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GENERAL INTRODUCTION

There are several rhythmic phenomena in life and the circadian rhythms of sleep and wakefulness are among the most prominent cycles [START_REF] Roehrs | The Sleep-Wake Cycle: An Overview[END_REF]. Wakefulness refers to the capacity of interacting effectively with the environment by generating appropriate behavioral and emotional responses. Sleep is a vital activity that every organism needs to recover from daily events and to function properly the next day [START_REF] Goel | Genetics of sleep timing, duration, and homeostasis in humans[END_REF][START_REF] Brown | Control of sleep and wakefulness[END_REF]. Sleep loss produces drowsiness which is regarded as the main cause behind impaired performances, decreasing productivity, and increasing incidences and accidents throughout the day [START_REF] Markov | Normal sleep and circadian rhythms: neurobiologic mechanisms underlying sleep and wakefulness[END_REF]. Here it is important to mention that even after an adequate night of sleep, the level of cortical arousal fluctuates in a predictable manner throughout the 24-h cycle presenting periods of maximum drive for wakefulness and periods of maximum drive for drowsiness [START_REF] Strogatz | THE MATHEMATICAL STRUCTURE OF THE HUMAN SLEEP-WAKE CYCLE[END_REF][START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF]). For instance, the prevalence of drowsiness has led to a clear need to treat this symptom by understanding the functioning of the physiological mechanisms involved in modulating the states of sleep and wakefulness [START_REF] Schwartz | Neurophysiology of sleep and wakefulness: basic science and clinical implications[END_REF].

Although the physiological mechanisms of sleep and wakefulness are highly interrelated, the scientific advance in the last decade has largely contributed to revealing the distinct neural circuitries and the specific neurochemical systems involved in both states (Saper et al. 2010, Arrigoni and[START_REF] Arrigoni | An overview of sleep: Physiology and neuroanatomy[END_REF]). On the one hand, wakefulness is promoted by the ascending arousal pathway that involves complex interactions between distinct subcortical cell groups, mainly consisting of monoaminergic and cholinergic neurons. On the other hand, sleep is activated by neurons of the ventrolateral preoptic nucleus. Sleep and wakefulness are regulated by mutual interaction between the sleep-promoting system and the ascending arousal system that function like an electrical "on-off" switch to ensure behavioral state stability [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF]. The brain circuitries controlling the switch mechanism are governed by the influences of the homeostatic and circadian processes [START_REF] Brown | Control of sleep and wakefulness[END_REF]. The homeostatic process (process S) seeks to maintain a constant wake duration by accumulating pressure for sleep that increases with the time spent awake and dissipates in the course of subsequent sleep (Walker 2017). The circadian process (process C) alternates between states promoting either sleep or wakefulness by responding to changes in the solar light-dark cycle. Besides, the circadian process drives 24-h endogenous rhythmicity in almost all neurobehavioral and physiological variables [START_REF] Eban-Rothschild | Neuronal mechanisms for sleep/wake regulation and modulatory drive[END_REF]. For instance, the process C fluctuates non-linearly during the waking period, presenting bimodal distributions of periods of maximum wakefulness and periods of maximum drowsiness. The first major peak for wakefulness occurs late in the afternoon, and the second peak takes place in the morning. On the flip side, the first major peak for drowsiness occurs late in the evening, and the second peak takes place in the early afternoon hours [START_REF] Fuller | Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[END_REF][START_REF] Goel | Genetics of sleep timing, duration, and homeostasis in humans[END_REF].

The two-process model of sleep regulation was proposed by Borbély in order to conceptualize a reciprocal interaction between the homeostatic and the circadian regulatory processes. The twoprocess model shows that the interaction between the homeostatic and the circadian processes determines the timing and the structure of subsequent sleep (i.e. nocturnal sleep and daytime naps), and modulates the dynamic changes in arousal and performance during the day. In the classical model of sleep regulation, the interaction between the homeostatic and the circadian processes occurs at the moment when the process S reaches the upper or the lower threshold of C to promote the transition between states of sleep and wakefulness (Borbély 1982). Furthermore, the model posits that during the waking period, changes in arousal levels and many neurobehavioral outputs are determined by the distance between S and C. Accordingly, a short distance between the homeostatic and the circadian processes corresponds to high arousal and performance levels, and conversely, a large gap between the two processes indicated low levels of arousal. Importantly, in the classical model of sleep regulation, process S does not influence the functioning of process C. However, the contemporary model of sleep-wake regulation introduced by [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF] posits the existence of a mutual and continuous interaction between the circadian and the homeostatic processes. The model entails that the amplitude of the circadian process depends on the status of sleep pressure. In general, the circadian amplitude of many physiological and neurobehavioral functions decreases when the level of homeostatic sleep pressure is high and increases when the level of sleep pressure is low [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF].

Daytime drowsiness and related deficit in performances naturally occur in the early afternoon hours [START_REF] Campbell | The timing and structure of spontaneous naps[END_REF][START_REF] Bes | Modeling napping, post-lunch dip, and other variations in human sleep propensity[END_REF]. This decrease in arousal and performance is further amplified when the amount of prior nighttime sleep is reduced [START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF][START_REF] Goel | Circadian rhythms, sleep deprivation, and human performance[END_REF][START_REF] Goel | Genetic markers of sleep and sleepiness[END_REF]. Laboratory studies showed that a short midday nap is an effective strategy to counteract the drawbacks of the post-lunch phase and to promote evident improvement in cognitive and physical performances throughout the day [START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF]. Nevertheless, the impacts of a short midday nap on performance are modulated by several factors, including the previous amount of sleep and wakefulness, the environment of sleep during the nap, and performance measures [START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF]. Therefore, investigating the impacts of a short midday nap on cognitive and physical performances with regard to the factors mentioned above is at the core of this research project. In an attempt to provide a more detailed analysis, we propose to distinguish between two different types of nap based on the previous amount of sleep and wakefulness (i.e. the level of sleep pressure). We introduced the term energetic nap to designate a short midday nap taken after a normal night of sleep, and we used the term restorative nap to designate a midday nap scheduled following sleep loss.

In the first section of this report, we start by providing a brief introduction to the properties and the characteristics of the circadian rhythms of sleep and wakefulness. We present the most contemporary advances made in the last decade regarding the brain mechanisms and the distinct neural circuitries and neurochemical systems underlying the sleep-wake states. We also trace the mutual inhibitory interaction between sleep-and wake-promoting circuitry regulating the stability of the sleep-wake states. In addition, we review the role of the homeostatic and circadian processes in controlling sleep and wakefulness, with reference to the physiological basis of homeostatic sleep drive and the circadian suprachiasmatic nucleus. We used the two-process model of sleep regulation to describe the reciprocal interaction between the homeostatic and the circadian processes and to discuss the influence of the interaction on several aspects of sleep and waking behaviors. Then, we display the diurnal variation in cognitive and physical performances, and we examine the main factors that can modulate the dynamic changes in performance during the day, such as interindividual variability, sleep loss, and task-performance sensitivity to the homeostatic sleep pressure. Then, we describe the endogenous proprieties of a midday nap, and we distinguish between two types of midday naps according to prior nocturnal sleep: energetic and restorative naps. The contemporary model of sleep regulation is used as a basis to discuss the putative impacts of energetic and restorative naps on the circadian rhythmicity of many neurobehavioral functions. Finally, we review the main factors that can modulate the impacts of napping on performance, including interindividual variability, and the environment of sleep during the nap. The second section includes three experimental studies. Finally, in third section we discuss the main findings of the three studies in the light of the current literature. We also present concluding remarks and future perspectives.

I.

FIRST CHAPTER: BACKGROUND

I. 1. CIRCADIAN RHYTHMS OF SLEEP AND WAKEFULNESS

I. 1. 1. INTRODUCTION

Rhythmicity is a fundamental property that dominates all levels of movements in living organisms ranging from the simplest arrangement of cells to the most complex organization of the ecosystem [START_REF] Halberg | Implications of biologic rhythms for clinical practice[END_REF]. This rhythmicity is orchestrated by cosmic movements that exhibit multiple processes of oscillations that emerge as a function of time. For instance, the rotation of the earth around its axis represents one of the most manifested rhythmic patterns by which the regular rhythm of light and darkness is repeatedly generated [START_REF] Bordage | Organ specificity in the plant circadian clock[END_REF]. Chronobiology is a field of biology that examines rhythmic phenomena in living organisms in congruence with time, along with recent knowledge in different scientific disciplines.

By definition, a rhythm is a regular oscillatory process that recurs in time with a similar pattern [START_REF] Rosi | An introduction to the study of biological rhythms[END_REF]. Common terminology is used to describe different features of biological rhythms, including period, phase, mesor, and amplitude (Figure 1). The period of a rhythm consists of the duration of one complete cycle. The cycle can be determined by the occurrence of two systematic events, such as two consecutive peaks (i.e.; acrophase: highest amplitude value)

or troughs (i.e. nadir: lowest amplitude value). According to the period, rhythms are classified into (1) circadian rhythms: when their period is about 24-h, (2) ultradian rhythms, when the period is shorter than 24-h, (3) infradian rhythms: when the period is longer than 24-hr. In infradian rhythms, there are several sub-periodicities, including (4) Circaseptan rhythms: with a period of approximately 7 days, (5) circalunar rhythms: with a period of about 30 days, and (6) circannual rhythms: with a period of about 360 days. The phase has a double meaning. First, it is used to describe a chosen fractional part of the cycle during a predetermined period such as:

during the ascending, the maximal, or the descending phase. Second, the term phase is used to describe the positional relationship between identifiable phases of two or more cycles [START_REF] Palmer | An introduction to biological rhythms[END_REF]. The medium level or mesor is a reference line representing the average value of periodicity for many samples of one given variable. The Amplitude is the difference between the medium level and the maximum deviation (i.e. acrophase or nadir) of one variable in a specific period. Franz Halberg used the term circadian (Latin circa=about; dies= day) to refer to a subset of endogenous rhythms with a period of approximatively 24-h. Since then, the term circadian has become popular and widely used (Refinetti 2013). There are several rhythmic phenomena in life that display circadian rhythms, and the sleep-wake rhythm is one of the most prominent cycles.

In healthy humans, the circadian rhythms of sleep and wakefulness are synchronized with the 24h dark-light cycle, involving approximately one-third of sleep during the dark phase and twothirds of wakefulness during the light period [START_REF] Roehrs | The Sleep-Wake Cycle: An Overview[END_REF].

I. 1. 2. EXPLORATION PARADIGMS

Three basic studies' paradigms have been applied to examine circadian rhythms of human physiology and performance: constant routine, forced desynchrony, and time of day recording protocols.

The constant routine protocol is mainly used to unmask endogenous circadian rhythms. In this type of protocol, the measurements are conducted in isolated environments under constant conditions at regular intervals, for at least 24-h. This means that any external (e.g. temperature, light, and food) or internal (e.g. stress or motivation) factors that may influence physiological or behavioral parameters must be strictly controlled.

The forced desynchrony protocol, also called the free-running protocol, implies a forced adjustment of the sleep-wake cycle to a period that is different from normal conditions, and therefore, the endogenous circadian timing system starts to follow its own rhythm. The advantage of the free-running protocol is that it enables the effective separation of the influences of homeostatic sleep pressure from that of the circadian timing system. The influences of the homeostatic sleep pressure and the circadian system on wakefulness will be addressed in section I.2.5.5.

The time of day recording protocol implies the measuring of physiological variables or performance outcomes at different times of the day in persons living in their normal environment.

The advantages and limitations of the three research paradigms mentioned above are well detailed in the reviews of [START_REF] Valdez | Circadian rhythms in components of attention[END_REF], [START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF], and [START_REF] Goel | Circadian rhythms, sleep deprivation, and human performance[END_REF]. [START_REF] Foer | Caveman: An Interview with Michel Siffre[END_REF].

I. 1. 3. PROPRIETIES OF CIRCADIAN RHYTHMS

One of the most pertinent observations from these experiences was that the circadian rhythm of sleep and wakefulness is endogenous: researchers have discovered that circadian rhythms continue to oscillate even in the absence of external time cues. This discovery provided evidence for the existence of an internal timekeeping mechanism; a biological clock in all human beings.

The functioning of the biological clock will be detailed in section 1.2.5.2. Another propriety was identified through these experiments was that the internal timekeeping mechanism generates cycles with a periodicity slightly longer than 24-hr. The third propriety of circadian rhythms was that when deprived of exogenous environmental cues, the individual circadian rhythms of sleep and wakefulness shift in phase relative to the rhythm of the light-dark cycle. Finally, when returning to normal living conditions, the sleep-wake rhythm was readjusted to external time cues.

The readjustment mechanism is called entrainment [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF][START_REF] Vitaterna | Overview of circadian rhythms[END_REF][START_REF] Kuhlman | Introduction to chronobiology[END_REF].

In summary, the proprieties of the circadian sleep-wake cycle are the following: (1) the rhythm is endogenously generated, (2) persists in the absence of environmental influences, (3) retains nearly the same periodicity in the absence of external environmental cues, (4) can be shifted or reset by entrainment [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF][START_REF] Kuhlman | Introduction to chronobiology[END_REF].

I. 1. 4. CHARACTERISTICS AND MEASUREMENTS

I. 1. 4. 1.

THE WAKEFULNESS STATE

Wakefulness is a construct associated with consciousness in which a healthy individual is capable of interacting effectively with his environment by generating appropriate behavioral, and emotional responses, and by retrieving continuously past experiences and encoding new ones [START_REF] Deboer | Behavioral and electrophysiological correlates of sleep and sleep homeostasis[END_REF][START_REF] Daroff | Encyclopedia of the neurological sciences[END_REF][START_REF] Heine | Consciousness: And Disorders of Consciousness[END_REF]. In this thesis, wakefulness is viewed as a multidimensional construct that includes physiological, behavioral, cognitive, emotional, and physical components.

The wakefulness state is characterized by high levels of excitability of brain structures and neurotransmitter systems of the ascending reticular activation system [START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF][START_REF] Oken | Vigilance, alertness, or sustained attention: physiological basis and measurement[END_REF][START_REF] Langner | Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention[END_REF]. The neural pathway and the physiological mechanisms of the ascending reticular activation system will be fully explained in section I.2.2. From an electrophysiological exploration, wakefulness is described by low-voltage and fast electroencephalogram (EEG) activity, a high muscle tone, and frequent voluntary eye movement and eye blink. This pattern of EEG is called desynchronized or activated EEG.

Wakefulness is mainly affected by determinants such as drowsiness, fatigue, or boredom.

Although, drowsiness and fatigue are distinct phenomena, however, they have been used equally among scientists, and in everyday language [START_REF] Bailes | Brief and distinct empirical sleepiness and fatigue scales[END_REF]. Fatigue refers to the sense of tiredness, and it is characterized by a lack of energy to perform. Whereas, drowsiness refers to the sense of sleepiness and is characterized by low levels of arousal [START_REF] Bailes | Brief and distinct empirical sleepiness and fatigue scales[END_REF][START_REF] Rosenthal | Fatigue: an overview[END_REF]. The common interchange between these two phenomena is due to what they share in common, especially their ultimate impact in the reduction of the capacity to perform. Besides, most of the studies that have investigated alternation in the wakefulness state (i.e. drowsiness or fatigue) have commonly used tasks requiring a prolonged and demanding activity.

In what follows, we will attempt to clarify the basic characteristics of each phenomenon by highlighting the distinctive features of drowsiness (i.e. low arousal levels) and fatigue.

I. 1. 4. 1. 1. THE CONCEPT OF AROUSAL

Arousal is distinct from wakefulness, nevertheless, it is considered a basic precondition and a modulator of any given physiological or behavioral parameter for wakefulness [START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF][START_REF] Fischer | Arousal and attention: self-chosen stimulation optimizes cortical excitability and minimizes compensatory effort[END_REF]. Arousal is determined according to the levels of cortical activation in a sleepwake spectrum. For instance, different arousal levels indicate various states of brain function that structure behavioral responsiveness to internal and environmental signals. For instance, the arousal level must be heightened in the face of danger, maintained when performing cognitive tasks, and lowered at bedtime [START_REF] Huang | Testretest reliability of brain arousal regulation as assessed with VIGALL 2.0[END_REF].

EEG recording is the best-used method in determining the levels of arousal during the waking period by recording the electrical activity of large groups of cortical neurons placed on the scalp [START_REF] Brown | Control of sleep and wakefulness[END_REF]. The different levels of arousal include hyperarousal, over-arousal, lowarousal. In the EEG, hyperarousal is characterized by low-amplitude gamma waves falling between 30 to 120 Hz. Over arousal is defined by beta waves falling between 15 to 30 Hz. Low level of arousal is characterized by alpha waves falling between 8 to 13 Hz, and by slow and rolling eye movements. The latter reflects the drowsy state (Brown et al. 2012, Ray and[START_REF] Ray | EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes[END_REF]. The different levels of arousal are displayed in Table 1. and illustrated in Figure 3. In addition to EEG monitoring, subjective measurements are frequently used and easily applied to determine the levels of arousal during the day [START_REF] Sander | Assessment of wakefulness and brain arousal regulation in psychiatric research[END_REF]. However, different dimensions of arousal have been proposed in the literature, namely tense arousal and energetic arousal [START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF]). Nevertheless, before scrutinizing the differences between each of them, it is important to highlight the issue related to the notion of energetic arousal in the literature. On the one hand, energetic arousal is described in a continuum ranging from feeling tiredness to energetic [START_REF] Dickman | Dimensions of arousal: Wakefulness and vigor[END_REF]. On the other hand, it is described in a continuum ranging from feeling sleepy to awake [START_REF] Schimmack | Experiencing activation: Energetic arousal and tense arousal are not mixtures of valence and activation[END_REF]. The divergence in the description of energetic arousal is also caused by the issue related to the notions of "fatigue" and "sleepiness". In this thesis, the term energetic arousal will be used to describe arousal levels in a continuum ranging from feeling sleepy to feeling awake (Figure 4.a). Besides, we will maintain the basic definition of tense arousal which is described in a continuum ranging from calmness to anxiety (Figure 4.b) [START_REF] Schimmack | Experiencing activation: Energetic arousal and tense arousal are not mixtures of valence and activation[END_REF]Rainer, 2002, Dickman, 2002). During the waking period, the ability to maintain high arousal levels is challenging especially that arousal fluctuates throughout the day [START_REF] Cohen | Intention, Response Selection, and Executive-Attention[END_REF]. Changes in performance outcomes (i.e.

improvement or decrement) represent a good marker for evaluating the level of arousal during the waking period [START_REF] Sander | Assessment of wakefulness and brain arousal regulation in psychiatric research[END_REF]. For instance, in the related literature performance tasks involving sustained attention are effective in monitoring arousal levels throughout the day [START_REF] Wang | Correlation between Vigilance Level and Driving Performance: Influence of the Driving Duration and Circadian Rhythm[END_REF][START_REF] Weiler | Effects of fexofenadine, diphenhydramine, and alcohol on driving performance: a randomized, placebo-controlled trial in the Iowa driving simulator[END_REF].

I. 1. 4. 1. 2. THE CONCEPT OF FATIGUE

Fatigue is generally defined as a decrease in the capacity to perform caused by a prolonged period of demanding cognitive or physical activities [START_REF] Gawron | An overview of fatigue[END_REF][START_REF] Marcora | Mental fatigue impairs physical performance in humans[END_REF].

Subjectively, it is characterized by feelings of "tiredness" and "lack of energy" associated with an increase in the perceived difficulty of the task at hand [START_REF] Marcora | Mental fatigue impairs physical performance in humans[END_REF]. Behaviorally, fatigue is recognized by a transient decline in performance [START_REF] Van Cutsem | The effects of mental fatigue on physical performance: a systematic review[END_REF].

So far, two types of fatigue are presented in literature: central (mental), and peripheral (physical).

Mental fatigue refers to the reduction in the capacity to perform a prolonged cognitive task that requires sustained attention or manipulation of information stored in memory. Physical fatigue is defined as a reduction in the capacity to perform a physical activity in function of preceding effort [START_REF] Gawron | An overview of fatigue[END_REF].

Mental fatigue, also known as central fatigue. The overload mental workload model was introduced to explain why it is difficult for human's mind to maintain a good performance level over time. The model implies that conducting a cognitive task over time is effortful and demanding. Therefore, the progressive decline in performance over time is the consequence of an over mental workload. In addition, the model entails that the information-processing resources are limited. In this model, resources are viewed as "reservoirs" of mental energy devoted to perform a particular task, and the "replenishment of the resources" is the main cause behind the gradual decline in performance over time [START_REF] Helton | Signal salience and the mindlessness theory of vigilance[END_REF]. The theoretical approach of the overload model has further been supported by several neuroimaging studies indicating that changes in the activation of brain areas, as identified by the cerebral blood flow, were accompanied by a parallel decline in the sustained attention performance over time [START_REF] Hitchcock | Automation cueing modulates cerebral blood flow and vigilance in a simulated air traffic control task[END_REF][START_REF] Mayleben | Cerebral blood flow velocity during sustained attention[END_REF][START_REF] Heilman | Attentional asymmetries[END_REF]. Monitoring the cerebral blood flow velocity when performing a cognitive task is considered as a "sensitive metabolic index of the utilization of information-processing resources" [START_REF] Hitchcock | Automation cueing modulates cerebral blood flow and vigilance in a simulated air traffic control task[END_REF].

Moreover, mental fatigue can be subjectively measured by the Visual Analog Scale. In this scale, fatigue is described as a continuum with two extreme endpoints to express extreme feelings ranging from "very tired" to "in a good form" (Figure 5). Peripheral fatigue, also known as physical fatigue, is defined by an alteration in force production capacity of a neuromuscular junction and/or a muscle group, or both [START_REF] Pageaux | The effects of mental fatigue on sport-related performance[END_REF].

Here, it is important to highlight that central fatigue was proved to negatively affect performance on a subsequent physical task. Especially when the physical task requires a decision-making process, motor coordination, or in tasks that require whole-body endurance performance (Van Cutsem et al. 2017, Pageaux and[START_REF] Pageaux | The effects of mental fatigue on sport-related performance[END_REF].

I. 1. 4. 2. THE SLEEP STATE

Sleep is a vital activity that every organism needs in order to recover from daily events as well as to function properly the next day. Conversely, a lack of sleep or poor sleep patterns can profoundly impair neurobehavioral waking functions [START_REF] Goel | Genetics of sleep timing, duration, and homeostasis in humans[END_REF][START_REF] Brown | Control of sleep and wakefulness[END_REF].

Sleep is a natural state characterized by a reduction in motor activity, a decreased sensitivity to stimuli, a stereotypic posture, and loss of consciousness. Sleep is distinguishable from other states of altered consciousness such as death or coma. It is an active, reversible, and highly organized process. Sleep is composed of two distinct sub-states that alternate cyclically during the night:

non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep [START_REF] Fuller | Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[END_REF][START_REF] Arrigoni | An overview of sleep: Physiology and neuroanatomy[END_REF][START_REF] Roehrs | The Sleep-Wake Cycle: An Overview[END_REF]. More particularly, NREM sleep includes three sleep stages (stage1, stage 2, and stage 3) that are different in-depth, and easily identified according to their activity in the EEG.

The REM-NREM cycle is repeated four to six times per night, averaging 90-min in each cycle. For the analysis of sleep data, EEG frequencies are grouped into bands namely, delta (0.5 to 5 Hz), theta (4 to 8 Hz), alpha (8 to 12 Hz), spindles (7-15 Hz oscillations), and K complexes. Sleep is visually scored in sequential 30-second epochs according to the standards of the American Academy of Sleep Medicine (AASM) [START_REF] Berry | Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine[END_REF]. 

I. 2. NEUROPHYSIOLOGY OF SLEEP-WAKE CYCLE

I. 2. 1. INTRODUCTION

The first hypothesis about neural circuitry supporting the sleep-wake system originated from the observations of Baron Constantin von Economo, in patients suffering from a viral infection in the brain, which is called encephalitis lethargica, also known as the "sleeping sickness". The disease causes either states of prolonged sleepiness or states of insomnia. The post-mortem examination has yielded predictive insights about the brain circuitry promoting states of sleep and wakefulness.

According to the von Economo hypothesis, the region of the anterior hypothalamus, near the optic chiasm, contains sleep-promoting circuitry, and the posterior hypothalamus contains wakepromoting circuitry [START_REF] Von Economo | Encephalitis lethargica[END_REF][START_REF] Saper | The sleep switch: hypothalamic control of sleep and wakefulness[END_REF]. Later, [START_REF] Moruzzi | Brain stem reticular formation and activation of the EEG[END_REF] demonstrated that electrical stimulation of the reticular formation of the brain stem in anesthetized cats provokes changes in the activation of the cerebral cortex as measured by the EEG: from a high-voltage and slow activity to a low-voltage and high activity, a state similar to that observed during active wakefulness. Moreover, they demonstrated that nearly the same response is produced when stimulating the medial bulbar reticular formation, pontile tegmentum, midbrain tegmentum, and dorsal hypothalamus. Accordingly, Moruzzi and Magoun have conceptualized the physiological and neuroanatomic basis of the ascending reticular activation system (ARAS) [START_REF] Moruzzi | Brain stem reticular formation and activation of the EEG[END_REF].

In recent years, the development of new technologies has enabled the identification, manipulation, and characterization of specific cell types in particular brain regions. These novel techniques have provided insights into brain mechanisms controlling sleep and wakefulness by the means of pharmacological manipulation, selective electric activation, inhibition, or lesion of specific cell types in the brain (Eban-Rothschild et al. 2018, Gompf and[START_REF] Gompf | The neuroanatomy and neurochemistry of sleep-wake control[END_REF]. Consequently, the hypothesis of ARAS was refined, as researchers have pointed out the major role of distinct neural populations, neurochemicals, and pathways involved in the switch mechanism regulating sleep and wakefulness (Saper et al. 2010, Arrigoni and[START_REF] Arrigoni | An overview of sleep: Physiology and neuroanatomy[END_REF].

I. 2. 2. THE ASCENDING AROUSAL SYSTEM PROMOTING

WAKEFULNESS

Wakefulness and associated arousal are promoted by complex interactions between distinct subcortical cell groups mainly consisting of monoaminergic and cholinergic neurons located in the brainstem, midbrain, hypothalamus, and basal forebrain. These cell groups are crucial for arousing the cerebral cortex and the thalamus [START_REF] Saper | Sleep state switching[END_REF]. The ascending arousal system contains two major branches: the ascending dorsal pathway directed to the thalamus, and the ascending ventral pathway activating the posterior hypothalamus and that extends to the basal forebrain, which together, activate the cortex. Each pathway involves distinct cell populations and neurotransmitters. The ascending dorsal pathway is directed to the thalamus (yellow pathway). The ascending ventral pathway (red pathway), [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF].

(1) The ascending dorsal branch directed to the thalamus is originating from two cholinergic structures producing acetylcholine (ACh), namely the pedunculopontine tegmental nuclei (PPT), and the laterodorsal tegmental nuclei (LDT). Cholinergic PPT and LDT neurons are responsible for facilitating the transmission of sensory information to the cortex. These neurons fire rapidly during wakefulness and REM sleep and fall silent during NREM sleep (Figure 9).

(2) The ascending ventral branch projects into the lateral hypothalamus, and extends to the basal forebrain, which together, activate the cortex [START_REF] Eban-Rothschild | Neuronal mechanisms for sleep/wake regulation and modulatory drive[END_REF]. The ascending ventral branch includes a number of the monoaminergic cell population, namely the locus coeruleus (LC) containing noradrenergic neurons (NA), the dorsal and median raphe nuclei containing serotoninergic neurons (5-HT), the tuberomammillary nucleus (TMN) containing histaminergic neurons (HIS), and the ventral periaqueductal grey matter (vPAG) containing dopaminergic neurons (DA). The monoaminergic pathway obtains the contribution from peptidergic neurons of the lateral hypothalamic area (LHA) containing hypocretin/orexin (Hcrt) and melaninconcentrating hormone neurons (Figure 9). Neurons of the monoaminergic cell population fire fast during wakefulness, slow down during NREM, and are slightly active during REM sleep [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF][START_REF] Schwartz | Neurophysiology of sleep and wakefulness: basic science and clinical implications[END_REF][START_REF] Arrigoni | An overview of sleep: Physiology and neuroanatomy[END_REF][START_REF] Eban-Rothschild | Neuronal mechanisms for sleep/wake regulation and modulatory drive[END_REF].

The activation of the cerebral cortex is enhanced by the lateral hypothalamic area (LHA) containing both orexin neurons, and melanin concentration hormone neurons, essential for sleepwake regulation and stability: during the active period and goal-orientated behaviors, LHA neurons that contain orexin become highly activated, which reciprocally, increases the firing rates of neurons in the TMN, LC, and dorsal raphe. [START_REF] Eban-Rothschild | Neuronal mechanisms for sleep/wake regulation and modulatory drive[END_REF]. LHA neurons that contain melanin concentration hormone neurons are activated during REM sleep and are thought to inhibit the firing rates of neurons in the TMN, LC, and dorsal raphe (for reviews, see [START_REF] Schwartz | Neurophysiology of sleep and wakefulness: basic science and clinical implications[END_REF][START_REF] Arrigoni | An overview of sleep: Physiology and neuroanatomy[END_REF][START_REF] Scammell | Neural circuitry of wakefulness and sleep[END_REF][START_REF] Eban-Rothschild | Neuronal mechanisms for sleep/wake regulation and modulatory drive[END_REF].

Given the anatomy and function of these systems, it is not surprising that Von Economo found that lesions at the junction of the midbrain and forebrain produce profound and long-lasting impairment of arousal [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF] 

I. 2. 3. THE VENTROLATERAL PREOPTIC AREA PROMOTING

SLEEP

Sleep is activated by neurons of the ventrolateral preoptic nucleus (VLPO), which are located in the anterior hypothalamus just above the optic chiasm. The VLPO nucleus contains neurons that form a compacted cluster part in the "core" of the nucleus, and also contains neurons that fill a more extended part [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF]. These neurons are active during sleep and release inhibitory neurotransmitters, namely GABA and galanin. Lesions of neurons in the cluster part of the nucleus reduce NREM sleep. Whereas, lesions of neurons in the extended part of the nucleus reduce REM sleep [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF]. Moreover, VLPO neurons project to many wakepromoting cell groups of the ascending arousal system, and therefore, influence indirectly the arousal system by inhibiting the wake-promoting circuitry [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF], 2010[START_REF] Gompf | The neuroanatomy and neurochemistry of sleep-wake control[END_REF]. For instance, VLPO neurons have afferent projections to monoaminergic cell groups, including, histaminergic tuberomammillary nucleus (TMN), dopaminergic cell group of the ventral periaqueductal grey matter (vPAG), noradrenergic neurons of the locus coeruleus (LC), and serotoninergic cells of the dorsal raphe nuclei (Raphe). Also, VLPO neurons project to cholinergic cell groups (in the pedunculopontine tegmental nuclei (PPT), and in the laterodorsal tegmental nuclei (LDT). Besides, it also innervates orexinergic neurons of the lateral hypothalamus [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF], (Figure 10).

