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thèse.
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1 Introduction

Dans cette thèse nous étudions le feuilletage caractéristique sur une hypersurface lisse dans
une variété hyper-kählérienne. D’abord nous définissons une variété hyper-kählérienne irréducible.

Définition Une variété lisse projective X est hyper-kählérienne irréductible si elle satisfait
les propriétés suivantes:

• L’espace H0(X,Ω2
X) est engendré par une forme σ non-dégénérée (symplectique);

• π1(X) = 0.

Nous donnons les exemples de variétés hyper-kählériennes irréductibles au paragraphe
2.2. Aux paragraphes 2.5 et 2.3 nous rappelons les résultats importants sur les variétés
hyper-kählériennes irréductibles.

Soit Y une hypersurface lisse dans une variété hyper-kählérienne irréductible projective X
de dimension 2n et σ une forme holomorphiquement symplectique sur X. Pour chaque point
x ∈ Y la forme σ est une forme non-dégénérée sur TX,x. Donc la forme restreinte à TY,x est
de corang 1 (c’est à dire σ|TY,x

a le noyau de dimension une). Le feuilletage caractéristique
F sur une hypersurface Y est le noyau de la forme symplectique σ restreinte à Y . Nous
discoutons les feuilletages et le feuilletage caractéristique aux paragraphes 2.6 et 2.7. Si les
feuilles (c’est-à-dire, les courbes integrales) de ce feuilletage sont quasi-projectives, on appelle
ce feuilletage algébriquement intégrable. Jun-Muk Hwang et Eckart Viehweg ont démontré
dans [40] que si Y est de type général, alors F n’est pas algébriquement intégrable. Dans le
papier [2] Ekaterina Amerik et Frédéric Campana ont complété ce résultat comme suit.

Théorème[2] Soit Y une hypersurface lisse sur une variété hyper-kählérienne lisse projec-
tive irréductible X de dimension supérieure à 2. Alors le feuilletage caractéristique sur Y est
algébriquement intégrable si et seulement si Y est unireglée, c’est à dire recouverte par des
courbes rationnelles.

Après, on peut poser la question quelle est la dimension de la fermeture de Zariski de
la feuille générale de F . Si n = 2 la situation est bien comprise dans le théorème exposé
ci-dessous.

Théorème[3] Soit X une variété hyper-kählérienne irréductible projective de dimension 4
et soit Y une hypersurface lisse dans X. Supposons qu’une feuille générale du feuilletage
caractéristique sur Y n’est pas algébrique, mais il y a une fibration méromorphe p : Y 99K C
par les surfaces F–invariantes. Alors il existe une fibration lagrangienne rationnelle π : X 99K
B completant le diagramme commutatif suivant.

Y C

X B

p

π
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En particulier, la fermeture de Zariski d’une feuille générale du feuilletage caractéristique est
une surface abélienne .

Frédéric Campana a fait la conjecture suivante.

Conjecture de Campana Soit Y une hypersurface lisse dans une variété hyper-kählérienne
projective irréductible X et soit q la forme de Beauville-Bogomolov sur H2(X,Q). Alors
exectement une des trois affirmations suivantes est vraie.

1. q(Y, Y ) < 0. Le feuilletage F est algébriquement intégrable et Y unireglée;

2. q(Y, Y ) = 0. La dimension de la fermeture de Zariski d’une feuille générale de F est n
et il existe une fibration lagrangienne f : X 99K B comme ci-desous;

3. q(Y, Y ) > 0. Une feuille générale de F est Zariski dense en Y .

Le premier cas est facile. S. Boucksom dans [14, Théorème 4.2 et Proposition 4.7] a
démontré que une hypersurface Y est unireglée si q(Y, Y ) < 0. Il y a donc une fibration
rationelle Y 99K W tel que les fibres sont rationnellement connexes (voir [16] et [46, Chapitre
IV.5]). Alors, σ|Y est l’image reciproque d’une forme sur W et les fibres de cette fibration
sont les feuiles du feuilletage caractéristique sur Y .

L’auteur de cette thèse a essayé de démontrer la conjecture de Campana et il l’a démontré
pour une hypersurface nef 1. Dans Chapter 2 nous rappelons la définition d’une variété
hyper-kählérienne et sa propriétés. Après nous rappelons la definition d’un feuilletage et du
feuilletage caractéristique. Chapitre 3 nous considerons le cas de q(Y, Y ) = 0 et demotrons
le résultat suivant.

Théorème 2.56 Soit X une variété hyper-kählérienne irréductible projective de dimension
2n et π : X → Pn une fibration lagrangienne. On considère une hypersurface D dans Pn tel
que son image réciproque Y est une hypersurface lisse en X. Alors la fermeture de Zariski
d’une feuille générale du feuilletage caractéristique sur Y est une fibre de π.

Pour les hypersurfaces Y tel que q(Y, Y ) = 0, la conjecture lagrangienne nous dit que
l’hypersurface Y est l’image réciproque d’une hypersurface dans la base d’une fibration ra-
tionnelle lagrangienne Dans le théorème 2.56 nous prenons la fibration Lagrangienne au-
dessus de l’espace projectif. Jun-Muk Hwang a prouvé dans [38] que si la base de la fibration
lagrangienne est lisse, alors c’est l’espace projectif. Hwang aussi conjecture que la base est
toujours lisse. Pour n = 2 cette conjecture a été prouve dans [12] et [37]. Donc, le deuxième
cas de la conjecture de Campana pour une hypersurface nef est une conséquence du
théorème 2.56, de la conjecture lagrangienne et de la conjecture de Hwang.

Au Chapitre 4 nous considérons le cas de q(Y, Y ) > 0. Une hypersurface avec le carré
de Beauville-Bogomolov positif si et seulement si cette hypersurface est big. Nous avons

1Admettant deux conjectures bien connues dans le deuxième cas; voir ci-dessous.
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demontré le théorème suivante.

Théorème 2.57 Soient X une variété hyper-kählérienne irréductible projective de dimen-
sion 2n et Y dans X une hypersurface lisse nef et big. Alors la feuille generale du feuilletage
caractéristique est Zariski dense dans Y .

Dans une conversation Jorge Vitorio Pereira a esquissé la preuve du resultat suivant:

Théorème 2.58 Soient X une variété hyper-kählérienne irréductible projective de di-
mension 2n et Y dans X une hypersurface lisse non nef. Alors Y est unireglée.

Ce resultat nous dit que si q(Y, Y ) ≥ 0, alors Y est singulière (corollary 4.23). Donc, on
ne doit pas demontrer la conjecture 2.55 pour une hypersurface non-nef.

On peut étudier le feuilletage caracterestique d’une hypersurface singulière comme un
feuilletage défini sur le lieu lisse de l’hypersurface. Au Chapitre 5 nous donnons les ex-
emples connus des hypersurfaces singulières tel que la dimension de la fermeture de Zariski
d’une feuille générale du feuillage caractéristique est plus petite que la conjecture de Cam-
pana prédit pour une hypersurface lisse. En particulier, nous avons exhibons les exemples
de la hypersurfaces verticales tel que la fermeture d’une feuille générale est une sous-variété
propre de la fibre de la fibration lagrangienne. Après, nous étudions la variété des droites sur
une hypersurface cubique de P5. Dans [8] Beauville et Donagi ont montré que cette variété
des droites est un variété hyper-kählérienne de dimension 4. Pour une hypersurface cubique
très générale le groupe de Picard de la variété des droits est engendré par un diviseur ample.
Nous décrivons deux exemples d’hypersurfaces singulières dont la classe de cohomologie est
proportionnellle à ce diviseur. Dans le premier exemple la fermeture de Zariski d’une feuille
generale du feuilletage caracteristique est une surface lagrangienne. Dans le deuxième exem-
ple la fermeture de Zariski d’une feuille generale du feuilletage caracteristique est une courbe
rationelle.

Au Chapitre 6 nous étudions la variété hyperkählerienne de dimension 4 construite
par O. Debarre et C. Voisin dans [22]. Cette variété est similaire à la variété des droites
dans une hypersurface cubique dans P5. En général le groupe de Picard de cette variété
est engendré par un diviseur ample. Il y a une variété de dimension 6 liée au le variété de
Debarre et Voisin qu’on appelle la variété de Peskine. Le variété des droits dans la variété
de Peskine est de dimension 6 et elle est fibrée par des surfaces cubiques sur la variété
de Debarre et Voisin ([9, théorème 2.20]). Nous trouvons une sous-variété de dimension 3
(probablement singulière) des droites spéciales dans la variété de Peskine qui nous donne une
hypersurface dans un variété de Debarre et Voisin très générale. Après, nous construisons un
feuilletage naturel de rang un sur cette hypersurface. Nous conjecturons que ce feuilletage
est le feuilletage caractéristique.
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Notation

In the current work we study projective varieties over the field of complex numbers C. Let
X be such a variety, then we denote by:

• OX the structure sheaf of X;

• ΩX the sheaf of the Kähler differentials on X and by Ωn
X we denote its n-th exterior

power ΛnΩX ;

• TX the tangent bundle of X;

• ωX the canonical sheaf on X, i.e. ωX := Ω dimX
X ;

• KX the canonical class of X;

• X(n) the n-th symmetric power ofX, i.e. X(n) := Xn/Sn. Additionally, let (x1, x2, ..., xn)
be a point in Xn, we denote its image in X(n) by x1 + x2 + ...+ xn;

• X [n] the Hilbert scheme of n points on X;

• [Z] the point of HilbX corresponding to a closed subscheme Z of X;

• HC : X [n] → X(n) the Hilbert-Chow morphism;

• Assume X is an abelian variety we denote by X[n] ∼= (Z/nZ)2 dimX the n–torsion
subgroup of X.

Let V be a finite-dimensional vector space of dimension n, then we denote by:

• P(V ) the variety parametrizing lines in V (i.e. we use the ”classical notation”);

• Gr(k, V ) the variety parametrizing k–dimensional subspaces of V .

We also use the ”classical notation” for the projectivization of a vector bundle. Let X be
a variety and E be a vector bundle on X. Then we denote by PX(E) the projective variety
Proj(Sym∗E∗), where Sym∗(E∗) is the sheaf of the symmetric algebras of E∗.
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2 Preliminaries

The preliminaries chapter introduces chapters 3 and 4, which we would like to be essentially
self-contained. The chapters 5 and 6 are more technical. We don’t give all the necessary
preliminaries to them, but provide the reader with the references.

2.1 Hodge structures

In this section we briefly recall some definitions and results of the Hodge theory. Let R be a
subring of R (usually Z, Q or R). Let AR be a finitely generated R–module. Denote by AC
the tensor product AR⊗C. For a ∈ AC we denote by a 7→ a the complex conjugation on AC.

Definition 2.1. One can define pure R-Hodge structure of the weight k on AR (one says
integral, rational or real instead of ”R−”) in two equivalent ways.
The first is to take a decreasing filtration 0 = F kA ⊂ F k−1A ⊂ ... ⊂ F 0A = AC , satisfying
the following properties:

• For any p+ q = k+1, F pAC ∩F qAC = 0, where F qAC is the image of F qAC under the
complex conjugation.

• For any p+ q = k + 1, F pAC + F qAC = AC.

The second is to define a decomposition AC = Ak,0⊕Ak−1,1⊕ ...⊕A0,k, such that Ap,q = Aq,p

for any p+ q = k.
These definitions are equivalent. In order to obtain the decomposition from the filtration we
take Ap,q := F pAC ∩ F qAC for p + q = k. Conversely, to construct the filtration from the
decomposition we take F pA =

⊕
i≥pA

i,k−i.

Definition 2.2. Let A be a pure Hodge structure of an even weight k = 2m. The vector
α ∈ AR is called of the Hodge type if α ∈ Am,m. In other words, the space of the Hodge
vectors Hdg(A) := AR ∩ Am,m.

Example 2.3. For a real Hodge structure A, we have an equality Hdg(A) = Am,m.

Example 2.4. Take k = 2m and AR = R. A Hodge structure with Ap,q = 0 for p ̸= q and
Am,m = R, denoted by R(−m) and called the Hodge-Tate.

Definition 2.5. Let A and B be pure R–Hodge structures of weight k. Then a morphism
f : A→ B of the Hodge structures is a R–linear map AR → BR such that its complexification
fC maps Ap,q to Bp,q for any p, q = k.

Definition 2.6. The tensor product of two R–Hodge structures A and B of weights k and m
respectively is AR⊗BR with Hodge structure (A⊗B)p,k+m−p =

⊕
p1+p2=pA

p1,k−p1 ⊗Bp2,m−p2

of weight k +m.

Definition 2.7. Let A be a R–Hodge structure A of weight k and let ϕ : A ⊗ A → R(−k)
be a morphism of the Hodge structures. Then ϕ(Ap,q ⊗ Ap′,q′) = 0 if p ̸= q′ and q ̸= p′.
The form ϕ is a polarization of the Hodge structure A if it satisfies the following properties.

7



• For any a, b ∈ AC, ϕ(a, b) = (−1)kϕ(a, b). Which means that ϕ is symmetric for an
even k and alternating for an odd k.

• For any non-zero vector a from a component Ap,q, ip−qϕ(a, a) > 0.

Theorem 2.8. Let (X,ω) be a compact Kähler manifold of dimension n, then:

• There is an integral, rational and real Hodge structure Hp,q(X) on Hk(X,Z), Hk(X,Q)
and Hk(X,R) respectively;

• Hp,q(X) ∼= Hp(X,Ωq);

• ∪ ωn−k : Hk(X,R)⊗Hk(X,R) → H2n(X,R) ∼= R is a polarization of R-Hodge structure
on Hk(X,R). Moreover, if X is projective and ω is an ample class, then ∪ ωn−k is a
polarization of the integral Hodge structure on Hk(X,Z).

Proof. See for example [66].

Theorem 2.9. Let (X,ω) be a compact Kähler manifold of dimension n. We define the
group NS(X) as the lattice of the Hodge vectors in the second integral cohomologies of X.
A class of α is contained in NS(X) if and only if there is a line bundle L on X such that
c1(L) = α.

We end this section introducing the most important type of the Hodge structures for this
thesis.

Definition 2.10. A Hodge structure A with a polarization q is of K3–type if

A2,0 = A0,2 = C.

The space A1,1 is the orthogonal complement under the form q to A2,0 and A0,2 in AC.
Hence, Hdg(A) is the orthogonal complement of A2,0 in AR. If R = K is a field we define
the transcendental Hodge substructure T (A) of A as the minimal Hodge substructure
of A containing A2,0. If R is not a field we can’t choose a minimal Hodge substructure,
because we always can multiply it by a non-invertible element of R. So, we define T (A) as
the minimal Hodge substructure of A containing A2,0 such that T (A)R is not divisible in AR

by a non-invertible element of R.

Lemma 2.11. The Hodge structures T (A) and Hdg(A) are related in the following way:

1. T (A) ∩Hdg(A) = 0;

2. T (A)C +Hdg(A)C = AC;

3. T (A) and Hdg(A) are the orthogonal complements of each other.

8



Proof. To prove this lemma we can assume that R is a field. The first statement follows from
the minimality of T (A). The quotient of A by T (A) +Hdg(A) is a Hodge structure Q with
Q2,0 = 0. Since R is a field, A = T (A) ⊕ Hdg(A) ⊕ Q. Hence Q contains only the Hodge
vectors, but they must lie in Hdg(A). Hence, Q = 0.
For any Hodge class a of A, the morphism q(a, ∗) : A→ R(−2) defined by

α 7→ q(a, α)

is a morphism of the Hodge structures. Thus its kernel is a Hodge substructure of A. The
intersection of these kernels with respect to elements of Hdg(A) is a Hodge structure con-
taining A2,0. Hence, the orthogonal complement to Hdg(A) contains T (A). But if it contains
a non-zero Hodge element, the polarization q is degenerate. Hence Hdg(A)⊥ = T (A).
So, orthogonal complement of T (A) contains Hdg(A). But if it contains an element of T (A)
the polarization q is again degenerate.

2.2 Holomorphic symplectic manifolds

We start with the definition of our main object of study, that is irreducible holomorphic
symplectic manifolds.

Definition 2.12. Let X be a smooth projective variety over C. It is an irreducible holomor-
phic symplectic (IHS) if it satisfies the following properties:

• H0(X,Ω2
X) = Cσ, where σ is a holomorphic symplectic form (at any point of X);

• H1(X,OX) = 0;

• π1(X) = 0.

Since σ is symplectic, X is even-dimensional. From now on we assume that dimX = 2n.

Remark 2.13. Since σ is symplectic at every point, its determinant ∧nσ is a nowhere vanishing
section of ωX = Ω2n

X . Thus ωX
∼= OX .

The first example of a holomorphic symplectic manifold is a K3 surface.

Definition 2.14. Let S be a smooth projective surface. If S satisfies the two following
properties we call it K3:

1. ωS
∼= OS;

2. H1(S,OS) = 0 (In classical algebraic geometry such surfaces are called regular).

Since n = 1, ωS = Ω2
S. The only section of ωS up to proportionality is a holomorphic

symplectic form. Such surfaces are always simply connected but in higher dimension this
statement is not always true.
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Proposition 2.15. Let S be a K3–surface. The topological Euler characteristic of S is equal
to 24. In particular, the Hodge diamond of a K3–surface is the following:

1
0 0

1 20 1
0 0
1

Proof. The Noether formula [4, Chapter I, Theorem 5.5] yields:

12 · χ(S,OS) = K2
S + χtop(S).

Since the canonical bundle of S is trivial and H1(S,OS) = 0, we obtain χtop(S) = 24. Using
Hodge’s and Serre’s dualities we find the Hodge diamond.

Theorem 2.16 (Kodaira-Enriques classification). A smooth projective surface with trivial
canonical bundle is either a K3–surface or an abelian surface.

Proof. See [4, Chapter VI, Theorem 1.1].

Let us give some examples of K3–surfaces.

Example 2.17 (Quartic surface).

Consider a smooth surface S of degree 4 in the projective space P3. By the adjunction
formula ωS

∼= OS(4)⊗ ωP3
∼= OS. Notice that this surface is not an abelian variety. Indeed,

considering the exact sequence of the sheaves

0 → OP3(−4) → OP3 → OS → 0,

one can see that H1(S,OS) = 0 (for an abelian surface this space has dimension 2).
Here is a similar example of a K3–surface which we will use later.

Example 2.18 (Double cover of the plane ramified in a sextic curve).

Let R ⊂ P2 be a smooth sextic curve in the projective plane. There exists a double cover
p : S → P2 of the plane with a branch locus equal to R.

Proof. Let P(y : x1 : x2 : x3) be the weighted projective space, where y has weight 3 and x1,
x2 and x3 have weight 1. Let p(x1, x2, x3) be a homogeneous polynomial of degree 6. Assume
its zero locus C is smooth. The surface S is zero set of the polynomial y2 = p(x1, x2, x3). Let
π be the projection of S from the point x1 = x2 = x3 = 0. Clearly it is double covering of
projective plane ramified at a smooth sextic curve. One can check that S is smooth if C is
smooth. Riemann-Hurwitz formula says:

1. KS = π∗KP2 +R, where R is the set theoretical preimage of C.

10



2. χtop(S) = 2 · (χtop Pn −χtop(C)) + χtop(C).

