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Summary in English

This thesis is divided into two independent parts.

The first three chapters deal with measures of segregation or polarization. The notion
of segregation/polarization applies to various situations, but the formal modeling remains
the same. Suppose that a population of individuals, comprised of a minority and a majority
group, is allocated into units or makes choices over a set of options. In practice, units can
be neighborhoods, firms, school classes, and the minority group might be immigrants versus
natives when studying residential, occupational, or school segregation. The modeling also
encompasses speech polarization, for instance. The US congresspeople are divided into
Democrats and Republicans; the units or options are the items of a dictionary of words or
phrases, and the speakers choose which words they use.

Qualitatively, there is some segregation or polarization whenever the allocation or choice
process leads to a situation where the two groups tend to select distinct units/options. For
example, in residential segregation, the minority individuals are concentrated in some units
more than in others instead of being uniformly allocated. Regarding speech polarization,
the presence of polarization means that Democrats and Republicans tend to use different
words or phrases when they speak in Congress. Despite that intuitive notion, quantitative
measures of segregation/polarization struggle with the so-called “small-unit bias.”

Imagine a simple case to convey the idea. We consider a population of employees, half
women, half men, and we study occupational segregation between gender: do women and
men tend to work in the same workplaces (which are here the units) or, on the contrary,
do they concentrate into distinct workplaces? Assume that there is no segregation in the
sense that, for each workplace, the probability that an arbitrary employee working there is
a woman is equal to one-half. In other words, women and men are allocated randomly over
workplaces. Yet, as long as the sizes (that is, the number of individuals) of workplaces
are small, the observed proportions of women and men will not be precisely equal to
the theoretical 50-50% repartition owing to statistical fluctuations. In an extreme case
with two employees per workplace, although women and men are allocated randomly, on
average, one-fourth of the workplaces will have only women and another one-fourth only
men. Consequently, in such small-unit situations, the traditional segregation indices that
rely on the dispersion of the empirical proportions are upward-biased and wrongly point
to a positive amount of segregation. Furthermore, the bias impedes reliable comparisons
of segregation measures across countries or over time.

Such situations of small units are pervasive in applied research. For workplace and
school segregation, a large share of firms have less than ten employees, and classes usually
have between twenty and forty students. The bias also arises when the units are not small
per se, but only surveys of individuals are available. For instance, if one studies residential
segregation using data from the French Labor Force Survey (INSEE’s Enquête Emploi), a
unit is made of around fifty individuals.

5



6 Summary

The first chapter presents a Stata command (Stata is a widespread software to conduct
statistical and econometric analyses) that implements three methods to estimate segregation
indices robust to “the small-unit bias.”

The second chapter applies these methods to quantify residential segregation in France
between 1968 and 2019 along various dimensions (nationality, social status, labor market
position, proxy of races). In this study, units are defined as clusters of around thirty
adjacent housing, which are basic bricks in the sampling scheme of the French Labor Force
Survey.

Finally, the third chapter studies speech polarization in the US Congress between 1873
and 2016 using transcripts of congressional debates.

The second part of this thesis is concerned with constructing nonasymptotic confidence
intervals (CIs) for the individual coefficients of a linear regression model. Linear regression
models are a ubiquitous method of econometric analyses.

The CIs rely on explicit upper bounds on the uniform distance between the cumulative
distribution function of a standardized sum of independent centered random variables with
moments of order four and its first-order Edgeworth expansion. These bounds are derived
in the fourth chapter, which is more technical and closer to statistics and probability than
the other chapters.

The last and fifth chapter uses these results to construct CIs that, at the same time,
are (i) valid for any sample size (ii) without assuming parametric assumption such as the
normality of error terms or independence between covariates and error terms (hence, our
CIs allow for heteroskedasticity), (iii) have a closed-form expression, and (iv) whose length
is asymptotically the same as the usual CI based on the t-statistic; thus our CIs have a
coverage equals to the desired nominal level in the limit when the sample size goes to
infinity.

Note

Although connected, the five chapters of this thesis are independent research articles. That
is why this thesis presents some redundancies.

The title of this thesis is “contributions to measures of segregation or polarization and
to nonasymptotic inference in linear models” in English, and “contributions aux mesures de
ségrégation ou de polarisation et à l’inférence non-asymptotique dans les modèles linéaires”
in French. The thesis is mainly written in English.

The first and third chapters are co-authored with Xavier D’Haultfœuille (CREST,
ENSAE Paris, Institut Polytechnique de Paris), my thesis supervisor, and Roland Rathelot
(CREST, ENSAE Paris, Institut Polytechnique de Paris; previously Warwick University).

The fourth and fifth chapters are co-authored with Alexis Derumigny (Delft University
of Technology) and Yannick Guyonvarch (INRAE; previously Telecom Paris, Institut
Polytechnique de Paris), two former Ph.D. students at CREST.

I am the only author for the second chapter.
Any opinions expressed in this thesis are those of the author and not of any institution.

All possible errors remain my own.



Résumé substantiel en français

Cette thèse se compose de deux parties indépendantes.

Les trois premiers chapitres s’intéressent aux mesures de ségrégation ou de polarisation.
Ces notions s’appliquent à des contextes variés mais partagent une formalisation commune.
Une population d’intérêt est divisée en deux groupes exclusifs, un groupe dit minoritaire
et un groupe majoritaire, et les individus de ces deux groupes se répartissent entre des
unités ou choisissent entre des options. Les unités sont par exemple des aires résidentielles,
le groupe minoritaire les individus de nationalité étrangère et le groupe majoritaire les
individus de nationalité française pour étudier un aspect de la ségrégation résidentielle en
France. Cette modélisation permet également d’étudier la polarisation du langage politique
aux États-Unis en considérant comme unités ou options les entrées d’un dictionnaire et
comme groupes minoritaire et majoritaire les parlementaires du parti républicain et du
parti démocrate ; ici, les individus choisissent les mots qu’ils utilisent.

Qualitativement, il y a de la ségrégation ou de la polarisation lorsque les deux groupes
tendent à choisir systématiquement des options distinctes. En ségrégation résidentielle,
cela signifie que les individus du groupe minoritaire sont concentrés dans certaines aires
géographiques au lieu d’être répartis uniformément sur le territoire. Dans l’étude du
langage politique, ce sera le cas lorsque certains mots ou expressions seront davantage
prononcés par un parti que par un autre. Quantitativement, la mesure de la magnitude de
la ségrégation ou polarisation est confrontée au small-unit bias (biais de petites unités).

Considérons un cas simple pour expliquer ce biais. Dans une population d’employés
comprenant moitié d’hommes et moitié de femmes, on s’intéresse à la ségrégation profes-
sionnelle homme-femme : est-ce que les hommes et femmes travaillent dans les mêmes
entreprises (qui jouent ici le rôle des unités) ou à se concentrer dans des entreprises
distinctes ? Imaginons qu’il n’y ait pas de ségrégation au sens où, pour chaque entreprise,
la probabilité qu’un employé quelconque soit une femme vaut un demi : les hommes et les
femmes se répartissent aléatoirement entre les entreprises. Pour autant, si les entreprises
sont de petites tailles, on n’observa pas des proportions hommes-femme égales exactement
à 50-50. En raison des fluctuations statistiques, les proportions empiriques s’éloigneront
du 50-50 théorique en probabilités. À l’extrême, pour des entreprises de deux employés,
en moyenne, un quart d’entre elles n’auront que des femmes et un autre quart seulement
des hommes. Ainsi, dans ces situations de petites unités, les mesures traditionnelles de
ségrégation fondées sur la dispersion des proportions empiriques reporteront à tort une
ségrégation élevée. De surcroît, en raison de ce biais, la comparaison des indices entre
différents pays ou sur plusieurs périodes est douteuse.

Ces situations interviennent dans de nombreuses applications pratiques : une grande
majorité d’entreprises a moins de dix salariés ; les classes comportent typiquement entre une
vingtaine et trentaine d’élèves ; dans certaines données permettant d’étudier la ségrégation
résidentielle, comme les grappes de l’Enquête Emploi de l’INSEE (Institut National de
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8 Résumé

la Statistique et des Etudes Economiques), les unités regroupent une cinquantaine de
personnes résidant dans des logements adjacents.

Le premier chapitre présente un programme Stata (logiciel courant de statistiques
et d’économétrie) qui implémente trois méthodes permettant d’estimer des indices de
ségrégation robustes au « small-unit bias ».

À partir des données de l’Enquête Emploi permettant de construire des unités formées
d’une trentaine de logements adjacents, le second chapitre applique ces méthodes pour
quantifier la ségrégation résidentielle en France entre 1968 et 2019 sur plusieurs dimensions
(nationalité, statut social, position sur le marché du travail et proxy de l’ethnicité).

Le troisième chapitre utilise les retranscriptions des débats au Congrès américain entre
1873 et 2016 pour étudier la polarisation du langage politique.

La deuxième partie s’intéresse à la construction d’intervalles de confiance (IC) non-
asymptotiques pour les coefficients des modèles de régression linéaire, un outil classique
d’analyse économétrique.

Ces intervalles reposent sur des majorations explicites de la distance entre la distribution
empirique d’une somme normalisée de variables aléatoires indépendantes centrées admettant
des moments d’ordre quatre et son expansion d’Edgeworth de 1er ordre. Ces majorations
sont obtenues dans le quatrième chapitre, plus statistique et technique.

Le cinquième et dernier chapitre utilise ces dernières pour construire des IC qui sont
simultanément (i) valides pour toute taille d’échantillon (ii) sans imposer une distribution
paramétrique de type Gaussienne ou l’indépendance entre régresseurs et résidus (et
autorisent donc des résidus hétéroscédastiques), (iii) ayant une expression explicite, et (iv)
atteignant asymptotiquement la même précision que les IC usuels fondés sur la normalité
asymptotique de la statistique de Student.

Remarque

Malgré certains liens, les cinq chapitres constituant cette thèse sont des articles de recherche
indépendants. De ce fait, ce manuscrit peut présenter quelques répétitions.

Le titre de cette thèse est “contributions aux mesures de ségrégation ou de polarisation
et à l’inférence non-asymptotique dans les modèles linéaires” en français et “contributions
to measures of segregation or polarization and to nonasymptotic inference in linear models”
en anglais, langue de rédaction principale de ce manuscrit.

Le premier et le troisième chapitres sont coécrits avec mon directeur de thèse, Xavier
D’Haultfœuille (CREST, ENSAE Paris, Institut Polytechnique de Paris), et Roland
Rathelot (CREST, ENSAE Paris, Institut Polytechnique de Paris).

Le quatrième et le cinquième chapitres sont coécrits avec Alexis Derumigny (Delft
University of Technology) et Yannick Guyonvarch (INRAE), deux anciens doctorants au
CREST.

Je suis l’unique auteur du second chapitre.
Les opinions exprimées dans cette thèse n’engagent que leur auteur, qui assume l’entière

responsabilité des erreurs qui pourraient subsister.



Introduction in English

This Ph.D. thesis in econometrics consists of two independent parts. It would be somewhat
artificial and more of a rhetorical exercise to gather those two parts into a single title or
topic. A first try would be “small-unit and small-sample issues in econometrics,” because
the two parts are concerned about something small. However, such a presentation might
be misleading and, eventually, counterproductive because the object that is small differs
in the two settings in the sense that the asymptotics are different.

This introduction briefly presents the two parts of this thesis and the related chapters,
hence specifying that difference.

Each chapter begins with some context information and a summary of the chapter in
the form of an abstract; I do not replicate those summaries in this general introduction.

A large sample of small units or a small sample of observations?

The first three chapters deal with the measure of segregation or polarization. In an abstract
formulation that subsumes various applied situations, the problem is the following. In a
two-group setting (extensions to multi-group settings are possible but not trivial), imagine
you have a population of interest split into two exogenous groups: a minority group versus
a majority one. Each individual of the population makes choices among a set of options,
at least one choice, possibly several.1

The groups are said exogenous in so far as group membership does not depend on the
choices made. Group membership is an individual characteristic determined ex ante. It
would be another problem not addressed in this thesis to construct coherent groups from
the choices made (unsupervised clustering or supervised classification).

The terms “option” and “choice” take concrete meaning depending on the application.
In Chapters 1 and 2, the context is that of residential segregation: an option (sometimes also
referred to as a “unit” in such settings of residential, school or occupational segregation)
is a neighborhood of about 30 adjacent housing; the choices are residential location
choices, individuals choose where they live. The application of Chapter 3 concerns speech
polarization. In this setting, an option is a word (or a phrase) in a given dictionary, an
entry of the dictionary. The choices are occurrences of those words; the individuals choose
which words they use when they talk. In a marketing or empirical industrial organization
setting, you may consider two distinct consumer groups and study how different their
purchase behaviors are; an option is a possible product, a choice is a purchase. Figure 1
below presents a small sketch of the modeling.

1In this thesis, “polarization” and “segregation” are mainly used as synonyms. If I were to formally
distinguish the two notions, “segregation” would be reserved for situations where each individual in the
studied population makes only one choice among the set of options; in contrast, “polarization” would be
more general, allowing for multiple choices made by an individual.

9



10 Introduction

Figure 1: Setting for measures of segregation or polarization.

Qualitatively, segregation or polarization arises whenever the choice or allocation
process is such that the two groups tend to systematically choose different options. For
instance, in speech polarization in the U.S. Congress, polarization means that Republican
and Democrats speakers use different words when they talk. In the context of segregation,
it is the case when there is a concentration of minority individuals in some units more
than in others.2

The problem of measurement is to quantify, by a bounded number, called an index
of segregation/polarization, the extent to which the members of the two groups choose
different options.

Another interesting way to assess polarization relates to information and prediction:
if one observes the option chosen by an individual, does it help to predict the group
membership of the individual? For instance, if I observe that a speaker said the phrase
“undocumented workers” during a Congressional debate, can I use this information to
decide whether the speaker is Democrat or Republican? Imagine the minority or reference
group is made of individuals with at least a college education; if I know that someone lives
in central Paris, does it change my beliefs about whether she or he holds a college degree?

Let introduce some notation to go further.3 Let denote J the set of options; they are
J distinct options indexed by j. We observe a sample of n choices, that is (minimally),
for each option j, we observe the number KR

j (KD
j ) of choices made by members of the

reference group R (of the other group D) that select option j; let Kj := KR
j +KD

j denote
2Remark that, in line with the existing literature, the term “segregation” is used in this thesis in a

neutral sense to refer to such concentration phenomenon, independently of the underlying causes.
3The notation used here is that of Chapter 3. This chapter presents the problem of measuring

polarization/segregation in a more general way compared to Chapters 1 and 2 that rather focus on the
context of (residential) segregation. In the latter, the notation X (respectively p) replaces the notation
KR (respectively ρ).
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the total number of choices selecting option j that we observe.

A natural way to quantify polarization or segregation is to consider the variation across
the empirical proportions (KR

j /Kj)j=1,...,J . Intuitively, the more variation across those
proportions, the higher polarization. Indeed, if a large part of those proportions is close to
either 0 or 1, it means that most options are chosen by only one of the two groups; that is,
the two groups tend to choose distinct options. On the contrary, if there is little variation
in the proportions (KR

j /Kj)j, the choices of the two groups are more or less identically
distributed over the possible options. Natural polarization indices are thus defined as
functions mapping (KR

j /Kj)j=1,...,J to a scalar index, the more variation in the proportion,
the higher the index.

Although intuitive, considering the variations in the observed proportions is problematic
when the Kj are small. To explain this, let first introduce another object: for each option j,
ρj is the conditional probability that, knowing the choice selects option j, the choice is
made by a member of the reference group R (and not one of the other group D).4

When the objective is to measure the level of polarization, it is arguable that the correct
benchmark of null polarization (for which the index is minimal, typically normalized to 0) is
the randomness benchmark defined as the equality of all the probabilities (ρj)j=1,...,J . This
benchmark differs from the evenness benchmark characterized by the equality of all the
proportions (KR

j /Kj)j=1,...,J . Throughout this thesis, we adopt the randomness benchmark
to define and measure polarization: we say that there is some polarization if and only if
the probabilities (ρj)j=1,...,J are not all equal. In other words, we define polarization as a
function of the underlying probabilities ρj instead of the observed proportions KR

j /Kj.5
We model (KR

j , Kj, ρj)j=1,...,J as independent and identically distributed (i.i.d.) random
variables. Therefore, we sometimes omit the subscript j to lighten notation: KR, K, ρ is
a generic instance of the variables, with the same distribution as KR

j , Kj, ρj) for any j.
Under this assumption, the equality of the probabilities ρj means that the distribution of
ρ is a Dirac (degenerate distribution): ρ is a constant random variable.

KR
j /Kj, as the observed proportion of choices of option j made by group R, is an

estimator of ρj; however, it requires Kj to tend to infinity to be consistent. When K is
small, the naive indices of polarization based on the observed proportions (KR

j /Kj)j=1,...,J
over-estimate the level of segregation; in the segregation literature, this issue is known as
the small-unit bias. The idea is simply that, even if the (ρj)j=1,...,J are all equal, with finite
Kj , there will be variation in the proportions (KR

j /Kj)j=1,...,J . In other words, in addition
to the variation in the probabilities (ρj)j, which defines the real level of polarization, the
variation in the proportions KR

j /Kj incorporates small-sample variability. The smaller K,
the more acute the bias.

Furthermore, the small-unit bias impedes reliable comparisons of polarization levels
over time or across contexts since the magnitude of the bias might change. For instance,
Chapter 2 studies residential segregation in France between 1968 and 2019 using data from

4Remark that, through Bayes’s rule, it is the “reverse” conditional probability that the one considered
in the above paragraph that presents polarization in terms of information and prediction.

5The expressions of “real” or “true” level of polarization that may be found in this thesis are used to refer
to this definition of polarization and emphasize the distinction with a proportion-based approach. Note
that it does not imply the evenness benchmark is irrelevant. For example, when studying the consequences
or effects of segregation, it is probably more sensible to consider the realization of the choice/allocation
process, thus the proportions KR

j /Kj . However, when the objective is to measure the level or magnitude
of polarization, I believe one should study the underlying data-generating process parameters that produce
the realizations, namely here the probabilities ρj ; hence the randomness benchmark.
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the Labor Force Survey. Over this period, due to the evolution of the survey scheme, the
size of the neighborhoods used in the analysis has decreased: K ≈ 70 on average during
the seventies while K ≈ 30 in 2003-2019. Consequently, the magnitude of the bias has
been higher in recent years. All else equal, if the real polarization level remains unchanged,
naive indices that neglect the bias would thus point to an increase of segregation over time;
yet, such an evolution is only a statistical artifact when measured with proportion-based
indices. Measures robust to the small-unit bias are essential to accurately study temporal
variations or compare different settings.

This bias arises in many applications since it is often the case that each option contains
few choices, namely that K is small. In segregation contexts, a large share of firms
(a fortiori, workplaces) have less than ten employees (occupational segregation), classes
typically have between twenty and forty pupils (school segregation). In more general
polarization contexts, the bias occurs whenever the size J of the choice set is large relative
to the number of observed choices n := ∑J

j=1Kj.
The crucial point to understand is that having more data will not solve the small-unit

bias; it is not a matter of too small samples in that sense. Indeed, in school segregation,
for instance, a larger sample means observing additional classes, namely increase J . Yet, it
does not modify the fact that there is a limited number K of pupils per class, which remains
finite and small enough in practice for the small-unit bias to matter. More generally, as
long as the concrete meaning of the options (depending on the specific application) is such
that their capacity, understood as the number K of choices they can receive, is limited, the
small-unit bias arises. Formally, the asymptotic is in the dimension J tending to infinity
(and thus n too, as a side effect) instead of a set-up with a fixed number J of options and
a number n of observed choices going to infinity.

In fact, such an asymptotic with J going to infinity is not limited to segregation
contexts with units (options) whose capacity is constrained. In various settings, observing
more data in the sense of observing more choices (n increases) also implies observing
more options (J = J(n) increases too). For instance, it is the case of speech or text data
analyzed in Chapter 3. Indeed, an empirical relationship exists between the length n of a
corpus of texts (number of choices, namely occurrences of words here) and the richness,
the size J of its vocabulary (that is, the number of distinct words that appear in the
corpus).6 As you observe more text, you also observe new words. Likewise, as you observe
more purchase decisions of, say, cars, you also observe new types of cars in the sense that,
as a researcher studying car purchase behavior, having more data allows you to consider
thinner, more precisely defined products (which play the role of the options here). In
those settings, an asymptotic representing more data by n tending to infinity while J is
kept fixed arguably misrepresents the situation by escaping the relationship between J
and n. A more credible asymptotic is having both J and n tending together to infinity to
represent those types of large or high-dimensional choice sets.

In a nutshell, the first part of this thesis deals with measuring polarization in such
large choice sets, with an asymptotic in the number J of options going to infinity (and n
too) whereas the number K of choices observed per option remains limited.

Chapter 1 presents a Stata command that implements three methods proposed in the
segregation literature to address the small-unit bias.

Chapter 2 is more applied; it uses this Stata command to measure residential segregation
in France between 1968 and 2019 with different definitions of minority and majority groups

6We refer to Remark 3.1 in Chapter 3 for further details.
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based on demographic and socioeconomic variables.
Chapter 3 proposes a statistical model and a method to identify and estimate a

polarization index in large choice sets; it then applies this methodology to text data by
studying speech polarization in the U.S. Congress between 1873 and 2016.

The second part of this thesis relates more to statistics and theoretical econometrics.
Compared to the previous setting where the data contains two dimensions (the number
of choices and the number of options), the data is standard: univariate observations
X1, . . . , Xn with a sample size n in Chapter 4, and a n-sample of an outcome (real random
variable) and covariates (real random vector) (Y1, X1), . . . , (Yn, Xn) in Chapter 5 that
studies linear regression models. In those cases, the only asymptotic that we consider
is in the sample size n going to infinity. Yet, in contrast, the second part of this thesis
is primarily concerned with nonasymptotic inference, that is, constructing statistical
procedures whose guarantees hold for any sample size n instead of limit results when n
tends to infinity.

Chapter 5 constructs nonasymptotic confidence intervals (CIs) for the individual coef-
ficients of a linear regression model: CIs that have a probability of containing the true
parameter at least equal to their nominal level for any sample size. Using the usual
terminology of linear regressions, these CIs are derived both in exogenous cases and in
endogenous settings with one endogenous regressor, one instrument, and additional exoge-
nous covariates. The construction uses results derived in Chapter 4, namely nonasymptotic
(valid for any sample size) explicit bounds on the uniform distance between the cumulative
distribution function of a standardized sum of independent centered random variables
and its first-order Edgeworth expansion. In order to present those notions and the main
challenges of nonasymptotic CIs, the rest of the introduction presents the simple example
of conducting inference on an expectation.7

Introduction to nonasymptotic inference: the example of an expectation

We observe n ∈ N∗ independent and identically distributed (i.i.d.) real random variables
(Di)ni=1

i.i.d.∼ PD. We denote by D ⊆ R the support of the distribution of D1, denoted PD.
P(D) denotes the set of all probability distributions on D.

We assume the data follows some statistical model whose parameter can be divided
into a finite-dimensional part and the remainder:

PD ∈
{

Pθ ∈ P(D), θ = (θ1, θ2) ∈ Θ := R×Θ2
}
,

where Θ2 is a topological space. The expression captures typical semi-parametric models
where one is interested in a finite-dimensional parameter θ1 while, for the richness of
the model, the data-generating process also depends on a possibly infinite-dimensional
“nuisance” parameter θ2.

In this example, D := R, θ1 :=
∫
u dPD ∈ R is simply the expectation of D1, θ2 := PD

is the distribution of the observations, and Θ2 the set of possible distributions on R with
finite variance: Θ2 := {P ∈ P(R) :

∫
u2dP < +∞}.

We seek to construct a confidence interval (CI) for θ1. Essentially, a confidence interval
CI(1− α, n) is a random interval of R that depends on the data and comes with a desired

7Note that this example is inspired by Example 4.1 of Chapter 4 and Example 5.1 of Chapter 5; it
directly uses several parts of Chapter 5.
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nominal level 1− α ∈ (0, 1), whose objective is to contain the target parameter θ1 with a
probability at least 1− α, ideally equal to 1− α. Ideally equal to 1− α exactly because,
thinking back to the original Neyman-Pearson principle for parametric tests (the distinction
of Type 1 and Type 2 errors) and the connection with CIs, the choice of a nominal level
1− α means we are willing to accept that the CI misses the parameter with a probability
at most α in exchange for increased precision, through smaller length of the confidence
interval. In other words, it is not desirable that CI(1−α, n) contains θ1 with a probability
higher than 1− α because, in such a case, it means we are losing some precision: for the
same stated nominal level, we could have a CI with a smaller length.

Quality of a confidence interval Several criteria exist to assess the quality of a given
confidence interval, CI(1− α, n). Let Θ̃ be a fixed subset of Θ.

From an asymptotic point of view, CI(1 − α, n) is said to be asymptotically exact
pointwise over Θ̃ if

∀θ ∈ Θ̃, lim
n→+∞

PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
= 1− α. (1)

A stronger asymptotic criterion exists: CI(1 − α, n) is said to be asymptotically exact
uniformly over Θ̃ if

lim
n→+∞

sup
θ∈Θ̃

∣∣∣PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
− (1− α)

∣∣∣ = 0. (2)

If lim infn→+∞ inf
θ∈Θ̃ PP⊗n

θ

(
CI(1− α, n) 3 θ1

)
≥ 1− α, the CI is said to be asymptotically

conservative uniformly over Θ̃.
From a nonasymptotic perspective, we say that CI(1 − α, n) is nonasymptotically

conservative over Θ̃ if

∀n ≥ 1, inf
θ∈Θ̃

PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
≥ 1− α. (3)

This property evolves into nonasymptotic exactness over Θ̃ of CI(1 − α, n) if (3) holds
and, in addition, for any n ≥ 1, sup

θ∈Θ̃ PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
= 1− α.

To present these notions and the challenges of nonasymptotic inference, we construct
below several confidence intervals for θ1. To this end, let introduce the empirical mean
and the empirical variance of the observations:8

Dn := 1
n

n∑
i=1

Di, σ̂2
n := 1

n− 1

n∑
i=1

(
Di −Dn

)2
.

Asymptotic approach First, we can construct a confidence interval based on asymp-
totic results. σ̂2

n is a consistent estimator of the variance of D by the Law of Large Numbers
and the Continuous Mapping Theorem (CMT). Hence, the Central Limit Theorem, com-
bined with Slutsky’s lemma and the CMT, gives

√
n√
σ̂2
n

(
Dn − θ1

)
d−→ N (0, 1).

8We use the unbiased empirical variance, with n − 1 in the denominator, to work as such for
Cochran/Fisher’s theorem later; it is asymptotically equivalent to have n instead of n− 1.
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From this, denoting qP (τ) the quantile at order τ ∈ (0, 1) of a distribution P , we obtain
that

CIas(1− α, n) :=
Dn ± qN (0,1)(1− α/2)

√
σ̂2
n√
n


is asymptotically exact pointwise over Θ. More generally, such construction is often
implicitly what (applied) econometricians or statisticians have in mind when they rely on
the asymptotic normality of an estimator to conduct inference.

However, some impossibility results implies CIas(1−α, n) cannot be nonasymptotically
conservative over the whole parameter space Θ.9 More assumptions are needed to build
CIs with nonasymptotic guarantees. From there, my understanding is that there are two
main ways to proceed:

1. parametric assumptions on the distribution ofD can provide nonasymptotic exactness
on a “small” (in the sense that it is parametric, finite-dimensional) subset of Θ;

2. concentration inequalities that require known bounds on some moments or other
features (for instance, the support) of PD can yield nonasymptotic conservativeness
on large(r) (nonparametric, infinite-dimensional) subsets of Θ.

The choice between those two possibilities can be interpreted as a trade-off between 1. the
precision (exactness) of a CI and 2. the uniformity of its guarantees, the richness of the
model the CI applies to. We present below one classic example of construction 1. with a
parametric Gaussian assumption and two examples of construction 2.

Nonasymptotic exactness through parametric (Gaussian) assumption Let de-
note Tk a Student distribution with k degrees of freedom. By Cochran/Fisher’s theorem
(i.i.d. Gaussian observations), we have, for any sample size (provided n ≥ 2 to compute
the empirical variance),

√
n√
σ̂2
n

(
Dn − θ1

)
∼ Tn−1.

Consequently,

CIN(1− α, n) :=
Dn ± qTn−1(1− α/2)

√
σ̂2
n√
n


is nonasymptotically exact over Θ̃N ( Θ with

Θ̃N :=
{
θ ∈ Θ : Pθ = N (θ1, σ

2), θ1 ∈ R, σ2 ∈ R∗+
}
.

Θ̃N can be deemed a “small” subset of Θ insofar as it is parametric. Besides, CIN (1−α, n)
is asymptotically exact pointwise over the whole Θ as its asymptotic behavior is equivalent
to that of CIas(1− α, n) when n goes to +∞.

9Chapter 5 provides further details and references.



16 Introduction

Nonasymptotic conservativeness through nonparametric assumptions (bounds
on the variance or on the support) For some known M < +∞, let define Θ̃BC :=
{θ ∈ Θ : VPθ [D] ≤M}. By Bienayme-Chebyshev (BC) inequality,

CIBC(1− α, n) :=
[
Dn ±

√
M√
αn

]

is nonasymptotically conservative over Θ̃BC ( Θ. Compared to Θ̃N , Θ̃BC is a large
nonparametric subset of Θ.

For some known −∞ < a < b < +∞, let define Θ̃H := {θ ∈ Θ : support(Pθ) ⊆ [a, b]}.
By Hoeffding (H) inequality,

CIH(1− α, n) :=
Dn ±

(b− a)√
2

√
log(2/α)
√
n


is nonasymptotically conservative over Θ̃H ( Θ. Likewise, as opposed to Θ̃N , Θ̃H is large
since nonparametric.

Nonasymptotic conservativeness and asymptotic exactness To compare the
lengths of CIas(1−α, n), CIBC(1−α, n), and CIH(1−α, n), remark that, for any α ∈ (0, 1),
qN (0,1)(1− α/2) <

√
2 log(2/α) and qN (0,1)(1− α/2) < 1/

√
α. This implies that the CIs

based on BC and H inequalities are asymptotically conservative. As explained above,
being conservative is a negative feature of a CI, a fortiori asymptotically because it entails
a loss of precision even when the sample size goes to infinity.

Nonasymptotic exactness is often quite demanding for it typically requires parametric
assumptions as regards the distribution of the observations. Such assumptions might be
restrictive in applications.

All in all, an interesting and feasible objective for nonasymptotic inference is the
construction of CIs that are nonasymptotically conservative and, at the same time,
asymptotically exact. To construct such CIs, the form of CIas(1 − α, n) suggests that
something like qN (0,1)(1−α/2+δn), for the α-related part of the CI’s length, with adequate
δn to ensure nonasymptotic conservativeness and limn→+∞ δn = 0 to obtain asymptotic
exactness might be interesting. This is exactly what enable to do Berry-Esseen inequality
and Edgeworth expansion.

Berry-Esseen inequality and Edgeworth expansion This paragraph briefly
presents Berry-Esseen (BE) inequality and Edgeworth expansion (EE).10 To begin with,
it can be interesting to recall some asymptotic and nonasymptotic results to locate BE
inequality among those.

The (weak) Law of Large Numbers (LLN) is an asymptotic result and states that
Dn

P−→ E[D]. Concentration inequalities (such as BC and H) are nonasymptotic results:
for any sample size, they provide a number tn,α such that the event {|Dn − E[D]| ≤ tn,α}
holds with high probability (at least 1−α). They can be seen as a nonasymptotic equivalent
or quantification of the LLN.

The Central Limit Theorem (CLT) yields an approximation of the distribution of
Dn when the sample size goes to infinity: informally, Dn ∼ N (E[D],V(D)/n) holds

10Chapter 4 provides more details.
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asymptotically. In that sense, the CLT specifies the rate of convergence of the LLN, the
usual 1/

√
n.11

BE inequality controls the uniform distance between the cumulative distribution
function (c.d.f) of Dn, properly centered and standardized, and Φ, the c.d.f of the standard
Gaussian distribution N (0, 1):

sup
x∈R

∣∣∣∣∣P
(
√
n
Dn − E[D]√

σ2
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ 1.88E(|D − E[D]]|3)
σ3√n

,

with σ2 the variance of D.12 In that respect, BE inequality can be seen as a nonasymptotic
equivalent or quantification of the CLT. Note that, compared to the CLT, BE inequality
requires an additional moment: a finite third-order moment for D.

Let introduce additional notation to present EE. We use here the notation of Chapter 4.
Let (Xi)i=1,...,n be a sequence of independent but not necessarily identically distributed
(i.n.i.d.) real random variables that are assumed to be centered and with finite fourth-order
moment: γi := E[X4

i ] < +∞. Let define

– the standard deviation of the sum of the Xi, Bn :=
√∑n

i=1 E[X2
i ], so that the

standardized sum of the Xi is Sn := ∑n
i=1Xi/Bn,

– the average individual standard deviation Bn := Bn/
√
n,

– the individual standard deviation σi :=
√
E[X2

i ],

– the average standardized third raw moment λ3,n := 1
n

∑n
i=1 E[X3

i ]/B3
n,

– the average standardized p-th absolute moment Kp,n := 1
n

∑n
i=1 E[|Xi|p]/(Bn)p, for

p ∈ N∗.

In the i.i.d. case, we can omit the subscript i for simplicity and we have σi = σ the
standard deviation of X, Bn = σ

√
n, K4,n = K4 = E[|X|4]/σ4 the kurtosis of X (a measure

of tail thickness) and Sn =
√
n(Xn − E[X])/σ.

Berry-Esseen inequalities aim at bounding the quantity

∆n,B := sup
x∈R
|P (Sn ≤ x)− Φ(x)| .

Edgeworth expansions are a refinement of BE inequalities to adjust for the presence of
nonasymptotic skewness in the distribution of Sn. They aim at controlling

∆n,E := sup
x∈R

∣∣∣∣∣P (Sn ≤ x)− Φ(x)− λ3,n

6
√
n

(1− x2)φ(x)︸ ︷︷ ︸
=:Edgn(x)

∣∣∣∣∣,

where Φ(x) + λ3,n
6
√
n
(1− x2)φ(x) is called the one-term Edgeworth expansion of P (Sn ≤ x)

(φ is the density function of a N (0, 1), the derivative of Φ).
11Remark that concentration inequalities also specify the rate of convergence of the LLN.
12We express here BE inequality with the original constant 1.88 of Berry (1941). More recent results

have derived lower constants. One of the contributions of Chapter 4 is to improve this inequality assuming
finite fourth-order moments.
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We can wonder why we are interested in bounds on the quantities ∆n,B and ∆n,E. The
answer is that they provide adequate concentration inequalities to obtain nonasymptotically
conservative but asymptotically exact CIs. Indeed, for every n ∈ N∗, for every t > 0, we
have (disjoint union and complementary event)

P

√n
∣∣∣Xn

∣∣∣
σ

> t

 ≤ 1− P
(√

nXn

σ
≤ t

)
+ P

(√
nXn

σ
≤ −t

)

(add and subtract to see an EE) ≤ 1−
(
P
(√

nXn

σ
≤ t

)
− Φ(t)− Edgn(t)

)

+
(
P
(√

nXn

σ
≤ −t

)
− Φ(−t)− Edgn(−t)

)
− Φ(t)− Edgn(t) + Φ(−t) + Edgn(−t)

(triangular ≤, parity of Edgn(·), ≤ 2Φ(−t) +
∣∣∣∣∣P
(√

nXn

σ
≤ t

)
− Φ(t)− Edgn(t)

∣∣∣∣∣
and Φ(t) = 1− Φ(−t)) +

∣∣∣∣∣P
(√

nXn

σ
≤ −t

)
− Φ(−t)− Edgn(−t)

∣∣∣∣∣
(definition of ∆n,E) ≤ 2 {Φ(−t) + ∆n,E} .

Finally, if we solve in t the equation

2 {Φ(−t) + ∆n,E} = α ⇐⇒ Φ(t) = 1− α

2 + ∆n,E,

and let Xi := Di − E[D], taking the complementary event of the previous computation
yields

Pr
(√

n |Dn − E[D]|
σ

≤ qN (0,1)

(
1− α

2 + ∆n,E

))
≥ 1− α. (4)

If we assume σ, the standard deviation of X (or equivalently of D) is known (the case
of inference on an expectation with known variance), provided a bound δn on ∆n,E such
that limn→+∞ δn = 0 is available, this gives the CI we have been looking for: (i) the result
of Equation (4) holds for any sample size n, hence nonasymptotic conservativeness; (ii) its
length converges to that of CIas(1− α, n), yielding asymptotic exactness.

When σ is unknown, an additional step is required to replace it by the estimator
√
σ̂2
n,

but the idea is similar.
In essence, Chapter 5 proceeds the same analysis for the Ordinary Least Square (OLS)

estimator of a linear regression model instead of the mean Dn.

Asymptotic exactness is a desired theoretical property but, for practical use, for a
fixed nominal level, the lower the bound δn on ∆n,E, the lower the length of the CI, hence
better precision. This explains the interest of finding as small as possible constants for
the bounds on ∆n,B and ∆n,E. To our knowledge, the best existing bounds are due to
Shevtsova (2013), with ∆n,B ≤ 0.5583K3,n/

√
n (i.n.i.d. case) and ∆n,B ≤ 0.4690K3,n/

√
n

(i.i.d. case). They are derived assuming only finite third-order moments.
In linear regressions, the standard way to conduct inference, based on the asymptotic

normality of the OLS estimator, requires finite fourth-order moments for the covariates.
This is why Chapter 4 aims at deriving improved bounds under the assumption of finite
fourth-order moments. We do so by obtaining bounds on ∆n,E, which implies bounds on
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∆n,B. Indeed, the triangle inequality and supx∈R(|1− x2|φ(x)/6) < 0.0665 give

∆n,B ≤ ∆n,E + 0.0665λ3,n√
n

.

Finally, recall that the confidence intervals CIBC(1− α, n) (respectively CIH(1− α, n))
requires a known bound M (known bounds a and b) on the variance (support) of the
observations. Similarly, the above CI derived from Berry-Esseen inequality and Edgeworth
expansions requires bounds on some moments to compute δn, namely on λ3,n (the skewness
of X in the i.i.d. case), K3,n (the standardized absolute third moment), and K4,n (the
kurtosis of X in the i.i.d. case). It happens that a bound on K4,n is in fact sufficient
because |λ3,n| < 0.621K3,n (Pinelis, 2011) and K3,n ≤ K

3/4
4,n (Jensen inequality). Absent

strong parametric assumption (like the Gaussian distribution above in this example), it
appears difficult for nonasymptotic inference procedures to escape setting such bounds. In
practice, this raises the question of how to choose them. Chapters 4 and 5 discuss how to
it is possible to do so.
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Introduction en français

Cette thèse en économétrie se compose de deux parties indépendantes. Réunir ces deux
parties en une seule thématique ou un titre synthétique serait un exercice quelque peu
artificiel, bien que possible dans la mesure où les deux parties ont en commun le fait de
s’intéresser à de petits échantillons ou à de petites unités. Cela donnerait, par exemple,
“Quelques problèmes économétriques du fait de petites unités ou de petits échantillons”.
Toutefois, cette présentation unifiée pourrait suggérer, à tort, une ressemblance entre les
deux parties alors que la modélisation statistique (et notamment l’asymptotique) considérée
diffère. Cette brève introduction présente les deux parties de cette thèse en cherchant à
préciser cette différence.

Dans le corps du manuscrit, rédigé en anglais, chaque chapitre débute par quelques
informations contextuelles et un résumé (abstract). Une traduction française de ces
éléments est présentée à la fin de cette introduction pour chacun des cinq chapitres.

Un grand échantillon de petites unités ou un échantillon avec peu
d’observations ?

Les trois premiers chapitres de cette thèse s’intéressent à la mesure de la ségrégation ou
polarisation. Une formulation générale de ce problème, qui regroupe diverses applications
pratiques, est la suivante. On considère une population d’intérêt divisée en deux groupes
exogènes : un groupe dit minoritaire et un groupe dit majoritaire (l’extension à un nombre
supérieur de groupes est possible mais non triviale). Chaque individu de la population fait
des choix parmi un ensemble d’options, au moins un choix, possiblement plusieurs.13

Les groupes sont qualifiés d’exogènes au sens où le fait d’appartenir au groupe minori-
taire ou au groupe majoritaire ne dépend pas des choix réalisés. C’est une caractérisation
individuelle donnée a priori. Un problème différent serait de construire des groupes co-
hérents à partir de l’observation des choix réalisés (problème de clustering non-supervisé)
ou de classifier les individus comme membres du groupe minoritaire ou du groupe majori-
taire selon leurs choix (problème de classification supervisée). Cette problématique n’est
pas abordée dans cette thèse.

Les termes abstraits d’option et de choix prennent leurs significations concrètes selon
les applications. Les chapitres 1 et 2 s’intéressent à la ségrégation résidentielle. Dans ce
cas, une option (aussi appelé une unité dans un cadre de ségrégation résidentielle, scolaire
ou professionnelle) est un voisinage, une aire résidentielle d’une trentaine de logements
adjacents tandis qu’un choix est un choix de localisation de la résidence principale, les

13Tout au long de cette thèse, les mots “polarisation” et “ségrégation” sont principalement employés
comme synonymes. S’il fallait les distinguer formellement, on pourrait restreindre le terme “ségrégation”
aux situations dans lesquelles les individus font un seul choix (par exemple, la localisation de sa résidence
principale) tandis que le terme “polarisation” s’appliquerait lorsque les individus peuvent faire plus d’un
choix (par exemple des choix de consommation où un individu peut acheter plusieurs produits).
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individus choisissent où ils vivent. L’application du chapitre 3 porte sur la polarisation du
langage politique. Dans ce contexte, une option est un mot (ou un groupe de mots, une
expression) d’un certain dictionnaire. Une option est ainsi une entrée de ce dictionnaire
tandis que les choix correspondent aux occurrences de ces mots, les individus choisissent
les mots qu’ils utilisent lorsqu’ils parlent. Dans une problématique microéconomique plus
classique, cette formalisation comprend également l’étude des choix de consommation de
deux groupes de consommateurs : à quel point ces deux groupes ont-ils des comportements
d’achat différents ? Dans ce cadre, une option est simplement un produit et un choix un
achat d’un produit donné. La Figure 2 ci-dessous schématise cette modélisation commune
de la mesure de la ségrégation ou polarisation.

Figure 2: Modélisation commune du problème de mesure de la ségrégation ou polarisation.

Qualitativement, on dira qu’il y a de la ségrégation ou de la polarisation lorsque la
façon dont les individus font leurs choix (le processus générateur des données dans une
approche statistique ou économétrique) est telle que les deux groupes choisissent des
options différentes. Par exemple, dans le contexte de la polarisation du discours politique
au Congrès américain, la présence de polarisation signifie que les Républicains et les
Démocrates emploient des mots différents lorsqu’ils s’expriment au Congrès. Dans le
cadre de la ségrégation résidentielle, il y a ségrégation lorsque les individus du groupe
minoritaire sont concentrés dans certaines aires résidentielles, sur-représentés dans certaines
et sous-représentés dans d’autres.14

La question de la mesure de la polarisation consiste à quantifier, au moyen d’un nombre
normalisé (typiquement entre 0 et 1) appelé indice de ségrégation ou de polarisation, dans
quelle mesure les membres des deux groupes tendent à choisir des options différentes.

14Dans la lignée de la littérature académique existante, le terme “ségrégation” est utilisé tout au long
de cette thèse dans un sens neutre, descriptif, afin de faire référence à un tel phénomène de concentration,
qu’elles que soient les causes sous-jacentes.
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Une alternative intéressante pour appréhender la polarisation utilise les notions
d’information et de prédiction : si j’observe l’option choisie par un individu, est-ce
que cela m’aide à prédire le groupe, minoritaire ou majoritaire, auquel appartient cet
individu ? Par exemple, si j’entends qu’un représentant utilise l’expression “undocumented
workers” (travailleurs sans-papier) durant un débat parlementaire, est-ce que cela m’aide
pour déterminer si ce représentant est Démocrate ou Républicain ? Dans un contexte
de ségrégation résidentielle, supposons qu’on définisse le groupe minoritaire comme com-
posé des individus ayant un diplôme universitaire de niveau Licence ou plus, le groupe
majoritaire comme le complément. Dans ce cadre, si j’apprends qu’un individu habite à
Paris intra-muros, est-ce que cela modifie ma croyance sur son appartenance au groupe
minoritaire ou majoritaire ?

Introduisons quelques notations pour formaliser ce problème de mesure de la polari-
sation.15 Soient J l’ensemble des options possibles et J le nombre d’options distinctes,
indexées par j. On suppose qu’on observe un échantillon de n choix parmi cet ensemble
d’options, c’est-à-dire qu’au minimum, on observe pour chaque option j = 1, . . . , J , les
variables suivantes : le nombre KR

j (respectivement KD
j ) de choix faits par des membres du

groupe minoritaire ou de référence R (respectivement de choix faits par l’autre groupe D)
optant pour l’option j et le nombre total Kj := KR

j +KD
j de choix optant pour l’option j.

Une façon naturelle de quantifier la polarisation ou la ségrégation est de s’intéresser
aux variations entre les proportions empiriques (KR

j /Kj)j=1,...,J . Intuitivement, plus il y a
de variation parmi ces proportions, plus la polarisation est importante. En effet, imaginons
qu’une majorité de ces proportions sont proches de 0 ou proches de 1, cela signifie que la
plupart des options sont sélectionnées par seulement un des deux groupes ; autrement dit,
les deux groupes tendent à choisir systématiquement des options différentes. Inversement,
s’il y a peu de variation parmi les proportions (KR

j /Kj)j, c’est-à-dire si les quantités
KR
j /Kj sont plus ou moins constantes inter j, alors nous sommes dans une situation de

faible polarisation dans laquelle les choix des deux groupes se répartissent de façon à peu
près identique entre les options possibles. Une première définition naturelle d’un indice de
polarisation sera donc une fonction associant à (KR

j /Kj)j=1,...,J un indice de façon telle que
l’indice est d’autant plus élevé que les variations sont importantes parmi les proportions
(KR

j /Kj)j.
Bien qu’intuitive, l’utilisation de la variation au sein des proportions (KR

j /Kj)j pose
problème lorsque les Kj sont petits. Afin d’expliquer cela, définissons un autre objet : pour
chaque option j, ρj est la probabilité conditionnelle, sachant que le choix a sélectionné
l’option j, que le choix a été fait par un individu du groupe de référence R (par opposition
à avoir été fait par un individu de l’autre groupe D).16

Lorsqu’on cherche à mesurer le niveau de polarisation, on peut soutenir que le bon point
de comparaison, correspondant à l’absence de polarisation (où l’indice de polarisation prend
sa valeur minimale, typiquement normalisée à 0), est la situation d’une répartition aléatoire
(“randomness benchmark”) définie par l’égalité de toutes les probabilités (ρj)j=1,...,J . Ce
point de comparaison est distinct d’une situation d’égalité des proportions empiriques
(“evenness benchmark”) caractérisée par l’égalité de toutes les proportions (KR

j /Kj)j=1,...,J .
15Les notations utilisées ici reprennent celles du chapitre 3. Celui-ci s’intéresse au problème de mesure de

la ségrégation ou polarisation d’une façon plus générale par rapport aux chapitres 1 et 2, qui se focalisent
plutôt sur le cadre de ségrégation résidentielle. Dans ces deux chapitres, la notation X (respectivement p)
correspond à la notation KR (respectivement ρ) employée dans cette introduction.

16Par la formule de Bayes, il s’agit de la probabilité conditionnelle “inverse” de celle considérée dans le
paragraphe précédent qui présente la polarisation en termes d’information et de prédiction.
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Dans cette thèse, on adopte la comparaison à une répartition aléatoire pour définir et
mesurer la polarisation : on dira qu’il y a un niveau non nul de polarisation si et seulement
si les probabilités (ρj)j ne sont pas toutes égales. Autrement dit, on définit le niveau de
polarisation comme une fonction des probabilités sous-jacentes ρj et non en fonction des
proportions observées KR

j /Kj.17
On modélise (KR

j , Kj, ρj)j=1,...,J comme des variables aléatoires indépendantes et iden-
tiquement distribuées (i.i.d.). C’est pourquoi on omettra parfois l’indice j afin d’alléger les
notations : KR, K, ρ est une instance générique de ces variables, ayant la même distribution
que KR

j , Kj, ρj) quel que soit j. Sous cette hypothèse, l’égalité des probabilités ρj signifie
que la distribution de ρ est dégénérée : ρ est une variable aléatoire constante (masse de
Dirac).

KR
j /Kj , étant la proportion des choix portant sur l’option j réalisés par le groupe R, est

un estimateur de ρj . Cependant, il n’est consistent que si Kj tend vers l’infini. Lorsque K
est petit, les indices “naïfs” de polarisation, ceux fondés sur les proportions observées
(KR

j /Kj)j=1,...,J , sur-estiment le niveau de ségrégation ; dans la littérature, ce problème est
connu sous le nom de “biais de petites unités” (“small-unit bias”). L’idée est la suivante :
même si les probabilités (ρj)j=1,...,J sont toutes égales, avec des Kj finis, il y aura des
variations dans les proportions (KR

j /Kj)j=1,...,J . En d’autres termes, en plus de la variation
au sein des probabilités (ρj)j , laquelle définit le niveau réel de polarisation, la variation au
sein des proportions (KR

j /Kj)j incorpore des fluctuations aléatoires dues à la finitude des
Kj. Ce biais est d’autant plus marqué que K est petit.

De surcroît, ce biais de petites unités empêche des comparaisons fiables du niveau de
polarisation au cours du temps ou entre pays ou situations puisque l’ampleur du biais
peut changer.

Par exemple, le chapitre 2 étudie la ségrégation résidentielle en France entre 1968
et 2019 à l’aide des données de l’Enquête Emploi. Au cours de cette période, suite à
des changements dans la confection de l’enquête, la taille des unités (les voisinages ou
aires résidentielles ici) a diminué au cours du temps : K ≈ 70 en moyenne durant les
années 1970 mais K ≈ 30 entre 2003 et 2019. En conséquence, l’ampleur du biais est
plus important dans les années plus récentes. Toutes choses égales par ailleurs, si le
niveau réel de ségrégation restait constant, les indices naïfs de ségrégation utilisant les
proportions KR

j /Kj , qui ne prennent pas en compte le biais, suggéreraient une hausse de la
ségrégation au cours du temps. Ce résultat serait toutefois fallacieux, étant dû uniquement
au changement de la magnitude du biais de petites unités qui impacte les indices naïfs.
Des mesures de la ségrégation robustes à ce biais de petites unités sont ainsi cruciales pour
étudier de façon fiable les évolutions temporelles du niveau de polarisation ou réaliser des
comparaisons entre pays.

Ce biais de petites unités survient dans de nombreuses applications empiriques puisqu’il
est courant que chaque option ne puisse contenir qu’un nombre limité de choix, c’est-à-dire

17Les termes de niveau réel (“real”) ou de vrai (“true”) niveau de polarisation qu’on peut trouver dans
cette thèse sont employés pour faire référence à cette définition de la polarisation en insistant sur la
distinction avec une approche fondée sur les proportions KR

j /Kj . Pour autant, cela ne signifie pas que la
comparaison à une situation d’égalité des proportions n’est pas intéressante. En particulier, si l’on étudie
les conséquences de la ségrégation, il est probablement préférable d’utiliser les réalisations du processus
générant les choix des individus, c’est-à-dire les proportions empiriques observées KR

j /Kj . Toutefois,
lorsque l’objectif est la mesure du niveau de polarisation, je pense qu’il est plus pertinent d’étudier les
paramètres du processus générateur des données (les données étant ici les choix réalisés par les individus,
et partant les proportions KR

j /Kj), paramètres que sont justement les probabilités ρj ; de là, le choix de
cette définition de la polarisation fondée sur les probabilités ρj .
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que K soit petit. Dans des contextes de ségrégation, une part majoritaire des entreprises (a
fortiori des lieux de travail) compte moins de dix employés (ségrégation professionnelle), les
classes comportent en général entre vingt et quarante élèves (ségrégation scolaire). Dans des
contextes plus généraux de polarisation, ce biais est présent lorsque le nombre J d’options
pouvant être choisies est grand relativement au nombre de choix observés n := ∑J

j=1Kj.
Il est essentiel de comprendre qu’avoir plus de données ne résout en rien ce problème

de biais de petites unités ; ce n’est pas un problème dû à de petites tailles d’échantillon
en ce sens. En effet, dans le contexte de ségrégation scolaire par exemple, avoir un plus
grand échantillon signifie observer plus de classes, c’est-à-dire augmenter J . Or, cela ne
change pas le nombre K limité d’élèves par classe, qui reste fini et suffisamment petit en
pratique pour que le biais de petites unités ne soit pas négligeable. Plus généralement,
ce biais intervient dès lors que la définition concrète d’une option (laquelle dépend de
l’application spécifique considérée) est telle que sa capacité, au sens du nombre K de choix
sélectionnant cette option, est limitée. Formellement, l’asymptotique du modèle statistique
porte sur la dimension J tendant vers l’infini (et partant, n tend également vers l’infini)
par opposition à une modélisation avec un nombre J fixé d’options et un nombre n de
choix observés tendant vers l’infini.

Plus généralement, cette asymptotique où J tend vers l’infini n’est pas limitée à des
contextes de ségrégation où les unités (les options) ont une capacité contrainte. Dans divers
cas, observer davantage de données au sens d’observer davantage de choix (n augmente)
implique également d’observer davantage d’options (J = J(n) augmente aussi). Par
exemple, c’est le cas pour des données textuelles ou des retranscriptions de discours qui
sont analysées au chapitre 3. En effet, il existe une relation empirique, un fait stylisé
reliant la longueur n d’un corpus de textes (le nombre de choix, soit ici le nombre total
d’occurrences de mots) et la richesse, la taille J du vocabulaire de ce corpus (le nombre de
mots distincts employés dans le corpus).18 Lorsqu’on observe plus de textes, on observe
aussi de nouveaux mots. De façon analogue, si, par exemple, on observe davantage de choix
d’achats de voitures, un chercheur, statisticien ou économètre étudiant le comportement
d’achat des voitures peut se permettre, ayant davantage de données, de raffiner sa définition
des produits, autrement dit, de distinguer comme des produits distincts des voitures proches
qui étaient auparavant considérées comme le même produit (la même option) avec peu de
données. Dans ce genre de situations, on peut défendre qu’une asymptotique représentant
le fait d’observer plus de données par n tendant vers l’infini alors que J est maintenu fixe
dénature la situation en ne prenant pas en compte la relation existant entre J et n. Une
approximation asymptotique plus crédible est d’avoir J et n tendant simultanément vers
l’infini pour représenter ce type de données de choix dans un grand nombre d’options,
dans de grands ensembles de choix (“large or high-dimensional choice sets”).

La première partie de cette thèse cherche à mesure de façon fiable le niveau de
polarisation dans de telles situations avec une asymptotique du nombre J d’options
tendant vers l’infini (et n tendant aussi vers l’infini par conséquent) alors que le nombre K
de choix observés par option reste limité.

Le chapitre 1 présente une commande Stata qui met en oeuvre trois méthodes proposées
dans la littérature pour prendre en compte le biais de petites unités.

Le chapitre 2 est plus appliqué ; il utilise cette commande Stata pour mesurer le niveau
de ségrégation résidentielle en France entre 1968 et 2019 en comparant différentes définitions
des groupes minoritaires et majoritaires en fonction de diverses variables démographiques

18Voir la Remarque 3.1 du chapitre 3 pour davantage de détails.
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et socio-économiques.
Le chapitre 3 propose un modèle statistique et une méthode pour identifier et estimer

un indice de polarisation dans de grands ensembles de choix ; il applique ensuite cette
méthodologie aux données textuelles en étudiant la polarisation du langage politique à
partir des discours prononcés au Congrès américain entre 1873 et 2016.

La deuxième partie de cette thèse traite de statistiques et d’économétrie théorique.
Par rapport au cadre de la première partie où les données comportent deux dimensions (le
nombre de choix et le nombre d’options), les données sont ici plus standard : n observations
univariées (X1, . . . , Xn au chapitre 4 et un n-échantillon d’une variable de résultat (variable
aléatoire réelle) et de régresseurs (vecteur aléatoire) (Y1, X1), . . . , (Yn, Xn) au chapitre 5
qui étudie des modèles de régression linéaire. Dans ces deux cas, l’asymptotique considérée
dans cette thèse est en la taille de l’échantillon n tendant vers l’infini. Pour autant, la
deuxième partie de cette thèse s’intéresse principalement à l’inférence non-asymptotique,
c’est-à-dire à la construction de procédures statistiques dont les garanties théoriques sont
vérifiées pour toute taille d’échantillon n par opposition à des résultats limites valides
lorsque n tend vers l’infini.

Le chapitre 5 construit des intervalles de confiances (ICs) non-asymptotiques pour les
coefficients individuels d’un modèle de régression linéaire : ces ICs ont une probabilité
de contenir le paramètre d’intérêt au moins égale à leur niveau nominal pour toute taille
d’échantillon. Ces ICs sont obtenus pour des régresseurs exogènes et également dans des
situations d’endogénéité avec un régresseur endogène, un instrument, et d’éventuelles
variables de contrôle exogènes. Ils reposent sur des résultats obtenus dans le chapitre 4 :
des bornes non-asymptotiques (valides pour toute taille d’échantillon) explicites sur la
distance (en norme infinie ou norme uniforme) entre la fonction de répartition d’une
somme standardisée de variables aléatoires indépendantes et centrées et son expansion
d’Edgeworth au premier ordre. Pour présenter ces notions et les principaux défis des CIs
non-asymptotiques, le reste de cette introduction présente un exemple : l’inférence sur
une simple espérance.19

Introduction à l’inférence non-asymptotique : le cas d’une simple espérance

On observe n ∈ N∗ variables aléatoires réelles indépendantes et identiquement distribuées
(i.i.d.) (Di)ni=1

i.i.d.∼ PD. On note D ⊆ R le support de la loi de D1, laquelle est notée PD.
P(D) désigne l’ensemble des lois de probabilités sur D.

On suppose que les données suivent un certain modèle statistique dont le paramètre
peut être décomposé en une partie de dimension finie (ici de dimension 1 pour l’espérance)
et la partie restante :

PD ∈
{

Pθ ∈ P(D), θ = (θ1, θ2) ∈ Θ := R×Θ2
}
,

où Θ2 est un espace topologique. Cette modélisation correspond au cas classique de
modèles semi-paramétriques où l’on est intéressé par un paramètre fini-dimensionnel θ1
mais, pour la richesse du modèle, le processus générateur des données (“data-generating
process”) dépend également d’un paramètre de nuisance θ2, lequel est potentiellement de
dimension infinie.

19Cet exemple est inspiré des exemples 4.1 du chapitre 4 et 5.1 du chapitre 5. Il reprend directement
certains développements du chapitre 5.
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Dans cet exemple, D := R, θ1 :=
∫
u dPD ∈ R est simplement l’espérance de D1,

θ2 := PD est la loi des données, et Θ2 est l’ensemble des lois de probabilités sur R ayant
une variance finie : Θ2 := {P ∈ P(R) :

∫
u2dP < +∞}.

On cherche à construire un intervalle de confiance (IC) pour θ1. Un intervalle de
confiance (confidence interval) CI(1−α, n) est essentiellement un intervalle aléatoire de R,
qui dépend des données, et qui vient avec un niveau nominal souhaité 1− α ∈ (0, 1). Son
objectif est de contenir le paramètre cible θ1 avec une probabilité au moins égale à 1− α
et, idéalement, exactement égale à 1− α.

Idéalement égale à 1− α puisque, si l’on repense au principe de Neyman-Pearson pour
les tests paramétriques (la distinction entre les erreurs de première et de seconde espèce)
et leurs liens avec les ICs, choisir un niveau nominal 1 − α signifie qu’on est prêt à ce
que (et même on souhaite) que l’IC ne contienne pas le paramètre avec une probabilité
au plus α en échange d’une meilleure précision, au moyen d’un intervalle de confiance
ayant une longueur plus petite. Autrement dit, il n’est pas souhaitable que CI(1− α, n)
contienne θ1 avec une probabilité strictement supérieure à 1− α puisque, dans un tel cas,
cela signifie qu’on perd en précision : pour le même niveau nominal souhaité, on pourrait
avoir un CI avec une plus petite longueur.

Qualité d’un intervalle de confiance Plusieurs critères existent pour juger de la
qualité d’un intervalle de confiance CI(1− α, n) donné. Soit Θ̃ un sous-ensemble fixé de Θ.

Dans une perspective asymptotique, on dit que CI(1 − α, n) est asymptotiquement
exact ponctuellement sur Θ̃ lorsque

∀θ ∈ Θ̃, lim
n→+∞

PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
= 1− α. (5)

Il existe un critère asymptotique plus fort : CI(1− α, n) est dit être asymptotiquement
exact uniformément sur Θ̃ lorsque

lim
n→+∞

sup
θ∈Θ̃

∣∣∣PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
− (1− α)

∣∣∣ = 0. (6)

Si lim infn→+∞ inf
θ∈Θ̃ PP⊗n

θ

(
CI(1− α, n) 3 θ1

)
≥ 1− α, CI(1− α, n) est dit être asympto-

tiquement conservateur uniformément sur Θ̃.
Dans une approche non-asymptotique, on dit que CI(1−α, n) est non-asymptotiquement

conservateur sur Θ̃ lorsque

∀n ≥ 1, inf
θ∈Θ̃

PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
≥ 1− α. (7)

Cette propriété devient l’exactitude non-asymptotique sur Θ̃ de CI(1− α, n) si on a (7) et,
de plus, pour tout n ≥ 1, sup

θ∈Θ̃ PP⊗n
θ

(
CI(1− α, n) 3 θ1

)
= 1− α.

Pour présenter ces notions et les défis de l’inférence non-asymptotique, on construit
ci-dessous plusieurs intervalles de confiances pour θ1. A cette fin, on introduit la moyenne
empirique et la variance empirique des observations :20

Dn := 1
n

n∑
i=1

Di, σ̂2
n := 1

n− 1

n∑
i=1

(
Di −Dn

)2
.

20On utilise la variance empirique non-biaisée, avec un n− 1 au dénominateur, pour pouvoir appliquer
directement le théorème de Cochran-Fisher par la suite ; asymptotiquement, c’est équivalent à avoir un
estimateur de la variance avec n et non n− 1 au dénominateur.
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Approche asymptotique Tout d’abord, on peut construire un intervalle de confiance
reposant sur des résultats asymptotiques. Par la Loi des Grands Nombres et le Continuous
Mapping Theorem (CMT, préservation des différents modes de convergence de variables
aléatoires par des fonctions continues), σ̂2

n est un estimateur consistant de la variance de D.
Ainsi, le Théorème Central Limite, combiné avec le lemme de Slutsky et le CMT, permet
d’écrire √

n√
σ̂2
n

(
Dn − θ1

)
d−→ N (0, 1).

De là, en notant qP (τ) le quantile d’ordre τ ∈ (0, 1) d’une distribution P , on en déduit que

CIas(1− α, n) :=
Dn ± qN (0,1)(1− α/2)

√
σ̂2
n√
n


est asymptotiquement exact ponctuellement sur Θ. Plus généralement, ce genre de
construction est souvent ce qu’ont implicitement en tête les économètres et statisticiens
(appliqués) lorsque l’inférence se fonde sur la normalité asymptotique de l’estimateur
utilisé.

Cependant, certains résultats d’impossibilité impliquent que CIas(1−α, n) ne peut être
non-asymptotiquement conservateur sur l’intégralité de l’ensemble des paramètres Θ.21
Des hypothèses supplémentaires sont requises pour construire des ICs ayant des garanties
non-asymptotiques. D’après ma compréhension du problème, il existe pour cela deux
façons principales de procéder :

1. des hypothèses paramétriques sur la distribution de D peuvent permettre d’obtenir
l’exactitude non-asymptotique sur un “petit” sous-ensemble de Θ (au sens où ce
sous-ensemble est paramétrique, de dimension finie) ;

2. des inégalités de concentration qui requièrent la connaissance de bornes sur certains
moments ou d’autres caractéristiques (comme, par exemple, le support) de PD

peuvent donner des ICs non-asymptotiquement conservateurs sur de (plus) grands
sous-ensembles de Θ (au sens où ils sont non-paramétriques, de dimension infinie).

Le choix entre ces deux possibilités peut s’interpréter comme un arbitrage entre 1. la
précision (exactitude) d’un IC et 2. l’uniformité de ses garanties, la richesse du modèle
auquel il s’applique. Un exemple classique d’une construction de type 1. utilisant une
hypothèse paramétrique gaussienne et deux exemples de la méthode 2. sont présentés
ci-dessous.

IC non-asymptotiquement exact au moyen d’une hypothèse paramétrique
(gaussienne) Notions Tk une loi de Student avec k degrés de liberté. D’après le
théorème de Cochran-Fisher (observations i.i.d. gaussiennes), on a, pour toute taille
d’échantillon (sous réserve d’avoir n ≥ 2 pour calculer la variance empirique),

√
n√
σ̂2
n

(
Dn − θ1

)
∼ Tn−1.

21Le chapitre 5 fournit davantage de détails et des références.
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Par conséquent,

CIN(1− α, n) :=
Dn ± qTn−1(1− α/2)

√
σ̂2
n√
n


est non-asymptotiquement exact sur Θ̃N ( Θ où

Θ̃N :=
{
θ ∈ Θ : Pθ = N (θ1, σ

2), θ1 ∈ R, σ2 ∈ R∗+
}
.

Θ̃N peut être décrit comme un “petit” sous-ensemble de Θ dans la mesure où il est
paramétrique. Par ailleurs, CIN (1− α, n) est asymptotiquement exact ponctuellement sur
tout Θ puisque son comportement asymptotique est équivalent à celui de CIas(1− α, n)
lorsque n tend vers +∞.

IC non-asymptotiquement conservateur au moyen d’hypothèses non-
paramétriques (bornes sur la variance ou le support) Pour un certain M < +∞
connu, posons Θ̃BC := {θ ∈ Θ : VPθ [D] ≤M}. Par l’inégalité de Bienaymé-Chebychev
(BC),

CIBC(1− α, n) :=
[
Dn ±

√
M√
αn

]
est non-asymptotiquement conservateur sur Θ̃BC ( Θ. Par rapport à Θ̃N , Θ̃BC est un
grand sous-ensemble non-paramétrique de Θ.

Pour certains−∞ < a < b < +∞ connus, posons Θ̃H := {θ ∈ Θ : support(Pθ) ⊆ [a, b]}.
Par l’inégalité de Hoeffding (H),

CIH(1− α, n) :=
Dn ±

(b− a)√
2

√
log(2/α)
√
n


est non-asymptotiquement conservateur sur Θ̃H ( Θ. De même, par rapport à Θ̃N , Θ̃H

est grand au sens de non-paramétrique.

IC non-asymptotiquement conservateurs et asymptotiquement exacts Pour
comparer les longueurs de CIas(1−α, n), CIBC(1−α, n) et CIH(1−α, n), on peut remarquer
que, pour tout α ∈ (0, 1), qN (0,1)(1−α/2) <

√
2 log(2/α) et qN (0,1)(1−α/2) < 1/

√
α. Ceci

implique que les ICs reposant sur les inégalités de BC et de H sont asymptotiquement
conservateurs. Comme expliqué plus haut, être conservateur est un défaut d’un IC, a
fortiori asymptotiquement puisqu’il entraîne une perte de précision et ceci même lorsque
la taille de l’échantillon tend vers l’infini.

Dans le même temps, l’exactitude non-asymptotique est souvent très exigeante car,
typiquement, elle requiert des hypothèses paramétriques sur la distribution des données.
De telles hypothèses peuvent être restrictives dans des applications pratiques.

Au final, un objectif intéressant et a priori atteignable pour une inférence non-
asymptotique est de construire des ICs qui sont à la fois non-asymptotiquement con-
servateurs et asymptotiquement exacts.

Pour obtenir de tels ICs, la forme de CIas(1 − α, n) suggère qu’une expression telle
que qN (0,1)(1− α/2 + δn), pour la partie de la longueur de l’IC dépendant de α, avec un
δn bien choisi pour garantir que l’IC soit non-asymptotiquement conservateur et tel que
limn→+∞ δn = 0 pour avoir l’exactitude asymptotique est intéressante. C’est justement ce
que permettent d’obtenir l’inégalité de Berry-Esseen et les expansions d’Edgeworth.
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Inégalité de Berry-Esseen et expansions d’Edgeworth Ce paragraphe présente
brièvement l’inégalité de Berry-Esseen (BE) et les expansions d’Edgeworth (EE).22 Pour
commencer, il peut être intéressant de rappeler quelques résultats asymptotiques et
non-asymptotiques pour situer l’inégalité de BE parmi ceux-ci.

La Loi (faible) des Grands Nombres (LGN) est un résultat asymptotique qui donne
Dn

P−→ E[D]. Les inégalités de concentration (dont les inégalités de BC et de H sont
des exemples) sont des résultats non-asymptotiques : pour toute taille d’échantillon n,
elles fournissent un nombre tn,α tel que l’événement {|Dn − E[D]| ≤ tn,α} arrive avec une
grande probabilité (au moins 1− α). Elles peuvent être vues comme une quantification,
un équivalent non-asymptotique de la LGN.

Le Théorème Central Limite (TCL) donne une approximation de la distribution
de Dn lorsque la taille de l’échantillon tend vers l’infini : de façon informelle, on a
Dn ∼ N (E[D],V(D)/n) asymptotiquement. En ce sens, le TCL précise la vitesse de
convergence de la LGN, l’habituel 1/

√
n.23

L’inégalité de BE borne la distance uniforme (en norme infinie) entre la fonction de
répartition (f.d.r) de Dn, correctement centré et normalisé, et Φ, la f.d.r d’une loi Normale
centrée réduite N (0, 1) :

sup
x∈R

∣∣∣∣∣P
(
√
n
Dn − E[D]√

σ2
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ 1.88E(|D − E[D]]|3)
σ3√n

,

où σ2 est la variance deD.24 Ainsi, l’inégalité de BE peut être vue comme une quantification,
un équivalent non-asymptotique du TCL. Il faut noter que, par rapport au TCL, l’inégalité
de BE requiert un moment supplémentaire : D doit admettre un moment d’ordre trois
fini.

Introduisons quelques notations supplémentaires pour présenter les EE. On utilise ici
les notations du chapitre 4. Soit (Xi)i=1,...,n des variables aléatoires réelles indépendantes
mais non nécessairement identiquement distribuées (i.n.i.d.) supposées être centrées et
ayant un moment d’ordre quatre fini : γi := E[X4

i ] < +∞. On pose

– l’écart-type de la somme des Xi, Bn :=
√∑n

i=1 E[X2
i ], ainsi, la somme standardisée

des Xi est Sn := ∑n
i=1Xi/Bn,

– l’écart-type individuel moyen Bn := Bn/
√
n,

– l’écart-type individuel σi :=
√
E[X2

i ],

– la moyenne des moments ordinaires standardisés d’ordre trois λ3,n := 1
n

∑n
i=1 E[X3

i ]/B3
n,

– la moyenne des moments absolus standardisés d’ordre p Kp,n := 1
n

∑n
i=1 E[|Xi|p]/(Bn)p,

pour p ∈ N∗.

22Le chapitre 4 donne plus de détails.
23On peut remarquer que les inégalités de concentration indiquent également la vitesse de convergence

de la LGN.
24L’inégalité de BE écrite ici utilise la constante originale de 1.88 de Berry (1941). Des travaux plus

récents ont obtenu de plus petites constantes. Une des contributions du chapitre 4 est d’améliorer cette
inégalité en supposant des moments d’ordre quatre finis.
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Dans le cas de données i.i.d., on peut omettre l’indice i pour alléger les notations, et on
a σi = σ l’écart-type de X, Bn = σ

√
n, K4,n = K4 = E[|X|4]/σ4 le kurtosis de X (une

mesure de l’épaisseur des queues de distribution) et Sn =
√
n(Xn − E[X])/σ.

Les inégalités de Berry-Esseen cherchent à majorer la quantité

∆n,B := sup
x∈R
|P (Sn ≤ x)− Φ(x)| .

Les expansions d’Edgeworth sont un raffinement des inégalités de BE prenant en compte
la présence d’asymétrie non-asymptotique dans la distribution de Sn. Ils cherchent à
contrôler

∆n,E := sup
x∈R

∣∣∣∣∣P (Sn ≤ x)− Φ(x)− λ3,n

6
√
n

(1− x2)φ(x)︸ ︷︷ ︸
=:Edgn(x)

∣∣∣∣∣,

où Φ(x) + λ3,n
6
√
n
(1 − x2)φ(x) est appelé l’expansion d’Edgeworth au premier ordre de

P (Sn ≤ x) (φ est la densité d’une N (0, 1), la dérivée de Φ).
On peut se demander pourquoi s’intéresser à des bornes sur les quantités ∆n,B et ∆n,E.

La réponse est qu’elles donnent les inégalités de concentration idoines pour obtenir des
ICs non-asymptotiquement conservateurs mais simultanément asymptotiquement exacts.
En effet, pour tout n ∈ N∗, pour tout t > 0, on a (union disjointe et passage à l’événement
complémentaire)

P

√n
∣∣∣Xn

∣∣∣
σ

> t

 ≤ 1− P
(√

nXn

σ
≤ t

)
+ P

(√
nXn

σ
≤ −t

)

(+ et − pour voir un EE) ≤ 1−
(
P
(√

nXn

σ
≤ t

)
− Φ(t)− Edgn(t)

)

+
(
P
(√

nXn

σ
≤ −t

)
− Φ(−t)− Edgn(−t)

)
− Φ(t)− Edgn(t) + Φ(−t) + Edgn(−t)

(inég. triangulaire, Edgn(·) paire, ≤ 2Φ(−t) +
∣∣∣∣∣P
(√

nXn

σ
≤ t

)
− Φ(t)− Edgn(t)

∣∣∣∣∣
et Φ(t) = 1− Φ(−t)) +

∣∣∣∣∣P
(√

nXn

σ
≤ −t

)
− Φ(−t)− Edgn(−t)

∣∣∣∣∣
(définition de ∆n,E) ≤ 2 {Φ(−t) + ∆n,E} .

Finalement, si on résout en t l’équation

2 {Φ(−t) + ∆n,E} = α ⇐⇒ Φ(t) = 1− α

2 + ∆n,E,

et si on pose Xi := Di − E[D], en prenant l’événement complémentaire dans le précédent
calcul, on obtient

Pr
(√

n |Dn − E[D]|
σ

≤ qN (0,1)

(
1− α

2 + ∆n,E

))
≥ 1− α. (8)

Si on suppose que σ, l’écart-type de X (ou de façon équivalente, de D) est connu (cas
de l’inférence sur une espérance avec une variance supposée connue), dès lors qu’on dispose
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d’une borne δn sur ∆n,E qui est telle que limn→+∞ δn = 0, ce calcul permet d’obtenir un
CI ayant les propriétés recherchées : (i) le résultat de l’équation (8) est valide pour toute
taille d’échantillon, d’où un IC non-asymptotiquement conservateur ; (ii) la longueur de
l’IC converge vers celle de CIas(1− α, n), d’où un IC asymptotiquement exact.

Lorsque σ est inconnu, une étape supplémentaire est requise afin de le remplacer par
son estimateur

√
σ̂2
n, mais l’idée générale demeure la même.

En substance, le chapitre 5 réalise la même analyse pour l’estimateur des Moindres
Carrés Ordinaires (MCO) dans un modèle de régression linéaire au lieu de la moyenne
empirique Dn étudiée dans cet exemple introductif.

L’exactitude asymptotique est une propriété théorique intéressante. Toutefois, en
pratique, pour un niveau nominal donné, plus la borne δn sur ∆n,E est petite, plus la
longueur de l’IC est petite, d’où une meilleure précision. De là l’intérêt de trouver des
constantes aussi petites que possibles pour les bornes sur ∆n,B et ∆n,E. A ma connaissance,
les meilleures bornes existantes viennent de Shevtsova (2013), avec ∆n,B ≤ 0.5583K3,n/

√
n

(cas i.n.i.d.) et ∆n,B ≤ 0.4690K3,n/
√
n (cas i.i.d.). Elles sont obtenues en supposant

seulement des moments d’ordre trois finis.
Dans l’étude des régressions linéaires, la façon standard de faire de l’inférence, à partir

de la normalité asymptotique de l’estimateur MCO, nécessite des moments d’ordre quatre
finis pour les régresseurs. C’est pourquoi le chapitre 4 cherche à améliorer les bornes
sous l’hypothèse de moments d’ordre quatre finis. Nous faisons cela en obtenant des
bornes sur ∆n,E, qui donnent des bornes sur ∆n,B. En effet, l’inégalité triangulaire et
supx∈R(|1− x2|φ(x)/6) < 0.0665 permettent d’écrire

∆n,B ≤ ∆n,E + 0.0665λ3,n√
n

.

Finalement, il faut garder en tête que les intervalles de confiance CIBC(1 − α, n)
(respectivement CIH(1 − α, n)) nécessitent une borne M connnue (des bornes a et b
connues) sur la variance (le support) des observations. De même, l’IC obtenu ci-dessus à
partir des inégalités de Berry-Esseen et des expansions d’Edgeworth requièrent des bornes
sur certains moments afin de calculer δn, à savoir sur λ3,n (le coefficient d’asymétrie de X
dans un cadre i.i.d.), K3,n (le moment absolu standardisé d’ordre trois) et K4,n (le kurtosis
de X dans un cadre i.i.d.). Il s’avère qu’une borne sur K4,n est en fait suffisante puisque
|λ3,n| < 0.621K3,n (Pinelis, 2011) et K3,n ≤ K

3/4
4,n (inégalité de Jensen). En l’absence

d’hypothèses paramétriques fortes (comme l’hypothèse d’observations gaussiennes vue
ci-dessus), il semble difficile pour l’inférence non-asymptotique d’éviter d’avoir à connaître
de telles bornes. En pratique, il faut donc se demander comment les choisir. Les chapitres 4
et 5 discutent ce point.
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Présentation et résumé de chacun des chapitres
Il s’agit des traductions en français des présentations et des résumés (abstract) présents
dans le corps du manuscrit, rédigé en anglais, à chaque début de chapitre.

