous code
refactoring. In this context, the impact of code refactoring on energy consumption remains
unclear. In particular, while the state of the art investigated the impact of some specific
code refactorings on dedicated benchmarks, especially on mobile applications, we miss an
assessment that those apply to more comprehensive and complex software. To address this
threat, this chapter studies the evolution of the energy consumption of 7 open-source software
developed for more than 5 years. Interestingly, the results highlight that i) structural code
refactorings bring energy-preserving changes to the code, and ii) major energy variations seem
to be related to functional and computational code evolution.

The remainder of this chapter is organized as follows. Section 6.1 gives an overview on
what the chapter encompasses. Section 6.2 introduces the experimental protocol (hardware,
projects, tools, and methodology) we adopted in this study. Section 6.3 analyzes several
experiments we conducted to mine the code refactorings and evaluate their impact on the
energy consumption, as well as the results we observed during these experiments.

6.1 Overview

Software energy consumption has gained a substantial significance in the last decade, both for
research and industrial contexts [30, 44, 122, 128, 146]. Hence, many researchers and practition-
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ers started caring about the energy efficiency of software, beyond performance and hardware
concerns [35, 91, 88, 120]. Being integrated into mobile or cloud environments, software sys-
tems are trying to minimize their resource consumption to reduce battery consumption or
operational cost.

In this context, the impact of software development techniques on energy consumption has
been explored by the state of the art, including code compilation, static code analysis and code
refactoring, which is the focus of this chapter. Source code refactorings can be described as the
application of acknowledged rules to improve one or many aspects of a software system, such
as its clarity, maintenance, code smells, without impacting its functional behavior [3, 66].

Yet, code refactoring has also been considered as a mean to improve the performance
and/or energy efficiency in a more or less automated way [11, 25, 35, 36, 48, 99]. The large
majority of the literature studies that has been published in this domain—especially for mobile
application [11, 48, 80, 113]—based their study on a predefined set of refactoring rules, design
patterns, or code smells. In most of these studies, the authors measure and analyze the effect
of atomic code changes on the total energy efficiency of the software under study, before
concluding on their effect. While this process may deliver interesting insights on the impact
of specific code refactorings on the energy consumption of a code snippet, there is still no
guarantee that the identified code refactorings are frequently applied during the lifespan of a
software system.

In this chapter, we thus consider an alternative approach to study the impact of code
refactorings on the energy efficiency of legacy software systems. We focus on acknowledged
refactoring rules mostly issued from Fowler’s book [46], which are mostly structure-oriented
rules (such as Extract Method) dealing with code architecture and organization for server-side
applications rather than implementation and computation changes (such as Substitue Algo-
rithm). Instead of selecting a set of code refactorings a priori and evaluating them against
some dedicated benchmarks, we extract these code refactorings from established open-source
projects. More specifically, we mine the history of code refactorings that have been applied to
these projects in the past, and we measure the impact of the commits that include acknowl-
edged code refactorings on the overall energy consumption. This approach aims to detect
the code refactorings that have been broadly applied, and their observable impact on energy
efficiency in practice. By doing so, we believe that mined code refactorings are most likely to
reflect an effective impact of code refactoring on energy consumption, compared to the study
of a fixed set of refactoring candidates. This study, therefore, aims to answer the following
research questions:

RQ 1: How does the energy consumption of software evolve over time?

RQ 2: How do code refactorings contribute to the evolution of software energy consumption?

The chapter comes with a set of contributions that can be summarized as:
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1. Proposing a new empirical approach to study the impact of structure-oriented code
refactorings on the energy consumption of software systems,

2. Investigating the contribution of code refactorings to the global evolution of software
energy consumption,

3. Providing a detailed description of the most applied code refactorings and their impact
on energy consumption,

4. Validating the code refactoring effects on energy consumption through statistical tests
and micro-benchmarking.

6.2 Experimental Protocol

This section describes our detailed experimental environment, encompassing the hardware
configuration, the studied projects/benchmarks and a detailed description of our experimental
methodology. We note that benchmarking protocol and environment configurations similar to
Chapter 4 were considered for experiments accuracy.

6.2.1 Hardware Environment

For all of our experiments, we used a Core i7 machine (i7-6600U CPU @ 2.60GHz) with a total
of 4 processing units to measure the energy consumption and mine the refactoring rules from
the projects under study. The machine ran a 18.04.4 LTS Ubuntu, with a 4.15.0-88-generic
Linux kernel. We also used OPENJDK, version 1.8.0_242, to run most of our Java experiments—
i.e., run both old and recent versions—except for the OkHttp project where we had to use
OPENJDK, version 11.0.6. By using the same machine to conduct all the experiments, we
guarantee the least energy consumption variation and a controlled impact of the hardware
configuration.

6.2.2 Projects Under Study

Regarding the subjects of our study, our main criterion was to select established projects with
a considerable commit history, that have been existing for years, and with an active commu-
nity. This study exclusively focuses on Java projects to limit the search space and unify our
experimental setup, but also because code refactorings may differ from a language/paradigm
to another. We then tried to diversify our dataset by considering projects that cover a large
spectrum of features and operations including, JSON and XML conversions, HTTP client,
graph processing, data collections, etc. Because of the longitudinal nature of our study, we
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Project Description # commits 1st commit
OkHttp Java HTTP client 4,684 05-2011
JGraphT Graph objects and algorithms provider 3,158 07-2003
XStream XML↔ Java objects serialization 2,736 10-2003
JFlex Java lexical analyzer generator 1,741 02-2003
Gson JSON↔ Java objects serialization 1,485 08-2008
Eclipse-Collections Eclipse Java collections 1,374 12-2015
Google-Http Google HTTP client library for Java 868 05-2011

Table 6.1: List of selected open-source projects

considered projects that have a stable interface, and in which the main functions are unam-
biguously identified, so we can run the same measurements across different generations and
versions of the studied projects.

Based on the above criteria, Table 6.1 summarizes the projects that we considered for this
study, along with the number of commits at the time that this chapter was written, and the
date of the first commit. Established projects with a higher number of commits increase the
chances to mine a representative set of commits including code refactorings. All the projects
we selected have been hosted on GitHub since at least 2015. We note that the Git creation date
only gives an overview of how long the project has been on GitHub and is different from the
project creation date. Some projects, such as Gson, exist on GitHub since March 2015, but we
still can checkout commits from 2003.

6.2.3 Methodology and Tools

Our experimental methodology is a process that includes extraction, evaluation, and validation
steps. Figure 6.2 depicts the main steps we followed to analyze each selected project. We
start our process by cloning the public repository of the project from GitHub. Then, for each
commit, we mine the code refactorings of the project using the REFACTORINGMINER tool
and we summarize them into a JSON file. REFACTORINGMINER is an open-source research
project [140, 139] that analyses a project commit by commit and extracts the type and count
of refactorings for each commit in a JSON format. It helps in detecting and visualizing 55
different types of refactoring in its version 2.0, which is the version we used in this study.1

Once we extract the code refactorings that have been applied per commit on the master
branch, we select the commits to be reproduced to measure their energy consumption. The
selection method takes into account the refactorings count and types in each commit. We
consider commits with a threshold of 20 refactorings so we can expect a significant impact
of the refactorings on the energy consumption. Figure 6.1 depicts the cumulative distribution
function (CDF) that shows the frequency of commits per refactoring count (commits with more

1https://github.com/tsantalis/RefactoringMiner
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Figure 6.1: CDF of code refactorings per commit.

than 200 refactorings have been omitted for clarity). For most of the studied projects, one
can see that 20% of the commits have more than 20 refactorings. Since the commits that
contain only one type of refactoring are very rare, we also consider commits with a mix of
code refactorings and deduce the impact of each refactoring rule a posteriori.

Then, we rebuild the project Java archive (JAR) for each of the previously selected commits
to be ready for the test/run phase. To be able to run and evaluate the compiled JAR, we need
to provide a task to execute for each project. We cannot trust running the tests provided within
projects as they can substantially change from a commit to another and might include/exclude
functionalities that appear/disappear between commits, which does not constitute a fair
comparison criterion. Instead, we wrote our own JMH benchmarks for each project, which
is a "Java harness for building, running, and analyzing nano/micro/milli/macro benchmarks written
in Java and other languages targeting the JVM".2 The purpose of each benchmark is to test
the main functionality of each project to ensure the same measurement conditions for all
commits. Hence, through JMH benchmarking, we can deliver—for each project—experiments
to compare the energy consumption of commits, while testing the main functionalities of the
project. The main test functionality for Gson and XStream is JSON and XML to Java objects
serialization and deserialization, respectively. For both OkHttp and Google-Http projects, we
consider the core HTTP verbs (GET, POST, DELETE) with a local server to eliminate any network
bias. For JGraphT, we consider the operations of graph creation, shortest path computation,
max-flow computation, and discarding random edges. We also tested JFlex with lexical

2https://openjdk.java.net/projects/code-tools/jmh/
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analyzer generation, and Eclipse-Collections with the core operations on the different mutable
and immutable collections (lists, maps, sets), inspired from Hasan et al.’s and Pinto et al.’s
studies [52, 122]. Using JMH for writing benchmarks has many advantages, such as the easy
management of run and warm-up iterations, and the prevention of dead code removal from
the JIT using the concept of blackhole [129].