Consider the first one. Applying π∗, we obtain that KS = 0:

KS = π·π
∗KP2 + C = −6H + 6H = 0.

The second formula gives that χtop(S) = 24. Indeed, χtop(P2) = 3 and χtop(C) = −18 (by

the adjunction formula g(C) = (6−1)(6−2)
2

= 10).

χtop(S) = 2 · (3 + 18)− 18 = 24.

Again S is either K3 or abelian. Euler characteristic of an abelian surface is zero. Thus, S
is a K3 surface.

Let us recall another important construction of a K3–surface introduced by Ernst Kum-
mer.

Example 2.19 (Kummer surface).

We start with an abelian surface A. Consider the quotient surface S of A by the multipli-
cation by −1. The involution −Id acts freely on the open subset A \A[2] (where A[2] is the
group of points of A of order 2). The images of sixteen two-torsion points of A are singular.
Fortunately, such singularities are not complicated. Clearly, the involution −Id acts on the
tangent space to A at a point of A[2] as the matrix

−E :=

(
−1 0
0 −1

)
,

such quotient singularities are called A1 (for details look for example at [41][Chapter 7]).
Analytically locally they look like the point (0, 0) in C2 /⟨−E⟩ = SpecC[x, y]⟨−E⟩. We can
generate the invariant algebra C[x, y]⟨−E⟩ by the monomials x2, y2 and xy with the relation
x2y2 = (xy)2. Thus, our quotient singularity is isomorphic to the singular point (0, 0, 0) at
the quadratic cone SpecC[u, t, w]/u2 − tw. Let us study these singularities.

Lemma 2.20. Let S be a projective surface with a singular point x of A1–type. Then the
minimal resolution π : S̃ → S of the singularity x is the blow-up of S at the point x. Moreover,

• π∗KS = KS̃ (such a singularity is called crepant or du Val )

• The exceptional locus of π is a smooth, rational curve with square −2.

Proof. Since the question is local, we may assume that S is a quadratic cone in P3 and x is
the vertex. Then S̃ is the Hirzebruch surface F2 [4][Chapter V.4]. In order to construct the
morphism π : S̃ → S, we study the divisors on S̃. The Picard group of S̃ is generated by the
class of the fiber f and by the class of the exceptional section Σ. The canonical class of S̃ is
−2Σ− 4f . The intersection numbers are the following:

f 2 = 0, Σ2 = −2, f · Σ = 1.

11



The divisor H := 2f + Σ provides us with a morphism to P3. Since H2 = 2, the image of
this morphism is a quadric. One can see, that H · Σ = 0. Hence, this morphism contracts
the section Σ and the image is an irreducible singular quadric i.e. quadric cone. So, we
constructed the morphism π. Now we prove, that it is the blow up. By the universal
property of blow up, there is a birational morphism from S̃ to Blx S. Because of the equality
of the Picard numbers it is an isomorphism. It remains to see the last two statements. They
follow easily from the equalities Σ2 = −2 and Σ ·KS̃ = 0.

K3–surfaces have been studied by many authors, see for example [36]. To construct some
irreducible holomorphic symplectic varieties in a higher dimension we use Hilbert schemes
of points on surfaces. So, in the current section we briefly recall the definition and some
properties of the Hilbert scheme of points on surfaces. For a detailed study we refer to [56].
Start with the definition of the Hilbert scheme for an arbitrary polynomial.

Theorem 2.21 (Grothendieck). Let X be a projective scheme of finite type over C with a
very ample line bundle OX(1) and let P be a polynomial. There is a contravariant functor
HilbPX from the category of all locally noetherian schemes over C to the category of sets, which
associates to a scheme S the set of all such families:

HilbPX(S) = {Y ⊂ X × S | Y is flat with the Hilbert polynomial P over S}.

This functor is representable by a projective scheme of finite type HilbPX .

In this section we are interested in the case of a constant polynomial. One can remark
that for a constant polynomial n, the Hilbert scheme does not depend on the choice of a
very ample divisor on X. We call this Hilbert scheme X [n] := HilbnX the Hilbert scheme of
n points on X, because a general point of X [n] corresponds to a n–tuple of different points
on X. Strictly speaking, there is the so-called Hilbert-Chow map from X [n] to the n–th
symmetric powerX(n) := Xn/Sn, which maps a point corresponding to a finite subscheme Z
to a cycle of dimension zero in the following way:

HC : Z 7→
∑
x∈X

lengthOZ,x ·[x],

where OZ,x is the local ring of OZ at a point x. Next, we recall some more specific results
on X [n].

Theorem 2.22. Let X be a connected variety, then:

1. X [n] is also a connected variety;

2. The Hilbert-Chow map is an isomorphism on the open subset corresponding to reduced
finite subschemes;

3. The Zariski tangent space to X [n] at the point corresponding to a subscheme Z is
HomOX

(J Z ,OZ), where J Z is the sheaf of ideals of Z.

Now we are ready to study the Hilbert schemes of points on surfaces. First, we prove
that they are smooth.
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Theorem 2.23 ([25]). Let S be a smooth surface, then S[n] is a smooth variety. In particular,
S[n] is a resolution of singularities of S(n).

Proof. Let [Z] ∈ S[n] be a point corresponding to a closed subscheme Z of S, defined by the
sheaf of ideals J Z . The Zariski tangent to S

[n] at [Z] is HomOS
(JZ ,OZ). Furthermore, we can

represent it as
∏

i HomOS
(JZi

,OZi
), where Zi is a local Artinian scheme of length ni with sup-

port si. Thus, it is enough to check that dimHomOS
(J Zi

,OZi
) = 2ni. By the exact sequence

0 → J Zi
→ OS → OZi

→ 0, we obtain an isomorphism HomOS
(J Zi

,OZi
) ∼= Ext1(OZi

,OZi
).

By the Serre duality Ext2(OZi
,OZi

)∗ ∼= Hom(OS,OZi
⊗ωS) = Hom(OS,OZi

) ∼= Cn. The
sheaf Extk(OZi

,OZi
) for any integer k has support at si. Thus by the local-to-global Ext

spectral sequence, ExtkOS
(OZi

,OZi
) = H0(S, Extk(OZi

,OZi
)) = ExtkOS,si

(OZi
,OZi

), where

OS,si is the local ring of S at si. It is easy to see that HomOS,si
(OZi

,OZi
) ∼= Cn. Since OS,si

is a local regular ring of dimension 2, the ring OZi
possesses a free resolution of the length 2:

0 → P2 → P1 → P0 → OZi
→ 0. Hence, the Euler characteristic dimHomOS,si

(OZi
,OZi

) −
dimExt1OS,si

(OZi
,OZi

) + dimExt2OS,si
(OZi

,OZi
) = 0. Thus, Ext1OS,si

(OZi
,OZi

) ∼= C2n.

Below we will need the following technical theorem.

Theorem 2.24 ([6]). Let S be a projective smooth surface, then:

1. (HC)∗KS(n) = KS[n];

2. H1(S[n],OS[n]) ∼= H1(S(n),OS(n)) ∼= H1(Sn,OSn)Sn;

3. H2(S[n],Q) is isomorphic to H2(Sn,Q)Sn ⊕ Q(−1) as a rational Hodge structure. In
particular b2(S

[n]) = b2(S) + 1.

4. Assume S has a holomorphic symplectic form σ, then the form (HC)∗(σ, σ, ..., σ) on
S[n] is also holomorphic symplectic.

Proof. As we know the Hilbert-Chow map resolves the singularities of S(n). We state that
this resolution of singularities has only one prime exceptional divisor. In order to prove
it, we observe that S(n) is stratified by subsets ∆(n1,n2,...,nk) corresponding to the splittings
n1 + n2 + ...+ nk = n of the number n (for example the diagonal is the closure of ∆(2,1,1,...,1)

and the Hilbert-Chow map has the fibers over the points of this stratification. In particular,
the fiber over a point of the stratification ∆(n1,n2,..,nk) has dimension

∑k
i ni − 1 = n− k and

∆(n1,n2,..nk) has dimension 2k. Thus dimension of the preimage of ∆(n1,n2,..,nk) is equal to
n + k. It is easy to see that n + k = 2n − 1 if and only if k = n − 1. Thus, we obtain that
the only exceptional divisor of the Hilbert-Chow is the closure of the preimage of ∆(2,1,1,...,1),
we denote it by Σ. We have an isomorphism H2(S[n],Z) ∼= H2(S(n),Z) ⊕ CΣ. Moreover,
H2(S(n),Z) ∼= H2(Sn,Z)Sn . So, we prove the third statement of theorem. Moreover, the
singularities of S(n) along ∆(2,1,1,...,1) have the type A1. It is a crepant singularity. So,
we have proved the first statement. To prove the second statement we observe S(n) is a
normal variety. Hence, the fibers of the Hilbert-Chow map are connected. In other words,
(HC)∗OS[n]

∼= OS(n) .
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Now we prove the last part of the theorem. Since S has a symplectic form, Sn has trivial
canonical bundle. Note, that the quotient map Sn → S(n) is unramified in codimension
one. Hence, the canonical class of S(n) is torsion. Note that Sn possess a Sn–invariant
symplectic form. Hence, the canonical bundle of S(n) has a non-zero section. The line bundle
corresponding to a torsion class has a non-zero section if and only if it is trivial. By statement
1 of this theorem ωS[n]

∼= OS[n] . Let σ be a symplectic form on S. The sum of the pull-backs
of σ under all projections is a Sn–invariant symplectic form on the n–th Cartesian power of
S. Hence, we have a symplectic form on S(n) \∆. This form extends to a rational two-form
on S[n]. Denote this form by ω. Its determinant is a rational volume form on S[n]. Since ω is
symplectic on S(n) \∆, the image of det(ω) under the isomorphism of sheaves ωS[n]

∼= OS[n]

is a rational function on S[n] with zeros and poles along Σ, but Σ is an irreducible divisor.
Hence, it is a regular function, and det(ω) is a regular non-degenerate volume form. Thus,
ω is symplectic.

Proposition 2.25 ([6]). Let S be a K3–surface, then S[n] is an irreducible holomorphic
symplectic manifold.

Proof. By the theorem 2.23, it is a smooth variety and by the theorem 2.24, it has a symplectic
form. It remains to find, that H1(Sn,OSn) = 0 and H0(Sn,Ω2

Sn) = C. The n–th Cartesian
power S is a smooth variety of dimension 2n with the natural action of the symmetric group
Sn. The space of two-forms H0(Sn,Ω2

Sn) is isomorphic to H0(S,Ω2
S)

⊕n. It is easy to see,
that this space is generated by the differential forms p∗iσ, where σ is a symplectic form on
S and pi is the i− th projection of Sn to S. The only (up-to proportionality) Sn–invariant
holomorphic 2–form is p∗1σ+p

∗
2σ+ ...+p

∗
nσ. By the third statement of theorem 2.24 this form

is the pull-back of the generator σS[n] of H0(S[n],Ω2
S[n]). The n–th power σS[n] is a section of

the canonical bundle of S[n]. It follows from the first statement of theorem 2.24 canonical
bundle of S[n] is trivial. Hence, the form σS[n] is non-degenerate. By the second statement of
theorem 2.24, the H1(Sn,OSn) is zero, since H1(S,OS) = 0.

Example 2.26 (Generilzed Kummer variety). Let A be an abelian surface and let n be an
integer greater than 2. The morphism of the abelian varieties

An → A; (a1, a2, ..., an) 7→ [a1 + a2 + ...+ an]

clearly factors through the symmetric power of A. Denote the resulting morphism from A(n)

to A by sum. Define morphism π : A[n] → A as the composition of sum and the Hilbert-
Chow map. Finally, we define the generalized Kummer variety Kn(A) as the fiber of π over
zero. One can see, that if n = 2 applying this construction we obtain the Kummer surface
of A.

Theorem 2.27 (Beauville). The generalized Kummer variety Kn is an irreducible holomor-
phic symplectic manifold.

Proof. Applying theorem 2.24 we obtain the following isomorphisms of the rational Hodge
structures

H2(A[n],C) ∼= H2(An,C)Sn ⊕Q(−1) · [Σ] ∼= H2(A,C)⊕Q(−1) · Σ
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and
H1(A[n],C) ∼= H1(An,C)Sn ∼= H1(A,C).

The fibration π is isotrivial. More precisely, there is the following commutative square:

Kn(A)× A A[n]

A A

π

·n

where the upper horizontal arrow is the translation of a subscheme of A by an element of
A and the left vertical map is the projection. Thus, we obtain another isomorphism of the
rational Hodge structures H0(A,Riπ∗C)) ∼= Hi(Kn,C). Applying the Leray spectral sequence
to π we obtain an exact sequence of the rational Hodge structures

0 → H1(A,C) → H1(A[n],C) → H1(Kn(A),C) → ker(H2(A,C) → H2(A[n],C)) → H1(Kn(A),C)

Because of the different weights the morphism H1(Kn(A),C) → ker(H2(A,C) → H2(A[n],C))
is zero. Since H1(A,C) ∼= H1(A[n],C), the group of the first cohomologies of Kn(A) is zero.
Thus, we obtain the following short exact sequence:

0 → H2(A,C) → H2(A[n],C) → H2(Kn(A),C) → 0.

Hence H2(Kn(A),C) ∼= H2(A,C)⊕ CΣ. In particular the restriction of the symplectic form
(σ, ..., σ) toKn(A) generates the space H

0(Kn(A),ΩKn(A)). Since the normal bundle ofKn(A)
to A[n] and the canonical bundle of A[n] are trivial, the canonical bundle of Kn(A) is also
trivial. Hence, Kn(A) is an irreducible holomorphic symplectic manifold.

There are two other families of IHS manifolds discovered by Kieran O’Grady. The
varieties in the first family have dimension 6 [58]. In order to construct this family K.
O’Grady has considered the desingularisation of moduli space of sheaves with rk = 2, c1 = 0
and c2 = 2 on a Jacobian of a genus-2 curve. This variety has a morphism to the square
of the Jacobian of this curve. The fiber over (0, 0) is a holomorphic symplectic manifold of
dimension 6. The varieties in the second family have dimension 10 [59]. These manifolds
are obtained as desingularisation of moduli space of sheaves on a K3 with rk = 2, c1 = 0
and c2 = 4. All known examples of the holomoprhic symplectic manifolds are deformations
of examples above. Let us write the list of them: a Hilbert scheme of a K3–surface, a
generalized Kummer manifold, O’Grady 6 and O’Grady 10. We call these deformations K [n]-
type, Kum[n]-type, O’Grady 6-type and O’Grady 10-type respectively. In the article [42] the
authors find some evidence to expect that there exist no other IHS manifolds.

2.3 Cohomology of holomorphic symplectic manifolds

Let S be a smooth compact complex surface. There is a natural polarization of the Hodge
structures H2(S,Z) ⊗ H2(S,Z) → Z(−2). This pairing is dual to the intersection map of
homologies. For an arbitrary variety X of bigger dimension we have only Lefschetz pairing
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q(α, β) = hdimX−2 ∪ α ∪ β, where h is an ample class in H2(X,Z) . We will consider it in
the next section. However, it has a drawback that it depends on the choice of h. So it is not
natural. One of the wonderful properties of holomorphic symplectic manifolds is that they
carry a natural quadratic form on the second cohomologies like a surface. Let us define it.

Definition 2.28 (Beauville-Bogomolov-Fujiki form. See [7] and [26]). Let X be a holomor-
phic symplectic manifold. There is a quadratic form q on H2(X,Z) defined in the following
way for an element α of H2(X,Z):

q(α) =
n

2

∫
X

α ∧ α ∧ σn−1 ∧ σ̄n−1 − (1− n)

∫
X

α ∧ σn ∧ σ̄n−1 ·
∫
X

α ∧ σn−1 ∧ σ̄n.

We will abuse the notation and denote the corresponding bilinear form

q(α, β) =
1

2
(q(α + β)− q(α)− q(β))

by the same letter q. This form has the following nice property.

Theorem 2.29 (Fujiki formula). There is a constant cX depending only on topology of X
such that for any α ∈ H2(X,C)

α2n = 1 · 3 · ... · (2n− 1) · cX · q(α)n.

If X is of S[n]–type or an O’Grady 10, cx = 1. For X = Kum[n], cx = n + 1 and for
O’Grady 6 cx = 4. Ten-dimensional O’Grady’s example is constructed from a K3 –surface
and the six-dimensional one is constructed from an abelian surface. One can remember the
invariants above by a heuristic rule: ”If the deformation class of manifolds arises from a
K3–surface, then cX = 1 and cX = n+ 1 if it arises from an abelian surface.”
A more general version of the Fujiki formula is as follows:

2n∏
i=1

αi = cX
∑

C∈Couples2n

q(C),

where Couples2n is the set of partitions of 1, 2, ..., 2n in pairs 2. For a partition C, q(C)
is the product of the values BBF pairing in all the pairs in C. For example, if n = 2 and
C = {{1, 3}, {2, 4}}, q(C) = q(α1, α3) · q(α2, α4).

Theorem 2.30. The BBF form:

S2H2(X,Z) → Z(−2)

is a polarization of the integral Hodge structure H2(X,Z). So, H2(X,Z) is of K3–type.

There is another important theorem about cohomologies of holomorphic symplectic man-
ifolds proved in the Ph.D. thesis of Misha Verbitsky.

2|C2n| = αn = 1 · 3 · ... · (2n− 1) = 2n!
2n·n!
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Theorem 2.31. [63, Theorem 1.7] Let X be a holomorphic symplectic manifold of dimension
2n, then the cup-product map

Sk H2(X,Z) → H2k(X,Z)

is injective for all k ≤ n.

Remark 2.32. This morphism is generally not surjective. For example, if X is a generalized
Kummer variety, b4 = 199 and b2 is only 8. So dimension count shows that cup-product can’t
be surjective. However, sometimes this injective morphism is also surjective. For a Hilbert
scheme of two points on a K3-surface, b2 = 23 and b4 = 276. Thus we have an isomorphism

S2H2(X,Q) ∼= H4(X,Q).

2.4 Lefschetz’s theorems

In our results below we will use some specific versions of the Lefschetz’s theorem about
hyperplane section and hard Lefschetz’s theorem. Let us first recall the hard Lefschetz
theorem.

Theorem 2.33. Let X be a compact Kähler manifold of dimensionm (for example projective)
and let ω ∈ H2(X,C) be a Kähler class (an ample class). Define the Lefschetz operator

L : Hk(X,C) → Hk+2(X,C)

as the cup-product with the Kähler class ω. Then the operator

Lm−k : Hk(X,C) ∼−→ H2m−k(X,C)

is an isomorphism for every k ≤ m.

Proof. See [65, Theorem 6.25]

Next we recall the classical version of the Lefschetz hyperplane section theorem.

Theorem 2.34 (LHT). Let X ⊂ PN be a smooth projective variety of dimension n. Take a
smooth hyperplane section Y := X ∩ PN−1. For any 0 ≤ k < n− 1 the restriction map

Hk(X,Z) → Hk(Y,Z).

is an isomorphism, and for k = n− 1 is injection.

The Lefschetz theorem about hyperplane section also gives some isomorphisms of homo-
topy groups.