Chapitre 1 “segregsmall : une commande Stata pour estimer la ségrégation dans un
contexte de petites unités”.

Présentation. Ce premier chapitre est directement repris d’un article publié avec deux
co-auteurs, Xavier D’Haultfœuille et Roland Rathelot dans The Stata Journal, 21(1), pages
152-179, mars 2021 (accès à l’article depuis le site internet de l’éditeur ici). Par rapport à
la version publiée, la version de ce manuscrit présente simplement quelques modifications
mineures et des annexes supplémentaires. Elle présente une commande Stata permettant
d’estimer des indices de ségrégation. Le package Stata correspondant peut-être installé en
exécutant dans une console Stata la ligne suivante :
net install segregsmall, from (“https://raw.githubusercontent.com/rolandrr/segregsmall-stata/master/”)

Résumé. Considérons une population d’intérêt, formée d’un groupe minoritaire et
d’un groupe majoritaire, dont les individus sont répartis dans des unités, telles que des
quartiers résidentiels, des entreprises, des classes, etc. D’un point de vue qualitatif, il y
a de la ségrégation dès lors que le processus d’allocation des individus dans les unités
conduit à une concentration des individus minoritaires dans certaines unités davantage
que dans d’autres. Les mesures quantitatives de la ségrégation sont confrontées au biais de
petites unités (“small-unit bias”). En effet, quand les unités contiennent peu d’individus,
les indices fondés sur les proportions observées d’individus minoritaires par unité sont
biaisés. Ils sur-estiment le niveau réel de ségrégation, indiquant par exemple un niveau non
nul de ségrégation alors même que le processus d’allocation serait entièrement aléatoire,
répartissant les individus minoritaires uniformément entre les différentes unités. La
commande Stata segregsmall met en oeuvre trois méthodes permettant de corriger ce
biais : l’approche non-paramétrique, avec identification partielle, de D’Haultfœuille et
Rathelot (Quantitative Economics, 2017), l’approche paramétrique de Rathelot (Journal of
Business and Economic Statistics, 2012) et la correction linéaire de Carrington and Troske
(Journal of Business and Economic Statistics, 1997). La commande permet également de
réaliser des analyses conditionnelles, c’est-à-dire des mesures de la ségrégation prenant en
compte les caractéristiques des individus ou des unités.

Chapitre 2 “Mesures de plusieurs dimensions de la ségrégation résidentielle en France
entre 1968 et 2019 à partir des grappes de logements de l’Enquête Emploi”.

Présentation. Le premier chapitre présente la commande Stata segregsmall. Ce second
chapitre utilise cet outil pour mesurer la ségrégation résidentielle en France. L’analyse
est faite entre 1968 et 2019 afin d’étudier l’évolution temporelle du niveau de ségrégation.
Elle compare également les niveaux de ségrégations entre plusieurs dimensions, c’est-à-dire
différentes façons (à partir de variables individuelles démographiques et socio-économiques)
de définir les groupes minoritaire et majoritaire.

Je remercie l’INSEE, le réseau Quetelet-Progedo Diffusion et le Comité du Secret
Statistique pour l’accès aux bases de données utilisées dans ce projet : Enquête Emploi
1968-2002, Enquête Emploi en continu (version FPR) 2003-2019.

Résumé. Cet article tire profit de la méthode de sondage de l’Enquête Emploi française
(Labor Force Survey), qui échantillonne des grappes (clusters) d’une trentaine de logements
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adjacents, pour étudier différentes dimensions de la ségrégation résidentielle en France
entre 1968 et 2019. Ces grappes constituent des aires résidentielles ou voisinages pertinents
pour étudier la ségrégation résidentielle sous réserve de prendre en compte le biais de
petites unités (“small-unit bias”) afin de pouvoir comparer de façon fiable les niveaux de
ségrégation au cours du temps ou pour différentes dimensions (par exemple, personnes de
nationalité française contre personnes de nationalité étrangère, personnes au chômage contre
personnes employées sur le marché du travail, personnes ayant un diplôme universitaire
contre les autres, cadres et professions intellectuelles supérieures contre les autres professions
et catégories socio-professionnelles (PCS), etc.) En utilisant les méthodes développées
par D’Haultfœuille et Rathelot (Quantitative Economics, 2017) et Rathelot (Journal of
Business and Economic Statistics, 2012), l’article estime des indices de ségrégation annuels
pour différentes définitions du groupe minoritaire et du groupe majoritaire, cherchant ainsi
à quantifier et comparer différentes dimensions de la ségrégation résidentielle. Les résultats
suggèrent deux conclusions principales. Premièrement, quelle que soit la dimension étudiée
(ethnicité, immigrés contre non-immigrés, nationalités, PCS, positions sur le marché du
travail, diplômes), les indices estimés ne présentent pas d’évolution significative au cours
du temps : au sein de chaque dimension, le niveau de ségrégation résidentielle est ainsi
resté globalement stable au cours des dernières décennies. Deuxièmement, les estimations
mettent en évidence des niveaux de ségrégation différents selon la dimension étudiée, avec
l’ordre suivant, par niveau décroissant de ségrégation : par nationalité, par ethnicité (en
utilisant comme proxy le pays de naissance des parents d’un individu), entre immigrés
et non-immigrés, puis par statuts sociaux (via les PCS ou les niveaux de diplôme), et
enfin selon les positions sur le marché du travail (chômeurs contre employés). Une analyse
conditionnelle, distinguant les grappes situées dans des aires urbaines de plus de 200 000
habitants de celles dans de plus petites aires urbaines, complète l’analyse inconditionnelle.

Chapitre 3 “Identification et estimation d’un indice de polarisation dans de grands
ensembles de choix, avec une application aux débats du Congrès américain entre 1873 et
2016”.

Présentation. Ce chapitre provient d’un projet en cours, un travail conjoint avec
Xavier D’Haultfœuille et Roland Rathelot. Dans la lignée des chapitres 1 et 2, il traite de
l’identification et de l’estimation de la polarisation. La différence est qu’il se concentre
sur des situations de grands ensembles de choix (large or high-dimensional choice sets)
au sens où il est possible d’observer certaines options, voire même une large proportion
des options, qui ne sont choisies qu’une seule fois. Dans un contexte de ségrégation, cela
correspondrait à des unités comportant un seul individu (une aire résidentielle formée d’une
seule personne pour la ségrégation résidentielle, par exemple). De telles unités étaient très
rares et exclues de l’analyse dans ces contextes de ségrégation (voir l’option withsingle
de la commande Stata segregsmall) tandis que cette possibilité est explicitement prise
en compte et étudiée dans ce chapitre 3.

Résumé. Récemment, les divisions politiques ont semblé s’accroître dans plusieurs
démocraties. Le langage, en tant que déterminant fondamental de l’identité d’un groupe,
pourrait être un des facteurs de ces divisions. “Chasse aux sorcières” (“witch hunt”) au
lieu d’“audiences dans la procédure de destitution” (“impeachment hearing”) ; “travailleurs
sans-papiers” (“undocumented workers”) contre “étrangers clandestins” (“illegal aliens”) ;
“charges sociales” à la place de “cotisations sociales” (voire “part du salaire mutualisé
et différé”) : ce genre d’expressions partisanes font référence aux mêmes objets mais
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avec des connotations différentes. Elles se diffusent dans l’espace médiatique et peuvent
influencer, par des effets de formulation notamment (framing effect), les opinions publiques.
D’où l’intérêt de mesurer le niveau de polarisation du langage politique et de comparer
son évolution temporelle ou entre pays. Une possibilité pour cela serait une étude
linguistique des discours politiques. Une autre voie est l’étude statistique laquelle, malgré
ses simplifications dans la représentation des textes (les données finales sont des décomptes
de mots), permet d’étudier d’immenses corpus (exhaustifs) de textes sans avoir à spécifier
ex-ante les expressions partisanes. Elle cherche à quantifier dans quelle mesure des groupes
distincts (par exemple, les Démocrates et les Républicains au Congrès américain entre
1873 et 2016) utilisent des mots différents lorsqu’ils s’expriment. Gentzkow, Shapiro et
Taddy (Econometrica, 2019) abordent ce problème au moyen d’un modèle de choix discret
estimé grâce à une méthode d’apprentissage statistique de pénalisation. Nous proposons
une méthode alternative présentant plusieurs avantages : (i) elle repose sur un résultat
théorique d’identification partielle du paramètre d’intérêt (un indice de polarisation) dans
un modèle statistique en partie testable, (ii) elle fournit des estimateurs simples et très
peu coûteux numériquement des bornes d’identification ainsi qu’un intervalle de confiance
pour le paramètre, (iii) elle requiert seulement des données agrégées (sans avoir à suivre
l’identité des individus réalisant les choix). Par conséquent, il est facile d’appliquer notre
méthode à d’autres contextes avec la même problématique de quantifier les différences
entre les choix faits par des individus séparés en deux groupes dans un grand ensemble
d’options possibles (high-dimensional or large choice sets) – c’est-à-dire lorsque le nombre
d’options possibles est grand relativement au nombre de choix observés dans les données.
Dans notre application, ces choix sont des choix de mots prononcés par des représentants
Démocrates ou Républicains, mais il pourrait aussi bien s’agir de choix de localisation de
résidence entre des immigrés et non-immigrés pour étudier une dimension de la ségrégation
résidentielle par exemple, ou encore de produits choisis par deux groupes distincts de
consommateurs.

Chapitre 4 “Bornes non-asymptotiques explicites sur la distance à l’expansion
d’Edgeworth au premier ordre”.

Présentation. Ce quatrième chapitre ouvre la seconde partie de cette thèse qui concerne
l’inférence non-asymptotique. Il s’agit d’un travail commun avec deux co-auteurs, Alexis
Derumigny et Yannick Guyonvarch. La version présentée dans cette thèse est une version
révisée d’une version préprint Arxiv (arXiv:2101.05780v1).

Chronologiquement, ce travail pour borner des expansions d’Edgeworth (et ainsi obtenir
des inégalités de type Berry-Esseen) débuta après une version initiale du chapitre 5, dans
laquelle on utilisait les inégalités de Berry-Esseen existantes ne reposant que sur des
moments d’ordre trois finis. Toutefois, dans les modèles économétriques de régressions
linéaires, il est courant de supposer des moments d’ordre quatre finis pour les régresseurs
afin d’avoir un estimateur consistant de la variance asymptotique de l’estimateur MCO,
et d’obtenir ainsi les intervalles de confiance et tests statistiques asymptotiques usuels.
Des bornes précises, avec des constantes numériques aussi petites que possibles, sont
importantes en pratique pour faire de l’inférence non-asymptotique. D’où la motivation
initiale de ce chapitre : améliorer les bornes de Berry-Esseen existantes lorsqu’on suppose
des moments d’ordre quatre finis. Nous faisons cela au moyen de bornes sur les expansions
d’Edgeworth, lesquelles permettent d’affiner les inégalités de Berry-Esseen en prenant en
compte une possible asymétrie de la loi des données. Le projet s’est ensuite développé
pour étudier les cadres i.n.i.d. et i.i.d. et propose également des bornes plus précises
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sous une hypothèse de régularité supplémentaire, qui, en substance, requiert d’avoir des
observations dont la loi de probabilité admet une composante absolument continue par
rapport à la mesure de Lebesgue (par opposition à des lois discrètes).

Résumé. Cette article étudie des bornes sur la distance uniforme (en norme infinie) entre
la fonction de répartition d’une somme standardisée de variables aléatoires indépendantes
et centrées admettant des moments d’ordre quatre finis et son expansion d’Edgeworth au
premier ordre. Les bornes existantes sont améliorées dans deux cadres : lorsque les variables
sont indépendantes mais non identiquement distribuées et lorsqu’elles sont indépendantes
et identiquement distribuées. Des améliorations supplémentaires sont obtenues lorsque
le moment d’ordre trois de la distribution est nul (cas de lois symétriques). L’article
propose également des versions adaptées de ces bornes sous une hypothèse additionnelle
de régularité qui concerne le comportement des queues de la fonction caractéristique
de la somme normalisée des variables. Finalement, nous présentons une application
de ces résultats qui explique l’absence de validité non-asymptotique (pour une taille
d’échantillon finie) des tests unilatéraux reposant sur l’approximation gaussienne d’une
moyenne empirique.

Chapitre 5 “Sur la construction d’intervalles de confiance non-asymptotiques dans les
modèles linéaires”.

Présentation. Ce cinquième chapitre utilise les résultats du quatrième chapitre pour
construire des intervalles de confiance non-asymptotiques dans les modèles linéaires. Il
s’agit à nouveau d’un travail commun avec Alexis Derumigny et Yannick Guyonvarch.

Résumé. Nous cherchons à construire des intervalles de confiance (ICs) non-
asymptotiques pour les fonctionnelles linéaires du vecteur des coefficients d’un modèle de
régression linéaire, c’est-à-dire, des ICs qui ont une probabilité de contenir la vraie valeur
du paramètre au moins égale à leur niveau nominal quel que soit la taille de l’échantillon.
Dans un cadre de régression linéaire avec des régresseurs exogènes, nous proposons un
nouvel intervalle de confiance, ayant une expression explicite, et étroitement relié à l’IC
standard reposant sur la t-statistique. Toutefois, contrairement à ce dernier dont la
validité théorique n’est qu’asymptotique, notre IC est valide pour toute taille d’échantillon
et cela uniformément sur une large classe de distributions caractérisée uniquement par
des restrictions de moments (et non des hypothèses paramétriques). En particulier, nous
autorisons l’hétéroscédasticité des résidus mais avons besoin d’une borne sur le kurtosis de
la fonction d’influence de l’estimateur MCO. De plus, la longueur de notre IC converge en
probabilité vers celle de l’IC standard reposant sur la t-statistique. Ainsi, notre IC est
asymptotiquement exact. Nous étudions les performances pratiques de notre méthode
par des simulations. Nous étendons également nos résultats théoriques aux modèles
linéaires avec endogénéité. Dans le cadre d’un régresseur endogène, d’un instrument et de
variables de contrôle exogènes, nous proposons une modification de la région de confiance
d’Anderson-Rubin qui est valide non-asymptotiquement pour toute taille d’échantillon
sous des conditions analogues au cas exogène. Notre travail s’appuie sur une littérature
statistique ancienne, influencée de manière cruciale par Esseen (1945) et Cramer (1962).
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segregsmall: a Stata command to
estimate segregation in the presence
of small units

This first chapter is directly based on an article published with two co-authors, Xavier
D’Haultfœuille and Roland Rathelot, in The Stata Journal, 21(1), pp. 152-179, March
2021 (online access to publisher’s website here). The present chapter displays some minor
modifications and additional appendices compared to the published version. It presents a
Stata package to estimate segregation indices. The package can be installed from the Net
by typing within Stata the following command:
net install segregsmall, from (“https://raw.githubusercontent.com/rolandrr/segregsmall-stata/master/”)

Abstract Suppose that a population comprised of a minority and a majority group is allocated
into units, such as neighborhoods, firms, school classes, etc. Qualitatively, there is some segregation
whenever the allocation process leads to the concentration of minority individuals in some units more
than in others. Quantitative measures of segregation have struggled with the small-unit bias. When
units contain few individuals, indices based on the minority shares in units are upward biased. For
instance, they would point to a positive amount of segregation even when the allocation process is
strictly random. The Stata command segregsmall implements three recent methods correcting for such
bias: the nonparametric, partial identification approach of D’Haultfœuille and Rathelot (Quantitative
Economics, 2017), the parametric model of Rathelot (Journal of Business and Economic Statistics, 2012),
and the linear correction of Carrington and Troske (Journal of Business and Economic Statistics, 1997).
The package also allows for conditional analyses, namely measures of segregation taking into account
characteristics of the individuals or the units.
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1.1 Introduction

We consider a population made of two groups (minority and majority) whose individuals
are spread across units. Units can be geographical areas, residential neighborhoods, firms,
school classes, or other clusters, provided that every individual belongs to exactly one
unit. We seek to measure the extent to which individuals from the minority group are
concentrated in some units more than in others. Throughout the paper, we follow the
literature and use the word “segregation” as a neutral term to refer to such concentration.
Measuring the magnitude of segregation is a necessary step to understand the underlying
mechanisms and design adequate policies.

A natural way to measure segregation is to start from the minority shares Xi/Ki,
where Xi is the number of individuals from the minority group and Ki the number of
individuals (or unit’s size) in unit i ∈ {1, ..., n}, and then compute an inequality index
based on the distribution of the proportions Xi/Ki across the n units.

There are two possible benchmarks to assess the magnitude of these indices. Evenness
relates to the case where all minority shares Xi/Ki are equal across units. Randomness
relates to the case where the underlying allocation process assigns minority individuals at
random across units. If pi is the probability that an arbitrary individual in unit i belongs
to the minority, randomness means that the probabilities pi are equal across units. Past
research has stressed the difference between both benchmarks, especially when the units
are of small size (Cortese et al., 1976). The minority share Xi/Ki is only an estimate of
pi, and even if p1, . . . , pn are all equal, there will be some variation in the Xi/Ki, all the
more so as the units’ sizes Ki are small. If one is interested in the deviations from the
randomness case, indices based on minority shares, which measure the deviation from
evenness, will overestimate the level of segregation. This issue is known as the small-unit
bias.

The problem is pervasive in applied research. For workplace and school segregation,
a large share of firms have less than ten employees, and classes usually have between
twenty and forty students. The bias also arises when the units are not small per se, but
only surveys of individuals are available. This is the case when one attempts to measure
residential segregation using the local strata of households surveys.

Two main approaches have been proposed in the literature to deal with the small-
unit bias. One strand proposes to correct the so-called naive inequality indices based
on the minority shares Xi/Ki. The idea was initially proposed by Cortese et al. (1976)
and Winship (1977) for the Duncan index. Carrington and Troske (1997, CT hereafter)
extend the correction to other indices. Åslund and Skans (2009) adapt it to measure
segregation conditional on covariates. Allen et al. (2015) develop another adjustment
based on bootstrap. These corrections all aim to switch the benchmark from evenness to
randomness by subtracting an estimate of the bias from the initial, naive index.

Another approach, adopted by Rathelot (2012, R hereafter) and D’Haultfœuille and
Rathelot (2017, HR hereafter), defines segregation using an inequality index based on the
unobserved probabilities pi, as a functional of the distribution Fp of pi. In line with the
rest of the literature, they assume that the Xi are independent and follow a Bin(Ki, pi)
distribution. Conditional on Ki and pi, R assumes a mixture of Beta distributions for Fp
and derives the segregation index as a function of the distribution parameters. HR follow
a nonparametric method leaving Fp unspecified; they show that the first moments of Fp
are identified under the previous binomial assumption and obtain partial identification
results on the segregation measure. Both R and HR construct confidence intervals for the
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segregation indices. HR also extend the methodology to study conditional segregation
indices, namely measures of “net” or “residual” segregation taking into account other
covariates (either of units or individuals) that may influence the allocation process.

The Stata command segregsmall allows social researchers to measure segregation in
the context of small units. The command implements the methods proposed by R, HR,
and CT. Conditional indices are available for all three methods. With R and HR, the
command computes confidence intervals obtained by bootstrap. Finally, the command
also implements a test of the binomial assumption.

This paper describes the command and presents the three methods it implements.
Section 1.2 defines the set-up, the parameters of interest and synthesizes the estimation and
inference methods of R, HR, and CT. Section 1.3 details the syntax, options, stored results
of the segregsmall command, and discusses its execution time. Section 1.4 presents
an application of the command on French firm data to measure workplace segregation
between foreigners and natives across workplaces. Section 1.5 concludes.

1.2 Set-up, estimation, and inference

1.2.1 The setting and the parameters of interest

The population studied is assumed to be split into two groups: a group of interest,
henceforth the minority group, and the rest of the population.1 Individuals are distributed
across units. For each unit, we assume that there exists a random variable p that represents
the probability for any individual belonging to this unit to be a member of the minority.
The total number of individuals in a unit is denoted by K.

We now introduce the segregation indices we focus on hereafter. We consider first
unconditional indices; conditional indices are introduced in Section 1.2.6. Let us first
assume that K is fixed. A segregation index θ is then a functional of the cumulative
distribution function (c.d.f) Fp of p and of m01 = E(p), that is θ = g(Fp,m01).2 Roughly
speaking, one expects such an index to be minimal when Fp is degenerate (Dirac), and
maximal when p ∈ {0, 1} (Bernoulli). In the former case, the probability of belonging to
the minority is the same in all units. In contrast, the minority group is concentrated in a
subset of units only in the latter case.

The command segregsmall estimates five classical segregation indices satisfying this
property, namely

θD =
∫
|u−m01| dFp(u)
2m01(1−m01) (Duncan),

θT = 1−
∫
{u ln(u) + (1− u) ln(1− u)} dFp(u)
m01 ln (m01) + (1−m01) ln(1−m01) (Theil),

1As most of the literature, we restrict to two groups. The study of segregation with more than two
groups is appealing for some applications but raises questions regarding what we want to measure as
segregation in multi-minority situations. Reardon and Firebaugh (2002) address this issue and propose
several multi-group segregation indices. Some can be written as convex combinations of two-group
segregation indices over the different groups included in the analysis. For such indices, two-group methods
can thus be extended to multi-group settings.

2Such a notation may seem redundant since m01 already depends on Fp, the reason why we make the
dependence on m01 explicit will become clearer below.
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θA(b) = 1− m
−b

1−b
01

1−m01

{∫
(1− u)1−bub dFp(u)

} 1
1−b (Atkinson, with b ∈ (0, 1)),

θCW =
∫

(u−m01)2 dFp(u)
m01(1−m01) (Coworker),

θG =
1−m01 −

∫
F 2
p (u) du

m01(1−m01) (Gini).

When K is random and takes values in K, θ is defined as a weighted average of indices
conditional on K = k, denoted θk = g(F k

p ,m
k
01) with F k

p the c.d.f of p conditional on
K = k, and mk

01 = E[p |K = k]; hence, θ depends on the joint distribution of p and K.
Whether we study segregation at the unit-level or at the individual-level matters for the
weights used. The unit-level index θu satisfies

θu =
∑
k∈K

Pr(K = k)θk, (1.1)

whereas the individual-level segregation index θi is defined by

θi =
∑
k∈K

k Pr(K = k)
E(K) θk. (1.2)

The small-unit bias To estimate θ, we assume hereafter that the researcher has at her
disposal K; however, the probability p remains unobserved. Instead, she only observes X,
the number of individuals belonging to the minority in the unit. By definition of p, we
have E[X |K, p] = Kp, which implies that the proportion of individuals from the minority,
X/K, is an unbiased estimator of p. However, because it varies conditional on p, X/K is
more dispersed than p. As a result, we have for usual segregation indices, including the
five ones above,

g
(
FX/K ,m01

)
> g(Fp,m01) = θ.

In other words, even in the absence of statistical uncertainty on the distribution of X/K,
we would still overestimate the segregation index by using X/K in place of p. Moreover,
this bias increases as K decreases. We refer to this issue as the small-unit bias hereafter.3

The binomial assumption We assume henceforth that individuals are allocated into
units independently from each other. Namely, X is assumed to follow, conditional on p
and K, a binomial distribution Bin(K, p). This hypothesis may be restrictive when the
allocation process is in some way sequential and influenced by the composition of units.
But importantly, this assumption is testable (see Section 1.2.5).

1.2.2 Nonparametric approach
Identification This approach, followed by HR, leaves the distribution Fp of p unre-
stricted. Combined with the binomial assumption, it entails a nonparametric binomial
mixture model for X. Let us first suppose that K is constant; if not, we can simply retrieve

3Appendix 1.A reproduces the simulation studies of Cortese et al. (1976) and of CT. They underscore
the importance of the bias in empirical settings. Appendix 1.B gives explicit expressions of the plug-in
estimators of g

(
FX/K ,m01

)
for the five classical indices we consider – the Duncan or dissimilarity index,

the Theil index, the Atkinson index, the Coworker index, and the Gini index.
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aggregated indices θu and θi using (1.1) and (1.2). We also assume that K > 1; if K = 1,
the distribution of X is not informative on θ and we only get trivial bounds on it, namely
0 and 1 for the five indices above.

First, some algebra yields a one-to-one mapping between the distribution of X, defined
by theK probabilities P0 = (P01, . . . , P0K)′ with P0j = Pr(X = j), and the firstK moments
of Fp, denoted m0 = (m01, . . . ,m0k)′:

P0 = Qm0,

with Q the K ×K matrix with generic entry (i, j) equal to
(
K
j

)(
j
i

)
(−1)j−i.

It follows that m0 is identified from the distribution of X; hence any parameter
depending only on m0 is point identified. It is the case of θCW as soon as K ≥ 2. Second,
there may be a single distribution F ∗ corresponding to m0. This happens if (and only
if) m0 belongs to the boundary ∂M of the moment space M.4 Then F ∗ is a discrete
distribution with at most L+ 1 support points, where L is the integer part of (K + 1)/2.
For instance, when K = 2,M = {(m01,m02) ∈ [0, 1]2 : m2

01 ≤ m02 ≤ m01}, since V(p) ≥ 0
and p2 ≤ p. Then ∂M corresponds to Dirac and Bernoulli distributions, for which we
have respectively V(p) = 0 and p2 = p.

When m0 belongs to the interior
◦
M of the moment space, there are infinitely many

distributions Fp corresponding to m0. Then, unless we consider θCW, θ is not identified in
general. Nevertheless, HR show that the sharp identified set on θ can be computed in a
relatively easy way under the following restriction.

Assumption 1.1. g(F,m01) = ν (
∫
h(x,m01) dF (x),m01), where h and ν are continuous

and ν(·,m01) is monotonic.

Assumption 1.1 fails for the Gini but is satisfied by the Duncan, the Theil, the Atkinson,
and the Coworker indices. Under this condition, the bounds on

∫
h(x,m01) dF (x), and thus

on θ, are attained by distributions with no more than K + 1 support points.5 Specifically,
let DK+1

m0 denote the set of distributions on [0, 1] with at most K + 1 support points for
which the vector of first K moments equals m0. Then the sharp identified set on θ is [θ, θ],
with

θ = inf
F∈DK+1

m0

g (F,m01) , θ = sup
F∈DK+1

m0

g (F,m01) . (1.3)

The fact that, under Assumtion 1.1, the sharp bounds are attained by discrete distributions
with a limited number of support points (at most K + 1) makes the optimization problem
feasible in practice. Indeed, DK+1

m0 can be seen as a subset of [0, 1]2K+1 since a discrete
distribution is characterized by its support points (nodes) and their associated probabilities
(masses).

The following theorem, which reproduces Theorem 2.1 of HR, summarizes the previous
discussion. Hereafter, we let θ and θ denote the sharp lower and upper bounds on θ,
whether or not θ is point identified.

Theorem 1.1. – If m0 ∈ ∂M, θ = θ = g(F ∗,m01), where F ∗ is the unique c.d.f for which
the first K moments are equal to m0. Moreover, F ∗ has at most L+ 1 support points.
– If m0 ∈

◦
M and Assumption 1.1 holds, θ and θ are defined by (1.3).

4This claim and several others of this section are proved in Krein and Nudel’man (1977). For that
specific point and the following, see notably Theorem III.4.1 (another reference is Theorem I.2.5 in Dette
and Studden (1997)).

5See HR and Theorem I.3.6 in Krein and Nudel’man (1977) for more details.
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In the interior case, computing the bounds still requires a nonlinear optimization
under constraints that are also nonlinear in the support points. Yet, the problem can be
further simplified under additional assumptions using the theory of Chebyshev systems.
In particular, it requires that the function h in Assumption 1.1 does not depend on m01, a
condition satisfied by the Theil and Atkinson indices. Basically, no numerical optimization
is needed for those two indices to compute the bounds θ and θ. The idea behind this
is that the bounds are attained by two special discrete distributions, called principal
representations. The interest is that finding the principal representations boils down to
obtaining the roots of specific polynomials, which is much simpler and faster than solving
(1.3). We refer to HR for more details on that matter.

Estimation Let us assume to have in hand an independent and identically distributed
(i.i.d.) sample (Xi)i=1,...,n of n units, with constant sizes equal to K > 1. Theorem 1.1
shows that θ is either point or partially identified, depending on whether m0 ∈ ∂M or
m0 ∈

◦
M. We follow this result to estimate the identified set (θ, θ). In a first step, we

estimate P0, and thus m0 = Q−1P0, by constrained maximum likelihood. The constraints
come from the binomial mixture model: P0 ∈ P = {Qm : m ∈M}. To compute the
constrained MLE, HR show Lemma 1.1 below. To state the result, let us define Nk =∑n
i=1 1{Xi = k}, the number of units in the sample with k minority individuals, the

set of nodes SL+1 = {(x1, . . . , xL+1) : 0 ≤ x1 < . . . < xL+1 ≤ 1} and the associated masses
TL+1 = {(y1, . . . , yL+1) ∈ [0, 1]L+1 : ∑L+1

k=1 yk = 1}.

Lemma 1.1. The constrained MLE P̂ = (P̂1, . . . , P̂K)′ satisfies

P̂k =
(
K

k

)
L+1∑
j=1

ŷjx̂
k
j (1− x̂j)K−k, ∀ k ∈ {1, . . . , K},

where x̂ = (x̂1, . . . , x̂L+1) and ŷ = (ŷ1, . . . , ŷL+1) are given by

(x̂, ŷ) = argmax
(x,y)∈SL+1×TL+1

K∑
k=0

Nk ln


L+1∑
j=1

yjx
k
j (1− xj)K−k

 .
In a second step, we estimate (θ, θ). First, we estimate m0 by m̂ = Q−1P̂ , where

P̂ is obtained in practice thanks to Lemma 1.1. Then, we check whether the estimator
m̂ ∈ ∂M. A simple possibility to do so is checking whether the unconstrained MLE
P̃ = (P̃1, . . . , P̃K)′ satisfies P̃ = P̂ (in which case m̂ ∈

◦
M with probability approaching

one) or not.6 Note that the unconstrained MLE simply satisfies P̃k = Nk/n for all k.
When P̃ 6= P̂ , we simply let θ̂ = θ̂ = g(F̂ , m̂1), where F̂ is the distribution corresponding

to (x̂, ŷ). We refer to this situation as the constrained case.
If P̃ = P̂ , there are infinitely many distributions corresponding to m̂ and we estimate

bounds for θ. We refer to this situation as the unconstrained case. For the Theil and
Atkinson indices, the estimated bounds are obtained from the principal representations

6The intuition is the following. When P̃ /∈ P, the constrained estimator m̂ is forced to be inM and
will end up in the boundary ∂M. On the contrary, if P̃ ∈ P, P̃ = P̂ , hence the constrained estimator
m̂ and the unconstrained one m̃ = Q−1P̃ coincide and belongs to

◦
M with probability approaching one

when the sample size n goes to infinity. The procedure amounts to test whether a given vector of moment
belongs to the moment space, a problem that has been studied extensively (the formal test is defined in
Appendix D.1 of HR).
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computed from m̂. For the Duncan index, optimization is required to obtain the estimated
bounds. We obtain estimators of θ and θ by solving the optimization problems (1.3),
replacing m0 by its estimator m̂. Finally, the Coworker index only depends on (m01,m02).
Thus, whether or not P̃ = P̂ , this index can be estimated directly by replacing (m01,m02)
by (m̂1, m̂2).

Inference When Assumption 1.1 holds, HR show that the estimators of the bounds are
consistent: (θ̂, θ̂) P−→ (θ, θ) as the number of units n tends to infinity. Under additional
assumptions, HR characterize their asymptotic distributions. This enables to build valid
asymptotic confidence intervals (CIs) for the index θ using a modified bootstrap procedure.
The construction needs to take into account the fact that the lower bound and upper
bound collapse when m0 ∈ ∂M (point-identification) whereas they differ when m0 ∈

◦
M

(partial identification). The underlying idea relates to the construction of CIs in the
case of partial identification (see Imbens and Manski (2004), Stoye (2009)). HR define a
confidence interval for the interior case, where only one of the two ends of the interval
matters in the asymptotic coverage, and another for the boundary case. In order to obtain
the nominal asymptotic coverage in all situations, HR define the final confidence interval
by selecting one of them according to the length of the estimated identification interval
(θ̂ − θ̂) relative to sampling error.7

Random unit size The previous identification and estimation results can be adapted
to cases where K is random and takes values in a set K. Using the definitions of θu and θi
in (1.1) and (1.2), the idea is to reason conditional on the unit size to get each θk, k ∈ K,
and replace the theoretical weights by plug-in estimators. More precisely, let θ̂k and θ̂k
denote the estimators of the bounds of θk based on the subsample of units of size k. Let
P̂r(K = k) = n−1∑n

i=1 1{Ki = k} and Ê(K) = n−1∑n
i=1Ki. Then the estimators of the

bounds on θu and θi satisfy

θ̂u =
∑
k∈K

P̂r(K = k)θ̂k, θ̂u =
∑
k∈K

P̂r(K = k)θ̂k,

θ̂i =
∑
k∈K

kP̂r(K = k)
Ê(K)

θ̂k, θ̂i =
∑
k∈K

kP̂r(K = k)
Ê(K)

θ̂k.

Remark that as soon as for one unit size k the index θk is not point identified,
the resulting aggregated index will be partially identified too. In other words, point
identification of θu or θi requires to be in the constrained case for each k ∈ K. This is
unlikely to happen when the support of K contains very small sizes k, typically lower
than 10.

Similar to the constant unit case, confidence intervals for the aggregated indices θu and
θi are constructed by the modified bootstrap procedure detailed in HR. The randomness of
K just involves an additional step that consists in drawing K in its empirical distribution.

Assuming independence between K and p The previous estimation and inference
procedures are fully agnostic as regards possible dependence between K and p, which is a

7Essentially, when this length is large (resp. small) relative to sampling error, the uncertainty related
to partial identification (resp. to sampling) prevails and the interior-type (resp. boundary-type) confidence
interval is used.
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safe option when unit size may be a potential determinant of segregation. However, if one
is ready to impose independence between these two variables, the identified bounds on
θu = θi get closer to each other. This is because the F k

p coincide with the unconditional
distribution of p. Thus, we can gather all units and identify the first K moments of Fp,
with K = max(K). Estimation and inference are performed as in the case of constant unit
size, with K replaced by K. Thus, assuming independence between K and p improves
identification since we identify more moments of Fp. It also leads to more accurate
estimators since one estimates a single vector P on the whole sample, instead of doing so
on each subsample {i : Ki = k}, for all k ∈ K.

An important particular case occurs when only some individuals in the unit are observed
(e.g., survey data). Imagine units are of size (Ki)i=1,...,n but that, for each unit i, only
nK,i individuals are sampled and observed. We let Xi denotes the number of individuals
belonging to the reference group in this subgroup of nK,i people. As previously, Xi follows
a binomial distribution Bin(nK,i, pi) conditional on pi and nK,i. The previous results apply
by simply replacing the unit size K with the number nK of individuals observed in each
unit. Moreover, in such settings, it is usually plausible to assume that the random variable
nK is independent of p conditional on the unit size as nK depends on the survey process,
which, a priori, is orthogonal to the segregation phenomenon.

1.2.3 Parametric approach
This approach, followed by R, is similar to that of HR, except that it imposes a parametric
restriction on Fp. Specifically, it is supposed to be a mixture of Beta distributions.
Combined with the binomial assumption for the conditional distribution of X, the model
becomes fully parametric and thus can be estimated by maximum likelihood. Therefore,
the indices are point identified, contrary to the nonparametric approach of HR.

A concern might be that the parametric restriction leads to invalid results when the
model is misspecified. However, R shows through simulations that segregation indices
associated with various distributions, both continuous and discrete, are accurately proxied
by his parametric approach.

Estimation and inference As in HR, we first assume that K is constant. Let
B(·, ·) denote the beta function, c the number of components of the beta mixture, and
v = (αj, βj, λj)j=1,...,c the vector of parameters with (αj, βj) ∈ R∗+ × R∗+ the two shape
parameters of the j-th Beta distribution and λj ∈ [0, 1] its weight (∑c

j=1 λj = 1). The
probability density function of p distributed as a c -component mixture of Beta distributions
with parameters v is

fv(t) =
c∑
j=1

λj
tαj−1(1− t)βj−1

B(αj, βj)
, ∀t ∈ [0, 1].

In this model, the probability that k individuals belong to the minority group can be
written, after some algebra, as:

Prv (X = k) =
(
K

k

)
c∑
j=1

λj
B(αj + k, βj +K − k)

B(αj, βj)
.

Thus, the log-likelihood satisfies, up to terms independent of the parameter v,

`(v) =
K∑
k=0

Nk × ln


c∑
j=1

λj
B(αj + k, βj +K − k)

B(αj, βj)

 ,
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Maximizing v 7→ `(v) yields the maximum likelihood estimator v̂. Using the parametric
assumption on Fp, v̂ translates into an estimator F̂p of the distribution of p, which in turn
yields an estimator θ̂ of θ. The explicit expressions of the five indices above, as functions
of the parameter v, are given in Appendix 1.C. Inference can be achieved by the delta
method or by the bootstrap, performed at the unit level.

Random unit size The adaptation to this case is exactly similar to HR method. For
each k ∈ K, the MLE of θk is obtained using the subsample of units of size k. The weights
are estimated by their empirical counterparts. The estimated aggregated indices are then
obtained by plug-in, using (1.1) and (1.2). When K and p are assumed independent, all
units can be pooled, independently of their size, to compute the MLE of v for the whole
sample. As above, the resulting estimator v̂ allows us to estimate the distribution of p,
and then θ.

1.2.4 Correction of the naive index

The approaches of HR and R are immune to the small-unit bias as they directly esti-
mate g(Fp,m01). Other, previous approaches instead start from the naive index θN =
g(FX/K ,m01) and attempt to modify it so that the parameter becomes less sensitive to
changes in K. We present here the correction proposed by CT, which is the most popular
in applied work.

CT’s correction relies on the distinction between the randomness and evenness bench-
marks, introduced notably by Cortese et al. (1976) and Winship (1977). Evenness
corresponds to X/K being constant, whereas randomness refers to the case where p is
constant. Under the binomial model, however, evenness cannot occur. The central idea
of CT is then to convert θN , which measures departure from evenness, into a distance
to randomness. To do so, CT compare θN to its expected value θraN under the random
allocation of individuals into units.

Formally, let θraN denote g(FXra/K ,m01), where Xra |K ∼ Bin(K,E(X/K)). Xra/K
is the proportion we would observe if p was constant and equal to E(p) = E(X/K).
Then, assuming that θ ∈ [0, 1], a constraint satisfied by the five indices above, CT’s
correction θCT is defined by θCT = (θN − θraN )/(1 − θraN ). CT suggest the following
simulation-based estimator of θCT . Let Ê(p) denote the sample average of X/K. For
s = 1, ..., S, draw Xra

i,s ∼ Bin(Ki, Ê(p)) independently for each unit i. Then, letting
F̂ ra
s and m̂1,s denote respectively the empirical distribution and mean of (Xra

i,s/Ki)i=1,...,n,
compute θ̂raN,s = g(F̂ ra

s , m̂1,s). The estimator of θraN is then the mean over the S replications,
θ̂raN = S−1∑S

s=1 θ̂
ra
N,s. Finally, θ̂CT = (θ̂N − θ̂raN )/(1− θ̂raN ), with θ̂N the plug-in estimator of

θN . The quantiles of (θ̂raN,s)s=1,...,S can be used to test that the data are consistent with
random allocation using randomization tests (see Boisso et al., 1994, and CT).

Links with HR and R In general, θCT 6= θ. However, they do coincide in extreme
cases of no segregation, where p is constant, and “full” segregation, where p follows a
Bernoulli distribution. We refer to Section 2.3 of R and Section 2.4 of HR for further
discussion on the relationship between θCT and θ.
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1.2.5 Test of the binomial assumption
We have relied so far on the binomial assumption X |K, p ∼ Bin(K, p). This assump-
tion implies that P0 ∈ P = {Qm : m ∈M}. A vector (m1, ...,mK) in M has to satisfy
some restrictions, such as m2 ≥ m2

1 (i.e., non-negative variance). Hence, we could have
Q−1P0 /∈M if the distribution of X conditional on K and p is not binomial. In other
words, the binomial assumption is testable.

HR propose a likelihood ratio test of P0 ∈ P , where the constrained estimator under
the null hypothesis is P̂ , whereas the unconstrained MLE is P̃ . Note that these estimators
are already computed to estimate (θ, θ). For a unit size equal to k, the test statistic
satisfies

LRk = 2
k∑
x=0

Nx ln
(
P̃x

P̂x

)
= 2

k∑
x=0

Nx ln
(
Nx

nP̂x

)
,

where we let Nx ln[Nx/(nP̂x)] = 0 if Nx = 0.
With a random unit size, the test statistic is then LRn = ∑

k∈K P̂r(K = k)LRk, where
in LRk, Nx = ∑n

i=1 1{Ki = k,Xi = x}. The critical values of the test are obtained by
approximating the distribution of LR under the null by bootstrap. The bootstrap is
performed as follows. First, we draw n units of sizes K∗i in the empirical distribution
of K. Second, we draw X∗i according to P̂K∗i , where P̂ k is the constrained MLE of P k

0 ,
the distribution of X conditional on K = k. The bootstrapped test statistic LR∗ is then
computed in the sample (K∗i , X∗i )i=1,...,n, which is drawn under the null hypothesis. For a
level 1− α ∈ (0, 1), the critical region of the test is defined by:

CR = {LR > c1−α (LR∗)} ,

with c1−α(LR∗) the quantile of order 1− α of LR∗.
The results of HR imply that the test has an asymptotic level equal to α and is

consistent. Remark, however, that it tests P0 ∈ P , which is an implication of the binomial
assumption, rather than this assumption itself. This means that the binomial assumption
may fail but still, P0 ∈ P , that is, X |K, p could fail to be binomial, yet the distribution
of X given K could be rationalized by a binomial mixture.

1.2.6 Conditional segregation indices
Conditional indices aim at accounting for the fact that part of the segregation along
the minority/majority dimension at stake may be driven by sorting according to other
dimensions. In this sense, they measure the net or residual level of segregation when the
contribution of covariates to segregation is removed (see Åslund and Skans, 2009). To
illustrate this point, let us consider workplace segregation between foreigners and natives.
Foreigners may be hired more in some sectors of the economy on the basis of sector-specific
skills. Imagine an extreme case where, within each sector, all firms hire foreigners with
the same probability. As long as these probabilities differ from one sector to another, an
unconditional segregation index would be positive. On the contrary, the conditional index
defined in (1.4) below would indicate no segregation as it controls for the influence of the
sector, a characteristic of units, in the allocation process. Similarly, foreigners may be
hired with the same probability for all low-skilled jobs (resp. all high-skilled jobs), but
the probabilities for these two job types may differ. In this case, again, failing to account
for this characteristic would lead to a positive unconditional index, while the conditional
index defined in (1.5) below would indicate no segregation.



Chapter 1. Measuring segregation on small units 47

The previous discussion underscores that covariates can be defined either at the unit
level or at the level of an individual/position. We separate the two cases below, as they
lead to different treatments.

Unit-level covariates Let Z ∈ {1, . . . , Z} denote a characteristic of a unit, which is
assumed to be discrete. To take into account Z in the allocation process, we measure
segregation conditional on Z. For each z ∈ {1, . . . , Z}, let θ0z denote the segregation index
we consider conditional on Z = z. The subscript 0 indicates that we consider a generic
index of interest, which could correspond to either θ (θu of θi with random K) or θCT .
Whatever the index, the estimation of θ0z is done exactly as in the unconditional case,
focusing on the subsample {i : Zi = z}.

The index θ0z can be of interest by itself. We can also consider an aggregate conditional
index defined as follows:8

θcond0,u =
Z∑
z=1

Pr(Z = z)θ0z. (1.4)

The estimation of θcond0,u is obtained by plug-in, with n−1∑n
i=1 1{Zi = z} the empirical

counterpart of Pr(Z = z). For HR and R methods, a similar bootstrap procedure as in
the random size case provides asymptotic confidence intervals for θcond0,u .9

Individual- or position-level covariates LetW ∈ {1, . . . ,W} denote a characteristic
of an individual or of a position. To resume the example of workplace segregation, a
characteristic attached to individuals can be education, whereas a characteristic linked
to positions can refer to the type of occupation (e.g., high-skilled versus low-skilled).
While these two forms of covariates may lead to different interpretations, they are similar
regarding estimation and inference.

For each unit and each type w ∈ {1, . . . ,W}, we suppose to observe Xw and Kw, which
are respectively the number of individuals with characteristic W = w (or in positions
satisfyingW = w) who belong to the minority group, and the overall number of individuals
(or positions) of type W = w in the unit. As above, we define θ0w as the segregation index
of interest conditional on W = w. With individual- or position-level covariates, the idea
is to consider the subsample of individuals (or positions) such that W = w, instead of
a subsample of units. Hence, θ0w can be estimated exactly as in the unconditional case
simply using (Xw, Kw) instead of (X,K).10

Again, θ0w might be a relevant parameter of interest on his own. Researchers can also
be interested in an aggregated conditional index:

θcond0,i =
W∑
w=1

Pr(W = w)θ0w. (1.5)

8Note that for θCT , the aggregate conditional indices defined by (1.4), and similarly for (1.5) below,
slightly differ from the conditional index of Åslund and Skans (2009). Broadly speaking, (1.4) and (1.5)
aggregate the corrected indices computed conditional on each type while Åslund and Skans (2009) do
one unique correction in order to directly obtain their conditional corrected index. The former has the
advantage of being more general and notably can be used as such in HR and R approaches.

9The initial step of the bootstrap procedure becomes drawing units in the joint empirical distribution
of (K,Z).

10Remark that, in the general random sizes case without assuming K ⊥⊥ p, it makes more sense to
consider the index θi that uses individual-level weights (compared to unit-level ones) because the types
are defined at this individual-/position-level.
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The estimation of θcond0,i is obtained by plug-in, with (∑n
i=1Kwi)/(

∑n
i=1Ki) the empirical

counterpart of Pr(W = w). For HR and R methods, as previously, a modified bootstrap
procedure provides asymptotic confidence intervals for θcond0,i .11

Finally, remark that conditional analyses with individual- or position-level covariates
compound the small-unit bias issue, especially when the number W of possible types is
large. Indeed, the equivalent of a unit in unconditional analyses is now a cell unit × type
with Xw minority individuals among Kw individuals and, mechanically, Kw ≤ K.

1.3 The segregsmall command
The segregsmall command is compatible with Stata 14.2 and later versions.

1.3.1 Syntax
The syntax of segregsmall is as follows:
segregsmall varlist

[
if
] [

in
]

, method(string) format(string)
[

conditional(string)

withsingle excludingsinglepertype independencekp level(#) repbootstrap(#) noci

testbinomial repct(#) atkinson(#)
]

1.3.2 Description and main options
The command segregsmall estimates the five classical segregation indices mentioned
above (Duncan, Theil, Atkinson, Coworker, and Gini) using D’Haultfœuille and Rathelot
(2017), Rathelot (2012), or Carrington and Troske (1997) method. It provides confidence
intervals obtained by bootstrap in the approaches of HR and R and allows for conditional
analysis for all three methods.
method specifies the method used. Its argument must be one of: np, beta, ct. Argument np,

standing for nonparametric, implements HR method. The command does not report the
Gini index in this case as it does not verify Assumption 1.1. The choice beta implements
R’s method assuming a Beta distribution for Fp.12 Both methods provide estimates of
the same parameters of interest, namely θ if K is fixed and, unless independencekp
is specified, (θu, θi) if K is random. By default, they report asymptotic confidence
intervals obtained by bootstrap. With the argument ct, the command estimates the
naive and CT-corrected indices θN and θCT . Confidence intervals are not computed for
these parameters.

format indicates the format of the dataset used and needs to be either unit (datasets
where an observation is a unit) or indiv (datasets where an observation is an individual).
The option determines the variables to be put in varlist. For unconditional analyses
(the default without option conditional), these are:
– K X for unit-level datasets, K and X correspond to the variables K and X introduced

in Section 1.2: the number of individuals and the number of minority individuals. K
11The initial step of the bootstrap procedure becomes drawing units in the empirical distribution of

units, hence keeping fixed the composition of the units with respect to W .
12R assumes a mixture of Beta distributions. However, simulations reveal that the differences between

the indices obtained with a two or higher component mixture versus a simple Beta are marginal in
most cases, segregsmall uses a Beta assumption for simplicity. Also, the command allows assessing the
reliability of this restriction since the indices obtained with the beta restriction can be compared with the
nonparametric estimates that leave Fp unrestricted.
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has to be positive integers and X non-negative integers. Also, X should be lower or
equal to K for each unit.13

– id_unit I_minority for individual-level datasets, id_unit is the identifier of the
unit the individual belongs to. I_minority is a dummy variable equal to 1 when
the individual belongs to the minority group, 0 otherwise.

conditional this option triggers the computation of conditional segregation indices. Its
arguments must be either unit or indiv and it specifies the level at which are defined
the covariates included in the analysis. For conditional analysis, varlist has to be:
– K X Z for unit-level datasets, or id_unit I_minority Z for individual-level datasets,

with covariates defined at unit-level (unit). The variables K, X, id_unit, and
I_minority are the same as in unconditional analyses. Z corresponds to the variable
Z, the characteristics of units defined in Section 1.2.6. Z needs to take values in
{1, 2, . . . , Z} with Z ≥ 2.

– id_unit I_minority W for individual-level datasets with covariates defined at the
level of individuals or any sub-unit level (indiv).14 W corresponds to the variable W ,
the individual (or position) characteristics introduced in Section 1.2.6. W has to take
values in {1, 2, . . . ,W} with W ≥ 2.

1.3.3 Additional options
withsingle includes single units (with only one individual) in the analysis. As explained

in Section 1.2.2, single units are in general uninformative about the level of segregation.
By default, they are not included in the data used. The option is available both for
unconditional or conditional analyses.

excludingsinglepertype excludes single cells (unit × type) from the analysis. The
option is only relevant and available in conditional analyses with covariates defined
at the individual/position level. In this setting, the role of a unit in unconditional
analyses is played by a cell defined as the intersection of a unit and an individual type
(see Section 1.2.6). As just described, units with only one individual are dropped by
default. Yet, this does not prevent the existence of single cells coming from units with
more than one individual but that have only one individual with a given characteristic
W = w. Without option excludingsinglepertype, those single cells are included in
the analysis, which can lead to wide estimated identified intervals in HR method, all
the more so as the number W of types is large. With the option, they are dropped.
For consistency, the options withsingle and excludingsinglepertype are mutually
exclusive.

independencekp assumes independence between K and p. The option is only available
with np and beta methods. By default, the command is agnostic about potential links
between K and p.

level sets the confidence level, which has to be a scalar in (0, 1). With np and beta
methods, by default, the traditional 90%, 95%, and 99% confidence levels are saved

13Besides, segregsmall requires all variables in varlist to be free of missing values. Missing values are
not handled automatically to avoid possible confusions between zero and missing values for the variable
X notably.

14Conditional analyses with individual- or position-level covariates logically require databases also
defined at the individual-level.
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(see Section 1.3.4) and the 95% confidence interval is displayed in Stata output. The
option permits to save and display a personalized level besides (the other three are still
stored). With ct method, by default, the empirical quantiles of the index under random
allocation are stored for the orders 0.01, 0.05, 0.10, 0.90, 0.95, and 0.99. The option
additionally saves the empirical quantiles at order τ and 1− τ with τ the argument of
the option. Such quantities can be used to test the null hypothesis that the data are
consistent with random allocation through randomization tests.

repbootstrap specifies the number of bootstrap iterations used to construct confidence
intervals in np and beta methods. The default number is 200. It is also the number of
bootstrap repetitions used to test the binomial assumption.

noci restricts the command to estimation: confidence intervals are not computed. The
option is only applicable to np and beta methods.

testbinomial implements the test of the binomial assumption. More precisely, with
method(np) and without options independencekp nor noci, the test is made by
default and saved: the option only displays the result in Stata output. In any other
situations (beta or ct methods, no CIs, or assuming K ⊥⊥ p), the option performs
the test in addition to estimation and potential inference. In both cases, the number
of bootstrap repetitions used for the test is the same as the one specified by option
repbootstrap. When the user wants to test the binomial assumption, we recommend
always doing so combined with inference using HR method in the general case (namely,
without assuming independence between K and p): together with the test, it will give
estimation and confidence intervals from np method virtually for free. The option is
only available in unconditional analyses.15

repct sets the number S of draws used to estimate θraN in CT’s correction. Its argument
needs to be a positive integer. The default value is 50.

atkinson allows the user to specify the parameter b of the Atkinson index. Its argument
has to be a real in (0, 1). The default value is 0.5; it is the only one that ensures
the symmetry property for the Atkinson index (i.e., the index does not change when
swapping the minority/majority labels).

1.3.4 Saved results
The objects saved by segregsmall depend on the options, in particular, whether the anal-
ysis is unconditional or conditional. They can be gathered into three types of information
about: (i) the data included in the analysis, (ii) the method and assumptions used, (iii)
the estimation and inference results.

In this section, we list the objects saved in e() by the command and detail their
contents when they relate to estimation and inference results. The remaining objects have
self-explanatory names and are described in the help page of the segregsmall command.

Data included in the analysis Below, names with prefix I_ denote dummy variables
equal to 1 if what follows is true, 0 otherwise. Objects stored in unconditional analyses are
printed in black. Additional objects stored in conditional analyses are displayed in gray.
The superscript *u indicates that the objects are only relevant and saved for unit-level
covariates, the superscript *i for the individual-level covariates.

15The test of the assumption type by type can be done manually by restricting the sample used through
the options

[
if
][
in
]
.
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Scalars:
e(I_withsingle)
e(I_excludingsinglepertype)
e(I_unit_level_characteristic)
e(nb_types)
e(nb_units_total)
e(nb_units_single)
e(nb_units_studied)

e(nb_individuals)
e(nb_minority_individuals)
e(prop_minority_hat)
e(K_max)
e(nb_K_with_obs)
e(nb_cells_studied_sum_across_type)*i

e(nb_single_cells_sum_across_type)*i

Matrices:
e(list_K_with_obs)
e(type_frequencies)
e(type_probabilities)

e(summary_info_data_per_type)
e(nb_units_studied_per_type)*u

e(nb_cells_studied_per_type)*i

Method used
Scalars:

e(I_method_np)
e(I_method_beta)
e(I_method_ct)
e(I_conditional)
e(I_unit_level_characteristic)
e(I_hyp_independenceKp)

e(I_noci)
e(nb_bootstrap_repetition)
e(specified_level)
e(I_testbinomial)
e(nb_ct_repetition)
e(b_atkinson)

Estimation and inference Objects relative to unconditional analyses are in black
(left-hand column); those relative to conditional analyses are in gray (right-hand column).
Superscripts *np and *beta indicate that objects are only relevant and saved with np and
beta method.
Scalars:

e(I_constrained_case)*np e(I_constrained_case)*np

Matrices:
e(estimates_ci)
e(info_distribution_of_p)*np,*beta

e(test_binomial_results)

e(I_constrained_case_per_type)*np

e(estimates_ci_aggregated)
e(estimates_ci_type_#)

The matrices whose name includes estimates_ci store the results of estimation and
possible inference. The content of e(estimates_ci) varies with the method used but its
structure remains similar. Each row corresponds to an index.

With beta method, ten rows represent the two possible aggregated indices θu (unit-level
weights) and θi (individual-level weights), when K is considered as random, for each of
the five indices (Duncan, Theil, Atkinson, Coworker, and Gini). For each possible index
× weights, the columns store the estimated index using R method with a Beta distribution
restriction on Fp, and asymptotic confidence intervals at the traditional 90%, 95%, and
99% levels (plus the one specified by level if any).

With np method, the rows are identical, but there are only eight parameters since the
Gini indices are absent. For each possible index × weights, e(estimates_ci)’s columns
save: the estimated bounds θ̂u and θ̂u for unit-level weights (or θ̂i and θ̂i for individual-level
weights); a dummy variable equal to 1 if the confidence interval used is the boundary-case
interval and 0 for the interior-case; the resulting asymptotic CI at the classical 90%, 95%,
and 99% levels (plus the one specified by level if any).16

16The boundary/interior CIs were discussed briefly in Section 1.2.2 §Inference. We refer to the original
paper HR for further details.
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In conditional analyses, either with unit- or individual/position-level covariates, the
matrices e(estimates_ci_aggregated) and e(estimates_ci_type_#) store exactly
the same information as e(estimates_ci): the former for the aggregated conditional
index θcond0,u or θcond0,i , the latter for the index conditional on a given type #, that is θ0z with
unit-level characteristics or θ0w with individual/position-level characteristics (# ranges
from z = 1 to Z or w = 1 to W ).

With ct method, five rows correspond respectively to the Duncan, the Theil, the
Atkinson, the Coworker, and the Gini indices. In columns: the plug-in estimate θ̂N of
the naive index θN ;17 the estimated index under random allocation θ̂raN ; the estimated
CT-corrected index θ̂CT ; the empirical standard deviation of the draws (θ̂raN,s)s=1,...,S under
random allocation; the “standardized score” originally proposed by Cortese et al. (1976),
namely (θ̂N − θ̂raN ) divided by that standard deviation; the empirical quantiles of (θ̂raN,s)s at
the orders: 0.01, 0.05, 0.10, 0.90, 0.95, 0.99 (and also τ and 1− τ , with τ the argument of
option level provided this option is used).

e(I_constrained_case) is a dummy equal to 1 in the constrained case, 0 otherwise.
As discussed in Section 1.2.2, with random unit size, it requires to be in the constrained
case for each size k ∈ K. In this case, np method yields point-estimates for all indices.
e(I_constrained_case) is identical in conditional analyses. The dummy is equal to 1
provided we are in the constrained case for each type. Otherwise, θcond0,u and θcond0,i are only
partially-identified with np method.

e(test_binomial_results) is stored when the test of the binomial assumption is
performed (see option testbinomial). It is a row vector whose first element saves the
value of the test statistic LRn and the second the p-value of the test where the null
hypothesis is the binomial assumption.

np and beta methods save e(info_distribution_of_p) in unconditional analyses.18
This matrix contains the information learned about the distribution of p in the estimation.
In the general case, without assuming K ⊥⊥ p, it means the information as regards the
conditional distributions F k

p , for each k ∈ K. With option independencekp, it is about
the unconditional distribution Fp.

With beta option, all the (F k
p )k∈K (or Fp when assuming K ⊥⊥ p) are supposed to

follow a Beta distribution. In the general case, e(info_distribution_of_p) is a matrix
with |K| rows. Each row is associated with a size k and the columns report: the size k;
the number of units of size k in the data used, i.e. ∑n

i=1 1{Ki = k}; the latter quantity
expressed as a proportion over the n units studied; the number of components of the
Beta mixture considered (that is 1); and the maximum likelihood estimators α̂1 and β̂1
of the two shape parameters characterizing the Beta distribution assumed for F k

p . In
the case where K ⊥⊥ p is supposed, the matrix e(info_distribution_of_p) is similar
but consists of a single row as only one estimation is done pooling all units together. It
contains the maximal size K, the number of units n used for the estimation, and the
estimates of the parameters that characterize the Beta distribution assumed for Fp.

With np option, the structure of e(info_distribution_of_p) is more involved for
the approach is nonparametric. Without the restriction K ⊥⊥ p, it contains 3×K rows
and should be read by blocks of three rows. The k-th block concerns F k

p . The first line
shows some general information, namely the size k, the number of units of size k, and the

17Appendix 1.B presents the explicit expression of θ̂N for each index.
18In conditional analyses, the information can be retrieved manually for each type by restricting the

sample used thanks to the options
[
if
][
in
]
.
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proportion of such units within the data used (as in beta method). The crucial element is
displayed in the fourth column and consists of a dummy variable equal to 1 if we are in
the constrained case for F k

p , that is m̂ ∈ ∂M conditional on K = k. In this case, despite
the nonparametric approach, the constrained maximum likelihood estimation yields an
estimate F̂ of F k

p which turns out to be a discrete distribution with at most b(k + 1)/2c+ 1
support points (see Section 1.2.2 §Estimation). In this situation, the fifth column of the
first row, within the three-row block, indicates the number of support points of F̂ and the
two following rows characterize F̂ by reporting its support points and the corresponding
probabilities. In the unconstrained case, the dummy is 0, and the last two rows, within the
three-row block, are empty as there is no estimate of F k

p then. When assuming K ⊥⊥ p,
the matrix e(info_distribution_of_p) is analogous but is made of a single three-row
block as it only deals with the unconditional distribution Fp. In this case (see Section 1.2.2
§Assuming independence between K and p), the estimation uses the first K moments
of Fp. It is likely to fall in the constrained case since K will exceed 10 in most applications,
a size above which simulations reveal that the probability of being in the constrained case
is close to one even with large sample sizes n.

e(info_distribution_of_p) is interesting because virtually any segregation index is
a functional of the distribution Fp (of the conditional distributions (F k

p )k∈K in general when
taking into account the randomness of K). Consequently, an estimate of Fp (respectively
of the (F k

p )k∈K) enables to recover any other personalized segregation index.

1.3.5 Execution time
The computation times reported below are average over 50 repetitions on a desktop
computer run under Windows 10 Enterprise with an Intel(R) Core(TM) i5-6600 CPU
3.30GHz processor (RAM 16 Go).19 The operations of segregsmall can be decomposed
into a preparation stage and a stage devoted to estimation and inference.

Preparation stage The preparation stage is common to the three methods and reshapes
the dataset. Its execution time is quick compared to the whole command and increases
in the number n of units. For instance, with unit-level datasets, for K taking values
in K = [5, 15], it lasts around 0.06 second with n = 1,000, and 0.99 second with n =
300,000. In conditional analyses, the execution time is approximately multiplied by the
number of types: for example, 6.03 seconds for 5 types and 9.17 seconds for 10 types,
with K = [5, 15] and n = 300,000. With individual-level datasets, the preparation stage is
longer since it is necessary first to form the units. With K = [5, 15], it takes 0.24 seconds
with 1,000 units and 9.99 seconds with 300,000 units.

Estimation and inference stage The subsequent operations depend on the method
used. The central brick of np and beta methods is the estimation of the indices for a given
dataset (original or bootstrapped). The construction of CIs repeats the operation for each
bootstrapped dataset. The execution time is thus more or less linear in the number of
bootstrap repetitions (fixed by option repbootstrap). ct method requires reshuffling the
data under the randomness benchmark, hence an execution time broadly linear in the
number of draws (controlled by option repct). Table 1.1 illustrates this dependence for

19Execution times depend on various parameters. Rather than giving precise time guarantees, this
section aims at outlining the main operations of segregsmall, their duration, and the dependence with
respect to the sample size n, the unit size K, and the number Z or W of types in conditional analyses.
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np and beta methods as well as the effect of option conditional. Regarding the latter,
for all three methods, the same operations as in unconditional analyses are done for each
type (see Section 1.2.6). As a consequence, the execution time of segregsmall is roughly
linear in the number of types included in the analysis.

Table 1.1: Execution time in seconds. Setting: unit-level datasets, n = 300,000, K = [5, 15],
200 bootstrap replications, 5 types with covariates at unit-level for the conditional analysis.

Analysis Confidence intervals beta method np method

unconditional no 3.2 1.3
unconditional yes 374.2 176.9
conditional yes 1870.8 906.8

As highlighted by Table 1.2, the number n of units has a minor impact, mainly through
the preparation stage.

Table 1.2: Execution time in seconds. Setting: unit-level datasets, K = [5, 15], options
independencekp and noci for np and beta methods, 50 draws (default) for ct method.

Sample size n beta method np method ct method

1,000 0.30 2.39 0.51
10,000 0.34 2.60 0.80
50,000 0.46 2.19 0.88
100,000 0.67 2.68 1.13

The primary determinant of the computation time is the unit sizes: both the number
of distinct values of the support K and the magnitude of K, as shown by Table 1.3. With
ct method, the execution time quickly increases with the magnitude of K while the increase
is moderate for np method and even lighter for beta method.20

1.4 Example
We use the command to measure workplace segregation between natives and foreigners in
France (see D’Haultfœuille and Rathelot (2017) for details about the context). A large
share of workers is employed in small establishments. This section shows the importance
of correcting the small-unit bias, which may lead to erroneous economic conclusions.

The data used is the 2007 Déclarations Annuelles des Données Sociales (DADS),
French data linking workers to their employer. Data are exhaustive in the private sector
(1.77 million establishments). In the application, we use the 1.04 million establishments
that have between 2 and 25 employees. The minority group consists of individuals born
outside of France and with the nationality of a country outside Europe. The overall
proportion of minority individuals is 4.1% in the sample studied. Figure 1.1 shows the
estimates of workplace segregation by firm size for the Duncan, the Theil, the Atkinson

20Remark however that the execution times reported in Table 1.3 include the draws under random
allocation for ct method whereas only estimation is performed for np and beta methods.
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Table 1.3: Execution time in seconds. Setting: unit-level datasets, for each K, n = 10,000 (except
9,000 for the first row) – 1,000 units per distinct size, option noci for np and beta methods, 50
draws (default) for ct method.

Support K of K beta method np method ct method

[1, 9] 0.28 0.99 0.23
[10, 19] 0.31 2.26 0.57
[20, 29] 0.26 5.10 2.16
[30, 39] 0.31 7.45 6.26
[40, 49] 0.36 8.20 15.1
[50, 59] 0.42 12.7 30.7
[60, 69] 0.51 11.0 56.6
[70, 79] 0.59 15.5 93.1
[80, 89] 0.70 22.7 150.3
[90, 99] 0.81 24.1 232.0

[100, 109] 0.93 26.3 332.1

(with parameter b = 0.5), and the Coworker indices. The Gini index does not satisfy the
conditions required by the nonparametric method of HR and is thus not displayed.21
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Figure 1.1: Duncan, Theil, Atkinson, and Coworker indices by firm size.

The distinct methods of the package are used: the estimated bounds θ̂ and θ̂ by np
21Appendix 1.D presents some supplementary material for the example, including Figure 1.2 with the

estimated Gini index by the beta method.
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method on θ (“np bounds”); the 95%-level confidence interval for this parameter using
the modified bootstrap procedure of np method, with the default 200 bootstrap iterations
(“np CI”); the point-estimate θ̂ by beta method (“beta”); the plug-in estimate θ̂N of the
naive index (“naive”); the estimated CT-corrected index θ̂CT using ct method with the
default 50 draws under random allocation (“ct”).

Figure 1.1 shows that the naive indices overestimate the actual level of segregation:
they are almost always above the confidence interval obtained by np method (except for
the Atkinson index with K ∈ {7, 8}). This bias decreases with the size of the units. For
the Duncan, the Theil, and the Atkinson indices, the estimated identification interval for
θ quickly becomes informative for K ≥ 5 and reduces to a singleton for K ≥ 9. When the
unit size is larger than 1, the estimated bounds of np methods boil down to a point-estimate
for the Coworker index (see discussion in Section 1.2.2).

The point-estimate θ̂ using beta method is within the identification bounds of HR for
the Duncan, the Theil, and the Atkinson indices but is below HR’s confidence intervals
for the Coworker index. The CT-corrected measure θ̂CT underestimates the Duncan and
Theil indices, being always below the np method’s confidence interval. θ̂CT lies within
the confidence interval and is quite close to the estimated identification set of θ for the
Atkinson and Coworker indices.

Interestingly, the naive indices exhibit a stronger negative relationship between seg-
regation levels and unit size than the corrected ones. Neglecting the small-unit bias
would produce a statistical artifact as the magnitude of the bias decreases with K and
therefore would support a negative correlation while it may not be so. On the contrary,
the probability-based indices θ that account for the small-unit bias are able to address
this question (see Section 5 of HR for further details).

Finally, we report below the Stata output obtained with the segregsmall command for
np method and with option testbinomial. Appendix 1.D displays the output associated
with beta and ct methods. Compared to the analyses of Figure 1.1 (K by K), the
estimation is performed over the entire sample of units (K = [2, 25]) in this output without
assuming K ⊥⊥ p. As detailed in Section 1.3.3, the test of the binomial assumption is
automatically performed and saved in this configuration; the option only displays the
result in the Stata output. In this application, we cannot reject the binomial assumption
at any standard level.

. segregsmall K X, format(unit) method(np) testbinomial
*** Construction of relevant databases for the analysis ***
*** Estimation and inference ***
Estimation - current unit size analyzed (out of 24 distinct sizes):
.........+.........+....
Preparation of bootstrap -
Bootstrap - current bootstrap iteration (out of 200):
.........+.........+.........+.........+.........50
.........+.........+.........+.........+.........100
.........+.........+.........+.........+.........150
.........+.........+.........+.........+.........200

Bounds for segregation indices using nonparametric (np) method:

Unconditional analysis
Number of units studied in the analysis: 1036840
(0 unit with a single individual are excluded from the analysis)
Number of individuals studied: 6178564
Proportion of minority (or reference) group: 4.1e-02
Assumption on dependence between K and p for estimation and inference: none
Inference: by bootstrap, 200 repetitions
Unconditional segregation indices:

Index Weight-level Lower bound Upper bound [95% Conf. Interval]
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Duncan unit .58677 .82346 .57864 .8292
Duncan individual .63061 .74808 .61966 .75742
Theil unit .39246 .52092 .38901 .5251
Theil individual .37937 .44251 .37558 .44732
Atkinson unit .53907 .83164 .52638 .84667
Atkinson individual .56948 .73299 .54977 .7537
Coworker unit .37032 .37032 .3674 .37325
Coworker individual .31356 .31356 .31084 .31629

Test of binomial assumption (H0: conditional binomial distribution):
(distribution under the null obtained by bootstrap, 200 repetitions)

Result value of test statistic p-value

1.5398598 .23

1.5 Conclusion
This paper presented the Stata segregsmall command that implements three methods
(D’Haultfœuille and Rathelot (2017), Rathelot (2012), and Carrington and Troske (1997))
to measure segregation indices in settings when units (neighborhoods, firms, classes, etc.)
contain few individuals. In such situations, naive indices overestimate the actual level of
segregation and produce measures that are not comparable across settings or over time
since the small-unit bias might vary. segregsmall enables social scientists to compute
segregation indices in those cases and makes the HR nonparametric approach easy to
use. It provides asymptotic confidence intervals for HR and R parameters. For all three
methods, conditional indices can be estimated: they account for other covariates (either at
unit- or individual/position-level) that may influence the allocation process of individuals
into units and therefore measure “net” or “residual” segregation. HR and R methods can
be used whatever the unit size to measure segregation as a departure from the relevant
benchmark of randomness. Even with large units with above one hundred individuals,
the parametric approach of R method remains quite affordable as regards computational
requirements, even including inference by bootstrap.



58 Chapter 1. Measuring segregation on small units

References
Allen, R., Burgess, S., Davidson, R. and Windmeijer, F. (2015), ‘More reliable inference
for the dissimilarity index of segregation’, The Econometrics Journal 18(1), 40–66.

Åslund, O. and Skans, O. N. (2009), ‘How to measure segregation conditional on the
distribution of covariates’, Journal of Population Economics 22(4), 971–981.

Boisso, D., Hayes, K., Hirschberg, J. and Silber, J. (1994), ‘Occupational segregation in the
multidimensional case: decomposition and tests of significance’, Journal of Econometrics
61(1), 161–171.

Carrington, W. J. and Troske, K. R. (1997), ‘On measuring segregation in samples with
small units’, Journal of Business & Economic Statistics 15(4), 402–409.

Cortese, C. F., Falk, R. F. and Cohen, J. K. (1976), ‘Further considerations on the
methodological analysis of segregation indices’, American Sociological Review pp. 630–
637.

Dette, H. and Studden, W. J. (1997), The theory of canonical moments with applications
in statistics, probability, and analysis, Vol. 338, John Wiley & Sons.

D’Haultfœuille, X. and Rathelot, R. (2017), ‘Measuring segregation on small units: A
partial identification analysis’, Quantitative Economics 8(1), 39–73.
URL: http://dx.doi.org/10.3982/QE501

Imbens, G. W. and Manski, C. F. (2004), ‘Confidence intervals for partially identified
parameters’, Econometrica 72(6), 1845–1857.

James, D. R. and Taeuber, K. E. (1985), ‘Measures of segregation’, Sociological Methodology
15, 1–32.

Krein, M. and Nudel’man, A. (1977), ‘The markov moment problem and extremal problems
transl’, Mathematical Monographs 50.

Massey, D. S. and Denton, N. A. (1988), ‘The dimensions of residential segregation’, Social
forces 67(2), 281–315.

Rathelot, R. (2012), ‘Measuring segregation when units are small: A parametric approach’,
Journal of Business & Economic Statistics 30(4), 546–553.
URL: http://www.tandfonline.com/doi/abs/10.1080/07350015.2012.707586

Reardon, S. F. and Firebaugh, G. (2002), ‘Measures of multigroup segregation’, Sociological
Methodology 32(1), 33–67.

Stoye, J. (2009), ‘More on confidence intervals for partially identified parameters’, Econo-
metrica 77(4), 1299–1315.

Winship, C. (1977), ‘A revaluation of indexes of residential segregation’, Social Forces
55(4), 1058–1066.



Chapter 1. Measuring segregation on small units 59

Appendix 1.A Magnitude of the small-unit bias
Tables 1.4 and 1.5 present the replicated results of the simulation studies made by Cortese
et al. (1976) and Carrington and Troske (1997) to illustrate the magnitude of the small-unit
bias. For the Duncan index (Table 1.4) and the Gini index (Table 1.5), they report θ̂raN
(see Section 1.2.4), namely the estimated expected value of the proportion-based or naive
index under random allocation of the individuals across units (using in those simulations
S = 500 replications). The simulations are performed for a fixed number n = 100 of units
and several unit sizes K and minority proportions to assess the magnitude of the bias in
these different settings.

Table 1.4: Estimated θ̂raN for the Duncan: expected value of the naive index under random
allocation (that is, null polarization).

Minority share K = 2 K = 5 K = 10 K = 20 K = 50 K = 100 K = 1, 000
1% 0.95 0.93 0.90 0.82 0.61 0.37 0.13
2% 0.96 0.92 0.83 0.69 0.39 0.27 0.09
5% 0.94 0.80 0.63 0.39 0.26 0.18 0.06
10% 0.90 0.65 0.39 0.29 0.19 0.13 0.04
20% 0.81 0.42 0.31 0.22 0.14 0.10 0.03
30% 0.73 0.41 0.27 0.19 0.12 0.09 0.03
40% 0.68 0.35 0.26 0.18 0.11 0.08 0.03
50% 0.66 0.37 0.25 0.18 0.10 0.08 0.02

Table 1.5: Estimated θ̂raN for the Gini: expected value of the naive index under random
allocation (that is, null polarization).

Minority share K = 2 K = 5 K = 10 K = 20 K = 50 K = 100 K = 1, 000
1% 0.99 0.96 0.92 0.83 0.69 0.52 0.18
2% 0.98 0.92 0.84 0.72 0.53 0.39 0.13
5% 0.95 0.83 0.69 0.54 0.33 0.25 0.08
10% 0.90 0.72 0.55 0.41 0.26 0.18 0.06
20% 0.80 0.59 0.43 0.31 0.20 0.14 0.04
30% 0.73 0.53 0.38 0.27 0.17 0.12 0.04
40% 0.68 0.49 0.36 0.25 0.16 0.11 0.04
50% 0.65 0.49 0.34 0.25 0.16 0.11 0.04

In the simulations, the actual level of segregation (understood in the randomness
benchmark) is null since individuals are distributed across units at random, independently
of belonging to the minority group. The large positive values obtained for θ̂raN relative to
the [0, 1] range of segregation indices indicate that naive indices overestimate the level of
segregation. In various applications (a large share of firms have less than ten employees,
school classes typically have between twenty and forty pupils, only surveys might be
available for residential segregation yielding a small number of observed inhabitants by
neighborhoods), the bias is likely to be non-negligible since the estimated θ̂raN remain far
from 0 even with moderate to large unit sizes, for instance, for the Duncan, 0.29 with
K = 20 (respectively 0.19 with K = 50) for a minority group whose proportion represents
10% in the overall population.



60 Chapter 1. Measuring segregation on small units

The simulations also evidence that the small-unit bias decreases with the unit sizes and
with the share of the minority group in the population (more precisely, all else being equal,
the closer the share of the minority group, or reference group, to one half, the smaller the
bias).

Appendix 1.B Plug-in estimators of naive indices
We write below the expressions of the plug-in estimator θ̂N of the naive or proportion-based
index θN = g

(
FX/K ,m01

)
for the five classical indices we consider, namely the Duncan

(a.k.a. dissimilarity index), the Theil (a.k.a. entropy or information theory segregation
index), the Atkinson parameterized by b ∈ (0, 1), the Coworker (a.k.a. normalized isolation
or variance ratio index), and the Gini.

