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Résumé

Les deux dernières décennies ont vu d’énormes changements dans la façon dont la vie

des gens est affectée par les TIC. Les appareils mobiles ont subi une transformation

significative des petits appareils avec une capacité limitée aux mini-ordinateurs mobiles.

En parallèle, on assiste également à l’émergence de l’Internet des objets (IoT) comme

nouveau paradigme. L’Internet des objets a apporté de nombreux avantages à la vie

quotidienne des gens et a eu un impact positif sur beaucoup de domaines d’application

tels que l’industrie, la santé, l’environnement, les transports, la ville intelligente, la

maison intelligente, etc. L’une des approches adoptées pour améliorer les performances

consiste à réduire la charge sur les appareils et leur permettre d’accéder à des ressources

distantes dans le Cloud. Cela a donné naissance au paradigme du Cloud Computing.

Malheureusement, même si les Clouds disposent d’importantes ressources de calcul

et de stockage, ils sont généralement éloignés des utilisateurs mobiles, ce qui rend

difficile de répondre aux exigences des applications sensibles aux délais. Pour surmonter

cette limitation, une approche possible consiste à déplacer les services du Cloud vers la

périphérie du réseau. Cela a conduit à l’émergence du concept de FOG Computing. Le

FOG Computing donne la possibilité de déployer des services plus près des appareils IoT

et fournit des solutions pour résoudre les problèmes d’hétérogénéité et d’interopérabilité.

Dans cette thèse, nous nous concentrons sur la conception d’une architecture de

service, appelé Fog Services Provider (FSP), basée sur le paradigme FOG, pour

fournir des services pour l’IoT. Notre première contribution est de définir les composants

critiques du Fog Computing et de l’IoT dans notre architecture. Nous analysons ensuite

les exigences et la conception détaillée des composants de l’architecture du service Fog

et du mécanisme de gestion des données. Enfin, nous proposons un unified data

model (FSPontex) qui résout le problème d’hétérogénéité et d’interopérabilité entre

différents équipements IoT, applications ou encore d’autres systèmes IoT à l’aide du

concept d’ontologie.
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Abstract

The last two decades have seen tremendous changes in the way people’s lives are affected

by IT. Mobile devices have undergone a significant transformation from small devices

with limited capacity to mobile mini-computers. In parallel, we are also witnessing the

emergence of the Internet of Things (IoT) as a new paradigm. The Internet of Things

(IoT) has brought many advantages to people’s daily lives and positively impacted most

application domains such as industry, healthcare, environment, transportation, smart

city, smart home, etc. One of the approaches adopted to improve performance is to

reduce the load on the devices and to allow them to access remote resources in the

Cloud. This gave birth to the Cloud Computing paradigm. Unfortunately, even though

Clouds have significant computing and storage resources, they are generally remote from

mobile users, which makes hard to fulfill IoT latency-sensitive applications requirement.

To overcome this limitation, one possible approach is to move services from the Cloud

to the network edge. This leads to the emergence of the FoG computing paradigm. Fog

computing brings the ability to deploy computing services closer to IoT devices and

provides services that solve data heterogeneity and interoperability issues.

In this thesis, we focus on analyzing and designing a service architecture based on the

Fog computing paradigm called Fog Services Provider (FSP). Our goal is to exploit

the Fog computing system’s useful characteristics and provide efficient support services

for IoT devices. Our first contribution is to define some of the critical components

in Fog computing and IoT. We then analyze the requirements and detailed design of

the Fog service architecture components and the data management mechanism for IoT

heterogeneous devices. Finally, we propose a unified data model (FSPontex) that

solves the problem of heterogeneity and interoperability in different applications and

with other IoT systems using web technology with the help of Ontology.
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2 Chapter 1. Introduction

T he prominence of the Internet of Things (IoT) has increased applications in

the domain of ubiquitous and context-aware computing. IoT will enable the

interconnection and intercommunication billions of devices, known as smart

objects or smart things which deployed pervasively and distributed geography. These

things or devices caused an unprecedented generation of the enormous and heterogeneous

amount of data. Traditional computing as Cloud computing has come and served as

an efficient way to process and store these data. However, the integration of IoT with

Cloud computing face many challenges, one of those challenges is the growth of real-time

and latency-sensitive applications and the limitation of network bandwidth. This leads

to unnecessary communication not only burdens the core network, but also the data

center in the cloud. Therefore, a new paradigm that seems to be promisingly named

in the literature as fog computing, it will complement the cloud solution. In essence,

Fog computing extends the cloud services to the edge of the network and distributes

these services such as storage, computation, control, and network closer to end-users

with the purpose to optimize low-latency, mobility support, scalability, security and

privacy, energy efficiency, data management. In this chapter, we present the motivation

and challenges of fog computing architectures, applications, requirements, and open

directions of research in this domain of computing.

1.1 Context

The Internet of things (IoT) [1, 2], first introduced by Kevin Ashton in 1998, refers to

an emerging paradigm that consists in the interconnection of physical devices, vehicles,

buildings and other items such as sensors and actuators to collect and exchange data.

Theses ”things” connected to each other in order to form a much larger system and

enabling new ubiquitous and pervasive computing services. This new paradigm is

starting to transform how we live our lives, but all of the added convenience and

increased efficiency comes at a cost. Indeed, according to Cisco, more than 50 billion

devices will be connected to the Internet in 2020. Until 2022, 1 trillion networked sensors

will be embedded in the world around us, in 20 years it will be up to 45 trillion [3].

As a consequence, the IoT is expected to generate a large amount of data, which in

turn puts a tremendous strain on the Internet infrastructure. As a result, researchers

are working to find ways to reduce that pressure and solve the problem of analyzing

and processing a large amount of data. Among existing solutions, Cloud computing
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will be a major part of future development of IoT, and especially by making all of the

connected devices work together. Indeed, storing and processing the data locally in IoT

devices is hardly possible.

The research community has envisioned that the Cloud [4, 5] can act as an interme-

diate layer between the “things”and the applications and thus hiding all the complexity

of the resources management and the functionalities necessary to implement the latter.

This intermediate layer will impact future application development, where information

gathering, processing, and transmission will produce new challenges that have to be

addressed. The integration of IoT into the cloud can be a good way to deal with

some issues such as performance, reliability, security, and privacy [6]. The Cloud also

simplifies the data flow processing of IoT by providing fast, low-cost installation and

integration for complex data processing and deployments [7]. The benefits of integrating

IoT into the Cloud computing can be summarized as the follows [6]:

• Communication: Widely deployed applications and data sharing are prominent

features of a Cloud-based IoT paradigm. Ubiquitous applications can be imple-

mented through the IoT environment, and use automated communications that

can be leveraged to facilitate low-cost data delivery and collection.

• Storage: Data from billions of devices is generated in different type of data such

as structured or non-structured data with several characteristic: (i) variety (data

types), (ii) volume (data size), (iii) velocity (data generation frequency) that can

be considered as Big Data. The Cloud is one of the most cost-effective and suitable

solutions to store these data.

• Processing capabilities: IoT devices are essentially limited in terms of pro-

cessing capabilities. Therefore, its generated data needs to be transferred to

nodes that have high computing capabilities. Cloud usually provides services

with unlimited processing capabilities through virtualization mechanisms and

on-demand data usage model.

Although Cloud computing has solved several problems with support for IoT.

However, the geographical distance to the Cloud can significantly reduce latency for

some time-sensitive application domains such as healthcare, smart cities, smart home,

video surveillance. To address this issue, this convergence between the IoT and Cloud

Computing reveals a new paradigm that seems to be promising named in the literature
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as Fog computing [8, 9]. Fog computing is known as a clever name, which can sometimes

be referred to as edge computing. It allows data collection and processing at edge

computing devices instead of using the cloud or at a remote data center. By leveraging

this paradigm, data generated from the sensors and other connected devices is sent

and instantly processed at a nearby edge computing device. This could be a gateway

device, such as a switch or router that processors and analyzes this data. In Fog

environments, it might play a role as a Fog node. These Fog nodes should be deployed

in distributed geography to support time-sensitive applications. Moreover, handling

this growth of the number of devices and information produced by them brings the

need to have platforms and infrastructure that support different requirements for IoT

System. Additionally, generated data from a large number of heterogeneous devices also

need to be processed at local level to decrease a bottleneck for critical IoT applications

by providing a unified data information model. Therefore, these IoT platforms need

to provide several mechanisms not only to help to quickly connect devices and easily

deploy services and applications but also to effectively manage produced data. The

elastic resource provisioning and the ability to scale are the main requirements to deal

with this big number of devices and to face the dynamic nature of IoT systems.

1.2 Challenges

Fog computing is a new computational paradigm and being the extension of cloud

computing paradigm to handle IoT applications related issues at the edge of network.

In nature, fog computing is similar to cloud computing but with different characteristics.

Fog computing architecture will be able to provide possibilities of data processing,

computation, storage, networking and application services to IoT systems accordingly

and effectively [9]. However, Fog computing faces new challenges besides those inherited

benefits from cloud computing. In Fog computing, computational nodes are heteroge-

neous and distributed as well as dealing with aspects of constrained environment. In

this section, we will present several challenges in the perspective of fog computing.

• Heterogeneity: IoT is a complex ecosystem with many heterogeneous net-

works [10]. One of the first challenges that we have to deal with in IoT is

the large heterogeneity of the “things”. This heterogeneity can be divided ac-

cording to a layered architecture form southern layer to northern layer as the

follows:
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1) Devices layer: Various devices use different communication technology

standards to provide sensing data in different type of formats for the Fog

nodes to process and make decisions. How to manage these devices in an

integrated way?

2) Networking layer: This layer is used different topology such as star network,

tree network, and hybrid network topology that allows data transfer from data

sources to processing nodes. Therefore, it is necessary to build an effective

topology to manage and secure data throughput and energy consumption

issues.

3) Processing nodes layer: Nodes can be developed into an architecture, a

platform. They are usually designed for deploying scalable, intelligent, and

interoperable IoT applications in different domains. For example smart city

is possible to have systems for specific domains such as, smart homes, smart

traffic, public services, and smart industries. These systems can generate

different kinds of context information in various formats and specifications.

The context sharing can be a feasible solution in these processing nodes to

provide interoperability.

4) Application layer: Existing IoT services and applications have been con-

ceived as isolated vertical solutions, in which all system components are

tightly coupled to specific application context, specific hardware, specific

software, etc. In this case, one of the big challenges is to be able to unify-

ing platforms and middleware, and also provide interoperable programming

interfaces [11–13].

• Manageability: The objective of the heterogeneity issue should be considered in a

deployable, scalable, and interoperable unified architecture. It tries to answer the

question of what is its manageability? Manageability is the most practical way to

able to bridge the gap between the organizational and technological silos in IoT. It

can be managed in cross-platform applications, cross-platforms, or cross-domains.

We define several criteria as main challenges for a manageable architecture as

follows:

1) Accessibility: a developed mechanism for the ability to support access

to data generated by IoT platforms or applications. This means allowing
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some web services such as RESTful, API to be able to access to services

inside or outside of the architecture with authentication and authorization

mechanisms.

2) Services management: functionalities may be developed as separate services

which can be deployed independently on different platforms. Besides, the

communication mechanism between services should also be considered to

satisfy the internal and external cross communication capabilities.

3) Loosely coupled: a service-oriented distributed architecture with a single

responsibility, without many dependencies, allowing teams to work and deploy

independently, which can be developed based on a loosely coupled (also know

as microservices) approach.

4) Standards-based: data management for heterogeneous IoT devices in a

distributed architecture has to be considered. Instead of sending the data

to the Cloud, resources placed very close to the data producers can be

used for local processing, data analysis, and fast decision-making and thus

provide better quality of service performances. Moreover, the IoT devices

are heterogeneous in terms of communication protocols, data formats, and

technologies. This not only causes issues of device interoperability but also

its data interoperability and semantics interoperability issues [14]. Therefore,

a standards-based data model (e.g. RDF [15], JSON-LD [16], and ontologies)

is required to integrate these data sources.

There are some of the existing works on computing architecture for IoT based on

typical characteristics of Fog computing paradigm to deal with issues for specific charac-

teristics and not focus on designing a overview architecture to handle a heterogeneous

set of devices and manage diverse data sources from these devices. For example, a

Fog-based IoT resource management proposed to evaluate resource prediction, resource

allocation and pricing [17]. To address several challenges that related to distributed

devices and processing, according to [18], the authors have introduced a dataflow ap-

proach to evaluate for the development of IoT applications in the Fog by implementing

a distributed dataflow programing model based on Node-RED (a programming tool for

wiring together hardware devices, APIs and online service [19]). For cost-efficient provi-

sioning limited resources, [20] focuses on some tasks such as data consumer association,
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task distribution, and virtual machine placement to fowards a Fog computing based

scheme through parameters such as service latency, power consumption, and cost.

In this thesis we tackle the Fog computing-based services architecture that should be

provided in order to ensure such requirements as well as to bring other benefits such as

management of heterogeneous IoT devices that use different technologies and investigate

interoperability for these devices. On the other hand, we define several components and

services in our architecture to support and build a unified data model for Fog computing

architecture. In particular, we focus on to solve some challenges as the following:

1. How to design an efficient architecture that enables rapid deployment, management

and scaling of IoT applications?

2. How to handle a heterogeneous set of devices?

3. How to effectively manage data and ensure a primary task is to build an information

model with semantic interoperability for cross-IoT application domains?

4. Where to deploy services in a large set of fog nodes while ensuring the performance

of IoT applications in terms of latency, energy consumption and scalability?

1.3 List of contributions

The variety of IoT applications has created many challenges as mentioned above. Support

for large numbers of connected devices that can exchange data and interact with each

other requires IoT architectures that are reliable, secure, energy-efficient, and capable of

provides services for applications in other systems. These IoT architectures serve as an

orchestrator that not only enable to combine IoT platforms and manage heterogeneous

devices, services or applications, and users, but also provide data processing capabilities

in different contexts in a cyber-physical world. The objective of this thesis is to study

and design an efficient Fog Services Provider based on the Fog computing paradigm that

represents a real-world test-bed and is used as an environment for execution, managing,

and analysis of IoT services in a fog environment. Our main contributions are:

• We address the problem of handling a wide diversity of network access tech-

nologies such as Wi-Fi, Cellular, Lo-Ra, Zigbee, or Bluetooth by designing a

multi-technology services architecture based on the Fog computing paradigm for

IoT devices to perceive and manage flexible and heterogeneous multi-network
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access technologies in ubiquitous environment. A novel aspect of this service

architecture is to integrate a smart gateway service with a data scheme to de-

scribe and store information of IoT multi-technology devices through an access

services. Besides, we also propose procedures to attach and detach IoT devices

into fog architecture. The main result in our paper published in 10th International

Conference on Networks of the Future (NoF2019) [21]

• We have extended the last proposal by elaborating on the basic notions, com-

ponents, and services in the Fog computing architecture. This architecture not

only allows heterogeneous IoT devices but also provides a data model based on

semantic web technology with the help of ontology. In addition, the data model

enables to support interoperability in IoT by organizing data sources generated

from IoT devices based on a Resource Description Framework (RDF) which is

used a triplet (Subject-Predicate-Object) to describe element in in a statement.

Beside, we implement an algorithm to covert a relational database (RDB) to

RDF to facilitate for management of heterogeneous IoT devices. The result in

our paper published in 11th International Conference on Networks of the Future

(NoF2020) [22].

• The last contribution focuses on the interoperability in IoT. The proposed approach

supports to handle a large-scale heterogeneous data and process it in real-time or

near real-time by using a common unified ontology. This proposal is extended from

the NoF2020 with aiming at designing a unified semantic data model to manage

different type of IoT devices in Fog environment. The submitted paper in 13th

International Conference on Global Information Infrastructure and Networking

Symposium (GIIS 2020) [23].

1.4 Thesis outline

In this chapter, we present new challenges and issues for fog computing environment.

The rest of this manuscript is organized as follows:

• Chapter 2 Backgrounds: This chapter explains the background that is necessary

for a better comprehension of our contributions in this thesis.

• Chapter 3: This chapter presents our proposed architecture based on Fog comput-

ing paradigm. A services architecture that enables flexible deployment, manage-
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ment, and scaling for IoT applications. This chapter also details several the new

concepts of components in the Fog architecture and introduce a data management

mechanism for heterogeneous devices.

• Chapter 4: This chapter introduces data management management in Fog Services

Provider by providing data processing approaches at a raw data stage and a

semantic data stage.

• Chapter 5: This chapter discusses the challenges in the integration of different

data sources which handled by Fog Services Provider by designing a unified data

model. We presents in details a new schema between data objects and their

relationships to address the need for interoperability and heterogeneity.

• Conclusion 6: This chapter has concluded this thesis and provides several prospects

and upcoming works.
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Life is like riding a bicycle.

To keep your balance,

you must keep moving.

Albert Einstein

Internet of Things (IoT) systems connect the physical world with the Internet.

In essence, IoT works by connecting real-world interfaces to the Internet, such as

sensors that provide data and actuators that act on their environment. In effect,

IoT systems provide the technologies and the tools to instrument, quantify, and

actuate the physical world. In this chapter, we summarize some research works

related to components and their architectures. We focus on several computing

paradigms and prominent characteristics of Fog computing in IoT.

Abstract
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T his chapter highlights the key issues and motivations involved in the impor-

tance of the fog computing paradigm. Subsequently, we will discuss the

main characteristics of this emerging fog computing paradigm. Finally, the

chapter addresses the major limitations and constraints essential to the analysis and

design of fog computing architecture in Internet of things environments. Besides, the

chapter introduces the state-of-the-art and fog computing challenges for the Internet of

things. These aspects are regarded as requirements for comprehending the other work

discussed in this paper.

Chapter 2 is organized as follows. Section 2.1 introduces the diversity of Internet of

Things and its components. Section 2.2 discusses some communication protocols and

standards in IoT. We presents some approaches that is used to develop IoT architectures

in section 2.3 and section 2.4. One of the efficient paradigms to support IoT is cloud

computing, introduced in section 2.5. Due to limited latency, several paradigms are

proposed to overcome cloud computing issues, and these paradigms are presented in

section 2.6. However, the extension for computing and interaction with cloud computing

is still necessary. There is a need for appropriate solutions to address issues related

to heterogeneity, interoperability, and scalability in IoT environments. Therefore, an

efficient emerging solution is fog computing mentioned in section 2.7. The last section 2.8

draws a conclusion.

2.1 Introduction

Currently, IoT is a flourishing technology trend that is being discussed all over the

world. The term “Internet of Things”was originally used in a presentation at Procter

& Gamble [24] in June 1999 by Kevin Ashton [25], co-founder of the Auto-ID Center

at MIT. At that time, in his presentation, he combined radio frequency identification

(RFID) with the Internet, resulting in the term Internet of Things. It means the

connection of enormous amounts of things to the Internet. These things are more and

more intelligent and used today, including a range from sensors, actuators, wearables,

cell phones, and on-board computers to micro-data centers that are called IoT devices.

Many different communication technologies and protocols are used to connect IoT

devices to the Internet, such as Wi-Fi, Bluetooth, ZigBee, LR-WPAN, Z-Wave, RFID,

and Near Field Communication (NFC) [26]. In which, two RFID and NFC technologies

are utilized in the near vicinity of ToT devices to be able to identify, track, and
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authenticate [27].

With recent advances in miniaturization and falling costs of RFID, sensor networks,

NFC, wireless communications, technologies, and applications, the IoT has become

relevant to industry and end-users. Ubiquitous connectivity is one of the key requirements

in IoT applications. These applications need to support a diverse set of devices and

communication protocols. It not only provides support for tiny sensors that are capable

of sensing and reporting desired environment events but must also provide full data

to powerful back-end servers that are used for data analysis and extraction. This

also requires integrating mobile devices, edge devices like routers and smart hubs, and

humans in the loop as controllers. The detection of the physical state of things by

sensors while gathering and processing detailed data enables an immediate response

to changes in the real world. This fully interactive and responsive network provides a

massive potential for citizens, consumers, and businesses.

Initially, RFID was the first introduced technology to attract attention to the IoT [28].

Until now, RFID is still one of the driving factors in the evaluation of IoT applications.

This is the case because the overall vision of connecting everything to the Internet is

easy to apply through called RFID tags [29]. RFID tags are small, uniquely identifiable,

and programmable microprocessors connected to an antenna to communicate with RFID

readers. However, with further technological achievements, wireless sensor networks

(WSN) and Bluetooth-enabled devices accelerated the IoT trend’s widespread adoption.

The WSN approach is an interesting related technology concerning IoT’s future trend.