Once the JMH benchmark was written, we compute the coverage of the project by the
benchmark using Jacoco (https://www.eclemma.org/jacoco). The purpose is not to cover all
of the project classes and methods, as we only want to test the main functionality of the project.
However, the coverage computation allows us to save all the classes and methods that are
covered by our benchmark. Thus, only the commits with refactoring on these classes (given by
RefactoringMiner) and methods are considered for the evaluation. Of course, this operation
requires applying more checks to ensure that the changes of the commit x are limited to the
extracted refactorings and nothing else susceptible to affect the performance or the energy
consumption. Hence, this step ensures that the selected commits only contain refactorings that
are being stressed by our benchmark.

The next step is to run the benchmarks for each of the JAR files compiled from relevant
commits. To highlight the effect that code refactorings may have on energy consumption, we
build and run the commit x that includes the code refactorings, but also the commit x-1 on the
main branch, so we can compare the energy consumption and infer the impact of refactorings.

The percentage of reproduced commits, which designates the ratio of successfully built
and ran commits in regards to the total count of selected commits (Gson: 95%, XStream: 80%,
OkHttp V3 and V4: 90%, Google-Http: 15%, JGraphT: 25%, JFlex: 40%, Eclipse-Collections: 50%).
Most of the unsuccessful projects’ rebuilds are due to deprecated and invalid references.

During the execution of the experiments, we use Intel RAPL to acquire the global energy
consumption. We thus evaluate the energy consumption of every commit x and we compare it
to its x-1 commit. We run every JMH benchmark for multiple iterations on a fixed amount of
time, and we extract between 100 and 1,000 energy measurements depending on the duration of
each iteration. Thus, different commits can run a different amount of iterations within the time
allowed to the JMH benchmark execution. This is why we consider the energy consumption of
iterations rather than the whole benchmark, in order to have a correct estimation of the energy
consumption for that commit. Then, similarly to Chapter 4, we use the bootstrap method [40]
to randomly build 100 subsets from the main set of measurements, and we compute the mean
and standard deviation of these subsets. We end-up with 100 measures of averages and we
use the median of these values for better accuracy and less bias.

The checked results are then used to build global statistics of the most efficient refactoring
rules across the selected commits of all projects. This additional check of commits consists of
applying a more detailed git diff analysis on the results of the previous step to verify every
single occurrence of the detected refactorings, that they contain no other changes that may
affect the energy efficiency. Another check consists of an extra micro-benchmarking phase,
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Figure 6.2: Methodology of refactoring analysis

where we prepare and execute the extracted refactorings to confirm and validate the effect they
could have on the energy efficiency of the project/software. We also applied the Wilcoxon rank
sum test (or Student test when possible) to check the statistical significance of the registered
difference in the energy consumption between the commit x and the commit x-1, with a null
hypothesis of the energy consumption of the commit x and x-1 being equal with a 5% certainty.

6.3 Refactoring Impact Analysis

In this section, we aim at answering our research questions with a clear conclusion on whether
refactoring has a substantial impact on the evolution of software energy consumption over



100 Evaluating the Impact of Java Code Refactoring on Energy

time. We, therefore, conducted a set of experiments and validations to investigate the effect of
structural refactoring on the evolution of software energy consumption.

6.3.1 Software Energy Consumption Evolution

The first step is to investigate the evolution of software energy consumption over time. Fig-
ure 6.3 depicts the evolution of energy consumption for the projects Google-Http, XStream,
JGraphT, and Eclipse Collections, for which we run the main releases and report on the energy
consumption measured over time, by focusing on the main functions stressed by our JMH
benchmarks.

Except for JGraphT, one can observe that energy consumption tends to decrease over
time for most of the projects. One can mention a 10% decrease in 12 months for the Google-
Http project (cf. Figure 6.3a), a 10% decrease in 4 years for the Eclipse Collections project (cf.
Figure 6.3c), and a very substantial decrease of 50% in 6 years for the XStream project (cf.
Figure 6.3d).

Then, to have a more concrete look on the evolution of energy consumption per commit,
we select the Gson project to reproduce the evolution of its energy consumption along the
full commit history. Given the large number of involved commits, we consider the full set
of commits of the Gson project (12 years) with a span of 25—i.e., we build, run, and measure
the energy consumption every 25th commits. Figure 6.4 depicts the evolution of energy
consumption for the Gson project with a total of 57 successfully reproduced commits, out of 60.
The line plot validates and confirms the results shown in Figure 6.3. Most notably, one can
observe a reduction of 82% from the highest to the lowest consumption commit within 12
years of the project’s lifespan—i.e., the energy consumption became 5 times lower. One can
also see a more sudden energy consumption reduction between commits 600 and 900. This
requires further investigation in the future.

To answer RQ1, we highlighted that software energy consumption can evolve drastically
over time. For the analyzed target systems, in spite of fluctuations, the energy consumption
has decreased non-negligibly for 4 systems and grown for one.

Given the previous results reported by the literature, the remainder of this chapter aims to
closely study and assess the impact of code refactoring on such observed evolutions.

6.3.2 Refactoring Rules Impact

To dive into the effective impact that code refactoring may have on software energy consump-
tion, we further tracked and analyzed the evolution of the energy consumption on commits
where code refactorings were detected. Thus, in our study, we consider the full commit history
of 7 open-source projects, and we analyze the impact on energy consumption of commits
including code refactorings, as described in Section 6.2.
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Figure 6.4: Gson energy consumption across all commits.

Once we select commits with code refactorings and rebuild them, we run the JMH bench-
marks that have been prepared for each project to compare the energy consumption of a
commit x that includes the refactorings and the previous commit x-1 on the master branch.

Then, we report on global statistics from the raw measurements we obtained from each
project, thus establishing a summary of the most used code refactorings and their impact.

Global Code Refactoring Statistics

The purpose of this step is to highlight the most used/impactful code refactorings. While it
is easy to identify the most used code refactorings by counting the number of occurrences of
each refactoring rule and the commits they appear in, there is no consensus on how to measure
the effective impact of code refactorings on energy consumption, if any. The large majority of
commits comes with a set of code refactorings of many types, and even if these refactorings
can impact the energy consumption, there is no trivial way to isolate such an impact for each
type of refactoring. Thus, we consider 3 indicators to capture the energy impact of refactoring.
The first indicator, Impact in Commits (IC), is the ratio between the number of commits where
the refactoring had a positive or negative impact—i.e., the commit x containing this refactoring
consume more or less energy than the previous commit x-1—and the total number of commits
containing this refactoring. Equation 6.1 therefore computes IC for a rule r ∈ R by exploring



6.3 Refactoring Impact Analysis 103

all the commit history C of a given project:

IC(r) = ∑c∈C count_positive_negative(c,r)
∑c∈C count(c,r)

(6.1)

This indicator can be then enhanced by taking into account the occurrences—or weights—of
each refactoring rule in a commit. In other words, considering the refactoring weight consists
of using the number of occurrences of each refactoring type within a commit rather than only
counting the commit as 1 if it contains at least a refactoring.

WIC(r) = ∑c∈C count_positive_negative(c,wr)

∑c∈C count(c,wr)
(6.2)

Nevertheless, this indicator is not enough to evaluate the energy impact of refactoring.
Indeed, including the weight of refactorings in commits supposes that all refactorings impact
energy consumption equally, which may not be true, as we assume that the occurrence of a
refactoring r1 can have a bigger impact than many occurrences of a refactoring r2.

The 2nd and 3rd indicators are δ% and δ|%| that indicate the mean of the energy consumption
of every commit x containing the refactoring minus the energy consumption of commits x-1,
and the mean of the absolute value of the energy consumption of every commit x containing
the refactoring minus the energy consumption of commits x-1, respectively, ∥Cr∥ being the
commits in the commit history C where refactoring r occurred.

δ%(r) =
∑Cr

x=1(Ex − Ex−1)

∥Cr∥
(6.3)

δ|%|(r) = ∑Cr
x=1|Ex − Ex−1|

∥Cr∥
(6.4)

where Ex and Ex−1 represent the mean energy consumption of the commit x that includes at
least the refactoring r, and the energy consumption of the commit x-1, respectively. These
indicators are complementary to reflect the impact of the code refactorings on the energy
consumption. Therefore, we consider an aggregate indicator that combines the previous
indicators to capture the energy impact of refactorings across commits. This indicator, named
Refactoring Impact (RI) builds on the previous indicators: the higher WIC and δ|%|, the more
impactful the refactoring r is. However, if the difference δ|%|−δ% is high, it means that
the refactoring r has an unpredictable effect on the energy consumption and may affect the
energy consumption positively or negatively. This is a negative effect and could mean that the
refactoring does not have any impact at all. On the other hand, the more commits we have
with the refactoring r, the more certain we are of the effect that it could have. Thus, we use the
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exponential function in Equation 6.5 so the denominator cannot be null.

RI(r) =
WIC(r)× δ|%|(r)

eδ|%|(r)−δ%(r)
× ∥Cr∥ (6.5)

Table 6.2 shows the computed indicators for a total of 25 mined refactoring rules. We note
that the commits that could not be reproduced and those where the refactorings are parts of
classes that are not tested by our benchmark have already been discarded and not displayed in
Table 6.2. Before analyzing the results we excluded all the code refactorings with a low number
of occurrences and/or commits (less than 20 CountxCommits). For example, code refactorings
that occurred only a couple of times and/or only in one or two commits cannot be faithfully
studied due to insufficient data. Then, we highlight (in Cyan) the refactoring rules that have
the best values for the previous indicators, which are very likely the refactorings with the most
impact on energy consumption. The 4 refactoring rules with the most number of occurrences
and commits, with a minimal IC of 30%, are "add method annotation", "rename parameter", "add
class annotation", and "move class". These refactoring rules are also those that exhibit the highest
RI, and thus, are most likely to be the most impactful on energy consumption. However, we
still have to assess that these refactoring rules have an effective impact on the evolution of
energy consumption. Thus, we conducted a more detailed study on the commits with the
highest impact to validate the effect of code refactorings on energy consumption.

