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Fully event-based motion estimation of neuromorphic binocular
systems

Abstract: Through the advances of artificial retinas, neuromorphic computation has been an increasing
research field over the past 20 years. Applications in robotics, autonomous driving, medical equipment
are starting to appear. However, some major issues remain, as methods used too often mimic, if not
simply adapt standard frame-based techniques developed for fundamentally different type of data.
These techniques often process batches of data, performing global optimization while forgetting the
fundamental nature of events. As they present infinitesimal changes of the scene, we believe they should
be treated as such upon computation. This thesis focuses on the case on visual odometry to develop
fully event-based computation techniques, by using the entire advantages given by the neuromorphic
sensors available. Using infinitesimal updates, we developed low-latency algorithms, while handling
vastly different scene dynamics. By carefully analyzing events streams, we believe low latency can be
achieved at low computational cost, showing once again that neuromorphic engineering is a way to
reduce computer vision energy footprint.
The first part tackles the problem of on-screen tracking. Through the use of an inertial model, we
developed a high-frequency tracking solution, with no prior required about the concerned shape. A
second set of algorithms showcases how to compute optical flow and depth from a binocular system,
and use them in an asynchronous way to compute a visual sensor ego-kinetics estimation. The third
part combines the two previous one into an virtual model, to recover online pose with little to no
assumption about the scene. Finally, a last part analyses more in-depth the importance of time in
the event-based paradigm, and describes the development framework solution implemented to allow
correct and efficient time handling.

Keywords : Neuromorphic engineering, event-based processing, tracking, visual odometry, Python
language



Estimation évènementielle du déplacement de systèmes
neuromorphiques binoculaires

Résumé : L’ingeniérie neuromorphique est un domaine en pleine expansion depuis une vingtaine
d’années, notamment grace aux développement de rétines artificielles. Leurs applications concrètes
sont en train d’apparaitre, en particulier dans les domaines de la robotique, de la contuite autonome
ou encore dans le médical. Cependant, des problèmes fondamentaux persistent dans le traitement
même de ces données d’un type nouveau. Les méthodes utilisées essayent trop souvent d’imiter celles
adaptées aux flux vidéos conventionnels, voire même de les reprendre entièrement. Ces méthodes, qui
traitent de manière synchrone des ensembles de donnees ne sont pas adaptées à la nature fondamentale
du signal évènementiel. Les calculs fait sur ces données devraient, en toute logique, respecter et mettre
en avant cette nature discrète des évènements. Cette thèse utilise comme support l’odométrie visuelle
pour développer des techniques purement évènementielles qui tirent profit au maximum des avantages
des capteurs neuromorphiques. Par l’utilisation de mises à jour asynchrones et infinitésimales, on
montre qu’il est possible de procéder à des calculs préservant une latence temporelle faible, et ce
avec moindre coùt de calcul, réduisant d’autant l’empeinte énergétique de tels systèmes. La premiere
partie s’attachera au suivi d’objets dans des scenes, grâce à un model inertiel mis à jour de maniere
évènementielle. Un deuxième ensemble d’algorithmes permettra le calcul des vitesses de déplacement
d’un système de vision binoculaire, via le calcul du flot optique et l’estimation de profondeur des objets
visibles. Une troisième partie combinera les deux précédentes au sein d’un systeme virtuel inertiel,
permettant d’estimer la position dans l’espace d’un système de vision binoculaire au cours du temps.
Enfin, une dernière partie s’attachera à une analyse plus poussée du paradigme neuromorphique, en
traitant notamment de la place de la donnée temporelle dans ce dernier. Il sera également présenté
l’environnement développé au cours de cette thèse, permettant de traiter de manière pertinente cette
donnée temporelle des évènements.

Mots clés : Ingénierie neuromorphique, traitement du signal évènementiel, suivi d’objets, odométrie
visuelle, language Python
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Open-source software
• PEBBLE: Event-based framework based on code ergonomy and data accessibility.

https://github.com/LDardelet/PEBBLE

• Event-Based Tracker: Python standalone implementation of the event-based
tracking algorithm described in Chapter 1.
https://github.com/neuromorphic-paris/eb-tracker/

• 3D Data Handling : Python environment handling 3D data relations inside
reference frames.
https://github.com/LDardelet/DataScripts/

https://github.com/LDardelet/PEBBLE
https://github.com/neuromorphic-paris/eb-tracker/
https://github.com/LDardelet/DataScripts/
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Introduction

The development of computer vision is intimately related to advances made in robotics,
as it is a key component to their autonomy. As one of the goal of robotics is to make
our daily life easier by entrusting to machines hard and repetitive labour, robots need
this ability to analyze and behave according to their surroundings, in a similar way to
humans. The very first robots given an artificial vision were developed in the late 40’s,
by the neurobiologist William Grey Walter. These two robots, named Elmer and Elsie,
shown on the right side of figure 0.1, were able to perceive their environment via a crude
photoelectric cell. If their behaviour now seems primitive, this accomplishment started
paving the way for artificial vision and robotics as we know today.

Figure 0.1 Pictures of one of the first autonomous robots, Elmer and Elsie (left)
developed by Willian Grey Walter compared to state-of-the-art bipedal robot
Atlas, from Boston Dynamics (right). 70 years separate those robots, but most
of robotic developments were made possible by recent computers and computer
vision advances that happened in the last two decades.

Yet, it took a long time for machines to really interact with their surroundings thanks to
vision sensors. Most industrial machines used throughout the 20th century were either
human-controlled, or packed with various sensors, and confined within a controlled envi-
ronment dedicated for specific tasks. While analog image representation and processing
saw no major development during the decades they were used, digitization unlocked rapid
improvements of the field. The miniaturization of computers, the increasing resolution of
digital cameras, alongside with the development of computer vision methods, allowed for
large improvements in machines environment interaction - including drones, autonomous
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cars, robots, . . . . These improvements increase machines’ possibilities and put within
their reach domains that were previously accessible to humans only. An example of these
advances Atlas, robot developed by Boston Dynamics and shown on the right side of
figure 0.1. Thanks to computer vision, this bipedal robot is able to analyze rough terrains,
and perform movements one could not think possible 20 years ago.

However, the way digital images and videos are encoded and processed cannot be further
away from human vision, even compared to Elmer and Elsie’s primitive artificial eyes.
Those were barely photoreceptors followed by a purely analogical processing. This means
that Walter’s systems were naturally asynchronous, in the sense that they didn’t rely
on some clock, with step-by-step computations as modern computer vision does. It also
means that these systems had a very low latency by design. In contrast, computer vision
nowadays is inherently a step-by-step process. Put aside the computation itself, the
sampling of visual scenes in traditional computer vision is also governed by master clocks.
This translates into a batch acquisition of the visual scene and higher latencies.

Modern imaging systems capture and display images at typical frequencies of about 50Hz.
Those frequencies are set just high enough for humans to perceive successive images as a
continuous motion. In our daily lives, this capture/display paradigm is not a limitation, as
it allows for simple systems, easy to use and well adapted to our perception. It made this
frame-based paradigm the basis of modern computer vision. However the limitations of
this paradigm become salient in more advanced use cases such as robotic vision. Constant
frequency sampling can lead to both over and under-sampling in the same visual scene,
generating both over-computation and motion blur. The fact that frame-based compression
algorithms are able to reduce raw video streams size by an usual factor of 50, and up to
200 in extreme cases1 is a strong hint that constant frequency sampling is not an optimal
way to acquire visual information.

Despite these limitations, digital image processing has achieved tremendous and exciting
results over time and progress are still being made today. The processing techniques are
so successful that they cross boundaries to be applied to other fields: Artificial Neural Net-
works (ANN) that were initially developed and designed to process digital images [1, 2, 3],
are now largely used for sound processing [4], in electrical engineering [5], or even ap-
plied to biochemistry [6]. The extension to those domains is straightforward as data is
acquired according to the same fixed frequency sampling principle. This paradigm led to
the development of dedicated hardware such as the Graphical Processing Unit (GPU),
whose computation power increases exponentially over the last two decades. Thanks
to components miniaturization, GPUs and multicore CPUs made efficient computing
architectures available to everyone via computers, smartphones, or even smart-watches.
However, this efficiency increase is reaching its limits.

Electronic components cannot be shrunk indefinitely as quantum effects become sources of

1https://www.lensrentals.com/blog/2010/01/video-compression-explained/

https://www.lensrentals.com/blog/2010/01/video-compression-explained/
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excessive computation errors. Hence, gaining more computational power by increasing the
chip’s density will reach a limit. An alternative way to increase the number of transistors
in a chip is to adopt a 3D solution, by stacking silicon wafers. From an exponential
increase in computation power, the next years should display a more linear trend. Another
consequence of this critical size is the limit of components power efficiency. As shown by
figure 0.2, the computational efficiency has been steadily increasing since 1946. However,
as physics constraints starts to appear, this computational efficiency is expected to reach
a plateau in the near future. If the energy footprint of digital devices has been on a
4% average increase per year2, we can expect this trend to increase even more as this
maximum efficiency is being reached. With this considerations in mind, we need to look
for new ways to acquire and process data and in particular the visual one, to exit from
this unsustainable future.

Figure 0.2 Computational efficiency have doubled every 1.57 year on average
between 1946 and 2009. However, a lower limit in components size is being reached,
and with it this energy efficiency increase will shrink in the near future. The
constant demand for additional computational power will result in an acceleration
of the digital energy footprint. Graph taken from [7].

Biological systems are known to be very energy efficient and for this reason, are often a
source of inspiration for machines. Comparisons are often made between the human brain
and CPUs or GPUs, and it is true that the difference in energy efficiency is staggering.
However, this comparison must be taken with caution, as brains and computers are
designed to perform very different tasks. If we are able to estimate the power consumption

2https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_
The-Shift-Project_2019.pdf

https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
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of a human brain, at about 20 watts [8], it is on the other hand very hard - if not impos-
sible - to quantify the number of operations it performs and compare it to a computer.
However, tasks such as object recognition, visual odometry, environment mapping can be
performed by both systems, and can be used to compare them. For these tasks, brains
are outperforming state-of-the-art algorithms. The study of biological models provides
therefore great examples to create and improve artificial computational systems. This led
to the field of Neuromorphic Engineering.

This domain takes inspirations from biological neurons for information acquisition and
processing. Visual information processing is one of the most prominent example with the
development of silicon retinas, also known as event-based vision sensors [9, 10, 11, 12].
These devices trade the fixed-frequency sampling paradigm for the event-driven one:
acquisitions are not triggered by a master clock but rather by changes that occur in
the visual scene. Because each pixel is asynchronous, independent and reacts directly to
changes in the visual scene, the event-based vision sensor is impervious to under and over-
sampling problems. At the processing level, instead of working with frames, event-based
computation, as its name implies, is triggered by events. Events are quanta of data, which
can be related to spikes the biological eye sends to the brain. As the paradigm shifts
from images to quanta of information, most computer vision algorithms, designed to work
on large batches of dense data, become ill-fitted to process events that are inherently sparse.

Since neuromorphic sensors became available, many people have transposed existing frame-
based algorithms to the event-based paradigm, focusing on the implementation itself. This
can be understood, as it allows to test validated methods, just on different data. However,
it is sub-optimal and misses the central fact that the output of such sensors is sparse and
asynchronous. The nature of the data itself imposes to change the computation paradigm,
shifting from heavy operations made on constant-size batches of data, to light-weight,
elementary operations, performed on local changes. The advantages of event-triggered and
light operations are numerous, as they allow for low-latency and high-speed computation.
But also, keeping the sparse property of the data at the center of its processing allows to
keep the energy consumption at low levels [13, 14, 15].

One of the motivations behind this thesis is to change this computation paradigm, by
constantly challenging the legitimacy of classical computation techniques used in frame-
based computer vision. Beyond the simple objective of adapting frame-based techniques
to event-based data, we wanted to explore new ways to tackle computer vision problems.
We wanted to process events in an asynchronous manner, considering local neighborhoods.
The core of this thesis aimed to find a new event-based method for visual odometry.

It is often said that the development of neuromorphic engineering is limited by the lack
of event-based dedicated hardware3. This is similar to quantum computing, for which
algorithms have been known since the 1980s [17, 18], while still missing the hardware to

3Neuromorphic processors [16] do exist, but mainly focus on Spiking Neural Networks implementations.
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implement them4. A computational paradigm has first to set up its theoretical grounds,
before hardware development can follow up based on the extracted requirements. In the
case of this work, we acknowledged this lack of hardware, by focusing on the algorithmic
side of things, rather than its actual implementation. The experiments are made to
produce results and proofs of concept, rather than efficiency. As event-based computation
sorts out its pros and cons, we believe neuromorphic hardware development will be led by
well-defined guidelines, improving the data processing efficiency, alongside with reducing
the energy consumption.

We will keep time as the centerpiece of all our techniques developed in this work. The
asynchronous nature of events makes their timing the most important information medium.
Similar to the ordering of frames inside a conventional video stream, time orders events,
and states their relations to one another. However, its reach extends far beyond just
ordering data, and as such, the consideration of time for event-based data processing
has been a constant matter throughout this work. The second fundamental guideline
of our work is data hierarchy. We believe the neuromorphic world, in its debuts, has
to focus on simple computing blocks that extract low level information from the data.
Higher level building blocks will feed on this low level data to produce higher-level infor-
mation. For any task, we believe it is important to first fully understand the basics of
both the input and the output of an algorithm, prior to trying black-box methods, such
as ANNs, or for more neuromorphic compatible networks, Spiking Neural Networks (SNNs).

Neuromorphic sensors show particular abilities - low latency, high dynamic range, power
efficiency - that are especially fit for robotic applications. Robotics had to wait for the
development of highly capable computers in order to gain some autonomy, but the energy
consumption of these embarked computers restrict their autonomy, both in terms of energy
storage and hardware requirement. Simultaneous Localization And Mapping (SLAM),
which is the holy grail for autonomous robotics, at best requires state-of-the-art hardware
to run, along with multiple sensors for accuracy [19]. Thus, we propose in this work to
apply event-based ground-rules to motion estimation or better known as visual odometry
problem, purely based on visual information captured by neuromorphic sensors. By
extracting higher and higher level data from these sensors, and combining them, we show
that it is possible to recover motion from asynchronous data, without the need of cost
prohibitive optimization processes on accumulated batches of data.

This thesis is structured into four main chapters:

1. The first chapter introduces a fully event-based method to track features in a scene
recorded by a single event-based camera. This technique features both detection of
objects of interest, along with high-frequency asynchronous updated tracking. The
closed-loop cycle implemented notably allows to consider time on dynamical scales,
making the tracking process robust to large variations in signal dynamics.

4If some advances have been made recently, the domain is still decades away from a working, configurable
quantum computer.
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2. The second chapter will present a technique to recover the velocity of an event-based
stereo-rig by using optical flow and depth information. The presented optical flow
computation method allows for an improvement in the amplitude accuracy compared
to existing methods, while using a fully event-based algorithm and light computation.
The stereo-matching method makes use of a pair of rectified sensors, and allows for
a fast and reliable disparity computation through the use of 1D spatial descriptors.
Finally, using the previously obtained features we can estimate the instantaneous
translation and rotation velocities of a stereoscopic visual system, that we referred
to as ego-kinetics.

3. The third chapter presents a model that fuses previously obtained information :
tracking, depth and velocity information. This allows to compute a visual odometry.
By using an event-driven physical simulation, we show that pose can be updated at
the scale of the event. This is achieved by rephrasing the classical heavy optimization
computation into a incremental computation.

4. The fourth chapter will present a more in-depth analysis of why time is so important
in event-based computation. We will also present a new framework. This framework,
available in open-source, makes it easier to implement event-based algorithms, with
easy data management and visualization.



State of the Art

Neuromorphic Sensors
Event-based vision sensors are gaining popularity within the computer vision community as
they offer many advantages over conventional frame-based cameras that cannot be matched
without an unreasonable increase in computational resources. Low computation require-
ments are achieved by reducing redundant visual data at the level of pixels. This naturally
allows lower latency and precise temporal acquisition. Event-based cameras (Figure.0.3(a))
are based on an asynchronous level crossing sampling as shown in Figure.0.3(b)-(c).

(b)

(c)
time

time

"ON"events 
"OFF"events

(a)

(d) (e)

Figure 0.3 Event-based acquisition of visual signals: (a) the ATIS Event-based
camera [11], (b) principle of event-based sampling. The variations of the logarithm
of the light intensity of a pixel located at [x, y]T over time, (c) asynchronous
temporal contrast events generated each time the light intensity crosses a level in
log(I), (d) the output of a conventional frame based cameras at some 30-60Hz vs
in (e) the high temporal precision event-based output of the sensor at around
1µs.

The pioneering work in this domain was made by Mahowald, in the 1980s [20]. this work
fundamentally studies the biological eye structure, and aims to mimic its behaviour by
presenting an electronic equivalent. This initial neuromorphic sensor [9] paved the way to
numerous variants, with different philosophies and improving along with the technological
advances.

7
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Neuromorphic sensors can exploit gradient values, optical flow, or edge orientation [21,
22, 23] specifically. However, the most commonly used sensors are luminance-based, as
they generates the most versatile type of events among visual neuromorphic sensors. Most
notably, we can cite the first sensors of this type, like the DVS and the ATIS [10, 11, 12, 24].
The first one implemented the events are they are used nowadays, with the sign of the
luminosity change, often referred to as polarity. The second one improves that concept by
adding absolute luminance measurement. Both used the Address Event Representation
(AER) standard [25], still in use now.
Over the years, improvement in this technology has lead to significant noise reduction,
along with an increase of the average sensor resolution. VGA sensors definition were
made available a few years ago, now even shifting to megapixel-resolutions [26]. The
DAVIS [27], used thoroughly throughout this work, features in its 346× 260 resolution
version an Inertial Measurement Unit (IMU), along with frames recording and external
synchronization.
We also point out the existence of neuromorphic cochleas [28, 29, 30, 31], audio counterparts
to the artificial retinas. The later specifically uses the AER representation, allowing easier
fusion sensor for neuromorphic computation.

Neuromorphic computation
Various works report on neuromorphic hardware development, mostly oriented towards
Spiking Neural Networks (SNNs). We can most notably cite SpiNNaker chip [32], Synapse
DARPA program 5 and Loihi Intel chip [33].
[34] presents a novel neuromorphic computation paradigm using time at its core, by fun-
damentally changing the way data is seen. Other works show that the use of event-based
processing is already fitted for embarked computation, showing its low-power consumption
on standard hardware [13] or developing directly on mobile phones [35].

However, the literature shows little work on the fundamentals of event-based processing,
compared to the rest of the event-based literature. Most algorithms, whether that show
fully-event based methods or accumulative ones often take time constant parameters for
granted, tweaking them to get the best possible outcome, with little additional analysis.
HOTS [36] shows how timescales affects data processing, by creating a hierarchy of spatial
descriptors that use different decay rates. [37] presents a contrast maximization method
to enhance frames generation, and question the importance of time through the use of
optical flow. A dynamical timescale is proposed in [38] in order to improve optical flow
and Lucas-Kanade implementation results in a closed loop. [39] presents a more profound
analysis of time importance in neuromorphic computing, by considering the lifetime of
events, and dynamic slicing.
Apart from time considerations, event-based processing is often split into two main
categories, being accumulative versus event-by-event methods [40]. The former one
processes event by clustering them within a temporal window to produce a spatial-only
representation so it can be fed into more traditional processing pipelines [41, 42, 43, 44].
While such approaches seem to be intuitive, they are facing two major problems as they

5https://en.wikipedia.org/wiki/SyNAPSE

https://en.wikipedia.org/wiki/SyNAPSE
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are discarding the most important advantages gained from the event-based representation:
the temporal accuracy and the spatial sparseness. By building frames, not only additional
computation resources are necessary but also, due to the lower spatial resolution of
the sensor, the achieved performances of vision algorithms from these data are often
lower than from data acquired with standard high resolution conventional cameras. The
second category of event-based processing focuses on the sparsity of the data. This is one
methodology encouraged and adopted by several event-based neuromorphic engineering
techniques which consist in locally -spatially and temporally- processing each new event [45,
46, 47].

Shape tracking

Object tracking is a cornerstone for computer vision, with applications across multiple
fields. It starts namely with Lucas and Kanade’s work, in 1981 [48], which laid foundations
for deterministic tracking, as opposed to learning techniques. This later category has been
increasingly used in many different fields, and object tracking is no exception [49].
Previous works that tackled feature detection from the output of an event-based sensor
include several corner detectors that are inferred from the optical flow computation [50],
or obtained by using Harris operator on locally integrated temporal frame of events [51].
The time-surface as introduced in [52] is another way to extract dynamic patterns (which
also includes corners) as it allows to define a compact feature-velocity descriptor around
an incoming event. In [53], the time-surface allows to build a feature that can then be
used with FAST [54] detector. In [55], a FAST detector is applied to the time surface to
find corners and a graph-based technique is jointly used to find the closest corner in space
and time that support motions assumption to achieve tracking. An improvement to this
approach is introduced in [56] with the idea of using a local descriptor built from the time
surface. The use of descriptors allows for tracking via minimizing descriptor differences. A
hybrid class of approaches combine frames and events to overcome the difficulty of pattern
selection and tracking using events as the same scene pattern can produce different events
depending on the motion direction, making the event correspondences across time very
challenging. In [57], the DAVIS sensor is used at the rate of 35 fps to extract corners and
other traditional image features are detected on frames by applying standard computer
vision detectors, while the tracking is operated on the events captured between the frames
[58]. The same idea can be also found in [59]. An expectation-maximization approach,
coupled with an iterative closest point algorithm is used in [60] to keep track of corners that
are detected at the beginning of the sequences from an edge map built by accumulating
events over a manually selected integration time. Events are integrated over a duration
deduced from the optical flow and the edge are mapped to generate unitary contours
to then apply an ICP algorithm [61]. The approach proposed in [62], based on global
optimization of a cost function over a cluster of events, aims to find the motion parameters
that yield a homography that maps the cluster of events into an “event image" with a
maximal contrast. This approach while not based on features, still deals with the data
association problem. It has some overlapping properties with our approach, such as the
ability to relate the sensor’s motion to the data, however they differ deeply due to their
synchronous/asynchronous nature.
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Optical flow
The optical flow design the velocity of an object on screen. A large gap exists between
frame-based and neuromorphic sensors, as the high-temporal resolution of the later allows
for precise - and instantaneous - velocities in each point where events occur. On the
other hand, conventional cameras often present large displacements of the objects on two
successive frames, and as such, the optical flow can refer to an overall displacement, rather
than an actual speed. Thus, optical flows estimation methods from event-based sensors
flourished as soon as they were introduced: adaption of the classical photoconsistency
constraint [63] then techniques that steers away from frames [52]. Later, more complex
approaches relying on learning techniques [64, 65] up to some improved aperture-robust
computation technique [66].

