
HAL Id: tel-03555822
https://theses.hal.science/tel-03555822v1
Submitted on 18 Mar 2019 (v1), last revised 3 Feb 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic domain decomposition methods for hybrid
(iterative/direct) solvers

Louis Poirel

To cite this version:
Louis Poirel. Algebraic domain decomposition methods for hybrid (iterative/direct) solvers. Numerical
Analysis [math.NA]. Université de Bordeaux, 2018. English. �NNT : �. �tel-03555822v1�

https://theses.hal.science/tel-03555822v1
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L’UNIVERSITÉ DE BORDEAUX
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

par Louis POIREL

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : MATHÉMATIQUES APPLIQUÉES

Méthodes de décomposition de domaine
algébriques pour solveurs hybrides (direct/itératif)

Date de soutenance : 28 Novembre 2018

Devant la commission d’examen composée de :
Emmanuel Agullo . . Chargé de recherche, Inria . Co-encadrant
Bénédicte Cuenot . . . Senior researcher, CERFACS Examinateur
Martin J. Gander . . . Professeur, Université de Genève Rapporteur
Luc Giraud Directeur de recherche, Inria Directeur de thèse
Arnaud Legrand . . . Directeur de recherche CNRS, IMAG Grenoble Président
Michael A. Heroux . Senior Scientist, Sandia National Laboratories Rapporteur
Patrick Le Tallec . . Professeur, École polytechnique Rapporteur
François-Xavier Roux Professeur, Université Pierre et Marie Curie . . . Examinateur

2018

Résumé

La résolution de grands systèmes linéaires est une des étapes les plus consommatrices
en temps des simulation numérique. Des solveurs linéaires haute performance ont été
développés dans un contexte algébrique (à partir du système Ku = f) ; d’autres méth-
odes, dites de décomposition de domaine, offrent d’excellentes performances en exploitant
l’information au niveau de l’équation aux dérivées partielles sous-jacente au système
linéaire. Dans cette thèse, on tente de concilier ces deux approches: une analyse de
convergence des méthodes de Schwarz abstraites à deux niveaux conduit à la définition de
nouveaux préconditionneurs robustes pour les problèmes symétriques définis positifs basés
sur une généralisation algébrique de la méthode GenEO. Ces préconditionneurs robustes
ne nécessitent que la donnée de la matrice K comme une somme de matrices locales Ki
symmétriques semi-definies positives. Un préconditionneur robuste suivant cette méthode
a été implémenté dans un solveur hybride parallèle distribué et testé sur des cas applicat-
ifs. Une nouvelle boîte à outils de décomposition de domaine a aussi été développée en
python pour faciliter le développement de nouveaux solveurs par décomposition de do-
maines basés sur des solveurs haute performance. Le code de ce module nommé ddmpy est
inclus dans le présent document par programmation lettrée dans une approche de science
reproductible.

Title

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers

Abstract

The solution of large linear problems is one of the most time consuming kernels in many
numerical simulations. On the one hand, the computational linear algebra community has
developed several high performance linear solvers that only require algebraic information
(the matrix K and its associated right-hand side f) to compute the solution x such
that Kx = f . On the other hand, the Domain Decomposition (DD) community has
developed many efficient and robust methods in the last decades, that take into account
the underlying partial differential equation and the geometry to accelerate the solution
of such problems. In this thesis, both approaches are combined: an analysis of coarse
correction for abstract Schwarz (aS) DD solvers is proposed, leading to a new methodology
for building robust preconditioners for Symmetric Positive Definite (SPD) matrices based
on an algebraic generalization of the Generalized Eigenvalue in the Overlap (GenEO)
approach. The only requirement is that the SPD matrix K is provided as a sum of local
symmetric positive semi-definite (SPSD) matrices Ki. A robust preconditioner following
this methodology was developed for a sparse hybrid parallel distributed solver and applied
on several test cases. A new algebraic parallel DD toolbox in python was developed to
facilitate the development of new DD solvers relying on state-of-the-art high performance
solvers. This ddmpy module is exposed in this document using a literate programming
approach for reproducible science.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 3

Keywords

domain decomposition methods, parallel hybrid (direct/iterative) solver, coarse space,
literate programming, reproducible science

Mots-clés

méthodes de décomposition de domaine, solveur parallèle hybride (direct/iteratif), espace
grossier, programmation lettrée, science reproductible

Laboratoire d’accueil

Équipe-projet HiePACS
Inria Bordeaux – Sud-Ouest
200 avenue de la vieille tour
33405 Talence Cedex France

4 Louis POIREL

Contents

Remerciements 9

Résumé étendu 10

Extended Summary 15

1 Introduction 19
1.1 Historical context . 19

1.1.1 Newton, Leibniz and the introduction of Calculus 19
1.1.2 Schwarz and the birth of domain decomposition methods 20
1.1.3 The finite element method . 21
1.1.4 Sparse linear solvers . 23

1.2 Our positioning . 29

2 Domain decomposition methods 32
2.1 Introduction . 32
2.2 Introduction of an interface in the global domain 33

2.2.1 Introduction of an interface for the continuous problem 33
2.2.2 Introduction of an interface in the algebraic linear system 34

2.3 Local boundary conditions on the interface Γ 35
2.3.1 Dirichlet boundary condition on Γ 35
2.3.2 Neumann boundary condition on Γ 36
2.3.3 Robin boundary condition on Γ . 38

2.4 Optimal boundary conditions . 38
2.4.1 Dirichlet-to-Neumann operator for the PDE 39
2.4.2 Partial Gaussian elimination and the Schur complement matrix . . 40

2.5 Domain decomposition formulations . 41
2.5.1 Primal formulation . 42
2.5.2 Primal formulation on the interface 43
2.5.3 Dual formulation on the interface 43
2.5.4 Augmented formulation . 44
2.5.5 Augmented formulation on the interface 45
2.5.6 Dual augmented formulation on the interface (T1 + T2 = 0) 46
2.5.7 Two-Lagrange formulation . 46

2.6 Generalization to N subdomains . 47

5

CONTENTS

2.6.1 Augmented formulation . 47
2.6.2 Augmented formulation on the interface 50
2.6.3 Primal formulations . 51
2.6.4 Dual augmented formulations . 51
2.6.5 N -Lagrange formulations . 52

2.7 Domain decomposition preconditioners . 54
2.7.1 Variations on the Schwarz Alternating method 54
2.7.2 Abstract Schwarz preconditioners 54
2.7.3 Two-level preconditioners . 56
2.7.4 Choice of a coarse space . 56

3 Convergence of abstract Schwarz methods 58
3.1 Introduction . 58
3.2 Approximate abstract Schwarz preconditioners 62

3.2.1 Context . 63
3.2.2 Convergence result for M̃aS,D . 63
3.2.3 Proof of Theorem 1 . 65

3.3 Building the coarse space via generalized eigenproblems 68
3.4 Additive coarse correction . 70

3.4.1 Context . 70
3.4.2 Convergence result for M̃AS,2 . 70
3.4.3 Proof of Theorem 3 . 71

3.5 Numerical experiments . 72
3.5.1 Experimental setup . 72
3.5.2 Imposing an a priori bound on the condition number 73
3.5.3 Imposing an a priori coarse space size 77
3.5.4 Approximate case: Empirical study of the impact of sparsification . 78
3.5.5 Performance of AS,2/S on a modern parallel computer 79

3.6 Conclusion . 81

4 Design of a domain decomposition toolbox in python 83
4.1 Introduction . 83
4.2 Performance of some elemental operators in python 84

4.2.1 Comparison of C and python for basic linear algebra operations . . 85
4.2.1.1 Vector addition in C and python (daxpy) 85
4.2.1.2 Dense matrix multiplication in C and python (dgemm) . . 87

4.2.2 Comparison of Scipy and Pastix for computing the Schur comple-
ment matrix . 91

4.2.3 Comparison of Scipy and a custom implementation of the conjugate
gradient . 94

4.3 Design of the ddmpy domain decomposition toolbox in python 96
4.3.1 Introduction . 96
4.3.2 Some important concepts in the Python language 96
4.3.3 Dependencies (required and optional) 98

6 Louis POIREL

CONTENTS

4.3.4 An abstraction layer over the MPI for a domain decomposition
methods dd . 98

4.3.5 A hierarchical profiler suited for python 102
4.3.6 Distributed DD . 105

4.3.6.1 The DomainDecomposition class 106
4.3.6.2 The DistVector class . 112
4.3.6.3 The DistMatrix class . 118

4.3.7 The Linear Operator interface . 121
4.3.7.1 The abstract class LinearOperator 122
4.3.7.2 Testing the LinearOperator class 125

4.3.8 Direct linear solvers . 127
4.3.8.1 Factorizing matrices using Scipy 127
4.3.8.2 Computing a pseudoinverse 128
4.3.8.3 The Mumps sparse direct solver 129
4.3.8.4 The Pastix sparse direct solver 132
4.3.8.5 Test of the direct solvers 134

4.3.9 Iterative linear solvers . 135
4.3.9.1 Conjugate gradient . 135
4.3.9.2 Generalized conjugate residual 141

4.3.10 Hybrid linear solvers . 143
4.3.10.1 Schur solver . 143
4.3.10.2 Distributed Schur solver 152
4.3.10.3 N -Lagrange formulation 153

4.3.11 Centralizing a distributed problem 156
4.3.12 Domain decomposition preconditioners 158

4.3.12.1 One-level aS preconditioners 159
4.3.12.2 Two-level aS preconditioners 163
4.3.12.3 GenEO coarse space for aS preconditioners 169

4.4 Experimental study . 174
4.4.1 Experimental setup . 174
4.4.2 Numerical convergence . 176
4.4.3 Performance analysis . 179
4.4.4 A posteriori analysis using the TimeIt object 181

4.5 Limitations of the python language . 184
4.6 Conclusion . 185

5 Parallel design of coarse space correction for hybrid solvers 187
5.1 Introduction . 187
5.2 The baseline MaPHyS sparse hybrid solver 187

5.2.1 The additive Schwarz on the Schur (AS/S) method 187
5.2.2 Parallelization strategy for distributed memory architectures 191

5.3 Design of a coarse space correction in MaPHyS 194
5.3.1 Setup of the two-level preconditionerMAS,2/S 194
5.3.2 Application of the two-level preconditionerMAS,2/S 195

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 7

CONTENTS

5.4 Parallel strategies for the factorization (and corresponding solve step) of
the coarse matrix S0 . 197
5.4.1 Dense centralized (DC) strategy . 199
5.4.2 Sparse distributed (SD) strategy . 200
5.4.3 Sparse centralized (SC) strategy . 201
5.4.4 Sparse hierarchical distributed (SHD) strategy 202
5.4.5 Sparse replicated centralized (SRC) strategy 204

5.5 Experimental study . 205
5.5.1 Experimental setup . 205
5.5.2 Darcy academic test case . 208

5.5.2.1 Test case . 208
5.5.2.2 Performance results with MaPHyS (without multithreading)209
5.5.2.3 Performance results with MaPHyS, combining two-level

preconditioning with two-level parallelism 214
5.5.3 A respiratory airflow application using the Alya code 218

5.5.3.1 Test case . 218
5.5.3.2 Performance results with MaPHyS 219
5.5.3.3 Performance results with ddmpy 220

5.5.4 A plasma propulsion application using the AVIP code 220
5.5.4.1 Test case . 220
5.5.4.2 Performance results with MaPHyS 222
5.5.4.3 Performance results with ddmpy 223

5.6 Conclusion . 225

6 Conclusion and perspectives 229
6.1 Conclusion . 229
6.2 Robust methods for general (non SPD) problems 230

6.2.1 Algebraic interface for theN -Lagrange and for the Optimized Schwarz
methods . 230

6.2.2 Multipreconditioned solvers . 230
6.3 C++ implementation . 231

7 Acknowledgments 232

8 Louis POIREL

Remerciements

Un grand merci à toutes les personnes qui m’ont accompagné durant cette thèse ! Merci
Luc et Manu pour votre encadrement et votre amitié : je ne connaissais rien à l’algèbre
linéaire ni au calcul haute performance avant d’arriver chez vous (merci POM), et vous
avez su me guider et me faire aimer ces sujets. Au-delà de tout ce que vous m’avez
transmis scientifiquement, je tiens à vous remercier pour vos conseils et votre aide ces
quatre dernières années, y compris dans les vraies difficultés.

Merci à mes autres coauteurs, en particulier Gilles et Matthieu ; merci aussi pour les
cours de swing !

Un merci tout particulier, Chrystel, pour ton aide discrète et efficace (même quand je
me suis retrouvé bloqué de l’autre côté du cercle polaire) !

Merci à toute l’équipe HiePACS pour les soirées vin et fromage, les galettes des rois,
les baby-foot. . . un petit mot pour dire mon admiration toute particulière pour des génies
(incompris) croisés pendant cette thèse : Grégoire, JM et Maria.

Merci aussi aux colocs de Bègles : feux de cheminée virtuels, «j’habite chez Mamère»,
planquages botaniques. . . je ne me suis pas ennuyé avec vous !

Merci aux rapporteurs anonymes des articles que nous avons soumis, et aux trois
rapporteurs de ce manuscrit, qui ont contribué à l’améliorer. Merci Nicole pour nos
échanges qui m’ont aidé à mieux comprendre GenEO.

Je remercie les professeurs de mathématiques qui m’ont fait découvrir et aimer cette
discipline : M. Huynh, Mme Fisset, M. Maurice, Mme Benhamou, M. Tosel.

Un très grand merci à mes parents qui m’ont transmis (entre autres) le goût d’apprendre
et de découvrir et que j’embrasse avec mes frères et sœurs, dont le Dr. M. Poirel.

Pendant ces quatre années, d’autres priorités sont venues s’ajouter à la thèse puisque je
me suis marié et suis devenu papa ; la rédaction de ce manuscrit n’aurait pas été possible
sans les patients encouragements de mon épouse Verena qui a su me supporter pendant
la période de rédaction tout en gérant les petits soucis du quotidien, les tracasseries
administratives et l’aventure de la grossesse : merci pour tout ! Notre fille Helena Marie
est restée sage pendant la soutenance, merci à elle ! Cette thèse lui est dédiée.

9

Résumé étendu

La simulation numérique de phénomènes physiques complexes requiert la résolution de
systèmes linéaires de grande taille: le comportement ou l’évolution d’un phénomène sont
souvent modélisés sous forme d’un système d’Equations aux Dérivées Partielles (EDP)
faisant intervenir des conditions limites. Des méthodes de discrétisation, comme la méth-
ode des eléments finis par exemple, permettent de traduire l’EDP en un système linéaire
de la forme Ku = f , dont la solution discrète approche d’autant mieux la solution de
l’EDP que la taille du système augmente. Au cours des dernières décennies, plusieurs
algorithmes et programmes (appelés solveurs) ont été développés pour la résolution infor-
matique des grands systèmes linéaires sur des machines parallèles multicœurs.

Solveurs hybrides (direct/itératif)

Entre des méthodes directes, qui éliminent les inconnues les unes après les autres (Gauss,
1811; Amestoy et al., 2001; Duff et al., 2017; Hénon et al., 2002) et les méthodes itératives,
qui améliorent une solution approchée par corrections successives (Hestenes and Stiefel,
1952; Saad and Schultz, 1986; Saad, 2003), des méthodes dites hybrides conjuguent les
avantages des deux classes précédentes (Giraud et al., 2008; Rajamanickam et al., 2012a;
Yamazaki and Li, 2010). Aujourd’hui, les simulations de grande échelle se font dans un
contexte parallèle, où plusieurs unités de calcul interagissent pour résoudre le système ;
dans ce cadre, les solveurs hybrides permettent de combiner des solveurs directs et itératifs
en les utilisant respectivement dans les régimes où ils sont le plus performant : le solveur
direct localement pour éliminer les inconnues qui peuvent l’être sans perturber les autres
unités de calcul, et le solveur itératif globalement pour assurer la cohérence des solutions
locales. Cette approche est qualifiée d’algébrique, en ce qu’elle n’a besoin que de la donnée
de K et f pour calculer la solution u.

Méthodes de décomposition de domaine

Cette approche hybride peut être rapprochée des Méthodes dites de Décomposition de
Domaine (MDD) (Quarteroni and Valli, 1999; Dryja and Widlund, 1994; Mathew, 2008;
Toselli and Widlund, 2006): une approche utilisée par Schwarz (1870) pour prouver
l’existence d’une solution à certaines EDP a été étendue et adaptée pour le calcul par-
allèle (Lions, 1988, 1989, 1990). Souvent, les MDD sont introduites au niveau continu,
avant discrétisation : le domaine sur lequel l’EDP est définie est découpé en N sous-

10

CONTENTS

domaines, aux bords desquels des conditions aux limites d’interface sont introduites.
C’est seulement ensuite que l’EDP est discrétisée, indépendamment dans chaque sous-
domaine. Souvent, la résolution de problèmes locaux (dans les sous-domaines) inter-
vient dans une formulation globale d’un problème assurant la continuité de la solution à
l’interface entre les sous-domaines. Dans le Chapitre 2, des MDD classiques sont présen-
tées, tant dans leur expression continue que dans une formulation la plus algébrique
possible ; on montre que la plupart de ces méthodes peuvent s’utiliser dans un contexte
algébrique à condition de fournir la matrice K sous la forme d’une somme de matrices
locales K =

∑N
i=1RT

Ωi
Ki RΩi , où RΩi représente la restriction canonique d’un vecteur

global à un sous-domaine Ωi. Il est possible d’éliminer les inconnues d’intérieur (celles qui
n’ont pas d’interaction avec d’autres domaines) et de réécrire le système sous une forme
réduite SuΓ = f̃Γ, où S =

∑N
i=1RT

Γi
Si RΓi est le complément de Schur de l’intérieur

dans l’interface. Ce système ne fait intervenir que des quantités définies sur l’interface
(ensemble des inconnues partagées par plus d’un sous-domaine).

Convergence des méthodes de Schwarz abstraites

La méthode originale de Schwarz (1870), parallélisée par Lions (1988) sous sa forme con-
tinue, a été adaptée au cas algébrique sous la forme d’un préconditionneur de Schwarz
additif (Dryja and Widlund, 1987; Matsokin and Nepomnyaschikh, 1985) dans le cas
où la matrice K est Symétrique Définie Positive (SDP). Avec d’autres précondition-
neurs comme Neumann-Neumann, il peut être inclus dans une famille de précondition-
neurs dits de Schwarz abstraits (Toselli and Widlund, 2006), dont la forme générale est
MaS =

∑N
i=1RT

i Â
†
iRi, où A représente la matrice K ou S, selon que l’on a éliminé ou pas

les inconnues d’intérieur. Généralement, avec ces préconditionneurs, le conditionnement
de la matrice, et donc le nombre d’itérations pour qu’une méthode itérative comme le gra-
dient conjugué (Hestenes and Stiefel, 1952) converge, augmente avec le nombre de sous-
domaines N . Dans le Chapitre 3, on borne le conditionnement des méthodes de Schwarz
abstraites en comparant dans chaque sous-domaine le quotient de Rayleigh de la matrice
locale Âi du préconditionneurMaS avec celles des préconditionneurs de Schwarz additif
et Neumann-Neumann. Suivant une méthodologie introduite par Spillane et al. (2014a);
Spillane and Rixen (2013), nous proposons de construire un espace grossier adaptatif en
résolvant les problèmes aux valeurs propres généralisés correspondant aux quotients de
Rayleigh mentionnés ci-dessus. Avec cette correction, on prouve que le conditionnement
et donc le nombre d’itérations restent borné. Dans le cas général, la correction est ap-
pliquée en utilisant une technique de déflation : la composante grossière de la solution
est obtenue en résolvant le problème grossier par une méthode directe, et une projection
est appliquée à chaque itération de la méthode itérative afin de ne pas venir polluer cette
composante grossière. Dans le cas particulier du préconditionneur de Schwarz additif,
l’espace grossier peut être traité, au niveau algébrique, comme les N sous-domaines. Ces
résultats théoriques sont illustrés par des résultats numériques. D’autres travaux dans
ce sens incluent (Efendiev et al., 2012; Galvis and Efendiev, 2010; Haferssas et al., 2017;
Klawonn et al., 2016b, 2018; Nataf et al., 2011).

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 11

CONTENTS

Solveur algébrique par décomposition de domaine en
python: la boîte à outils ddmpy

Les différentes méthodes présentées ci-dessus peuvent être implémentées en combinant dif-
férents solveurs denses et creux, directs et itératifs, séquentiels ou distribués. Pour pouvoir
développer efficacement de nouveaux solveurs hybrides et méthodes de décomposition de
domaine algébriques, nous proposons dans le Chapitre 4 une boîte à outils de décompo-
sition de domaine en python. Le language python est un language interprété de haut
niveau. En comparaison à des langages compilés comme C, C++ ou Fortran, l’écriture
d’un programme en python est souvent beaucoup plus rapide, au prix d’une performance
réputée moins bonne à l’exécution. En analysant différentes implémentations de certaines
opérations (addition de vecteurs, multiplication matricielle, calcul d’un complément de
Schur et algorithme du gradient conjugué), on montre qu’il est possible d’écrire un code
performant en python à condition d’utiliser des bibliothèques optimisées (souvent écrites
dans des languages compilés) pour les opérations coûteuses et/ou répétées.

Sur ce constat, on a développé en python une boîte à outils pour construire des
solveurs par décomposition de domaine au niveau algébrique. Ce module nommé ddmpy
est présenté dans une approche de programmation lettrée (ou programmation littéraire)
définie par Knuth (1984):

Au lieu de considérer que notre tâche principale est de dire à un ordinateur ce
qu’il doit faire, appliquons-nous plutôt à expliquer à des êtres humains ce que
nous voulons que l’ordinateur fasse.

Ainsi, le code entier du module ddmpy est inclus dans ce chapitre ; les exemples inclus
peuvent être exécutés de manière interactive en ouvrant la source .org (Dominik, 2010;
Schulte and Davison, 2011) de ce document avec un éditeur compatible avec les fonction-
nalités de ce format orgmode, comme emacs.

Une expérience de passage à l’échelle jusqu’à 3.072 cœurs de calcul est ensuite pro-
posée : 16 solveurs par décomposition de domaines construits à partir d’éléments de
ddmpy sont comparés. Tous les scripts nécessaires pour reproduire l’expérience et générer
les figures sont inclus dans la source de ce document.

Conception parallèle d’une correction d’espace grossier

Dans le Chapitre 5, on présente et compare plusieurs stratégies parallèles pour la correc-
tion d’espace grossier présentée dans le Chapitre 3 : sans cette correction, les méthodes
de Schwarz abstraites ne nécessitent que très peu de communications globales, ce qui les
rend plus facile à implémenter efficacement ; c’est aussi ce qui explique leur mauvais com-
portement numérique pour résoudre des problèmes fortement distribués : l’information
ne transite d’un sous-domaine à l’autre que par des communication de voisins à voisins ;
pour une décomposition unidimensionnelle du domaine, il faut donc N itérations pour
que l’information puisse transiter entre les deux sous-domaines extrêmes. L’idée générale
des techniques de correction d’espace grossier consiste à transmettre de façon globale une

12 Louis POIREL

CONTENTS

information grossière pour accélérer la résolution, par la résolution d’un problème global
de taille réduite (avec, typiquement, seulement quelques inconnues par sous-domaine).
La mise en œuvre d’une correction d’espace grossier réduit le nombre d’itérations mais
rend chaque itération plus coûteuse puisqu’un problème grossier global doit y être ré-
solu. Plusieurs stratégies, dont l’utilisation d’un solveur direct distribué sur l’ensemble
des sous-domaines, ou sur un nombre réduit de sous-domaines, avec ou sans réplication
du problème grossier, sont implémentées en Fortran 90 dans le solveur haute performance
hybride MaPHyS1 (Agullo et al., 2011, 2016b; Giraud et al., 2008). Ces différentes straté-
gies sont appliquées à la résolution de problèmes réguliers fortement hétérogènes avec une
décomposition unidimensionnelle ou tridimensionnelle. Ce solveur est également utilisé
dans deux codes applicatifs. Le premier est une code de simulation des voies respiratoires
de l’homme réalisée avec le logiciel Alya2 (Vázquez et al., 2016). Le second est un code de
simulation de propulsion plasmique mis en œuvre dans le code AVIP (Joncquieres et al.,
2018). Dans les deux cas, les systèmes linéaires résultent de la discrétisation d’une équa-
tion de type Poisson sur des maillages 3D non structurés. Ces expériences montrent que
pour des problèmes de grande taille distribués sur un grand nombre de cœurs de calcul, il
est avantageux de répartir les sous-domaines en plusieurs groupes de taille adéquate pour
appeler un solveur creux distribué à la bonne granularité.

Perspectives ouvertes par ces travaux

Méthodes robustes pour problèmes non symétriques

Les travaux présentés dans les chapitres 3 et 5 sur les méthodes de Schwarz abstraites
robustes ne concernent que les problèmes SDP : la preuve et l’implémentation reposent
sur le fait que toutes les matrices ont des valeurs propres réelles et positives. La présen-
tation générale des méthodes de décomposition de domaine dans le Chapitre 2, ainsi
que l’implémentation proposée au Chapitre 4 ne sont pas concernés par cette restriction,
et il serait intéressant d’intégrer dans ddmpy des méthodes robustes pour les problèmes
non symmétriques. L’interface est présente dans ddmpy pour tester des méthodes de
Robin optimisé algébriques, soit sous forme d’un préconditionneur Robin-Robin (Achdou
and Nataf, 1997), soit en utilisant une formulation N -Lagrange (Nataf et al., 1995).
Des travaux sont en cours dans l’équipe pour tester ces méthodes sur des problèmes
d’électromagnétisme issus d’applications externes. Une autre piste serait d’utiliser un
solveur itératif multi-préconditionné (Bridson and Greif, 2006; Greif et al., 2011; Spillane,
2016).

1See https://gitlab.inria.fr/solverstack/maphys/
2https://www.bsc.es/research-development/research-areas/engineering-simulations/

alya-high-performance-computational

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 13

https://gitlab.inria.fr/solverstack/maphys/
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational

CONTENTS

Implémentation en C++ d’une bibliothèque de décomposition de
domaine

Une seconde perspective ouverte par cette thèse est l’écriture d’algorithme de décomposi-
tion de domaine dans un formalisme algébrique. Le language python utilisé pour la boîte
à outils ddmpy présentée ci-dessus présente des limites en terme de parallélisation et quant
à l’interfaçage avec des applications écrites en C, C++ ou Fortran. Nous pensons qu’il
est possible, en utilisant un standard récent du langage C++, de remédier à ces difficultés
sans perdre l’expressivité haut-niveau de python. Un projet en ce sens a été initié 3.

3https://gitlab.inria.fr/solverstack/maphys/maphyspp

14 Louis POIREL

https://gitlab.inria.fr/solverstack/maphys/maphyspp

Extended Summary

The numerical simulations of complex physical problem require the solution of large linear
systems: the behavior and dynamics of such phenomena are often modeled by Partial
Differential Equations (PDE) with some boundary conditions. Discretization techniques,
such a the finite element methods, allow the translation of the PDE into a system of
linear equations of the form Ku = f , whose solution becomes closer to the solution of the
PDE as the size of the linear system increases. In the last decades, several algorithms
and computer implementations, referred to as solvers, have been designed to allow the
solution of large linear systems on parallel multicore computing platforms.

Hybrid (direct/iterative) solvers

Hybrid methods attempt to exploit the advantageous of both the direct methods, that
eliminate the unknowns one after each other (Gauss, 1811; Amestoy et al., 2001; Duff
et al., 2017; Hénon et al., 2002), and the iterative methods that improve an initial guess
through successive updates (Hestenes and Stiefel, 1952; Saad and Schultz, 1986; Saad,
2003). Nowadays, large scale simulations are performed on parallel computing platforms
where many computing units collaborate to solve a common global problem. In that
framework, the hybrid methods allow the combination of direct and iterative solvers in
their best functioning regimes: the direct solver concurrently and independently on small
enough sub-problems and the iterative solver to ensure the consistency of the global
computed solution. This methodology is termed algebraic, because the solver can fully
be defined based on its main input data that simply are K and f to compute the solution
u.

Domain decomposition methods

The hybrid approaches discussed above are closely related to the Domain Decomposition
Methods (DDM) (Quarteroni and Valli, 1999; Dryja and Widlund, 1994; Mathew, 2008;
Toselli and Widlund, 2006), the pioneer idea was originally introduced by Schwarz (1870)
as a proof of existence of solutions to a PDE, and subsequently extended and adapted
to parallel computing by Lions (1988, 1989, 1990). Often, DDM are considered at the
continuous level before discretization; the domain, where the PDE is defined, is split into
N subdomains with new boundary conditions that are defined on the interfaces introduced
by the splitting. Next, the PDE is discretized independently in each subdomains. The

15

CONTENTS

solution of the local sub-problems, at the subdomain level, is involved in a global procedure
that ensures the continuity of the solution across the interface between the subdomains.
In Chapter 2, some DDM are introduced both in a continuous setting as well as in their
more algebraic counterpart as long as the global matrix K can be expressed as the sum
of local matrices K =

∑N
i=1RT

Ωi
Ki RΩi where RΩi denotes the canonical restriction of a

global vector defined on Ω to the subdomain Ωi. It is further possible to eliminate the
interior unknowns (those that do not have any interaction with other subdomains) so that
the problem can be written in a condensed form SuΓ = f̃Γ, where S =

∑N
i=1RT

Γi
Si RΓi is

the Schur complement system. This new system only involves quantities that are defined
on the interfaces (unknowns that are shared by more than one subdomain).

Convergence of abstract Schwarz methods

The original method by Schwarz (1870), parallelized by Lions (1988) in its continuous
form, has been extended in an algebraic framework into an additive Schwarz precondi-
tioner (Dryja and Widlund, 1987; Matsokin and Nepomnyaschikh, 1985) for Symmetric
Positive Definite (SPD) matrices K. Including other well-known preconditioners such as
Neumann-Neumann, they belong to a wider family of preconditioners named abstract
Schwarz (Toselli and Widlund, 2006), whose generic form isMaS =

∑N
i=1RT

i Â
†
iRi where

A is either K or S depending on whether or not the internal unknowns have been elim-
inated. In general, when these preconditioners are used to accelerate the convergence
of the conjugate gradient method (Hestenes and Stiefel, 1952), the number of iterations
increases when N increases. In Chapter 3, we show how the condition number of the
abstract Schwarz preconditioned systems can be bounded by bounding the generalized
Rayleigh quotients of the local component Âi of the preconditionerMaS with respect to
their Neumann-Neumann and additive Schwarz counterparts. Following a methodology
introduced by Spillane et al. (2014a); Spillane and Rixen (2013), we propose to build an
adaptive coarse space by solving, on each subdomain, the generalized eigenproblems asso-
ciated with the above mentioned generalized Rayleigh quotients. With this correction, we
show that the condition number is bounded independently of N . This correction is gener-
ally applied through a deflation technique where the coarse space component is computed
via a direct solver on the coarse space and a projection is applied at each iteration of the
iterative scheme to ensure that the iteratively computed components do not come back
into the coarse space. In the particular case of the additive Schwarz preconditioner, the
coarse space correction can algebraically be handled as the N components associated with
the subdomains. We refer to (Efendiev et al., 2012; Galvis and Efendiev, 2010; Haferssas
et al., 2017; Klawonn et al., 2016b, 2018; Nataf et al., 2011) for other results on closely
related techniques.

16 Louis POIREL

CONTENTS

Algebraic domain decomposition method in python: the
ddmpy toolbox

The various numerical methods introduced above can be implemented in combining vari-
ous dense or sparse, iterative or direct, sequential or parallel solvers. In order to efficiently
design new hybrid solvers and algebraic domain decomposition solvers, we propose in
Chapter 4 a python toolbox. Python is a high level interpreted programming language.
At the price of slower execution time, developing codes in python is often much faster
compared with compiled languages such as C, C++ or Fortran, By analyzing the perfor-
mance of various implementations of a same numerical kernel (vector sum, matrix-matrix
multiplication, Schur complement calculation, conjugate gradient), we show that it is pos-
sible to write efficient python codes, if computing intensive kernels are implemented using
third party optimized libraries (often written in compiled languages).

Based on this observation, we have designed a python toolbox to develop efficient
parallel algebraic domain decomposition solvers. This module, called ddmpy, is presented
in a literate programming style defined by Knuth (1984):

Instead of imagining that our main task is to instruct a computer what to
do, let us concentrate rather on explaining to human beings what we want a
computer to do.

Consequently, the complete ddmpy code is included in this chapter; the provided examples
can be run interactively by opening the .org (Dominik, 2010; Schulte and Davison, 2011)
source file in a text editor that supports the functionalities of this format (e.g. emacs).

A scalability study is presented up-to 3,072 cores: the performance of 16 algebraic
domain decomposition solvers built using ddmpy are compared. All the python scripts
implemented to perform this comparison are included in the source of this document and
can consequently be reproduced.

Parallel design of a coarse space correction

In Chapter 5, we describe and compare the performance of several parallel strategies to
compute the coarse space correction introduced in Chapter 3. Without this coarse space
correction calculation, the abstract Schwarz preconditioners do not require any global
communications that constitute known parallel performance bottlenecks. This lack of
global communication is actually their numerical weakness: the information only moves
from one subdomain to its neighbors at each iteration; for a one-dimensional decompo-
sition N iterations are necessary to transfer the information between the first and last
subdomains. The underlying idea of the coarse space correction is to allow for a global
information exchange of a coarse information through the solution of a small problem
(with typically a few unknowns per subdomain). This numerical mechanism allows the
reduction of the number of iterations that conversely become more expensive on a large
parallel platform. Several parallel strategies for the implementation of the coarse space
correction kernels are considered, including the solution of the coarse problem on all or

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 17

CONTENTS

a subset of cores involved in the global communicator, with or without replication of the
solution of the coarse problem. We implemented these strategies in the fully features For-
tran 90 hybrid solver MaPHyS4 (Agullo et al., 2011, 2016b; Giraud et al., 2008). These
implementations are compared for the solution of structured highly heterogeneous diffu-
sion problems with 1D or 3D decompositions. The new solver has been integrated in two
application codes. Firstly in the Alya code5 (Vázquez et al., 2016) to compute the flow
in a human respiratory system. Secondy, in the AVIP code (Joncquieres et al., 2018)
that simulated plasma propulsion devices. In both case, the linear systems arise from the
discretization of a Poisson equation on 3D unstructured meshes.

Perspective and future work

Robust methods for non symmetric problems

The work presented in chapters 3 and 5 addresses robust abstract Schwarz methods for
SPD problems: the proof and implementation strongly rely on the fact that all matri-
ces have real positive eigenvalues. The general description of the domain decomposition
methods in Chapter 2, as well as the parallel implementation proposed in Chapter 4 do
not have this limitation, it would be interesting to design robust methods for non sym-
metric problems using the ddmpy toolbox. In particular, ddmpy can support algebraic
optimized Robin techniques either as a Robin-Robin preconditioner (Achdou and Nataf,
1997), or using a N -Lagrange formulation (Nataf et al., 1995). There is an ongoing action
in the Inria team to experiment those techniques for the solution of large wave prop-
agation problems. Another avenue of interest would be to design multi-preconditioned
schemes (Bridson and Greif, 2006; Greif et al., 2011; Spillane, 2016).

C++ implementation of an algebraic domain decomposition li-
brary

Another option, opened by the results of this PhD work, is to write domain decomposition
algorithms in an algebraic formalism. The python language selected to design the ddmpy
toolbox has some weaknesses in term of parallelism and the possibility to be called by
application code developed in C, C++ or Fortran. We believe that these limitations could
be overcome by using recent C++ standard without loosing the algorithmic expressivity
enabled by python. A new project has been recently initiated in this direction6.

4See https://gitlab.inria.fr/solverstack/maphys/
5https://www.bsc.es/research-development/research-areas/engineering-simulations/

alya-high-performance-computational
6https://gitlab.inria.fr/solverstack/maphys/maphyspp

18 Louis POIREL

https://gitlab.inria.fr/solverstack/maphys/
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational
https://gitlab.inria.fr/solverstack/maphys/maphyspp

Chapter 1

Introduction

1.1 Historical context

1.1.1 Newton, Leibniz and the introduction of Calculus

The invention of modern calculus by Leibniz (1684) and Newton (1687) provided a new
method for formulating and solving physical problems, using differentiation and integra-
tion of mathematical functions.

One problem of particular historical and practical importance (Gander and Wanner,
2014) is known as Laplace’s equation: given a domain Ω and a function vD : ∂Ω → R
defined on its boundary

find u : Ω→ R such that{
∆u = ∂xx u + ∂yy u + . . . = 0 in Ω, (1.1)

u = vD on ∂Ω. (1.2)

Equation (1.1) states that the sum of second-order derivatives along all dimensions
must be null. Equation (1.2) is called a Boundary Condition (BC). As it specifies the
value of the function on the boundary, it is called a Dirichlet, or first-type BC. It would be
possible, instead, to specify the value of the normal derivative ∂~nu = vN on the boundary:
this would be called a Neumann or second-type BC. A third type of BC is the Robin BC in
which the value of a linear combination of u and its normal derivative would be specified:
∂~nu + pu = vR. Different types of BC may be used on different parts of the boundary ∂Ω,
yielding a mixed BC.

A more generic PDE in a domain Ω, including its boundary condition on ∂Ω can be
written as

find u : Ω→ R such that{
L(u) = f in Ω,

B(u) = g on ∂Ω,
(1.3)

where f and g are given functions and L and B are linear operators. This means that
given any functions u1 and u2 and scalar λ, we have L(u1 + λu2) = L(u1) + λL(u2) and

19

1.1. Historical context

B(u1 + λu2) = B(u1) + λB(u2). Some non-linear problems can be solved too by solving a
sequence of linear problems, in a process called linearization.

When needed in this introduction and in Chapter 2, we will choose clarity and concision
over precision: the goal is not to introduce rigorously all the theory but to guide the reader
through some analytic and algebraic methods and illustrate the connection between them.
References are provided in each section for more accurate and in-depth definitions and
analyses.

Our discussion will be illustrated by a very simple example: Poisson’s equation in
a rectangle with a mixed BC. Poisson’s equation is a variation of Laplace’s equation
obtained by adding a source term f , replacing Equation (1.1) with ∆u = f . The domain
is the rectangle Ω = [0, 3] × [0, 1]. The source term is chosen to be f = −1. A Dirichlet
BC u = 0 is chosen on the left of the domain, and a Neumann BC is chosen on the right
(∂x u = 0), top and bottom (∂y u = 0), as presented in Figure 1.1. Our example problem
is

find u : Ω→ R such that
∆u = ∂xx u + ∂yy u = −1,

u(0, ·) = 0,


∂x u(3, ·) = ∂y u(·, 0) = ∂y u(·, 1) = 0.

(1.4)

u(0, ·) = 0

∂y u(·, 0) = 0

∂x u(3, ·) = 0

∂y u(·, 1) = 0

∆u = −1

Figure 1.1: Problem (1.4): steady-state heat equation in a rectangle, with a Dirichlet BC
on the left and Neumann BC on the top, right and bottom.

Since there is in fact no dependency on y in Problem (1.4), the system reduces to an
ordinary differential equation u ′′(x) = −1, with a BC u(0) = u ′(3) = 0. Integrating twice
gives u(x) = −1

2
x 2 + ax + b. The BC gives a = 3 and b = 0. The analytical solution of

Problem (1.4) is therefore u(x , y) = −1
2

x 2 + 3x and is represented in red in Figure 1.5.

1.1.2 Schwarz and the birth of domain decomposition methods

Fourier series (1807, 1822) gave a solution to Laplace’s equation for simple geometries
(such as a circle or a rectangle). However, in the general case, the mere existence of a
solution remained an open question.

When the domain Ω is the union of two simpler subdomains Ω1 and Ω2 on which
a solution can be computed, Schwarz (1870) gave a constructive proof of existence of
a global solution on Ω (see Figure 1.2). He devised an iterative method, the Schwarz
Alternating Method, for solving Laplace’s equation in Ω by solving it alternatively in each

20 Louis POIREL

1. Introduction

Figure 1.2: Two overlapping subdomains as drawn by Schwarz (1870). The two subdo-
mains Ω1 and Ω2 are labeled T1 and T2, and their intersection Ω1 ∩ Ω2 is labeled T ∗.

simpler subdomain, namely the circle Ω1 and the square Ω2, using the value of the previous
solution in the other subdomain as a Dirichlet BC

find u1
(n) : Ω1 → R such that and u2

(n) : Ω2 → R such that
∆u(n)

1 = 0 in Ω1,


∆u(n)
2 = 0 in Ω2,

u(n)
1 = vD on ∂Ω ∩ ∂Ω1, u(n)

2 = vD on ∂Ω ∩ ∂Ω2,

u(n)
1 = u(n−1)

2 on ∂Ω ∩ Ω2; u(n)
2 = u(n)

1 on ∂Ω ∩ Ω1.

Schwarz proved that for any initial choice for u(1)
1 , u(n)

1 and u(n)
2 converge towards the same

function in the overlap Ω1 ∩ Ω2, giving a unique limit u : Ω → R solution of Laplace’s
equation in Ω = Ω1 ∪ Ω2. Variations on this method are presented in Section 2.7.

1.1.3 The finite element method

Ritz (1908) developed a more general method for solving problems like (1.3) by expressing
the solution as a sum of basis functions. First, a weak formulation for the problem has to
be introduced: Problem (1.3) is rewritten

find u ∈ V such that ∀v ∈ Ṽ a(u, v) = f(v)

where V and Ṽ are suitable function spaces, a is a bilinear form and f is a linear form. This
is typically obtained by multiplying Equation (1.3) by a test function v , and integrating
over Ω.

The second step is to replace V and Ṽ with subspaces Vn and Ṽn of finite dimension n

find u ∈ Vn such that ∀v ∈ Ṽn a(u, v) = f(v).

Projecting u and v onto bases of Vn and Ṽn gives a discrete linear system that can be
written as a matrix equation

Ku = f, (1.5)

where K is a (n, n) matrix and u and f are vectors of Rn. u is called the unknown, and
f is called the Right-Hand Side.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 21

1.1. Historical context

Ritz’s method was immediately put to use and perfected in Russia, where it was
popularized by Galerkin (1915). More historical perspective is provided in (Gander and
Wanner, 2012).

A case of particular interest is when using a particular set of basis functions defined
on a mesh. This method, known as the Finite Element Method (FEM), yields a sparse
system, meaning that most coefficients in the matrix K are equal to zero. This sparsity
can be exploited, in practice, to reduce both the memory needed to represent the matrix
and the computational cost of some operations such as the matrix-vector product or
factorization.

In the current section as well as in Chapter 2, the FEM will often be used to relate
operations performed on the continuous PDE to their algebraic counterpart performed
on the matrix to illustrate the link between them. However, the algorithms presented
here never rely explicitly on a particular discretization method: they only may have some
algebraic prerequisites on the matrices, such as symmetry or positive definiteness that
are best illustrated using the FEM. More advanced discretization techniques such as, for
instance, the Hybrid Discontinuous Galerkin method (HDG) (Cockburn et al., 2009) can
generate matrices with the same properties, as shown in (Agullo et al., 2016c).

A weak formulation of Poisson’s equation in Problem (1.4) is obtained by multiplying
the PDE by v and integrating over Ω

find u such that ∀v
∫

Ω

∆u v dΩ =

∫
Ω

−v dΩ,

which after integration by parts gives the symmetric weak formulation

find u such that ∀v
∫

Ω

∇u · ∇v dΩ =

∫
Ω

v dΩ. (1.6)

We introduce a mesh of 3 square elements and 8 vertices over Ω (known as a Q1

P0 P1 P2 P3

P4 P5 P6 P7

Figure 1.3: Mesh used to discretize the weak formulation (1.6). The labels of the nodes
represent the ordering of the indices in the matrix in Equation (1.7).

discretization), as presented in Figure 1.3. The 8 points in the mesh are labelled Pi
(0 ≤ i ≤ 7). Then, we introduce the subspace generated by the basis functions ei, for
0 ≤ i ≤ 7 defined as

ei(Pi) = 1,

ei(Pj) = 0 if j 6= i,

ei(x , y) = a+ bx + cy + dxy inside each element of the mesh,

and in each element, there is only one choice of a, b, c and d that gives the prescribed value
(1 or 0) on the 4 corners. Each basis function ei is therefore continuous and piecewise-
polynomial on Ω.

22 Louis POIREL

1. Introduction

The solution can then be searched as u =
∑7

i=0 uiei. The resulting global system is



e0 e1 e2 e3 e4 e5 e6 e7

e0 1 0 0 0 0 0 0 0
e1 0 1.33 −0.167 0 0 −0.333 −0.333 0
e2 0 −0.167 1.33 −0.167 0 −0.333 −0.333 −0.333
e3 0 0 −0.167 0.667 0 0 −0.333 −0.167
e4 0 0 0 0 1 0 0 0
e5 0 −0.333 −0.333 0 0 1.33 −0.167 0
e6 0 −0.333 −0.333 −0.333 0 −0.167 1.33 −0.167
e7 0 0 −0.333 −0.167 0 0 −0.167 0.667





u0

u1

u2

u3

u4

u5

u6

u7


=



0
0.5
0.5
0.25

0
0.5
0.5
0.25


;

(1.7)

this linear system can be solved using one of the methods presented in Section 1.1.4.

1.1.4 Sparse linear solvers

Sparse matrices. A matrix is said to be sparse if it contains only very few nonzero
elements, as depicted in Figure 1.4b, where nonzero elements are represented in blue
color. There is no accurate definition of the proportion of nonzero elements in sparse
matrices. However, a matrix can be considered as sparse when one can take advantage
computationally of taking into account only its nonzero elements. Even if the matrix
presented in Figure 1.4a contains 54 % of nonzero elements, it cannot be termed sparse,
althought the one presented in Figure 1.4b can be clearly considered as sparse. As reported
for example by Saad (2003), partial differential equations are among the most important
sources of sparse matrices. These matrices are not only sparse, but they may also be
very large, which leads to a storage problem. For example, a matrix A ∈ Cn×n, of order
n = 106, contains n×n = 1012 elements (zero and nonzero elements). In double precision
arithmetic, 16 terabytes1 are necessary to store all its entries. There are special data
structures to store sparse matrices and their main goal is to store only non-zero elements
while at the same time facilitating algebraic operations. We refer to (Saad, 2003) for a
detailed description of possible data structures for sparse matrices.

Direct methods. To solve a linear system of equations of form Ax = b where A is a
square non-singular matrix of order n, b is the right-hand side vector and x is the unknown
vector, as illustrated by Equation (1.7), a broad class of methods is based on Gaussian
elimination (Gauss, 1811; Grcar, 2011). One variant decomposes the coefficient matrix
of the linear system (here A) into a product of a lower triangular matrix L (diagonal
elements of L are unity) and of an upper triangular matrix U such that A = LU . This
decomposition is called the LU factorization of the matrix A; for the matrix in (1.7) those

11012×2×8 bytes = 16×1012 bytes. Each complex element requires 2×8 bytes, 8 bytes for imaginary
part and 8 for real part, in double precision.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 23

1.1. Historical context

(a) matrix with 54% of nonzero elements. (b) matrix with 3% of nonzero elements.

Figure 1.4: Sparse matrices contains only a very few percentage of nonzero elements.
With 54% of nonzero elements the matrix in (a) cannot be referred as sparse whereas,
with only 3% of non zero elements, the matrix in (b) satisfies a sparsity criterion.

factors are:

L =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 −0.125 1 0 0 0 0 0
0 0 −0.127 1 0 0 0 0
0 0 0 0 1 0 0 0
0 −0.25 −0.286 −0.0738 0 1 0 0
0 −0.25 −0.286 −0.59 0 −0.338 1 0
0 0 −0.254 −0.324 0 −0.0971 −0.537 1


,

U =



1 0 0 0 0 0 0 0
0 1.33 −0.167 0 0 −0.333 −0.333 0
0 0 1.31 −0.167 0 −0.375 −0.375 −0.333
0 0 0 0.646 0 −0.0476 −0.381 −0.209
0 0 0 0 1 0 0 0
0 0 0 0 0 1.14 −0.385 −0.111
0 0 0 0 0 0 0.788 −0.423
0 0 0 0 0 0 0 0.277


.

Once the LU factorization is performed, the linear system solution consists of two
steps:
1: the forward substitution that solves the triangular systems Ly = b;
2: the backward substitution that solves Ux = y.

24 Louis POIREL

1. Introduction

In our example, it computes y = (0, 0.5, 0.56, 0.32, 0, 0.81, 1.2, 1.2)T , which leads to
the solution x = (0, 2.5, 4, 4.5, 0, 2.5, 4, 4.5)T , represented in blue in Figure 1.5.

x

u(x)

×
0

0.0

×

1

2.5

×

2

4.0
×

3

4.5

Figure 1.5: The solution to problems (1.4), in red, and (1.7), in blue. The solutions are
constant along the y axis (not represented).

The advantage of this approach is that most of the work is performed in the decom-
position step (O(n3) floating point operations for dense matrices) and very little in the
forward and backward substitutions (O(n2) operations). The solution of successive lin-
ear systems using the same matrix but with different right-hand sides, often arising in
practice, is then relatively cheap. Furthermore, if the matrix is symmetric (or symmet-
ric positive definite), an LDLT (or Cholesky) factorization may be performed. In finite
arithmetics, direct methods enable one to solve linear systems in practice with a high
accuracy in terms of backward error (Higham, 2002). However, this numerical robustness
has a cost. First, the number of arithmetic operations is very large. Second, in the case
of a sparse matrix A, the number of non-zeros of L and U is often much larger than the
number of non-zeros in the original matrix. This phenomenon, so-called fill-in, may be
prohibitive in terms of memory usage and computational time. Solving large sparse linear
algebra problems using direct methods is very challenging because of memory limitation.

In order to minimize computational cost and guarantee a stable decomposition and
limited fill-in intensive studies have been carried on that lead to efficient code implementa-
tions such as CHOLMOD (Davis, 2008), Mumps (Amestoy et al., 2001), Pardiso (Schenk
et al., 2000), Pastix (Hénon et al., 2002), SuperLU (Li and Demmel, 2003), to name a
few. Sparse methods work well for matrices arising from 2D PDE discretizations, but
they may be very penalizing in terms of memory usage and computational time for those
coming from large 3D test cases.

Iterative methods To solve very large sparse problems, iterative solvers may be
more scalable and considerably decrease the memory consumption. Iterative methods
produce a sequence of approximates to the solution. On the one hand, successive iterations
implemented by iterative methods require a small amount of storage and floating point
operations. On the other hand iterative methods are generally less robust than direct
solvers for general sparse linear systems, as they might converge slowly or not converge

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 25

1.1. Historical context

at all. Iterative methods for linear systems are broadly classified into two main types:
stationary and Krylov subspace methods.

Consider the solution of the linear systemAx = b; stationary methods can be expressed
in the general form

Mxk+1 = Nxk + b (1.8)

where xk is the approximate solution at the kth iteration. The matrices N and M do not
depend on k, and satisfy A = M − N with M non singular. These methods are called
stationary because the solution to a linear system is expressed as finding the stationary
fixed point of Equation (1.8) when k will go to infinity. Given any initial guess x0, the
stationary method described in Equation (1.8) converges if and only if ρ(M−1N) < 1,
where the spectral radius ρ(A) of a given matrix A with eigenvalues λi is defined by
ρ(A) = max(|λi|) (Saad, 2003). Typical iterative methods for linear systems are Gauss-

M N Method
D (L+ U) Jacobi

(D − L) U Gauss-Seidel
((1
ω

)D − L) (((1
ω

)− 1)D + U) Successive Over Relaxation

Table 1.1: Stationary iterative methods for linear systems. D, −L and −U are the
diagonal, strictly lower-triangular and strictly upper-triangular parts of A, respectively.

Seidel, Jacobi, successive over relaxation etc., as described in Table 1.1 according to the
choice of M and N .

Another approach to solve linear systems of equations consists in extracting the ap-
proximate solution from a subspace of dimension much smaller than the size of the coef-
ficient matrix A. This approach is called projection method. These methods are based
on projection processes: orthogonal and oblique projection onto Krylov subspaces, which
are subspaces spanned by vectors of the form p(A)v, where p is a polynomial (Saad,
2003). Let A ∈ Rn×n and v ∈ Rn, let m ≤ n, the space denoted by Km(A, v) =
span{v,Av, ...,Am−1v} is referred to as the Krylov space of dimension m associated with
A and v. These techniques approximate A−1v by p(A)v, where p is a specific polynomial.
Based on a minimal polynomial argument, it can be shown that these methods converge
in less than n steps compared to “infinity” for stationary schemes.

The convergence of Krylov subspace methods depends mostly on the numerical proper-
ties of the coefficient matrix A. To accelerate the convergence, one may use a non-singular
matrixM such thatMA has better convergence properties for the selected solver. The
linear systems MAx = Mb has the same solution as the original linear system. This
method is called preconditioning and depending on the authors, either the matrixM or
its inverseM−1 is called a left preconditioner; in this thesis, we chose the convention of
callingM the preconditioner: the preconditioner should somehow approximate A−1. On
the other hand, linear systems of equations can also be preconditioned from the right:
AMy = b, and x =My. One can also consider split preconditioning that is expressed as
follows: M1AM2y =M1b, and x =M2y, where the preconditioner isM =M1M2.

Krylov methods do not require the matrices A orM to be explicitly formed. Instead,
procedures for applying A and M to a vector must be provided. Preconditioners are

26 Louis POIREL

1. Introduction

commonly applied by performing sparse matrix-vector products or solving simple linear
systems. The numerical requirement for a good preconditioner is that the spectrum of
the preconditioned matrix is clustered. Such a feature generally ensures fast convergence
of the Conjugate Gradient method (CG) for Symmetric Positive Definite (SPD) problems
as illustrated by the CG convergence rate bound given by (Golub and Van Loan, 1996):

||ek||A ≤ 2

(√
κ− 1√
κ+ 1

)k
||e0||A,

where ek = x∗ − xk denotes the error associated with the iterate at step k and κ is the
condition number of the preconditioned linear system M 1

2AM 1
2 (which is simply the

ratio of the largest to smallest eigenvalue). From this bound, it can be seen that when the
condition number is small (i.e., κ ≈ 1), CG converges rapidly. In addition to improving
the spectral distribution, a preconditioner should be inexpensive to compute, to store and
apply. In a parallel distributed framework, the construction and the application of the
preconditioner should also be easily parallelizable.

The conjugate gradient algorithm constructs the solution that makes its associated
residual orthogonal to the Krylov space. A consequence of this geometric property
is that it is also the minimum error solution in A-norm over the Krylov space Kk =
span

{
r0,Ar0, . . . ,Ak−1r0

}
, where r0 = b − Ax0. It exists a rich literature dedicated to

this method; for more details we, non-exhaustively, refer to (Golub and Van Loan, 1996;
Saad, 2003) and the references therein.

A key ingredient in iterative method is the stopping criterion that should control the
quality of the computed solution. The backward error analysis, introduced by Givens
and Wilkinson (Wilkinson, 1963), is a powerful concept for analyzing the quality of an
approximate solution:

1. it is independent of the details of round-off propagation: the errors introduced
during the computation are interpreted in terms of perturbations of the initial data,
and the computed solution is considered as exact for the perturbed problem;

2. because round-off errors are seen as data perturbations, they can be compared
with errors due to numerical approximations (consistency of numerical schemes)
or to physical measurements (uncertainties on data coming from experiments for
instance).

The backward error defined by (1.9) measures the distance between the data of the initial
problem and those of a perturbed problem. Dealing with such a distance both requires to
choose the data that are perturbed and a norm to quantify the perturbations. For the first
choice, the matrix and the right-hand side of the linear systems are natural candidates. In
the context of linear systems, classical choices are the normwise and the componentwise
perturbations Chaitin-Chatelin and Frayssé (1996); Higham (2002). These choices lead
to explicit formulas for the backward error (often a normalized residual) which is then
easily evaluated. For iterative methods, it is generally admitted that the normwise model
of perturbation is appropriate (Barrett et al., 1994).

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 27

1.1. Historical context

Let xk be an approximation to the solution x = A−1b. The quantity

ηA,b(xk) = min
∆A,∆b

{τ > 0 : ‖∆A‖ ≤ τ‖A‖, ‖∆b‖ ≤ τ‖b‖

and (A+ ∆A)xk = b+ ∆b} ,

=
‖Axk − b‖
‖A‖‖xk‖+ ‖b‖

(1.9)

is called the normwise backward error associated with xk. It measures the norm of the
smallest perturbations ∆A on A and ∆b on b such that xk is the exact solution of (A +
∆A)xk = b + ∆b. The best one can require from an algorithm is a backward error of
the order of the machine precision. In practice, the approximation of the solution is
acceptable when its backward error is lower than the uncertainty of the data. Therefore,
there is no gain in iterating after the backward error has reached machine precision (or
data accuracy).

In many situations it might be difficult to compute (even approximatively) ‖A‖. Con-
sequently, another backward error criterion can be considered that is simpler to evaluate
and implement in practice. It is defined by

ηb(xk) = min
∆b
{τ > 0 : ‖∆b‖ ≤ τ‖b‖ and Axk = b+ ∆b} ,

=
‖Axk − b‖
‖b‖

. (1.10)

This latter criterion measures the norm of the smallest perturbations ∆b on b (assuming
that they are no perturbations on A) such that xk is the exact solution of Axk = b+ ∆b.

The stopping criteria of the Krylov solvers we used for our numerical experiments are
based on ηb.

Hybrid methods Direct methods are based on the Gaussian elimination that is
probably among the oldest methods (Gauss, 1811; Grcar, 2011) for solving linear sys-
tems. Tremendous efforts have been devoted to the design of sparse Gaussian elimination
that efficiently exploits the sparsity of the matrices. These methods indeed aim at exhibit-
ing dense submatrices that can then be processed with computational intensive standard
dense linear algebra kernels. Sparse direct solvers have been for years the methods of
choice for solving linear systems of equations because of their reliable numerical behav-
ior (Higham, 2002). Although there are ongoing efforts in further improving existing
parallel packages, such approaches may not be scalable in terms of computational com-
plexity and memory for large problems such as those arising from the discretization of
large 3D PDEs. Furthermore, the linear systems involved in the numerical simulation of
complex phenomena result from some modeling and discretization, which contain some
uncertainties and approximation errors. Consequently, the highly accurate but costly
solution provided by stable Gaussian elimination might not be mandatory.

Iterative methods, on the other hand, generate sequences of approximations to the
solution either through fixed point schemes or via search in Krylov subspaces. These
methods have the advantage that the memory requirements are low. Also, they tend to
be easier to parallelize than direct methods. However, the main problem with this class

28 Louis POIREL

1. Introduction

of methods is the rate of convergence, which depends on the properties of the matrix.
In many computational science areas, highly accurate solutions are not required as long
as the quality of the computed solution can be assessed against measurements or data
uncertainties. In such a framework, the iterative schemes play a central role as they might
be stopped as soon as an accurate enough solution is found.

An alternative approach for the high-performance, scalable solution of large sparse
linear systems in parallel scientific computing is to combine direct and iterative methods.
Such an hybrid approach exploits the advantages of both direct and iterative methods.
The iterative component allows us to use a small amount of memory and provides a nat-
ural way for parallelization. The direct part provides its favorable numerical properties.
Furthermore, this combination enables us to exploit naturally several levels of parallelism
that logically match the hardware feature of multicore platforms. In particular, one can
use parallel multithreaded sparse direct solvers within the multicore nodes of the ma-
chine and message passing among the nodes to implement the gluing parallel iterative
scheme. The general underlying numerical ideas are not new. They are often closely
related to ideas considered in the design of domain decomposition techniques for the nu-
merical solution of PDEs (see (Mathew, 2008) and references therein). With the need of
solving ever larger sparse linear systems while maintaining numerical robustness, multiple
variants for computing preconditioners for the Schur complement of such hybrid solvers
have been proposed. PDSLin (Li et al., 2009), ShyLU (Rajamanickam et al., 2012b) and
HIPS (Gaidamour and Hénon, 2008) first perform an exact factorization of the interior
of each subdomain concurrently. PDSLin and ShyLU then compute the preconditioner
with a two-fold approach. First, an approximation of the (global) Schur complement is
computed. Second, this approximate Schur complement is factorized to form the precon-
ditioner for the Schur complement system, which does not need to be formed explicitly.
While PDSLin has multiple options for discarding values lower than some user-defined
thresholds at different steps of the computation of the approximation of the Schur comple-
ment, ShyLU implements a structure-based approach for discarding values named probing
and that was first proposed to approximate interfaces in domain decomposition (Chan and
Mathew, 1992). Instead of following such a two-fold approach, HIPS forms the precondi-
tioner by computing a global ILU factorization based on the multilevel scheme formulation
from Hénon and Saad (2006). Finally, MaPHyS (Carvalho et al., 2001b), computes an
Additive Schwarz preconditioner for the Schur complement; it will be further detailed in
Chapter 5.

1.2 Our positioning

The most straightforward way to solve a PDE, as introduced in Section 1.1, is to discretize
it and use an algebraic solver to solve the resulting linear system. This methodology can
be detailed as follows:

1. the PDE and its BC are expressed on the global domain (Section 1.1.1),

2. a discretization method such as the FEM (Section 1.1.3) is used to transform the
PDE and its BC into an algebraic linear system Ku = f ,

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 29

1.2. Our positioning

3. an algebraic linear solver (Section 1.1.4) is used to compute the discrete solution u,

4. the discrete solution u may be interpolated to compute an approximate solution of
the PDE.

Each of these steps introduces some error, and the final solution is only an approximate
solution of the initial problem. One way to reduce the discretization error (step 2) is to
use a finer mesh, allowing for a better approximation of continuous functions by vectors
defined on the mesh. Once the size of the domain is fixed, using a finer mesh leads to
more discrete unknowns and a larger linear system to solve (step 3).

Large-scale problems can be solved using, for instance, an hybrid (direct/iterative)
solver (Gaidamour and Hénon, 2008; Giraud et al., 2008; Rajamanickam et al., 2012a;
Saad and Sosonkina, 1999) in step 3:

3. a) a graph partitioner is used to partition the set of unknowns,

3. b) Ku = f is replaced by an equivalent formulation
∑N

i=1RT
i Ai Ri = b using the

partition from 3. a),

3. c) local linear systems are solved using direct solvers,

3. d) the global problem is solved using an iterative solver.

In this algebraic methodology, the global matrix is replaced by a set of smaller local
matrices which can be used in a preconditioner to accelerate the iterative solution of
the global linear system. This methodology takes advantage of both the robustness of
direct solvers and the low complexity of iterative solvers when used on large matrices in
a distributed memory setting.

One can instead partition the problem at step 2, before discretization, by using a
Domain Decomposition (DD) approach as introduced in Section 1.1.2 and further detailed
in Chapter 2. In this approach, steps 2 and 3 are replaced by

2. a) the global domain is decomposed in smaller subdomains with new BC on the
interfaces between subdomains,

2. b) the local problems are discretized, yielding a set of local algebraic problems
Aixi = bi,

3. a) an algebraic linear solver is used to compute the solution of the local subproblems,

3. b) an iterative solver is used enforce the compatibility of the solution between the
subdomains.