In accordance with the anatomy and functions of the VLPO cell population, it is no wonder that the damage of the anterior hypothalamus in Von Economo's patients provokes persistent insomnia [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF]. Reciprocally, during wakefulness, monoaminergic neurotransmitters of the ascending system inhibit GABAergic VLPO neurons [START_REF] Gallopin | Identification of sleep-promoting neurons in vitro[END_REF]. Therefore, VLPO is inhibited by the arousal system that it inhibits during sleep. This reciprocal interaction between the sleeppromoting system and the ascending arousal system gives rise to the "Flip-flop" switch model of sleep-wake regulation proposed by Saper [START_REF] Saper | The sleep switch: hypothalamic control of sleep and wakefulness[END_REF][START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF][START_REF] Saper | Sleep state switching[END_REF], and this mechanism will be detailed in section I.2.4.

I. 2. 4. THE STATE TRANSITION

The "Flip-flop" switch model of sleep-wake regulation is derived from an electrical engineering circuit describing a system with two distinct states: a switch that can be either "ON" or "OFF", resulting in an abrupt transition from one state to another and avoiding any intermediate state [START_REF] Saper | The sleep switch: hypothalamic control of sleep and wakefulness[END_REF]. According to this model, VLPO represents the "sleep-on" or the "wake-off" side, whereas ARAS represents the "sleep-off" or the "wake-on" side. Besides, Orexin neurons of the lateral hypothalamus (LHA) act as a "finger on the switch" [START_REF] Arrigoni | An overview of sleep: Physiology and neuroanatomy[END_REF].

Overall, when VLPO is active, it inhibits wake-promoting neurons of the ARAS. By contrast, when regions that induce wakefulness are active, VLPO is inhibited. In this model, both mechanisms are reciprocally inhibited, and therefore, it is not possible to be simultaneously active. Moreover, the sleep-wake switch model entails that the transitional state is abrupt, and represents only a small part of each day compared to states of wakefulness or sleep (Figure 11), [START_REF] Saper | The sleep switch: hypothalamic control of sleep and wakefulness[END_REF][START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF]. Orexin neurons are not essential for sleep-wake generation, instead, they integrate information from different sites and determine whether to project to wakepromoting neurons of the ARAS, or to remind silent and therefore, to promote sleep [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF], 2010[START_REF] Arrigoni | An overview of sleep: Physiology and neuroanatomy[END_REF][START_REF] Scammell | Neural circuitry of wakefulness and sleep[END_REF]. [START_REF] Brown | Control of sleep and wakefulness[END_REF]. Nevertheless, homeostatic and circadian processes of sleep-wake regulation are considered to be key features to complement the observation of this model [START_REF] Brown | Control of sleep and wakefulness[END_REF].

The circadian and the homeostatic influences underlying sleep and wakefulness will be discussed in section I.2.5.

I. 2. 5. HOMOSTATIC AND CIRCADIAN REGULATION OF SLEEP AND WAKEFULNESS

The alternation between sleep and wakefulness is promoted by complex brain mechanisms under the control of the circadian and homeostatic processes. There is some evidence suggesting that the functioning of the two constituents' processes is not linear throughout the day [START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF]. But rather, both processes interact either in synchrony or in opposition influencing the temporal profile of sleep and wakefulness, sleep characteristics, and the dynamic change in human performance throughout the day [START_REF] Deboer | Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?[END_REF].

I. 2. 5. 1. THE SLEEP HOMEOSTAT

Homeostasis is the term that refers to maintaining an equilibrium or a balance in physiological and metabolic regulation [START_REF] Wozniak | Good sleep, good learning, good life[END_REF]. The homeostatic process of sleep regulation is called the process S. Initially, it was proposed by Borbély (1982) in the two-process model of sleep regulation. The model entails that sleep pressure increases during wakefulness and dissipates in the course of subsequent sleep (Figure 12). This observation paves the way toward suspecting the existence of a homeostatic substance in the brain, probably related to the metabolic activity that accumulates during waking and dissipates during sleep. Interestingly, it was demonstrated that the injection of the cerebrospinal fluid of one sleepdeprived animal induced the need for sleep in another normal animal [START_REF] Legendre | Distribution des altérations cellulaires du système nerveux dans l'insomnie expérimentale[END_REF][START_REF] Ishimori | True cause of sleep: a hypnogenic substance as evidenced in the brain of sleepdeprived animals[END_REF][START_REF] Kornmüller | Neurohumoral ausgelöste Schlafzustände an Tieren mit gekreuztem Kreislauf unter der Kontrolle von EEG-Ableitungen[END_REF].

Recent research has shed light into the nature of homeostatic sleep-promoting neurochemicals involved in this physiological process. Particularly, adenosine and other somnogenic factors have been identified, such as cytokines and nitric oxide substances [START_REF] Brown | Control of sleep and wakefulness[END_REF][START_REF] Morairty | A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity[END_REF][START_REF] Eban-Rothschild | Neuronal mechanisms for sleep/wake regulation and modulatory drive[END_REF]. At present, the best candidate for sleep-promoting neurochemical is adenosine. However, Carlos Blanco-Centurion and colleagues (Blanco-Centurion et al. 2006a) showed that the accumulation of adenosine in the basal forebrain is not a necessary factor for sleep drive. Nevertheless, the authors did not reject the hypothesis entailing that adenosine regulates sleep homeostasis. Instead, they have suggested testing the effects of adenosine concentration in other regions of the brain (Blanco-Centurion and Shiromani 2006b).

Overall, the homeostatic sleep regulation hypothesis entails that the concentration of sleeppromoting neurochemicals accumulates over time, generates pressure for sleep in function of time spent awake, and promotes the transition from awake to sleep: when the concentration level reaches an upper threshold, the homeostatic system actively promotes the transition from wake to sleep (Figure 13) by either exiting neurons of the VLPO or inhibiting the monoaminergic specificcell groups (i.e. LC, TMN, and orexin-producing neurons), or both [START_REF] Mingo | Sleep-awake switch with spiking neural P systems: A basic proposal and new issues[END_REF][START_REF] Saper | Sleep state switching[END_REF][START_REF] Brown | Control of sleep and wakefulness[END_REF]. The homeostatic sleep pressure dissipates after a certain duration of sleep, and the withdrawal of its output passively gates the transition to wakefulness (Figure 13) [START_REF] Mistlberger | Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus[END_REF][START_REF] Saper | Sleep state switching[END_REF]. 

I. 2. 5. 2. THE CIRCADIAN CLOCK

The circadian timing system, which Borbely called the process C drives 24-hr endogenous rhythmicity in almost all neurobehavioral, physiological, and biochemical variables [START_REF] Fuller | Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[END_REF][START_REF] Goel | Genetics of sleep timing, duration, and homeostasis in humans[END_REF]). The circadian clock, located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus regulates daily rhythms of core body temperature (CBT), and states of sleep and wakefulness by responding to the changes of the solar light-dark cycle (Figure 14), (Eban-Rothschild et al. 2018, Gompf and[START_REF] Gompf | The neuroanatomy and neurochemistry of sleep-wake control[END_REF]. Yet, even in the absence of environmental time cues, the SCN continues to run sleep-wake cycles with a period close to 24-hr. This finding indicates that the functioning of the SCN is autonomous and that environmental cues are utilized to entrain and synchronize the sleep-wake cycle to the 24-hr light-dark cycle [START_REF] Mistlberger | Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus[END_REF]. Lesion of the SCN in rodents abolishes circadian rhythmicity of the core body temperature (CBT) [START_REF] Szymusiak | Body temperature and sleep[END_REF], and rhythmicity in range of behavioral variables including sleep and locomotor activity (Moore andEichler 1972, Stephan and[START_REF] Stephan | Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions[END_REF]. Together, these findings demonstrate the primary role of SCN in regulating the circadian timing system [START_REF] Scammell | Neural circuitry of wakefulness and sleep[END_REF]. Besides, in addition to the SCN, other peripheral endogenous oscillators capable to function autonomously have been identified in several organs such as the heart, liver, kidney, lungs, skin, intestines, and the retina. The functioning of these peripheral clocks is synchronized with each other and aligns with the external daily light-dark cycle by virtue of the SCN [START_REF] Touitou | Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption[END_REF]).

As outlined above, regular exposure to the daily light-dark cycle is regarded as the primary synchronizer to the outside world [START_REF] Eban-Rothschild | Neuronal mechanisms for sleep/wake regulation and modulatory drive[END_REF]. The SCN receives direct light input from the retina via the retinohypothalamic tract (RHT), providing a mechanism by which differences in the intensity of light produce a suppression or, by contrast, stimulate the release of melatonin from the pineal gland (Duffy andCzeisler 2009, Scammell et al. 2017). Interestingly, melatonin secretion is driven by the SCN, which in turn acts back on the SCN. In humans, the circadian peak of melatonin is released during the dark phase of the solar cycle. Conversely, exposure to the daylight results in lowering the secretion level of melatonin [START_REF] Touitou | Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption[END_REF].

Although the critical role of SCN in governing the timing of sleep and wakefulness is evident, the link between SCN and the circuit controlling states of sleep and wakefulness has been a subject of many investigations and still is far from being clear [START_REF] Fuller | Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[END_REF][START_REF] Scammell | Neural circuitry of wakefulness and sleep[END_REF].

The SCN has minimal projections to sleep-promoting neurons of the VLPO and no projection to the ARAS. Instead, the circuit is mediated by multiple divergent pathways in the brain [START_REF] Fuller | Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[END_REF]. Most outputs from SCN use the supraventricular zone (SPZ) and the dorsomedial nucleus of the hypothalamus (DMH) as important neural pathways to regulate the circadian timing of sleep and wakefulness, along with the corresponding physiological and biochemical mechanisms.

The densest projection from the SCN travels in an arc dorsally and caudally and terminates in the SPZ. The ventral supraventricular zone (vSPZ) regulates behavioral circadian rhythms, and the dorsal supraventricular zone (dSPZ) regulates circadian rhythms of core body temperature. The SCN and vSPZ, in turn, project to the DHM. The DMH provides rhythmic output to the sleepwake centers of the brain via its excitatory projection to the orexin-producing neurons in the LHA and to LC, TMN, LC, and dorsal raphe neurons. DMH is also thought to inhibits sleep-promoting neurons via its intense GABAergic projection to sleep-promoting regions, including the VLPO [START_REF] Fuller | Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[END_REF][START_REF] Saper | The central circadian timing system[END_REF].

The functioning of the circadian clock is simplified in Modified from [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF][START_REF] Saper | The central circadian timing system[END_REF].

Considering that sleep-and wake-promoting neurons are continuously interconnected, the hypothesis stating that SCN actively drives states of sleep and wakefulness by alternatively exiting or inhibiting either sleep-or wake-promoting regions, or both, has become generally accepted [START_REF] Mistlberger | Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus[END_REF]). The complex system connecting SCN to some elements of ARAS and VLPO via SPZ and DMH regulates the circadian timing of sleep and wakefulness, and other behaviors. The role of this complex system is now considered a factor that allows mammals to flexibly adapt their behavior to environmental cues [START_REF] Fuller | Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback[END_REF][START_REF] Scammell | Neural circuitry of wakefulness and sleep[END_REF].

I. 2. 5. 3. HOMEOSTATIC AND CIRCADIAN INFLUENCES ON STATE TRANSITION

The recent advances in sleep neurology gave rise to a compelling explanation of the general functioning of the switching mechanism based upon the mutual inhibitory interactions between sleep-promoting VLPO and wake-promoting cell groups of the ARAS, including both circadian and homeostatic influences, along with their multiple interconnections [START_REF] Phillips | Mammalian sleep dynamics: how diverse features arise from a common physiological framework[END_REF].

Neurons controlling the switching mechanisms (i.e. wake-promoting monoenergetic systems and sleep-promoting VLPO) receive input from both homeostatic and circadian factors over time and transform these accumulating influences into a sharp transition in behavioral states. Once a state threshold is crossed, the mechanism controlling the consolidation of the other state begins. The circadian process alternates actively between promoting sleep and wakefulness at different phases of the solar cycle. The homeostatic process actively promotes sleep, and the withdrawal of its output passively drives the transition to wakefulness. The two constituents' processes are simultaneously interconnected, acting in synchrony, and in a predictable manner to determine the transition between states of sleep and wakefulness throughout the 24-hr cycle: when the circadian sleep-promoting system coincides with high levels of sleep pressure, sleep is triggered. Another way round, when the circadian wake-promoting system coincides with low levels of sleep pressure, the transition from sleep to wakefulness is triggered (Figure 16), [START_REF] Mistlberger | Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus[END_REF][START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF]. Now that the overall mechanism is somehow disclosed, still, the major limitation of this recent model is that it describes a system with two distinct states, avoiding the possibility of the occurrence of any intermediate state. For instance, the presence of sleep inertia immediately after waking from sleep represents an intermediate state, and hence, is considered to highlight the limitations of this model. Recently, [START_REF] Saper | Sleep state switching[END_REF] have attempted to explain this phenomenon by providing a convincing proposal. They stated that the overall mechanism controlling the sleep/wake switch acts like an electronic flip-flop switch, however, unlike the electronic mechanism that contains a single element on each side and acts almost instantly, the mechanism in the human brain takes place between a large population of neurons on each side, and therefore, the state transition may range from some seconds to some minutes.

I. 2. 5. 4. HOMEOSTATIC AND CIRCADIAN INFLUENCES ON SLEEP

I. 2. 5. 4. 1. THE TIMING OF SLEEP: SLEEP GATES AND WAKE MAINTENANCE ZONE

Sleep is promoted when both homeostatic and circadian processes interact with each other in a synergistical manner: the homeostatic process drives pressure for sleep that increases with the time spent awake. The circadian drive for sleep fluctuates non-linearly throughout the 24-h cycle, creating a bimodal distribution for drowsiness. The first major peak for drowsiness occurs at night, and the second peak takes place in the early afternoon hours (Lavie 1989, Mantua and[START_REF] Mantua | Exploring the nap paradox: are mid-day sleep bouts a friend or foe?[END_REF]. These two phases of maximum drowsiness have been termed sleep gates.

According to the two-process model of sleep regulation, the timing and the capacity to initiate sleep is determined when high levels of homeostatic sleep pressure coincides with phases of circadian sleep gates (Borbély 1982). The two phases of maximum drowsiness are separated by phases of the greatest drive for wakefulness, which have been labeled forbidden zone for sleep by [START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF], or wake maintenance zone by [START_REF] Strogatz | THE MATHEMATICAL STRUCTURE OF THE HUMAN SLEEP-WAKE CYCLE[END_REF] (Figure 17).

Figure 17. Sleep gates and forbidden zones

Laboratory studies confirmed that falling asleep is easier during the sleep gate zones than during wake maintenance zones [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF]). Furthermore, following prolonged wakefulness, the level of sleep pressure increases and consequently the capacity to initiate sleep during the circadian gates for sleep become more pronounced than in the baseline conditions (i.e. normal conditions).

I. 2. 5. 4. 2. THE STRUCTURE OF SLEEP: NREM-REM SLEEP CYCLES

Beyond determining the temporal profile of sleep during the day, the structure and depth of sleep are also driven by the interplay between the two constituent processes. In humans, NREM and REM sleep alternate cyclically in an ultradian rhythm during sleep. EEG Slow-Wave Activity (SWA) is the physiological marker of sleep homeostasis. Accordingly, the amount of SWA during sleep is determined by the duration of the antecedent waking period [START_REF] Achermann | Sleep in a sitting position: effect of triazolam on sleep stages and EEG power spectra[END_REF], and it represents the intensity parameter of the sleep process [START_REF] Gompf | NREM Sleep Regulation From Neuronal Assembly to Ion[END_REF]. The proportion of SWA predominates the first part of sleep, but it decreases across NREM-REM cycles. It was demonstrated that the amount of SWA is enhanced when the prior waking period is prolonged. In contrast, SWA is reduced when the previous nocturnal sleep is extended, or when a daytime sleep is introduced [START_REF] Achermann | Sleep in a sitting position: effect of triazolam on sleep stages and EEG power spectra[END_REF]. On the other hand, the proportion of REM sleep increases over successive NREM-REM cycles and manifests no compensatory response when the prior waking period is prolonged (Borbély 1982). Accordingly, REM sleep represents the physiological determinant of the circadian oscillator system.

I. 2. 5. 5. HOMEOSTATIC AND CIRCADIAN INFLUENCES ON WAKEFULNESS

Wakefulness is promoted when both homeostatic and circadian processes interact with each other in opposition: the homeostatic process drives pressure for sleep that increases with the time spent awake. The circadian process modulates the waking behavior in a circadian manner as displayed in the dynamic changes in arousal, and many neurobehavioral outputs, including cognitive and physical performances [START_REF] Goel | Circadian rhythms, sleep deprivation, and human performance[END_REF].

The two-process model of sleep regulation posits that the difference between the homeostatic pressure for sleep and the circadian pressure for wakefulness and/or for sleep determines the level of arousal reached while awake (Figure 18), (Borbély 1982, Achermann andBorbély 1994).

Accordingly, during the waking period, performance efficiency is assumed to depend on the distance between the two constituent processes: the smaller the gap is between the homeostatic and the circadian processes, the better the performance becomes, and vice versa. Recently, the two-process model has been readjusted [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]. In this updated version, the model stipulates that changes in arousal levels and many neurobehavioral outputs are determined by a continuous interaction between the homeostatic and circadian processes. For instance, the functioning of the circadian process depends on the status of homeostatic pressure, that is, the amplitude of process C decreases when the level of S is high and increases when the level of S is reduced [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF][START_REF] Achermann | Sleep in a sitting position: effect of triazolam on sleep stages and EEG power spectra[END_REF]. For example, under conditions of prolonged wakefulness, high levels of sleep pressure reduce the circadian amplitude of many neurobehavioral functions when compared to baseline levels [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]. A second example is that during phases of maximum drowsiness, the decrease in arousal levels and performance becomes more pronounced because of the increased pressure for sleep that occurs at that time. In the opposite direction, the input of the circadian process also might counterbalance the effects of high sleep pressure, especially during the phases of maximum wakefulness. The spontaneous increase in arousal and performances are evident under conditions of sleep loss.

Nevertheless, the effects of sleep loss on many neurobehavioral variables are not without consequences. It has been pointed out that high levels of sleep pressure affect the dynamic changes in arousal and performance by generating a stable but less optimal arousal state compared to basal levels (Figure 18), [START_REF] Van Dongen | Sleep, circadian rhythms, and psychomotor vigilance[END_REF][START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF][START_REF] Goel | Circadian rhythms, sleep deprivation, and human performance[END_REF][START_REF] Goel | Genetic markers of sleep and sleepiness[END_REF]). 

I. 3. THE DIURNAL VARIATION IN PERFORMANCE

I. 3. 1. INTRODUCTION

The study of diurnal variations in human performance first began with experimental and educational psychology. The primary concern of these investigations was to determine the scheduling of the school hours for teaching an academic subject (LAVIE 1980, Carrier and[START_REF] Carrier | Circadian rhythms of performance: new trends[END_REF]. It is generally acknowledged that the study of rhythmic aspects of human performance started with Kleitman, who was the first to establish a link between sleep, rhythms in performance, and physiological parameters. In his model the basic-rest-activity-cycle (BRAC), he hypothesized that the cyclic recurrence of NREM-REM sleep (i.e period of about 100-min) continues to oscillate during the waking period in the form of phases of optimal performance and phases of less responsiveness [START_REF] Kleitman | Sleep and wakefulness[END_REF]. Further, he suggested that the BRAC is a cyclic phenomenon that also exists in all physiological parameters of the body under the influence of the core body temperature. Considerable efforts have been devoted to testing the validity of the BRAC hypothesis. Accordingly, several studies have confirmed the existence of BRAC cycles in human performance [START_REF] Klein | Rhythms in human performance: 1 1/2-hour oscillations in cognitive style[END_REF][START_REF] Okawa | Spontaneous vigilance fluctuations in the daytime[END_REF][START_REF] Schulz | Ultradiant rhythms in physiology and behavior((Book))[END_REF].

Besides, many investigations confirmed the temporal relationship between diurnal variations in performance and CBT rhythms. However, others have reported the existence of cycles shorter than the BRAC [START_REF] Davies | Human vigilance performance[END_REF]Tune 1969, Conte et al. 1995), and showed a delay in phase between CBT and the performance efficiency (Laird 1925, Rutenfranz and[START_REF] Rutenfranz | über Tagesschwankungen der Rechengeschwindigkeit bei 11jÄhrigen Kindern[END_REF].

The differences in these observations have paved the way toward a new approach in studying diurnal rhythmicity in performance with more emphasis on the differences between rhythms rather than on similarities. This original approach was introduced by Folkard (1983) who evidenced through a number of systematic investigations the existence of different rhythms in performance (for more details, see [START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF]). Folkard, then, concluded that the diurnal fluctuation of a specific neurobehavioral output depends on the characteristics of the performed task (i.e cognitive domain, duration, and difficulty level), [START_REF] Folkard | Diurnal variation. Stress and fatigue in human performance[END_REF].

The field of circadian rhythms has helped to complement these observations by suggesting that the decrease in a particular task-performance throughout the day is assumed to be caused by its sensitivity to levels of sleep pressure that increase in function of the previous waking period. By contrast, the enhancement in a particular task-performance throughout the day is caused by the strong input of the circadian system into that specific neurobehavioral ability (for review, see [START_REF] Carrier | Circadian rhythms of performance: new trends[END_REF]. Furthermore, interindividual variability in sleep-wake preferences and inter-individual vulnerability to sleep loss may influence the dynamic change of arousal and performance efficiency throughout the waking period.

I. 3. 2. THE INTER-INDIVIDUAL VARIABILITY

In healthy adults, there is a robust inter-individual variability in response to high levels of sleep pressure during the day, as evidenced by distinct neurophysiological techniques and neurobehavioral tasks sensitive to sleep pressure. Some individuals show a greater vulnerability to performance deficit from sleep loss than do other individuals (for review see, Tkachenko and Dinges 2018). Moreover, there is also an inter-individual difference in daily human behavior such as sleep habits and preference expressed over favorite periods of diurnal activities. This interindividual variability in sleep-wake preference reflects the particular chronotype of an individual [START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF]). The first questionnaire developed for assessing sleep-wake preference was the Morningness-Eveningness Questionnaire (MEQ) [START_REF] Horne | A self-assessment questionnaire to determine morningnesseveningness in human circadian rhythms[END_REF]. The latter allows the distinction between individuals based on their score. In this context, laboratory studies have evidenced that extreme chronotypes display a circadian "phase-shifted" variation in their sleep habits. For instance, extreme morning types exhibit a marked preference for waking up early in the morning and for going early to sleep at night (i.e. advanced sleep period). However, extreme evening type shows a marked preference for waking up late and going to sleep late at night (i.e.

delayed sleep period). Beyond influencing the sleep-wake habits, extreme chronotype also displays a distinct variation of peaks and trough in performance throughout the day that are also shifted in phase according to the chronotype (for review, see [START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF].

I. 3. 3. THE DIURNAL VARIATION IN COGNITIVE PERFORMANCE

The ability to maintain a high level of performance efficiency in everyday activities is challenging especially that our ability to remain attentive fluctuate throughout the day. Attention is an important cognitive process that refers to the capacity to effectively interact with the environment [START_REF] Valdez | Focus: Attention Science: Circadian Rhythms in Attention[END_REF]. Nevertheless, attention is a multifaced cognitive processing concept that includes two dimensions, namely intensity, and selectivity.

Intensity reflects states of cortical activation that can be tonic or phasic depending on the task's demands [START_REF] Cohen | Intention, Response Selection, and Executive-Attention[END_REF]. The tonic aspect of intensity refers to the general functioning of the arousal system throughout the day. The latter is intimately involved in sustaining attentional control, as well, it provides the necessary cognitive tone for performing complex cognitive abilities, such as working memory or executive control (DeGutis and Van Vleet 2010). The phasic component refers to a rapid increased change in arousal levels induced by a warning signal [START_REF] Landry | Heightened States of Attention: From Mental Performance to Altered States of Consciousness and Contemplative Practices[END_REF]. The latter is viewed as an important element in a wide range of human performances requiring fast and precise responses. The aspect of selectivity includes sustained attention, divided attention, and shifting attention. In this work, however, we will only consider sustained attention which refers to the ability of one's mind to be continuously focused on processing features or objects and to ignore all the other irrelevant stimuli while performing a particular cognitive task over time [START_REF] Pattyn | Psychophysiological investigation of vigilance decrement: boredom or cognitive fatigue?[END_REF], (for review, see [START_REF] Langner | Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention[END_REF].

In time of day recording paradigm, cognitive performance is measured on several occasions throughout the day, and this may induce learning effects, fatigue, or boredom. Therefore, the appropriate selection of performance tasks is an important factor to consider when investigating the diurnal variation in a specific neurobehavioral function [START_REF] Valdez | Focus: Attention Science: Circadian Rhythms in Attention[END_REF]. The basic experimental paradigms frequently used to assess the diurnal changes in tonic and phasic components of attention are based on reaction time measures and continuous task monitoring paradigms.

Reaction time (RT) is assessed using a computer-based performance task that measure the elapsed time between a stimulus (i.e. auditory or visual) and the individual's response to it [START_REF] Helton | Signal salience and the mindlessness theory of vigilance[END_REF]. The time course of testing generally does not exceed 10-min, but the test can be introduced for several occasions per day. The decline of attentional control is expressed by an increase in RT, or by an increase in the number of errors over time, or both [START_REF] Basner | Repeated administration effects on psychomotor vigilance test performance[END_REF].

Continuous task monitoring paradigm is mainly used to measure tonic attention [START_REF] Smith | Measures of variations in performance during a sustained attention task[END_REF]. The period of testing can range from 30-min to several hours. The decline in attention is generally documented through performance stability over time and by the increased number of incidents or errors [START_REF] Smith | Measures of variations in performance during a sustained attention task[END_REF]. Furthermore, the testing can be achieved either in real-life settings, such as on-road driving evaluation or, as a safer alternative, in a real-life simulated driving environment [START_REF] Stern | Driving simulators[END_REF]. Other than safety issues, the driving simulator offers numerous advantages compared to on-road testing. First, it guarantees the measurements in controlled environments, and therefore, it enables the acquisition of reproducible study results.

Unlike real-life driving settings, weather conditions, traffic densities and road layout are largely unpredictable, dynamic, and far from being controllable. Besides, the driving simulator programs offer the opportunity to analyze the entire driving behavior or to study a particular cognitive ability. For example, to evaluate sustained attentional ability, the driving scenario is assumed to be in a monotonous driving environment. By contrast, to assess higher cognitive functions, the driving scenario challenges the individual to monitor the vehicle in a more dynamic environment [START_REF] Goode | Simulation-based driver and vehicle crew training: applications, efficacy and future directions[END_REF]. Also, the use of a driving simulator provides the possibility to have data related to the vehicle's lateral position variability, and the number of inappropriate line-crossing over testing time. In this regard, one has to recognize that this data is difficult to obtain in a reallife sitting. Moreover, driving simulators have extensively been used to study situations that may negatively impact safety on the road, including drowsiness, drugs, or alcoholic beverage [START_REF] Weiler | Effects of fexofenadine, diphenhydramine, and alcohol on driving performance: a randomized, placebo-controlled trial in the Iowa driving simulator[END_REF][START_REF] Wang | Correlation between Vigilance Level and Driving Performance: Influence of the Driving Duration and Circadian Rhythm[END_REF]. As well, they provide the opportunity for testing different strategies to counteract the decline in performance (Horne andReyner 1996a, Lenné et al. 2004). Finally, driver simulators can easily be implemented in a small place in the laboratory, guaranteeing the cost and resource savings (for review, see [START_REF] Classen | Driving simulator sickness: an evidencebased review of the literature[END_REF]. Nevertheless, a significant limitation is related to the simulated driving discomfort that is experienced by certain individuals has to be mentioned. This discomfort is described as the "simulator sickness". Individuals who are susceptible to simulator sickness show signs of pallor, cold, sweat, nausea, the difficulty of focusing, and in some cases vomiting (for review, see De [START_REF] De Winter | Advantages and disadvantages of driving simulators: A discussion[END_REF].

I. 3. 3. 1. 1. OBSERVATIONS UNDER NORMAL DAY-NIGHT CONDITIONS

Research investigating the diurnal variation in cognitive performance under normal day-night conditions have identified the classical curve of attention (i.e. phasic and tonic components) during the day. The time course of performance reaches its lowest levels in the early morning, during the early afternoon hours, and at night. Better performance levels occur late in the morning and in the afternoon. The peak of cognitive performance is observed in the late afternoon hours (for review see, [START_REF] Schmidt | A time to think: circadian rhythms in human cognition[END_REF][START_REF] Valdez | Focus: Attention Science: Circadian Rhythms in Attention[END_REF]). These changes in performance are correlated with electrophysiological measures of arousal and with rhythms of CBT. Besides, many studies have disclosed a temporal relationship between circadian rhythmicity of cognitive performance and self-reported feeling of arousal as evidenced by the Visual Analog Scale, Epworth Sleepiness Scale, or the Karolinska Sleepiness Scale (for review, see [START_REF] Oken | Vigilance, alertness, or sustained attention: physiological basis and measurement[END_REF][START_REF] Goel | Circadian rhythms, sleep deprivation, and human performance[END_REF].

I. 3. 3. 1. 2. OBSERVATIONS UNDER SLEEP LOSS CONDITIONS

Sleep loss is an extremely common problem that can be caused 

I. 3. 4. THE DIURNAL VARIATION IN PHYSICAL PERFORMANCE

The examination of changes in physical performances under normal day-night conditions and under sleep loss conditions is a key measure that leads to the understanding on how sleep and circadian rhythms affect physical performance. Besides, is important in fields that strongly require high levels of performance. As a case in point, the study of performance in the field of sports science is considered as predominant factor to success. For instance, a small decrease in performance might separate a winning team or an individual from another whose performance is marginally under the peak [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF].

