Keywords: Algebraic Domain Decomposition domain decomposition methods, parallel hybrid (direct/iterative) solver, coarse space, literate programming, reproducible science méthodes de décomposition de domaine, solveur parallèle hybride espace grossier, programmation lettrée, science reproductible

La résolution de grands systèmes linéaires est une des étapes les plus consommatrices en temps des simulation numérique. Des solveurs linéaires haute performance ont été développés dans un contexte algébrique (à partir du système Ku = f) ; d'autres méthodes, dites de décomposition de domaine, offrent d'excellentes performances en exploitant l'information au niveau de l'équation aux dérivées partielles sous-jacente au système linéaire. Dans cette thèse, on tente de concilier ces deux approches: une analyse de convergence des méthodes de Schwarz abstraites à deux niveaux conduit à la définition de nouveaux préconditionneurs robustes pour les problèmes symétriques définis positifs basés sur une généralisation algébrique de la méthode GenEO. Ces préconditionneurs robustes ne nécessitent que la donnée de la matrice K comme une somme de matrices locales K i symmétriques semi-definies positives. Un préconditionneur robuste suivant cette méthode a été implémenté dans un solveur hybride parallèle distribué et testé sur des cas applicatifs. Une nouvelle boîte à outils de décomposition de domaine a aussi été développée en python pour faciliter le développement de nouveaux solveurs par décomposition de domaines basés sur des solveurs haute performance. Le code de ce module nommé ddmpy est inclus dans le présent document par programmation lettrée dans une approche de science reproductible.

Un grand merci à toutes les personnes qui m'ont accompagné durant cette thèse ! Merci Luc et Manu pour votre encadrement et votre amitié : je ne connaissais rien à l'algèbre linéaire ni au calcul haute performance avant d'arriver chez vous (merci POM), et vous avez su me guider et me faire aimer ces sujets. Au-delà de tout ce que vous m'avez transmis scientifiquement, je tiens à vous remercier pour vos conseils et votre aide ces quatre dernières années, y compris dans les vraies difficultés.

Merci à mes autres coauteurs, en particulier Gilles et Matthieu ; merci aussi pour les cours de swing ! Un merci tout particulier, Chrystel, pour ton aide discrète et efficace (même quand je me suis retrouvé bloqué de l'autre côté du cercle polaire) ! Merci à toute l'équipe HiePACS pour les soirées vin et fromage, les galettes des rois, les baby-foot. . . un petit mot pour dire mon admiration toute particulière pour des génies (incompris) croisés pendant cette thèse : Grégoire, JM et Maria.

Merci aussi aux colocs de Bègles : feux de cheminée virtuels, «j'habite chez Mamère», planquages botaniques. . . je ne me suis pas ennuyé avec vous ! Merci aux rapporteurs anonymes des articles que nous avons soumis, et aux trois rapporteurs de ce manuscrit, qui ont contribué à l'améliorer. Merci Nicole pour nos échanges qui m'ont aidé à mieux comprendre GenEO.

Je remercie les professeurs de mathématiques qui m'ont fait découvrir et aimer cette discipline : M. Huynh, Mme Fisset, M. Maurice, Mme Benhamou, M. Tosel.

Un très grand merci à mes parents qui m'ont transmis (entre autres) le goût d'apprendre et de découvrir et que j'embrasse avec mes frères et soeurs, dont le Dr. M. Poirel.

Pendant ces quatre années, d'autres priorités sont venues s'ajouter à la thèse puisque je me suis marié et suis devenu papa ; la rédaction de ce manuscrit n'aurait pas été possible sans les patients encouragements de mon épouse Verena qui a su me supporter pendant la période de rédaction tout en gérant les petits soucis du quotidien, les tracasseries administratives et l'aventure de la grossesse : merci pour tout ! Notre fille Helena Marie est restée sage pendant la soutenance, merci à elle ! Cette thèse lui est dédiée.

Résumé étendu

La simulation numérique de phénomènes physiques complexes requiert la résolution de systèmes linéaires de grande taille: le comportement ou l'évolution d'un phénomène sont souvent modélisés sous forme d'un système d'Equations aux Dérivées Partielles (EDP) faisant intervenir des conditions limites. Des méthodes de discrétisation, comme la méthode des eléments finis par exemple, permettent de traduire l'EDP en un système linéaire de la forme Ku = f , dont la solution discrète approche d'autant mieux la solution de l'EDP que la taille du système augmente. Au cours des dernières décennies, plusieurs algorithmes et programmes (appelés solveurs) ont été développés pour la résolution informatique des grands systèmes linéaires sur des machines parallèles multicoeurs.

Solveurs hybrides (direct/itératif)

Entre des méthodes directes, qui éliminent les inconnues les unes après les autres [START_REF] Gauss | Disquisitio de elementis ellipticis Palladis ex oppositionibus annorum 1803[END_REF][START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF][START_REF] Duff | Direct Methods for Sparse Matrices[END_REF][START_REF] Hénon | PASTIX: A high-performance parallel direct solver for sparse symmetric positive definite systems[END_REF] et les méthodes itératives, qui améliorent une solution approchée par corrections successives [START_REF] Hestenes | Methods of Conjugate Gradients for Solving Linear Systems[END_REF][START_REF] Saad | GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF][START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF], des méthodes dites hybrides conjuguent les avantages des deux classes précédentes [START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF]Rajamanickam et al., 2012a;[START_REF] Yamazaki | On techniques to improve robustness and scalability of a parallel hybrid linear solver[END_REF]. Aujourd'hui, les simulations de grande échelle se font dans un contexte parallèle, où plusieurs unités de calcul interagissent pour résoudre le système ; dans ce cadre, les solveurs hybrides permettent de combiner des solveurs directs et itératifs en les utilisant respectivement dans les régimes où ils sont le plus performant : le solveur direct localement pour éliminer les inconnues qui peuvent l'être sans perturber les autres unités de calcul, et le solveur itératif globalement pour assurer la cohérence des solutions locales. Cette approche est qualifiée d'algébrique, en ce qu'elle n'a besoin que de la donnée de K et f pour calculer la solution u.

Méthodes de décomposition de domaine

Cette approche hybride peut être rapprochée des Méthodes dites de Décomposition de Domaine (MDD) [START_REF] Quarteroni | Domain Decomposition Methods for Partial Differential Equations[END_REF][START_REF] Dryja | Domain decomposition algorithms with small overlap[END_REF][START_REF] Mathew | Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations[END_REF][START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF]: une approche utilisée par [START_REF] Schwarz | Scaling the solution of large sparse linear systems using multifrontal methods on hybrid shared-distributed memory architectures[END_REF] pour prouver l'existence d'une solution à certaines EDP a été étendue et adaptée pour le calcul parallèle (Lions, 1988(Lions, , 1989[START_REF] Lions | On the Schwarz alternating method III: A variant for nonoverlapping subdomains[END_REF]. Souvent, les MDD sont introduites au niveau continu, avant discrétisation : le domaine sur lequel l'EDP est définie est découpé en N sous-CONTENTS domaines, aux bords desquels des conditions aux limites d'interface sont introduites. C'est seulement ensuite que l'EDP est discrétisée, indépendamment dans chaque sousdomaine. Souvent, la résolution de problèmes locaux (dans les sous-domaines) intervient dans une formulation globale d'un problème assurant la continuité de la solution à l'interface entre les sous-domaines. Dans le Chapitre 2, des MDD classiques sont présentées, tant dans leur expression continue que dans une formulation la plus algébrique possible ; on montre que la plupart de ces méthodes peuvent s'utiliser dans un contexte algébrique à condition de fournir la matrice K sous la forme d'une somme de matrices locales K = N i=1 R T Ω i K i R Ω i , où R Ω i représente la restriction canonique d'un vecteur global à un sous-domaine Ω i . Il est possible d'éliminer les inconnues d'intérieur (celles qui n'ont pas d'interaction avec d'autres domaines) et de réécrire le système sous une forme réduite Su Γ = f Γ , où S = N i=1 R T Γ i S i R Γ i est le complément de Schur de l'intérieur dans l'interface. Ce système ne fait intervenir que des quantités définies sur l'interface (ensemble des inconnues partagées par plus d'un sous-domaine).

Convergence des méthodes de Schwarz abstraites

La méthode originale de [START_REF] Schwarz | Scaling the solution of large sparse linear systems using multifrontal methods on hybrid shared-distributed memory architectures[END_REF], parallélisée par Lions (1988) sous sa forme continue, a été adaptée au cas algébrique sous la forme d'un préconditionneur de Schwarz additif (Dryja and Widlund, 1987;[START_REF] Matsokin | The Schwarz alternation method in a subspace[END_REF] dans le cas où la matrice K est Symétrique Définie Positive (SDP). Avec d'autres préconditionneurs comme Neumann-Neumann, il peut être inclus dans une famille de préconditionneurs dits de Schwarz abstraits [START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF], dont la forme générale est M aS = N i=1 R T i A † i R i , où A représente la matrice K ou S, selon que l'on a éliminé ou pas les inconnues d'intérieur. Généralement, avec ces préconditionneurs, le conditionnement de la matrice, et donc le nombre d'itérations pour qu'une méthode itérative comme le gradient conjugué [START_REF] Hestenes | Methods of Conjugate Gradients for Solving Linear Systems[END_REF] converge, augmente avec le nombre de sousdomaines N . Dans le Chapitre 3, on borne le conditionnement des méthodes de Schwarz abstraites en comparant dans chaque sous-domaine le quotient de Rayleigh de la matrice locale A i du préconditionneur M aS avec celles des préconditionneurs de Schwarz additif et Neumann-Neumann. Suivant une méthodologie introduite par Spillane et al. (2014a); [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF], nous proposons de construire un espace grossier adaptatif en résolvant les problèmes aux valeurs propres généralisés correspondant aux quotients de Rayleigh mentionnés ci-dessus. Avec cette correction, on prouve que le conditionnement et donc le nombre d'itérations restent borné. Dans le cas général, la correction est appliquée en utilisant une technique de déflation : la composante grossière de la solution est obtenue en résolvant le problème grossier par une méthode directe, et une projection est appliquée à chaque itération de la méthode itérative afin de ne pas venir polluer cette composante grossière. Dans le cas particulier du préconditionneur de Schwarz additif, l'espace grossier peut être traité, au niveau algébrique, comme les N sous-domaines. Ces résultats théoriques sont illustrés par des résultats numériques. D'autres travaux dans ce sens incluent [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF][START_REF] Haferssas | An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method[END_REF]Klawonn et al., 2016b[START_REF] Klawonn | Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems[END_REF][START_REF] Nataf | A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps[END_REF].

CONTENTS

Solveur algébrique par décomposition de domaine en python: la boîte à outils ddmpy Les différentes méthodes présentées ci-dessus peuvent être implémentées en combinant différents solveurs denses et creux, directs et itératifs, séquentiels ou distribués. Pour pouvoir développer efficacement de nouveaux solveurs hybrides et méthodes de décomposition de domaine algébriques, nous proposons dans le Chapitre 4 une boîte à outils de décomposition de domaine en python. Le language python est un language interprété de haut niveau. En comparaison à des langages compilés comme C, C++ ou Fortran, l'écriture d'un programme en python est souvent beaucoup plus rapide, au prix d'une performance réputée moins bonne à l'exécution. En analysant différentes implémentations de certaines opérations (addition de vecteurs, multiplication matricielle, calcul d'un complément de Schur et algorithme du gradient conjugué), on montre qu'il est possible d'écrire un code performant en python à condition d'utiliser des bibliothèques optimisées (souvent écrites dans des languages compilés) pour les opérations coûteuses et/ou répétées.

Sur ce constat, on a développé en python une boîte à outils pour construire des solveurs par décomposition de domaine au niveau algébrique. Ce module nommé ddmpy est présenté dans une approche de programmation lettrée (ou programmation littéraire) définie par [START_REF] Knuth | Literate Programming[END_REF]:

Au lieu de considérer que notre tâche principale est de dire à un ordinateur ce qu'il doit faire, appliquons-nous plutôt à expliquer à des êtres humains ce que nous voulons que l'ordinateur fasse.

Ainsi, le code entier du module ddmpy est inclus dans ce chapitre ; les exemples inclus peuvent être exécutés de manière interactive en ouvrant la source .org [START_REF] Dominik | The Org Mode 7 Reference Manual-Organize Your Life with GNU Emacs[END_REF][START_REF] Schulte | Active documents with org-mode[END_REF] de ce document avec un éditeur compatible avec les fonctionnalités de ce format orgmode, comme emacs.

Une expérience de passage à l'échelle jusqu'à 3.072 coeurs de calcul est ensuite proposée : 16 solveurs par décomposition de domaines construits à partir d'éléments de ddmpy sont comparés. Tous les scripts nécessaires pour reproduire l'expérience et générer les figures sont inclus dans la source de ce document.

Conception parallèle d'une correction d'espace grossier

Dans le Chapitre 5, on présente et compare plusieurs stratégies parallèles pour la correction d'espace grossier présentée dans le Chapitre 3 : sans cette correction, les méthodes de Schwarz abstraites ne nécessitent que très peu de communications globales, ce qui les rend plus facile à implémenter efficacement ; c'est aussi ce qui explique leur mauvais comportement numérique pour résoudre des problèmes fortement distribués : l'information ne transite d'un sous-domaine à l'autre que par des communication de voisins à voisins ; pour une décomposition unidimensionnelle du domaine, il faut donc N itérations pour que l'information puisse transiter entre les deux sous-domaines extrêmes. L'idée générale des techniques de correction d'espace grossier consiste à transmettre de façon globale une CONTENTS information grossière pour accélérer la résolution, par la résolution d'un problème global de taille réduite (avec, typiquement, seulement quelques inconnues par sous-domaine). La mise en oeuvre d'une correction d'espace grossier réduit le nombre d'itérations mais rend chaque itération plus coûteuse puisqu'un problème grossier global doit y être résolu. Plusieurs stratégies, dont l'utilisation d'un solveur direct distribué sur l'ensemble des sous-domaines, ou sur un nombre réduit de sous-domaines, avec ou sans réplication du problème grossier, sont implémentées en Fortran 90 dans le solveur haute performance hybride MaPHyS1 [START_REF] Agullo | Parallel hierarchical hybrid linear solvers for emerging computing platforms[END_REF][START_REF] Agullo | Hierarchical hybrid sparse linear solver for multicore platforms[END_REF][START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF]. Ces différentes stratégies sont appliquées à la résolution de problèmes réguliers fortement hétérogènes avec une décomposition unidimensionnelle ou tridimensionnelle. Ce solveur est également utilisé dans deux codes applicatifs. Le premier est une code de simulation des voies respiratoires de l'homme réalisée avec le logiciel Alya2 [START_REF] Vázquez | Alya: Multiphysics engineering simulation toward exascale[END_REF]. Le second est un code de simulation de propulsion plasmique mis en oeuvre dans le code AVIP [START_REF] Joncquieres | A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster[END_REF]. Dans les deux cas, les systèmes linéaires résultent de la discrétisation d'une équation de type Poisson sur des maillages 3D non structurés. Ces expériences montrent que pour des problèmes de grande taille distribués sur un grand nombre de coeurs de calcul, il est avantageux de répartir les sous-domaines en plusieurs groupes de taille adéquate pour appeler un solveur creux distribué à la bonne granularité.

Perspectives ouvertes par ces travaux

Méthodes robustes pour problèmes non symétriques

Les travaux présentés dans les chapitres 3 et 5 sur les méthodes de Schwarz abstraites robustes ne concernent que les problèmes SDP : la preuve et l'implémentation reposent sur le fait que toutes les matrices ont des valeurs propres réelles et positives. La présentation générale des méthodes de décomposition de domaine dans le Chapitre 2, ainsi que l'implémentation proposée au Chapitre 4 ne sont pas concernés par cette restriction, et il serait intéressant d'intégrer dans ddmpy des méthodes robustes pour les problèmes non symmétriques. L'interface est présente dans ddmpy pour tester des méthodes de Robin optimisé algébriques, soit sous forme d'un préconditionneur Robin-Robin [START_REF] Achdou | A Robin-Robin preconditioner for an advectiondiffusion problem[END_REF], soit en utilisant une formulation N -Lagrange [START_REF] Nataf | Domain Decomposition Methods for Fluid Dynamics[END_REF]. Des travaux sont en cours dans l'équipe pour tester ces méthodes sur des problèmes d'électromagnétisme issus d'applications externes. Une autre piste serait d'utiliser un solveur itératif multi-préconditionné [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Greif | Multi-preconditioned GMRES[END_REF][START_REF] Spillane | An adaptive multipreconditioned conjugate gradient algorithm[END_REF].

CONTENTS

Implémentation en C++ d'une bibliothèque de décomposition de domaine

Une seconde perspective ouverte par cette thèse est l'écriture d'algorithme de décomposition de domaine dans un formalisme algébrique. Le language python utilisé pour la boîte à outils ddmpy présentée ci-dessus présente des limites en terme de parallélisation et quant à l'interfaçage avec des applications écrites en C, C++ ou Fortran. Nous pensons qu'il est possible, en utilisant un standard récent du langage C++, de remédier à ces difficultés sans perdre l'expressivité haut-niveau de python. Un projet en ce sens a été initié3 .

Extended Summary

The numerical simulations of complex physical problem require the solution of large linear systems: the behavior and dynamics of such phenomena are often modeled by Partial Differential Equations (PDE) with some boundary conditions. Discretization techniques, such a the finite element methods, allow the translation of the PDE into a system of linear equations of the form Ku = f , whose solution becomes closer to the solution of the PDE as the size of the linear system increases. In the last decades, several algorithms and computer implementations, referred to as solvers, have been designed to allow the solution of large linear systems on parallel multicore computing platforms.

Hybrid (direct/iterative) solvers

Hybrid methods attempt to exploit the advantageous of both the direct methods, that eliminate the unknowns one after each other [START_REF] Gauss | Disquisitio de elementis ellipticis Palladis ex oppositionibus annorum 1803[END_REF][START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF][START_REF] Duff | Direct Methods for Sparse Matrices[END_REF][START_REF] Hénon | PASTIX: A high-performance parallel direct solver for sparse symmetric positive definite systems[END_REF], and the iterative methods that improve an initial guess through successive updates [START_REF] Hestenes | Methods of Conjugate Gradients for Solving Linear Systems[END_REF][START_REF] Saad | GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF][START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF]. Nowadays, large scale simulations are performed on parallel computing platforms where many computing units collaborate to solve a common global problem. In that framework, the hybrid methods allow the combination of direct and iterative solvers in their best functioning regimes: the direct solver concurrently and independently on small enough sub-problems and the iterative solver to ensure the consistency of the global computed solution. This methodology is termed algebraic, because the solver can fully be defined based on its main input data that simply are K and f to compute the solution u.

Domain decomposition methods

The hybrid approaches discussed above are closely related to the Domain Decomposition Methods (DDM) [START_REF] Quarteroni | Domain Decomposition Methods for Partial Differential Equations[END_REF][START_REF] Dryja | Domain decomposition algorithms with small overlap[END_REF][START_REF] Mathew | Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations[END_REF][START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF], the pioneer idea was originally introduced by Schwarz (1870) as a proof of existence of solutions to a PDE, and subsequently extended and adapted to parallel computing by Lions (1988Lions (, 1989[START_REF] Lions | On the Schwarz alternating method III: A variant for nonoverlapping subdomains[END_REF]. Often, DDM are considered at the continuous level before discretization; the domain, where the PDE is defined, is split into N subdomains with new boundary conditions that are defined on the interfaces introduced by the splitting. Next, the PDE is discretized independently in each subdomains. The CONTENTS solution of the local sub-problems, at the subdomain level, is involved in a global procedure that ensures the continuity of the solution across the interface between the subdomains. In Chapter 2, some DDM are introduced both in a continuous setting as well as in their more algebraic counterpart as long as the global matrix K can be expressed as the sum of local matrices K = N i=1 R T Ω i K i R Ω i where R Ω i denotes the canonical restriction of a global vector defined on Ω to the subdomain Ω i . It is further possible to eliminate the interior unknowns (those that do not have any interaction with other subdomains) so that the problem can be written in a condensed form Su Γ = f Γ , where S = N i=1 R T Γ i S i R Γ i is the Schur complement system. This new system only involves quantities that are defined on the interfaces (unknowns that are shared by more than one subdomain).

Convergence of abstract Schwarz methods

The original method by [START_REF] Schwarz | Scaling the solution of large sparse linear systems using multifrontal methods on hybrid shared-distributed memory architectures[END_REF], parallelized by Lions (1988) in its continuous form, has been extended in an algebraic framework into an additive Schwarz preconditioner [START_REF] Dryja | An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions[END_REF][START_REF] Matsokin | The Schwarz alternation method in a subspace[END_REF] for Symmetric Positive Definite (SPD) matrices K. Including other well-known preconditioners such as Neumann-Neumann, they belong to a wider family of preconditioners named abstract Schwarz [START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF], whose generic form is M aS = N i=1 R T i A † i R i where A is either K or S depending on whether or not the internal unknowns have been eliminated. In general, when these preconditioners are used to accelerate the convergence of the conjugate gradient method [START_REF] Hestenes | Methods of Conjugate Gradients for Solving Linear Systems[END_REF], the number of iterations increases when N increases. In Chapter 3, we show how the condition number of the abstract Schwarz preconditioned systems can be bounded by bounding the generalized Rayleigh quotients of the local component A i of the preconditioner M aS with respect to their Neumann-Neumann and additive Schwarz counterparts. Following a methodology introduced by Spillane et al. (2014a); [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF], we propose to build an adaptive coarse space by solving, on each subdomain, the generalized eigenproblems associated with the above mentioned generalized Rayleigh quotients. With this correction, we show that the condition number is bounded independently of N . This correction is generally applied through a deflation technique where the coarse space component is computed via a direct solver on the coarse space and a projection is applied at each iteration of the iterative scheme to ensure that the iteratively computed components do not come back into the coarse space. In the particular case of the additive Schwarz preconditioner, the coarse space correction can algebraically be handled as the N components associated with the subdomains. We refer to [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF][START_REF] Haferssas | An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method[END_REF]Klawonn et al., 2016b[START_REF] Klawonn | Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems[END_REF][START_REF] Nataf | A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps[END_REF] for other results on closely related techniques.

CONTENTS

Algebraic domain decomposition method in python: the ddmpy toolbox

The various numerical methods introduced above can be implemented in combining various dense or sparse, iterative or direct, sequential or parallel solvers. In order to efficiently design new hybrid solvers and algebraic domain decomposition solvers, we propose in Chapter 4 a python toolbox. Python is a high level interpreted programming language. At the price of slower execution time, developing codes in python is often much faster compared with compiled languages such as C, C++ or Fortran, By analyzing the performance of various implementations of a same numerical kernel (vector sum, matrix-matrix multiplication, Schur complement calculation, conjugate gradient), we show that it is possible to write efficient python codes, if computing intensive kernels are implemented using third party optimized libraries (often written in compiled languages).

Based on this observation, we have designed a python toolbox to develop efficient parallel algebraic domain decomposition solvers. This module, called ddmpy, is presented in a literate programming style defined by [START_REF] Knuth | Literate Programming[END_REF]:

Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want a computer to do.

Consequently, the complete ddmpy code is included in this chapter; the provided examples can be run interactively by opening the .org [START_REF] Dominik | The Org Mode 7 Reference Manual-Organize Your Life with GNU Emacs[END_REF][START_REF] Schulte | Active documents with org-mode[END_REF] source file in a text editor that supports the functionalities of this format (e.g. emacs).