Although these two latter approaches bear some similarity, they differ in the fact that
a DD approach can rely on more information than the global matrix and the right-hand
side that are provided to an algebraic hybrid solver. Although this makes it possible
in the DD approach to optimize the choice of the decomposition (i.e., the definition
of the subdomains), or the choice of a formulation and preconditioner as well as their
parameters (see, for instance, the choice of a transmission operator in (Gander, 2006)), this

30 Louis POIREL

1. Introduction

implies a tight integration of the DD algorithm inside the application code. As a result,
algebraic hybrid solvers are more suited to the development of black-box libraries that
can be reused in various applications, reducing the cost of High Performance Computing
(HPC) optimizations. For instance, focusing on the MaPHyS solver (Giraud et al., 2008),
recent developments include the use of modern parallelization paradigms such as two-
level parallelism (Agullo et al., 2016b) and task-based parallelism (Agullo et al., 2016a),
improving the resilience (Agullo et al., 2013) and fault-tolerance (Agullo et al., 2017) of
the solver and developing new graph partitioning strategies for hybrid solvers (Casadei
et al., 2013).

An innovative framework for developing HPC DD solvers was developed by Jolivet
et al. (2013). The hpddm library interacts with the application code through the element
matrices provided by a third-party discretization tool. It is not however fully algebraic,
as stated on the project main page (https://github.com/hpddm/hpddm): "For building
robust two-level methods, an interface with a discretization kernel like FreeFem++ or
Feel++ is also needed. It can then be used to provide, for example, elementary matrices,
that the GenEO approach requires. As such preconditioners assembled by HPDDM are not
algebraic, unless only looking at one-level methods. Note that for substructuring methods,
this is more of a limitation of the mathematical approach than of HPDDM itself."

In this thesis, we aim at combining the advantages of both the algebraic and DD
approaches. For that, while remaining as algebraic as possible, we identify some key
information to be provided to the solver alongside the matrix in order to use robust
Domain Decomposition Methods (DDM). Other work in this direction include, among
others, recent developments by Agullo et al. (2016c); Gander et al. (2007); Spillane et al.
(2014a).

An overview of classic DD methods is provided in Chapter 2, using both functional
and algebraic notations. In Chapter 3, we prove that for Symmetric Positive Definite
(SPD) problems, providing the matrix in a distributed fashion as a sum of Symmetric
Positive Semi-Definite (SPSD) matrices is enough to build a robust and scalable hybrid
solver. The only input needed are the subdomain matrices obtained by discretizing the
PDE with Neumann BC on the interface between subdomains. For SPD problems, the
SPSD condition for local matrices is for instance satisfied when applying a finite element
method over a partitioned mesh, but more complex discretizations such as the hybridizable
discountinuous Galerkin method (Cockburn et al., 2009) can be used instead.

In Chapter 4, the DD methods introduced in chapters 2 and 3 are implemented in
a parallel distributed DD toolbox in python called ddmpy exposed using a literate pro-
gramming approach. All the code needed to reproduce the experiments in this chapter
is included. Chapter 5 further studies different strategies for the parallel design of the
coarse space management, proposed as an extension to the fully-featured HPC MaPHyS
sparse hybrid solver.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 31

https://github.com/hpddm/hpddm

Chapter 2

Domain decomposition methods

2.1 Introduction

The growing use of parallel computers for computational mathematics gave rise to a
new interest for Domain Decomposition Methods (DDM), as explained for instance in the
Preface of the proceedings of the first International Conference on Domain Decomposition
Methods (Glowinski et al., 1988): "One of the motivations for organizing this conference
was the growing popularity of decomposition methods over the last few years, mainly
due to the strong emergence of multiprocessor, array and parallel computers. A second
motivation was the need to split very large scale problems into smaller ones in order to
solve them."

This chapter provides an overview of classical DDM. It will serve as a basis on top
of which robust two-level algebraic preconditioners will be proposed in Chapter 3 and
Chapter 4 will propose a parallel implementation of most of the methods introduced in
the current chapter. DDM were first introduced using a functional formalism (as in Section
1.1.2), referred to as a continuous approach, that still prevails in the DD community. They
can also be introduced in matrix notations, following an algebraic approach, which is often
preferred by the linear solver and HPC community. Despite the risk of being redundant,
we decided to expose both approaches in this chapter in order to try and bridge the gap
between those two communities, following Maday and Magoules (2006) and St-Cyr et al.
(2007) among others.

DDM are first introduced on two subdomains: the introduction of an interface Γ is
presented in Section 2.2. Then, the choice of a BC on Γ is discussed in Section 2.3 and 2.4.
As for the Schwarz alternating method presented above in Section 1.1.2, DDM proceed
by partitioning a global problem into a set of local subproblems. The definition of a
particular DDM depends on the exact choice of these local subproblems and the (often
iterative) procedure to enforce continuity between the subdomains. In Section 2.5, some
reformulations of the global problem are proposed to decompose the global problem into
an equivalent set of local problems, coupled through interface equations. A generalization
to an arbitrary number N of subdomains is presented next in Section 2.6. Then, the
complementary approach of building a global preconditioner through local problems is
discussed in Section 2.7.

A more complete overview of DDM can be found in (Quarteroni and Valli, 1999; Toselli

32

2. Domain decomposition methods

and Widlund, 2006; Mathew, 2008; Dolean et al., 2015b) and in the proceedings of the
international Domain Decomposition conference series1.

2.2 Introduction of an interface in the global domain

As stated above, in order to solve larger problems that could not be solved globally,
the domain can be partitioned into subdomains. This can be done either on the con-
tinuous problem before the discretization, by partitioning the domain into subdomains
and introducing artificial interfaces in the domain, or on the algebraic problem after the
discretization by partitioning the set of unknown indices. The introduction of a single
interface to split the global domain into only two subdomains is introduced here, both
for the continuous problem and for the linear system. A generalization to an arbitrary
number N of subdomains is proposed in Section 2.6.

2.2.1 Introduction of an interface for the continuous problem

In our previous example (Problem (1.4), page 20), it is possible to decompose the domain
Ω into two subdomains, for instance Ω1 = [0, 2]×[0, 1] and Ω2 = [2, 3]×[0, 1] by introducing
an interface Γ = {(2, y), y ∈ [0, 1]}, as presented in Figure 2.1. Problem (1.4) can then be

Ω1 Ω2

Γ

Figure 2.1: An interface Γ = {(2, y), y ∈ [0, 1]} is introduced to split Ω into two subdo-
mains Ω1 and Ω2.

divided into two coupled subproblems in Ω1 and Ω2, by adding a compatibility condition
on the solutions u1 and u2 in the subdomains: the solution and its first-order derivative
across the interface ought to be continuous, leading to

find u1 : Ω1 → R such that and u2 : Ω2 → R such that
∆u1 = −1 in Ω1, ∆u2 = −1 in Ω2,

u1(0, ·) = 0, ∂x u2(3, ·) = 0, (2.1)


∂y u1(·, 0) = ∂y u1(·, 1) = 0;


∂y u2(·, 0) = ∂y u2(·, 1) = 0;

with the compatibility condition

u1(2, ·) = u2(2, ·) (continuity of the solution), (2.2)
{
∂x u1(2, ·) = ∂x u2(2, ·) (continuity of the normal derivative). (2.3)

The equation inside Ωi and the BC on ∂Ω ∩ ∂Ωi are the same in both subproblems asso-
ciated with (2.1) as in Problem (1.4). The compatibility equations (2.2 – 2.3) introduce

1http://www.ddm.org/

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 33

http://www.ddm.org/

2.2. Introduction of an interface in the global domain

a coupling between the two local solutions u1 and u2 through boundary conditions on Γ,
ensuring that u1 and u2 are part of the same global solution u, i.e., ui = u|Ωi .

In a more general case, when the global problem is as stated in (1.3), one can partition
Ω into two subdomains Ω1 and Ω2 separated by an interface Γ, such that Ω1 ∩ Ω2 = ∅
and Γ =

(
Ω̄1 ∩ Ω̄2

)
\ ∂Ω. We suppose that Problem (1.3) can be expressed as a coupled

problem, through the introduction of a linear operator Ni to represent a continuity con-
dition. In our example with Poisson’s equation, Ni(u) is the outwards normal derivative
(−1)i+1 ∂x u. The new problem is

find u1 : Ω1 → R such that and u2 : Ω2 → R such that
L(u1) = f in Ω1, L(u2) = f in Ω2, (2.4)

{
B(u1) = g on ∂Ω1 ∩ ∂Ω ;

{
B(u2) = g on ∂Ω2 ∩ ∂Ω ;

with the compatibility condition

u1 = u2 on Γ,
{

N1(u1) + N2(u2) = 0 on Γ.
(2.5)

2.2.2 Introduction of an interface in the algebraic linear system

0/P0 1/P1 6/P2 4/P3

2/P4 3/P5 7/P6 5/P7

I1 I2Γ

Figure 2.2: The set of indices can be partitioned into two interiors I1 and I2 and an
interface Γ. In the graph, there are no edges between a node in I1 and a node in I2. The
partition induces a new ordering of the unknowns.

Alternatively, the domain decomposition can be performed on the algebraic prob-
lem (1.5) after discretization, by partitioning the set of indices {0, 1, . . . , 7} in three sub-
sets I1 = {0, 1, 4, 5}, I2 = {3, 7} and Γ = {2, 6}. Then, it is possible to reorder these
indices using the permutation (I1I2Γ) = (0, 1, 4, 5, 3, 7, 2, 6) (see figures 1.3 and 2.2).
This permutation can be applied to both row and column indices (so called symmetric
permutation) in the matrix (and vectors), and the reordered system is



0/e0 1/e1 2/e4 3/e5 4/e3 5/e7 6/e2 7/e6

0/e0 1 0 0 0 0 0 0 0
1/e1 0 1.333 0 −0.333 0 0 −0.167 −0.333
2/e4 0 0 1 0 0 0 0 0
3/e5 0 −0.333 0 1.333 0 0 −0.333 −0.167
4/e3 0 0 0 0 0.667 −0.167 −0.167 −0.333
5/e7 0 0 0 0 −0.167 0.667 −0.333 −0.167
6/e2 0 −0.167 0 −0.333 −0.167 −0.333 1.333 −0.333
7/e6 0 −0.333 0 −0.167 −0.333 −0.167 −0.333 1.333





u0

u1

u4

u5

u3

u7

u2

u6


=



0
0.5
0

0.5
0.25
0.25
0.5
0.5


.

(2.6)

34 Louis POIREL

2. Domain decomposition methods

It is important to note that, in the permuted matrix, there is a zero-block in the rows of
I1 = (0/e0, . . . , 3/e5) and columns of I2 = (4/e3, 5/e7) and vice versa: there is no direct
interaction between the indices in I1 and I2 through the graph of the matrix.

Similarly, Problem (1.3) can be translated into an algebraic problem (1.5). One can
partition the indices in the matrix {1, 2, . . . , n} = I1 ∪ I2 ∪ Γ such that Kij = Kji = 0
for any i ∈ I1 and j ∈ I2, and reorder the matrix with the permutation (I1 I2 Γ). The
resulting system, which exhibits a (3× 3) block structure for the matrix, isKI1,I1 0 KI1,Γ

0 KI2,I2 KI2,Γ
KΓ,I1 KΓ,I2 KΓ,Γ

uI1uI2
uΓ

 =

fI1fI2
fΓ

 . (2.7)

2.3 Local boundary conditions on the interface Γ

Each of the continuous local subproblems in (2.1) or (2.4) taken independently (without
the compatibility condition) is not complete without a BC on ∂Ωi \∂Ω = Γ. The continu-
ous subproblems with a Dirichlet, Neumann or Robin BC on Γ are presented below, along
with their discretizations. The compatibility condition is reintroduced next in Section 2.4
to deduce an optimal BC for the local subproblems.

2.3.1 Dirichlet boundary condition on Γ

We can add a Dirichlet BC u1(2, ·) = vD on Γ for the left subproblem in our example (2.1),
leading to the local problem

find u1 : Ω1 → R such that
∆u1 = −1 in Ω1,

u1(0, ·) = 0,

∂y u1(·, 0) = ∂y u1(·, 1) = 0,

u1(2, ·) = vD.

(2.8)

Since v ′D(0) = ∂y u1(2, 0) = 0 and v ′D(1) = ∂y u1(2, 1) = 0, the Fourier series of vD is

vD =
∑
k

aDk cos(kπy).

Then, the solution of (2.8) is

u1 = −1/2x 2 + x + aD0 x /2 +
∑
k 6=0

aDk
sinh(kπx)

sinh(2kπ)
cos(kπy).

In the generic equation (2.4), the addition of a similar Dirichlet BC u = vD on Γ gives

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 35

2.3. Local boundary conditions on the interface Γ

the local problem

find u1 : Ω1 → R such that
L(u1) = f in Ω1,

B(u1) = g on ∂Ω1 ∩ ∂Ω,

u1 = vD on Γ,

(2.9)

whose discretization is (
KI1,I1 KI1,Γ

0 I

)(
uI1
uΓ

)
=

(
fI1
vD

)
.

where I is an identity matrix and vD is a discretization of vD. Since the value on Γ is
prescribed by the BC and needs not appear in the unknown vector, a simpler equivalent
formulation is

KI1,I1 uI1 = fI1 −KI1,ΓvD, (2.10)

Note that the matrix KI1,I1 in (2.10) is the top left matrix block in (2.7).
Therefore, in our example, the discretization of Problem (2.8) is


0/e0 1/e1 2/e4 3/e5

0/e0 1 0 0 0
1/e1 0 1.333 0 −0.333
2/e4 0 0 1 0
3/e5 0 −0.333 0 1.333



u0

u1

u4

u5

 = fD(vD), (2.11)

where fD(vD) is a right-hand side that depends on the value of vD. The matrix in Equa-
tion (2.11) is exactly the (4, 4) top left block of the matrix in Equation (2.6).

2.3.2 Neumann boundary condition on Γ

Instead of a Dirichlet BC, it is possible to impose a Neumann BC ∂~nu1 = ∂x u1 = vN =∑
k a

N
k cos(kπy) on Γ for the Poisson problem:

find u1 : Ω1 → R such that
∆u1 = −1 in Ω1,

u1(0, ·) = 0,

∂y u1(·, 0) = ∂y u1(·, 1) = 0,

∂x u1(2, ·) =
∑
k

aNk cos(kπy).

(2.12)

The solution of this problem is

u1 = −1/2x 2 + 2x + aN0 x +
∑
k 6=0

aNk
sinh(kπx)

kπ cosh(2kπ)
cos(kπy). (2.13)

36 Louis POIREL

2. Domain decomposition methods

The discretization of this local Neumann problem is



0/e0 1/e1 2/e4 3/e5 6/e2 7/e6

0/e0 1 0 0 0 0 0
1/e1 0 1.333 0 −0.333 −0.167 −0.333
2/e4 0 0 1 0 0 0
3/e5 0 −0.333 0 1.333 −0.333 −0.167
6/e2 0 −0.167 0 −0.333 0.667 −0.167
7/e6 0 −0.333 0 −0.167 −0.167 0.667




u0

u1

u4

u5

u2

u6

 = fN(vN), (2.14)

where fN(vN) is a right-hand side that depends on the value of vN .
The addition of a similar Neumann BC N1(u1) = vN on Γ in the generic equation (2.4)

gives the local problem

find u1 : Ω1 → R such that
L(u1) = f in Ω1,

B(u1) = g on ∂Ω1 ∩ ∂Ω,


N1(u1) = vN on Γ,

(2.15)

whose discretization defines a matrix K1

K1

(
uI1
uΓ

)
=

(
KI1,I1 KI1,Γ
KΓ,I1 K(1)

Γ,Γ

)(
uI1
uΓ

)
= fN(vN). (2.16)

The matrix blocks KI1,I1 , KI1,Γ and KΓ,I1 are the same in the the three equations (2.7),
(2.10) and (2.16), whereas the bottom-right block K(1)

ΓΓ is different from KΓΓ. However,
with K2 and K(2)

Γ,Γ defined similarly to K1 and K(1)
Γ,Γ, respectively, for the second subdomain

Ω2, Equation (2.5) implies that K(1)
Γ,Γ +K(2)

Γ,Γ = KΓ,Γ. Introducing a restriction matrix RΩi

from global vectors defined on (I1 I2 Γ) to local vectors defined on (Ii Γ)

RΩ1 =

(
I 0 0
0 0 I

)
, RΩ2 =

(
0 I 0
0 0 I

)
, (2.17)

it is then possible to retrieve the global matrix from the local Neumann matrices K1 and
K2

K = RT
Ω1
K1RΩ1 +RT

Ω2
K2RΩ2 . (2.18)

The local subproblems with a Neumann BC on Γ can be seen as local contributions to the
global problem. In practice, it is therefore possible to compute K in parallel by discretizing
the local problems with a Neumann BC, and express K as a sum of these local matrices
Ki as above.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 37

2.4. Optimal boundary conditions

2.3.3 Robin boundary condition on Γ

A third type of BC to consider is the Robin BC N1(u1) + pu1 = vR on Γ, where p is a
(scalar) parameter:

find u1 : Ω1 → R such that
L(u1) = f in Ω1,

B(u1) = g on ∂Ω1 ∩ ∂Ω,


N1(u1) + pu1 = vR on Γ.

(2.19)

The discretization gives (
KI1,I1 KI1,Γ
KΓ,I1 K(1)

Γ,Γ + pMΓ

)(
uI1
uΓ

)
= fR(vR),

where MΓ is a mass matrix (i.e., a discretization of the identity) on Γ.
The Robin BC can be viewed as a linear combination of a Neumann and a Dirichlet

BC. It can also be interpreted, instead, as a modification of a Neumann BC N1(u1) = vN
where vN , instead of being fixed as a constant, has a linear dependence on the unknown
vN = vR− pu1. The pu1 term can then be interpreted as a flow towards the other domain
Ω2, proportional to the value of u1 on Γ, and p can be viewed as a mean to describe the
conductivity of Ω2.

This definition of a Robin BC can be extended by replacing the scalar multiplication
u → pu by any linear operator Ti, whose discretization on Γ is given by a matrix Ti called
the transmission matrix (

KI1,I1 KI1,Γ
KΓ,I1 K(1)

Γ,Γ + T1

)(
uI1
uΓ

)
= fR(vR). (2.20)

The transmission operator Ti or matrix Ti represents the linear dependency between the
flow from Ωi to its neighbor and the solution on the interface Γ.

2.4 Optimal boundary conditions

In Section 2.3, we presented the local subproblem in a subdomain associated with a
Dirichlet, Neumann or Robin BC on the interface Γ. An optimal choice for the BC on Γ
would give a local subproblem in each subdomain Ωi whose solution ui is the restriction
in Ωi of the solution u of the global problem in Ω. Then, the global solution u could be
obtained by solving the local subproblems instead of the global problem. For instance, in
Ω2, a comparison between equations (2.4 – 2.7) and (2.19 – 2.20) shows that the optimal
value for T2(u2) should be equal to N1(u1), where u1 is a solution of the local equations in
Ω1 with u1 = u2 on Γ. More precisely, if a Dirichlet BC u1 = u2|Γ on Γ is introduced for
Ω1, it is possible to solve this subdomain’s local subproblem; the solution u1 can then be
expressed as a (linear) function of u2|Γ, and, it is possible to eliminate it from the global
problem. This process, in turn, gives an optimal BC for Ω2 that accounts for the effect
of Ω1 on Γ viewed by Ω2. This process is detailed in a continuous setting in Section 2.4.1
and with algebraic notations in Section 2.4.2.

38 Louis POIREL

2. Domain decomposition methods

2.4.1 Dirichlet-to-Neumann operator for the PDE

In the example, if the value of u2 on Γ is u2(2, ·) =
∑

k a
D
k cos(kπy), the solution in Ω1 of

the Dirichlet problem (2.8) with vD = u2(2, ·) is

u1 = −1/2x 2 + x + aD0 x /2 +
∑
k 6=0

aDk
sinh(kπx)

sinh(2kπ)
cos(kπy),

and its derivative across the interface is

∂x u1(2, ·) = −1 + aD0 /2 +
∑
k 6=0

aDk kπ coth(2kπ) cos(kπy).

We introduce the linear operator S1 such that ∂x u1(2, ·) = −1 + S1(vD)

S1

(∑
k

aDk cos(kπy)

)
= aD0 /2 +

∑
k 6=0

aDk kπ coth(2kπ) cos(kπy). (2.21)

Then, ∂x u1(2, ·) = −1 + S1(u2(2, ·)), and it is now possible to eliminate u1 from the
partitioned problem (2.1 – 2.3), leading to the following problem in Ω2

find u2 : Ω2 → R such that
∆u2 = −1 in Ω2,

∂x u2(3, ·) = 0,

∂y u2(·, 0) = ∂y u2(·, 1) = 0,


∂x u2(2, ·)− S1(u2(2, ·)) = −1.

(2.22)

The BC on Γ for Ω2, deduced from the global problem, is a Robin BC whose transmission
operator is applied by solving a Dirichlet problem in Ω1. Note that the problem considered
here for illustration is simplistic and in particular has no dependency on y. Therefore, in
this particular case we have aDk = 0 for k 6= 0, which leads to vD = aD0 , and S1(vD) = vD/2.
The analytic solution to Problem (2.22) is u2(x , y) = −1

2
x 2 + 3x in Ω2, which is of course

equal to the solution of the global problem.
Following the same approach in the generic problem (2.4), one can introduce a Dirichlet

BC vD : Γ → R on Γ for the subdomain Ω1 and solve the local Dirichlet problem (2.9).
Since L and B are linear, the solution u1 depends linearly on (vD, f , g). As a result,
since N1 is linear too, there exist two linear operators S1 and RHS1 such that N1(u1) =
S1(vD) − RHS1(f , g). S1 is called the Steklov-Poincaré Dirichlet-to-Neumann operator of
Ω1. The name stems from the fact that the local harmonic problem in Ω1 with a Dirichlet
BC u1|Γ = vD and zero source term f = 0 and g = 0 gives the same solution as the problem
with a Neumann BC N1(u1) = vN on Γ with f = 0 and g = 0 if vN = S1(vD). The reduced
right-hand side on the interface is noted rhs1 = RHS1(f , g). Using this definition of S1

and rhs1, one can eliminate u1 from the global problem (2.4) and (2.5), and deduce a local

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 39

2.4. Optimal boundary conditions

problem in Ω2:

find u2 : Ω2 → R such that
L(u2) = f in Ω2,

B(u2) = g on ∂Ω2 ∩ ∂Ω,


N2(u2) + S1(u2) = rhs1 on Γ.

(2.23)

This problem, which gives the same solution in Ω2 as the global problem (1.3) is a Robin
problem in Ω2, whose transmission condition T2 is given by the Dirichlet-to-Neumann S1

of Ω1.

2.4.2 Partial Gaussian elimination and the Schur complement
matrix

Performed on the linear system (2.6) or (2.7), this operation of eliminating Ω1 from the
global problem just corresponds to a few steps of Gaussian Elimination, as introduced in
Section 1.1.4. By combining rows with one another, some coefficients in the matrix are
eliminated, i.e., become zeros. For instance, adding 0.25 times row 1 to row 3 from the
matrix in (2.6) eliminates the coefficient in the second column from the matrix in (2.24).
Performing a few steps of this algorithm, one can eliminate I1, and get the following
system



0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1.33 0 −0.333 0 0 −0.167 −0.333
2 0 0 1 0 0 0 0 0

3+.25×1 0 0 0 1.25 0 0 −0.375 −0.25
4 0 0 0 0 0.667 −0.167 −0.167 −0.333
5 0 0 0 0 −0.167 0.667 −0.333 −0.167

6+.2×1+.3×3 0 0 0 0 −0.167 −0.333 1.2 −0.45
7+.3×1+.2×3 0 0 0 0 −0.333 −0.167 −0.45 1.2


u =



0
0.5
0

0.62
0.25
0.25
0.75
0.75


.

(2.24)

This way, the solution in (I2 Γ) = (3, 7, 2, 6) can be computed by solving the reduced
system (4 last rows and columns of (2.24))

0.667 −0.167 −0.167 −0.333
−0.167 0.667 −0.333 −0.167
−0.167 −0.333 1.2 −0.45
−0.333 −0.167 −0.45 1.2



u3

u7

u2

u6

 =


0.25
0.25
0.75
0.75

 .

This reduced system is called the Schur complement system.
Similarly, in the generic problem (2.7), the dependence of uI1 on uΓ can be expressed

directly from the first row as uI1 = K−1
I1,I1 (fI1 −KI1,ΓuΓ). Then, replacing uI1 by this

expression in the other rows gives an equivalent reduced system where I1 does not appear

40 Louis POIREL

2. Domain decomposition methods

anymore. This process is just a simple step of block-Gaussian elimination: subtracting
KΓ,I1K−1

I1,I1 times the first row from the third row in (2.7) givesKI1,I1 0 KI1,Γ
0 KI2,I2 KI2,Γ
0 KΓ,I2 KΓ,Γ −KΓ,I1K−1

I1,I1KI1,Γ

uI1uI2
uΓ

 =

 fI1
fI2

fΓ −KΓ,I1K−1
I1,I1fI1

 ,

and the solution in I2 ∪ Γ can be computed through the reduced system(
KI2,I2 KI2,Γ
KΓ,I2 KΓ,Γ −KΓ,I1K−1

I1,I1KI1,Γ

)(
uI2
uΓ

)
=

(
fI2

fΓ −KΓ,I1K−1
I1,I1fI1

)
. (2.25)

Using the notations introduced in Section 2.3.2, one can define the local Schur complement
matrix

Si = K(i)
Γ,Γ −KΓ,IiK−1

Ii,IiKIi,Γ,

and Equation (2.25) can be rewritten(
KI2,I2 KI2,Γ
KΓ,I2 K(2)

Γ,Γ + S1

)(
uI2
uΓ

)
=

(
fI2

fΓ −KΓ,I1K−1
I1,I1fI1

)
, (2.26)

and the Schur complement matrix S1 can be interpreted as a transmission matrix T2:
the optimal BC is a (non-scalar) Robin BC whose transmission matrix is the local Schur
complement of the outer domain. This BC is optimal in the sense that the local problem
in Ω2 with a Robin BC whose transmission matrix is T2 = S1 gives the same local solution
as the global problem restricted to the subdomain Ω2.

This Schur complement matrix Si obtained by eliminating the interior unknown uIi
from the system is a discrete version of the Dirichlet-to-Neumann operator presented
above: given a Dirichlet BC vD on Γ, the solution of the Dirichlet problem (2.10) with
fIi = 0 is uIi = −K−1

IiIiKIiΓvD in the interior and uΓ = vD on Γ. Replacing uIi and uΓ by
this Dirichlet solution in the Neumann problem (2.16) gives a Neumann BC

fN(vN) =

(
0
vN

)
with vN = KΓIiuIi +K(i)

ΓiΓi
uΓ =

(
K(i)

ΓiΓi
−KΓIiK−1

IiIiKIiΓ
)
vD = SivD.

2.5 Domain decomposition formulations

In this section, various reformulations of the coupled problem (2.4 – 2.5) are introduced.
Each reformulation provides a different way of solving the same problem (1.3) through
local subproblems. By changing the BC in the local subproblems, the compatibility
conditions are modified accordingly and give rise to different approaches, both for the
continuous PDE or for the algebraic linear system (Maday and Magoules, 2006). Imposing
a Neumann or Robin BC in the local problems introduces variables λi on Γ. The different
formulations can then be deduced from one another by eliminating, or not, the interior
unknown using the Dirichlet-to-Neumann operator, and eliminating either the primal or
dual variables ui or λi on Γ. A tentative taxonomy is sketched in Figure 2.3, where both
names and associated sections are given.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 41

2.5. Domain decomposition formulations

Simple
(non-augmented)

Augmented
2.5.4

Primal
2.5.1Simple/Γ Augmented/Γ

2.5.5

Dual/Γ
2.5.3

Primal/Γ
2.5.2

Aug. Dual/Γ
2.5.6

Two-Lagrange
2.5.7

uI
λ λ uI

uΓ
λ

uI
λ uΓ

Figure 2.3: The label on each arrow represents which variable has to be eliminated to
deduce formulations from one another. For each formulation, we also provide the number
of the corresponding section.

2.5.1 Primal formulation

From the continuous coupled problem (2.4 – 2.5), it is possible to search for a unique
global unknown u called the primal unknown: the condition u1 = u2 on Γ can be enforced
by introducing a global unknown u such that u1 = u|Ω1 and u2 = u|Ω2 , leading to the
primal formulation

find u : Ω→ R such that
L(u) = f in Ω1 and Ω2 (2.27)
B(u) = g on ∂Ω1 ∩ ∂Ω and ∂Ω2 ∩ ∂Ω (2.28)


N1(u) + N2(u) = 0 on Γ. (2.29)

Algebraically, for any decomposition KΓΓ = K(1)
ΓΓ + K(2)

ΓΓ and fΓ = f
(1)
Γ + f

(2)
Γ , the global

matrix K in (1.5) can be expressed as the sum of two local matrices K1 and K2(
RT

Ω1
K1RΩ1 +RT

Ω2
K2RΩ2

)
u = RT

Ω1
f1 +RT

Ω2
f2, (2.30)

where the restriction matrices RΩi are as defined in Equation (2.17), and

Ki =

(
KIiIi KIi,Γ
KΓ,Ii K

(i)
ΓΓ

)
and fi =

(
fIi
f

(i)
Γ

)
.

Any decomposition K(1)
ΓΓ + K(2)

ΓΓ = KΓΓ can be used to build matrices K1 and K2: in an
algebraic solver, one can, for instance, choose K(1)

ΓΓ = KΓΓ and K(2)
ΓΓ = 0. However, a

case of particular interest is when K(i)
ΓΓ is obtained by choosing Ki as the discretization of

the local Neumann problem as in Section 2.3.2: this will make it easier to ensure some
properties needed to build a robust coarse space correction in sections 2.7.3 and 3.

This primal formulation is exactly the same as the global formulation (1.3) or (1.5),
except that the application of the linear operator corresponding to the PDE in the contin-
uous case, or the matrix-vector product in the algebraic case, can be performed as a sum

42 Louis POIREL

2. Domain decomposition methods

of two local components. Each local component can be computed independently in each
subdomain, and the global solution can therefore be computed using a parallel iterative
method, whose convergence depends on the choice of a good preconditioner as presented
in Section 2.7.

In combination with well-chosen preconditioners (see Section 2.7), this approach is
used, in the Additive Schwarz method and some of its variations (Lions, 1988, 1989, 1990;
Dryja and Widlund, 1987; Cai and Sarkis, 1999).

2.5.2 Primal formulation on the interface

Another approach to enforce the first compatibility condition u1 = u2 on Γ is to introduce
a unique unknown uΓ : Γ→ R that is the Dirichlet BC ui = uΓ on Γ for both subdomains
Ωi. The unknowns u1 and u2 can be eliminated from the system by expressing them as
the solutions of the local Dirichlet problems

find u1 : Ω1 → R such that and u2 : Ω2 → R such that
L(u1) = f in Ω1, L(u2) = f in Ω2,

B(u1) = g on ∂Ω1 ∩ ∂Ω,

B(u2) = g on ∂Ω2 ∩ ∂Ω,

u1 = uΓ on Γ; u2 = uΓ on Γ.

Using the Dirichlet-to-Neumann operator Si introduced in Section 2.4, the second com-
patibility condition N1(u1) + N2(u2) = 0 on Γ can be expressed as an interface problem
for uΓ, yielding the primal formulation on the interface

find uΓ : Γ→ R such that
S1(uΓ) + S2(uΓ) = rhs1 + rhs2.

Once this continuous problem is solved, the solution in Ω is deduced by solving the local
problems in Ω1 and Ω2 with uΓ as a Dirichlet BC on Γ.

Algebraically, eliminating the interior blocks in Equation (2.30) gives

(S1 + S2)uΓ = f̃
(1)
Γ + f̃

(2)
Γ (2.31)

SuΓ = f̃Γ,

where Si = K(i)
Γ,Γ −KΓ,IiK−1

Ii,IiKIi,Γ and f̃ (i)
Γ = f

(i)
Γ −KΓ,IiK−1

Ii,IifIi . Once (2.31) is solved,
the solution in the interior Ii is deduced from uIi = K−1

IiIi(fIi −KIiΓiuΓ).
This approach is often referred to as a (primal) substructuring approach. This ap-

proach is used, for instance, in the Neumann-Neumann method (De Roeck and Le Tallec,
1991; Mandel, 1993), in the Robin-Robin method (Achdou and Nataf, 1997; Achdou et al.,
2000) or in the Additive Schwarz on the Schur method (Carvalho et al., 2001b), among
many others.

2.5.3 Dual formulation on the interface

In the continuous problem (2.4 – 2.5), instead of enforcing the first continuity equation
u1 = u2 on Γ and solve for u or uΓ as in the primal formulations, it is possible to enforce

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 43

2.5. Domain decomposition formulations

the second equation N1(u1) + N2(u2) = 0 by adding a Neumann BC N1(u1) = λ and
N2(u2) = −λ on Γ for each subdomain

find u1 : Ω1 → R such that and u2 : Ω2 → R such that
L(u1) = f in Ω1, L(u2) = f in Ω2,

B(u1) = g on ∂Ω1 ∩ ∂Ω, B(u2) = g on ∂Ω2 ∩ ∂Ω,


N1(u1) = λ on Γ;


N2(u2) = −λ on Γ;

and solve for the dual variable λ. It holds that Ni(ui) = ±λ = Si(ui) − rhs i and if the
Dirichlet-to-Neumann operator is not singular, the primal unknown ui can be eliminated
from the first continuity equation u1 = u2 using ui = S−1

i (±λ + rhs i). The resulting
equation gives a dual formulation

find λ : Γ→ R such that
S−1

1 (λ) + S−1
2 (λ) = −S−1

1 (rhs1) + S−1
2 (rhs2). (2.32)

Once (2.32) is solved, the primal solution ui can then be recovered from λ by solving the
local Neumann problems above in each subdomain.

Algebraically, with the same decomposition as in Section 2.5.2, one can introduce
λ = S1uΓ − f̃

(1)
Γ , such that uΓ = S−1

1 (λ + f̃
(1)
Γ). Then Equation (2.31) is equivalent to

λ+ S2uΓ = f̃
(2)
Γ , or uΓ = S−1

2 (f̃
(2)
Γ − λ), yielding the following problem on λ

(S−1
1 + S−1

2)λ = −S−1
1 f̃

(1)
Γ + S−1

2 f̃
(2)
Γ .

From the solution λ, the solution can be computed as uΓ = S−1
1 (λ + f̃

(1)
Γ) and uIi =

K−1
IiIi(fIi −KIiΓiuΓ).

When Si is singular, it is not possible to solve S−1
i λ. Using a pseudo-inverse instead of the

inverse, the quantity S†i λ can be defined, but only up to an element of kerSi. This is one
of the motivations for using a two-level method as introduced in Section 2.7.3. Another
solution is to replace the Neumann BC by a Robin BC, as proposed in the next section.

Note that the dual formulation can only be used on the interface: although the primal
variable u also exists inside the subdomains, the dual variable λ expresses a BC and, as
such, only exists on Γ. The dual approach is at the core of the FETI method (Farhat and
Roux, 1991).

2.5.4 Augmented formulation

In the augmented formulation here and the augmented formulation on the interface below,
the BC is changed and neither the primal nor the dual unknown is eliminated. Their
memory footprint would therefore be larger than the other formulations, if they were to
be used in practice. They are only introduced here as intermediate formulations from
which other formulations will be deduced in the following sections by eliminating some
unknowns.

In a continuous setting, instead of a Dirichlet BC (as in the primal formulations) or
a Neumann BC (as in the dual formulation), one may choose a Robin BC on Γ Ni(ui) +

44 Louis POIREL

2. Domain decomposition methods

Ti(ui) = λi to the local problem. This introduces two operators Ti, which can be chosen
arbitrarily, and two functions λi, which are new dual unknowns in the problem. This
changes the compatibility conditions of the coupled problem, yielding the augmented
formulation

find u1 :Ω1 → R, λ1 : Γ→ R s. t. and u2 :Ω2 → R, λ2 : Γ→ R s. t.
L(u1) = f in Ω1, L(u2) = f in Ω2, (2.33)
B(u1) = g on ∂Ω1 ∩ ∂Ω, B(u2) = g on ∂Ω2 ∩ ∂Ω, (2.34)


N1(u1) + T1(u1) = λ1 on Γ;


N2(u2) + T2(u2) = λ2 on Γ; (2.35)

with the compatibility condition

u1 = u2 on Γ, (2.36)
{

T1(u1) + T2(u2) = λ1 + λ2 on Γ. (2.37)

Algebraically, this augmented formulation becomes
(
KIi,Ii KIi,Γ
KΓ,Ii K

(i)
Γ,Γ + Ti

)(
uIi
uΓi

)
=

(
fIi

f
(i)
Γ + λi

)
, (2.38)

uΓ1 = uΓ2 , (2.39)
T1uΓ1 + T2uΓ2 = λ1 + λ2. (2.40)

The choice of a good transmission operator or matrix is an active research subject, see for
instance Dolean et al. (2015a); Gander et al. (2002); St-Cyr et al. (2007) and references
therein.

2.5.5 Augmented formulation on the interface

The augmented formulation (2.33 – 2.37) can be expressed as an interface problem by
using the definition of Si and rhs i, as in Section 2.5.2. Introducing a Dirichlet-to-Robin
operator Ŝi = Si + Ti, the elimination of interior variables gives an augmented formulation
on the interface

find u1, u2, λ1, λ2 : Γ→ R such that

Ŝi(ui) = rhs i + λi on Γ, (2.41)
u1 = u2 on Γ, (2.42)


T1(u1) + T2(u2) = λ1 + λ2 on Γ. (2.43)

Similarly, introducing Ŝi = Si + Ti, the algebraic formulation is

ŜiuΓi = f̃
(i)
Γ + λi, (2.44)

uΓ1 = uΓ2 , (2.45)


T1uΓ1 + T2uΓ2 = λ1 + λ2. (2.46)

From these augmented formulations (on the interface or not), one could derive primal
augmented formulations by eliminating λi using (2.35), (2.38), (2.41), or (2.44) in the

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 45

2.5. Domain decomposition formulations

second compatibility condition (2.37), (2.40), (2.43), or (2.46), respectively. However,
this also eliminates the Ti(ui) and Tiui terms, and the resulting system is exactly the
same as in the primal formulations in Section 2.5.1 or 2.5.2. On the other hand, this is
not the case when eliminating ui instead and solving for λi in a dual formulation as in
Section 2.5.3. The transmission operator Ti and the transmission matrix Ti are supposed
to be chosen such that Ŝi = Si + Ti and Ŝi = Si + Ti are not singular, so that the primal
variable on Γ can be eliminated using ui = Ŝ−1

i (rhs i + λi) and uΓi = Ŝ−1
i (f̃

(i)
Γ + λi).

2.5.6 Dual augmented formulation on the interface (T1 + T2 = 0)

A case of particular interest is when T1 + T2 = 0. Under this condition, combining the
continuous equations [(2.43)− T1(2.42)] gives λ1+λ2 = (T1+T2)(u2) = 0 on Γ. Introducing
λ = λ1 = −λ2, it holds from (2.41) that u1 = Ŝ−1

1 (rhs1 + λ) and u2 = Ŝ−1
2 (rhs2 − λ).

Replacing u1 and u2 in (2.42) gives a Dual augmented formulation

find λ : Γ→ R such that(
Ŝ−1

1 + Ŝ−1
2

)
(λ) = −Ŝ−1

1 (rhs1) + Ŝ−1
2 (rhs2);

or, algebraically (
Ŝ−1

1 + Ŝ−1
2

)
λ = −Ŝ−1

1 f̃
(1)
Γ + Ŝ−1

2 f̃
(2)
Γ .

This is, algebraically, a dual (non-augmented) formulation, as presented in Section 2.5.3,
with a different splitting for the interface matrix KΓΓ = (K(1)

ΓΓ + T) + (K(2)
ΓΓ − T) instead

of KΓΓ = K(1)
ΓΓ +K(2)

ΓΓ with T = T1 = −T2. Some discussion on how to choose T such that
Ŝi is not singular is given in (Farhat et al., 1993).

2.5.7 Two-Lagrange formulation

In the general case, one can still eliminate ui = (Si+Ti)−1(rhs i+λi) on Γ in equations (2.42)
and (2.43) using Equation (2.41). The continuous system becomes

(S1 + T1)−1(rhs1 + λ1) = (S2 + T2)−1(rhs2 + λ2),
{

T1(S1 + T1)−1(rhs1 + λ1) + T2(S2 + T2)−1(rhs2 + λ2) = λ1 + λ2.

Introducing Ŝi = Si + Ti and I the identity operator I(λi) = λi, the previous system can
be rewritten as

Ŝ−1
1 λ1 − Ŝ−1

2 λ2 = −Ŝ−1
1 (rhs1) + Ŝ−1

2 (rhs2), (2.47)
{

[T1Ŝ−1
1 − I]λ1 + [T2Ŝ−1

2 − I]λ2 = −T1Ŝ−1
1 (rhs1)− T2Ŝ−1

2 (rhs2). (2.48)

Then, if T1 + T2 is not singular, replacing the two lines (2.47) and (2.48) by two
independent linear combination theereof [T1(2.47)− (2.48)] and [−T2(2.47)− (2.48)] gives
the Two-Lagrange formulation

λ1 + [I − (T1 + T2)Ŝ−1
2]λ2 = (T1 + T2)Ŝ−1

2]rhs2, (2.49)
{

[I − (T1 + T2)Ŝ−1
1]λ1 + λ2 = (T1 + T2)Ŝ−1

1]rhs1. (2.50)

46 Louis POIREL

2. Domain decomposition methods

Once this system is solved, the solution ui can be computed from λi by solving the Robin
local problem (2.33 – 2.35).

Algebraically, introducing Ŝi = Si + Ti, the Two-Lagrange formulation becomes(
I I − (T1 + T2)Ŝ−1

2

I − (T1 + T2)Ŝ−1
1 I

)(
λ1

λ2

)
=

(
(T1 + T2)Ŝ−1

2 f̃
(2)
Γ

(T1 + T2)Ŝ−1
1 f̃

(1)
Γ

)
,

with uΓ = Ŝ−1
1 (λ1 + f̃

(1)
Γ) and uIi = K−1

IiIi(fIi −KIiΓiuΓ).
This method, introduced by Nataf et al. (1995), is applied, for instance, in (Gander

et al., 2002) and (El Bouajaji et al., 2015).

2.6 Generalization to N subdomains

The various formulations presented above are generalized to the case of a domain de-
composition with N subdomains. The augmented formulations are first generalized in
sections 2.6.1 and 2.6.2. Eliminating the dual variable λi gives the primal formulations in
Section 2.6.3, while eliminating the primal variable ui or ui gives the dual formulations in
Section 2.6.4 and the N -Lagrange formulations in Section 2.6.5. As in the previous section
(Figure 2.3), the different formulations are summarized in Figure 2.4. Hybrid approaches
where dual and primal variables are eliminated in different parts of the interface, such
as in the FETI-DP (Farhat et al., 2001) and BDDC methods (Dohrmann, 2003), are not
addressed in this thesis.

Simple
(non-augmented)

Augmented
2.6.1

Primal
2.6.3Simple/Γ Augmented/Γ

2.6.2

Dual/Γ
2.6.4

Primal/Γ
2.6.3

Aug. Dual/Γ
2.6.4

N -Lagrange
2.6.5

uI
λ λ uI

uΓ
λ

uI
λ uΓ

Figure 2.4: The label on each arrow represents which variable has to be eliminated to
deduce formulations from one another. For each formulation, we also provide the number
of the corresponding section in the N subdomains case.

2.6.1 Augmented formulation

The various formulations presented in the previous section can all be generalized to a
N -subdomain decomposition: Ω is decomposed into a family of N subdomains (Ωi)1≤i≤N

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 47

2.6. Generalization to N subdomains

without overlap, such that

Ω̄ =
⋃

1≤i≤N

Ω̄i and Ωi ∩ Ωj = ∅ if i 6= j.

Then the local interfaces Γi and the global interface Γ, which is the non-disjoint union of
the local interfaces, are defined as

Γi = ∂Ωi \ ∂Ω and Γ =
⋃

1≤i≤N

Γi.

Two subdomains Ωi and Ωj are said to be neighbors if their shared interface Γij = Γi∩Γj
is not empty. More than two subdomains Ωi, Ωj, . . ., and Ωk can in fact share an interface
Γij...k = Γi ∩ Γj ∩ · · · ∩ Γk 6= ∅, e.g., crosspoints in 2D, or crosspoints and edges in 3D.
Introducing for each subdomain a transmission operator Ti on Γi, the global continuous
problem (1.3) is equivalent to the set of local Robin problems

∀i ∈ {1, . . . , N} find (ui, λi) : Ωi → R such that
L(ui) = f in Ωi,

B(ui) = g on ∂Ωi ∩ ∂Ω,

Ni(ui) + Ti(ui) = λi on Γi;

(2.51)

with the compatibility condition{
ui = uj = · · · = uk on Γij...k,

Ti(ui) + Tj(uj) + · · ·+ Tk(uk) = λi + λj + · · ·+ λk on Γij...k.
(2.52)

A similar augmented formulation can be expressed algebraically in two different ways,
by performing the domain decomposition either before or after the discretization process.
First, the option of performing an algebraic domain decomposition on the global matrix
K after the discretization process is described. Using a graph partitioner such as Scotch
(Chevalier and Pellegrini, 2008) or Metis (Karypis and Kumar, 2009), one can partition
the set of indices Ω into N interiors Ii and a global interface Γ such that K`m = Km` = 0
for any ` ∈ Ii and m ∈ Ij that belong to different interiors Ii and Ij with i 6= j.
Reordering the global matrix using the symmetric permutation (I1 . . . IN Γ) gives

KI1,I1 0 . . . 0 KI1,Γ
0 KI2,I2

. KI2,Γ
... 0

...
0 · · · 0 KIN ,IN KIN ,Γ
KΓ,I1 KΓ,I2 · · · KΓ,IN KΓ,Γ




uI1
uI2
...

uIN
uΓ

 =


fI1
fI2
...
fIN
fΓ

 . (2.53)

Each unknown in Γ is then assigned to the local interfaces Γi, Γj, . . . of the closest (w.r.t.
the graph distance) interiors Ii, Ij, . . . (each unknown in Γ may then belong to the
local interface of several subdomains). As such, Γ is equal to the (non-disjoint) union of
subdomain’s interfaces Γ =

⋃
1≤i≤N Γi. Introducing the two sets of canonical restriction

48 Louis POIREL

2. Domain decomposition methods

matrices RΩi from the global set of indices Ω to Ωi = Ii ∪ Γi, and RΓi from Γ to Γi, one
can partition K by choosing a decomposition of the interface matrix and of the right-hand
side

KΓΓ =
N∑
i=1

RT
Γi
K(i)

ΓiΓi
RΓi and fΓ =

N∑
i=1

RT
Γi
f

(i)
Γi
. (2.54)

Then, introducing a transmission matrix Ti on Γi, local matrices Ki and local right-hand
side fi as

Ki =

(
KIiIi KIiΓi
KΓiIi K

(i)
ΓiΓi

)
and fi =

(
fIi
f

(i)
Γi

)
, (2.55)

one gets the algebraic augmented formulation, where the unknowns on Γi are replicated
on all the neighbors that share Γi

∀i ∈ {1, . . . , N}
[
Ki +

(
0 0
0 Ti

)](
uIi
uΓi

)
= fi +

(
0
λi

)
, (2.56)

N∑
i=1

BiuΓi = 0, (2.57)

N∑
i=1

RT
Γi
TiuΓi =

N∑
i=1

RT
Γi
λi, (2.58)

where Bi is a jump matrix : each row in
∑N

i=1 Bi corresponds to the equality condition
for one unknown shared by two subdomains k < `. The row in Bi has only one non-zero
element on the column of the corresponding shared unknown if i = k, in which case the
value is 1, or if i = ` in which case it is −1. All the other elements are 0. For instance,
with only two subdomains, the constraint uΓ1 = uΓ2 is ensured by choosing B1 = I and
B2 = −I. On an interface Γij...k between Ωi and a certain number of subdomains, several
rows in Bi are needed for each unknown to enforce the equality between the different
subdomains. Namely, for an unknown shared by n subdomains, n− 1 rows are needed.

The global formulation (2.53) and the augmented formulation (2.56 – 2.58) are equiv-
alent: from a solution u to (2.53) one can introduce uΓi = RΓiuΓ and λi = KΓiIiuIi +

(K(i)
ΓiΓi

+ Ti)uΓi − f
(i)
Γi
. Then, the first block-row of (2.56) is exactly the i-th block row

of (2.53). The second first block-row of (2.56) is true by definition of λi. Equation (2.57) is
true by definition of the jump matrix Bi and the restriction matrix RΓi :

∑N
i=1 BiRΓi = 0.

Equation (2.58) can be obtained from the last block-row of (2.53) by adding
∑N

i=1 λi on
both sides of the equation. Conversely, for the same reasons, any solution to (2.56 – 2.58)
gives a global solution to (2.53) by choosing uΓ such that ∀i uΓi = RΓiuΓ: this is possible
because an unknown in Γ that appears in several local interfaces Γi, Γj, . . . has the same
value in all the vectors uΓi , uΓj , . . . because of Equation (2.57).

Instead of the algebraic graph partition presented above, which needs to be performed
after the global problem has been discretized, one can partition the meshed domain before
discretizing the local equations. After the domain Ω has been partitioned as above in N

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 49

2.6. Generalization to N subdomains

subdomains Ωi, one may introduce the discretization Kiui = fi of the local homogeneous
Neumann problem as presented in Section 2.3.2

∀i ∈ {1, . . . , N} find ui : Ωi → R such that
L(ui) = f in Ωi,

B(ui) = g on ∂Ωi ∩ ∂Ω ,

Ni(ui) = 0 on Γi.

Then, the set of local indices Ωi can be partitioned into an interior Ii = {k ∈ Ωi, ∀j 6=
i k /∈ Ωj} and a local interface Γi = {k ∈ Ωi, ∃j 6= i k ∈ Ωj}. The local matrix and
right-hand side can be reordered according to the symmetric permutation (Ii Γi)

Ki =

(
KIiIi KIiΓi
KΓiIi K

(i)
ΓiΓi

)
and fi =

(
fIi
f

(i)
Γi

)
. (2.59)

These matrices and right-hand sides provide a suitable decomposition as needed in Equa-
tion (2.54), and the discretization of the continuous augmented formulation (2.51 – 2.52)
is exactly (2.56 – 2.58). This approach has two advantages: first, the discretization pro-
cess and the matrix assembly are only performed on local problems, independently from
one another. As such, they can be run in parallel, and the global matrix is never explicitly
assembled. The second benefit is that these local Neumann matrices may inherit some
properties from the PDE, that are useful to build a more robust method as in Section 3.

2.6.2 Augmented formulation on the interface

Introducing the Dirichlet-to-Neumann operators Si and reduced right-hand side rhs i in
each subdomain as in Section 2.4, the continuous augmented formulation can be rewritten
as an interface problem

∀i ∈ {1, . . . , N} find (uΓi , λi) : Γi → R such that
Si(uΓi) + Ti(uΓi) = rhs i + λi on Γ, (2.60)
ui = uj = · · · = uk on Γij...k, (2.61)


Ti(ui) + Tj(uj) + · · ·+ Tk(uk) = λi + λj + · · ·+ λk on Γij...k. (2.62)

Algebraically, introducing the local Schur complement matrices Si and reduced right-
hand side f̃ (i)

Γi

Si = K(i)
ΓiΓi
−KΓiIiK−1

IiIiKIiΓi and f̃
(i)
Γi

= f
(i)
Γi
−KΓiIiK−1

IiIifIi , (2.63)

the interior variable uIi = K−1
IiIi(fIi − KIiΓiuΓi) can be eliminated in the augmented

formulation (2.56 – 2.58) to obtain the augmented formulation on the interface

∀i ∈ {1, . . . , N} [Si + Ti]uΓi = f̃
(i)
Γi

+ λi (2.64)
N∑
i=1

BiuΓi = 0, (2.65)

N∑
i=1

RT
Γi
TiuΓi =

N∑
i=1

RT
Γi
λi. (2.66)

50 Louis POIREL

2. Domain decomposition methods

2.6.3 Primal formulations

Eliminating λi from an augmented formulation (continuous or algebraic, on Ω or Γ) also
eliminates the transmission operators Ti or Ti from the equations, yielding the primal
formulations

find u : Ω→ R such that
L(u) = f in Ωi, (2.67)B(u) = g on ∂Ωi ∩ ∂Ω , (2.68)
Ni(u) + Nj(u) + · · ·+ Nk(u) = 0 on Γij...k, (2.69)

and, on the interface,

find uΓ : Γ→ R such that (2.70)
Si(uΓ) + Sj(uΓ) + · · ·+ Sk(uΓ) = rhs i + rhsj + · · ·+ rhsk on Γij...k, (2.71)

for the continuous problem, or, algebraically,

N∑
i=1

RT
Ωi
KiRΩiu =

N∑
i=1

RT
Ωi
fi, (2.72)

and
N∑
i=1

RT
Γi
SiRΓiuΓ =

N∑
i=1

RT
Γi
f̃

(i)
Γi
. (2.73)

An implementation of these two algebraic formulations is proposed in Chapter 4.

2.6.4 Dual augmented formulations

Similarly to the two-subdomain case from Section 2.5.3, if
∑N

i=1 Ti = 0, Equation (2.62)
becomes

∑N
i=1 λi = 0. On an interface Γij between two neighbors, one can search a

unique λij such that λij = λi = −λj. On an interface Γij...k between Ωi and two or more
neighbors Ωj, . . . and Ωk, one can introduce the same number of unknowns as neighboring
subdomains λij, . . . , λik, such that λi = λij + · · ·+ λik, λj = −λij, . . ., and λk = −λik.

Then, if Ŝi = Si+ Ti is not singular, one can eliminate uΓi = Ŝ−1
i (rhs i+λi) = Ŝ−1

i (rhs i+
λij + · · ·+ λik), uΓj = Ŝ−1

j (rhsj + λj) = Ŝ−1
j (rhsj − λij), . . ., and uΓk = Ŝ−1

k (rhsk − λik) and
the dual (augmented if Ti 6= 0) formulation is

find (λij, . . . , λik) : Γij...k → R such that

Ŝ−1
i (rhs i + λij + · · ·+ λik) = Ŝ−1

j (rhsj − λij) = · · · = Ŝ−1
k (rhsk − λik),

Algebraically, the same process can be applied by replacing λi = BTi λ and eliminating
uΓi = Ŝ−1

i (f̃
(i)
Γi

+ BTi λ)

N∑
i=1

BiŜ−1
i BTi λ = −

N∑
i=1

BiŜ−1
i f̃

(i)
Γi
.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 51

2.6. Generalization to N subdomains

The particular case where Ti = 0 and Ŝi = Si gives the dual (non-augmented) formulation

N∑
i=1

BiS−1
i BTi λ = −

N∑
i=1

BiS−1
i f̃

(i)
Γi
. (2.74)

2.6.5 N-Lagrange formulations

In a subdomain Ωi with several neighbors Ωj, . . ., Ωk, the first compatibility condi-
tion (2.61) in the continuous augmented system on the interface ensures that ui = uj
on Γij, . . . and ui = uk on Γik. As a result, if all points in Γi are also in at least one of Γj,
. . ., Γk, one can introduce weight functions wij, . . . ,wik : Γi → R such that

ui = wijuj + · · ·+ wikuk on Γi, with wij + · · ·+ wik = 1 (2.75)

where uj, . . . , uk have been prolonged by 0 on Γi\Γij, . . . ,Γi\Γik, respectively. On a part of
Γi that is shared with only one other subdomain, for instance Ωj, ui = wijuj+. . . 0+wik0 =
wijuj, and wij = 1 since ui = uj. On a part of Γi that is shared by more subdomains, the
weights can be chosen arbitrarily such that their sum is 1: on a boundary Γijk between
Ωi and two neighbors Ωj and Ωk, one could impose for instance wij = 0 and wik = 1, or
the reverse, or wij = wik = 1

2
. Then, one can eliminate ui from the second compatibility

condition (2.62) using (2.75) and the linearity of Ti

λi − Ti(ui) + λj − Tj(uj) + · · ·+ λk − Tj(uk) = 0,

⇒ λi − Ti(wijuj + · · ·+ wikuk) + λj − Tj(uj) + · · ·+ λk − Tj(uk) = 0,

⇒ λi + λj − Ti(wijuj)− Tj(uj) + · · ·+ λk − Ti(wikuk)− Tk(uk) = 0.

Similarly, continuing to eliminate uj, . . . , uk gives

λi + λj − Ti(wijŜ−1
j (λj))− Tj(Ŝ−1

j (λj)) + · · ·+
λk − Ti(wikŜ−1

k (λk))− Tk(Ŝ−1
k (λk)) =

Ti(wijŜ−1
j (rhsj))− Tj(Ŝ−1

j (rhsj)) + · · ·+
Ti(wikŜ−1

k (rhsk))− Tk(Ŝ−1
k (rhsk)).

Algebraically, the same operations can be performed: in each subdomain, the interface
unknowns are equal to the corresponding interface unknowns in their neighbors’ interfaces.
It is therefore possible to introduce a set of weight matrices (Wij)j 6=i such that uΓi =∑

j∈N (i) WijRΓiRT
Γj
uΓj , where N (i) = {j,Γij 6= ∅} is the set of Ωi’s neighbors. Applying

the restriction RΓi on the left of Equation (2.66) gives

RΓi

N∑
j=1

RT
Γj

(λj − TjuΓj) = 0.

52 Louis POIREL

2. Domain decomposition methods

Since RΓiRT
Γi

= I and RΓiRT
Γj

= 0 if Γij = ∅, the sum can be restricted to N (i)

λi − TiuΓi +
∑
j∈N (i)

RΓiRT
Γj

(
λj − TjuΓj

)
= 0,

⇒ λi −
∑
j∈N (i)

TiWijRΓiRT
Γj
uΓj +

∑
j∈N (i)

RΓiRT
Γj

(
λj − TjuΓj

)
= 0,

⇒ λi +
∑
j∈N (i)

RΓiRT
Γj
λj −

(
RΓiRT

Γj
Tj + TiWijRΓiRT

Γj

)
uΓj = 0,

⇒ λi +
∑
j∈N (i)

[
RΓiRT

Γj
−
(
RΓiRT

Γj
Tj + TiWijRΓiRT

Γj

)
Ŝ−1
j

]
λj =

∑
j∈N (i)

(
RΓiRT

Γj
Tj + TiWijRΓiRT

Γj

)
Ŝ−1
j f̃

(j)
Γj
.

Writing the same equation for each subdomain, one obtains a N -Lagrange formulation,
that can be solved using an iterative method. To perform a matrix vector product, from
λ = (λT1 , . . . , λ

T
N)

T , a solve ui = −Ŝ−1
i λi = −(Si+Ti)−1λi is performed in each subdomain.

Then, each subdomain Ωi communicates with each neighbor Ωj the restriction of ui and
µi = λi + Tiui to the common interface Γij: RΓjRT

Γi
(ui, µi). Then, λ′i is computed as

λ′i = λi+
∑

j∈N (i)RΓiRT
Γj
µj +TiWijRΓiRT

Γj
uj and λ′ = (λ′1

T , . . . , λ′1
T)

T
is the result of the

matrix-vector product. An implementation of this N -Lagrange formulation is proposed
in Chapter 4 (Listing 57).

(a) general case (b) 1D decomposition (c) HDG discretization

Figure 2.5: Three decompositions in four subdomains for the same global domain. An
interface unknown can be shared by two subdomains (green) or more (red), in which
case it is called a crosspoint. Crosspoints occur where interfaces cross with one another,
as in 2.5a. They can be avoided using a 1D decomposition as in 2.5b or a different
discretization method such as the Hybridizable Discontinuous Galerkin (HDG) method
(Cockburn et al., 2009) as in 2.5c.

In some cases, each interface unknown is shared by exactly two subdomains, as in
figures 2.5b and 2.5c. In that case, Wij = I. If furthermore, Ti is block-diagonal (one
block per neighbor), then each subdomain Ωj may store T (j)

i = RΓjRT
Γi
TiRΓiRT

Γj
for each

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 53

2.7. Domain decomposition preconditioners

neighbor Ωi. The equation becomes

λi +
∑
j∈N (i)

RΓiRT
Γj

(I − (Tj + T (j)
i)Ŝ−1

j)λj =
∑
j∈N (i)

RΓiRT
Γj

(Tj + T (j)
i)Ŝ−1

j f̃
(j)
Γj
.

Each subdomain can directly compute µ′i =
(
I −

(
Ti +

∑
j∈N (i) T

(i)
j

)
Ŝ−1
i

)
λi and com-

municate RΓjRT
Γi
µ′i to each neighbor Ωj. The local result of the matrix-vector product

can then be computed as λ′i = λi +
∑

j∈N (i)RΓiRT
Γj
µ′j.

2.7 Domain decomposition preconditioners

2.7.1 Variations on the Schwarz Alternating method

The Schwarz alternating method (Schwarz, 1870) introduced in Section 1.1.2 was orig-
inally introduced for a global domain that is the union of only two overlapping subdo-
mains. Lions (1988, 1989, 1990) studied and extended this method, generalizing it to
a N -subdomain decomposition. Used as a preconditioner, this method is known as a
Multiplicative Schwarz preconditioner. The main drawback of this method is that for
each iteration, the solution in the N subdomains need to be performed one after another,
sequentially. Lions (1988) proposed a parallel version of the method, where the solution
is computed simultaneously in all subdomains, taking the previous iterate as a BC. Al-
gebraically, this is equivalent (Gander, 2008) to the Restricted Additive Schwarz (RAS)
preconditioner (Cai and Sarkis, 1999). Lions (1990) also generalized the method by re-
placing the Dirichlet BC by a Robin BC, eliminating the need for an overlap between
the subdomains. Algebraically, this is equivalent to the optimized RAS method (St-Cyr
et al., 2007), or, with a change of variables, to the N -Lagrange method (Nataf et al.,
1995) introduced in Section 2.6.5.

2.7.2 Abstract Schwarz preconditioners

Another method, closely related to the parallel Schwarz method, is the Additive Schwarz
(AS) method (Matsokin and Nepomnyaschikh, 1985; Dryja and Widlund, 1987) in which
the corrections computed in all the subdomains are added in the overlap. This leads to a
symmetric AS preconditioner

MAS =
N∑
i=1

RT
i

(
RiKRT

i

)−1Ri.

A thorough historic perspective on all these methods can be found for instance in (Gander,
2008; Gander and Wanner, 2014; Dolean et al., 2015b).

A so-called Neumann-Neumann preconditioner for the primal formulation on the in-
terface (2.73) was introduced by De Roeck and Le Tallec (1991)

MNN =
N∑
i=1

RT
i DiS†iDiRi,

54 Louis POIREL

2. Domain decomposition methods

where (Di)
N
i=1 is a partition of unity such that

∑N
i=1RT

i DiRi = In and In is the n × n
identity matrix. Similarly, a FETI method was introduced by Farhat and Roux (1991),
where the preconditioner

MFETI =
N∑
i=1

BiDiSiDiBTi ,

is used to solve the dual formulation (2.74). The Neumann-Neumann preconditioner was
generalized to a Robin-Robin (RR) preconditioner (Achdou and Nataf, 1997; Achdou
et al., 2000).

