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ABSTRACT 
With its context-independent rules valid in any setting, mathematics is considered to 

be the champion of abstraction, and for a long time human mathematical reasoning 

was thought to follow nothing but the laws of logic. However, the idea that 

mathematics is grounded in nature has gained traction over the past decades, and the 

context-independency of mathematical reasoning has come to be questioned. The 

thesis we defend concerns the role played by general, non-mathematical knowledge 

on individuals’ understanding of numerical situations. We propose that what we count 

has a crucial impact on how we count, in the sense that human’s representation of 

numerical information is dependent on the semantic context in which it is embedded. 

More specifically, we argue that general, non-mathematical knowledge about the 

entities described in a mathematical word problem can shape its interpretation and 

foster one of two representations: either a cardinal encoding, or an ordinal encoding. 

 After introducing a new framework of arithmetic word problem solving 

accounting for the interactions between mathematical knowledge and world 

knowledge in the encoding, recoding and solving of arithmetic word problems, we 

present a series of 16 experiments assessing how world knowledge about specific 

quantities can promote one of two problem representations. Using isomorphic 

arithmetic word problems involving either cardinal quantities (weights, prices, 

collections) or ordinal quantities (durations, heights, number of floors), we investigate 

the pervasiveness of the cardinal-ordinal distinction in a wide range of activities, 

including problem categorization, problem comparison, algorithm selection, problem 

solvability assessment, problem recall, sentence recognition, drawing production and 

transfer of strategies. We gather data using behavioral measures (success rates, 

algorithm use, response times) as well as eye tracking (fixation times, saccades, pupil 

dilation), to show that the difference between problems meant to foster either a 

cardinal or an ordinal encoding has a far-reaching influence on participants from 

diverse populations (N = 2180), ranging from 2nd graders and 5th graders to lay adults, 

expert mathematicians and math teachers.  

 We discuss the general educational implications of these effects of semantic 

(in)congruence, and we propose new directions for future research on this crucial 

issue. We conclude that these findings illustrate the extent to which human reasoning 

is constrained by the content on which it operates, even in domains where abstraction 

is praised and trained.
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RÉSUMÉ 
Parce qu’elles manipulent des objets fondamentalement abstraits, les lois 

mathématiques ont une validité indépendante du contexte dans lequel elles 

s’appliquent. Autrement dit, 2 + 2 font 4, que l’on compte des pommes, des 

schtroumpfs, ou des années-lumière. Par extension, il a longtemps été considéré qu’il 

en était de même pour la pensée mathématique chez l’humain, perçue comme 

objective et indépendante des contenus sur lesquels elle s’exerce. Pourtant, un 

nombre grandissant de travaux s’accordent à dire que la logicité n’est pas seule à 

gouverner la pensée humaine, que le contexte dans lequel il se trouve influence ses 

raisonnements, et que la pensée mathématique est fondamentalement incarnée. Ainsi, 

notre thèse est que les connaissances générales des individus influencent 

considérablement leurs représentations des situations numériques. En particulier, 

nous faisons l’hypothèse que les savoirs non-mathématiques des individus au sujet 

des entités décrites dans un problème peuvent façonner leur représentation de la 

situation, les poussant à en réaliser un encodage soit cardinal, soit ordinal.  

Nous commençons par présenter un modèle conceptuel visant à décrire les 

interactions entre la sémantique du monde et la sémantique mathématique évoquées 

à la lecture d’un problème arithmétique à énoncé verbal. Nous faisons la prédiction 

que les connaissances générales sur le monde influent sur l’encodage, le recodage et 

la résolution des problèmes arithmétiques à énoncés verbaux, notamment en 

induisant des représentations soit cardinales, soit ordinales. Nous évaluons cette 

hypothèse grâce à 16 expériences fondées sur l’étude d’énoncés isomorphes 

implémentés avec certaines entités censées susciter un encodage cardinal (poids, prix, 

collections d’éléments) ou ordinal (durées, hauteurs, nombre d’étages). Nous 

montrons la robustesse de ces effets au travers d’une variété de tâches, qu’il s’agisse 

de classification, comparaison, résolution, production graphique, jugement de 

solubilité, évaluation de solution, reconnaissance, transfert et rappel de problèmes. 

La prévalence des effets observés est déterminée par des indices comportementaux 

(performances, temps de réponse, sélection de stratégies) et physiologiques 

(oculométrie et pupillométrie), collectés auprès d’enfants du CE1 au CM2, ainsi que 

d’adultes tout venants, d’enseignants en mathématiques et d’experts mathématiciens. 

Les riches enjeux éducatifs portés par ces questions sont discutés de même que les 

perspectives ouvertes par la prise en compte des effets de congruence sémantique.  

Nous concluons sur les contraintes que les contenus opèrent sur le raisonnement.
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Preamble 
Consider the following argument: 

               All mammals need water 

               All PhD students need water 

Therefore, all PhD students are mammals 

This categorical syllogism is invalid. Even though the conclusion “all PhD students 

are mammals” is objectively true, it cannot be deduced from the two premises. 

However, when asked to evaluate syllogisms of the same form, with a true but 

logically invalid conclusion, participants tend to accept them 2 out of 3 times 

(Stanovich, 1999). Now consider this new syllogism: 

               All sea cucumbers need oxygen 

               All PhD student need oxygen 

Therefore, All PhD students are sea cucumbers 

Hopefully no one will make the mistake of considering this argument valid. In 

fact, research has shown that almost everyone agrees that such syllogisms, with a 

false conclusion, are invalid (Stanovich, 1999). But what accounts for this major 

difference in performance? These two syllogisms have the same form, their logical 

structure is the same, and a rational mind should be able to evaluate their validity 

regardless of whether they mention mammals or sea cucumbers. However, one 

reaches a conclusion which is true according to our general knowledge, whereas 

the other reaches a conclusion which is in direct contradiction with what we know 

about the world. And it appears that our evaluation of abstract ideas is not as 

removed from concrete life as once believed. 

Illogical children and rational adults? 
The idea that human reasoning is not exclusively guided by logic is a relatively 

new development in the history of thought. In the Nicomachean Ethics, Aristotle 

affirms that what distinguishes human beings from animals is their rational 

principle, or their ability to engage in logically valid reasoning (Aristotle, trans. 

1999). For Descartes (trans. 1984, II), God’s gift to man was a reliable intellect, 

which – if used correctly – was sure to avoid errors in reasoning. Ultimately, for 

Inhelder and Piaget (1958, p.1), “reasoning is nothing more than propositional 
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calculus itself”. Thus, for an extended period of time, the ability to reason 

according to the rules of logic was deemed the specificity of the human mind.  

 Only in the second part of the 20th century has human reasoning started to 

be the subject of experimental investigation. Until then, it was considered that the 

study of adult reasoning fell within the scope of logic, hinging on mathematics 

and philosophy, but not on psychology. In fact, studying human reasoning 

without leaning on the study of logic formerly seemed like an odd idea, since the 

two were considered as equivalent. It is no coincidence that Boole gave the title 

“An investigation of the Laws of Thought” (1854) to his book introducing the rules 

of Boolean algebra, a formalism for describing logical relations. 

 Paradoxically, while for many years the logicality of adult reasoning was 

not called into question and thus not investigated, the opposite was also true for 

children’s reasoning. Aristotle considered children to be profoundly irrational 

beings, governed by emotions and passions, closer to animals than to a mature 

man with regards to their rationality (Chamblis, 1982). Even developmental 

psychology held this view until the late 1970s, under the influence of Piaget’s 

work. In his theory of cognitive development, Piaget considered that the ultimate 

stage of development, the Formal Operational Stage, was reached around 

adolescence. At this stage, people were believed to develop the ability to 

comprehend abstract concepts, and to think logically (Flavell, 1963). In other 

words, adults were supposed to be experts of logical thinking, give or take the 

occasional mistake, whereas children were thought to only start engaging in 

logical and abstract reasoning during the Concrete Operational Stage, between 7 

and 11 years old. Thus, the development of logical reasoning from an irrational 

infant to a fully rational adult is a central element of the Piagetian perspective. 

In the last 50 years, significant progress has been made on these questions 

thanks to experimental psychology, and we have gained a finer understanding of 

reasoning and abstract thought. Notably, empirical works suggest that (1) human 

adult reasoning is far from being exclusively guided by logic or mathematical 

rules, and that (2) children are capable of logic and mathematical reasoning, at 

least to a certain extent. 

 Regarding the first point, the work of Wason (1960, 1968) initiated a 

paradigm shift that opened an entirely new line of research on adults’ reasoning 

biases. He investigated the understanding of conditional statements of the form 
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“if P then Q”, by using the now famous Wason selection task. In this task, 

participants are typically presented with four cards, each of which has a number 

on one side and a letter on the other side. The visible faces of the four cards 

show, respectively, the numbers “3”, “8”, “A”, and “D”. The following question is 

presented to the participants “which card(s) must you turn over in order to test 

the truth of the proposition that if a card shows an even number on one face, 

then its opposite face has a vowel on it?”. The correct answer to this task is to 

turn over the “8” card (by modus ponens, since 8 is an even number) and the “D” 

card (by modus tollens, since D is not a vowel). However, Wason showed that 

the correct answer was found by less than 10% of the participants (Wason, 1968). 

Instead, a majority of adults said they would turn over the “A” card and the “8 

card”. This systematic error showed that participants tended to ignore the modus 

tollens rule (if it is true that P implies Q, and if the contradictory of Q is true, then 

the contradictory of P is also true). This apparent failure to apply a fundamental 

rule of propositional logic has been extensively replicated since then, sounding 

the death knell for the idea that adult reasoning strictly follows the laws of logic 

(Ragni, Kola, & Johnson-Laird, 2018).  

 Interestingly, subsequent works showed that participants’ ability to select 

the correct cards was directly dependent on the situation’s context. For example, 

when the rather abstract “if even number, then vowel” rule is replaced by a more 

concrete one, with relevance in a real-life social context, performance increases 

drastically. Notably, Cosmides and Tooby (1992) showed that using the rule “if 

you are drinking alcohol, then you must be over 18”, accompanied by the 

presentations of four cards with, respectively, the inscriptions “16”, “25”, “drinking 

beer”, and “drinking coke”, most participants have no difficulty in selecting the 

correct “16” and “drinking beer” cards. In other words, despite adults struggling 

with the understanding of specific logic relations, their difficulties can be lifted by 

changing the semantic content of the situation. Several variations of this task have 

been proposed, and while there is no current consensus regarding the proper 

explanation for the effects of context they highlight, these effects have been 

extensively demonstrated and their existence is indisputable (e.g. Cheng & 

Holyoak, 1985; Cosmides, 1989; Girotto, Kemmelmeier, Sperber, & Van der Henst, 

2001; Cox & Griggs, 1982; Hilton, Kemmelmeier, & Bonnefon, 2005; Johnson-

Laird, Legrenzi, & Legrenzi, 1972; Klauer, Stahl, & Erdfelder, 2007; Manktelow & 
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Over, 1991; Politzer & Nguyen-Xuan, 1992; Stenning & van Lambalgen, 2001; see 

Ragni, Kola, & Johnson-Laird, 2018, for a meta-analysis). 

Now, regarding the second point we raised – the question of whether 

children can engage in abstract and mathematical reasoning – Piaget’s 

constructivist theory dominated the field for a time, positing that children are born 

as blank slates and only acquire a sense of number and logic after several years 

of interaction with the world. A famous example of what led Piaget to believe that 

children do not possess an abstract concept of number until a certain age is their 

apparent failure to the “number conservation task” before 6-8 years old. In this 

task, children are shown two equal rows of checkers, equally spaced, and asked 

if one of the two rows has more checkers, or if they have the same number. 

Children usually reply that “it’s the same thing”. Then, while the child is watching, 

the experimenter increases the spacing of the checkers in one of the two rows 

and asks the same question again. Children younger than 6 tend to fail and reply 

that the row in which the spaces between the checkers have increased (and thus 

in which the total row’s width is wider) has “more”. This was interpreted as 

evidence that children did not possess any kind of mental representation of 

numbers before a certain age. 

However, it has since been shown that children’s failure on this task did 

not originate from a lack of understanding of the concept of number, but rather 

from their interpretation of the questions they were being asked. In 1967, Mehler 

and Bever notably showed that replacing the checkers by candies and asking 2 

to 4 years old which row they wanted to eat led a majority of them to pick the 

row with the highest number of candies, regardless of the row’s actual width. 

Thus, by providing sufficient motivation and sidestepping language 

comprehension difficulties, 2-year-olds could actually show an understanding of 

number that Piaget thought they did not possess before their 6th year at the earliest. 

Thus, not only does adult reasoning fail to follow the laws of logic in specific 

situations, but children are actually capable of manipulating abstract concepts 

such as numbers when asked the right questions. The Aristotelian view that 

children are irrational beings that become completely fluent in logical inferences 

once reached adulthood has long been discarded, in favor of a more nuanced 

approach accounting for reasoning biases and the development of logical 

thinking. But to what extent is human reasoning constrained by the content on 
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which it operates? The question is worth asking, given the great variety of 

situations in which adults are expected to reason and behave consistently. 

Content shaping thoughts and problem 
solving 
According to Evans (1991), the issue of context is one of the crucial questions that 

any theory of human reasoning needs to address. As we mentioned at the 

beginning of this introduction, context variations can influence one’s ability to 

engage in logical inferences (e.g. Bonnefon & Villejoubert, 2007; Byrne, 1989; 

Chao & Cheng, 2000; Cummins, Lubart, Alksnis, & Rist, 1991; Daniel & Klaczynski, 

2006; De Neys, Schaeken, & D’ydewalle, 2002; Douven, Elqayam, Singmann, & 

van Wijnbergen-Huitink, 2018; Evans, Barston & Pollard, 1983; Johnson-Laird, 

2006; Quinn & Markovits, 1998; Thompson, 1994, to name a few of the numerous 

studies on propositional reasoning). However, there is more to human reasoning 

than making logical inferences from clearly stated propositional sentences, and 

valuable insights into the influence of context can be found in the neighboring 

field of problem solving.  

 One of the perks of problem solving is that it makes it possible to 

investigate reasoning processes in a wide diversity of situations, closer to real-life 

concerns than abstract logic problems – albeit, arguably, still far removed from 

truly ecological settings. The study of problem solving first gained traction around 

the beginning of the 20th century, among behaviorist researchers interested in 

animals’ problem solving skills (Hull, 1943; Thorndike, 1898; Watson, 1930). They 

proposed that learning how to solve problems was the result of a progressive 

process based on trials and errors. Through conditioning, they argued that the 

animals found the correct solution to puzzle problems by chance, and then 

reinforced the behavior that led to it until it was automatized. This view was 

promptly criticized for its inability to account for “intelligent” problem solving 

strategies in which intermediate goals need to be set in order to find the solution 

(Köhler, 1917, 1925).  

By contrast, tenants of the Gestalt Psychology argued that problem solving 

was a productive process in which restructurations of the problem’s representation 

(insights) may happen and lead to a sudden certainty of a correct response (Mayer, 
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1983; Wertheimer, 1959). A benefit of this approach was that it could account for 

the negative impact that past experiences may have on the ability to find the 

solution to a new problem (e.g. Katona, 1940; Luchins, 1939, 1942). Gestalt 

psychology notably led to the discovery of functional fixedness, a cognitive bias 

restraining one’s ability to perceive unusual uses of common objects. In a famous 

study, Duncker (1945) designed different tasks to evaluate how often participants 

could re-purpose an object they were provided with to solve a problem. In his 

Candle Problem, he asked participants to attach a candle to the wall so that it did 

not drip onto the table below, using only a box of tacks, matches, and the candle 

itself. Only few participants managed to find the solution consisting in 

repurposing the empty box of tacks as a candleholder and tacking it to the wall 

(see Fig. 1).  

 
Fig. 1 Initial state (A) and Final state (B) of the Candle Problem. Reprinted from Duncker 

(1945) 

However, when participants were presented with a pile of tacks and an empty 

box separately, they were significantly more likely to use the box as a support for 

the candle. In other words, participants experienced difficulties when the box was 

assigned an initial function that did not fit with the problem (container of stacks), 

but not when the box was presented on its own. This experiment is a striking 

example of the influence that context, in the form of prior information about an 

object’s intended use, can have on one’s ability to reason in a given situation.  
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A crucial aspect of the Gestalt’s contribution to the description of problem solving 

resides in its introduction of the notion of an internal problem representation, 

which can be influenced by prior knowledge and experiences. However, this 

approach has been criticized for being somewhat underspecified, as well as for 

saying little about the processes behind the phenomenon of insight, thus making 

it hard to empirically evaluate (Clément, 2009). Addressing these issues, the notion 

of “problem space” arose from Newell & Simon’s (1972) work, in which they 

defined problem solving as the exploration of a problem space constituted of all 

the possible states and transitions between states of the problem, according to the 

solver’s interpretation. This idea that problem solving depends on one’s 

interpretation of the problem is a crucial step forward in accounting for 

performance variations between problems sharing the same structure but differing 

in their surface elements (Kotovsky, Hayes, & Simon, 1985; Simon & Newell, 

1971). Consider, for instance, the famous Tower of Hanoi Problem, defined as 

follows (Pretz, Naples, & Sternberg, 2003, p. 7): 

There are three discs of unequal sizes, positioned on the leftmost of three 

pegs, such that the largest disc is at the bottom, the middle-size disc is in the 

middle, and the smallest disc is on the top. Your task is to transfer all three 

discs to the rightmost peg, using the middle peg as a stationing area, as 

needed. You may move only one disc at a time, and you may never move a 

larger disc on top of a smaller disc. 

The complete problem space of this problem includes all the possible transitions 

from the Initial State to the Goal State and allows the use of a 7-step solving 

strategy (Fig. 2, A.). However, some solvers (notably 6 and 7 years old) add an 

unnecessary constraint in their interpretation of the problem, by thinking that only 

movements between two neighboring pegs are allowed (Richard, Poitrenaud, & 

Tijus, 1993). Thus, these children construct a truncated problem space with a “no 

peg jumping” rule, which considerably increases the number of steps (26) to find 

the solution (Fig. 2, B). Interestingly, Clément and Richard (1997) showed that it 

was possible to lead even adults to construct a truncated problem space with a 

“no jump” rule by modifying the problem’s surface features. For instance, if instead 

of disks moving between pegs, the problem is stated in terms of individuals 

moving between floors using an elevator, then participants are more likely to 
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believe that movements are only allowed between nearby floors since they 

understand that an elevator does not usually “jump” floors. 

 
Fig. 2 Complete and truncated problem spaces of the Hanoï Tower problem 

By putting emphasis on solvers’ interpretations of the situations, these studies on 

problem solving provided key insights into the part played by everyday 

knowledge in adult reasoning. This idea that general knowledge about the world 

may influence the representation of a given problem and dictate how someone 

will tackle its solving is of importance and will be the subject of further 

development in the first chapter of this thesis. Overall, this very brief account of 

content effects in problem solving – and in reasoning in general – underlines the 

key issue of the interactions between domain-independent knowledge and 

domain-specific knowledge. Despite its ability to conceive of abstract ideas, 

human reasoning always happens within a context – be it a real-life situation or 

a lab experiment setting – and so it seems important to strive to understand how 

contextual information interferes with our thought processes.  

Current undertaking 
Among the vast field of reasoning, our focus is on mathematical reasoning in 

particular, and the manner in which human conceive of numerical situations. 

Indeed, what better avenue to study the impact of concrete features on the realm 

of abstract ideas than through mathematics, the very champion of abstraction. 

While it has been suggested that the surface features of a situation often correlate 

with its deeper principles (Blessing & Ross, 1996; Gentner & Medina, 1998), 

mathematics remains a domain in which context-independent reasoning is 

praised, trained, and considered at least partially mastered after a few years of 
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formal training. However, the thesis we defend concerns the existence of a 

worldly influence – taking the form of wording interferences – on human 

mathematical reasoning.  

 While the idea that mathematics is grounded in nature has gained traction 

in the past decades, with works highlighting the conceptual metaphors (Lakoff & 

Nuñez, 2000) and tacit models (Fischbein, 1989, 1994) that underlie key 

mathematical concepts, the role played by general knowledge in adults’ 

representations of mathematical problems remains a debated issue (e.g. Bassok, 

2001; Kintsch & Greeno, 1985; Staub & Reusser, 1995). We intend to show that 

prior, non-mathematical knowledge about the entities described in a word 

problem can shape its semantic encoding and dictate one’s reasoning about the 

mathematical situation described. The first chapter of this thesis will elaborate on 

this idea and present the conceptual framework synthetizing our view. 

 Arguing for the notion that different representations are constructed 

depending on the everyday knowledge elicited by a problem is an arduous task, 

since there exist no direct means of investigation of one’s mental constructs. 

Luckily, many indirect routes have been proposed by cognitive scientists seeking 

to inspect the different shapes in which human thoughts may come. Researchers 

have long moved past resorting to fallible methods such as introspection or self-

report, and a variety of innovative indirect approaches have been designed to 

examine participants’ mental representations. Among them, the study of reaction 

times (e.g. Rosch, 1975), metaphors (e.g. Lakoff & Núñez, 2000), gestures (e.g. 

Fuhrman & Boroditsky, 2010), eye movements (e.g. Verschaffel, De Corte, & 

Pauwels, 1992), growing lines estimation (e.g. Casasanto & Boroditsky, 2008), 

operand recognition (e.g. Thevenot & Oakhill, 2006), drawings (e.g. Vosniadou & 

Brewer, 1992), relational priming (e.g. Bassok, Pedigo, & Oskarsson, 2008), 

looking times (e.g. Izard, Sann, Spelke, & Streri, 2009), classification (e.g. Chi, 

Feltovich, & Glaser, 1981), inductive projection (Inagaki & Hatano, 1996), written 

statements (e.g. Pinnegar, Mangelson, Reed, & Groves, 2011), and strategy use 

(e.g. Clément & Richard, 1997) constitute a representative – albeit far from 

exhaustive – list. In our work, we set out to gather converging evidence from 

complementary approaches to shed light on the representations constructed in 

the course of arithmetic word problem solving. In particular, we intended to show 

that numerical situations could, depending on the semantics imbued in their 
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statement, foster one of two encodings: either a cardinal representation, or an 

ordinal representation. The difference between cardinality and ordinality – as well 

as what it entails it terms of semantic encoding – will be introduced in detail in 

the second chapter of this thesis. We believe that this distinction is so pervasive 

that its effects can be felt in a wide range of activities, including (but not limited 

to): strategy use (chapters 2 to 7), categorization (chapter 2), comparison (chapter 

2), solvability assessment (chapters 2, 4, & 5), response times (chapters 2, 4, & 5), 

problem recall (chapter 3), sentence recognition (chapter 3), eye movements 

(chapter 5), pupil dilation (chapter 5), drawing production (chapter 6) and transfer 

(chapter 7), while also affecting different populations, among which children 

(chapter 6 & 7), lay adults (chapters 2 to 6), expert mathematicians (chapter 4) 

and math teachers (chapter 5), in French (chapters 2 to 7) and in English (chapter 

3).  

 The first chapter extends the present introduction. It is a theoretical paper 

introducing the current theories of arithmetic word problem solving. The 

contributions of the main models in the field are discussed, followed by a new 

proposal describing our perspective on the issue, in the form of a theoretical 

model of semantic congruence (SECO). While this chapter intends to clarify the 

conceptual framework shaping our work in the following chapters, it should be 

noted that the main goal of this thesis is not to defend SECO, as the experiments 

reported in chapters 2 to 7 were not specifically designed to evaluate its 

predictions. Rather, this thesis aims to describe how the interaction between world 

knowledge and mathematical knowledge shapes the encoding of arithmetic word 

problems, especially by leading to the construction of cardinal and ordinal 

representations of the situations. In fact, SECO and the experiments we report in 

the next chapters were developed simultaneously, and SECO was molded by the 

experiments we ran as much as it shaped their designs. The first chapter should 

thus be seen as an extended introduction presenting the view that we came to 

embrace while investigating arithmetic word problem representations. 

 The fundamental distinction between cardinal and ordinal representations 

is introduced in the second chapter. This chapter details the theoretical reasons 

that led us to consider the role played by the difference between cardinality and 

ordinality. It also presents the materials that will serve as the basis for all of the 

experiments reported in this thesis: new arithmetic word problems using different 
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quantities meant to foster either a cardinal encoding or an ordinal encoding. A 

first categorization experiment is used to validate our choice of materials, and 5 

subsequent experiments evaluate the influence that the cardinal versus ordinal 

distinction holds on several mathematical reasoning tasks. 

 By investigating the recall and recognition of specific word problems, the 

third chapter intends to go one step further and show that the distinction 

between the cardinal and ordinal problems created in Chapter 1 has an influence 

spanning beyond regular problem solving activities. The nature of the 

representations stored in memory is investigated by targeting specific forms of 

misremembrance revealing differences in the inferences made while solving the 

problems. Problem recall and sentence recognition are thus used to probe 

participants’ problem representations.  

 The pervasiveness of the effects reported in the first chapters is assessed in 

the fourth chapter, by studying expert mathematicians’ ability to overcome the 

difficulties imposed by semantic incongruence. By examining the influence of 

domain-independent knowledge on experts’ performance, this chapter attempts 

to provide a fuller characterization of the extent to which human reasoning is 

constrained by its object. This chapter also replicates the effects observed in the 

6th experiment of the first chapter among lay adults, in a new, time-constrained 

setting. 

 The fifth chapter gathers behavioral and eye tracking data to deal with 

the different kind of expertise that teachers and pre-service teachers have about 

the peculiar exercise of word problem solving. The two experiments of this 

chapter follow two complementary objectives: the first experiment aims at 

showing that even math teachers are not immune to the deleterious influence of 

domain-independent knowledge on mathematical reasoning. It constitutes a 

replication of the experiment in Chapter 4. By recording the eye movements of 

pre-service teachers performing the same task as the teachers in the first 

experiment, the second experiment seeks to provide a finer-grained 

understanding of the differences between cardinal and ordinal representations of 

arithmetic word problems, as well as of what performing a semantic recoding 

really entails in terms of cognitive load. The study of fixations, backward eye 

movements and pupil dilation gives an overview of participants’ information 

collection strategies while attempting to solve cardinal and ordinal problems. 
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 The sixth chapter introduces a developmental perspective on the issues 

at the heart of this thesis. By comparing strategies used by 2nd graders, 5th graders, 

and adults to solve isomorphic problems, we attempt to draw a picture of the 

development of cardinal and ordinal representations throughout the years. We 

study which solving strategies are preferred at each age and illustrate the life-long 

influence that domain-independent knowledge has on mathematical reasoning. 

Additionally, a drawing production task provides new insights into the differences 

between the representation of cardinal and ordinal problems. This chapter also 

introduces a different, simplified version of the materials used in previous 

chapters, designed to help 3rd graders understand the mathematical structure of 

the problems.  

 Finally, the seventh chapter briefly illustrates the negative influence that 

semantic incongruence may have on fifth and sixth graders’ ability to apply a 

presented algorithm to new problems. This chapter focuses on negative transfer 

between worked-out examples and new problems sharing the same solution 

principle, but differing to varying degrees from the training problems. Using new 

materials differing slightly from the ones used in chapters 2 to 6, this last 

experiment opens the question of what can be done to foster semantic recoding 

and improve transfer between problems sharing the same solution principle. This 

issue, crucial for mathematics education, will be the focus of further consideration 

in the general discussion of this thesis. 

 Overall, 16 experiments are presented, conducted among a total of 2180 

participants from different backgrounds. In view of the present replicability crisis 

in experimental psychology (Open Science Collaboration, 2015), we attempted to 

provide both exact and conceptual replication throughout the different 

experiments in this thesis. The goal was to collect converging evidence following 

different approaches in order to assess the validity of the hypothesis that general, 

non-mathematical world knowledge may foster one of two semantic encodings 

and interfere with arithmetic reasoning. Although all of the experiments we 

present build on similar materials, variations are introduced between experiments 

and between chapters to maximize the reliability of our findings. We hope that 

the diversity of issues, methods, populations and analyses presented in these 

pages will engage our readers’ attention and spark their interest as ours has been 

by this fascinating topic. 
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Presentation 
The first chapter of this thesis is a theoretical article introducing a new conceptual 

framework to understand the interpretative processes at play in the encoding, 

recoding, and solving of arithmetic word problems. The article presents the main 

existing models of arithmetic word problem solving and draws on their limitations 

to propose a new theoretical model (SECO) accounting for the interactions 

between domain-independent knowledge and mathematical knowledge in the 

interpretation of the problems. 

 This chapter serves two purposes. First, it introduces the literature in 

arithmetic word problem solving that will be relevant for the following chapters. 

Its intent is not to provide an exhaustive review of the literature, but to highlight 

specific studies and trends which substantially influenced our work. The major 

theories accounting for solvers’ reasoning process are discussed, and we take a 

closer look at a selection of 6 experimental works that illustrate key aspects of 

arithmetic word problem solving. 

Second, this chapter also presents the conceptual framework that guided 

our investigation into the interferences of world semantics on arithmetic word 

problem solving. The SECO model we describe was developed in parallel to the 

experiments that are reported in chapters 2 to 7. As a result, it should be noted 

that these experiments informed SECO’s conceptualization as much as SECO 

influenced their design. With the introduction of SECO, we aim to propose a 

conceptual lens to apprehend the determinants of arithmetic word problem solving 

in order to better characterize how non-mathematical world knowledge can 

interfere with our interpretation of the mathematical situation described in a 

problem. Before diving into the specific issue of what the perception of cardinality 

and ordinality entails in our understanding of numerical situations, this first chapter 

tackles the broader question of what it means to solve an arithmetic word problem.  
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Abstract 
Arithmetic problem solving is a crucial part of mathematics education. However, 

existing problem solving theories do not fully account for the semantic constraints 

partaking in the encoding and recoding of arithmetic word problems. In this 

respect, the limitations of the main existing models in the literature are discussed. 

We then introduce the Semantic Congruence (SECO) model, a theoretical model 

depicting how world and mathematical semantics interact in the encoding, 

recoding and solving of arithmetic word problems. The SECO model’s ability to 

account for emblematic results in educational psychology is scrutinized through 

six case studies encompassing a wide range of effects observed in previous works. 

The influence of world semantics on learners’ problem representations and solving 

strategies is put forward, as well as the difficulties arising from semantic 

incongruence between representations and algorithms. Special attention is given 

to the recoding of semantically incongruent representations, a crucial step that 

learners struggle with.  

Keywords 
cognitive strategies · knowledge representation · learning strategies · mathematics 

· learning and teaching · problem solving 
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Introduction 
What does it take to solve an arithmetic word problem? It goes without saying that 

finding the solution requires to be able to read and understand the problem 

statement, as well as to handle its numerical values and compute the solving 

algorithm. But is it enough to simply know how to read and count? Several studies 

have highlighted robust effects suggesting that solving arithmetic word problems 

involves processes other than mere procedural ones, that have yet to be accounted 

for within a unified theory. For instance, Hudson (1983) showed that finding a 

solution to the problem “There are 5 birds and 3 worms. How many more birds 

than worms are there?” was considerably more difficult for kindergarteners than 

answering the question “How many birds won’t get a worm?”, despite striking 

similarities between these two situations. Bassok, Wu and Olseth (1995) showed 

that after being taught the algorithmic solution of a problem describing objects 

assigned to people (e.g. computers given to secretaries), participants could more 

easily transfer it to problems involving objects assigned to people (e.g. prizes given 

to students), rather than to problems involving different semantic relations, such as 

problems involving symmetrical sets of people (e.g. doctors “assigned” to other 

doctors). In a study with primary school pupils, Coquin-Viennot and Moreau (2003) 

found that to calculate the number of flowers a florist needs in order to give 5 

roses and 7 tulips to each person among 14 people, factorization (i.e. adding 5 and 

7 before multiplying the total by 14) was more commonly used if the wording 

mentioned that the flowers were grouped in a bouquet than if it did not. Finally, 

Thevenot and Oakhill (2005, 2006) showed that the choice between two alternative 

solving algorithms is influenced by the cognitive costs of each strategy. Facing a 

problem statement where the solution was usually obtained by calculating the 

value of “x − (y + z)”, they found that participants’ preferences shifted in favor of 

the more economical sequential strategy “(x − y) − z” when presented with higher 

values. 

Separately, these studies have all been accounted for within a given 

framework of arithmetic word problem solving; either the schema theory (Kintsch 

& Greeno, 1985), the situation problem model (Reusser, 1990; Staub & Reusser, 

1995) or the semantic alignment framework (Bassok, 2001). However, taken 

together, these studies on wording effects, content effects and re-representation 
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processes display a range of findings that, to our knowledge, remain to be 

explained within a common model. To address this issue, we hereby propose a 

semantic congruence – SECO – model accounting for how the interactions between 

the solver’s knowledge about the world (the world semantics) and the solver’s 

knowledge about mathematics (the mathematical semantics) mediate the 

conceptual and procedural sides of arithmetic word problem solving. We believe 

that such a model should help pave the way towards the development of new 

instruction methods by providing a unified account of a range of effects whose 

considerable influence on students at all levels tends to be underestimated. Before 

further specifying the SECO model’s inner workings, a description of the range of 

effects that current theories of arithmetic word problem solving do account for 

seems in order. 

Arithmetic word problem solving theories 
Numerous works have highlighted the fact that arithmetic word problems which 

can be solved using identical arithmetic operations may vary greatly in terms of 

solving difficulty, be they additive (Carpenter & Moser, 1982; Nesher, Greeno, & 

Riley, 1982; Riley, Greeno, & Heller, 1983) or multiplicative (Greer, 1992; Squire & 

Bryant, 2002; Vergnaud, 1983) problems. The two most prominent approaches of 

arithmetic word problem solving which have attempted to account for such effects 

are the schema and the situation model theories (see Thevenot & Barrouillet, 2015, 

for a review).  

The schema model 
The schema model (Kintsch & Greeno, 1985; Rumelhart, 1980; Schank, 1975; 

Schank & Abelson, 1977) posits that the resolution of arithmetic word problems 

relies on the creation, activation and implementation of schemata. Schemata are 

defined as propositional data structures stored in long-term memory, as a result of 

repeated encounters with problems sharing the same structure. These operatory 

structures, once created, can be activated and implemented with numerical values 

from any given context (any cover story), thus providing the solver with a valid 

solving algorithm. According to this view, the solvers read the problem statement 

and “the verbal input is transformed into a conceptual representation of its 

meaning, a list of propositions” (Kintsch & Greeno, 1985, p. 111). The solvers then 
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activate, in their long-term memory, the schema sharing the same propositional 

structure as the one in the problem statement. They then instantiate this schema 

with the specific numerical values of the cover story to interpret and solve the 

problem. For instance, in a compare problem, a sentence such as “Tom has three 

more marbles than Joe” cues a “have more than” propositional structure which 

uses three arguments: two corresponding to Tom and Joe’s sets, and one 

corresponding to the quantitative proposition associated with the comparison 

(Kintsch & Greeno, 1985). According to Kintsch and Greeno, this propositional 

structure can be implemented with the values of any problem using a “have more 

than” proposition and can be used to choose the solving algorithm. 

However, the schema theory has been challenged by works showing that 

minor modifications within the wording of otherwise structurally identical 

problems led to significant differences in terms of solvers’ performances. Notably, 

De Corte, Verschaffel and De Win (1985) showed that modifying the wording of 

problems sharing the same schema impacted both their difficulty and the type of 

errors solvers make. For example, problems such as “Bob got 2 cookies. Now he 

has 5 cookies. How many cookies did Bob have in the beginning?” were only 

solved by 36% of the children in the study, whereas slightly reworded problems 

such as “Bob had some cookies. He got 2 more cookies. Now he has 5 cookies. 

How many cookies did Bob have in the beginning?” were solved by 55% of the 

children.  

Another convincing piece of evidence showing the limitations of the schema 

model was brought by Thevenot and Oakhill (2005), who asked adults to solve 

problems such as “How many marbles do John and Tom altogether have more 

than Paul? John has 29 marbles, Tom has 13 marbles and Paul has 26 marbles”. 

This problem is usually solved with the algorithm (29 + 13) – 26 = 16, which could 

be explained by the schema model by the fact that the word “altogether” activates 

a Combine schema (29 + 13) and the words “have more than” activates a 

Comparison schema (42 – 26) (Riley et al., 1983). However, the authors showed 

that when the numerical values were replaced by 3-digit numbers (e.g. replacing 

29, 13, and 26 by 749, 323, and 746, respectively), participants tended to use 

another algorithm to solve the problem: (749 – 746) + 323 = 326. Indeed, since in 

both cases John has 3 more marbles than Tom, it would be easier to calculate the 

difference between John’s and Tom’s marbles and add it to the number of marbles 
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Paul has. Yet, participants only used this strategy when the use of 3-digit numbers 

made it too difficult to calculate the solution using the other algorithm. This 

experiment suggests that participants were able to decide not to blindly apply the 

schemata activated by the problem, and to construct an alternative problem 

representation instead. 

Another argument showing the limitations of the schema theory came from 

Thevenot (2010), who asked participants to solve arithmetic problems and later 

presented them with an unexpected recognition task involving problems that were 

either identical to the source problems, inconsistent with the source problems, or 

that described the same situations using paraphrases. The results showed that 

paraphrastic problems had a higher recognition rate than inconsistent problems. 

Since, in paraphrastic problems, the propositional structure of the initial problems 

was lost by the paraphrasing, it follows that recognition was not solely based on a 

propositional representation, contrarily to what the schema view predicts. Thus, 

additional interpretative processes are believed to come into play and modulate 

the solver’s performance. In this regard, effects of content – interpretative effects 

linked to the semantic content of the cover stories – have been shown to influence 

participants’ performance in a way that is not accounted for by the schema theory 

(Coquin-Viennot & Moreau, 2003; De Corte et al., 1985; Gvozdic & Sander, 2017; 

Reusser, 1988; Thevenot & Oakhill, 2005; Vicente, Orrantia, & Verschaffel, 2007). 

This significant blindspot in the schema theory explains the need for a more 

comprehensive model accounting for the content effects reported in the literature. 

The situation model approach 
Due to these limitations, the schema theory has since lost ground against an 

alternative approach, which builds on the theoretical frameworks of mental models 

(Johnson-Laird, 1980, 1983) and situation models (Van Dijk & Kintsch, 1983). This 

approach originates from Reusser’s model, the Situation Problem Solver (SPS), 

which applies the situation model approach to arithmetic word problem solving 

(1989, 1990, 1993; Staub & Reusser, 1995). The SPS model accounts for the 

integration by the solver of the set of information present in the problem statement. 

Namely, it proposes that reading a word problem results in the creation of an 

episodic situation model featuring every functional relation depicted within the text 

and presenting an analogous structure to that of the described situation (Reusser, 

1990). For example, in Hudson’s study (1983) mentioned in the introductory 
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paragraph of this paper, the “How many more birds than worms are there” problem 

refers to a static episodic situation model where birds and worms are conceived of 

as two disjoint sets of entities, whereas the “How many birds won’t get a worm” 

problem leads to the creation of a dynamic episodic situation model in which the 

relation between the two sets is highlighted (Staub & Reusser, 1995). The episodic 

situation model is then translated into a problem model containing the relevant 

structural elements and relations from the point of view of the question to be 

answered. This qualitative representation of the problem statement differs from the 

purely propositional structure proposed by the schema theory. According to Staub 

and Reusser (1995), this problem model is then reduced to its abstract mathematical 

gist, which can be translated into a solving algorithm.  

Although it builds on the idea that solvers reason based on mental 

representations analogous to the situations described in the problem statements, 

the SPS model does not explicitly describe the processes that form those 

representations. Indeed, according to the situation model view, “the structure of a 

representation corresponds to the structure of what it represents” (p.18244, 

Johnson-Laird, 2010). If a perfect structural correspondence is assumed between 

the representation itself and what is represented from the external world, this 

means that the former is presumed to be a faithful internalization of an external 

state. The processes through which this internalization is achieved are not explicitly 

in the scope of the SPS approach. In particular, the idea that background 

knowledge of an individual might influence the internalization process and 

eventually interfere with the faithfulness of the internalization relatively to the 

external situation is not a significant topic in the SPS model. The notion that the 

structure of a representation is identical to the structure of what it represents is 

hardly compatible with the thought that one depicted situation could be interpreted 

differently by different individuals. In other words, saying that a problem statement 

is encoded as a representation whose structure is analogous to the problem 

statement’s is tantamount to saying that only one representation can be encoded 

from a given problem, regardless of variations in interpretation that can occur over 

times or individuals. 

The semantic alignment contribution 
Other works have been more attentive to this issue, showing that solvers’ prior 

knowledge strongly constrains the representations they construct, in an often 
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detrimental way (Thevenot, 2017). Bassok et al.’s (1995) showed that the world 

knowledge regarding the entities involved in arithmetic problems influenced the 

transfer to isomorphic permutation problems; for instance, problems involving 

objects and people, such as caddies and golfers, spontaneously evoke an 

asymmetric structure (“get”), in which golfers are getting caddies and not the 

opposite since in our world, in most pragmatic contexts, people receive objects, 

and not the other way around. In contrast, they showed that problems involving 

two sets of people (e.g. kids from two nurseries) evoke a symmetric structure 

(“pair”), in which children from both nurseries are paired together. These semantic 

relations between the problem elements thus constrain participants’ 

representations of the problems. Bassok, Chase and Martin (1998) provided 

additional evidence for this claim, by giving participants the names of different 

types of objects and asking them to use these objects to create arithmetic word 

problems involving either an addition or a division. For objects linked by an 

asymmetric functional relation (e.g., a container/content relation between vases 

and tulips), participants created more division problems (e.g. the number of tulips 

divided by the number of vases) than additions. On the other hand, with objects 

belonging to the same superordinate category, such as tulips and daffodils, 

participants created mostly additive problems.  

This issue is all the more important given how Bassok et al. (1998) showed 

that the association between subclasses of objects and specific solving strategies is 

reinforced throughout education by the exercises proposed in mathematical 

textbooks. They showed that a vast majority of division problems in math 

textbooks include elements linked by asymmetrical relations whereas additive 

problems feature elements belonging to categories of the same taxonomic level 

such as red and blue marbles. This reinforcement throughout the years of 

arithmetic school teaching may contribute to the development and strengthening 

of robust solving biases among learners, making it especially important to model 

these interpretative effects of content to better capitalize on them.  

The semantic alignment framework (Bassok, 2001) aims at accounting for 

these interpretative effects of content. It goes beyond the SPS view by specifying 

how world knowledge regarding the entities involved in the problem influences 

its representation by the solvers. It proposes that the solvers’ knowledge about the 

objects described in the problem cover stories leads them to abstract an interpreted 
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structure. This structure varies from one problem statement to another, depending 

on the roles defined by the world knowledge regarding the entities, even when 

those roles are not relevant – or even deleterious – with regard to the mathematical 

structure of the problems and the task at hand. Thus, the structure that is abstracted 

from arithmetic problems can facilitate the resolution when the relations it entails 

are semantically aligned with the objective mathematical relations of the problem, 

that is when the problem’s semantic structure can be used “to infer, by analogy, its 

objective mathematical structure” (Bassok, 2001, p. 402; Bassok et al., 1998). For 

example, performing divisions on problems involving oranges and baskets will 

prove easier than performing divisions on problems involving oranges and apples, 

because division is semantically aligned with asymmetrical structures such as the 

one between containers (the baskets) and their content (the oranges). Supporting 

this view, Bassok, Pedigo and Oskarsson (2008) showed that addition facts are 

activated when they are primed by categorically related words usually associated 

with addition (e.g. the pair tulips-daisies is semantically aligned with addition), but 

not in cases of misalignment, when they are primed by unrelated words and are 

misaligned with addition (e.g. hens and radios are not usually connected in an 

addition model). This was confirmed in an ERP study by Guthormsen et al. (2016) 

who showed N400 and P600 effects indicating a disruption of conceptual 

integration when participants were presented with misaligned problems (e.g. a 

problem in which flowers and vases were added together). These results indicate 

that, in case of semantic alignment, the semantic content of a problem statement 

can provide crucial clues to the solvers. 

Alternative encodings and re-representation 
The strength of the previous approaches are their versatility and their ability to 

each account for a range of effects documented in the literature. However, it seems 

that one crucial question remains open: how is it possible to solve a problem 

whose semantic content is misaligned with its solution? How can one ignore those 

misleading clues and go beyond their initial encoding of a problem statement to 

reach a solution? Overcoming semantic misalignment would mean abstracting a 

new, different structure of the depicted situation. For instance, encoding a problem 

with caddies and golfers as a distributive structure where golfers are assigned to 

caddies instead of the opposite. However, the issue whether several alternative 

interpreted structures can be encoded from the same problem statement, by 



 

 
SEMANTIC CONGRUENCE IN ARITHMETIC | 45 

 

C
HA

PT
ER

 1
 

different individuals or by one individual over time, has yet to be considered. Ross 

and Bradshaw (1994) showed that the initial interpretation of an ambiguous story 

could be influenced by the beforehand presentation of another story sharing some 

degree of similarity with the latter. This suggests that two different semantic 

structures can be abstracted from a same situation, depending on participants’ past 

experiences and prior knowledge. 

Furthermore, studies on re-representation showed that it is possible for the 

solvers to turn their initial representation into a new one, allowing them to 

overcome their initial inappropriate interpretation and find the solution (Davidson 

& Sternberg, 2003; Gamo, Sander, & Richard, 2010; Sander & Richard, 2005; Vicente 

et al., 2007). For example, to facilitate the solving of a change problem in which a 

quantity is added or subtracted from an unknown start set, solvers can represent 

the problem in terms of a part-whole structure and turn it into a search for the 

unknown part (Riley et al., 1983). Thus, it is important to tackle what precisely 

happens when a solver’s initial encoding of a problem statement fails to trigger the 

use of an appropriate solving algorithm, and to get a better understanding of how 

solvers might overcome an earlier inadequate representation and recode the same 

problem. Bearing this issue in mind, we wish to build on the SPS model and on 

the notion of interpreted structure in order to provide a unified model addressing 

the processes involved in arithmetic problem solving.  

The semantic congruence (SECO) model 
The SECO model is based on the notion of semantic congruence in arithmetic word 

problem solving, which it defines and operationalizes by accounting for the 

interactions between world semantics, mathematical semantics, and algorithms. 

Within the SECO model (Fig. 1), the product of the interaction between world 

semantics and mathematical semantics needs to be put in correspondence with an 

algorithm, by means of an interpreted structure. 
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Fig. 1 The SECO model 

Components 
The components depicted in the SECO model are characterized below; they will 

be further exemplified in a second phase through six case studies. 

- Problem statement. The problem statement is a text describing the 

elements of the problem and the situation(s) in which they interact as well 

as their relations and associated values.  

- World semantics. World semantics is characterized by the solver’s non-

mathematical, daily-life knowledge about the elements of the problem 

statement as well as the relations between them. For example, world 

semantics may include knowledge that flowers can be put into vases, that 

there is a co-hyponym relation between oranges and apples, or that to go 

from the 1st to the 3rd floor of a building one must pass by the 2nd floor first. 

There is indeed a broad literature showing that understanding, reasoning, 

decision-making and problem solving are influenced by the individual’s 

knowledge regarding the entities involved and their relations (e.g., Bassok, 

2001; Carey, 2009; Gelman, 2003; Gentner, 1988; Goswami & Brown, 1990; 
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Johnson-Laird, 1983; Van Dijk & Kintsch, 1983; Kotovsky, Hayes, & Simon, 

1985; Stanovich, 1999).  

- Mathematical semantics. Mathematical semantics is characterized by the 

solver’s mathematical knowledge that is applicable to the problem 

statement. For example, mathematical semantics may include knowledge 

that to calculate the size of a set, one needs to add the size of all its subsets, 

or that to evenly share a collection of objects among several sub-collections, 

one needs to divide the number of elements in the collection by the number 

of sub-collections.  

- Interpreted structure. The interpreted structure is abstracted from the 

problem statement, integrating pieces of information present in the text with 

the properties, relations and constraints inferred from the world semantics. 

This notion stems from Bassok and colleagues’ research (Bassok & Olseth, 

1995; Bassok et al., 1995, see above). Since the mathematical semantics 

evoked by the problem statement is activated during the encoding, the 

interpreted structure can feature algebraic values or be instantiated by the 

numerical values. For example, world semantics about fruits will lead co-

hyponyms such as oranges and apples to be encoded as subsets of a 

superset of fruits.  

- Solving algorithm(s). A solving algorithm is a finite, unambiguous set of 

actions that leads to the correct answer when properly executed. Multiple 

solving algorithms may stem from a given problem statement (e.g. De Corte 

et al., 1985; Gamo et al., 2010; Große & Renkl, 2006; Kouba, 1989; Leikin & 

Lev, 2007; Thevenot & Oakhill, 2005).  

- Deep structure. This notion stems from Chi and colleagues’ work (Chi, 

Feltovich, & Glaser, 1981). We define it as the semantic structure integrating 

the elements of the problem that are relevant for its resolution and 

describing their relations. This structure does not rely on world semantics 

but on mathematical semantics. It has been designated as “the objective 

mathematical structure” (Bassok, 2001), or as “the principle of the problem” 

(Ross, 1987); for non-mathematical problems the corresponding notion is 

“the problem space” of an expert solver (Newell & Simon, 1972). 
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Processes 
The processes depicted in the SECO model are characterized as follows: 

- Initial encoding. This process describes how the problem statement is 

abstracted into an interpreted structure depending on the world and 

mathematical semantics evoked by its wording. The world semantics 

activated by the problem statement constrains the representation of the 

depicted situation, either by highlighting or by overshadowing specific 

relations between the problem’s entities. Similarly, the mathematical 

semantics evoked by the problem statement also shapes the mathematical 

relations represented in the interpreted structure. 

- Specification. This process describes how an interpreted structure may be 

specified into an algorithm, as a result of the relations it describes and the 

numerical values it features. When the relations depicted in the interpreted 

structure hold a mathematical meaning, they can be translated into relevant 

operations through this specification process. Not every interpreted 

structure can be specified into a relevant solving algorithm, since the 

relations highlighted during the encoding process may not be relevant, and 

the encoded values may not be the ones needed to solve the problem. A 

deep structure, on the other hand, may be specified into any relevant 

algorithm, since it depicts every relevant relation, independently from the 

influence of world semantics, contrarily to an interpreted structure.  

- Expert encoding. The expert encoding describes the hypothetical process 

that may happen when experts initially encode problems within their 

domain of expertise. As stressed by Chi et al., (1981) experts are believed 

to be able to disregard the cover story of a problem and directly encode its 

deep structure. According to this view, an expert may use mathematical 

semantics and disregard world semantics to directly abstract the deep 

structure from the problem statement.  

- Recoding. Since not every deep structure can be specified into a relevant 

solving algorithm, the recoding describes how, when the initially encoded 

interpreted structure cannot be translated into an appropriate, tractable 

algorithm, a new representation can be abstracted by recoding the 

interpreted structure. This process is akin to the re-representation said to be 

necessary to overcome difficulties in arithmetic problem solving (Vicente et 
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al., 2007). It relies on mathematical semantics to recode the situation and 

build a new structure, closer to the deep structure of the problem. It is a 

costly process that does not systematically happen. 

Inner workings 
The SECO model integrates these notions in the following way: it posits that when 

reading a problem statement (a), the lay solvers will initially encode the problem 

according to the world semantics (b) as well as to the mathematical semantics (e) 

evoked by the problem statement, from which they will abstract an interpreted 

structure (c). This interpreted structure is therefore semantically aligned with the 

solvers’ knowledge about the elements present in the problem statement and can 

differ from one solver to another for the same problem statement, depending on 

the state of their world and mathematical semantics. Because it holds a 

mathematical meaning, this interpreted structure may be specified into an algorithm 

(d). This algorithm stems from the procedural knowledge that is attached to the 

mathematical semantics activated by the problem statement. In cases in which no 

tractable algorithm can be derived from the interpreted structure encoded, the 

solver faces a dead-end and the need for a recoding process arises. Such a process 

would appeal to mathematical semantics (e) and not to world semantics, in order 

to encode a new representation consistent with the deep structure (f) of the 

problem and thus allow the use of a new algorithm as a result. Contrarily to the 

interpreted structure from which no tractable algorithm might be derived, this deep 

structure can be specified into any relevant solving algorithm (d). Finally, the model 

also introduces the possibility that an individual with sufficient expertise regarding 

a specific type of problem might directly abstract a deep structure (f) from a 

problem statement (a), without first extracting an interpreted structure (c) 

influenced by world semantics (b).  

SECO underlines a key aspect of arithmetic word problem solving consisting 

in the congruence between the semantic knowledge evoked by the problem 

statement and the mathematical semantics required to find its solving algorithm. If 

the world semantics attached to the elements in a problem statement is not 

congruent with the mathematical semantics required to solve the problem, the 

initial interpreted structure will not be translated into a valid solving algorithm. 

Indeed, only the mathematical semantics congruent with the world semantics 

evoked by the problem statement will be used during the initial encoding of the 
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problem. In cases where the relevant mathematical semantics is not congruent with 

the world semantics evoked, an extra recoding step is necessary to recode the 

interpreted structure into a new representation closer from the deep structure of 

the problem, making the process longer and more difficult. 

As in the SPS model, SECO considers that a mental representation of the 

situation is abstracted when reading an arithmetic word problem. However, 

contrarily to this model, SECO does not consider that this representation maps onto 

the structure of the world: by integrating the role of world and mathematical 

semantics in the encoding of the problem statement, SECO accounts for the fact 

that there is no unique way to mentally model a problem statement. A situation 

can be encoded differently by different individuals, and the abstracted structure 

may be recoded into a new representation if need be.  

Accounting for existing results: case studies 
In order to better understand SECO’s contribution in contrast to the current models 

of arithmetic problem solving, we propose to tackle representative results in the 

field through SECO’s lens and compare it to the accounts of these results by the 

two most prominent models of arithmetic word problem solving, the Schema 

model and the Situation Problem Solver model. As our presentation of SECO 

shows, its main contribution resides in its depiction of the influence of world 

semantics on solving strategy choice as well as of the necessity to semantically 

recode the problems in case of failure. While SECO does not intend to resort solely 

to world semantics to account for every possible variation in arithmetic problem 

solving, as other sources of differences exist (e.g. algorithm computation abilities 

or reading comprehension), its central added value consists in its depiction of the 

influence of world semantics on the encoding, recoding and solving of the 

problems. We now assess SECO’s unique ability to explain the effects reported by 

a set of six studies mentioned in the introductory section of this paper and 

presenting representative results in the field. We believe that altogether, these 

studies prove challenging to the existing models of arithmetic problem solving. We 

first present two cases illustrating the key issue of the influence of world semantics 

on the selection of a solving strategy. The following two case studies then 

showcase the other central feature of the SECO model: its depiction of the existence 

of a recoding process for semantically incongruent representations. The last two 
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case studies show how SECO proposes a new take on classical rewording effects, 

from which important educational implications arise. 