A scalability study is presented up-to 3,072 cores: the performance of 16 algebraic domain decomposition solvers built using ddmpy are compared. All the python scripts implemented to perform this comparison are included in the source of this document and can consequently be reproduced.

Parallel design of a coarse space correction

In Chapter 5, we describe and compare the performance of several parallel strategies to compute the coarse space correction introduced in Chapter 3. Without this coarse space correction calculation, the abstract Schwarz preconditioners do not require any global communications that constitute known parallel performance bottlenecks. This lack of global communication is actually their numerical weakness: the information only moves from one subdomain to its neighbors at each iteration; for a one-dimensional decomposition N iterations are necessary to transfer the information between the first and last subdomains. The underlying idea of the coarse space correction is to allow for a global information exchange of a coarse information through the solution of a small problem (with typically a few unknowns per subdomain). This numerical mechanism allows the reduction of the number of iterations that conversely become more expensive on a large parallel platform. Several parallel strategies for the implementation of the coarse space correction kernels are considered, including the solution of the coarse problem on all or CONTENTS a subset of cores involved in the global communicator, with or without replication of the solution of the coarse problem. We implemented these strategies in the fully features Fortran 90 hybrid solver MaPHyS 4 [START_REF] Agullo | Parallel hierarchical hybrid linear solvers for emerging computing platforms[END_REF][START_REF] Agullo | Hierarchical hybrid sparse linear solver for multicore platforms[END_REF][START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF]. These implementations are compared for the solution of structured highly heterogeneous diffusion problems with 1D or 3D decompositions. The new solver has been integrated in two application codes. Firstly in the Alya code 5 [START_REF] Vázquez | Alya: Multiphysics engineering simulation toward exascale[END_REF] to compute the flow in a human respiratory system. Secondy, in the AVIP code [START_REF] Joncquieres | A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster[END_REF] that simulated plasma propulsion devices. In both case, the linear systems arise from the discretization of a Poisson equation on 3D unstructured meshes.

Perspective and future work

Robust methods for non symmetric problems

The work presented in chapters 3 and 5 addresses robust abstract Schwarz methods for SPD problems: the proof and implementation strongly rely on the fact that all matrices have real positive eigenvalues. The general description of the domain decomposition methods in Chapter 2, as well as the parallel implementation proposed in Chapter 4 do not have this limitation, it would be interesting to design robust methods for non symmetric problems using the ddmpy toolbox. In particular, ddmpy can support algebraic optimized Robin techniques either as a Robin-Robin preconditioner [START_REF] Achdou | A Robin-Robin preconditioner for an advectiondiffusion problem[END_REF], or using a N -Lagrange formulation [START_REF] Nataf | Domain Decomposition Methods for Fluid Dynamics[END_REF]. There is an ongoing action in the Inria team to experiment those techniques for the solution of large wave propagation problems. Another avenue of interest would be to design multi-preconditioned schemes [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Greif | Multi-preconditioned GMRES[END_REF][START_REF] Spillane | An adaptive multipreconditioned conjugate gradient algorithm[END_REF].

C++ implementation of an algebraic domain decomposition library

Another option, opened by the results of this PhD work, is to write domain decomposition algorithms in an algebraic formalism. The python language selected to design the ddmpy toolbox has some weaknesses in term of parallelism and the possibility to be called by application code developed in C, C++ or Fortran. We believe that these limitations could be overcome by using recent C++ standard without loosing the algorithmic expressivity enabled by python. A new project has been recently initiated in this direction 6 . The invention of modern calculus by [START_REF] Leibniz | Nova Methodus pro Maximis et Minimis[END_REF] and [START_REF] Newton | Philosophiae Naturalis Principia Mathematica[END_REF] provided a new method for formulating and solving physical problems, using differentiation and integration of mathematical functions.

One problem of particular historical and practical importance [START_REF] Gander | The origins of the alternating Schwarz method[END_REF] is known as Laplace's equation: given a domain Ω and a function v D : ∂Ω → R defined on its boundary find u : Ω → R such that ∆u = ∂ xx u + ∂ yy u + . . . = 0 in Ω,

(1.1) u = v D on ∂Ω.

(1.2)

Equation (1.1) states that the sum of second-order derivatives along all dimensions must be null. Equation (1.2) is called a Boundary Condition (BC). As it specifies the value of the function on the boundary, it is called a Dirichlet, or first-type BC. It would be possible, instead, to specify the value of the normal derivative ∂ n u = v N on the boundary: this would be called a Neumann or second-type BC. A third type of BC is the Robin BC in which the value of a linear combination of u and its normal derivative would be specified: ∂ n u + pu = v R . Different types of BC may be used on different parts of the boundary ∂Ω, yielding a mixed BC.

A more generic PDE in a domain Ω, including its boundary condition on ∂Ω can be written as find u : Ω → R such that

L(u) = f in Ω, B(u) = g on ∂Ω,
(1.3)

where f and g are given functions and L and B are linear operators. This means that given any functions u 1 and u 2 and scalar λ, we have L(u 1 + λu 2) = L(u 1) + λL(u 2) and 1.1. Historical context B(u 1 + λu 2) = B(u 1) + λB(u 2). Some non-linear problems can be solved too by solving a sequence of linear problems, in a process called linearization.

When needed in this introduction and in Chapter 2, we will choose clarity and concision over precision: the goal is not to introduce rigorously all the theory but to guide the reader through some analytic and algebraic methods and illustrate the connection between them. References are provided in each section for more accurate and in-depth definitions and analyses.

Our discussion will be illustrated by a very simple example: Poisson's equation in a rectangle with a mixed BC. Poisson's equation is a variation of Laplace's equation obtained by adding a source term f , replacing Equation (1.1) with ∆u = f . The domain is the rectangle Ω = [0, 3] × [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]1]. The source term is chosen to be f = -1. A Dirichlet BC u = 0 is chosen on the left of the domain, and a Neumann BC is chosen on the right (∂ x u = 0), top and bottom (∂ y u = 0), as presented in Figure 1.1. Our example problem is Since there is in fact no dependency on y in Problem (1.4), the system reduces to an ordinary differential equation u (x) = -1, with a BC u(0) = u (3) = 0. Integrating twice gives u(x) = -1 2 x 2 + ax + b. The BC gives a = 3 and b = 0. The analytical solution of Problem (1.4) is therefore u(x , y) = -1 2 x 2 + 3x and is represented in red in Figure 1.5.

find u : Ω → R such that ∆u = ∂ xx u + ∂ yy u = -1, u(0, •) = 0,      ∂ x u(3, •) = ∂ y u(•, 0) = ∂ y u(•, 1) = 0.

Schwarz and the birth of domain decomposition methods

Fourier series (1807, 1822) gave a solution to Laplace's equation for simple geometries (such as a circle or a rectangle). However, in the general case, the mere existence of a solution remained an open question.

When the domain Ω is the union of two simpler subdomains Ω 1 and Ω 2 on which a solution can be computed, [START_REF] Schwarz | Scaling the solution of large sparse linear systems using multifrontal methods on hybrid shared-distributed memory architectures[END_REF] gave a constructive proof of existence of a global solution on Ω (see Figure 1.2). He devised an iterative method, the Schwarz Alternating Method, for solving Laplace's equation in Ω by solving it alternatively in each 1. Introduction Figure 1.2: Two overlapping subdomains as drawn by [START_REF] Schwarz | Scaling the solution of large sparse linear systems using multifrontal methods on hybrid shared-distributed memory architectures[END_REF]. The two subdomains Ω 1 and Ω 2 are labeled T 1 and T 2 , and their intersection Ω 1 ∩ Ω 2 is labeled T * . simpler subdomain, namely the circle Ω 1 and the square Ω 2 , using the value of the previous solution in the other subdomain as a Dirichlet BC find u 1 (n) : Ω 1 → R such that and u 2 (n) : Ω 2 → R such that

       ∆u (n) 1 = 0 in Ω 1 ,        ∆u (n) 2 = 0 in Ω 2 , u (n) 1 = v D on ∂Ω ∩ ∂Ω 1 , u (n) 2 = v D on ∂Ω ∩ ∂Ω 2 , u (n) 1 = u (n-1) 2 on ∂Ω ∩ Ω 2 ; u (n) 2 = u (n) 1 on ∂Ω ∩ Ω 1 .
Schwarz proved that for any initial choice for u

and u

(n) 2

converge towards the same function in the overlap Ω 1 ∩ Ω 2 , giving a unique limit u : Ω → R solution of Laplace's equation in Ω = Ω 1 ∪ Ω 2 . Variations on this method are presented in Section 2.7.

1.1.3 The finite element method [START_REF] Ritz | über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik[END_REF] developed a more general method for solving problems like (1.3) by expressing the solution as a sum of basis functions. First, a weak formulation for the problem has to be introduced: Problem (1.3) is rewritten

find u ∈ V such that ∀v ∈ Ṽ a(u, v) = f (v)
where V and Ṽ are suitable function spaces, a is a bilinear form and f is a linear form. This is typically obtained by multiplying Equation (1.3) by a test function v, and integrating over Ω.

The second step is to replace V and Ṽ with subspaces V n and Ṽn of finite dimension n find u ∈ V n such that ∀v ∈ Ṽn a(u, v) = f (v).

Projecting u and v onto bases of V n and Ṽn gives a discrete linear system that can be written as a matrix equation

Ku = f, (1.5)
where K is a (n, n) matrix and u and f are vectors of R n . u is called the unknown, and f is called the Right-Hand Side.

Historical context

Ritz's method was immediately put to use and perfected in Russia, where it was popularized by [START_REF] Galerkin | Series solution of some problems of elastic equilibrium of rods and plates[END_REF]. More historical perspective is provided in [START_REF] Gander | From Euler, Ritz, and Galerkin to Modern Computing[END_REF].

A case of particular interest is when using a particular set of basis functions defined on a mesh. This method, known as the Finite Element Method (FEM), yields a sparse system, meaning that most coefficients in the matrix K are equal to zero. This sparsity can be exploited, in practice, to reduce both the memory needed to represent the matrix and the computational cost of some operations such as the matrix-vector product or factorization.

In the current section as well as in Chapter 2, the FEM will often be used to relate operations performed on the continuous PDE to their algebraic counterpart performed on the matrix to illustrate the link between them. However, the algorithms presented here never rely explicitly on a particular discretization method: they only may have some algebraic prerequisites on the matrices, such as symmetry or positive definiteness that are best illustrated using the FEM. More advanced discretization techniques such as, for instance, the Hybrid Discontinuous Galerkin method (HDG) [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF] can generate matrices with the same properties, as shown in [START_REF] Agullo | High order scalable HDG method for frequency-domain electromagnetics[END_REF].

A weak formulation of Poisson's equation in Problem (1.4) is obtained by multiplying the PDE by v and integrating over Ω find u such that ∀v (1.6)

We introduce a mesh of 3 square elements and 8 vertices over Ω (known as a Q 1 P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7

Figure 1.3: Mesh used to discretize the weak formulation (1.6). The labels of the nodes represent the ordering of the indices in the matrix in Equation (1.7).

discretization), as presented in Figure 1.3. The 8 points in the mesh are labelled P i (0 ≤ i ≤ 7). Then, we introduce the subspace generated by the basis functions e i , for 0 ≤ i ≤ 7 defined as

  
  e i (P i) = 1, e i (P j) = 0 if j = i, e i (x , y) = a + bx + cy + dxy inside each element of the mesh, and in each element, there is only one choice of a, b, c and d that gives the prescribed value (1 or 0) on the 4 corners. Each basis function e i is therefore continuous and piecewisepolynomial on Ω.

Introduction

The solution can then be searched as u = 7 i=0 u i e i . The resulting global system is Sparse matrices. A matrix is said to be sparse if it contains only very few nonzero elements, as depicted in Figure 1.4b, where nonzero elements are represented in blue color. There is no accurate definition of the proportion of nonzero elements in sparse matrices. However, a matrix can be considered as sparse when one can take advantage computationally of taking into account only its nonzero elements. Even if the matrix presented in Figure 1.4a contains 54 % of nonzero elements, it cannot be termed sparse, althought the one presented in Figure 1.4b can be clearly considered as sparse. As reported for example by [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF], partial differential equations are among the most important sources of sparse matrices. These matrices are not only sparse, but they may also be very large, which leads to a storage problem. For example, a matrix A ∈ C n×n , of order n = 10 6 , contains n × n = 10 12 elements (zero and nonzero elements). In double precision arithmetic, 16 terabytes1 are necessary to store all its entries. There are special data structures to store sparse matrices and their main goal is to store only non-zero elements while at the same time facilitating algebraic operations. We refer to [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF] for a detailed description of possible data structures for sparse matrices.

           
Direct methods. To solve a linear system of equations of form Ax = b where A is a square non-singular matrix of order n, b is the right-hand side vector and x is the unknown vector, as illustrated by Equation (1.7), a broad class of methods is based on Gaussian elimination [START_REF] Gauss | Disquisitio de elementis ellipticis Palladis ex oppositionibus annorum 1803[END_REF][START_REF] Grcar | How ordinary elimination became Gaussian elimination[END_REF]. One variant decomposes the coefficient matrix of the linear system (here A) into a product of a lower triangular matrix L (diagonal elements of L are unity) and of an upper triangular matrix U such that A = LU . This decomposition is called the LU factorization of the matrix A; for the matrix in (1.7) those 1.1. Historical context

            , U =             1 0 0 0 0 0 0 0 0 1.33 -0.167 0
            .
Once the LU factorization is performed, the linear system solution consists of two steps:

Introduction

In our example, it computes y = (0, 0.5, 0.56, 0.32, 0, 0.81, 1.2, 1.2) T , which leads to the solution x = (0, 2.5, 4, 4.5, 0, 2.5, 4, 4.5) T , represented in blue in Figure 1.5. The advantage of this approach is that most of the work is performed in the decomposition step (O(n 3) floating point operations for dense matrices) and very little in the forward and backward substitutions (O(n 2) operations). The solution of successive linear systems using the same matrix but with different right-hand sides, often arising in practice, is then relatively cheap. Furthermore, if the matrix is symmetric (or symmetric positive definite), an LDL T (or Cholesky) factorization may be performed. In finite arithmetics, direct methods enable one to solve linear systems in practice with a high accuracy in terms of backward error [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. However, this numerical robustness has a cost. First, the number of arithmetic operations is very large. Second, in the case of a sparse matrix A, the number of non-zeros of L and U is often much larger than the number of non-zeros in the original matrix. This phenomenon, so-called fill-in, may be prohibitive in terms of memory usage and computational time. Solving large sparse linear algebra problems using direct methods is very challenging because of memory limitation.

In order to minimize computational cost and guarantee a stable decomposition and limited fill-in intensive studies have been carried on that lead to efficient code implementations such as CHOLMOD [START_REF] Davis | User Guide for CHOLMOD: A sparse Cholesky factorization and modification package[END_REF], Mumps [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF], Pardiso [START_REF] Schenk | PARDISO: A High-Performance Serial and Parallel Sparse Linear Solver in Semiconductor Device Simulation[END_REF], Pastix [START_REF] Hénon | PASTIX: A high-performance parallel direct solver for sparse symmetric positive definite systems[END_REF], SuperLU [START_REF] Li | SuperLU_DIST: A Scalable Distributed-memory Sparse Direct Solver for Unsymmetric Linear Systems[END_REF], to name a few. Sparse methods work well for matrices arising from 2D PDE discretizations, but they may be very penalizing in terms of memory usage and computational time for those coming from large 3D test cases.

Iterative methods To solve very large sparse problems, iterative solvers may be more scalable and considerably decrease the memory consumption. Iterative methods produce a sequence of approximates to the solution. On the one hand, successive iterations implemented by iterative methods require a small amount of storage and floating point operations. On the other hand iterative methods are generally less robust than direct solvers for general sparse linear systems, as they might converge slowly or not converge 1.1. Historical context at all. Iterative methods for linear systems are broadly classified into two main types: stationary and Krylov subspace methods.

Consider the solution of the linear system Ax = b; stationary methods can be expressed in the general form

M x k+1 = N x k + b (1.8)
where x k is the approximate solution at the k th iteration. The matrices N and M do not depend on k, and satisfy A = M -N with M non singular. These methods are called stationary because the solution to a linear system is expressed as finding the stationary fixed point of Equation (1.8) when k will go to infinity. Given any initial guess x 0 , the stationary method described in Equation (1.8) converges if and only if ρ(M -1 N) < 1, where the spectral radius ρ(A) of a given matrix A with eigenvalues λ i is defined by [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF]. Typical iterative methods for linear systems are Gauss- 1.1: Stationary iterative methods for linear systems. D, -L and -U are the diagonal, strictly lower-triangular and strictly upper-triangular parts of A, respectively. Seidel, Jacobi, successive over relaxation etc., as described in Table 1.1 according to the choice of M and N .

ρ(A) = max(|λ i |)
M N Method D (L + U) Jacobi (D -L) U Gauss-Seidel ((1 ω)D -L) (((1 ω) -1)D + U) Successive Over Relaxation Table
Another approach to solve linear systems of equations consists in extracting the approximate solution from a subspace of dimension much smaller than the size of the coefficient matrix A. This approach is called projection method. These methods are based on projection processes: orthogonal and oblique projection onto Krylov subspaces, which are subspaces spanned by vectors of the form p(A)v, where p is a polynomial [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF]. Let A ∈ R n×n and v ∈ R n , let m ≤ n, the space denoted by K m (A, v) = span{v, Av, ..., A m-1 v} is referred to as the Krylov space of dimension m associated with A and v. These techniques approximate A -1 v by p(A)v, where p is a specific polynomial. Based on a minimal polynomial argument, it can be shown that these methods converge in less than n steps compared to "infinity" for stationary schemes.

The convergence of Krylov subspace methods depends mostly on the numerical properties of the coefficient matrix A. To accelerate the convergence, one may use a non-singular matrix M such that MA has better convergence properties for the selected solver. The linear systems MAx = Mb has the same solution as the original linear system. This method is called preconditioning and depending on the authors, either the matrix M or its inverse M -1 is called a left preconditioner; in this thesis, we chose the convention of calling M the preconditioner: the preconditioner should somehow approximate A -1 . On the other hand, linear systems of equations can also be preconditioned from the right: AMy = b, and x = My. One can also consider split preconditioning that is expressed as follows: M 1 AM 2 y = M 1 b, and x = M 2 y, where the preconditioner is

M = M 1 M 2 .
Krylov methods do not require the matrices A or M to be explicitly formed. Instead, procedures for applying A and M to a vector must be provided. Preconditioners are 1. Introduction commonly applied by performing sparse matrix-vector products or solving simple linear systems. The numerical requirement for a good preconditioner is that the spectrum of the preconditioned matrix is clustered. Such a feature generally ensures fast convergence of the Conjugate Gradient method (CG) for Symmetric Positive Definite (SPD) problems as illustrated by the CG convergence rate bound given by [START_REF] Golub | Matrix Computations (3rd Ed[END_REF]:

||e k || A ≤ 2 √ κ -1 √ κ + 1 k ||e 0 || A ,
where e k = x * -x k denotes the error associated with the iterate at step k and κ is the condition number of the preconditioned linear system M 1 2 AM 1 2 (which is simply the ratio of the largest to smallest eigenvalue). From this bound, it can be seen that when the condition number is small (i.e., κ ≈ 1), CG converges rapidly. In addition to improving the spectral distribution, a preconditioner should be inexpensive to compute, to store and apply. In a parallel distributed framework, the construction and the application of the preconditioner should also be easily parallelizable.

The conjugate gradient algorithm constructs the solution that makes its associated residual orthogonal to the Krylov space. A consequence of this geometric property is that it is also the minimum error solution in A-norm over the Krylov space K k = span r 0 , Ar 0 , . . . , A k-1 r 0 , where r 0 = b -Ax 0 . It exists a rich literature dedicated to this method; for more details we, non-exhaustively, refer to [START_REF] Golub | Matrix Computations (3rd Ed[END_REF][START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF] and the references therein.

A key ingredient in iterative method is the stopping criterion that should control the quality of the computed solution. The backward error analysis, introduced by Givens and Wilkinson [START_REF] Wilkinson | Rounding Errors in Algebraic Processes[END_REF], is a powerful concept for analyzing the quality of an approximate solution:

1. it is independent of the details of round-off propagation: the errors introduced during the computation are interpreted in terms of perturbations of the initial data, and the computed solution is considered as exact for the perturbed problem;

2. because round-off errors are seen as data perturbations, they can be compared with errors due to numerical approximations (consistency of numerical schemes) or to physical measurements (uncertainties on data coming from experiments for instance).

The backward error defined by (1.9) measures the distance between the data of the initial problem and those of a perturbed problem. Dealing with such a distance both requires to choose the data that are perturbed and a norm to quantify the perturbations. For the first choice, the matrix and the right-hand side of the linear systems are natural candidates. In the context of linear systems, classical choices are the normwise and the componentwise perturbations [START_REF] Chaitin-Chatelin | Lectures on Finite Precision Computations[END_REF]; [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. These choices lead to explicit formulas for the backward error (often a normalized residual) which is then easily evaluated. For iterative methods, it is generally admitted that the normwise model of perturbation is appropriate [START_REF] Barrett | Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods[END_REF].

Historical context

Let x k be an approximation to the solution x = A -1 b. The quantity

η A,b (x k) = min ∆A,∆b {τ > 0 : ∆A ≤ τ A , ∆b ≤ τ b and (A + ∆A)x k = b + ∆b} , = Ax k -b A x k + b (1.9)
is called the normwise backward error associated with x k . It measures the norm of the smallest perturbations ∆A on A and ∆b on b such that x k is the exact solution of (A + ∆A)x k = b + ∆b. The best one can require from an algorithm is a backward error of the order of the machine precision. In practice, the approximation of the solution is acceptable when its backward error is lower than the uncertainty of the data. Therefore, there is no gain in iterating after the backward error has reached machine precision (or data accuracy).

In many situations it might be difficult to compute (even approximatively) A . Consequently, another backward error criterion can be considered that is simpler to evaluate and implement in practice. It is defined by

η b (x k) = min ∆b {τ > 0 : ∆b ≤ τ b and Ax k = b + ∆b} , = Ax k -b b .
(1.10) This latter criterion measures the norm of the smallest perturbations ∆b on b (assuming that they are no perturbations on A) such that x k is the exact solution of Ax k = b + ∆b.

The stopping criteria of the Krylov solvers we used for our numerical experiments are based on η b .

Hybrid methods Direct methods are based on the Gaussian elimination that is probably among the oldest methods [START_REF] Gauss | Disquisitio de elementis ellipticis Palladis ex oppositionibus annorum 1803[END_REF][START_REF] Grcar | How ordinary elimination became Gaussian elimination[END_REF] for solving linear systems. Tremendous efforts have been devoted to the design of sparse Gaussian elimination that efficiently exploits the sparsity of the matrices. These methods indeed aim at exhibiting dense submatrices that can then be processed with computational intensive standard dense linear algebra kernels. Sparse direct solvers have been for years the methods of choice for solving linear systems of equations because of their reliable numerical behavior [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]. Although there are ongoing efforts in further improving existing parallel packages, such approaches may not be scalable in terms of computational complexity and memory for large problems such as those arising from the discretization of large 3D PDEs. Furthermore, the linear systems involved in the numerical simulation of complex phenomena result from some modeling and discretization, which contain some uncertainties and approximation errors. Consequently, the highly accurate but costly solution provided by stable Gaussian elimination might not be mandatory.