Theorem 2.35 (LHT*). [28, Part II, Sect 1.1]Let X ⊂ PN be a smooth projective variety of
dimension n. Take a smooth hyperplane section Y := X ∩ PN−1. For any 0 ≤ k < n− 1 the
pushforward map induces isomorphism of the homotopy groups:

πk(Y,Z)
∼−→ πk(X,Z).

17



In this thesis we shall use a consequence of the following general version of the LHT.

Theorem 2.36. [28, Part II Chapter 5.1] Let M be a purely n-dimensional nonsingular
connected algebraic variety. Let f : M → CPN be a morphism and let H ⊂ CPN be a linear
subspace of codimension c. Let Hδ be the δ–neighborhood of H with respect to some real
analytic Riemannian metric. Define ϕ(k) to be dimension of the set of points z ∈ CPN \H
such that the fiber f−1(z) has dimension k. (If this set is empty define ϕ(k) = −∞.) If δ is
sufficiently small, then the homomorphism induced by inclusion, πi(f

−1(Hδ)) → πi(X) is an
isomorphism for all i < n̂ and is a surjection for i = n̂, where

n̂ = n− sup
k
(2k − n+ ϕ(k) + min⟨ϕ(k), c− 1⟩)− 1.

We will not be interested in the higher homotopy groups. What we shall need is the
following corollary of the above theorem for π1.

Theorem 2.37. Let ∆ ⊂ Pn (n ≥ 2) be a divisor in the projective space Pn and U = Pn \∆
its complement. Let D be a hypersurface in Pn. Assume the following:

1. D is smooth;

2. D intersects the smooth locus ∆sm of the hypersurface ∆ transversely;

3. The intersection of D and of the singular locus ∆sing of the hypersurface has dimension
less than n− 2.

Then the pushforward map of the fundamental groups π1(D ∩ U) → π1(U) is surjective.

Proof. We put M equal to Pn \∆ and f equal to the composition of its embedding to Pn and
of the degree-d Veronese map, where d is degree of the hypersurface D. One can check that
n̂ = n−1. Since dimD∩∆sing < n−2, D∩∆sing has complex codimension at least 2 in D and
we can neglect it when computing the fundamental group of D. There is a homeomorphism
between Dδ and the total space of the line bundle ND/Pn . Since ∆ is transversal to D,
Dδ ∩ ∆ is homeomorphic to NY/Pn|Y ∩∆. The zero-section induces an isomorphism on the
fundamental groups.

2.5 The Torelli theorem and the Period Map

The crucial fact of the theory of holomorphic symplectic manifolds is the Torelli theorem.
To state it for an irreducible holomorphic symplectic manifold of an arbitrary dimension we
need some preliminaries. Let us first formulate it for a K3–surface.

Theorem 2.38 ([61] and [15]). Let S and S ′ be K3–surfaces such that H2(S,Z) ∼= H2(S ′,Z)
as polarized Hodge structures with respect to the intersection pairing. Then S ∼= S ′.

Let us consider a holomorphic symplectic manifold of dimension at least four. We can
replace the intersection pairing with BBF quadratic form. However, the analogous statement
is wrong.
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Proposition 2.39 ([21]). There exist two non-isomorphic holomorphic symplectic manifolds
X and X ′ of dimension four such that there is an isomorphism of polarized Hodge structures
H2(X,Z) ∼= H2(X ′,Z), where the polarizations are given by the BBF forms.

The global Torelli theorem was proved by M.Verbitsky in [64]. We also refer to [35] for
another exposition of this result. For this thesis the local Torelli theorem is enough. Let X
be an IHS manifold and Def(X) the space of its local deformations. The manifold Def(X)
is smooth of dimension b2(X)− 2 by [11]. Locally we can avoid the monodromy action. We
mean, if we take a complex ball B in Def(X) containing [X]. Let X ′ be a deformation of
X from the ball B. The local system H2(X ′,Z) with the BBF-form is constant over B. Let
σ′ ∈ H2(X ′,C) ∼= H2(X,C) be the symplectic form of this manifold X ′, using this cohomology
class we define the local period map Per : Def(X) → P(H2(X,C)).

Per : X ′ 7→ C ·σ′

It is easy to see from the properties of the polarization of a Hodge structure 2.7 that,
q(σ′, σ′) > 0 and q(σ′, σ′) = 0. Thus the image of Per is contained in the quadric Q ⊂
P(H2(X,C)) defined by the BBF quadratic form. The Local Torelli theorem states that
locally it is an isomorphism.

Theorem 2.40 (The Local Torelli theorem). The period map

Per : B → Q ⊂ P(H2(X,C))

is surjective and biholomorphic on a small open subset of Q.

Next, we describe a relation between a deformation X ′ and its image under the period
map.

Example 2.41. The space of deformations of the Hilbert scheme of a K3–surface has di-
mension 21, because its second Betti number is 23 (see Theorem 2.24).

Lemma 2.42. Let α be a Hodge class in H2(X,Z). Than it remains Hodge class on a
deformation X ′ ∈ B if and only if the class σ′ as above is orthogonal to α. We denote this
subspace of B by Bα.

Proof. It is an easy corollary of lemma 2.11.

So the set of deformations of X preserving a divisor D is a codimension one submanifold
of B. We give some examples of families of the IHS manifolds which are deformations of the
second Hilbert scheme of a K3–surface preserving a divisor H.

Example 2.43 ([8]).

Let C ⊂ P(V6) be a smooth cubic fourfold corresponding to a cubic polynomial p ∈ S3V ∗
6 .

Define its Fano variety of lines F (C) := Hilb1+t
X as the Hilbert scheme of lines on C. The

variety F (C) is naturally embedded in Gr(2, V ). Moreover, F (C) is the zero set of the
section of the vector bundle S3U∗ (where, U is the tautological subbundle on Gr(2, V ))
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corresponding to the polynomial p. Using this fact one can show that the variety F (C) is a
holomorphic symplectic manifold. Moreover, for some special cubic polynomials p there exist
a K3–surface S and an isomorphism F (Y ) ∼= S[2]. Hence, for any polynomial p the variety
F (C) is diffeomorphic to the Hilbert scheme of two point of a K3–surface. Each member
of this family of holomorphic symplectic manifolds F (C) is equipped with a polarization H.
This divisor H is the restriction of the Plücker hyperplane section σ1. The Schubert calculus
gives that H4 = 108 and hence q(H) = 6. This family has dimension 20 and for a very
general member of this family NS(F (C)) ∼= ZH.

Example 2.44. [22]

Let V be a ten-dimensional vector space and let σ ∈ ∧3V ∗ be a general alternating three-
form on V . Consider the variety X ⊂ Gr(6, V ) of the six-dimensional subspaces U6 ⊂ V such
that σ restricts to U6 as zero. Let U be the tautological subbundle on Gr(6, V ). The variety
X is the zero locus of the section of the vector bundle ∧3U∗ corresponding to the three-
form σ. The variety X turns out to be an irreducible holomorphic symplectic manifold of
dimension 4 diffeomorphic to the Hilbert scheme of two points on a K3–surface. Let H be the
restriction of the Plücker hyperplane section from Gr(6, V ). By the calculations in Macaulay2
the authors of [22] have obtained that H4 = 1452 and hence q(H) = 22. Similarly to the
previous example this family of irreducible holomorphic symplectic manifolds has dimension
20 and for a very general variety X we have NS(X) ∼= ZH.

2.6 Foliations and invariant subvarieties

In this section we recall some definitions related to foliations and preliminary results about
the Zariski closure of the leaves. First, we define the foliations and leaves and also mention
the Frobenius theorem.

Definition 2.45. Let X be a smooth variety. A (singular) foliation is a saturated subsheaf
F ⊂ TX which is closed under the Lie bracket, i.e. [F, F ] ⊂ F . The singularity locus Sing(F )
of F is the subset of X on which TX/F is not locally free, and it has codimension at least 2 in
X . A leaf of F is the maximal connected injectively immersed complex analytic submanifold
L ⊂ X \ sing(F ) such that TL = F |L.

A saturated subsheaf F ⊂ TX which does not necessarily satisfy the property [F, F ] ⊂ F
is called a distribution. The property [F, F ] ⊂ F is needed for the existence of leafs.

Theorem 2.46 (Frobenius). Let X be a smooth variety and F ⊂ TX a distribution on
X. We say that F ⊂ TX is integrable if there exists a leaf (i.e. locally closed submanifold
L ⊂ X \ sing(F ) such that TL = F |L) through every point of X \ sing(F ). The distribution
F is integrable if and only if F is closed under the Lie bracket, i.e. [F, F ] ⊂ F .

Proof. See for example [66, Book I, Theorem 2.20].

Definition 2.47. If every leaf of a foliation is algebraic we call this foliation algebraically
integrable.
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In this paper we study only foliations of rank one. It follows from theorem 2.46 that all
distributions of rank one are foliations (i.e. integrable).

Definition 2.48. Let Y be a closed smooth subvariety of X. One says it is invariant under
the foliation F or F–invariant if TY contains F |Y .

The Zariski closure of a leaf through a point x is the smallest invariant under F subvariety

containing this point. We denote it by Leaf
Zar

(x, F ). We recall some results of Philippe
Bonnet from the work [14]. He states them for an affine variety X. Nevertheless, these
statements for an affineX obviously lead to the analogous statements for a projective. variety.
Thus, let us reformulate them for a projective variety X.

Theorem 2.49. [13, Theorem 1.3] Let X be a projective variety with a foliation F . There
is an integer m such that m is equal to the dimension of the Zariski closure of the leaf of F
through a very general 3 point x ∈ X. We call this integer m the dimension of the Zariski
closure of a generic leaf. Moreover, the dimension of the Zariski closure of the leaf through
every point x ∈ X is not greater than m.

Proposition 2.50. [13, Theorem 1.4] Let X be a smooth projective variety of dimension n
with a foliation F . Assume that the Zariski closure of a very general leaf of F has dimension
m < n. Then there exists a rational map X 99K W with F -invariant fibers of dimension m
and a very general fiber of this map is the Zariski closure of a leaf of F .

In the work [44] the authors proved the following consequence of the Bogomolov-McQuillan
theorem ([5]) and of the Reeb stability theorem. We formulate it for a foliation of rank one.

Theorem 2.51. [44, Theorem 2] Let X be a smooth variety with a regular foliation F ⊂ TX
of rank one. Assume that there is a curve C ⊂ X, such that degF |C > 0. Then all leaves of
F are rational curves.

2.7 Characteristic foliation

Note that a holomorphic symplectic form σ on a smooth variety X induces an isomorphism
between the vector bundles TX and ΩX . Indeed, one can map a vector field v to the differential
form σ(v, ∗).

Definition 2.52. Let Y be a hypersurface in X and Y sm be smooth locus of Y . Consider the
restriction of TX to Y . The restriction of a symplectic form to any codimension one subspace
has rank 2n− 2 i.e. has one-dimensional kernel. The orthogonal complement of the bundle
TY sm in TX|Y sm is a line subbundle F of TY sm ⊂ TX |Y sm . We call the rank one subbundle
F ⊂ TY sm the characteristic foliation.

Assume Y is smooth. Since Y = Y sm, F is a subbundle of TY . Furthermore, F is
isomorphic to the conormal bundle NY/X (which is isomorphic to OY (−Y ) by the adjunction
formula). Indeed, consider the following short exact sequence:

0 → TY → TX |Y → OY (Y ) → 0.

3Outside of a countable union of proper closed subvarieties.
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Applying the isomorphism TX ∼= ΩX , we obtain that F ∼= OY (−Y ).
We are going to apply the techniques of the previous section to the characteristic foliation.
Our first question is whether it is algebraically integrable. Jun-Muk Hwang and Eckart
Viehweg showed in [40] that if Y is of general type, then F is not algebraically integrable.
In paper [2] Ekaterina Amerik and Frédéric Campana completed this result to the following.

Theorem 2.53. [2, Theorem 1.3] Let Y be a smooth hypersurface in an irreducible holomor-
phic symplectic manifold X of dimension at least 4. Then the characteristic foliation on Y
is algebraically integrable if and only if Y is uniruled, i.e. covered by rational curves.

The next step is to ask what could be the dimension of the Zariski closure of a generic
leaf of F . In dimension 4 the situation is understood thanks to Theorem 2.54.

Theorem 2.54 ([3]). Let X be an irreducible holomorphic symplectic fourfold and let Y be
an irreducible smooth hypersurface in X. Suppose that the characteristic foliation F on Y
is not algebraically integrable, but there exists a meromorphic fibration on p : Y 99K C by
surfaces invariant under F (see Definition 2.48). Then there exists a rational Lagrangian
fibration X 99K B extending p. In particular, the Zariski closure of a generic leaf is an
abelian surface.

This leads to the following conjecture.

Conjecture 2.55. Let Y be a smooth hypersurface in an irreducible holomorphic symplectic
manifold X and let q be the Beauville-Bogomolov form on H2(X,Q). Then:

1. If q(Y, Y ) > 0, a generic leaf of F is Zariski dense in Y ;

2. If q(Y, Y ) = 0, the Zariski closure of a generic leaf of F is an abelian variety of
dimension n;

3. If q(Y, Y ) < 0, F is algebraically integrable and Y is uniruled.

Let us explain why this conjecture is plausible and formulate the main results of chapter
3 (theorem 2.56) and of chapter 4 (theorem 2.57).

Case of q(Y, Y ) < 0. In this case the conjecture is easy to prove. By [14, Theo-
rem 4.2 and Proposition 4.7] Y is uniruled, if q(Y, Y ) < 0. There is a dominant rational map
f : Y 99K W , such that the fibers of f are rationally connected (see [16] and [46, Chapter
IV.5]). Rationally connected varieties do not have non-zero holomorphic differential forms.
Thus, the form σ|Y is the pull-back of some form ω ∈ H0(W,Ω2

W ) and for any point x in
Y the relative tangent space TY/W,x is the kernel of the form σ|Y . The kernel of σ|Y has
dimension one at every point. So, the rational map f : Y 99K W is a fibration in rational
curves and these rational curves are the leaves of the foliation F .

Case of q(Y, Y ) = 0. Conjecturally, X admits a rational Lagrangian fibration, and the
hypersurface Y is the inverse image of a hypersurface of its base (this conjecture was proved
for manifolds of K3 type in [5] and for manifolds of Kummer type [69], for O’Grady 6 type
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in [53] and for O’Grady 10 type in [52]). Moreover a rational Lagrangian fibration can be
replaced with a regular Lagrangian fibration, if we assume that the divisor Y is numeri-
cally effective. In chapter 3 we consider an irreducible holomorphic symplectic manifold X
equipped with a regular Lagrangian fibration π : X → B and assume that the base B is
smooth. By [38], this means B ∼= Pn. Hwang and Oguiso in [39] prove that the characteristic
foliation on the discriminant hypersurface is algebraically integrable, but this hypersurface
is very singular. Our result is as follows.

Theorem 2.56. Let X be a projective irreducible holomorphic symplectic manifold and
π : X → Pn be a Lagrangian fibration. Consider a hypersurface D in Pn such that its
preimage Y is a smooth irreducible hypersurface in X. Then the closure of a generic leaf of
the characteristic foliation on Y is a fiber of π (hence an abelian variety of dimension n).

Case of q(Y, Y ) > 0. Here we have the similar problems as in the previous case. Unfortu-
nately, we did not manage to handle the case of the non-numerically effective hypersurfaces.
For a non-nef divisor with positive BBF–square there exists a birational transformation of
X making it nef. The main problem that the strict transform of this divisor can become
singular (see section 4.4). However, we proved the conjecture 2.55 for nef hypersurface.

Theorem 2.57. Let Y be a smooth nef and big hypersurface in an irreducible holomorphic
symplectic manifold X. Then a generic leaf of the characteristic foliation of Y is Zariski
dense in Y .

In a conversation with Jorge Vitorio Pereira he proposed a solution of the case of a not
nef hypersurface. This result is a nice a application of the characteristic foliation.

Theorem 2.58. Let X be an irreducible holomorphic symplectic manifold and Y a non
numerically effective hypersuface in X. Then Y is either uniruled or singular.

We retell this prove in the section 4.4.

3 The case of a hypersurface with zero square

The goal of this chapter is to prove conjecture 2.55 for a vertical divisor (i.e. theorem 2.56).

3.1 Lagrangian fibrations on irreducible holomorphic symplectic
manifolds

In this section we define Lagrangian fibrations and recall some results on them.

Theorem 3.1 ([49]). Let X be an irreducible holomorphic symplectic manifold of dimension
2n and π : X → B be a regular morphism with connected fibers. Assume that B is a normal
variety and 0 < dimB < 2n. Then:

• B has dimension n;

• Every fiber of π is a Lagrangian subvariety i.e. the restriction of σ is zero;
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• Moreover, if a fiber is smooth, it is an abelian variety.

Definition 3.2. The morphism π as in the previous theorem is called a Lagrangian fibration.

Theorem 3.3 ([38]). If B is smooth, then B ∼= Pn.

The base B is conjectured to be always smooth. For n = 2 this conjecture was proved
in [37]. The authors of [12] proved this conjecture for all n but for some specific type of
singularities of B. In the present paper we will assume that this conjecture is true.
A Lagrangian subvariety is not always a fiber of a Lagrangian fibration.

Example 3.4. Let S be aK3–surface and C be a smooth curve in S. Clearly, C is Lagrangian
in S, but let us construct a more interesting example. Let Z be the strict transform of C(n)

in the Hilbert scheme S[n] under the Hilbert-Chow map. The subvariety Z is Lagrangian.
Indeed, the preimage of σS[n] in Sn is p∗1σS + ...+ p∗nσS, where pi is the i–th projection of Sn

to S. Since σS|C = 0, the restriction of p∗1σS + ...+ p∗nσS to C(n) is zero.

There is an interesting result about deformation of IHS manifolds with a Lagrangian
subvariety.

Theorem 3.5 ([65]). Let X be an IHS manifold and Z ⊂ X be a Lagrangian subvariety of
X. Let X ′ be a deformation of X and σ′ be the corresponding class in H2(X,C) (we view the
second cohomologies as a constant vector bundle, as in section 2.5). This deformation X ′

”preserves the Lagrangian subvariety” (i.e. X ′ contains a Lagrangian subvariety Z ′ which is
a deformation of Z) if and only if σ′|Z = 0.

In example 3.4 the Lagrangian subvariety deforms in codimension 2. Keiji Oguiso in [60]
observed the following consequence of this theorem.

Theorem 3.6 ([60]). Let π : X → Pn be a Lagrangian fibration of a projective irreducible
holomorphic symplectic manifold X and let Xb be a smooth fiber of π. Then rank im(H2(X,Q) →
H2(Xb,Q)) is one.

Proof. In the case of a manifold X with a Lagrangian fibration π : X → Pn over the base
Pn, the deformation X ′ preserves Lagrangian fibration if and only if it preserves the class
c1(π

∗OPn(1)) [50]. As we have seen in section 2.5 the class of a divisor deforms in codimension
one. In the end, applying theorem 3.5 for X and a fiber of the Lagrangian fibration π we
obtain that rank im(H2(X,Q) → H2(Xb,Q)) = 1.

It is well-known that a smooth fiber of a Lagrangian fibration is an abelian variety.
Concerning singular fibers there is the following result.

