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A B S T R A C T

The traction battery of an electric vehicle is a key component. It is
also a sensitive system for which the voltage and temperature of the
cells it is made of must be kept in a given working range. This is
the role of the Battery Management System (BMS). The BMS is made
of subsystems, called Cells Sensor Units (CSU), which supervise the
cells and report their state to a central component named Master
Control Unit (MCU). Moreover, they are in charge of performing
battery cells balancing, as cells do not have exactly equal capacity, and
imbalance between them may appear with usage over time, when they
are wired in series. In current BMS implementations, this periodic
communication is performed through wires. In this work, we have
studied the possibility to replace this wired communication with a
wireless medium, by using standardized protocol stack of the Internet
of Things (IoT).

After evaluating different communication protocols, we have chosen
to base our work on IEEE Std. 802.15.4-2015 Time Slotted Channel
Hopping (TSCH). We first have tested this protocol within an battery
pack environment, through experimentation, using actual wireless
capable nodes. Thus, we were able to determine that the radio links
quality is high, that the car’s engine electromagnetic emissions should
not interfere with the wireless communication, and that most of the
problems would come from other users of the 2.4GHz band, and
Wi-Fi in particular. We then have sought to determine what the most
adapted topology and scheduling management strategies for such
a scenario are. To this end, we have proposed two algorithms for
centralized network management, based on the Linear Programming
and Simple Descent techniques, in order to optimize the topology
and slotframe. Considering that many parameters are involved in
this optimization work, we have therefore evaluated our algorithms
under various setups, and used the results to determine what the
best values for these algorithms parameters are. Moreover, we have
proposed a routing protocol, which makes use of these algorithms in
an iterative way to compute the best possible topology and slotframe,
and which allows to propagate the decisions of the centralized network
manager to the nodes. This protocol, heavily inspired by the Routing
Protocol for Low-Power and Lossy Networks (RPL), relies on periodic
messages and asynchronous events to keep the wireless nodes up-to-
date with the latest network manager decision. Finally, we have tested
this solution with a network of objects in a vehicular environment.
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R É S U M É

La batterie de traction du véhicule électrique est un composant clé.
C’est aussi un système sensible dont la tension et la température des
cellules qui le composent doivent être maintenues dans des plages
de fonctionnement bien définies. Garantir cela est le rôle du Battery
Management System (BMS). Le BMS est composé de sous-systèmes,
appelés Cells Sensor Units (CSU), qui supervisent les cellules et rappor-
tent leur état à un composant central, le Master Control Unit (MCU).
Ils ont aussi pour tâche d’effectuer l’équilibrage des cellules, comme
celles-ci n’ont pas exactement la même capacité, et du déséquilibre
peut apparaître entre-elles au fur et à mesure de leur utilisation, quand
elles sont câblées en série. Dans les implémentations de BMS actuelles,
cette communication périodique est effectuée de manière filaire. Dans
ce travail nous avons étudié la possibilité de remplacer ce réseau
de communication par un réseau sans-fil, en utilisant les protocoles
standardisés de l’Internet des Objets.

Nous avons évalué les divers protocoles de communication disponibles,
et avons choisi de baser nos travaux sur IEEE Std. 802.15.4-2015 Time
Slotted Channel Hopping (TSCH). Tout d’abord, nous avons testé ce
protocole à l’intérieur d’un pack batterie, au travers d’expériences,
grâce à des nœuds sans-fil qui l’utilisent. Avec ceci, nous avons été
capables de déterminer que la qualité des liens est élevée, que les émis-
sions d’ondes électromagnétiques venant du moteur ne devraient pas
impacter le réseau sans-fil, et que la plupart des problèmes qui peu-
vent surgir viennent des autres utilisateurs de la bande 2,4GHz, et du
Wi-Fi en particulier. Nous avons ensuite cherché à déterminer quelles
sont les stratégies de gestion de la topologie et d’ordonnancement
des transmission qui sont les plus adaptées à un tel scénario. Nous
avons proposé deux algorithmes pour une gestion centralisée du
réseau, basés sur les techniques de Programmation Linéaire et Simple
Descente, afin d’optimiser la topologie et la slotframe. De nombreux
paramètres sont utilisés dans ce travail d’optimisation, alors nous
avons testé nos algorithmes dans un grand nombre de scénarios, et
utilisé les résultats pour déterminer quelles seraient les meilleurs
valeurs pour ces paramètres. Aussi, nous avons proposé un proto-
cole de routage, utilisant ces algorithmes de manière itérative, pour
générer la meilleure topologie et slotframe possible, et qui permet de
propager les décisions du gestionnaire de réseau centralisé aux nœuds.
Ce protocole, largement inspiré de Routing Protocol for Low-Power and
Lossy Networks (RPL), se base sur des messages périodiques et des
événements asynchrones pour garder l’information détenue par les
nœuds à jour, sur la base des décisions du gestionnaire de réseau.
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Enfin, nous avons testé cette solution avec un réseau d’objets dans un
environnement véhiculaire.
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1
I N T R O D U C T I O N

1.1 context and motivations

1.1.1 Electric Vehicles and Lithium-Ion batteries

The first electric car in history was made in the 19th century. It rapidly
became, together with the internal combustion engine car, an attractive
solution to replace horses for moving vehicles. Actually, the first
electric car ever built is attributed to french engineer Gustave Trouvé,
in 1881. The first car to ever cross the 100 km/h limit, in 1899, was
also electric, named the “Jamais contente”, visible in Figure 1.1 1.

But this success has not been enough to push adoption of electric
cars forward, and only the cars using internal combustion engine were
widely adopted in the course of the 20th century. It is only in the 1990s
that a commercial electric car designed for mass production appeared
again, the “EV1” made by General Motors. It has been possible thanks
to the emergence of the new NiMH battery chemistries. Nowadays,
with the new Lithium-Ion batteries, electric cars benefit from a range
comparable to the one of those that are propelled by an internal
combustion engine, and their adoption increases everyday. They are
also considered to be part of the solution to fight climate change [4].

These new Lithium-Ion chemistries, with a nominal voltage around
either 3.3V or 3.7V, have a higher energy and weight density than
previous existing chemistries. Which makes them a very appealing
solution for electrical storage in Electric Vehicles (EVs). However,
they are sensitive devices, and for their safe operation, their voltage

1 This image, from an unknown author, is in public domain, available at
<https://commons.wikimedia.org/wiki/File:Jamais_contente_
parade.jpg?uselang=fr>.

Figure 1.1: The “Jamais contente” electric car, after it crossed the 100km/h
limit.

1

https://commons.wikimedia.org/wiki/File:Jamais_contente_parade.jpg ?uselang=fr
https://commons.wikimedia.org/wiki/File:Jamais_contente_parade.jpg ?uselang=fr


2 introduction

Safety

Window

Fire

Cell breakdown

2.5 4.2

-13
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Figure 1.2: Battery cell safety window, based on temperature and voltage
acceptable range. Values are given for reference only and may
vary depending on cell chemistry and manufacturer.

and temperature must remain in a certain range [5]. If the voltage
or temperature would go below the specified value, the cell can be
deteriorated. If these values go above the maximum specified, the cell
may burn.

For a typical Lithium-Ion cell, the voltage has to remain in the
[2.5; 4.2] V range, and the temperature in the [−13; 60] °C range. This
range of values is referred to as the cell’s safety window. An example
of it is shown in Figure 1.2. Please note that the values here are given
for reference only, and may vary depending on cell chemistry and
manufacturer.

A Lithium-Ion cell, or battery pack, is a complex device, with many
non-linearities. While the remaining energy available in the fuel tank
of an internal combustion engine car can be easily monitored by mea-
suring a float’s position, determining the remaining energy in a battery
cell is a complex task. The cell’s Open-Circuit Voltage (OCV), which
is easy to measure, varies non-linearly with State of Charge (SOC),
but also depends on temperature [9]. Furthermore, a cell’s voltage
will change depending on the charging or discharging current [16].
It is higher as the incoming current increases, and goes down as the
outgoing current increases. This phenomenon is called hysteresis, as
seen in Figure 1.3 [12]. Please note this figure has been made from
generated data with a simulator we implemented, directly based on
the equations proposed in [6, 11] and [7], and may not be accurate.
The idea here is to show the overall shape of the curve, non-linearities,
and hysteresis phenomenon.

These complex phenomena also have an impact on the battery
charging process. When charging a battery, first there is a phase in
which the charging process is driven in terms of current: the current
must not exceed a certain value given by the manufacturer, but also
a smaller charging current preserves the battery capacity. This is
referred to as the Constant Current phase. Then, when the maximum
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Figure 1.3: Voltage as a function of SOC curve for charging and discharging
a battery cell. This plot has been generated from simulated data,
and may not be accurate.

Figure 1.4: Voltage and current curve during the charging process of an
electric scooter. This plot comes from an experiment on a real
battery. Constant current and constant voltage phases are clearly
visible, with the switch happening at nearly 1000 seconds.
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voltage of the pack is reached, the charging process is driven based
on voltage. This is the constant voltage phase, in which the current
decreases slowly. An example of charging a pack with 10 cells in
series is provided in Figure 1.4. In this figure, the two phases of
the charging process are clearly visible. This plot has been made by
recording the voltage and current values during the charging process
of a lightweight scooter by our intern, starting at a SOC of around
90% 2.

1.1.2 Battery Management Systems

1.1.2.1 Battery Management System: purposes and implementation

The Battery Management System (BMS) serves several purposes. First
it monitors the individual cell for them to remain in the voltage and
temperature range specified by the cell’s manufacturer often referred
to as the cell’s safety window. So the first purpose of the BMS is to
make the usage of the pack safer. It does so by allowing the current
to flow in and out the pack, either by allowing any other equipment
on the Controller Area Network (CAN) bus to draw current from the
battery or not, or by controlling a power relay placed on one of the
terminals of the battery pack. Should the BMS fail to do so, the battery
may be deteriorated if the voltage or temperature goes to low, or burn
if one of these parameters goes too high.

It also calculates the SOC of each individual cell [13]. Older SOC
calculation methods used OCV together with Coulomb Counting, and
newer methods use Kalman Filtering [7]. To provide SOC calculation
features, it periodically retrieves the voltage information for each cell.
The sampling period of this data depends on the implementation, but
the order of magnitude is usually around 500ms [15], [17]. It is safe to
assume that the data sampling period will be in the 100ms to 1s range,
a lower period meaning a more accurate SOC estimation. If the cell
data can not be collected, the BMS can not ensure the safe operation
of the pack, and the vehicle should stop to function.

The capacity of each cell slowly decreases over time and with usage.
This capacity loss is expressed by a variable called State of Health
(SOH), and is also estimated by the BMS.

In a battery pack, the battery cells can be wired both in parallel and
in series. When the cells are added in parallel, they tend to balance
each other: the most charge cells will naturally discharge in the least
charged cell. When they are wired in series, imbalance may appear
with usage, so the BMS has to balance them. The cells topology in the
pack is often referred to as XS YP, where Y is the number of cells in
Parallel, and X is the number of branches which are wired in Series.

2 The results of this experiment and plot have been made available here through the
courtesy of Florent Thebaut. Used with permission.
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EV Model Nom.
Volt-
age

Capacity Max
engine
power

Number
of
cells

Pack
Weight

Cell
capac-
ity

Renault Zoé 400V 41kWh 80kW 96S2P 290kg 214Wh
Nissan Leaf 350V 40kWh 110kW 96S2P 303kg 206Wh
BMW i3 elec-
tric

352V 42.2kWh 125kW 96S 1p 208kg
e

439Wh

VW eGolf 323V 35.8kWh 100kW 88S3P —kg 135Wh
Tesla Model
S

350V 100kWh 375kW 8 256

(96S
86P e)

625kg 12.1Wh
e

Table 1.1: Information available from the Web about some well known electric
cars.

For example, 96S1P and 96S2P are popular topologies in commercial
electric cars, which give an output voltage between 350 and 400V.

A summary of some well known cars battery topology is presented
in Table 1.1, using this terminology3. In this table, "e" means this num-
ber has been estimated, or deduced, from the information available
online. In this table, a voltage of 400V is given for the Renault Zoé.
This is most likely the charging voltage of the pack, which is also the
maximum voltage the pack can have. Other manufacturers give the
nominal voltage of the pack, which is the voltage around 50% SOC.
This is also the voltage observed in the portion of the voltage as a
function of SOC curve that is relatively flat, as has been presented in
Figure 1.3.

Many balancing strategies can be found in the literature. They can
be split into two categories [22], [23]:

• Passive balancing: this method aims to dissipate the excess of
energy of the most charged cells into resistors. It has the advan-
tage to be easy to implement and cheap, but involves an energy
loss. This is the method that is used most often.

• Active balancing: this method most often consists in transferring
energy from the most charged cells to a lesser charged cell. It is
more energy efficient. However, it involves a greater complexity
in the BMS implementation. An active balancing methods may
even extend an electric car’s range, as it optimizes the battery
usage.

A diagram of passive balancing is displayed on Figure 1.5. This
circuit is duplicated for each cell in a series. The switch is in fact a
transistor, and it is an Integrated Circuit (IC) that controls it with a
digital signal, to let the current flow or not. Balancing can be performed

3 Links to the information for each car: Renault Zoé, Nissan Leaf, BMW i3, VW eGolf,
Tesla link 1, Tesla link 2, Tesla link 3, Tesla link 4

https://www.challenges.fr/assets/referentiel/file/5385744.pdf
https://pushevs.com/2018/01/29/2018-nissan-leaf-battery-real-specs
https://pushevs.com/2018/04/05/samsung-sdi-94-ah-battery-cell-full-specifications
https://pushevs.com/2017/06/05/volkswagen-e-golf-8-get-48-kwh-battery
https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf
https://evannex.com/blogs/news/understanding-teslas-lithium-ion-batteries
https://teslamotorsclub.com/tmc/threads/wk057-tesla-model-s-battery-weight.106143
http://www.evwest.com/catalog/product_info.php?products_id=463
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R

Switch: controlled

by the CSU

+

Figure 1.5: Passive balancing of a battery cell: electric diagram.

at any time, but is easier to do when the battery is almost full, as the
SOC difference between the cells is more obvious, see Figure 1.3.

Moreover, the BMS will also qualify the overall state of the battery
pack and report it (as well as any fault) to the rest of the vehicle
through the CAN bus. For example to display this data on the vehicle’s
dashboard. Depending on how it is implemented, it may also keep
track of the evolution of the battery parameters in a log file.

As the number of cells in today’s electric car is quite large (usually
equal to 96 cells in the series), the BMS is implemented as a distributed
system. Its submodules, often referred to as Cell Sensor Unit (CSU) (or
"Cells Supervision Unit"), report their data and follow the commands
of a Master Control Unit (MCU). These submodules are connected to
the MCU through a traditional wired bus (like Serial Peripheral Inter-
face (SPI) or Universal Asynchronous Receiver Transmitter (UART)),
usually in a daisy-chain.

Most messages sent from the CSUs to the MCU are cells voltage
and temperature data. These are the messages that matter the most,
as they allow the MCU to perform its safety oriented tasks, but also to
calculate the SOC of each cell, and thus the overall SOC of the pack.
Other messages are exchanged over the link between MCU and CSUs.
One of them that is important is the balancing command, in which
the MCU tells a CSU which cell to balance, in the series it monitors.

A battery pack is organized in modules. Each module is a set of
cells, with a CSU to monitor them.

A simplified diagram of a BMS, implemented as a distributed sys-
tem, is shown in Figure 1.6. Please note that this figure shows the
current sensor as part of the BMS, but it may actually be located
outside, and its data accessed through CAN.

1.1.2.2 A closer look at what a CSU is

A CSU board is designed around an Application Specific Integrated
Circuit (ASIC), also sometimes referred to as analog front-end, which
will actually do the measurements of voltage and temperature values,
using the Analog to Digital Converters (ADCs) contained in its pack-
age. It will also perform the actual cell discharge operation by closing
a switch that will allow any cell to be discharged into a resistor for pas-
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Figure 1.6: BMS simplified diagram, example for a 96S2P topology.

sive balancing operations, as shown in Figure 1.5. Actually this switch
is a Metal Oxide Semiconductor Field Effect Transistor (MOSFET), also
contained in the package of the ASIC, which is made conductive upon
reception of a balancing command from the MCU. The CSU also has
communicating capabilities, as discussed in Section 2.2, to send data
to, and receive orders from the MCU. It can also forward messages
between the MCU and other nodes, should the device be part of a
daisy-chain4. A simplified view of a CSU and its features is shown in
Figure 1.7. The board represented in the diagram would be the first in
the daisy-chain, as it has a direct communication link with the MCU.

1.1.2.3 A word on complexity, redundancy, and software implementation

According to [14], as BMS is a safety oriented device, its design must be
kept simple, both from hardware and software perspective. Designing
a BMS is a long and complex process, and a lot of care has to be
taken in selecting the hardware parts that will be used. Moreover,
according to the author, the behavior of a BMS software must be
deterministic. Especially in a tragic event like a car crash, in which the
BMS should have the ability to disconnect the high voltage power rail
from the rest of the vehicle. A real time operating system should be
used, to make sure the tasks are performed on time. The author makes
several important recommendations, like this one: “dynamic memory
allocation should be avoided for safety critical embedded systems”.

4 For light EVs, like eBikes and small scooters, there is only one CSU, which is located
on the same board as the MCU.
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Figure 1.7: CSU simplified diagram, example for monitoring a 4 cells series,
and with 2 temperature sensors.

Finally, the software should be kept as simple as possible, to make it
easier for developers to debug it, and make problems more obvious.
The author summarizes this principle with this phrase, saying the
design should be kept “as low as reasonably practicable”. Overall,
simplicity brings huge upsides in BMS design.

1.1.3 The IoT stack and well known IoT protocols

According to what has been discussed so far, there is a necessity to
provide communication means between battery subsystems. Looking
at what is happening in the fields of digital networks may help to
improve them.

The traditional Transmission Control Protocol (TCP) and Internet
Protocol version 6 (IPv6) stack have proven their efficiency for devel-
oping applications that use a network. These standards have been
designed for devices with important computing power, and high
datarate links. However, these protocols are often too heavy for em-
bedded systems with constrained links. New protocols have been
introduced to allow such objects to use the protocols of the Web. These
networks of small, embedded devices, with limited computing capa-
bility, constrained links, and often limited energy supply, are referred
to as Wireless Sensor Networks (WSN), and the field that studies them
is called Internet of Things (IoT).

The IEEE 802.15.4 standard [26], according to its abstract, is for
“data communication devices using low-data-rate, low-power, and low-
complexity short-range radio frequency transmissions in a wireless
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Figure 1.8: Star and mesh topology example.

personal area network”. The first version of it was released in 2003.
Here, we refer to the 2015 version, that introduced Time Slotted Chan-
nel Hopping (TSCH). It is a mechanism that significantly increases
reliability, while allowing for parallel transmissions, increasing the
throughput in the network. This standard is one of the most appealing
solution to build IoT networks.

This standard allows for two kind of topologies:

• Star topology, in which the nodes participating in the network
communicate only with the Personal Area Network (PAN) coor-
dinator.

• The peer to peer technology, in which nodes may communicate
with each other as well as with the PAN coordinator.

The latter is used to form mesh networks, where the packets can do
several hops before reaching their destination. In this case routing is
performed by a higher layer. An example of star and mesh topology is
presented in Figure 1.8.

In a WSN, the network layer, and the way it works is different from
traditional IPv6. To keep the flexibility of the Internet, an adaptation
layer is used: IPv6 over Low-Power Wireless Personal Area Networks
(6LowPAN) [28]. With this, any node on the Internet may reach a
node in the IoT network in a transparent way using IPv6. The role of
6LowPAN is to perform this adaptation while keeping the network
layer headers small.

IoT networks may have complex topologies, which may evolve
dynamically. They are referred to as mesh networks. When a packet is
carried through the network, it must be routed towards its destination.
It is the role of the routing protocol to perform this task. And in
most cases this protocol is Routing Protocol for Low-Power and Lossy
Networks (RPL) [27]. RPL also has self configuration and management
features in order to build the topology, based on link layer quality and
how they evolve. RPL may also take into account the battery level of
the devices, depending on the Objective Function (OF) that is used.

To keep a small size for the packets going through the IoT network,
the User Datagram Protocol (UDP) [29] protocol is preferred to TCP.
As it is simple, its main upsides are its small header, and small memory
footprint in the devices that implement it.
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At the application layer, Constrained Application Protocol (CoAP) [30]
is the Hypertext Transfer Protocol (HTTP) equivalent for IoT. It is a
lighter protocol that reuses the powerful concept of Representational
State Transfer (REST) Application Programming Interface (API). In
particular, it also has the concept of client and server relationship, with
the state of the communication maintained by the client application. It
also uses response codes to indicate the kind of response message that
is sent, which are again very similar to those in HTTP. The standard
specifies that CoAP is used on top of UDP. As this transport layer does
not have an acknowledgment and retransmission mechanism, CoAP
has its own acknowledgment mechanism to make the exchanges more
reliable.

An overview of the Web and IoT protocol stacks are displayed in
Figure 1.9.

Application

Transport

Network

6LowPAN

IEEE 802.15.4-TSCH

CoAP

UDP

Adaptation

Web protocol stack IoT protocol stack

Link & Physical Ethernet, Wi-Fi…

HTTP

TCP

IPv6 RPL

Application

Transport

Network

Link & Physical

Figure 1.9: Open Systems Interconnection (OSI) model of classical and IoT
protocol stacks.

1.1.4 Appeal for wireless communication in BMS

Using wireless communication for a BMS application is not the default
choice. Copper wires are simple and inexpensive. Using wireless com-
munication links means replacing them with specific microcontrollers
that can handle the constraints on Quality of Service (QoS).

Still, there may be upsides in using wireless communication. Remov-
ing wires simplifies the assembly procedure, but also saves space and
weight, which may have its importance. Having a microcontroller on
each CSU also means that the cell data processing can be distributed.
Moreover, the information may be stored locally, and reused later,
even in the event where the cells are reused in another application.
This is known as the “second life” of the battery [24].

In a typical BMS, as the CSUs do not share the same voltage refer-
ence (or ground), some additional isolation system must be used on
the wired communication bus. This is often provided within the pack-
age of the ASIC around which the CSU is built. This extra isolation is
not required anymore with wireless communication.

Another key aspect for wireless communication to be attractive is
power consumption. The order of magnitude of the power consumed
by the wireless devices used for the BMS application has to be similar



1.1 context and motivations 11

O
U
T
P
U
T

+ Vcc Bat

CSU 1

Radio

Cells Supervision

Master
Control

Unit (MCU)

CAN

CPU

CSU N

Radio

Cells Supervision
Current
Sensor

Radio

CSU 2

Radio

Cells Supervision

Radio

Figure 1.10: BMS with wireless communications concept.

to the power consumed by wired devices, as this change should not
have an impact on the vehicle’s range. This consideration is further
discussed in Sections 2.3.7 and 6.2.2.

The idea that the internal BMS communication wired buses may
be replaced by wireless links is shown in Figure 1.10. Note that on
this figure the current sensor is also shown as a wireless node, but it
may also remain an entity external to the BMS, with traditional wired
communication link.

In this design, the CSU would be built around two main chips:
still an Analog front-end, to measure the voltage and temperature
data, and an embedded Central Processing Unit (CPU) capable of
communicating with both the analog front-end and other devices on
the wireless network.

1.1.4.1 Using an IoT stack in the context of a BMS with wireless communi-
cation

In a BMS with wireless communication, most of the application layer
packet will contain voltage and temperature data. Any of these values,
measured by an ADC within the analog front-end chip on the CSU, is
stored in 2 bytes. Also, the sampling period of these values should be
small, around 500ms [15], [17].

In a TSCH network, the time is divided into timeslots, which repeat
over time, according to a pattern called a slotframe. During a timeslot,
a pair of nodes may communicate, which means exchanging a frame
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containing data and an acknowledgment. With a typical IEEE 802.15.4
with TSCH mode at the Medium Access Control (MAC) layer, the
timeslot is 10ms, which means the data should be transferred to the
master node every 50 slots, considering a typical BMS sampling rate. If
we decide to dedicate half of these slots to the voltage and temperature
collection part of the BMS application traffic, the upper bound in terms
of dedicated slots for this in the slotframe is then 25.