Depth estimation
In the case of a scene recording, depth estimation will design any method allowing to
estimate the distance of an object to the sensor6. Monocular methods exist, actively
changing the focal length of the sensor to get focus or defocus on different objects. If
the method exists since more than 20 years for conventional sensors [67], it was only
recently adapted to event-based sensors [68]. However, without using the focal length as
baseline unit for depth estimation, a stereoscopic system is required to obtain depth. Thus,
depth estimation is often done using stereo-rectified synchronized sensors, and the depth
is bijective to a disparity value, being the apparent displacement of an object between two
sensors.
In this case, the problem can be formulated as pattern matching, with extensive frame-
based research that started in the 80s [69]. Similar method were therefor adapted to the
event-based paradigm, using time-surfaces as support [70, 71, 72, 73, 74]. Other work
present stereo-matching solutions through spiking neural networks [75].

Ego-motion
We can consider two approaches for ego-motion estimation, being respectively dynamical
estimation, recovering speed, acceleration, . . . and visual odometry.
That first category can also be referred to as ego-kinetics estimation. Previous works in this
particular vision of things are rare. Two hypothesis can explain this lack of such approaches.
The first one is that the initial frame-based paradigm offers little possibilities for such first
order approach, as the discrete nature of frames makes this computation imprecise when
scenes are being recorded at standard frequencies. As the displacements gets too high,
the instantaneous velocity makes little sense to be determined, and approaches based on
displacement instead are preferred. The second reason it that IMUs can provide such
first-order information, at least for rotation. In this case, sensor fusion and be deemed
more easy to implement that recovering a computer-vision based velocity estimation.
Visual odometry, on the other hand, have been an active field of study for decades. It mainly
divides into two categories. The first is the bundle adjustment problem, which consists in

6In this case, the sensor center is often considered to be its focal center.
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finding the optimal pose minimizing an error on a set of known 3D points reprojection.
The more advanced formulation of this problem is the Simultaneous Localization And
Mapping (SLAM). It consists in creating a 3D representation of the ongoing scene, and
using it for visual odometry in a closed loop. Implementations can vary, especially in
terms of sensors used, being possibly monocular or multi-sensors, along with additional
sensors such as LIDARs, IMUs, . . . [19]
Monocular visual odometry is an old problem even in event-based vision sensing. Previous
works in this field rely largely on classical SLAM approaches developed for frame-based
vision sensor [76, 77, 78, 79]. These works show how robotics is still in the search of
low latency and low power strategies when it comes to fast autonomous navigation. On
the other hand, stereo vision odometry using a pair of event-based vision sensor seems
to attract less attention. Most notably, we have accounted the live demonstrator from
Prophesee [80] and the work published in [74]. Without much of surprise, these works
on event-based stereo visual odometry rely on a rigidly calibrated and epipolar rectified
pair of event-based sensors to ensure spatial consistency. Their precise synchronization is
additionally required to ensure the temporal consistency.
The works presented in [74] tackles localization and partially 3D mapping problems in a
complex minimization pipeline. Semi dense depth maps are estimated by enforcing spatial
and temporal consistency, followed by a depth fusion operation. This work focuses on a
event-based approach by using Time-Surfaces as a support to process data. At the stage
of depth estimation, a frame based strategy is applied at a rate of 100Hz to update the
stereo time-surfaces.
More advanced SLAM techniques were developed using neuromorphic hardware for data
acquisition or computation [81, 82].





Chapter 1

An Event-by-Event Feature Detection
and Tracking Invariant to Motion Di-
rection and Velocity

1.1 Introduction
This chapter introduces an event-based solution for selecting and tracking features from
the output of an event-based camera. It overcomes for the first time the hard issue of
extracting stable features from temporal information output by the sensor while being
independent from motion direction and velocity changes. This is a major issue when
using these sensors as the acquired space-time features can vary drastically although the
underlying spatial structure is the same. This paper is based on a pure event per event
methodology that allows it to make the most of event-based cameras’ native properties of
low latency and power. It permits for the first time to formulate the problem of features’
selection and tracking in the time domain as an inter-dependent process between detection,
tracking and continuous velocity estimation. The method does not assume any priors of
what a feature is.
Event based acquisition introduces a major shift in the way visual information is being
processed. Unlike conventional cameras that produce absolute intensity images at a fixed
rate, event cameras rely on a data driven acquisition process where independent pixels
asynchronously signal light intensity changes (coined as “events”) at a high temporal
resolution (usually around 1µs).
The use of sparse information represented by visual events can be puzzling to a conventional
computer vision scientist used to deal with snapshots, gray levels and colors. Processing
visual events requires new thinking to derive a novel family of algorithms capable of
operating efficiently in the time domain by reducing memory footprints and computational
power requirements.
With continuously improved spatial resolutions, almost matching conventional sensors
(from VGA to Mega Pixel), the event-based vision sensors’ high temporal resolution allows
the measurement of velocities in the focal plane with great precision. This is the most
valuable and reliable source of information of these sensors.

13
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Presently, there are two opposite philosophies in processing data acquired by event cameras.
The first one is advocating for the use of optimization techniques on static images of
accumulated events or batches of events defined over different duration and sizes. This
approach only uses the high dynamic range properties of these sensors, the recurring moti-
vation behind this is to reuse decades of conventional computer vision techniques [54, 83]
and avoid using single events that are wrongly considered to be too noisy and carrying
little information. This approach results in wasted computation resources and an increased
latency. The second approach is closer to the event-based acquisition properties. It is
advocating for a local space-time processing of individual events, as they occur, with the
idea that each one of them is contributing by an infinitesimal information to the sensing
problem to solve. This approach naturally saves power and memory footprint because it
only stores what is required and computes using the minimal amount of resources only
when something has changed in the scene.

1.2 Incremental Continuous Detection and Tracking

1.2.1 Trackers definition, position and angle update
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Figure 1.1 A tracker T located at X is assigned an incoming event en at location
Xn if ||Xn−X|| ≤ R, both expressed in Rf the coordinate reference of the focal
plane

We define a tracker T as a set {X(t),v(t), θ(t), ω(t)}, where X(t) is its position in the
focal plane, v(t) its translation velocity, θ(t) its rotation angle w.r.t the optical axis z and
ω(t) its rotation speed. An event output by the neuromorphic camera indexed by n is
defined as the pair en = {Xn, tn}, with Xn its 2D spatial coordinates in the focal plane
and tn its time of occurrence. An incoming event is "assigned" to a tracker T when it is
close enough to the tracker i.e. satisfying the spatial constraint: ||Xn −X|| ≤ R, where
R is the spatial radius of the tracker (as shown in Figure 1.1).
If we assume a constant velocity motion of the tracker between consecutive event - a
reasonable assumption due to the low latency and the high temporal accuracy of the
event-based sensors - we can update its position X(tn) and angle θ(tn) at the time of the
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arrival of en as: {
X(tn) = X(tn−1) + (tn − tn−1)v(tn−1)
θ(tn) = θ(tn−1) + (tn − tn−1)ω(tn−1)

(1.1)

This assumes that v and ω can be estimated at any time. This is partially achieved by
computing the optical flow as explained later.
We define the location of that event in the tracker coordinate frame as xn, such that

xn = %(−θ(tn))(Xn −X(tn)) (1.2)

with %(θ) the 2D rotation matrix of angle θ.

1.2.2 Tracker activity

To enable the continuous update of a tracker T , we first define the time decay factor λn
associated with T as:

λn = exp (−(tn − tn−1)/τ(tn−1)). (1.3)

where τ(tn) is the time needed for the tracker to move by one pixel. The estimation of
this dynamic time property of the tracker will be fully expressed in section 1.2.6. Times
tn and tn−1 correspond respectively to time of arrival of the incoming event en and the
preceding one en−1.
We then define A, initialized to 0 at t0, as a measure of the activity of a tracker T :

A(tn) = A(tn−1)λn + 1. (1.4)

A is updated by each incoming event that is assigned to a tracker T . This form is thus a
sliding average over a time period τ . Each variable defined by a similar equation is thus
robust to noise, as well as reactive to variations on a timescale τ .

1.2.3 Optical flow

For an incoming event en = {xn, tn} assigned to T , we define the set En that contains
all events that occurred in the time interval [tn −Nτ (tn), tn], within a distance r to xn
(shown as a black circle in Figure.1.2) :

En = {ek = {xk, tk} | ||xk − xn|| ≤ r and tk ∈ [tn −Nτ (tn), tn]}. (1.5)

The quantity Nτ (t) = N.τ with τ the time needed for a unitary contour to move by one
pixel, and N the number of lines considered. Nτ (t) expresses the time needed by the
tracker to move by N pixels, it also defines an adaptive time window parametrized by the
velocity of the tracker.
With En, we estimate the local optical flow fn (shown in blue in Figure 1.2) at xn at time
tn as:

fn = (xn − xk)/(tn − tk), (1.6)

where xk and tk are the spatial position and the timestamp averaged over the set En.
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Figure 1.2 The spatial coordinates of an incoming event en are now expressed
in the tracker T coordinates system RT at location xn. The optical flow fn is
computed as the difference between xn and the mean positions of previous events
happening in the temporal window [tn −Nτ (tn), tn] contained in the set En

Remark1:

The computation of the optical flow as a difference between the mean spatio-temporal
position of En and the current event works reliably provided one considers small spatial
neighborhoods r (usually set between 2-4 pixels). The reliable direction of the estimate
flow is the one orthogonal to local edges due to ambiguities related to the aperture problem.
We will show in the following sections that local average flow allows the tracker to track
local edges by introducing a metric that quantifies the aperture problem. We intentionally
choose this simple form of flow instead of more accurate incremental flow computations
techniques such as the canonical local plane fitting regularization used in [84, 52]. The main
reason being it is computationally less prohibitive than most of the existing event-based
optical flow algorithms and still proves to converge to an accurate flow estimation with
the continuous update of the tracking procedure.

Remark2:

In the tracker’s coordinate frame, all events generated by the same edge will follow a
narrow spatial distribution that outlines the edge once the tracker velocity converges to
the structure’s one as shown in [85, 86]. The estimated flow, in the tracker’s coordinate
frame being the relative velocity between the tracker and the structure, will converge to 0
when the estimation is correct [87].

1.2.4 Contour velocity estimation

A 3 degree of freedom (2 for the translation and 1 for the rotation) tracker cannot be
properly estimated from the optical flow alone as the flow provides only two translational
components. The rotational component can be calculated from an estimator that integrates
the optical flow over the time period τ , based on the motion equation expressed in the
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tracker reference frame. We define vc = (vcx , vcy)T and ωc respectively the translation and
rotation velocities of the contour in RT . These are the velocities we want to estimate and
nullify by correcting the tracker velocities v and ω.

For any incoming event en = {xn, tn}, and defining xn = (xn, yn)T , the instantaneous
velocity on the object at the event location is

vn = vc + ωcon, (1.7)

where on = (−yn, xn)T , the resulting vector in the focal plane of the cross product of
z = (0, 0, 1)T and (xTn , 0)T .

We then define the unit vector normal to that edge as un = (cn, sn)T . Hence, the optical
flow fn = (fnx , fny)T , that is the local velocity projected on un is equal to:

fn = (vTn .un)un. (1.8)

We define the following quantities that will be used to estimate vc and ωc. They are
updated in a similar way as the activity A, as explained in section 1.2.2 :

Σfx
(tn) = Σfx

(tn−1)λn + fnx

Σfy
(tn) = Σfy

(tn−1)λn + fny

Σfω
(tn) = Σfω

(tn−1)λn + fTn .on

(1.9)

and we regroup these terms as well as the contour velocities in two vectors :

Σ ≡


Σfx
Σfy

Σfω

 ,Vc ≡
vcxvcy
ωc

 (1.10)

The following lines provide calculations details, leading to compact form of equation
1.16.

fn =
(
(vc + ωcon).(cn, sn)T

)
(cn, sn)T

=
(
c2
n(vcx − ynωc) + cnsn(vcy + xnωc)
cnsn(vcx − ynωc) + s2

n(vcy + xnωc)

)
fn.on = (vcx − ynωc)(xncnsn − ync2

n)
+ (vcy + xnωc)(xns2

n − yncnsn)

(1.11)

In matrix form, it gives us

fn =
(
c2
n cnsn xncnsn − ync2

n

cnsn s2
n xns

2
n − yncnsn

)
Vc

fn.on =

 xncnsn − ync2
n

xns
2
n − yncnsn

x2
ns

2
n + y2

nc
2
n − 2xnyncnsn


T

.Vc

(1.12)
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We define the matrix M such that:

M ≡

 rcc rcs rxcs − rycc
rcs rss rxss − rycs

rxcs − rycc rxss − rycs rxxss + ryycc − 2rxycs

 , (1.13)

with rαβuv(tn) = rαβuv(tn−1)λn + αnβnunvn, for α, β ∈ {x, y} and u, v ∈ {c, s}.
This matrix holds purely spatial information about the contour, this information being
composed of the events locations xn along with the local contour directions un. From this
definition of M , equation 1.12 can be combined into :(

fn
fn.on

)
= (M(tn)−M(tn−1)λn)Vc. (1.14)

And with definition given in equation 1.10, we obtain:

Σ(tn)−Σ(tn−1)λn = (M(tn)−M(tn−1)λn)Vc
⇔Σ(tn) = M(tn)Vc + λn (Σ(tn−1)−M(tn−1)Vc)

. (1.15)

As Σ(t = 0) = 0 and M(t = 0) = 0, by recurrence, for all tn, we have the main
relation:

Σ = MVc (1.16)

Hence, Vc is calculated by inverting M :

Vc = M−1Σ. (1.17)

Both M and Σ are updated in a purely-event-based fashion. Vc contains the contour
velocities in RT that we want to nullify, as that means a correct tracking of the contour
(illustration by Figure 1.3).

Figure 1.3 Description of the contour velocities vc and ωc estimation. We
update the vector Σ and the matrix M defined in equations 1.10 and 1.13 using
event location xn, its orthogonal vector on, optical flow fn and unit vector
un = fn/||fn||. All those vectors are expressed in RT .
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1.2.5 Normalization for the tracker speed update

The estimated contour velocities Vc can be expressed as the opposites of errors vectors εv
and εω between the tracker velocities v and ω, and the contour velocities vc,Rf

and ωc,Rf
in the local frame Rf : {

−vc = εv ≡ v − vc,Rf
−ωε = εω ≡ ω − ωc,Rf

. (1.18)

We aim for an exponential dampening of that velocity error, leading to a match between
the tracker and the contour velocities:{

∂v
∂t = − εv

τ = vc
τ

∂ω
∂t = − εω

τ = ωc
τ

. (1.19)

Let us define τ the average time interval between two successive events, if n is the average
number of events per second affecting that tracker, then :

n = 1/τ . (1.20)

Finally, we define δvn and δωn the translation and rotation corrections applied to the
tracker for the n-th event: {

δvn = v(tn)− v(tn−1)
δωn = ω(tn)− ω(tn−1)

. (1.21)

On average, tn−1 = tn − τ , thus by differentiating these equations and using equations
1.19, we obtain {

δvn = ∂v
∂t (tn)τ = vcτ

τ

δωn = ∂ω
∂t (tn)τ = ωcτ

τ

. (1.22)

Let us consider now the evolution of the activity A defined in equation 1.4 between t and
t+ δt, with the constraint

τ � δt� τ. (1.23)

This constraint can be achieved, as τ is the average time between two events, and τ is
the time during which the tracker moves of one pixel : during τ , many events will occur,
typically one for each pixel of the observed shape.
The exponential decay of the activity ensures that it reaches a steady state after some
time. We approximate that the evolution of the activity over a restricted duration such as
δt can be written as

A(t+ δt) ' A(t)ρ(δt) + ∆(δt) (1.24)

with ρ being the decay term given by

ρ(δt) = e−
δt
τ with δt� τ giving

ρ(δt) ' (1− δt

τ
)

(1.25)
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and ∆ the sum of unit increases for each event that occurred between t and t+ δt, given
by

∆(δt) =
∑

k,t≤tk≤t+δt
1, with τ � δt giving

' δtn

∆(δt) ' δt

τ

(1.26)

As activity reaches a steady state, we have

A(t) = A(t+ δt)

A(t) ' A(t)(1− δt

τ
) + δt

τ

A(t)δt
τ
' δt

τ

A(t) ' τ

τ

(1.27)

Finally, injecting this result in 1.22, we obtainδvn = vc
A(tn)

δωn = ωc
A(tn)

. (1.28)

This is the speed correction used in our implementation, allowing for smooth speed update
during the convergence process. The activity A acts as a normalization value for all
quantities updated event-by-event in this work.
Figure 1.4 illustrates how the velocities correction mechanism operates under the hood of
a tracker.

a) Aperture metric

The local and incremental approach in this work is prone to the same aperture problem as
the optical flow it relies on. To solve this problem, we introduce a metric that measures the
quality of a tracked structure i.e. if it allows to estimate the correct velocity: a structure
such as a single or a bundle of parallel lines is typically a bad candidate while intersecting
lines or edges with finite curvature are good ones.
For clarity purposes, let us assume two local edges are captured by the tracker (the same
analysis can be extended to n edges) and they are approximated as line segments with
respective direction angles θ1 and θ2. We define ∆θ as the difference of these angles that
we constrain to take value in [0, π2 ] (this does not remove any generality to the problem
since we can always choose the smallest intersecting angle of the two lines for ∆θ). The
edges define a good structure to track if |∆θ| is sufficiently large (i.e. lines less parallel).
According to this hypothesis, the metric we need must be a monotonic function of ∆θ .
Let us express the unit direction vectors of the two line segments in their complex form
eiθ1 and eiθ2 . If we want to constrain the metric function to take value in [0, 1], we
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Figure 1.4 Convergence process of a tracker onto a simple feature. We separated
translation - (a), (b) - and rotation - (c), (d) - for clarity purposes. In practise,
both are resolved in parallel. (a) and (c) : the trackers starts moving as the
features appears. Each event is associated with a local velocity vn in red (cf.
Figure 1.3) and allows to estimate the contour velocities in translation vc and in
rotation ωc in grey. The corrections applied δvn and δωn follow equation 1.28. In
both translation and rotation cases, when the tracker speed matches the contour
velocities - (b) and (d) - , the contour appears immobile in the tracker reference
frame.

can increase the vectors arguments by a factor of 2. Let r1 and r2 be these new unit
vectors:

r1 = ei2θ1 and r2 = ei2θ2 . (1.29)

Assuming θ2 ≥ θ1, we define the two quantities: θ = θ1 + θ2 and ∆θ = θ2 − θ1. Then the
averaged resultant of the two vectors is:

µ = ei(θ−∆θ) + ei(θ+∆θ)

2 = eiθ(e−i∆θ + ei∆θ)
2

= cos (∆θ)eiθ.
(1.30)

From here, we can see that we can build the metric function based on the cosine in the
amplitude of µ. It is monotonic for ∆θ ∈ [0, π/2], decreasing from 1 to 0. Thus, if the
tracker captures two parallel edges, ∆θ = 0 and the function is maximum and if the two
edges are orthogonal, ∆θ = π

2 and the function reaches its minimum of 0.

To build the metric function which will also be updated for each incoming event assigned
to a tracker, we proceed as follows:
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• from the set En defined in section 1.2.3, build the offset vector δxk = xk − xk and
increase its direction angle by 2 to produce δ̃xk.

These vectors are averaged over En into a vector giving the principal orientation of
the local edge:

rn = 1
N

∑
k∈En

δ̃xk, (1.31)

• then we compute the temporal decaying sum of the normalized vectors rn and divide
it by the tracker activity A(tn):M(t) = M(tn−1)λn + rn

||rn||
µ(tn) = M(tn)

A(tn)
. (1.32)

The chosen metric is then ||µ(t)|| which takes value in [0, 1].

Structures subject to aperture ambiguities is filtered out by setting a threshold on ||µ|| as
good candidates to track yield small metric values.

b) Tracker Stabilization

Trackers are by default initialized with a null velocity. As events are registered, a tracker’s
motion parameters (velocity and position) are updated continuously, leading to a rapid
convergence time. However, this continuous update might still report non null velocity
errors and leaves us uncertain about the steady state of the trackers. We implement an
additional estimator to lift this uncertainty based on the averaged norm of xn − xk, as
used in computing the optical flow in 1.6. As the tracking converges, the flow norm should
converge to 0. We then build the ν function as follows:N(tn) = N(tn−1)λn + ||xn − xk||

ν(tn) = N(tn)
A(tn)

(1.33)

A threshold is set on ν (experimentally fixed to 0.5 pixel) below which we can state that a
tracker has been stabilized. This value can be changed, but is not critical, as experiments
have shown that as long as we stay within this order of magnitude, the described estimator
is able to discriminate between a stabilization running and a converged state.

1.2.6 Time constant definition
So far, the mechanism of a tracker is built around the decay mechanism allowing it to
be updated upon reception of an event and giving the tracker the ability to self-adjust
to the scene dynamic. This decaying property is summarized by the time constant τ in
the exponential function, hence the estimation of τ is one (if not the most), of the most
important tasks to achieve.
To estimate τ from the events, we are first considering the average squared velocity of
points over the tracker area:

||vn||2 = ||v||2 + 2ωv.on + ω2||on||2, (1.34)
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where the averaged terms < on > and < ||on||2 > are updated according to the mecha-
nism: 

O(tn) = O(tn−1)λn + on
Rsq(tn) = Rsq(tn−1)λn + ||on||2

on = O(tn)
An

||on||2 = Rsq(tn)
An

(1.35)

Finally, we can define τ as
τ(tn) = 1√

||vn||2
(1.36)

1.2.7 Spatial descriptor and tracker lock
For the entire tracking process, a rolling set of events is maintained from the events
affecting the tracker. At time t, we only keep events that appeared between t − Nτ(t)
and t. Events from set En are extracted from this spatial descriptor, stored as a 2×m
matrix.

d =



xT1
...
xTk
...
xTm


(1.37)

This local descriptor is calculated in a continuous space i.e. the coordinates are real
values instead of integers. This allows for a much smoother spatial representation of the
object, often enhancing its visual appearance from the raw events, and can thus be used in
following algorithms based on that tracking, such as feature matching, tracking recovery
or object recognition.

a) Locking the feature

As the spatial descriptor so far is a rolling set, even with a tracker that has converged
onto a trackable feature, a drift can still occur. To avoid that, we can lock the tracker.
With the tracker T going into the locked status at time tl, we lock that spatial descriptor,
and the new events are compared to the events stored in d at time tl. This shape is
then the reference shape, and the tracking process can remain stable for much longer
times.

b) Disengaging the feature

One of the challenges of the approach is caused by sudden deceleration of tracked objects.
As less events are produced during a deceleration the correction processes must be robust
to rapid changes in dynamics. The solution lays in monitoring the activity A of the locked
tracker. The idea being that below a certain threshold, one must disengage the tracker.
We roll back its position X and angle θ to the last known values where a viable optical
flow has been computed, and stop updating the position relative to the speed as described
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in 1.1. At the same time, we decay the speed itself, as only a rapid deceleration can induce
such a behaviour :

v(tn) = v(tn−1)λn (1.38)

In most cases, this process provides sufficient time for the object to move again on
the focal plane, and the tracking to resume, once the activity A is above a predefined
threshold.