Proposition 3.7 (Proposition 2.2,[39]). Let ∆ ⊂ Pn be the set of points b ∈ Pn such that
the fiber Xb is singular. Then:

1. The set ∆ is a hypersurface in Pn. We call it the discriminant hypersurface.

2. The normalization of a component of a general fiber of π over ∆ is smooth
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3. The singular locus of a component of a general singular fiber is a disjoint union of
(n− 1)-dimensional complex tori.

Remark 3.8. In particular, there is a subvariety X1 ⊂ X of codimenstion 1 or 2, such that
the morphism of sheaves π∗ΩPn → ΩX restricted to X1 is not injective and π(X1) is the
discriminant hypersurface ∆ ⊂ Pn. Moreover, a fiber Xb over a point b ∈ ∆ is singular along
its intersection with X1 and π−1∆ is singular along X1.

Definition 3.9. Let Y be a hypersurface in X. If there exists a hypersurface D in the
base of a Lagrangian fibration π : X → Pn such that Y = π−1(D), Y is called a vertical
hypersurface.

Let us give the simplest example of a Lagrangian fibration.

Example 3.10. Let S be a K3 surface with an elliptic fibration π : S → P1. This fibration
induces a morphism

π(n) : S(n) → Pn; s1 + s2 + ...+ sn 7→ π(s1) + π(s2) + ...+ π(sn),

where Pn is considered as n–th symmetric power of P1. Composing this morphism with the
Hilbert-Chow map, we obtain a morphism with connected fibers from S[n] to Pn. Thus, by
Theorem 3.1 it is a Lagrangian fibration. Let b1, b2, ..., bm ∈ P1 be the points such that
the fiber π−1(bi) is singular. The discriminant locus of the fibration π is the union of the
hyperplanes Hi := bi+x1+x2+ ...+xn−1 and of the hypersurface ∆0 := 2x1+x2+ ...+xn−1,
which is tangent to each Hi. In particular, for n = 2 the discriminant hypersurface is the
union of the diagonal conic and of the lines tangent to this conic.

3.2 Monodromy of a vertical hypersurface

To prove theorem 2.56 we will need to know some information about the monodromy action
on a smooth fiber of a smooth vertical hypersurface. Thus we generalize theorem 3.6 to a
vertical hypersurface.

Theorem 3.11. Let X be a projective irreducible holomorphic symplectic manifold and let
π : X → Pn be a Lagrangian fibration. Consider a hypersurface D in Pn such that its
preimage Y is a smooth irreducible hypersurface in X. Let Xb ⊂ Y be a smooth fiber of π,
then the morphism H2(Y,Q) → H2(Xb,Q) has rank one.

We prove this theorem after proving some lemmas. To study the monodromy action on
the fibers one should throw away the singular fibers. Proposition 3.6 says that π1(Pn \∆)
fixes only one-dimensional vector space in H2(Xb,Z). Consider a hypersurface D ⊂ Pn in the
base of the Lagrangian fibration. If the pushforward of the fundamental group π1(Pn \∆) →
π1(D \ ∆ ∩ D) is surjective, then theorem 3.11 is clear. This morphism is surjective for a
general D or more concretely D which is in a good position with respect to ∆. Applying
theorem 2.37 to PN and ∆ we obtain the following lemma.

Lemma 3.12. Let D be a hypersurface in projective space PN . Assume the following:
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1. D is smooth;

2. D intersects the smooth locus ∆sm of the discriminant hypersurface ∆ transversely;

3. The intersection of D and of the singular locus ∆sing of the discriminant hypersurface
has dimension less than n− 2.

Then the homomorphism of the fundamental groups π1(D\∆∩D) → π1(Pn \∆) is surjective.

To apply Lemma 3.12 to our problem, we recall the following results.

Theorem 3.13. (Deligne’s invariant cycle theorem, see e.g [66, Theorem 3.2]) Let X → Y
be a projective morphism of quasi-projective varieties. Then for any point y ∈ Y and for any
integer k the space of the invariants under the monodromy action π1(Y, y) → AutHk(Xy,Q)
is equal to the image of the restriction map Hk(X̄,Q) → Hk(Xy,Q), for any smooth projective
compactification X̄ of X4.

Combining this theorem with theorem 3.6 and lemma 3.12, we obtain an immediate
corollary.

Corollary 3.14. The statement of theorem 3.11 becomes true if we add the assumption that
D is smooth, dimension of D ∩∆sing is less than n− 2 and D intersects ∆sm transversely.

Remark 3.15. In Section 3.4 we show that the smoothness of Y implies that D is smooth
and D intersects ∆sm transversely. However, the condition that dimD∩∆sing < n− 2 is not
always satisfied even when Y is smooth.

Finally, the following Lemma makes the proof work for an arbitrary smooth vertical
hypersurface.

Lemma 3.16. Let X be a smooth projective variety and D0, D1 the linearly equivalent smooth
hypersurfaces in X. Let Z be a smooth subvariety of X contained in D0∩D1, then Hi(D0,Q)
and Hi(D1,Q) have the same images in Hi(Z,Q), for any i ∈ Z.

Proof. Let I := [0, 1] ↪→ |D0 − Z| := P(H0(X,OX(D0)⊗ JZ)) be a path between the points
[D0] and [D1], avoiding the points corresponding to singular hypersurfaces in the linear system
|D0−Z| . Let DI ⊂ X×I = {(x, t)|x ∈ Dt} and ZI = {(x, t)|x ∈ Z}. Since all hypersurfaces
Dt are smooth, DI is diffeomorphic to Di × I and ZI is diffeomorphic to Z × I. We have the
following commutative squares for all t ∈ I:

Z ZI

Dt DI

Since the horizontal maps induce an isomorphism on the cohomology groups, the images of
the vertical maps are the same.

4Here Xy is the fiber f−1(y).
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Lemma 3.16 implies Theorem 3.11: take D0 = Y an arbitrary smooth vertical hyper-
surface, Z = Xb a smooth fiber of the Lagrangian fibration π in Y and D1 = Y ′ a smooth
vertical hypersurface through Xb linearly equivalent to Y , such that Y ′ satisfies the condi-
tions of Lemma 3.12. Note that a generic hypersurface from the linear system |Y | is smooth
by Kleiman’s version of the Bertini theorem ([45]).

3.3 Proof of Theorem 2.56

In the last section we apply theorem 3.11 to prove theorem 2.56. Let us recall the second.

Theorem 2.56 Let X be a projective irreducible holomorphic symplectic manifold and
π : X → Pn a Lagrangian fibration. Consider a hypersurface D in Pn such that its preimage
Y is a smooth irreducible hypersurface in X. Then the closure of a generic leaf of the char-
acteristic foliation on Y is a fiber of π (hence an abelian variety of dimension n).

Lemma 3.17. Let π : X → Pn be a Lagrangian fibration, let Y := π−1(D) be a smooth
irreducible vertical hypersurface in X, where D is an irreducible hypersurface in B. Then
every fiber of the fibration π : Y → D is invariant under the characteristic foliation F on Y .

Proof. Consider a smooth fiber Xb of the fibration π : Y → D over a point b ∈ D. Let x be a
point in Xb. The tangent space to Xb at the point x is the orthogonal complement of itself in
TX,x. Since TD,x contains TXb,x, the space TXb,x contains the orthogonal complement of TD,x

i.e. Fx. The singular fibers are invariant as well because of the closedness of this property.

Hence, the Zariski closure of every leaf of the characteristic foliation on a vertical hyper-
surface is of dimension at most n. Our purpose is to show that this closure is Xb (for very
general b) and not a proper subvariety of Xb.

Proposition 3.18. In the assumptions of the Lemma 3.17, let Z be an irreducible subvariety
of a smooth fiber Xb, invariant under F . Fix a group law on Xb, such that Z contains the
zero point. For any a ∈ Xb, the translate of Z by a point a is an invariant subvariety. In
particular, if Z is a minimal invariant subvariety (i.e. the Zariski closure of a leaf), then it
is an abelian variety.

Proof. Since the tangent bundle to Xb is trivial, we may view the restriction of the char-
acteristic foliation to Xb as a one-dimensional subspace of H0(Xb, TXb

). A translation acts
trivially on H0(Xb, TXb

). Thus, we obtain the first statement. Let a ∈ Z be a point of Z. The
translation Z + a is an invariant subvariety. The intersection of Z + a and Z is a non-empty
invariant subvariety. Because of the minimality of Z, Z ∩ (Z + a) = Z. In other words,
Z = Z + a. Hence, Z is an abelian subvariety of Xb.

Proposition 3.19. Assume that the Zariski closure of a generic leaf of the characteristic
foliation on Y has dimension less than n. Then for a general fiber Xb of π the image of the
restriction map H2(X,Q) → H2(Xb,Q) has rank at least 2. This contradicts Theorem 3.11.
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Proof. Consider a rational fibration p : Y 99K Σgen, which was constructed in Proposition
2.50. By Proposition 3.18 its fibers are abelian subvarieties of fibers of π. Thus, Σgen 99K D
is a fibration in abelian varieties ( quotients of fibers of π) . Let G be a relatively ample
divisor on the fibration Σgen 99K D and let p•G be the closure of its preimage in Y . The
restriction of p•G to a very general fiber is Xb is a pull-back of an ample divisor from its
quotient. Hence, p•G|Xb

is effective but not ample. Let H be an ample divisor on Y . The
restrictions of G and H are not proportional in H2(Xb,Q).

3.4 Smoothness of vertical hypersurfaces

To conclude this chapter, we would like to discuss when a vertical hypersurface Y = π−1D is
smooth. We show that the first and the second conditions on D of lemma 3.12 are necessary
for Y to be smooth (see corollaries 3.21 and 3.22). However, the situation with the third
condition is more complicated. It is natural to guess that the fibers over the singular points
of the discriminant hypersurface are ”more singular” (that is the fibers with the greater
dimension of the Zariski tangent space at the singular points) than others. Unfortunately,
this turns out to be false for some types of singularities of ∆. For simplicity, consider the case
of dimX = 4, then the base is the projective plane and the discriminant divisor ∆ is a plane
curve. We show that the fiber over a double point of ∆ is ”more singular” than the others
(i.e. contains a point with Zariski tangent space of dimension 4). Thus any D ⊂ P2 passing
through a double point of ∆ has singular preimage Y in X (see lemma 3.23). However, as
we show in example 3.24, the analogous statement is not true for a cusp of ∆. Most of the
preimages of curves passing through a cusp point of ∆ are smooth.

Lemma 3.20. In the notations as above, let OPn,b be the local ring of a point b ∈ Pn and D
be the zero set of a regular function f ∈ OPn,b. The hypersurface Y = π−1D is singular at a
point x in the fiber Xb if and only if the differential form π∗(df) is zero at x.

Proof. Write down the natural exact sequence:

C ·π∗(df) = OY (−Y ) ΩX |Y ΩY 0

C ·π∗(df) = π∗OD(−D) π∗ΩPn|D π∗ΩD 0

Restricting this sequence to the point x, we see that the form π∗(df) generates the vector
space NY/X . The hypersurface Y is singular at x if and only if its conormal bundle is not
locally free at x. This condition is equivalent non-vanishing of π∗(df) at x. That finishes the
proof.

Corollary 3.21. If D is singular, Y is also singular.

Corollary 3.22. Consider a regular point b of ∆ and assume that a hypersurface D is tangent
to ∆ at b. Then Y is singular along sing(Xb).
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Proof. Let f ∈ OPn,b be the function defining ∆. By Lemma 3.20 π∗(df)x = 0 for any
x ∈ sing(Xb). Since ∆ and D are tangent at point b, D is also singular at these points.

Lemma 3.23. Assume Z ⊂ ∆ is a subvariety of ∆ of codimension 1, such that one can
choose the coordinates x1, x2, ..., xn at a local analytic neighborhood of a general point of Z
in Pn, such that Z = {x1 = x2 = 0} and the hyperplanes x1 = 0 and x2 = 0 are contained
in ∆. In the case n = 2, Z is a double point of ∆. Assume the hypersurface D := {f = 0}
contains Z, then Y := π−1D is singular.

Proof. Let us continue to work in these analytic coordinates. Let X i be the space of points
where π : X → B is singular at {xi = 0}, i = 1, 2. By remark 3.8, X i has codimension not
greater than one at any irreducible component of π−1Z. Hence the scheme X1∩X2∩π−1Z is
not empty. So, take some point P in this scheme. The differential forms π∗(dx1) and π

∗(dx2)
are zero at P . Since D contains Z, the differential form df is a linear combination of dx1 and
dx2. Thus, the form π∗(df) is zero at the point P . Applying Lemma 3.20, we conclude that
Y is singular at P .

Example 3.24. Let S be a K3 surface with an ample line bundle L. Assume PicS = ZL
and c1(L)

2 = 2 (see example 2.18). Thus, the surface S is equipped with a finite morphism p
of degree 2 to the projective plane P(V ) ramified at a smooth sextic curve R, where V is the
space dual to H0(S, L) (dimH0(S, L) = 3 by the Riemann-Roch theorem and the Kodaira
vanishing). The projective plane P(V ∗) is the linear system of the preimages of the lines on
P(V ). Consider the Beauville-Mukai system introduced in [7] and [54]. Let X be the moduli
space of stable sheaves G on S such that rkG = 0, c1(G) = c1(L) and c2(G) = 0. It is
an irreducible holomorphic symplectic manifold. A point of X is the parameter point of a
sheaf iC∗F , where C ⊂ S is a curve from the linear system P(V ), iC is the embedding of
C to S and F is a reflexive rank one sheaf of degree zero at C. The morphism mapping a
sheaf to its supporting curve is the Lagrangian fibration π : X → P(V ∗) in Jacobians of the
curves from the linear system P(V ∗). The fiber XC of π is smooth iff C is smooth. Hence,
the discriminant hypersurface of π is the dual curve R∗ to R. One can compute that for a
general sextic plane curve R, the dual curve R∗ is a curve of the geometric genus 10 (the
same as R), of degree 30 = degR(degR − 1) by the Plücker formula [23, Section 1.2.3]).
Moreover, the dual curve has 324 double points and 72 cusps. Indeed, dimensional count
shows that a general sextic curve does not have tritangent lines and tangent lines of order 4.
Which means that the singularities of R∗ are the double points and the cusps (a bitangent
line to R corresponds to a double point of R and a line tangent to R at an inflection point
corresponds to a cusp of R∗). Both of these singularities increase the arithmetic genus by one.

The arithmetic genus of R∗ is (deg(R∗)−1)(deg(R∗)−2)
2

= 406. Thus R∗ has 396 singular points.
The number of the inflection points is the intersection of R with its Hessian curve He(R)
[23, Theorem 1.1.10]. The Hessian curve of R has degree 12. Hence, R has 72 inflections
points and 324 bitangent lines.
There is a birational map:

f : S[2] 99K X; [Z] 7→ iC∗(IZ)⊗ L
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undefined along the subvariety {[Z] ∈ S[2] |Z = p−1P for P ∈ P(V )} which is naturally
isomorphic to the projective plane P(V ). The indeterminacy locus of the inverse map is the
zero section of the Jacobian fibration π. Moreover, X \ P(V ∗) ∼= S[2] \ P(V ).
Since a fibration is smooth along a section, to find the singularities of π it is enough to study
the rational map π′ := π◦f . The closure of the fiber of π′ over a point of P(V ∗) corresponding
to a curve C from the linear system P(V )∗ is C [2]. A double point [l] of R∗ corresponds to
a bitangent line l to R. Its preimage in S is a rational curve B with two double points P1

and P2. The Zariski tangent space to B[2] at the point P1 + P2 has dimension 4. Thus,
π∗ΩPn → ΩX is zero at the point P1 + P2. By Lemma 3.20, the preimage Y := π−1D in X
of any hypersurface D ⊂ P(V ∗) containing [l] is singular. That is an illustration of Lemma
3.23.
Let [l] ∈ P(V ∗) be a cusp of R∗. This point corresponds to the line l tangent to R at an
inflection point Q ∈ P(V ) of R. The preimage of the line l in S is a curve C of geometric
genus 1 with a cusp QS = p−1Q. By [48, Lemma 2.6], C [2] is singular at the points QS + P
for any point P ∈ C different from QS and at the point [Z] corresponding to the scheme Z
”tangent” to the cusp. In the local ring OC,QS

all the ideals I with dimOC,QS
/I = 2 are

principal, except the ideal corresponding to the scheme Z. Moreover, the Zariski tangent
space to C [2] at its singular points has dimension 3. Hence, the linear map ΩP(V ),[l] → ΩX,x is
of rank one for any singular point x of C [2]. One can compute that the kernel of this map is
the conormal space N ∗

lQ/P(V ∗),[l] of the line lQ ⊂ P(V ∗) corresponding to the inflection point Q

of R. Thus, by lemma 3.20 if a hypersurface D ⊂ P(V ∗) through the point [l] is not tangent
to lQ, then the hypersurface Y := π−1D is smooth along the fiber over [l].

Conclusion: A smooth vertical hypersurface Y may be smooth even if D does not satisfy
property 2 of lemma 3.12.

4 The case of a hypersurface with positive square

4.1 The case of an ample hypersurface

In this section we prove conjecture 2.55 for a smooth and ample hypersurface Y .

Theorem 4.1. Let Y be a smooth and ample hypersurface in an irreducible holomorphic
symplectic manifold X. Then a generic leaf of the characteristic foliation is Zariski dense in
Y .

In order to prove theorem 4.1 we assume the contrary. Let Y 99K B be a rational
fibration such that its general fiber is invariant under the characteristic foliation F . Without
loss of generality one can assume that B is the projective line. We replace Y 99K B by the
composition Y 99K B 99K P1, where B 99K P1 is a pencil of hypersurfaces in B. Let Z be a
fiber of this rational fibration.

Definition 4.2. A subvariety Z of codimension k is called coisotropic if the restriction of
the symplectic form σ to the tangent space to Z at a general point has the smallest possible
rank n− k (if the rank of the restriction is smaller, then the form σ is degenerate on TX).
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Lemma 4.3. Let (X, σ) be an irreducible holomorphic symplectic manifold and Y a smooth
hypersurface in X. Consider a (possibly singular) subvariety Z of codimension 2 in X con-
tained in Y (i.e. a hypersurface in Y ). The following statements are equivalent 5

1. The variety Z is invariant under the characteristic foliation;

2. Z is coisotropic in (X, σ) (the restriction of σ to the smooth locus of Z has the least
possible rank n− 2).

Proof. Let z be a smooth point of Z. Consider the vector spaces TZ,z ⊂ TY,z ⊂ TX,z.
=⇒ Since Z is FY -invariant, TZ,z contains T⊥

Y,z. The line T⊥
Y,z is orthogonal to any vector of

TZ,z. Thus σ|TZ,z is degenerate. Since TZ,z has codimension 2, it is coisotropic.
⇐= Since Z is coisotropic, TZ,z contains T⊥

Z,z and hence it contains T⊥
Y,z = FY,z

6.

Theorem 4.1 obviously follows from the next result.

Proposition 4.4. Let Y be an ample smooth hypersurface in an irreducible holomorphic
symplectic manifold X. Then Y contains no coisotropic subvariety of codimension 2 in X.