As a typical CSU monitors between 6 and 12 cells, and has usually
2 temperature sensors, a CSU data packet is between 16 and 28 bytes.
As a typical packet sent over a IEEE 802.15.4 network will have a max-
imum size of 70 bytes, it is possible to use aggregation at application
layer. This is part of what we proposed. Mainly to reduce the number
of receiving timeslots at the root node, and leave more space to other
packets in the network. This is further discussed in Section 2.4.3.

Although CoAP has many interesting features and allows for flexible
applications, it also adds an overhead to the messages of at least 4

bytes [30], while in the case of the voltage and temperature monitoring
part of the BMS application the traffic pattern is really simple and well
known.

What we suggest to do is to use a custom application packet format
on top of UDP for the voltage and temperature monitoring part of the
application, and use a CoAP server on the CSU nodes for the other
features. A CoAP resource could even be used to turn on and off the
sending of the voltage data from the CSUs.

1.2 contributions

The purpose of this work is not to determine whether or not BMS
with wireless communication is the right approach to manage commu-
nications between BMS subsystems. Instead, our goal is to determine
if it is feasible, and how is the best way to do it. To this aim, we
study wireless network protocols, select the one that seems the more
appropriate, and propose ways to optimize network management for
such a use case.

The contributions contained in this document are as follow:

state of the art As many protocols are available for wireless
communication, we provide a state of the art on these technologies,
but also the main characteristics of BMS communications as it is
implemented today, and the previous efforts that have been done to
make BMS with wireless communication possible.

measurement of the performance of an iot network in-
side an ev pack To determine what is the impact of an EV envi-
ronment on a WSN, and the interior of a battery pack in particular,
we did several experiments. The goal here was to determine what
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would cause packet losses, and what was the influence of position and
battery pack enclosure on link Packet Delivery Ratio (PDR).

linear programming approach for network management

Based on the experimental results obtained, we proposed a network
management strategy using Linear Programming (LP). It is central-
ized and based on the knowledge of link quality. The outputs of
this technique are not only the IoT network topology, but also the
transmissions schedule.

simple descent approach for network management The
previously mentioned network management method can be improved,
especially in terms of computing power and processing time. So we
propose a network management method which is more suitable for
embedded devices, and appropriate for BMS with wireless communi-
cation.

network protocol to propagate the decisions As a cen-
tralized controller manages the network in the approach we have
taken, a protocol is required to propagate the decisions. Our protocol
manages the joining procedure, topology and slotframe updates, and
includes a few repair mechanisms.

real world experiment to evaluate the proposed tech-
niques In order to show that the proposed network management
strategy and protocol work, we did an experiment with a WSN within
a battery pack. The results show that it is efficient, but also that there
is room for improvement.

1.3 outline

This thesis is organized in 6 chapters. In Chapter 2, we present a
state of the art on wireless communications for IoT with a focus on
BMS with wireless communications. In Chapter 3, we experiment
with some IoT networks within an EV battery pack environment.
From the results that have been obtained, we elaborate a centralized
network management strategy in Chapter 4. As the decisions from the
centralized controller need to be propagated to the network nodes,
we propose a new mesh network management protocol in Chapter 5.
Finally, we give conclusions and perspectives for future works in
Chapter 6.





2
S TAT E O F T H E A RT

2.1 introduction

BMS and IoT networks are complex and deep research topics. Many
research papers and articles cover them, but rarely the two together,
as BMS with wireless communication is a relatively new topic. In
this chapter, we start by studying how data is exchanged in a BMS
that uses wired buses for communication between its subsystems. We
also provide a review of several layer 2 and above protocols that are
available to create a WSN. We also mention other experiments and
attempts at creating a BMS with wireless communication. We explain
why our choice settled on IEEE Std. 802.15.4-2015 with TSCH. Finally,
we describe the methodology used to build this state of the art review.

2.2 a closer look at the communication between bms

submodules

The data that is exchanged between the MCU and CSUs, is tradition-
ally carried over a Inter-Integrated Circuit (I2C), SPI, or UART bus.
The communication in this link is using a binary protocol, designed by
the ASIC manufacturer around which the CSU board is built. The data
exchanged is mostly the cell voltage, and temperature. Each sampled
voltage or temperature value is encoded over 2 bytes.

The MCU can also trigger balancing for one or more cells at each
CSU. The information about which cell should have balancing enabled
is usually encoded in a bitmask, where each bit represents the state of
a cell.

The size of the frames for these messages will then heavily depend
on how many cells are supervised by each CSU.

As said in section 1.1.2.1, the sampling rate of the battery data is
dictated by how the MCU has been designed, and has a value of
around 500ms.

2.2.1 Looking at some implementations

In [18], the author reports on the implementation of a multi-cell, dis-
tributed BMS based on some bq76PL536 for the CSUs, and a MSP430

to build the MCU board. In the documentation and code which is
provided with the project’s report, a few indications on how the MCU
communicates with the CSU, and how often, are provided.

15
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For example, the under/over voltage detection, and over temper-
ature detection is configured to be 2 seconds, meaning that if, for
example, the CSU detects a voltage that is too high for more than two
seconds, it will report an alarm. For data gathering in normal oper-
ation, it is triggered by a timer, set to 1 second. The communication
between the submodule is request/response, and triggered by the
Master, using a SPI bus.

The LTC6803-1 datasheet (from Linear Technology / Analog De-
vices) also refers to an evaluation interval which can be set between
13ms and 2 seconds for over/under voltage detection [19]. In this
document, it is said that reading all ADCs takes 16.4ms. It is also
stated there that reading the voltage of all the 12 cells of 3 CSUs, and
reports a total time of 472µs for the whole messaging sequence (with
a SPI bus speed of 1MHz). In this document, they also describe the
messages and their sizes, which are a few bytes long, at most.

A simple BMS can be implemented with an IC providing a reduced
set of features, such as the TI bq2947. This device only provides over-
voltage detection, which is controlled by a simple timer system. This
timer value can be selected between 1 and 2 seconds, by properly
selecting the value of a capacitor [20, page 6].

2.2.1.1 More details with the bq76PL455A-Q1

More information can be found in the datasheet of the bq76PL455A-Q1

from Texas Instruments. This chip is a typical component to build a
CSU board around it, managing up to 16 cells, and is quite recent
(first released in 2015). This chip uses a UART daisy chain bus for
communication between the MCU and CSUs.

uart messages format The communication protocol with this
device is as follows. The MCU always initiates the communication
with a request to one or more devices. A request is at least 5 bytes (plus
the size of the data) [21, page 50 to 65]. The request frame structure is:
frame initialization byte, device/group address byte, register address
byte (may be 2 bytes), data byte(s) (usually 1, 5 or 6), and Cyclic
Redundancy Check (CRC) bytes (2 bytes). A typical request is thus
6 bytes long. The size of a response frame is similar, with one frame
initialization byte, at least one data byte (maximum is 128), and 2 CRC
bytes.

Not all requests will trigger a response, this behavior depends on
the type of the request. Requests may target a single device, a group
of devices, or be broadcast.

The information that can be exchanged with the device is stored
in registers, that are 1 to 8 bytes long, big endian. The information
available there is about cell voltage, over/under voltage detection,
temperature measurement, and fault reporting. Also, some registers
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are used to control balancing. Finally, some registers are used to
request specific tests within the chip.

How to retrieve the information contained in the input channels
(meaning the battery cell voltage) is described in page 57, and reports
a 6 bytes long request, and a 35 bytes long response. Indeed, retrieving
the voltage values of all the channels requires 2 bytes per channel, and
there are up to 16 of them. The rest is one frame initialization byte,
and 2 CRC bytes.

So if the whole 8 auxiliary channels are requested (e.g. containing
temperature values), in addition to the 16 “regular” channels, this will
be a frame of size (16+ 8) ∗ 2+ 3 = 51 bytes. And thus, if we take
a request command such as the one described on page 60 that is 11

bytes long, this is a total of 62 bytes exchanged to request the whole
channels values of a CSU.

If we consider a battery pack made of a 96 cells series (a typical
number of cells, as can be seen from Table 1.1), it will need 6 CSUs
that can handle 16 cells each. So it will require a data exchange of
6 ∗ 51+ 11 = 317 bytes to get the values of all the channels in the whole
pack. At the default speed of 250kb/s, and with 10 bits long bytes (see
page 30), the time to retrieve the values of all the 144 channels in the
pack is:

T =
317× 10
250000

= 12.68 ms (2.1)

additional information about communication speed and

delay for this ic This chip uses a UART communication bus,
which can be configured: “The baud rate of the communications
channel to the microcontroller is set [. . . ] for 125k-250k-500k-1M baud
rates. The default rate after a communication reset is 250k.” [21, page
30]

When the device is in sleep mode, wakeup requires approximately
1ms [21, page 14].

daisy chain uart When daisy chain UART is used, all devices
in the chain see the packets, that are forwarded through each device
in the chain (even the device the packet is not destined to). This bus
carries data at 4Mb/s, or 250ns per bit [21, page 33]. The host device
still communicates with the device at the bottom of the chain at a
maximum of 1Mb/s.

other delays to consider Another delay to consider is the
sampling time of the ADCs. It generally has a value of 12.6µs, and
can go up to 1ms. The measurement can be performed multiple times
(from 2 to 32), and the IC can then return the average of the measured
values [21, page 26]. This behavior is often called oversampling.
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The device also has an “Auto-Monitor” feature, which allows the
device to periodically measure data. It can be set between 1ms and
1h.

2.2.1.2 Conclusions on communication between BMS submodules

From what has been described in this section, the following ideas can
be pointed out:

• The data frames to and from a CSU IC are usually around 10

bytes long, and up to approximately 50 bytes.

• Communication using traditional wired buses is very fast: less
than 500µs for a request / response pair, usually around 100 µs,
for small messages. An around 12ms are necessary to retrieve
the data of a whole battery pack.

• Data acquisition takes less than a millisecond, usually around
10µs.

• Communication on such a wired bus adds very little overhead
to application messages.

2.2.2 CSU board and power supply

CSU boards manage a subset of cells, packed in a module. But they
also need power to operate, and they actually draw their energy
from the cells they monitor. Most of the times the ASIC the CSU
board is built around embeds a Low-dropout regulator (LDO) voltage
regulator [25], or an external (switching or LDO) regulator may be
used. As these boards draw current from the cells of the traction
battery, their consumption must be kept reasonable, especially when
the vehicle is in sleep mode. This means, if wireless communications
should be added to CSU boards, the power consumption of this feature
must be kept as low as possible, especially when the vehicle is in sleep
mode.

2.3 a state of the art on low power short range wire-
less technologies

In this section, we present some existing technologies for wireless
communication that could be used for the purpose of this project, or
at least that can be used as reference. For all the technologies listed
below, some rough information about power consumption is displayed,
when available from the literature and has been found. If no power
consumption information is displayed, it means none has been found.
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2.3.1 Bluetooth Low Energy

bluetooth core standard Bluetooth is a popular choice for
short range wireless communications. Created in the late 1990s, it
has been used for many electronic products equipped with a wireless
interface. It is a protocol that specifies the way the network should be
accessed, from the physical layer to application layer.

bluetooth low energy In its Low Energy version, the con-
sumed power is lowered, and it is designed to send short frames in a
periodic way. In version 5 of the standard, the physical layer allows a
bandwidth of up to 2Mb per second.

Bluetooth Low Energy (BLE) uses the Idustrial, Scientific and Medi-
cal (ISM) frequency band, between 2400 and 2480MHz, and splits it
into channels of 2MHz width each. So there is no guard frequency
between the channels. Three of these channels are reserved for adver-
tising the network.

BLE is simpler to use than Bluetooth, and has been designed to be
used in IoT applications. It has interesting features for QoS, including
channel hopping [36], as well as channel blacklisting, to temporarily
stop using one or more channels for which the QoS is too low [34].

Although BLE allows interoperability with IPv6 networks, and
allows mesh networks [38], these features are relatively new, and
maybe not as mature as in the IEEE 802.15.4 and RPL stack. Indeed,
the BLE Mesh standard from 2017 specifies that the network is a
“managed-flood-based mesh network”. This means this network does
not have an efficient routing mechanism, and nodes only relay packets.
They still have some mechanisms to avoid saturation of the network
with packets that would be stuck in a routing loop. The standard
also says that this routing mechanism could be enhanced in a later
version [35].

power consumption The power consumed by a Bluetooth transceiver
while transmitting is 24mW, which is the peak power drawn by the
device [37].

2.3.1.1 IEEE 802.11

The IEEE 802.11-2016 standards defines a Physical (PHY) and MAC
layer for Wireless Local Area Networks (WLAN) [40]. The first version
of this standard was released in 1997.

With this technology, the PHY layer can operate in the 900Mhz, 2.4,
3.6, 5 and 60 GHz frequency bands. Initially, only the 2.4 GHz one
was used, and with the 802.11a, b, g, n and ac, the 2.4GHz and 5GHz
bands are used. Channels are usually 20MHz wide. This means that
in the 2.4GHz band, only 4 channels maybe used at the same time
with no overlap.
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The access to the medium is done through the Carrier Sense Multiple
Access with Collision Avoidance (CSMA-CA) access method.

The MAC and PHY layer can provide a High-throughput feature,
enabling communication at a data rate of 100Mb/s.

mesh routing in ieee 802 .11 networks The IEEE 802.11s
amendment introduced the mesh networking concept in the standard
in 2006 [41]. When this is used, the routing is done by default through
the “Hybrid Wireless Mesh Protocol”. It is based on both:

• On demand routing, which is mainly based on Radio Metric
(RM) Ad hoc On-Demand Distance Vector (AODV) [42].

• Pro-active routing using tree based routing. Which means that
if at least one root is present in the network, a distance vector
routing tree is built and maintained.

This technique uses a destination sequence number to avoid loops
[41, page 43]. When a node needs to communicate with a node outside
the mesh, it will generally use pro-active routing, whereas when it
needs to communicate with another node inside the mesh, if it does
not have an entry in its forwarding table, it will send a broadcast
message to request an On-demand path.

power consumption The power consumed by a IEEE 802.11g
or n network node has an order of magnitude of 3 to 5 Watts, the n
version being around 50% more efficient than the g version [43].

2.3.2 Wi-Fi HaLow

Standardized in IEEE 802.11ah, this protocol has been published in
2017. This version of Wi-Fi, which uses the 900MHz unlicensed fre-
quency band, has been designed to have a reduced energy consump-
tion compared to Wi-Fi, which consumes too much for IoT applications.
It also has an extended range compared to the latter. It is actually
derived from the IEEE 802.11ac standard, with modified physical and
link layers [44, 46].

Wi-Fi HaLow has been designed for point to point communications,
in networks using star topology. One of its main advantages is its
native support for IPv6. One possible use case for this technology is
connecting a IEEE 802.15.4 based network to the Internet [44, 46].

In this technology, the MAC layer uses Enhanced Distributed Chan-
nel Access (EDCA), which is derived from CSMA-CA. The protocol,
which mostly used for periodic collection of small data samples, also
has a feature to rapidly send alert messages, named Restricted Access
Window [45].
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2.3.3 WirelessHART

WirelessHART is a short range wireless protocol for industrial net-
works, first introduced in 2007, and standardized by IEC 62591 since
2009. The latest version has been released in 2016. It has been made as
an evolution of the Highway Addressable Remote Transducer (HART)
protocol.

The HART protocol is said to be “hybrid”, because it uses digital
communications on top of an analog process control link, based on
current. This protocol, which exists since the 1980s, standardizes an
API as well, which defines how to communicate with a sensor or
actuator that implements HART [52].

WirelessHART uses IEEE Std. 802.15.4-2006 for its physical and link
layers in the 2.4GHz ISM band. At the MAC layer, it uses both a Time
division multiple access (TDMA) and a channel-hopping mechanism.
The timeslot duration is set to 10ms. The network manager, an en-
tity located outside the network, is in charge of building a schedule
for transmissions, and communicating the appropriate parts of this
schedule to the relevant nodes. It is possible to use blacklisting, to stop
using the worse channels. This blacklisted channels are configured
by the system administrator [48]. It is worth noting that the standard
does not specify the channel hopping sequence [49].

At network layer, a mesh topology is used, where every node par-
ticipating in the network has the ability to route the packets. The
routing technique that is used is “Graph Routing”, which allows to
build redundancy in the routes [51].

The WirelessHART transport layer has optional acknowledgment
and fragmentation features [48]. The application layer is HART.

power consumption The power consumption of a WirelessHART
device is 57mW for transmission, and 62mW for reception, according
to [53].

2.3.4 ISA100

ISA100.11a is a protocol that has been developed by the International
Society of Automation (ISA), a consortium based in the USA. Pub-
lished for the first time in 2009, it is a protocol that has been designed
for industrial networks and applications. The standard is now avail-
able in IEC 62734 since 2014. It is relatively close and often compared
to WirelessHART [48].

Like WirelessHART, ISA100 uses IEEE Std. 802.15.4-2006 for its
physical and link layers in the 2.4GHz ISM band, except that it uses a
slightly modified version of the MAC layer, making it incompatible
with the original IEEE 802.15.4 standard. The link layer uses TDMA as
well, together with channel hopping, but with more configuration op-
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tions. The timeslot length is set to 10ms by default, but is configurable.
For channel hopping, a mode where nodes change channel for each
timeslot is available, but there is also a slow hopping mode, in which
nodes use the same channel for a period varying from 100 to 400ms.
Slow hopping is generally used for contention based periods, in which
the nodes try to access the medium on concurrent basis. Finally, it
is possible to use hybrid hopping, which alternates between slotted
hopping and slow hopping [50]. In ISA100, the system administrator
may choose between 5 predefined hopping sequences [49].

Any equipment implementing ISA100 does not necessarily have
the ability to advertise the network, or to route packets towards other
nodes. This specificity adds more flexibility, but also requires more
planning in advance to deploying the network. The network stack
is based on 6LowPAN. The routing process uses mesh under in the
subnets at link layer, and uses standard IPv6 otherwise. The transport
layer is UDP with enhanced integrity check. One of the main differ-
ences between ISA100 and WirelessHART is that in the case of ISA100,
the standard fully specifies how the backbone of the production site
should be implemented [48].

The ISA100 application layer uses two main mechanisms: publica-
tion and alerts. The standard also proposes extension which allow
each vendor to add more features and adapt to specific customer
requirements [47]. The protocol also offers a tunneling feature, which
allows to exchange packets of any application layer on top of ISA100.
For example it is possible to use HART on top of ISA100 [48].

The criticism that is often made against ISA100 is that the wide
flexibility it offers may make objects from different vendors not inter-
operable, even though they are both complying to the standard [49].

power consumption According to [54], the average power con-
sumption of a ISA100 device is around 5mW. However, this value
probably varies with traffic patterns and the actual bandwidth usage.

2.3.5 Wireless IO-Link

Wireless IO-Link is derived from IO-Link, a fieldbus protocol (a stan-
dard for wired communication between sensors and actuators, includ-
ing wiring and a communication protocol) [55].

It uses a master / device (star topology), in the 2.4 GHz band, which
is here divided into 80 channels, and uses the Gaussian Frequency
Shift Keying (GFSK) modulation. The master can communicate on 5

radio channels at a time, and manage the connection with up to 40

devices. As for a typical IEEE 802.15.4 network, the range is between
10 and 20m.

The traffic pattern is rather simple, as at the beginning of the slot-
frame, the master sends a multicast frame, then the nodes reply to the



2.3 a state of the art on low power short range wireless technologies 23

master in a unicast frame. For reliability, the TSCH technique is used,
together with a retransmissions mechanism. The standard also offers
to use frequency blacklisting.

2.3.6 IEEE Std. 802.15.4-2015

2.3.6.1 Physical layer and medium access methods

The IEEE 802.15.4 standard [26] is for “short range, low power, low
datarate wireless devices”. In the first version of the standard, released
in 2003, the medium access method was based on Carrier Sense Mul-
tiple Access (CSMA), a random access technique. With this method,
only one channel is selected, and all nodes in the network use and
share it. In the 2015 version of the standard, another technique has
been introduced: TSCH.

The standard offers to use several frequency bands, going from
169MHz to 2.4GHz. A frequency band is designated by its central
frequency. Each band is divided into channels, and it is possible to
find the center frequency of each channel with a formula. For example,
in the 2.4GHz band, the frequency of each channel is obtained with:

Fc = 2405+ 5 (k− 11)MHz, k ∈ [11; 26] (2.2)

In the 2.4GHz band, channels are set every 5MHz. The bandwidth
used for the communications is actually of 2MHz, and the remaining
bandwidth around the channel, named guard frequency, is left unused
to avoid any overlap between neighboring channels.

When the network starts, the coordinator advertises it by periodi-
cally broadcasting a frame called beacon. This frame contains infor-
mation about the network and how to join it, including its identifier,
named the PAN ID. A node successfully joining the wireless network
may broadcast beacon frames as well, to allow more devices to join. A
device trying to join the network will start by scanning all the channels
that may be used by the network it is trying to join. Once it receives a
beacon, it may initiate the joining procedure.

2.3.6.2 The TSCH technique for accessing the medium

The latter relies on two principles: time division in slots, and the usage
of multiple channels for a same wireless network.

In this approach, the goal is to reduce the collision risk between
packets by sharing and allocating the time and channels, and giving
the nodes dedicated periods to transmit, called timeslots. According
to the standard, a timeslot is a short period of time which must
be long enough to allow two nodes to exchange a frame and an
acknowledgment. It is also an opportunity for a node to transmit or
receive a packet.
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Figure 2.1: Example slotframe, of size 6, for a 4 nodes plus PAN coordinator
network using TSCH.

What organizes the communications is the slotframe, which is a pat-
tern containing a schedule telling the nodes when they may transmit
or receive packets, and which repeats over time. Each timeslot in the
slotframe may be shared or dedicated. If it is shared, any node can
use it to transmit, and the potential collisions that may occur are re-
solved using CSMA in these timeslots. If the timeslot is dedicated, the
potential sender and receiver are pre-established, and no other node
may transmit in this timeslot. An example of a slotframe is presented
in Figure 2.1. The size of the slotframe is configurable, and depends
on what the network is deployed for. It is common to have a slotframe
size of around a hundred timeslots. Timeslots are usually configured
to last for 10 milliseconds each.

All the nodes in the network are synchronized, and switch from
channel to channel over time, in order to minimize the effects of
interference on a particular timeslot. The goal is to avoid having the
same timeslot using always the same weak channel, in every slotframe.
This technique is called channel hopping.

In order to achieve this, the nodes count the number of timeslots that
have elapsed the network formation. This variable is name Absolute
Slot Number (ASN), and is also announced in beacon frames that
advertise the network. When a node must transmit or listen for an
incoming packet in a given timeslot, it finds the physical channel it
must use based on the channel offset and the ASN, using the formula
in Equation 2.3.

CH = HSL((ASN+ChannelOffset) % NumChannels) (2.3)

In this equation, CH is the physical channel which is going to be
used for transmission or reception. The HSL function, which means
Hopping Sequence List, is actually a permutation of the channels
identifiers. It is either known in advance by all the nodes in the
network, or announced in a beacon. With this, it is possible for any
node which has joined the network to translate a channel offset and
timeslot number into an actual physical channel that it should use.
The standard gives a default hopping sequence, but it also offers the
possibility to use a custom sequence.
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What is not specified in the standard, and is absolutely required for
the TSCH network to function properly, is the schedule, which is the
actual content of the slotframe. According to the standard, the way to
build and distribute the information contained in the schedule is let
to “an upper layer”.

2.3.6.3 Minimal requirements to start a network

The Internet Engineering Task Force (IETF) describes what the min-
imum configuration and bootstrap procedure for a TSCH network
should be in [32]. In particular, the network should offer a “minimal
cell” so that new nodes can request to join the network.

When a node has successfully joined, it may use the 6top protocol
(6P) to dynamically request cells [33]. However, this IETF draft does
not specify what the Scheduling Function should be.

The Section 2.4.4 describes some techniques that can be employed
to build a TSCH schedule.

2.3.6.4 Power consumption

In the datasheet of the TI CC2650 [82], which is a device capable of
using IEEE 802.15.4, we can see that the current consumption rises up
to 10mA during transmission periods, while the consumption when
the chip is only running code is close to 1mA. Which means if the chip
is powered by a 3.3V supply, its power consumption varies between
3.3mW and 33mW.