World semantics issues 
The first two studies we detail illustrate the key influence one’s knowledge about 

the world can have on one’s problem solving performance. They describe 

examples of the effect the content of a problem statement can have on the 

interpretative processes at play. In other words, they showcase the role of world 

semantics in arithmetic word problem solving. 

Case 1: Bassok et al.’s account of interpreted structures 
Empirical findings and authors’ perspective. Compelling evidence of the 

influence of world semantics on the interpreted structure have been provided by 

Bassok et al. (1995). Participants who were unable to solve an initial permutation 

problem were presented with a short lesson accompanied by a training problem 

and its solving equation: 
1

𝑛𝑛(𝑛𝑛−1)(𝑛𝑛−2)
 (n being the size of the set of elements being 

assigned). The participants then had to solve a transfer problem using the same 

algorithm. The main result was that participants who were first trained on a 

problem involving an assignment of objects to people (O→P) had a dramatically 

higher success rate when they transferred the solution to other O→P problems 

(89% of success) than those who had to transfer the solution to “people assigned 

to objects” (P→O) problems (0% of success). According to the authors, the 

participants interpreted the structure of the problems by using their world 

knowledge about the roles of the entities involved in the problems, i.e. they 

spontaneously interpreted the problem as a situation in which “objects are given 

to people” and constructed different interpreted structures depending on which 

entities were described. The semantic (mis)alignment between the training and 

transfer problems’ interpreted structures accounted for the participants’ high (or 

low) success rate in the transfer problems.  

SECO’s account of the results. Because it details how an interpreted structure is 

encoded according to the world and mathematical semantics, the SECO model can 

account for this result, see Fig. 2 (transfer to objects-to-people problems) and Fig. 

3 (transfer to people-to-objects problems). As situations where objects are assigned 

to people are much more common in daily-life than situations where people are 

assigned to objects, in SECO, the world semantics (b) regarding the assignment of 
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elements fosters the idea that objects are usually assigned to people. Therefore, 

when reading the problem statement (a), the world semantics (b) should, in both 

“objects to people” and “people to objects” problems, result in an interpreted 

structure (c) in which objects are assigned to people. This interpreted structure 

leads the participants to implement the algorithm 
1

𝑛𝑛(𝑛𝑛−1)(𝑛𝑛−2)
 (d) with the value 

corresponding to the size of the set of inanimate objects whereas they should be 

thinking in terms of which set is being assigned to the other. Indeed, given that 

participants received limited training, it might be that they did not really understand 

the solving procedure in the training problem, and thus their mathematical 

semantics (e) regarding the assignment did not comprise the mathematical notion 

of “draw without replacement within a set”. Instead, they simply implemented the 

training algorithm by mapping the semantic roles of the training and transfer 

problems, and only considered the fact that n was the size of the set of assigned 

objects in the first problem. Thus, they transfer the algorithm they learnt by 

replacing the n value by the number of inanimate objects, even if the set of people 

is the one being assigned to the set of objects. This leads to a correct use of the 

algorithm in “object to people” transfer problems (Fig. 2) but not in “people to 

objects” transfer problems (Fig. 3) and accounts for the dramatic contrast between 

the transfer rates in both conditions (0% vs. 89%). 
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Fig. 2 Modeling of the resolution of a permutation transfer problem with an "objects to 

people" assignment structure, from Bassok, Wu and Olseth (1995). 

 

Fig. 3 Modeling of the resolution of a permutation transfer problem with a “people to objects" 

assignment structure, from Bassok, Wu and Olseth (1995). 
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Case 2: Coquin-Viennot and Moreau’s account of semantic 
constraints 
Empirical findings and authors’ perspective. In their study bearing on the use 

of factorization and expansion algorithms among 3rd and 5th graders, Coquin-

Viennot and Moreau (2003) showed that problems such as “For a prize-giving, the 

florist prepares for each of the 14 candidates 5 roses and 7 tulips. How many 

flowers does the florist use in total?” were less often solved using factorization (44% 

among 5th graders) than problems identical in every aspect except for the presence 

of a superordinate structuring term such as “a bouquet”: “For a prize-giving, the 

florist prepares for each of the 14 candidates a bouquet made up of 5 roses and 7 

tulips.” (68% among 5th graders). This study illustrates how slight modifications in 

the wording of isomorphic problems can influence the initial encoding. The 

interpretation proposed by the authors was that the presence of the term “bouquet” 

favored participants’ perception of the two subsets as parts of the same superset 

and led them to combine the sets into a single entity. We propose a complementary 

and more systematic explanation using the SECO architecture. 

SECO’s account of the results. In SECO’s view, the use of the word “bouquet” 

in the problem statement evokes the world semantics stating that a bouquet is a 

group of flowers, which is compatible with Coquin-Viennot and Moreau’s (2003) 

interpretation. The SECO model would account for these results as depicted in Fig. 

4 (problem statement without the “bouquet” term) and Fig. 5 (problem statement 

with a structuring term).  

Since the “no bouquet” problem statement (Fig; 4, a) mentions roses and 

tulips, the world semantics (b) regarding those elements (i.e., “roses and tulips are 

two different kinds of flowers”) is activated and favors the encoding of roses and 

tulips as two disjoint sets in the interpreted structure (c), making the grouping of 

roses and tulips together less salient. The abstracted interpreted structure (c) thus 

leads most of the participants to use the expansion algorithm (d) congruent with 

the representation of tulips and roses as two distinct sets “(14 × 5) + (14 × 7)”. By 

contrast, in order to use the factorization algorithm “14 × (5 + 7)”, a solver is either 

required to infer that tulips and roses can be grouped together (e.g. in a bouquet 

constituted of different flowers), despite the absence of any structuring cue, or to 

recode the situation (c) according to mathematical semantics (e**) stating that a 

superset consisting of m sets of x elements and m subsets of y elements has the 
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same size as a superset consisting of m subsets of “x + y” elements, so as to abstract 

a deep structure (f) of the problem. This deep structure highlights the two different 

grouping strategies (grouping by individuals or grouping by types of flowers) and 

is thus congruent with both the factorization algorithm and the expansion 

algorithm. 

 

Fig. 4 Modeling of the resolution of a distributive problem without a structuring element from 

Coquin-Viennot and Moreau (2003). 

On the other hand, the resolution of the problem mentioning a structuring element 

(the bouquet) leads to different steps as detailed in Fig. 5. When the problem 

statement (a) mentions that the tulips and the roses are grouped together and form 

a bouquet, then the world semantics (b) related to the bouquet can also be used, 

in addition to the world semantics related to roses and tulips as flower species. 

Referring to a bouquet activates the notion of grouping within a single set and 
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helps the solver encode an interpreted structure (c) increasing the saliency of the 

two subsets of flowers as parts of the same “bouquet” set, compared to when the 

structuring element was not mentioned in the wording. The interpreted structure 

(c) leads the solver to calculate the total number of flowers by adding the number 

of flowers in each bouquet. Therefore, the factorization strategy 14 × (5 + 7) is the 

one being mostly used by solvers in this situation. The use of the expansion 

algorithm “(14 × 5) + (14 × 7)” is less frequent on such problems and can be the 

consequence of participants focusing on the distinction between the two types of 

flowers, roses and tulips, that leads them to count those separately instead of 

counting the number of flowers within one bouquet first. Alternatively, it can also 

be the consequence of their explicit use of mathematical semantics (e**) regarding 

expansion and development.  

 
 

Fig. 5 Modeling of the resolution of a distributive problem with a structuring element from 
Coquin-Viennot and Moreau (2003). 
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Thus, within the SECO model, the difference between the two problem statements 

results in a difference between the world semantics evoked by the statements 

during the encoding process. Different world semantics result in different 

constraints influencing the encoding of the problems, which lead to different 

interpreted structures being abstracted, each of them congruent with a specific 

solving algorithm (expansion when no structuring element is present in the 

problem statement and factorization otherwise).  

Other models’ account and their limitations regarding cases 1 and 2 
The influence of world semantics displayed by these two case studies is an effect 

that clearly falls outside the scope of the schema model. In Coquin et al.’s case, 

there is no theoretically based reason justifying that the addition of the term 

“bouquet” could influence the selection of a completely different problem schema. 

Similarly, in Bassok et al.’s (1995) case, the problem schema in the “objects to 

people” situation should be the same as the one in the “people to object” version, 

since the only change introduced between the two problems was the semantic 

nature of the entities constituting the two sets (either people or inanimate objects). 

In the original schema model, the reader extracts the numerical values and their 

relations by focusing on the propositional structure of the text (Kintsch & Greeno, 

1985). In Bassok et al.’s work (1995), the sentences “The president randomly 

assigns students to prizes” and “The president randomly assigns prizes to students” 

have the same propositional structure and should have activated the same schema. 

However, because one sentence implied that objects were assigned to people, and 

the other that people were assigned to objects, participants’ strategies differed 

between the two problems. The schema theory alone cannot account for this 

performance difference without being updated to take into account solvers’ 

knowledge about the problems’ entities. 

Similarly, the SPS model does not directly integrate the idea that one’s 

knowledge about the entities in a problem could influence the episodic situation 

model constructed to solve it. Instead, it postulates that the episodic situation 

model that is built depends on the presentational structure of the problem (text 

order, narrative point of view, presence of an explicit question, explicitness of 

relevant relations and so forth) but not on the general knowledge imbued in the 

problem (Staub & Reusser, 1995). The SPS model relies on the Situational Model 

assumption that the structure of a representation maps onto the structure of what 
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it represents (Johnson-Laird, 2010), therefore suggesting that there is only one 

episodic situation model for each problem, regardless of participants’ previous 

knowledge about the entities featured in a problem. The SECO model, on the other 

hand, provides a satisfactory account of those results by proposing that the world 

semantics evoked by a problem also depends on the semantic nature of the 

elements featured in the problem statement. 

Recoding issues 
While the first two case studies focused on the mechanisms at play during the 

initial encoding of a problem statement and their consequences on the solving 

performances, the next two case studies highlight how an interpreted structure 

resulting in a dead end can be recoded in certain conditions. In other words, they 

focus on participants’ relative ability to change their initial representation in 

situations in which multiple mathematical encodings of the same problem 

statement are possible: different, equally valid representations emphasizing distinct 

relations. 

Case 3: Thevenot and Oakhill’s account of alternative 
representations 
Empirical findings and authors’ perspective. Studying the influence of number 

size on the use of solving algorithms, Thevenot and Oakhill (2005) shed light on 

the factors triggering the recoding of an interpreted structure into a new 

representation. They investigated the strategies used to solve compare problems 

by using an operand-recognition paradigm consisting in interrupting the 

presentation of the problem statements to ask participants whether they recognized 

specific numbers. Recognition performance was used to determine if these 

numbers were currently maintained in working memory or if they had already 

been used in calculation and had thus started to fade from memory. They used 

problems such as “How many marbles does John have more than Tom and Paul 

together? John has x marbles, Tom has y marbles and Paul has z marbles”. The 

authors’ findings show that participants used the grouping algorithm “x − (y + z)” 

when the task was not especially demanding due to the problem’s values being 

small, whereas they used the more economical sequential strategy “(x − y) − z” 

when the use of larger values implied that the task had higher cognitive costs. 

Indeed, the second strategy is less cognitively demanding because performing two 
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successive subtractions allows the solvers to complete a subgoal “x − y” while 

reading the problem, and the result of this operation can be maintained in working 

memory during the rest of the problem instead of the two initial values (x and y). 

On the other hand, calculating the value of “y + z” and then subtracting it from the 

value of x requires to maintain the value of x in working memory until the end of 

the text and the final operation. In other words, if the values 636, 345 and 123 

appear in that order in the problem statement, then it is easier to first calculate the 

value of “(636 – 345)” while reading the text and then subtracting 123 from the 

result later on than to memorize the three values to calculate “636 – (345 + 123)” 

at the end of the problem statement. 

SECO’s account of the results.   Within the SECO model (see Fig. 6), this effect 

follows from the fact that the problem statement (a) mentions marbles that are 

grouped together and then compared. The interpreted structure (c) thus features 

two disjoint sets: one corresponding to John’s marbles, and the other one to Tom 

and Paul’s put together. This interpreted structure (c) is semantically congruent 

with the grouping algorithm “x − (y + z)” (d) that is preferentially used for problems 

with small values. When computing the algorithm becomes impossible because of 

the larger x, y and z values, some participants need to recode the situation to avoid 

maintaining the three values in memory. By focusing on the mathematical 

knowledge regarding parentheses removal (e**), according to which “x − (y + z) is 

equivalent to x −  y − z”, participants can recode their initial representation into an 

alternative representation closer to the deep structure (f) of the problem, in which 

Tom and Paul’s sets are perceived as two independent sets that can successively 

be removed from John’s set. They can then switch to the more economical 

sequential algorithm “(x − y) − z” (d). In other words, difficulty to compute the 

algorithm triggered a re-elaboration process that focused on the mathematical 

semantics to recode the problem’s representation. 
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Fig. 6 Modeling of the resolution of a "High Cost" problem from Thevenot & Oakhill (2005). 

This problem could become either a two-digit problem or a three-digit problem depending on 
the values given to x, y and z. 

Case 4: Gamo et al.’s account of world semantics constraints and 
semantic recoding 
Empirical findings and authors’ perspective. In addition to being another 

illustration of the central role of world semantics on arithmetic word problem 

solving, the study that Gamo et al. (2010) conducted in 4th and 5th grade classrooms 

provides valuable insight into the semantic recoding of the initial, inadequate 

representation of a problem into a new, more polyvalent one. In their study, Gamo 

et al. used problems that all shared the same formal deep structure, but that 

involved different types of elements. When the elements were known by the 

solvers to be unordered entities, such as marbles, scissors or pens, the authors 

predicted that the participants would abstract an interpreted structure emphasizing 

the cardinality of the situation, such as an embedded sets structure. This structure 
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was shown to lead the participants to use a 3-step algorithm to solve the problems. 

For example, the problem “John bought an 8-Euro exercise book and scissors. He 

paid 14 Euros. A pen costs 3 Euros less than the exercise book. Paul bought scissors 

and a pen. How much did he pay?” was preferentially solved using the 3-step 

algorithm consisting in calculating the price of the pen and the price of the scissors 

before adding them up: 14 – 8 = 6; 8 – 3 = 5; 6 + 5 = 11. On the other hand, when 

problems involved ordered units, as is the case in problems involving age, where 

events are ontologically ordered on the line of time, the authors predicted that the 

participants would abstract an interpreted structure emphasizing the ordinality of 

the situation, such as a timeline where different events are represented as positions 

on an axis. This axis-based interpreted structure would make it possible for the 

participants to use a different solving algorithm. For example, the problem “Antoine 

took painting courses at the art school for 8 years and stopped when he was 14 

years old. Jean began at the same age as Antoine and took the course for 3 fewer 

years. At what age did Jean stop?” was predominantly solved using a shorter, more 

efficient 1-step algorithm: 14 – 3 = 11. Indeed, the fact that the problem involves 

durations makes it easy to see that since Jean and Antoine started taking the course 

at the same age, then the difference between the number of years they each 

followed the course is equal to the difference between the age at which they 

stopped taking the course. Thus, the problem can be solved without calculating 

their age when they started taking the class. Both problems could be solved using 

both algorithms, but depending on the elements featured in the problems, 

participants preferentially used one or the other of the two strategies. 

In the first experiment of the study, the authors studied the conditions 

allowing for strategy change. They divided the participants in two groups, both of 

which had to complete a pre-test and a post-test in which they had to solve similar 

problems using only one arithmetic operation. Between the two tests, one of the 

groups followed two 60-minutes training sessions during which the children were 

instructed to compare the two strategies and incited to see how the 1-step 

algorithm could be used even on number of element problems. They were 

explicitly trained to identify their initial semantic representation and they were 

shown a visual representation of the deep structure of the problems to help them 

recode their initial encoding of the situation. The other group did not receive such 

a training. The two main findings were that children did solve problems differently 
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depending on the world semantics they evoked, and that teaching the children to 

use both strategies by focusing on the mathematical relations between the entities 

described and by studying the deep structure of the problems yielded significant 

result in increasing their ability to use the shorter 1-step algorithm on problems 

with unordered elements.  

SECO’s account of the results. These findings are a perfect fit within SECO’s 

framework, since they show both how mathematical and world semantics interact 

in the encoding of the problem statements into an interpreted structure, and how 

this interpreted structure then either leads to the use of a semantically congruent 

solving algorithm or is recoded to allow the use of a semantically incongruent 

solving strategy. Indeed, in the case of an age problem (see Fig. 7), the world 

knowledge (b) relating to how time events are usually conceptualized (as 

transitions between positions on a timeline) is evoked by the problem statement 

mentioning ages (a). This leads the children to encode an interpreted structure (c) 

in which the events described are represented along a timeline, which lets them 

directly compare the ages at which they each stopped attending the classes. This 

structure can then be specified into the 1-step algorithm (d) congruent with it. On 

the other hand, when reading a problem with unordered elements (see Fig. 8), 

Gamo et al. (2010) indicate that the encoding is influenced by the students’ 

knowledge (b) that the elements can be grouped together in any order, and that, 

for example, the scissors can be indifferently grouped with the pen or with the 

notebook. The resulting interpreted structure (c) has an embedded set structure 

that leads the students to calculate the value of each subset (the price of each 

item). This structure can then only be specified into the 3-step solving strategy (d). 

In order to use the shorter 1-step strategy, the students needed to use mathematical 

semantics (e) and recode their representation into a new, more polyvalent one (f). 

This explains why the only group who increased their performance in using the 1-

step algorithm on number of elements problems was the one that followed a 

training based on the mathematical principle behind the use of the 1-step algorithm 

and the study of the deep structure.  
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Fig. 7 Modeling of the resolution of an ordinal problem from Gamo et al., 2010. 

 
Fig. 8 Modeling of the resolution of a cardinal problem from Gamo et al., 2010. 
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Other models’ account and their limitations regarding cases 3 and 4 
These two last case studies showed that when the initial encoding of a problem 

statement does not lead to a satisfactory solving algorithm, a recoding may happen 

to encode a new representation congruent with a valid algorithm. As mentioned 

previously, in Thevenot and Oakhill’s case, the idea that a problem could be solved 

differently depending on whether it features low or high values falls beyond the 

scope of the schema theory. Indeed, if a schema is constructed from the text-base, 

then two text-bases differing only by the range of their numerical values should 

result in two identical schemas being used. Even though it could be argued that 

students are switching from a schema to another depending on the values provided 

in the problem statement, such a claim would require a theoretical extension of 

the schema model accounting for the conditions under which such a switch can 

occur. Similarly, if the SPS model predicts that one constructs a representation 

whose structure is that of the described situation, then why would two different 

representations be constructed based on the same situation? None of the 

aforementioned models of arithmetic word problem solving directly predicts that 

an encoding can be recoded depending on how efficient the algorithm it leads to 

is. 

Finally, regarding Gamo et al.’s results, the schema theory may state that 

some problems correspond to a schema (the so-called ordinal problems) and some 

do not (the so-called cardinal problems). However, because this theory does not 

take the structure of the solver’s representation into account, it provides no basis 

to explain why such a schema would only be used on some problem statements 

and not on others. Specifically, without these semantic features, there is no a priori 

reason to predict that words such as “age”, “during” or “years” would activate a 

schema corresponding to the 1-step algorithm whereas words such as “scissors”, 

“pen” or “book” would fail to do so. On the other hand, the situation model 

approach states that a representation analogous to that of the situation described 

is constructed and used as a basis for reasoning. Because of that, this theory can 

explain why different problems can be represented differently and thus lead to the 

use of different algorithms, but the SPS model does not refer to the fact that solvers 

interpret the situations through the lens of their own previous knowledge. In other 

words, the situation problem view does not model the constraints imposed by 

world semantics on the encoding of arithmetic word problems. Interestingly, it can 
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be noted that the influence of general semantic dimensions such as the cardinal 

versus ordinal distinction is compatible with the semantic alignment framework. 

However, in the semantic alignment framework, the question of the recoding of 

semantically incongruent representations has not been addressed, and SECO’s 

predictions regarding the students’ ability to perform a semantic recoding when 

given appropriate guidance falls beyond this framework. Thus, the fact that the 

participants were able to solve the number of elements problems using the 1-step 

algorithm after the training sessions is not predicted by the semantic alignment 

framework, whereas SECO’s take on semantic recoding aided by mathematical 

semantics offers a reasonable explanation of the effect. 

Rewording issues 
Several works have highlighted how small modifications in the wording of 

structurally isomorphic problems could result in significant performance disparities 

(Cummins, 1991; Cummins, Kintsch, Reusser, & Weimer, 1988; Davis-Dorsey, Ross, 

& Morrison, 1991; Staub & Reusser, 1992; Stern & Lehrndorfer, 1992; Vicente et al., 

2007). Such effects have considerable educational implications, since they illustrate 

how minor phrasing variations can drastically help (or hinder) the students’ 

understanding of a given problem. As such, they constitute a promising route to 

assist students in overcoming some of the obstacles they meet in arithmetic word 

problem solving. Here, we focus on two studies showcasing such rewording 

effects, to illustrate how SECO can also account for such emblematic results by 

depicting the changes they entail in the interpreted structures abstracted. 

Case 5: Hudson’s account of children’s understanding of differences 
between sets 
Empirical findings and author’s perspective. In his seminal work on numerical 

differences, Hudson (1983) compared two formulations of comparison problems 

that led to considerably different levels of performance. Kindergarten children were 

told there was, for example, “5 birds and 3 worms”, and they were asked either 

“How many more birds than worms are there?” (25% of correct answers among 

kindergarteners) or “How many birds won’t get a worm?” (96% of correct answers 

among kindergarteners). The author explains that the use of “won’t get” reduced 

the misinterpretation of the “how many more than” construction by highlighting 

the one-to-one correspondence between the given sets.  
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SECO’s account of the results. The SECO model accounts for those results in 

the following way. As depicted in Fig. 9, an interpretation of Hudson’s findings 

within the model would be that the sentence “how many more birds than worms 

are there” in the problem statement (a) evokes aspects of world semantics (b) 

emphasizing the difference between the two sets of elements (knowledge that birds 

and worms are two different animal species) thus inducing a comparison between 

the two groups of elements, without specifying how these two groups should be 

compared. In contrast, as depicted in Fig. 10, the wording of the problem statement 

(a) in the “won’t get” condition emphasizes the pairing relation between birds and 

worms and evokes a different aspect of world semantics (b) (i.e. “birds eat worms”) 

which promotes the mapping between the two sets within the interpreted structure 

(c). Thus, in the “more” condition, the interpreted structure (c) consists in two 

disjoint sets of elements and provides no hint that would trigger a subtraction 

algorithm.  

 

Fig. 9 Modeling of the resolution of a "More" problem from Hudson (1983). 
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By contrast, the interpreted structure (c) in the “won’t get” condition affords a one-

to-one mapping between 3 birds and 3 worms. The “won’t get” condition therefore 

evokes an interpreted structure that is semantically congruent with an efficient 

strategy (d), namely counting from 3 to 5. In the “more” condition, recoding the 

interpreted structure into a deep structure (f) of the problem remains possible, but 

requires using mathematical semantics (e**) about subtraction, which is not 

systematically acquired at this early age, thus explaining the low performance on 

this task (25% among kindergarteners). While Hudson accounted for this finding 

by stating that comparable constructions of the general form “how many more […] 

than?” tended to be misinterpreted, SECO provides an account of this effect in 

terms of representational differences. 

 

 

Fig. 10 Modeling of the resolution of a “Won't get” problem from Hudson (1983). 
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Case 6: De Corte et al.’s (1985) account of rewording effects 
Empirical findings and authors’ perspective. De Corte et al. (1985) used 

combine, compare and change problems to study the effects of conceptual 

rewording on first and second graders’ performance, and brought further evidence 

of the positive effects of specific forms of rewording. For each problem, they 

compared a “standard” version with a “reworded” version that stated more 

explicitly the relations between the sets to make them clearer for young students. 

For example, one of the compare problems they created was “Pete has 8 apples. 

Ann has 3 apples. How many apples does Pete have more than Ann?”. They 

compared students’ performance on this problem and on its reworded version: 

“There are 8 riders but there are only 3 horses. How many riders won’t get a 

horse?”. Results showed that 47% of first graders managed to solve the compare 

problems in their standard version, whereas 70% of them managed to solve the 

reworded version. With a rate of success of, respectively, 76% on standard compare 

problems and 90% on reworded compare problems, second graders also benefitted 

from the conceptual rewording, although to a lesser extent. The authors explained 

this difference between the two conditions by stating that only the “won’t get” 

condition provided enough linguistic cues to compute the difference between the 

sets, whereas the “more” condition remained ambiguous to inexperienced solvers.  

SECO’s account of the results. SECO provides a complementary account of 

these results. In the standard version (Fig. 11), the problem statement (a) does not 

evoke any aspect of world semantics that could help with the matching of the two 

sets in the interpreted structure (c). Thus, students who have not sufficiently 

acquired the mathematical semantics (e**) regarding the calculation of the 

difference between two sets will fail to solve the problem. This explains why 

standard compare problems had a low rate of success for first graders, and a higher 

one for second graders.  
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Fig. 11 Modeling of the resolution of a standard compare problem from De Corte et al. 
(1985). 

 

On the other hand, the reworded problem statement (Fig. 12) evokes knowledge 

about riders and horses (b) namely the information that a rider is supposed to ride 

a horse. The interpreted structure (c) thus features the pairing of the three horses 

with their respective riders and makes it easier to understand how to count the 

horseless riders remaining. The mathematical semantics (e**) is not necessary in 

this case to solve the problem, which explains why the performance rate was 

higher in both age groups. 



 

 
70 | CHAPTER 1 
 

 
 

Fig. 12 Modeling of the resolution of a reworded compare problem from De Corte et al. 
(1985). 

Other models’ account and their limitations regarding cases 5 and 6 
As stated by Vicente et al. (2007), the computational models using problem schema 

as a basis to explain word problem solving behaviors have struggled to 

systematically explain the rewording effects of studies such as the two presented 

above, due to the relatively weak elaboration of the first text-processing stage in 

their models. Both in Hudson (1983) and in De Corte et al.’s (1985) study, the 

initial problems and their reworded counterparts shared the same structure 

according to Riley et al.’s (1983) classification of additive one-step problems. 

However, small modifications in the wording of the problem statements resulted 

in significant performance disparities, an effect which the schema model would 

struggle accounting for.  
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On the other hand, the SPS model focuses on the idea that a representation, the 

episodic situation model, is built featuring the relations depicted in the problem 

statement. According to Staub and Reusser (1995), this representation is different 

in the two conditions, since the “won’t get” situation imbues the difference with 

real world meaning, whereas the “more” condition only refers to a static, abstract 

situation. This suggests that the SPS could have predicted such rewording effects 

relying on an elaboration of the semantic relations described in the text, since it 

made the relations between the sets more salient, which explains why the 

representation was more accurate and led to a higher success rate in the “won’t 

get” condition. However, it can be noted that any rewording effect capitalizing on 

prior knowledge, such as replacing computers and secretaries by two sets of 

doctors in Bassok et al.’s (1995) work, would fall beyond the scope of the SPS 

model.  

Conclusion 
When taken together, these six case studies show how SECO can account for varied 

results within a unified model. While explanations for these results have been 

provided  by one of the already existing theories of arithmetic word problem 

solving, it appears that none of the aforementioned models can account for all of 

them simultaneously. In our view, one of SECO’s strengths is that it provides an 

original integrative framework for the existing results in the literature.  

SECO’s added value 
The current paper proposes a model detailing the processes at play in arithmetic 

word problem solving and accounting for how algorithms are found by solvers 

and how their performances may differ depending on the task. SECO describes 

how a problem statement is encoded into an interpreted structure according to the 

world semantics and the mathematical semantics, and how this structure can either 

be specified into an algorithm when congruent with one or recoded into a deep 

structure thanks to mathematical semantics in order to solve a semantically 

incongruent problem. We illustrated its ability to explain a wide range of effects 

by confronting SECO, post hoc, to previous studies presenting challenging results 

that had yet to be accounted for within a unified framework.  
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The idea that there exist different possible encodings of a situation described in a 

specific problem is central in the SECO model, yet this view appeared only recently 

in the literature. Ever since Riley et al.’s (1983) work and their taxonomy of additive 

word problems, the view that a word problem can be reduced to its objective 

mathematical structure and that two isomorphs of the same problem can thus be 

considered as equivalent in terms of difficulty for the solvers was abandoned in 

favor of an approach putting more emphasis on the way different arithmetic word 

problems are interpreted. It has for example been highlighted by Riley et al. that 

combine and compare problems can be approached very differently by the solvers, 

even when both are subtraction problems involving the same numerical values. 

However, in their view, each situation is attached to only one category in a 

taxonomy encompassing all problems, therefore suggesting that there is only one 

way to interpret a given situation. Similarly to Socrates’ depiction of the human 

ability to “separate things according to their natural divisions, without breaking any 

of the parts the way a clumsy butcher does” (Plato, trans. 2009, p.64), this view 

presumes that there exists a natural breakdown of the situations depicted by the 

problems, and that each situation falls within an objective category. Within SECO, 

the interpretation of the problem statement varies depending on the solver’s 

knowledge: a given situation may thus lead to different encodings. In order to 

solve an incongruent problem, a solver usually needs to recode the initial 

representation they have of it. The idea that an initial representation will be 

recoded to allow the use of a solving algorithm is one that was not covered by 

Bassok’s semantic alignment framework. Bassok and colleagues’ theory focuses on 

the abstraction of an interpreted structure during the initial encoding of a problem 

(Bassok, 2001), yet what happens when this initial encoding leads to failure hasn’t 

been addressed, especially in cases in which a different representation of the 

situation could allow the solvers to find the solution. When the first interpreted 

structure cannot be specified into a valid solving algorithm, SECO covers the 

possibility that one recodes the situation and manages to solve the problem, in 

accordance with with empirical findings such as the ones reported in Gamo et al. 

(2010) or Thevenot and Oakhill (2005). 

We propose to take a brief look at the empirical prospects opened by SECO. 

First, because it accounts for the part played by world semantics, SECO predicts 

that different individuals with different knowledge or experiences about the world 
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may tackle a problem differently. For instance, imagine if Hudson’s (1983) problem 

about birds and worms had been framed in terms of smurfs and mushrooms 

(“There are 5 smurfs and 3 mushrooms, how many more mushrooms than smurfs 

are there?”). Children who are familiar with the Smurfs comic series will know that 

each smurf has his or her own mushroom to live in (there are no housemates in 

the Smurf village!). Thus, SECO predicts that these children may be more likely to 

find the solution to the problem, because their world semantics about smurfs and 

their individual mushrooms will help them to construct a paired encoding in which 

each house is assigned to one smurf (see Case study 5 for more details on why 

this should facilitate the solving process). More generally, SECO makes the 

prediction that cultural differences in the world semantics evoked by a given 

problem statement may influence participants’ interpreted structure and the 

subsequent strategies they will use to solve a problem. For instance, it is believed 

that Indonesian and English speakers tend to represent durations as linear distances 

(e.g. a long time), whereas Spanish and Greek speakers tend to represent durations 

as definite quantities (e.g. mucho tiempo) (Casasanto et al., 2004). Thus, SECO 

predicts that English and Greek speakers may perform differently on the duration 

problems used by Gamo et al. (2010) and described in the 3rd case study. 

Second, SECO predicts that modifying the world semantics evoked by a 

problem may influence the interpreted structure encoded.  Such representational 

differences could be measured by asking participants to produce drawings of the 

problems they solved (e.g. Edens & Potter, 2008). Similarly, recognition tasks may 

provide a way to probe participants’ representation of the problems (e.g. Hegarty, 

Mayer, & Monk, 1995; Mani & Johnson-Laird, 1982; Verschaffel, 1994), to assess 

whether their interpreted structures differed depending on the problem statements. 

Third, a central point in SECO is the recoding pathway, according to which one 

can recode an interpreted structure into a new representation at a certain cost. This 

cost can be measured by higher error rates on problems needing a recoding and 

higher response times on problems successfully recoded (Gros, Sander, & Thibaut, 

2019). Future works might even assess the increase in cognitive load associated to 

this process by measuring physiological responses such as pupil dilation during 

the recoding of semantically incongruent problems. Fourth, the existence of the 

expert encoding pathway may be tested by presenting experts with different 

problem statements: SECO predicts that experts’ performance on problems 
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requiring a recoding may decrease less than that of lay solvers, due to the 

possibility for experts to directly encode the problems’ deep structure, even on 

incongruent problems . Fifth, SECO accounts for the fact that students may 

experience difficulty trying to solve a problem if they either lack the relevant world 

semantics, the relevant mathematical semantics, the ability to recode a semantically 

incongruent representation or the ability to compute the solving algorithm. 

Moreover, SECO predicts that different errors will be associated with these different 

shortcomings. By testing separately students’ mathematical knowledge, their world 

knowledge about the entities described in the problem statement and their ability 

to compute specific algorithms, SECO can be used to pinpoint and address distinct 

sources of difficulties. 

By providing a finer-grained depiction of solvers’ reasoning, SECO can 

inform future works on the encoding, recoding and solving of arithmetic word 

problems. The conception of experiments testing the aforementioned predictions 

should help determine the explanatory power of SECO, either bolstering its claims 

or leading to the development of new alternative models. 

Semantic congruence as an educational 
lever to tackle arduous notions 
The current paper defines semantic congruence and suggests that difficulties might 

arise when the world semantics evoked by a problem statement is semantically 

incongruent with the problem’s solving algorithm. In this view, semantic 

incongruence is a source of interferences and should be overcome by the learners 

to efficiently solve the encountered problems. Therefore, developing new methods 

to help students modulate the influence of world semantics in order to directly 

access the deep structure of the problems could be especially promising. Still, 

moderating the influence of world semantics is not trivial, since our knowledge 

about the world has been shown to be deeply involved in our reasoning, be it 

relevant or not (Bassok, 2001; Bassok et al., 1998; Gros, Sander, & Thibaut, 2016; 

Gros, Thibaut, & Sander, 2017).  

However, world semantics can also have a facilitative influence. Depending 

on the semantics attached to a problem, solvers will access a congruent solving 

algorithm more easily than they would with another problem statement. It has been 
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shown that understanding the situation described in a problem statement can be 

enough to successfully solve a problem, even for children who did not receive any 

prior explicit instruction regarding the arithmetic notions required (Carpenter & 

Moser, 1982; De Corte & Verschaffel, 1987; Ibarra & Lindvall, 1982; Thevenot & 

Barrouillet, 2015). If the depicted situation is the one “doing the thinking” 

(Hofstadter & Sander, 2013, p. 432) then the effort is minimal. Depending on the 

semantics imbued in a situation, its representation might be more or less congruent 

with the deep structure of the problem and thus render it more or less easy to 

solve. In this regard, one can imagine that an abstruse mathematical theorem might 

seem almost self-evident if presented in the appropriate semantic setting. 

Designing such situations aiming at fostering the understanding of a 

complex notion may be achieved through conceptual rewording, as suggested by 

Vicente et al. (2007). In their study, they highlighted that rewording problem 

statements in a way that makes more explicit the semantic relations between the 

problems’ entities, is beneficial to the solvers. Indeed, difficult problems (i.e., 

problems that had “to be solved in a different than the actual sequence of the 

events denoted in the problem”, Vicente et al., 2007, p. 837) benefited from 

conceptual rewording, which referred to situations in which the underlying 

semantic relations between the given and unknown sets were made more explicit 

than in the standard version. On the other hand, situational rewording (i.e., when 

a problem statement is presented in a more enriched and elaborated way, e.g., 

causal relations between events made more explicit) led to no improvement 

compared to the standard version. In SECO’s view, conceptual rewording was 

beneficial because it highlighted the mathematical dependencies between 

quantities, and thus favored the mapping of the world semantics onto the relevant 

mathematical semantics. On the other hand, simply enriching the semantics of the 

situation had no effect on the mapping between the statement and mathematical 

representation. Thus, rewording will work when it aids in building a representation 

of the mathematical semantics that is congruent with the world semantics. 

As a consequence, a crucial application of the SECO model resides in the 

development of educational interventions treating mathematical learning 

difficulties by resorting to world semantics in order to help understand and 

overcome some of the learners’ impairments regarding arithmetic understanding. 

Because SECO differentiates between world semantics, mathematical semantics 
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and algorithms, it can provide a detailed account of the potential difficulties 

encountered by students when learning to solve arithmetic word problems. The 

different components described in the model and the processes that link them are 

all potential candidates from which specific difficulties may stem. Using SECO, it 

is possible to differentiate between, for example, a lack of mathematical semantics 

(e.g. not knowing about the commutative property of multiplication) and 

difficulties in computing algorithms (e.g. not being able to calculate 3 × 50), in 

order to design targeted interventions which would help learners overcome their 

specific difficulties.  

Gaining expertise 
One of the distinctive features of the SECO model is that it provides an account of 

the part played by expertise in the solving or arithmetic word problems. The expert 

encoding pathway as introduced in SECO accounts for the idea, already developed 

by Chi et al. (1981), that solvers with sufficient expertise may be able to directly 

encode the deep structure of a problem, regardless of the world semantics it 

evokes. Data gathered regarding sorting and solving strategies depending on the 

learner’s level of expertise, in line with Chi et al.’s (1981) seminal work, provide 

converging evidence regarding this view (e.g. Schoenfeld & Herrmann, 1982; 

Silver, 1981). Thus, a crucial educational issue is to promote learners’ ability to 

reach a level of expertise allowing them to directly perceive a problem’s deep 

structure, without first encoding an interpreted structure influenced by their 

everyday knowledge about the problem’s entities. 

However, since even expert solvers have been shown to sometimes rely on 

superficial features to determine their solving strategies (Blessing & Ross, 1996; 

Novick, 1988), experts’ ability to ignore the influence of world semantics in all 

situations should not be taken for granted. In fact, recent evidence collected on 

problems similar to those described in our fourth case study suggests that general 

expertise in mathematics may not be sufficient to overcome the effects of semantic 

incongruence (Gros, Sander, & Thibaut, 2019). In this paper, it was showed that 

university-educated adults and expert mathematicians alike were more likely to 

deem an arithmetic word problem unsolvable when its solution was semantically 

incongruent with the world semantics evoked by the problem that when the two 

were semantically congruent. Does this mean that direct encoding of the deep 
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structure is unattainable? Not necessarily. It could be argued that the influence of 

world semantics is so pervasive that only specific expertise on the type of problem 

that is being solved (as compared with general expertise in mathematics) may 

provide the ability to directly encode the deep structure of the problem. In an 

educational perspective, the overall goal is to teach students either how to directly 

perceive the deep structure of the problems they encounter, or at least to efficiently 

recode an ineffective interpreted structure. 

This raises the question of how one may develop such a level of expertise. 

Although conceptual rewording can be used to make a problem easier to solve, it 

does not necessarily mean that the solvers will learn to solve other problems which 

haven’t been reworded. Correct answers are worth little if not associated to an 

increase in expertise. However, deliberately engaging in semantic recoding on 

multiple occasions on problems sharing the same deep structure may be a path to 

reach this goal. In Gamo et al.’s (2010) study, students’ performance improved after 

they were explicitly told to compare “duration problems” and “number of elements 

problems”, and taught how to semantically recode the number of elements 

problems to use the 1-step algorithm to solve them. As suggested by the rich 

literature on deliberate practice (Charness, Tuffiash, Krampe, Reingold, & 

Vasyukova, 2005; Ericsson, 2004, 2008; Ericsson, Krampe, & Tesch-Römer, 1993; 

Lehtinen, Hannula-Sormunen, McMullen, & Gruber, 2017; Ward, Hodges, Starkes, 

& Williams, 2007) repeated training focused on specific tasks such as semantic 

recoding may be a promising path to develop top-level expertise. In this 

perspective, we know ever since Gick and Holyoak’s work (1983) on analogical 

transfer that using different examples describing analogous situations can help 

represent their common structure (see also Braithwaite & Goldstone, 2015; 

Kotovsky & Gentner, 1996; Richland, Stigler, & Holyoak, 2012). It thus seems 

realistic to identify, for any type of problem, which problem statement as well as 

which sequence of training problems might be the most beneficial to help learners 

abstract a representation as close to the deep structure as possible. A congruence 

fading process akin to concreteness fading (Fyfe, McNeil, Son, & Goldstone, 2014) 

could thus help learners abstract the deep structure of the problems by resorting 

to increasingly incongruent examples. An interesting venue to capitalize on such 

effects would be to alternatively present problems attached to different world 

semantics congruent with different representations, in order to help learners switch 
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from an initial representation to another one, more efficient with regard to the 

resolution of the problem. Such scaled sequences of problems could be especially 

efficient if adapted to each learner through the use of Technology Enhanced 

Learning (Paquette, Léonard, Lundgren-Cayrol, Mihaila, & Gareau, 2006; Shute 

& Zapata-Rivera, 2012; Tchounikine, 2011). Although these propositions are only 

hypothetical at this stage, we consider these prospects to be promising leads for 

conducting further research and for helping foster transfer in mathematics 

education. 

Broader application of the SECO model 
An idea at the heart of the SECO model is that the congruence or the incongruence 

between the world knowledge elicited by a problem statement on one hand and 

the formal structure of the problem on the other hand can account for solvers’ 

successes and failures, as well as for their need to recode their representations in 

incongruent situations. We believe this approach can also bear fruits if applied to 

other educational fields, such as mental arithmetic and non-mathematical problem 

solving.  

Regarding arithmetic non-word problems, studies have shown that 

embedding an algorithm in a problem statement carrying world semantics may 

facilitate its computation (Baranes, Perry, & Stigler, 1989; Koedinger & Nathan, 

2004; Stern & Lehrndorfer, 1992). SECO details how, depending on the congruence 

between world semantics and mathematical semantics, the solving process can be 

either favored or hindered by such an embedment. If an algorithm is embedded in 

a problem statement carrying congruent world semantics, then finding the solution 

should be easier. However, SECO also predicts that a problem statement carrying 

world semantics incongruent with the algorithm itself should have the opposite 

effect. Additionally, basic arithmetic operations carry a semantic meaning even 

when they are not framed within a problem statement (Bell, Swan, & Taylor, 1981; 

Fischbein, 1989; Fischbein, Deri, Nello, & Marino, 1985; Graeber, Tirosh, & Glover, 

1989; Lakoff & Núñez, 2000; Tirosh & Graeber, 1991). According to Fischbein et 

al.’s (1985) view, arithmetic operations such as multiplication and division are 

attached to tacit models imposing constraints on their computation that have no 

mathematical relevance. For example, they argue that seeing division as the sharing 

of a collection of objects into a number of equal sub-collections implies that the 
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divisor must be a whole number and that the quotient must be smaller than the 

dividend. SECO addresses what happens when the world semantics evoked by the 

problem statement is incongruent with the objective mathematical structure of the 

problem. For example, believing that “to divide is to equally share” might lead 

solvers to rely on semantic knowledge regarding equitable sharing, making it 

harder to find the solution to arithmetic problems that go against this belief, such 

as “8 ÷ 0.5”. In this view, SECO can guide the analysis of the solvers’ activity when 

faced with such semantic incongruence by showing how the world semantics 

imbued in the operations themselves evoke an interpreted structure that is 

incompatible with the solving procedure.  

By describing the influence of world semantics on arithmetic problem 

solving, SECO also underlines the facilitative role that a semantically congruent 

context may have on arithmetic reasoning in general. Interestingly, the influence 

of context on the understanding of arithmetic principles has been the focus of 

several works studying principles such as commutativity or inversion (see Prather 

& Alibali, 2009, for a review). According to Resnick’s (1992, 1994) theory of how 

mathematical competence is built, arithmetic understanding should emerge 

following a concrete-to-abstract transition, shifting from an initial object context to 

a verbal context, then a symbolic context, and then finally to an abstract context. 

For instance, learning about the commutative property of the addition of two sets 

of objects may not necessarily mean that learners will immediately be able to 

transfer this knowledge to the addition of numbers in general (Prather & Alibali, 

2009). In a study about 7- to 9-year-olds’ understanding of arithmetic principles, 

Canobi (2005) showed that some children were helped by a concrete aid to display 

an understanding of a particular conceptual relation. She showed that some of the 

participants had an easier time explaining mathematical notions (subtraction 

complement and inversion principles) when presented with concrete objects 

instead of abstract numbers. Regarding the principle of commutativity, Cowan and 

Renton (1996) found that 6- to 9-year-olds showed a better understanding of 

commutativity in an object context or in a symbolic context, rather than in an 

abstract context. In other words, performance on mathematically identical tasks 

depended on the context in which the tasks were presented. Similarly to how 

SECO describes that the semantic embedding of a word problem can influence 

learners’ ability to find its solution, children’s performance in Cowan and Renton’s 
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study depended on the context of the task. Finally, in a study on arithmetic 

problem solving, Jordan, Huttenlocher, and Levine (1992) also found that 

disparities between middle-income children and low-income children disappeared 

when the questions were asked using objects rather than when the problems were 

only posed verbally.  

Although few studies have been designed to specifically target the effects 

of context on principle understanding, and some have reported null effects (e.g. 

Canobi, Reeve, & Pattison, 2003), most works in the literature are compatible with 

the theory that children first learn the meaning of arithmetic principles in a 

grounded context before moving up to higher degrees of abstraction (Prather & 

Alibali, 2009). A parallel can be drawn with SECO, which accounts for the 

embedding of an arithmetic problem within a problem statement evoking specific 

world semantics. In both cases, solvers need to learn how to move away from a 

grounded encoding and towards a more abstract representation of the situation. 

We mentioned earlier how the use of increasingly semantically incongruent 

examples may complement a learning strategy based on concreteness fading (Fyfe 

et al., 2014), to guide learners from a concrete grasp of a problem to a more abstract 

understanding of its solution principle. It may be possible to develop a similar 

strategy in arithmetic learning, by progressively varying the semantic congruence 

between the concrete situations presented to the learners and the arithmetic 

notions to be taught. 

Regarding problem solving in general, it is well established that the 

knowledge one has about the entities depicted in a problem can constrain their 

ability to find a solution (Clement & Richard, 1997; Duncker, 1945; Griggs & Cox, 

1982; Kotovsky et al., 1985). Consider, for example, the physics problem consisting 

in asking whether when a car performs a circular motion at constant speed, its left-

side door moves at the same speed as its right-side door or not. Most people trying 

to solve this problem will use their experience with cars and their world knowledge 

about rigid objects and represent the two doors of the car as parts of the same 

object. A common erroneous answer is that when a car moves, every part of the 

car moves at the same speed, since every passenger departs and arrives at the same 

time. We believe that the principles underlying SECO can help understand the 

solvers’ reasoning on such a physics problem. In this case, the world semantics 

used to encode the problem into an interpreted structure will hide some physically 
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relevant aspects of the problem. Unless participants use physics semantics to 

perform a semantic recoding of the problem that dissociates the two doors as 

moving along two different circular paths which entails that they do not necessarily 

travel the same distance, their world semantics will lead them to the erroneous 

conclusion that the doors travel at the same speed. The notion that congruence 

between world knowledge and conceptual knowledge associated with a domain 

of instruction (e.g. mathematical semantics in the case of arithmetic problems, 

physics semantics for mechanics problems, and so on) can constrain the 

representation of situations and alter one’s reasoning, unless a reinterpretation of 

the situation happens, seems to be a promising idea. In this regard, the scope of 

the SECO model could be extended in order to describe the encoding and recoding 

of situations from different domains of instruction, according to the world 

semantics and to the domain-related semantics influencing the solvers’ 

interpretation.  

Conclusion 
The question of how one reasons when solving an arithmetic word problem is a 

major issue of mathematical education. Understanding the determinants of problem 

solving is a crucial step in order to identify the difficulties that should be addressed 

when teaching mathematics. The SECO model provides ground for a distinction 

between the mathematical semantics, the world semantics and the algorithms, as 

well as the way they interact and apply to familiar situations. Those interactions 

specify the steps involved in the encoding and the recoding of arithmetic word 

problems. Being able to foster a semantic recoding in order to improve analogical 

transfer would be a major step forward in the field of arithmetic teaching, and 

might help pupils overcome some of their numerous difficulties regarding word 

problem solving (Gamo et al., 2010; Hegarty, Mayer, & Green, 1992; Richland et 

al., 2012; Thevenot & Barrouillet, 2015; Verschaffel & De Corte, 1997). 

Strengthening our grasp of the effects of semantic congruence and incongruence 

could thus pave the way towards the development of new teaching strategies, 

building on world and mathematical semantics to guide the students towards a 

more abstract and more efficient understanding of the encountered problems, 

contributing to their conception of mathematical notions (Richland et al., 2012). 
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CHAPTER 2 – WHAT WE COUNT DICTATES 
HOW WE COUNT:  

A TALE OF TWO ENCODINGS 
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Presentation 
In line with the idea, raised in Chapter 1, that the specific influence of world semantics 

needs to be taken into account when apprehending arithmetic word problem solving, 

the next chapter introduces the impact that our knowledge about the world has on 

our perception of cardinality and ordinality in numerical situations. The semantic 

distinction between cardinal and ordinal situations is a core aspect of this thesis, and 

it is the main focus of the experiments we carried out. Chapter 2 presents our 

theoretical motivations for exploring this dimension, and it defines what we call 

cardinal and ordinal quantities. The isomorphic problems we created to tackle this 

issue are described, as well as our predictions regarding the way they will be encoded, 

recoded and solved by participants.  

 A series of 6 experiments were designed to provide converging evidence for 

the decisive influence of cardinal and ordinal quantities on the interpretation of 

numerical situations by adult participants. The first experiment is a sorting task, in 

which participants are instructed to sort the problems into as many categories as they 

deem necessary. We predict that the classification pattern will reflect the semantic 

distinction we introduced between cardinal and ordinal problems. The second 

experiment uses a comparison paradigm in which participants are instructed to 

choose among a list of problems which ones can be solved according to the same 

principle as a source problem. We predict that the perception of the isomorphism 

between problems will depend on whether the quantities they use foster the same 

type of semantic encoding. Experiment 3 assesses the replicability of Experiment 2 in 

a paired comparison setting. We predict that instructing participants to directly 

compare two problems will not be sufficient to overcome the encoding difference 

between cardinal and ordinal problems. Experiment 4 regards the algorithms used to 

solve the problems. We introduce a new type of “hybrid” problems, meant to foster 

an ordinal encoding of problems featuring cardinal quantities. We predict that the 

choice of the solving algorithm will be guided by our manipulation of the problem 

statements’ semantic properties along the cardinal-ordinal dimension. Experiment 5 

introduces a new type of problem alteration, meant to make it impossible to solve a 

problem encoded following a cardinal representation. A solvability assessment task is 

presented to the participants, in which they have to decide which problems can be 

solved and which problems have no solution. We predict that solvable problems 
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using cardinal quantities will be more often deemed unsolvable than problems using 

ordinal quantities. Experiment 6 is a conceptual replication of Experiment 5 with 

stronger constraints: the solution to the problems is directly given to the participants. 

We predict that providing the solution will not be enough to help participants 

overcome the difficulty arising from semantic incongruence.  

Overall, these 6 experiments are meant to establish the relevance of the 

distinction between quantities emphasizing the cardinality of numbers and quantities 

emphasizing their ordinality. By confirming the validity of this distinction in 

Experiments 1, 2, and 3, by showing its influence on problem solving in Experiment 

4, and by illustrating how it can lead to important mistakes in Experiments 5 and 6, 

we strove to bring substantial proof of its importance in human reasoning about 

numerical situations. The following chapters all build upon this work to investigate 

the extent to which cardinality and ordinality interfere with mathematical reasoning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiments 5 and 6 have been reported in an article in the Proceedings of the Annual Meeting of the 
Cognitive Science Society (2016). This chapter as a whole is currently being reviewed for publication 
by the Journal of Experimental Psychology: General.  
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Abstract 
We argue that what we count has a crucial impact on how we count, to the extent 

that even adults may have difficulty using elementary mathematical notions in 

concrete situations. Specifically, we investigate how the use of specific quantities 

(durations, heights, number of floors) may emphasize the ordinality of the numbers 

featured in a problem, whereas other quantities (collections, weights, prices) may 

emphasize the cardinality of the depicted numerical situations. We suggest that this 

distinction leads to the construction of one of two possible encodings, either a 

cardinal or an ordinal representation. This difference should in turn constrain the way 

we approach problems, influencing our mathematical reasoning in multiple activities. 

This hypothesis is tested in six experiments (N = 916), using different versions of 

multiple-strategy arithmetic word problems. We predict that the distinction between 

cardinal and ordinal quantities influences problem sorting (Experiment 1), perception 

of similarity between problems (Experiment 2), direct problem comparison 

(Experiment 3), choice of a solving algorithm (Experiment 4), problem solvability 

estimation (Experiment 5) and solution validity assessment (Experiment 6). The results 

provide converging clues shedding light into the fundamental importance of the 

cardinal versus ordinal distinction on adults’ reasoning about numerical situations. 

Overall, we report multiple evidence that general, non-mathematical knowledge 

associated with the use of different quantities shapes adults’ encoding, recoding and 

solving of mathematical word problems. The implications regarding mathematical 

cognition and theories of arithmetic problem solving are discussed.  

Keywords 
mathematical cognition · mental model · problem solving · representation · encoding; 

strategy choice · semantics. 
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Introduction 
Mathematical notions are frequently used in everyday life (Northcote & Marshall, 

2016). Be it to count the coins to give the bus driver, to calculate how long your ride 

will take, to decide whether to go up the stairs or take the elevator, to assess whether 

the added weight of everyone in the elevator is below the weight limit, to count how 

many cookies you need to buy for your coworkers, or to evaluate at which height 

you need to put the cookie jar so that the kids won’t reach it. However, being able 

to perform those quick calculations on a daily basis requires the ability to use 

mathematical notions in very tangible situations (Schoenfeld, 2009). Mastering such a 

skill is the focus of a long – and sometimes painful – learning process taking place in 

school, notably involving mathematical word problems (Daroczy, Wolska, Meurers, 

& Nuerk, 2015; Stacey, 2005). But while using arithmetic notions in daily-life might 

seem effortless to most adults, we argue that some underlying pervasive influence 

remains: in fact, even when using the most elementary mathematical notions, we have 

reasons to believe that what we count has a deep impact on how we count. This 

entails that even adults may be significantly better at using certain fundamental 

mathematical notions in situations involving bus rides, elevator trips or cookie jar 

heights than in situations pertaining to bus ticket prices, elevator weight limits or 

cookie counting. In this paper, we argue that such concrete situations evoke one of 

two distinct conceptions of numerical situations; they emphasize either the cardinal 

property of numbers or their ordinal property. This difference leads to one of two 

possible encodings, which in turn constrain the way we represent word problems, 

influencing our mathematical reasoning in multiple activities.  