In the rest of this section, we prove proposition 4.4. First we remark that being coisotropic
is a cohomological property. In other words, a subvariety Z of codimension k (possibly
singular) is coisotropic if and only if [Z] ∪ [σn−k+1] = 0 ∈ H2n+2(X,C) (see [68, lemma 1.4]
for the details). Now we use the ampleness of Y to apply the Lefschetz hyperplane theorem
(LHT). It yields that there is a (not necessarily effective) divisor D, such that [Z] = [D] · [Y ].

Lemma 4.5. Let α, β ∈ NS(X). The class α ∪ β is coisotropic if and only if q(α, β) = 0.

Proof. If Z is coisotropic [Z] ∪ [σn−1] = 0 and hence [Z] ∪ [σn−1] ∪ [σ̄n−1] = α ∪ β ∪ [σ]n−1 ∪
[σ̄]n−1 = 0. Let us look at definition 2.28. Since α and β of type (1, 1), q(α, β) is proportional
to α ∪ β ∪ [σ]n−1 ∪ [σ̄]n−1. Hence, if Z is coisotropic, then q(α, β) = 0.

So, [D] is BBF–orthogonal to [Y ]. We show that it is impossible.

Lemma 4.6. Let α, β ∈ NS(X) and q(β, β) > 0. Then the signs of q(α, β)q(β, β)n−1 and of
αβ2n−1 are the same.

Proof. The Fujiki formula (see Theorem 2.29) says that there is a positive constant c such
that for every γ ∈ H2(X,Z)

q(γ, γ)n = cγ2n.

Let k be an integer. Applying the Fujiki formula for kβ + α we obtain the equality of
polynomials in k:

c(kβ + α)2n = (k2q(β) + 2q(α, β)k + q(α))n. (1)

This equality of polynomials gives us the equality of the coefficients of the term of degree
2n− 1:

5It is easy to see that the implication 2 ⇒ 1 is true for any codimension of Z.
6As one may notice, for Z of higher codimension the first implication is wrong but the second implication

holds.
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2nc(αβ2n−1) = 2nq(α, β)q(β, β)n−1.

Corollary 4.7. Let Y be an ample divisor and D a divisor such that [Z] = [Y ] ∪ [D] is an
effective divisor. Then q(Y,D) > 0. In particular, Z is not coisotropic.

Proof. Take α = [D] and β = [Y ]. Since Z is effective and Y is ample we have

[Y ]2n−1 ∪ [D] = [Y ]2n−2 ∪ [Z] > 0

and hence q(D, Y ) > 0.

In the end of this section we make a conjecture generalizing proposition 4.4.

Conjecture 4.8. Let X be an IHS manifold of dimension 2n and Y a smooth ample hyper-
surface in X. Then the hypersurface Y contains no coisotrpic subvariety except itself.

If we apply the arguments we used to prove proposition 4.4, we can decompose the class
of a coisotropic subvariety Z as [Z] = [Y ] ∪ α, where α ∈ H2 dimZ−2(X,Z). For codimZ > 2
we meet the problem that the class α is not necessarily polynomial (i.e. is not contained in
the image of the morphism SdimZ−1H2(X,Z) → H2 dimZ−2(X,Z) defined in theorem 2.31).
And we can not use the estimations with BBF form to this class α.

4.2 The LHT for a nef and big hypersurface in IHS

In the previous section we used the LHT for an ample hypersurface. In order to adapt this
proof for a nef and big hypersurface we show that the LHT holds for such hypersurfaces.
The main result of this section is the following.

Theorem 4.9. Let Y be a smooth, nef and big hypersurface in an irreducible holomorphic
symplectic manifold X. Then for i < dimX the restriction induces an isomorphism on the
cohomology groups Hi(X,Q) ∼= Hi(Y,Q).

First we recall that the LHT (with rational coefficients) follows from the Kodaira–Akizuki–Nakano
vanishing.

Lemma 4.10. Let X be a smooth variety and L be an effective line bundle on X. Consider
a smooth hypersurface Y ⊂ X such that OX(Y ) ∼= L. Assume that Kodaira-Akizuki-Nakano
vanishing holds for L. This means the following:

Hq(X,Ωp
X ⊗ L∗) = 0 for p+ q < dimX.

Then Hi(X,Q) ∼= Hi(Y,Q) for i < dimX.

Proof. See [66, Chapter 13.3].
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Thus, to prove the LHT it is enough to prove the Kodaira–Akizuki–Nakano vanishing.
Let us formulate it.

Proposition 4.11. Let L be a nef and big line bundle on an irreducible holomorphic sym-
plectic manifold X. Then the Kodaira–Akizuki–Nakano vanishing (we will write it as the
KAN for shortness) holds for L:

Hq(X,Ωp
X ⊗ L∗) = 0 for p+ q < dimX.

Remark that the KAN and the LHT are not true for a nef and big line bundle.

Remark 4.12. In [47, Remark 4.3.3] R. Lazarsfeld gives an example, where the KAN (or the
LHT for a generic section) is not true for a nef and big line bundle. This line bundle is a
pull-back of OP3(1) on the projective space P3 to the blowing-up BlP P3 of this space at a
point P ∈ P3.

The clue in the holomorphic symplectic case is that the morphism induced by a nef and
big line bundle is of a special kind. Namely, these morphisms are semismall.

Definition 4.13. Let f : X → Y be a morphism of algebraic varieties. We call f semismall
if for every subvariety Z of X, the following inequality holds

2 dimZ ≤ dimX + dim f(Z).

Let us recall the definition of a lef line bundle (l.e.f.= Lefschetz effettivamente funziona)
from [19].

Definition 4.14. A line bundle L is called lef if some its power L⊗k is generated by global
section and induces a semismall morphism to projective space.

E. Esnault and E. Viehweg proved the KAN vanishing for lef line bundles.

Theorem 4.15. [24, Theorem 2.4] Let L be a lef line bundle on a smooth variety X. Then

Hq(X,Ωp
X ⊗ L∗) = 0 for p+ q < dimX.

We are going to prove that a nef and big line bundle L on a holomorphic symplectic
manifold X is lef. By the Kawamata-Shokurov base-point-free theorem (see [18, Chapter 10])
the line bundle L⊗k for k >> 0 is generated by global sections.

It remains to prove that the morphism ϕ : X
|kY |−−→ PN is semismall. For this purpose we

show that despite the fact that Y is not ample, the hard Lefschetz theorem remains true for
[Y ] ∈ H2(X,Z) because Y deforms to an ample divisor.

Lemma 4.16. Let X be an irreducible holomorphic symplectic manifold of dimension 2n and
Y be a hypersurface with q(Y, Y ) > 0. Then for every 0 < r < 2n we have an isomorphism

∪[Y ]2n−r : Hr(X,Q)
∼−→ H4n−r(X,Q).
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Proof. As in section 2.5 we consider the local deformations of X. Let BM ⊂ Def(X) be a
small analytic ball around the point corresponding to X and take the subspace BY defined
in lemma 2.42. The ball BY parametrize local deformations of X such that the class [Y ]
remains of type (1, 1). Moreover, a very general Hodge structure A in Per(BY ), does not
have a Hodge class not proportional to [Y ]. Hence, for X ′ the holomorphic symplectic
manifold corresponding to a very general point of BY , [Y ] generates NS(X ′). Since X is
projective, the Beauville-Bogomolov square of the class [Y ] in H2(X,Z) is positive. Hence, the
Beauville-Bogomolov square of the class [Y ] in H2(X ′,Z) is also positive. By [34, Theorem 2]
if X ′ has a Hodge class (in our case this class is [Y ]) with the positive BBF-square (see
[34, Theorem 2]), X ′ is projective. Which means that NS(X ′) contains an ample class. The
Neron-Severi lattice of X ′ is generated by [Y ] and [Y ] is positive. Hence, [Y ] is an ample
class in NS(X ′). Thus by the hard Lefschetz theorem for [Y ] and X ′ and the isomorphism
of H∗(X,Z) ∼= H∗(X ′,Z), the hard Lefschetz theorem is true for X and [Y ].

Now we are ready to prove that ϕ : X → PN is semismall. Let Z be a closed subvariety
of X of codimension r. By lemma 4.16, [Z]∪ [Y ]2n−2r ̸= 0 ∈ H4n−2r(X,Z). Hence the section
of ϕ(Z) by a linear space of codimension 2n− 2r in PN is not empty. Finally we obtain,

dimϕ(Z) ≥ 2n− 2r = 2(2n− r)− 2n = 2dimZ − dimX.

Thus, the line bundle L is lef. By theorem 4.15 the KAN holds for L. By lemma 4.10 the
LHT with rational coefficients is true for Y .

4.3 The case of a nef and big hypersurface

Now after proving theorem 4.9 we are ready prove theorem 2.57. Let us recall it.

Theorem 2.57 Let Y be a smooth nef and big hypersurface in an irreducible holomorphic
symplectic manifold X. Then a generic leaf of the characteristic foliation of Y is Zariski
dense in Y .

As it was shown in section 4.1 it is enough to prove the following.

Proposition 4.17. Let Y be a smooth nef and big hypersurface in an irreducible holomorphic
symplectic manifold X. Then Y can not be covered by a family of coisotropic subvarieties of
codimension 2 in X.

The problem is that even though the LHT holds, it is not enough to apply the arguments
of section 4.1 to a nef and big hypersurface Y . Indeed when Y is not ample one may have
Y 2n−1 ·D = 0 (cf. proof of Corollary 4.7). But using the fact that the family of coisotropic
subvarieties covers Y we can show that D2 · Y 2n−2 ≥ 0. Indeed, let Z1, Z2 be two distinct
members of this family. Then Z1 ∩ Z2 is an effective cycle of codimension 4 in X. Thus the
intersection number Z1 ·Z2 ·Y 2n−4 = D2 ·Y 2n−2 is not negative. This observation contradicts
the following lemma.

Lemma 4.18. In the assumption of lemma 4.6 if q(β, β) > 0, then α2 ∪ β2n−2 < 0.
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Proof. The signature of the restriction of the BBF form to H1,1(X) is (1, h1,1(X)−1). Hence,
the BBF square of α is negative. Considering the equality of polynomials (1) at the terms of
degree 2n− 2 we obtain:

c · 2n(2n− 1)

2
· α2 ∪ β2n−2 =

n(n− 1)

2
q(α, α)q(β, β)n−1.

Since q(α, α) < 0 and q(β, β) > 0, the intersection number α2β2n−2 is negative.

4.4 The case of a non numerically effective hypersurface

In this section we prove that a generic leaf of the characteristic foliation of Y is also dense in
Y if Y is not nef under some additional condition on Y . A divisor with positive Beauville-
Bogomolov-Fujiki square is not necessarily nef. But it can be transformed to a nef divisor
by a birational modification of X. The following proposition is a consequence of theorem 1.2
and lemma 2.2 in [51].

Proposition 4.19. [51] Let X be an irreducible holomorphic symplectic manifold and Y an
irreducible hypersurface with q(Y, Y ) > 0. Then there is an irreducible holomorphic symplectic
manifold X ′ with birational map ψ : X ′ 99K X, such that the divisor Y ′ = ψ∗Y is nef.

Let us recall an important fact on the birational transformation of IHS manifolds.

Lemma 4.20. [43, page 420] Let ψ : X 99K X ′ be a birational transformation of IHS
manifolds, then ψ is an isomorphism in codimension 1.

It is easy to see that if a generic leaf of the characteristic foliation is dense in Y ′, then
the same is true for Y . Theorem 2.57 (Campana’s conjecture for a nef and big hypersurface)
has the following corollary.

Corollary 4.21. In the assumptions of proposition 4.19, if Y ′ is smooth, then a generic leaf
of the characteristic foliation is dense in Y .

In a recent conversation Jorge Vitorio Pereira proposed the following solution of the non-
nef case. This result is also very interesting out of the context of conjecture 2.55.

Theorem 2.58 Let X be a holomorphic symplectic manifold and Y a smooth non-nef hy-
persurface in X. Then Y is uniruled.

Proof. First, we notice that the line bundle OY (Y ) is not nef. Indeed, OX(Y ) is not nef.
Hence, there exists a curve C ⊂ X, such that the line bundle OC(Y ) has negative degree.
Since Y intersects C negatively, C is contained in Y .

Recall that the characteristic foliation F is isomorphic to OY (−Y ). Thus the restriction
of F to the curve C has positive degree. That allows us apply theorem 2.51 to the variety Y
and the foliation F . We obtain that all leaves of the characteristic foliation on Y are rational
curves. Hence, Y is uniruled.

35



Lemma 4.22. If Y is smooth and uniruled then q(Y, Y ) < 0.

Proof. The proof of this statement is contained in the work [14]. Let us highlight it. By
[14, theorem 4.5] an ”exceptional” hypersurface has negative BBF square. We need to show
that a smooth uniruled divisor is ”exceptional” according to definition of [14]. S. Boucksom
defines a ”modified nef divisor” (the definition is not important for us). For an irreducible
divisor being exceptional is equivalent to being not ”modified nef” [14, Definition 3.10]. What
is important for us is that the restriction of a modified nef divisor to any prime divisor is
pseff [14, Proposition 2.4].

Note that OY (Y ) is not pseff. Indeed, ωY
∼= OY (Y ). Canonical bundle of a uniruled

variety is not pseff. Hence, Y is exceptional and we can apply [14, theorem 4.5] to a smooth
uniruled hypersurface Y .

Corollary 4.23. A non nef hypersurface Y with non-negative Beauville-Bogomolov square
is singular.

That completes the proof of conjecture 2.55.

5 Singular counterexamples to the conjecture of Cam-

pana

In this chapter we give a few known examples of singular hypersurfaces in an irreduicble holo-
morphic symplectic manifold, such that the dimension of a generic leaf of the characteristic
foliation is smaller than predicted by the conjecture 2.55 for a smooth hypersurface.

5.1 Vertical hypersurfaces

As we proved in theorem 2.56, if X is an IHS manifold Lagrangian fibered over Pn, then the
Zariski closure of a general of the characteristic foliation on a smooth vertical hypersurface
is a fiber of the Lagrangian fibration. Let us give few examples of singular vertical hypersur-
faces such that the Zariski closure of a generic leaf of the characteristic foliation is a proper
subvariety in a fiber.

The most natural singular divisor on a holomorphic symplectic manifold is the preimage
of the discriminant divisor. Hwang and Oguiso proved that its characteristic foliation is
algebraically integrable.

Proposition 5.1. [39] Let X be a holomorphic symplectic manifold and f : X → B a
holomorphic Lagrangian fibration over a complex manifold B. Assume that each fiber of f
is of class C, i.e. bimeromorphic to a compact Kähler manifold. Let D be a component
of the discriminant hypersurface of f . Then the characteristic foliation on every irreducible
component Y of f−1D has algebraic leaves and the closures of the leaves are either rational
curves or elliptic curves.
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Example 5.2. Let p : S → P1 be an elliptic K3 surface and π : X → P2 the induced
Lagrangian fibration on the Hilbert scheme of the subschemes of length 2 in S (see example
3.10). The preimage of the diagonal conic has two components: the exceptional divisor of the

blow-up S[2] → S(2) and the relative symmetric square S
(2)

P1 of our elliptic fibration. It is easy
to see, that both of them are uniruled. Thus, the characteristic foliations are algebraically
integrable.

Example 5.3. For the same X as above, consider a line l in P2 tangent to the conic ∆P1 . It
can be defined as

{b1 + b2 ∈ (P1)(2) | b1 = b or b2 = b}

for some fixed point b in P1. Let Yl be the preimage of the line l. Considering the strict
transform of Yl in the Cartesian square S×S, one can show that the leaves of the characteristic
foliation on Yl are isomorphic to the elliptic curve π−1(b). By Lemma 3.22 Yl is singular.
This example shows, that smoothness of Y is a necessary condition in Theorems 2.56 and
2.53.

5.2 The variety of lines in a cubic fourfold

In this section we consider a ”complete” (of dimension 20) family of holomorphic symplectic
manifolds introduced by A. Beauville and R. Donagi in [8]. A general variety of this family
possesses only ample hypersurfaces. Theorem 2.57 says that if an ample hypersurface Y is
smooth, then a generic leaf of the characteristic foliation is dense in Y . We will give two
examples of a singular hypersurface Y such a generic leaf of the characteristic foliation on Y
is not dense in Y .
Let C ⊂ P(V ) (dimV = 6) be a smooth cubic fourfold. The variety of lines in C is a
holomorphic symplectic fourfold X. By definition, X is embedded in Gr(2, V ). Let U be the
universal sub-bundle and Q the universal quotient bundle. One can define X as the zero locus
of a section of S3U∗ in Gr(2, V ). For a very general C, the variety X has Picard number equal
to 1. Indeed, by [8, Proposition 4] H2(X,Z) and H4(C,Z) are isomorphic as Hodge structures
and by the Noether-Lefschetz theorem (see e.g. [66, Book II,Section 3.3.2]) Hdg4(C,Z) ∼= Z.
The Picard group of X is generated by the restriction of the Plücker hyperplane section H
of Gr(2, V ). Clearly, it is ample. The embedding into the Grassmannian also induces the
morphism on the fourth rational cohomologies: H4(Gr(2, V ),Q) → H4(X,Q). This vector
space H4(Gr(2, V ),Q) is generated by the Schubert cycles σG

11 and σG
2 . Here σG

11 can be
obtained as the set of lines contained in a hyperplane and σG

2 as the set of lines intersecting
a projective plane in P(V ). We denote their restrictions to X by σ11 and σ2 respectively.
Let us describe the subring of H∗(X,Q) generated by these algebraic classes. We have the
following relations between them [1, Lemma 4]:

H4 = 108, H2 = σ2 + σ11, σ2σ11 = 18, σ2
2 = 27 and σ2

11 = 45.

Applying the formulas from section 2.3 we obtain that q(H) = 6. We know 2 examples of a
singular hypersurface Y in X such that the leaves of the characteristic foliation are not dense
in Y . The closure of a generic leaf of the characteristic foliation is a Lagrangian surface in
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the first example and a rational curve in the second.
Let us construct the first one. Let V4 ⊂ V be a vector subspace of V of dimension 4. The
subspace V4 defines a Schubert cell in Gr(2, V ) as a variety of lines intersecting the projective
space P(V4). This is the hyperplane section in the Plücker embedding corresponding to detV4
via the isomorphism ∧2V ∗ ∼= ∧4V given by an element of ∧6V . Intersecting it with X we
obtain the hypersurface

YV4 = {l ⊂ C| l ∩ P(V4) ̸= ∅}. (2)

Clearly, YV4 ∈ |H|. For a general subspace V4 the intersection of P(V4) and C is a smooth
cubic surface C(V4). The classical fact of algebraic geometry says that a smooth cubic surface
contains exactly 27 lines l1, l2, ..., l27. They give us 27 points in YV4 . Denote the set of these
points by L. The hypersurface YV4 is singular at L. If a line l is not one of these 27, it intersects
with P(V4) by a point of the cubic surface C(V4). It defines a rational map YV4 99K C(V4).
But we are interested in another map. A line from YV4 \ L lies in a unique hyperplane with
V4. This defines a rational map ϕ : YV4 99K P(V/V4), l 7→ l+ P(V4). A general fiber of ϕ over
a hyperplane V5 containing V4 is a surface of lines in the cubic threefold C(V5) := P(V5)∩C.
This surface of lines was studied in the famous work [17] of P. Griffiths and H. Clemens. Let
us denote this surface by F (V5).