Adequate sleep quality and quantity are considered key factors to ensure athletes' optimal outcomes and to promote adequate physiological and psychological recovery from daytime energy loss [START_REF] Kölling | Sleep-related issues for recovery and performance in athletes[END_REF]). Nevertheless, sleep loss is a common issue among athletes, and for many reasons it is experienced by many of them [START_REF] Gupta | Does elite sport degrade sleep quality? A systematic review[END_REF] External factors are late evening competitions, circadian desynchrony (jet-lag), sleeping in unfamiliar environments, and pre-competition-imposed diet. On the other hand, internal factors are pre-competitive anxiety, and the strong pressure exerted the day prior to competition. These internal factors are further reinforced by some other psychological attributes in elite athletes such as perfectionism and the firm willingness to excel. In addition, some ritual habits may stand as factors causing sleep loss in athletes. For instance, during the month of Ramadan, Muslim athletes who refrain from food and drink from sunrise to sunset experience a whole disturbance in their daily habits that may also cause sleep loss in athletes. For review see [START_REF] Gupta | Does elite sport degrade sleep quality? A systematic review[END_REF][START_REF] Kölling | Sleep in Sports: A Short Summary of Alterations in Sleep/Wake Patterns and the Effects of Sleep Loss and Jet-Lag[END_REF][START_REF] Kölling | Sleep-related issues for recovery and performance in athletes[END_REF].

I. 3. 4. 1. OBSERVATIONS UNDER NORMAL DAY-NIGHT CONDITIONS

The majority of physical outcomes display diurnal variations in performance that increase progressively throughout the day with an acrophase observed in the afternoon and in the late afternoon hours, and with the poorest performance recorded late at night and early in the morning.

For instance, anaerobic performance was found to be higher in the afternoon and evening than in the morning. A similar evening peak in performance was observed for muscular strength and explosive leg power. Besides, the aerobic performance was proved to be higher in the afternoon and in the evening compared to the performance in the morning (for review, see Thun 2015).

Together these rhythms are in phase with the circadian profile of CBT. Accordingly, high values of CBT correspond to the best-recorded performances. By contrast, low values of CBT correspond to the poorest performances.

I. 3. 4. 2. OBSERVATIONS UNDER SLEEP LOSS CONDITIONS

Researches have indicated that sleep loss does not affect the performance in tasks involving anaerobic and muscular strength performances. However, other studies have shown that sleep loss affects the diurnal fluctuation of physical outcomes in tasks requiring anaerobic performance.

In fact, they have demonstrated a decrease in the amplitude of the evening peak in performance compared to the baseline curve of performance. Nevertheless, they showed that the acrophase is still observed in the afternoon, compared to morning performance [START_REF] Souissi | Effects of one night's sleep deprivation on anaerobic performance the following day[END_REF][START_REF] Souissi | Effect of time of day and partial sleep deprivation on short-term, high-power output[END_REF].

However, endurance performance is proved to be highly affected by sleep loss. The negative impact of sleep loss on endurance performance is more pronounced in the evening hours than in the morning. In addition, sport-specific performance was proved to be sensitive to sleep loss. This effect was attributed to the complexity of components contributing to performance efficiency, such as cognitive and emotional factors. These components, however, were proved to be largely affected by sleep loss [START_REF] Simpson | Optimizing sleep to maximize performance: implications and recommendations for elite athletes[END_REF])

I. 4. ENERGETIC AND RECUPERATIVE NAPS

I. 4. 1. INTRODUCTION

The human body tends to rest during the midday period, as well as at night [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF]). The concept of a midday nap has widely varied across cultures and over time. In many countries, napping is a commonplace culture [START_REF] Webb | Cultural perspectives on napping and the siesta[END_REF]. For example, in Spain, the "Siesta" (i.e. Spanish term, meaning nap) is considered one of the most traditional practices and ancient rituals in daily Spanish life. The name siesta is derived from the Latin term "horasexta" which refers to the sixth hour of the day according to sundial time [START_REF] Rossi | Measuring Time[END_REF]. The 'siesta culture' is also prevalent in other Mediterranean and Southern European countries. For instance, in Mexican and Latin American traditions, a short nap is a good option to consider since the effects of high temperature combined with a heavy midday meal commonly affect productivity.

Interestingly, in Japan, workers have the constitutional right to nap in the workplace since it is considered a means to increase productivity [START_REF] Flaskerud | The cultures of sleep[END_REF]. On the other hand, in "Non-Siesta cultures" and in some modern societies, sleep loss and physical marks of fatigue are seen as badges of honor testifying hard worker's efforts. In these cultures, a midday nap is perceived as a practice of backwardness as well as a waste of time. Yet, Cola or coffee breaks are commonly favorable [START_REF] Maas | Power sleep: The revolutionary program that prepares your mind for peak performance[END_REF].

The frequent recurrence of daytime naps in both siesta and non-siesta cultures has been a subject of considerable interest in multiple studies. Even though researchers have differently labeled the midday period; "sleep gate" [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF], "nap zone" [START_REF] Broughton | Sleep and alertness: chronobiological, behavioral, and medical aspects of napping[END_REF], "post-lunch dip" [START_REF] Monk | Circadian determinants of the postlunch dip in performance[END_REF], they have all been preoccupied with the understanding of this behavior and with unrevealing its nature. Accordingly, they have attempted to investigate whether the midday nap is a part of the endogenous biological rhythms, a compensatory response to sleep loss, or a behavioral response to exogenous factors such as heavy meal consumption and high ambient heat (Stampi 1992a). Here it is important to highlight that in order to prove that napping is a behavioral expression of the endogenous sleep-waking rhythms, it should meet the following criteria: (1) temporally repetitive, (2) maintaining a stable phase relationship with other components of circadian rhythms and (3) governed by rules of homeostatic and circadian processes of sleep-wake regulation [START_REF] Campbell | The timing and structure of spontaneous naps[END_REF]. [START_REF] Campbell | Duration and placement of sleep in a "disentrained" environment[END_REF] examined the effects of meal consumption on the duration of wakefulness and the structure of sleep. The results showed that meal consumption did not affect the duration of wakefulness, nor the structure of daytime sleep. Furthermore, the natural inclination toward sleep in early afternoon hours was confirmed in the study of [START_REF] Zulley | The four-hour sleep wake cycle[END_REF] under 32 hours of constant bed rest protocol.

I. 4. 2. ENDOGENOUS PROPERTIES OF THE NAP

Together, these results have asserted that under isolated time-free environments, napping manifests a stable pattern of recurrence throughout the 24h, confirming, therefore, the existence of a biological endogenous predisposition to sleep in the early afternoon hours, in well-rested individuals, whether or not food is consumed. For note, the first studies investigating the nature of napping under a free-time environment and constant routine protocols are reviewed in the book of Stampi (1992a) Why We Nap: Evolution, Chronobiology, and Functions of Polyphasic and Ultrashort Sleep, in the sixth chapter by [START_REF] Campbell | The timing and structure of spontaneous naps[END_REF]. [START_REF] Zulley | Napping behavior during" spontaneous internal desynchronization": sleep remains in synchrony with body temperature[END_REF] studied the circadian course of CBT under a free-running environmental experiment in which the experimental protocol was not restricted to a single sleep episode. The results showed that major sleep episodes (subjectively, nocturnal sleep) occurred around the minimum phase of CBT, while other sleep episodes (subjective naps) occurred approximatively halfway between two successive temperature minima (Figure 19). Together these results showed that the recurrence of a daytime nap is closely related to the circadian rhythm of CBT. Besides, these results assert convincingly that napping is a behavioral expression of the endogenous biological rhythms of sleep and wakefulness.

I. 4. 2. 2. PHASE RELATIONSHIP WITH OUTPUTS OF THE CIRCADIAN CLOCK

I. 4. 2. 3. HOMEOSTATIC AND CIRCADIAN INFLUENCES ON SLEEP DURING THE

NAP

The timing and structure of sleep during the nap are determined by the same brain mechanisms and factors that regulate nocturnal sleep, which are based on circadian and homeostatic principles.

The interaction between the homeostatic and the circadian processes generates the appropriate timing and structure of sleep during the nap [START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF]. The temporal pattern of sleep is determined by the endogenous circadian process. By far, most of the scientific reports have asserted that there is a biological endogenous predisposition to napping in the early afternoon hours. As mentioned previously, sleep latency is the marker of the homeostatic and circadian processes on the sleep propensity parameter during the nap [START_REF] Deboer | Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?[END_REF]. For instance, sleep latency is shorter when the nap is scheduled during the sleep gate zone compared to a nap initiated during the wake maintenance zone. Furthermore, following sleep loss, the temporal pattern of the sleep propensity parameter remains unchanged, however, the duration of sleep latency is reduced compared to baseline conditions [START_REF] Lavie | Beyond circadian regulation: ultradian components of sleep-wake cycles[END_REF].

As well, the structure of sleep during the nap is regulated by the homeostatic and circadian processes. As previously reported, SWA activity represents the physiological marker of the sleep homeostasis and intensity parameter of the sleep process [START_REF] Gompf | NREM Sleep Regulation From Neuronal Assembly to Ion[END_REF].

Accordingly, the amount of SWA during a nap depends on the history of prior wakefulness. For instance, the waking period preceding the nap in normal sleep-wake conditions is shorter than following sleep loss conditions [START_REF] Dinges | Temporal placement of a nap for alertness: contributions of circadian phase and prior wakefulness[END_REF]. Consequently, the amount of SWA is greater when a nap is scheduled following sleep loss than a nap taken in normal sleep-waking conditions [START_REF] Deboer | Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?[END_REF]. Given the influence of the circadian and the homeostatic processes, the structure of sleep during a midday nap in normal sleep-wake patterns is distinct from a nap scheduled under sleep loss conditions (Dinges et al. 1987, Mantua and[START_REF] Mantua | Exploring the nap paradox: are mid-day sleep bouts a friend or foe?[END_REF].

I. 4. 3. THE EFFECTS OF NAPPING ON WAKING PERFORMANCES

Given the fact that daytime drowsiness and related deficit on performances reach a peak in the early afternoon hours (Monk et al. 1996, Carrier and[START_REF] Carrier | Circadian rhythms of performance: new trends[END_REF], a short nap scheduled at that time is considered as an effective strategy to overcome the drawbacks of post-lunch dip and to improve arousal and waking performances throughout the day. For instance, laboratory studies showed that a midday nap promotes evident improvements in performance across a variety of cognitive domains, such as memory and learning, psychomotor performance, and executive functions (for reviews, see Dinges 1992[START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF][START_REF] Ficca | Naps, cognition and performance[END_REF][START_REF] Faraut | Napping: a public health issue. From epidemiological to laboratory studies[END_REF][START_REF] Mantua | Exploring the nap paradox: are mid-day sleep bouts a friend or foe?[END_REF][START_REF] Staton | Many naps, one nap, none: A systematic review and meta-analysis of napping patterns in children 0-12 years[END_REF]. It was also reported that napping produces equivalent and often better effects on arousal and performance compared to other countermeasures frequently used such as caffeine and other stimulant medications [START_REF] Ficca | Naps, cognition and performance[END_REF]). Here it is important to mention that the benefits of a short midday nap on performance are modulated by many factors, including the amount of previous sleep and wakefulness, interindividual variability, and sleep environment (Takahashi 2003, Milner and[START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF].

I. 4. 3. 1. PRIOR SLEEP AND WAKEFULNESS

As outlined above, the circadian variations of arousal and waking performance are affected by the influence of the previous amount of sleep and waking (i.e. homeostatic sleep pressure) [START_REF] Deboer | Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?[END_REF]. Therefore, in an attempt to provide a more detailed analysis of the impacts of a midday nap on performance, we endeavor to highlight some issues that have often been neglected

in several studies but may be considered as fundamental in presenting an accurate account of napping in relation to performance. The first point we raised concerns the timing of the nap. In this work, we will mainly regard napping as a behavioral expression of the endogenous biological rhythms of sleep and wakefulness. Therefore, the term "midday nap" is meant to delineate a nap period that takes place in the early afternoon hours. The second point deals with the effects of a midday nap on performance as a function of the previous amount of wakefulness (i.e. homeostatic sleep pressure). The latter is proven to be a key factor modulating not only the structure of sleep during the nap but also on the dynamic change of performance during the day. Accordingly, we tried to distinguish between two different types of nap based on the previous amount of sleep and wakefulness. The first type is termed "energetic nap" and the second is "restorative nap".

I. 4. 3. 1. 1. THE ENERGETIC NAP

We introduced the term energetic nap to designate a short daytime sleep period that occurs in the early afternoon and following normal sleep-wake patterns. The role of the energetic nap is to increase arousal and many neurobehavioral outputs beyond baseline levels.

Together, the contemporary model of sleep-wake regulation posits that the mutual interaction between homeostatic and circadian processes, regulate changes in arousal levels and corresponding performance throughout the day: the level of arousal attained at a specific time of day depends on the difference between the homeostatic pressure for sleep and the circadian pressure for sleep and/or wakefulness [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]. That is, a short distance between the two processes indicates high arousal levels. Furthermore, the model entails that the functioning of the circadian clock depends on the status of sleep homeostasis. Broadly, the circadian amplitude of many neurobehavioral functions increased when sleep pressure is reduced, and the circadian amplitude is lowered when the level of sleep pressure is high. Moreover, these changes vary according to time of day [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF].

With regard to the contemporary model of sleep-wake regulation, the use of a midday nap would reduce the level of sleep homeostasis, and therefore, might increase the circadian amplitude of many neurobehavioral functions (Figure 20). Based on these observations, it could be said that the energetic nap enhances arousal levels and performance by increasing the afternoon and evening peaks in performance beyond baseline levels (Figure 20). The benefits of the energetic nap on cognitive performance have been asserted by studies that have applied modern neurophysiological techniques, such as event-related potentials (ERPs).

ERPs are the ideal tool for assessing changes in arousal and attention following the nap. Brain potentials are recorded following the presentation of stimuli. The event-related P300 amplitude represents the amount of allocation attention, and the P300 latency represents the time spent on the evaluation of the stimulus [START_REF] Milner | Habitual napping moderates motor performance improvements following a short daytime nap[END_REF]. For example, [START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF] tested the effects of a 20-min nap on arousal and cognitive performance. Their results showed that the energetic nap increased the P300 amplitude and decreased P300 latency during the auditory oddball task. These results indicated that the amount of allocated attention was higher and the accuracy in the information processing speed was greater after the nap compared to the baseline condition (no-nap). Furthermore, [START_REF] Takahashi | Brief naps during post-lunch rest: effects on alertness, performance, and autonomic balance[END_REF] showed that a 15-min midday nap improved subjective alertness, decreased P300 latency, and improved cognitive performance during an English transcription task.

On the other hand, other studies have reported that the energetic nap did not affect the performance on several aspects of physical outcomes, such as aerobic performances [START_REF] Blanchfield | The influence of an afternoon nap on the endurance performance of trained runners[END_REF], anaerobic performances [START_REF] Petit | A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions[END_REF][START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF], muscular strength, and jump velocity [START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF]). Together, these results further suggest that the beneficial effects of an energetic nap on a particular task performance depends on its sensitivity to sleep pressure.

I. 4. 3. 1. 2. THE RESTORATIVE NAP

The second type is termed the 'restorative nap', also called the "replacement nap". It is used to designate a midday nap that is taken following sleep loss. The role of the restorative nap is to restore or/and to attenuate the decrements in performance caused by high levels of sleep pressure [START_REF] Broughton | Sleep and alertness: chronobiological, behavioral, and medical aspects of napping[END_REF][START_REF] Dinges | Napping patterns and effects in human adults[END_REF]).

As previously mentioned, the circadian variations of arousal and waking performances are affected by the influence of the previous amount of wakefulness [START_REF] Deboer | Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?[END_REF]. Besides, according to the two-process model of sleep regulation, the homeostatic factor will seek to redress the balance between the accumulated levels of sleep pressure caused by extended wakefulness on subsequent sleep by either deepening the structure of sleep, or extending its duration, or both (Borbély 1982[START_REF] Achermann | Sleep in a sitting position: effect of triazolam on sleep stages and EEG power spectra[END_REF]. Given the influence of the homeostatic process on the structure and the duration of subsequent sleep, it is therefore expected that the structure of sleep of the restorative nap is distinct from the energetic nap. Furthermore, under conditions of prolonged wakefulness, high levels of sleep pressure would affect the functioning of the circadian clock by reducing the amplitude of the circadian curve of arousal and many neurobehavioral functions. Based on these lines, one may conclude that the administration of a restorative nap will redress the imbalance induced by extended wakefulness, and consequently, will restore the afternoon and evening circadian amplitude to attain baseline levels (Figure 21). There is well-documented evidence for the restorative effects of a midday nap on arousal and cognitive performance following extended wakefulness (DMSc and DMSc 2000, [START_REF] Tietzel | The short-term benefits of brief and long naps following nocturnal sleep restriction[END_REF][START_REF] Dickman | Dimensions of arousal: Wakefulness and vigor[END_REF][START_REF] Brooks | A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative?[END_REF][START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF]). In addition to cognitive recovery, laboratory studies have provided encouraging results concerning the benefits of a recuperative nap on different physical performances under conditions of sleep loss. For example, [START_REF] Blanchfield | The influence of an afternoon nap on the endurance performance of trained runners[END_REF] found that the nap restored aerobic performance for runners who had a poor sleep-wake pattern. Furthermore, [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF] showed that a short nap restored the performance during a repeated sprint task. Besides, [START_REF] Hammouda | Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint[END_REF]) investigated the effects of different nap durations (i.e. 20-, 90-min) after a partial sleep deprivation on the runningbased anaerobic sprint test (RAST). Their results showed that both naps' opportunities restored all indicators of RAST performance, with a better gain observed after the 90-min nap.

I. 4. 3. 2. THE INTERINDIVIDUAL VARIABILITY IN NAPPING BEHAVIOR

Considering the fact that napping is not a homogenous habit, the preferences toward napping differ widely among persons and so do the benefits gained from them [START_REF] Evans | Appetitive and replacement naps: EEG and behavior[END_REF][START_REF] Faraut | Napping: a public health issue. From epidemiological to laboratory studies[END_REF]. For instance, for certain individuals, a midday nap is considered a part of their regular sleep-wake pattern and a daily habit that is not necessarily caused by sleep loss. In literature, this type of individuals is referred as "appetitive nappers". For others, napping is mainly used in response to sleep loss (i.e restorative nappers or replacement nappers) or before an expected sleep loss (i.e. prophylactic nappers). However, for some people, napping is avoided because of the unpleasant mental and physical after effects that could result from it, such as impaired cognitive and sensory-motor performances after waking from the nap [START_REF] Evans | Appetitive and replacement naps: EEG and behavior[END_REF][START_REF] Broughton | Sleep and alertness: chronobiological, behavioral, and medical aspects of napping[END_REF], Dinges 1992). In this context, [START_REF] Johnston | Self-reported nap behavior and polysomnography at home in midlife women with and without insomnia[END_REF] investigated the difference in nocturnal sleep between habitual nappers and non-nappers, intending to prove that regular napping behavior is not necessarily caused by sleep loss. Accordingly, the results showed no differences in the nocturnal sleep quantity between groups. In addition, other scholars added evidence to the fact that napping is not necessarily provoked by sleep loss [START_REF] Pilcher | The prevalence of daytime napping and its relationship to nighttime sleep[END_REF][START_REF] Campbell | Effects of a nap on nighttime sleep and waking function in older subjects[END_REF][START_REF] Mcdevitt | The effect of nap frequency on daytime sleep architecture[END_REF].

Many studies are interested in investigating the distinct characteristics among individuals to prove that regular nappers are those who are "predisposed to be good daytime nappers" [START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF], and who are more likely to benefit from napping than non-nappers [START_REF] Evans | Appetitive and replacement naps: EEG and behavior[END_REF][START_REF] Taub | Effects of habitual variations in napping on psychomotor performance, memory and subjective states[END_REF][START_REF] Milner | Habitual napping moderates motor performance improvements following a short daytime nap[END_REF]. For instance, [START_REF] Evans | Appetitive and replacement naps: EEG and behavior[END_REF] attempted to classify habitual nappers and non-nappers according to the subjective experience resulting from the nap. Their results demonstrated that, contrarily to habitual nappers who were pleased with the nap, nonnappers reported that naps produced unpleasant after-effects. Additionally, it was pointed out that habitual nappers are more sensitive in response to sleep pressure during the day than non-nappers [START_REF] Johnston | Self-reported nap behavior and polysomnography at home in midlife women with and without insomnia[END_REF][START_REF] Mcdevitt | The effect of nap frequency on daytime sleep architecture[END_REF]. For exemple, [START_REF] Mcdevitt | The effect of nap frequency on daytime sleep architecture[END_REF] investigated the relationship between the frequency of naps taken weekly and the level of subjective drowsiness during the day. Their results showed that the more frequent the nap was taken, the higher the levels of trait and state of drowsiness throughout the day became.

Furthermore, there is evidence showing differences in the structure of sleep during the nap and its effects on performance between habitual nappers and non-nappers. [START_REF] Evans | Appetitive and replacement naps: EEG and behavior[END_REF] demonstrated that sleep latency was shorter for napper compared to non-nappers. Moreover, habitual nappers' sleep during the nap was mainly composed of lighter sleep stages and least SWA, and more stage shifting during the nap. However, non-habitual nappers had a deeper and more consolidated sleep. Importantly, these results were further confirmed by many other studies [START_REF] Milner | Habitual napping moderates motor performance improvements following a short daytime nap[END_REF][START_REF] Mcdevitt | The effect of nap frequency on daytime sleep architecture[END_REF].

I. 4. 3. 3. SLEEP ENVIRONMENT

Inspired by the concept of "power breakfast", James Maas introduced the term "power nap" to encourage the use of naps in the workplace with the aim to counteract the negative impacts of sleep-related incidents and accidents and to improve performance and productivity at work [START_REF] Maas | Power sleep: The revolutionary program that prepares your mind for peak performance[END_REF]). Because drowsiness is considered a major contributing factor to the increasing number of road traffic accidents, one of the most often recommended countermeasures to prevent drowsiness at the wheel is napping (Horne andReyner 1996a, Sagaspe et al. 2007). Nevertheless, before advocating for the use of the nap in the workplace or at the wheel, the problem related to the physical environment of sleep during the nap should be addressed. It is a major issue that has received little interest in literature.

In this context, it is well known that a noisy sleep environment affects the quality of sleep by causing frequent awakenings or shifts to lighter sleep stages [START_REF] Kawada | Noise and health-Sleep disturbance in adults[END_REF][START_REF] Halperin | Environmental noise and sleep disturbances: A threat to health?[END_REF].

Besides, exposure to a high level of brightness reduces ones' capacity to initiate sleep [START_REF] Blume | Effects of light on human circadian rhythms, sleep and mood[END_REF]. Furthermore, former researches have underlined the disturbing effects induced by a sitting sleep position on objective and subjective sleep quality compared with lying in a bed [START_REF] Nicholson | Influence of back angle on the quality of sleep in seats[END_REF]Stone 1987, Aeschbach et al. 1994). Despite these relevant evidences on the effects of the sleep environment on the quality of sleep, employees and drivers take their naps on their chairs and in non-suitable sleep environments filled with light and noise (Angardi 2020).

In the last twenty years, technological innovation has led to an evolution in design and production of ergonomic nap capsules often used in the workplace, hospitals, universities, airports, and public 

I. 2. PROJECT SUMMARY, OBJECTIVES, AND HYPOTHESES

Circadian rhythms of sleep and wakefulness are tightly interrelated behaviors regulated by complex systems of neural networks and neurotransmitters under the influences of the homeostatic and circadian processes [START_REF] Saper | Hypothalamic regulation of sleep and circadian rhythms[END_REF]. The homeostatic process (process S) builds up sleep pressure that progressively increases with the time spent awake and falls substantially during sleep (i.e. nocturnal sleep and daytime naps). The circadian process (process C) alternates between promoting pressure for sleep and/or wakefulness according to the time of day. During the waking period, the circadian pressure for wakefulness fluctuates non-linearly throughout the day, presenting periods of maximum pressure for wakefulness and periods of high pressure for sleep (Mistlberger 2005, Van Dongen and[START_REF] Van Dongen | Sleep, circadian rhythms, and psychomotor vigilance[END_REF]. The interaction between the homeostatic and the circadian processes determines the timing and the structure of subsequent sleep (i.e. nocturnal sleep and daytime nap) and modulates the dynamic changes in arousal levels and performance during the day [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF].

Arousal is a physiological concept used to describe the activation states of the cerebral cortex underlying the sleep-wake dimension [START_REF] Langner | Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention[END_REF]. Furthermore, it is considered as a basic precondition and a principal modulator of any given physiological and behavioral parameter [START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF][START_REF] Fischer | Arousal and attention: self-chosen stimulation optimizes cortical excitability and minimizes compensatory effort[END_REF]. Importantly, changes in performance outcomes (i.e.

improvement or decrement) represent a good marker for examining the level of arousal during the waking period [START_REF] Sander | Assessment of wakefulness and brain arousal regulation in psychiatric research[END_REF]. When the homeostatic and the circadian processes work in opposition during the day, the difference between the homeostatic pressure for sleep and the circadian pressure for sleep and/or wakefulness determines the level of arousal reached while awake (Achermann and Borbély 1994). Accordingly, a short distance between S and C indicates high arousal and performance levels. Conversely, a large gap between the two processes indicates low arousal and performance levels (Borbély 1982[START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]. Importantly, in the classical two-process model, process S did not influence the functioning of process C. However, in the contemporary two-process model, the homeostatic and circadian processes are subjects to more complex and continuous interactions [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]. In this updated version, Borbély posited that the functioning of the circadian process depends on the history of prior wakefulness and sleep, that is, the amplitude of process C decreases when the level of process S is high, but increases when the level of process S is reduced.

Given that the circadian pressure for arousal reaches its nadir in the afternoon (i.e. post-lunch phase), the use of a short midday nap was proved effective in counteracting the drawbacks of the post-lunch phase. As well, it promotes significant improvements in cognitive and physical performances throughout the day (Milner andCote 2009, Mantua and[START_REF] Mantua | Exploring the nap paradox: are mid-day sleep bouts a friend or foe?[END_REF] Nevertheless, the potential benefits of a short midday nap on performances are modulated by several factors, including the previous amount of sleep and wakefulness, interindividual variability, performance measures [START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF], and the environment of sleep during the nap [START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF].

From a theoretical perspective, the core of this research project embeds the understanding of the reciprocal interaction between the homeostatic and the circadian processes under the influence of a short midday nap according to the history of prior wakefulness and sleep (i.e. normal sleep and partial sleep deprivation). In an attempt to provide a more precise groundwork, we differentiate between two different types of naps on the basis of previous amount of sleep and wakefulness (i.e. the intensity level of sleep pressure). We introduced the term energetic nap to designate a short midday nap taken after a normal night of nocturnal sleep, and we used the term restorative nap to designate a short midday nap taken under sleep loss.

Therefore, the objective of the present work is to investigate the impacts of energetic and restorative naps on the subjective levels of arousal and aspects of cognitive and physical performances in the afternoon in healthy habitual nappers. In order to meet our objective, three experimental studies were implemented:

The first study aimed to assess the impacts of a 25-min midday nap on subjective ratings of anxiety, arousal, and fatigue, sustained attention, and muscular power in the afternoon after a normal night of sleep in healthy habitual nappers. The first objective was to examine the structure of the nap in different sleep environments and its impacts on cognitive and physical performances. With regards to the contemporary two-process model, we start with the hypothesis that when the normal amount of nocturnal sleep is preserved, the use of the energetic nap will reduce the level of process S, which consequently would improve the performance beyond baseline levels. We also speculate that when the normal amount of nocturnal sleep is reduced, the increased level of the process S will reduce arousal and performance levels below baseline values. In this case, we expect that the restorative nap will redress the imbalance between S and C, and consequently, will restore the decrease in performance to the baseline levels. Finally, we expect that the abovementioned impacts of a short midday nap on cognitive and physical performances will be modulated by the environment of sleep during the nap, and we also suppose that the effects of napping on performance will vary depending on the characteristics of the performed task.

II. SECOND CHAPTER: EXPERIMENTS

II. 1. STUDY I: EFFECTS OF A SHORT MIDDAY NAP ON SUBJECTIVE AROUSAL, FATIGUE, AND SUSTAINED ATTENTION IN DIFFERENT NAP

ENVIRONMENTS.

II. 1. 1. INTRODUCTION

The attentional system modulates the brain activity to exert control over thoughts, feelings, and actions [START_REF] Visintin | Parsing the intrinsic networks underlying attention: a resting state study[END_REF]. Tonic inputs of the cortical cholinergic activity of the ascending arousal system (ARAS) constitute the neural correlate of the attentional system [START_REF] Sarter | The cognitive neuroscience of sustained attention: where top-down meets bottom-up[END_REF][START_REF] Helfrich | Neural mechanisms of sustained attention are rhythmic[END_REF]). The attentional system is involved in supporting the diverse aspects of performance including the perceptual, cognitive, and motor abilities that are essential for mastering everyday activities [START_REF] Parasuraman | The attentive brain[END_REF][START_REF] Fortenbaugh | Recent theoretical, neural, and clinical advances in sustained attention research[END_REF]. In particular, sustained attention refers to the ability to maintain a goal-directed behavior in the face of multiple competing distractors over time [START_REF] Parasuraman | The attentive brain[END_REF]. The ability to sustain information processing activity over an extended period is critical in many operational settings such as production inspections, military surveillance, air traffic control, medical monitoring, and driving performance [START_REF] Reinerman-Jones | Selection for vigilance assignments: A review and proposed new direction[END_REF]. In other respects, our ability to maintain sustained attention is not stable, instead, it fluctuates during the day [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF], Dinges 1992). For instance, the emergence of drowsiness (i.e. low arousal levels) which typically occurs during the early afternoon causes attentional decline (Horne andReyner 1996b, Garbarino et al. 2001). In certain circumstances, the attentional decline can negatively impact academic outcomes, work performance, and traffic safety [START_REF] Fortenbaugh | Recent theoretical, neural, and clinical advances in sustained attention research[END_REF][START_REF] Esterman | Models of sustained attention[END_REF].