Although WSN and IoT can be considered as competing technologies, many similarities

can be found. Sensor networks in a WSN are composed of wireless connected sensors

that can communicate with each other. A standard communication approach applied

in WSNs is Peer-to-Peer (P2P) technology [30]. It is necessary for sensors to detect

other sensors in close proximity and to build a network that communicates with each

other in a highly geo-distributed sensor network. A typical example of an application of

this kind is presented in [31], where wireless sensors are placed within the emergency

rooms of John Hopkins hospital to monitor in real-time the blood oxygen and heart

rate of the patients. In this case, sensors send an emergency call either to a control

middleware to recheck the emergency or directly to a doctor. According to [32–34], these

communication technologies and IoT applications have been studied in recent years.

Nevertheless, specific characteristics and requirements such as scalability, heterogeneity
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support, full integration, and real-time query processing are not yet interested. To

highlight these necessary advances, this chapter lists the challenges of IoT and promising

approaches, taking into account recent research and progress made in the IoT ecosystem.

Industry 4.0 is another emerging technology concept that is currently being discussed

in almost any company with a production context. IoT is very similar to the concept

of Industry 4.0. Industry 4.0 is the vision of digitization and automation of the

manufacturing process from the first draft of a product through the entire supply chain

to the final product. This includes the fields of Big Data analytics, digitalization,

manufacturing, self-adaptation, artificial intelligence, etc. [35]. In the present context,

IoT comprises not only sensors and actuators but also, as mentioned above, a multitude

of heterogeneous devices connected to the Internet. In addition, one of the most obvious

motivating factors is the usability provided by the new applications, such as smart cities,

smart houses, smart cars, smart grids, smart healthcare, smart logistics, autonomous

cars, and robots, and virtual and augmented reality applications. Figure 2.1 shows

graphically the sectors where companies started investing in IoT. Analysts are forecasting

that the number of installed devices will be in the tens of billions over the next few

years and that the number of sensors will grow to hundreds of billions in the near future

[36]. In a forecast, by 2019-2030, the number of IoT-connected devices in the world will

grow from 7.6 billion to 24.1 billion, with sales more than tripled from $465 billion to

over $1.5 trillion [37].

The diversity of IoT in terms of devices, technologies, heterogeneous communica-

tion protocols and standards, and various applications poses many challenges for the

research community. Not only does it challenge the design of common standards to

address hardware problems, but also the challenges of application-level communication

technologies. Moreover, architecture with the ability to manage these heterogeneities is

an essential solution in IoT environments.

2.2 Communication protocols and standards

The Internet of Things (IoT) transfers data between devices and users using communi-

cation protocols. According to [38], IoT communication protocols can be classified into

three types of architecture based on different aspects: OSI model hierarchy, IEEE 802

protocol standard or network types. The communication protocols in the OSI model hier-

archy work mainly at layers, including the application layer (CoAP, ISA100.11a, MQTT,
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Figure 2.1: Visual map of IoT companies group per type of business. Source: Venture Scanner, Internet
of Things Sector Update.

SOAP, Web Socket, etc.), the network layer (SMS/USSD protocol suite, TCP/UDP

protocol suite, and wireless sensing protocols, and physical layer (short-range, long-range

cellular, and long-range non-cellular communication protocols). IEEE 802 standard-

based communication protocols include Wi-Fi, Bluetooth, ZigBee, UWB, etc. Network

types divide IoT communication protocols into four types of networks: personal area

network (PAN), local area network (LAN), wide area network (WAN), and mobile

network. This division is necessary in resolving communication at each layer in the IoT

architecture. However, providing interoperability between communication protocols is

still a significant challenge.

In IoT we also need to address communication protocols in terms of topology for-

mation, power consumption, optimization, integration, and cryptography, etc. [26, 38].

In terms of networks and communications perspective, IoT can be considered as an

aggregation of different networks, including mobile networks (CDMA, 3G/4G/5G, etc.),

WLANs, WSN, and Mobile Adhoc Network (MANET) [39, 40]. Seamless interconnec-

tivity is an important prerequisite for IoT. The speed, reliability, and persistence of

network communication will affect the entire IoT experience. With the appearance of

high-speed mobile networks such as 5G and the increased acceptance of local and urban



17

network communication protocols such as Wi-Fi, Bluetooth, and WiMax, establishing

an interconnected network of objects seems feasible, but dealing with different commu-

nication protocols that connect these environments is still a challenge. The means of

communication and protocols are different depending on the specification of the device

(CPU, memory, storage, battery life). However, the most common communication

protocols and standards are listed as follows:

• RFID (e.g., ISO 18000 series, which includes file classes and two generations and

covers both active and passive RFID tags).

• IEEE 802 WLAN (802.11), Zigbee (802.15.4), Near Field Communication (NFC),

Bluetooth (802.15.1).

• Low-power Wireless Personal Area Networks (6LoWPAN) standards by IETF (In-

ternet Engineering Task Force).

• M2M protocols such as MQTT and CoAP.

• IP layer technologies, such as IPv4, IPv6.

The detailed specification for the network layer communication protocols mentioned

above is presented in [41], and these are described in detail for the layers in the IoT

protocol suite illustrated in Figure 2.2.

Figure 2.2: Heterogeneous IoT standard protocols.

Based on a classification of protocols, each communication protocol has its standards

for providing some specific applications. The lack of communication protocol standards
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can significantly affect the management of data from heterogeneous devices [42]. Fur-

thermore, due to the complexity of data sources and data types, formats, and structures,

there should be an effective architecture to protect these data. Several approaches

proposed data protection by hiding information through semantic web technology with

the help of ontology [43, 44]. IoT communication protocols can be hidden by several

specific semantic properties (annotation property) that allow the hidden information

to be transmitted securely by the communication channel.

2.3 IoT architectures

An IoT system consists of several basic components such as sensory devices, communi-

cation networks, services, applications, management, and context-aware processing of

events [27]. However, combining a set of heterogeneous devices and their communication

protocols into a unified architecture and create a knowledge system that makes them

understandable and manageable by humans is a significant challenge. In addition, in a

distributed environment, the interconnections between IoT systems and between these

components are prerequisite requirements. A comprehensive system architecture for IoT

must guarantee the appropriate operation of its components. Reliability is considered

one of the most important design in IoT architecture [45]. In order to achieve this, it is

necessary to carefully consider issues of heterogeneity, fault tolerance, and scalability in

the design of IoT architecture. Because mobility and dynamic location changes with

the prevalence of smart things have also become an important part of IoT systems, for

this reason, a modern architecture needs to provide a level of adaptability to deal with

dynamic impacts throughout the ecosystem.

Reference architectures and models give an overview of all the basic components of

the system. It is independent of the vendor and does not specify a set of technologies.

Its advantages allow other architectures to be relied on to provide a better and higher

level of abstraction that can hide specific constraints or implementation details. These

architectures are also introduced by some research groups such as IoT-A [46], IBM [47],

and WSO2 [48]. The IoT-A focuses on developing and validating an integrated IoT

network architecture and supporting building blocks, with the objective to be “the

European Lighthouse Intergrated Project addressing the Internet of Things Architecture”.

IBM proposed an architecture capable of providing a platform for the industry for

the purpose of building a consistent and consistent architecture even as the physical
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capabilities change. IBM systems focus on scalability, security, usability, manageability,

maintainability, etc. Figure 2.3 illustrates an outline of the extended version of a

reference architecture for IoT of WSO2. The reference architecture consists of a set of

components. Layers can be realized by means of specific technologies, and we will discuss

options for realizing each component. There are also some cross-cutting/vertical layers

such as access/identity management. The layers are Client/external communications -

Web/Portal, Dashboard, APIs which is essential for defining and sharing system services

and web-based dashboards for managing and accessing these APIs; Event processing

and analytics (including data storage); Aggregation/bus layer – ESB and message

broker built on top of communication and physical layers with relevant transports -

MQTT/HTTP/XMPP/CoAP/AMQP, etc; and Devices. The cross-cutting layers are

Device manager, Identity, and access management. They have the ability to uniquely

identify objects and control their access level.

Figure 2.3: Reference architecture for IoT [48].

These reference architectures are essential in the design of an effective IoT architec-

ture that can be provided both functionalities (device management, data management,

services management, etc.) and non-functionalities (availability, maintainability, scala-

bility, manageability, etc.). However, the development of architectures by any approach

should also be considered. We mention in more detail several approaches in the next

section.
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2.4 Design approaches for IoT architecture

There are some kind of architectural models that have been discussed over time [27].

Firstly, it is a service-oriented architecture (SOA), where the capability of computation

is based on the modularity of the end-to-end services. Secondly is an API-based

architecture developed from different IoT-based platforms and computational needs.

Finally, microservices architecture is focused on multiple, independent, self-contained

application-level services that are lightweight and have their own unique data model [49].

These architectures present as follows:

2.4.1 Service-oriented architecture

In IoT, service-oriented architecture (SOA) might be essential for the service providers

and users [50, 51]. SOA enables the interoperability between the heterogeneous devices

[52, 53]. To illustrate this, according to several authors [54, 55] consider a generic SOA

consisting of four layers with different functionalities as follows, as shown in Figure 2.4:

• Sensing layer: It is provided by hardware objects such as actuators, sensors,

and RFID tags used to sense the status or change of the environment.

• Network layer: is equipped with a variety of infrastructures to support both

wired and wireless connections of things from the "Sensing Layer" to "Service

Layer."

• Service layer: provides various services to support IoT users and applications.

Heterogeneous devices are interoperable through this layer, enabling useful services

such as information search engines and communication, data storage, data exchange

and management, and the ontology database.

• Interface layer: includes various communication approaches to support users

and applications that facilitate interaction with objects and provide data informa-

tion of interest in an understandable way.

In a service-oriented architecture, complex systems are often divided into subsystems that

take advantage of loosely coupled and reusable features (modular disassembly features),

so the overall system is easily maintained by servicing individual components [56].

Therefore, this ensures that other services or components of the system can still keep
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Figure 2.4: Service-oriented Architecture for IoT [54].

properly working in case of a failure. This is one of the significant advantages for

designing an IoT architecture where reliability is the most important criterion.

The SOA middleware is designed to bridge the gap between the high-level require-

ments of various applications and the hardware limitations of WSNs [57]. By bringing

these advantages to IoT, SOA has the potential to increase the degree of interoperability

and scalability between objects in IoT. Furthermore, all services are abstracted into

common propositions from the user’s perspective, which eliminates additional complexity

for the user when dealing with different layers and protocols [58]. In addition, the

capability to build diverse and complex services by assembling different functions of the

system (i.e., modular composability) through service compositions that are appropriate

to the heterogeneous nature of IoT, where the accomplishment of each task requires a

series of service requests to all the different entities distributed across multiple locations

[59].

2.4.2 API-oriented architecture

The Simple Object Access Protocol (SOAP) and Remote Method Invocation (RMI)

approaches are conventional approaches to developing service-oriented solutions and are

used to describe, discover, and invoke services. However, considering the complexity

and overhead of these techniques, Web API (Application Programming Interface)-

and Representational State Transfer (REST)-based methods have been introduced as

promising alternatives. Demanding resources range from network bandwidth to compute

and storage capacity and are triggered by the request-response data transformation

that periodically occurs during service calls. Lightweight data exchange formats such

as JSON (JavaScript Object Notation) can reduce the mentioned overhead, mainly for

smart devices and sensors with constrained resources, by providing a replacement for
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large XML (Extensible Markup Language) files describing services. As a result, the

communication channel can be leveraged, and devices’ performance can be processed

more efficiently.

Similarly, building APIs for IoT applications allows service providers to gain more

consumers while focusing on the functionality of their products instead of the presen-

tation. More importantly, the security features of modern Web APIs such as OAuth

facilitate multi-tenancy, APIs that effectively support the service exposition and com-

mercialization of an organization. Moreover, providing more efficient tools for service

monitoring and pricing than previous service-oriented approaches [60].

One approach enables the efficient discovery of IoT devices and their exposed services,

taking into account humans as the main actors [61]. This new approach facilitates

communication between the entities involved by creating a ubiquitous environment of

IoT elements described by standard human-readable files that can be easily located and

invoked by promoted IoT services through standard RESTful Web APIs

Similarly, Bo Cheng et al. [62] proposes a lightweight IoT service mashup middleware

based on a REST-like architecture for IoT applications and designs a unified framework

for sensor device access and dynamic protocol stack management, Proposes a distributed

publish/subscribe based message distribution service and a situational mashup approach

for IoT services that can be easily integrated to create a new composite and situational

applications, and also applies the REST principles to define an extensible interface for

creating comprehensive and situational mashup applications. With the proposed service

mashup middleware, the end-user can easily integrate applications and services.

2.4.3 Microservices-based architecture

The microservice approach has made a turning-point in software development. Before

development, monolithic software systems faced several issues related to maintainability

and scalability limitations. This approach leverages service-oriented architecture along

with best practices and recent developments in software virtualization to overcome those

issues with the idea of dividing the application into a smaller set of connected services [63].

Each service typically implements one or more features or functionalities. For example,

data management service, monitoring management service, etc. Furthermore, message

communication between services is handled by a number of lightweight mechanisms such

as HTTP, API, and REST [49]. The essence in the IoT environment is decentralized, so
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services also need to be deployed in a distributed way to support IoT heterogeneous

devices.

On the other hand, applications are divided into much smaller, loosely coupled ser-

vices usually performed asynchronous ways. To handle a large number of remote access

services, load balancing, and monitoring capabilities, this architecture enables messages

that may communicate to work together by providing an intermediary component called

API Gateway [64]. In IoT, microservice architecture model can obtain some advantages

compared to other methods such as scalability, development, changeability, integration,

communication, maintenance, upgrades [65]. These advantages provides replicating

microservices across nodes depending on demand (scalability), supports different

programming languages in one system (development). The flexible change on services

when errors occur or change services without affecting other services (changeability).

Distributed services can be integrated with each other from the nodes of other systems

with services placement mechanisms (integration) and support many various com-

munication interfaces between services (communication). The maintainability of the

microservices-based approach through updating the smaller source code in services is

also easier than the monolithic method (maintenance). The ability to upgrade and the

agility to integrate or change new services without impacting the entire system is also a

significant advantage of this approach (upgrades).

Based on the characteristics of each approach, the design and development of an

IoT architecture depend on the requirements and analysis of the context in the IoT

applications. Although, a service of the SOA architecture can be a large one and can

be implemented in various functions. On the other hand, microservices are small, and

each of them performs to one service only. Communications between SOA services

typically take place using bus message protocols such as MQTT, XMPP, CoAP, HTTP,

AMQP [66]. Alternatively, the microservices-based architecture uses APIs for this. In

terms of data processing, services are shared in the SOA, which causes data dependencies.

This contrasts with the microservices architecture, where data processing services are

independent and decomposed. For services to associate, the SOA architecture uses

XML and SOAP protocols. Differently, API-based architecture uses REST and JSON.

This means that an API-based architecture is suitable for service interoperability both

internally and externally, while an SOA-based architecture is for internal only. Moreover,

to build an efficient IoT architecture, APIs can be implemented in both SOA-based and
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microservices-based architectures. These approaches are motivations for researchers

to develop a comprehensive architecture. One of the most effective IoT architecture

platforms is the cloud computing paradigm [67].

2.5 Cloud computing paradigm for IoT

Cloud computing has been introduced in the definition provided by the National Institute

of Standard and Technologies (NIST) [5]: “Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service

provider interaction”. The IoT represents a diverse set of technologies that enable

ubiquitous and pervasive computing scenarios by deploying widely distributed devices

with limited storage and processing capabilities. On the other hand, cloud computing

has unlimited capabilities due to the use of virtualization technologies and almost

overcome the problems of the IoT. Therefore, the integration of the two IoT and Cloud

technologies can bring many advantages such as storage, computation, processing, and

communication [68]. However, we have realized that the complexity of cloud computing

faces several challenges for each application (especially time-sensitive applications)

currently being investigated by the research community. Several typical challenges

depended on the application scenarios as follows:

• Heterogeneity: One of the main challenges in Cloud-based IoT is related to the

large heterogeneity of devices, operating systems, platforms, and services that are

available and potentially deployed for new or enhanced applications. Typically, IoT

services and applications are designed as independent vertical solutions whereby

all system components are tightly coupled to the specific application context. This

challenge includes several aspects, with solutions being studied with a focus on

unifying platforms and middleware to deal with data diversity [69].

• Performance: In many cases, Cloud-based IoT applications implement specific

performance and QoS requirements at various levels (i.e., communication, compute,

and storage aspects), and in certain particular scenarios, requirements may not be

easily achieved. Indeed, in several scenarios (e.g., when mobility is required), the

provision of data and services must be highly responsive [70]. Therefore, timeliness
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can be severely affected by unpredictability issues for real-time applications.

• Reliability: Deployment of Cloud-based for mission-critical applications typi-

cally leads to reliability issues, e.g., in the context of intelligent transportation, as

vehicles are frequently on the road and in-vehicle networking and communication

are often sporadic or unreliable. When applications are deployed in resource-

constrained environments, they face a number of challenges related to devices

failure or devices that are not always accessible [70].

• Large scale: Cloud-IoT platforms facilitate the design of next-generation applica-

tions targeted at the integration and analysis of information from real devices [71,

72]. However, the distribution of IoT devices makes monitoring tasks more difficult

because they have to deal with latency dynamics and connectivity problems.

• Big data: By 2020, an estimated 50 billion devices will be connected to the

Internet. Especially attention must be focused on the transfer, storage, access,

and processing of the huge amounts of data they will generate. Managing this

data is a critical challenge, as the overall application performance depends heavily

on the properties of the data management service [73].

• Security and privacy: As sensitive IoT applications migrate to the Cloud,

issues such as lack of trust in the service provider, knowledge of service level

agreements (SLAs), and knowledge of the physical location of data raise concerns.

The distributed system is vulnerable to several possible attacks (e.g., Session

Riding, SQL Injection, Cross Site Scripting, and Side-Channel). As a result, new

challenges require special attention [74].

Cloud computing and the Internet of Things (IoT) are two very different technologies,

and both of them are already part of our lives. It is expected that their adoption and

utilization will become increasingly widespread, making them important components

of the future Internet. A novel paradigm in which Cloud and IoT are merging is

considered potentially pervasive and enables many application scenarios. However, the

unpredictable growth of IoT devices poses several challenges related to the management

and processing of these devices to ensure low latency, flexible storage systems, diverse

connectivity, and real-time data analysis. Therefore, it is essential to develop and deploy

a paradigm that is close to the edge of the network to meet these challenges. In the
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next section, we discuss some paradigms that can effectively overcome issues in the IoT

environment.

2.6 Related paradigms and technologies

The term “pay-as-you-go”in the Cloud computing model is the origination of computing

technology to manage private data centers (DCs) for enterprise end-users [8]. With the

limitless capacities of computing, storage, and networking resources, cloud computing

has opened a new turning-point. There are several computation service providers such as

Amazon, IBM, Google, Microsoft, etc., are taking advantage of this computing paradigm

as a benefit. They have deployed cloud-based services such as Infrastructure as a Service

(IaaS), Platform as a Service (Paas) as Software as a Service (SaaS), etc., to manage

huge enterprises and end-users who interact with related issues at the same time.

However, data centers are geographically centralized and located far from the edge

of end users/devices. As a result, the responses of cloud datacenters often dissatisfied

latency and real-time computation applications and services requests and cause large

round-trip delays, network congestion, quality of service reduction. Therefore, there

are some concepts similar to resolve these issues that have been existing besides cloud

computing. Figure 2.5 shows the ecosystem of computing in the context of IoT.

2.6.1 Edge computing

This new concept has been proposed as a novel paradigm [76] that will push the frontier

of computing applications, data, and services away from centralized node to the edge

devices of the network. Data generated from IoT devices is sent to edge devices. It

can be processed directly on these devices without being sent to the centralized Cloud.

Figure 2.6 present the edge computing general architecture. Edge computing’s essence

is to bring the computing facilities closer to the source of the data. It enables data

processing at the edge network [77]. Edge computing’s network system is a set of edge

nodes (e.g., base stations, switches, border routers, set-top boxes, etc.), end devices

(e.g., smart objects, mobile phones, vehicles, etc.), edge servers, etc. These components

are acted as localized computing paradigm with the capabilities for supporting edge

computation. Consequently, Edge computing has resolved the faster response problems

from computational services and application requests. However, cloud-based services

such as IaaS, PaaS, SaaS unsuitable with Edge computing when deployed services
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Figure 2.5: The ecosystem of computing [75].
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autonomously and concentrate more towards the end devices side [78].

Figure 2.6: Edge computing architecture [79].