Let wi = Ki/(
∑n
j=1Kj) the weight (relative size in terms of number of individuals) of

unit i and π = (∑n
i=1Xi)/(

∑n
i=1Ki) the sample proportion of the minority group. The

plug-in estimators θ̂N are

θ̂DN = 1
2π(1− π)

n∑
i=1

wi

∣∣∣∣Xi

Ki

− π
∣∣∣∣ (Duncan),

θ̂TN = 1−
n∑
i=1

wi
(Xi/Ki) ln

{
(Xi/Ki)−1

}
+ (1− (Xi/Ki)) ln

{
(1− (Xi/Ki))−1

}
π ln {π−1}+ (1− π) ln

{
(1− π)−1

} (Theil),

θ̂
A(b)
N = 1− π

−b
1−b (1− π)−1

[
n∑
i=1

wi

(
1− Xi

Ki

)1−b (Xi

Ki

)b] 1
1−b

(Atkinson with b ∈ (0, 1)),

θ̂CWN = 1
π(1− π)

n∑
i=1

wi

(
Xi

Ki

− π
)2

(Coworker),

θ̂GN = 1
2π(1− π)

n∑
i=1

n∑
j=1

wiwj

∣∣∣∣∣Xi

Ki

− Xj

Kj

∣∣∣∣∣ (Gini).

We note that there have been debates as regards which index should be used. This
constitutes another issue as regards the problem of quantifying segregation. Nonetheless,
the opposition between evenness and randomness benchmarks is orthogonal and relevant
for any segregation index. We focus on the latter in the article, and the command
segregsmall returns those five classical indices, leaving the choice of the index and its
axiomatic properties to users.

Remark that each θ̂N is exactly the corresponding segregation index as defined in
James and Taeuber (1985) and Massey and Denton (1988). Indeed, in these works, there
was no distinction between the estimand and the estimator: segregation indices were
directly defined from the observed proportions (Xi/Ki)i=1,...,n (typically, the setting was a
complete census of the tracts in a given city) instead of the distribution function FX/K .

Appendix 1.C Indices in the parametric approach
We use here the same notation as in Section 1.2.3: B(·, ·) denotes the beta function,
B(x, y) =

∫ 1
0 u

x−1(1 − u)y−1 du; c the number of components of the beta mixture, and
v = (αj, βj, λj)j=1,...,c the vector of parameters with (αj, βj) ∈ R∗+ × R∗+ the two shape
parameters of the j-th Beta distribution and λj ∈ [0, 1] its weight (∑c

j=1 λj = 1).



Chapter 1. Measuring segregation on small units 61

If B is a random variable distributed according to the mixture of Beta distributions
characterized by v, we have

µ(v) = E(B) =
c∑
j=1

λj
αj

αj + βj
.

Duncan index Let I(t; a, b) = B(t; a, b)/B(a, b) with B(t; a, b) =
∫ t

0 u
a−1(1 − u)b−1 du

the incomplete beta function. Using B(a, b+ 1) = B(a, b)b/(a+ b) and I(1− t; a, b) = 1
−I(t; b, a), we obtain

θD =
µ(v)∑c

j=1 λjI(µ(v);αj, βj)−
∑c
j=1 λjαj (αj + βj)−1 I (µ(v);αj + 1, βj)

µ(v)(1− µ(v)) .

Theil index To derive the expression of the Theil index as a function of v, we use that if
B ∼ Beta(α, β), then 1−B ∼ Beta(β, α) and E[B ln(B)] = α(α+ β)−1{ψ(α+ 1)−ψ(α+
β + 1)}, with ψ the digamma function. This yields

θT = 1−
∑c
j=1 λj

{
αj

αj+βjψ(αj + 1) + βj
αj+βjψ (βj + 1)− ψ(αj + βj + 1)

}
µ(v) ln {µ(v)}+ (1− µ(v)) ln {1− µ(v)} .

Atkinson index Let Γ(t) =
∫+∞

0 ut−1 exp(−u) du denote the gamma function. Using
that B(a, b) = Γ(a)Γ(b)/Γ(a + b) and Γ(t + 1) = tΓ(t), the Atkinson index satisfies, for
any b ∈ (0, 1),

θA(b) = 1− µ(v)
−b

1−b

1− µ(v)


c∑
j=1

λj
Γ(αj + b)Γ(βj + 1− b)
Γ(αj)Γ(βj)(αj + βj)


1

1−b

.

Coworker index If B ∼ Beta(α, β), then E[B2] = α(α+ 1)/{(α+ β + 1)(α+ β)}. This
implies

θCW =


c∑
j=1

λj
αj(αj + 1)

(αj + βj + 1)(αj + βj)
− µ(v)2


/{

µ(v)− µ(v)2
}
.

Gini index Contrary to the previous indices, there is no closed-form expression for the
Gini index under a mixture of Beta distributions for Fp because of the term

∫
{Fp(u)}2 du.

This quantity has to be approximated by numerical methods. The Gini index can only be
written as

θG =

1− µ(v)−
∫ 1

0


∫ u

0

c∑
j=1

λj
tαj−1(1− t)βj−1

B(αj, βj)
dt


2

du

/{
µ(v)− µ(v)2

}
.

Appendix 1.D Supplements to the example
Figure 1.2 is equivalent to the analysis displayed in Figure 1.1 for the Gini index. Because
the Gini index does not satisfy Assumption 1.1, only the output of beta and ct methods are
reported: the point-estimate θ̂ (“beta”) and the 95%-level asymptotic confidence intervals
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obtained by bootstrap (“beta CI”) using beta method (with the default 200 bootstrap
iterations); the plug-in estimate θ̂N of the naive or proportion-based index (“naive”);
the estimated CT-corrected index θ̂CT using ct method with the default 50 draws under
random allocation (“ct”).

As with the Duncan, the Theil, the Atkinson, and the Coworker indices, Figure 1.2
illustrates the points discussed in Section 1.2 in the particular case of the Gini index.
Regarding CT correction, there is no reason why θCT should be close to θ. For the Gini, the
CT-corrected index happens to fall below the confidence interval on the probability-based
index θ obtained by beta method.

0
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1

5 10 15 20 25

naive beta beta CI ct

Gini index

Figure 1.2: Gini index by firm size.

We report below the Stata output obtained with beta and ct methods. These estimations
are done over the whole sample of units (K = [2, 25]). As an illustration, the option
independencekp is used for beta method.

. segregsmall K X, format(unit) method(beta) independencekp repb(400) level(0.98)
*** Construction of relevant databases for the analysis ***
*** Estimation and inference ***
Estimation - K and p assumed independent: units are merged (maximal size = 25)
Bootstrap - current bootstrap iteration (out of 400):
.........+.........+.........+.........+.........50
.........+.........+.........+.........+.........100
.........+.........+.........+.........+.........150
.........+.........+.........+.........+.........200
.........+.........+.........+.........+.........250
.........+.........+.........+.........+.........300
.........+.........+.........+.........+.........350
.........+.........+.........+.........+.........400

Estimates for segregation indices using parametric (beta) method:

Unconditional analysis
Number of units studied in the analysis: 1036840
(0 unit with a single individual are excluded from the analysis)
Number of individuals studied: 6178564
Proportion of minority (or reference) group: 4.1e-02
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Assumption on dependence between K and p for estimation and inference: independence
Inference: by bootstrap, 400 repetitions
Unconditional segregation indices:

Index Weight-level Point-estimate [98% Conf. Interval]

Duncan unit .75967 .75777 .76129
Duncan individual .75967 .75777 .76129
Theil unit .43393 .43098 .43639
Theil individual .43393 .43098 .43639
Atkinson unit .76516 .76254 .76741
Atkinson individual .76516 .76254 .76741
Coworker unit .2795 .27604 .28258
Coworker individual .2795 .27604 .28258
Gini unit .89272 .89135 .89388
Gini individual .89272 .89135 .89388

. segregsmall K X, format(unit) method(ct) repct(100)
*** Construction of relevant databases for the analysis ***
*** Estimation and correction ***
CT-correction - current random allocation iteration x10 (out of 100):
.........+
Estimates for segregation indices using CT-correction (ct) method:

Unconditional analysis
Number of units studied in the analysis: 1036840
(0 unit with a single individual are excluded from the analysis)
Number of individuals studied: 6178564
Proportion of minority (or reference) group: 4.1e-02
No inference for naive and CT-corrected indices
CT-correction is made using 100 draws under random allocation (u.r.a.)
Unconditional segregation indices:

Index Weight-level Naive Expected u.r.a. CT-corrected

Duncan n.a. .85864 .71364 .50634
Theil n.a. .57585 .35113 .34632
Atkinson n.a. .90735 .75392 .62349
Coworker n.a. .41953 .16779 .3025
Gini n.a. .94481 .832 .67147
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Chapter 2

Measures of several dimensions of
residential segregation in France
between 1968 and 2019 based on the
Labor Force Survey clusters

The first chapter presented the Stata command segregsmall. This second chapter applies
it to measure residential segregation in France. The analysis is done over the period
1968-2019 to study temporal evolution. I also compare the magnitude of segregation
across various dimensions, namely different ways (using demographic and socioeconomic
individual variables) to specify the minority and majority groups.

I thank INSEE, “le réseau Quetelet-Progedo Diffusion”, and “le Comité du Secret
Statistique” for the access to the datasets used in this project: Enquête Emploi 1968-2002,
Enquête Emploi en continu (version FPR) 2003-2019.

Abstract This article takes advantage of the sampling scheme of the French Labor Force Survey, which
draws clusters of around thirty adjacent housing, to study several dimensions of residential segregation
in France over 1968-2019. Such clusters form relevant neighborhoods to study residential segregation
provided the indices account for the small-unit bias so that they can be compared over time or across
different dimensions of segregation (French versus non-French people, jobseekers versus employed, college
graduates versus non-graduate, white-collar versus blue-collar workers, etc.). Applying the methodology
developed in D’Haultfœuille and Rathelot (Quantitative Economics, 2017) and Rathelot (Journal of
Business and Economic Statistics, 2012), we estimate annual segregation indices for different specifications
of the “minority” and “majority” groups, aiming to quantify several dimensions of residential segregation
and compare them. The results suggest two main conclusions. First, whatever the dimension under
study (ethnicity, immigrant, nationality, occupational category, labor market status, education), the
estimated indices do not reveal significant evolution over time: within each dimension, the magnitude
of residential segregation has remained globally constant for the past decades. Second, they reveal the
magnitude of segregation differs across the different dimensions according to the following decreasing
ranking: nationality, ethnicity (using as a proxy parents’ country of birth) and being an immigrant, social
status (occupational category or college education), and labor market status (unemployed or employed).
A conditional analysis, separating neighborhoods that belong to urban areas of 200,000 inhabitants or
more from neighborhoods belonging to smaller urban areas, complements the unconditional analysis.

65
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2.1 Introduction
This article provides quantitative measures of residential segregation in France over the
past decades, between 1968 and 2019, for several socioeconomic or demographic dimensions,
namely several ways of splitting the population living in France into two groups, a so-called
minority or reference group and the other majority group. For a given split, at a given
date, a residential segregation index for metropolitan France quantifies the extent to which
minority individuals are concentrated in some neighborhoods instead of being uniformly
spread across the residential areas of metropolitan France. We use the clusters of about 30
adjacent housing from the Labor Force Survey as the studied neighborhoods. For each year,
we estimate residential segregation indices at the scale of the whole metropolitan French
territory. Such estimates enable us to study the evolution of residential segregation over
time and compare the magnitude of segregation for different definitions of minority groups.
They could also be used as basic bricks to study the causes of residential segregation.

The outline of the article is as follows. The rest of this introductory section briefly
presents the data used, the notion of residential segregation, and the methods we apply to
measure it while addressing the so-called small-unit bias. It then defines what we mean
by a dimension of residential segregation, discusses the related literature, and states the
main findings. Section 2.2 describes the data we use in more detail and how we define the
various dimensions, that is, the specifications of a minority group and of a majority group
according to socioeconomic or demographic individual covariates. Section 2.3 formally
presents segregation indices as statistical parameters of interest and the estimation and
inference methods we use. It also shows several robustness checks. Finally, Section 2.4
presents the estimated segregation indices over time and for the different dimensions.

Data and neighborhoods/residential areas

From a population made of two specified groups (minority and majority) spread across
units (neighborhoods, workplaces, schools, etc.), a segregation index seeks to measure the
extent to which individuals from the minority group are concentrated in some units more
than in others. Consequently, the notion depends on the units considered, for instance,
school segregation with schools or residential segregation with neighborhoods.

Defining neighborhoods can be challenging. Here, we take advantage of the areal
sampling scheme of the French Labor Force Survey (LFS). From an exhaustive sample
frame of the ordinary housing1 in France based on housing tax, the sampling randomly
draws clusters (“grappes”) of around 20 to 40 adjacent housing and surveys the people
who live there. From 1968 to 2002, the survey was done annually, at a particular year
period (typically during the first semester in March). Since 2003, the French LFS has
become the “Enquête Emploi en continu,” and the survey has been performed throughout
the year with selected clusters surveyed every quarter during six quarters, one and a half
years.2 After being surveyed for six quarters, a cluster is dropped, and another is drawn

1The population of study of the LFS is almost all residents in France, not the sub-population of French
individuals; almost because the survey concerns inhabitants who, at the time of the survey, are at least 15
years old and live in ordinary housing, which excludes individuals living in communities such as retirement
homes, hospitals, barracks, monasteries, etc. Children younger than 15 years old are not concerned by the
survey, although it is possible to identify them and have some basic information.

2Note that the survey does not follow inhabitants who move; it encompasses the current inhabitants of
the cluster.
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to replace it. In fact, the panel is rotative in the sense that, every quarter, one-sixth of
the clusters entering the survey are renewed.

Despite the variation in their physical delimitation, according to population densities,
these clusters of around 30 adjacent housing form relevant units or neighborhoods (hence-
forth, the two terms are used as synonyms) to study residential segregation. They do
capture individuals whose places of residence are close together.

Residential segregation

As already explained, for a given partition of the population into two groups, a minority
and a majority group, the notion of residential segregation relates to the concentration of
minority individuals in some neighborhoods more than in others. Remark that, following
the literature, we use the term segregation as a neutral term describing that concentration
independently of the causes behind such a phenomenon. Measuring the level of segregation
is a necessary first step to investigating its causes.

Qualitatively, there is some segregation whenever the minority individuals are not
randomly distributed across the units; in other words, when the allocation process system-
atically leads to the concentration of minority individuals in some specific units: minority
individuals are over-represented in some neighborhoods relative to their overall proportion
in the population and under-represented in some others.

This suggests a natural way to quantify segregation by considering the empirical
proportions (Xi/Ki)i=1,...,n where, for each unit i ∈ {1, . . . , n} among the n units surveyed,
Xi (respectively Ki) is the number of minority individuals (respectively the total number
of individuals) living in unit i. Intuitively, the more variation across those proportions,
the higher residential segregation. Indeed, suppose that a large part of those proportions
is equal to either 0 or 1, it means that most neighborhoods have only majority individuals
or only minority individuals. On the contrary, if there is little variation in the proportions
Xi/Ki across the units i ∈ {1, . . . , n}, it means that minority individuals are more or
less uniformly distributed across the neighborhoods. Consequently, a natural measure of
segregation is an inequality index on the proportions (Xi/Ki)i=1,...,n.

Small-unit bias

Although intuitive, considering the variations in the observed proportions is problematic
when the units are small, namely when the number K of individuals per unit is small. In
that case, the natural measure based on observed proportions (Xi/Ki)i=1,...,n over-estimates
the level of segregation; this problem faced by naive indices is known as the small-unit bias.
The issue is that with small K, the variation in the empirical shares (Xi/Ki)i=1,...,n could
simply be due to small-sample variability, instead of reflecting a systematic concentration
of minority individuals in some units more than in others; the smaller K, the more severe
the bias.

Let forget temporary residential segregation and imagine a simple example to convey
the idea. We consider a population of employees, half women, half men, and we study
workplace segregation between gender: do women and men tend to work in the same
workplaces (which correspond here to the units) or, on the contrary, do they concentrate
into distinct workplaces? Assume that there is no segregation in the sense that, for
each workplace, the probability that an arbitrary employee working there is a woman is
equal to 1/2. In other words, women and men are allocated randomly across workplaces.
Nevertheless, as long as the sizes of workplaces are small, the observed proportions of



68 Chapter 2. Measures of residential segregation in France

women and men will not be precisely equal to the theoretical 50-50% repartition owing to
statistical fluctuations. In an extreme case with two employees per workplace, although
women and men are allocated randomly, on average, one-fourth of the workplaces will
have only women and another one-fourth only men.

Thus, in such situations, naive measures of segregation are upward-biased. This fact is
problematic in itself to quantify segregation. Furthermore, it impedes reliable comparisons
over time or across countries since the bias may evolve.

Significance of the bias in our application

We could wonder how significant the bias in our setting is since the units contain several
dozens of individuals. Simulation studies from Cortese et al. (1976) and Carrington and
Troske (1997) show that, even with K of the order of 50 individuals, the bias is substantial.
In addition to K, all else equal, the magnitude of the bias decreases with the overall share
of the minority group in the population: the closer to 1/2, the lower the bias. However, in
several analyses performed below, when considering, for instance, immigrants or foreigners
to define the minority group, that share is well below 1/2. To quote a single number
from those simulation studies, with a minority share of 10% of population and K = 50,
the estimated bias of the classical Duncan or dissimilarity index is 0.19, which is almost
one-fifth of the range of the index, normalized between 0 (no segregation) to 1 (complete
segregation).

Such magnitude of the bias, if not higher, can be expected in our application. Indeed,
pooling all years 1968-2019 together,3 the number of adults (individuals aged 18 or more)
by unit has the following descriptive statistics: a mean of 45 with a standard deviation of
33, a median of 36 and respective quantiles at 10%, 25%, 75% and 90% equal to 15, 23, 61
and 92.4

Above all, the small-unit bias impedes reliable comparisons of segregation measures
over time, across countries, or different dimensions/specifications of minority and majority
groups. Indeed, the size of units might change, thus modifying the magnitude of the bias.
It is indeed the case for our data as the LFS’s sampling scheme has evolved toward thinner
clusters over time: the average number (median in parenthesis) of adults by cluster is
73 (68) between 1968 and 1979, 56 (58) for the decade 1980-1989, 42 (37) between 1990
and 2002, and 28 (28) for 2003-2019. Consequently, naive segregation measures are likely
to exhibit an artificial increase of segregation over time since the small-unit bias is more
acute as K gets smaller.

All in all, when measuring residential segregation with units based on the clusters of
the LFS, it is vital to correct for the small-unit bias.

Methodology

Two main approaches have been proposed in the literature to do so. A first one (Cortese
et al. (1976), Carrington and Troske (1997), Allen et al. (2015)) starts from the proportion-
based indices (variations of the (Xi/Ki)i=1,...,n) and corrects them by subtracting an

3As explained above, since 2003, the survey has been done four times a year, every quarter. To maintain
annual regularity and study evolution over time, we restrict the analysis to one quarter; we choose the
first one as, before 2003, the survey was generally conducted in March.

4Besides, in the following analyses, the number of individuals K actually included in the population
of interest can even be smaller since we do not always observe the relevant covariates defining group
membership for all individuals.
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estimate of the bias.
Another approach (Rathelot (2012), D’Haultfœuille and Rathelot (2017)) directly

defines probability-based indices immune to the small-unit bias. The units are modeled as
i.i.d., and the idea is to introduce, for each unit i, the unobserved variable pi. pi is the
conditional probability that an arbitrary individual of unit i, knowing that he or she lives
in that neighborhood i, belongs to the minority group.5 Remark that Xi/Ki is a natural
estimator of pi, but is consistent only when Ki goes to infinity. As already explained,
the smaller Ki, the noisier the estimator, which implies variations in the proportions
(Xi/Ki)i=1,...,n and small-unit bias.

In contrast, probability-based indices are defined from the variations of the probabilities
pi. If they are all equal, it exactly says that the minority individuals are distributed
randomly across the neighborhoods: the probability that an arbitrary individual belongs
to the minority group conditional on living in neighborhood i is equal to the unconditional
probability (the overall share of the minority group in the population). Thinking in
terms of information, this means that knowing the place of residence of someone does not
give any clue to predict its membership to the minority. This is how null segregation is
defined. On the contrary, a situation where all the probabilities pi are equal to either 0
or 1 characterizes complete segregation. Formally, as detailed in Section 2.3, the indices
are defined as functionals of the distribution of p.

The opposition between proportion-based and probability-based indices can be exposed
as an opposition between evenness and randomness benchmarks. Following Winship
(1977), it is noteworthy to stress that both benchmarks can be of interest, although for the
question of the measure of segregation, we think the randomness one should be favored.

The evenness benchmark considers the realized proportions Xi/Ki. Suppose one is
interested in the consequences or effects of segregation. In that case, those proportions
are probably the relevant objects of interest since the impact will depend on the actual
allocation of the population. In contrast, when the issue is to quantify the level of
segregation, namely to which extent minority individuals tend to be concentrated in some
neighborhoods more than others, the interest lies in the underlying allocation process,
and the relevant quantities are arguably the probabilities pi. We consider the randomness
benchmark in the rest of this article.

For the estimation of and inference on the probability-based indices, we use the
methodology developed in Rathelot (2012) and D’Haultfœuille and Rathelot (2017) and
implemented in the Stata package segregsmall (D’Haultfœuille et al., 2021).

Orthogonal to the distinction between probability- and proportion-based indices,
another debate regarding segregation measure concerns the choice of the mapping from
either the proportions (Xi/Ki)i or the probabilities (pi)i to a normalized segregation index
in [0, 1]. We present below measures for five classical indices: the Duncan (also known as
dissimilarity index), the Theil (a.k.a. entropy or information theory segregation index),
the Atkinson (with parameter b = 0.5), the Coworker (a.k.a. normalized isolation or
variance-ratio index), and the Gini.

Dimensions of segregation

By different dimensions of segregation, we understand different ways to define the minority
and the majority groups under study. We consider several socioeconomic and demographic

5Such a probability is properly defined under the assumption: X |K, p ∼ Binomial(K, p), where we
drop the subscript i to lighten notation as the variables are modeled as i.i.d..
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variables yielding six main dimensions of the analysis, depending on the type of individual
covariates used to classify minority and majority individuals: (i) labor market positions,
(ii) social/occupational categories, (iii) levels of education, (iv) ethnicity proxied by the
country of birth of an individual’s mother, (v) origins in the sense of immigrants or
non-immigrants; (vi) nationalities.

A given dimension, that is, a type of individual covariates used to distinguish minority
and majority, is susceptible to include different specifications of minority and majority
groups. For instance, for the dimension of nationality, one analysis can be done with
European nationalities defining the majority group and non-European nationalities as the
minority one; another with French individuals as the majority group and individuals with
Algerian, Moroccan, or Tunisian nationalities as the minority group.

That example raises the question of how to proceed when the specifications entail a
partition of the overall population in more than two groups. It is the case in the latter
specification where we can consider two minority and one majority groups:6 group M
(standing for the majority) made of French, group m1 (standing for minority) made of
Algerians, Moroccans, or Tunisians, and group m2 made of other foreign nationalities.
Another example is the labor market dimension, where we can distinguish the group m1
of jobseekers, the group M of employed people, and the group m2 of inactive people.

Remark that the labels of minority or majority groups are conventional. First, all the
indices we consider are invariant to the label-switching of the groups.7 Second, rather than
the actual proportions in the population, these choices are guided by the sub-populations
we want to study and contrast: we are interested in quantifying the concentration of
the m1-type individuals in some units only compared to the distribution of the M -type
individuals; the other group m2 being of less or no interest. This explains the conventional
choice in the literature since Massey and Denton (1988):8 drop group m2 and define
the studied population as the minority group m1 and the majority group M to estimate
segregation indices in a two-group setting. Compared to regrouping m2 and M together,
this choice is sensible by focusing on the concentration of the minority group of interest
m1 compared to a benchmark/reference group M . We follow this specification in all our
analyses. Remark that dropping individuals from group m2 leads to smaller unit sizes K;
hence, addressing the small-unit bias is crucial.

Finally, we underscore that our use of the term dimension differs from the seminal
article “The Dimensions of Residential Segregation” by Massey and Denton (1988) (MD)
where the authors define residential segregation as a multidimensional phenomenon with
five dimensions:

1. Evenness “refers to the differential distribution of two social groups among areal
units in a city. A minority group is said to be segregated if it is unevenly distributed
over areal units (Blau 1977)” (MD, page 283, quoting Blau (1977));

2. Exposure “refers to the degree of potential contact, or the possibility of interaction,
between minority and majority group members within geographic areas of a city”
(MD, page 287);

6The following discussion would remain unchanged if we have more than two minority groups:
m1,m2, . . . ,mk, k > 2.

7For the Atkinson index, it is the case because its parameter b is set to 0.5.
8“we artificially restricted attention to the two-group cases. Indices were calculated as if Anglos and

the minority in question were the only two groups present. For example, in measuring the degree of
segregation between Hispanics and Anglos, the total population was assumed to equal the sum of these
two groups”, Massey and Denton (1988), page 299.
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3. Concentration “refers to the relative amount of physical space occupied by a minority
group in the urban environment” (MD, page 289);

4. Centralization “is the degree to which a group is spatially located near the center of
an urban area” (MD, page 291);9

5. Clustering, the degree of spatial clustering exhibited by a minority group: “the extent
to which areal units inhabited by minority members adjoin one another, or cluster,
in space” (MD, page 293).

Compared to the exhaustive perspective of MD, we focus on the first two features of
segregation: evenness (or, instead, randomness as explained above) and exposure. The
other dimensions emphasized by MD are geographical. They are pertinent in the study of
residential segregation in a given city but appear less applicable when estimating an index
of segregation at the level of an entire country, what we do here for metropolitan France.

The most common indices associated with evenness/randomness are the Duncan, the
Theil, the Atkinson, and the Gini indices. The classical index for exposure is the Coworker
index.10 Those indices differ as regards the composition-invariance property (James and
Taeuber (1985), that is, whether the index is sensitive to the relative proportions of the
groups m1 and M : “Although indices of exposure and evenness tend to be correlated
empirically they are conceptually distinct because the former depend on the relative size
of the groups being compared, while the latter do not. [. . .] Exposure indices take explicit
account of the relative size of minority and majority groups in determining the degree of
residential segregation between them” (MD, page 287).

In the following analyses, we estimate both types of indices. These estimations enable
us to compare the evenness/randomness dimension with the exposure dimension in the
terminology of Massey and Denton (1988). We discuss that point in the presentation of our
results. Henceforth, we reserve the term dimension for the different types of demographic
or socioeconomic variables used to define minority and majority groups. Finally, remark
that this distinction between composition-invariant and composition-variant indices is also
known as the distinction between the intensity (“intensité”) of segregation for the Duncan
(or another composition-invariant index) and the scale/extent (“ampleur”) of segregation
for the Coworker index (see Shon and Verdugo (2014)).

Literature

This article connects to a broad literature on the measure of segregation. The articles that
address the small-unit bias have already been mentioned. In addition to those already
cited, other methodological articles include: Duncan and Duncan (1955) that defines the
dissimilarity or Duncan index and discusses its links with the segregation curve; Reardon
and Firebaugh (2002) for the discussion of multi-group settings; Frankel and Volij (2011) for
axiomatic properties of proportion-based indices; Åslund and Skans (2009) for conditional
indices.

9The notion appears more relevant in the U.S. context of ethnic residential segregation, as the more
deprived population often concentrates near the center of the city. It would rather be the opposite in a
European context.

10Remark that we reuse here the terminology of MD, but the exposure dimension is also subject to
the distinction between realized proportions (evenness benchmark as discussed above) versus underlying
probabilities (randomness benchmark). In this article, we always consider the randomness benchmark.



72 Chapter 2. Measures of residential segregation in France

Regarding the application, several articles are closely linked to our work. Maurin
(2004) also uses the LFS data to obtain concentration measures, but distinct from the
classical segregation indices due to the small-unit bias, for social status and ethnicity
dimensions. Rathelot (2012) also uses the LFS data and a probability-based approach
to estimate segregation indices in the ethnicity dimension over the period 2005-2008.
Shon and Verdugo (2014) studies the residential segregation of immigrants in France. It
does not rely on LFS data but on censuses. Consequently, the role of the units is not
played by the 20 to 40 adjacent housing clusters of the LFS but by residential IRIS (“Ilots
Regroupés pour l’Information Statistique”, aggregated units for statistical information),
namely infra-municipal areas of around 1,800 to 5,000 inhabitants. Although IRIS are
defined to be homogeneous in terms of living environment with boundaries based on the
major dividing lines provided by the urban fabric (main roads, railways, bodies of water,
etc.),11 the corresponding neighborhood areas are far coarser than the clusters of the
LFS. Although the latter requires tackling the small-unit bias, we believe it is worth the
cost to study residential segregation because the LFS clusters provide arguably natural
neighborhoods of around fifty adults living in adjacent housing, for each year (even each
quarter since 2003), and with rich individual covariates, which allows exploring multiple
dimensions of segregation.

Lastly, by considering the ethnicity dimension, this work also relates to a strand of the
literature studying the job market or residential conditions of immigrants or ethnic groups
proxied by parents’ nationalities or places of birth, such as Aeberhardt et al. (2010) and
Meurs et al. (2006).

Main findings

The results suggest two main conclusions. First, whatever the dimension under study,
(i) labor market positions, (ii) social/occupational categories, (iii) levels of education,
(iv) ethnicity, (v) origins (immigrants), or (vi) nationalities, the estimated indices do not
reveal significant evolution over time: within each dimension, the magnitude of residential
segregation has remained globally constant for the past decades.

Second, the magnitude of segregation differs across the different dimensions according to
this decreasing ranking: (vi) nationalities, then (v) origins (immigrants) and (iv) ethnicity,
followed by (iii) education levels and (ii) social/occupational categories, finally (i) labor
market positions with the lowest magnitude of segregation.

A conditional analysis, separating neighborhoods that belong to urban areas of 200,000
inhabitants or more from neighborhoods belonging to smaller urban areas, overall confirms
these findings for the aggregate conditional indices. Nonetheless, this conditional analysis
also suggests that, in some dimensions, the temporal evolution of segregation differs
between large cities (200,000 inhabitants or more) and smaller cities or rural areas.

2.2 Data and dimensions

2.2.1 Labor Force Survey and units/neighborhoods
The data used is the French Labor Force Survey (LFS) from 1968 to 2019. Before 2003,
the survey was annual; since 2003, data has been available each quarter. For the period

11See INSEE documentation https://www.insee.fr/en/metadonnees/definition/c1523 for further details.

https://www.insee.fr/en/metadonnees/definition/c1523
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2003-2019, we restrict to the first quarter to present the evolution with yearly frequency.
The survey field is constituted by principal (by opposition to secondary residences) ordinary
housing within which are surveyed every individual who is at least 15 years old.

The LFS is one of the leading surveys conducted by the French National Institute of
Statistics and Economic Studies (INSEE), and the sample sizes are large. For instance,
regarding the rotating panel, between 2003 and 2009, on average, 54,000 ordinary housings
are surveyed each quarter, 44,000 are in the survey field (i.e., are principal ordinary
housing), 36,000 answer the survey, which results in interviewing about 70,000 individuals
of more than 15 years old. In 2009, the sample size was increased gradually by 50%. In
2013, 57,000 ordinary principal housings counting for about 108,000 individuals older than
15 years old, were interviewed.

In the analyses, we restrict to adult individuals (at least 18 years old) with non-missing
individual variables used to define the minority and majority groups. Also, we restrict
units containing at least two distinct housing, which is the case for virtually all units
unless rare exceptions.

In all analyses, a unit or neighborhood is defined as a cluster of the areal sampling scheme
of the LFS. It is a geographic area of about 30 adjacent ordinary housing, representing 48
adults living in the neighborhood, on average over the period 1968-2019.

Depending on population densities, notably rural versus urban environments, two
clusters can have quite different physical delimitations. In rural areas, it could correspond
to an entire hamlet or different “lieux-dits” (small localities composed of a few housings)
that can be separated by several hundreds of meters or a few kilometers. In residential
suburbs of moderate density or small to medium rural towns, a cluster is typically a
neighborhood of side-by-side houses (see Figure 2.1, a picture from Google Maps based on
a real example given in the survey instructions of the 2008 LFS). In large cities, a cluster
can be one or two buildings of a street or even, for large buildings, one or two floors of
flats.

Those differences in the physical size of clusters can entail different subjective meanings
of these clusters for individuals who live in. For instance, in a large city, the inhabitants
of the three buildings next to mine that belongs to my cluster may not mean more to me
than other inhabitants of buildings further away who are not in my cluster or other city
inhabitants I see taking public transportation. On the contrary, in medium towns, clusters
like the one of Figure 2.1 have probably an immediate sense of neighborhood for individuals
who live in. Despite those differences, the LFS areal sampling clusters appear as relevant
units to study residential segregation. For units composed of one or two buildings in dense
areas, we may consider that they are somewhat too small to represent the neighborhood
of an individual fairly; nonetheless, the unit’s composition conveys information on the
composition of the immediate neighborhood.

2.2.2 Dimensions of segregation and individual covariates
This section describes the different dimensions of segregation that we study, namely the
individual covariates used to define minority and majority groups.

(i) Labor market positions

The first dimension we study is the labor market positions. This dimension relies on an
individual covariate that indicates the labor market position or status with the International
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Figure 2.1: Example of a cluster (2008 LFS) in an area of moderate population density.

Labor Organization classification: active (that is, member of the labor force) employed,
active jobseeker, or inactive (that is, outside of the labor force). That variable is available
through the entire period 1968-2019 and is rarely missing. The idea of this dimension is
to assess the possible residential segregation of jobseekers.

We consider two specifications for this dimension d = (i) labor12

(a) minority group m = unempl. versus majority group M = empl., either we restrict
to individuals active in the labor market, so that the minority group is made of
unemployed people and the majority group of employed individuals;

(b) minority group m = unempl. versus majority group M = empl. or inact., or
we encompass the entire population with a minority group that remains made of
unemployed individuals while the majority group gathers active employed individuals
and inactive individuals, out of the labor force.

Remark that, in specification (a), as explained in Section 2.1, §“Dimensions of segregation”
with the different groups m1, m2 and M , the individuals out of the labor market are
dropped from the analysis.

(ii) Social/occupational categories

The second dimension relates to the French classification of “professions et catégories
socio-professionnelles” (PCS/CSP). Since 1954, it classifies individuals according to their
professional category or situation, considering several criteria: profession, economic activity,
qualification, hierarchical position, and status. A significant recast of the classification was
done in 1982. Despite this, it is possible to keep track of the particular category we consider
for defining the minority group in this dimension: managerial and intellectual professional
occupations (“cadre et professions intellectuelles supérieures” in French), such as liberal

12The denominations written in typewriter font for dimension d, minority group m and majority
group M are used as abbreviations in the figures presenting the results.
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professions (physicians, lawyers, etc.), civil service managers, professors and scientists,
professions in information and communication technologies or arts, administrative and
commercial managers, engineers, etc. The variable is available throughout the 1968-2019
period.

We consider two specifications for this dimension d = (ii) occup.

(a) minority group m = manag. versus majority group M = other act., either
restricting to the individuals currently active in the labor market, where the minority
group is made of active individuals occupying a managerial or intellectual professions
and the majority group of the other individuals active in the job market;

(b) minority group m = act. or former manag. vs majority group M = other, or
also including in the analysis former managerial and intellectual professions, so that
the minority group is composed of active and former managerial and intellectual
professional individuals while the majority group is made of the rest of the population
with known current or former (for retired individuals) occupational categories.

(iii) Education levels

This dimension is defined by the highest level of education, or diploma, attained by
individuals. Compared to all other dimensions where we include in the analysis adult
individuals (at least 18 years old), for this dimension, we restrict to individuals at least
23 years old because the preceding years are typically those of the initial formation. The
variable is available from 1970, except for the year 1973.

We consider a single specification for this dimension d = (iii) educ.

(a) minority group m = bachelor or + versus majority group M = other. The
minority group m is made of individuals with at least a bachelor’s degree, that is, in
French equivalent, a “Licence” (a three-year degree in the LMD European system of
2004 – Bachelor/Licence, three years; Master, over five years; Doctorate, over eight
years). The majority group M is made of all other individuals (aged at least 23),
whose highest achieved education level is lower than a bachelor’s degree.

(iv) Ethnicity

This dimension is defined from a proxy of the ethnicity of individuals. The use of a proxy
is necessary because French law prohibits collecting race or ethnicity statistics. For a given
individual, the usual proxy is based on his or her parents’ nationality or place of birth at
the parents’ birth. In the LFS, the modalities for those variables (nationality or place of
birth) of parents are the following:

1 France,
3 Northern Europe,
4 Southern Europe,
5 Eastern Europe,
6 North Africa (Algeria, Morocco, Tunisia),
7 Rest of Africa (Africa except the three countries/nationalities of modality 6)
8 Middle-east
9 South-East Asia, which corresponds to Laos, Vietnam, and Cambodia (former French
colonies)

10 Rest of the world.
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We indicate the modality as encoded in the LFS documentation as we will refer to that
encoding when defining minority and majority groups.

Different specifications can proxy ethnicity depending on the choice of nationality or
place of birth to determine the modality of an individual’s parents and the choice of the
father or the mother as the dominant parent. Overall, they yield very similar results
regarding the proxied ethnicity of individuals. Therefore, we focus on one of the 2 × 2
possibilities, which is to take the mother (instead of the father) as the dominant parent in
a sense detailed below and the place of birth (instead of the nationality) at the birth of
the parents.

An individual proxied ethnicity takes values in the above-mentioned modalities (1 to
10, without 2) and is defined in the following way:

– whenever the two parents have modality 1, the proxied ethnicity is 1;
– when one of the two parents (be it the father or the mother) has modality 1 and the

other parent a modality x 6= 1, the proxied ethnicity is x;
– finally, if the two parents have modality x (father) and y (mother) different than 1,

if x = y, the proxied ethnicity is x = y; if x 6= y, the proxied ethnicity is the one of
the dominant parent, here chosen to be the mother, hence y.

The variables required to obtain the proxied ethnicity have only been available since
2005.

We consider three specifications for this dimension d = (iv) ethni.

(a) minority group m = a.m.t. versus majority group M = french, where minority
individuals are those whose proxied ethnicity has modality 6 (Algeria, Morocco, or
Tunisia, abbreviated to a.m.t.) and majority individuals those with modality 1
(the two parents of the individual are born in France);

(b) minority group m = african versus majority group M = french, minority indi-
viduals with proxied ethnicity equal to 6 or 7 (at least one of the parents of the
individual is born in Africa) and majority group as in (a);

(c) minority group m = non-eur. versus majority group M = european, minority
individuals with proxied ethnicity equal to 6, 7, 8, 9, or 10 and while the proxied
ethnicity of majority individuals belong to the modalities 1, 3, 4 or 5.

(vi) Nationalities

In the LFS, the modalities encoding nationalities vary over time with more or less precision.
This explains the following specification choices and the lack of availability of some of
them over the entire period 1968-2019. For easier comparison, we express the modalities
of the nationalities with the modalities of proxied ethnicity.

We consider four specifications (the first three are analogous to dimension (iv) with
nationalities instead of proxied ethnicity) for this dimension d = (vi) nat.

(a) minority group m = a.m.t. versus majority group M = french, individuals of
Algerian, Moroccan or Tunisian nationalities versus individuals of French nationalities,
the variables and related modalities required for that construction are available for
the full period 1968-2019;13

13This is probably explained by the colonial links between France and these countries.
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(b) minority group m = african versus majority group M = french, African nationali-
ties versus French nationality, the related modalities for this specification are only
available from 1975;

(c) minority group m = non-eur. versus majority groupM = european, non-European
versus European nationalities, that specification is available from 1990 only;

(d) minority group m = non-fr. versus majority groupM = french, French nationality
as the majority group contrasted to all other foreign nationalities in the minority
group, that specification is available for the entire period 1968-2019.

(v) Origins (immigrants)

This dimension is connected with the previous two dimensions. Indeed, for a given reference,
here France, an immigrant is defined as an individual who resides in France and who is
born abroad (outside of France) with a foreign nationality at birth (not French). Note
that the criterion is defined once at the birth of the individual. In particular, an individual
can be an immigrant but have acquired French nationality by naturalization.

We consider two specifications for this dimension d = (v) orig.

(a) minority group m = immigrant versus majority group M = other, where an
individual belongs to the minority group if he or she is an immigrant in the exact
definition of being born as a foreigner abroad while the majority group is made of
all other adults; the variables needed for this construction have been available since
2003 only;

(b) minority group m = foreign immi. versus majority group M = other, where an
individual belongs to the minority group if he or she is an immigrant and does not
have the French nationality when surveyed (thus, it is only a proper subset of the
set of immigrants of specification (a)) and the majority group is made of all other
adults; the required covariates to construct those groups are available in the data
between 1982 and 2019.

2.3 Methodology and robustness

2.3.1 Parameters of interest, estimation, and inference
This subsection briefly recalls the statistical model, the index of interest, and how estimation
and inference are performed. We refer to the original articles by Rathelot (2012) and
D’Haultfœuille and Rathelot (2017) as well as the Stata article D’Haultfœuille et al. (2021)
that presents the package segregsmall used in this application for further details.

The population of interest is split into a minority group m and a majority group M
according to some dimension and specification (see Section 2.2.2). We assume to observe
an independent and identically distributed (i.i.d.) sample (Xi, Ki)i=1,...,n of units, with Xi

the number of minority individuals living in unit i and Ki the total number of individuals
(minority m plus majority M) living in neighborhood i.

We start by reasoning conditional on K = k.14 A probability-based segregation index θ
is then a functional of the cumulative distribution function Fp of p and of m01 = E[p], that

14As we assume i.i.d. sampling of units/neighborhoods, we drop the subscript i to lighten notation:
(Xi,Ki, pi)i=1,...,n

i.i.d.∼ (X,K, p).
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is θ = g(Fp,m01). As explained in Section 2.1, the index will be minimal equal to 0 when
p is constant (Dirac mass) and maximal equal to 1 when p follows a Bernoulli distribution.

The function g depends on the mapping used to quantify the variation of the probabil-
ities pi. We consider five classical segregation indices

θD =
∫
|u−m01| dFp(u)
2m01(1−m01) (Duncan),

θT = 1−
∫
{u ln(u) + (1− u) ln(1− u)} dFp(u)
m01 ln (m01) + (1−m01) ln(1−m01) (Theil),

θA(b) = 1− m
−b

1−b
01

1−m01

{∫
(1− u)1−bub dFp(u)

} 1
1−b (Atkinson, with b = 0.5),

θCW =
∫

(u−m01)2 dFp(u)
m01(1−m01) (Coworker),

θG =
1−m01 −

∫
F 2
p (u) du

m01(1−m01) (Gini).

For the moment, K is constant or fixed in a conditional analysis. In practice, the unit
sizes vary. To deal with random K that takes values in K, the segregation index θ is
defined as a weighted average of indices conditional on K = k, denoted θk = g(F k

p ,m
k
01)

with F k
p the cdf of p conditional on K = k, and mk

01 = E[p |K = k]; hence, θ depends on
the joint distribution of p and K. Whether we study segregation at the unit-level or at
the individual-level matters for the weights used. The unit-level index θu satisfies

θu =
∑
k∈K

P(K = k) θk,

whereas the individual-level segregation index θi is defined by

θi =
∑
k∈K

kP(K = k)
E[K] θk.

We use either the non-parametric (np) approach of D’Haultfœuille and Rathelot
(2017) or the Beta (beta) parametric approach of Rathelot (2012) as implemented in
the segregsmall Stata command to estimate θu and θi for each of the five classical
segregation indices.15 Confidence interval on θu and θi are obtained by bootstrap using
50 repetitions.16 The parametric method beta assumes a Beta distribution for Fp and
yields point-identification and usual point-estimators for the target parameters θu and θi
obtained by maximum likelihood. On the contrary, in general, θu and θi are only partially
identified in the non-parametric np approach, which does not restrict Fp. In concrete
terms, it means that, instead of a usual point-estimate for the segregation index θu or
θi, the np method reports an estimated identified interval for the index.17 However, it
happens that for sufficiently large K (in practice, K of around a dozen is often enough),

15Remark that the Gini index cannot be estimated through the non-parametric as the related map g
does not satisfy a required condition to implement the np approach.

16This relatively limited number was constrained by computational time requirements. Nonetheless, for
some specifications, the comparisons of confidence intervals obtained with 50 or 100 bootstrap repetitions
suggest the changes from a larger number of bootstrap repetitions are negligible compared to the statistical
uncertainty captured by the confidence interval.

17If you are not familiar with partial identification, think about the following simple example. Imagine
you want to estimate the unemployment rate in France; actually, this is the primary goal of the LFS
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the index is, in fact, point-identified. In this case, the lower and upper estimated bounds
coincide, and the np method outputs a point-estimate for the index θ = θu or θi. Since, on
average, over each year, the 5%-quantile of K is equal to 11, in our application, most of
the time, the non-parametric approach yields point-estimators, although it is not always
the case, depending on the exact specification and the year.

2.3.2 Specification choices and robustness
The remaining choices needed to obtain estimations of segregation indices are the following.

Method The method used for estimation: either the non-parametric approach of
D’Haultfœuille and Rathelot (2017) that leaves the distribution Fp unrestricted (np)
or the parametric approach of Rathelot (2012) that assumes a Beta distribution for Fp
(beta). Remark that for the Gini index, only the beta method is available.

Weight The weights used for defining the segregation index when aggregating over
random K: either unit-level weights for the parameter θu (unit) or individual-level weights
for θi (ind.). Since we are interested in a global measure of residential segregation
estimated from units with varying sizes, individual-level weights that give more weight to
the contribution of larger neighborhoods in the aggregated index appear to be preferred in
principle. Nonetheless, we might wonder at this stage what the impact of that choice is
(see robustness checks below).

Assumption on (K,p) Estimation and inference can be made under two settings
regarding the dependence between the variables K and p: without assumption, leaving any
possible dependencies between the two variables, or assuming independence. A priori, it is
more careful to be agnostic about the joint distribution of (K, p). Nonetheless, indepen-
dence allows for pooled estimation, improving identification, and reducing computational
requirements. Besides, under this assumption, we have θu = θi, and the chosen weights are
thus irrelevant. Sampling scheme concerns partly determine the sizes K of units. For in-
stance, the clusters are constructed for easier exploration and finding of newly constructed
housing to ease the work of INSEE interviewers. Also, the number of individuals included
in the analysis depends on the number of observed individuals, thus partly depending on
the experience and perseverance of interviewers to obtain answers. Such factors related to
the sampling procedure seem a priori unrelated to possible segregation, which provides
arguments for assuming K ⊥⊥ p.

Sample of units The sample of units/neighborhoods included in the analysis. As
discussed in D’Haultfœuille et al. (2021) (Section 3.5), the complexity and computational
time of the np method as implemented in the command segregsmall are primarily

data used in this article. You have drawn randomly and independently 100 individuals representative
of your target population. Thanks to that sampling scheme, you can assume the observations as i.i.d..
However, only 90 individuals answered your questionnaire. Among those 90 individuals, 14 are jobseekers.
Let assume that, whatever the sample size and your efforts, there will always be a 10% fraction of
non-respondents. In such a case, without additional assumptions such as missing-at-random selection or
imputation of missing values, the unemployment rate is only partially identified, you cannot state more
than the identified interval [4, 24] = [14− (100− 90), 14 + (100− 90)] whose bounds are obtained if either
all the non-respondents are employed (lower bound) or they are all jobseekers (upper bound).
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influenced by the magnitude of K: the higher K and the larger |K|, the more demanding
the optimization problem. To study the evolution of segregation over time and compare
its magnitude across dimensions, we make the analysis for each year (52 years for the
whole period 1968-2019) and several dimensions and specifications. In addition, each
time, we compute confidence intervals from bootstrap. Consequently, we cannot afford an
optimization that requires too much computational time with the np method. In practice,
the computational requirements are too demanding for our desired application for K
taking each integer value between, say, K = 10 and K ≈ 50 or 60.

One possibility to deal with that computational burden would be to favor the parametric
beta approach that is faster, notably under the assumption K ⊥⊥ ρ.

Another is to restrict the units included in the analysis to the units with size K ≤ K
with K := 50. At first sight, this may seem like a strong and arbitrary restriction. However,
given the distribution of K, such restriction to small neighborhoods encompasses a (vast)
majority of all neighborhoods. Between 2003 and 2019, pooling all years together, the
proportion of units with a number of adults at most equal to 50 is 97%. Before, due
to the larger units in the first part of the period, the proportion is inferior: 67% of all
units between 1990 and 2002 but only 34% between 1968 and 1989. However, note that
these figures are computed using the raw number of adults in the units. In practice, as
explained in the construction of the different dimensions of the analysis in Section 2.2.2,
the total number K of minority m plus majority M individuals per unit included in the
analysis is lower: some, but relatively few, individuals have missing data for the required
covariates; more importantly, in several specifications, we restrict the population to a
minority group m = m1 and a majority group M and drop other groups m2, . . . ,mk as
explained in Section 2.1. As a result, the restriction to units with K ≤ K = 50 always
comprise the majority (often an overwhelming, especially in recent years) of the units.

Nonetheless, to mitigate that concern, we also consider another type of sample selection.
The idea is the following. Units with K ≤ K are included as such in the analysis. For
units with K > K, we randomly draw K among the K individuals of that unit; this form
a new (sub-) unit with K = K individuals, which is included in the analysis. That idea
might seem surprising first as we introduce additional variability in the composition of
such units: we may randomly pick, say, more minority individuals in the subsample of
selected individuals than their proportion in the entire unit. However, first, there is no
reason this happens systematically across units; second, by definition of the randomness
benchmark, we are not interested in the realized proportion X/K but the underlying
unobserved probability p; it is simply that the latter will be retrieved from a smaller sample
of individuals, as it is already the case in smaller units. In fact, this type of subsampling
corresponds to the particular case of survey data discussed in D’Haultfœuille et al. (2021)
(Section 2.2, §“Assuming independence between K and ρ”) and in D’Haultfœuille and
Rathelot (2017) (Section D.4) In other words, we do lose some statistical power with that
selection but in exchange for a lesser computational burden.

Finally, to assess the influence of such a selection of units (first case) or of the
subsampling of individuals within the large units with size exceeding K (second case), we
also compare the obtained estimates from the np method with the estimate computed on
the entire set of units in the particular case of the Coworker index. Indeed, conditional on
K, thanks to the specific map g defining the Coworker index, the index only depends on
the first two moments of the distribution of p |K and can thus be easily computed even
for large and rich K.
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Robustness checks

As just explained, the estimations of segregation indices depend on four specification
choices about

– the method used (beta or np);
– the weights used to compute the aggregate segregation index (θu or θi);
– the assumption made on the joint distribution of (K, p) (assumed independent or

unrestricted);
– the sample of units/neighborhoods included in the analysis (all, but not available in

practice due to computational burden, or a restriction to the small units K ≤ K = 50,
or a subsampling of individuals for the large units K > K = 50).

In this subsection, we summarize the results of several robustness checks implemented
to assess the impact of those four choices. For each of them, the conclusion is that the
choices made have no impact on the qualitative conclusions of the study of residential
segregation and limited impact on the quantitative findings. Different choices slightly
change the quantitative values of the estimates, but the differences are rather small, and
confidence intervals for the different choices mostly overlap so that we cannot reject those
choices lead to significantly different values of segregation indices.

The rest of this subsection presents three figures to illustrate this point. The absence
of real impact of the methodological choices in the conclusions hold similarly across
the different dimensions of segregation studied and the distinct indices (Duncan, Theil,
Atkinson, Coworker, Gini) as regards method (np or beta) weights (unit or indiv) and
assumptions on (K, p) (none or assumed independence). For this reason and for the sake
of conciseness, we only present some of them.

For the three different samples of units included in the analysis: small units with size
at most K (small (K ≤ 50)), all units with sampled individuals for the large ones (all
(smpl. if K > 50)), all units as such, without subsampling of individuals (all), there is
the caveat that the comparison is only made for the Coworker index. For that index, the
three samples of units give very similar results (Figure 2.3). It is not immediate to find
reasons why it would be different for the other indices. Although not a proof, we are thus
relatively confident about the robustness of our analysis relative to this choice of sample
selection for the other segregation indices. We acknowledge, however, that more direct
robustness checks would be appreciable; we leave them for future work.

Figure 2.2 illustrates the limited impact of the choices relative to weights, assumptions
between K and p, and the sample of units included in the analysis, at least for the choice of
small units and the choice of all units with a subsampling of individuals in large units. The
estimates of θu (unit-level weights) seem slightly above the estimates of θi (individual-level
weights), but moderately. Remark that under the assumption K ⊥⊥ p, θi = θu and the
related estimators also coincide. This explains why the solid red and green lines (ind.) are
not visible: they are hidden by the solid blue and purple ones (unit) since the estimates
are equal.

In addition, the difference between the two samples of units decreases over time. This is
because, as already mentioned, the size K decreases between 1968 and 2019. Consequently,
they are fewer and fewer units with more than K individuals and, thus, the two choices
for the sample used get closer to each other.

That point is also visible in Figure 2.3, which focuses on the impact of the choice
of the sample of units included in the analysis. As already stressed, it is performed for
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Figure 2.2: Dimension: (ii) social/occupation categories with specification (a) restriction to
active individuals. Index: Duncan. For the np method, the figure compares the remaining three
methodological choices: weights, assumptions between K and p, and sample of units included in
the analysis (only small (K ≤ 50) and all (smpl. if K > 50)).
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the Coworker index to compare all three possible choices. The comparison is made for
individual weights, np method and without independence assumption between K and p.
It illustrates the limited impact of the sample selection, notably in recent years since the
switch to the rotative and continuous LFS in 2003.

For the Duncan index, Figure 2.4 compares the non-parametric np and parametric
beta approaches, as well as weights in the case of the absence of independence assumption
between K and p and for the sample of all units with subsampling of individuals for the
large ones. For given weights, the target parameter of both methods beta and np is the
same (either θu or θi). De facto, the estimates are very close: a Beta assumption for Fp
leads to almost the same estimated segregation index as a non-parametric method. This
is reassuring, in particular for the Gini index. which cannot be computed with the np
method as it fails to satisfy some regularity assumption (D’Haultfœuille and Rathelot
(2017), Assumption 2.1). If available, np method is in principle preferable given its
flexibility despite that it is more expensive in terms of numerical computations than the
parametric approach. Although not direct proof, the proximity of both methods for the
Duncan (the same holds for the Theil, the Atkinson, and the Coworker) brings confidence
to a correct estimation of the Gini index by the beta method. Finally, Figure 2.4 also
illustrates the possibility of partial-identification of the index with the non-parametric
approach. In this case, np methods give an estimated identified interval for the index.
Such an interval can be seen, for instance, in 2010 for θi (individual weights).

2.4 Results
This section shows several graphs of annually estimated segregation indices to study
temporal evolution and compare the magnitude of segregation across different dimensions.
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Figure 2.3: Dimension: (i) labor market positions with specification (a) restriction to active
individuals. Index: Coworker. For the absence of independence assumption between K and p, np
method, and individual-level weights, the figure compares the three possibilities of the remaining
methodological choice as regards the sample of units included in the analysis: small (K ≤ 50),
all (smpl. if K > 50) and all.
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Figure 2.4: Dimension: (ii) social/occupation categories with specification (a) restriction to
active individuals. Index: Duncan. For the absence of independence assumption between K and
p, the choice of all (smpl. if K > 50) for the units included in the analysis, the figure compares
the remaining two methodological choices: weights (unit or ind.) and methods (beta or np).
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2.4.1 Unconditional analysis
Combined with previous explanations, the graphs’ legends and subtitles should be self-
sufficient to understand:18

1. the specific segregation index considered (see Section 2.3.1);
2. the methodological choices made regarding method, weights, assumption on (K, p)

and sample (see Section 2.3.2);
3. the dimension of segregation and the specifications of minority and majority groups

(see Section 2.2.2).
For a given index (1.), methodological choices (2.), and definitions of groups (3.), estimation
and inference on the segregation index is performed separately for each year. Thus, one
point on the following figures corresponds to one estimate (or estimated lower/upper end of
the identification interval for np method in case of partial-identification) of the index; the
solid lines connect them. If appropriate, the y-title of the graph indicates the asymptotic
level of the confidence intervals (mostly 95%), which are displayed in dashed lines. Note
that those confidence intervals are only pointwise or cross-sectional intervals, valid for each
year (instead of longitudinal interval tubes). Finally, the y-axis scale and grid adjust to
each graph; comparisons across different figures should thus be made with some caution.

The subtitle of each graph specifies the index (1.) and the methodological choices (2.).
Remember that the possible indices are the Duncan, the Theil, the Atkinson, the Gini, or
the Coworker. They are all normalized between 0 and 1, with higher values indicating
larger magnitudes of segregation.

The four first indices are composition-invariant: they quantify the concentration of
minority individuals in some neighborhoods more than in others irrespective of the fractions
of the minority and majority groups in the population.

Overall, the estimation of those four indices yields the same qualitative conclusions
regarding the temporal evolution and the comparison of the magnitude of segregation
across dimensions. Nonetheless, the quantitative values of the estimates differ as the
indices rely on distinct mapping g to synthesize the variations of the probabilities into
a scalar index. In practice, the estimated Duncan and the Atkinson indices have similar
values, ranging in our application over almost the entire possible range, from around
0.1 to 0.9. The Gini index shows similar numerical values, perhaps slightly larger than
the Duncan and the Atkinson, with estimates ranging from 0.3 to 0.9. In contrast, the
quantitative values of the Theil index are substantially smaller, around half those of the
Duncan and Atkinson indices.

Again, despite those changes, the conclusions regarding temporal evolution and com-
parisons across dimensions are overall consistent between these four indices. That is why
we do not always report here the four of them for the sake of conciseness.19

On the other hand, the Coworker index is defined as a measure of exposure in the
classification of Massey and Denton (1988): it is sensible to the proportions of the minority
and majority groups in the population. All else equal, the closer those proportions to one
half, the larger the Coworker index. Intuitively, this relates to the interpretation of the
Coworker index as the mean exposure of minority individuals to other minority individuals
(that is, the probability for a minority individual to reside in a neighborhood with at least
another member of the minority group).

18That is why the captions of the figures, if given, are rather comments or remarks instead of explanations.
19Some additional figures are presented in Appendix 2.A.
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Consequently, because it does not measure the same aspect of the segregation phe-
nomenon, the Coworker index might show different temporal evolution or ranking across
dimensions than the composition-invariant indices (Duncan, Atkinson, Theil, and Gini).
It happens to be the case in this application to residential segregation in France. In
particular, in some specifications, the Coworker displays an increasing trend over time.
At first glance, this contradicts the overall stability of segregation over time within each
dimension revealed by the other indices. Nonetheless, it is not the case because, for a
given level of the concentration of minority individuals in some units only (that is, a given
magnitude of segregation as quantified by a composition-invariant index), the Coworker
index changes if the population proportions of the two groups evolve. For instance, in
the labor market position dimension, the increase in the Coworker index over time is
essentially due to the rise in unemployment over the period 1968-2019.

There have been long-standing debates about the desirability for a segregation index
to be sensitive to the proportions of minority and majority groups in the population. It is
the case for the Coworker index, but not for other classical indices we study here (Duncan,
Atkinson, Theil, and Gini). In this article, we tend to consider that the magnitude of
segregation should relate to the uniform or concentrated distribution of minority individuals
across neighborhoods, irrespective of the size of the minority group in the population.
Consequently, our main findings rely on the estimated composition-invariant indices,
although we also study and present our results for the Coworker index for completeness
and comparisons.

Regarding methodological choices (2.), Section 2.3.2 explains that they have a limited
impact on the results. Consequently, we primarily focus on our preferred specification:
non-parametric np method, no assumption as regards possible links between K and p
(those two choices ensure the maximal flexibility), individual-level weights (the index of
interest is θi), and all units included in the analysis with subsampling of individuals in
the large ones to alleviate numerical burden (if their sizes exceed K = 50). Appendix 2.A
present some figures for other methodological choices for comparison. The choices are
indicated in the subtitle of each figure, with some (minimal) abbreviations introduced in
the first paragraphs of Section 2.3.2.

Finally, the legends of each figure indicate the dimension of segregation and the precise
specifications of minority and majority groups (3.) for which segregation estimates are
plotted.20 Each legend item contains three elements separated by a slash. The first
one is the dimension d of segregation, that is, essentially, the type of demographic or
socioeconomic variables used to construct group membership. The second and third
elements respectively indicate the minority group m and the majority group M that are
studied. The abbreviations used are presented in Section 2.2.2 when defining the different
dimensions and minority/majority specifications.

We recall that the union of m of M does not necessarily cover the entire conceivable
population. If not, the individuals who belong neither to m nor to M are dropped from
the analysis that restricts to two-group settings with minority m and majority M (see
Section 2.1, §“Dimensions of segregation”).

If a single figure was to sum up the unconditional analysis, we may elect Figure 2.5.
It shows the estimated Duncan indices for each year (solid lines) and associated 95%

20The color associated with a given specification may change across figures depending on the different
dimensions that are represented; comparisons across figures should be made with care.
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confidence intervals (dashed lines) for the six different dimensions and our preferred
specification regarding methodological choices.

It illustrates the two main findings that synthesized our unconditional analysis. First,
within each dimension, the evolution of the magnitude of segregation has remained overall
constant for the past decades. Second, across the different dimensions, the magnitude of
segregation differ sharply with the following decreasing ranking, from highest to lowest
magnitude of segregation,

– (vi) nationalities, with a Duncan index around 0.70;
– followed by (v) origins (immigrants) and (iv) proxied ethnicity, with similar magnitude

displaying a Duncan index about 0.50;
– then (iii) education levels and (ii) social/occupational categories with a close magni-

tude of 0.40 for the Duncan index;
– finally (i) labor market positions with a Duncan index around 0.25.

Figure 2.5: illustrates the two main findings stated in Section 2.1, §“Main findings.”
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As discussed above, the quantitative values of segregation indices are partly arbitrary as
they depend on the choice of the mapping g to obtain a normalized index between 0 and 1.
For instance, in contrast to Figure 2.5 (Duncan index), Figure 2.6 shows the estimates of
the Theil index with the same methodological specifications and for the same dimensions
(but without confidence interval for easier readability). Despite that the quantitative
values of the indices differ (with the Theil index being smaller), the qualitative conclusions
are unchanged. That is why, arguably, it is, above all, interesting to compare indices over
time or across dimensions rather than to focus on their exact quantitative values.21

That being said, the quantitative value of the Duncan index can be interpreted, and that
interpretation can furnish a concrete intuition on the magnitude of segregation. Indeed, the
value of the Duncan index corresponds to the proportion of minority individuals who would

21Remark that, although its quantitative value in itself might not be the most interesting part of a
segregation index, valid estimation, notably addressing the small-unit bias, is nonetheless crucial to be
able to make reliable comparisons of indices.
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Figure 2.6: same as Figure 2.5 for the Theil instead of the Duncan index.
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have to change units (namely, move from their neighborhoods for residential segregation),
that is, quit the units where the minority group are over-represented to join units where
they are under-represented so as to achieve a uniform distribution across units of minority
individuals (Duncan and Duncan, 1955). That is why the Duncan or dissimilarity index
is sometimes named displacement index. Note that such an interpretation makes sense
in an evenness benchmark as opposed to the randomness benchmark. Nonetheless, it
remains interesting to shed light on the magnitude of segregation. For example, in 2019,
the Duncan index for the dimension (ii) social/occupational categories with minority group
made of managers or assimilated and majority group made of the other individuals active
in the labor market is estimated at 0.4. Heuristically, it means that 40% of the managers
or assimilated would need to move out of their neighborhoods (defined as the LFS clusters
of around thirty adjacent housing) to move in other neighborhoods in order to achieve
uniform distribution of the managers or assimilated across neighborhoods among the
population of active adults.

Figure 2.7 illustrates the previous discussion about the distinction of composition-
invariant and composition-variant segregation indices. Figures 2.5 and 2.6 show the
estimates for two composition-invariant indices (Duncan and Theil) while Figure 2.7
presents the estimates for the Coworker index.

At first glance, the estimation suggests different conclusions regarding the magnitude
and temporal evolution of segregation. However, this is only because the Coworker index
captures a distinct feature of the distribution of a minority population among a majority
one across units. In particular, it is sensitive to the size of the minority group. For instance,
with the Coworker, the ethnicity dimension appears to have the highest magnitude of
segregation, above the nationality dimension. This does not contradict the ranking given
by Figures 2.5 and 2.6. It is so because the Coworker measures exposure rather than
segregation, and it happens that the size of the minority group relative to the majority
group is larger for ethnicity than for nationality. For example, consider non-European
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Figure 2.7: same as Figures 2.5 and 2.6 for the Coworker (composition-variant) index.
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ethnicity/nationality as the minority group and European ethnicity/nationality as the
majority group. The proportion of the minority group within the whole population is 4%
for nationalities but 16% for proxied ethnicity in 2019. Consequently, although the non-
European nationalities are more concentrated in some units compared to the concentration
of individual with non-European proxied ethnicity (see Figures 2.5 and 2.6), the Coworker
index happens to be higher for the ethnicity dimension because the minority individuals
are more numerous compared to the nationality dimension. With that specification, the
Coworker is estimated around 0.22 for dimension (iv) ethnicity. We can interpret this
number in the following way: if we pick an arbitrary individual with a non-European
proxied ethnicity, then, in 22% of the cases, he or she will live in a neighborhood with at
least one other individual with non-European ethnicity. It is around 0.17 for dimension
(vi) nationality: if we pick an arbitrary individual whose nationality is non-European, then
the probability that he or she lives in a neighborhood with at least one other individual of
non-European nationality is equal to 17%.

The results shown by the Coworker index about the temporal evolution and the
comparison across dimensions are thus mixing the segregation by itself, understood as non-
uniform distribution of minority individuals across units, and the overall size of the minority
group among the majority population. That notion of exposure can also be interesting
but should not be confused with the information conveyed by the composition-invariant
indices.

As an illustration, the fact that the overall minority proportions are larger in dimensions
(ii) and (iii) compared to dimensions (iv), (v) and (vi) explain the differences between
Figure 2.7 on the one hand and Figures 2.5 and 2.6 on the other. As another final example,
the increase of segregation in the sense of exposure for dimension (i) labor market positions
revealed by the Coworker mainly comes from the rise of the unemployment rate during
the period: the proportion of the minority group within the population has become larger.
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2.4.2 Conditional analysis
In addition to the previous unconditional analysis, it is possible to study conditional
segregation indices. We refer to D’Haultfœuille et al. (2021), Section 2.6 for an introduc-
tion. The LFS datasets contain various information relative to the units/neighborhoods
themselves. In particular, for each unit, we know whether it belongs or not to an urban
area of more than 200,00 inhabitants.

We use this information to perform a conditional analysis with, as a unit-level covari-
ates Z, the indicator that the unit belongs to an urban area of 200,000 inhabitants. Here,
such a conditional analysis amounts to performing the previous analysis separately for

– units in urban areas of more than 200,000 inhabitants (big cities), and
– units in urban areas of less than 200,000 inhabitants (smaller cities, towns, and rural

areas).
After that, we can consider the segregation index restricted to one of those two subsamples
of units; it can be of interest by itself. We can also compute a so-called aggregate
conditional index, defined as a convex combination of the two restricted indices (whose
weights are respectively the proportion of units in urban areas of more than 200,000
inhabitants among all units and the complementary proportion of units in urban areas of
less than 200,000 inhabitants).

Figure 2.8 show those three types of indices plus the unconditional index:
– < 200,000 inhabitants: segregation index restricted to units in urban areas of

less than 200,000 inhabitants;
– > 200,000 inhabitants: segregation index restricted to units in urban areas of

more than 200,000 inhabitants;
– aggregated cond. index: convex combination of the two previous indices;
– unconditional index: segregation index estimated on all the units (as in the

unconditional analysis of Section 2.4.1).

Figure 2.8: Comparison between unconditional index, aggregate conditional index, and index
restricted to either units in or out of urban areas of more than 200,000 inhabitants.
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There is not a unique simple conclusion of that conditional analysis. Overall, across
dimensions, the estimations of the unconditional index and of the aggregate conditional
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index are often close to each other (Figure 2.8 gives an illustration for dimension (i) labor
market positions; Appendix 2.A presents additional figures for other dimensions). This
result suggests our two main findings from the unconditional analysis (stability of segrega-
tion over time within dimension and a marked ranking of the magnitude of segregation
across dimensions) remain valid in the conditional analysis.

On the other hand, in some dimensions of segregation, the estimations conducted
separately on the sample of units that are part of large urban areas and on the other
units reveal differences in terms of magnitude and evolution of segregation (for instance,
see Figure 2.18 in Appendix 2.A for dimension (iii) education levels). Such differentiated
evolution is also of interest on its own, in addition to the aggregate conditional index, to
study residential segregation in-depth.
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Appendix 2.A Additional figures

If necessary, we give below the correspondences between the French legends displayed in some of
the figures and the definitions of Section 2.2.2 for each dimension and each sub-specification of
minority and majority groups.

– d = acteu: labor market status dimension
– m = actcho (actif chômeur) /M = actocc (actif occupé): specification (a) restricted

to individuals active in the labor market,
– m = actcho (actif chômeur) / M = actocc_inact (actif occupé or inactif): specifi-

cation (b) with majority group gathering inactive and active employed individuals,
– d = cadre: social/occupational category dimension (cadre is the French word for, more or

less, managers or assimilated),
– m = cadre_act / M = autr_act: specification (a) restricted to individuals active

in the labor market,
– m = cadre_act_ou_ancien /M = autre: specification (b) including former inactive
“cadre” in the minority group,

– d = dipl: education levels (diploma) dimension,
– m = bac3plus / M = autre: single specification with minority individuals having

at least a bachelor’s degree (“baccalauréat”, French examination at the end of high
shool, + three years or more) and majority individuals the others (“autre” in French),

– d = ethni_pai_mer: ethnicity dimension with ethnicity proxied by the countries parents’
birthplaces (“pai” for “pays”) with mother (“mère”) as the dominant parent

– m = 6 / M = 1: specification (a) with Maghreb versus France proxied ethnicity,
– m = 67 / M = 1: specification (b) with Africa (pooling modality 6 and 7) versus

France (modality 1) proxied ethnicity,
– m = 678910 / M = tous: specification (c) with non-Europe versus Europe proxied

ethnicity,
– d = nat: nationality dimension,

– m = amt / M = fr: specification (a) with “amt” standing for Algerian, Moroccan,
or Tunisian and “fr” for French (same meaning for nationalities instead of birth
countries of the parents that proxied ethnicity),

– m = afr / M = fr: specification (b) with African and French nationalities,
– m = noneur / M = freur: specification (c), non-European and European nationali-

ties,
– m = nonfr / M = fr: specification (d), non-French and French nationalities,

– d = immi: origins (immigrants) dimension,
– m = immi / M = autre: specification (a) with properly defined immigrants (a

resident born as a foreigner abroad) and others,
– m = imminatetr / M = autre: specification (b) with a subset of immigrants as the

minority group, those with foreign (“étrangère”) nationality.
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Figure 2.9: Gini index (necessarily estimated by parametric beta method).
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Figure 2.11:
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Figure 2.13:
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Figure 2.15:
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Figure 2.16:
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Figure 2.17:
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Figure 2.19:
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Figure 2.21:
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Figure 2.23:
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Chapter 3

Identification and estimation of a
polarization index in large choice
sets, with an application to U.S.
Congress speech (1873-2016)

This chapter stems from an ongoing project, joint work with Xavier D’Haultfœuille and
Roland Rathelot. In the continuity of Chapters 1 and 2, it deals with the identification
and estimation of polarization. The difference is that it focuses on large choice sets in the
sense that it is possible to observe some or even a large proportion of options that are
chosen only once. In segregation, this would correspond to units with a single individual,
which were rare and excluded from the analysis (remember the option withsingle).

Abstract Recently, political divisiveness appears to have been increasing in various democracies.
Language, as a basic determinant of group identity, might be part of that story. “Witch hunt” versus
“impeachment hearing”; “undocumented workers” compared to “illegal aliens”; “death tax” or “progressive
wealth tax”: those partisan expressions name the same object but with different connotations. They diffuse
into media coverage and can induce framing effects on public opinion. Hence the interest in measuring
speech polarization of political leaders and comparing its evolution over time or across countries. A way
to do so would be linguistics and literary exegesis. Another is a statistical analysis which, despite rougher
(data is word counts essentially), enables the comprehensive study of a large corpus of texts without
relying on ex-ante partisan expressions, and provides a measure to quantify to which extent distinct groups
(e.g., Democrats and Republicans in the U.S. Congress between 1873 and 2016) speak using different
words. Gentzkow, Shapiro, and Taddy (Econometrica, 2019) address this issue with a (huge) discrete
choice model approach and a machine-learning type penalization. We provide an alternative method
whose pros are the following: (i) a formal partial identification result for the parameter of interest (speech
partisanship index) within a testable statistical model; (ii) simple and computationally light estimators
for the bounds and confidence intervals; (iii) only “aggregated data” is required. As a consequence, our
methodology can easily be applied to other settings with the same problem of quantifying differences as
regards the choices made by individuals split into two groups in a “high-dimensional” or “large choice
sets” context – meaning that the number of distinct options is large relative to the number of observed
choices in data. In our application, these are choices of words pronounced by Republican and Democrat
speakers, but it might as well be choices of residential locations between natives and immigrants when
investigating segregation, product choices between distinct groups of consumers in empirical industrial
organization, etc.

103



104 Chapter 3. Identification and estimation of speech polarization

3.1 Introduction
Our goal is to reliably quantify the differences in the choices made by two exogenous groups.
Various examples embody that issue. As a case in point, segregation indices assess to what
extent two populations, say, natives and immigrants, make similar residential decisions. A
firm might be interested to know whether two types of customers, for instance, premium
subscribers versus free tier users, tend to buy different products and, if so, measure the
difference. The application of this article examines speech polarization: do Republican
and Democrat congresspeople speak using the same words?

A single formalization encompasses those settings. Individuals split into two exclusive
groups make choices among a set of options. We wonder whether the two groups choose
distinct options and how to quantify the differences between both groups as regards their
choices. In our application, an option consists of a word, and the speakers choose the
words they use. School segregation studies provide another illustration where an option is
a class or a school, depending on the unit-level of analysis.

Qualitatively, polarization means that the options chosen by one group differ from the
ones selected by the other. Several names convey that idea according to settings, such as
“partisanship” in our expository application. Reasoning in terms of information further
enlightens the notion. Absent polarization, the knowledge of the options chosen by an
individual is uninformative about which group he or she belongs to.

We focus on situations with two groups, where each individual in the population of
interest is a member of one and only one group. Moreover, groups are exogenous in the
sense that membership is given ex-ante; it is not a function of the choices made. The
converse problem of deducing groups from observed choices constitutes a different question
that this paper leaves aside. Likewise, we do not investigate extensions to three or more
groups here. Defining a concept of polarization requires extra work in such settings. To
do so, convex combinations of two-group measures across all pairs of groups happen to be
effective (see the literature review below). In that respect, our method could be extended
to multigroup cases.

A crucial feature of many analyses devoted to group differences is that the number of
possible options is large relative to the number of observed choices. Our statistical model
and asymptotics specify this idea of high-dimensional choice sets.

Such a context logically arises whenever the options display some capacity constraints,
in so far as the number of choices per option is capped. Classes with limited numbers of
pupils epitomize that framework: if the number of students grows to infinity, so does the
number of classes. Besides, the relevance of asymptotics in the number of options can
expand into environments where there are no intrinsic capacity limitations. A significant
example concerns speech or text data, as in our leading application. Indeed, Herdan’s law
(Remark 3.1) reveals that, empirically, the vocabulary size of any corpus of texts increases
with its length. Expressed in our theoretical terminology, the number of options is an
increasing function of the number of choices.

Furthermore, the dimension, or size, of any choice set, namely the number of options,
depends upon the exact definition of options. Researchers may have some latitude in
the specification. This leeway gives another argument to underpin our asymptotics.
Provided adequate data quality, researchers naturally would want to consider narrower,
more precisely delimited options as they get additional observations, that is, as they record
more choices. To take advantage of a famous example, imagine a study of travel modes
contrasting men’s and women’s decisions. A few data points drive to restrict to cars versus
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buses, whereas larger datasets allow dividing the latter alternative into blue buses and red
buses, hence increasing the number of options.

We propose reliable measures in several senses. First and foremost, previous literature
showed that high-dimensional choice sets cause a “small-unit bias” of naive methods; those
that quantify group differences through the dispersion, across options, of the shares of
choices made by one of the groups. That issue hampers meaningful comparisons over time
or, for instance, across countries since the magnitude of the bias might change too. Our
method addresses and corrects the bias. Therefore, it suits the common framework of a
large number of options and enables trustworthy comparisons of polarization measures.

Secondly, formal identification, estimation, and inference results support our method.
We derive them in a statistical model with two appealing characteristics. One of its
central assumptions is testable, meaning that it is possible to reject it if the implied
data-generating process cannot rationalize the observations. Also, the asymptotics in
options growing to infinity fits with high-dimensional choice sets. The parameter of interest
is a polarization index. In our framework, we prove that, in general, it is partially identified
due to the presence of options that receive a single choice. Specifically, the length of the
identification interval is proportional to the fraction of options chosen only once. The
intuitive explanation is the following: for a given option selected only once, we are unable
to determine whether this option, as compared to the other options, is more or less chosen
by one group instead of the other. Our identification theorem thus shapes a fundamental
trade-off between, on the one hand, how much information on the intensity of polarization
can be retrieved from the data and, on the other, how precisely defined can be the options.
We provide consistent estimators for the bounds of the identification interval, as well as
confidence intervals for the index with guaranteed asymptotic coverage. Additionally, we
suggest an extrapolation strategy that, under a supplemental regularity condition, yields
a point-estimate of the polarization index.