These methods have been studied under a unified abstract Schwarz theory (Toselli and
Widlund, 2006): the primal formulations

N∑
i=1

RT
Ωi
KiRΩiu =

N∑
i=1

RT
Ωi
fi,

N∑
i=1

RT
Γi
SiRΓiuΓ =

N∑
i=1

RT
Γi
f̃

(i)
Γi
,

and the dual formulation

N∑
i=1

BiŜ−1
i BTi λ = −

N∑
i=1

BiŜ†i f̃
(i)
Γi

all have the same form

N∑
i=1

RT
i AiRix = b,

and the AS, BDD, NN, RR preconditioners above are particular choice of abstract Schwarz
(aS) preconditioners

MaS =
N∑
i=1

RT
i Â
†
iRi.

Note that the computation of a matrix-vector product or an application of the precon-
ditioner can be performed in parallel using only neighbor-to-neighbor communications:
to compute y = Ax (where A =

∑N
i=1RT

i AiRi) or y =MaSx, knowing xi = Rix in each
subdomain, one first needs to compute the local operation y′i = Aixi or y′i = Â†ixi. Then,
yi = Riy = Ri

∑N
j=1RT

j y
′
j can be computed by noticing that RiRT

i = I and RiRT
j = 0

if j /∈ N (i) ∪ {i}: yi = y′i +
∑

j∈N (i)RiRT
j y
′
j. Each subdomain only needs to send to its

neighbors the restriction of its local component y′i to their common interface, and sum
the contributions it receives from its neighbors. This step is called assembly.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 55

2.7. Domain decomposition preconditioners

2.7.3 Two-level preconditioners

If the local operator Ai or Âi is singular, a pseudoinverse may be used in the method.
However, the result of Â†ixi is only defined up to an element of ker Âi. Furthermore,
even when Âi is not singular, the convergence of these methods often deteriorates when
the number of subdomains increases, due to a lack of global communication. A solution
to these two problems is to use a coarse space V0 (that contains these kernels) and to
use a deflation technique introduced by Nicolaides (1987) to compute a coarse solution
x0 = V0(V T

0 AV0)−1V T
0 b. Then, the solution x∗ = A−1b can be computed as x∗ = x0 + x⊥

where x⊥ = x∗ − x0. Introducing the coarse projection P0 = V0(V T
0 AV0)−1V T

0 A, it holds
that x0 = P0x

∗ and x⊥ = (I − P0)x∗. Since AP0 = PT0 A and P0P0 = P0, it holds that
Ax⊥ = (I − PT0)Ax∗ = (I − PT0)b. Using the abstract Schwarz preconditioner MaS to
solve this projected, or deflated equation Ax⊥ = (I − PT0)b is equivalent to using the
deflated abstract Schwarz preconditioner

MaS,D = V0(V T
0 AV0)−1V T

0 + (I − P0)MaS(I − PT0)

on the non-deflated equation Ax = b. Note that the elimination of interior unknowns
presented in Section 2.4 is just a special case of deflation with V0 = RT

I , as proved in
(Mansfield, 1990).

Another solution is to add the Coarse Space Correction (CSC) to the aS preconditioner,
without the projection, leading to the (additive) two-level preconditioner

MaS,2 = V0(V T
0 AV0)−1V T

0 +MaS.

This additive two-level variant is in fact only used whenMaS is an AS preconditioner, as
explained in Section 3.4, leading to the two-level AS preconditionerMAS,2 introduced in
(Dryja and Widlund, 1987).

2.7.4 Choice of a coarse space

The choice of the coarse space is a key element of the construction of a two-level precon-
ditioner. The coarse space introduced by Nicolaides (1987) for a Poisson problem is built
by partitioning the unknowns into m disjoint subsets g1, . . . , gm, and defining V0 such that
V0ij = 1 if i ∈ gj and V0ij = 0 if i /∈ gj. It has been extended by Sarkis (2003) to the
case where Ω is a (non-disjoint) union Ω = Ω1 ∪ · · · ∪ΩN by using a partition of unity as
defined in Section 2.7.2: V0 is defined as the (n × N) rectangular matrix whose column
j is RT

i diag(Di). The construction of these two coarse spaces for Poisson’s equation rely
on the fact that the kernel of a local Neumann problem is the subspace of vectors that
are constant in the subdomains. Similarly, coarse spaces based on the kernel of local
operators have been used in the definition of the balanced NN (Mandel, 1993) and FETI
(Farhat and Roux, 1991) methods.

Other coarse spaces have been constructed by separating the interface Γ into so-called
faces, edges and crosspoints (or vertices) in (Bramble et al., 1986, 1989; Smith, 1991;
Carvalho et al., 2001a).

The coarse spaces based on the kernels of local operators perform very well on homo-
geneous problems. In the heterogeneous cases, if the discontinuities are not aligned with

56 Louis POIREL

2. Domain decomposition methods

the interfaces between subdomains, it is possible to improve the convergence by choosing
some solutions of local eigenproblems as in (Galvis and Efendiev, 2010; Nataf et al., 2011;
Efendiev et al., 2012; Spillane and Rixen, 2013; Spillane et al., 2014a; Spillane, 2014;
Klawonn et al., 2016b,a; Haferssas et al., 2017; Klawonn et al., 2018). A construction
and proof of robustness for such a local spectral coarse space for aS preconditioners using
algebraic information is proposed in Chapter 3; an implementation of the resulting two-
level aS methods is proposed in Chapter 4, and the parallel design of the additive CSC
for the AS method applied on the Schur complement system in a HPC hybrid solver is
studied in Chapter 5.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 57

Chapter 3

Convergence of abstract Schwarz
methods

3.1 Introduction

Several classic domain decomposition methods (DDM) can be expressed as abstract
Schwarz (aS) preconditioners (Section 2.7) for the primal formulations (Section 2.6.3)
introduced in Chapter 2. The present chapter focuses on the convergence analysis of
these aS method. It is illustrated with numerical experiments (Section 3.5). The code
designed for that purpose is not presented in the present chapter, as it will instead be
the object of Chapter 4 which will focus on the issues related to the design of such a
code for achieving high performance in a parallel context while ensuring the required flex-
ibility to cover all the proposed methods. Performance results are eventually provided
in Section 3.5.5 to make the present chapter self-contained and illustrate the benefits of
a parallel Coarse Space Correction (CSC). Nonetheless, the parallel design of the coarse
grid will be tackled in details only in Chapter 5.

The domain decomposition community has developed many efficient and robust meth-
ods in the last decades. While some of these solvers fall into the aS framework mentioned
above, their robustness have originally been demonstrated on a case-by-case basis, often
relying on some properties of the underlying partial differential equations that is being
solved. A general convergence theory of aS methods is presented in (Toselli and Wid-
lund, 2006). In this chapter, we propose a bound for the condition number of deflated
aS methods for SPD matrices provided that the coarse grid consists of the assembly of
local components that contain the kernel of some local operators. We show that clas-
sical results from the literature on particular instances of aS methods can be retrieved
from this bound. We then show that such a CSC can be explicitly obtained algebraically
via generalized eigenproblems, leading to a condition number independent of the number
of subdomains when the global SPD matrix is known as a sum of symmetric positive
semi-definite (SPSD) matrices. This result can be readily applied to retrieve or improve
the bounds previously obtained via generalized eigenproblems in the particular cases of
Neumann-Neumann (NN), Additive Schwarz (AS) and optimized Robin but also gen-
eralizes them when applied with approximate local solvers. Interestingly, the proposed
methodology turns out to be a comparison of the considered particular aS method with

58

3. Convergence of abstract Schwarz methods

generalized versions of both NN and AS for tackling the lower and upper part of the spec-
trum, respectively. We furthermore show that the application of the considered coarse
grid corrections in an additive fashion is robust in the AS case although it is not robust
for aS methods in general. In particular, the proposed framework allows for ensuring
the robustness of the AS method applied on the Schur complement (AS/S), either with
deflation or additively, and with the freedom of relying on an approximate local Schur
complement. Numerical experiments illustrate these statements.

The linear system (Equation (1.5), page 21) to be solved is

Ku = f, (3.1)

where K is a n×n sparse SPD matrix that does not need to be known explicitly. Instead,
the parallel application provides K to the solver as a sum K =

∑N
i=1K

(g)
i of N SPSD

matrices K(g)
i . The matrix K(g)

i is similar to the Ki matrix introduced in Section 2.6.1 of
Chapter 2, but using the global (hence the (g) notation) ordering instead of a local one.
Even though K(g)

i is of size n × n, in practical applications it has only ni non-zero rows
(and columns), meaning that this matrix represents the interaction of only a subset of the
unknowns from the global problem. We define the global domain Ω = {1, . . . , n} as the set
of row (or column) indices in K, and the subdomain Ωi = {ω(i)

1 , ω
(i)
2 , . . . , ω

(i)
ni } as the set of

indices of the non-zero rows and columns in K(g)
i (Ωi is the set of vertices in the adjacency

graph of K(g)
i). We introduce the ni × n canonical restriction matrix RΩi from Ω to Ωi,

such that for any vector u = (u1, . . . , un) ∈ Rn, RΩiu is the vector (u
ω

(i)
1
, . . . , u

ω
(i)
ni

) ∈ Rni .

Then, we define the ni×ni SPSD matrix Ki = RΩiK
(g)
i RT

Ωi
, referred to as the local matrix

of subdomain Ωi, leading to

K =
N∑
i=1

RT
Ωi
Ki RΩi . (3.2)

The unknowns in any subdomain Ωi can be partitioned into an interior Ii = {ω ∈
Ωi s.t. ∀j 6= i, ω /∈ Ωj} and an interface Γi = {ω ∈ Ωi s.t. ∃j 6= i ω ∈ Ωj} = Ωi\
Ii. If an unknown ω ∈ Ωi appears in at least one other subdomain, then ω ∈ Γi, otherwise
ω ∈ Ii. This yields a partition of the global domain Ω = {1, . . . , n} = I1 ∪ · · · ∪ IN ∪ Γ
where Γ = Γ1 ∪ · · · ∪ ΓN is the global interface.

Then, eliminating in parallel the interior unknowns following for instance (Section 2,
Le Tallec and Vidrascu, 1998) the original system (3.1) reduces to a Schur complement
problem defined on the interface Γ

SuΓ = f̃Γ, S =
N∑
i=1

RT
Γi
Si RΓi , (3.3)

where the global Schur complement matrix S is SPD and the local Schur complement
matrices Si are SPSD. Using the classical index notation for referring to sub-blocks of
matrices and vectors, we have S = KΓΓ−

∑N
i=1KΓIiK−1

IiIiKIiΓ, f̃Γ = fΓ−
∑N

i=1KΓIiK−1
IiIifIi

and Si = KΓiΓi − KΓiIiK−1
IiIiKIiΓi . From the interface solution uΓ, the solution in Ii can

be computed as uIi = K−1
IiIi

(
fIi −K−1

IiIiKIiΓuΓ

)
.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 59

3.1. Introduction

Algebraically, the problems (3.1) and (3.3) are very similar; their only difference is
that even when Ki is sparse, Si is in general a dense matrix (as soon as Ki is irreducible).
Although eliminating the interior unknowns is often associated with specific DDM such as
Neumann-Neumann or BDD (De Roeck and Le Tallec, 1991; Mandel, 1993), it is in fact an
optional step in the solution of Problem (3.1) and many domain decomposition methods
can be applied either directly on K or, after eliminating the interior unknowns, on S.
This elimination step may take time and consume memory, but it allows one to reduce
the size and the condition number of the linear system (S) to be solved (Brenner, 1999;
Mansfield, 1990), making it a useful optional preprocessing. Since the theory presented
in sections 3.2 and 3.3 can be applied to solve either the original problem in (3.1) or the
reduced Schur complement problem in (3.3), we write them in a general form as

Ax = b, A =
N∑
i=1

RT
i Ai Ri, (3.4)

where the global SPD matrix A, the local SPSD matrices Ai, and the restriction matrices
Ri can represent K, Ki and RΩi or S, Si and RΓi when solving (3.1) or (3.3), respectively.
When needed, a specific method M will be noted M/K or M/S to specify on which
problem this method is applied. In both cases, A is SPD and, assuming that the Ai are
assigned to different computing units, Problem (3.4) can be solved in parallel using the
preconditioned conjugate gradient method (PCG).

A good preconditionerM for (3.4) should have the two following properties: (1)M
is SPD and close to A−1, in the sense that the condition number κ(MA) should be as
small as possible; (2) it is easy to compute Mu for any vector u (at least much easier
than A−1u). DDM are often used to build such preconditioners of the form

MaS =
N∑
i=1

RT
i Â
†
iRi (3.5)

where Âi is a local problem associated with A on subdomain i, and † represents a pseudo-
inverse. These preconditioners have been studied for a long time using the abstract
Schwarz (aS) theory (see, e.g., (Dolean et al., 2015b; Toselli and Widlund, 2006) for
recent overviews). Two particular cases of these aS preconditioners are the Neumann-
Neumann (NN) preconditioner (Mandel, 1993), with Âi = D−1

i AiD−1
i , and the Additive

Schwarz (AS) preconditioner, with Âi = RiART
i

MNN =
N∑
i=1

RT
i DiA†iDiRi, MAS =

N∑
i=1

RT
i

(
RiART

i

)−1Ri, (3.6)

where (Di)
N
i=1 is a partition of unity such that

∑N
i=1RT

i DiRi = In and In is the n × n
identity matrix. These two preconditioners are of particular importance, but any other
SPSD matrix can be used as the local preconditioner Âi in (3.5).

Unless Âi perfectly mimics the global action of A in subdomain Ωi, κ(MaSA) may
significantly increase with the number N of subdomains, leading to a non scalable nu-
merical method. Furthermore, if Âi is singular, the pseudo-inverse is only defined up to

60 Louis POIREL

3. Convergence of abstract Schwarz methods

an element in its null space ker(Âi). To solve these two problems, as discussed in Sec-
tion 2.7.3, a coarse space V0 such that RT

i ker(Âi) ⊂ V0 can be introduced, leading to the
deflated aS preconditioner

MaS,D = V0(V T
0 AV0)†V T

0 + (In − P0)

(
N∑
i=1

RT
i Â
†
iRi

)
(In − P0)T (3.7)

where P0 = V0(V T
0 AV0)†V T

0 A is the A-orthogonal projection onto V0. A simpler additive
two-level preconditioner can also be obtained by just adding the coarse component to the
one-level preconditioner

MaS,2 = V0(V T
0 AV0)†V T

0 +
N∑
i=1

RT
i Â
†
iRi. (3.8)

If V0 is full rank, the pseudo inverse (V T
0 AV0)† can be replaced by an inverse (V T

0 AV0)−1.
While previous works had proposed bounds on the condition number κ(MA) on par-

ticular numerical cases, often relying on analytical assumptions, Le Tallec and Vidrascu
(1998) derived an algebraic bound for a new class of preconditioners, relying on the gener-
alized Rayleigh quotient of two local matrices. These preconditioners are called generalized
NN in the original article; however, because the generalization consists of handling an
approximate matrix, we will instead refer to them as approximate NN preconditioners
in this thesis. The approximation is not related to the use of inexact solvers to com-
pute the preconditioner, but to the use of an approximation matrix Ã instead of A in
the construction of the preconditioner. The approximate NN preconditioner is in fact
an exact algebraic NN preconditioner for Ã. Then, this approximate preconditioner is
used to accelerate the convergence of PCG applied on the exact matrix A, guaranteeing
a convergence towards the actual solution of Equation (3.4).

This class of approximate NN preconditioners generalizes classical NN but does not
cover the whole aS class of preconditioners. Note, for instance, that AS cannot be ex-
pressed as such an approximate NN preconditioner. The first contribution (Section 3.2)
of this chapter is to extend the result from (Le Tallec and Vidrascu, 1998) by using a
generic local preconditioner and cover a broader range of aS methods, which we name
approximate deflated aS methods and consist of all deflated aS methods whose coarse
space consists of the assembly of local components that contain the kernel of some local
operators (that are formally introduced below, in Definition 1). Interestingly, the bound
we exhibit (Theorem 1) highlights the key position of NN and AS among other local
preconditioners in the Schwarz framework: they provide two bounds on the spectrum of
the preconditioned operator, and the convergence of any aS local preconditioner can be
evaluated by comparing it to these two well-known methods.

This bound depends on generalized Rayleigh quotients which are traditionally esti-
mated using functional analysis. Alternatively, we propose to control these Rayleigh
quotients algebraically by building the coarse space using eigenvectors of well chosen gen-
eralized eigenproblems (Theorem 2). For that, we follow the Generalized Eigenvalue in
the Overlap (GenEO) procedure (Spillane et al., 2014a). This second contribution (Sec-
tion 3.3) results in an explicit procedure for building a robust CSC for any approximate

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 61

3.2. Approximate abstract Schwarz preconditioners

deflated aS method leading to a bound on the condition number (hence on the number of
iterations of PCG) independent of the number of subdomains. This result can be readily
applied to retrieve or improve the bounds previously obtained via generalized eigenprob-
lems in the particular cases of AS/K (Spillane et al., 2014a), NN/S (Spillane and Rixen,
2013) and optimized Robin (SORAS/K) (Haferssas et al., 2017). It also generalizes these
results to the approximate case. The idea of building a coarse space by solving local
eigenproblems in each subdomain was introduced in (Galvis and Efendiev, 2010; Nataf
et al., 2011); coarse spaces following this general idea for FETI-DP (Farhat et al., 2001)
or BDDC (Dohrmann, 2003) were introduced in (Klawonn et al., 2016a, 2018, 2016b).

The third contribution (Section 3.4) in this chapter is that the application of the
considered CSC in an additive fashion is robust in the approximate AS case (although
it is not robust for aS methods in general). The bound we obtain (Theorem 3) can be
applied for retrieving the bound obtained in (Spillane et al., 2014a), when the coarse
correction is applied additively to the AS method on the original matrix (AS/K). When
working on the Schur complement matrix (AS/S) (Carvalho et al., 2001b), the bound is
still valid and leads, as commented in (Galvis and Efendiev, 2010), to a smaller coarse
space compared to AS/K.

Numerical experiments illustrate our discussion in Section 3.5. A HPC implementation
of the CSC of one particular, robust method (AS/S) has furthermore been implemented
in the HPC MaPHyS1 hybrid (direct/iterative) sparse linear solver (Agullo et al., 2011,
2016b) to eventually assess its performance on a modern parallel computer (Section 3.5.5)
and make this scalable method available to the scientific community. The presentation of
the ddmpy code employed for illustrating the numerical behavior of the proposed methods
in sections 3.5.2, 3.5.3 and 3.5.4 is not addressed in the present chapter and will be
the object of Chapter 4. Similarly, the presentation of the parallel design of CSC into
the MaPHyS fully-featured sparse hybrid solver will be the object of Chapter 5 and
Section 3.5.5 only provides a brief preview of it.

The chapter is organized as follows. Section 3.2 introduces a new class of approximate
(deflated) aS preconditioners and provides a bound on their condition number, which
depends on generalized Rayleigh quotients. Applying the GenEO procedure on two well
chosen generalized eigenproblems, Section 3.3 proposes a procedure to explicitly compute
the coarse space while bounding these Rayleigh quotients leading to a bound on the
condition number (hence on the number of iterations of PCG) independent of the number
of subdomains. Section 3.4 shows that a similar result (and procedure) can be obtained
when the CSC is additively applied, in the case of approximate AS problems. Numerical
experiments illustrate our discussion in Section 3.5 before concluding in Section 3.6.

3.2 Approximate abstract Schwarz preconditioners

In this section, we first define a class of approximate aS preconditioners, which combine a
local preconditioner Âi, an approximate matrix Ã and a coarse space V0 in Section 3.2.1.
We then provide a bound on the condition number of this class of methods in Section 3.2.2,
whose proof is detailed in Section 3.2.3.

1See https://gitlab.inria.fr/solverstack/maphys/

62 Louis POIREL

https://gitlab.inria.fr/solverstack/maphys/

3. Convergence of abstract Schwarz methods

3.2.1 Context

Definition 1 (Approximate abstract Schwarz preconditioner M̃aS,D). In order to build
such a preconditioner for Problem (3.4), we need the three following ingredients:

1. a set of symmetric positive semi-definite (SPSD) local preconditioners Âi,

2. an approximation Ã of A such that

∃ (Ãi)Ni=1, Ã =
N∑
i=1

RT
i ÃiRi and Ãi is SPSD, (3.9)

∃ ω−, ω+ > 0, ∀v ∈ V ω− v
TAv ≤ vT Ãv ≤ ω+ vTAv, (3.10)

3. and a coarse space V0 such that

∃ (V i
0)Ni=1, V0 =

N∑
i=1

RT
i V

i
0 with ker(Âi) + ker(Ã(NN)

i) ⊂ V i
0 , (3.11)

where Ã(NN)
i = D−1

i ÃiD−1
i .

We can then define a coarse matrix Ã0 = V T
0 ÃV0, a coarse projection P̃0 = V0Ã†0V T

0 Ã
and the approximate aS preconditioner is then defined as

M̃aS,D = V0Ã†0V T
0 + (In − P̃0)

(
N∑
i=1

RT
i Â
†
iRi

)
(In − P̃0)T . (3.12)

Note that the matrix Ã(NN)
i introduced in (3.11) is the local matrix in the approximate

NN preconditioner M̃NN,D with the algebraic decomposition from (3.9). The matrices Di

can be any partition of unity as in (3.6). Ã(NN)
i is a scaled version of the local matrix Ãi

in the approximation Ã of A.
When no approximation is used, after a suitable initialization, M̃aS,D can be replaced

by (In − P̃0)
(∑N

i=1RT
i Â
†
iRi

)
in the PCG iterations, as noted in (Mandel, 1993).

3.2.2 Convergence result for M̃aS,D

In each subdomain, we note Ni = #{j 6= i, RiÃRT
j 6= 0} the number of neighbors

through the connectivity graph of Ã. We also define two local subspaces V̂ ⊥i and Ṽ ⊥i as
the orthogonal spaces of V i

0 for the inner products inferred by Âi in range(Âi) and Ã(NN)
i

in range(Ã(NN)
i) respectively. Then,

range(Ri) = V̂ ⊥i ⊕ V i
0 = Ṽ ⊥i ⊕ V i

0 , (3.13)

∀u ∈ V i
0 , ∀v ∈V̂ ⊥i , ∀w ∈ Ṽ ⊥i uT Âiv = uT Ã(NN)

i w = 0. (3.14)

Finally, for any SPSD matrix B and vector u, we note |u|B =
√
uTBu the B-seminorm of

u; if B is SPD, we note it ||u||B.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 63

3.2. Approximate abstract Schwarz preconditioners

Theorem 1 (Convergence result for approximate aS). The condition number of the pre-
conditioned matrix M̃aS,DA is bounded by

κ(M̃aS,DA) ≤ ω+

ω−

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2Âi
|v|2
Ã(NN)
i

max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 ,

where Ã(NN)
i = D−1

i ÃiD−1
i and Ã(AS)

i = RiÃRT
i .

We see three factors in this bound:

• The first one, with ω+ and ω−, controls the quality of the approximation Ã. If no
approximation is used, then Ã = A and ω− = ω+ = 1.

• The second one is a generalized Rayleigh quotient between the local preconditioner
Âi and the approximate NN preconditioner Ã(NN)

i = D−1
i ÃiD−1

i defined in (Le Tal-
lec and Vidrascu, 1998).

• The last one is a generalized Rayleigh quotient between the local preconditioner Âi
and an approximate AS preconditioner Ã(AS)

i = RiÃRT
i .

As for Ã(NN)
i above with NN, Ã(AS)

i = RiÃRT
i is an algebraic generalization of the

local matrix in the AS preconditioner in Equation (3.6), built upon the approximation Ã
instead of A.

Proof. The proof of Theorem 1 is a direct consequence of lemmas 3 and 5 in Section 3.2.3,
using the definition of

κ(M̃aS,DA) =
λmax(M̃aS,DA)

λmin(M̃aS,DA)
.

Corollary 1 (Convergence results for approximate AS and approximate NN). We define
the approximate AS and NN preconditioners M̃AS,D and M̃NN,D by replacing Âi with
Ã(AS)
i or Ã(NN)

i respectively in Equation (3.12). We also define Nc = max1≤i≤N (Ni + 1).
Then, the condition numbers of M̃NN,DA and M̃AS,DA are bounded by

κ(M̃AS,DA) ≤ ω+

ω−

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

 Nc,

κ(M̃NN,DA) ≤ ω+

ω−
max

1, sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

 Nc.

Proof. The proof of Corollary 1 is a consequence of lemmas 3 and 4 for AS, and lemmas 2
and 5 for NN.

64 Louis POIREL

3. Convergence of abstract Schwarz methods

Note that the bound for M̃NN,D in Corollary 1 is the same as in (Theorem 1, Le Tallec
and Vidrascu, 1998). This bound is tighter than the bound obtained by setting Âi =

Ã(NN)
i in Theorem 1; this comes from the fact that the bound in Lemma 2 is also tighter

than its generalization in Lemma 3.
The similarity of the bounds for AS and NN in Corollary 1 shows that the convergence

of these two methods are governed by the same quantity supv∈Ṽ ⊥i
|v|2
Ã(AS)
i

/|v|2
Ã(NN)
i

. As a

result, with the same coarse space, we expect the AS/S method (Carvalho et al., 2001b)
to show the same convergence behavior as the BDD method (NN/S) (Mandel, 1993) or
its dual counterpart FETI (Farhat and Roux, 1991). Although AS require more com-
munication than NN (each subdomain i has to send the matrix block RjRT

i ÃiRiRT
j to

each neighbor j) to setup the preconditioner, one advantage of using AS over NN is that
the local preconditioner Ã(NN)

i is often singular in some subdomains while Ã(AS)
i remains

SPD, and Ã(AS)
i

−1ui is often easier and faster to compute than Ã(NN)
i

†ui.

3.2.3 Proof of Theorem 1

To estimate the condition number of M̃aS,DA, we need to bound the spectrum of this
operator from above (Lemma 5) and below (Lemma 3). The lower bound is a consequence
of the Stable Decomposition Lemma as stated in (Toselli and Widlund, 2006).

Lemma 1 (Stable decomposition lemma). If there exists a constant C0, local matrices
Bi and extension operators Ii, such that ker(Bi) ⊂ ker(Ii) and every u ∈ V admits a
decomposition

u =
N∑
i=0

Iiui, {ui ∈ Vi, 0 ≤ i ≤ N} that satisfies
N∑
i=0

|ui|2Bi ≤ C2
0 ||u||2A.

Then

λmin(MA) ≥ C−2
0 , where M =

N∑
i=0

IiB†iIiT .

Proof. see, e.g., Lemma 2.5 in (Toselli and Widlund, 2006).

Then, although it is not directly used in the proof of Theorem 1, we first expose in
Lemma 2 a lower bound for the spectrum of NN (Âi = Ã(NN)

i) as it provides a good
insight on the reason behind the Rayleigh quotients in the bound presented in Lemma 3
for the general case.

Lemma 2 (Lower bound for the approximate Neumann-Neumann preconditioner). Let

M̃NN,D = V0Ã†0V T
0 + (In − P̃0)

(
N∑
i=1

RT
i Ã

(NN)
i

†
Ri

)
(In − P̃0)T .

Then,

λmin(M̃NN,DA) ≥ 1

ω+

.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 65

3.2. Approximate abstract Schwarz preconditioners

Proof. This is a consequence of Lemma 1 (see Theorem 1 in (Le Tallec and Vidrascu,
1998)).

If, instead of Ã(NN)
i , another local preconditioner Âi is used, there is no change on the

bound if we restrict the operators to the coarse space V0 since the application of the local
preconditioner is preceded and followed by projections (In−P̃0) and (In−P̃0)T . However,
in the orthogonal of the coarse space, the bound has to change and reflect the difference
between Ã(NN)

i and Âi. As is proved in Lemma 3, the lower bound on the spectrum of
M̃aS,DA can be deduced from the bound for M̃NN,DA in Lemma 2 by adding a correction
related to the generalized Rayleigh quotient between Ã(NN)

i and Âi in the orthogonal of
the coarse space.

Lemma 3 (Lower bound for the approximate abstract Schwarz preconditioner).

λmin(M̃aS,DA) ≥ 1

ω+

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2Âi
|v|2
Ã(NN)
i

−1

.

Proof. We want to split u into a sum of local contributions, while being able to uniformly
control the Âi-norm of these contributions ui with the global A-norm of u to apply
Lemma 1. For any u and i ≥ 1, we decompose DiRiu = u0

i + u⊥i where u0
i ∈ V i

0 and
u⊥i ∈ Ṽ ⊥i . We then define u0 = (V T

0 ÃV0)†V T
0 Au such that V0u0 = P̃0u. We can use

the facts that
∑N

i=1RT
i DiRi = In and

∑N
i=0RT

i u
0
i ∈ V0 ⊂ ker(In − P̃0) to obtain the

decomposition

u = P̃0u+ (In − P̃0)u = V0u0 + (In − P̃0)
N∑
i=1

RT
i DiRiu

= V0u0 + (In − P̃0)
N∑
i=1

RT
i (u0

i + u⊥i) = V0u0 + (In − P̃0)
N∑
i=1

RT
i u
⊥
i

=
N∑
i=0

Iiui where I0 = V0, Ii = (In − P̃0)Ri and ui = u⊥i .

Since P̃0 is a Ã-orthogonal projection, it holds that:

|u0|2Ã0
= |u0|2V T0 ÃV0

= |V0u0|2Ã = |P̃0u|2Ã ≤ |u|
2
Ã (3.15)

Let

C = max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2Âi
|v|2
Ã(NN)
i

= max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2Âi
|v|2

D−1
i ÃiD

−1
i

.

66 Louis POIREL

3. Convergence of abstract Schwarz methods

We can then use equations (3.14), (3.9) and (3.15):

|u⊥i |2Âi ≤ C|u⊥i |2D−1
i ÃiD

−1
i
≤ C|u⊥i + u0

i |2D−1
i ÃiD

−1
i

= C|Riu|2Ãi ,
N∑
i=1

|u⊥i |2Âi ≤ C

N∑
i=1

|Riu|2Ãi = C|u|2∑N
i=1RTi ÃiRi

= C|u|2Ã, (3.16)

|u0|2Ã0
+

N∑
i=1

|u⊥i |2Âi ≤ (1 + C) |u|2Ã ≤ ω+(1 + C)|u|2A,

and the local norms are controlled by the global norm. Then, applying Lemma 1, we get

λmin(M̃aS,DA) ≥ 1

ω+

1 + max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2Âi
|v|2
Ã(NN)
i

−1

.

Now that we have proved a lower bound for the spectrum of M̃aS,DA, we will prove
an upper bound in Lemma 5. We first recall a classic upper bound for AS preconditioners
in Lemma 4 since it explains the origin of the Rayleigh quotient in the bound for the
general case.

Lemma 4 (Upper bound for the approximate Additive Schwarz preconditioner). Let

M̃AS,D = V0Ã†0V T
0 + (In − P̃0)

(
N∑
i=1

RT
i Ã

(AS)
i

−1
Ri

)
(In − P̃0)T .

Then,

λmax(M̃AS,DA) ≤ 1

ω−
max

1≤i≤N
(Ni + 1).

Proof. This lemma is a particular case of Lemma 5 which is proven below.

Lemma 5 (Upper bound for the approximate abstract Schwarz preconditioner).

λmax(M̃aS,DA) ≤ 1

ω−
max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 .

Proof. First, let us remark that

M̃aS,DÃu = V0Ã†0V T
0 Ãu+ (In − P̃0)

N∑
i=1

RT
i Â
†
iRi(In − P̃0)T Ãu

= u0 + (In − P̃0)
N∑
i=1

RT
i ui

where u0 = P̃0u and ui is the orthogonal projection of Â†iRi(In−P̃0)T Ãu onto range(Âi)
along ker(Âi) ⊂ V i

0 ⊂ ker
[
(In − P̃0)RT

i

]
.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 67

3.3. Building the coarse space via generalized eigenproblems

As a consequence, ui ∈ V̂ ⊥i :

uTi ÂiV i
0 = uT Ã(In − P̃0)RT

i Â
†
iÂiV i

0 = uT Ã(In − P̃0)RT
i V

i
0 = 0.

Then,

|M̃aS,DÃu|2Ã = |u0|2Ã + |(In − P̃0)
N∑
i=1

RT
i ui|2Ã ≤ |u0|2Ã + |

N∑
i=1

RT
i ui|2Ã

≤ |u0|2Ã +
N∑
i=1

(Ni + 1)|RT
i ui|2Ã = |u0|2Ã +

N∑
i=1

(Ni + 1)|ui|2RiÃRTi

where we used the fact that

0 ≤
∑

1≤i,j≤N
RTi ÃRj 6=0

|RT
i ui −RT

j uj|2Ã = 2

 ∑
1≤i,j≤N
RTi ÃRj 6=0

|RT
i ui|2Ã −

∑
1≤i,j≤N
RTi ÃRj 6=0

uTi RiÃRT
j uj


≤ 2

(
N∑
i=1

(Ni + 1)|RT
i ui|2Ã − |

N∑
i=1

RT
i ui|2Ã

)
. (3.17)

Let us define

C = max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 = max

(
1, max

1≤i≤N
(Ni + 1) sup

v∈V̂ ⊥i

|v|2RiÃRTi
|v|2
Âi

)
.

We can now write

|M̃aS,DÃu|2Ã ≤ C|u0|2Ã + C
N∑
i=1

|ui|2Âi = CuT P̃T0 Ãu0 + C
N∑
i=1

uT Ã(In − P̃0)RT
i Â
†
iÂiui

= CuT ÃM̃aS,DÃu ≤ C|u|Ã|M̃aS,DÃu|Ã
|M̃aS,DÃu|Ã ≤ C|u|Ã,

and use the same strategy as in (Le Tallec and Vidrascu, 1998) to obtain our result:

λmax(M̃aS,DA) = max
v∈V

|v|2A
|v|2
M̃−1

aS,D

≤ max
v∈V

1

ω−

|v|2Ã
|v|2
M̃−1

aS,D

≤ max
v∈V

1

ω−

|M̃aS,DÃv|Ã
|v|Ã

≤ C

ω−
,

λmax(M̃aS,DA) ≤ 1

ω−
max

1, max
1≤i≤N

(Ni + 1) sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

 .

3.3 Building the coarse space via generalized eigen-
problems

The bound in Theorem 1 has originally been estimated through functional analysis after a
coarse space has been chosen (Le Tallec and Vidrascu, 1998). A more algebraic approach

68 Louis POIREL

3. Convergence of abstract Schwarz methods

is to build the coarse space V0 by solving a generalized eigenproblem in each subdomain in
order to control the Rayleigh quotient as proposed by (Spillane et al., 2014a; Spillane and
Rixen, 2013) for AS/K and NN/S, respectively. This approach has also been successfully
applied to other aS variants such as the SORAS method (Haferssas et al., 2017), in which
case two eigenproblems are needed. The case where the correction is applied additively
as in (Efendiev et al., 2012; Galvis and Efendiev, 2010; Spillane et al., 2014a) for AS is
addressed in Section 3.4.

The connection between the GenEO method and Theorem 1 comes from the following
lemma:

Lemma 6 (Bound on the Rayleigh quotient). Let B be a SPSD matrix, C a SPD matrix
and η > 0 be a parameter.

If Vη = span
(
{p, Bp = λCp, λ ≤ η}

)
and V ⊥Bη = {u ∈ range(B),∀v ∈ Vη, uTBv =

0},

then sup
u∈V ⊥Bη

|u|2C
|u|2B

≤ 1

η
.

Proof. Since C is SPD, the generalized eigenproblem Bp = λCp has solutions (λk, pk) with
pTk Cpl = δkl and pTkBpl = λkδkl.

Now, let u ∈ V ⊥Bη . We can project u on the basis (pk)k: u =
∑

k αkpk.
If k is such that λk ≤ η, then pk ∈ Vη and 0 = uTBpk = λkαk. As a consequence,

αk = 0 because if λk = 0, pk ∈ ker(B) =
(
range(B)

)⊥ ⊥ u and αk = uTpk = 0. This leads
to

|u|2C
|u|2B

=

∑
λk>η

α2
k∑

λk>η
λkα2

k

≤ 1

η
.

Following the GenEO methodology, we propose to build the coarse space V0 by solv-
ing two generalized eigenproblems to control the condition number of approximate aS
preconditioners through two parameters α > 0 and β ≥ 1.

Theorem 2 (Condition number of aS preconditioners). If Âi is SPD and the coarse space

is defined as V0 =
N∑
i=1

RT
i V

i
0 with

V i
0 = span

(
{pik, Ã(NN)

i pik = λikÂipik, λik ≤ α−1}
∪ {pik, Âipik = λikÃ

(AS)
i pik, λik ≤ (Ni + 1)β−1}

)
,

then, we can bound the condition number

κ(M̃aS,DA) ≤ ω+

ω−
(1 + α) β.

Proof. Using Lemma 6 and the definition of Ṽ ⊥i and V̂ ⊥i in 3.2.2, we can bound the
Rayleigh quotients

sup
v∈Ṽ ⊥i

|v|2Âi
|v|2
Ã(NN)
i

≤ α, sup
v∈V̂ ⊥i

|v|2
Ã(AS)
i

|v|2
Âi

≤ β

Ni + 1
.

Replacing these bounds in Theorem 1 gives the result.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 69

3.4. Additive coarse correction

Corollary 2. In the NN or AS cases, for any α ≥ 1, we can define

V i
0 = span

(
{pik, Ã(NN)

i pik = λikÃ
(AS)
i pik, λik ≤ α−1}

)
.

Then, Corollary 1 and Lemma 6 give

κ(M̃AS,DA) ≤ ω+

ω−
(1 + α) Nc, κ(M̃NN,DA) ≤ ω+

ω−
α Nc.

If α−1 = minλik 6=0(λik), then V i
0 = ker(Ã(NN)

i) = Di ker(Ãi) and the resulting coarse
space for NN is exactly the same as in the BDD algorithm.

With small variations in the generalized eigenproblems considered, Theorem 2 and
Corollary 2 retrieve or improve previous GenEO results and generalize them to the ap-
proximate case: AS/K (Spillane, 2014; Spillane et al., 2014a), NN/S (Spillane and Rixen,
2013) and SORAS (Haferssas et al., 2017).

3.4 Additive coarse correction

3.4.1 Context

The preconditioner M̃aS,D separates the part of the solution that is in V0 (on which a direct
coarse solve is performed through Ã†0), from its Ã-orthogonal part (on which the local
preconditionerMaS =

∑N
i=1RT

i Â
†
iRi is used to accelerate convergence). Eigenvalues or

Rayleigh quotients λ corresponding to vectors in the coarse space V0 are shifted to 1 by the
coarse solve, and to 0 by the projection steps (In−P̃0) and (In−P̃0)T , so the overall effect
of the deflated preconditioner is to shift them to 1 exactly. If we skip these projection
steps, we obtain an approximate additive two-level preconditioner M̃aS,2 similar toMaS,2

presented in Equation (3.8). In this case, without the projection steps eigenvalues are
shifted to 1 + λ. As a result, this coarse correction applied on big eigenvalues only makes
them bigger, thus hampering convergence. This additive coarse correction can only be
effective to tackle the lower part of the spectrum since small eigenvalues λ� 1 are shifted
to 1 + λ ≈ 1.

The one-level AS method has already an upper bound on the spectrum (see Lemma 4),
and only the lower bound needs to be recovered, making it an ideal candidate for an
additive coarse correction. In this section, we show that in the approximate AS case, when
Âi = Ã(AS)

i = RiÃRT
i , the projection steps can be removed without losing robustness.

Namely, we still have a bound for the condition number of the additive two-level AS
method independent of the number of subdomains.

3.4.2 Convergence result for M̃AS,2

Theorem 3 (Condition number of the two-level approximate AS preconditioner). Let

MAS,2 = V0Ã†0V T
0 +

N∑
i=1

RT
i Ã

(AS)
i

−1Ri and Nc = max1≤i≤N (Ni + 1).

70 Louis POIREL

3. Convergence of abstract Schwarz methods

Then, we can bound the condition number

κ(MAS,2A) ≤ ω+

ω−

Nc + 1 + (Nc + 2) max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

 (Nc + 1).

For any α > 0, if we choose

V i
0 = span

(
{pik, Ã(NN)

i pik = λikÃ
(AS)
i pik, λik ≤ α−1}

)
,

it holds that

κ(MAS,2A) ≤ ω+

ω−
[Nc + 1 + α(Nc + 2)] (Nc + 1).

Theorem 3 generalizes (Theorem 4.40, Spillane et al., 2014a) to the approximate case,
while improving the bound.

A spectral coarse space composed of eigenvectors of a generalized eigenproblem was
earlier proposed in (Efendiev et al., 2012; Galvis and Efendiev, 2010). In those studies,
the authors also discuss the analytical and numerical interest of using AS,2/S instead
of the more traditional AS,2/K to reduce the size of the coarse space. In comparison,
our method is more algebraic in the sense that it does not need a stable interpolation
operator, nor the mass matrix.

3.4.3 Proof of Theorem 3

Proof. If we apply Lemma 4 without a coarse space and consider V0 as another subdomain
in the decomposition, we get

λmax(MAS,2A) ≤ 1

ω−
(Nc + 1).

The lower bound is a consequence of Lemma 1. We define u0
i ∈ V i

0 and u⊥i ∈ Ṽ ⊥i
such that DiRiu = u0

i + u⊥i as in the proof of Lemma 3. We now introduce u0 such that
V0u0 =

∑N
i=1RT

i u
0
i , and u = V0u0 +

∑N
i=1RT

i u
⊥
i .

We get from Equation (3.16) that

N∑
i=1

|u⊥i |2Ã(AS)
i

=
N∑
i=1

|u⊥i |2Âi ≤ C|u|2Ã with C = max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2
Ã(AS)
i

|v|2
Ã(NN)
i

=
|v|2RiÃRTi
|v|2

D−1
i ÃiD

−1
i

.

Then, we can use the same method as in Equation (3.17):

|u0|2Ã = |u−
N∑
i=1

RT
i u
⊥
i |2Ã ≤ (Nc + 1)

(
|u|2Ã +

N∑
i=1

|RT
i u
⊥
i |2Ã

)

= (Nc + 1)

(
|u|2Ã +

N∑
i=1

|u⊥i |2RiÃRTi

)
≤ (Nc + 1)(1 + C)|u|2Ã

|u0|2Ã +
N∑
i=1

|u⊥i |2RiÃRTi ≤ [Nc + 1 + (Nc + 2)C] |u|2Ã ≤ ω+ [Nc + 1 + (Nc + 2)C] |u|2A.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 71

3.5. Numerical experiments

We then use Lemma 1 with I0 = V0, Ii = RT
i and Bi = IiT ÃIi to get the bound

λmin(MAS,2A) ≥ 1

ω+

Nc + 1 + (Nc + 2) max
1≤i≤N

sup
v∈Ṽ ⊥i

|v|2RiÃRTi
|v|2
Ã(NN)
i

−1

.

We can then conclude with Lemma 6.

3.5 Numerical experiments

3.5.1 Experimental setup

The methods introduced in sections 3.2, 3.3 and 3.4 are tested on a Darcy bâton problem
similar to what is presented in (Spillane et al., 2014a). We use the Finite Element Method
(FEM) with Q1 elements to solve a heterogeneous diffusion equation ∇ · (k∇u) = 1 in a
3D stratified medium. The domain [0, N]× [0, 6]× [0, 1] is discretized on a regular mesh of
(5N+1)×31×6 nodes. The domain is divided into N identical subdomains along the first
axis. Along the second axis, it is divided into 10 layers (of 5N × 3× 5 elements each) of
alternating conductivity k = 1 and k = K (K is a heterogeneity parameter). A Dirichlet
boundary condition is applied on the left of the domain (x = 0), a Neumann condition on
every other boundary. These test cases are generated using the genfem python module2

developed for the purpose of this thesis. Using a FEM discretization on each subdomain
gives rise naturally to a set of local SPSD matrices and a global matrix that is SPD. The
geometry and 1D partitioning of this test case are chosen so as to emphasize the effects
of using a CSC: indeed, without a coarse correction, the number of iterations grows as
O(N1/d) where d is the dimension of the partitioning. Using a 3D partitioning of the
global domain, one would need more than 7M subdomains (1923) to illustrate the same
effect as in the experiments presented here with a 1D partitioning and 192 subdomains.
The layered structure of the domain is introduced to deteriorate the condition number of
the local subproblems. Since all subdomains (except the first and last ones) are identical,
the bound on the condition number of the method in Theorem 1 is independent of N if
at least the kernels of Ã(NN)

i and Âi are included in V i
0 ; a coarse space that only includes

these kernels (as in BDD for instance) thus yields a method that can be considered as
robust in this regard, while being considerably simpler to compute than the coarse space
proposed in this chapter. However, the condition number still depends on the inverse of
the smallest eigenvalues not included in the coarse space, which can be quite close to 0 if
the local problems are ill-conditioned (i.e., if K is big). As a result, the condition number,
although independent of N , can still be too large for the iterative solver to converge in
a reasonable number of iterations. Building the coarse space by solving the generalized
eigenproblems as proposed in Section 3.3 yields a more robust method in the sense that
the condition number of the method can be controlled independently of both N , K, and
the particular choice of a local preconditioner. We consider three aS methods: the AS
and NN preconditioners introduced in Equation (3.6) and a Shifted (Sh) preconditioner

2https://gitlab.inria.fr/solverstack/genfem

72 Louis POIREL

https://gitlab.inria.fr/solverstack/genfem

3. Convergence of abstract Schwarz methods

whose local matrix is obtained by shifting the diagonal of Ãi by 1 to remove its potential
singularity: M̃Sh =

∑N
i=1RT

i (Ãi + Ini)
†Ri where Ini is the identity matrix of same

size as Ai. If built on the Schur complement matrix, M̃Sh is a (non-optimized) Robin
preconditioner. The optimization of the Robin condition as proposed in (Gander, 2006)
is not considered here as it is out of the scope of this study. This Sh preconditioner is
introduced as an example of a more generic aS preconditioner than AS and NN; as such,
two generalized eigenproblems need to be solved to compute the coarse space for Sh as
opposed to only one for AS and NN. Each of these method is assessed with A = K or
A = S. Equation (3.4) can therefore either result from:

• the FEM discretization (3.1) of the global problem, in which case the preconditioner
is said to be applied on the original matrix K and the abstract Schwarz method is
noted aS/K;

• or the substructuring system (3.3) obtained by eliminating the interior variables
from Equation (3.1), in which case the preconditioner is said to be applied on the
Schur complement matrix S and the method is noted aS/S.

The partition of unity Di is computed using the diagonal values of Ai. The con-
dition numbers of the preconditioned matrices are estimated using the eigenvalues of
the tridiagonal Lanczos matrix computed during the PCG iterations (see, e.g., (Frayssé
and Giraud, 2000)). The stopping criterion is based on the normwise backward error
||b−Axk||/||b|| ≤ 10−6.

Using the ddmpy toolbox presented later in Chapter 4, we study the numerical behavior
of these methods under the constraint of a bounded condition number or an imposed coarse
space size in sections 3.5.2 and 3.5.3, respectively. We then study the approximate case
with an empirical approach in Section 3.5.4, using a so-called sparsification technique.
Our numerical results overall confirm (Efendiev et al., 2012; Galvis and Efendiev, 2010)
regarding the numerical interest of using AS,2/S instead of the more traditional AS,2/K
method to reduce the size of the coarse space. Section 3.5.5 eventually illustrates the
parallel behavior of that promising variant implemented as an extension to the HPC
MaPHyS solver3. The parallel design of this extension is presented in more details in
Section 5.

3.5.2 Imposing an a priori bound on the condition number

We proved in Section 3.3 that it is possible to control the condition number κ(M̃aS,DA) of
aS methods through some parameters α and β. For now, we do not use any approximation
(whose effects are the object of Section 3.5.4), hence Ãi = Ai and ω− = ω+ = 1. In order
to compare the three methods, we first choose a bound χ and we then choose α and β
such that κ ≤ χ:

• for AS (respectively NN), Corollary 2 states that κ ≤ (1 + α)Nc (respectively κ ≤
αNc). We choose α = χ/Nc − 1 (respectively α = χ/Nc).

3https://gitlab.inria.fr/solverstack/maphys/maphys

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 73

https://gitlab.inria.fr/solverstack/maphys/maphys

3.5. Numerical experiments

aS K aS S

χ
=

∞
χ

=
10000

χ
=

100

2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192

1
10

100
1000

10000

1
10

100
1000

10000

1
10

100
1000

10000

Number of subdomains: N

C
on

di
tio

n
N

um
be

r:
κ(

M
S)

Preconditioner
ASDNND
ShD

Heterogeneity K
1
100
10000

Figure 3.1: Imposing an a priori bound χ on the condition number using deflation.
Whatever the chosen target χ, we ensure that the condition number of the iterative
problem κ(MA) remains below χ. Each preconditioner (AS, NN, Sh) can be applied
either on the original matrix K (aS/K), left, or in a substructuring context on S (aS/S),
right.

74 Louis POIREL

3. Convergence of abstract Schwarz methods

aS K aS S
χ

=
∞

χ
=

10000
χ

=
100

2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192

0

100

200

300

0

100

200

300

0

100

200

300

Number of subdomains: N

N
um

be
r

of
 it

er
at

io
ns

: n
It

er

Preconditioner
ASDNND
ShD

Heterogeneity K
1
100
10000

Figure 3.2: Number of iterations when imposing an a priori bound χ on the condition
number.

• for Sh (or any other aS preconditioner), Theorem 2 states that κ ≤ (1 + α)β and
we choose α = β =

√
1/4 + χ− 1/2.

When we do not impose an upper bound (χ =∞), no CSC is used and results are pre-
sented only for AS and Sh. We observe (Figure 3.1) that the condition number κ grows
quadratically with the number of subdomains N and that the number of iterations to
reach convergence (Figure 3.2) is proportional to the number of subdomains (note the log
scale for the x-axis). This lack of scalability is the main motivation for using a two-level
method. We also note that, without CSC, our AS preconditioner outperforms the Sh pre-
conditioner, especially when the heterogeneity K is high: the AS preconditioner performs
a more appropriate local solve than the very basic Sh preconditioner. As expected, the
condition number is also lower when working on the Schur complement matrix S instead
of K, since all the interior unknowns are solved using a direct method and do not appear
anymore in the iterative process.

When we impose an upper bound on the condition number (χ = 10, 000 or χ = 100),
we observe that the condition number κ does indeed drop below the prescribed bound
χ, independently of the number of subdomains N , the local preconditioner AS, NN or
Sh, the heterogeneity K and the choice of operating on K or S. However, this a priori
control on the condition number comes at the expense of having to use a direct solve
on a coarse space V0 whose dimension can be quite large. Each subdomain computes a
local coarse space V i

0 of dimension n(i)
v (Figure 3.3) and the size of the global coarse space

therefore grows linearly with the number of subdomains. Since without deflation (χ =∞)
the Sh preconditioner applied to the original matrix K does not perform very well in the

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 75

3.5. Numerical experiments

aS K aS S

χ
=

10000
χ

=
100

2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192

1

10

100

2

20

5

50

1

10

100

2

20

5

50

Number of subdomains: N

M
ax

. s
iz

e
of

 t
he

 lo
ca

l c
oa

rs
e

sp
ac

e:
 n

v(i)
m

ax

Preconditioner
ASDNND
ShD

Heterogeneity K
1
100
10000

Figure 3.3: Maximum size of the local coarse space when imposing an a priori bound χ
on the condition number. Note that AS and NN overlap with each other. In most cases,
only few vectors per subdomain are enough but the least robust methods can induce a
relatively large local coarse space V i

0 in some cases.

76 Louis POIREL

3. Convergence of abstract Schwarz methods

heterogeneous case, the size of the coarse space necessary to obtain a condition number
below the target χ is very large (up to 87 vectors per subdomain). However, using a
better local preconditioner such as AS or NN can greatly reduce the size of the coarse
space, as well as working on the Schur complement matrix S instead of K.

3.5.3 Imposing an a priori coarse space size

●

●●
●

●●

●●● ●●●
●

●●
●

●

●

●

●●

●

●
●

●●● ●●●
●●● ●●●

●●● ●●●●●● ●●●

●●● ●●
●

●●● ●●● ●●● ●●
●

●
●● ●●

●

●

●
●

●

●

●

●●●
●●●

●
●●

●

●

●

●

●

●

●

●

●

●●● ●●●
●●● ●●● ●●

● ●●●●●● ●●●

●●
●

●●●
●●● ●●● ●●

●
●●●●●● ●●●

aS K aS S

n
v =

0
n

v =
1

n
v =

5
n

v =
10

2 3 6 12 24 48 96 192 2 3 6 12 24 48 96 192

1
10

100
1000

10000
100000

1
10

100
1000

10000
100000

1
10

100
1000

10000
100000

1
10

100
1000

10000
100000

Number of subdomains: N

C
on

di
tio

n
N

um
be

r:
κ(

M
S)

Preconditioner
● AS2

ASDNND
ShD

Heterogeneity K
1
100
10000

Figure 3.4: Condition number when imposing an a priori size nv for the local coarse
space V i

0 . We are still able to significantly reduce the condition number of the methods.
The best convergence results are obtained with the AS,D/S method.

We showed in the previous section that we can effectively control the condition number
κ of the method by building the coarse space using two parameters α and β as presented
in Theorem 2. However, this can lead to an impractically large coarse space and we now
consider the context where the size nv of the local subspace in each subdomain is chosen a
priori. Instead of choosing the coarse space by comparing the eigenvalues to a threshold,
we thus keep the eigenvectors associated with the nv smallest eigenvalues. Once the coarse
space is computed, we know what threshold would have led us to keep the same number of
vectors and we can get, a posteriori, a bound on the condition number of the method: if
λnv+1 is the lowest eigenvalue corresponding to a vector not in the coarse space, Theorem 2
ensures that κ(MSh,D A) ≤ Nc(1 + 1/λnv+1)/λnv+1. As in Section 3.5.2, this bound can
be improved for NN and AS preconditioners using Corollary 2 and Theorem 3:

• κ(MNN,D A) ≤ Nc/λnv+1;

• κ(MAS,D A) ≤ Nc(1 + 1/λnv+1);

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 77

3.5. Numerical experiments

• κ(MAS,2 A) ≤ (Nc + 1) [Nc + 1 + (Nc + 2)/λnv+1].

The Schur complement matrix S is smaller and better conditioned (Brenner, 1999;
Mansfield, 1990) than the original matrix K. Furthermore, in a two-level domain decom-
position framework, eliminating the interior unknowns significantly improves the conver-
gence by reducing the size of the coarse space needed to take into account the physical
heterogeneity in the domain (Galvis and Efendiev, 2010). In accordance with these the-
oretical results, Figure 3.4 highlights the benefits of operating on S (Figure 3.4, right)
instead of K (left): the condition number is smaller when applying any aS method on S
instead of K. Without CSC (nv = 0, top), the results are consistent with Figure 3.1, top
(χ =∞): the condition number κ increases with the number of subdomains N . Choosing
nv = 1, our coarse space reduces to a classical partition-of-unity coarse space (Sarkis,
2003) and is sufficient in the homogeneous case (K = 1, plain lines); we notice that
NN,D/S then reduces to classical BDD where the condition number does not depend on
N but remains fairly large for large values of K. However, in the heterogeneous cases
(K = 100 or 10, 000, dashed lines), this simpler coarse space is not enough to get a scalable
method: one eigenvector per high-conductivity inclusion is needed in the coarse space to
build a robust method (Galvis and Efendiev, 2010). In our case, with 5 high-conductivity
layers passing through all the subdomains, nv = 5 eigenvectors are enough to bound the
condition number for AS/S and NN/S. Using the Sh/S method, since two eigenproblems
are solved in each subdomain, 10 vectors are needed to get a good convergence (bottom
right).

With a large enough coarse space, the three methods NN,D/S, AS,2/S and AS,D/S
perform quite similarly, with a slight advantage for NN. However, when the coarse space is
too small (nv = 1 and K = 10, 000 for instance), AS,2/S and AS,D/S have a significantly
smaller condition number than NN,D/S, and they appear more robust. A parallel imple-
mentation of all these methods will be presented in Chapter 4 along with an experimental
study focusing on performance issues. Because of its robustness, we furthermore decided
to further study the scalability of the two-level AS/S methods by integrating an AS,2/S
methods within the MaPHyS fully-featured sparse hybrid solver; Section 3.5.5 provides
an insight on the performance impact while Chapter 5 will present in details the various
parallel strategies that have been designed to handle the CSC.

3.5.4 Approximate case: Empirical study of the impact of spar-
sification

The convergence results for approximate aS methods in sections 3.2, 3.3 and 3.4 apply
for both aS/K and aS/S cases. However, for a matter of conciseness, we now only focus
on the latter context for illustrating the impact of approximation, as the above experi-
ments showed the numerical benefits of operating on the Schur complement. For that,
we approximate the dense matrix Si with a sparse matrix S̃i, by dropping some entries
in the matrix. This process is called sparsification. In a very heterogeneous medium
(K � 1), some entries in S corresponding to couplings between unknown separated by a
low-conductivity layer, are negligible. We use the symmetry-preserving strategy of drop-
ping sij if |sij| ≤ ε(sii + sjj), where ε is a parameter that controls the sparsity (see, e.g.,

78 Louis POIREL

3. Convergence of abstract Schwarz methods

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

ε = 0
nnz(LLT) = 100 %

ε = 1e−05
nnz(LLT) = 14.5 %

ε = 1e−04
nnz(LLT) = 11.5 %

ε = 0.001
nnz(LLT) = 11.2 %

ε = 0.01
nnz(LLT) = 8.6 %

n
v =

0
n

v =
1

n
v =

5

2 3 6 12 24 48 961922 3 6 12 24 48 961922 3 6 12 24 48 961922 3 6 12 24 48 961922 3 6 12 24 48 96192

1

10

100

1

10

100

1

10

100

Number of subdomains: N

C
on

di
tio

n
N

um
be

r:
κ(

M
S)

Heterogeneity K
10000

Preconditioner
● AS2

ASDNND

Figure 3.5: Up to a certain level, the sparsification does not break the robustness of the
method: using a big enough coarse space (nv = 5), it is possible to discard 88.8% of the
entries in the factorization of the preconditioner without losing convergence.

(Carvalho et al., 2001b)).
The benefits of sparsification are evaluated by assessing the proportion nnz(LLT) of

non-zero elements in the Cholesky factorization Ŝi = LLT of the local preconditioner. In
Figure 3.5, we evaluate the impact of sparsification on the robustness of the method. It
appears that, up to a certain level, we are still able to find a robust coarse space despite
having significantly reduced the memory footprint of the preconditioner. For instance,
with a sparsity parameter of ε = 0.001, although 88.8% of the entries in the factorization
of the preconditioner are dropped, our coarse space with nv = 5 vectors per subdomain
still significantly improves the convergence.

These results are very promising as they show we can efficiently apply an approxi-
mate scheme to reduce the complexity of two-level aS methods. However, the considered
sparsification technique is delicate for ensuring an a priori condition number. Approxi-
mation through hierarchical matrices (Grasedyck and Hackbusch, 2003) might better fit
this objective, for bounding ω− and ω+ and ensure theorems 2 and 3 apply. This is left
for future work (see (Agullo et al., 2018) for preliminary investigations in this direction)
and we do not consider approximation techniques in the rest of this thesis.

3.5.5 Performance of AS,2/S on a modern parallel computer

The excellent numerical properties exhibited above by the AS,2/S method motivated the
design of an HPC code of that variant. For that, we relied on the MaPHyS package and we

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 79

3.5. Numerical experiments

added a coarse grid correction to the baseline, one-level AS/S variant (Agullo et al., 2011,
2016b; Giraud et al., 2008) for the purpose of the present study. A detailed analysis of
this implementation and of the resulting experimental results is provided in Chapter 5, a
subset of which is presented in the current section for illustrating the potential impact on
performance of the numerical issues discussed in this chapter. MaPHyS is a parallel hybrid
(direct/iterative) sparse linear solver. Its Setup step relies on third-party sparse direct
solvers for efficiently performing the elimination of the interior variables and computing
the local Schur complement Si. Subdomains are processed concurrently, each subdomain
being associated with a process. The computation of the one-level preconditioner (still
within the Setup step) is then performed with neighbor-to-neighbor communications. The
Solve step consists of classical preconditioned conjugate gradient iterations. In particular,
global synchronizations are only required for computing dot products while the matrix-
vector product and preconditioner application can be performed concurrently on each
subdomain with neighbor-to-neighbor communications only. We extended MaPHyS to
ensure a CSC as follows. In the Setup step, the generalized eigenproblems are processed
concurrently on each subdomain; the matrix associated with the resulting coarse space
is then assembled and factorized using a third-party parallel sparse direct solver. In
the Solve step, a coarse solve is added in the application of the preconditioner at each
iteration. Due to the nature of the coarse space, these operations add global communi-
cations and synchronizations in the algorithm and particular care must be taken in their
implementation in order to achieve good scalability and parallel efficiency: several paral-
lelization strategies for this coarse correction are discussed in Chapter 5. In the current
experiment, the coarse matrix A0 is assembled and factorized redundantly on disjoint
sub-communicators (obtained by splitting the global one) in order to reduce the number
of global communications during the solve step.

We now present a weak scalability study conducted on test cases similar to the ones
introduced in Section 3.5.1, but with larger subdomains. Each subdomain is indeed a cube
discretized on a 31 × 31 × 31 mesh with 29,791 unknowns. There are now 6 alternating
conductivity layers (K = 10, 000), and we consider a scenario with an imposed coarse
space size (as in Section 3.5.3) using 3 vectors per subdomain. No approximation is
performed. The same stopping criterion as above is used. The experiments have been
conducted on the Occigen machine at CINES. Each node is composed of two Haswell
(E5-2690V3) 12-core processors running at 2.6 GHz. A subdomain is associated with a
process, binded on a CPU core. MaPHyS was compiled with Intel 17.0 and Intel MPI
2017.0.098. All dense operations are performed with the Intel Math Kernel Library (MKL)
2017 (including the Lapack dsygvx routine for solving the eigenproblems, that allows one
to only compute a targeted subset of eigenpairs). Sparse factorizations are performed with
the MUMPS 5.0.2 sparse direct solver (Amestoy et al., 2001) together with the ParMetis
4.0.3 partitioner (Karypis and Kumar, 2009).