The use of a short midday nap is an effective strategy to counteract the effects of the post-lunch dip and to improve daytime arousal and performance throughout the day [START_REF] Hayashi | The effects of a 20-min nap before post-lunch dip[END_REF][START_REF] Hayashi | The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity[END_REF][START_REF] Hayashi | Short daytime naps in a car seat to counteract daytime sleepiness: The effect of backrest angle[END_REF][START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF]. Most of the studies that have investigated the effects of napping on different aspects of cognitive performances have employed computerized reaction time performance tests. Particularly, in the present study, we sought to investigate the effects of a short midday nap on sustained attention based on tasks that simulate real-life situations such as a monotonous driving condition. The use of the driving simulator is appropriate because it requires the maintenance of attentional control over an extended period. Accordingly, in a monotonous driving task, the decline in attention is assessed by performance stability and by the increased number of incidents or errors over time [START_REF] Smith | Measures of variations in performance during a sustained attention task[END_REF]. To date, the beneficial effects of napping on sustained attention using a driving simulator have previously been confirmed on shift workers [START_REF] Centofanti | Do night naps impact driving performance and daytime recovery sleep?[END_REF] were not controlled, since the testing started at 11:00 and took place after the morning classes. In addition, the effects of the nap on performances were assessed 30-min after waking. Furthermore, no additional information about the duration of the reaction test was provided. Therefore, in the present work, we implemented the morning session to control the morning activities for all participants in the different experimental visits. In addition, we provided punctual and repetitive subjective testing sessions and continuous monitoring for sustained attention that started immediately after waking from the nap.

Given the importance of the environment of sleep during the nap. The startup SOMBOX has developed the first private nap rooms in France that are specifically designed to be implemented on highways to provide drivers and riders with the possibility to stop and to take a nap in suitable environmental conditions whenever they feel the need. The design and the degree of comfort and security provided in this small room are the markers of innovation and technology: the size of the nap room is about 2m2. The design of the nap room was carefully refined by a team of experts to fit not only the purpose of the room but also the theme. Among the many integrated instruments and equipment, we find a lighting system that includes several intensities of lights and colors (i.e. The protocol of this study was complied with the declaration of Helsinki for human experimentation, and was approved by the local Ethics. Ethical committee is registered under the following number: ID RCB n° 2018-A02253-52.

II. 1. 2. 2. PROCEDURES

The experimental design is detailed in Figure 23. Before the beginning of the experimental period, each participant attended one habituation session to be familiarized with the equipment and the experimental procedure. During the habituation session participants had electrodes attached on the scalp, and were required to experience a nap in the laboratory. During the experimental period,

participants were asked to maintain a regular sleep-wake schedule. The day prior to the experimental session, subjects were instructed to ingest the telemetric e-Celsius capsule with water followed by a light dinner to aid the transit into the gastrointestinal tract [START_REF] Byrne | The ingestible telemetric body core temperature sensor: a review of validity and exercise applications[END_REF]. As well, they were required to sleep for at least 8 hours per night. To make sure that the protocol was respected, nocturnal sleep for nights prior to the experiment were monitored by actigraphic recording and sleep diaries. During the main experimental session, participants were required to wake up at 07:00 ± 30, to get their usual breakfast at home, and to be in the laboratory at 9:00. First, they had electrode application, then at 10:00 they started the morning driving session. The driving task lasted for 104-min, and it consisted of a 52-min outgoing-trip, followed by a 52-min return-trip. A standardized lunch was served at 12:00. Thereafter, at 13:00

participants were assigned to have a 25-min nap opportunity, designed in a counterbalanced order in the following environmental conditions: bed, box, reclining-chair, and a control condition (i.e no-nap). All naps were conducted in a suitable environment and in a quiet room. A subjective questionnaire of sleep during the nap was administrated immediately upon waking. For the nonap condition, participants were not allowed to leave the laboratory, but they were free to choose activities like chatting or reading books. The post-nap driving session started at 13:30, alike the morning session it lasted for 104-min and was composed of the outgoing-trip, followed by the return-trip. Subjective measurements of anxiety, fatigue, alertness, and sleepiness were administrated for three occasions during the morning driving session in the following order: before the beginning of the outgoing-trip (TS 1), before the beginning of the return-trip (TS 2), and at the end of the return-trip (TS 3). Again, for the post-nap session subjective measurements were presented in the same order: before the beginning of the outgoing-trip (TS 4), before the beginning of the return-trip (TS 5), and at the end of the return-trip (TS 6). Power of the lower limb was assessed at three different occasions: the first testing session occurred before the beginning of the morning driving task (TS 1). The second takes place at the end of the morning driving task (TS 3). And finally, at the end the post-nap driving session (TS 6). The whole experimental project was strictly controlled by two experimenters. Throughout the experimental period, participants were requested to maintain their habitual physical activities, and their habitual sleep-wake schedule. For the 24-h prior to testing, they were instructed to avoid any strenuous activities, excessive alcoholic or caffeine beverage. The actogram representing the activity-rest cycle.

II. 1. 2. 3. 2. EXPLOSIVE LEG EXTENSOR POWER (ELEP)

ELEP was measured in watts per kilogram (W/kg) using the Nottingham Power Rig machine (Figure 25). The instrument consists of an adjustable seat, and a large footplate connected through a lever and a chain to a flywheel (Bassey and short. 1990). Seat position was adjusted during the first visit, in a way that the knee angle at the start of the push was 90° for every participant.

Subjects were seated with their pelvis supported at their back and with their arms folded. They were instructed to push the footplate as hard, and fast as possible. Leg extensor power of the right leg was recorded over 8 attempts, with at least 30s rest intervals between trials. For the analysis the best power output was recorded. Verbal encouragement was provided, but no feedback on performance was given. 

. 3. 3. CORE BODY TEMPERATURE (CBT)

Core body temperature was continuously monitored stored in 30-s intervals using the e-Celsius telemetric ingestible capsule (BodyCap ®, Caen, France), and a wireless data receiver system (eviewer BodyCap ®, Caen, France), (Figure 26). The communication distance between the capsule and the receiver system can range from 1 to 3m. Nevertheless, the capsule has also its own memory, in case of a communication deficits between the capsule and the receiver, data can be re-synchronized with the receiver once the connection was established. The lifetime of the capsule inside the body ends naturally, and it depends on the transit time. Finally, the data collected can be displayed and stored on the laptop via a USB cable. The e-Celsius ® pill is 17.6 mm long, 8.6 mm in diameter, and 1.2g in weight, with accuracy or 0.2 °C and a temperature range of 29-45°C. 

II. 1. 2. 3. 4. SUBJECTIVE MEASUREMENTS

Subjective level of sleepiness was assessed via the Karolinska Sleepiness Scale (KSS) [START_REF] Åkerstedt | Subjective and objective sleepiness in the active individual[END_REF], (Annex A.4). The KSS measures the subjective level of sleepiness at a particular time during the day. In this scale, subjects were instructed to indicate which level reflects the best their arousal sate during the last 10-min. This scale is a 9-point scale (1= extremely alert, and 9= very sleepy, great efforts to keep awake, fighting sleep).

Subjective measures of anxiety, fatigue, and alertness were assessed using the Visual Analog Scale (VAS). The VAS consisted of 100-mm long horizontal line with two endpoints to express extreme feeling. The participants were instructed to cross on a straight line at the point that most expresses their level of agreement. The VAS we used had three lines to assess the levels of anxiety, fatigue, and alertness. The end points were designated as "very calm" and "very anxious", "very tired" and "in a good physical form", and "very sleepy" and "very alert" respectively (Figure 27). Subjective questionnaire of sleep during the nap was administrated immediately upon waking.

Subjects were requested to answer some questions related to their estimated nap time (minutes), estimated sleep latency (minutes), nap depth (1, light to 5, deep), and their satisfaction with the nap (1, poor to 4, good) [START_REF] Hayashi | Recuperative power of a short daytime nap with or without stage 2 sleep[END_REF].

II. 1. 2. 3. 5. SLEEP VARIABLES DURING THE NAP

Electroencephalogram (EEG) was recorded from 9 scalp sites (FZ, FP1, FP2, C3, C4, T3, T4, referenced to linked mastoids A2 and A1) according to the international system 10-20 [START_REF] Jasper | The ten-twenty electrode system of the International Federation[END_REF]. Recording was performed with a portable polysomnography (Dream Medatec ®, Belgium), and the data was collected using the BrainNet software system (Figure 28). Figure 28. On the left: international system 10-20 system for electrode application. On the right:

the portable polysomnography Dream Medatec device.

II. 1. 2. 3. 6. DRIVING SIMULATOR

The driving task was performed using VIGISIM driving simulator [START_REF] Davenne | Reliability of simulator driving tool for evaluation of sleepiness, fatigue and driving performance[END_REF]. It is composed of a computer and a video game steering wheel (Logitech Momo Racing). The roadway illustrated in the simulation was a virtual daytime reconstruction of a real highway road (A62 between Agen and Langon, France), but, with no traffic. The car's speed was fixed by the experimenter to 130km/h. In order to obtain a scenario of driving close to real-road environment, the topographic layout included lane widths, road marking, and landscapes. Besides, the roadway included imperceptible and smooth deviations to keep continuous attentional tracking and correction of the vehicle position. Participants were instructed to maintain a stable pathway, and drive in the center of the right travel lane, and not to cross the painted lines separating the lane (Figure 29). The simulated road-trip lasted for 104-min, and it consisted of a 52-min outgoing trip, followed by a 52-min return trip. Sustained attention was objectively measured by analyzing the following parameters:

Standard Deviation of the Lateral Position (SDLP). SDLP is defined as the location of the vehicle's longitudinal axis relative to a longitudinal road reference system [START_REF] Porter | Evaluation of effects of centerline rumble strips on lateral vehicle placement and speed[END_REF]. In this study, the longitudinal road reference system represents the virtual center line of the travel lane (Figure 29). SDLP was continuously monitored and stored in 1s interval.

Number of Inappropriate Line Crossing (NILC). NILC was counted every time the car crossed

any of the roadway edge lines (Figure 29). 

II. 1. 3. STATISTICAL ANALYSIS

Multifactorial non-parametric analysis of variance for repeated measures was applied for variables [START_REF] Noguchi | nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments[END_REF] as the data showed disparities from both the normality assumption and the homoscedasticity and sphericity. The methods used were implemented in the R package nparLD [START_REF] Noguchi | nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments[END_REF]. This non-parametric analysis technique is the most appropriate to the present data with repeated measures in factorial experiments and served for examining effects and possible interactions between the longitudinal factor (time) and the repeated factor for the following four nap conditions (bed, box, reclining chair, and the no-nap condition). This analysis was performed for analyzing the following variables: SDLP, NILC, CBT. The data related to the driving performance measure (SDLP and NILC) was sampled on 10-min intervals during a 104min drive which made them 11-time blocks. CBT data may be biased by food and fluid intake [START_REF] Roxane | Gastrointestinal thermal homogeneity and effect of cold water ingestion[END_REF]. Therefore, before the analysis the temperature values that are < 36 °C were replaced by the first value ≥ 36 °C derived from a backward propagation. Then, raw data of CBT was normalized to start at 0. For the analysis, the data related to CBT during the nap was averaged on 150 seconds which made them 11-time blocks. The data of CBT during the driving task was sampled on 10-min intervals during a 104-min drive which made them 11-time blocks. All the above-mentioned parameters utilized repeated measures with 4 (nap conditions) × 11 blocks (time on task). The subjective measures utilized 4 (nap conditions) × 3 (time sessions: before the outgoing-trip, before return-trip, and at the end of the return-trip). The ELEP utilized 4 (nap conditions) × 3 (time sessions). We fitted a full model for the "ld.f2" design for these data. A oneway repeated measure "ld.f1" was conducted to compare the following parameters: the nocturnal sleep variables for the nights before the different experimental visits, objective sleep variables during the nap, subjective sleep variables during the nap. If a significant effect was indicated by the ANOVA statistic, we proceeded to the second step with post-hoc testing using Wilcoxon tests.

The p-values of the post hoc testing were adjusted by the FDR method to account for multiple comparisons. The level of statistical significance was set at (p<0.05). 

II. 1. 4. RESULTS

II

II. 1. 4. 1. 2. EXPLOSIVE LEG EXTENSOR POWER (ELEP)

The results showed non-significant differences for nap conditions (df= 2.47; p>0.05), for time on driving (df= 1; p>0.05), and for interactions (df= 2.24; p>0.05). Mean and standard deviation values for ELEP during TS 1 and TS 3 are presented in Figure 30, and summarized in Annex B.1. 

II. 1. 4. 1. 3. 1. KAROLINSKA SLEEPINESS SCALE

The results showed non-significant differences for nap conditions (df= 2.76; p>0.05), significant differences for time on driving (df=1.87; p<0.001), and non-significant interactions (df= 4.87; p>0.05), (Figure 31). These results indicated that the subjective rating of sleepiness increased over the time of driving, with significantly higher values for TS 3 and TS 2 compared to TS 1 (p<0.05). 

II. 1. 4. 1. 3. 2. ANXIETY

The results showed non-significant differences for nap conditions (df= 2.69; p>0.05), significant differences for time on driving (df=1.79; p<0.001), and non-significant interactions (df= 3.96; p>0.05), (Figure 32). These results indicated that the self-reported rate of anxiety increased over time on driving, with significantly higher scores for TS 3 compared to TS1 (p<0.05). 

II. 1. 4. 1. 3. 3. FATIGUE

The results indicated non-significant differences for nap conditions (df=2.83; p>0.05), significant differences for time on driving (df= 1.43; p<0.001), and non-significant interactions (df= 4.58; p>0.05), (Figure 33). These results indicated that the perceived level of fatigue increased over the course of driving, with higher scores for TS1 compared to TS 2 (p<0.05), and compared to TS 3 (p<0.05).

Figure 33.

Mean ± SD values for the subjective rating of fatigue during driving. TS1: before the beginning of the outgoing-trip; TS2: before the beginning of the return-trip TS3: at the end of the return-trip. * Significant difference for TS1 compared to TS2 (p<0.05); * significant difference for TS1 compared to TS 3 (p<0.05).

II. 1. 4. 1. 3. 4. ALERTNESS

The analysis showed non-significant differences for nap conditions (df=2.67; p>0.05), significant differences for time on driving (df=1.78; p<0.001) and non-significant interactions (df= 4.79; p>0.05), (Figure 34). These results indicated that self-reported feeling of alertness decreased over the course of driving, with higher scores for TS1 compared to TS2 (p<0.05), and TS 3 (p<0.05). 

II. 1. 4. 1. 4. 1. STANDARD DEVIATION OF THE LATERAL POSITION

The results showed non-significant differences for nap conditions (df=2.585; p>0.05), significant differences for time on driving (df= 3.964; p<0.001), and non-significant interactions (df= 11.529; p>0.05), (Figure 35). These results indicated that the SDLP increased over the time on driving. 

II. 1. 4. 1. 4. 2. NUMBER OF INAPPROPRIATE LINE CROSSING

The results showed non-significant differences for nap conditions (df=2.832; p>0.05), significant differences for time on driving (df= 6.648; p<0.001), and non-significant interactions (df= 13.625; p>0.05), (Figure 36). These results indicated that NILC increased with the increasing time on driving. 3. The results showed significant differences of TST for nap conditions (p<0.001). The post-hoc analysis indicated that the duration of TST was longer in bed (p<0.001), and in reclining chair (p<0.05) conditions than in box condition. However, no significant differences were observed for the bed compared to the reclining chair (p>0.05) conditions. Similar results were found for SE, with significant differences for nap conditions (p<0.001). The post-hoc analysis indicated that SE in bed (p<0.001), and in reclining chair (p<0.05), were greater than in box condition. However, no significant differences were observed for SE in bed compared to reclining chair (p>0.05) conditions. Moreover, no significant differences for nap conditions were observed for TTB, SL, and WASO (p>0.05).

Regarding the sleep stages, the results indicated significant differences for conditions for the duration of sleep stage 2 (p<0.05). The post-hoc analysis showed a strong tendency for a longer duration of sleep stage 2 in bed than in box conditions (p=0.056). Besides, the results showed no significant differences for sleep stage 2 in reclining chair compared to bed and box conditions (p>0.05). Furthermore, the results showed a tendency for conditions for the duration of sleep stage 3 (p=0.059). Moreover, the results indicated no significant differences for conditions regarding sleep stage 1 (p>0.05). 

II. 1. 4. 2. 2. SUBJECTIVE MEASUREMENTS OF SLEEP VARIABLES DURING THE

NAP

Mean and standard deviation values for subjective sleep variables are presented in Table 4. The results showed significant differences for conditions in the duration of TST (p<0.05). The post hoc-analysis indicated that the perceived TST was longer in box than in reclining chair (p<0.01).

However, no significant differences for TST were observed in bed compared to box and reclining chair conditions (p>0.05). Moreover, the results indicated significant differences for the selfreported satisfaction with the nap (p<0.001). The post-hoc analysis indicated that the satisfaction with the nap was greater in bed and box conditions than in reclining chair condition (p<0.01).

However, no significant differences for nap conditions were observed for SL and for the perceived sleep depth (p>0.05). 37. The results showed non-significant differences for conditions (df=2.585; p>0.05), significant differences for time (df= 2.258; p<0.001), and significant interactions (df= 7.20; p<0.001). The post-hoc analysis indicated the following:

Compared to the no-nap condition, the results showed a strong tendency during the 7 th block for higher differences of CBT for the bed and the box conditions compared to values of the no-nap condition (p=0.052). Moreover, during the 8 th block, the results indicated a significantly higher differences of CBT for the bed and the box conditions compared to the no-nap, and these results lasted until the 11 th block (p<0.05). However, no significant differences were observed for the reclining chair compared to no-nap.

Between nap conditions, the results indicated a significantly higher difference of CBT during the 7 th and 8 th blocks for the box compared to values of the reclining chair (p<0.05), with a tendency observed during the 9 th block (p=0.06). Again, during the 10 th and 11 th blocks higher differences of CBT were observed for the box compared to the reclining chair condition (p<0.05). However, there were no significant differences for the bed compared to the box and the reclining chair conditions. 

EXPLOSIVE LEG EXTENSOR POWER (ELEP)

Mean and SD values for ELEP are presented in Annex B.1. The results showed non-significant differences for nap conditions during TS 6 (df= 2.75; p>0.05).

II. 1. 4. 3. 2. VARIATIONS OF CORE BODY TEMPERATURE DURING THE DRIVING

TASK

Mean and SD values for variation of CBT are presented in Annex B.5 and the results are schematized in Figure 38. The results demonstrated non-significant differences for conditions (df=2.725; p>0.05), significant differences for time on driving (df= 2.304; p<0.001), and significant interactions (df= 8.518; p<0.001). The post-hoc analysis indicated the following:

Compared to the no-nap condition, the results indicated a significantly higher difference of CBT for the bed condition during the 5 th block (p<0.05), and a strong tendency observed during the 6 th block (p=0.057). Again, during the 9 th block, the variations of CBT was higher in bed than in no-nap condition, with a tendency observed during the 10 th (p=0.071), and the 11 th blocks (p=0.06) respectively. Regarding the variations of CBT in box condition, the results indicated a strong tendency during the 6 th block (p=0.057), and a significant difference during 9 th and the 11 th blocks (p<0.05). Again, a tendency observed during the 10 th block (p=0.071). Concerning the variations of CBT in the reclining chair, the results showed significantly higher differences of CBT during the 5 th block (p<0.05), and a strong tendency during the 6 th block (p=0.057). Again, during the 10 th and the 11 th blocks, the results showed a tendency for higher CBT in the reclining chair compared to the no-nap condition (p=0.07), (p=0.06) respectively.

Between nap conditions, the results showed non-significant differences for variations of CBT between nap conditions during the driving test. *significant differences compared to bed compared to the no-nap condition. + significant difference for the box compared to the no-nap condition (p<0.05). ⍺ a significant difference for the reclining chair compared to the no-nap condition (p<0.05).

II. 1. 4. 3. 3. SUBJECTIVE MEASUREMENTS

Mean and standard deviation values for subjective measurements of sleepiness (KSS), anxiety, fatigue and alertness (VAS) obtained during the post-nap session are provided in Annex B. 6.

II. 1. 4. 3. 3. 1. KAROLINSKA SLEEPINESS SCALE

The results showed significant differences for nap conditions (df=2.800; p<0.001), nonsignificant differences for time on driving (df=1.470; p>0.05), and significant interactions (df= 4.994; p<0.001). (Figure 39). The post hoc analysis indicated the following:

Compared to the no-nap condition, the results demonstrated that during TS 4 non-significant differences for the subjective rating of sleepiness in all conditions. In addition, during TS 5 the subjective rating of sleepiness was higher in the no-nap condition than in bed (p<0.001), box (p<0.01) and reclining chair (p<0.001) conditions. The same results were found during TS 6 for the bed (p<0.01), box (p<0.001), and reclining chair (p<0.01) conditions.

Between nap conditions, the results indicated that during TS 4 the subjective rating of sleepiness was higher in the reclining chair than in the box condition (p<0.05). No other significant differences between nap all nap conditions were observed. 

II. 1. 4. 3. 3. 2. ANXIETY

The results showed non-significant differences for nap conditions (df=2.511; p>0.05), nonsignificant differences for time on driving (df=1.268; p>0.05), or interactions (4.801; p>0.05), (Figure 40). 

II. 1. 4. 3. 3. 3. FATIGUE

The results showed significant differences for nap conditions (df=2.675; p<0.001), nonsignificant differences for time on driving (df= 4.575; p>0.05), and significant interactions (df= 4.791 p<0.001), (Figure 41). The post hoc analysis indicated the following:

Compared to no-nap condition, the results demonstrated that during TS 4 no significant differences for the subjective rating of fatigue for conditions. Moreover, during TS 5 the results

showed that the scores for the subjective rating of fatigue were lower in no-nap condition than in bed (p<0.001), box (p<0.001) and reclining chair (p<0.001) conditions. During TS 6, a strong tendency was observed for the bed, (p=0.053), and significant differences for the box (p<0.01), and the reclining chair (p<0.05) conditions.

Between nap conditions, no significant differences between all nap conditions were observed. 

II. 1. 4. 3. 3. 4. ALERTNESS

The results showed significant differences for nap conditions (df=2.9136; p<0.001), nonsignificant differences for time on driving (df=1.770; p>0.05), and significant interactions (df= 5.042; p<0.001), (Figure 42). The post-hoc analysis indicated the following:

Compared to the no-nap condition, the results demonstrated that during TS 4 no significant differences for the subjective rating alertness were observed in all conditions. In addition, during TS 5 the results showed that the scores in the self-reported level of alertness were lower in nonap condition than in bed, box, and reclining chair conditions (p<0.01). Likewise, during the TS 6 the self-reported level of alertness was lower for the no-nap condition compared to bed, box, and reclining chair conditions (p<0.05).

Between nap conditions, the results showed that there was a strong tendency for the subjective rating of alertness to be lower in the box compared to the bed (p=0.059). No other significant differences between all nap conditions were observed. * significant difference at TS 5 for bed, box, and reclining chair conditions compared to the no-nap (p<0.05). * significant difference at TS 6 for bed, box, and reclining chair conditions compared to the no-nap (p<0.05).

II. 1. 4. 3. 4. DRIVING SIMULATOR

II. 1. 4. 3. 4. 1. STANDARD DEVIATION OF THE LATERAL POSITION

Mean and standard deviation values of SDLP are displayed in Annex B.7. The results showed significant differences for nap conditions (df= 2.723; p<0.001), significant differences for time on driving (df= 4.047; p<0.001), and significant interactions (df= 11.986; p<0.001), (Figure .43)

The post-hoc analysis indicated the following:

Compared to the no-nap condition, during the 1 st block of driving the results showed nonsignificant differences between all conditions. From the 2 nd block of driving the results showed that SDLP was significantly lower in bed than in no-nap condition until the 11 th block of driving (p<0.05). Regarding the box condition, the results showed that SDLP was lower than the no-nap condition from the 2 nd block until the 6 th block of driving (p<0.05), and during the 11 th block of driving (p<0.05). For the reclining chair condition, the results indicated a significantly lower SDLP from the 2 nd block until the 5 th block of driving (p<0.05), and with a tendency observed during the 6 th block (p=0.06), and during the 11 th block (p=0.06) of driving.

Between nap conditions, compared to the bed, the results indicated a significantly higher SDLP values for the box for 6 blocks of driving (p<0.05), and for the reclining chair for 7 blocks of driving (p<0.05). In addition, no significant differences were observed between the box and the reclining chair conditions. 

II. 1. 4. 3. 4. 2. NUMBER OF INAPPROPRIATE LINE CROSSING

Mean and standard deviation values of NILC are presented in Annex B.8. The results showed significant differences for nap conditions (df= 2.856; p<0.001), significant differences for time on driving (df= 5.175; p<0.001), and significant interactions (df= 13.514; p>0.001). (Figure .44).

The post-hoc analysis indicated the following:

Compared to no-nap condition, during the 1 st block of driving the results showed nonsignificant differences between all conditions. Furthermore, the results showed that NILC was significantly lower in bed than in no-nap condition from the 2 nd block of driving until 6 th block (p<0.05), and tendency observed during the 7 th block (p=0.06). Again, a significantly lower NILC was observed during the 8 th block of driving (p<0.05). Concerning the box condition, the results showed a significantly lower NILC form the 3 rd block until the 5 th block of driving (p<0.05).

Similarly, in the reclining chair condition the results indicated a significantly lower NILC than the no-nap condition form the 3 rd block until the 5 th block of driving.

Between nap conditions, compared to the bed condition, the results demonstrated a tendency for higher NILC during the 7 th block compared to the reclining chair (p=0.06). Besides, no significant differences between the bed and the box were observed (p>0.05). Compared to the box, the results showed a significantly higher NILC during the 3 rd block of driving compared to the reclining chair. The results for the no-nap condition showed significant differences for time of day (df= 1; p<0.001), significant differences for time of driving (df= 4.936; p<0.001), and significant interactions (df= 4.776; p<0.05). The post-hoc analysis indicated that the SDLP was significantly lower in the morning for 10 blocks of driving compared to the afternoon driving session (p<0.05).

The results for the bed condition indicated non-significant differences for time of day (df= 1; p>0.05), significant differences for time of driving (df= 4.253; p<0.001), and significant interactions (df= 3.804; p>0.05). The post-hoc analysis showed that SDLP was significantly higher in the morning session during the 4 th (p<0.05), and the 5 th (p<0.001) blocks of driving compared to the post-nap session.

The results for the box condition showed non-significant differences for time of day (df= 1; p>0.05), significant differences for time of driving (df= 4.351; p<0.001), and significant interactions (df= 5.564; p>0.05). The post-hoc analysis showed no significant differences for SDLP between the morning and the post-nap sessions.

The results for the reclining chair condition demonstrated non-significant differences for time of day (df= 1; p>0.05), significant differences for time driving (df= 6.44; p<0.001), and nonsignificant interactions (df= 5.564; p>0.05). These results indicated that SDLP increased with the time on driving. * significant difference for the morning compared to the post-nap session (p<0.05).

II. 1. 4. 3. 7. NUMBER OF INAPPROPRIATE LINE CROSSING

Mean and SD values of NILC during the morning and the post-nap driving sessions are presented in Figure 47.

The results for no-nap condition showed significant differences for time of day (df= 1; p>0.001), significant differences for time of driving (df= 6.02; p<0.001), and non-significant interactions (df= 6.3708; p>0.05). These results indicated that during the morning driving session the NILC was lower compared to the afternoon driving session. Besides, the NILC increased over the time of driving.

The results for the bed condition indicated non-significant differences for time of day (df= 1; p=0.053), significant differences for time of driving (df= 4.253; p<0.001), and non-significant interactions (df= 3.804; p>0.05). These results demonstrated that the NILC increased over the time of driving.

The results for the box condition showed non-significant differences for time of day (df= 1; p>0.05), significant differences for time of driving (df= 6.12; p<0.001), and non-significant interactions (df= 5.564; p>0.05). These results indicated that the NILC increased over the time of driving.

The results for the reclining chair condition showed non-significant differences for time of day (df= 1; p>0.05), significant differences for time of driving (df= 6.14; p<0.001), and significant interactions (df= 6.211; p>0.05). These results indicated that the NILC increased over the time of driving. However. the post-hoc analysis showed no significant differences for NILC between the morning and the post-nap sessions. 

II. 1. 5. DISCUSSION

The focus of this study was to investigate the impacts of a 25-min midday nap on subjective ratings of anxiety, arousal, and fatigue, sustained attention, and muscular power in the afternoon after a normal night of sleep in healthy habitual nappers. The main objective was to examine the structure of the nap taken in different sleep environments and to investigate its impacts on subsequent cognitive and physical performances. The second objective was to compare cognitive and physical outcomes in the afternoon with the outcomes in the morning.

The results of the study showed that the structure of sleep during the nap varied according to the environment. For instance, the structure of the nap in the bed and reclining chair conditions were different from the box condition. However, the structure of the nap in bed was not different from the reclining chair. The duration of Total Sleep Time (TST) was higher, and Sleep Efficiency (SE) was greater in the bed and in the reclining chair than in the box condition. In addition, the duration of stage 2 sleep tended to be higher in the bed compared to the box. Furthermore, the results showed that regardless of the environment of sleep, the 25-min midday nap resulted in negligible effects of sleep inertia, alleviated daytime arousal, prevented mental fatigue, and improved sustained attention (i.e. reduced SDLP and NILC) during the simulated driving task.

Besides, the results demonstrated that after taking a nap in the box or in the reclining chair, performance stability and the number of errors observed during the afternoon driving task were not different from the morning driving session. Finally, the results indicated that performance stability was greater in the afternoon after the nap than in the morning.

II. 1. 5. 1. MORNING SESSION

The analysis of the actigraphic recording and sleep diaries indicated non-significant differences in sleep variables for the nights before the experimental visits. These results indicated that the participants spent an equivalent amount of sleep during the nights preceding the different experimental visits. Besides, the results showed that the duration of total sleep time was more than 7-h and 30-min, and the assumed sleep time averaged above 7-h in all experimental conditions. Together, these results revealed that the protocol of the study was fully respected. In this study, we implemented the morning session in order to control morning activities for all the participants in the different experimental visits. Accordingly, the data showed that the outcomes of the morning session were the same throughout the four experimental visits.

During the morning driving session, the results showed that subjective measures of anxiety, arousal, and fatigue were affected by the duration of the driving task. This means that the selfreported levels of anxiety, drowsiness, and fatigue increased with the increasing driving time.

Besides, we also found that the self-reported level of arousal decreased with the increasing time of driving. Regarding the driving performance, the results showed that the prolonged duration of the task led increasing SDLP and NILC over the driving time. These findings entailed that performance stability decreased and the number of errors increased by the increasing time of driving.