F (V5) = {l ⊂ P(V5) ∩ C} (3)

It is known that F (V5) is a Lagrangian surface in X and hence ϕ is invariant under the
characteristic foliation on the divisor YV4 (lemma 4.3). To show this we need to recall the
following properties of the surface F (V5).

Lemma 5.4. [17] Let F be a surface of lines of a smooth cubic threefold C3 ⊂ P(V5). It
has the Hodge numbers h1,0 = 5, h2,0 = 10, h1,1 = 25. Moreover, the cotangent bundle ΩF

is isomorphic to the restriction of U∗|F (where U is the universal subbundle on Gr(2, V5))).
Moreover, H0(F,ΩF ) = V ∗.

Lemma 5.5. [65, Section 3, Example 7] Let V5 be a hyperplane in V . Then F (V5) is a
Lagrangian surface in X.

These classical results give the following proposition about the characteristic foliation on
the hypersurface YV4 :

Proposition 5.6. Let X be the Fano variety of lines in a cubic fourfold C ⊂ P(V ) and
H a class of a hyperplane with respect to the embedding of X to P(∧2V ) induced by the
Plücker embedding of Gr(2, V ). Take a four-dimensional subspace V4 of V . Let YV4 ∈ |H|
be a hypersurface in X defined by formula (2). Then for any five-dimensional subspace V5
of V containing V4, the surface F (V5) (see formula (3)) is invariant under the characteristic
foliation of the singular hypersurface YV4.

In order to construct the second hypersurface which is unirational we need to construct
a two-dimensional family of rational curves in X. A general line in C has the normal bundle
isomorphic to OP1(1) ⊕ OP1 ⊕OP1 and a special line has the normal bundle isomorphic to
OP1(1)⊕OP1(1)⊕OP1(−1). Geometrically this means that there is a unique plane tangent
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to C at a general line l and a pencil of planes tangent to X at a special one. Each of these
planes intersects C by 2l and another line l′ (this property was studied in [67] in order to
construct a rational endomorphism of X). The set of special lines is the surface S of class
5σ2 [1]. This surface was well described in the recent work [29].

S := {l ∈ X|Nl/C
∼= OP1(1)⊕OP1(1)⊕OP1(−1)}

The surface S can also be defined as the set of lines such that there exists a P3
l ⊂ P(V ) tangent

to C at l. A line from S defines a rational curve Rl in X, the set of lines l′ intersecting l
and such that the plane l + l′ is tangent to C at l. This curve is isomorphic to the variety
of planes tangent to C at l (i.e. the planes in P3

l containing l). Thus this curve is rational.
The curve Rl has degree 3 in the Plucker embedding of X. Indeed, a general P3 ⊂ P(V )
intersects P3

l in a line intersecting the cubic hypersurface C at three points. Every point in
C ∩P3

l gives us a unique plane tangent to C at l. We define the hypersurface Y as the union
of all curves Rl.

Y := {l′ ∈ X| ∃l ∈ S such that P(l′ + l) ∩ C = 2l + l′}

The hypersurface Y is clearly uniruled and thus its characteristic foliation is algebraically
integrable. In the article [57, Corollary 0.3] the authors prove that the Fano variety of a very
general cubic fourfold does not contain a uniruled hypersurface except the hypersurface Y
constructed above.
Let X be an IHS manifold of dimension 4. It follows from lemma 4.3 that if a generic leaf of
the characteristic foliation on a (may be singular) hypersurface Y is not dense in Y , then Y is
covered by Lagrangian varieties. There are very few known examples of Lagrangian varieties
in an IHS manifolds X with NS(X) generated by an ample divisor. There is the following
open question.

Question. Let X be a projective IHS manifold of dimension 4 with NS(X) ∼= Z. Does X
contain a Lagrangian surface?

Proposition 5.6 motivates us to make the following conjecture which might help to answer
this question.

Conjecture 5.7. Let X be an IHS manifold embedded in the projective space PN . Then
there exists a hyperplane H ⊂ PN , such that a generic leaf of a characteristic foliation of the
hyperplane section Y := H ∩X is not dense in Y .

6 A special divisor on the Debarre-Voisin manifold

In this chapter we study a certain divisor in the holomorphic symplectic manifold constructed
by O. Debarre and C. Voisin in [22]. In the end of this chapter we construct a foliation on
this divisor and conjecture that this foliation is characteristic.
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6.1 Introduction

Let V be a complex vector space of dimension 10 and let σ ∈ ∧3V ∗ be a very general
alternating form of rank 3. There are several types of varieties associated to σ. We shall
recall their definitions. For a very general form σ all these varieties are smooth (see for
example [10] and [9]).

• The variety Y ⊂ Gr(3, V ) defined by the hyperplane section corresponding to σ ∈ ∧3V ∗

in the Plücker embedding;

• The Peskine variety P ⊂ P(V ) defined as P = {V1 ⊂ V, dimV1 = 1 | rkσ(V1, ∗, ∗)| ≤ 6}
(for a very general σ we can replace ”≤” by the ”=”);

• The congruence variety of lines Σ ⊂ Gr(2, V ) defined as
Σ = {V2 ⊂ V, dimV2 = 2 | σ(V2, V2, V ) = 0};

• The Debarre-Voisin varietyX ⊂ Gr(6, V ) defined asX = {V6 ⊂ V dimV6 = 6 | σ(V6, V6, V6) =
0};

• The Fano variety F of lines in the Peskine variety P .

Lemma 6.1. [22, Proposition 3.1] Let U3 ⊂ V be a three-dimensional space from Y (i.e.
σ(U3, U3, U3) = 0), then Y is singular at U3 if σ(U3, U3, V ) = 0. For a general σ there is no
such V3.

Proposition 6.2. [22] Debarre-Voisin variety X is an irreducible holomorphic symplectic
manifold of dimension four of K3[2] type. The Plücker hyperplane section gives us the polar-
ization on X with BBF -square equal to 22.

The authors of [22] present Y as an analogue of the cubic fourfold and X as an analogue
of the Fano variety of lines in it. As analogue of the incidence variety in the product of the
cubic fourfold and its Fano variety of lines they consider the incidence variety I3,6 in Y ×X
defined as

I3,6 = {(U3, U6) |U3 ⊂ U6 and σ(U6, U6, U6) = 0}.
That gives some Hodge-theoretical results (see for example [22, Corollary 2.7]). The pro-
jection of I3,6 to Y is not surjective due to the dimensional reasons. Indeed, dimY =
dimGr(3, 10) − 1 = 20 and dim I3,6 = dimGr(3, 6) + dimX = 13. In this chapter we con-
sider another analogy. We take the Peskine variety P instead of a cubic fourfold and its Fano
variety of lines F instead of the Fano variety of lines in a cubic fourfold. The variety P has
only dimension 6. The variety F is not an IHS manifold, but Benedetti and Song proved
that it is fibered in cubic surfaces over X (see proposition 6.6).

Proposition 6.3. The Peskine variety P has degree 15 and dimension 6. Its canonical
bundle is equal to OP (−3) with respect to the embedding into P(V ). It is equipped with a
vector bundle K ⊂ V ⊗OP of rank 4 with the fiber KV1 over the point corresponding to a line
V1. Here the space KV1 is defined by the equation σ(V1, KV1 , V ) = 0. There is the following
exact sequence of vector bundles on P :

0 → OP (−1) → K → NP/P(V )(−3) → 0.
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Proof. See e.g. [20, Section 4.5].

Proposition 6.4. [20, Theorem 3.8]The congruence variety Σ is the zero set of a section of
the vector bundle Q∗

8 ⊗ OGr(2,V )(1) in Gr(2, V ) (where Q8 is the universal quotient bundle
and OGr(2,V )(1) is the ample line bundle associated to the Plücker embedding). Hence it has
dimension 8.

Proposition 6.5. [20, Corollary 4.18 and Table 1 on page 44] For a point [V1] ∈ P(V ) \ P
there is exactly one projective line from Σ passing through it. For a point [V1] ∈ P the set of
lines from Σ passing through the point [V1] is the projective plane P(KV1/V1). It gives us the
following commutative diagram:

BlP P(V ) PΣ(U2)

P(V ) Σ

p

∼

q

Moreover, a general line from Σ intersects P by four points. In other words, let E be the
exceptional divisor of the blow-up p. The restriction of q to E is the morphism of degree 4.

See [20] for more details on the congruence varieties of lines.

Proposition 6.6. [9, Theorem 2.20] The variety F has dimension 6. There exists a fibration
in cubic surfaces π : F → X. We denote the fiber π−1[U6] for [U6] ∈ X by CU6.

We end this section with a sketch of the construction of this fibration in cubic surfaces
from [9, Section 2.7]. First of all, the authors prove the following lemma.

Lemma 6.7. For a very general form σ ∈ ∧3V ∗ the variety F is isomorphic to the variety
of the seven-dimensional spaces U7 in V such that σ restricts to U7 as a three-form of rank
5 (i.e. rank of the morphism U7 → ∧2U∗

7 induced by σ is 5).

To obtain such a space U7 from the plane [U2] ∈ F , we take U7 as the sum
∑

U1⊂U2
KU1 .

Since P(U2) ⊂ P the form σ(u, ∗, ∗) on V has rank 6 for every u ∈ U2. Hence, the form
σ(u, ∗, ∗) has the kernel K<u>

7 of dimension 4. The authors of [9] show that the sum of all
K<u> for all u ∈ U2 has dimension 7 for a very general three-form σ. This is the required
space U7. Moreover, they show that σ(U2, U2, U7) = 0 (and hence σ|U7 has rank not greater
than 5).
For a very general σ there is no seven-dimensional space U7 such that the restriction of σ to
U7 has rank less than 5. Hence, a seven-dimensional space U7 with rkσ|U7 ≤ 5 contains a
unique two-dimensional space U2 such that σ(U2, U7, U7) = 0. For every u ∈ U2 the two-form
σ(u, ∗, ∗) has a seven-dimensional coisotropic space U7 and hence it has rank not greater than
6. Which means that P(U2) is a line in the Peskine variety.
Finally, we construct the fibration π from F to X.

7Here we mean KU1
for U1 =< u >.
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Lemma 6.8. There exists a unique six-dimensional space U6 such that U2 ⊂ U6 ⊂ U7 and
σ(U6, U6, U6) = 0.

Proof. Any alternating three-form of rank 5 on U7 with the kernel U2 can be represented as
x1 ∧ (x2 ∧ x3 + x4 ∧ x5) for some basis of the space of the linear forms (U7/U2)

∗. Then the
hyperplane U6 in U7 corresponding to the linear form x1 satisfies the property σ|U6 = 0.

Thus we constructed the morphism π from F to X.
Remark that if σ|U = 0 for some subspace of V , then every vector q ∈ V/U defines the two-
form σ(q, ∗, ∗) on U . By lemma 6.7 we can think of F as the variety of seven-dimensional
spaces U7 such that σ|U7 has rank 5. The fiber of the morphism π : F → X over the point of
X corresponding to a space U6 is the set of the seven-dimensional spaces U7 containing U6

such that the form σ(U7/U6, ∗, ∗) has two-dimensional kernel (i.e. is degenerate).

Definition 6.9. Let U be a vector space of dimension 2n and let W be a subspace of ∧2U∗.
Consider the morphism

SnW → Sn(∧2U∗) → detU∗ ∼= C .

If this morphism is not zero it defines a hypersurface of degree n in P(W ). We call this
hypersurface Pfaffian.

Lemma 6.10. The set of seven-dimensional subspaces U7 of V , such that U7 contains U6

and the form σ(U7/U6, ∗, ∗) on U6 is degenerate, gives the Pfaffian cubic in P(V/U6) which
we denote by CU6.

As we said σ gives the morphism V/U6 → ∧2U∗
6 . It induces the morphism S3(V/U6) →

∧6U∗
6
∼= C. This morphism defines the cubic surface CU6 in P(V/U6). This fibration in cubic

surfaces provides the following correspondence between P and X.

PF (U2)

P F PX(Q4)

X

P(U2)

CU6
P(V/U6)

Here Q4 is the restriction of the tautological quotient bundle on Gr(6, V ) to X and U2 is the
restriction of the tautological subbundle of Gr(2, V ) to F .
For each vector q ∈ CU6 , the form σ(q, ∗, ∗) on U6 has two-dimensional kernel U2. That gives
a vector bundle U2 |CU6

⊂ U6⊗OCU6
on CU6 . For a general U6 ∈ X the intersection P(U6)∩P

is isomorphic to PCU6
(U2 |CU6

). This scroll is called the Palatini threefold. See [31] and [32]
for the details about the Palatini threefold and its connection with the Peskine variety.
The goal of this chapter is to describe a special threefold Z ⊂ F (namely, Z = F ∩ Σ) and
map it to a divisor in X via the fibration π. In the end of this chapter we construct a foliation
of rank one on π(Z) which we conjecture to be the characteristic foliation.
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6.2 Peskine variety

Before constructing a threefold Z in the Fano variety F of lines in the Peskine variety P , we
need to study the geometry of the Peskine variety itself.
Let the line V1 =< v1 > correspond to a point of the Peskine variety P . We denote by KV1

the kernel of the alternating form σ(v1, ∗, ∗) on V . For a general σ, for every V1 ∈ P the
space KV1 has dimension 4 (see [9, Section 2.5]). Choose a basis: KV1 =< v1, k1, k2, k3 >, by
the definition σ(v1, ki, v) = 0 for every v ∈ V . Consider an arbitrary bi-vector in ∧2(KV1/V1).
Since dimension of KV1/V1 is three, any bi-vector from ∧2(KV1/V1) is the skew-product of two
vectors. Without loss of generality we can assume that this bi-vector is k1∧k2. The linear form
σ(k1, k2, ∗) is not zero on V , otherwise we obtain the equation σ(U3, U3, V ) = 0 for the space
U3 =< v1, k1, k2 >, which contradicts lemma 6.1. Thus the bi-vectors ki ∧ kj ∈ ∧2(KV1/V1)
define three distinct non-zero linear forms σ(ki, kj, ∗) on V . Hence, there is a unique seven-
dimensional space T V1 such that σ(KV1 , KV1 , T V1) = 0. Thus we obtain two vector bundles
K and T on P . Since both KV1 and T V1 contain V1, one can take the quotients K/OP (−1)
and T /OP (−1).

Lemma 6.11. There are the isomorphisms K /OP (−1) ∼= NP/P(V )(−3) and T /OP (−1) ∼=
TP (−1). The second isomorphism means that the projective space P(T V1)

∼= P6 is tangent to
P at [V1].

Proof. There is an exact sequence (see [32, Corollary 2.4] and [20, Section 4.5]):

0 → NP/P(V )(−3) → TP(V )(−1)|P → Ω(2)P(V )|P → N ∗
P/P(V )(4) → 0,

where the middle map is defined by the following operator:

V ⊗OP(V ) /Opr(V )(−1) → (V/V1)
∗ ⊗OP(V ); u ∈ V/V1 7→ σ(u, v, ∗)

for a chosen v ∈ V1. Clearly, the kernel of this map is K /OP (−1). That gives us the first
isomorphism.
To prove the second we will show that P(T V1) is tangent P at V1. Let R = C[ε]/ε2 be
the ring of the dual numbers. The point corresponding to V1 =< v > lies in the Peskine
variety if ∧4(σ(v, ∗, ∗)) = 0 (the fourth power of the two-form σ(v, ∗, ∗) on V ). The line
< v, t > is tangent to the Peskine variety at the point corresponding to the line < v > if
and only if in addition ∧4(σ(v + εt, ∗, ∗)) = 0. We prove that this condition is equivalent to
σ(t,KV1 , KV1) = 0 (i.e. t ∈ T V1). Indeed, using the trilinear property of the form σ we obtain
that:

∧4(σ(v + εt, ∗, ∗)) = εσ(v, ∗, ∗) ∧ σ(v, ∗, ∗) ∧ σ(v, ∗, ∗) ∧ σ(t, ∗, ∗).

t ∈ TV1 ⇒ ∧3(σ(v,∗,∗))∧ σ(t,∗,∗) = 0. It is an alternating eight-form on V . Choose a
basis < v, k1, k2, k3, u1, u2, ..., u6 > on V such that k1, k2, k3 ∈ KV1 . If we choose eight vectors
of this basis at least two of them should be from KV1 . Without loss of generality we may
assume that they are k1 and k2. If one of them plugs into σ(v, ∗, ∗) the whole eight–form is
zero. The only possibility is to plug both of k1 and k2 to σ(t, ∗, ∗), but it is also zero because
of the equality σ(t,KV1 , KV1) = 0.
t ∈ TV1 ⇐ ∧3(σ(v,∗,∗)) ∧ σ(t,∗,∗) = 0. If σ(t, ki, kj) ̸= 0 for some 1 ≤ i ≤ j ≤ 3,
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the eight-form above is not zero. Indeed, the rank of σ(v, ∗, ∗) is exactly six and it is non-
degenerate on V/KV1 =< u1, u2, .., u6 >. Thus we may order the vectors u1, u2, .., u6 such
that σ(v, u1, u2) ∧ σ(v, u3, u4) ∧ σ(v, u5, u6) ̸= 0. Since σ(t, ki, kj) is also not zero, we obtain
that

σ(v, u1, u2) ∧ σ(v, u3, u4) ∧ σ(v, u5, u6) ∧ σ(t, ki, kj) ̸= 0.

Corollary 6.12. We the following isomorphism of the line bundles on P :

• detK ∼= OP (−3);

• det T ∼= OP (−4).

Where OP (1) is the restriction of OP(V )(1) to P .

Proof. The canonical bundle of the Peskine varietty is OP (−3) (see proposition 6.3). Thus
det(NP/pr(V )) ∼= OP (7) and det(TP ) ∼= OP (3). For any vector bundle E of rank r the determi-
nant of a twist E(−m) is det(E)⊗O(−rm). Using this fact, we obtain that det(NP/pr(V )(−3)) ∼=
OP (−2) and det(TP (−1)) ∼= OP (−3)). We apply the isomorphisms from lemma 6.11 to finish
the proof.

Lemma 6.13. Let [V1] be a point of the Peskine variety P . The following statements are
equivalent:

1. KV1 ∩ T V1 ̸= V1;

2. σ(KV1 , KV1 , KV1) = 0;

3. KV1 ⊂ T V1.

Proof. 1 ⇒ 2 Choose a basis: KV1/V1 =< u1, u2, u3 >. Let u1 lie in the intersection
KV1 ∩ T V1 . Since u1 ∈ T V1 , σ(u1, u2, u3) = 0.
2 ⇒ 3 Take a vector u ∈ KV1 . By condition 2, σ(u,KV1 , KV1) = 0. Hence, u lies in T V1 .
The last implication 3 ⇒ 1 is obvious.

Lemma 6.14. The set of points in P as above is a divisor on P which we denote by Q.
There is an isomorphism of the line bundles OP (Q) ∼= OP (2) with respect to embedding of P
to P(V ).

Proof. The form σ defines a section of the line bundle ∧3(K /OP (−1))∗. Let us calculate its
Chern class. We are going to use the isomorphism K /OP (−1)) ∼= NP/P(V )(−3) (see lemma
6.11). Since ωP

∼= OP (3) and the rank of NP/P(V ) is 3, det(NP/P(V )) ∼= OP (7). We obtain
∧3(K /OP (−1)) ∼= OP (2).