2.6.2 Mobile cloud computing (MCC)

MCC is originally used based on the concept of the combination between cloud computing

and mobile computing, where it relies on wireless networks to provide rich computational

resources to mobile users. The objective of MCC is to enable rich mobile applications to

be executed across multiple mobile devices, with a rich user experience and to provide

business opportunities for network operators, as well as cloud computing providers [80],

as shown in Figure 2.7. MCC uses four kinds of Cloud-based resources, named distant

immobile clouds, proximate immobile computing entities, proximity mobile computing

entities, and hybrid (a combination of the other three models)[81, 82]. Besides, most

smart mobile devices are often designed with the computational resource, storage,

and energy constraints. Therefore, MCC processes and stores data outside of mobile

devices by providing necessary computational resources to support remote execution of

rich mobile applications at the Cloud, such as offloaded mobile applications in closer

proximity of end users [83].

However, in the context of IoT, devices are very diverse and heterogeneous with

many different network access technologies. The proposed MCC to manage this huge

set of devices is not feasible since it is designed to deal with mobile phones.
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Figure 2.7: Mobile Cloud Computing architecture [84].

2.6.3 Mobile edge computing (MEC)

MEC is considered as the potential extension of Cloud and Edge computing. It provides

an IT service environment and cloud computing capabilities at the edge of cellular

network [85]. The fundamental idea of MEC is to perform processing tasks and run

applications closer to the cellular customer. Thus network congestion is significantly

reduced, and applications perform better by combining edge servers and cellular base

stations. Due to being designed and implemented at cellular base stations, MEC

technology enables flexible and rapid deployment of new services and applications for

customers and enhances network efficiency. The architecture of MEC illustrates as

Figure 2.8. During a recent period, MEC also allows cellular providers to open their

radio access network to distribute contents and develop applications so that it can

support 5G communication [86, 87].

Figure 2.8: Mobile Edge Computing architecture [88].
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Similar to MCC, MEC was also introduced to address access mechanisms for mobile

networks (cellular) [89]. While the devices are increasingly diverse with different access

technologies such as Bluetooth, Wi-Fi, mobile networks. Consequently, there is necessary

to propose an effective architecture that can overcome these issues.

2.6.4 Cloudlet

Cloudlet [90] is a lightweight cloud or a data center in a box is placed at the edge network.

Cloudlet, along with cloud computing and mobile devices, focuses more on providing

services and deploying application platforms to latency-sensitive, bandwidth-limited for

rich mobile applications in proximity. Figure 2.9 illustrates the cloudlet architecture: a

cloudlet is a small-scale server with specific resources assigned to it. It can be accessed

with mobile devices within a particular coverage area. The cloudlet architecture is

presented in three layers [91], namely the component layer, the node layer, and the

cloudlet layer. The component layer can be started and stopped by an Execution

Environment (EE) and deployed services by providing interfaces to higher layers. The

node layer manages one or multiple Execution Environments that run on top of an

operating system (OS) or Node Agent (NA). A set of nodes clustered from the cloudlet

layer managed by Cloudlet Agent (CA) to migrate components between cloudlets in

order to satisfy low latency [92].

Figure 2.9: Cloulet architecture [93].

Although, cloudlet has many advantages in terms of support for physical proximity

devices, the power consumed optimization and reduced computation time. However,



31

providing a computational environment for heterogeneous devices to ensure interoper-

ability is still limited. Especially for non-IP supported devices as BLE and ZigBee, it

may not have enough features to support a wider range of end devices [89].

The dramatically increasing number of heterogeneous devices and diversified data

traffic in the IoT technology is posing a significant burden on computing paradigms and

uncontrollable service latency. Solutions like cloud computing can provide unlimited

possibilities for data storage and processing, but they can not meet the sensitive-latency

and context-aware requirements of IoT applications. Some computing paradigms are

proposed to address these problems by moving computation from the cloud center to

distributed edge computing, such as edge computing, mobile cloud computing, mobile

edge computing, and cloudlet. However, these paradigms still face some challenges when

dealing with heterogeneity, scalability, interoperability, data processing, and vertical and

horizontal communication issues [89]. Therefore, a paradigm that distributed resources

and services of computing, storage, and networking need to be deployed everywhere.

It supports edge devices and can provide an intermediary layer that can complement

cloud services. In this thesis, we argue that the mentioned issues make the appropriate

Fog computing paradigm for the number of critical IoT applications.

2.7 Fog computing paradigm

The term Fog computing was proposed in 2012 by researchers from Cisco Systems

Bonomi et al.[8]. It is a highly virtualized platform that provides compute, storage, and

networking services between IoT devices and traditional cloud computing data centers,

typically but not exclusively located at the edge of network. The IoT is bringing more

than an explosive proliferation of endpoints [9]. It requires latency-aware computation

for real-time application processing. In IoT environments, interconnected things produce

a huge amount of data. The data generated by IoT devices are typically processed in

a cloud infrastructure due to the on-demand services and scalability characteristics of

the cloud computing paradigm. However, the integration of IoT with Cloud computing

faces many challenges. One of those challenges is the growth of real-time and latency-

sensitive applications and network bandwidth limitations. This leads to unnecessary

communication burdens the core network and the data center in the Cloud. Therefore,

a new paradigm that seems to be promisingly named in the literature is fog computing.

It is designed to support IoT applications characterized by latency limitations and
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requirements for mobility and geo-distribution [8, 94, 95]. This section will introduce

the key motivations and issues behind the importance of the Fog computing paradigm.

2.7.1 Overview of Fog computing

Fog computing extends the Cloud computing paradigm to the edge of the network by

enabling a new range of applications and services directly deployed to close IoT devices.

In general, Fog computing is an intermediate architecture that provides compute, storage,

networking services between end-devices and traditional Cloud Computing Data Centers

[8].

Provisioning resources at the edge of networks (closer to end-devices) brings several

benefits such as low latency and enables the provisioning of new applications such as

mobile data offloading. This section discusses and contrasts the key concepts that enable

application provisioning at the edge. The next subsections introduce the need for fog

computing. The last subsection illustrated and discusses the similarities and differences

between these concepts [96].

2.7.2 Need of Fog computing

Cloud computing has made many conveniences for companies by providing their cus-

tomers with a pool of computing services. Cloud computing technology has been driven

by the economic model that customers will charge according to the time they spend

or called with the terminology “pay-as-you-go”. For example, users can rent 2-3 hours

to run a temporary application on Amazon EC2 [97]. End-users and enterprises can

demand or customize resources from Cloud computing based on their consumptions

such as storage resources, computation, and networking components. However, cloud

computing is not an optimal solution. Because there are billions of Things or physical

objects connected to the Internet, and there is a lot of application applied by the

industries, factories, the government, or the public services, etc. For instance, smart

transport system applications, smart homes, smart cities, etc. Therefore, enormous

amounts of data are being generated by those connected devices and sent throughout

the network to the Internet. Especially in the Internet of Things environment, there

are still problems unresolved because IoT-based services and applications are becoming

popular rapidly and usually require low latency, mobility support, geo-distribution, and

location-awareness. According to [98], those are reasons that the Cloud computing

paradigm can hardly satisfy their requirements of latency, mobility support, and location
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awareness.

Fog computing enable directly processing and computing services at the edge of

the network. It is really the computing paradigm to support and address the above

problems. Similar to Cloud, fog computing also provides compute, storage, network,

and application services to end-users. Moreover, this advanced infrastructure supports

to deploy on heterogeneous devices which act as Fog nodes including end-user devices,

set-top box, access points, edge routers, and switches, or on constrained devices such as

Raspberry, Arduino, etc. Figure 2.10 shows a basic model of Fog computing that plays

a role as immediate layer (fog layer) between things layer and cloud layer.

Figure 2.10: A model of Fog computing.

The main difference of Fog computing compared with Cloud computing by some

characteristics as proximity to the end-user, the density of geographical distribution,
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and support of mobility. Especially, Fog Computing supports applications in the

IoT environment that demand real-time or latency-sensitive. Doing so will reduce

service latency and improve Quality of Services (QoS), resulting in enhanced user

experience. Cloud computing could help by providing on-demand and scalable storage

and processing services which can scale to requirements of IoT applications. However,

for applications requiring emergency response, health monitoring, and latency-sensitive,

data transmission from IoT devices to the cloud and back to applications affected by

delay is unacceptable [99].

Fog computing was introduced to use computing resources close IoT devices for

local storage and data pre-processing to address these issues. This may reduce network

congestion, as well as accelerating analysis and decision-making. Fog computing can

take advantage of the flexibility of providing resources at the edge of the network by

using cloud resources and coordinating geographically distributed edge devices.

2.7.3 Definition of fog computing

Fog Computing is a distributed computing paradigm where processing is performed

seamlessly with the cloud infrastructure at the edge of the network. It provides a

computing mechanism for IoT environments or other latency-sensitive application

scenarios. Transmitting all data from all connected devices for processing in the Cloud

will require massive amounts of bandwidth and storage. These devices are not connected

to the controller via IP but via some other industrial IoT protocols [26]. As a result,

a translation process is also required to handle or store information from IoT devices.

Many researchers have defined fog computing in different approaches. The following are

some examples:

• Bonomi et al. [8]: “Fog computing is a highly virtualized platform that provides

compute, storage, and networking services be- tween IoT devices and traditional

cloud computing data centers, typically, but not exclusively located at the edge of

network”.

• Ahmed Banafa-IBM [100]: “The term Fog computing or Edge Computing means

that rather than hosting and working from a centralized cloud, Fog systems operate

on network ends. It is a term for placing some processes and resources at the edge

of the Cloud, instead of establishing channels for cloud storage and utilization”.
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• Vaquero et al. [101]: “Fog computing is a scenario where a huge number of

heterogeneous (wireless and sometimes autonomous) ubiquitous and decentralised

devices communicate and potentially cooperate among them and with the network

to perform storage and processing tasks without the intervention of third parties.

These tasks can be for supporting basic network functions or new services and

applications that run in a sandboxed environment. Users leasing part of their

devices to host these services get incentives for doing so”.

• Naha et al. [102]: “Fog computing is a distributed computing platform where

most of the processing will be done by the virtualized and non-virtualized end or

edge devices. It is also associated with the Cloud for non-latency-aware processing

and long-term storage of useful data by residing in between users and the cloud”.

For the first definition of fog computing, Bonomi et al. [8] proposed the computing

paradigm as a highly virtualized platform. But, some IoT devices, such as smartphones,

are not virtualized, although they could be part of the Fog infrastructure since part of the

processing could still be performed. The definition given by IBM [100] represents Edge

and Fog computing as the same computing paradigm. It addresses an important issue in

cloud computing, reducing bandwidth requirements by not sending every information bit

through cloud channels but rather aggregating them at specific access points. Vaquero

and Rodero-Merino [101] is a controversial issue, and a definition that can clearly

distinguish between fog computing and other related computing paradigms is still

needed. In Naha’s definition [102] considered all devices with computing and storage

capacity as fog devices and also defined the role of the Cloud in the fog computing

environment more precisely. In brief, Table 2.1 summarizes the definitions of fog

computing provided by several research works.

According to the definitions above, we define Fog computing as follows:

• Fog Computing is a platform that allows a huge number of heterogeneous devices

which is characterized by a wide diversity of network access technologies, including

Wi-Fi, Cellular, Lo-Ra, Zigbee, or Bluetooth (included the edge network devices)

is connected in a decentralized environment and to be intelligently ability for

data computing and processing. Tasks and services will operate in an isolated

environment to solve several issues such as latency requirement, geo-distributed,

support mobility, flexible storage, computation, and data processing. Therefore,
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fog system distributes these services and takes to a huge scale of end-user in IoT

environments.

In our definition, we address a definition for fog computing that covers a large

number of different types of devices and the capacity of data processing to support the

interoperability in IoT environments.

Table 2.1: Summary of Fog computing definitions
Defined by Characteristics

Bonomi et el.[8]
Highly virtualized
Reside between IoT devices and cloud
Not exclusively located at the edge

Ahmed Banafa[100]

Defined Fog and Edge computing as similar
Not depends on centralized cloud
Resides at network ends
Place some resource and at the edge of the cloud

Vaquero et el. [101]

Heterogeneous, ubiquitous and decentralised devices
communication
Storage and processing done without third party invention

Run in a sandboxed environment
Leasing part of users devices and provide incentive

Naha et al.[102]

Virtualization and non-virtualization characteristics
Association with the cloud for non-latency-aware processing
and storage.
Any edge device with available processing power and storage
capability can be act as a Fog device.
Always resides between end users and cloud.

2.7.4 Fog computing architecture for IoT

To illustrate several literatures which have been published, we have separated to formally

define fog computing and the related works in Table 2.2. The selected criteria for the

classification are the following:

• Fog computing architecture (FAC: This part will provides a big picture which

related to the fog computing paradigm including architectures, concepts, and

applications. These features will have to interpret issues such as low latency and

location-awareness; mobility support; high geographical distribution; large-scale

sensors and actuators network; heterogeneous devices

• Internet of Things (IoT): In this section, we only focus on the research works

which need to consider handling of the emerging of IoT heterogeneous devices,
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which use many various communication technologies when these IoT devices

connected to the Internet.

• Programming model (PM): A distributed architecture as Fog computing is the

optimal solution for IoT applications, one of the criteria which response real-time

applications is low latency, and capability of resource utilization at the edge of

the network. Furthermore, a suitable data management model for heterogeneous

devices is needed to provide interoperability and scalability in the IoT environment.

• Resource provisioning management (RPM): Fog computing is the basic paradigm

of the IoT, where a set of heterogeneous devices can cooperate with fog nodes or

other IoT devices to provide resources. Fog nodes take responsibility for executing

IoT services close to the data sources or gateways. Thus, the RPM can help to

decrease delays as well as better utilization of already available computation,

storage, and networking resource in fog computing.

• Dynamic application topology (DAT): DAT is an application topology where

distributed services can be deployed and interconnected on any selected execution

environment [103]. This criterion needs to take dynamic restructuring of the system

topology into account and adapt to the underlying topology during runtime.

• Security and Privacy (S&P) are always a key challenge in any systems, and fog

computing is not also an exception, especially in IoT environment with a multitude

of heterogeneous devices and a various set of protocol communications. One of

the main s&p unsolved problems in fog computing is authentication capability

at different levels. For example, attackers can fake a gateway or fog nodes to

compromise with users to achieve their purpose (ex: man-in-the-middle attack).

Thus, secure communications need to be granted permissions at each level to

guarantee data privacy at the edge of the network.

• Reliability (REL): In the context of real-time IoT applications, we can take full

advantage of fog computing to achieve correct results by minimizing the overall

delay and with high reliability. In fog landscapes, using the edge devices can

handle reliable communication and reliable computation near the end devices.

• Energy efficiency (EEF): Energy management has an important play in IoT ap-

plications such as microgrids, homes, and buildings by taking full advantage of fog
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computing paradigm, which provides the flexibility, interoperability, connectivity,

data privacy, and real-time features required for energy efficiency management.

• Simulation and Mathematics (SIM&MATH) are terminologies which related to

the experiments of the paper authors.

The main challenge of this thesis is to design a platform that enables the management

of the available resources in a fog environment, as described above. Moreover, dealing

with a wide of network access technologies, including Wi-Fi, Cellular, Lo-Ra, Zigbee, or

Bluetooth, is still very challenging. In the next chapter, we focus on more details of the

contributions which can resolve the limited challenges from cloud computing.

2.8 Conclusions

The growth of the Internet of Things (IoT) devices has created a large network with

sensors and actuators which provide a latency-sensitive response to end-users. Therefore,

traditional computing as cloud computing needs many changes. Moreover, these

large and heterogeneous numbers of geographically distributed IoT devices required

several real-time responses such as location-aware services, mobility support, reliability,

low latency, etc. So the Cloud cannot provide the requirements. Fog computing is

really a high-potential computing paradigm that is emerging rapidly to satisfy the

fast development of IoT, CPS, and Mobile Internet. With the broadly computational

capability at the edge of the network, fog computing will push more applications and

services from the Cloud to the network edge. This is a great reason to decrease the

data transfer time and the amount of network transmission and effective response to

the demands of real-time or latency-sensitive applications. This chapter focuses on the

concept of fog computing, the services architectures, applications, and its characteristics.

We have classified the existing literature to find the latest research works and the

different scenarios of fog computing.



39

Ta
bl
e
2.
2:

C
la
ss
ifi
ca
tio

n
of

th
e
re
la
te
d
wo

rk
W
or
ks

FA
C

Io
T

PM
RP

M
DA

T
S&

P
RE

L
EE

F
SI

M
MA

TH
Bo

no
m
ie

t
al
.
[8
,9

,1
04

]
X

X
x

x
x

x
x

x
x

x
Va

qu
er
o
et

al
.
[1
01

]
X

X
x

x
x

x
x

x
X

x
Lu

an
et

al
.
[1
05

]
X

x
x

x
x

x
x

x
X

x
Y
ie

t
al
.
[1
06

,1
07

]
X

x
x

x
x

x
x

x
X

x
M
ad

se
n
et

al
.
[9
8]

X
X

x
x

x
x

X
x

x
x

St
oj
m
en

ov
ic

et
al
.
[1
08

]
X

x
x

x
x

x
X

x
x

x
D
as
tje

rd
ie

t
al
.
[1
09

]
X

X
x

x
x

x
X

X
X

x
Sa

rk
ar

et
al
.
[9
2]

X
X

x
x

x
x

x
x

x
X

H
on

g
et

al
.
[9
9]

x
X

X
X

x
x

x
x

X
x

H
ab

ib
ie

t
al
.[
11

0]
X

X
X

X
x

X
X

x
x

x
Fa

ru
qu

e
et

al
.
[1
11

]
X

X
x

x
x

x
x

X
x

X
Sa

ur
es

et
al
.
[1
12

]
X

X
X

X
x

x
x

x
X

x
Sk

ar
la
t
et

al
.
[1
13

]
X

X
x

X
x

x
x

x
X

X
A
az
am

et
al
.
[1
7,

11
4]

X
X

x
X

x
x

x
x

X
x

Si
ng

h
et

al
.
[1
15

]
x

x
x

X
x

x
x

x
x

x
Sa

rk
ar

et
al
.
[9
2]

X
X

x
x

x
x

x
X

x
X

Zh
an

et
al
.
[1
16

]
x

x
x

X
x

x
x

x
x

x
A
nt
on

es
cu

et
al
.
[1
03

]
x

x
x

x
X

x
x

x
x

x
O
ka

fo
r
et

al
.
[1
17

]
X

X
x

x
X

x
x

x
X

x
Sh

an
he

Y
i.

[1
18

]
X

x
x

x
x

X
x

x
x

x
Y
ig
ito

gl
u
et

al
.[
11

9]
X

X
X

X
x

x
x

x
x

x
R
ah

m
an

et
al
.[
12

0]
X

X
X

X
x

x
x

x
X

X
Br

ito
et

al
.[
12

1]
X

X
X

X
x

x
x

x
x

x
Fo

g
C
om

pu
tin

g
Pl
at
fo
rm

X
X

X
X

X
X

X
X

x
X



40 Chapter 2. Backgrounds



3

C
h

a
p

t
e

r

Fog Services Provider for the Internet of Things

Stay hungry, stay foolish.

Steve Jobs

In this chapter, we will study a multi-technology service architecture based on

Fog computing paradigm for IoT devices to perceive and manage flexible and

heterogeneous multi-network access technologies in ubiquitous environments. The

main objective is to propose a microservice-based architecture named Fog Services

Provider (FSP) to deal with the heterogeneity and interoperability of IoT devices [21,

22].
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3.1 Introduction

The prominence of Internet of Things (IoT) devices is characterized by a wide diversity

of network access technologies, including Wi-Fi, Cellular, Lo-Ra, ZigBee, or Bluetooth.

Dealing with such heterogeneity is still very challenging. Current cloud computing

solutions can sustain a considerable amount of diverse data generated by geographically

spread IoT devices. However, this task is quite challenging for time-sensitive services such

as healthcare, augmented reality, a cognitive system, and gaming [109, 122]. Moreover,

IoT heterogeneous devices are always managed by different application systems [123,

124], and there are no unified storage and management solutions for information on IoT

devices. This diversity raises several interoperable issues. Besides, data packets created

from things can have various syntax, types, formats, and the meaning of this data also

varies from device to device. Consequently, a high-level fog computing architecture is

required to cope with heterogeneous IoT devices generating a large and diverse type of

data for sensitive-latency problems.
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Figure 3.1: The internet of things and Fog computing
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Recently, several works have studied architectures for fog computing in IoT envi-

ronments. Proposed architectures [125, 126] rely on a gateway to integrate an IoT

network and use an instance of Information-Centric Networking (ICN) to introduce

a fog gateway in the sensors network. Some advanced techniques and services, such

as embedded data mining, distributed storage, and notification services, are used at

the edge of the network to trigger events that related to data transmission at fog

layer [127]. However, these architectures neither mention how to organize the data

structure and management on IoT connected devices nor provide an approach to handle

IoT multi-network technologies. To achieve semantic interoperability in a heterogeneous

IoT environment, [120, 128] introduced a semantic Fog model different functionalities,

such as data composing, aggregation, modeling, linking, reasoning to model raw data.