A final aspect of the reliability of our approach deals with its practical implementa-
tion. Regarding computational requirements, our method does not entail any numerical
approximation and is efficiently executed in standard machines. Indeed, empirical means
alone form our estimators and confidence intervals. As a consequence, their computation
is straightforward and virtually immediate, even in huge databases.1 Last but not least,
our method is economical concerning the type of data needed. To make use of a familiar
Industrial Organization parallel, like Berry, Levinsohn and Pakes (1995), we only require
“aggregated” data, namely, the number of choices for each option by groups, in contrast to
individual choices. In other words, keeping track of the identity of choosers is unnecessary.
Still, in some situations, it is possible to do so, and individual characteristics beyond
group-membership may be available. This is the case when studying speech polarization in
the U.S. Congress in particular. The interest in such information stems from the fact that
an individual’s choices are not entirely determined by his or her group but conjointly by
personal attributes. Hence, in complement to a raw, or unconditional, index of polarization,
researchers might want to measure to what extent two groups make distinct choices net
of the influence of additional characteristics. Let conceive a simplified illustration in our
context. Democrat and Republican speakers could use different words not only because of
their opposite party affiliations but owing to men and women having distinct languages
and women being more numerous among Democrats than Republicans. We propose an
extension of our method to obtain conditional indices.

1For instance, a laptop estimates the identification bounds in a database of over two million options,
as it is the case in our application, in a couple of seconds.
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The paper is organized as follows. Section 3.2 defines our statistical model and the
parameter of interest. In Section 3.3, we present our main results: the sharp identification
of the bounds on our index and a related confidence interval as well as an extrapolated
point-estimator. Section 3.4 describes two extensions, namely the inclusion of covariates
to define conditional polarization indices and the test of the binomial assumption that
underlies our method. Section 3.5 applies our approach to investigate speech polarization
between Republican and Democrats congresspeople from 1873 to 2016. In doing so,
we revisit Gentzkow, Shapiro and Taddy (2019), who considered initially that question
and developed a new method to measure “group differences in high-dimensional choices.”
Section 3.6 concludes and discusses possible limits of our approach. A literature review
completes the introduction and discusses distinctions and similarities between their method
and ours. Appendix 3.A displays the proofs of the main theorems. Appendix 3.B presents
supplemental material regarding our methodology. Appendix 3.C provides further details
on the application. Appendix 3.D establishes a formal link between our model and that of
Gentzkow et al. (2019).

Literature In a broad perspective, note a divergence between the class of discrete choice
models, triggered by McFadden (1974), and the settings we consider: the former holds fixed
the number of options while the point of high-dimensional choice sets is the asymptotics
in both the numbers of options and observed choices.

In such contexts, segregation indices are prominent attempts to quantify differences
between the choices made by two groups. Despite lack of formal asymptotics or sampling
design, Cortese et al. (1976) and Winship (1977) unveil the existence of a “small-unit” bias
of historical constructions of indices, such as the dissimilarity index of Duncan and Duncan
(1955) or classical indices surveyed in James and Taeuber (1985). Here, the term “unit”
refers to what we name options. The epithet “finite-sample” is sometimes used to denote
the bias. We do not endorse the expression because it insinuates larger datasets are the
solution. Nevertheless, the problem is deeper as the numbers of options and choices grow
simultaneously. The core of small-unit bias is that, as we observe few choices per option,
it is frequent in the data to see options that are, by chance, chosen by only one of the two
groups. This may wrongly suggest those options are elected by one group but never the
other, thus pointing towards high polarization, whereas the underlying probabilities to
choose those options can be the same for both groups. Carrington and Troske (1997) and
Allen et al. (2015) propose techniques to estimate the magnitude of the bias in order to
correct it. Our approach is closer to Rathelot (2012) and D’Haultfœuille and Rathelot
(2017) in so far as, instead of an ex-post correction, we define the index as a function of
the choice probabilities, which are arguably the relevant primitives of interest to measure
polarization.2 Although the article does not describe the extension of our method to
situations with more than two groups, we mention Reardon and Firebaugh (2002) as a
seminal reference for multigroup segregation indices.

Alongside the literature on segregation, our primary inspiration is Gentzkow, Shapiro
and Taddy (2019) (GST). They confront the very same issue of quantifying differences
between the decisions made by two groups in large choice sets. They develop a pioneering
method to do so and apply it to study partisan differences in language in the U.S. Congress
from 1873 to 2016. Their results highlight that accounting for the bias is essential to
uncover the evolution of partisanship over time. GST shows that after a century-long

2We refer to Winship (1977) for further discussion of segregation indices and the opposition between
“evenness” and “randomness” benchmarks to appraise group differences.
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period of low and stable speech polarization, it surged from the 1990s and seemed to plateau
in recent years. Thorough analyses explore credible explanations and the features of the
increase, notably distinguishing within- versus between-topic partisanship. Nonetheless,
we think our article brings additional contributions.

The bulk concerns methodology since we believe our method is an alternative to GST’s
in settings of high-dimensional choice sets.3 To sum up, GST uses a generative model of
speech linked to a discrete choice model. The latter expresses the utility for a speaker
with given personal characteristics and party to choose each word of a vocabulary that
forms the choice set. GST constructs a penalized estimator to infer the parameters of the
model, from which they define a partisanship index. The Lasso-type, or L1, penalization
on the coefficient capturing the effect of party affiliation is critical to handle the bias.

To weigh both methods, we draw upon an analogy of the two estimators involved
in Hausman’s tests (Hausman, 1978). We would say our method is more robust in the
sense that it requires aggregated data and yields tractable estimators, which are backed by
identification, estimation, and inference results obtained with asymptotics in the number of
options. In contrast, GST’s would be the precise but perhaps more specific estimator as, in
our understanding, it necessitates several elements, possibly demanding in the settings we
consider. First, it uses thinner observations, namely choices by individuals, instead of totals
by groups. Second, the theoretical guarantees of inference, performed via subsampling,
are derived under fixed vocabulary and the number of unique speakers tending to infinity.
The conditions appear at odds with the idea of high-dimensional choice sets.4 Besides,
those guarantees pertain to an estimator that GST’s method only approximates. A large
number of options indeed complicates the numerical estimation of their multinomial logit
model, and, in their application, they resort to a Poisson approximation. Incidentally, the
procedure entails setting some hyper-parameters, although GST explains how to determine
the penalty loads. On the other hand, GST is at an advantage to incorporate personal
characteristics of choosers, even chooser-level random effects, as in their Supplemental
Material. They easily include continuous covariates, whereas it is hard to do so in our
approach, as our definition of conditional indices (Section 3.4.1) reveals. Hence, GST’s
method is likely better at extracting the specific influence of group-membership among
diverse individual factors. The discrete choice model defined at individual-level allows
that flexibility but costs GST suitability for high-dimensional choice sets: asymptotics in
the number of individuals while options are fixed; complex and numerically challenging
estimation to deal with a large number of alternatives. In comparison, we tailor our method
to such settings where the elementary objects are options and groups. Consequently, it is
less adapted to individual-level analyses and, when choosers’ identities are known, arguably
rougher, but in return, steadier. All in all, we are confident the two approaches are
complementary, depending on the context and available data.

Another distinction bears on the definition of polarization index in relation to the
group proportions within the population. As far as we understand, the partisanship
index of GST takes as a benchmark to quantify polarization, a situation where the two

3GST presents three estimators: plug-in or maximum likelihood, leave-out, penalized. We discuss the
third one, defined in §4.3, p1316, and labeled by GST their “preferred” estimator.

4GST writes, p1318, “Though we do not pursue formal results for the case where the vocabulary grows
with the sample size, we note that such asymptotics might better approximate the finite-sample behavior of
our estimators.” Our approach builds on this idea. Furthermore, using that asymptotics of a choice set
(vocabulary) growing with observed choices (sample size), Appendix 3.D formally brings GST’s framework
and ours together.
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groups halve the population. They consider an observer trying to deduce an individual’s
group from one of his or her choices. The observer starts from a “neutral prior” (GST,
p1313), assigning an equal probability of 1/2 to both groups. However, in most cases,
there is no reason that the two groups share the same proportion. We think there exist
genuine interrogations on what we want to pay heed to when contrasting decisions made
by two groups. Even when the proportions are not half-half, a neutral prior might be
sensible in sharp bipartite oppositions, like Democrats versus Republicans in U.S. politics.
Nonetheless, we advocate that, in general, polarization should refer to a concept of
dispersion alone without consideration for differences in the number of choices made by
the two groups. In our reading of the segregation indices literature, the desired property
of composition invariance supports that viewpoint (see, for instance, James and Taeuber
(1985), p15). That is why we define a polarization index that focuses on dispersion and
does not posit any prior composition of the population. In that new respect, our approach
could be deemed more robust than GST’s.

The second line of contributions concerns the application to speech partisanship. For
any research processing text data to study polarization, our analysis underscores that the
specification of the dictionary matters. Section 3.5.2 provides details on the processing
operations that lead to the set of words included in the sample.5 We adhere to GST’s steps
except for selections based on the number of occurrences. GST drops phrases that are not
sufficiently often pronounced in the data. Within our framework, our angle mindful to
identification reveals it is those restrictions that buy most of the identification power.6
Interestingly, absent this form of selection, two-year-long Congress session transcripts
exhibit a substantial fraction of phrases pronounced only once, over 60% for the couples of
words as processed by GST. As a consequence, without such restriction, our identification
interval is barely informative and cannot reject a constant polarization throughout the
1873-2016 period. Some processing operations and selections may, of course, be sensible
and necessary. However, we believe our approach is helpful to gauge the impact of the
restrictions, especially in terms of identification power.

With selection on the number of occurrences or using our extrapolated point-estimators,
our broad conclusion is akin to GST’s findings. We identically detect a dramatic increase
from the 1990s. A closer look shows our estimates come slightly at variance with GST’s
analysis, for they temper the picture of a flat and low level of polarization until that
unprecedented contemporary climb. Though we measure the highest polarization in recent
years, we observe periods of comparable intensity in past U.S. history, notably in the first
decade of the twentieth century and, to a lesser extent, during the twenties and fifties.

3.2 The framework

We state the set-up in the context of speech partisanship between Democrat and Republican
congresspeople. As the Introduction emphasized, our approach is more general, and we
sometimes widen the presentation and refer to a general setting.

5In fact, an option consists of a bigram, a couple of words, also denominated a phrase, since we follow
GST with a popular N -gram model of text, taking N = 2. Our methodological point remains.

6Selecting words above some thresholds of occurrences mechanically decreases the proportion of words
included in the analysis that are pronounced only once, hence narrowing our identification interval.
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3.2.1 Statistical model
In a given period, for instance, a two-year Congress session, we observe the speeches
pronounced by speakers, who are split into two groups, Democrats and Republicans. In
our particular application, texts, with greater reason, speeches, are complex data. Various
perspectives could be relevant to tackle the issue. Here, a “bag-of-word” modeling (see
Section 3.5 below) enables to transform the raw transcripts into counts of words. The
operation shapes initial text data into a generic form in which words, that is, options in
our abstract terminology, constitute the basic statistical units.

For each word (option) indexed by j among a vocabulary (choice set) J := {1, . . . , J},
J ∈ N∗, we observe KR

j the number of occurrences (choices) pronounced by Republicans
(made by members of a reference group, arbitrarily chosen out of the two); respectively
KD
j for Democrats. We define Kj := KR

j +KD
j the total number of occurrences of the

word.

Hence, for each word j, KR
j /Kj is the observed proportion of occurrences of the word

said by Republicans. A natural idea to assess to what extent the two groups choose distinct
words is to look at the variation in the proportions {KR

j /Kj}j∈J across words. If they are
all roughly equal, Republicans and Democrats more or less use the same words. On the
contrary, in an extreme case where those proportions are equal to either 0 or 1, the two
groups speak entirely distinct languages.

Although sensible, that approach suffers from a small-unit bias when the numbers
{Kj}j∈J of choices per option are small; that is when the choice set is large relative to
the number of observed choices. To address the problem, we follow Rathelot (2012) and
D’Haultfœuille and Rathelot (2017) and introduce an underlying unobserved object. For
each word j, ρj is the probability, conditional on word j being pronounced, that it is said
by a Republican. The share KR

j /Kj is a straightforward estimator of ρj. However, for
finite, a fortiori small, {Kj}j∈J , the variation in {KR

j /Kj}j∈J could merely be due to
random variability while the {ρj}j∈J are all equal. That is why naive indices based on
observed proportions overestimate the real level of polarization, which refers to variations
in the probabilities {ρj}j∈J across options.

Our assumption about the data-generating process (DGP) is the following.7

Assumption 3.1 (DGP). We observe an i.i.d. sample (KR
j , Kj)j=1,...,J such that

(KR
j , Kj, ρj) has the same distribution as (KR, K, ρ), which satisfies: E[K] > E[Kρ] > 0,

and
KR |K, ρ ∼ Binomial(K, ρ). (3.1)

This sets a binomial mixture model.The model is non-parametric, the distribution of
K and ρ being unspecified, and involves a latent variable, ρ. In our application, the i.i.d.
hypothesis formalizes the implications of N -gram model, which converts texts into counts
of words considered as unrelated. In other settings, sampling-based modeling that assumes
the data consists of a random sample of options will usually rationalize the assumption.
The technical condition E[K] > E[Kρ] > 0 only says that we do observe some choices from
both groups.

The other part of our DGP stipulates the distribution of KR conditional on K and ρ.
In a sense, it expands the independence inter-options stemming from i.i.d. samples to the
independence of choices intra-options. Indeed, it precludes interactions across the choices

7As for now, we focus on our unconditional analysis; Section 3.4.1 introduces conditional indices.
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falling in the same option since repetitions of Bernoulli trials form a Binomial distribution.
In congressional speeches, for instance, it posits that the fact that a particular word is
pronounced at the beginning of the session by, say, a Democrat, does not influence the
party affiliation of the speaker who will pronounce the next occurrence of the word. How
restrictive the condition is depends on the context. In any case, the model permits to test
it: Section 3.4.2 presents a test whose null hypothesis is the binomial assumption. The
test is consistent and has asymptotic level guarantees.

As the Introduction explained, we consider the asymptotics where J tends to +∞ in
order to suit high-dimensional choice sets. In our application, two arguments support that
reasoning. First, asymptotics can be interpreted as an approximation, and the vocabulary
contains millions of phrases in our case. Second, it complies with the way we talk and
write in practice, as revealed by Herdan’s law.

Remark 3.1 (Herdan’s, or Heaps’s, law). Herdan (1960) in a linguistics perspective, or
Heaps (1978) in statistical text analysis, highlight an empirical relationship between the
number J of words (“types” in a text analysis terminology) and the number n of occurrences
(“tokens”) in a corpus of texts:

J = βnγ,

for two constants, β > 0 and γ ∈ (0, 1), that depend on the genre. It happens that numerous
English corpora, such as Shakespeare’s plays, Brown corpus, Google N-grams, satisfy the
relation and display γ ranging from 0.35 to 0.75. Thus, the vocabulary size J of a corpus
of texts typically increases with its length n. Figure 3.13 in Section 3.C.2 evidences that
fact for congressional transcripts.

3.2.2 Parameter of interest
Polarization measures, like segregation indices in James and Taeuber (1985), were his-
torically defined as inequality indices on the observed proportions {KR

j /Kj}j∈J , hence
blurring the distinction between population estimands and sample quantities. In contrast,
we follow a common modern approach. We define parameters of interest as population
quantities, formally features of the distribution of the data, for we place ourselves in an
infinite population modeling. Then, we estimate them with sample counterparts, using
the analogy principle (Manski, 1988).

The second consideration leading to our estimand relates to the small-unit bias or,
more appropriately, the proper notion of differences in choices between groups. Guided
by Winship (1977), we adopt a “randomness” benchmark to quantify them. It means
polarization is not characterized by differences in the observed choices, which cannot
be more than particular sample realizations, but essentially by the differences in the
underlying probabilities, which entail systematic divergences regarding how both groups
make choices. The former are informative on the latter, and since the probabilities remain
unobserved, we cannot help but use the observed choices for estimation. However, our
parameter relies on probabilities.

Those two points justify defining our estimand as a function of Pρ, the distribution
of ρ.8 On the other hand, they say nothing about the form of the function. The issue
has generated long-standing debates on the properties and desirable axioms of competing
indices. This paper does not enter that field because we stick to the measure of polarization

8For any random variable V (or tuple of random variables), PV denotes its (joint) distribution.
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studied by Gentzkow et al. (2019). GST specifies a particular mapping from Pρ to define
their partisanship index. We use the same mapping subject to adaptation to our setting
and generalization to groups with unequal proportions.9

A heuristic path toward our index begins with π′ := 1− 2E[ρ(1− ρ)]. If ρ follows a
Bernoulli distribution, π′ is maximal equal to 1: the intersection of options chosen by
both groups is void, and polarization is complete. On the contrary, if ρ follows a Dirac
distribution, being almost surely equal to q ∈ (0, 1), then π′ = 1− 2q(1− q) and is higher
as q is further from 1/2. In this case, given the definition of ρ, q corresponds to the share
of speech from Republicans, that is, whatever the word pronounced, the probability that a
Republican says it equals q. In the Introduction, we contend that, in general, polarization
should refer to a concept of dispersion only. Hence, our final estimand adjusts π′ to ensure
that whenever Pρ is a Dirac, our polarization index is minimal, hence coherent with no
difference in the probabilities between groups.

Our index differs from π′ in another respect. Under Assumption 3.1, the joint dis-
tribution of (K, ρ) entirely determines the model. Logically, our estimand is a function
of P(K,ρ). The number of choices per option K indicates the popularity of options. A
priori, K and ρ are related. In our application, for instance, if speech partisanship matters
and is leveraged by politicians, it is reasonable to think that the most partisan words
(ρ close to 0 or 1) are also the most frequent (large K). Our framework is agnostic on
possible links between K and ρ. The inclusion of K weighs options proportionally to their
popularity, giving more weights to options that receive more choices. Other weights are
conceivable and would affect the measure of polarization.10 Nevertheless, we think our
weighting scheme is transparent and intuitive. Imagine a toy example where each group
accounts for half of the choices and, for all options except one, the probabilities ρ are equal
to 1/2 while the probability associated with the unique divisive option is, say, 0.03, that is,
when chosen, that option is chosen by virtually one of the two groups only. A polarization
index condenses in a scalar number the differences in choices between groups. In this
situation, it is natural to describe the level of polarization as higher as the frequency of
the last option, meaning the proportion across all choices of decisions for that option gets
larger. Our weights does just that, transforming π′ into π′′ := 1− 2E[Kρ(1− ρ)]/E[K].

Finally, our index generalizes π′′ to unequal group proportions and writes:

π := 1− E[Kρ(1− ρ)]
2E[K] q(1− q) , (3.2)

where q := E[Kρ]/E[K]. The binomial condition in Equation (3.1) and the law of iterated
expectations imply q = E

[
KR

]
/E[K] Thus, q is the share of speech pronounced by Repub-

licans. In general settings, it is the proportion of choices made by individuals from the
reference group. When individuals make one choice each, it boils down to the proportion
of individuals in the reference group.

The index π is well-defined by (3.2) provided that there are some choices of course,
E[K] > 0, and q ∈ (0, 1) (or, equivalently, E[K] > E[Kρ] > 0). Otherwise, there is only

9Appendix 3.D makes a formal link between our estimand and GST’s. GST also defines their measure
of partisanship as a function of underlying probabilities, in contrast to observed choices.

10D’Haultfœuille and Rathelot (2017) (Appendix B.1) discuss unit- versus individual-level weights for
segregation indices. Another possibility here could assign the same weight to each option, irrespective of
their frequencies.
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one group, and a notion of polarization is not applicable. The following result proves
that π is a meaningful measure of polarization.11

Theorem 3.1 (Polarization index). Assume E[K] > E[Kρ] > 0. Then (i) π ∈ [1/2, 1];
(ii) π = 1/2 if and only if ρ |K > 0 follows a Dirac distribution; (iii) π = 1 if and only if
ρ |K > 0 follows a Bernoulli distribution.

3.3 Main theoretical results
We consider hereafter an asymptotic set-up in J . In this framework, the joint distribution
of (KR, K) is identified. We first derive simple bounds on π under Assumption 3.1 only and
show how to conduct inference based on these bounds. We then consider an extrapolation
strategy allowing us to obtain a point estimator of π.

3.3.1 Bounds under minimal conditions
The following theorem gives sharp bounds on π under Assumption 3.1 only and underscores
the source of partial identification.

Theorem 3.2 (Identification). Suppose Assumption 3.1 holds. Then π is partially identi-
fied, with lower and upper bounds satisfying

π := 1− E[K]
2E[KR]E[KD]

E
[
KRKD

K − 1 1{K > 1}
]

+
E
[
KR1{K = 1}

]
E
[
KD1{K = 1}

]
E[1{K = 1}]

 ,
π := 1− E[K]

2E[KR]E[KD] E
[
KRKD

K − 1 1{K > 1}
]
,

where we use the convention that E
[
KR1{K = 1}

]
/E[1{K = 1}] = 0 when P(K = 1) = 0,

and 1{K > 1}/(K − 1) = 0 if K = 1. Moreover, the bounds are sharp. Finally, π and π
do not depend on P(K = 0). Hence, they are also the sharp bounds if only the distribution
of (K,KR) conditional on K > 0 is known.

The length ∆ of the identification interval satisfies

∆ = E
[
KR |K = 1

]
E
[
KD |K = 1

]
P(K = 1) . (3.3)

Hence, the bounds become tighter as
∣∣∣E[KR |K = 1

]
− 1/2

∣∣∣ increases and as P(K = 1)
decreases. Options that are chosen only once constitute the main source of partial
identification. The reason is that contrary to m(k) := E(ρ2 |K = k) for k > 1, m(1) :=
E(ρ2 |K = 1) is not point identified, but can simply be bounded using Jensen’s inequality
and ρ2 ≤ ρ:

E(KR |K = 1)2 = E(ρ |K = 1)2 ≤ m(1) ≤ E(ρ |K = 1) = E(KR |K = 1). (3.4)
11Polarization indices, such as segregation indices, are often normalized between 0 and 1. Here, following

GST, the normalization operates in [1/2, 1]. Appendix 3.B.1 shows that π, via an affine transformation,
is linked to a classical residential segregation index named, among others denominations, the Coworker
index.
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Theorem 3.2 is related to, but distinct from, the small-unit bias issue, discussed in our
context by Gentzkow et al. (2019) but also by Winship (1977) and Carrington and Troske
(1997), among many others, in the measure of segregation. In our context, the small-unit
issue refers to the (positive) bias of the naive estimator of π based on replacing ρ by
KR/K in Equation (3.2). This positive bias disappears as K tends to infinity. However,
Theorem 3.2 reveals that it is not necessary to have K tending to infinity for π to be point
identified: P(K = 1) = 0 is enough for that purpose. But of course, the corresponding
estimator is different from the aforementioned naive estimator.

The last point of the theorem states that the bounds are independent of P(K = 0) or,
equivalently, are also the sharp bounds if one only identifies the distribution of (K,KR)
conditional on K > 0. This is fortunate because knowing P(K = 0) requires to take a
stand on the whole set of options, including those never chosen, and this may not be
obvious. In the case of text data, one could consider words from a given dictionary, but
people may use foreign words or new words that are not in the dictionary yet. Similarly,
one may wonder whether it makes sense to include some old words that are not used
anymore.

The expression of the identification bounds in Theorem 3.2 suggests the following
plug-in estimators:

π̂ := 1−
∑J
j=1Kj

2∑J
j=1K

R
j

∑J
j=1K

D
j

× J∑
j=1

KR
j K

D
j

Kj − 11{Kj > 1}+
∑J
j=1K

R
j 1{Kj = 1}∑J

j=1 K
D
j 1{Kj = 1}∑J

j=1 1{Kj = 1}

 ,
π̂ := 1−

∑J
j=1Kj

2∑J
j=1K

R
j

∑J
j=1K

D
j

J∑
j=1

KR
j K

D
j

Kj − 11{Kj > 1}, (3.5)

where we use here similar conventions as those in Theorem 3.2, but with sample means
instead of expectations. With such conventions, π̂ = π̂ if Kj 6= 1 for all j.

A straightforward application of the Central Limit Theorem ensures that (π̂, π̂) are
asymptotically normal. Similarly, their asymptotic variances ω and ω can be estimated
consistently by plug-in estimators, which we denote by ω̂ and ω̂. We refer to Propositions 3.1
and 3.2 in Appendix 3.B.3 for further details and focus here on the construction of confidence
intervals (CI) for π.

To do so, we follow Imbens and Manski (2004) and Stoye (2009). For any α ∈ (0, 1),
we define our CI by

CIπ1−α :=
π̂ − q(α)

√
ω̂√

J
, π̂ + q(α)

√
ω̂√

J

 , (3.6)

where q(α) solves

Φ
q(α) +

√
J∆̂

max
{√

ω̂,
√
ω̂
}
− Φ(−q(α)) = 1− α, (3.7)

with ∆̂ := π̂ − π̂ and Φ(·) the cumulative distribution function of the standard normal
distribution. Under technical conditions (see Proposition 3.3 in Appendix 3.B.3), this
confidence interval is asymptotically valid uniformly over a set of DGP including point-
identified cases.
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3.3.2 Point-identification and estimation through extrapolation
In practice, the length ∆ of the identification interval can be large. Equation (3.3) shows
that this is the case if P(K = 1) is large and E

[
KR |K = 1

]
' 1/2. These conditions are

not unlikely: in our application below, P(K = 1) ' 60% and the second condition also
holds. We now investigate a way to achieve point identification based on an extrapolation
argument. First, remark that

π = 1− E[K]
2E[KR]E[KD]

{
E
[
KR

]
− E

[
KR(KR − 1)

K − 1 1{K > 1}
]
−m(1)P(K = 1)

}
, (3.8)

where we recall that m(k) = E[ρ2 |K = k). This equation highlights the sole source
of partial identification of π, namely m(1). Then, our bounds on π are based on the
inequalities (3.4) on m(1). These inequalities do not exploit any information on (m(k))k≥2.
Yet, in practice, k 7→ m(k) is likely to be regular. For instance, k 7→ m(k) is constant if
ρ ⊥⊥ K. More generally, we suggest the following strategy:

1. assume a parametric model on (m(k))k∈{1,...,k} for some k ≥ 2: m(k) = f(k, θ0) for a
known function f and an unknown θ0;

2. identify θ0 using (m(k))k∈{2,...,k};
3. recover m(1) as f(1, θ0).

The second step requires that the map θ 7→ (f(2, θ), ..., f(k, θ)) be injective. Hence, we face
a trade-off here between the flexibility of the model (i.e., the dimension of θ is large) and
the use of options that are close enough to options chosen only once (i.e., k remains small).
Examples of parametric models are polynomial functions, with f(k, θ0) = ∑d

j=0 θ0jk
j with

θ0 = (θ00, ..., θ0d). In this case, θ0 is identified if and only if k ≥ d+ 2. This extrapolation
idea is close to that used in regression discontinuity designs (RDD) with discrete running
variables, see in particular Lee and Card (2008), Kolesár and Rothe (2018). As in such
designs, the parametric model should only be seen as an approximation of the true function
k 7→ m(k).

To implement that strategy and construct an extrapolated point-estimator, we start
by defining, for any integer k > 1 observed in the data, that is ∑J

j=1 1{Kj = k} 6= 0, the
following estimator for m(k)

m̂(k) :=
∑J
j=1 K

R
j (KR

j − 1)1{Kj = k}
k(k − 1)∑J

j=1 1{Kj = k}
. (3.9)

Then, we require a specific functional form to extrapolate m(1). We focus on polynomial
extrapolation from the support k ∈ {2, 3, . . . , k}.12 For a polynomial order r ∈ N and
a closing integer k ≥ r + 3, we introduce the null hypothesis H0(r, k) : “on {2, 3, . . . , k},
k 7→ m(k) is a polynomial function of order r”. Under that hypothesis, we are in the setting
of Classical Minimum Distance (CMD) Estimation. With the terminology of Wooldridge
(2010), §14.5, the vector [m̂(k)]k=2,...,k estimates the reduced-form parameters [m(k)]k=2,...,k,

12Other specifications are feasible. The estimates {m̂(k)}k=2,3,... can be used to assess a credible form for
the function k 7→ m(k) on some domain {2, 3, . . . , k}. Polynomials are probably enough in most settings.
The restriction to small values for k to perform extrapolation is logical as we target m(1). Besides, a
lack of data on that range suggests a large-unit setting, with K above some threshold. It would be weird
to observe a large fraction of K = 1 in such situations, so that π is likely point-identified or, at least,
the length of the identification interval is small and sufficiently informative, hence the irrelevance of an
extrapolated estimator.
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and, through the polynomial assumption, there is a known map from the structural
parameters, namely the coefficients of the polynomial, to [m(k)]k=2,...,k. Two results follow.
First, we have an efficient CMD estimator of the coefficients of the polynomial, and their
sum gives an estimator m̂(1) of m(1) by extrapolating the polynomial to k = 1. Second,
an over-identification test of the restriction H0(r, k) is available, and allows to check the
chosen functional form is compatible with the data.

Given m̂(1), an extrapolated point-estimator of π is obtained by plug-in in Equa-
tion (3.8), swapping expectations for means, π̂extrapolated :=

1−
∑J
j=1Kj

2∑J
j=1K

R
j

∑J
j=1K

D
j


J∑
j=1

KR
j −

J∑
j=1

KR
j (KR

j − 1)
Kj − 1 1{Kj > 1} − m̂(1)

J∑
j=1

1{Kj = 1}

.
(3.10)

3.4 Extensions

3.4.1 Including covariates
Group membership is likely not the unique determinant of the choices made. Individual
characteristics can also matter, like age, gender, constituency’s location for the language
congresspeople use. In some settings, researchers observe individual choices or, at least,
aggregated counts broken down by group membership plus choosers’ covariates, as expressed
in Assumption 3.2. Conditional polarization indices aim at quantifying the differences
in the choices made between two groups net of the influence of additional factors. The
objective is analogous to controls in linear models, where a specification includes covariates
to monitor the variability of the outcome. In conjunction with an unconditional measure,
conditional indices of polarization enable to disentangle the sources of group differences.

Orthogonal to the effects of individual features, it can be interesting to unpack po-
larization by different subsets of the choice set. In our application, following GST, we
can wonder whether the level of speech partisanship varies with the debated topic; for
example, are the differences in language between Republicans and Democrats larger when
they discuss budget or immigration? To do so, one can gather the words into different
types according to their topics. Here, covariates are defined at the level of options.

Below, we present an elementary extension of our framework to conditional indices,
the idea being to consider convex combinations of within-type raw indices. We distinguish
individual- from option-level covariates since they have different implications. The option-
level case works fine, whereas, as discussed in the Introduction, our approach faces some
difficulties for rich individual-level characteristics compared to GST’s method.

Options’ characteristics We restrict to discrete covariates and suppose they are syn-
thesized into a single categorical variable X with values in {1, . . . , X}, X ≥ 2, which
indicates the type of an option. For instance, in our application, it can be a partition of
words into topics, like budget, defense, health, immigration. For each topic, Republicans
and Democrats may use the same language to talk about it but differ on their distribution
of speaking time across topics. On the whole, it would lead to differentiated language
between the two parties, that is, speech polarization, but stemming from between-topic
instead of within-topic partisanship. To unravel the distinction, a simple idea is to study
polarization indices within each type and then aggregate them into a summary conditional
measure.
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To do so, we assume we observe an i.i.d. sample (KR
j , Kj, Xj)j=1,...,J , such that, for

each x ∈ {1, . . . , X}, the distribution of (KR, K, ρ) conditional on {X = x} satisfies the
same conditions as P(KR,K,ρ) in Assumption 3.1. Thus, we impose the core binomial
restriction of Equation (3.1) type by type, and authorize P(K,ρ) |X=x to vary in x; the idea
being precisely to take into account the different patterns of polarization according to
types. The analysis is identical to the unconditional one but done separately for each type,
that is, each subset of options. For any x ∈ {1, . . . , X}, we define

πx := 1− E[Kρ(1− ρ) |X = x]
2E[K |X = x] qx(1− qx)

, (3.11)

where qx := E[Kρ |X = x]/E[K |X = x] is assumed to be in (0, 1). It is the same definition
as our index π in Equation (3.2) restricted to options of type X = x. Identification proceeds
as before. Likewise, estimation is done as that of π (see below) on the subsample of
options {j ∈ {1, . . . , J} : Xj = x}. The within-indices {πx}x=1,...,X are often of interest on
their own. We can also consider an aggregated conditional measure, with weights equal to
the fraction of each option type,

πconditional(X) :=
X∑
x=1

P(X = x) πx. (3.12)

Individuals’ characteristics Alternatively, covariates can be defined at the level of
the individuals making choices or, more broadly, at the level of the choices themselves.13
The extension is similar. We consider a categorical variable Z ∈ {1, . . . , Z}, Z ≥ 2, that
indicates the type of each choice. It is specified at choice-level, although it can inherit
from the features of individuals making choices. In our application, it represents the type
of speakers, defined as interactions of personal covariates, such as gender, constituency,
and chamber (House of Representatives versus Senate).

Again, we consider polarization within each type. For any type z ∈ {1, . . . , Z} and
word (option) j, KR

j,z (respectively KD
j,z) denotes the number of occurrences (choices)

pronounced by Republicans (resp. Democrats) of type z. Kj,z := KR
j,z +KD

j,z is the number
of occurrences pronounced by speakers of type z. We thus have KR

j = ∑Z
z=1K

R
j,z, and

the same equality holds for the variables KD and K. We define ρj,z as the probability,
conditional on word j being pronounced by a speaker of type z, that the speaker in question
is Republican. We assume our DGP assumption holds within each type.

Assumption 3.2 (DGP – Individuals’ covariates). We have a sample made of J distinct
options and, for each type z ∈ {1, . . . , Z}, we observe (KR

j,z, Kj,z)j=1,...,J i.i.d. random vari-
ables such that (KR

j,z, Kj,z, ρj,z) has the same distribution as (KR
z , Kz, ρz), which satisfies:

E[Kz] > E[Kzρz] > 0, and

KR
z |Kz, ρz ∼ Binomial(Kz, ρz). (3.13)

13To illustrate the distinction, imagine wondering whether the level of partisanship is higher in the
morning than in the afternoon, before a lunchtime break where congresspeople might have informal
discussions to clarify their positions and, perhaps, reach compromises. The dummy that indicates whether
an occurrence (a choice) is pronounced before or after lunch is defined at the level of choices, regardless of
speaker identities. The formalization encompasses the two cases, speakers’ covariates or characteristics
defined at the level of occurrences alike.
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We conduct the analysis type by type defining within-type indices by

πz := 1− E[Kzρz(1− ρz)]
2E[Kz] qz(1− qz)

, (3.14)

where qz := E[Kzρz]/E[Kz] is assumed to be in (0, 1), for each z ∈ {1, . . . , Z}. Using the
variables KR

z , K
D
z , Kz, instead of KR, KD, K, in Theorem 3.2 and Section 3.3.2 gives

corresponding identification results for πz. A weighted mean of the {πz}z=1,...,Z provides
an aggregated conditional index of polarization.

The definition of Equation (3.14) is the same as the unconditional index’s restricted
to occurrences (choices) of type Z = z, hence a noteworthy difference with the previous
options’ covariates setting. With options’ covariates, we perform the analysis for each
subset of options as if we had separate samples. On the contrary, with individuals’
characteristics, we keep the same choice set but successively study occurrences pronounced
by the distinct types. As a consequence, conditioning on individual types makes the
small-unit issue more acute: the number of times a word is pronounced within a given
type, say, by women senators from the West Coast, is smaller than for the full sample.
A high Z relative to the number of observed choices entails low values for the variables
{Kz}z=1,...,Z , possibly with a large fraction of single occurrence. The identification interval
for πz is then likely to be broad.

Estimation and inference for conditional indices Be it with individual or option
characteristics, the estimation and inference for the within-indices, πx or πz, proceed
exactly as for the unconditional index π; the only modification concerns the sample used.
For covariates defined at the level of option, we work with the subsample of phrases
(options) {j ∈ {1, . . . , J} : Xj = x}. For individual features, we restrict to the occurrences
(choices) of type Z = z: (KR

j,z, Kj,z)j=1,...,J . Then, we estimate the aggregated conditional
indices, or their identified sets in general, by plug-in. That is, for any type x of option, the
quantity P(X = x) is estimated by the empirical counterpart J−1∑J

j=1 1{Xj = x} and,
combined with identified sets or estimates for {πx}x=1,...,X , the injection in Equation (3.12)
gives an estimate of the identified set or a point-estimate of πconditional(X). The case of
covariates defined at the level of occurrences or choices is identical. For the weights, the
estimator ∑J

j=1Kj,z/
∑J
j=1Kj estimates the probability that a choice is of type Z = z, for

each z ∈ {1, . . . , Z}. As regards inference, the aggregated indices are convex combinations
of the within-indices whose weights are population moments. As for the unconditional
index, we can then follow the previous construction to obtain confidence intervals with
asymptotic guarantees.

3.4.2 Test of the binomial assumption
In addition to i.i.d. sampling, our main assumption is the binomial distribution for KR

conditional on K and ρ. That assumption yields a mapping between the distribution
of KR, which is identified, and some features of the distribution of ρ, which is unobserved.
As for now, consider K is fixed and known or, equivalently, the reasoning is conditional
on K. For any k ∈ N∗, the binomial assumption gives the identification of the first k
moments of the distribution Pρ |K=k. Besides, a vector of moments needs to satisfy some
restrictions. For instance, the non-negativity of variance implies that the second moment
cannot be lower than the square of the first moment. Formally, it has to belong to the
moment space.
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The intuition of the test, developed for a fixed K in D’Haultfœuille and Rathelot
(2017), is the following. The binomial assumption allows to identify the first moments
of Pρ |K=k and, on the other hand, any vector of moments has to belong to the moment
space. Therefore, the data can contradict the binomial assumption when the estimated
vector of moments is too far, taking into account sampling uncertainty, from the moment
space.

3.5 Application to speech polarization in the U.S.
Congress (1873-2016)

We apply our method to revisit Gentzkow et al. (2019) on speech partisanship between
Republican and Democrats congresspeople from 1873 to 2016. Following GST, we consider
bigrams as the unit of analysis.14 We show how the identification set and the extrapolated
point-estimate of the unconditional polarization index vary over time and how they differ
from the naive estimate. Then, we discuss how the choice of the dictionary affects the
results and conclude with recommendations on how to choose the dictionary in practical
cases. The third subsection presents two tests assessing the reliability of our approach.

3.5.1 The evolution of speech polarization over time
Figure 3.1 presents the evolution of speech polarization over time. In this part of the
analysis, we use our preferred choice for the dictionary, which we discuss in the next
subsection. The blue curve represents the naive estimate, which ignores the small-sample
issue. The area in red delimited by the plain red lines is the confidence interval at 95%, while
the red dots (very close to the red lines) are the estimated upper and lower identification
bounds. In this application with large J (above one million for our preferred dictionary in
each session), the statistical uncertainty is small, and the uncertainty regarding the target
parameter π mainly comes from partial identification. Indeed, as explained above, the
identification set is not reduced to a point because of the existence of words that are said
only once. Our results point to the fact that these words make the identified interval quite
large in practice. Our extrapolated index, which attempts to solve the identification issue
by making some assumptions on the contribution of one-occurrence words to polarization,
is displayed in orange.

We draw several conclusions from the results. From a methodological perspective, we
note that the naive index is far above the extrapolated index and is even above the upper
identification bound. This demonstrates that it is impossible to draw conclusions about
the magnitude of polarization from the naive approach, which over-estimates polarization
to a large extent. The naive estimate is also wrong in evolution: strongly decreasing until
1975 and increasing afterward while the extrapolated estimate displays a U-shape with the
highest levels of polarization in recent years. The explanation is that the bias of the naive
estimate has decreased over time because the volume of speech has increased, mitigating
small-unit issues (see Figure 3.12 in Appendix 3.C.2).

From a political science perspective, our conclusions are similar to Gentzkow et al.
(2019) in the sense that, like them, we document an increase in speech polarization since

14Appendix 3.C.1 explains the operations that transform the raw transcripts of speeches into the counts
of bigrams used in our analysis and shows some examples that compare the raw speech and the final
counts of valid bigrams.
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the sixties. The level observed since the 2010s is the highest ever reached over the entire
period (1873-2016). However, our estimate differs from there in a few aspects. First,
contrary to their preferred penalized estimate (Panel B of their Figure 2), we document
a fair amount of speech polarization in the very beginning of the 20th century and, to a
lower extent, in the late twenties. While current levels are higher, the level reached in
1908 is not very far off. The overall pattern since 1900 is thus rather a U-shape than a
continuous increase.

Figure 3.1: Evolution of polarization over time: identified set, extrapolated point-estimate and
naive estimate of the polarization index π for our preferred specification regarding dictionary
choices.
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Note: Naive estimate (blue line), identified set (red area delimited by red dotted lines), 95% confidence
interval for the polarization index (plain red lines), extrapolated estimate (orange plain line) and its
associated 95% confidence interval (orange dashed lines) (remark: this confidence interval assumes the
model f(·, θ0) underlying the extrapolation is correct; in other words, it only accounts for statistical
uncertainty, but not model uncertainty). Each point corresponds to a Congressional session. The
parameters used for the extrapolation are k = 8 (max number of occurrences) and r = 3 (polynomial
degree). We do not include covariates in this analysis.
Sample: dictionary of bigrams after spelling corrections and exclusion of invalid words but without
exclusions based on frequency.

3.5.2 Dictionaries, processing operations, and small-unit bias
Before any analysis, it is necessary to choose the dictionary of bigrams that are kept in the
data. In most papers, this data-processing step is not salient. We show here how results
may vary as a function of the choices made.

The main objectives of this data-processing step are (i) to keep only meaningful bigrams,
(ii) to ease computational burden. This step usually consists of several stages:

– removing words that belong to a given neutral vocabulary (e.g., procedural phrases,
conventional stop-words, Congress people’s names);

– keeping bigrams that are pronounced sufficiently frequently by a sufficient number
of different speakers and in a sufficient number of distinct sessions.
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Hereafter, we use the list of words provided by GST to remove the neutral vocabulary
and focus our analysis on the second stage, which aims at getting rid of rare bigrams.
As our objective is to assess polarization, rare bigrams should be removed when they
correspond to typos or mistakes, but not necessarily in other cases. Indeed, they might
precisely reflect marginal bigrams used by few speakers but revealing differences between
party languages.

In Figure 3.2, we show the share of bigrams that are only pronounced once in each
session according to the data-processing choices. The top curve shows that share before
any processing, above 80% in the first sessions and around 65% since the fifties. Spelling
correction helps, but the share of bigrams pronounced only once remains around 60%.
Finally, when we follow the same processing as in GST, the share of bigrams pronounced
only once is much lower, between 10% and 35% depending on the session. The main reason
is that their data processing includes explicit restrictions on bigram frequencies: a bigram
is kept in the dictionary if it is pronounced a minimum number of times, by a minimum
number of speakers, in a minimum number of sessions. While these restrictions make
sense, they are ad hoc by nature, and practitioners hardly control whether the bigrams
that are removed are meaningful or not. Interestingly, all these curves exhibit a decreasing
pattern until the nineties and are either constant or increasing at the end of the period.
Note that because the number of bigrams per session increases over time, the share of
one-occurrence bigrams displays a stronger decrease over time with GST processing.

Figure 3.2: Share of one-occurrence bigrams by session for different choices of the dictionary.
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Note: Share of bigrams that only appear once in a session, for each session, and for three different
choices of the dictionary. The top green curve corresponds to the raw dictionary (after removing
neutral words, but before any spelling correction or frequency restriction). The blue curve corresponds
to the same one after spelling correction, before any restriction based on bigram frequency. The
bottom red one corresponds to the dictionary obtained after the data processing described in GST.

Figure 3.3 shows the identified interval and the extrapolated estimate for each of the
three sets of data-processing choices. When we do not restrict bigrams based on their
frequency, the number of once-pronounced bigrams is large, resulting in broad identified
intervals. The blue set is slightly narrower than the green one due to the exclusion of typos
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and spelling mistakes but remains large. The red set, which corresponds to the restrictions
made in GST, is much narrower. This is logical since Theorem 3.2 shows the length of the
identification interval is proportional to the fraction of one-occurrence bigrams. Before
1945, the red identification set overlaps largely with the other two. However, after 1960,
it is mostly distinct. Looking at the extrapolated estimate, we see that the red curve
is overall smoother than the green and the blue ones. The changes that happen at the
beginning of the 20th century are less abrupt in the red curve, and the increase at the end
of the period of analysis looks more sudden.

The lower the share of once-pronounced bigrams, the tighter the identification set. At
first sight, this is a good thing as a tighter set means more precise conclusions. However,
data-processing choices may not be neutral to the quantitative or even the qualitative
conclusions drawn from the data. ad hoc restrictions might take the estimate out of the
identification set obtained without restrictions and conceal part of the phenomenon under
study. Because one needs to make choices to get informative results, we argue that the
assumptions leading to the extrapolated estimation of the index might be more acceptable
and easier to interpret than ad hoc dictionary restrictions based on bigram frequency.
Furthermore, these assumptions can be tested to some extent (see next Subsection 3.5.3).

In conclusion, we would recommend first eliminating typos and mistakes with spelling
corrections and using a dictionary to eliminate procedural or neutral words that make
sense in the case under study. Second, instead of ad hoc data-processing restrictions based
on bigram frequency, we would recommend using the extrapolated estimator of the index.

Figure 3.3: Identified set, extrapolated point-estimate and related confidence intervals for the
polarization index π under different choices of the dictionary.
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Note: Identified intervals (shaded areas), extrapolated point-estimates (plain lines) and their 95%
confidence intervals (dashed lines) for different choices of the dictionary: the raw dictionary without
spelling correction or frequency restriction (green); the same raw dictionary with spelling correction
(blue); the dictionary obtained with frequency restriction following GST data-processing (red). The
parameters used for the extrapolation are k = 8 (max number of occurrences) and r = 3 (polynomial
degree). We do not include covariates in this analysis.
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3.5.3 Testing our approach
Our approach relies on several assumptions. Two of them are testable. First, we test the
binomial assumption of the model. Second, we perform an over-identification test for the
extrapolated index.

Figure 3.4 shows the p-value corresponding to the test of the binomial assumption for
each session, taking a maximum number of occurrences for a bigram equal to 40 (99% of
the bigrams are pronounced at most 40 times in a given session). Overall, we cannot reject
the binomial distribution assumption: only session 81 (years 1949-1950) has a p-value
lower than 10% (equal to 1%).

Figure 3.4: p-values for the test of the binomial assumption.
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and ρ, KR follows a Binomial distribution. The p-values are obtained by bootstrap (200 repetitions).
The analysis is limited to bigrams {j ∈ J : Kj ≤ 40}, that is, bigrams pronounced at most 40 times
by session. Such bigrams represent 99% of the set of bigrams. In terms of occurrences, they account
for around 70 to 80% of all occurrences pronounced on a given session. This restriction enables to
reduce the computational cost of the test. We acknowledge that the results for sessions 43, 111, 112,
113, and 114 are (temporary) missing.

Figure 3.5 shows the instances where the over-identification test for the extrapolated
index is rejected at 1%. More precisely, the null hypothesis is that k 7→ m(k) is a polynomial
of order 1, 2, or 3 for k between 2 and 8. The analysis reveals that linear extrapolations
are rejected very often. Quadratic extrapolations are also rejected often, especially after
the 1960s. Polynomial of order 3, however, are only rejected four times over the whole
period with our preferred specification regarding dictionary choices. This result is even
more reassuring for the extrapolation approach that the large number J of bigrams makes
it relatively easier to reject even small deviations from the null hypothesis. It explains our
choice for the extrapolated estimator in Figures 3.3 and 3.1: cubic extrapolation of m(1)
from (m(2), . . . ,m(8)).

Besides, the analysis reveals that the hypothesis of quadratic or cubic polynomials is
more frequently rejected when using the dictionary choice of GST with frequency restric-
tions compared to our favored data processing. On the other hand, linear extrapolation
(r = 1) is instead less rejected for GST dictionary. We have no precise idea to discuss
whether those results are mere coincidence or whether frequency restrictions might impact
in some way the regularity of the function k 7→ m(k).
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Figure 3.5: Rejections of polynomial assumptions for the extrapolation at 1%.

Note: For each session, polynomial order r ∈ {1, 2, 3}, and dictionary choice (ours or GST), the
presence of a point means that the over-identification test from CMD of the null hypothesis that
{2, . . . , k = 8} 3 k 7→ m(k) is a polynomial of order r is rejected at 1%. “Own bigrams” (orange)
corresponds to our preferred dictionary, namely with spelling correction and without restrictions
based on bigram frequency; “GST bigrams” (green) corresponds to the dictionary used by GST with
frequency restrictions.

3.6 Conclusion
This article proposes a statistical framework and a related methodology to (partially)
identify and estimate a polarization index, especially in settings of large choice sets when
we observe few choices per option. In such settings, the segregation literature has taught us
that naive natural approaches suffer from a small-unit (small-option with our terminology)
bias resulting in over-estimation of the level of polarization and impossibility of reliable
comparisons over time or across contexts.

Compared to another method proposed in Gentzkow et al. (2019), the pros of our
approach consists in, first, formal identification and inference results under an asymptotic
in the number J of options tending to infinity, hence consistent with the setting of large
choice sets; second, simple and computationally light estimators and confidence intervals.
On the other hand, the index of interest is generally partially identified due to a positive
fraction of options chosen only once. Depending on the context, that fraction may be
substantial. For text analysis, our application to U.S. Congress transcripts evidences that
this fraction can lead to uninformative identification interval absent ad hoc selections of
the dictionary based on frequency restrictions. In that sense, our partial identification
result warns against the possibility that data-processing choices are not neutral to the
quantitative, if not qualitative, conclusions on speech polarization. To address this issue,
we propose an extrapolated point-estimator.

Another interesting feature of our methodology is that it is, to some extent, testable.
We can test the binomial assumption involved in our assumed data-generating process
and the model used to construct our extrapolated estimator. Overall, we do not reject
those two assumptions in our application to speech polarization in the U.S. Congress.

Nonetheless, our method also has limitations compared to GST methodology and to
study text data. The rest of this conclusion focuses on some of them and contemplates
possible remedies for future work.
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Conditional analysis and composition-invariance The first drawback of our ap-
proach is its difficulty to perform conditional analysis with speaker-level (or choice-level
in the abstract terminology) covariates. As explained in Section 3.4.1, it compounds the
small-unit issue. The theory has no real problem with that. However, in practice, even with
a few covariates (e.g., gender, chamber, and geographical regions for our application), the
number Z of possible combinations (or types) is too large for giving informative identified
intervals.

A candidate solution would be to use the extrapolated point-estimator. Yet, it appears
problematic due to (the lack of) an axiomatic property of the index π we consider. As
detailed in Section 3.B.1, π is connected with the Coworker index of segregation. This
index is known to fail the composition-invariance property (Frankel and Volij, 2011).
Consequently, all else equal, the farther the share of Republican speech (the share of
choices made by the minority or reference group in general contexts) from one half, the
higher the index. There have been debates about the desirability of composition invariance
for segregation indices. When concerned with conditional aggregated indices such as
πconditional(X) in Equation (3.12), it seems to us that composition invariance is absolutely
necessary. Indeed, in conditional analyses, we are interested in covariates that are good
predictors of group membership by construction, whether Republican or Democrat in
the application. Therefore, within each different type z ∈ {1, . . . , Z}, the proportions
of minority and majority groups tend to depart from 1/2 – 1/2. If the index is not
composition invariant, the within-type indices πz will thus mechanically be larger, resulting
artificially in a larger aggregated conditional index.

The generalization of the index to allow for unequal group proportions, from π′′ to π,
considerably weakens the impact of group proportions and brings π closer to composition
invariance (see the differences between Figure 3.6 and 3.7 in Appendix 3.B.1)15 That being
said, it remains that π is globally composition variant, that is, sensitive to unequal group
proportions. This cast doubts on the reliability of conditional analyses. This is why we
restrict to unconditional analyses in Section 3.5.

A possibility to address the problem would be to define another polarization index that
is composition invariant, either from classical segregation indices or a new one, possibly
more specific to the case of speech polarization.

Specific challenges of text data A second concern relates to the specificity of text
data compared to other types of data that might raise concerns about the plausibility of
the i.i.d. modeling and the definition of the index π as a functional of a joint distribution
of (K, ρ).

A possibility to highlight the specificity of text data is to use array notation. For a
corpus of text with a vocabulary or dictionary of size J (be it bigrams, N -grams, embedded
words, narratives, etc.), we observe for each j ∈ {1, . . . , J} the number Kj,J of occurrences
of the bigram j. Imagine that we observe a larger corpus of text (say, for instance, instead
of doing the analysis by Congress session, we perform it by presidential mandates, pooling
sessions together). Given Herdan’s law (Remark 3.1), both the size J of the dictionary
and the total number of occurrences n = ∑J

j=1Kj,J increase. But it is also sensible that,
for each j, the distribution of Kj,J also changes by taking larger values since we observe
more text. In other words, in the set-up of text data, the number of occurrences K by
bigrams (the same would hold for the number of occurrences pronounced by a given party,

15In addition, points (ii) and (iii) of Theorem 3.1 state that π is locally composition invariant in the
two extreme cases of null polarization (ρ ∼ Dirac) and full polarization (ρ ∼ Bernoulli).
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KR and KD) are probably better represented by an array

(Kj,J)j=1,...,J
i.i.d.∼ KJ (expressing the dependence in J) or

(Kj,n)j=1,...,Jn
i.i.d.∼ Kn (expressing the dependence in n, with J = J(n) = Jn)

than by a sequence

(Kj)j=1,...,J
i.i.d.∼ K (with a distribution of K independent of J or n).

Like GST, this article focuses on a methodological perspective, with the case of speech
polarization seen as a particular instance of the more general problem of quantifying
polarization in large choice sets. Yet, that distinction between sequence-type modeling
and array-type might question the credibility of a unified framework. For applications
related to segregation (residential, school, occupational), the sequence modeling seems
sensible: if, for instance, the unit/option is a firm or workplace (K is thus the number of
individuals who work there and KR the number of those individuals who are member of
a given minority or reference group), more data means observing more workplaces but
assuming a common distribution for K and KR independently of the number J of firms
sampled makes sense. It is less arguable for text data.

Recall that the polarization index writes

π = g(P(K,ρ)) = 1− 1
2q(1− q)E

[
K

E[K]ρ(1− ρ)
]

= 1− E[Kρ(1− ρ)]
2E[Kρ]

(
1− E[Kρ]

E[K]

) .
Consequently, except particular cases of independence between K and ρ (see Section 3.B.7),
a distribution of K that depends on J or n entails that the parameter π also depends on
J or n. In that sense, it somewhat gets us back to the initial small-unit bias.

Yet, the picture is not so bleak for our methodology and the results presented in the
paper. Indeed, as explained in detail in Section 3.D, it is possible to connect the modeling
where an observation corresponds to one bigram/option (Assumption 3.1) with the modeling
where an observation corresponds to one occurrence/choice (Assumption 3.3). In the latter
framework, each new occurrence is pronounced by a Republican with probability q, in this
case, the bigram j is pronounced with probability pR

j (respectively with probability pD
j

if the occurrence is pronounced by a Democrat). Let define ρj = qpR
j /(qpR

j + (1− q)pD
j ).

We consider an infinite dictionary/set of options J . We can define a polarization index
relying solely on q and the primitive probabilities (pR

j , p
D
j )j∈J by16

πJ∞ := 1 + 1
4q(1− q)

 ∞∑
j=1

qpR
j ρj + (1− q)pD

j (1− ρj)− 1
 , (3.15)

and thus independent of the length n of the text corpus (number of observed choices).
The interpretation of πJ∞ as a polarization index is similar to the index π, as suggested
by this alternative expression

πJ∞ = 1− 1
2q(1− q)

 ∞∑
j=1

p̄jρj(1− ρj)


16Equation (3.15) is the generalization of index πJ defined in Equation (3.52) in Section 3.D.
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where p̄j = qpR
j + (1 − q)pD

j is the weighted average probability that word j occurs. It
happens that, in this alternative framework, π̂ and π̂ (with the very same expressions as in
Equation (3.5) are also the estimators of bounds on πJ∞ . This gives a second justification
of our bounds in a DGP written at the occurrence level.

Finally, for text data, the last interrogation relates to the independence part of the i.i.d.
modeling. Remark that the problem concerns both kinds of DGP, either for independence
stated at the level of bigrams/items of a dictionary (as in the main body of this article) or
at the level of occurrences (as in GST modeling and Section 3.D). In fact, neither bigram
counts nor separate occurrences are the native format of the data: texts come in sentences
and speeches (Figures 3.9, 3.10 and 3.11 show some examples of speeches from the U.S.
Congress debates transcripts).

In this article, following a large part of the literature, we adopt a “bag-of-words”
approach that abstracts from the syntactic and grammatical structure and considers words
as independents of each other.17 Yet, that approach might be too coarse, and possible
dependence between occurrences within speeches may matter.

We perform analyses on subsamples of the data to assess the importance of such
dependence. More precisely, we compare two subsampling schemes: (i) of speeches and
(ii) of occurrences stratified by speeches. In the first one, a subsample of the data is
obtained by drawing a fraction of the speeches. Therefore, this scheme preserves the
speech structure and possible dependencies across occurrences within a speech. In the
second one, a subsample of the data is obtained by drawing a fraction of occurrences from
each speech (each speech being reduced to a set of occurrences), thus breaking speech and
sentence structure.18 If there is correlation across occurrences within a speech (for instance,
a positive correlation if speakers tend to repeat the words they use), that dependence is
kept in scheme (i) but reduced in scheme (ii). We do find a difference between the two
schemes regarding the proportion of bigrams pronounced once (see Figure 3.16 in the
supplements to the application), which suggests the existence of a positive correlation
across occurrences within a speech. We leave for future work the study of the importance
and impact of such correlation and whether it implies leaving the i.i.d. framework or
can be accounted for with some speaker- or speech-level unobserved heterogeneity. For
the application to U.S. Congress debates, it is worth noting that the number of speeches
and their average length vary over time (see Figure 3.15), hence inducing changes in the
strength of the possible correlation.

17N -gram models, with N > 1, are a way to nonetheless conserve some of that structure by considering
N adjacent words.

18Section 3.C.2 presents a toy example to illustrate the difference between the two subsampling schemes.
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Appendix 3.A Proofs of main theorems

3.A.1 Proof of Theorem 3.1 (definition of the index)
Recall that Assumption 3.1 defines a binomial mixture model, namely the distribution ofKR

conditional on K and ρ is binomial, whose primitive object is the joint distribution P(K,ρ).
To begin with, remark that q = E

[
KR

]
/E[K]. Indeed,

E
[
KR

] LIE= E
[
E
(
KR |K, ρ

)] BA= E[Kρ] , (3.16)

by definition of the expectation of a Binomial distribution, where LIE stands for the Law of
Iterated Expectation, and BA for the binomial assumption as expressed in Equation (3.1).

Upper bound of 1 for π The results are almost immediate. Remember the definition

π := 1− E[Kρ(1− ρ)]
2E[K] q(1− q) .

Given the nature of the variablesK, ρ, and the definition of the quantity q, K, ρ, 1− ρ, and
q are non-negative. Hence, the numerator and denominator of the fraction are non-negative
too, and π ≤ 1, showing the upper bound of (i).

In addition, π = 1 if and only if (iff, henceforth) E[Kρ(1− ρ)] = 0. Kρ(1− ρ) is a
non-negative random variable. Therefore, its expectation is null if and only if the variable
is almost surely null. Under our DGP, K cannot be constantly equal to 0 since it would
contradict the assumption E[K] > 0. Hence, for the expectation to be null, it is necessary
and sufficient that, a.s., ρ(1− ρ) is null. The condition characterizes a random variable
whose support is restricted to {0, 1}, namely a Bernoulli variable. Hence, (iii) is proved:
π = 1 if and only if Pρ is a Bernoulli, whatever its parameter.

Lower bound of 1/2 for π Starting from the definition of π, algebraic manipulations
immediately give

π ≥ 1/2 ⇐⇒ E[Kρ(1− ρ)] ≤ E[K] q(1− q).
Using the definition of q := E[Kρ]/E[K], simplifications and expectation’s linearity (EL)
enable to write

π ≥ 1/2 ⇐⇒ E[Kρ]− E
[
Kρ2

]
≤ E[K] E[Kρ]

E[K]

(
1− E[Kρ]

E[K]

)

⇐⇒ E
[
Kρ2

]
≥ E[Kρ]2

E[K] .

To show the veracity of the latest inequality, we introduce the random variable a(ρ) :=
E[K | ρ]/E[K]. By LEI and EL, remark that E[a(ρ)] = 1. Furthermore, a(ρ) ≥ 0 almost
surely. Consequently, we have

E
(
a(ρ)

{
ρ− E[a(ρ)ρ]

}2
)
≥ 0. (3.17)

Expanding the square and using EL, the previous left-hand side equals to

E
[
a(ρ)ρ2

]
+ E[a(ρ)]E[a(ρ)ρ]2 − 2E[a(ρ)ρ]E[a(ρ)ρ] .
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Using E[a(ρ)] = 1, Equation (3.17) is equivalent to E[a(ρ)ρ2] ≥ E[a(ρ)ρ]2. Now, replacing
a(ρ) by its definition, we obtain

E
[
a(ρ)ρ2

] def. a(ρ)= E
(
E[K | ρ]
E[K] ρ2

)
EL= 1

E[K]E
(
E
[
Kρ2 | ρ

]) LIE= E[Kρ2]
E[K] ,

and likewise, E[a(ρ)ρ] def. a(ρ)= E
(
E[K | ρ]
E[K] ρ

)
EL= 1

E[K]E(E[Kρ | ρ]) LIE= E[Kρ]
E[K] .

Thus, Equation (3.17) is equivalent to

E[Kρ2]
E[K] ≥

(
E[Kρ]
E[K]

)2

⇐⇒ E
[
Kρ2

]
≥ E[Kρ]2

E[K] ,

which was shown to be a necessary and sufficient condition for π ≥ 1/2. This proves the
lower bound in (i).

Finally, to demonstrate (ii), note that the above reasoning has entirely proceeded by
equivalence. As a consequence, π is minimal, equal to 1/2 if and only if Equation (3.17) is
an equality. The left-hand side of that equation takes the expectation of a non-negative
random variable. Hence, the expectation is null, that is, we have equality, if and only if
the variable a(ρ){ρ− E[a(ρ)ρ]}2 is equal to 0 almost surely.

a(ρ) = 0 entails E[K] = 0. Indeed, by definition of a(ρ), a(ρ) = 0 ⇐⇒ E[K | ρ] = 0,
and, the LEI implies E[K] = E(E[K | ρ]). Our DGP assumption excludes that possibility.

Therefore, equality in (3.17) is equivalent to ρ = E[a(ρ)ρ] almost surely. This means
that ρ is a.s. constant and, given a previous computation, equals to E[Kρ]/E[K] which
is q by definition. This shows (ii): π = 1/2 if and only if Pρ is a Dirac, and in this case
ρ = q almost surely.

3.A.2 Proof of Theorem 3.2 (partial identification)
Given our DGP assumption and the asymptotics in the number of options, the challenge of
identification consists in expressing the estimand π as a function of the joint distribution
P(KR,KD,K). Without further conditions, we are unable to do so. Nonetheless, we obtain
an identification interval for π with two sharp bounds.

Identification – isolate E[Kρ2] From its definition in Equation 3.2, EL, and
E[Kρ] = E

[
KR

]
, the parameter writes

π = 1−
E
[
KR

]
− E

[
Kρ2

]
2E[K]

E
[
KR

]
E[K]

1−
E
[
KR

]
E[K]

 . (3.18)

Therefore, the single term whose identification is to be studied is E[Kρ2]. To do so, we
introduce the function m defined, for any k ∈ N, by m(k) := E[ρ2 |K = k]. It also defines
a new random variable m(K) := E[ρ2 |K].

That function will prove useful since we have

E
[
Kρ2

] LIE= E
[
E
(
Kρ2 |K

)] EL= E
[
K E

(
ρ2 |K

)] def. m(·)= E[Km(K)] . (3.19)
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Hence, the problem is now to identify E[Km(K)].
To do so, remark that, as K has support in N, we can write the equalities

Km(K) = Km(K)1{K > 1}+Km(K)1{K = 1}
= Km(K)1{K > 1}+ m(1)1{K = 1},

since if K is null, so is Km(K). The previous equations state equalities between random
variables. A fortiori, their expectations are equal. Hence, taking the expectation and using
linearity (remark that m(1) is a number, non-stochastic), and the fact that the expectation
of the indicator of any event is the probability of that event, we obtain

E[Km(K)] = E[Km(K)1{K > 1}] + m(1)P(K = 1) . (3.20)
We study successively the two terms in the right-hand side of that equation.

Identification of the first term in Equation (3.20) Relying on our central binomial
assumption, we now show that E[Km(K)1{K > 1}] is identified. We have

E
[
KR(KR − 1) |K, ρ

] EL= E
[
(KR)2 |K, ρ

]
− E

[
KR |K, ρ

]
BA=
[
Kρ(1− ρ) + (Kρ)2

]
− (Kρ)

= −Kρ2 +K2ρ2 = K(K − 1)ρ2, (3.21)

where the second equality uses BA and the expressions of second and first moments from
a Binomial(K, ρ) distribution. Again, the previous equality concerns random variables,
functions of (K, ρ). Thus, taking the expectation conditional on K of that equality yields

E
(
E
[
KR(KR − 1) |K, ρ

]
|K

)
= E

[
K(K − 1)ρ2 |K

]
⇐⇒ E

[
KR(KR − 1) |K

]
= K(K − 1)E

[
ρ2 |K

]
⇐⇒ E

[
KR(KR − 1) |K

]
= K(K − 1)m(K),

where the first equivalence use the projection composition property of conditional expec-
tation (the set of functions of K are included in the set of functions of (K, ρ)) and its
linearity, while the second only uses the definition of m(·).

The idea next is to divide by K − 1 and take expectation to recover the first term in
the right-hand side of Equation (3.20). The indicator and our convention are used to write
without the bother of dividing by zero. Remark nonetheless that the issue is deeper than
pure writing conventions in so far as the previous equality does not say more than 0 = 0
in the event {K = 1}, and this is precisely why the present argument cannot identify m(1)
(see below). Otherwise, multiplying the equality by 1{K > 1} and using EL, we have

E
[
KR(KR − 1)1{K > 1} |K

]
= K(K − 1)m(K)1{K > 1}. (3.22)

Then using again EL and under the convention that null indicator prevails against dividing
by zero (that is, the left-hand side of the next equation is set to 0 if K is not strictly
greater than 1), we obtain

E
[
KR(KR − 1)

K − 1 1{K > 1} |K
]

= Km(K)1{K > 1}.
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Finally, taking the expectation and applying LEI yield

E
[
KR(KR − 1)

K − 1 1{K > 1}
]

= E[Km(K)1{K > 1}] . (3.23)

Our DGP identifies the left-hand side of Equation (3.23).
Besides, note that conditioning Equation (3.22) by K = k with k ≥ 2, we have by EL

m(k) =
E
[
KR(KR − 1) |K = k

]
k(k − 1) . (3.24)

Second term in Equation (3.20) and the source of partial identification With
hindsight, Equations (3.18), (3.19), (3.20), and (3.23) show that the only term that remains
to be identified in π is m(1). The point is that, absent further assumption, m(1) is not
identified, hence causing partial identification for our index. However, we can bound m(1).

In order to do so, note that

ρ = E
[
KR |K = 1, ρ

]
,

since, under our binomial assumption, the distribution of KR conditional on K = 1 and ρ
is Binomial with expectation equals to 1× ρ = ρ. Using this equality, we obtain

E[ρ |K = 1] = E
(
E
[
KR |K = 1, ρ

]
|K = 1

)
= E

[
KR |K = 1

]
, (3.25)

where the first equality uses the previous equation and the second the composition property
of conditional expectations.

Upper bound on π and sharpness For the upper bound on m(1), observe that, as
the support of ρ is [0, 1] (it is a probability), ρ2 ≤ ρ almost surely. Applying expectation
conditional on {K = 1} preserves that inequality and gives

m(1) := E
[
ρ2 |K = 1

]
≤ E[ρ |K = 1] using (3.25)= E

[
KR |K = 1

]
. (3.26)

In our model, the data identifies E
[
KR |K = 1

]
, thus an upper bound on m(1), and, in

the end, an upper bound on π trough Equations (3.18), (3.19), and (3.20).
To show the sharpness of the upper bound, it is necessary and sufficient to exhibit a

distribution that (i) is included in our statistical model, (ii) reaches the bound, that is
with an equality in Equation (3.26). The latter requirement writes

E
[
ρ2 |K = 1

]
= E[ρ |K = 1] EL⇐⇒ E[ρ(1− ρ) |K = 1] = 0,

and, since ρ(1− ρ) is non-negative, it is equivalent to the distribution of ρ conditional
on {K = 1} being a Bernoulli distribution, possibly degenerate in the sense of a Dirac with
mass point in either 0 or 1 (Bernoulli with a parameter equal to 0 or 1). Assumption 3.1
leaves P(K,ρ) unrestricted and the condition q ∈ (0, 1) only rules out that the marginal,
unconditional, distribution of ρ is a Dirac in 0 or 1, as it would entail there is in reality
one group alone. Hence, our model encompass joint distributions of (K, ρ) such that
the conditional distribution of ρ knowing {K = 1} is a Bernoulli distribution with any
expectation in [0, 1]. Such DGP attain the upper bound on π, proving its sharpness.
Besides, remark that a Bernoulli distribution for ρ relates to the highest possible level of
polarization, coherent with an upper bound on π.
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Lower bound on π and sharpness The lower bound on m(1) relies on the conditional
Jensen inequality. The function [0, 1] 3 z 7→ z2 is convex. Therefore,

m(1) := E
[
ρ2 |K = 1

] Jensen
≥ E[ρ |K = 1]2 using (3.25)= E

[
KR |K = 1

]2
. (3.27)

Again, E
[
KR |K = 1

]
is identified under our model. A lower bound on m(1), hence on π,

is thus identified.
Sharpness of the upper bounds relate to equality in Equation (3.27). Given that the

square function [0, 1] 3 z 7→ z2 is strictly convex, Jensen inequality turns out to be an
equality if and only if, conditional on {K = 1}, ρ is almost surely constant. Remember
that the unique restriction on P(K,ρ) imposed by our model (except E[K] > 0) is to prevent
Pρ being a Dirac in 0 or a Dirac in 1, through the condition q ∈ (0, 1). Thus, joint
distributions of (K, ρ) such that the conditional distribution of ρ knowing {K = 1} is a
Dirac, with any mass point in [0, 1] are authorized. Such distribution reach the lower
bound on π, which shows that the bound is sharp. Once more, a Dirac distribution for ρ
links to the absence of polarization, and logically arises in the lower bound.

Particular cases of point-identification The two previous discussions on sharpness
reveal a particular case: if Pρ|K=1 is either a Dirac in 0 or a Dirac in 1, the two bounds
coincide since E[ρ |K = 1] = E[ρ |K = 1]2. In this situation, π is point-identified. However,
it would be a rare case in concrete applications.

A situation, likely to be more frequent, in which π is point-identified arises when-
ever P(K = 1) = 0. Indeed, in this case, the second term in Equation (3.20) is null and
the problematic quantity m(1) does not intervene.

Expressions of the bounds as stated in Theorem 3.2 Eventually, the lower and
upper bounds on m(1) are

E
[
KR |K = 1

]2
≤ m(1) ≤ E

[
KR |K = 1

]
. (3.28)

To obtain the expression of the bounds given in the Theorem, we begin by simplifying
the expression of the index in Equation (3.18). To do so, we use that, by definition of K
and EL, E

[
KD

]
= E[K]− E

[
KR

]
.

π
Eq. (3.18)= 1−

E
[
KR

]
− E

[
Kρ2

]
2E[K]

E
[
KR

]
E[K]

1−
E
[
KR

]
E[K]

 = 1−
E
[
KR

]
− E

[
Kρ2

]
2E
[
KR

]E
[
KD

]
E[K]


= 1− E[K]

2E[KR]E[KD]
{
E
[
KR

]
− E

[
Kρ2

]}
= 1− E[K]

2E[KR]E[KD]

(
E
[
KR

]
− E

[
KR(KR − 1)

K − 1 1{K > 1}
]
−m(1)P(K = 1)

)
,

(3.29)

where the latest equality combines Equations (3.20) and (3.23). It remains to study the
ending term, written between parentheses. We insert the bounds from Equation (3.28)
and make some simplifications from the definition K := KR +KD.
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Computations for the upper bound By characterization of conditional expectation, we
have

E
[
KR |K = 1

]
= E

[
KR1{K = 1}

]
/P(K = 1) , (3.30)

where, again, simply to be able to write that equality in any case, in the situation where
P(K = 1) = 0, we make the convention that the previous fraction is equal to 0. By (3.28),
the sharp upper bound on m(1)P(K = 1) is therefore E

[
KR1{K = 1}

]
.

We plug the bound and simplify the resulting expression
(
·
)
upper bound

= E
[
KR

]
− E

[
KR(KR − 1)

K − 1 1{K > 1}
]
− E

[
KR1{K = 1}

]
= E

[
KR1{K > 1}

]
− E

[
KR(KR − 1)

K − 1 1{K > 1}
]
,

where the second equality uses that, since KR has support in N, we have the following
equality between random variables: KR = KR1{K = 1}+ KR1{K > 1} and EL. Now,
by EL again and factorization, we have

(
·
)
upper bound

= E
[
1{K > 1}

(
KR − KR(KR − 1)

K − 1

)]

= E
[
1{K > 1}

(
KR(K − 1)−KR(KR − 1)

K − 1

)]
KR=K−KD

= E
[
1{K > 1}

(
KR(K − 1)−KR(K −KD − 1)

K − 1

)]

= E

1{K > 1}
KR(K − 1)−KR

[
(K − 1)−KD

]
K − 1


= E

[
1{K > 1}K

RKD

K − 1

]
.

Inserting the result in Equation (3.29) gives the exact upper bound stated in the theorem.
Computations for the lower bound Combining Equations (3.28) and (3.30), the

sharp lower bound on m(1)P(K = 1) is E
[
KR1{K = 1}

]2
/P(K = 1). We plug it in

Equation (3.29) to obtain the following lower bound on π:

1− E[K]
2E[KR]E[KD]

E[KR
]
− E

[
KR(KR − 1)

K − 1 1{K > 1}
]
−

E
[
KR1{K = 1}

]2
P(K = 1)

 . (3.31)

The term in parentheses remains to be computed. To do so, we can add and subtract
E
[
KR1{K = 1}

]
. The interest is that we the first two expectations in the parenthesis

and the subtracted E
[
KR1{K = 1}

]
precisely form the terms that appear in the previous

computation for the upper bound. Therefore, we obtain

(
·
)
lower bound

= E
[
1{K > 1}K

RKD

K − 1

]
+ E

[
KR1{K = 1}

]
−

E
[
KR1{K = 1}

]2
P(K = 1) .

To conclude, we need to compute the difference between the two last terms. We will
use the following equality: 1{K = 1}(1−KR) = 1{K = 1}KD. Indeed, either the two
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term are null, or K = 1 and then 1−KR = K −KR = KD by definition of K. Using
that result and that the expectation of the indicator of any event is the probability of the
event, algebraic simplifications give

E
[
KR1{K = 1}

]
−

E
[
KR1{K = 1}

]2
P(K = 1) = E

[
KR1{K = 1}

]1−
E
[
KR1{K = 1}

]
P(K = 1)


= E

[
KR1{K = 1}

] E[1{K = 1}]− E
[
KR1{K = 1}

]
P(K = 1)

EL= E
[
KR1{K = 1}

] E[1{K = 1}
(
1−KR

)]
P(K = 1)

=
E
[
KR1{K = 1}

]
E
[
KD1{K = 1}

]
P(K = 1) .

Therefore, we have

(
·
)
lower bound

= E
[
1{K > 1}K

RKD

K − 1

]
+

E
[
KR1{K = 1}

]
E
[
KD1{K = 1}

]
P(K = 1) ,

which, plugged in Equation (3.31), yields the lower bound as expressed in the theorem.

Conditional on K > 0 Finally, the last claim follows by remarking that the bounds π
and π we obtain remain unchanged if we replace all the expectations therein by expectations
conditional on K > 0 (Section 3.B.2 in the supplement material to our methodology
provides further details).
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Appendix 3.B Supplements to the methodology

3.B.1 Connection with the Coworker index of segregation
The literature review in the introduction emphasizes the relation of our method with
segregation indices. This appendix shows a formal link between our polarization index π
and a common residential segregation index, the Coworker index.

As explained in Section 3.2.2, we follow Gentzkow et al. (2019) as regards the specific
form of the index. That specification relates to an index of residential or occupational
segregation, whose numerous names include notably the Coworker, the Isolation, or the
Normalized Exposure index. Footnote 11, on page 1314, of GST mentions that link,
and explains that, in the particular case of “an infinite population with an equal share
of Republicans and Democrats”, the isolation index is an affine transformation of GST’s
partisanship index, and they are thus closely related.

An historic definition of the Coworker, in a census framework and using realized
proportions, can be found in Equation (3) of James and Taeuber (1985), p6. To address
the small-unit issue, we consider a functional of the underlying probabilities ρ instead. In
that perspective, Equation (2.1) of D’Haultfœuille and Rathelot (2017), p43, defines the
Coworker index as a function of the distribution of ρ.19 We recall the definition:

CW := E[ρ2]− E[ρ]2

E[ρ] (1− E[ρ]) = V[ρ]
E[ρ] (1− E[ρ]) . (3.32)

With a constant and known K, the following computations show that CW = 2π − 1.