These findings support the view that performing a continuous cognitive task over time is effortful and demanding [START_REF] Helton | Signal salience and the mindlessness theory of vigilance[END_REF]. In particular, these results are in line with the findings of several studies on driving performance indicating a gradual decrease in arousal and sustained attention caused by fatigue over time of driving [START_REF] Otmani | Effect of driving duration and partial sleep deprivation on subsequent alertness and performance of car drivers[END_REF][START_REF] Ryu | Temporal dynamics of wakefulness during simulated driving[END_REF][START_REF] Rossi | Analysis of driver task-related fatigue using driving simulator experiments[END_REF][START_REF] Gastaldi | Effects of driver task-related fatigue on driving performance[END_REF][START_REF] Morales | Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data[END_REF][START_REF] Wang | Correlation between Vigilance Level and Driving Performance: Influence of the Driving Duration and Circadian Rhythm[END_REF]. The over mental workload model was proposed to explain why it is difficult for one's mind to maintain a good performance level over time. The over mental workload model implies that the information-processing resources are limited. In this case, resources are viewed as "reservoirs" of mental energy devoted to performing a particular task, and the "replenishment of the resources" is the main cause behind the gradual decline in performance over time [START_REF] Helton | Signal salience and the mindlessness theory of vigilance[END_REF]. This view is further supported by several neuroimaging studies that employed measures of the cerebral blood flow as a "sensitive metabolic index of the utilization of information-processing resources" when performing a cognitive task [START_REF] Hitchcock | Automation cueing modulates cerebral blood flow and vigilance in a simulated air traffic control task[END_REF]. Their results showed that the changes in the activation of the brain areas as revealed by the cerebral blood flow were accompanied by a parallel decline in sustained attention performance over time [START_REF] Heilman | Attentional asymmetries[END_REF][START_REF] Mayleben | Cerebral blood flow velocity during sustained attention[END_REF][START_REF] Hitchcock | Automation cueing modulates cerebral blood flow and vigilance in a simulated air traffic control task[END_REF].

In the realms of physical outcomes, no differences were observed between T1 (i.e. before the driving task) and T3 (i.e. after the driving task). Therefore, we conclude that mental fatigue induced by the driving task did not impair performance in the ELEP. The result is consistent with previous findings indicating that mental fatigue did not impact maximal force production and explosive power strength [START_REF] Pageaux | Prolonged mental exertion does not alter neuromuscular function of the knee extensors[END_REF][START_REF] Budini | Effect of mental fatigue on induced tremor in human knee extensors[END_REF][START_REF] Martin | Mental fatigue does not affect maximal anaerobic exercise performance[END_REF].

II. 1. 5. 2. NAP SESSION

The results demonstrated that the structure of sleep varied according to environmental conditions.

In bed condition, the duration of TST was higher, SE was greater, and sleep stage 2 tended to be higher than in box condition. Besides, TST and SE were greater in reclining chair compared to the box. Even though participants in the box were lying in a bed, it is possible that the added instruments namely music and lights stood as the main factors behind reducing the duration of TST and decreasing SE during the nap. This interpretation is consistent with previous studies

showing that music and light are great distractors that impaired both the quality and the quality of sleep [START_REF] Kawada | Noise and health-Sleep disturbance in adults[END_REF][START_REF] Maas | Power sleep: The revolutionary program that prepares your mind for peak performance[END_REF][START_REF] Halperin | Environmental noise and sleep disturbances: A threat to health?[END_REF]). In addition, taking a short midday nap in a reclining chair did not affect the duration and the structure of sleep compared to the nap taken in a bed. These results are in line with the study of [START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF] that showed no differences in all sleep variables during a short midday nap taken either in a sitting position or lying down in a bed.

This study contributes to the scientific development and technological validation of the SOMBOX product which is a new sleep product consisting of small rooms designed for napping.

The product involved a logic for sleep guidance during the nap, which is mainly based on changes in both the intensity of different light colors (i.e. white and red) and the volume of the music.

Overall, the logic is best exemplified by a split of the sleep process into three distinct phases during the nap: Falling Asleep phase, Sleep phase, and Waking phase.

(1) The Falling Asleep phase lasted about 7-min and involved an interplay between music and colors that gradually decreased over the falling asleep phase. For the colors, the process started with an intense white light that gradually faded and then switched into the red color that progressively went darker until becoming black.

(2) The main Sleep phase lasted about 10-min during which there was a total absence of music and lights

(3) Finally, the Waking phase lasted about 7-min and involved the opposite process of the falling Asleep phase. That is, the music and light progressively increased to reach the starting point.

Concerning the structure of sleep during the nap in box condition, SL averaged 7-min and was not different from the other nap conditions. Therefore, the 7-min technology introduced during the Falling Asleep phase corresponded to the duration of sleep latency during the nap. In addition, the total sleep duration averaged 12-min, which was 3-min less than the total sleep duration in the bed. Accordingly, the box technology was effective in reducing TST, however, it was not sufficient to reach the 10-min phase programmed in advance. Finally, given that the nap lasted for 24-min, the planned 7-min Waking phase was not achieved.

Even though the structure of sleep did not match the intended plan, the technology set in the box met one of the most required objectives which is the satisfaction of its users. Importantly, the selfreported satisfaction with the nap was similar to the bed and it was better than the reclining chair.

Moreover, the perceived duration of TST in the box averaged 10-min which corresponded to the programmed Sleep phase. Besides, the perceived TST in the box was not different from the bed, but it was rated longer than the reclining chair. For note, the self-reported duration of sleep in all nap conditions did not match the EEG objective measures of sleep.

The variations of Core Body Temperature (CBT) during the 24-h are the result of a fine balance between heat production and heat loss derived from and regulated by the circadian biological clock [START_REF] Coiffard | A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System[END_REF]. The data obtained in this work showed that the variations of CBT in the no-nap condition were different from the variations of CBT in the nap conditions (see, Figure 37). Indeed, in the no-nap condition, the results entailed a greater level of thermogenesis (i.e. heat production) compared to variations of CBT observed during the nap. The decreasing level of thermogenesis (i.e. deceleration from baseline CBT) observed in the nap condition is in line with the common observation asserting that CBT fell after sleep onset [START_REF] Weitzman | SLEEP-WAKE NEUROENDOCRINE AND BODY-TEMPERATURE CIRCADIAN-RHYTHMS UNDER ENTRAINED AND NON-ENTRAINED (FREE RUNNING) CONDITIONS IN MAN[END_REF]Czeisler 1978, Berger and[START_REF] Berger | Energy conservation and sleep[END_REF]. However, in the no-nap condition, the results showed an increasing level of thermogenesis that followed the normal diurnal rise of heat production during the day (Refinetti andMenaker 1992, Barrett et al. 1993). Furthermore, the results assumed that sleeprelated fall in CBT during the nap depended on the environment of sleep. The fall in CBT was observed in both the bed and the box, but not in the reclining chair. These results are congruent with previous studies indicating that postural changes could affect or mask the drop of CBT [START_REF] Moul | Masking effects of posture and sleep onset on core body temperature have distinct circadian rhythms: results from a 90-min/day protocol[END_REF][START_REF] Wakamura | Effects of body position during an afternoon nap on body temperature and heart rate variability in healthy young Japanese adults[END_REF]. What is of crucial importance is the correspondence observed between changes in CBT and the subjective ratings of the total sleep duration perceived in both the bed and box conditions. Remarkably, the significant fall in CBT in bed and box conditions lasted for 10-min. This duration exactly corresponded to the 10-min self-reported total sleep duration perceived in both the bed and box conditions, but not in the reclining chair condition.

This correspondence suggests that the participants rated their total sleep duration based on changes in CBT.

II. 1. 5. 3. POST-NAP SESSION

The results showed distinct thermoregulatory changes in CBT during the afternoon after the nap compared to the no-nap condition (see, Figure 38). Whatever the condition, after the nap, CBT exhibited an increasing tendency in the thermogenesis process (i.e. increasing from baseline CBT)

which was significantly different from the variations of CBT in the no-nap condition (Figure 38).

The data suggest that a short midday nap served as an energy conservation that lowered heat production during the nap leading to an increase in heat production in the afternoon [START_REF] Zammit | Postprandial sleep and thermogenesis in normal men[END_REF]. Moreover, the results indicated that the rise in the thermogenesis process that took place after the nap started approximately one hour after waking.

During the post-nap session, the results indicated that before the beginning of the driving task, the self-reported feelings of anxiety, arousal and fatigue, were the same in all conditions. During the course of driving, in the nap conditions, the subjective levels of anxiety, arousal and fatigue were not affected by the duration of the test, nor by the post-lunch-dip. On the contrary, in the no-nap condition, the self-reported ratings of drowsiness and fatigue were high and the selfreported levels of arousal were low. Interestingly, the present results are in line with previous reports indicating a strong relationship between the subjective measurements of arousal and fatigue and the outcomes [START_REF] Oken | Vigilance, alertness, or sustained attention: physiological basis and measurement[END_REF][START_REF] Goel | Genetics of sleep timing, duration, and homeostasis in humans[END_REF]). First, it was found that during the first 10-min of driving, the SDLP and NILC were not different in all conditions, confirming therefore that the initial mental state of the participants was the same whether they napped or not. Second, during the course of driving, participants who napped gained better stability levels and made fewer errors compared to the no-nap condition. Together, These results support previous studies indicating that the nap counteracted the effects of the post-lunch dip and improved cognitive performances, after a normal night sleep [START_REF] Hayashi | The effects of a 20-min nap before post-lunch dip[END_REF][START_REF] Hayashi | The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity[END_REF][START_REF] Hayashi | Short daytime naps in a car seat to counteract daytime sleepiness: The effect of backrest angle[END_REF][START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF].

Specifically, before the beginning of the outgoing-trip, and during the first 10-min of driving, no differences in the subjective ratings of arousal, fatigue, and performance were found between the nap and the control conditions. Given that the testing sessions was completed immediately after waking from the nap, it is possible that the effects of sleep inertia delayed or masked the benefits of the nap. Sleep inertia refers to a period of reduction or impairment in arousal and cognitive functioning following the waking from sleep [START_REF] Hilditch | A review of short naps and sleep inertia: do naps of 30 min or less really avoid sleep inertia and slow-wave sleep?[END_REF]. These results are consistent with previous studies showing no change in arousal and performance for the 15-min that followed the waking from a short midday nap [START_REF] Kaida | The effects of selfawakening on heart rate activity in a short afternoon nap[END_REF][START_REF] Hayashi | Short nap versus short rest: recuperative effects during VDT work[END_REF]. In this context, it was posited that taking a nap in a sitting position can be a useful strategy to prevent the occurrence of sleep inertia after waking from the nap [START_REF] Wakamura | Effects of body position during an afternoon nap on body temperature and heart rate variability in healthy young Japanese adults[END_REF]). However, the current findings oppose this observation since no differences were observed between the bed and the reclining chair. Instead, we recommend napping in the bed because of the greater self-reported satisfaction previous reports indicating that taking a nap in a reclining chair reduced sleepiness and enhanced arousal and performance compared to the no-nap condition (Horne and Reyner 1996a[START_REF] Hayashi | Short daytime naps in a car seat to counteract daytime sleepiness: The effect of backrest angle[END_REF][START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF]). However, it opposes the assumption that the benefits of a nap taken in a reclining chair are equivalent to a nap taken in a bed (Horne and Reyner 1996a). Instead, we support the finding that the benefits of napping are enhanced when the sleep posture is closer to the horizontal [START_REF] Hayashi | Short daytime naps in a car seat to counteract daytime sleepiness: The effect of backrest angle[END_REF].

The improvement in performance observed after the nap in the bed condition was different from both the box and reclining chair conditions. Therefore, one might suggest that there is a link between the performance and the structure of sleep according to the environment of the nap. In this context, [START_REF] Brooks | A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative?[END_REF] showed that the benefits of a short midday nap after a normal night of sleep depended on the duration of TST and not on a particular sleep stage. On the other hand, other studies linked the beneficial effects of napping with the duration of sleep stage 2 [START_REF] Hayashi | Recuperative power of a short daytime nap with or without stage 2 sleep[END_REF][START_REF] Hayashi | Short daytime naps in a car seat to counteract daytime sleepiness: The effect of backrest angle[END_REF]. However, in the present study, the duration of TST and the duration of stage 2 sleep were not different in the bed compared to the reclining chair condition. Therefore, we suggest that neither the duration of TST nor the amount of stage 2 sleep were behind the long-lasting benefits observed after taking a nap in the bed. Then, it is possible that the differences observed between the bed and the other nap conditions are related to the amount of EEG delta wave activity present during the nap. Delta wave activity represents the intensity parameter of the sleep process, and it is the physiological marker of the sleep homeostatic process (Borbély 1982[START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF][START_REF] Gompf | NREM Sleep Regulation From Neuronal Assembly to Ion[END_REF]. In this context, although quantitative EEG analysis was not performed in this study, this interpretation was further supported by a number of studies asserting that the background delta wave activity is the main contributor to the improvement in performance after a short midday nap [START_REF] Kaida | The effects of selfawakening on heart rate activity in a short afternoon nap[END_REF][START_REF] Brooks | A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative?[END_REF][START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF][START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF]. In particular, the study of [START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF] examined the effect of a short midday nap according to the environment of sleep on arousal using the event-related potentials paradigm. Their results showed no differences in all sleep variables, however, the P300 amplitude was greater when the nap was taken in bed compared to a nap taken in a sitting position. The authors attributed the potential impacts of a nap in a bed to the amount of delta wave activity during the stage 2 sleep and not to a particular sleep structure.

Concerning the physical outcomes, the results showed that the performance in the ELEP was neither affected by the mental fatigue induced by the driving task, nor by the post-lunch dip, nor by the nap. This result supports previous reports indicating that a short midday nap did not improve anaerobic performances [START_REF] Petit | A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions[END_REF][START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF], muscular power, and jump velocity [START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF]) after a normal night of sleep.

II. 1. 5. 4. MORNING VS POST-NAP SESSION

The Comparison between the morning and the no-nap driving session showed a significant decrease in the level of performance stability (i.e. SDLP) and a remarkable increase in the number of incidents and errors (i.e. NILC) compared to the morning driving session. These results are in line with previous findings indicating a post-lunch dip in performance under normal night sleep conditions [START_REF] Minors | Circadian rhythms and the human Bristol[END_REF][START_REF] Monk | The post-lunch dip in performance[END_REF][START_REF] Bes | Modeling napping, post-lunch dip, and other variations in human sleep propensity[END_REF].

The Comparison between the morning and the post-nap sessions revealed that taking a nap in bed helped to maintain higher levels of performance stability (i.e. SDLP) during the outgoing trip for 20-min compared to the morning driving session. Besides, the number of errors (i.e. NILC) observed during the afternoon session was not different from the morning driving session. These results delineated that after taking a nap in bed, the level of performance stability in the afternoon surpassed the morning level. Moreover, we found that after taking a nap in the box or in reclining posture, the driving performance (i.e. reduced SDLP and NILC) in the afternoon attained the morning levels.

Concerning the physical performance, the results demonstrated a diurnal variation for ELEP, with the best performance observed late in the afternoon (i.e. TS 6) compared to morning measures (i.e. TS 1 and TS 3). This finding is in line with a number of studies indicating a time of day variation between the morning and the afternoon in maximal-intensity and short duration task performances after a normal night of sleep [START_REF] Bernard | Time-of-day effects in maximal anaerobic leg exercise[END_REF][START_REF] Souissi | Effects of regular training at the same time of day on diurnal fluctuations in muscular performance[END_REF], 2007[START_REF] Nicolas | Effect of circadian rhythm of neuromuscular properties on muscle fatigue during concentric and eccentric isokinetic actions[END_REF].

II. 1. 5. 5. CONCLUSION

Regardless of the environment of sleep during the nap, a 25-min midday nap resulted in negligible effects of sleep inertia upon waking, enhanced daytime arousal, prevented mental fatigue, and improved sustained attention (i.e. reduced SDLP and NILC) during the simulated driving task. A short midday nap in the box or in a reclining chair improved arousal and sustained attention, but both of them did not reach the efficiency level of a nap taken in a bed. We assume that taking a nap in a reclining posture or in the presence of music and lights reduced the potential impacts of the nap on arousal and sustained attention. Concerning the SOMBOX product, the results demonstrated that the technology set in the box met with the satisfaction of the participants.

Besides, the improvement in arousal and performance were evident after the nap in the box compared to the no-nap condition. However, we might reconsider few readjustments in order to attain the same benefits acquired from the nap in bed. Therefore, we recommend few changes in the timing of the programmed set of the three sleep phases. More specifically, we suggest the extension of the period of the Sleep phase from 10 minutes to 15 minutes. Concerning the differences between the morning and the afternoon performances, the results showed that after taking a nap in bed, the level of performance stability in the afternoon surpassed the morning level. We also found that after taking a nap in the box or in reclining posture, the driving performance (i.e. SDLP and NILC) in the afternoon attained the morning levels.

II. 2. STUDY II: EFFECTS OF NAPPING ON COGNITIVE AND PHYSICAL

OUTCOMES OF KARATE ATHLETES

Published in Medicine and Science in Sports &Exercise

II. 2. 1. INTRODUCTION

Considerable attention has been paid to napping as an effective countermeasure for arousal decline and for improving cognitive performances. In literature, it has been demonstrated that naps which last less than 30-min undermine the deleterious impacts of sleep deprivation that affect arousal and performance. It has also been reported that naps enhance arousal levels even when the quality and the quality of the previous nocturnal sleep are adequate [START_REF] Takahashi | Brief naps during post-lunch rest: effects on alertness, performance, and autonomic balance[END_REF][START_REF] Hayashi | The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity[END_REF]. It would be of interest to mention that the differences in results

observed in previous researches depend on various factors that determine the benefits acquired when taking short naps. Indeed, factors like the quality of prior nocturnal sleep, sleep architecture, and the temporal placements of the nap during the day may determine the extent of benefits gained from short naps [START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF]. Furthermore, a number of interindividual differences embodied in the experiences with napping [START_REF] Evans | Appetitive and replacement naps: EEG and behavior[END_REF], Dinges 1992), such as individuals' abilities to produce slow waves [START_REF] Faraut | Napping: a public health issue. From epidemiological to laboratory studies[END_REF], the occurrence of sleep inertia [START_REF] Tassi | Sleep inertia[END_REF], and other factors like tests' characteristics might affect the benefits of napping [START_REF] Evans | Appetitive and replacement naps: EEG and behavior[END_REF]. Compared to long naps (more than 30 min), short naps have negligible effects of sleep inertia upon waking [START_REF] Tassi | Sleep inertia[END_REF]. Although a substantial number of studies on the benefits of napping were conducted outside of the sports sphere [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF]), a short nap has commonly been recommended to be incorporated in an athlete's daily life, as it represents a practical strategy in enhancing recovery especially after the multiple training sessions performed by sportspeople [START_REF] Venter | Perceptions of team athletes on the importance of recovery modalities[END_REF]. Previous articles have focused on how circadian rhythms and prior sleep affect athletic performances. The circadian rhythms modulate physical abilities and several aspects of cognitive performance according to the time of day, with optimal performances generally observed at the end of the afternoon [START_REF] Drust | Circadian rhythms in sports performance-an update[END_REF]. Prior sleep influences the capacity to perform. It has been reported that sleep extension improves performances [START_REF] Mah | The effects of sleep extension on the athletic performance of collegiate basketball players[END_REF]), contrary to sleep deprivation which negatively affects the evening performance by decreasing the normal rise of athletic outcomes at that time [START_REF] Souissi | Effects of one night's sleep deprivation on anaerobic performance the following day[END_REF]. Before an athletic event, nocturnal sleep has frequently been proved to be disturbed [START_REF] Leeder | Sleep duration and quality in elite athletes measured using wristwatch actigraphy[END_REF]. Besides, athletes in individual sports are more affected than athletes in team sports [START_REF] Erlacher | Sleep habits in German athletes before important competitions or games[END_REF].

Given the overall detriments caused by sleep loss, napping is used as a behavioral countermeasure that limits the decrement in performances [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF][START_REF] Halson | Nutrition, sleep and recovery[END_REF]. Unfortunately, few studies have dealt with the effects of napping on athletes' cognitive and physical performances during daily training or before athletic events [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF]). To the best of our knowledge, only two studies have examined the effects of naps on athletic performances.

The first study, [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF], has indicated that a postlaunch nap improves alertness and aspects of mental and physical performances after a partial sleep loss. The second study, [START_REF] Petit | A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions[END_REF], has shown that napping has no effects on performances, in particular when assessing the effects of a 20-min postprandial nap on a short-term physical exercise in normal conditions.

It is relevant to better emphasize that athletic performances depend on the complexity and efficiency of the physical, psychomotor, and cognitive components required to perform a specific sporting task [START_REF] Mori | Reaction times and anticipatory skills of karate athletes[END_REF]. Karate is a competitive sport with a high level of environmental uncertainty [START_REF] Parlebas | Jeux, sports et sociétés: lexique de praxéologie motrice[END_REF]. Furthermore, karate athletes have to perform simultaneously a mechanical work task with great physical exertion, and a high level of perceptual abilities [START_REF] Mori | Reaction times and anticipatory skills of karate athletes[END_REF]. The need to offend and defend against the opponents' actions, requires (i) a great level of physical fitness, especially strength, aerobic fitness, muscle power, and speed [START_REF] Chaabene | Physical and physiological profile of elite karate athletes[END_REF], and (ii) developed cognitive skills, especially rapid anticipation, decision making, and fast reactions [START_REF] Mori | Reaction times and anticipatory skills of karate athletes[END_REF][START_REF] Di Corrado | Vividness and transformation of mental images in karate and ballet[END_REF]. Additionally, the decrement in muscle performances and mental fatigue emerge as a major problem when bouts of intensive efforts are imposed on competitors especially that, during an official competition, competitors have to perform several matches on the same day [START_REF] Tabben | Validity and reliability of a new karate-specific aerobic field test for karatekas[END_REF]. Several studies have provided insight into the negative effects of a fatiguing bout of an exercise simulating the costs of athletic efforts on physical outcomes (Oliver et al. 2008, Twist and[START_REF] Twist | Monitoring fatigue and recovery in rugby league players[END_REF], and on cognitive performances as well [START_REF] Brisswalter | Effects of acute physical exercise characteristics on cognitive performance[END_REF]. These effects are more noticeable under sleep deprivation [START_REF] Fullagar | Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise[END_REF]. In this regard, it is worth pointing that the Karate-Specific Test (KST) is a recent and valid field test for assessing karate-specific endurance-fitness level [START_REF] Tabben | Validity and reliability of a new karate-specific aerobic field test for karatekas[END_REF]. The use of KST was relevant in this study because it (i) replicated a real karate combat pattern, and (ii) granted the opportunity to investigate the effects of sleep deprivation and/or nap on endurance performance that have never been assessed with this kind of test.

Therefore, the purpose of this study was to examine the effects of a 30-min midday nap on the subjective ratings of arousal and fatigue, and different aspects of cognitive and physical performances after a normal night of sleep. In a perspective of performance optimization, we also aimed to identify which aspect of the cognitive and/or physical performances is/are affected by sleep loss and could be recovered following a 30-min nap. Likewise, we aimed to investigate the effects of a nap on fatigue induced by a high-intensity intermittent specific karate test.

II. 2. 2. METHODS

II. 2. 2. 1. PARTICIPANTS

Thirteen international-level male karate athletes (age, 23 ± 2 yr; height, 175 ± 2.45 cm; mass, 68 ± 7.5; expertise, 15 ± 3) were volunteered to participate in the study. They were fully informed about the study information. Before participating, a written informed consent was obtained from every participant. The selection criteria for the participants were the following: subjects kept standard times for sleeping habits (bedtime, from 10:30 PM to 7:00 AM ± 1 h). All of them were habitual nappers. They were nonsmokers and nonalcoholic or caffeine consumers. They have been trained for nine sessions of about 2 h. Since circadian typology might affect the study outcomes, the selection of the players' chronotypes was based on the Horne and Osberg self-assessment questionnaires [START_REF] Horne | A self-assessment questionnaire to determine morningnesseveningness in human circadian rhythms[END_REF]. According to their answers to the questions related to their timing of sleep and their daily activities, subjects who presented an extreme morning or extreme evening type were eliminated. Instead, players who were ''neither type''

were involved in this study. The protocol of this study complied with Helsinki's declaration for human experimentation and was approved by the University Ethics Committee.

II. 2. 2. 2. PROCEDURES

The experimental design is described in Figure 48. Two weeks before the beginning of the experimental period, the participants were familiarized with the equipment and the experimental procedures to minimize the learning effects during the course of the study. During habituation sessions, subjects took a short nap in the laboratory. Thereafter, in experimental sessions, athletes were randomly assigned to experience both nap and no-nap conditions, after either a full night sleep (RN) (>7 h) or a partial sleep deprivation (PSD) (sleep 11:00 PM to 3:00 AM). On the day before the experimental session, subjects came to the laboratory in the evening and had the same standardized dinner at 8:00 PM, and later, they went to bed at 10:30 PM. The nocturnal sleep and naps were monitored by actigraphic recording and sleep diaries. Besides, they were strictly supervised by two experimenters during experimental nights.

To keep the participants awake during the partial-sleep deprivation condition, they were allowed to watch television, read books, listen to music and use computers. The four protocol conditions were carried out at least one week apart. This period allowed them to have a sufficient recovery from one night of sleep loss. The nap condition included a 30-min nap period from 1:00 PM to 1:30 PM in bed after lunch. In the no-nap condition, participants were free to choose their activities. A 30-min period separated the nap or the rest condition from the assessment sessions.

The post-nap testing took place in the National Center of the karate team of Tunisia. The postnap testing session started at 2:00 PM, first by recording the Visual Analog Scales to quantify subjective alertness and fatigue. Then, it consisted of the following tests, respectively, before and after the KST:

• Cognitive performance tasks: Simple Reaction Time (SRT), Mental Rotation Test (MRT), Lower

Reaction Test (LRT).

• Physical assessment session: Squat Jump, (SJ), Countermovement Jump (CMJ), KST.

Before the beginning of the physical testing session, subjects completed a standardized warm-up of 10-min, as recommended by [START_REF] Tabben | Validity and reliability of a new karate-specific aerobic field test for karatekas[END_REF], and it consisted of self-selected-intensity jogging, vertical jumping, and dynamic stretching (hip extensors, hamstrings, hip flexors, and quadriceps femoris), and later followed by a 5-min passive rest. The recovery time between every physical test was about 5-min, and 2-min between every trial in the same test. Different precautions were taken before the testing session. Instructions about sleep and diet were given to the subjects. During the period of investigation, they were prohibited from consuming food, beverages, or any known stimuli (e.g., caffeine) or depressants (e.g., alcohol) that would possibly enhance or compromise alertness. Throughout the experimental period, participants were requested to maintain their habitual physical activities and to avoid strenuous activities during the 24-h before the testing sessions. It was easy to control compliance with these directions because the participants were students in the same institution with the same daily schedules. The protocol of this study was made to be close enough to athletes' typical real-life routines.

II. 2. 2. 3. MEASUREMENTS

II. 2. 2. 3. 1. ACTIGRAPHY AND SLEEP DIARIES.

For objective sleep measurements, we used the MotionWatch 8® actigraphy system (MW8; camntech). To ensure that subject's sleep pattern throughout the course of the study was typical (i.e., not unusually restricted or extended), the actigraphic recording was edited with the information listed in the subjective sleep diaries. The MW8 data was downloaded and analyzed using MotionWare version 1.0.25 (camntech). A high-level sensitivity level was used for the estimation of sleep-wake patterns in 60-s epochs. To make sure that the protocol of the study was fully respected, the following sleep parameters of the night before the experimental session were analyzed. The parameters were: bedtime, fell asleep time, woke up time, total time in bed, and assumed sleep (the total elapsed time is between the ''fell Asleep'' and ''woke up'' times).

II. 2. 2. 3. 2. SUBJECTIVE ALERTNESS AND FATIGUE.

Subjective alertness and fatigue were evaluated using the Visual Analog Scale [START_REF] Monk | Subjective ratings of sleepiness-the underlying circadian mechanisms[END_REF]. The VAS consisted of 100-mm long horizontal line with two endpoints to express extreme feeling.

The endpoints were designated as "very sleepy" to "in a good physical form", and "very sleepy"

to "very alert".

II. 2. 2. 3. 3. COGNITIVE TASKS

II. 2. 2. 3. 3. 1. SIMPLE REACTION TEST

When performing the reaction test, subjects were asked to respond as quickly as possible to a visual stimulus presented systematically at the center of the computer screen. Participants were asked to press a button with the index finger when a visual stimulus (Blue Square) appeared. The Simple Reaction Test was conducted using software Reaction, INRP free software (version 4.05).

II. 2. 2. 3. 3. 2. MENTAL ROTATION TEST

Participants were asked to compare two of the four stimuli samples presented on the screen and to state if they are identical, except the rotation, or are different from the reference figure presented on the left of the screen. The stimuli used in this test are based on Shepard and Metzler stimuli [START_REF] Shepard | Mental rotation of three-dimensional objects[END_REF]. The test required mental maintaining and manipulation of the presented figures with accuracy and speed. There were 20 items in the set, and 3-min were given for each subset of 10 items separated by a 2-min break. We used the same procedure as [START_REF] Peters | A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance[END_REF] for scoring, giving one point for each item only if both answers were correct.

This test was also conducted using software Reaction, INRP (version 4.05).

II. 2. 2. 3. 3. 3. LOWER BODY REACTION.

The simple acoustic-reaction time of the lower limb was measured using an optical jump system (Optojump Next, Microgate, Italy). The trial started inside the testing area. When receiving the acoustic sound, the subject must jump as quickly as possible. The sound was randomly generated by the measuring system and every stimulus lasted 1-s. Then, the Optojump system recorded the delay in time between the beginning of stimulus and the flight time (Time when the athletes left the testing area by jumping).

II. 2. 2. 3. 4. PHYSICAL TASKS

II. 2. 2. 3. 4. 1. SQUAT JUMP AND COUNTER-MOVEMENT JUMP

The CMJ included a leg flexion from the upright standing position with the hands on the hips and immediately followed by a quick descended position to 90° knee flexion, and instantly performed an explosive concentric action for maximal height with the hands-on the hips. The SJ consisted of a maximal jump held from a flexed knee position (approximately 90°) with the hands on the hips and without performing any countermovement before the beginning of the jump. These jump tests were monitored with an optical jump system (Optojump Next, Microgate, Italy). The apparatus comprises two bars placed ~1 meter apart, parallel to each other, and was interfaced with a microcomputer via a USB port. The optical system transmits infrared light 1-2 mm above the floor. When the light is interrupted by the feet, the units trigger a timer with a precision of 1ms which allows the measurement of flight time and contact time. For both tests after the signal, the subjects started whenever they felt ready to jump but not more than 4s for the SJ test. The participants performed three trials in every test with a recovery time of 2 minutes between trials, and finally, the best one was recorded.