Diving Into the Most Impactful Commits

With the most impactful commits, we refer to commits where we observed the most substantial
energy differences between the commits x and commit x-1. To select these commits, we fix
a threshold of 5% in energy consumption difference. This threshold was fixed based on the
CPU energy consumption variation observations in Chapter 4 and the standard deviation of
the many executions we ran on the same test, which is often around 4% to 5%. A total of 7
commits have been retrieved from the projects Gson, JFlex, Eclipse-Collections and JGraphT (no
other refactoring commit with a minimal impact of 5% has been observed among the other
projects). We note that our experimental setup would highlight any effect that these refactoring
could have caused on energy consumption. Indeed, the execution of a JMH code, which uses
the compiled JAR for the commit x, is composed of numerous warmup and standard iterations.
Each iteration itself consists of running the benchmark many thousands of times for several
seconds, so the effect of the difference between the commits x and x-1 could be noticed, if any.

Table 6.3 reports on the most impactful commits including code refactorings. For each
commit, we can see the type and number of refactorings extracted using REFACTORING-
MINER [140, 139], the measured energy consumption difference, a short description of the
refactoring-related changes that have been observed within the commits, and the computed
p-value of the Wilcoxon test.
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Refactoring Count CountxCommits IC WIC δ%(r) δ|%|(r) RI

add method annotation 10120 80960 30.77% 43.41% 1.13% 2.14% 7.34

change variable type 101 606 16.67% 14.95% 0.24% 1.32% 1.17

rename parameter 45 180 33.33% 71.69% -0.07% 1.82% 5.12

change parameter type 42 168 11.76% 17.07% -0.03% 1.20% 0.81

change attribute type 26 130 16.67% 9.39% 0.12% 1.35% 0.63

add class annotation 63 216 33.33% 63.53% 1.30% 2.20% 2.77

move class 40 120 30.00% 54.28% 0.77% 2.21% 3.55

change return type 28 112 14.81% 19.93% 0.14% 1.11% 0.88

move method 33 99 21.43% 19.10% 0.59% 1.76% 1.00

rename variable 21 84 25.00% 18.24% 0.46% 1.44% 1.04

move attribute 18 54 25.00% 18.81% -0.07% 1.92% 1.06

extract method 37 37 20.00% 71.87% 0.08% 1.24% 0.88

pull up method 32 32 33.33% 38.90% 0.03% 1.97% 0.75

rename class 6 24 25.00% 13.71% 1.14% 1.51% 0.82

add attribute annotation 8 16 20.00% 15.12% 0.64% 1.14% 0.34

rename attribute 5 15 30.00% 8.77% 0.55% 1.62% 0.42

add parameter 6 12 16.67% 6.55% 0.82% 1.47% 0.19

merge parameter 6 6 100.00% 100.00% 6.00% 6.00% 6.00

extract class 2 4 33.33% 11.14% 0.72% 2.62% 0.57

extract variable 3 3 11.11% 10.52% 0.49% 0.91% 0.10

remove method annotation 1 1 11.11% 0.77% 0.71% 1.40% 0.01

rename method 1 1 11.11% 2.20% 0.32% 1.10% 0.02

modify method annotation 1 1 33.33% 7.99% 2.50% 2.50% 0.20

move & rename method 1 1 20.00% 13.17% -0.32% 2.32% 0.30

merge attribute 1 1 100.00% 100.00% 6.00% 6.00% 6.00

Table 6.2: The observed impact of mined refactoring rules



106 Evaluating the Impact of Java Code Refactoring on Energy

Project Commit ID EC diff Refactoring Count Git diff p-value

Gson
#82771f 5.5%

add method annotation 23 Adding @SuppressWarnings("unused") and
@SuppressWarnings("unchecked") to meth-
ods, classes and variables that appear in the
call trace of the JMH code with no other
changes that might impact the energy con-
sumption.

0.018add class annotation 3

modify method annotation 1

add attribute annotation 1

#45bf2d 6.8%
add method annotation 3 Adding @SuppressWarnings("unchecked")

to methods and moving classes (project re-
organization) that appear in the call trace of
the JMH code.

0.000
move class 30

JGraphT

#033164 6%

merge attribute 1

Some code restructuring, reorganization and
class movement that that appear in the call
trace of the JMH code. No other changes sus-
pected of impacting the energy consumption
were detected

0.056

change parameter type 1

rename parameter 9

move method 22

rename class 1

extract class 1

move attribute 15

move class 8

merge parameter 6

change variable type 19

change attribute type 1

#f1074b 5%

add method annotation 1
Adding @Override annotation and the renam-
ing of some attributes/parameters. However
these changes does not appear in the call trace
of the JMH code.

0.2add class annotation 60

rename class 2

rename attribute 1

change variable type 16

rename parameter 4

JFlex #b34361 5%
add method annotation 53 Adding @override annotation to methods

that appear in the call trace of the JMH code
with no other changes that might impact the
energy consumption.

0.054
move & rename method 1

rename class 1

Eclipse Collections #b9dfbc 6% add method annotation 9944
Adding @override annotation to methods
that appear in the call trace of the JMH code
with no other changes.

0.4

#298b7a 5% add method annotation 73

Adding @override annotation to methods
that appear in the call trace of the JMH code,
but too many changes unrelated to refactoring
were found.

0.01

Table 6.3: A deeper look into the most impactful commits
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First, the commit ID is the first 6 digits of the git hash that can be used to access the commit
and reproduce our experiments/results. The energy consumption (EC) difference represents the
percentage of differences between the average measure of commits x and x-1 (after applying
the bootstrapping as we compute the average of multiple subsets built from the main set
of values). The next 2 columns contain the extraction results of the REFACTORINGMINER

tool. They include the type and count of each refactoring the tool was able to extract. We
notice that the rules that we identified as most impactful in the previous phase (add method
annotation, rename parameter, add class annotation, and move class) are—most of the time—part
of the extracted rules in theses commits that have shown the highest differences in energy
consumption, with add annotation and move class being the most common. Sometimes, they
are the only detected code refactorings, that we could suspect to be responsible for the energy
consumption variation, as in commit #b9dfbc of Eclipse Collections.

We apply 3 different validation measures to confirm whether the impact is effectively
caused by the refactoring. The first validation is through detailed git diff checks of the 7
selected commits to assess that the refactorings have been faithfully applied. We remind that
we have already made sure that these refactorings only concern classes and methods that
are being stressed by the JMH benchmarks, and do not contain other changes that can be
responsible for the energy consumption difference. For example, we do not suspect adding
some code documentation to alter the energy consumption, yet we do suspect changing a data
structure, a loop, or a code snippet to do so.

In the second validation step, we conduct a statistical validation through Wilcoxon rank
sum test (as Student test could not be applied due to variables not following a Gaussian
distribution) to compare the commits x and x-1 averages. With a risk of 5%, we reject the null
hypothesis of the means of the executions of commits x and x-1 being equal. For the p-value
commit #f1074b being higher than 0.05, we cannot reject the possibility that the average is
equal in both commits. The same goes for the commits #033164, #b34361, #b9dfbc where we
cannot accept that the means of the commits x and x-1 are statistically different.

The remaining commits—being #827717, #45bf2d, and #298b7a—mainly contain the add
annotation and move class refactorings. We thus achieve our third validation step through
dedicated micro-benchmarking. We first build a micro-benchmark to check the effect that
every encountered annotation may have on energy consumption. We thus considered each
of (@override, @SuppressWarnings("unchecked") and @SuppressWarnings("unused")). We
then ran hundreds of millions of times each, on classes, methods and variables to check
whether it has an effect on the energy consumption. The results—as expected—did not have
any effect (about 1% difference that we cannot consider due to CPU energy variations seen
in Chapter 4) on energy consumption, as annotations are not supposed to have a substantial
impact on the generated bytecode that would be executed by the JVM. This would invalidate
the fact that the observed energy consumption difference is mainly related to the add annotation
refactoring in the commits that only contain this type of refactoring, such as #827717, #b9dfbc,



108 Evaluating the Impact of Java Code Refactoring on Energy

and #298b7a. The second micro-benchmark concerns the move class refactoring, where we
measured the energy consumption for several scenarios, after moving some classes/interfaces
around and reorganizing the structure of the micro-benchmark. The results showed a difference
in energy consumption of up to 8%, with an average standard deviation of 5%. The move
class refactoring—which is often accompanied with the rename refactorings—indicates a
code reorganization that might have an impact. While the observed impact through the JMH
experiments or with micro-benchmarking might not be substantial, it would be beneficial to be
aware that restructuring/reorganizing a project could have an impact on energy consumption,
and thus compare the before/after energy consumptions to track that effect. Unfortunately,
we could not detect any specific pattern or guidelines on when the code reorganization or
restructuring would impact positively or negatively the energy consumption. Hence, we can
only faithfully retain the commit #45bf2d of the Gson project among the commits of Table 6.3,
where the 30 move class refactoring could have been responsible of 7% of energy consumption
difference with a standard deviation of 5%.

We finally conclude that structure-oriented refactoring has no substantial impact on the
energy consumption of the main functionality of 7 projects that have been existing for at least
5 years with a total of 16,046 commits. We argue that it could be applied to improve the code
quality with no negative impact on software energy consumption. Although, comparing the
energy consumption before and after the changes is always a good practice to keep track of its
evolution.