They also integrate conversion techniques for processed data to annotate them into

Resource Description Framework (RDF [129]) format. Nevertheless, the relationship

between data objects and mapping is not mentioned. Therefore, as shown in Figure 3.1,

providing services that are deployed closer with the end-users and supporting data

processing for the IoT layer from various technologies at the edge of the network are

necessary. Fog computing architectures provide and manage more simply computing,

storing, and networking services by complementing and extending resources of the Cloud

to close the edge of network and endpoints [9]. Generally, it provides the capability for

distributed deployment of applications that require for these services across different

layers as follows:

1. IoT services layer: This is the lowest layer or the closest layer to the IoT

devices and physical environment. It encompasses all various IoT devices such

as sensors, mobile phones, smart vehicles, smartwatches, cameras, etc. Devices

that act at IoT services layer usually equip low-processing capability and limited

storage. They can use several different types of connectivity technologies such as

Bluetooth, ZigBee, Wi-Fi, LoRa, 4G/5G, etc. Data that has been collected from

these devices and not processed for use are considered raw data. The raw data or

events collecting from IoT devices do not contain any semantic annotation and

demand extensive manual effort by using practical applications.

2. Fog services layer: The intermediate layer is also known as the fog computing

layer. This layer is located on the edge of the network. It consists of a distributed
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number of fog nodes, including routers, gateways, switches, access points, base

stations, micro data centers, fog servers, etc. The fog services layer provides a

flexible and easy way to analyze and process raw data at the network’s edge instead

of the Cloud. Moreover, this layer can model processed data to make semantic

contexts and provide interoperability at the data annotation level through concepts,

attributes, and the definition of relationships between data objects. These modeled

data then are mapped into a triplestore (a triple is a data entity composed of

subject-predicate-object) or RDF (resource description framework) store by taking

advantage of a web ontology language (OWL, a standard of W3C [130])

3. Cloud services layer: The cloud computing layer is the top layer in this archi-

tecture. This layer consists of multiple high-performance servers, data centers, and

network systems capable of processing and storing enormous data and providing

different applications and services.

In this chapter, we propose a services architecture based on Fog computing paradigm

named Fog Services Provider (FSP). This architecture perceives and manages het-

erogeneous IoT devices with various network access technologies, service components,

and inter-process communications in ubiquitous environments. As in previous works [121,

131], we assume that heterogeneous devices and services at the fog node level only can

interact with each other through the M2M standard. However, unlike those works,

we define and propose a microservices-based architecture with both communication

mechanisms that enable non-M2M devices to be compatible with M2M devices through

a combination of access services and the ability to manage data information using

message protocols.

The FSP architecture is designed to support heterogeneity, interoperability, scala-

bility in different applications and domains. It consists of a collection of service layers

with diverse communication capabilities:

1. Device layer: provides heterogeneous device management services and access

services to ensure interoperability and scalability at the network level.

2. Intermediate layer: provides various supported services and communication

protocols to ensure interoperability and scalability at the exchange level.

3. Application layer: provides a wide variety of application services to ensure

interoperability and scalability at the application level.
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The remainder of the chapter is organized as follows. Section 3.2 introduces the

requirements for designing Fog architecture. Section 3.3 presents the design of Fog

architecture with a general model of service layers. Our architecture is detailed in the

section 3.4. The interaction model in Fog architecture is illustrated in section 3.5. The

evaluation and comparison with other architecture are discussed in section 3.7. The last

section 3.8 draws a conclusion.

3.2 Requirements for Fog architecture

In this section, the comprehensive approaches of the fog computing architecture are

proposed and specified requirements and design decisions. The Fog Services Provider

architecture implements an architecture that allows the execution of IoT applications

in the Fog environment. The FSP architecture developed in this thesis provides the

basic functionalities, including the heterogeneous producers and consumers management

mechanism, a unified data model approach, and service placement approach, among

other fundamental tasks necessary for the fog landscape to work as intended. These basic

functionalities will present in the FSP management services layer (sub section 3.4.4).

Moreover, these specified functionalities can be adapted and extended to fit the particular

application’s need. In addition to these functionalities, the Fog computing architecture

also has to meet the following non-functional requirements [102]: (i) scalability, (ii)

extensibility, (iii) portability, (iv) interoperability, (v) maintainability. Non-functional

requirements are detailed as follows:

• Scalability: IoT devices are growing very fast every day worldwide, leading

to a recent issue of scalability. Consequently, the scaling of devices and services

in the Fog environment must be addressed. Scalability provides the capability

to handle increasing appropriately (and decreasing) demands on Fog system

resources. Some research works [132, 133] proposed to use Cloud computing

to support the scalability of IoT applications. However, deploying applications

in a Cloud environment is inefficient and impractical because of the nature of

continuously moving devices. Moreover, with the tremendous increase of IoT

devices, the fog architecture design must also provide horizontal and vertical

strategies. In vertical scaling, additional resources are added to a single Fog node.

As a result, the Fog node can control more tasks and provide better additional

capacity (CPU faster, more memory). Meanwhile, horizontal scaling adds more
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Fog nodes to the entire system. Therefore, scalability is an essential requirement for

distributed systems such as Fog computing. Specific non-functional requirements

for the FSP architecture are: (i) resource provisioning and service placement can

be scaled to ensure that CPU utilization is maintained under a certain threshold,

(ii) optimize fog resource efficiency to reduce cloud cost, (iii) facilitate a fast service

deployment.

• Extensibility: A Fog architecture can be deployed if components and services

can be provided in the proximity of the data source without too much effort.

This means that the fog architecture should be designed in such a way that it

can be extended by some features in the service-oriented software development

principle [134] such as loose coupling and high cohension. The loose coupling feature

would imply that components or services might be made as independent as possible

from other ones so that changes to components or services do not heavily impact

others. The high cohension generally indicates that changes in one functionality will

require changes in other related functionality if a service provides the functionality

that logically belongs together. Besides, the Fog architecture needs to be clearly

defined APIs between different components and services. Furthermore, utilizing

standards-based communication technologies helps to simplify the extensibility of

Fog services

• Portability: Portability is the ability of a service to be deployed in different

system environments, i.e., operating systems, without the necessity to adapt the

service manually, and should be built with platform-independent technologies that

are preferably fast to deploy and migrate. Moreover, platform-independent com-

munication technologies are necessary to separate data from specific technologies.

• Interoperability: According to IEEE [135], interoperability is defined as “the

ability of two or more systems or components to exchange information and to use

the information that has been exchanged”. Thus, interoperability can be defined

in the IoT context as the ability of two or more systems, devices, platforms, or

networks to understand and interact with each other [136]. It enables heterogeneous

devices or systems to communicate to achieve a common objective. The Fog

services are deployed in a distributed environment and close to devices, which

allows Fog nodes to quickly respond to applications with minimal latency. However,
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what will happen if an increasing number of multiple latency-sensitive application

requests are transmitted to the Fog node at concurrency. As a result, the Fog node

cannot process such numerous requests because it will cause network congestion.

Thus, interoperability and federation among clusters of Fog nodes and Fog servers

are necessary to work and seamlessly exchange data with other Fog systems for

required application.

• Maintainability: Software architectures are often developed with modifiable

capabilities and always need new features or bug fixes. The software is easily

maintainable and extensible, which encourages its quality improvement. In [137]

defined maintainability as “The ease with which a software system or component

can be modified to correct faults, improve performance, or other attributes, or

adapt to a changed environment”. The organizational approach of Fog-based

services architecture allows developers to quickly and easily fix a bug without

creating a new error, add new features without introducing bugs, improve usability,

increase performance by providing code documentation and writing readable code

for the general functions and interactions between the different parts of the Fog

architecture.

Further, non-functional requirements such as security, data integrity, usability, and

reliability are still to be addressed [138].

3.3 Design for Fog architecture

We design our FSP in a hierarchical way. This allows processing, networking, and storage

at each level according to the topology and services running on the FSP. IoT will be a

major service-oriented technology. Therefore, it must be easy to organize all levels of the

fog hierarchy through many different classes of stakeholders. The advantage is that the

FSP architecture is easy to create, modify, and maintain. As we highlight in section 2.7.4,

we also need to take into consideration some requirements such as data processing at

low layer and semantically annotation to make them more sense and interoperable for

IoT applications. This architecture provides a semantic data annotation (SDA) service,

which is the ability to map meaning to raw data and obtain knowledgeable information.

To ensure semantic interoperability in heterogeneous IoT environments, we decide to use

Semantic Web (SW) technologies [139], a standard of W3C, to interpret and integrate
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data reading from heterogeneous data sources on IoT networks to enhance the quality

of data and increase interoperability. In addition, the SDA service allows to model IoT

data based on shared vocabularies that different Fog nodes can interpret by using several

SW standards such as OWL, RDF. To design conceptual models, we use Ontology as

the main approach to provide a semantic annotation of raw sensory data.

Based on the advantages of a microservices-based architecture model such as

services discovery, loose coupling and high cohesion, the FSP architecture is proposed

to integrate services that take advantage of the outstanding features of this model to

manage a kind of multi-network technology of heterogeneous IoT devices and components

in the FSP and are ubiquitously located in Fog areas. In the FSP service architecture

model, a set of service instances often change dynamically to be assigned dynamic

network locations because of auto-scaling, failures, and upgrades. Therefore, when

a request is sent from a client, it must use a service discovery mechanism [140]. To

ensure auto-scaling, service instances must be highly cohesive for groups of similar

functionalities and loosely coupled [141].

To meet the above criteria, we propose a four-layer services architecture and the

two underlying system services for IoT environments. These include the IoT producer

layer, the FSP infrastructure, the FSP management services, the FSP support services,

the security/private sphere management and the analysis and data management, and

the consumer layer. Figure 3.2 shows a simplified view of our FSP architecture.

3.4 Fog Services Provider architecture

This section provides some basic notions necessary for the rest of the chapter. IoT

devices, IoT things, or IoT objects will be referred to as Producers and Consumers,

while FSP is the main core and responsible for providing services to Producers and

Consumers.

3.4.1 Preliminaries

1. Producer: In IoT context, producers are devices or virtual devices designed to

detect events in the environment and change in its environment and also can

generate data. It is made or adapted for a particular scenario with the role of

physical devices such as sensors, actuators, or virtual devices like web services, etc.

Producers are deployed on the IoT services layer. Data generated from producers
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will be processed and transmitted to Fog services layers.

2. Consumer: A consumer is a software entity (microservices, user application) that

enables us to analyze and process data generated from producers. It provides

utilities for clients using Fog services. Furthermore, it also allows Fog service

provider’s applications running on a cluster of federated Fog nodes. This type

of service is similar to Software as a Service (SaaS) in cloud computing, and

means that IoT devices can access the capabilities of Fog nodes through either

synchronous or asynchronous communication mechanisms (e.g. API, messages

protocols). For example, animal tracking software installed on smartphones or

computers might be used to track some properties of wildlife animals to know

their location and movements. These producers periodically send information to

that software, and a message is triggered to be sent to the wildlife’s protector.

3. FSP node: The FSP node is the core component of our architecture. It is an entity

that provides services for producers and consumers who can communicate with FSP.

It includes both hardware components (e.g., gateways, switches, routers, servers,

etc.) and software components or virtual components (e.g., virtualized switches,

virtual machines, etc.). It can be tightly interacted at a high level and low level
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with the smart end-devices or access networks and provide computing resources

to these devices. Additionally, FSP nodes provide some form of data management

and communication services between the network edge layer where end-devices

reside. The FSP nodes can operate in a centralized or decentralized manner.

They can be configured as stand-alone fog nodes to be able to communicate and

deliver services to each other or can be federated to form clusters that provide

horizontal scalability over distributed geographics through mirroring or extension

mechanisms [142].

3.4.2 IoT producers layer

This layer includes a set of devices or virtual devices that detects several measurable

phenomena of the physical world and transforms producer-generated data into a pro-

cessable output. Producers use various characteristics in terms of functions, processing,

and connectivity network technologies. They need to directly communicate with the

edge of the network to collect data. They are managed over IoT protocols such as Wi-Fi,

4G/5G, LoRa, Bluetooth, NFC, Zigbee, or any other communication or transport layer

protocols.

3.4.3 FSP infrastructure layer

The architecture infrastructure is Fog hardware, including networking, compute, and

storage elements. It enables the deployment of easier services based on technologies

such as Containers (i.e., Docker) or Virtual Machines. Moreover, providing computing

services at this layer is leveraged not only by the constraint of processing power at the

IoT services layer but also by the desired location of computing to satisfy better system

requirements and reduce network transmission [143].

3.4.4 FSP management services layer

The core architecture of the FSP includes a set of flexible services to support low-

layer and high-layer. In our architecture, we adopt a services architecture based on

a microservices approach. As the name indicates, the microservice architecture is an

approach to develop a server application in a series of small services [144]. This allows

a micro-services architecture to focus primarily on the back-end, although the approach

is also used for the front-end. All services run in a separate process and communicate

with each other via protocols like HTTP/HTTPS, MQTT (Message Queue Telemetry
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Transport), WebSockets, or AMQP (Advanced Message Queuing Protocol) [145]. These

IoT protocols provide a set of principles for enabling communication and define the

syntax, semantics, error recovery capabilities, synchronization of data between different

services of Fog architecture. Also, each micro-service deploys a particular end-to-end

domain or capability within a specific context boundary, and each must be autonomously

developed and independently deployable. Ultimately, each microservice should have its

own associated domain data model and domain logic (convenience and decentralized

data management) and could be based on several data storage technologies (SQL,

NoSQL) and different programming languages [144]. We describe the microservices

architecture of the FSP as a set of small services as follows:

1. Access service are responsible for handling the communication from IoT pro-

ducers and consumers to FSPs via their native protocols. The two most important

services are producer service and consumer service. The producer service plays a

role as connectors that interact with the IoT producers. It can simultaneously

serve one or more producers, including sensors, actuators, etc. In order to en-

sure semantic interoperability, this service provides a semantic methodology that

focuses on interoperable IoT provisioning by converting the raw data produced

and transmitted by the IoT producers into a common data structure called RDF

triplestore [146]. The generated data of a physical entity network is stored in

a graphical database. Graphical databases are a form of RDF triplestore that can

reason and discover new information and existing relationships. The flexibility

and dynamism of the RDF triplestore allow linking of diverse data types, indexing

for semantic search, and enriching data by analyzing text to create knowledge

graphs [147]. Then, this converted data is sent to the storage services at the

FSP infrastructure layer and can provide other services at other layers of the

FSP node. The consumer services are the means of extracting, processing, and

converting event or reading data from FSP and sending it to an endpoint or can

be processed by the end-user’s choice as filtering or compressing the data they are

interested in. Besides, the consumer service also provides applications or SDKs

(Software Development Kit) as templates that can be used to build applications by

integrating built-in functions or customizable functions depends on the end-user’s

decision-making to develop specific services.
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2. Registry service should be used in any service architecture to solve auto-scaling,

failures, and upgrades issues [141]. This service registration is a key part of the

service discovery feature. The objective of the registry is to enable services to

discover and communicate with each other. When each service starts up, it

must register itself with the service registration, and this functionality continues

checking its availability periodically via a specified health check endpoint. For

example, when one of the consumer services needs to connect to the storage service

to require data information (e.g. temperature or humidity), it connects to the

Registry service to retrieve the available hostname and port number of the storage

service and then invokes the storage service to interact.

3. Monitoring service undertakes to analyze the monitoring data and dismiss

events when previously specified QoS thresholds. This microservice can provide

useful information such as workload, usage, and energy to help with decision-

making and pricing. We highlight this component in fog computing architecture

since it gives crucial information to other components.

4. Resource provisioning service provides functions for orchestration, provision,

and monitoring resources in the associated FSP nodes. It includes microservices

such as Resource computing service, Service placement, Resource reallocating. To

create an allocating plan to execute received task requests according to a specified

resource allocating approach (selected FSP to use) performs by Resource computing

service. Service placement is in charge of handling task requests by deploying

services and depends on the Resource computing service. Resource reallocating

enables the calculation of a resource allocating plan according to the events (a

new producer joins or leaves the FSP node or a producer with a hardware failure).

5. Mobility support service: Fog computing expands the Cloud towards the edge

of the network, and the distributed resources and services of computation are closer

to the producer to provide some outstanding features such as location awareness,

low latency, geographical distribution, real-time interactions, heterogeneity, and

support for mobility [8]. This proximity provides some advantages, such as time-

sensitive latency, but producers frequently move from one location to another

based on different types of communication and connections. The mobility of

producers will affect the Fog node’s ability since when a producer moves, the
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distance between the producer and the services provided in the Fog node will

increase. Therefore, migration of Fog services may be one of the possible ways that

allow the services always to be close enough to the producer [148]. The FSP node

allows continuous connectivity of data sources if network access is temporarily

interrupted by keeping a location list of the producers to provide services such as

motion tracking, location information sharing, and maintaining its state with the

targe FSP node. Additionally, our FSP node’s mobility service enables keeping the

network locations with geographical information of producers by using a services

placement mechanism.

6. Energy efficiency service: Energy management is one of the issues to be

considered when deploying applications and managing services and data in IoT

environments such as smart homes, smart cities, especially in smart grid (micro-

grids and nanogrids). It is required to handle power generation and consumption

in these application domains. Cloud computing is introduced as a solution for

centralized computing models based on requirements for data processing [149].

However, controlling the heterogeneous producers and diverse data from these

producers is a significant challenge for the Cloud computing in terms of scal-

ability, interoperability, and adaptability to respond to time-sensitive services

or applications [111]. Therefore, the reduction of energy consumption can be

achieved by remotely monitoring smart devices based on feedback on their energy

consumption. The FSP architecture is proposed based on the Fog computing

paradigm aimed to develop services that are deployed close to the edge of the

network. It is also designed based on a mathematical model to study offloading

services from FSP nodes to producers enables moving computing, control, data

storage, and processing by introducing a dynamic speed scaling mechanism at

the edge of the network [150]. Furthermore, the efficient energy management

service also depends on the optimal services placement to accommodate producers’

scalability and heterogeneity and reduce network power consumption. Therefore,

an energy efficiency service is needed to manage and maintain IoT producers’

computation.
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3.4.5 FSP supporting services layer

This layer provides the ability to get data generated from producers to other services

or external systems. It allows performing the act of delivering the data to registered

consumers. In the FSP architecture, to trigger other systems (external systems associated

with the FSP), a notification mechanism is required. These notices are informational

in the event of unusual, important, or urgent alerts to be immediately addressed. In

addition, application services are also the means to get data from the FSP nodes to

external systems or vice versa. Its main purpose is to solve scalability problems for

consumer services as well as provide a flexible solution for exporting data outside of the

FSP node.

Fog computing is about extending computing capabilities from cloud computing to

near the edge of the network. However, in some applications related to storage capacity,

cloud services are still an irreplaceable solution [151], especially in applications such as

smart cities, smart transportation where large data storage and processing with high

computing power are required. Thus, the FSP architecture provides APIs with flexible

capabilities for application implementation and an environment for developers with a

variety of tools and resources (operating systems, programming languages).

3.4.6 Security and privacy management

We aim to develop the FSP architecture with some security components both inside and

outside the FSP node, such as data security and connection security. Protects the data

and control of producers, and other objects managed by the FSP. The FSP administrator

would initialize the security components, set up a security service operating environment,

manage user access control, and create JWT(JSON Web Token) for resource access for

other services.

3.4.7 Analytics and data management

The FSP architecture data consists of several steps that start from the data collection

at the producer level. The data is generated, then processed and stored in the FSP

node and sent feedback to the producer layer to execute the commands required by

producers.

As illustrated in Figure 3.3, we describe the main steps in data management include,

Data collection, Data pre-processing, Data annotation, Data analytics, Data exchange,
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Data Collection

Collecting data
Sending data

Data pre-processing

Data filtering
Data cleaning
Data aggregating

Data annotation

Data modeling
Data annotating
Data quering

Command Data analytics

Data analysis
Data processing
Sending feadback

Data Exchange

Sending feadback
Sending command

Executing
command

Producer layer Fog layer
Figure 3.3: Data management in the FSP architecture

and Command execution. By providing the capabilities at all levels to gather, process,

analyze, and act on data generated by connected producers at global scale, the FSP

architecture allows its data management to be more efficient and lightweight.