π := 1− E[Kρ(1− ρ)]

2E[K] E[Kρ]
E[K]

(
1− E[Kρ]

E[K]

) = 1− E[Kρ(1− ρ)]

2E[Kρ]
(

1− E[Kρ]
E[K]

)
With K constant= 1− E[ρ(1− ρ)]

2E[ρ] (1− E[ρ]) .

Therefore, we have

2π − 1 EL= 1− E[ρ]− E[ρ2]
E[ρ] (1− E[ρ]) = E[ρ]− E[ρ]2 − E[ρ] + E[ρ2]

E[ρ] (1− E[ρ])

= E[ρ2]− E[ρ]2

E[ρ] (1− E[ρ]) =: CW.

Our polarization index is thus connected to a classical segregation index.

In this paper, we take as given the polarization index defined by GST, and adapt it to a
statistical framework that yields formal identification and estimation results and is suited
to large dimensional choice sets. Consequently, although Theorem 3.1 shows π satisfies
the basic requirements to be used as a polarization index, we leave aside the question of
the axiomatic properties of π compared to other specifications of polarization indices.

That being said, the link with the Coworker index calls for a short digression about
composition invariance. We already alluded to that notion in the Introduction, and this

19The index π is a function of P(K,ρ). Here, as the objective is only to explicit the link between our
polarization index and the Coworker, we restrict to the the case of a constant and known K.
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is what motivates the generalization of π′′ to unequal group proportions to define π.
Intuitively and without formalization, an index is said to satisfy the composition invariance
property when it is unaffected by a change in the proportion of the two groups that leaves
the differences, the dispersion in the choices made by the two groups identical. To clarify,
points (ii) and (iii) of our Theorem 3.1 shows that our index π satisfies the composition
invariance property locally. By that affirmation, we mean that in the case of complete
polarization, when Pρ is a Bernoulli such that each option is chosen by only one of the
two groups, the index π is maximal, equal to 1, whatever the parameter of the Bernoulli
distribution, that is whatever the composition of the population. Likewise, in the reverse
case of null polarization, π = 1/2 for any Dirac distribution, whatever its mass point.
Nonetheless, to be said invariant to composition, π should satisfy the property globally,
not only for that two polar cases.

Figure 3.6: Value of the index π (allowing for unequal group proportions) as a function of E[ρ]
and V[ρ] when K ⊥⊥ ρ.
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The first two moments of the distribution of rho must satisfy restrictions (moment space):
E(rho) cannot be too far from 1/2 for a fixed variance (otherwise impossible distributions)Note: We assume here independence (or sufficiently strong uncorrelation; see Section 3.B.7) between

K and ρ. In this case, the index is a function of the first two moments of the distribution of ρ.
The vector of those moments needs to satisfy restrictions to belong to the moment space (e.g.,
non-negative variance), which implies that E[ρ] cannot be too far from 1/2 for a fixed variance;
reversely, for a fixed E[ρ], V[ρ] cannot lie anywhere. For a fixed V[ρ] (expressed as a percentage of the
maximum possible variance for ρ ∈ [0, 1], namely 0.25 attained by a Bernoulli with expectation 0.5),
the curve of the corresponding color represents the value of π as a function of E[ρ] (the share of
Republican speech in our application, or the proportion of the minority group in general contexts).
In such cases, composition-invariant indices should be sensitive to V[ρ] only. It is not the case of π in
general, although the dependence is mild for E[ρ] around 1/2 and limited magnitude of polarization
(small V[ρ]).

Despite that the formal investigation of such property is beyond the objective of
this paper, we mention the point in reaction to the assertion of Gentzkow et al. (2019)
that “Ignoring covariates x, [their] measure satisfies six of these axioms [those of Frankel
and Volij (2011)]: Non-triviality, Continuity, Scale Invariance, Symmetry, Composition
Invariance, and the School Division Property., GST, p1314. As regards composition
invariance, the affine link with the Coworker or Isolation index suggests the contrary
given our understanding of the literature. Indeed, although the proofs we are aware of
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concern the definition of the coworker index by empirical proportions, instead of underlying
probabilities, to quote Frankel and Volij (2011), “It is well known that the [Isolation] index
is not Composition Invariant”, p12.20 GST’s and our index are not formally concerned
by those proofs since they are defined directly upon the probabilities. However, absent
proof of the contrary, it is plausible that π and the related GST’s index are not globally
composition invariant.

In fact, in the simplified case where K and ρ are independent (or sufficiently not
correlated; see Section 3.B.7), simulation studies show the partisanship index π is not
globally composition invariant (Figure 3.6). Nonetheless, we stress that the generalization
from π′′ to π, allowing for unequal group proportions, weakens the impact of group
proportion (compare Figure 3.6 with Figure 3.7).

Figure 3.7: Value of the index π′′ (not generalized to unequal group proportions) as a function
of E[ρ] and V[ρ] when K ⊥⊥ ρ.
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The first two moments of the distribution of rho must satisfy restrictions (moment space):
E(rho) cannot be too far from 1/2 for a fixed variance (otherwise impossible distributions)Note: See the Note of Figure 3.6 where, instead of π, the graph shows the value of π′′. π′′ takes for

reference half-half proportions for the two groups and, therefore, is more sensitive to the composition
than π.

3.B.2 Restriction to K > 0 without loss of generality
This appendix gives details on the last claim of Theorem 3.2. The short message is the
following: the level and measure of polarization, namely the index π and the identified
bounds π and π, are unaffected by irrelevant options, that is with K = 0. Formally, those
three quantities, first presented with unconditional expectations, can be rewritten with
expectations conditional on {K > 0}. In other words, they are functions of the conditional
joint distribution P(K,ρ) |K>0 for the index, respectively P(KR,K) |K>0 for the bounds. As a
consequence, an equivalent presentation of our DGP Assumption 3.1 would be to impose
K > 0; J being then the number of distinct bigrams pronounced at least one in the data.

20Conceptually, as suggested by its very name, the Coworker or Isolation index seems to depend, by
construction, on the overall population of minority. Actually, Massey and Denton (1988) classifies the
index as an “exposure” type of segregation indices, see §2 Exposure, p287 of that paper, connecting it to
the composition of the population, in contrast with “unevenness” indices.
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Expression of the index Our index is defined as a function of the joint distribution
of P(K,ρ) in Equation (3.2). Simply swapping q for its definition E[Kρ]/E[K], it writes

π := 1− E[Kρ(1− ρ)]

2E[K] E[Kρ]
E[K]

(
1− E[Kρ]

E[K]

) EL= 1−
E[Kρ]− E

[
Kρ2

]
2E[Kρ] E[K(1− ρ)]

E[K]

= 1− E[K]
2E[K(1− ρ)] + E[K]E[Kρ2]

2E[Kρ]E[K(1− ρ)] .

Now, remark that, as the support of K is N and the support of ρ is [0, 1], we have the
following equalities between random variables:

K = K1{K > 0}, Kρ = Kρ1{K > 0}, K(1− ρ) = K(1− ρ)
1{K > 0}, Kρ2 = Kρ21{K > 0}.

For each of those variables K, Kρ, K(1− ρ), Kρ2, generically denoted by V , we thus have

E[V ] = E[V 1{K > 0}] = E[V |K > 0]× P(K > 0) , (3.33)

where the first equality uses the previous equation and the second stems from the charac-
terization of conditional expectation.

Since the two fractions involved in the expression of π have the same number of
expectations at the numerator and at the denominator, the term P(K > 0) cancels out
when we use the result of Equation (3.33). Therefore, our polarization index is equal to

π = 1− E[K |K > 0]
2E[K(1− ρ) |K > 0] + E[K |K > 0]E[Kρ2 |K > 0]

2E[Kρ |K > 0]E[K(1− ρ) |K > 0] . (3.34)

Thus, it rewrites as a function of the joint distribution of (K, ρ) conditional on {K > 0}.
In that respect, options never chosen (K = 0) are irrelevant.

Expression of the bounds The argumentation is similar for the identification bounds.
Under our DGP, namely Assumption 3.1 and q ∈ (0, 1), Theorem 3.2 defines the bounds
as functions of the joint distribution of (KR, K):

π := 1−
E[K]E

[
1{K > 1}KRKD/(K − 1)

]
2E[KR]E[KD] −

E[K]E
[
KR1{K = 1}

]
E
[
KD1{K = 1}

]
2E[KR]E[KD]E[1{K = 1}] ,

π = 1−
E[K]E

[
1{K > 1}KRKD/(K − 1)

]
2E[KR]E[KD]

K, KR, and KD have support in N. Moreover, by definition of K, KR > 0 =⇒ K > 0,
idem for a positive KD. Therefore, we have these equalities between random variables:

K = K1{K > 0}, KR = KR1{K > 0}, KD = KD1{K > 0}.

Similarly, it is evident that K > 1 =⇒ K > 0, as well as, K = 1 =⇒ K > 0. Hence,

KR1{K = 1} = KR1{K = 1}1{K > 0}, KD1{K = 1} = KD1{K = 1}1{K > 0},

1{K = 1} = 1{K = 1}1{K > 0}, KRKD1{K > 1}
K − 1 = KRKD1{K > 1}

K − 1 1{K > 0}.
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Therefore, for each random variable V that appears within the unconditional expecta-
tions involved in the expressions of π and π, we have again the equality of Equation (3.33).
The fractions that compose the bounds have the same number of expectations at the
numerator and at the denominator, and the term P(K > 0) therefore cancels out when
using Equation (3.33) in the definition of the bounds. π and π are therefore equal to:

π := 1− E[K |K > 0]
2E[KR |K > 0]E[KD |K > 0]

{
E
[
KRKD

K − 1 1{K > 1} |K > 0
]

+
E
[
KR1{K = 1} |K > 0

]
E
[
KD1{K = 1} |K > 0

]
E[1{K = 1} |K > 0]

}
,

π := 1− E[K |K > 0]
2E[KR |K > 0]E[KD |K > 0] E

[
KRKD

K − 1 1{K > 1} |K > 0
]
, (3.35)

and are thus functions of P(KR,K) |K>0; remember that KD = K −KR by definition of K.
In conclusion, options that are not chosen, with K = 0, can be dropped without

affecting the index π or the bounds π and π.

Equivalent DGP assumption with positive K The previous equalities (3.34)
and (3.35) allow a final remark about our statistical model. In addition to i.i.d. sampling
and the binomial condition, Assumption 3.1 imposes E[K] > 0. Hence, the assumption
authorizes K = 0; it only imposes that K is not almost surely null, otherwise there is
nothing to think about anyway. Since taking or not taking into account the options
with K = 0 does not modify the index nor the bounds, we could instead have chosen the
condition P(K > 0) = 1 in Assumption 3.1. That condition is stronger, for it is sufficient
to have E[K] > 0, but without loss of generality as regards the definition and partial
identification of our index.21

Regarding estimation, excluding or not options never chosen in the data, Kj = 0,
leaves the estimators of the bounds and the extrapolated point-estimator unchanged (see
Equations (3.5), (3.9), and (3.10)).

3.B.3 Formal results for estimation and inference
The expression of the identification bounds in Theorem 3.2 suggests simple estimators by
the method of moments. Swapping expectations E[·] for sample means J−1∑J

j=1 ·j and
simplifying by J , we obtain π̂ :=

1−
∑J
j=1 Kj

2∑J
j=1K

R
j

∑J
j=1K

D
j


J∑
j=1

KR
j K

D
j

Kj − 11{Kj > 1}+
∑J
j=1K

R
j 1{Kj = 1}∑J

j=1K
D
j 1{Kj = 1}∑J

j=1 1{Kj = 1}

,
and π̂ := 1−

∑J
j=1Kj

2∑J
j=1 K

R
j

∑J
j=1K

D
j

J∑
j=1

KR
j K

D
j

Kj − 11{Kj > 1}.

For the proper definition of those estimators, we extend the natural convention of
Theorem 3.2 to empirical counterparts. First, we set 1{Kj > 1}/(Kj − 1) to 0 if Kj = 1.

21In the perspective of our asymptotics in J tending to +∞, the condition E[K] > 0 is sufficient to
ensure that the sequence of observed {Kj}j∈J cannot be always null, and therefore does give some
information on the underlying distribution.
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Second, we take ∑J
j=1K

R
j 1{Kj = 1}/∑J

j=1 1{Kj = 1} = 0 if ∑J
j=1 1{Kj = 1} is null. In

other words, the last fraction in π̂ vanishes if there is no option with a single occurrence,
Kj = 1, in the data. In that case, the two estimators coincide and we obtain a point-
estimator π̂ = π̂ of our polarization index π.

The computation of π̂ and π̂ is straightforward and numerically light. They display
the usual desired properties of method of moments estimators.

Proposition 3.1 (Consistency of π̂ and π̂). If Assumption 3.1 holds and E[|K|] < +∞,
then π̂ and π̂ are well-defined with probability approaching one as the sample size J grows to
infinity, and they consistently estimate the identification bounds: π̂ a.s.−→

J→+∞
π, and π̂ a.s.−→

J→+∞
π.

The proof consists in applying the Law of Large Numbers and the Continuous Mapping
Theorem. Appendix 3.B.4 gives the exact arguments.

Proposition 3.2 (Joint asymptotic normality of π̂ and π̂). If Assumption 3.1 holds and
E[K2] < +∞, then π̂ and π̂ are jointly asymptotically normal, namely

√
J

[(
π̂
π̂

)
−
(
π
π

)]
d−→

J→+∞
N
(

0,
(
ω τ
τ ω

))
,

with ω, τ , and ω numbers that are continuous functions of the expectations of, covari-
ances between, and variances of the variables K, KR, KD, KRKD1{K = 1}/(K − 1),
KR1{K = 1}, KD1{K = 1}, and 1{K = 1}.

Appendix 3.B.5 presents the proof in detail, which relies on applications of the Central
Limit Theorem and delta method, and gives the expressions of ω, τ , and ω. The expressions
are not particularly enlightening and are thus reported there. The important is that, using
again the method of moments, we have immediate estimators ω̂, τ̂ , and ω̂ for the entries
of the asymptotic variance-covariance matrix (see Equations (3.41), (3.42), and (3.43) in
the appendix). Under the conditions of Proposition 3.2, they are consistent estimators of
ω, τ , and ω. In practice, this enables to construct a confidence interval (CI) for π with
asymptotic guarantees. The CI does concern π, the polarization index of interest, not the
identification bounds π and π or the identified set [π, π]. It needs to take into account
partial identification of π. To do so, we follow Imbens and Manski (2004) and Stoye (2009).

For α ∈ (0, 1), we define our CI by

CIπ1−α :=
π̂ − q(α)

√
ω̂√

J
, π̂ + q(α)

√
ω̂√

J

 ,
where q(α) solves

Φ
q(α) +

√
J∆̂

max
{√

ω̂,
√
ω̂
}
− Φ(−q(α)) = 1− α,

with ∆̂ := π̂ − π̂ and Φ(·) the cumulative distribution function of N (0, 1) distribution.

Proposition 3.3 (Asymptotic confidence interval for π). If there exist ε > 0, and positive
and finite constants B, ωl, and ωu such that E[|K|2+ε] < B, ωl ≤ ω ≤ ωu, and ωl ≤ ω ≤ ωu
for any DGP satisfying Assumption 3.1, then, for any α ∈ (0, 1),

lim
J→+∞

P
(
π ∈ CIπ1−α

)
≥ 1− α.
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The proof relies on Lemma 3 and Proposition 1 of Stoye (2009). Appendix 3.B.6
provides details and try to give some intuition on the construction of CIπ1−α: for partially
identified parameters, the critical value q(α) balances sampling uncertainty with the
uncertainty coming from partial identification.

3.B.4 Proof of Proposition 3.1
To make explicit the sample means, the estimators of the bounds rewrite

π̂ = 1−
1
J

∑J
j=1Kj

2 1
J

∑J
j=1K

R
j × 1

J

∑J
j=1K

D
j

 1
J

J∑
j=1

KR
j K

D
j

Kj − 11{Kj > 1}+

1
J

∑J
j=1K

R
j 1{Kj = 1} × 1

J

∑J
j=1K

D
j 1{Kj = 1}

1
J

∑J
j=1 1{Kj = 1}

 ,
π̂ = 1−

1
J

∑J
j=1Kj

2 1
J

∑J
j=1K

R
j × 1

J

∑J
j=1K

D
j

× 1
J

J∑
j=1

KR
j K

D
j

Kj − 11{Kj > 1} .

Definition of the estimators of the bounds Under Assumption 3.1, the restriction
q ∈ (0, 1) implies E

[
KD

]
> 0 and E

[
KD

]
> 0.

Moreover, KR ≤ K and KD ≤ K, so that if K has a finite first order moment,
E[|K|] < +∞, so do KR and KD. Our DGP assumption also postulates i.i.d. sampling.

Applying the Law of Large Numbers (LLN), the two terms at the denominator in the
common fraction of π̂ and π̂, J−1∑J

j=1K
R
j and J−1∑J

j=1K
D
j , are different from 0 with a

probability approaching one as the sample size J grows to infinity. Combined with our
convention, a null indicator prevails over a related null denominator, it shows that the two
estimators are well-defined with probability approaching one when J → +∞.

In practice, if it is not the case, namely if ∑J
j=1K

R
j or ∑J

j=1K
D
j is null, the sample

at hand contains choices made by only one group, and appears useless to study group
differences.

Consistency of the estimators of the bounds To use the Continuous Mapping
Theorem (CMT), and later the delta method, we define two real-valued functions for any
real numbers a, b 6= 0, c 6= 0, d, e, f , and g 6= 0,

g(a, b, c, d, e, f, g) := 1− a

2bc

{
d+ ef

g

}
, (3.36)

g(a, b, c, d, e, f, g) := 1− a

2bc d . (3.37)

Those functions are continuous. We use the same arguments for both functions although
the second one does not make use of the arguments e, f , g because we will consider a
multi-valued function g := (g, g) into R2 to prove asymptotic normality.

We define the following shortcuts for simplicity

a := E[K] , â := 1
J

J∑
j=1

Kj,

b := E
[
KR

]
, b̂ := 1

J

J∑
j=1

KR
j ,
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c := E
[
KD

]
, ĉ := 1

J

J∑
j=1

KD
j ,

d := E
[
KRKD

K − 1 1{K > 1}
]
, d̂ := 1

J

J∑
j=1

KR
j K

D
j

Kj − 11{Kj > 1},

e := E
[
KR1{K = 1}

]
, ê := 1

J

J∑
j=1

KR
j 1{Kj = 1},

f := E
[
KD1{K = 1}

]
, f̂ := 1

J

J∑
j=1

KD
j 1{Kj = 1},

g := E[1{K = 1}] , ĝ := 1
J

J∑
j=1

1{Kj = 1}.

By construction, we have

g(a, b, c, d, e, f, g) = π, g(â, b̂, ĉ, d̂, ê, f̂ , ĝ) = π̂,

g(a, b, c, d, e, f, g) = π, g(â, b̂, ĉ, d̂, ê, f̂ , ĝ) = π̂.

Before applying the CMT, it remains to verify the conditions of the LLN. Assumption 3.1
posits i.i.d. sampling. Furthermore, we assume E[|K|] < +∞. That entails a finite first
moment for all the relevant variables, namely K, KR, KD, KRKD1{K > 0}/(K − 1),
KR1{K = 1}, KD1{K = 1}, and 1{K = 1}.

Indeed, KR and KD are smaller or equal to K. A fortiori, it is also the case for the
variables KR1{K = 1} and KD1{K = 1}. The variable 1{K = 1} is bounded. Finally,
we can show that

KRKD

K − 1 1{K > 1} ≤ K. (3.38)

By definition of K, we have KRKD = KR(K −KR) ≤ K(K − 1). To prove the latest
inequality, we separate two cases. If KR is equal to either 0 or K, the left-hand side of
the inequality, KR(K −KR), is zero and the inequality holds. Otherwise, as the variables
in question are integers, we have 1 ≤ KR ≤ K − 1. It gives K −KR ≤ K − 1 ≤ K. The
combination of KR ≤ K − 1 and K −KR ≤ K gives KR(K − KR) ≤ K(K − 1). To
obtain the inequality stated in Equation (3.38), note that it holds whenever K ≤ 1 for
the indicator is null, and, for K > 1, dividing the inequality KR(K −KR) ≤ K(K − 1)
by K − 1 > 0 yields the result.

Thus, i.i.d. sampling and the condition E[|K|] < +∞ allow to apply the strong LLN,
which gives, using the previous notations,

∀x ∈ {a, b, c, d, e, f, g}, x̂ a.s.−→
J→+∞

x.

The Continuous Mapping Theorem gives the result

g(â, b̂, ĉ, d̂, ê, f̂ , ĝ) = π̂
a.s.−→

J→+∞
g(a, b, c, d, e, f, g) = π,

g(â, b̂, ĉ, d̂, ê, f̂ , ĝ) = π̂
a.s.−→

J→+∞
g(a, b, c, d, e, f, g) = π.

Therefore, our simple method of moments estimators provide a consistent estimated
identified set of the identification interval [π, π] of polarization index π.
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3.B.5 Proof of Proposition 3.2

The proof consists in applying (i) the multivariate Central Limit Theorem to the relevant
vector of empirical means, that is the vector of size 7, (â, b̂, ĉ, d̂, ê, f̂ , ĝ)>;22 (ii) the delta
method with the map g := (g, g)> defined into R2.

To lighten notations only, we define the following real random variable

L := KRKD

K − 1 1{K > 1}.

To clarify the proper definition of L, remember the spirit of our various conventions: null
indicators prevails over a related null denominator, related meaning that the denominator
is null if and only if the indicator is switched off. Here, when K = 1, L is thus set to 0.

Central Limit Theorem To apply the multivariate CLT to (â, b̂, ĉ, d̂, ê, f̂ , ĝ), we need
two conditions: i.i.d. sampling, and a finite variance-covariance matrix.

As explained in Appendix 3.B.4, the non-negative real random variables KR, KD, L,
KR1{K = 1}, and KD1{K = 1} are upper bounded by the variable K. Therefore, the
condition E[K2] < +∞ implies that those variables also admit a finite second moment.
Moreover, the variable 1{K = 1} has bounded support, hence has a finite variance too.
Therefore, under the assumptions of Proposition 3.2, we have the existence of the relevant
finite variance-covariance matrix:

Σ := V
[
(K,KR, KD, L,KR1{K = 1}, KD1{K = 1},1{K = 1})>

]
.

Combined with i.i.d. sampling from Assumption 3.1, the multivariate CLT gives

√
J
[
(â, b̂, ĉ, d̂, ê, f̂ , ĝ)> − (a, b, c, d, e, f, g)>

] d−→
J→+∞

N (0,Σ) . (3.39)

Delta method We use the delta method with the map g := (g, g) for

g(â, b̂, ĉ, d̂, ê, f̂ , ĝ) = (π̂, π̂)>, g(a, b, c, d, e, f, g) = (π, π)>.

Under our convention for fractions with possible null denominator provided the numer-
ator is null too, and with Assumption 3.1 and q ∈ (0, 1) that imply E

[
KR

]
and E

[
KD

]
are positive, there is no issue of definition of g. In addition, the map is differentiable
and we denote by Jg|(a,b,c,d,e,f,g) the 2× 7 Jacobian matrix of g evaluated at the vec-
tor (a, b, c, d, e, f, g). Therefore, the delta method applied to g(·) and Equation (3.39)
gives

√
J

[(
π̂
π̂

)
−
(
π
π

)]
d−→

J→+∞
N
(

0,
(
ω τ
τ ω

))
,

with (
ω τ
τ ω

)
:= Jg|(a,b,c,d,e,f,g) Σ Jg|>(a,b,c,d,e,f,g). (3.40)

22The symbol ·> denotes the transpose of a vector or matrix.
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Expressions of the asymptotic variance For the practical target of building confi-
dence interval (CI) for π, it remains to compute and consistently estimate the entries, ω,
τ , and ω, of the asymptotic variance-covariance matrix. The analytical derivation of g and
the matrix computation of Equation (3.40) does not pose any difficulty but are tedious.
We perform those thanks to a computer algebra system, Maxima, and report the results
below for completeness. We would be happy to share the Maxima code upon request.

The part related to the upper bound is:

ω := E[K]2 V[L]
4E[KD]2 E[KR]2

+
E[K]2 E[L]2 V

[
KR

]
4E[KD]2 E[KR]4

+
E[K]2 E[L]2 V

[
KD

]
4E[KD]4 E[KR]2

+

E[L]2 V[K]
4E[KD]2 E[KR]2

−
Cov

(
K,KD

)
E[K]E[L]2

2E[KD]3 E[KR]2
−

Cov
(
K,KR

)
E[K]E[L]2

2E[KD]2 E[KR]3
+

Cov
(
KR,KD

)
E[K]2 E[L]2

2E[KD]3 E[KR]3
+ Cov(K,L)E[K]E[L]

2E[KD]2 E[KR]2
−

Cov
(
KD, L

)
E[K]2 E[L]

2E[KD]3 E[KR]2
−

Cov
(
KR, L

)
E[K]2 E[L]

2E[KD]2 E[KR]3
. (3.41)

The covariance term and the entry related to the lower bound are (far) longer. We
express them below as the difference with ω. (the expressions are slightly nicer and it is
easier to see what happens in the case of point-identification, when P(K = 1) = 0). Other
expressions for τ and ω are available in the Maxima script. The asymptotic covariance
term τ is defined by

τ := ω+

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]V

[
KR
]

4E[1{K = 1}]E[KD]2 E[KR]4
+

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]V

[
KD
]

4E[1{K = 1}]E[KD]4 E[KR]2
+

E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]V[K]

4E[1{K = 1}]E[KD]2 E[KR]2
+

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

4E[1{K = 1}]E[KD]2 E[KR]2
−

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}]E[KD]2 E[KR]2
−

Cov(K,1{K = 1})E[K]E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

4E[1{K = 1}]2 E[KD]2 E[KR]2
+

Cov
(
KD,1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

4E[1{K = 1}]2 E[KD]3 E[KR]2
−

Cov
(
K,KD

)
E[K]E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}]E[KD]3 E[KR]2
+

Cov
(
K,KD1{K = 1}

)
E[K]E

[
KR1{K = 1}

]
E[L]

4E[1{K = 1}]E[KD]2 E[KR]2
−

Cov
(
KD,KD1{K = 1}

)
E[K]2 E

[
KR1{K = 1}

]
E[L]

4E[1{K = 1}]E[KD]3 E[KR]2
+

Cov
(
KR,1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

4E[1{K = 1}]2 E[KD]2 E[KR]3
−

Cov
(
K,KR

)
E[K]E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}]E[KD]2 E[KR]3
+

Cov
(
KR,KD

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}]E[KD]3 E[KR]3
−

Cov
(
KR,KD1{K = 1}

)
E[K]2 E

[
KR1{K = 1}

]
E[L]

4E[1{K = 1}]E[KD]2 E[KR]3
+

Cov
(
K,KR1{K = 1}

)
E[K]E

[
KD1{K = 1}

]
E[L]

4E[1{K = 1}]E[KD]2 E[KR]2
−

Cov
(
KD,KR1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E[L]

4E[1{K = 1}]E[KD]3 E[KR]2
−

Cov
(
KR,KR1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E[L]

4E[1{K = 1}]E[KD]2 E[KR]3
+

Cov(K,L)E[K]E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
4E[1{K = 1}]E[KD]2 E[KR]2

−

Cov
(
KD, L

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
4E[1{K = 1}]E[KD]3 E[KR]2

−
Cov
(
KR, L

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
4E[1{K = 1}]E[KD]2 E[KR]3

. (3.42)
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The asymptotic variance for the lower bound ω is defined by

ω := ω+

E[K]2 E
[
KD1{K = 1}

]2
V
[
KR1{K = 1}

]
4E[1{K = 1}]2 E

[
KD
]2

E
[
KR
]2 +

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L] V

[
KR
]

2E[1{K = 1}] E
[
KD
]2

E
[
KR
]4 +

E[K]2 E
[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2
V
[
KR
]

4E[1{K = 1}]2 E
[
KD
]2

E
[
KR
]4 +

E[K]2 E
[
KR1{K = 1}

]2
V
[
KD1{K = 1}

]
4E[1{K = 1}]2 E

[
KD
]2

E
[
KR
]2 +

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L] V

[
KD
]

2E[1{K = 1}] E
[
KD
]4

E
[
KR
]2 +

E[K]2 E
[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2
V
[
KD
]

4E[1{K = 1}]2 E
[
KD
]4

E
[
KR
]2 +

E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L] V[K]

2E[1{K = 1}] E
[
KD
]2

E
[
KR
]2 +

E
[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2
V[K]

4E[1{K = 1}]2 E
[
KD
]2

E
[
KR
]2 +

E[K]2 E
[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2
V[1{K = 1}]

4E[1{K = 1}]4 E
[
KD
]2

E
[
KR
]2 +

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}] E
[
KD
]2

E
[
KR
]2 −

E[K]2 E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

E[1{K = 1}] E
[
KD
]2

E
[
KR
]2 −

Cov(K, 1{K = 1}) E[K] E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}]2 E
[
KD
]2

E
[
KR
]2 +

Cov
(
KD, 1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}]2 E
[
KD
]3

E
[
KR
]2 −

Cov
(
K,KD

)
E[K] E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

E[1{K = 1}] E
[
KD
]3

E
[
KR
]2 +

Cov
(
K,KD1{K = 1}

)
E[K] E

[
KR1{K = 1}

]
E[L]

2E[1{K = 1}] E
[
KD
]2

E
[
KR
]2 −

Cov
(
KD, KD1{K = 1}

)
E[K]2 E

[
KR1{K = 1}

]
E[L]

2E[1{K = 1}] E
[
KD
]3

E
[
KR
]2 +

Cov
(
KR, 1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

2E[1{K = 1}]2 E
[
KD
]2

E
[
KR
]3 −

Cov
(
K,KR

)
E[K] E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

E[1{K = 1}] E
[
KD
]2

E
[
KR
]3 +

Cov
(
KR, KD

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
E[L]

E[1{K = 1}] E
[
KD
]3

E
[
KR
]3 −

Cov
(
KR, KD1{K = 1}

)
E[K]2 E

[
KR1{K = 1}

]
E[L]

2E[1{K = 1}] E
[
KD
]2

E
[
KR
]3 +

Cov
(
K,KR1{K = 1}

)
E[K] E

[
KD1{K = 1}

]
E[L]

2E[1{K = 1}] E
[
KD
]2

E
[
KR
]2 −

Cov
(
KD, KR1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E[L]

2E[1{K = 1}] E
[
KD
]3

E
[
KR
]2 −

Cov
(
KR, KR1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E[L]

2E[1{K = 1}] E
[
KD
]2

E
[
KR
]3 −

Cov(K, 1{K = 1}) E[K] E
[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2

2E[1{K = 1}]3 E
[
KD
]2

E
[
KR
]2 +

Cov
(
KD, 1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2

2E[1{K = 1}]3 E
[
KD
]3

E
[
KR
]2 −

Cov
(
K,KD

)
E[K] E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2

2E[1{K = 1}]2 E
[
KD
]3

E
[
KR
]2 −

Cov
(
KD1{K = 1}, 1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]2

2E[1{K = 1}]3 E
[
KD
]2

E
[
KR
]2 +

Cov
(
K,KD1{K = 1}

)
E[K] E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]2

2E[1{K = 1}]2 E
[
KD
]2

E
[
KR
]2 −

Cov
(
KD, KD1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]2

2E[1{K = 1}]2 E
[
KD
]3

E
[
KR
]2 +

Cov
(
KR, 1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2

2E[1{K = 1}]3 E
[
KD
]2

E
[
KR
]3 −

Cov
(
K,KR

)
E[K] E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2

2E[1{K = 1}]2 E
[
KD
]2

E
[
KR
]3 +

Cov
(
KR, KD

)
E[K]2 E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]2

2E[1{K = 1}]2 E
[
KD
]3

E
[
KR
]3 −

Cov
(
KR, KD1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]2

2E[1{K = 1}]2 E
[
KD
]2

E
[
KR
]3 −

Cov
(
KR1{K = 1}, 1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]
2E[1{K = 1}]3 E

[
KD
]2

E
[
KR
]2 +

Cov
(
K,KR1{K = 1}

)
E[K] E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]
2E[1{K = 1}]2 E

[
KD
]2

E
[
KR
]2 −

Cov
(
KD, KR1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]
2E[1{K = 1}]2 E

[
KD
]3

E
[
KR
]2 +

Cov
(
KR1{K = 1}, KD1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
2E[1{K = 1}]2 E

[
KD
]2

E
[
KR
]2 +

Cov(K,L) E[K] E
[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
2E[1{K = 1}] E

[
KD
]2

E
[
KR
]2 −

Cov
(
KD, L

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
2E[1{K = 1}] E

[
KD
]3

E
[
KR
]2 −

Cov
(
KR, KR1{K = 1}

)
E[K]2 E

[
KD1{K = 1}

]2
E
[
KR1{K = 1}

]
2E[1{K = 1}]2 E

[
KD
]2

E
[
KR
]3 −

Cov
(
KR, L

)
E[K]2 E

[
KD1{K = 1}

]
E
[
KR1{K = 1}

]
2E[1{K = 1}] E

[
KD
]2

E
[
KR
]3 . (3.43)
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Those expressions call for several comments. First, as stated in Proposition 3.2 and
despite their length, the three quantities ω, τ , and ω are indeed continuous functions
of the expectations and variances of, or covariances between, the concerned random
variables, namely K, KR, KD, KRKD1{K = 1}/(K − 1), KR1{K = 1}, KD1{K = 1},
and 1{K = 1}. Moreover, those variables are observed in the data, so that simple and
consistent estimators by the method of moments are available and can be used to construct
confidence intervals.23

Second, two examinations ensure the proper definition of the asymptotic variance-
covariance matrix. In ω, the expectations E

[
KR

]
and E

[
KD

]
constitute all the denom-

inators. Under Assumption 3.1 and q ∈ (0, 1), the expectations are positive, hence the
proper definition of ω. Furthermore, the quantities τ − ω and ω − ω share a noteworthy
feature: they are entirely made up of fractions whose common characteristic is to contain
either E

[
KR1{K = 1}

]
/E[1{K = 1}] or E

[
KD1{K = 1}

]
/E[1{K = 1}]. That considera-

tion establishes the proper definition of τ and ω. Indeed, their denominators are made
up of E[1{K = 1}], E

[
KR

]
, and E

[
KD

]
. If E[1{K = 1}] = P(K = 1) > 0, combined with

E
[
KR

]
and E

[
KD

]
positive, the denominators are not null. On the contrary, if there

is no single-choice options, P(K = 1) = 0, our convention of Theorem 3.2 applies and,
as logically expected, those fractions are null and, consequently, the differences vanish:
ω = τ = ω. In that point-identification setting, the two bounds, π = π = π, and the two
estimators, π̂ = π̂, coincide. Then, Proposition 3.2 reduces to

√
J
(
π̂ − π

) d−→
J→+∞

N (0, ω) . (3.44)

Thus, if P(K = 1) = 0, our method yields point-identification and the classical result of a
consistent, asymptotically normal, point-estimator of the parameter of interest π.

Third, alternative, shorter, linearized expressions of the asymptotic variance-covariance
matrix of (π̂, π̂) are ω = V(δ) , τ = Cov

(
δ, δ

)
, ω = V

(
δ
)
, where the real random

variables δ and δ are defined by:

δ := (π − 1)
{

K

E[K] + KRKD1{K > 1}/(K − 1)
E[KRKD1{K > 1}/(K − 1)] −

KR

E[KR] −
KD

E[KD]

}
,

δ := δ −
E[K]E

[
KR1{K = 1}

]
E
[
KD1{K = 1}

]
2E[KR]E[KD]E[1{K = 1}]

{
K

E[K] + KR1{K = 1}
E[KR1{K = 1}]+

KD1{K = 1}
E[KD1{K = 1}] −

KR

E[KR] −
KD

E[KD] −
1{K = 1}

E[1{K = 1}]

}
.

The point-identification setting is more visible in those expressions. If P(K = 1) = 0, the
convention of Theorem 3.2 entails that the first fraction in δ is null, so that δ = δ and
ω = τ = ω = V

(
δ
)
.

23The expressions appear long and ugly but provide straightforward method of moments estimators,
virtually costless to compute. In the end, the formal expressions are not very important; we compute
them in Maxima and then copy-and-paste them twice before forgetting them. One copy is in the .tex that
generates this documents. The second appears in the R code to compute the consistent estimators. In the
code, we use simplifications coming from K := KR +KD to save computational time. For instance, to
obtain the empirical counterparts of E[K], E

[
KR
]
, and E

[
KD

]
, there is no need to compute three sample

means over, possibly, millions of options; two are enough, plus an immediate difference between those two
real numbers.
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3.B.6 Proof of Proposition 3.3

The proof consists in checking Assumption 1(i) and (ii) in Stoye (2009). Indeed, by
construction of our bound estimators, {π̂ ≥ π̂} holds almost surely for any DGP satisfying
Assumption 3.1. Therefore, Lemma 3 of Stoye (2009) gives Assumption 3 with the notation
of this paper, then Proposition 1 gives the result.

The first part of 1(ii) (the asymptotic variance of the lower and upper bound estimators
are bounded by finite and positive constants uniformly over possible DGP of the statistical
model) is assumed in Proposition 3.3.24

The second part of 1(ii) states that the identification interval’s length is bounded
uniformly over possible DGP. This is indeed the case from Equation 3.3, that we recall
here

∆ := π − π = E
[
KR |K = 1

]
E
[
KD |K = 1

]
P(K = 1) .

Since KR ≤ K, KD ≤ K and a probability cannot exceed 1, we have ∆ ≤ 3 for any DGP
under Assumption 3.1.

Assumption 1(i) requires joint asymptotic normality of the bound estimators (π̂, π̂)
uniformly over the possible DGP as well as estimators ω̂, τ̂ and ω̂ of the asymptotic
variance-covariance matrix that are uniformly consistent. We already have those results
pointwise (Proposition 3.2 for the asymptotic normality and consistent plug-in estimators
of the asymptotic variance-covariance of (π̂, π̂); see details in the next paragraph). The
extension to uniformly valid results can be obtained from the results of Romano (2004)
(R) and Kasy (2019) (K). For the uniform asymptotic normality, Lemma 1 of R gives a
uniform Central Limit Theorem (CLT) on all needed sample means (see the quantities
a to g in Section 3.B.4; remember that all the relevant variables are upper bounded by
K, so the technical condition on the control of its 2 + ε moment is enough). Then the
use of the uniform delta method (Theorem 2) of K yields a uniform CLT for the bound
estimators. For the uniform consistency of the estimators of ω, ω and τ , the proof is
symmetric: Lemma 2 in R gives uniform convergence in probability on all required sample
means, and the uniform continuous mapping theorem (Theorem 1) of K enables to deduce
a uniform consistency of the asymptotic variance-covariance estimators.

Consistent estimators for the asymptotic variance The inspection of Equa-
tions (3.43), (3.42), and (3.41) gives natural estimators through the method of moments.
Indeed, ω, τ , and ω write as continuous functions of expectations, covariances, and
variances of observed variables. We introduce the following notations to express
the replacement of population moments by empirical counterparts: for any random
variable V and W among K, KR, KD, L := KRKD1{K = 1}/(K − 1), KR1{K = 1},
KD1{K = 1}, and 1{K = 1},

Ê[V ] := 1
J

J∑
j=1

Vj , V̂[V ] := 1
J

J∑
j=1

(
Vj − Ê[V ]

)2
,

Ĉov(V,W ) := 1
J

J∑
j=1

(
Vj − Ê[V ]

) (
Wj − Ê[W ]

)
. (3.45)

24Within our DGP, provided adequate moment conditions on K, it should probably be possible to
obtain the result without further assumptions. We leave this task for future work.
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The estimators ω̂, τ̂ and ω̂ are defined respectively by Equations (3.43), (3.42), and (3.41)
when replacing E[·], V[·], and Cov(·, ·) by their empirical counterparts, Ê[·], V̂[·], and
Ĉov(·, ·).

Intuition on the form of our CI The joint asymptotic normality of the estimators
of the bounds and consistent estimators of their asymptotic variance-covariance matrix
constitute the two ingredients for our CI on π defined by Equations (3.6) and (3.7).
The specific form of CIπ1−α comes from adaptation to the partial identification of the
polarization index. Following the intuitions of Imbens and Manski (2004) and Stoye
(2009), for partially identified parameters, we expect that, asymptotically, the length of
the identification interval, here ∆ := π − π, will be large relative to sampling uncertainty.
Crudely put, π will be either above the upper bound or below the lower bound. If we
accept non-coverage to occur with an asymptotic probability equal to α ∈ (0, 1), that idea
suggests using the quantile qN (0,1)(1− α), instead of the usual qN (0,1)(1− α/2). Indeed,
the non-coverage risk is one-sided only. Nevertheless, the previous intuition fails when ∆
does not diverge relative to sampling uncertainly, that is, when the latter does not become
negligible compared to the uncertainty coming from partial identification. The trick is
to choose a critical value that balances sampling and partial identification uncertainties,
hence the definition of q(α) that we recall and justify below.

Let ∆̂ := π̂ − π̂ and Φ(·) denote the cumulative distribution function of the standard
Gaussian N (0, 1) distribution. For α ∈ (0, 1), we define q(α) as the solution of

Φ
q(α) +

√
J∆̂

max
{√

ω̂,
√
ω̂
}
− Φ(−q(α)) = 1− α, (3.46)

Then, for the reminder, our CI writes

CIπ1−α :=
π̂ − q(α)

√
ω̂√

J
, π̂ + q(α)

√
ω̂√

J

 .
The equation (3.46) does define a unique q(α) ∈ (0,+∞). Indeed, for a given sample

and corresponding estimates,
√
J∆̂/max

{√
ω̂,
√
ω̂
}
is a constant, and the function z ∈

R 7→ Φ(z+ constant)−Φ(−z) has the following properties: continuous, strictly increasing,
converges to 1 when z → +∞, and non-positive when evaluated at 0 since Φ(·) is maximal
at this point. Therefore, as 1− α ∈ (0, 1), there is a unique solution q(α) to the equation.

The resulting critical value balances sampling uncertainty and the one stemming
from partial identification. In case of point-identification, with ∆̂ = 0, remark that the
aforementioned equation becomes

Φ(q(α))− Φ(−q(α)) = 1− α ⇐⇒ q(α) = Φ−1(1− α/2) =: qN (0,1)(1− α/2),

by symmetry of the distribution: for any real number z, Φ(−z) = 1− Φ(z).
Thus, as already described in Equation (3.44), in cases of point-identification, CIπ1−α

boils down to the usual symmetric CI obtained with an asymptotically normal point-
estimator:

[
π̂ ± qN (0,1)(1− α/2)

√
ω̂/
√
J
]
. The more sampling uncertainty prevails over

the uncertainty of partial identification, namely the larger the denominator
√
ω̂ or

√
ω̂

relative to ∆̂, the closer is CIπ1−α to that classical CI.
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On the contrary, when the bulk of uncertainty lies in partial identification rather than
in sampling error, that is, when ∆̂ divided by J−1/2 max

{√
ω̂,
√
ω̂
}
diverges to +∞, the

critical values solves

Φ(+∞)− Φ(−q(α)) = 1− α ⇐⇒ q(α) = Φ−1(1− α) =: qN (0,1)(1− α),

where the slight abuse of notation Φ(+∞) stands for the limit in +∞ of Φ(·), namely 1.
In that situation, the initial intuition of a one-sided risk of non-coverage applies and we
can afford a smaller critical value qN (0,1)(1− α) < qN (0,1)(1− α/2).

In between those two limit cases, the definition of q(α) in Equation (3.46) trade off
the two sources of uncertainty.

3.B.7 Special case of independence between K and ρ

Beyond partial identification, this article proposes two methods that, under additional
assumptions, yield point-identification of π. They are notably useful when the proportion
of options chosen only once are naturally high in the analyzed data-generating process, so
that the identified bounds might not be informative on the level of polarization.

The main body of the article (Section 3.3.2) presents a method based on the extrap-
olation of m(1), the sole unidentified part of π. This appendix develops an alternative
method that requires some independence between the random variables K and ρ, namely
Cov(K, ρ) = Cov(K, ρ2) = Cov(K2, ρ2) = 0. Under that restriction, π is point-identified,
and the method of moments provides a computationally light estimator, consistent and
asymptotically normal.

We present those results in appendix because the null covariances assumption might
be restrictive in practice. The credibility of that additional assumption depends on
the application. In our case, it posits that the popularity of a word, the number of
occurrences K, is unrelated with the fact that the word is or not a partisan expression, as
measured by its conditional probability ρ to be said by a Republican when pronounced –
the closer ρ to 0 or 1, the more partisan can be deemed the expression. If political speech
matters and polarization exists, it is sensible that congresspeople do choose the words
they use and that the most partisan phrases are more pronounced. If so, the hypothesis of
null covariance between K and ρ is violated.

Intuition As discussed after Theorem 3.2, the options chosen only once are the the
source of partial identification of π. The idea is that, for K = 1, we are unable to determine
whether the option is more or less chosen by one group instead of the other. Formally, it
happens that, for any k ∈ N∗, the binomial assumption KR |K, ρ ∼ Binomial(K, ρ) gives
the identification of the first k moments of the distribution Pρ |K=k.25 However, π involves
the second moment of ρ. Hence, when P(K = 1) > 0, we can only identify the first moment
of Pρ |K=1 and it is impossible to reconstruct the second moment of ρ, hence the partial
identification of π.

The additional assumption between K and ρ states some independence between the
two random variables. It enables to write the index π as a function of the distribution of ρ
only, in opposition the joint distribution P(K,ρ). Actually, under that restriction, π is even
a function of the first two moments of ρ, E[ρ] and E[ρ2]. Then, thanks to the binomial
assumption, those moments are identified whenever we observe options chosen more than
once. It results in point-identification of π.

25We refer to Equation (2.2), p45 of D’Haultfœuille and Rathelot (2017).
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Identification The following theorem formalizes the previous reasoning.
Theorem 3.3 (Point-identification). If Assumption 3.1 holds, P(K > 1) > 0, and
Cov(K, ρ) = Cov(K, ρ2) = Cov(K2, ρ2) = 0, then

π = 1− E[ρ]− E[ρ2]
2E[ρ] (1− E[ρ]) ,

and

E[ρ] =
E
[
KR

]
E[K] , E

[
ρ2
]

=
E
[
KR(KR − 1)

]
E[K(K − 1)] .

Consequently, since our DGP identifies P(KR,K), the polarization index π is point-
identified under those assumptions.

Proof of Theorem 3.3. To begin with, the assumption P(K > 1) > 0 is equivalent to
E[K(K − 1)] > 0 since the variable K(K − 1) is non-negative, which ensures the denomi-
nator is not null in the expression of E[ρ2]. It requires there are some options chosen at
least twice. It is a mild requirement in practice and, otherwise, it is hopeless to study
polarization anyway.

The definition of π gives

π := 1− E[Kρ(1− ρ)]
2E[K] q(1− q)

EL= 1−
E[Kρ]− E

[
Kρ2

]
2E[K] q(1− q) .

The idea is then to use the assumed null covariances to simplify the expression and get
point-identification.

Regarding q, we have

q := E[Kρ]
E[K] = E[K]E[ρ]

E[K] = E[ρ] ,

where the second equality comes from Cov(K, ρ) = 0. Besides, E[Kρ] = E
[
KR

]
. Hence,

q = E[ρ] is identified by E
[
KR

]
/E[K].

For the numerator, using Cov(K, ρ) = Cov(K, ρ2) = 0, we have

E[Kρ]− E
[
Kρ2

]
= E[K]E[ρ]− E[K]E

[
ρ2
]

= E[K]
(
E[ρ]− E

[
ρ2
])

Combining the last three equations yields the expression of π stated in Theorem 3.3.
It remains to identify the quantity E[ρ2]. The start is similar to the general case of

Theorem 3.2. Using our binomial assumption, we can show
E
[
KR(KR − 1) |K, ρ

]
= K(K − 1)ρ2

We then take the expectation over the joint distribution P(K,ρ) of that equality:
E
[
E
(
KR(KR − 1) |K, ρ

)]
= E

[
K(K − 1)ρ2

]
.

By the Law of Iterated Expectations, the left-hand side is equal to E
[
KR(KR − 1)

]
. For

the right-hand side, we have

E
[
K(K − 1)ρ2

] EL= E
[
K2ρ2

]
− E

[
Kρ2

]
= E

[
K2
]
E
[
ρ2
]
− E[K]E

[
ρ2
]

EL= E
[
K2 −K

]
E
[
ρ2
]

= E[K(K − 1)]E
[
ρ2
]
,
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where the second equality uses Cov(K, ρ2) = Cov(K2, ρ2) = 0. Finally, dividing by
E[K(K − 1)] which is positive, we obtain

E
[
ρ2
]

=
E
[
KR(KR − 1)

]
E[K(K − 1)] .

This concludes the proof. We see that the null covariances stated in the assumption
are sufficient. They are implied by the independence between K and ρ.

Estimation As for the identified bounds, the result of Theorem 3.3 suggests a straight-
forward estimator of π by the method of moments:

π̂point := 1−

∑J
j=1K

R
j∑J

j=1Kj

−
∑J
j=1K

R
j (KR

j − 1)∑J
j=1Kj(Kj − 1)

2
∑J
j=1K

R
j∑J

j=1 Kj

∑J
j=1K

D
j∑J

j=1Kj

. (3.47)

Replacing expectations by sample means, the J−1 cancels out. Moreover, we use
Kj −KR

j = KD
j in the estimation of 1− E[ρ].

3.B.8 Naive method and small-unit bias
This appendix presents a competing naive method to identify and estimate π. Instead
of relying on our binomial assumption, it replaces the unobserved probability ρ by its
empirical counterpart, the proportion KR/K. We show that it leads to overestimate the
real level of polarization, as quantified by the index π.

Naive method From the definitions of q and π in Equation (3.2), using only the linearity
of expectation, we have

π = 1−
E[Kρ]− E

[
Kρ2

]
2E[K] E[Kρ]

E[K]

(
1− E[Kρ]

E[K]

) .

The underlying probability ρ is unobserved. However, a natural estimator exists and is
observed in the data: KR/K. What happens if we use that proportion?

We define πnaive simply by replacing ρ by KR/K in the previous equation:

πnaive := 1−
E
[
KR

]
− E

[
(KR)2/K

]
2E[K]

E
[
KR

]
E[K]

1−
E
[
KR

]
E[K]

 . (3.48)

Remark that the expression involves dividing by K, a variable whose support is N a
priori, thus possibly equal to 0. Nonetheless, there is no issue. As stated in Theorem 3.2
and detailed in Appendix 3.B.2, without loss of generality as regards identification and
estimation, we can assume P(K > 0) = 1, that is, we can ignore options with zero choices,
for which K is null.
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A noteworthy fact is that, in doing so, we have

E[Kρ] replaced by−→ E
[
K
KR

K

]
= E

[
KR

]
.

In this respect, the naive replacement preserves the equality E[Kρ] = E
[
KR

]
formally

derived under our statistical model trough the binomial assumption (see Equation (3.16)).
In other words, by chance, the naive method succeeds in identifying E[Kρ].

Upward bias From its definition in Equation 3.2 and using E[Kρ] = E
[
KR

]
, the pa-

rameter π can be written

π = 1−
E
[
KR

]
− E

[
Kρ2

]
2E[K]

E
[
KR

]
E[K]

1−
E
[
KR

]
E[K]

 .

The comparison of π in Equation (3.18) with πnaive in Equation (3.48) reveals that the only
divergence is the difference between E[Kρ2], that appears in the former, and E

[
(KR)2/K

]
in the latter. Unlike E[Kρ], there is no hazardous unfounded equality here. On the contrary,
Jensen’s inequality implies E

[
(KR)2/K

]
≥ E[Kρ2]. Hence, it shows that πnaive ≥ π, that

is, the naive method overestimates the real level of polarization.

E
[
Kρ2

] replaced by−→ E

K (
KR

K

)2
 = E

[
K−1(KR)2

]
LIE= E

(
E
[
K−1(KR)2 |K, ρ

])
EL= E

(
K−1E

[
(KR)2 |K, ρ

])
Jensen
≥ E

(
K−1E

[
KR |K, ρ

]2)
BA= E

[
K−1 (Kρ)2

]
= E

[
Kρ2

]
,

where we use that R+ 3 z 7→ z2 is convex, the conditional Jensen inequality

E
[
KR |K, ρ

]2
≤ E

[
(KR)2 |K, ρ

]
,

and the binomial assumption KR |K, ρ ∼ Binomial(K, ρ), whose expectation is Kρ.
Remark that the bias appears in the overestimation of E[Kρ2], which is also the term

through which arises partial identification. The naive technique wrongfully identifies that
quantity by E

[
(KR)2/K

]
. In contrast, our method gives partial identification of E[Kρ2]

with sharp correct bounds.

Naive estimator Algebraic simplifications from Equation (3.48) gives

πnaive = 1− E[K]
2E[KD] +

E[K]E
[
(KR)2/K

]
2E[KR]E[KD] .
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That unknown population quantity only involves expectations of observed variables.
Remember that our Assumption 3.1 posits that we observe an i.i.d. sample (KR

j , Kj)j=1,...,J ;
KD
j = Kj −KR

j is observed too. We follow the method of moment, or analogy principle
(Manski, 1988), to define a natural estimator of πnaive. For any observed random variable V ,
we replace the expectation E[V ] by the empirical mean J−1∑J

j=1 Vj . The J at numerators
and denominators cancel out and we obtain the naive estimator

π̂naive := 1−
∑J
j=1Kj

2∑J
j=1K

D
j

+

(∑J
j=1Kj

) (∑J
j=1

{
(KR

j )2/Kj

})
2
(∑J

j=1K
R
j

) (∑J
j=1K

D
j

) . (3.49)

As regards its proper definition, the estimator π̂naive is well-defined with probability
approaching one as J tends to infinity. Indeed, E[K] > 0 and q ∈ (0, 1) implies the
probability that the sums in the denominator are null tends to 0. In a pragmatic perspective,
if a term at the denominator is null, it means that the sample at hand reports choices
made by only one group out of the two. It is therefore fruitless to investigate polarization.

Consistency of π̂naive We obtain the consistency of the estimator towards πnaive using
the Law of Large Numbers (LLN) and the Continuous Mapping Theorem (CMT), see, for
instance, Example 2.1 (Classical limit theorems) and Theorem 2.3 (Continuous mapping)
of Van der Vaart (2000). To apply the LLN, we simply require a finite first moment for
each of the variables we consider. Without loss of generality (see Appendix 3.B.2), we
assume P(K > 0) = 1. We can divide by K without worry. By definition of K, KR ≤ K
and KD ≤ K almost surely. Thus, we also have (KR)2/K ≤ K. The variables being
non-negative, we have the inequalities with absolute values on each side. Therefore, a
finite first moment for K is sufficient to obtain finite first moment for all variables whose
empirical means appear in π̂naive, namely K, KR, KD, and (KR)2/K. The condition
allows to apply the LLN. For the CMT, remember that in our DGP, E

[
KR

]
and E

[
KD

]
are positive, and the fractions are well-defined. We obtain the following consistency result.

Proposition 3.4 (Consistency of π̂naive towards πnaive). If Assumption 3.1 holds,
P(K > 0) = 1, and E[|K|] < +∞, then π̂naive is well-defined with probability approaching
one as the sample size J grows to infinity, and π̂naive

a.s.−→
J→+∞

πnaive.

Remind that πnaive ≥ π. So π̂naive tends to overestimate the real level of polarization.
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Appendix 3.C Supplements to the application

3.C.1 Processing
The processing used to obtain the bigrams from the Congressional transcripts mimics
Gentzkow et al. (2019)’s operations except for two differences. First, we do not use any
restrictions based on the number of occurrences, that is, on bigram frequency. Second, we
apply a prior spelling correction in our preferred specification.

We itemize below the successive steps from speeches to bigrams. The operations
follow the description found in GST, their Online Appendix, and the codebook of the
Congressional Record for the 43rd-114th Congresses: Parsed Speeches and Phrase Counts.26

Data All the data we use comes from that Congressional Record and relies on the
considerable work achieved by M. Gentzkow, J.M. Shapiro, and M. Taddy to assemble the
dataset and match speeches with identified speakers.

The Record provides bigram counts by parties and by speakers. Nonetheless, in order
to avoid bigram frequency thresholds, we start from the speeches, as found in the files
speeches_###.txt of the Record, and repeat the processing operations performed by
GST.27 In the speeches_###.txt files, the raw transcripts are already transformed to
separate the text related to speakers’ identities from the text of speeches. Furthermore,
some formatting operations are done in the latter (see codebook, Section 2.2, p5):
(i) removing non-speech text (page headers and footers, section titles, parenthetical

insertions, votes, and administrative time allotments);
(ii) removing apostrophes and replacing commas and semicolons with periods;
(iii) replacing repeated whitespace characters with a single space;
(iv) removing punctuation, hyphens, periods, and asterisks that separate the speaker’s

demarcation from the speech;
(v) removing whitespace leading and trailing the speech.

From texts to bigrams The next stage consists in transforming the speeches’ tran-
scripts into counts of bigrams. It comprises several steps.

1. In our specification with correction, we start by applying a spellchecker to the
speeches’ transcripts. Without correction, we do not perform that operation.

The spellchecker is designed using SymSpell.28 It takes advantage of the three functions,
Lookup, LookupCompound, and WordSegmentation, of that spellchecker, and is inspired by
manual inspection of the speeches that reveals a default caused, presumably, by the Optical
Character Recognition (OCR) digitalization: some words are concatenated together. In our
partial identification framework, we are all the more interested in correcting such errors as,
otherwise, they would result in single-occurrence phrases, hence broaden our identified set.
Indeed, the concatenation is random, and the two, three, four, or more words that happen
to be concatenated are likely to appear as such only once. To illustrate that phenomenon,
Figure 3.8 shows the longest bigrams found in GST’s vocabulary (file vocab.txt in the
Congress Record). Those are extreme cases, but, more generally, such concatenations,

26Gentzkow, Matthew, Jesse M. Shapiro, and Matt Taddy. Congressional Record for the 43rd-114th
Congresses: Parsed Speeches and Phrase Counts. Palo Alto, CA: Stanford Libraries [distributor], 2018-01-
16. https://data.stanford.edu/congress_text.

27Prior to further selection, GST drops rare bigrams: “Bigrams not spoken at least three times in at
least one session are removed to ease the computational burden.”, codebook, Appendix A, p12.

28https://github.com/wolfgarbe/SymSpell. We use symspellpy, the Python port of SymSpell.

https://data.stanford.edu/congress_text
https://github.com/wolfgarbe/SymSpell
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although not massive, seem to occur regularly, notably in the oldest Congress sessions.
In addition to other spelling corrections, our spellchecker can segment such concatenated
words before constructing bigrams.

Figure 3.8: Illustration of the OCR concatenation errors.

Note: Screenshot from R that shows the longest bigrams (in terms of number of characters) found in
GST’s vocabulary (file vocab.txt in the Congress Record).

2. The speech is coerced to lowercase and is broken into separate words, treating all
non-alphanumeric characters as delimiters.

3. General English-language stopwords are removed.29
4. Remaining words are reduced to their stems using the Porter2 (English) stemming

algorithm.30
5. The stemmed words are converted to bigrams following their order in the speech.31
6. The bigrams are converted into counts of bigrams, which undoes the ordering.

Those operations, except the spelling correction 1., copy GST’s processing, and we borrow
their description from Section 2.2. of the codebook. They provide the counts of occurrences
by parties for a set of bigrams. Nonetheless, not all those bigrams are eventually used in
the analysis.

From bigrams to vocabulary Indeed, following GST, the third step selects the bigrams
considered as “valid”. The resulting subset of valid bigrams constitutes the “vocabulary”,
namely the set of bigrams included in the analysis. The selection stage is performed by
flagging bigrams considered as invalid, then “bigrams without a flag are treated as valid
vocabulary” (codebook, Appendix A, p15).

1. Bigrams with bad syntax are flagged. A bigram has bad syntax if it contains (see
codebook, Appendix A, p13):
(i) any numbers, symbols, or punctuation;
(ii) fewer than five characters, including space;
(iii) a one-letter word;
(iv) a word beginning with the first three letters of a month.32

2. Bigrams containing the stem of a U.S.-Congress-specific stopword are flagged. Such
stopwords come from three sources:

29We use the same source as GST: http://snowball.tartarus.org/algorithms/english/stop.txt.
30We use the following Python implementation: https://pypi.python.org/pypi/PyStemmer/1.3.0.
31For clarification, three successive words “A B C” result in two bigrams: (A, B) and (B, C).
32To clarify the terminology, a “bigram” (A, B) is made of two “words”: A and B.

http://snowball.tartarus.org/algorithms/english/stop.txt
https://pypi.python.org/pypi/PyStemmer/1.3.0


Chapter 3. Identification and estimation of speech polarization 157

(i) the stopwords manually identified by GST and reported in Table 3.1;
(ii) the names of states;
(iii) the last names of all congresspeople recorded in the historical source.

3. Bigrams recording procedural speech are flagged. These are bigrams that either
directly appear in handbooks describing congressional procedures or frequently
co-occur with those direct bigrams.33

Speaker identification We use directly the matching between speakers and speeches,
as well as the speaker-level variables, provided by the Congressional Record data in the
files ###_SpeakerMap.txt. As GST, we restrict to identified, Republican or Democrat,
voting delegates.

Table 3.1: Manually selected U.S.-Congress-specific stopwords identified by GST (reproduces
Table 13 of codebook, Appendix A, p13 and Table 4 of the Online Appendix of GST).

absent adjourn ask can chairman
committee con democrat etc gentleladies
gentlelady gentleman gentlemen gentlewoman gentlewomen
hereabout hereafter hereat hereby herein
hereinafter hereinbefore hereinto hereof hereon
hereto heretofore hereunder hereunto hereupon

herewith month mr mrs nai
nay none now part per
pro republican say senator shall
sir speak speaker tell thank

thereabout thereafter thereagainst thereat therebefore
therebeforn thereby therefor therefore therefrom
therein thereinafter thereof thereon thereto

theretofore thereunder thereunto thereupon therewith
therewithal today whereabouts whereafter whereas
whereat whereby wherefore wherefrom wherein
whereinto whereof whereon whereto whereunder
whereupon wherever wherewith wherewithal will

yea yes yield

Bigram frequency restrictions GST’s specification includes a final step based on the
number of occurrences: “Finally, we restrict attention to phrases spoken at least 10 times
in at least one session, spoken in at least 10 unique speaker-sessions, and spoken at least
100 times across all sessions.” (GST, p1312). We use the same thresholds to obtain “GST’s
specification” in Figures 3.2 and 3.3 in order to compare with our approach, which avoids
such restrictions.

33The two handbooks used are Robert’s Rules of Order (1876) and Riddick’s Senate Procedure (1992).
The previous processing steps are performed on those documents’ text to obtain stemmed bigrams present
in the manuals. Those bigrams are considered to be procedural. Next, GST uses several rules to classify as
procedural other bigrams that frequently co-occur with the manuals’ bigrams. We refer to the codebook,
Appendix A, p13-14, for further details. In practice, to replicate GST’s processing, we use the file
procedural.txt in the Congressional Record data that lists the words flagged as procedural.
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Examples from raw text to valid bigrams We report below some examples of
speeches as they appear in the transcripts and their processing into valid bigrams con-
sidered in the analysis. They illustrate that the processing operation entails important
modifications that may damage the meaning perceived by human readers.

For information, on average across sessions, for a given session, the corpus of text is
such that:

– the total number n of occurrences is of the order of several millions (2 to 13) while
the vocabulary size J is between 1 and 3 millions (see Figure 3.12);

– the corpus is made of around 250,000 individual speeches;
– close to 40% of those speeches are reduced to an empty set of valid bigrams by the

data-processing operations and are removed from the analysis (see an example of
such “procedural” speech in Figure 3.9);

– the distribution of the length of speeches (as measured by the number of simple words
or tokens they contain, before any processing) shows a large positive skewness: 125
tokens on average but 25 for the median; there is a majority of short to intermediate
speeches and a small fraction of (very) long speeches.

Figure 3.9: Example 1 of a speech and the resulting valid bigrams included in the data.

Note: Raw text as found in the U.S. Congress transcripts and resulting valid bigrams included in
the analysis following GST data-processing (with or without spelling correction). This particular
speech epitomizes “procedural” speech that are entirely dropped from the analysis as they have low
to no semantic meaning.

Figure 3.10: Example 2 of a speech and the resulting valid bigrams included in the data.

Note: Raw text as found in the U.S. Congress transcripts and resulting valid bigrams included in
the analysis following GST data-processing (with or without spelling correction). This particular
speech is an example of a short, rather procedural, speech, yet not reduced to zero valid bigrams and
therefore kept in the data included in the analysis.
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Figure 3.11: Example 3 of a speech and the resulting valid bigrams included in the data.

Note: Raw text as found in the U.S. Congress transcripts and resulting valid bigrams included in
the analysis following GST data-processing (with or without spelling correction). This particular
speech is an example of longer speeches, although there can exist much longer speeches.

3.C.2 Additional figures

This subsection regroups various additional figures related to our application to speech
polarization in the U.S. Congress. Absent indications, the data used correspond to our
preferred dictionary choice as discussed in Section 3.5.2: suppression of procedural bigrams
using GST’s rules, spelling correction, but no restriction based on bigram frequency.

Some figures show analyses on subsamples of the data. We recall that we consider two
subsampling schemes. (i) At the level of speech: we draw a fraction of speeches among
the set of all speeches. For a toy example, if the full sample consists of only Examples 2
and 3 above, a 50% subsample drawn at speech level would be one of the two speeches.
(ii) At the level of occurrences stratified by speech: within each speech, we draw a fraction
of occurrences. Again, if the full sample consists of only Examples 2 and 3 above, a 50%
subsample drawn at occurrence level would consist in the union of the random selection of
2 out of the 4 valid bigrams of speech Example 2 with the random selection of 14 out of
the 28 valid bigrams of speech Example 3.



160 Chapter 3. Identification and estimation of speech polarization

Figure 3.12: Number of distinct bigrams and number of occurrences per session.
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Note: Number J of distinct bigrams or dictionary size (green) and total number n :=
∑J
j=1 Kj

of occurrences (blue) in each Congressional session. The link between the two curves through the
evolution over time illustrates Herdan’s law. The graph also evidences an overall increase of the
length of the corpus over the period 1873-2016.

Figure 3.13: Number of distinct bigrams as a function of number of occurrences.
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Note: Number J of distinct bigrams or dictionary size as a function of the total number n :=
∑J
j=1 Kj .

One point corresponds to one Congressional session, with lighter color blue indicating a more recent
session. The figure illustrates Herdan’s law and supports our asymptotic: when the corpus gets
larger, both the number of occurrences and the size of the dictionary increase.
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Figure 3.14: Number of speeches per session.

Note: Number of distinct speeches per session as found in the raw transcripts (in particular, some
speeches are reduced to zero bigrams included in the analysis following the data-processing operations).
The graph illustrates the variation of the number of speeches over the period 1873-2016. The decrease
in recent years combined with the rise in corpus length visible in Figure 3.12 implies that the speeches
have become longer. In the hypothesis of positive correlation across occurrences within speech, this
suggests a larger magnitude of that correlation overall in recent years.
In this graph, the Congressional sessions instead of years are used; the 43rd session corresponds to
years 1873-1874, the 80th one to years 1947-1948, and the 114h to years 2015-2016. The dashed
vertical line in session 112th indicates the switch from the bound editions of the transcripts (43rd to
111th Congresses) to the daily editions (available since 97th and used from the 112th; on that point,
we follow GST’s main specification).

Figure 3.15: Number of tokens (raw words before processing) per speech.

Note: Average and median number of tokens per speech for each session, where the speeches are
as found in the raw transcripts, before any processing. In this context, a token is simply any word
separated by white spaces. For instance, in Example 2 (Figure 3.10), “United” counts as one token.
Tokens are thus distinct from the valid bigrams included in the analysis. Nonetheless, they give an
approximation of the length of speeches in terms of number of valid bigrams.
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Figure 3.16: Proportion of one-occurrence bigrams per session for different subsamples.
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Proportion of one−occurrence bigrams
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Unconditional analysis, compare subsamples of speeches or occurrences to investigate small−unit biasNote: Proportion of bigrams pronounced only once per session for different subsamples, either at
speech or occurrence levels. For a given subsampling fraction, the difference between the two schemes
(with a larger proportion for occurrence-level subsampling) suggest the presence of positive correlation
across occurrences within speech. The parenthesis (1) for subsamples in the legend indicates that
the results are presented for one specific subsample draw instead of an average over several draws.
Different draws yield the same conclusions, hence this simplification.

Figure 3.17: Total number of occurrences per session for different subsamples.
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Unconditional analysis, compare subsamples of speeches or occurrences to investigate small−unit biasNote: Total number n of occurrences per session for different subsamples, either at speech or
occurrence levels. As expected, they are almost equal for a given subsampling fraction.
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Figure 3.18: Estimated lower bound π̂ per session for different subsamples.
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Our process w. spelling corr. w/o selection on # of occ.

Unconditional analysis, compare subsamples of speeches or occurrences to investigate small−unit biasNote: Estimated lower bound π̂ per session for different subsamples, either at speech or occurrence
levels. We remark that the effect of subsampling differs according to the level of subsampling.
Subsamples at speech level with a low fraction of the full sample lead to a larger estimate, which is
rather unexpected; hence a possible impact of correlation.

Figure 3.19: Estimated upper bound π̂ per session for different subsamples.
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Unconditional analysis, compare subsamples of speeches or occurrences to investigate small−unit biasNote: Estimated upper bound π̂ per session for different subsamples, either at speech or occurrence
levels. We remark that the effect of subsampling is similar for the two levels of subsampling, leading
to larger estimated upper bounds.
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Figure 3.20: Extrapolated estimator π̂extrapolated (cubic) per session for different subsamples.
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Unconditional analysis, compare subsamples of speeches or occurrences to investigate small−unit biasNote: Extrapolated estimator π̂extrapolated of π (using k = 8 and r = 3; cubic extrapolation) per
session for different subsamples, either at speech or occurrence levels. Except for quite small fractions
(5% and 10%) with a speech-level subsampling scheme, our qualitative conclusions based on the
extrapolated estimator appear rather robust to subsampling.

Figure 3.21: Extrapolated estimator π̂extrapolated (quadratic) per session for different subsamples.

Note: Extrapolated estimator π̂extrapolated of π (using k = 6 and r = 2; quadratic extrapolation) per
session for different subsamples, either at speech or occurrence levels. The estimates are close to the
cubic extrapolation of Figure 3.20, suggesting the exact choice of the extrapolation does not have
much influence in our application.
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Appendix 3.D Formal link with the model of
Gentzkow et al. (2019)

The literature review in the Introduction compared the method developed in Gentzkow,
Shapiro and Taddy (2019) (GST) and ours. The main message was the following: the
pros and cons of both methods make them more suited to distinct settings. In a nutshell,
our method appears more reliable and accessible since it requires only aggregated data.
On the other hand, in contexts where it is possible to identify and keep track of the
individuals making choices, GST’s method incorporates individual covariates more easily,
at the expense of a complex numerical estimation however.

This appendix makes a formal link between our data-generating process and the
statistical model considered in GST. More precisely, given that the way to include covariates
differ between the two methods, we consider a simpler unconditional version of GST’s
model.

3.D.1 GST’s framework
The fundamental distinction between our framework and GST’s relates to the statistical
unit of interest. In our case, the options (the words, in the sense of the entries of a
dictionary) form the units. We observe a vocabulary, or choice set J := {1, . . . , J}, and
J ∈ N∗ is our sample size, that grows to infinity in our asymptotics. In contrast, the basic
statistical units, or observations in GST are the occurrences of words (the choices), and the
vocabulary (choice set) J remains fixed. In that perspective, the sample size is the total
number of occurrences n := ∑J

j=1Kj . An observation i ∈ {1, . . . , n} is an occurrence of the
word Wi ∈ J pronounced by an individual belonging to group Gi ∈ {R,D}, R standing
for Republican (more generally, a reference group) and D for Democrat (the other group).
The data-generating process considered by GST is essentially defined by Assumption 3.3.34

Assumption 3.3 (GST). We observe an i.i.d. sample (Wi, Gi)i=1,...,n such that (Wi, Gi)
has the same distribution as (W,G), which satisfies: P(G = R) = q ∈ (0, 1), and, for
any g ∈ {R,D},

W |G = g ∼ Multinomial
(
1, (pg1, . . . , pgJ)

)
,

where 1 is the number of trials in the multinomial distribution and the event probabilities
verify pgj ≥ 0 for any j ∈ {1, . . . , J} and ∑J

j=1 p
g
j = 1.

Upstream of that generative process, GST also sets a discrete choice model that specifies
the utility earned by a speaker with given characteristics and party affiliation to pronounce
each word. In addition to the party G for each occurrence, GST’s method needs to record
the identity of the speaker to estimate the discrete choice model defined at the level of
speakers. The data requirements are thus higher than the aggregated counts of the model
defined by Assumption 3.1.

We reuse the notation q because it has the same meaning as q := E[Kρ]/E[K] in our
model. It is the probability that an arbitrary occurrence, the occurrences being i.i.d., is
said by a Republican and not by a Democrat.

For any party g ∈ {R,D} and any word indexed by j ∈ {1, . . . , J}, pgj is the probability,
conditional on a member of group g saying a word, that the word in question is the j-th

34As explained, we neglect covariates here and present a simplified version of GST’s model.
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one in the vocabulary. In that sense, pR
j is the reverse of ρj. Bayes’ theorem connects the

two quantities as explained below in Equation (3.51).
In GST’s setting, the vocabulary J is fixed, and the asymptotics is in the number

of speakers, hence in the number of occurrences n.35 In that framework, the notion of
polarization can be formally defined by computing some distance between (pR

j )j=1,...,J
and (pD

j )j=1,...,J . In the absence of polarization, members of the two parties have the same
probabilities to say each word: pR

j = pD
j for any j ∈ {1, . . . , J}. On the contrary, a complete

polarization means any word is pronounced by one party only: for any j ∈ {1, . . . , J},
pR
j = 0 or pD

j = 0.

3.D.2 Connection between GST’s and our model
Our model and polarization index with latent variables In order to connect
with GST’s model, we introduce an underlying variable λ into our baseline model of
Assumption 3.1.

Assumption 3.4 (DGP with latent variable λ). We observe an i.i.d. sam-
ple (KR

j , Kj)j=1,...,J such that (KR
j , Kj, λj, ρj) has the same distribution as (KR, K, λ, ρ),

which satisfies:

E[K | ρ, λ] = λ > 0, (3.50)
KR |K, ρ ∼ Binomial(K, ρ).

Except for the unobserved latent variable λ, the conditions are similar to our baseline
model with i.i.d. sampling of options, a positive expectation for K, and a binomial
distribution for KR conditional on K and ρ. In that sense, Assumption 3.4 defines a subset
of models within those of Assumption 3.1. As before, K is the number of occurrences
of a word and ρ is the probability, conditional on the occurrence of the word, that is is
said by a Republican. Equation (3.50) states that K is mean independent of ρ conditional
on λ. Thus, λ represents the propensity of a word to be said, taking into account the
value of ρ that is, the fact that the word might be or not a partisan expression. Imposing
E[K | ρ, λ] equal to λ rather than f(λ) for any strictly increasing function f(·) is without
loss of generality, since λ could be otherwise changed into f(λ).

An interesting special case of Assumption 3.4 arises when KD := K −KR and KR are
independent Poisson variables with parameters λD > 0 and λR > 0 respectively. Then,
classical probability results imply that:

K |λD, λR ∼ Poisson
(
λD + λR

)
,

KR |K,λD, λR ∼ Binomial
(
K,

λR

λD + λR

)
,

and Assumption 3.4 holds with λ = λD + λR and ρ = λR/(λD + λR).
Assumption 3.4 and the law of iterated expectations enable to rewrite our polarization

index π defined in Equation (3.2) with the underlying variable λ:

π = 1− E[λρ(1− ρ)]
2E[λ] q(1− q) = 1− E[λρ(1− ρ)]

2E[λρ]
(

1− E[λρ]
E[λ]

) .
35GST specifies their asymptotics in the Appendix, p1334, “All limits are with respect to N”, N being

“the number of unique speakers”.
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Link between GST’s probabilities and ours The probabilities (pg1, . . . , pgJ),
g ∈ {R,D}, of GST’s set-up relates to our conditional probabilities (ρj)j=1,...,J by Bayes’
rule:

ρj =
qpR

j

qpR
j + (1− q)pD

j

. (3.51)

Indeed, remember that ρj is the probability, conditional on the j-th word being pronounced,
that it is said by Republican, and q = P(G = R).

GST’s polarization index In their original framework, the index considered by GST
assumes q = 1/2 and writes

πGST := 1
2

J∑
j=1

pR
j ρj + pD

j (1− ρj).

Here, as discussed in the Introduction, we advocate for a more general index that allows
for q to differ from 1/2. Therefore, we extend GST’s index to

πJ := 1 + 1
4q(1− q)

 J∑
j=1

qpR
j ρj + (1− q)pD

j (1− ρj)− 1
 . (3.52)

πJ simply generalizes πGST and both coincide when q = 1/2.

Link between πJ and π We now clarify the link between the parameter of interest
πJ and our index π. First, in line with the meaning of Kg

j in our model, let define the
corresponding variables in GST’s framework:

Kg
j,n :=

n∑
i=1

1 {Gi = g,Wi = j} , g ∈ {R,D},

and Kj,n := KR
j,n +KD

j,n. Then, under Assumption 3.3, we have:

KR
j,n |Kj,n ∼ Binomial(Kj,n, ρj) .