To answer RQ2, we conclude that code refactoring rules are mostly "safe" operations that
have no substantial impact on software energy consumption. Developers should not fear
structure-oriented refactorings, especially regarding how little is the impact they could
have compared to the real energy consumption evolution of projects, registered while
answering RQ1.

6.4 Threats to Validity

There are a couple of issues that can impact the accuracy of our results. First, our analysis highly
depends on the REFACTORINGMINER tool and its ability to extract every single occurrence
of each of the 55 refactorings it supports. Moreover, there are some other refactorings, not
listed among the 55, that have not been extracted and thus considered in our study, especially
those related to implementation and computation details and those that cannot be discovered
automatically.

We also focused on running benchmarks that last for many seconds (around 150 sec for
Gson, 450 sec for XStream, 330 sec for OkHttp, 290 sec for Google-Http, 780 sec for JGraphT,
720 sec for JFlex, and 600 sec for Eclipse Collections), so we can obtain trustful and robust
evaluations of the potential impact of changes between commits with an overall continuous
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execution time of experiments that exceeded 100 hours. Yet, as Intel RAPL only measures CPU
and DRAM energy consumption, we built our experiments to be CPU- and RAM-intensive
and tried to reduce the I/O and network access as those cannot be properly measured. For
example, we used a local minimal HTTP server for OkHttp and Google-Http experiments to
reduce the network impact.

To reduce the statistical uncertainty, we use the bootstrapping method to compute the
mean of many generated subsets to simulate thousands of random sets of experiments from
the total set of registered values.

The manual steps in our study remain the design of the JMH benchmarks and some checks
of the git diffs. In the first case, we tried to write benchmarks that stress the main purpose
or functionality of each project, so we can ensure that the comparison is based on the same
functionalities that are available on all commits and versions. While this is moderately easy
for some projects, such as Gson or XStream, it is much more complicated for other projects,
such as Eclipse Collections where many collections and operations are available and can change.
We tried in this case to cover many functionalities that are available in most commits, even
if it requires some adjustments and adaptation when projects are restructured / reorganized
between versions. Regarding git diff, we gave the major importance to the commits with the
most impact, as it is not possible to meticulously check all the changes on all the selected
commits. Another threat may be related to our selection of the commits with the most
refactoring to have a reasonable execution time. Even if selected commits are most likely to be
the most impactful.

How generalizable are our results? Based on the results of 7 open-source projects that
have existed for at least 5 years, we believe that our results about the limited impact that
have structure-oriented code refactorings on software energy consumption can be generalized,
due to the high number or covered commits and refactorings, at least for the 55 refactorings
extracted by REFACTORINGMINER. We also noticed that some projects tend to reduce their
energy consumption, but this observation cannot necessarily be generalized to all projects.

6.5 Summary

This chapter describes an investigation of the effective impact of code refactoring on software
energy consumption. We analysed 7 open-source Java projects and extracted 55 possible
types of refactorings over all the commits, with more than 10k commits. We then selected the
commits with the most refactorings and evaluated the impact that those refactorings could
have on the energy consumption. This process ensures the evaluation of the effective impact
that refactoring has for established projects that have existed for at least 5 years.

Overall, our results showed that structure-oriented refactorings have no substantial impact
on the energy consumption on Java server-side software. This means that structure-oriented
code refactorings can be safely applied to improve the maintainability and readability of
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source code with no significant penalty on the energy consumption of Java projects. When it
comes to reducing software energy consumption, we believe that developers’ efforts should
be directed towards other software aspects and implementation optimizations rather than
structure-oriented refactorings. For the Gson project, we noticed that even the commits with a
lot of refactorings have no effective impact on the evolution of software energy consumption.
However, the energy consumption of the Json serialization/deserialization features decreased
by 4-fold in 3 years and 5-fold in 12 years. This highlights that the reduction in energy
consumption of the project over time, is not driven by refactorings.

We believe that our approach can also be used to study/discover other refactoring rules,
and extend our results to alternative projects, maybe for other languages than Java. Most
importantly, this should motivate future works to validate that refactorings can be safely
applied with no side effect on energy consumption, yet investigate the commits and the nature
of code changes that increase/decrease energy consumption.



Chapter 7

Reducing the Energy Consumption of
Java Software I/O

The previous chapter showed that structure-oriented refactoring does not have a substantial
impact on server Java applications. However, other developers’ actions at source code level
might have an impact on software energy consumption. For instance, the Java language is
rich of native and third-party I/O APIs that most Java applications and software use. Such
operations can even be considered core to most software as they allow the interaction with the
user and its data in a non-volatile way. In this context, the impact of these I/O operations on
energy consumption did not get as much attention. Of course, I/O operations are responsible
for energy consumption at the level of the storage medium (HDD or SSD) but can also induce
non-negligible costs on both performance and energy at the CPU level.

Hence, this chapter elaborates a detailed study with two main objectives. First we aim at
assessing the energy consumption of several well-known I/O libraries methods, and investi-
gate if different read/write methods can exhibit different energy consumption. The second
objective is to validate the results of the first experiments on real Java projects by refactoring
their default I/O methods and measuring the before/after energy consumption. The results
showed that i) different I/O methods consume very different amounts of energy, such as NIO
Channels that are 20% more efficient than other methods for read purposes ii) substituting the
I/O method in a software by a more efficient one can save an important amount of energy.

The remainder of this chapter is organized as follows. Section 7.2 introduces the methodol-
ogy (hardware, projects and experiments design) we adopted in this study. Section 7.3 analyzes
several experiments we conducted to evaluate the energy consumption of Java I/O methods,
as well as the results we observed during these experiments.
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7.1 Overview

Energy efficiency of software systems is undoubtedly a major challenge for the software
engineering community. Beyond state-of-the-art key performance indicators, such as latency,
throughput, scalability or availability, energy consumption challenges developers to reach the
best performances while minimizing the subsequent resource requirements. In this context,
previous studies in the field have been focusing on the impact of algorithms [62, 91] and data
structures [35, 52] to reduce the energy consumption in presence of computation-intensive
applications. Nevertheless, little effort has been invested in the study of the energy efficiency of
Java I/O libraries [127] for the purpose of data-intensive systems/applications. Data-intensive
applications are expected to process huge amounts of data for different purposes, from big
data analytics to online cloud microservices. While the hardware components tend to keep
improving on storage capacity and throughput, it remains unclear if their software counterparts
succeed to keep the pace and provide energy-efficient solutions to efficiently read and write
data. This is particularly difficult in Java, which provides a vast ecosystem of built-in functions
and third-parties libraries to interact with persistent storage. In addition to this rich ecosystem,
I/O APIs may be subject to the emergence of other features, like asynchronous capabilities
(NIO), which can exhibit a different energy footprint. We believe that guiding the developers in
picking the most energy efficient I/O method is a key challenge to deliver sustainable software
with no compromise on the performances.

In this area, previous works have already shown the substantial contribution of I/O to the
global energy consumption of software. For example, Lyu et al. [85] indicated that 10% of the
mobile battery drains due to I/O operations. The energy consumption of Java I/O APIs has also
been compared by Rocha et al. [127]. They reported that the energy consumption can widely
vary among these APIs, and that the most popular APIs are not always the most energy efficient.
This study delivers interesting insights about some APIs, such as java.io.In(Out)putStream
and java.io.Reader(Writer), as well as their inherited classes. However, it lacks some
considerations for major I/O APIs, such as channels (Java.nio.FileChannel) or other popular
third-party libraries (e.g., Apache, Google Guava), it also did not consider different usage
profiles of I/O, and failed to reproduce the experiments on a realistic Java project.

In this chapter, we therefore assess the energy consumption of 27 different I/O methods
issued from multiple native and third-party libraries using micro-benchmarks and different
workloads. These methods are tested and compared for different scenarios and use cases (read
the whole file, read a file part-by-part, seek data from a file, write data in a file, using different
buffer sizes, etc.). Concretely, the purpose of the study is to answer the following research
questions:

RQ 1: How do I/O methods affect the energy consumption of a Java code?

RQ 2: Can we reduce the energy consumption of software by refactoring its I/O methods?
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Our empirical exploration highlights the most energy-efficient methods for each use case.
For instance, using channels for massive reads is usually 10–20% more energy efficient than
other I/O methods. Moreover, we refactored the default I/O methods of well-known Java
benchmarks and projects to effectively reduce their energy consumption.

Beyond answering these two research questions, the contributions of this chapter can be
summarized as:

1. Elucidate the energetic behavior of 27 different I/O methods issued from multiple
libraries, using several file sizes,

2. Identify the most energy-efficient methods for several read and write use-cases,

3. Model the energy consumption in regards to the buffer size for the buffered I/O methods,

4. Deliver insights and guidelines to summarize the results and conclusion of our experi-
ments,

5. Investigate the potential gain of refactoring the default I/O methods of benchmarks and
real java projects.

7.2 Methodology

To investigate the energy impact of different Java I/O libraries and methods, we conducted a
wide set of experiments using several micro-benchmarks.

7.2.1 Environment Settings

In this chapter, we used the same test machine configuration used in Chapter 6. The machine
is equipped with an Intel SSD Pro 5450s Series, with a capacity of 256 GB (up to 550 MB/s
for reading and 500 MB/s for writing operations). We focused on measuring the CPU energy
consumption using RAPL to evaluate the differences in energy consumption between the
tested methods.