Lemma 6.15. The intersection of the projective space P(KV1) and the Peskine variety P
contains a cubic surface which we denote by SV1. Moreover, the point V1 is contained in SV1

if and only if V1 ∈ Q.
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Proof. Denote by B the blow-up of P(KV1) at the point V1, by p : B → P(KV1) the morphism
of the blow-up and by q : B → P(KV1/V1) the projection from the point V1. A point b of
B represents a flag U1 ⊂ U2 ⊂ KV1 (dimU1 = 1 and dimU2 = 2) such that U2 contains V1.
The vector spaces U1 are the fibers of the line bundle p

∗OP(KV1
)(−1) and the quotient spaces

U2/U1 are the fibers of the line bundle q
∗OP(KV1

/V1)(−1). We denote by UB
2 the vector bundle

with the fibers U2. Since σ(U1, U2, V ) = 0, the vector u ∈ U1 defines an alternating two-form
σ(u1, ∗, ∗) on V/U2. So we have a twisted skew morphism:

σU2 : ((V ⊗OB)/UB
2 )⊗ p∗OP(KV1

)(−1) → ((V ⊗OB)/UB
2 ).

It follows from [33, Theorem 10] that this map is degenerate at the zero locus of a section
of the line bundle p∗OP(KV1

)(4)⊗ q∗OP(KV1
/V1)(−1). Moreover, this map is degenerate if and

only if U1 is a point of the Peskine variety P . Let E be the exceptional divisor of the blow-up
p : B → P(KV1). We have an isomorphism OB(E) ∼= p∗OP(KV1

)(1)⊗ q∗OP(KV1
/V1)(−1). The

points of E parametrize the flags V1 ⊂ U2. Hence, σU2 is degenerate at E. The rest of the
degeneration locus of σU2 is the preimage of a cubic surface in P(KV1).
To prove the last statement of the lemma consider a three-dimensional space K ′ ⊂ KV1

containing V1, there exists a unique hyperplane V9 ⊂ V such that σ(K ′, K ′, V9) = 0. The
form σ defines a map K ′ → ∧2(V9/K

′)∗. For a vector u ∈ K ′ the corresponding form is
degenerate at the cubic curve which we denote by EK′ . This curve EK′ is the intersection
of S and P(K ′). The form on V9/K

′ corresponding to v ∈ V1 is degenerate if and only if
KV1 ⊂ V9 or equivalently V1 ∈ Q.

We suppose that the cubic SV1 for a general V1 ∈ P is smooth. Unfortunately we do not
know how to show this at the moment.

6.3 Special lines in Peskine variety

In this section we obtain the threefold Z = Σ ∩ F first as a degeneracy locus in Σ and af-
terwards in F . We prove that the fibration π defined in proposition 6.6 maps Z birationally
onto a hypersurface in the Debarre-Voisin variety X.

Proposition 6.16. The variety Z = Σ ∩ F is the zero locus of the vector bundle S4U∗
2 (−1)

on Σ, where U2
8 is the restriction of the tautological vector bundle on Gr(2, V ) and OΣ(−1)

is its determinant.

Proof. Let l = P(V2) be a line from Σ, there is a quartic on l defined by the morphism

S4V2 → ∧8(V/V2)
∗ ∼= C,

induced by the following map:

V2 → ∧2(V/V2)
∗; u 7→ σ(u, ∗, ∗).

8We abuse the notation and use the symbol for the tautological bundle on Gr(2, V ) and its restriction to
its subvarieties.
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The zero locus of this quartic is the intersection of l and P . These quartics give a morphism
of vector bundles on Σ:

S4U2 → OΣ(−1).

Let Z ′ be the zero locus of this morphism. Its expected dimension is 3. If the quartic vanishes
at l then the line l lies in the Peskine variety. Thus, Z ′ = F ∩ Σ = Z.

Corollary 6.17. The expected dimension of Z is 3 and the expected class of Z in Gr(2, V ) is
480σ85 + 468σ76

9 . In particular, dimension of Z is at least 3 for any alternating three-form
σ.

Proof. Recall that Σ is the zero locus of a section of the bundle Q∗
8 on Gr(2, V ). To calculate

the expected class of Z we calculate the intersection of the top Chern classes of the vector
bundles Q∗

8(1) and S
4U∗

2 (−1) on Gr(2, V ) in calculation 6.41. Since it is not zero Z can not
have dimension less than 3.

Lemma 6.18. A line l = P(V2) ∈ Z is contained in Q (see lemma 6.14).

Proof. A line l ⊂ P is tangent to P at every point of l. Since l ∈ Σ, for any V1 ⊂ V2 the
space KV1 contains V2. Thus V2 ⊂ T V1 ∩KV1 . By lemma 6.13, V1 is contained in Q.

Remark 6.19. The expected dimension of the image of PZ(U2|Z) in Q is four. A general point
V1 of Q is contained in a cubic surface SV1 (see lemma 6.15). A point V1 from the image of
PZ(U2|Z) in Q is contained in a line of the cubic surface SV1 .

In proposition 6.16 we defined Z as the zero locus of a section of the vector bundle
S4U2(−1) on Σ. Let us describe Z as a subvariety of F . For this we need to define the
following rational map from F to P , which might be of independent interest.

Proposition 6.20. Let P(U2) be a line in the Peskine variety. Then the intersection ∩u∈U2K<u>

is not empty. Thus every line in the Peskine variety is contained in a cubic surface SV1 (see
lemma 6.15) for some point [V1] ∈ P . For a general line in the Peskine variety this V1 is
unique. That defines a rational map of degree 27 from F to P .

Proof. By lemma 6.7 there is a seven-dimensional space U7 containing U2 such that
σ(U2, U7, U7) = 0 and this space is the sum of all K<u> for all u ∈ U2. The form σ defines
the linear map

U7 → U∗
2 ⊗ (V/U7)

∗. (4)

By the dimensional reasons this map has a kernel of at least dimension one. Consider the
following subvariety of P × F :

I = {(V1, U2)| P(U2) ⊂ P, V1 ∈ P and U2 ⊂ KV1}.

Since P(KV1)∩P is the cubic surface SV1 and every cubic surface contains a line, the projection
of I → P is surjective. For a general V1 ∈ P the cubic surface SV1 is smooth (thus contains
27 lines). Hence, a general fiber of the projection I → P is 27 points and dim I = 6.

9See [27, Part 3] for the description of the cohomologies of the Grassmann varieties.
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Since dimF = 6, a general fiber of the projection I → F is a finite scheme. A fiber
of this projection is a linear space. Indeed, assume the vectors v1, v2 satisfy the property
σ(v1, U2, V ) = σ(v2, U2, V ) = 0, then their sum also satisfies this property. The projection
I → F is of relative dimension 0 and has linear fibers. Hence, this projection is birational.

Remark 6.21. The subvariety of F where the morphism (4) has rank 5 has the expected
codimension 2 if F . Let us denote it by F1. The fiber of the projection I → F (from the
proof above) over a point of F1 is a line in the Peskine variety (it cannot be a projective space
of greater dimension by [9, page 19]). More concretely, let U2 and V2 satisfy the property
V2 ⊂

⋂
U1⊂U2

KU1 that means that σ(U2, V2, V ) = 0. That leads to U2 ⊂
⋂

V1⊂V2
KV1 . In other

words, there is an involution F1 → F1. For a space U2 from Z, we have U2 ⊂
⋂

U1⊂U2
KU1 .

That means that Z is the set of fixed points of this involution.

The flags U2 ⊂ U7 for all U2 ∈ F (see lemma 6.7) form a flag of the vector bundles U2 ⊂ U7

on F . Since σ(U2,U7,U7) = 0, the subvariety Z of F can be defined as the zero locus of a
section the bundle detU2 ⊗ (V/U7)

∗ defined by the form σ. Hence, the expected dimension
of Z is 3.
The composition of the embedding of Z to F and of the morphism π : F → X is a morphism
π|Z : Z → X.
Let U2 ∈ F be line in the Peskine variety P . Let U7 be the seven-dimensional space such
that σ(U2, U7, U7) = 0 (see lemma 6.7) and let U6 be the six-dimensional such that U2 ⊂ U7

and σ(U6, U6, U6) = 0 (see lemma 6.8). Let CU6 be the fiber of π : F → X. Recall that CU6

is the cubic surface in P(V/U6) (see lemma 6.10).

Lemma 6.22. Let U9 be the hyperplane in V such that σ(U2, U2, V9) = 0. Then the projective
plane P(U9/U6) ⊂ P(V/U6) is tangent to the cubic surface CU6 at U7/U6.

Proof. Let U6 be a six-dimensional space from X (i.e. σ(U6, U6, U6) = 0). We recall that for
any q ∈ V/U6 the form σ(q, ∗, ∗) is correctly defined on U6. We also recall that the seven-
dimensional space U7 corresponding to < q >∈ P(V/U6) is contained in the cubic surface CU6

(i.e. the fiber of π over U6) if and only if ∧3(σ(q, ∗, ∗)) = 0 (see lemma 6.10).
We prove this lemma in the similar way as the second part of lemma 6.11. Take again
the ring of the dual numbers R = C[ε]/ε2. Let U7/U6 =< q0 > and q1 be another vector
from V/U6. We need to prove that ∧3(σ(q0 + εq1, ∗, ∗)) = 0 if σ(q1, U2, U2) = 0. Indeed,
∧3(σ(q0 + εq1, ∗, ∗)) = εσ(q0, ∗, ∗) ∧ σ(q0, ∗, ∗) ∧ σ(q1, ∗, ∗). This is the skew-form in six
variables on U6. Plugging one vector from U2 to σ(q0, ∗, ∗) we obtain zero. If we plug both
of them to σ(q1, ∗, ∗) we also obtain zero. Thus, V9/U6 is tangent to CU6 .

Corollary 6.23. In the assumptions of lemma 6.22. If U2 ∈ Z, then cubic surface CU6 is
singular at the point U7/U6.

Proof. If U2 ∈ Z = F ∩Σ, any hyperplane V9 satisfies the property σ(U2, U2, V9) = 0. Hence,
any V9/U6 containing U7/U6 is tangent to CU6 at U7/U6. That means that U7/U6 is a singular
point of the cubic surface CU6 .

Let us formulate a general statement about singularities of the Pfaffian cubics.
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Lemma 6.24. Let Q4 =< ω1, ω2, ω3, ω4 > be a four-dimensional subspace of ∧2U∗
6 (where

dimU6 = 6). Denote the Pfaffian cubic in P(Q4) by CU6. The cubic surface CU6 is singular
at the point ω1 if and only if one of the following occurs:

1. The form ω1 has rank less than 4;

2. The form ω1 has rank 4. For all i ∈ {1, 2, 3, 4} we have ωi(K,K) = 0, where K is the
kernel of ω1.

Proof. Again consider the ring R = C[ε]/ε2 of the dual numbers. The form ω1 corresponds
to a singular point of the Pfaffian cubic, if and only if :

ω3
1 = 0 and (ω1 + ε ∗ ωi)

3 = 0

for all i. That is equivalent to:

ω1(∗, ∗) ∧ ω1(∗, ∗) ∧ ωi(∗, ∗) = 0. (5)

”If” part:We have already checked that the condition 2 leads to equation (5) in corollary
6.23. The first condition also leads to this equality. Indeed, the kernel of the form ω1 has
dimension 4. Hence, we should plug at least to vector of its kenrel to ω1. That makes whole
form ω2

1 ∧ ωi equal to zero.
”Only if” part: Assume both of the conditions of lemma are false. Hence, ω1 has the kernel
K of dimension two and there is a form another form ωi ∈ Q such that ωi(K,K) ̸= 0. Choose
a basis < u1, u2, ..., u6 > on U6 such that K =< u1, u2 > and ω1(u3, u4) and ω1(u5, u6) are
not zero. The form ω2

1 ∧ ωi is not zero if we plug the vectors in the following order:

ω1(u3, u4) ∧ ω1(u5, u6) ∧ ωi(u1, u2) = 0.

Corollary 6.25. For a general form σ the image of Z in X is the variety of the singular
cubics of the family π : F → X.

Proof. As we said after lemma 6.7 for a general σ the there is no seven-dimensional space
such that σ restricts to it as a form of rank less than 5. Hence, the second case of this lemma
does not happen.

It is natural to expect that its codimension is one and a general singular cubic has only
one singular point.

Theorem 6.26. The image of Z in X is a divisor π(Z) ⊂ X and the morphism π|Z : Z →
π(Z) is birational.

Proof. We prove this theorem in the section 6.5.

The Debarre-Voisin variety X parametrizes another family of varieties and π(Z) is again
the discriminant locus if this family.

48



Proposition 6.27. Let U6 be a six-dimensional vector space from X. Then Gr(2, U6)∩Σ is
a Fano fourfold Σ(U6) of degree 14 and index 2. If P(U6) contains a line P(U2) from Z and
U6 is contained in the corresponding U7 (i.e. [U7/U6] ∈ SU6), then Σ(U6) is singular at [U2].

Proof. Denote byQ4 the quotient of V by U6. Since for every plane U2 in U6 σ(U2, U6, U6) = 0,
the variety Σ∩Gr(2, U6) is the intersection of Gr(2, U6) and of the linear space of codimension
4 given by the following equation: σ(Q4, ∗, ∗) = 0. By the Mukai list [55] it is a Fano fourfold
of index 2 and degree 14.
Let P(U2) be a line from Σ(U6). The tangent space TU2 ⊂ ∧2U6 to Σ(U6) at U2 is the subspace
of U2 ∧ U6 defined by σ(TU2 , Q4) = 0. Now consider P(U2) which lies in Σ ∩ F ∩ P(U6), we
obtain that σ(U2 ∧U6, U7) = 0. Hence, TU2 has codimension 3 in U2 ∧U6 i.e. is of dimension
6. That means that Σ(U6) is singular at U2.

6.4 A foliation on the threefold Z

In this section we define a foliation of rank one on the threefold Z. Let V2 be a two-dimensional
subspace of V from Z = Σ ∩ F . Denote the projective line P(V2) by [l]. The tangent space
of Gr(2, V ) at l is V ∗

2 ⊗ (V/V2). The space V ∗
2 ⊗ (V/V2) is the space of global section of

the vector bundle (V/V2)⊗Ol(1) on l. The space H0(l, V/V2 ⊗Ol(1)) is canonically isomor-
phic to Homl(Ol(−1), (V/V2) ⊗ Ol). Thus a subbundle of the trivial bundle (V/V2) ⊗ Ol

isomorphic to Ol(−1) gives a line tangent to Gr(2, V ) at [l]. We will define a subbundle
Ol(−1) ⊂ (V/V2) ⊗ Ol (namely U3/(V2 ⊗ Ol) from the proposition 6.28) for every V2 ∈ Z.
Afterwards we check that the obtained line tangent to Gr(2, V ) at l is also tangent to Z.
In order to construct a subbundle Ol(−1) ⊂ (V/V2)⊗Ol we need to find some natural vector
bundles on l with the particular properties (see proposition 6.28). The vector bundles from
the bottom row of the diagram in proposition 6.28 are the trivial vector bundles Vk ⊗ Ol

depending only on V2, where k is dimension of Vk. To construct a vector bundle Uk from the
top row of this diagram, we need to construct its fiber (we denote by Ux

k the fiber of Uk over
a point x) over every point of the projective line l (here k is the rank of Uk). The bundle U1

is just the tautological bundle on l. Thus, the space Ux
1 is the line in V2 corresponding to

x ∈ l.
Besides the bundles Uk we have already constructed the vector bundles T (of rank 7) and
K (of rank 4) on the Peskine variety. For shortness we abuse the notation and denote their
restrictions to l by the same signs. The fibers of the bundles T and K over a point x ∈ l are
TUx

1
and KUx

1
respectively (see beginning of section 6.2). For convenience, in this section we

change the notation. Namely, we denote TUx
1
by T x and KUx

1
by Kx.

Proposition 6.28. For any [V2] ∈ Z and U1 ⊂ V2 there exist the following commutative
diagram of the vector bundles on the line l:

U1 U3 K T U8

V2 ⊗Ol V4 ⊗Ol V7 ⊗Ol V9 ⊗Ol V ⊗Ol
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Where all maps are the injections of vector bundles. Since all these bundles are the subbundles
of V ⊗ Ol we can apply the alternating form σ to them. The bundles satisfy the following
equalities with the form σ:

1. σ(V2, V2, V ) = 0;

2. σ(V2, V7, V7) = 0;

3. σ(V2, V4, V9) = 0;

4. σ(U1,K, V ⊗Ol) = 0;

5. σ(K,K, T ) = 0;

6. σ(V2 ⊗Ol,K,U8) = 0;

7. σ(U3,U3, V9 ⊗Ol) = 0.

Proof. To prove this proposition we are going to construct the spaces Vk from the first row
of the diagram and the fibers Ux

k of the bundles Uk from the second row of the diagram.

We need to recall the main properties of V2 ∈ Z = F ∩ Σ.

• σ(V2, V2, V ) = 0 (i.e. V2 ∈ Σ);

• there exists the unique seven-dimensional subspace V7 of V such that σ(V2, V7, V7) = 0
(i.e. P(V2) ⊂ P );

• V2 ⊂ Kx for any x ∈ l;

• Kx ⊂ T x ∩ V7 for any x ∈ l.

Lemma 6.29. For every x ∈ l, the intersection T x ∩ V7 has dimension at least six.

Proof. Choose a basis < u0, u1, u2, u3 > on Kx such that Ux
1 =< u0 > and V2 =< u0, u1 >.

Recall that σ(u0, ui, V ) = 0 for all 0 ≤ i ≤ 3 and the space T x is defined as the orthogonal
to three bi-vectors u1 ∧ u2, u1 ∧ u3 and u2 ∧ u3 with respect to the three-form σ. Since
σ(V2, V7, V7) = 0 the vector space V7 is contained in the orthogonal to at least two of this
triple of bi-vectors (namely, u1 ∧ u2 and u1 ∧ u3). Thus the intersection of Ux

7 and T x can
be thought of as the orthogonal to u2 ∧ u3 in V7 with respect to the form σ. Hence it has
dimension at least 6.

We expect that for general x ∈ l and [l] ∈ Z this intersection is exactly six-dimensional (i.e.
the spaces T x and V7 are not equal) and their sum is an eight-dimensional space. This is not
necessary to prove for the goals of this chapter, because we can define an eight-dimensional
space containing V7 and T x in another way.

Lemma 6.30. There exists an eight-dimensional space Ux
8 ⊂ V , such that σ(V2, K

x, Ux
8 ) = 0.

The space Ux
8 contains V7 and T x.
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Proof. We take the same basis on Kx as in the proof of lemma 6.29. We have:

σ(u0, u1, V ) = 0, σ(u0, u2, V ) = 0 and σ(u0, u3, V ) = 0.

Thus we can define Ux
8 as the orthogonal to two bivectors u1 ∧ u2 and u1 ∧ u3 with respect

to σ. This orthogonal has dimension at least 8. It can not have bigger dimension, otherwise
the intersection of Kx ∩Ky (for another point y ∈ l) has dimension at least three which is
impossible for a general σ (see lemma 6.1). Both T x and V7 are orthogonal to the bi-vectors
u1 ∧ u2 and u1 ∧ u3. Hence, they are contained in Ux

8 .