2.3.7 Summary on power consumption

When available, we displayed the power consumption of devices
implementing these different technologies. The goal was to give an
order of magnitude for this parameter for the technologies presented.
To have an extra reference, we can consider the power consumed by a
CAN transceiver, which is a common device for wired communication
in the automobile industry. In [10], the power consumption of two
CAN transceivers is studied. They consume between 23mW (for the
chip supplied with 3.3V, when it lets the bus is in a recessive state it
draws 7.1mA), and 295mW (for the chip supplied with 5V, when it
sets the bus in a dominant state and draws 58.9mA).

Overall, the wireless technologies presented here have a power
consumption of a similar order of magnitude, and are all below 100mW
even when using their radio, except Wi-Fi, which consumes at least 10

times more than the others. This statement allows us to conclude that
Wi-Fi is probably not the right choice for wireless communication for
a BMS, even if the nodes are powered by the traction battery pack of
the car, which has a huge capacity compared to regular IoT devices
batteries. Finally, the CAN transceivers that are referred to above have
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a power consumption of the same order of magnitude as the wireless
communication technologies presented. In other words, at first sight
these wireless technologies do not seem worse than this typical wired
technology that CAN is in terms of power consumption.

2.4 related works

2.4.1 The impact of a battery pack enclosure on a WSN

In the case of BMS with wireless communication, the network nodes
are placed inside an enclosure, often made of metal. Alonso et al. [76]
consider one CSU per battery cell, which would be placed inside a
metallic case. They highlight the harshness of this environment, men-
tioning that “the presence of reflective objects (mainly metallic battery
cell cans and housing) in the vicinity of the antennas, their parameters
(impedance, resonance frequency, efficiency, antenna factor) are modi-
fied with respect to the ones in free space”. They explain that the way
antennas will be affected depend on their position within the battery
pack. Also they say that the effect of multipath propagation will be
important. And that, “two of the three dimensions of the space where
the waves are spread (length and width, the height of this space is al-
ways very small) are smaller than the wavelengths for some frequency
ranges of interest, the environment of the wireless channel behaves
as a microwave resonant cavity.” Finally, this problem gets even more
complex when the battery pack is divided into several blocks.

To measure the possible effects caused by the above described
constraints, they build two emulators, a big one (1.7× 1× 0.05 m)
and a smaller one (0.8× 0.5× 0.05 m). They used a Vector Network
Analyser to get the transfer function of a link between pairs of nodes
within this emulator, set at different places. Their results show that
at some frequencies the signal is strongly attenuated, and this occurs
more often when the frequencies increase.

They conclude saying that Planar Inverted-F Antenna (PIFA) anten-
nas used in the 2 GHz band give the best results in most situations
and are suitable for both emulators, and that the helix antennas used
at low frequency bands remain an option.

In [74] the same authors carry further experiments with the same
evaluation method, and claim the feasibility of in-BMS wireless com-
munications.

In [77] still the same authors tried to further evaluate the choice of
the frequencies used, and conclude that working at high frequencies
(i.e. between 2.2GHz and 2.6GHz) should give better results when the
number of nodes increases.

In [78] they explain they developed a simulator which allows them
to evaluate the impact of the size of the emulator, and the position of
the nodes inside the emulator.
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In [79] they enhance their prototype by testing it for communications.
They propose their own custom MAC layer, based on TDMA, but
report issues when using it, as noise is interpreted as data in their
experiment.

2.4.2 Electro-Magnetic Interference from other systems in the vehicle

The BMS is often located near other powertrain components, like the
engine, which will emit electro-magnetic waves which may disturb
the WSN.

However, the frequencies on which the powertrain components emit
noise should be different from the frequencies used by a WSN, and
the case should act as an electromagnetic shield [74]. Here, the authors
describe the thermal noise, and the self generated noise as the most
problematic noise sources for the system.

This is also what Revol et al. find when they studied the Electromag-
netic Interference (EMI) emitted by an AC three phase drive train [75].
The authors studied the EMI below 30 MHz, and find that the peak
EMI emission frequencies are found below 100 kHz.

2.4.3 Choosing a topology for an in-car WSN in which all nodes are in
range of each-other

In [56], the authors study how to efficiently build a wireless network
topology to gather data from onboard sensors in a car, where all nodes
see each other, which permits a star topology. However, some links
can be of poor quality. They make the statement that a two level tree
(in which the nodes can be: the root, of rank 1 or of rank 2) can help
maximize the path quality towards the root. They use the fact that
the carried data is very short and perform data aggregation at the
application level in the intermediate nodes.

This technique is particularly suitable for a BMS with wireless
communication application, as all nodes are in range of each other,
and the application layer data packets are small enough. Thus, this is
an idea we reused in our proposition described in Chapter 4.

2.4.4 Related Work on Topology and TSCH Schedule Management

key papers and ideas There are two approaches to build a mesh
network topology: centralized and distributed. The latter, although
being highly scalable, relies on local decisions made by the nodes
participating in the network, based on partial information. This is the
strategy currently implemented in 6TiSCH (and especially in IPv6

RPL [27]).
It is possible to let the nodes negotiate their dedicated timeslots

with their neighbors based on the topology decided by the upper
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layer routing algorithm, as it is done by the Orchestra scheduling
strategy [57].

A centralized controller can also be used to compute the schedule for
all the nodes, as is performed in the TASA strategy [58]. This approach
has the upside of making decisions based on full information about
the network, at the cost of extra communications.

The same authors also proposed DeTAS, a more distributed strategy,
where each node computes the number of packets they will have to
send per slotframe [59]. In order to make further evaluation of the
proposed algorithm, they implemented it on the OpenWSN software
platform [60]. For the hardware platform, they used TelosB motes,
which use the CC2420 radio chip.

The solutions mentioned here are not directly applicable to com-
munications for battery management, as in this application, given the
amount of data to be sent, most of the bandwidth is used, and we do
not necessarily want to rely on RPL to maintain the topology, given
the small number of nodes and the fact that they are all in range of
each other.

other existing solutions Many other solutions are available
from the literature for building a TSCH schedule. A few of them are
listed below.

Morell et al. [62] propose to replicate what is done with traffic engi-
neering in the Internet, mainly with Multi-Protocol Label Switching
(MPLS). They propose to use time slot numbers as MPLS labels.

Daneels et al. [63] propose a “Recurrent Low-Latency Scheduling
Function”, using Linear Programming to build the schedule.

Hosni et al. [64] introduce a method focused on minimizing the
end-to-end delay, by allocating consecutive cells for nodes next to each
other in the RPL Destination Oriented Direct Acyclic Graph (DODAG).
By doing so, they are capable of delivering any packet within the
slotframe, disregarding the length of the route.

Soua et al. [65] propose “Wave: a Distributed Scheduling Algorithm
for Convergecast in IEEE 802.15.4e Networks”, which is focused on
minimizing the energy consumption, by lowering the duty-cycle of
the network.

Chang et al. [66] propose “LLSF: Low Latency Scheduling Function
for 6TiSCH Networks” a method which is also focused on reducing
“the gap” between consecutive slots, according to the topology of the
RPL tree. This is similar to [64].

Other possible approaches are listed by Teles Hermeto et al. in [67].
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2.4.5 Some BMS with wireless communication implementations in the
literature

Other known attempts at using wireless communication for BMS in-
clude a proprietary solution developed by Navitas Solutions Inc. [80],
and a proof of concept by Linear Technology, which has been inte-
grated into a production car, using their own wireless communication
solution [81].

2.5 protocols used in the project : ieee 802 .15 .4-2015 tsch

and the iot stack

In this project, we focus on short range communications. Also, the
CSU nodes will be powered by the battery cells they supervise. So, to
choose a wireless technology, there are a few criteria to consider. First
the technology should be efficient in terms of energy consumption. It
should have or allow some reliability related features. It should allow
a reasonable datarate to carry the data. Finally, it should be flexible in
terms of link and network layer management.

Wi-Fi, which is standardized by IEEE 802.11, could be interesting, as
it is well known and supported, and widely used by several consumer
devices. It also provides high bandwidth. However its access method
is CSMA, which is not the best suited for layer 2 reliability features.
But the main issue with this technology is probably its high power con-
sumption, as described in Section 2.3.1.1, several order of magnitudes
above the one of a CAN transceiver [10], which, as a communication
technology, is emblematic of wired in-car networks.

This means Wi-Fi is not an option, as it consumes too much en-
ergy. Wi-Fi HaLow has been designed for long range communications,
which is not what is required here. Industrial protocols like Wire-
lessHART may not provide enough flexibility at application layer or in
terms of network management. Wireless IO-Link could be appealing,
as it has reliability features built in the standard, but is not flexible
with its only one traffic pattern available, and does not allow mesh
networking, which seems to be an important feature to have due to
the many metallic obstacles in the battery pack. Finally, although BLE
is an appealing choice, and despite its support for 6LowPAN [39], it
may not be as advanced as IEEE 802.15.4 based networks in terms of
topology and routing management, which is why the latter has been
chosen in this work. This standard, which has been designed with
industrial application requirements in mind [31], seems to be the best
choice for our use case.

Upper layer protocols we use are protocols that have proven their
efficiency together with IEEE 802.15.4 and TSCH: 6LowPAN and UDP.
Although RPL could have been used to manage the topology, we
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believe a more efficient solution can be found for our very specific use
case, as discussed in Chapter 5.

2.6 methodology for building this state of the art

Some formal methodologies exist to build a state of the art, like
“Systematic Literature Review” [83]. They often consist in selecting a
large set of papers at a given point in time, and filtering and sorting
them with automated and/or manual techniques. They can be a great
way to explore the state of the art for a specific domain, as long as one
knows what they are looking for, and thus how to build the initial set
of papers.

Here, the context was really different. This work is part of not
one, but many, research fields, ranging from electrical engineering to
network protocols. I knew from the beginning that I would have to
learn a lot, and especially to learn what research papers and ideas
actually matter for this subject. Furthermore, I knew the subject would
demand a lot of time in terms of experimentation and implementation,
which gave little time remaining to explore the state of the art of the
various domains that relates to this subject. Finally, I knew that the
papers that would be helpful would not come to me at once, but all
along the way. So I decided that this state of the art would be built in
a “best-effort” way of thinking, including to it the papers that appear
to be useful at the time they come up to me.

I do not see the state of the art papers we use in such a project as
just a list, but rather as a database. What matters with a paper is of
course the Portable Document Format (PDF) file with its content, but
also some metadata like the date and keywords, its reference in Bibtex
format (or whatever other bibliography format is used), and the notes
and remarks one can write when reading it.

Great tools can help us manage the paper we discover and that
we carry along with us during the whole PhD thesis. Among them
are Zotero1 and Jabref2. About Zotero, I understand many people
like it, but I personally disliked the interface, and its approach for
adding entries to the papers database. Jabref is all about references,
and not really about the PDF files themselves, which is not really what
I wanted. There are other great pieces of software I could name here.

However, a few months after I became a PhD student, I decided to
make my own.

In Unix-like systems, there is this principle that make them very
efficient: “everything is a file”. So I wanted that the way to add a
paper to my database would be by recording a PDF file (or a file in
any format) to a specific folder on my hard drive. I wanted to be able
to record the updates to this database and share it with other Personal

1 Zotero homepage.
2 Jabref homepage.

https://www.zotero.org/
https://www.jabref.org/
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Figure 2.2: Main window of the pph application.

Computer (PC) with Git3. Also, I really like the content and layout of
the Eclipse Integrated Development Environment (IDE)4 interface. I
like the Gnome desktop environment, so I wanted my software to be
well integrated with it. I wanted to have a tight control on everything,
especially keywords and the reference for each paper. And finally,
I wanted my application to be lightweight and easily extensible, in
order to browse and display data from the database I would create.

Based on these ideas, I made a software program I called “PhD
Papers Helper”, or pph for short. The application is written in Perl 5,
is relying on the Gtk3 library for interface management, and on Moose
for object oriented programming. The main window of the application
is visible in Figure 2.2, and the icon I made for it in Figure 2.4.

The application uses the concept of workspace: actually just a folder,
that may contain subfolders, where some files, mostly in PDF format,
are stored. The application can handle extra added data about these
files that make the database, and store it in specific hidden files in the
same folders.

As one can see, the interface is made of a menu bar at the top,
and three main panels. The left panel contains the file tree of the
workspace. The top right hand panel contains information the user
can set manually, like title, keywords, reference, but also rate the paper,
on its scientific content, writing quality, and level of difficulty. About
the rating, the idea was to be able to easily filter through papers, to
quickly find these I would like to share with students (for example
because they were well written, or not too difficult to understand).
The bottom right hand corner is a space for the user to take notes.

3 Git homepage.
4 Eclipse project homepage.

https://git-scm.com/
https://www.eclipse.org/
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Figure 2.3: pph main window while using the filter feature, with keywords
“BMS” and “SOC”.

Aside from this, the application has a filter feature, that lets the
user easily hide the papers in the file tree that are not related to the
words entered in the search bar. The input of this text field is case
insensitive. This is where the manual definition of the keywords in the
top right-hand panel is handy, as the search feature takes them into
account, and it is thus possible to use them to “group” papers, or at
least make them appear under a specific keyword, even if the authors
did not list that keyword in their paper. An example of filtering is
displayed in Figure 2.3.

The program also has a refresh feature, to rebuild the file tree in
the left hand panel, which is useful when a paper is added and the
application is open. And of course a save feature.

Finally it has a plot feature, relying on the Perl wrapper library for
GNU plot. This is here because, during the first year, my supervisors
asked me to plot what optimization criteria papers on a specific subject
were considering. So instead of just making the plot, I made a feature.
The plot dialog of pph will consider only the papers that appear in
the file tree if a filter is currently being applied. The dialog window
for creating a plot is presented in Figure 2.5. And the output diagram
it produces with the set of research papers I have in my database is
presented in Figure 2.6.

To be able to use it easily on several PC, and share it, I added
the debian folder to its source folder, to be able to create a Debian
package for it.

Of course, as of today, this application is far from perfect, and is
unfinished. It has known issues and missing features. I really wanted,
but never found the time, to implement an advanced filter feature
that works on dates, and rating, but also a feature that fills in the
title, date and keywords of a paper automatically when providing the
Bibtex entry. Also, I do not know if it is currently portable to anything
that is not a GNU/Linux Operating System (OS). Letting aside these
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Figure 2.4: Icon of the
pph appli-
cation.

Figure 2.5: Plot settings window for pph. Filter text
contains “TSCH”, and the plot will be
about dates.
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Figure 2.6: Plot generated with pph. Years in which the papers about TSCH
in my database have been published.
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issues, I really liked having this application to work with, which has
been working better than I hoped, and been way more useful than I
anticipated. If I would be facing the same choice I had, a little more
that three years ago, when starting to build a state of the art database, I
would still make the same. And use the same programming language.

The source code of this program is available for download5, under
the GNU GPLv3 or later license. To clone the project on your computer,
use the command shown in Listing 2.1.

git clone https://redmine.telecom-bretagne.eu/git/pph

Listing 2.1: Git clone command for pph.

2.7 conclusion

In this chapter, we presented a state of the art on the research domains
that relate to our subject. First, we extended the information provided
in Chapter 1 by giving more details about how a BMS works, and
how the communication between its submodules is performed in
today’s architectures. Then, we presented many MAC layer and above
protocols that are widely used in IoT applications. Moreover, we also
referenced research works that study wireless networks for in-car
communications, and BMS with wireless communication in particular.
We concluded this study saying we would use IEEE Std. 802.15.4-2015

with TSCH in the rest of our work. Finally, we explained the state of
mind and ideas that conducted how this state of the art has been built,
and how I made a software program to sort and organize the research
papers I worked on.

The ideas and results contained in the research papers we mentioned
have been used as building blocks for the subsequent work presented
here. The battery pack environment has specificities and may make
the wireless network behave differently than it would in an open-air
environment, as discussed in Section 2.4.1. This is why we study how
an IEEE Std. 802.15.4-2015 TSCH network performs within a vehicle’s
battery pack environment in Chapter 3.

5 pph Web link: <https://redmine.telecom-bretagne.eu/projects/pph/
repository>

https://redmine.telecom-bretagne.eu/projects/pph/repository
https://redmine.telecom-bretagne.eu/projects/pph/repository
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I O T N E T W O R K P E R F O R M A N C E I N S I D E A N E V
B AT T E RY PA C K

3.1 introduction

Although IoT nodes placed in a battery pack would be very close to
each other, it is not obvious that the link quality between them will
be very high. The metallic parts of the pack may have an impact on
communication, and it is possible that in some situations they prevent
two nodes from being in direct sight of each-other. In order to get an
accurate idea of what the network performance in an EV battery pack
can be, and what is the real impact of battery cells and pack enclosure
on wireless communication, we performed several tests on multiple
EV platforms. We also tried to evaluate what is the impact of Wi-Fi
communication in the environment on the IoT network, and whether
or not driving the car influences the network link quality.

Contribution

This chapter presents the following contributions:

1. We perform link quality measurement of a IEEE 802.15.4
TSCH network in various EV platforms, and present the
results.

2. We study the impact of node position, Wi-Fi interference,
and driving the car, on network link quality.

3.2 hardware , software , and testing procedures

To get an idea of the base QoS in an EV environment, and more
particularly in a battery pack, several tests have been performed.

These tests were done with I3Mote CC2650 boards, and Launchpad
CC2652 with battery booster pack boards. The boards are shown in
Figure 3.1. They both rely on a PIFA antenna to perform wireless
communication.

To limit the risks when doing the tests, the boards were always
placed in a plastic isolating case, which are shown in Figure 3.2.

For the tests, the boards were running a firmware developed by
Texas Instrument (TI), which implements an IoT stack based on IEEE
802.15.4. On the Launchpad CC2652, it is also possible to use the BLE

35
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Figure 3.1: I3Mote CC2650 board with daughter board to connect it with
Universal Serial Bus (USB) (on the left), and Launchpad CC2652

with battery booster pack (on the right).

Figure 3.2: 3D printed plastic isolating case for Launchpad boards.

physical layer with a datarate of 2Mb/s. In this implementation the
topology is managed with RPL, and a centralized scheduler allocates
one receive and one transmit timeslot per slotframe between any node
and its parent. The nodes run a CoAP server. One of the resources on
this sever allows to retrieve the MAC layer PDR statistics.

The software program used to do the measurements is one we
developed ourselves, running on the PC connected to the border
router. It performs CoAP GET requests to the nodes periodically, in
order to generate traffic. Actually, the request to a particular node
is sent upon reception of a response from that same node, or after
a timer expires. The program records the latency for each request /
response pair, and if the application layer packet was lost. With the
software running on the Launchpad CC2652, the traffic pattern is
different, as it is programmed to send UDP packets to the root node.
Our test management program also regularly retrieves the MAC layer
data from each node and logs it (for both hardware platforms).

In these tests, one of the goals was to evaluate link quality with
regard to the node positions. So the networks were forced to use a star
topology.

One of the platform we used for the tests is a Renault Fluence
battery pack. It contains a series of 96 Lithium-Ion battery cells, and
has a nominal voltage of 360V. To limit the risk when working with it,
it is necessary to have proper protection equipment. In our case we
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Figure 3.3: Protection equipment worn to setup the tests in the Fluence
battery pack.

used a helmet, gloves, and specific clothes and shoes, to be sure we
were safe, as shown in Figure 3.3.

3.3 metrics used

When doing these tests, the most important metric we measured
was the PDR at the MAC layer. We also often measured the end to
end latency and the application layer PDR. These two metrics are of a
lesser importance, because when the MAC PDR and the retransmission
mechanisms are known, it is possible to estimate them, whereas the
MAC PDR depends directly on the link quality, and the environment.

The jitter (i.e. the variance in the latency) could also have been a
metric to consider, but it will be more a consequence of the network
management choices that are made than a way to qualify the links
and wireless environment quality.

To get a better overview of the channel conditions in an EV envi-
ronment, we place the nodes at several positions in each test, to see
how a specific position affects the PDR. We also tried to evaluate the
difference between two different physical layers, the default one from
IEEE 802.15.4, and the 2Mb/s BLE one. We evaluated the impact of the
metallic battery enclosure by doing tests where it was removed from
the pack, and compared the results to when it was in place. Finally
we did some tests while other devices were using the 2.4GHz ISM
band, mainly Wi-Fi devices. This was to see how these devices would
interfere with a BMS IoT network.
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Figure 3.4: Network topology: testing range in a one hop scenario

3.4 tests results

3.4.1 Outside the EV environment

3.4.1.1 Range test with I3Mote CC2650

A summary of this test is presented in Table 3.1. The topology is shown
in Figure 3.4, and the results can be found in Figure 3.5 and 3.6. This
is one of the first test that we have done, and sadly we did not record
the MAC layer PDR here. The number of MAC layer retransmissions
was set to 3.

Purpose: Get a preliminary and reference result for
application layer PDR, to be compared
with results in an EV environment. See the
impact of distance on PDR, while having
line of sight.

Platform: None
Date: 12/2018

Hardware: I3Mote CC2650

MAC/PHY layer: IEEE 802.15.4-TSCH, with retransmissions
Scheduler and Sched-
ule:

Default scheduler, 127 slots slotframe.

Test time / ending
condition:

50 packets per node.

Traffic pattern: Polling based (periodic GET requests).

Table 3.1: Range test of I3Mote CC2650 summary
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Figure 3.5: Application layer PDR:
Range test in a corridor.
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Figure 3.7: Testing channel conditions inside a metallic box.
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Figure 3.8: Application layer PDR: test in the metallic box.

Test Conclusion: The application layer PDR decreases with distance,
more significantly above a 10m distance between the two nodes.

3.4.1.2 In a metallic box

We built a box as described in Section 2.4.1, like Alonso et al. did and
presented in [76], in order to evaluate how nodes would perform in it.
We also compared the difference between inside and outside the box.

Purpose: Evaluate the impact of the enclosure.
Platform: Metallic box
Date: 01/2019

Hardware: I3Mote CC2650

MAC/PHY layer: IEEE 802.15.4-TSCH, with retransmissions
Scheduler and Sched-
ule:

Default scheduler, 127 slots slotframe.

Test time / ending
condition:

100 packets per node.

Traffic pattern: Polling based (periodic GET requests).

Table 3.2: I3Mote CC2650 performance in a metallic box test summary

The result is presented in Figure 3.8. For all the tests that we did, the
PDR was almost always 100%, even when the root node was inside,
and the other node outside.
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Test Conclusion: The results obtained here show a very good link
quality, and do not seem to reflect what has been presented in [76].
However, we measured only application layer PDR. More interest-
ing results, focusing on MAC layer PDR, are presented in following
sections.

3.4.2 PGO e-Hemera (at IMT Mines Alès)

The PGO company, IMT Mines Alès and IUT de Nîmes have built an
electric car prototype. As in most electric cars, the pack is located in
the floor. It is a 32S1P pack, with a size of 1.25m per 1.47m, and can
be seen in Figure 3.9. During the test, the battery was mounted onto
the car, as it would be for normal operation.

During the two tests presented below, the car was parked. Sum-
maries of the tests are presented in Table 3.3 and 3.4. The nodes layout
is presented in Figure 3.10 and 3.12. As opposed to what can be seen
in these pictures, the pack was mounted onto the car during the test.
The results can be found in Figure 3.11 and in Figures 3.13 to 3.20.

3.4.2.1 First iteration of this test, with I3Mote CC2650

Purpose: Measure the impact of node position on
MAC PDR inside an EV battery pack. The
pack was designed and assembled by IMT
Mines Alès. The characteristics of this pack
is very similar to what can be found in a
medium-sized commercial car.

Platform: PGO e-Hemera
Date: 03/2019

Hardware: I3Mote CC2650

MAC/PHY layer: IEEE 802.15.4-TSCH, with retransmissions
Scheduler and Sched-
ule:

Default scheduler, 43 slots slotframe.

Test time / ending
condition:

1500 packets per node.

Traffic pattern: Polling based (periodic GET requests).

Table 3.3: I3Mote CC2650 performance in the PGO e-Hemera test summary

Test conclusion: We can observe that the MAC PDR is a little bit
lower than in the metallic box. This is probably because the nodes
are not on top of the battery cells, but are embedded within the pack,
often having no line of sight between them and the root. However, we
can observe that the average MAC PDR is 99.4% and above, whatever
the position of the node is.