An ontological distinction between cardinal and ordinal situations 
This distinction between cardinality and ordinality is fundamental in mathematics, 

especially in set theory (Dantzig, 1945; Frege, 1980; Russell, 1919; Simon, 1997; 

Suppes, 1972). In common usage, ordinal numbers describe the numerical position 

of an object in an ordered sequence (i.e. 1st, 2nd, 3rd, etc.), whereas cardinal numbers 

refer to the general concept of quantity by designating the total number of entities 

within a set (Fuson, 1988; Wasner, Moeller, Fischer, & Nuerk, 2015). But this 

distinction has far-reaching implications beyond set theory and mathematics, and we 

believe that it influences the very way humans comprehend numerosity in the world.  

According to Piaget, the relationship between cardinality and ordinality is 
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central to the notion of number (Fuson, 1988). Indeed, the two ideas are necessarily 

intertwined, since the cardinal and ordinal meanings of numbers are two sides of the 

same coin, two properties intrinsically tied to our use of numbers. As Fuson (1988, p. 

363) puts it, “any ordinal number refers to the particular entity within a linear ordering 

that is preceded by a cardinal number one less than it”. However, this 

interdependency between ordinality and cardinality does not preclude that an 

ontological difference between conceiving of numbers as cardinal count values or as 

order labels could exist.  

From a developmental perspective, the seminal work of Gelman and Gallistel 

(1986) on counting principles introduced the idea that the understanding of the 

cardinal and ordinal properties of numbers could develop separately in children. In 

their work, Gelman and Gallistel notably argued that children needed to learn the 

“stable-order-principle” and the “cardinal principle” in order to become proficient 

counters. Mastery of the stable-order-principle means that a child has learnt that the 

list of words used to count must be used in a definite and repeatable order; it can be 

linked to the development of the notion of ordinality. The cardinal-principle, on the 

other hand, refers to the understanding that the number name allocated to the final 

entity in a collection corresponds to the total number of entities being counted. Ever 

since this work, investigations have been conducted to study how children learn to 

master both properties of numbers. 

Children’s ability to comprehend and use the notion of cardinality in counting 

was thus scrutinized by numerous studies who showed its slow and sequential 

development over the first years of life (e.g. Bermejo, 1996; Condry & Spelke, 2008; 

Le Corre & Carey, 2007; Sarnecka & Lee, 2009; Wynn, 1992). As for the development 

of the ordinal meaning of numbers, it has been suggested that children do not learn 

to use ordinal labels such as “first” and “second” before they are 4 or 5 years old 

(Fischer & Beckey, 1990; Miller, Major, Shu, & Zhang, 2000; Miller, Marcovitch, 

Boseovski, & Lewkowicz, 2015). In recent years, the comparison of the developmental 

trajectories of the sense of cardinality and the sense of ordinality has received 

increasing research interest, with converging results showing that children tend to use 

cardinality before succeeding in ordinality tasks (Colomé & Noël, 2012; Meyer, 

Barbiers, & Weerman, 2016; Wasner, Moeller, Fischer, & Nuerk, 2015). Further 

evidence for the importance of this distinction can be found in the brain; Delazer and 

Butterworth (1997) reported that a patient who suffered a cerebral lesion was left with 
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an impaired access to the cardinal meaning of numbers, but a selectively preserved 

access to their ordinal meaning. This dissociation between the two meanings of 

numbers was supported by EEG studies who found that event-related potentials 

differed both in terms of timing and topography between order and quantity tasks 

(Rubinsten, Dana, Lavro, & Berger, 2013; Turconi, Jemel, Rossion, & Seron, 2004). 

Overall, these studies show the importance of this distinction in human cognition. 

However, little is known about its influence on adult reasoning, as the distinction 

between cardinality and ordinality is rarely mentioned once counting procedures are 

considered to be acquired. This paper aims at filling this gap, by focusing on adults’ 

ability to use basic mathematical notions in situations evoking either the cardinal or 

the ordinal aspect of numbers. Indeed, we believe that the presence of cardinal versus 

ordinal quantities in the wording of otherwise mathematically identical problems may 

lead even adults to build one of two different encodings of the depicted situations. 

Our claim is that this distinction will, in turn, lead to clear-cut differences in the way 

these problems are categorized, compared and solved. It builds upon the literature 

on arithmetic word problems, with a special focus on the contrasting frameworks 

developed to account for wording effects in mathematical reasoning. 

Interpretative effects at play in arithmetic problem solving 
We have known ever since Riley, Greeno and Heller’s work (1983) on additive word 

problems that applying the same mathematical notions to different situations can 

present its own challenges. Indeed, a vast literature has shown that slight 

modifications in the wording of otherwise structurally identical mathematical word 

problems could result in significant performance disparities (Carpenter & Moser, 1982; 

Coquin-Viennot & Moreau, 2003; Cummins, Kintsch, Reusser, & Weimer, 1988; De 

Corte, Verschaffel, & De Win, 1985; Hudson, 1983; Greer, 1992; Nesher, Greeno, & 

Riley, 1982; Squire & Bryant, 2002; Thevenot & Oakhill, 2005; Vergnaud, 1983). 

However, the identification of the underlying reasoning processes accounting for such 

disparities remains a debated issue to this day.   

One possible explanation for these disparities comes from the schema theory 

(Kintsch, 1988; Kintsch & Greeno, 1985; Rumelhart, 1980; Schank, 1975; Schank & 

Abelson, 1977), which proposes that our ability to identify the algorithmic solution of 

a word problem depends on our capacity to activate the appropriate schema in long-

term memory. According to Kintsch and Greeno (1985), schemas are defined as 

propositional data structures that can be implemented with the numerical values of 
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any problem statement sharing the same structure. Through repeated exposure to 

problems sharing the same structure, those schemas are created and stored in long-

term memory; they can then be activated and act as operatory structures using the 

problem’s values to deduce the problem’s solving algorithm (Kintsch & Greeno, 1985). 

For instance, according to Riley et al.’s (1983) typology, any comparison problem 

involving a sentence such as “Tom has 3 more marbles than Joe”, triggers the retrieval 

of a have-more-than propositional structure that can be implemented with the 3 

numerical values corresponding to Joe and Tom’s sets and to the difference between 

the two.  

However, a number of shortcomings have been shown to hinder the schema 

theory’s explanatory power of the interpretative effects that seem to be central in 

mathematical word problem solving. For example, Thevenot (2010) asked participants 

to solve arithmetic word problems and then presented them with an unexpected 

recognition task involving either the original problems, inconsistent problems that 

had never been solved or paraphrastic problems which respected the relational 

structure of the original problems but not their propositional structure. Participants 

erroneously recognized the paraphrastic problems more often than the inconsistent 

problems, despite the paraphrastic problems being less similar to the original 

problems in terms of propositional structure, which was at odds with what the schema 

theory would have predicted.  

Other effects put the schema theory’s explanation to the test. The benefit of 

placing the question of an arithmetic word problem at the beginning of a problem 

statement instead of at the end is a thoroughly demonstrated effect (Devidal, Fayol, 

& Barrouillet, 1997; Fayol, Abdi, & Gombert, 1987). According to the schema theory, 

it is due to the fact that the question helps activate the appropriate schema at the 

beginning of the process and thus facilitates calculations (Devidal et al., 1997). 

However, Thevenot, Devidal, Barrouillet and Fayol (2007) showed that placing the 

question prior to the text of a problem benefited more to children with poor 

mathematical skills than it did to children with a higher mathematical proficiency. 

This effect is challenging for the schema theory. Indeed, according to this theory, 

participants with poor mathematical skills possess fewer schemas in their long-term 

memory, and so placing the question at the beginning of a problem statement should 

help participants select the appropriate schema only if it belongs to their repertoire. 

Thus, this result contributed to undermine the relevance of the schema theory in 
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mathematical problem solving, by highlighting the limits of its predictions regarding 

the difference between students with high and low proficiency in mathematics.  

However, ever since 1990, an alternative approach has emerged from Reusser’s 

critical observations on the schema theory. According to Reusser, the schema model 

postulates a one-step mathematization process neglecting how the understanding of 

the situation described in the problem statement itself may influence the solving 

process. Consequently, he proposed the Situation-Problem-Solver, a model 

introducing the idea that the text of the problem statement is first translated into a 

situation model of the situation, before being “mathematized” into a problem model 

and finally translated into a solving algorithm (Reusser, 1990; Staub & Reusser, 1995). 

Reusser’s use of the concept of “mental model”, which was introduced by Johnson-

Laird (1980; 1983) in the domain of reasoning and text comprehension, accounts for 

the creation of a non-mathematical representation, akin to the situation model 

described by Van Dijk and Kintsch (1983). This representation describes the entities 

involved in the problem statement and the relational structure they entertain (Staub 

& Reusser, 1995).  

Yet, it can be argued that by relying on the notion of situation model, the 

Situation-Problem-Solver approach neglects some interpretative effects at play in 

mathematical word problem solving. Indeed, according to Johnson-Laird (2010), the 

structure of a situation model “corresponds to the structure of what it represents” 

(p.18244). In the Situation-Problem-Solver model, this translates into the notion that 

the text of a problem depicts one specific situation, thus leaving little to no room for 

the idea that alternative representations of a same problem may exist. In other words, 

this approach does not directly include the idea that different models of a same 

problem can be built, depending on the solver’s viewpoint. Thus, neither the 

influence of the solvers’ prior knowledge nor the possibility to go from one initial 

representation to a new encoding of a situation fall within the scope of the Situation-

Problem-Solver approach. Posterior works have focused on these aspects and what 

they entail for theories of mathematical word problem solving. 

Semantic induction in question 
Bassok, Wu and Olseth (1995) showed that semantic knowledge linked to the 

different entities described in a problem statement could influence analogical transfer 

between problems. They taught participants the algorithmic solution of a problem 

whose cover story depicted either objects assigned to people (e.g. computers given 
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to secretaries) or people assigned to other people (e.g. doctors from one hospital 

assigned to doctors from another hospital). They then evaluated how well participants 

performed on problems sharing the same solution principle. Depending on whether 

the entities in the transfer problem had typically symmetrical roles (people and 

people) or typically asymmetrical roles (objects and people), participants’ 

performance varied. Those results suggested that variations of semantic knowledge 

lead to different representations being abstracted. These “interpreted structures” either 

facilitated or hindered transfer depending on how well they mapped onto the 

problems’ mathematical structure. Similarly, Bassok, Chase and Martin (1998) asked 

participants to create addition or division word problems using specific sets of entities, 

either linked by a functional semantic relation (e.g. the container/content relation 

between fruit baskets and oranges) or showcasing a collateral relation (e.g. oranges 

and apples belonging to the same superordinate “fruit” category). They showed that 

participants tended to propose division problems when the semantic knowledge 

induced by the entities evoked a functional relation, whereas they created addition 

problems when the entities were different kinds of fruits, or other collateral elements.  

Thus, the semantic knowledge induced by the entities described in the 

problem statement seems to influence the representation that is encoded by the 

participants. Bassok (2001) theorized this process by stating that an interpreted 

mathematical structure is abstracted by the participants, based on the semantic 

relations depicted in the problem statements (e.g. container/content or 

assigned/receiver relations). This interpreted structure can be semantically aligned or 

misaligned with the objective mathematical structure of the problem, depending on 

whether the two structures can be mapped onto each other (Bassok, 2001). For 

instance, the interpreted structure of a problem involving oranges and baskets will be 

semantically aligned with division, whereas the interpreted structure of a problem 

involving oranges and apples will not. The variations in semantic alignment thus lead 

to performance differences that are not accounted for by the schema framework nor 

by the mental model theory. In support of this view, Bassok, Pedigo and Oskarsson’s 

work (2008) on the priming of addition facts by different pairs of words is 

enlightening. They showed that categorically related words (e.g. tigers and cheetahs) 

prime addition facts, whereas unrelated words (e.g. lungs and statues), as well as 

functionally related words (e.g. bears and claws), do not exert such a priming. In 

other words, pairs of words semantically aligned with addition elicit an automatic 
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retrieval of addition facts, whereas words misaligned with the structure of addition do 

not. Taken together, those studies suggest that the semantics induced by the objects 

manipulated in the problem statements influence the representational processes at 

play. 

Cardinal and ordinal representations in arithmetic problems 
We argue that the semantic knowledge about the entities described in a problem can 

evoke either an ordinal or a cardinal representation of the situation described, 

subsequently shaping mathematical reasoning. Indeed, preliminary work on the 

perception of cardinal and ordinal situations by individuals who have already 

mastered the counting procedures was undertaken by Gamo et al. (2010) in a study 

with 4th and 5th graders. The authors created multiple-solution word problems sharing 

the same mathematical structure but differing in the type of quantities used in their 

problem statements. Their problems revolved around, respectively, the number of 

family members in a hotel (family problems), the price of a series of items (price 

problems) or the age of a protagonist (age problems) (see Table 1).  

Table 1 Family, price and age problems used in Gamo, Sander, & Richard, 2010. 

Family problem Price problem Age problem 
In the Richards’ family, 
there are 5 persons. When 
the Richards go on 
vacation with the Roberts, 
there are 9 persons at the 
hotel. In the Dumas’ 
family, there are 3 people 
less than in the Richards’ 
family. The Roberts go on 
vacation with the Dumas. 
How many will they be at 
the hotel? 

John bought an 8-Euro 
exercise book, and 
scissors. He paid 14 Euros. 
A pen costs 3 Euros less 
than the exercise book. 
Paul bought scissors and a 
pen. How much did he 
pay? 

Antoine attended painting 
classes at the art school for 
8 years and stopped when 
he was 17 years old. Jean 
began at the same age as 
Antoine and attended the 
course for 2 years less. At 
what age did Jean stop 
attending the classes? 

 

Gamo et al. hypothesized that family problems and price problems would both lead 

to a cardinal encoding of the situation described, whereas age problems would lead 

to an ordinal encoding of the situation. Consider the family problem (Table 1, left 

column). Gamo et al. showed that most participants solved it using a 3-step algorithm: 

9 – 5 = 4; 5 – 3 = 2; 4 + 2 = 6. Note, however, that this problem can also be solved 

with a one-step algorithm: 9 – 3 = 6. But using this algorithm requires for the 

participant to realize that since the Roberts are present at the hotel during both 

vacations, then the difference between the number of people in the Richards’ and in 
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the Dumas’ families is equal to the difference between the total number of people at 

the hotel. Thus, calculating the number of people in the Roberts’ family (9 – 5 = 4) 

or the number of people in the Dumas’ family (5 – 3 = 2) is not necessary to find the 

solution.  

Similarly, most participants use a 3-step algorithm to solve the price problem 

(Table 1, middle column). This algorithm consists in calculating the price of the pen 

and the price of the scissors, and then adding them up: 14 – 8 = 6; 8 – 3 = 5; 6 + 5 = 

11. But a 1-step algorithm can also be used to solve this problem: 14 – 3 = 11. 

However, only participants who notice that John and Paul both bought scissors may 

also understand that the difference between the price of the exercise book and the 

price of the pen is equal to the difference between what John and Paul paid in total, 

and thus be able to find this 1-step algorithm. Lastly, the age problem (Table 1, right 

column) could also be solved using a 3-step algorithm (17 – 8 = 9; 8 – 2 = 6; 9 + 6 = 

15) or a 1-step algorithm (17 – 2 = 15). However, Gamo et al. (2010) found that 

participants used the 1-step algorithm more often on such problems, even though all 

three problems were isomorphic and shared the exact same mathematical structure 

(see Fig. 1).   

 

 
Fig. 1 The mathematical structure of the problems. Reprinted from “,” by S. Gamo, E. Sander, J.-

F. Richard, 2010, Learning & Instruction, 40(5), p. 405. 

 

The rationale behind this difference in participants’ ability to use the shortest 1-step 

algorithm on all three problems was that the quantities used (family members, price, 

age) evoked different aspects of world knowledge that emphasized either the cardinal 

or the ordinal nature of the problems’ values. The interpretation was that price or 

family problems tend to be encoded as sets of unordered, disconnected elements that 

can be grouped and whose values can be added with no ontological order. Such a 

cardinal encoding would foster the use of the 3-step algorithm consisting in 

calculating the individual value of each part making the whole, and then adding them 
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up. On the other hand, in age situations the age values are inherently ordered and 

can be represented as states (positions on an axis) and transitions (intervals on a 

timeline). This type of ordinal encoding would makes it easier to compare two sets 

sharing a common part: if Jean and Antoine started attending painting classes at the 

same age, and Antoine attended the class for 2 years less than Jean, then making the 

inference than Jean was 2 years younger than Antoine at the end of their respective 

classes seems especially natural. 

Current study 
Our ambition for this paper is twofold. First, we aim at showing the critical influence 

that the distinction between cardinality and ordinality has on human understanding 

of situations involving numbers. We intend to show that, more than a mere 

developmental or mathematical question, this is an ontological issue regarding the 

way numerosity is perceived. Second, we intend to build on this semantic distinction 

to investigate adults’ representations in the course of mathematical reasoning. Namely, 

we aim at showing that the nature of the entities staged in word problems interferes 

with their classification, comparison, encoding, recoding and solving, thus presenting 

a range of effects falling beyond the scope of the current models of arithmetic problem 

solving. We designed a series of 6 experiments scrutinizing how the cardinal versus 

ordinal aspects of numerical situations influence adults’ reasoning in a variety of tasks.  

Overview of the experiments 
We believe that the selection of a specific type of quantity to create a problem 

statement has an influence on the encoding of the problem into either a cardinal or 

an ordinal representation, which in turn fosters the use of one of the two existing 

sWe believe that the selection of a specific type of quantity to create a problem 

statement has an influence on the encoding of the problem into either a cardinal or 

an ordinal representation, which in turn fosters the use of one of the two existing 

solving algorithms (see Fig. 2 for a graphical summary of this hypothesis).  
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Fig. 2 Graphical summary of the content effects under scrutiny in this paper. Problems sharing 
the same mathematical structure are implemented with different quantities evoking different 

encodings, which in turn foster the use of one of the two solving algorithms. 

We designed six experiments in order to examine the importance that the cardinal 

versus ordinal distinction holds in the representation of numerical situations. They 

were conducted with adults in order to underline the strength and pervasiveness of 

the reported effects. First, we devised a free sorting experiment to show the 

fundamental influence of the ordinal versus cardinal distinction on participants’ 

spontaneous categorization of problems, while assessing the validity of our choice of 

materials. Second, we used an analogy identification experiment to determine 

whether the hypothesized semantic difference between cardinal and ordinal problems 

would predict how participants perceive the isomorphism between different problem 

statements. Third, we used a direct comparison task to evaluate the robustness of the 

second experiment’s findings regarding the perception of the analogy between 

cardinal and ordinal problems. Fourth, we proposed a solving task with cardinal, 

ordinal and “hybrid” problems (cardinal problems presented in an ordinal context) to 

show that participants’ choice of solving strategies depends on the semantics 
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introduced in the problems. Fifth, we used a solvability-assessment task to evaluate 

whether participants could solve problems whose unique solution was incompatible 

with their initial encoding of the problems. Sixth, we used a solution-validity-

judgement task to assess whether participants’ difficulty to find a problem’s unique 

solution in the fifth experiment could be overcome by the presentation of a candidate 

solution to evaluate. All six experiments received the approval of the ethics committee 

of the University of Geneva. Altogether, these experiments intended to validate the 

distinction between cardinal and ordinal situations, to show its influence on the 

encoding of numerical situations even among adults well past their schooling years, 

and to evaluate whether its influence could be so robust as to interfere with 

participants’ ability to use relatively basic arithmetic notions to solve 1-step arithmetic 

problems. 

In an attempt to maximize the generality of our findings, we selected 3 types 

of quantities thought to evoke an ordinal encoding of the situation and 3 types of 

quantities that we assumed evoked a cardinal encoding. The rationale behind the 

selection of those specific quantities is presented below; the relevance of this 

classification will notably be assessed by our first experiment. 

Overview of the selected ordinal quantities 
Durations. In English, spatial metaphors expressing durations along a 

unidimensional space such as “a long time” are prevalent (Casasanto, 2008). The same 

is true for French, in which the word to designate an extensive period of time 

corresponds to the literal concatenation of the terms standing for “long” (“long”) and 

“time” (“temps”): “longtemps”. In western culture, including in France, the idea that 

time evolves along an axis or a timeline is deeply rooted in our understanding of the 

world (Bonato, Zorzi, & Umilta, 2012; Boroditsky, 2011; Droit-Volet & Coull, 2015; 

Weger & Pratt, 2008). Despite cultural differences regarding the direction given to the 

axis of time (e.g. Fuhrman & Boroditsky, 2010), the fact remains that time is usually 

conceived of as unidirectional axis on which values are ontologically ordered. 

Contexts in which durations are mentioned or compared thus tend to increase the 

saliency of the ordinal meaning of numbers. 

Heights. Height is a spatial, unidimensional concept. Due to our living in a world 

where gravity constantly exerts its influence on physical objects, we quickly learn that 

objects fall in a straight line and we tend to think of height as being an oriented, 

vertical axis, with a bottom and a top (e.g. Hood, 1998; Hood, Santos, & Fieselman, 
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2008; Kim & Spelke, 1992). Entities’ heights can easily be compared or stacked 

alongside this axis, and there is an ontological order in the values representing the 

heights of different entities placed atop each other. Thus, mentions of height in a 

numerical situation tend to emphasize the ordinal meaning of the numbers involved.  

Floors. Building floors are stacked on top of each other and they are ordered in a 

fashion that cannot be altered. If one is to imagine an elevator going from one floor 

to another, it immediately comes to mind that to go from the 1st floor to the 3rd floor, 

the elevator must pass the 2nd floor first (Clement & Richard, 1997). Thus, floors have 

an ontological order that we believe highlights the ordinality of the values used to 

count them. 

Overview of the selected cardinal quantities 
Collections. Collections refer to groups of disconnected elements that can be 

counted as parts of a set. Be it a collection of blue marbles in a bag, a set of iguanas 

in a terrarium or a group of pupils in a bus, collections of similar elements usually 

have no ontological order. Fittingly, most studies on the development of cardinality 

in children’s early years resort to tasks consisting in counting collections of objects, 

such as the Give-N task (e.g. Condry & Spelke, 2008; Izard, Streri, & Spelke, 2014; 

Sarnecka & Carey, 2008). Thus, the use of collections appears to emphasize the 

cardinality of numbers. 

Weights. In daily-life, weight is often seen as a property of some definite element, 

and as such it has no ontological order. For instance, when considering the weight of 

a stack of dictionaries, it does not matter which one is on top and which one is at the 

bottom of the stack: computing the total weight simply requires adding the weight of 

each individual book. Specific weights are assigned to specific entities, and although 

weight can vary over time, it is rarely encoded along an axis in daily life. Thus, we 

postulate that weight promotes a cardinal encoding of the situations. 

Prices. As with weight, price is usually considered the property of some unordered 

entities (Gamo et al., 2010). To calculate the total price of a series of items in a store, 

one must add the individual price of each item, in no specific order. Thus, we believe 

that prices underline the cardinal nature of numbers. 
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Experiment 1 
The first experiment, a problem sorting task, was designed to assess whether the 

assumed difference between cardinal and ordinal quantities would lead to different 

encodings of the problems, reflected by categorization patterns consistent with this 

distinction. Furthermore, this experiment aimed at validating our choice of materials 

in order to build upon this cardinal-ordinal dichotomy on subsequent experiments 

exploring this issue. In other words, it intended to provide evidence for the existence 

of a fundamental distinction between cardinal and ordinal encodings derived from 

problems sharing an identical deep structure but differing in regard to the quantities 

used in their problem statements. Indeed, we expected participants’ categories to 

reveal a difference between the respective encodings of cardinal and ordinal problem 

statements. The experimental design was modeled on the work from Chi, Feltovich 

and Glaser (1981), who performed a series of sorting experiments with experts and 

novices. They showed that, when asked to sort physics problems, novices put 

together problems sharing similar surface features (e.g. problems featuring pulleys), 

whereas participants with a higher proficiency in physics favored the use of abstract 

physics principles (e.g. problems that can be solved using Newton’s second law) to 

sort the problems. 

Our prediction regarding such problem statements was that the adults’ 

understanding of the problems would neither be strictly limited to surface features, 

as was the case for Chi et al.’s (1981) lay participants, nor would it be guided by the 

mathematical deep structure of the problems. Rather, we hypothesized that 

participants would sort problems depending on how they encode them. We predicted 

that participants would tend to group together problems evoking a cardinal encoding 

(collection, price and weight problems) and that they would group together problems 

evoking an ordinal encoding (duration, height and number of floors problems), 

regardless of the problems’ surface features.  
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Method 
Participants. In our first experiment, 85 adults participated after giving informed 

consent (54 women and 31 men, M = 24.31 years, SD = 8.33). They were recruited 

from the Paris region on a voluntary basis and they spoke French fluently. None had 

previously participated in any similar experiment. 

Materials and procedure. We created 12 problems: 6 involved cardinal quantities, 

as previously described (2 collection problems, 2 price problems and 2 weight 

problems) and 6 featured ordinal quantities, as defined hereinabove (2 duration 

problems, 2 height problem and 2 floors problems). The problems were written in 

French (original materials for all experiments are available online at 

https://osf.io/kz6gh/?view_only=2f3fb6b910844e238ae58fef3c61168a. English 

translation is provided in Tables 2 and 3). Although the problems all shared the same 

mathematical structure as those used by Gamo et al. (2010), they differed in that we 

made sure they all had the exact same number of sentences, and the different values 

were systematically mentioned in the same order across problems. Cardinal and 

ordinal problems did not significantly differ in number of words; t(10) = 0.98, p = .35, 

independent t-test. The goal was to create cardinal and ordinal problems as 

comparable to each other as possible. The problems were isomorphic, and the 

numbers used were randomized across problems. The computation of the problems’ 

solving algorithms only required basic mathematical knowledge (additions and 

subtractions of values below 15) so that the performance differences could not be 

explained by computational difficulty or lack of knowledge about the arithmetic 

operations involved. 

In this experiment, each of the 12 word problems was printed on a separate 

card. As in Chi et al.’s (1981) experiment, the task was to sort the problems into 

groups based on similarities of solving strategies. The following instructions were 

given to the participants:  

Here are 12 arithmetic word problems. Please read and study carefully each of 

them. Your task is to sort the problems into groups based on similarities of 

solution. You can make as many groups of problems as you deem necessary. 

This is not a speed test: take your time to read and understand each of these 

problems. Translated from French.  

Participants all completed the task in less than an hour. 

 

https://osf.io/kz6gh/?view_only=2f3fb6b910844e238ae58fef3c61168a
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Table 2 Cardinal problems used in Experiment 1. The numerical values respected the following 
rule: z < 4 < x < y < 15. 

Quantity used Pb. ID Problem statement 

Weight Pb. A 

A bag of pears weighs x kilograms.  
It is weighed with a whole cheese. 
In total, the weighing scale indicates y kilograms. 
The same cheese is weighed with a milk carton. 
The milk carton weighs z kilograms less than the bag of pears. 
How much does the weighing scale indicate now? 

Weight Pb. B 

Tom takes a Russian dictionary weighing x kilograms.  
He also takes a Spanish dictionary.  
In total, he is carrying y kilograms of books. 
Lucy takes Tom's Spanish dictionary and a German dictionary. 
The German dictionary weighs z kilograms less than the Russian 
dictionary.  
In total, how many kilograms is Lola carrying? 

Price Pb. C 

In the first meal on the menu, there is a chocolate cake costing x 
euros. 
The meal also includes an omelet with mushrooms. 
In total, the first meal costs y euros. 
In the second meal on the menu, there is the same omelet with 
mushrooms, and an apple pie. 
The apple pie costs z euros less than chocolate cake. 
How much does the second meal cost? 

Price Pb. D 

In the stationery shop, Antoine wants to buy a x-euro ruler.  
He also wants a notebook. 
In total, that will cost him y euros. 
Julie wants to buy the same notebook as Antoine, and an eraser. 
The eraser costs z euros less than the ruler. 
How much will Julie have to pay? 

Collection Pb. E 

Paul has x red marbles. 
He also has blue marbles. 
In total, Paul has y marbles. 
Charlene has as many blue marbles as Paul, and some green 
marbles. 
She has z green marbles less than Tom has red marbles. 
How many marbles does Charlene have? 

Collection Pb. F 

Sarah owns x goldfish. 
Her other pets are all iguanas. 
In total, she owns y pets. 
Bobby is pet-sitting Sarah's iguanas during the holidays, he puts 
them with the turtles he owns. 
Bobby owns z turtles less than Sarah owns goldfish. 
How many pets are there at Bobby's? 
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Table 3 Ordinal problems used in Experiment 1. The numerical values respected the following 
rule: z < 4 < x < y < 15. 

Quantity used Pb. ID Problem statement 

Duration Pb. G 

The construction of the cathedral took x years. 
Before constructing it, the plans had to be made. 
The construction of the cathedral was completed in year y. 
The construction of the castle started at the same time as the 
construction of the cathedral. 
The construction of the castle took z years less than the construction 
of the cathedral. 
When was the construction of the castle completed?  

Duration Pb. H 

Sophie travels for x hours. 
Her trip started during the day. 
Sophie arrives at y. 
Fred leaves at the same time as Sophie. 
Fred's trip lasts for z hours less than Sophie's. 
What time is it when Fred arrives? 

Height Pb. I 

Slouchy Smurf is x-centimeter tall.  
He climbs on a table.  
Now he reaches y centimeters. 
Grouchy Smurf climbs on the same table as Slouchy Smurf. 
Grouchy Smurf is z centimeters shorter than Slouchy Smurf. 
What height does Grouchy Smurf reach when he climbs on the table? 

Height Pb. J 

Obelix's statue is x-meter tall. 
It is placed on a pedestal. 
Once on the pedestal, it reaches y meters. 
Asterix's statue is placed on the same pedestal as Obelix's. 
Asterix's statue is z meters shorter than Obelix's. 
What height does Asterix's statue reach when placed on the pedestal? 

Floors Pb. K 

Naomi takes the elevator and goes up x floors. 
She left from the floor where her grandparents live. 
She arrives to the y th floor. 
Her brother Derek also takes the elevator from their grandparents' 
floor. 
He goes up z floors less than Naomi. 
What floor does Derek arrive to? 

Floors Pb. L 

Karen takes the elevator and goes up x floors. 
She left from the floor where the gym is. 
She arrives to the y th floor. 
Yohan also takes the elevator from the floor where the gym is.  
He goes up z floors less than Karen. 
What floor does Yohan arrive to? 
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Results 
The categories created by each participant were coded with a co-occurrence matrix 

describing how many times two problems were sorted together within the same 

category. A proximity matrix was then elaborated based on the co-occurrence matrix, 

describing the average perceived proximity between each problem (see Fig. 3). This 

matrix specifies which problems were sorted together most frequently; the higher the 

value between two problems, the higher the proportion of participants who 

considered these two problems similar. The perceived proximity between any pair of 

problems whose hypothesized encoding is similar (ordinal-ordinal or cardinal-

cardinal) was systematically higher than the perceived similarity between any pair of 

problems whose hypothesized encoding is dissimilar (cardinal-ordinal). 

 
Fig. 3 Co-occurrence proximity matrix between problems. A higher number (and darker hue) 

indicates a higher co-occurrence frequency. 

In order to get confirmatory evidence, we undertook a hierarchical cluster analysis 

displaying the global taxonomy of the collected categories, using the R package 

pvclust (Suzuki & Shimodaira, 2006). Fig. 4 details the clusters appearing in the 

dataset. For each cluster, the Approximately Unbiased (AU) p-value can be interpreted 

as follows: if AU > .95, the hypothesis that “the cluster does not exist” can be rejected 

at the significance level of .05. This suggests that these clusters do not reflect clustering 

noise and may be observed in a stable manner. 

 The problems which shared the same quantities were grouped in the same 

lower clusters. This was expected since they both shared quantities attached to the 

same world semantics (either cardinal or ordinal) as well as a certain degree of surface 

All the problems sharing the same quantities (e.g. the two weight problems, the two 

duration problems, etc.) were grouped in the same lower clusters. This was expected 

since they both evoked the same encoding (either cardinal or ordinal) and shared a 

certain degree of surface similarity as well (two problems involving objects being 

weighed, for example, will both use words such as “weight”, “scale” or “weighs”, 

increasing the number of identical surface features). Yet, the two higher clusters 
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displaying a significant AU p-value respectively regrouped all the ordinal problems 

and all the cardinal problems, regardless of their more specific surface features. This 

result supports the hypothesis that the cardinal versus ordinal distinction guided 

participants’ sorting patterns. Thus, as hypothesized, some aspects of the problem 

statements that pertain neither to the most specific surface features nor to the deep 

structure of the problems influenced the classification. The Bootstrap probability (BP) 

values, although presumably more biased (Suzuki & Shimodaira, 2006), confirmed 

this pattern in the data. 

 
Fig. 4 Cluster dendrogram of the problems. Values are Approximately Unbiased (AU) p-values 

(Red, left) computed by multiscale bootstrap resampling, Bootstrap Probability (BP) values 
(green, right) computed by normal bootstrap resampling, and cluster labels (grey, bottom). 

Clusters with AU ≥ 95 are highlighted by the red rectangles and are considered to be strongly 
supported by the data. Number of bootstrap samples = 10,000. 

Discussion 
This experiment sought to establish that participants’ categories were guided by the 

semantic distinction we introduced between cardinal and ordinal quantities. As 

predicted, the results showed that participants’ categories were not just based on the 

most superficial similarities between problems. Had it been the case, duration 

problems would not have been considered as closer from number of floors problems 
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than from collection problems, for instance. Instead, participants perceived the 

similarity between problems fostering a similar encoding: problems evoking sets of 

unordered elements were grouped together, and so were problems with elements 

that could be ordered along an oriented axis. Additionally, participants did not 

perceive that all problems were isomorphic, since that would have resulted in one 

category containing all the problems. Participants here did not rely on the deep 

structure of the problems to make their categories. Instead, the results supported our 

hypothesis that weight, price and collection problems are encoded differently than 

height, duration and floors problems, thus substantiating our selection of those two 

sets of quantities. Here, the cardinal versus ordinal distinction significantly guided the 

sorting task, thus corroborating the fundamental role of this distinction. 

Experiment 2 
To evaluate how cardinality and ordinality interact with one another when different 

situations are being compared, and to gather converging evidence regarding the 

influence that this distinction holds on adults’ apprehension of numerical situations, 

our second experiment focused on participants’ interpretation of different problems 

as analogous. Participants were presented with an unsolved word problem and asked 

to determine whether a series of target word problems could be solved analogously. 

We tested the hypothesis that participants can more easily perceive an analogy 

between two isomorphic problems if they feature quantities evoking a similar 

encoding (two problems emphasizing the cardinal nature of numbers, or two 

problems emphasizing the ordinal nature of numbers) than if they do not. 

Methods 
Participants. A total of 191 adults participated in this experiment after giving 

informed consent: 116 women and 75 men, M = 27.3 years, SD = 11.9. They were 

recruited from the Paris region on a voluntary basis and spoke French fluently. None 

had previously participated in any similar experiment. 

Materials and procedure. In this experiment, we used the same problems as those 

created for Experiment 1, with the addition of one cardinal problem and one ordinal 

problem. Each participant was given a 4-page booklet. On the first page, the 

instructions read:  

Below is an arithmetic word problem. Please read it and then study carefully 
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the problems presented on the next page. Note, for each of them, if they can 

be solved using the same solving principle as the problem presented below. 

This is not a speed test: take your time to read and understand each of these 

problems. Translated from French. 

On the same page, a problem statement was printed (“problem A”). This problem 

was either a cardinal problem (a collection problem) or an ordinal one (a duration 

problem). On the following page, 6 target problems were presented: 3 ordinal 

problems (duration, height, floors), and 3 cardinal problems (collection, price, 

weight). Next to each problem, the participants had to circle their answer “yes” or 

“no” to the question “can this problem be solved similarly to problem A?”. The next 

two pages had the same setup with different problem statements, where “problem A” 

was replaced by “problem B”, that was either a collection problem (if “problem A” 

had been a duration problem) or a duration problem (if “problem A” had been a 

collection problem), and six new target problems. The order of problems A and B 

was randomized between booklets, as was the order in which the target problems 

were presented. Participants were not given additional paper to write on, to 

discourage them from engaging in the resolution of every problem before making 

their choice. Participants all completed the task in less than an hour. 

We predicted that the participants’ answers would depend on the similarity 

between the type of representations fostered by the source and target problems. 

Namely, participants should perceive the analogy between two cardinal problems or 

between two ordinal problems more easily than between a cardinal and an ordinal 

problem. This should translate into an interaction between the cardinal versus ordinal 

nature of the source problem and that of the target problems. 

Results 
We computed the rate of detection of similarity between the source and the target 

problems, depending on the nature of the quantities involved (see Fig. 5). A two-way 

repeated measures ANOVA was conducted on the rate of perceived similarity with 

nature of the quantity in the source problem (ordinal or cardinal) and nature of the 

quantity in the target problem (ordinal or cardinal) as within factors. As expected, 

there was no main effect of the cardinal or ordinal semantics attached to the source 

problem (F(1,190) = 1.07, p = .30, ηp
2 = .01) nor of the semantics attached to the target 

problem (F(1,190) = 0.10, p = .08, ηp
2 < .01). There was, however, a significant 

interaction effect between the two factors, indicating that cardinal target problems 
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were more likely to be selected by the participants when a cardinal source problem 

was presented, and that ordinal target problems were more likely to be chosen when 

the source problem was ordinal as well (F(1, 190) = 72.20, p < .001, ηp
2 = .28). In 

addition to the interaction, we performed 2-by-2 comparisons of the rate of perceived 

similarity between cardinal and ordinal target problems, depending on the semantics 

imbued in the source problem. Results showed that cardinal target problems were 

judged analogous to cardinal source problems significantly more often than ordinal 

target problems (82.4% for cardinal-to-cardinal analogy; 60.9% for cardinal-to-ordinal 

analogy; t(190) = 6.50, p < .001, ηp
2 = .18, paired t-test). Similarly, ordinal target 

problems were judged analogous to ordinal source problems significantly more often 

than cardinal target problems (84.8% for ordinal-to-ordinal analogy; 62.1% for ordinal-

to-cardinal analogy; t(190) = 7.25, p < .001, ηp
2 = .22, paired t-test). In other words, 

participants identified collection source problems as analogous to other cardinal 

problems more frequently than they did to ordinal target problems. Reciprocally, the 

duration source problems were more frequently perceived as analogous to other 

ordinal problems than to cardinal problems. 

 
Fig. 5 Rate of perception of the analogy between the source and target problems, depending on 
the nature of their quantities. Vertical bars denote .95 confidence intervals. *** p < .001, paired t-

test. 
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Overall, the analogy rate was higher when the source and target problems both 

evoked a similar encoding (either two cardinal encodings or two ordinal encodings) 

than when they evoked dissimilar encodings (a cardinal encoding and an ordinal 

encoding). Our hypothesis regarding the influence of the encoding on the detection 

of similarity of solving pattern was thus supported: participants’ decisions were 

significantly influenced by the semantics attached to the quantities used in the 

problems. 

Discussion 
With this experiment, we showed that the encoding difference between cardinal and 

ordinal problems influences the perception of analogies between isomorphic 

problems. Participants had significantly more difficulties identifying that two problems 

shared the same solving principle when these problems featured elements evoking 

different aspects of their knowledge about the world. This corroborates our claim that 

general abstract semantic properties, such as cardinality or ordinality, play a crucial 

role in the encoding of mathematical word problems. Depending on the semantics 

evoked by the problems, participants encode different representations. The 

representations in turn limit or foster participants’ identification of the analogous 

relations between the problems. Our results support the idea that participants encode 

a representation whose nature depends on the world knowledge evoked by the 

problem statement.  

While the interaction between the cardinal versus ordinal nature of the target 

and source problems indicates that participants’ encoding of the problems was 

significantly influenced by the quantities they featured, it might be that participants 

could have overcome this inability to perceive the similarity between cardinal and 

ordinal problems if they had tried to directly map the structures of the problems to 

one another. In other words, suppose participants were encouraged to compare one 

specific target problem with the source problem instead of simply being asked to 

select the analogous problems among a series of potential candidates. Would they go 

beyond their initial encoding of the situation and identify the isomorphism between 

the problems? We designed a third experiment to answer this question. 
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Experiment 3 
Experiment 3 aimed at replicating Experiment 2’s findings and assessing their 

robustness by directly presenting pairs of problems to the participants, instead of 

asking them to identify among a list of target problems the ones that shared a solution 

principle with the source problem. We hypothesized that the effect observed in 

Experiment 2 could be replicated in a one-to-one comparison setting, in which 

participants are encouraged to directly contrast two problem statements. We assumed 

that when the source and the target problems featured the same type of quantity – 

cardinal or ordinal – participants would acknowledge the solution equivalence more 

often than when problems featured different types of quantity. 

Methods 
Participants. A total of 147 adults participated in this experiment after giving 

informed consent: 60 women and 87 men, M = 30.0 years, SD = 11.5. They were 

recruited on a voluntary basis through social networks and by emails. All participants 

spoke French fluently and none had previously participated in any similar experiment. 

Five participants were removed since they failed to provide any answer to one or 

more questions in the experiment. The analyses bear on the 142 remaining 

participants (59 women and 83 men, M = 29.1 years, SD = 10.2 years). Participants all 

completed the task in less than an hour. 

Materials and procedure. This experiment was conducted on the Qualtrics platform 

for online experiments. The source and target problems were the same as those used 

in Experiment 2. On the first page, the instructions read: 

Below is an arithmetic word problem. Please read it carefully. On the next 

pages, you will be presented with a series of arithmetic problems. Indicate, for 

each new problem, whether it can be solved with the same solving principle 

as the problem presented below. This is not a speed test: take your time to 

read and understand each of these problems. Translated from French. 

A source problem was then presented, evoking either a cardinal or an ordinal 

encoding. The following 6 pages repeated the source problem, and then presented a 

new problem below. Each time, the following question was displayed: “Can these 

two problems be solved using a similar solution principle?”. After 6 target problems 

had been introduced, a new source problem was presented (a cardinal problem if the 



 

 
120 | CHAPTER 2 
 

first target problem was ordinal, an ordinal problem if the first target problem was 

cardinal), with the same instructions as before, followed by 6 new target problems, 

each on an individual screen. The source and target problems were the same as those 

used in Experiment 2. Participants all completed the task in less than an hour. 

Results 
For each type of source problem, we analyzed the percentage of participants 

answering that the source and target problems might be solved following a similar 

solution principle (see Fig. 6). A two-way repeated measures ANOVA was conducted 

on participants’ rate of identified similarity, with nature of the quantity in the source 

problem (cardinal or ordinal) and nature of the quantity in the target problem 

(cardinal or ordinal) as within factors. As in Experiment 2, there was no main effect 

of the cardinal or ordinal semantics attached to the source problem (F(1,140) = 2.14, 

p = .15, ηp
2 = .02) nor of the semantics attached to the target problem (F(1,140) = 

0.41, p = .53, ηp
2 < .01). However, we replicated the interaction observed in 

Experiment 2 between the semantic nature of the source problems and that of the 

target problems (F(1, 140) = 73.39, p < .001, ηp
2 = .34). 

 

 
Fig. 6 Rate of perception of the analogy between the source and target problems, depending on 
the nature of their quantities. Vertical bars denote .95 confidence intervals. *** p < .001, paired t-

test. 
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In addition to the interaction, 2-by-2 analyses revealed that cardinal target problems 

were judged analogous to cardinal source problems significantly more often than 

ordinal target problems (80.9% for cardinal-to-cardinal analogy; 62.6% for cardinal-to-

ordinal analogy; t(140) = 5.51, p < .001, ηp
2 = .18, paired t-test). Similarly, ordinal 

target problems were judged analogous to ordinal source problems significantly more 

often than cardinal target problems (87.7% for ordinal-to-ordinal analogy; 65.7% for 

ordinal-to-cardinal analogy; t(140) = 6.91, p < .001, ηp
2 = .25, paired t-test). In other 

words, despite being encouraged to directly compare one source problem with one 

target problem, participants’ ability to perceive the analogy between the two problems 

was still dependent on the semantics they carried. 

Discussion 
In this experiment, it was showed that the effect of the distinction between cardinal 

and ordinal quantities on the encoding of the situations described in the problems 

was not altered by the direct presentation of two problems side by side. As predicted, 

participants had significantly more difficulties identifying that ordinal-cardinal pairs of 

problems could be solved in the same way, even though the simultaneous 

presentation of both problems should have facilitated their mapping. Interestingly, 

the results of Experiment 2 were replicated in this new experimental setting. Our 

hypothesis regarding the influence of the cardinal versus ordinal distinction on the 

detection of similarity of solving pattern was thus supported by both experiments. 

The question that follows from these two experiments regards the role of these robust 

encoding mechanisms in the choice of a solving algorithm. To what extent do the 

constructed representations dictate participants’ solving strategies? By using problems 

designed to evoke cardinal, ordinal, or hybrid encodings, the next experiment was 

designed to evaluate how these encoding differences may influence participants’ 

choice of an algorithm in a more traditional solving task.   

Experiment 4 
The goal of this fourth experiment was twofold. First, we intended to demonstrate 

that participants’ ability to use a specific solving strategy directly depended on the 

nature of their semantic encoding of the problem. Second, we aimed at showing that 

by changing the semantics imbued in a problem statement, we could significantly 

alter its encoding on the cardinal versus ordinal dimension. To this end, we 
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introduced a new type of problems, in addition to the cardinal and ordinal problems 

used in the previous experiments. We called those new problems hybrid because 

they were designed to be less cardinal than the cardinal problems presented in 

Experiments 1, 2 and 3, while simultaneously being less ordinal than the ordinal The 

goal of this fourth experiment was twofold. First, we intended to demonstrate that 

participants’ ability to use a specific solving strategy directly depended on the nature 

of their semantic encoding of the problem. Second, we aimed at showing that by 

changing the semantics imbued in a problem statement, we could significantly alter 

its encoding on the cardinal versus ordinal dimension. To this end, we introduced a 

new type of problems, in addition to the cardinal and ordinal problems used in the 

previous experiments. We called those new problems “hybrid”, as they were meant 

to elicit an ordinal encoding using cardinal quantities. Indeed, those hybrid problems 

involved only cardinal quantities (price, weight, collection) but their problem 

statements featured a scenario fostering an ordinal encoding by describing how the 

cardinal quantities changed over time. For instance, hybrid weight problems were 

created by describing the weight of a baby growing over time in order to favor an 

ordinal representation of the weight. We predicted that introducing those 

characteristics without changing the quantities themselves would influence the 

encoding of the problems and the algorithms subsequently implemented.  

Since we instructed participants to solve the problems using as few operations 

as possible, our main hypothesis regarded the rate of use of the 1-step algorithm. We 

predicted that problems involving ordinal quantities would lead to a greater use of 

the 1-step algorithm than problems involving cardinal quantities, due to the ordinal 

encoding making it easier to perceive the validity of this solution. Second, we 

hypothesized that hybrid problems would lead to a significantly higher rate of 1-step 

algorithm than cardinal problems, due to the ordinal semantics attached to the 

problem statements. Additionally, we aimed at assessing whether hybrid problems 

would be solved by the 1-step algorithm as often as ordinal problems, or not. 

Methods 
Participants. Participants were students from a second-year university psychology 

class at the University of Bourgogne. They participated in exchange for course credit. 

A total of 181 students participated in this experiment after giving informed consent 

(123 women and 58 men, M = 23.35 years, SD = 7.82). All the participants spoke 

French fluently. None had previously participated in any similar experiment. 
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Materials and procedure. A pool of 18 word problems was used for this 

experiment: the same 12 problems (6 cardinal and 6 ordinal) as in the two first 

experiments, and 6 new hybrid problems (see Table 4). Each participant saw 9 

problems in total: 3 of each category. 

 

Table 4 Example of hybrid problems. The numerical values respected the following rule: z < 4 < 
x < y < 15. 

Quantity used Hybrid problem statement 

Weight 

During his first year, David gained x kilograms. 
At birth, he already weighed a certain weight. 
After a year, David weighs y kilograms. 
At birth, David and Lara had the same weight. 
During her first year, Lara gained z kilograms less than David did. 
How much does Lara weigh after one year? 

Price 

For Christmas, Rachel got x euros. 
She already had some money. 
Now she has y euros in total. 
Before Christmas, Zoe had as much money as Rachel. 
For Christmas, Zoe got z euros less than Rachel did. 
How much money does Zoe have now? 

Collection 

During the afternoon, Patricia catches x fish. 
She puts those fish in her basket, with the other fish she caught during the 
morning. 
By the end of the day, Patricia has y fish in her basket. 
During the morning, Arthur caught as many fish as Patricia did. 
During the afternoon, Arthur catches z fish less than Patricia does. 
In total, how many fish did Arthur catch today? 

 

The participants all received 10-page booklets with instructions printed on the first 

page. The instructions read: 

You will find an arithmetic problem on each page of this booklet. Your task is 

to solve the problems using as few operations as possible. You can use the 

‘draft’ area, but please copy in the ‘response’ area all the operations that you 

used to come up with the solution. This is not a speed test: take your time to 

read and understand each of these problems. Remember that the goal is to 

solve the problems using as few operations as possible. For every problem, 

we ask you to write down every operation(s) that you used to come up with 

the solution, even the simplest one that you can calculate mentally. For 

instance, the computation “15 – 6 – 2 = 7”, should not be written as a unique 

operation, but broken down as “15 − 6 = 9” and “9 − 2 = 7”, which then counts 
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for two operations. Translated from French. 

Problem order was randomized across booklets. Each page in the booklet was divided 

in three parts: the problem statement, the “draft” area and the “response” area. 

Participants all completed the task in less than an hour. 

Scoring.   A problem was considered as correctly solved when the obtained result 

came with the appropriate calculations. The strategies leading to success were 

categorized either as correct 1-step algorithm or as correct 3-step algorithm. When the 

written operations were correct and the written solution was within +/− 1 of the 

correct result, this was deemed a calculation error and problems were still considered 

as correctly solved. Other answers were considered as false. 

Results 
The percentage of correct solving using both algorithms was calculated. Fig. 6 details 

the rate of use of the 1-step algorithm for each problem category. A one-way repeated 

measures ANOVA was conducted on the rate of use of the 1-step algorithm between 

cardinal, hybrid and ordinal problems. Results indicated that there was a main effect 

of problem category (cardinal/hybrid/ordinal) (F(2,360) = 52.13, p < .001, ηp
2 = .22). 

Three paired sample t-tests were used to compare the different conditions, with 

Bonferroni adjustment for multiple comparisons. As predicted, cardinal problems led 

to a significantly lower rate of 1-step algorithm (M = 0.28, SD = 0.39) than ordinal 

problems (M = 0.47, SD = 0.39); (t(180) = 9.34, p < .001, d = 0.48), which supported 

the hypothesis that the use of cardinal versus ordinal quantities significantly 

influenced the encoding of the problem statements, and subsequently shaped the 

solving algorithms used by the participants. Moreover, as hypothesized, the 1-step 

algorithm was more frequently used on hybrid problems (M = 0.38 SD = 0.40) than 

on cardinal problems; t(180) = 5.91, p < .001, d = 0.24. This result showed that, by 

giving specific semantic properties to a problem statement, it was possible to 

influence the encoding and manipulate which solving algorithm participants would 

use. A semantically cardinal quantity presented in an ordinal context could thus lead 

more often to the encoding of an ordinal representation than a cardinal quantity 

presented in a context that does not present ordinal features.  
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Fig. 7 Rate of use of the 1-step algorithm, depending on the world semantics. Vertical bars 

denote .95 confidence intervals. *** p < .001 (paired t-test). 

Interestingly, the comparison between hybrid problems and problems with ordinal 

quantities revealed that the rate of use of the 1-step algorithm was still higher on 

ordinal problems (M = 0.47, SD = 0.39); t(180) = 4.93, p < .001, d = 0.23. This seems 

to indicate that, while the manipulation that was performed to “ordinalize” cardinal 

quantities had a significant impact when compared to standard cardinal problems, an 

“ordinalized” quantity remained less ordinal than a typical ordinal one.  

Regarding the rate of use of the 3-step algorithm, we performed a one-way 

repeated measures ANOVA to evaluate if it differed between cardinal, hybrid and 

ordinal problems. Results indicated the presence of a main effect of problem category 

(cardinal/hybrid/ordinal) on the use of this algorithm as well (F(2,360) = 27.80, p < 

.001, ηp
2 = .13). We used paired sample t-tests to perform pairwise comparisons 

between the three conditions, with Bonferroni adjustment for multiple comparisons. 

Results showed that participants resorted to the 3-step algorithm more often on 

cardinal problems (M = 0.60 SD = 0.39) than on ordinal problems (M = 0.44 SD = 

0.38); t(180) = 6.79, p < .001. Interestingly, they also used the 3-step algorithm more 

often on cardinal than on hybrid problems (M = 0.47 SD = 0.38); t(180) = 5.80, p < 

.001. This is in line with the idea that introducing cardinal quantities in an ordinal 

context could help “ordinalize” participants’ representation. There was, however, no 

significant difference between the rate of use of the 3-step algorithm on hybrid and 

on ordinal problems; t(180) = 1.38, p = .17. 

Discussion 
In this experiment, the analysis of the solving algorithms provided cues on how the 

encoding of the problems influences participants’ solving strategies. Participants’ use 
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of the shortest algorithm was dependent on the type of quantities involved in the 

problem statement. Despite participants being explicitly instructed to use as few 

operations as possible to solve the problems, they struggled to find the 1-step 

algorithm on cardinal problems, and they tended to use the 3-step algorithm to solve 

these problems instead. This experiment further supported the claim that the ordinal 

versus cardinal dimension was the main factor constraining algorithm choice. Indeed, 

a change in strategy choice followed the “ordinalization” of cardinal quantities, thus 

showing that the ability to use the 1-step algorithm was directly dependent on how 

much the problem statement emphasized the ordinal nature of its numerical values.  

So far, we have studied how arithmetic word problems are initially encoded 

and how the interpreted representations in turn influence the solving algorithms used. 

However, as mentioned in the introduction, the initial encoding of a problem does 

not always provide a solution to the solver. We then investigated whether participants 

can overcome their initial representation of the problems when the one they first 

encoded does not lead to a solution. That is, we created the conditions to explore the 

difference between situations in which one has to construct a new representation of 

the situation presented, and those in which there is no need for a new representation 

to be constructed. Such a recoding process would imply to disregard the cardinal 

semantics evoked by specific quantities, and to construct a new encoding of the 

situation regardless of their influence. 