Table 3.1 compares the behavior of our extension of MaPHyS relying on the proposed
CSC described above (AS,2/S) with the baseline, one-level version of MaPHyS. The
number of subdomains N , which is equal to the number of MPI processes and CPU cores
used for the respective computation, the total number of unknowns n = (30N+1)×31×31
and the size of the coarse space n0 are provided in the table along with the maximum
(among all subdomains) time in seconds needed to perform the Setup step, the Solve step

80 Louis POIREL

3. Convergence of abstract Schwarz methods

or both steps (Total) and the number of PCG iterations performed during the Solve step,
for both the AS/S method (left) and the AS,2/S method (right). The Setup step includes
the time spent in the factorization of the local matrices and the computation of the
local Schur complement matrix using a sequential sparse direct solver, the assembly and
factorization of the local Schur complement, the solution of the generalized eigenproblems,
the construction and the factorization of the coarse matrix. The Solve step corresponds
to the PCG iterations and the final computation of the interior unknowns. We observe
that the addition of the coarse correction increases the Setup time and the individual cost
of each iteration (up to a factor 2), mainly due to the induced global communications. On
the other hand, the number of iterations of AS,2/S remains stable, leading to a drastically
overall reduced Solve time compared to the baseline AS/S method (up to a factor 37 when
the 44,283,841 unknowns are distributed among 1,536 subdomains). As a consequence, in
a scenario consisting of solving a linear system with a single right-hand side, using a coarse
space reduces the total time to solution (Setup + Solve) when the number of subdomains
(and CPU cores) is equal to or higher than 384. In another common application scenario
where multiple (say, p), successive, right-hand sides must be solved, the total time to
solution (Setup + p Solve) may then essentially be governed by the Solve step if p is
large. In that latter case, the benefits of the CSC may then thus be tremendous on large
scale computers.

Table 3.1: A weak scalability study was performed using the MaPHyS parallel solver.
The Setup, Solve and Total times are the max among all subdomains, in seconds (s).
Each subdomain is associated with one MPI process binded onto one CPU core. N is
the number of subdomains, n is the size of K and n0 is the size of the coarse space.
Without coarse correction, the Setup time remains stable, whereas the Solve time grows
linearly with the number of subdomains. The coarse correction adds to the Setup time but
keeps the number of iterations constant, thus improving the scalability. Without coarse
correction, no convergence was achieved on 3,072 subdomains.

AS/S AS,2/S
N n n0 Setup Solve Total # iter Setup Solve Total # iter
24 692k 72 3,64 0,47 4,12 33 6,13 0,30 6,44 15
48 1.4M 144 3,67 0,87 4,54 62 6,52 0,30 6,83 15
96 2.8M 288 3,79 1,62 5,41 119 6,52 0,31 6,84 15
192 5.6M 576 3,75 3,17 6,92 233 6,59 0,33 6,92 15
384 11.1M 1.1k 3,87 5,02 8,90 371 6,61 0,32 6,93 14
768 22.1M 2.3k 3,78 8,30 12,1 609 6,61 0,33 6,95 14
1536 44.3M 4.6k 4,13 15,1 19,2 1,077 6,96 0,40 7,38 14
3072 88.6M 9.2k - - - - 7,24 0,42 7,70 14

3.6 Conclusion

In this chapter, we have proposed a new class of aS preconditioners, so-called approxi-
mate aS preconditioners. These preconditioners are fully algebraic in the sense that they

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 81

3.6. Conclusion

do not require any other information apart from SPSD subdomain matrices. This class
is wide as it consists of all aS preconditioners, provided that their coarse space results
from the assembly of local components that contain the kernel of some local operators
(Definition 1). In particular, it generalizes the class of approximate NN precondition-
ers introduced in (Le Tallec and Vidrascu, 1998) (named generalized NN in the original
paper). We exhibited a bound on the condition number of all approximate deflated aS
preconditioners (Theorem 1). This bound depends on generalized Rayleigh quotients and
generalizes the result from (Le Tallec and Vidrascu, 1998) beyond the class of approximate
NN methods. Applying a GenEO procedure on two well chosen generalized eigenprob-
lems, we proposed to explicitly compute the coarse space while bounding these Rayleigh
quotients leading to a bound on the condition number (hence on the number of iterations
of PCG) independent of the number of subdomains. We also showed that a similar bound
can be obtained when the coarse space is applied additively for the subclass of newly
introduced approximate AS methods.

The results presented in this chapter can be readily derived to retrieve the bounds pre-
viously obtained via generalized eigenproblems in the particular cases of AS/K (Efendiev
et al., 2012; Spillane et al., 2014a), NN/S (Spillane and Rixen, 2013) and optimized Robin
(SORAS) (Haferssas et al., 2017). It also generalizes these results when used with ap-
proximate local solvers. Furthermore, they allowed us to define a coarse space for the
AS method applied on the Schur complement (AS/S) (Carvalho et al., 2001b), leading
to an extremely robust substructuring method, for which the CSC can be applied either
with deflation or additively, and with the freedom of relying on an approximate local
Schur complement. A challenge opened by the present study is to determine an explicit
procedure to perform the approximation while achieving a given a priori bound on the
condition number. We also plan to study the effects of the method on the spectrum and
on the empirical convergence of non symmetric test cases.

These statements were illustrated by numerical experiments, that were made pos-
sible by a parallel implementation of these methods in python, presented in detail in
Chapter 4. These experiments motivated an HPC design of a CSC for AS/S within the
MaPHyS package as presented later in Chapter 5. The presented sample of these parallel
experiments results showed the significant benefits that the resulting AS,2/S solver could
bring.

82 Louis POIREL

Chapter 4

Design of a domain decomposition
toolbox in python

4.1 Introduction

In Chapter 2, we introduced various Domain Decomposition (DD) formulations and pre-
conditioners that can be used to solve a PDE or a linear system. Some of these Domain
Decomposition Methods (DDM), which can be expressed as abstract Schwarz (aS) meth-
ods, were studied in Chapter 3 where we gave a proof of convergence of two-level aS
methods with an adaptive Coarse Space Correction (CSC). In the present chapter, we
present a parallel implementation of aS methods and other DDM. The parallel design of
the CSC in an HPC hybrid solver is discussed in Chapter 5.

In order to design a DD solver various questions have to be addressed: shall a primal
or dual formulation be used? Shall the problem be reduced to an interface problem
(Schur complement matrix)? Will a N -Lagrange formulation perform better? Once these
questions are answered and a particular DDM is chosen, other questions regarding the
implementation arise: should the DD solver be developed from scratch, or, can an external
specialized library be used? How should the parallelism be handled? The overall objective
is to have a parallel solver that is both numerically and computationally effective.

These choices give rise to two competing objectives for designing an efficient DD
solver: one needs to optimize the mathematical method on the one hand, and, on the
other hand, its HPC implementation. The first objective requires an ability to develop
several DDM and compare them with their variants, in order to tune their numerical
features. The required flexibility to easily implement these various numerical methods
may contradict the second objective of optimizing the code to improve its computational
performance. We can often observe a significant gap between DD numerical prototypes
built by researchers in interpreted languages such as Matlab, and DD codes embedded
within industrial applications in compiled languages such as C, C++ or Fortran because
of the separation of concerns that prevent to address the numerical and computational
efficiencies at once.

In this chapter, we demonstrate that it is possible to get both flexibility and perfor-
mance using the python language to build DDM: these methods (presented in Chapter 2)
can be expressed as well-chosen combinations of individual operations (solving a Dirich-

83

4.2. Performance of some elemental operators in python

let, Neumann or Robin problem, computing a Schur complement matrix or a precondi-
tioner, . . .). If the DDM are applied after discretization and follow the hypotheses in
Section 3.2.1, these individual operations can be expressed algebraically as linear algebra
operations, or basic kernels, such as matrix-vector products or matrix factorizations for
instance. The optimization of such kernels is in fact out of the scope of DDM imple-
mentations since they appear in many other applications, and it is faster and safer (both
regarding the implementation time and the execution time) to call external optimized im-
plementations for these generic algebraic operations. It is therefore possible to implement
a DD solver such that most of the time spent in the solver is actually not spent executing
the solver’s code per se but inside these compute-intensive external kernels. As such,
the optimization of a DD solver’s implementation mainly consists in making sure that
state-of-the-art HPC implementations for these kernels are used; this implies an ability
to test and compare these various implementations and the second objective expressed
above now aligns with the first objective: more flexibility can improve performance.

We developed a parallel DD toolbox in python named ddmpy and focused on these two
objectives: DD algorithms and high-level structures benefit from the expressivity of the
language while computational operations are performed using optimized external libraries
in order not to compromise on performance on the range of interest. The relevance of this
strategy is assessed through a performance study of two basic linear algebra operations
(vector addition and matrix multiplication) and two DD operators (Schur complement
matrix computation and Conjugate Gradient (CG) algorithm) in Section 4.2. Then the
design and implementation of the ddmpy DD toolbox in python is presented in Section 4.3,
and its parallel performance on several test cases is studied in Section 4.4.

4.2 Performance of some elemental operators in python

It is often accepted as a fact that python is not a fast language: even the creator of
the language Guido van Rossum wrote: I will gladly admit that Python is not the fastest
running scripting language. It is a good runner-up though. With ever-increasing hardware
speed, the accumulated running time of a program during its lifetime is often negligible
compared to the programmer time needed to write and debug it. This, of course, is where
the real savings can be made. While this is hard to assess objectively, Python is considered
a winner in coding time by most who have tried it. In addition, many consider using
Python a pleasure – a better recommendation is hard to imagine.

Although the python language was not meant to be fast, we show in sections 4.2.1
to 4.2.3 that it is relevant for HPC: several implementations, in C and in python, for com-
puting a vector addition (Section 4.2.1.1) and a matrix multiplication (Section 4.2.1.2) are
compared: native implementations with loops in C and python are compared with calls to
the Intel MKL BLAS library from both languages, natively or through the numpy package
in python. The performance of python code can also be improved by using a compiler
such as cython (Behnel et al., 2011). For each of the two considered operations, the native
python implementation with loops (executed with the standard CPython interpreter) is
compared to the same code compiled with cython and with a hybrid C/python version,
also compiled with cython, where the internal variables in the functions are declared with

84 Louis POIREL

4. Design of a domain decomposition toolbox in python

C types. Other python compilers such as pythran (Guelton et al., 2015) or numba (Lam
et al., 2015) are not considered in this study. A performance comparison of two imple-
mentations for computing a Schur complement matrix (Section 4.2.2) and solving a linear
system using the Conjugate Gradient algorithm (Section 4.2.3) complete this analysis.

4.2.1 Comparison of C and python for basic linear algebra oper-
ations

4.2.1.1 Vector addition in C and python (daxpy)

When adding two vectors of size n, 2n read operations, n write operations, and n ad-
ditions are performed: each computation requires 3 data accesses. The performance is
here essentially governed by the time needed to transfer data between the CPU and the
memory: it is said to be memory-bound, by opposition to compute-intensive operations
such as the matrix product in Section 4.2.1.2 which is said to be compute-bound. Several
implementations for the addition are presented in listings 1 to 6 and compared.

1 void loop__C(const double* x, double* y, const unsigned int n) {
2 for (unsigned int i = 0; i < n; i++) {
3 y[i] += x[i];
4 }
5 }

Listing 1: loop/C: straightforward implementation of y ← x+ y using loops in C.

1 void blas__C(const double* x, double* y, const unsigned int n) {
2 cblas_daxpy(n, 1., x, 1., y, 1);
3 }

Listing 2: blas/C: HPC implementation of y ← x+y using the optimized BLAS function
(daxpy) as provided by the Intel MKL library called from C.

1 def loop__python(x, y):
2 for i in xrange(len(x)):
3 y[i] += x[i]
4 return y

Listing 3: loop/python: straightforward implementation of y ← x + y using loops in
python. This code can be compiled with cython, yielding the loop/cython version.

The time needed for each of these implementations to perform the operation y ← y+x
where x and y are two vectors of size n are presented in Figure 4.1, and the number of

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 85

4.2. Performance of some elemental operators in python

1 def loop_type__cython(x, y):
2 cdef int i, n = len(x)
3 cdef double *x_ = <double *>malloc(n * sizeof(double))
4 cdef double *y_ = <double *>malloc(n * sizeof(double))
5 for i in xrange(n):
6 x_[i] = x[i]
7 y_[i] = y[i]
8 for i in xrange(n):
9 y_[i] += x_[i]

10 y = [y_[i] for i in xrange(n)]
11 free(x_)
12 free(y_)
13 return y

Listing 4: loop_type/cython: mixed implementation of y ← x + y using loops with
typed data using cython (the python list are converted to C arrays before and after the
computations).

1 def numpy__python(x, y):
2 y += x
3 return y

Listing 5: numpy/python: implementation of y ← x + y using the numpy module in
python, where the input are of type numpy.ndarray instead of list.

1 def blas__python(x, y):
2 return scipy.linalg.blas.daxpy(x, y)

Listing 6: blas/python: implementation of y ← x + y using the low-level
scipy.linalg.blas wrapper, linked with the Intel MKL library, in python, with
numpy.ndarray as input.

86 Louis POIREL

4. Design of a domain decomposition toolbox in python

floating-point operations per second (flop/s) are presented in Figure 4.2 (both figures
use log scale on both axes). The relative performance of the different implementations
compared to the blas/C implementation are given in Table 4.1.

The comparison of the straightforward implementations with loops (in green in the
figures) shows, as should be expected, that the C version (loop/C from Listing 1, plain
line) far outperforms the python version (loop/python from Listing 3, dashed line)
by a factor 142 (n = 1.0 106). The same python code, when compiled using cython
(loop/cython, still from Listing 3, dotted line), is 7.2 times faster (but still 20 times
slower than C). Adding type information in cython and converting the python list to a
C array (loop_type/cython from Listing 4, blue line) only slightly improves the per-
formance because the time needed to go through the python lists remains the same;
furthermore, the resulting hybrid code is much less readable than both the corresponding
python and C code. The overhead of all these python versions compared to the C versions
comes from the fact that they operate on native python lists that are not contiguous in
memory as C vectors are.

Instead of coding the addition using a loop, it is possible to call an external optimized
library such as the Intel MKL BLAS library: the vector addition is available as a daxpy
function (in red in the figures). This external function can be called from C (blas/C from
Listing 2, plain line); although calling this external function introduces some overhead for
small vectors, the blas/C function outperforms the loop/C implementation for vectors of
intermediate size that fit in the cache memory. For larger vectors, both implementations
achieve the same performance bounded by the memory speed. The blas function can also
be called from python on numpy.ndarray vectors, either explicitly through a wrapper in
the scipy.linalg.blas module (blas/python from Listing 6, dashed line) or implicitly
by adding the arrays (numpy/python from Listing 5, purple line). Both these python
implementations perform as well as the blas/C version.

Table 4.1: Relative performance of the different implementations for the vector addition
for the largest size n available.

blas C 1
blas python 0.98524
loop C 0.9957
loop cython 0.05078
loop python 0.00703
loop_type cython 0.03139
numpy python 0.99193

4.2.1.2 Dense matrix multiplication in C and python (dgemm)

The operation C ← AB + C, where A, B and C are three (n, n) matrices requires
3n2 read operations, n2 write operations, n3 additions and n3 multiplications. Each
computation thus requires 2/n data transfers. If n is large enough, these data transfers
become negligible and the performance of this operation is governed by the computational
power of the CPU (Irony et al., 2004; Jia-Wei and Kung, 1981; Langou, 2014): it is said

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 87

4.2. Performance of some elemental operators in python

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●

●

●●●

●

●●

●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

1e−08

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1 16 256 4096 65536 1.0e+07 1.7e+08 2.7e+09
Size of the vectors: n

T
im

e
(s

)

Implementation
● blas
loop
loop_type
numpy

Calling language
C
cython
python

Figure 4.1: Time needed to perform a vector addition (daxpy).

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●

●

●●●

●

●●

●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1 16 256 4096 65536 1.0e+07 1.7e+08 2.7e+09
Size of the vectors: n

Fl
op

/s
: n

/t

Implementation
● blas
loop
loop_type
numpy

Calling language
C
cython
python

Figure 4.2: Performance of the vector addition (daxpy).

88 Louis POIREL

4. Design of a domain decomposition toolbox in python

to be compute-bound. As such, there is more room for optimization by reordering the
operations to minimize the data transfers between the CPU, the different levels of cache
and the main memory.

The different implementation presented in listings 7 to 12 are very similar to their
counterpart for the vector addition. Note that in the numpy/python implementation, the
@ operator can be used to represent the matrix multiplication operation in python31. The
notation A @ B is not available in python2 and it can be replaced by A.dot(B).

1 void loop__C(const double* A, const double* B, double* C, const unsigned int n) {
2 for (unsigned int i = 0; i < n; i++){
3 for (unsigned int j = 0; j < n; j++){
4 for (unsigned int k = 0; k < n; k++) {
5 C[j + n*i] += A[k + n*i] * B[j + n*k];
6 }
7 }
8 }
9 }

Listing 7: loop/C: straightforward implementation of C ← AB + C using loops in C.

1 void blas__C(const double* A, const double* B, double* C, const unsigned int n) {
2 cblas_dgemm(CblasRowMajor,
3 CblasNoTrans, CblasNoTrans,
4 n, n, n, 1.,
5 A, n, B, n,
6 1., C, n);
7 }

Listing 8: blas/C: HPC implementation of C ← AB + C using the optimized BLAS
function (dgemm) as provided by the Intel MKL library called from C.

The results presented in figures 4.3 and 4.4 and in Table 4.2 show that the optimized
MKL dgemm routine used in the blas/C version (Listing 8) is 60 times faster than the
loop/C version (Listing 7), 990 times faster than the loop_cython version (Listing 9),
2,857 times faster than the loop/python version (Listing 9). The loop_type/cython im-
plementation (Listing 10) performs quite similarly to the loop/C version: the overhead of
converting the python list to C arrays is negligible for large matrices since it involves O(n2)
data movements and the matrix product involves O(n3) operations. The numpy/python
version (Listing 11) is only 5% slower than the blas/C version. However, the blas/python
(Listing 12) version is 30% slower. This may come from some known restrictions on the
wrapper issue2 (this performance overhead was not investigated further).

1see https://www.python.org/dev/peps/pep-0465/
2see issue https://github.com/scipy/scipy/issues/6779

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 89

https://www.python.org/dev/peps/pep-0465/
https://github.com/scipy/scipy/issues/6779

4.2. Performance of some elemental operators in python

1 def loop__python(A, B, C):
2 n = len(A)
3 for i in xrange(n):
4 for j in xrange(n):
5 for k in xrange(n):
6 C[i][j] += A[i][k] * B[k][j]

Listing 9: loop/python: straightforward implementation of C ← AB+C using loops in
python. This code can be compiled with cython, yielding the loop/cython version.

1 def loop_type__cython(A, B, C):
2 cdef int i, j, k, n = len(A)
3 cdef double *A_ = <double *>malloc(n*n * sizeof(double))
4 cdef double *B_ = <double *>malloc(n*n * sizeof(double))
5 cdef double *C_ = <double *>malloc(n*n * sizeof(double))
6 for i in xrange(n):
7 for j in xrange(n):
8 A_[j + n*i] = A[i][j]
9 B_[j + n*i] = B[i][j]

10 for i in xrange(n):
11 for j in xrange(n):
12 for k in xrange(n):
13 C_[j + n*i] += A_[k + n*i] * B_[j + n*k]
14 for i in xrange(n):
15 for j in xrange(n):
16 C[i][j] = C_[j + n*i]
17 free(A_)
18 free(B_)
19 free(C_)

Listing 10: loop_type/cython: mixed implementation of C ← AB+C using loops with
typed data using cython (the python list are converted to C arrays before and after the
computations).

1 def numpy__python(A, B, C):
2 C += A.dot(B) # C += A @ B in python3
3 return C

Listing 11: numpy/python: implementation of C ← AB + C using the numpy module in
python, where the input are of type numpy.ndarray instead of list.

90 Louis POIREL

4. Design of a domain decomposition toolbox in python

1 def blas__python(A, B, C):
2 return scipy.linalg.blas.dgemm(1., A, B, 1., C, 1, 0, 0)

Listing 12: blas/python: implementation of C ← AB + C using the low-level
scipy.linalg.blas wrapper, linked with the Intel MKL library, in python, with
numpy.ndarray as input.

These two experiments on y ← x + y and C ← AB + C show that, as expected, the
implementation in python of an intensive computational operation is much slower than
the corresponding code in C. However, independently of the choice of the language, the
best performance is achieved when calling an external optimized library for computation-
intensive kernels. The overhead of calling such a library from python, which is of order
10−6 s. in our experiments, becomes negligible when the time spent inside the kernel is
large enough. As a result, the python language is relevant for implementing DDM, as
long as these methods can be expressed as a combination of elemental operations that
can be performed using such optimized kernels. The numpy and scipy packages provide
HPC implementations for many of these elemental operations. Using a python compiler
such as cython would be a promising option for developing other kernels in python if
needed. However, we choose not to implement any low-level operation and instead rely
on available state-of-the-art HPC libraries: although compiled python code can be as fast
as native C code (as shown for instance in Table 4.2), it is much more efficient (both in
implementation time and computation time) to rely on a highly optimized third party
library such as the Intel MKL library.

Table 4.2: Relative performance of the different implementations for the matrix multi-
plication for the largest size n available.

blas C 1
blas python 0.72309
loop C 0.01661
loop cython 0.00101
loop python 0.00035
loop_type cython 0.02936
numpy python 0.94456

4.2.2 Comparison of Scipy and Pastix for computing the Schur
complement matrix

A key step of some DDM is the computation of a Schur complement matrix using the
formula Si = K(i)

ΓiΓi
−KΓiIiK−1

IiIiKIiΓi as explained in Section 2.4. An implementation using
the scipy module is compared with an implementation that internally uses the Pastix
sparse direct solver (Hénon et al., 2002). These implementations are compared on two
test cases: a 2D square domain of n2 unknowns, whose interface Γ has 4n− 4 unknowns,

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 91

4.2. Performance of some elemental operators in python

●

●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●
●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●

●
●
●
●●●●●●

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

1e−08

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1 4 16 64 256 1024
Rank of the matrices: n

T
im

e
(s

)

Implementation
● blas
loop
loop_type
numpy

Calling language
C
cython
python

Figure 4.3: Time needed to perform a matrix multiplication (dgemm).

●

●
●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●

●

●

●
●
●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●

1e+06

1e+07

1e+08

1e+09

1e+10

1 4 16 64 256 1024
Rank of the matrices: n

Fl
op

/s
: 2

n³/
t

Implementation
● blas
loop
loop_type
numpy

Calling language
C
cython
python

Figure 4.4: Performance of the matrix multiplication (dgemm)

92 Louis POIREL

4. Design of a domain decomposition toolbox in python

and a 3D cubic domain of n3 unknowns, whose interface Γ is of size 6n2 − 12n+ 8.

Since there is no built-in Schur complement function in scipy, it is implemented in
three steps: first, the scipy.sparse.linalg.factorized() method is used to factorize
KIiIi (internally calling the SuperLU sparse direct solver (Demmel et al., 1999)). Then,
a solve operation is performed on KIiΓi to compute K−1

IiIiKIiΓi . The Schur complement
matrix can then be computed with one matrix-matrix product and a matrix subtraction.
In the second step, the solve() method only accepts a dense argument and the sparse
block KIiΓi has to be converted to a dense representation.

In the pastix implementation, the whole matrix Ki is provided to the sparse direct
solver along with a list of interface unknowns, and the Schur complement matrix Si is
computed as a byproduct of the partial factorization of Ki. Both implementations are
presented in more details in sections 4.3.8.1, 4.3.8.4 and 4.3.10.1.

The results presented in Figure 4.5 show that the pastix version is consistently faster
than the scipy version: computing the Schur complement matrix of a 3D 32 × 32 × 32
cube takes 4 min. 40 s. with scipy, compared to only 8.6 s. using Pastix. In the
following, the Pastix solver is used for all sparse factorizations and Schur complement
matrix computations.

schur2D schur3D

4 16 64 256 2 4 8 16 32

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

Size of the domain in each direction: n

T
im

e
(s

)

Implementation
Schur_pastix
Schur_scipy

Figure 4.5: Time needed to compute the Schur complement matrix. The matrix is the
FEM discretization of a 2D with n2 unknowns or a 3D domain with n3 unknowns. The
Schur complement matrix is of size 4(n− 1) or 6n2 − 12n+ 8, respectively.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 93

4.2. Performance of some elemental operators in python

Table 4.3: Relative performance of the different implementations for the Schur comple-
ment matrix computation.

Schur_pastix python schur2D 1
Schur_scipy python schur2D 0.0315
Schur_pastix python schur3D 1
Schur_scipy python schur3D 0.1566

4.2.3 Comparison of Scipy and a custom implementation of the
conjugate gradient

●
●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

1e−04

1e−03

1e−02

1e−01

1e+00

16 256
Rank of the matrix: n

T
im

e
(s

)

Implementation
● cg_python
cg_scipy

Figure 4.6: Comparison of the scipy.sparse.linalg.cg that calls a CG implementation
in Fortran and a custom python implementation.

Another missing feature in scipy is the ability to use a parallel iterative solver such as
the CG algorithm. Indeed, the provided routine, which calls an external Fortran routine
(Barrett et al., 1994), was not designed to be used in a distributed environment: although
the user can provide a distributed implementation for the matrix-vector product and
the preconditioner application (through the .dot() methods of the relevant arguments
parameters), the dot products between vectors are performed in sequential inside the
routine by calling the relevant Blas routines and cannot be overridden by the user.

In order to use the CG algorithm on distributed matrices and vectors, we rewrote
it in python, as shown in Listing 13. This function has the exact same signature as
the scipy.sparse.linalg.cg function, and its implementation seems purely sequential
(no explicit parallelism). However, the matrix-vector products and the scalar products

94 Louis POIREL

4. Design of a domain decomposition toolbox in python

Table 4.4: Relative performance of the different implementations for the Conjugate
Gradient algorithm.

cg_python python 1
cg_scipy python 0.435

performed in lines 3, 6, 7, 9, 11, 13, 14, 20, 22 and 23 can be performed in parallel by
overriding the dot methods used by the types of A and b.

A comparison of both implementations (in sequential) for solving a dense system
without a preconditioner shows that our implementation (cg_python) is faster than the
Fortran version (cg_scipy), as presented in Figure 4.6. This might be explained by
the fact that the cg_scipy implementation is always switching back-and-forth between
python and Fortran: when the user enters x = scipy.linalg.cg(A, b), the data are
transferred to the Fortran routine. Each time a matrix-vector product should be computed
or the preconditioner should be applied, the Fortran routine terminates, and the python
wrapper calls the user-provided implementations for these operations before calling again
the Fortran routine. If A and b are numpy arrays, these operations are in fact performed
using the same BLAS routines as in the Fortran version. Furthermore, our function is
more permissive on the input since it relies (implicitly) on the built-in python exception
system to handle all errors, whereas the Fortran wrapper has to perform more checks on
the data. These results confirm the overall relevance of the python language for writing
a DD toolbox, as proposed in Section 4.3.

1 def cg(A, b, x0=None, tol=1e-5, maxiter=None,
2 xtype=None, M=None, callback=None):
3 bb = b.T @ b)
4 maxiter = len(b) if maxiter is None else maxiter
5 x = 0 * b if x0 is None else x0
6 r = b - A @ x
7 if r.T @ r <= tol * tol * bb:
8 return x, 0
9 z = r if M is None else M @ r

10 p = z.copy()
11 rz = r.T @ z
12 for i in range(maxiter):
13 Ap = A @ p
14 pAp = p.T @ Ap
15 alpha = (rz / pAp)[0,0]
16 x += alpha * p
17 r -= alpha * Ap
18 if callback is not None:
19 callback(x)
20 if r.T @ r <= tol * tol * bb:
21 return x, 0
22 z = r if M is None else M @ r

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 95

4.3. Design of the ddmpy domain decomposition toolbox in python

23 rz, rzold = r.T @ z, rz
24 beta = (rz / rzold)[0,0]
25 p = z + beta * p
26 return x, i

Listing 13: A simple CG implementation in python (cg_python) with the same signature
as the scipy.sparse.linalg.cg function.

4.3 Design of the ddmpy domain decomposition toolbox
in python

4.3.1 Introduction

The ddmpy package is an algebraic DD toolbox written in python. It is compatible with
python 2.7 and python 3.4+. We chose to write this package using a programming
paradigm known as literate programming (Knuth, 1984) in which the focus is shifted
from writing the code to explaining the code, using org-mode (Dominik, 2010; Schulte
and Davison, 2011). Following a workflow inspired by the work of Stanisic and Legrand
(2014), the experiments in this chapter are reproducible: the .org source of this docu-
ment (which is just a text file following a special markup syntax) contains the code of
ddmpy presented in the present section and the scripts needed to launch the experiments,
analyze the results and produce the figures in Section 4.4. Note that the experiments in
Chapter 3 were performed using a previous version of the ddmpy toolbox and are not fully
reproducible as the experiments in the present chapter are.

The ddmpymodule, provided in this document, is available under the CeCILL-C license
(see source).

Some specific vocabulary is introduced in Section 4.3.2 before exposing the ddmpy
toolbox. In Section 4.3.3, the required and optional dependencies are introduced (import
statements). Then, a function for handling neighbor-to-neighbor communications and a
hierarchical profiler are presented in sections 4.3.4 and 4.3.5. The classed used to handle
the domain decomposition and distributed data (matrices and vectors) are defined in
Section 4.3.6, before the various solvers in ddmpy are introduced in sections 4.3.7 to 4.3.11.
One-level and two-level DD preconditioners are then presented in Section 4.3.12.

4.3.2 Some important concepts in the Python language

The code of the ddmpy package uses several advances python features that are briefly
described below. More information can be found in the official python documentation3.

• an iterator is any object that behaves like a list and that can be iterated upon,
implicitly in a for loop or explicitly using the next() function.

3https://docs.python.org/3/glossary.html

96 Louis POIREL

https://docs.python.org/3/glossary.html

4. Design of a domain decomposition toolbox in python

Simple
(non-augmented)

Augmented
2.6.1

Primal
2.6.3
4.3.6.3Simple/Γ Augmented/Γ

2.6.2

Dual/Γ
2.6.4

Primal/Γ
2.6.3

4.3.10.2

Aug. Dual/Γ
2.6.4

N -Lagrange
2.6.5

4.3.10.3

uI
λ λ uI

uΓ

λ uI λ
uΓ

Figure 4.7: The Primal, Primal/Γ and N -Lagrange formulations presented in Figure 2.3
are implemented in ddmpy; aS preconditioners (Section 2.7.2) for both primal formulations
are presented in Section 4.3.12.

• a generator function is a function that (implicitly) returns an iterator. Instead of
using the return statement to produce one single value, it uses (several) yield
statements to produce a series of values: each yield produces a value and suspends
the execution of the function until the next iteration. Our neighborSendRecv()
function presented in Section 4.3.4 is a generator function.

• a decorator is a function that takes a function as input and returns a function. A
function f can be replaced by the decorated function g(f) by adding the line @g
above the definition of f. Many functions in ddmpy are timed using the TimeIt
decorator defined in Section 4.3.5.

• a context manager is an object that defines operations to be performed when entering
and exiting a particular block of code starting with a with statement. The TimeIt
decorator presented above is also used as a context manager in the code.

• a special method is a method that is called implicitly by python to perform a certain
operation. For instance, one can overload the + operator by defining a __add__()
method in a class. Then, a + b is resolved as a.__add__(b). Several arithmetic
operators are overloaded following this approach in the DistVector and DistMatrix
classes in sections 4.3.6.2 and 4.3.6.3. The TimeIt decorator mentioned above is in
fact not a function but a class with a __call__() method, that can therefore be
called like a function.

• duck-typing is a way of handling type safety: instead of explicitly checking the type
of function argument, the presence of some methods and properties used in the
function is enough for the argument to be accepted. For instance, the matrix A
and preconditioner M used in the cg method (Listing 13) can be any objects with a
suitable __matmul__() method (special method for the @ operator).

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 97

4.3. Design of the ddmpy domain decomposition toolbox in python

4.3.3 Dependencies (required and optional)

All the operations in the ddmpy package can be performed using only common python
packages available in any scientific distribution: numpy, scipy and mpi4py.

1 from __future__ import print_function
2 from collections import OrderedDict
3 import traceback
4 import time
5 import numpy as np
6 import scipy.sparse as ssp
7 import scipy.linalg as la
8 import scipy.sparse.linalg as sla
9 from mpi4py import MPI

Listing 14: Required dependencies.

However, better performance can optionally be obtained for some operations by relying
on external libraries such as Pastix (Hénon et al., 2002), Mumps (Amestoy et al., 2001)
or MaPHyS (Agullo et al., 2016b; Giraud et al., 2008) that are used through python
wrappers. The import for these modules are wrapped in try ... except blocks so that
ddmpy can be imported easily with or without these optional dependencies.

1 try:
2 import pypastix
3 except ImportError:
4 traceback.print_exc()
5

6 try:
7 import pymumps
8 except ImportError:
9 traceback.print_exc()

10

11 try:
12 import pymaphys
13 except ImportError:
14 traceback.print_exc()

Listing 15: Optional dependencies. Without these optional dependencies, ddmpy falls
back onto the required dependencies to perform all operations.

4.3.4 An abstraction layer over the MPI for a domain decompo-
sition methods dd

98 Louis POIREL

4. Design of a domain decomposition toolbox in python

The neighborSendRecv generator function. The ddmpy module is designed for
testing and comparing parallel DDM in a distributed environment. One process per sub-
domain is created. It handles all local computations relative to the subdomain, and the
Message Passing Interface (MPI) (The MPI Forum, 1993) is used to handle communica-
tions through the mpi4py wrapper (Dalcin et al., 2011). mpi4py provides both low-level
functions that communicate efficiently memory-contiguous buffers, such as numpy arrays,
and a higher-level interface that makes it easy to communicate any python object, with
a performance penalty.

A common communication pattern in DDM is for each subdomain to send messages to
all his neighbors and receive the corresponding messages. This is handled in our code by
a neighborSendRecv generator function as defined in Section 4.3.2. A generator function
is a function that can return several successive values (through the yield keyword) and
can be used in a loop. In our case, neighborSendRecv takes a dictionnary of messages to
send, and returns the received messages in the order they arrive. The arguments of this
generator function are:

• messages, a dictionnary of messages: messages[i] is sent to process i. Each
message can be any python object.

• comm, the MPI communicator to be used for the communication

• n_recv, the number of expected incoming messages. This argument is optional if
the number of expected messages is equal to the number of sent messages (n_recv
= len(messages)).

• is_ndarray, True if the specialized mpi4py routines for fast communication of mem-
ory contiguous arrays should be used, False for using the generic routines in mpi4py
that can handle any python object. By default, a strategy is chosen based on the
type of the objects in messages.

• dtype, used only if is_ndarray: numpy datatype of the arrays in the incoming
messages.

• debug, boolean: print debug messages. Default: False.

1 def neighborSendRecv(messages, comm=MPI.COMM_WORLD, n_recv=None,
2 is_ndarray=None, dtype=None, debug=False):
3 if n_recv is None:
4 n_recv = len(messages)
5 if is_ndarray is None:
6 is_ndarray = all(isinstance(v, np.ndarray)
7 for v in messages.values())
8 if is_ndarray and dtype is None:
9 assert(len(messages) > 0)

10 dtype = list(messages.values()).pop().dtype
11 assert(all(v.dtype == dtype
12 for v in messages.values()))

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 99

4.3. Design of the ddmpy domain decomposition toolbox in python

Listing 16: neighborSendRecv (1/5).

In order not to mix messages from different neighborSendRecv calls, an incremental tag
is used to discriminate between different calls to the generator function.

1 tag = getattr(neighborSendRecv, "tag", 0)
2 neighborSendRecv.tag = tag + 1

Listing 17: neighborSendRecv (2/5).

Then, all the messages are sent using the optimized non-blocking Isend function for
numpy arrays or the generic non-blocking isend function for other python objects.

1 # Send
2 requests = []
3 for dest, message in messages.items():
4 if debug:
5 print("{}.-> {}: {} / {} {}".format(
6 comm.Get_rank(), dest, message,
7 tag, is_ndarray))
8 if is_ndarray:
9 req = comm.Isend(message, dest, tag)

10 else:
11 req = comm.isend(message, dest, tag)
12 requests.append(req)

Listing 18: neighborSendRecv (3/5).

After this step, the n_recv incoming messages are returned in the order they arrive. For
this, a call to Probe waits for an incoming message. This message is then received using
the Recv (for arrays) or recv (for objects) function in mpi4py, and a tuple =(source,
message) is returned where source is the MPI rank of the source message.

1 # Probe and Receive
2 status = MPI.Status()
3 while n_recv > 0:
4 comm.Probe(MPI.ANY_SOURCE, tag, status)
5 source = status.Get_source()
6 if is_ndarray:
7 size = status.Get_count(
8 MPI._typedict[np.dtype(dtype).char])
9 message = np.empty(size, dtype)

10 comm.Recv(message, source, tag)
11 else:

100 Louis POIREL

4. Design of a domain decomposition toolbox in python

12 message = comm.recv(None, source, tag)
13 if debug:
14 print("{} ->.{}: {} / {}{}".format(
15 source, comm.Get_rank(), message,
16 tag, is_ndarray))
17 yield source, message
18 n_recv -= 1

Listing 19: neighborSendRecv (4/5).

After all messages are received, one waits for all the send requests to terminate.

1 # Wait for Send to terminate
2 for req in requests:
3 req.wait()

Listing 20: neighborSendRecv (5/5).

Testing the neighborSendRecv function. The previous function can be tested by
exporting the following code in a file test_neighborSendRecv.py

1 import ddmpy as dd
2

3 n = dd.MPI.COMM_WORLD.Get_size()
4 rank = dd.MPI.COMM_WORLD.Get_rank()
5

6 send_messages = {i: "message from {} to {}".format(rank, i)
7 for i in range(n) if i != rank}
8 SendRecv = dd.neighborSendRecv(send_messages)
9 recv_messages = {src: message for src, message in SendRecv}

10

11 if rank==0:
12 print("send:{}\nrecv:{}".format(
13 send_messages, recv_messages))

and running

1 mpirun -np 3 python test_neighborSendRecv.py

send:{1: 'message from 0 to 1', 2: 'message from 0 to 2'}
recv:{1: 'message from 1 to 0', 2: 'message from 2 to 0'}

Process 0 sends and receives one message from each of the two other processes.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 101

4.3. Design of the ddmpy domain decomposition toolbox in python

4.3.5 A hierarchical profiler suited for python

The TimeIt context manager and decorator. In order to facilitate debugging
and performance analysis, a TimeIt class enables to time the execution of selected func-
tions and blocks of code. The advantage compared to using the standard cProfilemodule
in python is the ability to choose which functions should be profiled and to instrument
individual blocks of code inside a function. Since timed functions or code blocks can
call other timed functions and code blocks, TimeIt events are created in a hierarchical
fashion. Hierarchical traces generated by a distributed execution of a ddmpy DD solver
are presented and analyzed in Section 4.4.4.

Each instance of this class contains the information for one instrumented function or
block of code. Global information is stored in two class attributes. First, events contains
a history of the execution: a list of all events that have been created since the reset()
function has been called. Second, the stack class attribute contains a list of events that
have started but are not yet finished (the parents of the current event in the hierarchy).
One can set the debug flag to True to have the trace printed on the standard output during
execution. One can also limit the size of the events list by setting the max_events class
attribute.

1 class TimeIt:
2

3 debug = False
4 max_events = None
5 events = []
6 stack = []
7 t0 = time.time()

Listing 21: TimeIt (1/5).

The TimeIt class can be used as a context manager to time individual blocks of code.

1 def __init__(self, name=""):
2 self.name = name
3

4 def __enter__(self):
5 self.begin = time.time() - self.t0
6 self.end = np.nan
7 self.duration = np.nan
8 self.level = len(self.stack)
9 self.events.append(self)

10 self.stack.append(len(self.events)-1)
11 if TimeIt.debug:
12 print(self.__str__(which="current"))
13 return self
14

102 Louis POIREL

4. Design of a domain decomposition toolbox in python

15 def __exit__(self, type, value, traceback):
16 self.end = time.time() - self.t0
17 self.duration = self.end - self.begin
18 if TimeIt.debug:
19 print(self.__str__(which="current"))
20 if self.stack:
21 self.stack.pop()
22 return False

Listing 22: TimeIt (2/5).

It can also be used as a decorator. When called on a method of a LinearOperator
instance (see Section 4.3.7), the time spent in the method is stored in an attribute of the
LinearOperator instance.

1 def __call__(self, f):
2 def timed_f(*args, **kwargs):
3 # We create a default name
4 name = self.name
5 if name=="":
6 name = type(args[0]).__name__ + " " + f.__name__
7 # We time and run the function
8 # We create a new TimeIt instance because self is created
9 # at function declaration and is the same object for all

10 # executions of the function
11 with TimeIt(name) as t:
12 res = f(*args, **kwargs)
13 # Store the duration in the object
14 if len(args)>0 and isinstance(args[0], LinearOperator):
15 solver = args[0]
16 key = "t_" + name.replace(" ", "_")
17 if key in solver.parameters:
18 solver.parameters[key] += t.duration
19 else:
20 solver.parameters[key] = t.duration
21 return res
22 return timed_f

Listing 23: TimeIt (3/5).

One can print the history by calling print(TimeIt()).

1 def __str__(self, which="all"):
2 if which=="current":
3 s = "{:50s} | {:2d} | {:12.7f} | {:12.7f} |\
4 {:12.7f}".format("! "*self.level + self.name,

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 103

4.3. Design of the ddmpy domain decomposition toolbox in python

5 self.level, self.begin,
6 self.duration, self.end)
7 elif which=="all":
8 s = "\n".join(
9 [t.__str__(which="current")

10 for t in self.events[:TimeIt.max_events]])
11 else: # "stack"
12 s = "\n".join(
13 [self.events[i].__str__(which="current")
14 for i in self.stack])
15 return s

Listing 24: TimeIt (4/5).

The origin of time can be reset, along with the events and stack class attributes by
calling the reset class method. If running in parallel, a MPI barrier() call is used to
synchronize the origins of all processes.

1 @classmethod
2 def reset(cls, comm=MPI.COMM_WORLD):
3 cls.events = []
4 cls.stack = []
5 if comm is not None:
6 comm.barrier()
7 cls.t0 = time.time()

Listing 25: TimeIt (5/5).

Testing the TimeIt class. The TimeIt class can be tested by executing the follow-
ing code

1 from ddmpy import TimeIt, np
2

3 @TimeIt("my sum")
4 def my_sum(a, b):
5 with TimeIt("compute the sum"):
6 c = a + b
7 return c
8

9 @TimeIt("f")
10 def f():
11 with TimeIt("concatenate strings"):
12 s1 = "Hello, world!"
13 s2 = "How are you?"
14 s = "\n".join((s1, s2))

104 Louis POIREL

4. Design of a domain decomposition toolbox in python

15 c = my_sum(1, 2)
16 with TimeIt("sum of squares"):
17 n = sum(i**2 for i in range(10000))
18

19 TimeIt.reset()
20 a = my_sum(42, 0)
21 f()
22 print(TimeIt())

my sum | 0 | 0.0054998 | 0.0000172 | 0.0055170
! compute the sum | 1 | 0.0055099 | 0.0000031 | 0.0055130
f | 0 | 0.0107698 | 0.0010610 | 0.0118308
! concatenate strings | 1 | 0.0107780 | 0.0000041 | 0.0107820
! my sum | 1 | 0.0107880 | 0.0000100 | 0.0107980
! ! compute the sum | 2 | 0.0107930 | 0.0000019 | 0.0107949
! sum of squares | 1 | 0.0108030 | 0.0010269 | 0.0118299

Each row in the result represents an event (a TimeIt block or a TimeIt-decorated
function call). The five columns of an event are its name, level, starting time, duration
and ending time. At the highest level (level 0), two decorated functions are called (lines
20 and 21), resulting in the first and third line in the results. During the execution of
these functions, other decorated functions and blocks are executed, resulting in TimeIt
events of level 1, which may, recursively, generate other events of higher level.

4.3.6 Distributed DD

In a distributed DD framework as presented in Section 3, each MPI process is responsible
for one subdomain and stores the data related to this subdomain. Namely, each unknown
is assigned to one or several subdomains, such that, from the matrix adjacency graph point
of view the two vertices of each edge are assigned to at least one common subdomain. In
the example presented in Figure 4.8, the 7 nodes are assigned to the following subdomains:

Node 0 1 2 3 4 5 6
Subdomain(s) 1, 3 1 1, 2 1, 2, 3 2 2, 3 3

The MPI ranks are numbered from 0 to N - 1 consistently with the default MPI num-
bering. However, subdomains are numbered from 1 to N to stay consistent with previous
chapters where index 0 is reserved for the coarse space. In the code, the subdomain Ωi

is therefore identified by the rank i− 1 of the MPI process it is associated with. A local
numbering of the unknowns is used in each subdomain: in the example, the local indices
[0, 1, 2, 3] in Ω1 correspond to the same global indices [0, 1, 2, 3]. The global indices
corresponding to local indices [0, 1, 2, 3] of Ω2 and Ω3 are [3, 2, 4, 5] and [5, 6, 0, 3],
respectively. Each subdomain has to know which unknowns it shares with which other
subdomains (dotted lines in Figure 4.8 (c)). In our example, for instance, Ω1 shares [2,
3] (in local ordering) with Ω2 and [0, 3] with Ω3. Ω2 shares [1, 0] with Ω1 and [0, 3] with
Ω3. Ω3 shares [2, 3] with Ω1 and [3, 0] with Ω2.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 105

4.3. Design of the ddmpy domain decomposition toolbox in python

(a)

0 1

2
3

4
5

6

(a)

0 1

2
3

4
5

6

(a)

0 1

2
3

4
5

6

(b)

0 1

2
3

4
5

6

(b)

0 1

2
3

4
5

6

(b)

0 1

2
3

4
5

6

Ω1

Ω2Ω3

(c)

0 1

2
3

(c)

0
1

2
3(c)

0

1

2

3

Ω1

Ω2

Ω3

Figure 4.8: The global domain in (a) is partitioned in three subdomains Ω1, Ω2 and Ω3

in (b). Each subdomain can use a local ordering of its unknowns as in (c); duplicate
unknowns in different subdomains are linked by a dotted line.

Consistently with the assumption in Chapter 3 that the matrix is provided in a dis-
tributed fashion (2. in Definition 1), ddmpy does not partition matrices or vectors to
distribute them (from 4.8 (a) to 4.8 (c)), but uses distributed data as an input (4.8 (c)).

There is no constraint on the relative position of interior and interface indices in the
local ordering. For instance, in Ω2, the interior node (2 in local ordering) is not at the
beginning or the end of the local unknown list. However, the orders of the local orderings
of two neighboring subdomains on their common interface depend on each other. For
instance, nodes 2 and 3 in global ordering have the same index (2 and 3) in the local
ordering of Ω1, whereas in the local ordering of Ω2, they are in reverse order (1 and 0).
As a result, when communicating data between Ω1 and Ω2, one has to take into account
the ordered list of nodes in their common interface ([2, 3] for Ω1 and [1, 0] for Ω2) instead
of the (unordered) set of common unknowns ({2, 3} and {0, 1}) in order not to associate
node 2 of Ω1 with node 0 of Ω2 instead of node 1, and node 3 of Ω1 with 1 instead of 0.

This connectivity information and the MPI communicator are handled through a
DomainDecomposition class, that is presented in Section 4.3.6.1. The DistVector and
DistMatrix classes used to distribute linear algebra operations are then presented in
sections 4.3.6.1 and 4.3.6.3.

4.3.6.1 The DomainDecomposition class

The DomainDecomposition class is presented in 4 steps: after its constructor (__init__()
method), the code of its assemble() method is given. This method is used to add
local contributions from a subdomain and its neighbors to a vector or matrix. Then, an
interface_dd() method used to eliminate interior degrees of freedom is presented, and
an example is given.

Class constructor (__init__() method). The class’s constructor has three ar-
guments:

• ni, the number of local unknowns (4 in our example).

106 Louis POIREL

4. Design of a domain decomposition toolbox in python

• neighbors, a dictionnary that maps the MPI rank of neighbor subdomains to a list
containing the local indices of shared unknowns with the said subdomain (for Ω1 of
MPI rank 0, neighbors = {1: [2, 3], 2: [0, 3]}).

• comm, a MPI communicator (defaults to MPI.COMM_WORLD).

1 class DomainDecomposition(object):
2

3 def __init__(self, ni, neighbors, comm=MPI.COMM_WORLD):
4 self.ni = ni
5 self.neighbors = neighbors
6 self.interface = np.unique(np.hstack(neighbors.values()))
7 self.nG = len(self.interface)
8 self.nI = ni - self.nG
9 self.comm = comm

10 self.n_subdomains = comm.Get_size()
11 self.rank = comm.Get_rank()
12 # Boolean partition of unity
13 # for scalar products
14 self.D = np.ones((ni, 1), dtype=np.int)
15 for n in neighbors:
16 if n < self.rank:
17 self.D[neighbors[n], 0] = 0
18 # Compute the global ordering
19 # Number of unknowns the subdomain is responsible for
20 ind_responsible = np.nonzero(self.D)[0]
21 n_responsible = len(ind_responsible)
22 n_per_subdomain = np.empty(self.n_subdomains, dtype=int)
23 comm.Allgather(
24 np.array(n_responsible),
25 n_per_subdomain)
26 # Total number of unknowns
27 self.n = n_per_subdomain.sum()
28 # Number of unknowns of smaller rank
29 offset = n_per_subdomain[:self.rank].sum()
30 # global numbering of the subdomain's unknowns
31 self.global_indices = np.zeros((self.ni), dtype=int)
32 self.global_indices[ind_responsible] = range(
33 offset, offset+n_responsible)
34 # Send global numbering of shared nodes to neighbors
35 send = {n: self.global_indices[neighbors[n]]
36 for n in neighbors if self.rank<n}
37 n_recv = len([n for n in neighbors if n<self.rank])
38 for n, recv in neighborSendRecv(
39 send, n_recv=n_recv, is_ndarray=True, dtype=int):

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 107

4.3. Design of the ddmpy domain decomposition toolbox in python

40 self.global_indices[neighbors[n]] += recv.ravel()

Listing 26: DomainDecomposition (1/4).

The assemble() method. Using the same notations as in Chapter 2, if a vector
b is a sum of local components b =

∑N
j=1RT

j bj, the restriction of b to subdomain Ωi is
Rib = Ri

∑N
j=1RT

j bj =
∑N

j=1RiRT
j bj. Since RiRT

j = 0 if j 6= i and j is not a neighbor
of i, if each component bi is only known in the process holding subdomain Ωi, neighbor-
to-neighbor communications are required to send and receive the RiRT

j bj components, in
a process called vector assembly.

Similarly, if a matrix A is known as a sum of local components A =
∑N

j=1RT
j AjRj,

computing the local matrix A(AS)
i = RiART

i of the AS preconditioner (Section 3.1) also
requires a matrix assembly : A(AS)

i = Ri

∑N
j=1RT

j AjRjRT
i =

∑N
j=1RiRT

j AjRjRT
i . The

difference between the vector and matrix assembly is that in the matrix assembly, the
restrictions are applied on both sides of the matrix.

When computing a matrix-vector product y = Ax where x and y are known in each
subdomain Ωi through their local restrictions xi = Rix and yi = Riy, the product is
computed as yi = Riy = RiAx = Ri

∑N
j=1RT

j AjRjx =
∑N

j=1RiRT
j Ajxj. Each process

computes a local matrix-vector product y′j = Ajxj. The resulting vector is assembled to
compute yi =

∑N
j=1RiRT

j y
′
j.

The Ri and RT
j matrices represent global-to-local and local-to-global index transfor-

mations. However, the global ordering is not used in the vector and matrix assembly
processes: the matrix product RiRT

j represents a local (in Ωj)-to-local (in Ωi) trans-
formation. This transformation is performed implicitly by requiring that the lists in the
neighbors dictionaries from two neighboring subdomains are in the same order, as stated
above. In our example, the interface between subdomains Ω1 and Ω2 is [2, 3] in global
ordering. In local ordering, these two nodes are [2, 3] in Ω1 and [1, 0] in Ω2. Notice that
in Ω2, the nodes are not in ascending order: they are sorted so as to match the ordering
of the corresponding nodes in the list in Ω1.

The assemble method has 3 arguments:

• v, a vector or matrix to assemble,

• dim, 1 for vector assembly, 2 for matrix assembly,

• debug, a boolean flag passed to the neighborSendRecv function.

1 def assemble(self, v, dim=1, debug=False):
2 comm = self.comm
3 if dim==1: # vector assembly
4 indices = self.neighbors
5 elif dim==2: # matrix assembly
6 indices = {n: np.ix_(i,i) if len(i)>1 else (i,i)
7 for n, i in self.neighbors.items()}

108 Louis POIREL

4. Design of a domain decomposition toolbox in python

8 else:
9 raise ValueError("dim should be 1 or 2")

10 v_ = v.copy()
11 send = {j: v[indices[j]] for j in indices}
12 for j, recv in neighborSendRecv(send, debug=debug):
13 if recv.shape != send[j].shape:
14 recv = recv.reshape(send[j].shape)
15 v_[indices[j]] += recv
16 return v_

Listing 27: DomainDecomposition (2/4).

The interface_dd() method. Some DDM use an interface formulation where in-
terior unknowns that belong to only one subdomain are eliminated. This elimination
processes produces a Schur complement system on the interface unknowns. From a

(a)

0

3
2

(a)

2
3

5
(a)

0

3

5
(b)

0

2
1

(b)

1
2

3
(b)

0

2

3
(c)

0

2
1

(c)

1
0

2(c)

1

2

0

Γ1

Γ2

Γ3

Figure 4.9: The interior unknowns can be eliminated from the domain presented in
Figure 4.8 to keep only interface unknown that are shared by two subdomains or more
(a). A global interface numbering is introduced (b). The global interface can be expressed
as the union of the three local interfaces Γ1, Γ2 and Γ3 in (c). An interface Domain
Decomposition is a particular case of Domain Decomposition where all unknowns are
assigned to more than one subdomain.

DomainDecomposition object, one can use the interface_dd method to compute a local
ordering of the interface.

1 def interface_dd(self):
2 """return the DomainDecomposition of the interface matrix"""
3 neighbors = {n: np.searchsorted(self.interface, i).tolist()
4 for n, i in self.neighbors.items()}
5 return DomainDecomposition(len(self.interface), neighbors,
6 self.comm)

Listing 28: DomainDecomposition (3/4).

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 109

4.3. Design of the ddmpy domain decomposition toolbox in python

Testing the DomainDecomposition class. A DomainDecomposition object dd rep-
resenting the domain in Figure 4.8 is available by using the test() static method of the
DomainDecomposition class

1 @staticmethod
2 def test():
3 # see Figure 4.8
4 comm = MPI.COMM_WORLD
5 rank = comm.Get_rank()
6 assert(comm.Get_size() == 3)
7 if rank==0: # Ω1

8 neighbors = {1: [2, 3], # interface with Ω2

9 2: [0, 3]} # interface with Ω3

10 ni = 4 # number of local unknowns
11 elif rank==1: # Ω2

12 neighbors = {0: [1, 0], # interface with Ω1

13 2: [0, 3]} # interface with Ω3

14 ni = 4 # number of local unknowns
15 elif rank==2: # Ω3

16 neighbors = {0: [2, 3], # interface with Ω1

17 1: [3, 0]} # interface with Ω2

18 ni = 4 # number of local unknowns
19 dd = DomainDecomposition(ni, neighbors)
20 return dd

Listing 29: DomainDecomposition (4/4).

The corresponding interface DomainDecomposition object ddG representing the in-
terface in Figure 4.9 is available using the interface_dd() method. For both domain
decompositions and for each of the three subdomains, the global indices corresponding to
the local unknown are given. Then, a boolean partition of unity D is presented: the value
of D for an unknown is 1 if this unknown is in the interior of the current domain or if the
current domain is of smallest rank among the subdomains that the unknown belongs to.
If an unknown is shared with a subdomain of smaller rank, the value of D for the index
corresponding to this unknown is 0. Assembling this partition of unity, one sums locally
the contributions of all neighboring subdomains. Since all but one subdomain contribute
0 on each unknown and the last subdomain (of smallest rank) contributes 1, the resulting
value is 1 (assemble(D)).

The effect of the assembly process is also illustrated through the computation of
a multiplicity vector: a vector x = np.ones(4) = [1, 1, 1, 1] is assembled as
multiplicity = assemble(x). The result obtained by adding the contributions (1)
coming from all subdomains, is the number of subdomain that each node is assigned
to: an interior node (1, 4 and 6 in global ordering) has a multiplicity of 1, an interface
node between two subdomains has a multiplicity of 2 (0, 2 and 5) and a crosspoint be-
tween 3 subdomains has a multiplicity of 3 (node 3 in global ordering). In the interface

110 Louis POIREL

4. Design of a domain decomposition toolbox in python

DomainDecomposition object, all interior nodes of multiplicity 1 are eliminated and all
remaining nodes have a multiplicity of 2 or more.

1 from ddmpy import *
2 comm = MPI.COMM_WORLD
3 rank = comm.Get_rank()
4

5 dd = DomainDecomposition.test() # Figure 4.8
6 ddG = dd.interface_dd() # Figure 4.9
7

8 for dd_ in [dd, ddG]:
9 multiplicity = dd_.assemble(np.ones(dd_.ni, int))

10 D_assembled = dd_.assemble(dd_.D)
11 for i in range(3):
12 comm.barrier()
13 if rank == i:
14 if rank == 0:
15 print("dd\n" if dd_ is dd else "ddG\n")
16 print("rank: {}\n"
17 "global indices: {}\n"
18 "D: {}\n"
19 "assemble(D): {}\n"
20 "multiplicity: {}\n"
21 .format(rank,
22 dd_.global_indices,
23 dd_.D[:, 0],
24 D_assembled[:, 0],
25 multiplicity))

1 mpirun -np 3 python testDD.py

dd

rank: 0
global indices: [0 1 2 3]
D: [1 1 1 1]
assemble(D): [1 1 1 1]
multiplicity: [2 1 2 3]

rank: 1
global indices: [3 2 4 5]
D: [0 0 1 1]
assemble(D): [1 1 1 1]

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 111

4.3. Design of the ddmpy domain decomposition toolbox in python

multiplicity: [3 2 1 2]

rank: 2
global indices: [5 6 0 3]
D: [0 1 0 0]
assemble(D): [1 1 1 1]
multiplicity: [2 1 2 3]

ddG

rank: 0
global indices: [0 1 2]
D: [1 1 1]
assemble(D): [1 1 1]
multiplicity: [2 2 3]

rank: 1
global indices: [2 1 3]
D: [0 0 1]
assemble(D): [1 1 1]
multiplicity: [3 2 2]

rank: 2
global indices: [3 0 2]
D: [0 0 0]
assemble(D): [1 1 1]
multiplicity: [2 2 3]

4.3.6.2 The DistVector class

A global vector b in ddmpy can be stored through its local component bi = Rib in the
subdomain Ωi handled by the current MPI process. The values of the local components
bi and bj on a node shared between Ωi and Ωj are the same: the distributed vector is
said to be compatible on the interface. Some DDM that use for instance the N -Lagrange
formulation (see Section 2.6.5) use distributed vectors that are not compatible: both sides
of an interface can hold different values.

Class constructor. The DistVector class is used to handle both compatible and
not compatible distributed vectors. Its constructor has 4 arguments:

• bi, the value of the vector on the nodes in Ωi, in local ordering,

• dd, a DomainDecomposition object such that bi.shape[0] = dd.ni,

• compatible, a boolean used to define the compatibility of the vector on the interface.
If the vector is compatible, interface components are stored redundantly on all the

112 Louis POIREL

4. Design of a domain decomposition toolbox in python

subdomains that share an interface and a partition of unity (see Section 2.7.2) has
to be used to compute the dot product in order not to count interface nodes several
times,

• assemble, a boolean used to specify if the vector should be assembled during the
constructor.

In practice, only the three following combinations of compatible and assemble are
used:

• compatible=True and assemble=False when the local components of a compati-
ble distributed vector are known. For instance, an initial guess whose value is xi
can be created as DistVector(xi, dd, compatible=True, assemble=False), or
DistVector(xi, dd) using the arguments default values.

• compatible=True and assemble=True when the vector should be computed as the
sum of known local contributions. For instance, when the linear system is the FEM
discretization of a PDE, the right-hand side vector is known as b =

∑N
j=1RT

j bj. The
local component of b is Rib =

∑N
j=1RiRT

j bj and can be obtained by assembling
the vector (see Listing 27). The corresponding DistVector object can be created
as DistVector(bi, dd, compatible=True, assemble=True) or DistVector(bi,
dd, assemble=True).

• compatible=False and assemble=False when the local components of a vector
are not expected to hold the same value on shared interface unknowns. This is the
case for instance using an augmented or N -Lagrange formulation (see sections 2.6.1
and 2.6.5). A corresponding vector can be created as DistVector(lambda_i, dd,
compatible=False, assemble=False) or, more simply, DistVector(lambda_i,
dd, compatible=False).

A DistVector object has shape, ndim, __len__(), copy() and T attributes and meth-
ods that match those of numpy arrays.

1 class DistVector(object):
2

3 def __init__(self, bi, dd, compatible=True,
4 assemble=False):
5 if len(bi.shape) != 2:
6 bi = bi.reshape((dd.ni, -1))
7 if assemble:
8 self.local = dd.assemble(bi)
9 else:

10 self.local = bi
11 self.dd = dd
12 self.shape = dd.n, bi.shape[1]
13 self.ndim = len(self.shape)

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 113

4.3. Design of the ddmpy domain decomposition toolbox in python

14 self.transposed = False
15 self.compatible = compatible
16

17 def __len__(self):
18 return self.shape[0]
19

20 def copy(self):
21 return DistVector(self.local.copy(), self.dd,
22 self.compatible)
23

24 @property
25 def T(self):
26 other = DistVector(self.local, self.dd, self.compatible)
27 other.transposed = not self.transposed
28 other.shape = self.shape[::-1]
29 return other

Listing 30: DistVector (1/3).

Arithmetic operations. Some arithmetic operations on DistVector are defined
using the special methods __add__(), __sub__(), __rmul__(), __mul__(), __div__(),
__truediv__() and __matmul__() that are used to implement the +, -, *, / and @
operations.

1 @TimeIt()
2 def __add__(self, other): # self + other
3 with TimeIt("Local __add__"):
4 return DistVector(self.local + other.local,
5 self.dd, self.compatible)
6

7 @TimeIt()
8 def __sub__(self, other): # self - other
9 with TimeIt("Local __sub__"):

10 return DistVector(self.local - other.local,
11 self.dd, self.compatible)
12

13 @TimeIt()
14 def __rmul__(self, scalar): # scalar * self
15 with TimeIt("Local __rmul__"):
16 return DistVector(scalar * self.local,
17 self.dd, self.compatible)
18

19 @TimeIt()
20 def __mul__(self, scalar): # self * scalar

114 Louis POIREL

4. Design of a domain decomposition toolbox in python

21 with TimeIt("Local __mul__"):
22 return DistVector(self.local * scalar,
23 self.dd, self.compatible)
24

25 @TimeIt()
26 def __div__(self, scalar): # self / scalar
27 with TimeIt("Local __div__"):
28 return DistVector(self.local / scalar,
29 self.dd, self.compatible)
30

31 def __truediv__(self, scalar): # self / scalar
32 return self.__div__(scalar)
33

34 @TimeIt()
35 def dot(self, other):
36 dd = self.dd
37 if self.transposed: # self.T @ other
38 # multiplication along the distributed dimension
39 assert(self.dd==other.dd)
40 if not isinstance(other, DistVector):
41 return NotImplemented
42 with TimeIt("Local dot"):
43 if self.compatible:
44 # don't count redundant entries twice
45 local_dot = self.local.T.dot(
46 self.dd.D*other.local)
47 else:
48 local_dot = self.local.T.dot(other.local)
49 with TimeIt("MPI reduce"):
50 global_dot = dd.comm.allreduce(local_dot)
51 return global_dot
52 else: # self @ other
53 # multiplication along the global dimension
54 return DistVector(self.local.dot(other), dd,
55 self.compatible)
56

57 def __matmul__(self, other): # self @ other
58 return self.dot(other)

Listing 31: DistVector (2/3).