1.2.8 Illustration case

Figure 1.5 Evolution of the main variables during the tracker convergence on
a corner in translation, described in detail in section 1.2.8. Top graphs shows
the velocity variable v of the tracker, the estimated contour velocity vc w.r.t the
tracker, and the updates for each event δvn. For clarity purposes, we use the
norm for each of these variables. The second graph shows the evolution of the
activity A, the aperture metric µ = ||µ|| and the convergence metric ν. Square
pictures show the spatio-temporal context of the scene, while green circles contain
the projected events, i.e the events from the tracker perspective. Key moments
are highlighted with timestamps t1 to t5.

The main parameters of a tracker are highlighted in a practical case displayed in Figure
1.5. This real-data example shows a square moving in a pure translation movement at
a constant speed of about 1000px.s−1. We show the temporal evolution of the six main
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parameters of a tracker. First, the norms of the tracker velocity ||v||, the norm of the
contour velocity w.r.t the tracker ||vc|| and the norm of the velocity variations for each
event ||δvn||. In a second graph are shown the activity A, the aperture metric µ = ||µ||
and the convergence metric ν.
The sequence is broken into five key moments, each reflecting a different important phase
of the process. At t = t1, no event have occurred in the tracker region of interest (ROI)
since its initialization. All tracker’s parameters are either null or undefined, and the
tracker is still. For t = t2, the convergence process starts after the activity reaches a
predefined threshold. The tracker then starts to cancel out any contour velocity. This
results in a increase of the convergence metric µ. The aperture metric already shows that
the structure captured by the tracker is a straight line, as it reaches a value close to 1. For
clarity purposes, we deactivated the mechanism to reject tracking based on the aperture
metric.
At t = t3, the tracker reaches a steady state. All values remain almost constant, the tracker
knows it has converged (ν is low) but the aperture issue remains. Only the orthogonal
component of the velocity is known to be reliable, and the tracker is free to move along
that line1. During this phase, the contour velocity vc - and thus the correction applied
δvn - are almost null.
Around t = t4, a corner appears within the tracker ROI. Immediately, the aperture metric
drops. The other corner edge feeds new velocity information to the tracker, resulting in
an increase of the contour velocity vc as well as the convergence metric ν. The tracker
compensates this velocity to cancel out this remaining velocity. One can notice a small
increase of the activity. This is due to an increase of the number of events assigned to the
tracker when the corner appears, while the velocity - and thus the time constant- does not
immediately change.
Finally, at t = t5, once the correction has been applied, the tracker speed matches the
corner speed, and the features appears immobile from the tracker perspective (in the
tracker reference system RT ). Both the aperture and the convergence metrics are below
their predefined threshold, and the shape is locked as described in section 1.2.7.a. This
increases even more the stability of the tracking. As the tracker velocity increases, its time
constant τ lowers, slightly lowering the activity, and improving the time response of the
whole system to match the scene dynamics.
The tracker has been intentionally initialized far from its target feature resulting in a
100ms convergence time. When trackers were initialized closer to the target for the very
same example, the convergence time was on average less than 10ms.

1.2.9 Algorithms

The method presented so far is implemented as summarized by the algorithm detailed
in this section. We can decompose the tracking into three blocks. All tracker variables
previously described are now indexed by i:

1In most cases, the tracker has a null velocity component in the direction of the line. In our case, this
induces a negative velocity along the y axis, and the tracker will move towards the bottom of the focal
plane
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Algorithm 1 Main Algorithm
Require: NT trackers initialized in the focal plane.
1: for each en = {Xn, tn} do
2: for Tracker Ti, i ∈ [1, NT ] do
3: Update Ti according to algorithm 2
4: if ||Xn −Xi|| < R then
5: Compute xn according to eq. 1.2
6: Compute velocity error according algorithm 3

Algorithm 2 Update for each event
Require: Tracker Ti, event en = {Xn, tn}.
1: Compute time elapsed since last event ∆tn
2: Update tracker position :
3: Xi(tn)←Xi(tn−1) + (tn − tn−1)vi(tn−1)
4: θi(tn)← θi(tn−1) + (tn − tn−1)ωi(tn−1).
5: if Xi is out of screen then
6: Reset tracker Ti
7: Ti ← Idle
8: return
9: Compute Exponential decay:

10: λi(tn)← exp
(
− tn−tn−1
τi(tn−1)

)
11: Update tracker monitoring variables with λi(tn):
12: Ai(tn)← λi(tn)Ai(tn−1).
13: if Ai(tn) < Areset then
14: Reset tracker Ti
15: Ti ← Idle
16: return
17: else if Ai(tn) < Adisengage then
18: Ti ← Disengaged
19: Reset position and angle to last valid values
20: else if Ti = Disengaged & Ai(tn) ≥ Adisengage then
21: Ti ← Locked

We define for each tracker a set of important states that are used in the implementation2.
Those states are:

• Idle: a tracker is considered Idle as long as the amount of events assigned to the tracker is
under the experimentally predefined threshold.

• Stabilizing: it is considered Stabilized when computation is being performed but the conver-
gence estimator is still too high. This means that the tracker still needs time to catch up
with the target feature.

2The algorithm implementation is accessible on https://github.com/neuromorphic-paris/
eb-tracker/.

https://github.com/neuromorphic-paris/eb-tracker/
https://github.com/neuromorphic-paris/eb-tracker/
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Algorithm 3 Update for events affecting the tracker
Require: Tracker Ti, event en = {Xn, tn}.
1: Ai(tn)← Ai(tn−1) + 1
2: if Ti = Idle & Ai(tn) > AStart then
3: Ti ← Stabilizing
4: Compute local flow, cf equation 1.6
5: Update dynamical estimator, cf equations 1.9 to 1.13
6: Compute contour velocity, cf equation 1.17
7: Compute speed correction, cf equation 1.28
8: Update aperture estimator, cf equation 1.32
9: Update convergence estimator, cf equation 1.33
10: Update tracker state, cf Figure 1.6
11: Update time constant, cf equation 1.36

• Converged: a tracker has Converged once it has stabilized and matched the target feature.
• Locked: this state maintains the tracker on tracking a structure for which the algorithm

detects no aperture problem i.e. it is valid only when Aperture_issue is "false".
• Aperture_issue: a tracker has Aperture_issue="true" if it detects an aperture problem from

the aperture metric. This status prevents the tracker from being Locked to the target even
if it is in a Converged state.

• Disengaged: A tracker has disengaged="true" when it is in a locked state but its activity is
too low. The position is no longer updated using the speed, and the speed is decayed, until
new events appear again.

Those states are shown in Figure 1.6, with their corresponding relations and the parameters
required to update those states.
Table 1.1 shows the experimentally predefined values for each state threshold that were used in all
experiments. Note that some of these values may depend linearly on the radius R of the tracker.
This radius must especially be changed accordingly to the sensor resolution.

Name Value Proportional to R
R 10 Yes
Astart 40 Yes
Adisengage 10 Yes
Areset 4 Yes
κaperture 0.55 No
κconv 0.6 No

Table 1.1 Experimental values for the hyperparameters presented. Most of them
are either constant across all experiment, or scale linearly with the radius R.

At this stage, the proposed algorithm is able to track structures that are not restricted to corners
or simple edges and can be somehow complex as shows the sample given by Figure 1.7. These
features were extracted during a run of our algorithm on a recording of a city environment. This
unconstrained structure selection allows to have a wide range of of features that are crucial to
higher level tasks.
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True Idle

Ai < Areset ? Ai > Astart ?

True

Stabilizing

νi < κconv ?

True False

Converged

νi < κconv ?

True

µ < κaperture ?

True

Locked

Ai < Adisengage ?

True True False

Disengaged

Ai < Adisengage ?

Figure 1.6 Relations between the different features’ states. We show here the
key conditions for the evolution of a tracker, from its initialization in an Idle
state to its reset. Conditions leaving the tracker state unchanged are not shown
here for clarity purposes.

1.3 Experiments and performances evaluation

We compare the algorithm performances to the state-of-the-art. As shown in section 1.2, the
tracking and detection mechanisms are interlaced such that features emerge in an online manner.
This is a purposely designed property because users do not have to assume complex priors
on the features to track. We tested the algorithm on sequences generated by the event-based
camera simulator, alongside with the provided dataset, acquired by event-based sensors in natural
environments [88]. To assess the algorithm performances, the provided frames are used and a
classical frame-based tracking algorithm is initialized when a tracker is locked. The same dataset
provides ground-truth from an Inertial Measurement Unit (IMU), allowing us to assess directly
the camera’s ego-motion inferred from the trackers estimated velocities. The data is acquired
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using a DAVIS 240C, with a resolution of 240× 180 pixels [57]. Preliminary tests have also been
performed with a 640× 480 VGA ATIS [89]. Similar results have been found using both sensors
relying on the same experimental set of parameters. The algorithm is bench-marked using a python
implementation. We initialized 63 trackers dispatched on a 9 × 7 grid, with 25 pixels diameter
ROI.

1.3.1 Comparison with Frame-based tracking
When frames are available, we can can compare the event-based tracker with a frame-based
algorithm. For this purpose, we have used the frame-based Channel and Spatial Reliability
Tracking (CSRT), an OpenCV implementation of [90] as the baseline. Each event-based tracker, on
locking, is compared to a CSRT tracker initialized at the corresponding location on the temporally
closest frame. We compare the two trackings in stages where the event-based tracker is in locked
status.
The CSRT results are visually checked for the entire duration of the benchmark. Event if the CSRT
is considered as one of the state-of-the-art frame-based tracking algorithm, it does occasionally
fail. In order to have the most accurate benchmark assessment for the proposed algorithm, we
manually removed the failing CSRT trackers scenarios although the presented event-based tracker
has been performing correctly.
For certain highly textured scenes the frame-based tracker was also unable to provide any ground-
truth data due to excessive displacement between two consecutive frames and also because of
motion blur. However, this method allowed to automatize the benchmark and to avoid a manual
labeling of considered scenes.

1.3.2 Benchmark with the Event Camera Simulator
We used data generated with the Event Camera Simulator [88] for which the ground-truth can
be inferred from a known camera motion and scene depth. Simple movements mixing translation
and axial rotation have been simulated, along with the corresponding frames. For each tracker
locked, we determine the 3D location of the object and re-project its location on the focal plane.
We generated two sequences. The first one uses the shapes poster from the Event-Camera dataset,
while the second one uses the texture of a book cover. The event-based and frame=based algorithms
use similar window sizes: a 25px ROI for both the event-based method and the CSRT trackers.
The trackers accuracy and life-span are reported in Table 1.2.

Sequence Valid Tracks Asserted Error (px.) Asserted Lifespan (s)
this method CSRT this method CSRT this method CSRT

shapes (short) 93.0% 76.3% 1.40 2.29 1.06 1.06
shapes (long) 89.9% 92.8% 1.36 1.90 1.57 1.71
book (short) 92.6% 60.1% 1.28 2.02 0.68 0.60
book (long) 91.5% 81.4% 1.05 2.52 1.02 1.09

Table 1.2 Comparison between the frame-based tracking and the event-based
tracker using simulated data. CSRT trackers are removed once the event-based
tracker has lost the target due to the disappearance of the target from the scene.

1.3.3 Benchmark on event camera dataset
The performance comparison is now applied the same sequences of the dataset that were reported
in previous work in [56]. Since no ground-truth is available, the CSRT trackers were used as a
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ground-truth for comparison. We report in Table 1.3 the results obtained for six sequences. A
track is considered valid if its mean error to the ground-truth is less than 5 pixels. We also display
the resulting mean error of those valid tracks and their average lifespan. Most of the scene’s
objects come in and out of the field of view of the camera, tracker that go out of the focal plane
are considered lost. This explains the average lifespan of the tracker trackers. Re-entry strategy
are beyond the scope of the paper as they imply storing previously seen trackers. Results show
lifespans of several seconds with accurate tracking.

Stream Duration Valid Tracks Error [px] Lifespan
shapes_rotation 30s 71.9% 1.90 0.60s

shapes_translation 30s 93.7% 1.66 0.84s
shapes_6dof 30s 86.8% 1.90 0.61s

poster_rotation 11s 69.1% 1.85 0.69s
poster_translation 14s 68.1% 2.12 0.88s

poster_6dof 20s 62.1% 2.23 0.49s

Table 1.3 Results on GT comparison with CSRT trackers in OpenCV library.

1.3.4 Panoramic reconstruction
Using a set of trackers we will now compute a panoramic reconstruction of an outdoors scene using
a recorded sequence of 6.6s. Each green rectangle represents a tracker used for that reconstruction.
We display on that panoramic view the most representative set of trackers that were locked and
used for that reconstructions (blue dots) with some of them highlighted in colored circles for clarity
purposes, and shown in more details below the panoramic view.

This selection shows the wide variety of features the trackers can lock on. Below those features are
displayed the average reconstruction error ε and the duration ∆t during which the tracker stayed
locked on its feature. We notice that the longer duration of tracking reported concerned mainly
highly ”complex” features. The top right feature is displayed here to show the limitation of the
algorithm under textured and noised recordings : the trackers can sometimes lock onto ill-defined
shapes, resulting in poor tracking duration. However, in these cases, the convergence estimator
previously described and the tracker activity monitoring are able to cancel this tracker, noticing
that it does not “behave" as it should.

For this online robust reconstruction, we used 471 trackers, with an average tracking time of 0.62s,
and an average reconstruction error of 3.3 pixels considering all trackers. For the non outliers the
median standard deviation of the reconstruction error is 0.72 pixels. This means that 72.7% of the
trackers that were selected could successfully track features with an error of less than 1 pixels. Of
those 471 trackers, 27.3% outliers reached the reconstruction error threshold of 20 pixels. In most
of the cases, this was due to "blurred" straight lines that can sometimes report no aperture issue
when small rapid saccadic motions occur.

1.3.5 Comparison with groundtruth with IMU data
The Event-Camera Dataset [88] provides IMU and camera pose data, serving as ground-truth
measurements. This information is particularly relevant for the 3 degree of fx§reedom ego-motion
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A

B

C

Figure 1.7 A Panorama reconstruction of a natural outdoors scene using a
hand-held event-based camera (shown in A using a conventional frame-camera
for clarity purposes). In B, the constructed panorama from events emphasizing a
subset of the features used for clarity. Some highlighted features are represented
with colored circles to show the diversity of what can be tracked (shown in C)
with their average reconstruction error ε and the duration ∆t during which a
tracker stayed locked on its feature. Green squares shown in B, show some of the
focal plane locations used to construct the panorama.

of the camera. Assuming M = [X,Y, Z]T , m = [x, y, z]T being a 3D point and its projection into
the focal plane in the camera coordinate frame, the instantaneous velocities are given by:{

Ṁ = ω ×M + t,
ṁ = d( fZM)

dt = f
ZṀ − Ż

Zm
(1.39)

where ω and t are respectively the angular and the linear velocities of the camera. Since the
velocity in the z axis of m is null, this is equivalent to:
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This flow is related to the optical flow calculated in the focal plane via the upper left 2×2 submatrix
k, taken from the intrinsic matrix of the camera:

k−1
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v̇

)
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(
ẋ
ẏ

)
. (1.41)
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Equation 1.40 can be solved for ω knowing only the calibration parameters and if the linear
translation in the ego-motion is null. We are focusing on that particular case because to solve
for the complete 3D velocity, one needs to provide a set of M and their projection m and this
is not available in the Event-based Camera Dataset. We show the estimated ego-motion results
for the sequence shapes_rotation in Figure 1.8. The axis have been normalized, assessing for
x and y rotations a geometric constant of 220 pixels.rad−1. For the z-axis, the normalization
constant found was 0.98, showing the good match between this ego-motion computation and the
ground-truth provided.

Figure 1.8 Comparison of tracking results for shapes_rotation camera’s esti-
mated angular velocity. Trackers velocities are averaged to extract the position
and speed of an initially centered point, assuming the objects on the scene are
static and only the camera moves. Red lines: Gyroscopic data from the IMU
provided with the DAVIS dataset [88]. Blue lines: Estimated rotational speed for
each axis of the gyroscope. Green lines: Error between the reconstructed rotation
and the IMU ground-truth. Top graph: Vertical rotation of the camera, producing
an horizontal speed of the objects. Mean error : 0.04rad/s. Center graph: Hori-
zontal rotation of the camera, producing a vertical speed of the objects. Mean
error : 0.005rad/s. Bottom graph: Rotation of the camera along the optical axis.
Mean error : 0.01rad/s. Top images: Snapshots from the corresponding scenes,
with a restricted sample of the tracked features and their respective velocities
orientations.
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1.3.6 Trackers stability and latency
By design, the tracker time constant τ is auto-adjusted during the tracking w.r.t. the scene dynamics
and it is the only parameter that needs explicit initialization as the inverse of a minimal speed,
experimentally chosen as about 5 pixels.s−1. The inertial behavior of a tracker is implemented to
ensure a smooth and a robust to noise tracking mechanism. A tracker loses its targets because it
is getting out of the camera’s field of view, rather than because of drifts caused by a non robust
tracking approach.

The compromise to the tracker stability is the delay caused by the inertia. This is a non desired
effect for a low latency vision sensor or for any vision sensor’s in general. However, the velocity based
tracking algorithm we introduce has an interesting property that we can observe experimentally:
on average, a tracker converges to the correct location within an radius of 20 to 30 pixels, when a
structure enters the receptive field of the tracker.

This typical constant offset for the tracker to converge is an important asset as the time to
convergence is a decreasing function of the speed i.e. the faster the apparent motion, the faster the
tracker converges, hence the lower the latency of the algorithm.

1.4 Conclusion
This work introduced an event-based method to select and track simultaneously local spatial
structures from a stream of events output form an event-based camera in real-time. The presented
method relies on a velocity based tracking approach to converges towards selected features from
which the true velocity can be estimated. More important, it is designed to be resilient to the
aperture problem. The algorithm is also designed in a way to reduce the number of parameters to
be set by users: mainly a decay coefficient that represents a dimensionless inertia parameter. The
method is expected to work even better for higher spatial resolutions, as higher spatial resolution
combined with the current sub-millisecond temporal precision implies that velocity can be estimated
more accurately.

The method is showing robustness in a wide range of conditions. It can detect and track a large
variety of spatial structures at different velocities. Tracking benchmarks have shown that it is
accurate while being updated event by event, at the native rate driven by the scene thus allowing
to reduce resources requirements. This has been made possible by estimating reliable velocities for
each tracked feature. Most importantly, using several projection velocities for initialization allowed
to have very little dependency on the tuning parameters.

From a larger perspective, this paper introduces a new canonical general scheme for computation
using event-based cameras that allows for an independence from motion direction and velocity
changes. The introduction of a simultaneous use of space and precise timing information brought
by each incoming event with a combined regularization scheme using the local activities of events
proved to be efficient for local computations. The same scheme can be applied to a wide variety of
problems where the same approach could be applied efficiently.





Chapter 2

Stereo Matching and Visual Ego Ki-
netics

2.1 Introduction
In this chapter, we propose to tackle the odometry problem from a totally new perspective which
focuses on recovering the event-based vision sensors’ "ego-kinetic" as the physical quantities directly
estimated are relative to the sensors velocities. We are motivated by an approach where the
processing is inducing little latency w.r.t. to the fast perception of the event-based sensors. The
stereo vision is chosen to provide instantaneous depth estimation as opposed to monocular visual
odometry where the sensor has to move significantly before depth can be reliably estimated. This
approach therefor also encompasses the monocular sensing used to solve the same problem at a
longer time scale. In the case of a stereo configuration, depth is instantaneously estimated, ensuring
a minimal latency in the processing pipeline by building encoding with time-surfaces different level
of abstraction in visual information.
To maintain a low latency processing pipeline, we are relying on a hierarchical structure of
computation blocks. Three different block, presented independently, respectively compute the
optical flow, objects depth from stereo-matching and ego-kinetics. The later makes use of the two
first block extracted data, however other depth estimation or optical flow methods could be used
as inputs. However, the fully event-based formulation of each of those block allows to gain access
to each component with a low latency, reduced computational cost, while achieving state-of-the-art
results.

The optical flow computation presented in this chapter performs the gradient of a time surface,
formulated in a fully event-based fashion. Gradient operations are thus minimized, and a second
step is added after data retrieval for outliers removal. This ensure both a low-latency process,
along with strong robustness to data noise.

Depth estimation from event-based stereo data is the preferred approach as it provide instantaneous
depth information. Its only requirement is a prior geometrical calibration of each sensor and their
precise synchronization. From the calibration, an epipolar rectification is also applied so each
row of pixels in a sensor is coinciding with an epipolar line. The core idea in depth estimation
from event-based stereo is not fundamentally different from classical vision stereo. It is a two step
problem: first the matching of events along the epipolar lines follows by the depth estimation from
the stereo matched pair disparities. This is also equivalent to the triangulation operation if the

35
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focal length of the lens used in the sensor is known. The main difference in event-based stereo
techniques is the absence of luminance information. The matching support has to be built in order
to use spatial and temporal consistencies to match two events. To bypass the absence of image, we
build epipolar time-surfaces as it is explained in section 2.2.2.

Up to our knowledge, there is in the literature no reported work on direct instantaneous velocity
estimation from passive vision sensors. Event-based vision sensors, with their microsecond latency,
are however the perfect devices to allow such a task. This has been shown in several works from the
field of event-based vision sensor, to recover sensor’s rotational motions. In short, the rotational
motion estimation consists in estimating the angular velocity. These works originally aimed to
generate panoramic view from the events [91, 92] while in [93], it is a preliminary step toward a
contrast maximization framework to produce motion blur free event-images.
This work is the first of his kind in focusing on the direct and instantaneous estimation of the
sensor’s velocity which encompasses both translation and angular velocities. Therefore, instead of
referring to ego-motion estimation, we are rather estimating sensor’s ego-kinematic. We describe
as such our approach as an Ego-Kinetics Estimation (EKE).
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2.2 Method
The strategy to maintain low latency all along the processing is to rely the an extensive use of
Time-surfaces for an event-by-event processing strategy. To reach this objective, we develop a
modular architecture based on independent building blocks that process events as input and then
output also event with a higher level of abstraction. For example, the optical flow building block
takes a raw event from a sensor as input and output the corresponding 2D velocity vector. The
same goes for stereo-matching block that however requires events from both vision sensors and that
outputs for each of them a depth event. The last standalone block is the EKE and is at this point
of processing specific to each sensor. It requires flow and depth events to estimate the sensor’s
velocity event. Fig.2.1 provides an illustration summarizing the event-based end-to-end processing
pipeline.

Sensor 1

Events

Events

Optical Flow

Sensor 2

Optical Flow

Stereo Matching

Ego-Kinetics

Ego-Kinetics

Stereo Ego-Kinetics Pipeline

Figure 2.1 Overview of the entire pipeline described in this work. Each block
is a standalone computation block, detailed and experimented on. The EKE
block requires an amplitude-precise optical flow, as well as 3D data of the scene.
Each block in developed in a true event-based manner, using the full potential of
neuromorphic sensors.