To get a better understanding of what the PDR actually is, the total
number of transmitted packets from all the non-root nodes is 15502,
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Figure 3.9: The PGO e-Hemera at IMT Mines Alès. Hood and trunk cover
have been removed.

Figure 3.10: Motes layout in the PGO e-Hemera battery pack at IMT Mines
Alès.
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Figure 3.11: Average MAC PDR inside the battery pack (PGO e-Hemera).
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and the total number of lost packets is 47 for these same nodes. For
example on the graph of the above figure, node “d583” lost 1 packet
out of 1529.

3.4.2.2 Second iteration of this test with Launchpad CC2652

Purpose: Measure the per channel MAC layer PDR
statistics inside an EV battery pack, with
TSCH over the BLE physical layer. The car
is parked.

Platform: PGO e-Hemera
Date: 12/2019

Hardware: Launchpad CC2652

MAC/PHY layer: IEEE 802.15.4-TSCH over BLE PHY
Scheduler and Sched-
ule:

Default scheduler, 30 slots slotframe.

Test time / ending
condition:

Approximately 30 minutes.

Traffic pattern: BMS app. over UDP

Table 3.4: Launchpad CC2652 performance in a battery pack test summary.

Test conclusion: As for the test with the IEEE 802.15.4 MAC layer,
the PDR is very high. The per channel results show that the losses
tend to occur on channels that are close to each other, as presented
in Figure 3.19. Here, almost all of the losses occur on channels that
overlap with Wi-Fi channel 11. So they may be due to interference.

3.4.3 Renault Fluence battery pack

Among all the platforms we used to do ours tests, the one we have
used the most is a Renault Fluence battery pack, which can be seen
in Figure 3.21. A summary of this test is presented in Table 3.5. The
position of the nodes during the test can be seen in Figure 3.22. The
measured MAC layer PDR is displayed in Figures 3.23 to 3.28.

Results:

• ID = 2284, PDR = 99.94%

• ID = 2904, PDR = 99.98%

• ID = 2d84, PDR = 100%

• ID = 3380, PDR = 99.98%

• ID = 3680, PDR = 98.71%

Test conclusion: The results are very similar to those obtained in
the pack at IMT Mine Alès. The worst average MAC PDR is 98.7%,
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Figure 3.12: Launchpad CC2652 motes layout in the PGO e-Hemera battery
pack at IMT Mines Alès.
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Figure 3.13: Average MAC layer
PDR, PGO, inside the
pack, parked.
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Figure 3.14: Node 3 MAC layer PDR,
PGO, inside the pack,
parked.
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Figure 3.15: Node 4 MAC layer PDR,
PGO, inside the pack,
parked.
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Figure 3.16: Node 5 MAC layer PDR,
PGO, inside the pack,
parked.
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Figure 3.17: Node 6 MAC layer PDR,
PGO, inside the pack,
parked.
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Figure 3.18: Node 7 MAC layer PDR,
PGO, inside the pack,
parked.
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Figure 3.19: Node 8 MAC layer PDR,
PGO, inside the pack,
parked.
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Figure 3.20: Node 9 MAC layer PDR,
PGO, inside the pack,
parked.

Figure 3.21: Measuring link quality inside a Fluence pack: during the test.
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(a) Front view.
(b) Back view.

Figure 3.22: Layout of the motes inside the Renault Fluence pack.
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Figure 3.23: Average MAC layer
PDR, inside the Fluence
pack.
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Figure 3.24: Node 2284 MAC layer
PDR, inside the Fluence
pack.
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Figure 3.25: Node 2904 MAC layer
PDR, inside the Fluence
pack.
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Figure 3.26: Node 2d84 MAC layer
PDR, inside the Fluence
pack.



46 iot network performance inside an ev battery pack

Purpose: Measure the per channel MAC layer PDR
statistics in an EV battery pack. This pack
is from a commercial sedan, designed by
Renault.

Platform: Renault Fluence pack
Date: 10/2019

Hardware: I3Mote CC2650

MAC/PHY layer: IEEE 802.15.4-TSCH, with retransmissions
Scheduler and Sched-
ule:

Default scheduler, 43 slots slotframe.

Test time / ending
condition:

2 hours (resulting in 5728 application pack-
ets per node on average).

Traffic pattern: Polling based (periodic GET requests).

Table 3.5: I3Mote CC2650 performance in the Renault Fluence battery pack
test summary
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Figure 3.27: Node 3380 MAC layer
PDR, inside the Fluence
pack.
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Figure 3.28: Node 3680 MAC layer
PDR, inside the Fluence
pack.

and all the other nodes have significantly better PDR. For one node
the average MAC PDR is even equal to 100%. We can conclude that
globally the performance is high, but that more packets are lost in
some of the tested positions inside the pack. The per channel data
does not reveal that some channels offer less performance than others
yet, this result does not allow to conclude on what makes a channel
weaker.

3.4.4 Link quality and interference with Wi-Fi communication

Another test was performed to measure the per radio channel PDR
statistics in the Fluence battery pack. One of the goals was to compare
the results inside, and outside the enclosure, also the impact of having
the enclosure put on top of the pack or not, and measure the impact
of Wi-Fi communication on the IoT network link quality. The layout of
the nodes for this test is visible in Figure 3.30. During the first test, the
metallic enclosure was removed, and during the second one, it was



3.4 tests results 47

Figure 3.29: Link quality measurement inside the Fluence battery pack with
continuous Wi-Fi communication in the environment using the
IPerf software.

on top of the pack. Both tests were run for one hour, which gives an
average of 4100 MAC layer frames sent per node.

As a reminder, IEEE Std. 802.15.4-TSCH and Wi-Fi are two tech-
nologies that use the 2.4GHz band, and some of their radio channels
overlap. The most commonly used channels in Wi-Fi are 1, 6 and 11.
They overlap with the channels 11, 12, 13, channels 17, 18, 19 and
channels 22, 23, 24 of IEEE Std. 802.15.4, respectively.

Both tests were run with Wi-Fi communications on channels 1, 6

and 11. The traffic was generated with the IPerf 2 software, using a
total of 5 PCs: 3 running an IPerf client, and 2 configured as access
point and running an IPerf server. One of the 2 access points had 2

Wi-Fi cards, which were configured to operate an access point on two
different channels with these 2 cards. The actual setup used in these
tests is shown in Figure 3.29. Summaries of these tests are displayed
in Table 3.6, and Table 3.7.

Figure 3.31 shows the average MAC layer PDR for each node. Fig-
ures 3.32, 3.33, and 3.34 show the results for the per radio channel
MAC layer PDR for nodes 2284, 2904 and 2d84, which were placed
inside the pack. Results for the two other nodes, 3380 and 3680, are
not displayed here but are very similar to the other three.

Test conclusion: These results mean the enclosure makes the wire-
less communication better inside the pack and, to some extents, it
protects the network from external interference. However it is hard
to tell how much the communication improves with the enclosure on
top: in a previous version of the test, for which the results are not
displayed here, the enclosure was not properly put back, and Wi-Fi
communication had a stronger impact on the IoT network.
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Figure 3.30: Measuring link quality inside a Fluence pack with Wi-Fi inter-
ference: motes layout
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Figure 3.31: Average MAC layer PDR for the Fluence pack with Wi-Fi traffic
in the environment
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Figure 3.32: Node 2284 MAC layer PDR for the Fluence pack with Wi-Fi
traffic in the environment



3.4 tests results 49

 0

 20

 40

 60

 80

 100

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
o

d
e

 2
9

0
4

 M
A

C
 P

D
R

 p
e

r 
c
h

a
n

n
e

l 
(%

)

Channel

(a) Without pack enclosure

 0

 20

 40

 60

 80

 100

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
o

d
e

 2
9

0
4

 M
A

C
 P

D
R

 p
e

r 
c
h

a
n

n
e

l 
(%

)

Channel

(b) With pack enclosure

Figure 3.33: Node 2904 MAC layer PDR for the Fluence pack with Wi-Fi
traffic in the environment
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Figure 3.34: Node 2d84 MAC layer PDR for the Fluence pack with Wi-Fi
traffic in the environment
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Purpose: Measure the impact of Wi-Fi interference
on MAC PDR.

Platform: Renault Fluence pack
Date: 02/2019

Hardware: I3Mote CC2650

MAC/PHY layer: IEEE 802.15.4 TSCH
End condition: 1 hour
Additional setup: No pack enclosure, Wi-Fi communications

added.
Result: MAC PDR >= 69.6%

Table 3.6: MAC PDR in a Renault Fluence battery pack test summary, without
pack enclosure, and with Wi-Fi traffic on channels 1, 6 and 11 in
the environment

Purpose: Measure the impact of Wi-Fi interference
on MAC PDR

Platform: Renault Fluence pack
Date: 02/2019

Hardware: I3Mote CC2650

End condition: 1 hour
Additional setup: With pack enclosure, Wi-Fi communica-

tions added
Result: MAC PDR >= 98.4%

Table 3.7: MAC PDR in a Renault Fluence battery pack test summary, with
pack enclosure, and with Wi-Fi traffic on channels 1, 6 and 11 in
the environment

Finally, please note that the traffic pattern used for Wi-Fi is not
realistic, as packets were sent continuously with the IPerf 2 software
to occupy the radio channels. In a real world scenario, with less traffic
on Wi-Fi channels, and with the metallic body of the car on top of the
pack, the interference could even be less significant.

3.4.5 Measuring the impact of driving the car

Here the goal is to try to see if driving the EV would have any
impact on a BMS with wireless communication. Two tests have been
performed. One in IMT Atlantique in Rennes, on a platform named
Open-Source Vehicle (OSV). And the other was done at IMT Mines
Alès. Summaries of these tests are available in Table 3.8 and 3.9. The
results can be found in Figures 3.38 to 3.49, and Figures 3.51 to 3.58.

3.4.5.1 First test for measuring the impact of driving with OSV

The OSV is a car chassis that was sold by an Italian company of the
same name. It is designed as a lightweight urban vehicle. Its battery
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Purpose: See the difference in PDR at the MAC layer
between still and driving vehicle. For the
“still” test, the vehicle is parked inside the
IMT Atlantique building.

Platform: OSV
Date: 11/2019

Hardware: I3Mote CC2650

MAC/PHY layer: IEEE 802.15.4-TSCH, with retransmissions
Scheduler and Sched-
ule:

Default scheduler, 43 slots slotframe.

Test time / ending
condition:

45 minutes for each test (equivalent to ap-
proximately 2000 packets per node)

Traffic pattern: Polling based (periodic GET requests).

Table 3.8: I3Mote CC2650 performance on a moving EV chassis test summary.

Figure 3.35: The OSV inside IMT Atlantique.

pack is made of a series of 24 LiFePO4 cells, and its engine has a power
of 19kW. A picture of it is visible in Figure 3.35, and the placement
of a node during the test is shown in Figure 3.36. The layout of the
nodes during the test can be found in Figure 3.36.

During this test, the OSV was being driven outdoor, in the school-
yard. As discussed below, the Wi-Fi access points of the school, and
the devices using them, may have caused interference and may have
had a significant impact on the results. During the whole test, the car
was accelerating and braking, which means it did not have a constant
speed, and its average speed was probably around 20km/h. These are
more or less the conditions that can be found while driving in a city
center (both in terms of vehicle speed and 2.4GHz band usage).

For the presentation of the results, the numbers on the Figures, on
top of each bar, represent the actual number of packet lost during
the test. Please note that the number of packets transmitted per node
varies between the nodes. The results for the parked vehicle are shown
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Figure 3.36: Mote placement on the front of the OSV for the drive test.

(a) Front view. (b) Side view.

Figure 3.37: Motes layout on OSV

on the left-hand side, and for the driving vehicle on the right-hand
side.

Test conclusions: The results of this test are not trivial to read and
analyze. Although at the first look it seems that the number of packet
lost increased outside while driving, the results there are actually
better in the latter (252 packets lost inside, 192 while driving outside).

To properly interpret these results, it is important to remember that
Wi-Fi devices were present and being used in the environment during
both tests. And the channels 1 and 6 of Wi-Fi overlap with channels
12 and 13, and 17 and 18 of IEEE 802.15.4, respectively.

Node 2284 was placed in the front of the car, on top of the front
part of the battery pack. It was not in sight of the root node, due to
the engine being between the two nodes. It suffers from losses mainly
on channels 12, 13, 17 and 18: the channels that overlap the most
with Wi-Fi. If only the other channels are considered, there is only
a subtle decrease in PDR (PDRparked = 100% whereas PDRdriving =
99.70%). And all the losses except one occur on channels that are still
overlapping with Wi-Fi channels 1 and 6 (IEEE 802.15.4 channels 12,
16, 19).
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Figure 3.38: Average MAC layer
PDR, OSV, parked.
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Figure 3.39: Average MAC layer
PDR, OSV, driving.
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Figure 3.40: Node 2284 MAC layer
PDR, OSV, parked.
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Figure 3.41: Node 2284 MAC layer
PDR, OSV, driving.
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Figure 3.42: Node 2904 MAC layer
PDR, OSV, parked.
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Figure 3.43: Node 2904 MAC layer
PDR, OSV, driving.
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Figure 3.44: Node 2d84 MAC layer
PDR, OSV, parked.
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Figure 3.45: Node 2d84 MAC layer
PDR, OSV, driving.
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Figure 3.46: Node 3380 MAC layer
PDR, OSV, parked.
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Figure 3.47: Node 3380 MAC layer
PDR, OSV, driving.
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Figure 3.48: Node 3680 MAC layer
PDR, OSV, parked.
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Figure 3.49: Node 3680 MAC layer
PDR, OSV, driving.

Node 2904 was placed in the center left of the car, on top of the
BMS and under the driver’s seat. It shows very good results on the
channels that do not overlap with Wi-Fi, despite being more than a
meter away and not in clear sight of the root node.

Node 2d84 was placed at the back of the car, on top of the battery
charger. Among all the nodes, it was the furthest and with no line of
sight with the root node. It is the node that suffers the most of losses
on the channels overlapping with Wi-Fi. It is also the node with the
most significant drop while driving on the non overlapping channels.

Node 3380 was placed in the center right of the car, right behind
the passenger seat. It was placed relatively close to the root node, but
with no line of sight. Overall it is the node with the best performance
considering the two situations, with a PDR almost equal to 100%.
Node 3680 was placed at the front of the car, on top of the engine and
in sight of the root node. It has very good performance while both
parked and driving, with losses only in the channels overlapping with
Wi-Fi.

Overall it is possible to conclude that the devices of the powertrain
of the car do not interfere with the wireless communication in the
2.4GHz band, or at least not in a significant manner. This is consistent
with the information available from the literature. Furthermore, the
channels that overlap with Wi-Fi channels are severely disturbed, in
both situations. The nodes that perform best are the one that was very
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close to the Root, despite being on top of the engine, and the nodes
that were between the seats and the floor (but still close to power
electronic devices). The node at the back was the furthest from the
root, but also the more visible, with no metallic cover from the chassis
at all. It is hard to tell if the extra losses it encountered while driving
were due to the fact that the car was actually moving, or if it was just
more exposed to the environment. And the second hypothesis seems
to better comply with the behavior measured at the other nodes.

3.4.5.2 Second test for measuring the impact of driving with PGO e-Hemera
at IMT Mines Alès

Purpose: Measure the per channel MAC layer PDR
statistics near a driving EV engine, with
TSCH over the BLE physical layer.

Platform: PGO e-Hemera
Date: 12/2019

Hardware: Launchpad CC2652

MAC/PHY layer: IEEE 802.15.4-TSCH over BLE PHY
Scheduler and Sched-
ule:

Default scheduler, 30 slots slotframe.

Test time / ending
condition:

Approximately 30 minutes, preformed 2

times, one with the car parked, and one
with the car being driven.

Traffic pattern: BMS app. over UDP

Table 3.9: Launchpad CC2652 performance in a driving EV test summary.

The non-root nodes were outside the pack during this test. The root
node is placed inside the battery pack. Our intention was initially to
the test with the nodes inside the battery pack. But their batteries were
depleted before we started. As removing the battery from the car, or
putting it back, are operations that take one hour, it was not possible
to access the nodes inside the pack to charge their batteries. Instead,
we decided to attach some nodes near the engines.

During this test, the car was being driven outdoor, around the
campus of IMT Mines Alès. The Wi-Fi access points of the school, and
the devices using them, may have caused interference and may have
had a significant impact on the results. During the whole test, the car
was accelerating and braking, with a speed varying probably between
10 and 40km/h. The car being driven during this test can be seen in
Figure 3.59.

Test conclusion: The results are slightly different from what has
been obtained with the OSV. The PDR is slightly worse when the car
is being driven. But as the root node was in the battery pack, and the
other nodes were near the engines, this setup is relatively different
from what would happen in a BMS with wireless communication.
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Figure 3.50: Mote placement at the back of the PGO, near the engine, for the
drive test.

 95

 96

 97

 98

 99

 100

0003 0004 0005

M
A

C
 P

D
R

 -
 s

ta
r 

(%
)

Node ID

Figure 3.51: Average MAC layer
PDR, PGO at IMT
Mines Alès, parked.

 95

 96

 97

 98

 99

 100

0003 0004 0005

M
A

C
 P

D
R

 -
 s

ta
r 

(%
)

Node ID

Figure 3.52: Average MAC layer
PDR, PGO at IMT
Mines Alès, driving.
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Figure 3.53: Node 3 MAC layer PDR,
PGO at IMT Mines Alès,
parked.

 70

 75

 80

 85

 90

 95

 100

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

N
o

d
e

 0
0

0
3

 M
A

C
 P

D
R

 p
e

r 
c
h

a
n

n
e

l 
(%

)

Channel

Figure 3.54: Node 3 MAC layer PDR,
PGO at IMT Mines Alès,
driving.
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Figure 3.55: Node 4 MAC layer PDR,
PGO at IMT Mines Alès,
parked.
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Figure 3.56: Node 4 MAC layer PDR,
PGO at IMT Mines Alès,
driving.
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Figure 3.57: Node 5 MAC layer PDR,
PGO at IMT Mines Alès,
parked.
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Figure 3.58: Node 5 MAC layer PDR,
PGO at IMT Mines Alès,
driving.

3.5 conclusion

After the tests described above, we can state that the MAC layer PDR
in an EV environment is high (98.5% and above, for all the tests in
which we did not generate interfering traffic on purpose). The position
of the nodes have an influence on link quality: it seems higher when
the nodes are close and in sight of each other.

What seems to cause the more packet losses is the interference with
Wi-Fi communication. The IEEE 802.15.4 or BLE channels that overlap
with Wi-Fi channels in use have significantly worse PDR than the
others. These “bad channels” may evolve when the car is moving, as
the neighboring Wi-Fi networks will change. A way to deal with this
issue is to use channel blacklisting, as mentioned in Section 6.1.

Driving the car does not seem to have a significant impact on the
network. This was very clear on the OSV platform. It was less obvious
on the PGO platform, as when driving the nodes suffered some losses
that seemed distributed evenly on all channels. But as said, the nodes
were not placed where they should have, and this result has little
value. Thus, the electromagnetic emissions from the engine should
not be a problem for the wireless communications. This is also what
can be found in the literature, as discussed in Section 2.4.2.
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Figure 3.59: The PGO e-Hemera being driven around the IMT Mines Alès
campus during the test.

In the next chapter, we are going to reuse this information to manage
the topology of a BMS with wireless communication network, and
its TSCH slotframe. As some direct links to the root may be of lower
quality than a 2 hops path, we are going to focus mostly on having
the best possible topology.



4
N E T W O R K M A N A G E M E N T A L G O R I T H M S

4.1 introduction

In Chapter 3, we evaluated the link quality of a WSN in an EV en-
vironment. Some links are significantly better than others, and this
depends on the position of the nodes. Based on these results, and
what is discussed in Section 2.4.3, we will now construct a two level
tree topology, trying to use the best possible links available. The ap-
plication layer packets will be aggregated at intermediate, or rank 1

nodes, in this topology, so the slotframe usage will not increase with
this technique, compared to a star topology. It may even be reduced,
as less timeslots for retransmissions will need to be allocated.

To achieve this, the first technique we propose is based on LP [73].
It is a well known way of finding an optimal solution to a problem,
by maximizing (or minimizing) an OF, and under some constraints.
The second technique is based on Simple Descent (SD), a well known
optimization technique used in many research fields [72]. In our case,
it serves the same purpose, and uses the same OF as our strategy
based on LP. It is however more efficient in terms of processing time.

There are many parameters involved in the modeling of the problem.
In order to select them properly, we made a software program which
implements these techniques, and had it compute solutions for a large
set of randomly generated link quality data. With this, it is possible
to see what is the effect of a given parameter on the output topology
and slotframe, and to select the best value for it.

Contribution

This chapter presents the following contributions:

1. We propose a centralized network management technique
based on LP.

2. We propose an improved version of this technique by
using the SD technique.

3. We compare both strategies and explain how to choose
the parameters used with them.

59
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4.2 managing a bms wireless network : with linear pro-
gramming

4.2.1 Overview

In a BMS application, the number of nodes is relatively small: it could
be as high as 96 if there was one CSU per cell, but 16 network nodes is
probably a more realistic number (which is 6 cells per CSU). Also, the
number of nodes is known in advance, and all nodes see each other.
For these reasons, a centralized solution is chosen for both topology
management and scheduling.

We propose a two-steps process to build a topology that uses the
best possible links, and then a TSCH schedule. Both steps of the
decision process use LP. The goal is to allocate network resources
(links and TSCH dedicated time slots) to provide reliability for data
delivery of all nodes before the end of a slotframe. The purpose of
the presented algorithm is to allocate uplink slots to support the
voltage and temperature data collection, which has important timing
constraints as mentioned above. In a real deployment, extra timeslots
would have to be added to the schedule for other traffic flows that are
less constrained. In the two LPs, the variables are integers with binary
values. In this scenario, each node must reliably send one data packet
to the root per slotframe.

To solve this topology management and scheduling problem, we
implemented an application in C++ that takes all the possible links
between the nodes with their PDR as input, and print the resulting
schedule and topology as output (both graphically and in text form).
The PDR for the possible links between the nodes is randomly gen-
erated. The graphs shown in Figure 4.1 to 4.3 have been generated
by this application. This piece of software relies on the Gnu Linear
Programming Kit (GLPK) library to solve the LPs.

In the rest of this section, we describe how we modeled the problem,
and to illustrate it, we use a network with 4 CSU nodes plus a root
node. However, the method can be applied for any realistic number of
nodes for a BMS application.

4.2.2 Building the Topology

problem description As described above, we create an example
initial situation with nodes and possible links between them, as can be
seen in Figure 4.1. We then assign a random probability of successful
transmission to each link. The random values have been chosen in the
[0.95; 1] interval, to resemble the values that have been measured and
presented in Chapter 3. We assume the links are symmetrical in terms
of quality.



4.2 managing a bms wireless network : with linear programming 61

Root

001

0.966

002

0.992

003

0.988

004

0.993

0.991

0.982

0.964 0.998

0.985

0.959

Figure 4.1: Example problem graphical description with 4 nodes.

The variables of the problem are designated with two indexes. The
first one is the ID of the transmitter, or source node, and the second
one is the ID of the receiver, or destination node for that link. We label
N the number of non-root nodes, which gives a total number of nodes,
counting also the root, of N+ 1. So the variables can be represented
as in (4.1).

Xi,j i ∈ [1;N], j ∈ [0;N] (4.1)

In this equation, if the link is used, with i having j as parent, the
variable is equal to 1, and it is equal to 0 otherwise.

constraints and objective function In this problem, we
try to maximize the average path PDR for each node. We chose to use
a coefficient K in the OF we propose to introduce a bias towards using
intermediate node (and 2 hops paths), which may help reduce the
slotframe length.

In the following, we use the δ variable as follows:

δi,j =

{
0 if i = j

1 otherwise
(4.2)

The OF to be maximized is presented in (4.3).

F =

N∑
i=1

N∑
j=0

P(i, j)Xi,j (4.3)

with:

P(i, j) =
{

pi,0
2 if j = 0

K pi,j pj,0 otherwise

K = 1.1
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We maximize this OF under the following constraints:

• Each non-root node has a maximum of A children (4.4).

∀i ∈ [1;N],
N∑
j=1

δi,jXi,j 6 A (4.4)

• Each node has one parent (4.5).