Experiment 5 
In this fifth experiment, we designed situations meant to have participants construct 

a representation leading to a dead end. In other words, we created problems for 

which the initial encoding would not provide a successful solving algorithm, thus 

tempering with the solving process. The problems could nonetheless be solved if 

participants constructed a different encoding of the situation. We tested the 

participants’ proficiency to use the 1-step solving algorithm on problems that would 

spontaneously elicit the 3-step algorithm. For that purpose, cardinal problems that 

only featured two numerical values were introduced, making the 3-step solving 

algorithm impossible to use. By contrast, the 1-step algorithm was still efficient for 

reaching the solution with the two remaining numerical values.  

A solvability judgment task requested participants to tell whether problems 

were solvable and to write down the solution of the solvable problems. Our aim was 
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to show that semantic constraints associated with cardinal situations would lead adult 

participants to evoke an encoding incompatible with the 1-step algorithm, leading 

them to fail to find the solution to the problems. We expected them to incorrectly 

dismiss a perfectly valid solving algorithm, erroneously labeling a 1-step subtraction 

problem as unsolvable. We also expected that succeeding in solving cardinal 

problems would require an extra representational step, since the initial representation 

favors the use of the 3-step algorithm. We assumed that the construction of a new 

representation would be costly and time consuming. Therefore, our predictions were 

twofold: first, we hypothesized that participants would incorrectly reject the cardinal 

solvable problems more often than the ordinal solvable problems because of the 

conflict between a cardinal representation and the 1-step algorithm. Second, when 

correctly solved, cardinal problems would require a significantly longer response time 

than correctly solved ordinal problems, because of the extra step needed to build a 

new representation compatible with the 1-step algorithm. 

Methods 
Participants. This experiment was conducted online, on the survey platform 

Qualtrics. Based on the difference in the rate of use of the 1-step algorithm on cardinal 

and ordinal problems in Experiment 4, we determined sample size with uncertainty 

and publication bias correction using the ss.powed.dt function from the BUCSS R 

package (Anderson, Kelley, & Maxwell, 2017). With a desired level of statistical power 

of .9 and a desired level of assurance of .9, the minimum sample size was estimated 

at 33 participants. Survey link was sent through social networks only. We decided to 

keep the survey open for one week before assessing if the target sample size had 

been reached. After one week, a total of 89 adults had participated voluntarily (50 

women and 39 men, M = 32.1 years, SD = 13.4 years). All participants spoke French 

fluently and none had previously participated in any similar experiment. Because part 

of the analyses were performed on response times, we removed 15 participants who 

either mentioned taking a break during the test or who answered at least one of the 

questions in less than 5 seconds (which meant they either mis-clicked or did not take 

the time to read the problem). The analyses bear on the 74 remaining participants (44 

women and 30 men, M = 33.8 years, SD = 13.4 years). 

Materials and procedure. The problems used in this experiment were similar to the 

ones in previous experiments, except for the value of Part 1 (see Fig. 1) that was 

removed from the statements so that the 3-step algorithm could not be used anymore. 
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Consequently, the only way to solve the problems was to resort to the 1-step 

algorithm, which required using the remaining values of Whole 1 and of the 

Difference (see Fig. 1). Table 5 presents 6 examples of such problems (3 cardinal and 

3 ordinal problem statements) created from the ones used in the previous experiments 

by removing the x value corresponding to Part 1. Ordinal problems were 333.5 

characters long on average (SD = 38.37) and cardinal problems were 304 characters 

long on average (SD = 44.94). This length difference was not statistically significant 

(t(10) = 1.18, p = .26, paired t-test). 

  

Table 5 Example of target problems used in the study. Changes introduced from the problems in 
experiments 1 to 3 are italicized in the table for the sake of clarity, but they were not made 

apparent in the experiment. Translated from French. 

Cardinal target problems Ordinal target problems 

Paul has a certain amount of red marbles. 
He also has blue marbles. 
In total, Paul has 14 marbles. 
Jolene has as many blue marbles as Paul, 
and some green marbles. 
She has 2 green marbles less than Paul has 
red marbles. 
How many marbles does Jolene have? 

Sofia travelled for a certain time. 
Her trip started during the day. 
Sofia arrived at 14 h. 
Fred left at the same time as Sofia. 
Fred's trip lasted 2 hours less than Sofia's. 
What time was it when Fred arrived? 

In the store, Anthony wants to buy a ruler 
costing a certain price. 
He also wants a notebook. 
In total, that will cost him 14 dollars. 
Julie wants to buy the same notebook as 
Anthony, and an eraser. 
The eraser costs 2 dollars less than the 
ruler. 
How much will Julie have to pay? 

Slouchy Smurf is a certain height. 
He climbs on a smurf table. 
He now attains the height of 14 centimeters. 
Grouchy Smurf climbs on the same table as 
Slouchy Smurf. 
Grouchy Smurf is 2 centimeters shorter than 
Slouchy Smurf. 
What height does Grouchy Smurf attain when 
he climbs on the table? 

Joe takes a Russian dictionary weighing a 
certain weight. 
He also takes a Spanish dictionary. 
In total, he is carrying 14 kilograms of 
books. 
Lucy takes Joe's Spanish dictionary and a 
German dictionary. 
The German dictionary weighs 2 kilograms 
less than the Russian dictionary. 
How many kilograms is Lucy carrying? 

Katherine took the elevator and went up a 
certain number of floors. 
She left from the floor where the gym is. 
She arrived to the 14th floor. 
Yohan also took the elevator from the floor 
where the gym is. 
He went up 2 floors less than Katherine. 
What floor did Yohan arrive to? 

 

Although our predictions only regarded solvable problems, we also included 

unsolvable fillers in the materials, so that not every problem had a solution. Among 

those fillers the value of Part 1 was preserved, and the value of Whole 1 was removed 
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instead, which made the problems unsolvable with either algorithm. Thus, an equal 

number of fillers was introduced to achieve a uniform distribution of 

solvable/unsolvable answers. Problem order and numerical values were randomized 

between participants. On the first page of the online experiment, the following 

instructions were written:  

You will find an arithmetic problem on each page of this survey. Your task is 

to identify which problems can be solved and to indicate for each of them the 

operation you used to solve it, as well as the solution you found. Be careful: 

some of the problems cannot be solved with the available information, thus 

your answer in such cases should be ‘it is not possible to find the solution’. 

This is not a speed test: take your time to read and understand each of these 

problems. Translated from French.  

On each page of the survey, a problem was displayed with the following question 

below it “Given the data provided, is it possible to find the solution?” and two buttons 

“Yes” and “No”. When the participants pressed “Yes”, two new questions appeared, 

asking them to indicate respectively the operation needed to solve the problem and 

the result of the operation. Participants used the keyboard to write down their 

answers. After participants answered all 12 problems, a new page was displayed 

asking them for their gender, date of birth, and whether they made any breaks during 

the completion of the experiment. Participants all completed the task in less than an 

hour. 

As previously stated, our first prediction was that participants would perform 

better on solvable problems with ordinal quantities compared to solvable problems 

with cardinal quantities. Indeed, we believed that problems whose spontaneous 

representation was associated with a 3-step algorithm would often lead participants 

to ignore the 1-step algorithm, due to cardinal representations being incompatible 

with the shortest algorithm. Our second prediction regarded the cardinal problems 

that were correctly solved by the participants despite the conflict between a cardinal 

encoding and the 1-step algorithm. We hypothesized that higher response times 

would be recorded on successfully solved cardinal problems compared to successfully 

solved ordinal problems, due to participants needing additional time to overcome 

their initial encoding of the situations and build a new representation, compatible 

with the 1-step algorithm. 
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Results 
The dependent variable was the percentage of correct answers on solvable problems. 

Ordinal solvable problems were successfully solved in 91.9% of the trials, and cardinal 

solvable problems in 68.5% of the trials (see left graph of Fig. 7). A paired t-test was 

performed on participants’ mean rate of success for cardinal and ordinal problems 

and showed that the difference was statistically significant (t(73) = 6.38, p < .001, d = 

0.97), therefore supporting our first hypothesis. 

 
Fig. 8 Mean rate of correct resolution (left) and mean response time on correctly solved 

problems (right) depending on the semantic nature of the quantities used in the problems. 
Vertical bars denote .95 confidence intervals. *** p < .001 (paired t-test). 

Response times on correctly solved cardinal and ordinal problems were then 

compared in order to test our prediction that accessing the correct 1-step algorithm 

on problems inducing a cardinal encoding incompatible with this algorithm would 

require higher response times than it would on problems evoking an ordinal 

representation. On average, participants took 68.7 seconds to successfully solve 

cardinal problems, and 49.8 seconds for ordinal problems (see right graph of Fig. 7). 

Because we only considered the response times for correctly solved problems, the 

number of measures per participant could vary from 0 to 6, so we resorted to a mixed 

model analysis instead of a repeated measures ANOVA. We removed 4 participants 

who did not manage to correctly solve at least one cardinal and one ordinal problems, 

since no comparison could be made between their response times in both conditions. 

A linear mixed model with participants as a random factor and problem type (cardinal 

versus ordinal) as a fixed effect showed that the difference between cardinal and 

ordinal problems had a significant effect on response times of successfully solved 

problems (F(1,69) = 20.38, p < .001), thus supporting our second hypothesis. 
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Discussion 
As predicted, it was more difficult for participants to use the 1-step algorithm for 

cardinal than for ordinal problems, despite the 1-step algorithm being the only 

remaining possibility to find the solution. Besides, as hypothesized, when participants 

overcame the difficulty and found the solution to a cardinal problem, it required extra 

processing time, presumably attributable to the construction of a new representation 

of the situation.  

While the fourth experiment showed that the 1-step algorithm is more 

frequently used on ordinal than on cardinal problems, this fifth experiment showed 

that this effect is not the result of a mere preference but, instead, seems to be the 

consequence of strong limitations imposed by the type of quantity used. In fact, this 

effect was so pervasive that in many cases adult participants failed to see that these 

one-step subtraction problems could be solved at all. Yet, not all the participants 

failed, and some of them even managed to use the 1-step algorithm in certain cases. 

However, in order to overcome the constraints imposed by their world knowledge 

about the problem’s quantities and use a conflicting solving algorithm, the participants 

had to discard their initial representation and construct a new encoding closer to the 

problem’s mathematical structure. The existence of such a recoding step, akin to a re-

representation process (Vicente, Orrantia, & Verschaffel, 2007), was supported by the 

longer response times required on correctly solved cardinal problems. 

Once participants realize that the 3-step algorithm cannot be used given the 

available information, they might be tempted to discard these problems as unsolvable 

and move on. In the 6th experiment, we went a step further and provided participants 

with a potential solution to the problems, one that they would not usually consider. 

By giving them such a clue, we were able to assess their difficulty to construct an 

alternate encoding of the situation even when directly incited to do so. 

Experiment 6 
In this experiment, we provided participants with the 1-step solution algorithm of 

each problem and asked them to directly evaluate its validity. Because of the high 

failure rates on cardinal problems in Experiment 5, we tested the bolder hypothesis 

that providing the solution algorithm would not be sufficient to systematically foster 

an appropriate encoding of the situation by the participants. We thus hypothesized 
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that even when explicitly presented with the solution, participants would reject it 

more often in the cardinal condition than in the ordinal one since their encoding of 

cardinal problems would conflict with their solution (i.e. promoting an unusable 3-

step algorithm instead of the 1-step algorithm). Because of the need to overcome the 

initial representation, we hypothesized that the correct identification of the solution 

would require more time for cardinal than for ordinal problems. This experimental 

paradigm resembled the one used in a recent study we conducted on expert 

mathematicians (Gros, Sander & Thibaut, 2019). It differed in that here the participants 

could take as long as they wished to complete the task, whereas in Gros et al. (2019), 

participants were explicitly told to solve the problems as fast as possible, with the 

intended purpose of increasing their error rates. The absence of time constraint was 

meant to give participants the opportunity to read the problems until they were certain 

of their decision and to engage in a recoding of their initial representation if need be. 

Methods 
Participants. A total of 223 adults participated in this experiment after giving 

informed consent. They were recruited through social networks and emails. All spoke 

French fluently and none had previously participated in any similar experiment. 

Among them, 27 were removed from the analysis because they either took a break 

during the test or answered at least one of the questions in less than 5 seconds (which 

meant they did not take the time to read the problem). The analyses were performed 

on the remaining 196 participants (135 women and 88 men, M = 34.5 years, SD = 14.8 

years).  

Materials and procedure. The only difference between the present experiment and 

the previous one was the fact that a solution was proposed. Instead of having the 

participants solve the problems themselves, a solution was proposed for each 

problem, and they were asked to judge whether the provided solution was valid or 

whether the problem was unsolvable. For every problem, the question “Given the 

data provided, is it possible to find the solution?” was displayed. Two choices 

appeared below: (a) “No, we do not have enough information to solve this problem.” 

and (b) “Yes: numerical value 1 – numerical value 2 = result. Sentence presenting the 

result”. For instance, on one of the elevator problems, the option (b) was: “Yes: 11 − 

2 = 9. Karin arrives at the 9th floor.” Participants all completed the task in less than an 

hour. 
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Results 
As in Experiment 5, we first analyzed the ratio of correct answers on solvable 

problems depending on the type of quantities used. The left graph of Fig. 8 shows 

that, among the target problems, the cardinal ones had a lower success rate (63.6%) 

than the ordinal ones (88.4%). A paired t-test performed on the participants’ mean 

rate of success confirmed that this difference was significant (t(195) = 9.25, p < .001, 

d = 0.87). 

 
Fig. 9 Mean rate of correct resolution (left) and mean response time on correctly solved 

problems (right) depending on the semantic nature of the quantities used in the problems. 
Vertical bars denote .95 confidence intervals. *** p < .001 (paired t-test). 

In order to assess the validity of our second hypothesis, we analyzed the response 

times of correct answers on the target solvable problems. The 26 participants who 

did not manage to correctly respond to at least one cardinal and one ordinal problems 

were removed from this analysis, since no comparison could be made between their 

response times in both conditions. The right graph of Fig. 8 shows that providing a 

correct answer required a shorter response time for ordinal (38.6 seconds) than for 

cardinal problems (51.4 seconds). A linear mixed-model with participants as a random 

effect and the cardinal versus ordinal distinction as a fixed factor confirmed that the 

effect was statistically significant (F(1,169) = 30.28, p < .001), supporting the second 

hypothesis. 

Discussion 
This experiment, involving a solution validity assessment task, supported the effects 

observed in the previous one, involving a solution discovery task. The analyses 

indicated that even when the correct solution was provided, it was more difficult for 
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them to accept it when it was not compatible with the initial encoding of the problem. 

Despite the problems being solvable with a mere subtraction, participants went so far 

as to reject the correct solution and dismiss the problems as “unsolvable”. 

Furthermore, overcoming this difficulty required more time, thus supporting our 

prediction of the need for an extra processing step when faced with an inapt 

representation. These results suggest that the encoding effects identified in the 5th 

experiment are not restricted to the elaboration of a solving strategy, but also to the 

evaluation of its validity. This experiment provides additional evidence that the 

cardinal versus ordinal distinction constrains the encoding of problems, since even 

when no solving algorithm had to be produced by the participants, their interpretation 

precluded them from considering the given solution – albeit a single subtraction – as 

an acceptable one. 

General discussion 
Taken together, the present six experiments shed light upon the foundational part 

played by the cardinal versus ordinal distinction in adults’ reasoning about numerical 

situations. The first experiment validated our choice of materials by showing that the 

distinction between cardinal and ordinal quantities drives adults’ sorting patterns. 

Experiments 2 and 3 demonstrated that the encoding difference between cardinal and 

ordinal problems impacts participants’ success in perceiving problems as analogous, 

even when explicitly instructed to directly compare two problems. The fourth 

experiment’s findings were twofold. First, it proved that the distinction between 

cardinal and ordinal problems influences adults’ choice of a solving algorithm. 

Second, it showed that it is possible to manipulate a problem’s semantics by 

presenting cardinal quantities in a context emphasizing the ordinality of the problem’s 

values. The changes that were introduced to ordinalize the cardinal problems had an 

effect on participants’ algorithm choice, thus bolstering the importance of the cardinal 

versus ordinal distinction and strengthening the view that the encoding difference 

observed depended on the semantic dimensions manipulated in the problems. The 

fifth experiment showed that even when only one solution was available, adult 

participants had difficulties to find it when it is not compatible with what was assumed 

to be their spontaneous encoding of the problems. They were more likely to judge 

that cardinal problems cannot be solved and, when they did find the solution to a 

cardinal problem, it nonetheless required a longer reasoning time. Finally, the sixth 
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experiment demonstrated that presenting the participants with a potential solution 

did not suppress the effect observed in Experiment 5, as participants continued to 

struggle to identify the solution of cardinal problems. 

The fact that the distinction between cardinal and ordinal quantifications could 

exert a robust and pervasive effect on adults’ apprehension of numerical situations 

illustrates the foundational nature of this distinction for the human mind. Despite a 

growing body of research on the development of the notions of cardinality and 

ordinality in children, especially in learning how to count, little is known regarding 

the influence of this dimension on adult mathematical reasoning. Our understanding 

of mathematics is deeply rooted into our understanding of the world (Fischbein, 1987; 

Hofstadter & Sander, 2013; Lakoff & Nuñez, 2000) and, as a result, we tend to apply 

real-life constraints to abstract mathematical notions. Here, we showed that our 

perception of ordinality and cardinality in scenes of our daily-lives has a profound 

effect on our ability to engage in mathematical reasoning in these situations. 

Regarding mathematical problem solving, the range of content effects we have 

put forward in this paper showcase the fact that even for problems involving relatively 

elementary arithmetic operations, humans hardly manage to completely disregard 

context, and their problem-solving skills suffer from this shortcoming. However, the 

influence of world knowledge on mathematical word problem solving is not 

surprising considering that it leads to the making of inferences which are correct most 

of the times, since the surface features of situations are highly correlated with deeper 

principles, as suggested by the kind world hypothesis (Bassok et al., 2008; Blessing 

& Ross, 1996; Gentner & Medina, 1998; Goldstone, 1994; Trench & Minervino, 2015). 

Consequently, people tend to rely on those superficial cues which help them find the 

solution. Difficulties arise when the world knowledge evoked by a problem and its 

deep structure are semantically incongruent. Individuals are then bound to struggle, 

and sometimes even fail. This is especially problematic since mathematics education 

does not usually control for content effects (Bassok et al., 1998; Lee, DeWolf, Bassok, 

& Holyoak, 2016), which is partly due to mathematics being primarily considered the 

realm of abstraction (Davis, Hersh, & Marchisotto, 2011; Russell, 1903). Although 

arithmetic word problems are a central part of mathematics education and teachers 

are usually encouraged to provide real-world examples to illustrate the notions being 

taught (e.g. Richland, Stigler, & Holyoak, 2012; Rivet & Krajcik, 2008), the use of 

concrete examples to teach new notions has also been shown to have a detrimental 
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effect on transfer (Son & Goldstone, 2009; Goldstone & Sakamoto, 2003; Day, Motz 

& Goldstone, 2015). Similarly to how concreteness fading is proposed as a way to 

improve transfer by resorting to increasingly abstract examples (Fyfe, McNeil, Son, & 

Goldstone, 2014), it may be a promising route to develop a semantic congruence 

fading process using increasingly incongruent examples. In the case of the problems 

used in the current study, starting with teaching the 1-step algorithm on ordinal 

problems, then moving to hybrid problems and then to concrete problems may be a 

way to help learners acquire a better understanding of this algorithm, and 

consequently learn to use it in any situation, regardless of the semantics conveyed by 

the problem statement.  

As previously mentioned, content effects such as those revealed through the six 

experiments of this paper do not fall within the scope of the schema theory (Kintsch 

& Greeno, 1985) nor of the mental model approach (Johnson-Laird, 1983; Reusser, 

1990). For instance, Experiment 4’s results showed that participants use different 

solving algorithms to solve isomorphic problems, depending on the type of quantities 

these problems mention. In the seminal description of the schema theory, Kintsch 

and Greeno (1985) indicate that the activation of a schema to solve a problem is done 

based on the propositional structure of the problem statement. In other words, the 

relevant entities are the numerical values and the relations explicitly described in the 

problems. The model proposed by Kintsch and Greeno does not explicitly cover the 

possibility that the world knowledge evoked by the elements mentioned in a problem 

may influence solvers’ representation of the problems, nor their choice of a solving 

algorithm. Similarly, the mental model theory – as operationalized in Staub and 

Reusser’s (1995) Situation-Problem-Solver model – carries the idea that a situation 

model necessarily corresponds to the structure of the depicted situation. Thus, this 

approach struggles to account for the idea that the initial problem representation 

constructed by the solvers may vary depending on the state of their general, non-

mathematical knowledge about the elements present in the problems. Besides, the 

notion that participants may overcome their initial encoding of a problem and 

construct a new representation also falls outside of the Situation-Problem-Solver’s 

scope. In Experiments 5 and 6, participants were shown to engage in a semantic 

recoding process, akin to re-representation (Vicente, Orrantia, & Verschaffel, 2007), 

when their initial representation of the problem led to a dead end. We believe that 

the existence of these alternative problem encodings goes beyond what the Situation-
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Problem-Solver may be able to predict. The idea that an interpreted structure could 

be recoded into a new representation when necessary seems to be a crucial issue 

deserving attention for upcoming arithmetic word problem solving frameworks. 

Altogether, we believe that the results of the six experiments showing the 

influence of cardinality and ordinality on the encoding, recoding and solving of 

mathematical word problems call for the creation of a model of mathematical word 

problem solving encompassing the influence of our daily-life knowledge as well as 

the central role of semantic recoding into a more accurate depiction of the 

interpretative processes at play in mathematical reasoning.   
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Presentation 
Chapter 2 made a case for the influence of cardinal and ordinal quantities on the 

interpretation of arithmetic word problems. Building upon this work, Chapter 3 uses 

similar materials to go one step further and investigate the nature of the 

representations constructed in working memory while solving cardinal and ordinal 

problems. In particular, the recollection of problem statements is investigated, in 

parallel to the strategies developed to solve them.  

Resting upon the assumption that an individual’s representation of a problem 

is reflected in their recollection of its statement, this work investigates what makes 

ordinal representations so different from cardinal ones. Based on the hypothesized 

structure of ordinal encodings, we predict that participants will include a specific 

inference in their representation of these problems, that they will not include in a 

cardinal representation. We investigate whether participants erroneously recall or 

recognize this inference more often on one of the two types of problems.  

Experiment 1 is a recall task in which participants had to solve two problems 

before being presented with an unexpected recall task in which they had to write 

down the problem statements as accurately as possible. Experiment 2 uses a similar 

design, but with double the number of problem statements, and a cued recall 

paradigm. Experiment 3 presents participants with 18 problems to solve, and then 

unexpectedly asks them to identify experimenter-induced changes in the problems. 

In all three experiments, we predict that on ordinal problems, participants will tend 

to erroneously recall or recognize a sentence describing a piece of information that 

was not present in the problem statements, but that could be inferred from an ordinal 

representation of the situation. Recall mistakes between cardinal and ordinal problems 

are compared, and the link between participants’ algorithm use and their propensity 

to make such mistakes is investigated. 

By probing participants’ memory of the problem statements, this chapter offers 

converging evidence for the influence of cardinal and ordinal quantities on problem 

representation. Additionally, the use of problems written in French in Experiments 1 

and 2, and in English in Experiment 3 provides some indication as to the cross-

linguistic robustness of the effects demonstrated in this thesis. 
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Abstract 
Is there a fundamental difference between counting years and kilograms? Marbles and 

centimeters? Floors and euros? Recent evidence suggests that non-mathematical world 

knowledge irrelated to the mathematical structure of a problem can nevertheless 

influence its semantic encoding. To tackle this question, we created arithmetic word 

problems devised to promote contrasting encodings by featuring different quantities, 

in French and in English. We designed three experiments investigating the 

representations constructed and memorized by 302 adult participants when solving 

the problems. After an initial solving task, participants were given an unexpected task: 

either recall the problems (Experiments 1 and 2) or identify experimenter-induced 

changes in target problem sentences (Experiment 3). We predicted that the use of 

specific quantities in the problem statements was enough to lead participants to 

erroneously recall mathematical information that was not present in the problems, but 

that could be inferred from one of the two possible encodings of the situations. Results 

across all three experiments consistently indicate that participants construct and 

memorize a different problem encoding depending on the quantities involved. They 

misremembered problems involving durations, heights, or elevators by including new 

information into their problem representation. The same recall mistakes were not 

made for problems involving prices, weights or collections. This supports the claim 

that knowledge related to daily-life quantities substantially influences arithmetic 

reasoning, despite such knowledge being irrelevant for abstract reasoning. 

Keywords 

sentence recognition · semantic encoding · mental models · arithmetic problems 
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Introduction 
A recurring question in the arithmetic problem solving literature regards the nature of 

the problem representations constructed by the solvers in working memory. Be it 

through the implementation of problem schemata akin to behavioral scripts (Kintsch 

& Greeno, 1985; Schank & Abelson, 1977), the construction of mental models 

depicting the problem situation (Johnson-Laird, 1983; Staub & Reusser, 1995), or the 

abstraction of an interpreted structure describing the solvers’ interpretation of a given 

problem statement (Bassok, 2001), different theories have attempted to model the 

representational aspects of arithmetic word problem solving. In this paper, we assess 

the validity of an emerging hypothesis regarding the representation of numerical 

situations by simultaneously gathering evidence from three distinct measures of 

problem representations: strategy choice, text recall and sentence recognition.  

The hypothesis that we intend to investigate comes from prior work conducted 

by Sander and his colleagues, who have argued that the representations of numerical 

situations, especially in arithmetic word problems, tend to fall within one of two 

categories: cardinal encodings or ordinal encodings (Gamo, Sander, & Richard, 2010; 

Gros, Sander, & Thibaut, 2016, 2019; Gros, Thibaut, & Sander, 2017). The notion of 

ordinality and the notion of cardinality express two sides of numbers: their existence 

as an item in an ordered list, and their meaning as the total number of entities being 

counted. This distinction is fundamental in mathematics (Dantzig, 1945; Frege, 1980; 

Russell, 1919), especially in set theory (Dauben, 1990; Suppes, 1972), and several 

works in developmental psychology have shown that it has implications reaching 

beyond the realm of formal mathematics.  

Indeed, in the seminal research of Gelman and Gallistel (1986) on the 

development of counting in children, it was proposed that five counting principles 

need to be mastered by children in their efforts to become proficient counters. Among 

those, the “stable-order principle” refers to the development of ordinality, that is, 

knowing that the list of words used to count needs to be said in a definite and stable 

order, each word having the same predecessor and the same successor over trials. 

The “cardinal principle”, on the other hand, refers to the understanding that the final 

word of an enumeration indicates the total number of entities in the set being counted, 

thus being an indicator of the development of the notion of cardinality. Following 

this work, the development of the cardinal meaning of numbers in the early years of 
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life has been the focus of an important number of studies with children (e.g. Bermejo, 

1996; Le Corre & Carey, 2007; Sarnecka & Lee, 2009; Wynn, 1992) and the 

development of the ordinal use of numbers by pre-school children has also been 

under scrutiny in a few experimental works (Fischer & Beckey, 1990; Miller, Major, 

Shu, & Zhang, 2000; Miller, Marcovitch, Boseovski, & Lewkowicz, 2015). In recent 

years, the differences in the development of these two sides of counting procedures 

has been under direct investigation, thus showing the growing interest for this 

distinction in developmental psychology (Colomé & Noël, 2012; Meyer, Barbiers, & 

Weerman, 2016; Wasner, Moeller, Fischer, & Nuerk, 2015). However, despite the 

importance of this literature on the first steps of learning how to count, few works 

have been conducted to investigate the role that cardinality and ordinality still hold 

in adults, when conceiving of general numerical situations. 

Regarding this question, a growing body of research seems to indicate that 

even after counting procedures are acquired, there remains an ontological difference 

between the way we conceive of numbers either as order labels or as count values. 

As previously mentioned, this idea was born from Gamo et al.’s (2010) work on 

problems sharing the same mathematical structure but admitting two distinct solving 

algorithms. They showed that participants’ choice of solving algorithms depended on 

whether the problems featured quantities that could be represented along an ordered 

axis, such as a timeline (duration problems) or whether they used quantities that we 

tend to conceive of as unordered count values (number-of-people problems and price 

problems). Indeed, in their experiment, a timeline representation of the situation 

made it possible to perceive the relevance of the shortest algorithm to solve the 

problems, whereas a cardinal representation of the situation only let solvers use the 

longer algorithm involving more steps (Gamo et al., 2010). This difference was 

attributed to the idea that a timeline encoding lets solvers make a specific type of 

inference that can hardly be made with a cardinal encoding. Consider, for instance, 

the following problem:  

Paul has 8 red marbles. He also has blue marbles. In total, Paul has 14 marbles. 

Jolene has as many blue marbles as Paul, and some green marbles. She has 3 

green marbles less than Tom has red marbles. How many marbles does Jolene 

have? 

This problem involves counting marbles, and thus emphasizes the cardinal nature of 

the numbers it features. There is no reason to mentally line up the marbles in a 
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specific order, and thus we tend to think of the marbles of different colors as distinct, 

autonomous entities organized as subsets to be combined. Participants thus tend to 

consider that the only way to calculate the number of marbles that Jolene has is to 

calculate the number of blue marbles she has and add it to the number of green 

marbles she has. That is, most participants use a 3-step algorithm to solve this 

problem: 14  ̶  8 = 6; 8  ̶  3 = 5; 6 + 5 = 11. They identify that Jolene has 6 blue marbles 

and 5 green marbles, thus adding up to 11 marbles in total. On the other hand, 

consider the following duration problem:  

The construction of the palace took 8 years. Plans for the construction were 

made beforehand. The construction of the palace was completed in year 14. 

The construction of the castle started at the same time as the construction of 

the palace. The construction of the castle took 3 years less than the 

construction of the palace. When was the construction of the castle completed? 

This problem has the same mathematical structure as the marble problem, but because 

it involves duration values instead of marble counts, we tend to conceive of the 

described situation as being ordered along a timeline. The different entities are not 

represented as parts and wholes, but as states and transitions along an axis (Gamo et 

al., 2010). This lets us see that there is a much shorter solving algorithm to be found: 

14  ̶  3 = 11. This algorithm could also have been used to solve the marble problem, 

but participants rarely manage to do so. Indeed, using the 1-step algorithm on the 

marble problem would require making the inference that since Tom and Jolene both 

have the same number of blue marbles, then there is no need to calculate this number, 

nor to calculate how many green marbles Jolene has. Instead, one needs to infer that 

since Jolene has 3 green marbles less than Tom has red marbles, and since they both 

have the same number of blue marbles, then Jolene simply has 3 marbles less than 

Tom in total. On the duration problem, on the other hand, a timeline representation 

allows for direct comparison of the time it took to build the palace and the time it 

took to build the castle. The salience of this comparison makes it easier to infer that 

since both constructions started at the same time, and since the construction of the 

castle took 3 years less than the construction of the palace, then the construction of 

the castle was completed 3 years before the construction of the palace. In other words, 

in both problems it is unnecessary to calculate the value of the common part to find 

the solution. Fig. 1 describes the deep mathematical structure shared by these two 

problems, as well as the representations that are thought to be constructed, resulting 



 

 
TROUBLE DOWN MEMORY LANE | 151 

 

C
HA

PT
ER

 3
 

in different solving algorithms being used. In order to use the 1-step algorithm “Whole 

1 – Difference = Whole 2”, one needs to understand that the difference described 

between Part 1 et Part 3 is equal to the difference between Whole 1 and Whole 2. 

According to the solving algorithms used by participants, this inference is significantly 

easier to make on ordinal than on cardinal problems (Gamo et al., 2010). 

 
Fig. 1 Graphical summary of the encoding differences between cardinal and ordinal problems. 

Subsequent works on problems admitting multiple solving algorithms revealed that 

different ordinal quantities (durations, height, floors) and different cardinal quantities 

(collections of elements, price weight) could replicate this effect on algorithm choice 

(Gros et al., 2016; Gros, Thibaut, & Sander, 2015). Additionally, results from a drawing 

task with children and adults in Gros et al. (2016) brought converging evidence 

regarding the cardinal versus ordinal nature of the problems’ representation 

underlying the algorithm choice. This distinction was even shown to affect expert 

mathematicians in their assessment of the solvability of cardinal problems (Gros et 

al., 2019). In this paper, we intend to demonstrate that the difference between cardinal 

and ordinal quantities is so substantial that it influences the very representations 

stored in memory and can lead to the formation of false memories by the participants. 

Since no means of direct investigation of the representations themselves are 

available, we believe that text recall tasks and sentence recognition tasks can bring 

valuable information regarding the nature of the representations built: if there is 

indeed an ontological difference between the representations we encode of ordinal 

and cardinal situations, then this difference should result in different encodings being 
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constructed and memorized. We strove to assess the validity of this claim by 

evaluating the presence of specific inferences that can only be drawn from the 

problem text if participants encode an ordinal representation of the situation. Indeed, 

previous works on text comprehension suggest that sentences from which inferences 

can be drawn may mislead participants both in recognition (Bransford & Johnson, 

1973; Kintsch & Bates, 1977; Kintsch, Welsch, Schmalhofer, & Zimny, 1990; Noordman 

& Vonk, 2015) and in recall tasks (Black & Bern, 1981; Corbett & Dosher, 1978; 

Kintsch & Van Dijk, 1978; Sulin & Dooling, 1974). In Bower, Black and Turner’s (1979) 

famous work on the importance of scripts in text comprehension, it was shown that 

participants tended to infer actions that were not explicitly described in the text but 

that were coherent with the scenario depicted by the text. Those inferences then led 

participants to erroneously recall events that were never described in the text, with a 

surprisingly high degree of confidence in their recalls. Here, we predicted that the 

implicit inferences drawn from one of the two possible encodings of the problems 

would lead participants to erroneously remember pieces of information which were 

not initially present in the problems, but which could be inferred from an ordinal 

representation of the situation.  

Our work thus builds on previous paradigms using recognition tasks to 

evaluate which inferences were included in participants’ representation of a given 

situation. For instance, in one of their experiments, Mani and Johnson-Laird (1982) 

designed a task to investigate participants’ mental representation of spatial 

descriptions. They presented participants with 4-sentence descriptions of spatial 

configurations of the form “A is to the left of B. C is to the right of B. D is in front of 

A. E is in front of B.” Participants had to evaluate whether specific diagrams respected 

the configuration described in the previous statement. After the task, participants were 

presented with an unexpected recognition task in which they had to identify among 

a series of 4-sentence statements which were the ones they had been presented 

before, and which were new statements previously unseen. The authors used three 

types of test statements: some were identical to the ones previously seen, some 

described different spatial configurations from the ones previously seen, and some 

presented a spatial configuration that was inferable from the statements previously 

seen, although the propositional structure of the text itself was different. Interestingly, 

the authors showed that the statements presenting an inferable spatial configuration 

tended to be erroneously recognized more often than the ones presenting a different 



 

 
TROUBLE DOWN MEMORY LANE | 153 

 

C
HA

PT
ER

 3
 

spatial configuration. In other words, participants tended to base their recognition of 

the texts on the mental model they had constructed of the problems, instead of only 

using the verbatim text as a basis for recognition. This property of text recognition is 

especially relevant to our study, as it indicates that misremembrance can inform on 

the representations constructed by the participants. 

In a similar spirt, Verschaffel (1994) used a solving task followed by a retelling 

task to investigate the nature of the representations constructed by fifth graders when 

solving arithmetic word problems. They found that children tended to reword 

inconsistent problems and retell them as consistent problems, thus failing the retell 

task, whereas they did not perform such rewording on already consistent problems. 

This was interpreted as a clear indicator that children’s mental representation of the 

problems differed from their exact wording. In 1995, Hegarty, Mayer, and Monk made 

another attempt to investigate the representations constructed by individuals engaged 

in arithmetic word problems solving. They conducted a problem solving task followed 

by a text recall task and a text recognition task to evaluate which participants 

constructed a problem model. They showed that the more successful solvers tended 

to make a lower number of semantic mistakes but a higher number of literal mistakes 

than the less successful solvers. The authors interpreted this finding as proof that the 

more proficient participants had constructed a problem model, since they recalled the 

semantic structure of the problems successfully, but were less accurate in recalling 

the exact wording of the problems. On the other hand, the less proficient participants 

likely did not construct a problem model, since they recalled the problems wording 

accurately but made more mistakes with regards to their semantic structure. However, 

it has been argued since then that problems that are failed are unlikely to be 

recognized (Cummins, Kintsch, Reusser, & Weimer, 1988), which suggests that the 

answers of the less proficient solvers could not be interpreted as proof that they did 

not construct a problem model (Thevenot, 2010).  

More recently, another study using a text recognition task replicated this 

finding in the field of arithmetic word problem solving (Thevenot, 2010). The author 

asked participants to solve a series of problems, and then presented them with an 

unexpected recognition task. Ingeniously, she used three different types of problems 

in the recognition task: (i) problems identical to the original problems, (ii) new 

problems mathematically inconsistent with the original ones despite differing by only 

one or two words, (iii) paraphrastic problems mathematically consistent with the 
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original problems despite differing by a total of three words. Results revealed that the 

paraphrastic problems were more often erroneously recognized than were the new 

inconsistent problems, despite the latter differing by a lower number of words from 

the original problems. This indicated that participants had constructed and memorized 

a representation of the problems that depended on the structure of the situations they 

described rather than on their precise wording.  

Building upon these previous studies on text recognition and text recall, our 

goal in the present study was to show that the representations constructed while 

solving arithmetic word problems vary significantly depending on the cardinal versus 

ordinal nature of the quantities they feature, to the point that performance on problem 

recall and problem recognition tasks are directly influenced by this distinction. More 

precisely, we predict that the distinction between problems using cardinal quantities 

and problems using ordinal quantities will be so consequential to the solvers that it 

will be reflected in their reminiscence of the problems, leading them to construct false 

memories based on their interpretation of the situation. In this perspective, we 

designed three experiments in which we presented participants with a solving task 

followed by an unexpected task scrutinizing their recollection of the problems. In the 

first two experiments, the solving task was followed by an unexpected recall task in 

which participants had to write down the problems they just solved from memory. 

We expected participants to make specific mistakes in the recall task on ordinal 

problems but not on cardinal problems, due to additional information being 

automatically inferred from ordinal representations but not from cardinal 

representations. In a third experiment, we presented participants with an unexpected 

sentence recognition task, in which they had to decide whether target sentences were 

included in the problems they previously solved, or whether these sentences had 

been modified by the experimenter. We expected participants to be more likely to 

erroneously recognize modified sentences of ordinal than of cardinal problems, due 

to the modified version presenting information that might have been automatically 

inferred from an ordinal representation but not from a cardinal representation. The 

first two experiments were conducted in French, the third one in English. 
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Experiment 1 
Experiment 1 was a first attempt to gather evidence regarding the inferences that can 

be drawn from an ordinal representation but not from a cardinal representation. We 

formulated three hypotheses regarding the solving task and the problem recall task. 

First, during the solving task, we predicted that we could replicate the results from 

Gros et al. (2017), meaning that due to the different representations of the problems, 

participants’ ability to use the shortest algorithm would depend upon the cardinal 

versus ordinal nature of the problems: participants should have an easier time using 

the 1-step algorithm on duration problems than on collection problems. Second, 

regarding the unexpected recall task, we formulated a hypothesis pertaining to the 

type of recall mistakes made by the participants. We assumed that if participants 

constructed on ordinal representation of the situation, then they would be more likely 

to make an automatic inference regarding the difference mentioned in the problems. 

Precisely, while the 5th sentence of the problems always introduced a difference 

between Part 3 and Part 1 (e.g. “Jolene has 2 green marbles less than Tom has red 

marbles” in a cardinal problem or “The construction of the castle took 2 years less 

than the construction of the palace” in an ordinal problem) we predicted that an 

ordinal representation would make it easy to infer that this difference was equal to 

the difference between Whole 2 and Whole 1 whereas the same inference would be 

harder to make when a cardinal representation was constructed. Participants would 

thus integrate this inference into their representation of ordinal problems (e.g. “The 

construction of the castle ended 2 years before the construction of the palace”), but 

not cardinal problems (e.g. “Jolene has 2 marbles less than Tom”). This piece of 

knowledge is not directly present in the problem statement, but can be inferred from 

the pieces of information provided. Thus, we made the hypothesis that participants 

would tend to erroneously recall a sentence describing a difference between Whole 

2 and Whole 1 instead of the original sentence describing the difference between Part 

3 and Part 1, more often on ordinal than on cardinal problems. Finally, we made the 

hypothesis that this type of recall mistake would be more likely to occur on problems 

solved using the 1-step algorithm, denoting an ordinal encoding, than on problems 

solved using the 3-step algorithm. 
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Method 
Participants. Participants were recruited online through social networks and mailing 

lists. They participated voluntarily without any monetary incentive. It was decided 

that the survey would be closed 2 weeks after its online broadcast. Out of the 140 

people who participated, 13 left at least one of the questions unanswered and were 

subsequently excluded from our dataset. The analyses were conducted on the 

remaining 127 participants (81 women, mean age = 33.39 years, SD = 8.15). 

Participants all spoke French fluently.  

Materials. The materials constructed were based on previous works focusing on the 

difference between cardinal and ordinal encodings (Gamo et al., 2010; Gros et al., 

2017). To maximize the encoding difference between the problems, we selected our 

materials from the two most stereotypical quantities used in Gros et al. (2017): 

collection problems (see Table 1., column A.) and duration problems (see Table 1., 

column B.). We used a within-subject design to allow for within-subject comparisons 

between responses on cardinal and on ordinal problems. Each participant was 

presented with one randomly chosen cardinal problem (a collection problem) and 

one randomly chosen ordinal problem (a duration problem).  All the problems were 

isomorphs and the numerical values used were randomized across problems, 

according to the following rule: 15 ≥ Whole 1 > Part 1 > 4 > Difference ≥ 2. 

Table 1 Cardinal and ordinal problem statements used in Experiment 1. 

A. Cardinal problems B. Ordinal problems 
Paul has 5 red marbles. 
He also has blue marbles. 
In total, Paul has 14 marbles. 
Jolene has as many blue marbles as Paul, 
and some green marbles. 
She has 2 green marbles less than Tom has 
red marbles. 
How many marbles does Jolene have? 

Sofia travelled 5 hours. 
Her trip started during the day. 
Sofia arrived at 14 h. 
Fred left at the same time as Sofia. 
Fred's trip lasted 2 hours less than Sofia's. 
What time was it when Fred arrived? 

Sarah owns 5 goldfish. 
Her other pets are all iguanas. 
In total, she owns 14 pets. 
Bobby is pet-sitting Sarah's iguanas during 
the holidays, he puts them with his pet 
turtles. 
Bobby owns 2 turtles less than Sarah owns 
goldfish. 
How many pets are there at Bobby's? 

The construction of the palace took 5 years. 
Plans for the construction were made 
beforehand. 
The construction of the palace was completed 
in year 14. 
The construction of the castle started at the 
same time as the construction of the palace. 
The construction of the castle took 2 years less 
than the construction of the palace. 
When was the construction of the castle 
completed? 
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Procedure. This experiment was conducted online using the Qualtrics platform for 

online experiments. On the first page, the instructions read: 

On the next page, you will find an arithmetic problem. Please take the time to 

read it carefully. Your task is to try to solve the problem using as few 

operations as possible. We ask that you take enough time to read and 

understand the problem, as this is not a speed test. Remember that the goal is 

to solve the problems using as few operations as possible. Type down every 

operation(s) that you used to come up with the solution, even the simplest 

one(s) that you can mentally calculate. For instance, the computation “15 – 6 

– 2 = 7”, should not be written as a unique operation, but broken down as “15 

− 6 = 9” and “9 − 2 = 7”, which then count for two operations. (translated from 

French).  

On the next page, a problem was presented, either evoking a cardinal encoding 

(collection problem) or an ordinal encoding (duration problem). Along with the 

problem statement, the instructions to solve the problem using as few operations as 

possible were reminded to the participants. Below the problem a text box allowed 

participants to write down the operation(s) they used, and another text box was used 

to write down the problem’s solution. On the next page, the initial instructions were 

repeated, and another problem followed. Depending on which problem participants 

had been presented initially, the second problem was chosen to evoke a different 

encoding. In other words, if participants had to solve a cardinal problem first, then 

the second problem was ordinal. Problem order was randomized between 

participants. When participants had solved both problems, they were presented with 

an unexpected recall task. They were told that they had to recall as precisely as 

possible the text from the first of the two problems. They were instructed to write 

everything they remembered about the problem statement as faithfully as possible. 

After they had completed this task, the next page asked them to write down the text 

of the second problem they had to solve. In average, participants completed the 

experiment in 19 minutes and 26 seconds. 

Results 
First, we analyzed participants’ answers to the solving task. In 95.21% of the cases, 

the algorithms used by the participants to solve the problems could easily be inferred 

from their report of the operations they used to solve the problems. The 4.79% of 

cases where the algorithm could not be directly inferred from their response (correct 
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response provided with no operation leading to it) were classified as “unindentified” 

(see Fig. 2). 

 
Fig. 2 Strategy distribution depending on the quantities used in the problems. 

The identifiable responses were either classified as “1-step algorithm” (successful use 

of the shortest algorithm), “3-step algorithm” (successful use of the longest algorithm) 

or “error” (wrong operations leading to a false answer). The distribution of the 

participants’ solving strategies depending on the ordinal versus cardinal nature of the 

problems is described in Fig. 2. We used a generalized linear mixed model (GLMM) 

with a binomial distribution to evaluate how likely participants were to use the 1-step 

algorithm on cardinal and on ordinal problems. We chose the successful use of the 

1-step algorithm as the dependent variable and the semantic nature (cardinal versus 

ordinal) of the problems as a fixed effect. We accounted for each participant solving 

each type of problem by including a random effect for each respondent. We 

performed the analyses using R (R Core Team, 2019) and lme4 (Bates, Maechler, 

Bolker, & Walker, 2015). The model successfully converged, with a total explanatory 

power of 49% (conditional R²). As in Gamo et al. (2010), and Gros et al. (2017), the 

participants were considerably more likely to discover the 1-step algorithm on ordinal 

problems (51.22%) than they were on cardinal problems (12.60%); z = 4.67, p < .001. 
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 Second, in order to investigate the nature of the representations encoded by 

the participants on each type of problem, we analyzed the problem statements they 

tried to recall. Namely, we studied whether participants had misremembered the 5th 

sentence of the problems describing the difference between Part 1 and Part 3 (see 

Fig. 1). For each problem recalled, we noted whether the participants had erroneously 

recalled a sentence describing the difference between Part 1 and Part 3 as a difference 

between Whole 1 and Whole 2 instead (a whole-to-whole inference recall mistake). 

In other words, for the marble problem, we evaluated how often participants recalled 

“Jolene has x marbles less than Tom” (part-to-part difference) instead of the correct 

sentence “Jolene has x green marbles less than Tom has red marbles” (whole-to-

whole difference). For the duration problem presented before, we evaluated how 

often participants recalled a sentence stating “The construction of the castle ended 3 

years before that of the palace” instead of the correct sentence “the construction of 

the castle took 3 years less than that of the palace.”  

Table 2 Distribution of participants’ erroneous whole-to-whole recalls on cardinal and ordinal 
problems. 

  Ordinal problems 

  No whole-to-whole 
difference recalled 

Whole-to-whole 
difference 

erroneously recalled 

Cardinal 
problems 

No whole-to-whole 
difference recalled 106 20 

Whole-to-whole 
difference 

erroneously recalled 
1 0 

 

Table 2 presents the contingency table indicating the distribution of participants’ 

whole-to-whole recall mistakes on cardinal and on ordinal problems. Participants 

recalled this inference instead of the proper problem phrasing of the problems in 

15.78% of the ordinal problems, whereas they only made this mistake in 0.79% of the 

cardinal problems. Due to the extremely low number of participants (1 out of 127) 

who erroneously recalled a sentence indicating a whole-to-whole difference on a 

cardinal problem, the comparison between cardinal and ordinal problems could not 

be done using variance analysis. Instead, we performed a McNemar test between 

these two conditions (χ²(1, N = 127) = 15.43, p < .001), which indicated that the 

semantic nature of the problems (ordinal versus cardinal) had a significant impact on 

the rate of whole-to-whole sentences being erroneously recalled by participants, as 

hypothesized. 
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Finally, we investigated which algorithms used in the solving task were the most likely 

to lead participants to make the erroneous whole-to-whole inference in the recall 

task. Interestingly, the only occurrence in which a participant had used the 3-step 

algorithm prior to making the erroneous whole-to-whole inference was also the only 

occurrence where a participant made this recall mistake on a cardinal problem. The 

other cases in which a participant erroneously recalled a sentence evoking the whole-

to-whole inference mostly regarded problems solved using the 1-step algorithm 

(71.43% of the recall mistakes), although a small portion of the whole-to-whole recall 

mistakes were attributable either to answers that were insufficiently detailed to be 

interpreted (unidentified answers: 9.52%) or to errors in the solving task (14.29%) (see 

Table 3).  

Table 3 Strategies leading to the erroneous recall of whole-to-whole sentences 

 No whole-to-whole 
difference recalled 

Whole-to-whole difference 
erroneously recalled 

1-step algorithm 64 15 
3-step algorithm 123 1 

Error 32 3 
Unidentified answer 14 2 

Discussion 
This experiment provides insights into the problem representations constructed by 

the participants. First, it replicated and extended Gamo et al.’s (2010) finding by 

showing that the choice of a solving algorithm was directly dependent on the cardinal 

versus ordinal nature of the quantities used in the problem; which was a clear 

indicator that different problem representations had been constructed. Participants 

had been explicitly instructed to use the shortest algorithm they could think of, using 

as few operations as possible, but only 12.60% of them managed to find the 1-step 

algorithm on cardinal problems, whereas more than half of them used the 1-step 

algorithm to solve the ordinal problems.  

Second, the analysis of the recall mistakes made by the participants in the recall 

task provided new insights regarding the nature of the representations constructed by 

the participants. As hypothesized, participants were more likely to misremember the 

sentence describing the difference between Part 1 and Part 3 as a difference between 

Whole 1 and Whole 2 on ordinal problems (20 participants) than on cardinal problems 

(only one participant). Despite being mathematically valid, this piece of information 

regarding the difference between Whole 1 and Whole 2 was not directly present in 

the original problem statements; participants had to infer it from the situation 
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described. The fact that participants were significantly more likely to assume that the 

difference was presented between Whole 1 and Whole 2 on the original ordinal 

problems indicates that this inference was automatically made and was included in 

their representation of the situation. In other words, it supports the hypothesis that 

ordinal axis-based representations let the solvers understand that if two events start 

at the same time and one is x years shorter than the other, then it follows that one 

ends x years before the other (see Fig. 1). This inference is easy to make when the 

problem’s values are ordered along the same oriented axis. On the other hand, this 

inference is much harder to make on cardinal representations, since it requires 

understanding that the cardinality difference between the differing parts of two 

overlapping set is equal to the cardinality difference between the two sets (see Fig. 

1).  

Third, the vast majority of participants who erroneously recalled the difference 

as a difference between wholes instead of a difference between parts did so after 

solving the problems using the 1-step algorithm. Indeed, none of the participants who 

had solved the ordinal problem using the 3-step algorithm did this mistake. This 

corroborates the assumption that both the algorithm choice and the misremembrance 

of the fifth sentence are converging indicators of the nature of the representations 

constructed by the participants. Overall, this experiment showed that the differences 

between the encoding of cardinal and ordinal problems were so potent that they 

tampered with participants’ recollection of the problem statements. Participants falsely 

remembered sentences that were not present in the problems, due to the altered 

representation they had constructed. However, the task presented to the participants 

was relatively easy, and few recall mistakes were made in the recollection task. In an 

attempt to increase the task difficulty while assessing the replicability of the 

differences observed, we designed a second experiment in which we doubled the 

number of problems to solve and recall. 

Experiment 2 
This second experiment attempted to replicate the first experiment’s findings in a 

slightly different setting, using a higher number of problems to increase task difficulty. 

The hypotheses were the same as in Experiment 1, since the goal was to identify 

whether participants would still recall a greater number of whole-to-whole inferences 

on ordinal than on cardinal problems. 
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Method 
Participants. Participants were students from a second-year university psychology 

class at the University of Bourgogne. They participated in exchange for course credit. 

A total of 104 students participated in the experiment. One participant was excluded 

from the analysis due to all of their answers being insufficiently detailed to be 

interpreted. The analyses were conducted on the remaining 103 participants (72 

women, mean age = 20.43 years, SD = 1.43). Participants all spoke French fluently.  

Materials. The problems used in this experiment were the same as those used in 

Experiment 1, the difference being that every participant was asked to solve the 4 

problems, instead of 2 problems being randomly selected.  

Procedure. The experiment was conducted collectively, in a university classroom. 

Each participant was given a 5-page booklet with the following instructions written 

on the front page:  

You will find an arithmetic problem on each page of this booklet. Your task is 

to solve the problems using as few operations as possible. You can use the 

‘draft’ area, but please copy in the ‘response’ area all the operations that you 

used to come up with the solution. We ask that you take enough time to read 

and understand each of these problems, as this is not a speed test. Remember 

that the goal is to solve the problems using as few operations as possible. For 

every problem, we ask that you write down every operation(s) that you used 

to come up with the solution, even the simplest one(s) that you can mentally 

calculate. For instance, the computation “15 – 6 – 2 = 7”, should not be written 

as a unique operation, but broken down as “15 − 6 = 9” and “9 − 2 = 7”, which 

then count for two operations. (translated from French).  

The four following booklet pages were divided in three parts: the problem statement, 

the “draft” area and the “response” area. Problem order was randomized across 

booklets, and so were the numerical values used in the problems. When participants 

were done solving the problems, their booklets were collected, and new booklets 

were, then, handed out to them. Here, the instructions read “On the following pages, 

you will be asked to recall the text of the problems you just solved. Try to write down 

the problem statements as faithfully as possible, from memory.” (translated from 

French). Then, on each following page the recall of a specific problem statement was 

cued using a sentence describing the theme of the problem. For example: “Try to 

write down, from memory, the text of the 1st problem you had to solve, about Tom 
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and Jolene’s marbles.” (translated from French). The first problem had to be recalled 

first, and the second problem last, in order to avoid any recency effect. The first and 

second sets of booklets were matched so that the recall order was identical to the 

order in which the problems had been presented in the solving task. 

Results 
As in Experiment 1, we studied participants’ response both in the solving task and in 

the problem recall task, to investigate the differences between their representations 

of cardinal and ordinal problems. In 98.79% of the cases, the algorithms used by the 

participants to solve the problems could easily be inferred from their report of the 

operations they used to solve the problems. Their responses were either classified as 

“1-step algorithm” (successful use of the shortest strategy), “3-step algorithm” 

(successful use of the longest strategy) or “error” (failure to use any relevant algorithm 

to solve the problem). The 1.21% of answers that were not detailed enough to be 

analyzed were classified as “unidentified”. The distribution of the participants’ solving 

strategies depending on the ordinal versus cardinal nature of the problems is 

described in Fig. 3. As in Experiment 1, we used a generalized linear mixed model 

with a binomial distribution to evaluate how likely participants were to use the 1-step 

algorithm on cardinal and on ordinal problems. The successful use of the 1-step 

algorithm was the dependent variable and the semantic nature (cardinal versus 

ordinal) of the problems was a fixed effect. We accounted for each participant solving 

each type of problem by including a random effect for each respondent. The model 

successfully converged and accounted for 83% of the total variance (conditional R²). 