2.2.1 Gradient-Based Optical flow
The optical flow block is a key component in the velocity estimation as the measured flow is the
direct projection of the sensor’s velocity into the focal plane. A low latency event-based optical flow
algorithm is required. Therefore, plane fitting techniques such as [52] are favored. Aperture robust
variant such as [66] could be the ideal choice if it was not adding latency with the multi-scale
approach to correct the estimated flow.
As shown in [52], the plane fitting technique is equivalent in estimating the gradient of the
time-surface T, that stores at location (xn, yn) the time tn of occurrence of the event en:

T : N2 → R
(xn, yn)T 7→ T (xn, yn) = tn

. (2.1)

The optical flow for each event is obtained by the inversion of the norm of the gradient given by
the fitted plane parameters. As the minimization scheme used in the plane fitting does not have a
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outlier rejection mechanism, we propose an improved event-based optical flow computation based
on a direct computation of the gradient of T , followed by a non linear outlier rejection mechanism
to remove spurious events. Incoming sections provide details on the algorithm and results from
experiments will show the performance of the flow compared to the plane fitting algorithm.

a) Time and Gradient Maps

As we are intensively relying on the use of the concept of time-surfaces, the gradient of T is
computed with a locale finite difference approach of T , at each event en and results are stored into
two matrices ∆Tx:

∆Tx(xn − 1, yn) = tn − T (xn − 1, yn)
∆Tx(xn, yn) = T (xn + 1, yn)− tn

(2.2)

and ∆Ty:

∆Ty(xn, yn − 1) = tn − T (xn, yn − 1)
∆Ty(xn, yn) = T (xn, yn + 1)− tn.

(2.3)

We also used build two intermediary matrices to accelerate the locale data update and retrieval.
Tx to store the neighbors’ times in the x-axis:

Tx(xn − 1, yn) = T (xn − 1, yn)
Tx(xn, yn) = T (xn + 1, yn),

(2.4)

and Ty, the neighbors’ times in the y-axis:

Ty(xn, yn − 1) = T (xn, yn − 1)
Ty(xn, yn) = T (xn, yn + 1).

(2.5)

This allows to build a complete representation of the temporal gradient on both axes, and to
achieve gradient computation only once for each event.

b) Outliers suppression

From the previously defined "time-surfaces" ∆Tx, and ∆Ty, we have a coarse event-based optical
flow. In this section, we add to the pipeline an outlier removal mechanism to improve the flow
estimation.
Let us define the parameters R and τ for the size of the spatio-temporal neighborhood centered at
the current event en. We define the set Sx such as:

Sx(n) =

∆Tx(x, y),

∣∣∣∣∣∣
|x− xn| ≤ R,
|y − yn| ≤ R and
tn ≥ Tx(x, y) ≥ tn − τ

 , (2.6)

and from Sx(n), let us define δ̃x(n) as its median value. Any element δk ∈ Sx(n) is discarded if it
satisfies:

|δk − δ̃x(n)| > ρ

√√√√ N∑
k=1

(δk − δ̃x(n))2, (2.7)

where N = card(Sx(n)). This outlier suppression is iterated with the recomputation of δ̃x(n) and
N , until no element in Sx(n) satisfies eq.2.7.
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We proceed in a similar way for the y-axis to get δ̃y. Finally, the optical flow at (xn, yn) is given
by:

fn =
(

δ̃x(n)
δ̃x(n)2+δ̃y(n)2 ,

δ̃y(n)
δ̃x(n)2+δ̃y(n)2

)T
(2.8)

Data Extraction Outliers RemovalGradient Maps

Optical Flow

Events

Figure 2.2 Overview of the optical flow pipeline used within this work. The
gradient maps, detailed in Section 2.2.1.a, allows to store the necessary data, and
perform the time differentiation computation only once.

The standalone optical flow block is summed up in Figure 2.2, with the three main steps described
in this section. A standalone benchmark of this optical flow method is reported in section 2.3.1,
comparing it to the more traditional plane fitting method.

2.2.2 Event-based Stereo Matching
The stereo matching requires as input, the synchronized streams of events from the two sensors and
outputs the depth estimation for each of them. It is the only part of the pipeline where the two
streams are dependant. Once the depth is known, each sensor can again be handled independently
and the depth information is fed into the EKE block at the same rate as the optical flow block. This
is ensured again by maintaining a time-surface that updates and stores the estimated depth (when
it can be) for each event. In this section, we are building several form of epipolar time-surfaces
with each of them storing different information needed for the stereo matching task.

a) Epipolar Time Map

The epipolar time-surface serves the same purpose as a generic time-surface which is to keep a
short history of the depth/disparity information inferred from the stereo sensor system that reflects
the scene dynamics. It assumes the epipolar-rectified hypothesis of the sensors and each new event
en is updating the neighbors locations at column xn, from row yn − Ry to yn + Ry. Ry is the
radius for which an event is considered to have a impact to its neighbors.
More formally, we first define

In =
{

(x, y)
∣∣∣∣ x = xn
|y − yn| ≤ Ry

}
, (2.9)

the set of pixels within the neighborhood of (xn, yn), mentioned previously. This set can be
visualized in Figure 2.3, highlighted in green.
A time-surface storing at the neighbor pixels defined by In, the time tn is updated to provide an
easy to access event history. The update of this time-surface is 1 is defined as:

∀(x, y) ∈ In,MT (x, y, n) = tn, (2.10)

1All other values remain unchanged
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Figure 2.3 (a) : Given an event en, the set In defined in eq. 2.9 collects all
pixel of interest to build the local time-surface necessary to build the spatio-
temporal descriptor time-surfaces for each sensor. (b) Row vector spatio-temporal
descriptors centered around (xn, yn), XA,n and X̂A,n. Rows are coinciding with
epipolar lines due to rectified sensors.

A decay function λ is designed to favor the temporally close neighbors over too old ones at location
(xn, yn), at time tn (corresponding to an event en), according to:

∀(x, y) ∈ In,
λ(x, y, tn) = exp

(
− tn−MT (x,y)

τ

) (2.11)

for all (x, y) such that x = xn and |y − yn| ≤ Ry. The factor τ should reflect the scene dynamic,
but with no prior from the scene, it is set to some empirical value. This decay rate’s purpose
is to maintain the scene dynamic in the three other intermediate maps we used for the depth
computation. These maps are explained in the next subsections.

b) Activity map

The activity surface is the function defined as:

∀(x, y) ∈ In,
MA,n(x, y) = λ(x, y, tn).MA,n−1(x, y) + 1, (2.12)
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and A0 is initialized to zero at time t=0. Again, all pixels (x, y) ∈ In of MA,n are updated. That
activity map has a double purpose. It first serves as support for spatial descriptors of the scene
as it counts the number of events affecting each pixel w.r.t the definition in equation 2.9. It also
serves as a normalization factor for the other maps defined further. Given any map MX,n used in
this work, we define its normalization by MA,n as:

M̄X,n(x, y) = MX,n(x, y)
MA,n(x, y) (2.13)

c) Spatial distribution maps

These maps provide a local spatial "description" around each event at (xn, yn). To this end, a
spatial neighborhood is integrated into the map MS,n, with the following update rule:

∀(x, y) ∈ In,
MS,n(x, y) = λ(x, y, tn).MS,n−1(x, y) + (yn − y), (2.14)

for all i such that |yn− yi| ≤ Ry, where Ry is a constant chosen empirically. There is no constraint
on the x-axis i.e. all event above the row yn are taken into account.

The second map integrates the spatial distribution variance, also weighted by the decay function
λ:

∀(x, y) ∈ In,
Mσ,n(x, y) = λ(x, y, tn).Mσ,n−1(x, y) + y2

n − M̄S,n(x, y)2 (2.15)

These maps are updated continuously via the decaying function λ that maintains the temporal
dynamic of the scene. The Fig.2.4 shows an example of the three maps generated and updated
event-y-event for the MVSEC Indoor_flying sequence.
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Figure 2.4 The spatio-temporal maps are updated for each event, describing
different scene spatial information.
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d) A 1-D spatio-temporal descriptor for stereo-matching

For an event en, the activity map and the spatial distribution maps defined above are used to
extract vectors of length 2×Rx + 1, on row yn and centered at xn:

XA,n =

MA,n(xn −Rx, yn)
. . .

MA,n(xn +Rx, yn)


XS,n =

M̄S,n(xn −Rx, yn)
. . .

M̄S,n(xn +Rx, yn)



Xσ,n =

M̄σ,n(xn −Rx, yn)
. . .

M̄σ,n(xn +Rx, yn)


(2.16)

As the sensors are assumed to be rectified, those vectors extracted from row of pixels form a
1-D descriptor that are used for the stereo matching procedure. Let us assume that we have two
vectors X1 and X2 of the same nature or modality, from sensor 1 and sensor 2. Their similarity is
measured with the cosine similarity:

C(X1,X2) = X1TX2

||X1||.||X2||
. (2.17)

For the three modalities we are computing the following cosine similarities:

sA = C(X1
A,X

2
A)

sS = 1+C(X1
S ,X

2
S)

2
Sσ = C(X1

σ,X
2
σ),

(2.18)

which gives the global similarity score s = sA × sS × sσ. sS is slightly different as Sn can be
negative. We re-centered and re-scaled it into the interval [0, 1].

The spatial dependence for each similarity is omitted for readability reason, however each vector
X1,X2, ... are computed at locations of events to be compared. Fig.2.4 shows a sample of the
A,S and σ maps at some time t for the indoor_flying sequence of the MVSEC dataset and the
1-D descriptor resulting from the X_ vectors.

e) Key points selection

The stereo-matching leads straightforwardly to the depth estimation, however it does not starts as
soon as the first event arrive, but rather we have implemented a "key-points" selection operation.
This consists in creating candidates for matching when events occur at locations where the activity
map An is above a threshold tha. This operation ensures that events to match are less likely
to be triggered by noise. This key-points selection is performed for both sensors. To avoid
over-selection/detection, events that are not from a local maximum of the activity map are not
considered as key-points.

The matching procedure for events at key-points location is working as follows: if an event en
occurs at the first sensor, the candidates to test in the second sensor are events that occurs close
to the key-points position on the corresponding epipolar line. The best match is the first event,
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hence closer in time, leading to a high enough similarity score s. At this stage, a disparity map D,
of the same size of the sensors, is updated to store the estimated disparity at pixel (xn, yn):

Dn : N2 → N
(xn, yn) 7→ Dn(xn, yn) = xn − xi,

(2.19)

where (xi, yi), with |yn − yi| < Ry, is the position of the matched location in the second cam-
era.

f) Disparity propagation

Matching events with the key-points is the first step for building the disparity maps (one for
each sensor). To densify the disparity maps, we propagate the disparity information around these
key-points to match events located at non key-points locations. This propagation is reasonable as
even for the event-based sensors, depth information should continuous (e.g. along edges). The
disparity propagation is achieved as follows :

• for an event en of sensor 1, gather from its disparity map D, all available disparities di
within a radius of 1 from (xn, yn). This form the N = {di},

• build the 1-D descriptors at (xn + di, yn) for di ∈ N with the maps of sensor 2,

• Calculate the similarity scores s as defined in section 2.2.2.d at pixel (xn, yn) and pixels
(xn + di, yn),

• Select disparity dn at xn, yn, defined by dn = xn − xi and maximizing s,

• Store disparity Dn(xn, yn) = dn.

g) Winner-take-all filtering

The last step for the disparity computation is a local winner-take-all, to increase even further the
stability of the system. Over a spatio-temporal patch of radius R and time-window τ around pixel
(xn, yn), we retrieve and count the unique disparities values stored in Dn.

Sn =

Dn(x, y),
|x− x̃n| ≤ R
|y − ỹn| ≤ R
MT,n(x, y) ≥ tn − τ

 (2.20)

As the physical 3D object is continuous, the disparity associated will be continuous, and even
locally constant in most cases. Thus, we propagate a disparity dn that is the most occurring
disparity within the set Sn. The benefits found with this method greatly overweight the issues it
may pose in edge cases, such as obstructions.
Figure 2.5 sums up the entire stereo-matching pipeline as described in this section. Additionally, a
study of this standalone block is reported in section 2.3.2, using an indoor controlled scene, with a
known ground-truth to assess its precision.

2.2.3 Kinematic from depth map and optical flow
The third and final block we present is an event-based kinematic estimator. Contrary to the two
previous block, it relies also on optical flow and disparity values related to the incoming event. As
such, in this section, we assume that this additional data is known for the event en.
In the scenario of a static scene within which the stereo-rig is moving, the apparent motion is
translated into optical flow in each sensor into the focal plane. Let us assume that a 3D point
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Figure 2.5 Detailed pipeline of the stereo-matching algorithm.

M = (X,Y, Z)T moving w.r.t. the sensors and m = (X ′, Y ′, Z ′)T , its projection into a sensor’s
focal plane, then their respective velocities are defined as:

Ṁ = ω ×M + t
ṁ = f

Z Ṁ− Ż
Zm

, (2.21)

where ω and t are respectively the angular and translation velocities, and f is the sensor’s focal
length. The real expected optical flow ṽ is related to ṁ via the 2 × 2 sub-matrix K, extracted
from the two first rows and columns of the sensor’s intrinsic matrix:

ṽ = K

(
Ẋ ′

Ẏ ′

)
= K

(
−X

′Y ′

f
f2+X′2

f −Y ′ f
Z 0 X′

Z

− f
2+Y ′2
f

X′Y ′

f X ′ 0 f
Z −Y

′

Z

)
︸ ︷︷ ︸

P

Ω
(2.22)

where Ω =
(
ωX ωY ωZ tX tY tZ

)T .
It is more a common practice to estimate the optical flow from 3D structures using eq.2.22. If
we are providing the left-hand side of the equation and the 3D map of the scene, we can recover
sensor’s velocities ω and t from the same equation if enough independent equations are provided
i.e. since each pair of (M, ṁ) provides two independent scalar equations and we have six unknowns
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to estimate, thus at least three 3D points and their optical flow are required. Each point should
thus satisfy

ṽi = PiΩ (2.23)

Up to estimation errors, ṽi should coincide with the optical flow vi estimated from the independently
computed optical flow map. There is no prior requirement on the optical flow technique to use,
however, to preserve the event-based representation, it is natural to favor techniques like [66]. We
can solve eq.2.23 for Ω with an event-based form of the least square minimization of the cost
function :

E(tn) =
∑
i≤n

wi(tn)||ṽi − vi||2

=
∑
i≤n

wi(tn)||PiΩ− vi||2
(2.24)

where wi(tn) = e−
tn−ti
τ . E is minimized when its gradient w.r.t. Ω vanishes i.e. when:∑

i≤n

wi(tn)PTi (PiΩ− vi) = 0

⇔
∑
i≤n

wi(tn)PTi Pi︸ ︷︷ ︸
A(tn)

Ω =
∑
i≤n

wi(tn)PTi vi︸ ︷︷ ︸
Σ(tn)

(2.25)

hence Ω is given by inverting the 6× 6 matrix A(tn):

Ω(tn) = A−1(tn)Σ(tn). (2.26)

All optical flow estimation techniques suffer to some extend from the aperture problem due of
the finite field of view of the sensor. Because of that, the normal (to the contour) component of
the flow is generally the most, if not the only, reliable information that can be estimated. Thus,
without excluding any event-based optical flow estimation technique found in the literature, we
assume to use only that normal component of the flow to recover the real velocity of the sensor.
To this end, let us define ni, the unit normal to the contours that can be built from the events
and the normal flow f̃i as:

f̃i ≡ nTi ṽi

= nTi PiΩ
(2.27)

By substituting the theoretical optical flow vi with its normal component fi, eq. 2.24 restricted to
its normal component becomes:

E(tn) =
∑
i≤n

wi(tn)
(
f̃i − fi

)2
, (2.28)

which is least-square minimized if:∑
i≤n

wi(tn)PTi nin
T
i Pi︸ ︷︷ ︸

A(tn)

Ω =
∑
i≤n

wi(tn)fiPTi ni︸ ︷︷ ︸
Σ(tn)

(2.29)

As Pi is a 2 × 6 matrix, PTi ninTi Pi is not full rank. A more accurate optical flow will provide
more constraints to solve for Ω with the same amount of data. Since events are sequential, the
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minimization process converges faster if we are not restricting to the normal flow. However, we
focus on eq. 2.28 to ensure that whatever the flow estimation technique is used upstream, assuming
the normal component is accurate enough, the pose can be estimated.

The proposed approach differs from works found in literature where they focus on sensor’s poses
estimation. As we are dealing with event-based camera, we have mainly access to the first order
information from the scene. As such, our approach aims to estimate the "ego-kinematics" rather
than the traditional ego-motion of the sensor. The core steps of this method are schematized in
Figure 2.6.

Dynamical Vector 
Update

Ego-Kinetics  
Computation

Spatial Matrix  
Update

Ego-Kinetics

Events

Optical 
Flow

Depth

Figure 2.6 The ego-kinetics computation consists in three steps. The two first
are updates of the spatial matrix A and the dynamical vector Σ, using the optical
flow fn and the depth Dn associated with an event en. The last step is the
rotation and translation velocities estimation, given by Ω.

Experiments on this process are shown in section 2.3.3, using the previously described blocks a
primary inputs.

2.2.4 Maps life-time and and inter-maps latencies
All the maps are built from dynamic inputs and updated in an continuous manner. The persistence
of information in each map is handled by an exponential function λ, where the decay rate τ is
representing the life-span of the information. How to let the processing pipeline to estimate and
regulate itself this decay rate is a key problem to this work as this will impact all the processing
chain performances. As chained maps are integrating higher and higher level information, the
life-span of the meaningful information at a given time is defined differently. For each map, the
assumed decay rate at the beginning is provided by the previous maps that is is directly fed from:
for example, life time of a new piece of information for the flow is given by the raw events themselves,
while for the kinematic estimation map, the decay rate is inferred from the result output by the flow.

At the lowest level of the event data, we define the decay rate τ as a function of a density parameter
d, the ratio of pixels that have emitted an event. It is straightforward to see that for a fixed d,
τ increases if the scene apparent motion is slow and decreases if it is fast. This is a crude first
estimation of events life-time. In practice the auto-regulation of τ is local and computed as

τ = τ0
log 1

1−1/An
log 1

1−1/(dS)
, (2.30)
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where An is the activity function introduced by eq.2.12, τ0 is a default decay parameter and S is
the area in pixels of the sensor.

From the optical flow maps, the decay rate is getting more precise and is locally related to the
computed flow. If fn is the flow map, then τ = τf = 1

||fn|| .

In our case of study, the higher level map is the one estimating the kinematic and τ = τk = 1
||v|| ,

where v is the velocity vector output by last building block of our pipeline.

This decay rate is at first hand fixed as a global value and applied to each map. However, it is
reasonable to assume that each maps has it own decay rate and the decay rates from one lower level
map to a higher one are likely related. We are investigating such relationship in order to define a
simple parametrization of each map. A deeper analysis of timescale importance in event-based
computation will be presented in the first part of the last chapter. This first analysis was the basis
of this work, as it highlighted the importance of well-defined timescales, and how valuable dynamic
ones can be to the performance of our algorithms. Results concerning this specific parameter will
be given in the following sections.

2.3 Experiments

2.3.1 Optical Flow benchmark
We report in this first experimental section results on the optical flow. To assess its validity, we
compare it to the more traditional plan fitting method[52], known to be reliable in optical flow
orientation. To that end, we use a simple, controlled sequence of a translating square, moving at a
constant speed of 1000px/s, and recorded with a Q-VGA neuromorphic sensor of Prophesee. We
build the ground-truth by recording the corners location, and computing the theoretical optical
flow for each side of the square, taking into account the aperture issue induced. The scene is shown
in Figure 2.7.

Both methods share a similar set of parameters : a spatial neighbourhood radius R, a maximum
temporal depth τ , and a minumum number of events used Nmin. thus, we set the same values for
those parameters, to ensure a proper comparison is made. We use the endpoint norm, and the
orientation error, to compare both methods. The results are given in Table 2.1.

We observe that under the same constraints, the gradient-based optical flow produces more flows
datapoints then the plane fitting method and the estimate vectors are more accurate in amplitude
while slightly worse in orientation. As we have developed in section 2.2.3, the more accurate the
flow amplitude f̃i, the better the camera’s velocity estimation since the cost function in eq. 1.19 is
to be minimized w.r.t. f̃i.

2.3.2 Stereo Matching Benchmark
The second block, described in Section 2.2.2, is evaluated with a controlled indoor scene, for
which the ground-truth is know. We place two planar objects, distant of respectively 1.15m and
2.50m from the stereo rig center. The scene is recorded with a pair of DAVIS 346 sensors from
IniLabs. Those sensors are calibrated and rectified, such that at any given time, the relation between
depth and disparity can be computed. A spatio-temporal view of this scene is given in Figure 2.8(a).
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Figure 2.7 Spatio-temporal context of the translating square used for the optical
flow method benchmark. Optical flow samples are added, color-coded with the
norm of the endpoint error. (a): Our gradient flow method, with an average
endpoint error of 56.2px/s. (a): The traditional plan fitting flow method, with
an average endpoint error of 83.9px/s. The corners have been purposely removed
from the comparison, as the plan fitting method cannot properly describe the
optical flow in such cases.

Plan Fitting Gradient Flow
# Flows produced 1608 1719

Avg. Endpoint Error ε 83.9px/s 56.2px/s
σepsilon 65.2px/s 36.0px/s

Avg. Relative ε 11.8% 7.9%
Endpoint Error σepsilon 8.9% 4.9%

Avg. Angular Error ε 0.52◦ 0.57◦
σepsilon 1.01◦ 2.44◦

Table 2.1 Comparison results between the groundtruth optical flow, and two
optical flow method. We report the number of optical flow produced, as each
method has its own rejection rules, as well as errors and standard deviations for
the endpoint error (px/s), the endpoint error relative to the expected norm (%)
and the angular error (deg).

We build the ground-truth and compare it with the outcome of our stereo-matching algorithm.
Those results can be visualized in Figure 2.8(b). The 3D errors are reported in Table 2.2. We
notice that 98% show errors of less than 5cm, assessing for the quality of the matching on this
scene.

2.3.3 Ego-kinetics evaluation
We built the complex system made of two event-based stereo streams as schematized in fig 2.1.
We daisy-chained parallel low level feature maps to create higher and higher level building blocks
such as event-based disparity maps in a asynchronous and time-continuous manner. This provides
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Figure 2.8 Results of the stereo-matching block on an indoor controlled scene.
(a): Spatio-temporal context of the scene. We distinguish, two successive planes,
with different drawings allowing for a large diversity of shapes to be matched.
(b): Visual result of the matching algorithm. We observe two well-defined plans,
with little disparity error. We only consider the ground-truth of the two planes,
as these we the only points the distance could be accurately defined.