Iterative methods, on the other hand, generate sequences of approximations to the solution either through fixed point schemes or via search in Krylov subspaces. These methods have the advantage that the memory requirements are low. Also, they tend to be easier to parallelize than direct methods. However, the main problem with this class 1. Introduction of methods is the rate of convergence, which depends on the properties of the matrix. In many computational science areas, highly accurate solutions are not required as long as the quality of the computed solution can be assessed against measurements or data uncertainties. In such a framework, the iterative schemes play a central role as they might be stopped as soon as an accurate enough solution is found.

An alternative approach for the high-performance, scalable solution of large sparse linear systems in parallel scientific computing is to combine direct and iterative methods. Such an hybrid approach exploits the advantages of both direct and iterative methods. The iterative component allows us to use a small amount of memory and provides a natural way for parallelization. The direct part provides its favorable numerical properties. Furthermore, this combination enables us to exploit naturally several levels of parallelism that logically match the hardware feature of multicore platforms. In particular, one can use parallel multithreaded sparse direct solvers within the multicore nodes of the machine and message passing among the nodes to implement the gluing parallel iterative scheme. The general underlying numerical ideas are not new. They are often closely related to ideas considered in the design of domain decomposition techniques for the numerical solution of PDEs (see [START_REF] Mathew | Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations[END_REF] and references therein). With the need of solving ever larger sparse linear systems while maintaining numerical robustness, multiple variants for computing preconditioners for the Schur complement of such hybrid solvers have been proposed. PDSLin [START_REF] Li | Factorization-based sparse solvers and preconditioners[END_REF], ShyLU (Rajamanickam et al., 2012b) and HIPS (Gaidamour and Hénon, 2008) first perform an exact factorization of the interior of each subdomain concurrently. PDSLin and ShyLU then compute the preconditioner with a two-fold approach. First, an approximation of the (global) Schur complement is computed. Second, this approximate Schur complement is factorized to form the preconditioner for the Schur complement system, which does not need to be formed explicitly. While PDSLin has multiple options for discarding values lower than some user-defined thresholds at different steps of the computation of the approximation of the Schur complement, ShyLU implements a structure-based approach for discarding values named probing and that was first proposed to approximate interfaces in domain decomposition [START_REF] Chan | The interface probing technique in domain decomposition[END_REF]. Instead of following such a two-fold approach, HIPS forms the preconditioner by computing a global ILU factorization based on the multilevel scheme formulation from [START_REF] Hénon | A parallel multistage ILU factorization based on a hierarchical graph decomposition[END_REF]. Finally, MaPHyS [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF], computes an Additive Schwarz preconditioner for the Schur complement; it will be further detailed in Chapter 5.

Our positioning

The most straightforward way to solve a PDE, as introduced in Section 1.1, is to discretize it and use an algebraic solver to solve the resulting linear system. This methodology can be detailed as follows:

1. the PDE and its BC are expressed on the global domain (Section 1.1.1), 2. a discretization method such as the FEM (Section 1.1.3) is used to transform the PDE and its BC into an algebraic linear system Ku = f , 1.2. Our positioning 3. an algebraic linear solver (Section 1.1.4) is used to compute the discrete solution u, 4. the discrete solution u may be interpolated to compute an approximate solution of the PDE.

Each of these steps introduces some error, and the final solution is only an approximate solution of the initial problem. One way to reduce the discretization error (step 2) is to use a finer mesh, allowing for a better approximation of continuous functions by vectors defined on the mesh. Once the size of the domain is fixed, using a finer mesh leads to more discrete unknowns and a larger linear system to solve (step 3).

Large-scale problems can be solved using, for instance, an hybrid (direct/iterative) solver (Gaidamour and Hénon, 2008;[START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF]Rajamanickam et al., 2012a;[START_REF] Saad | Distributed Schur complement techniques for general sparse linear systems[END_REF] In this algebraic methodology, the global matrix is replaced by a set of smaller local matrices which can be used in a preconditioner to accelerate the iterative solution of the global linear system. This methodology takes advantage of both the robustness of direct solvers and the low complexity of iterative solvers when used on large matrices in a distributed memory setting.

One can instead partition the problem at step 2, before discretization, by using a Domain Decomposition (DD) approach as introduced in Section 1.1.2 and further detailed in Chapter 2. In this approach, steps 2 and 3 are replaced by Although these two latter approaches bear some similarity, they differ in the fact that a DD approach can rely on more information than the global matrix and the right-hand side that are provided to an algebraic hybrid solver. Although this makes it possible in the DD approach to optimize the choice of the decomposition (i.e., the definition of the subdomains), or the choice of a formulation and preconditioner as well as their parameters (see, for instance, the choice of a transmission operator in [START_REF] Gander | Optimized Schwarz methods[END_REF]), this 1. Introduction implies a tight integration of the DD algorithm inside the application code. As a result, algebraic hybrid solvers are more suited to the development of black-box libraries that can be reused in various applications, reducing the cost of High Performance Computing (HPC) optimizations. For instance, focusing on the MaPHyS solver [START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF], recent developments include the use of modern parallelization paradigms such as twolevel parallelism [START_REF] Agullo | Hierarchical hybrid sparse linear solver for multicore platforms[END_REF] and task-based parallelism [START_REF] Agullo | Task-based sparse hybrid linear solver for distributed memory heterogeneous architectures[END_REF], improving the resilience [START_REF] Agullo | Towards Resilient Parallel Linear Krylov Solvers: Recover-Restart Strategies[END_REF] and fault-tolerance [START_REF] Agullo | Soft Error in PCG: Sensitivity, Numerical Detections and Possible Recoveries[END_REF] of the solver and developing new graph partitioning strategies for hybrid solvers [START_REF] Casadei | Towards domain decomposition with balanced halo[END_REF].

An innovative framework for developing HPC DD solvers was developed by [START_REF] Jolivet | Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems[END_REF]. The hpddm library interacts with the application code through the element matrices provided by a third-party discretization tool. It is not however fully algebraic, as stated on the project main page (https://github.com/hpddm/hpddm): "For building robust two-level methods, an interface with a discretization kernel like FreeFem++ or Feel++ is also needed. It can then be used to provide, for example, elementary matrices, that the GenEO approach requires. As such preconditioners assembled by HPDDM are not algebraic, unless only looking at one-level methods. Note that for substructuring methods, this is more of a limitation of the mathematical approach than of HPDDM itself."

In this thesis, we aim at combining the advantages of both the algebraic and DD approaches. For that, while remaining as algebraic as possible, we identify some key information to be provided to the solver alongside the matrix in order to use robust Domain Decomposition Methods (DDM). Other work in this direction include, among others, recent developments by [START_REF] Agullo | High order scalable HDG method for frequency-domain electromagnetics[END_REF]; [START_REF] Gander | Analysis of Patch Substructuring Methods[END_REF]; Spillane et al. (2014a).

An overview of classic DD methods is provided in Chapter 2, using both functional and algebraic notations. In Chapter 3, we prove that for Symmetric Positive Definite (SPD) problems, providing the matrix in a distributed fashion as a sum of Symmetric Positive Semi-Definite (SPSD) matrices is enough to build a robust and scalable hybrid solver. The only input needed are the subdomain matrices obtained by discretizing the PDE with Neumann BC on the interface between subdomains. For SPD problems, the SPSD condition for local matrices is for instance satisfied when applying a finite element method over a partitioned mesh, but more complex discretizations such as the hybridizable discountinuous Galerkin method [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF] can be used instead.

In Chapter 4, the DD methods introduced in chapters 2 and 3 are implemented in a parallel distributed DD toolbox in python called ddmpy exposed using a literate programming approach. All the code needed to reproduce the experiments in this chapter is included. Chapter 5 further studies different strategies for the parallel design of the coarse space management, proposed as an extension to the fully-featured HPC MaPHyS sparse hybrid solver.

Chapter 2

Domain decomposition methods

Introduction

The growing use of parallel computers for computational mathematics gave rise to a new interest for Domain Decomposition Methods (DDM), as explained for instance in the Preface of the proceedings of the first International Conference on Domain Decomposition Methods [START_REF] Glowinski | Proceedings of the First International Conference on Domain Decomposition Methods in[END_REF]: "One of the motivations for organizing this conference was the growing popularity of decomposition methods over the last few years, mainly due to the strong emergence of multiprocessor, array and parallel computers. A second motivation was the need to split very large scale problems into smaller ones in order to solve them."

This chapter provides an overview of classical DDM. It will serve as a basis on top of which robust two-level algebraic preconditioners will be proposed in Chapter 3 and Chapter 4 will propose a parallel implementation of most of the methods introduced in the current chapter. DDM were first introduced using a functional formalism (as in Section 1.1.2), referred to as a continuous approach, that still prevails in the DD community. They can also be introduced in matrix notations, following an algebraic approach, which is often preferred by the linear solver and HPC community. Despite the risk of being redundant, we decided to expose both approaches in this chapter in order to try and bridge the gap between those two communities, following [START_REF] Maday | Absorbing interface conditions for domain decomposition methods: A general presentation[END_REF] and [START_REF] St-Cyr | Optimized multiplicative, additive, and restricted additive Schwarz preconditioning[END_REF] among others.

DDM are first introduced on two subdomains: the introduction of an interface Γ is presented in Section 2.2. Then, the choice of a BC on Γ is discussed in Section 2.3 and 2.4. As for the Schwarz alternating method presented above in Section 1.1.2, DDM proceed by partitioning a global problem into a set of local subproblems. The definition of a particular DDM depends on the exact choice of these local subproblems and the (often iterative) procedure to enforce continuity between the subdomains. In Section 2.5, some reformulations of the global problem are proposed to decompose the global problem into an equivalent set of local problems, coupled through interface equations. A generalization to an arbitrary number N of subdomains is presented next in Section 2.6. Then, the complementary approach of building a global preconditioner through local problems is discussed in Section 2.7.

A more complete overview of DDM can be found in [START_REF] Quarteroni | Domain Decomposition Methods for Partial Differential Equations[END_REF]Toselli 2. Domain decomposition methods and Widlund, 2006;[START_REF] Mathew | Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations[END_REF][START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF] and in the proceedings of the international Domain Decomposition conference series1 .

Introduction of an interface in the global domain

As stated above, in order to solve larger problems that could not be solved globally, the domain can be partitioned into subdomains. This can be done either on the continuous problem before the discretization, by partitioning the domain into subdomains and introducing artificial interfaces in the domain, or on the algebraic problem after the discretization by partitioning the set of unknown indices. The introduction of a single interface to split the global domain into only two subdomains is introduced here, both for the continuous problem and for the linear system. A generalization to an arbitrary number N of subdomains is proposed in Section 2.6.

Introduction of an interface for the continuous problem

In our previous example (Problem (1.4), page 20), it is possible to decompose the domain Ω into two subdomains, for instance

Ω 1 = [0, 2]×[0, 1] and Ω 2 = [2, 3]×[0, 1] by introducing an interface Γ = {(2, y), y ∈ [0, 1]}, as presented in Figure 2.1. Problem (1.4) can then be Ω 1 Ω 2 Γ Figure 2.1: An interface Γ = {(2, y), y ∈ [0, 1]} is introduced to split Ω into two subdo- mains Ω 1 and Ω 2 .
divided into two coupled subproblems in Ω 1 and Ω 2 , by adding a compatibility condition on the solutions u 1 and u 2 in the subdomains: the solution and its first-order derivative across the interface ought to be continuous, leading to find u 1 : Ω 1 → R such that and u 2 : Ω 2 → R such that

∆u 1 = -1 in Ω 1 , ∆u 2 = -1 in Ω 2 , u 1 (0, •) = 0, ∂ x u 2 (3, •) = 0, (2.1)      ∂ y u 1 (•, 0) = ∂ y u 1 (•, 1) = 0;      ∂ y u 2 (•, 0) = ∂ y u 2 (•, 1) = 0;
with the compatibility condition

u 1 (2, •) = u 2 (2, •) (continuity of the solution), (2.2) ∂ x u 1 (2, •) = ∂ x u 2 (2, •) (continuity of the normal derivative). (2.
3)

The equation inside Ω i and the BC on ∂Ω ∩ ∂Ω i are the same in both subproblems associated with (2.1) as in Problem (1. In a more general case, when the global problem is as stated in (1.3), one can partition Ω into two subdomains Ω 1 and Ω 2 separated by an interface Γ, such that Ω 1 ∩ Ω 2 = ∅ and Γ = Ω1 ∩ Ω2 \ ∂Ω. We suppose that Problem (1.3) can be expressed as a coupled problem, through the introduction of a linear operator N i to represent a continuity condition. In our example with Poisson's equation, N i (u) is the outwards normal derivative

(-1) i+1 ∂ x u. The new problem is find u 1 : Ω 1 → R such that and u 2 : Ω 2 → R such that L(u 1) = f in Ω 1 , L(u 2) = f in Ω 2 , (2.4) B(u 1) = g on ∂Ω 1 ∩ ∂Ω ; B(u 2) = g on ∂Ω 2 ∩ ∂Ω ;
with the compatibility condition

u 1 = u 2 on Γ, N 1 (u 1) + N 2 (u 2) = 0 on Γ.
(2.5)

2.2.2 Introduction of an interface in the algebraic linear system

I 1 I 2 Γ Figure 2.2:
The set of indices can be partitioned into two interiors I 1 and I 2 and an interface Γ. In the graph, there are no edges between a node in I 1 and a node in I 2 . The partition induces a new ordering of the unknowns.

Alternatively, the domain decomposition can be performed on the algebraic problem (1.5) after discretization, by partitioning the set of indices {0, 1, . . . , 7} in three subsets I 1 = {0, 1, 4, 5}, I 2 = {3, 7} and Γ = {2, 6}. Then, it is possible to reorder these indices using the permutation (I 1 I 2 Γ) = [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]1,4,5,3,7,2,6) (see figures 1.3 and 2.2). This permutation can be applied to both row and column indices (so called symmetric permutation) in the matrix (and vectors), and the reordered system is

            0/e 0 1/

Domain decomposition methods

It is important to note that, in the permuted matrix, there is a zero-block in the rows of I 1 = (0/e 0 , . . . , 3/e 5) and columns of I 2 = (4/e 3 , 5/e 7) and vice versa: there is no direct interaction between the indices in I 1 and I 2 through the graph of the matrix.

Similarly, Problem (1.3) can be translated into an algebraic problem (1.5). One can partition the indices in the matrix {1, 2, . . . , n} = I 1 ∪ I 2 ∪ Γ such that K ij = K ji = 0 for any i ∈ I 1 and j ∈ I 2 , and reorder the matrix with the permutation (I 1 I 2 Γ). The resulting system, which exhibits a (3 × 3) block structure for the matrix, is

  K I 1 ,I 1 0 K I 1 ,Γ 0 K I 2 ,I 2 K I 2 ,Γ K Γ,I 1 K Γ,I 2 K Γ,Γ     u I 1 u I 2 u Γ   =   f I 1 f I 2 f Γ   .
(2.7)

Local boundary conditions on the interface Γ

Each of the continuous local subproblems in (2.1) or (2.4) taken independently (without the compatibility condition) is not complete without a BC on ∂Ω i \ ∂Ω = Γ. The continuous subproblems with a Dirichlet, Neumann or Robin BC on Γ are presented below, along with their discretizations. The compatibility condition is reintroduced next in Section 2.4 to deduce an optimal BC for the local subproblems.

Dirichlet boundary condition on Γ

We can add a Dirichlet BC u 1 (2, •) = v D on Γ for the left subproblem in our example (2.1), leading to the local problem find u 1 : Ω 1 → R such that

∆u 1 = -1 in Ω 1 , u 1 (0, •) = 0,          ∂ y u 1 (•, 0) = ∂ y u 1 (•, 1) = 0, u 1 (2, •) = v D . (2.8) Since v D (0) = ∂ y u 1 (2, 0) = 0 and v D (1) = ∂ y u 1 (2, 1) = 0, the Fourier series of v D is v D = k a D k cos(kπy).
Then, the solution of (2.8) is

u 1 = -1/2x 2 + x + a D 0 x /2 + k =0 a D k sinh(kπx) sinh(2kπ) cos(kπy).
In the generic equation (2.4), the addition of a similar Dirichlet BC u = v D on Γ gives

2.3. Local boundary conditions on the interface Γ the local problem find u 1 : Ω 1 → R such that L(u 1) = f in Ω 1 ,    B(u 1) = g on ∂Ω 1 ∩ ∂Ω, u 1 = v D on Γ,
(2.9) whose discretization is

K I 1 ,I 1 K I 1 ,Γ 0 I u I 1 u Γ = f I 1 v D .
where I is an identity matrix and v D is a discretization of v D . Since the value on Γ is prescribed by the BC and needs not appear in the unknown vector, a simpler equivalent formulation is

K I 1 ,I 1 u I 1 = f I 1 -K I 1 ,Γ v D , (
        u 0 u 1 u 4 u 5     = f D (v D),
(2.11)

where f D (v D) is a right-hand side that depends on the value of v D . The matrix in Equation (2.11) is exactly the (4,4) top left block of the matrix in Equation (2.6).

Neumann boundary condition on Γ

Instead of a Dirichlet BC, it is possible to impose a Neumann BC

∂ n u 1 = ∂ x u 1 = v N = k a N k cos(kπy) on Γ for the Poisson problem: find u 1 : Ω 1 → R such that ∆u 1 = -1 in Ω 1 , u 1 (0, •) = 0,          ∂ y u 1 (•, 0) = ∂ y u 1 (•, 1) = 0, ∂ x u 1 (2, •) = k a N k cos(kπy).
(2.12)

The solution of this problem is

u 1 = -1/2x 2 + 2x + a N 0 x + k =0 a N k sinh(kπx) kπ cosh(2kπ)
cos(kπy).

(2.13)

Domain decomposition methods

The discretization of this local Neumann problem is

        0/e 0 1/
                u 0 u 1 u 4 u 5 u 2 u 6         = f N (v N), (2.14)
where f N (v N) is a right-hand side that depends on the value of v N .

The addition of a similar Neumann BC N 1 (u 1) = v N on Γ in the generic equation (2.4) gives the local problem

find u 1 : Ω 1 → R such that L(u 1) = f in Ω 1 , B(u 1) = g on ∂Ω 1 ∩ ∂Ω,    N 1 (u 1) = v N on Γ, (2.15)
whose discretization defines a matrix K 1

K 1 u I 1 u Γ = K I 1 ,I 1 K I 1 ,Γ K Γ,I 1 K (1) Γ,Γ u I 1 u Γ = f N (v N).
(2.16)

The matrix blocks K I 1 ,I 1 , K I 1 ,Γ and K Γ,I 1 are the same in the the three equations (2.7), (2.10) and (2.16), whereas the bottom-right block K

(1)

ΓΓ is different from K ΓΓ . However, with K 2 and K

(2) Γ,Γ defined similarly to K 1 and K

(1) Γ,Γ , respectively, for the second subdomain Ω 2 , Equation (2.5) implies that K

(1) Γ,Γ + K (2) Γ,Γ = K Γ,Γ . Introducing a restriction matrix R Ω i from global vectors defined on (I 1 I 2 Γ) to local vectors defined on (I i Γ) R Ω 1 = I 0 0 0 0 I , R Ω 2 = 0 I 0 0 0 I , (2.17)
it is then possible to retrieve the global matrix from the local Neumann matrices K 1 and

K 2 K = R T Ω 1 K 1 R Ω 1 + R T Ω 2 K 2 R Ω 2 .
(2.18)

The local subproblems with a Neumann BC on Γ can be seen as local contributions to the global problem. In practice, it is therefore possible to compute K in parallel by discretizing the local problems with a Neumann BC, and express K as a sum of these local matrices K i as above.

Optimal boundary conditions

Robin boundary condition on Γ

A third type of BC to consider is the Robin BC N 1 (u 1) + pu 1 = v R on Γ, where p is a (scalar) parameter:

find u 1 : Ω 1 → R such that L(u 1) = f in Ω 1 , B(u 1) = g on ∂Ω 1 ∩ ∂Ω,    N 1 (u 1) + pu 1 = v R on Γ.
(2.19)

The discretization gives

K I 1 ,I 1 K I 1 ,Γ K Γ,I 1 K (1) Γ,Γ + pM Γ u I 1 u Γ = f R (v R),
where M Γ is a mass matrix (i.e., a discretization of the identity) on Γ.

The Robin BC can be viewed as a linear combination of a Neumann and a Dirichlet BC. It can also be interpreted, instead, as a modification of a Neumann BC N 1 (u 1) = v N where v N , instead of being fixed as a constant, has a linear dependence on the unknown v N = v R -pu 1 . The pu 1 term can then be interpreted as a flow towards the other domain Ω 2 , proportional to the value of u 1 on Γ, and p can be viewed as a mean to describe the conductivity of Ω 2 .

This definition of a Robin BC can be extended by replacing the scalar multiplication u → pu by any linear operator T i , whose discretization on Γ is given by a matrix T i called the transmission matrix

K I 1 ,I 1 K I 1 ,Γ K Γ,I 1 K (1) Γ,Γ + T 1 u I 1 u Γ = f R (v R).
(2.20)

The transmission operator T i or matrix T i represents the linear dependency between the flow from Ω i to its neighbor and the solution on the interface Γ.

Optimal boundary conditions

D = u 2 (2, •) is u 1 = -1/2x 2 + x + a D 0 x /2 + k =0 a D k sinh(kπx) sinh(2kπ) cos(kπy),
and its derivative across the interface is

∂ x u 1 (2, •) = -1 + a D 0 /2 + k =0 a D k kπ coth(2kπ) cos(kπy).
We introduce the linear operator S 1 such that

∂ x u 1 (2, •) = -1 + S 1 (v D) S 1 k a D k cos(kπy) = a D 0 /2 + k =0
a D k kπ coth(2kπ) cos(kπy).

(2.21)

Then, ∂ x u 1 (2, •) = -1 + S 1 (u 2 (2, •)
), and it is now possible to eliminate u 1 from the partitioned problem (2.1 -2.3), leading to the following problem in Ω 2 find u 2 : Ω 2 → R such that

∆u 2 = -1 in Ω 2 , ∂ x u 2 (3, •) = 0, ∂ y u 2 (•, 0) = ∂ y u 2 (•, 1) = 0,          ∂ x u 2 (2, •) -S 1 (u 2 (2, •)) = -1. (2.22)
The BC on Γ for Ω 2 , deduced from the global problem, is a Robin BC whose transmission operator is applied by solving a Dirichlet problem in Ω 1 . Note that the problem considered here for illustration is simplistic and in particular has no dependency on y. Therefore, in this particular case we have a D k = 0 for k = 0, which leads to v D = a D 0 , and

S 1 (v D) = v D /2. The analytic solution to Problem (2.22) is u 2 (x , y) = -1 2 x 2 + 3x in Ω 2
, which is of course equal to the solution of the global problem.

Following the same approach in the generic problem (2.4), one can introduce a Dirichlet BC v D : Γ → R on Γ for the subdomain Ω 1 and solve the local Dirichlet problem (2.9). Since L and B are linear, the solution u 1 depends linearly on (v D , f , g). As a result, since N 1 is linear too, there exist two linear operators S 1 and RHS 1 such that N 1 (u 1) = S 1 (v D) -RHS 1 (f , g). S 1 is called the Steklov-Poincaré Dirichlet-to-Neumann operator of Ω 1 . The name stems from the fact that the local harmonic problem in Ω 1 with a Dirichlet BC u 1 | Γ = v D and zero source term f = 0 and g = 0 gives the same solution as the problem with a Neumann BC N 1 (u 1) = v N on Γ with f = 0 and g = 0 if v N = S 1 (v D). The reduced right-hand side on the interface is noted rhs 1 = RHS 1 (f , g). Using this definition of S 1 and rhs 1 , one can eliminate u 1 from the global problem (2.4) and (2.5), and deduce a local

2.4. Optimal boundary conditions problem in Ω 2 : find u 2 : Ω 2 → R such that L(u 2) = f in Ω 2 , B(u 2) = g on ∂Ω 2 ∩ ∂Ω,    N 2 (u 2) + S 1 (u 2) = rhs 1 on Γ.
(2.23)

This problem, which gives the same solution in Ω 2 as the global problem (1.3) is a Robin problem in Ω 2 , whose transmission condition T 2 is given by the Dirichlet-to-Neumann S 1 of Ω 1 .