II. 2. 2. 3. 4. 2. KARATE-SPECIFIC TEST

The test protocol consisted of sequential sets composed of two attacks toward a body opponent bag. The first attack included a two-punch combination, lead straight punch followed by a rear straight punch (i.e., kisamigyaku-zuki), and the second attack used a rear roundhouse kick (i.e., mawashigeri-chudan). The test was packed with two auditory signals; the first was at the beginning of the bout of the exercise, and the second sound indicated the rest time. The time to complete the exercise remained the same (i.e, 3-s). However, the recovery time between bouts progressively decreased every 3-min. Every punch and kick had to be executed with the maximum power possible. The test stopped and the time to exhaustion (TE) was determined when the participants failed to complete the set of movements in the 3-s interval twice, or when there was a clear decrease in force or in performed techniques. They performed the KST wearing protections that are specifically designed for karate. The test was carried out on a tatami (i.e., competition karate floor). Karate athletes must use their favorite guards and were not allowed to change their guard during the test. Distance between the body opponent bag and the front foot was established and fixed before the beginning as 1.5 m.

II. 2. 3. STATISTICAL ANALYSIS

Statistical tests were processed using Statistica 7.1 (Statsoft, France). Data were reported as mean ± SD. Paired t-tests were used for sleep variables between the control and the nap conditions after RN, and the control and the nap conditions after PSD. The data concerning the effects of napping on the performance was conducted using a two-way ANOVA analysis [2 (nap conditions) * 2 (sleep conditions)] with repeated measures. Data concerning the effect of napping on fatigue induced by KST was conducted using a two-way ANOVA analysis [2 (nap conditions) * 2 (sleep conditions)] expressed by calculating the difference between the performances after and before KST. When the ANOVA indicated significant main effects, differences between the means were tested by Turkey's post-hoc tests. The level of statistical significance was set at (P<0.05).

II. 2. 4. RESULTS

II. 2. 4. 1. PRIOR NOCTURNAL SLEEP

The actigraphic data indicated that equivalent amounts of the following sleep parameters (e.g., Bed Time, Fall Asleep Time, Wake Up Time, Total Time in Bed, Assumed Sleep Time) obtained during the nights preceding the testing under both the nap and no-nap conditions following a reference night and partial sleep deprivation night (Table 5). Subjective alertness. The results showed a significant main effect for nap F (1-12) =5.14, p< 0.05; ηp2 =0.30), indicating that subjective alertness increased after the nap comparing to the no-nap condition. Moreover, there was a significant main effect for sleep F (1-12) =66.50, p<0.001; ηp2 =0.84), indicating that sleep loss decreased the alertness level comparing to the reference night.

However, there was no significant main effect for nap-sleep interaction (p> 0.05) (Table 6).

Subjective fatigue. The results showed that there was a significant main effect sleep F (1-12) =85.69, p<0.001; ηp2 =0.87), indicating that subjective fatigue increased after the partial-sleep deprivation condition comparing to the reference night. However, there was no significant main effect for nap (p> 0.05), and for nap-sleep interaction (p>0.05), (Table 6). 

II. 2. 4. 3. 1. 1. SIMPLE REACTION TIME

There was a significant main effect of nap F (1-12) =5.34, p< 0.05; ηp2 =0.30), indicating the improvement in SRT performance following the nap compared with the no-nap condition.

However, there was no significant main effect for Sleep (p>0.05), and for nap × sleep interaction (p>0.05) (Table 7).

II. 2. 4. 3. 1. 2. MENTAL ROTATION TEST

There was a significant main effect of nap F (1-12) =5.03, p< 0.05; ηp2 =0.29), indicating that the score in this test was better after the nap compared with the no-nap condition. Moreover, the results showed a significant main effect for Sleep F (1-12) =5.28, p< 0.05; ηp2 =0.30), stating that the performance decreased after the partial sleep deprivation compared with the reference night.

However, there was no significant main effect for Nap × Sleep interaction (p>0.05) (Table 7).

II. 2. 4. 3. 1. 3. LOWER REACTION TEST

There was a significant main effect Nap (1-12) =6.86, p< 0.05; ηp2 =0.36), with an increase being observed after the nap compared with the no-nap condition. Moreover, the results revealed a significant main effect for Sleep F (1-12) =4.69, p< 0.05; ηp2 =0.28), showing that the performance decreased after the partial sleep deprivation compared with the reference night. However, there was no significant main effect for Nap × Sleep interaction (p>0.05) (Table 7). 

II. 2. 4. 3. 2. 1. SIMPLE REACTION TIME

The results showed that there was no significant main effect for Nap (p>0.05), Sleep (p>0.05), and for Nap × Sleep interaction (p>0.05) (Table 8).

II. 2. 4. 3. 2. 2. MENTAL ROTATION TEST

The results showed that there was no significant main effect for Nap (p>0.05), Sleep (p>0.05), and for Nap × Sleep interaction (p>0.05) (Table 8).

II. 2. 4. 3. 2. 3. LOWER REACTION TEST

There was a significant main effect for Nap × Sleep interaction (F (1-12) =5.58, p< 0.05; ηp2 =0.31).

However, there was no significant main effect for Nap (p>0.05), and for Sleep (p>0.05). The posthoc test revealed that the effect of nap on fatigue after the KST depended on sleep condition. In fact, in the partial sleep deprivation condition, performance was the same with and without napping (p>0.05). However, following the reference night performance was better with napping than without napping (p<0.05) (Table 8). The post-hoc test demonstrated that the nap improved the time to exhaustion following the partial sleep deprivation night (p<0.001). However, napping did not improve the performance after the reference night (p>0.05). Regarding the effect of sleep deprivation, during the no-nap condition, time to exhaustion was affected by sleep loss compared with the control condition (p<0.01). After napping, the effect of sleep deprivation disappeared compared with the reference night (p>0.05) (Figure 49). 

II. 2. 4. 4. 2. 1. SQUAT JUMP

The results showed that there was no significant main effect for Nap (p>0.05), Sleep (p>0.05), and for Nap × Sleep interaction (p>0.05) (Table 7).

II. 2. 4. 4. 2. 2. COUNTER MOVEMENT JUMP

There was a significant main effect Nap F (1-12) =6.15, p< 0.05; ηp2 =0.33), indicating the improvement in CMJ performance flowing the nap comparing with the no-nap condition.

However, there was no significant main effect for Sleep (p>0.05), and for Nap × Sleep interaction (p>0.05) (Table 7).

II. 2. 4. 4. 3. THE EFFECTS OF NAPPING ON FATIGUE INDUCED BY THE KST

II. 2. 4. 4. 3. 1. SQUAT JUMP

There was a significant main effect Nap F (1-12) =8.43, p< 0.01; ηp2 =0.41), indicating an improvement in SJ performance flowing the nap comparing with the no-nap condition. However, there was no significant main effect for Sleep (p>0.05), and for Nap × Sleep interaction (p>0.05) (Table 8).

II. 2. 4. 4. 3. 2. COUNTER MOVEMENT JUMP

There was a significant main effect Nap F (1-12) =6.15, p< 0.05; ηp2 =0.33), indicating the improvement in CMJ performance flowing the nap comparing with the no-nap condition.

However, there was no significant main effect for Sleep (p>0.05), and for Nap × Sleep interaction (p>0.05) (Table 8).

II. 2. 5. DISCUSSION

The focus of this study was to investigate the effects of a 30-midday nap on cognitive and physical performances in athletes after a normal night of nocturnal sleep. The first objective was to investigate the effects of napping on cognitive performances using reaction time tests with distinct complexity levels. The second aim was to examine the effects of napping on speed and directional ability in highly-trained athletes. The results showed that the nap improved the performance in the SRT and the DMST. However, it negatively affected the performance in the VST. Moreover, the results indicated that the nap improved the speed and directional ability of highly-trained athletes.

The analysis of actigraphic recording and sleep diaries for the nights before the experimental visits indicated that the total amount of nocturnal sleep averaged 8-h per night. According to the National Sleep Foundation, 8 hours of sleep per night is considered to be the appropriate sleep duration recommended for adults to ensure optimal neurobehavioral functioning during the day [START_REF] Hirshkowitz | National Sleep Foundation's sleep time duration recommendations: methodology and results summary[END_REF]. Second, based on the subjective survey of sleep during the nap, the results indicated that the perceived length of sleep during the nap averaged about 14-min. This result indicated that participants were able to sleep during the nap.

The improvement in reaction times during the SRT and DMST is in line with the previous research indicating that a short midday nap enhanced the information processing speed when performing attentional tasks after a normal night of sleep [START_REF] Abdessalem | Effect of napping opportunity at different times of day on vigilance and shuttle run performance[END_REF], Boukhris et al. 2019[START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF]. Particularly, these results congruent with the study of [START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF] that provided objective measures of sleep during the nap and assessed the neuro-electric activity of the brain when performing the auditory oddball task. In this context, it is worth noting that the event-related P300 amplitude reflected the amount of allocated attention, and the latency of P300 reflected the time spent on the classification of the stimulus. Their results indicated that a short midday nap mainly composed of sleep stage 2 and sleep stage 3 increased the P300 amplitude and decreased P300 latency. Together, these findings imply that the amount of allocated attention was higher and the information processing speed was greater after a short midday nap compared with the no-nap condition. Undoubtedly, high levels of attention and accuracy in the information processing speed are critical aspects for optimal cognitive functioning [START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF]. Therefore, the gains observed after a short midday nap across different cognitive tasks further encourage its use by athletes.

To date, it is important to mention that this study is the first that reports a negative impact of a short midday nap on athletes' visual processing speed as evaluated by the VST. The results demonstrated that the mean reaction time increased and the error rate remained unchanged compared to the no-nap condition. This finding indicated that the participants spent more time in the evaluation process of the stimuli, without producing any improvement in their performances.

Here it is important to mention that perceptual-cognitive operations involving visual scanning, rapid recognition, and decision making are critical elements for achieving success in all sports fields in general [START_REF] Williams | Perceptual-cognitive expertise in sport and its acquisition: Implications for applied cognitive psychology[END_REF], and in sports depending on perceptual abilities in specific (Di [START_REF] Russo | Fixation stability and saccadic latency in elite shooters[END_REF]. These findings are alarming especially when considering the results of [START_REF] Suppiah | Effects of a short daytime nap on shooting and sprint performance in high-level adolescent athletes[END_REF], showing that napping did not improve shooting performance in high-level pistol and rifle shooters. Nevertheless, it is possible that the increased difficulty level, which was imposed by the nature of the stimuli (i.e, non-representational shapes) might be another potential factor diminishing the effects of short midday nap cognitive performance. However, the absence of a control condition that evaluates the effects of napping on the same task performance with a lower level of difficulty (i.e representational shapes) is considered a limitation of the present work.

Regarding the effects of a short midday nap on physical performance, the present results confirm the previous findings indicating that that nap improved speed and directional ability in physically active participants [START_REF] Abdessalem | Effect of napping opportunity at different times of day on vigilance and shuttle run performance[END_REF], Boukhris et al. 2019), and extends them to high-level athletes. Together, these results further reinforce the observation that not all the performance measures are equally affected by a nap [START_REF] Morita | Napping after complex motor learning enhances juggling performance[END_REF].

In conclusion, a short midday nap improved cognitive performance in tasks involving attentional functions but produced an unfavorable effect on perceptual-cognitive capacities involving visual scanning skills. Furthermore, the findings of this study further attest to the benefits of a short midday nap on physical performance implying speed and directional abilities on highly-trained athletes. Further research is required to extent testing the potential short-and long-term effects of a short midday nap scheduled after a normal night of nocturnal sleep on different physical and cognitive performances.

II. 3. STUDY III: THE IMPACTS OF A MIDDAY NAP ON REACTION TIME MEASURES AND ON SPEED AND DIRECTIONAL ABILITY IN ATHLETES

To be published in 2021

II. 3. 1. INTRODUCTION

Given that daytime drowsiness and deficit on performances reach a peak in the early afternoon hours (Monk et al. 1996, Carrier and[START_REF] Carrier | Circadian rhythms of performance: new trends[END_REF], a short nap scheduled at that time is considered as an effective strategy to counteract the drawbacks of post-lunch dip and to regain arousal and performances throughout the day [START_REF] Hayashi | The effects of a 20-min nap at noon on sleepiness, performance and EEG activity[END_REF][START_REF] Hayashi | The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity[END_REF][START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF], Abdessalem et al. 2019, Boukhris et al. 2019[START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF]. The recurrence of these beneficial effects on arousal and performance is of particular concern for athletes in everyday training or before an important athletic event. More importantly, a short nap can easily be merged into an athlete's daily life routine [START_REF] Petit | A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions[END_REF][START_REF] Simpson | Optimizing sleep to maximize performance: implications and recommendations for elite athletes[END_REF]).

Nevertheless, it is worth pointing out that the benefits acquired when taking a nap depend on several factors like the timing of the nap, its duration, and prior nocturnal sleep [START_REF] Milner | Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping[END_REF]. For instance, research findings that considered the temporal placement of the nap during the day indicated that a nap taken at noon or in early afternoon hours coincides with the circadian dip in alertness during the day [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF]. The latter was proved to be an ideal time window for sleep (Lavie andWeler 1989, Folkard and[START_REF] Folkard | A three-process model of the regulation of alertnesssleepiness[END_REF]. Indeed, during this period, sleep latency is shorter and performance improvement is greater compared to a nap scheduled in the morning or late in the afternoon [START_REF] Lavie | Timing of naps: effects on post-nap sleepiness levels[END_REF], Dinges 1992[START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF].

Regarding the length of the nap, a short midday nap of about 30-min was confirmed to be as effective as a long nap in improving arousal and cognitive performances following a normal night of nocturnal sleep [START_REF] Takahashi | Brief naps during post-lunch rest: effects on alertness, performance, and autonomic balance[END_REF], or restricted nocturnal sleep [START_REF] Tietzel | The recuperative value of brief and ultra-brief naps on alertness and cognitive performance[END_REF].

The task performance measure is an important factor that comes into play when considering the effects of napping on performance. For instance, task characteristics (difficulty level, duration), [START_REF] Ru | Effects of a short midday nap on habitual nappers' alertness, mood and mental performance across cognitive domains[END_REF][START_REF] Morita | Napping after complex motor learning enhances juggling performance[END_REF], task sensitivity to the prior waking period [START_REF] Deboer | Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning?[END_REF], as well as, the level of expertise of a person [START_REF] Ru | Effects of a short midday nap on habitual nappers' alertness, mood and mental performance across cognitive domains[END_REF] Concerning of physical performances, previous studies confirmed that a short midday nap reinstated the adverse effects of sleep disruption on physical performances [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF][START_REF] Blanchfield | The influence of an afternoon nap on the endurance performance of trained runners[END_REF][START_REF] Hammouda | Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint[END_REF][START_REF] Keramidas | A brief preexercise nap may alleviate physical performance impairments induced by short-term sustained operations with partial sleep deprivation-A field-based study[END_REF][START_REF] Daaloul | Effects of napping on alertness, cognitive, and physical outcomes of karate athletes[END_REF].

Nevertheless, its impacts after a normal night of sleep have not been decided yet. For instance, four studies demonstrated that napping did not improve several physical abilities in trained athletes, like aerobic performance [START_REF] Blanchfield | The influence of an afternoon nap on the endurance performance of trained runners[END_REF][START_REF] Daaloul | Effects of napping on alertness, cognitive, and physical outcomes of karate athletes[END_REF], anaerobic performance [START_REF] Petit | A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions[END_REF][START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF], muscular strength [START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF], and jump velocity [START_REF] Daaloul | Effects of napping on alertness, cognitive, and physical outcomes of karate athletes[END_REF]. On the other hand, two studies showed that a short midday nap significantly improved speed and directional ability [START_REF] Abdessalem | Effect of napping opportunity at different times of day on vigilance and shuttle run performance[END_REF], Boukhris et al. 2019). Interestingly, studies that reported a gain in physical performances after the nap included untrained subjects. Agility is an important fitness ability that involves rapid body movements and the complex interaction between motor and cognitive coordination [START_REF] Sheppard | Agility literature review: Classifications, training and testing[END_REF].

Given that agility is an essential fitness for athletes' success in team sports, combat sports, or any other kind of sports [START_REF] Sheppard | Agility literature review: Classifications, training and testing[END_REF]Young 2006, Sassi et al. 2009). It is of primary importance to determine whether the impacts of a short midday nap on speed and agility depend on the level of expertise of subjects, or the effects of napping on agility are task dependent.

Therefore, the focus of this study was to investigate the effects of a 30-midday nap on cognitive and physical performances in athletes after a normal night of nocturnal sleep. The first objective was to investigate the effects of the nap on cognitive performances using reaction time tests with distinct complexity levels. The second objective was to examine the effects of the nap on speed and directional ability in highly-trained athletes.

II. 3. 2. METHODS

II. 3. 2. 1. PARTICIPANTS

Twelve male (age: 22 ± 1 year old; height: 175 ± 2.45 cm; body mass: 68 ± 7.5 kg; expertise: 13 ± 2 years) were selected to participate in this study. They had been trained for nine sessions of about 2h per week. The participants included in this study had a regular sleep-wake behavior (sleeping between 23:00 and 07:00 ± 1:30 h), non-smokers, and were not addicted to caffeine or alcoholic beverages. The circadian typology was evaluated by the Horne & Ösberg selfassessment questionnaire [START_REF] Horne | A self-assessment questionnaire to determine morningnesseveningness in human circadian rhythms[END_REF]. All the participants were identified as "intermediate type". Moreover, they claimed their willingness to take nap if appropriate conditions are granted (e.i. time, and environment). The protocol of this study complied with the standards set by the Declaration of Helsinki for human experimentation (World Medical Association 2001), and met the requirement of the National Observatory of Sport in Tunisia (ONS). The ONS is a governmental institution responsible for the experiments related to the domain of sport in Tunisia. It had scrutinized the form as well as the content of the research and had approved its design. Before signing the informed consent, subjects were informed about the benefits and risks of the study. And of course, all of them were informed about their rights to withdraw from the study at any time.

II. 3. 2. 2. PROCEDURES

The experimental design is described in 

II. 3. 2. 3. MEASUREMENTS

II. 3. 2. 3. 1. ACTIGRAPHY AND SLEEP DIARIES

The measurements of sleep in this study included self-reported sleep diaries and objective measures of actigraphy [START_REF] Sadeh | The role and validity of actigraphy in sleep medicine: an update[END_REF]. We used the Motion Watch actigraphy system (MW8; camntech). All watches were configured to collect data in 60-second epochs. Subjects wore the actigraph continuously on their non-dominant wrists. The device recorded data from a movementsensitive sensor and provided information concerning sleep parameters. The sleep variables examined for the night before the experimental session were edited manually within the information listed in the subjective sleep diaries and scored using the software Motion Ware (version 1.0.25). The sleep variables obtained in this study were the following: bedtime, fell asleep time, woke up time, total time in bed, and assumed sleep (the total period elapsed between the ''fell Asleep'' and ''woke up'' times).

II. 3. 2. 3. 2. SUBJECTIVE SURVEY OF SLEEP DURING THE NAP

Immediately upon waking from the nap, subjects were requested to answer some questions related to their estimated nap-time (minutes), depth (1, light to 5, deep), and satisfaction with the nap (1, poor to 4, good) [START_REF] Hayashi | Recuperative power of a short daytime nap with or without stage 2 sleep[END_REF].

II. 3. 2. 3. 3. REACTION TESTS

The 

II. 3. 2. 3. 3. 1. SIMPLE REACTION TEST

The Simple Reaction Test is among the most basic measures of processing speed. Subjects were asked to respond to a specific visual stimulus (blue square) presented systematically on the screen.

II. 3. 2. 3. 3. 2. VISUAL SCANNING TEST

In this test, the stimulus and the response uncertainty were introduced to add the difficulty-level of the task. The stimulus was a pair of non-representational shapes containing a sort of interlaced random curves. Subjects were asked to quickly determine whether the pair objects are the same or two different draws.

II. 3. 2. 3. 3. 3. DELAYED MATCH-TO-SAMPLE TASK

The memory comparison operation presented in this task further increases the cognitive load as it requires advanced processing. The stimulus was a yellow scalene triangle presented for 3 seconds before the starting of the test. Immediately afterward, a series of pictures of the same triangle but in different positions showed up on the screen successively. The subject had to make a positive reaction whenever the memorized triangle appeared on the screen, and to make a negative response otherwise.

II. 3. 2. 3. 4. MODIFIED AGILITY T-TEST

The modified agility t-test [START_REF] Sassi | Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint[END_REF]) is a commonly used test that measures the speed with changes of direction. It mainly involves forward, lateral, and backward running (Figure 1).

Participants started with both feet behind the starting line-A. At their discretion, each participant sprinted forward from cone-A to cone-B and touched it with the right hand. Facing forward and without crossing feet, the participants shuffled to the left to cone-C and touched its base with the left hand. After, they shuffled to the right to cone-D and touched its base with the right hand, and then they shuffled back to cone-B and touched its base with the left hand. Finally, they ran backward to the start position, the line-A. The trial was not considered in case the subject crossed one foot in front of the other while shuffling, or failed to touch the base of the cones. The recorded score for this test was the best time among the three successful trials, and there was a 2-minute

The improvement in reaction times during the SRT and DMST is in line with the previous research indicating that a short midday nap enhanced the information processing speed when performing attentional tasks after a normal night of sleep [START_REF] Abdessalem | Effect of napping opportunity at different times of day on vigilance and shuttle run performance[END_REF], Boukhris et al. 2019[START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF]. Particularly, these results are congruent with the study of [START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF] that provided objective measures of sleep during the nap and assessed the neuro-electric activity of the brain when performing the auditory oddball task. In this context, it is worth noting that the event-related P300 amplitude reflected the amount of allocated attention, and the latency of P300 reflected the time spent on the classification of the stimulus. Their results indicated that the short midday nap, which was mainly composed of sleep stage 2 and sleep stage 3, increased P300 amplitude and decreased P300 latency. Together, these findings imply that the amount of allocated attention was higher and the information processing speed was greater after a short midday nap compared with the no-nap condition. Undoubtedly, high levels of attention and accuracy in the information processing speed are critical aspects for optimal cognitive functioning [START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF]. Therefore, the gains observed after a short midday nap across different cognitive tasks further encourage its use by athletes.

To date, it should be stressed that this study is the first that reported a negative impact of a short midday nap on athletes' visual processing speed as evaluated by the VST. The results demonstrated that the mean reaction time increased and the error rate remained unchanged compared to the no-nap condition. This finding indicated that the participants spent more time in the evaluation process of the stimuli, without producing any improvement in their performances.

Here it is important to mention that perceptual-cognitive operations involving visual scanning, rapid recognition, and decision making are critical elements for achieving success in all sports fields in general (for review, see [START_REF] Williams | Perceptual-cognitive expertise in sport and its acquisition: Implications for applied cognitive psychology[END_REF]) and in sports depending on perceptual abilities in specific (Di [START_REF] Russo | Fixation stability and saccadic latency in elite shooters[END_REF]. These findings are alarming especially when considering the results of [START_REF] Suppiah | Effects of a short daytime nap on shooting and sprint performance in high-level adolescent athletes[END_REF], showing that napping did not improve shooting performance in high-level pistol and rifle shooters. Nevertheless, it is possible that the increased difficulty level, which was imposed by the nature of the stimuli, (i.e, non-representational shapes) represented a potential factor masking the positive effects of the short midday nap on cognitive performances. However, the absence of a control condition that evaluates the effects of napping on the same task performance with a lower level of difficulty (i.e representational shapes) is considered a limitation of the present work.

Regarding the effects of a short midday nap on physical performances, the present results confirm the previous findings indicating that that nap improved speed and directional ability in physically active participants [START_REF] Abdessalem | Effect of napping opportunity at different times of day on vigilance and shuttle run performance[END_REF], Boukhris et al. 2019), and extended their relevance to high-level athletes. Together, these results further reinforce the observation that not all the performance measures are equally affected by the nap [START_REF] Morita | Napping after complex motor learning enhances juggling performance[END_REF].

In conclusion, a short midday nap improved cognitive performance in tasks involving attentional functions, however, it produced an unfavorable effect on perceptual-cognitive capacities involving visual scanning skills. Furthermore, the findings of this study further confirm the benefits of the short midday nap on speed and directional abilities in highly-trained athletes. Behavior", "Public Health Issues", and "Innovation and Technology".

The objective of the present work was to investigate the impacts of energetic and restorative naps on arousal, cognitive and physical performances during the afternoon in healthy habitual nappers.

The thorough investigation on the impacts of napping on performances was based on the twoprocess model (Borbély 1982[START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF].

For recall, the two-process model originally proposed by Borbély (1982) to account for the reciprocal interaction between the homeostatic and the circadian regulatory processes. The homeostatic process (Process S) increases linearly during waking and dissipates during subsequent sleep. The circadian process (process C) cycles non-linearly within 24 hours, forming periods of maximum drive for wakefulness and periods of maximum drive for drowsiness [START_REF] Strogatz | THE MATHEMATICAL STRUCTURE OF THE HUMAN SLEEP-WAKE CYCLE[END_REF][START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF]). The major peak for drowsiness is commonly placed at nighttime, and the minor peak for drowsiness occurs halfway between two successive major sleep phases, and it is labeled the post-lunch dip by [START_REF] Monk | Circadian determinants of the postlunch dip in performance[END_REF], or the secondary sleep gate by [START_REF] Lavie | Ultrashort sleep-waking schedule. III.'Gates' and 'forbidden zones' for sleep[END_REF]. These two phases of maximum drowsiness are separated by phases of the greatest drive for wakefulness [START_REF] Lavie | Ultradian rhythms in arousal-the problem of masking[END_REF]). The interaction between the homeostatic and the circadian processes determines the timing and the structure of sleep (i.e. nocturnal sleep and daytime naps).

Particularly, the rising homeostatic sleep pressure is reflected in the number and amplitude of Slow Wave Activity (SWA) of the electroencephalogram during sleep, that is, the longer the duration of prior wakefulness, the higher the amount of SWA during subsequent sleep. This EEG variable is regarded as the indicator of sleep depth or sleep intensity (Borbély 1982[START_REF] Goel | Genetics of sleep timing, duration, and homeostasis in humans[END_REF][START_REF] Achermann | Sleep in a sitting position: effect of triazolam on sleep stages and EEG power spectra[END_REF]. Given the influence of the process S on sleep regulation, the structure of a short midday nap taken after a normal night of sleep (i.e. energetic nap) is different from a nap taken under intense sleep pressure, for example after extended wakefulness (i.e. restorative nap).

Apart from determining the timing and the structure of sleep, the two-process model has been expanded to predict arousal levels and performance during the day. For instance, the model posits that the level of arousal at any given point in the diurnal phase of the day is modulated by the difference between the process S and C. Accordingly, a short distance between S and C indicates high arousal levels, and conversely, a large gap between the two processes indicated low levels of arousal. Notably, in the classical version of the two-process model, process S did not influence the functioning of process C. However, in a recently elaborated version of the model, [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF] posit that the homeostatic and circadian processes are subjects to more complex and continuous interactions, that is, the amplitude of process C decreases when the level of process S is high, but increases when the level of process S is reduced (Figure 18).

Given that the circadian pressure for wakefulness reaches its nadir in the afternoon (i.e, postlunch phase), the use of a short midday nap is effective in counteracting the drawbacks of the post-lunch dip, as it reduces the homeostatic sleep pressure at that time, and enhances arousal levels throughout the day. Here it is important to mention that the effects of a short midday nap on cognitive and physical performances are modulated by many factors, including the duration of prior wakefulness and sleep, interindividual variability, and the environment of sleep during the nap. To systematically investigate the effects of napping on distinct aspects of cognitive and physical performances in healthy habitual nappers, we differentiated between two types of naps based on the previous amount of sleep and wakefulness. We introduced the term energetic nap to designate a short midday nap taken after a normal night of sleep, and we used the term restorative nap to designate a short midday nap following sleep loss.

III. 1. THE IMPACTS OF ENERGETIC NAP ON PERFORMANCE

In the first study, we addressed the issue related to the environment of sleep during the nap and we attempted to examine the impacts of the energetic nap in different sleep environments on subsequent cognitive and physical performances. The findings of the first study showed that regardless of the environment of sleep during the nap, the nap enhanced daytime arousal and improved cognitive performance during the day, with longer lasting effects observed after taking a nap in the bed compared to a nap in the box or in the reclining chair. One of the ways to interpret these findings is that taking a nap in a reclining posture or the presence of music and lights reduced the potential impacts of the energetic naps. Accordingly, in the second and third studies, we implemented a nap in the bed on a selective basis, and we focused on the impacts of the energetic nap on distinct cognitive and physical aspects of performances. 

III. 1. 1. COGNITIVE PERFORMANCES

Changes in subjective measurements or cognitive performances (i.e. improvement or decrement) represent a good marker for determining arousal levels at a given point in time during the day [START_REF] Sander | Assessment of wakefulness and brain arousal regulation in psychiatric research[END_REF]. For recall, cortical activation can be tonic or phasic depending on the cognitive task's demands [START_REF] Cohen | Intention, Response Selection, and Executive-Attention[END_REF]. The tonic aspect refers to the general functioning of the arousal system during the day. The latter is intimately involved in sustaining attentional control, as well as, in providing the necessary cognitive tone for performing complex cognitive abilities (DeGutis and Van Vleet 2010). The phasic component refers to a rapid increasing change in arousal levels induced by a warning signal [START_REF] Landry | Heightened States of Attention: From Mental Performance to Altered States of Consciousness and Contemplative Practices[END_REF]. The latter is viewed as an important element in a wide range of human performances that require fast and precise responses.

In the first study, we focused on the effects of the energetic nap on the tonic aspect of arousal.

Accordingly, we provided punctual and repetitive subjective testing sessions over the post-nap session. Besides, we implemented a simulated driving task to continuously monitor the sustained attention. In the second study, we deployed a mental rotation task to investigate the impacts of the nap on a complex cognitive ability that requires both tonic and phasic aspects of arousal.

Finally, in the second and third studies, we employed a total number of five reaction time tests with different complexity levels to investigate the effects of the energetic nap on the phasic aspect of arousal.