Maximum Error Ratio of Points Matched
1cm 97.5%
5cm 98.0%
10cm 99.6%

Table 2.2 Ratio of points found relative to the error to the ground-truth.

a continuous monitoring of the scene depth and it feeds 3D information to the cameras kinematic
block that, once combined with the optical flow maps, allows for direct estimation of cameras’
velocities according to section 2.2.3.
The evaluation of the pipeline is achieved with three sequences of event-based data: the ESIM
sequence is a synthetic data generated from an event camera simulator; the Doll and Walking
sequences are real scenes acquired by us with a synchronized stereo-rig.
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a) ESIM simulator

The simulator is used to provide a quick preliminary assessment of the algorithm behavior. The
scenario is simple with the stereo-rig being rotated about the optical axis of the left camera, facing
a plane with geometric shapes. The kinematic estimation is applied to the left camera as shown in
Figure 2.9:

Figure 2.9 Velocities estimation on a sequence simulated on ESIM. The ground-
truth - in dashed -, shows a constant angular velocity about the z-axis, of
−0.3rad/s and a negligible y-translation of 2.10−2m.s−1.

The sharp increase of the velocity happens at the beginning of the motion as the processing chain
requires delay to achieve correct estimate. Table 2.3 is summarizing the estimation errors for
three scales of decay rate deduced from the flow map. The larger the scale, the slower the system
converge into the correct solution. The best results are obtained in this case for the shortest decay
rate of τ .

εωx εωy εωz εvx εvy εvz
τ 2.09 6.52 3.90 9.26 2.83 4.55

4τ 12.85 8.52 3.86 12.17 18.52 3.18
10τ 3.38 10.21 3.80 14.74 5.25 2.77
τ0 9.03 6.72 4.16 9.34 13.38 4.79

Table 2.3 Root mean square errors for each component of the velocities. The
three first rows show the estimation errors obtained from the adaptive decay rate
strategy for different scale of τ inferred from the flow maps. Last row shows the
result obtained with a global and fixed decay rate tau0. Errors are expressed
either in 10−2rad.s−1 for angular velocity, and 10−2m.s−1 for translation velocity.
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b) Doll sequence

The sequence is an indoor scene where the stereo-rig is recording while manually moved in front of
a static wooden doll put on a table. The embedded IMU is providing the angular velocity and
translation acceleration measurements that serve as ground-truth to assess the estimation accuracy.
As we do not have the translation velocity, we are only providing evaluation for the angular velocity.
The impact of setting a global and fixed decay constant or an adaptive decay constant is also
outlined by the left and right column respectively. The global decay constant is chosen according
to an experimental prior, while the adaptive decay is driven by the decay deduced from lower level
maps. Figure 2.10(a-b) show the angular velocities overlaid with the imu measurements serving as
ground truth and Table 2.4 is summarizing the velocity estimation performances for three scale of
the adaptive decay constant and for the fixed and global decay constant. Errors are decreasing as
the decay increases and at ten times the initial τ , the mean errors are comparable to the globally
set decay constant τ0 = 80ms.
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Figure 2.10 (a) Angular velocities estimation on the Doll sequence with constant
timescale τ = 80ms. (b) Angular estimation for the same sequence with an
adaptive timescale.

τ 4τ 10τ τ0
εx(%) 14.56 12.46 11.04 10.35
εy(%) 14.91 13.86 12.41 12.49
εz(%) 18.13 16.85 17.98 20.47

Table 2.4 Relative (to the swing of the ground-truth signal for each axis) angular
velocity errors for 3 adaptive decay constant scaled w.r.t. the τ , calculated from
the lower level maps and for a experimentaly global decay constant τ0.
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c) Walking sequences

These sequences tested for the ego kinematics estimation are sequences of 4.5s and 86.3s long in
duration. They are referred to as walk_a and walk_b respectively. walk_a is acquired indoor,
while walk_b is a sequence acquired indoor and outdoor. Both are evaluated for the angular
velocity, as no ground-truth was available for the translation part of the sensors kinetics. Figure 2.11
reports those rotation velocities comparisons, and the match between the ground-truth and the
recovered motion. Images of those scenes are displayed in Figure 2.12, showing events and depth
visualization of indoor and outdoor sections.

walk_a walk_b
Duration 4.5s 86.3s

mean angular velocity error 0.285 0.298
mean εx (rad/sec) 0.093 0.115
mean εy (rad/sec) 0.188 0.182
mean εz (rad/sec) 0.144 0.149

Global angular error 0.82rad 8.3rad

Table 2.5 Angular velocity errors for two hand-held sequences, in indoor and
outdoor environments. We present the rotation speed error in norm and for each
axis of the sensor. We compute the rotation as the integration over time of the
velocity error. If not specified otherwise, the values are expressed in rad.s−1.

Figure 2.11 Comparison of the recovered rotation velocity by our algorithm
with the ground-truth values given by the sensors’ IMU. Detailed statistics about
those sequences are reported in Table 2.5. Left : Walking sequence (a) of 4.5s in
an indoor environment. Right : 86.3s long sequence (b) with indoor and outdoor
sections.

We can however have a coarse estimation of the translation component from the known displacement
in the scene. This measurements are made at the beginning and the end of the sequence, giving us
the overall motion that occurred. In both cases, the distances in indoor environment have shown
good coherence, and estimated speeds are matching, in order of magnitude, the walking pace
at which the recordings have been done. Those results are shown in Table 2.6. The translation
velocity for walk_b failed for an acceptable comparison after the 8m meters of the sequence. We
hypothesized that outdoor scene flow’s spanned a little range of disparity. Hence while angular
velocity can be fairly estimated, the translation part cannot be.
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Sequence (a) (b)
Estimated Distance 2.45m 8.1m
Measured Distance 3m 8m
Average Speed 2.4km.h−1 3.6km.h−1

Table 2.6 Comparison for the displacement and average speed for the two
recorded scenes. The accuracy in estimated distance shows that 3D displacements
can be inferred from optical flow and depth.

Figure 2.12 Snapshots of the indoor-only sequence (a) (left), and mixed sequence
(b) with indoor (center) and outdoor (right) sections. We show reconstructed
frames from events (top row) and depth visualization (bottom row).

2.4 Conclusion
The three described algorithms, respectively on optical flow, depth estimation from disparity and
ego-kinetics estimation make full use of the event-based paradigm. By computing asynchronously
the data from any type of neuromorphic retina, they show with little prior on the data how low
latency can be achieve, with little computational cost. Indeed, none of this three method had to
rely on large optimization processes, working on assembled sets of events. The use of dynamical
timescales, detailed in section 4.2, allows to discard even more parameters for ours model, while
keeping versatile abilities.

The algorithms were benchmarked on scenes of different natures, with similar results, showing
excellent quality for both the optical flow and the stereo-matching, and an encouraging trend
for the ego-kinetics estimation. However, as previously stated, the limitations of ground-truth
recordings made some of these benchmarks limited, and more in-depth work is necessary the push
the model to its limits, while assessing its validity in more diverse situations.
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Binocular visual odometry

3.1 Introduction
The goal of this thesis was to tackle the problem of visual odometry, while implementing fully
event-based methods. Previous chapter focused on building a multi-maps from low to higher level
abstraction of visual information. This hierarchical approach aims to maintain a low latency and
time-continuous processing of the events by chaining optical flow to 3D depth information and
finally to the velocity estimation for a stereo-rig. These are, as we announced in the previous
chapters, the building blocks aimed to solved visual odometry problem from a global first order
approach, and ultimately to solve the Simultaneous Localization And Mapping (SLAM) problem.
It is the ability for a system to recover its location while simultaneously reconstructing a 3D
representation of its environment. Both processes occur in parallel, in a closed-loop format. It is
thus extremely challenging, as a local failure of one of those two processes generates self-amplified
errors over time.
It is today considered the grail of robotics, as it is a primal need for a robot to interact with its
surroundings. However, most methods that can be found in the literature use multiple sensors apart
from visual input : LIDARs for depth estimation, IMUs to estimate kinetic information, and use
extensive computations to fuse all those inputs in order to recover a visual odometry. If [94] proposes
a solution without IMU measurement, this solution induces a computationally-heavy RANSAC
process to estimate equivalent inertial measurements. The overall computation times for each step -
about 100ms are strong hints that low latency can only be achieved by changing the paradigm used.

Figure 3.1 Windows 95 maze screensaver view. With nothing more than the
visual input of a single screen, a human can accurately estimate its position
within the maze. This guided us to try to develop a visual odometry algorithm
with no additional data than the visual inputs of a stereo rig.

A simple thought experiment tells us that nothing more than a single visual sensor is needed
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for this purpose. Let us take a seemingly insignificant example to demonstrate that. In August
1995, Microsoft released its latest operating system, and in this Windows 95 OS was included a
screensaver that became iconic. It represented a 3D view of the insides of a maze, being travelled
randomly, with the graphics quality available at the time.
This screensaver, however basic, is a good hint that the pose of a system can be recovered
only from visual input, given the correct rules of data continuity. If this assertion has been
shown valid throughout SLAM development in recent years [95], this simple example can talk to
everybody. It encourages us to research how we naturally process visual inputs to solve this problem.

We have to acknowledge from the start that human visual processing involves much higher visual
abstraction, for example analyzing macroscopic structures such as walls, paths, . . . that simple
visual processing can only process as shapes. The associated constraints, such as walls being solid
objects that hide objects behind, or having most objects lying on the ground, are many clues that
help us processing this scene, and that cannot easily be replicated with simple heuristics. Those
clues allow humans to understand the former maze, while only monocular vision is available. More
complex scenes, involving unusual environments, can make it much more difficult for humans to
locate themselves, as everyday landmarks are missing, and those clues are missing.

Yet, those clues are not an absolute necessity for visual odometry. By using depth information
thanks to binocular systems, the scene can be much more easily abstracted into a 3D map. This
greatly reduces the computational load required to recover visual odometry, with little to no priors
about scene, and a much lower latency.

One of the challenges in standard monocular visual odometry is the addition of new 3D points,
mandatory to the motion estimation. 3D structures can be reliably triangulated only if the stereo
basis is sufficiently large i.e. the displacement of the camera is sufficiently large between the two
instants. This naturally requires additional time, therefore the global latency of the processing
pipeline increases. Since our objective is to keep the latency minimal, the use of a stereo vision
sensor is necessary as it provides instantaneous 3D measurements according to the method presented
in Chapter 2. With that in mind, this chapter presents an event-based solution for visual odometry,
using a binocular vision system. It is directly streamlined with Chapters 1 and 2, as it feeds on the
direct results of both building blocks. The idea, once again, was to use a continuous, event-based
inertial system, to estimate the pose, formalized here as a mechanical problem.
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3.2 Proposed method

3.2.1 Pose Estimator

a) From solution optimization to continuous mechanical solving

Batch optimization processes are widely used, robust methods, that present unique and theoretically
optimal solutions to often complex problems. By aggregating data over time, it is possible to
infer the optimal solution to a highly non linear problem, often at the cost of latency and energy
consumption. It was only natural for computer scientists and robotics engineers to use this type of
algorithm for visual odometry. Moreover, GPUs usage optimizes this type of computation, making
online visual odometry or SLAM possible. However, as we have already shown many times, this
optimization paradigm hardly fits the neuromorphic realm. Events are elementary bits of data,
and the only solution to apply these methods is to aggregate them into spatio-temporal volumes.
It often is done by generating frames, and doing what has already being done with conventional
cameras. It implies losing the benefits from both neuromorphic and conventional sensors, and thus
seems doomed to underperform.

From a physics point of view, the error minimized in those processes can be seen as energy. In our
case, the link between the problem to solve - i.e the pose of a visual system - and the data itself is
straightforward. The cameras are a physical system, on which constraints are applied : continuous
speed and position, rigidity between both cameras of the stereo rig, and continuity of the observed
scene. Thus, instead of finding the minimum-energy state by doing batch optimization, we propose
to develop an equivalent virtual system reproducing the constraints dictated by visual inputs. The
gradient descent processes that would be performed on the energy hypersurface is thus translated
into a virtual model, on which we apply forces and torque on an event-by-event basis. Using such
a system has many advantages, among which a continuity of the solution, the simplicity of the
implementation, but also the small cost for each update, resulting in lower expected latency. But
this kind of solver is also a consequence of the nature of events themselves.

b) Events as infinitesimal time steps

A dynamical physics emulator is driven by a continuous loop, allowing constraints to act upon the
simulated system as time goes on. A critical setting for such a dynamical system is the simulation
time step or time discretization value δt. That value has to be small compared to any time constant
related to the simulated physics in the engine, for non linear phenomenons to be accurately
simulated through approximated series. However, setting this value too low implies a large amount
of needless computations to be performed, making the solver slow and under-efficient. Methods
exist to estimate that value δt during runtime, however those can sometimes be computationally
costly [96].

In our case, the data fed to this solver is triggered by changes, and as a consequence is naturally
bounded to the dynamics of the system. In case of an almost still stereo-rig, few events are produced,
and the time between two events is large. In such a case, a simulation would not require a small time
step to accurately simulate the ongoing motion. Oppositely, in case of a fast moving object, more
steps per time unit are needed to recreate the conditions of the simulation. We hypothesize that
the time between two successive events is ideal as the time step for such a dynamical approach to
visual odometry. We thus chose to use those events as discretization time steps for our mechanical
solver, whose characteristics we will develop in the following sections.
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3.2.2 Physical solver model
We describe in this section the model used in our solver. Preliminary results will be presented in
section 3.3. We use the previous works, described in Chapters 1 and 2, as primary visual inputs.
Other visual inputs should be used in a more advanced work, especially trying to add loop closure
or keypoints recognition. However, we focus here only on the pose estimation of the system, and
decided to rely on the only data we were able to produce through fully event-based methods
developed and detailed in the corresponding chapters.

We assume a number of sensors S, rigidly linked to the rig R. We also define the location and
orientation vectors of each sensor S as:

• XS is the 3D location of sensor, relative to its starting point.

• θS is the axis-angle representation of the sensor rotation.

Both are defined relative to a frame initialized when data first arrives to the system. We denote
their respective time derivatives ẊS , θ̇S and accelerations ẌS and θ̈S . Notice that we don’t
specify the sensor here. In the later development, the equations are applied for any of the sensors of
the visual system. The rig R motion parameters are updated, by summing the different constraints
later developed, taking into account the offset of each sensor w.r.t the rig center. Also, all time
dependencies will be omitted to alleviate the notation load. If need be, a vector can be specifically
defined in the static world reference frame W or in a sensor S frame.

3.2.3 Viscous fluid environment
As seen in Chapter 2, a purely stereoscopic visual input already allows for a precise, event-by-
event ego-kinetics estimation. This data processing can be stable enough to be integrated over,
giving a good estimate of the location of the camera over several seconds-long sequences, with
no additional data. Thus, we use this information as one primary input source for our virtual solver.

To incorporate this velocity estimate, we emulate a viscous fluid environment in which is embed-
ded our simulated stereo-rig. This environment velocity is set through this previously estimated
ego-kinetics, and acts upon our virtual model. It can thus impact the general trend of the sensor’s ve-
locity, while not forcing both systems velocities to match. The benefits of using a viscous dampening
are numerous. First of all, using such a dampening allows for a first order correction of the velocity.
This automatically averages the visual ego-kinetics estimate, canceling out noise, while reaching the
desired velocity over a controlled time scale. Second, a viscous interaction between the stereo-rig
and the surrounding environment dissipates energy. That is a main issue with this kind of solver, as
energy input from mechanical constraints can make the system diverge if not dissipated fast enough.

Let us define ṽS - respectively ω̃S - the sensor velocities from an external estimator, like the one
developed in Chapter 2.

The translation constraint FS and rotation constraint ΓS generated by fluid friction on sensor S
is then

FS = µ (ṽS − vS)
ΓS = ν (ω̃S − ωS) (3.1)
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with µ and ν two dampening constants whose values will be estimated later in section 3.2.6. In
case of multiple sensors, we average those constraints, for the system to use a maximum amount of
data while keeping constraints amplitudes independent of the number of sensors involved.

3.2.4 Trackers and depth as stabilization data
The second visual input are trackers, used to stabilize the estimated location in space. Indeed,
using only the velocity with the viscous model as described before would lead in the best case
scenario to valid visual odometry delayed in time, but most likely in a continuously increasing drift
of the virtual rig pose, as error in velocity gets integrated over time. In other methods, this type
of visual input is often referred to as keypoints, as they describe important parts of the scene that
the algorithms refers to in order to recover the pose of the system. Those keypoints are also often
used for loop closure, as one can hope to match them and confirm the location of the system after
some time. However, this later part has been left aside, and we only focus on the local tracking of
those points.
More information can be used, apart from on-screen trackers. Working with binocular visual input
allows to recover depth information. By coupling it to tracking information, those keypoints can
be estimated as points in 3D space, rather than lines of sight.

a) Springs binding trackers to stereo rig model

The question then becomes how to emulate those constraints to accurately reproduce this tracker
reprojection and estimated depth error. Such errors can be represented by a spring, in which case
the least squared error is mathematically equivalent to finding the minimum-energy state of the
spring. Such springs models have already been used in event-based processing, with a similar
philosophy [97].
Most bundle-adjustment algorithms minimize a reprojection error, which is a two-dimensional
constraint. It means that only the line of sight is considered, for the current projected point of
a 3D object to match the expected 2D point on-screen location. This can be seen as a rotation
spring, generating a torque aligning two intersecting lines. However, several drawbacks appear
from this initial approach.
First of all, this technique does not take depth into account. It means that less data is used by
the solver, inducing a waste of information. Also, such a torque would be very efficient for the
rotational component, but very inefficient for the translation component of the pose we want
to recover. If the translation component is expected to be harder to find - rotation-only pose
estimators are easier to implement, and more efficient in computation speed - this central torque
model makes it even harder. Thus, we have to create a keypoints constraint model which takes
depth into account, and can act directly on all motion parameters.

Let us assume each sensor S presents a set of trackers T ∈ TS , that can appear or disappear over
time. Each tracker is described by a set of coordinates on the sensor focal plane (xT , yT ), and an
estimated depth of the tracked object DT . Again, we omit the time notation, as we focus first on
the instantaneous physical parameters of the keypoints and their effects on the system.

b) Keypoint initialization

With (x, y) being a screen location and D a depth, we define H the transformation from the triplet
(x, y,D) to the 3D location X.

H : R2 × R+ → R3

(x, y,D) 7→X = H(x, y,D)
(3.2)
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Figure 3.2 Visualization of a keypoint initialization from a tracker T . The
tracker is started at location (xT,0, yT,0) and with an estimated depth DT,0. It is
mapped to a 3D location XT,0 with H. Those keypoints will be used to stabilize
motion estimation in space.

Let us assume a tracker being initialized at location (xT,0, yT,0), and the depth DT,0 at this location
given through a prior algorithm, such as the one described in section 2.2.2. This initializes a
keypoint in space the stereo-rig will refer to, at location XT,0 = H(xT,0, yT,0, DT,0). We assume
that all objects in the scene remain still during sensors motion. Thus all keypoints XT,0 are static
in frame W. This initialization can be visualized in Figure 3.2.

c) Trackers constraint principle

Now that keypoints have been initialized, we use them as stabilization anchors for our system,
through simulated springs links. Let us first focus on a single keypoint constraint. Like previously,
we note XT the estimated location of a tracked point in space. We define PT the orthogonal
projection of the initial keypoint XT,0 on the line of sight of sensor S going through XT . All
corrections created by one tracker will rest in the plane formed by the three points XT , PT and
XT,0, which can be visualized in Figure 3.3.

From these points, we define δ⊥ the projection distance, and δ� the distance between PT and
XT :

δ⊥ ≡ ||PT −XT,0||
δ�≡ ||PT −XT ||

(3.3)

We also define u⊥ the orthogonal projection unit vector, and u� the unit vector for this line of
sight:

u⊥ ≡
XT,0 − PT

δ⊥

u�≡
PT −XT

δ�

(3.4)
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Figure 3.3 Visualization of the anchors’ 3D points XT , PT and XT,0, along
with the two correction contribution from this particular keypoints FT,⊥ and
FT,�

Each tracker T will generate two different forces FT,⊥ and FT,�, with directions u⊥ and u�, and
application points PT and XT respectively. Their general expression is given by:

F ≡ κδu (3.5)

κ being the constant of the spring, which value will be discussed in section 3.2.6. Distinguishing
those two contributions has two advantages. The first one is that both contributions have different
origins. FT,⊥ will be mostly impacted by the reprojection error onto the focal plane, while FT,�
will increase with the estimated object’s depth error. As such, we can set different repel constants
for each contribution, and the trust the system can place in the respective input values. Also, in
many cases, tracking an object and estimating its depth are two different processes our system
relies on. It is reasonable to assume that, for the same keypoint, one can perform well while the
other fails. This separation allows to have only partial contributions to some extent. For example
it is possible to rely purely on the reprojection error if the depth estimation fails. In this case,
we keep only the orthogonal contribution FT,⊥, by locally setting κ� = 0. The transformation H
must be modified accordingly, to produce only the line of sight u�, which does not need the depth
to be recovered.
We note that as long as the repel force is linear and repel constants are the same, the two orthogonal
springs are mathematically equivalent to a single spring joining points XT and XT,0.

d) Springs force expression

The usual expression for a physical spring given in equation 3.5 have already been used in related
works [98]. The force grows linearly with length, and the spring stores a quadratic-form potential
energy.

f(δ) = κδ

E(δ) = 1
2κδ

2 (3.6)
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κ being the repel constant of the spring.

In our case, using a standard spring force expression could be harmful to the system stability,
when we consider tracking or depth estimation outliers. As explained in the beginning of this
chapter, the goal is to stay as much as possible in the minimum-energy state, for visual odometry
to remain correct. As no conventional optimization is performed on the system, getting out of the
global energy minimum could result in getting stuck in a local one. This would result in wrong
results, an unpredictable behaviour and a probably unrecoverable situation.

As usual spring energy expression is not bounded, each tracker can theoretically feed an infinite
amount of energy to the system. Removing an obviously failing tracker can be done, resulting in a
large variation of the energy of the system, but also of the forces applied. The later the removal of
an outlier, the greater the resulting variations.

To counter that, we implement a trust factor for each tracker, that we define as w(δ) = e−δ
2/L2 .

To picture its impact, let us consider a spring force implementing this trust factor as such:

f(δ) = κδe−δ
2/L2 (3.7)

While we keep the spring constant κ, we add a parameter L which is the standard deviation
allowed for keypoints. This deviation L is a distance in 3D units, and thus can be physically
understood. It expresses the typical length over which a keypoint validity can be doubted, and
thus should reach its maximum energy state. The continuous and differentiable properties of this
expression allows for smooth and continuous forces on the system, helping to maintain its stability.
The comparison of the force and energy for the standard and modified spring expression can be
visualized in Figure 3.4.

Figure 3.4 Comparison of forces (left) and energies (right) for two springs repel
forces expressions. The standard one - in blue - in unbounded in energy, and thus
can lead to system instability. The proposed one - in orange - adds an exponential
dampening, which constrains the energy to a certain range.