The dot method between a transposed vector and a non-transposed vector computes
a scalar product: the scalar products of local components are first computed, and the
results are summed, using a MPI reduction.

A DistVector instance can be centralized on either one or all the MPI processes by
calling its centralize() method, which has two arguments:

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 115

4.3. Design of the ddmpy domain decomposition toolbox in python

• root, the MPI rank of the process that will eventually hold the global vector. If
root is None, all processes eventually hold the global vector.

• loc2glob, a local-to-global mapping to be used for computing the global ordering.
If None, a default global ordering is used.

1 def centralize(self, root=None, loc2glob=None):
2 if loc2glob is None:
3 loc2glob = self.dd.global_indices
4 b_global = np.zeros((self.dd.n, self.shape[1]), self.local.dtype)
5 a = self.dd.D * self.local
6 b_global[loc2glob] = a
7 if root is None:
8 self.dd.comm.Allreduce(b_global.copy(), b_global)
9 else:

10 self.dd.comm.Reduce(b_global.copy(), b_global, root=root)
11 return b_global

Listing 32: DistVector (3/3).

Testing the DistVector class. Two vectors x and y are defined with their local
index as an input (see Figure 4.8). The vector x is defined as a non-compatible vector,
and subdomains may have distinct values from each other. For instance, the central node
of global index 3 is numbered 3 in Ω1 and Ω3 and 0 in Ω2. The vector y is a compatible
vector obtained by assembling (summing) these local indices. Its value on the same central
node is therefore 3 + 0 + 3 = 6. Operations on DistVector objects are performed so as
to compute rmul = 2*y, add = y + rmul and sub = rmul - y (hence add = 3*y and
sub = y).

1 from ddmpy import *
2

3 comm = MPI.COMM_WORLD
4 rank = comm.Get_rank()
5

6 dd = DomainDecomposition.test()
7 x = DistVector(np.arange(4), dd, compatible=False)
8 y = DistVector(np.arange(4), dd, assemble=True)
9 rmul = 2*y

10 add = y + rmul
11 sub = rmul - y
12

13 for i in range(3):
14 comm.barrier()

116 Louis POIREL

4. Design of a domain decomposition toolbox in python

15 if rank == i:
16 print(("rank: {}\n"
17 "global_indices:{}\n"
18 "x: {}\n"
19 "y: {}\n"
20 "rmul: {}\n"
21 "add: {}\n"
22 "sub: {}\n")
23 .format(rank, dd.global_indices,
24 x.local[:, 0], y.local[:, 0],
25 rmul.local[:, 0], add.local[:, 0],
26 sub.local[:, 0]))
27

28

29 xx = x.T.dot(x)
30 yy = y.T.dot(y)
31 y_glob = y.centralize(root=0)
32 yy_g = y_glob.T.dot(y_glob)
33 if rank==0:
34 print("x.T @ x: {}\n"
35 "y.T @ y: {}\n"
36 "y_glob: {}\n"
37 "y_glob.T @ y_glob: {}"
38 .format(xx, yy, y_glob[:, 0], yy_g))

1 mpirun -np 3 python testDistVector.py

rank: 0
global_indices:[0 1 2 3]
x: [0 1 2 3]
y: [2 1 3 6]
rmul: [4 2 6 12]
add: [6 3 9 18]
sub: [2 1 3 6]

rank: 1
global_indices:[3 2 4 5]
x: [0 1 2 3]
y: [6 3 2 3]
rmul: [12 6 4 6]
add: [18 9 6 9]
sub: [6 3 2 3]

rank: 2

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 117

4.3. Design of the ddmpy domain decomposition toolbox in python

global_indices:[5 6 0 3]
x: [0 1 2 3]
y: [3 1 2 6]
rmul: [6 2 4 12]
add: [9 3 6 18]
sub: [3 1 2 6]

x.T @ x: [[42]]
y.T @ y: [[64]]
y_glob: [2 1 3 6 2 3 1]
y_glob.T @ y_glob: [[64]]

4.3.6.3 The DistMatrix class

Class constructor. The DistMatrix class is used to store a matrix A stored as a
sum of local components A =

∑N
i=1RT

i AiRi. The constructor takes two parameters:

• Ai, the local matrix, can be any object with a dot method (using the duck-typing
mechanism presented in Section 4.3.2); for instance, Ai can be a dense matrix
(numpy.ndarray) or a sparse matrix (scipy.sparse.spmatrix).

• dd, a DomainDecomposition object such that Ai.shape = (dd.ni, dd.ni).

1 class DistMatrix(object):
2

3 def __init__(self, Ai, dd):
4 self.local = Ai
5 self.dd = dd
6 self.shape = dd.n, dd.n
7

8 def copy(self):
9 return DistMatrix(self.local.copy(), self.dd)

Listing 33: DistMatrix (1/4).

Distributed Matrix-vector product. The matrix vector product u = Ab is im-
plemented in two steps: first, u′i = Aibi (bi = Rib) is computed (line 6 of Listing 34).
Then, an assembly operation gives ui =

∑N
j=1RiRT

j u
′
j = Ri

∑N
j=1RT

j AjRjb = RiAb
(line 7).

1 @TimeIt()
2 def dot(self, b, transpose=False):
3 assert(isinstance(b, DistVector))
4 assert(self.dd==b.dd)

118 Louis POIREL

4. Design of a domain decomposition toolbox in python

5 with TimeIt("Local dot"):
6 if transpose:
7 Abi = self.local.T.dot(b.local) # ATi bi
8 else:
9 Abi = self.local.dot(b.local) # Aibi

10 return DistVector(Abi, self.dd, assemble=True) # RiAb
11

12 def __matmul__(self, b):
13 return self.dot(b)
14

15 def __rmatmul__(self, b):
16 return self.dot(b.T, transpose=True).T

Listing 34: DistMatrix (2/4).

A DistMatrix object can be centralized on one or all MPI processes by calling the
centralize method, which has two arguments:

• root, the MPI rank of the process which will hold the global matrix. If root is
None, all processes hold the global matrix.

• loc2glob, a local-to-global mapping to be used for computing the global ordering.
If None, a default global ordering is used.

1 def centralize(self, root=None, loc2glob=None):
2 """return the global matrix on process root.
3 If no root is provided, then all get the global matrix
4 """
5 if loc2glob is None:
6 loc2glob = self.dd.global_indices
7 A_global_i = ssp.lil_matrix((self.dd.n, self.dd.n))
8 A_global_i[np.ix_(loc2glob, loc2glob)] = self.local
9 if root is None:

10 return self.dd.comm.allreduce(A_global_i)
11 else:
12 return self.dd.comm.reduce(A_global_i, root=root)

Listing 35: DistMatrix (3/4).

Testing the DistMatrix class. A test() static method in the DistMatrix class
provides a SPD distributed matrix K =

∑3
i=1RT

i KiRi such that Ki is the laplacian matrix
of the graph of the local domain plus the identity matrix.

1 @staticmethod
2 def test():

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 119

4.3. Design of the ddmpy domain decomposition toolbox in python

3 dd = DomainDecomposition.test()
4 Ki = np.array(
5 [[3, -1, 0, -1],
6 [-1, 4, -1, -1],
7 [0, -1, 3, -1],
8 [-1, -1, -1, 4]], dtype=float)
9 K = DistMatrix(Ki, dd)

10 return K

Listing 36: DistMatrix (4/4).

The cgmethod in ddmpy (see sections 4.2.3 and 4.3.9.1) can handle distributed matrices
and vectors and gives the same solution as the scipy.sparse.linalg.cg method applied
on centralized matrices.

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 dd = K.dd
5 b = K @ DistVector(np.ones((4, 1)), dd)
6

7 x, i = cg(K, b) # ddmpy distributed CG from Listing 46
8 if dd.rank == 0:
9 print("Distributed CG (ddmpy)")

10 for i in range(3):
11 dd.comm.barrier()
12 if dd.rank == i:
13 print(("rank: {}\n"
14 "index: {}\n"
15 "x: {}\n")
16 .format(dd.rank, dd.global_indices,
17 x.local[:, 0]))
18

19 b_ = b.centralize()
20 K_ = K.centralize()
21 if dd.rank == 0:
22 x_, i = sla.cg(K_, b_) # scipy sequential CG
23 print(("Global CG (scipy) on "
24 "centralized matrix and right-hand side\n"
25 "index: {}\n"
26 "x: {}")
27 .format(range(7), x_))

1 mpirun -np 3 python3 testDistMatrix.py

120 Louis POIREL

4. Design of a domain decomposition toolbox in python

Distributed CG (ddmpy)
rank: 0
index: [0 1 2 3]
x: [1. 1. 1. 1.]

rank: 1
index: [3 2 4 5]
x: [1. 1. 1. 1.]

rank: 2
index: [5 6 0 3]
x: [1. 1. 1. 1.]

Global CG (scipy) on centralized matrix and RHS
index: range(0, 7)
x: [1. 1. 1. 1. 1. 1. 1.]

4.3.7 The Linear Operator interface

The ddmpy module is built upon the notion of solver as the central concept (see Sec-
tion 1.1.4): a DD solver is itself built by combining several other solvers, for instance
to compute a Schur complement or solve the local problem of an aS preconditioner (see
sections 2.7.2 and 3.2). In ddmpy, several solvers are available as well as various ways to
combine them to define new DD solvers. In this section, we focus on the choices made
regarding their interface, i.e., the way they can be used regardless of their particular
implementation. All the solvers in ddmpy share the same interface so that one solver can
seamlessly be replaced with another one in some portion of the code.

The most straightforward way to implement the operation of finding x such that
Ax = b would be to define a solve function

1 x = solve(A, b, parameters)

There are two limitations attached to this functional paradigm:

• subsequent solves with the same matrix A and multiple right-hand sides (rhs) b1,
b2, ... require the matrix and all parameters to be submitted again for each
rhs: it is not possible to reuse some information from previous solves (such as a
factorization of A).

• the linearity of the solve operation with respect to the rhs does not appear in this
formulation. Using the operation x → solve(A, x) as a preconditioner for an iter-
ative method (e.g., using iterative refinement for this operation) requires to define
a new function for this operation. Furthermore, implementing a preconditioned
iterative method requires to accept a matrix or a function as a preconditioner.

Our approach is to write all solvers and preconditioners as objects with a matrix-like
interface:

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 121

4.3. Design of the ddmpy domain decomposition toolbox in python

1 S = LinearOperator(A, parameters)
2 x = S @ b # or S.dot(b) in python2

or

1 S = LinearOperator(parameters)
2 S.setup(A, updated_parameters)
3 x = S @ b # or S.dot(b) in python2

In ddmpy, solving a distributed linear problem using, for instance, a substructuring
approach in which the interior variables are eliminated using Pastix and the interface
variables are solved using a Preconditioned CG (PCG) with an AS preconditioner that
uses Mumps as an internal solver can be written as:

1 S = DistSchurSolver(A,
2 interface = [0, 1, 2, 3],
3 local_solver = Pastix,
4 interface_solver = ConjGrad(
5 M=AdditiveSchwarz(
6 local_solver=Mumps)))
7 x = S @ b # or S.dot(b) in python2

This implements the AS/S method Carvalho et al. (2001b) used in Section 3.5.5 and
Chapter 5.

4.3.7.1 The abstract class LinearOperator

All solvers in ddmpy inherit from the LinearOperator base class. An instance of a child
of the LinearOperator class should have:

• a setup() method.

• a solve() method.

• optionally, a defaults class attribute (dictionnary).

Class constructor. The constructor of the LinearOperator class mainly stores the
parameters given as keyword arguments in a parameters instance attribute. Parameters
that are not present in the constructor arguments are taken from the defaults diction-
nary.

If a matrix A is given in the constructor, the setup() method is called.

1 class LinearOperator(object):
2

122 Louis POIREL

4. Design of a domain decomposition toolbox in python

3 defaults = {}
4

5 def __init__(self, A=None, **kwargs):
6 """ Constructor of the solver
7

8 Store the keyword arguments as parameters for the solver,
9 performs all the analysis steps that are possible without

10 having the matrix A
11 and performs the setup if the matrix A is provided
12 """
13 if hasattr(self, "defaults"):
14 self.parameters = OrderedDict(
15 sorted(self.defaults.items(),
16 key=lambda x:str.lower(x[0])))
17 self.parameters.update(kwargs)
18 else:
19 self.parameters = OrderedDict(kwargs.items())
20 self.setup_performed = False
21 if A is not None:
22 self.setup(A)

Listing 37: LinearOperator (1/5).

The setup() method. The setup() method of the LinearOperator abstract class
merely stores a pointer to the matrix A and updates the parameters dictionary using
any keyword arguments given to the function. If a parameter is a class, it is replaced
by an instance of this class. This enables to write SchurSolver(local_solver=Pastix)
instead of SchurSolver(local_solver=Pastix()).

Some solvers perform some operations on the matrix that do not depend on the value
of the right-hand side. For instance, a direct solver can factorize the matrix without
any knowledge of the right-hand side. These steps should be performed in the setup()
method of the subclass.

1 # abstract method
2 def setup(self, A, **kwargs):
3 """ Setups the solver to work on a particular matrix A
4

5 Store the keyword arguments as parameters for the solver
6 and performs all computational steps that are possible
7 without having the RHS.
8 """
9 self.A = A

10 self.shape = A.shape
11 self.parameters.update(kwargs)

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 123

4.3. Design of the ddmpy domain decomposition toolbox in python

12 # some default parameters are solver types instead of
13 # instance and a type v has to be replaced by an
14 # instance of v
15 for k, v in self.parameters.items():
16 if type(v)==type:
17 instance = v.__new__(v)
18 instance.__init__()
19 self.parameters[k] = instance
20 self.setup_performed = True

Listing 38: LinearOperator (2/5).

The solve() method. The steps that directly depend on the rhs should be imple-
mented in the solve() method. For compatibility with numpy and the @ operator, this
method is also accessible through a dot() method and a __matmul__() method.

1 # abstract method
2 def solve(self, b):
3 """Performs a solve with b as a right-hand side vector.
4 A subclass may allow multiple rhs to be specified as a
5 matrix.
6 """
7 pass
8

9 def dot(self, b):
10 if self.setup_performed:
11 return self.solve(b)
12 else:
13 raise RuntimeError("The operator was not setup before"
14 " performing the solve")
15

16 def __matmul__(self, b): # self @ b
17 return self.dot(b)
18

19 def matvec(self, b): # scipy.sparse.linalg.aslinearoperator()
20 return self.dot(b)

Listing 39: LinearOperator (3/5).

A string representation of a LinearOperator s is accessible through its __str__() special
method. print(s) prints the name of the class of the solver, and the value of all its
parameters. Parameters that are themselves LinearOperator instances are recursively
converted to a string representation.

1 def __str__(self, level=0):
2 s = [self.__class__.__name__]

124 Louis POIREL

4. Design of a domain decomposition toolbox in python

3 for key, value in self.parameters.items():
4 k = str(key)
5 if isinstance(value, LinearOperator):
6 v = value.__str__(level+1)
7 else:
8 v = str(value)
9 s.append(" "*(1+level) + k + " : " + v)

10 return "\n".join(s)

Listing 40: LinearOperator (4/5).

For easier use, a parameter p of a LinearOperator instance s is available as s.p in
addition to the classical s.parameters[p].

1 def __getattr__(self, item):
2 if item != "parameters" and item in self.parameters:
3 return self.parameters[item]
4 elif item in self.__dict__:
5 return self.__dict__[item]
6 else:
7 raise AttributeError("No {} in {}."
8 .format(item, self))

Listing 41: LinearOperator (5/5).

4.3.7.2 Testing the LinearOperator class

To test the LinearOperator class, a very simple ScalarMultiply subclass is defined by:

1 from ddmpy import *
2

3 class ScalarMultiply(LinearOperator):
4 defaults = {"dummy_parameter": None,
5 "alpha": 0}
6 @TimeIt()
7 def setup(self, A, **kwargs):
8 LinearOperator.setup(self, A, **kwargs)
9 @TimeIt()

10 def solve(self, b):
11 return self.alpha*b

This ScalarMultiply operator, which is only given as a very simple example of subclass
of LinearOperator, takes a vector b in argument (b) and returns x = αb, where α is a
parameter (alpha) with a default value α = 0.

Then, a matrix A (whose values have thus no mathematical effect in the particular
case of this dummy operator) and a vector b are created by

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 125

4.3. Design of the ddmpy domain decomposition toolbox in python

1 A = np.arange(9).reshape((3, 3))
2 b = np.ones((3, 1))

eventually an instance is created with default parameters

1 s = ScalarMultiply()
2 print(s)

ScalarMultiply
alpha : 0
dummy_parameter : None

Since no matrix has been provided yet to s, its dot() method cannot be properly
invoked

1 s.dot(b)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "ddmpy.py", line 446, in dot

raise RuntimeError("The operator was not setup before"
RuntimeError: The operator was not setup before performing the solve

However, one can call the setup() method to provide a matrix (although its values
have no effects in the particular case of this dummy solver) before calling the dot()
method

1 s.setup(A)
2 print(s.dot(b))

[[0.]
[0.]
[0.]]

A vector x = αb zero vector is obtained since the α = 0 default parameter was used. It
is possible to override this default value in the setup method to instead compute x = 42b

1 s.setup(A, alpha=42)
2 print(s.dot(b))

[[42.]
[42.]
[42.]]

126 Louis POIREL

4. Design of a domain decomposition toolbox in python

Thanks to the @TimeIt decorators above the method definitions in the class, the time
spent in the methods is automatically added to the instance parameters

1 print(s)

ScalarMultiply
alpha : 42
dummy_parameter : None
t_ScalarMultiply_setup : 0.000132322311401
t_ScalarMultiply_solve : 7.39097595215e-05

It is also possible to supply the matrix and parameters at initialization

1 s = ScalarMultiply(A, dummy_parameter="toto")
2 print(s)

ScalarMultiply
alpha : 0
dummy_parameter : toto
t_ScalarMultiply_setup : 1.81198120117e-05

4.3.8 Direct linear solvers

Direct solvers use a variation of Gaussian elimination (Section 1.1.4) to compute a fac-
torization of A, i.e., a decomposition as a product of matrices. Then, the factorization
is used to solve the linear problem. Usually, the factorization step (setup() in ddmpy) is
far most expensive than the solve step (solve()).

4.3.8.1 Factorizing matrices using Scipy

A simple example of a LinearOperator subclass is the ScipyDirectSolver class, which
solves the linear problem Ax = b using direct solvers available in scipy (Anderson et al.,
1999; Davis, 2008; Demmel et al., 1999). A should be a simple (not distributed) dense or
sparse matrix (numpy.ndarray or scipy.sparse.spmatrix). A suitable solver in scipy
is chosen to factorize the matrix, depending on the type of A and the symmetry parameter
given to the ScipyDirectSolver constructor or setup() method.

1 class ScipyDirectSolver(LinearOperator):
2 """Factorize a matrix using scipy
3

4 Choose an appropriate Scipy solver according to the
5 format (dense/sparse) and symmetry of A. Optional
6 parameters are:
7 - symmetry=True/False. Default: False

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 127

4.3. Design of the ddmpy domain decomposition toolbox in python

8 """
9

10 defaults = {"symmetry": False}
11

12 @TimeIt()
13 def setup(self, A, **kwargs):
14 LinearOperator.setup(self, A, **kwargs)
15 if ssp.issparse(A):
16 self.solve_ = sla.factorized(A)
17 else:
18 if self.symmetry in {2, "SPD"}:
19 self.LLt = la.cho_factor(A)
20 self.solve_ = lambda b:la.cho_solve(
21 self.LLt, b)
22 else:
23 self.LU = la.lu_factor(A)
24 self.solve_ = lambda b: la.lu_solve(
25 self.LU, b)
26

27 @TimeIt()
28 def solve(self, b):
29 return self.solve_(b)

Listing 42: ScipyDirectSolver.

4.3.8.2 Computing a pseudoinverse

The ScipyDirectSolver class raises an exception when trying to factorize a singular
matrix; in that case, one should use a Pinv solver that computes a dense pseudoinverse
of the matrix using the scipy.linalg.pinv() function.

1 class Pinv(LinearOperator):
2

3 @TimeIt()
4 def setup(self, A, **kwargs):
5 LinearOperator.setup(self, A)
6 if ssp.issparse(A):
7 self.A_pinv = la.pinv(A.A)
8 else:
9 self.A_pinv = la.pinv(A)

10

11 @TimeIt()
12 def solve(self, b):
13 return self.A_pinv.dot(b)

128 Louis POIREL

4. Design of a domain decomposition toolbox in python

Listing 43: Pinv (pseudoinverse).

Computing a dense pseudoinverse should be avoided as it takes a lot more time and
memory than factorizing the matrix, especially when it is large and sparse. In that case,
one should use one of the Pastix and Mumps classes presented below.

4.3.8.3 The Mumps sparse direct solver

A good alternative to the ScipyDirectSolver and Pinv classes for direct solves (sec-
tions 4.3.8.1 and 4.3.8.2) for factorizing sparse matrices is the Mumps solver (Amestoy
et al., 2001). For the purpose of this thesis, we have developed an extensive python
support for the Mumps solver. This wrapper is available on https://gitlab.inria.fr/
gmarait/PYMUMPS. It can factorize scipy.sparse.spmatrix matrices in a sequential or
distributed (in global ordering) fashion, as well as DistMatrix matrices in local ordering.
Note that as explained in Section 4.3.3, the Mumps solver is optional for ddmpy.

The ddmpy toolbox needs only a subset of this pymumps extensive Mumps support. We
therefore do not further document it in this thesis, and we only report the ddmpy Mumps
class that is built on top of pymumps, exposing the four following parameters:

• a verbose boolean.

• a symmetry boolean or integer. False/0 means not symmetric, True/1 means sym-
metric and 2 means SPD. (Note that the native Fortran Mumps API uses different
values for the id.sym variable).

• a comm MPI communicator if the matrix is distributed in global ordering.

• a ordering string that can be "auto", "Scotch" or "Metis" to choose the graph
partitioner used by the solver.

1 class Mumps(LinearOperator):
2 """Factorize a matrix using mumps
3

4 Three modes:
5 - sequential: comm is None and A is a Scipy Sparse Matrix
6 - distributed in global ordering: comm is not None
7 and A is a Scipy Sparse Matrix
8 - distributed in local ordering: A is a DistMatrix
9 the communicator used is A.dd.comm, comm is not used

10

11

12 Optional parameters are:
13 - verbose=True/False. Default: False
14 - symmetry=0 (General), 1 (Symmetric), 2 (SPD). Default: 0.
15 If symmetry>0, only the lower triangular part of A is used.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 129

https://gitlab.inria.fr/gmarait/PYMUMPS
https://gitlab.inria.fr/gmarait/PYMUMPS
https://gitlab.inria.fr/gmarait/PYMUMPS

4.3. Design of the ddmpy domain decomposition toolbox in python

16 - comm, optional. Default: None
17 """
18

19 defaults = {"verbose": False,
20 "symmetry": False,
21 "comm" : None,
22 "ordering": "auto"}
23

24 @TimeIt()
25 def setup(self, A, **kwargs):
26 LinearOperator.setup(self, A, **kwargs)
27 # We split the function in two part to be able
28 # to easily add the Schur code in between
29 self.init()
30 self.factorize()
31

32 def init(self):
33 self.driver = pymumps.Mumps('D')
34 id = self.driver.id
35 A = self.A
36

37 # Set id.par, id.comm and id.sym before init
38 id.par = 1 # Process 0 takes part in the facto
39

40 if ssp.issparse(A):
41 if self.comm is None:
42 # sequential
43 self.driver.ICNTL[18] = 0 # centralized entry
44 self.comm = MPI.COMM_SELF
45 else:
46 # distributed with global ordering
47 self.driver.ICNTL[18] = 3 # distributed entry
48 self.A_internal = A
49 elif isinstance(A, DistMatrix):
50 # Distributed matrix in local ordering
51 self.driver.ICNTL[18] = 3 # distributed entry
52 # internally, we switch to global ordering
53 dd = A.dd
54 self.A_internal = ssp.coo_matrix(
55 dd.Ri.T.dot(
56 ssp.csc_matrix(A.local).dot(
57 dd.Ri)))
58 self.comm = A.dd.comm
59 id.comm_fortran = self.comm.py2f()
60

130 Louis POIREL

4. Design of a domain decomposition toolbox in python

61 if self.ordering == "auto":
62 self.driver.ICNTL[7] = 7
63 elif self.ordering == "Scotch":
64 self.driver.ICNTL[7] = 3
65 elif self.ordering == "Metis":
66 self.driver.ICNTL[7] = 5
67

68 id.sym = self.symmetry
69 if self.symmetry>0:
70 id.sym = 3 - id.sym # 0 Ge, 1 SPD, 2 Sym
71 self.A_internal = ssp.tril(self.A_internal)
72

73 self.driver.initialize()
74

75 if self.verbose:
76 id.icntl[0:4] = [6, 0, 6, 3]
77 self.driver.ICNTL[11] = 2 # compute main stats
78 else:
79 id.icntl[0:4] = [0, 0, 0, 0]
80

81 self.driver.ICNTL[24] = 1 # null pivot detection
82

83 self.driver.set_A(self.A_internal)
84

85 self.is_forward = False
86

87 def factorize(self):
88 with TimeIt("MumpsDriver Analysis"):
89 self.driver.drive(1) # Analysis
90 with TimeIt("MumpsDriver Facto"):
91 self.driver.drive(2) # Facto
92

93 @TimeIt()
94 def solve(self, b):
95 A = self.A
96 if ssp.issparse(A) and self.comm is not None:
97 b_ = self.comm.reduce(b, root=0)
98 elif isinstance(A, DistMatrix):
99 b_ = b.centralize(root=0)

100 else:
101 b_ = b
102 self.driver.set_RHS(b_)
103 self.driver.drive(3)
104 x_ = self.driver.get_solution()
105 x_.shape = b.shape

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 131

4.3. Design of the ddmpy domain decomposition toolbox in python

106 x = x_
107 if self.comm is not None:
108 self.comm.Bcast(x_, root=0)
109 if isinstance(A, DistMatrix):
110 x = DistVector(b.dd.Ri.dot(x_), b.dd)
111 return x

Listing 44: Mumps (1/2).

Functions related to computing a Schur complement matrix with Mumps are presented
in Section 4.3.10.1 (Listing 54).

4.3.8.4 The Pastix sparse direct solver

The Pastix class uses the pypastix module available with recent releases of Pastix4.
It can factorize scipy.sparse.spmatrix matrices. Current versions do not handle dis-
tributed matrices, although they can exploit shared-memory parallelism internally. The
Pastix class has 6 parameters:

• a verbose boolean or integer level (0/False, 1/True or 2).

• a symmetry boolean or integer. False/0 means not symmetric, True/1 means sym-
metric and 2 means SPD.

• a refine boolean to toggle iterative refinement.

• a threads number to choose the number of threads used by Pastix; threads =
"auto" for automatic selection.

• a check boolean to toggle a verification of the solution (needs x0)

• a x0 vector containing the solution.

1 class Pastix(LinearOperator):
2 """Factorize a matrix using pastix
3 """
4

5 defaults = {"verbose": False,
6 "symmetry": False,
7 "refine": True,
8 "threads": 1,
9 "check": False,

10 "x0": None}
11

12 @TimeIt()
13 def setup(self, A, **kwargs):

4https://gitlab.inria.fr/solverstack/pastix

132 Louis POIREL

https://gitlab.inria.fr/solverstack/pastix

4. Design of a domain decomposition toolbox in python

14 LinearOperator.setup(self, A, **kwargs)
15 self.init(A)
16 pypastix.task_analyze(self.pastix_data, self.spmA)
17 pypastix.task_numfact(self.pastix_data, self.spmA)
18

19 def init(self, A):
20 """ Register the options in iparm and dparm, and setup A"""
21 iparm, dparm = pypastix.initParam()
22 self.iparm, self.dparm = iparm, dparm
23 # Verbose
24 d = {0: pypastix.verbose.Not,
25 1: pypastix.verbose.Yes,
26 2: pypastix.verbose.No}
27 iparm[pypastix.iparm.verbose] = d[self.verbose]
28 # Threads
29 if self.threads=="auto":
30 iparm[pypastix.iparm.thread_nbr] = -1
31 else:
32 iparm[pypastix.iparm.thread_nbr] = self.threads
33 # Symmetry
34 d = {0: pypastix.factotype.LU,
35 1: pypastix.factotype.LDLT,
36 2: pypastix.factotype.LLT,
37 "SPD": pypastix.factotype.LLT}
38 self.factotype = d[self.symmetry]
39 self.iparm[pypastix.iparm.factorization] = self.factotype
40 # init
41 self.pastix_data = pypastix.init(iparm, dparm)
42 self.spmA = pypastix.spm(A)
43 if self.verbose:
44 self.spmA.printInfo()
45

46 @TimeIt()
47 def solve(self, b):
48 x = b.copy()
49 pypastix.task_solve(self.pastix_data, x)
50 if self.refine:
51 pypastix.task_refine(self.pastix_data, b, x)
52 if self.check and self.x0 is not None:
53 self.spmA.checkAxb(self.x0, b, x)
54 return x

Listing 45: Pastix (1/2).

Functions related to computing a Schur complement matrix with Pastix are presented
in Section 4.3.10.1 (Listing 55).

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 133

4.3. Design of the ddmpy domain decomposition toolbox in python

4.3.8.5 Test of the direct solvers

The direct solvers presented above can be tested

1 from ddmpy import *
2 A_Gen = np.array(
3 [[1./(1+i+2.*j) for i in range(3)]
4 for j in range(3)])
5 A_SPD = A_Gen.T.dot(A_Gen)
6

7 solvers = (ScipyDirectSolver(),
8 Pinv())
9 for s in solvers:

10 for symmetry in False, True:
11 A = A_SPD if symmetry else A_Gen
12 b = A.dot(np.ones((3, 1)))
13 s.setup(A, symmetry=symmetry)
14 x = s.dot(b)
15 print(s)
16 print(x)

ScipyDirectSolver
symmetry : False
t_ScipyDirectSolver_setup : 8.10623168945e-05
t_ScipyDirectSolver_solve : 3.69548797607e-05

[[1.]
[1.]
[1.]]

ScipyDirectSolver
symmetry : True
t_ScipyDirectSolver_setup : 0.000131130218506
t_ScipyDirectSolver_solve : 6.69956207275e-05

[[1.]
[1.]
[1.]]

Pinv
t_Pinv_setup : 0.000162839889526
t_Pinv_solve : 5.00679016113e-06

[[1.]
[1.]
[1.]]

Pinv
t_Pinv_setup : 0.000295877456665
t_Pinv_solve : 1.00135803223e-05

[[1.]

134 Louis POIREL

4. Design of a domain decomposition toolbox in python

[1.]
[1.]]

4.3.9 Iterative linear solvers

Contrary to direct solvers, iterative solvers find the solution of Ax = b by building a se-
quence of approximate solutions that converge towards the exact solution. Currently, two
iterative solvers are available in ddmpy: a CG solver for SPD matrices and a Generalized
Conjugate Residual (GCR) algorithm (Eisenstat et al., 1983) for general (non SPD) ma-
trices. A Generalized Minimal Residual (GMRES) solver (Saad and Schultz, 1986), and
multipreconditioned solvers (Bridson and Greif, 2006; Greif et al., 2011; Spillane, 2016)
are under development.

4.3.9.1 Conjugate gradient

The cg() function. The cg() function that we introduced in Listing 13 (Sec-
tion 4.2.3) was in fact a reduced version of the cg() function provided in ddmpy that
we present below in Listing 46. This cg() function in ddmpy is available as a replacement
for the scipy.sparse.linalg.cg() function.

1 def cg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None,
2 M=None, callback=None, ritz=False, save_x=False,
3 debug=False, true_res=False):
4 """Solves the linear problem Ax=b using the
5 Conjugate Gradient algorithm. Interface compatible
6 with scipy.sparse.linalg.cg
7

8 Parameters
9 ----------

10 A : matrix-like object
11 A is the linear operator on which we want to perform
12 the solve operation. The only requirement on A is to
13 provide a method dot(self, x) where x is a
14 vector-like object.
15 b : vector-like object
16 b is the right-hand side of the system to solve. The
17 only requirement on b is to provide the following
18 methods: __len__(self) (not necessary if maxiter is
19 provided), copy(self), __add__(self, w),
20 __sub__(self, w), __rmul__(self, a), dot(self, w)
21 where w is a vector-like and a is a scalar
22 x0 : vector-like object
23 starting guess for the solution, optional
24 tol : float
25 Relative tolerance to achieve, optional, default: 1e-5

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 135

4.3. Design of the ddmpy domain decomposition toolbox in python

26 maxiter : integer
27 Maximum number of iterations, optional, default: len(b)
28 xtype :
29 not used (compatibility with scipy.sparse.linalg.cg)
30 M : matrix-like object
31 Preconditioner for A, optional
32 callback : function
33 After each iteration, callback(x) is called, where x is
34 the current solution, optional
35 ritz : boolean
36 Store the dot products in order to compute the Ritz
37 values later, optional
38 save_x : boolean
39 Store the value of x at each iteration, optional
40 debug : boolean
41 print debug info, optional
42 true_res : boolean
43 recompute the residual at each iteration, optional
44

45 """
46 bb = b.T.dot(b) # ||b||2 = bT b
47 maxiter = A.shape[0] if maxiter is None else maxiter
48

49 with TimeIt("Instrumentation"):
50 global _cg_n_iter
51 _cg_n_iter=0
52 if ritz:
53 global _cg_omega, _cg_gamma
54 _cg_omega = np.zeros(maxiter)
55 _cg_gamma = np.zeros(maxiter)
56

57 # Initialization
58 x = 0 * b if x0 is None else x0
59 r = b - A.dot(x) # r = b−Ax
60 rr = r.T.dot(r) # ||r||2 = rT r

61 if rr / bb <= tol * tol: # ||r||
||b|| ≤ ε

62 return x, 0
63 z = r if M is None else M.dot(r) # z =Mr
64 p = z.copy() # p = z
65 rz = r.T.dot(z) # rT z
66

67 with TimeIt("Instrumentation"):
68 if save_x:
69 global _cg_x
70 _cg_x = [x]

136 Louis POIREL

4. Design of a domain decomposition toolbox in python

71

72 for i in range(maxiter):
73 Ap = A.dot(p) # Ap
74 alpha = (rz / (p.T.dot(Ap)))[0,0] # α = rT z

pTAp
75 x += alpha * p # x = x+ αp
76 if true_res:
77 r = b - A.dot(x) # r = b−Ax
78 else:
79 r -= alpha * Ap # r = r − α Ap
80

81 with TimeIt("Instrumentation"):
82 if ritz:
83 if i>0:
84 _cg_gamma[i-1] = beta
85 _cg_omega[i] = alpha
86 _cg_n_iter += 1
87 if callback:
88 callback(x)
89 if save_x:
90 _cg_x.append(x.copy())
91

92 rr = r.T.dot(r) # ||r||2 = rT r
93

94 if debug:
95 print("Iteration: {}, "
96 "||r||_2/||b||_2 = {}"
97 .format(i, np.sqrt(rr/bb)[0, 0]))
98

99 if rr / bb <= tol * tol: # ||r||
||b|| ≤ ε

100 return x, 0
101

102 z = r if M is None else M.dot(r) # z =Mr
103 rz, rzold = r.T.dot(z), rz
104 beta = (rz / rzold)[0,0] # β =

rTi zi
rTi−1zi−1

105 p = z + beta * p # p = z + βp
106 return x, i

Listing 46: cg() standalone function.

The ConjGrad solver. This standalone cg() function is also available through a
ConjGrad solver class with the following parameters:

• x0, an initial guess for the solution.

• tol, the stopping criterion (relative backward error).

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 137

4.3. Design of the ddmpy domain decomposition toolbox in python

• maxiter, the maximum number of iterations.

• M, a preconditioner.

• callback, a function called at each iteration with the current iterate solution as an
argument.

• ritz, a boolean to enable the computation of the eigenvalues of the Hessenberg
matrix (Ritz values of A) from coefficients computed during the iterations (see the
ritz_values() method in Listing 48).

• save_x, a boolean to toggle the conservation of the intermediate solution at each
iteration in an attribute self.x_.

• setup_M, a boolean to toggle the call of M.setup().

• debug, to toggle the printing of debug info.

• true_res, to toggle the computation of the true residual r = b - A @ x at each
iteration instead of using an iterative formula.

1 class ConjGrad(LinearOperator):
2 """Solve Ax=b using the CG algorithm
3

4 Optional parameters are:
5 - x0, initial guess for the solution, default=0*b
6 - tol, relative tolerance to achieve, default=1e-5
7 - maxiter, maximum number of iterations, default=len(b)
8 - M, preconditioner for A
9 - callback, after each iteration, callback(x) is called,

10 where x is the current solution
11 - ritz=True/False, whether to compute the ritz values
12 (approximate eigenvalues of A), default=False
13 - save_x=True/False, whether to store x at each
14 iteration, default=False
15 - setup_M=True/False, whether to try and call
16 M.setup(A) during the setup phase
17 - debug=True/False, whether to print debug info
18 - true_res=True/False, whether to recompute the true
19 residual instead of a recurrence formula
20 """
21

22 defaults = {"x0": None,
23 "tol": 1e-5,
24 "maxiter": None,
25 "M": None,
26 "callback": None,

138 Louis POIREL

4. Design of a domain decomposition toolbox in python

27 "ritz": False,
28 "save_x": False,
29 "setup_M": True,
30 "debug": False,
31 "true_res": False}
32

33 @TimeIt()
34 def setup(self, A, **kwargs):
35 LinearOperator.setup(self, A, **kwargs)
36 # We setup the preconditioner if possible and
37 # asked for by the user
38 if self.setup_M:
39 if hasattr(self.M, "setup"):
40 self.M.setup(A)
41

42 @TimeIt()
43 def solve(self, b):
44 # For deflation, the preconditioner first
45 # orthogonalize x0, through its self.M.x0 method
46 x0_f = getattr(self.M, "x0", None)
47 if x0_f is not None:
48 r0 = b if self.x0 is None else (
49 b - self.A.dot(self.x0))
50 self.x0 = x0_f(r0)
51 # reshape b
52 if b.ndim==1:
53 b = b.reshape((-1, 1))
54 # Call the standalone cg function
55 x, self.i = cg(self.A, b, self.x0, self.tol, self.maxiter,
56 None, self.M, self.callback, self.ritz,
57 self.save_x, self.debug)
58

59 self.n_iter = _cg_n_iter
60 self.parameters["n_iter"] = self.n_iter
61 if self.ritz:
62 self.omega = _cg_omega
63 self.gamma = _cg_gamma
64 if self.save_x:
65 self.x_ = _cg_x
66 return x

Listing 47: ConjGrad (1/2).

Computing the eigenvalues of the tridiagonal matrix. If the ritz parameter
is set to True, it is possible, after the solve, to compute the eigenvalues of the tridiagonal

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 139

4.3. Design of the ddmpy domain decomposition toolbox in python

Lanczos matrix T of the CG algorithm (Burkitt and Irving, 1988). These eigenvalues are
Ritz values of the preconditioned matrixMA. The condition number (κ(T) = λmax/λmin)
gives an approximation of the condition number of the preconditioned matrix κ(MA).

1 def ritz_values(self):
2 """Compute the ritz values of the Hessenberg matrix.
3

4 Call this function after a solve has been performed
5 with self.ritz==True
6 """
7 if self.n_iter>1:
8 alpha = np.zeros(self.n_iter)
9 alpha[0] = 1/self.omega[0]

10 beta = np.zeros(self.n_iter-1)
11 for i in range(self.n_iter-1):
12 alpha[i+1] = (1/self.omega[i+1]
13 + self.gamma[i]/self.omega[i])
14 beta[i] = (np.sqrt(max(self.gamma[i], 0))
15 / self.omega[i])
16 T = (np.diag(alpha)
17 + np.diag(beta, 1)
18 + np.diag(beta, -1))
19 lambda_ = la.eigvalsh(T)
20 else:
21 lambda_ = np.array([1])
22 return lambda_

Listing 48: ConjGrad (2/2).

Testing the ConjGrad class. The ConjGrad class can be used in sequential

1 b = A_SPD.dot(np.ones((3, 1)))
2 s = ConjGrad(A_SPD, ritz=True, tol=1e-7)
3 x = s.dot(b)
4 print(s)

ConjGrad
callback : None
debug : False
M : None
maxiter : None
ritz : True
save_x : False

140 Louis POIREL

4. Design of a domain decomposition toolbox in python

setup_M : True
tol : 1e-07
true_res : False
x0 : None
t_ConjGrad_setup : 3.69548797607e-05
n_iter : 3
t_ConjGrad_solve : 0.000254154205322

array([6.96932698e-06, 1.56060904e-02, 1.64729510e+00])

1 s.ritz_values()

array([6.96932698e-06, 1.56060904e-02, 1.64729510e+00])

or in parallel as in Section 4.3.6.3.

4.3.9.2 Generalized conjugate residual

The GCR solver is an iterative solver suited for non-symmetric matrices (Eisenstat et al.,
1983). It is a descent method that builds a ATA-orthogonal (MTAT) set of search
directions. Right preconditioning is used such that the norm of the residual used in the
stopping criterion does not depend on the choice of a preconditionerM.

As for the CG solver, a standalone gcr() and a GCR class are available.

The gcr() function.

1 def gcr(A, b, x0=None, tol=1e-5, maxiter=None, M=None):
2

3 bb = b.T.dot(b) # ||b||2 = bT b
4 maxiter = A.shape[0] if maxiter is None else maxiter
5

6 with TimeIt("Instrumentation"):
7 global _gcr_n_iter
8 _gcr_n_iter=0
9

10 # Initialization
11 x = 0 * b if x0 is None else x0
12 r = b - A.dot(x)
13

14 rr = r.T.dot(r)
15 if rr / bb <= tol * tol:
16 return x, 0
17

18 MP = []
19 AMP = []

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 141

4.3. Design of the ddmpy domain decomposition toolbox in python

20 for i in range(maxiter):
21 Mr = M.dot(r) if M is not None else r.copy()
22 MP.append(Mr)
23 AMP.append(A.dot(MP[i]))
24 # orthonormalization
25 for j in range(i): # (AMpi)

T AMpj = 0
26 alpha = np.asscalar(AMP[i].T.dot(AMP[j]))
27 MP[i] -= alpha * MP[j]
28 AMP[i] -= alpha * AMP[j]
29 normAMPi = np.asscalar(np.sqrt(AMP[i].T.dot(AMP[i])))
30 MP[i] /= normAMPi
31 AMP[i] /= normAMPi # ||AMpi||2 = 1
32 # update x and r
33 rAMPi = np.asscalar(r.T.dot(AMP[i]))
34 x += rAMPi * MP[i] # xi+1 = xi + (rTi AMpi)Mpi
35 r -= rAMPi * AMP[i] # ri+1 = ri − (rTi AMpi)AMpi
36

37 with TimeIt("Instrumentation"):
38 _gcr_n_iter += 1
39

40 rr = r.T.dot(r)
41 if rr / bb <= tol * tol:
42 return x, 0
43

44 return x, i

Listing 49: gcr standalone function.

The GCR solver.

1 class GCR(LinearOperator):
2

3 defaults = {"x0": None,
4 "tol": 1e-5,
5 "maxiter": None,
6 "M": None,
7 "setup_M": True}
8 @TimeIt()
9 def setup(self, A, **kwargs):

10 LinearOperator.setup(self, A, **kwargs)
11 # We setup the preconditioner if possible and
12 # asked for by the user
13 if self.setup_M:
14 if hasattr(self.M, "setup"):

142 Louis POIREL

4. Design of a domain decomposition toolbox in python

15 self.M.setup(A)
16

17 @TimeIt()
18 def solve(self, b):
19 # For deflation, the preconditioner first
20 # orthogonalize x0, through its self.M.x0 method
21 x0_f = getattr(self.M, "x0", None)
22 if x0_f is not None:
23 r0 = b if self.x0 is None else (
24 b - self.A.dot(self.x0))
25 self.x0 = x0_f(r0)
26 # reshape b
27 if b.ndim==1:
28 b = b.reshape((-1, 1))
29 # Call the standalone gcr function
30 x, self.i = gcr(self.A, b, self.x0, self.tol,
31 self.maxiter, self.M)
32

33 self.n_iter = _gcr_n_iter
34 self.parameters["n_iter"] = self.n_iter
35 return x

Listing 50: GCR

Testing the GCR class.

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 b = K @ DistVector(np.ones((4, 1)), K.dd)
5 dd = K.dd
6 x = (GCR(K) @ b).centralize(root=0)
7 if dd.rank == 0:
8 print(x[:,0])

1 mpirun -np 3 python3 testGCR.py

[1. 1. 1. 1. 1. 1. 1.]

4.3.10 Hybrid linear solvers

4.3.10.1 Schur solver

From a linear system Ku = f of size (n, n) and a partition of the indices {0, 1, . . . , n−1} =
I∪Γ, one can reorder the rows and columns (symmetric permutation) such that the system

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 143

4.3. Design of the ddmpy domain decomposition toolbox in python

becomes (
KII KIΓ

KΓI KΓΓ

)(
uI
uΓ

)(
fI
fΓ

)
.

If KII is not singular, this system is equivalent to{KIIuI = fI −KIΓuΓ,

SuΓ = f̃Γ,

where S = KΓΓ −KΓIK−1
IIKIΓ and f̃Γ = fΓ −KΓIK−1

IIfI (see Section 2.4).
The solution of the linear system Ku = f can therefore be performed in four steps

using two different solvers: one solver to handle KII (lines 17-51 of Listing 51) and another
solver to solve the Schur complement system (lines 52-54 of Listing 51). The four steps
are:

factorize KII and compute S = KΓΓ −KΓIK−1
IIKIΓ, (4.1)

compute f̃Γ = fΓ −KΓIK−1
IIfI , (4.2)

solve SuΓ = f̃Γ, (4.3)
solve KIIuI = fI −KIΓuΓ. (4.4)

Computing a Schur complement matrix with any solver The SchurSolver
class in ddmpy solves the linear problem Ku = f using this method. It has four parameters:

• a local_solver used on KII .

• an interface_solver used on S.

• an interface list that contains the indices in Γ.

• a symmetry boolean.

The Schur complement matrix S is available as a S attribute of the solver after the setup()
method has been called.

Some solvers such as Mumps and Pastix in sections 4.3.8.3 and 4.3.8.4 have optimized
functions to compute the Schur complement system by performing a partial factorization.
The SchurSolver class tries using the local_solver.schur() if it exists to compute
S. If local_solver does not provide such a method (for instance, if local_solver
is a ScipyDirectSolverr instance), the Schur complement matrix is computed using
Equation (4.1) (lines 22-51 of Listing 51).

1 class SchurSolver(LinearOperator):
2 """ Solve a system using a Schur complement matrix
3

4 Use local_solver to eliminate all variables in A that are
5 not in interface and compute the Schur complement matrix S. Then, use

144 Louis POIREL

4. Design of a domain decomposition toolbox in python

6 interface_solver to solve S.
7 """
8

9 defaults = {"interface": None,
10 "local_solver": ScipyDirectSolver,
11 "interface_solver": GCR,
12 "symmetry": False}
13

14 @TimeIt()
15 def setup(self, A, **kwargs):
16 LinearOperator.setup(self, A, **kwargs)
17 try:
18 self.S = self.local_solver.schur(self.A,
19 self.interface,
20 symmetry=self.symmetry)
21 except AttributeError:
22 interface = self.interface
23 n = self.A.shape[0]
24 nG = len(interface)
25 nI = n - nG
26 interior = np.setdiff1d(range(n), interface)
27 RI = ssp.csc_matrix((np.ones_like(interior),
28 (range(nI), interior)),
29 shape=(nI, n)) # RI
30 RG = ssp.csc_matrix((np.ones_like(interface),
31 (range(nG), interface)),
32 shape=(nG, n)) # RΓ

33 self.RI, self.RG = RI, RG
34 if isinstance(A, np.ndarray):
35 A = ssp.csc_matrix(A)
36 with TimeIt("Schur_AII"):
37 AII = RI.dot(A.dot(RI.T)) # KII
38 self.local_solver.setup(AII, # K−1

II
39 symmetry=self.symmetry)
40 with TimeIt("Schur_AIG"):
41 AIG = (RI.dot(A.dot(RG.T))).A # KIΓ

42 if not self.symmetry:
43 with TimeIt("Schur_AGI"):
44 AGI = (RG.dot(A.dot(RI.T))).A # KΓI
45 with TimeIt("Schur_AGG"):
46 self.S = (RG.dot(A.dot(RG.T))).A # S = KΓΓ

47 with TimeIt("Schur_AII^{-1}AIG"): # −KΓIK−1
IIKIΓ

48 if self.symmetry:
49 self.S -= AIG.T.dot(self.local_solver.dot(AIG))
50 else:

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 145

4.3. Design of the ddmpy domain decomposition toolbox in python

51 self.S -= AGI.dot(self.local_solver.dot(AIG))
52 if self.interface_solver is not None:
53 self.interface_solver.setup(self.S,
54 symmetry=self.symmetry)

Listing 51: SchurSolver (1/3).

To compute f̃Γ from f and u from uΓ (see equations (4.2) and (4.4)), two methods are
used: b2f() and y2x(), respectively. In the following code, the variables A, b, x, y and f
are used to represent K, f , u, uΓ and f̃Γ, respectively. For simplification a vector(

vI
vΓ

)
=
(
vTI v

T
Γ

)T
is noted [vI , vΓ]T in the code comments.

1 @TimeIt()
2 def b2f(self, b): # f̃Γ = fΓ −KΓIK−1

IIfI
3 try:
4 f = self.local_solver.b2f(b)
5 except AttributeError:
6 RI, RG = self.RI, self.RG
7 bI = RI.dot(b) # bI
8 bI_I = self.local_solver.dot(bI) # K−1

IIfI
9 bI_I_ = RI.T.dot(bI_I) # [K−1

IIfI , 0]T

10 f_ = self.A.dot(bI_I_) # [fI ,KΓIK−1
IIfI]

T

11 f = RG.dot(b - f_) # fΓ −KΓIK−1
IIfI

12 return f
13

14 @TimeIt()
15 def y2x(self, y, b): # uI = K−1

II (fI −KIΓuΓ)
16 # y = xΓ

17 if len(b.shape)==1:
18 b = b.reshape((-1,1))
19 try:
20 x = self.local_solver.y2x(y, b)
21 except AttributeError:
22 RI, RG = self.RI, self.RG
23 tmp = RG.T.dot(y) # [0, uΓ]T

24 tmp = b - self.A.dot(tmp) # [fI −KIΓuΓ, fΓ −KΓΓuΓ]T

25 tmp = RI.dot(tmp) # fI −KIΓuΓ

26 tmp = self.local_solver.dot(tmp) # K−1
II (fI −KIΓuΓ)

27 tmp = RI.T.dot(tmp) # [K−1
II (fI −KIΓuΓ), 0]T

28 x = RG.T.dot(y) + tmp # [K−1
II (fI −KIΓuΓ), uΓ]T

29 return x

146 Louis POIREL

4. Design of a domain decomposition toolbox in python

Listing 52: SchurSolver (2/3).

If an iterative solver is used to solve the interface system (Equation (4.3)) up to a
tolerance interface_solver.tol computed as a bound on the backward error ||f−Ku||||f || ,

tol is modified to take into account the fact that the normalization changes from ||f̃Γ||
to ||f ||. This way, the tolerance is computed on the backward error of the full system
Ku = f instead of the interface system SuΓ = f̃Γ provided to the interface solver.

1 @TimeIt()
2 def solve(self, b): # solve Ku = f
3 f = self.b2f(b) # f̃Γ = fΓ −KΓIK−1

IIfI
4 param = self.interface_solver.parameters
5 if "tol" in param:
6 # ||r||

||f̃Γ||
= ||r||
||f ||

||f ||
||f̃Γ||

7 bb = b.T.dot(b) # ||f ||2
8 ff = f.T.dot(f) # ||f̃Γ||2
9 ratio = np.sqrt(bb/ff)[0, 0] # ||f ||

||f̃Γ||
10 param["global_tol"] = param["tol"]
11 param["tol"] *= ratio
12 y = self.interface_solver.dot(f) # solve SuΓ = f̃Γ

13 x = self.y2x(y, b) # uI = K−1
IIfI −KIΓuΓ

14 return x # [uI , uΓ]T

Listing 53: SchurSolver (3/3).

Computing a Schur complement matrix with Mumps. The Mumps solver pro-
vides functions to compute a Schur complement matrix.

1 @TimeIt()
2 def schur(self, A, interface, **kwargs):
3 """ Perform a partial factorization and compute the Schur complement matrix S """
4 LinearOperator.setup(self, A, **kwargs)
5 self.init()
6 self.driver.set_schur_listvar(interface)
7 self.factorize()
8 self.S = self.driver.get_schur()
9 self.interface = interface

10 return self.S
11

12 @TimeIt()
13 def b2f(self, b):

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 147

4.3. Design of the ddmpy domain decomposition toolbox in python

14 """ Compute the reduced RHS f from the complete RHS b """
15 self.driver.set_RHS(b)
16 f = self.driver.schur_forward()
17 self.is_forward=True
18 f.shape = (len(f), 1)
19 return f
20

21 @TimeIt()
22 def y2x(self, y, b):
23 """ Compute the complete solution x from the Schur complement solution y """
24 if not self.is_forward:
25 self.b2f(b)
26

27 x = self.driver.schur_backward(y)
28 x.shape = b.shape
29 self.is_forward = False
30 return x
31

32 def __del__(self):
33 try:
34 self.driver.finalize()
35 except (TypeError, AttributeError):
36 pass

Listing 54: Mumps (2/2).

Computing a Schur complement matrix with Pastix. The Pastix solver pro-
vides functions to compute a Schur complement matrix.

1 @TimeIt()
2 def schur(self, A, interface, **kwargs):
3 """Perform a partial factorization and compute
4 the Schur complement matrix S
5 """
6 LinearOperator.setup(self, A, **kwargs)
7 self.init(A)
8 self.iparm[pypastix.iparm.schur_solv_mode] = (
9 pypastix.solv_mode.Interface)

10 schur_list = np.asarray(interface, pypastix.pastix_int)
11 self.schur_list = schur_list + self.spmA.findBase()
12 pypastix.setSchurUnknownList(self.pastix_data,
13 self.schur_list)
14 pypastix.task_analyze(self.pastix_data, self.spmA)
15 pypastix.task_numfact(self.pastix_data, self.spmA)

148 Louis POIREL

4. Design of a domain decomposition toolbox in python

16 nschur = len(schur_list)
17 self.nschur = nschur
18 self.S = np.zeros((nschur, nschur),
19 order='F', dtype=A.dtype)
20 pypastix.getSchur(self.pastix_data, self.S)
21 return self.S
22

23 @TimeIt()
24 def b2f(self, b):
25 """Compute the reduced RHS f from the
26 complete RHS b
27 """
28 x = b.copy()
29 pypastix.subtask_applyorder(
30 self.pastix_data, pypastix.dir.Forward, x)
31 if self.factotype == pypastix.factotype.LLT:
32 pypastix.subtask_trsm(
33 self.pastix_data, pypastix.side.Left,
34 pypastix.uplo.Lower, pypastix.trans.NoTrans,
35 pypastix.diag.NonUnit, x)
36 else:
37 pypastix.subtask_trsm(
38 self.pastix_data, pypastix.side.Left,
39 pypastix.uplo.Lower, pypastix.trans.NoTrans,
40 pypastix.diag.Unit, x)
41 if self.factotype == pypastix.factotype.LDLT:
42 pypastix.subtask_diag(self.pastix_data, x)
43 self.x = x
44 f = x[-self.nschur:]
45 return f
46

47 @TimeIt()
48 def y2x(self, y, b):
49 """ Compute the complete solution x
50 from the Schur complement solution y
51 """
52 x = self.x.copy()
53 x[-self.nschur:] = y
54 if self.factotype == pypastix.factotype.LDLT:
55 pypastix.subtask_trsm(
56 self.pastix_data, pypastix.side.Left,
57 pypastix.uplo.Lower, pypastix.trans.Trans,
58 pypastix.diag.Unit, x)
59 elif self.factotype == pypastix.factotype.LLT:
60 pypastix.subtask_trsm(

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 149

4.3. Design of the ddmpy domain decomposition toolbox in python

61 self.pastix_data, pypastix.side.Left,
62 pypastix.uplo.Lower, pypastix.trans.Trans,
63 pypastix.diag.NonUnit, x)
64 else: # LU
65 pypastix.subtask_trsm(
66 self.pastix_data, pypastix.side.Left,
67 pypastix.uplo.Upper, pypastix.trans.NoTrans,
68 pypastix.diag.NonUnit, x)
69 pypastix.subtask_applyorder(
70 self.pastix_data, pypastix.dir.Backward, x)
71 if self.check and self.x0 is not None:
72 self.spmA.checkAxb(self.x0, b, x)
73 return x

Listing 55: Pastix (2/2).

Testing the SchurSolver class. The SchurSolver class is tested on a general
problem

1 from ddmpy import *
2 n = 5
3

4 A = ssp.spdiags([d*np.ones(n) for d in 3, -2, -1], [0, 1, -1], n, n)
5 b = A.dot(np.ones((n, 1)))
6

7 s = SchurSolver(A,
8 interface=[0, 1],
9 symmetry=False)

10 s.S
11 s.dot(b)

array([[3. , -2.],
[-1. , 2.06666667]])

array([[1.],
[1.],
[1.],
[1.],
[1.]])

and a SPD linear system

1 A = ssp.spdiags([d*np.ones(n) for d in 2, -1, -1], [0, 1, -1], n, n)
2 b = A.dot(np.ones((n, 1)))

150 Louis POIREL

4. Design of a domain decomposition toolbox in python

3

4 s = SchurSolver(A,
5 interface=[0, 1],
6 symmetry=True,
7 interface_solver=ConjGrad)
8 s.S
9 s.dot(b)

array([[2. , -1.],
[-1. , 1.25]])

array([[1.],
[1.],
[1.],
[1.],
[1.]])

One can check solver information by printing the solver

1 print(s)

SchurSolver
interface : [0, 1]
interface_solver : ConjGrad

callback : None
debug : False
M : None
maxiter : None
ritz : False
save_x : False
setup_M : True
tol : 1.37198868114e-05
true_res : False
x0 : None
symmetry : True
t_ConjGrad_setup : 4.6968460083e-05
global_tol : 1e-05
n_iter : 2
t_ConjGrad_solve : 0.000164985656738

local_solver : ScipyDirectSolver
symmetry : True
t_ScipyDirectSolver_setup : 0.000147104263306
t_ScipyDirectSolver_solve : 0.000120878219604

symmetry : True

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 151

4.3. Design of the ddmpy domain decomposition toolbox in python

t_SchurSolver_setup : 0.00435090065002
t_SchurSolver_b2f : 0.000667095184326
t_SchurSolver_y2x : 0.000555038452148
t_SchurSolver_solve : 0.00150990486145

4.3.10.2 Distributed Schur solver

A distributed subclass of the SchurSolver class can be used to solve a distributed linear
system using a primal interface formulation (see Section 2.5.2). The only differences with
the SchurSolver class are the following:

• there is no need for an interface parameter: the interface is deduced from the
dd attribute of the DistMatrix object representing the distributed matrix A =∑N

i=1RT
Ωi
AiRΩi .

• the interface_solver parameter must accept a DistMatrix object: a ConjGrad or
a Mumps solver can be used as an interface_solver, whereas a ScipyDirectSolver
or Pastix solver can not.

1 class DistSchurSolver(SchurSolver):
2

3 defaults = {"local_solver": ScipyDirectSolver,
4 "interface_solver": GCR,
5 "symmetry": False}
6

7 @TimeIt()
8 def setup(self, A, **kwargs):
9 LinearOperator.setup(self, A, **kwargs)

10 self.interface = A.dd.interface
11 self.local_schur = SchurSolver(A.local,
12 interface=self.interface,
13 local_solver=self.local_solver,
14 interface_solver=None,
15 symmetry=self.symmetry)
16 self.S = DistMatrix(self.local_schur.S, A.dd.interface_dd())
17 if self.interface_solver is not None:
18 self.interface_solver.setup(self.S)
19

20 @TimeIt()
21 def b2f(self, b):
22 bi = b.dd.D * b.local
23 fi = self.local_schur.b2f(bi)
24 f = DistVector(fi, self.S.dd, assemble=True)
25 return f
26

27 @TimeIt()

152 Louis POIREL

4. Design of a domain decomposition toolbox in python

28 def y2x(self, y, b):
29 xi = self.local_schur.y2x(y.local, b.local)
30 x = DistVector(xi, b.dd)
31 return x

Listing 56: DistSchurSolver

Testing the DistSchurSolver class. The DistSchurSolver is tested on the dis-
tributed matrix DistMatrix.test().

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 b = K @ DistVector(np.ones((4, 1)), K.dd)
5 dd = K.dd
6 s = DistSchurSolver(K)
7 x = (s @ b).centralize(root=0)
8 if dd.rank == 0:
9 print(x[:,0])

1 mpirun -np 3 python3 testDistSchurSolver.py

[1. 1. 1. 1. 1. 1. 1.]

4.3.10.3 N-Lagrange formulation

The N -Lagrange formulation introduced in Section 2.6.5 is implemented in ddmpy. This
formulation is used on the interface system, and as such, it can be seen as a reformulation
of the third step (Equation (4.3)) of the Schur solver. The system SuΓ = f̃Γ is solved in
four steps

factorize Ŝi = Si + Ti, (4.5)

compute RHSi =
∑
j∈N (i)

(
RΓiRT

Γj
Tj + TiWijRΓiRT

Γj

)
Ŝ−1
j f̃

(j)
Γj
, (4.6)

solve λi+
∑
j∈N (i)

[
RΓiRT

Γj
−
(
RΓiRT

Γj
Tj+TiWijRΓiRT

Γj

)
Ŝ−1
j

]
λj = RHSi, (4.7)

solve uΓi = Ŝ−1
i (f̃

(i)
Γi

+ λi). (4.8)

The other steps in equations (4.1), (4.2) and (4.4) are unchanged.
The NLagrangeSolver solver has 5 parameters:

• Ti, a scalar to add on the interface.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 153

4.3. Design of the ddmpy domain decomposition toolbox in python

• local_solver, a solver used to compute the Schur complement matrix Si.

• interface_solver, a solver used to solve Equation 4.7.

• Sih_solver, a solver used to factorize the local matrix S.

• symmetry, the symmetry of the matrix.