3.4.8 Consumers

The FSP architecture allows end-users to register and retrieve data of interest. It defines

user applications as Consumers to provide the end-user with information on how to

get data, what data to get, and where to get data. Consumers also allow the end-user

to use several features such as filtering data (i.e., by ID, or name), getting data in a

specific format such as JSON-LD, XML, compressed data (i.e., ZIP, GZIP), or providing

some standard-based protocols, which support for getting data such as MQTT, HTTP,

RESTful, etc.

3.5 Interaction model in FSP

The microservices-based FSP architecture is a distributed system that runs on multiple

processes and services. Each service instance is a typical process that can run on

many different FSP nodes. Therefore, services need to be communicated with each

other through an inter-process communication protocol [144]. This protocol provides

the interaction between synchronous communications, which uses HTTP-based REST

API, and can be used for asynchronous communications with message patterns such as

MQTT, AMQP.
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Figure 3.4: Interaction model in FSP

Figure 3.4 illustrates a communication mechanism in FSP architecture. The be-

ginning of this mechanism is started when producers want to join the FSP, they use

some different access technologies and protocols such as Zigbee, Cellular, LoRa, and

some message protocols like MQTT, HTTP, CoAP to connect to the FSP. These com-

munications are handled by gateway (FSP gateway) and be controlled by a security

authentication or authorization management unit at the second step. At the third step,

these heterogeneous devices are managed by an Access service with many synchronous

(WebSocket, HTTP) and asynchronous (MQTT, AMQP) communication mechanisms.

For the services to communicate, they must be registered to the Registry & Config

service in step four. At step five consumers interact with APIs or User Interfaces to

get interesting information. After successful access and registration, data is generated

as raw data and processed and stored in a unified format (RDF/OWL) by six and

seven steps, respectively. Steps eight, nine, ten, and eleven are services for monitoring,

managing resources, and analyzing data.

3.5.1 Synchronous communication

Synchronous communication in FSP architecture is usually related to a request/response

interaction style. One service makes a request to another and waits a while to process the

result and send the response back. HTTP-based REST API is a synchronous protocol.
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In this case, when a service sends and waits for a response, tasks can only continue

after receiving the response from other services. For example, the consumer sends a

request and waits for a response from the data processing and analytic service. The

independence of these two processes can be synchronous. This can result in the thread

being blocked while waiting for the service to process data and send a response back

to the consumer. However, the synchronous communication mechanism ensures some

advantages in communications of the FSP architecture such as statelessness, uniform

interfaces, uniform resource identifiers (URIs), and self-describing messages [152].

1. Statelessness: The microservices-based FSP architecture is stateless if it does

not store state information in internal storage (memory); instead, it is stored

externally (databases or files). This is in contrast to statefulness services, which

store all of the communications between services in the memory. It means

that sessions or cookies will be stored in memory to establish a state between a

consumer request and an FSP node handler. This difference has several advantages

of statelessness when comparing statefulness in some cases, such as an unexpected

restart or termination of service or FSP node.

2. Uniform interfaces: Every action on a service such as create, read, update, and

delete are performed through well-defined commands including PUT, GET, POST,

and DELETE, respectively. These commands allow for resource management with

a clean, uncluttered, and straightforward interfaces.

3. Uniform resource Identifiers (URIs): Identifiers are a standard in the IoT [153],

including object identifier, communication identifier, and application identifier.

The object identifier is on behalf of physical or virtual objects such as barcodes and

RFID. The communication identifier is used to uniquely identify the nodes on the

network that are capable of communicating with an IP address. The application

identifier represents resources in service layer. These resources are executed by

uniform interfaces through calling unique URIs.

4. Self-describing messages: Resources should be formatted with messages that

can separate the structure and content of the resource. These messages can

be translated using different data types such as XML, JSON without losing

information, portability, safety, security, and human-readability. The example

below shows the structure of a message of the producer profile by a JSON format:
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{

name: "iotproducer1"

Serial: "90035229"

memory: "1024 MB"

processor: "Broadcom BCM2837"

model: "Model B Pi 3"

manufacturer: "Sony UK"

}

3.5.2 Aynchronous communication

The asynchronous communication is implemented in the FSP architecture when services

exchange with other services use a message model (or publish/subscribe model). This

model is based on an event-bus interface or message broker that serves as an intermediate

access point for services [154]. FSP is a distributed architecture that is designed to

support interfaces for heterogeneous devices, services, and applications in cross-domains

with a diversity of data. Therefore, to ensure consumer requests are not blocked, it

needs to be subscribed to events on topics.

HTTP
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CoAP
Producer
service

MQTT
Producer
service

AMQPProducer
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Figure 3.5: A communication mechanism in FSP.

Figure 3.4, the access service provides APIs based on several communication

protocols such as HTTP, MQTT, and CoAP that are implemented on the gateway

to enables producers which can communicate with the FSP node depending on their

protocols. Once the access service receives messages from the producers, it analyzes

and pushes a message queue that is configured in a message broker. The message



60 Chapter 3. Fog Services Provider for the Internet of Things

queue is an asynchronous form of communication between services designed to provide a

lightweight publish/subscribe communication mechanism [155]. Moreover, the message

queue also enables services in the FSP architecture to ensure low power consumption,

minimized data packets sent, and efficiently distributed data to consumer or other

services. Figure 3.5 illustrates the communication mechanism in the FSP architecture

to ensure interoperability and scalability.

3.6 Services deployment

The FSP architecture is built on the microservices model with its loosely-coupled

architecture that enables the deployment of decentralized services and tiered resource

computation. Unlike monolithic applications, deployment optimization is only for a

single specific case. The microservices-based architecture needs to scale many services

that can be implemented in many different programming languages, and each service

has its own dependencies. Therefore the architecture must have high reliability in the

deployment methods to provide new functionalities or add new services without affecting

the overall architecture or causing critical failures.
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Figure 3.6: Services deployment model in FSP

The FSP architecture is designed to allow services to be deployed at different levels
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with the objective of minimizing the cost of deploying new services, and optimizing

resource utilization, as illustrated in Figure 3.6. Moreover, a service can be distributed

across several cross FSP nodes or at gateways. This allows the FSP architecture to

take advantage of computing, storage, or network resources wherever they are deployed

on the edge. For example, a producer service can be implemented at the gateway,

or in smart producers while other services such as storage service, communication

service, analytics service, or consumer service are deployed at the associated

FSP nodes to maximize resources.

Although it takes advantage of the strong deployment capabilities in microservices-

based architectures. However, we also see that there are some issues that need to be

considered when deploying services. The issues that are presented as below can be:

• How to optimize the services deployed on devices with limited resources.

• The decision issue to place the service in a heterogeneous set of FSP nodes.

• A reliable and cost-effective way to deploy the application.

3.7 Evaluation and Comparison

In the FSP architecture, each service is considered a small problem, and services need

to be designed and operated as independent functionalities without being dependent

on another service. It must be sustainable and not affected when an error occurs.

Services should also provide their interface components externally and support sharing

information structures and data constraints through standards-based data schemas.

Therefore, the FSP architecture can be highly interconnected, scalable, and extensible.

Each service are separated about the database, have its own bussiness logic, and

communicate with other services or applications through the REST API (synchronous

communication), as show in Figure 3.7. Besides, services can also communicate with

each other through events (asynchronous communication). These events are divided into

two types of services such as the receiver service (data analytic service, consumer

service) that listen from other services and the sender service (producer service),

which send events to the receiver service by providing names for events through

topics. From this design, we will proceed to build each service with the corresponding

internal components. The FSP architecture supports REST APIs services that are

performed by four operations such as create, read, update, and delete through well-defined
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REST API

Business Logic

Database

Producer service

REST API

Business Logic

Database

Data analytic service

REST API

Business Logic

Database

Consumer service

Events

Figure 3.7: Design model for services

Table 3.1: FSP architecture REST APIs
Methods Endpoint Description
POST /api/objects/ add a new object

GET
/api/objects get all objects

/api/objects/:id get an object by id
PUT api/objects/:id update an object by id

DELETE
/api/objects remove all objects

/api/objects/:id remove an object by id

PUT, GET, POST, DELETE commands, respectively, as shown in Table 3.1. Where objects

can be any entities accessed by the service such as producers, consumers.

And the code for the APIs to be implemented looks like this:

@api_view([’GET’, ’POST’, ’DELETE’])

def producer_list(request):

# GET list of producers, POST a new producer, DELETE all producers

@api_view([’GET’, ’PUT’, ’DELETE’])

def producer_detail(request, pk):

# find producer by primary key (id)

# GET / PUT / DELETE producer

@api_view([’GET’])

def producer_list_published(request):

# GET all published producers

In the development and implementation of the FSP architecture, we use several
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technologies such as Docker and Django Rest Framework [156] as microservices. We

select the Django REST framework to build APIs for its powerful and flexible toolkit

that supports serialization both object-relational mapper (SQL, MYSQL databases) and

non-object-relational mapper (NoSQL databases) data sources. Asynchronous protocols

were developed using several protocols such as MQTT, AMQP, XMPP, ActiveMQ

that ensure stability, providing interoperability and integration for a wide variety of

data [157].

To evaluate the advantages of FSP architecture, we also compare the FSP architecture

with some other architecture that are proposed by some authors (introduced in Table 2.2)

based on several criteria such as heterogeneity, manageability, interoperability, scalability,

and DevOps, as illustrated in Table 3.2.

1. Heterogeneity: This criterion is considered in the context of diversity in the

IoT environment. It deals with heterogeneity from the lowest level (IoT producer

layer) to the higher processing layers (FSP node). Therefore, Fog architectures

should have a processing mechanism to optimize the data since it is created from

the lowest layer. This criterion is evaluated at the support levels such as partial

or full support.

2. Manageability: The Fog architecture design must ensure that it is manageable

to not only handle access from heterogeneous producers that use various network

access technologies and consumers but also facilitate the fast deployment of services

or applications to support this textit producers and consumers. The architecture

should provide flexible and dynamic services management with a combination

of both synchronous and asynchronous communication with authentication and

authorization mechanisms. The (X) symbol indicates that it is supported by both

types of communications.

3. Interoperability: This criterion enables the components of the Fog landscape

to be exchanged with each other in terms of producers, APIs, data format, and

shared resources between IoT cross-applications and cross-domains. We classify

it into two groups: full interoperability (full_int) and partial interoperability

(par_int). The full interoperability attempts to address interoperability at various

levels such as communication technologies, data formats, and heterogeneous service

interchange. The partial interoperability is provided only at one level and can be
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within a domain or an IoT application.

4. Scalability: A scalable architecture is an architecture that can expand hori-

zontally and vertically to adapt to increased workloads. Vertical scaling allows

the deployment of services on a Fog node with higher hardware capabilities than

existing ones. Horizontal scaling is the way of adding services in the application

deployed in the running Fog node. The (X) symbol indicates that functionalities

in the fog architecture should be handled in parallel in multiple services.

5. DevOps: According to [158], DevOps is a combination of Development and

Operations in the software development process. It allows to ensures fast plan-

ning, continuous integration, continuous delivery, and monitoring of application

processes that can be closely linked to shortening the software development life

cycle. Therefore, DevOps was born with the idea of combining Dev and Ops for

a common objective is speed and stability. Fog architectures can be developed

to achieve purposes such as implemented fast code and rapid deployment, few

services failures, or immediate recovery from failures. Due to the nature of DevOps

is stability and speed. Therefore, whether an architecture can be developed openly

depends on the design level of architecture such as hard, difficult, or easy .

3.8 Conclusion

In this chapter, we propose an analytical and design approach for a Fog Services

Provider architecture based on Fog computing paradigm for supporting heterogeneous

devices and interoperable components. We also introduce several essential concepts

such as producer, consumer, FSP node, and a set of services that enables rapid devel-

opment, management and scaling of IoT applications. Moreover, the FSP is designed

based on microservices architecture to provide interoperability and enable services to

work independently and scalable in different applications domains. Besides, it also

allows managing producers which use different network access technologies by access

services and provide synchronous and asynchronous communications for horizontal

and vertical scaling of consumers and FSP node.
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Data management in Fog Services Provider

Honesty is the first chapter in the

book of wisdom.

Thomas Jefferson

In this chapter, we focus on the data management mechanism in the FSP ar-

chitecture to ensure the data generated by producers that can be handled in an

organized and flexible approach. Furthermore, with the design and development of

microservices-based FSP architecture, we also solve some issues of how to process

and manage data across multiple services and communication between services to

achieve interoperable and semantic data for different application domains by using

semantic web technologies [21, 22].
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4.1 Introduction

Fog Services Provider architecture proposes to address computing, storage, and net-

working issues in large-scale deployment of IoT applications. It is a different computing

paradigm for cloud computing where computing, storage, and networking services are

deployed close to the network’s edge in a distributed and possibly collaborative way.

The FSP architecture is designed based on an independent service management approach

(microservices) that provides a flexible and effective management mechanism for

several issues such as heterogeneity, diverse interoperability at multiple levels (networks,

data, and application). Producers are characterized by a wide diversity of network

access technologies, including Wi-Fi, Cellular, Lo-Ra, ZigBee, Bluetooth, or based on

messaging technologies such as MQTT, CoAP, AMQP, etc. Dealing with such generated

data from these producers is still very challenging.

producers

Metadata

DATA MANAGEMENT

Data collection Data filtering Data aggregrating

Database

ontology

Semantic
annotation

service

Message Broker

Access service
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Figure 4.1: Data management in Fog Services Provider

Although the FSP microservices-based architectures have solved many issues it also

brings a new set of problems. One of them is the ability to maintain data consistency

across services [159]. Many data is being generated from billions of IoT producers and

periodically report certain events or abnormal phenomena. After this data is collected

and processed, it optimizes industrial environments, manufacturing, and monitoring

systems through a Fog-based architecture, which is deployed nearly by data sources. The
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objectives of FSP architecture integrates several different data processing approaches

such as data collection, data filtering, data aggregating, and semantic data annotation

to deal with data heterogeneity, interoperability, and synchronous and asynchronous

communication protocols in IoT environments [160], as demonstrated in Figure 4.1. Data

management in the FSP architecture can help improve application quality and simple

deployment since services are developed independently of their own data. However,

efficient data management also needs to consider in some cases [161]:

• Data type requirements must be accessed by the services and enforced by the

regulations, security through defined APIs.

• Data transformation services need to communicate over standard messages based

on the combination of a message queue and defined APIs.

• Data access control policies that need to be stored depend on data sensitivity.

Therefore, services must also be used by the appropriate role for the application

component.

• Data that needs to be stored in storage must be considered some issues such as

the volume of data, the velocity of data, how the data is used, and the security

and resilience requirements.

• Data traffic should be monitored and logged information, and controlled who

accesses what data to ensure that security is properly operated.

In this chapter, we propose a data management approach for Fog Services Provider

to handle data generated from heterogeneous producers, and the interaction of consumers

and FSP nodes with data in ubiquitous environments. In the last chapter, we represent

a microservices-based architecture and provide a set of services to manage functionalities

and ensure interoperability and scalability. However, the proposed architecture’s data

management and data life cycle are essential concepts. Furthermore, we define and

propose a semantic data annotation service that the FSP can support for data to be

shared and interoperable with cross-domain or applications. A novel aspect of this

service architecture is to build a general data management mechanism to describe and

store data of IoT heterogeneous devices based on Semantic Web technologies. We

also propose a data mapping algorithm from relational databases to a unified format.

For effective management for registration and access of these devices into the FSP
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architecture, we demonstrate several procedures that enable automated integration and

data processing with the FSP.

The rest of the chapter is organized as follows. Section 4.2 introduces data manage-

ment mechanism in Fog Services Provider architecture by processing approaches that

are separated into two stages, include data organization for raw data processing and

data annotation for semantic data processing. To manage producers and consumers, we

implement some services to evaluate their interactive capability with FSP architecture

that is presented in more detail in section 4.3 and section 4.4. The last section 4.5 draws

a conclusion.

4.2 Data management in Fog Services Provider

With a considerable amount of data generated from many heterogeneous and distributed

IoT producers, Fog computing plays an essential role in latency-sensitive applications

to handle real-time data management. However, processing such large amounts of data

and responding to requests on-time is challenging with Fog computing architectures.

Moreover, data generated from heterogeneous producers often have different formats and

syntax. This leads to interoperability and understanding issues in other IoT domains.

Interoperability in IoT can be considered based on across-domain applications or services

such as devices interoperability, networking interoperability, platform interoperability,

semantic interoperability, and syntactic interoperability [14].

For efficient data management, we propose an FSP architecture to resolve hetero-

geneity between producers and how to manage them through a necessary information

model. This model can facilitate semantic interoperability, such as understanding what

data means and sharing Semantic technologies. Semantic technologies enable computers

to understand the meaning of data and process data correctly. Therefore, the application

of semantic such as Semantic Web to IoT is becoming a crucial prerequisite for the

integration of data and the future development of intelligent IoT applications and

services. IoT producers generate an enormous amount of raw data that is processed and

made smarter by transforming the information from raw data into semantic annotations

using Ontology. The producer service is in charge of processing low-level raw data

information with knowledge application services by enabling interoperability at the data

modeling level to facilitate the heterogeneity between IoT producers and the FSP and

provide APIs for interaction with different types of devices.
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Figure 4.2 shows a general interaction model for heterogeneous producers. The

low-processing components are mainly categorized into three major elements: IP and

non-IP producers, connectivity technology, and semantic annotation. Typically, IP and

non-IP producers represent the lowest level and are composed of very limited resources

with different connectivity technologies such as Wi-Fi, Cellular, Lo-Ra, ZigBee, and

Bluetooth, etc. These heterogeneous producers are supported to connect to the FSP

by a gateway called the FSP gateway. The FSP gateway is responsible for ensuring

secure and efficient communication with producers. The proliferation and the velocity

of data increase dramatically in IoT systems. To control this amount of data, these IoT

systems usually rely on message protocols for data exchange [157]. Messages can be

exchanged within the FSP gateway by integrating message protocols such as MQTT,

CoAP, WebSockets, HTTP/HTTPS.

Although the processed data can solve heterogeneous producers’ interoperability

issues can be effectively managed through the FSP gateway. However, the heterogeneity

and diversity from multiple data sources, exploiting the potential advantages in generated

data would not be fully achieved without a suitable method to support data links

and information exchange. IoT systems still lack accessibility to semantic data [162].

Semantic annotation service is responsible for processing these semantic data by

using ontologies to describe and annotate the data information with the help of Semantic

Web techniques such as the Linked Data model and the SPARQL query language
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(SPARQL Protocol and RDF Query Language) [163]. Data management that in the

FSP is performed by several functionalities such as data collection, aggregation, modeling,

mapping, linking, and querying [164]. These functionalities will be introduced in more

detail next section.

4.2.1 Data organization

The data organization mechanism plays a vital role in the FSP architecture. It includes

the steps of collecting, storing, preparing, and aggregating data for the pre-processing

task. This task is responsible for analyzing and cleaning the producers’ raw data by

filtering redundant data and converting the rest of the data into JSON, XML, CSV, or a

relational database (RDB). Pre-processed data will help optimize resource computation

and facilitate the data annotation step. In this first stage, the data management in the

FSP is performed by three functionalities as follows:

RDB, CSV,
XML, JSON

Parsers

Data sourcesIoT producers Mapping Model

Relational
DB

CSV Doc

XML/JSON

TripleStore /
RDF Store

- Data collection
- Data filtering
- Data aggregation

Ontologies

Figure 4.3: Data pre-processing in the FSP architecture

1. Data collection: the role of this functionality is to collect data of any type,

source, and structure to make it easily accessible to heterogeneous producers. It

supports several solutions such as databases (SQL, Non-SQL), CSV documents,

or XML/JSON, etc.

2. Data aggregation: the aggregation functionality receives data-streams from

producers and stores them in temporary storage for analyzing. The aggregated

data, after being stored in different types of databases, is filtered through profiles

(i.e., producerId, producerName, producerModel, etc.) that we have configured

and sent the producer’s description to the FSP gateway. By doing this, we have

minimized the data size during data transmission between producers and the FSP
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gateway.

3. Data filtering: the purpose of this functionality is to reduce the amount of

data to be annotated in a further step and save resources required for annotation.

It includes some rules, which contain a set of predefined rules to filter data from

the data aggregation step and removing duplicated and unnecessary data.