7.2.2 Experiments Design

Our experiments are structured in two steps. The first step has an exploratory nature: by
testing and comparing numerous Java I/O libraries and methods to read and write data from
files. To do so, we prepared text and binary files of several sizes. Table 7.1 summarizes the
size on disk of each file type and the lines count × lines length for the equivalent text file of
the same size. Next, we create micro-benchmarks for each I/O method, then run them for at
least 30 times and measure the execution time and the CPU energy consumption. All read
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Method File Size Lines count Line length
Tiny 100 KB 1,000 100

Small 15 MB 100,000 150
Medium 200 MB 1,000,000 200

Medium-large 3.2 GB 8,000,000 400
Large 16 GB 40,000,000 400

Table 7.1: The list of file sizes.

benchmarks run the same function consume to compute a hash from the raw input data, to
prevent the JIT from discarding some code and altering the expected behavior.

The second step aims at validating the results of the first step using some Java benchmarks
from the Computer Language Benchmarks Game (CLBG): Fasta and K-nucleotide, but also using
a real Java project (Zip4J) and a real Java API (Javax.Crypto). This validation is achieved
by refactoring the read/write methods used in these benchmarks/projects by the ones that
exhibited the lowest energy consumption in the previous step, and check whether the energy
consumption of these source codes can be reduced.

Java I/O Libraries

We evaluated a wide set of read/write methods from several Java I/O libraries in our study.
The full list of methods is provided in Table 7.2. The purpose is not to explore every sub-classes
or sub-methods of the ones present in Table 7.2. For example, we do not test every method
that extends InputStream, such as PushbackInputStream or ByteArrayInputStream. Such
methods have already been compared in Rocha et al.’s study [127]. The purpose is rather to
study and compare different methods issued from different classes, libraries, and even famous
third-party solutions. Table 7.2 reports on 3 different purposes: "Read" to read data, "Seek" for
accessing some data at a specific position and "Write" to write data. "ReadAll" is a particular
case of Read where we read the content of the whole file at once. Most of the used classes are
issued from java.io and java.nio (NIO). NIO is for non-blocking I/O—i.e., by handling the
I/O operations in a non-blocking way using buffers, channels, etc.

Some of the methods in Table 7.2 can use a buffer, which is a memory block of a given size
(usually 8,192 bytes). At the opposite of an array or a list, a buffer has a limit that differs from
its capacity. This enforces the ability to have a variable size up to the capacity, which is the
maximum it can handle. Moreover, the buffer offers a built-in way to read or write the next
element, easing sequential processing, and a way to save the current position for later reset
(mark and position functions, respectively). We note that the versions of the used APACHE and
GUAVA libraries are 2.8.0 and 23.0 respectively.
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Class Acronym Method Purpose Availability Description

java.io.InputStreamReader IOSTREAM read(Byte[]) Read JDK 1.0 InputStreamReader is a bridge from byte
streams to character streams. It reads
bytes and decodes them into characters
using a specified charset

java.io.OutputStreamWriter IOSTREAM write(String) Write JDK 1.0 OutputStreamWriter is a bridge from char-
acter streams to byte streams: Characters
written to it are encoded into bytes using
a specified charset

java.io.FileInputStream IOSTREAM Skip(long) Seek JDK 1.0 A FileInputStream obtains input bytes
from a file in a file system. It is meant
for reading streams of raw bytes such as
image data

readAllBytes() ReadAll

java.io.BufferedInputStream BIOSTREAM readLine() Read JDK 1.0 A BufferedInputStream adds the ability to
buffer the input and to support the limit,
in addition to the mark and reset methods

java.io.BufferedOutpuStream BIOSTREAM write(String) Write JDK 1.0 It Implements a buffered output stream. It
can write bytes to the underlying output
stream without necessarily causing a call
to the underlying system for each byte
written

java.io.FileReader FILEREADER read(char[]) Read JDK 1.1 FileReader is meant for reading streams
of characters

java.io.FileWriter FILEWRITER write(String,int,int) Write JDK 1.1 FileWriter is meant for writing streams of
characters

java.io.BufferedReader BFILEREADER readLine() Read JDK 1.1 Reads text from a character-input stream,
buffering characters so as to provide for
the efficient reading of characters, arrays,
and lines

java.io.BufferedWriter BFILEWRITER write(String) Write JDK 1.1 Writes text to a character-output stream,
buffering characters so as to provide for
the efficient writing of single characters,
arrays, and strings

read(ByteBuffer) Read JDK 1.4 A Filechannel is a SeekableByteChannel
that is connected to a file. It has a current
position within its file which can be both
queried and modified

java.nio.channels.FileChannel CHANNEL write(ByteBuffer) Write
position(long) Seek

java.nio.FileChannel OMCHANNEL map(mode,long,long) Read JDK 1.4 Maps a region of this channel’s file directly
into memory

readLine() Read JDK 1.7 This class consists exclusively of static
methods that operate on files, directories,
or other types of files. It delegates to the
associated file system provider to perform
the file operations

java.nio.Files NIOF write(String) Write
readAllLines(Path) ReadAll

java.util.Scanner SCANNER nextLine() Read JDK 1.5 A simple text scanner which can parse
primitive types and strings using regular
expressions

readLine() Read JDK 1.0 A random access file behaves like a large
array of bytes stored in the file system
with a pointer into the implied array, used
for both read and write operations

java.io.RandomAccesFile RAF writeBytes(String) Write
seek(long) Seek

readFileToStr(File,Ch) Read NA Apache General file manipulation utilities.
It offers reading, writing, and much more
operations

apache.commons.io.FileUtils APACHE write(File,List,Bool) Write
readFileByteArray(F, Ch) ReadAll

google.common.io.CharSource readLine() Read NA Google library that provides utility meth-
ods for working with files, including read-
ing and writing operations.

google.common.io.CharSink GUAVA write(String) Write
google.common.io.Files readLines(file, Charset) ReadAll

Table 7.2: The list of the studied I/O classes and methods
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Real Benchmarks

The impact that I/O operations could have on the global consumption mainly depends on the
type of software. This impact could be high for some applications, such as file compression
or serialization applications, while it can be much lower for other classes of applications that
perform much less I/O operations. Hence, we choose benchmarks that stress the usage of I/O
operations to confirm the results of the micro-benchmarks and clearly spot the differences in
energy consumption that such operations can cause for real applications.

First, we choose 2 I/O focused benchmarks from the Computer Language Benchmarks Game:
Fasta, and K-nucleotide. The first one generates DNA sequences (CGAT), by weighted random
selection from 2 alphabets and outputs the results in a file. The second benchmark reads line-
by-line the Fasta format of the previous file, extracts the DNA sequence number Three, and
updates a hash-table of k-nucleotide keys to count values within a particular reading-frame.

We refactor the write and read methods from the Fasta and K-nucleotide with the methods
that exhibited the best energy efficiency from our micro-benchmarks. The purpose is to check
if we can reduce the energetic impact of those benchmarks with only the refactoring of the I/O
method.

Moreover, we apply the same refactoring process on the read method of real Java projects:
Zip4J1 and Javax.Crypto.2 The first project is a Java library that offers many operations for
handling zips and streams. As far as we know, it is the only Java library with support for zip
encryption, apart from several other features. The second project is a Java API that delivers
many classes and interfaces for cryptographic operations. Refactoring the I/O operations in
this context aims to deliver a more realistic feedback on the energy impact of I/O on a library
that uses a fair amount of I/O operations, such as Zip4J and Crypto.

7.3 Experiments and Results

In this section, we expose the results of our experiments in order to answer our research
questions.

7.3.1 Behavior of I/O Methods

In this part, we study the behavior of the considered I/O methods used in the micro-benchmarks.
One benchmark has been written for each method of Table 7.2. Then, experiments are run with
each benchmark and for several file sizes (cf Table 7.1).

1https://github.com/srikanth-lingala/zip4j
2https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html

https://github.com/srikanth-lingala/zip4j
https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html
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Figure 7.1: Energy consumption to read the whole content of files.

Reading the Whole File at Once

This method is limited by the memory size—i.e., it can only be applied on small files where
the RAM size would allow loading the content of the whole file at once. Some of the
classes mentioned in Table 7.2 natively offer the possibility to read the whole content of
a file (ReadAll methods from IOSTREAM, APACHE, NIOF, GUAVA). While we believe that
this way to read files is not compatible with all needs and thus is not the most interest-
ing, we still run a quick comparison of the available methods using the medium file at
best due to the memory limitation. Figure 7.1 depicts the energy consumption of 5 na-
tive methods to read the whole content of binary and text (strings or lines) files issued
from 4 classes. It shows that the InputStream.readAllBytes() method (IOSTREAM) is
the most energy efficient, followed by APACHE ReadFileToByteArray(File, Charset) or
ReadFileToString(File). NIO Files.readAllLines(Path) and GUAVA readLines(File,
Charset) methods consumed the most energy among the 5 tested methods.

Despite reading being limited by the file sizes, we can still notice a substantial gain in
energy consumption with the appropriate method and use case. In fact, IOSTREAM consumed
4 times less energy compared to GUAVA and 3 times less compared to NIOF, for a medium
binary file. It was the most efficient way to read whole files among the 5 methods and is 60%
more efficient than APACHE to read binary files for medium file sizes. To natively read text
files, APACHE* was the most efficient way to do it, 40% more efficient than NIOF and 100%
more efficient than GUAVA.