Therefore, the conditional model on KR
j is the same as ours. Note that in GST’s set-up

formalized by Assumption 3.3, the vocabulary J = {1, . . . , J} is fixed and the probabilities
(pR
j )j=1,...,J , (pD

j )j=1,...,J , and q are non-stochastic parameters. The (ρj)j=1,...,J are thus fixed
too whereas they are random variables in our model of Assumption 3.1.

On the other hand, the i.i.d. condition in Assumption 3.3 is not the same as in
Assumption 3.4, since the former implies some negative dependence between the J vectors
(KD

j,n, K
R
j,n)j=1,...,J . However, that negative dependence becomes asymptotically negligible.

To see this, let N ∼ Poisson(n) be independent of (Gi,Wi)i=1,...,n. Then, a classi-
cal result asserts that KD

1,N , K
R
1,N , . . . , K

D
J,N and KR

J,N are independent, with KR
j,N ∼

Poisson(nqpR
j ) and similarly for KD

j,N . Note also that, as n grows large, such a random
text size becomes close to n, since by the Central Limit Theorem N − n = OP (

√
n). In

other words, introducing just a little randomness in the text size is sufficient to obtain
independence between the variables KD

1,N , K
R
1,N , . . . , K

D
J,N , K

R
J,N .

As already explained, GST’s model and ours differ as regards asymptotics: GST
supposes that J is fixed and n, not J , tends to infinity. This explains why they consider
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the probabilities (pR
j , p

D
j )j=1,...,J as fixed rather than random, and why πJ does not coincide

with π as defined in Equation (3.2). Nevertheless, we show below that if (pR
j , p

D
j )j=1,...,J

are constructed from random variables and J tends to infinity with n in GST’s framework,
then the two parameters eventually coincide. Specifically, our equivalence result is based
on the following assumption. Note that we underline the dependence in n hereafter by
indexing J as well as the probabilities (pR

j , p
D
j )j=1,...,J and (ρj)j=1,...,J by n.

Assumption 3.5. limn→∞ Jn = +∞ and there exist (λR
j )j≥1 and (λD

j )j≥1 i.i.d. such that:
(i) P(λg1 > 0) = 1 and E[λg1] = 1, for g ∈ {R,D};
(ii) pgj,n = λgj/

[∑Jn
`=1 λ

g
`

]
for all n ≥ 1 and (j, g) ∈ {1, . . . , Jn} × {R,D}.

The asymptotics where the vocabulary size Jn grows to infinity with the length n of
the corpus conforms with the way we talk and write in practice, as revealed by Herdan’s
law (see Remark 3.1 in Section 3.2.1). In other settings, it is relevant as soon as the
options display some capacity constraints, that is, can be chosen at most a certain number
of times. In such cases, if the total number n of observed choices goes to infinity, so
does the number of distinct options. Assumption 3.5 imposes a probabilistic model on
the (pgj,n)j=1,...,Jn . The division by ∑Jn

`=1 λ
g
` ensures that

∑Jn
j=1 p

g
j,n = 1. Note that as long

as E[λg1] < +∞, E[λg1] = 1 is a mere normalization: multiplying all the λgj by any constant
would not modify the (pgj,n)j=1,...,Jn .

To make the link between πJ and π, let λj := qλR
j + (1− q)λD

j , ρj,∞ := qλR
j /λj for

any j ≥ 1 and

π∞ := 1 + 1
4q(1− q)

{
E[λ (ρ2

∞ + (1− ρ∞)2)]
E[λ] − 1

}
= 1− E[λρ∞(1− ρ∞)]

2E[λ] q(1− q) ,

where (λ, ρ∞) has the same distribution as (λ1, ρ1,∞).

Theorem 3.4. Suppose that Assumptions 3.3, 3.4 and 3.5 hold. Then, as n tends to
infinity, πJn

P−→ π∞.

The intuition behind the result is simply that by (3.51) and under Assumption 3.5,
Jnqp

R
j,n and Jn(1− q)pD

j,n converge respectively to λjρj and λj(1− ρj). Then πJ becomes
close to

1 + 1
4q(1− q)

 1
Jn

Jn∑
j=1

λj
[
ρ2
j,n + (1− ρj,n)2

]
− 1

 . (3.53)

In turn, this average converges to π∞. The latter result is not obvious however: as
the (ρ2

j,n)j≥1 are not independent, one cannot apply directly the Law of Large Numbers
to (3.53).

Finally, to explicit the link between our index π and the parameter πJ made by
Theorem 3.4, remark that simple algebra yields

π∞ = 1− E[λρ∞(1− ρ∞)]
2E[λ] q(1− q) .



Chapter 4

Explicit nonasymptotic bounds for
the distance to the first-order
Edgeworth expansion

This fourth chapter opens the second part of the manuscript concerned with nonasymptotic
inference. It is joint work with two co-authors, Alexis Derumigny and Yannick Guyonvarch.
The present version is a revised version of an arXiv preprint (arXiv:2101.05780v1).

Chronologically, this work on Edgeworth expansions and Berry-Esseen bounds started
after an initial version of Chapter 5 in which we used existing Berry-Esseen inequalities
valid under finite third-order moments. However, in the econometrics of linear regressions,
it is standard to assume finite fourth-order moments for regressors to have a consistent
estimator of the asymptotic variance of the OLS estimator and thus classical asymptotic
confidence intervals and tests. Refined bounds with as small as possible numeric constants
are important for the practical use of nonasymptotic inference tools. Hence the initial
motivation of this chapter: improve existing Berry-Esseen bounds under finite fourth-order
moments. We do so through bounds for Edgeworth expansions, which basically refines
Berry-Essen inequalities by adjusting for possible skewness. The project then extends to
study both i.n.i.d. and i.i.d. cases as well as tighter bounds under additional regularity
assumptions, which, in essence, relate to having an absolutely continuous distribution for
the observations with respect to Lebesgue’s measure (as opposed to a discrete distribution).

Abstract In this article, we study bounds on the uniform distance between the cumulative distribution
function of a standardized sum of independent centered random variables with moments of order four and
its first-order Edgeworth expansion. Existing bounds are sharpened in two frameworks: when the variables
are independent but not identically distributed and in the case of independent and identically distributed
random variables. Improvements of these bounds are derived if the third moment of the distribution is
zero. We also provide adapted versions of these bounds under additional regularity constraints on the
tail behavior of the characteristic function. We finally present an application of our results to the lack of
validity of one-sided tests based on the normal approximation of the mean for a fixed sample size.
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4.1 Introduction
As the number of observations n in a statistical experiment goes to infinity, many statistics
of interest have the property to converge weakly to a N (0, 1) distribution, once adequately
centered and scaled, see, e.g., van der Vaart (2000, Chapter 5) for a thorough introduction.
Hence, when little is known on the distribution of a standardized statistic Sn for a fixed
sample size n > 0, a classical approach to conduct inference on the parameters of the
statistical model amounts to approximate the distribution of that statistic by its tractable
Gaussian limit.

A natural and recurring theme in statistics and probability is thus to quantify how
far the N (0, 1) distribution lies from the unknown distribution of Sn for a given n. This
article aims to present some refined results in one of the simplest and most studied cases:
when Sn is a standardized sum of independent random variables. We consider independent
but not necessarily identically distributed random variables to encompass a broader range
of applications. For instance, certain bootstrap schemes such as the multiplier ones (see
Chapter 9 in van der Vaart and Wellner (1996) or Chapter 10 in Kosorok (2006)) boil down
to studying a sequence of mutually independent not necessarily identically distributed
(i.n.i.d.) random variables conditionally on the initial sample.

More formally, let (Xi)i=1,...,n be a sequence of i.n.i.d. random variables satisfying for
every i ∈ {1, ..., n}, E[Xi] = 0 and γi := E[X4

i ] < +∞. We also define the standard devia-
tion Bn of the sum of the Xi’s, i.e., Bn :=

√∑n
i=1 E[X2

i ], so that the standardized sum can
be written as Sn := ∑n

i=1Xi/Bn. Finally, we use the average individual standard deviation
Bn := Bn/

√
n and the average standardized third raw moment λ3,n := 1

n

∑n
i=1 E[X3

i ]/B3
n.

The main results of this article are of the form

sup
x∈R

∣∣∣∣∣P (Sn ≤ x)− Φ(x)− λ3,n

6
√
n

(1− x2)ϕ(x)
∣∣∣∣∣︸ ︷︷ ︸

=: ∆n,E

≤ δn, (4.1)

where Φ is the cumulative distribution function of a standard Gaussian random variable,
ϕ is the density function associated with Φ, and δn is a positive sequence that depends on
the first four moments of (Xi)i=1,...,n and tends to zero under some regularity conditions.
In the following, we use the notation Gn(x) := Φ(x) + λ3,n(6

√
n)−1(1− x2)ϕ(x).

The quantity Gn(x) is usually called the one-term Edgeworth expansion of P (Sn ≤ x),
hence the letter E in the notation ∆n,E. Controlling the uniform distance between
P (Sn ≤ x) and Gn(x) has a long tradition in statistics and probability, see for instance
Esseen (1945) and the books by Cramer (1962) and Bhattacharya and Ranga Rao (1976).
As early as in the work of Esseen (1945), it was acknowledged that in independent and
identically distributed (i.i.d.) cases, ∆n,E was of the order n−1/2 in general and of the
order n−1 if (Xi)i=1,...,n has a nonzero continuous component. These results were then
extended in a wide variety of directions, often in connection with bootstrap procedures,
see for instance Hall (1992) and Lahiri (2003) for the dependent case.

A one-term Edgeworth expansion can be seen as a refinement of the so-called Berry-
Esseen inequality (Berry (1941), Esseen (1942)) which goal is to bound

∆n,B := sup
x∈R
|P (Sn ≤ x)− Φ(x)| .

The refinement stems from the fact that in ∆n,E, the distance between P (Sn ≤ x) and Φ(x)
is adjusted for the presence of nonasymptotic skewness in the distribution of Sn. Contrary
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to the the literature on Edgeworth expansions, there is a substantial amount of work devoted
to explicit constants in the Berry-Esseen inequality and its extensions, see, e.g., Bentkus
and Götze (1996), Bentkus (2003), Pinelis and Molzon (2016), Chernozhukov et al. (2017),
Raič (2018), Raič (2019). The sharpest known result in the i.n.i.d. univariate framework
is due to Shevtsova (2013), which shows that for every n ∈ N∗, if E[|Xi|3] < +∞ for
every i ∈ {1, ..., n}, then ∆n,B ≤ 0.5583K3,n/

√
n where Kp,n := n−1∑n

i=1 E[|Xi|p]/(Bn)p,
for p ∈ N∗, denotes the average standardized p-th absolute moment. Kp,n measures the tail
thickness of the distribution, withK2,n normalized to 1 andK4,n the kurtosis. An analogous
result is given in Shevtsova (2013) under the i.i.d. assumption where 0.5583 is replaced
with 0.4690. A close lower bound is due to Esseen (1956): there exists a distribution such
that ∆n,B = (CB/

√
n)
(
n−1∑n

i=1 E[|Xi|3]/B3
n

)
with CB ≈ 0.4098. Another line of research

applies Edgeworth expansions in order to get a bound on ∆n,B that contains higher-order
terms, see Adell and Lekuona (2008), Boutsikas (2011) and Zhilova (2020).

Despite the breadth of those theoretical advances, there remain some limits to take
full advantage of those results even in simple statistical applications, for instance, when
conducting inference on the expectation of a real random variable.1 If we focus on Berry-
Esseen inequalities, Example 4.1 shows that even the sharpest upper bound to date
on ∆n,B can be uninformative when conducting inference on an expectation even for n
larger than 59,000. Therefore, it is natural to wonder whether bounds derived from a
one-term Edgeworth expansion could be tighter in moderately large samples (such as a
few thousands). In the i.i.d. case and under some smoothness conditions, Senatov (2011)
obtains such improved bounds. To our knowledge, the question is nevertheless still open in
the i.n.i.d. setup, as well as in the general setup when no condition on the characteristic
function is assumed. In particular, most articles that present results of the form of (4.1)
do not provide a fully explicit value for δn, that is, δn is defined up to some “universal”
but unknown constant.

In this article, we derive novel inequalities of the form of (4.1) that aim to be relevant
in practical applications. Such “user-friendly” bounds seek to achieve two goals. First,
we provide explicit values for δn. Second, the bounds δn should be small enough to be
informative even in small (n ≈ hundreds) to moderate (n ≈ thousands) sample sizes. We
obtain these bounds in an i.i.d. setting and in a more general i.n.i.d. case only assuming
finite fourth moments.

We give improved bounds on ∆n,E when we assume some regularity assumptions on
the tail behavior of the characteristic function fSn of Sn. Such conditions are related
to the continuity of the distribution of Sn with respect to Lebesgue’s measure and the
differentiability of the corresponding density. These are well-known conditions required for
the Edgeworth expansion to be a good approximation of P(Sn ≤ · ) with fast rates. Our
main results are summed up in Table 4.1.

1In this article, we only give results for standardized sums of random variables, i.e., sums that are
rescaled by their standard deviation. In practice, the variance is unknown and has to be replaced with
some empirical counterpart, leading to what is usually called a self-normalized sum. This is an important
question in practice that we leave aside for future research. There exist numerous results on self-normalized
sums in the fields of Edgeworth expansions and Berry-Esseen inequalities (Hall (1987), de la Peña et al.
(2009)). However, the practical limitations that we point out in this work still prevail.
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Setup General case Under regularity assumptions on fSn

i.n.i.d.
0.3990K3,n√

n
+O(n−1)

0.195K4,n + 0.038λ2
3,n

n
+O(n−5/4 + n−p/2)

(Theorem 4.1) (Corollary 4.3)

i.i.d.
0.1995(K3,n + 1)√

n
+O(n−1)

0.195K4,n + 0.038λ2
3,n

n
+O(n−5/4)

(Theorem 4.1) (Corollary 4.5)

Table 4.1: Summary of the new bounds on ∆n,E under different scenarios. All the remainder
terms are given with explicit expressions for any sample size and are significantly reduced when
there is no skewness. For this summary, they are expressed with O(·) for simplicity and to
indicate their asymptotic behavior when n goes to infinity. p ≥ 1 is a constant depending on the
smoothness of the characteristic function fSn .

In the rest of this section, we provide more details about the lack of information given
by the Berry-Esseen inequality in Example 4.1 and introduce notation used in the rest
of the paper. Section 4.2 presents our bounds on ∆n,E in the general i.n.i.d. case and in
the i.i.d. setting. In Section 4.3, we develop tighter bounds under regularity assumptions
on the characteristic function of Sn. In Section 4.4, we apply our results to show that
one-sided tests based on the normal approximation of a sample mean do not hold their
nominal level in the presence of nonasymptotic skewness. The main proofs are gathered in
Section 4.A and some useful lemmas are proved in Section 4.B.

Example 4.1 (The lack of information conveyed by the Berry-Esseen inequality for
inference on an expectation). Let (Yi)i=1,...,n an i.i.d. sequence of random variable with
expectation µ, known variance σ2 and finite fourth moment with K4 := E [(Yn − µ)4] /σ4

the kurtosis of the distribution of Yn. We want to conduct a test with null hypothesis
H0 : µ = µ0, for some fixed real number µ0, and alternative H1 : µ > µ0 with a type-one
error at most α ∈ (0, 1), and ideally equal to α. The classical approach to this problem
amounts to comparing Sn =

√
n(n−1∑n

i=1 Yi−µ0)/σ (Xi := Yi−µ0) with the 1−α quantile
of the N (0, 1) distribution, qN (0,1)(1− α), and reject H0 if Sn is larger. The Berry-Esseen
inequality enables to quantify the mistake caused by using the N (0, 1) approximation

∣∣∣∣P(Sn ≤ qN (0,1)(1− α)
)
− (1− α)

∣∣∣∣ ≤ 0.4690E
[
|Yn − µ0|3

]
√
nσ3 ≤ 0.4690K3/4

4√
n

, (4.2)

where the probability and expectation operators are to be understood under the null hy-
pothesis H0. Inequality (4.2) is called weakly informative as long as 0.4690K3/4

4 /
√
n ≥ α.

Indeed, in that case, we cannot exclude that P
(
Sn ≤ qN (0,1)(1− α)

)
is arbitrarily close

to 1, equivalently, that the probability to reject H0 is arbitrarily close to 0, and therefore
that the test is arbitrarily conservative (type-one error arbitrarily small < α).

We denote by nmax(α) the largest weakly informative n for a given level α. We note that
imposing K4 ≤ 9 allows for a wide family of distributions used in practice: any Gaussian,
Gumbel, Laplace, Uniform, or Logistic distribution satisfies it, as well as any Student with
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at least 5 degrees of freedom, any Gamma or Weibull with shape parameter at least 1.
Plugging K4 = 9 into (4.2), we remark that for α = 0.10, the bound is weakly informative
for n ≤ 593, namely nmax(0.10) = 593. For α = 0.05, we obtain nmax(α) = 2, 375. Finally,
the situation deteriorates strikingly for α = 0.01 where the bound is weakly informative for
n ≤ nmax(α) = 59, 389.

Additional notation ∨ (resp. ∧) denotes the maximum (resp. minimum) operator.
For a random variable X, we denote its probability distribution by PX . For a distribution
P , let fP denote its characteristic function; similarly, for a random variable X, we denote
by fX its characteristic function. We recall that fN (0,1)(t) = e−t

2/2. For two sequences (an),
(bn), we write an = O(bn) whenever there exists C > 0 such that an ≤ Cbn; an = o(bn)
whenever an/bn → 0; and an � bn whenever an = O(bn) and bn = O(an). We denote by
χ1 the constant χ1 := supx>0 x

−3| cos(x) − 1 + x2/2| ≈ 0.099 (Shevtsova, 2010), and by
θ∗1 the unique root in (0, 2π) of the equation θ2 + 2θ sin(θ) + 6(cos(θ)− 1) = 0. We also
define t∗1 := θ∗1/(2π) ≈ 0.64 (Shevtsova, 2010). For every i ∈ N∗, we define the individual
standard deviation σi :=

√
E[X2

i ]. Henceforth, we reason for a fixed arbitrary sample
size n ∈ N∗.

4.2 Control of ∆n,E under moment conditions only
We start by introducing two versions of our basic assumptions on the distribution of the
variables (Xi)i=1,...,n.
Assumption 4.1 (Moment conditions in the i.n.i.d. framework). (Xi)i=1,...,n are inde-
pendent and centered random variables such that for every i = 1, . . . , n, the fourth raw
individual moment γi := E[X4

i ] is positive and finite.

Assumption 4.2 (Moment conditions in the i.i.d. framework). (Xi)i=1,...,n are i.i.d.
centered random variables such that the fourth raw moment γn := E[X4

n] is positive and
finite.

Assumption 4.2 corresponds to the classical i.i.d. sampling with finite fourth moment
while Assumption 4.1 is its generalization in the i.n.i.d. framework. Those two assumptions
primarily ensure that enough moments of (Xi)i=1,...,n exist to build a nonasymptotic upper
bound on ∆n,E. In some applications, such as the bootstrap, it is required to consider an
array of random variables (Xi,n)i=1,...,n instead of a sequence. For example, Efron (1979)’s
nonparametric bootstrap procedure consists in drawing n elements in the random sample
(X1,n, ..., Xn,n) with replacement. Conditional on (Xi,n)i=1,...,n, the n values drawn with
replacement can be seen as a sequence of n i.i.d. random variables with distribution
1
n

∑n
i=1 δ{Xi,n}, denoting by δ{a} the Dirac measure at a given point a ∈ R.
Our results encompass these situations directly. Nonetheless, we do not use the array

terminology here as our results hold nonasymptotically, i.e., for any fixed sample size n.
We can now state the main result of this section. It is proved in Sections 4.A.3 and 4.A.4.
Theorem 4.1 (Control of the one-term Edgeworth expansion with bounded moments of
order four). If Assumption 4.1 or Assumption 4.2 holds, we have the bound

∆n,E ≤
0.1995 K̃3,n√

n
+

0.031 K̃2
3,n + 0.195K4,n + 0.054 |λ3,n|K̃3,n + 0.038λ2

3,n

n
+ r1,n ,

(4.3)
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where K̃3,n := K3,n + 1
n

∑n
i=1 E|Xi|σ2

i /B
3
n and r1,n is a remainder term that depends only

on K̃3,n, K3,n K4,n and λ3,n, defined in Equation (4.22) (resp. in Equation (4.30) under
Assumption 4.2).
When the fourth moment is bounded, i.e., K4,n = O(1), we get the rate r1,n = O(n−5/4).
If furthermore E[X3

i ] = 0 for every i = 1, . . . , n, then
i. the average third raw moment is null, i.e., λ3,n = 0,
ii. the first-order term in the Edgeworth expansion is null too so that ∆n,B = ∆n,E,
iii. the residual term r1,n converges to 0 at the faster rate n−3/2 under Assumption 4.1

(resp. at the rate n−2 under Assumption 4.2).

Note that it is possible to replace K̃3,n by the simpler upper bound 2K3,n under
Assumption 4.1 (resp. by K3,n + 1 under Assumption 4.2). This theorem displays a bound
of order n−1/2 on ∆n,E. The rate n−1/2 cannot be improved when only assuming moment
conditions on (Xi)i=1,...,n (Esseen (1945), Cramer (1962)). The numerical constants that
show up in the leading terms of the bound are quite small. Numerical evaluation of the
remainder terms r1,n using its explicit expression shows it is small in practice too. Another
nice aspect of those bounds is their dependence on λ3,n. For many classes of distributions,
λ3,n can, in fact, be exactly zero. This is the case if for every i = 1, . . . , n, Xi has a
non-skewed distribution, such as any distribution that is symmetric around its expectation.
More generally, |λ3,n| can be substantially smaller than K3,n, decreasing the related terms.

This theorem further gives a bound on ∆n,B, even if the third raw moments are not
null. Indeed, using Theorem 4.1, the bound (1 − x2)ϕ(x)/6 ≤ ϕ(0)/6 ≤ 0.0665 for all
x ∈ R, and applying the triangle inequality, we remark that for every n ∈ N∗

∆n,B ≤
0.1995K̃3,n + 0.0665|λ3,n|√

n
+O(n−1). (4.4)

Under Assumption 4.1, using the refined inequality |λ3,n| ≤ 0.621K3,n (Pinelis, 2011,
Theorem 1), we can derive a simpler bound that involves only K3,n

0.1995K̃3,n + 0.0665|λ3,n|√
n

≤ 0.4403K3,n√
n

.

The bound ∆n,B ≤ 0.4403K3,n/
√
n+O(n−1) is already tighter than the sharpest known

Berry-Esseen inequality in the i.n.i.d. framework, ∆n,B ≤ 0.5583K3,n/
√
n, as soon as

the remainder term O(n−1) is smaller than the difference 0.118K3,n/
√
n. Even in the

i.i.d. case, this bound is still tighter than the sharpest known Berry-Esseen inequality,
∆n,B ≤ 0.4690K3,n/

√
n, up to a O(n−1) term. We refer to Example 4.2 and Figure 4.1 for

a numerical comparison, showing improvements for n of the order of a few thousands.
The most striking improvement is obtained in the unskewed case when E[X3

i ] = 0
for every integer i. In this case, Theorem 4.1 and the inequality K̃3,n ≤ 2K3,n yield
∆n,B ≤ 0.3990K3,n/

√
n+O(n−1). Note that this result does not contradict Esseen (1956)’s

lower bound 0.4098K3,n/
√
n as the distribution he constructs does not satisfy E[X3

i ] = 0
for every i.

Under Assumption 4.2, K̃3,n = K3,n + 1 and we can combine this with (4.4) and the
inequality |λ3,n| ≤ 0.621K3,n (Pinelis, 2011, Theorem 1), so that we obtain

∆n,B ≤
0.1995(K3,n + 1) + 0.0665× 0.621K3,n√

n
+O(n−1) ≤ 0.2408K3,n + 0.1995√

n
+O(n−1).
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One may find this result surprising, given that the numerical constant in front of K3,n in
the leading term is smaller than the lower bound constant CB := 0.4098 derived in Esseen
(1956). The point is addressed in detail in Shevtsova (2012), where the author explains
that the constant cannot be improved if one seeks control of ∆n,B with a leading term of
the form CK3,n/

√
n for some C > 0. In contrast, our bound on ∆n,B exhibits a leading

term of the form (CK3,n + c)/
√
n for positive constants C and c.

Example 4.2 (Implementation of our bounds on ∆n,B). Theorem 4.1 provides new tools
to control ∆n,B, and we compare them with existing results. To compute our bounds on
∆n,B as well as previous ones, we need numerical values for K̃3,n, λ3,n, and K4,n or upper
bounds thereon. A bound on K4,n is in fact sufficient to control λ3,n and K3,n: Pinelis
(2011) ensures |λ3,n| ≤ 0.621K3,n, and a convexity argument yields K3,n ≤ K

3/4
4,n . Moreover,

since the third standardized absolute moment has no particular statistical meaning, it is
not intuitive to find a natural bound on K3,n. On the contrary, the fourth standardized
moment K4,n is well-known as the kurtosis of a distribution (the thickness of the tails
compared to the central part of the distribution). As explained in Example 4.1, in the i.i.d.
framework, imposing K4,n ≤ 9 is a reasonable assumption. For the sake of comparison, we
also impose K4,n ≤ 9 in the i.n.i.d. case.

We consider the improved bounds that rely on λ3,n = 0 as well. The different bounds
(including the remainder term r1,n for which explicit expressions are given in the proof of
Theorem 4.1) are plotted as a function of n in Figure 4.1:

– Shevtsova (2013) i.n.i.d.: 0.5583√
n
K3,n ≤ 0.5583√

n
K

3/4
4,n

– Shevtsova (2013) i.i.d.: 0.4690√
n
K3,n ≤ 0.4690√

n
K

3/4
4,n

– Theorem 4.1 i.n.i.d.: 0.4403√
n
K3,n + r1,n ≤ 0.4403√

n
K

3/4
4,n + r1,n

– Theorem 4.1 i.n.i.d. (unskewed): 0.3990√
n
K3,n + r1,n ≤ 0.3990√

n
K

3/4
4,n + r1,n

– Theorem 4.1 i.i.d.: 0.2408K3,n+0.1995√
n

+ r1,n ≤
0.2408K3/4

4,n+0.1995
√
n

+ r1,n

– Theorem 4.1 i.i.d. (unskewed): 0.1995K3,n+0.1995√
n

+ r1,n ≤
0.1995K3/4

4,n+0.1995
√
n

+ r1,n
As previously mentioned, our bound in the baseline i.n.i.d. case gets close to the

best known Berry-Esseen bound in the i.i.d. setup (Shevtsova, 2013) when n is larger
than 10, 000. When λ3,n = 0, our bounds are smaller, notably in the i.i.d. scenario: in
the latter case, the bound is smaller than 0.05 for n ≈ 1, 000, highlighting that taking (lack
of) skewness into account matters in improving Berry-Esseen bounds. More generally, the
results are considerably better in the i.i.d. framework.

4.3 Improved bounds on ∆n,E under assumptions on
the tail behavior of fSn

In this section, we derive tighter bounds on ∆n,E under additional regularity conditions
on the tail behavior of the characteristic function of Sn. They follow from Theorem 4.2,
which provides an alternative upper bound on ∆n,E that involves the tail behavior of fSn .
This theorem is proved in Section 4.A.5 in the i.n.i.d. setting under Assumption 4.1 (resp.
in Section 4.A.6 in the i.i.d. case with Assumption 4.2).
Theorem 4.2. If Assumption 4.1 or Assumption 4.2 holds, we have the bound

∆n,E ≤
0.195K4,n + 0.038λ2

3,n

n
+ 1.0253

π

∫ bn

an

|fSn(t)|
t

dt+ r2,n , (4.5)
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Figure 4.1: Comparison between existing (Shevtsova, 2013) and new (Theorem 4.1) Berry-Esseen
upper bounds on ∆n,B := supx∈R |P (Sn ≤ x)− Φ(x)| for different sample sizes under moment
conditions only (log-log scale). Note that, compared to existing ones, the new bounds make use
of the assumption of finite fourth moment.

where an := 2t∗1π
√
n/K̃3,n, bn := 16π4n2/K̃4

3,n, and r2,n is a remainder term that depends
only on K̃3,n, K3,n, K4,n and λ3,n. The term r2,n is defined in Equation (4.35) under
Assumption 4.1 (resp. in Equation (4.40) under Assumption 4.2).
When the fourth moment is bounded, i.e., K4,n = O(1), we have r2,n = O(n−5/4).
If furthermore E[X3

i ] = 0 for every i = 1, . . . , n, then
i. the average third raw moment is null, i.e., λ3,n = 0,
ii. the first-order term in the Edgeworth expansion is null too so that ∆n,B = ∆n,E,
iii. the residual term r2,n converges to 0 at the faster rate n−3/2 under Assumption 4.1

(resp. at the rate n−2 under Assumption 4.2).

This theorem is obtained under the same conditions as Theorem 4.1. The first term
contains quantities that were already present in the term of order 1/n in the bound of
Theorem 4.1: 0.195K4,n and 0.038λ2

3,n. On the contrary, the other terms are encompassed
in the integral term and in the remainder. Indeed, a careful reading of the proofs (see
notably Section 4.A.2 that outlines the structure of the proofs of all theorems) shows that
the leading term 0.1995 K̃3,n/

√
n in the bound (4.3) comes from choosing a free tuning

parameter T of the order of
√
n. Here, we make another choice for T such that this term

is now negligible. The cost of this change of T is the introduction of the integral term
involving fSn . The leading term of the bound thus depends on the tail behavior of fSn .

The following corollaries specify the magnitude of the bound according to the assumed



Chapter 4. Nonasymptotic bounds for Edgeworth expansions 177

regularity conditions on fSn . The first one considers a polynomial decrease in the i.n.i.d.
framework.

Corollary 4.3. If Assumption 4.1 holds and for all t ∈ (an,+∞), |fSn(t)| ≤ C0t
−p for

some constants C0, p > 0, then

∆n,E ≤
0.195K4,n + 0.038λ2

3,n

n
+ 1.0253C0a

−p
n

π
+ r3,n

where r3,n := r2,n − 1.0253C0b
−p
n /π and r2,n is defined in Equation (4.35).

Besides moment conditions, Corollary 4.3 requires a uniform control on the tail of fSn
beyond the point 2t∗1π

√
n/K̃3,n. Whenever K̃3,n = o(

√
n), this condition is a tail control

of the characteristic function of Sn above a point that tends to infinity, thus making
this condition weaker to impose. When p > 1, fSn is absolutely integrable and thus
PSn is a continuous distribution (Ushakov, 2011, Theorem 1.2.6). In this case, we give
a characterization of the tail constraint on fSn in terms of smoothness of the underlying
distribution function in Proposition 4.4.

Although Corollary 4.3 is valid for every positive p, it is only an improvement on the
results of the previous section under the stricter condition p > 1. In particular when p = 2,
a−pn is exactly of the order n−1, we obtain

∆n,E ≤
0.195K4,n + 0.038λ2

3,n + 1.0253C0π
−1

n
+ o

(
n−1

)
,

and when p > 2

∆n,E ≤
0.195K4,n + 0.038λ2

3,n

n
+ o

(
n−1

)
.

Combining these bounds on ∆n,E with the expression of the Edgeworth expansion
translates into upper bounds on ∆n,B of the form

∆n,B ≤
0.0665 |λ3,n|√

n
+O(n−1) ≤ 0.0413K3,n√

n
+O(n−1).

In the regime when the O(n−1) term is smaller than 0.0413K3,n/
√
n, the bound on ∆n,B

becomes much better than 0.5583K3,n/
√
n or 0.4690K3,n/

√
n. This can happen even for

sample sizes n of the order of a few thousands, assuming that K3,n and K4,n are reasonable.
When E[X3

i ] = 0 for every i = 1, . . . , n, we remark that ∆n,B = ∆n,E, meaning that we
obtain a bound on ∆n,B of order n−1.

We verify these rates through a numerical application in Example 4.6 for the specific
choice C0 = 1 and p = 2. These choices are satisfied for usual distributions such as the
Laplace distribution (for which these values of C0 and p are sharp) and the Gaussian
distribution.

More generally, a bound on the tail of the characteristic function is nearly equivalent to
a regularity condition on the density. We detail this in the following proposition. The first
part of this proposition is taken from (Ushakov, 2011, Theorem 2.5.4) (see also Ushakov
and Ushakov (1999)). The second part is proved in Section 4.B.5.

Proposition 4.4. Let p ≥ 1 be an integer, Q be a probability measure that admits a density
q with respect to Lebesgue’s measure, and fQ its corresponding characteristic function.
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1. If q is (p− 1) times differentiable and q(p−1) is a function with bounded variation,
then

|fQ(t)| ≤ Vari[q(p−1)]
|t|p

,

where Vari[ψ] denotes the total variation of a function ψ.
2. If t 7→ |t|p−1|fQ(t)| is integrable on a neighborhood of +∞, then q is (p− 1) times

differentiable.

It is sufficient that there exists C > 0 and β > 1 such that |fQ(t)| ≤ C/
(
|t|p log(|t|)β

)
to satisfy the integrability condition in the second part of Proposition 4.4. Proposition 4.4
shows that the tail condition on fSn in Corollary 4.3 is satisfied if PSn has a density
gSn with respect to Lebesgue’s measure that is p− 1 times differentiable and such that
its (p − 1)-th derivative is of bounded variation with total variation Vn := Vari[g(p−1)

Sn ]
uniformly bounded in n. In such cases, we can take C0 = 1 ∨ supn∈N∗ Vn.

Another possibility would be to impose |fSn(t)| ≤ max1≤r≤M |ρr(t)| for every |t| ≥ an
and for (ρr)r=1,...,M a family of known characteristic functions. Indeed, in a statistical
framework, the characteristic function fSn is unknown. This second suggestion boils down
to a semiparametric assumption on PSn : fSn is assumed to be controlled in a neighborhood
of +∞ by the behavior of at least one of the M characteristic functions (ρr)r=1,...,M , but
fSn needs not be exactly one of those M characteristic functions. This semiparametric
restriction becomes less and less stringent as n increases since we need to control fSn
on a region that vanishes as n goes to infinity. Since Sn is centered and of variance 1
by definition, the choice of possible ρr is naturally restricted to the set of characteristic
functions that correspond to such standardized distributions.

We state a second corollary that deals with the i.i.d. framework. We need to define
the following quantity κn(K̃3,n) := sup

t: |t|≥2t∗1π/K̃3,n
|fXn/σn(t)|. Under Assumption 4.2, we

remark that supt: |t|≥an |fSn(t)| = κn(K̃3,n)n.

Corollary 4.5. If Assumption 4.2 holds and PXn/σn has an absolutely continuous compo-
nent with respect to Lebesgue’s measure, then κn(K̃3,n) < 1 and

∆n,E ≤
0.195K4,n + 0.038λ2

3,n

n
+ 1.0253κn(K̃3,n)n log(cn)

π
+ r2,n ,

where cn := bn/an = 8π3n3/2/(t∗1K̃3
3,n) and r2,n is defined in Equation (4.40).

Note that for a given s > 0 and a variable Z, supt:|t|≥s |fZ(t)| = 1 if and only if PZ is
a lattice distribution, i.e., concentrated on a set of the form {a + nh, n ∈ Z} (Ushakov,
2011, Theorem 1.1.3). Therefore, κn(K̃3,n) < 1 as soon as the distribution is not lattice,
which is the case for any distribution with an absolute continuous component.

In Corollary 4.5, we derive an upper bound of order n−1 on ∆n,E. As the first term
on the right-hand side is independent of the behavior of the characteristic function, it
is unchanged compared to Theorem 4.2 and Corollary 4.3. The second term in the
bound, (1.0253/π)κn(K̃3,n)n log(cn), corresponds to an upper bound on the integral term
of Equation (4.5) in Theorem 4.2. In the i.i.d. setting with a distribution of the (Xi)i=1,...,n

independent of n (the case of a sequence of variables as opposed to an array), κn(K̃3,n) = κ,
a constant independent of n. Consequently, since 0 ≤ κ < 1 is at the power n, this bound
on the integral term of (4.5) is exponentially better than the one derived in Corollary 4.3
and is asymptotically negligible in front of the first term of order O(n−1).
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In applications, we may want to compute this bound explicitly, so we would need an
explicit value for κn(K̃3,n). This value depends on the (unknown) distribution PXn/σn
and if it is too close to one for a given n, κn(K̃3,n)n will not be small. For instance, if
n = 1, 000 and κn(K̃3,n) = 0.999, we have κn(K̃3,n)n ≈ 0.37. As a result, we must impose
that κn(K̃3,n) be bounded away from one in order to use such a bound in practice, which
amounts to placing a restriction on PXn/σn .

This is, in fact, more than a restriction on the tail of fXn/σn since control of the tail
of a characteristic function induces control on its central part as well (Ushakov, 2011,
Theorem 1.4.4). By convexity K̃3,n ≥ 1 and in the most favorable case, we need a control
of fXn/σn above the point 2t∗1π. As in the i.n.i.d. case, a possibility to do so is to impose
that the characteristic function fXn/σn is controlled by some known family of characteristic
functions ρ1, . . . , ρM beyond 2t∗1π/K̃3,n.

In Example 4.6, we derive a bound on ∆n,B from Corollary 4.5 which has the same
flavor as the one obtained from Corollary 4.3. Besides, similarly to what has been done
previously, we derive a better result under the assumption that E[X3

n] = 0.

Example 4.6 (Implementation of our bounds on ∆n,B). We compare the bounds on ∆n,B
obtained in Corollaries 4.3 and 4.5 to 0.5583K3,n/

√
n and 0.4690K3,n/

√
n. As in previous

examples, we fix K4,n ≤ 9.

– Corollary 4.3 i.n.i.d., p = 2 and C0 = 1: ∆n,B ≤
0.0413K3/4

4,n√
n

+ 0.195K4,n+0.024K3/2
4,n

n
+

1.0253π−1a−2
n + r3,n

– Corollary 4.3 i.n.i.d. unskewed, p = 2 and C0 = 1: ∆n,B ≤ 0.195K4,n
n

+1.0253π−1a−2
n +

r3,n

– Corollary 4.5 i.i.d., κ = 0.99: ∆n,B ≤
0.0413K3/4

4,n√
n

+ 0.195K4,n+0.024K3/2
4,n

n
+ 1.0253κn log(cn)

π
+

r2,n

– Corollary 4.5 i.i.d. unskewed, κ = 0.99: ∆n,B ≤ 0.195K4,n
n

+ 1.0253κn log(cn)
π

+ r2,n
As a reminder, we underscore that the terms r3,n := r2,n − 1.0253C0b

−p
n /π and r2,n have

explicit expressions (Equation (4.35) in the i.n.i.d. case and Equation (4.40) in the i.i.d.
case) for any sample size n that we compute to compare the different bounds.

Since we assume some supplementary regularity conditions in this section, it should not
be surprising that they lead to an improvement of the upper bounds on ∆n,B. Figure 4.2
displays the different bounds that we obtained as a function of the sample size n, alongside
with the existing bounds (Shevtsova, 2013) that do not assume such regularity conditions.
The new bounds take advantage of these regularity conditions and are therefore much
tighter, especially in the unskewed case where the rate of convergence gets faster from
1/
√
n to 1/n.

4.4 Conclusion and statistical applications
In addition to Figures 4.1 and 4.2, we can illustrate the improvements provided by
Theorem 4.1 and Corollary 4.5 in the i.i.d. case by resuming Example 4.1. This example
considers the classical problem of conducting inference on a univariate expectation from i.i.d.
observations with known variance. For usual confidence levels and different assumptions,
Table 4.2 indicates the largest weakly informative sample size nmax(α) as defined in
Example 4.1: for n ≤ nmax(α), the Berry-Esseen bound that controls the approximation of
P(Sn ≤ qN (0,1)(1−α)

)
by Φ(qN (0,1)(1−α)) = 1−α cannot exclude arbitrarily conservative
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Figure 4.2: Comparison between existing (Shevtsova, 2013) and new (Corollaries 4.3 and 4.5)
Berry-Esseen upper bounds on ∆n,B := supx∈R |P (Sn ≤ x)− Φ(x)| for different sample sizes with
additional regularity assumption on fSn (log-log scale). Note that, compared to existing ones,
the new bounds make use of the regularity assumption.

tests (with a probability to reject the null hypothesis arbitrarily close to 0). For these
numerical applications, we keep the same constants as in the previous figures, namely
K4,n = 9 and κ = 0.99.

As seen in the previous examples, explicit values or bounds on some functionals of PSn ,
such as λ3,n, K̃3,n, K4,n, C0, p, and κ, are required to obtain our nonasymptotic bounds on
a standardized sample mean. The bound K4,n ≤ 9 encompasses a wide range of standard
distributions and provides a bound on λ3,n and K̃3,n too. Nonetheless, we may prefer to
avoid such a restriction, either because it is unlikely to be satisfied or, on the contrary,
because it might be overly conservative. An alternative would be to estimate the moments
λ3,n, K3,n (then K̃3,n is upper bounded by 2K3,n in i.n.i.d. settings or 1 + K3,n in i.i.d.
settings), K4,n using the data. In the i.i.d. case, we suggest estimating them by their
empirical counterparts (method of moments estimation). We could then compute our
bounds by replacing the unknown needed quantities with their estimates. We acknowledge
that this type of “plug-in” approach is only approximately valid.

Theorem 4.2, which underlies Corollaries 4.3 and 4.5, involves the integral
∫ bn
an
fSn(t)/t dt,

which depends on the a priori unknown characteristic function of Sn. A nonparametric
possibility would be to estimate fSn and then to numerically integrate it. A classical esti-
mator is the empirical characteristic function (see for instance (Ushakov, 2011, Chapter 3)).
However, this nonparametric estimator may be unstable since the uniform convergence
of the empirical characteristic function only holds on compact sets. Therefore, it might
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Bound on ∆n,B α = 0.10 α = 0.05 α = 0.01
Existing 593 2,375 59,389
Thm. 4.1 462 1,412 22,265
Thm. 4.1 unskewed 239 764 15,875
Cor. 4.5 384 497 1,912
Cor. 4.5 unskewed 349 427 636

Table 4.2: In the test of H0 : µ = µ0 against H1 : µ > µ0 with µ the expectation of i.i.d. real
random variables with known variance, largest weakly informative sample sizes nmax(α), with
α ∈ {0.10, 0.05, 0.01} for different assumptions and Berry-Esseen bounds: existing bound with
finite third moment (Shevtsova, 2013), new bound with finite fourth moment (Theorem 4.1, skewed
and unskewed cases), new bound with additional regularity condition on fXn/σn ; essentially, a
continuous distribution (Corollary 4.5, skewed and unskewed cases).

be of interest to avoid such an estimation. Corollaries 4.3 and 4.5 offer this alternative
under some regularity conditions on fSn . They require an upper control on the tail of
the characteristic function. Such a bound can be given using expert knowledge of the
regularity of the density of the Sn. The plot of the module of the empirical characteristic
function can also be used to back such an intuition.

We now examine some implications of our theoretical results for the nonasymptotic
validity of statistical tests based on the Gaussian approximation of the distribution of a
sample mean using i.i.d. data. As an illustration, we continue Example 4.1. Remember
that we observe i.i.d. observations (Yi)i=1,...,n with finite fourth moment. We assume
their variance is known and want to conduct inference on the expectation of Yn. For
fixed number µ0 ∈ R and nominal control α ∈ (0, 1) on the type-one error, we study the
unilateral test H0 : E[Yn] ≤ µ0 against H1 : E[Yn] > µ0.

The relevant test statistic for this problem is Sn =
√
n(n−1∑n

i=1 Yi − µ0)/σ (that
is, the standardized sum Sn with Xi := Yi − µ0) and we consider the rejection region
{Sn > qN (0,1)(1− α)}. In Example 4.1, the probability operator is understood under the
null hypothesis. Here, H0 is composite, and the following probability operators are to be
understood for E[Yn] = µ0, which is the most difficult data-generating process within the
null to distinguish between the two hypotheses H0 and H1, and thus the one to consider
to study the type-one error and p-value of the test.

Starting from Theorem 4.1 or Corollary 4.5, we set x = qN (0,1)(1 − α) (henceforth
denoted q1−α to lighten notation) and deduce the following upper and lower bounds

λ3,n

6
√
n

(1− q2
1−α)ϕ(q1−α)− δn ≤ P (Sn ≤ q1−α)− (1− α) ≤ λ3,n

6
√
n

(1− q2
1−α)ϕ(q1−α) + δn,

(4.6)

where δn is the corresponding bound on ∆n,E. We recall that either δn = O(n−1/2)
under moments conditions only (Section 4.2) or δn = O(n−1) under additional regularity
conditions (Section 4.3). For the sake of conciseness, we consider here the latter framework
where the distribution of Yn, hence of Xn, has an absolutely continuous component. In
that smooth case, since δn = O(n−1), we can write, up to the term δn,

P (Sn ≤ q1−α) ≈ 1− α + λ3,n

6
√
n

(1− q2
1−α)ϕ(q1−α). (4.7)



182 Chapter 4. Nonasymptotic bounds for Edgeworth expansions

As a consequence, for α ≤ 0.15 (so that q1−α > 1), as soon as the skewness λ3,n is higher

than 6
√
n δn

(q2
1−α − 1)ϕ(q1−α) > 0, the probability P (Sn ≤ q1−α) has to be smaller than 1− α.

In that case, since the event {Sn ≤ q1−α} is the complementary of the rejection region,
the probability of rejecting H0 under the null exceeds α; in other words, the test does not
reach its stated nominal control α on the type-one error and is said liberal.

Conversely, when λ3,n is lower than −6
√
n δn

(q2
1−α − 1)ϕ(q1−α) < 0, the probability

P (Sn ≤ q1−α) has to be larger than 1− α; equivalently, the probability to reject under the
null is below α. In that case, the test is said conservative.

The distortion can also be seen in terms of p-values. In the unilateral test we consider,
the p-value is pval := P(Sn > sn) with sn the observed value of Sn in the sample. In
contrast, the approximated p-value is p̃val := 1− Φ(sn). Analogous to Equation (4.6),
setting x = sn yields

λ3,n

6
√
n

(1− s2
n)ϕ(sn)− δn ≤ (1− pval)− (1− p̃val) ≤ λ3,n

6
√
n

(1− s2
n)ϕ(sn) + δn.

Therefore,

pval − λ3,n

6
√
n

(s2
n − 1)ϕ(sn)− δn ≤ p̃val ≤ pval − λ3,n

6
√
n

(s2
n − 1)ϕ(sn) + δn.

When PYn has an absolutely continuous component, δn = O(n−1) by Corollary 4.5 and
negligible compared to the skewness term involving λ3,n. This bound indicates that for
|sn| > 1, the higher the skewness, the smaller the approximated p-value compared to
the true one. This results in overconfidence in rejecting the null. The distortion towards
lower approximated p-values occurs in a similar way whether sn < −1 or sn > 1 due
to the parity of the function x 7→ (x2 − 1)ϕ(x). Conversely, negative skewness leads to
the under-rejection of the null hypothesis. Table 4.3 describes the sign of the distortion
according to the skewness of PYn (the sign of λ3,n) and the observed value sn of the test
statistic.

More generally, for any n and point x, Equation (4.6) shows that P(Sn ≤ x) belongs to
the interval [Φ(x) + λ3,n(1− x2)ϕ(x)/(6

√
n)± δn], which is not centered at Φ(x) whenever

λ3,n 6= 0. Figures 4.3 and 4.4 illustrate this distortion in terms of p-values for different
sample sizes and observed test statistics in the case of a positive skewness. The length of
the interval does not depend on x and shrinks at speed δn. On the contrary, the location
of the interval depends on x. For given skewness λ3,n and sample size n, it is all the
more shifted away from the asymptotic approximation Φ(x) as x 7→ (1− x2)ϕ(x) is large
in absolute value. That function has a global maximum at x = 0 and minima at the
points −x∗ and x∗ ≈ 1.73 (Figure 4.5 plots the function for illustration). Consequently,
irrespective of n, the largest gaps between P(Sn ≤ x) and Φ(x) may be expected around

Skewness sn < −1 −1 < sn < 1 sn > 1
Negative + − +
Positive − + −

Table 4.3: Sign of the distortion (approximated p-value) p̃val−pval (true p-value) in a one-sided
test on the expectation of i.i.d. and continuous observations.
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x = 0 or x = ±x∗. Inversely, when x = ± 1, the gap is null and the interval is exactly
centered at Φ(x).

n = 25,000 n = 5,000
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Figure 4.3: For every possibly observed test statistic s ∈ R, we represent the possible pairs
(p̃val(s), pval(s)) (shaded region) of the true p-value pval(s) := 1 − P(Sn ≤ s) and the ap-
proximated one p̃val(s) := 1 − Φ(s). The boundaries of this region correspond to the curves
(1− Φ(s), 1− Φ(s) + (λ3,n/6

√
n)(s2 − 1)ϕ(s)± δn)s∈R where δn is the bound on ∆n,E given by

Corollary 4.5 (i.i.d. case and continuous distribution). δn is computed from its explicit expression
with K4,n = 9, κ = 0.99 (as in the previous numerical applications), and λ3,n = 0.6× 93/4 ≈ 3.1.
This choice corresponds to a large positive skewness for |λ3,n| cannot be larger than 0.621K3/4

4,n
(Pinelis, 2011, Theorem 1). The black line shows the first diagonal (1− Φ(s), 1− Φ(s)).

Figure 4.3 illustrates that, when n is large enough for δn = O(n−1) to become negligible
compared to the skewness term decreasing in

√
n, λ3,n 6= 0 entails a distortion between

the true p-value and the approximated one in a one-sided test. As an example, for an
approximated p-value of 0.04 and the choices made for K4,n, κ, and λ3,n, the true p-value
must be in the interval [0.0397, 0.0429] for n = 5, 000 and [0.0404, 0.0407] for n = 25, 000.

For a better visualization, Figure 4.3 zooms in the range p̃val between 0.03 and 0.05,
which corresponds to test statistics between 1.64 and 1.88, hence above 1. Combined
with λ3,n > 0, it leads to an approximated p-value smaller than the true one. In contrast,
Figure 4.4 looks at p̃val ∈ [0.49, 0.51], that is, observed sn between -0.025 and 0.025.
In that range, |sn| < 1 and the positive skewness leads to a positive distortion: the
approximated p-value is larger than the true one. The comparison of Figures 4.3 and 4.4,
especially for n = 5, 000, also exhibits the variation of the magnitude of the shift from the
absolute value of (1− s2)φ(s), with the largest gaps for s close to 0.

Finally, we stress that such distortions regarding p-values are specific to one-sided tests.
For bilateral or two-sided tests, the skewness of the distribution enters symmetrically in
the approximation error and cancels out thanks to the parity of x 7→ (1− x2)φ(x).2

2In the specific context of this thesis manuscript, it is possible to refer to Equation (5.33) in Chapter 5
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Figure 4.4: Same caption as Figure 4.3.
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Figure 4.5: Graph of the function x 7→ (1− x2)φ(x) on the interval [−5, 5].

for the illustration of that simplification.
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Appendix 4.A Proof of the main results
In this section, we prove Theorems 4.1 and 4.2. All the proofs start with a so-called
“smoothing inequality”, which we present and prove in Subsection 4.A.1. Based on this
inequality, Subsection 4.A.2 presents the common structure of all the proofs. The remaining
subsections are devoted to proving the theorems themselves.

4.A.1 A smoothing inequality
The result given in Lemma 4.1 helps control the distance between the cumulative distribu-
tion function P (Sn ≤ x) and Gn(x) := Φ(x) + λ3,n

6
√
n
(1− x2)ϕ(x) in terms of their respective

Fourier transforms.

Lemma 4.1. For every t0 ∈ (0, 1] and every T > 0, we have

sup
x∈R

∣∣∣P (Sn ≤ x)−Gn(x)
∣∣∣ ≤ Ω1(t0, T, |λ3,n|/

√
n) + Ω2(t0, T ) + Ω3(t0, T, λ3,n/

√
n), (4.8)

where

Ω1(t0, T, v) := 2
∫ t0

0

∣∣∣∣Ψ(t)− i

2πt

∣∣∣∣ e−(Tt)2/2
(

1 + v|Tt|3

6

)
dt

+ 1
π

∫ +∞

t0

e−(Tt)2/2

t

(
1 + v|Tt|3

6

)
dt,

Ω2(t0, T ) := 2
∫ 1

t0
|Ψ(t)| |fSn(Tt)|dt,

Ω3(t0, T, v) := 2
∫ t0

0
|Ψ(t)|

∣∣∣∣∣fSn(Tt)− e−(Tt)2/2
(

1− vi(Tt)3

6

)∣∣∣∣∣ dt,
and Ψ(t) := 1

2

(
1− |t|+ i

[
(1− |t|) cot(πt) + sign(t)

π

])
1 {|t| ≤ 1}.

In the following, we resort to Equations (I.29) and (I.30) of Prawitz (1975) which claim
that the function Ψ satisfies

∣∣∣Ψ(t)
∣∣∣ ≤ 1.0253

2π|t| and
∣∣∣∣Ψ(t)− i

2πt

∣∣∣∣ ≤ 1
2

(
1− |t|+ π2

18t
2
)
. (4.9)

Proof of Lemma 4.1. Let us denote by “p.v.
∫
” Cauchy’s principal value, defined by

p.v.
∫ a

−a
f(u)du := lim

x→0, x>0

∫ −x
−a

f(u)du+
∫ a

x
f(u)du,

where f is a measurable function on [−a, a]\{0} for a given a > 0. In the following, we
use the following inequalities, which are due to Prawitz (1972), where F is the cumulative
distribution function of Sn and f = fSn its characteristic function,

lim
y→x, y>x

F (y) ≤ 1
2 + p.v.

∫ +U

−U
e−ixu

1
U

Ψ
(
u

U

)
f(u)du,

lim
y→x, y<x

F (y) ≥ 1
2 + p.v.

∫ +U

−U
e−ixu

1
U

Ψ
(−u
U

)
f(u)du.
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Therefore,

F (x)−Gn(x) ≤ 1
2 + p.v.

∫ +U

−U
e−ixu

1
U

Ψ
(
u

U

)
f(u)du−Gn(x) (4.10)

F (x)−Gn(x) ≥ 1
2 + p.v.

∫ +U

−U
e−ixu

1
U

Ψ
(−u
U

)
f(u)du−Gn(x). (4.11)

Note that the Gil-Pelaez inversion formula (see Gil-Pelaez (1951)) is valid for any bounded-
variation function. Formally, for every bounded-variation function G(x) =

∫ x
−∞ g(t)dt,

denoting the Fourier transform of a given function g by ǧ :=
∫+∞
−∞ eixug(u)du, we have

G(x) = 1
2 + i

2π p.v.
∫ +∞

−∞
e−ixuǧ(u)du. (4.12)

Therefore, applying Equation (4.12) to the function Gn(x) := Φ(x)+λ3,n(1−x2)ϕ(x)/(6
√
n)

whose (generalized) density has the Fourier transform (1− λ3,nix
3/(6
√
n))e−x2/2, we get

Gn(x) = 1
2 + i

2π p.v.
∫ +∞

−∞
e−ixu

(
1− λ3,n

6
√
n
iu3
)
e−u

2/2du

u
.

Combining this equality with the bounds (4.10) and (4.11) and using the triangular
inequality, we get the claimed result (4.8).

4.A.2 Outline of the proofs of Theorems 4.1 and 4.2
The following subsections show more general formulations of Theorems 4.1 and 4.2. They
yield the two theorems as stated in the body of the article for a particular choice of
a tuning parameter ε. Besides, Theorems 4.1 and 4.2 are stated under two possible
sets of assumptions: Assumption 4.1 (i.n.i.d.) or Assumption 4.2 (i.i.d.). The proof is
done separately for each theorem and each assumption, resulting in four different proofs.
However, they share the same structure. This preamble aims at presenting that structure
and pointing out the similarities and differences between the four proofs.

Structure

There are four distinct settings and associated theorems:
1. moment conditions only and i.n.i.d. observations (“no-continuity, i.n.i.d.”), in this

setting, the bound δn on ∆n,E is proved in Theorem 4.3 (Section 4.A.3);
2. moment conditions only and i.i.d. observations (“no-continuity, i.i.d.”), in this

setting, the bound δn on ∆n,E is proved in Theorem 4.4 (Section 4.A.4);
3. additional regularity conditions and i.n.i.d. observations (“continuity, i.n.i.d.”),3 in

this setting, the bound δn on ∆n,E is proved in Theorem 4.5 (Section 4.A.5);
4. additional regularity conditions and i.i.d. observations (“continuity, i.i.d.”), in this

setting, the bound δn on ∆n,E is proved in Theorem 4.6 (Section 4.A.6).

3The regularity conditions control the tail behavior of the characteristic function fSn of the standardized
sum Sn in the i.n.i.d. case (resp. of the characteristic function of one standardized observation Xn/σn in
the i.i.d. case). Although the formal link with an absolutely continuous distribution (or a component
thereof) with respect to Lebesgue’s measure concerns the i.i.d. case, we use the term “continuity” setting
to refer to those additional assumptions both in i.i.d. and i.n.i.d. cases.
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Note that Theorem 4.5 and Theorem 4.6 do not require the additional regularity
assumptions but hold under moment conditions only (Assumption 4.1 for the former and
Assumption 4.2 for the latter). Together, they yield Theorem 4.2 presented in the body
of the article. Nonetheless, as explained in the discussion of Theorem 4.2, the leading
term of the obtained bound δn depends on the tail behavior of fSn and will result in an
improvement provided additional regularity conditions on fSn (see Corollary 4.3 in the
i.n.i.d. case and Corollary 4.5 in the i.i.d. case). That is why we refer nonetheless to the
settings of Theorem 4.5 and Theorem 4.6 as “continuity” settings.

Furthermore, in each of those four settings, some terms in the bounds can be improved
under the assumption λ3,n = 0 (unskewed case). We do not detail the related changes here
(see the following subsections) to focus on the main structure.

The four proofs start by applying Lemma 4.1 and, then, deal separately with the three
terms of Equation (4.8): Ω1(t0, T, |λ3,n|/

√
n), Ω2(t0, T ), and Ω3(t0, T, λ3,n/

√
n).

λ3,n depends on the distribution of the (Xi)i=1,...,n. In contrast, t0 ∈ (0, 1] and T > 0
are free parameters. In the four settings, t0 remains unchanged and set at 1/π ≈ 0.32.
However, the choice for T differs between the “no-continuity” (1. and 2.) and “continuity”
(3. and 4.) settings. As explained below, this is precisely this change that enables to
modify the leading term in the bound δn and obtain a leading term that depends on the
tail behavior of fSn in Theorems 4.5 and 4.6.

First term Ω1

The upper bound on Ω1 is formally the same in the four settings (as a function of an
arbitrary T ; its actual value depends on the choice of T ). Lemma 4.4 in Section 4.B.1
shows that, for every T > 0,

Ω1(1/π, T, |λ3,n|/
√
n) ≤ 1.2533

T
+ 0.3334|λ3,n|

T
√
n

+ 14.1961
T 4 + 4.3394|λ3,n|

T 3√n
.

In the “no-continuity” setting, T is chosen of the order of
√
n:

T = 2π
√
n

K̃3,n
(“no-continuity” choice of T ).

Consequently, the first term in Ω1 will enter in the dominant term (decreasing at rate
√
n)

of the bound δn on ∆n,E in the settings 1. and 2. On the contrary, in the “continuity”
setting, we choose a larger T (the “no-continuity” one at the power 4), of the order of n2:

T = 16π4n2

K̃4
3,n

(“continuity” choice of T ).

That choice enables to “kill” the term Ω1 in the sense that, under proper regularity
assumptions on fSn , the bound on Ω1(1/π, T, |λ3,n|/

√
n) becomes negligible in δn (the

dominant term 1.2533/T decreases to 0 at the speed n2 for the “continuity” choice of T ).

Second term Ω2

The treatment of the second term Ω2 coming from the smoothing inequality differs between
the “no-continuity” (1. and 2.) and “continuity” (3. and 4.) settings.
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In “no-continuity” settings 1. and 2. The bound on Ω2 derives from Lemma 4.2
that enables to control the modulus of the characteristic function fSn of Sn in the relevant
interval [1/π, 1]. We obtain (see Equation (4.15) below)

Ω2(1/π, T ) ≤ 1.2187
T 2 + 67.0415

T 4 .

For the choice of T in the “no-continuity” setting, the term Ω2 is thus negligible compared
to the dominant term in the bound δn, which decreases at rate

√
n.

In “continuity” settings 3. and 4. Recall that Ω2(1/π, T ) = 2
∫ 1
π−1 |Ψ(t)||fSn(Tt)|dt.

Using the upper bound on the modulus of the kernel function Ψ (Equation (4.9), Prawitz
(1975)), the term Ω2 can be bounded by an integral whose only unknown term is the
modulus of fSn . This is where we recover the interesting integral term involving fSn of
Theorem 4.2. In other words, in “continuity” settings 3. and 4., we do not want to apply
Lemma 4.2 used in the “no-continuity” settings to control Ω2, but we keep its expression
involving the integral of |fSn| in order to use the additional regularity assumptions on
the characteristic function of Sn. Indeed, a change of variables and the first part of
Equation (4.9) give

Ω2(1/π, T ) ≤ 1.0253
π

∫ T

T/π

|fSn(u)|
u

du.

From there, the additional regularity assumptions on fSn provide an explicit control on Ω2.

Third term Ω3

The control of the third term Ω3 is more involved compared to Ω1 and Ω2. It is done by
controlling separately several terms whose sum provides an upper bound on Ω3 (see the
next four subsections for details and the definitions of those terms): Ω3(1/π, T, λ3,n/

√
n) ≤

I3,1(T ) + I3,2(T ) + I3,3(T ) (setting 1.)
I4,1(T ) + I4,2(T ) + I4,3(T ) (setting 2.)
I5,1(T ) + I5,2(T ) + I5,3(T ) + I5,4(T ) + I5,5(T ) (settings 3. and 4.)

The upper bounds are distinct and derived in each of the four settings although several of
the terms are controlled similarly and some are even equal (e.g., I5,1(T ) = I4,1(T )).4

4.A.3 Proof of Theorem 4.1 under Assumption 4.1

In this section, we state and prove a more general theorem (Theorem 4.4 below). We
recover Theorem 4.1 when we set ε = 0.1 (numerical computations of e1(0.1) give the
upper bound e1(0.1) ≤ 1.012).

4We acknowledge that, for future work, some modifications and harmonization in the notation of those
terms might ease the readability of the proofs. We hope this preamble subsection goes in that direction.
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Theorem 4.3 (One-term Edgeworth expansion under Assumption 4.1). Under Assump-
tion 4.1, for every ε ∈ (0, 1/3) and every n ≥ 1, we have the bound

∆n,E ≤
0.1995 K̃3,n√

n
+ 1
n

0.031 K̃2
3,n + 0.327K4,n

(
1
12 + 1

4(1− 3ε)2

)

+ 0.054 |λ3,n|K̃3,n + 0.037 e1(ε)|λ3,n|2
+ r1,n,

(4.13)

where e1(ε) is given in Equation (4.42) and r1,n is given in Equation (4.22). Note that
r1,n = O(n−5/4) as soon as K4,n = O(1). If E[X3

i ] = 0 for every i = 1, . . . , n, the upper
bound reduces to

0.1995K̃3,n√
n

+ 1
n

{
0.031K̃2

3,n + 0.327K4,n

(
1
12 + 1

4(1− 3ε)2

)}
+ r1,n, (4.14)

with r1,n = O(n−3/2) when K4,n = O(1).

We follow the proof strategy initiated by Prawitz (1975) and complemented among
others by Shevtsova (2012). The method of proof starts from Lemma 4.1. Note that
in Prawitz (1975) or Shevtsova (2012), Lemma 4.1 is used with Φ(x) instead of Gn(x)
(that is, these authors are only interested in the canonical Berry-Esseen inequality). It is
shown in Section 4.B.1 how to upper bound the term Ω1(t0, T, |λ3,n|/

√
n). There remains

to control Ω2(t0, T ) and Ω3(t0, T, λ3,n/
√
n). The former is handled as in Shevtsova (2012)

while the latter is tackled differently.
As in the classical Berry-Esseen setup, T is chosen of the order of

√
n. The parameter

t0 is chosen as in Prawitz (1975): a range of values is admissible, in particular t0 must
satisfy 1/(2π) ≤ t0 ≤ 1/(6πχ1) where χ1 := supx>0 x

−3| cos(x) − 1 + x2/2| ≈ 0.099162.
Given the numerical evidence in Prawitz (1975), the choice t0 = 1/π is reasonable.

Let ξn := K̃3,n/
√
n. Based on the upper bound on Ω1, we would like to pick T as large

as possible. However, Lemma 4.2 below restricts the range of informative T s to control
Ω2. More specifically, we show in Section 4.A.3 that a suitable choice for T is

T = 2π
ξn

= 2π
K̃3,n/

√
n

= 2π
√
n

K̃3,n
.

Bound on Ω2

In this section, we control Ω2(1/π, T ) = 2
∫ 1

1/π |Ψ(t)| |fSn(Tt)|dt. To reach this goal, we use
the following lemma which is a consequence of Lemma 2 in Shevtsova (2010) or Theorem
2.2 in Shevtsova (2012) (with δ = 1):

Lemma 4.2. Let t∗1 = θ∗1/(2π) where θ∗1 is the unique root in (0, 2π) of the equation
θ2 +2θ sin(θ)+6(cos(θ)−1) = 0.5 For T such that t∗1/ξn ≤ Tt ≤ 2π/ξn for every t ∈ [t∗1, 1],
we have

|fSn(Tt)| ≤ e−(Tt)2/2+χ1ξn|Tt|3 for t ∈ [1/π , t∗1]
|fSn(Tt)| ≤ e−(1−cos(ξnTt))/ξ2

n for t ∈ [t∗1 , 1].
5t∗1 ≈ 0.64.
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Therefore,∫ 1

1/π
|Ψ(t)| |fSn(Tt)|dt ≤

∫ t∗1

1/π
|Ψ(t)|e−(Tt)2/2+χ1ξn|Tt|3dt+

∫ 1

t∗1

|Ψ(t)|e−(1−cos(ξnTt))/ξ2
ndt.

Proof of Lemma 4.2: Applying Theorem 2.2 in Shevtsova (2012) with δ = 1, we get for
all u ∈ R

|fSn(u)| ≤ exp (−ψ(u, εn)) ,

where εn := n−1/2K̃3,n, and, for any real u, ε > 0

ψ(u, ε) :=


t2/2− χ1ε|t|3, for |t| < θ∗1ε

−1,
1− cos(εt))

ε2
, for θ∗1ε−1 ≤ |t| ≤ 2πε−1,

0, for |t| > 2πε−1.

Multiplying by |Ψ|, integrating from 1/π to 1 and separating the two cases yields the
claimed inequality. �

As already mentioned, we want to take T as large as possible to control Ω1. However,
the proof of Lemma 4.2 implies that choosing T > 2π/ξn would resort in a useless bound
on Ω2. This is why we pick T = 2π/ξn. We can thus write χ1ξn|Tt|3 = 2πχ1(Tt)2|t| for
t ∈ [1/π, t∗1] and cos(ξnTt) = cos(2πt) for t ∈ [t∗1, 1]. Combining this with Lemma 4.2 yields
∫ 1

1/π
|Ψ(t)| |fSn(Tt)|dt ≤

∫ t∗1

1/π
|Ψ(t)|e−

(Tt)2
2 (1−4πχ1|t|)dt+

∫ 1

t∗1

|Ψ(t)|e−T 2(1−cos(2πt))/(4π2)dt

= I2,1(T )
2T 4 + I2,2(T )

2T 2 ,

where

I2,1(T ) := T 4
∫ t∗1

1/π
2|Ψ(t)|e−

(Tt)2
2 (1−4πχ1|t|)dt,

I2,2(T ) := T 2
∫ 1

t∗1

2|Ψ(t)|e−T 2(1−cos(2πt))/(4π2)dt.

Note that the difference in the two exponents of T in the above definitions may seem
surprising as these two integrals look similar. However they have very different behaviors
since the first one decays much faster than the second one. In line with Section 4.B.1, we
compute numerically these integrals using the R package cubature (Narasimhan et al.,
2020) and optimize them using the optimize function with the L-BFGS-B method.6 This
gives

sup
T≥0

I2,1(T ) ≤ 67.0415, and sup
T≥0

I2,2(T ) ≤ 1.2187.

Finally, we arrive at

Ω2(1/π, T ) = 2
∫ 1

1/π
|Ψ(t)| |fSn(Tt)|dt ≤ 67.0415

T 4 + 1.2187
T 2 . (4.15)

6We would be happy to share the code upon request.
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Bound on Ω3

In this section, we bound the third term of Equation (4.8), which is

Ω3(t0, T, λ3,n/
√
n) = 2

∫ t0

0
|Ψ(t)|

∣∣∣∣∣fSn(Tt)− e−(Tt)2/2
(

1− λ3,ni(Tt)3

6
√
n

)∣∣∣∣∣ dt.
Whenever t0T = T/π ≥

√
2ε(n/K4,n)1/4 – or equivalently when n ≥ ε2K4

3,n/(4K4,n) – we
can write

Ω3(t0, T, λ3,n/
√
n) ≤ I3,1(T ) + I3,2(T ) + I3,3(T ),

where

I3,1(T ) := 2
T

∫ √2ε(n/K4,n)1/4

0
|Ψ(u/T )|

∣∣∣∣∣fSn(u)− e−u2/2
(

1− iu3λ3,n

6
√
n

)∣∣∣∣∣ du,
I3,2(T ) := 2

T

∫ t0T

√
2ε(n/K4,n)1/4

|Ψ(u/T )|
∣∣∣fSn(u)− e−u2/2

∣∣∣ du,
I3,3(T ) := 2

T

|λ3,n|
6
√
n

∫ t0T

√
2ε(n/K4,n)1/4

|Ψ(u/T )| e−u2/2|u|3du.

Note that when n < ε2K4
3,n/(4K4,n), we have the better inequality Ω3(t0, T, λ3,n/

√
n) <

I3,1(T ), so that our reasoning is still valid even in this case as our bounds are all positive.
The integrand of I3,1(T ) can be controlled with the help of Lemma 4.5, which enables

us to write

I3,1(T ) ≤ K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
J1
(
4, 0,
√

2ε(n/K4,n)1/4, T
)

+ e1,n(ε)
36

|λ3,n|2

n
J1
(
6, 0,
√

2ε(n/K4,n)1/4, T
)

+ I3,1,3 (4.16)

where

I3,1,3(T ) := 2
T

∫ √2ε(n/K4,n)1/4

0
|Ψ(u/T )|e−u2/2R1,n(u, ε)du,

and J1 is defined in Equation (4.55). Using Equation (4.55), we obtain the bounds
J1(4, 0,+∞, T ) ≤ 0.327 and J1(6, 0,+∞, T ) ≤ 1.306. Besides by the first inequality
in (4.9), we get

I3,1,3(T ) ≤ 1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R1,n(u, ε)du.

We finally get from Equation (4.16)

I3,1(T ) ≤ 0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e1,n(ε)

36
|λ3,n|2

n

+ 1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R1,n(u, ε)du. (4.17)
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We now handle I3,3(T ). We remark that the following set of inequalities is valid for
p = 3

I3,3(T ) = |λ3,n|
3
√
n
J1
(
3,
√

2ε(n/K4,n)1/4, t0T, T
)

≤ 1.0253|λ3,n|
6π
√
n

∫ 2
√
n/K̃3,n

√
2ε(n/K4,n)1/4

u2e−u
2/2du

= 1.0253|λ3,n|
6π
√
n

∫ 2n/K̃2
3,n

ε(n/K4,n)1/2
(2v)(2−1)/2e−v

dv√
2v

= 1.0253|λ3,n|
6π
√
n

(
Γ
(
2/2, ε(n/K4,n)1/2

)
− Γ

(
2/2, 2n/K̃2

3,n

))
= O

(
Γ
(
p/2, ε(n/K4,n)1/2

)
− Γ

(
p/2, 2n/K̃2

3,n

))
= O

(
np/4−1/2e−ε

√
n/
√
K4,n

)
,

where we apply the change of variable v = u2/2, and take advantage of the asymptotic
expansion Γ(a, x) = xa−1e−x(1 + O((a − 1)/x)) which is valid for every fixed a in the
regime x→∞, see Equation (6.5.32) in Abramowitz and Stegun (1972).

In the following section, we show that I3,2(T ) decays exponentially with n too, so that
we obtain

Ω3(t0, T, λ3,n/
√
n) ≤ I3,1(T ) + I3,2(T ) + I3,3(T )

≤ 0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e1,n(ε)

36
|λ3,n|2

n
+O(n−5/4).

(4.18)

Bound on I3,2(T ).

Let t be a real in the interval [
√

2ε(n/K4,n)1/4, t0T ]. As in the proof of Lemma 2.7 in
Shevtsova (2012) with δ = 1, using the fact that for every i = 1, . . . , n

max
{
|fPXi (t)|, exp

(
−t

2σ2
i

2

)}
≤ exp

(
−t

2σ2
i

2 + χ1t
3(E[|Xi|3] + E[|Xi|]σ2

i )
B3
n

)
,

we get

∣∣∣fSn(t)− e−t2/2
∣∣∣ ≤ n∑

i=1

∣∣∣∣∣∣∣∣∣fPXi
(
t

Bn

)
− e

−
t2σ2

i

2B2
n

∣∣∣∣∣∣∣∣∣ e
t2σ2

i

2B2
n e
−
t2

2 +
χ1|t|3

∑n
l=1

(
E[|Xl|3] + E[|Xi|]σ2

i

)
B3
n

=
n∑
i=1

∣∣∣∣∣∣∣∣∣fPXi
(
t

Bn

)
− e

−
t2σ2

i

2B2
n

∣∣∣∣∣∣∣∣∣ e
−
t2

2 +
χ1|t|3K̃3,n√

n
+
t2σ2

i

2B2
n .

By Equation (4.44), we have max1≤i≤n σ
2
i ≤ B2

n × (K4,n/n)1/2 so that we obtain

∣∣∣fSn(t)− e−t2/2
∣∣∣ ≤ n∑

i=1

∣∣∣∣∣∣∣∣∣fPXi
(
t

Bn

)
− e

−
t2σ2

i

2B2
n

∣∣∣∣∣∣∣∣∣ e
−
t2

2 +
χ1|t|3K̃3,n√

n
+
t2

2

√
K4,n

n .
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Applying Lemma 2.8 in Shevtsova (2012), we get that for every variable X such that
E[|X|3] is finite, |f(t)− e−σ2t2| ≤ E[|X|3]× |t|3/6. Therefore,

∣∣∣fSn(t)− e−t2/2
∣∣∣ ≤ n∑

i=1

E[|Xi|3]
6B3

n

|t|3 exp
−t22 + χ1|t|3K̃3,n√

n
+ t2

2

√
K4,n

n


= K3,n

6
√
n
|t|3 exp

−t22 + χ1|t|3K̃3,n√
n

+ t2

2

√
K4,n

n

 . (4.19)

Recalling that t0 = 1/π, and integrating the latter equation, we have

I3,2(T ) = 2
T

∫ t0T

√
2ε(n/K4,n)1/4

|Ψ(u/T )|
∣∣∣fSn(u)− e−u2/2

∣∣∣ du,
≤ K3,n

3
√
nT

∫ T/π

√
2ε(n/K4,n)1/4

|Ψ(u/T )|u3 exp
−u2

2 + χ1|u|3K̃3,n√
n

+ u2

2

√
K4,n

n

 du
= K3,n

3
√
n
J2
(
3,
√

2ε(n/K4,n)1/4, T/π, K̃3,n, K4,n, T, n
)

(4.20)

≤ 1.0253K3,n

6π
√
n

∫ T/π

√
2ε(n/K4,n)1/4

u2 exp
−u2

2 + χ1|u|3K̃3,n√
n

+ u2

2

√
K4,n

n

 du
where J2 is as defined in Equation (4.54).

Improved bound on I3,2(T ) under the assumption that E[X3
i ] = 0 for all i

When E[X3
i ] = 0 for all i = 1, . . . , n, the bound on I3,2(T ) can be further improved. The

proof mostly follows the reasoning of Section 4.A.3, with suitable modifications.
First, using a Taylor expansion of order 3 of fPXi around 0 (with explicit Lagrange

remainder) and the inequality |e−x − 1 + x| ≤ x2/2, we can claim for every real t∣∣∣fPXi (t)− e−t2σ2
i /2
∣∣∣ ≤ t4γi

24 + σ4
i t

4

8 ≤ t4γi
6 .

Reasoning as in the proof of Lemma 2.7 in Shevtsova (2012) with δ = 1, we obtain

∣∣∣fSn(t)− e−t2/2
∣∣∣ ≤ n∑

i=1

t4γi
6B4

n

exp
−t22 + χ1|t|3K̃3,n√

n
+ t2

2

√
K4,n

n


≤ K4,n

6n t4 exp
−t22 + χ1|t|3K̃3,n√

n
+ t2

2

√
K4,n

n

 .
Plugging this into the definition of I3,2(T ), we can write

I3,2(T ) = 2
T

∫ t0T

√
2ε(n/K4,n)1/4

|Ψ(u/T )|
∣∣∣fSn(u)− e−u2/2

∣∣∣ du,
≤ K4,n

3nT

∫ T/π

√
2ε(n/K4,n)1/4

|Ψ(u/T )|u4 exp
−u2

2 + χ1|u|3K̃3,n√
n

+ u2

2

√
K4,n

n

 du
≤ K4,n

3n J2
(
4,
√

2ε(n/K4,n)1/4, T/π, K̃3,n, K4,n, T, n), (4.21)

≤ 1.0253K4,n

6πn

∫ T/π

√
2ε(n/K4,n)1/4

u3 exp
−u2

2 + χ1|u|3K̃3,n√
n

+ u2

2

√
K4,n

n

 du.
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Conclusion: end of the proof of Theorem 4.3.