As expected, the participants were considerably more likely to discover the 1-step 

algorithm on ordinal problems (60.19%) than they were on cardinal problems 

(15.53%); z = 6.49, p < .001. 
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Fig. 3 Strategy distribution depending on the quantities used in the problems. 

 

Table 4 presents the contingency table indicating the distribution of erroneous recalls 

of a whole-to-whole difference instead of the part-to-part difference on cardinal and 

on ordinal problems. As in Experiment 1, erroneously recalling a whole-to-whole 

difference was interpreted as a sign that participants had made the inference that the 

difference between the parts was equal to the difference between the wholes, which 

was favored by an ordinal encoding but not by a cardinal encoding. Participants 

recalled this inference instead of the proper problem phrasing of the problems in 

9.71% of the ordinal problems, whereas they never once made this recall mistake on 

the cardinal problems. Because no participant recalled a whole-to-whole difference 

instead of the part-to-part difference present in the cardinal problems, we used an 

exact McNemar test to analyze the difference between the recall mistakes on cardinal 

and ordinal problems. The test indicated that the semantic nature of the problems 

(ordinal versus cardinal) had a significant impact on the rate of whole-to-whole 

sentences being erroneously recalled by the participants (χ²(1, N = 103) = 13.07, p < 

.001). 
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Table 4 Distribution of participants making at least one erroneous whole-to-whole recall on 
cardinal or ordinal problems 

  Ordinal problems 

  
No whole-to-

whole difference 
recalled 

Whole-to-whole 
difference 

erroneously recalled 

Cardinal 
problems 

No whole-to-whole 
difference recalled 88 15 

Whole-to-whole difference 
erroneously recalled 0 0 

 

Finally, we studied which of the strategies used in the problem solving task were the 

most likely to lead participants to erroneously recall a whole-to-whole sentence. Since 

no participant recalled a whole-to-whole sentence on any cardinal problems, all the 

cases of erroneous inferences came from ordinal problems. Table 5 details the 

algorithms used prior to misremembering the problems. Interestingly, no use of the 

3-step algorithm was ever followed by a whole-to-whole recall mistake. Instead, 90% 

of the recall mistake came from the use of the 1-step algorithm, 5% were associated 

with failure to solve the problem in the first place, and 5% were made by participants 

whose answer on the solving task could not be interpreted for lack of detail.  

Table 5 Strategies leading to the erroneous recall of whole-to-whole sentences 

 No whole-to-whole 
difference recalled 

Whole-to-whole difference 
erroneously recalled 

1-step algorithm 138 18 
3-step algorithm 211 0 

Error 39 1 
Unidentified answer 4 1 

Discussion 
This second experiment replicated and extended the findings of Experiment 1. In the 

solving task, participants remained more prone to use the 1-step algorithm on ordinal 

than on cardinal problems. In the recall task, the effect observed in Experiment 1 was 

also replicated. In fact, the distinction between cardinal and ordinal problems was so 

decisive that out of the 206 attempts to recall a cardinal problem, not a single one led 

to the erroneous recall of a sentence describing a whole-to-whole difference. The 

recall of ordinal problems, on the other hand, included this recall mistake about once 

every 10 trials. This suggests that the differences in the representations encoded by 

the participants significantly influenced their answers on both tasks in this experiment 

as well. Finally, the analysis of the solving strategies preluding the erroneous recall 
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of a whole-to-whole difference supported the hypothesis of different representations 

being encoded. Indeed, 90% of the recall mistakes followed the use of the shortest 

algorithm, whereas strictly none of the erroneous recalls were preceded by the use 

of a 3-step algorithm. Thus, the results supported the link between participants’ 

representations of the numerical situations, their use of a specific solving algorithm 

and their recall of the texts. In fact, the correlation between their choice of a solving 

algorithm and their propensity to make a recall mistake shows that the recall mistakes 

cannot be attributed to a difference in wording between cardinal and ordinal 

problems. Indeed, ordinal problems were solved using the 3-step algorithm in 29.1% 

of the cases, but none of the recall mistakes followed the use of this algorithm. 

 Experiments 1 and 2 relied on participants’ tendency to make specific mistakes 

in their attempts to spontaneously recall the problems. The main benefit of this 

experimental paradigm is that it allows us to investigate the representations that 

participants constructed, memorized and freely recalled. There was however one 

aspect on which Experiment 2 fell short: by doubling the number of problems, we 

were hoping to increase the task difficulty and thus increase the number of recall 

mistakes. Yet, participants made fewer recall mistakes in this task. A possible 

explanation for this is the fact that the experimental setting in this experiment (a 

university classroom) was arguably more conducive to concentration than the online 

survey used in Experiment 1. Overall, the task remained relatively easy and the 

number of participants making a recall mistake on the 5th sentence was relatively low. 

In order to address exactly how often participants construct a representation including 

the whole-to-whole inference, we designed a third experiment involving a sentence-

recognition task. By asking participants to identify experimenter-induced changes in 

the fifth sentence of the problem statements, we hope to more directly measure their 

acceptance of sentences presenting a whole-to-whole inference, thus gaining further 

insights into the nature of their representations. 

Experiment 3 
In this third experiment, we used a sentence-recognition paradigm to directly 

investigate whether participants’ representations included the whole-to-whole 

difference. Instead of recording participants’ spontaneous mistakes in a recall task, 

we gave them target sentences presenting the difference in the problems either as a 

part-to-part difference or as a whole-to-whole one. For this last experiment, we 
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recruited English-speaking participants both for practical reasons and to strengthen 

the cross-linguistic robustness of the effects described in the first two experiments. 

Method 
Participants. We recruited 80 participants residing in the United States through the 

Amazon Mechanical Turk website. Due to several participants showing difficulty to 

formulate basic English sentences in their answers, we removed from the analyses the 

10 participants who were not native English speakers. Additionally, we removed 3 

participants who successfully solved less than 17% of the problems, thus showing 

poor attention during the task. The analyses were conducted on the remaining 67 

participants (26 women, mean age = 39.18, SD = 10.85). 

Materials. In this third experiment, problems were written in English. Since the 

overall rate of erroneous recall was relatively low in the previous two experiments, 

we used a higher number of problems to increase the task difficulty. The 12 problems 

created in Gros et al. (2017) were used in this experiment. We added 6 new problems 

to create a pool of 18 problems to choose from. Each participant was presented with 

the 18 problems. In order to limit the repetitiveness of the task for the participants, 

we varied the quantities used in the different problems: the pool of ordinal problems 

was composed of 3 duration problems, 3 height problems and 3 elevator problems, 

whereas the pool of cardinal problems was composed of 3 collection problems, 3 

price problems and 3 weight problems. Each these quantities had been previously 

tested and approved in previous experiments investigating the role of the cardinal 

versus ordinal dimension (Gros et al., 2017, 2019). We used a within-subject design 

to allow for within-subject comparisons between performance on cardinal and on 

ordinal problems. 

 In the recognition task, two types of problem statements were presented to 

the participants: problem statements identical to the original ones, and problem 

statements in which one sentence had been slightly modified to present the difference 

as a whole-to-whole difference instead of the part-to-part difference in the original 

wording. Both versions of each cardinal problem are presented in Table 6, and both 

version of each ordinal problem are presented in Table 7. 
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Table 6 Ordinal problem statements used in the solving task (Original) and in the recognition 
task (Original + Modified). Changes were systematically introduced in the 5th sentence. The 

problems’ numerical values varied between participants. 

Original problem statement Modified problem statement 

Sofia travelled 5 hours. 
Her trip started during the day. 
Sofia arrived at 11 h. 
Fred left at the same time as Sofia. 
Fred's trip lasted 2 hours less than Sofia's. 
What time was it when Fred arrived? 

Sofia travelled 5 hours. 
Her trip started during the day. 
Sofia arrived at 11 h. 
Fred left at the same time as Sofia. 
Fred arrived 2 hours before Sofia. 
What time was it when Fred arrived? 
 

The construction of the palace took 5 years. 
Plans for the construction were made 
beforehand. 
The construction of the palace was 
completed in year 13. 
The construction of the castle started at the 
same time as the construction of the palace. 
The construction of the castle took 2 years 
less than the construction of the palace. 
When was the construction of the castle 
completed? 

The construction of the palace took 5 years. 
Plans for the construction were made 
beforehand. 
The construction of the palace was 
completed in year 13. 
The construction of the castle started at the 
same time as the construction of the palace. 
The construction of the castle was completed 
2 years before the palace. 
When was the construction of the castle 
completed? 
 

Rose took painting lessons for 5 years. 
She started at a certain age. 
Rose stopped attending painting lessons at 
age 14. 
Ted started taking painting lessons at the 
same age as Rose. 
He attended painting lessons for 3 years less 
than Rose. 
How old was Ted when he stopped 
attending painting lessons? 

Rose took painting lessons for 5 years. 
She started at a certain age. 
Rose stopped attending painting lessons at 
age 14. 
Ted started taking painting lessons at the 
same age as Rose. 
He stopped attending the lessons 3 years 
before Rose. 
How old was Ted when he stopped 
attending painting lessons? 
 

Naomi took the elevator and went up 7 
floors. 
She left from the floor where her 
grandparents live. 
She arrived to the 15th floor. 
Her brother David also took the elevator 
from their grandparents' floor. 
He went up 3 floors less than Naomi. 
What floor did David arrive to? 

Naomi took the elevator and went up 7 
floors. 
She left from the floor where her 
grandparents live. 
She arrived to the 15th floor. 
Her brother David also took the elevator 
from their grandparents' floor. 
He arrived 3 floors below Naomi. 
What floor did David arrive to? 
 

Katherine took the elevator and went up 7 
floors. 
She left from the floor where the gym is. 
She arrived to the 13th floor. 
Yoan also took the elevator from the floor 
where the gym is. 
He went up 2 floors less than Katherine. 
What floor did Yoan arrive to? 

Katherine took the elevator and went up 7 
floors. 
She left from the floor where the gym is. 
She arrived to the 13th floor. 
Yoan also took the elevator from the floor 
where the gym is. 
He arrived 2 floors below Katherine. 
What floor did Yoan arrive to? 
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Gloria took the elevator and went up 5 
floors. 
She left from the floor where her office is. 
She arrived to the 14th floor. 
Her coworker Larry also took the elevator 
from their office's floor. 
He went up 2 floors less than Gloria. 
What floor did Larry arrive to? 

Gloria took the elevator and went up 5 
floors. 
She left from the floor where her office is. 
She arrived to the 14th floor. 
Her coworker Larry also took the elevator 
from their office's floor. 
He arrived 2 floors below Gloria. 
What floor did Larry arrive to? 
 

Slouchy Smurf is 6 centimeters tall. 
He climbs on a smurf table. 
He now attains the height of 11 centimeters. 
Grouchy Smurf climbs on the same table as 
Slouchy Smurf. 
Grouchy Smurf is 2 centimeters shorter than 
Slouchy Smurf. 
What height does Grouchy Smurf attain 
when he climbs on the table? 

Slouchy Smurf is 6 centimeters tall. 
He climbs on a smurf table. 
He now attains the height of 11 centimeters. 
Grouchy Smurf climbs on the same table as 
Slouchy Smurf. 
The height Grouchy Smurf attains on the 
table is 2 centimeters shorter than that of 
Slouchy Smurf. 
What height does Grouchy Smurf attain 
when he climbs on the table? 
 

Obelix's statue is 5 meters tall. 
It is placed on a pedestal. 
Once on the pedestal, it attains 12 meters in 
height. 
Asterix's statue is placed on the same 
pedestal as Obelix's. 
Asterix's statue is 3 meters shorter than 
Obelix's. 
What height does Asterix's statue attain 
when placed on the pedestal? 

Obelix's statue is 5 meters tall. 
It is placed on a pedestal. 
Once on the pedestal, it attains 12 meters in 
height. 
Asterix's statue is placed on the same 
pedestal as Obelix's. 
The height Asterix's statue attains on the 
pedestal is 3 meters shorter than that of 
Obelix's statue. 
What height does Asterix's statue attain 
when placed on the pedestal? 
 

The giraffe in the zoo is 6 meters tall. 
It climbs on the biggest rock in the park. 
Once on the rock, it attains 11 meters in 
height. 
The elephant in the zoo climbs on the same 
rock as the giraffe. 
The elephant is 3 meters shorter than the 
giraffe. 
What height does the elephant attain when 
standing on the rock? 

The giraffe in the zoo is 6 meters tall. 
It climbs on the biggest rock in the park. 
Once on the rock, it attains 11 meters in 
height. 
The elephant in the zoo climbs on the same 
rock as the giraffe. 
The height he attains on the rock is 3 meters 
shorter than the giraffe's. 
What height does the elephant attain when 
standing on the rock? 
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Table 7 Cardinal problem statements used in the solving task (Original) and in the recognition 
task (Original + Modified). Changes were systematically introduced in the 5th sentence. The 

problems’ numerical values varied between participants. 

Original problem statement Modified problem statement 

Paul has 7 red marbles. 
He also has blue marbles. 
In total, Paul has 13 marbles. 
Jolene has as many blue marbles as Paul, 
and some green marbles. 
She has 2 green marbles less than Tom has 
red marbles. 
How many marbles does Jolene have? 

Paul has 7 red marbles. 
He also has blue marbles. 
In total, Paul has 13 marbles. 
Jolene has as many blue marbles as Paul, 
and some green marbles. 
She has 2 marbles less than Tom. 
How many marbles does Jolene have? 
 

Sarah owns 7 goldfish. 
Her other pets are all iguanas. 
In total, she owns 15 pets. 
Bobby is pet-sitting Sarah's iguanas during 
the holidays, he puts them with his pet 
turtles. 
Bobby owns 3 turtles less than Sarah owns 
goldfish. 
How many pets are there at Bobby's? 

Sarah owns 7 goldfish. 
Her other pets are all iguanas. 
In total, she owns 15 pets. 
Bobby is pet-sitting Sarah's iguanas during 
the holidays, he puts them with his pet 
turtles. 
Now at Bobby's, there are 3 pets less than 
there were at Sarah's before the holidays. 
How many pets are there at Bobby's? 
 

Karl picked 6 tulips.  
He puts them with the daffodils he gathered.  
In total, Karl has 11 flowers in his bouquet. 
In her bouquet, Clarice has as many 
daffodils as Karl, and some roses. 
She has 2 roses less than Karl has tulips.  
How many flowers does Clarice have in her 
bouquet? 

Karl picked 6 tulips.  
He puts them with the daffodils he gathered.  
In total, Karl has 11 flowers in his bouquet. 
In her bouquet, Clarice has as many 
daffodils as Karl, and some roses. 
Clarice has 2 flowers less than Karl does.  
How many flowers does Clarice have in her 
bouquet? 
 

In the store, Anthony wants to buy a 5-dollar 
ruler. 
He also wants a notebook. 
In total, that will cost him 13 dollars. 
Julie wants to buy the same notebook as 
Anthony, and an eraser. 
The eraser costs 2 dollars less than the ruler. 
How much will Julie have to pay? 

In the store, Anthony wants to buy a 5-dollar 
ruler. 
He also wants a notebook. 
In total, that will cost him 13 dollars. 
Julie wants to buy the same notebook as 
Anthony, and an eraser. 
In total, she will pay 2 dollars less than 
Anthony will. 
How much will Julie have to pay? 
 

The first meal on the menu includes a 
chocolate cake costing 5 dollars. 
The meal also includes a mushroom omelet. 
In total, that makes for a 14-dollar meal. 
The second meal on the menu includes the 
same mushroom omelet, and an apple pie. 
The apple pie costs 3 dollars less than the 
chocolate cake. 
How much does the second meal cost? 

The first meal on the menu includes a 
chocolate cake costing 5 dollars. 
The meal also includes a mushroom omelet. 
In total, that makes for a 14-dollar meal. 
The second meal on the menu includes the 
same mushroom omelet, and an apple pie. 
The second meal on the menu is 3 dollars 
cheaper than the first meal. 
How much does the second meal cost? 

 
 

 



 

 
TROUBLE DOWN MEMORY LANE | 171 

 

C
HA

PT
ER

 3
 

Tyler wants to buy French fries that cost 5 
dollars. 
He will also take a cheeseburger. 
In total, that will cost him 14 dollars. 
Zoey orders a cheeseburger as well, and a 
milkshake. 
The milkshake costs 2 dollars less than the 
French fries. 
How much will Zoey pay for her order? 

Tyler wants to buy French fries that cost 5 
dollars. 
He will also take a cheeseburger. 
In total, that will cost him 14 dollars. 
Zoey orders a cheeseburger as well, and a 
milkshake. 
Her order will cost 2 dollars less than Tyler's. 
How much will Zoey pay for her order? 
 

Joe takes a Russian dictionary weighing 5 
kilograms. 
He also takes a Spanish dictionary. 
In total, he is carrying 12 kilograms of 
books. 
Lola takes Joe's Spanish dictionary and a 
German dictionary. 
The German dictionary weighs 3 kilograms 
less than the Russian dictionary. 
How many kilograms is Lola carrying? 

Joe takes a Russian dictionary weighing 5 
kilograms. 
He also takes a Spanish dictionary. 
In total, he is carrying 12 kilograms of 
books. 
Lola takes Joe's Spanish dictionary and a 
German dictionary. 
In total, Lola's books weigh 3 kilograms less 
than Joe's. 
How many kilograms is Lola carrying? 
 

A bag of pears weighs 6 kilograms. 
It is weighed together with cheese. 
In total, the weighing scale indicates 11 
kilograms. 
The same cheese is then weighed together 
with a milk carton. 
The milk carton weighs 3 kilograms less than 
the bag of pears. 
What is indicated on the weighing scale 
now? 

A bag of pears weighs 6 kilograms. 
It is weighed together with cheese. 
In total, the weighing scale indicates 11 
kilograms. 
The same cheese is then weighed together 
with a milk carton. 
In total, the weighing scale indicates 3 
kilograms less than before. 
What is indicated on the weighing scale 
now? 
 

On moving day, Ryan is carrying his 
microwave oven, which weighs 5 kilograms. 
He is carrying his coffee machine at the 
same time. 
In total, he is carrying 11 kilograms of 
appliances. 
Felicia takes Ryan's coffee machine from him 
while carrying a blender. 
The blender weighs 2 kilograms less than 
the microwave oven. 
How many kilograms of appliances is Felicia 
carrying? 

On moving day, Ryan is carrying his 
microwave oven, which weighs 5 kilograms. 
He is carrying his coffee machine at the 
same time. 
In total, he is carrying 11 kilograms of 
appliances. 
Felicia takes Ryan's coffee machine from him 
while carrying a blender. 
In total, she is carrying 2 kilograms less than 
Ryan. 
How many kilograms of appliances is Felicia 
carrying? 

 

Procedure. This experiment was conducted online using the Qualtrics platform for 

online experiments. On the first page, the instructions read:  

On the following pages, you will be presented with a series of short math 

problems. Your task is to solve the problems using as few operations as 

possible. We ask that you take enough time to read and understand each of 

these problems, as this is not a speed test. Remember that the goal is to solve 
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the problems using as few operations as possible. For every problem, we ask 

you to type down every operation(s) that you used to come up with the 

solution, even the simplest one that you can calculate mentally. For instance, 

the computation “15 – 6 – 2 = 7”, should not be written as a unique operation, 

but broken down as “15 − 6 = 9” and “9 − 2 = 7”, which then count for two 

operations. 

A different problem statement was displayed on each of the 18 following pages. We 

used 9 cardinal problems and 9 ordinal problems (see Table 6 and Table 7, column 

“Original problem statement”). Problem order was randomized between participants.  

 When participants had answered every problem, they were presented with a 

short distractor task designed to increase the rate of mistakes in the following 

recognition task by spacing out the solving and the recognition tasks. The distractor 

task consisted of three short situations in which participants had to select an 

explanation for a natural phenomenon among three different interpretations. For 

instance: 

Bob, John and Lydia are trying to figure out why animals die. Here are their ideas:  

• Bob: ‘Because they are mortal’ 

• John: ‘Because they need to leave room on earth’ 

• Lydia: ‘Because they die when their body stops functioning’  

With whom do you agree more? 

In each distractor situation, three different explanations were proposed. One 

displayed a circular reasoning (Bob), one was teleological (John) and the other was 

the closest from a scientific explanation (Lydia). The distractor task did not involve 

any numerical value nor did it include any theme related to one of the problem 

statements. When participants had chosen an explanation for the three situations, they 

were then presented with the unexpected recognition task. The following instructions 

were displayed: 

In the next part of this experiment, you will be presented with a series of 

problem statements. Some of these problems will be strictly identical to the 

ones you solved in the first part of the experiment, and some will be slightly 

different. For each problem, a sentence will be highlighted in red. Your task 

will be to decide, for each problem, whether the sentence highlighted in red 

is the same as before or whether it has been modified. The part of the text that 
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is not highlighted in red will be no different in either case. Please read the 

problem statements entirely and take the time to understand them, as this is 

not a speed test. 

Participants were then presented with a series of 18 problem statements to evaluate. 

The fifth sentence was systematically highlighted in red, and participants had to 

answer the question “Is the sentence highlighted in red the same as before?”. Two 

thirds of the problems were presented in their modified version (right column of 

Table 6 and Table 7); they were the focus of our analyses. In addition to these 12 

target problems, 6 unmodified problems were introduced; they were identical to the 

ones that had been presented in the solving task (left column of Table 6 and Table 

7). 

 

Results 

 
Fig. 4 Strategy distribution depending on the quantities used in the problems. 

In this experiment, the algorithms used by the participants to solve the problems 

could always be inferred from their report of the operations they used to solve the 

problems, so there are no “unidentified” answers. This difference with Experiments 1 

and 2 might be attributable to the monetary compensation provided to the participants 

on the Mechanical Turk experiment, which might have increased their incentive to 
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follow the instructions and write down every operation they used. As in the previous 

experiments, their responses were either classified as “1-step algorithm” (successful 

use of the shortest strategy), “3-step algorithm” (successful use of the longest strategy) 

or “error” (failure to use any relevant algorithm to solve the problem). The distribution 

of the participants’ solving strategies depending on the ordinal versus cardinal nature 

of the problems is described in Fig. 4. As in Experiment 1 and 2, we used a generalized 

linear mixed model with a binomial distribution to evaluate how likely participants 

were to use the 1-step algorithm on cardinal and on ordinal problems. We selected 

the successful use of the 1-step algorithm as the dependent variable, the semantic 

nature of the problems as a fixed effect and the participants as a random effect. As in 

the previous experiments with problems written in French, the problems written in 

English were considerably more likely to be solved using the 1-step algorithm when 

they featured ordinal quantities (53.80%) than when they featured cardinal quantities 

(24.85%); z = 8.35, p < .001, R²GLMM(c) = .77. 

Regarding the recognition task, we studied how likely participants were to 

falsely recognize modified problems, depending on the cardinal versus ordinal nature 

of the problems, as well as on the solving strategies they used in the solving task (see 

Fig. 4). Since it was shown that participants who fail to solve a problem tend to make 

a random choice in a following recognition task (Hegarty et al., 1995; Thevenot, 2010), 

we focused our analyses on the problems that had been correctly solved with either 

algorithm in the solving task. We used a generalized linear mixed model with a 

binomial distribution to identify which factors influenced the participants’ responses 

on the modified problems. We used the response to the recognition task as the 

dependent variable, the semantic nature of the problems and the solving strategy as 

two fixed effects, and we accounted for each participant solving each type of problem 

by including a random effect for each respondent, as well as a random effect 

accounting for variations between problem statements. The model successfully 

converged with a total explanatory power of 49% (conditional R²). Results showed 

that, as hypothesized, participants were more likely to incorrectly recognize the 

modified problems when they were ordinal problems (52.14% of false recognition) 

than when they were cardinal problems (16.99% of false recognition); z = 6.54, p < 

.001. Additionally, participants’ rate of false recognition was also dependent on which 

strategy they used to solve the problems in the first place: participants who 

successfully solved a problem were more likely to incorrectly recognize a modified 
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problem if they had solved the original problem with the 1-step algorithm (45.40% of 

false recognition) than if they had solved it with the 3-step algorithm (26.39% of false 

recognition); z = 2.05, p < .05. Thus, both the semantic nature of the problems and 

the ability to use the 1-step algorithm in the solving task influenced participants’ 

tendency to mistake a modified sentence for an original one. 

 
Fig. 5 Rate of erroneous recognition of altered sentences, depending on the quantities used in 

the problems and on the strategies used to solve them. 

Discussion 
This third experiment conducted with native English speakers brought substantial 

evidence that the distinction between cardinal and ordinal quantities has a crucial role 

on the representation of arithmetic word problems, displaying an influence strong 

enough that it shaped participants recollection of the situations described, as well as 

the algorithms they used to solve the problems. Across 18 different contexts, 

participants’ solving strategies were significantly influenced by the quantities involved 

in the problems, which suggests that the representations they constructed were 

different on cardinal and on ordinal problems. The sentence recognition task revealed 

that participants’ memory of the different situations differed between cardinal and 

ordinal problems. Using a recognition task allowed us to probe participants’ 

representation of the difference described in the problems in a new way. Results were 

aligned with the hypothesis that the initial encoding of the ordinal problems included 
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the whole-to-whole inference, whereas the initial encoding of the cardinal problems 

did not convey this piece of information. This suggests that participants did not 

perceive the isomorphism between the 18 problems, and that the representations they 

constructed were influenced by their non-mathematical knowledge about the 

quantities featured in the described situations. Irrelevant knowledge about elevators, 

marbles, prices or weights had a significant impact on the nature of the representation 

they encoded. Additionally, the ability to use the 1-step algorithm in the solving task 

was also a predictor of participants’ rate of false recognition of the modified problems, 

even after the effect of the cardinal versus ordinal dimension was accounted for. In 

other words, using the 1-step algorithm, regardless of the nature of the quantities it 

involves, increases the chance to falsely recognize its modified version. An axis-based 

representation makes it easier to perceive that the part-to-part difference is equal to 

the whole-to-whole difference, and thus in return makes it harder to identify how the 

difference was phrased in the original problem. 

General discussion 
Since direct inspection of mental constructs is hardly feasible, numerous indirect 

routes have been proposed in the past by cognitive scientists aiming to scrutinize the 

representations underlying human thought processes. The various paths to study 

one’s representation of a given idea or situation range from highly subjective methods 

such as verbal reports (e.g. Ericsson & Simon, 1980) or self-assessment questionnaires 

(e.g. Weinman, Petrie, Moss-Morris, & Horne, 1996), to more impartial measures such 

as reaction times (e.g. Rosch, 1975), operand recognition (e.g. Thevenot & Oakhill, 

2006), relational priming (e.g. Bassok, Pedigo, & Oskarsson, 2008), inductive 

projection (Inagaki & Hatano, 1996), growing lines estimation (e.g. Casasanto & 

Boroditsky, 2008), event-related potentials (Berkum, Hagoort, & Brown, 1999), or 

even fMRI activations (e.g. Ischebeck, Schocke, & Delazer, 2009), while also including 

intermediate sources of information such as drawings (e.g. Vosniadou & Brewer, 

1992), written statements (e.g. Pinnegar, Mangelson, Reed, & Groves, 2011), 

metaphors (e.g. Lakoff & Núñez, 2000) or gestures (e.g. Fuhrman & Boroditsky, 2010). 

In this paper, we chose to inspect the differences between the encoding of cardinal 

and ordinal problems by investigating the (mis)remembrance of specific problem 

statements.  
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Using unexpected recall and recognition tasks, it was shown that problems involving 

ordinal quantities foster a type of implicit inference that can easily be drawn from an 

axis-based representation, but that would be harder to make using a set-based 

representation. This corroborates previous findings suggesting that irrelevant, non-

mathematical knowledge interferes with our encoding of numerical situations. 

Interestingly, previous studies have shown that ordinal representations were 

somewhat more adequate to solve problems, since they led to the use of a shorter 

solving algorithm (Gros et al., 2017) or to a higher performance rate (Gros et al., 2016, 

2019). However, in this study, we showed that encoding an ordinal representation 

also meant being more prone to make specific mistakes in text recall and sentence 

recognition tasks. Participants performed better on ordinal problems in the solving 

tasks, but this effect was inverted in the recall and recognition tasks. This suggests 

that the influence of world knowledge is a double-edged sword: it is a source of 

inferences that can, depending on the task, prove useful or detrimental.  

We have known ever since Loftus’s work on the creation of false memories in 

long-term memory that recall and recognition can be tempered with by leading 

participants to represent a situation they have never lived (Loftus, 1996; Loftus & 

Pickrell, 1995). More recently, it has been suggested that working memory could also 

give rise to false memories (Abadie & Camos, 2019). Here, although we did not plant 

entirely false memories in the participants’ minds, we led them to misremember 

mathematical information about the scenes described in the problems, by eliciting 

one of two contrasting encodings of mathematically identical situations. The fact that 

the use of one quantity over another was enough to predict whether participants 

would infer a specific relational statement between two mathematical entities of the 

problems suggests that our general, non-mathematical knowledge about the world 

has a profound impact on our mathematical reasoning. Although often overlooked, 

this worldly influence on mathematical reasoning is not as bizarre as it may seem. 

Indeed, the surface features of situations are generally correlated with their deeper 

principles (Bassok, Wu, & Olseth, 1995; Blessing & Ross, 1996; Gentner & Medina, 

1998; Trench & Minervino, 2015). Which means that using the superficial aspects of 

situations to infer their deep structure is often a fruitful approach. It is only natural 

then than humans automatically rely on contextual clues to comprehend the situations 

they encounter. Despite mathematics being a field where abstraction reigns supreme 

(Davis, Hersh, & Marchisotto, 2011), being able to infer which mathematical notions 
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need be used in a specific context may be a valuable skill. For example, we tend to 

infer from our experience that dividing a number of apples by a number of fruit 

baskets may be sensible, whereas dividing a number of apples by a number of 

oranges is less likely to be useful in daily-life (Bassok, Chase, & Martin, 1998). 

However, the downside is that when the inferences we make based on our 

knowledge about the world conflict with the mathematical structure of a situation, 

strong limitations may hinder our ability to use the most efficient strategy, or to 

properly recall a problem statement. 

In fact, the frequency with which participants inferred new relational 

statements only in ordinal problems provides new insights into the difficulty met by 

solvers in their attempts to see past the superficial dissimilarities between problems 

and perceive the isomorphism between cardinal and ordinal situations (Gros et al., 

2015). If additional pieces of information are deduced from only one of the two 

possible encodings of the situation, then it makes sense that transfer from one 

situation to another would be especially challenging. Although systematic comparison 

between problem statements and reference to the deep structure of the problems 

might help improve transfer to some extent (Gamo et al., 2010), the question of what 

it takes to systematically see the deep structure of arithmetic word problems regardless 

of the inferences drawn from the contexts they are embedded in remains a decisive 

issue. 
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Presentation 
In Chapter 1, it was suggested that experts may be able to directly perceive a word 

problems’ deep structure, in accordance with Chi, Feltovich, and Glaser’s (1981) 

findings. In this chapter, we investigate this claim by testing whether experts can 

ignore the semantics imbued in a problem statement to abstract its mathematical 

structure regardless of the cover story used. We use two solvability-assessment 

experiments, akin to the sixth experiment of Chapter 2, to determine if experts can 

indeed use the 1-step algorithm on cardinal problems without first needing to engage 

in a semantic recoding of their initial representation. 

 Experiment 1 is conducted with lay adults. They are asked to evaluate, as 

quickly as possible, which problems can and which cannot be solved using the 1-

step algorithm that is provided to them. We predict that the encoding difference 

between problems involving cardinal quantities and problems involving ordinal 

quantities is robust enough to hinder participants’ ability to acknowledge the validity 

of the 1-step algorithm proposed. Thus, adult participants should make more mistake 

on cardinal than on ordinal problems, and their correct responses should require 

more time on cardinal problems, due to their need to engage in a semantic recoding 

step.  

 Experiment 2 attempts to replicate the findings of the first experiment with a 

population of experts, recruited based on their outstanding level in mathematics. We 

predict that general mathematical expertise is not enough to overcome the effects of 

semantic congruence: the initial encoding of the problems will still be influenced by 

the cover stories, despite participants’ experience with abstract, context-independent 

reasoning. By demonstrating how robust the influence of world semantics on 

mathematical reasoning is, even among expert mathematicians, this chapter provides 

insights into the pervasiveness of the effects of semantic (in)congruence.  
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Abstract 
Can our knowledge about apples, cars, or smurfs hinder our ability to solve 

mathematical problems involving these entities? We argue that such daily-life 

knowledge interferes with arithmetic word problem solving, to the extent that experts 

can be led to failure on problems involving trivial mathematical notions. We created 

problems evoking different aspects of our non-mathematical, general knowledge. 

They were solvable by one single subtraction involving small quantities, such as 14 – 

2 = 12. A first experiment studied how university-educated adults dealt with seemingly 

simple arithmetic problems evoking knowledge which was either congruent or 

incongruent with the problems’ solving procedure. Results showed that in the latter 

case, the proportion of participants incorrectly deeming the problems “unsolvable” 

increased significantly, as did response times for correct answers. A second 

experiment showed that expert mathematicians were also subject to this bias. These 

results demonstrate that irrelevant non-mathematical knowledge interferes with the 

identification of basic, single-step solutions to arithmetic word problems, even among 

experts who have supposedly mastered abstract, context-independent reasoning. 

Keywords 
arithmetic reasoning · cardinality · encoding effects · ordinality · problem solving 
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Introduction 
Is 14 − 2 = 12 always obvious? Most third graders know the basics of addition and 

subtraction (Carpenter & Moser, 1984), and solving elementary arithmetic operations 

is no big deal from this point onwards. We learn from an early age that operations 

such as 14 – 2 = 12 are always valid, no matter whether one is subtracting apples, 

cars, or smurfs. However, our claim is that adults whose mathematical knowledge is 

unquestionable, even outstanding, sometimes fail to solve arithmetic problems 

admitting a single-step solution such as 14 – 2 = 12, when their knowledge about the 

entities subtracted interferes with the mathematical structure of the problem. 

This prediction arises from a growing body of literature suggesting that the 

daily-life, non-mathematical world knowledge one has about the objects an arithmetic 

word problem refers to might influence their mathematical representation of the 

problem and their subsequent choice of a solving strategy. For example, Bassok, Wu, 

and Olseth (1995) showed that being trained to solve a permutation problem was not 

always helpful to solve analogous problems. The authors demonstrated that slight, 

mathematically irrelevant, changes in the semantic relations linking the objects 

mentioned in the cover stories (e.g., computers assigned to secretaries versus 

secretaries assigned to computers) led to significant performance differences. 

Subsequent research has shown that non-mathematical semantic information related 

to the entities described in a problem influences lay solvers’ performance (Bassok, 

Chase, & Martin, 1998; Gros, Sander, & Thibaut, 2016; Thevenot & Barrouillet, 2015; 

Verschaffel, De Corte, & Vierstraete, 1999; Vicente, Orrantia, & Verschaffel, 2007) as 

well as strategy choice (Gamo, Sander, & Richard, 2010; Gros, Thibaut, & Sander, 

2017) and transfer (Gros, Thibaut, & Sander, 2015) on arithmetic word problems. Most 

of the available evidence regarding this issue has been collected with children and 

non-expert adults, on problems that were not straightforward (e.g., complex 

permutation problems). Building on this literature, we propose to go further and show 

that irrelevant aspects of what we call world semantics (the non-mathematical 

knowledge about the world that is evoked by the entities described in a specific 

problem statement) can also mislead experts in mathematics on problems involving 

basic arithmetic notions, despite them being considered experts in abstract, context-

independent reasoning (Dehaene, 2011). We call this proposal the “world semantics 

view”. 
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Despite stemming from the aforementioned literature, this claim that world semantics 

could exert such a pervasive influence and threaten even the highest levels of 

mathematical expertise is rather innovative, as it challenges the commonly held view 

in the expertise literature regarding experts’ proficiencies. This expertise view notably 

considers that experts identify what has been described as the “deep structure” of the 

problem (Chi, Feltovich, & Glaser, 1981), its “principle” (Ross, 1987), its “objective 

mathematical structure” (Bassok, 2001) or its “problem space” (Newell & Simon, 

1972). This deep structure is independent of the semantics imbued in the problem 

statement, and as such it is the foundation of experts’ abstract, context-independent 

reasoning about the problem. Indeed, since by definition mathematics is not empirical 

and manipulates abstract symbols rather than real-life objects (Davis, Hersh, & 

Marchisotto, 2011; Russell, 1903), mathematical experts should ignore irrelevant 

information associated with the entities on which numbers and algorithms operate. 

They should perceive the deep structure of arithmetic problems that can be solved 

by simple subtractions (i.e., involving small quantities such 14-2), no matter whether 

they calculate the price of an apple, the height of a smurf or the speed of a car. 

Furthermore, experts are known to show exceptional performance in domain-related 

tasks (Chi, 2006), they stand out in their ability to generate problem solutions (De 

Groot, 1965), to detect relevant problem features (Lesgold et al., 1988), to monitor 

their own comprehension (Chi, 1978) and to qualitatively analyze the task at hand 

(Voss, Greene, Post, & Penner, 1983) (see Chi, 2006 for a review of experts’ 

proficiencies).  These former studies do not predict that the semantics conveyed by 

the problem statement could interfere with the experts’ understanding of the 

problems’ mathematical structure.  

We performed two experiments to show that, contrarily to this expertise view 

₋ but in accordance with the world semantics view ₋ arithmetic problems admitting a 

single-step solution might pose a challenge to mathematical experts. We presented 

participants with a series of isomorphic problems involving two numerical values. 

Crucially, for each problem, a solution was provided (a single subtraction between 

the problem’s two numerical values), and participants’ task was to evaluate its validity. 

By varying the semantic, non-mathematical information evoked by the problem 

statements (e.g., use of an elevator versus a weighing scale, reference to marbles 

being won versus years passing by, mention of hamburger prices versus statues’ 

heights, etc.), we intended to show that even math experts are exposed to a 
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deleterious influence of the non-mathematical knowledge evoked by the problem 

statement. 

Our world semantics view predicts that university students (Study 1) – and 

math experts (Study 2) – will more often fail to recognize the proposed solution when 

it conflicts with the non-mathematical knowledge about the world evoked by the 

entities featured in the problem statement than when the solution is consistent with 

it. Furthermore, it predicts that a recoding process, akin to re-representation 

(Davidson & Sternberg, 2003; Vicente et al., 2007) is necessary when a problem’s 

initial encoding leads to a dead end. Indeed, when the semantic content of a problem 

statement leads participants to interpret the situation in a way that is not compatible 

with the problem’s solution, then it becomes necessary to build a new representation 

of the situation congruent with the solution. When successfully performed, such a 

recoding process should result in longer response times for correct answers conflicting 

with the problems’ world semantics.  

Study 1 
Methods 
Participants. We recruited 85 adults (50 women, Mean age = 23.35, SD = 7.82) in 

the Paris region. All had attended university (Mean length of university curriculum = 

2.85 years, SD = 1.18), but none majored in mathematics. Considering the low 

complexity of the math problems involved, participants’ curriculum was a clear 

indicator that they possessed the mathematical expertise required to solve the 

problems. Sample size was determined using uncertainty and publication bias 

correction on results from a previous study (Gros et al., 2016), following Anderson, 

Kelley, and Maxwell’s recommendations (2017). 

Materials. Our materials were inspired by Gamo et al. (2010) who showed that 

problems with the same formal mathematical structure are nevertheless preferentially 

solved with one of two available solving strategies, depending on the semantic 

content of the problem. Consider the weight problem in Table 1: this problem can be 

solved through two strategies. One is a 3-step algorithm consisting in calculating the 

weight of each individual dictionary to compute the weight of the stack of dictionaries 

Lola is carrying: 14 – 5 = 9; 5 – 2 = 3; 9 + 3 = 12. The other one is a 1-step algorithm 

that requires understanding that since Lola and Joel carry the same Spanish dictionary, 
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calculating the weight of each book is unnecessary. Since the German dictionary is 2 

kilograms lighter than the Russian dictionary, the weight difference between Joel’s 

and Lola’s books is of 2 kilograms as well: 14 – 2 = 12.  

Table 1  Two isomorphic problems sharing the same mathematical structure but evoking 
different aspects of  our knowledge about the world. 

Weight problem Duration problem 

Joe takes a Russian dictionary weighing 5 kilograms. 

He also takes a Spanish dictionary. 

In total, he is carrying 14 kilograms of books. 

Lola takes Joe's Spanish dictionary and a German 

dictionary. 

The German dictionary weighs 2 kilograms less than the 

Russian dictionary. 

How many kilograms of books is Lola carrying? 

Tom took painting classes for 5 years. 

He stopped taking the classes at the age of 14. 

Lucy started taking painting classes at the same age as 

Tom. 

She took classes for 2 years less than him. 

How old was Lucy when she stopped taking painting 

classes? 

  

The duration problem in Table 1 has the same mathematical structure and can be 

solved using the same solving procedures. However, Gamo et al. (2010) showed that 

the two solving procedures are not randomly distributed across the two types of 

problems. Participants favor the 3-step algorithm on problems like the dictionary one 

(called cardinal problems) and the 1-step algorithm on the second type of problems 

(called ordinal problems). This strategy use imbalance was our starting point. Gamo 

et al. (2010) and Gros et al. (2017) showed that the differences in the world semantics 

evoked by the problems resulted in different spontaneous encodings of the situations, 

from which this imbalance originated1 (see Fig. 1 for a description of this effect). Since 

cardinal and ordinal problems shared the same structure featuring the same parts and 

wholes presented in the same order with the same numerical values, the imbalance 

in strategy use could only be attributed to the variations of the semantic content of 

the problem statements. Additionally, when considering the correct answers on either 

 
1 Although the explanation of this effect is not the purpose of the present paper, the authors suggest that 
because our world knowledge about dictionaries says we can stack them with no specific order, they 
evoke a representation of the total as a combination of subsets, which they call a cardinal representation. 
A similar reasoning can be held for weights or prices defined as object properties (Gros et al., 2017). On 
the other hand, using the 1-step algorithm requires participants to build a re-representation of the problem 
that is not based on a “combination of subsets”, which makes computing the weight of the Spanish 
dictionary unnecessary. By contrast, some problems seem to emphasize the ordinal nature of the values 
featured and afford a representation of the numerical values on a continuous axis. For example, we 
spontaneously encode durations on a timeline, which makes it easier for school children and lay adults 
to notice that the numerical difference between the two distinct parts is equal to the difference between 
the two totals (Gamo et al., 2010). A similar reasoning can be held for height or floor problems (Gros et 
al., 2017).  Thus, using the 1-step algorithm is more straightforward for ordinal than for cardinal problems 
(see Fig. 1). 
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algorithm there was no significant difference in adults’ performance between cardinal 

and ordinal problems, which indicates that the strategy imbalance was not a matter 

of problem difficulty (Gros et al., 2017). 

Fig. 1  Implementation of the mathematical structure with ordinal versus cardinal quantities, 

leading to different problem statements, representations, and strategy use. 
  

Gros et al., (2017) have shown that most adults encode collection, price, and weight 

problems as cardinal representations whereas they encode duration, distance and 

floor problems as ordinal representations. We modified their problems and removed 

the value of Part 1 so that the 3-step strategy could not be used (see Table 2). 

Consequently, the only solution left was the 1-step strategy, which required using the 

values of Whole 1 and of the Difference (see Fig. 1). The materials are available online 

(https://osf.io/fxgqh/?view_only=ed1374ef4d204c90a0cb03a30cb0a099).  

Ordinal problems were 333.5 characters long on average (SD = 38.37) and 

cardinal problems were 304 characters long on average (SD = 44.94). This length 

difference was not statistically significant (t(10) = 1.18, p = .26, paired t-test). Crucially, 

https://osf.io/fxgqh/?view_only=ed1374ef4d204c90a0cb03a30cb0a099
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for each problem, participants were presented with the correct 1-step solution (e.g. 

“14 – 2 = 12; Jolene has 12 marbles”). Participants’ task was to decide whether the 

provided solution worked, or whether there was no solution to the problem. Due to 

the already established imbalance in strategy use between problems evoking a 

cardinal encoding and problems evoking an ordinal encoding (Gamo et al., 2010; 

Gros et al., 2017), we assumed that the measure of participants’ ability to use the only 

remaining strategy on problems evoking different aspects of world semantics would 

be an effective assessment of the robustness of these effects. 

Table 2  Example of target problems used in the study. Changes introduced from Gros el al.’s 
problem statements are italicized in the table for the sake of clarity, but they were not made 

apparent in the experiment. Translated from French. 

Cardinal target problems Ordinal target problems 

Paul has a certain amount of red marbles. 
He also has blue marbles. 
In total, Paul has 14 marbles. 
Jolene has as many blue marbles as Paul, 
and some green marbles. 
She has 2 green marbles less than Paul has 
red marbles. 
How many marbles does Jolene have? 

Sofia travelled for a certain time. 
Her trip started during the day. 
Sofia arrived at 14 h. 
Fred left at the same time as Sofia. 
Fred's trip lasted 2 hours less than Sofia's. 
What time was it when Fred arrived? 

In the store, Anthony wants to buy a ruler 
costing a certain price. 
He also wants a notebook. 
In total, that will cost him 14 dollars. 
Julie wants to buy the same notebook as 
Anthony, and an eraser. 
The eraser costs 2 dollars less than the 
ruler. 
How much will Julie have to pay? 

Slouchy Smurf is a certain height. 
He climbs on a smurf table. 
He now attains the height of 14 centimeters. 
Grouchy Smurf climbs on the same table as 
Slouchy Smurf. 
Grouchy Smurf is 2 centimeters shorter than 
Slouchy Smurf. 
What height does Grouchy Smurf attain when 
he climbs on the table? 

Joe takes a Russian dictionary weighing a 
certain weight. 
He also takes a Spanish dictionary. 
In total, he is carrying 14 kilograms of 
books. 
Lola takes Joe's Spanish dictionary and a 
German dictionary. 
The German dictionary weighs 2 kilograms 
less than the Russian dictionary. 
How many kilograms of books is Lola 
carrying? 

Katherine took the elevator and went up a 
certain number of floors. 
She left from the floor where the gym is. 
She arrived to the 14th floor. 
Yohan also took the elevator from the floor 
where the gym is. 
He went up 2 floors less than Katherine. 
What floor did Yohan arrive to? 

 

The world semantics hypothesis predicts lower performances on cardinal than on 

ordinal problems, even among experts, because cardinal problems would require a 

re-representation of the situation when the only solution available is the 1-step 
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algorithm. By contrast, ordinal problems should be easier to solve because 

participants’ spontaneous encoding facilitates the use of the 1-step algorithm. Since 

university-educated adults can be considered experts in solving subtractions such as 

14  ̶  2 = 12, and since the deep structure of a problem is identical regardless of the 

objects involved, this prediction could not be made without the world semantics view, 

especially when participants only need to check the validity of the proposed solution. 

Additionally, we predict that recoding a situation initially encoded as a combination 

of subsets (such as a cardinal encoding) into a representation in terms of states and 

transitions between states (such as an ordinal encoding) is a costly process, requiring 

a longer response time. Although our hypotheses only regard solvable problems, we 

also included unsolvable distractor in the materials, so that the correct answer would 

not always be “This problem can be solved”. Among those distractors the value of 

Whole 1 was removed instead of the value of Part 1, which rendered the problems 

unsolvable with either algorithm. 

Procedure. Participants answered the questions using three keyboard keys on a 17” 

laptop. Instructions stated that “Some of the problems can be solved using the values 

provided, while other problems cannot be solved with the available information. Your 

task is to tell apart problems that can be solved from problems that cannot. Answer 

as quickly as you can, although being correct is more important than being fast.”. 

Participants were presented with 6 target problems that were only solvable 

with the 1-step algorithm: 3 cardinal and 3 ordinal problems. An equal number of 

distractors was introduced to fulfill subjects’ expectations regarding the uniform 

distribution of yes/no answers. Problem order, cover stories and numerical values 

were randomized between participants. The value of Whole 1 was comprised 

between 11 and 15, Whole 2 between 5 and 9, and the Difference was either 2 or 3.  

We used a segmented self-presentation procedure displaying the text line by 

line on the screen when participants pressed the spacebar. Below, a question 

appeared: “Given the data provided, is it possible to find the solution?” followed by 

two possible choices: “A) No, there is not enough information to find the solution.”, 

“B) Yes, and the following solution is correct:” (followed by, in the case of the marble 

problem: “14 – 2 = 12. Lucy has 12 marbles in total”). A solution was proposed for 

each problem, and it was up to the participants to assess whether it was valid or 

whether the problem was unsolvable.  
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Results 
Data collected for both studies are available online 

(https://osf.io/fxgqh/?view_only=ed1374ef4d204c90a0cb03a30cb0a099). The 

dependent variable was the proportion of correct answers for solvable problems (see 

Fig. 2). Because multiple binary data points were recorded in a repeated design (each 

participant provided a binary answer to 3 ordinal and 3 cardinal solvable problems), 

the use of repeated measures ANOVA was deemed inappropriate and replaced by a 

mixed model (Hector, 2015). We used a generalized linear mixed model with a binary 

distribution, with the cardinal versus ordinal semantic nature of the problems as a 

fixed factor, and participants as a random effect. In line with our hypothesis, lay adults 

performed significantly better on ordinal (81.18%) than on cardinal problems 

(46.67%); z = 7.84, p < .001, R²GLMM(c) = .292. Additionally, looking at individuals’ 

response patterns showed us that 65.9% of the participants made fewer mistakes on 

ordinal than on cardinal problems, 11.8% made no mistakes at all, 15.3% made the 

same number of mistakes in cardinal and in ordinal problems and only 7.1% made 

more mistakes on ordinal than on cardinal problems. 

 
Fig. 2  Adults’ answers distribution. *** p < .001 

 
2 Conditional R² are reported in lieu of η2 for the mixed models in this paper, since no satisfying 
method is currently available to estimate effect sizes on mixed models (Westfall, Kenny, & Judd, 2014). 

https://osf.io/fxgqh/?view_only=ed1374ef4d204c90a0cb03a30cb0a099
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Further analyses were conducted on participants’ response times (RTs) on solvable 

problems that had been successfully identified as such by the participants (see Fig. 

3). Because the number of correct answers could vary from 0 to 6 for each participant, 

the number of RT data points varied accordingly, and the use of repeated measures 

ANOVA was again deemed inappropriate (Hector, 2015). A linear mixed model with 

subjects as a random effect and semantic nature of the problems as a fixed factor 

showed that participants took more time to correctly solve cardinal (M = 34.05, SD = 

18.78) than ordinal problems (M = 26.85, SD = 12.49), χ² (1) = 29.14, p < .001, R²LMM(c) 

= .44. Additionally, we studied the participants’ individual response patterns to 

identify whether different participant profiles existed. For each participant, we 

computed the difference between their mean RTs on correctly solved cardinal and 

ordinal problems (see Fig. 4) and we performed Hartigan’s dip test for unimodality 

versus multimodality on the resulting distribution (Hartigan & Hartigan, 1985). The 

analysis failed to reject the null hypothesis that participants’ responses came from a 

unimodal distribution (D = .028, p = .94), thus providing no empirical ground to 

assume that the distribution of response times was multimodal. 

 
Fig. 3  Violin plot of adults’ RTs on correctly identified solvable problems. Middle bars indicate 

mean RTs; upper and lower bars indicate margins of .95 confidence intervals. *** p < .001 
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Fig. 4  Distribution of individual differences between cardinal RT and ordinal RT on correctly 

solved problems. Bins below the zero value indicate participants whose ordinal RT were higher 
than their cardinal RT on average, whereas bins above zero indicate participants whose ordinal 

RT were lower than their cardinal RT on average. 

Discussion 
The difference in performance between cardinal and ordinal problems indicates that 

despite their expertise regarding basic subtractions, the adults’ answers were 

significantly influenced by the semantic content of the problem statements. This 

confirms previous results obtained with the “complete” version of the problems that 

could be solved either with the 3-step algorithm or with the 1-step algorithm (Gamo 

et al., 2010; Gros et al., 2017). Here, we showed that the strategy imbalance observed 

in these previous studies was not an effect of mere preference for one strategy over 

another, but an actual impossibility to identify the relevance of the 1-step algorithm 

on cardinal problems, as attested by the fact that on these problems, more than half 

of the participants rejected a perfectly valid solution, despite only needing to check 

its validity. Regarding RTs, the fact that correct answers took more time on cardinal 

problems suggests that recognizing the solution to a problem evoking aspects of 

world semantics seemingly incompatible with the solution required an extra 

processing step. This is also supported by the fact that there was no significant 

difference in length between cardinal and ordinal problems. This is in line with the 

recoding process we predicted. These results show that the semantic content of a 

problem can prevent university-educated adults from recognizing a simple subtraction 

as the solution to a problem whose mathematical structure is undoubtedly within their 

level of expertise. We designed a second study to identify whether such effects would 

remain with expert mathematicians, known to be especially accustomed to abstract 

reasoning. 
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Study 2 
Methods 
Participants. We recruited 25 experts (2 women, Mean age = 23.59, SD = 2.81) who 

had successfully passed the entrance exam of the Science section at the École Normale 

Supérieure (ENS Ulm) in Paris. This exam is considered as the most demanding one 

in France, with an entrance rate of 2.02% among university-educated participants 

(“SCEI Statistics”, 2017). The ENS ranked second in Times Higher Education’s World 

University Rankings 2016-2017 for Best Small University (Bhardwa, 2017). Although 

the population sample was smaller than in the first study due to the number of 

graduates from École Normale Supérieure being limited, sample size was deemed 

sufficient using uncertainty and publication bias correction on results from a previous 

study (Gros et al., 2016), following Anderson et al.’s recommendations (2017). 

Materials and Procedure. Materials and procedure were identical to that of Study 

1.  

Results 
As in Study 1, we analyzed the proportion of correct answers on solvable problems 

(see Fig. 5) with a generalized linear mixed model. Experts had a higher success rate 

on ordinal (94.67%) than on cardinal problems (76.00%); z = 2.99, p = .0028, R²GLMM(c) 

= .25. Additionally, a comparison with Study 1 showed that Study 2 experts’ 

performance (85.33%) was significantly higher than Study 1 adults’ performance 

(63.92%), which was another confirmation of their outstanding expertise in 

mathematics; z = 4.49, p < .001, R²GLMM(c) = .33. Looking at individuals’ response 

patterns also indicated that 52.0% of the participants made fewer mistakes on ordinal 

than on cardinal problems, 36.0% made no mistakes at all, 4.0% (1 participant) made 

the same number of mistakes in cardinal and in ordinal problems and only 8.0% made 

more mistakes on ordinal than on cardinal problems. 