118 Reducing the Energy Consumption of Java Software I/O

tiny small medium medium-large large
File size

0

100

200

300

400

500

600

700
En

er
gy

 c
on

su
m

pt
io

n 
(J)

Method
BFileReader
BIOStream
Apache
Guava
Channel
OMChannel
FileReader
IOStream
NIOF

Figure 7.2: Energy consumption to read files by chunks for several file sizes.

Reading the Whole File by Chunks

This way of reading is much more flexible and bypasses the memory size limitation by reading
the file by chunks. This is generally achieved by using a buffer or an array of a given size
that slides through the file to read input data. Many libraries offer functions to natively
achieve this. We thus run read methods from Table 7.2 with different file sizes and assess
their energy consumption. Figure 7.2 overviews the energy consumption of all tested read
methods on several file sizes. The observed difference in energy consumption seems to be very
small for our tiny, small, and medium file sizes, but the lines become clearly distinguishable
as the file sizes grow. We note that two other read methods (RAF and Scanner) have been
tested, but are not depicted in the figure for readability reasons. Our experiments in Table 7.3
showed that different input methods consume different energy. The most extravagant case is
RANDOMACCESSFILE where we noticed an extra energy consumption, even for tiny and small
files. This extra energy becomes very important for bigger files (up to 200 times more energy).
The SCANNER read is the second noticeable method that gave much worse results, compared
to the others for all file sizes (more than 4 times more energy consumed with Scanner).

The other results of Table 7.3 are much closer, with methods that give very similar results
for all file sizes (APACHE, BFILEREADER, BIOSTREAM, GUAVA, NIOF). The clear winners are
CHANNEL and ONMEMORYCHANNEL that consumed the least energy among all methods
and across all file sizes.3 Along our experiments, NIO CHANNELS consumed up to 20% less
energy, compared to the average and about 10% to the second-best method (FILEREADER),

3ONMEMORYCHANNEL could not be used on a large file due to memory limitation, as it uses memory mapping.



7.3 Experiments and Results 119

which constitute a substantial gain, especially for large files and applications that use a good
amount of I/O.

Finally, we noticed that using the buffer for FILEREADER and INPUTSTREAM is not very
beneficial. The buffered BFILEREADER and BIOSTREAM consumed up to 10% more energy for
large files.

Method
Tiny Small Medium Medium-Large Large

Energy Time Energy Time Energy Time Energy Time Energy Time

Apache 0.03 1.9 0.68 58 7.7 724 122 11.5 ∗ 103 678 62 ∗ 103

BFileReader 0.01 1 0.69 61 7.7 714 119 11.3 ∗ 103 655 60 ∗ 103

BIOStream 0.01 1 0.7 60 8.6 748 118 11.2 ∗ 103 658 60 ∗ 103

Channel 0.02 1.5 0.32 27 4.4 434 83 7.9 ∗ 103 476 43 ∗ 103

FileReader 0.01 1 0.43 35 5 500 90 9 ∗ 103 568 50 ∗ 103

Guava 0.03 1.8 0.67 57 7.4 707 118 11.2 ∗ 103 658 60 ∗ 103

IOStream 0.03 1 0.49 44 7 683 112 10.9 ∗ 103 625 58 ∗ 103

NIOF 0.01 1.1 0.7 58 7.5 716 120 11.5 ∗ 103 670 62 ∗ 103

OMChannel 0.01 1 0.3 25 5.1 488 83 7.9 ∗ 103 NA NA

RAF 1.04 86 120 1200 1528 157062 24548 25 ∗ 105 1.2 ∗ 105 13 ∗ 106

Scanner 0.1 8 3.1 230 19.4 1697 563 5 ∗ 104 2893 26 ∗ 104

Table 7.3: Energy consumption (joules) and execution time (ms) for reading files of different
sizes by chunks.

Figure 7.3 exposes more visually the results of Table 7.3 for a large file. The violin plots
show very stable energy consumption values with very small standard deviations. This reports
on robust experiments, but also validates the results of Table 7.3, as all results are tightly
centered around the average/median. The figure also allows to establish an easier comparison
of the read methods issued from the different classes (RAF and SCANNER have been excluded
for a better visualization, OMCHANNEL is not applicable for large files).

Figure 7.4 depicts the average of read data per joule for each method, while reading the
large file. This confirms that the CHANNEL is more efficient and reads more data per joule.
In fact, the CHANNEL read method reads about 35 MB/j. That is 5 MB/j more efficient than
FILEREADER and 10 MB/j better than the average. RAF and SCANNER on the other hand are
the least efficient with 5 MB/j and less than 1 MB/j, respectively.

One more question we wanted to address is: what is the most energy-efficient way to read
data from a file if the memory size and the JVM heap size are sufficient to load the whole file?
If we compare the necessary energy consumption to read our medium file in Figure 7.1 and
Table 7.3, we notice that reading the whole file at once with IOSTREAM consumed about 3.8
joules. That is at least 13% less consumed energy than any other method in Table 7.3 (4.4 joules
being the lowest). This indicates that reading the whole file can be more energy efficient than
reading it by chunks, when possible.
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Figure 7.4: The average of read data per joule for each method.
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Figure 7.5: Energy consumption to read files with different buffer sizes.

Buffer Size Many of the previous methods require or use a buffer to perform the reading
operation (BFILEREADER, CHANNEL, OMCHANNEL, RAF, etc.). This buffer size may vary
and can be set by the developer. In this experiment, we check the effect of the buffer size on
the energy consumption.

Thus, we run many executions of the BIOSTREAM BufferedInputStream read operation,
and we vary the buffer size from its default value used for the previous experiments (8,192
bytes).

This difference is not noticeable for small files, but can be clearly seen in Figure 7.5 for a
large file. This figure illustrates the measured energy consumption for each buffer size. We
notice a parabolic shape of the values of energy consumption, approximately centered around
8192 bytes. The difference in energy consumption is very small (less than 3%) going to the
nearest values to 8,192 bytes (4,096 bytes and 16,384 bytes). However, this difference grows
much higher for further small or big values of the buffer size. Here, up to 13–15% more energy
consumption for the buffer sizes 1,048,576 bytes and 1,024 bytes, respectively. Hence, the
buffer size should not be too small or too big for a better energy efficiency.

Seeking Specific Data From a File

This represents the third possibility to read data from a file. It consists of moving a cursor or a
pointer within a binary file, and reading an amount of data. This way is very interesting to
access some of the data within the file without reading the whole file, especially for very large
files. One potential application relates to database files that contain an index, such as SQLite,
where we need to access the data pointed by the index without reading the whole database.
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Figure 7.6: Energy consumption to seek data from files of different sizes.

Thus, we ran multiple experiments to compare the available seek methods for Table 7.2 and
their energy consumption. To do so, we access and read different data at numerous positions
within the files of multiple sizes. Each time, we read 100 bytes and move forward with 10,000
bytes to read the next 100 bytes, until the end of the file.

Table 7.4 and Figure 7.6 show the difference in energy consumption between the 3 different
methods issued from CHANNELS, IOSTREAM, and RAF. Here again, the results show that
using the NIO channels is the most energy-efficient way to seek data from files. This efficiency is
mostly noticeable for a large file with a high number of seek operations, where the CHANNELS

position method is 5 times faster than IOSTREAM skip method. On the other hand, the RAF
seek method is the slowest and the most energy consuming. It consumed 67 times more energy
than NIO Channels for this experiment on a large file.

Method
Tiny Small Medium Medium-Large Large

Energy Time Energy Time Energy Time Energy Time Energy Time

Channel 0.01 1.2 0.07 7.6 0.5 49.5 7.7 766 42 4.1 ∗ 103

IOStream 0.01 1.1 0.06 7.6 0.6 62 8.3 814 225 8.2 ∗ 103

RAF 0.01 1.6 1.2 111 17 1693 547 5.3 ∗ 104 2847 2.7 ∗ 105

Table 7.4: Energy consumption (joules) and execution time (ms) for seeking data from different
files.
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Figure 7.7: Energy consumption to write files for several file sizes.

Writing a File

The write operation consists of physically writing data on a file in its disk location. Like reading,
there are plenty of classes that offer writing methods to achieve that purpose. Therefore, we
assess the energy consumption of the write methods from Table 7.2 and try to identify the
"good" and "bad" methods regarding the energy efficiency with different file sizes. Writing
a file of a specific size is achieved by generating random text data of the appropriate size
(LinesCount × LineLength) as described in Table 7.1 and writing it into a file.

Figure 7.7 depicts the evolution of the consumed energy by the different methods with
growing file sizes (GUAVA has been omitted for a better visualization), while Table 7.5 gives
the detailed energy consumption and the execution time of each method, and for each file size.

The results highlight that 4 of the tested methods are way more energy-consuming than
the others. First, GUAVA’s write method registered the worst energy efficiency, compared to all
other methods and, for all file sizes, up to 6 times more energy consumption compared to the
best-tested methods. Second, the NIOF writing operation consumed 50–100% more energy
across all file sizes. Third, the NIO channels that gave the absolute best results for file reading
are less efficient for the writing operation with 30% more energy consumption for large files.
RAF is in the fourth position of the methods that performed worse than the others for write
operations. It consumed 15% more energy compared to the best method.

The remaining methods (APACHE, BFILEWRITER, BIOSTREAM, FILEWRITER, IOSTREAM)
gave very similar results, and were the most energy efficient methods to write data into files.