Partial Gaussian elimination and the Schur complement matrix

Performed on the linear system (2.6) or (2.7), this operation of eliminating Ω 1 from the global problem just corresponds to a few steps of Gaussian Elimination, as introduced in Section 1.1.4. By combining rows with one another, some coefficients in the matrix are eliminated, i.e., become zeros. For instance, adding 0.25 times row 1 to row 3 from the matrix in (2.6) eliminates the coefficient in the second column from the matrix in (2.24). Performing a few steps of this algorithm, one can eliminate I 1 , and get the following system

            0
            u =             0
        u 3 u 7 u 2 u 6     =     0.25 0.25 0.75 0.75     .
This reduced system is called the Schur complement system.

Similarly, in the generic problem (2.7), the dependence of u I 1 on u Γ can be expressed directly from the first row as u

I 1 = K -1 I 1 ,I 1 (f I 1 -K I 1 ,Γ u Γ).
Then, replacing u I 1 by this expression in the other rows gives an equivalent reduced system where I 1 does not appear 2. Domain decomposition methods anymore. This process is just a simple step of block-Gaussian elimination: subtracting K Γ,I 1 K -1 I 1 ,I 1 times the first row from the third row in (2.7) gives  

K I 1 ,I 1 0 K I 1 ,Γ 0 K I 2 ,I 2 K I 2 ,Γ 0 K Γ,I 2 K Γ,Γ -K Γ,I 1 K -1 I 1 ,I 1 K I 1 ,Γ     u I 1 u I 2 u Γ   =   f I 1 f I 2 f Γ -K Γ,I 1 K -1 I 1 ,I 1 f I 1   ,
and the solution in I 2 ∪ Γ can be computed through the reduced system

K I 2 ,I 2 K I 2 ,Γ K Γ,I 2 K Γ,Γ -K Γ,I 1 K -1 I 1 ,I 1 K I 1 ,Γ u I 2 u Γ = f I 2 f Γ -K Γ,I 1 K -1 I 1 ,I 1 f I 1 . (2.25)
Using the notations introduced in Section 2.3.2, one can define the local Schur complement matrix

S i = K (i) Γ,Γ -K Γ,I i K -1 I i ,I i K I i ,Γ
, and Equation (2.25) can be rewritten

K I 2 ,I 2 K I 2 ,Γ K Γ,I 2 K (2) Γ,Γ + S 1 u I 2 u Γ = f I 2 f Γ -K Γ,I 1 K -1 I 1 ,I 1 f I 1 , (2.26)
and the Schur complement matrix S 1 can be interpreted as a transmission matrix T 2 : the optimal BC is a (non-scalar) Robin BC whose transmission matrix is the local Schur complement of the outer domain. This BC is optimal in the sense that the local problem in Ω 2 with a Robin BC whose transmission matrix is T 2 = S 1 gives the same local solution as the global problem restricted to the subdomain Ω 2 . This Schur complement matrix S i obtained by eliminating the interior unknown u I i from the system is a discrete version of the Dirichlet-to-Neumann operator presented above: given a Dirichlet BC v D on Γ, the solution of the Dirichlet problem (2.10) with

f I i = 0 is u I i = -K -1 I i I i K I i Γ v D in
f N (v N) = 0 v N with v N = K ΓI i u I i + K (i) Γ i Γ i u Γ = K (i) Γ i Γ i -K ΓI i K -1 I i I i K I i Γ v D = S i v D .

Domain decomposition formulations

In this section, various reformulations of the coupled problem (2.4 -2.5) are introduced.

Each reformulation provides a different way of solving the same problem (1.3) through local subproblems. By changing the BC in the local subproblems, the compatibility conditions are modified accordingly and give rise to different approaches, both for the continuous PDE or for the algebraic linear system [START_REF] Maday | Absorbing interface conditions for domain decomposition methods: A general presentation[END_REF]

u I λ λ u I u Γ λ u I λ u Γ Figure 2
.3: The label on each arrow represents which variable has to be eliminated to deduce formulations from one another. For each formulation, we also provide the number of the corresponding section.

Primal formulation

From the continuous coupled problem (2.4 -2.5), it is possible to search for a unique global unknown u called the primal unknown: the condition u 1 = u 2 on Γ can be enforced by introducing a global unknown u such that u 1 = u| Ω 1 and u 2 = u| Ω 2 , leading to the primal formulation

find u : Ω → R such that L(u) = f in Ω 1 and Ω 2 (2.27) B(u) = g on ∂Ω 1 ∩ ∂Ω and ∂Ω 2 ∩ ∂Ω (2.28)    N 1 (u) + N 2 (u) = 0 on Γ.
(2.29)

Algebraically, for any decomposition

K ΓΓ = K (1) ΓΓ + K (2) ΓΓ and f Γ = f (1) Γ + f (2)
Γ , the global matrix K in (1.5) can be expressed as the sum of two local matrices K 1 and K (2.30) where the restriction matrices R Ω i are as defined in Equation (2.17), and

2 R T Ω 1 K 1 R Ω 1 + R T Ω 2 K 2 R Ω 2 u = R T Ω 1 f 1 + R T Ω 2 f 2 ,
K i = K I i I i K I i ,Γ K Γ,I i K (i) ΓΓ and f i = f I i f (i) Γ
.

Any decomposition K

(1) ΓΓ + K

(2) ΓΓ = K ΓΓ can be used to build matrices K 1 and K 2 : in an algebraic solver, one can, for instance, choose K

(1) ΓΓ = K ΓΓ and K

(2) ΓΓ = 0. However, a case of particular interest is when

K (i)
ΓΓ is obtained by choosing K i as the discretization of the local Neumann problem as in Section 2.3.2: this will make it easier to ensure some properties needed to build a robust coarse space correction in sections 2.7.3 and 3.

This primal formulation is exactly the same as the global formulation (1.3) or (1.5), except that the application of the linear operator corresponding to the PDE in the continuous case, or the matrix-vector product in the algebraic case, can be performed as a sum 2. Domain decomposition methods of two local components. Each local component can be computed independently in each subdomain, and the global solution can therefore be computed using a parallel iterative method, whose convergence depends on the choice of a good preconditioner as presented in Section 2.7.

In combination with well-chosen preconditioners (see Section 2.7), this approach is used, in the Additive Schwarz method and some of its variations (Lions, 1988(Lions, , 1989[START_REF] Lions | On the Schwarz alternating method III: A variant for nonoverlapping subdomains[END_REF][START_REF] Dryja | An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions[END_REF][START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF].

Primal formulation on the interface

Another approach to enforce the first compatibility condition u 1 = u 2 on Γ is to introduce a unique unknown u Γ : Γ → R that is the Dirichlet BC u i = u Γ on Γ for both subdomains Ω i . The unknowns u 1 and u 2 can be eliminated from the system by expressing them as the solutions of the local Dirichlet problems

find u 1 : Ω 1 → R such that and u 2 : Ω 2 → R such that L(u 1) = f in Ω 1 , L(u 2) = f in Ω 2 ,    B(u 1) = g on ∂Ω 1 ∩ ∂Ω,    B(u 2) = g on ∂Ω 2 ∩ ∂Ω, u 1 = u Γ on Γ; u 2 = u Γ on Γ.
Using the Dirichlet-to-Neumann operator S i introduced in Section 2.4, the second compatibility condition N 1 (u 1) + N 2 (u 2) = 0 on Γ can be expressed as an interface problem for u Γ , yielding the primal formulation on the interface

find u Γ : Γ → R such that S 1 (u Γ) + S 2 (u Γ) = rhs 1 + rhs 2 .
Once this continuous problem is solved, the solution in Ω is deduced by solving the local problems in Ω 1 and Ω 2 with u Γ as a Dirichlet BC on Γ.

Algebraically, eliminating the interior blocks in Equation (2.30) gives

(S 1 + S 2)u Γ = f (1) Γ + f (2) Γ
(2.31)

Su Γ = f Γ ,
where

S i = K (i) Γ,Γ -K Γ,I i K -1 I i ,I i K I i ,Γ and f (i) Γ = f (i) Γ -K Γ,I i K -1 I i ,I i f I i . Once (2.31) is solved, the solution in the interior I i is deduced from u I i = K -1 I i I i (f I i -K I i Γ i u Γ
). This approach is often referred to as a (primal) substructuring approach. This approach is used, for instance, in the Neumann-Neumann method [START_REF] De Roeck | Analysis and test of a local domain decomposition preconditioner[END_REF][START_REF] Mandel | Balancing domain decomposition[END_REF], in the Robin-Robin method [START_REF] Achdou | A Robin-Robin preconditioner for an advectiondiffusion problem[END_REF][START_REF] Achdou | A domain decomposition preconditioner for an advection-diffusion problem[END_REF] or in the Additive Schwarz on the Schur method [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF], among many others.

Dual formulation on the interface

In the continuous problem (2.4 -2.5), instead of enforcing the first continuity equation u 1 = u 2 on Γ and solve for u or u Γ as in the primal formulations, it is possible to enforce 2.5. Domain decomposition formulations the second equation N 1 (u 1) + N 2 (u 2) = 0 by adding a Neumann BC N 1 (u 1) = λ and N 2 (u 2) = -λ on Γ for each subdomain find u 1 : Ω 1 → R such that and

u 2 : Ω 2 → R such that L(u 1) = f in Ω 1 , L(u 2) = f in Ω 2 , B(u 1) = g on ∂Ω 1 ∩ ∂Ω, B(u 2) = g on ∂Ω 2 ∩ ∂Ω,    N 1 (u 1) = λ on Γ;    N 2 (u 2) = -λ on Γ;
and solve for the dual variable λ. It holds that N i (u i) = ±λ = S i (u i) -rhs i and if the Dirichlet-to-Neumann operator is not singular, the primal unknown u i can be eliminated from the first continuity equation u 1 = u 2 using u i = S -1 i (±λ + rhs i). The resulting equation gives a dual formulation

find λ : Γ → R such that S -1 1 (λ) + S -1 2 (λ) = -S -1 1 (rhs 1) + S -1 2 (rhs 2).
(2.32)

Once (2.32) is solved, the primal solution u i can then be recovered from λ by solving the local Neumann problems above in each subdomain.

Algebraically, with the same decomposition as in Section 2.5.2, one can introduce

λ = S 1 u Γ -f (1) Γ , such that u Γ = S -1 1 (λ + f (1) Γ). Then Equation (2.31) is equivalent to λ + S 2 u Γ = f (2) Γ , or u Γ = S -1 2 (f (2)
Γ -λ), yielding the following problem on λ

(S -1 1 + S -1 2)λ = -S -1 1 f (1) Γ + S -1 2 f (2) Γ .
From the solution λ, the solution can be computed as u Γ = S -1 1 (λ + f

(1) Γ) and u

I i = K -1 I i I i (f I i -K I i Γ i u Γ).
When S i is singular, it is not possible to solve S -1 i λ. Using a pseudo-inverse instead of the inverse, the quantity S † i λ can be defined, but only up to an element of ker S i . This is one of the motivations for using a two-level method as introduced in Section 2.7.3. Another solution is to replace the Neumann BC by a Robin BC, as proposed in the next section.

Note that the dual formulation can only be used on the interface: although the primal variable u also exists inside the subdomains, the dual variable λ expresses a BC and, as such, only exists on Γ. The dual approach is at the core of the FETI method [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF].

Augmented formulation

In the augmented formulation here and the augmented formulation on the interface below, the BC is changed and neither the primal nor the dual unknown is eliminated. Their memory footprint would therefore be larger than the other formulations, if they were to be used in practice. They are only introduced here as intermediate formulations from which other formulations will be deduced in the following sections by eliminating some unknowns.

In a continuous setting, instead of a Dirichlet BC (as in the primal formulations) or a Neumann BC (as in the dual formulation), one may choose a Robin BC on Γ N i (u i) + T i (u i) = λ i to the local problem. This introduces two operators T i , which can be chosen arbitrarily, and two functions λ i , which are new dual unknowns in the problem. This changes the compatibility conditions of the coupled problem, yielding the augmented formulation

find u 1 :Ω 1 → R, λ 1 : Γ → R s. t. and u 2 :Ω 2 → R, λ 2 : Γ → R s. t. L(u 1) = f in Ω 1 , L(u 2) = f in Ω 2 , (2.33) B(u 1) = g on ∂Ω 1 ∩ ∂Ω, B(u 2) = g on ∂Ω 2 ∩ ∂Ω, (2.34)    N 1 (u 1) + T 1 (u 1) = λ 1 on Γ;    N 2 (u 2) + T 2 (u 2) = λ 2 on Γ; (2.35)
with the compatibility condition

u 1 = u 2 on Γ, (2.36) T 1 (u 1) + T 2 (u 2) = λ 1 + λ 2 on Γ.
(2.37)

Algebraically, this augmented formulation becomes

         K I i ,I i K I i ,Γ K Γ,I i K (i) Γ,Γ + T i u I i u Γ i = f I i f (i) Γ + λ i ,
(2.38)

u Γ 1 = u Γ 2 , (2.39)
T 1 u Γ 1 + T 2 u Γ 2 = λ 1 + λ 2 .
(2.40)

The choice of a good transmission operator or matrix is an active research subject, see for instance Dolean et al. (2015a); [START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF]; [START_REF] St-Cyr | Optimized multiplicative, additive, and restricted additive Schwarz preconditioning[END_REF] and references therein.

Augmented formulation on the interface

The augmented formulation (2.33 -2.37) can be expressed as an interface problem by using the definition of S i and rhs i , as in Section 2.5.2. Introducing a Dirichlet-to-Robin operator S i = S i + T i , the elimination of interior variables gives an augmented formulation on the interface

find u 1 , u 2 , λ 1 , λ 2 : Γ → R such that S i (u i) = rhs i + λ i on Γ, (2.41) u 1 = u 2 on Γ, (2.42)    T 1 (u 1) + T 2 (u 2) = λ 1 + λ 2 on Γ.
(2.43)

Similarly, introducing S i = S i + T i , the algebraic formulation is

S i u Γ i = f (i) Γ + λ i , (2.44) u Γ 1 = u Γ 2 , (2.45)    T 1 u Γ 1 + T 2 u Γ 2 = λ 1 + λ 2 .
(2.46)

From these augmented formulations (on the interface or not), one could derive primal augmented formulations by eliminating λ i using (2.35), (2.38), (2.41), or (2.44) in the 2.5. Domain decomposition formulations second compatibility condition (2.37), (2.40), (2.43), or (2.46), respectively. However, this also eliminates the T i (u i) and T i u i terms, and the resulting system is exactly the same as in the primal formulations in Section 2.5.1 or 2.5.2. On the other hand, this is not the case when eliminating u i instead and solving for λ i in a dual formulation as in Section 2.5.3. The transmission operator T i and the transmission matrix T i are supposed to be chosen such that S i = S i + T i and S i = S i + T i are not singular, so that the primal variable on Γ can be eliminated using

u i = S -1 i (rhs i + λ i) and u Γ i = S -1 i (f (i) Γ + λ i).
2.5.6 Dual augmented formulation on the interface (T 1 + T 2 = 0)

A case of particular interest is when T 1 + T 2 = 0. Under this condition, combining the continuous equations

[(2.43) -T 1 (2.42)] gives λ 1 +λ 2 = (T 1 +T 2)(u 2) = 0 on Γ. Introducing λ = λ 1 = -λ 2 , it holds from (2.41) that u 1 = S -1 1 (rhs 1 + λ) and u 2 = S -1 2 (rhs 2 -λ).
Replacing u 1 and u 2 in (2.42) gives a Dual augmented formulation

find λ : Γ → R such that S -1 1 + S -1 2 (λ) = -S -1 1 (rhs 1) + S -1 2 (rhs 2); or, algebraically S -1 1 + S -1 2 λ = -S -1 1 f (1) Γ + S -1 2 f (2) Γ .
This is, algebraically, a dual (non-augmented) formulation, as presented in Section 2.5.3, with a different splitting for the interface matrix K ΓΓ = (K

ΓΓ + T) + (K (2) ΓΓ -T) instead of K ΓΓ = K (1) ΓΓ + K (2) (1)
ΓΓ with T = T 1 = -T 2 . Some discussion on how to choose T such that S i is not singular is given in [START_REF] Farhat | The dual Schur complement method with well-posed local Neumann problems: Regularization with a perturbed Lagrangian formulation[END_REF].

Two-Lagrange formulation

In the general case, one can still eliminate u i = (S i +T i) -1 (rhs i +λ i) on Γ in equations (2.42) and (2.43) using Equation (2.41). The continuous system becomes

(S 1 + T 1) -1 (rhs 1 + λ 1) = (S 2 + T 2) -1 (rhs 2 + λ 2), T 1 (S 1 + T 1) -1 (rhs 1 + λ 1) + T 2 (S 2 + T 2) -1 (rhs 2 + λ 2) = λ 1 + λ 2 .
Introducing S i = S i + T i and I the identity operator I(λ i) = λ i , the previous system can be rewritten as

S -1 1 λ 1 -S -1 2 λ 2 = -S -1 1 (rhs 1) + S -1 2 (rhs 2), (2.47) [T 1 S -1 1 -I]λ 1 + [T 2 S -1 2 -I]λ 2 = -T 1 S -1 1 (rhs 1) -T 2 S -1 2 (rhs 2).
(2.48)

Then, if T 1 + T 2 is not singular, replacing the two lines (2.47) and (2.48) by two independent linear combination theereof [T 1 (2.47) -(2.48)] and [-T 2 (2.47) -(2.48)] gives the Two-Lagrange formulation

λ 1 + [I -(T 1 + T 2) S -1 2]λ 2 = (T 1 + T 2) S -1 2]rhs 2 , (2.49) [I -(T 1 + T 2) S -1 1]λ 1 + λ 2 = (T 1 + T 2) S -1 1]rhs 1 .
(2.50)

Domain decomposition methods

Once this system is solved, the solution u i can be computed from λ i by solving the Robin local problem (2.33 -2.35). Algebraically, introducing S i = S i + T i , the Two-Lagrange formulation becomes

I I -(T 1 + T 2) S -1 2 I -(T 1 + T 2) S -1 1 I λ 1 λ 2 = (T 1 + T 2) S -1 2 f (2) Γ (T 1 + T 2) S -1 1 f (1) Γ , with u Γ = S -1 1 (λ 1 + f (1) Γ) and u I i = K -1 I i I i (f I i -K I i Γ i u Γ)
. This method, introduced by [START_REF] Nataf | Domain Decomposition Methods for Fluid Dynamics[END_REF], is applied, for instance, in [START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF] and [START_REF] El Bouajaji | Discontinuous Galerkin discretizations of Optimized Schwarz methods for solving the timeharmonic Maxwell equations[END_REF].

Generalization to N subdomains

The various formulations presented above are generalized to the case of a domain decomposition with N subdomains. The augmented formulations are first generalized in sections 2.6.1 and 2.6.2. Eliminating the dual variable λ i gives the primal formulations in Section 2.6.3, while eliminating the primal variable u i or u i gives the dual formulations in Section 2.6.4 and the N -Lagrange formulations in Section 2.6.5. As in the previous section (Figure 2.3), the different formulations are summarized in Figure 2.4. Hybrid approaches where dual and primal variables are eliminated in different parts of the interface, such as in the FETI-DP [START_REF] Farhat | FETI-DP: A dual-primal unified FETI method-part I: A faster alternative to the two-level FETI method[END_REF] and BDDC methods [START_REF] Dohrmann | A preconditioner for substructuring based on constrained energy minimization[END_REF] N -Lagrange 2.6.5

u I λ λ u I u Γ λ u I λ u Γ Figure 2.4:
The label on each arrow represents which variable has to be eliminated to deduce formulations from one another. For each formulation, we also provide the number of the corresponding section in the N subdomains case.

Augmented formulation

The various formulations presented in the previous section can all be generalized to a N -subdomain decomposition: Ω is decomposed into a family of N subdomains (Ω i) 1≤i≤N

2.6. Generalization to N subdomains without overlap, such that

Ω = 1≤i≤N Ωi and Ω i ∩ Ω j = ∅ if i = j.
Then the local interfaces Γ i and the global interface Γ, which is the non-disjoint union of the local interfaces, are defined as

Γ i = ∂Ω i \ ∂Ω and Γ = 1≤i≤N Γ i .
Two subdomains Ω i and Ω j are said to be neighbors if their shared interface Γ ij = Γ i ∩ Γ j is not empty. More than two subdomains Ω i , Ω j , . . ., and Ω k can in fact share an interface

Γ ij...k = Γ i ∩ Γ j ∩ • • • ∩ Γ k = ∅,
) : Ω i → R such that L(u i) = f in Ω i ,    B(u i) = g on ∂Ω i ∩ ∂Ω, N i (u i) + T i (u i) = λ i on Γ i ;
(2.51) with the compatibility condition

u i = u j = • • • = u k on Γ ij...k , T i (u i) + T j (u j) + • • • + T k (u k) = λ i + λ j + • • • + λ k on Γ ij...k .
(2.52)

A similar augmented formulation can be expressed algebraically in two different ways, by performing the domain decomposition either before or after the discretization process. First, the option of performing an algebraic domain decomposition on the global matrix K after the discretization process is described. Using a graph partitioner such as Scotch [START_REF] Chevalier | PT-Scotch: A tool for efficient parallel graph ordering[END_REF] or Metis [START_REF] Karypis | MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System[END_REF], one can partition the set of indices Ω into N interiors I i and a global interface Γ such that K m = K m = 0 for any ∈ I i and m ∈ I j that belong to different interiors I i and I j with i = j. Reordering the global matrix using the symmetric permutation (I 1 . . .

I N Γ) gives        K I 1 ,I 1 0 . . . 0 K I 1 ,Γ 0 K I 2 ,I 2 K I 2 ,Γ 0 . . . 0 • • • 0 K I N ,I N K I N ,Γ K Γ,I 1 K Γ,I 2 • • • K Γ,I N K Γ,Γ               u I 1 u I 2 . . . u I N u Γ        =        f I 1 f I 2 . . . f I N f Γ        . (2
K ΓΓ = N i=1 R T Γ i K (i) Γ i Γ i R Γ i and f Γ = N i=1 R T Γ i f (i) Γ i .
(2.54)

Then, introducing a transmission matrix T i on Γ i , local matrices K i and local right-hand side f i as

K i = K I i I i K I i Γ i K Γ i I i K (i) Γ i Γ i and f i = f I i f (i) Γ i , (2.55)
one gets the algebraic augmented formulation, where the unknowns on Γ i are replicated on all the neighbors that share

Γ i                        ∀i ∈ {1, . . . , N } K i + 0 0 0 T i u I i u Γ i = f i + 0 λ i , (2.56) N i=1 B i u Γ i = 0, (2.57) N i=1 R T Γ i T i u Γ i = N i=1 R T Γ i λ i , (2.58)
where B i is a jump matrix : each row in N i=1 B i corresponds to the equality condition for one unknown shared by two subdomains k < . The row in B i has only one non-zero element on the column of the corresponding shared unknown if i = k, in which case the value is 1, or if i = in which case it is -1. All the other elements are 0. For instance, with only two subdomains, the constraint u Γ 1 = u Γ 2 is ensured by choosing B 1 = I and B 2 = -I. On an interface Γ ij...k between Ω i and a certain number of subdomains, several rows in B i are needed for each unknown to enforce the equality between the different subdomains. Namely, for an unknown shared by n subdomains, n -1 rows are needed.