 Analyses were conducted on participants’ RTs for correctly identified solvable 

problems (see Fig. 6). As in Study 1, we used a linear mixed model that showed that 

experts took significantly more time to correctly solve cardinal problems (M = 26.58, 

SD = 14.03) than ordinal problems (M = 19.45, SD = 8.18), as predicted by our world 

semantics hypothesis; χ² (1) = 18.65, p < .001, R²LMM(c) = .37. Unsurprisingly, experts’ 

RTs on correct answers were significantly shorter (M = 22.63, SD = 11.68) than in 
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Study 1 (M = 29.50, SD = 15.48); χ² (1) = 7.68, p = .0056, R²LMM(c) = .46. As in Study 1, 

the computation of individual differences in RTs between cardinal and ordinal 

problems showed no sign of multimodality (see Fig. 7), and Hartigan’s dip test for 

unimodality versus multimodality failed to reject the null hypothesis of unimodality 

(D = .048, p = .96). 

 
Fig. 5  Experts’ answers distribution. ** p < .01 

 
Fig. 6 Violin plot of experts’ RTs on correctly identified solvable problems. Middle bars indicate 

mean RTs; upper and lower bars indicate margins of .95 confidence intervals. *** p < .001 
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Fig. 7 Distribution of individual differences between cardinal RT and ordinal RT on correctly 

solved problems. Bins below the zero value indicate participants whose ordinal RT were higher 
than their cardinal RT on average, whereas bins above zero indicate participants whose ordinal 

RT were lower than their cardinal RT on average. 

Discussion 
Despite their superior performances, high-level mathematicians were still significantly 

influenced by world semantics. Their performance dropped significantly on cardinal 

problems, and correct answers required more time on average on cardinal than on 

ordinal problems. Therefore, despite their proficiency in abstract mathematical 

reasoning, expert mathematicians failed to disregard irrelevant non-mathematical 

information when solving the problems, as hypothesized. 

General discussion 
In this paper, we sought to demonstrate that irrelevant aspects of our non-

mathematical knowledge evoked by the semantic content of a problem statement can 

lead both adults and mathematics experts to encode the problem in such a way that 

they would erroneously consider valid solutions as incorrect. Indeed, participants 

failed to identify the solvability of subtraction problems admitting a single-step 

solution significantly more often when the world semantics they evoked conflicted 

with the relevant mathematical information, than when the two were congruent. 

Additionally, correct answers took more time in the conflicting than in the congruent 

case for both populations, suggesting that the initial spontaneous representation 

triggered by the semantic content of the problem statement had to be recoded. 

Although they achieved higher performances overall, high-level experts still rejected 

several perfectly valid solutions: they fell prey to robust effects of world semantics 

that current theories of expertise do not account for.  
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There is a much larger body of literature describing in what terms experts excel 

in their field than there are studies revealing experts’ shortcomings. However, as Chi 

(2006, p. 23) stressed, “it is equally important to understand how experts fail”, which 

was one of the goals of this paper. A few limitations have already been shown to 

occasionally affect experts’ excellence (see Chi, 2006 for a review). For instance, 

experts’ proficiencies are limited to their domain of expertise (Ericsson & Lehmann, 

1996) and they lack adaptability to irregular situations whose structures differ from 

what they expect (Sternberg & Frensch, 1992). They have even been shown to gloss 

over details (Voss, Vesonder, & Spilich, 1980), which paradoxically suggests that they 

should be good at ignoring surface properties unrelated to the formal structure of the 

problems. More recent works have even hinted at biases slowing down experts within 

their own domain of expertise (Goldberg & Thompson-Schill, 2009; Obersteiner, Van 

Dooren, Van Hoof, & Verschaffel, 2013). However, we believe none of these accounts 

would have predicted our results, since they do not explain how mathematically 

irrelevant contextual information may significantly hinder experts’ abstract reasoning 

on problems within their very field of expertise, to the extent that they would not 

identify the validity of the solution handed out to them. Here, mathematical experts 

failed to do what they are good at: engaging in abstract reasoning on concrete entities 

to find a single-step solution. Our results suggest that when mathematical knowledge 

and world semantics conflict with one another, masters of abstraction can run into a 

concrete wall. 

This effect is understandable since world semantics and mathematical 

knowledge often (although not always) naturally align with each other, which 

explains how some superficial cues are highly correlated with deeper principles 

(Bassok, Pedigo, & Oskarsson, 2008; Blessing & Ross, 1996). It follows that solvers 

rely on those cues at all levels and tend to make mistakes when world and 

mathematical semantics do not align. Overall, it seems that these effects of semantic 

(in)congruence between world semantics and mathematical knowledge have been 

greatly undermined on the account of mathematics being an inherently abstract 

domain in which rules and concepts are valid independently from the objects they 

are applied to. Our results show how prevalent the influence of world knowledge is 

on arithmetic reasoning, even among the individuals who should be the least subject 

to it. This suggests that experts will never be completely freed from the influence of 
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world knowledge; having an outstanding level in mathematics is not enough to 

systematically perceive that 14 – 2 = 12. 
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Presentation 
Chapter 5 has a twofold ambition. First, while Chapter 4 asked the question of how 

well experts in the field might perform when faced with semantic incongruence, this 

new chapter focuses on a different kind of expertise: that of teachers. Indeed, it can 

be argued that mathematical expertise in general does not necessarily mean expertise 

to solve arithmetic word problems. In fact, word problems are a peculiar exercise, 

common in schools, but rarely encountered in their scholastic form during adulthood. 

Expert mathematicians have proficient Content Knowledge regarding mathematics, 

but their Pedagogical Content Knowledge (Shulman, 1986) regarding arithmetic word 

problems may be less extensive than that of teachers. Did our experts have too little 

experience with arithmetic word problems to use the full range of their mathematical 

expertise? To answer this question, we conducted a new study with secondary school 

teachers, of mathematics and other subjects, and preservice teachers.  

 Experiment 1 attempts to replicate the findings of Chapter 4 among a 

population of secondary school teachers. A total of 32 math teachers and 90 teachers 

with no experience teaching math are presented with a solvability-assessment task in 

which they are instructed to take as long as they need to decide which problems can 

be solved with the proposed algorithm. We predict that even math teachers will fall 

prey to the effects of semantic (in)congruence, despite their expertise regarding word 

problems.  

 Second, we used eye-tracking data to better characterize the encoding 

distinction accounting for the performance difference between cardinal and ordinal 

problems. By registering participants’ eye movements when solving problems similar 

to the ones used in Experiment 1, we were able to get a finer understanding of the 

nature of the differences between cardinal and ordinal problems, as well as of what 

happens when participants manage to discard an initially incongruent representation. 

Experiment 2 was conducted with 50 pre-service teachers, asked to evaluate the 

solvability of 18 arithmetic word problems. We predict that the difference between 

cardinal and ordinal problems will be observed on success rates, response times, visit 

durations, backward eye movements, and pupil dilation.   
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Abstract  
Recent evidence suggests that general, non-mathematical knowledge about the 

entities described in an arithmetic word problem may interfere with its encoding, to 

the extent that even math experts may struggle to solve problems embedded in a 

semantically incongruent context. In this study, we used behavioral and eye tracking 

measures to investigate how the use of specific quantities (weights, prices, collections) 

may foster a cardinal representation of the numbers mentioned in a problem, whereas 

other quantities (durations, heights, number of floors) may favor an ordinal 

representation instead. In Experiment 1, we assessed the pervasiveness of the 

cardinal-ordinal distinction in a population of secondary school teachers (N = 122) in 

a solution validity assessment task. We found that even math teachers accustomed to 

the didactic specificities of mathematical word problems made more errors and took 

a longer time to solve semantically incongruent problems. In Experiment 2, we 

recorded the eye movements of pre-service teachers (N = 50) engaged in a similar 

task. We compared participants’ gaze patterns on cardinal and ordinal isomorphic 

problems to gather insights into their encoded representations of the problems. On 

problems featuring cardinal quantities, we found that specific sentences describing 

elements relevant in a cardinal understanding of the problems but irrelevant otherwise 

were looked at longer, and were the focus of a higher number of backward eye 

movements. Additionally, increase in pupil dilation on correctly solved cardinal 

problems supported the idea that participants need to engage in a semantic recoding 

process when in a situation of semantic incongruence. Overall, the results support 

the growing line of evidence that daily-life knowledge about the quantities featured 

in a problem may interfere with its solving by promoting one of two competing 

representations. 

Keywords 
mathematical cognition · eye tracking · arithmetic word problems · problem solving · 

representation · encoding · mathematics · mental models 
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Introduction 
Semantic determinants of arithmetic word problem solving 
Mathematical word problems are infamously difficult, and many a student have 

struggled with the delicate exercise consisting in applying abstract mathematical 

notions to concrete, daily-life examples (Cummins, Kintsch, Reusser, & Weimer, 1988; 

Daroczy, Wolska, Meurers, & Nuerk, 2015; Fayol, Barrouillet, & Camos, 1997; Lewis 

& Mayer, 1987; Nesher & Teubal, 1975; Riley, Greeno, & Heller, 1983; Stern, 1993; 

Verschaffel, Greer, & De Corte, 2000). By bringing reality into the classrooms, word 

problems are meant to prepare the students to face the mathematical situations they 

will inevitably encounter in their everyday lives (Dewolf, Van Dooren, Hermens, & 

Verschaffel, 2015; Pollak, 1969). But what makes some mathematical word problems 

so hard to solve? A significant part of their complexity can be attributed to the need 

to extract relevant mathematical information from a non-mathematical text, which 

implies to deal simultaneously with the linguistic and mathematical complexity of the 

word problems (Thevenot, 2017). Neither mathematical fluency on its own nor text 

comprehension skills are enough to find the solution to a mathematical word 

problem, and several lines of work have looked at the interaction between linguistic 

and numerical factors in the interpretation of mathematical word problems (Daroczy 

et al., 2015; Thevenot & Barrouillet, 2015; Verschaffel et al., 2000). 

Notably, the issue of the underlying representations accounting for the 

strategies developed by students to solve the problems they encounter has been a 

recurring question in the literature. It has for example been proposed that students 

use problem schemata: abstract general frames, stored in long-term memory, that are 

implemented with a given problem’s numerical values to find its solution (Kintsch & 

Greeno, 1985; Riley et al., 1983; Schank & Abelson, 1977). Another competing 

approach has suggested that the construction of mental models (Johnson-Laird, 1983) 

of the situations depicted in the problems constituted an intermediate step for the 

solvers before reducing it to its mathematical gist and using the resulting solving 

algorithm (Staub & Reusser, 1995). More recently, it has been suggested that general 

semantic knowledge about the entities featured in a problem could interfere with its 

solving process, by the means of an interpreted structure describing one’s 

interpretation of the situation depicted in the problem (Bassok, 2001). In this paper, 

we intend to evaluate the predictions of a complementary approach suggesting that 
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an initial semantic representation is encoded based on the problem statement and on 

the solver’s prior knowledge about the quantities it features. An important aspect of 

this approach is that it notably predicts that a fruitless encoding of a given problem 

statement may sometimes be semantically recoded in an attempt to overcome a dead 

end and find the solution to an arduous problem (Gamo, Sander, & Richard, 2010; 

Gros, Sander, & Thibaut, 2019). We propose to take a look at the role of prior 

knowledge on the encoding, recoding and solving of arithmetic word problems by 

studying the perception of cardinality and ordinality among teachers and pre-service 

teachers, using behavioral and eye tracking data.  

Cardinal versus ordinal encoding: investigating the constructed 
representations 
In 1978, Gelman and Gallistel argued that learning how to count implied to master a 

series of “counting principles” governing the very activity of counting. Among those, 

learning the “stable-order-principle” means that a child needs to understand that the 

list of words used to count has to be used in a fixed and repeatable order: numbers 

follow each other in a definite succession that does not fluctuate. By putting such 

emphasis on the notion of order, this principle introduces the ordinal meaning of 

numbers. On the other hand, learning about the “cardinal principle” entails that a 

child makes the connection between the number name allocated to the final element 

that is being counted, and the total number of elements in the collection. In other 

words, when counting entities one by one, the final number name being used refers 

to the total number of entities in the set. Those two principles define the difference 

between the ordinal and the cardinal meanings of numbers, which are central to the 

notion of number itself (Fuson, 1988). Following this work, several studies have 

investigated the development of counting among children to identify the age at which 

they master the ordinal principle (Fischer & Beckey, 1990; Miller, Major, Shu, & Zhang, 

2000; Miller, Marcovitch, Boseovski, & Lewkowicz, 2015) as well as the cardinal 

principle (Bermejo, 1996; Condry & Spelke, 2008; Le Corre & Carey, 2007; Sarnecka 

& Lee, 2009; Wynn, 1992). More recently, works have been conducted to compare 

the developmental trajectories of these two sides of counting, thus stressing the 

importance of the difference between cardinality and ordinality in numerical cognition 

(Colomé & Noël, 2012; Meyer, Barbiers, & Weerman, 2016; Wasner, Moeller, Fischer, 

& Nuerk, 2015). However, these studies have focused on the first steps of learning 

how to count, and the importance that the distinction between cardinality and 
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ordinality still holds once counting is mastered has received scant attention in the 

field. 

A recent line of work has aimed to fill this gap, by targeting the cardinal and 

ordinal representations of arithmetic word problems among older children and adults. 

Preliminary work on this question was undertaken by Gamo et al. (2010), who found 

that children tended to approach isomorphic problems differently depending on the 

semantic nature of the quantities they used. More precisely, they showed that 

students’ choice of solving algorithms varied between number-of-element problems, 

price problems and age problems. They suggested that this discrepancy could be 

attributed to differences in the semantic encoding of the problems: while number-of-

element problems and price problems feature unordered elements that tend to be 

represented as sets and subsets, age problems are more easily represented along an 

axis (a timeline) and the apparent order between the age values facilitates the use of 

a different solving strategy. This distinction between ordered and unordered quantities 

was framed in terms of ordinal and cardinal encodings, and the idea that quantities 

emphasizing the cardinal aspect of numbers led to different representations that 

quantities underlining their ordinal aspect was introduced.  

In an attempt to investigate this distinction in a systematic way, new arithmetic 

word problems were created using different types of quantities. Gros, Thibaut and 

Sander (2017) proposed problems designed specifically to evoke one of two 

encodings: they used collection (number of elements), price, and weight problems to 

evoke a cardinal representation, and they used duration, height and number-of-floors 

problems to evoke an ordinal representation. Fig. 1 provides a graphical summary of 

the hypothesis they tested. The problems all shared the same abstract mathematical 

structure (Fig. 1, box 1.), but they were implemented either with cardinal quantities 

(Fig. 1, box 2.a) or with ordinal quantities (Fig. 1, box 3.a.). Consider for example the 

cardinal problem reproduced in Fig. 1, box 2.b.: by mentioning weights assigned to 

discrete entities such as dictionaries, this problem is expected to emphasize the 

cardinal aspect of numbers, and thus to elicit a cardinal encoding of the situation (Fig. 

1, box 2.c.). This representation fosters the idea that to find the weight of the stack 

of books that Lola is carrying (Whole 2), one needs to add up the weight of the 

Spanish dictionary (Part 2) and the weight of the German dictionary (Part 3). This 

representation is thus semantically congruent with a 3-step algorithm (Fig. 1, box 3.c.) 

consisting in calculating the value of Part 2 (Whole 1 – Part 1 = Part 2), and adding it 
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to the value of Part 3 (Part 1 – Difference = Part 3), to find the solution to the problem 

(Part 2 + Part 3 = Whole 2).  

 
Fig. 1 Implementation of the mathematical structure with ordinal versus cardinal quantities, 

leading to different problem statements, representations, and strategy use. Adapted from “When 
masters of abstraction run into a concrete wall: Experts failing arithmetic word problems,” by H. 

Gros, E. Sander, & J.-P. Thibaut, 2019, Psychonomic Bulletin & Review, online first. 

On the other hand, the duration problem reproduced in box 3.b. describes a situation 

that can easily be represented along an axis (such as a timeline), and it is thus thought 

to evoke an ordinal encoding (Fig. 1, box 3.c.). This representation facilitates the 

understanding that since Tom and Lucy started taking painting classes at the same 

age, and since Lucy took classes for 2 years less than Tom, then she stopped attending 

the classes when she was 2 years younger than him. Thus, this inference that the 

difference between Part 1 and Part 3 is equal to the difference between Whole 1 and 

Whole 2 makes it easier to use a 1-step algorithm to find the value of Whole 2: Whole 

1 – Difference = Whole 2 (see Fig. 1, box 3.d.). The same pattern was hypothesized 

to happen for every problem used in the study. Depending on the cardinal versus 

ordinal nature of the quantities used in the problems, participants were thought to 

construct a different encoding of the situation, which led them to one of the two 
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possible solving algorithms. Drawing production elicited by Gros et al. (2017) 

supported the claim that participants constructed different representations depending 

on whether the quantities in the problems emphasized the cardinal nature of numbers 

(higher number of set-based drawings) or whether they emphasized the ordinal 

nature of numbers (higher number of axis-based drawings). Additionally, participants’ 

report of the algorithms they used to solve the problems showed that they tended to 

use the 1-step algorithm more often on problems with ordinal quantities than they 

did on problems with ordinal quantities, despite being explicitly asked to solve the 

problems using as few operations as possible. 

To evaluate the robustness of these encoding effects, Gros et al. (2019) 

proposed a modified version of these problems, in which the value of Part 1 was not 

provided, to prevent participants from using the 3-step algorithm to solve the 

problems. For example, the sentence “Joe takes a Russian dictionary weighing 5 kgs” 

was replaced by “Joe takes a Russian dictionary weighing a certain weight”, and the 

sentence “Tom took painting classes for 5 years” was replaced by “Tom took painting 

classes for a certain number of years”. It thus became impossible to use the 3-step 

algorithm (Fig. 1, box 2.d.) since that required knowing the value of Part 1, and the 

only algorithm left to solve the problems was the 1-step algorithm (Fig. 1, box 3.d.). 

Note that this transformation of the problem statement turned it into a single-step 

subtraction problem, the solution of which consisted in subtracting the lower value 

from the higher one. Gros et al. created a solution-assessment task, in which these 

problems were presented accompanied by their solution, and participants had to 

decide whether the solution was correct or whether the problems could not be solved.  

The idea was that participants would have no trouble solving the ordinal 

problems, since their ordinal encoding naturally led them to use the 1-step algorithm, 

but cardinal problems should be more troublesome. Indeed, a cardinal encoding 

fostering the calculation of Part 2 and Part 3 to find the value of Whole 2 would result 

in a dead end, and it was thus predicted that participants would need to engage in a 

semantic recoding of the situation to understand the relevance of the 1-step algorithm. 

It was thus predicted that cardinal problems would lead to a higher number of failures, 

and that participants who nevertheless managed to solve the cardinal problems would 

require a higher amount of time to do so, due to the semantic recoding step necessary 

to construct a new, more appropriate representation of the situation. They presented 

this task to lay adults and to expert mathematicians and found that in both cases their 
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expertise was not enough to prevent the influence of the cardinal versus ordinal 

distinction: participants made more errors and took longer to solve cardinal problems. 

In the current study, we intend to build on this experimental paradigm to evaluate 

the influence of such encoding effects on a population more mindful of the didactic 

stakes behind scholastic exercises such as arithmetic word problem solving, and to 

get a finer understanding of the interpretative mechanisms at play using an eye 

tracking setup.  

Eye tracking as an index of reasoning processes 
It is established that the study of eye movement is informative with regards to what 

is being attended to in a given situation (e.g. Buswell, 1935; Just & Carpenter, 1980; 

Rayner, 1998; Yarbus, 1967). In text comprehension, an extensive line of work has 

used eye tracking to study the shifts of attention from one word to another, and the 

underlying thought processes (e.g. Clifton, Staub, & Rayner, 2007; Hyönä, Lorch, & 

Rinck, 2003; Just & Carpenter, 1987; Kaakinen & Hyönä, 2008; Rayner, Chace, Slattery, 

& Ashby, 2006; Rayner & McConkie, 1976; Van der Schoot, Vasbinder, Horsley, 

Reijntjes, & van Lieshout, 2009). Overall, it is generally admitted that eye fixations are 

correlated to the cognitive processing of information (Andra et al., 2015; Latour, 1962; 

Orquin & Mueller Loose, 2013). In fact, from an educational standpoint, there has 

been an increasing amount of literature using eye tracking to better understand 

students’ learning processes (Lai et al., 2013; Scheiter & van Gog, 2009; van Gog & 

Scheiter, 2010). As stated by Andra et al. (2015, p. 241), “the merit from a didactic 

perspective is that we can examine how and which information students are attending 

to”. 

In the study of mathematical reasoning, eye tracking has also been used to 

pinpoint the integration of relevant information while performing calculations, 

looking at mathematical representations or solving math problems (Beitlich, 

Obersteiner, & Reiss, 2015; Bolden, Barmby, Raine, & Gardner, 2015; Curtis, Huebner, 

& LeFevre, 2016; Green, Lemaire, & Dufau, 2007; Knoblich, Ohlsson, & Raney, 2001; 

Merkley & Ansari 2010; Obersteiner & Tumpek, 2016; Schneider et al., 2008; Winoto, 

Tang, Huang, & Chen, 2017; Zhu, Luo, You, & Wang, 2018). However, despite the 

abundant literature using eye movements to investigate mathematical reasoning and 

the extensive research analyzing text comprehension using eye tracking, a surprisingly 

low number of studies have resorted to this methodology to understand mathematical 

word problem solving (Strohmaier, Tatsidou, & Reiss, 2018).  

https://link.springer.com/article/10.1007/s11858-015-0742-z#CR1000
https://link.springer.com/article/10.1007/s11858-015-0742-z#CR31
https://link.springer.com/article/10.1007/s11858-015-0742-z#CR2000
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In fact, ever since De Corte and Verschaffel’s (1986) seminal work on the 

matter more than thirty years ago, we are aware of less than a dozen studies who 

looked at mathematical word problem solving using eye movement recording. For 

example, De Corte, Verschaffel and Pauwels (1990) used eye movement recording to 

discriminate between the initial read-through of arithmetic word problems and the 

subsequent time spent rereading parts of the problem statement. Then, Verschaffel, 

De Corte, and Pauwels (1992) evaluated the validity of Lewis and Mayer’s (1987) 

Simulation Model’s predictions by recording students’ total fixation times on the first 

two relational sentences in the statement of arithmetic word problems. They notably 

showed that students’ longer response times on problems featuring relational terms 

inconsistent with their solving algorithms were due to a longer time spent on the 

initial reading of the first two problem sentences.  

Similarly, Hegarty, Mayer and Green (1992) compared high-accuracy and low-

accuracy students’ reading patterns when solving arithmetic word problems. Their 

fixation analysis revealed that low-accuracy student’s longer response times were due 

to numerous rereads of the problems after their initial read-through. In the same line, 

Hegarty, Mayer and Monk (1995) identified differences between successful and 

unsuccessful problem solvers’ strategies in terms of eye fixations on numbers and 

relational terms in the problem statements, as well as in terms of total number of 

regressive eye movements. Later, Van der Schoot, Bakker Arkema, Horsley and van 

Lieshout (2009) focused on regressive eye movements to evaluate how the strategies 

of successful and less successful problem solvers differed when solving different types 

of arithmetic word problems. Finally, Dewolf et al. (2015) used fixation analysis to 

investigate how often students looked at representational illustrations accompanying 

standard and non-standard mathematical word problems.  

Of note, Strohmaier, Lehner, Beitlich and Reiss (in press) recently used global 

measures of eye movements to investigate complex, unstructured mathematical 

problems including context information, text, pictures and other sources of 

information. They notably showed that the more difficult items were read with shorter 

fixations, more saccades and more regressions than the easier problems. Using the 

same type of stimuli in a cross-linguistic study, Strohmaier, Schiepe-Tiska, Chang, 

Müller, Lin and Reiss (in press) notably showed that Taiwanese students solved the 

problems using shorter fixations and a higher proportion of regressions than German 

students. 
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However, to the best of our knowledge, most of the research conducted on 

more classical arithmetic word problems using eye tracking methodology has focused 

on fixation times, with some works counting backward eye-movements to identify 

specific solving strategies. In our study, we intend to use both of these metrics to get 

a finer understanding of the differences between cardinal and ordinal problems, as 

well as a third one selected to evaluate participants’ effort in the task: pupil dilation.  

Pupillometry concerns the measure of pupil dilation over time. Its use in 

research was initiated by Hess and Polt (1964), who found that pupil tended to dilate 

when individuals were asked to solve multiplication non word  problems of increasing 

difficulty. Subsequent works discovered that pupil diameter increased with memory 

load (Granholm, Asarnow, Sarkin, & Dykes, 1996; Kahneman & Beatty, 1966; Peavler, 

1974; see Goldinger & Papesh, 2012, for a review) and with task demand in general 

(Beatty, 1982; Janisse, 1977; Kahneman, 1973). Further works confirmed that task-

evoked pupillary response was a robust – although indirect – measure of cognitive 

load (Beatty & Lucero-Wagoner, 2000; Just, Carpenter, & Miyake, 2003), which makes 

it a valuable index to evaluate participants’ effort variations when solving arithmetic 

word problems. 

Current study 
In this study, we set out to gain a better understanding of the fundamental difference 

between situations emphasizing the cardinal aspect of number, and situations 

underlining their ordinal aspect instead. Building on previous works showing that the 

distinction between cardinal and ordinal problems could elicit different solving 

strategies among children, lay adults and expert mathematicians, we strove to build a 

finer characterization of the cognitive mechanisms involved in the process. First, we 

decided to get a teacher’s perspective on these problems: where mathematicians 

failed, maybe math teachers can overcome? It can be argued that the expert 

mathematicians recruited in Gros et al. (2019) have a specific expertise in abstract 

mathematical reasoning that might have fallen short of the peculiar exercise imposed 

to them in the form of arithmetic word problems. Despite being intended to prepare 

students to use mathematical notions in real life (Verschaffel et al., 2000), the odd 

nature of arithmetic word problems may be enough to throw off mathematicians who 

haven’t opened a school textbook in years. Thus, since a secondary math teacher’s 

expertise surely encompasses the didactic stakes behind the use of word problems, 
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can we expect a different outcome? Or, to put it differently: where Content Knowledge 

failed, can Pedagogical Content Knowledge (Shulman, 1986) prevail? 

The first experiment was designed to answer this question, and to ask another 

one: if teaching math in secondary school is not enough to perceive the isomorphism 

between cardinal and ordinal problems, then what makes these problems so different 

that they confound most individuals who try their hand at solving them? The second 

experiment was designed to tackle this question. Using eye-tracking methodology, 

we asked pre-service teachers to solve the very problems that puzzled our experts. 

We collected 5 distinct metrics of their reasoning processes in the hope of reaching a 

finer-grained understanding of the differences between the encoding of cardinal and 

ordinal problems. Response times, performance rates, fixation times, regression 

counts and pupil dilation were analyzed in light of what we believe the cardinal 

versus ordinal distinction entails in terms of representational processes. Following 

Gamo et al.’s (2010) findings according to which one can be trained to semantically 

recode a fruitless representation, we took a special interest in pinpointing the 

conditions for such a recoding to happen. Ultimately, we believe that understanding 

such recoding processes is a crucial step to foster transfer of learnt strategies between 

semantically dissimilar contexts. 

Experiment 1 
Experiment 1 was designed to evaluate the robustness of the differential interpretative 

effects reported between cardinal and ordinal problems among secondary teachers. 

We modelled the experiment on the one challenging expert mathematicians in Gros 

et al. (2019), with one main difference: contrary to the instructions received by the 

math experts, the teachers were not told to solve the problems as fast as possible. In 

fact, they were explicitly told to take as long as they needed to solve the problems, 

in order to give them every opportunity to avoid mistakes and correctly identify the 

solvable problems. In accordance with previous studies showing the stability of the 

effect of semantic congruence among diverse populations, we made the hypothesis 

that the results from Gros et al. (2019) would be replicated among the secondary 

teachers, regardless of whether they were math teachers or teachers in other fields. 

In other words, we expected their success rate to drop on cardinal problems 

compared to ordinal problems, and we expected correctly solved cardinal problems 

to take up a longer time than correctly solved ordinal problems, due to the necessity 
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for the teachers to engage in a semantic recoding of their initial, inappropriate 

representation. 

Methods 
Participants. The participants were 122 secondary teachers (78 women and 44 men, 

M = 35.85 years, SD = 7.67) attending a State mandatory teacher training program at 

the University of Geneva. Among them, 90 had never taught mathematics at any level, 

while 32 had taught mathematics in secondary school for at least one year. Participants 

volunteered after giving informed consent, in exchange for course credit. All the 

participants spoke French fluently and none had previously participated in any similar 

experiment. 

Materials. The materials for this experiment were the same as those created in Gros 

et al. (2019): 12 arithmetic word problems sharing the same abstract mathematical 

structure. Each participant was presented with a random selection of 6 target solvable 

problems: 3 of those featured cardinal quantities (1 collection problem, 1 price 

problem and 1 weight problem) and 3 featured ordinal quantities (1 duration problem, 

1 height problem and 1 floors problem). We used a within-subject design to allow for 

within-subject comparisons between performance on cardinal and on ordinal 

problems. In addition, we introduced 6 unsolvable filler problems that were similar 

to the target problems but could not be solved with any algorithm, due to the value 

of Part 1 being present and the value of Whole 2 being missing, contrary to the target 

problems. Order of target and filler problems was randomized between participants. 

All the problems were written in French. Cardinal and ordinal problems did not 

significantly differ in number of words; t(16) = 1.37, p = .19, independent t-test. The 

problems were isomorphs and the numerical values used were randomized across 

problems.   

Procedure. This experiment was conducted online using the Qualtrics platform for 

online experiments. After agreeing to and signing the voluntary participation form on 

the first screen, the instructions were displayed. They stated that “You will be 

presented with a series of arithmetic problems. Some of the problems can be solved 

using the values provided, while other problems cannot be solved with the available 

information. Your task is to tell apart problems that can be solved from problems that 

cannot. This is not a speed test: take your time to carefully read and understand each 

of these problems”.  Problem order, cover stories and numerical values were 

randomized between participants. The value of Whole 1 was comprised between 11 
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and 15, Whole 2 between 5 and 9, and the Difference was either 2 or 3. On the next 

screen, the first problem was displayed. The presentation of the problems was self-

paced: a new screen appeared each time a participant answered and clicked “next”.  

Results 
Success Rate. We recorded participants’ answers to the problems to evaluate 

whether the results from Gros et al. (2019) could be replicated among teachers. As in 

this study, we analyzed participants’ rate of correct answers and response times (RTs) 

on the cardinal and ordinal target problems. The dependent variable was the binary 

outcome indicating failure or success on solvable problems. Since each participant 

gave a binary answer to 6 cardinal problems and 6 ordinal problems, we used a 

generalized linear mixed model with a binomial distribution to account for the 

repeated measures in the experimental design. We used the cardinal versus ordinal 

nature of the problems as a fixed factor, the experience teaching math as another 

fixed factor, and participants as a random effect. The overall model successfully 

converged and had a total explanatory power of 17.16% (conditional R2). In line with 

Gros et al.’s findings on expert solvers, there was a main effect of the cardinal versus 

ordinal nature of the problems on participants’ success rate. In fact, teachers 

performed significantly worse on cardinal (58.74%) than on ordinal problems 

(86.26%); z = 7.83, p < .001. Similarly, there was a main effect of participants’ 

experience teaching math (z = 4.82, p < .001), meaning that participants who had 

already taught math performed higher on average (88.54% success) than participants 

who never did (66.73% success). There was no interaction between these two fixed 

factors (z = 0.59, p < .56).  
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Fig. 2 Teachers' answer distribution depending on the cardinal versus ordinal nature of the 

problems. *** p < .001, * p < .05. 

Since our hypothesis was that both groups would be influenced by the semantic 

difference between cardinal and ordinal problems, we conducted an additional 

analysis focusing on the performance difference within each group (see Fig. 2). As 

expected, teachers who had never taught math performed significantly better on 

ordinal target problems (83.21%) than on cardinal target problems (50.37%); z = 7.83, 

p < .001. Similarly, and despite their higher performances overall, math teachers also 

fell prey to the distinction between cardinal and ordinal problems: their performances 

on cardinal target problems (82.29%) were significantly lower than on ordinal target 

problems (94.79%); z = 2.57, p < .05. The results from Gros et al. (2019) regarding 

success rates on cardinal and ordinal problems were thus replicated in this 

experiment, among both groups of participants. 

Response Times. Following the semantic recoding hypothesis developed in Gros et 

al. (2019), we investigated the RTs of correctly solved problems (see Fig. 3). We 

expected that correct responses on cardinal problems would require a higher amount 

of time than on ordinal problems, due to the need of an extra semantic recoding step 

to find the solution. We used Tukey’s method to identify and remove 37 outliers 
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ranged above and below 1.5 interquartile range. We analyzed participants’ response 

times using a linear mixed model with the cardinal versus ordinal nature of the 

problems as a fixed factor, the participants’ experience teaching math as another fixed 

factor and the participants themselves as a random effect. The overall model 

successfully converged and had a total explanatory power of 36.86% (conditional R²). 

Within this model, an ANOVA using Satterthwaite’s method for estimation of degrees 

of freedom revealed that there was a significant effect of the cardinal versus ordinal 

nature of the problems on the response times on correctly solved problems (F(1) = 

19.56, p < .001). Which indicates that correctly solving a cardinal problem required 

more time on average (M = 42.88, SD = 23.79) than correctly solving an ordinal 

problem (M = 35.65, SD = 19.72), in accordance with Gros et al.’s (2019) results. There 

was no main effect of the experience teaching math, meaning that math teachers’ 

response times (M = 42.47 s, SD = 22.04) did not differ significantly from that of 

teachers of other subjects (M = 36.59 s, SD = 21.24); F(1) = 3.78, p = .054. 

 
Fig. 3 Pirate plot of response times on cardinal and ordinal problems, depending on math 
teaching experience. Middle lines indicate mean RT, upper and lower lines indicate 95% 

confidence interval margins. *** p < .001, ** p < .01. 

Since our hypothesis was that both groups would be influenced by the semantic 

difference between cardinal and ordinal problems, we conducted a follow-up analysis 

of RTs, focusing on the difference within each group. As expected, despite their 

higher success rate, math teachers also needed to perform an extra recoding step, as 

indicated by their longer RTs on cardinal problems (M = 48.00 s, SD = 21.97) than on 

ordinal problems (M = 38.32 s, SD = 21.29); F(1) =12.79, p < .001. As expected, 

teachers who had never taught math also needed an extra step to solve the cardinal 

problems, as indicated by their faster response on ordinal target problems (M = 34.55 
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s, SD = 18.99) than on cardinal target problems (M = 40.13 s, SD = 24.36); F(1) = 7.81, 

p < .01.  

Discussion 
In this first experiment, we replicated Gros et al.’s (2019) findings among two 

populations: secondary teachers who never taught math, and secondary teachers with 

at least one year of experience teaching math in secondary schools. As expected, 

participants in both groups had a harder time identifying the solution to the cardinal 

problems than to the ordinal problems, despite the isomorphic structure of the 

problems. Almost half of the time, non-math teachers were not able to identify the 

conformity of the simple subtraction that was proposed to them to solve cardinal 

problems: they dismissed the problems as unsolvable, despite being provided with 

its solution. Despite their obvious expertise in mathematical reasoning and arithmetic 

word problem solving, math teachers were also influenced by the cardinal versus 

ordinal semantics imbued in the problem statements: their almost perfect performance 

on ordinal problems (94.79%) dropped 12.5 points lower on cardinal problems. 

Interestingly, in this experiment the participants were not made aware of any form of 

time constraint: they were explicitly told to take as long as they needed, contrary to 

the instructions given to the experts in Gros et al.’s study. Despite not being pressured 

by time, they still failed to identify the solution of a significant portion of cardinal 

problems. Of note, despite their lower performance on cardinal problems, their rate 

of success was comparable to that of the mathematical experts in this previous study, 

suggesting that their experience as math teachers helped them achieve a comparable 

– if not higher – level of expertise on the problems under scrutiny.  

This result underlines the prevalence of these effect of world semantics on our 

ability to engage in arithmetic reasoning. Even among a population who, arguably, 

possesses a significant level of mathematical expertise, a certain degree of pedagogical 

content knowledge about mathematics, and who is accustomed to using word 

problems to teach students about abstract mathematical concept, detaching from the 

problem statements’ context was not trivial. In fact, even when they managed to 

identify that the cardinal problems could be solved, both populations required more 

time to do so, which we attribute to the need to engage in a semantic recoding of 

their initial representation into a new one, congruent with the 1-step algorithm. 

Overall, these results indicate that despite their extensive understanding of the 

didactical complexities behind word problem solving, teachers (and more particularly 
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math teachers) are not immune to robust interferences between their non-

mathematical world knowledge and their mathematical understanding of the 

situations depicted in a problem statement. In other words, knowing what to be wary 

of in a problem statement, and understanding that what matters is not the depicted 

context but the mathematical structure of the situation instead are not enough to 

systematically perceive the deep structure of the problems. 

Experiment 2 
While it seems clear in light of the first experiment’s results that the difference 

between cardinal and ordinal problems runs deep enough to interfere even with math 

teachers’ understanding of arithmetic word problems involving relatively elementary 

mathematical notions, the question remains as to what exactly this distinction between 

cardinal and ordinal problems entails in terms of solving process. How can we assess 

our hypothesis that the use of cardinal quantities fosters a set-based encoding enticing 

participants to calculate the value of each subset to find the value of the total set? 

While previous works have used algorithm choice and drawing production to provide 

evidence towards this claim (Gros et al., 2017), we strove to collect evidence from 

objective measurements that would not solely rest on participants verbal or written 

productions. To fill this gap, we decided to analyze the gaze patterns of 50 preservice 

teachers engaging in the solving of cardinal and ordinal problems similar to those 

used in Experiment 1. An additional measure of pupillometry was also designed to 

take a closer look at the claim that participants need to engage in a semantic recoding 

process to overcome a fruitless initial representation of the problem situation. 

 We made the following predictions. First, the difference in success rates 

observed in Experiment 1 between cardinal and ordinal problems should be 

replicated in this experiment. Second, the response times should also vary depending 

on the cardinal versus ordinal nature of the problems: correctly solving a cardinal 

problem should require a longer time than correctly solving an ordinal problem, as 

seen in the first experiment. Third, in accordance with the hypothesis that cardinal 

quantities evoke a set-based encoding fostering the use of a solving strategy consisting 

in calculating the values of Part 2 and Part 3 in order to get the value of Whole 2, and 

in accordance with the hypothesis that ordinal quantities evoke an axis-based 

encoding favoring the view that the value of Whole 2 can be calculated by simply 

subtracting the value of the difference from the value of Whole 1 (see Fig. 1), we 
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predicted that the total fixation time spent on each line of the problems should vary 

between cardinal and ordinal problems. Since a cardinal encoding is supposed to 

foster the calculation of the values of Part 2 and Part 3 to find the value of Whole 2, 

we expected that cardinal problems would lead to longer visit durations on the lines 

referring to Part 2 and Part 3, compared to ordinal problems. Fourth, since the values 

of Part 2 and Part 3 are not provided in the problem statements, but are nevertheless 

deemed necessary by participants who encode the problems as a cardinal situations, 

then backward eye movements to the lines referring to these two quantities should 

be more frequent on cardinal than on ordinal problems. Fifth, since participants who 

manage to solve cardinal problems are supposed to do so by engaging in a costly 

semantic recoding process, then correctly solving a cardinal problem should result in 

an increase in pupil diameter whereas correctly solving an ordinal problem should 

not. Overall, these measures were meant to depict a more accurate picture of the 

interpretative mechanisms at play in the solving of cardinal and ordinal word 

problems. 

Methods 
Participants. The participants were 50 pre-service teachers (41 women and 9 men, 

M = 27.22 years, SD = 13.95) recruited from the Educational Sciences program at the 

University of Geneva. They volunteered after giving informed consent, in exchange 

for course credit. All the participants spoke French fluently and none had previously 

participated in any similar experiment. They were invited to assess the validity of 18 

problems, during which their eye movements were recorded in a natural, dynamic, 

and undisturbed manner. 

Materials. The arithmetic word problems used in this experiment were taken from 

the pool of 12 problems created in Gros et al. (2019). In order to maximize the number 

of recordings for each participant, we created 6 new problems to constitute a pool of 

18 problems to choose from. Each participant was presented with a random selection 

of 12 target solvable problems: 6 of those featured cardinal quantities (2 collection 

problems, 2 price problems and 2 weight problems) and 6 featured ordinal quantities 

(2 duration problems, 2 height problems and 2 floor problems). We used a within-

subject design to allow for within-subject comparisons between performance on 

cardinal and on ordinal problems. In addition, we introduced 6 unsolvable filler 

problems that were similar to the target problems but could not be solved with any 

algorithm, due to the missing value of Whole 2 (see Fig. 1). Order of target problems 
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and filler problems was randomized between participants. All the problems were 

written in French. Cardinal and ordinal problems did not significantly differ in number 

of words; t(18) = 1.92, p = .073, independent t-test. The problems were isomorphs 

and the numerical values used were randomized across problems.  

Procedure. The stimuli were presented on a 23.8” monitor. The participants were 

seated approximately 65 centimeters from the monitor, in a soundproofed 

experimental room designed to avoid distractions during the experiment. There was 

no window to avoid any natural light fluctuation; the only sources of light were a 

ceiling light and the eye tracking monitor. The first screen displayed the instructions 

for the experiment. Participants were told that “You will be presented with a series 

of arithmetic problems.  Some of the problems can be solved using the values 

provided, while other problems cannot be solved with the available information. Your 

task is to tell apart problems that can be solved from problems that cannot. Answer 

as quickly as you can, although being correct is more important than being fast. Press 

the space bar when you are ready to start.”. A fixation cross was displayed for 3 

seconds before each problem appeared.  

Each problem screen comprised 6 lines of text composing the problem 

statement, and a separate insert displaying the response choices. The text was written 

in size 18, with a line spacing of 3.7 to ensure that minor inaccuracies of the eye gaze 

estimation would not be detrimental to the analyses. The response insert presented 

two possible choices. Choice “A” was the solution to the problem, composed of the 

operation and a short sentence describing the result (e.g. “14 – 2 = 12. Lucy arrives 

at the 12th floor.”). Choice “B” stated: “There is not enough information to find the 

solution.” For each solvable target problem, the correct solution was proposed, and 

it was up to the participants to assess whether they thought it was valid or whether 

they deemed the problem unsolvable. Participants answered each problem using two 

keys on a keyboard placed in front of them. After each problem, a screen appeared 

informing them that their answer had been recorded and telling them to press the 

space bar when they were ready for the next problem. This procedure was the same 

for each problem. After completing the test, the participants were debriefed and 

dismissed. A typical session lasted between 20 and 30 minutes. The eye movements 

were registered with a Tobii Pro Spectrum eye tracker attached to the monitor. 
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Results 
Success Rates. We recorded participants’ answers to the problems to evaluate 

whether the results from Gros et al. (2019) and our first experiment were replicated. 

As in previous studies, we analyzed participants’ rate of correct answers and response 

times (RTs) on the cardinal and ordinal target problems. The dependent variable was 

the failure or success on solvable problems (see Fig. 4). Since each participant gave 

a binary answer to 6 cardinal problems and 6 ordinal problems, we used a generalized 

linear mixed model with a binary distribution to account for the repeated measures 

in the experimental design. We used the cardinal versus ordinal nature of the 

problems as a fixed factor, and participants as a random effect. The overall model 

successfully converged and had a total explanatory power of 12.60% (conditional R2). 

In line with previous results, participants performed significantly worse on cardinal 

(51.51%) than on ordinal problems (82.4%); z = 8.22, p < .001.  

Response Times. Following our semantic recoding hypothesis, we looked at the RTs 

of correctly solved problems (see Fig. 5). We predicted that correctly solving a cardinal 

problem would require a higher amount of time, due to an extra recoding step being 

necessary to find the solution. We used Tukey’s method to identify and remove 16 

outliers ranged above and below 1.5 interquartile range. We analyzed participants’ 

response times using a linear mixed model with the cardinal versus ordinal nature of 

the problems as a fixed factor and the participants as a random effect. The overall 

model successfully converged and explained 30.43% of the variance (conditional R²). 

Within this model, an ANOVA using Satterthwaite’s method for estimation of degrees 

of freedom revealed that there was a significant effect of the cardinal versus ordinal 

nature of the problems on the response times on correctly solved problems (F(1) = 

25.24, p < .001). Which indicates that correctly solving a cardinal problem required 

more time on average (M = 25.29, SD = 8.72) than correctly solving an ordinal problem 

(M = 21.73, SD = 7.73). The results from Gros et al. (2019) were thus replicated in this 

experiment, both in terms of success rate and response times. 
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Fig. 4. Participants' answer distribution depending on the cardinal versus ordinal nature of the 

problems. *** p < .001. 

 

 

 
Fig. 5. Pirate plot of response times on cardinal and ordinal problems. Middle lines indicate 

mean RT, upper and lower lines indicate 95% confidence interval margins. *** p < .001. 
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Scoring of eye-fixation data. The sequence of eye fixations for each participant 

was recorded with the software Tobii Pro Lab, which identified the fixations and 

saccades of the participants while they were solving the problems. We partitioned the 

screen into 7 different areas of interest (AOIs) in which participants’ fixations were 

recorded. In order to avoid false negative due to potential measurement inaccuracy, 

and since we had chosen the largest possible line spacing to avoid vertical 

overlapping between AOIs, we followed Orquin, Ashby, & Clarke's (2016) advice and 

selected the largest possible AOIs that were not susceptible to overlap. Thus, we 

created one AOI for each problem line, and one last AOI dedicated to the response 

insert. The seven AOIs partitioned the screen and they all shared the same height and 

width. 

Looking time. An examination of the participants’ fixations within the different AOIs 

provides a test of the hypothesis that participants attend to different pieces of 

information depending on whether they are solving a cardinal or an ordinal problem. 

We had predicted that, since cardinal problems are supposed to lead to a cardinal 

encoding of the situation, participants will spontaneously try to calculate the 

intermediate values of Part 2 and Part 3 to find the value of Whole 2 (See Fig. 1, box 

2.d.). Thus, participants should spend more time in sentences referring to these two 

subsets on cardinal problems than on ordinal problems. We were thus expecting an 

interaction between the cardinal versus ordinal nature of the problems and the total 

amount of time spent in the lines specifying the intermediate subsets Part 2 (lines 2 

and 4) and Part 3 (line 5; see Fig. 1, box 2.b.).  

We extracted the total visit duration per AOI for each participant. This measure 

included all the fixations within the AOI to indicate how long in total the participants 

had spent looking at each of the 6 problem lines as well as the response insert. Since 

each participant’s gaze was recorded on 12 different problems, we analyzed the visit 

duration using a generalized linear mixed model with visit duration as the dependent 

factor, participants as a random effect, the line number as a fixed effect and the 

cardinal versus ordinal nature of the problems as a fixed effect. The overall model 

successfully converged and had a total explanatory power of 31.92% (conditional R2). 

Within this model, an ANOVA using Satterthwaite’s approximation for the degrees of 

freedom revealed that the cardinal versus ordinal nature of the problems had a 

significant effect (F(1) = 53.74, p < .001), as well as the line number (F(6) = 202.69 p 

< .001). The interaction between those two fixed effect was significant as well (F(6) 
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= 12.29, p < .001). In accordance with our hypothesis, we computed orthogonal 

contrasts using least square means to identify whether participants did visit the lines 

referring to Part 2 and Part 3 longer on cardinal than on ordinal problems: lines 2, 4 

and 5. Results revealed that participants spent a longer time on average visiting line 

2 on cardinal problems (M = 3.40 seconds, SD = 1.64) than they did on ordinal 

problems (M = 2.58 seconds, SD = 1.43); t(3922) = 6.49, p < .001. Similarly, participants 

spent a longer time visiting line 4 on cardinal problems (M = 4.40 seconds, SD = 1.66) 

than they did on ordinal problems (M = 3.61 seconds, SD = 1.60); t(3924) = 6.13, p < 

.001. Finally, they also spent a longer time on the 5th line of cardinal problems (M = 

3.79 seconds, SD = 1.75) than on that of the ordinal problems (M = 2.97 seconds, SD 

= 1.67); t(3923) = 6.56, p < .001. On the other hand, there was no significant visit 

duration difference between cardinal and ordinal problems on lines 1, 3, 6 nor on the 

response insert (see Fig. 6); 0.02 ≤ t-value ≤ 0.96, .33 ≤ p ≤ .98. 

Fig. 6 Visit duration per problem line 

  

Due to two thirds of the problems we used coming from a previous study (Gros et 

al., 2019), we could not perfectly control for the word length of every line in the 

problems. While there was no length difference in lines 2 to 6, there was however a 

significantly higher number of words in line 1 of ordinal problems (M = 6.89, SD = 

2.15) as compared to line 1 of cardinal problems (M = 10.22, SD = 2.82); t(16) = 2.82, 

p < .05. This difference was not deemed problematic regarding our results since our 

hypotheses focused on lines 2, 4 and 5, and since there was no significant difference 

of the visit duration on line 1 between cardinal and ordinal problems. 
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Regressions. Analysis of backward eye movements (regressions) from one problem 

sentence to an earlier one is another measure of participants’ use of the pieces of 

information available in the problem statement. Following Verschaffel, De Corte and 

Pauwels’ advice (1992), we investigated participants’ number of regressions to get a 

finer-grained understanding of the differences between cardinal and ordinal 

problems. Since each problem line presented a new information, we could infer 

which pieces of information participants were going back to in order to try to solve 

the problems. For each trial, we calculated the total number of backward eye 

movements to lines to each problem line. We started counting the backward eye 

movements only after the participants had made their first fixation on the first line of 

the problems. As in the visit duration analysis, we predicted that since cardinal 

problems are supposed to evoke a cardinal encoding fostering the calculation of Part 

2 and Part 3 to get the value of Whole 2 (see Fig. 1, box 2.d.), then participants should 

make more regressions to the lines mentioning these quantities in their search for the 

missing values needed to use the 3-step algorithm. Thus, we made the hypothesis 

that participants would make a higher number of regressions to lines 2, 4 and 5 on 

cardinal problems than they would on ordinal problems. 

We performed the analysis using a generalized linear mixed model with number 

of regressions as the dependent factor, the cardinal versus ordinal nature of the 

problems as a fixed factor, the line number as a fixed factor and the participants as a 

random effect. The overall model successfully converged and had a total explanatory 

power of 24.75% (conditional R²). Within this model, an ANOVA using Satterthwaite’s 

method for estimation of the degrees of freedom revealed that the effect of the 

cardinal versus ordinal nature of the problems was statistically significant (F(1) = 

140.11, p < .001). There was also a main effect of the line number (F(5) = 94.43, p < 

.001). The interaction between these two fixed factors was significant (F(5) = 16.36, 

p < .001). In accordance with our hypothesis, we computed orthogonal contrasts 

using least square means to identify whether participants did make more regressions 

to lines 2, 3 and 5 on cardinal problems than they did on ordinal problems (see Fig. 

7).  

Results revealed that, as predicted, participants made a higher number of 

regressions to line 2 on cardinal problems (M = 2.03 regressions per problem, SD = 

1.73) than they did on ordinal problems (M = 1.05 regressions per problem, SD = 

1.16); t(3306) = 9.39, p < .001. Similarly, participants made more regressions to line 4 
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on cardinal problems (M = 1.23, SD = 1.43) than on ordinal problems (M = 0.70, SD 

= 1.01); t(3306) = 5.12, p < .001. Finally, the number of regressions to line 5 was 

higher on cardinal problems (M = 0.77, SD = 1.11) than it was on ordinal problems 

(M = 0.42, SD = 0.76); t(3306) = 3.43, p < .001. Surprisingly, the contrast analysis also 

revealed a difference that we had not predicted: participants made a higher number 

of regressions per problem to line 1 on cardinal problems (M = 2.00, SD = 1.83) than 

they did on ordinal problems (M = 1.01, SD = 1.24); t(3306) = 9.63, p < .001. There 

was no such difference between cardinal and ordinal problems on line 3 (t(3306) = 

1.75, p = .08) nor on line 6 (t(3306) = 0.31, p = .76). 

 

 
Fig. 7 Mean number of regressions to specific lines depending on the nature of the problems. 

Error bars indicate upper margins of 95% confidence intervals. 
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Pupillary dilatation. To evaluate the validity of our claim that participants need to 

semantically recode their initial representation of cardinal problems to find the 

solution, we looked at participants’ pupil dilation in relation with their successes and 

failures in solving the problems. Since task-evoked pupillary response is deemed a 

reliable measure of cognitive load (van der Wel & van Steenbergen, 2018), the analysis 

of inter-trial change in pupil diameter should be informative with regards to the 

existence of a semantic recoding process. We measured participants’ pupil diameter 

on each fixation during each problem and contrasted it with their answers to the 

problems. We analyzed inter-trial change in pupil diameter using a generalized linear 

mixed model with pupil diameter during fixations as the dependent variable. We used 

participants as a random effect, the cardinal versus ordinal nature of the problems as 

a fixed factor and the participants’ response to the problems as a fixed factor. The 

overall model successfully converged and explained 85.21% of the variance 

(conditional R2). Within this model, an ANOVA using Satterthwaite’s approximation 

for the degrees of freedom revealed that the cardinal versus ordinal nature of the 

problems had a significant effect (F(1) = 68.87, p < .001), indicating that pupil dilation 

differed between cardinal and ordinal problems. There was no main effect of the 

response provided by the participants (F(1) = 0.38, p = .54). There was however an 

interaction between the type of problem (cardinal/ordinal) and the response given 

by the participants (true/false): F(1) = 5.73, p < .05.  

 
Fig. 8 Pupil dilation on solvable problems. Error bars indicate upper margins of 95% confidence 

intervals. 
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In accordance with our hypothesis that semantic recoding needs to happen on 

cardinal problems but not on ordinal problems, we computed contrasts using least 

square means to identify whether participants’ response was linked to their pupil 

dilation on cardinal problems and on ordinal problems (see Fig. 8). Results indicated 

that correctly solving a cardinal problem was associated with a larger pupil diameter 

on average as compared to correctly solving an ordinal problem (t(58838) = 5.34, p 

< .001), which suggests that finding the solution to cardinal problems was more 

cognitively taxing than finding the solution to ordinal problems. Besides, a 

comparison of successes and failures revealed that participants’ pupil diameter was 

significantly larger on correctly solved cardinal problems (M = 418.63 μm, SD = 53.14) 

than on failed cardinal problems (M = 403.08 μm, SD = 49.05); t(588413) = 2.48, p < 

.05. On the other hand, there was no significant difference between pupil diameter 

on correctly solved ordinal problems (M = 416.83 μm, SD = 54.18) and on incorrectly 

rejected ordinal problems (M = 408.90 μm, SD = 55.88); t(58841) = 1.09,  p = .28. 