The results of the first study confirmed that the level of arousal and sustained attention decreased in the afternoon. Besides, we demonstrated that the use of the energetic nap enhanced daytime arousal and prevented mental fatigue. The results also confirmed that the energetic nap improved performance in the sustained attention task. More specifically, the data indicated that the nap enhanced performance stability and reduced the number of errors during the simulated driving task. Moreover, we compared the cognitive performance in the afternoon after the nap with the morning performance. Intriguingly, we found that performance in the afternoon after the energetic nap have surpassed the morning levels.

The second and third studies, we found that the energetic nap improved the mental rotation test, simple reaction test, delayed match-to-sample test, and lower reaction test. Together, these results are consistent with previous reports indicating that a short midday nap improved the information processing speed when performing reaction tests [START_REF] Hayashi | The effects of a 20-min nap at noon on sleepiness, performance and EEG activity[END_REF][START_REF] Hayashi | The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity[END_REF][START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF], Abdessalem et al. 2019, Boukhris et al. 2019[START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF]).

However, it is important to foreground that the energetic nap negatively affected the visual scanning test. Precisely, we found that after the nap, the mean reaction time increased, and the error rate remained unchanged compared to the no-nap condition. This result entails that the participants spent more time in the evaluation process of the stimuli, without making improvements in their performances. We have attributed the lack of improvement in performance in this test to the increased difficulty level imposed by the nature of the stimuli (i.e, nonrepresentational shapes).

III. 1. 2. PHYSICAL PERFORMANCES

In the present work, we have investigated the effects of the energetic nap on several aspects of physical performances. In the first and second studies, the results showed no improvement in physical performances following the energetic nap on muscular power which was measured by the explosive leg extensor power, maximum jump high assessed by the squat jump and the counter movement tests. Likewise, we found no improvement during the aerobic karate field test in which the participants replicated efforts of a real karate combat session. These results are in line with several studies proving that after a normal night of sleep a short midday nap did not improve aerobic performance [START_REF] Blanchfield | The influence of an afternoon nap on the endurance performance of trained runners[END_REF], muscular strength and jump velocity [START_REF] Tanabe | Effects of prophylactic naps on physical fitness/exercise ability and executive function in healthy young trained males[END_REF], and anaerobic performance [START_REF] Petit | A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions[END_REF]. However, the results of the third study showed that the energetic nap enhanced the speed and directional ability during the modified agility T-test. On one level, these findings are in line with previous studies indicating that that the nap improved speed and directional ability in physically active participants [START_REF] Abdessalem | Effect of napping opportunity at different times of day on vigilance and shuttle run performance[END_REF], Boukhris et al. 2019). On a greater level, we further extend the relevance of the findings from physically active participants to professional athletes. Altogether, we suggest that the favorable effects observed in this particular fitness ability are due to the positive effects of the energetic nap on the cognitive components contributing to the accomplishment of the agility test.

Again, all these findings demonstrated that the effects of the energetic nap on a particular task performance depend on the characteristics of the performed task.

III. 1. 3. CONCLUSION AND PRACTICAL APPLICATION

From a general standpoint, the present work supports previous findings indicating that the nap alleviated the effects of the post-lunch dip and improved the cognitive performances after a normal night sleep [START_REF] Hayashi | The effects of a 20-min nap before post-lunch dip[END_REF][START_REF] Hayashi | The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity[END_REF][START_REF] Hayashi | Short daytime naps in a car seat to counteract daytime sleepiness: The effect of backrest angle[END_REF][START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF]. As a particular highlight, the gain observed in sustained attention and in processing speed further encourages its use for mitigating the adverse effects of the post-lunch dip and for boosting the performance during the day. The findings are also in line with predictions found in the two-process model supporting that napping reduces the homeostatic sleep pressure and enhances arousal levels throughout the day (Borbély 1982[START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF][START_REF] Achermann | Sleep in a sitting position: effect of triazolam on sleep stages and EEG power spectra[END_REF]. Therefore, we recommend the use of the energetic nap for improving work performance and for better ensuring safety. Regarding the environment of sleep, we strongly recommend the most effective and optimal condition revealed through the experiments, which is a nap in the bed condition. Nevertheless, if the latter is not at one's disposal, we still encourage the use of the energetic nap either in a reclining chair or in the box, especially after proving the effectiveness the SOMBOX sleep product.

Concerning physical outcomes, the results showed conflicting findings. On the one hand, the energetic nap did not improve muscular power, maximum jump high, and time to exhaustion during the endurance test. On the other hand, the energetic nap improved speed and directional ability. These findings suggest that the effects of energetic nap on performances are highly taskdependent.

The difference in results displayed throughout the cognitive and physical aspects of performances reflects the mutual interaction between the homeostatic and the circadian processes. Given that the decrease in particular task performance over the day is assumed to be caused by its sensitivity to sleep pressure that increases in function of the previous waking period, the improvement in other performance tasks at any given point in time during the day is attributed to the input of the circadian process which counterbalances the effects of sleep pressure. Accordingly, we suggest that the beneficial effects of the energetic nap on a particular neurobehavioral function depend on a fine balance between the input of the circadian system and the sensitivity level to the homeostatic sleep pressure. In conclusion, task measure is an important factor that comes into play when considering the effects of napping on performance.

III. 2. THE IMPACTS OF RESTORATIVE NAP ON PERFORMANCE

In the second study, we addressed the issue related to the effects of napping under a sleep loss condition. Accordingly, we attempted to systematically examine the effects of the restorative nap on distinct aspects of cognitive and physical performances following a partial sleep restriction.

Based on the two-process model [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]) (Figure 52), we hypothesized that when the amount of nocturnal sleep is reduced, the increasing level of the process S would impair cognitive and physical performances (pink curve). Given that the dissipation of the homeostatic sleep pressure is thought to be an exponential process [START_REF] Achermann | Simulation of human sleep: ultradian dynamics of electroencephalographic slow-wave activity[END_REF], we also hypothesized that the restorative nap would restore the imbalance of the process S (green curve), and therefore would counteract the decrease in performance caused by sleep loss (blue curve).

Figure 52. A schematic illustration of the changes in the homeostatic and circadian processes under the influence of the energetic nap.

III. 2. 1. COGNITIVE PERFORMANCES

In the second study, we mainly focused on the effects of the restorative nap on phasic aspects of arousal using two reaction tests. In addition, we sought to examine the effects of the restorative nap in a more complex cognitive performance using the mental rotation test. The results demonstrated that the nap helped to restore the impairment in performances caused by sleep loss.

In particular, the restorative nap enhanced the information processing speed during the reaction time test and restored the score in the mental rotation test when compared to the no-nap condition.

These results are in line with previous studies confirming the restorative effects of a midday nap on arousal and cognitive performance following extended wakefulness (DMSc and DMSc 2000, [START_REF] Tietzel | The short-term benefits of brief and long naps following nocturnal sleep restriction[END_REF][START_REF] Dickman | Dimensions of arousal: Wakefulness and vigor[END_REF][START_REF] Brooks | A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative?[END_REF][START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF]). Furthermore, these findings comply with the two-process model predictions.

III. 2. 2. PHYSICAL PERFORMANCES

Along with the second study, we investigated the effects of the restorative nap after partial sleep deprivation on maximal vertical jump performance assessed by the counter movement jump and the squat jump tests. Besides, we investigated the restorative effects of the nap on time to exhaustion during an aerobic field test. We found that the restorative nap effectively counteracted the decrease in performance which was induced by partial sleep deprivation. These results are consistent with previous studies examining the impacts of the restorative nap on physical performances after partial sleep deprivation on physical performances [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF][START_REF] Blanchfield | The influence of an afternoon nap on the endurance performance of trained runners[END_REF][START_REF] Hammouda | Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint[END_REF]. More specifically, we found that sleep loss reduced time to exhaustion during the aerobic test, impaired maximal vertical jump performance in the counter movement jump test, but did not affect the squat jump test. In the same perspective, the results demonstrated that changes in performances after the restorative nap were observed only in tasks that were impaired by sleep loss. Together, these findings further reinforce the observation that the beneficial effects of napping on a particular task performance depend on its sensitivity to sleep pressure.

III. 2. 3. CONCLUSION AND PRACTICAL APPLICATION

Overall, the results of the second study showed that sleep loss impaired the output in almost all the performed tasks. Such negative impacts on performances are alarming when considering the fundamental needs for athletes' optimal functioning in everyday training or during a competition.

Nevertheless, the results revealed that the restorative nap can effectively act as a countermeasure for the deficit in cognitive and physical performances induced by partial sleep deprivation in trained athletes. The gain acquired in the information processing speed after the restorative nap is noteworthy when considering the elite-sports context. Likewise, the restorative effects of napping on time to exhaustion during the aerobic test are remarkably important, knowing that we employed a reliable aerobic-specific karate field test for highly trained karate athletes. More specifically, the present results are in line with previous studies investigating the recuperative value of a short midday nap in athletes on cognitive [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF][START_REF] Petit | Effects of a 20-min nap post normal and jet lag conditions on P300 components in athletes[END_REF][START_REF] Ajjimaporn | Effects of a 20-min Nap after Sleep Deprivation on Brain Activity and Soccer Performance[END_REF], and physical [START_REF] Waterhouse | The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation[END_REF][START_REF] Blanchfield | The influence of an afternoon nap on the endurance performance of trained runners[END_REF][START_REF] Hammouda | Diurnal napping after partial sleep deprivation affected hematological and biochemical responses during repeated sprint[END_REF][START_REF] O'donnell | The influence of match-day napping in elite female netball athletes[END_REF]) performances under different conditions of sleep loss. As a particular highlight, these findings are particularly significant for highly-professional athletes, especially that napping does not violate doping regulations.

The decrement in performance observed after sleep loss was reflected in the limited physiological capacity to perform compared to the baseline condition (i.e. normal night of sleep). Together, these findings comply with the predictions of the two-process model suggesting that under conditions of prolonged wakefulness, high levels of sleep pressure reduced the circadian amplitude of many neurobehavioral functions when compared to baseline levels [START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]. Furthermore, the results showed that the nap counteracted the decrease in performance in most of the tests. Again, these findings suggest that the nap helped to readjust the imbalance of process S and to restore the performance to baseline levels.

III. 3. PERSPECTIVES

Ø Despite the aforementioned benefits of the nap, regular napping has often been associated with negative consequences, such as increased drowsiness and decrement in cognitive performances during the post-lunch phase. In light of this assumption, it seems to be premature to prescribe napping on a regular basis. Thus, further research is necessary in order to decide whether napping should be recommended on a regular basis or not.

Ø There is evidence showing that individual differences in napping behavior modulate the structure of sleep during the nap and its subsequent effects on performances. It was reported that habitual nappers are more likely to benefit from the nap compared to no-nappers.

According to this observation, some studies selected only non-habitual nappers, while others included only habitual nappers. This classification was made without providing any additional information about under what conditions the participants were selected as either nappers or non-napper. A valid questionnaire that permits to classify the participants into habitual nappers or non-nappers remains an issue that deserves to be properly reconsidered in future research.

Ø We present in Annex A.5 a prime version of a questionnaire related to "napping typologies".

Therefore, we hope that we focus our research on the next objective which will be oriented towards developing and validating this version.

Ø Intriguingly, the results showed that, after a normal night, the post-lunch dip only affected the modified agility level. Contrary to all other physical performances which were not impacted by the post-lunch dip, the modified agility test was enhanced by the use of the energetic nap.

Besides, the results showed that partial sleep deprivation impaired the maximum jump high in the counter movement jump test, however, it did not impact the squat jump test. These findings suggest that sleep pressure did not affect the performance at the neuromuscular level. Instead, we suggest that the differences in results displayed in response to sleep pressure were related to the sensorimotor control during a dynamic task. Therefore, the understanding of how Instructions :

1. Li e a en i emen chaq e q e ion a an d pond e. 2. Répondez à toutes les questions. 3. R ponde a q e ion dan l o d e. 4. Vous pouvez répondre aux questions les unes indépendamment des autres. Ne revenez pas en arrière pour vérifier votre réponse. 5. Pour les questions à choix multiples, mettez une croix devant une seule réponse. Pour les échelles, placez une croix au point approprié. 6. Répondez à chaque question aussi sincèrement que possible. Vos réponses et les résultats de ce questionnaire resteront confidentiels. 7. Faites les commentaires que vous jugerez nécessaires dans la partie prévue sous chaque question. 

Impacts of a midday nap on cognitive and physical performances according to the nap environment and prior nocturnal sleep

The objective of the present work was to investigate the impacts of energetic and restorative naps on subjective levels of arousal, and on aspects of cognitive and physical performances in the afternoon in healthy habitual nappers. To meet our objective, three experimental studies were implemented. We investigated the impacts of the nap in different sleep environments, namely the bed, the reclining chair, and the SOMBOX sleep product which we contributed to its development and validation. We found that regardless of the sleep environments, all the naps enhanced daytime arousal and improved cognitive performances, with longer lasting effects observed after taking a nap in the bed compared to a nap in the box or the reclining chair. Accordingly, we recommend napping in a bed. Regarding the impacts of the energetic nap on cognitive performances, we found that the nap enhanced daytime arousal and improved sustained attention, mental rotation, and information processing speed in the simple reaction time and the delayed match-to-sample tests. However, a negative impact of napping was observed in the visual scanning test. Concerning the effects of the energetic nap on physical performances, the results demonstrated that there were no improvements in muscular power, maximal jump high, and endurance performances compared to the no-nap condition. Nevertheless, the nap enhanced speed and directional ability. Together, these findings suggested that the effects of the energetic nap on cognitive and physical performances are highly task-dependent. Regarding the effects of the restorative nap, we found that the deficit in cognitive and physical performances induced by partial sleep deprivation was restored following the nap. We assume that the beneficial effects of the energetic and restorative naps on performances depend on a fine balance between the input of the circadian system and the sensitivity level of the performed task to the homeostatic pressure.
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 1 Figure 1. Schematic representation of different parameters of a rhythm: Period, Phase, Mesor, and Amplitude (Baganz 2006).
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 2 Figure 2. The leaves of the mimosa plant open toward the sun during the day and close at night (upper part). In constant darkness (lower part) the leaves continue to follow their daily rhythms. (Huang 2018).
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 3 Figure 3. EEG frequency bands during the waking period at several levels of arousal.

Figure 4 .

 4 Figure 4. Illustration of subjective measurement of (a) energetic arousal and (b) tense arousal.
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 5 Figure 5. Illustration of the subjective measurement of mental fatigue.
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 6 Figure 6. Sleep Histogram illustration showing the typical distribution of NREM-REM cycles across 8-hr of sleep. Adapted from Payne (2011).
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 7 Figure 7. Basic electrode application for sleep recording.
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 8 Figure 8. EEG brain wave patterns during sleep.
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 9 Figure 9. A schematic drawing showing the main components of the ascending arousal system.
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 10 Figure 10. A schematic drawing showing key projections of the ventrolateral preoptic nucleus (VLPO). VLPO neurons have afferent projections to monoaminergic cell groups (red circles), VLPO neurons project to cholinergic cell groups (yellow circles), VLPO innervates orexinergic neurons (green circle) of the lateral hypothalamus, (Saper et al. 2005).
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 11 Figure 11. A Schematic representation of the wake-sleep switch model, modified from Saper al., (2005). During wakefulness (a), orexin neurons (green circle) innervate the monoaminergic cell groups of the ascending arousal system (ARAS; red circle), In turn, ARAS inhibits the ventrolateral preoptic nucleus (VLPO; purple circle). During sleep (b), VLPO neurons (purple circle) inhibit the monoaminergic cell groups of the ARAS (red circles).
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 12 Figure 12. A schematic representation of the homeostatic sleep pressure, modified from Shi and Ueda (2018), and Walker (2017). Sleep pressure increases during wakefulness and dissipates in the course of subsequent sleep.
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 13 Figure 13. A schematic representation for the homeostatic regulation of the sleep-wake state transition. When sleep pressure increases above a certain threshold, the homeostatic system actively promotes the transition from wakefulness to sleep. When sleep pressure decreases at a certain level it passively gates the passage to wakefulness. Ventrolateral preoptic nucleus (VLPO, purple circle), Ascending arousal system (ARAS, red circle).
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 14 Figure 14. A schematic representation of the circadian rhythms of sleep and wakefulness are synchronized with rhythms of the solar day. The circadian system promotes wakefulness during the day and sleep at night.
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 15 In summary, circadian rhythms of sleep and wakefulness are generated by the suprachiasmatic nucleus (SCN), and are synchronized with the solar day via a direct light input from the retina via the retinohypothalamic tract (RHT). SCN projections travel in an arc dorsally and caudally and terminate in the SPZ. The dorsal supraventricular zone (dSPZ) regulates circadian rhythms of the body temperature. The ventral supraventricular zone (vSPZ) regulates behavioral circadian rhythms. SPZ, in turn, projects to the dorsomedial nucleus of the hypothalamus (DMH). The DMH provides rhythmic output to the sleep-wake centers of the brain its (a) via excitatory projection to the orexinproducing neurons (ORX) and to cell groups of the ascending arousal system (ARAS; red circle), and via (b) its inhibitory projection to the ventrolateral preoptic area (VLPO).
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 15 Figure 15. Schematic representation of the circadian regulation of the sleep-wake states.
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 16 Figure 16. Homeostatic and circadian influences on state transitions. The circadian process actively alternates between promoting sleep and wakefulness at different phases of the solar cycle.The homeostatic process actively promotes sleep, and the withdrawal of its output passively drives the transition to wakefulness.
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 18 Figure 18. A Schematic simulation of the influence of the homeostatic (green curve) and circadian (blue curve) on the dynamic changes of arousal during the waking period following normal sleep-wake patterns and under extended wakefulness. The arrows indicate the difference in levels of sleep pressure throughout the waking period in normal condition (left arrow), and following extended wakefulness (right arrow).

  by sleep fragmentation, sleep deprivation, extended wakefulness, or circadian rhythm disruption. Compared to baseline performance levels, research investigating the diurnal fluctuation in attention following sleep lossshowed that the decrease in performance becomes more pronounced in the early morning, during the early afternoon hours, and at night. Moreover, performance levels plateau late in the morning, during the afternoon, and evening hours. The impairment in cognitive performance is correlated with low levels of arousal as assessed by electrophysiological measures and by subjective questionnaires (for review, see[START_REF] Lowe | The neurocognitive consequences of sleep restriction: a meta-analytic review[END_REF].
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 19 Figure 19. Relationship between sleep episodes and circadian rhythms of the core body temperature. Modified from (Campbell and Zulley 1985). Black bars represent the onset and duration of major sleep episodes and naps.
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 20 Figure 20. A schematic illustration of the changes in the homeostatic and the circadian processes under the influence of the energetic nap. The homeostatic sleep pressure decreases after the nap (green curve). Baseline circadian amplitude (pink curve) increased when the level of sleep pressure is low (blue curve).
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 21 Figure 21. A schematic illustration of the effects of restorative nap on the dynamic changes of arousal following extended wakefulness (blue curve). The influence of the homeostatic sleep pressure on the circadian curve following extended wakefulness (pink curve) The effects of restorative nap on the homeostatic sleep pressure (green curve).

  areas, to introduce napping to real-life settings. Let us cite the example of Metro Nap's Energy pods that launched the world's first chair specifically designed for napping in the workplace (Figure 22 A). Others pods are placed in public environments like the Pod Time capsule (Figure 22.B) implemented in the center of London's financial square mile. In France, Adilson Pod' Calm (Figure 22.C) reclining chair, and Sombox private nap rooms (Figure 22.D) are the recently presented products.

Figure 22 .

 22 Figure 22. Different models of nap capsules

  Also, this work contributed to the scientific development and technological validation of a new sleep product consisting of nap rooms conceived to be set on highways. The second objective of this study was to compare cognitive and physical outcomes in the afternoon after the nap with the morning outcomes. The present study was financially supported by the startup SOMBOX and by the foundation VINCI Autoroutes. Finally, the results of this investigation will be considered for publication.The second study aimed to assess the effects of a 30-min midday nap on subjective ratings of arousal and fatigue, and different aspects of cognitive and physical performances after a normal night of sleep. Then, we attempted to identify which aspect of the cognitive and/or physical performances is/are affected by sleep loss and that might be recovered following the nap. We also investigated the effects of fatigue induced by a high-intensity intermittent test on aspects of cognitive and physical performances. This study was published in the journal of Medicine and Science in Sport and Exercise.The third study aimed to investigate the effects of a 30-midday nap after a normal night of sleep on cognitive and physical performances. The first objective was to examine the impacts of the nap on cognitive performance using reaction time tests with distinct complexity levels. The second objective was to assess the effects of the nap on speed and directional ability in highlytrained athletes. The results of the third investigation will be submitted in May 2021.

  , following sleep loss(Horne and Reyner 1996a[START_REF] Reyner | Suppression of sleepiness in drivers: combination of caffeine with a short nap[END_REF][START_REF] Watling | Stop and revive? The effectiveness of nap and active rest breaks for reducing driver sleepiness[END_REF], and during a prolonged nighttime driving[START_REF] Phipps-Nelson | Temporal profile of prolonged, night-time driving performance: breaks from driving temporarily reduce time-on-task fatigue but not sleepiness[END_REF]. To the best of our knowledge, this study is the first that investigates the effects of a short midday nap on sustained attention in the afternoon using a monotonous driving task and following a normal night of sleep in healthy adults.Nevertheless, before advocating napping in real-life settings, such as in the workplace or at the wheel, the problem of the environment of sleep during the nap has received little interest. The main issue related to the environment of sleep concerns the disturbing effect of napping in a sitting position on its impacts on the structure of sleep during the nap and subsequent performances. In this context, only one study compared the effects of a short midday nap on objective and subjective measures of arousal in different nap environments after a normal night of sleep[START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF]. The results of[START_REF] Zhao | Effects of physical positions on sleep architectures and post-nap functions among habitual nappers[END_REF] showed no differences in the structure of sleep during the nap between a sitting forward-bending posture and a bed condition. Moreover, their results indicated that both naps were effective in improving subjective levels of arousal compared to the no-nap condition. However, in the objective measures of arousal assessed by the eventrelated potentials, the results showed a greater increase in the P300 amplitude after the nap in bed compared to the nap in a sitting position. Besides, P300 latency and reaction time after the nap in both conditions were not different from the no-nap condition. Although these findings are considerably important, it must be noted that in the study ofZhao et al. the morning activities 

  white and red), accompanied by background music, and relaxing smells. The design of the box room is presented in Annex C. In order to evaluate the efficiency of the SOMBOX product, the structure of sleep during the nap and its effects on performance were compared to the bed and the reclining-chair conditions.The focus of this study was to investigate the impacts of a 25-min midday nap on subjective ratings of anxiety, arousal, and fatigue, sustained attention, and muscular power during the afternoon after a normal night of sleep in healthy habitual nappers. The first objective was to examine the structure of the nap in different sleep environments and its impacts on cognitive and physical performances. Also, this work contributes to the scientific development and technological validation of the SOMBOX sleep product. The second objective was to compare the cognitive and physical outcomes in the afternoon after the nap, with the morning outcomes. (20 males and 19 females; age: 25 ± 4 years; height: 173.15 ± 8.5 cm; mass: 67.96 ± 12.4 kg) were recruited to participate in this study. They have had their driving licenses for at least 2 years, and the distance they drove averaged at least 5000 km per year. Before the inclusion all participants had a clinical appointment with a sleep specialist in the laboratory who granted that all participants fulfilled the following criteria: they have a social security coverage, exempt from any history of sleep disorder, had a normal sleep-wake habits, habitual nappers, and are not taking any drugs that would probably enhance or alter their level of arousal during the day. According to Pittsburgh Seep Quality Index (PSQI) questionnaire[START_REF] Fortenbaugh | Recent theoretical, neural, and clinical advances in sustained attention research[END_REF], all participants got a good sleep quality (score <5), (Annex A. 1). Moreover, they were selected as: morning-moderate type, evening-moderate type, or intermediate-type based on their scores in the Horne and Ostberg's Morningness-Eveningness questionnaire[START_REF] Horne | A self-assessment questionnaire to determine morningnesseveningness in human circadian rhythms[END_REF],(Annex A. 2). By contrast, extreme morning and evening chronotypes, alcoholic and caffeine consumers, shift workers, pregnant or breastfeeding women were excluded. Participants involved in this study signed an informed consent form. They were provided with detailed explanation of the study procedures, and they were paid 200 euros for their entire participation. As well, they were informed about their right to quit the study at any time they wished to, without being obliged to present any further explanation or excuse. Of course, even they opt for quitting the study they received 30 euros for every day they assist.
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  Figure 23. Experimental design

Figure 24 .

 24 Figure 24. On the left: Motion Watch Actigraphy device. The device recorded data from a movement-sensitive sensor and provided information concerning sleep parameters. On the right:
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 25 Figure 25. The Nottingham Leg Power Rig machine to evaluate the Explosive Leg Extensor Power
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 26 Figure 26. On the left: the BodyCap e-Celsius telemetric ingestible capsule. On the right: the wireless -viewer BodyCap Data Receiver system.
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 27 Figure 27. The Visual Analog Scale evaluating the level of anxiety (upper line), fatigue (middle line), and alertness (lower line).

  Electrooculograms (EOG) was placed 1cm above the outer canthus of the left eye, and below the outer canthus of the right eye. The electromyogram (EMG) was recorded from electrodes taped to the skin slightly above the mentalis muscles. Polysomnographic recordings during naps were scored visually in 20-s epochs according the guidelines updated in 2017 of the American Academy of sleep medicine (AASM) version. The measured polysomnographic sleep variables were the following: Total Sleep Time (TSL), Sleep Latency (SL), Sleep Efficiency (SE), Wake After Sleep Onset (WASO), and different sleep stages.
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 29 Figure 29. A schematic representation of the road highway: travel lane and roadway edge lines. Standard Deviation of the Lateral Position (SDLP).
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 30 Figure 30. Mean ± SD values for Explosive Leg Extensor Power. TS 1: before the beginning of the morning driving task. TS 3: at the end of the morning driving task.
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 31 Figure 31. Mean ± SD for the subjective rating of sleepiness during driving. TS1: before the beginning of the outgoing-trip; TS2: before the beginning of the return-trip; TS 3: at the end of the return-trip. * Significant difference for TS1 compared to TS2 (p<0.05); * significant difference for TS1 compared to TS3 (p<0.05).
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 32 Figure 32. Mean ± SD for the subjective rating of anxiety during driving. TS 1: before the beginning of the outgoing-trip; TS 2: before the beginning of the return-trip; TS 3: at the end of the return-trip. * significant difference for TS 1 compared to TS 3 (p<0.05).
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 34 Figure 34. Mean ± SD values for the subjective rating of alertness during driving. TS 1: before the beginning of the outgoing-trip; TS 2: before the beginning of the return-trip TS 3: at the end of the return-trip. * Significant difference for TS1 compared to TS 2 (p<0.05); * significant difference for TS1 compared to TS 3 (p<0.05).
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 35 Figure 35. Mean ± SD values for the Standard Deviation of the Lateral Position of the vehicle during driving.
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 36 Figure 36. Mean ± SD values for the Number of Inappropriate Line Crossings over time of driving.
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 37 Figure 37. Mean ± SD values for Variations of Core Body Temperature. * significant differencesfor the bed compared with the no-nap condition (p<0.05). + significant differences for the box compared with the no-nap condition (p<0.05). ⍺ significant differences for the reclining chair compared to the box (p<0.05).
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 38 Figure 38. Mean ± SD values for variations of core body temperature during the driving test.
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 39 Figure 39. Mean ± SD for the subjective rating of sleepiness during driving. TS 4: before the beginning of outgoing-trip; TS 5: before the beginning of the return-trip; TS 6: at the end of the return-trip. * significant difference for bed, box, reclining chair conditions compared to no-nap (p<0.05). * significant difference for bed, box, and reclining chair conditions compared to no-nap (p<0.05). ⍺ significant difference during TS 4 for the box compared to the reclining chair (p<0.05).
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 40 Figure 40. Mean ± SD for the subjective rating of sleepiness. TS 4: before the beginning of the outgoing-trip. TS 5: before the beginning of the return-trip TS 6: at the end of the return-trip.
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 41 Figure 41. Mean ± SD for the subjective rating of fatigue. TS 4: before the beginning of the outgoing-trip TS 5: before the beginning of the return-trip TS 6: at the end of the return-trip. * significant difference at TS 5 for bed, box, and reclining chair conditions compared to no-nap condition (p<0.05). * significant difference at TS 6 for bed, box, and reclining chair conditions compared to no-nap condition (p<0.05).
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 42 Figure 42. Mean ± SD for the subjective rating of alertness. TS 4: before the beginning of the outgoing-trip task; TS 5: before the beginning of the return-trip TS 6: at the end of the return-trip.
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 43 Figure 43. Mean ± SD values of SDLP during driving. * significant difference for the bed compared to the no-nap condition (p<0.05). + significant difference for the box compared to the no-nap condition. ⍺ significant difference for the reclining chair compared to the no-nap condition (p<0.05). ⏁ significant difference for the bed compared to the box condition (p<0.05). ♢ significant difference for the bed compared to the reclining chair condition (p<0.05).
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 44 Figure 44. Mean and SD values for the NILC. * significant difference for the bed compared to the no-nap condition (p<0.05). + significant difference for the box compared to the no-nap condition (p<0.05). ⍺ significant difference for the reclining chair compared to the no-nap condition (p<0.05). ♢ significant difference for the box compared to the reclining chair condition (p<0.05).
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 45 Figure 45. Mean ± SD for the subjective rating of alertness. TS 1: before the beginning of the morning driving task; TS 3: before the beginning of the morning return-trip TS 6: at the end of the post-nap driving task. * Significant difference for TS6 compared to TS3 (p<0.05); * significant difference for TS 6 compared to TS1 (p<0.05).

Figure 46 .

 46 Figure 46. Mean and SD values of SDLP during the morning and the post-nap driving sessions.

Figure 47 .

 47 Figure 47. Mean and SD values of NILC during the morning and the post-nap driving sessions. * significant difference for the morning compared to the post-nap session (p<0.05).

Figure 48 .

 48 Figure 48. Design of the experimental protocol. Subjects experienced nap and no-nap conditions (4 th column) on four different occasions, following a reference night or partial sleep deprivation (2 nd column).

Figure 49 .