1 class NLagrangeSolver(DistSchurSolver):
2 defaults = {"Ti": 1,
3 "local_solver": ScipyDirectSolver,
4 "interface_solver": GCR,
5 "Sih_solver": ScipyDirectSolver,
6 "symmetry": False}
7

8 @TimeIt()
9 def setup(self, A, **kwargs):

10 LinearOperator.setup(self, A, **kwargs)
11 # Compute the Schur
12 interface_solver = self.parameters["interface_solver"]
13 self.parameters["interface_solver"] = None
14 DistSchurSolver.setup(self, A, **kwargs)
15 self.parameters["interface_solver"] = interface_solver
16 # Factorize Sih
17 self.Sih_solver.setup(self.S.local
18 + self.Ti*ssp.eye(A.dd.nG))
19 # compute W
20 dd = self.S.dd
21 self.W = {}
22 W_ = np.zeros((dd.ni, 1))
23 for n, i in dd.neighbors.items():
24 self.W[n] = 1 - W_[i]
25 W_[i] = 1
26 self.operator = self.NLOperator(self)
27 self.interface_solver.setup(self.operator)
28

29 def communicate(self, ui, mui): # ui, µi
30 dd = self.S.dd
31 res = np.zeros_like(ui)
32 ui_mui = np.hstack((ui, mui)) # [ui, µi]
33 send = {n: ui_mui[dd.neighbors[n], :]
34 for n in dd.neighbors}
35 for j, uj_muj in neighborSendRecv(send):
36 uj_muj = uj_muj.reshape((-1, 2)) # RΓiRT

Γj
[uj, µj]

37 uj = uj_muj[:,0:1] # RΓiRT
Γj
uj

154 Louis POIREL

4. Design of a domain decomposition toolbox in python

38 muj = uj_muj[:,1:2] # RΓiRT
Γj
µj

39 i = dd.neighbors[j]
40 res[i] += (muj # RΓiRT

Γj
µj

41 + self.Ti * self.W[j] * uj)# TiWijRΓiRT
Γj
uj

42 return res #
∑

j∈N (i)RΓiRT
Γj
µj + TiWijRΓiRT

Γj
uj

43

44 # inner class representing the linear operator
45 class NLOperator(object):
46

47 def __init__(self, NLSolver):
48 self.NLSolver = NLSolver
49 ni = np.array(NLSolver.S.dd.ni)
50 n = ni.copy()
51 self.NLSolver.A.dd.comm.Allreduce(ni, n)
52 self.shape = (np.asscalar(n), np.asscalar(n))
53

54 @TimeIt()
55 def dot(self, l):
56 li = l.local
57 SihI = self.NLSolver.Sih_solver
58 ui = - SihI.dot(li)
59 mui = li + self.NLSolver.Ti*ui
60 li_ = li + self.NLSolver.communicate(ui, mui)
61 return DistVector(li_, l.dd, compatible=False)
62

63 @TimeIt()
64 def solve(self, b):
65 with TimeIt("rhs"):
66 bi = b.dd.D * b.local
67 fi = self.local_schur.b2f(bi) # f̃

(i)
Γi

68 SihI = self.Sih_solver # Ŝ−1
i

69 ui = SihI.dot(fi) # ui = Ŝ−1
i f̃

(i)
Γi

70 mui = self.Ti*ui # µi = Tiui
71 #

∑
RΓiRT

Γj
µj + TiWijRΓiRT

Γj
uj

72 rhs = DistVector(self.communicate(ui, mui),
73 self.A.dd, compatible=False)
74 li = self.interface_solver.solve(rhs).local # λi
75 yi = SihI.dot(fi + li) # uΓi = Ŝ−1

i (f̃
(i)
Γi

+ λi)
76 xi = self.local_schur.y2x(yi, b.local) # [uIi , uΓi]

T

77 x = DistVector(xi, b.dd)
78 return x

Listing 57: NLagrangeSolver.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 155

4.3. Design of the ddmpy domain decomposition toolbox in python

Testing the NLagrangeSolver class. The NLagrangeSolver class is tested on the
same distributed matrix

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 dd = K.dd
5 b = K.dot(DistVector(np.ones((4, 1)), dd))
6 s = NLagrangeSolver(K)
7 x = s.dot(b).centralize(root=0)
8 if dd.rank == 0:
9 print(x[:,0])

10 print(s)

1 mpirun -np 3 python testNLagrangeSolver.py

[1. 1. 1. 1. 1. 1. 1.]
NLagrangeSolver

interface_solver : GCR
M : None
maxiter : None
setup_M : True
tol : 1e-05
x0 : None
t_GCR_setup : 3.79085540771e-05
n_iter : 9
t_GCR_solve : 0.0139119625092

local_solver : ScipyDirectSolver
symmetry : False
t_ScipyDirectSolver_setup : 0.000228881835938
t_ScipyDirectSolver_solve : 3.93390655518e-05

Sih_solver : ScipyDirectSolver
symmetry : False
t_ScipyDirectSolver_setup : 9.29832458496e-05
t_ScipyDirectSolver_solve : 0.00149488449097

symmetry : False
Ti : 1
t_NLagrangeSolver_setup : 0.0117557048798
t_NLagrangeSolver_solve : 0.0156950950623

4.3.11 Centralizing a distributed problem

A distributed linear system Ax = b can be solved using a local (i.e., not distributed)
solver such as ScipyDirectSolver or Pastix through the CentralizedSolver class:

156 Louis POIREL

4. Design of a domain decomposition toolbox in python

the DistMatrix A and DistVector b are assembled on one or all processes using the
centralize() methods of these objects. The local_solver can then be used to com-
pute the global solution x_global and broadcast it to other processes if needed. The
CentralizedSolver has two parameters:

• local_solver, a Solver used locally to solve the centralized problem.

• root, the MPI rank of the process that will hold the local_solver instance and exe-
cute local_solver.setup(A) and local_solver.solve(b). If None, all processes
run a different instance of local_solver and perform these operations redundantly.

1 class CentralizedSolver(LinearOperator):
2

3 defaults = {"local_solver": ScipyDirectSolver,
4 "root": None}
5

6 @TimeIt()
7 def setup(self, A, **kwargs):
8 LinearOperator.setup(self, A, **kwargs)
9 with TimeIt("centralize_A"):

10 self.A_global = A.centralize(self.root)
11 if self.root is None or self.root==A.dd.rank:
12 self.local_solver.setup(self.A_global)
13 self.A_global_inv = self.local_solver
14

15 @TimeIt()
16 def solve(self, b):
17 with TimeIt("centralize_b"):
18 b_global = b.centralize(self.root)
19 if self.root is None:
20 x_global = self.A_global_inv.dot(b_global)
21 else:
22 if self.root==b.dd.rank:
23 x_global = self.A_global_inv.dot(b_global)
24 else:
25 x_global = np.empty(b_global.shape,
26 dtype=b.local.dtype)
27 with TimeIt("distribute_x"):
28 b.dd.comm.Bcast(x_global, root=self.root)
29 xi = x_global[b.dd.global_indices, :]
30 return DistVector(xi, b.dd)

Listing 58: CentralizedSolver.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 157

4.3. Design of the ddmpy domain decomposition toolbox in python

Testing the CentralizedSolver class. The CentralizedSolver class is used to
solve the same distributed matrix using the (sequential) ScipyDirectSolver solver on
process 0. the TimeIt output shows that the ScipyDirectSolver setup() and solve()
methods are only called on process 0.

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 dd = K.dd
5 b = K.dot(DistVector(np.ones((4, 1)), dd))
6 TimeIt.reset()
7 s = CentralizedSolver(K, local_solver=ScipyDirectSolver, root=0)
8 x = s.dot(b)
9 for i in range(3):

10 dd.comm.Barrier()
11 if dd.rank == i:
12 print("rank: {}\n{}\n".format(dd.rank, TimeIt()))

1 mpirun -np 3 python testCentralizedSolver.py

rank: 0
CentralizedSolver setup | 0 | 0.0001321 | 0.0018079 | 0.0019400
! ScipyDirectSolver setup | 1 | 0.0014982 | 0.0004280 | 0.0019262
CentralizedSolver solve | 0 | 0.0019500 | 0.0001130 | 0.0020630
! centralize_b | 1 | 0.0019531 | 0.0000379 | 0.0019910
! ScipyDirectSolver solve | 1 | 0.0020001 | 0.0000319 | 0.0020320
! distribute_x | 1 | 0.0020392 | 0.0000119 | 0.0020511

rank: 1
CentralizedSolver setup | 0 | 0.0001781 | 0.0006111 | 0.0007892
CentralizedSolver solve | 0 | 0.0008051 | 0.0012598 | 0.0020649
! centralize_b | 1 | 0.0008101 | 0.0000429 | 0.0008531
! distribute_x | 1 | 0.0008662 | 0.0011818 | 0.0020480

rank: 2
CentralizedSolver setup | 0 | 0.0001822 | 0.0006020 | 0.0007842
CentralizedSolver solve | 0 | 0.0008042 | 0.0012648 | 0.0020690
! centralize_b | 1 | 0.0008092 | 0.0000479 | 0.0008571
! distribute_x | 1 | 0.0008702 | 0.0011818 | 0.0020521

4.3.12 Domain decomposition preconditioners

A preconditionerM =MLMR can be used to accelerate an iterative solver by replacing
a linear system Ax = b by the equivalent systemMLAMRy = MLb, where x = MRy.

158 Louis POIREL

4. Design of a domain decomposition toolbox in python

A good preconditioner for Ax = b should be close to A−1, in some sense, and cheap to
compute and apply. In ddmpy, the one-level and two-level aS preconditioners introduced
in Section 2.7 and analyzed in more details in Chapter 3 are implemented.

4.3.12.1 One-level aS preconditioners

Abstract Schwarz (aS) preconditioner. Since preconditioners are linear opera-
tors built from a matrix, they are implemented as subclasses of the LinearOperator class
presented in Section 4.3.7. One-level aS preconditioners, introduced in Section 2.7.2, are
implemented using an AbstractSchwarz class; they can be written as

MaS =
N∑
i=1

RT
i Â
†
iRi,

and are very similar to distributed matrices A =
∑N

i=1RT
i AiRi. The AbstractSchwarz

class is therefore also a subclass of the DistMatrix class. The local matrix Âi in the
definition ofMaS is built from Ai in several optional steps:

• an assembly step Ai → Âi = RiART
i =

∑
j∈N (i)RiRT

j AjRjRT
i .

• an addition step Âi → Âi + Ti.

• a partition of unity step Âi → D−1
i ÂiD−1

i where Di is a partition of unity such
that

∑N
i=1RT

i DiRi = I (I is the identity matrix). Di can be computed using the
multiplicity (each subdomain has the same weight) or the local matrix (the weight
for an unknown is proportional to the corresponding value on the diagonal of Ai),
or be a boolean weight (only one subdomain is 1, its neighbors are 0).

Then, Âi is factorized.
The AbstractSchwarz class has the following parameters:

• assemble, a boolean to toggle the assembly operation.

• Ti, a matrix Ti to add on the interface. Can be a scalar or an interface vector; in
that case, it represents the diagonal of a diagonal matrix. If None, the addition step
is not performed.

• Di, a method to compute the partition of unity Di. If None, no partition of unity
is used. If "multiplicity", each subdomain has a weight of 1. If "matrix", the
diagonal of Ai is used as a weight. If "boolean", the DomainDecomposition.D
boolean partition of unity is used.

• local_solver the solver used to factorize Âi.

1 class AbstractSchwarz(LinearOperator, DistMatrix):
2

3 defaults = {"assemble": True,

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 159

4.3. Design of the ddmpy domain decomposition toolbox in python

4 "Ti": None,
5 "Di": None,
6 "local_solver": ScipyDirectSolver}
7

8 @TimeIt()
9 def setup(self, A, **kwargs):

10 LinearOperator.setup(self, A, **kwargs)
11

12 # Assembly step for additive Schwarz
13 if self.assemble:
14 self.Aih = A.dd.assemble(A.local, dim=2)
15 else:
16 self.Aih = A.local
17 # Add Ti on the interface for Robin
18 if self.Ti is not None:
19 if np.isscalar(self.Ti):
20 Ti = self.Ti * ssp.eye(A.dd.nG)
21 elif self.Ti.shape[1] == 1:
22 Ti = ssp.diags(self.Ti)
23 else:
24 Ti = self.Ti
25 if A.dd.nI:
26 RG = ssp.csc_matrix(
27 (np.ones_like(A.dd.interface),
28 (range(A.dd.nG), A.dd.interface)),
29 shape=(A.dd.nG, A.dd.ni)) # RΓ

30 Ti = RG.T.dot(Ti).dot(RG)
31 self.Aih += Ti
32 # Partition of unity for Neumann Neumann
33 if self.Di is not None:
34 self.D = self.partition_of_unity(A, self.Di)
35 D_inv = ssp.diags(1./self.D.clip(1e-12))
36 self.Aih = D_inv.dot(D_inv.dot(self.Aih.T).T)
37 # dense.dot(sparse) => (sparse.T.dot(dense.T)).T
38 # factorize Âi
39 if self.local_solver is not None:
40 self.local_solver.setup(self.Aih)
41 DistMatrix.__init__(self, self.local_solver, A.dd)
42

43 @TimeIt()
44 def solve(self, b):
45 return DistMatrix.dot(self, b)
46

47 @staticmethod
48 def partition_of_unity(A, Di="matrix"):

160 Louis POIREL

4. Design of a domain decomposition toolbox in python

49 if Di == "multiplicity":
50 mult = np.ones(A.dd.ni, dtype=np.int)
51 for i in A.dd.neighbors.values():
52 mult[i] += 1
53 D = 1./mult
54 elif Di == "matrix":
55 diagA = A.local.diagonal()
56 diagA_ = A.dd.assemble(diagA)
57 D = diagA/diagA_
58 elif Di == "boolean":
59 D = A.dd.D
60 else:
61 raise TypeError((
62 "Parameter Di in AbstractSchwarz"
63 ".partition_of_unity should be 'multiplicity',"
64 "'matrix' or 'boolean'. It is '{}'.").format(Di))
65 return D

Listing 59: AbstractSchwarz.

Additive Schwarz (AS) preconditioner. The AS preconditioner

MAS =
N∑
i=1

RT
i

(
RiART

i

)−1Ri

is a particular case of aS preconditioner where only the assembly step is performed.

1 class AdditiveSchwarz(AbstractSchwarz):
2

3 defaults = AbstractSchwarz.defaults.copy()
4 defaults.update({"assemble": True,
5 "Ti": None,
6 "Di": None})

Listing 60: AdditiveSchwarz.

Neumann-Neumann (NN) preconditioner. The NN preconditioner

MNN =
N∑
i=1

RT
i DiA†iDiRi,

has only the partition of unity step.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 161

4.3. Design of the ddmpy domain decomposition toolbox in python

1 class NeumannNeumann(AbstractSchwarz):
2

3 defaults = AbstractSchwarz.defaults.copy()
4 defaults.update({"assemble": False,
5 "Ti": None,
6 "Di": "matrix"})

Listing 61: NeumannNeumann.

Robin-Robin (RR) preconditioner. The Robin-Robin preconditioner

MRR =
N∑
i=1

RT
i (Ai + Ti)−1Ri,

has only the addition step.

1 class RobinRobin(AbstractSchwarz):
2

3 defaults = AbstractSchwarz.defaults.copy()
4 defaults.update({"assemble": False,
5 "Ti": 1,
6 "Di": None})

Listing 62: RobinRobin

Testing the aS preconditioners. These three aS preconditioners (AS, NN and
RR) are tested in a primal formulation (A = K) and on a primal formulation on the
interface Γ (A = S).

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 dd = K.dd
5 b = K.dot(DistVector(np.ones((4, 1)), dd))
6 for mat in "K", "S":
7 for MaS in AdditiveSchwarz, NeumannNeumann, RobinRobin:
8 iterative_solver = ConjGrad(M=MaS)
9 if mat == "K":

10 solver = iterative_solver
11 else:
12 solver = DistSchurSolver(
13 interface_solver=iterative_solver)
14 solver.setup(K)

162 Louis POIREL

4. Design of a domain decomposition toolbox in python

15 x = solver.dot(b)
16 if dd.rank == 0:
17 print("{} / {}: {} iterations".format(
18 MaS.__name__, mat,
19 iterative_solver.n_iter))

1 mpirun -np 3 python testaS.py

AdditiveSchwarz / K: 5 iterations
NeumannNeumann / K: 3 iterations
RobinRobin / K: 4 iterations
AdditiveSchwarz / S: 3 iterations
NeumannNeumann / S: 2 iterations
RobinRobin / S: 3 iterations

Due to the very small size of the linear problem and the poor choice of a transmis-
sion condition in the RR preconditioner used in this example, this test should not be
considered as a representative comparison of these three preconditioners, but merely as a
demonstration of how they can be used.

4.3.12.2 Two-level aS preconditioners

These one-level aS preconditioners can be combined, either additively or using deflation,
with a coarse solve to build a two-level aS preconditioner (see Section 2.7.3).

Coarse Solve. The CoarseSolve class implements the operator

M0 = V0

(
V T

0 AV0

)−1
V T

0

where the global coarse space V0 is defined as a concatenation of local coarse spaces

V0 =
(
RT

1 V
1

0 RT
2 V

2
0 · · · RT

NV
N

0

)
.

The coarse matrix A0 = V T
0 AV0 is computed in parallel

A0 = V T
0 AV0 = V T

0

(
N∑
i=1

RT
i AiRi

)
V0 =

N∑
i=1

V̄ i
0

TAiV̄ i
0 ,

where V̄ i
0 = RiV0 =

(
RiRT

1 V
1

0 RiRT
2 V

2
0 · · · RiRT

NV
N

0

)
.

V̄ i
0 can be built by assembling one subdomain’s local coarse space (V i

0) with the re-
striction of the coarse space of its neighbors to the common interface (RiRT

j V
j

0). Since
RiRT

j is zero if Γi ∩ Γj = ∅, only neighbor-to-neighbor communications are needed to
compute V̄ i

0 .
Each column in V0 corresponds to a coarse unknown. The coarse matrix A0 is defined

as a sum of local coarse matrices V̄ i
0
TAiV̄ i

0 . The local coarse matrix of subdomain Ωi only

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 163

4.3. Design of the ddmpy domain decomposition toolbox in python

has nonzero elements on coarse unknowns from Ωi or its neighbors. As a result, A0 can
be implemented as a DistMatrix built from A, but on another DomainDecomposition
object dd0.

In the setup() method, first, a default coarse space is built as a partition-of-unity
coarse space Sarkis (2003) (lines 8 to 13). Then, neighbor-to-neighbor communications are
performed using the neighborSendRecv() function presented in Section 4.3.4 to compute
V̄ i

0 (Wi) from V i
0 (Wi_) and define the coarse domain decomposition dd0 (lines 14 to 45).

Then, the coarse matrix A0 is computed and factorized (lines 46 to 51).
The parameters of the CoarseSolve linear operator are:

• Wi, a basis of the local coarse space. If None (default), a partition-of-unity coarse
space is chosen

• global_solver, the distributed solver used to factorize the coarse matrix A0. It
can be for instance:

– Mumps for a distributed factorization (see Section 5.4.2 for a presentation of this
strategy implemented in the framework of the MaPHyS solver in Chapter 5)

– CentralizedSolver(local_solver=. . . , root=0)= for a centralized factoriza-
tion on one MPI process (see Section 5.4.3 for a generalization of this method
using a sub-communicator of possibly more than one process for handling the
coarse problem); any sparse solver can be used as a local solver.

– CentralizedSolver(local_solver=. . . , root=None)= for a redundant fac-
torization of the coarse matrix on each MPI process (see Section 5.4.5 for a
generalization of this method)

The solve() method can be used to compute eitherM0 b, or P0 b = M0A b if the
project argument is set to True.

1 class CoarseSolve(LinearOperator):
2

3 defaults = {"Wi": None,
4 "global_solver": CentralizedSolver}
5

6 @TimeIt()
7 def setup(self, A, **kwargs):
8 LinearOperator.setup(self, A, **kwargs)
9 dd = A.dd

10 if self.Wi is None:
11 self.Wi = AbstractSchwarz.partition_of_unity(
12 A, "matrix").reshape((-1, 1))
13 Wi = self.Wi # V i

0

14 with TimeIt("MPI assemble"):
15 send = {j: (Wi.shape[1], # number of coarse vectors
16 Wi[dd.neighbors[j], :], # coarse vectors

164 Louis POIREL

4. Design of a domain decomposition toolbox in python

17 list(dd.neighbors)) # neighbors
18 for j in dd.neighbors}
19 recv = dict(neighborSendRecv(send))
20 # We add the subdomain to the dictionary
21 recv[dd.rank] = (Wi.shape[1], # number of coarse vectors
22 Wi, # coarse vectors
23 list(dd.neighbors)) # neighbors
24 # Now, for each subdomain in recv, we add the corresponding
25 # vectors to Wi_ and we update neighbors0
26 neighbors0 = dict()
27 ni0 = sum(m[0] for m in recv.values()) # number of coarse unknowns
28 Wi_ = np.zeros((A.dd.ni, ni0)) # V̄ i

0

29 counter = 0
30 for j in sorted(recv):
31 n_j, Wj, neighbors_j = recv[j]
32 if n_j == 0:
33 continue
34 if j == dd.rank:
35 indices = slice(None)
36 else:
37 indices = dd.neighbors[j]
38 Wi_[indices, counter:counter+n_j] = Wj
39 for k in np.append(neighbors_j, j):
40 if k != dd.rank:
41 neighbors0.setdefault(k, []).extend(
42 range(counter, counter+n_j))
43 counter += n_j
44 self.dd0 = DomainDecomposition(ni0, neighbors0, dd.comm)
45 self.Wi_ = Wi_ # V̄ i

0

46 with TimeIt("coarse computeA0"):
47 self.AiWi_ = A.local.dot(Wi_) # AiV̄ i

0

48 A0i = Wi_.T.dot(self.AiWi_) # V̄ i
0
TAiV̄ i

0

49 self.A0 = DistMatrix(A0i, self.dd0) # A0 = V T
0 AV0

50 self.global_solver.setup(self.A0)
51 self.A0_inv = self.global_solver # A−1

0

52

53 @TimeIt()
54 def solve(self, b, project=False):
55 dd = b.dd
56 dd0 = self.dd0
57 Wi_ = self.Wi_ # V̄ i

0

58 if project: # P0 b =M0A b
59 b0i = self.AiWi_.T.dot(b.local)
60 else: # M0 b
61 b0i = Wi_.T.dot(dd.D*b.local)

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 165

4.3. Design of the ddmpy domain decomposition toolbox in python

62 b0 = DistVector(b0i, dd0, assemble=True)
63 x0 = self.A0_inv.dot(b0)
64 x = Wi_.dot(x0.local)
65 return DistVector(x, dd)
66

67 @TimeIt()
68 def project(self, b): # P0 b =M0A b
69 return self.solve(b, project=True)
70

71 def __add__(self, other):
72 return AdditivePcd(B=other, C=self)
73

74 def __radd__(self, other):
75 return self + other

Listing 63: CoarseSolve.

Testing the CoarseSolve class. A coarse solve should give the A-orthogonal pro-
jection of the solution onto the coarse space. In particular, if the solution is in the coarse
space, a call to CoarseSolve(K).dot(b) should return the exact solution. If not speci-
fied, the local coarse space is computed from a partition of unity, and the constant vector
is in the coarse space.

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 dd = K.dd
5 b = K @ DistVector(np.ones((4, 1)), dd)
6

7 # x =M0A (1, . . . , 1)T = P0 (1, . . . , 1)T = (1, . . . , 1)T

8 x = (CoarseSolve(K) @ b).centralize(root=0)
9 if dd.rank==0:

10 print("x: {}".format(x[:, 0]))
11

12 u = DistVector(np.random.rand(4).reshape(4, 1),
13 dd, assemble=True) # u
14 u0 = CoarseSolve(K).project(u) # u0 = P0 u
15 uL = u - u0 # u⊥ = u− u0

16 scal = u0.T @ K @ uL # uT0Au⊥ = 0
17 if dd.rank==0:
18 print("u0.T @ K @ uL: {}".format(np.asscalar(scal)))

1 mpirun -np 3 python3 testCoarse.py

166 Louis POIREL

4. Design of a domain decomposition toolbox in python

x: [1. 1. 1. 1. 1. 1. 1.]
u0.T @ K @ uL: 1.1657341758564144e-15

Additive two-level preconditioner. A two-level preconditioner can be obtained
by adding a coarse solve to a one-level preconditionerM2 =M0 +M1 (see sections 2.7.3
and 3.4)

1 class AdditivePcd(LinearOperator):
2

3 defaults = {"B": AdditiveSchwarz,
4 "C": CoarseSolve}
5

6 @TimeIt()
7 def setup(self, A, **kwargs):
8 LinearOperator.setup(self, A, **kwargs)
9 if not getattr(self.B, "setup_performed", True):

10 self.B.setup(A)
11 if not getattr(self.C, "setup_performed", True):
12 self.C.setup(A)
13

14 @TimeIt()
15 def solve(self, b):
16 return self.B.dot(b) + self.C.dot(b)

Listing 64: AdditivePcd.

Deflated preconditioner. Instead of adding the coarse correction, it is possible to
use projection techniques to project the residual on the orthogonal of the coarse space at
each iteration, defining MD = M0 + (I − P0)M1(I − PT0) where P0 = M0A is the A-
orthogonal projection onto V0 (see sections 2.7.3 and 3.2). In practice, after an appropriate
initial guess has been computed, the application of the preconditioner can be performed
asMD = (I −M0A)M1.

1 class DeflatedPcd(LinearOperator):
2

3 defaults = {"M0": CoarseSolve,
4 "M1": None}
5

6 @TimeIt()
7 def setup(self, A, **kwargs):
8 LinearOperator.setup(self, A, **kwargs)
9 if not getattr(self.M0, "setup_performed", True):

10 self.M0.setup(A)

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 167

4.3. Design of the ddmpy domain decomposition toolbox in python

11 if not getattr(self.M1, "setup_performed", True):
12 self.M1.setup(A)
13

14 @TimeIt()
15 def solve(self, b):
16 y = b if self.M1 is None else self.M1.dot(b) # M1 b
17 return y - self.M0.project(y) # (I − P0)M1 b
18

19 @TimeIt()
20 def x0(self, b): # Compute an appropriate initial guess x0 =M0 b
21 return self.M0.dot(b)

Listing 65: DeflatedPcd

Testing the two-level preconditioners. The two-level preconditioners (additive
or deflated) are tested alongside their one-level counterpart. Due to the size of the ma-
trix, the number of iterations performed until convergence for this example is not at all
representative of the capabilities of the tested methods.

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 dd = K.dd
5 b = K @ DistVector(np.random.rand(4).reshape((4, 1)),
6 dd, assemble=True)
7

8 for mat in "K", "S":
9 for MaS1 in AdditiveSchwarz, NeumannNeumann, RobinRobin:

10 for MaS2, suffix in ((MaS1, "1"),
11 (MaS1() + CoarseSolve(), "2"),
12 (DeflatedPcd(M1=MaS1), "D")):
13 iterative_solver = ConjGrad(M=MaS2)
14 if mat == "K":
15 solver = iterative_solver
16 else:
17 solver = DistSchurSolver(
18 interface_solver=iterative_solver)
19 solver.setup(K)
20 x = solver @ b
21 if dd.rank == 0:
22 print("{}_{} / {}: {} iterations".format(
23 MaS1.__name__, suffix, mat,
24 iterative_solver.n_iter))

168 Louis POIREL

4. Design of a domain decomposition toolbox in python

1 mpirun -np 3 python3 test2level.py

AdditiveSchwarz_1 / K: 7 iterations
AdditiveSchwarz_2 / K: 7 iterations
AdditiveSchwarz_D / K: 4 iterations
NeumannNeumann_1 / K: 4 iterations
NeumannNeumann_2 / K: 5 iterations
NeumannNeumann_D / K: 3 iterations
RobinRobin_1 / K: 5 iterations
RobinRobin_2 / K: 7 iterations
RobinRobin_D / K: 7 iterations
AdditiveSchwarz_1 / S: 4 iterations
AdditiveSchwarz_2 / S: 4 iterations
AdditiveSchwarz_D / S: 1 iterations
NeumannNeumann_1 / S: 4 iterations
NeumannNeumann_2 / S: 4 iterations
NeumannNeumann_D / S: 1 iterations
RobinRobin_1 / S: 4 iterations
RobinRobin_2 / S: 4 iterations
RobinRobin_D / S: 4 iterations

4.3.12.3 GenEO coarse space for aS preconditioners

If A is SPD and Ai is SPSD, the coarse space can be built following the GenEO method
introduced in Chapter 3 for our algebraic context. The coarse space is computed by
solving generalized eigenproblems in each subdomain.

Solving Generalized Eigenproblems in python. In scipy, two methods are
available to solve generalized eigenproblems Au = λBu:

• the scipy.linalg.eigh() function for dense matrices, that uses a Lapack imple-
mentation Anderson et al. (1999).

• the scipy.sparse.linalg.eigsh() function for sparse matrices, that relies on the
ARPACK solver Lehoucq et al. (1998).

The dense version computes all the eigenpairs. It is therefore quite costly. The sparse
version computes a selection of eigenpairs using an iterative method. It is much faster but
is not as robust: it does not converge for some matrices. As a result, the ddmpy package
provides a eigen() function that calls the appropriate version depending on the type
of the input matrices (lines 2-12 and 13-22 of Listing 66 for dense and sparse matrices,
respectively). If the sparse version does not converge, it falls back to the dense version
(lines 20-22). Its parameters are:

• A and B, representing the matrices A and B.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 169

4.3. Design of the ddmpy domain decomposition toolbox in python

• B_I, representing B−1 (optional).

• n_v, the number of eigenpairs to compute.

• dense, whether to force the dense version.

• local_solver, a LinearOperator to be used to factorize B.

1 def eigen(A, B, B_I=None, n_v=None, dense=True, local_solver=None):
2 if dense or n_v is None:
3 with TimeIt("eigen_dense"):
4 if ssp.issparse(A) and ssp.issparse(B):
5 w, v = la.eigh(A.A, B.A)
6 else:
7 w, v = la.eigh(A, B)
8 if n_v is None:
9 n_v = A.shape[0]

10 else:
11 n_v = min(A.shape[0], n_v)
12 w, v = w[:n_v], v[:, :n_v]
13 else:
14 try:
15 with TimeIt("eigen_sparse"):
16 if B_I is None and local_solver is not None:
17 B_I = local_solver
18 B_I.setup(B)
19 w, v = sla.eigsh(A, n_v, which='SM', M=B, Minv=B_I)
20 except (sla.ArpackNoConvergence, sla.ArpackError) as err:
21 print(err, '=> dense computation')
22 w, v = eigen(A, B, B_I, n_v, dense=True)
23 return w, v

Listing 66: eigen()= function for solving generalized eigenproblems.

Computing the GenEO coarse space. The GenEO coarse space associated with
an aS preconditioner can be built using the genEO_space() function. It has the following
arguments:

• M1, a one-level aS preconditioner.

• alpha and beta, representing the α and β parameters in the definition of the coarse
space in Section 3.3.

• n_v, a maximum number of coarse vectors per subdomain.

• local_solver, a LinearOperator used to factorize local matrices.

170 Louis POIREL

4. Design of a domain decomposition toolbox in python

1 def genEO_space(M1, alpha=10, beta=10, n_v=None):
2 dense = not ssp.issparse(M1.A.local)
3 if isinstance(M1, NeumannNeumann):
4 NN = M1
5 w1, v1 = np.zeros((0)), np.zeros((M1.Aih.shape[0], 0))
6 else:
7 NN = NeumannNeumann(M1.A, local_solver=None)
8 w1, v1 = eigen(A=NN.Aih, B=M1.Aih, n_v=n_v, dense=dense)
9

10 if alpha > 0:
11 w1 = w1[w1*alpha < 1]
12 v1 = v1[:, :w1.shape[0]]
13

14 if isinstance(M1, AdditiveSchwarz):
15 AS = M1
16 w2, v2 = np.zeros((0)), np.zeros((M1.Aih.shape[0], 0))
17 beta = alpha
18 else:
19 AS = AdditiveSchwarz(M1.A, local_solver=None)
20 w2, v2 = eigen(A=M1.Aih, B=AS.Aih, n_v=n_v, dense=dense)
21 if beta > 0:
22 w2 = w2[w2*beta < 1]
23 v2 = v2[:, :w2.shape[0]]
24

25 w, v = np.hstack((w1, w2)), np.hstack((v1, v2))
26 x = np.argsort(w)
27

28 if n_v is not None and x.shape[0] > n_v:
29 x = x[:n_v]
30

31 return v[:, x]

Listing 67: genEO_space() function for computing the GenEO coarse space.

If the one-level aS preconditioner M1 used in the method is AS or NN, one of the two
eigenproblems from Section 3.3 becomes trivial and only the other eigenproblem needs to
be solved.

The GenEO preconditioner. The basis of the GenEO coarse space returned by
the genEO_space() function can be used to build a two-level aS preconditioner, using the
GenEOPcd class. It has the following parameters:

• M1, the one-level aS preconditioner to use.

• local_solver, the solver to use for factorizing local matrices.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 171

4.3. Design of the ddmpy domain decomposition toolbox in python

• global_solver, the solver to use for factorizing the (global) coarse problem.

• deflated, to toggle the use of a deflated coarse correction instead of an additive
coarse correction.

• alpha, beta and n_v, the GenEO parameters used to build the coarse space.

1 class GenEOPcd(LinearOperator):
2

3 defaults = {"M1": AdditiveSchwarz,
4 "local_solver": ScipyDirectSolver,
5 "global_solver": CentralizedSolver,
6 "deflated": True,
7 "alpha": 10,
8 "beta": 10,
9 "n_v": 5}

10

11 @TimeIt()
12 def setup(self, A, **kwargs):
13 LinearOperator.setup(self, A, **kwargs)
14 if not getattr(self.M1, "setup_performed", True):
15 self.M1.setup(A)
16

17 with TimeIt("GenEO eigen") as t:
18 self.Wi = genEO_space(self.M1, self.alpha, self.beta,
19 self.n_v)
20 A.dd.comm.barrier()
21 self.M0 = CoarseSolve(A, Wi=self.Wi,
22 global_solver=self.global_solver)
23 self.M0.parameters["Wi"] = "GenEO"
24 self.parameters["t_GenEO_eigen"] = t.duration
25 self.parameters["M0"] = self.M0
26 if self.deflated:
27 self.pcd = DeflatedPcd(A, M0=self.M0, M1=self.M1)
28 self.x0 = self.pcd.x0
29 else:
30 self.pcd = AdditivePcd(A, B=self.M0, C=self.M1)
31

32 @TimeIt()
33 def solve(self, b):
34 return self.pcd.solve(b)

Listing 68: GenEOPcd.

172 Louis POIREL

4. Design of a domain decomposition toolbox in python

Testing the GenEO preconditioner The GenEO preconditioner is tested on the
same distributed matrix as the preconditioners in the previous sections, both in a full
primal formulation (A = K) and in a primal formulation on the interface (A = S). A Ge-
nEO coarse space is built for the AS, NN and RR, with a size of 1, 2 or 3 coarse unknowns
per subdomain. The coarse correction is applied using deflation for all preconditioners,
and additively for AS only.

1 from ddmpy import *
2

3 K = DistMatrix.test()
4 dd = K.dd
5 b = K @ DistVector(np.random.rand(4).reshape((4, 1)),
6 dd, assemble=True)
7

8 for mat in "K", "S":
9 for MaS1, deflated in ((AdditiveSchwarz, False),

10 (AdditiveSchwarz, True),
11 (NeumannNeumann, True),
12 (RobinRobin, True)):
13 for n_v in 1, 2, 3:
14 M = GenEOPcd(M1=MaS1,
15 local_solver=ScipyDirectSolver,
16 global_solver=CentralizedSolver(
17 local_solver=Pinv,
18 root=0),
19 deflated=deflated,
20 n_v=n_v,
21 alpha=0,
22 beta=0)
23 iterative_solver = ConjGrad(M=M)
24 if mat == "K":
25 solver = iterative_solver
26 else:
27 solver = DistSchurSolver(
28 interface_solver=iterative_solver)
29 solver.setup(K)
30 x = solver @ b
31 if dd.rank == 0:
32 print("GenEO({}, {}, {}) / {}: {} iterations".format(
33 MaS1.__name__, n_v,
34 "D" if deflated else "+", mat,
35 iterative_solver.n_iter))

1 mpirun -np 3 python3 testGenEO.py

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 173

4.4. Experimental study

GenEO(AdditiveSchwarz, 1, +) / K: 5 iterations
GenEO(AdditiveSchwarz, 2, +) / K: 6 iterations
GenEO(AdditiveSchwarz, 3, +) / K: 6 iterations
GenEO(AdditiveSchwarz, 1, D) / K: 4 iterations
GenEO(AdditiveSchwarz, 2, D) / K: 1 iterations
GenEO(AdditiveSchwarz, 3, D) / K: 0 iterations
GenEO(NeumannNeumann, 1, D) / K: 3 iterations
GenEO(NeumannNeumann, 2, D) / K: 1 iterations
GenEO(NeumannNeumann, 3, D) / K: 0 iterations
GenEO(RobinRobin, 1, D) / K: 3 iterations
GenEO(RobinRobin, 2, D) / K: 2 iterations
GenEO(RobinRobin, 3, D) / K: 0 iterations
GenEO(AdditiveSchwarz, 1, +) / S: 4 iterations
GenEO(AdditiveSchwarz, 2, +) / S: 4 iterations
GenEO(AdditiveSchwarz, 3, +) / S: 4 iterations
GenEO(AdditiveSchwarz, 1, D) / S: 2 iterations
GenEO(AdditiveSchwarz, 2, D) / S: 0 iterations
GenEO(AdditiveSchwarz, 3, D) / S: 0 iterations
GenEO(NeumannNeumann, 1, D) / S: 2 iterations
GenEO(NeumannNeumann, 2, D) / S: 0 iterations
GenEO(NeumannNeumann, 3, D) / S: 0 iterations
GenEO(RobinRobin, 1, D) / S: 1 iterations
GenEO(RobinRobin, 2, D) / S: 0 iterations
GenEO(RobinRobin, 3, D) / S: 0 iterations

4.4 Experimental study

4.4.1 Experimental setup

Similarly to the results obtained in the previous chapter (See Section 3.5.1), a weak
scalability study is performed on problems similar to what was presented in (Spillane
et al., 2014a). In the previous chapter, which essentially aimed at studying the numerical
behavior of the proposed methods, the considered problems were of moderate size (at the
exception of Section 3.5.5 which gave an insight on the parallel behavior). In the present
chapter, as well as in the following chapter, the focus is essentially on the software design
and parallel scalability of the methods and code; we therefore consider larger problems.
They correspond to the bâton test case presented in more details in sections 3.5.1 and 5.5.2.
A Darcy equation in a heterogeneous stratified medium of size N × 1× 1 is solved using
a DD of N subdomains. Each subdomain is a 1 × 1 × 1 cube discretized with 30 Q1
elements in each direction. The subdomain matrices are generated using the genfem
python module5 developed for the purpose of this thesis. All the code needed to reproduce
the experiments (including the batch job script) and generate the figures in the present
section is available in the .org source of this document.

5https://gitlab.inria.fr/solverstack/genfem

174 Louis POIREL

https://gitlab.inria.fr/solverstack/genfem

4. Design of a domain decomposition toolbox in python

On page 177 and 178, several DD preconditioners are compared. In the first figure,
CG is applied on the matrix K, whereas in the second figure, CG is applied on the Schur
complement matrix S.

Both figures have a grid layout with 3 × 8 plots: the rows correspond to various degrees
of heterogeneity (K=1, K=1,000 and K=1,000,000) in the conductivity of the layers in the
stratified medium (see Section 5.5.2). With K = 1, the problem is a homogeneous Poisson
problem; increasing the heterogeneity parameter K increases the condition number of the
matrix K and makes the linear system harder to solve.

The 8 columns correspond to the following preconditioners:

0 no preconditioner.

0D deflation on a partition-of-unity coarse space (no additional local preconditioning).

AS1 one-level AS preconditionerMAS (no coarse correction).

AS2 two-level AS preconditioner with an additive coarse correction with a partition-of-
unity coarse spaceMAS,2.

ASD deflated AS preconditioner with a partition-of-unity coarse spaceMAS,D.

ASGD3 deflated AS preconditionerMAS,D with an adaptive (GenEO) coarse space (nv =
3 vectors per subdomain).

NND deflated NN preconditioner with a partition-of-unity coarse spaceMNN,D (when
applied on the Schur complement matrix S, the NND/S method is the BDD method
(Mandel, 1993)).

NNGD3 deflated NN preconditioner MNN,D with an adaptive (GenEO) coarse space
(nv = 3 vectors per subdomain).

Note that these notations for the solvers are specific to this section.
The 16 solvers (8 preconditioners applied on K or on S) compared in this study are

all built using the ddmpy module presented in Section 4.3.
Each individual plot represents the time needed to solve the bâton problem of size

(30N + 1) × 30 × 30 on N CPU cores (the global domain is decomposed into N sub-
domains). Each node on the computing platform has 24 cores, and experiments were
performed for N between 3 and 3,072. Each subdomain is handled by 1 MPI process on
1 CPU core. The stopping criterion of the conjugate gradient is chosen such that the
normwise backward-error of the complete system (including interior unknowns) is under
the prescribed tolerance ‖Ku−f‖K‖f‖K

≤ 10−5.
All dense computations are performed using the Intel MKL library 2017 through scipy

and the ScipyDirectSolver class presented in Section 4.3.8.1, whereas sparse matrix
factorizations use the Pastix 6.0.0 solver through the wrapper presented in Section 4.3.8.4.

The total time to solution is divided into 6 solver steps:

Schur Factorization (blue) if the PCG solver is applied on S, the interior block KIiIi
is factorized in each subdomain to compute the local Schur complement matrix Si.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 175

4.4. Experimental study

Local Pcd Setup (dark green) if a local preconditioner (AS or NN) is used, the local
preconditioner matrix Âi is computed and factorized.

Coarse Eigen Solve (green) a generalized eigenproblem is solved for the adaptive
coarse space.

Coarse Pcd Setup (light green) the coarse matrix is assembled and factorized re-
dundantly on each CPU core.

Direct Solve (orange) the reduced right-hand side f̃Γ is computed from the global
right-hand side f and the interior solution uI from the interface solution uΓ if the
PCG is applied on S

Iterative Solve (red) PCG iterations.

The number of iteration needed to reach convergence is indicated on top of each bar
plot.

4.4.2 Numerical convergence

According to Chapter 3, (Corollary 2 and Theorem 2, as used in Section 3.5.3) the con-
dition number of the methods presented here is bounded by κ(MA) ≤ O(λ−1

nv+1) where
λnv+1 is the smallest eigenvalue corresponding to an eigenvector not included in the coarse
space. The matrix A(NN)

i of the Neumann local problem in the generalized eigenproblem
is singular, and λ1 = 0. Without CSC (nv = 0), the theoretical bound is infinite, meaning
that the condition number is not bounded; this is in agreement with our experimental
results where the number of iterations of the 0 and AS1 methods increase proportionally
to N .

Using a partition-of-unity coarse space (methods 0D, AS2, ASD and NND) is equiva-
lent to setting nv = 1: the kernel of A(NN)

i is the coarse space, and the bound becomes
κ(MA) ≤ O(λ−1

2). Since the matrices in all the subdomains except the first and last one
are the same, this bound is independent of N . However, it depends on the local matrix
Ai (and therefore on the heterogeneity factor K), and on the local preconditioner. In our
experiments, the number of iterations of these methods is indeed bounded independently
of N (but the bound varies with the chosen method and on K) for K = 1 and K = 1, 000
(for each method, the number of iterations is larger if K = 1, 000 than if K = 1). For
K = 1, 000, 000, the number of iterations seems to increase proportionally to N for these
methods; this indicates that the bound on the number of iterations resulting from the
bound on the condition number is too large to be effective in practice: when thousands of
CG iterations are performed, especially when using deflation techniques, round-off errors
accumulate and prevent the algorithm from converging due to loss of orthogonality (see,
for instance, (Saad et al., 2000) for a description of this phenomenon and some remediation
strategies that have not been implemented in ddmpy). This explains the corresponding
missing bar plots in the figures.

The solution proposed in Chapter 3 is to include in the coarse space the eigenvectors
corresponding to these very small eigenvalues. Choosing nv = 3 eigenvectors (consistently

176 Louis POIREL

14
4

23

5

41
8

79

0

15
33

 30
20

59

98

11
95

3

11
42

15

49

20
66

29

56
 44
72

 65
63

10

90
6

39
27

56

75

81
42

11

49
8

17
63

8
26

12
7

41
10

9

10
4

11

8

11
9

12

0

12
2

12

4

12
5

12

6

12
8

11
45

13

72

16
35

20

04

25
61

29

03

29
07

28

58

51
77

 70
75

10

04
3

12
71

9
19

26
5

26
20

8

6

12
 28
 80

 17
8

36

3

72
7

17

37
 75

 16
0

 32
4

53

7

87
4

15

57

16

34
 73
 16

1
 33

6

68
6

13

71

7

13

25

29

34

35

37

39

43
 46

18

39
 64
 11
0

19

5

25
5

25

9

25
5

25

1

24
4

18

39
 66
 12

7
 22

9

43
6

84

9

16
64

4

4

4

4

4

4

4

4

4

15

24
 42
 80
 15

8

21
1

21

1

20
8

20

1
 19
8

15

26
 45
 88

 17
9

35

8

70
9

13

97

3
 3
 3

 3

3

3

10
 11
 12

 15

15

19

21

21
 24
 23

37

11
 12
 12

 12

13

13

15

15
 19
 21

1

1

1

1

1

1
 2

4

7
 14

29

15

1
 1
 1

 1

1

1

3
 4

3
 3

0 0D AS1 AS2 ASD ASGD3 NND NNGD3

K
=

1
K

=
1000

K
=

1000000

3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2

0

20

40

60

0

20

40

60

0

20

40

60

Number of MPI processes

T
im

e
(s

)

Solver step: Schur Factorization Local Pcd Setup Coarse Eigen Solve Coarse Pcd Setup Direct Solve Iterative Solve

Step by step comparison of the solvers (on K)

Weak scalability: constant subdomain size.

,

27

41

70

12
6

24

4

48
6

96

8
 19

21

38
13

18
4

27

8

37
1

53

8

83
2

11

87

18
69

31

88

57
60

32
1

49

8

80
2

13

21
 22
59

42

56

68
91

11

47
6

17
65

5

0

0

0
 0

0

0

24
3

10
59

4
12

23
6

13
71

1
15

49
6

2

5

10

18

33

63

12
3

24

2

47
9

 95
0

5

10

17

31

58

94

15
3

27

0

50
5

 97
4

19

14

3

8

16

31

60

11
8

23

6

47
1

 94
1

18

72

2

5

8

12

13

12

12

12

12

11
 11

6

10

17

24

37

44

46

45

44

42
 41

6

11

18

27

45

78

14
6

28

2

55
2

10

87

0

0

0

0

0

0

1

1

1

1
 2

3

6

10

17

29

36

39

38

37

36

3

7

12

19

34

63

12
2

24

0

47
4

 94
0

1

1
 1
 1

1

1

1

1

1
 1
 1

3

3
 4
 4

4

4

4

4

4

4

2

2
 2
 2

2

2

2

2

2
 2

2

0

0

0

0

0

0

1

1

1
 8

4

8

13

24

34

32

32

31

30

29

4

12

26

52

99

14
2

22

6

38
8

 76
8

1

1
 1
 1

1

1

1

1

1

1

1

3

4
 5
 6

6

6

7

7

7

7

6

1

1
 1
 1

1

1

1

1

1

1

1

0 0D AS1 AS2 ASD ASGD3 NND NNGD3

K
=

1
K

=
1000

K
=

1000000

3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2 3 6 12 24 48 96192384768153
6

307
2

0

20

40

60

0

20

40

60

0

20

40

60

Number of MPI processes

T
im

e
(s

)

Solver step: Schur Factorization Local Pcd Setup Coarse Eigen Solve Coarse Pcd Setup Direct Solve Iterative Solve

Step by step comparison of the solvers (on S)

Weak scalability: constant subdomain size.

,

4. Design of a domain decomposition toolbox in python

with the number of high-conductivity layers in the subdomains) is enough: the number
of iterations for the ASGD3 and NNGD3 methods are bounded by 24. If these methods
are applied on S, the number of iterations is bounded by 7.

4.4.3 Performance analysis

The data presented on pages 177 and 178 represent a set of 480 different configurations: 8
preconditioners applied on K and S, for three different values ofK and 10 values of N . For
each of these configurations, the time needed to compute the Schur complement matrix
and the local preconditioner, solve the eigenproblem and setup the coarse preconditioner,
and perform the direct and iterative parts of the solve are displayed (the displayed times
are the maxima among all MPI processes).

These experiments compare three different ways of hybridizing an iterative solver
by introducing a direct solver: one can use a local (one-level aS) preconditioner (in dark
green), a coarse global preconditioner (in medium green), or a Schur complement approach
(in blue). In light green, the coarse space for the coarse preconditioner is computed using
an eigensolver. Each of these (optional) operations add to the setup time of the solver,
and can additionally increase the cost of each iteration. Our experimental results show
that, for the most difficult problems (N � 1 andK � 1), the overhead of these additional
operations is compensated by the reduction in the number of iterations discussed in the
previous sections.

Our results show that in our homogeneous test case (K = 1), the best method up to
N = 768 subdomains is a simple deflated CG (on K) without a local preconditioner. In the
other test cases, it is always beneficial to eliminate interior unknowns first using a Schur
complement approach: replacing K by S in the iterative solver has several advantages.
First, the linear system to be solved (SuΓ = f̃Γ instead of Ku = f) is smaller and better
conditioned, hence a reduction in the number of iterations. Furthermore, in addition to
being of smaller size, the local interface matrices Si are dense whereas the original local
matrices Ki are sparse. As such, optimized solvers as provided by the Intel MKL library
can be used for computing the local preconditioner and solving the eigenproblems. For
instance, the cost of computing the GenEO coarse space drops from 40 s. to 4 s. when
using a Schur complement approach. Since the overhead of factorizing the interior matrix
KIiIi and computing the local Schur complement matrix Si is only 5 s. (thanks to using
the optimized sparse direct solver Pastix that implements this operation), it is always
faster to use a Schur complement approach when computing a spectral coarse space for
this bâton test case.

A comparison of the NN and AS local preconditioners show that, on K, the AS pre-
conditioner is much more robust than NN, as the singularity of the local preconditioner
matrix K(NN)

i is not well handled by the Pastix solver. On S, both preconditioners show
a quite similar behavior. Both ASGD3/S and NNGD3/S methods are extremely scalable
and very robust up to N = 1, 536 or 3, 072 subdomains.

The parallel efficiency of the methods discussed above is presented in the figure
page 180. We define the parallel weak efficiency as η = t24

tN
: the basis for comparison

is the total time to solution on one node, each node being composed of 24 CPU cores to
each of which is associated an MPI process handling a subdomain.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 179

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 0D AS1 AS2 ASD ASGD3 NND NNGD3

K
=

1
K

=
1000

K
=

1000000

12 153
6192243

307
2384486 76896 12 153
6192243

307
2384486 76896 12 153
6192243

307
2384486 76896 12 153
6192243

307
2384486 76896 12 153
6192243

307
2384486 76896 12 153
6192243

307
2384486 76896 12 153
6192243

307
2384486 76896 12 153
6192243

307
2384486 76896

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Number of MPI processes

Ef
fic

ie
nc

y:
 t 2

4 t N

Matrix: ● K S

Parallel efficiency of the solvers

Weak scalability: constant subdomain size.

,

4. Design of a domain decomposition toolbox in python

The adaptive CSC implemented in the ASGD3 and NNGD3 methods scales up to
N = 1, 536 subdomains with a very high parallel efficiency (≥ 84%). At N = 3, 072
subdomains, some solvers failed to converge (ASGD3/S for K = 1, 000 and ASGD3/K for
K = 1, 000, for numerical reasons related to the deflation technique (Saad et al., 2000;
Giraud et al., 2006). Furthermore, the parallel efficiency of some solvers drop suddenly
to less than 50%, as for instance the ASGD3/S solver for K = 1, 000. To analyze where
the bottleneck is, we look in the next section at a log of the TimeIt events in this run.

4.4.4 A posteriori analysis using the TimeIt object

The TimeIt decorator and context manager, introduced in Section 4.3.5, is used to track
the time at which different functions and other code blocks in ddmpy are entered and exited.
This information can be exploited after a problem has been solved to identify where the
time was spent. In the experiments presented in this chapter, the first 2,000 TimeIt events
of 10 processes (at most) were saved after each run for analysis. These limitations (only
2,000 events, and only 10 processes) were introduced in order not to overload the file
system, as would be the case if 3,072 processes were to write simultaneously a few tens of
thousands of lines each in a file.

Even with this limitation, the information of 10 processes is still too much to represent
in a pleasant way: the processes are not synchronized and their respective events overlap
with each others. For instance, the processes that handle subdomains on the boundary
have a smaller interface than the other ones and fewer neighbors; they often perform
some operations much faster than the other subdomains. For any event (let us take, for
instance, the computation of the Schur complement using Pastix), we have the time at
which each of the 10 processes entered and exited the event. Instead of displaying all this
information, we only display the minimum, median and maximum of the starting and
ending time of the event, as in figures 4.10 and 4.11 for the NNGD3/S method on 1,536
and 3,072 cores, respectively, for K = 1, 000.

The TimeIt events form a hierarchy, since a timed function can be called inside another
one. At the lowest level (0), one has the main DistSchurSolver setup() and solve()
methods. Each of them can call other timed functions or blocks that are of level 1, which
can themselves call other functions of higher levels.

The comparison of the two TimeIt traces in figures 4.10 and 4.11 shows that the drop
in efficiency is due to operations that take place during the setup of the DistSchurSolver
object, between the setup of the local SchurSolver object and the setup of the iterative
solver ConjGrad, and to operations that take place in the setup of the GenEOPcd precon-
ditioner, after the eigenproblem is solved. Looking at the code in Listing 56, we can see
that this corresponds to the instruction

1 self.S = DistMatrix(self.local_schur.S, A.dd.interface_dd())

In order to improve the scalability of the solvers in ddmpy, one should therefore focus
on the operations taking place in this line, such as the interface_dd() method of the
DomainDecomposition class presented in Listing 28. We did not pursue this time con-
suming optimization any further.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 181

4.4. Experimental study

DistSchurSolver.setup
SchurSolver.setup

Pastix.schur
ConjGrad.setup
GenEOPcd.setup

DistSchurSolver.setup
SchurSolver.setup

Pastix.schur
ConjGrad.setup
GenEOPcd.setup

NeumannNeumann.setup
ScipyDirectSolver.setup

DistSchurSolver.setup
SchurSolver.setup

Pastix.schur
ConjGrad.setup
GenEOPcd.setup

NeumannNeumann.setup
ScipyDirectSolver.setup

0
1

2

0 5 10 15 20
Time (s)

T
im

eI
t

le
ve

l

Trace of the NNGD3/S solver on N= 1536 processes with an heterogeneity K= 1000

The three rows show the time at wich the first (row 0), 50% (row 1), or all processes (row 2) start and finish each step.

Figure 4.10: A trace of the NNGD3/S solver on 1,536 processes.

DistSchurSolver.setup
SchurSolver.setup

Pastix.schur
ConjGrad.setup
GenEOPcd.setup

DistSchurSolver.setup
SchurSolver.setup

Pastix.schur
ConjGrad.setup
GenEOPcd.setup

NeumannNeumann.setup
ScipyDirectSolver.setup

CoarseSolve.setup
CentralizedSolver.setup

DistSchurSolver.setup
SchurSolver.setup

Pastix.schur
ConjGrad.setup
GenEOPcd.setup

NeumannNeumann.setup
ScipyDirectSolver.setup

CoarseSolve.setup
CentralizedSolver.setup

0
1

2

0 5 10 15 20
Time (s)

T
im

eI
t

le
ve

l

Trace of the NNGD3/S solver on N= 3072 processes with an heterogeneity K= 1000

The three rows show the time at wich the first (row 0), 50% (row 1), or all processes (row 2) start and finish each step.

Figure 4.11: A trace of the NNGD3/S solver on 3,072 processes.

182 Louis POIREL

4. Design of a domain decomposition toolbox in python

CoarseSolve.setup
coarse.computeA0

centralize_A

DistSchurSolver.solve
DistSchurSolver.b2f
SchurSolver.b2f

DistVector.dot
MPI.reduce

DistVector.dot
MPI.reduce

ConjGrad.solve

CoarseSolve.solve
CentralizedSolver.solve

centralize_b
Local.dot

ScipyDirectSolver.solve

DistMatrix.dot
Local.dot

NeumannNeumann.solve
NeumannNeumann.dot

Local.dot
ScipyDirectSolver.solve

DistVector.dot
MPI.reduce MPI.reduce

GenEOPcd.solve

Local.dot
CoarseSolve.solve

centralize_b

NeumannNeumann.solve
MPI.reduce

DistVector.dot

Local.dot
CoarseSolve.solve

centralize_b

MPI.reduce

DistSchurSolver.y2x
SchurSolver.y2x

Pastix.y2x

CoarseSolve.setup
coarse.computeA0

centralize_A

DistSchurSolver.solve
DistSchurSolver.b2f

SchurSolver.b2f
DistVector.dot

MPI.reduce
DistVector.dot

MPI.reduce
ConjGrad.solve

CoarseSolve.solve
CentralizedSolver.solve

centralize_b
Local.dot

ScipyDirectSolver.solve

DistMatrix.dot
Local.dot

NeumannNeumann.solve
NeumannNeumann.dot

Local.dot
ScipyDirectSolver.solve

MPI.reduce
DistMatrix.dot

MPI.reduce

Local.dot
CoarseSolve.solve

centralize_b

DistVector.dot

NeumannNeumann.solve
MPI.reduce

GenEOPcd.solve

Local.dot
CoarseSolve.solve

centralize_b

MPI.reduce

DistSchurSolver.y2x
SchurSolver.y2x

Pastix.y2x

CoarseSolve.setup
coarse.computeA0

centralize_A

DistSchurSolver.solve
DistSchurSolver.b2f

SchurSolver.b2f MPI.reduce
DistVector.dot

MPI.reduce
ConjGrad.solve

CoarseSolve.solve
CentralizedSolver.solve

centralize_b
Local.dot

ScipyDirectSolver.solve

DistMatrix.dot
Local.dot
NeumannNeumann.solve
NeumannNeumann.dot

Local.dot
ScipyDirectSolver.solve

Local.dot
DistVector.dot

Local.dot

Local.dot
CoarseSolve.solve

centralize_b

DistMatrix.dot
MPI.reduce

NeumannNeumann.solve

Local.dot
CoarseSolve.solve

centralize_b

DistVector.dot
MPI.reduce

DistSchurSolver.y2x
SchurSolver.y2x

Pastix.y2x

0
1

2

19.9 20.0 20.1 20.2 20.3 20.4 20.5
Time (s)

T
im

eI
t

le
ve

l
Trace of the NNGD3/S solver on N= 3072 processes with an heterogeneity K= 1000

The three rows show the time at wich the first (row 0), 50% (row 1), or all processes (row 2) start and finish each step.

Figure 4.12: A zoom on the Solve step of Figure 4.11. The 6 CG iterations can be
identified.

The solve step (6 s.) is much faster than the setup step (20 s.), and is condensed
on the right of Figure 4.11. A zoom on this part is provided in Figure 4.12: the
DistSchurSolver.solve() method (level 0) starts by computing the reduced right-hand
side using the DistSchurSolver.b2f() method (level 1), the local SchurSolver.b2f()
(level 2) and the Pastix.b2f() (level 3) methods. Then, the norm of the global right-hand
side and of the reduced right-hand side are computed using two DistVector.dot() dis-
tributed scalar products. At this point, the interface system is solved using the ConjGrad
solver. One can identify the CG initialization (first application of the preconditioner
around 20.05 s.), the 5 subsequent complete iterations between 20.2 and 20.4 s. and the
incomplete 6th iteration (no application of the preconditioner) before the y2x() method
is called to compute the interior solution uI from the interface solution uΓ given by the
CG.

One can zoom further on an individual iteration (Figure 4.13), and identify the steps
of the CG algorithm (Listing 46): after the matrix-vector product (DistMatrix.dot()),
two scalar products are computed (DistVector.dot()) separated by a (very fast) vector
addition and subtraction. Then, the preconditioner is applied (GenEOPcd.solve()) and
a third scalar product is performed. The two components of the two-level MNN,D pre-
conditioner can be identified: a local NeumannNeumann solve (using Scipy), followed by a
coarse solve. Since the coarse problem is duplicated on all processes, one only need to cen-
tralize the coarse right-hand side (centralize_b) before computing the coarse correction
(ScipyDirectSolver.solve()).

The TimeIt class is a very powerful tool for analyzing the performance of distributed
applications in python. The ability to profile selected functions or code blocks using a

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 183

4.5. Limitations of the python language

ScipyDirectSolver.solve

DistVector.dot
MPI.reduce

DistMatrix.dot DistVector.dot
MPI.reduce

DistVector.dot
MPI.reduce

GenEOPcd.solve
DeflatedPcd.solve

NeumannNeumann.solve
NeumannNeumann.dot

Local.dot
ScipyDirectSolver.solve

CoarseSolve.project
CoarseSolve.solve

CentralizedSolver.solve
centralize_b ScipyDirectSolver.solve

DistVector.dot
MPI.reduce

DistMatrix.dot

ScipyDirectSolver.solve

DistVector.dot
MPI.reduce

DistMatrix.dot
Local.dot

DistVector.dot
MPI.reduce

DistVector.dot
MPI.reduce

GenEOPcd.solve
DeflatedPcd.solve

NeumannNeumann.solve
NeumannNeumann.dot

Local.dot
ScipyDirectSolver.solve

CoarseSolve.project
CoarseSolve.solve

CentralizedSolver.solve
centralize_b ScipyDirectSolver.solve

DistVector.dot
MPI.reduce

DistMatrix.dot

ScipyDirectSolver.solve

DistVector.dot
MPI.reduce Local.dot

DistVector.dot
MPI.reduce

DistVector.dot
MPI.reduce

GenEOPcd.solve
DeflatedPcd.solve

NeumannNeumann.solve
NeumannNeumann.dot

Local.dot
ScipyDirectSolver.solve

CoarseSolve.project
CoarseSolve.solve

CentralizedSolver.solve
centralize_b ScipyDirectSolver.solve

DistVector.dot
MPI.reduce

0
1

2

20.31 20.32 20.33 20.34
Time (s)

T
im

eI
t

le
ve

l
Trace of the NNGD3/S solver on N= 3072 processes with an heterogeneity K= 1000

The three rows show the time at wich the first (row 0), 50% (row 1), or all processes (row 2) start and finish each step.

Figure 4.13: A zoom on one CG iteration of Figure 4.12.

decorator or a context manager makes it very easy to track the state of an application at
the appropriate level, without a significant loss in performance in our case.