The RDB, CSV, XML, JSON parsers then receive these aggregated necessary data

to process further by modeling these aggregated data to make the relationship of data

objects. This modeled data is converted into a Resource Description Framework (RDF)

and linked with semantic annotations using the ontology. The resource RDF can be

described by statements that define attributes and values. The RDF uses a “triplet”or

“RDF statements”to describe different elements in a statement. The subject-predicate-

object format allows to take any subject and link it to any other object by using a

predicate (verb) to indicate the type of relationship that exists between the subject and

the object.

A Triplet (subject->predicate->object) is described as a node-arc-node link [15]

whose direction starting from subject to object. A set of such triples is called an RDF

graph. An RDF graph can be visualized as a node and directed-arc diagram. For

example: “The FSP is a microservice architecture” can be stored as an RDF statement

in a triplestore and it describes the relationship between the subject and object of the

sentence, where the subject is “The FSP”, and “microservice architecture”is the

object. The predicate (or verb) “is”illustrates how the subject and the object are linked.

Figure 4.4: The RDF graph

• Subject is the element that identifies the entity to which the statement refers the

source of an arc in an RDF graph (i.e, The FSP).

• Predicate is an element that defines the attribute of the subject in the statement

or the property part of a triple (i.e, is).



75

• Object is an element that determines the value of an attribute, it can be a resource

(URI), or a value (Literal) (i.e, microservice architecture).

Statements can be interpreted as resources that associate data entities defined in

the RDF triplestore and used as the Universal Resources Identifier (URI). This URI is

a global identification system and a unique ID. Data pre-processed of heterogeneous

producers managed by the FSP node is stored as an RDB. A set of linked triplet creates

a graph-based RDF model, nodes in the graph can be Subject or Object, and edges is

Predicate. Thus, converting from various data formats to the RDF format needs to

preserve the integrity and meaning of data.

Algorithm 1: Converting RDB to RDF graph
Input :RDB T ∈ Ω

1 PK : primarykey,FK : foreignkey
Output :RDF graph G

2 Procedure convertRDB2RDF()
3 S← T.size()
4 for i← 1 to S
5 C[i]← ClassRDF(T)
6 Sr← T.Row[i].size()
7 for j← 1 to Sr

8 R← T.Row[j]
9 Triple()← Tp
10 Tp.Subject←R.id
11 Sc←R.Cells.size()
12 for k← 1 to Sc

13 if (ColHead(R.Cells[i]) not in (PK, FK))
14 P ← Predicate(ColHead(R.Cells[i]))
15 Tp.Predicate[k] = P
16 O← Object(Value(R.Cells[i]))
17 Tp.Object[k] = O

18 if (ColHead(R.Cells[i]) in FK)
19 foreach tp in RelatedTable(T )
20 P ← T.Name∪ tb.Name
21 Tp.Predicate[k] = P
22 Triple(tb)← ColHead(R.Cells[i])
23 URI = tb.Subject
24 Tp.Object[k] = URI

25 G.AddTriple(Tp)
26 return G

We propose an algorithm allowing the conversion of the relational database model

to a new data model using Semantic Web technology, which is represented by RDF
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graph with triples. In the RDB, each triplet corresponds to a row in a table, and the

values refer to each column. When converted to the RDF diagram, the classes (Class)

correspond to each table, each row in the table is represented by a statement in the

form of triples (S, P, O) to form the RDF diagram, where a subject (S) is the

key attribute value, predicates (P) correspond to the labels of each column, object

(O) is the value at the column corresponding to the predicate (P). This algorithm is

used in semantic annotation services. It is responsible for converting many data types

in different formats into RDF triplestore.

Algorithm 1 represents a detailed transformation from a relational database to an

RDF graph. Where, Ω is a set of tables in a database D. T is the table in the set Ω.

• PK(T) is a set of attributes that makes primary keys in the table T

• FK(T) is a set of attributes that makes foreign keys in the table T

• FK(Ti,Tj) is a foreign key, named FK, of the table Tj that refer to the primary

key of table Tj .

• A(T) is a set of attributes that is not in PK(T) and FK(T). A(T) is corresponding

in each cells in a table T : A(T) = ColHead(R.Cells[i]) (Line 13).

• R(T) is a set of records in the table T ; R is a record, R.A is a value of the A

attribute in R.

In details, the algorithm first creates a RDF class for each table ( Line 5). Each

row of table T corresponds to a Triple (Tp) in RDF (Line 8,9). The subject(S) of Tp

is key value of each row that corresponds to a identifier of a row Tp.Subject = R.id

(Line 10). Attributes that is not the primary key and foreign key will be assigned for the

predicate(P), and its values is assigned for the object(O). In relational databases, there

are always functional dependencies (FDs) between relational tables. FDs is used as a

measure to evaluate a good relationship. The FDs and keys are used to define standard

forms of relationships and data constraints derived from meaning and relationships

between attributes. Therefore, in order to define a FDs for a relation r(A), it is defined

as follows:

Definition 4.1. Let r(A), where r is the relationship and A is the set of attributes.

Let A1,A2 ⊆ A, functional dependencies X → Y (read as X define Y) is defined as:
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∀ t, t’ ∈ r if t.X = t’.X then t.Y = t’.Y. (Meaning: If two sets have the same value X

then have the same value Y)
The definition 4.1 enables creating a triple for functional dependencies between two

relations. Where a value of a key attribute of a table is associated with a foreign key

of another table, thus, assignment of subjects, predicates, and objects is executed by

browsing tables in a relationship with T (Line 18-24). The last step adds the triple into

G graph (Line 25).

4.2.2 Data annotation

Handling such large-scale heterogeneous data in real-time will be a key factor in building

smart applications. Ontology-based semantic approaches have been used to solve these

issues related to large-scale heterogeneity and interoperability [165]. The ontology

describes technical details necessary for a producer registration, producer connection,

and producer data provisioning and can also be used as a meta-data source by other

microservice. The semantic data annotation (SDA) service processes each producer

received data from the parsers, as illustrated in Figure 4.5. Afterwards, it implements

the annotation process to tag these data by defined concepts from domain ontology.
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Relational
DB

CSV Doc

XML/JSON

TripleStore /
RDF Store

- Data modeling
- Data annotaion
- Data querying

Ontologies

Figure 4.5: The semantic data annotation (SDA) service

Typically, producers are at the lowest level and are composed of limited resources

that their major task is only to collect data and send it to the gateway. Producers at the

gateway level have more computing resources compared to the IoT producer level. The

SDA’s main objective is to analyze and pre-process the raw data sent by producers by

filtering out redundant data and converting them to a particular format such as XML or

JSON format. Therefore, minimizing computing resources required for the annotation

processes. In this stage, the SDA service is composed of three functionalities, as follows:
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1. Data modeling: The filtered data received from the filtering functionality will be

analyzed by parsers and performs a converting mechanism to model the composed

data and define the relationship to other data objects. These modeled data are

converted to a resource description framework (RDF) with ontology.

2. Data annotation: This functionality receives data from the above steps. It

implements the annotation process to tag these data by concepts resulted from

mapping a domain ontology and reference ontologies.

3. Data querying: Using semantic data queries, it is possible to retrieve both explicit

and implicitly derived information based on syntactic, semantic, and structural

information contained in data. It is designed to provide precise results (possibly

the uniquely selected piece of information) or answer fuzzy and broadly open

questions by matching patterns and digital reasoning.

The output of the SDA service is an RDF triplestore database file. The producers and

their related components are defined in the ontology links along with their functionalities

and the measured values. The ontology is a light-weight file and provides semantic

annotation for the producers’ data. By storing the data as such, allows the data to

become more semantic, which is effective for the integration of heterogeneous and

interoperable data [166]. Furthermore, it will enable consumers to collect semantically

desired information, reducing the burden on developers integrating data from different

data sources.

4.3 Producers and Consumers management

Any advanced and complex IoT system should support a wide variety of producers and

integrate producer management functions into its architecture. IoT producers are often

deployed in hostile environments. They require active monitoring, and in the event

of a failure, they may need to be replaced or upgraded to maintain their operation in

these environments. Producer Management is developed to protect the producers and

their data by making it convenient to secure and monitor them. Producers management

capabilities enable IoT developers to handle IoT producers by performing tasks such as

resetting devices to the factory if necessary or applying updates to fix security issues

or errors. Furthermore, in the FSP architecture, these producers’ active monitoring

should be handled and managed by consumers. It is defined as the software entities that
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allow obtaining information related to the producers. Therefore, consumer management

consists of two tasks, one that allows the end-users to register to get the data of interest.

The second task provides a mechanism for filtering and transforming the data and then

physically retrieving the registered end-users’ data.

Because the producers might communicate with different protocols and data formats,

the complexity of IoT systems increases with producers’ proliferation, which makes

managing IoT producers even more critical and challenging. This section introduces

two services to manage producers and consumers and how they access the FSP.

4.3.1 Producer access service

To manage a heterogeneous set of producers and their different native protocols, the FSP

architecture provides a producer access service. It represents one of the producers

as a bridge for communication with the FSP architecture. In the first step, producers

need to provide their profiles to register to the FSP node. A producer profile can be

considered as a template or as a type of classification for heterogeneous producers. The

type of producer, type of protocol, and type of data are provided in a producer profile.

Detailed producers’ information is unnecessary because it is contained in the producer

ontology. In Table 4.1, we propose a set of attributes used to define a producer.

Table 4.1: Producer profile
Attribute Required/Obtional Remark
producerId required Producer identifer
manufacturer required Producer manufacturer
name optional Producer name
location optional Producer coorditate
model optional Producer model
description optional Producer description

The producer register procedure is performed, as illustrated in Figure 4.6 according

to the following steps: (1) the producer starts by asking information about the domain

name of FSP via a DNS service; (2,3) The DNS service responses based on the received

data with the IP address of the FSP node; (4) the producer, then send their profile to

register to the FSP node using the received IP address; (5) The FSP node forwards this

profile to the semantic data annotation service to process and update the producer’s

profile into the corresponding format; (6) Finally, the FSP node confirms the successful

registration and the producer can send data to the FSP node.
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Figure 4.6: IoT producers registration service.

4.3.2 Consumer access service

Similar to the producer access service introduced above, it is necessary to provide

a management mechanism for consumers through a service called consumer access

service. The consumer entity is defined in section 3.4.

Table 4.2: Consumer profile
Attribute Required/Obtional Remark
name required Consumer name
company required Company name
email required Email address
postalcode required Postal code
mobilenumber required Mobile number

We use the concept of Consumer, which is defined in the ontology with attributes

and the relationships with data objects. This concept enables access to the FSP node

resources through authenticating and authorizing mechanisms. To register into the

FSP architecture, we also use the profile of the Consumer as necessary information, as

illustrated in Table 4.2.

In Figure 4.7, we illustrate a sequence diagram related to both the registration

procedure and resources request to an FSP. This procedure is granted through two

authentication and authorization mechanisms after being successfully registered with
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Figure 4.7: The register and access procedure for consumers.

consumers’ profile information. The procedure starts when the consumer wants access

to the FSP node data for a given producer. In steps from 3 to 13, the consumer sends a

request to the authorization service to asks for authentication. Authentication service

checks the validity of consumer by asking them to provide a credential (username and

password). This credential is provided by a resource owner (i.e, the end-user who has

registered via the consumer service). The Resource Owner grants access to the consumer

by sending an authorization code. An authorization code delivers to the Authorization

service to verify and release a token which contains the details of the consent provided

to the Consumer. The Consumer forwards the token to the Resource FSP to check the

validity of the received token and provide the protected resource.

4.4 Experimental testbed

In order to demonstrate an experimental testbed, as shown in Figure 4.8, we develop

the main functionalities of the proposed architecture such as registration procedures

for producers and consumers as well as providing services to manage generated data

from heterogeneous producers using the ontology. The IoT producer network includes

Raspberry Pis 3 Model B with an operating system (Hypriot) and built-in Wi-Fi.

Hypriot [167] enables the execution of Docker on a Raspberry Pi and deploys services

in a Docker environment. Those are also reasons why we use Docker technology to

deploy distributed services. In this testbed experiment, we use Pi as an FSP gateway,
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and it is responsible for processing data coming from a DHT11 sensor (the DHT11

is a basic, ultra low-cost digital temperature and humidity sensor). The DHT11’s

profile is also registered and sent through the FSP gateway to the FSP node by the

producer service. The FSP node is configured and executed on a laptop computer. The

PIs will also run a Python script to collect data from the DHT11 sensor to a storage

service (PostgresSQL). A registry service’s objective is to allow services to find and

communicate with each other. When each service is initialized, it registers with the

Registry. Therefore, once successfully registered with the Registry, the SDA service will

proceed to call the producer service to get the data for the semantic annotation step.

This is similar when the consumer service (access service) that wants to get the data of

interest must also be registered with the Registry before calling the SDA service.
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Figure 4.8: Evaluation setup.

We also show the example result of mapping from RDB to RDF graph through

Algorithm 1 with related tables in a producer management relational database. The

primary key of relational tables is the bolded properties, as described in the following:

PRODUCER(producerID, producerName, producerModel, producerManufacturer)

{90035229,iotproducer1,Raspberry B 3,UK }

{90035230,iotproducer2,Raspberry B 3,FR }

SENSOR(sensorID, sensorName, sensorType)

{sen01, DHT11, Temperature }

{sen02, DHT22, Humidity }

OBSERVATION(observationID, producerID, timestamp)

{obsen01, 90035229, 30/4/2020 }
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{obsen02, 90035230, 29/4/2020 }

DETAILOBSERVATION(observationID, sensorID, location, value)

{obsen01, sen01, RoomLiving, 20 C }

{obsen01, sen02, Kitchen, 70 % }

The data converted from an RDF graph into the data model for semantical an-

notation is stored as a TripleStore, as shown in Table. 4.3. The namespace fsp =

http://<fsp-microservices-ip>:<port>/fspdb/ indicates that the elements with

the fsp prefix belong to a triplet (S, P, O). The execution of the query data in the RDF

store is supported by SPARQL language.

Table 4.3: The RDF store triplet

Subject Predicate Object

fsp/sensor/sen01 fsp/sensor/sensorID sen01

fsp/sensor/sen01 fsp/sensor/sensorName DHT11

fsp/sensor/sen01 fsp/sensor/sensorType Temperature

fsp/sensor/sen02 fsp/sensor/sensorID sen02

fsp/sensor/sen02 fsp/sensor/sensorName DHT22

fsp/sensor/sen02 fsp/sensor/sensorType Humidity

fsp/producer/90035229 fsp/producer/producerID 90035229

fsp/producer/90035229 fsp/producer/producerName iotproducer1

fsp/producer/90035229 fsp/producer/producerModel Rasperry B 3

fsp/producer/90035229 fsp/producer/producerManufacturer UK

fsp/producer/90035230 fsp/producer/producerID 90035230

fsp/producer/90035230 fsp/producer/producerName iotproducer2

fsp/producer/90035230 fsp/producer/producerModel Rasperry B 3

fsp/producer/90035230 fsp/producer/producerManufacturer FR

fsp/observation/obsen01 fsp/observation/observationID obsen01

fsp/observation/obsen01 sp/observation/timestamp 30/04/2020

fsp/observation/obsen01 sp/observation/producerID fsp/producer/90035229

fsp/observation/obsen02 fsp/observation/observationID obsen02

fsp/observation/obsen02 sp/observation/timestamp 29/04/2020

fsp/observation/obsen02 sp/observation/producerID fsp/producer/90035230

Continued on next page
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Table4.3 – continued from previous page

Subject Predicate Object

fsp/detailobservation/

obsen01sen01

fsp/detailobservation/

observationID
fsp/observation/obsen01

fsp/detailobservation/

obsen01sen01

fsp/detailobservation/

sensorID
fsp/sensor/sen01

fsp/detailobservation/

obsen01sen01

fsp/detailobservation/

location
RoomLiving

fsp/detailobservation/

obsen01sen01

fsp/detailobservation/

value
20 ℃

fsp/detailobservation/

obsen01sen02

fsp/detailobservation/

observationID
fsp/observation/obsen01

fsp/detailobservation/

obsen01sen02

fsp/detailobservation/

sensorID
fsp/sensor/sen02

fsp/detailobservation/

obsen01sen02

fsp/detailobservation/

location
Kitchen

fsp/detailobservation/

obsen01sen02

fsp/detailobservation/

value
70 %

Table. 4.4 and Table. 4.5 are API endpoints between the FSP node and microservices.

The former depicts the endpoint to be used for processing the register producer’s profile

in the FSP. The later is the endpoint to be applied to access the resource by an external

user.

Table 4.4: Producer register service
Request/Response

URL POST http://fsp-microservices-ip:8080/fspdb/register

JSON {"id":6,"serial":"90035229","name":"iotproducer1","model":"Raspberry B 3",
"manufacture":"UK"}

Table 4.5: Resource access service
Request/Response

URL GET http://fsp-microservices-ip:8080/fspdb/resource/access
JSON [[27, "RoomLiving", "20", 4, 6],[33, "Kitchen", "70", 5, 7]]
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4.5 Conclusion

IoT is a global network of heterogeneous producers, these producers are data sources

that provides changes in the environment or a certain event. The volume and the velocity

of data from these producers needs to be collected, processed, and decision-making

in real time through a computing paradigm that is deployed close to the edge of the

network. In this chapter, we present a data management approach provided by the

FSP architecture. In this data management approach, the data be managed depends

on the service provision for each application. Therefore, we use both data manage-

ment ways such as database-per-services and shared database with several processing

techniques, including data collection, data filtering, data aggregating (for raw

data), and data modeling, data annotating, and data querying (for semantic data).

In addition, we have also developed a data mapping algorithm that converts raw data

from diverse data sources into a light-weight storage with efficient linked data through

RDF triplestore.
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A unified and semantic data model for fog computing

Keep your eyes on the stars and

your feet on the ground.

Theodore Roosevelt

This chapter investigates a solution for handling IoT data’s heterogeneity and

facilitating interoperability and contextual information management. The solution

comprises a semantic data model for the generic description of elements in our

proposed fog computing platform, namely Fog Services Provider (FSP), to support

IoT. Besides, this data model is designed for managing any device using different

communication technologies that are fully described and formalized in an ontology

format called FSPontex [23].
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5.1 Introduction

The last chapter introduces the fog computing architecture and the data management

mechanism in the IoT environment. Fog computing is an essential part of a large and

time-sensitive data management system for IoT. However, the IoT faces some challenges

in managing huge amounts of data and responding accordingly. Indeed, the high growth

rate of data generation in the IoT environment is a considerable challenge. According to

IBM estimates, 2.5 trillion bytes of data are generated daily [168]. In particular, analysis

of a healthcare IoT application with 30 million users presented data streams up to

25.000 records per second [109]. Data processing time and transmission delay in Cloud

computing lead to the high-latency that affects performance, which is unacceptable for

IoT applications like e-Health. Late responses regarding a critical or urgent situation

can cause a risk to a person’s health.

In addition, IoT producers periodically generate raw data since this can result in

unusable, spurious, or repetitive records. However, the transmission of huge amounts

of data leads to increased errors, packet loss, and a high risk of data congestion [169].

Besides, processing and storing these data also wastes resources without benefit. There-

fore, applications with large generated data have to reduce end-to-end delay and reach

real-time data processing and analysis. Furthermore, the data generated by the pro-

ducers is usually presented in different formats, types, and for different applications,

which poses many challenges for machines to process and understand the meaning of

the data. As a consequence, the addition of semantics to the data of the IoT producers

becomes an interesting trend [170]. The semantic not only provides the potential and the

ability for machines to discover and deepen hidden information, but it can also provide

a unified model that can describe data, suggest information, and interact knowledge

between variable IoT producers. On the other hand, to achieve semantics of data

from different data sources and respond quickly to time-sensitive applications, these

data should be processed locally close to the edge of the network. Fog-based semantic

models were introduced to provide data processing techniques at Fog nodes, such as the

off-loading technique that reduces system service latency and the energy consumption

of the nodes [120].

In our architecture, defined in last chapter, we use a fog computing architecture with

three basic layers, including device layer, fog layer, and cloud layer. The main objective

of Fog layer is responsible for temporary data storage, some preliminary processing, and
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analytics. These functionalities focus on data management, processing, virtualization,

service provisioning, and data analytics on data generated from IoT devices [20, 171, 172].

Moreover, the definition of data is essential for processing data. It provides to define the

processing model on streams of data and enables the definition of data-driven reactive

behaviors that can effectively use data models to dynamically drive the processing of

data streams while leveraging resources at the edges of the network [173].

Chapter 5 is structured as follow. Section 5.2 discusses the interoperability issues

in the FSP architecture and categorizes them into different interoperability levels.