∀i ∈ [1;N],
N∑
j=0

δi,jXi,j = 1 (4.5)

• Each node has a path to the root (4.6).

∀i ∈ [1;N], ∀j ∈ [1;N], i 6= j,

Xi,j +

N∑
l=1

δj,lXj,l 6 1 (4.6)

We have to specify a maximum number of children for the rank 1

nodes because we use aggregation. For this technique to be efficient,
we need to be able to transmit the data of a rank one node together
with the data of all of its children within one timeslot. If the timeslots
are configured to last for 10ms, which is the default, the available
payload for application data is 70 bytes in each frame, if encryption is
not used. The data contained in an application layer packet from a CSU
depends on the number of cells which are monitored by this CSU, and
will usually be around 20 bytes. This means, if the available payload
size is 70 bytes, and each data packet is 20 bytes, an aggregated packet
can contain at maximum the information generated by 3 nodes. Thus,
in this scenario, a rank 1 node can have a maximum of 2 children.
Which explains why we defined the constant A that depends on the
timeslot duration, the use of encryption at MAC layer, and the size of
the data packet emitted by the CSUs.

example output The program described above ran with the data
shown in Figure 4.1 as input gives the result shown in Figure 4.2 as
output.

4.2.3 Building a TSCH Schedule

problem description At this stage of the network management
process, the software takes the result that was obtained by the feature
described in Section 4.2.2 as input, and outputs the resulting TSCH
schedule. It is assumed that the application data payload is small
enough (typically 2 bytes per cell voltage measurement and 2 bytes
per temperature sensor) to be aggregated at the intermediate nodes,
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Figure 4.2: Output topology for the 4 nodes example.

and the resulting packet is small enough to be sent within one timeslot
to the root node.

The variables are again designated with two indexes. The first one
is the ID of the transmitter node, and the second one is the timeslot
offset in the slotframe, starting at 0. We do not need to specify the
receiver node here, since it has been determined in the previous step.
We label S the last timeslot index that may be used. Thus, the variables
can be represented as in (4.7).

Xi,k i ∈ [1;N],k ∈ [0;S] (4.7)

In the following, we label R1 the set of node IDs that have a rank of
1 in the topology, i.e. which have the Root node as parent. For example,
nodes 2 and 4 would be of rank 1 in Figure 4.2. We label R2 the set of
node IDs that have a node in R1 as parent. We label Ci, i ∈ [1;N] the
children nodes of i, that are of rank 2. The generated slotframe always
have a first timeslot which is marked as Reserved and which should
be used for beacon frames and control plane traffic.

constraints and objective function In this problem, we
try to minimize the TSCH slotframe size, while keeping the path PDR
of every node above a given threshold. This OF is described by (4.8).

F =

N∑
i=1

S∑
k=0

(k+ 1)Xi,k (4.8)

In this OF, we make the “cost” of scheduling timeslots increase
linearly over time. What matters is that this cost increases, not how
(as this “cost” does not have a real meaning), to give incentive to the
system to schedule the timeslots as early as possible to reduce the
portion of the slotframe used for the application traffic.

We try to minimize this OF under the following constraints:

• If a node is sending its data packet through a relay node to the
root, it must send it to the intermediate node before that node
sends the aggregated data packet to the root. In other words,
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we impose a happens-before relationship between receiving and
sending for the R1 nodes (4.9).

∀i ∈ R1, ∀j ∈ Ci,∀k1 ∈ [0;S],∀k2 ∈ [k1;S],

Xi,k1
+Xj,k2

6 1 (4.9)

• The channel offset is limited to C channels (4.10).

∀k ∈ [0;S],
N∑
i=1

Xi,k 6 C (4.10)

• Each node can only use its radio for one dedicated timeslot for a
same slot offset. It is sufficient to input this constraint for nodes
in R1 (4.11) and for the root (4.12).

∀i ∈ R1, ∀k ∈ [0;S], Xi,k +
∑
j∈Ci

Xj,k 6 1 (4.11)

∀k ∈ [0;S],
∑
i∈R1

Xi,k 6 1 (4.12)

• Each node must have at least one transmit timeslot scheduled
(4.13).

∀i ∈ [1;N]

N∑
i=1

Xi,k > 1 (4.13)

• The path to the Root for each node must have a PDR above the
given threshold (4.14).

∀i ∈ [1;N]

S∑
k=0

Xi,k > Ti (4.14)

where Ti is the minimum number of transmissions for the link
with sender node i to meet the minimum path PDR threshold
requirement.

In equation (4.14), to calculate the number of transmission timeslots
to be allocated for each link, we consider the PDR without retrans-
mission of each link, and the minimum path PDR. To do this, we
iteratively schedule a retransmission on the worst link of the worst
path, until all the path PDR are above the requested threshold. After
the retransmissions have been scheduled, the resulting link PDR is as
shown in (4.15).

PDRrtr = 1− (1− PDR)tr (4.15)

In this equation, PDRrtr is the PDR after all the transmissions have
been scheduled, and tr is the total number of transmissions for that
link.
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Figure 4.3: Output schedule for the 4 nodes example.

example output The program described above ran with the data
shown in Figure 4.2 as input gives the result shown in Figure 4.3 as
output. In this example, the minimum allowed path PDR has been
arbitrarily set to 99.5%. Thanks to the retransmissions, the path PDR
to the root for node 1 to 4 is 99.985%, 99.994%, 99.794% and 99.995%
respectively.

4.2.4 Evaluation of the Linear Programming Solution

As latency is a major concern in a BMS application, the output slot-
frame size is a relevant metric to see how this proposed solution
behaves compared to simpler strategies. To that extent, we use our
application to build schedules for a network of between 2 and 16

nodes, with random link quality in the 95 to 100% range. For each
number of nodes, the test is run 10 times, with new link conditions
every time. In this test case, we manage the network with 3 strategies.
The first one is Star topology. The second one is a strategy using only
aggregation at intermediate (or rank 1) nodes, and which minimizes
the slotframe size. The last one is our proposed solution. While the
first two strategies do not consider the link PDR and do not schedule
any retransmission, ours is set to build a minimum path PDR of 99.5%.
In this test, the rank 1 nodes, those which have a direct link to the
root, can have a maximum of two children.

The results, displayed in Figure 4.4, show that even though for very
small networks our solution uses more timeslots, when the network
grows it requires a smaller portion of the slotframe than Star topology,
although it has to guarantee a maximum path Packet Error Rate (PER)
10 times smaller than the maximum link PER, with the settings used.
Moreover, our solution gives slotframe sizes slightly above the strategy
that only tries to minimize them. This shows that wisely choosing
the links and using retransmissions when needed can significantly
improve performance at a reasonable cost.
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Figure 4.4: Comparison of average slotframe length between Star topology,
Maximum Aggregation topology, and the proposed solution.

4.3 managing a bms wireless network : with simple de-
scent

4.3.1 Problem description

The strategy exposed above gives an optimal result under the selected
constraints, but building the topology may take time in some situ-
ations, which is a well-known downside of LP. In this section, we
use the same modeling for the problem, but use the SD method to
build the topology. We only focus on building the topology, because
an optimal schedule can be built in a procedural way, by allocating
all the slots of the nodes with rank 2 to the most left available slots,
then allocating the slots for all the nodes of rank 1 to the most left
available slots, while taking into account the constraints exposed in
Section 4.2.3.

This is viable because the OF for this problem will be at a minimum
when the slots are allocated at the most left side of the schedule
possible. Scheduling the rank 2 nodes before the rank 1 nodes makes
the solution compliant with the first constraint, describing a happen-
before relationship. From there, it is possible to build an algorithm
that tries to schedule a slot for a node in the first slot, check all
the constraints, and move to the next slot to its right, if not all the
constraints were satisfied, and repeat this until it finds a slot that
fulfills all the constraints.
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4.3.2 Proposed solution

In the simple descent method, the goal is to rapidly find an approx-
imate solution to the problem. This is done by first building a valid
solution, and then applying permutations to it to keep this intermedi-
ate result a valid solution at all iterations, while converging towards a
local minimum or maximum, according to the objective function.

The technique described below has been implemented into the same
application presented in Section 4.2.

To build an initial solution, we used four methods, described below.
In the associated examples, the green color means it has been selected,
and the red color means the link has been removed from the available
links list. The numbers reflect the order in which these operations are
performed.

• Star topology. All the nodes have a link to the root. An example
is available in Figure 4.5.

• Best link first. This is an iterative process in which the best link
is selected. If it is a link to another non-root node, this other
node has its link to the root selected, and the other possible links
to the now rank 2 node are removed from the available link list.
An example of the first iteration of this algorithm is available in
Figure 4.6.

• Best link to root first. This is an iterative process in which the
best link to the root are selected first, until the root has the
minimum possible child nodes. The remaining links to the root
are removed from the link list. Then, the remaining nodes, which
are then of rank 2, have their link selected using the “best link
first” method described above. An example of the first iterations
of this algorithm is available in Figure 4.7.

• Eliminate weakest link first. This is an iterative process in
which the worst links are eliminated. Every time a link is re-
moved from the link list, the algorithm checks if for each node
they have more than one path to the root. When a node has only
one possible path left, these links are selected. An example of
the first iterations of this algorithm is available in Figure 4.8.

In the second part of this process, we apply permutations to the
current solution and calculate the value of the objective function
defined in equation 4.3 for each permutation that has been tried. The
permutation with the highest objective function value becomes the
current solution for the next iteration. When no permutation gives
a better result than the current solution, a local maximum has been
reached and the current solution then becomes the topology.

The following permutations have been used to try to approach the
optimal solution:
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• Exchange a rank 1 node with a rank 2 node: switch the position
of a rank 1 node with a rank 2 node in the topology.

• Exchange two rank 2 nodes: switch the position of two rank 2

nodes in the topology.

• Make a rank 1 node a child of another rank 1 node: select a
node with rank 1 with no child, and make it rank 2 as child of
another rank 1 node.

It is important to note that the resulting topology obtained with this
method may vary depending on the initial solution chosen and the
set of permutations used.

4.3.3 Evaluating the result

Several ways to evaluate the obtained solutions can be used, like
average path PDR or minimum path PDR. But as aggregation of data
packets may happen at rank 1 nodes, the most meaningful is probably
the average weighted link PDR, as in this case the PDR for a link
will be counted as many times as there will be data packets in the
aggregated packet. For example, if a rank 1 node has 2 children, its
link to the root PDR is counted 3 times, to reflect the importance of the
packet. This is the method we used to evaluate a solution a posteriori
in the rest of this chapter. It would have actually been interesting to
use this function as the OF in the LP technique, but that did not seem
feasible without making the problem non-linear, which we wanted to
avoid.

4.3.4 Choosing the initial solution

To get the best chances at finding a good solution, according to the
average weighted link PDR metric, we compared how the different
initial solutions performed. The four initial solution building methods
have been tested against situations with random link qualities in the
[0.95; 1] interval, for a number of nodes varying from 2 to 32, and
100 times for each number of nodes. The results are displayed in
Figure 4.9.

The best results are obtained with the star topology as the initial
solution when the number of nodes is low, and then the “best link to
root” method gives results that are similarly as good when the number
of nodes increases. In the remainder of this section, we use the star
topology to build the initial solution.

The link quality goes higher when the number of nodes increases
on this plot, because the more nodes, the more the system has oppor-
tunities to select the better links.
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Figure 4.9: Comparison of the weighted link PDR for the four initial solutions
that have been tried, for a number of nodes from 2 to 32, with a
100 initial link situations in every case.

4.4 performance evaluation and parameters tuning

In order to know if the SD technique is viable, we compared it to the
LP technique in several situations. The metrics that have been used
are the weighted link PDR, and execution time required to build the
solution.

First we keep the constant K to 1.1 and the objective function as in
equation 4.3, to keep a bias towards using better links for those which
involve the root node, as the MAC layer frames going through these
links will usually contain more than one data packet. The value to
use for these coefficients is actually investigated and discussed below.
For each number of nodes, the two strategies are tested against 2000

initial situations. Here we take a look at the execution time for both
strategies. The link PDR is chosen randomly in the [0.7; 1] interval in
Figure 4.10a, and in [0.95; 1] interval in Figure 4.10b.

In both figures we can see that the execution time becomes much
longer for the LP method when the number of nodes increases. This
difference would become even more meaningful on an embedded
CPU with constrained resources.

During this test, the metrics to evaluate the different solutions were
also calculated. In Figure 4.11, we compare the average weighted link
PDR for both techniques.

These figures show that the LP techniques gives slightly better
results. However the difference does not seem to be significant.
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Figure 4.10: Comparison of topology building time between LP and SD, for
2000 initial situations.
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Figure 4.11: Comparison of topology average weighted link PDR for LP and
SD, for 2000 initial situations, and K = 1.1.
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Figure 4.12: Comparison of topology average weighted link PDR for LP and
SD, with link PDR in [0.7; 1] for 2000 initial situations.

Similar tests have been ran with a link PDR in [0.7; 1], and K equals
to 1 and 1.5, to see how much this parameter impacts the result. The
results can be seen in Figure 4.12. They show that there is no significant
upside in using this K parameter in the first place, or that the best
value for it is 1.

Finally, other tests have been run, in which the exponent of pi,0

in equation 4.3, which is the probability of a successful transmission
from node i to the root, has been changed, to see if this was efficient.
This exponent is set to 1 in Figure 4.13a, to 2 in Figure 4.13b and to 3
in Figure 4.13c. It seems that at least for the SD technique, using an
exponent of 2 gives better results than 1, and there is no significant
difference between 2 and 3.

From all these results, we can conclude that even though both tech-
niques are efficient, the SD technique with K = 1.0, and an exponent of
2 for pi,0 in equation 4.3, is nearly as good as LP and requires a lower
computation time. Thus, SD is the topology management technique
we will use in the rest of this work.

4.5 conclusion

In this chapter, we proposed two strategies for network management.
The first method is based on LP, and while it does generate a high
quality topology, it can be costly in terms of processing time in some
situations, especially when all the links are of high quality with a PDR
close to 1. The second method, based on SD, gives results that are
almost as good with a much lower computation time, and could even
be implemented to be limited to a bounded number of operations if
that is necessary.

However, the techniques proposed here can not be used as is to
manage a network, as they assume that the network manager has
perfect information on all the possible links quality. A mechanism
to give the PDR data to this central controller, and to propagate its
decisions is required. Also, when the network is started for the first
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(a) Exponent of pi,0 in equation 4.3 is 1.
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(b) Exponent of pi,0 in equation 4.3 is 2.
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(c) Exponent of pi,0 in equation 4.3 is 3.

Figure 4.13: Comparison of topology average weighted link PDR for LP and
SD, with link PDR in [0.95; 1] for 2000 initial situations, K = 1.0.

time, the possible links quality are unknown. Thus, an iterative process
to try the links and discover their PDR should be used. This is what is
discussed in Chapter 5.





5
W I R E L E S S N E T W O R K F O R B AT T E RY M A N A G E M E N T
P R O T O C O L

5.1 introduction

In order to propose a solution that would be suitable for a real BMS
with wireless communications, we introduce in this chapter a new
routing and scheduling management protocol that we designed and
developed. It also allowed us to test the algorithms presented in
Chapter 4. We describe the hardware and software architecture we
used to implement and test this protocol and algorithms, the network
stack, the joining sequence for a participating node, and the control
messages exchanged. The algorithms presented in Chapter 4 assume
a perfect knowledge of the links quality. Here these algorithms are
used in an iterative way to explore the links quality through various
topologies, and converge towards the best possible one. Moreover, we
present the experimental test results that we obtained inside a battery
pack with this setup. These results show that, by actually selecting
the best available links to build a multi-hop network, and providing
enough retransmission timeslots, a very high QoS can be achieved.
Finally, we discuss the upsides, and possible improvements for this
protocol.

Contribution

This chapter presents the following contributions:

1. We propose an architecture for centralized network man-
agement with the Contiki-NG OS.

2. We propose and describe a new protocol for control plane,
network discovery and management, to be used in Contiki-
NG in place of RPL to propagate the decisions of the
centralized network manager.

3. We present the performance evaluation results of the ex-
periment that we performed with this protocol with a
network of I3Mote nodes inside a battery pack.

75



76 wireless network for battery management protocol

5.2 incentives for centralized management and inten-
tion

As is presented in Chapter 4, centralized management has been chosen,
to make decisions based on full information about the network link
qualities. Using RPL to propagate the decisions of the centralized
network manager was not an option, as RPL has been designed for
distributed and local decision making, based on an OF run on the
network nodes directly. So the messages exchanged in RPL do not
match what are trying to achieve here.

In the solution we propose, we have chosen to divide roles between
the root node and the network manager. The root node is in charge
of managing the nodes state, especially during the joining procedure,
whereas the network manager only considers nodes that have joined
and are ready, and processes their link quality data to make topology
and schedule updates decisions.

In RPL, all control messages can be routed, and Destination Infor-
mation Objects (DIOs) in particular. In our situation, we based our
work on the assumption that all nodes are one hop away from each
other, and will have reasonable link quality with any other node (that
is, above 90% PDR). This is, at least, what has been observed in the
experiments presented in Chapter 3. So the control message that is
equivalent to DIOs in the protocol we propose, which we name BMS
Network Advertisement (BNA), is sent only from the root, on the mul-
ticast IPv6 address used for that purpose. It will result in a broadcast
message at the MAC layer.

This makes the protocol simpler, both in design and in how it
operates. This protocol, although it is aiming to achieve close to deter-
ministic communications for application layer packets, is best-effort
in terms of network management. It takes advantage of the fact that
any kind of communication can be performed within one hop, and
if a control packet is missed, any receiver node in this situation will
be able to re-synchronize with the next control message of the same
kind it receives, as almost all control messages are sent periodically.
In other words, the protocol has been thought to work based on asyn-
chronous events and be reactive. The other possible approach would
have been to use acknowledgments for control packets (such as DIO
Acknowledgements (ACKs)), but this is not necessary here, and would
have made the protocol heavier.

5.3 architecture

5.3.1 Network and software stack

The protocol we propose has been designed to be used in place of RPL,
to set how routing should be performed in the nodes, according to the
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Protocols

Custom protocol messages
ICMPv6

6LowPAN
IEEE 802.15.4-2015 TSCH

(MAC layer)
IEEE 802.15.4-2015 TSCH

(PHY layer)

Table 5.1: Custom routing protocol
control messages stack.

Protocols

BMS application messages
UDP

6LowPAN
IEEE 802.15.4-2015 TSCH

(MAC layer)
IEEE 802.15.4-2015 TSCH

(PHY layer)

Table 5.2: BMS protocol application
messages stack.

Software layer Driver

NETSTACK_ROUTING bmsrouting
NETSTACK_NETWORK uIP / 6LowPAN driver
NETSTACK_MAC TSCH driver
NETSTACK_RADIO Set by platform

Table 5.3: Software layers for network operation that we use in Contiki-NG.

network manager’s decisions. We took advantage of how the Contiki-
NG code separates the implementation of the different software layers
it is made of, and makes the drivers generic, to define a new routing
driver. This is what is shown in Table 5.3. The custom software layer
we use in place of RPL is named bmsrouting. The protocol stack
used for control messages is described in Table 5.1. The protocol used
to carry these messages, Internet Control Message Protocol for IPv6

(ICMPv6), has been chosen to be as close as possible to what RPL does.
Like in RPL, some messages are multicast, and others are unicast.

The application layer messages use the typical IoT stack, as shown
in Table 5.2. Although CoAP could have been used, none of its features
are really helpful in the BMS scenario, and it would have brought
extra overhead. Thus a custom binary message format over UDP has
been chosen.

The TSCH mode of IEEE 802.15.4 is used in what we developed,
although the routing part of the protocol would be suitable for CSMA
as well. This means a scheduling mechanism is used. All nodes, in-
cluding the root, start with a slotframe of 25 timeslots, with a default
length of 10ms each, and one shared timeslot at slot offset 0, channel
offset 0. When the network manager makes topology update decisions,
it will also schedule at least one uplink timeslot from each node to
its parent, according to the algorithms presented in Chapter 4. These
dedicated transmit timeslot to the parent, or receive timeslot from
the child are configured upon reception of a BMS Network Topology
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Figure 5.1: BMS with wireless communication network and software archi-
tecture used during the final test, with I3Mote nodes.

Update (BNTU) message for non-root nodes, and a Network Manager
Update (NMU) message for the root node.

5.3.2 Target platform

The purpose of the protocol and system that is described in this chap-
ter is to run an experiment with real hardware, and with a setup that
should be similar to what we would use in a real BMS with wireless
communications implementation. To be able to compare the results
obtained here with the tests that have been performed in Chapter 3,
the target hardware platform for the IoT nodes is CC2650 I3Motes.
Although in a real deployment the MCU running the network man-
ager and MCU software would be an embedded device, here we
used a PC for convenience. The root node runs a Contiki-NG project
we made, called bms-br, which is derived from the rpl-border-
router project. In the end, our setup is very close to what is used in a
typical Contiki-NG and RPL network, with the tunslip6 application
being the bridge between the IoT world and the IPv6 world. This setup
is displayed in Figure 5.1.

What is particular here, and different from a real BMS with wireless
communications implementation, is that there is no dedicated MCU
program. The application layer messages from the nodes, which do
not contain actual data about a battery pack, are sent to the network
manager application, in order to monitor the application layer packet
losses. This is because we want to monitor the network performance,
and evaluate the network management algorithms quality, and do not
need to supervise an actual battery pack.
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Figure 5.2: BMS with wireless communications network and software archi-
tecture used during development, with Cooja.

5.3.3 Platform used during development: Cooja

In order to make the setup described above possible, we developed
and tested our network protocol in the Cooja simulator. As of today,
the only hardware targets that are available in it are rather old and
with limited memory, so we used the Cooja Mote target. The setup
that has been used is very close to the rpl-border-router example,
except we used our own Contiki-NG projects, and the bmsrouting
routing layer to manage the network, as shown in Figure 5.2.

5.4 messages and operation principle description

5.4.1 IoT network control messages

The following messages are sent over the IEEE 802.15.4 TSCH network,
as ICMPv6 messages, either on a predefined multicast address, or a
node’s unicast IPv6 address. They are not routed over the USB link
towards the network manager. They are sent by our custom routing
layer on reception of another routing layer message, or when a timer
expires.

5.4.1.1 BMS Network Advertisement

The role of this message is to advertise the network, and help the
nodes that participate to remain synchronized. It is sent by the root
node every two seconds, with a random delay added, on the multicast
IPv6 address used by our routing layer. This message serves the same
purpose as a DIO packet in RPL, the main differences being that it can
only be sent by the root node, and that the delay between the packets
sent does not change over time (whereas RPL uses a trickle timer).
BNA messages are periodically sent by the root node, every 3 seconds.

This message contains the following information (in order):
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• Root IP (16 bytes): The global IPv6 address of the root node.

• Topology counter (1 byte): A counter to help a node see if it has
missed a BNTU message.

• Network prefix information (22 bytes): Network prefix, with
its size and lifetime, for the node to create its own global IPv6

address within the current network.

• BMS data flag (1 byte): When this flag is set, the nodes are
allowed, and should, send BMS application layer packets con-
taining their cell voltage and temperature data to their parent.
Actual data packet format in the current implementation are
described in Section 5.4.3

5.4.1.2 BMS Network Join Request

This message is sent by a non-root node, upon reception of a BNA
message, when it is trying to join the network.

This message contains the following information:

• Node IP (16 bytes): The global IPv6 address of the node which
is trying to join, configured using the prefix received in a BNA.

5.4.1.3 BMS Network Topology Update

This message is sent by the root node, upon reception of a BMS
Network Join Request (BNJR) message, or after a NMU is received,
because the network manager has made an update decision. The main
purpose of this message is to tell a node what parent it should have,
but also what should be its dedicated send and receive timeslots.

Sending this message can also be triggered by the reception of a
BMS Network Topology Information (BNTI) by the root node, in which
the parent ID information would not match the supposed parent ID
of the node (meaning the node has missed a BNTU).

This message contains the following information (in order):

• Node own IPv6 link local address (16 bytes)

• Node parent IPv6 link local address (16 bytes)

• Node ID (1 byte)

• Parent ID (1 byte)

• Rank (1 byte): this value is either 1 if parent ID is 0 (meaning the
parent is the root), and 2 otherwise. This is actually redundant
with the Parent ID field.