Figure 7.8 delivers a better comparison of the energy consumption of the write methods for
a large file.
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Method
Tiny Small Medium Medium-Large Large

Energy Time Energy Time Energy Time Energy Time Energy Time

Apache 0.20 13.3 8.4 760 8.7 7.8 ∗ 103 679 6.2 ∗ 104 2526 2.3 ∗ 105

BFileWriter 0.24 15.1 9.5 794 8.6 7.8 ∗ 103 6.1 ∗ 104 11.3 ∗ 103 2501 2.3 ∗ 105

BIOStream 0.22 13.7 8.9 770 82 7.5 ∗ 103 662 6.0 ∗ 104 2502 2.3 ∗ 105

Channel 0.23 14.5 10 919 99 9.1 ∗ 103 798 7.3 ∗ 104 3293 2.8 ∗ 105

FileWriter 0.15 10.5 8.4 764 83 7.6 ∗ 103 669 6.1 ∗ 104 2518 2.3 ∗ 105

Guava 1.18 80.7 95 6882 962 7.1 ∗ 104 7507 5.5 ∗ 105 15592 1.7 ∗ 106

IOStream 0.12 9 8.5 765 83 7.5 ∗ 103 671 6.1 ∗ 104 2522 2.3 ∗ 105

NIOF 0.32 22.3 27 1714 238 1.5 ∗ 104 1897 1.2 ∗ 105 3684 3.4 ∗ 105

RAF 0.14 10.6 10 920 98 9 ∗ 103 795 7.3 ∗ 104 2932 2.6 ∗ 105

Table 7.5: Energy consumption (joules) and execution time (ms) for writing files of different
sizes by chunks.
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Figure 7.8: Energy consumption of write methods for a large file.
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Figure 7.9: The average of written data per joule for each method.

One thing we noticed by comparing Figure 7.3 and Figure 7.8 is that writing a file consumes
more energy than reading a file of the same size. In fact, we only needed less than 500 joules
to read our large file with the most efficient read method, while the least-consuming write
method needs 5 times that amount of energy (2500 joules) to write a file of the same size. This
can be clearly seen through Figure 7.9 that shows the average written data per joule for each
method. The maximum value we observe for the most energy efficient write operations is
7 MB/j. This is much lower than the values obtained for read operations (up to 35 MB/j in
Figure 7.4).

To answer RQ1, we conclude that using different I/O methods can alter the software
energy consumption. Our experiments delivered some insights and guidelines that can be
summarized as:

1. For read methods, using the class nio.FileChannel proved to be the most appro-
priate choice to consume the least amount of energy while reading files of different
sizes. It was at least 10–20% more energy efficient;

2. SCANNER and RAF reported on a very high energy consumption, compared to the
other methods and should thus be carefully used, if not avoided, for data reading
purposes;
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3. For methods that use buffers, using buffer sizes that are too big or too small compared
to the default size of 8,192 bytes may introduce an extra cost in energy consumption;

4. Reading the whole file at once is limited by the file/memory size, but can be very
energy efficient;

5. For write operations, many methods reported a similar energy consumption, but
other methods, such as GUAVA or NIOF consumed more energy, and should thus be
avoided.

7.3.2 Refactoring I/O Methods

In this part, we aim at answering the second research question by refactoring and comparing
multiple I/O methods on 4 Java projects presented in Figure 7.10: Fasta, K-nucleotide, Zip4J, and
Javax.Crypto. Thus, we refactor the write method from the Fasta program with the methods that
reported on a low energy consumption from the previous step to save a 1.5 GB of generated
nucleotides. We then assess the energy consumption with each of the methods used, for 30
executions each.

Figure 7.10a illustrates the boxplots that summarize the energy consumption of each
method’s execution. As seen in the previous section, the write methods are almost similar
and consume approximately the same amount of energy (around 255 joules). The written
Fasta data is used as an input file for the K-nucleotide program. Figure 7.10b depicts the
energy consumption of the nucleotide read operations using the methods that we used as
substitutes to the default BIOSTREAM read method (the methods that performed best on the
micro-benchmarks). Just like in our previous micro-benchmark experiments, the figure shows
that using CHANNELS results in a lower energy consumption (15% less energy consumption
using CHANNELS compared to the default BIOSTREAM).

This result can be confirmed by Figure 7.10c in which we refactored the reading method
of the Java zipping library with other read methods susceptible of having an equivalent or
better energy efficiency. Then, we ran experiments where we zipped our large file and saved
the result. Here again, using CHANNELS causes a reduction of 3% in energy consumption,
compared to the default INPUTSTREAM method. The gain of using channels is only 3% in this
experiment because the file reading phase only covers 10–15% of the total execution time of the
zipping process. Finally, Figure 7.10d represents another confirmation of the energy efficiency
of using CHANNELS for file reading purposes. In this example, using CHANNELS was at least
30% more energy efficient than FILEREADER and IOSTREAM (50% more energy efficient than
BIOSTREAM and NIOF) to decrypt a 3 GB file using the Crypto API with the AES algorithm
and a 16 bytes key.
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To answer RQ2, we proved that we can reduce the energy consumption of software and
programs that run a substantial amount of I/O by choosing the right methods. Using NIO
Channels proved to be very energy efficient here again on K-nucleotide, Zip4J, and Crypto,
compared to other read methods.

7.4 Threats to Validity

The execution time and registered energy consumption for short tasks is one subtle threat
to validity. In fact, some read and write experiments on tiny and small files are very fast, so
we cannot assess the energy consumption faithfully. To overcome this issue, we constituted
every execution of these fast experiments of many iterations. Most importantly, we focused
all of our results analysis and conclusions on the experiments that last much longer, using
our medium and large files. Java Just-in-time (JIT) compiler might constitute another threat
to the validity of this work, especially for read operations in micro-benchmarks, if the read
data is not used. Thus, we executed a hash method that consumes the read data similarly to a
black-hole in JMH (Java Microbenchmark Harness). We also discarded the whole JVM instance
between executions, so the JIT does not cache data between executions and alter the measures.
We did not disable the JIT because the study would not reflect a real usage of I/O methods in
realistic Java applications anymore.

The considered I/O libraries come with multiple read and write operations. To conduct
this first study, we were obliged to select some of these methods. Our aim was to diversify our
method selection to deal with both binary and text files, but we also wanted to select methods
with similar signatures, so we can construct a fair and relevant comparison between the I/O
libraries.

7.5 Summary

This chapter reports on an empirical investigation of the key differences in energy consumption
of some famous Java I/O libraries and their read and write methods. Concretely, we assessed
the energy consumption of 27 different methods using dedicated micro-benchmarks regarding
several scenarios: read the whole file at once, read the file by chunks (with optimal buffer
size), seek specific data within a file and write data to a file. Our experiments showed that not
all read and write methods exhibit the same energy consumption while reading or writing
data. On one hand, some methods can be very efficient, such as using NIO channels for read
operations. On the other hand, other methods can be very inefficient, such as using Random
Access File to read or write data.

To validate our results, we refactored/compared I/O methods on 4 real benchmarks
and real Java projects with methods that registered a good energy efficiency with micro-
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benchmarks. We were able to reduce the energy consumption on three of them by using NIO
Channels, achieving 15%, 3%, and 30% energy savings for K-nucleotide, Zip4j and Javax.Crypto,
respectively.





Chapter 8

Conclusion

In this manuscript, we presented multiple contributions to understand and enhance software
energy efficiency. First, we investigated developers’ sensitivity, awareness and knowledge
about SEC. The insights of this qualitative study helped us understand some major hurdles
against GSD considerations. Among these hurdles, the lack of user-friendly, accurate and
steady measurement tools. We also discussed in this document SEC variations problem and
how to tune using some actionable parameters to conduct more accurate experiments. Once
we had reviewed energy measurements, we stepped into some developers actions/decisions
that can alter SEC. We focused on the JVM platforms and the Java language, and investigated
the impact of multiple aspects (JVM configurations, Java code refactoring, Java I/O APIs) on
the software energy consumption. The remainder of this chapter summarizes each of these
contributions in Section 8.1. Section 8.2 and Section 8.3 introduce the main perspectives and
future works stemming from the contributions of this thesis.

8.1 Contributions

The contributions of this thesis are summarized as follows.

On reducing the energy consumption of software: from hurdles to requirements. In this
contribution, we conduct a qualitative study on 10 experienced software developers. The
purpose of the study is to understand how developers feel about SEC, and what prevents
a concrete introduction of GSD in software development within companies. Moreover, the
work investigates developers tooling needs and requirements regarding SEC, and means
to promote GSD within companies and among developers. Concretely, it investigates the
following questions:

RQ 1: What are the hurdles that prevent the broader adoption of green software design?

RQ 2: What are developers’ requirements in terms of tooling in an industrial context?
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The contribution thus highlights many hurdles that prevent a wider adoption of green software
design, including the lack of knowledge, awareness, time, tools and communication. It
also discusses developers requirements for tools, such as the simplicity of interaction and
integration with the current procedures (CI/CD), global scores and KPIs, etc. Finally, the
study summarizes a set of implications for developers, decision makers, tool creators and
researchers.

Z.Ournani, R.Rouvoy, P.Rust, and J.Penhoat. On reducing the energy con-
sumption of software: from hurdles to requirements. In Proceedings of the
14th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), ESEM ’20, Bari, Italy. Association for Comput-
ing Machinery, 2020. ISBN: 9781450375801. DOI:10.1145/3382494.3410678.
URL:https://doi.org/10.1145/3382494.3410678.

Another contribution derived from this work has been added to a book chapter, with
examples on opportunities for developers to participate in SEC reduction and GSD evolution.