The global formulation (2.53) and the augmented formulation (2.56 -2.58) are equivalent: from a solution u to (2.53) one can introduce

u Γ i = R Γ i u Γ and λ i = K Γ i I i u I i + (K (i) Γ i Γ i + T i)u Γ i -f (i) Γ i .
Then, the first block-row of (2.56) is exactly the i-th block row of (2.53). The second first block-row of (2.56) is true by definition of λ i . Equation (2.57) is true by definition of the jump matrix B i and the restriction matrix R Γ i : N i=1 B i R Γ i = 0. Equation (2.58) can be obtained from the last block-row of (2.53) by adding N i=1 λ i on both sides of the equation. Conversely, for the same reasons, any solution to (2.56 -2.58) gives a global solution to (2.53) by choosing u Γ such that ∀i u Γ i = R Γ i u Γ : this is possible because an unknown in Γ that appears in several local interfaces Γ i , Γ j , . . . has the same value in all the vectors u Γ i , u Γ j , . . . because of Equation (2.57).

Instead of the algebraic graph partition presented above, which needs to be performed after the global problem has been discretized, one can partition the meshed domain before discretizing the local equations. After the domain Ω has been partitioned as above in N 2.6. Generalization to N subdomains subdomains Ω i , one may introduce the discretization K i u i = f i of the local homogeneous Neumann problem as presented in Section 2.3.2 ∀i ∈ {1, . . . , N } find u i : Ω i → R such that

L(u i) = f in Ω i ,    B(u i) = g on ∂Ω i ∩ ∂Ω , N i (u i) = 0 on Γ i .
Then, the set of local indices Ω i can be partitioned into an interior

I i = {k ∈ Ω i , ∀j = i k / ∈ Ω j } and a local interface Γ i = {k ∈ Ω i , ∃j = i k ∈ Ω j }.
The local matrix and right-hand side can be reordered according to the symmetric permutation (I i Γ i)

K i = K I i I i K I i Γ i K Γ i I i K (i) Γ i Γ i and f i = f I i f (i) Γ i .
(2.59)

These matrices and right-hand sides provide a suitable decomposition as needed in Equation (2.54), and the discretization of the continuous augmented formulation (2.51 -2.52) is exactly (2.56 -2.58). This approach has two advantages: first, the discretization process and the matrix assembly are only performed on local problems, independently from one another. As such, they can be run in parallel, and the global matrix is never explicitly assembled. The second benefit is that these local Neumann matrices may inherit some properties from the PDE, that are useful to build a more robust method as in Section 3.

Augmented formulation on the interface

Introducing the Dirichlet-to-Neumann operators S i and reduced right-hand side rhs i in each subdomain as in Section 2.4, the continuous augmented formulation can be rewritten as an interface problem ∀i ∈ {1, . . . , N } find (u

Γ i , λ i) : Γ i → R such that S i (u Γ i) + T i (u Γ i) = rhs i + λ i on Γ, (2.60) u i = u j = • • • = u k on Γ ij...k , (2.61)    T i (u i) + T j (u j) + • • • + T k (u k) = λ i + λ j + • • • + λ k on Γ ij...k . (2.62)
Algebraically, introducing the local Schur complement matrices S i and reduced righthand side f

(i) Γ i S i = K (i) Γ i Γ i -K Γ i I i K -1 I i I i K I i Γ i and f (i) Γ i = f (i) Γ i -K Γ i I i K -1 I i I i f I i , (2.63) the interior variable u I i = K -1 I i I i (f I i -K I i Γ i u Γ i
) can be eliminated in the augmented formulation (2.56 -2.58) to obtain the augmented formulation on the interface

                 ∀i ∈ {1, . . . , N } [S i + T i]u Γ i = f (i) Γ i + λ i (2.64) N i=1 B i u Γ i = 0, (2.65) N i=1 R T Γ i T i u Γ i = N i=1 R T Γ i λ i .
(2.66)

2. Domain decomposition methods

Primal formulations

Eliminating λ i from an augmented formulation (continuous or algebraic, on Ω or Γ) also eliminates the transmission operators T i or T i from the equations, yielding the primal formulations

find u : Ω → R such that L(u) = f in Ω i , (2.67)    B(u) = g on ∂Ω i ∩ ∂Ω , (2.68) N i (u) + N j (u) + • • • + N k (u) = 0 on Γ ij...k , (2.69)
and, on the interface, (2.71) for the continuous problem, or, algebraically,

find u Γ : Γ → R such that (2.70) S i (u Γ) + S j (u Γ) + • • • + S k (u Γ) = rhs i + rhs j + • • • + rhs k on Γ ij...k ,
N i=1 R T Ω i K i R Ω i u = N i=1 R T Ω i f i , (2.72)
and

N i=1 R T Γ i S i R Γ i u Γ = N i=1 R T Γ i f (i) Γ i .
(2.73)

An implementation of these two algebraic formulations is proposed in Chapter 4.

Dual augmented formulations

Similarly to the two-subdomain case from Section 2.5.3, if N i=1 T i = 0, Equation (2.62) becomes N i=1 λ i = 0. On an interface Γ ij between two neighbors, one can search a unique λ ij such that λ ij = λ i = -λ j . On an interface Γ ij...k between Ω i and two or more neighbors Ω j , . . . and Ω k , one can introduce the same number of unknowns as neighboring subdomains λ ij , . . . , λ ik , such that

λ i = λ ij + • • • + λ ik , λ j = -λ ij , . . ., and λ k = -λ ik .
Then, if

S i = S i + T i is not singular, one can eliminate u Γ i = S -1 i (rhs i + λ i) = S -1 i (rhs i + λ ij + • • • + λ ik), u Γ j = S -1 j (rhs j + λ j) = S -1 j (rhs j -λ ij), . . ., and u Γ k = S -1 k (rhs k -λ ik) and the dual (augmented if T i = 0) formulation is find (λ ij , . . . , λ ik) : Γ ij...k → R such that S -1 i (rhs i + λ ij + • • • + λ ik) = S -1 j (rhs j -λ ij) = • • • = S -1 k (rhs k -λ ik),
Algebraically, the same process can be applied by replacing λ i = B T i λ and eliminating

u Γ i = S -1 i (f (i) Γ i + B T i λ) N i=1 B i S -1 i B T i λ = - N i=1 B i S -1 i f (i) Γ i .
2.6. Generalization to N subdomains

The particular case where T i = 0 and S i = S i gives the dual (non-augmented) formulation

N i=1 B i S -1 i B T i λ = - N i=1 B i S -1 i f (i) Γ i .
(2.74)

N -Lagrange formulations

In a subdomain Ω i with several neighbors Ω j , . . ., Ω k , the first compatibility condition (2.61) in the continuous augmented system on the interface ensures that u i = u j on Γ ij , . . . and u i = u k on Γ ik . As a result, if all points in Γ i are also in at least one of Γ j , . . ., Γ k , one can introduce weight functions w ij , . . . , w ik : Γ i → R such that

u i = w ij u j + • • • + w ik u k on Γ i , with w ij + • • • + w ik = 1 (2.75)
where u j , . . . , u k have been prolonged by 0 on Γ i \Γ ij , . . . , Γ i \Γ ik , respectively. On a part of Γ i that is shared with only one other subdomain, for instance Ω j , u i = w ij u j +. . . 0+w ik 0 = w ij u j , and w ij = 1 since u i = u j . On a part of Γ i that is shared by more subdomains, the weights can be chosen arbitrarily such that their sum is 1: on a boundary Γ ijk between Ω i and two neighbors Ω j and Ω k , one could impose for instance w ij = 0 and w ik = 1, or the reverse, or w ij = w ik = 1 2 . Then, one can eliminate u i from the second compatibility condition (2.62) using (2.75) and the linearity of

T i λ i -T i (u i) + λ j -T j (u j) + • • • + λ k -T j (u k) = 0, ⇒ λ i -T i (w ij u j + • • • + w ik u k) + λ j -T j (u j) + • • • + λ k -T j (u k) = 0, ⇒ λ i + λ j -T i (w ij u j) -T j (u j) + • • • + λ k -T i (w ik u k) -T k (u k) = 0.
Similarly, continuing to eliminate u j , . . . , u k gives

λ i + λ j -T i (w ij S -1 j (λ j)) -T j (S -1 j (λ j)) + • • • + λ k -T i (w ik S -1 k (λ k)) -T k (S -1 k (λ k)) = T i (w ij S -1 j (rhs j)) -T j (S -1 j (rhs j)) + • • • + T i (w ik S -1 k (rhs k)) -T k (S -1 k (rhs k)).
Algebraically, the same operations can be performed: in each subdomain, the interface unknowns are equal to the corresponding interface unknowns in their neighbors' interfaces. It is therefore possible to introduce a set of weight matrices

(W ij) j =i such that u Γ i = j∈N (i) W ij R Γ i R T Γ j u Γ j , where N (i) = {j, Γ ij = ∅} is the set of Ω i 's neighbors. Applying the restriction R Γ i on the left of Equation (2.66) gives R Γ i N j=1 R T Γ j (λ j -T j u Γ j) = 0.

Domain decomposition methods

Since

R Γ i R T Γ i = I and R Γ i R T Γ j = 0 if Γ ij = ∅, the sum can be restricted to N (i) λ i -T i u Γ i + j∈N (i) R Γ i R T Γ j λ j -T j u Γ j = 0, ⇒ λ i - j∈N (i) T i W ij R Γ i R T Γ j u Γ j + j∈N (i) R Γ i R T Γ j λ j -T j u Γ j = 0, ⇒ λ i + j∈N (i) R Γ i R T Γ j λ j -R Γ i R T Γ j T j + T i W ij R Γ i R T Γ j u Γ j = 0, ⇒ λ i + j∈N (i) R Γ i R T Γ j -R Γ i R T Γ j T j + T i W ij R Γ i R T Γ j S -1 j λ j = j∈N (i) R Γ i R T Γ j T j + T i W ij R Γ i R T Γ j S -1 j f (j) Γ j .
Writing the same equation for each subdomain, one obtains a N -Lagrange formulation, that can be solved using an iterative method. To perform a matrix vector product, from

λ = (λ T 1 , . . . , λ T N) T , a solve u i = -S -1 i λ i = -(S i +T i) -1 λ i is performed in each subdomain. Then, each subdomain Ω i communicates with each neighbor Ω j the restriction of u i and µ i = λ i + T i u i to the common interface Γ ij : R Γ j R T Γ i (u i , µ i). Then, λ i is computed as λ i = λ i + j∈N (i) R Γ i R T Γ j µ j + T i W ij R Γ i R T Γ j u j and λ = (λ 1 T , . . . , λ 1 T)
T is the result of the matrix-vector product. An implementation of this N -Lagrange formulation is proposed in Chapter 4 (Listing 57). An interface unknown can be shared by two subdomains (green) or more (red), in which case it is called a crosspoint. Crosspoints occur where interfaces cross with one another, as in 2.5a. They can be avoided using a 1D decomposition as in 2.5b or a different discretization method such as the Hybridizable Discontinuous Galerkin (HDG) method [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF] as in 2.5c.

In some cases, each interface unknown is shared by exactly two subdomains, as in figures 2.5b and 2.5c. In that case, W ij = I. If furthermore, T i is block-diagonal (one block per neighbor), then each subdomain Ω j may store T

(j) i = R Γ j R T Γ i T i R Γ i R T Γ j for each

Domain decomposition preconditioners

neighbor Ω i . The equation becomes

λ i + j∈N (i) R Γ i R T Γ j (I -(T j + T (j) i) S -1 j)λ j = j∈N (i) R Γ i R T Γ j (T j + T (j) i) S -1 j f (j) Γ j .
Each subdomain can directly compute

µ i = I -T i + j∈N (i) T (i) j S -1 i λ i and com- municate R Γ j R T Γ i µ i to each neighbor Ω j .
The local result of the matrix-vector product can then be computed as

λ i = λ i + j∈N (i) R Γ i R T Γ j µ j .

Domain decomposition preconditioners

Variations on the Schwarz Alternating method

The Schwarz alternating method [START_REF] Schwarz | Scaling the solution of large sparse linear systems using multifrontal methods on hybrid shared-distributed memory architectures[END_REF] introduced in Section 1.1.2 was originally introduced for a global domain that is the union of only two overlapping subdomains. Lions (1988Lions (, 1989[START_REF] Lions | On the Schwarz alternating method III: A variant for nonoverlapping subdomains[END_REF] studied and extended this method, generalizing it to a N -subdomain decomposition. Used as a preconditioner, this method is known as a Multiplicative Schwarz preconditioner. The main drawback of this method is that for each iteration, the solution in the N subdomains need to be performed one after another, sequentially. Lions (1988) proposed a parallel version of the method, where the solution is computed simultaneously in all subdomains, taking the previous iterate as a BC. Algebraically, this is equivalent [START_REF] Gander | Schwarz methods over the course of time[END_REF] to the Restricted Additive Schwarz (RAS) preconditioner [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF]. [START_REF] Lions | On the Schwarz alternating method III: A variant for nonoverlapping subdomains[END_REF] also generalized the method by replacing the Dirichlet BC by a Robin BC, eliminating the need for an overlap between the subdomains. Algebraically, this is equivalent to the optimized RAS method [START_REF] St-Cyr | Optimized multiplicative, additive, and restricted additive Schwarz preconditioning[END_REF], or, with a change of variables, to the N -Lagrange method [START_REF] Nataf | Domain Decomposition Methods for Fluid Dynamics[END_REF] introduced in Section 2.6.5.

Abstract Schwarz preconditioners

Another method, closely related to the parallel Schwarz method, is the Additive Schwarz (AS) method [START_REF] Matsokin | The Schwarz alternation method in a subspace[END_REF][START_REF] Dryja | An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions[END_REF] in which the corrections computed in all the subdomains are added in the overlap. This leads to a symmetric AS preconditioner

M AS = N i=1 R T i R i KR T i -1 R i .
A thorough historic perspective on all these methods can be found for instance in [START_REF] Gander | Schwarz methods over the course of time[END_REF][START_REF] Gander | The origins of the alternating Schwarz method[END_REF][START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF].

A so-called Neumann-Neumann preconditioner for the primal formulation on the interface (2.73) was introduced by De Roeck and Le Tallec (1991)

M N N = N i=1 R T i D i S † i D i R i ,

Domain decomposition methods

where

(D i) N i=1 is a partition of unity such that N i=1 R T i D i R i = I n
and I n is the n × n identity matrix. Similarly, a FETI method was introduced by [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF], where the preconditioner

M F ET I = N i=1 B i D i S i D i B T i ,
is used to solve the dual formulation (2.74). The Neumann-Neumann preconditioner was generalized to a Robin-Robin (RR) preconditioner [START_REF] Achdou | A Robin-Robin preconditioner for an advectiondiffusion problem[END_REF][START_REF] Achdou | A domain decomposition preconditioner for an advection-diffusion problem[END_REF]. These methods have been studied under a unified abstract Schwarz theory [START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF]: the primal formulations

N i=1 R T Ω i K i R Ω i u = N i=1 R T Ω i f i , N i=1 R T Γ i S i R Γ i u Γ = N i=1 R T Γ i f (i) Γ i ,
and the dual formulation

N i=1 B i S -1 i B T i λ = - N i=1 B i S † i f (i) Γ i
all have the same form

N i=1 R T i A i R i x = b,
and the AS, BDD, NN, RR preconditioners above are particular choice of abstract Schwarz (aS) preconditioners

M aS = N i=1 R T i A † i R i .
Note that the computation of a matrix-vector product or an application of the preconditioner can be performed in parallel using only neighbor-to-neighbor communications: to compute y = Ax (where

A = N i=1 R T i A i R i) or y = M aS x, knowing x i = R i x in each subdomain, one first needs to compute the local operation y i = A i x i or y i = A † i x i . Then, y i = R i y = R i N j=1 R T j y j can be computed by noticing that R i R T i = I and R i R T j = 0 if j / ∈ N (i) ∪ {i}: y i = y i + j∈N (i) R i R T j y j .
Each subdomain only needs to send to its neighbors the restriction of its local component y i to their common interface, and sum the contributions it receives from its neighbors. This step is called assembly.

Domain decomposition preconditioners

Two-level preconditioners

If the local operator A i or A i is singular, a pseudoinverse may be used in the method. However, the result of A † i x i is only defined up to an element of ker A i . Furthermore, even when A i is not singular, the convergence of these methods often deteriorates when the number of subdomains increases, due to a lack of global communication. A solution to these two problems is to use a coarse space V 0 (that contains these kernels) and to use a deflation technique introduced by [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] to compute a coarse solution

x 0 = V 0 (V T 0 AV 0) -1 V T 0 b. Then, the solution x * = A -1 b can be computed as x * = x 0 + x ⊥ where x ⊥ = x * -x 0 . Introducing the coarse projection P 0 = V 0 (V T 0 AV 0) -1 V T 0 A, it holds that x 0 = P 0 x * and x ⊥ = (I -P 0)x * . Since AP 0 = P T 0 A and P 0 P 0 = P 0 , it holds that Ax ⊥ = (I -P T 0)Ax * = (I -P T 0)b.
Using the abstract Schwarz preconditioner M aS to solve this projected, or deflated equation Ax ⊥ = (I -P T 0)b is equivalent to using the deflated abstract Schwarz preconditioner

M aS,D = V 0 (V T 0 AV 0) -1 V T 0 + (I -P 0)M aS (I -P T 0) on the non-deflated equation Ax = b.
Note that the elimination of interior unknowns presented in Section 2.4 is just a special case of deflation with V 0 = R T I , as proved in [START_REF] Mansfield | On the Conjugate Gradient Solution of the Schur Complement System Obtained from Domain Decomposition[END_REF].

Another solution is to add the Coarse Space Correction (CSC) to the aS preconditioner, without the projection, leading to the (additive) two-level preconditioner

M aS,2 = V 0 (V T 0 AV 0) -1 V T 0 + M aS .
This additive two-level variant is in fact only used when M aS is an AS preconditioner, as explained in Section 3.4, leading to the two-level AS preconditioner M AS,2 introduced in [START_REF] Dryja | An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions[END_REF].

Choice of a coarse space

The choice of the coarse space is a key element of the construction of a two-level preconditioner. The coarse space introduced by [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] for a Poisson problem is built by partitioning the unknowns into m disjoint subsets g 1 , . . . , g m , and defining V 0 such that

V 0ij = 1 if i ∈ g j and V 0ij = 0 if i / ∈ g j .
It has been extended by [START_REF] Sarkis | Partition of unity coarse spaces: Enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] to the case where Ω is a (non-disjoint) union Ω = Ω 1 ∪ • • • ∪ Ω N by using a partition of unity as defined in Section 2.7.2: V 0 is defined as the (n × N) rectangular matrix whose column

j is R T i diag(D i).
The construction of these two coarse spaces for Poisson's equation rely on the fact that the kernel of a local Neumann problem is the subspace of vectors that are constant in the subdomains. Similarly, coarse spaces based on the kernel of local operators have been used in the definition of the balanced NN [START_REF] Mandel | Balancing domain decomposition[END_REF] and FETI [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF] methods.

Other coarse spaces have been constructed by separating the interface Γ into so-called faces, edges and crosspoints (or vertices) in [START_REF] Bramble | The construction of preconditioners for elliptic problems by substructuring[END_REF][START_REF] Bramble | The Construction of Preconditioners for Elliptic Problems by Substructuring, IV[END_REF][START_REF] Smith | A domain decomposition algorithm for elliptic problems in three dimensions[END_REF]Carvalho et al., 2001a).

The coarse spaces based on the kernels of local operators perform very well on homogeneous problems. In the heterogeneous cases, if the discontinuities are not aligned with 2. Domain decomposition methods the interfaces between subdomains, it is possible to improve the convergence by choosing some solutions of local eigenproblems as in [START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF][START_REF] Nataf | A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps[END_REF][START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF]Spillane et al., 2014a;[START_REF] Spillane | Méthodes de Décomposition de Domaine Robustes Pour Les Problèmes Symétriques Définis Positifs[END_REF]Klawonn et al., 2016b,a;[START_REF] Haferssas | An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method[END_REF][START_REF] Klawonn | Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems[END_REF]. A construction and proof of robustness for such a local spectral coarse space for aS preconditioners using algebraic information is proposed in Chapter 3; an implementation of the resulting twolevel aS methods is proposed in Chapter 4, and the parallel design of the additive CSC for the AS method applied on the Schur complement system in a HPC hybrid solver is studied in Chapter 5.

Chapter 3

Convergence of abstract Schwarz methods

Introduction

Several classic domain decomposition methods (DDM) can be expressed as abstract Schwarz (aS) preconditioners (Section 2.7) for the primal formulations (Section 2.6.3) introduced in Chapter 2. The present chapter focuses on the convergence analysis of these aS method. It is illustrated with numerical experiments (Section 3.5). The code designed for that purpose is not presented in the present chapter, as it will instead be the object of Chapter 4 which will focus on the issues related to the design of such a code for achieving high performance in a parallel context while ensuring the required flexibility to cover all the proposed methods. Performance results are eventually provided in Section 3.5.5 to make the present chapter self-contained and illustrate the benefits of a parallel Coarse Space Correction (CSC). Nonetheless, the parallel design of the coarse grid will be tackled in details only in Chapter 5.

The domain decomposition community has developed many efficient and robust methods in the last decades. While some of these solvers fall into the aS framework mentioned above, their robustness have originally been demonstrated on a case-by-case basis, often relying on some properties of the underlying partial differential equations that is being solved. A general convergence theory of aS methods is presented in [START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF]. In this chapter, we propose a bound for the condition number of deflated aS methods for SPD matrices provided that the coarse grid consists of the assembly of local components that contain the kernel of some local operators. We show that classical results from the literature on particular instances of aS methods can be retrieved from this bound. We then show that such a CSC can be explicitly obtained algebraically via generalized eigenproblems, leading to a condition number independent of the number of subdomains when the global SPD matrix is known as a sum of symmetric positive semi-definite (SPSD) matrices. This result can be readily applied to retrieve or improve the bounds previously obtained via generalized eigenproblems in the particular cases of Neumann-Neumann (NN), Additive Schwarz (AS) and optimized Robin but also generalizes them when applied with approximate local solvers. Interestingly, the proposed methodology turns out to be a comparison of the considered particular aS method with 3. Convergence of abstract Schwarz methods generalized versions of both NN and AS for tackling the lower and upper part of the spectrum, respectively. We furthermore show that the application of the considered coarse grid corrections in an additive fashion is robust in the AS case although it is not robust for aS methods in general. In particular, the proposed framework allows for ensuring the robustness of the AS method applied on the Schur complement (AS/S), either with deflation or additively, and with the freedom of relying on an approximate local Schur complement. Numerical experiments illustrate these statements.