With the proposed force expression 3.7, the potential energy for each spring is then given by

E(δ) = 1
2κL

2
(

1− e−δ
2/L2

)
(3.8)
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bounding the potential energy to the range [0, κL2/2]1. Notice that while δ << L, the forces have
similar behaviour, and most of the properties of springs dynamics remain valid2. However, when
δ >> L, the force becomes null. This implies that the failing keypoint can be removed, resulting in
restricted potential energy reduction and force variation. This allows adding or removing trackers
in an online fashion while leaving the system in a stable state.
Another advantage of using separate orthogonal and parallel contributions in this case is that the
trust factor we implement can apply differently to a keypoint for reprojection and depth errors.
The two contributions trusts are gauged separately, inducing a maximum data usage at all times.
In this case, the two separate springs are not equivalent anymore to a single spring joining points
XT and XT,0 like before.

As L describes a real-world distance, it is reasonable to set a similar value for both perpendicular
and parallel forces described above, keeping the number of parameters low. It is set manually,
depending on the estimated allowed 3D error for each point.

e) System Equivalent Constraint

With the model described so far, the natural idea to aggregate these contributions FT for each
tracker is to sum them all. If the sum force can be done as such, a torque can be extracted by
using the corresponding application points XT and XT,0. However, this leads to unexpected,
or even counter-intuitive behaviour of the system. Indeed, let us imagine two systems R1 and
R2, each perfectly solved with respectively N1 > N2 trackers, feeding noiseless information to
our solvers. Summing the contributions would lead to system 1 converging faster than system
2, even though both receive perfect information to solve the pose. The resulting amplitude of
keypoints contributions have to be independent of the tracker number, as that number should
improve correction quality, and not constraints amplitudes.

Thus, we need to average those contributions, and find the optimal correction that best fits the
information we are given. However, simply averaging those contributions and applying them to the
rig also hardly makes sense. Examples can be handmade where the average force - which creates
translation - is null, while a translation is needed. Inversely, zero torque and non-zero average
force can be extracted when the necessary displacement is purely rotational. We picture such cases
in Figure 3.5, in 2D cases for clarity. We describe in this section the solution implemented to
properly aggregate those contributions into a system equivalent constraint applied to the stereo rig,
using the trust factor described in the previous section.

Let us describe the rig - i.e the physical rigid body holding 1 or more sensors - and the lines of sight
carrying all application points XT and PT as an entire, locally rigid body3. Thus, all keypoints
contributions FT are constraints applied onto a single rigid body. This means that any point X
of our rigid body perceives equivalent translation constraint F (X) and rotation constraint Γ(X)
such that:

1We set a null potential energy for an infinitely small spring.
2The motion of an oscillator with this repel force expression is not a perfect sine wave anymore.

However, the system remains oscillatory, and an equivalent frequency can be extracted from numerical
simulations. For extreme amplitudes of δ0 = L, a 45% frequency change is observed. The order of
magnitude of frequencies in oscillatory regimes stays the same with this modified repel force expression
compared to a standard harmonic oscillator.

3Lines of sight change over time as trackers move on screen. However, at any time t, those line of sight
can be perceived as infinitely rigid links, fixed w.r.t the rig.
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Figure 3.5 Examples where averaging individual keypoints contributions lead
to wrong corrections. The current estimated pose is pictured in black, while the
theoretical pose is in green. They are voluntarily oversimplified for clarity. Left :
The average contribution of two trackers result in a non-zero average force, while
only rotation - and thus only torque - was needed. Right : A single keypoint
contribution leads to rotation, while pure translation was required.

F (X) = F0 + (X −X0)× Γ0

Γ(X) = Γ0
(3.9)

with X0 being any point in space used as the center of rotation, F0 the equivalent force applied to
this point, and Γ0 the common rotation constraint of the body4. In this vision, each spring force
F and its application point X is a measurement of this constraint field we want to characterize.
Such a field can be visualized in a 2D representation in Figure 3.6.

To recover our parameters F0 and Γ0, we take advantage of the trust factor wT = w(δ) defined
in section 3.2.4.d. Used as weight, it allows to evaluate our constraint field taking into account
potential outliers for tracking or depth estimation. We use the weighted average measurement
center as origin, as it can be chosen arbitrarily:

W ≡
∑
T

wT ,

X0 = 1
W

∑
T

wTXT ,

F0 = 1
W

∑
T

wTFT

(3.10)

Next, we compute Γ0 by minimizing E ≡
∑
T

wT ||FT − F (XT )||2, keeping in mind that F is a

function with parametersX0 arbitrarily chosen, F0 computed above, and Γ0. With δFT ≡ FT −F0

4We do not refer here to this constraint as a torque, as in terms of physical unit, [Γ] = N.m−1, which
is not a usual torque.
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Figure 3.6 Visualization of a constraint field as defined in equation 3.9. The
blue dot represents the location where the force is null, in our case the center
of rotation of the visual system. Each spring in our model is a measurement
of this field, and its characterization allows us to apply a unique constraint in
translation and rotation to the virtual model.

and δXT ≡XT −X0, we obtain the following expressions:5

Γ0 = M−1Σ, with

M =
∑
T

wT
(
||δXT ||21− δXT ⊗ δXT

)
,

Σ =
∑
T

wT δFT × δXT

(3.11)

Finally, the equivalent rig constraints are computed according to this computed field. If the rotation
component is the same in all points of space, we use the rig center XR as application point for
our forces:

FR = F0 + (XR −X0)× Γ0

ΓR = Γ0
(3.12)

We use these values into our dynamical simulator, both in rotation and translation. This allows
for a single expression for all trackers, stating the overall pose variation needed to bring keypoints
closer to their initially set locations.

3.2.5 Physical model equations
The previous sections have detailed the two different contributions uses to a visual odometry.
The first contribution affects the virtual rig on a first order, through velocity error, and uses a
previously estimated ego-kinetics of the sensors. The second ones fuses objects reprojection error
and estimated depth error into an overall pose correction. These contributions are displayed in
mechanical symbols in figure 3.7, in the case of a 2-sensors system.

51 defines the 3× 3 identity matrix, while ⊗ defines the outer product of two vectors.
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Figure 3.7 2D representation of the different contributions used to update the
visual odometry. The keypoints contributions - in blue - consist in a translation
contribution FR and a rotation contribution ΓR. The translation fluid contribu-
tion - in red - is displayed here as F̄S . To avoid overloading the schematics, its
rotational counterpart is not shown.

Assuming NS sensors in our model (NS = 2 for a binocular system, however the system can use
any number of sensors), we average the velocity contributions of each sensor, and compute the
overall spring constraint field as described above. The reason for averaging velocity contributions
is the same as previously stated : more sensors should not results in higher forces and torques
amplitudes, rather than more accurate ones, allowing to converge faster both in pose and system
velocities. As all sensors are assumed equals in terms of physical properties, constraints defines
in 3.1 and 3.12 lead to the main physical equations 3.13.

MẌR = 1
NS

∑
S
FS + FR

Iθ̈R = 1
NS

∑
S

ΓS + ΓR

(3.13)

with M the system virtual mass, and I its inertial moment. Their actual values don’t have to
match the system physical ones, as we will show in section 3.2.6. We assume the whole mass to
be located at the center of mass of the system, i.e at the rig center location which defines our
recovered pose. Figure 3.8 shows an overview of the visual odometry pipeline, with the inputs and
subsequent contributions, in the case of a 2-sensors system.

3.2.6 Parameters estimation through oscillator stability
We present in this section a stability study on the system defined above. Common dangers with
simulating an inertial system such as this one are either oscillations instability or response latency
after a stimulus. The system virtual properties have to be set according to oscillators physics in
order to get the best response to the system input, i.e. a fast response in position and speed to
the correct values. To that end, we need to perform stability study of our system. As previously
stated, the modification performed on the repel force expression allows to protect the system to
outliers, but leaves the usual oscillator response valid while near the minimum energy state.
However, the complexity of the system forces us to use a simplified model, to extract general
values for M , I, κ, µ and ν. We assume that the distances δ involved remain low compared to L,
and simplify the system to a 1D oscillator of coordinate x. In this case, the governing equation
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Figure 3.8 Overview of a 2-sensors visual odometry pipeline. Each sensors
can provide ego-kinetics, tracking information and depth estimation. Each
contribution is used in a physical simulation, aggregating the constraints and
minimizing the overall energy of the system.

becomes

Mẍ = −κx− µẋ (3.14)

We define the springs pulsation ω =
√
κ/M and dampening ratio ζ = µ

2
√
κM

, and we write the
previous equation as

ẍ+ 2ζωẋ+ ω2x = 0 (3.15)

In this type of equation, we want ζ ∼ 1 for the system to be critically dampened. To ensure that
critical dampening, we set µ as a function of the other parameters:

ζ ∼ 1 ⇐⇒ µ ∼ 2
√
κM (3.16)

Next, we set the springs repel constant κ relative to the system mass M to have a small response
time w.r.t the observed scene dynamics. Visual odometry is mainly used in robotics, autonomous
vehicles, and human motion. In most cases, the typical motion will take place on a timescale
τscene ∼ 1s. The system needs to reach the minimum energy state after a sudden dynamics change
over a duration small compared to this timescale. If the system is still stabilizing while another
change appears, energy excess could build up, to the point of getting out of the global minimum
energy well.
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To meet this constraint, we set the spring repel constant such that the typical response time τsystem
is small compared to the scene timescale τscene:

τsystem ≡
2π
ω
∼ τscene/10

⇐⇒ κ ∼ 4000M
τ2
scene

(3.17)

Finally, we define rotational counterparts I and ν from a dimensional study. As we use a rotational
constraint (denoted ΓR in section 3.2.4.e) lengthless, the rotation equations units do not involve any
length; both mass parameters and fluid viscosity show similar unit in translation and rotation.

[I] = [M ] = kg

[ν] = [µ] = kg.s−1 (3.18)

From this observation, we can set I ∼M and µ ∼ ν, giving the system similar response times in
translation and rotation.

Using those constraints, we report in table 3.1 the system parameters values used in our experiments.

Parameter Value Unit
M 1 kg
I 1 kg
κ 4000 kg.s−2

µ 125 kg.s−1

ν 125 kg.s−1

L 0.3 m

Table 3.1 Pose solver parameters values used throughout our experiments. They
result from a stability study over a simplified 1D harmonic oscillator, but have
produced the expected results in terms of visual odometry convergence.

3.3 Preliminary results
Results of our pose estimator are reported in this section. These results are preliminary, as time
and data constraints made more in-depth results hard to acquire. First of all, our visual odometry
does not rely on usual sensor events, but on previously analyzed data, transformed into ego-kinetics,
objects tracking on screen, and depth estimation. We had to wait the maturation of previous
algorithms for us to know what this later algorithm could rely on. This, along with initial trials to
show the correctness of the implementation, made the use of synthetic data necessary.
More crucially, the ground-truth comparison have been a difficult task, as recovering the baseline
position of a stereoscopic system requires hardware unavailable to us at that time. This further
pushed the need for synthetic data, reported in this section.
If additional self-recorded sequences were tested, issues with on-screen tracking made input values,
and thus estimated pose, unreliable. Thus, these results will not be reported in this document,
however we expect that future works will allow to fully benchmark our algorithm on real-world
data.
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3.3.1 Data Simulator
We developed a basic event-based simulator, that emulates the motion of a 2-sensors rig. It is
placed inside an environment in which generators create sensors events, and are being tracked
along with depth information. The simulator also transmits ego-kinematics values for each sensor,
and thus allows to have complete control on the data fed to our visual odometer. The size of the
virtual environment matches the typical size of common environments used in robotics, ranging
from a few meters to about 100m. Such motion can be visualized in figure 3.9.
Notice that our pose estimator does not use sensor events information per se, rather than

Figure 3.9 Example of the motion - black line - used in these experiments,
visualized in 3D. In this case, no translation occurs along axis Z, which is the
initial vision axis. The sensor axis are displayed at 6 different occasions. Blue:
Forward vision axis on the sensor. Red: Horizontal axis of the sensor. Green:
Vertical axis of the sensor. Each black sphere is a generator or our simulator,
from which are extracted camera events, trackers and depth information.

pre-processed higher-level information. Camera events are merely a support for the simulator time
steps. This feat allowed us to use a simulator with little regard for the quality of the sensor events
generated, used in our case for visualization and display. We only care for the number of events per
time unit, set to 105ev/s. This number is set to meet the order of magnitude usual neuromorphic
visual sensors event rate [99, 11].

3.3.2 Noiseless results
Using such raw, noiseless data led to encouraging results, following the expected dynamics of a
dampened oscillator. The error in translation and rotation of this experiment can be visualized
in Figure 3.10. The simulated motion is a sequence of different movements of various amplitudes
affecting one or more degrees of freedom of the virtual rig. We can observe the errors locally
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increasing when the motion dynamics change. This is due to need of dissipating energy excess -
typically kinetic energy - between two successive motion patterns. If a theoretically infinite time is
needed to completely remove this error, parameters described in section 3.2.6 allow to suppress the
majority of it within a τscene ∼ 1s time window.

Figure 3.10 Odometry error for a noiseless synthetic motion, in translation (left)
and rotation (right). The overall motion involves a 6.07m translation, with a
maximum relative error of 2.82%, and a rotation of 125deg, peaking at 3.6%
relative error. Both maximum relative errors occur at t ∼ 0.7s, which is a time
of large dynamics changes. More generally, for each of those dynamics change
moment, the inertia of the system generates an error, that gets reduced over the
typical scene timescale set τscene.

The fact that the system presents a certain response time induces an error in the estimated 3D
location of newly arrived trackers and keypoints. This error is then propagated through the pose
correction process of the system, leading to a constant drift of the system that can be observed
on the left graph. This is not unlike the usual 3D error reprojection of other visual odometers,
emphasized by the response time of the initial system. A solution, succinctly explored, was to
force the system to release energy upon keypoint initialization, and thus finding the actual optimal
location of the sensor, regardless of the velocity. If this approach improved results, more work is
needed concerning the stability and computation efficiency of this process, as it breaks free from
infinitesimal computation steps the system is built upon.

These noiseless results still allowed to assert the proof of concept of our method, as well as the
correctness of its implementation. However, having full control over the data fed to the system
allowed us to implement noise in it, and thus estimate our pose estimator robustness limits.

3.3.3 Adding noise to synthetic inputs
If characterizing neuromorphic sensors noise is still an ongoing question [100, 101, 102], the noise
associated with the data used in our system can be roughly estimated. Indeed, this data is
macroscopic6, often resulting in much more regular behaviour of their values and thus simpler
noise models. Such models are necessary in the case of synthetic data to benchmark the input
error our algorithm can tolerate.

6As opposed to infinitesimal events, carrying information about a single pixel.
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Indeed, as previously explained, the main requirement here is to stay as close as possible to the
minimum-energy state. If temporary increase in energy is necessary to set the virtual body in
motion, it needs to stay in the global minimum well of mechanical energy for visual odometry to
remain correct. An excessive input noise is the one reason that can take the virtual model outside
of this minimum-energy location.

Figure 3.11 Odometry error for a noised synthetic motion, in translation (left)
and rotation (right). The theoretical motion is the same as in Figure 3.10,
however each data input is noised according to models extracted from literature
and existing algorithms typical errors. In this case too, changes in dynamics
result in local errors peaks later dampened, however the increase in error over
time is grater. The maximum relative error in this case is 3.0% in translation
and 8.5% in rotation at the end of the experiment.

We thus tried to characterize the behaviour of failing trackers, stereo-matching error for depth
estimation and ego-kinetics estimation, by analyzing the output of algorithms described in the
previous chapters, along with related works. We implemented from that analysis the following
noise models:

• Trackers update asynchronously, and this update is based on events, generated by the
movement of the tracked shape. An event located outside of the tracker ROI will not trigger
an update of this tracker location.

• Trackers have a typical gaussian noise error, centered around the object they are following,
of typical size σ ∼ 1px[56].

• A tracker fails on average every τ ∼ 0.3s[56]. Depending on the algorithm at play, the failure
will either be detected and the tracker disappears, or the tracker remains active, either fixing
to another location in space, or drifting away at constant speed. We used the later, as it
presents the biggest impact on our system response.

• The disparity presents a rounded normal distribution, centered around the theoretical value,
with typical deviation σ ∼ 1px.

• Ego-kinetics estimation such as the one presented in Chapter 2 are normal 3D distributions,
centered around the theoretical value, with standard deviations scaling with the amplitude of
the theoretical value : σv ∼ ρ||v|| and σω ∼ ρ||ω||. In our case, we increase this ratio ρ up to
ρ = 0.5 to check the robustness of our model to large variations of ego-kinetics estimations.

This noise was implemented in our simulator, and an experiment with similar motion parameters
as in section 3.3.2 is performed. The results are reported in Figure 3.11. As before, we observe
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peaks in error when a sudden change in dynamics occur. However, the translation error undergoes
a much constant, steeper error curve, up to a maximum of 17.5cm. The rotation error presents a
high 8deg peak at the middle of the sequence that gets reduced over time.

3.4 Conclusion
Our model presents a new way to compute the pose of a visual sensors through a new, dynamical
approach. Any number of sensors can be used, as long as depth can be estimated. If we used
stereo-matching for the depth in our real-world experiment, other methods, such as defocus, could
be used. Additionally, the model used does not rely on a specific number of sensors, and increasing
this number should allow to further improve the correctness of the pose estimated.

This work is still in its infancy, as this model was developed during the latest stages of this
PhD. Initial implementations, using a more simple model for keypoints correction led to unstable
results. The first, additive formalism of forces and torques implemented made the dynamics of the
model unpredictable when more trackers were added. The equivalent constraint field, formalized
in the last weeks of this work, allowed to overcome this instability, by aggregating all trackers
contributions into a single, stable correction applied to the model. Through the use of synthetic
data, we have shown that the stability of the current model makes it robust to high noise values,
with an important ratio of trackers failing at the same time with contained impact of the estimated
pose.

Still, important work needs to be done in order to acquire more in-depth results. We expect
that systems such as OptiTrack, set up within a controlled environment should allow for accurate
ground-truth comparison. If such a system was initially used to record some experiments, the
restricted displacements we were able to record made data too sparse to be used as ground-truth.
Also, issues were spotted during these initial experiments. As the recording was performed in an
office-style environment, most shapes present long, aperture-prone edges that are unfit for tracking.
This further restricted the amount of real-world results available at the time of writing.

We believe however that this method presents numerous advantages to recover the pose of a passive
vision system. The whole visual odometry pipeline uses only events, without requiring additional
sensors. Moreover, the model parameters allows to very easily adapt the system response time and
typical length involved.



Chapter 4

Events Dynamics & Processing

4.1 Introduction
The final chapter gets out of the scope of event-based visual odometry, and presents a broader
analysis of the event-based paradigm, its current implementation, and the implementation attempt
made to match those event-based requirements.

The first part will dive into the relation between events and time. Over the previous chapters, time
has been at the core of algorithms, and its consideration has brought many challenges to light.
Time is indeed a center part of all event-based algorithms, and is, in my opinion, overlooked too
often - if not completely ignored in many cases. To properly develop event-based algorithms that
can exploit the full advantages of neuromorphic sensors, one must first understand what is time in
this paradigm, and how to consider it properly.

We have dealt with time in the first chapter as an intricate part of the algorithm, as a variable that
is computed and used in a feedback loop. This has shown effective, even though some instability can
result, and had to be taken care of. The second chapter used feed-forward time information, which
resulted in much better results. The third chapter also dealt with time, using events timestamps
as basis for the numerical simulation of our pose system. This is also a key feature of events, as
the event stream gets denser as motion is faster. Those different properties and approaches of time
in neuromorphic computations will be discussed, in order to extract some guidelines of how time
could be handled in event-based processing.

The second part will describe the framework wrapping algorithms implemented throughout this
work, implementing this time computation process, as well as some key elements of the event-based
processing philosophy we tried to implement. This framework especially allowed to work on an
event-by-event basis, thus allowing to fully understand how those algorithms react upon a single
event update.

73
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4.2 Time constants analysis

4.2.1 Time as the elementary data : an overview
Time is the key for neuromorphic computation. All events, however they are encoded whatever they
encode, carry a time element, stating when that event occurred. In that regard, it is fundamentally
different from an image, or a particular frame of a conventional video stream. An image can
be processed as such, regardless of its context. It is a macroscopic object, carrying standalone
information that one can extract and infer higher-level information from. On the other hand, a
single event does not contain much data. On its own, an event only state that something happened
at a certain time, with possibly a few additional bits of data of various nature. A set of events
have to be taken and processed together in order to make sense, and for that reason, time is of the
essence for the event-based paradigm.

Still, time is not easy to grasp for a computer. Like anything, time is stored within a computer as
bits, which are purely dimensionless data. By convention, we assign a unit to them. For instance,
UNIX time is stored within a computer as an integer number, of value 1632478152 at the time
these lines are being written. Only we can understand the link between this number, and the
physical unit that is the second. This convention allows for instance a computer to compare the
UNIX timestamp to the mass of earth, as both values are just pure numbers. In our case, the time
information carried by an event have to be compared to a well-defined timescale to make sense,
and thus for this event to be processed correctly. We must thus find a way to define this timescale
properly.

This type of analysis about the fundamental meaning of time in neuromorphic processing is rare.
The principles we will develop here are similar to the ones from the most important study on this
topic [103]. However, this study mostly restricts those principles to the creation of frames, for
display or conventional frame-based processing purposes. We believe that the importance of time
in neuromorphic computation goes far beyond frames generation for display purposes.

If a frame is accurately produced, in the sense developed in [103], it is often done by maximizing
the image gradient, i.e by creating sharp edges. The image, as we want it, is made of single-pixel
edges, and as such is deeply linked to the lifetime of a single event1. This lifetime can be used
on many occasions. Not only in frames generation, but also in optical flow, time-surfaces decay,
variables averaging, . . . .

a) Defining the timescale of events

To compute the timescale over which we must consider the events timestamps, we must first know
what that time scale should represent. An event carries an elementary amount of information,
which is possibly very diverse. Let us focus on usual neuromorphic retinas events, that are triggered
by a luminosity change on a single pixel. This luminosity change can be induced by two main
causes. The first one is an absolute luminosity change of the object in direct line of sight of that
pixel, like a light being switched on/off. This is a special situation, in which many pixels will fire
at the same time, and is not often occurring. The second case, and the one that makes event-based
cameras so interesting, is a local gradient of luminosity of the scene that moves relative to the sensors.

1We assume here that an object passing by a pixel creates a single event on that pixel, and that all
successive pixels on the object trajectory generate events.
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This can be either an object moving between a camera and the background, a camera moving, or a
combination of both. The part of the scene that triggers the event can be the edge of an object,
its texture, . . . This trigger is thus locally defined by a 1-dimensional moving shape, both in 3D
space and on the 2D sensor. To recreate an image of the scene at time t, one must know where
that 1D shape is at that particular moment, using only the generated events. Put differently, one
must know which events ei received at times ti < t are still a valid representation of the scene.