Next we define a hyperplane V9 in V containing V7, which contains Ux
8 for any choice of

x ∈ l.

Lemma 6.31. All the spaces Ux
8 defined lemma 6.30 are contained in a nine-dimensional

space. We denote it by V9.

Proof. Apply the alternating form σ to V2 ∧ V7 ∧ V . Since σ(V2, V7, V7) = 0. It defines the
following morphism of the vector spaces:

V2 ⊗ V/V7 → (V7/V2)
∗.

The left hand space has dimension 6 and the right hand space has dimension 5. Hence it has
a non-zero bi-vector in the kernel. Choose a basis < q0, q1, q2 > on V/V7 such that a non-zero
element of this kernel is

u0 ⊗ q1 + u1 ⊗ q0

(where again Kx =< u0, u1, u2, u3 > and V2 =< u0, u1 >).
One can see that V7+ < u0 > is the space Ux

8 defined by the line Ux
1 =< u0 > (see lemma

6.30). Indeed, we have the equality :

σ(u0 ⊗ q1 + u1 ⊗ q0, V7) = 0.

Since V7 contains K
x, we can put Kx instead of V7 in the equality above. Using the fact that

σ(u0, K
x, V ) = 0 we obtain:

σ(u1, K
x, V7 + q0) = 0.

If we choose other basis on V2 =< u′0, u
′
2 > the resulting vectors q′0 and q′1 as above will

generate the same two-dimensional subspace of V/V7 and the space U ′
8 = V7+ < q′0 > will

satisfy σ(V2, K<u′
0>
, U ′

8) = 0. That means that the space V9 := V7+ < q0, q1 > is the required
hyperplane.

Now we define a three-dimensional space Ux
3 (depending on x ∈ l) using the hyperplane

V9.

Lemma 6.32. For every point x ∈ l there exists a unique three-dimensional space Ux
3 such

that V2 ⊂ Ux
3 ⊂ Kx and σ(Ux

3 , U
x
3 , V9) = 0.
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Proof. By lemma 6.31 the space V9 contains Ux
8 and hence by lemma 6.30 it contains T x.

Thus V9 is the orthogonal to some bi-vector λ from ∧2Kx. Using again the fact that the
hyperplane V9 contains the space Ux

8 (the orthogonal complement to u1 ∧ u2 and u1 ∧ u3,
where as usual Kx =< u0, u1, u2, u3 > and V2 =< u0, u1 >), we obtain that this bi-vector
λ is divided by u1. Without loss of generality we may assume that λ is u1 ∧ u2. Then the
required space Ux

3 is < u0, u1, u2 >.

The form σ(U1, ∗, ∗) on V9 has bigger kernel than on V . There is a unique five-dimensional
space Ux

5 containing KU1 such that σ(U1, U5, V9) = 0. 10

Finally, we define the last vector space V4 of dimension 4 as the sum of all Ux
3 from lemma

6.32.

Lemma 6.33. The sum of all vector spaces Ux
3 defined in lemma 6.32 has dimension 4. We

denote it by V4. Moreover, it satisfies the property σ(V2, V4, V9) = 0. In other words, V4 is
the intersection of all Ux

5 .

Proof. We prove that V4 :=
∑

x∈l U
x
3 can not have dimension smaller than 4. Indeed, if it

has dimension 3, all Ux
3 are equal. Thus the intersection

⋂
x∈lK

x has dimension 3 and this
is impossible for a general σ (see lemma 6.1).
It is easy to that the space V4 :=

∑
x∈l U

x
3 is contained in all Ux

5 . Indeed, any for any x ∈ l
we know that σ(V2, U

x
3 , V9) = 0. Taking the sum by all x ∈ l we obtain that σ(V2, V4, V9) = 0.

Hence, σ(Ux
1 , V4, V9) = 0 and V4 ⊂ Ux

5 . The space V4 can have dimension bigger that 4 only
if all Ux

5 are equal, but that leads to a contradiction with lemma 6.1.

All these lemmas together give the proposition 6.28.

Corollary 6.34. The hyperplane P(V9) ⊂ P(V ) is tangent to P along l.

Proof. By proposition 6.28 V9 contains T x for all x ∈ l. The projective space P(T x) is the
maximal tangent space to P at x (see lemma 6.11). Hence, P(V9) is tangent to P at any
point x ∈ l.

Next we find the isomorphism classes of some vector bundles from proposition 6.28.

Proposition 6.35. The vector bundle U3 /(V2 ⊗Ol) is isomorphic to Ol(−1) and the vector
bundle K/(V2 ⊗Ol) is isomorphic to Ol(−1)⊕Ol(−2).

Proof. The morphism x 7→ Ux
3 /V2 induces an isomorphism of P(V2) and P(V4/V2). Indeed,

if a point of P(V4/V2) has at least two point x and y in the pre-image, then Ux
3 = Uy

3 and
σ(Ux

3 , U
x
3 , V ) = 0, but it contradicts lemma 6.1. Thus U3 /(V2 ⊗Ol) ∼= U1

∼= Ol(−1).
Now we prove the second isomorphism. The determinant of K is isomorphic to Ol(−3) (see
corollary 6.12). Thus determinant of K /(V2 ⊗Ol) is also isomorphic to Ol(−3). The vector
bundle K is the subbundle of the trivial bundle (V4/V2)⊗Ol. The only possibility for K/V2
except Ol(−1) ⊕ Ol(−2) is the vector bundle Ol ⊕Ol(−3). In this case the quotient sheaf
K /U3 will not be a vector bundle, but the morphism U3 → K is injective in any point of
l.

10We do not mention Ux
5 in the proposition 6.28, because Ux

5 does not seem to be a subspace of T x for a
general x ∈ l
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Next we are going to construct a foliation of rank one on Z. Chose a basis u0, u1, u2, u3
on V4 such that V2 =< u0, u1 >. Recall that σ(V2, V4, V9) = 0. Thus, the form σ defines the
morphism

ϕ′ : V2 → (V4/V2)
∗ ⊗ (V/V9)

∗; u ∈ V2 7→ σ(u, ∗, ∗).
Let x be a point of l and u be a vector from Ux

1 , then ϕ
′(u) is a bilinear form on (V4/V2) ×

(V/V9). This form is zero at (Ux
3 /V2) × (V/V9). Up to proportionality it gives a morphism

ϕ ∈ Hom(V2, V4/V2) (using the fact that V4/V2 ∼= (V4/V2)
∗ and V/V9 ∼= C), such that:

σ(ϕ(u0) ∧ u1 − ϕ(u1) ∧ u0, V ) = 0. (6)

The morphism ϕmaps each Ux
1 to Ux

3 /(V2⊗Ol) and gives an embedding of U1 → (K /V2)⊗Ol.
The tangent space toGr(2, V ) at a point [V2] isHom(V2, V/V2). Thus the morphism ϕ defined
above gives a vector tangent to Gr(2, V ) at V2. We prove that it also tangent to Z.

Proposition 6.36. The morphism ϕ ∈ Hom(V2, V4/V2) corresponds to a tangent vector to
Z at V2.

Proof. First we prove that it is tangent to F . By lemma 6.11 TP |l is T (−1)/Ol. A morphism
from f ∈ Hom(V2, V4) corresponds to a vector tangent to F if and only if f(Ux

1 ) ⊂ T x/V2 for
every x ∈ l. The morphism ϕ maps Ux

1 to Kx/V2, which is contained in T x/V2.
Next we prove that ϕ is tangent to Σ. Since Σ is the section of Gr(2, V ) by the hyper-
planes σ(v, ∗, ∗) (for all v ∈ V ) in the Plücker embedding, a morphism f ∈ Hom(V2, V4/V4)
corresponds to a vector tangent to Σ if and only if it satisfies

σ(f(u0) ∧ u1 − f(u1) ∧ u0, V ) = 0.

The morphism ϕ satisfies this property by formula (6).

Corollary 6.37. The morphism ϕ generates a one-dimensional space tangent to Z at V2.
That gives a foliation of rank one on Z, which we denote by F .

Conjecture 6.38. Let π : F → X be the morphism defined in proposition 6.6. Restrict this
fibration to Z and obtain a birational morphism π|Z : Z → π(Z) of Z to a divisor π(Z) in X.
We expect that at a general point of Z the foliation F is the pull-back of the characteristic
foliation on π(Z).

6.5 Proof of theorem 6.26

In this section we prove theorem 6.26. Earlier in this chapter we have fixed a general alter-
nating three-form σ ∈ ∧3V ∗. In the current section we will consider all σ ∈ ∧3V ∗. Consider
the following incidence variety in Gr(6, V )× P(∧3V ∗):

I := {(U6, σ)| σ(U6, U6, U6) = 0}.

The fiber of I over a general σ has dimension 4 (the Debarre-Voisin variety Xσ). Let U6 be
a six-dimensional subspace of V and choose a section of Q4, then V = U6 ⊕ Q4. The space
of the alternating three-forms ∧3V ∗ decomposes as the following:

∧3V ∗ = ∧3U∗
6 ⊕ ∧2U∗

6 ⊗Q∗
4 ⊕ U∗

6 ⊗ ∧2Q∗
4 ⊕ ∧3Q∗

4.
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Hence, the kernel of ∧3V ∗ → ∧3U∗
6 has dimension 100 and maps surjectively ontoHom(Q4,∧2U∗

6 ).
That gives us the following diagram:

I Gr(6, V )

P(∧3V ∗)

P(ker(∧3V ∗→∧3U∗
6 )

∼=P99

Xσ

For every couple (U6, σ) ∈ I one has the surjective morphism ∧3V ∗ → Hom(Q4,∧2U∗
6 ). Each

morphism f ∈ ∧3V ∗ → Hom(Q4,∧2U∗
6 ) gives the morphism the morphism

f (3) : S3(V/U6) → detU6
∼= C .

Let P(Hom(Q4,∧2U∗
6 ))

0 be the variety of morphisms f such that f (3) is zero. We give an
estimate of the dimension of the variety P(Hom(Q4,∧2U∗

6 ))
0.

Lemma 6.39. Codimension of P(Hom(Q4,∧2U∗
6 ))

0 in P(Hom(Q4,∧2U∗
6 )) is at least 4.

Proof. First note that the variety of degenerate morphisms (up-to proportionality) P(Hom(Q4,∧2U∗
6 ))

d

is of codimension (dim∧2U∗
6 −dimQ4+1) = 12 in P(Hom(Q4,∧2U∗

6 )). Hence, for this lemma
we can consider only non-degenerate morphisms P(Hom(Q4,∧2U∗

6 ))
nd. Consider the follow-

ing morphism
ξ : P(Hom(Q4,∧2U∗

6 ))
nd → Gr(4,∧2U∗

6 ).

Clearly, all fibers of ξ are isomorphic. Let Pf ⊂ P(∧2U∗
6 ) be the cubic of all degenerate

2-forms. It is enough to estimate dimension of the variety of the linear projective spaces of
dimension 3 contained in the cubic Pf . If the variety of these P3 has codimension less than
4 they cover whole projective space P(∧2U∗

6 ).

Denote the variety of the morphisms f ∈ P(Hom(Q4,∧2U∗
6 )) such that f (3) ̸= 0 by

P(Hom(Q4,∧2U∗
6 ))

0. We can define a morphism P(Hom(Q4,∧2U∗
6 ))

0 → P(S3Q∗
4), mapping

f to f (3). F. Tanturri proved that this morphism is surjective.

Lemma 6.40. [62, Proposition 1.0.8] Any cubic surface can represented as the Pfaffian cubic
for some morphism f ∈ Hom(Q4,∧2U∗

6 ).

Let I0 ⊂ I be the an open subvariety of point of I such that the couple (σ, U6) gives a
morphism f ∈ P(Hom(Q4,∧2U∗

6 ))
0. The complement I \ I0 has codimension at least 4. Any

couple (σ, U6) ∈ I0 gives the pfaffian cubic CU6,σ. Denote the total space of this family by C.
We have the following diagram:

C

I0 PGr(6,V )(Hom(Q4,∧2U∗
6 ))

0 Gr(6, V )

P(∧3V ∗)

CU6,σ

Xσ
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Where U6 is the tautological subbundle and Q4 it the tautological quotient bundle on
Gr(6, V ). Since a general cubic surface is smooth and smoothness is an open property,
for a general σ and U6 the cubic surface CU6,σ is smooth. This proves that for a general σ
the morphism πZ : Z → X is not surjective.
Next we prove that π(Z) is a divisor. Let I1 be the subvariety of I0 such that the cubic Cσ,U6

is singular. Since any cubic surface can represented as the Pfaffian cubic, I1 has codimension
one. A fiber of I1 over σ is πσ(Zσ). By dimension count we obtain that dimension of the
fiber of I1 over a general σ is 3. That proves that that π(Z) is a divisor in X.
In the end we prove that πZ : Z → π(Z) is birational. Let I2 be the subvariety of I1 such
that the cubic CU6,σ has two singular points. The fibers of I1/I2 over σ corresponds to the
cubics CU6,σ with only one singular point. Any line in Z gives a singular point in one of these
cubics. Since any cubic surface can represented as the Pfaffian, I2 has codimension one in I1.
Hence, dimension of the fiber of I2 over a general σ is not greater than 2. Thus dimension
of a I2 over a general σ has dimension 2 and a general point the fibers of I1 is not contained
in I2. And hence a general singular cubic CU6 has only one singular point. That means that
πZ : Z → π(Z) is birational.

6.6 Appendix

Calculation 6.41. We use the following code in Macaulay2 [30] to calculate the intersection
c8(S

2Q∗
8(1)) · c5(S4U∗

2 (−1)) with σ3 and σ21.

needsPackage "Schubert2 ";

G = flagBundle {2,8}; (U,Q) = bundles G;

O = det(Q);

h = chern_1 O;

E = O * (dual Q);

S = (symmetricPower _4 (dual U)) * (dual O) ;

c = chern_8 E;

d = chern_5 S;

s3 = chern_3 Q;

s21 = (chern_2 U) * h;

<< (s3*d*c,s21*d*c)/ integral << endl; --(480 ,468)

The table of the multiplication of H6(Gr(2, V ),Z)× H10(Gr(2, V ),Z) is the following:

σ3 σ21
σ85 1 0
σ76 0 1

That gives us that c8(S
2Q∗

8(1)) · c5(S4U∗
2 (−1)) = 480σ85 + 468σ76.
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Titre :Géométrie des variétés hyper-kählériennes et le feuilletage caractéristique.
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Résumé : Dans cette thèse nous étudions le
feuilletage caractéristique sur une hypersurface
lisse dans une variété hyper-kählérienne. Voici une
explication détaille du problème. Soit Y une hy-
persurface lisse dans une variété hyper-kählérienne
irréductible projective X de dimension 2n et σ
une forme holomorphiquement symplectique sur
X. Pour chaque point x ∈ Y la forme σ est une
forme non dégénérée sur TX,x. Donc la forme res-
treinte à TY,x est de corang 1 (c’est à dire le noyau
de σ|TY,x

est de dimension un). Le feuilletage ca-
ractéristique F sur une hypersurface Y est le noyau
de la forme symplectique σ restreinte à Y .
On peut poser la question suivante : quelle est la
dimension de la fermeture de Zariski de la feuille
générale de F . Dans cette thèse nous avons trouvé
la fermeture de Zariski d’une feuille générale de F
dans certains cas.
Le premier cas est le suivant. Soit X une variété
hyper-kählérienne irréductible projective de dimen-
sion 2n. Soit X munie d’une fibration lagrangienne
π : X → Pn. On appelle l’hypersurface Y dans X
verticale s’il existe une hypersurface D dans Pn

telle que son image réciproque soit Y . Nous avons
démontré que la fermeture de Zariski d’une feuille
générale du feuilletage caractéristique sur Y est

une fibre de π, si Y est verticale et lisse.
Voici le deuxième cas. Soit Y une hypersurface
lisse nef et big dans X. Nous avons démontré
qu’une feuille generale du feuilletage caractéris-
tique est Zariski dense dans Y . Récemment J. V.
Pereira a montré qu’une hypersurface non-nef de
carré de Beauiville-Bogomolov non négatif ne peut
pas être lisse.
Dans la suite de la thèse nous étudions le feuille-
tage caractéristique sur les hypersurfaces singu-
lières. Nous présentons des exemples des l’hyper-
surfaces verticales telles que la fermeture d’une
feuille générale est une sous-variété propre d’une
fibre de la fibration lagrangienne. Après, nous étu-
dions la variété X des droites sur une hypersur-
face cubique de P5. Nous décrivons deux exemples
d’hypersurfaces singulières Y dans X tel qu’une
feuille générale du feuilletage caractéristique sur Y
n’est pas Zariski dense dans Y . Vers la fin de la
thèse nous étudions la variété hyperkählerienne de
dimension 4 construite par O. Debarre et C. Voisin.
Nous trouvons une hypersurface particulière dans
cette variété et construisons un feuilletage naturel
de rang un sur cette hypersurface. Nous conjectu-
rons que ce feuilletage est le feuilletage caractéris-
tique.
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Title : Geometry of the holomorphic symplectic manifolds and the characteristic foliation.
Keywords : Algebraic geometry, holomorphic symplectic manifolds, complex geometry, foliations.

Abstract : In this thesis we study the characteris-
tic foliation on a hypersurface in a smooth projec-
tive holomorphic symplectic manifold. Let us ex-
plain the problem in details. Let X be a smooth
projective irreducible holomorphic symplectic ma-
nifold of dimension 2n and Y be a smooth hyper-
surface in X. Let σ be a holomorphic symplectic
form on X. At every point x of Y the holomorphic
symplectic form σ restricts to the tangent space
TY,x of Y at x as an alternating form of corang 1.
Thus, it has one-dimensional kernel. The charac-
teristic foliation F of Y is the kernel of symplectic
form σ restricted to Y .
One can ask what could be the dimension of the
Zariski closure of a generic leaf of F . In this the-
sis we find the answer to this question in certain
cases.
In the first case the irreducible holomorphic sym-
plectic manifold X is equipped with a Lagrangian
fibration π : X → Pn. One calls a hypersurface
Y vertical if there exists a hypersurface D in Pn

such that Y is the pre-image of D. We proved that
the Zariski closure of a generic leaf of the chatac-

teristic foliation on Y is dense in a fiber of the
Lagrangian fibration π.
In the second we consider a nef and big hypersur-
face Y in X. We prove that a generic leaf of the
characteristic foliation on Y is Zariski dense in Y .
Recently J. V. Pereira found that a non-nef hy-
persurface with non-negative Beaville-Bogomolov
square con not be smooth.
Afterwards, we study the characteristic foliation on
singular hypersurfaces. We give few examples of
singular vertical hypersurfaces such that a generic
leaf characteristic foliation is not Zariski dense in
a fiber of the Lagrangian fibration. Next, we consi-
der the variety X of lines in the cubic fourfold. We
give two example of a singular hypersurface Y in
X such that a generic leaf of the characteristic fo-
liation on Y is not Zariski dense in Y . Towards the
end of the thesis we study the holomorphic sym-
plectic constructed by O. Debarre and C. Voisin.
We find a special hypersurface in the manifold and
construct a natural foliation of rang one on this
hypersurface. We conjecture that this foliation is
characteristic.
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