The linear system (Equation (1.5), page 21) to be solved is

Ku = f, (3.1)
where K is a n × n sparse SPD matrix that does not need to be known explicitly. Instead, the parallel application provides K to the solver as a sum

K = N i=1 K (g) i of N SPSD matrices K (g) i . The matrix K (g) i
is similar to the K i matrix introduced in Section 2.6.1 of Chapter 2, but using the global (hence the (g) notation) ordering instead of a local one. Even though K (g) i is of size n × n, in practical applications it has only n i non-zero rows (and columns), meaning that this matrix represents the interaction of only a subset of the unknowns from the global problem. We define the global domain Ω = {1, . . . , n} as the set of row (or column) indices in K, and the subdomain

Ω i = {ω (i) 1 , ω (i) 2 , . . . , ω (i)
n i } as the set of indices of the non-zero rows and columns in K

(g) i (Ω i is the set of vertices in the adjacency graph of K (g) i). We introduce the n i × n canonical restriction matrix R Ω i from Ω to Ω i , such that for any vector u = (u 1 , . . . , u n) ∈ R n , R Ω i u is the vector (u ω (i) 1 , . . . , u ω (i) n i) ∈ R n i .
Then, we define the n i × n i SPSD matrix

K i = R Ω i K (g) i R
T Ω i , referred to as the local matrix of subdomain Ω i , leading to

K = N i=1 R T Ω i K i R Ω i . (3.2)
The unknowns in any subdomain Ω i can be partitioned into an interior

I i = {ω ∈ Ω i s.t. ∀j = i, ω / ∈ Ω j } and an interface Γ i = {ω ∈ Ω i s.t. ∃j = i ω ∈ Ω j } = Ω i \ I i . If an unknown ω ∈ Ω i appears in at least one other subdomain, then ω ∈ Γ i , otherwise ω ∈ I i . This yields a partition of the global domain Ω = {1, . . . , n} = I 1 ∪ • • • ∪ I N ∪ Γ where Γ = Γ 1 ∪ • • • ∪ Γ N is the global interface.
Then, eliminating in parallel the interior unknowns following for instance (Section 2, Le Tallec and Vidrascu, 1998) the original system (3.1) reduces to a Schur complement problem defined on the interface Γ

Su Γ = f Γ , S = N i=1 R T Γ i S i R Γ i , (3.3)
where the global Schur complement matrix S is SPD and the local Schur complement matrices S i are SPSD. Using the classical index notation for referring to sub-blocks of matrices and vectors, we have

S = K ΓΓ -N i=1 K ΓI i K -1 I i I i K I i Γ , f Γ = f Γ -N i=1 K ΓI i K -1 I i I i f I i and S i = K Γ i Γ i -K Γ i I i K -1 I i I i K I i Γ i .
From the interface solution u Γ , the solution in I i can be computed as u

I i = K -1 I i I i f I i -K -1 I i I i K I i Γ u Γ .

Introduction

Algebraically, the problems (3.1) and (3.3) are very similar; their only difference is that even when K i is sparse, S i is in general a dense matrix (as soon as K i is irreducible). Although eliminating the interior unknowns is often associated with specific DDM such as Neumann-Neumann or BDD [START_REF] De Roeck | Analysis and test of a local domain decomposition preconditioner[END_REF][START_REF] Mandel | Balancing domain decomposition[END_REF], it is in fact an optional step in the solution of Problem (3.1) and many domain decomposition methods can be applied either directly on K or, after eliminating the interior unknowns, on S. This elimination step may take time and consume memory, but it allows one to reduce the size and the condition number of the linear system (S) to be solved [START_REF] Brenner | The condition number of the Schur complement in domain decomposition[END_REF][START_REF] Mansfield | On the Conjugate Gradient Solution of the Schur Complement System Obtained from Domain Decomposition[END_REF], making it a useful optional preprocessing. Since the theory presented in sections 3.2 and 3.3 can be applied to solve either the original problem in (3.1) or the reduced Schur complement problem in (3.3), we write them in a general form as

Ax = b, A = N i=1 R T i A i R i , (3.4)
where the global SPD matrix A, the local SPSD matrices A i , and the restriction matrices R i can represent K, K i and R Ω i or S, S i and R Γ i when solving (3.1) or (3.3), respectively. When needed, a specific method M will be noted M/K or M/S to specify on which problem this method is applied. In both cases, A is SPD and, assuming that the A i are assigned to different computing units, Problem (3.4) can be solved in parallel using the preconditioned conjugate gradient method (PCG).

A good preconditioner M for (3.4) should have the two following properties: (1) M is SPD and close to A -1 , in the sense that the condition number κ(MA) should be as small as possible; (2) it is easy to compute Mu for any vector u (at least much easier than A -1 u). DDM are often used to build such preconditioners of the form

M aS = N i=1 R T i A † i R i (3.5)
where A i is a local problem associated with A on subdomain i, and † represents a pseudoinverse. These preconditioners have been studied for a long time using the abstract Schwarz (aS) theory (see, e.g., [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF][START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF] for recent overviews). Two particular cases of these aS preconditioners are the Neumann-Neumann (NN) preconditioner [START_REF] Mandel | Balancing domain decomposition[END_REF], with

A i = D -1 i A i D -1 i ,

and the Additive Schwarz (AS) preconditioner, with

A i = R i AR T i M N N = N i=1 R T i D i A † i D i R i , M AS = N i=1 R T i R i AR T i -1 R i , (3.6)
where

(D i) N i=1 is a partition of unity such that N i=1 R T i D i R i = I n
and I n is the n × n identity matrix. These two preconditioners are of particular importance, but any other SPSD matrix can be used as the local preconditioner A i in (3.5).

Unless A i perfectly mimics the global action of A in subdomain Ω i , κ(M aS A) may significantly increase with the number N of subdomains, leading to a non scalable numerical method. Furthermore, if A i is singular, the pseudo-inverse is only defined up to

Convergence of abstract Schwarz methods

an element in its null space ker(A i). To solve these two problems, as discussed in Section 2.7.3, a coarse space V 0 such that R T i ker(A i) ⊂ V 0 can be introduced, leading to the deflated aS preconditioner

M aS,D = V 0 (V T 0 AV 0) † V T 0 + (I n -P 0) N i=1 R T i A † i R i (I n -P 0) T (3.7)
where

P 0 = V 0 (V T 0 AV 0) † V T 0 A is the A-orthogonal projection onto V 0 .
A simpler additive two-level preconditioner can also be obtained by just adding the coarse component to the one-level preconditioner

M aS,2 = V 0 (V T 0 AV 0) † V T 0 + N i=1 R T i A † i R i . (3.8) If V 0 is full rank, the pseudo inverse (V T 0 AV 0)
† can be replaced by an inverse (V T 0 AV 0) -1 . While previous works had proposed bounds on the condition number κ(MA) on particular numerical cases, often relying on analytical assumptions, Le Tallec and Vidrascu (1998) derived an algebraic bound for a new class of preconditioners, relying on the generalized Rayleigh quotient of two local matrices. These preconditioners are called generalized NN in the original article; however, because the generalization consists of handling an approximate matrix, we will instead refer to them as approximate NN preconditioners in this thesis. The approximation is not related to the use of inexact solvers to compute the preconditioner, but to the use of an approximation matrix A instead of A in the construction of the preconditioner. The approximate NN preconditioner is in fact an exact algebraic NN preconditioner for A. Then, this approximate preconditioner is used to accelerate the convergence of PCG applied on the exact matrix A, guaranteeing a convergence towards the actual solution of Equation (3.4).

This class of approximate NN preconditioners generalizes classical NN but does not cover the whole aS class of preconditioners. Note, for instance, that AS cannot be expressed as such an approximate NN preconditioner. The first contribution (Section 3.2) of this chapter is to extend the result from (Le Tallec and Vidrascu, 1998) by using a generic local preconditioner and cover a broader range of aS methods, which we name approximate deflated aS methods and consist of all deflated aS methods whose coarse space consists of the assembly of local components that contain the kernel of some local operators (that are formally introduced below, in Definition 1). Interestingly, the bound we exhibit (Theorem 1) highlights the key position of NN and AS among other local preconditioners in the Schwarz framework: they provide two bounds on the spectrum of the preconditioned operator, and the convergence of any aS local preconditioner can be evaluated by comparing it to these two well-known methods.

This bound depends on generalized Rayleigh quotients which are traditionally estimated using functional analysis. Alternatively, we propose to control these Rayleigh quotients algebraically by building the coarse space using eigenvectors of well chosen generalized eigenproblems (Theorem 2). For that, we follow the Generalized Eigenvalue in the Overlap (GenEO) procedure (Spillane et al., 2014a). This second contribution (Section 3.3) results in an explicit procedure for building a robust CSC for any approximate 3.2. Approximate abstract Schwarz preconditioners deflated aS method leading to a bound on the condition number (hence on the number of iterations of PCG) independent of the number of subdomains. This result can be readily applied to retrieve or improve the bounds previously obtained via generalized eigenproblems in the particular cases of AS/K (Spillane et al., 2014a), NN/S [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF] and optimized Robin (SORAS/K) [START_REF] Haferssas | An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method[END_REF]. It also generalizes these results to the approximate case. The idea of building a coarse space by solving local eigenproblems in each subdomain was introduced in [START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF][START_REF] Nataf | A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps[END_REF]; coarse spaces following this general idea for FETI-DP [START_REF] Farhat | FETI-DP: A dual-primal unified FETI method-part I: A faster alternative to the two-level FETI method[END_REF] or BDDC [START_REF] Dohrmann | A preconditioner for substructuring based on constrained energy minimization[END_REF] were introduced in (Klawonn et al., 2016a[START_REF] Klawonn | Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems[END_REF](Klawonn et al., , 2016b)).

The third contribution (Section 3.4) in this chapter is that the application of the considered CSC in an additive fashion is robust in the approximate AS case (although it is not robust for aS methods in general). The bound we obtain (Theorem 3) can be applied for retrieving the bound obtained in (Spillane et al., 2014a), when the coarse correction is applied additively to the AS method on the original matrix (AS/K). When working on the Schur complement matrix (AS/S) [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF], the bound is still valid and leads, as commented in [START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF], to a smaller coarse space compared to AS/K.

Numerical experiments illustrate our discussion in Section 3.5. A HPC implementation of the CSC of one particular, robust method (AS/S) has furthermore been implemented in the HPC MaPHyS1 hybrid (direct/iterative) sparse linear solver [START_REF] Agullo | Parallel hierarchical hybrid linear solvers for emerging computing platforms[END_REF][START_REF] Agullo | Hierarchical hybrid sparse linear solver for multicore platforms[END_REF] to eventually assess its performance on a modern parallel computer (Section 3.5.5) and make this scalable method available to the scientific community. The presentation of the ddmpy code employed for illustrating the numerical behavior of the proposed methods in sections 3.5.2, 3.5.3 and 3.5.4 is not addressed in the present chapter and will be the object of Chapter 4. Similarly, the presentation of the parallel design of CSC into the MaPHyS fully-featured sparse hybrid solver will be the object of Chapter 5 and Section 3.5.5 only provides a brief preview of it.

The chapter is organized as follows. Section 3.2 introduces a new class of approximate (deflated) aS preconditioners and provides a bound on their condition number, which depends on generalized Rayleigh quotients. Applying the GenEO procedure on two well chosen generalized eigenproblems, Section 3.3 proposes a procedure to explicitly compute the coarse space while bounding these Rayleigh quotients leading to a bound on the condition number (hence on the number of iterations of PCG) independent of the number of subdomains. Section 3.4 shows that a similar result (and procedure) can be obtained when the CSC is additively applied, in the case of approximate AS problems. Numerical experiments illustrate our discussion in Section 3.5 before concluding in Section 3.6.

Approximate abstract Schwarz preconditioners

In this section, we first define a class of approximate aS preconditioners, which combine a local preconditioner A i , an approximate matrix A and a coarse space V 0 in Section 3.2.1. We then provide a bound on the condition number of this class of methods in Section 3.2.2, whose proof is detailed in Section 3.2.3.

Convergence of abstract Schwarz methods

Context

Definition 1 (Approximate abstract Schwarz preconditioner M aS,D). In order to build such a preconditioner for Problem (3.4), we need the three following ingredients:

1. a set of symmetric positive semi-definite (SPSD) local preconditioners A i ,

an approximation

A of A such that ∃ (A i) N i=1 , A = N i=1 R T i A i R i and A i is SPSD, (3.9) ∃ ω -, ω + > 0, ∀v ∈ V ω -v T Av ≤ v T Av ≤ ω + v T Av, (3.10)
3. and a coarse space V 0 such that

∃ (V i 0) N i=1 , V 0 = N i=1 R T i V i 0 with ker(A i) + ker(A (N N) i) ⊂ V i 0 , (3.11)
where A

(N N) i = D -1 i A i D -1 i . We can then define a coarse matrix A 0 = V T 0 AV 0 , a coarse projection P 0 = V 0 A † 0 V T 0 A
and the approximate aS preconditioner is then defined as

M aS,D = V 0 A † 0 V T 0 + (I n -P 0) N i=1 R T i A † i R i (I n -P 0) T .
(3.12)

Note that the matrix A

(N N) i
introduced in (3.11) is the local matrix in the approximate NN preconditioner M N N,D with the algebraic decomposition from (3.9). The matrices D i can be any partition of unity as in (3.6). A

(N N) i is a scaled version of the local matrix A i in the approximation A of A.
When no approximation is used, after a suitable initialization, M aS,D can be replaced by [START_REF] Mandel | Balancing domain decomposition[END_REF].

(I n -P 0) N i=1 R T i A † i R i in the PCG iterations, as noted in

Convergence result for M aS,D

In each subdomain, we note

N i = #{j = i, R i AR T j = 0}
the number of neighbors through the connectivity graph of A. We also define two local subspaces V ⊥ i and V ⊥ i as the orthogonal spaces of V i 0 for the inner products inferred by A i in range(A i) and A

(N N) i in range(A (N N) i) respectively. Then, range(R i) = V ⊥ i ⊕ V i 0 = V ⊥ i ⊕ V i 0 , (3.13) ∀u ∈ V i 0 , ∀v ∈ V ⊥ i , ∀w ∈ V ⊥ i u T A i v = u T A (N N) i w = 0. (3.14)
Finally, for any SPSD matrix B and vector u, we note

|u| B = √ u T Bu the B-seminorm of u; if B is SPD, we note it ||u|| B .

Approximate abstract Schwarz preconditioners

Theorem 1 (Convergence result for approximate aS). The condition number of the preconditioned matrix M aS,D A is bounded by

κ(M aS,D A) ≤ ω + ω -   1 + max 1≤i≤N sup v∈ V ⊥ i |v| 2 A i |v| 2 A (N N) i   max   1, max 1≤i≤N (N i + 1) sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A i   ,
where

A (N N) i = D -1 i A i D -1 i and A (AS) i = R i AR T i .
We see three factors in this bound:

• The first one, with ω + and ω -, controls the quality of the approximation A. If no approximation is used, then A = A and ω -= ω + = 1.

• The second one is a generalized Rayleigh quotient between the local preconditioner A i and the approximate NN preconditioner A lec and Vidrascu, 1998).

(N N) i = D -1 i A i D -1 i defined in (Le Tal-
• The last one is a generalized Rayleigh quotient between the local preconditioner A i and an approximate AS preconditioner A

(AS) i = R i AR T i .
As for A

(N N) i above with NN, A (AS) i = R i AR T
i is an algebraic generalization of the local matrix in the AS preconditioner in Equation (3.6), built upon the approximation A instead of A.

Proof. The proof of Theorem 1 is a direct consequence of lemmas 3 and 5 in Section 3.2.3, using the definition of

κ(M aS,D A) = λ max (M aS,D A) λ min (M aS,D A)
.

Corollary 1 (Convergence results for approximate AS and approximate NN). We define the approximate AS and NN preconditioners M AS,D and M N N,D by replacing

A i with A (AS) i or A (N N) i
respectively in Equation (3.12). We also define N c = max 1≤i≤N (N i + 1). Then, the condition numbers of M N N,D A and M AS,D A are bounded by

κ(M AS,D A) ≤ ω + ω -   1 + max 1≤i≤N sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A (N N) i   N c , κ(M N N,D A) ≤ ω + ω - max   1, sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A (N N) i   N c .
Proof. The proof of Corollary 1 is a consequence of lemmas 3 and 4 for AS, and lemmas 2 and 5 for NN.

Convergence of abstract Schwarz methods

Note that the bound for M N N,D in Corollary 1 is the same as in (Theorem 1, Le Tallec and Vidrascu, 1998). This bound is tighter than the bound obtained by setting

A i = A (N N) i
in Theorem 1; this comes from the fact that the bound in Lemma 2 is also tighter than its generalization in Lemma 3.

The similarity of the bounds for AS and NN in Corollary 1 shows that the convergence of these two methods are governed by the same quantity

sup v∈ V ⊥ i |v| 2 A (AS) i /|v| 2 A (N N) i
. As a result, with the same coarse space, we expect the AS/S method [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF] to show the same convergence behavior as the BDD method (NN/S) [START_REF] Mandel | Balancing domain decomposition[END_REF] or its dual counterpart FETI [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF]. Although AS require more communication than NN (each subdomain i has to send the matrix block R j R T i A i R i R T j to each neighbor j) to setup the preconditioner, one advantage of using AS over NN is that the local preconditioner A (N N) i is often singular in some subdomains while A (AS) i remains SPD, and A (AS) i -1 u i is often easier and faster to compute than A

(N N) i † u i .

Proof of Theorem 1

To estimate the condition number of M aS,D A, we need to bound the spectrum of this operator from above (Lemma 5) and below (Lemma 3). The lower bound is a consequence of the Stable Decomposition Lemma as stated in [START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF].

Lemma 1 (Stable decomposition lemma). If there exists a constant C 0 , local matrices B i and extension operators I i , such that ker(B i) ⊂ ker(I i) and every u ∈ V admits a decomposition

u = N i=0 I i u i , {u i ∈ V i , 0 ≤ i ≤ N } that satisfies N i=0 |u i | 2 B i ≤ C 2 0 ||u|| 2 A .
Then

λ min (MA) ≥ C -2 0 , where M = N i=0 I i B † i I i T .
Proof. see, e.g., Lemma 2.5 in [START_REF] Toselli | Domain Decomposition Methods-Algorithms and Theory[END_REF].

Then, although it is not directly used in the proof of Theorem 1, we first expose in Lemma 2 a lower bound for the spectrum of NN (

A i = A (N N) i
) as it provides a good insight on the reason behind the Rayleigh quotients in the bound presented in Lemma 3 for the general case.

Lemma 2 (Lower bound for the approximate Neumann-Neumann preconditioner). Let

M N N,D = V 0 A † 0 V T 0 + (I n -P 0) N i=1 R T i A (N N) i † R i (I n -P 0) T .
Then,

λ min (M N N,D A) ≥ 1 ω + .

Approximate abstract Schwarz preconditioners

Proof. This is a consequence of Lemma 1 (see Theorem 1 in [START_REF] Le Tallec | Generalized Neumann-Neumann preconditioners for iterative substructuring[END_REF]).

If, instead of A

(N N) i
, another local preconditioner A i is used, there is no change on the bound if we restrict the operators to the coarse space V 0 since the application of the local preconditioner is preceded and followed by projections (I n -P 0) and (I n -P 0) T . However, in the orthogonal of the coarse space, the bound has to change and reflect the difference between A (N N) i and A i . As is proved in Lemma 3, the lower bound on the spectrum of M aS,D A can be deduced from the bound for M N N,D A in Lemma 2 by adding a correction related to the generalized Rayleigh quotient between A (N N) i and A i in the orthogonal of the coarse space.

Lemma 3 (Lower bound for the approximate abstract Schwarz preconditioner).

λ min (M aS,D A) ≥ 1 ω +   1 + max 1≤i≤N sup v∈ V ⊥ i |v| 2 A i |v| 2 A (N N) i   -1
.

Proof. We want to split u into a sum of local contributions, while being able to uniformly control the A i -norm of these contributions u i with the global A-norm of u to apply Lemma 1. For any u and i ≥ 1, we decompose

D i R i u = u 0 i + u ⊥ i where u 0 i ∈ V i 0 and u ⊥ i ∈ V ⊥ i . We then define u 0 = (V T 0 AV 0) † V T 0 Au such that V 0 u 0 = P 0 u. We can use the facts that N i=1 R T i D i R i = I n and N i=0 R T i u 0 i ∈ V 0 ⊂ ker(I n -P 0)
to obtain the decomposition

u = P 0 u + (I n -P 0)u = V 0 u 0 + (I n -P 0) N i=1 R T i D i R i u = V 0 u 0 + (I n -P 0) N i=1 R T i (u 0 i + u ⊥ i) = V 0 u 0 + (I n -P 0) N i=1 R T i u ⊥ i = N i=0 I i u i where I 0 = V 0 , I i = (I n -P 0)R i and u i = u ⊥ i .
Since P 0 is a A-orthogonal projection, it holds that:

|u 0 | 2 A 0 = |u 0 | 2 V T 0 AV 0 = |V 0 u 0 | 2 A = | P 0 u| 2 A ≤ |u| 2 A (3.15) Let C = max 1≤i≤N sup v∈ V ⊥ i |v| 2 A i |v| 2 A (N N) i = max 1≤i≤N sup v∈ V ⊥ i |v| 2 A i |v| 2 D -1 i A i D -1 i .

Convergence of abstract Schwarz methods

We can then use equations (3.14), (3.9) and (3.15):

|u ⊥ i | 2 A i ≤ C|u ⊥ i | 2 D -1 i A i D -1 i ≤ C|u ⊥ i + u 0 i | 2 D -1 i A i D -1 i = C|R i u| 2 A i , N i=1 |u ⊥ i | 2 A i ≤ C N i=1 |R i u| 2 A i = C|u| 2 N i=1 R T i A i R i = C|u| 2 A , (3.16) |u 0 | 2 A 0 + N i=1 |u ⊥ i | 2 A i ≤ (1 + C) |u| 2 A ≤ ω + (1 + C)|u| 2 A ,
and the local norms are controlled by the global norm. Then, applying Lemma 1, we get

λ min (M aS,D A) ≥ 1 ω +   1 + max 1≤i≤N sup v∈ V ⊥ i |v| 2 A i |v| 2 A (N N) i   -1
. Now that we have proved a lower bound for the spectrum of M aS,D A, we will prove an upper bound in Lemma 5. We first recall a classic upper bound for AS preconditioners in Lemma 4 since it explains the origin of the Rayleigh quotient in the bound for the general case.

Lemma 4 (Upper bound for the approximate Additive Schwarz preconditioner). Let

M AS,D = V 0 A † 0 V T 0 + (I n -P 0) N i=1 R T i A (AS) i -1 R i (I n -P 0) T .
Then,

λ max (M AS,D A) ≤ 1 ω - max 1≤i≤N (N i + 1).
Proof. This lemma is a particular case of Lemma 5 which is proven below.

Lemma 5 (Upper bound for the approximate abstract Schwarz preconditioner).

λ max (M aS,D A) ≤ 1 ω - max   1, max 1≤i≤N (N i + 1) sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A i   .
Proof. First, let us remark that

M aS,D Au = V 0 A † 0 V T 0 Au + (I n -P 0) N i=1 R T i A † i R i (I n -P 0) T Au = u 0 + (I n -P 0) N i=1 R T i u i
where u 0 = P 0 u and u i is the orthogonal projection of

A † i R i (I n -P 0) T Au onto range(A i) along ker(A i) ⊂ V i 0 ⊂ ker (I n -P 0)R T i .