• List of transmit slots to parent, as follows:

– Number of items in the list (1 byte)
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– Items (2 bytes each): first byte is the timeslot offset in the
slotframe, second byte is the channel offset.

• List of receive slots from children, as follows:

– Number of items in the list (1 byte)

– Items (2 bytes each): first byte is the timeslot offset in the
slotframe, second byte is the channel offset.

Please note that in the second list, the ID or IPv6 address of the
child node is not specified. This is not required to configure a receive
timeslot. If a frame is received during such a timeslot, the MAC layer
will either discard it if the unicast destination address of the frame is
not this node, or forward it to the upper layer.

5.4.1.4 BMS Network Topology Information

This message is periodically sent by each non-root node, every 10

seconds (with a random delay of up to 1 second added to limit the
risk of contention), on the multicast address used by our BMS routing
protocol management. Its goal is mainly to inform the root node what
is its current parent (to help the root node see if this particular node
has information about the topology that is synchronized with its own
information), but also to tell the root node about the link quality the
node has with its parent.

This message contains the following information (in order):

• Node ID (1 byte)

• Parent ID (1 byte)

• Rank (1 byte): this information is redundant with parent ID.

• Topology ID (1 byte): this should match the value sent in the
BNA messages. If this ID is lower, a BNTU should be sent to
that node.

• Sequence Number (1 byte): this is to help the root node see if it
has missed one or more BNTI from this node.

• MAC transmitted packets (2 bytes): number of transmitted
MAC layer packets since the previous BNTI has been sent.

• MAC lost packets (2 bytes): number of lost MAC layer packets
since the previous BNTI has been sent.

• MAC transmitted packets – old 1 (2 bytes)

• MAC lost packets – old 1 (2 bytes)

• MAC transmitted packets – old 2 (2 bytes)
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• MAC lost packets – old 2 (2 bytes)

The fields that are labeled "old 1" are a duplicate of the same field
from the BNTI that was sent just before. Similarly, the fields that are
labeled "old 2" are a duplicate of the same fields from the BNTI sent
even before. Thus, even if the root node misses a significant amount
of these messages, it still has all, or almost all, the data about the
node. In other words, each BNTI, which is sent approximately every
10 seconds, contains the MAC layer statistics of that node for the last
30 seconds, approximately.

It would have been possible to do otherwise, using ACK messages
from the root node on a successful BNTI reception, but this would
have represented more overhead for the network. Especially because
the data is so small: 4 bytes generated every 10 seconds.

5.4.2 Messages between root node and Topology Manager

The following messages are exchanged between the root node and the
network manager over the serial over USB link, and are UDP over IPv6

packets, using unicast addresses. Please note that a specific and fixed
port is used on both sides for this datagram socket, which is different
from the port used by application layer messages. The condition to be
met for sending each of these messages is described below.

5.4.2.1 Network Manager Information

This message is sent by the root node to the network manager upon
reception of a BNTI, and without delay. In this situation, the root node
just acts as a gateway between the node and the network manager.
After it has processed the information contained in the BNTI for itself.

This message contains the exact same information as a BNTI, in the
exact same order.

5.4.2.2 Network Manager Update

This message is sent by the network manager to the root node right
after an update decision. Again, it is then the responsibility of the root
node to make sure that the other nodes in the network keep up with
this decision and remain synchronized. This message contains two
lists. The first one is the topology information, and the second one is
the schedule information.

This message contains the following information (in order):

• Nodes list size (1 byte): number of elements.

• Nodes list: 2 bytes per element, each element is represented as:

– Nodes ID (1 byte)
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– Parent ID (1 byte)

• Schedule list size (2 bytes): number of elements.

• Schedule list: 3 bytes per element, each element is represented
as:

– Nodes ID (1 byte)

– Transmit slot to parent, slot offset (1 byte)

– Transmit slot to parent, channel offset (1 byte)

Please note that the second two lists combined are enough for the
route node to determine which node should configure received slot in
its slotframe, and at which location.

After receiving such a message, the root node will update its local
representation of what the topology should be, and start a short timer.
When this expires, the root node will send a BNTU to another node
that needs to change its position in the topology, or slotframe settings.
When this message is sent, the root node resets its BNTU timer to
prepare to send the next one to another node that needs update.
When the BNTU timer expires, the next node that will be updated is
preferably a node that should be of rank 1 in the new topology, among
all the nodes that need an update.

5.4.3 Application layer messages

As the goal here is to make a proof-of-concept, and not actually
supervise a battery pack, the application layer messages contain only
minimal information. They have actually two purposes in our case:
generate traffic from the non-root nodes, to have MAC layer PDR
statistics, and count them at the network manager to see what is the
application layer PDR for each node. The goal being of course to have
100% application layer PDR once the network is formed and stable.

This message contains the following information (in order):

• Nodes ID (1 byte)

• Random data (2 bytes)

• Sequence number (1 byte)

• Child node 1 ID (1 byte)

• Random data (2 bytes)

• Sequence number (1 byte)

• Child node 2 ID (1 byte)

• Random data (2 bytes)
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• Sequence number (1 byte)

If the node has no child, the application layer packet will only
contain the first 4 bytes described above. If the node has one child, the
application layer packet will only contain the first 8 bytes described
above. Else, the node has two children, and its application layer packet
contains the full 12 bytes described previously.

If the node has rank 1 (meaning it has the root as parent), it will send
its data directly to the network manager, together with the data it has
received from its children, if any, in an aggregated packet. Otherwise,
it sends its data to its parent. As rank 2 nodes can not have children
in our system, their application layer packets are only 4 bytes long.

Once a node receives a BNA with the BMS data flag set to 1, it
starts sending one application layer packet per slotframe.

In the packet format described here, there are fields with random
data. Actually they are bytes with fixed values, above 0xf1. It hap-
pened that sometimes during the tests the tunslip6 application
would crash when receiving packets with series of bytes equal to, or
close to, 0. This is actually a workaround, and these bytes are of no
interest for the rest of the applications.

5.4.4 How the packets are actually routed

The actual routing of the packet is performed by the classical software
layer used by Contiki-NG for routing: uIP. The mechanisms we use
for handling the routes configurations are exactly the same as in the
RPL Lite implementation. This means, when a BNTU is received
by a node, it will set the IPv6 link local address of its parent as
its default route. This is enough to handle routing of uplink traffic.
Downlink traffic (if any) is handled by the root node, using its current
representation of the network, and is performed using source-routing.
This is reasonable in our case, since all nodes are two hops away from
the root, and the platform we developed is still a testbed that has no
use-case for downlink traffic yet.

5.4.5 Network manager behavior regarding link quality estimation and
update decisions

The network manager has been designed to compute the best possible
topology based on the link information it has. However, the link
quality information comes to it periodically in samples, and is only
about the link that are currently being used. So it is necessary to both
have mechanisms that give it incentives to explore all the possible
links, but also to mitigate the fact that some link quality data may not
be fresh.
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5.4.5.1 When network manager update decision is triggered

Internally, the network manager has two main functions. One that
is called upon reception of a Network Manager Information (NMI)
packet, which records the link information of a specific node to its
parent. The other, which is called every 20 seconds, computes a new
topology based on the current link quality information. This computa-
tion is done with the algorithm described in Chapter 4. The result is
not only a topology and schedule, but also a value for the objective
function.

The value obtained for the objective function is then compared to
the values obtained in the last 4 iterations of that function call. If the
difference between the current objective function value is bigger than
any of the 4 values calculated previously, an update decision is taken.

This is one way to handle the trade-off between updating the topol-
ogy to discover what the other links are like, and giving the network
time to adapt and gather a significant amount of data before making
an update decision.

5.4.5.2 How link quality is calculated

The link quality may vary over time, mainly due to interference, as
exposed in Chapter 3. But having old link quality data is better than no
data at all. So we implemented a function that calculates link quality
in the network manager by giving more weight to the more recent
data.

We compute link quality based on the following assumption. A lost
packet is most often due to an acknowledgment that has not been
received. With this, it is hard to know in which direction a packet has
been lost. So, in our system, the links are supposed to be symmetrical.

The PDR is the ratio of the packets that have been received over
the packets that have been transmitted. Here, we compute a weighted
average of the PDR data samples that have been received from the
node, or the two nodes, that may participate in a specific link.

In the calculation of the PDR, each data sample is attributed a
coefficient, which is calculated with equation 5.1. i is the index of the
PDR data sample in the list of samples received for this link, Ts is the
time of reception of the data sample, and N is the number of data
samples received for this link. This coefficient is also bounded to the
interval [0.1; 1].

Ci = max(
Tsi − Ts0
TsN − Ts0

, 0.1) (5.1)

In what follows, the number of transmitted packets for data sample
i is referred to as Txi, and the number of failed transmissions for
that sample is referred to as Fi. This gives the formula presented in
equation 5.2 to calculate the weighted PDR for a link.
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Figure 5.3: Non-root node joining state machine.

PDR = 1−

∑N
i=1Ci × Fi∑N
i=1Ci × Txi

(5.2)

With this system, the old data samples have little influence over the
final decision, but are still taken into account. The number of samples
kept for each link is bounded, and when the list of samples is full and
a new sample is received, the oldest sample is discarded, and then the
new sample is added to the list. In our implementation, samples can
not be discarded based on their timestamps. The only way to discard
a sample is by having it “pushed out” of the list by a new one.

5.4.6 Node joined state

The possible states a node can go through is pictured in Figure 5.3.
On start-up, and after joining the IEEE 802.15.4 network with the
configured PAN ID, a node starts listening for BNA messages. When
a BNA message is received, the node uses the provided information
to configure the root node address, and topology version parameters.
This makes it switch from the disjoined to joining state. It also sends
a BNJR message. Upon BNTU reception, it finishes to configure its
network parameters, mainly parent ID and thus default route, and
switches to the joined state. If, at any of the two stages mentioned here,
it would have its neighbor cache full, it will clear this cache and switch
back to the disjoined state. However, this situation is very unlikely to
occur. In the joining state, if no BNTU is received after the expiration
of a timer, in our case set to 8 seconds, it will resend a BNJR.

When the node has successfully joined, it continues to listen for
BNA messages. If the BMS data flag in this message is set to 1,
it will start sending application layer messages, at a rate of one per
slotframe. Should this flag be set to 0 again, it will stop sending these
messages.
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5.5 node join sequence

An ideal join sequence for a BMS CSU node is presented in Figure 5.4.
In this scenario, when the network starts, the root node starts sending
Enhanced Beacon (EB) frames. As soon as all of its network layers
are ready, these advertisement packets contain network information
as well, like this is done in RPL with DIOs, and the period of these
advertisement messages is also set by the network layer. In our case,
these messages are BNA, sent in broadcast at the MAC layer, and
multicast at the network layer. Meanwhile, the node is scanning all the
channels available in the hopping sequence list to try to catch one of
these advertisement packet, with the wanted PAN ID. Once the node
receives such a message, it will synchronize to be part of the MAC
layer network, and initiate the joining procedure at the network layer
(or wait for a BNA, if the received message was only an EB and not a
BNA).

The first message the joining node sends is a BNJR, informing the
root node it wants to participate in the network. The root node replies
with a BNTU, which purpose is mainly to inform the node that it has
successfully joined. At this stage, the BNTU can only have the field
"parent ID" set to 0, which is always the root node ID. The main goal
of this message is to inform the node of its ID.

Once the node has received the first BNTU from the root node, it
will consider it has successfully joined the network, and schedule a
timer for starting to send BNTI messages.

Every time the root node receives a BNTI message from a node, it
sends a copy of it to the network manager, in a NMI message. Then, the
network manager processes and stores this data. The network manager
also has an internal timer, and considers updating the topology (and
schedule), every 20 seconds. If such a decision is made, the network
manager sends a NMU packet to the root node, containing all the
information about the new topology and schedule. It is then the
responsibility of the root node to dispatch this information to the
nodes with BNTU messages.

5.6 topology and schedule update sequence

Using again the example presented in Section 4.2.2, and in Figure 4.1
in particular, here is presented what would happen after an update
decision of the network manager for this example, and thus the re-
ception of a NMU message by the root node, in Figure 5.5 and 5.6. In
this example, it is assumed that the nodes are in a star topology in
the initial state, and no timeslot have been allocated yet. Actually, the
nodes just have a minimal slotframe with only one shared slot, in this
initial stage. This is the typical kind of situation that happens right
after the network has been started.
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Figure 5.4: BMS with wireless communication node join sequence example.

Please note that BNTU messages only contain slotframe informa-
tion about what the receiving node should do. Which means the
slotframes that are presented, showing a global overview, are just here
for illustration purposes.

The nodes that are being sent BNTU messages to first are nodes
that have rank 1 in the new topology. The order in which these nodes
are sent BNTU messages to does not matter, and is implementation
specific. To show this more clearly, the way it is done by the root node
is presented in Listing 5.1. It matters to update rank 1 nodes first, in
order for them to be ready when their children start sending them
packets.

static bms_node_info_t * nodesListGetNextNodeWhichNeedsTopologyUpdate() {
// First we look for nodes that should be rank 1, if one of them needs an
// update
for (uint8_t i = 0; i < BMS_NUM_NODES; i++) {

if (nodesList[i].is_set) {
if (!nodesList[i].topology_info_is_fresh) {

if (nodesList[i].parent_id == 0u) {
return &nodesList[i];

}
}

}
}

// If we did not return anything yet, we just look for a node that needs to
// be sent a BNTU to
for (uint8_t i = 0; i < BMS_NUM_NODES; i++) {

if (nodesList[i].is_set) {
if (!nodesList[i].topology_info_is_fresh) {

return &nodesList[i];
}

}
}

return NULL;
}

Listing 5.1: The function used by the root node to determine to which
node it is going to send a BNTU message to next.
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(a) Initial state.
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(b) Right after the NMU has been received, the root node schedules its receive
timeslots for the children it is going to have in the new topology.
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(c) First BNTU is sent to node 2. Here, not only the node 2 adds transmit timeslots to
the root to its internal representation of the slotframe, but it also allocates receive
timeslots for the nodes that are soon going to be its children.
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(d) Second BNTU is sent to node 4, which adds transmit timeslots accordingly, but
will not have any children, so no receive timeslot is scheduled.

Figure 5.5: Network update with BNTU example: topology and schedule.
Blue arrows represent BNTU messages, and highlighted blue
timeslots represent newly allocated timeslots following this BNTU
reception. This Figure is showing the first part of the process:
updating rank 1 nodes.
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(a) Third BNTU is sent to node 1, which is going to be a child of node 2 in the new
topology.
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(b) Fourth BNTU is sent to node 3.
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(c) After all nodes have received their topolgoy update messages successfully, the
topology and schedule do match the decision that has been made by the network
manager.

Figure 5.6: Network update with BNTU example: topology and schedule.
Blue arrows represent BNTU messages, and highlighted blue
timeslots represent newly allocated timeslots following this BNTU
reception. This Figure is showing the second part of the process:
updating rank 2 nodes.
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5.7 the repair mechanisms

Even though many repair mechanisms could be envisioned, as de-
scribed in Section 5.9, only those which seemed strictly necessary have
been implemented. They have been made to handle the case in which
a node, or the root node and network manager, are reset.

If the root node is reset, it will start to send EB frames again. Any
node trying to participate will see them in the end (using the mecha-
nisms already implemented in Contiki-NG), and rejoin at the MAC
layer. As the node was part of the older version of that same network
before, it will continue to send BNTI messages every 10 seconds ap-
proximately. The root node will take a BNTI from an unknown node
as a BNJR, and forward the information to the network manager. It
will soon send a BNTU to this same node, as if a BNJR was received,
to resynchronize with it for both topology and slotframe.

If a node is reset, it will start listening for BNA messages and use
the regular joining procedure to become part of the network again.

5.8 experimental performance evaluation

In order to evaluate the behavior of the protocol, we tested it with a
network of 8 CC2650 I3Mote nodes, each of them powered by a coin
cell battery, and running our bms-node firmware, plus a route node,
made of a CC2650 I3Mote with its daughter board, connected to a PC,
running our border router firmware. The nodes were placed within
the battery pack as shown in Figure 5.7. As the number of nodes was
relatively small, and to make the joining procedure faster, we used
the TSCH_HOPPING_SEQUENCE_4_4 of Contiki-NG, which is { 15,
25, 26, 20 }. It contains the 4 IEEE 802.15.4 channels that do not
overlap with the three mostly used Wi-Fi channels, as described in
Chapter 3.

The strategy used by the the network manager is the one based
on SD, and the parameters used are those described in Chapter 4.
The maximum acceptable application PER for any path has been set
to 10−6, which means we accept to loose one packet per million on
average.

During the test, the network manager outputs the results to a log file.
When an update decision is taken, it also creates images containing: a
graph representing its knowledge of all the links, the new topology,
and the new slotframe. With this tool, it is possible to follow the
evolution of the network over time. The initial state is displayed in
Figure 5.8. As no data has been received, all links are assumed to be
100% PDR. By setting links for which we have no data to 100% PDR,
we are giving incentive to the system to select these links, which will
actually generate data for them, that the system will be able to use in
its next check for update.
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Figure 5.7: Nodes positions during the final test with our custom protocol.
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Figure 5.8: Final test: network manager knowledge of the links quality initial
network topology and schedule. No data has been received from
the nodes yet, so all links are assumed to have a 100% PDR.
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Figure 5.9: Final test: network manager knowledge of the links quality and
first update decision, after 20 seconds, as some packets have
already been lost.

After the first 20 seconds, some packets have already been lost,
so the network manager makes an update decision. This situation is
shown in Figure 5.9. It is visible that a few packets have been lost
between nodes 7 and the root, and node 8 and the root.

After letting the test run for one hour, during which 20 update
decisions have been made by the network manager, the network was
relatively stable: no update decision occurred in the last 6 minutes.
The result is shown in Figure 5.10.

From the log file, we can see that 4 application layer packets have
been lost in this last 6 minutes period, and occurred approximately
6 seconds after the update. So the losses may actually be due to the
update. After this, no application layer packet has been lost until the
end of the test.

Going back to the actual layout of the nodes inside the pack, at
the end of the test with the last topology, the nodes of rank 1 are
physically closer to the root. This is illustrated in Figure 5.11. However,
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Figure 5.10: Final test: network manager knowledge of the links quality, and
topology and slotframe at the end.
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Figure 5.11: Network topology at the end of the test with regard to the nodes’
actual location. Rank 1 nodes are in green and rank 2 nodes are
in yellow. The arrows show the topology.

for rank 2 nodes, their parents are not always the closest in the rank 1

nodes.
In order to have an idea of when the update decisions occurred

during the experiment, Figure 5.12 has been made. Many updates
occurred at the beginning, which was expected, because some links
that are tried can be of very low quality, but also because there is
not much data yet, so any packet lost has more weight than when
there is more data. What is more surprising is the number of updates
occurring between 40 and 50 minutes. The most obvious explanation
would be that some losses are due to the topology, or rather schedule,
update. For example if a node that should be of rank 2 in the new
topology receives its BNTU message before the node that should be
its parent in the new topology, it will configure its dedicated transmit
timeslots and try to send packets, while the corresponding receive
timeslots have not been configured yet by the new parent.

Another explanation would be that a node of rank 1 can receive
its BNTU a few seconds before its future child receives its own. This
would mean that the node which will be of rank 2 in the new topology
will still send its data packets to the wrong node while the topology
and schedule update is ongoing, and especially using the transmit
timeslots for which the parent in the old topology has discarded its
receive timeslots in its local representation of the schedule. What
is clear here is that topology updates cause packet losses. And the
obvious reason is because updates take time. During these update
periods some nodes use the old topology and schedule, while others
use the new ones. As the nodes continue to send data packets during
the update process, losses will occur, be taken into account in the
network manager, and make it have a representation of some links
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Figure 5.12: Times in which topology and schedule updates occurred.

that is worst than what they actually are. This would at least explain
that a period of instability can follow an update decision. Finally it is
worth mentioning that the links quality are very high, and every loss
will have a big impact on each link average PDR.

It is probably not desirable to stop sending data packets during the
time of the update, as this would disturb the main BMS process in
the MCU. However, a way to try to solve the problem discussed here
would be to stop counting the losses during the period of time it takes
to do the update. This could be done in the following way. When the
root node receives the update decision in a NMU packet, it would
set a flag that would mean “stop counting the losses” in the BNA
packets, and wait for 5 to 10 seconds before starting to send the BNTU
messages. After all the BNTU messages have been sent, the root node
would wait for 5 or 10 more seconds before unsetting the flag in the
BNA messages. This could be a way to strongly reduce the number of
counted packet losses due to an update, thus improving the stability,
at the cost of slightly delaying the start of the update procedure.

A simpler way to try to manage this problem could be to forbid
update decisions in the network manager for 1 or 2 minutes after one
has been taken, in order to have more samples for the new links that
are used, and give less weight to the losses that can be related to the
update process.

Sadly, the experiment described here was conducted only once due
to a lack of time. More data would help to better understand the
phenomena taking place here, and how to improve the protocol.

5.9 discussion and future perspectives

The proposed protocol can efficiently build a network topology, and
provide enough timeslots for retransmissions in such a way that the
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network is made very reliable, as is presented in Section 5.8. However,
it also has downsides, and there are many ways to improve it.

First of all, most values have been chosen arbitrarily. BNA messages
are sent every 3 seconds approximately, and the "check for update"
method of the network manager is called every 20 seconds. These are
parameters that have a huge influence on how the network behaves,
and the value they should have should be carefully studied.

There is also room for improvement in the way the link quality
data is managed and the per link PDR is calculated. With the current
system, if a link is tried and suffers from many losses, the system
will not go back to it and try it again. Although it is possible that
the losses are due to interference that occurred with the vehicle in
a specific location, and that the data does not reflect the actual link
quality. Maybe a feature that makes the network manager "forget"
the data after some time could help here. Or a feature that forces the
network manager to retry the "bad" links after some time, to verify
that a link evaluated as weaker is indeed not very good.

The current update criteria is the difference between the current
topology value according to the objective function, and the value of
the possible new topology. This difference is then compared to the last
four differences, and if it is bigger than all the previous differences, the
update decision is taken. This a way to both have exploration of the
different links, but also some stability. There is obviously a trade-off
here, and how to find the balance between these two behaviors should
be studied.

The main problem is currently when a node receives a schedule
update it will remove all timeslots from its slotframe and allocate
the new ones. However, when this happens a child node may still
have transmit timeslots allocated and still use them, which can cause
packet losses. A non-destructive, or rather less destructive, mechanism
could be employed, where a node keeps its receive timeslots in its
slotframe for some time after receiving an update, or at least the
timeslots that do not conflict with the newly allocated timeslots. To
push this idea even further, it would be possible, without altering
the path quality, to alternate between starting to allocate the channel
offsets from the smallest offset and then the biggest. This would be to
limit the possibility that the old and new timeslots overlap. This idea
is illustrated in Figure 5.13.

5.10 conclusion

In this chapter, we proposed a new protocol for managing a WSN for
a BMS application. We described the topology and slotframe update
mechanisms, as well as the control packet content, the join procedure,
and repair mechanisms. We also presented our experiment inside a
battery pack, using the implementation of this protocol that we did in
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(a) Slotframe example. Allocated timeslots
are in green. Timeslots are allocated
starting starting with channel offset 0.

(b) New slotframe. Timeslots are allocated
starting with channel offset 15. Times-
lots in red are the timeslots in the cur-
rent slotframe. Timeslots in light green
are the timeslots of the previous slot-
frame.

Figure 5.13: Timeslot allocation idea: reducing the number of overlapping
timeslots in an old and new slotframe.

Contiki-NG. We finally discussed the result and gave ideas to further
improve the protocol and network management strategy.

The presented system is still a proof of concept, and some features
are missing before it is suitable for deployment and used inside an
EV. For example, the network manager would need to record the link
quality data history, to be able to reuse it after a sleep period, when
the vehicle is started again.

However, the system has proven to be functional, the network man-
ager has successfully managed to optimize the topology and schedule
in order to obtain a high QoS. Also, the experiment we did validates
the algorithm and management strategy presented in Chapter 4. In
the next chapter, we are going to conclude on this work and give
perspectives on what further research on this subject could be.