We start from Equation (4.8). The quantity Ω1 is bounded by Lemma 4.4, the quantity
Ω2 in Equation (4.15) and the quantity Ω3 in Equation (4.18). As a result,

sup
x∈R
|P (Sn ≤ x)−Gn(x)| ≤ Ω1(t0, T, |λ3,n|/

√
n) + Ω2(t0, T ) + Ω3(t0, T, λ3,n/

√
n)

≤ 1.2533
T

+ 0.3334|λ3,n|
T
√
n

+ 14.1961
T 4 + 4.3394|λ3,n|

T 3√n

+ 67.0415
T 4 + 1.2187

T 2 + I3,1(T ) + I3,2(T ) + I3,3(T )

≤ 1.2533K̃3,n

2π
√
n

+ 0.3334|λ3,n|K̃3,n

2πn +
1.2187K̃2

3,n

4πn + 0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)

+ 1.306e1,n(ε)|λ3,n|2

36n + r1,n,

where

r1,n :=
(14.1961 + 67.0415)K̃4

3,n

16π4n2 +
4.3394|λ3,n|K̃3

3,n

8π3n2

+ K3,n

3
√
n
J2
(
3,
√

2ε(n/K4,n)1/4, T/π, K̃3,n, K4,n, T, n
)

+ I3,3(T )

+ 1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R1,n(u, ε)du. (4.22)

Given the definition of R1,n(u, ε), the last term in (4.22) can be written as a sum of
elements depending on ε and on positive powers of K4,n

n
and |λ3,n|√

n
. Since K4,n and |λ3,n|

are bounded by assumption, we can see based on the definition of R1,n(u, ε) that the last
(and dominant) term in the definition of r1,n comes from U1,2,n, defined in Equation (4.43)
and gives the rate O(n−5/4).

When E[X3
i ] = 0 for every i = 1, . . . , n, we have λ3,n = 0. This removes the associated

terms. The second line in (4.22) becomes K4,n
3n J2

(
4,
√

2ε(n/K4,n)1/4, T/π, K̃3,n, K4,n, T, n).
The dominant term in r1,n which stems from Equation (4.43) is null whenever∑n
j=1 |E[X3

j ]| = 0. Under the new assumption, this term disappears and the next
term becomes the dominant one in the remainder r1,n. We finally obtain the bound
r1,n = O(n−3/2).

The remainder term r1,n as defined in Equation (4.22) is fully explicit although the
expression involves a number of complicated integrals. In the practical use of our bounds
on ∆n,E and ∆n,B (see Examples 4.2 and 4.6), we stick to that expression to obtain bounds
that are as sharp as possible using numerical integration to compute the different terms.
Nonetheless, to make the analysis of the asymptotic behavior of r1,n more transparent,
it is possible to further bound the different terms involved in Equation (4.22) by simpler
quantities. This is done in the subsection below for r1,n in the setting of Assumption 4.1
(setting 1. “no-continuity i.n.i.d.”) and with possible skewness (i.e., λ3,n 6= 0 a priori).
Similar analyses could be done to make more transparent the asymptotic behavior of the
remainder terms r1,n and r2,n under the different settings.
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Explicit expression for r1,n

By 4.B.4, we have

J2
(
3,
√

2ε(n/K4,n)1/4, T/π, K̃3,n, K4,n, T, n
)

≤ 1.0253× 8
√

2
2π

Γ
3/2, ε4

(
n

K4,n

)1/2
− Γ

3/2, n

2K̃2
3,n

 .
Moreover, we have

I3,3(T ) = 1.0253|λ3,n|
6π
√
n

(
Γ
(
1, ε(n/K4,n)1/2

)
− Γ

(
1, 2n/K̃2

3,n

))
.

Finally, we have

1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R1,n(u, ε)du = A1(n) + · · ·+ A7(n),

where

A1(n) := 1.0253
2(1− 3ε)2π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2u
6

24

(
K4,n

n

)3/2
du,

A2(n) := 1.0253
2(1− 3ε)2π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2 u
8

242

(
K4,n

n

)2
du,

A3(n) := 1.0253
2(1− 3ε)2π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2u
5

6

(
K4,n

n

)5/4
du,

A4(n) := 1.0253
2(1− 3ε)2π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2u
6

36

(
K4,n

n

)3/2
du,

A5(n) := 1.0253
2(1− 3ε)2π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2u
7

72

(
K4,n

n

)7/4
du,

A6(n) := 1.0253e1(ε)
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2u
8K2

4,n

2n2

(
1
24 + P1,n(ε)

2(1− 3ε)2

)2

du,

A7(n) := 1.0253e1(ε)
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2u
7|λ3,n|K4,n

6n3/2

(
1
24 + P1,n(ε)

2(1− 3ε)2

)
du,

where

P1,n(ε) :=
144 + 48ε+ 4ε2 +

{
96
√

2ε+ 32ε+ 16
√

2ε3/2
}
1 {∃i ∈ {1, ..., n} : E[X3

i ] 6= 0}
576 ,

e1(ε) := exp
(
ε2
(

1
6 + 2P1,n(ε)

(1− 3ε)2

))
.

Lemma 4.3. For any p > 0,
∫+∞
0 upe−u

2/2du = 2(p+1)/2Γ
(
(p+ 3)/2

)
.

Proof. We use the change of variable v = u2/2, u =
√

2v, dv = udu =
√

2v, so that∫ +∞

0
upe−u

2/2du =
∫ +∞

0
(2v)(p+1)/2e−vdv = 2(p+1)/2

∫ +∞

0
v(p+1)/2e−vdv,

and, by definition of Γ(·), this is equal to 2(p+1)/2Γ
(
(p+ 3)/2

)
as claimed.
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Therefore, we can finally write that the r1,n of Equation (4.22) is upper bounded by

rskew1,n := a9

n5/4 + a10

n6/4 + a11

n7/4 + a1

n2 + a2

n2 +

+
a3
(
Γ(3/2, a4

√
n)− Γ(3/2, a5n)

)
+ a6

(
Γ(1, a7

√
n)− Γ(1, a8n)

)
√
n

, (4.23)

with
– a1 := (14.1961 + 67.0415)K̃4

3,n/16π4 + (212/2 × Γ(12/2)× 1.0253/π)K2
4,n ×

(
1/(2×

242)(1− 3ε)2 + 1/24 + P1,n(ε)/2(1− 3ε)2
)
,

– a2 := 4.3394|λ3,n|K̃3
3,n/(8π3),

– a3 := 1.0253× 8
√

2K3,n/6π,
– a4 := ε/4

√
K4,n,

– a5 := 1/2K̃2
3,n,

– a6 := 1.0253|λ3,n|/6π,
– a7 := ε/K

1/2
4,n ,

– a8 := 2/K̃2
3,n,

– a9 := K
5/4
4,n × 29/2 × Γ(9/2)× 1.0253/12(1− 3ε)2π,

– a10 := (1.0253/π)×
(

210/2 × Γ(10/2)×K3/2
4,n × (1/24 + 1/36)/2(1− 3ε)2 + 211/2 ×

Γ(11/2)× |λ3,n|K4,n/6×
(
1/24 + P1,n(ε)/2(1− 3ε)2

))
,

– a11 := K
7/4
4,n × 211/2 × Γ(11/2)× 1.0253/144(1− 3ε)2π.

The leading term of rskew1,n decreases at rate n5/4, hence the bound r1,n = O(n−5/4) in this
setting “no-continuity i.n.i.d.” with possible skewness provided K4,n = O(1).

4.A.4 Proof of Theorem 4.1 under Assumption 4.2
We present and prove a more general result, Theorem 4.4, and choose ε = 0.1 to recover
Theorem 4.1 under Assumption 4.2 (numerical computations of e3(0.1) give the upper
bound e3(0.1) ≤ 1.012).

Theorem 4.4 (One-term Edgeworth expansion under Assumption 4.2). Let Assump-
tion 4.2 hold. For every ε ∈ (0, 1/3) and every n ≥ 2

∆n,E ≤
0.1995K̃3,n√

n
+ 1
n

{
0.031K̃2

3,n + 0.327K4,n

(
1
12 + 1

4(1− 3ε)2

)

+ 0.054|λ3,n|K̃3,n + 0.037e3(ε)|λ3,n|2
}

+ r1,n, (4.24)

where r1,n is given in Equation (4.30) and e3(ε) = eε
2/6+ε2/(2(1−3ε))2. We remark that

r1,n = O(n−5/4) whenever K4,n = O(1). If E[X3
n] = 0 the upper bound reduces to

0.1995K̃3,n√
n

+ 1
n

{
0.031K̃2

3,n + 0.327K4,n

(
1
12 + 1

4(1− 3ε)2

)}
+ r1,n, (4.25)

with r1,n = O(n−2) when K4,n = O(1).
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The overall method of proof is close to that in Section 4.A.3. In particular, the start of
the proof is unchanged: we apply Lemma 4.1, choosing t0 = 1/π, and Ω1 is still controlled
by Lemma 4.4. We keep with the choice T = 2π

√
n/K̃3,n. The steps leading to an upper

bound on Ω2 in Section 4.A.3 remain valid as well so that we can write

Ω2(1/π, T ) ≤ 67.0415
T 4 + 1.2187

T 2 , (4.26)

as in Equation (4.15). Thus, as described in Section 4.A.2, the treatment of Ω1 and Ω2
are common for Theorems 4.3 and 4.4. In contrast, as detailed below, the i.i.d. setting
of Assumption 4.2 enables to improve the control of the third term Ω3 coming from the
smoothing inequality.

Improved bound on Ω3

The control of Ω3 can be refined under Assumption 4.2. We have

Ω3
(
1/π, T, λ3,n/

√
n
)

= 2
∫ 1/π

0
|Ψ(t)|

∣∣∣∣∣fSn(Tt)− e−(Tt)2/2
(

1− λ3,ni(Tt)3

6
√
n

)∣∣∣∣∣ dt
≤ I4,1(T ) + I4,2(T ) + I4,3(T ), (4.27)

where

I4,1(T ) := 2
T

∫ √2ε(n/K4,n)1/4

0
|Ψ(u/T )|

∣∣∣∣∣fSn(u)− e−u2/2
(

1− iu3λ3,n

6
√
n

)∣∣∣∣∣ du,
I4,2(T ) := 2

T

∫ T/π

√
2ε(n/K4,n)1/4

|Ψ(u/T )|
∣∣∣fSn(u)− e−u2/2

∣∣∣ du,
I4,3(T ) := 2

T

|λ3,n|
6
√
n

∫ T/π

√
2ε(n/K4,n)1/4

|Ψ(u/T )| e−u2/2|u|3du.

The integrand of I4,1(T ) can be upper bounded thanks to Lemma 4.6. We obtain

I4,1(T ) ≤ K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
J1
(
4, 0,
√

2ε(n/K4,n)1/4, T
)

+ e2,n(ε)|λ3,n|2

36n J1
(
6, 0,
√

2ε(n/K4,n)1/4, T
)

+ 2
T

∫ √2ε(n/K4,n)1/4

0
|Ψ(u/T )|e−u2/2R2,n(u, ε)du

≤ 0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e2,n(ε)|λ3,n|2

36n

+ 1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R2,n(u, ε)du, (4.28)

using the expression of J1 given in Equation (4.53) and the first inequality in (4.9).
Moreover, we remark that

I4,3(T ) = |λ3,n|
3
√
n
J1(3,

√
2ε(n/K4,n)1/4, T/π, T ).

As in Section 4.B.4, we can prove that I4,3(T ) decays exponentially with n.
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We finally control the term I4,2(T ). Under the i.i.d. assumption, we can prove that,
for every real t,

∣∣∣fSn(t)− e−t2/2
∣∣∣ ≤ K3,n

6
√
n
|t|3 exp

(
−t

2

2 + χ1|t|3K̃3,n√
n

+ t2

2n

)
,

following the method of Section 4.A.3. Multiplying by |Ψ(t)| and integrating this inequality,
we get

I4,2(T ) ≤ K3,n

3
√
n
J3(3,

√
2ε(n/K4,n)1/4, T/π, K̃3,n, T, n), (4.29)

where

J3(p, v, w, K̃3,n, T, n) := 1
T

∫ w

v
|Ψ(u/T )|up exp

− u2

2

(
1− 2χ1|u|K̃3,n√

n
− 1
n

)du.
Recalling that T = 2π

√
n/K̃3,n we obtain

J3(3,
√

2ε(n/K4,n)1/4, T/π, K̃3,n, T, n)

= 1
T

∫ 2
√
n/K̃3,n

√
2ε(n/K4,n)1/4

|Ψ(u/T )|u3 exp
− u2

2

(
1− 2χ1|u|K̃3,n√

n
− 1
n

)du
≤ 1
T

∫ 2
√
n/K̃3,n

√
2ε(n/K4,n)1/4

|Ψ(u/T )|u3 exp
− u2

2

(
1− 4χ1 −

1
n

)du.
Note that 1− 4χ1 − 1/n > 0.1 as soon as n ≥ 2. As in Section 4.B.4, we can prove that
the latter term decays exponentially with n. The term I4,2(T ) is thus negligible. Using
the bound on |Ψ(·)| of Equation (4.9), we finally obtain

I4,2(T ) ≤ 1.0253K3,n

6π
√
n

∫ 2
√
n/K̃3,n

√
2ε(n/K4,n)1/4

u2 exp
(
−t

2

2 + χ1|t|3K̃3,n√
n

+ t2

2n

)
du.

If E[X3
n] = 0, the bound (4.29) can be further improved to

I4,2(T ) ≤ K4,n

3n J3(4,
√

2ε(n/K4,n)1/4, T/π, K̃3,n, T, n).

This can be recovered using the same techniques as in Section 4.A.3, ensuring again that
I4,2(T ) decays exponentially fast to zero with n. Thanks to the control on |Ψ(u/T )|, if
there is no skewness, we can upper bound I4,2(T ) by

I4,2(T ) ≤ 1.0253K4,n

6πn

∫ 2
√
n/K̃3,n

√
2ε(n/K4,n)1/4

u3 exp
(
−t

2

2 + χ1|t|3K̃3,n√
n

+ t2

2n

)
du.

Conclusion: end of the proof of Theorem 4.4

To conclude, we first use Equation (4.8), and manage all the terms separately. Ω1 is bounded
in Lemma 4.4, Ω2 is bounded in Equation (4.26) and Ω3 is bounded in Equation (4.28).
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We can claim that

sup
x∈R
|P (Sn ≤ x)−Gn(x)| ≤ Ω1(t0, T, |λ3,n|/

√
n) + Ω2(t0, T ) + Ω3(t0, T, λ3,n/

√
n)

≤ 1.2533
T

+ 0.3334|λ3,n|
T
√
n

+ 14.1961
T 4 + 4.3394|λ3,n|

T 3√n

+ 67.0415
T 4 + 1.2187

T 2 + I4,1(T ) + I4,2(T ) + I4,3(T )

≤ 1.2533 K̃3,n

2π
√
n

+ 0.3334|λ3,n| K̃3,n

2πn +
1.2187 K̃2

3,n

4π2n

+ 0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e3(ε)|λ3,n|2

36n + r1,n,

where

r1,n :=
(14.1961 + 67.0415)K̃4

3,n

24π4n2 +
4.3394|λ3,n|K̃3

3,n

8π3n2

+ K3,n

3
√
n
J3(3,

√
2ε(n/K4,n)1/4, T/π, K̃3,n, T, n) + I4,3(T )

+ 1.306(e2,n(ε)− e3(ε))|λ3,n|2

36n + 1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R2,n(u, ε)du (4.30)

The last term of Equation (4.30) is of order n−3/2 given the definition of R2,n(u, ε). The
quantity (e2,n(ε) − e3(ε))/n is of the order n−5/4 and is therefore dominant. Grouping
terms together yields Equation (4.24).

When E[X3
n] = 0, we have λ3,n = 0 which removes the corresponding terms. The

first term on the second line in (4.30) becomes K4,n
3n J3(4,

√
2ε(n/K4,n)1/4, T/π, K̃3,n, T, n).

Furthermore, the leading terms in r1,n are O(n−2) when λ3,n = 0 given the definition of
R2,n(u, ε).

4.A.5 Proof of Theorem 4.2 under Assumption 4.1
We use Theorem 4.5, proved below, with the choice ε = 0.1. We let t∗1 := θ∗1/(2π) where θ∗1
is the unique root in (0, 2π) of the equation θ2 + 2θ sin(θ) + 6(cos(θ)− 1) = 0. Numerical
approximations allow us to write t∗1 ≈ 0.64.

Theorem 4.5 (Alternative one-term Edgeworth expansion under Assumption 4.1). Let
Assumption 4.1 hold. For every ε ∈ (0, 1/3) and every n ≥ 2

∆n,E ≤
1
n

{
0.327K4,n

(
1
12 + 1

4(1− 3ε)2

)
+ 0.037e1,n(ε)λ2

3,n

}

+ 1.0253
π

∫ bn

an

|fSn(t)|
t

dt+ r2,n, (4.31)

where an = 2t∗1π/K̃3,n, bn = 4π2n/(t∗1K̃2
3,n) and r2,n is given in Equation (4.35). When

K4,n = O(1), we have r2,n = O(n−5/4). If E[X3
i ] = 0 for every i = 1, . . . , n, the upper

bound becomes
0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.0253

π

∫ bn

an

|fSn(t)|
t

dt+ r2,n, (4.32)

where r2,n = O(n−3/2) when K4,n = O(1).
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As before, we start the proof of Theorem 4.5 by applying Lemma 4.1 (with t0 = 1/π)
and use Lemma 4.4 to control Ω1 as in the “no-continuity” setting. As explained in
Section 4.A.2, in the “continuity” settings, the bounds on Ω2 and Ω3 are obtained in a
different way, which is explained below. We choose T = 16π4n2/K̃4

3,n.

Bound on Ω3

We decompose this term in five parts

Ω3(t0, T, λ3,n/
√
n) ≤ I5,1(T ) + I5,2(T ) + I5,3(T ) + I5,4(T ) + I5,5(T ),

where

I5,1(T ) := 2
T

∫ √2ε(n/K4,n)1/4

0
|Ψ(u/T )|

∣∣∣∣∣fSn(u)− e−u2/2
(

1− λ3,niu
3

6
√
n

)∣∣∣∣∣ du,
I5,2(T ) := E1,n

|λ3,n|
3T
√
n

∫ T 1/4/π

√
2ε(n/K4,n)1/4

|Ψ(u/T )|u3e−u
2/2du,

I5,3(T ) := E1,n
2
T

∫ T 1/4/π

√
2ε(n/K4,n)1/4

|Ψ(u/T )|
∣∣∣fSn(u)− e−u2/2

∣∣∣ du,
I5,4(T ) := E2,n

|λ3,n|
3T
√
n

∫ T/π

T 1/4/π
|Ψ(u/T )| |u|3e−u2/2du,

I5,5(T ) := E2,n
2
T

∫ T/π

T 1/4/π
|Ψ(u/T )|

∣∣∣fSn(u)− e−u2/2
∣∣∣ du,

where E1,n := 1{
√

2ε(n/K4,n)1/4<T 1/4/π} and E2,n := 1{T 1/4<T}. Note that if T 1/4 > T or√
2ε(n/K4,n)1/4 > T 1/4/π, our bounds are still valid and can even be improved in the sense

that the corresponding integrals can be removed.
Remarking that I5,1(T ) = I3,1(T ), we can bound this term using Equation (4.17). We

now turn to I5,2(T ) and I5,3(T ). Assume that
√

2ε(n/K4,n)1/4 < T 1/4/π, as the bound is
trivially proved in the other case. We remark that I5,2(T ) (resp. I5,3(T )) can be bounded
exactly as I3,3(T ) in Section 4.A.3 (resp. as I3,2(T )). Consequently,

I5,2(T ) ≤ |λ3,n|
3
√
n

∫ T 1/4/π

√
2ε(n/K4,n)1/4

1.0253
2π u2e−u

2/2du

= 1.0253 |λ3,n|
3π
√

2
√
n

(
Γ
(
3/2 , ε(n/K4,n)1/2

)
− Γ

(
3/2 , T 1/2/2π2

))
,

and

I5,3(T ) ≤ 2
T

∫ T 1/4/π

√
2ε(n/K4,n)1/4

|Ψ(u/T )|K3,n

6
√
n
|t|3 exp

−t22 + χ1|t|3K̃3,n√
n

+
t2
√
K4,n

2
√
n

 du
= K3,n

3
√
n
J2
(
3,
√

2ε(n/K4,n)1/4, T 1/4/π, K̃3,n, K4,n, T, n
)
,

and these terms decrease to zero exponentially fast when n goes to infinity.
Note that whenever E[X3

i ] = 0 for all i = 1, . . . , n, the improvements detailed in
Section 4.A.3 can be used as well, resulting in a tighter bound on I5,2 where the factor
K3,n/

√
n is replaced by K4,n/n and the first argument of J2 becomes 4 instead of 3.
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We have to deal with I5,4(T ) and I5,5(T ). We assume that T 1/4 < T, otherwise there is
nothing to prove. Obviously I5,4(T ) can be bounded in a similar vein as I5,2(T )

I5,4(T ) = 1.0253 |λ3,n|
3π
√

2
√
n

(
Γ
(
3/2 , T 1/2/2π2

)
− Γ

(
3/2 , T 2/2π2

))
,

and it converges exponentially fast to zero.
To control I5,5(T ), we write

I5,5(T ) ≤ J3(T ) + J4(T ) + J5(T ),

where

J3(T ) := 2
T

∫ t∗1T
1/4

T 1/4/π
|Ψ(u/T )| |fSn(u)| du = 2

T 3/4

∫ t∗1

1/π
|Ψ(v/T 3/4)|

∣∣∣fSn(T 1/4v)
∣∣∣ dv,

J4(T ) := 1{t∗1T 1/4<T/π}
2
T

∫ T/π

t∗1T
1/4
|Ψ(u/T )| |fSn(u)| du,

J5(T ) := 2
T

∫ T/π

T 1/4/π
|Ψ(u/T )|e−u2/2du.

By Lemma 4.2 and our choice of T, we know |fSn(T 1/4v)| can be upper bounded by
e−

T1/2v2
2 (1−4πχ1|v|) when v ∈ [1/π, t∗1]. We get (using 1− 4πχ1t

∗
1 > 0)

J3(T ) ≤ 2
T 3/4

∫ t∗1

1/π
|Ψ(v/T 3/4)|e−T

1/2v2
2 (1−4πχ1|v|)dv

≤1.0253
π

∫ t∗1

1/π
v−1e−

T1/2v2
2 (1−4πχ1t∗1)dv

=1.0253
2π

∫ t∗21 T 1/2(1−4πχ1t∗1)/2

T 1/2(1−4πχ1t∗1)/(2π2)
u−1e−udu

=1.0253
2π

(
Γ
(
T 1/2(1− 4πχ1t

∗
1)/(2π2), 0

)
− Γ

(
t∗21 T

1/2(1− 4πχ1t
∗
1)/2, 0

))
.

As a result, we conclude that J3(T ) decreases to zero exponentially fast with n.
To control J4(T ), we use the properties of u 7→ Ψ(u) to write

J4(T ) ≤ 1{t∗1T 1/4<T/π}
1.0253
π

∫ T/π

t∗1T
1/4
u−1|fSn(u)|du.

To upper bound J5(T ), we can reason as for J3(T ) to conclude that this term converges
to zero exponentially fast.

As a result, we conclude

Ω3(1/π, T, λ3,n/
√
n) ≤I5,1(T ) + I5,2(T ) + I5,3(T ) + I5,4(T ) + I5,5(T )

≤0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e1,n(ε)

36
|λ3,n|2

n

+ 1{t∗1T 1/4<T/π}
1.0253
π

∫ T/π

t∗1T
1/4
u−1|fSn(u)|du+O(n−5/4). (4.33)
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Conclusion: end of the proof of Theorem 4.5

We can write

Ω2(1/π, T ) ≤ 1.0253
π

∫ T

T/π
u−1|fSn(u)|du. (4.34)

To sum up, we first use Equation (4.8), and manage all the terms separately. Ω1
is bounded in Lemma 4.4, Ω2 is bounded in Equation (4.34) and Ω3 is bounded in
Equation (4.33). Given the definitions of an and bn, we conclude

sup
x∈R
|P (Sn ≤ x)−Gn(x)| ≤ Ω1(t0, T, |λ3,n|/

√
n) + Ω2(t0, T ) + Ω3(t0, T, λ3,n/

√
n)

≤ 1.2533
T

+ 0.3334|λ3,n|
T
√
n

+ 14.1961
T 4 + 4.3394|λ3,n|

T 3√n

+ 1.0253
π

∫ T

T/π
u−1|fSn(u)|du+ I5,1(T ) + I5,2(T ) + I5,3(T ) + I5,4(T ) + I5,5(T )

≤ 0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e1,n(ε)|λ3,n|2

36n

+ 1.0253
π

∫ bn

an
u−1|fSn(u)|du+ r2,n,

where

r2,n :=
1.2533K̃4

3,n

16π4n2 +
0.3334|λ3,n|K̃4

3,n

16π4n5/2 +
14.1961K̃16

3,n

164π16n8 +
4.3394|λ3,n|K̃12

3,n

163π12n6√n

+ I5,2(T ) + I5,4(T ) + J3(T ) + J5(T ) + K3,n

3
√
n
J2
(
3,
√

2ε/(nK4,n)1/4, T 1/4/π, K̃3,n, K4,n, T, n
)

+ 1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R1,n(u, ε)du. (4.35)

All terms but the last one in the definition of r2,n are at most of order n−2. As explained
in Section 4.A.3, the last term is of order O(n−5/4) so that r2,n = O(n−5/4).

When E[X3
i ] = 0 for every i = 1, . . . , n, we have λ3,n = 0, which removes the corre-

sponding terms. The final term on the second line in (4.35) becomes
K4,n
3n J2

(
4,
√

2ε(n/K4,n)1/4, T 1/4/π, K̃3,n, K4,n, T, n). Under the new assumption, the domi-
nant term in r2,n has the rate n−3/2 which implies r2,n = O(n−3/2).

4.A.6 Proof of Theorem 4.2 under Assumption 4.2
We use Theorem 4.6, proved below, with the choice ε = 0.1.

Theorem 4.6 (Alternative one-term Edgeworth expansion under Assumption 4.2). Let
Assumption 4.2 hold. For every ε ∈ (0, 1/3) and every n ≥ 1

∆n,E ≤
1
n

{
0.327K4,n

(
1
12 + 1

4(1− 3ε)2

)
+ 0.037e3(ε)λ2

3,n

}

+ 1.0253
π

∫ bn

an

|fSn(t)|
t

dt+ r2,n, (4.36)
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where an = 2t∗1π/K̃3,n, bn = 4π2n/(t∗1K̃2
3,n) and r2,n is given in Equation (4.40). We have

r2,n = O(n−5/4) as soon as K4,n = O(1). If E[X3
n] = 0, the upper bound becomes

0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.0253

π

∫ bn

an

|fSn(t)|
t

dt+ r2,n, (4.37)

where r2,n = O(n−2) when K4,n = O(1).

The proof of Theorem 4.6 is very similar to that of Theorem 4.5. We start by applying
Lemma 4.1 (with t0 = 1/π) and use Lemma 4.4 to control Ω1. There remains to bound Ω2
and Ω3. We choose T = 16π4n2/K̃4

3,n again.

Bound on Ω3

As in the proof of Theorem 4.5, we write

Ω3(t0, T, λ3,n/
√
n) ≤ I5,1(T ) + I5,2(T ) + I5,3(T ) + I5,4(T ) + I5,5(T ),

where the terms in the upper bound are defined in Section 4.A.5.
The terms I5,2(T ) and I5,4(T ) are controlled similarly as in the i.n.i.d. case of Sec-

tion 4.A.5. We have I5,1(T ) = I4,1(T ) so that we can use the upper bound in (4.28). The
term I5,3(T ) can be controlled as I4,2(T ). We upper bound I5,5(T ) as in Section 4.A.5

I5,5(T ) ≤ J3(T ) + J4(T ) + J5(T ).

The proof that J3(T ) and J5(T ) decrease exponentially fast to zero with n is still valid.
We finally obtain

Ω3(1/π, T, λ3,n/
√
n) ≤I5,1(T ) + I5,2(T ) + I5,3(T ) + I5,4(T ) + I5,5(T )

≤0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e3(ε)

36
|λ3,n|2

n

+ 1{t∗1T 1/4<T/π}
1.0253
π

∫ T/π

t∗1T
1/4
u−1|fSn(u)|du. (4.38)

Conclusion: end of the proof of Theorem 4.6

We have

Ω2(1/π, T ) ≤ 1.0253
π

∫ T

T/π
u−1|fSn(u)|du. (4.39)

To sum up, we first use Equation (4.8), and manage all the terms separately. Ω1
is bounded in Lemma 4.4, Ω2 is bounded in Equation (4.39) and Ω3 is bounded in
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Equation (4.38). Using the definitions of an and bn, we conclude

sup
x∈R
|P (Sn ≤ x)−Gn(x)| ≤ Ω1(t0, T, |λ3,n|/

√
n) + Ω2(t0, T ) + Ω3(t0, T, λ3,n/

√
n)

≤ 1.2533
T

+ 0.3334|λ3,n|
T
√
n

+ 14.1961
T 4 + 4.3394|λ3,n|

T 3√n

+ 1.0253
π

∫ T

T/π
u−1|fSn(u)|du

+ I5,1(T ) + I5,2(T ) + I5,3(T ) + I5,4(T ) + I5,5(T )

≤ 0.327K4,n

n

(
1
12 + 1

4(1− 3ε)2

)
+ 1.306e3(ε)|λ3,n|2

36n

+ 1.0253
π

∫ bn

an
u−1|fSn(u)|du+ r2,n,

where

r2,n :=
1.2533K̃4

3,n

16π4n2 +
0.3334|λ3,n|K̃4

3,n

16π4n5/2 +
14.1961K̃16

3,n

164π16n8 +
4.3394|λ3,n|K̃12

3,n

163π12n6√n

+ I5,2(T ) + I5,4(T ) + J3(T ) + J5(T ) + K3,n

3
√
n
J3(3,

√
2ε(n/K4,n)1/4, T 1/4/π, K̃3,n, T, n)

+ 1.306(e2,n(ε)− e3(ε))|λ3,n|2

36n + 1.0253
π

∫ √2ε(n/K4,n)1/4

0
ue−u

2/2R2,n(u, ε)du. (4.40)

All terms but the last one in the definition of r2,n are at most of order n−2. As explained
in Section 4.A.4, the last term is of order O(n−5/4) so that r2,n = O(n−5/4).

When E[X3
n] = 0, we have λ3,n = 0 which removes the corresponding terms. The final

term on the second line in (4.40) becomes K4,n
3n J3(4,

√
2ε(n/K4,n)1/4, T 1/4/π, K̃3,n, T, n).

Under the new assumption, the dominant term in r2,n has the rate n−2 which implies
r2,n = O(n−2).
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Appendix 4.B Technical lemmas

4.B.1 Control of the term Ω1

Lemma 4.4. For every T > 0, we have

Ω1(1/π, T, |λ3,n|/
√
n) ≤ 1.2533

T
+ 0.3334|λ3,n|

T
√
n

+ 14.1961
T 4 + 4.3394|λ3,n|

T 3√n
. (4.41)

Proof. With the choice t0 = 1/π, the function Ω1(1/π, T, v) can be decomposed as

Ω1(t0, T, v) := I1,1(T )
T

+ v × I1,2(T )
T

+ I1,3(T )
T 4 + v × I1,4(T )

T 3

where

I1,1(T ) := T
∫ 1/π

0

∣∣∣∣2Ψ(t)− i

πt

∣∣∣∣ e−(Tt)2/2dt,

I1,2(T ) := T 4
∫ 1/π

0

∣∣∣∣2Ψ(t)− i

πt

∣∣∣∣ e−(Tt)2/2 t
3

6 dt,

I1,3(T ) := T 4 1
π

∫ +∞

1/π

e−(Tt)2/2

t
dt = T 4

2πΓ
(

0 , T
2

2π2

)
,

I1,4(T ) := T 6 1
π

∫ +∞

1/π
e−(Tt)2/2 t

2

6 dt = T 3

3
√

2π

∫ +∞

T 2/(2π2)
e−u
√
udu = T 3

3
√

2π
Γ
(

3
2 ,

T 2

2π2

)
.

On the last two lines, we used the change of variable u = (tT )2/2 and the incomplete
Gamma function Γ(a, x) :=

∫+∞
x ua−1e−udu which can be computed numberically using

the package expint (Goulet, 2016) in R. We estimate numerically the first two integrals
using the R package cubature (Narasimhan et al., 2020) and optimize using the optimize
function with the L-BFGS-B method, we find the following upper bounds:7

sup
T≥0

I1,1(T ) ≤ 1.2533, sup
T≥0

I1,2(T ) ≤ 0.3334,

sup
T≥0

I1,3(T ) ≤ 14.1961, sup
T≥0

I1,4(T ) ≤ 4.3394,

which finishes the proof.

Note that the first term on the right-hand side of (4.41) is of leading order as soon
as |λ3,n|/

√
n = o(1) and T = T (n) = o(1). Our approach is related to the one used

in Shevtsova (2012), except that we do not upper bound Ω1 analytically, which allows
us to get a sharper control on this term. To further highlight the gains from using
numerical approximations instead of direct analytical upper bounds, we remark that from∣∣∣Ψ(t)− i

2πt

∣∣∣ ≤ 1
2

(
1− |t|+ π2t2

18

)
and some integration steps, we get

I1,1(T ) ≤ T
∫ 1/π

0

(
1− |t|+ π2t2

18

)
e−(Tt)2/2dt

=
√

2π
(

Φ(T/π)− 1
2

)
+ 1
T

(
e−(T/π)2/2 − 1

)
+ π5/2

9
√

2T 2
EU∼N (0,1)[U21 {0 ≤ U ≤ T/π}]

≤
√

2π + 1
T

(
e−T

2/(2π2) − 1
)

+ π5/2

9
√

2T 2
,

7We would be happy to share the code upon request.
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whose main term is approximately twice as large as the numerical bound 1.2533 that we
obtained before.

4.B.2 Control of the residual term in an Edgeworth expansion
under Assumption 4.1

For ε ∈ (0, 1/3) and t ≥ 0, let us define the following quantities:

R1,n(t, ε) := U1,1,n(t) + U1,2,n(t)
2(1− 3ε)2

+ e1(ε)
t8K2

4,n

2n2

(
1
24 + P1,n(ε)

2(1− 3ε)2

)2

+ |t|
7|λ3,n|K4,n

6n3/2

(
1
24 + P1,n(ε)

2(1− 3ε)2

) ,
P1,n(ε) :=

144 + 48ε+ 4ε2 +
{

96
√

2ε+ 32ε+ 16
√

2ε3/2
}
1 {∃i ∈ {1, ..., n} : E[X3

i ] 6= 0}
576 ,

e1(ε) := exp
(
ε2
(

1
6 + 2P1,n(ε)

(1− 3ε)2

))
, (4.42)

U1,1,n(t) := t6

24

(
K4,n

n

)3/2
+ t8

242

(
K4,n

n

)2
,

U1,2,n(t) :=
(
|t|5

6

(
K4,n

n

)5/4
+ t6

36

(
K4,n

n

)3/2
+ |t|

7

72

(
K4,n

n

)7/4)
1
{
∃i ∈ {1, ..., n} : E[X3

i ] 6= 0
}
.

(4.43)

We want to show the following lemma:

Lemma 4.5. Under Assumption 4.1, for every ε ∈ (0, 1/3) and t such that |t| ≤√
2ε(n/K4,n)1/4, we have∣∣∣∣∣fSn(t)− e− t

2
2

(
1− it3λ3,n

6
√
n

)∣∣∣∣∣ ≤ e−t
2/2
{
t4K4,n

8n

(
1
3 + 1

(1− 3ε)2

)
+ e1(ε)|t|6|λ3,n|2

72n +R1,n(t, ε)
}
.

Proof of Lemma 4.5: Remember that γj := E[X4
j ], σj :=

√
E[X2

j ], Bn :=
√∑n

i=1 E[X2
i ]

and K4,n := n−1∑n
i=1 E[X4

i ] / (n−1B2
n)2. Applying Cauchy-Schwartz inequality, we get

max
1≤j≤n

σ2
j ≤ max

1≤j≤n
γ

1/2
j ≤

(
n∑
j=1

γj

)1/2

= B2
n(K4,n/n)1/2, (4.44)

max
1≤j≤n

E[|Xj|3] ≤ max
1≤j≤n

γ
3/4
j ≤

(
n∑
j=1

γj

)3/4

= B3
n(K4,n/n)3/4, (4.45)

and

max
1≤j≤n

γj ≤
n∑
j=1

γj = B4
nK4,n/n. (4.46)

Combining (4.44), (4.45) and (4.46), we observe that for every ε ∈ (0, 1) and t such
that |t| ≤

√
2ε(n/K4,n)1/4,

max
1≤j≤n

{
σ2
j t

2

2B2
n

+ E[|Xj|3]× |t|3
6B3

n

+ γjt
4

24B4
n

}
≤ 3ε. (4.47)
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As we assume that Xj has a moment of order four for every j = 1, . . . , n, the character-
istic functions (fPXj )j=1,...,n are four times differentiable on R. Applying a Taylor-Lagrange
expansion, we get the existence of a complex number θ1,j,n(t) such that |θ1,j,n(t)| ≤ 1 and

Uj,n(t) := fPXj (t/Bn)− 1 = −
σ2
j t

2

2B2
n

−
iE[X3

j ] t3

6B3
n

+ θ1,j,n(t)γjt4
24B4

n

,

for every t ∈ R and j = 1, . . . , n. Let log stand for the principal branch of the complex
logarithm function. For every ε ∈ (0, 1/3) and t such that |t| ≤

√
2ε(n/K4,n)1/4, Equa-

tion (4.47) shows that |Uj,n(t)| ≤ 3ε < 1, so that we can use another Taylor-Lagrange
expansion. This ensures existence of a complex number θ2,j,n(t) such that |θ2,j,n(t)| ≤ 1
and

log(fPXj (t/Bn)) = log(1 + Uj,n(t)) = Uj,n(t)− Uj,n(t)2

2(1 + θ2,j,n(t)Uj,n(t))2 .

Summing over j = 1, . . . , n and exponentiating, we can claim that under the same
conditions on t and ε,

fSn(t) = exp
−t22 − it3λ3,n

6
√
n

+ t4
n∑
j=1

θ1,j,n(t)γj
24B4

n

−
n∑
j=1

Uj,n(t)2

2(1 + θ2,j,n(t)Uj,n(t))2

 .
A third Taylor-Lagrange expansion guarantees existence of a complex number θ3,n(t) with

modulus at most exp
(
t4K4,n

24n +∑n
j=1

|Uj,n(t)|2
2|1+θ2,j,n(t)Uj,n(t)|2

)
such that

fSn(t) = e−t
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1− it3λ3,n

6
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n∑
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Uj,n(t)2
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24B4
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−
n∑
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2(1 + θ2,j,n(t)Uj,n(t))2

2
 .

Using the triangle inequality and its reverse version, as well as the restriction on |t| ≤√
2ε(n/K4,n)1/4, we can write∣∣∣∣∣∣fSn(t)− e−t2/2

(
1− it3λ3,n

6
√
n
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(4.48)

We now control ∑n
j=1 |Uj,n(t)|2. We first expand the squares, giving the decomposition

n∑
j=1
|Uj,n(t)|2 =

t4
∑n
j=1 σ

4
j

4B4
n

+
t6
∑n
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2
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+
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2
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2
jγj

24B6
n

+
|t|7∑n

j=1 |E[X3
j ]|γj

72B7
n

. (4.49)
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Using Equations (4.44)-(4.46), we can bound the right-hand side of Equation (4.49) in the
following manner

t4
∑n
j=1 σ

4
j

4B4
n

≤ t4K4,n

4n ,

t6
∑n
j=1 σ

2
jγj
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2
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242B8
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(
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and
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{
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=: U1,2,n(t). (4.50)

Moreover, we have ∑n
j=1 Uj,n(t)2 ≤ t4K4,n

n
P1,n(ε) under our conditions on ε and t. Com-

bining Equation (4.48), the decomposition (4.49) and the previous three bounds, and
grouping similar terms together, we conclude that for every ε ∈ (0, 1/3) and t such that
|t| ≤

√
2ε(n/K4,n)1/4,∣∣∣∣∣fSn(t)− e− t

2
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where e1(ε) := exp

(
ε2
(

1
6 + 2P1,n(ε)

(1−3ε)2

))
. Combining this with the definition of R1,n(t, ε)

finishes the proof. �

4.B.3 Control of the residual term in an Edgeworth expansion
under Assumption 4.2

Lemma 4.5 can be improved in the i.i.d. framework. To do so, we introduce analogues of
R1,n(t, ε), P1,n(ε), e2,n(ε) and U1,2,n(t) defined by

R2,n(t, ε) := U2,2,n(t)
2(1− 3ε)2 + e2,n(ε)
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4 + P3,n(ε)
576 ,
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P3,n(ε) := 96
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+
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Note that
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where e3(ε) := eε
2/6+ε2/(2(1−3ε))2 .

Lemma 4.6. Under Assumption 4.2, for every ε ∈ (0, 1/3) and t such that |t| ≤√
2ε(n/K4,n)1/4,∣∣∣∣∣fSn(t)− e− t
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.
Proof of Lemma 4.6: This proof is very similar to that of Lemma 4.5. We note that
Bn = σ

√
n. As before, using two Taylor-Lagrange expansions successively, we can write

that for every ε ∈ (0, 1/3) and t such that |t| ≤
√

2εn/K1/4
4,n

log(fPXn (t/Bn)) = U1,n(t)− U1,n(t)2
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where
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and θ1,n(t) and θ2,n(t) are two complex numbers with modulus bounded by 1. Using a
third Taylor-Lagrange expansion, we can write that for some complex θ3,n(t) with modulus
bounded by exp
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, the following holds

fSn(t) = e−
t2
2

1− it3λ3,n

6
√
n

+ t4K4,nθ1,n(t)
24n − nU1,n(t)2

2(1 + θ2,n(t)U1,n(t))2

+ θ3,n(t)
2

(
−it

3λ3,n

6
√
n

+ t4K4,nθ1,n(t)
24n − nU1,n(t)2

2(1 + θ2,n(t)U1,n(t))2

)2
.

Using the triangle inequality and its reverse version plus the condition |t| ≤
√

2ε(n/K4,n)1/4,
we obtain∣∣∣∣∣fSn(t)− e−t2/2
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We can decompose nU1,n(t)2 as
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Combining Equations (4.51) and (4.52) and grouping terms, we conclude that for every
ε ∈ (0, 1/3) and t such that |t| ≤
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4.B.4 Two bounds on incomplete Gamma-like integrals
For every p ≥ 1, l < m and T > 0, we define J1 and J2 by

J1(p, l,m, T ) := 1
T

∫ m

l
|Ψ(u/T )|upe−u2/2du (4.53)
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)du. (4.54)

We have
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. (4.55)

To obtain (4.55), we resort to the first inequality in (4.9) and the change of variable
v = u2/2, and we let Γ(a) stand for Γ(a, 0).

Exponential decay of the term J2.

Using the first inequality in (4.9), we get
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We now use our choice of T which leads to
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Note that 1 − 4χ1 − (K4,n/n)1/2 > 1/4 when n > K4,n/(0.75 − 4χ1)2, i.e., as soon as
n ≥ 8K4,n. When this is the case, we have
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where we use the change of variable v = u2/8.

4.B.5 Proof of Proposition 4.4
The assumed integrability condition implies that fQ is absolutely integrable, and therefore
we can apply the inversion formula (Ushakov, 2011, Theorem 1.2.6) so that for any x ∈ R,

q(x) =
∫ +∞

−∞
r(x, t)dt.

where r(x, t) := 1
2πe

−itxfP (t). Note that r is infinitely differentiable with respect to x,
and that ∣∣∣∣∣∂r(x, t)∂xp−1

∣∣∣∣∣ =
∣∣∣∣ 1
2π (−it)p−1e−itxfP (t)

∣∣∣∣ = 1
2π |t|

p−1
∣∣∣fP (t)

∣∣∣,
which is integrable with respect to t, by assumption. This concludes the proof that q is
(p− 1) times differentiable, as r is measurable.



Chapter 5

On the construction of
nonasymptotic confidence intervals
in linear models

This fifth chapter uses the result of the fourth one to construct nonasymptotic confidence
intervals in linear models. It is again joint work with Alexis Derumigny and Yannick
Guyonvarch.

Abstract We are concerned with constructing nonasymptotic confidence intervals (CIs) for linear
functionals of the vector of coefficients in a linear regression model, i.e., CIs that have a probability of
containing the true parameter at least equal to their nominal level for any sample size. In the linear
regression setting with exogenous regressors, we propose a novel closed-form CI that is tightly connected to
the one based on the standard t-statistic. Unlike the latter, which has only asymptotic theoretical validity,
ours is valid for any sample size, uniformly over a large class of distributions defined by moment restrictions
only (nonparametric). In particular, we allow for heteroskedasticity but require the influence function of
the OLS estimator to have bounded kurtosis. Furthermore, the length of our CI converges in probability
to the one of the standard CI based on the t-statistic, so that our inferential procedure is asymptotically
exact. We investigate the practical performance of our method in a simulation study. We extend our
theoretical results to linear models with endogeneity: with one endogenous regressor, one instrument, and
additional exogenous covariates, we propose a modification of the asymptotic Anderson-Rubin confidence
set (CS) that is valid for any sample size under analogous conditions to the exogenous case. Our work
builds upon a long-standing statistics literature that was crucially influenced by Esseen (1945) and Cramer
(1962).
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5.1 Introduction
A large part of applied works in economics uses linear regression models. In general,
interest does not lie in the entire vector of parameters but in some individual coefficients,
typically the coefficient of a treatment status indicator. In a vast majority of applications,
confidence intervals (CIs) for such coefficients are based on the asymptotic normality of
the corresponding t-statistic, which requires minimal moment conditions on regressors
and residuals. Consequently, their theoretical guarantees hold only at the limit, when the
number of observations tends to infinity.

From a theoretical viewpoint, it has been established that CIs based on the t-statistic
have poor properties in finite samples without additional assumptions (see Bahadur and
Savage (1956), Dufour (1997), or Bertanha and Moreira (2016)). More precisely, the
probability that they contain the true parameter (i.e. their coverage) falls below their
stated nominal level. To circumvent this failure, one can impose that the residuals of the
model (I) are independent of the regressors, and (N) follow a Gaussian distributionN (0, σ2).
However, those conditions can often be deemed too restrictive. In particular, the first one
rules out heteroskedasticity while the second cannot encompass heavy-tailed or skewed
distributions although various economic variables display such behavior.1

Those limitations have prompted a whole strand of research in econometrics and
statistics which aims at constructing nonasymptotic CIs without relying on (I) and (N).
Nonasymptotic means that, for any sample size, the CI should contain the true parameter
with a probability equal or larger to a user-specified threshold 1− α, with α ∈ (0, 1). We
evoke some of these approaches below. Here, we briefly highlight the main challenges faced
by nonasymptotic CIs.

The first one relates to their lengths. A very coarse method to address the lack of
coverage would be to increase the length of the usual CI based on asymptotic normality,
multiplying it by, say, two. By doing so, we would mechanically be less worried about
potential departures from their nominal level in finite samples. However, the resulting
CI would suffer from being conservative asymptotically: at the limit, it contains the true
parameter with a probability that exceeds the desired level 1− α. This is unappealing:
by setting a nominal level to 1− α, we are ready and willing to accept that our CIs miss
the parameter with probability α in exchange for an increased precision through smaller
CIs’ lengths. A second challenge when constructing CIs relates to uniformity. Since we do
not know the true distribution of the data, we want CIs which attain a minimal coverage
whatever this distribution is, provided it belongs to a given class of distributions that
constitutes our statistical model.

The two issues interact. Ideally, we are looking for a CI whose coverage is exactly
equal to 1− α for any sample size (hence said to be exact instead of conservative),2 and
for any distribution within a class as large as possible. The impossibility results presented
in Bahadur and Savage (1956), Dufour (1997), or Bertanha and Moreira (2016) extend
beyond the t-statistic and notably imply that such a general objective cannot be achieved.

1Here, “heavy-tailed” refers to distributions whose moments are not finite from a certain order contrary
to Gaussian ones. For aggregate macroeconomic variables, see for instance Acemoglu et al. (2017)
and Ascari et al. (2015); for individual microeconomic variables, an example is the modelling of wage
distributions by a Pareto distribution, whose number of finite moments depends on its shape parameter.

2The term “exact” is sometimes also used to refer to finite-sample properties. In this paper, we use the
words “nonasymptotic” for the latter and “exact” in opposition to “conservative”.
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More precisely, a trade-off arises between how sharp a CI’s properties can be (typically
being exact, not conservative) and the richness of the class of distributions the CI applies
to. The coverage generally depends on some specific characteristics of the data-generating
process. This is why achieving a coverage exactly equal to some given threshold in finite
samples entails severe restrictions on the class of distributions we consider (cf. assumptions
(I) and (N) above or Example 5.1 that illustrates our discussion in the simpler example of
conducting inference for an expectation). In that sense, requiring nonasymptotic exactness
is very demanding.

On the other hand, it is more reasonable to ask for asymptotic exactness. A formal
definition is given in Section 5.2. As for now, consider that a CI is said to be asymptotically
exact if, whatever the distribution of the data inside a given class, the limit when the
sample size tends to infinity of its coverage is equal to 1− α.3 Asymptotic exactness can
be used as an optimality criterion to choose which inferential procedures are the best
among a set of admissible CIs. The usual CI relying on the asymptotic normality of the
t-statistic is asymptotically exact. As a result, a “good” CI should behave like the one
based on the t-statistic at the limit.

In this paper, our objective is to construct nonasymptotic CIs in linear regression
models, having guaranteed coverage for any sample size, and that are asymptotically exact
without relying on the restrictive assumptions of independent and normal residuals.

We first consider linear models without endogenous regressors and seek to conduct
inference on scalar parameters of the form u′β0, where u is a known vector and β0
corresponds to the coefficients of the linear regression under investigation.4 Leveraging
results for self-normalized sums and bounds on Edgeworth expansions, we derive CIs for
such parameters under moment conditions only. In particular, we impose two moments
restrictions on the joint distribution of regressors and residuals: a bounded fourth moment
for the residuals times regressors and a bounded kurtosis for the influence function of
the OLS estimator. Compared to the usual CI based on the asymptotic normality of the
t-statistic, these conditions can be deemed the main additional ones. Indeed, the other
restrictions we rely on essentially strengthen the usual moment conditions of linear models,
putting bounds that are somewhat unavoidable to achieve nonasymptotic properties in
nonparametric statistical models. We also present an improved version of our CI under
additional regularity conditions, which are closely connected to the residuals and regressors
having a continuous distribution with respect to Lebesgue’s measure. To the best of our
knowledge, our procedure is the first to meet the following four criteria at the same time
in linear regression models without endogenous regressors: (i) nonasymptotic validity, (ii)
allowing for heteroskedasticity, (iii) asymptotic exactness, and (iv) having a closed form
expression.

In addition to its theoretical properties, our procedure can prove interesting in practice.
The closed-form expression of our CI makes it immediate to compute. Nonetheless,
our method requires knowledge of bounds. Such types of inputs are common to build
nonasymptotic procedures. Practitioners can use external information to state sensible
values for those bounds. When lacking such a priori knowledge, we propose a plug-in
strategy to replace those unknown bounds and discuss its relevance. Some simulation
studies reveal the possible usefulness of our procedure in real applications. In moderate

3The important part is “equal”, in opposition to “larger or equal” for conservative CIs.
4We note that conducting inference on individual coefficients of the linear model falls in that category.
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(thousands of observations) to small (hundreds) samples, although broader than the classical
t-statistic’s one in order to ensure finite-sample coverage, our CI appears sufficiently precise
to be informative about the parameter of interest.

We finally extend our theoretical analysis to cases with one endogenous regressor, one
instrument, and exogenous covariates. This configuration does not exhaust linear models
with endogeneity. Nonetheless, according to the recent review of Andrews et al. (2019),
it is the leading case. In this setting, we construct a modified version of the Anderson
and Rubin (1949)’s confidence set (CS).5 As in the exogenous case, under similar moment
conditions, our CS has guaranteed coverage for any sample size and simultaneously is
asymptotically exact. Moreover, similar to Anderson and Rubin’s CS, it remains valid
even in the weak instrumental variable (IV) case: when the instrument is uncorrelated
with the endogenous variable.

The rest of the paper is organized as follows. A literature review completes this
introduction followed by the notation used in the paper. Section 5.2 defines several
characteristics of confidence sets that enable to gauge their performance. It also discusses
in detail how to construct CIs for an expectation to illustrate the major trade-offs and
strategies in a simple case. Our CI in exogenous linear models is defined and shown to
be nonasymptotically valid as well as asymptotically exact in Section 5.3. In Section 5.4,
we discuss its practical implementation. Some simulations illustrate the behavior of our
CI in comparison to the one based on t-statistic’s asymptotic normality in Section 5.5.
We present our theoretical findings on IV models in Section 5.6. Appendices 5.A and 5.B
present the proofs of our main results. The additional lemmas used are presented in
Appendix 5.C.

Literature The question of conducting nonasymptotic inference has a long history in
statistics and econometrics. Inference on a (multivariate) mean is of course the problem
that has received the most attention. In the model Y = µ+ ε with µ ∈ R, ε ∼ N (0, σ2),
and σ > 0, Student (1908) was the first to show the t-statistic based on i.i.d. observations
follows exactly a Student distribution in finite samples. Berry (1941) and Esseen (1942) are
two other early seminal contributions which give a nonasymptotic bound on the distance
between the distribution of a sample mean based on i.i.d. observations and a Gaussian
distribution, a result called the Berry-Esseen inequality. Building on this inequality, Hall
and Jing (1995) and Romano and Wolf (2000) proposed nonasymptotic CIs for a mean
requiring only light nonparametric constraints on the data distribution. Those CIs have
the additional nice property of being asymptotically exact but remain difficult to use
in practice: they depend on unspecified universal constants that could prove difficult
to estimate/compute, or simply be very large. Romano and Wolf (2000) is also one of
the few existing contributions discussing in a clear and exhaustive manner the challenge
and importance of conducting nonasymptotic inference which seeks to be asymptotically
exact. The Berry-Esseen inequality was extended in several directions from the 1990s
on. First, Bentkus and Götze (1996) and Bentkus et al. (1996) proposed a version of
this inequality for the t-statistic. Shao (2005) improved on the last two contributions by
giving explicit numerical constants in the Berry-Esseen inequality for the t-statistic. While
Shao (2005)’s result directly allows to construct a nonasymptotic confidence interval (also
asymptotically exact) for a mean modulo some higher-moments’ bounds, the numerical
constants are still too large to obtain informative CIs in practice (see also Pinelis (2011a)

5This procedure does not always produce an interval, hence the term “confidence set”.
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for a discussion on this issue and some further results). The Berry-Esseen inequality
was more recently adapted to multivariate frameworks (Bentkus (2003), Raič (2019)).
Similar to the t-statistic case, those elegant theoretical contributions display too crude
numerical constants, preventing their application. However, as noted in Raič (2019), there
seems to remain a lot of room to obtain smaller numerical constants in the multivariate
setup. If the data distribution is symmetric about its expectation, it is possible to conduct
nonasymptotic inference on the expectation of the data distribution without imposing
more moments. This was first observed by Efron (1969), refined recently in Bentkus and
Dzindzalieta (2015), and was extended to multivariate setups by Pinelis (1994). This
approach has one major drawback: it is not asymptotically exact. Bertail et al. (2008)
show that the method can be adapted (under additional moment constraints) when the
data does not display symmetry.

Nonasymptotic inference in regression models has emerged more recently. In linear
models without endogeneity, Gossner and Schlag (2013) propose two nonasymptotic
inference methods, valid under boundedness of the outcome variable. This allows in
particular for heteroskedastic residuals. There are several limitations though, either
theoretical or practical: the first method is not exact asymptotically and neither the
first nor the second method yield closed-form CIs or CSs. In the statistics literature,
Kuchibhotla et al. (2019) and Kuchibhotla et al. (2020) have recently proposed methods
to conduct valid inference in finite samples on subsets of coefficients in a possibly high-
dimensional linear regression framework. Kuchibhotla et al. (2020) even provide guarantees
for inference after a model-selection step. While these results are very general and are
shown under mild moment assumptions on the data distribution, they do not lead to
asymptotically exact inference on individual parameters of the linear regression for instance.
Still in linear models without endogeneity, DiCiccio and Romano (2017) advocate the
use of permutation-based inference. When the regressors are jointly independent from
the residual, they show that permutation-based inference leads to exact nonasymptotic
inference on the full vector of coefficients (except the constant). Their condition therefore
rules out heteroskedastic residuals. When one is interested in a subset of the coefficients, the
authors suggest an alternative procedure which is nonasymptotically exact and requires
a quite stringent condition: the regressors associated with the coefficients of interest
must be independent from the residual and the remaining regressors. This places strong
restrictions on possible heteroskedasticity as well as unnatural assumptions on the link
between regressors. In a general M -estimation framework, Schreuder et al. (2020) derive
nonasymptotic confidence intervals with closed-form expression on individual components
of the coefficients’ vector. They only require nonparametric restrictions on the data
distribution. Their result is much stronger than what is usually required in the following
sense: with probability at least 1 − α, their CI of target level 1 − α contains the true
parameter for every sample size large enough at the same time. The main drawback of
their result is a lack of asymptotic exactness. Chernozhukov et al. (2009) tackle the issue
of conducting inference in a generic quantile regression framework allowing for endogenous
regressors. They propose a simulation-based confidence set for the full vector of coefficient
that is exact nonasymptotically. The main restriction they impose is independence between
residuals and exogenous regressors plus excluded instruments. They thus do not allow
for heteroskedasticity. Moreover, their CSs do not have a closed-form formula and are
computationally demanding. Besides, when one is interested in individual coefficients,
their tools produce CSs that are not asymptotically exact.

Our work is in addition closely connected to the literature on weak instrumental variables
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(weak IVs). Anderson and Rubin (1949) was an early contribution to this literature. In
this work, the authors introduce a method (that we call the AR confidence sets) to conduct
inference in linear IV models with as many instruments as endogenous regressors. Their
method does not require instruments and endogenous variables to be correlated. The AR
confidence sets are obtained by inverting a collection of Wald tests. The test-inversion
rationale was extended in numerous ways throughout the years: for instance, Kleibergen
(2002) replaced Wald tests with score tests and Moreira (2003) introduced likelihood ratio
tests. The theoretical properties of those methods have been thoroughly investigated
(i) asymptotically (see Andrews and Mikusheva (2016) or Andrews and Guggenberger
(2019)), and (ii) nonasymptotically under the assumption that residuals are normally
distributed with known variance (Andrews et al. (2019)). Tuvaandorj (2020) has recently
proposed to invert permutation-based versions of the tests introduced in Anderson and
Rubin (1949), Kleibergen (2002) or Moreira (2003): his method is valid nonasymptotically
as soon as exogenous regressors and excluded instruments are independent from the second
stage residuals and valid asymptotically under much weaker conditions. To the best of
our knowledge, all existing nonasymptotic results in the weak IV setup rely either on the
assumption that residuals are normally distributed or that they are independent from
exogenous covariates and excluded instruments.

Notation For a random variable D, we denote by PD its distribution and by support(D)
or support(PD) its support. Similarly PD,U denotes the joint distribution of a pair of
random variables (D,U). For a parameter θ, associated to a given statistical model, Pθ

denotes a distribution indexed by the parameter. PD,U = PD ⊗ PU means that D and
U are independent. For any set D, P(D) denotes the set of all probability distribution
supported on D. For any real vector u = (u1, . . . , ud), ‖u‖ := (u2

1 + . . . + u2
d)1/2 denotes

its Euclidean or `2-norm. For matrices, we consider the operator norm induced by the
Euclidean norm: for any real matrix M , ‖M‖ denotes its spectral norm, namely the square
root of the largest eigenvalue of M ′M , with M ′ the transpose of M . We also denote by
λmin(M) the smallest eigenvalue of M . vec(·) denotes the vectorization of a matrix, that
is, if M is a m× n matrix, vec(M) is the mn× 1 column vector obtained by stacking the
columns of the matrix M on top of one another. For any distribution P and real number
τ ∈ (0, 1), qP(τ) denotes the quantile at order τ of the distribution. Since we remain in
an i.i.d. set-up throughout the article, we sometimes drop the subscript i of random
variables to lighten notations. In other words, if D1, . . . , Dn are n i.i.d. random variables,
D without subscript denotes a generic random variable with the same distribution.

5.2 Quality measures for confidence sets
We start by formally defining several attributes of confidence sets that enable to characterize
their quality. We do so in a general framework, which encompasses in particular linear
models with and without endogeneity. In the next sections, we reduce to those two settings.

As for now, let us assume we observe n ∈ N∗ independent and identically distributed
(i.i.d.) data points (Di)ni=1

i.i.d.∼ PD which are vectors of dimension d ∈ N∗. We denote by
D ⊆ Rd the support of the distribution of D. Throughout the article, we assume that the
distribution of the data belongs to a statistical model whose parameter can be divided
into a finite-dimensional part and the remainder:

PD ∈
{

Pθ ∈ P(D), θ = (θ1, θ2) ∈ Θ := Rp ×Θ2
}
,
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where Θ2 is a topological space and p ∈ N∗. The expression just represents that typical
models considered by econometricians are semi-parametric, in the sense that the distribution
of the data is characterized by both a finite-dimensional parameter, which is the one of
interest, and an infinite-dimensional “nuisance” parameter, such as some set of probability
distributions. For instance, in linear regression models, Θ2 is a nonparametric set of joint
distributions for regressors and residuals.

We seek to construct a confidence set (CS) for a scalar functional T (·) of θ1. Formally,
a CS for T (θ1) is a measurable map from Dn to the set of closed subsets of R – e.g.,
closed intervals or unions of closed intervals are closed subsets of R. When evaluated
at (Di)ni=1, a CS is a random closed subset of R that depends on the data. Confidence
intervals are a special type of CSs that need to be intervals. A confidence set comes with a
desired confidence or nominal level 1− α, for some α ∈ (0, 1). Indeed, its main objective
is basically to contain its target T (θ1) with probability at least 1− α. Hereafter, the
notation CS(1 − α, n) stands for a generic confidence set to denote the dependence in
(Di)ni=1 and α.

Let Θ̃ be a fixed subset of Θ. Several criteria exist to assess the quality of CS(1−α, n).
From an asymptotic point of view, CS(1−α, n) is said to be asymptotically exact pointwise
over Θ̃ if

∀θ ∈ Θ̃, lim
n→+∞

PP⊗n
θ

(
CS(1− α, n) 3 T (θ1)

)
= 1− α. (5.1)

A stronger asymptotic criterion exists: CS(1 − α, n) is said to be asymptotically exact
uniformly over Θ̃ if

lim
n→+∞

sup
θ∈Θ̃

∣∣∣PP⊗n
θ

(
CS(1− α, n) 3 T (θ1)

)
− (1− α)

∣∣∣ = 0. (5.2)

If lim infn→+∞ inf
θ∈Θ̃ PP⊗n

θ

(
CS(1 − α, n) 3 T (θ1)

)
≥ 1 − α the CS is asymptotically

conservative uniformly over Θ̃.
From a nonasymptotic perspective, we say that CS(1 − α, n) is nonasymptotically

conservative over Θ̃ if

∀n ≥ 1, inf
θ∈Θ̃

PP⊗n
θ

(
CS(1− α, n) 3 T (θ1)

)
≥ 1− α. (5.3)

This property evolves into nonasymptotic exactness over Θ̃ if (5.3) holds and in addition
for any n ≥ 1, sup

θ∈Θ̃ PP⊗n
θ

(
CS(1− α, n) 3 T (θ1)

)
= 1− α.

The quality of CSs can thus be evaluated along several dimensions. For a given nominal
level, the opposition between exact and conservative relates to the actual precision of CSs.
Another distinction contrasts nonasymptotic and asymptotic results. In the latter case, we
can further distinguish pointwise from uniform properties.6 Asymptotic uniform validity
relates to the notion of “honesty.” Compared to pointwise guarantees, it can be argued
as more reliable regarding CSs’ finite-sample performance in practice (Armstrong and
Kolesár, 2020). In this article, we follow another road to finite-sample validity through
direct nonasymptotic results.

Property (5.1) is implicitly what econometricians have in mind when they rely on
the asymptotic normality of an estimator to conduct inference. This property is usually

6Remark that there is no such distinction in nonasymptotic results: for a fixed n, the inf over Θ̃ in (5.3)
is equivalent to a universal quantifier ∀θ ∈ Θ̃.
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achievable on the whole of Θ. As illustrated in Kasy (2019) for instance, in models where
(5.1) holds, it is often straightforward to define a (large) subset Θ̃ on which (5.2) is verified.
As regards finite-sample inference, property (5.3) has been shown to apply in a large
family of models. These results can be found predominantly in the theoretical statistics
literature (see Schreuder et al. (2020) for a recent illustration). These are powerful findings
which however yield CSs that are in general asymptotically conservative, uniformly and
even pointwise.7 Finally, the strongest notion, namely nonasymptotic exactness, can be
obtained in a wide class of models at the cost of placing fairly strong restrictions on Pθ, for
instance by imposing that Pθ belongs to a parametric family. We illustrate this discussion
in Example 5.1 and Section 5.3.

Example 5.1 (Inference on an expectation). We are interested in conduct-
ing inference on T (θ1) = θ1 := E[D] ∈ R. In this example, θ2 := PD and
Θ2 := {P ∈ P(R) :

∫
u2dP < +∞}.

Letting σ̂2
n := (n − 1)−1∑n

i=1(Di − Dn)2, with Dn := n−1∑n
i=1Di, we know by the

Central Limit Theorem (CLT) and Slutsky’s lemma that

CS1(1− α, n) :=
Dn ±

qN (0,1)(1− α/2)
√
σ̂2
n√

n


is asymptotically exact pointwise over Θ.

Following Kasy (2019) (in particular Proposition 1), CS1(1−α, n) is also asymptotically
exact uniformly over Θ̃1 := {θ ∈ Θ : VPθ(D) ≥ m,EPθ [D4] ≤M} with m > 0, M < +∞.
Hence, the uniform property holds on a large subset of Θ insofar as Θ̃1 is nonparametric.
On the other hand, results by Bahadur and Savage (1956) and Dufour (1997) imply that
CS1(1− α, n) cannot be nonasymptotically conservative over Θ nor asymptotically exact
uniformly over Θ.

This negative result is somewhat counterbalanced by the well-known fact that, up to
using the quantiles of a Student instead of a standard Normal distribution, CS1(1−α, n) is
nonasymptotically exact provided PD is a Gaussian distribution. Denoting Tn−1 a Student
distribution with n− 1 degrees of freedom,

CS2(1− α, n) :=
Dn ±

qTn−1(1− α/2)
√
σ̂2
n√

n


is nonasymptotically exact over Θ̃2 :=

{
θ ∈ Θ : Pθ = N (θ1, σ

2), θ1 ∈ R, σ2 ∈ R∗+
}
. It is

also asymptotically exact pointwise over Θ, as CS1(1 − α, n). Remark that in this case,
nonasymptotic exactness is obtained without relying on upper and lower bounds on moments.

Another way to nonasymptotic guarantees dispenses with parametric restric-
tions at the expense of known bounds on some moments (or support) of PD. Let
Θ̃3 := {θ ∈ Θ : VPθ(D) ≤M}, for some M < +∞. An alternative CS for θ1 is

CS3(1− α, n) :=
Dn ±

√
M

αn

 .
7By saying those CSs are in general asymptotically conservative, even pointwise, we refer to the fact

that they are often such that in a subset Θ̃ of Θ, ∀θ ∈ Θ̃, limn→+∞ PP⊗n
θ

(
CS(1− α, n) 3 T (θ1)

)
> 1− α.
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Using the Bienaymé-Chebyshev inequality, it can be shown that CS3(1−α, n) is nonasymp-
totically conservative over Θ̃3. CS3(1−α, n) requires a known upper bound on the variance.
On the other hand, compared to Θ̃2, Θ̃3 can be deemed a large subset of Θ for it is non-
parametric. However, this CS has one major drawback: it is asymptotically conservative,
even pointwise, over Θ̃3. To see this, one can simply remark that for every α ∈ (0, 1),
1/
√
α > qN (0,1)(1 − α/2). This implies that 1/

√
α = qN (0,1)(1 − β/2) for some β < α.

Thus, for any θ ∈ Θ̃3, the probability that CS3(1 − α, n) contains θ1 has a limit at least
1− β > 1− α when n goes to infinity.

CS3(1−α, n) is a basic instance of a CS constructed thanks to a concentration inequal-
ity.8 There exist many different concentration inequalities (see Boucheron et al. (2013)
for an in-depth exposition) relying on alternative restrictions Θ̃ on the distribution of the
data, each yielding a CS that is nonasymptotically conservative over the relevant Θ̃. For
another example, thanks to Hoeffding inequality,

CS4(1− α, n) :=
Dn ±

(b− a)
2

√
2 log(2/α)
√
n


is nonasymptotically conservative over Θ̃4 :=

{
θ ∈ Θ : support(Pθ) ⊆ [a, b]

}
for some

−∞ < a < b < +∞. In general, CSs based on concentration inequalities display the same
suboptimal asymptotic behavior as CS3(1 − α, n): for every α ∈ (0, 1),

√
2 log(2/α) >

qN (0,1)(1− α/2) in the case of CS4(1− α, n).

In the simple case of a scalar expectation, Example 5.1 highlights the difficulty to
construct accurate CSs with nonasymptotic guarantees on large subset of the parameter
space Θ. As CS2(1 − α, n) illustrates, nonasymptotic exactness can be achieved under
parametric restrictions. In contrast, provided known bounds on some moments, concentra-
tion inequalities yield nonasymptotic conservativeness on large nonparametric subsets Θ̃
but the resulting CSs are less precise: they are conservative even asymptotically. More
generally, Example 5.1 illustrates the fact that it is challenging to build a CS satisfying
the following three criteria at the same time: (i) weak restrictions on Pθ (in particular
allowing for semi-parametric models), (ii) nonasymptotic conservativeness over Θ or a
large subset of Θ, (iii) asymptotic exactness uniformly or pointwise.

5.3 Linear regression without endogeneity

5.3.1 Model and standard asymptotic inference
In this section, we present our confidence interval and its properties in the setting of
a linear regression model without endogeneity: the residual of the model of interest is
orthogonal with regressors. The following assumptions explicit the statistical model and
present the conditions we rely on to construct our CI.

We observe n observations (X1, Y1), . . . , (Xn, Yn) of a p-dimensional explanatory variable
X and an outcome real random variable Y that satisfy a basic linear regression model as
formalized in Assumption 5.1.

8By concentration inequalities, we mean results of the form PP⊗n
θ

(∣∣Dn − E[D]
∣∣ > f(n, α)

)
< 1−α, ∀α ∈

(0, 1) and for some positive-valued function f(·, ·).
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Assumption 5.1 (Linear model). (Xi, Yi)ni=1
i.i.d.∼ PX,Y , where X is a random vector of

dimension p and Y a real random variable such that, for some random variable ε and
vector β0:

Y = X ′β0 + ε, E[Xε] = 0, E[‖X‖2] < +∞, E[‖Xε‖2] < +∞, λmin(E(XX ′)) > 0 (5.4)

The parameter set of the associated statistical model is Θ := {θ = (β0,PX,ε) ∈ Rp × PX,ε}
with PX,ε :={

PX,ε ∈ P(Rp+1) : E[Xε] = 0, E[‖X‖2] < +∞, E[‖Xε‖2] < +∞, λmin(E(XX ′)) > 0
}
.

In this model, Pθ denotes a distribution of (X, Y ) indexed by θ. In what follows, we
consider several subsets of Θ characterized by additional restrictions that enable to build
interesting confidence sets.

Assumption 5.1 sets a basic linear regression model. Θ is indeed the largest parameter
set compatible with usual economic assumptions and minimal statistical conditions. The
condition E[Xε] = 0 imposes (weak) exogeneity of covariates. It corresponds to the
orthogonality condition of the linear projection of Y on X. It is implied by the (strong)
exogeneity assumption E[ε|X] = 0 but is more general as the conditional expectation of Y
given X need not be linear. The other moments conditions allow for heteroskedasticity
while ensuring the asymptotic normality of the Ordinary Least Squares (OLS) estimator
of β0:

β̂ :=
(

1
n

n∑
i=1

XiX
′
i

)−1 ( 1
n

n∑
i=1

XiYi

)
.

Remark that the condition λmin(E(XX ′)) > 0 is equivalent to the invertibility of the matrix
E[XX ′]. Thus, under Assumption 5.1, β̂ is well-defined with probability approaching one
as the sample size n goes to infinity.

For a given vector u of Rp, our goal is to build a confidence interval for a linear
functional of the form u′β0. It encompasses CIs for each individual component of β0
(taking for u the canonical vectors) but also differences of coefficients that appear when
investigating the relative impact of two covariates. We consider henceforth an arbitrary
vector u ∈ Rp \ {0Rp}.

As mentioned in the introduction, the standard way to proceed is to construct a CI
centered at the estimator u′β̂ relying on the asymptotic normality of β̂:

CIAsymp
u (1− α, n) :=

[
u′β̂ ±

qN (0,1)(1− α/2)√
n

√
u′V̂ u

]
(5.5)

where

V̂ :=
(

1
n

n∑
i=1

XiX
′
i

)−1 ( 1
n

n∑
i=1

XiX
′
i ε̂

2
i

)(
1
n

n∑
i=1

XiX
′
i

)−1

is the standard estimator of the asymptotic variance of β̂, V := E[XX ′]−1E[XX ′ε2]E[XX ′]−1,
with ε̂i := Yi −X ′iβ̂ the estimated residual for the i-th observation.

The pros and cons of CIAsymp
u (1− α, n) are well-understood and very close to those of

CS1(1− α, n) in Example 5.1. Its good properties are mainly asymptotic. They require
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additional moment conditions to ensure that V̂ is consistent for the asymptotic variance
of β̂:

ΘAsymp :=
{
θ ∈ Θ : E[‖X‖4] < +∞

}
.

By applications of the Law of Large Numbers, the CLT, and Slutsky’s lemma, CIAsymp
u (1−

α, n) is known to be asymptotically exact pointwise over ΘAsymp.

Besides, following again Kasy (2019), CIAsymp
u (1 − α, n) can be strengthened to be

asymptotically exact uniformly over

ΘAsymp :=
{
θ ∈ Θ : λmin (E[XX ′]) ≥ m,E[||X||4] ≤M,m ≤ E[||Xε||4] ≤M

}
,

with 0 < m ≤M < +∞.

Furthermore, similar to CS2(1− α, n) in Example 5.1, provided V̂ is replaced with the
(homoscedastic) estimator

1
n− p

n∑
i=1

ε̂2
i

(
1
n

n∑
i=1

XiX
′
i

)−1

and using the (1− α/2)-quantile of a Student with n− p degrees of freedom instead of a
N (0, 1), CIAsymp

u (1− α, n) becomes nonasymptotically exact over

ΘN :=
{
θ ∈ ΘAsymp : PX,ε = PX ⊗ Pε,Pε = N (0, σ2), σ2 > 0

}
.

However, the restrictions on Pθ to achieve such finite-sample properties are often
considered as too restrictive in practice: Gaussian residuals impede skewed or heavier tails
shocks and independence between ε and X rules out heteroskedasticity. In what follows,
we propose CIs with finite-sample guarantees (nonasymptotic conservativeness) and some
form of asymptotic efficiency (asymptotic pointwise exactness) without relying on such
independence or parametric assumptions.

5.3.2 Our confidence interval
We introduce the random variable

ξ := u′E[XX ′]−1Xε

that comes from the linearization of β̂ used in the construction of our nonasymptotic
CIs. The nonasymptotic guarantees on those CIs hold on a subset of Θ described in
Assumption 5.2.

Assumption 5.2 (Bounds on DGP). The parameter θ = (β0,PX,ε) belongs to Θ and
there exist positive constants λm, Kreg, Kε, and Kξ such that the joint distribution PX,ε

satisfies:
(i) λmin(E(XX ′)) ≥ λm;
(ii) E

[
||vec(XX ′ − E[XX ′])||2

]
≤ Kreg;

(iii) E[||Xε||4] ≤ Kε;
(iv) E [ξ4] /E [ξ2]2 ≤ Kξ.
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Assumption 5.2 defines a broad nonparametric class of distributions delineated by
the different constants λm, Kreg, Kε, and Kξ. These constants appear explicitly in the
construction of our CIs. In practice, the user needs to specify their values, which should
be done with care. We elaborate on these choices in more details in Section 5.4. Relying
on explicit constants may seem restrictive compared to asymptotic standard inference.
However, as explained in the simpler case of Example 5.1, these constraints are somewhat
inescapable to obtain nonasymptotic properties except if one is willing to adopt alternative
parametric assumptions.

Overall, the different parts of Assumption 5.2 strengthen the moment conditions of the
basic linear model Θ. Part (i) rules out E[XX ′] matrices arbitrarily close to being singular,
an unfavorable situation in which β0 is not identified. Although the theoretical parameter
β0 is defined on Θ, in general, the corresponding OLS estimator β̂ is not properly defined
with probability one in finite samples due to the possible singularity of n−1∑n

i=1XiX
′
i.