Building the coarse space via generalized eigenproblems

As a consequence,

u i ∈ V ⊥ i : u T i A i V i 0 = u T A(I n -P 0)R T i A † i A i V i 0 = u T A(I n -P 0)R T i V i 0 = 0. Then, | M aS,D Au| 2 A = |u 0 | 2 A + |(I n -P 0) N i=1 R T i u i | 2 A ≤ |u 0 | 2 A + | N i=1 R T i u i | 2 A ≤ |u 0 | 2 A + N i=1 (N i + 1)|R T i u i | 2 A = |u 0 | 2 A + N i=1 (N i + 1)|u i | 2 R i AR T i
where we used the fact that

0 ≤ 1≤i,j≤N R T i AR j =0 |R T i u i -R T j u j | 2 A = 2     1≤i,j≤N R T i AR j =0 |R T i u i | 2 A - 1≤i,j≤N R T i AR j =0 u T i R i AR T j u j     ≤ 2 N i=1 (N i + 1)|R T i u i | 2 A -| N i=1 R T i u i | 2 A .
(3.17)

Let us define

C = max   1, max 1≤i≤N (N i + 1) sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A i   = max 1, max 1≤i≤N (N i + 1) sup v∈ V ⊥ i |v| 2 R i AR T i |v| 2 A i .
We can now write

| M aS,D Au| 2 A ≤ C|u 0 | 2 A + C N i=1 |u i | 2 A i = Cu T P T 0 Au 0 + C N i=1 u T A(I n -P 0)R T i A † i A i u i = Cu T A M aS,D Au ≤ C|u| A | M aS,D Au| A | M aS,D Au| A ≤ C|u| A ,
and use the same strategy as in [START_REF] Le Tallec | Generalized Neumann-Neumann preconditioners for iterative substructuring[END_REF] to obtain our result:

λ max (M aS,D A) = max v∈V |v| 2 A |v| 2 M -1 aS,D ≤ max v∈V 1 ω - |v| 2 A |v| 2 M -1 aS,D ≤ max v∈V 1 ω - | M aS,D Av| A |v| A ≤ C ω - , λ max (M aS,D A) ≤ 1 ω - max   1, max 1≤i≤N (N i + 1) sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A i   .

Building the coarse space via generalized eigenproblems

The bound in Theorem 1 has originally been estimated through functional analysis after a coarse space has been chosen [START_REF] Le Tallec | Generalized Neumann-Neumann preconditioners for iterative substructuring[END_REF]. A more algebraic approach 3. Convergence of abstract Schwarz methods is to build the coarse space V 0 by solving a generalized eigenproblem in each subdomain in order to control the Rayleigh quotient as proposed by (Spillane et al., 2014a;[START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF] for AS/K and NN/S, respectively. This approach has also been successfully applied to other aS variants such as the SORAS method [START_REF] Haferssas | An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method[END_REF], in which case two eigenproblems are needed. The case where the correction is applied additively as in [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF]Spillane et al., 2014a) for AS is addressed in Section 3.4.

The connection between the GenEO method and Theorem 1 comes from the following lemma:

Lemma 6 (Bound on the Rayleigh quotient). Let B be a SPSD matrix, C a SPD matrix and η > 0 be a parameter.

If

V η = span {p, Bp = λCp, λ ≤ η} and V ⊥ B η = {u ∈ range(B), ∀v ∈ V η , u T Bv = 0}, then sup u∈V ⊥ B η |u| 2 C |u| 2 B ≤ 1 η . Proof. Since C is SPD, the generalized eigenproblem Bp = λCp has solutions (λ k , p k) with p T k Cp l = δ kl and p T k Bp l = λ k δ kl . Now, let u ∈ V ⊥ B η . We can project u on the basis (p k) k : u = k α k p k . If k is such that λ k ≤ η, then p k ∈ V η and 0 = u T Bp k = λ k α k . As a consequence, α k = 0 because if λ k = 0, p k ∈ ker(B) = range(B) ⊥ ⊥ u and α k = u T p k = 0. This leads to |u| 2 C |u| 2 B = λ k >η α 2 k λ k >η λ k α 2 k ≤ 1 η .
Following the GenEO methodology, we propose to build the coarse space V 0 by solving two generalized eigenproblems to control the condition number of approximate aS preconditioners through two parameters α > 0 and β ≥ 1.

Theorem 2 (Condition number of aS preconditioners). If A i is SPD and the coarse space is defined as

V 0 = N i=1 R T i V i 0 with V i 0 = span {p i k , A (N N) i p i k = λ i k A i p i k , λ i k ≤ α -1 } ∪ {p i k , A i p i k = λ i k A (AS) i p i k , λ i k ≤ (N i + 1)β -1 } , then, we can bound the condition number κ(M aS,D A) ≤ ω + ω - (1 + α) β.
Proof. Using Lemma 6 and the definition of

V ⊥ i and V ⊥ i in 3.2.2, we can bound the Rayleigh quotients sup v∈ V ⊥ i |v| 2 A i |v| 2 A (N N) i ≤ α, sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A i ≤ β N i + 1 .
Replacing these bounds in Theorem 1 gives the result.

Additive coarse correction

Corollary 2. In the NN or AS cases, for any α ≥ 1, we can define

V i 0 = span {p i k , A (N N) i p i k = λ i k A (AS) i p i k , λ i k ≤ α -1 } .
Then, Corollary 1 and Lemma 6 give

κ(M AS,D A) ≤ ω + ω - (1 + α) N c , κ(M N N,D A) ≤ ω + ω - α N c . If α -1 = min λ i k =0 (λ i k), then V i 0 = ker(A (N N) i) = D i ker(A i
) and the resulting coarse space for NN is exactly the same as in the BDD algorithm.

With small variations in the generalized eigenproblems considered, Theorem 2 and Corollary 2 retrieve or improve previous GenEO results and generalize them to the approximate case: AS/K [START_REF] Spillane | Méthodes de Décomposition de Domaine Robustes Pour Les Problèmes Symétriques Définis Positifs[END_REF]Spillane et al., 2014a), NN/S [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF] and SORAS [START_REF] Haferssas | An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method[END_REF].

Additive coarse correction

Context

The preconditioner M aS,D separates the part of the solution that is in V 0 (on which a direct coarse solve is performed through A † 0), from its A-orthogonal part (on which the local preconditioner

M aS = N i=1 R T i A † i R i is used to accelerate convergence).
Eigenvalues or Rayleigh quotients λ corresponding to vectors in the coarse space V 0 are shifted to 1 by the coarse solve, and to 0 by the projection steps (I n -P 0) and (I n -P 0) T , so the overall effect of the deflated preconditioner is to shift them to 1 exactly. If we skip these projection steps, we obtain an approximate additive two-level preconditioner M aS,2 similar to M aS,2 presented in Equation (3.8). In this case, without the projection steps eigenvalues are shifted to 1 + λ. As a result, this coarse correction applied on big eigenvalues only makes them bigger, thus hampering convergence. This additive coarse correction can only be effective to tackle the lower part of the spectrum since small eigenvalues λ 1 are shifted to 1 + λ ≈ 1.

The one-level AS method has already an upper bound on the spectrum (see Lemma 4), and only the lower bound needs to be recovered, making it an ideal candidate for an additive coarse correction. In this section, we show that in the approximate AS case, when

A i = A (AS) i = R i AR T
i , the projection steps can be removed without losing robustness. Namely, we still have a bound for the condition number of the additive two-level AS method independent of the number of subdomains.

Convergence result for M AS,2

Theorem 3 (Condition number of the two-level approximate AS preconditioner). Let

M AS,2 = V 0 A † 0 V T 0 + N i=1 R T i A (AS) i -1 R i and N c = max 1≤i≤N (N i + 1).

Convergence of abstract Schwarz methods

Then, we can bound the condition number

κ(M AS,2 A) ≤ ω + ω -   N c + 1 + (N c + 2) max 1≤i≤N sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A (N N) i   (N c + 1).
For any α > 0, if we choose

V i 0 = span {p i k , A (N N) i p i k = λ i k A (AS) i p i k , λ i k ≤ α -1 } , it holds that κ(M AS,2 A) ≤ ω + ω - [N c + 1 + α(N c + 2)] (N c + 1).
Theorem 3 generalizes (Theorem 4.40, Spillane et al., 2014a) to the approximate case, while improving the bound.

A spectral coarse space composed of eigenvectors of a generalized eigenproblem was earlier proposed in [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF]. In those studies, the authors also discuss the analytical and numerical interest of using AS,2/S instead of the more traditional AS,2/K to reduce the size of the coarse space. In comparison, our method is more algebraic in the sense that it does not need a stable interpolation operator, nor the mass matrix.

Proof of Theorem 3

Proof. If we apply Lemma 4 without a coarse space and consider V 0 as another subdomain in the decomposition, we get

λ max (M AS,2 A) ≤ 1 ω - (N c + 1).
The lower bound is a consequence of Lemma 1. We define

u 0 i ∈ V i 0 and u ⊥ i ∈ V ⊥ i such that D i R i u = u 0 i + u ⊥ i as in the proof of Lemma 3. We now introduce u 0 such that V 0 u 0 = N i=1 R T i u 0 i , and u = V 0 u 0 + N i=1 R T i u ⊥ i . We get from Equation (3.16) that N i=1 |u ⊥ i | 2 A (AS) i = N i=1 |u ⊥ i | 2 A i ≤ C|u| 2 A with C = max 1≤i≤N sup v∈ V ⊥ i |v| 2 A (AS) i |v| 2 A (N N) i = |v| 2 R i AR T i |v| 2 D -1 i A i D -1 i .
Then, we can use the same method as in Equation (3.17):

|u 0 | 2 A = |u - N i=1 R T i u ⊥ i | 2 A ≤ (N c + 1) |u| 2 A + N i=1 |R T i u ⊥ i | 2 A = (N c + 1) |u| 2 A + N i=1 |u ⊥ i | 2 R i AR T i ≤ (N c + 1)(1 + C)|u| 2 A |u 0 | 2 A + N i=1 |u ⊥ i | 2 R i AR T i ≤ [N c + 1 + (N c + 2)C] |u| 2 A ≤ ω + [N c + 1 + (N c + 2)C] |u| 2 A .

Numerical experiments

We then use Lemma 1 with

I 0 = V 0 , I i = R T i and B i = I i T AI i to get the bound λ min (M AS,2 A) ≥ 1 ω +   N c + 1 + (N c + 2) max 1≤i≤N sup v∈ V ⊥ i |v| 2 R i AR T i |v| 2 A (N N) i   -1
.

We can then conclude with Lemma 6.

Numerical experiments

Experimental setup

The methods introduced in sections 3.2, 3.3 and 3.4 are tested on a Darcy bâton problem similar to what is presented in (Spillane et al., 2014a). We use the Finite Element Method (FEM) with Q1 elements to solve a heterogeneous diffusion equation ∇

• (k∇u) = 1 in a 3D stratified medium. The domain [0, N] × [0, 6] × [0, 1]
is discretized on a regular mesh of (5N +1)×31×6 nodes. The domain is divided into N identical subdomains along the first axis. Along the second axis, it is divided into 10 layers (of 5N × 3 × 5 elements each) of alternating conductivity k = 1 and k = K (K is a heterogeneity parameter). A Dirichlet boundary condition is applied on the left of the domain (x = 0), a Neumann condition on every other boundary. These test cases are generated using the genfem python module2 developed for the purpose of this thesis. Using a FEM discretization on each subdomain gives rise naturally to a set of local SPSD matrices and a global matrix that is SPD. The geometry and 1D partitioning of this test case are chosen so as to emphasize the effects of using a CSC: indeed, without a coarse correction, the number of iterations grows as O(N 1/d) where d is the dimension of the partitioning. Using a 3D partitioning of the global domain, one would need more than 7M subdomains (192 3) to illustrate the same effect as in the experiments presented here with a 1D partitioning and 192 subdomains.

The layered structure of the domain is introduced to deteriorate the condition number of the local subproblems. Since all subdomains (except the first and last ones) are identical, the bound on the condition number of the method in Theorem 1 is independent of N if at least the kernels of A

(N N) i
and A i are included in V i 0 ; a coarse space that only includes these kernels (as in BDD for instance) thus yields a method that can be considered as robust in this regard, while being considerably simpler to compute than the coarse space proposed in this chapter. However, the condition number still depends on the inverse of the smallest eigenvalues not included in the coarse space, which can be quite close to 0 if the local problems are ill-conditioned (i.e., if K is big). As a result, the condition number, although independent of N , can still be too large for the iterative solver to converge in a reasonable number of iterations. Building the coarse space by solving the generalized eigenproblems as proposed in Section 3.3 yields a more robust method in the sense that the condition number of the method can be controlled independently of both N , K, and the particular choice of a local preconditioner. We consider three aS methods: the AS and NN preconditioners introduced in Equation (3.6) and a Shifted (Sh) preconditioner

Convergence of abstract Schwarz methods

whose local matrix is obtained by shifting the diagonal of A i by 1 to remove its potential singularity:

M Sh = N i=1 R T i (A i + I n i) † R i
where I n i is the identity matrix of same size as A i . If built on the Schur complement matrix, M Sh is a (non-optimized) Robin preconditioner. The optimization of the Robin condition as proposed in [START_REF] Gander | Optimized Schwarz methods[END_REF] is not considered here as it is out of the scope of this study. This Sh preconditioner is introduced as an example of a more generic aS preconditioner than AS and NN; as such, two generalized eigenproblems need to be solved to compute the coarse space for Sh as opposed to only one for AS and NN. Each of these method is assessed with A = K or A = S. Equation (3.4) can therefore either result from:

• the FEM discretization (3.1) of the global problem, in which case the preconditioner is said to be applied on the original matrix K and the abstract Schwarz method is noted aS/K;

• or the substructuring system (3.3) obtained by eliminating the interior variables from Equation (3.1), in which case the preconditioner is said to be applied on the Schur complement matrix S and the method is noted aS/S.

The partition of unity D i is computed using the diagonal values of A i . The condition numbers of the preconditioned matrices are estimated using the eigenvalues of the tridiagonal Lanczos matrix computed during the PCG iterations (see, e.g., [START_REF] Fourier | A set of conjugate gradient routines for real and complex arithmetics[END_REF]). The stopping criterion is based on the normwise backward error ||b -Ax k ||/||b|| ≤ 10 -6 .

Using the ddmpy toolbox presented later in Chapter 4, we study the numerical behavior of these methods under the constraint of a bounded condition number or an imposed coarse space size in sections 3.5.2 and 3.5.3, respectively. We then study the approximate case with an empirical approach in Section 3.5.4, using a so-called sparsification technique. Our numerical results overall confirm [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF][START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF] regarding the numerical interest of using AS,2/S instead of the more traditional AS,2/K method to reduce the size of the coarse space. Section 3.5.5 eventually illustrates the parallel behavior of that promising variant implemented as an extension to the HPC MaPHyS solver3 . The parallel design of this extension is presented in more details in Section 5.

Imposing an a priori bound on the condition number

We proved in Section 3.3 that it is possible to control the condition number κ(M aS,D A) of aS methods through some parameters α and β. For now, we do not use any approximation (whose effects are the object of Section 3.5.4), hence A i = A i and ω -= ω + = 1. In order to compare the three methods, we first choose a bound χ and we then choose α and β such that κ ≤ χ:

• for AS (respectively NN), Corollary 2 states that κ ≤ (1 + α)N c (respectively κ ≤ αN c). We choose α = χ/N c -1 (respectively α = χ/N c). Whatever the chosen target χ, we ensure that the condition number of the iterative problem κ(MA) remains below χ. Each preconditioner (AS, NN, Sh) can be applied either on the original matrix K (aS/K), left, or in a substructuring context on S (aS/S), right. • for Sh (or any other aS preconditioner), Theorem 2 states that κ ≤ (1 + α)β and we choose α = β = 1/4 + χ -1/2.

Convergence of abstract Schwarz methods

When we do not impose an upper bound (χ = ∞), no CSC is used and results are presented only for AS and Sh. We observe (Figure 3.1) that the condition number κ grows quadratically with the number of subdomains N and that the number of iterations to reach convergence (Figure 3.2) is proportional to the number of subdomains (note the log scale for the x-axis). This lack of scalability is the main motivation for using a two-level method. We also note that, without CSC, our AS preconditioner outperforms the Sh preconditioner, especially when the heterogeneity K is high: the AS preconditioner performs a more appropriate local solve than the very basic Sh preconditioner. As expected, the condition number is also lower when working on the Schur complement matrix S instead of K, since all the interior unknowns are solved using a direct method and do not appear anymore in the iterative process.

When we impose an upper bound on the condition number (χ = 10, 000 or χ = 100), we observe that the condition number κ does indeed drop below the prescribed bound χ, independently of the number of subdomains N , the local preconditioner AS, NN or Sh, the heterogeneity K and the choice of operating on K or S. However, this a priori control on the condition number comes at the expense of having to use a direct solve on a coarse space V 0 whose dimension can be quite large. Each subdomain computes a local coarse space V i 0 of dimension n (i)

v (Figure 3.3) and the size of the global coarse space therefore grows linearly with the number of subdomains. Since without deflation (χ = ∞) the Sh preconditioner applied to the original matrix K does not perform very well in the

Convergence of abstract Schwarz methods

heterogeneous case, the size of the coarse space necessary to obtain a condition number below the target χ is very large (up to 87 vectors per subdomain). However, using a better local preconditioner such as AS or NN can greatly reduce the size of the coarse space, as well as working on the Schur complement matrix S instead of K.

3.5.3 Imposing an a priori coarse space size q aS K aS S Figure 3.4: Condition number when imposing an a priori size n v for the local coarse space V i 0 . We are still able to significantly reduce the condition number of the methods. The best convergence results are obtained with the AS,D/S method.

n v = 0 n v = 1 n v = 5 n v =
We showed in the previous section that we can effectively control the condition number κ of the method by building the coarse space using two parameters α and β as presented in Theorem 2. However, this can lead to an impractically large coarse space and we now consider the context where the size n v of the local subspace in each subdomain is chosen a priori. Instead of choosing the coarse space by comparing the eigenvalues to a threshold, we thus keep the eigenvectors associated with the n v smallest eigenvalues. Once the coarse space is computed, we know what threshold would have led us to keep the same number of vectors and we can get, a posteriori, a bound on the condition number of the method: if λ nv+1 is the lowest eigenvalue corresponding to a vector not in the coarse space, Theorem 2 ensures that κ(M Sh,D A) ≤ N c (1 + 1/λ nv+1)/λ nv+1 . As in Section 3.5.2, this bound can be improved for NN and AS preconditioners using Corollary 2 and Theorem 3:

• κ(M N N,D A) ≤ N c /λ nv+1 ; • κ(M AS,D A) ≤ N c (1 + 1/λ nv+1); 3.5. Numerical experiments • κ(M AS,2 A) ≤ (N c + 1) [N c + 1 + (N c + 2)/λ nv+1].
The Schur complement matrix S is smaller and better conditioned [START_REF] Brenner | The condition number of the Schur complement in domain decomposition[END_REF][START_REF] Mansfield | On the Conjugate Gradient Solution of the Schur Complement System Obtained from Domain Decomposition[END_REF] than the original matrix K. Furthermore, in a two-level domain decomposition framework, eliminating the interior unknowns significantly improves the convergence by reducing the size of the coarse space needed to take into account the physical heterogeneity in the domain [START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF]. In accordance with these theoretical results, Figure 3.4 highlights the benefits of operating on S (Figure 3.4, right) instead of K (left): the condition number is smaller when applying any aS method on S instead of K. Without CSC (n v = 0, top), the results are consistent with Figure 3.1, top (χ = ∞): the condition number κ increases with the number of subdomains N . Choosing n v = 1, our coarse space reduces to a classical partition-of-unity coarse space [START_REF] Sarkis | Partition of unity coarse spaces: Enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] and is sufficient in the homogeneous case (K = 1, plain lines); we notice that NN,D/S then reduces to classical BDD where the condition number does not depend on N but remains fairly large for large values of K. However, in the heterogeneous cases (K = 100 or 10, 000, dashed lines), this simpler coarse space is not enough to get a scalable method: one eigenvector per high-conductivity inclusion is needed in the coarse space to build a robust method [START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF]. In our case, with 5 high-conductivity layers passing through all the subdomains, n v = 5 eigenvectors are enough to bound the condition number for AS/S and NN/S. Using the Sh/S method, since two eigenproblems are solved in each subdomain, 10 vectors are needed to get a good convergence (bottom right).

With a large enough coarse space, the three methods NN,D/S, AS,2/S and AS,D/S perform quite similarly, with a slight advantage for NN. However, when the coarse space is too small (n v = 1 and K = 10, 000 for instance), AS,2/S and AS,D/S have a significantly smaller condition number than NN,D/S, and they appear more robust. A parallel implementation of all these methods will be presented in Chapter 4 along with an experimental study focusing on performance issues. Because of its robustness, we furthermore decided to further study the scalability of the two-level AS/S methods by integrating an AS,2/S methods within the MaPHyS fully-featured sparse hybrid solver; Section 3.5.5 provides an insight on the performance impact while Chapter 5 will present in details the various parallel strategies that have been designed to handle the CSC.

Approximate case: Empirical study of the impact of sparsification

The convergence results for approximate aS methods in sections 3.2, 3.3 and 3.4 apply for both aS/K and aS/S cases. However, for a matter of conciseness, we now only focus on the latter context for illustrating the impact of approximation, as the above experiments showed the numerical benefits of operating on the Schur complement. For that, we approximate the dense matrix S i with a sparse matrix S i , by dropping some entries in the matrix. This process is called sparsification. In a very heterogeneous medium (K 1), some entries in S corresponding to couplings between unknown separated by a low-conductivity layer, are negligible. We use the symmetry-preserving strategy of dropping

s ij if |s ij | ≤ (s ii + s jj)
, where is a parameter that controls the sparsity (see, e.g., 3. Convergence of abstract Schwarz methods q ε = 0 Up to a certain level, the sparsification does not break the robustness of the method: using a big enough coarse space (n v = 5), it is possible to discard 88.8% of the entries in the factorization of the preconditioner without losing convergence. [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF]).

nnz(LL T) = 100 % ε = 1e-05 nnz(LL T) = 14.5 % ε = 1e-04 nnz(LL T) = 11.5 % ε = 0.001 nnz(LL T) = 11.2 % ε = 0.01 nnz(LL T) = 8.6 % n v = 0 n v = 1 n v =
The benefits of sparsification are evaluated by assessing the proportion nnz(LL T) of non-zero elements in the Cholesky factorization S i = LL T of the local preconditioner. In Figure 3.5, we evaluate the impact of sparsification on the robustness of the method. It appears that, up to a certain level, we are still able to find a robust coarse space despite having significantly reduced the memory footprint of the preconditioner. For instance, with a sparsity parameter of = 0.001, although 88.8% of the entries in the factorization of the preconditioner are dropped, our coarse space with n v = 5 vectors per subdomain still significantly improves the convergence.

These results are very promising as they show we can efficiently apply an approximate scheme to reduce the complexity of two-level aS methods. However, the considered sparsification technique is delicate for ensuring an a priori condition number. Approximation through hierarchical matrices [START_REF] Grasedyck | Construction and Arithmetics of H-Matrices[END_REF] might better fit this objective, for bounding ω -and ω + and ensure theorems 2 and 3 apply. This is left for future work (see [START_REF] Agullo | Low-rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices[END_REF] for preliminary investigations in this direction) and we do not consider approximation techniques in the rest of this thesis.