Thus, there was evidence of an increase in cognitive load on cardinal problems 

correctly solved, but no such evidence on ordinal problems. 

Discussion 
In this second experiment, we gathered converging evidence from five different 

sources of information regarding the interpretative processes at play in the encoding, 

recoding and solving of cardinal and ordinal problems. First, the success rate analysis 

confirmed the results of the first experiment regarding the increased difficulty to 

perceive the validity of the 1-step algorithm on cardinal problems as compared to 

ordinal problems. Then, the difference in response times between correctly solved 

cardinal and ordinal problems was also replicated, supporting the hypothesis that one 

needs to engage in a semantic recoding step to construct a new representation 

compatible with the 1-step algorithm.  

Third, by studying the total looking time on each line of the problem using 

eye-tracking technology, we were able to take a closer look at what differentiates the 

encoding of cardinal and ordinal problems. We hypothesized that problems using 

cardinal quantities would lead participants to abstract a cardinal encoding of the 

situation emphasizing the set/subset structure of the situation depicted. Thus, in their 

 
3 The high number of degrees of freedom for this analysis is due to pupil dilation being measured at each time 
step for each fixation recorded by the eye-tracker. We are currently looking into the possibility to perform a 
different analysis focusing on participants’ pupil dilation variations compared to a baseline. 
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attempts to find the value of Whole 2, we predicted that participants’ first reaction 

would be to try to find the values of each of its subsets, that is, Part 2 and Part 3 (see 

Fig. 1). Our looking time analysis revealed that it was indeed the case, since lines 2, 

4 and 5 were visited for a longer time on cardinal problems than on ordinal problems. 

Despite the lines presenting the same information in the same order across problems, 

it seems that these three specific lines received particular attention on cardinal 

problems, thus suggesting that cardinal problems emphasized the importance of Part 

2 and Part 3 to find the solution. This results supports the idea that cardinal quantities 

evoke a set-based representation. On the other hand, the lines presenting pieces of 

information that were useful to solve the problems but that were not directly related 

to Part 2 or Part 3 were not looked at significantly longer on cardinal than on ordinal 

problems.  

Fourth, the analysis of backward eye movements from one line to a previous 

one informed us with regards to the information that participants came back to when 

reading the problems. In accordance with the results of the visit duration analysis, 

participants made more regressions to lines 4 (Part 3) as well as to lines 2 and 5 (Part 

2) on cardinal problems, as compared to ordinal problems. This indicates that 

participants’ strategy includes looking back to previous lines for information about 

Part 2 and Part 3, thus supporting the idea that participants were actively trying to 

find the value of Whole 2 by adding up the (missing) values of Part 2 and Part 3. This 

result is in accordance with the visit duration analysis, although it provides a different 

perspective on the matter: the visit duration analysis told us that Part 2 and Part 3 

were the focus of special attention on cardinal problems, whereas the regression 

analysis told us that participants tended to look back at information regarding Part 2 

and Part 3 more often on cardinal problems. In other words, the pre-service teachers 

in our study reinspected the information regarding Part 2 and Part 3 more often on 

cardinal problems, which backs the idea that their initial encoding of the cardinal 

problems lead them to look for values that were not provided in the statement nor 

could they be calculated. An unexpected effect appeared during the contrast analysis 

regarding the regressions made toward line 1: participants tended to reinspect line 1 

more often on cardinal than on ordinal problems. This means that in addition to Part 

2 and Part 3, participants also tended to come back to Part 1 in their attempts to solve 

the problem. While this result was not within the range of our predictions, we can 

still attempt to provide a post-hoc explanation for its existence. Line 1 introduces the 
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value of Part 1, and since the value of Part 3 is introduced in line 5 by comparison to 

Part 1 (e.g. “The German dictionary (Part 3) is 2 kgs lighter than the Russian dictionary 

(Part 1).”), then calculating the value of Part 3 would require knowing the value of 

Part 1. In other words, a possible explanation for this difference would be that in 

trying to figure out the value of Part 2, participants would be led to re-evaluate the 

first sentence introducing Part 1, since the value of Part 2 is always given relatively to 

the value of Part 1. Further investigation is needed on this question to identify the 

proper explanation for this difference. 

Finally, a fifth measure provided new insights regarding our hypothesis that 

solving a problem whose initial representation is semantically incongruent with its 

solving algorithm requires to engage in a costly semantic recoding process to 

construct a new representation compatible with the available algorithm. Pupil dilation 

varies closely in response to changes in task demands and pupillometry can thus be 

used as an indirect measure of participants’ effort (van der Wel & van Steenbergen, 

2018). By studying pupil dilation variations between success and failures on cardinal 

and on ordinal problems, we were able to measure how the cognitive load varied 

between situations. In accordance with our prediction regarding response times, we 

predicted that participants’ engagement in a semantic recoding step would result in 

an increase in pupil diameter on successfully solved cardinal problems. The results 

supported this hypothesis, since there was an increase in pupil diameter on 

successfully solved cardinal problems as compared to erroneously rejected cardinal 

problems. In other words, pupil dilation indicated an increased effort when 

participants managed to overcome their initial, incongruent representation of the 

problems and to find the solution to the cardinal problems. On the other hand, the 

pupil diameter difference between successes and failures on ordinal problems was 

not statistically significant. This can either indicate that there was no such difference 

since no semantic recoding was needed on ordinal problems, or it can simply be the 

sign of a lack of statistical power, since failures on ordinal problems were relatively 

scarce. Although we do not have the means to arbitrate between these two candidate 

explanations, the fact that there remained a significant difference between pupil 

dilation on correctly solved cardinal problems and on correctly solved ordinal 

problems seems to tip the scale in favor of the first interpretation. Indeed, it appears 

that correctly solving a cardinal problem required more effort, on average, than 
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correctly solving an ordinal problem, which could be a sign of the existence of the 

semantic recoding process we hypothesized. 

General discussion 
When it was made clear, in Gros et al. (2019), that even mathematicians’ expertise 

could be thwarted by the use of dictionaries instead of ages in a problem statement 

whose answer was a single-step subtraction, we came to the realization that there was 

only two possible explanations to this result. Either the influence of world knowledge 

on the encoding and solving of arithmetic word problems was so strong that no kind of 

expertise could be immune to it; which would suggest that humans are irremediably 

incapable to spontaneously detach their mathematical reasoning from the context in 

which they apply it. Or it could also be that the idiosyncratic nature of arithmetic word 

problems placed them outside of the scope of mathematicians’ expertise. In other 

words, despite being experts of abstract, context-independent reasoning (Dehaene, 

2011), mathematicians might have been too unaccustomed to the peculiar form or 

arithmetic word problems to be able to optimally tap into their mathematical expertise. 

In an attempt to answer this question, we decided in this study to recruit participants 

enjoying an expertise both in arithmetic, and in its teaching in schools, by the means of 

arithmetic word problems. To put it in Shulman’s (1986) terms, they possessed both 

Content Knowledge and Pedagogical Content Knowledge. However, results from our 

first experiment showed that even that was not enough to systematically perceive that 

cardinal problems could be solved with a single-step subtraction, just like ordinal 

problems. Teachers’ irrelevant, non-mathematical knowledge about the world 

interfered with their ability to identify the solution to the word problems, despite being 

given as long as they needed to solve the problems.  

 The importance of this finding lays in the central role that teachers’ diagnostic 

judgments hold in student-centered teaching approaches (Davis & Simmt, 2006; 

Ostermann, Leuders, & Nückles, 2018; Prediger & Zindel, 2017). Indeed, teachers’ 

knowledge of students’ conceptions and misconceptions is considered an essential 

component of their Pedagogical Content Knowledge, along with their knowledge of 

instructional strategies and representations (Ball, Thames, & Phelps, 2008; Depaepe, 

Verschaffel, & Kelchtermans, 2013). Thus, identifying the difficulties that students 
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might encounter and understanding the conceptions underlying them is a crucial step 

for teachers of any domain. Here, by showing that teachers failed to solve problems 

that were framed in a context semantically incongruent with their solution, our results 

suggest that teachersare not immune to the difficulties their students are met with. 

This finding is in direct line with a recent study showing that teachers’ intuitive 

conceptions may overshadow their pedagogical content knowledge, causing them to 

struggle with assessing  the difficulty of arithmetic word problems (Gvozdic & Sander, 

2018). 

 In light of this observation, we strove to get a finer understanding of what 

exactly happens when one’s non-mathematical knowledge interferes with one’s 

mathematical expertise. The second experiment brought new evidence towards the 

claim that the use of cardinal versus ordinal quantities has a direct influence on the 

problem representations that are constructed by the solvers, as well as on their ability 

to find the solution. By showing an increased focus on the subsets on cardinal 

problems, the use of eye-tracking helped support the idea that set-based 

representations are constructed whenever weights, prices or collections are 

mentioned. Additionally, pupil dilation analysis confirmed that recoding an initially 

incongruent representation is a demanding process, with an important cognitive cost 

associated to it. This is an important step forward in understanding how to foster 

semantic recoding in schools, which is a crucial prerequisite to generate transfer 

between superficially dissimilar situations sharing a deeper bond. 
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Presentation 
In an attempt to establish the pervasiveness of the effects of semantic (in)congruence, 

Chapters 2 to 5 have focused on adults’ reasoning about arithmetic word problems. 

However, children are believed to rely more on informal knowledge to solve math 

problems than adults do. Chapter 6 thus aims at evaluating the influence that the use 

of cardinal and ordinal quantities has on children’s apprehension of numerical 

situations, while at the same time addressing the developmental aspect of this 

question. Indeed, the development of the understanding of cardinality and ordinality 

in the early years of life has been the subject of extensive work. However, these 

studies have mainly focused on the first stages of learning how to count, and the 

influence that the distinction between cardinality and ordinality still holds once basic 

counting procedures are mastered has hardly been scrutinized. Are children 

influenced by their perception of ordinality and cardinality in their apprehension of 

numerical situations? Does this distinction result in different mental representations? 

How early can children construct ordinal representations of events? Can children 

construct set-based representations with the same efficiency as adults? We designed 

two experiments to investigate these questions.  

In Experiment 1, we ask 59 fifth graders and 52 adults to solve the same 

problems and to make, for each of them, a drawing that could help someone else 

find the solution. This drawing task was introduced to provide us with a new source 

of information regarding the structure of the representations constructed while solving 

the problems. We predict that among both populations, the difference between 

cardinal and ordinal problems will influence their algorithm use as well as drawing 

productions: drawings of cardinal problems should involve a higher proportion of 

cardinal features whereas drawings of ordinal problems should involve a higher 

proportion of ordinal features. In Experiment 2, we study the influence of the cardinal 

versus ordinal distinction among an even younger population. We ask 384 second 

graders to try to solve a simplified version of the problems used in Experiment 1. 

Although they were modified to be solvable by children of 7-8 years old, the problems 

still admitted two distinct solving algorithms. We predict that even at this young age, 

differences in algorithm use will be observed between cardinal and ordinal problems.  

Experiment 1 has been reported in an article in the Proceedings of the 39th Annual Meeting of the 
Cognitive Science Society (2017). The present chapter is an extension of this article, with a new 
experiment conducted among 2nd graders.   
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Abstract 
Previous studies have showed that children progressively acquire the numerical 

principles of ordinality and cardinality when they first learn how to count. However, 

little work has been conducted on the importance that cardinality and ordinality still 

hold in later years in more complex arithmetic reasoning. We investigate children’s 

and adults’ representation of arithmetic word problems designed to promote either a 

cardinal or an ordinal encoding by referring to certain quantities (durations, heights, 

and number of floors vs. weights, prices, and collections). In Experiment 1, we ask 

59 children and 52 adults to solve the same arithmetic problems, and to make 

drawings of the depicted situations. We show that the use of quantities emphasizing 

the cardinal (resp. ordinal) aspect of the problems’ values results in drawings with 

higher cardinal (resp; ordinal) features, as well as in the use of different solving 

algorithms. In Experiment 2, we investigate how pervasive the effect of the cardinal-

ordinal distinction on algorithm choice is, by asking 191 lay 2nd graders, 193 trained 

2nd graders and 67 adults to solve isomorphic problems created to favor either a 

cardinal or an ordinal representation. We show that regardless of their age and 

arithmetic proficiency, participants’ strategy use is influenced by the cardinal-ordinal 

distinction manipulated through the use of specific types of quantities. 

Keywords 
cardinality · ordinality · encoding · drawing · problem solving · arithmetic word 

problems 
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Introduction 
Word problem solving is a central component of mathematics education. Calculating 

how many eggs are needed to cook an omelet or how long it takes for a bathtub to 

fill up are typical exercises designed to help children learn how to use abstract 

mathematical notions in concrete, real-life situations. But how exactly does one 

proceed to translate a series of words and sentences describing a specific situation 

into an algorithmic procedure leading to the solution? A growing line of works 

suggests that problems are encoded into a mental representation including both 

mathematical and non-mathematical information, which is then translated into a 

solving algorithm (Bassok, 2001; Gamo, Sander, & Richard, 2010; Gros, Sander, & 

Thibaut, 2019). While the traditional schema theory (Kintsch & Greeno, 1985) posits 

that learning how to solve mathematical word problems is tantamount to acquiring 

and storing new problem schemas, we argue instead that it implies learning how to 

construct semantic representations including information regarding the non-

mathematical content of a problem. In this paper, we attempt to provide evidence for 

the development of such representations throughout the years by studying the 

differences between cardinal and ordinal encodings of mathematical word problems 

in children and adults.  

Importance of content effects throughout development and 
education 
We have known ever since Riley, Greeno and Heller’s (1983) work on the typology 

of additive word problems that different wordings of otherwise mathematically similar 

problems may be associated with different performances. However, the idea that the 

semantic content of a problem statement itself might interfere with its interpretation 

and subsequent solving is rather recent in the mathematical problem solving literature.  

One of the first studies to demonstrate the effect that an individual’s prior 

knowledge may have on their mathematical word problem solving performance was 

conducted by Bassok, Wu and Olseth (1995), using permutation problems with adult 

participants. The authors showed that the semantic relations connecting a problem’s 

entities influence analogical transfer between isomorphic problems. They notably 

contrasted problems where objects were given to people and problems were people 

were assigned to objects. They found that, since in real-life objects are usually given 
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to people rather than people being assigned to objects, objects-to-people training 

examples led to higher performances with objects-to-people transfer problems (89%) 

than with people-to-objects transfer problems (0%). Furthermore, when the training 

problems involved situations that were not compatible with participants’ experience 

of the world (in the quoted research, when the problems involved the assignation of 

people to objects), then participants’ performance dropped in the transfer task, 

regardless of the type of transfer problems being used. Along this line of work, 

Bassok, Chase and Martin (1998) asked adults to create addition or division problems 

involving specific sets of objects that were provided. They showed that when the 

objects shared a functionally asymmetric semantic relation (e.g. apples and baskets 

evoke the contain relation), participants tended to create division problems, whereas 

they created addition problems when using symmetric sets of objects (such as oranges 

and apples, that belong to the same superordinate fruit category). These biases are 

not driven by arithmetic properties but rather by the semantic relations existing 

between the entities mentioned.  

To account for such effects, Bassok (2001) proposed that the solvers abstract 

an interpreted structure that depends on their world knowledge about the entities 

described in the problem statement. This interpreted structure integrates the structural 

role of the entities mentioned in the problem and can thus lead to an appropriate use 

of abstract formal knowledge when the relations it describes are semantically aligned 

with the mathematical relations of the problem (Bassok et al., 1998; Bassok, 2001). 

Both behavioral (Bassok, Pedigo, & Oskarsson, 2008) and physiological (Guthormsen 

et al., 2016) measures confirmed that arithmetic reasoning is easier when daily-life 

knowledge (world semantics) and knowledge about mathematical concepts 

(mathematical semantics) are aligned with each other. 

Investigation of mental representations 
As previously discussed, the idea that different representations are abstracted 

depending on the semantic content of a problem statement is a promising one, as it 

provides an account of some performance differences reported in the literature. 

However, since direct investigation of mental constructs is seldom possible, evaluating 

the existence as well as the nature of these representations necessarily requires taking 

an indirect route. Numerous measures of the content of an individual’s representation 

have been proposed, with varying degrees of success, from the inherently biased 

introspection (e.g. Wundt, 1907) to more objective – although harder to interpret – 
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physiological measures, such as EEG (Berkum, Hagoort, & Brown, 1999) or fMRI (e.g. 

Ischebeck, Schocke, & Delazer, 2009). Intermediate sources of information into one’s 

representations have also been identified, such as metaphors (e.g. Lakoff & Nuñez, 

2000), gestures (e.g. Fuhrman & Boroditsky, 2010), or written statements (e.g. 

Pinnegar, Mangelson, Reed, & Groves, 2011). In this study, we decided to bring 

together two complementary methods to study participants’ interpretative processes: 

drawing production and algorithm choice.  

Drawing production appears to be a promising path to investigate one’s 

representation without resorting to explicit verbalization. For instance, Vosniadou and 

Brewer (1992) elicited drawings from 3rd and 5th grade children to study the 

development of their mental representation of the earth. By asking them “can you 

draw a picture of the earth?” and a few follow-up questions such as “now draw the 

sky” or “show me where the moon and stars go”, they were able to differentiate 

between, for example, children adopting a “flattened sphere” earth model, children 

adopting a hollow sphere model and children adopting a rectangular earth model.  

As for problem solving, studies have shown that eliciting drawing production 

could provide useful insights with regards to the solvers’ reasoning (Barrios & 

Martínez, 2014; Csíkos, Szitányi, & Kelemen, 2012; Edens & Potter, 2007, 2008). For 

instance, Edens and Potter (2008) instructed 4th and 5th graders to solve an arithmetic 

word problem and to make a drawing to help them find the solution. Using a custom 

scale, they graded to what extent the students’ drawings were schematic or pictorial. 

They showed that the construction of schematic drawing was positively correlated 

with solving performance, and that most students (79%) rendered schematic 

representations. Similarly, drawings can be used to investigate solvers’ mental 

representations while solving arithmetic word problems. 

Another path to study solvers’ representation of arithmetic word problems 

comes from prior work on strategy selection. Problems admitting multiple solving 

strategies are of particular interest, since the selection of one algorithm over another 

is informative about the representation constructed by the solvers (De Corte, 

Verschaffel, & De Win, 1985). For instance, Thevenot and Oakhill (2005, 2006) 

worked on a multiple-step problem solving task in which the cognitive load was 

manipulated through values size (large or small). They showed that depending on 

the size of the values, participants used different solving algorithms. The issue of the 

semantic determinants of problem representations can be tackled using such a 
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paradigm in which different solving strategies are available, and the solver’s ability to 

pick and use one tells us about the abstracted interpreted structures (Gamo et al., 

2010). For example, Coquin-Viennot and Moreau (2003) showed that the presence of 

a grouping element in a problem statement (such as flowers presented within a 

bouquet instead of separately) could incite participants to use a factorizing rather than 

a development algorithm.  

Development of cardinality and ordinality 
A key issue at the heart of our study regards the distinction between the perception 

of cardinality and ordinality in numerical situations. When children first learn how to 

count, they need to master a series of principles pertaining to the meaning of numbers 

(Gelman & Gallistel, 1986). Among those, it has notably been reported that children 

must learn the cardinal principle, that is, they have to understand that when they 

enumerate a series of entities in a collection, the count name they give to the last 

entity corresponds to the total number of entities in the collection. Another principle 

that children learn to master is the stable order principle, which indicates that the 

numbers used to enumerate items in a list need to be said in a specific, stable order. 

No matter what is being counted, the order in which the count names are stated 

remains the same. This principle refers to the ordinal property of numbers; their 

numerical position in an ordered sequence. This seminal work of Gelman and 

Gallistel (1986) highlighted the fact that humans need to learn that numbers can either 

refer to the general concept of quantity by stating the total number of elements within 

a set, or to the order in which the elements of an ordered list are sequenced. 

 Building upon this work, children’s mastery of the cardinal principle has been 

investigated in several experimental works suggesting that children learn the cardinal 

meaning of numbers over the first few years of life (e.g. Bermejo, 1996; Condry & 

Spelke, 2008; Le Corre & Carey, 2007; Sarnecka & Lee, 2009; Wynn, 1992). On the 

other hand, research on the understanding of the ordinal meaning of numbers seems 

to point towards a later development of the ability to use ordinal labels (e.g. “first”, 

“second”, “third”) around the 4th and 5th year (Fischer & Beckey, 1990; Miller, Major, 

Shu, & Zhang, 2000; Miller, Marcovitch, Boseovski, & Lewkowicz, 2015). The 

comparative development of these two sides of numerosity has been under scrutiny 

in recent years, with studies suggesting that the cardinal principle is acquired before 

children are able to use ordinal labels (Colomé & Noël, 2012; Meyer, Barbiers, & 

Weerman, 2016; Wasner, Moeller, Fischer, & Nuerk, 2015). Overall, these studies 
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highlight that cardinality and ordinality are two crucial notions with distinct 

developmental trajectories, and that understanding how to use the cardinal and 

ordinal meanings of numbers is an important part of learning how to count. 

 However, the influence played by the distinction between cardinality and 

ordinality in more advanced mathematical reasoning, involving other processes than 

simple enumeration, has seldom been studied. A first step in this direction was made 

by Gamo et al. (2010), who created arithmetic word problems made to emphasize 

either the cardinal aspect of numbers or their ordinal aspect.  

Cardinality and ordinality in arithmetic problem solving 
By using either number-of-elements problems in which distinct, unordered quantities 

are counted, or duration problems and height problems in which the counted 

quantities can be represented along a numerical axis such as a timeline, Gamo et al. 

(2010) showed that 5th graders’ interpretation of the problems varied, thus influencing 

the strategies they used to solve the problems. Indeed, in their experiments, 

participants could construct different representations of isomorphic problems. An 

axis-based representation of the situation allowed them to perceive the relevance of 

the shortest algorithm to solve the problems, whereas a set-based representation of 

the situation favored the use of a longer, 3-step solving algorithm. Consider, for 

instance, the following problem: 

There are 5 people in the Richard family. When the Richards go on holidays 

with the Roberts, they make a total of 14 people at the hotel. The Roberts are 

joined on holiday by the Dumas family. In the Dumas family, there are 3 

people less than in the Richard family. The Roberts are going on holidays with 

the Dumas. How many will they be at the hotel? 

Because this problem involves distinct entities (family members) that can be counted 

in any order, it is believed that most participants encode this problem as a cardinal, 

set-based representation (see Fig. 1). As a result, participants tend to consider that the 

only way to calculate the number of people at the hotel is to calculate the number of 

people in the Roberts family and add it to the number of people in the Dumas family. 

That is, most participants use a 3-step algorithm to solve this problem: 14  ̶  5 = 9; 5  

̶  3 = 2; 9 + 2 = 11. 
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Fig. 1 Cardinal representation of problem 1. This representation fosters the calculation of the 

intersection (part 2) between whole 1 and whole 2, thus favoring the 3-step algorithm. 

On the other hand, consider the following duration problem: 

Antoine took painting classes for 5 years, and stopped at the age of 14. Jean 

started at the same age as Antoine, and went to classes 3 years less than him. 

How old was Jean when he stopped attending painting classes? 

This problem and the family problem share the same mathematical structure (see Fig. 

2). However, because this second problem involves duration values instead of family 

counts, participants tend to represent the depicted situation along a timeline, with the 

numerical values being conceived of as states and transitions on an axis instead of as 

parts and wholes in a set-based representation (see Fig. 3). Constructing such a mental 

representation allows the solvers to see that there is a much shorter algorithm to solve 

the problem: instead of trying to calculate at which age Jean started taking painting 

classes, one may realize that since Jean and Antoine started attending the classes at 

the same age, and Jean stopped 3 years before Antoine, then Jean was 3 years younger 

than Antoine when he stopped attending the classes: 14 – 3 = 11. 

 
Fig. 2 Mathematical structure of the cardinal and ordinal problems.  
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Fig. 3 Ordinal representation of the duration problem. This representation puts forward the fact 
that the difference between Whole 1 and Whole 2 is equal to the difference between Part 1 and 

Part 3. The shorter 1-step algorithm thus becomes easier to find. 

Previous results on such problems have shown that participants have an easier time 

using the 1-step algorithm on ordinal problems than on cardinal problems (Gamo et 

al., 2010), to the point that even math experts may fail to recognize the validity of the 

1-step algorithm on cardinal problems (Gros et al., 2019). 

Present study 
Our study built upon the works of Gamo et al. (2010) and Gros et al. (2019) in order 

to highlight the role played by the distinction between cardinal and ordinal quantities 

on children and adults’ problem representation. We aimed at providing converging 

measures of the impact of this distinction on participants’ ability to represent and 

solve the problems, and to provide the first empirical test of these effects on children 

and adults simultaneously. Additionally, by comparing children’s and adults’ 

performance on the same problems, we aimed at gathering insights into the 

developmental trajectory of these effects. Two experiments were designed to this end. 

First, we asked 5th graders and adults to consider a series of 12 problems. We asked 

participants to make a drawing of the problems and to try to solve them using as few 

operations as possible. The rationale was that cardinal problems would elicit a 

cardinal representation that would result in drawings with cardinal features and to a 

preferential use of the 3-step algorithm. On the other hand, we expected that ordinal 

problems would lead to the production of drawings with ordinal features and to the 

use of the 1-step algorithm instead. We used the same materials with children and 

adults to investigate how cardinal and ordinal representations develop over the years. 

 Second, we looked at the influence of the cardinal versus ordinal distinction 

on a younger population, by asking 2nd graders to solve a simplified version of the 
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problems. Two groups of students were recruited, for which different levels of 

arithmetic proficiency were expected. One group was composed of 8 classes of 2nd 

graders following a business as usual arithmetic program. The other group was 

composed of 8 classes of 2nd graders who had been receiving a special training in 

arithmetic (the ACE program, see Fischer, Sander, Sensevy, Vilette, & Richard, 2019), 

meant to improve their arithmetic reasoning skills. The arithmetic proficiency of this 

second group was hypothesized to be higher than that of the business as usual group, 

since the ACE program in charge of their arithmetic training had be shown to improve 

students’ performance in a range of arithmetic-related activities, including arithmetic 

word problem solving (Fischer et al., 2019; Fischer, Vilette, Joffredo-Lebrun, Morellato, 

Le Normand, Scheibling-Sève, & Richard, 2019; Vilette, Fischer, Sander, Sensevy, 

Quilio, & Richard, 2017). Thus, by studying these two groups simultaneously, we 

hoped to gather evidence regarding the influence of the cardinal-ordinal distinction 

at different levels of arithmetic proficiency. We also tested the simplified problems on 

a population of adults to assess whether Experiment 1’s findings could be replicated 

on easier problems, within reach of some 2nd graders. We predicted that even on 

simplified problems, the distinction between cardinal and ordinal quantities would 

lead to differences in algorithm use, from 2nd grade to adulthood. 

Experiment 1 
Methods 
Participants. We recruited participants from two populations: a group of 59 children 

in 5th grade, recruited among several schools from the Paris region  (27 females, M = 

11.00 years, SD = 0.36), and a group of 52 adults from the Paris region (36 females, 

M = 26.86 years, SD = 9.72). All participants spoke French fluently. None had 

previously participated in any similar experiment. 

Materials and procedure. Each participant was presented with a set of 12 different 

problems: 6 using ordinal quantities (“duration”, “height”, and “number of floor” 

problems, see Table 1) and 6 using cardinal quantities (“collection”, “price”, and 

“weight” problems, see Table 2). 

Table 8 Cardinal problems used in Experiment 1. The numerical values respected the following 
rule: z < 4 < x < y < 15. 

Quantity used Problem statement 
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Weight 

A bag of pears weighs x kilograms.  
It is weighed with a whole cheese. 
In total, the weighing scale indicates y kilograms. 
The same cheese is weighed with a milk carton. 
The milk carton weighs z kilograms less than the bag of pears. 
How much does the weighing scale indicate? 

Weight 

Tom takes a Russian dictionary weighing x kilograms.  
He also takes a Spanish dictionary.  
In total, he is carrying y kilograms of books. 
Lucy takes Tom's Spanish dictionary and a German dictionary. 
The German dictionary weighs z kilograms less than the Russian 
dictionary.  
How many kilograms is Lucy carrying now? 

Price 

In the first meal on the menu, there is a chocolate cake costing x 
euros. 
The meal also includes an omelet with mushrooms. 
In total, the first meal costs y euros. 
In the second meal on the menu, there is the same omelet with 
mushrooms, and an apple pie. 
The apple pie costs z euros less than chocolate cake. 
How much does the second meal cost? 

Price 

In the stationery shop, Antoine wants to buy a x-euro ruler.  
He also wants a notebook. 
In total, that will cost him y euros. 
Julie wants to buy the same notebook as Antoine, and an eraser. 
The eraser costs z euros less than the ruler. 
How much will Julie have to pay? 

Collection 

Paul has x red marbles. 
He also has blue marbles. 
In total, Paul has y marbles. 
Charlene has as many blue marbles as Paul, and some green 
marbles. 
She has z green marbles less than Tom has red marbles. 
How many marbles does Charlene have? 

Collection 

Sarah owns x goldfish. 
Her other pets are all iguanas. 
In total, she owns y pets. 
Bobby is pet-sitting Sarah's iguanas during the holidays, he puts 
them with the turtles he owns. 
Bobby owns z turtles less than Sarah owns goldfish. 
How many pets are there at Bobby's during the holidays? 
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Table 9 Ordinal problems used in Experiment 1. The numerical values respected the following 
rule: z < 4 < x < y < 15. 

Quantity 

used 
Pb. ID Problem statement 

Duration Pb. G 

The construction of the cathedral took x years. 
Before constructing it, the plans had to be made. 
The construction of the cathedral was completed in year y. 
The construction of the castle started at the same time as the 
construction of the cathedral. 
The construction of the castle took z years less than the 
construction of the cathedral. 
When was the construction of the castle completed?  

Duration Pb. H 

Sophie travels for x hours. 
Her trip started during the day. 
Sophie arrives at y. 
Fred leaves at the same time as Sophie. 
Fred's trip lasts for z hours less than Sophie's. 
What time is it when Fred arrives? 

Height Pb. I 

Slouchy Smurf is x-centimeter tall.  
He climbs on a table.  
Now he reaches y centimeters. 
Grouchy Smurf climbs on the same table as Slouchy Smurf. 
Grouchy Smurf is z centimeters shorter than Slouchy Smurf. 
What height does Grouchy Smurf reach when he climbs on 
the table? 

Height Pb. J 

Obelix's statue is x-meter tall. 
It is placed on a pedestal. 
Once on the pedestal, it reaches y meters. 
Asterix's statue is placed on the same pedestal as Obelix's. 
Asterix's statue is z meters shorter than Obelix's. 
What height does Asterix's statue reach when placed on the 
pedestal? 

Floors Pb. K 

Naomi takes the elevator and goes up x floors. 
She left from the floor where her grandparents live. 
She arrives to the y th floor. 
Her brother Derek also takes the elevator from their 
grandparents' floor. 
He goes up z floors less than Naomi. 
What floor does Derek arrive to? 

Floors Pb. L 

Karen takes the elevator and goes up x floors. 
She left from the floor where the gym is. 
She arrives to the y th floor. 
Yohan also takes the elevator from the floor where the gym 
is.  
He goes up z floors less than Karen. 
What floor does Yohan arrive to? 
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Participants were given a 13-page booklet with instructions printed on the first page. 

The instructions stated that: 

You will find an arithmetic problem on each page of this booklet. Your task is 

to solve the problems using as few operations as possible. You can use the 

‘draft’ area, but please copy in the ‘response’ area all the operations that you 

used to come up with the solution. This is not a speed test: take your time to 

read and understand each of these problems. Remember that the goal is to 

solve the problems using as few operations as possible. For every problem, 

we ask you to write down every operation(s) that you used to come up with 

the solution, even the simplest one that you can calculate mentally. For 

instance, the computation 15 – 6 – 2 = 7, should not be written as a unique 

operation, but broken down as 15 − 6 = 9 and 9 − 2 = 7, which then counts 

for two operations. When you have found the solution to a problem, please 

make a drawing that could help someone understand the problem and solve 

it. The goal is to give a visual representation displaying the different pieces of 

information needed to solve the problem. Translated from French.  

The materials, instructions included, were identical for the adult and children 

participants. Each page in the booklet was divided into four parts: the problem 

statement, the “drawing” area, the “draft” area and the “response” area. Problem order 

was randomized across booklets. 

Scoring. Participants’ drawings were analyzed using a custom scale, designed to 

evaluate to what extent they featured ordinal versus cardinal characteristics. The scale 

included 8 items: 4 cardinal criteria and 4 ordinal criteria involving the most relevant 

features of what would presumably be a prototypically ordinal (resp. cardinal) 

representation (see Fig. 4). 
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Fig. 4 Drawing scale used by the independent raters to grade the problems. 

Double-blind scoring was performed by two independent raters who were unaware 

of the hypotheses being tested. The drawing scale was introduced to them and they 

were given the opportunity to ask questions about its different criteria and examples. 

Once they were confident they understood the meaning of each of the 8 items, they 

were asked to rate the entirety of the drawings produced by the participants in both 

groups. After initial scoring, the agreement between the two raters was 91.01%. 

Cohen’s Kappa coefficient for inter-rater reliability was calculated to determine 

consistency among raters. The result (κ = .726, SE = 0.012) expressed substantial 

agreement between raters, according to Landis and Koch’s typology (1977). After 

discussion, the raters reached 100% agreement on the drawings. Based on the raters’ 

assessment of which criteria were met by each drawing, we calculated two scores: a 

cardinal drawing score, and an ordinal drawing score. The ordinal score (from 0 to 

4) indicated how many of the 4 ordinal criteria were met by the drawings (see Fig. 4, 

column A). The cardinal score (from 0 to 4) indicated how many of the 4 cardinal 

criteria were met by the drawings (see Fig. 4, column B). 

Participants’ solving algorithms were deduced from their self-report of the 

operations they had performed. A problem was considered as correctly solved when 

the correct result came with the appropriate calculations. The strategies leading to 

success were categorized either as 1-step algorithm or as 3-step algorithm. When the 

written operations were correct and the written solution was within +/− 1 of the 

correct result, this was deemed a calculation error and problems were still considered 

as correctly solved. When participants wrote down operations that did not provide 
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the answer to the problem, or when they simply provided an erroneous answer, their 

response was labelled “Error”. Because participants were instructed to write down 

every operation they performed, and because numerical values were chosen so that 

they could not lead to two identical values being calculated using two distinct 

algorithms (i.e. x + y ≠ z − y and so on), it was always possible to trace back the 

strategies used by participants as long as they wrote down the solution and at least 

one of the operations performed. The rare cases in which the solution was given with 

no explanation were considered as incorrect (which occurred in less than 1% of the 

trials). Since every problem could be solved by both algorithms, solving algorithm 

analysis made it possible to identify which strategy was dominant in each context, 

and therefore to understand how the semantics attached to the problems related to 

participants’ use of solving algorithms. 

Results 
We analyzed the drawings produced by each participant. Fig. 5 details the mean 

cardinal and ordinal scores of the drawings depending on the type of quantity used 

in the problems, for each population. For each type of problem, we compared 

participants’ mean cardinal and ordinal scores. As predicted, adults’ drawings on 

cardinal problems had a cardinal score (M = 1.46, SD = 0.74) higher than their ordinal 

score (M = 0.04, SD = 0.10); t(51) = 13.87, p < .001, d = 2.69, paired t-test. Similarly, 

their drawings of ordinal problems were rated higher on the ordinal scale (M = 1.49, 

SD = 0.93) than on the cardinal scale (M = 0.54, SD = 0.36); t(51) = 7.42, p < .001, d 

= 1.34, paired t-test. Thus, adult participants’ drawings met significantly more cardinal 

criteria when they drew cardinal problems, and more ordinal criteria when they drew 

ordinal problems.  
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Fig. 5 Children’s and adults’ mean cardinal and ordinal scores depending on the type of quantity 
used in the problems. Vertical bars denote 0.95 confidence intervals. *** p < .001, paired t-test. 

Regarding children, as predicted, their drawings on cardinal problems also scored 

higher on the cardinal scale (M = 0.68, SD = 0.47) than on the ordinal scale (M = 0.07, 

SD = 0.39); t(58) = 8.27, p < .001, d = 1.41, paired t-test. Similarly, the drawings they 

produced on ordinal problems had a higher ordinal score (M = 0.55, SD = 0.63) than 

cardinal score (M = 0.19, SD = 0.27); t(58) = 5.82, p < .001, d = 0.75, paired t-test. 

Thus, young participants were also more likely to use ordinal features (axes, 

graduations, intervals) than cardinal features (sets, groups of unordered elements, 

etc.) on ordinal problems, and the conversely on cardinal problems. In sum, in both 

populations, the presence of ordinal (resp. cardinal) quantities seems to result in 

representations featuring a higher number of ordinal (resp. cardinal) features, in both 

children and adults.  

Second, we made the prediction that problems with ordinal quantities would 

facilitate the use of the 1-step algorithm compared to problems with cardinal 

quantities. In both groups, we evaluated whether participants did use the 1-step 

algorithm more often on problems involving ordinal quantities than on problems 

involving cardinal quantities. Fig. 6 details the participants’ use of each algorithm 



 

 
264 | CHAPTER 6 
 

depending on the type of quantity featured in the problems. A paired t-test analysis 

revealed that the mean rate of use of the 1-step algorithm was higher on ordinal (M 

= 0.39, SD = 0.31) than on cardinal (M = 0.08, SD = 0.17) problems; t(58) = 8.36, p < 

.001. On the other hand, participants used the 3-step algorithm more frequently on 

cardinal problems (M = 0.33, SD = 0.35) than on ordinal problems (M = 0.12, SD = 

0.19); t(58) = 5.64, p < .001. 

The same analyses were performed for the adults and showed that the mean 

rate of use of the 1-step algorithm was also higher on ordinal (M = 0.46, SD = 0.33) 

than on cardinal (M = 0.25, SD = 0.35) problems (t(51) = 4.99, p < .001, d = 0.69). 

Similarly, the rate of use of the 3-step algorithm was higher on cardinal problems (M 

=0.61, SD = 0.36) than on ordinal problems (M = 0.41, SD = 0.32); t(51) = 4.63, p < 

.001. This confirmed that the choice of a solving algorithm is influenced by the 

cardinal versus ordinal nature of the problem’s quantities, and that this effect is robust 

among both populations. Additionally, the 1-step algorithm was significantly less used 

by children than by adults on cardinal problems (t(109) = 3.48, p < .001, unpaired t-

test) but not on ordinal problems (t(109) = 1.10, p = .27, unpaired t-test).  

 

Fig. 6 C hildren’s and adults’ mean rate of use of the two solving algorithms depending on the 
quantities used in the problems.  
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Third, we looked at how the ordinality of the drawings correlated with participants’ 

use of the 1-step algorithm, independently from the cardinal versus ordinal nature of 

the problems themselves. Because the number of successes and failures varied 

between participants, we used a generalized linear mixed model with a binomial 

distribution to evaluate the extent to which the ordinal drawing score predicted the 

success in using the 1-step algorithm to solve the problems. The cardinal versus 

ordinal nature of the drawings was used as a fixed effect, as was the ordinal drawing 

score. We used participants as a random effect to account for the design’s repeated 

measures. Among children, there was a significant effect of the ordinal drawing score 

on participants’ use of the 1-step algorithm, even when accounting for the effect of 

the cardinal versus ordinal nature of the problems (z = 2.44, p < .05). In other words, 

a higher ratio of ordinal features in the drawings predicted higher chances to use the 

1-step algorithm among children. Among adults, however, contrarily to our 

hypothesis, there was no significant effect of the ordinal drawing score on the rate of 

use of the 1-step algorithm (z = 0.99, p > .1). 

 

Discussion 
By resorting to a drawing task coupled with a solving task, we were able to get new 

insights into the participants’ representation of arithmetic word problems. The 

drawing analysis allowed us to get a complementary look at participants’ 

conceptualization of cardinal and ordinal problems without resorting to explicit 

verbalization. Results supported the idea that cardinal problems foster cardinal 

representations involving sets and unordered collections, whereas ordinal problems 

favor the construction of ordinal representations involving axes, graduations and 

intervals. This was the case for both children and adults, which speaks volumes for 

the pervasiveness of the influence of non-mathematical knowledge on mathematical 

reasoning. Additionally, Gamo et al.’s (2010) finding regarding algorithm choice was 

replicated in this experiment, since participants in both groups tended to use the 1-

step algorithm on ordinal problems whereas they preferentially used the 3-step 

algorithm on cardinal problems, regardless of the instructions asking them to solve 

the problems using as few operations as possible. Finally, the ordinality of children’s 

drawings was predictive of their tendency to use the 1-step algorithm to solve the 

problems – regardless of whether the problems were cardinal or ordinal to begin with 

– which seems to indicate that the features we were attentive to in the drawings were 
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relevant to explain participants’ reasoning process. In other words, a drawing 

featuring axes instead of sets was more likely to indicate that children would find the 

1-step algorithm. This effect, however, was not replicated among adults. Their ordinal 

drawing scores on cardinal problems were slightly higher, on average, for problems 

successfully solved with the 1-step algorithm (M = 1.56, SD = 1.32) than for problems 

for which they did not find the 1-step solution (M = 1.44, SD = 1.16), but this 

difference was not significant. This might be due to adults scarcely using ordinal 

features on their drawings of cardinal problems (0.04 ordinal criteria on average), 

despite them finding the 1-step algorithm for 25% of those problems. It may be 

possible that due to their extensive habit of representing cardinal quantities as cardinal 

representations, adults reverted to their initial encoding of the problems when asked 

to make a drawing of the problems. Further work is needed on this question to 

elucidate the reason behind this null effect. 

Taken together, the results on both tasks suggest that the non-mathematical 

knowledge about the elements featured in the problems has a pervasive influence on 

children and adults alike, leading them to abstract either a cardinal or an ordinal 

representation of the situations and thus shaping their solving strategies. In order to 

gather evidence regarding the pervasiveness of these encoding effects at all ages, we 

designed a second experiment looking at an even younger population. 

Experiment 2 
Since a central aspect of learning how to count in the first years of life resides in 

understanding the cardinal and ordinal properties of numbers, we decided to 

investigate the influence of the cardinal-ordinal distinction on a younger population. 

We hoped to shed some light on the way in which this distinction manifests itself in 

word problem solving before the 5th grade. We recruited 2nd graders and asked them 

to solve a series of arithmetic word problems. In order to adapt our materials to the 

lower arithmetic word problem solving proficiency of 2nd graders, we created new, 

simplified versions of the problems used in Experiment 1. 

As previously mentioned, this experiment was conducted as part of the 

assessment of the experimental arithmetic teaching program ACE ArithmEcole, aimed 

at improving 2nd graders’ understanding of mathematics. A total of eight classes 

participated in the program and were then asked to complete the task presented in 

this experiment. The data collection occurred at the beginning of May, which means 
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that the students had been enrolled in the ACE program for 8 full months before 

taking our test. We also recruited 8 classes that did not participate in the program to 

compare their results with the performance of the program’s students. While the 

evaluation of the ACE program is not the purpose of this article, we analyzed data 

from ACE students separately from data collected with non-ACE students, since an 

increase in mathematical proficiency was expected in the ACE group. Because we 

created new simplified problems for this experiment, we also recruited a group of 

adult participants to compare how they fared on the new, easier problems. 

Methods 
Participants. A total of 193 students from the ACE program were recruited for this 

experiment, coming from 8 different 2nd grade classes (N = 193, 92 girls, Mage = 7.44 

years, SD = 0.33 years). We also recruited 191 students from 8 2nd grade classes that 

did not participate in the program but that matched those of the ACE group on socio-

economic criteria (N = 191, 103 girls, Mage = 7.45 years, SD = 0.34 years). Finally, the 

adult group comprised 70 participants recruited online, through social networks and 

mailing lists. Three adults interrupted the experiment before completion and were 

excluded from the subsequent analyses (N = 67, 41 women, Mage = 29.31 years, SD = 

13.02 years). 

Materials and procedure. Considering the early age of our participants in this 

second experiment, we modified the problems used in Experiment 1 to make them 

easier to solve and understand, while still preserving their abstract mathematical 

structure. We created four simplified problems (see Table 3). Instead of the 6-sentence 

long problems used in Experiment 1, these were only 3-sentence long. Additionally, 

the value of Part 3 was higher than the value of Part 1, so that the 1-step algorithm 

consisted in a single addition (e.g. 10 + 2 = 12) instead of the subtraction in 

Experiment 1. Numerical values were randomized between problems and between 

participants. The value of Whole 1 was comprised between 9 and 12, the value of 

Part 1 between 3 and 5, and the value of the Difference was always 2. 

Regarding the two student groups, the experiment took place in their 

classrooms, during normal class hours. Students were presented with a booklet on 

which the four problems were printed on separate pages. Instructions were given 

orally to the second graders:   

You will find a math problem on each page of this booklet. Your task is to 

solve the problems using as few operations as possible. Write down all the 
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operations that you used to come up with the solution. This is not a speed 

test: take your time to read and understand each of these problems. Remember 

that the goal is to solve the problems using as few operations as possible. For 

every problem, we ask you to write down every operation that you used to 

come up with the solution, even the simplest one that you can calculate 

mentally. Translated from French. 

Participants were given 45 minutes to complete the task. Each problem was read out 

loud twice by the experimenter, and the students were then instructed to read it by 

themselves and to try to solve it.  

 

 

 

 

 

Table 10 Simplified cardinal and ordinal problems used in Experiment 2 (translated from 
French). 

A. Simplified ordinal problems B. Simplified cardinal problems 

Mark’s train arrived at 10: he had 
travelled for 3 hours.  
Judith took the train for 2 more hours 
than Mark, after leaving at the same 
time as he did. 
When does Judith arrive? 

Sarah has 10 pets: 3 cats, and dogs. 
Bob has 2 cats more than Sarah, and as 
many dogs as her. 
How many pets does Bob have? 
 

Matteo took piano lessons until he 
was 10: he attended the class for 3 
years. 
Lisa took piano lessons for 2 more 
years than Matteo, and she started at 
the same age as he did. 
How old was Lisa when she stopped 
attending the piano lessons? 

Paul has 10 marbles: 3 blue marbles, and 
some red marbles. 
Zoey had 2 blue marbles more than 
Paul, and as many red marbles as he 
does. 
How many marbles does Zoey have? 

 

Regarding the adult group, the experiment took place online, on the Qualtrics 

platform for online experiments. Participants were sent an anonymous link to 

complete the experiment online. The first page displayed the same instructions that 

were given to the second graders. Participants were told to solve the problems using 

as few operations as possible, and to write down every calculation they made in the 



  

 
CAN CHILDREN THINK ‘STRAIGHT’? | 269 

 

C
HA

PT
ER

 6
 

process. Participants navigated the experiment themselves, using the “next” button to 

go from one problem to another.  

Results 
We were interested to see if the results of Experiment 1 could be replicated with 

younger participants, and with simpler problems. We scored the algorithms used by 

the participants using the same rules as in Experiment 1, and we investigated how 

often pWe aimed at replicating Experiment 1 with younger participants and with 

simpler problems. To this end, we scored the algorithms used by the participants 

using the same rules as in Experiment 1, and we investigated how often participants 

used the 1-step algorithm on cardinal and on ordinal problems (see Fig. 7). We had 

predicted that the difference between cardinal and ordinal problems would result in 

a difference in algorithm use in the three experimental groups. In accordance with 

our prediction, the 2nd graders who did not attend the ACE program used the 1-step 

algorithm significantly more often on ordinal problems (in 22.77% of trials) than on 

cardinal problems (in 13.35% of trials); t(190) = 3.57, p < .001, d = 0.26, paired t-test. 

Interestingly, the 3-step algorithm was extremely rarely used by this population. In 

fact, no participant of the non-ACE group ever used the 3-step algorithm on ordinal 

problems, and they used it in only 4.45% of the trials on cardinal problems; t(190) = 

3.84, p < .001, one-sample t-test against zero. The relatively low rate of use of both 

the 1-step algorithm and the 3-step algorithm is in part attributable to the high number 

of errors made by the participants of the non-ACE group (74.21% wrong answers). 

As expected, the 2nd graders who attended the ACE program achieved higher 

performances on average than the 2nd graders who did not attend the program: they 

used the 1-step algorithm in 28.76% of the trials, whereas the non-ACE students only 

used the 1-step algorithm on 18.06% of the problems, t(382) = 3.88, p < .001, unpaired 

t-test. However, the 2nd graders who benefitted from the ACE program still used the 

1-step algorithm more frequently on ordinal problems (36.27% of the cases) than on 

cardinal problems (21.24%), as predicted; t(192) = 5.23, p < .001, d = 0.39, paired t-

test. In other words, the effect of the cardinal-ordinal distinction remained significant 

despite the higher proficiency of the ACE 2nd graders. Similarly, they used the 3-step 

algorithm more often on cardinal problems (8.55%) than on ordinal problems (only 1 

occurrence, corresponding to 0.26% of the trials). A one-sample t-test confirmed that 

the rate of use of the 3-step algorithm on cardinal problems was significantly higher 

than zero; t(192) = 4.35, p < .001, one-sample t-test. 
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Regarding the adults, as could be expected, their overall performances were 

better than those of the students in both groups, since they managed to find the 1-

step algorithm in 68.28% of the trials, which was significantly higher than ACE 

students’ performance; t(258) = 9.00, p < .001, unpaired t-test. Contrarily to the two 

student groups, adults’ use of the 1-step algorithm did not significantly differ between 

cardinal problems (66.42%) and ordinal problems (70.15%); t(66) = 0.63, p = .53; 

paired t-test. However, they used the 3-step algorithm significantly more often on 

cardinal problems (33.58%) than on ordinal problems (16.42%); t(66) = 2.83, p < .01, 

paired t-test. Thus adults’ strategy use differed between cardinal and ordinal problems, 

but only with regards to the 3-step strategy.  

 
Fig. 7 Algorithm use depending on the cardinal versus ordinal nature of the problems.  

Discussion 
This second experiment confirmed that the use of cardinal versus ordinal quantities 

within a problem statement had a robust influence on solvers’ use of solving 

strategies, fostering the 1-step algorithm on ordinal problems and the 3-step algorithm 

on cardinal problems. Even among a population of 2nd graders, and despite their high 

rate of failure on the problems, they still managed to use the 1-step algorithm more 

often on duration problems than on collection problems. The student group who 

followed a special ACE training was overall better than the group who did not, but 
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the difference between cardinal and ordinal problems remained present. In other 

words, participants’ ability to solve the problems improved, but they were still 

influenced by the cardinal or ordinal context in which the problems were embedded.  

 Interestingly, the 3-step algorithm was seldom used by the students, whereas 

in Experiment 1 the fifth graders used it in most cases to solve cardinal problems. 

This difference might be attributable to the changes introduced in the problem 

statements: in an attempt to make the problems easier to solve with the 1-step 

algorithm, we changed the sign of the difference (e.g. “Bob has 2 more cats than 

Sarah”), whereas the problems in Experiment 1 systematically introduced a negative 

difference. Because of this change, the 1-step algorithm consisted in a single addition: 

(e.g. “10 + 2 = 12”), whereas the 3-step algorithm still involved one subtraction (“10 

– 3 = 7; 3 + 2 = 5; 7 + 5 = 12”). Thus, since the notion of subtraction is usually 

introduced in 2nd grade in France, it might be that the 3-step algorithm was simply to 

difficult to implement at this age. Also, the low rate of use of the 3-step algorithm by 

the 2nd graders might in part be due to the 3 necessary steps to find the solution. 

Multiple-steps arithmetic problems are not a common occurrence at this age, and 

students who did not manage to find the 1-step algorithm may have simply lacked 

the resource to plan and compute a 3-step solution strategy. 

 Since the problems we used were not identical to those used in Experiment 1, 

we also included a group of adults who were presented the same task as the 2nd 

graders. As could be expected, adults’ performance were significantly higher than that 

of 2nd graders on the task. However, contrary to Experiment 1, the difference in rate 

of use of the 1-step algorithm disappeared among adults, which may be explained by 

the fact that the simplified problems made it easier for adult participants to recode 

their initial problem representation to find the 1-step algorithm (they succeeded in 

using the 1-step algorithm in 66% of the cases, whereas they had only reached 25% 

in Experiment 1). Interestingly, participants still tended to use the 3-step algorithm 

more often on cardinal problems than on ordinal problems, suggesting that there was 

still an effect of the use of cardinal versus ordinal quantities in the problems. Thus, 

despite their indisputable expertise on math problems within reach of around a fifth 

of 2nd graders, the adults still fell prey, to a certain extent, to interferences between 

the problems’ mathematical structure and the semantics conveyed by the situations 

depicted in the problem statements.  
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General discussion 
Overall, the results of these two experiments show that the use of cardinal and ordinal 

quantities within problem statements has a decisive influence on participants’ 

encoding of the problems. Students’ apprehension of marbles, years, cats or trains led 

them to construct semantically dissimilar representations of the situations depicted: 

the distinction introduced between ordinal and cardinal problem statements was 

reflected in the constructed representations (as shown by the drawings the 

participants made) and resulted in them using different solving algorithms, even when 

specifically asked to use the shortest strategy they could find. Furthermore, the fact 

that those effects could be highlighted with high and low-proficiency 2nd graders, 5th 

graders, as well as adults indicates the pervasiveness of such encoding constraints. 

From beginner problem solvers to adults with years of experience performing small 

additions and subtractions, the difference between cardinal and ordinal problems 

remained present. 

 In fact, despite recent evidence showing that children first learn about 

numbers’ cardinal aspect before understanding their role as ordinal entities, it 

appeared in our experience that problems evoking an ordinal representations led to 

higher task performances (students were more likely to find the shortest solving 

algorithm) even among the youngest and less proficient population we tested. These 

results point in favor of an early development of the ability to construct ordinal 

representations of numerical situations. It may be that children’s experience of the 

world lead them to perceive the order in specific quantities and to develop the ability 

to think in terms of sequences when the situations they encounter have salient ordinal 

properties.  