Let us define the ideal lifetime τi of an event as such : for any two events ei and ej , created by the
relative motion of local edges2 dEi and dEj :

tj ∈ [ti, ti + τi] =⇒ dEi 6= dEj (4.1)

With that definition, any image displaying the set of events

I(t) = {en, tn ≤ t, tn + τn ≥ t}

should display single pixel edges, as we are sure we only take into account one pixel generated
by each part of the scene. With that definition, we know that after a duration τi, an event ei is
outdated, meaning that more recent information can be found in the surroundings of ei.

This definition describes an ideal case, in which we can define a time constant for each and every
event. An event-specific timescale will be discussed later, specifically in sections 4.2.2.c and 4.2.2.d.
However, such a definition presents algorithmic and computational challenges. First, if each event
displays its own time constant on which it must be considered, then we cannot create and compute
sensor-wide variables, like sliding averages, as we have done on many occasions in the previous
sections. This type of computation requires a single time constant to be considered for all events
at once, and a global decay of such a variable would not be able to take into account the specific
timescale of each event. The solution would be to store, and decay each event, one by one. If this can
be done, the computational cost would be tremendous. To be implemented, it requires to store all
past events and not only the latest events at a certain location like the spatio-temporal context does,
as well as the associated time constants. Then, upon computation of a decayed variable X, we would
need to loop over all those events, decay them one at the time, and compute the updated value of X.

The second and more fundamental issue with definition 4.1, is its non-causality. We assume that
any event ej triggered between ti and ti + τi can not have the same origin as event ei. If we
can compute values that gives insight on the signal dynamics, as shown later, any sudden - and
thus unforeseen - change of dynamics will make the previously estimated τi value void. Online
computation, by definition, requires local dynamics assumptions whose impact must be minimized,
and this affects timescales among other things. This paradox is shown in figure 4.1. Successive
events are represented, with increasing x coordinate at times t1...5, and we assume they are triggered
by the same moving object. We show that this ideal lifetimes τi of event ei can only be computed
once the next event ei+1 occurs. This implies that the lifetime of an event can not be computed as
the event is processed.

A solution to the first problem, as implemented in almost all algorithms, is to consider a screen-wide
time constant. To that end, we assume that the average value τ over all events lifetimes describes
with sufficient accuracy the entirety of the events timescales.

2We call local edge the portion of an object’s edge whose projection on the focal plane would be of size
∼ 1px.
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Figure 4.1 Example of ideal timescales that should be used to compare events
(black squares) timestamps in the case of a single-pixel moving object (red line).
Each event validity time window ends when the next event triggered by the same
object starts, leading to single pixel edges representations, or accurate and low
delay response computations.

τ = τi (4.2)

This paradigm have been widely used throughout this work, allowing for simple and efficient
object tracking, depth estimation, ego-kinematics and visual odometry. The second issue, however,
requires more in-depth work on how to define this screen-wide timescale, and how to consider
events lifetime in comparison.

b) Static vs. dynamic timescales

In many cases, a time parameter is set manually for every processing block of the framework. Such
algorithms are often quite sensitive to their timescale, as all time values they will process, will refer
to that static timescale. However, even if it is changed for each and every experiment, such a static
timescale can not match the whole dynamics of a recording, apart from rare cases. Using sets of
events defined by static time windows to define a dynamics-changing signal will fatally lead to over
or under-sampling, which are the very flaws event-based engineering allows to avoid.

An example of this type of pipeline is displayed in figure 4.2. With this constant timescale paradigm,
not only must we set a timescale for each processing unit, we must also carefully set it accordingly
to the data dynamics. However, these issues can be overcome using the processed signal itself, as
we have used on several occasions in the previous chapters.

As data gets processed within a framework, the information rises to higher levels of abstraction.
From initial raw events, one can extract optical flow, stereo matching and depth information, or
visual odometry to only name the ones studied in this thesis. Along with this higher level of
information comes a higher level of understanding for the time constants themselves. Indeed, in
most cases, abstracting data comes with abstracting from the signal noise. Thus, a time constant
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Figure 4.2 Example of an event-based processing framework with a noise-filter,
followed by an optical flow processing module. Each module is given a time-
constant as parameter. As the time scale of the data is not immediately accessible.
there is no guaranty that the time constants τ0, τ1 and τ2 set as parameters fit
the likely time-dependent dynamics of the signal.

extracted from this high-level information should also be more accurate.

From that idea, we can build, in parallel to the data processing pipeline, a time processing pipeline3,
where each block that allows it improves the accuracy of the events timescale. Once we reach the
desired precision, or the adequate level of abstraction, we will have built the time constant that
fits best our previous definition. An example of this type of pipeline is displayed in figure 4.3.
An initial timescale τ0 is set as parameter, but the pipeline allows to extract more accurate and
dynamical timescales τA and τf as data is being processed.

4.2.2 From low-level to high-level time constant

a) Initial time constant

The problem remains that to build timescales from processed data, one needs, at the start of the
process, an initial time constant τ0. That time base is expected to be raw and inaccurate, and must
be set at the right order of magnitude, for it allows the lowest-level computation to be performed.

3In terms of implementation, the two processing frameworks are intertwined. However, a fundamental
distinction have to be made. While one processed and created higher-level data, the second one computes
and improves the timescale that data should be compared with.
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Figure 4.3 Example of an event-based processing framework with a noise-remover
module, followed by an optical flow processing unit. Only the first module of the
pipeline is given a time-constant τ0 parameter, and feeds the following module
with a data-dependant timescale τA, based on events activity. This first variable
time scale can be proportional to the data time-scale τinput up to a user-parameter
ρ. It is fed to a second module that computes the optical flow, extracting at the
same time a second variable time-scale, τf , matching closely the signal dynamics.
This type of architecture has been used in the presented works, as it requires less
parameters tweaking to adapt to any type of scene.

This hierarchy, however, allows the framework to break away quickly from this parameter τ0. Even
if the system result will depend - strictly speaking - on it, most of the timescales we tried and
developed came out fairly independent from this initial value. Experimentally, τ0 is set of the order
of 1ms, but we were able to change it, from 10ms to 0.1ms with little to no effect at all on the
outcome. Let us now develop three data-derived timescales, which were implemented and used in
our experiments.

b) Activity-derived timescale

The first and most basic computation we can do on events is counting them, yet that basic
operation allows to extract a timescale τA(t). Let us assume a w × h pixels neuromorphic sensor.
As developed in [103], a frame ideally generated presents sharp edges, and this criterion is often
used for events to frame conversion. By studying this constraint over multiple recordings, we
observe that this constraint can be approximated by a certain density ρ of active pixels on a frame.
If this density value can change with the sensor resolution, its order of magnitude often remains
constant when the observed scene changes. Crucially, as this value depends on static properties of
the scene - which are the amount of edges on screen at any time t -, it is independent from the
sensors motion. This leads, in the first order, to a constant number of pixels N ≡ ρwh plotted at
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once on screen.
We have experimentally set that ρ ' 3% for a DAVIS-346 sensor 4, leading to around 2700 events
displayed at once.

This number of active pixels can be linked to the activity of the event stream, using the initial
constant timescale τ0. By assuming that each event affects a different pixel over the considered
timescale, we can count the events, and derive the stream activity in an event-by-event fashion.
Between two successive events en and en+1, we update the activity Aτ0 :

Aτ0(tn+1) = Aτ0(tn)e−
tn+1−tn

τ0 + 1 (4.3)

We can suppose that in the incoming event stream, each event represents a new information,
without occlusion, spikes trains, . . . This means that the activity Aτ0(t) computed here is a measure
of the average number of new pixels that fired between t− τ0 and t5. Assuming τ is set accordingly
to the signal dynamics at all time, that activity Aτ (t) should be constantly equal to the expected
number of events N needed to generate a frame. Let us define τA(t) as this time-dependant value.
With the goal being AτA = N , we define δt = tn+1 − tn, and assume a steady state is reached.
This leads to

Aτ0(t)− 1
Aτ0(t) = e−

δt
τ0 ,

N − 1
N

= e
− δt
τA(t)

⇒ τA(t) = τo
log(Aτ0 (t)−1

Aτ0 (t) )

log(N−1
N )

(4.5)

For large activities Aτ0 and expected pixel occupancy N , we can simplify this expression, and
get

τA(t) = τ0
N

Aτ0(t)

Experimentally, we have seen little to no dependency on τ0 as previously stated. The only constraint
is for τ0 to be small enough to react to very fast changes in dynamics, and large enough to allow
for decent averaging on the number of events. However, this constraint leaves plenty for margin
to set τ0. Changes in sensor dynamics are often on the 0.1s ∼ 1s timescale, while most sensors
produce several hundred thousand events per seconds, meaning an average time interval between
two events of the order of 10µs.

This computation performs best when A is around 100 to 1000, but those figures are indicative,
as they are sensor dependent. Notice that by definition, the timescale defined in this section is
sensor-wide, and thus cannot be specific to a certain part of the scene, as opposed to the two
following proposed timescale definitions.

c) Optical flow-derived timescale

From the definition we gave of an event time-constant, which is the time for a 1px displacement of
the object on screen, we expect the ideal computation of the time constant to be derived from the

4https://shop.inivation.com/collections/davis346/products/davis346-academic-rate
5If we assume ne = 1/δte events are produced per time unit, and assuming δte � τ0, we have

∂Aτ0

∂t
= −Aτ0

τ0
+ ne (4.4)

The steady state is then reached for A = neτ0, thus the activity is the number of events produced by the
sensor over a duration τ0.

https://shop.inivation.com/collections/davis346/products/davis346-academic-rate
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optical flow. That optical flow translates the apparent motion of an edge, and thus is the inverse
of that time constant. We define the optical-flow derived time constant as τf .

To compute the optical flow, we need first a set of events to consider. Usually, for each incoming
event, we consider a set of events located in the spatial neighbour, and with a temporal window. Set
aside the spatial length considered, we need a first time constant for that second parameter. Again,
we consider τ0 the initial timescale used for this processing unit. The set of events considered to
compute the optical flow for event en, located at (xn, yn), and that occurred at time tn, is then Sn
such that

Sn = {ei, ||(xi, yi)− (xn, yn)||k ≤ R, tn −Nτ0 ≤ ti ≤ tn} (4.6)

with k the considered norm, often being the k = 1 norm for square matrices sensors, and N ∼ R a
constant being the number of past location of the same object we want to consider.

They are several methods to extract the optical flow, either from a stream of events [38, 52, 87], or
directly from a sensor [22, 23]. In both cases, the result can be given as a 2D vector fn representing
the direction and speed of the local edge object on screen, in pixels per second. As long as that
method gives a good estimate of the optical flow amplitude, we then have the timescale τf ,n specific
to event en:

τf ,n = 1
||fn||2

To compute the screen-wide time scale, we propose to average those extracted event-dependant
timescales, with the event-based average update rule:

λn+1 = e−
tn+1−tn

τ0

Af (tn+1) = Af (tn)λn+1 + 1
Σf (tn+1) = Σf (tn)λn+1 + τf ,n

τf (tn+1) = Σf (tn+1)
Af (tn+1)

(4.7)

Notice that in this case, the specific timescale τf ,n depends on the event location (xn, yn). The
averaged timescale must discard the location specificity to represent a larger set of events. However
some algorithms may use this location specificity to their advantage, when considering local sets of
events, or performing single-pixel computation.

d) Ego kinetics-derived timescale

A similar time-constant method to the optical flow one is to use the result of a visual odometry,
similar to the one developed in Chapter 2. We use information of depth and optical flow to compute
the instantaneous velocity of a sensor with respect to the observed scene. Using equation 2.22
allows us to compute the theoretical on-screen velocity for a certain event en, and through a similar
process to the one described in the previous section, compute the event-specific timescale τv,n.
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In this case, we need depth information, along with pixel location, to compute the event-specific
timescale. The overall computation is computationally heavy, but should result in the most
accurate timescale for this particular event, as it uses all the available information, and overcomes
sensors noise through screen-wide average. The average timescale τv is finally computed in a
similar fashion as in equation 4.7.

λn+1 = e−
tn+1−tn

τ0

Av(tn+1) = Av(tn)λn+1 + 1
Σv(tn+1) = Σv(tn)λn+1 + τv,n

τv(tn+1) = Σv(tn+1)
Av(tn+1)

(4.9)

4.2.3 Retrieving past events
Let us now consider our screen-wide, dynamical timescale τ(t), computed for instance by one of
the above blocks. This timescale reacts to the signal dynamics, meaning that slow relative object
motion will lead to large timescales, while a static sensor in front of a static scene, producing
almost no event, could present a timescale τ ∼ ∞. As already analyzed in [104], event-based
algorithms divide into two main categories: fully event-based methods or accumulative methods,
the latter using sliding windows to define a set events to be worked upon.

Both categories, however, need the previously defined timescale to select and/or process these
events. The main idea for this timescale, as suggested before, is to define the relation between
an event and its temporal neighbourhood. More specifically, for online algorithms, it defines the
relation between an event, and past events. How should we consider past events, or update values
built from past events from the current one and its timescale ?

The update rule, used several times in the past chapters and sections, as in equations 1.9, 2.14
or 4.3 decays events participation, and is a fundamental element of fully event-based methods.
Each event is processed, and its data is discarded: only the infinitesimal contribution remains
in the computed variable. The computation is thus efficient, light-weight, low-latency. However,
accumulative methods will undoubtedly always be required to compute certain values. Storing and
recovering past events from 2D maps is needed for optical flow computation6, stereo-matching,
object recognition, etc. Let us then analyze how to retrieve events in such cases.

6A fully event-based version of [86] was developed during this thesis. However, it required to store a
equivalent representation of events data onto 2D maps. If the update was made in an event-per-event
fashion, and the result mathematically correct, the resulting computational cost was much higher than the
initial version. This was due to more data to store and retrieve from RAM.
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For a sliding window with a dynamical duration τ(t), the timestamp of the oldest event considered
at t is given by

told(t) = t− τ(t) (4.10)

If the timestamps of events tn are assumed to increase, nothing ensures with the construction of τ
that told(t) is monotonic. A sudden change in dynamics can rapidly produce an extremely large
timescale. If seemingly insignificant, the consequences of this decreasing oldest timestamp are
troubling. This property implies that a past event, unused at time t, would regain importance at
time t′ > t. Put differently, an event discarded because its contents could not accurately represent
the scene anymore is suddenly deemed valid anew. From equation 4.10, and with told increasing, it
appears that any dynamic timescale τ(t) used as such to retrieve events from a sliding window
must verify

∂τ

∂t
≤ 1 (4.11)

To enforce this rule, we need to fix the lower boundary of our sliding window, and ensure the oldest
timestamp monotonic behaviour. For any events set Sn retrieval triggered by event en at time
tn defined by constraint Cn on the events content - apart from time -, we propose the following
process:

told,n = max(told,n−1, tn − τ(tn))
Sn = {ei, ti ∈ [told,n, tn], Cn(ei)}

(4.12)
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4.2.4 Dynamic window experiment

Figure 4.4 (Top graph) : constant timescale - orange line - vs. adaptive timescale
- blue line - during dynamics changes in a recorded scene. The almost complete
stop of the sensor leads to a large spike in the estimated timescale of the scene.
(Bottom pictures) : comparison of different frame reconstruction methods. A
constant timescale can be set according to the scene at a particular moment (a1)
but will not be able to describe other dynamics of the signal, leaving blurred or
under-sampled reconstructed frames (a2, a3). An adaptive timescale can react
to changing dynamics (b1, b2), but leaving the sliding window unconstrained can
lead in extreme cases to the display of previously discarded events (b3). Using
an adaptive time window and forcing the monotony of the timestamp of oldest
events (c1, c2, c3) allows for proper reconstruction in most situations.

Using a sliding window along with a constrained dynamical timescale allows to retrieve the most
accurate representation of the visual scene at any time, regardless of the dynamics of the scene. In
Figure 4.4 we compare three different types of time window: Constant (a), Dynamical (b) and
Bounded (c). Constant uses a constant time window, Dynamical and Bounded an adaptive one, with
Bounded adding a constrain to ensure monotonic told values. During this sequence, the dynamics
of the sensor drastically changes. We observe that the constant time window results in information
loss (a2, a3), and that only adaptive timescales (b, c) can cope with these drastic changes. We
also observe that in extreme cases, blurring can still occur if the time window is unconstrained
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(b3), as the highly increasing time window allows the use of previously discarded events. The
bounded window, with monotonic older timestamps, allows for proper frame reconstruction in most
situations, regardless of the signal dynamics.

To quantitatively qualify the reconstruction, we compute the average density of the frame ρ, as well
as the average width δ of edges appearing at times t1,2,3. As the observed scene remains almost
unchanged and so the same edges appear throughout the experiment, the density is expected to
remain constant for all frames. Table 4.1 reports these metrics extremas.

Window Density ρ Edges width δ
Size Min Max Min Max

Constant 0.2% 2.4% 0.0px 0.8px
Dynamical 2.3% 6.5% 0.8px 3.3px
Bounded 2.3% 3.2% 0.8px 1.4px

Table 4.1 Results of frame density and average edge width for three different
frame reconstruction methods. We observe that only a dynamical time window
with ensured monotonic older timestamp (bounded) allows to minimize the
variation of the metrics.

With this experiment, we observe that only the bounded time window allows for constant frames
densities. This correlates with low variations of the average size of the considered edges. The
unconstrained dynamical time window, allows to properly reflect most of the signal dynamics,
but cases such as sudden slower motion of the sensor are still a problem. This example finally
highlights in a straightforward way the limits of the commonly used fixed time-window.
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4.2.5 Conclusion on events timescales
This section has shown that time is a key element of event-based processing but is too often
overlooked. We have presented three different methods to estimate the correct timescale from
events, using only visual data and an initial timescale. We have also shown that this initial
timescale is necessary only to ensure that the proper order of magnitude is set for time handling.
However, the proposed methodology allows to have little to no dependency to this initial timescale.
This ensures that events timestamps are considered with respect to the signal dynamics, and not
to an arbitrarily set and tweaked time parameter.

We have also shown that adaptive time windows are not the only requirement to properly address
event-based computation, and additional care must be taken, especially when retrieving past events
for accumulative methods. The experiment using frame reconstruction as main support has shown
that if this dynamical time window allows to extract a set containing at least all relevant events,
this set often also comprises older, out of date events. A monotonic, increasing lower time boundary
is thus required, in order to allows for the necessary and sufficient set of event to be extracted in
any situation.

We believe this type of events retrieval method, if visibly effective on frame reconstruction, can
improve sensibly most algorithms that require this type of temporal window. This methodology was
tested upon various algorithms (tracking, ego-kinetics estimation, depth estimation) and have led
to significant improvements, as shown in section 2.3.3.a. However, this type of timescale interaction
can hardly be implemented on any existing event-based computation framework. This, among
other development needs, led to the development of our own, interactive event-based development
framework, named PEBBLE.
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4.3 PEBBLE : Python Event-Based BLEnder Framework

4.3.1 Development frameworks overview
All Computer Science domains, from audio processing to game design, have accumulated years
of experience in building their specific development tools, with their own philosophy, suited to
their particular needs. Similarly, computer vision has its own suited, forged environment. Likewise,
image processing and video processing have had their own dedicated tools and libraries, in order
to create a simple yet efficient development environment. However, within a domain, different
philosophies can appear, each approach requiring different development tools.

This is currently happening within the event-based field. Many frameworks for event-based data
processing have been developed and published during the last decade. Some of these frameworks
must be highlighted for the way they were build, or the notoriety they have gained over the years:

• jAER (Java Address-Event Representation)7 is one of the first widely used event-based
framework, as it was made public in 2007. Its notoriety is due to the use of Java, a user-
friendly yet efficient language, along with its link with the DAVIS sensors family, that is
one of the most used neuromorphic cameras. The native interfacing made the use of those
cameras very easy, and was a reasonable choice for taking first steps into the event-based
world. It also introduced the AEDAT file format to store streams of events.

• Tarsier[105]8 is a C++ event-based framework. Its has shown among the best performances
in terms of speed and low-latency for event-based processing. The philosophy behind it is
functional programming, gaining orders of magnitude of processing efficiency, at the cost of
coding simplicity for beginners. Several drivers have been developed to let it interface with
different neuromorphic cameras. It introduces a new file format, called Event Stream.

• DV9 is the newer framework replacing jAER. Its interface and recollection of different
modules makes it easy to use and interface with, while still allowing good performance.
It can also interface with the different DAVIS sensors, and uses upgraded versions of the
AEDAT format.

Streaming from a live camera allows for testing algorithms in real-use cases or in embedded systems.
However this was not a priority during this thesis work, and we focused on interfacing with many
file formats instead in order to use publicly available datasets from a wide variety of neuromorphic
sensors and to compare our results with other algorithms. Furthermore live streams requires
real time processing. Again, this was not a priority in this work, as we were more interested
in being able to peek at the event level at any stage of the algorithm. This allowed us to gain
a deeper understanding of the on-going processing and helped with algorithmic development.
Visualization at all steps for all events is barely compatible with real time. As our need for
a simple, easy to interact with, versatile framework was growing more and more, that lead us
to develop our own development framework, where data accessibility and interaction are paramount.

Let us introduce PEBBLE : the Python Event-Based Blender. At its core is the idea that complexity
should be hidden from the user. It makes interacting with event-based data accessible to anyone,
able to deal with all data types, and even extending to possible non vision-related event-based

7http://jaerproject.org/
8https://github.com/neuromorphic-paris/tarsier
9https://inivation.gitlab.io/dv/dv-docs/

http://jaerproject.org/
https://github.com/neuromorphic-paris/tarsier
https://inivation.gitlab.io/dv/dv-docs/
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data.
On the other hand, computation efficiency was not crucially searched for. Aiming for performance
often come to the cost of user-friendliness, or interactivity. But more importantly, improving
performance of event-based algorithms on hardware designed for frame-based data is, in my vision,
a time ill-spent. Some frameworks will allow the use of GPUs, while they are inherently made
for frame-based processing. Those two paradigm completely differ in the way data is considered.
If optimization can be found this way, it is because of this hardware’s long years of maturation,
rather than its relevance for event-based data. Also, the event-based philosophy relies heavily
on small chunks of data, updating a system state, as we have seen in the previously described
algorithms. Architectures optimizing large amounts of data to be retrieved in memory, processed
and stored again are at the opposite of this philosophy. Neuromorphic dedicated hardware is the
key for optimization of event-based algorithms; prior to their development, it is hard to imagine
any optimized event-based algorithm able to compete in regards to computation efficiency against
conventional vision algorithms. For these different reasons, no evaluation in latency or computation
speed of PEBBLE was performed.

Yet, this framework was crucial in the ability to rapidly develop, test, and upgrade event-based algo-
rithms, on a variety of different data. Python itself is designed to be easy to use: being a high-level,
interpreted language, there is no need to set up complex compilation processes, and debugging
is greatly eased. Finally, most of the framework core relies on standard Python libraries, along
with NumPy, which is commonly used. This enables a light-weight installation, making PEBBLE
a great first step in event-based programming, yet allowing a deeper understanding at the event level.

This section must be seen as a general presentation of its features, underlying philosophy, and
the versatility PEBBLE offers. The entirety of the framework, and the associated modules later
described are available at https://github.com/LDardelet/PEBBLE. We highlight in this final
section some of the paradigms implemented during the framework development, along with actual
code, highlighted in blue.