 49 Figure 49. Mean ± SD values of time to exhaustion during KST after the nap ( ) or the no-nap (•), after RN (reference night), and PSD (partial sleep deprivation). **Significant differences from PSD without nap (p<0.01); €€ Significant differences from RN without nap (p<0.01)

  are proved to modulate the extent of benefits obtained from a nap. These observations have led researchers to systematically investigate the impacts of a short midday nap on different cognitive and physical measures. Regarding cognitive performance, Petit et al. (2018) tested the effects of a short midday nap on a battery of six reaction-test measurements to investigate the following parameters: alertness, divided attention, sustained attention, visual scanning, flexibility, and distractibility. Their results showed that the nap improved the performance only for the divided attention tasks. More recently, Tanabe et al. (2020) investigated the effects of a short midday nap on the visual simple reaction test, choice reaction test, and modified flanker test. Their findings indicated that the nap improved the simple and choice reaction time tests, but did not enhance the performance in the modified flanker test. The authors considered the difficulty level of the cognitive task as the potential factor confounding the impacts of napping on cognitive performances.

Figure 50 .

 50 Before the beginning of the experimental sessions, participants were familiarized with the experimental procedures. Throughout the experimental period, they were asked to maintain a regular sleep-wake pattern. Nocturnal sleep was monitored by actigraphic recordings, and sleep diaries. Additionally, for the 24-hour before each visit, athletes were requested to abstain from strenuous physical activities. For the main experimental trial, participants randomly experienced either a nap or a control condition on two separate occasions within a 48-hour-rest between sessions. The nap condition included a period of a 30-min nap from 13:00 to 13:30 in bed after lunch. In the control condition, participants were kept in the laboratory and were given the choice to practise their favorite activities such as reading books, watching videos, or chatting. Immediately after waking from the nap, they answered the questionnaire about their sleep during the nap. A 30-min period of time separated the nap or the rest condition from the assessment session. The testing session started at 14:00. It was composed of a set of three different reaction-time measurements and a physical assessment task. Before the beginning of the physical task, subjects completed a standardized warm-up of 10-min. It consisted of self-selected-intensity jogging, vertical jumping, and dynamic stretching, and then it was followed by 5-min of passive rest.

Figure 50 .

 50 Figure 50. Design of the experimental protocol.

  reaction-time task is composed of a set of three tests: Simple Reaction Test (SRT), Visual Scanning Test (VST), and the Delayed Match to Sample Test (DMST). Each one of the three tasks contained a block of 10 trials. Subjects were asked to respond as quickly as possible to a visual stimulus by pressing the computer keyboard spacebar button with the index finger of their dominant hand. The mean reaction time and numbers of missed targets or errors were also calculated. The testing was performed in a quiet room using the same computer for all trials. The task was conducted using software Reaction (version 4.05) created by Tilquin (Monod-Ansaldi et al. 2012).

Future

  research is required to broaden the testing of the potential short-and long-term effects of a short midday nap scheduled after a normal night of nocturnal sleep on different physical and cognitive performances. The present thesis covers the topic of the impacts of napping on performances from its fundamental perspective to empirical investigations. The challenge was to synergize these approaches with real-life occupational applications. The present work fully reflects the transdisciplinary nature of the research program at the laboratory of UMR-S 1075 INSERM/Unicaen COMETE as it involves different research disciplines in the fields of "Chronobiology", Sport Sciences and Performance Optimization", "Neurocognitive Science and

  Based on the two-process model[START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF]) (Figure51), we speculated that when the normal amount of nocturnal sleep is preserved, the use of the energetic nap would reduce the level of the process S (green curve), which consequently would enhance daytime arousal and improve cognitive and physical performances in the afternoon (blue curve).

Figure 51 .

 51 Figure 51. A schematic illustration of the changes in the homeostatic and circadian processes

  movement patterns and joint coordination are affected by sleep pressure is likely to open new Annex A 1. Pittsburgh Sleep Quality Index (PSQI) : French version Les questions suivantes ont trait à vos habitudes de sommeil pendant le dernier mois seulement. Vos réponses doivent indiquer ce qui correspond aux expériences que vous avez eues pendant la majorité des jours et des nuits au cours du dernier mois. Répondez à toutes les questions. 1/ Au cours du mois dernier, quand êtes-vous habituellement allé vous coucher le soir ? Ø Heure habituelle du coucher : ............... 2/ Au cours du mois dernier, combien vous a-t-il habituellement fallu de temps (en minutes) pour vous endormir chaque soir ? Ø Nombre de minutes : ............... 3/ Au cours du mois dernier, quand vous êtes-vous habituellement levé le matin ? Ø Heure habituelle du lever : ............... 4/ Au cours du mois dernier, combien d'heures de sommeil effectif avez-vous eu chaque nuit ? (Ce nombre peut être différent du nombre d'heures que vous avez passé au lit) Ø Heures de sommeil par nuit : ............... 5/ Au cours du mois dernier, avec quelle fréquence avez-vous eu des troubles du sommeil car n'avez pas pu vous endormir en moins de 30 mn b) vous vous êtes réveillé au milieu de la nuit ou précocement le matin c) vous avez dû vous lever pour aller aux toilettes d) vous n'avez pas pu respirer correctement e) vous avez toussé ou ronflé bruyamment f) vous avez eu trop froid g) vous avez eu trop chaud h) vous avez eu de mauvais rêves i) vous avez eu des douleurs j) pour d'autre(s) raison(s). Donnez une description : Indiquez la fréquence des troubles du sommeil pour ces raisons Pas au cours du dernier mois Moins d'une fois par semaine Une ou deux fois par semaine Trois ou quatre fois par semaine 11/ Si vous avez un camarade de chambre ou un conjoint, demandez-lui combien de fois le mois dernier vous avez présenté :

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Free running environmental experiments have paved the way toward exploring the proprieties of circadian rhythms. The first time-free environmental experiment was in 1938 by Nathaniel Kleitman and his assistant Bruce Richardson, who were at the same time the subjects. They stayed together for 32 days in a cave in Kentucky, located in the South of the United States. The second contribution was run by Michel Siffre, a French researcher, and speleologist who also organized

many other underground time-free environmental experiences. His first experience was conducted in 1962 at the age of 23 in which he spent two months in an underground glacier located in the French Alps. And, his last experience was in 2000, in which he stayed for 73 days in the caves of Clamouse in the South of France

Table 1 .

 1 Levels of arousal during the waking period, EEG marker: description and associated behavior.

	Levels of arousal	Wave	Frequency	Associated behavior
	Hyper-arousal	Gamma	30-120 Hz	Peak performances
		High-beta	15-30 Hz	Narrow focus, anxiety
	Over-arousal	Mid-beta	15-18 Hz	Active, alert, focused
		Low-beta	12-18 Hz	Relaxed wakefulness
	Low arousal	Alpha	8-13 Hz	Sleepiness, drowsiness

  . One of the most persistent causes which negatively affect sleep is the overloaded schedule that includes high frequency and intensive training sessions. Likewise, sleep can be shortened due to early start time and late evening training sessions. Moreover, athletes who participate in national and international competitions face challenging demands that raise external and internal factors causing sleep loss.

  Instead, the spontaneous expression of sleep and wakefulness was authorized. The result outlined a strong tendency toward a polyphasic alternation of sleep and wakefulness throughout the experimental period with mainly two sleep episodes per 24-h. The first sleep episode corresponded to nocturnal sleep, and the second sleep episode corresponded to a daytime nap. Besides,

	I. 4. 2. 1.	TEMPORAL PATTERNS OF NAPPING

[START_REF] Campbell | Duration and placement of sleep in a "disentrained" environment[END_REF] 

investigated sleep-wake patterns during 60 hours of enforced bedrest protocol in which the experimental protocol was not restricted to a single sleep episode.

Table 2 .

 2 Mean and SD values of nocturnal sleep parameters for the night preceding the four experimental visits.

	. 1. 4. 1.	MORNING MEASUREMENTS (BASELINE)
	II. 1. 4. 1. 1.	ACTIGRAPHY AND SLEEP DIARY	
	Mean and standard deviation values of sleep parameters for the nights prior to the experimental
	visits are presented in Table 2. No significant differences between conditions were found for the
	following sleep variables: Bed Time (df= 2.60; p>0.05), Fall Asleep Time (df= 2.67; p>0.05),
	Wake Up Time (df= 2.91; p>0.05), Total Time in Bed (df= 2.73; p>0.05), and Assumed Sleep
	Time (df= 2.80; p>0.05).			
	Sleep variables (hour ± min)	Bed	Box	Reclining chair	No-nap
	Bed Time	23:20 ± 37	23:20 ± 42	23:13 ± 35	23: 20 ± 41
	Fall Asleep Time	23:36 ± 41	23: 34 ± 41	23: 27 ± 36	23:41 ± 47
	Wake up Time	08:03 ± 38	07:59 ± 44	08:06 ± 45	07:58 ± 36
	Total Time in Bed	07:46 ± 40	07: 32 ± 84	07: 52 ± 46	07: 36 ±51
	Assumed Sleep Time 07:23 ± 24	07:22 ± 31	07: 21 ± 26	07: 20 ± 26

Table 3 .

 3 Mean and SD values for objective measurements of sleep variables during the nap for the bed, box, and reclining chair conditions.

			Nap conditions			Post-hoc analysis
	Variables	Bed	Box	Reclining chair	P value	Bed vs Box	Bed vs Reclining chair	Box vs reclinin g chair
	TTB (min)	24.95 ± 0.16	24.95 ± 0.16	24.92 ± 0.22	0.8561			
	TST (min)	14.95 ± 3.59	11.75 ± 4.37	13.45 ± 4.14	0.0011	0.001	0.1495	0.0392
	SL (min)	8.76 ± 3.64	9.82 ± 3.85	9.36 ± 3.30	0.3126			
	SE%	59 %	47%	54 %	0.001	0.001	0.1586	0.0368
	WASO	1.16 ± 1.06	1.37 ± 1.33	1.14 ± 1.04	0.9609			
	Stage 1 (min)	4.56 ± 2.16	3.87 ± 2.14	4.30 ± 3.59	0.3055			
	Stage 2 (min)	9.27 ± 3.33	7.33 ± 3.88	8.60 ± 3.55	0.036	0.0564	0.5884	0.1424
	Stage 3 (min)	1.11 ± 1.49	0.54 ± 0.92	0.54 ± 0.89	0.0593			

TTB: Total Time in Bed; TST: Total Sleep Time; SL: Sleep Latency, WASO: Wake After Sleep Onset.

Table 4 .

 4 Mean and SD values for subjective measurements of sleep variables during the nap for the bed, box, and reclining chair conditions.

			Nap conditions		Post-hoc analysis
	Variables	Bed	Box	Chair	P value	Bed vs box	Bed vs reclining chair	Box vs reclinin g chair
	TST	10.63 ± 5.99 10.39 ± 7.64 8.13 ± 5.85 0.044	0.9711	0.087	0.008
	SL	8.9 ± 5.1	8.9 ± 5.1	8.8 ± 4.6	0.903			
	Sleep depth 2.67 ± 1.22	2.68 ± 1.15	2.34 ± 1.14 0.171			
	Satisfaction	3.2 ± 0.8	3.12 ± 0.76	2.64 ± 0.8	0.001	0.452	0.007	0.007
	with the nap							

TSL: Total Sleep Time; SL: Sleep Latency. II. 1. 4. 2. 3. VARIATIONS OF CORE BODY TEMPERATURE DURING THE NAP Mean and SD values for variations of CBT are presented in Annex B.4, and the results are schematized in Figure

Table 5 .

 5 Sleep parameters of the night preceding the testing, after the nap and the no-nap conditions, and after a reference night and a partial sleep deprivation night (Mean ± SD).

			No nap	Nap
			RN	PDS	RN	PSD
	Bed time		22 :49± 00 :27	22 :50± 00 :23 22 :56 ± 00 :23 22 :55± 00 :30
	Fall asleep time	23 :13± 00 :30	23 :19± 00 :28 23 :20 ± 00 :26 23 :24 ± 00 :32
	Wake up time		07 :05± 00 :45	03 :03± 00 :06	07 :24± 00 :46 02 :55± 00 :12
	Total Time in bed	08 :20± 00 :46	04 :13± 00 :22	08 :27± 00 :42 04 :09± 00 :21
	Assumed sleep time		07 :52±00 :48	03 :44± 00 :27	08 :02± 00 :48 03 :39± 00 :27
	II. 2. 4. 2.	SUBJECTIVE ALERTNESS AND FATIGUE

Table 6 .

 6 Subjective alertness and fatigue following nap and no-nap conditions, after a reference night and a partial sleep deprivation (Mean ± SD).

		No nap		Nap	
		RN	PSD	RN	PSD
	Alertness	5,6 ±2,2	3,0 ±1,2•••	7,1 ±1,3*	3,6 ±1,2*•••
	Fatigue	4.4±0,8	7.4±1,2•••	4.1±1,2	6.5±1,5•••
	Note: RN: reference night, PSD: partial sleep deprivation; *p< 0.05 significant difference in
	comparison with the no nap condition; •••p< 0.01 significant difference from RN.
	II. 2. 4. 3.	COGNITIVE PERFORMANCE		
	II. 2. 4. 3. 1.	THE EFFECTS OF NAPPING ON PERFORMANCES.	

Table 7 .

 7 Cognitive and physical parameters measured following nap and no-nap conditions, after a reference night and partial sleep deprivation (Mean ± SD).

	Parameters	RN	No Nap	PSD	RN	Nap	PSD
	SRT (ms)	290,8±35,3	300,9±22,7	278,7±24,9*		285,7±21,5*
	MRT	20,8±8,4	16,9±7,6•	21,0±8,0*		21,7±8,6*•
	LRT (ms)	437,4±4,0	457,3±8,1•	342,2±4,3*		421,8±5,0*•
	SJ	39,6± 4,4		38,0±4,2	39,0±5,2		39,0±4,9
	CMJ	42,7± 4,2	41,5±4,7•	42,3±5,2		41,7±4,6•
	Note: RN: Reference Night, PSD: Partial Sleep Deprivation, SRT: Simple Reaction Time, MRT:
	Mental Rotation Test, LRT: Lower Body Reaction Test; SJ: Squat Jump, CMJ: Counter
	Movement Jump. *p< 0.05; significant difference in comparison with the no nap condition; •p<
	0.05; significant difference from RN.				
	II. 2. 4. 3. 2.	THE EFFECTS OF NAPPING ON FATIGUE INDUCED BY THE KARATE
	SPECIFIC TEST						

Table 8 .

 8 ∆ Performance for cognitive and physical parameters measured following nap and nonap conditions, after a reference night and a partial sleep deprivation (Mean ± SD).

			No Nap	Nap
			RN	PSD	RN	PSD
	SRT (ms)	9,4±22,7	22,8±71,8	20,7±46,5	5,3±32,4
	MRT		0,5±0,7	1,8±1,6	0,9±1,7	3,2±-0,1
	LRT (ms)	-24,0±39	6,2±76,9	27,7±36,7×	-3,0±24,3
	SJ		-2,1±3,8	-1,9±1,8	-0,8±2,3*	-0,8±1,6*
	CMJ		-3,6±1,7	-3,8±1,1	-3,1±1,3*	-3,1±1,2*
	Note: RN: reference night, PSD: partial sleep deprivation, SRT: Simple Reaction Time, MRT:
	Mental Rotation Test, LRT: Lower Body Reaction Test; SJ: Squat Jump, CMJ: Counter
	Movement Jump; ∆ Performance is expressed by calculating the difference between the
	performances after and before the KST. × p< 0.05; significant difference in comparison with the
	no nap condition after RN; * p< 0.05; significant difference in comparison with the no nap
	condition.				
	II. 2. 4. 4.	PHYSICAL PERFORMANCE	
	II. 2. 4. 4. 1.		TIME TO EXHAUSTION DURING THE KARATE SPECIFIC TEST
	There was a significant main effect for Nap (F (1-12) =10.88, p< 0.01; ηp2 =0.47), Sleep (F (1-12)
	=10.37, p< 0.01; ηp2 =0.46), and for Nap × Sleep interaction (F (1-12) =8.98, p<0.01; ηp2 =0.42).

1. Si vous viviez à votre rythme (celui qui vous plaît le plus), à quelle heure vous lèveriez-vous tant enti rement libre d organiser votre journ e ?
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	2.							

Si vous viviez à votre rythme (celui qui vous plaît le plus), à quelle heure vous mettriez-vous au lit tant enti rement libre d organiser votre journ e ?

  Mean and SD values for Explosive Leg Extensor Power during TS 1, TS 3, : before the beginning of the driving session. TS 3: at the end of the morning driving task.TS 6: at the end of the post-nap driving task. Morning Session: Mean and SD values for subjective measurements of sleepiness, anxiety, fatigue and alertness. : before the beginning of the driving task; TS2: before the beginning of the return-trip TS 3: at the end of the driving task. Post-nap session: Mean and SD values for subjective measurements of sleepiness, anxiety, fatigue and alertness.

	Annex B. 1. and TS 6 Explosive Leg Extensor Power (W/kg) TS 1 TS 3 TS 6 TS 1Annex B. 2. Nap conditions Nap conditions Bed Box Reclining chair No-nap 3.11± 0.72 3.18 ± 0.71 3.17 ± 0.70 3.24 ± 0.97 3.19± 0.73 3.23± 0.81 3.26± 0.73 3.23 ± 0.73 3.27 ± 0.78 3.30 ± 0.75 3.35 ± 0.81 3.28 ± 0.80 Bed Box Reclining chair No-nap Sleepiness TS 1 3.30 ± 1.21 3.02 ±1.18 3.46 ± 1.4 3.61 ± 1.53 TS 2 5.35 ± 2.01 5.07 ± 1.99 5.20 ± 1.9 5.11 ± 1.91 TS 3 5.33 ± 2.06 5 ± 1.90 4.92 ± 1.92 5.27 ±1.86 Anxiety TS 1 1.58 ±1.26 1.54 ± 1.42 1.80 ± 1.63 1.74 ± 1.62 TS 2 1.66 ± 1.14 2.05 ± 1.85 1.96 ± 1.57 1.92 ± 1.63 TS 3 1.95 ± 1.53 1.84 ± 1.71 1.98 ± 1.66 1.94 ±1.53 Fatigue TS 1 6 ± 1.921 5.93 ± 2.05 6.09 ± 2.03 5.56 ± 2.25 TS 2 4.65 ± 2.46 5.22 ± 2.20 4.88 ± 2.48 4.6 ± 2.48 TS 3 4.64 ± 2.41 4.85 ± 2.44 4.19 ± 2.50 4.62 ± 2.49 Alertness TS 1 6.34 ± 1.836 6.83 ± 1.53 7.73 ± 1.77 6.27 ± 1.84 TS 2 4.52 ± 2.47 4.88 ± 4.42 4.45± 2.51 4.79 ± 2.26 TS 3 4.82 ± 2.52 4.98 ± 2.38 5.04 ± 2.12 4.91 ± 2.13 Time of testing Post-nap session Compared to no-nap condition Bed Box Reclining chair No-nap Bed Box Reclining chair Sleepiness TS 4 3.61 ± 1.51 3.48 ± 1.16 3.87 ± 1.39 3.66 ± 1.45 0.2833 0.0966 0.8378 TS 5 3.17 ± 1.27 4.23 ± 2.07 3.69 ± 1.45 6.23 ± 2.04 0.0003 0.0017 0.0005 TS 6 3.87 ± 1.73 4.07 ± 1.79 4.25 ± 1.68 5.64 ± 2.03 0.0046 0.0006 0.0025 Anxiety TS 4 1.48 ± 1.33 1.38± 1.31 1.50 ± 1.07 1.63 ± 1.29 TS 5 1.85 ± 1.77 1.75 1± 1.52 1.61 ± 1.66 1.87 ± 1.61 TS 6 1.90± 1.93 1.82 ± 1.55 1.90 ± 1.91 2.07 ± 2.09 Fatigue TS 4 5.89 ± 1.68 6.29 ± 1.82 5.82 ± 1.83 5.61 ± 1.93 0.3833 0.0790 0.4355 TS 5 6.37 ± 1.60 5.79 ± 2.26 5.86 ± 2.11 4.02 ± 2.70 0.0010 0.0001 0.0007 TS 6 5.79 ± 2.05 5.67 ± 2.35 5.52 ± 2.07 4.40 ± 2.52 0.0532 0.0052 0.0168 TS 4 6.27 ± 1.69 6.73 ± 1.53 6.15 ± 1.84 6.25 ± 1.72 0.7742 0.0939 0.7742 TS 1Annex B 6. Variables TS 5 6.52 ± 1.60 5.78 ± 2.37 6.15 ±1.91 3.81 ± 2.56 0.0010 0.0010 0.0021 Alertness TS 6 6.29 ±2.21 5.97 ± 2.12 5.85 ±1.79 4.38 ± 2.54 0.0048 0.0041 0.0095	Between the nap conditions Bed/ box Bed /reclining chair Box/recli ning chair 0.2997 0.0963 0.0243 0.2997 0.6250 0.4040 0.8111 0.9441 0.8111 0.7732 0.9518 0.3832 0.9173 0.9518 0.8032 0.9244 0.9518 0.9244 0.0596 0.7742 0.1940 0.7742 0.7742 0.9627 0.7391 0.7391 0.9627
	20	21	22	23	00	01	02	03
	5	4		3		2	1	
	Commentaire :							

LIST OF ANNEXES

SECTION A. QUESTIONNAIRES resulting from it, rather than in the reclining chair. Here it is important to mention that the effects of sleep inertia were mild since we found no impairment or reduction in arousal and performances immediately upon waking from the short nap.

The impacts of napping on the dynamic changes in aspects of performances (i.e. SDLP and NILC) over time were modulated by the environment of sleep during the nap. Compared to the no-nap condition, SDLP values were lower for 100-min in bed, and for 60-min in box and reclining chair conditions. Besides, the NILC was lower for 70-min in bed, 40-min in the box, and 30-min in the reclining chair conditions. Together, these results indicated that the 25-min midday nap resulted in negligible effects of sleep inertia, alleviated daytime arousal, prevented mental fatigue, and improved sustained attention (i.e. reduced SDLP and NILC) during the simulated driving task.

These findings are in line with predictions found in the two-process model supporting that napping reduces the homeostatic sleep pressure and enhances arousal levels during the day (Borbély 1982[START_REF] Borbély | The two-process model of sleep regulation: a reappraisal[END_REF][START_REF] Achermann | Sleep in a sitting position: effect of triazolam on sleep stages and EEG power spectra[END_REF].

The improvements resulting from these naps throughout the post-nap testing sessions suggest that the structure of sleep is an important contributor to these benefits. Accordingly, it seems that a 25-min nap containing 12-to 15-min of sleep, which includes a 4-min of stage 1 sleep, 7-to 9min of stage 2 sleep, and no more than 1-min of stage 3 sleep, is beneficial for improving arousal and performance in the afternoon after a normal night of sleep. Together, these findings are in agreement with several studies showing that a short midday nap of a total sleep duration ranging from 7-to 20-min, mainly composed of stage 2 sleep and of a small amount of stage 3 sleep resulted in negligible effects of sleep inertia upon waking, and enhanced arousal and performance in the afternoon after a normal night of sleep [START_REF] Takahashi | Brief naps during post-lunch rest: effects on alertness, performance, and autonomic balance[END_REF][START_REF] Hayashi | The effects of a 20-min nap at noon on sleepiness, performance and EEG activity[END_REF][START_REF] Hayashi | The effects of a 20 min nap in the mid-afternoon on mood, performance and EEG activity[END_REF].

The comparison between nap conditions showed that taking a nap in bed maintained higher levels of performance stability (i.e. SDLP) for 60-min compared to the box, and for 70-min compared to the reclining chair. In addition, the number of errors (i.e. NILC) during the course of driving was almost the same in all nap conditions. These findings are in accordance with rest between each trial. The MAT performance was recorded in seconds using the photocells system (Brower Timing Systems, Salt Lake City, Utah, USA).

II. 3. 3. STATISTICAL ANALYSIS

Statistical tests were processed using Statistica 7.1 (Statsoft, France). A paired sample t-test was used for examining the differences between the nap condition and the control condition. Effect sizes of significant results were reported as partial eta-squared (np 2 ), which quantified the proportion of the variability in the dependent variable that was explained by the effect. Values of 0.01, 0.06, and 0.14 represent small, medium, and large effect sizes respectively (Cohen 1988).

The level of statistical significance was set at (p<0.05). Actigraphic data showed that there were no significant differences (p>0.5) for none of the sleep parameters obtained during the nights preceding the assessments (Table 9). The mean and SD values of reaction-time tasks are displayed in Table 10. During the SRT, the results showed a significant main effect of SRT for the nap (F (1-11) = 5.823; p<0.05; ηp2= 0.34),

II. 3. 4. RESULTS

II

indicating that the time spent during the SRT was shorter after the nap compared with the no-nap condition. Concerning the VST, the results showed a significant effect for the nap (F (1-11) = 9.736; p<0.01; ηp2= 0.46) and demonstrated that the reaction time increased compared to the no-nap condition. Besides, the results showed no significant effect for the nap on missed targets or errors during this test (p>0.05) compared with the no-nap condition. Regarding the DMST, the results revealed a significant main effect for the nap (F (1-11) = 6.511; p<0.05; ηp2= 0.37), indicating that the mean reaction time was shorter after the nap than in the control condition. But, no significant differences for the numbers of missed targets or errors were observed following the nap (p>0.05) compared with the no-nap condition.

II. 3. 4. 2. 1. MODIFIED AGILITY T-TEST

The mean and SD values of MAT are presented in Table 10. The results showed that there was a significant effect for the nap (F (1-11) = 10,103 p<0.01; ηp2= 0.47) compared with the no-nap condition. This result implied that the short midday nap enhanced the performance in this task.

. Table 10. Results for performance measurements after the nap and the no-nap conditions. Values are expressed in means ± SD. ns: non-significant at p>0.05.

II. 3. 5. DISCUSSION

The focus of this study was to investigate the effects of a 30-midday nap on cognitive and physical performances in athletes after a normal night of nocturnal sleep. The first objective was to investigate the effects of napping on cognitive performances using reaction time tests with distinct complexity levels. The second objective was to examine the effects of napping on speed and directional ability in highly-trained athletes. The results showed that the nap improved the performance in the SRT and the DMST. However, it negatively affected the performance in the VST. Moreover, the results indicated that the nap improved speed and directional ability in highly-trained athletes.

The analysis of actigraphic recordings and sleep diaries for the nights before the experimental visits indicated that the total amount of nocturnal sleep averaged 8-h per night. According to the National Sleep Foundation, 8 hours of sleep per night are considered to be the appropriate sleep duration recommended for adults to ensure optimal neurobehavioral functioning during the day [START_REF] Hirshkowitz | National Sleep Foundation's sleep time duration recommendations: methodology and results summary[END_REF]. Based on the subjective survey of sleep during the nap, the results indicated that the perceived length of sleep during the nap averaged about 14-min. This finding demonstrated that the participants were able to sleep during the nap.

III. GENERAL DISCUSSION CONCLUSION AND PERSPECTIVES

research realm for a better comprehension of the possible impacts of sleep loss and/or napping on physical outcomes. Drowsiness is regarded as a major contributor to the increasing number of errors and accidents especially when driving. Sleep-related accidents occur in the early morning and the afternoon (Horne andReyner 1996b, Garbarino et al. 2001). During these periods, the level of arousal declines, and performances naturally decrease. According to the World Health Organization (WHO), the number of road-traffic deaths reached 1.35 million in 2016 (World Health Organization. 2018). In Europe, the regional status report on road safety in 2019 declared more than 221 daily deaths on the road, most of them were children and young adults, and thousands more were severely injured or disabled, with long-lasting damages and physical disabilities [START_REF] Passmore | Progress in reducing road-traffic injuries in the WHO European region[END_REF]. Ten to thirteen percent of traffic-related accidents have been attributed to drowsiness at the wheel. WHO estimates that traffic injuries will rise to become the fifth leading cause of death by 2030 [START_REF] Passmore | Progress in reducing road-traffic injuries in the WHO European region[END_REF]. Moreover, the consequences of road traffic injuries are predicted to be more harmful than trachea, lung cancers, and diabetes. Therefore, drowsiness at the wheel stands as a predominant international public health issue [START_REF] Nabi | Awareness of driving while sleepy and road traffic accidents: prospective study in GAZEL cohort[END_REF][START_REF] Bioulac | Risk of motor vehicle accidents related to sleepiness at the wheel: a systematic review and meta-analysis[END_REF]. Nevertheless, before advocating the use of naps to prevent sleepiness at the wheel, the problem related to the physical environment where the nap takes place is a major key issue that has received little interest. The first problem that comes to the shore is related to the disturbing effects on sleep induced by the sitting-sleep position. The second major issue is associated with traffic-related noise. Finally, finding a suitable place to nap on highways is challenging, especially for motor vehicle drivers.

ANNEXES

To handle all issues stated above, the French startup SOMBOX has developed the first private nap rooms in France which are specifically designed to be implemented on highways to provide drivers and riders with the possibility to stop and to take a nap in suitable environmental conditions whenever they feel the need.

Annex C 2. Product design and architecture

Exterior design

The product was designed by Peugeot Design Lab. The size of the nap room is about 2m 2 . The degree of comfort and security provided in this small room are the markers of innovation and technology. Although it seems small, its size is suitable for one person who wishes to take a nap in a highly appropriate place.

Interior Design and Technology

The design of the box was carefully refined to fit not only the purpose of the room, but also the theme. The Startup stated that they have selected the best materials to best guarantee a good nap experience. Besides, the room is well-equipped with the basic power supplies that one may sometimes need to charge electronic devices

Mattress

The length and the width of the mattress are carefully determined by the ideal standards for a single mattress

Annex C 3. Lights and Music Technology

Among the many integrated instruments and equipment, we find a very sophisticated lightening system with specific effects that are in tune with the different phases set for the nap experience, accompanied by background relaxing music and aromatic essences containing a combination of essential oils to further enhance the relaxation process during the nap.

The product involved a logic for sleep guidance during the nap, which is mainly based on changes in both the intensity of different light colors (i.e. white and red) and the volume of the music.

Overall, the logic is best exemplified by a split of the sleep process into three distinct phases:

Falling Asleep, Sleep, and Waking.

The Falling Asleep phase lasted about 7-min and involved an interplay between music and colors that gradually decreased over the falling asleep phase. For the colors, the process started with an intense white light that gradually faded and then switched into the red color that progressively went darker until becoming black.

The Sleep phase lasted about 10-min during which there was a total absence of music and lights.

The Waking phase lasted about 7-min and involved the opposite process of the falling Asleep phase. That is, the music and light progressively increased to reach the starting point.