4.5 Limitations of the python language

Developing the ddmpy module, we encountered some difficulties related to the choice of the
python language. First, it is not possible to run several threads concurrently in python. It
is however possible to run external multithreaded code (such as Pastix for instance). This
is due to a Global Interpretor Lock (GIL) that prevents threads from accessing python
objects simultaneously. This limitation was not critical in our case since we decided to
rely on a distributed paradigm.

The second difficulty we ran into was the lack of scalability of the import system
in python. For each import instruction, python checks several different locations in
the file system until it finds and loads the module. When many processes import the
same modules simultaneously on a shared file system, they block each other and saturate
the system. As a result, the standard python distributions cannot be used for large-
scale distributed computing due to unpredictable and slow loading time. In some of our
experiments, even when using only 2 nodes (48 CPU cores), the loading time of python was
more than 10 times longer than the time needed to generate and solve the linear problem.
Various solutions have been proposed to remedy this problem (Feng and Hand, 2016; Feng,
2018; Frings et al., 2013); we tested the spindle executable (LeGendre and Frings, 2018)
but were not able to install it successfully on the targeted machine. We decided to use
a modified python interpreter (Enkovaara and Louhivuori, 2017) that remove the import
congestion by rewriting the stdio.c file so that only one process does the import and

184 Louis POIREL

4. Design of a domain decomposition toolbox in python

broadcasts the module to the other processes using MPI. Since this scalable-python
interpreter is based on python2.7.13, we had to rewrite ddmpy in python2 as it was
originally written in python3. We were then able to perform the parallel experiments
presented in the present chapter.

The third and last limitation of python for ddmpy is the fact that it is very cumbersome
to use a solver written in python in a code written in another language. As a result,
although it could be quite as performant as a compiled library, the ddmpy module cannot
be readily used from a compiled application. This led us to initiate the development of
a new library in C++ to keep the advantages of using a high-level language like python,
while being easier to interface with compiled solvers and applications, as discussed in
Section 6.3.

4.6 Conclusion

In this chapter, we presented a new domain decomposition (DD) toolbox in python.
In Section 4.2, we demonstrated the relevance of python as a language for numerically
prototyping HPC DD solvers: the overhead of using python instead of a compiled language
such as C is on the order of 10−6 s. per program instruction in our experiments. It is
therefore possible to write a competitive DD solver in python by using wrappers for calling
third party HPC implementations for all computation-intensive operations. For instance,
BLAS functions that operate on data arrays can be called through the numpy and scipy
python modules. Using this approach, one single python instruction calls a function that
perform many individual operations, and the cost of the overhead becomes negligible if
the size of the data is large enough so that the time spent performing these individual
operations is orders of magnitude larger than 10−6.

A DD toolbox in python named ddmpy was implemented following this principle and
presented in Section 4.3 using a literate programming approach. Wrappers for DD op-
erations not included in scipy, such as computing a Schur complement matrix or per-
forming a distributed conjugate gradient, are included in ddmpy. DD methods introduced
in Chapter 2, such as a N -Lagrange solver or abstract Schwarz preconditioners for pri-
mal formulations, are available in ddmpy, as well as the two-levels methods introduced in
Chapter 3.

The scalability of solvers built using the ddmpy toolbox was then assessed in Section 4.4:
a linear system of 88.5M unknowns was solved in less than 10 s. on 128 computing nodes
with 24 CPU cores each (3,072 cores in total). The two-level solvers that include the
coarse space correction introduced in Chapter 3 showed a parallel efficiency of 84% on
1,536 cores. These experiments are fully reproducible as the code needed to launch the
experiments, analyze the results and plot the figures is available in the source of this
document.

We then shared in Section 4.5 some drawbacks we experienced due to choosing the
python language for implementing the ddmpy toolbox. The lack of scalability of the import
system of python on distributed computers forced us to install a modified interpreter and
backport our code from python3 to python2 to run the parallel experiments presented
in Section 4.4. Furthermore, the choice of python makes it inconvenient for compiled

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 185

4.6. Conclusion

applications to use ddmpy. This led us to implement one of the robust two-level methods
in the MaPHyS HPC hybrid solver, in Fortran 90. Several parallelization strategies for
handling the coarse space correction were implemented and are discussed in Chapter 5.
A new implementation in modern C++ is underway (see Section 6.3 in the perspectives).

186 Louis POIREL

Chapter 5

Parallel design of coarse space
correction for hybrid solvers

5.1 Introduction

After a general presentation of domain decomposition methods (DDM) in Chapter 2, the
numerical convergence of abstract Schwarz (aS) methods was studied in Chapter 3 and
various DDM were implemented in the ddmpy toolbox presented in Chapter 4, including
two-level aS methods. For those two-level aS methods, two strategies were devised for
handling the coarse space correction (CSC) in a parallel context: either handling it with
a fully distributed mode or by centralizing it. The goal of the current chapter is to
further study the parallelization of the CSC. For that, we consider a fully-featured sparse
hybrid solver, MaPHyS. Contrary to ddmpy which has been designed to have the flexibility
of instantiating various DDM, MaPHyS implements one particular DDM, the Additive
Schwarz on the Schur (AS/S) method. While MaPHyS was a one-level AS/S methods
only, we extend it with a CSC mechanism and propose five strategies to handle the CSC
in a parallel context.

The chapter is organized as follows. First, the baseline (corresponding to the state of
the code before the present thesis) one-level MaPHyS solver is described in Section 5.2.
A CSC extension, as introduced in Chapter 3, and various parallelization strategies for
its implementation are presented in sections 5.3 and 5.4. The resulting code has been
employed to give a flavor of the potential of two-level hybrid solvers in Chapter 3 (see
Section 3.5.5). More comprehensive numerical experiments and a comparison of the strate-
gies on different test cases are presented in Section 5.5.

5.2 The baseline MaPHyS sparse hybrid solver

5.2.1 The additive Schwarz on the Schur (AS/S) method

The MaPHyS solver is based on a primal formulation on the interface (Section 2.6.3) with
an AS preconditioner (Section 3.4). This method, referred to as Additive Schwarz on the
Schur or AS/S Carvalho et al. (2001b); Giraud et al. (2008), has already been introduced

187

5.2. The baseline MaPHyS sparse hybrid solver

(a) Example of a matrix K (b) Adjacency graph associated with the matrix

Figure 5.1: Example of a matrix and its adjacency graph.

in previous chapters. In the present section, we present it again with a special focus on
the parallel implementation.

As in previous chapters, we aim at solving a sparse linear system of the form Ku = f ,
where K is a large, sparse, symmetric positive definite (SPD) matrix. We note G = {V , E}
the adjacency graph associated with K. In this graph, each vertex is associated with a
row or column of the matrix K and it exists an edge between the vertices i and j if the
entry ki,j is non zero. Figure 5.1 gives an example of matrix K (on the left) with its
adjacency graph (on the right) where the red vertex corresponds to the first unknown of
the linear system.

The governing idea behind the Schur complement approach is to split the unknowns
into two categories: interior and interface vertices. We assume that the vertices of the
graph G are partitioned into N disconnected subgraphs I1, . . . , IN separated by the global
vertex separator Γ. We also decompose the vertex separator Γ into non-disjoint subsets
Γi, where Γi is the set of vertices in Γ that disconnects Ii from other interior sets. Notice
that this decomposition is not a partition as Γi ∩ Γj 6= ∅ when the set of vertices in this
intersection defines the separator of Ii and Ij. By analogy with classical DDM in a finite
element framework, Ωi = Ii ∪ Γi is referred to as a subdomain with internal unknowns Ii
and interface unknowns Γi. If we denote I = ∪ Ii and order vertices in I first, we obtain
the following block reordered linear system(

KII KIΓ

KΓI KΓΓ

)(
uI
uΓ

)
=

(
fI
fΓ

)
(5.1)

where uΓ contains all unknowns associated with the separator and uI contains the un-
knowns associated with the interiors. Figure 5.2 gives an example of graph/matrix prob-
lem partitioning into 4 parts, with interior vertices/unknowns in blue and interface ver-
tices/unknowns in red.

188 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

(a) Partitioned adjacency graph associated with
the matrix

(b) Reordered matrix K (interior unknowns are
in blue and interface unknowns are in red)

Figure 5.2: Example of graph partitioning into 4 parts with its corresponding reordered
matrix.

Eliminating uI from the second block row (with a direct method in our case, see below)
of Equation (5.1) leads to the reduced system

SuΓ = f̃Γ (5.2)

where
S = KΓΓ −KΓIK−1

IIKIΓ and f̃Γ = fΓ −KΓIK−1
IIfI . (5.3)

The matrix S is referred to as the Schur complement matrix (see sections 2.4 and 2.5.2)
and inherits the symmetric positive definite property of K. This reformulation leads to a
general strategy for solving (5.1). A Preconditioned Conjugate Gradient (PCG) can be
implemented to solve the reduced system (5.2). Once uΓ has been computed the interior
variables uI can be computed with one additional solve for the interior unknowns via

uI = K−1
II (fI −KIΓuΓ) . (5.4)

Because a direct solver is considered for this last step one can notice that

‖Ku− f‖ ≈ ‖SuΓ − f̃Γ‖;

we use therefore the following normwise backward error stopping criterion for the PCG
iterations

‖SuΓ − f̃Γ‖
‖f‖

≤ ε.

While the Schur complement system is significantly smaller and better conditioned
than the original matrixK, it is important to consider further preconditioning to accelerate

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 189

5.2. The baseline MaPHyS sparse hybrid solver

Ω1 · · · Ωk Ωk+1 . . . ΩN

Υ1 Υk−1 Υk Υk+1 ΥN−1

Figure 5.3: Planar graph partitioned into horizontal strips (1D decomposition). The
interface between any two neighbors is Υk = Ωk

⋂
Ωk+1.

the convergence of CG. The AS/S preconditioner in MaPHyS is built as follows. First,
we define S̄i = RΓiSRT

Γi
, where RΓi : Γ→ Γi is the canonical point-wise restriction which

maps full vectors defined on Γ into vectors defined on Γi. S̄i corresponds to the restriction
of the Schur complement to the interface Γi of each subdomain. If Ii is a fully connected
subgraph of G, and if for each γ in Γi, there is an edge (γ, v) in G with v in Ii, then the
matrix S̄i is dense.

With these notations the algebraic Additive Schwarz preconditioner on the Schur com-
plement system (AS/S) given by Equation (5.1) reads

MAS/S =
N∑
i=1

RT
Γi
S̄−1
i RΓi . (5.5)

We notice that this preconditioner has a form similar to the Neumann-Neumann pre-
conditioner (Bourgat et al., 1989; De Roeck and Le Tallec, 1991), but in the SPD case
MAS/S is always fully defined and SPD (as S is SPD (Carvalho et al., 2001b)); which is
not always the case for Neumann-Neumann.

If we considered a planar graph partitioned into horizontal strips (1D decomposition)
with Υk = Ωk

⋂
Ωk+1 as depicted on Figure 5.3, the resulting Schur complement matrix

has a block tridiagonal structure as depicted in Equation (5.6),

S =


. . .
Sk−1,k−1 Sk−1,k

Sk,k−1 Sk,k Sk,k+1

Sk+1,k Sk+1,k+1

. . .

 . (5.6)

For that particular structure of S, the submatrices in boxes correspond to S̄k and S̄k+1

that are the restriction of the Schur complement S to the interface of Ωk and Ωk+1. Such
diagonal blocks, which overlap with one another, are similar to the classical block overlap
of the Schwarz method when writing in a matrix form for 1D decomposition. Similar
ideas have been developed in a pure algebraic context in earlier papers (e.g., (Cai and
Sarkis, 1999)) for the solution of general sparse linear systems.

190 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

5.2.2 Parallelization strategy for distributed memory architec-
tures

MaPHyS is based on an algebraic domain decomposition idea whose primary motivation
is to naturally exploit a coarse grained parallelism between the computation performed
on each sub-problem of the decomposition using MPI.

Based on the decomposition of G we can define a decomposition of the matrix K where
each sub-matrix is associated with a subdomain and is allocated to one MPI process. The
local interiors are disjoint and form a partition of the interior I = tIi. Consequently the
matrix KII associated with the interior unknowns has a block diagonal structure; each
diagonal block KIiIi corresponds to the set of internal unknowns of Ωi.

Two subdomains Ωi and Ωj are defined as neighbors if their interfaces intercept with
each other, that is Γi

⋂
Γj 6= ∅. The non disjoint union of the subdomain boundaries

form the overall interface Γ = ∪Γi. This implies that a special attention has to be paid
for the partitioning of KΓΓ as its entries are shared between different processes. In that
respect the matrix entries of KΓΓ must be weighted so that the sum of the coefficients
on the local interface submatrices are equal to one. For that, we introduce the weighted
local interface matrix KwΓiΓi that satisfies KΓΓ =

∑N
i=1RT

Γi
KwΓiΓiRΓi , where we recall that

RΓi : Γ→ Γi is the canonical point-wise restriction which maps full vectors defined on Γ
into vectors defined on Γi. In matrix terms, a subdomain Ωi may then be represented by
the local matrix Ki defined by

Ki =

(
KIiIi KIiΓi
KΓiIi KwΓiΓi

)
. (5.7)

The weighted local interface matrix KwΓiΓi is an algebraic equivalent of the interface block
of the local Neumann matrix KΓiΓi (see Section 2.3.2): even though it is not possible, from
K, to obtain the true local interface matrix KΓiΓi , it is not needed to build an AS precon-
ditioner. Any set of matrices that fulfill the sum condition KΓΓ =

∑N
i=1RT

Γi
KwΓiΓiRΓi can

be chosen. The global Schur complement matrix S from (5.2) can then be written as the
sum of elementary matrices

S =
N∑
i=1

RT
Γi
SiRΓi (5.8)

where
Si = KwΓiΓi −KΓiIiK−1

IiIiKIiΓi (5.9)

is the local Schur complement associated with subdomain Ωi. This local expression allows
for computing local Schur complements independently from each other.

The S̄i matrices, involved in the definition ofMAS/S , are the restriction of the global
Schur complement to Γi and can actually be built from this data distribution of the
Si matrices. To illustrate this construction, let us consider a subdomain Ωi with four
neighbors and Γi = Em∪Eg∪Ek∪Em the union of the intersections of the boundary of Ωi

with each of its neighbors (assuming there is no cross-point, i.e., interface variables shared
by more than two subdomains) as depicted in Figure 5.4. The local Schur complement

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 191

5.2. The baseline MaPHyS sparse hybrid solver

Ωi

Ω j
Ek

EgEm

Eℓ

Figure 5.4: A given subdomain Ωi with four neighbors

matrix associated with Ωi has the following 4× 4 block structure

Si =


S(i)
m,m Sm,g Sm,k Sm,`
Sg,m S(i)

g,g Sg,k Sg,`
Sk,m Sk,g S(i)

k,k Sk,`
S`,m S`,g S`,k S(i)

`,`

 (5.10)

where each block row or column is associated with an edge Ej, j ∈ {m, g, k, `}.
The matrix S̄i can be built from the local Schur complement Si by collecting and

summing (i.e., assembling in a finite element sense) its diagonal blocks thanks to a few
neighbor-to-neighbor communications. For instance, the diagonal blocks of S̄i associated
with the shared interface Ek = Γi∩Γj between Ωi and Ωj is Skk = S(i)

kk +S(j)
kk . Assembling

each diagonal block of the local Schur complement matrices, we obtain the local assembled
Schur complement, that is

S̄i =


Sm,m Sm,g Sm,k Sm,`
Sg,m Sg,g Sg,k Sg,`
Sk,m Sk,g Sk,k Sk,`
S`,m S`,g S`,k S`,`

 .

At each PCG iteration, one needs to apply the preconditionerMAS/S to a vector r in
order to compute z =MAS/S r. The vectors r and z are handled through their restrictions
ri = RΓir and zi = RΓiz inside each subdomain. The preconditioner is applied in parallel
as follows

zi = RΓi

N∑
j=1

RT
Γj
S̄−1
j RΓjr =

N∑
j=1

RΓiRT
Γj
S̄−1
j rj = S̄−1

i ri +
∑
j∈N (i)

RΓiRT
Γj
S̄−1
j rj, (5.11)

where N (i) = {j 6= i, Γi ∩ Γj 6= 0} is the set of neighbors of subdomain Ωi. After
solving z′i = S̄−1

i ri, the subdomain communicates with each of its neighbors to share the
restriction of z′i to their common interface and compute zi = z′i +

∑
j∈N (i)RΓiRT

Γj
z′j.

After convergence of the PCG, the solution in the interiors can be computed in parallel
using (5.4). The solution in Ii is

uIi = K−1
IiIi (fIi −KIiΓiRΓiuΓ) . (5.12)

Algorithm 1 summarizes how the classical parallel implementation of MaPHyS can be
decomposed into four main phases:

192 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

Algorithm 1: MaPHyS algorithm
1 partitioning step
2 factorization of the interiors
3 setup of the preconditioner
4 solve step

• (1) the partitioning step, consisting of partitioning the adjacency graph G of K into
several subdomains and distributing the Ki to different cores. This step is in practice
often performed by the application, whose partitioning must match the hypothesis
in Equation (3.9) on page 63;

• (2) the factorization of the interiors and the computation of the local Schur comple-
ment Si using Ki. This step is performed independently by each MPI process and
is common whether or not the CSC mechanism is applied and is thus not described
further;

• (3) the setup of the preconditioner by assembling diagonal blocks of Si via a few
neighbor to neighbor communications and factorization of this one. In the one-level
baseline version of MaPHyS, this step corresponds to Algorithm 2;

Algorithm 2: Baseline one-level setup of the preconditioner (baseline
step (3) of Algorithm 1)
1 Compute S̄i from Si by assembling diagonal blocks with neighbor to neighbor

communications
2 Compute S̄−1

i (factorize S̄i)

• (4) the solve step, where (4a) a parallel preconditioned Krylov method is performed
on the reduced system (Equation (5.2)) to compute xΓi , followed by (4b) inde-
pendent back solves on the interiors to compute each xIi (Equation (5.12)). For
SPD systems, the Krylov method of choice is the PCG. A PCG iteration is com-
posed of a matrix-vector product Sx, an application of the preconditionerMAS/Sx,
two dot products (plus one for the stopping criterion) and several vector additions,
subtractions and scalar multiplications. The application of the one-level baseline
preconditioner (Equation (5.11)) during step (4a) is described in Algorithm 3.

Note that subdomain Ωj is handled by MPI process j−1: as explained in Section 4.3.6,
index 0 is reserved for the coarse space so that subdomains are numbered from 1 to N
whereas MPI ranks are numbered from 0 to N − 1.

When the CSC is turned on, the setup (Algorithm 2) and application (Algorithm 3)
of the preconditioner are enhanced to compute it and apply it, respectively, as further
discussed below.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 193

5.3. Design of a coarse space correction in MaPHyS

Algorithm 3: Baseline one-level application of the preconditioner
(during baseline step (4a) of Algorithm 1)
1 Solve z′i = S̄−1

i ri
2 for j ∈ N (i) do
3 Send RΓjRT

Γi
z′i to process j − 1 and receive RΓiRT

Γj
z′j

4 end
5 Compute zi = z′i +

∑
j∈N (i)RΓiRT

Γj
z′j

5.3 Design of a coarse space correction in MaPHyS

The goal of the CSC mechanism is to improve the numerical quality of the preconditioner
to reduce the number of iterations, by controlling the condition number of the precon-
ditioned system. A CSC is defined by its coarse space V0, and the way it is combined
with the first-level preconditioner that it improves. Within a purely algebraic solver, the
construction of the solver can only rely on the information provided by the application,
which is K and f . However, in MaPHyS, it is possible to provide the matrix K in a dis-
tributed input mode through the local matrices Ki. If these local matrices are symmetric
positive semi-definite (SPSD), we can add a second level of preconditioning such that the
condition number and the number of iterations to reach convergence can be bounded,
as proved in Chapter 3 following a methodology closely related to the GenEO technique
introduced in (Spillane et al., 2014b).

For the purpose of the study conducted in this chapter, we have incorporated such a
CSC to the baseline (one-level) version of MaPHyS as follows. First (Section 5.3.1), during
the setup of the preconditioner , a local coarse space V i

0 is computed in each subdomain
Ωi; then, still during the setup of the preconditioner , a coarse matrix S0 computed from
S and V i

0 is computed and factorized. Second (Section 5.3.2), each application of the
MAS/S preconditioner is modified to include a coarse solve, leading to the two-level AS
preconditioner for the Schur complement problem denoted by MAS,2/S . The setup and
application of the two-level preconditioner are detailed in the following subsections.

5.3.1 Setup of the two-level preconditioner MAS,2/S

The setup of the preconditioner (step (3) of Algorithm 1) is performed as detailed in
Algorithm 4 in the case of the two-level preconditioner MAS,2/S . Additionally to the
one-level setup (Algorithm 2 as well as steps 1-2 of Algorithm 4), the CSC is set up
as follows (steps 3-10 of Algorithm 4). In each subdomain Ωi, the following generalized
eigenproblem is solved to compute the nv smallest eigenvalues and their corresponding
eigenvectors, thus including the kernel of Si if nv ≥ rank(ker(Si))

D−1
i SiD−1

i pik = λik S̄i pik,

where Di is a partition of unity, such that
∑N

i=1RT
Γi
DiRΓi = I, where I the identity

matrix (step 3). The number nv of eigenvectors per subdomain can be chosen a priori
or adapted depending on a convergence estimate as shown in Section 3.5.3. The local

194 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

coarse space basis can then be defined from these eigenvectors (step 4); in a matrix form
it writes

V i
0 =

[
pi1 p

i
2 · · · pinv

]
,

and the global coarse space basis can be formally defined as

V0 =
[
(RT

Γ1
V 1

0) (RT
Γ2
V 2

0) · · · (RT
ΓN
V N

0)
]
.

In practice, V0 is never explicitly formed, and no communication is required for this
first step. Solving the eigenproblems may take a lot of time, but it is purely local and
consequently fully scalable.

The two-level preconditioner we have incorporated into MaPHyS for illustrating the
experimental study conducted in this chapter is then defined as

MAS,2/S =MAS/S + V0

(
V T

0 SV0

)−1
V T

0 =MAS/S +M0, (5.13)

where M0 = V0 S−1
0 V T

0 and S0 = V T
0 SV0. The coarse matrix S0 can be computed in

parallel using Equation (5.8):

S0 = V T
0 SV0 = V T

0

(
N∑
i=1

RT
Γi
SiRΓi

)
V0 =

N∑
i=1

V̄ i
0

TSiV̄ i
0 =

N∑
i=1

S i0,

where V̄ i
0 = RΓiV0 =

[
(RΓiRT

Γ1
V 1

0) (RΓiRT
Γ2
V 2

0) · · · (RΓiRT
ΓN
V N

0)
]
and S i0 = V̄ i

0
TSiV̄ i

0 .
Since RΓiRT

Γj
is zero if Γi∩Γj = ∅, only neighbor-to-neighbor communications are needed

to compute V̄ i
0 (steps 5-8 of Algorithm 4). The local coarse matrix S i0 can then be

computed without any communication (step 9). However, the assembly (or not) and
factorization of S0 (step 10) to compute M0 require some global communication and
several parallelization strategies for these operations are detailed below in Section 5.4.

5.3.2 Application of the two-level preconditioner MAS,2/S

The application of the preconditioner (detailed in Equation (5.11) and Algorithm 3 for
the baseline preconditionerMAS/S) needs to be modified to include the coarse solveM0

required by the two-level preconditionerMAS,2/S defined in Equation (5.13).
The restriction of the coarse solveM0r to a subdomain can be computed as

RΓiM0r = RΓiV0 S−1
0 V T

0 r = V̄ i
0S−1

0

 V 1
0
TRΓ1

...
V N

0
TRΓN

 r = V̄ i
0S−1

0

 V 1
0
T
r1

...
V N

0
T
rN

 (5.14)

where ri = RΓir.
Computing the products V i

0
T
ri and V̄ i

0 z0 (where z0 = S−1
0 V T

0 r) can be done locally and
do not present any particular challenge. However, the implementation of the coarse solve
(step 7 of Algorithm 5) depends on the strategy used for the parallel factorization of the
coarse matrix S0 (step 10 of Algorithm 4). In the next section, we discuss several parallel
implementations for the coarse matrix factorization and corresponding solve steps.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 195

5.3. Design of a coarse space correction in MaPHyS

Algorithm 4: two-level setup of the preconditioner (two-level step
(3) of Algorithm 1)
// Baseline preconditioner (available before this thesis)

1 Compute S̄i from Si by assembling diagonal blocks with neighbor to neighbor
communications

2 Compute S̄−1
i (i.e., factorize S̄i)

// CSC (extension designed for this thesis)
3 Solve D−1

i SiD−1
i pik = λik S̄i pik for the nv smallest eigenvalues

4 Compute V i
0 = [pi1 p

i
2 · · · pinv]

5 for j ∈ N (i) do
6 Send RΓjRT

Γi
V i

0 to process j − 1 and receive RΓiRT
Γj
V j

0

7 end
8 Compute V̄ i

0 = [RΓiRT
Γ1
V 1

0 · · · RΓiRT
ΓN
V N

0]

9 Compute S i0 = V̄ i
0
TSiV̄ i

0

10 Factorize S0 =
∑N

i=1 S i0 (parallelizations discussed in Section 5.4)

Algorithm 5: two-level application of the preconditioner (during
two-level step (4a) of Algorithm 1)
// Baseline preconditioner

1 Solve z′i = S̄−1
i ri

2 for j ∈ N (i) do
3 Send RΓjRT

Γi
z′i to process j − 1 and receive RΓiRT

Γj
z′j

4 end
5 Compute zi = z′i +

∑
j∈N (i)RΓiRT

Γj
z′j

// CSC
6 Compute ri0 = V i

0
T
ri

7 Solve z0 = S−1
0

 r1
0
...
rN0

 (parallelizations discussed in Section 5.4)

8 Update zi ← zi + V̄ i
0 z0

196 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

5.4 Parallel strategies for the factorization (and corre-
sponding solve step) of the coarse matrix S0

The CSC we have incorporated into MaPHyS is built in the setup of the preconditioner
step of the solver. Its application occurs in the solve step at each iteration of the PCG
algorithm. As stated in Section 5.3, a special care has to be taken in order to favor
the parallel scalability when designing the CSC mechanism that must be numerically and
computationally effective. We have designed five parallel strategies to build and apply the
CSC; they differ in the parallel scheme employed for the factorization of the coarse matrix
S0 (step 10 of Algorithm 4) and the corresponding coarse solve (step 7 of Algorithm 5).
Indeed:

• S0 can be formed as either a dense (D) or a sparse (S) matrix.

• The associated factorization and solve steps can be handled on a single (1) process,
on all the N processes (11 in the example of Figure 5.5) of the main MaPHyS com-
municator (comm_main) or on a sub-communicator comm_CSC of CSC_NP processes
(with 1 ≤ CSC_NP ≤ N).

• Parallel distributed direct solvers (and especially sparse solvers such as Mumps and
Pastix) often propose both a centralized (C) and a distributed (D) input format
for the matrix; in the case of the centralized interface, note that the solver can be
executed in a parallel distributed context (on CSC_NP processes), but the matrix
and right-hand side must be first centralized (by MaPHyS in our case) on a single
process and the solution is finally returned on that process (to MaPHyS).

• If S0 is handled on a dedicated comm_CSC sub-communicator, it can optionally be
built hierarchically (H) or replicated (R) on multiple such sub-communicators.

We now give a brief overview of five combinations we have considered (and imple-
mented) in this thesis, which will be further detailed in sections 5.4.1 to 5.4.5.

• Dense Centralized (DC) strategy: The coarse matrix S0 is formed as a dense
(D) matrix and processed (factorized and solved) with a centralized (C) input ma-
trix format. In the current version, we rely on Lapack, therefore S0 can be handled
by only 1 process. If we note CSC_NP the number of processes associated with the
factorization (and corresponding solve step) of S0 and DC(CSC_NP) the correspond-
ing DC strategy, we can therefore currently only assess DC(1). Note that it would
be possible to consider a centralized interface to a distributed dense solver (for in-
stance using ScaPAPACK) on CSC_NP > 1 processes but we did not implement that
variant. The comm_main communicator is the only one used (see Figure 5.5a), S0

being factorized on its root process, CSC_master (P0 in Figure 5.5a). Every iter-
ation when the CSC needs to be applied, the residual is indeed first gathered on
the root process of comm_main communicator, a centralized solve is performed and
the solution is broadcast back to all the MPI processes (see Section 5.4.1). Such an
implementation might be effective for moderate size problems using also a moderate
number of MPI processes so that it is not worth exploiting the sparsity of S0.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 197

5.4. Parallel strategies for the factorization (and corresponding solve step) of the coarse
matrix S0

• Sparse Distributed (SD) strategy: This variant exploits the sparsity (S) of S0

and relies on all (CSC_NP = N) the MPI processes to factorize S0 with a sparse direct
solver using a distributed (D) input matrix. Similarly to DC(1), it only requires one
communicator (see Figure 5.5a once again). However, here the reason is that all the
N processes of the comm_main communicator are involved in the factorization of S0

(comm_CSC would exactly match comm_main). Compared to DC, S0 should be large
enough and the number of MPI processes moderate enough to allow for an efficient
parallel sparse solution using this SD(N) scheme. Section 5.4.2 further details this
strategy.

• Sparse Centralized (SC) strategy: Sparse direct solvers may not adopt an opti-
mal strategy for processing small or moderate size matrices such as S0 with respect
to the number of computational units. SC(CSC_NP) dedicates a group of CSC_NP
processes (3 in the example of Figure 5.5b) associated with a comm_group sub-
communicator (G0 in Figure 5.5b) to factorize S0. In this strategy, this comm_group
sub-communicator is employed as the comm_CSC communicator. See Section 5.4.3
for the algorithm description.

• Sparse Hierarchical Distributed (SHD) strategy: In this variant, all the MPI
processes from the original MaPHyS communicator are first split into NP_CSP bal-
anced sub-communicators (G0, G1, G2 and G3 in Figure 5.5c). All the processes of
a sub-communicator compute their contribution to S0 and make this contribution
available on their master (P0, P3, P6 and P9, respectively). All the CSC_NP masters
(P0, P3, P6 and P9) of the sub-communicators are hierarchically (H) merged into
a new comm_masters communicator (in red in Figure 5.5c) that is used to factor-
ize S0. In the SHD strategy, this comm_masters communicator is employed as the
comm_CSC communicator. Every iteration, each MPI process provides its contribu-
tion for the right-hand side of the coarse problem to its master. The masters then
altogether solve the coarse problem and broadcast back the solution to the processes
associated with their local communicator (G0, G1, G2 and G3, respectively). See
Section 5.4.4 for the algorithm description corresponding to this SHD strategy. We
note SHD(CSC_NP) the strategy set up with a comm_masters of CSC_NP processes
(4 in the example of Figure 5.5c).

• Sparse Replicated Centralized (SRC) strategy: This variant is similar to SC,
but all the entries of S0 are first redundantly stored on different MPI processes (P0,
P3, P6 and P9 in Figure 5.5c) that will act as masters of different sub-communicators
(G0, G1, G2 and G3, respectively) of size CSC_NP (equal to 3 for G0, G1 and G2,
and to 2 for G3 in this imbalanced example). Each such sub-communicator (G0,
G1, G2 and G3) redundantly plays the role of comm_CSC communicators (and thus
in particular redundantly factorizes S0). This variant allows one to express more
parallelism with a better locality in the communication scheme when broadcasting
the solution once the coarse problem is solved. See Section 5.4.5 for the algorithm
description corresponding to this SRC(CSC_NP) strategy and for the role of the
comm_masters communicator in that strategy.

198 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

The DC(1) and SD(N) strategies do not use another communicator than comm_main,
as the CSC is handled either by the master process of comm_main alone (DC(1)), or by all
the processes in comm_main (SD(N)). However, in SC(CSC_NP), the CSC is handled by a
sub-communicator comm_CSC (equal to comm_group = G0 in Figure 5.5b) of comm_main
with CSC_NP processes. In the SHD(CSC_NP) strategy, a sub-communicator comm_CSC of
CSC_NP processes is also defined on the comm_masters. The comm_main communicator
is partitioned into CSC_NP sub-communicators comm_group(g), where 1 ≤ g ≤ CSC_NP,
such that each process in comm_CSC is the master of a comm_group. In the SRC(CSC_NP)
strategy, the comm_main communicator is partitioned in N/CSC_NP sub-communicators
comm_group(g) (1 ≤ g ≤ N/CSC_NP) of size CSC_NP (or possibly CSC_NP −1 for some of
them if N is not a multiple of CSC_NP), each of them playing redundantly the role of a
comm_CSC communicator. In the algorithms below, i is the index of the subdomain (such
that the associated MPI rank is i-1), and g is the index of the group/sub-communicator.

Forming the matrix S0 or the right-hand side r0 is performed through gather -like
MPI collective communications (MPI_Gather, MPI_Allgather or a combination of both
depending on the schemes, see below). Conversely, the redistribution of the solution z0

would ideally be performed with scatter -like MPI collective communications. Because the
overlapping regions of the AS preconditioner are stored redundantly on each associated
process in the considered baseline MaPHyS parallel scheme (see Section 5.2.2), a scatter -
like MPI collective handling overlapping regions would be necessary to do so. However,
there is no such support in the MPI standard. A two-step scheme could be considered,
consisting of a scatter -like MPI collective communication followed by neighbor-to-neighbor
communications. We did not implement such a scheme. Instead z0 is simply broadcast
(with MPI_Bcast). The overhead due to this extra data movement has not been signifi-
cantly penalizing and we keep the study of alternatives for future work.

Before getting in the details of each of those five considered parallel variants we have
implemented in MaPHyS, note that the CSC designed for ddmpy in the previous chapter
(Section 4.3.12.2) only supported the SD(N), SC(1) and SRC(1) strategies.

5.4.1 Dense centralized (DC) strategy

This strategy consists of using a dense sequential direct solver (e.g., any Lapack imple-
mentation) on a single MPI process to apply the CSC. All the processes compute the
contribution of their subdomain to S0 and these contributions are then gathered and
summed (i.e., assembled/reduced) onto a single process.

Figure 5.5a gives an example of MPI configuration for this implementation when using
11 MPI processes in comm_main (in black). Only CSC_NP = 1 MPI process is used to
factorize the coarse matrix (CSC_master = P0).

For factorizing the coarse matrix, Algorithm 6 shows at line 1 that a first communica-
tion is performed in order to centralize and assemble the coarse matrix on the process of
rank CSC_master (see Figure 5.6a). Then, the coarse matrix is factorized using a dense
solver on the CSC_master process (line 3 in the algorithm and Figure 5.6b).

Then, at each iteration, one has to perform a coarse solve (Algorithm 7): the right-
hand side is centralized and assembled on process CSC_master (line 1 in the algorithm
and Figure 5.7a), before the solution can be computed sequentially by this process (line

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 199

5.4. Parallel strategies for the factorization (and corresponding solve step) of the coarse
matrix S0

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(a) DC(1) and SD(11). P0
is the master of comm_main.

G0P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(b) SC(3). P0 is the master
of both comm_main and G0
= comm_CSC.

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(c) SHD(4) and SRC(3). P0
is the master of comm_main,
G0 and comm_masters.

Figure 5.5: Communicator setup for the five parallel strategies employed for the CSC de-
sign on 11 processes. DC(1) and SD(11) rely only on the comm_main communicator. SC(3)
needs an additional communicator comm_group for the CSC: comm_group = comm_CSC =
G0. SHD(4) hierarchically builds the CSC on comm_masters: comm_masters = comm_CSC.
SRC(3) redundantly handles the CSC on comm_group(g), 1 ≤ g ≤ 4: G0, G1, G2 and
G3.

3 and Figure 5.7b) and broadcast back to all the MPI processes that pick up their part
of z0 (line 5 and Figure 5.7c).

Note once again that the subdomains are indexed from 1 to N (index 0 is reserved for
the coarse space) whereas the MPI rank are numbered from 0 to N − 1, the MPI rank
associated with subdomain i is i-1.

Algorithm 6: DC: compute S−1
0

1 Gather the S i0 and sum them into S0 on the master CSC_master of comm_main
2 if i− 1 == CSC_master then
3 Factorize S0 using the dense direct solver on CSC_master
4 end

Algorithm 7: DC:MAS,2/S application
1 Gather the ri0 and sum them into r0 on CSC_master
2 if i− 1 == CSC_master then
3 Solve z0 = S−1

0 r0 using the dense direct solver on CSC_master
4 end
5 Broadcast the solution z0 from CSC_master to all MPI processes in comm_main

5.4.2 Sparse distributed (SD) strategy

This implementation consists of using a sparse direct solver with a distributed input mode
for the matrix (e.g. the Mumps solver): all the MPI processes in comm_main can take

200 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

part in the coarse factorization and solve. Each process only computes its contribution
S i0 to S0 and calls the parallel sparse direct solver; the sparse direct solver is then respon-
sible for redistributing the data if needed in order to assemble these contributions and
factorize S0. Algorithm 8 shows the factorization call for this implementation strategy
which, as can be seen, involves no additional communication on MaPHyS side in its setup
of the preconditioner step (see also Figure 5.6c). Indeed, the communications required
to factorize the coarse matrix are performed by the sparse direct solver internally (see
Figure 5.6d).

Regarding the MPI configuration, Figure 5.5a gives an example when using N = 11
MPI processes in comm_main (in black), implying the use of the same CSC_NP = 11 MPI
processes for the sparse direct solver to factorize the coarse matrix.

The preconditioner application process is given by Algorithm 9. In this algorithm,
we suppose the input mode for the right-hand side of the solver is centralized, as well
as for the output of the solution1, both provided and available on the CSC_master MPI
process (P0 in Figure 5.5a). This strategy implies to gather the coarse right-hand side
on the CSC_master MPI process (line 1 of the algorithm and Figure 5.7d) and broadcast
the coarse solution in return (line 3 and Figure 5.7f) after the solve step (line 2 and
Figure 5.7e).

The main advantage of this strategy is that most of the work is delegated to the
distributed sparse direct solver: the implementation in MaPHyS is simpler, and the sparse
direct solver, having access to all the resources in the main communicator, should be able
(in theory) to optimize the parallel factorization and solve. In practice, it is often beneficial
to guide the sparse direct solver by running it on a sub-communicator of comm_main, as
proposed with the next strategies.

Algorithm 8: SD: compute S−1
0

1 Factorize S0 using the sparse direct solver in distributed input mode on comm_main

Algorithm 9: SD:MAS,2/S application
1 Gather ri0 and assembly into r0 on CSC_master
2 Solve z0 = S−1

0 r0 using the sparse direct solver on comm_main
3 Broadcast the solution z0 from CSC_master to all MPI processes in comm_main

5.4.3 Sparse centralized (SC) strategy

In this strategy, the sparse direct solver runs in a sub-communicator comm_CSC of the
main communicator comm_main to perform the coarse factorization and solve. For the
sparse solvers we have considered in this study, it means that the coarse matrix S0 must
first be gathered and summed on the root process of comm_main (CSC_master).

1Notice that the Mumps solver now allows one to provide the right-hand side in distributed input
mode, which was not the case at the beginning of this study. Using this feature would remove this
gathering step.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 201

5.4. Parallel strategies for the factorization (and corresponding solve step) of the coarse
matrix S0

Figure 5.5b gives an example of MPI configuration for this CSC implementation when
using 11 MPI processes in comm_main. The CSC communicator responsible for factorizing
and solving the coarse problem is comm_CSC. It contains CSC_NP = 3 MPI processes in the
example of Figure 5.5b.

For the factorization of the coarse matrix, Algorithm 10 shows that the coarse matrix
is first centralized and assembled on the CSC_master process (line 1 of the algorithm
and Figure 5.6e). Then, the assembled coarse matrix is factorized in a distributed way
on the communicator comm_CSC by the sparse direct solver (line 3 of the algorithm and
Figure 5.6f).

The coarse solve in the application ofM0 (Algorithm 11) requires first the centraliza-
tion and the assembly of the coarse right-hand side on the CSC_master MPI process (line
1 of the algorithm and Figure 5.7g). Then, the coarse problem is solved by the sparse
direct solver on the comm_CSC communicator (line 3 and Figure 5.7h). After this solve,
the coarse solution is broadcast on the comm_main communicator (line 6 and Figure 5.7i).

Algorithm 10: SC: compute S−1
0

1 Gather S i0 and assembly into S0 on CSC_master process
2 if i− 1 ∈ comm_CSC then
3 Factorize S0 using the sparse direct solver on comm_CSC (with centralized input

mode for S0).
4 end

Algorithm 11: SC:MAS,2/S application
1 Gather ri0 and assembly into r0 on CSC_master
2 if i− 1 ∈ comm_CSC then
3 Solve z0 = S−1

0 r0 using the sparse direct solver on comm_CSC
4 end
5 Broadcast the centralized solution z0 from CSC_master to all MPI processes in

comm_main

In terms of communication scheme, this mode is very close to the dense direct solver
mode. On the performance side, using a sparse direct solver instead of a dense direct
solver becomes more interesting when the size of the coarse system increases, causing
scaling issues with the centralized dense direct solver strategy.

5.4.4 Sparse hierarchical distributed (SHD) strategy

This parallel strategy is similar to a strategy proposed in (Jolivet et al., 2013). The
coarse problem is factorized and solved using a parallel sparse direct solver on a sub-
communicator comm_CSC of comm_main of size CSC_NP. A distributed input mode for
the matrix: comm_main is partitioned into CSC_NP sub-communicators comm_group(g)
(1 ≤ g ≤ CSC_NP), such that each process in comm_CSC is the master of a distinct

202 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

comm_group(g). To introduce the communicators involved in this strategy, we con-
sider the example given in Figure 5.5c. The main communicator comm_main with 11 MPI
processes is split into 4 sub-communicators (in blue: G0 = comm_group(1), . . . , G3 =
comm_group(4)). The comm_masters sub-communicator (in red) is formed by the masters
(P0, P1, P2 and P3) of group and is employed as comm_CSC communicator.

In this strategy, the coarse factorization (Algorithm 12) is performed in two steps:
first, the coarse matrix is partially gathered and summed on the master process of each
comm_group(g) communicator (line 1 of the algorithm and Figure 5.6g). Then, the sparse
direct solver with distributed matrix input is called to run on the sub-communicator
comm_CSC of all these local masters (line 2 and Figure 5.6i).

The corresponding coarse solve is given by Algorithm 13. Similarly to the other strate-
gies, we suppose that the input mode for the right-hand side of the solver is centralized as
well as the output of the solution. The gathering of the right-hand side can be performed
directly in one gathering step as in the previous three strategies (see figures 5.7a, 5.7d or
5.7g). We present an alternative in two steps, consisting of a first gathering step (line 1
of the algorithm and Figure 5.7j) in each comm_group(g) (1 ≤ g ≤ CSC_NP) followed by
another gathering step on the comm_master communicator (line 3 of the algorithm and
Figure 5.7k). This two-step variant is equivalent, leading to the centralization and the
assembly of the coarse right-hand side on the CSC_master MPI process, but its presenta-
tion here will allow to better understand in Section 5.4.5 how the SRC strategy gathering
step of the right-hand side differs from the one of the four other variants including the
SHD strategy. After that, the coarse problem is solved by the sparse direct solver on
the comm_CSC communicator (line 4 and Figure 5.7l). The coarse solution is eventually
broadcast on the comm_main communicator (line 5 and Figure 5.7m) as in the previous
three strategies.

Notice that if CSC_NP = 1, this SHD(1) strategy is the same as SC(1) (and similar
to DC(1) except for the management of the sparsity). On the contrary, if CSC_NP = N ,
SHD(N) is the same as SD(N).

Algorithm 12: SHD: compute S−1
0

1 Partially gather S i0 and assembly into S(g)
0 on the master of comm_group(g)

2 Factorize S0 with the sparse direct solver in distributed input mode on comm_CSC

Algorithm 13: SHD:MAS,2/S application

1 Gather ri0 and assembly into r(g)
0 on the master of comm_group(g)

2 if i− 1 ∈ comm_CSC then
3 Gather r(g)

0 and assembly into r0 on process CSC_master
4 Solve z0 = S−1

0 r0 with the sparse direct solver on comm_CSC
5 end
6 Broadcast the solution z0 from CSC_master to all MPI processes in comm_main

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 203

5.4. Parallel strategies for the factorization (and corresponding solve step) of the coarse
matrix S0

5.4.5 Sparse replicated centralized (SRC) strategy

This strategy extends the SC strategy by allowing to replicate the coarse problem on
disjoint and equally sized sub-communicators of the comm_main MPI communicator. By
similarity with the SHD strategy, these communicators are called comm_group(g); how-
ever, here, CSC_NP represents the size of these sub-communicators instead of the number
of groups. This strategy allows us to replace a global scatter/gather-like pattern at each
iteration involving all processes of comm_main by a more local one in each group.

A parallel distributed solver is used on each sub-communicator comm_group(g) to fac-
torize and solve the coarse system. Figure 5.5a shows an example of this strategy with 11
MPI processes in comm_main. First, the comm_main is split into 4 sub-communicators with
CSC_NP = 3 MPI processes (in blue): G0 (comm_group(1)), . . . , G3 (comm_group(4)).
Notice that G3 has one less MPI process because CSC_NP = 3 does not divide N = 11.
The masters of all groups are assembled into a comm_masters sub-communicator (in red).

The centralization of the coarse matrix occurs here in two steps. The coarse matrix
is first partially centralized and assembled into each comm_group(g) sub-communicator
(line 1 in Algorithm 14 and Figure 5.6j). Then, the partially centralized coarse matrices
are allgathered and summed on the comm_masters communicator (line 3 and Figure 5.6k).
After these communications, the entire coarse system is duplicated on the masters of all the
comm_group(g) sub-communicators. Then, the duplicated coarse system is (redundantly)
factorized concurrently on each comm_group(g) communicator (line 5 and Figure 5.6l).

The centralization communication scheme of the coarse right-hand side and the solu-
tion in Algorithm 15 is performed in a way very similar to the factorization scheme (see
figures 5.7n to 5.7p), the coarse solution being eventually broadcast redundantly within
each comm_group(g) sub-communicator (line 6 and Figure 5.7q).

This strategy was designed to enhance the scalability of the preconditioner application
on a large number of MPI processes. Despite the required allgather operation occuring
when centralizing and assembling the coarse right-hand side, replacing the broadcast
operation on comm_main in the SC strategy (Algorithm 11 line 5) by a broadcast on each
comm_CSC(g) might lead to better parallel performance.

Algorithm 14: SRC: compute S−1
0

1 Gather S i0 and assembly into S(g)
0 on the master of comm_group(g)

2 if i− 1 ∈ comm_masters then
3 Allgather S(g)

0 and assembly into S0 on comm_masters communicator
4 end
5 Factorize S0 with the sparse direct solver in centralized input mode on

comm_group(g)

204 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

Algorithm 15: SRC:MAS,2/S application

1 Gather ri0 and assembly into r(g)
0 on the master of comm_group(g)

2 if i− 1 ∈ comm_masters then
3 Allgather r(g)

0 and assembly into r0 on comm_masters communicator
4 end
5 Solve z0 = S−1

0 r0 with the sparse direct solver on comm_group(g)
6 Broadcast the solution z0 from the master to all MPI processes in comm_group(g)

5.5 Experimental study

5.5.1 Experimental setup

All the parallel experiments presented in this study were performed on the GENCI Occigen
cluster, hosted at CINES. The part of the cluster in use is composed of 2 dodeca-core
(24 cores per node) Haswell Intel Xeon E5-2690 v3 @ 2.6 GHz nodes with 64 and 128 Go
RAM per node.

The code was compiled with Intel compiler version 17.0.0 and linked with the Intel MPI
version 2017.0.0. The sparse computations were performed using either Pastix or Mumps.
All dense computations (including solving the eigenproblems) rely on the multithreaded
Intel MKL version 2017.0.0. Using the dsygvx Lapack routine, only selected eigenpairs
are computed.

All the experiments are designed such that the nodes of the cluster are fully occupied
(hence the number of cores is always a multiple of 24). MaPHyS uses one MPI process per
subdomain and each thread is bound to one core in the presented experiments. MaPHyS
can process each subdomain using multithreading (Agullo et al., 2016b), but unless stated
otherwise (Section 5.5.2.3), the solver is set up with one thread per process, resulting
in an equal total number of subdomains, MPI processes, threads and CPU cores. For
instance, an execution on 12,288 subdomains (x-axis) in figures 5.9 to 5.12 was executed
with 12,288 MaPHyS MPI processes on 12,288 CPU cores (512 nodes). Multithreading is
only assessed in Section 5.5.2.3 where each subdomain and its corresponding MPI process
may use multiple threads and CPU cores. Notice that on the Occigen cluster, memory
swapping is disabled by default so that all the runs are performed in memory without
time overhead due to the swap. The simulation campaigns were realized using the JUBE
Benchmarking Environment (Frings et al., 2010).

The rest of this section is organized as follows. First in Section 5.5.2 we investigate the
parallel performance of the various strategies on the Darcy academic test case, consistently
with the studies conducted in the previous chapters (see sections 3.5.1 and 4.4.1). The
performance of the solver integrated in two applications is then considered. Section 5.5.3
tackles the simulation of an airflow through the nose by solving the incompressible Navier-
Stokes equations with the Alya2 simulation code for high performance computational me-
chanics developed at the Barcelona Supercomputing Center. In Section 5.5.4, we present

2https://www.bsc.es/research-development/research-areas/engineering-simulations/
alya-high-performance-computational

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 205

https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational

5.5. Experimental study

Gather S0 Factorize S0

DC(1)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(a) gather(main)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(b) facto(master)

SD(11)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(c) ∅

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(d) facto(main)

SC(3)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(e) gather(main)

G0P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(f) facto(group)

SHD(4)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(g) gather(groups)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(h) ∅

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(i) facto(masters)

SRC(3)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(j) gather(groups)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(k) allgather(masters)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(l) facto(groups)

Figure 5.6: Parallel strategies for computing S−1
0 .

the performance of the solvers integrated in the plasma propulsion simulation code AVIP
jointly developed by CERFACS and the Laboratoire de Physique des Plasmas at École

206 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

Gather r0 Solve z0 = S−1
0 r0 Broadcast z0

DC(1)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(a) gather(main)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(b) solve(master)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(c) broadcast(main)

SD(11)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(d) gather(main)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(e) solve(main)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(f) broadcast(main)

SC(3)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(g) gather(main)

G0P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(h) solve(group)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(i) broadcast(main)

SHD(4)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(j) gather(groups)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(k) gather(masters)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(l) solve(masters)

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(m) broadcast(main)

SRC(3)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(n) gather(groups)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(o) allgather(masters)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(p) solve(groups)

G0

G1

G2

G3

P0 P1 P2

P3 P3 P4

P6 P4 P5

P9 P10

(q) broadcast(groups)

Figure 5.7: Parallel strategies for applying S−1
0 .

Polytechnique.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 207

5.5. Experimental study

(a) One subdomain (30×30×30Q1 elements)

(b) The cuboid test case: 4× 3× 2 subdo-
mains

(c) The bâton test case: 6× 1× 1 subdomains

Figure 5.8: Geometry of the Darcy test cases. The conductivity k in Equation (5.15) is
either k = 1 (blue) or k = 10, 000 (red).

5.5.2 Darcy academic test case

5.5.2.1 Test case

As in the previous chapters (see sections 3.5.1 and 4.4.1), we consider a stationary het-
erogeneous diffusion equation (or Darcy equation) in a 3D stratified medium

∇ · (k∇u) = 1. (5.15)

The equation is discretized using the Finite Element Method. Each local subdomain is a
cube of 30× 30× 30 elements. Along the vertical dimension, each cube is divided into 6
layers (of 30× 5× 30 Q1 elements) of alternating conductivity k = 1 and k = 10, 000, as
presented in Figure 5.8a. The genfem python module3 developed in the context of this
thesis is employed for generating the problems.

Two different sets of test cases are built from these local cubic subdomains, only
differing in the relative positions of the subdomains:

• the cuboid test case (Figure 5.8b), where the total number N of subdomains is
decomposed into N = N1 × N2 × N3 such that the global domain is as cubic as
possible. Given a number N of subdomains, we use a pre-processing script to
compute its prime number decomposition and group them in order to obtain three
factors as close as possible. Table 5.1 gives the values used for N1, N2 and N3 in
the experiments.

• the bâton test case (Figure 5.8c), where the N subdomains are all aligned on the
horizontal axis (N1 = N , N2 = N3 = 1) in a 1D-decomposition in a similar fashion

3https://gitlab.inria.fr/solverstack/genfem

208 Louis POIREL

https://gitlab.inria.fr/solverstack/genfem

5. Parallel design of coarse space correction for hybrid solvers

to the Darcy test case in (Spillane et al., 2014b). It corresponds to the setup
employed for Chapter 4 (see Section 4.4.1) as well as Section 3.5.5 and more details
are provided in the present section (in particular in Table 5.1).

In both cases, the global domain is the cuboid [0, N1]× [0, N2]× [0, N3] and has (30N1 +
1)× (30N2 + 1)× (30N3 + 1) vertices. A Dirichlet boundary condition is applied on the
left of the domain (x = 0) and a Neumann condition on every other boundary.

Bâton Cuboid
N N1 N2 N3 ndofs N1 N2 N3 ndofs
24 24 1 1 0.96M 4 3 2 0.67M
48 48 1 1 1.4M 4 4 3 1.3M
96 96 1 1 2.8M 6 4 4 2.7M
192 192 1 1 5.5M 8 6 4 5.3M
384 384 1 1 11M 8 8 6 11M
768 768 1 1 22M 12 8 8 21M
1,536 1,536 1 1 44M 16 12 8 42M
3,072 3,072 1 1 88M 16 16 12 83M
6,144 - - - - 24 16 16 167M
12,288 - - - - 32 24 16 333M

Table 5.1: Number of subdomains and degrees of freedom per dimension

The tolerance threshold for the CG algorithm is set to 10−6. In the following, we first
study the impact of the various parallel strategies for handling the CSC proposed above
in Section 5.5.2.2. We then study the opportunity to combine two-level preconditioning
(object of this thesis) with two-level (MPI+thread) parallelism (an additional feature of
the resulting hybrid solver) in Section 5.5.2.2.

5.5.2.2 Performance results with MaPHyS (without multithreading)

The baseline MaPHyS solver is compared to the two-level extension proposed in this
thesis with 1, 3 or 5 eigenvectors per subdomain. Due to the layered geometry, one
can expect (Galvis and Efendiev, 2010) that 3 eigenvectors per subdomain are enough to
cancel the effect of the heterogeneity. The five parallel strategies introduced in Section 5.4
are compared.

Figure 5.9 shows that the CSC limits the number of iterations to be performed by the
conjugate gradient. In the bâton problem, it even allows convergence to be reached with a
larger number of subdomains ; with 1 eigenvector per subdomain, the number of iterations
remains below 167 iterations, while using 3 eigenvectors per subdomain decreases this
number to 14. As expected, increasing the number of eigenvectors per subdomain beyond
3 does not significantly improve the convergence. In the cuboid case, the effect of CSC is
not as definite: the number of iterations to reach convergence keeps growing up to 12,288
subdomains, although it is 4 times less than without CSC. This is not in contradiction
with the bound on the condition number in Chapter 3, in which there is a factor N2

c , where
Nc− 1 is the maximum number of neighbors of a subdomain. In the bâton test case, each

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 209

5.5. Experimental study

●
●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

Bâton
C

uboid

24 48 96 192 384 768 153
6

307
2

614
4

122
88

0

200

400

600

800

1000

0

200

400

600

800

1000

Number of subdomains

N
um

be
r

of
 it

er
at

io
ns

Number of eigenvectors/subdomain (nv): ● 0 1 3 5

Figure 5.9: Number of iterations to reach convergence (‖Ku−f‖/‖f‖ < 10−6). Increasing
the number of eigenvectors per subdomain from 0 to 3 improves the convergence.

210 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

interior subdomain has only two neighbors (one on each side), and N2
c = 32 = 9. In

the cuboid test case, each interior subdomain has 26 neighbors (including those that only
share a corner), and N2

c = 272 = 729. Since the local subdomain geometry is the same in
both test cases, all the other factors in the bound are the same. This negative effect of the
number of neighbors in the cuboid case could be mitigated by applying the CSC using a
deflation (or projection) mechanism (AS,D/S, developed for ddmpy but not incorporated
into MaPHyS) instead of the additive correction (AS,2/S, made available for both ddmpy
and MaPHyS) from Equation (5.13). One can also note that the maximum number of
subdomains in one direction is only 32 in the cuboid case; we expect that the number of
iterations would stop increasing if experiments with an even larger number of subdomains
were to be performed.

The reduction of the number of iterations achieved by using a CSC and increasing the
number of eigenvectors per subdomain comes at a cost: one has to factorize and solve
a global coarse problem whose size increases with the total number of subdomains and
the number of eigenvectors per domain. This reflects in the time spent in the setup of
the preconditioner (Figure 5.10) and in the solve step (Figure 5.11). The total time to
solution for 1 right-hand side is given in Figure 5.12.

● ● ● ●
●

●

●

●

●
●

● ● ● ●
●

● ● ●
● ●

●

●

●

●

●
●

● ● ●
●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●

nv = 1 nv = 3 nv = 5

Bâton
C

uboid

24 48 96 192 384 768153
6
307

2
614

4
122

88 24 48 96 192 384 768153
6
307

2
614

4
122

88 24 48 96 192 384 768153
6
307

2
614

4
122

88

0.5
1
2

5
10
20

2

5
10
20

50
100
200

Number of subdomains

Pr
ec

on
d.

 t
im

e(
s)

, l
og

 s
ca

le

CSC strategy: ● SD(N)
SC(12)

RSC(12)
SHD(N/192)

DC(1)
No CSC

Figure 5.10: Time spent in the setup of the preconditioner . The additional cost of CSC
depends on the the size of the coarse space (number of subdomains ×nv), the number of
available CPU cores (equal to the number of subdomains) and the chosen CSC strategy.

The results show that the SD and DC strategies do not scale and can only be used
on a small number of subdomains. For the SD strategy, this is a limitation of distributed

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 211

5.5. Experimental study

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

nv = 1 nv = 3 nv = 5

Bâton
C

uboid

24 48 96 192 384 768153
6
307

2
614

4
122

88 24 48 96 192 384 768153
6
307

2
614

4
122

88 24 48 96 192 384 768153
6
307

2
614

4
122

88

0.5
1
2

5
10
20

50

2

5
10
20

50
100
200

500

Number of subdomains

So
lv

e
tim

e(
s)

, l
og

 s
ca

le

CSC strategy: ● SD(N)
SC(12)

RSC(12)
SHD(N/192)

DC(1)
No CSC

Figure 5.11: Time spent in the solve step. Depending on the geometry and the chosen
CSC strategy, the solve time can be orders of magnitude lower than in the baseline solver.

212 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●
● ●

●
●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

nv = 1 nv = 3 nv = 5

Bâton
C

uboid

24 48 96 192 384 768153
6
307

2
614

4
122

88 24 48 96 192 384 768153
6
307

2
614

4
122

88 24 48 96 192 384 768153
6
307

2
614

4
122

88

5

10

20

50

10

20

50

100

200

500

Number of subdomains

T
ot

al
 t

im
e(

s)
, l

og
 s

ca
le

CSC strategy: ● SD(N)
SC(12)

RSC(12)
SHD(N/192)

DC(1)
No CSC

Figure 5.12: Total time to solution for 1 right-hand side. The CSC improves the solver
scalability.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 213

5.5. Experimental study

direct solvers: the granularity of the problem (between nv = 1 and nv = 5 unknowns
per process) is too small and the solver is not able to use efficiently all the CPU cores
available. On the contrary, the DC strategy centralizes the problem on one core. The
scalability of this strategy is limited by both the ability of one single process to solve the
global coarse problem and the communications needed to centralize the right-hand side
and broadcast the solution to the other processes.

The SC strategy allows the coarse problem to be solved on a sub-communicator of
appropriate size, ensuring that the direct solver is used at the most efficient granularity.
However, global communications are still needed since the coarse problem is centralized
onto the sub-communicator. The SRC strategy performs slightly better by replicating the
coarse problem, splitting the global communications into a set of local communications
inside each communicator. The SHD strategy is even faster for the setup of the precondi-
tioner , while being very competitive for the solve step, yielding the best overall scalability
of the total time to solution.

As explained above, the CSC is much more effective on the bâton test case compared
to the cuboid test case, for two reasons: first, each subdomain has 9 times more neighbors
in the cuboid than in the bâton. As a result, both the number of iterations and the cost of
all neighbor-to-neighbor communications are higher in the cuboid case. The second reason
is that the number of iterations needed to reach convergence without CSC grows linearly
with the diameter of the domain, which is N1 = N for the bâton and max(N1, N2, N3) ≈
N

1
3 for the cuboid. As a result, the baseline solver without CSC performs much better on

the cuboid test case, and the CSC is not as much needed as in the bâton test case.

5.5.2.3 Performance results with MaPHyS, combining two-level precondi-
tioning with two-level parallelism

MaPHyS can benefit from two-level (MPI+thread) parallelism by using several cores
to handle each subdomain. Keeping the number of cores constant, two-level parallelism
makes possible to reduce the total number of subdomains (while increasing their respective
sizes) and can improve the robustness of the iterative solve in MaPHyS. This feature can
be used together with the newly implemented CSC described in the present chapter.

We first consider experiments on the test example associated with a long bâton as
described on Figure 5.8. The dimensions of the bâton are: (30× 3072 + 1)× 31× 31, that
results in a linear system of size larger than 88 million. We vary the number of subdomains
from 3,072 down to 128, while increasing the number of threads per subdomain from 1
up to 24, so that the total number of cores is kept constant equal to 3,072; the number
of unknowns per core remains constant. The heterogeneity of the problem has been set
to 10,000. The sparse direct solver employed both within the subdomains and for the
CSC is Mumps. We display in Figure 5.13 the total time to solution decomposed into the
time to factorize the local matrices and compute the local Schur complements (denoted
Schur Factorization, in blue), the time spent in setting up the preconditioner (denoted
Pcd Setup, in green) and eventually the time in the iteration loop plus the solution inside
the subdomains (denoted Iterative Solve, in red); the number of PCG iterations needed
to reach convergence is displayed above the bars representing the time of these three
steps. The first set of experiments was conducted without CSC (first subfigure on the

214 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

87

17
0

33
8

50
6

16

16

15

15

15

15

14

14

16

16

15

15

15

15

14

14

AS1 S ASG+3 S − SRC(12) ASG+3 S − SC(12)

1 2 3 4 6 8 12 24 1 2 3 4 6 8 12 24 1 2 3 4 6 8 12 24

0

10

20

30

40

Number of threads per MPI process

T
im

e
(s

)

Solver step: Schur Factorization Pcd Setup Iterative Solve

Figure 5.13: Step by step time for MaPHyS with two-level parallelism on 3,072 cores for
solving a bâton with heterogeneity 10,000 and 88 million unknowns.

left: AS1/S). It can be observed that the MPI+threads implementation allows us to
solve linear systems that are not tractable without this two-level implementation because
the numerical behaviour of the scheme is too poor on a large number of domains. The
second observation is that the best balance between the number of processes and threads
depends on whether the linear system has to be solved once or for several right-hand sides
given in sequence. For the first situation, 4 threads per MPI process gives the shortest
time to solution. For multiple right-hand sides, 12 threads per process exhibits the best
trade off as the time in the setup is reasonable and the iterative part is the fastest. This
is particularly interesting on non SPD problems where generic scalable preconditioners
might not exist. Although not discussed here, this MPI+thread implemenation also allows
for a better memory scalability. We refer to the PhD thesis of Nakov (2015) for a complete
description of this two-level MPI+thread implementation.