J.Penhoat, M.S.Vaija, D.Phan-Huy, G.Gérard, Z.Ournani, D.Nussbaum, G.Dretsch,
Q.Fousson, and M.Vautier. Green for ICT, Green by ICT, Green by Design. In Design
Innovation and Network Architecture for the Future Internet. 96-121. Hershey, PA:
IGI Global, 2021. http://doi:10.4018/978-1-7998-7646-5.ch004

Taming energy consumption variations in systems benchmarking. In this study, we inves-
tigate the phenomenon of variation when measuring the energy consumption of experiments.
We discuss in this work multiple hardware and software factors that can amplify the variations
of the recorded energy measures, with a focus on the following research questions:

RQ 1: Does the benchmarking protocol affect the energy variation?

RQ 2: How important is the impact of the processor features on the energy variation?

RQ 3: Does the choice of the processor matter to mitigate the energy variation? and finally

RQ 4: What is the impact of the operating system on the energy variation?

This contribution highlights the significant impact that processor features could have on the
energy consumption variation, compared to the benchmarking protocol or the operation
system.

Finally, this study delivers multiple guidelines on controllable parameters that practitioners
could easily tune to reduce the variations and conduct more steady/reproducible experiments.
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Z.Ournani, M.C.Belgaid, R.Rouvoy, P.Rust, J.Penhoat, and L.Seinturier. Tam-
ing energy consumption variations in systems benchmarking. In Proceed-
ings of the ACM/SPEC International Conference on Performance Engineer-
ing, ICPE ’20, 36–47, Edmonton AB, Canada. Association for Comput-
ing Machinery, 2020. ISBN: 9781450369916. DOI:10.1145/3358960.3379142.
URL:https://doi.org/10.1145/3358960. 3379142.

Evaluating the impact of Java virtual machines on energy consumption. In this contribu-
tion, we provide a deep evaluation of the impact of JVMs on the SEC. We expose through this
study multiple experiments on hundreds of JVMs versions issued from several providers in
order to answer the following research questions:

RQ 1: What is the impact of existing JVM distributions on the energy consumption of Java-
based software services?

RQ 2: What are the relevant JVM settings that can reduce the energy consumption of a given
software service?

The results show that depending on a software and a use-case, choosing the right JVM platform
can drastically reduce the energy consumption. Moreover, setting a proper configuration of JIT
and GC parameters can also significantly reduce the SEC.

Z.Ournani, M.C.Belgaid, R.Rouvoy, P.Rust, and J.Penhoat. Evaluating the impact
of java virtual machines on energy consumption. En. In Proceedings of the 15th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement, 2021.

To complete this study, we deliver an open-source tool J-Referral.1 It takes a software and
a test script as inputs, run it over hundreds of JVM platforms/configurations and assess the
energy consumption. At the end, it provides a full report with the least energy consuming
options and how the software behaves for other configurations.

Tales from the code #1: the effective impact of code refactorings on software energy con-
sumption. The research questions behind this contribution are:

RQ 1: How does the energy consumption of software evolve over time?

RQ 2: How do code refactorings contribute to the evolution of software energy consumption?

1https://github.com/chakib-belgaid/jreferral

https://github.com/chakib-belgaid/jreferral
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The purpose is thus to track the evolution of SEC of multiple projects that has existed for many
years, and measure the impact of structure oriented code refactorings on this evolution. First,
the study shows that the energy consumption of functionalities changes over time, with a
trend to decrease for most of the server-side/desktop Java projects we tested. Moreover, the
contribution show that structure oriented code refactorings have no substantial impact on the
energy consumption and do not contribute much to the evolution of projects SEC.

Z.Ournani, R.Rouvoy, P.Rust, and J.Penhoat. Tales from the code #1: the effective
impact of code refactorings on software energy consumption. In Proceedings of the
16th International Conference on Software Technologies, pages 34–46, 2021. ISBN
:978-989-758-523-4. 3379142.

Evaluating the energy consumption of Java I/O APIs In this study, we assess the energy
consumption of numerous Java I/O APIs. Concretely, we experiment multiple scenarios
to Read, Write and Seek data and investigate the least energy consuming method among
27 methods issued from Java.IO, Java.NIO and third party APIs to answer the following
questions:

RQ 1: How do I/O methods affect the energy consumption of a Java code?

RQ 2: Can we reduce the energy consumption of software by refactoring its I/O methods?

The results of our study show that some I/O methods are more adapted for some use cases and
can drastically reduce SEC, such as NIO Channels for large files read purposes. Furthermore,
refactoring the I/O methods on real projects based on the results of the study, proved to be
beneficial and reduced the energy consumption by up to 30%.

Z.Ournani, R.Rouvoy, P.Rust, and J.Penhoat. Evaluating the energy consumption of
java i/o apis. En. In Proceedings of the 37th International Conference on Software
Maintenance and Evolution, 2021.

8.2 Short-Term Perspectives

Include developers in the GSD evolution Several studies have been conducted regarding
software energy consumption and its efficiency. These studies have been mostly conducted by
researchers with little to no interaction with developers. Consequently, the available tools and
guidelines are not well designed to match developers’ needs. We thus argue that future works
should have tight implications on developers and users who could provide feedback from a



8.3 Long-Term Perspectives 135

different angle on how to enhance the energy efficiency of software. This has the advantage of
providing knowledge that will be very likely beneficial to developers, but also explore new
questions that they will raise accordingly.

Mining energy efficient patterns In chapter 6 we reviewed the evolution of energy con-
sumption of some Java projects over the years. The study showed that the energy consumption
of features tends to decrease across the versions. One major future contribution is to identify
the exact changes that caused this decrease in energy consumption. Ultimately, the goal is
to automatically mine atomic or basic changes that have previously decreased the energy
consumption on multiple Github projects. This set of mined changes would be used to deduce
energy efficient patterns that will be suggested to other projects to reduce the SEC. Moreover,
these patterns would create a base of knowledge for multiple languages and environments,
that developers could use upstream to produce energy efficient software.

Green Commits One other desired feature is the ability to assess the energy footprint of
every new version, release and commit. The objective is to build context independent plug-ins
that assess the energy consumption of a commit, and track the SEC across multiple commits.
Therefore, developers would be able to monitor the evolution of SEC for each commit, and
spot the changes that were responsible for increasing/decreasing the energy consumption.
This could also be a part of the continuous integration process, where warnings should be
raised if the "energy tests" fail (the SEC increases exceeding a threshold).

Automatic suggestions of green Java I/O methods We showed in Chapter 7 how using
different I/O methods can substantially alter the energy consumption of Java programs for
several use cases. For future works, we do see a massive reproduction of our results on a large
set of projects. The purpose is to refactor the default I/O methods on multiple Github Java
projects, assess the energy consumption, and open pull requests on those projects to enhance
their energy efficiency. This could be achieved using an automated I/O methods referral
tool that detects energy-consuming I/O methods and recommends more energy-efficient
alternatives. Such a tool will be an easy way to substantially reduce the energy consumption if
I/O intensive software. It will also help developers acquire some green coding habits.

8.3 Long-Term Perspectives

A Complete GSD tooling set One of the main requirements of developers to introduce GSD
in their daily work is to have the necessary tooling to track and enhance the evolution of
their software energy consumption. While some tools already exist to measure the energy
consumption and assist developers at some code aspects such as the JVM platform or Java
collections selection, this is still not enough to provide a satisfactory developers’ experience. In
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fact, the purpose is to build a complete solution to assist developers in their green software
design task while matching their requirements and working habits. Thus, tools should be
language and context independent. They should allow to compute global scores/KPIs so
developers could track the evolution of their software, and be able to go further to investigate
the reasons behind improvements or drawbacks in energy consumption. Concretely, such a
tooling set should cover all aspects of energy measurements, tracking and advising, allowing
developers intervene at multiple levels of a software life-cycle.

Cloud energy consumption Cloud services are undoubtedly very attractive due to the flex-
ibility and ease of deployment and/or use of services. These services are however poorly
documented when it comes to energy usage and CO2 footprint. Probably due to some cloud
providers’ willingness to keep such data shady and gloomy for now, but also due to the
absence of enough knowledge and means to establish accurate energy consumption reports
of services across multiple levels of virtualization and pooling. With the rapid emergence of
GSD and energy consumption awareness, future cloud services should adapt their solutions
and offers to monitor the consumed energy and the emitted CO2 out of the service usage.
Furthermore, users should be able to estimate their needs in energy, and choose/adjust the
offers to reduce the carbon footprint. This will constitute an additional criteria that will increase
the competition between providers, diversify the offers, and push towards improving the
actual virtualization/pooling abstraction layers to offer a better monitoring of energy. All in
favor of having energy efficient digital services.

Software LCA We advise applying a life cycle analysis (LCA) as it is the case for some
hardware components to accurately assess software energy consumption and CO2 footprint.
Applying such a process is quite different from the current measurements of a running software
energy consumption. In fact, it includes a wider set of criteria and phases, starting with
software development, where software vendors/providers should include the energy and
CO2 footprint of the whole development process (planning, design, development, tests, etc.).
Then, the energy consumption and CO2 footprint of the deployment/installation phase on one
hand and the usage phase on the other hand. Finally, similarly to hardware, we should be able
to estimate software end of life costs, including data migration, software abandonment and
decommissioning, etc. Defining and using such a process will help estimating the real cost of a
software. This is an important step towards sobriety, as it allows an accurate assessment of
the energy consumption and CO2 footprint, taking into account all the necessary parameters
(energy source, all hardware components, interaction with the surrounding environment, etc.).
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