6
C O N C L U S I O N S A N D P E R S P E C T I V E S

6.1 conclusion remarks on the presented work

The BMS of an EV is a key component, and a safety oriented device
which is absolutely necessary. It has to supervise the battery cells
to guarantee they will be operated in their safety window, and to
estimate their SOC. In large battery packs, like in these which can be
found in cars, the BMS is a distributed system. The communication
between its submodules must be reliable, and guarantee a high QoS
to the system. This work is about trying to change the wired commu-
nication links to wireless. This is why we reviewed the state of the art
protocols for wireless communications, studied the EV environment
with experimentation, and proposed a new management strategy and
protocol to achieve this network path quality objective, and make sure
the information is delivered to the MCU on time.

In Chapter 2, we started by studying more in depth the protocols
and messages used in today’s implementations of BMS using wired
communication links. We identified that the information which matters
the most are the messages from the CSUs to the MCU containing the
voltage and temperature data. Then, we reviewed some state of the
art protocols for wireless communication, and we set our choice on
IEEE Std. 802.15.4-2015 with TSCH mode. We based this decision on
preexisting works on communication within a vehicle environment,
and in a battery pack especially. We also reviewed some topology
and schedule management techniques available in the literature, and
explained why we could find one that is more efficient in our specific
use case.

Then, in Chapter 3, we tested the behavior of IEEE 802.15.4 within a
battery pack environment. We discovered that the link quality depends
on the position of nodes. Also, that the pack enclosure has an impact
on communications and seems to make them better. What does make
them worse however is interference with other users of the 2.4GHz
band, and especially Wi-Fi. A way to solve this problem is temporary
blacklisting of the problematic channels. More information on this is
available in [61]. But, most of all, we saw that links quality is high
within a battery pack environment.

Based on the results we obtained, in Chapter 4, we proposed two
new centralized network management strategies. The first one, based
on the LP technique, has proven to be efficient in finding an optimal
topology based on link PDR information. The second one, mostly
based on the SD technique, gives results that are almost as good for
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both topology management and scheduling. As it is lighter in terms
of computing time, it is the method we have chosen. Also the fact that
it is faster and requires less memory makes it more appropriate for
being run on an embedded device. In the end of the this chapter, we
try several parameters for the SD technique, and select the values that
seem best.

Finally, in Chapter 5, we proposed a new protocol for centralized net-
work management, and to propagate efficiently the routing and sched-
ule information to the nodes that participate in the network. This pro-
tocol is based on periodic messages and asynchronous events, rather
than acknowledgments. We implemented this protocol in Contiki-NG,
and tested it inside a battery pack. With this experiment, we could
verify that our strategy is efficient, and we were able to achieve a
maximum path PER of 10−6 %, while having a slotframe that has only
10 dedicated timeslots to convey the voltage and temperature data to
the MCU.

6.2 future work and perspectives

The system we proposed here for BMS with wireless communica-
tion is not sufficient by itself, and some other aspects need to be
worked on and investigated before the technology could be suitable
for deployment. These subjects are discussed in this section.

6.2.1 A word on security

Deploying such a network, for the safety critical device that a BMS is,
must be done with security in mind. In this section we present some
of the problems and attacks that may occur in the case of BMS with
wireless communication, and for some of them we provide some ideas
to implement countermeasures. However, a complete security review
is out of the scope of this document, and such a study should be done
before any deployment can be envisioned.

6.2.1.1 At physical layer

Switching from a wired to a wireless communication medium for
battery management means that this new medium is shared. Also,
as the metallic enclosure of the pack contains holes and is not fully
closed, it means the electromagnetic waves used for communications
may go in and out the pack. This is also what has been measured in
Section 3.4.4. So, an adversary node may use this property to interact
and potentially interfere with the network.

The first kind of attack that comes to mind is Denial of Service
(DoS) [68, 69], meaning an attacker would broadcast over the channels
used by the network to jam the communications [70]. It is well known
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that if the attackers will succeed if they use enough power to cover
the whole band used by the network.

If the attackers cannot consume this amount of power and focus
only on one or some of the channels in the 2.4GHz band, then using
TSCH is a way to mitigate this kind of attack. Either the attackers will
jam only a subset of the channels used by the WSN, or they would
need to acquire knowledge about the TSCH schedule and determine a
hopping sequence allowing them to disturb the network.

6.2.1.2 At MAC and upper layers

The BMS is a safety oriented system, and the ability for the MCU to
have an accurate and reliable representation of all the battery data
must be guaranteed. Regarding this statement, some kinds of attacks
have been identified. They are listed below.

authentication It is required that the MCU can trust the data
received from the nodes participating in the WSN. Therefore, it is
not acceptable if an adversary node uses Spoofing to impersonate a
legitimate node and sends wrong values to the MCU.

To deal with this possible attack, it should be required from the
nodes to authenticate before sending data to the master.

integrity It is important that the data received by the nodes, and
especially the MCU, are not modified along the way. Other threats in
this category include packet injection, falsification, and replay attacks.
The latter consists of an adversary node overhearing a packet and
replaying it after some time, possibly in a periodic way, to corrupt a
node’s data.

On reception, data integrity should be verified using a checksum.

traceability BMS nodes, or at least the MCU should keep track
of the history of the battery data over time, and the actions taken, in a
log file. These may be useful in development, or if a fault occurred to
investigate and determine the cause. It is important that the system is
designed in a way that does not allow corruption of this log file.

confidentiality Another risk is data about the system being
leaked to other parties through an eavesdropping node. Confiden-
tiality means an unauthorized node can not read the data clearly. If
the confidentiality of topology and schedule related messages is not
guaranteed, this may increase other weaknesses in the network.

To mitigate this risk, packet encryption should be used, at least at
the MAC layer, and if possible at the transport or application layer.

availability Availability of the most recent data is critical for the
MCU, as it relies on it to detect and react to any fault. Attacks aiming
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at reducing the network availability include flooding, distortion of
resources, amplification and reflection. This kind of attacks would
usually result in flooding the MCU node with a very large amount of
packets.

To reduce the risks of the attacks described here, bi-directional
authentication is probably a good base for a solution.

6.2.2 Sleep mode, wake-up procedure, and sleep power consumption

A key aspect of BMS implementation is its power consumption when
it is unused. It is highly undesirable if the nodes empty the battery
if the vehicle is parked for a long period of time. The Lithium-Ion
batteries have very low self-discharge, and the users will expect that
the pack has more or less the same SOC if the vehicle has been unused,
even for a few months.

In a CSU board with wireless capabilities, the consumption of the
radio part is the highest when the node is either transmitting or
receiving. For a CC2650 chip, the current consumption rises up to
10mA during these periods of time, whereas the consumption when
the chip is only running code is close to 1mA, and can go as low as
1µA when the chip is in standby mode [82]. The analog-front end part
of the board can be set to sleep mode through the digital bus between
the radio chip and the analog-front end, and woken up through the
same channel.

For these reasons, the nodes must go into sleep mode when the
vehicle is parked. But then the problem is to wake them up rapidly
when the user turns on the vehicle. The wake-up procedure of the
BMS will probably be triggered by a button on the dashboard of the
vehicle, or at least a system which is external to the battery pack. This
wake-up command would then be received by the MCU, most likely
over the CAN bus, which role will be to propagate it rapidly to the
CSUs.

A first approach to deal with this problem could be to keep the
network always on, and use a dedicated slotframe for the “sleep mode”
that would be very long and containing only one shared slot (or a slot
that would be a receiver slot for all the CSUs and a transmit slot for
the MCU). The MCU could then use this shared slot to broadcast a
frame containing the wake-up command. This concept is referred to as
“duty-cycling MAC” [71], because it consists in using a duty-cycle at
the MAC layer to not keep the radio always on. One of the difficulties
in this approach is to send enough packets during the sleep period to
keep the nodes synchronized. Indeed, in a TSCH network the clock
of the different nodes drifts over time, and they use the frames they
receive to remain synchronized.

A more advanced way to approach this problem is to use Wake-
Up Radio (WuR). This consists in using a dedicated circuit for the
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idle-listening time, which is capable of being addressed by a wake-up
packet, and to wake up the main radio circuitry [71]. WuR is targeting
applications that are delay sensitive and event-driven, while decreasing
the power consumption of the node compared to a duty-cycling MAC.
One of its advantages is that it can be kept always-on. The downside
of WuR is that it requires extra hardware on the board to send and
receive the wake-up packets, and trigger a wake-up interrupt into
the main radio microcontroller. Some options to do this exist in the
literature that are not based on radio-frequency, but on optical or
acoustic waves instead.

Considering BMS with wireless communication requires extra hard-
ware compared to using wired communication, and WuR requires
even more hardware and space on the CSU boards, duty-cycling MAC
is probably the best approach here.

6.2.3 Battery second life applications

One use case that may benefit from wireless communication for BMS
is battery second life and battery reconfiguration. When the cells used
in a vehicle have a SOH below a given threshold, usually set around
75% [24], they are not as useful as part of the powertrain of an EV.
But the modules can be reconfigured into another pack and used as
stationary storage.

Wire reduction is interesting in this scenario, because it makes pack
reconfiguration and handling the modules easier. However, it is not
likely that this scenario will happen many times in a cell’s lifetime.

What could be interesting here is that having a microcontroller on
each CSU also means the cells data may be stored locally. And if the
CSU are kept as-is in the new stationary application, the data they
would contain can be reused for estimations in this application as well.

Although for this to be possible and be actually useful, it would be
necessary to standardize how a CSU accesses the network and makes
its data available. This is required for any manufacturer of stationary
storage pack to be able to reuse the modules from an EV pack without
having to modify them.

6.2.4 Potential interest of the industry for wireless communication for BMS

Even if determining if using wireless communication between BMS
submodules is not the purpose of this work, in this section we will
give a few elements trying to foresee if the industry will adopt this
technology. We are going to discuss a few aspects, and highlight some
upsides and downsides of the technology.
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6.2.4.1 About weight reduction

First of all let’s take an example about weight reduction. A Renault
Zoé battery pack measures 1280× 1630× 335 millimeters [8]. Let’s
assume there are 6 battery modules on each side (we know it has
12 total). The maximum space between each module, and hence the
maximum wire length between two modules is:

Lmax =
1630

5
= 326 mm (6.1)

To make a differential pair between two CSUs with wired commu-
nications, it is necessary to have twice that length of wires, which is
652mm. If we assume the Standard Wire Gauge (SWG) of the wires
used is 20, which is an average value (they may actually be thinner),
we can calculate the weight that would be removed between two
modules, knowing that 100 meters of wires of this size weights 589

grams1:

Wremoved wires =
0.652× 589

100
= 3.84028 g (6.2)

So the maximum weight of wires that could be removed between
two battery modules, by switching to wireless communication, is
around 4 grams. Now, let’s look at how much weight wireless com-
munication adds to the system. In Appendix A, we built a board of
size 200× 100× 1 mm. The weight of this board, which is relatively
standard with a copper height of 35 µm, is 77 g, with no component
soldered on it. If we look at a CC2650 Launchpad, and measure the
surface occupied by the CC2650 chip, its bypass capacitors and the
antenna (which is probably slightly less than the required area for
wireless communication components on a CSU board), we obtain:

Swireless = 10× 20+ 10× 30 = 500 mm2 (6.3)

The area we considered for this can be seen in Figure 6.1.
From this, we can calculate the weight added to a CSU board by

adding the wireless communication circuit:

Wadded wireless =
77× 500
100× 200

= 1.925 g (6.4)

In the Renault Zoé, there are 12 modules, so 12 CSU boards, and a
MCU, so the weight added by wireless communication is:

Wadded wireless total = 13× 1.925 = 25, 025 g (6.5)

And the weight removed thanks to wireless communication is:

Wremoved wires total = 12× 3.84028 = 46, 08336 g (6.6)

1 From <http://www.mtlexs.com/technical-specifications-details/
40/weight-of-copper-wire> .

http://www.mtlexs.com/technical-specifications-details/40/weight-of-copper-wire
http://www.mtlexs.com/technical-specifications-details/40/weight-of-copper-wire
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Figure 6.1: A Launchpad CC2650 board. The area shown in green is the area
we took into account to calculate the minimum board surface that
need to be dedicated to wireless components.

To conclude, in the case of a Renault Zoé battery pack, which
weights 290 kg, the total weight reduction to be expected with wireless
communication is approximately 21 grams, and this is just a rough es-
timation, favorable to wireless communication as we did not consider
the weight of the electronics parts or solder paste.

6.2.4.2 About assembly procedure

While removing wires used for communications greatly simplifies the
assembly procedure of the EV’s battery pack, it also adds an extra
step. When the CSU or MCU boards are made, after the pick and place
machine has placed the components, and the board has been baked
into a reflow oven, the microcontroller used for communications needs
to be programmed. This is a common step to have on a board assembly
line, that can be done automatically with a machine, but is still an
extra step.

6.2.4.3 About hardware availability

This manuscript has been written during the Covid-19 pandemic,
which slows down production in many sectors of the world’s economy.
Especially in the field of electronics, where some chips, especially
microcontrollers, suffer from a penury. Introducing wireless commu-
nication in EVs BMS means adding extra dependencies on hardware
components to be able to build the final product.
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6.2.4.4 About complexity

In section 1.1.2.3, we discussed about complexity in BMS, about both
hardware and software level. With BMS with wireless communication,
the BMS software necessarily needs to be distributed. This makes it
harder for developers to test and debug it. Having more hardware
components also increases the number of potential failure points.
These aspects could also be an extra cost of BMS with wireless com-
munication to consider.

However, maybe car manufacturer will find advantages in having
the software distributed, for example to manage locally the cells
balancing decision. This also gives them a tighter control over sleep
mode management, as they could perform operations within the CSUs
while the MCU is sleeping, should this be a desired behavior.

6.2.4.5 About cost of hardware

As of today, the public price of a CC2650 chip is around 2$2. Just as
an example, some copper wire may be available at 0.33€ per meter3,
which makes BMS with wired communication apparently cheaper, at
least on the hardware side of things.

6.2.4.6 Speculations on BMS with wireless communication adoption by the
industry

What has been exposed in this section are just a few elements to open
reflection. There are multiple reasons why the industry may or may
not adopt this technology, and not all of them can be known from
the outside. However, we can see that even if some upsides of BMS
with wireless communication are real, there are also some significant
downsides. And even considerations that seemed to be a priori good
reasons to make the change are not that evident, like weight reduction.
Hence, it is impossible to tell what big car manufacturers will do in
the future, and adoption of BMS with wireless communication is not
obvious.

6.2.5 Going further with wireless communications for BMS

As we have seen in this work, it is possible to implement BMS with
wireless communication and make it reliable, at least from a network
perspective. However, there are many remaining open questions on the
subject. First of all, there are many ways to implement it. We proposed
a solution that involves multi-hop and routing. Even though we ob-
tained good results with it, maybe a solution relying on star topology
can be sufficient. Furthermore, if routing is employed, there may be

2 From <https://www.ti.com/product/CC2650#order-quality>.
3 From <https://fr.farnell.com/alpha-wire/3053-vi005/
fil-vlt-20awg-10-30awg-30-5m/dp/2290840 >.

https://www.ti.com/product/CC2650#order-quality
https://fr.farnell.com/alpha-wire/3053-vi005/fil-vlt-20awg-10-30awg-30-5m/dp/2290840
https://fr.farnell.com/alpha-wire/3053-vi005/fil-vlt-20awg-10-30awg-30-5m/dp/2290840


6.2 future work and perspectives 107

other ways to implement it. And even about our solution, based on SD
for managing the topology, it is possible to push it further. Methods
derived from it include “Deepest descent” and “Multistart descent”,
which increase the chances of finding an optimal solution to the prob-
lem, by trying to go one step further when a local minimum is reached,
or by trying to use multiple initial solutions, respectively. Moreover,
our solution focuses only on the most important traffic pattern: uplink
messages to the MCU containing voltage and temperature data. But
there are also other messages exchanged, like balancing commands
or requests for auto-test from the MCU to CSU. These traffic patterns
should be further studied and may require allocation of more timeslots
in the slotframe.

As discussed above in this chapter, we covered only network man-
agement and reliability aspects, even if BMS with wireless commu-
nication is a much wider subject. Subsequent studies should focus
first on security, and sleep mode and wake-up scenario, which are
prerequisites for making this technology usable.

What we proposed here is for a specific application, in a very
specific environment. Maybe it can be used as a basis for other WSN
applications that would benefit from centralized management. Or it
is possible that the techniques used, especially the one based on SD,
can be used or extended in another wireless network context. The
first one that comes to mind is micro-grids deployment, where small
production and stationary storage devices are deployed in a relatively
small area, and can benefit from synchronization between each other.
There, the physical size of the links is more important than in a battery
pack, and wireless communication may be more appealing. Although
in this field Power Line Communication (PLC) is a serious competitor.

Finally, there is no certainty about the adoption of BMS with wireless
communication by the automobile industry. Even if some upsides can
be foreseen, some downsides exist as well. The future of BMS with
wireless communication is uncertain, and leaders of big car companies
will have to rule on whether or not its downsides are outclassed by its
advantages.





A
A P P E N D I X — S I D E P R O J E C T: B U I L D I N G A B M S
B O A R D F O R A S M A L L B AT T E RY PA C K

a.1 objective

During this thesis, and as a side project, I decided to build my own
BMS board. The goal was to better understand what a BMS actually
is, and feel what matters in the design of such a system. As I wanted
something I could potentially use one day in my own battery-powered
application, I went towards something quite small and standard: a
BMS to monitor a 12 cells series Lithium-Ion battery pack. What
inspired me in doing this is the VESC project1, from which I learned a
lot.

a.2 design

I decided to go with the bq76940 for the analog front-end ASIC. As
I wanted to limit the risk and use something I know for the MCU,
I chose to use the same microcontroller as in the VESC project, the
STM32F405RGT6.

The design of the hardware systems is directly derived from these
two main components’ datasheets. The conception of the board has
been made in Kicad2. The top level sheet of the schematic is visible in
Figure A.1.

a.3 manual assembly

a.3.1 The board itself

The board is a 10 by 20 centimeters Printed Circuit Board (PCB). It is
visible in Figure A.2 and A.3. In these images, only the bq76940 has
been soldered.

a.3.2 Soldering

I chose to do manual assembly, which has been a great learning
experience. With flux and patience, it is actually possible to solder the
components that have a 0.5 mm pin pitch, even with lead-free tin. A

1 VESC project website: <https://vesc-project.com/>
2 Kicad’s website <https://www.kicad.org/>.
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Figure A.1: Custom BMS board schematic, top level sheet in Kicad.

Figure A.2: Custom BMS board, mounting the bq76940 (1).

Figure A.3: Custom BMS board, mounting the bq76940 (2).
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Figure A.4: Custom BMS board. Here most footprints have been populated.

Figure A.5: Custom BMS board, ready to be programmed for the first time.

picture of the board in which most components have been soldered is
shown in Figure A.4.

a.3.3 Fixing mistakes

When trying to flash the STM32 microcontroller for the first time, I
realized it was behaving as if it was turned off. Actually some of the
power supply pins were not soldered properly, which was easy to fix.

Also, while doing the schematic, I did not wire some of the software
download pins properly. This has been fixed by adding a modification
wire on the microcontroller. The fix is the orange wire visible in
Figure A.5.

A picture of the board being ready to be programmed for the
first time, and after assembly issues have been fixed, is displayed in
Figure A.5. At this stage, I was able to run a basic Light-emitting
Diode (LED) blink example.
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a.4 current status

Currently the hardware part of this board seems functional. I also
implemented a simple PC version of the MCU software, using OCV
and Coulomb Counting methods for SOC estimation. However, this
piece of software still needs to be ported onto this embedded platform,
and tested, before this side project can be called a success, and only
then I will publish the design and software.



B
R É S U M É L O N G

b.1 introduction

L’apparition des nouvelles batteries Lithium-Ion, ainsi que les en-
jeux climatiques [4], favorisent une nouvelles adoption du véhicule
électrique. Ces nouvelles batteries, ont d’importantes densités éner-
gétiques. Cela en fait une solution attirante pour stocker de l’énergie
dans un véhicule. Elles sont aussi des systèmes sensibles dont la ten-
sion et la température doivent rester dans une plage bien définie pour
garantir leur sûreté de fonctionnement [5]. Si la tension d’une de ces
cellules devait descendre en dessous d’un certain seuil, elle serait
détériorée. Si cette tension devait dépasser un seuil, la cellule peut
prendre feu. Ces plages acceptables de température et de tension sont
souvent appelées « fenêtre de sûreté ».

Une cellule batterie Lithium-Ion est un système complexe avec
beaucoup de non-linéarités, et estimer la quantité d’énergie restante
dans une cellule n’est pas trivial. En effet, la tension en circuit ouvert
varie de manière non-linéaire avec l’état de charge [9]. De plus, la
tension aux bornes d’une cellule varie en fonction du courant de
charge ou de décharge [16]. Ce phénomène s’appelle l’hystérésis.

Ces phénomènes complexes ont aussi un impact sur la manière
de piloter le processus de charge d’une batterie. Durant la charge, la
première phase est pilotée en courant, et est appelée phase de « courant
constant ». La deuxième est appelée phase de « tension constante », et
à lieu à partir du moment ou la tension maximale du pack est atteinte.
Au cours de celle-ci, le courant décroît alors lentement vers 0.

Le gestionnaire de batterie, en anglais Battery Management System
(BMS), remplit plusieurs rôles. Tout d’abord il supervise individuel-
lement chacune des cellules de la série qui compose le pack pour
s’assurer qu’elles restent dans les plages de température et de tension
données par le fabricant. Donc le BMS est avant tout un composant
augmentant la sûreté de fonctionnement de la batterie. Il limite le
courant qui entre et sort de la batterie, soit en communicant les va-
leurs à ne pas dépasser aux autre équipements sur le bus CAN, soit
en ouvrant un relai placé sur l’un des terminaux du pack batterie. Si
le BMS échouait à faire cela, le pack batterie pourrait être détérioré
ou prendre feu en cas de problème. Donc, si le BMS ne peut pas
collecter ces données, il ne peut plus assurer un fonctionnent sûr du
pack batterie, et le véhicule devrait cesser de fonctionner.

Le BMS est aussi le composant qui estime l’état de charge de cha-
cune des cellules [13]. Pour fournir cette fonctionnalité, il mesure
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de manière périodique la tension aux bornes de chaque cellule de
la série. La période d’échantillonnage pour ces valeurs dépend de
l’implémentation, mais est généralement de l’ordre de 500ms [15], [17].
La capacité d’un pack batterie décroît avec le temps et l’utilisation.
Cette perte de capacité, appelée état de santé, est aussi un paramètre
calculé par le BMS.

Dans un pack batterie, les cellules sont câblées en parallèle et en
série. En parallèle, les cellules les plus chargées vont naturellement se
décharger dans les cellules les moins chargées. En revanche, quand
elles sont câblées en série, du déséquilibre peut apparaître entre-elles
au fil de l’utilisation. Équilibrer les cellules de la série est donc aussi
l’un des rôles du BMS. On trouve deux familles de méthodes dans la
littérature [22], [23] : l’équilibrage passif, où les cellules avec la tension
la plus élevée sont déchargées dans une résistance, et l’équilibrage
actif qui peut être implémenté de diverses manières. L’équilibrage
passif est celui qui est utilisé le plus souvent, car il est plus simple à
implémenter, et requiert moins de composants.

Enfin, le BMS a pour rôle de communiquer des informations sur le
pack batterie au reste du véhicule, par exemple au tableau de bord
pour qu’il affiche une jauge représentant l’énergie restante.

Comme le nombre de cellules est important dans les véhicules
électriques actuels, généralement au nombre de 96 dans la série, le
BMS est implémenté comme un système distribué. Les cartes de
supervision des cellules, en anglais Cell Sensor Unit (CSU), collectent
les données et mettent en œuvre l’équilibrage, sous la direction de
l’unité de contrôle principale, en anglais Master Control Unit (MCU).

Dans les implémentations actuelles, la communications entre les
CSUs et le MCU se fait de manière filaire, par I2C, SPI, ou UART. Dans
ce travail, nous avons considéré la possibilité de remplacer ces fils
par des communications sans-fils, en nous basant sur les protocoles
standardisés de l’Internet des Objets.