We have considered two other sets of experiments with CSC, referenced to as ASG+3/S,
since: (1) MaPHyS is based on AS/S, (2) we have incorporated an additive (+) correction,
(3) with a GenEO (G) coarse space, (4) parametrized here with 3 vectors per subdomain.
The first other set is based on the SRC parallel strategy (second subfigure in the middle:
ASG+3/S − SRC(12)). The second other set is based on the SC parallel strategy (third
subfigure on the right: ASG+3/S − SC(12)). In both cases, CSC_NP = 12 cores are
dedicated for the CSC. A few observations can be made. On that example the two
strategies perform very similarly in terms of performance. Second, for this scale of problem
and platform sizes, the CSC with one thread per process achieves the best performance
as the CSC already performs a very good numerical job.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 215

5.5. Experimental study

The weak scalability of the CSC used together with two-level parallelism is assessed
on a bâton as described on Figure 5.8 but with larger subdomains. Each subdomain is
a cube of 90 × 90 × 90 elements. The number of threads per subdomain is set to 12,
which corresponds to half the number of cores per node on the GENCI Occigen platform,
and allows MaPHyS to be tested on a larger number of unknowns. The total number of
unknowns of the problem is (N × 90 + 1) × 912 where N is the number of subdomains.
For N = 1, 344, there are more than 1 billion unknowns. The performance results of Ma-
PHyS are displayed in Figure 5.14, where the numbers on top of the bars are the numbers
of iterations. We compare the performance of the baseline MaPHyS version (left part
"No_csc" of the figure) relying on the Mumps internal sparse direct solver to the perfor-
mance of MaPHyS with a CSC relying on a sparse centralized parallel strategy handled
on a sub-communicator of 24 processes (SC(24)), relying on either Mumps (center) or
Pastix (right) internal sparse direct solver for performing the Schur Factorization step.

Several observations can be made. First, because we consider weak scaling, the time
spent in the Schur factorization is constant. Second, we can observe some artefacts when
there are only two subdomains. Indeed, the local Schur complement are twice smaller than
in the other test cases (the subdomain interface is composed of only one face, instead of
two in the other experiments). Furthermore, the local component of the one-level precon-
ditioner is equal to the global Schur complement, so that CG converges in one iteration.
Third, without the CSC (left part "No_csc"), one can observe the expected growth of
the number of iterations that is essentially proportional to the number of domains, yet
limited thanks to the usage of multithreading which allows for reducing the number of
subdomains (thus by a factor of 12 in this setup). With the CSC preconditioner (cen-
ter and right), we can see that the number of iterations remains constant while most of
the time is spent in the setup of the preconditioner, mainly in the solution of the local
generalized eigenvalue problem. All the numerical kernels scale well as the time does not
depend on the number of subdomains. The usage of Mumps (center) and Pastix (right)
internal sparse direct solvers both led to very high performance, with a slight advantage
when relying on Pastix. The results obtained with Pastix correspond the latest research
version at the moment the experiments were conducted while the ones obtained with
Mumps correspond to the community released version of the direct solver (and does not
include all the multithreading features designed in Sid Lakhdar (2014)).

This figure also illustrates the hybrid nature of the linear solver that bears some
resemblance to the direct methods where the setup, that corresponds to the factorization
for direct methods, is also the most time consuming part of the solution and can be
amortized if several right-hand sides have to be solved. For instance, on 1344 subdomains,
the problem with 109 unknowns has a setup time of 19 min. for a solve time of 15.5 s.
per right-hand side. On the other hand, the cost of the iterative part of the hybrid solver,
because the number of iterations is monitored by the CSC mechanism, does scale perfectly
which is usually not true for the forward/backward substitution phases of the sparse direct
solvers.

Both the bâton and cuboid Darcy test cases are very regular due to the geometric
domain decomposition: all the subdomains are identical to one another, thus eliminating
all load-balancing issues from the analysis. We therefore now consider more irregular test
cases arising from airflow and plasma propulsion applications from the Alya and AVIP

216 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

1

9

13

21

32

53
 92
 17
1

 32
7

2

10

11

13
 15

15
 15

15

15

15

12

15

15

15

15

15
 15
 15

Mumps
No_csc

Mumps
SC(24)

Pastix
SC(24)

2 4 8 16 32 64 128 256 512 102
4

134
4 2 4 8 16 32 64 128 256 512 102

4
134

4 2 4 8 16 32 64 128 256 512 102
4

134
4

0

500

1000

Number of subdomains

T
im

e
(s

)

Solver step: Schur Factorization Pcd Setup Iterative Solve
Weak scalability: constant subdomain size.

Figure 5.14: Step by step time for MaPHyS, with either Mumps (left and center) or Pastix
(right) internal sparse direct solver, on a large bâton test case with 91× 91× 91 = 7.5 105

unknowns per subdomain (1.0 109 unknowns for N = 1, 344 subdomains). Either no CSC
is employed (left) or the SC(24) parallel strategy is employed for handling the CSC (center
and right).

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 217

5.5. Experimental study

(a) Number of interior vertices per subdomain (b) Number of interface vertices per subdomain

Figure 5.15: Respiratory test case: pseudo-1D domain decomposition into 255 subdo-
mains.

simulation software, respectively. We do not study the combined effects of two-level
preconditioning with two-level parallelism in the following but focus only on the former
effect, main object of this thesis.

5.5.3 A respiratory airflow application using the Alya code

5.5.3.1 Test case

Alya is a high performance computational mechanics code to solve coupled multi-physics
/ multi-scale problems, which are mostly coming from engineering applications (Vázquez
et al., 2016). The physics considered in this study is the incompressible Navier-Stokes
equations. They are solved implicitly, using an algebraic fractional step based strategy
described in (Houzeaux et al., 2011). We consider here the simulation of the airflow
through the nose. The mesh is characterised by a very elongated geometry with small
passages in the nasal cavity, leading to a pseudo-1D elongated domain decomposition
when parallelizing through partitioning the mesh, see Figure 5.15. Due to the elongated
geometry, low frequencies are hardly damped with a one-level DDM approach, motivating
the use of a CSC.

The discretization of the problem leads to a coupled algebraic system to be solved at
each time step. This algebraic system is split to solve independently the momentum and
the continuity equations. At each time step, the momentum and continuity equations
are solved repeatedly until the solution converges to the monolithic solution. Due to the
splitting strategy, it is necessary to solve the momentum and the continuity equations
twice per time step. A in-house Alya solver is used to solve the unsymmetric momentum
equation, while the continuity equation is SPD and is solved using the MaPHyS solver.
For a complete description of this test case, we refer to (Calmet et al., 2016).

218 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

5.5.3.2 Performance results with MaPHyS

The parallel benchmarks have been conducted on 264, 528, 1,056 and 2,112 CPU cores.
In this configuration, we have thus employed 264, 528, 1,056 and 2,112 MPI processes,
respectively. Since Alya has a dedicated “master” MPI process, these calculations were
performed with 263, 527, 1,055 and 2,111 subdomains, respectively. The stopping criterion
is set to 10−6 with a maximum of 2,000 iterations. For each experiment, 10 time steps
are performed, each time step requiring to solve the linear systems twice.

●

●

●

●●

40

60

80

100

150

200

264 528 1056 2112
Number of processes

T
im

e
(s

ec
on

ds
),

lo
g

sc
al

e

Number of eigenvectors/subdomain (nv): ● 2 3 5

CSC strategy: ● ● ● ● ●DC(1) SC(12) SD(N) SHD(N/132) SRC(12)

(a) Total time to solve the continuity problem

●

●

●

●
●

8
10

20

40

60
80

100

150
200

264 528 1056 2112
Number of processes

T
im

e
(s

ec
on

ds
),

lo
g

sc
al

e

Number of eigenvectors/subdomain (nv): ● 2 3 5

CSC strategy: ● ● ● ● ●DC(1) SC(12) SD(N) SHD(N/132) SRC(12)

(b) Global preconditioner application time

●

●

●

●●

1

2

4

264 528 1056 2112
Number of processes

sp
ee

d−
up

, l
og

 s
ca

le

Number of eigenvectors/subdomain (nv): ● 2 3 5

CSC strategy: ● ● ● ● ●DC(1) SC(12) SD(N) SHD(N/132) SRC(12)

(c) Speedup in solving the continuity equation

●

●

●

●
●

30

60

90

120

264 528 1056 2112
Number of processes

Ef
fic

ie
nc

y
(%

)

Number of eigenvectors/subdomain (nv): ● 2 3 5

CSC strategy: ● ● ● ● ●DC(1) SC(12) SD(N) SHD(N/132) SRC(12)

(d) Efficiencies in solving the continuity equation

Figure 5.16: Evaluation of MaPHyS strong scaling with different CSC implementations
on the respiratory test case.

The results are presented in Figure 5.16, consisting of four quadrants, showing the Ma-
PHyS solver total time (Figure 5.16a), the global preconditioner application time for Ma-
PHyS (Figure 5.16b), the speedups (Figure 5.16c) and the parallel efficiencies normalized
with the execution on 264 processes (Figure 5.16d) of the MaPHyS solver, respectively.
The five parallel strategies proposed in Section 5.4 for handling the CSC are assessed, with
a number of nv = 2, 3 and 5 eigenvalues per subdomain. We only report the performance
for the number of eigenvalues nv leading to the lowest total computation time, the shape
of the points indicating the associated nv value (circle, triangle and square for nv = 2,

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 219

5.5. Experimental study

3 and 5, respectively). As the matrix changes between each time step, MaPHyS has to
perform several times its factorization step in order to factorize the local interior problems
and compute the local Schur complements. However, MaPHyS has been set up so that
the preconditioner (both for the local and coarse components) remains fixed through the
ten considered time steps. If necessary, it could be set up to be recomputed at a given
frequency but that was not critical in our experiments and we do not report further on
that option.

Consistently with the results presented in Section 5.5.2, SD strategy does not scale: the
distributed sparse direct solver is not able to efficiently use all the available computing
units without further guidance. The DC strategy does not scale well either when the
size of the coarse space increases. Instead of providing the global communicator to the
direct solver and letting it handle data distribution as in SD, the SC strategy centralizes
the coarse matrix on a process and provides a smaller sub-communicator of size 12 to
the sparse direct solver. This strategy scales well up to 1,056 processes, but its parallel
efficiency drops from 90% to 50% on 2,112 processes. The hierarchical SHD strategy does
not perform better. The replicated SRC strategy outperforms all the other strategies with
a parallel efficiency of 70% on 2,112 processes with respect to 264 processes.

5.5.3.3 Performance results with ddmpy

The performance of 14 ddmpy solvers was also assessed on the same respiratory test case
with 1,055 subdomains (Figure 5.17). Besides the preconditioners already introduced in
Section 4.4.1, the ASG+3 preconditioner is an additive two-level AS preconditioner that
uses a GenEO coarse space with 3 vectors per subdomain (see Section 3.4). These results
confirm the relevance of two-level methods based on the Schur complement system. How-
ever, on this test case, using the adaptative coarse space with 3 vectors per subdomains
instead of the simpler partition-of-unity coarse space does not improve significantly the
convergence, as can be seen by comparing the results of the AS2/S and ASG+3/S methods
for additive CSC or the ASD/S and ASGD3/S methods for deflated CSC.

Note that the deflated preconditioners in ddmpy are based on A-orthogonal projections
and should be recomputed if the matrix A changes. As a result, the best method for this
airflow test case is the additive two-level AS preconditioner based on a partition-of-unity
coarse space applied on the Schur complement system (AS2/S).

5.5.4 A plasma propulsion application using the AVIP code

5.5.4.1 Test case

Electric propulsion can reach higher exhaust velocities compared to chemical systems,
resulting in lower propellant mass requirements and a significant possible saving for the
space industry. Among the different electric propulsion systems, Hall effect thrusters
are used for spatial propulsion since the 1970s. However inside a Hall thruster, complex
physical phenomena such as erosion or electron anomalous transport which may lower
thruster efficiency and lifetime, are not yet fully understood. Thanks to HPC, numerical
simulations are now considered for understanding the plasma behavior. With the renewed
interest for such electric propulsion to supply small satellites, parallel numerical solvers

220 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

12
84

2

96
6

12

67

15
4

24

8

12
2

20

1

61

10
3

44

75

71
33

93

64

61
0

10

30

37
7

46

5

48

74

32

49

40

66

26

45

K
0

K
0D

K
AS1

K
AS2

K
ASD

K
ASG+3

K
ASGD3

S
0

S
0D

S
AS1

S
AS2

S
ASD

S
ASG+3

S
ASGD3

1e−
06

1e−
10

0

25

50

75

100

0

25

50

75

100

T
im

e
(s

)

Solver step: Schur Factorization Local Pcd Setup Coarse Eigen Solve Coarse Pcd Setup Direct Solve Iterative Solve

Figure 5.17: Step by step time for ddmpy on Alya respiratory test case (1,055 domains).

able to predict accurately the real thruster efficiency have become crucial for industry.
Accuracy and reliability are of course essential and different numerical plasma models
with various orders of accuracy have emerged. On the one hand, Particle-In-Cell (PIC)
models follow the trajectories of a representative number of physical particles called macro-
particles in the presence of electromagnetic fields. They are often coupled to a Monte Carlo
(MCC) module to deal with statistical collisions and a Maxwell or Poisson solver to solve
electromagnetic fields. On the other hand, fluid models describe the macroscopic behavior
of each population of particles.

The design and development of the AVIP code is an on-going joint effort between
CERFACS and the Laboratoire de Physique des Plasmas at École Polytechnique. The
AVIP code solves the plasma equations in complex industrial geometries using 3D un-
structured parallel efficient schemes based either a PIC approach or a fluid methodology.
While full 3D PIC simulations of a Hall thruster still require very high computational
resources, fluid models provide 3D results on the plasma behavior inside the discharge
channel in a reasonable time . On the other hand the PIC approach is more accurate
and does not rely on additional hypotheses as the fluid model does. Finally, the electric
potential is resolved via the solution of a Poisson equation. For more details on AVIP
and the selected models we refer to (Joncquieres et al., 2018).

When the plasma is simulated using the PIC model, highly computing intensive cal-
culation on the particles are involved that further parallelizes naturally. Consequently,
the solution of the linear systems resulting from the discretization of the Poisson equation
becomes rapidly a bottleneck on large computing platforms. Its solution requires the use
of a scalable linear solver in the strong sense; that is, that remains effective when the

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 221

5.5. Experimental study

number of unknowns per CPU core shrinks while the number of cores increases to keep
the PIC calculation affordable. Figure 5.18 shows the strong scalability experiments per-
formed on a mesh with 12 million cells using PRACE Tier-0 computing resource, leading
to a linear system with about 6 million unknowns for the Poisson system, and 2.5 mil-
lion particles. For those experiments, the linear system is solved with the “best” PETSc
solver selected by the AVIP team after many experiments with various solvers available in
PETSc (Balay et al., 2018) (it corresponds to a MinRes with local SOR preconditioner).
It can be seen that most of the numerical kernels involved in the PIC calculation scale
almost perfectly (sorting, MCC, interpolation, transport) while the time to solution for
the Poisson problem increases for a number of cores larger that 2,000; that is, when the
number of unknowns per core becomes lower that 3,000. Figure 5.19 shows a strong scal-
ability comparison between the PETSc solver and MaPHyS (without CSC, as this feature
was not available at the time the collaboration between the AVIP and MaPHyS teams
started), still on a PRACE Tier-0 machine. We can first observe that MaPHyS performs
better than PETSc on this half million problem and that MaPHyS also exhibits strong
scalability issues when the number of unknowns per core becomes smaller than 1,000
(daily calculations of AVIP use a few thousands of unknowns per core). Although not
described here, not only did MaPHyS outperform PETSc in terms of time to solution,
but MaPHyS was also much more robust to the heterogeneity in the mesh size of the
considered test case. This heterogeneity translates into heterogeneity in the linear sys-
tem entries, which often prevents the PETSc solver to converge to the targeted accuracy.
Those results and observations motivated the integration of MaPHyS in AVIP and the
complementary performance study presented in the next section.

5.5.4.2 Performance results with MaPHyS

Since each iteration in AVIP requires a solution with the same matrix, the setup step
is performed only once and its cost becomes negligible in comparison with the accumu-
lated time of solving for a different right-hand side at each iteration. As a result, the
performance of the Poisson solver in AVIP is governed by the performance of the solve
step.

The performance of the five CSC strategies applied on the AVIP test case with nv = 3,
5 and 10 eigenvectors per subdomain are presented in Table 5.2 and Figure 5.20. Using a
tolerance of 10−10 as a threshold for the stopping criterion in MaPHyS (as needed for AVIP
simulations), the best performance is achieved using the SC(24) strategy with a coarse
space of nv = 3 eigenvectors per subdomain. The solve time with this CSC strategy is
4.004 s. which is an improvement of 40% from the solve time using the baseline one-level
version of MaPHyS (6.831 s.). The four other strategies have a solve step that is about
25% longer than SC.

Within a PRACE Tier-0 project the AVIP team had been allocated 30 million core-
hours; most of the simulations were performed using MaPHyS without the CSC feature
presented in this chapter. If the CSC implementation in MaPHyS had been available
at the beginning of the PRACE Tier-0 project, extrapolating the MaPHyS performance
displayed in Table 5.2, the use of ASG+3/S instead of AS1/S would have allowed to
save about 6 million core-hours (a fifth of the total allocation), if all the runs had been

222 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

Figure 5.18: Parallel performance of the AVIP code on a mesh with 12 million elements
and 2.5 million particles

performed on about a thousand of cores where the solution of the Poisson equation roughly
corresponds to half of the time to solution (the additional setup cost is negligible due to the
number of successive solves). This interpolation is computed based on the performance
observed with a stopping criterion threshold equal to 10−10, that covers most of the
AVIP calculation. This simple extrapolation exercise highlights how crucial is the choice
of efficient parallel linear solvers in computational sciences and the continuous need to
design numerically and computationally efficient parallel solvers.

5.5.4.3 Performance results with ddmpy

The performance of 13 ddmpy solvers was also assessed on the same test case and is
reported in Figure 5.21 and Table 5.3. Unfortunately, the computation of the GenEO
coarse space for the Schur complement system on that test case resulted in an error (not
further investigated at the time of writing this thesis), and the preconditioners ASG+3,
ASGD3 and NNG+3 could therefore only be applied on K and not on the interface system
S.

For a tolerance of 10−10, the best solver regarding the total time to solution is a deflated
AS preconditioner based on a partition-of-unity coarse space (ASD/K). The solver with
the fastest solve step is ASGD3/K solver, which is 4 times faster that the baseline AS1/S

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 223

5.5. Experimental study

Table 5.2: MaPHyS coarse space correction implementations tested on the AVIP test case
(1,008 domains). The Setup, Solve and Total times are the max among all subdomains,
in seconds (s). Each subdomain is associated with one MPI process binded on one CPU
core.

Tolerance 10−6 Tolerance 10−10

nv # it. Setup Solve Total # it. Setup Solve Total
No csc 0 15 11.37 1.672 13.06 64 11.17 6.831 18.03
DC(1) 3 5 72.35 0.892 73.26 27 74.10 5.016 79.14
SD(1008) 3 5 77.31 0.939 78.26 27 78.43 4.975 83.43
SC(24) 3 5 72.57 0.874 73.47 27 74.09 4.004 78.12
SRC(24) 3 5 72.19 1.037 73.25 27 73.83 5.264 79.12
SHD(42) 3 5 73.44 1.077 74.53 27 74.15 5.137 79.33
DC(1) 5 5 74.91 0.910 75.84 25 75.44 4.868 80.33
SD(1008) 5 5 88.03 1.134 89.19 25 87.98 5.247 93.24
SC(24) 5 5 72.43 1.170 73.63 25 74.08 4.755 78.85
SRC(24) 5 5 74.17 0.938 75.13 25 73.48 4.618 78.12
SHD(42) 5 5 74.24 0.985 75.24 25 74.64 4.086 78.75
DC(1) 10 5 86.76 1.520 88.31 23 86.44 6.624 93.11
SD(1008) 10 5 94.54 1.178 95.74 23 93.07 4.851 97.94
SC(24) 10 5 78.30 0.837 79.17 23 77.39 4.383 81.82
SRC(24) 10 5 76.06 1.111 77.19 23 76.58 4.359 80.95
SHD(42) 10 5 74.77 1.065 75.86 23 76.52 4.538 81.08

224 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

Figure 5.19: Strong scalability comparison between the AVIP-PETSc solver and Maphys
on a 500,000 problem size

MaPHyS solver. Based on the same interpolation as in the previous section, using the
ASGD3/K ddmpy solver would have saved more than 11 million core-hours (a third of the
total allocation).

5.6 Conclusion

In this chapter, we introduced and compared five parallel strategies for the coarse space
correction presented in Chapter 3. After the algorithms corresponding to these strategies
are exposed, they are tested on 3 different test cases, including a heterogeneous diffusion
problem with up to one billion unknowns on 16,128 cores.

These parallel strategies for two-level hybrid solvers are not restricted to the compu-
tation of coarse space correction. They can be applied for any application where a sparse
linear system needs to be factorized and solved with a very small granularity (only a few
unknowns per MPI process). Our experiments show that distributed sparse direct solvers
should not be expected to handle well such extreme data distributions. On the contrary,
the corresponding Sparse Distributed strategy was always one of the two least scalable
strategies.

Good parallel performance is achieved by redistributing the data and handling the

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 225

5.6. Conclusion

15

64

5
 5

5

5
 5

27
 27

27

27

27

5

5

5
 5

5

25

25

25

25

25

 5

 5

5

5

5

 23

 23

23

23

23

0 3 5 10

1e−
06

1e−
10

No c
sc

DC(1)

SC
(24

)

SD
(10

08)

SH
D(42

)

SR
C(24

)
DC(1)

SC
(24

)

SD
(10

08)

SH
D(42

)

SR
C(24

)
DC(1)

SC
(24

)

SD
(10

08)

SH
D(42

)

SR
C(24

)

0

25

50

75

100

0

25

50

75

100T
im

e
(s

)

MaPHyS step: Schur Factorization Pcd Setup Iterative Solve

Figure 5.20: Step by step time for MaPHyS on AVIP test case

25
7

27

41

54
9

42

19

29

16
0

54

13
0

32

10
1

9

46

9

39

7

14
1

82

7

21
9

13

00

15

64

25

64

13

43

K
0

K
0D

K
AS1

K
AS2

K
ASD

K
ASG+3

K
ASGD3

K
NNGD3

S
0

S
0D

S
AS1

S
AS2

S
ASD

1e−
06

1e−
10

0

25

50

75

100

0

25

50

75

100T
im

e
(s

)

Solver step: Schur Factorization Local Pcd Setup Coarse Eigen Solve Coarse Pcd Setup Direct Solve Iterative Solve

Figure 5.21: Step by step time for ddmpy on AVIP test case

226 Louis POIREL

5. Parallel design of coarse space correction for hybrid solvers

Table 5.3: Various ddmpy solvers tested on the AVIP test case (1008 domains). The Setup,
Solve and Total times are the max among all subdomains, in seconds (s). Each subdomain
is associated with one MPI process binded on one CPU core. The best times obtained
with MaPHyS are given below as a reference.

Tolerance 10−6 Tolerance 10−10

Solver Method # it. Setup Solve Total # it. Setup Solve Total
ddmpy 0/K 257 0 1.509 1.509 2741 0 13.919 13.919

0D/K 549 0.624 6.096 6.707 4219 0.510 46.124 46.626
AS1/K 29 2.196 1.996 3.237 160 2.194 5.942 7.147
AS2/K 54 2.757 1.969 4.715 130 2.475 4.893 7.292
ASD/K 32 2.736 2.332 4.031 101 2.668 4.656 6.277
ASG+3/K 9 89.173 0.483 89.604 46 89.180 1.974 91.147
ASGD3/K 9 92.284 0.547 92.773 39 90.973 1.652 92.610
NNGD3/K 7 91.975 0.735 92.683 n.c.
0/S 141 8.292 8.595 16.882 827 8.235 49.740 57.970
0D/S 219 8.692 14.476 23.157 1300 8.717 78.923 87.621
AS1/S 15 15.103 7.158 16.912 64 14.841 12.515 22.284
AS2/S 25 16.307 2.971 19.257 64 15.396 7.432 22.808
ASD/S 13 15.361 7.126 17.170 43 15.735 10.443 20.860

MaPHyS AS1/S 15 11.37 1.672 13.06 64 11.17 6.831 18.03
ASG+3/S 5 78.30 0.837 79.17 27 74.09 4.004 78.12

coarse problem on a sub-communicator of the main communicator. This way, the size of
the sub-communicator can be adjusted such that the granularity of the coarse problem
is optimal with regards to the sparse direct solver in use. Depending on the test case,
different strategies following this principle achieve the best performance.

This optimized two-level version of MaPHyS in Fortran 90 was compared with solvers
provided by the ddmpy toolbox exposed in Chapter 4. Although, for any particular
method, the Fortran implementation is faster than the python implementation, a greater
range of methods were implemented in python thanks to the language expressivity. The
flexibility offered by the ddmpy toolbox makes up for the difference in term of pure per-
formance, as it is easier to adjust the method for a particular test case.

Because there is no support for scatter -like MPI collective handling overlapping re-
gions in the MPI standard, we instead broadcast z0. For ensuring further scaling, one
option would be to design a two-step scheme consisting of a scatter -like MPI collective
communication followed by neighbor-to-neighbor communications. In any case, while we
have considered the opportunity to provide the CSC matrix S0 in distributed input mode
(SD and SHD schemes), we considered only a centralized input mode for handling the
right-hand side r0 and the solution z0. Indeed, the Mumps solver, onto which we rely
to handle the CSC in a parallel distributed context, did not provide a distributed input
mode for those vectors. This option is now available and we plan to investigate it in the
future work.

A new implementation in modern C++ is underway as mentioned in Section 6.3.
Some recent features of this language should make it possible to combine the flexibility of

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 227

5.6. Conclusion

modern high-level languages (such as python) with the robust performance of compiled
languages (such as Fortran).

228 Louis POIREL

Chapter 6

Conclusion and perspectives

6.1 Conclusion

In this thesis manuscript, we investigated different ways to design algebraic hybrid solvers
that use domain decomposition ideas and principles. In Chapter 2, we proposed an
overview of classic domain decomposition methods in a continuous setting as well as their
algebraic counterparts. Then, in Chapter 3, we analyzed the convergence of a subset
of these methods known as two-level abstract Schwarz methods for symmetric positive
definite (SPD) problems and proposed a new coarse space for these methods based on the
GenEO methodology (Nataf et al., 2011; Spillane and Rixen, 2013; Spillane et al., 2014a)
such that the convergence rate is independent of the number of subdomains and the
difficulty of the original problem. Interestingly, the proposed methodology turns out to
be a comparison of the considered particular abstract Schwarz method with generalized
versions of both Neumann-Neumann and Additive Schwarz for tackling the lower and
upper part of the spectrum, respectively. We furthermore showed that the application of
the considered coarse space corrections in an additive fashion is robust in the Additive
Schwarz case although it is not robust for abstract Schwarz methods in general. In
Chapter 4, the relevance of python as a language for designing HPC domain decomposition
solvers has been assessed and a new parallel toolbox ddmpy was presented using a literate
programming approach for reproducible science. Its flexibility allowed us to design, study
and compare a large spectrum of solvers. In Chapter 5, we considered the fully-featured
MaPHyS solver, implementing an Additive Schwarz on the Schur. We incorporated a
coarse space correction in an additive fashion (shown to be robust in the Additive Schwarz
case in Chapter 3). We designed multiple parallel strategies whose parallel efficiencies were
assessed thanks to the integration of MaPHyS in two large application codes, namely, Alya
developed at BSC and AVIP jointly developed by CERFACS and Laboratoire de Physique
des Plasmas at École Polytechnique. For this latter code, part of the parallel experiments
were conduced on a PRACE Tier-0 machine within a PRACE Project Access.

This work opens new challenges and perspectives that are detailed in the following
sections:

• the robust preconditioners presented in Chapter 3 can only be applied on SPD
problems and two different ideas for solving general (non SPD) problems are the

229

6.2. Robust methods for general (non SPD) problems

following:

– use a N -Lagrange formulation with a transmission matrix Ti supplied by the
application alongside the local matrix Ki. With a well chosen transmission
matrix, no coarse space is needed to ensure good convergence (Japhet, 1998)

– use a multipreconditioned approach (Bridson and Greif, 2006; Greif et al.,
2011; Spillane, 2016) to enrich the search space of iterative methods during the
iterations instead of building a coarse space beforehand.

• the implementations presented in chapters 4 and 5 use the Fortran 90 and python
languages, respectively. Whereas the python language brings agility, flexibility and
expressivity without compromising on the performance, we experienced some diffi-
culties for deploying the python ecosystem on clusters for large-scale experiments.
Although we solved the encountered issues, it results in a fragile environment. This
led us to consider of rewriting of both the MaPHyS solver and the ddmpy toolbox
in C++ in order to benefit from the strengths of both high-level languages (such as
python) and compiled languages (such as Fortran). The new library will be available
at https://gitlab.inria.fr/solverstack/maphys/maphyspp.

6.2 Robust methods for general (non SPD) problems

6.2.1 Algebraic interface for the N-Lagrange and for the Opti-
mized Schwarz methods

The N -Lagrange method (Nataf et al., 1995) introduced in sections 2.5.7 and 2.6.5 is
a method of choice for unsymmetric problems (Gander et al., 2002; El Bouajaji et al.,
2015). Both the N -Lagrange and the Optimized Restricted Additive Schwarz (St-Cyr
et al., 2007) methods are based on a parallel Schwarz method with Robin transmission
conditions as introduced by Lions (1988, 1989, 1990). The algebraic N -Lagrange method
and the ORAS method can be applied algebraically as long as a transmission matrix Ti
is provided to the solver alongside the subdomain matrix Ki. The N -Lagrange method is
implemented (Listing 57), and a symmetric version of ORAS is implemented as a Robin-
Robin preconditioner (Listing 62) in ddmpy and also available in the latest releases of
MaPHyS. They could however not be tested with an optimized transmission matrix for
lack of a test case: discretizing a transmission condition was outside the scope of the work
presented in this thesis, and we were not yet able to obtain it from any of the applications
that use MaPHyS as an internal solver. In an on-going work in collaboration between
the Inria HiePACS and Nachos teams, Cristobal Samaniego Alvarado is comparing the
Robin-Robin preconditioner in MaPHyS with the internal N -Lagrange solver considered
in (Li et al., 2014).

6.2.2 Multipreconditioned solvers

Another promising method for improving the convergence of an algebraic DD solver is
to use multipreconditioning (Bridson and Greif, 2006; Greif et al., 2011). Spillane (2016)

230 Louis POIREL

https://gitlab.inria.fr/solverstack/maphys/maphyspp

6. Conclusion and perspectives

showed that in the SPD case, this method could be used to generate a coarse space for
abstract Schwarz preconditioners during the CG iterations, eliminating the need for the
costly solution of the generalized eigenproblems in the GenEO coarse space. After a
sufficient number of these multipreconditioned iterations, one can automatically switch
to regular deflated PCG iterations.

Multipreconditioning in the context of aS methods is akin to a form of optimized
variable preconditioning: the aS preconditioner

MaS =
N∑
i=1

RT
i Â
†
iRi

is replaced by

Mµ
aS =

N∑
i=1

µiRT
i Â
†
iRi

where the vector µ = (µ1, . . . , µN)T is chosen at each iteration as to minimize a norm of
the error.

6.3 C++ implementation

The methods introduced in chapters 2 and 3 were implemented in chapters 4 in python
and 5 in Fortran 90, respectively.

Although it is much easier and more pleasant to develop and maintain a module in
python, we encountered some challenges using this language, as explained in Section 4.5.
This led us to initiate the development of a new library1 in C++. Most of the structures
presented in Section 4.3.2 for python have C++ equivalents. Most notably, it is possible
in C++20 to use templates and concepts to have duck-typing at compilation. Using
the boost.python library (Abrahams and Grosse-Kunstleve, 2003) or the SWIG interface
compiler (Beazley, 1996), this new library will be available from ddmpy.

1https://gitlab.inria.fr/solverstack/maphys/maphyspp

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 231

https://gitlab.inria.fr/solverstack/maphys/maphyspp

Chapter 7

Acknowledgments

The work presented in this document was performed in very close collaboration with my
supervisors Luc Giraud and Emmanuel Agullo.

We would like to thank Nicole Spillane for proofreading an early draft of Chapter 3.
This chapter was submitted for publication and we also thank the anonymous referees
whose constructive comments enabled us to significantly improve the manuscript. The
experiments presented in sections 3.5.2 to 3.5.4 were carried out using the PLAFRIM
experimental testbed, being developed under the Inria PlaFRIM development action
with support from Bordeaux INP, LABRI and IMB and other entities: Conseil Régional
d’Aquitaine, Université de Bordeaux and CNRS (and ANR in accordance to the pro-
gramme d’investissements d’Avenir).

The experiments in Section 4 were performed on the GENCI Occigen cluster at CINES.
Part of the Chapter 5 is extracted from an article in preparation, written in collaboration
with Emmanuel Agullo, Matthieu Kuhn, Gilles Marait and Luc Giraud; the experiments
in this chapter were also carried out on the Occigen cluster, by Matthieu Kuhn and
Gilles Marait. We would also like to thank the AVIP team at CERFACS for close scien-
tific exchanges and collaborations as well as the opportunity we had to access PRACE
Tier-0 computing resource; we acknowledge PRACE for awarding us access to Curie at
GENCI@CEA, France. We also thank the Alya team at BSC for the fruitful collaboration
and access to the BSC computing facilities.

232

Bibliography

Abrahams, D. and Grosse-Kunstleve, R. W. (2003). Building hybrid systems with Boost.
Python. CC Plus Plus Users Journal, 21(7):29–36.

Achdou, Y., Le Tallec, P., Nataf, F., and Vidrascu, M. (2000). A domain decomposi-
tion preconditioner for an advection–diffusion problem. Computer Methods in Applied
Mechanics and Engineering, 184(2):145–170.

Achdou, Y. and Nataf, F. (1997). A Robin-Robin preconditioner for an advection-
diffusion problem. Comptes Rendus de l’Académie des Sciences - Series I - Mathe-
matics, 325(11):1211–1216.

Agullo, E., Darve, E., Giraud, L., and Harness, Y. (2018). Low-rank Factorizations in
Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite
Matrices. Report, Inria Bordeaux Sud-Ouest.

Agullo, E., Giraud, L., Guermouche, A., and Roman, J. (2011). Parallel hierarchical
hybrid linear solvers for emerging computing platforms. Comptes Rendus Mécanique,
339(2):96–103.

Agullo, E., Giraud, L., Guermouche, A., Roman, J., and Zounon, M. (2013). Towards
Resilient Parallel Linear Krylov Solvers: Recover-Restart Strategies. PhD Thesis, IN-
RIA.

Agullo, E., Giraud, L., and Nakov, S. (2016a). Task-based sparse hybrid linear solver for
distributed memory heterogeneous architectures.

Agullo, E., Giraud, L., Nakov, S., and Roman, J. (2016b). Hierarchical hybrid sparse
linear solver for multicore platforms. Report, INRIA Bordeaux.

Agullo, E., Giraud, L., and Yetkin, E. F. (2017). Soft Error in PCG: Sensitivity, Numerical
Detections and Possible Recoveries. In SIAM Conference on Computational Science and
Engineering, CSE’17.

Agullo, E., Kuhn, M., Lanteri, S., and Moya, L. (2016c). High order scalable HDG method
for frequency-domain electromagnetics.

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. (2001). A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix
Analysis and Applications, 23(1):15–41.

233

BIBLIOGRAPHY

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz,
J., Greenbaum, A., Hammarling, S., and McKenney, A. (1999). LAPACK Users’ Guide.
SIAM.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin,
L., Dener, A., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., May, D. A.,
McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini,
S., Zhang, H., and Zhang, H. (2018). PETSc Web page.

Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., and Van der Vorst, H. (1994). Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, volume 43. Siam.

Beazley, D. M. (1996). SWIG: An Easy to Use Tool for Integrating Scripting Languages
with C and C++. In Tcl/Tk Workshop.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K. (2011).
Cython: The best of both worlds. Computing in Science & Engineering, 13(2):31–39.

Bourgat, J.-F., Glowinski, R., Le Tallec, P., and Vidrascu, M. (1989). Variational Formu-
lation and Algorithm for Trace Operator in Domain Decomposition Calculations. In
Proceedings of the Second International Conference on Domain Decomposition Methods
in Los Angeles, California (January 14-16 1988). Siam.

Bramble, J. H., Pasciak, J. E., and Schatz, A. H. (1986). The construction of pre-
conditioners for elliptic problems by substructuring. I. Mathematics of Computation,
47(175):103–134.

Bramble, J. H., Pasciak, J. E., and Schatz, A. H. (1989). The Construction of Precon-
ditioners for Elliptic Problems by Substructuring, IV. Mathematics of Computation,
53(187):1.

Brenner, S. C. (1999). The condition number of the Schur complement in domain decom-
position. Numerische Mathematik, 83(2):187–203.

Bridson, R. and Greif, C. (2006). A multipreconditioned conjugate gradient algorithm.
SIAM Journal on Matrix Analysis and Applications, 27(4):1056–1068.

Burkitt, A. N. and Irving, A. C. (1988). Identity of the conjugate gradient and Lanc-
zos algorithms for matrix inversion in lattice fermion calculations. Physics Letters B,
205(1):69–72.

Cai, X.-C. and Sarkis, M. (1999). A restricted additive Schwarz preconditioner for general
sparse linear systems. Siam journal on scientific computing, 21(2):792–797.

Calmet, H., Gambaruto, A. M., Bates, A. J., Vázquez, M., Houzeaux, G., and Doorly,
D. J. (2016). Large-scale CFD simulations of the transitional and turbulent regime for
the large human airways during rapid inhalation. Computers in biology and medicine,
69:166–180.

234 Louis POIREL

BIBLIOGRAPHY

Carvalho, L., Giraud, L., and Le Tallec, P. (2001a). Algebraic Two-Level Preconditioners
for the Schur Complement Method. SIAM Journal on Scientific Computing, 22(6):1987–
2005.

Carvalho, L. M., Giraud, L., and Meurant, G. (2001b). Local preconditioners for two-
level non-overlapping domain decomposition methods. Numerical linear algebra with
applications, 8(4):207–227.

Casadei, A., Giraud, L., Ramet, P., and Roman, J. (2013). Towards domain decomposition
with balanced halo. In Workshop Celebrating 40 Years of Nested Dissection.

Chaitin-Chatelin, F. and Frayssé, V. (1996). Lectures on Finite Precision Computations.
SIAM, Philadelphia.

Chan, T. F. and Mathew, T. P. (1992). The interface probing technique in domain
decomposition. SIAM Journal on Matrix Analysis and Applications, 13:212–238.

Chevalier, C. and Pellegrini, F. (2008). PT-Scotch: A tool for efficient parallel graph
ordering. Parallel computing, 34(6-8):318–331.

Cockburn, B., Gopalakrishnan, J., and Lazarov, R. (2009). Unified hybridization of dis-
continuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic
problems. SIAM Journal on Numerical Analysis, 47(2):1319–1365.

Dalcin, L. D., Paz, R. R., Kler, P. A., and Cosimo, A. (2011). Parallel distributed
computing using Python. Advances in Water Resources, 34(9):1124–1139.

Davis, T. A. (2008). User Guide for CHOLMOD: A sparse Cholesky factorization and
modification package. Department of Computer and Information Science and Engineer-
ing, University of Florida, Gainesville, FL, USA.

De Roeck, Y.-H. and Le Tallec, P. (1991). Analysis and test of a local domain decompo-
sition preconditioner. In Fourth International Symposium on Domain Decomposition
Methods for Partial Differential Equations, volume 4.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. (1999). A
supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and
Applications, 20(3):720–755.

Dohrmann, C. R. (2003). A preconditioner for substructuring based on constrained energy
minimization. SIAM Journal on Scientific Computing, 25(1):246–258.

Dolean, V., Gander, M. J., Lanteri, S., Lee, J.-F., and Peng, Z. (2015a). Effective trans-
mission conditions for domain decomposition methods applied to the time-harmonic
curl–curl Maxwell’s equations. Journal of computational physics, 280:232–247.

Dolean, V., Jolivet, P., and Nataf, F. (2015b). An Introduction to Domain Decomposition
Methods: Algorithms, Theory, and Parallel Implementation, volume 144. SIAM.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 235

BIBLIOGRAPHY

Dominik, C. (2010). The Org Mode 7 Reference Manual-Organize Your Life with GNU
Emacs. Network Theory Ltd.

Dryja, M. and Widlund, O. (1987). An Additive Variant of the Schwarz Alternating
Method for the Case of Many Subregions. Technical Report 339, also Ultracomputer
Note 131, Department of Computer Science, Courant Institute.

Dryja, M. and Widlund, O. B. (1994). Domain decomposition algorithms with small
overlap. SIAM Journal on Scientific Computing, 15(3):604–620.

Duff, I. S., Erisman, A. M., and Reid, J. K. (2017). Direct Methods for Sparse Matrices.
Oxford University Press.

Efendiev, Y., Galvis, J., Lazarov, R., and Willems, J. (2012). Robust domain decompo-
sition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM:
Mathematical Modelling and Numerical Analysis, 46(5):1175–1199.

Eisenstat, S. C., Elman, H. C., and Schultz, M. H. (1983). Variational iterative methods
for nonsymmetric systems of linear equations. SIAM Journal on Numerical Analysis,
20(2):345–357.

El Bouajaji, M., Dolean, V., Gander, M. J., Lanteri, S., and Perrussel, R. (2015). Discon-
tinuous Galerkin discretizations of Optimized Schwarz methods for solving the time-
harmonic Maxwell equations. Electronic Transactions on Numerical Analysis, 44:572–
592.

Enkovaara, J. and Louhivuori, M. (2017). Scalable-python: Python interpreter for mas-
sively parallel HPC systems. CSC - IT Center for Science.

Farhat, C., Chen, P.-S., and Roux, F.-X. (1993). The dual Schur complement method
with well-posed local Neumann problems: Regularization with a perturbed Lagrangian
formulation. SIAM Journal on Scientific Computing, 14(3):752–759.

Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., and Rixen, D. (2001). FETI-DP: A
dual–primal unified FETI method—part I: A faster alternative to the two-level FETI
method. International journal for numerical methods in engineering, 50(7):1523–1544.

Farhat, C. and Roux, F.-X. (1991). A method of finite element tearing and interconnecting
and its parallel solution algorithm. International Journal for Numerical Methods in
Engineering, 32(6):1205–1227.

Feng, Y. (2018). Mpiimport: Python Import with MPI.

Feng, Y. and Hand, N. (2016). Launching Python Applications on Peta-scale Massively
Parallel Systems. pages 137–143.

Fourier, J. (1822). Theorie Analytique de La Chaleur, Par M. Fourier. Chez Firmin
Didot, père et fils.

236 Louis POIREL

BIBLIOGRAPHY

Frayssé, V. and Giraud, L. (2000). A set of conjugate gradient routines for real and
complex arithmetics. CERFACS Technical Report TR/PA/00/47.

Frings, W., Ahn, D. H., LeGendre, M., Gamblin, T., de Supinski, B. R., and Wolf, F.
(2013). Massively Parallel Loading. In Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ICS ’13, pages 389–398,
New York, NY, USA. ACM.

Frings, W., Schnurpfeil, A., Meier, S., Janetzko, F., and Arnold, L. (2010). A flexible,
application-and platform-independent environment for benchmarking. Parallel Com-
puting: From Multicores and GPU’s to Petascale, 19:423.

Gaidamour, J. and Hénon, P. (2008). HIPS: A parallel hybrid direct/iterative solver based
on a Schur complement approach. Proceedings of PMAA.

Gaidamour, J. and Hénon, P. (2008). A parallel direct/iterative solver based on a Schur
complement approach. 2013 IEEE 16th International Conference on Computational
Science and Engineering, 0:98–105.

Galerkin, B. G. (1915). Series solution of some problems of elastic equilibrium of rods
and plates. Vestn. Inzh. Tekh, 19:897–908.

Galvis, J. and Efendiev, Y. (2010). Domain Decomposition Preconditioners for Multiscale
Flows in High-Contrast Media. Multiscale Modeling & Simulation, 8(4):1461–1483.

Gander, M., Halpern, L., Magoulès, F., and Roux, F.-X. (2007). Analysis of Patch
Substructuring Methods. International Journal of Applied Mathematics and Computer
Science, 17(3):395–402.

Gander, M. J. (2006). Optimized Schwarz methods. SIAM Journal on Numerical Analysis,
44(2):699–731.

Gander, M. J. (2008). Schwarz methods over the course of time. Electron. Trans. Numer.
Anal, 31(5):228–255.

Gander, M. J., Magoules, F., and Nataf, F. (2002). Optimized Schwarz methods without
overlap for the Helmholtz equation. SIAM Journal on Scientific Computing, 24(1):38–
60.

Gander, M. J. and Wanner, G. (2012). From Euler, Ritz, and Galerkin to Modern Com-
puting. SIAM Review, 54(4):627–666.

Gander, M. J. and Wanner, G. (2014). The origins of the alternating Schwarz method.
In Domain Decomposition Methods in Science and Engineering XXI, pages 487–495.
Springer.

Gauss, C. F. (1811). Disquisitio de elementis ellipticis Palladis ex oppositionibus annorum
1803, 1804, 1805, 1807, 1808, 1809. Commentationes societatis regiae scientiarum
Gottingensis recentiores, 1:1–24.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 237

BIBLIOGRAPHY

Giraud, L., Haidar, A., and Watson, L. T. (2008). Parallel scalability study of hybrid
preconditioners in three dimensions. Parallel Computing, 34(6):363–379.

Giraud, L., Ruiz, D., and Touhami, A. (2006). A comparative study of iterative solvers
exploiting spectral information for SPD systems. SIAM J. Scientific Computing,
27(5):1760–1786.

Glowinski, R., Golub, G. H., Meurant, G. A., and Périaux, J. (1988). Proceedings of the
First International Conference on Domain Decomposition Methods in Paris, France
(January 7-9 1987). Siam.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations (3rd Ed.). Johns Hopkins
University Press, Baltimore, MD, USA.

Grasedyck, L. and Hackbusch, W. (2003). Construction and Arithmetics of H-Matrices.
Computing, 70(4):295–334.

Grcar, J. F. (2011). How ordinary elimination became Gaussian elimination. Historia
Mathematica, 38(2):163–218.

Greif, C., Rees, T., and Szyld, D. B. (2011). Multi-preconditioned GMRES. Technical
report: UBC CS TR-2011–12.

Guelton, S., Brunet, P., Amini, M., Merlini, A., Corbillon, X., and Raynaud, A. (2015).
Pythran: Enabling static optimization of scientific python programs. Computational
Science & Discovery, 8(1):014001.

Haferssas, R., Jolivet, P., and Nataf, F. (2017). An Additive Schwarz Method Type The-
ory for Lions’s Algorithm and a Symmetrized Optimized Restricted Additive Schwarz
Method. SIAM Journal on Scientific Computing, 39(4):A1345–A1365.

Hénon, P., Ramet, P., and Roman, J. (2002). PASTIX: A high-performance parallel direct
solver for sparse symmetric positive definite systems. Parallel Computing, 28(2):301–
321.

Hénon, P. and Saad, Y. (2006). A parallel multistage ILU factorization based on a
hierarchical graph decomposition. SIAM J. Sci. Comput., 28(6):2266–2293.

Hestenes, M. R. and Stiefel, E. (1952). Methods of Conjugate Gradients for Solving Linear
Systems, volume 49. NBS Washington, DC.

Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, second edition.

Houzeaux, G., Aubry, R., and Vázquez, M. (2011). Extension of fractional step techniques
for incompressible flows: The preconditioned orthomin (1) for the pressure schur com-
plement. Computers & Fluids, 44(1):297–313.

238 Louis POIREL

BIBLIOGRAPHY

Irony, D., Toledo, S., and Tiskin, A. (2004). Communication lower bounds for
distributed-memory matrix multiplication. Journal of Parallel and Distributed Com-
puting, 64(9):1017–1026.

Japhet, C. (1998). Méthode de décomposition de domaine et conditions aux limites artifi-
cielles en mécanique des fluides: méthode Optimisée d’Orde 2. PhD thesis, Université
Paris-Nord - Paris XIII.

Jia-Wei, H. and Kung, H.-T. (1981). I/O complexity: The red-blue pebble game. In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pages
326–333. ACM.

Jolivet, P., Hecht, F., Nataf, F., and Prud’homme, C. (2013). Scalable Domain Decom-
position Preconditioners for Heterogeneous Elliptic Problems. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 80:1–80:11, New York, NY, USA. ACM.

Joncquieres, V., Pechereau, F., Lagunas, A. A., Bourdon, A., Vermorel, O., and Cuenot,
B. (2018). A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect
Thruster. 2018 Joint Propulsion Conference, AIAA Propulsion and Energy Forum,
AIAA 2018-4905.

Karypis, G. and Kumar, V. (2009). MeTis: Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 4.0.

Klawonn, A., Kuhn, M., and Rheinbach, O. (2016a). Adaptive coarse spaces for FETI-DP
in three dimensions. SIAM Journal on Scientific Computing, 38(5):A2880–A2911.

Klawonn, A., Kühn, M., and Rheinbach, O. (2018). Adaptive FETI-DP and BDDC meth-
ods with a generalized transformation of basis for heterogeneous problems. Electronic
Transactions on Numerical Analysis, 49:1–27.

Klawonn, A., Radtke, P., and Rheinbach, O. (2016b). A comparison of adaptive coarse
spaces for iterative substructuring in two dimensions. Electron. Trans. Numer. Anal,
45:75–106.

Knuth, D. E. (1984). Literate Programming. The Computer Journal, 27(2):97–111.

Lam, S. K., Pitrou, A., and Seibert, S. (2015). Numba: A llvm-based python jit compiler.
In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
page 7. ACM.

Langou, J. (2014). Improving Communication Lower Bounds for Matrix-Matrix Multipli-
cation.

Le Tallec, P. and Vidrascu, M. (1998). Generalized Neumann-Neumann precondition-
ers for iterative substructuring. In Domain Decomposition Methods in Sciences and
Engineering.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 239

BIBLIOGRAPHY

LeGendre, M. and Frings, W. (2018). Spindle: Scalable dynamic library and python
loading in HPC environments. high performance computing.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. (1998). ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6.
Siam.

Leibniz, G. (1684). Nova Methodus pro Maximis et Minimis. Acta Eruditorum.

Li, L., Lanteri, S., and Perrussel, R. (2014). A hybridizable discontinuous Galerkin method
combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell’s equa-
tions. Journal of Computational Physics, 256:563–581.

Li, X. S. and Demmel, J. W. (2003). SuperLU_DIST: A Scalable Distributed-memory
Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans. Math. Softw.,
29(2):110–140.

Li, X. S., Shao, M., Yamazaki, I., and Ng, E. G. (2009). Factorization-based sparse solvers
and preconditioners. Journal of Physics: Conference Series, 180(1):012015.

Lions, P.-L. (1988). On the Schwarz alternating method I. In Glowinski, R., Golub,
G. H., Meurant, G. A., and Périaux, J., editors, First International Symposium on Do-
main Decomposition Methods for Partial Differential Equations, Held in Paris, France,
January 7-9, 1987, pages 1–42, Philadelphia, PA. SIAM.

Lions, P. L. (1989). On the Schwarz alternating method II: Stochastic interpretation and
order properties. In Chan, T., Glowinski, R., Périaux, J., and Widlund, O., editors,
Second International Symposium on Domain Decomposition Methods for Partial Differ-
ential Equations , Held in Los Angeles, California, January 14-16, 1988, pages 47–70,
Philadelphia, PA. SIAM.

Lions, P. L. (1990). On the Schwarz alternating method III: A variant for nonoverlapping
subdomains. In Chan, T. F., Glowinski, R., Périaux, J., and Widlund, O., editors, Third
International Symposium on Domain Decomposition Methods for Partial Differential
Equations , Held in Houston, Texas, March 20-22, 1989, Philadelphia, PA. SIAM.

Maday, Y. and Magoules, F. (2006). Absorbing interface conditions for domain decompo-
sition methods: A general presentation. Computer methods in applied mechanics and
engineering, 195(29-32):3880–3900.

Mandel, J. (1993). Balancing domain decomposition. International Journal for Numerical
Methods in Biomedical Engineering, 9(3):233–241.

Mansfield, L. (1990). On the Conjugate Gradient Solution of the Schur Complement
System Obtained from Domain Decomposition. SIAM Journal on Numerical Analysis,
27(6):1612–1620.

Mathew, T. P. A. (2008). Domain Decomposition Methods for the Numerical Solution of
Partial Differential Equations, volume 61. Springer Science & Business Media.

240 Louis POIREL

BIBLIOGRAPHY

Matsokin, A. M. and Nepomnyaschikh, S. V. (1985). The Schwarz alternation method in
a subspace. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, (10):61–66.

Nakov, S. (2015). On the design of sparse hybrid linear solvers for modern parallel archi-
tectures. Theses, Université de Bordeaux.

Nataf, F., Rogier, F., and de Sturler, E. (1995). Domain Decomposition Methods for
Fluid Dynamics. In Navier—Stokes Equations and Related Nonlinear Problems, pages
367–376. Springer, Boston, MA.

Nataf, F., Xiang, H., Dolean, V., and Spillane, N. (2011). A Coarse Space Construction
Based on Local Dirichlet-to-Neumann Maps. SIAM Journal on Scientific Computing,
33(4):1623–1642.

Newton, I. (1687). Philosophiae Naturalis Principia Mathematica. Royal Society.

Nicolaides, R. A. (1987). Deflation of conjugate gradients with applications to boundary
value problems. SIAM Journal on Numerical Analysis, 24(2):355–365.

Quarteroni, A. and Valli, A. (1999). Domain Decomposition Methods for Partial Differ-
ential Equations. Oxford University Press.

Rajamanickam, S., Boman, E. G., and Heroux, M. A. (2012a). ShyLU: A hybrid-
hybrid solver for multicore platforms. In Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages 631–643. IEEE.

Rajamanickam, S., Boman, E. G., and Heroux, M. A. (2012b). ShyLU: A hybrid-hybrid
solver for multicore platforms. Parallel and Distributed Processing Symposium, Inter-
national, 0:631–643.

Ritz, W. (1908). über eine neue Methode zur Lösung gewisser Variationsprobleme der
mathematischen Physik. Journal für die reine und angewandte Mathematik, 135:1–61.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, volume 82. siam.

Saad, Y. and Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical
computing, 7(3):856–869.

Saad, Y. and Sosonkina, M. (1999). Distributed Schur complement techniques for general
sparse linear systems. SIAM Journal on Scientific Computing, 21(4):1337–1356.

Saad, Y., Yeung, M., Erhel, J., and Guyomarc’h, F. (2000). A deflated version of the
conjugate gradient algorithm. SIAM Journal on Scientific Computing, 21(5):1909–1926.

Sarkis, M. (2003). Partition of unity coarse spaces: Enhanced versions, discontinuous
coefficients and applications to elasticity. Domain decomposition methods in science
and engineering, pages 149–158.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 241

BIBLIOGRAPHY

Schenk, O., Gärtner, K., Fichtner, W., and Stricker, A. (2000). PARDISO: A High-
Performance Serial and Parallel Sparse Linear Solver in Semiconductor Device Simula-
tion.

Schulte, E. and Davison, D. (2011). Active documents with org-mode. Computing in
Science & Engineering, 13(3):66–73.

Schwarz, H. A. (1870). Über Einen Grenzübergang Durch Alternirendes Verfahren. Zürcher
u. Furrer.

Sid Lakhdar, M. W. (2014). Scaling the solution of large sparse linear systems using
multifrontal methods on hybrid shared-distributed memory architectures. Theses, Ecole
normale supérieure de lyon - ENS LYON.

Smith, B. F. (1991). A domain decomposition algorithm for elliptic problems in three
dimensions. Numerische Mathematik, 60(1):219–234.

Spillane, N. (2014). Méthodes de Décomposition de Domaine Robustes Pour Les Problèmes
Symétriques Définis Positifs. PhD Thesis, Paris 6.

Spillane, N. (2016). An adaptive multipreconditioned conjugate gradient algorithm. SIAM
journal on Scientific Computing, 38(3):A1896–A1918.

Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R. (2014a).
Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the
overlaps. Numerische Mathematik, 126(4):741–770.

Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R. (2014b).
Achieving robustness through coarse space enrichment in the two level Schwarz frame-
work. In Domain Decomposition Methods in Science and Engineering XXI, pages 447–
455. Springer.

Spillane, N. and Rixen, D. J. (2013). Automatic spectral coarse spaces for robust finite
element tearing and interconnecting and balanced domain decomposition algorithms.
International Journal for Numerical Methods in Engineering, 95(11):953–990.

St-Cyr, A., Gander, M. J., and Thomas, S. J. (2007). Optimized multiplicative, ad-
ditive, and restricted additive Schwarz preconditioning. SIAM Journal on Scientific
Computing, 29(6):2402–2425.

Stanisic, L. and Legrand, A. (2014). Effective reproducible research with org-mode and
git. In European Conference on Parallel Processing, pages 475–486. Springer.

The MPI Forum, C. (1993). MPI: A Message Passing Interface. In Proceedings of the
1993 ACM/IEEE Conference on Supercomputing, Supercomputing ’93, pages 878–883,
New York, NY, USA. ACM.

Toselli, A. and Widlund, O. (2006). Domain Decomposition Methods-Algorithms and
Theory, volume 34. Springer Science & Business Media.

242 Louis POIREL

BIBLIOGRAPHY

Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Arís, R., Mira,
D., Calmet, H., Cucchietti, F., and Owen, H. (2016). Alya: Multiphysics engineering
simulation toward exascale. Journal of computational science, 14:15–27.

Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes. Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Yamazaki, I. and Li, X. S. (2010). On techniques to improve robustness and scalability
of a parallel hybrid linear solver. In International Conference on High Performance
Computing for Computational Science, pages 421–434. Springer.

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 243

	Remerciements
	Résumé étendu
	Extended Summary
	Introduction
	Historical context
	Newton, Leibniz and the introduction of Calculus
	Schwarz and the birth of domain decomposition methods
	The finite element method
	Sparse linear solvers

	Our positioning

	Domain decomposition methods
	Introduction
	Introduction of an interface in the global domain
	Introduction of an interface for the continuous problem
	Introduction of an interface in the algebraic linear system

	Local boundary conditions on the interface
	Dirichlet boundary condition on
	Neumann boundary condition on
	Robin boundary condition on

	Optimal boundary conditions
	Dirichlet-to-Neumann operator for the PDE
	Partial Gaussian elimination and the Schur complement matrix

	Domain decomposition formulations
	Primal formulation
	Primal formulation on the interface
	Dual formulation on the interface
	Augmented formulation
	Augmented formulation on the interface
	Dual augmented formulation on the interface (T1 + T2 = 0)
	Two-Lagrange formulation

	Generalization to N subdomains
	Augmented formulation
	Augmented formulation on the interface
	Primal formulations
	Dual augmented formulations
	N-Lagrange formulations

	Domain decomposition preconditioners
	Variations on the Schwarz Alternating method
	Abstract Schwarz preconditioners
	Two-level preconditioners
	Choice of a coarse space

	Convergence of abstract Schwarz methods
	Introduction
	Approximate abstract Schwarz preconditioners
	Context
	Convergence result for M"0365MaS,D
	Proof of Theorem 1

	Building the coarse space via generalized eigenproblems
	Additive coarse correction
	Context
	Convergence result for M"0365MAS,2
	Proof of Theorem 3

	Numerical experiments
	Experimental setup
	Imposing an a priori bound on the condition number
	Imposing an a priori coarse space size
	Approximate case: Empirical study of the impact of sparsification
	Performance of AS,2/S on a modern parallel computer

	Conclusion

	Design of a domain decomposition toolbox in python
	Introduction
	Performance of some elemental operators in python
	Comparison of C and python for basic linear algebra operations
	Vector addition in C and python (daxpy)
	Dense matrix multiplication in C and python (dgemm)

	Comparison of Scipy and Pastix for computing the Schur complement matrix
	Comparison of Scipy and a custom implementation of the conjugate gradient

	Design of the ddmpy domain decomposition toolbox in python
	Introduction
	Some important concepts in the Python language
	Dependencies (required and optional)
	An abstraction layer over the MPI for a domain decomposition methods dd
	A hierarchical profiler suited for python
	Distributed DD
	The DomainDecomposition class
	The DistVector class
	The DistMatrix class

	The Linear Operator interface
	The abstract class LinearOperator
	Testing the LinearOperator class

	Direct linear solvers
	Factorizing matrices using Scipy
	Computing a pseudoinverse
	The Mumps sparse direct solver
	The Pastix sparse direct solver
	Test of the direct solvers

	Iterative linear solvers
	Conjugate gradient
	Generalized conjugate residual

	Hybrid linear solvers
	Schur solver
	Distributed Schur solver
	N-Lagrange formulation

	Centralizing a distributed problem
	Domain decomposition preconditioners
	One-level aS preconditioners
	Two-level aS preconditioners
	GenEO coarse space for aS preconditioners

	Experimental study
	Experimental setup
	Numerical convergence
	Performance analysis
	A posteriori analysis using the TimeIt object

	Limitations of the python language
	Conclusion

	Parallel design of coarse space correction for hybrid solvers
	Introduction
	The baseline MaPHyS sparse hybrid solver
	The additive Schwarz on the Schur (AS/S) method
	Parallelization strategy for distributed memory architectures

	Design of a coarse space correction in MaPHyS
	Setup of the two-level preconditioner MAS,2/S
	Application of the two-level preconditioner MAS,2/S

	Parallel strategies for the factorization (and corresponding solve step) of the coarse matrix S0
	Dense centralized (DC) strategy
	Sparse distributed (SD) strategy
	Sparse centralized (SC) strategy
	Sparse hierarchical distributed (SHD) strategy
	Sparse replicated centralized (SRC) strategy

	Experimental study
	Experimental setup
	Darcy academic test case
	Test case
	Performance results with MaPHyS (without multithreading)
	Performance results with MaPHyS, combining two-level preconditioning with two-level parallelism

	A respiratory airflow application using the Alya code
	Test case
	Performance results with MaPHyS
	Performance results with ddmpy

	A plasma propulsion application using the AVIP code
	Test case
	Performance results with MaPHyS
	Performance results with ddmpy

	Conclusion

	Conclusion and perspectives
	Conclusion
	Robust methods for general (non SPD) problems
	Algebraic interface for the N-Lagrange and for the Optimized Schwarz methods
	Multipreconditioned solvers

	C++ implementation

	Acknowledgments