Section 5.3 mentions some characteristics of data that pose challenges in the development

of the data model. We discuss several state-of-the-art works and select some criteria

to specify data information in IoT in section 5.4. To overcome interoperability and

context sharing information issues in IoT, we present a unified semantic data model by

proposing the FSPontex in section 5.5. The last section 5.6 draws a conclusion about

the importance of a data model for a fog computing architecture to address issues and

challenges to improve the performance of the existing architectures.

5.2 Interoperability issues

One of the major challenges in designing the data information model for IoT systems

is to meet interoperability requirements. Interoperability refers to the ability of two

or more devices, systems, platforms, or networks to collaborate [14]. It enables the

communication between heterogeneous IoT producers or other systems to achieve a

shareable purpose. However, these producers and systems are fragmented in items of

network access technologies, communication protocols, and data formats. Therefore,

these diverse features cause communication and data sharing problems for the producers

and systems in the IoT network and lead to the lack of interoperability.

As shown in Figure 5.1, interoperability of IoT environments can be considered

in several different aspects such as IoT producers, IoT data, networking, consumers,

platforms, and semantic.

1. IoT producers interoperability: The IoT producers consist of a diverse set

of devices with different functionalities. They use different communication pro-

tocols and different access technologies (i.e., NFC, Bluetooth, ZigBee, 4G/5G,

IEEE 802.15.4, LoRa, etc.). Allowing these heterogeneous devices to exchange

information through various communication protocols is challenging. Further-
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Figure 5.1: Interoperability in Internet of things: an overview

more, integrating a new device into any IoT platform is not feasible if there is

no standard definition of communications for them. Therefore, producers may

enable the integration and interoperability with supported standards to satisfy

these challenges.

2. IoT data interoperability: Data generated by producers is based on different

data structures and formats. In order to use such data types, the IoT system needs

to provide unified data interoperability through processing raw data, eliminating

redundant data, and giving syntactic data in terms of format, syntax, schema,

and type data to any applications or services.

3. Networking interoperability: The heterogeneity of devices also leads to their

operation in different services and providers. They operate on network technologies

and communicate less reliable and fragmented short-range [174]. Moreover, due

to the heterogeneous and dynamic network environment in IoT systems, ensuring

seamless data exchange between different networks is very important. As a result,

network interoperability should be considered to handle issues such as routing,

addressing, resource optimization, and mobility [175].

4. Platforms interoperability: There is no line of sight to consistent choices

between operating systems in IoT environments. The variety of programming

languages and data structures poses several issues for developers to implement

cross-platforms. Interoperability platforms might allow developers who use or

define specific APIs and unified information models to adapt their applications
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from one platform to another.

5. Consumers interoperability: The complexity of data sources from heteroge-

neous devices in distributed IoT environments leads to their applications, which

need to be implemented more complicated to analyze and process the large vol-

umes of data. Furthermore, integrating functionalities in pre-existing applications

or new functionalities in different application domains also poses many software

development challenges. Interoperability in consumers enables functionalities in

various applications to exchange information, share resources, and use the same

protocols. For example, in the java programming language, interoperability is

considered a feature that allows running and executing on any program with a

java virtual machine (JVM) [176].

6. Semantic interoperability: According to the W3C [177]: Semantic interoper-

ability is about enabling different agents, services, and applications to exchange

information, data, and knowledge in a meaningful way, on or off the Web. It

provides the ability to connect understanding and sharing between cross platforms

and cross-application domains by providing data models, information models, and

semantic web technologies with the help of ontology.

This chapter addresses issues related to requirements to achieve semantic interoper-

ability by providing a unified and information model for the FSP architecture.

5.3 IoT data characteristics

IoT producers are widely diverse primarily because of the different hardware and oper-

ating systems used. The heterogeneity of the information provided by the underlying

producers is one of the most highlight features of the IoT domain. These heterogeneous

producers communicate through a variety of protocols at low power networking (ZigBee,

ZWare, LoRaWAN, and Bluetooth), or traditional networking protocols (Ethernet,

Cellular, WiFi), and even application protocols such as CoAP (constrained application

protocol), MQTT (message queuing telemetry transport), XMPP (extensible messaging

and presence protocol), and AMQP (advanced message queuing protocol). These proto-

cols are designed for domain-specific applications with particular features. Moreover,

these devices are expected to be deployed in different areas of applications to observe the

environment and generate enormous data continually—differences in the data formats,
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types, or syntax result in interoperability issues between the applications. Due to the

lack of common understanding between different producers and platforms with resource

constraints in IoT as shown in Figure 5.2, it is not easy to understand the exact meaning

(semantics) of the exchanged content. Thus, much work has to be done to ensure

interoperability.

Consumers

Data 
model B

Cellular

Bluetooth

IoT domain B

Data 
model A

Cellular

Bluetooth

Wi-Fi

IoT domain A

Producers Producers

Figure 5.2: Challenges in across domains

Data is a valuable resource in the IoT paradigm used to provide insights and a

means of communication. Data collected from the global deployment of smart producers

is fundamental to making intelligent decisions and providing services. Therefore, if the

data is of poor quality, these decisions can not be accurately guaranteed. Moreover,

data quality is also an important requirement for any consumer to provide IoT services

for end-users. It also depends on the data characteristics that need to be defined and

considered in the data management process. The IoT data characteristics are introduced

in [178] and are associated with data in the IoT, including heterogeneous characteristics

such as uncertain, erroneous, noisy, distributed, voluminous, and context-dependent

characteristics such as smooth variation, continuous, correlation, periodicity, and Marko-

vian behavior. According to to [168] the IoT data characteristics are classified into

three categories, including data generation, data quality, and data interoperability. The

data generation characteristics include velocity, scalability, dynamics, and heterogeneity

that might be increased in speed and data volumes. Then the data are collected in

storage and processed relying on analytic requirements. The data quality characteristics

need to be analyzed to filter and reduce data redundancy and ambiguity. Besides,
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the data interoperability enables the combination of data from different types of data

sources as well as the data structure used in any exchanged services and information

models between heterogeneous IoT systems. Therefore, the major characteristics of the

IoT data and related issues might be handled in the FSP data management process to

achieve high quality and applicability requirements. In the following, we consider some

characteristics that motivate for designing a unified data model:

1. Heterogeneity: Managing distributed heterogeneous producers connected to the

internet poses significant challenges in providing services to respond quickly to

them. Furthermore, the data generated from these diverse producers can be very

different in terms of data structures and formats [179, 180].

2. Interoperability: IoT systems have always required scalability, especially in

advanced and time-varying systems to adapt to new components, services, and

applications. These systems usually come with a specific data model and standards

such as IPSO [181], oneM2M [182], but are not compatible with each other.

Therefore interoperability of data and information is essential to integrate data

from different types of data sources to obtain large aggregations of useful data

from different cross-domains [14].

3. Semantic: Data generated by producers is often raw data and lacks semantic.

The main objective of an IoT data model is to enhance semantic interoperability.

Inspired by the Semantic Web technologies, to enable machines that are readable

and understandable, i.e., a shared understanding of what the data means, the raw

data may need to be injected with some information and relationships between

data objects through semantic so that they can understand data of human and

share knowledge with other applications [168, 183]. It is performed with the help

of ontologies for the formal specification of the defined concepts’ semantics and

interaction.

4. Scalability: A large and heterogeneous number of IoT producers with a high

data collection rate that can be available in different scenarios may generate a

tremendous amount of data [169]. They require the provision of services and

applications to meet adaptability as the environment changes. Moreover, the

scalability in the context of IoT is also considered in two aspects such as vertical

scalability and horizontal scalability [184]. Vertical scalability is referred to as
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scaling up, which provides the ability of existing FSP nodes by adding more

resources to support these producers. The horizontal scalability is referred to as

scaling out, which provides the capacity of IoT systems by federating FSP nodes

to be interchanged.

5.4 IoT data model: state of the art

The traditional IoT service model’s paradigm provides the software agent with raw

sensor data collected by the devices. This raw data does not contain semantic annotation

and requires a high manual overhead to implement practical applications. This diversity

raises several interoperability issues. Because of these service providers’ approaches, the

IoT domain can be viewed as vertical silos of different IoT applications without horizontal

connectivity between them. One of the main challenges is the lack of interoperability

with independent services, especially for applications capable of benefiting from

multiple devices, thus risking the widespread adoption and acceptance of the IoT domain.

One possible solution is to achieve semantic interoperability in a heterogeneous IoT

environment is to use semantic annotation of raw sensing data using; for instance, the

ontology approach. In general, all semantic model features are deployed centrally in

the cloud. While the cloud’s computing capabilities are essential, the response time for

user requests is not always as fast as required by the applications. Besides, semantic

annotation algorithms to such amounts of data at the centralized layer lead to significant

consumption of resources, which probably affects their performance. Consequently, a

high-level fog computing architecture is required to cope with heterogeneous IoT devices

generating large and diverse data types. Concurrently, providing a unified data model

to support interoperability in IoT by using Semantic Web (SW) technologies.

In the literature, fog computing-based architectures and applications are available

and can be considered as potential solutions to the heterogeneity problems [18, 21, 185].

However, semantic-based approaches are not commonly applied in the Fog computing

architectures. There are many approaches in progress to define IoT data models [186].

These approaches are divided into some criteria to specify data information in IoT. The

criteria are presented as follows:

• Modeling (Mol): It is responsible for converting the data model into a predefined

format. The modeling process helps to facilitate the interpretation of the data

model. There are several modeling techniques used in the literature, such as
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key-value modeling (kv), text-based modeling (tex), ontology-based modeling

(ont), object-oriented modeling (oob).

• Data distribution (Dis): Each IoT system has a policy to distribute its data.

Data distribution is a statistical data processing phase where collected data

is aggregated and shared with the end-users through these policies. In the

IoT perspective, there are two ways of data distribution [186]: static (sta) and

dynamic (dyn). In the first method [187], data needs to be stored and predefined its

information into a list (i.e., a distributed database system or a schema) for applying

to the specific application. On the other hand, the dynamic method [188] may use

several reasoning rules to define requirements depended on context information.

• Interoperatbility (Int): The interoperability issue is different from most IoT

systems that only contain an application-specific system (i.e., a vertical domain);

shared IoT systems usually have a heterogeneous characteristic due to the available

ability of diverse operating systems, data structures, format, and access mecha-

nisms. Currently, there is no standard format for data annotations, and it isn’t

easy to create a format with a unified data model for all IoT domains. Therefore,

cross-platform interoperability is enabled by federating heterogeneous domains

to build horizontal IoT domains. In order to ensure complete interoperability,

IoT applications should categorize into two parts: full interoperability (ful), and

partial interoperability (par) [186]. The full interoperability deals with both data

format and communication technologies. The partial interoperability only provides

some predefined data information and similar characteristics between objects in

IoT domains.

• Scalability (Sca): In IoT environments are characterized by a large number of

concurrent requests, enormous amounts of data information must be processed and

handled efficiently and with an acceptable response time. In addition, this is also

caused by a huge number of different communication technologies. Consequently,

analyzing and sharing data models for IoT application domains can minimize the

processing and the communication overhead in IoT platforms.

• Architecture model (Arc): The approach for the architectural prospect of data

models can vary depending on the characteristics of the application domain. As a

result, considering the IoT environments, some architectures are more appropriate
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than others. There are three main architectures for supporting to design data

models in IoT environments: cloud-based (clo), fog-based (fog), and decentralized-

edge (dec). In the cloud-based, computational requirements are mostly done in

the cloud, and it depends significantly on the network performance. The fog-based

places the computing close to the IoT producers, and its processing capabilities

still need a central point of computation that acts as fog nodes. Finally, in the

decentralized-edge, the computation is executed by some devices. These devices

may lack some features such as processing power and storage capability due to

design limitations. However, in some systems, it will not depend on the two

data models mentioned above. It can adapt (adt) itself to the new application

environment, which means it may have a combination of cloud, fog, or edge-based

methods.

• Context information (Con): Context in IoT environments is commonly repre-

sented semantically and used to define the status of an environment entity for a

specified domain such as smart city, smart home, smart health, or vehicles. The

information can be easily understood by humans and can share knowledge for other

IoT domains by providing a unified data model. Therefore, to provide context

information, we use some techniques (e.g., rules that combine with reasoning and

ontology).

The criteria selected above are based on several research topics related to a data model

for IoT. The IoT is the key driver to develop a comprehensive, unified data model for Fog

computing. Consequently, the description of the data from these heterogeneous producers

plays an important role in aggregating them into a single modeling which needs to be

taken into account. Another important issue to consider is that IoT data distribution

is frequently geographically distributed. The criterion regarding interoperability is

chosen because the changing environment should also be considered when developing

a fog computing architecture. To ensure scaling up and out capabilities in an IoT

environment, the scalability is the essential criterion. Developing a fog computing

architecture with a unified data model to adapt to diverse applications and the ability

to understand context information in the IoT environment also needs to be addressed

and analyzed carefully by criteria architecture model and context infromation.

The selected criteria for the taxonomy with the related works are shown in Table 5.1.
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Table 5.1: Data models taxonomy
Works Mol Dis Int Sca Arc Con
SSN-XG [189] ont dyn par X adt -
Xue et al [190] ont dyn par - - X
IoT-O [191] ont dyn ful - dec -
IoT-Lite [192] ont dyn par X clo -
M3/M3-Lite [193, 194] ont dyn par - adt X
LiO-IoT [195] ont dyn ful X adt -
CS-Sharing [196] kv dyn par X dec -
Bluewave [197] tex sta par X cen -
PSW [198] ont dyn ful X adt -
SCS [199] - dyn ful X fog X
SE-TSDB [200] ont dyn ful - adt -
FIESTA-IoT [201] ont dyn ful X adt -

The symbol (X) is used to indicate that the research is proposed to support the stated

criteria.

The different specifications usually address various application domains and distin-

guish in terms of characteristics, definitions, terminology, and scope. In order to solve

the heterogeneity and interoperability in IoT producers, we proposed a simple fog-based

unified and semantic data model in our previous work, in Chapter 3. In this extended

version, we propose a semantic-based annotation approach to handle such large-scale

heterogeneous data and processes for latency-sensitive applications by using a common

unified ontology. According to [202], the objective of the ontology is a formal, explicit

description of concepts in a domain of application that has the ability of reasoning, also

known as classes (sometimes called concepts). The properties of each class describe

different features and attributes of the class (called properties or roles). This unified

ontology model should be described to meet the concepts in both horizontal and vertical

silos, as illustrated in Fig 5.3. The concepts that are constituted the horizontal silo

(core concepts) of semantic description are used for an IoT system, while concepts

(specific concepts) that are established for specific applications or specific domains

are provided for the vertical silo.

To develop an ontology for the IoT, we use 4WH1 methodology [203]. This common

methodology describes basic events or situations in a physical environment. To define

core concepts, the authors have proposed to answer five basic questions, including four

Ws (What, Where, When, Who), and one H (How). Based on this approach, we present

these types of questions to define core concepts as follows:
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Figure 5.3: Core concepts for IoT domains [203]

• Who: who is providing the information required to develop the IoT application?

To answer this question, concepts need to be defined to identify how the data

source is generated for IoT applications. This data source is Producers which

is managed by the FSP architecture (or Platform). Thus, an IoT ontology must

include concepts Producers, and Platform

• What: what are the conditions required for the source to collect data? Answering

this question requires the ontology to define concepts related to the producers’ de-

ployment Context (i.e., deploying applications of producers, whether the operating

environment is static or dynamic).

• Where: where should the data come from? The generated data sources must

always determine their geographical location. Therefore, the concept of Location

is essential in the IoT ontology.

• When: when should the data collection happen? Data collected from producers

should be determined through Timestamps. These parameters need to be defined

and supported in several formats of time through the concepts of Observation.

• How: how should the data be exposed to the developer for building the IoT

application? The generated data needs to be processed and analyzed through FSP

architecture services. Therefore, the answer to this question should be supported

by the Services concept.

5.5 Fog Services Provider ontology context (FSPontex)

Producers are becoming smarter due to the growing popularity of the IoT. This leads to

more pervasive computing environments becoming smarter as well. These environments
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are considered one of the potential research fields in ubiquitous computing technology.

To manage data as well as to support efficient context information management in

various IoT application domains, ontology-based methods can be considered as the

backbone for these management [204]. It has an essential role in understanding the

contexts of environmental entities (i.e., person, place, application, or device), and it

is also represented for semantic information [205]. The objective of data management

and dissemination information is to provide an efficient ontology that allows handling

heterogeneous data and the ability to share context information with services related

to different application domains. This section provides more detailed data information

to describe FSP architecture elements. As illustrated in Figure 5.4, these elements

are core concepts that associated with producer and consumer elements a to build a

semantic data model, namely FSPontex that enables the sharing of context information

and interoperability criteria.

Consumers

FSPontex

...
...

...

Cellular

Bluetooth Wi-Fi

Producers
Figure 5.4: The FSPontex model.
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5.5.1 Core concepts

Implementing a completely unified ontology for IoT could be a challenge because of

the existence of more than 200 domain ontologies [206]. There are specific concepts

for most ontologies inherent to IoT application domains, while all IoT platforms share

some of the concepts used. To provide a contextual data information model, we reuse

the ontology based on the FIESTA-IoT ontology [201], which is an existing unified

ontology for IoT. It provides most of the concepts identified in [203] with criteria on

core concepts when designing an ontology. However, it lacks concepts for annotating

context information to share knowledge and has a limited notion for Software, Hardware,

and Communication.

From defined concepts of existing ontologies, we borrow the concepts of Sensor,

Service, Location, Observation and build an ontology called FSPontex and extend them

with new core concepts, including Producer, Consumer, NetworkInterface, Communica-

tion, Network, and ContextEntity to describe objects in heterogeneous environments

and the interoperability of different IoT application domains.

1. ContextEntity: is the root entity to describe the contextual information of a

single node. It allows the specification of information for a particular context

that provides context-sharing capabilities for different application domains such

as smart cities, smart health, or smart home, etc. This concept includes several

attributes to characterize it such as contextId, contextName, contextType. The

ContextEntity is a superclass of the Platform class that represents other classes

such as Producer and Consumer will connect to the FSP architecture. In the FSP

architecture, the Platform class has a role as an FSP node.

2. Platform: is a core component of FSP architecture. It represents a fog node

or an FSP node that provides services, components, and modules for Producer

and Consumer. It is also responsible for managing data information and sharing

context information with other entities. Moreover, this element enables the model

of processed data to make semantic contexts and provide interoperability at the

data annotation level through concepts, attributes, and the relationships between

data objects.

3. Producer: is designed to perform a particular task such as event detection or

changes in its environment. It consists of two elements: hardware, on behalf of
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a physical entity like Sensor, Actuator, SmartPhone, and software is a computa-

tional data element representing a physical entity, including API, Virtual Device,

Webservice, or Microservice.

4. Consumer: is a software entity that enables analysis, process data generated from

Producers. It can be a user’s applications that provide some authentication and

authorization mechanisms to allow access from outside through a Service concept

class.

5. NetworkInterface: is the point of interconnection between a Producer and

a private or public network. This concept enables to manage heterogeneous

communications of Producer either both low-layer networking (ZigBee, Bluetooth,

LoRaWAN, etc.) and high-layer networking (MQTT, CoAP, XMPP, or AMQP)

protocols.

6. Communication: describes the state of a Producer’s communication via protocol

stack. The state can be in terms of the general quality, efficiency, security,

frequency, or availability of communication to provide appropriate contexts and

share information for other applications.

7. Network: this concept provides the state of IoT platform’s network based on

exchanged Communication contexts as well as from deployed network manage-

ment for IoT producers. Increased awareness of the network’s state can offer

more effective solutions—especially those resulting from inherent constraints (e.g.,

resource constraints).

5.5.2 Context information

The context information is used to define the state of an environment entity (applica-

tion, device, place, person) and to characterize its situations with semantic information

that is easily understandable by humans when reading it [207]. In section 5.4, we also

introduce the 4W1H approach to characterize the situation of classes used in the FSP

architecture. This characteristic allows data generated from producers to be analyzed

to provide a high-level data (semantic) and turn them into contextual information.

The FSPontex is built on Semantic Web technology with the help of ontology, not

only capable of providing contextual information based on profiles of producers and

consumers that use to interact between concepts in the data model. Furthermore, the
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FSPontex can play a vital role for a generic ontology that may be utilized as a formal

context repository to facilitate reasoning for specific application domains. This reasoning

technique is important in providing shared context information [186]. It allows using

inference rules, logical data association, relationships between concepts, and annotating

these relationships.