Overall, the use of a double measure of the influence of the solvers’ knowledge 

about the world allowed us to gather converging clues shedding light both into the 

abstracted representations and into the algorithms subsequently implemented. By 

focusing on the role of semantic properties on the initial encoding of a problem, we 

hope to gain a finer understanding of arithmetic problem solving as a whole, and to 

help describe the interactions between world semantics and mathematical semantics 

in arithmetic word problem solving. Understanding the determinants of problems’ 

representations is a crucial step to identify the potential pitfalls and dead ends born 

from semantic incongruence, as well as to help develop analogical transfer in a 
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scholastic setting, by promoting semantic recoding among the learners (Gamo et al., 

2010; Gros, Thibaut, & Sander, 2015).  
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Presentation 
Learning how to use a mathematical notion in situations where it is relevant is the aim of 

any form or mathematics education. However, in order to do so, one needs to be able to 

apply what they learnt in a specific situation to new situations more or less similar to the 

initial one. It is this idea of transfer that we explore in this last experimental chapter. The 

previous chapters have established that different encodings are constructed when 

attempting to solve cardinal and ordinal word problems. This raises the question of what 

it takes to be able to perceive the similarity between two problems evoking dissimilar 

encodings but sharing the same mathematical structure. Chapter 2 showed that eliciting 

comparisons between isomorphic problems was not enough to overcome the differences 

arising from semantic incongruence. In this brief chapter, we explicitly informed 

participants that cardinal and ordinal problems can be solved according to the same 

principle, and to assess whether students can use this information to transfer a solving 

algorithm from one problem to another.  

 The experiment reported in this chapter was conducted among 110 fifth and sixth 

graders. They were presented with 2 ordinal training problems, for which the solutions 

and algorithms were provided, followed by 8 test problems. The solution to the two 

training problems was given to the participants, and they were instructed to use the same 

strategy to solve the test problems. Some of the test problems had the exact same 

mathematical structure as the training problems, whereas other test problems had been 

slightly modified so that the solving algorithm provided on the training problems would 

need to be adjusted. We predict that the influence of the quantities used in the problem 

statements is so robust that transferring the solution to an ordinal test problem will be 

easier than transferring it to a cardinal test problem, regardless of the modifications 

introduced between the training and the test problems (change of operands, change of 

operator). Additionally, we predict that transfer errors will be mainly due to the superficial 

changes introduced between the training and the test problems: a change of operand 

between the two problems will result in an error in operand choice, etc. In other words, 

we predict that failing to solve the test problems will be associated with a superficial 

application of the training problem’s solving algorithm. This experiment suggests that 

providing participants with a worked-out example is not enough to help them engage in 

semantic recoding. 

This article has been published in the Proceedings of the 37th Annual Meeting of the Cognitive Science 
Society (2015). It is reproduced as is in the following chapter. Please note that since it was the first 
article written at the beginning of this PhD, the terminology used may differ from the one used in the 
rest of this thesis.  
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Abstract 
The nature of the quantities involved in arithmetic problems promotes semantic 

encodings that affect the strategy chosen to solve them. Such encoding effects might 

prevent positive transfer to problems sharing the same formal mathematical structure. In 

this study with 5th and 6th graders, we investigated the conditions promoting positive 

and negative transfer in arithmetic problems that could be solved with two distinct 

strategies. We showed that basic training cannot overcome the initial impact of semantic 

encodings, and we provided evidence that a lack of semantic encoding of the training 

problems leads to transfer errors. This suggests the existence of ontological restrictions 

on the representation mechanisms involved in problem solving tasks. 

 

Keywords 
arithmetic problem solving · analogical transfer · semantic structures · semantic alignment 

· strategy choice 
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Introduction 
Semantic content in arithmetic problem solving. It is well established that the 

semantic content of arithmetic word problems influences their difficulty. For example, 

among one-step subtraction problems, when the question bears on the final result, 

change problems (e.g., “John had 8 marbles, he loses 5 marbles during recess. How 

many marbles does John have now?”) are easier than combine problems (e.g., “John 

and Tom have 8 marbles altogether, Tom has 5 marbles. How many marbles does 

John have?”) (Riley, Greeno, & Heller, 1983). In the case of conceptual rewording, 

when semantic cues relevant to the solution are provided, the construction of an 

appropriate mental representation is facilitated and the problem is easier to solve 

(Vicente, Orrantia, & Verschaffel, 2007). Success depends on a process of semantic 

alignment that aligns semantic relations evoked by the entities of the problem 

situation with mathematical relations (Bassok, Chase, & Martin, 1998). 

Change in encoding and choice of strategy. A problem can be described in terms 

of semantic dimensions, such as static state versus dynamic process or discrete versus 

continuous states which, in turn, influence the representation of the problem and the 

solution strategies (De Corte et al., 1985; Bassok & Olseth, 1995). The encoding might 

influence not only the problem difficulty but also the solving strategy (Brissiaud & 

Sander, 2010). Furthermore, one specific encoding of the problem might be more 

efficient than another in terms of number of steps necessary to reach the solution. 

This is the case for distributive word problems (Coquin-Viennot & Moreau, 2003) or 

multiple-step arithmetic word problems (Thevenot & Oakhill, 2005). For example, in 

Coquin-Viennot and Moreau (2003), Grade 3 and 5 pupils were given problems that 

could be solved by a distributed strategy (e.g., k × a + k × b), or a factorized strategy 

[e.g., k × (a + b)]; the presence of a word cueing the grouping of elements increased 

the frequency of the factorized strategy. 

Gamo, Sander & Richard (2010) showed that depending on the type of 

quantities used in arithmetic problems, the emphasis put on one of the two following 

relationships will be different; (1) the complementation relation primes the 

computation of the difference between a whole and one of its component parts, or 

(2) a matching relation leading to the computation of the difference between 

homologous quantities. Compare, in this respect, the two following problems (a) “In 

the Richard family, there are 5 persons. When the Richards go on vacation with the 
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Roberts, they are 9 at the hotel. In the Dumas family, there are 3 fewer persons than 

in the Richard family. The Roberts go on vacation with the Dumas. How many will 

they be at the hotel?” and (b) “Antoine took painting courses at the art school for 8 

years and stopped when he was 17 years old. Jean began at the same age as Antoine 

and took the course for two years less. At what age did Jean stop?” Both can be solved 

by the same two strategies. However, most participants solve the first one with a 

complementation strategy (i.e., 9 − 5 = 4; 5 − 3 = 2; 4 + 2 = 6) and almost never use 

the matching strategy (9 - 3 = 6) whereas in the second type of problem a majority of 

participant use the matching strategy (17-2=15) and much less the complementation 

strategy (17 – 8 = 9; 8 – 2 = 6; 9 + 6 = 15) (Gamo et al., 2010). The fact that, in the 

first case, the question refers to the total number of persons and that a component 

family is missing seems to imply that this set should be calculated first. This is a case 

of cardinal encoding. By contrast, in the second example, the problem triggers an 

ordinal encoding which makes it more salient that the difference in terms of course 

duration is equivalent to the age difference between Antoine and Jean at course 

completion. Thus, the age at which Jean stopped can be obtained by subtracting their 

age difference. In order to use the matching strategy, a recoding is necessary to infer 

that the difference in the number of persons who do not participate in both trips, that 

is, the Richard and the Dumas families, reflects the difference between the number of 

persons within the two groups (Gamo et al., 2010). These problems are compatible 

with two semantic alignments: the semantic relations evoked by the entities of the 

problem situation might be aligned with two kinds of mathematical relations 

(complementation or matching relations), each one associated with a different solving 

strategy that leads to the correct solution (complementation or matching strategy). A 

cardinal encoding emphasizes the complementation relations and an ordinal encoding 

emphasizes the matching relations. 

The semantic determinants of transfer. Transfer has been shown to be more 

effective when surface features –those that can be manipulated without modifying the 

solution or the solving procedures– from the source and the target problems are 

similar (e.g. Novick & Holyoak, 1991). Bassok and Olseth (1995) showed that surface 

features were not only interfering with the structural ones, but were inducing a 

semantic structure that could be more or less congruent with the mathematical one. 

Surface features appear to be instantiations of abstract semantic dimensions such as 

symmetry-asymmetry. Analogical transfer was shown to be influenced by these 
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dimensions. Permutation problems with symmetric sets of elements (e.g., doctors from 

Chicago and doctors from Minnesota are symmetric because they have equivalent 

semantic roles in the world) were not considered to be of the same type as 

permutation problems with asymmetric sets (e.g., prizes and students, in which, in 

the real world, prizes are given to students rather than students are given to prices). 

As a consequence, being trained on one type of problem or on another influences 

the performance on the test problems (Bassok, Wu, & Olseth, 1995). 

Goal of the present study. Most of the studies on transfer used problems in which 

there is only one successful strategy. Thus, failures to transfer were confounded with 

failures to solve the problem. However, these failures might correspond to quite 

different cases. Failures might result from a poor representation of the problem or 

from failures to match appropriately the source and the target despite the existence 

of an adequate representation of the problem. Thus, it is difficult to distinguish 

between representational aspects and strategic ones. By contrast, in the current study, 

we used arithmetic problems that could be correctly solved with the two distinct 

strategies presented above, the complementation strategy (3 steps) or the matching 

strategy (1 step). It is thus possible to dissociate positive transfer resulting from the 

strategy taught in the source problem from a successful resolution based on the other 

available strategy which also leads to a correct solution. The latter relies on another 

representation of the problem than the one that would lead to transfer of the strategy. 

In the present study, participants know the algorithms and their mathematical 

meaning (i.e., they know how and what it means to add or to subtract, and what it 

means to look for the value of a part or a whole, or to compare quantities). The main 

point is to study whether they will be able to transfer a new solving strategy in various 

contexts. 

By contrast, in most previous experiments, the problems, such as permutation 

problems (e.g. Ross, 1989; Bassok & Olseth, 1995), were quite complex. Thus, the 

origin of transfer failures remains unclear. Did participants understand the meaning 

of the algorithms they were provided with? It is possible that they “blindly” applied 

the algorithms from the source problem with very poor understanding of the 

underlying mathematical features. If they failed to understand the meaning of the 

algorithms, they might have mapped the training problem on the transfer items on 

the basis of perceived equivalence of roles (i.e., this entity in the training problem 

has the same role as that entity in a transfer problem, so I give them the same role in 
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the algorithm). The main source of failure would then be the inappropriate encoding 

of the training situation. 

We hypothesized that the transfer of the matching strategy to novel problems 

sharing the same formal mathematical structure should be influenced by the type of 

representation induced by the problems. In that respect, we trained pupils on 

examples of the matching (1 step) strategy, and then asked them in a test phase to 

use it in several types of problems, which varied with respect to their similarity to 

these example problems. We decided to teach the matching strategy only. Indeed, 

there will be no reason to teach the complementation strategy, which is less efficient 

and which is spontaneously used for cardinal problems. For ordinal problems, they 

would spontaneously choose the matching strategy and they would be no point, in 

this case, to use the 3-step, less efficient complementation strategy. 

Presentation of the problems. All of the problems had the same formal 

mathematical structure as the ones used in Gamo et al. (2010), presented in Fig. 1. 

 

 
Fig. 1 Formal mathematical structure of the problems. 

 

In the previous examples, the Roberts (respectively the age at which Jean and Antoine 

began their course) represent Part 2, the Richards (respectively the duration of the 

course for Antoine) represent Part 1, the Dumas (respectively the duration of the 

course for Jean) represent Part 3, the Roberts and the Richards (respectively the age 

at which Antoine stopped his courses) represent Whole 1, the Roberts and the Dumas 

(respectively the age at which Antoine stopped his courses) represent Whole 2. 

 This allowed for variations being introduced between problems, so that the 

solving strategies would be slightly modified without changing the mathematical 

structure of the problems too deply (see Table 1).  
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Table 1. Composition of the problem statements. 

 Cardinal quantities Ordinal quantities 

Common to all 
problems 

A bag of potatoes weighs 5 kilograms. It is 
weighed with a pumpkin. The weighing scale 
indicates a total of 11 kilograms. The same 
pumpkin is weighed with a bag of carrots. 

Sophie’s travel lasts for 5 hours. Her trip 
happens during the day. When she arrives, 
the clock indicates it’s 11a.m. Fred leaves 
at the same time as Sophie did. 

V0: identical to the 
source 

The weighing scale indicates 2 kilograms less 
than before. How much does the bag of 
carrots weigh? 

He arrives 3 hours earlier than she does. 
How long does Fred’s travel last? 

V1: inverted 
operands (question 
bearing on a whole 
instead of a part) 

The bag of carrots weighs 2 kilograms less 
than the bag of potatoes. What is the weight 
indicated by the weighing scale? 

His is 3 hours shorter than Sophie’s. At 
what time does Fred arrive? 

V2: inverted 
operator (addition 
instead of 
subtraction) 

The weighing scale previously indicated 2 
kilograms less than it does now. How much 
does the bag of carrots weigh? 

Sophie arrives 3 hours earlier than Fred 
does. How long does Fred’s travel last? 

V3: inverted 
operator and 
inverted operands 

The bag of potatoes weighs 2 kilograms less 
than the bag of carrots. What is the weight 
indicated by the weighing scale? 

Sophie’s travel is 3 hours shorter than 
Fred’s. At what time does Fred arrive? 

Hypotheses. First, we hypothesized robustness of encoding effects that would result 

in poorer transfer of the matching strategy for problems involving quantities that 

promote cardinal encodings than for problems involving quantities that promote 

ordinal encodings. More specifically, we tested positive transfer in two different 

conditions, one where the transfer requires a simple matching of the values, and one 

where it requires an adaptation of the taught strategy: 

• (H1) Even if a literal application of the algorithm leads to success, encoding 

effects should be observed and thus the matching strategy should be less often 

transferred if the quantities promote a cardinal encoding than an ordinal one. 

• (H2) When the problem test varies with respect to the nature of the question 

(H2a), or the sign of the difference (H2b) or both (H2c), the participants should 

show more aptitude to use the matching strategy in the case of an appropriate 

(ordinal) encoding than if it elicits complementation relations (cardinal encoding). 

Second, we investigated the extent to which negative transfer could be observed. We 

hypothesized that failure to solve the modified problems could mainly be explained 

by a poor semantical encoding of the examples, leading to non-semantically-based 

use of the taught algorithm, that is a literal transposition of this algorithm. We thus 

expected that when the test problems differ from the training problems regarding the 

nature of the question (H3a), the sign of the difference (H3b) or both (H3c), the errors 
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made by the participants should vary accordingly, therefore showing that these 

participants did not properly encode the situation, and were not able to extract the 

conceptual structures from the training problems.  

Methods 
Participants. Participants were 110 children (M = 11.1 years, SD = 7.8 months, from 

9.5 to 13.3 years, 5th and 6th grades) who were attending school in the Paris area. 

They came from 7 different classes in 6 different schools, and came from various 

socioeconomic backgrounds. They participated voluntarily and ignored our 

hypotheses. 

Design. Each child was presented with a set of problems constituted of 2 training 

problems and 8 test problems. As mentioned above, the training problems always 

involved an ordinal quantity. They were duration problems emphasizing the ordinal 

coding as shown in Gamo et al. (2010). Three bimodal factors were varied across 

problems: First, the nature of the quantity (cardinal and ordinal). There were 4 types 

(see Table 2) of quantities: two were cardinal (price and weight); and two were 

ordinal (distance and temperature). Secondly, the target of the question (part or 

whole): there were four problems in which the difference between the two wholes 

was provided and participants had to find the missing part, and four other problems 

in which the difference between the two parts was given, and subjects had to find 

the missing whole. Finally, the sign of the difference (+/-): the difference given could 

either require the subject to perform a subtraction or an addition when using a 

matching strategy, depending on whether the first or the second of the two elements 

compared was the highest. 

Materials. The problems were printed in booklets. The front page displayed the two 

training problems which illustrated the matching strategy solution was provided for 

both of them. The following instructions were given on the upper-side of the page: 

“You will find an arithmetic problem on every page of this booklet. We ask you to 

take the time to thoroughly read the problems: there is no time constraint. Please 

write down every operation you do in order to reach a solution. Just below, you will 

find two training problems, followed by their respective solutions. Every other 

problem in this booklet can be solved using the same principle, with only one 

operation.” 
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Each test-problem page was divided in three parts: the problem itself was presented 

on the upper-left side of the page, the response area was on the upper-right side of 

the page, and an area that could be used as a draft was on the bottom of every test 

page. These test pages were always presented on the right side of the booklets, while 

the two training problems with their solution with the matching strategy were 

displayed on each left page. They were always kept in sight during the test phase, as 

a reminder. 

Procedure. The children were given the booklets and asked to read carefully the 

front page before starting to solve the problems. After they had answered each of the 

8 problems, their booklets were collected. They were told to take all the time they 

needed, and no participant exceeded the 1 hour time limit we set. 

Coding and scoring. A problem was considered as correctly solved when the exact 

result was found and accompanied by the appropriate calculations. The successful 

strategies were categorized (correct matching, correct complementation) and so were 

the incorrect ones (matching with inverted operator, matching with inverted 

operands, matching with inverted operator and inverted operands, complementation 

with error, irrelevant, skipped).  

For the successes, we used a success-score created to highlight the distribution 

of matching strategies among the correct strategies: each problem solved successfully 

with the matching strategy was given a score of 1 and 0 otherwise. We balanced this 

score using the global success rate for every problem. 

For the errors, we calculated 3 error-scores: a matching with inverted operator 

score, matching with inverted operands score, and a matching with inverted operator 

and inverted operands score. For each of these scores, we attributed 1 to every 

congruent error and 0 otherwise. We balanced this score using the global error rate 

for every problem. 

Results 
Conditions of positive transfer. We first analyzed, for each problem, the 

proportion of matching strategies among all the correct trials (see Fig. 2). In order to 

test our first hypothesis (H1), we examined the frequency of use of the matching 

strategy on the problems that were identical to the training problems with respect to 

their mathematical form (same operator, same operands). As hypothesized, the 

success-score for problems eliciting an ordinal representation (m = 0.893, sd = 0.793) 
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was higher than the one for those eliciting a cardinal one (m = 0.500, sd = 0.805). A 

paired t-test on the success-scores of these two conditions confirmed that the use of 

the matching strategy was significantly lower, p < .001, when the problems induced 

a cardinal representation. This result shows that the effect of the type of representation 

significantly affects the transfer mechanisms; namely, the ordinal problems still lead 

to a more frequent use of the matching strategy, even though the participants have 

been encouraged to use the training strategy for all the problems. As for H2, we first 

considered problems that used the same operator as in the training problems (same 

sign of the difference) but which required to change the operands, due to the different 

target of the question. We compared the proportion of matching strategy in cardinal 

problems with the proportion of this strategy in ordinal problems with a paired t-test 

on the success-scores. The analysis revealed that there was significantly more 

matching strategy use in ordinal problems (m = 0.647, sd = 0.932) than in cardinal 

problems (m = 0.182, sd = 0.584), p < .005, therefore confirming H2a. This indicates 

that when the nature of the question changes, the mapping is higher between the 

training problems and the ordinal test problems, than between the training problems 

and the cardinal test problems. 

 
Fig. 2 Proportions of correct solutions by matching strategy and complementation strategy, as a 

function of the similarity between the training problems and the test-problems. The p-values 
correspond to significant differences between cardinal and ordinal problems in terms of the 

proportion of correct matching strategies. 
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Similarly, we studied the results obtained for problems using the same operands as 

the training problems, but requiring a different operator (the sign of the difference 

having been changed). A paired t-test showed that the success-scores for cardinal 

trials (M = 0.389, SD = 0.905) were significantly lower than those for ordinal trials (M 

= 0.852, SD = 1.451), p < .01 in accordance with H2b.  

Finally, we studied the use of the matching strategy when both the operands 

and the operator of the problems differed from those of the training problems. In this 

case also the paired t-test revealed a significant difference, p < .05, between the 

success-scores of ordinal problems (M = 0.625, SD = 1.503) and those of cardinal 

problems (M = 0.118, SD = 0.676). The problems inducing an ordinal representation 

therefore seem to facilitate the use of the strategy learnt, even when it requires 

adapting two different factors in order to be used, in conformity with H2c.  

Thus, the influence of the semantic encoding of the problems has a strong 

impact on transfer. It is so robust that even in the case of additive problems in which 

a source is repeatedly shown to the participants with a solving strategy in one 

operation that leads to the solution, and that it is explicitly stated in the instructions 

that the same solution in one operation applies to all the problems, participants mostly 

use the longer three steps strategy when the quantities involved promote a cardinal 

encoding. In contrast, most of them use the one step strategy when the quantities 

involved promote an ordinal encoding. This holds true both when a literal application 

of the taught algorithm is enough (H1) and when this taught algorithm has to be 

adapted (H2). 

Analysis of negative transfer. The second part of our analysis involves the study 

of the distribution of errors across the experimental conditions. We created the 

following typology for the “matching with error” strategies used by participants: 

- (i) correct operands with the wrong operation (an addition when a subtraction 

is needed, or conversely), were classified as an “inverted operator only” error. 

- (ii) correct operator with the wrong values (calculating the whole when the 

question is about the part, or conversely), was classified as an “inverted 

operands only” error. 

- (iii) wrong operation and wrong values, was an “inverted operator and 

inverted operands” error. 

- (iv) all the other errors (use of multiplication or division, use of more than one 

operation leading to an incorrect result, absence of use of the difference value, 
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use of a complementation strategy leading to a failure), were labeled “other 

errors”. 

In the following analyses, we grouped together the problems that were promoting 

ordinal or cardinal encodings, because there was no specific prediction and paired t-

tests showed no significant differences. We performed the following analyses: 

We first analyzed how the ‘inverted operands only’ errors were distributed 

across the different types of problems (see Fig. 3, 1st bar). We compared test problems 

which were identical to the training problems (same sign of the operator and same 

operands), with problems in which only the choice of the operands differed from the 

training problem. We compared the error-scores for ‘inverted operator only’ strategies 

in these two conditions with a paired t-test. The results showed that the proportion 

of errors in the case of problems with inverted operands (M = 0.629, SD = 0.959) was 

significantly higher than the proportion of errors for problems identical to the training 

problems (M = 0.229, SD = 0.605), therefore supporting H3a, p < .05.  

Regarding the ‘inverted operator’ errors (see Fig. 3, 2nd bar), similarly, we 

compared the test trials which were identical to the training examples, with the test 

problems which differed in terms of the operator (i.e., to perform an addition rather 

than a subtraction). A paired t-test analysis showed that problems with an inverted 

operator (M = 0.777, SD = 1.174) gave significantly more ‘inverted operator’ errors 

than the problems with no change from the training ones (M = 0.112, SD = 0.540), p 

< .001, therefore supporting H3b. 

Finally, we compared the proportion of ‘inverted operands and inverted 

operator’ errors (see Fig. 3, 3rd bar) in problems homologous to the training problem 

and problems in which both the operator and the operands were inverted. The no-

change condition showed significantly less errors of this category (0.107, SD = 0.724) 

than for problems with both an inverted operator and inverted operands (0.760, SD 

= 1.274), p < .001, thus supporting H3c. 

Overall, these results suggest that participants who failed to encode the 

problems in an appropriate manner (either through a cardinal or an ordinal encoding) 

and failed to solve the problem, were influenced by the taught algorithm but applied 

it in a literal way. Indeed, errors resulted from a literal transposition of the calculations 

provided in the example problem. 
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Fig. 3 Distribution of the different type of errors across the problems. 

Discussion 
In accordance with the hypotheses, when the quantities involved in the problems 

were promoting a cardinal encoding, a large proportion of participants failed to apply 

the algorithm they were taught to novel examples both when they were sharing all 

the characteristics of the training problems and when they differed in terms of the 

operands and/or the operator. This suggests that the representations induced by “what 

we know about the world” was not compensated by the explicit teaching of the 

matching strategy and the explicit instruction to use it. The fact that this effect 

persisted even when the use of the matching strategy was made less obvious by the 

modifications introduced between the training and the test acknowledges the 

importance of this effect. 

Recent work (e.g. DeWolf, Bassok, & Holyoak, in press; Rapp, Bassok, DeWolf, & 

Holyoak, in press) emphasizes the generality of the phenomenon of semantic 

alignment and the underlying educational perspectives. 

In this work we showed that initial spontaneous encoding is highly influential in that 

it does not only constrain the strategy spontaneously used as it was shown by Gamo 

et al. (2010), but it also impairs transfer even in situations in which the solution 

provided required low technical knowledge (additions and subtractions) and relied 
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conceptually on simple mathematical relations (looking for a part or a whole or 

comparing). 

This phenomenon highlights the importance of overcoming the initial encoding in 

some cases, even when this initial encoding is relevant from a mathematical point of 

view: the cardinal encoding and the derived complementation strategy are relevant 

for solving the problems in this study but have to be overcome in order to apply 

successfully the matching strategy. A general encoding such as the one symbolized 

in Fig. 1 is far from being spontaneous. This is a promising and challenging route to 

develop methods for semantic recoding that are more general than the initial one in 

that they remain compatible with it but embrace a larger number of situations and 

are mathematically more apt. 
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Our contribution 
At the beginning of this thesis, we set out to understand the extent to which human 

reasoning is constrained by the content on which it operates. Namely, we wanted to 

show that general, non-mathematical knowledge could influence the encoding of 

arithmetic word problems by highlighting either the cardinal or the ordinal property 

of the numbers they feature. We predicted that this difference in encoding would 

interfere with participants’ understanding of the problems and subsequently shape 

their behavior in a selection of tasks. The first chapter described a general framework 

outlining the respective roles that world and mathematical semantics may play in the 

interpretation of arithmetic word problems. The take-home message of this chapter 

mainly consists in the definition of semantic (in)congruence, the notion that guided 

our exploration of cardinality and ordinality in arithmetic word problems. Across the 

following 6 chapters and 16 experiments, we sought to establish the relevance of the 

distinction between cardinal and ordinal problems, assessing the extent of its 

influence on a wide range of activities. At this point, a brief overview of what can be 

concluded from our work – and, by contrast, of what remains to be elucidated – 

seems in order. 

Key findings 
The finding that was the most replicated between the experiments is the fact that 

participants tend to use different algorithmic strategies to solve isomorphic problems, 

depending on the quantities they feature. When two algorithms could be used, finding 

the shorter one was easier on ordinal problems than on cardinal problems4. This 

imbalance in strategy use was our starting point, since Gamo, Sander, and Richard’s 

(2010) results suggested that problems counting family members, item prices and 

event durations may be solved differently by 5th graders. Here, we replicated this 

finding with other quantities (number of floors, temperatures, heights, weights, prices, 

durations, collections), other populations and different instructions. Similarly, when 

only the 1-step algorithm was available, participants still tended to use it more often 

on ordinal than on cardinal problems.  

 
4 The only exception being the adults who solved the simplified problems in Chapter 6 (Experiment 
2). They did, however, use the 3-step algorithm more often on cardinal problems than on ordinal 
problems. 
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Another important finding of this thesis regards the fact that those performance 

differences can be traced to differences in the encoded representations of the 

problems. With the help of drawing tasks, recall tasks, classification tasks, comparison 

tasks, sentence recognition tasks, and eye movement recordings, we were able to 

probe participants’ representation of cardinal and ordinal problems and to highlight 

crucial differences between them. 

 Another central result of our experiments resides in the difficulties displayed 

by participants when trying to overcome semantic incongruence. Error rates, response 

times, negative transfer and pupil dilation all showed that using the 1-step algorithm 

on cardinal problems involved a cognitively demanding process. While the precise 

nature of such a process is still up for debate, its existence was supported by several 

converging measures. 

 Finally, we believe that the prevalence of these effects of semantic 

(in)congruence has been substantially supported by the diverse populations recruited 

in the experiments. From 2nd graders to mathematicians, also including lay adults, 5th 

graders, and math teachers, they all seemed influenced by the cardinal-ordinal 

distinction.  

Issues requiring further investigation 
While some of our questions have been answered within this thesis, it should also be 

noted that others have been raised over the experiments we conducted. Among them, 

an important issue regards the process by which one overcomes a difficulty stemming 

from semantic incongruence, adopting a new point of view to find a solution. We 

have called this process semantic recoding and, as previously stated, we have 

gathered evidence of its existence, but its inner mechanics remain to be elucidated. 

Does semantic recoding rely exclusively on mathematical semantics, or do individuals 

also use world semantics when constructing a new representation? Is this process 

composed of one single recoding, a sudden reconceptualization akin to the ‘Aha!’ 

moment described in the literature on insight (Kounios & Beeman, 2009), or are 

several successive recodings involved? What happens when a new representation is 

constructed that does not lead to any new solving strategy? When a problem admits 

more than two relevant encodings, is it possible to recode an interpreted structure 

into another interpreted structure without encoding the problem’s deep structure?  

These questions remain open and call for further investigation. For instance, 

the use of new problem statements allowing for more than 2 different solving 
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algorithms may provide valuable insights regarding the successive problem 

representations constructed by the solvers. Another possible route to better 

understand this process may lie in the use of electrophysiological responses such as 

event-related potentials. Indeed, the N400 – a negative-going voltage shift that peaks 

around 400ms after the onset of a stimulus – is thought to be associated with 

conceptual integration disruptions (Kutas & Federmeier, 2000; Osterhout, Holcomb, 

& Swinney, 1994). In other words, its amplitude is generally assumed to be modulated 

by the degree to which a conceptual or grammatical violation disrupts integration. 

Guthormsen et al. (2016) showed that arithmetic problems that are semantically 

misaligned elicit stronger N400 effects than semantically aligned problems. Thus, ERP 

recording may provide insights into what semantic incongruence entails for the 

solvers, in terms of conceptual integration, and help characterize the ensuing recoding 

process. Similarly, thinking aloud protocols – where participants are asked to 

comment their reasoning while they solve the problems – might also be an interesting 

lead to get a better grasp of the semantic recoding process. Furthermore, another path 

to investigate semantic recoding may reside in adjusting the cognitive load associated 

with a solving algorithm. Indeed, Thevenot and Oakhill (2005, 2006) showed that 

participants could be influenced to change the strategy they used to solve a problem 

simply by increasing its cost in working memory. For instance, the authors showed 

that increasing a problem’s numerical values from 2-digit numbers to 3-digit numbers 

led participants to construct an alternative mental representation of the problem and 

use a different solving algorithm. Similarly, using higher values on cardinal problems 

may encourage participants to construct a new representation and use the 1-step 

algorithm requiring fewer calculations.  

Another point worthy of attention in future works regards the potential 

generalization of our findings. Although we strove to provide exact and conceptual 

replication among the different experiments, our materials remained relatively similar 

overall. Our claim could thus benefit from new experiments conducted with different 

materials and by different research teams. In view of the current replicability crisis in 

psychology, researchers advocate for systematic replication of findings by 

independent labs (Open Science Collaboration, 2015; Simons, 2014; Stroebe & Strack, 

2014). On this topic, we are currently engaged in a collaboration with two other teams 

in order to evaluate how cardinality and ordinality interact with other problem 

attributes such as familiarity of the quantities and cognitive load. For instance, recently 
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collected preliminary data seem to indicate that transforming a “number of floors” 

ordinal problem into a “number of tree branches” problem – in which the elevator is 

replaced by an animal going up a tree by a certain number of branches – does not 

significantly change participants’ ability to use the 1-step algorithm. Similarly, apart 

from durations, heights, prices, weights, temperatures, collections and number of 

floors, what other quantities can be used to foster one of two encodings? Can we 

replicate the effect of cardinal and ordinal quantities on problems with a different 

mathematical structure? Addressing these questions in future studies would likely help 

ascertain the generalization of our findings. 

Finally, we believe that the SECO model would benefit from additional 

empirical support. Namely, experiments specifically targeting its predictions are 

necessary to assess its explanatory power. As previously stated, the experiments we 

reported in this thesis did not specifically aim at assessing the validity of SECO’s 

predictions. We believe their results support SECO’s general claim – that world 

semantics plays a non-negligible part in the encoding, recoding and solving of 

arithmetic word problems – but the finer details of the model could benefit from 

further investigation. For instance, can we find evidence for the existence of an 

“expert encoding” pathway? Can we empirically demonstrate that an individual may 

construct different, subsequent representations while solving a problem? May 

participants with different world semantics encode different interpreted structures 

from the same problem statement? We hope to investigate these exciting questions in 

further studies.  

Before concluding this thesis, we propose to tackle a few related issues that 

may shed some light on our interpretation of its findings, dissipate potential 

misunderstandings and help develop new empirical prospects. 

The paradox of P-items? 
Throughout this thesis, we have striven to show that daily-life, non-mathematical 

knowledge about the world interferes with arithmetic reasoning, notably among 

children. Yet, at first glance, these findings may seem paradoxical to the many 

empirical reports stating that children tend to disregard what they know about the 

world when trying to solve arithmetic word problems.  

The most famous example of children giving an apparently nonsensical answer 

to an arithmetic problem probably comes from Baruk (1985), who created problems 
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such as “There are 26 sheep and 10 goats on a ship. How old is the captain?”. Baruk 

found that children overwhelmingly replied to such problems by using the provided 

numerical values, while only a minority of participants pointed out the inadequacy of 

the question and the impossibility to find the answer. The idea that children could 

manifest a “suspension of sense-making” (Verschaffel, Van Dooren, Greer, & 

Mukhopadhyay, 2010, p.12) and exclude real-world knowledge from their responses 

to mathematical word problems was further investigated through the creation of 

“problematic problems” (called P-items) requiring the use of common sense to be 

solved (Greer, 1993; Verschaffel, De Corte, & Lasure, 1994). Contrary to the captain’s 

problem, those P-items admitted sensible answers, although unusual ones that would 

not normally be expected in a mathematical classroom. For instance, the problem 

“Steve has bought 4 planks each 2.5 meters long. How many 1-meter-long planks can 

he saw from these planks?” required to realize that two 0.5-meter planks did not make 

a 1-meter plank. Replying with the algorithm 4 × 2.5 = 10 was deemed a “non-realistic 

reaction”, whereas a “realistic reaction” was either to provide the correct answer (4 × 

2 = 8) or to reply that the solution was not straightforward and acknowledge the 

unrealistic nature of the 4 × 2.5 algorithm. Greer (1993) and Verschaffel et al. (1994) 

showed that the vast majority of children tended to display non-realistic reactions to 

P-items, whereas they had realistic reactions to non-problematic control problems. In 

other words, students tended to ignore real-world knowledge as well as realistic 

considerations from the answers they gave: they replied by applying the mathematical 

procedures they learned, regardless of their relevance in the described situation. Since 

then, this effect has been replicated on numerous occasions, in several countries 

(Caldwell, 1995; Csíkos, 2003; Hidalgo, 1997; Renkl, 1999; Reusser & Stebler, 1997; 

Verschaffel, et al., 1999; Xin, Lin, Zhang, & Yan, 2007; Yoshida, Verschaffel, & De 

Corte, 1997; see Verschaffel et al., 2010, for a review). 

 How can we, then, account for the fact that children seem to disregard real-

world knowledge when finding the solution to a mathematical word problem, while 

at the same time arguing that children and adults alike are influenced by their world 

knowledge when solving cardinal and ordinal problems? We believe that the 

existence of these two types of effects is not contradictory. In fact, while it is 

indisputable that children give unrealistic answers due to them putting aside real-

world knowledge when solving mathematical word problems, this might have more 

to do with their representation of what is expected of them, rather than with an 
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inability to come up with realistic solutions. In this regard, DeFranco and Curcio 

(1997) compared students’ performance on P-items depending on whether the 

problems were presented in a traditional scholastic setting, or in a more ecological 

setting, closer to a real-life situation. They asked students to solve the following 

problem “328 senior citizens are going on a trip. A bus can seat 40 people. How many 

buses are needed so that all the senior citizens can go on the trip?” Only 10% of the 

students managed to find the solution to this problem. In a second part, they asked 

the same children to make a call to book minivans for a school trip, with a similar 

problem regarding the number of minivans. In this more realistic setting, 80% of the 

students booked the appropriate number of minivans, despite most of them having 

failed in the first task. Thus, children’s ability to think realistically was directly 

dependent on the context in which the problem was presented. They suspended their 

common sense when faced with a math problem, but not when asked to make a 

“real” phone call to book the appropriate number of vehicles. This result is 

reminiscent of the effect reported in the introduction of this thesis, regarding the 

increase in performance in the “realistic version” of the Wason task, where 

participants had to make sure that no underage client was drinking alcohol. Overall, 

it thus seems that the problem with P-items does not come from an inability to use 

any form of real-world knowledge to evaluate the relevance of a mathematical 

procedure. 

 In contrast, we believe that the results that have been reported in this thesis 

have to do with a different, more insidious effect than that underlined by P-items. We 

believe that the difference between cardinal and ordinal problems does not have to 

do with realistic considerations that participants would fail to take into account. 

Rather, the world semantics imbued in the problems influenced the very encoding of 

the problems, because of the habits we developed of representing durations along a 

timeline or collections as unordered sets. At no point do pragmatic considerations 

regarding how realistic the solutions are factor in the participants’ reasoning. The fact 

that the difference between cardinal and ordinal problems was not only found in 

children, but also among lay adults, math teachers and expert mathematicians should 

be enough to consider that we are dealing with two independent phenomena. 

Children do tend to ignore real-world knowledge when considering how realistic the 

solution to a P-item is, but children and adults also tend to be influenced by their 

real-world knowledge in their initial encoding of a problem’s situation.  
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Beyond the dichotomy 
Despite this manuscript focusing on the differences between cardinal and ordinal 

problems, it should be noted that our claim is not that there exists a strict dichotomy 

between problem statements systematically fostering a cardinal encoding and 

problem statements systematically evoking an ordinal encoding. Rather, we believe 

that a more accurate account would be to consider that there is a gradient of 

cardinality and ordinality, on which different problem statements can be placed, 

depending on how strongly they emphasize the cardinal or the ordinal nature of the 

numbers they use. For example, the collection problems we created seem to be more 

prototypical of cardinal problems than the price problems, meaning that it seems 

easier to discard a cardinal encoding and construct an ordinal encoding based on a 

situation in which prices are calculated, as compared to a situation where, for 

instance, marbles are counted. Similarly, participants seem to have a slightly easier 

time using the 1-step algorithm on elevator problems than on height problems, which 

suggests that elevator problems are more likely to elicit an ordinal encoding of the 

situation. In fact, apart from the simplified problems used with 2nd graders in Chapter 

6 (Experiment 2), none of the problems used in the other experiments were ever 

solved using only one of the two algorithms by every participant. When the problems 

could be solved with both algorithms, there was usually at least one participant to 

use the 1-step algorithm, and one to use the 3-step algorithm. What differed between 

cardinal and ordinal problems was the proportion of participants who used each of 

these two algorithms. 

The analyses of participants’ strategies to solve hybrid problems, in Chapter 2 

(Experiment 3), demonstrated that the use of cardinal quantities in a problem 

statement does not systematically mean that it will be encoded into a cardinal 

representation. By presenting cardinal quantities fluctuating across time (e.g. animal 

gaining weight over the years), we were able to facilitate the use of the 1-step 

algorithm, albeit participants were still less likely to use it than when solving a 

problem that only featured ordinal quantities. We believe that the existence of such 

“hybrid” problems that can foster either an ordinal encoding or a cardinal encoding 

indicates that the same situation can be interpreted differently by different solvers or 

by the same solver over time. This raises two questions. One has to do with transfer 

and the role that hybrid problems may play in its promotion. It will be discussed later 
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in the discussion. The other one has to do with the variations that may occur between 

individuals, depending on their prior knowledge and cultural background.  

Indeed, since our view is that world semantics has an influence on one’s 

encoding of a problem statement into an interpreted structure, then it follows that 

depending on one’s state of knowledge about the entities described in a problem 

statement, the interpreted structure may vary. Does extensive experience with 

elevators increase our ability to see number of floors problems as ordinal? This 

question, worth considering, raises another: how does one’s cultural setting factor 

into their interpretation of mathematical word problems? Regardless of the 

intercultural differences existing in individuals’ numerical cognition (e.g. Dehaene, 

Izard, Spelke, & Pica, 2008; Pica, Lemer, Izard, & Dehaene, 2004; Reys, et al., 1999), 

do cross-cultural differences in non-mathematical cognition influence mathematical 

word problem solving? Or, in other terms, does the way we speak about the world 

influence the way we count its entities? In the next section, we discuss how the 

materials created in this thesis may offer a path to investigate this issue.  

Taking a turn for the Whorf 
The idea that the language we speak may affect the way we think about the world is 

not new. Ever since Benjamin Whorf (1939) formulated what would later be known 

as the Sapir-Whorf hypothesis of linguistic determinism, the notion that human 

language constrains cognition has been a heated topic among linguists. Despite its 

initial popularity during the first half of the 20th century, linguistic relativism rapidly 

fell out of favor among cognitive scientists and linguists. Notably, studies suggesting 

the existence of universal semantic constrains on color terminology (Berlin & Kay, 

1969), works falsifying some of Whorf’s most famous claims on Eskimo lexicon 

(Pullum, 1991), and researchers pointing out the universality of non-linguistic 

concepts (Chomsky, 1975; Fodor, 1975; Pinker, 1994) all contributed to marginalize 

the Sapir-Whorf hypothesis and its tenants. 

   Only recently has linguistic relativism resurfaced, in its “weaker version” 

stating that language has a non-deterministic influence on cognitive processes. For 

instance, Oh (2003) showed that Korean and English speakers differed in their recall 

of motion events, due to motions being encoded in terms of “paths” or “manner” of 

motion depending on the language. Similarly, Boroditsky (2001) showed that 

Mandarin speakers were faster to judge sentences about temporal succession (e.g. 
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what is the year before the year of the tiger?”) when primed with a vertical spatial 

stimulus, whereas English speakers were faster when primed with a horizontal spatial 

event, due to time being generally represented horizontally in English and vertically 

in Mandarin. Despite showing significant influence of one’s native language on 

memory and time perception, the results of these studies have been somewhat 

downplayed as a case of “thinking for speaking” (Slobin, 1996). Since, in both studies, 

participants were thinking with the intent to use language to describe the events, it 

might be that the effects observed were only the result of their attempt to parse the 

events in linguistic terms, and thus that language does not necessarily influence 

cognition when the expected response is non-linguistic (Papafragou, Massey, & 

Gleitman, 2002). Thus, researchers have attempted to determine if crosslinguistic 

differences may have consequences such that people who use different languages 

end up thinking differently, even in situations where no linguistic response is 

expected. As Casasanto (2008, p.69) puts it in his article “Who’s afraid of the big bad 

Whorf?”, the question remains open and “one obstacle to resolving this controversy 

has been devising truly nonlinguistic tests to evaluate how speakers of different 

languages perceive or remember their experiences”. 

 In this perspective, an ingenious experimental paradigm was developed by 

Casasanto, Fotakopoulou and Boroditsky (2010) to study how language influences 

our non-linguistic time representation. In their experiments, participants watched lines 

“growing” across a screen, over a certain time. They were asked to estimate the 

duration for which the lines grew, regardless of how long the line itself was, by 

clicking the mouse for an equal amount of time. This paradigm makes it possible to 

evaluate how distance perception interferes with line perception on a physiological 

level. Casasanto et al. (2010) predicted that speakers of different languages would not 

be influenced to the same extent by the growing lines, due to the different words 

used to describe time in their respective language. Interestingly, Casasanto et al. 

(2004) had underlined that in English and in Indonesian, the most commonly used 

expressions to describe durations are distance related (e.g. “a long time” in English), 

whereas in Spanish and in Greek, the most used expressions are quantity related (e.g. 

“mucho tiempo” in Spanish). They hypothesized that this lexicon difference would 

imply a difference in time representation. In other words, languages such as English 

and Indonesian seem to promote an axis-based representation of time, due to the use 

of linear spatial expressions to describe durations, whereas Greek and Spanish seem 
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to promote a set-based representation of time, due to the use of terms describing 

amounts instead of distances (e.g. “poli”, in Greek, or “mucho”, in Spanish). Casasanto 

et al. (2004) confirmed this view by showing that English and Indonesian speakers’ 

perception of time was strongly influenced by the total distance traveled by the 

growing lines, whereas no such effect appeared for the Spanish or Greek speakers. 

 It will not have escaped the attentive reader that the distinction between the 

representation of time in languages using linear spatial expressions to describe 

durations (“long time”, in English, “waktu panjang”, in Indonesian, “longtemps” in 

French) and that of languages describing time using amounts (“mucho tiempo” in 

Spanish, “poli ora”, in Greek) is remarkably close to the distinction, introduced in this 

thesis, between cardinal and ordinal representations. It follows directly from this 

observation that speakers of different languages may behave differently when 

attempting to solve duration problems. If in fact, Spanish and Greek speakers have a 

more cardinal conception of time, due to the vocabulary they use, then they may be 

more likely to use the 3-step algorithm to solve such problems, as compared to French 

or English speakers. Similarly, would they have a harder time assessing the solvability 

of duration problems, in experiments such as the ones described in Chapters 4 and 

5? We believe that this hypothesis constitutes a promising prospect for investigating 

the influence of language on non-linguistic reasoning. To the extent of our 

knowledge, there have been no attempts to assess the validity of the Whorfian 

hypothesis using arithmetic word problems. Even though, by definition, arithmetic 

word problems are stated using words, the expected response is a mathematical one, 

not a linguistic one. Thus, it can be argued that using our duration problems to 

investigate cross-linguistic differences in time representation would not fall within the 

range of “thinking for speaking” tasks. By comparing, for instance, Spanish and 

English speaker’s ability to use the 1-step algorithm on duration problems and on 

collection problems (as a baseline), we may be able to show that the language we 

speak influences the way we count…for better or for Whorf.  

How can transfer be improved? 
An important part of this thesis has been dedicated to showing the robust influence 

that our knowledge about the world has on our mathematical reasoning. Regardless 

of the instructions given to them and regardless of their expertise, participants 

systematically struggled to use, on cardinal problems, the strategies that they 
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developed on ordinal problems. The pervasiveness of these worldly interferences 

raises the question of what it takes to overcome semantic incongruence and reach 

the same level of performance regardless of the semantics imbued in a problem. How 

can we help solvers engage in semantic recoding? What routes do we have at our 

disposal to promote transfer between semantically incongruent situations? Gamo et 

al. (2010; see also Gamo, Nogry, & Sander, 2014) showed that an extensive training 

session, led by a teacher, focusing on the deep structure of the problems and the 

explicit learning of both solving algorithms could help increase transfer to 

semantically incongruent problems. But such training is costly and does not 

necessarily entail that participants will be able to engage in far transfer when training 

and test problems are too dissimilar. Is there no other way to help solvers learn a 

semantically incongruent algorithm? In Chapter 7, we showed that simply providing 

participants with a worked-out example was not enough to help them understand 

how to solve cardinal problems. Although the evaluation of training methods 

promoting semantic recoding was not directly within the scope of this thesis, we can 

nevertheless speculate about the merits of alternative approaches to promote transfer. 

Hybrid problems as pivotal situations? 
As previously mentioned, we believe that hybrid problems such as those created in 

Chapter – Experiment 4 may play a part in the promotion of semantic recoding and 

transfer. Indeed, by creating situations in which cardinal quantities evolved along an 

ordinal axis, we “ordinalized” the cardinal problems, which resulted in a higher 

chance to find the 1-step algorithm on such problems. Thus, these problems may 

constitute an entry point to the idea that cardinal problems can be represented along 

an ordinal axis and solved using the 1-step algorithm. Can we improve transfer of the 

1-step algorithm from cardinal problems to ordinal problems by training on hybrid 

problems first? Thanks to their “hybrid” status, such problems may hold a pivotal role 

in promoting semantic recoding: if a solver is taught how to see both possible 

encodings on a single situation, then they may be able to learn how to switch from 

one to the other. In other words, we believe that hybrid problems may constitute a 

fertile ground to train switching between two possible encodings of a given situation. 

Similar to how bistable illusions tend to lead to an alternation between two distinct 

percepts (Eagleman, 2001), hybrid problems may facilitate alternating between two 

problem representations. And, just like with bistable illusions, it seems reasonable to 

expect that some degree of control over (perceptual) reversals may be learnable.  
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 Preliminary data we recently collected may shed some light on this issue. In 

an attempt to evaluate whether training could improve solvers’ ability to see past their 

initial encoding of a situation, we recruited 138 pre-service teachers and asked them 

to participate to a 4-step training program spanning over 8 weeks. Two weeks after 

an initial pre-test on cardinal and ordinal problems, participants were randomly 

assigned to one of four groups. Each group followed 2 short online training sessions 

over a 4 weeks period. The sessions involved either cardinal problems, ordinal 

problems, hybrid problems, or irrelated distributivity problems (control group). In the 

training sessions, participants were told that a 1-step algorithm could be found to 

solve the problems, and a series of questions were posed to guide their exploration 

of the problems. Two weeks after the second training session, participants were asked 

to complete a post-test. Post-test results are graphically summarized in Fig. 1.  

 

 
Fig. 1 Post-test performance on cardinal and ordinal test problems, depending on the received 

training. 

 

Although one should exercise caution in interpreting this graph, as it describes 

preliminary results, it is interesting to note that the best scores on cardinal test 

problems were obtained by the group who trained on hybrid problems, who found 

the 1-step algorithm in 74.7% of the cases. As a comparison, the groups who trained 

on cardinal or ordinal problems only achieved, respectively, 68.5% and 69% success 
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on cardinal problems. On ordinal problems however, the highest performances were 

recorded in the ordinal training group, whose participants used the 1-step algorithm 

in 87.6% of the cases. The performances of participants in the hybrid training group 

were not too far behind, as they reached 86.4% use of the 1-step algorithm.  

 Although more analyses are needed and no definite conclusion should be 

drawn from these preliminary results, they nevertheless seem to suggest that training 

on hybrid problems may provide a slight advantage to learn how to engage in 

semantic recoding on semantically incongruent problems. Thus, we believe that 

studying hybrid problems for which distinct encodings may be constructed could be 

a promising route to help promote semantic recoding. Further research may provide 

valuable insights regarding this issue.  

Argumentation to promote semantic recoding? 
Another interesting perspective to help promote semantic recoding and transfer in a 

scholastic setting comes from recent studies on the role of argumentation in the spread 

of counter-intuitive beliefs. According to the argumentative theory of reasoning, 

reasoners are more objective and less biased when they evaluate arguments produced 

by others (Mercier & Sperber, 2011). Thus, this theory predicts that reasoners are more 

likely to change their view when arguing with other reasoners, than when they are 

simply presented with statements challenging their view (Mercier, 2016). It is believed 

that argumentation may hold a special role in helping one change their view and 

adopt a counter-intuitive perspective. For instance, Claidière, Trouche, and Mercier 

(2017) conducted an experiment in which they asked groups of participants to solve 

problems with a counter-intuitive solution, such as the bat and ball problem, in either 

a “discussion” condition or in a “silence” condition. After an initial “individual phase” 

in which participants were asked to solve a problem by themselves, the participants 

were allowed to communicate with each other. The groups in the “discussion” 

condition were told they could discuss their answers with their immediate neighbors, 

whereas the groups in the “silence” condition were only allowed to look at their 

neighbors’ answers, without the ability to talk and argue about the problem. 

Participants were asked to write down their current answers at regular time intervals, 

to identify if, and when, they changed their mind about the problem’s answer. Results 

showed that in the “discussion” condition, the majority of the groups ended up with 

a global consensus on the correct answer, whereas in the “silence” condition, 

participants who found the correct answer only spread it to a limited number of 
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individuals, with most participants still set on their initial wrong answer. The authors 

concluded that argumentation was a powerful tool to help students acquire 

counterintuitive concepts when other methods fail.  

Since our results suggest that recoding the initial representation of a problem 

is an arduous task, even when participants are explicitly invited to do so, we 

considered the use of argumentation as a means to overcome semantic incongruence. 

In an ongoing study conducted with our colleague Géry Marcoux, we asked groups 

of pre-service teachers to find the shortest possible algorithm to a series of cardinal 

problems. We sat the participants in a classroom and reproduced Claidière et al.’s 

(2017) “discussion” condition by telling them that they could discuss their answer 

with their neighbors. The results of one group are reproduced in Fig. 2. After a short 

individual phase in which participants had to solve the problems by themselves (t0), 

they were told that they could start talking with their neighbors and they had to 

report, after each minute (t1 to t15), what their current answer was, as well as their 

degree of confidence in it being the best answer. After the initial individual solving 

phase, only 3 participants had found the 1-step algorithm, whereas 17 had found the 

3-step algorithm. Once participants were allowed to discuss their findings, they 

rapidly convinced each other of the validity of the 1-step algorithm, and after 9 

minutes, all of them agreed that it was the shortest possible algorithm to solve the 

problem.  

 We then presented the same group with another cardinal problem (see Fig. 3). 

After the individual phase, 15 participants had managed to find the 1-step algorithm 

by themselves! After being allowed to talk for 1 minute, 7 more participants agreed 

on a 1-step solution as well. After 2 more minutes (t3), all of the participants were 

convinced of the validity of the 1-step algorithm they found, with a high confidence 

rate on average. Thus, it seems that the opportunity to argue over the 1st cardinal 

problems provided participants with a deep enough understanding of the problem’s 

structure that they were quickly able to transfer the newly learned strategy to a new 

cardinal problem. 

 Although these results are only preliminary, as only 4 groups have been 

recruited at this time and the addition of a “silence” group would allow a finer 

understanding of the part played by argumentation, we believe that they nevertheless 

open a promising route to promote semantic recoding in a scholastic setting. 
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Fig. 2 Students’ responses at each time stamp for the 1st cardinal problem. Each circle represents 
a student in the classroom. The color of the circle indicates the strategy used, the circle size 

indicates confidence rate.  



 

 
GENERAL DISCUSSION| 311 

 

D
IS

C
US

SIO
N

 

 

 

 

 

 
 

Fig. 3 Students’ responses at each time stamp for the 2nd cardinal problem. Each circle represents 
a student in the classroom. The color of the circle indicates the strategy used, the circle size 

indicates confidence rate. 
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Conclusion 
If we had to highlight one take-home message from this thesis, it would probably be 

that humans reason differently depending on what they reason about, even in 

domains where abstraction is trained and valued. In our case, this idea took the form 

of participants using one algorithm to solve a smurf problem, and another to solve 

an elevator problem. But the more general notion behind it, the view that our domain-

independent knowledge shapes the representations underlying our reasoning and 

subsequent behavior, is one that has a much larger scope. Similarly to how non-

mathematical knowledge interfered with mathematical reasoning in our experiments, 

domain-independent knowledge may meddle with human reasoning in a wide range 

of domains and activities. This idea raises crucial issues for education, as it emphasizes 

the notion that learning and teaching do not happen in a vacuum, but are always 

grounded in a real-world setting. This inter-dependency of context-specific and 

context-independent knowledge may be a source of confusion at times, but it may 

also be a driving force helping individuals comprehend complex abstract ideas with 

little effort, through semantic congruence. Overall, we believe that it is time to let go 

of the idea that humans should strive above all to act as purely rational beings, guided 

by reason alone. The pervasive interferences between our intuitions and our 

expertise, our beliefs and our judgment, our experience and our perception, our skills 

and our wisdom, our memories and our comprehension, all shape our cognitive 

processes, and define us as human beings.  
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