4.3.2 Describing an event

a) Fundamental Events

PEBBLE was initially developed with only goal to process events from neuromorphic visual senors
only, with the AER - Adress Event Representation - formalism. This can be summed up as a
4 variables set of data, being a timestamp t, a pixel location (x, y) and a polarity p. Thus, all
the initial work was done based on this single type of data. However, it rapidly became clear
that those were not the only possible events that could be propagated through the framework :
data concerning trackers1, or disparity2 appeared, and the need for versatile data type became
obvious. Still, a common structure was needed for the framework to remain coherent and easy to use.

The common variable for all those data types was time. And it is actually the most basic event
one can think of. Let us forget all about event-based sensors, and focus on general neuromorphic
computation. When dealing with a stream of data recorded over time, as the neuromorphic
paradigm does - no time means no change in time, thus no data - the first data brought by an
event is about when the event occurred. If it can seem oversimplified, we have shown that this
time information can be enough to recover a time-constant from an event stream in section 4.2.2.b,
and improve the computation we perform upon it.

Thus, PEBBLE initially propagates basic events, related only to a timestamp. Those events

https://github.com/LDardelet/PEBBLE
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will then be completed with more complex information, such as camera events, flow events, . . . .
This allows to attach more and more information to an event, as that very event triggers various
computations. Those events, seen as containers for different data, are processed through the entire
framework, until the last computation required has ended.

t = 12.345s

Figure 4.5 The most basic event that can be propagated through the framework
is an empty container, with only data being a timestamp.

b) Additional data and multiple sensors events

However, a second piece of information that comes with general neuromorphic computation is
the origin of the event. In some cases, this origin is pointless, as a single sensor input is set.
However, multiple-inputs support became crucial when the work on stereoscopic data started. As
two synchronized cameras at least are needed for disparity computation, the two streams have to
be ran simultaneously, and we need a variable to tell their origins apart.

To that end, each input sensor creates a sub-stream of data, with a specific ID. For instance, the
left camera of a stereo rig will generate events for the substream 0, while the right camera will
generate events for the substream 1. The event container is then initially filled with an event of one
substream, dispatching the data to the different modules of the framework. Due to some peculiar
cases, the substream ID is not a property of the container, rather than if the event contained. Each
container can thus hold data for multiple substreams at once, and even multiple events for each
substream. This allows to pack a container with additional information, extracted modules along
the container propagation. This makes the processing and propagation of data through PEBBLE
very easy, while maximizing its versatility.

An example of an event container is given in figure 4.6. This container holds events of two different
substreams at once, the left and right cameras of ID 0 and 1 respectively. Those two events share a
same timestamp, at 0.123s, however they can be of different nature. This multiple-inputs feature is
a basic need for any event-based framework, as suggested by the evolution of neuromorphic sensors
over the years. Neuromorphic cochleas are being developed, and their data type widely differ from
neuromorphic cameras. Still, anyone who want to use multiple cochleas will be confronted to that
very same issue. Even more so, sensors fusion - the interaction and computation upon data from
multiple different sources - is, by definition, a computation that needs this kind of feature. The
approach we developed, however not computationally optimized, is a convenient solution to this
type of requirement.

We want to emphasize that the solution we implemented is mostly about semantics and user-
friendliness. It makes very easy to attach more and more information to an event while it is
being processed. However, the philosophy behind it is that all the information added to an initial
event, whatever its nature, should be caused by this initial event. In the example presented in
Figure 4.6, disparity computation is performed on an initial left CameraEvent. Subsequently, a
right CameraEvent is created on the opposite camera substream, at the corresponding location,
with the same disparity value but opposite sign. On the other hand, two events captured by
two separate sensors with similar timestamps, should not share a common container, as they are
fundamentally unrelated.
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t = 0.123s

Left Substream (0)
(Initial event)

location = (183, 130)
polarity = 0
disparity = 10
sign = −1

Right Substream (1)
(Subsequent event)

location = (173, 130)
polarity = 0
disparity = 10
sign = +1

Figure 4.6 Structure example of an event propagated in a 2-sensors pipeline.
This container initially holds a left camera event with disparity information.
In this example, the framework emulates a right camera event with a similar
structure. In this case, both events are related, as computation on one generated
the second. When events are not computationally linked, it is advised to use two
different event containers, even for events with equal timestamps.

c) Events types handled

So far, various event types have been implemented, mostly focused on the work made with
neuromorphic cameras. We describe here a non exhaustive list of those types, along with their
respective fields.

• The CameraEvent : It carries information from a silicon retina, as 2 fields variables : a
tuple location : (int, int) for the pixel address and polarity : bool for the luminosity
change sign.

• The Tracker Event : Used during the work on the feature detection and tracking algorithm
described in Chapter 1, it hold information about a tracker. The important data informa-
tion carried is the location : (float, float) and the ID: int of that specific tracker.
However, additional information is added, notably fields concerning the state of the tracker
or its orientation, as our algorithms also tracks features in rotation.

• The DisparityEvent : Used during the stereo visual computation part of this thesis, it
gives information about the disparity - or sometimes referred to as inverse depth - of a
CameraEvent. It should, therefore, always be attached to a CameraEvent. Its fields are
the disparity : int and sign :bool. We chose to define the disparity as an integer, as
most disparity computations are made at the pixel level, rarely at a subpixel one. Also, we
define the disparity as a positive value, as it relates to the depth on the concerned object in
the scene. The sign field is thus often optional10.

• The FlowEvent : Carries information about optical flow performed on a CameraEvent.
The only field is a tuple flow :(float, float) describing the amplitude of the optical flow
along axis x and y of the sensor.

• The TwistEvent : Propagates information about the speed of the sensor. At it relates
to speed, it contains two 3D vectors, being omega:(float, float, float) the rotation
speed, and v:(float, float, float) the translation speed.

103D information could be passed instead of disparity. Future updates should solve this issue.
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4.3.3 Modular conception of a framework
Now that we know what is being propagated through the framework, we need to define how the
computation is going to be made. Similarly to other frameworks, like jAER, DV or Tarsier, we
use elementary blocks assembled into a general-purpose framework. Due to the simplicity of the
language, we assemble it at runtime, with assembling data stored into a project file. Again, similar
to those other frameworks, the modules can range from simple modules storing data, to much
more complex algorithms. The way we built that framework makes developing a module simple, as
most the pipeline complexity is hidden from the user.

The project file is made of a single JSON, which can be easily read and modified if necessary. It
stores all information about the modules in the pipeline, the ordering of that pipeline and defines
some parameters as later described in section 4.3.3.d.

a) Input modules

At the start of any framework are placed one or more input modules. These input modules differ
from others in the sense that they are the basis of events propagation, and thus require specific
class methods. As the framework handle the event propagation by itself, it is transparent for
the user to propagate several inputs at once. In this case, the framework selects the oldest event
proposed by each of the input modules to be processed. As such, PEBBLE is not limited to
monocular or binocular vision, but can handle any number of parallel events stream of various
nature, with no core modification needed. Currently, two main input modules are available.

The first one, as in every other development framework, is a file reader. For now, it handles the
following data files:

• Dat : Binary data file used especially by ATIS[12] sensors, and later on Prophesee11 sensors.

• Es (Event Stream) : Compact, binary developed along with the Tarsier framework.

• Aedat : Binary file used by DAVIS-relatex software.

• HDF5 : Binary, multi-purpose data storage files, used for large datasets.

• Txt : Plain text data files.

The goal here is to make it easy to implement any new extension through common methods and
nomenclature. The variety of file extensions handled allows to work on most publicly available
datasets with the same modules and assembled pipelines.
The second input module is a rig simulator, used for example in pose experiments in Chapter 3. It
can create camera events, tracker events, disparity events and twist events from virtual spherical
objects. As the goal was to create high-level synthetic data, the created CameraEvents must be
taken with caution, as that simulator does not accurately replicates the behaviour of neuromorphic
sensors, as opposed to [106]. The CameraEvents produced are mainly focused on scene visualiza-
tion rather than processing purposes, although the base principles are implemented.

As previously stated, no USB-device handling module has been developed. The main reason was
the need to benchmark algorithms on controlled data, and the ability to have reproducible results.
However, the low computation speed of Python fundamentally forbids real-time handling camera
event streams, for which optimized compiled code is required.

11https://www.prophesee.ai/

https://www.prophesee.ai/
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b) Memory modules

As most computation processed require to store past events data to later interact with, modules
are being developed to deal with this task specifically. The goal is to minimize the amount of data
stored, by sharing this memory with other, subsequent modules. It is thus possible, when building
a processing pipeline, to create a link between two modules. Thus, stored data within a memory
module can be made accessible to other computation modules. At the time of writing, three main
memory modules have been implemented:

• Memory : Stores CameraEvents inside a spatio-temporal context, with polarity support.
• DisparityMemory : Stores DisparityEvents inside a spatio-temporal context, with latest

time of update for each pixel and the associated disparity value.
• FlowMemory : Stores optical flow values, either on a spatio-temporal context, or as a list

of the latest optical flow values received.

c) Other modules

Throughout this work, other computation modules were written, either for usual computations or
during algorithmic development. We can classify them into three main categories:

• Filter modules : Small computation blocks, use mainly for noise removal, or for event stream
tampering, like artificial noise, ROI selection, . . . (example: RefractoryPeriod)

• Common modules : Performs common computations, like optical flow, corner detection, . . . .
Note that if several methods can exist for a single usual task, we write them into a single
python file (example: FlowComputer).

• Developed modules : Modules implementing an algorithm being developed. The previous
chapters feature such modules (example: VisualOdometer).

d) Parameters

As for any type of data processing, parameters are necessary to tweak and change the program be-
haviour. PEBBLE implements three main ways to define a module’s parameters for any experiment.
The philosophy behind it, once again, is to improve fast development and versatility. All modules
variables defined as parameters have to be defined inside the protected method _OnCreation, and
start with an underscore. This allows PEBBLE to understand them as a parameters that the user
may want to change when running an experiment, and allow for experiments parameters versioning.
Among these parameters, protected variables _MonitorDt and _MonitoredVariables, detailed
in section 4.3.5.c, allow for easy data monitoring.

The first way it to set default parameters for these variables inside the module python file. However,
changing default parameters in the python file is not reliable, and induces changes that can be
hard to keep track of.
Thus a second way to change parameters is to set them inside the project file mentioned earlier,
which stores the pipeline layout. This is especially useful when a certain pipeline uses non-default
parameters, like constant timescales, or noise filter properties. Using the project file to store these
parameters allows to set them for this specific project, without having to change them at runtime
nor to modify the module themselves.
The third way to change parameters is thus at runtime, when starting the experiment with
framework method RunStream. One can set as optional value a dictionary specifying new values
for the desired parameters. The set of available parameters can be accessed once the framework
has been initialized, with the method GetModulesParameters.
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4.3.4 Time propagation
PEBBLE was developed, among other things, to be able to propagate time information along with
processed data, in order to overcome the challenges described in section 4.2. This rapid analysis
of the importance of timescales in event-based processing have shown different ways time can be
considered and used. In particular, we can set either a timescale for each particular event, or set a
dynamical sensor-wide timescale. For a maximum versatility, and to allow experiments with both
paradigms, the solution implemented uses the framework itself as a time keeper of some sort.

Camera Events

Output : file,  
display, ...

Input

Processing Framework

Camera Events

Camera Events 
Trackers Events

Noise FilterActivity-derived 
Timescale

Object 
Tracking

FrameworkAverageTau()_OnTauRequest()

FrameworkAverageTau()

Figure 4.7 Example of an event-based processing framework highlighting the time
propagation solution implemented in PEBBLE. Each module of the framework can
request a timescale to the framework through the method FrameworkAverageTau.
A module can compute a timescale of its own, and return it with _OnTauRequest.
The framework handles the selection of the highest-level timescale to be returned,
using the order of the modules in the pipeline. In this example, the noise filter
cannot access any timescale from previous modules, and the request returns None.
The object tracking module will be given the timescale returned by the noise filter
if available.

Instead of propagating timescales along with the data, we use two modules class methods which
request a timescale value from the framework. While FrameworkAverageTau asks for the screen-
wide timescale, FrameworkEventTau gives additional information about the ongoing event. The
framework then checks the previous modules12, and returns the highest-level timescale available.
Each module that implements a timescale estimation with the method _OnTauRequest can then
be asked its current timescale value based on various event information. This highly-versatile im-
plementation is an attempt to solve time propagation paradigm inside an event-based development
framework, by allowing simple interactions between modules.

The timescale computed is, by convention, the timescale associated with a CameraEvent. Other
12As the pipeline is oriented, with input modules at the beginning, the order of modules it contains is

highly important.
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type of data, such as DisparityEvent or TwistEvent are expected to have much larger timescales,
as they describe macroscopic values, about the scene or the motion of the sensor. This type of
information changes over timescales orders of magnitude higher than the average lifespan of a
single event. However, both these timescales evolve in a similar fashion w.r.t the signal dynamics.
It is then left to each module to handle these timescales with care once retrieved.

4.3.5 Data interaction

a) Events Updates

One core feature of PEBBLE is its ability to run within the Python Interactive shell. This means
that our framework can be run, and interrupted at any time, keeping all variables in memory.
This especially allows to run short parts of an event stream, and observe the results of the tested
algorithms, at their core.

More precisely, a stream can be processed in two different ways. The first one is a classic event
stream experiment, started with the method RunStream. The function parameters start_at and
stop_at allow to cut that experiment to specific moments of the sequence. At any time, that
process can be interrupted by typing ’q’13. The stream can be resumed with method Resume, as
long as the Python interpreter is still running.

The second way allows to process a single event at the time, by using the pipeline method Next.
This feature allows to monitor at the smallest possible scale the effects of a single event update on
the state of the computation. This especially showed useful for the development of our tracking
algorithms, where trackers behaviour could be precisely analyzed.

b) Dedicated live display

As said previously, the goal of this framework is to rapidly develop and test algorithms, on different
datasets, whether they are synthetic datasets generated at runtime, or stored in files. Using it
inside a Python interpreter allows to gain access to all variables, by pausing the computation,
and to have them kept available once data processing is over. However, an important feature
most framework provide is the ability to visualize data output during processing itself. To that
end, a specific module has been developed which interfaces with a third-party program, called the
Event-Stream Display.

Using a third-party program allows to share the computer load of displaying live data. Indeed, one
rarely need to visualize several live streams at once. On the other hand, it is convenient to be able
to access live visual data from multiple sources at the same place.

This program, written in Python as well for simplicity, can be found at https://github.com/
LDardelet/EventStreamDisplay.

To share data between a running PEBBLE framework and the display, we use a simple UDP
connection, sending raw data to be interpreted and displayed. This simple type of connection
protocol presents a very small overhead to share data between programs. If some data packets
can be lost sometimes with this type of protocol, loosing event-based packets for visualization is
no major problem. Moreover, using this connection on a local machine only generates little to no

13It is advised to use this interrupt rather than the common Python keyboard interruption, as the latter
can be harmful to data integrity.

https://github.com/LDardelet/EventStreamDisplay
https://github.com/LDardelet/EventStreamDisplay
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Figure 4.8 Screenshot of the dedicated event stream display running.

packet loss, while keeping the associated CPU time low.

Additionally, using this protocol to transfer data between processing unit and visualization allows to
deport the processing load on dedicated machines, with more computational power than standard
desktops. One can thus follow the live evolution of multiple processes at the time and on different
machines, with almost no configuration needed.

At the time of writing, most events are compatible with the display. However, all events are
not suited to be displayed on screen. For instance, For instance, TwistEvents described in
section 4.3.2.c are not suited to be plotted as on-screen 2D information. To that end, they are
updated live as text data, as they describe sensor-wide data14.

c) Data monitoring

Each module, along with its specific _OnEventModule function, can perform data monitoring.
The protected keyword _MonitorDt allows to specify a data monitoring time step, and the list
_MonitoredVariables sets up the module class variables one want to save during the run. This
allows for easy data access, as any monitored variable X can be retrieved in the Python interpreter
through:

Xs = Module . His tory [ ’X ’ ]

This data is then automatically saved in a CSV file, inside an experiment-specific folder. This data
saving is done either at the end of the run, or when closing the python interpreter, to make sure
no experiment data is lost.

14Live temporal graphs should be made available in future works, especially for this type of events.
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4.3.6 Conclusion on PEBBLE
This framework was the cornerstone of algorithmic development throughout this thesis. If its imple-
mentation continuously evolved along the years, its philosophy of simplicity and user-friendliness
remained, and allowed to carefully study the results of various algorithms at the scale of a single
event. If time propagation is still an ongoing question, and additional developments are needed to
give all the amplitude necessary to solve it, I believe this framework will help better understand
the importance of time in event-based processing.

To this day, a comprehensive documentation is being written. As stated multiple times, the
framework is designed to make algorithmic development easy. However, this framework will
also need modifications of its own to display a maximum range of features. This complete code
documentation will help interested developers from the neuromorphic community participate in
reaching that goal.





Conclusion and Perspectives

General Conclusion

This PhD thesis introduces a new approach for motion estimation computation from event-based
data. It enforces a fully event-by-event consideration of the stream. Using visual odometry as a
main support, we have shown that the stream of events can be efficiently and correctly processed by
separate processing blocks into higher-level information. Instead of relying on a single, black-box
algorithm, we decompose the data in various forms. These pre-processed values can then be
reassembled to recover sensor motion. Additionally, each computation block presents in itself a
novel way to consider event-based data, allowing a deep understanding of the information carried
by each single event.

Chapter 1 has presented a new, asynchronous way to track visual features, with no prior required
about the shape or a velocity estimation of the tracked object, nor any relation to other objects of
the visual scene. The closed-loop time estimation allows for each tracker to be mostly independent
from the global dynamics of the scene. Moreover, these trackers can handle large changes in the
dynamics of the tracked object. It also presents a new approach to feature selection, by discarding
the detection process that usually takes place before any tracking is possible. Instead, it is the
continuous update of various estimators that serves as a criteria if the considered shape can be
tracked in a non-ambiguous way or not. This approach seems closer to the way humans perceive
objects than usual shape recognition. Rather than looking for specific objects to follow, our vision
is guided by microsaccades, stemming from local shapes motion, much like our trackers react.

The two first computation blocks in chapter 2 present new iterative manner on how to estimate
optical flow and to perform stereo-matching in an asynchronous way. They have demonstrated
state-of-the-art accuracy, while keeping the latency as low as possible by selecting the minimum
amount of needed data. The third block carries on in this fully event-driven paradigm, and allows
to estimate sensors’ velocities in a unique way. This feature opens a new field of applications for
neuromorphic engineering, as it only requires passive vision.

Chapter 3 has shown a way to fuse data extracted at two different temporal levels into a single
model, while taking advantage of the punctual and asynchronous nature of events as timesteps for
the computation. Using them as such allows the model to adapt itself to large changes in dynamics.

Finally, the methods and the data analysis described in the chapter 4 show the core ideas that
should drive - in our opinion - proper event-based computation: time must be considered as the
most important dimension of visual event-based data. The software presented in this chapter is a
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convenient tool to process event-based data and to analyze inputs and outputs of an algorithm
at the scale of a single event. We believe that using such tools can help better understand the
fundamentals and dynamics of event-based processing, rather than simply comparing an algorithm
output to a ground-truth as it is often the case.

From a more general perspective, we have shown that event-by-event processing allows to compute
a visual odometry. More importantly, we have shown that the proper consideration of time is a
key ingredient for robust event-based computation. We thus believe that this dynamical approach
of time could not only improve existing algorithms that rely on fixed timescales, but also create
guidelines for developing more efficient algorithms in the future. It fundamentally switches the
way data is seen, from fixed temporal slices composed of binned events, to coherent sets of events
with the right amount of information to process.
We have also shown that if the presented framework is not optimized for computation speed,
such a development environment allows for a proper, time-based, consideration of the data. It
enforces that algorithms are designed with an "event-by-event" approach. As such, we hope that
it will help to implement new algorithms based on this new approach to neuromorphic computation.

This finally comes back to the screensaver example presented in figure 3.1. Humans can estimate
the motion from a monocular view, simply because all the necessary information is available from
this single view. Neuromorphic sensors only change the way the data is being recorded and treated,
but the crucial motion information remains. There is no doubt that pose can be recovered from
purely passive visual sensors, as long as that data is processed in the right way. We believe that
our work helped paving the way towards this fundamental understanding of the data, by presenting
a new way of considering it.

Perspectives for Neuromorphic Engineering

As we have seen throughout this work, while many theoretical considerations have been presented,
and if most are confirmed by proofs of concept, our models still require more experiments, with
additional ground-truth assessment, along with a larger variety of visual scenes. The lack of
data-complete stereo datasets to run experiments on, especially with pose information, should be
addressed.

An efficiency optimization of our framework is also envisioned. Indeed, even though that frame-
work was never meant to be computationally efficient, as the primary goal has been ergonomy
and data management from the get-go, the extremely slow data processing made experiments
time-consuming, inherently constraining the number of iterations possible on our algorithms.

Some improvements of the proposed algorithms are also considered. The optical flow, as presented
in section 2.2.1, is not as accurate as one could hope. We believe the x/y axis rejection process
can be changed by an angle-amplitude one. This should improve the quality of the optical flow, by
making it more detached to the square matrix it relies upon. Also, the vidual odometer proposed, if
stable in most cases, has shown limitations for extreme variations of the dynamics, where keypoints
estimated locations get further and further away from their theoretical locations. We believe
modifications of the model, allowing a displacement margin for those keypoints based upon an
estimated error could help both stabilizing the system, while also reducing the constant drift
inherent to 3D points estimation. Also, setting up keypoint recognition to cancel out this drift is a
necessary step to improve our method, from a simple pose and displacement estimation to a more
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advanced environment interaction tool.

However, the most important work started here - in my opinion - is the timescale study for
neuromorphic computation. Its implication extends to many more fields than vision processing,
and other sensors like neuromorphic cochleas could also benefit from a dynamical approach. For
data-driven acquisition, with data being received when changes occur, the study of time should be
the cornerstone for event-based algorithmic development.

Finally, I believe that a major investigation has to be made about the way event-based processing
can be parallelized. If this can seen counter-intuitive, as the parallel implementation of an algorithm
is usually based on the nature of the hardware it runs on, I think we can reverse the problem.
We need to find how multiple events could be processed at the same time, while still ensuring
causality and data ordering. This, I think, would help designing dedicated neuromorphic hardware,
as it would uncover one of its fundamental guidelines. Indeed, neuromorphic hardware does exist,
but what struck me during these years of PhD was the lack of development of chips outside of
SNNs boards. If SNNs are one of the main neuromorphic developments, and the event-based
version of ANNs, they are not the only possibility for event-based computation. As we have shown
throughout this work, deterministic algorithms are a class of methods of their own that would
greatly benefit from dedicated hardware. However, such hardware is nowhere to be found. Current
computers architectures are definitely no optimized for single pixel updates, which are the very
basis of this field.
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