In the FSPontex, the ContextEntity concept is used to address different contexts,

such as a generic context and a specific context. The generic context is used as

a data store that stores profiles with basic attributes that can be referenced for specific

applications. It can be deployed in any smart context-aware system, while the specific

context is used for a specific smart domain, as a smart city, smart health, etc. The

contextType attribute provides information to identify these contexts. To provide a

semantic data model with the ability to provide context information, we propose a

step-by-step data management mechanism described in section ??. Raw data is collected

and processed from producers through data collection, data filtering, data aggregation

steps; then it is converted to semantic data (or context data) to form a semantic data

model with some steps: data modeling, data annotation, and data querying by using a

modeling technique with the help of ontology.

In this chapter, we focus on the modeling step, and it is also essential to convert

the described data into a predefined format (RDF or OWL formats) that enables the

sharing of context information to other smart application domains. An example of

sharing context information from a producer profile in a specific application (smart

home), as shown in Table 5.2. The data is generated by a producer to measure the

room temperature in JSON format. This data is then handled and described through

the FSPontex, and processed by applying a reasoning technique (provides temperature,

time, and location status that is utilized to make the decision) to provide the context

information of the room’s status. The context information is stored in the generic

context used to share it with other applications.

5.5.3 Components of the FSPontex

Handling such large-scale heterogeneous data processing and organizing them by their

relationships with each other might be a key factor in building smart applications.

Ontology-based semantic approaches are capable of mitigating heterogeneity issues and

promoting interoperability between IoT systems [208]. The benefits of this semantic
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Table 5.2: Sharing specific producer’s profile into a generic context
Specific Producer Profile Generic context
name: raspberry
manufacturer: UK
model: B HighTempLevel
description: room temperature InsideE206Room
serialnumber:90035229 AffernoontPeriod
temperature of room: 36 C
date time: 2020-07-29T14:23:45:152Z
longitude: 41.24336
longitude: -0.593154
altitude: 2sdFloor

ontology-based data management allow for a common understanding of the meaning of

producers. Furthermore, the common understanding also allows different IoT systems,

data sources, and applications to communicate more efficiently and productively. This

can be obtained by modeling data of producers based on shared vocabularies that are

used to interpret by consumers in different IoT systems. This modeling approach is

called semantic annotation. The semantic annotation for data collected by producers is

an essential step towards developing smarter and interoperable IoT applications [209].

The principal information model focuses on modeling data generated from producers

and the relationships between elements in the FSP. Each element is described by several

components in the FSPontex such as classes, properties, and relationships. These classes

reflect the core concepts as mentioned in the previous section. Properties are the

parameters used to describe producers’ characteristics. Relationships are the ways in

which classes and instances of a class can be related to one another.

As illustrated in Figure 5.5, the data is central to the FSPontex model that needs

to be processed. Therefore, the producer class is considered to represent a data source

where a data stream originated. This class needs to be linked with other classes. However,

the classes alone will not provide enough information to answer the questions mentioned

in section 5.4. On the other hand, once classes have been defined, it is necessary to

describe these classes’ internal structures. This internal structure can be properties of

classes, including datatype property, object property, and annotation property,

as follows:

• Datatype property refers to sets of data values. It contains data values that

related to literal data such as boolean, strings, numbers, datetimes, etc. The

datatype is a kind of data range, which allows them to be used in restrictions [210].
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If we denote A as an attribute and xsdIRI(A) is the IRI (Internationalized

Resource Identifier) of the xsd data type (xsd is a data type of XML schema -

XML Schema Definition). it corresponds to the data type of attribute A. The

syntax for using data types in the ontology is Datatype := IRI. For instance, the

datatype xsd:integer denotes the set of all integers. For example, a producer

class has attributes and datatypes such as:

producerId xsd:int,

producerName xsd:string,

producerManufacturer xsd:string,

producerModel xsd:string,

producerDescription xsd:string,

serialNumber xsd:byte,

isMobile xsd:boolean

• Object property is made to represent relationships between objects. Unlike

databases and object-oriented programming languages, properties in OWL are

defined independently of classes. When they are used, objects are identified as

belonging to the class (domain) and value (range) of the properties. For example,

a described relationship between Producer and Observation is a complementary

combination by defined object properties that are observedBy property and

madeObservation property, respectively.

• Annotation property allows adding annotations on individuals, class names,

property names, and ontology names. It is responsible for explaining the relation-

ship between the classes and establishing the relations between the data required

for efficient interoperability processing for IoT applications. It may make the

information more readable for data analysts and the object of an annotation

property must be either a data literal, a URI reference, or an individual [211].

Fig. 5.6 illustrates an instance of a data model with a combination of object

properties, datatype properties, and annotation properties. The below shows the

Annotation Property for two classes Producer and Observation:

<owl:AnnotationProperty rdf:about="&fsp;observedBy">

<rdfs:label xml:lang="en">observed by</rdfs:label>

</owl:AnnotationProperty>
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Figure 5.6: An example of a data model annotated with the proposed ontology
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<owl:AnnotationProperty rdf:about="&fsp;madeObservation">

<rdfs:label xml:lang="en">made observation</rdfs:label>

</owl:AnnotationProperty>

5.5.4 Solution for interoperability

In order to build a unified data semantic model that provides interoperability, we

first need to solve the interoperability problem by dividing it into three different

levels: network interoperability level, communication interoperability level, and data

interoperability level.

1. Network interoperability: As mentioned in section 4.2 of chapter 4, Producers

and Consumers can access the FSP architecture by using their network technologies

to connect through the access service that is provided by the FSP architecture.

The producer service (PS) ensures network interoperability on FSP gateways,

accordingly with their producer profiles, which define a producer’s network,

hardware, and software technologies, as shown in Figure 5.7. The related manage-

ment information for producers and consumers is stored as METADATA, which is

used to provide parameters of one network to the parameters of another network.

FSP Gateway

producer consumer producer
...

LoRa Wi-Fi

METADATA

4G/5G

PS

Profile

...

PS

Profile

PS

Profile

FSP access service FSP access service FSP access service

...

...

Figure 5.7: FSP gateway for network interoperability

2. Communication interoperability: At the communication level, interoperability

can be realized into high-level (application-level) network protocols. There are

many protocols at this level, such as CoAP, MQTT, XMPP, and AMPQ that
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have introduced and become standards to provide interoperability [155, 212, 213].

These protocols have special characteristics and message architectures useful for

different types of IoT applications and services. In the FSP architecture, message

exchange processing is performed by the access service. Besides, the scalable

FSP architecture also operates flexibly and independently with these protocol

standards to provide integration and transmission of messages between various

protocols.

3. Data interoperability: The data generated from producers is usually raw

data and contains no semantics, as well as interoperability for other applications

or services. To provide data interoperability, we propose to process these data

through six steps: data collection, data filtering, data aggregation, data modeling,

data annotation, and data querying. Where, the first three steps are responsible for

analyzing and pre-processing raw data by filtering out redundant data, removing

duplicated and unnecessary data. In order to achieve data interoperability, data

needs to be described with their concepts, properties, and relationships with

the help of the ontology, as mentioned in section 5.5.3. it is performed in data

modeling step. The data annotation step implements the annotation process

by tagging data processed by annotation property. Finally, the process of

obtaining semantic data is done through data querying that is supported by the

SPARQL language [214].

We present about the data interaction in the FSP architecture, as illustrated in

Figure 5.8. Services of the producer layer are register service, data collection

service, and command service. Producers can join or leave the FSP network dynam-

ically via this service. This service is necessary for sending and receiving messages.

Registered producers collect information from the environment and generate raw data

and send it to the FSP layer through the FSP-producer interaction. The authentication

service searches the list of registered producers on storage and finds related key and ID

to authenticate the incoming messages. Received data will send to a data annotation

service after pre-processing data with some techniques such as filtering, reducing, and

removing unnecessary data to convert processed data and combine with the FSPontex

ontology and other ontologies to create a semantic data model.
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send req
Register

send dataCollection

Command response

send pre-processing data

send/rev
data

FSP-Producer
interaction

send for auth

Authenticaion

read/store auth data

Semantic
data annotation

send/rev
data

Fog-Cloud
interaction

Data
analysis

re
qu

es
t/r

es
po

ns
e

Query running

IoT producers ConsumersFSP

FSPontex

Domain
ontologies

Figure 5.8: Data interaction in the FSP architecture
.

5.5.5 Description language and query in FSPontex

The most used and well-known language to describe ontologies is Ontology Web Language

(OWL) proposed as a standard by W3C’s Web Ontology Working Group [130]. In order

to describe data information, we use the Protégé tool [Protégé, version 5.5.0]. It is

developed by the Stanford Research Center based on Java language. One important

advantage of Protégé is the higher compatibility with different ontology description

languages such as WebOnto [215] and OntoEdit [216]. Besides, Protégé enables users

to build, edit classes and properties, different import ontologies, visualize ontologies

in various techniques, reasoning ability, create rules, and execute queries using a

configurable graphical user interface (GUI). Fig. 5.9 illustrates the relationship between

classes in the FSPontex.

By providing semantic annotation to producer data, the FSPontex ontology is

stored in a single RDF or OWL file that is light-weight and supported by SPARQL

query language. This language allows users to query information from databases or

any other data source that can be mapped to a “key-value”data format, that based

on the RDF specification of the W3C. Therefore, all data will be stored as a set

of subject-predicate-object triples. This is similar to using the “document-key-

value”terminology of some NoSQL databases, such as MongoDB. The following query

returns names and a serial number of every Producer in the dataset:
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Figure 5.9: A visualization functionality of the FSPontex

PREFIX fsp: <http://www.fsp.com/fsp/ontologies/fspontex#>

SELECT ?producerName

?serialnumber

WHERE

{

?producer p fsp:Producer .

?producer fsp:producerName ?producerName .

?producer fsp:serialnumber ?serialnumber .

}

This query combines all of the triplets together with a matching subject, in which the

type predicate, “p”, is a producer (fsp:Producer), and the Producer has one or more

names (fsp:producerName) and serial number (fsp:serialnumber).

5.6 Conclusion

Interoperability in IoT is difficult to achieve due to its heterogeneous nature and

the lack of standard architecture. The available IoT ontologies are not adequate for

semantic interoperability when an interaction between devices is limited to a specific

domain of IoT. However, ontologies designed in various contexts cannot validate the

semantic interoperability between heterogeneous IoT devices. This chapter presents a

view on how to achieve interoperability at the data and knowledge levels to support

smart applications in IoT domains. We have proposed a new semantic data model

for fog computing platform with help of the ontology, named FSPontex, and defined



112 Chapter 5. A unified and semantic data model

several new concepts to build a complete ontology, including Producer, Consumer,

Communication, NetworkInterface, Network, and ContextEntity which enables sharing

contextual information between IoT applications. The FSPontex is an easily accessible

and understandable semantic model and can apply to IoT-supported platforms. In the

future, we will need to be conducted to finalize the validation of our ontology and to

investigate its more complex test scenarios.
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“Nothing in life is to be feared, it’s to be understood.

Now is the time to understand more, so that we may

fear less. ” Marie Curie
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6.1 Conclusions

This thesis presents our research on designing a services architecture to support a

heterogeneous set of devices IoT devices that use many different types of communication

technologies based on the Fog computing paradigm. Fog computing is considered as one

of the most suitable solutions to support the expansion of services from Cloud computing

to the edge of the network to provide IoT devices with an effective response in terms of

low latency and real-time interactions. By taking advantage of the outstanding features

of Fog computing such as geographical distribution, heterogeneity, local data processing

capabilities, interoperability, mobility support, and optimize energy efficiency, we have

focused on research and analysis to propose a Fog-based architecture to address some of

the challenges as introduced in Chapter 1.

As contributions, in Chapter 3 we first identify the initial challenges that IoT systems

must face to deal with IoT devices. That is the dynamic nature and diversity of IoT

heterogeneous devices. Therefore, the flexible provisioning of resources and the ability

to scale within a Fog-based architecture are core requirements for dealing with these

large numbers of heterogeneous devices.

Second, we propose an open services architecture to provide support for these hetero-

geneous devices called the Fog Services Provider (FSP). In this FSP architecture,

we analyzed the required functional and non-functional requirements as introduced in

Section 3.2. These requirements enable our architecture that can be built and developed

in a scalable fashion and deployed in different IoT system environments. Based on

these analyzed requirements, we have designed a generalized architecture of services

hierarchically to ensure support for features at each level such as compute, storage, and

network according to topology and services running on the FSP. Furthermore, we also

define some of the concepts required to clarify the components and services involved in

the architecture such as the Producer, Consumer, and the FSP node. These components

are introduced in detail to provide the most comprehensive overview of the IoT context.

Third, we also present a data management mechanism for these diverse and heteroge-

neous producers through the FSP architecture by providing an access service (producer

access service) that connect to Producers. This service enables the handling of

different types of producers by defining their profiles and manages through a gateway

called the FSP gateway. This FSP gateway is responsible for ensuring efficient and

reliable communication for Producers. Data generated from Producers will be processed
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according to the ordered steps in Section 3.4.7. We divide these steps into two stages

to facilitate data processing. The first stage includes the steps of processing raw data

such as data collecting, data filtering, and data aggregating. Data processing from this

stage ensures the elimination of redundant data and unnecessary repetition. The second

stage focuses on processing the data so it becomes more meaningful. These steps consist

of data modeling, data annotating, and data querying. This allows data to be shared

and used to provide interoperability in IoT cross applications. On the other hand, the

data can be provided to end-users by providing a consumer access service. This

service provides an accessible way for the end-users to get data of interest. The FSP

architecture also ensures that access to this service is secure through authentication

and authorization mechanisms.

Fourth, we also implement an algorithm to convert the relational database into

RDF data. This RDF data uses a triple or RDF statement to describe the different

elements in a statement. Storing in this RDF data allows ensuring that semantic data

and understanding are shared rather than relational database which only focuses on

pure storage.

To provide a more comprehensive algorithm that allows data to be transformed in

various forms such as CSV, XML, and JSON, we need to provide a general information

model for the elements of the FSP architecture.

Out the fifth contribution is a unified data model detailed in Chapter 5. We

designed a data model based on Semantic Web technology with the help of ontology

by using several already existing ontologies and defining new core concepts to build

our semantic data model called FSPontex in Section 5.5. This data model not only

supports heterogeneous producers but also provides interoperability for applications

in IoT cross-domains. Moreover, the consideration of context information in an IoT

environment is necessary to provide shared information about contexts to relevant

applications. Hence in this design model also shows some properties that allow context

sharing detailed in Table 5.1.

Finally, we also consider a services placement mechanism in the FSP architecture

by proposing a mathematical model to place services among the huge number of FSP

nodes, while ensuring the performance of IoT applications in terms of latency, power

consumption, and scalability.
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6.2 Perspectives

Fog computing is an advanced technology and is an outstanding area of research, there

is a lot of interest and many open areas of research which are promising challenges for

future works. This section discusses some perspectives in analyzing and designing an

IoT architecture based on the Fog computing paradigm.

In this thesis, a fog computing architecture to support a large number of het-

erogeneous IoT devices has been designed and some necessary functionalities were

implemented and evaluated. However, the detailed design of the complete architecture,

and the evaluation of its its performances in realistic scenarios, requires further research

works. We have listed some open issues and future research directions as the following:

Improvements in a general architecture: A Fog architecture designed to fun-

damentally address some issues such as resource management, failure management,

communication management, energy management, security and privacy.

1. Resource management: In a Fog landscape, resources are always dynamic and

heterogeneous due to the variety of devices and their available resources. Therefore,

fog nodes are responsible for providing services to meet the needs of these devices.

Resource computation elasticity can predict the change and long-term activities

of services or applications to provide to devices. Thus, the resource allocation and

scheduling mechanism in a Fog environment is a significant challenge and needs

to be addressed.

2. Failure management: Due to the devices are often geographically distributed

and the management of these devices is not centralized. The probability of failure

is always high due to some reasons such as hardware failure, software error, or

even user error. Furthermore, these errors can be caused by connectivity, mobility,

and power supply. Besides, devices are often connected according to their protocol.

The change of position to continue to be seamlessly connected is also difficult to

identify errors. Therefore, a service-level agreements(SLAs) mechanism is needed

to ensure some parameters for QoS in terms of quality, availability, and role of

services.

3. Communication management: In Fog architecture, fog nodes always ensure a

seamless connection with devices, especially devices in time-sensitive applications.

Combined fog nodes to form a cluster of federal fog nodes is very important.
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Moreover, the communication between devices with Fog, Fog-Fog, and Fog-Cloud

is also different in terms of connection type and protocol. Hence, this issue should

also be considered.

4. Energy management: In the fog environment requires the deployment of a large

number of fog nodes, essentially the computation is distributed and may be less

energy efficient than the centralized model in the Cloud. Therefore, reducing energy

consumption in fog is a significant challenge. A model of energy consumption and

latency-related features should be considered to ensure performance and scalability

issues.

5. Security and privacy: Devices are usually manufactured by different brands

and have their security mechanisms. However, in order to join the Fog system,

there is a need to compromise between the fog services provider and the owner

of the devices. Correspondingly, security and trust policies need to be enforced

within the Fog architecture of data and connectivity.

Infrastructure-related issues: Fog architectures are usually defined by hier-

archical approaches. This helps ensure latency between levels. However, the decision

to deploy will need to be guaranteed based on some criteria of each level in terms of

application and resource requirements, scalability or shrinkage without interrupting

services. As a result, the service placement issue also affects the implementation of the

Fog architecture.

Special application domains: The variety of a set of heterogeneous devices

requires a set of applications or services to support. The approach of a standard form of

connection protocols, as well as a unified data model should also be addressed for issues

such as device interoperability, network interoperability, data interoperability, platform

interoperability, and semantic interoperability.
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Résumé: L’Internet des objets a apporté de nombreux avantages à la vie quotidienne des
gens et a eu un impact positif sur beaucoup de domaines d’application tels que l’industrie, la
santé, l’environnement, les transports, la ville intelligente, la maison intelligente, etc. L’une des
approches adoptées pour améliorer les performances consiste à réduire la charge sur les appareils
et leur permettre d’accéder à des ressources distantes dans le Cloud. Cela a donné naissance au
paradigme du Cloud Computing. Malheureusement, même si les Clouds disposent d’importantes
ressources de calcul et de stockage, ils sont généralement éloignés des utilisateurs mobiles, ce qui
rend difficile de répondre aux exigences des applications sensibles aux délais. Pour surmonter
cette limitation, une approche possible consiste à déplacer les services du Cloud vers la périphérie
du réseau. Cela a conduit à l’émergence du concept de FOG Computing. Le FOG Computing
donne la possibilité de déployer des services plus près des appareils IoT et fournit des solutions
pour résoudre les problèmes d’hétérogénéité et d’interopérabilité.
Dans cette thèse, nous nous concentrons sur la conception d’une architecture de service, appelé
Fog Services Provider (FSP), basée sur le paradigme FOG, pour fournir des services pour
l’IoT. Notre première contribution est de définir les composants critiques du Fog Computing et
de l’IoT dans notre architecture. Nous analysons ensuite les exigences et la conception détaillée
des composants de l’architecture du service Fog et du mécanisme de gestion des données. Enfin,
nous proposons un unified data model (FSPontex) qui résout le problème d’hétérogénéité et
d’interopérabilité entre différents équipements IoT, applications ou encore d’autres systèmes IoT
à l’aide du concept d’ontologie.
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Abstract: The Internet of Things (IoT) has brought many advantages to people’s daily lives and
positively impacted most application domains such as industry, healthcare, environment, trans-
portation, smart city, smart home, etc. One of the approaches adopted to improve performance is
to reduce the load on the devices and to allow them to access remote resources in the Cloud. This
gave birth to the Cloud Computing paradigm. Unfortunately, even though Clouds have significant
computing and storage resources, they are generally remote from mobile users, which makes hard
to fulfill IoT latency-sensitive applications requirement. To overcome this limitation, one possible
approach is to move services from the Cloud to the network edge. This leads to the emergence of
the FoG computing paradigm. Fog computing brings the ability to deploy computing services
closer to IoT devices and provides services that solve data heterogeneity and interoperability
issues.
In this thesis, we focus on analyzing and designing a service architecture based on the Fog
computing paradigm called Fog Services Provider (FSP). Our goal is to exploit the Fog
computing system’s useful characteristics and provide efficient support services for IoT devices.
Our first contribution is to define some of the critical components in Fog computing and IoT. We
then analyze the requirements and detailed design of the Fog service architecture components and
the data management mechanism for IoT heterogeneous devices. Finally, we propose a unified
data model (FSPontex) that solves the problem of heterogeneity and interoperability in different
applications and with other IoT systems using web technology with the help of Ontology.
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