En effet, pour des composants embarqués à bas coût, aux faibles
capacité de calcul, et disposant de liens de communication bas dé-
bit, il n’est pas possible d’embarquer une pile IPv6 et TCP classique.
Des protocoles spécialisés ont été développés pour les besoins spéci-
fiques de l’Internet des Objets. Ici, notre choix c’est arrêté sur IEEE
Std. 802.15.14-2015 avec le mode TSCH. Dans un réseau d’objets, les
nœuds peuvent avoir soit une topologie en étoile, dans laquelle ils
communiquent uniquement avec un contrôleur central, soit une topo-
logie maillée, permettant aux paquets d’effectuer de multiples sauts
avant d’atteindre leur destination.

Utiliser des communications sans-fil au sein d’un BMS n’est pas
un choix intuitif, car les fils de cuivre sont faciles à gérer en terme
d’approvisionnement, et leur coût est très bas. Néanmoins, certains
avantages peuvent être envisagés quant à l’utilisation de liens sans-fil.
Cela simplifie la procédure d’assemblage, et économise un peu de
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poids et d’espace au sein du pack batterie. Avoir un microcontrôleur,
dont le rôle principal est de gérer les communications, sur chaque CSU
ouvre des opportunités en terme de répartition des fonctionnalités lo-
gicielles, et grâce à cela l’information pourrait être stockée localement,
et réutilisée plus tard, notamment si les éléments du pack devaient
être reconfigurés dans une nouvelles application, par exemple du
stockage stationnaire. Cette technique est appelée la seconde vie des
batteries [24].

Contributions

Le but de ce travail n’est pas de déterminer si utiliser des communica-
tions sans-fil pour entre les sous-systèmes d’un BMS est, ou non, la
bonne approche. En revanche, le but est d’en étudier la faisabilité et
de déterminer quelle est la manière la plus appropriée de le faire.

état de l’art Comme beaucoup de technologies de communica-
tions sans-fil existent, nous proposons tout d’abord un état de l’art en
la matière, mais aussi les principales caractéristiques des communica-
tions au sein d’un BMS telles qu’elles sont implémentées aujourd’hui.

performance d’un réseau d’objets à l’intérieur d’un pack

batterie de véhicule électrique Pour déterminer l’impact de
l’environnent véhicule électrique sur le réseau sans-fil, et en particulier
de l’intérieur d’un pack batterie, nous avons effectué de nombreuses
expériences. Le but ici est de déterminer ce qui cause les pertes de pa-
quets, et quelle est l’influence de la position des nœuds et de l’enceinte
du pack batterie sur le pourcentage de paquets perdus.

approche par programmation linéaire pour gérer le ré-
seau Sur la base des résultats obtenus par expérimentation, nous
proposons une stratégie de gestion du réseau qui se base sur la tech-
nique de Programmation Linéaire. Les résultats de cette technique
sont la topologie souhaitée pour le réseau, ainsi que l’ordonnancement
des transmissions.

approche par simple descente pour gérer le réseau La
technique mentionnée précédemment peut être améliorée, en parti-
culier en terme de temps de traitement. Nous proposons alors une
méthode de calcul plus appropriée à des systèmes embarqués.

protocole réseau pour propager les décisions du ges-
tionnaire Dans l’approche que nous avons choisie, un contrôleur
central est utilisé, et il est donc nécessaire d’avoir un protocole pour
propager ses décisions. Nous proposons donc un protocole permettant
de gérer la procédure pour rejoindre le réseau, la mise à jour de la
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topologie et de la slotframe, et qui inclus quelques mécanismes de
réparation.

expérience dans l’environnement véhiculaire pour éva-
luer la technique proposée Afin de vérifier que le protocole
et la technique de gestion proposée fonctionnent, nous effectuons une
expérience avec un réseau d’objets dans un pack batterie. Les résultats
montrent que le système est efficace, mais aussi qu’il est possible de
l’améliorer.

b.2 état de l’art

à propos des csus dans les implémentations filaires En
regardant de plus près la datasheet de plusieurs circuits intégrés conçus
pour être utilisés dans un BMS, ainsi que des implémentations, nous
pouvons avoir une idée assez précise du volume de données échangées
et de leur périodicité. La détection de la sous-tension ou de la sur-
tension est généralement réglée sur une période de 2 secondes. Les
communications filaires génèrent très peu d’overhead, avec 6 octets
pour une requête classique, et 3 octets sont ajoutés dans la réponse en
plus de la charge utile. Donc, demander toutes les valeurs mesurables
par un bq76PL455A-Q1 nécessite d’échanger 51 octets. Demander
toutes les valeurs pour un pack batterie demande 12.68ms avec ce
composant, et échanger une paire requête/réponse prend entre 100 et
500µs pour être échangée. Toujours pour ce composant, mesurer une
valeur avec un convertisseur analogique numérique prend environ
10µs.

un état de l’art sur les technologies de communication

sans fil pour l’internet des objets Le Bluetooth Low Energy
aurait pu être un choix intéressant, car il c’est une technologie bien
éprouvée, peu énergivore, et dotée de fonctionnalités pour améliorer
la qualité de service. Hélas, son support limité pour les réseaux maillés
nous a conduit à l’écarter dans ce travail.

Le Wi-Fi est une autre technologie bien connue, qui permet un
débit de communication élevé entre les nœuds. Mais ça consommation
d’énergie élevée est un gros défaut pour les applications embarquées
fonctionnant sur batterie, les CSUs étant ici alimentées sur les cellules
de la batterie de traction du véhicule qu’elles supervisent.

Wi-Fi Halow est une technologie pour les réseaux en étoile, nécessi-
tant une moyenne portée. Plutôt conçue pour relier un réseau d’objets
à l’Internet, elle n’est pas vraiment approprié au sujet qui est traité ici.

WirelessHART est une technologie pour les réseaux industriels
courte portée. Elle utilise IEEE Std. 802.15.4-2006 pour ses couches
physique et liaison, avec TDMA et un mécanisme de saut de canal. La
topologie du réseau est maillée. Elle permet le blacklisting des canaux
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problématiques sur décision de l’administrateur réseau. Le fait que
la couche applicative est HART rend cette technologie peu flexible et
donc peu attractive pour l’application visée.

ISA100 est un protocole similaire à WirelessHART, mais qui permet
plus de flexibilité, notamment à la couche applicative. Il n’est en
revanche pas compatible avec IEEE Std. 802.15.4-2006, et le grand
nombre d’options configurables font que des équipements provenant
de vendeurs différents ont peu de chances d’être compatibles. Aussi,
le fait qu’il est directement axé vers les applications industrielles, le
standard spécifiant comment le backbone réseau doit être déployé, font
qu’il n’est pas vraiment adapté à notre cas de figure.

Wireless IO-Link est une autre technologie sans fil pour les réseaux
industriels. Bien qu’efficace, elle a été jugée trop simple pour les
besoins de notre application, car elle ne permet que des schémas de
trafic requête/réponse, et une topologie en étoile.

Enfin, IEEE Std. 802.15.4-2015, avec le mode TSCH, est la technologie
qui a été retenue ici. Elle permet une bonne fiabilité, avec l’utilisation
de TSCH, est flexible, permettant notamment les réseaux maillés ainsi
que n’importe quel schéma de trafic. Ce qui n’est pas spécifié dans le
standard est comment construire la slotframe, c’est à dire le schéma
qui représente l’ordonnancement des transmissions, et se répète au
cours du temps.

travaux connexes sur l’utilisation de réseaux sans-fil

à l’intérieur d’un pack batterie de véhicule électrique

D’autres ont déjà commencé à étudier cette possibilité. Alonso et
al. [76] ont évalué les performances de différentes antennes à l’intérieur
d’une enceinte batterie, et recommandent d’utiliser des antennes PIFA
dans la bande des 2,4GHz.

La chaîne de traction, et en particulier le moteur du véhicule, émet
des rayonnements électromagnétiques, mais qui se trouvent en dessous
des 100kHz [75], et ne devraient donc pas interférer avec le réseau
sans-fil.

Dans [56], les auteurs étudient un réseau sans fil à bord d’un véhi-
cule, où tous les nœuds sont à portée les uns des autres, et préconisent
d’utiliser une topologie en arbre à 2 niveaux (en plus du nœud racine),
afin d’utiliser les chemins les plus fiables. Ils suggèrent aussi d’utiliser
un mécanisme d’agrégation des données aux nœuds intermédiaires.

b.3 performance d’un réseau iot dans un pack batterie

de véhicule électrique

Afin de connaître précisément la qualité moyenne des liens réseau
avec la technologie choisie à l’intérieur d’un pack batterie, mais aussi
de connaître l’impact de la position et des potentielles interférences
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avec d’autres utilisateurs de la bande des 2,4GHz, de nombreux tests
ont été réalisés.

Tout d’abord dans une boîte métallique que nous avons construite,
similaire à celle présentée dans [76]. Ce test a été peu concluant, car la
qualité des liens étaient parfaite.

Ensuite nous avons, en partenariat avec l’école IMT Mines d’Alès,
réalisé un test de qualité de lien avec des nœuds déployés à l’intérieur
du pack batterie du véhicule prototype PGO e-Hemera. Les perfor-
mances se sont montrées élevées, avec un pourcentage de paquets
délivrés de 99,4% et plus. La topologie était en étoile, et les nœuds
présentant le plus de pertes étaient les plus éloignés et les moins
en vue du nœud racine, certaines pièces métalliques empêchant une
communication directe.

Nous disposons également d’un pack batterie de Renault Fluence à
l’école, avec lequel nous avons réalisé un test similaire. Le pourcentage
de de paquets délivrés était de 98,7% et plus, montrant encore une
fois de bonnes performances de base du réseau à l’intérieur d’un pack
batterie.

Cette plate-forme nous a également servie pour effectuer un test
d’interférence. Nous avons placé des nœuds réseau utilisant inten-
sivement le Wi-Fi sur les canaux les plus courants (1, 6 et 11), et
mesuré l’impact sur le pourcentage de paquets délivrés par canal. Il
est clair que sur les canaux IEEE Std. 802.15.4 et Wi-Fi qui se che-
vauchent, le taux de perte est très important (parfois autour de 50%).
Les interférences sont donc un vrai frein aux communications sans fil
pour le BMS. Il est en revanche possible d’y remédier en utilisant du
blacklisting temporaire des canaux problématiques.

Enfin, nous avons utilisé la plate-forme Open-Source Vehicle (OSV)
disponible à l’école pour effectuer un test d’impact de conduite du
véhicule sur le réseau sans-fil. Comme cela était indiqué dans la
littérature, les organes électroniques du véhicule ne semblent pas
perturber de manière significative le réseau sans-fil. En revanche, les
réseaux Wi-Fi avoisinant ont semblé interférer avec le réseau sans-fil
sur les canaux qui se chevauchent.

Globalement, tout ces tests montrent qu’il est techniquement pos-
sible d’utiliser un réseau sans-fil à l’intérieur d’un pack batterie de
véhicule électrique.

b.4 algorithmes de gestion du réseau

Dans la partie précédente, nous avons effectué des mesures pour
évaluer la qualité des liens à l’intérieur de l’enceinte d’un pack batterie.
Dans ce chapitre, nous construisons des algorithmes, sur la base de ces
résultats, pour construire une topologie en arbre où tous les nœuds
sont au maximum à deux sauts de la racine et en utilisant les meilleurs
liens, et pour construire une slotframe pour TSCH.
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Pour mettre au point les deux techniques présentées ci-dessous,
nous avons travaillé sur des qualités de liens générées aléatoirement,
et de valeur ressemblant les mesures effectuées au chapitre précédent.
Nous avons développé une application en C++ pour régler, tester, et
évaluer les algorithmes proposés.

technique basée sur la programmation linéaire Ici,
nous voulons tout d’abord à déterminer quelle est la meilleure to-
pologie possible, en cherchant à maximiser une fonction objectif repré-
sentant la qualité globale des liens.

Nous le faisons à l’aide un programme linéaire en nombre entiers,
dans lequel les variables valent 0 pour un lien non utilisé ou 1 pour
un lien utilisé, dans lequel les contraintes sont les suivantes :

• Chaque nœud a un nombre maximal d’enfants (en général 2 du
fait de la taille des paquets de données et de la taille d’un paquet
qu’il est possible de transmettre dans un timeslot).

• Chaque nœud a un parent.

• Chaque nœud a un chemin vers la racine.

Pour cette topologie, nous cherchons ensuite à construire une slot-
frame, toujours en utilisant la programmation linéaire. La fonction
objectif a une valeur proportionnelle à la taille de la slotframe, et ici
nous cherchons à la maximiser. Les contraintes du programme linéaire
avec des variables binaires, valant 0 quand le timeslot n’est pas utilisé,
et 1 quand il l’est, sont les suivantes :

• Si un nœud passe par un nœud intermédiaire afin d’envoyer son
paquet au nœud racine, alors ce paquet doit être envoyé avant le
paquet du nœud intermédiaire dans la slotframe.

• Il y a un nombre maximum de canaux utilisables fixé au préa-
lable.

• Chaque nœud ne peut utiliser sa radio qu’une seule fois pour
chaque slot offset.

• Chaque nœud (excepté le nœud racine) doit avoir au moins un
timeslot d’émission d’alloué.

• Pour chaque nœud, le taux de paquets délivrés sur le chemin
vers la racine doit être supérieur à un seuil constant fixé au
préalable.

Nous avons testé cette technique dans divers cas de figure, et
constaté qu’elle donne des résultats satisfaisants, notamment du fait
que, par rapport à une topologie basique comme la topologie en étoile,
la qualité des chemins peut être augmentée de manière significative
tout en gardant une taille de slotframe raisonnable, malgré les timeslots
de retransmissions qui sont programmés.
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technique basée sur la simple descente Le problème qui
a été identifié avec la technique par programmation linéaire est le
temps d’exécution. La méthode par simple descente est connue pour
donner une solution approchée (parfois optimale) à un problème
d’optimisation, avec un temps d’exécution court et qui peut être borné.

Ici nous ne traitons que la gestion de la topologie, car l’allocation
des timeslots peut être géré par un algorithme procédural classique,
tout en satisfaisant la contrainte sur le taux de paquets délivrés.

La fonction objectif retenue pour calculer la topologie est la même
que dans la technique par programmation linéaire, afin de pouvoir
comparer facilement les deux méthodes. Cependant, afin de bien
évaluer ces deux méthodes, une autre technique a été retenue par
la suite : la moyenne des qualités de liens pondérés (par le nombre
d’enfants du nœud plus 1).

La technique par simple descente se déroule en deux étapes : tout
d’abord une solution valide est construite au regard des contraintes.
Puis, dans un deuxième temps, diverses permutations sont essayées
sur cette solution, afin de voir laquelle améliore le plus la solution,
à chaque itération. Quand plus aucune permutation n’améliore la
solution, celle-ci est considérée comme étant la solution finale au
problème. La méthode retenue pour construire la solution initiale est
la topologie en étoile, et les permutations utilisées sont :

• Échanger un nœud de rang 1 avec un nœud de rang 2.

• Échanger deux nœuds de rang 2.

• Placer un nœud de rang 1 comme enfant d’un autre nœud de
rang 1.

évaluation des performances et réglages des paramètres

Nous avons effectué de nombreux calculs de topologie et de slotframe
pour un grand nombre de solutions initiales, et avec divers valeurs
pour les paramètres de la fonction objectif. Avec cette méthode, nous
avons pu trouver les valeurs les plus appropriées pour les paramètres
de la fonction objectif. Mais aussi, nous avons observé que la technique
par simple descente est effectivement plus rapide à retourner un
résultat.

b.5 protocole réseau pour la gestion de la batterie

Dans la partie précédente, nous avons conçu et évalué des algorithmes
qui permettent de construire une topologie et une slotframe dans un
cas précis pour notre cas d’usage, en présupposant une connaissance
a priori des qualités de lien au sein du réseau. Ici, nous utilisons ces
algorithmes de manière itérative, en supposant des qualités de lien de
100% pour tous les liens à la formation du réseau, afin d’explorer et
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découvrir au fur et à mesure quelles sont vraiment les qualités des
différents liens possibles et converger vers la meilleure topologie.

Pour ce faire, nous avons aussi proposé une architecture et un
protocole permettant de propager l’information, et en particulier les
décisions du gestionnaire de réseau. Bien que la qualité de service soit
l’enjeu ici pour le plan de données, ce protocole de gestion du réseau
a été conçu comme asynchrone et réactif, basé principalement sur des
messages périodiques plutôt que des mécanismes de retransmission.

Dans l’architecture que nous proposons, le nœud racine est au
centre, échangeant des messages avec le gestionnaire de réseau d’un
côté par une interface filaire, et avec le réseau d’objets de l’autre.
Quatre messages types de messages, portés par des paquets ICMPv6

spécifiques définis par notre protocole, permettent aux nœuds de
participer au réseau d’objets :

• BMS Network Advertisement : permet au nœud racine (et lui seul)
d’annoncer le réseau pour la supervision du pack batterie.

• BMS Network Join Request : permet à un nœud qui n’est pas
la racine de demander au nœud racine de rejoindre le réseau
d’objets.

• BMS Network Topology Update : permet au nœud racine de deman-
der à un autre nœud de changer son parent dans la topologie,
ou les timeslots qu’il utilise dans la slotframe.

• BMS Network Topology Update : permet à un nœud qui n’est pas
la racine de communiquer la qualité du lien qu’il a avec son
parent au nœud racine, afin que cette information soit transmise
au gestionnaire de réseau, pour qu’il prenne des décisions quant
à la mise à jour de la topologie et la slotframe.

Dans ce système, le gestionnaire de réseau qui reçoit les données de
qualité de lien environ toutes les 10 secondes, procède à un re-calcul
de la topologie toutes les 20 secondes. Si la nouvelles topologie est
meilleure que l’ancienne, il déclenche la mise à jour. Le protocole
dispose aussi de quelques mécanismes de réparation du réseau, si un
nœud venait à perdre sa connexion pour un certain temps.

Afin d’évaluer ce protocole, nous l’avons implémenté dans Contiki-
NG, et déployé sur des nœuds I3Mote CC2650. Nous les avons placés
dans le pack batterie de Renault Fluence dont nous disposons, et
avons observé le réseau évoluer pendant environ une heure, chaque
nœud autre que la racine envoyant un paquet de données par slotframe.
Le résultat obtenu est proche de ce qui était attendu : la topologie
a beaucoup changé, notamment au début de l’expérience, puis a
convergé et s’est stabilisée. Une fois que la dernière topologie a été
décidée, les qualités des liens entre les nœuds de rang 1 et la racine
sont bien plus élevées que la moyenne de ce qui avait été mesuré dans
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la partie évaluation, avec une valeur de 99,8% de paquets délivrés et
plus, et la topologie est restée stable pendant 6 minutes, toujours avec
une réévaluation toutes les 20 secondes. Des points d’amélioration
sont possibles pour ce système, notamment au moment des pertes de
paquets ont été constatées au moment des changements de topologie.
Utiliser des mécanismes non destructifs pour allouer les nouveaux
timeslots, et conserver les anciens pour une certaine durée avant de les
oublier (par exemple pendant une minute), serait un moyen de palier
à ce problème.

b.6 conclusion

Le BMS d’un pack batterie est un composant absolument nécessaire
d’un pack batterie pour garantir sa sûreté de fonctionnement. Ce
travail a montré qu’il est techniquement possible d’utiliser des com-
munications sans-fil entre les sous-systèmes d’un BMS.

Cependant, déployer un tel système ne peut être fait sans prendre
en considération les aspects cyber-sécurité. En effet, avec des commu-
nications sans-fil le medium est partagé, ce qui rend possible, dans
une certaine mesure, les attaques par brouillage.

Aussi, un certain nombre de dispositions doivent être prises dans les
couches plus hautes pour garantir la fiabilité des données à la couche
applicative, telles que l’authentification, l’intégrité, la traçabilité, la
confidentialité, et la disponibilité.

Par ailleurs, la gestion de l’endormissement et du réveil du BMS
utilisant des communications sans-fil, et de ses sous-systèmes, est un
enjeu majeur pour la viabilité de cette approche. Utiliser une couche
liaison spécifique pour les périodes où le véhicule est dans un mode
de sommeil est probablement une bonne approche pour gérer ce défi.

Ensuite, la seconde vie des batteries est à prendre en considération
dans le développement de ce système électronique et informatique.
Les communications sans-fil peuvent être bénéfiques pour ce cas
d’usage, sous réserve que les interfaces des CSUs soient uniformisées,
permettant l’interopérabilité avec le MCU utilisé dans la nouvelle
application.

L’attrait pour le BMS avec des communications sans-fil dépend de
plusieurs aspects. L’argument concernant la réduction de la masse du
pack batterie semble assez faible, car supprimer les fils permettraient
de gagner une vingtaine de grammes sur un pack de plus de 200

kilogrammes.
Enfin, la disponibilité des composants, et la complexité induite, sont

aussi des obstacles à l’adoption de communications sans-fil au sein
du BMS. En résumé, le BMS utilisant des communication sans-fil est
techniquement réalisable et peut être fiable. Il présente des avantages,
mais aussi des inconvénients, et les acteurs de l’industrie automobile
devront trancher quant à son avenir.
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Titre : Réseau sans-fil pour une gestion fiable de la batterie du véhicule électrique
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Résumé : La batterie de traction du véhicule
électrique est un composant clé. C’est aussi
un  système  sensible  dont  la  tension  et  la
température  des  cellules  qui  le  composent
doivent être maintenues dans des plages de
fonctionnement  bien  définies.  Garantir  cela
est  le  rôle du  Battery Management System
(BMS).  Le  BMS  est  composé  de  sous-
systèmes,  appelés  Cells  Sensor  Units
(CSU),  qui  supervisent  les  cellules  et
rapportent leur état à un composant central,
le  Master  Control  Unit (MCU).  Dans  les
implémentations  de  BMS  actuelles,  cette
communication  périodique  est  effectuée  de
manière filaire.  Dans ce travail  nous avons
étudié la possibilité de remplacer ce réseau
de communication par un réseau sans-fil, en
utilisant  les  protocoles  standardisés  de
l’Internet des Objets.

Nous avons évalué les divers protocoles de
communication  disponibles,  et  avons  choisi
de  baser  nos  travaux  sur  IEEE  802.15.4-
2015 Time Slotted Channel Hopping (TSCH).
Nous  avons  ensuite  cherché  à  déterminer
quelles sont les stratégies de gestion de la
topologie  et  d’ordonnancement  des
transmission qui sont les plus adaptées à un
tel  scénario.  Nous  avons  proposé  deux
algorithmes pour une gestion centralisée du
réseau,  basés  sur  les  techniques  de
Programmation Linéaire et Simple Descente,
afin d’optimiser la topologie et la  slotframe.
Aussi, nous avons proposé un protocole de
routage qui permet de propager les décisions
du gestionnaire de réseau aux nœuds. Enfin,
nous  avons  testé  cette  solution  avec  un
réseau  d’objets  dans  un  environnement
véhiculaire.

Title : Wireless Network for Reliable Electric Vehicle Battery Management

Keywords : Electric Vehicles, Battery Management System, Internet of Things, IEEE Std. 
802.15.4-2015 TSCH, Linear Programming, Simple Descent.

Abstract : The traction battery of an electric
vehicle  is  a  key  component.  It  is  also  a
sensitive  system for  which the voltage and
temperature of the cells it is made of must be
kept in a given working range. This is the role
of  the Battery Management System (BMS).
The  BMS  is  made  of  subsystems,  called
Cells Sensor Units (CSU), which supervises
the cells  and report  their  state to a central
component  named  Master  Control  Unit
(MCU). In current BMS implementations, this
periodic communication is performed through
wires.  In  this  work,  we  have  studied  the
possibility  to  replace  this  communication
network  with  a  wireless  network,  using
standardized  protocols  of  the  Internet  of
Things.

We  have  evaluated  the  different
communication protocols available, and have
chosen to base our work on IEEE 802.15.4-
2015 Time Slotted Channel Hopping (TSCH).
We then have sought to determine what the
most  adapted  topology  and  scheduling
management strategies for such a scenario
are.  We  have  proposed  two  algorithms for
centralized network management,  based on
the Linear Programming and Simple Descent
techniques, in order to optimize the topology
and  slotframe.  Also,  we  have  proposed  a
routing  protocol  which  allows  to  propagate
the decisions of the network manager to the
nodes.  Finally,  we have tested this solution
with  a  network  of  objects  in  a  vehicular
environment.
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