Part (ii) helps control the concentration of the latter empirical mean and ensures the proper
definition of β̂ with large probability for every (large enough) sample size. Parts (i) to (iii)
are critical in the construction of our CI as they enable us to ensure (u′V̂ u)−1/2u′(β̂ − β0)
is “close” to the simpler-to-analyze quantity ∑n

i=1 ξi /
√∑n

i=1 ξ
2
i . More precisely, they first

guarantee that the linearization

√
nu′(β̂ − β0) ∈

[
1√
n

n∑
i=1

ξi ±Rn,lin(δ)
]

holds with probability at least 1− δ, where

Rn,lin(δ) := ‖u‖
λmλmin(XX ′)

√
2Kreg

nδ

(
Kε

δ

)1/4

is an explicit linearization error term and XX ′ a short-hand notation for 1
n

∑n
i=1XiX

′
i.

Second, with probability at least 1−δ too, they enable us to control the oracle estimator∑n
i=1 ξ

2
i of u′V u by the feasible quantity u′V̂ u+ ‖u‖2Rn,var(δ), where

Rn,var(δ) := 2
nλ2

mλmin(XX ′)2

√
Kε

δ
× 1
n

n∑
i=1
‖Xi‖4+

2
√

2
λ2
mλmin(XX ′)

√
n

(
Kε

δ

)1/4
× 1
n

n∑
i=1
‖Xi‖3 |ε̂i|+

Kreg

nδλ2
mλmin(XX ′)2 ×

1
n

n∑
i=1
‖Xi‖2|ε̂i|2 + 2

λmλmin(XX ′)2

√
Kreg

nδ
× 1
n

n∑
i=1
‖Xi‖2|ε̂i|2.

This bound is finite only when the latter matrix is invertible, a condition that we ensure
when dealing with the proper definition of β̂.

Parts (i) and (ii) of Assumption 5.2 have one major drawback: they are impacted by
a translation of the covariate vector. As a result, the confidence intervals we build on
(a combination of) the slope coefficients (β0,1, . . . , β0,p) can be strongly affected by the
location of the covariates. Fortunately, when one is interested in parameters u′β0 that do
not depend on the intercept of the linear model, i.e. the first entry in u is equal to zero,
X can be replaced with X̃ = (1, X1 − E[X1], . . . , Xp − E[Xp])′ in Assumption 5.2.∑n

i=1 ξi/
√∑n

i=1 ξ
2
i is a self-normalized sum (SNS) of i.i.d. variables. There exist several

approaches to control the concentration of a SNS that we leverage to build our CI. They
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use a bound on the kurtosis of ξ, the influence function of
√
nu′

(
β̂ − β0

)
, which is set in

Part (iv).

In fact, our confidence interval comprises two distinct regimes depending on the results
used to control that SNS: an exponential bound for small sample sizes (Exp regime); a
bound that involves Edgeworth expansions for larger n (Edg regime). In the latter regime,
the bound can be improved under the next assumption, which deals with situations where
we can assume some continuity with respect to Lebesgue’s measure of the regressors or
residuals, hence on the variable ξ.

Assumption 5.3 (Regularity assumption on the distribution of ξ). The parameter θ =
(β0,PX,ε) belongs to Θ and PX,ε is such that ξ has an absolutely continuous component
with respect to Lebesgue’s measure.

Except for quite peculiar combinations, the only practical case ruled out by this
assumption is a situation with discrete covariates and discrete residuals at the same time;
for instance, a linear probability model (support(Y ) = {0, 1}) without any continuous
regressors. In particular, a residual ε with a continuous distribution with respect to
Lebesgue’s measure is enough to satisfy the condition. Under this condition, we derive
tighter CIs with maintained nonasymptotic properties.

In the Edgeworth regime, we introduce the generic notation ∆n,E that can correspond
to two different quantities according to the maintained assumptions. In the “general” case,
namely under Assumption 5.2 only, ∆n,E stands for

∆gen
n,E :=

0.2(K3/4
ξ + 1)
√
n

+
0.2Kξ + 0.12K3/2

ξ

n
+ rgen

n

where rgen
n = O(n−5/4) is an explicit term given in Section 5.D.1 which depends on Kξ and

n only. In the “continuous” case, that is under Assumptions 5.2 and 5.3, ∆n,E is equal to

∆cont
n,E :=

0.195Kξ + 0.0147K3/2
ξ

n
+ rcont

n

where rcont
n = O(n−5/4) is an explicit term given in Section 5.D.2. The remainder rcont

n

depends on Kξ, n, and the tail behavior of the characteristic function of ξ through the
quantity

κ := sup
t: |t|≥2t∗1π/(K

3/4
ξ

+1)
|f(t)|

with f the characteristic function of the normalized variable ξ/
√
E[ξ2], t∗1 := θ∗1/(2π) and

θ∗1 the unique root in (0, 2π) of the equation θ2 +2θ sin(θ)+6(cos(θ)−1) = 0. As mentioned
by Shevtsova (2010), t∗1 ≈ 0.64. Remark that κ depends implicitly on the choice of Kξ

that has been made in Assumption 5.2.

Construction of the confidence interval

Henceforth we fix a desired nominal level 1− α ∈ (0, 1) and a sample size n. Note that
the following expressions depend on two free parameters ω ∈ (0, 1) and a > 1. We do not
indicate this dependence to lighten notations. We first define two intervals, centered at
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u′β̂, that we combine later to form the final confidence interval

CIEdgu (1− α, n) :=
[
u′β̂ ± QEdg

n√
n

√
u′V̂ u+ ‖u‖2Rn,var(ωα/2)

]
,

CIExpu (1− α, n) :=
[
u′β̂ ± QExp

n√
n

√
u′V̂ u+ ‖u‖2Rn,var(ωα/2)

]
.

Those two intervals are similar to CIAsymp
u (1− α, n) in Equation (5.5) with the addition of

‖u‖2Rn,var(ωα/2) in the variance term and the “modified Gaussian quantiles”

QEdg
n :=

√
a qN (0,1)

(
1− α/2 + νEdg

n

)
+ νApprox

n ,

QExp
n :=

√
2(1 + a)

(
1− ln

(
α/2− νExp

n

))
+ νApprox

n ,

which depend on some perturbation terms νEdg
n , νExp

n , νApprox
n defined as

νEdg
n := νExp

n + ∆n,E,

νExp
n :=

ωα + exp
(
− n(1− 1/a)2/(2Kξ)

)
2 ,

νApprox
n := Rn,lin(ωα/2)√

u′V̂ u+ ‖u‖2Rn,var(ωα/2)
.

Note that νApprox
n is a random quantity since Rn,lin, Rn,var and V̂ depend on the

sample. Therefore, unlike CIAsymp
u (1 − α, n), the “modified Gaussian quantiles” are

random quantities, which introduces another source of randomness into the length of both
CIEdgu (1− α, n) and CIExpu (1− α, n).

Remark that for the proper definition of QEdg
n (resp. QExp

n ), νEdg
n (resp. νExp

n ) needs
to be strictly smaller than α/2. Since ∆n,E and νExp

n are decreasing in n, this will arise
for sufficiently large samples. Furthermore, given the expression of νEdg

n , the Exp regime
becomes available before the Edg one. Finally, when νExp

n ≥ α/2, neither CIEdgu (1− α, n)
nor CIExpu (1 − α, n) are feasible. In addition, the proper definitions of CIEdgu (1 − α, n)
and CIExpu (1 − α, n) require the technical condition ω > 2Kreg/(nαλ2

m). We impose the
latter to build a large probability event on which XX ′ is invertible and β̂ is well-defined.
Therefore, if the latter condition is not satisfied or if νExp

n ≥ α/2, we adopt the convention
of defining our final CI as the entire real line. Otherwise, the Exp regime applies as long as
νEdg
n ≥ α/2. Finally, the Edg regime becomes available and is selected when νEdg

n < α/2.
To sum up

CIFinu (1− α, n) :=


R if n ≤ 2Kreg/(ωαλ2

m) or νExp
n ≥ α/2,

CIExpu (1− α, n) else if νEdg
n ≥ α/2,

CIEdgu (1− α, n) else.

The first regime in the definition of CIFinu (1− α, n) provides little information on u′β0. It
prevails in particular when the sample size is too small to ensure that β̂ is well-defined
with large probability. Another interpretation is that the sample is not large enough to
build a CI with both controlled length and guaranteed coverage.

We are now in a position to study the theoretical properties of our confidence interval
CIFinu (1− α, n).
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5.3.3 Theoretical results
We present two theorems. In Theorem 5.1, we show CIFinu (1− α, n) is nonasymptotically
conservative for every data distribution indexed by θ ∈ Θ which also satisfies Assump-
tion 5.2 or Assumptions 5.2 and 5.3. In Theorem 5.2, we derive the asymptotic pointwise
exactness of our CI. In the rest of the paper, we use P instead of PP⊗n

θ
to lighten notation.

Theorem 5.1 (Nonasymptotic conservativeness). Under Assumption 5.2 (“general” case,
∆n,E = ∆gen

n,E) or under Assumptions 5.2 and 5.3 (“continuous” case, ∆n,E = ∆cont
n,E ), for

every n > 1, α ∈ (0, 1), a > 1, ω ∈ (0, 1), we have

P
(
u′β0 ∈ CIFin

u (1− α, n)
)
≥ 1− α. (5.6)

Theorem 5.1 achieves one of our main goals, namely proving it is possible to build a
CI which is nonasymptotically conservative for a large class of DGPs without imposing
independence between X and ε or parametric restrictions on ε. We remind the reader that
the above-constructed CI is truly informative (6= R) under the conditions n > 2Kreg/(ωαλ2

m)
and νExp

n < α/2. Unsurprisingly, we can see that the smaller α gets, the larger n has
to be to satisfy the former constraints. Before turning to asymptotic exactness, we also
remark that, as a corollary of Theorem 5.1, CIFinu (1− α, n) is asymptotically conservative
uniformly over the set of parameters θ satisfying Assumption 5.2 (plus Assumption 5.3 for
the “continuous” case) for any fixed choice of (a, ω).

To prove pointwise asymptotic exactness of CIFinu (1 − α, n), we have to consider
sequences (ωn)n and (an)n for the free parameters and place specific constraints on these
sequences. We need an additional moment condition compared to Assumption 5.2 as well.
The theorem writes as follows:
Theorem 5.2 (Asymptotic pointwise exactness). Let bn := an − 1 and assume that
bn = o(1), bn

√
n → +∞, ωn = o(1), n1/2ω3/4

n → +∞, E[‖X‖4] < +∞, and that the
assumptions of Theorem 5.1 hold. Then, for every α ∈ (0, 1), we have

lim
n→∞

P
(
u′β0 ∈ CIFin

u (1− α, n)
)

= 1− α. (5.7)

Inspection of the proof in fact shows that for every distribution satisfying the conditions
of the theorem

CIFinu (1− α, n) =
[
u′β̂ ±

qN (0,1)(1− α/2) + oP (1)√
n

√
u′V̂ u+ oP (1)

]
.

This result actually extends to any distribution indexed by θ ∈ ΘAsymp. Consequently,
CIFinu (1−α, n) is nonasymptotically conservative over a subset of Θ, which is not granted for
CIAsymp

u (1− α, n), and behaves (in a pointwise asymptotic sense) similarly to CIAsymp
u (1−

α, n) over ΘAsymp.

5.4 Practical considerations
In Assumption 5.2, lower or upper bounds have to be imposed on four moments (or
functions thereof) of the distribution PX,ε. While a priori choices for those bounds are
natural in specific cases (see Remark 5.1 below), it remains often difficult to have intuition
about the values of these bounds or how to choose them. Therefore, we propose to replace
these bounds by estimates of the corresponding moments:
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(i) We replace λm with λmin(n−1∑n
i=1XiX

′
i)).

(ii) Instead of Kreg we use

1
n

n∑
i=1

∥∥∥∥∥∥vec
(
XiX

′
i −

(
n−1

n∑
j=1

XjX
′
j

))∥∥∥∥∥∥
2

(iii) n−1∑n
i=1 ||Xiε̂i||4 replaces Kε.

(iv) n∑n
i=1 ξ̂

4
i /(
∑n
i=1 ξ̂

2
i )2 is used in lieu of Kξ, with ξ̂i := u′

(
n−1∑n

j=1 XjX
′
j

)−1

Xiε̂i.

Using plug-ins rather than deterministic bounds has one major drawback from a
theoretical point of view: CIFinu (1 − α, n) is no longer formally valid in finite samples.
However, by construction of CIFinu (1− α, n), the latter is almost surely at least as large as
CIAsymp

u (1− α, n) for any sample size even when deterministic bounds are replaced with
plug-ins. Furthermore, we show in several simulation experiments conducted in Section 5.5
that the plug-in version of CIFinu (1− α, n) is substantially larger than CIAsymp

u (1− α, n) in
moderate samples. In a sense, the use of plug-ins in our approach can be compared to
the approximation error faced in practice when one uses an inference procedure based on
simulations such as that of Chernozhukov et al. (2009) or DiCiccio and Romano (2017).
To further control the impact of sampling uncertainty when using a plug-in version of
CIFinu (1− α, n), a practical possibility would be to multiply the latter by (1 +M/

√
n) for

some positive user-chosen M .

Remark 5.1 (On the possibility to overcome plug-ins). Choosing reasonable values for
Kξ and Kreg without resorting to a plug-in strategy turns out to be possible. A large class
of univariate distributions exhibits a bound of at most 9 on the kurtosis: Normal, Laplace,
asymmetric Laplace, Logistic, Uniform, Student with at least five degrees of freedom, two-
point symmetric mixture of Normals, Gumbel, hyperbolic secant, and skewed Normal. This
class includes both symmetric and asymmetric distributions, some of which only have a
few number of finite moments (Student distributions with few degrees of freedom). We
investigate the impact of the choice Kξ = 9 as an alternative to the plug-in approach in
the simulations presented in Section 5.5. At the same time, Kreg can be chosen naturally
when X is bounded. However the obtained value for Kreg is likely to be crude. We thus do
not assess this possibility on simulations.

Finally, we insist that whenever the first entry of u is equal to zero, i.e. u′β0 does not
depend on the intercept of the linear model, our method can be improved in practice.
In this situation, the remark made in Section 5.3.2 applies: X can be replaced with
X̃ := (1, X1 − E[X1], · · · , Xp − E[Xp])′ in Assumption 5.2 and the plug-in versions of the
bounds have to be modified accordingly. The appealing feature of these modified plug-in
bounds is their invariance to a translation of the covariate vector. These observations
apply in particular when one is interested in building confidence intervals for individual
slope coefficients of the linear model. In our simulations, we focus on conducting inference
on slope coefficients so that we make use of the aforementioned modification of the plug-in
bounds.

5.5 Simulations
The simulations aim to assess the performance of CIFinu (1− α, n) under different scenarios
and compare it to that of the standard CIAsymp

u (1− α, n).
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We consider the following model, without endogeneity,

Y = 2 + 1X1 − 3X2 + ε, (X1, X2)′ ∼ N (µ,Σ),

with µ := (0.5, 5)′, Σ :=
(

1
√

2× 0.5√
2× 0.5 2

)
.

We focus on individual coefficients of a linear model. The results are very for the coefficients
of X1 and X2; we focus here on the former β0,2 = 1, that is, we choose u = (0, 1, 0)′.

We consider four different scenarios for the conditional distributions of residuals:9

– Pε|X = N ormal(0, |X1 +X2|);
– Pε|X = Laplace(0,

√
0.5|X1 +X2|;

– Pε|X = Student(31{X1 +X2 < E[X1 +X2]}+ 41{X1 +X2 ≥ E[X1 +X2]});
– Pε|X = Gumbel(−

√
(6/π2)|X1 +X2|γ,

√
(6/π2)|X1 +X2|) where γ ≈ 0.58 is the

Euler-Mascheroni constant.
We look a priori at sample sizes n ranging from one hundred to 25,000 to explore the
behavior in small, moderate, and large samples. The distributions chosen for the residuals
respect mean-independence and allow for heteroskedasticity.

Remember that our CI CIFinu (1− α, n) requires known values for the bounds λm, Kε,
Kreg, Kξ, as well as choices for the free parameters ω and α. As explained in the previous
section, we use a plug-in strategy for the first three bounds. Regarding Kξ, a natural
bound of 9 is available or a plug-in estimate can be used.

The free parameters are chosen so as to satisfy the conditions of Theorem 5.2: ω =
ωn = n−1/8, a = an = 1 + n−1/4.

We compute CIFinu (1−α, n) under four different assumptions: the “general case” without
additional regularity assumption (Assumption 5.2 only) and the “continuous case” with
additional regularity assumption (with additional Assumption 5.3).10 The other two
assumptions come from the possibility to improve the bound ∆n,E when assuming an
unskewed distribution for ξ, which is indeed the case in the first three data-generating
processes we consider We refer to Derumigny et al. (2021) for further details. In the
simulations, the improvement appears negligible, and we focus on comparing the general
and the continuous case.

Figure 5.1 show the realizations of CIAsymp
u (1−α, n) and CIFinu (1−α, n) for the Gaussian

data-generating process using the bound Kξ = 9 (averages over 100 simulations).11
Figure 5.2 is similar using a plug-in for Kξ. They call for several comments. We begin
with the case Kξ = 9.

9The choice made for the scale parameter of the Laplace enables to have the same variance (X1 +X2)2

as in the Normal case; idem for the location and scale parameter of the Gumbel, set such that it is centered
with variance (X1 +X2)2.

10In the continuous case, we set κ = 0.99 to compute ∆cont
n,E and CIFin

u (1−α, n). Derumigny et al. (2021)
discusses the choice of this parameter; 0.99 can be deemed a rather conservative, encompassing a wide
family of possible distribution for ξ.

11The other data-generating processes leads to similar qualitative conclusions and are reported in
Appendix 5.E.
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Figure 5.1: Kξ = 9 – α = 0.05 – Pε |X Gaussian.
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Figure 5.2: Kξ by plug-in – α = 0.05 – Pε |X Gaussian.
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First, it happens that the condition to avoid the R regime of CIFinu (1− α, n) requires
quite large sample sizes to hold in practice. In fact, the graphs starts for CIFinu (1− α, n)
at n ≈ 5, 500 because, before CIFinu (1 − α, n) = R. This result is disappointing for the
practical use of our CI. Closer inspection reveals the plug-in estimates of Kreg (respectively
λm) can be quite large (respectively close to 0), hence the necessity to have large n to
satisfy n > 2Kreg/(ωαλ2

m) (the first condition needed to exit the R regime). A possible
improvement to soften this constraint would be to rely on normalized moments, which may
have a smaller plug-in counterpart in practice. We leave this possibility for future work.

The choice of ω also matters in this condition: the lower ω, the more difficult the
condition is to hold; hence the more difficult it is to have an informative CIFinu (1− α, n).
On the other hand, lower ω increases precision by reducing CIFinu (1− α, n)’s length. Yet,
given the simulation results, the priority is avoiding the R regime. This explains the choice
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of ω = n−1/8: it satisfies the conditions for CIFinu (1− α, n) to be pointwise asymptotically
exact, but the rate towards 0 is slow. Although less influential, the choice of a displays a
similar trade-off through the second condition that needs to be satisfied to avoid the R
regime: νExp

n < α/2.
For n large enough, CIFinu (1 − α, n) becomes informative in the sense that it enters

the Exp, then Edg regime. However, the simulation reveals it remains far broader than
CIAsymp

u (1− α, n), and its coverage is equal to 1. As expected, the additional regularity
assumption improves the precision of CIFinu (1− α, n). They also enable a switch from the
Exp to the Edg regime for smaller sample sizes. This shift is well visible in Figure 5.1
in the “general case” for n ≈ 10, 000. Finally, the simulations illustrate the pointwise
asymptotic exactness of CIFinu (1− α, n): its length tends to the one of CIAsymp

u (1− α, n)
when the sample size goes to infinity.

In Figure 5.2, Kξ is replaced by a plug-in estimate. The comparison with the previous
case shows this implies an even larger sample size to exit the R regime in the continuous
case assumption and, to a lesser extent, in the general case (in other DGP reported in the
appendix, this effect of using a plug-in instead of the bound 9 on Kξ is more visible).

5.6 Extension: linear regression with endogeneity

5.6.1 Model and standard Anderson-Rubin inference
We extend our analysis to linear regressions with endogeneity. We focus on the case of
one scalar endogenous regressor D, one excluded instrument Z, and additional exogenous
covariates G, which is a frequent case in practice. Throughout this section, we assume we
observe n i.i.d. observations (Di, Gi, Zi, Yi)ni=1 that satisfy the following linear instrumental
model.

Assumption 5.4. (Di, Gi, Zi, Yi)ni=1
i.i.d.∼ PD,G,Z,Y where X = (1, D,G′)′ ∈ Rp, D ∈ R,

and W = (1, Z,G′)′ ∈ Rp, Z ∈ R, such that, for some random variable ε and vector β0:

Y = X ′β0 + ε = β0,1 + β0,2D +G′β0,3:p + ε,

and E[Wε] = 0, E[‖W‖2] < +∞, E[‖W‖2 ε2] < +∞, λmin(E[WW ′]) > 0.

The parameter set of the associated statistical model is

ΘIV := {θ = (β0,PD,G,Z,ε) ∈ Rp × PD,G,Z,ε}

with PD,G,Z,ε corresponding to{
PD,G,Z,ε ∈ P(Rp+3) : E[Wε] = 0, E[‖W‖2] < +∞, E[‖W‖2 ε2] < +∞, λmin(E[WW ′]) > 0

}
.

In such settings, the main parameter of interest is often the coefficient β0,2 of the
endogenous regressor. We thus focus on constructing confidence sets for β0,2. In the
definition of this model, we do not assume that E[ZW ′] has rank p, allowing for challenging
situations in which β0 is not identified.

Our CS addresses two potential issues. First, similarly to the OLS case, asymptotic
approximation might be questioned and we construct a CS with finite-sample guaranteed
coverage. Second, we want to conduct inference on β0,2 even when the latter coefficient
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might not be identified, a situation that arises when the instrument is weak, i.e. when the
instrument is not correlated with the endogenous variable.

In order to do so, we adapt the well-known Anderson and Rubin (1949) construction.
For every β̃2 ∈ R, we consider the random variable Y − β̃2D. We orthogonally project
this random variable on the space generated by the linear combinations of W , giving the
decomposition

Y − β̃2D = α(β̃2) + λ(β̃2)Z +G′µ(β̃2) + ζ(β̃2),
where α(β̃2), λ(β̃2), and µ(β̃2) denote the coefficients of the projection for the different
components of W and ζ(β̃2) is a random error term with expectation 0 and uncorrelated
with W . Note that we choose to make explicit the dependence on the parameter β̃2 in
the previous decomposition. Moreover, using the assumption that E [WW ′]−1 exists, the
function ψ(β̃2) := (α(β̃2), λ(β̃2), µ(β̃2)′)′ has the explicit form E[WW ′]−1E[W (Y − β̃2D)].

For the choice β̃2 = β0,2, we can write Y − Dβ̃2 = W ′ψ0 with ψ0 := (β0,1, 0, β′0,3)′,
implying that ψ(β0,2) = ψ0. For every β̃2 ∈ R, let Tn(β̃2) denote the Wald-statistic for
testing the hypothesis H0 : λ(β̃2) = 0 against H1 : λ(β̃2) 6= 0,

Tn(β̃2) =
√
n e′2ψ̂(β̃2)√
e′2V̂ (β̃2)e2

,

with ψ̂(β̃2) the OLS estimator of ψ(β̃2) given by

ψ̂(β̃2) :=
(

n∑
i=1

WiW
′
i

)−1( n∑
i=1

Wi(Yi − β̃2Di)
)
,

the estimator V̂ (β̃2) of the asymptotic variance of ψ̂(β̃2) given by

V̂ (β̃2) :=
(

1
n

n∑
i=1

WiW
′
i

)−1( 1
n

n∑
i=1

WiW
′
i ζ̂i(β̃2)2

)(
1
n

∑
i=1

WiW
′
i

)−1

,

and the residuals ζ̂i(β̃2) := Yi − β̃2Di −W ′
i ψ̂(β̃2). Remark that e′2ψ̂(β̃2) can be recognized

as the OLS estimator of λ(β̃2) and e′2V̂ (β̃2)e2 as its estimated asymptotic variance. Note
that, since E[WW ′] is supposed to be invertible, ψ̂(β̃2) and V̂ (β̃2) are well-defined with
large probability for n large enough (see Section 5.3 for more details).

When β̃2 = β0,2, Tn(β̃2) d−→ N (0, 1). This yields the classical Anderson-Rubin (AR)
confidence set for β0,2 defined by

CSAR,as(1− α, n) :=
{
β̃2 ∈ R : |Tn(β̃2)| ≤ qN (0,1)(1− α/2)

}
, (5.8)

which is asymptotically exact. This CS has been shown to be asymptotically uniformly
exact over large classes of data-generating process and to remain valid even when the
instrument is weak (see Andrews et al. (2019) for a recent survey of the results in the
weak IV literature). Moreover, by adjusting for the number of degrees of freedom in
the regression, this procedure is known to be of exact level in finite samples under the
assumption that Pε,ν|Z ∼ N (02,Σ), with Σ known (Moreira (2003)) and with ν the error
term in a first stage regression of D on W . To the best of our knowledge, we are the first
to propose a nonasymptotic confidence set in a linear IV model without imposing that the
residuals are Normal or independent from W .
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5.6.2 Our confidence set
We introduce the random variable

ξ := e′2E[WW ′]−1Wε

that comes from the linearization of ψ̂(β̃2) used in the construction of our nonasymptotic
CS. We present direct analogues of Assumptions 5.2 and 5.3 which help us derive the
nonasymptotic validity of our CS on a subset of ΘIV . Intuition behind the “IV-version” of
Assumptions 5.2 and 5.3 is immediate given the detailed description of the assumptions
presented in Section 5.3.

Assumption 5.5 (Bounds on DGP). The parameter θ = (β0,PD,G,Z,ε) belongs to ΘIV

and there exist positive constants λm, Kreg, Kε, and Kξ such that the joint distribution
PX,ε satisfies:
(i) λmin(E(WW ′)) ≥ λm;
(ii) E

[
||vec(WW ′ − E[WW ′])||2

]
≤ Kreg;

(iii) E[||Wε||4] ≤ Kε;
(iv) E [ξ4] /E [ξ2]2 ≤ Kξ.

Assumption 5.6 (Regularity assumption on the distribution of ξ). The parameter θ =
(β0,PD,G,Z,ε) belongs to ΘIV and PW,ε is such that ξ has an absolutely continuous component
with respect to Lebesgue’s measure.

We can now define two (random) sets that we combine to form the final confidence set

CSEdg(1− α, n) :=
{
β̃2 : |e′2ψ̂(β̃2)| ≤ QEdg

n (β̃2)√
n

√
e′2V̂ (β̃2)e2 +Rn,var(ωα/2, β̃2)

}
,

CSExp(1− α, n) :=
{
β̃2 : |e′2ψ̂(β̃2)| ≤ QExp

n (β̃2)√
n

√
e′2V̂ (β̃2)e2 +Rn,var(ωα/2, β̃2)

}
.

Those two sets are very close to CSAR,as(1− α, n) in Equation (5.8). There are two main
differences: estimated variance is inflated by Rn,var(ωα/2, β̃2) and the Gaussian quantile
qN (0,1)(1− α/2) is replaced with either of the following “modified Gaussian quantiles”

QEdg
n (β̃2) :=

√
a qN (0,1)

(
1− α/2 + νEdg

n

)
+ νApprox

n (β̃2),

QExp
n (β̃2) :=

√
2(1 + a)

(
1− ln

(
α/2− νExp

n

))
+ νApprox

n (β̃2),

which depend on some perturbation terms νEdg
n , νExp

n , νApprox
n (β̃2) defined as

νEdg
n := νExp

n + ∆n,E,

νExp
n :=

ωα + exp
(
− n(1− 1/a)2/(2Kξ)

)
2 ,

νApprox
n (β̃2) := Rn,lin(ωα/2)√

e′2V̂ (β̃2)e2 +Rn,var(ωα/2, β̃2)
.
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The terms Rn,lin(δ) and Rn,var(δ, β̃2) are again direct extensions of the corresponding
terms in the exogenous case:

Rn,lin(δ) := 1
λmλmin(WW ′)

√
2Kreg

nδ

(
Kε

δ

)1/4

and

Rn,var(δ, β̃2) := 2
nλ2

mλmin(WW ′)2

√
Kε

δ
× 1
n

n∑
i=1
‖Wi‖4

+ 2
√

2
λ2
mλmin(WW ′)

√
n

(
Kε

δ

)1/4
× 1
n

n∑
i=1
‖Wi‖3|ζ̂i(β̃2)|

+ Kreg

nδλ2
mλmin(WW ′)2 ×

1
n

n∑
i=1
‖Wiζ̂i(β̃2)‖2

+ 2
λmλmin(WW ′)2

√
Kreg

nδ
× 1
n

n∑
i=1
‖Wiζ̂i(β̃2)‖2.

In line with the exogenous case, we have to set our CS equal to the entire real line
when n is such that 2Kreg/(ωαλ2

m) or νExp
n ≥ α/2. For “moderate” (resp. “large”) sample

sizes, we use CSExp(1− α, n) (resp. CSEdg(1− α, n)) as our confidence set. To sum up

CSFin(1− α, n) :=


R if n ≤ 2Kreg/(ωαλ2

m) or νExp
n ≥ α/2,

CSExp(1− α, n) else if νEdg
n ≥ α/2,

CSEdg(1− α, n) else.

5.6.3 Theoretical results
Under the assumptions introduced in the previous subsection, we are able to prove
the nonasymptotic conservativeness as well as the asymptotic pointwise exactness of
CSFin(1− α, n).

Theorem 5.3 (Nonasymptotic conservativeness). Under Assumption 5.5 (“general” case,
∆n,E = ∆gen

n,E) or under Assumptions 5.5 and 5.6 (“continuous” case, ∆n,E = ∆cont
n,E ), for

every n > 1, α ∈ (0, 1), a > 1, ω ∈ (0, 1), we have

P
(
β0,2 ∈ CSFin(1− α, n)

)
≥ 1− α. (5.9)

Theorem 5.4 (Asymptotic pointwise exactness). Let bn := an − 1 and assume that
bn = o(1), bn

√
n → +∞, ωn = o(1), n1/2ω3/4

n → +∞, E[‖W‖4] < +∞, and that the
assumptions of Theorem 5.3 hold. Then, for every α ∈ (0, 1), we have

lim
n→∞

P
(
β0,2 ∈ CSFin(1− α, n)

)
= 1− α. (5.10)

Beyond pointwise asymptotic exactness, we can also ensure CSFin(1− α, n) is asymp-
totically uniformly conservative over the set of parameters θ satisfying Assumption 5.5
(plus Assumption 5.6 for the “continuous” case) for any fixed choice of (a, ω).
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Appendix 5.A Proof of results in Section 5.3

5.A.1 Nonasymptotic conservativeness for the Edgeworth
regime

Lemma 5.1. For every α ∈ (0, 1), a > 1, n ≥ 1 and ω ∈ (0, 1), if nω > 2Kreg/(αλ2
m) and

νEdg
n < α/2, we have

P
(
|u′β̂ − u′β0| ≤ QEdg

n n−1/2
√
u′V̂ u+ ‖u‖2Rn,var(ωα/2)

)
≥ 1− α.

Proof of Lemma 5.1. Let us define δ := ωα/2. We want to show

P

 |u′β̂ − u′β0|√
u′V̂ u+ ‖u‖2Rn,var(δ)

> QEdg
n n−1/2

 ≤ α. (5.11)

The proof is divided in three steps. In the first two ones, we derive two key intermediary
inequalities that hold with high probability. In the final one, we combine those building
bricks to obtain our result.

Step 1. Control of variance and linearization In this first step, we determine a
high probability event (Step 1a.) on which we are able to control the residual term coming
from the linearization of u′β̂ (Step 1b.) and upper bound the oracle variance by a feasible
quantity (Step 1c.).

Step 1a. Finding an event A of high probability on which Steps 1b and 1c
hold. Combining Assumption 5.2 (ii) and Lemma 5.5 with Ai := XiX

′
i, for i = 1, . . . , n,

we obtain

P
( ∥∥∥∥∥ 1

n

n∑
i=1

XiX
′
i − E[XX ′]

∥∥∥∥∥ ≤
√
Kreg

nδ︸ ︷︷ ︸
=:A1

)
≥ 1− δ. (5.12)

On the event A1, thanks to Lemma 5.6, we have

λmin(XX ′) ≥ λmin(E(XX ′))−
√
Kreg

nδ
, (5.13)

where XX ′ is a short-hand notation for 1
n

∑n
i=1XiX

′
i. Combining the constraint on ω,

which ensures nω ≥ 2Kreg/(αλ2
m), with Assumption 5.2(i), we get on A1

λmin(XX ′) ≥ λm −
√
Kreg

nδ
> 0, (5.14)

which implies that XX ′ is invertible.
In parallel, Assumption 5.2 (iii) and Lemma 5.7 provide the following inequality

P
(∥∥∥∥∥ 1

n

n∑
i=1

Xiεi

∥∥∥∥∥ ≤
√

2
n

(
Kε

δ

)1/4

︸ ︷︷ ︸
=:A2

)
≥ 1− δ. (5.15)

Finally, we defineA := A1∩A2, which satisfies P(A) ≥ 1−2δ thanks to Equations (5.12)
and (5.15) and the law of total probability. Note that on A, the estimator β̂ is well-defined
since the matrix XX ′ is invertible.
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Step 1b. Linearization. The goal in this step is to formalize the approximation
u′β̂ ≈ u′β0 + ξn where ξn has the following expression

ξn := 1
n

n∑
i=1

ξi = 1
n

n∑
i=1

u′E[XX ′]−1Xiεi.

On the event A, we will show that

√
n
∣∣∣u′β̂ − u′β0 − ξn

∣∣∣ ≤ ‖u‖
λmλmin(XX ′)

√
2Kreg

nδ

(
Kε

δ

)1/4
=: Rn,lin(δ). (5.16)

Cauchy-Schwarz’s inequality yields∣∣∣u′β̂ − u′β0 − ξn
∣∣∣ ≤ ‖u‖ ∥∥∥∥∥β̂ − β0 − E[XX ′]−1 1

n

n∑
i=1

Xiεi

∥∥∥∥∥
= ‖u‖

∥∥∥∥∥E[XX ′]−1
(

1
n

n∑
i=1

XiX
′
i − E[XX ′]

)
(β̂ − β0)

∥∥∥∥∥ , (5.17)

where the second line comes from the following computation (using the equality β̂ − β0 =
(n−1∑n

i=1XiX
′
i)
−1
n−1∑n

i=1Xiεi)∥∥∥∥∥E[XX ′]−1
(

1
n

n∑
i=1

XiX
′
i − E[XX ′]

)
(β̂ − β0)

∥∥∥∥∥
=
∥∥∥∥∥E[XX ′]−1

(
1
n

n∑
i=1

XiX
′
i

)
(β̂ − β0)− (β̂ − β0)

∥∥∥∥∥
=

∥∥∥∥∥∥E[XX ′]−1
(

1
n

n∑
i=1

XiX
′
i

)(
1
n

n∑
i=1

XiX
′
i

)−1 ( 1
n

n∑
i=1

Xiεi

)
− (β̂ − β0)

∥∥∥∥∥∥ .
From Equation (5.17), we obtain using the properties of the operator norm combined

with Assumption 5.2(i) and Equation (5.12),
∣∣∣u′β̂ − u′β0 − ξn

∣∣∣ ≤ ‖u‖ ∥∥∥E[XX ′]−1
∥∥∥ ∥∥∥∥∥ 1
n

n∑
i=1

XiX
′
i − E[XX ′]

∥∥∥∥∥ ∥∥∥β̂ − β0

∥∥∥
≤ ‖u‖

∥∥∥β̂ − β0

∥∥∥
λm

√
Kreg

nδ
.

By Cauchy-Schwarz’s inequality and Equations (5.15), we get

∥∥∥β̂ − β0

∥∥∥ ≤
∥∥∥∥∥∥
(

1
n

n∑
i=1

XiX
′
i

)−1
∥∥∥∥∥∥
∥∥∥∥∥ 1
n

n∑
i=1

Xiεi

∥∥∥∥∥ ≤ 1
λmin(XX ′)

√
2
n

(
Kε

δ

)1/4
. (5.18)

Step 1c. Bound on the oracle variance u′V u. In this step, we still reason on the
event A on which we prove

u′V u ≤ u′V̂ u+ ‖u‖2Rn,var(δ) (5.19)

for some Rn,var(δ) to be specified later and

V := E[XX ′]−1
(

1
n

n∑
i=1

XiX
′
iε

2
i

)
E[XX ′]−1.
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Note that V is a random variable, however it depends on the unknown E[XX ′]−1 and
(εi)ni=1. Furthermore, u′V u = 1

n

∑n
i=1〈u,E[XX ′]−1Xiεi〉2. Adding and subtracting ε̂i and

then expanding the square yields V = V1 + V2 + V3, where

V1 := 1
n

n∑
i=1
〈u,E[XX ′]−1Xiε̂i〉2

V2 := 1
n

n∑
i=1
〈u,E[XX ′]−1Xi(εi − ε̂i)〉2

V3 := 2
n

n∑
i=1
〈u,E[XX ′]−1Xiε̂i〉〈u,E[XX ′]−1Xi(εi − ε̂i)〉.

By Cauchy-Schwarz and using εi − ε̂i = X ′i(β̂ − β0), as well as Equation (5.18) and
Assumption 5.2 (i), we have

V2 ≤ ‖u‖2‖E[XX ′]−1‖2‖β̂ − β0‖2 × 1
n

n∑
i=1
‖XiX

′
i‖2

≤ ‖u‖2 1
λ2
m

 1
λmin(XX ′)

√
2
n

(
Kε

δ

)1/4
2

× 1
n

n∑
i=1
‖XiX

′
i‖2

≤ 2‖u‖2

nλ2
mλmin(XX ′)2

√
Kε

δ
× 1
n

n∑
i=1
‖XiX

′
i‖2

and

V3 ≤ 2‖u‖2‖E[XX ′]−1‖2‖β̂ − β0‖ ×
1
n

n∑
i=1
‖XiX

′
i‖ ‖Xiε̂i‖

≤ 2‖u‖2

λ2
m

1
λmin(XX ′)

√
2
n

(
Kε

δ

)1/4
× 1
n

n∑
i=1
‖XiX

′
i‖ ‖Xiε̂i‖

≤ 2
√

2‖u‖2

λ2
mλmin(XX ′)

√
n

(
Kε

δ

)1/4
× 1
n

n∑
i=1
‖XiX

′
i‖ ‖Xiε̂i‖.

Let us now focus on V1. We define Hn := E[XX ′]−1 −
(

1
n

∑n
i=1XiX

′
i

)−1
. Adding and

substracting (n−1∑n
i=1XiX

′
i)−1 and expanding the square, we get

V1 = 1
n

n∑
i=1
〈u,E[XX ′]−1Xiε̂i〉2 = u′V̂ u+ V4 + V5,

where

V4 := 1
n

n∑
i=1
〈u,HnXiε̂i〉2,

V5 := 2
n

n∑
i=1
〈u,HnXiε̂i〉

〈
u,
( 1
n

n∑
j=1

XjX
′
j

)−1
Xiε̂i

〉
.

Combining the identity A−1 − B−1 = A−1(B − A)B−1, the definition of A and Equa-
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tion (5.14), we get

‖Hn‖2 ≤
∥∥∥E[XX ′]−1(XX ′ − E[XX ′])XX ′−1∥∥∥2

≤
∥∥∥E[XX ′]−1

∥∥∥2 ∥∥∥XX ′ − E[XX ′]
∥∥∥2 ∥∥∥XX ′−1∥∥∥2

≤ Kreg

nδλ2
mλmin(XX ′)2 .

Therefore,

V4 ≤ ‖u‖2‖Hn‖2 × 1
n

n∑
i=1
‖Xiε̂i‖2 ≤ ‖u‖2Kreg

nδλ2
mλmin(XX ′)2 ×

1
n

n∑
i=1
‖Xiε̂i‖2,

and

V5 ≤ 2‖u‖2‖Hn‖
∥∥∥XX ′−1∥∥∥× 1

n

n∑
i=1
‖Xiε̂i‖2 ≤ 2‖u‖2

λmλmin(XX ′)2

√
Kreg

nδ
× 1
n

n∑
i=1
‖Xiε̂i‖2.

Finally, we obtain Equation (5.19), for the choice of Rn,var(δ) given by

Rn,var(δ) := 2
nλ2

mλmin(XX ′)2

√
Kε

δ
× 1
n

n∑
i=1
‖XiX

′
i‖2

+ 2
√

2
λ2
mλmin(XX ′)

√
n

(
Kε

δ

)1/4
× 1
n

n∑
i=1
‖XiX

′
i‖ ‖Xiε̂i‖

+ Kreg

nδλ2
mλmin(XX ′)2 ×

1
n

n∑
i=1
‖Xiε̂i‖2

+ 2
λmλmin(XX ′)2

√
Kreg

nδ
× 1
n

n∑
i=1
‖Xiε̂i‖2.

Step 2. Control of the self-normalized sum ξn/
√
u′V u. Applying either

Lemma 5.8 (ii) under Assumption 5.2 (iv) (in this case, ∆n,E := ∆gen
n,E), or Lemma 5.9 (ii)

under Assumptions 5.2 (iv) and 5.3 (then, ∆n,E := ∆cont
n,E ), we have

P
(
√
n
|ξn|√
u′V u

> y

)
≤ 2

Φ
(
− y√

a

)
+ ∆n,E

+ exp
(
−n(1− 1/a)2

2Kξ

)
(5.20)

for any given value y > 0.

Step 3. Combining the previous results. Recall we want to show Equation (5.11).
We denote by B the corresponding event

B :=

 |u′β̂ − u′β0|√
u′V̂ u+ ‖u‖2Rn,var(δ)

> QEdg
n n−1/2

 .
We can write by the law of total probabilities, the definition of A that ensures this

event arises with probability at least 1− 2δ and the fact that δ = ωα/2

P(B) = P(B ∩ A) + P(B ∩ Ac) ≤ P(B ∩ A) + ωα.
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Then, combining Equations (5.16) and (5.19), we get on B ∩ A,

|u′β̂ − u′β0|√
u′V̂ u+ ‖u‖2Rn,var(δ)

≤ |ξn|√
u′V u

+ Rn,lin(δ)/
√
n√

u′V̂ u+ ‖u‖2Rn,var(δ)
.

The second term in the right-hand side can be computed entirely from the data and
the bounds imposed in Assumption 5.2. In contrast, ξn involves the unobserved random
variables (ξi)ni=1. Thanks to the bound u′V̂ u + ‖u‖2Rn,var(δ) ≥ u′V u, we recover the
self-normalized sum |ξn|/

√
u′V u that can be dealt with using the result of Step 2. More

precisely, we resort to the law of total probability and apply Equation (5.20) so that, for
any y > 0,

P(B) ≤ P

 |ξn|√
u′V u

+ Rn,lin(δ)/
√
n√

u′V̂ u+ ‖u‖2Rn,var(δ)
> QEdg

n n−1/2

+ ωα.

≤ P

y/√n+ Rn,lin(δ)/
√
n√

u′V̂ u+ ‖u‖2Rn,var(δ)
> QEdg

n /
√
n

+ ωα + P
(
√
n
|ξn|√
u′V u

> y

)

≤ P

y/√n+ Rn,lin(δ)/
√
n√

u′V̂ u+ ‖u‖2Rn,var(δ)
> QEdg

n /
√
n

+ ωα

+ 2
Φ

(
− y√

a

)
+ ∆n,E

+ exp
(
−n(1− 1/a)2

2Kξ

)
. (5.21)

Our goal is to choose y such that

2
Φ

(
− y√

a

)
+ ∆n,E

+ exp
(
−n(1− 1/a)2

2Kξ

)
= (1− ω)α.

Solving this equation, we find, that the solution is

y∗ =
√
a qN (0,1)

(
1−

(1− ω)α− exp
(
− n(1− 1/a)2/(2Kξ)

)
2 + ∆n,E

)
=
√
aqN (0,1)(1− α/2 + νEdg

n )

whenever νEdg
n < α/2. Therefore, we get

P(B) ≤ P

y∗/√n+ Rn,lin(δ)/
√
n√

u′V̂ u+ ‖u‖2Rn,var(δ)
> QEdg

n /
√
n

+ ωα + (1− ω)α = α,

since the equality y∗/
√
n+ Rn,lin(δ)/

√
n√

u′V̂ u+‖u‖2Rn,var(δ)
= QEdg

n /
√
n holds, thus the probability in

the right-hand side of the previous equation is null. �

5.A.2 Nonasymptotic conservativeness for the Exponential
regime

Lemma 5.2. For every α ∈ (0, 1), a > 1, n ≥ 2 and ω ∈ (0, 1), if nω > 2Kreg/(αλ2
m) and

νExp
n < α/2, we have

P
(
|u′β̂ − u′β0| ≤ n−1/2QExp

n

√
u′V̂ u+ ‖u‖2Rn,var(ωα/2)

)
≥ 1− α.
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Proof of Lemma 5.2. This proof is very similar to the one given in Section 5.A.1. Steps
1.a-b-c are left unchanged. In the second step, we use an exponential bound to control
directly the self-normalized sum instead of using Lemmas 5.8 (ii) or 5.9 (ii) that involve
Edgeworth expansions.

By (Bertail et al., 2008, Equation (6)), we get for every t > 0,

P
(
n
|ξn|2

u′V u
> t

)
≤ 2e1−t/(2(1+a)) + e−n(1−1/a)2/(2Kξ),

and therefore, by substituting y =
√
t, we get for every y > 0

P
(
√
n
|ξn|√
u′V u

> y

)
≤ 2e1−y2/(2(1+a)) + e−n(1−1/a)2/(2Kξ) = 2e1−y2/(2(1+a)) + 2νExp

n − ωα

by definition of νExp
n . Now, we look for y such that 2e1−y2/(2(1+a)) + 2νExp

n = α. We find,
whenever νExp

n < α/2,

y∗ =

√√√√2(1 + a) ln
(

e

α/2− νExp
n

)
.

We denote by B the corresponding event

B :=

 |u′β̂ − u′β0|√
u′V̂ u+ ‖u‖2Rn,var(δ)

> QExp
n /
√
n

 .
The reasoning concluding the proof of Lemma 5.1 applies here as well. Therefore, we get

P(B) ≤ P

y∗/√n+ Rn,lin(δ)/
√
n√

u′V̂ u+ ‖u‖2Rn,var(δ)
> QExp

n /
√
n

+ ωα + (1− ω)α = α,

since the equality y∗/
√
n+ Rn,lin(δ)/

√
n√

u′V̂ u+‖u‖2Rn,var(δ)
= QExp

n /
√
n holds, thus the probability in

the right-hand side of the previous equation is null. �

5.A.3 Proof of Theorem 5.1
For fixed α, n, ω and a, we remark that exactly one case out of the three that intervene in
definition of CIFinu (1− α, n) arises. Furthermore, the conditions defining these cases are
deterministic. As a consequence, we can consider each case separately and check that the
coverage of u′β0 is at least 1− α.

If n ≤ 2Kreg/(ωαλ2
m) or νExp

n ≥ α/2, CIFinu (1− α, n) = R so that

P
(
u′β0 ∈ CIFinu (1− α, n)

)
= 1 > 1− α.

Otherwise, if νEdg
n ≥ α/2, CIFinu (1− α, n) = CIExpu (1− α, n). In this case, Lemma 5.2

ensures that
P
(
u′β0 ∈ CIFinu (1− α, n)

)
≥ 1− α.

If not, that is, νEdg
n < α/2, we are in the Edg regime and CIFinu (1−α, n) = CIEdgu (1−α, n).

In this case, Lemma 5.1 guarantees the result. �
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5.A.4 Proof of Theorem 5.2
The proof is divided in two main steps. First, we show that the relevant regime asymptoti-
cally is the Edgeworth one. Second, we show that

P
(
u′β0 ∈ CIEdgu (1− α, n)

)
→ 1− α. (5.22)

Step 1. We start by proving that νEdg
n tends to 0. Since an = 1 + bn with bn = o(1) and

bn
√
n→ +∞, we have

√
n
(

1− 1
an

)
→ +∞.

Furthermore, by assumption, ωn → 0. Combining those two limits, we obtain

νExp
n =

ωnα + exp
(
− n(1− 1/an)2/(2Kξ)

)
2 → 0. (5.23)

Besides, the discussion following the definition of ∆n,E in the body of the article
implies that under Assumption 5.2 (iv), ∆n,E = ∆gen

n,E = o(1) (respectively, under Assump-
tions 5.2 (iv) and 5.3, ∆n,E = ∆cont

n,E = o(1)). From this and (5.23), we conclude that
νEdg
n = νExp

n + ∆n,E = o(1).
This implies that for n large enough (depending on α and the bounds of Assumption 5.2),

νEdg
n < α/2 and therefore we can only be in the “Edg” regime, meaning that

P
(
u′β0 ∈ CIFinu (1− α, n)

)
= P

(
u′β0 ∈ CIEdgu (1− α, n)

)
.

We thus focus below on the Edgeworth regime.

Step 2. In order to prove (5.22), we show that

qN (0,1)(1− α/2)
QEdg
n

√
nu′(β̂ − β0)√

u′V̂ u+ ‖u‖2Rn,var(ωnα/2)
d−→ N (0, 1). (5.24)

First, we remark that under the assumptions of the theorem, we are in the parameter
set ΘAsymp. Therefore, classical results (see van der Vaart (2000), Chapters 2, 3 and 5 for
instance) allow us to claim

√
nu′(β̂ − β0)√

u′V̂ u

d−→ N (0, 1). (5.25)

Under the assumptions
√
nω3/4

n → +∞, E[||Xε||2] < +∞ and E[||X||4] < +∞, we
have

Rn,var(ωnα/2) P−→ 0 and Rn,lin(ωnα/2) P−→ 0.

In addition, we also have u′V̂ u P−→ u′V u > 0 since we place ourselves in ΘAsymp. Those
three results imply that νApprox

n
P−→ 0.

By the convergence of Rn,var(ωnα/2) and the Continuous Mapping Theorem (CMT),
we also have √

u′V̂ u+ ‖u‖2Rn,var(ωnα/2)√
u′V̂ u

P−→ 1. (5.26)
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From Step 1, we also know that νEdg
n → 0. Combined with the assumption an = 1+o(1),

we obtain
QEdg
n

P−→ qN (0,1)(1− α/2). (5.27)

Equations (5.25), (5.26) and (5.27) and Slutsky’s lemma gives the desired result of
Equation (5.24). The latter implies that the probability

P

−qN (0,1)(1− α/2) ≤ qN (0,1)(1− α/2)
QEdg
n

√
nu′(β̂ − β0)√

u′V̂ u+ ‖u‖2Rn,var(ωnα/2)
≤ qN (0,1)(1− α/2)


converges to 1− α. Finally, the event considered in this probability is equivalent to−QEdg

n√
n
≤ u′(β̂ − β0)√

u′V̂ u+ ‖u‖2Rn,var(ωnα/2)
≤ QEdg

n√
n

 ,
also equivalent to the event {u′β0 ∈ CIEdgu (1− α, n)}, which is what we want given Step 1.
�

Appendix 5.B Proof of results in Section 5.6

5.B.1 Nonasymptotic conservativeness for the Edgeworth and
Exponential regimes

Lemma 5.3. For every α ∈ (0, 1), a > 1, n ≥ 1 and ω ∈ (0, 1), if nω > 2Kreg/(αλ2
m) and

νEdg
n < α/2, we have

P
(
|e′2ψ̂(β0,2)| ≤ QEdg

n (β0,2)√
n

√
e′2V̂ (β0,2)e2 +Rn,var(ωα/2, β0,2)

)
≥ 1− α.

Proof of Lemma 5.3. We recall that ψ(β0,2) = 0. Hence, the stated lemma is equivalent to

P
(
|e′2ψ̂(β0,2)− e′2ψ(β0,2)| ≤ QEdg

n (β0,2)√
n

√
e′2V̂ (β0,2)e2 +Rn,var(ωα/2, β0,2)

)
≥ 1− α.

Since e′2ψ̂(β0,2) (resp. e′2ψ(β0,2)) is the OLS estimator in a regression of Y − β0,2D on W
(resp. its theoretical counterpart), the proof of Lemma 5.1 with u = e2 can be replicated
under Assumption 5.5 up to minor notational changes (see the definition of QEdg

n (β0,2),
V̂ (β0,2) or Rn,var(ωα/2, β0,2) in Section 5.6). �

Lemma 5.4. For every α ∈ (0, 1), a > 1, n ≥ 2 and ω ∈ (0, 1), if nω > 2Kreg/(αλ2
m) and

νExp
n < α/2, we have

P
(
|e′2ψ̂(β0,2)| ≤ n−1/2QExp

n (β0,2)
√

e′2V̂ (β0,2)e2 +Rn,var(ωα/2, β0,2)
)
≥ 1− α.

Proof of Lemma 5.4. The remarks put forward in the proof of Lemma 5.3 remain valid and
allow us to conclude that the proof of Lemma 5.2 can be replicated under Assumption 5.5
up to minor notational changes. �
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5.B.2 Proof of Theorem 5.3
For fixed α, n, ω and a, we remark that exactly one case out of the three that intervene in
definition of CSFin(1− α, n) arises. Furthermore, the conditions defining these cases are
deterministic. As a consequence, we can consider each case separately and check that the
coverage of β0,2 is at least 1− α.

If n ≤ 2Kreg/(ωαλ2
m) or νExp

n ≥ α/2, CSFin(1− α, n) = R so that

P
(
β0,2 ∈ CSFin(1− α, n)

)
= 1 > 1− α.

Otherwise, if νEdg
n ≥ α/2, CSFin(1− α, n) = CSExp(1− α, n). Given the definition of

CSExp(1− α, n), we can write in that case

P
(
β0,2 ∈ CSFin(1− α, n)

)
= P

(
β0,2 ∈ CSExp(1− α, n)

)
= P

(
|e′2ψ̂(β0,2)| ≤ QExp

n (β0,2)√
n

√
e′2V̂ (β0,2)e2 +Rn,var(ωα/2, β0,2)

)
which is at least 1− α by Lemma 5.4.

In the final scenario, that is when n > 2Kreg/(ωαλ2
m), νExp

n < α/2 and νEdg
n < α/2, we

are in the Edg regime and CSFin(1 − α, n) = CSEdg(1 − α, n). In this case, Lemma 5.3
guarantees the result. �

5.B.3 Proof of Theorem 5.4
Step 1 in the proof of Theorem 5.2 can be directly adapted to conclude that for n large
enough (depending on α and the bounds of Assumption 5.5), νEdg

n < α/2. Therefore we
can only be in the “Edg” regime for n large enough, meaning that

P
(
β0,2 ∈ CSFin(1− α, n)

)
= P

(
β0,2 ∈ CSEdg(1− α, n)

)
.

We thus focus below on the Edgeworth regime and seek to prove

P
(
β0,2 ∈ CSEdg(1− α, n)

)
→ 1− α. (5.28)

In order to prove (5.28), we can follow the proof of Theorem 5.2 to show that

qN (0,1)(1− α/2)
QEdg
n (β0,2)

√
ne′2ψ̂(β0,2)√

e′2V̂ (β0,2)e2 +Rn,var(ωnα/2, β0,2)
d−→ N (0, 1). (5.29)

The latter implies that the probability

P

−qN (0,1)(1− α/2) ≤ qN (0,1)(1− α/2)
QEdg
n (β0,2)

√
ne′2ψ̂(β0,2)√

e′2V̂ (β0,2)e2 +Rn,var(ωnα/2, β0,2)
≤ qN (0,1)(1− α/2)


converges to 1− α. Finally, the event considered in this probability is equivalent to−QEdg

n (β0,2)√
n

≤ e′2ψ̂(β0,2)√
e′2V̂ (β0,2)e2 +Rn,var(ωnα/2, β0,2)

≤ QEdg
n (β0,2)√

n

 ,
also equivalent to the event {β0,2 ∈ CSEdg(1− α, n)}, which is what we want. �
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Appendix 5.C Additional lemmas
Lemma 5.5. Let n ≥ 1 and (Ai)ni=1 be an i.i.d. sequence of random square matrices of
dimension d with finite second moment. For every δ ∈ (0, 1),

P

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

Ai − E[A]
∣∣∣∣∣
∣∣∣∣∣ >

√
B

nδ

 < δ,

where B := E
[
||vec(A− E[A])||2

]
.

Proof of Lemma 5.5: By Markov’s inequality and the inequality ||M ||2 ≤ ∑1≤l,l′≤d(M (l,l′))2

valid for every square matrix M, we get for every t > 0

P
(∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

Ai − E[A]
∣∣∣∣∣
∣∣∣∣∣ > t

)
≤ 1
t2
E

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

Ai − E[A]
∣∣∣∣∣
∣∣∣∣∣
2


≤ 1
t2
E

 ∑
1≤l,l′≤d

(
1
n

n∑
i=1

A
(l,l′)
i − E

[
A(l,l′)

])2
 .

Since (Ai)ni=1 is an i.i.d. sequence, we can write

E

 ∑
1≤l,l′≤d

(
1
n

n∑
i=1

A
(l,l′)
i − E

[
A(l,l′)

])2
 = 1

n

∑
1≤l,l′≤d

E
[(
A(l,l′) − E

[
A(l,l′)

])2
]

= 1
n
E
[
||vec(A− E[A])||2

]
.

Choosing t =
√

B
nδ

concludes the proof. �
For reader’s convenience, we recall the following eigenvalue stability lemma, which is

a corollary of Weyl’s inequality λmin(A + B) ≤ λmin(A) + λmax(B) for real symmetric
matrices, see for example (Hogben, 2006, Section 8.2).

Lemma 5.6. For M1 and M2 be two symmetric matrices of dimension d, we have
|λmin(M1)− λmin(M2)| ≤ ||M1 −M2||.

Proof of Lemma 5.6: If λmin(M1) = λmin(M2), the results follows directly. Without
loss of generality, λmin(M1) > λmin(M2). Applying Weyl’s inequality with A := M2 and
B := M1 −M2 we get 0 < λmin(M1)− λmin(M2) ≤ λmax(M1 −M2) ≤ ||M1 −M2||. �

Lemma 5.7. Let n ≥ 1 and (Xi)ni=1 be an i.i.d. sequence of random vectors of dimension p
and (εi)ni=1 an i.i.d. sequence of random variables such that E[Xε] = 0 and E

[
‖Xε‖4

]
<

+∞. For every δ ∈ (0, 1),

P

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

Xiεi

∣∣∣∣∣
∣∣∣∣∣ ≤

√
2
n

E
[
‖Xε‖4

]
δ

1/4 ≥ 1− δ.

Proof of Lemma 5.7: By Markov’s inequality, we can write

P
(∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

Xiεi

∣∣∣∣∣
∣∣∣∣∣ > t

)
≤ 1

(tn)4E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xiεi

∣∣∣∣∣
∣∣∣∣∣
4
 . (5.30)
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We now focus on E
[
||∑n

i=1Xiεi||4
]
. We have

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xiεi

∣∣∣∣∣
∣∣∣∣∣
4
 =

∑
1≤l,l′≤d

∑
1≤i,j,i′,j′≤n

E [XilεiXjlεjXi′l′εi′Xj′l′εj′ ] (5.31)

The sequence (Xiεi)ni=1 is i.i.d. and centered. Consequently,

E
[
XilεiXjlεjXi′l′εi′Xj′l′εj′

]
= E

[
X2
l X

2
l′ε

4
]
1{i=j=i′=j′} + E

[
X2
l ε

2
]
E
[
X2
l′ε

2
]
1{i=j,i′=j′,i 6=i′}

+ E
[
XlXl′ε

2
]2 {

1{i=i′,j=j′,i 6=j} + 1{i=j′,j=i′,i 6=j}
}
.

Combining this with (5.31), we get (using Jensen’s inequality on the last line)

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xiεi

∣∣∣∣∣
∣∣∣∣∣
4


=
∑

1≤l,l′≤d

{
nE

[
X2
l X

2
l′ε

4
]

+ n(n− 1)E
[
X2
l ε

2
]
E
[
X2
l′ε

2
]

+ 2n(n− 1)E
[
XlXl′ε

2
]2}

= nE
[
||Xε||4

]
+ n(n− 1)E

[
||Xε||2

]2
+ 2n(n− 1)

∑
1≤l,l′≤d

E
[
XlXl′ε

2
]2

≤ 4n2E
[
||Xε||4

]
. (5.32)

We plug (5.32) back in (5.30) and choose t =
√

2
n

(
E[||Xε||4]

δ

)1/4
to conclude. �

Lemma 5.8 (Edgeworth expansion, general case). Let n ≥ 1 and (Zi)ni=1 be an i.i.d.
sequence of random variables with E[Z] = 0, V(Z) = σ2 and E [Z4] /σ4 ≤ K. Let
Zn := n−1∑n

i=1 Zi and σ̂2
0 := 1

n

∑n
i=1 Z

2
i . For every x > 0 and a > 1

(i) P
(√

n
∣∣∣Zn

∣∣∣ /σ > x
)
≤ 2

{
Φ(−x) + ∆gen

n,E

}
(ii) P

(√
n
∣∣∣Zn

∣∣∣ /σ̂0 > x
)
≤ 2

{
Φ(−x/

√
a) + ∆gen

n,E

}
+ exp

(
−n(1− 1/a)2

2K

)

where ∆gen
n,E := 0.2(K3/4+1)√

n
+ 0.2K+0.12K3/2

n
+ rgen

n and rgen
n = O(n−5/4) is an explicit term

given in Section 5.D.1 which depends on K and n only.

Proof of Lemma 5.8:

Let λ3 := E[Z3]/σ3, Kp := E[|Z|p]/σp and Edgn(x) := λ3

6
√
n

(1− x2)ϕ(x). Combining
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the parity of Edgn with the fact that Φ(x) = 1− Φ(−x), we obtain

P

√n
∣∣∣Zn

∣∣∣
σ

> x

 ≤ 1− P
(√
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)
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)
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(
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σ
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)
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)

+
(
P
(√

nZn

σ
≤ −x

)
− Φ(−x)− Edgn(−x)

)
− Φ(x)− Edgn(x) + Φ(−x) + Edgn(−x)

≤ 2Φ(−x) +
∣∣∣∣∣P
(√

nZn

σ
≤ x

)
− Φ(x)− Edgn(x)

∣∣∣∣∣
+
∣∣∣∣∣P
(√

nZn

σ
≤ −x

)
− Φ(−x)− Edgn(−x)

∣∣∣∣∣ . (5.33)

As a consequence of Theorem 2.3 in Derumigny et al. (2021) in the i.i.d. case, we have

sup
x∈R

∣∣∣∣∣P
(√

nZn

σ
≤ x

)
− Φ(x)− Edgn(x)

∣∣∣∣∣ ≤ 0.1995(K3 + 1)√
n

+ 0.031(K3 + 1)2 + 0.195K4 + 0.054|λ3|(K3 + 1) + 0.038λ2
3

n
+ rgen

n ,

with rgen
n = rgen

n (K) is a remainder term given in Section 5.D.1, which bounds above the
remainder r1,n defined in Equation (22) in Derumigny et al. (2021).

An upper bound K on K4 is enough to control the right-hand side of the previous
equation through (i) a convexity argument: K3 ≤ K

3/4
4 , K4 ≥ 1; and (ii) Theorem 1 of

Pinelis (2011a): |λ3| ≤ 0.621K3.
Consequently, with rn ≤ Rn := Rn(K) which is defined in Section 5.D, we obtain the

following upper bound that relies only on K, an upper bound on K4.

sup
x∈R

∣∣∣∣∣P
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nZn

σ
≤ x

)
− Φ(x)− Edgn(x)

∣∣∣∣∣
≤ 0.1995(K3/4 + 1)√

n
+ 0.031(K3/4 + 1)2 + 0.195K + 0.0336K3/4(K3/4 + 1) + 0.0147K3/2

n
+ rgen

n

≤ 0.1995(K3/4 + 1)√
n

+ 0.206K3/2 + 0.195K
n

+ rgen
n , (5.34)

where rgen
n = O(n−5/4). To prove this, we remark that, since the constants in the second-

order term divided by n are less important, we use the lower bound 1 ≤ K3/4. The numerical
constants are computed as follows: 0.054× 0.621 < 0.0336, 0.038× 0.6212 < 0.0147 (first
inequality), and 0.031× 22 + 0.0336× 2 + 0.0147 < 0.206 (second inequality).

Letting ∆gen
n,E := 0.2(K3/4+1)√

n
+ 0.206K3/2+0.195K

n
+Rn and combining (5.33) and (5.34) is

enough to obtain the first result.
For the second result, we use Lemma 3 in Bertail et al. (2008) which allows us to write

for every a > 1

P
(
σ̂2

0
σ2 <

1
a

)
≤ exp

(
−n(1− 1/a)2

2K

)
. (5.35)
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Combining Lemma 5.8.(i) and (5.35), we can claim for every x > 0 and a > 1
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)
,

hence result (ii). �

Lemma 5.9 (Edgeworth expansion, continuous case). Let n ≥ 1 and (Zi)ni=1 be an
i.i.d. sequence of random variables such that Z has an absolutely continuous component
with respect to Lebesgue’s measure, E[Z] = 0, V(Z) = σ2, and E [Z4] /σ4 ≤ K. Let
Zn := n−1∑n

i=1 Zi and σ̂2
0 := 1

n

∑n
i=1 Z

2
i . For every x > 0 and a > 1

(i) P
(√
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)
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n,E

}
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)
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a) + ∆cont
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}
+ exp

(
−n(1− 1/a)2

2K

)

where ∆cont
n,E := 0.195K+0.0147K3/2

n
+ rcont

n and rcont
n = O(n−5/4) is an explicit term given in

Section 5.D.2 which depends on κ (defined in Assumption 5.3), K and n only.

Proof of Lemma 5.9:
The structure of the proof follows the one of Lemma 5.8. The sole difference is the

upper bound on ∣∣∣∣∣P
(√

nZn

σ
≤ −x

)
− Φ(−x)− Edgn(−x)

∣∣∣∣∣ ,
which comes from Corollary 3.4 in Derumigny et al. (2021). Here, the fact that the
distribution of the observations does not vary with n and the upper bound K̃3,n ≤
K3,n + 1 ≤ K3/4 + 1 implies that the term denoted by κn(K̃3,n) in Derumigny et al.
(2021) is a positive constant strictly smaller than 1. Consequently, the second term in
Corollary 3.4 in Derumigny et al. (2021) is O(n−5/4) and we obtain

∣∣∣∣∣P
(√

nZn

σ
≤ −x

)
− Φ(−x)− Edgn(−x)

∣∣∣∣∣ ≤ 0.195K4,n + 0.038λ2
3,n

n
+ rcont

n ,

where rcont
n = O(n−5/4) contains upper bounds on the second term and remainder in

Corollary 3.4 in Derumigny et al. (2021) and is detailed in Section 5.D.2.

Result (i) given in the lemma follows from the inequalities λ3,n ≤ 0.621K3,n and
K3,n ≤ K

3/4
4,n ≤ K3/4 (0.038× 0.6212 < 0.0147). Result (ii) follows from the same reasoning

as the result (ii) of Lemma 5.8. �
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Appendix 5.D Definition of the remainders of the
bound on Edgeworth expansion

5.D.1 Definition of rgen
n

We define rgen
n by:

rgen
n := (14.1961 + 67.0415)(K3/4 + 1)4

24π4n2 + 0.621K3/4 exp(−2n2/(K3/4 + 1)4)
3π
√
n

+ K3/4

3
√
n
J3(3,

√
0.3(n/K)1/4, T/π,K3/4 + 1, T, n) + I4,3(T )

+ 0.504(e2,n − 1.0067)K3/2

36n + 1.0253
π

∫ √0.2(n/K)1/4

0
ue−u

2/2R2,n(u)du (5.36)

where T := 2π
√
n/K̃3,n,

J3(p, v, w,K, T, n) := 1
T

∫ w

v
|Ψ(u/T )|up exp

− u2

2

(
1− 2χ1|u|K√

n
− 1
n

)du,

χ1 denotes the constant χ1 := supx>0 x
−3| cos(x)− 1 +x2/2| ≈ 0.099162 (Shevtsova, 2010),

and

R2,n(t) := U2,2,n(t)
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)2
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576 ,

P3,n := 26.67K1/2
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n1/2 + 0.445K
n3/4 + 0.04K
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e2,n := exp
(

0.01×
(1

6 + 2P2,n

0.49

))
,

U2,2,n(t) := 0.621|t|5K3/4

6n3/2 + t6K

24n2 + t60.6212K3/2

36n2 + |t|
7K7/4

72n5/2 + t8K2

576n3 .

This results come from bounding from above the quantities R2,n(t, ε), P2,n(ε), P3,n(ε),
e2,n(ε) and U2,2,n(t) that were defined in (Derumigny et al., 2021, p.32), with the choice
ε = 0.1. We first upper bound K̃3,n by K3,n + 1 which itself is bounded by K3/4 + 1. For
this, we use:

– 96
√

2ε× 0.621 < 26.67,
– 32× ε× 0.6212 < 1.235,
– 16

√
2× 0.621× ε3/2 < 0.445,

– (1− 3ε)2 = 0.49,
– 1.306× 0.6212 < 0.504,
– e3(ε) > 1.0067
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5.D.2 Definition of rcont
n

We first show that the second term of Corollary 3.4 in Derumigny et al. (2021) is negligible
and therefore can be included in the remainder term. Note that

0 ≤ 1.0253κn(K̃3,n)n log(cn)
π

≤
1.0253κn(K̃3,n)n log(8π3n3/2/(t∗1K̃3

3,n))
π

≤ 1.0253κn log(8π3n3/2/t∗1)
π

= O(n−5/4),

since cn = 8π3n3/2/(t∗1K̃3
3,n) and K̃3,n ≥ 1.

We now define rcont
n as the latter term plus an upper bound on the expression that

appears as r2,n in Corollary 3.4 in Derumigny et al. (2021):

rcont
n = 1.0253κn log(8π3n3/2/t∗1)

π

+ 1.2533(K3/4 + 1)4
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164π16n8 + 0.621K3/4 exp(−128π6n4/(K3/4 + 1)8)
3π
√
n
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2
√
n

(
Γ
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)
− Γ

(
3/2 , T 1/2/2π2
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0
ue−u

2/2R2,n(u)du, (5.37)

where Γ(·, ·) stands for the incomplete Gamma function Γ(a, x) :=
∫+∞
x ua−1e−udu and

J5(T ) := 2
T

∫ T/π

T 1/4/π
|Ψ(u/T )|e−u2/2du,

with Ψ(t) := 1
2

(
1− |t|+ i

[
(1− |t|) cot(πt) + sign(t)

π

])
1 {|t| ≤ 1}.

As in the definition of rgen
n , we use the following inequalities to upper bound term-wise

the expression r2,n of Derumigny et al. (2021):
– |λ3,n| ≤ 0.621K3,n ((Pinelis, 2011b, Theorem 1))
– K3,n ≤ K

3/4
4,n (convexity argument)

– K̃3,n ≤ K3,n + 1;
– 0.3334× 0.621 < 0.208;
– 1.0253× 0.621 < 0.637
– 1.306× 0.6212 < 0.504,
– e3(ε) > 1.0067.

We also use that the term I5,2(T ) in Derumigny et al. (2021) is upper-bounded by

1.0253 |λ3,n|
3π
√

2
√
n

(
Γ
(
3/2 , ε(n/K4,n)1/2

)
− Γ

(
3/2 , T 1/2/2π2

))
,

setting here ε to 0.1 and using the aforementioned bound on |λ3,n|.
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Appendix 5.E Additional figures
As explained in the body of the article, this appendix presents the simulation results for
the other data-generating process considered in Section 5.5.

The interpretation and main remarks are similar. Compared to the Gaussian case, the
other DGP makes more visible the impact of replacing Kξ by a plug-in instead of the fixed
bound of 9: larger sample size are required to exit the R regime and obtain informative
CIFinu (1− α, n); when the interval is not shown in the graph, it is because we are in the
regime CIFinu (1− α, n) = R. In fact, for the Student scenario, the R regime still prevails
when n = 25, 000 (the largest sample size considered in those simulation studies).

Figure 5.3: Kξ = 9 – α = 0.05 – Pε |X Laplace.
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Figure 5.4: Kξ by plug-in – α = 0.05 – Pε |X Laplace.
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Figure 5.5: Kξ = 9 – α = 0.05 – Pε |X Gumbel.
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Figure 5.6: Kξ by plug-in – α = 0.05 – Pε |X Gumbel.
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Figure 5.7: Kξ = 9 – α = 0.05 – Pε |X Student.
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Résumé : Cette thèse se compose de deux parties indépen-
dantes. Les trois premiers chapitres s’intéressent aux mesures de
ségrégation ou polarisation. Ces notions s’appliquent à des con-
textes variés mais partagent une formalisation commune. Une pop-
ulation est divisée en deux groupes exclusifs, un groupe dit minori-
taire et un majoritaire, et les individus de ces deux groupes se ré-
partissent entre des unités ou choisissent entre des options. Les
unités sont par exemple des aires résidentielles, le groupe minori-
taire les individus étrangers et le groupe majoritaire les individus
français pour étudier un aspect de la ségrégation résidentielle en
France. Cette modélisation permet également d’étudier la polari-
sation du langage politique en considérant comme unités ou op-
tions les entrées d’un dictionnaire et comme groupes minoritaire
et majoritaire les parlementaires de différents partis ; ici, les in-
dividus choisissent les mots qu’ils utilisent. Qualitativement, il y
a de la ségrégation ou polarisation si les deux groupes tendent à
choisir systématiquement des options distinctes. En ségrégation
résidentielle, les individus du groupe minoritaire sont concentrés
dans certaines aires géographiques au lieu d’être répartis unifor-
mément sur le territoire. Dans l’étude du langage politique, cer-
tains mots ou expressions seront davantage prononcés par un parti
que par un autre. Quantitativement, la mesure de la magnitude
de la ségrégation ou polarisation est confrontée au small-unit bias.
Le premier chapitre présente un programme Stata qui implémente

trois méthodes permettant d’estimer des indices de ségrégation ro-
bustes au small-unit bias. Le second applique ces méthodes pour
quantifier la ségrégation résidentielle en France entre 1968 et 2019
sur plusieurs dimensions (nationalité, statut social, position sur le
marché du travail et proxy de l’ethnicité). Le troisième chapitre
utilise les retranscriptions des débats au Congrès américain entre
1873 et 2016 pour étudier la polarisation du langage politique. La
deuxième partie s’intéresse à la construction d’intervalles de con-
fiance (IC) non-asymptotiques pour les coefficients des modèles
de régression linéaire, un outil classique d’analyse économétrique.
Ces intervalles reposent sur des majorations explicites de la dis-
tance entre la distribution empirique d’une somme normalisée de
variables aléatoires indépendantes centrées admettant des mo-
ments d’ordre quatre et son expansion d’Edgeworth de 1er ordre.
Ces majorations sont obtenues dans le quatrième chapitre, plus
statistique et technique. Le cinquième et dernier chapitre utilise
ces dernières pour construire des IC qui sont simultanément (i)
valides pour toute taille d’échantillon (ii) sans imposer une distri-
bution paramétrique de type Gaussienne ou l’indépendance entre
régresseurs et résidus (et autorisent donc des résidus hétéroscé-
dastiques), (iii) ayant une expression explicite, et (iv) atteignant
asymptotiquement la même précision que les IC usuels fondés sur
la normalité asymptotique de la statistique de Student.
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Abstract: This thesis is divided into two independent parts. The
first three chapters deal with measures of segregation or polariza-
tion. The notion of segregation/polarization applies to various sit-
uations, but the formal modeling remains the same. Suppose that
a population of individuals, comprised of a minority and a major-
ity group, is allocated into units or makes choices over a set of
options. When studying residential, occupational, or school seg-
regation, units can be neighborhoods, firms, classrooms, and the
minority group might be immigrants versus natives. The modeling
also encompasses speech polarization, for instance. The US con-
gresspeople are divided into Democrats and Republicans; the units
or options are the items of a dictionary of words or phrases, and
the speakers choose which words they use. Qualitatively, there is
some segregation or polarization if the allocation or choice process
leads to a situation where the two groups tend to select distinct
units/options. In residential segregation, the minority individuals
are concentrated in some units more than in others instead of being
uniformly allocated. Regarding speech polarization, the presence
of polarization means that Democrats and Republicans tend to use
different words or phrases when they speak in Congress. Quan-
titative measures of segregation/polarization struggle with the so-
called “small-unit bias.” The first chapter presents a Stata command
that implements three methods to estimate segregation indices ro-
bust to “the small-unit bias.” The second applies these methods to

quantify residential segregation in France between 1968 and 2019
along various dimensions (nationality, social status, labor market
position, proxy of races). Finally, the third chapter studies speech
polarization in the US Congress between 1873 and 2016 using tran-
scripts of congressional debates. The second part of this thesis
is concerned with constructing nonasymptotic confidence intervals
(CIs) for the individual coefficients of a linear regression model.
Linear regression models are a ubiquitous method of econometric
analyses. The CIs rely on explicit upper bounds on the uniform
distance between the cumulative distribution function of a stan-
dardized sum of independent centered random variables with mo-
ments of order four and its first-order Edgeworth expansion. These
bounds are derived in the fourth chapter, which is more technical
and closer to statistics and probability than the other chapters. The
last and fifth chapter uses these results to construct CIs that, at the
same time, are (i) valid for any sample size (ii) without assuming
parametric assumption such as the normality of error terms or in-
dependence between covariates and error terms (hence, our CIs
allow for heteroskedasticity), (iii) have a closed-form expression,
and (iv) whose length is asymptotically the same as the usual CI
based on the t-statistic; thus our CIs have a coverage equals to
the desired nominal level in the limit when the sample size goes to
infinity.
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