Performance of AS,2/S on a modern parallel computer

The excellent numerical properties exhibited above by the AS,2/S method motivated the design of an HPC code of that variant. For that, we relied on the MaPHyS package and we 3.5. Numerical experiments added a coarse grid correction to the baseline, one-level AS/S variant [START_REF] Agullo | Parallel hierarchical hybrid linear solvers for emerging computing platforms[END_REF][START_REF] Agullo | Hierarchical hybrid sparse linear solver for multicore platforms[END_REF][START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF] for the purpose of the present study. A detailed analysis of this implementation and of the resulting experimental results is provided in Chapter 5, a subset of which is presented in the current section for illustrating the potential impact on performance of the numerical issues discussed in this chapter. MaPHyS is a parallel hybrid (direct/iterative) sparse linear solver. Its Setup step relies on third-party sparse direct solvers for efficiently performing the elimination of the interior variables and computing the local Schur complement S i . Subdomains are processed concurrently, each subdomain being associated with a process. The computation of the one-level preconditioner (still within the Setup step) is then performed with neighbor-to-neighbor communications. The Solve step consists of classical preconditioned conjugate gradient iterations. In particular, global synchronizations are only required for computing dot products while the matrixvector product and preconditioner application can be performed concurrently on each subdomain with neighbor-to-neighbor communications only. We extended MaPHyS to ensure a CSC as follows. In the Setup step, the generalized eigenproblems are processed concurrently on each subdomain; the matrix associated with the resulting coarse space is then assembled and factorized using a third-party parallel sparse direct solver. In the Solve step, a coarse solve is added in the application of the preconditioner at each iteration. Due to the nature of the coarse space, these operations add global communications and synchronizations in the algorithm and particular care must be taken in their implementation in order to achieve good scalability and parallel efficiency: several parallelization strategies for this coarse correction are discussed in Chapter 5. In the current experiment, the coarse matrix A 0 is assembled and factorized redundantly on disjoint sub-communicators (obtained by splitting the global one) in order to reduce the number of global communications during the solve step.

We now present a weak scalability study conducted on test cases similar to the ones introduced in Section 3.5.1, but with larger subdomains. Each subdomain is indeed a cube discretized on a 31 × 31 × 31 mesh with 29,791 unknowns. There are now 6 alternating conductivity layers (K = 10, 000), and we consider a scenario with an imposed coarse space size (as in Section 3.5.3) using 3 vectors per subdomain. No approximation is performed. The same stopping criterion as above is used. The experiments have been conducted on the Occigen machine at CINES. Each node is composed of two Haswell (E5-2690V3) 12-core processors running at 2.6 GHz. A subdomain is associated with a process, binded on a CPU core. MaPHyS was compiled with Intel 17.0 and Intel MPI 2017.0.098. All dense operations are performed with the Intel Math Kernel Library (MKL) 2017 (including the Lapack dsygvx routine for solving the eigenproblems, that allows one to only compute a targeted subset of eigenpairs). Sparse factorizations are performed with the MUMPS 5.0.2 sparse direct solver [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] together with the ParMetis 4.0.3 partitioner [START_REF] Karypis | MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System[END_REF].

Table 3.1 compares the behavior of our extension of MaPHyS relying on the proposed CSC described above (AS,2/S) with the baseline, one-level version of MaPHyS. The number of subdomains N , which is equal to the number of MPI processes and CPU cores used for the respective computation, the total number of unknowns n = (30N +1)×31×31 and the size of the coarse space n 0 are provided in the table along with the maximum (among all subdomains) time in seconds needed to perform the Setup step, the Solve step 3. Convergence of abstract Schwarz methods or both steps (Total) and the number of PCG iterations performed during the Solve step, for both the AS/S method (left) and the AS,2/S method (right). The Setup step includes the time spent in the factorization of the local matrices and the computation of the local Schur complement matrix using a sequential sparse direct solver, the assembly and factorization of the local Schur complement, the solution of the generalized eigenproblems, the construction and the factorization of the coarse matrix. The Solve step corresponds to the PCG iterations and the final computation of the interior unknowns. We observe that the addition of the coarse correction increases the Setup time and the individual cost of each iteration (up to a factor 2), mainly due to the induced global communications. On the other hand, the number of iterations of AS,2/S remains stable, leading to a drastically overall reduced Solve time compared to the baseline AS/S method (up to a factor 37 when the 44,283,841 unknowns are distributed among 1,536 subdomains). As a consequence, in a scenario consisting of solving a linear system with a single right-hand side, using a coarse space reduces the total time to solution (Setup + Solve) when the number of subdomains (and CPU cores) is equal to or higher than 384. In another common application scenario where multiple (say, p), successive, right-hand sides must be solved, the total time to solution (Setup + p Solve) may then essentially be governed by the Solve step if p is large. In that latter case, the benefits of the CSC may then thus be tremendous on large scale computers. Table 3.1: A weak scalability study was performed using the MaPHyS parallel solver. The Setup, Solve and Total times are the max among all subdomains, in seconds (s). Each subdomain is associated with one MPI process binded onto one CPU core. N is the number of subdomains, n is the size of K and n 0 is the size of the coarse space. Without coarse correction, the Setup time remains stable, whereas the Solve time grows linearly with the number of subdomains. The coarse correction adds to the Setup time but keeps the number of iterations constant, thus improving the scalability. Without coarse correction, no convergence was achieved on 3,072 subdomains.

AS

Conclusion

In this chapter, we have proposed a new class of aS preconditioners, so-called approximate aS preconditioners. These preconditioners are fully algebraic in the sense that they

Conclusion

do not require any other information apart from SPSD subdomain matrices. This class is wide as it consists of all aS preconditioners, provided that their coarse space results from the assembly of local components that contain the kernel of some local operators (Definition 1). In particular, it generalizes the class of approximate NN preconditioners introduced in (Le Tallec and Vidrascu, 1998) (named generalized NN in the original paper). We exhibited a bound on the condition number of all approximate deflated aS preconditioners (Theorem 1). This bound depends on generalized Rayleigh quotients and generalizes the result from (Le Tallec and Vidrascu, 1998) beyond the class of approximate NN methods. Applying a GenEO procedure on two well chosen generalized eigenproblems, we proposed to explicitly compute the coarse space while bounding these Rayleigh quotients leading to a bound on the condition number (hence on the number of iterations of PCG) independent of the number of subdomains. We also showed that a similar bound can be obtained when the coarse space is applied additively for the subclass of newly introduced approximate AS methods.

The results presented in this chapter can be readily derived to retrieve the bounds previously obtained via generalized eigenproblems in the particular cases of AS/K [START_REF] Efendiev | Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms[END_REF]Spillane et al., 2014a), NN/S [START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF] and optimized Robin (SORAS) [START_REF] Haferssas | An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method[END_REF]. It also generalizes these results when used with approximate local solvers. Furthermore, they allowed us to define a coarse space for the AS method applied on the Schur complement (AS/S) [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF], leading to an extremely robust substructuring method, for which the CSC can be applied either with deflation or additively, and with the freedom of relying on an approximate local Schur complement. A challenge opened by the present study is to determine an explicit procedure to perform the approximation while achieving a given a priori bound on the condition number. We also plan to study the effects of the method on the spectrum and on the empirical convergence of non symmetric test cases.

These statements were illustrated by numerical experiments, that were made possible by a parallel implementation of these methods in python, presented in detail in Chapter 4. These experiments motivated an HPC design of a CSC for AS/S within the MaPHyS package as presented later in Chapter 5. The presented sample of these parallel experiments results showed the significant benefits that the resulting AS,2/S solver could bring.

Chapter 4

Design of a domain decomposition toolbox in python

Introduction

In Chapter 2, we introduced various Domain Decomposition (DD) formulations and preconditioners that can be used to solve a PDE or a linear system. Some of these Domain Decomposition Methods (DDM), which can be expressed as abstract Schwarz (aS) methods, were studied in Chapter 3 where we gave a proof of convergence of two-level aS methods with an adaptive Coarse Space Correction (CSC). In the present chapter, we present a parallel implementation of aS methods and other DDM. The parallel design of the CSC in an HPC hybrid solver is discussed in Chapter 5.

In order to design a DD solver various questions have to be addressed: shall a primal or dual formulation be used? Shall the problem be reduced to an interface problem (Schur complement matrix)? Will a N -Lagrange formulation perform better? Once these questions are answered and a particular DDM is chosen, other questions regarding the implementation arise: should the DD solver be developed from scratch, or, can an external specialized library be used? How should the parallelism be handled? The overall objective is to have a parallel solver that is both numerically and computationally effective.

These choices give rise to two competing objectives for designing an efficient DD solver: one needs to optimize the mathematical method on the one hand, and, on the other hand, its HPC implementation. The first objective requires an ability to develop several DDM and compare them with their variants, in order to tune their numerical features. The required flexibility to easily implement these various numerical methods may contradict the second objective of optimizing the code to improve its computational performance. We can often observe a significant gap between DD numerical prototypes built by researchers in interpreted languages such as Matlab, and DD codes embedded within industrial applications in compiled languages such as C, C++ or Fortran because of the separation of concerns that prevent to address the numerical and computational efficiencies at once.

In this chapter, we demonstrate that it is possible to get both flexibility and performance using the python language to build DDM: these methods (presented in Chapter 2) can be expressed as well-chosen combinations of individual operations (solving a Dirich-4.2. Performance of some elemental operators in python let, Neumann or Robin problem, computing a Schur complement matrix or a preconditioner, . . .). If the DDM are applied after discretization and follow the hypotheses in Section 3.2.1, these individual operations can be expressed algebraically as linear algebra operations, or basic kernels, such as matrix-vector products or matrix factorizations for instance. The optimization of such kernels is in fact out of the scope of DDM implementations since they appear in many other applications, and it is faster and safer (both regarding the implementation time and the execution time) to call external optimized implementations for these generic algebraic operations. It is therefore possible to implement a DD solver such that most of the time spent in the solver is actually not spent executing the solver's code per se but inside these compute-intensive external kernels. As such, the optimization of a DD solver's implementation mainly consists in making sure that state-of-the-art HPC implementations for these kernels are used; this implies an ability to test and compare these various implementations and the second objective expressed above now aligns with the first objective: more flexibility can improve performance.

We developed a parallel DD toolbox in python named ddmpy and focused on these two objectives: DD algorithms and high-level structures benefit from the expressivity of the language while computational operations are performed using optimized external libraries in order not to compromise on performance on the range of interest. The relevance of this strategy is assessed through a performance study of two basic linear algebra operations (vector addition and matrix multiplication) and two DD operators (Schur complement matrix computation and Conjugate Gradient (CG) algorithm) in Section 4.2. Then the design and implementation of the ddmpy DD toolbox in python is presented in Section 4.3, and its parallel performance on several test cases is studied in Section 4.4.

Performance of some elemental operators in python

It is often accepted as a fact that python is not a fast language: even the creator of the language Guido van Rossum wrote: I will gladly admit that Python is not the fastest running scripting language. It is a good runner-up though. With ever-increasing hardware speed, the accumulated running time of a program during its lifetime is often negligible compared to the programmer time needed to write and debug it. This, of course, is where the real savings can be made. While this is hard to assess objectively, Python is considered a winner in coding time by most who have tried it. In addition, many consider using Python a pleasure -a better recommendation is hard to imagine.

Although the python language was not meant to be fast, we show in sections 4.2.1 to 4.2.3 that it is relevant for HPC: several implementations, in C and in python, for computing a vector addition (Section 4.2.1.1) and a matrix multiplication (Section 4.2.1.2) are compared: native implementations with loops in C and python are compared with calls to the Intel MKL BLAS library from both languages, natively or through the numpy package in python. The performance of python code can also be improved by using a compiler such as cython [START_REF] Behnel | Cython: The best of both worlds[END_REF]. For each of the two considered operations, the native python implementation with loops (executed with the standard CPython interpreter) is compared to the same code compiled with cython and with a hybrid C/python version, also compiled with cython, where the internal variables in the functions are declared with 4. Design of a domain decomposition toolbox in python C types. Other python compilers such as pythran [START_REF] Guelton | Pythran: Enabling static optimization of scientific python programs[END_REF] or numba [START_REF] Lam | Numba: A llvm-based python jit compiler[END_REF] are not considered in this study. A performance comparison of two implementations for computing a Schur complement matrix (Section 4.2.2) and solving a linear system using the Conjugate Gradient algorithm (Section 4.2.3) complete this analysis. for i in xrange(len(x)):

y[i] += x[i]
return y

Listing 3: loop/python: straightforward implementation of y ← x + y using loops in python. This code can be compiled with cython, yielding the loop/cython version.

The time needed for each of these implementations to perform the operation y ← y +x where x and y are two vectors of size n are presented in Figure 4.1, and the number of for i in xrange(n):

x_[i] = x[i] y_[i] = y[i] for i in xrange(n): y_[i] += x_[i] y = [y_[i] for i in xrange(n)] free(x_) free(y_) return y
Listing 4: loop_type/cython: mixed implementation of y ← x + y using loops with typed data using cython (the python list are converted to C arrays before and after the computations). blas/python: implementation of y ← x + y using the low-level scipy.linalg.blas wrapper, linked with the Intel MKL library, in python, with numpy.ndarray as input.

4. Design of a domain decomposition toolbox in python floating-point operations per second (flop/s) are presented in Figure 4.2 (both figures use log scale on both axes). The relative performance of the different implementations compared to the blas/C implementation are given in Table 4.1.

The comparison of the straightforward implementations with loops (in green in the figures) shows, as should be expected, that the C version (loop/C from Listing 1, plain line) far outperforms the python version (loop/python from Listing 3, dashed line) by a factor 142 (n = 1.0 10 6). The same python code, when compiled using cython (loop/cython, still from Listing 3, dotted line), is 7.2 times faster (but still 20 times slower than C). Adding type information in cython and converting the python list to a C array (loop_type/cython from Listing 4, blue line) only slightly improves the performance because the time needed to go through the python lists remains the same; furthermore, the resulting hybrid code is much less readable than both the corresponding python and C code. The overhead of all these python versions compared to the C versions comes from the fact that they operate on native python lists that are not contiguous in memory as C vectors are.

Instead of coding the addition using a loop, it is possible to call an external optimized library such as the Intel MKL BLAS library: the vector addition is available as a daxpy function (in red in the figures). This external function can be called from C (blas/C from Listing 2, plain line); although calling this external function introduces some overhead for small vectors, the blas/C function outperforms the loop/C implementation for vectors of intermediate size that fit in the cache memory. For larger vectors, both implementations achieve the same performance bounded by the memory speed. The blas function can also be called from python on numpy.ndarray vectors, either explicitly through a wrapper in the scipy.linalg.blas module (blas/python from Listing 6, dashed line) or implicitly by adding the arrays (numpy/python from Listing 5, purple line). Both these python implementations perform as well as the blas/C version. The operation C ← AB + C, where A, B and C are three (n, n) matrices requires 3n 2 read operations, n 2 write operations, n 3 additions and n 3 multiplications. Each computation thus requires 2/n data transfers. If n is large enough, these data transfers become negligible and the performance of this operation is governed by the computational power of the CPU [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF][START_REF] Jia-Wei | I/O complexity: The red-blue pebble game[END_REF][START_REF] Langou | Improving Communication Lower Bounds for Matrix-Matrix Multiplication[END_REF]: it is said 4.2. Performance of some elemental operators in python q 1e-08 q 1e+05 1e+06 1e+07 4. Design of a domain decomposition toolbox in python to be compute-bound. As such, there is more room for optimization by reordering the operations to minimize the data transfers between the CPU, the different levels of cache and the main memory.

The different implementation presented in listings 7 to 12 are very similar to their counterpart for the vector addition. Note that in the numpy/python implementation, the @ operator can be used to represent the matrix multiplication operation in python31 . The notation A @ B is not available in python2 and it can be replaced by A.dot(B).

C[i][j] += A[i][k] * B[k][j]
Listing 9: loop/python: straightforward implementation of C ← AB + C using loops in python. This code can be compiled with cython, yielding the loop/cython version. blas/python: implementation of C ← AB + C using the low-level scipy.linalg.blas wrapper, linked with the Intel MKL library, in python, with numpy.ndarray as input.

A_[j + n*i] = A[i][j] B_[j + n*i] = B[i][j]
These two experiments on y ← x + y and C ← AB + C show that, as expected, the implementation in python of an intensive computational operation is much slower than the corresponding code in C. However, independently of the choice of the language, the best performance is achieved when calling an external optimized library for computationintensive kernels. The overhead of calling such a library from python, which is of order 10 -6 s. in our experiments, becomes negligible when the time spent inside the kernel is large enough. As a result, the python language is relevant for implementing DDM, as long as these methods can be expressed as a combination of elemental operations that can be performed using such optimized kernels. The numpy and scipy packages provide HPC implementations for many of these elemental operations. Using a python compiler such as cython would be a promising option for developing other kernels in python if needed. However, we choose not to implement any low-level operation and instead rely on available state-of-the-art HPC libraries: although compiled python code can be as fast as native C code (as shown for instance in Table 4.2), it is much more efficient (both in implementation time and computation time) to rely on a highly optimized third party library such as the Intel MKL library. A key step of some DDM is the computation of a Schur complement matrix using the formula

S i = K (i) Γ i Γ i -K Γ i I i K -1 I i I i K I i Γ i as explained in Section 2.
4. An implementation using the scipy module is compared with an implementation that internally uses the Pastix sparse direct solver [START_REF] Hénon | PASTIX: A high-performance parallel direct solver for sparse symmetric positive definite systems[END_REF]. These implementations are compared on two test cases: a 2D square domain of n 2 unknowns, whose interface Γ has 4n -4 unknowns, 4.2. Performance of some elemental operators in python q 1e-08 q 1e+06 1e+07 1e+08 Since there is no built-in Schur complement function in scipy, it is implemented in three steps: first, the scipy.sparse.linalg.factorized() method is used to factorize K I i I i (internally calling the SuperLU sparse direct solver [START_REF] Demmel | A supernodal approach to sparse partial pivoting[END_REF]). Then, a solve operation is performed on

K I i Γ i to compute K -1 I i I i K I i Γ i .
The Schur complement matrix can then be computed with one matrix-matrix product and a matrix subtraction. In the second step, the solve() method only accepts a dense argument and the sparse block K I i Γ i has to be converted to a dense representation.

In the pastix implementation, the whole matrix K i is provided to the sparse direct solver along with a list of interface unknowns, and the Schur complement matrix S i is computed as a byproduct of the partial factorization of K i . Both implementations are presented in more details in sections 4.3.8.1, 4.3.8.4 and 4.3.10.1.

The results presented in Figure 4.5 show that the pastix version is consistently faster than the scipy version: computing the Schur complement matrix of a 3D 32 × 32 × 32 cube takes 4 min. 40 s. with scipy, compared to only 8.6 s. using Pastix. In the following, the Pastix solver is used for all sparse factorizations and Schur complement matrix computations. q 1e-04 Another missing feature in scipy is the ability to use a parallel iterative solver such as the CG algorithm. Indeed, the provided routine, which calls an external Fortran routine [START_REF] Barrett | Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods[END_REF], was not designed to be used in a distributed environment: although the user can provide a distributed implementation for the matrix-vector product and the preconditioner application (through the .dot() methods of the relevant arguments parameters), the dot products between vectors are performed in sequential inside the routine by calling the relevant Blas routines and cannot be overridden by the user.

In order to use the CG algorithm on distributed matrices and vectors, we rewrote it in python, as shown in Listing 13. This function has the exact same signature as the scipy.sparse.linalg.cg function, and its implementation seems purely sequential (no explicit parallelism). However, the matrix-vector products and the scalar products 6,7,9,11,13,14,20,22 and 23 can be performed in parallel by overriding the dot methods used by the types of A and b.

A comparison of both implementations (in sequential) for solving a dense system without a preconditioner shows that our implementation (cg_python) is faster than the Fortran version (cg_scipy), as presented in Figure 4.6. This might be explained by the fact that the cg_scipy implementation is always switching back-and-forth between python and Fortran: when the user enters x = scipy.linalg.cg(A, b), the data are transferred to the Fortran routine. Each time a matrix-vector product should be computed or the preconditioner should be applied, the Fortran routine terminates, and the python wrapper calls the user-provided implementations for these operations before calling again the Fortran routine. If A and b are numpy arrays, these operations are in fact performed using the same BLAS routines as in the Fortran version. Furthermore, our function is more permissive on the input since it relies (implicitly) on the built-in python exception system to handle all errors, whereas the Fortran wrapper has to perform more checks on the data. These results confirm the overall relevance of the python language for writing a DD toolbox, as proposed in Section 4.

Design of the ddmpy domain decomposition toolbox in python

Introduction

The ddmpy package is an algebraic DD toolbox written in python. It is compatible with python 2.7 and python 3.4+. We chose to write this package using a programming paradigm known as literate programming [START_REF] Knuth | Literate Programming[END_REF] in which the focus is shifted from writing the code to explaining the code, using org-mode [START_REF] Dominik | The Org Mode 7 Reference Manual-Organize Your Life with GNU Emacs[END_REF][START_REF] Schulte | Active documents with org-mode[END_REF]. Following a workflow inspired by the work of [START_REF] Stanisic | Effective reproducible research with org-mode and git[END_REF], the experiments in this chapter are reproducible: the .org source of this document (which is just a text file following a special markup syntax) contains the code of ddmpy presented in the present section and the scripts needed to launch the experiments, analyze the results and produce the figures in Section 4.4. Note that the experiments in Chapter 3 were performed using a previous version of the ddmpy toolbox and are not fully reproducible as the experiments in the present chapter are.

The ddmpy module, provided in this document, is available under the CeCILL-C license (see source). Some specific vocabulary is introduced in Section 4.3.2 before exposing the ddmpy toolbox. In Section 4.3.3, the required and optional dependencies are introduced (import statements). Then, a function for handling neighbor-to-neighbor communications and a hierarchical profiler are presented in sections 4.3.4 and 4.3.5. The classed used to handle the domain decomposition and distributed data (matrices and vectors) are defined in Section 4.3.6, before the various solvers in ddmpy are introduced in sections 4.3.7 to 4.3.11. One-level and two-level DD preconditioners are then presented in Section 4.3.12.

Some important concepts in the Python language

The code of the ddmpy package uses several advances python features that are briefly described below. More information can be found in the official python documentation3 .

• an iterator is any object that behaves like a list and that can be iterated upon, implicitly in a for loop or explicitly using the next() function. • a generator function is a function that (implicitly) returns an iterator. Instead of using the return statement to produce one single value, it uses (several) yield statements to produce a series of values: each yield produces a value and suspends the execution of the function until the next iteration. Our neighborSendRecv() function presented in Section 4.3.4 is a generator function.

• a decorator is a function that takes a function as input and returns a function. A function f can be replaced by the decorated function g(f) by adding the line @g above the definition of f. Many functions in ddmpy are timed using the TimeIt decorator defined in Section 4.3.5.

• a context manager is an object that defines operations to be performed when entering and exiting a particular block of code starting with a with statement. The TimeIt decorator presented above is also used as a context manager in the code.

• a special method is a method that is called implicitly by python to perform a certain operation. For instance, one can overload the + operator by defining a __add__() method in a class. Then, a + b is resolved as a.__add__(b). Several arithmetic operators are overloaded following this approach in the DistVector and DistMatrix classes in sections 4.3.6.2 and 4.3.6.3. The TimeIt decorator mentioned above is in fact not a function but a class with a __call__() method, that can therefore be called like a function.

• duck-typing is a way of handling type safety: instead of explicitly checking the type of function argument, the presence of some methods and properties used in the function is enough for the argument to be accepted. For instance, the matrix A and preconditioner M used in the cg method (Listing 13) can be any objects with a suitable __matmul__() method (special method for the @ operator). However, better performance can optionally be obtained for some operations by relying on external libraries such as Pastix [START_REF] Hénon | PASTIX: A high-performance parallel direct solver for sparse symmetric positive definite systems[END_REF], Mumps [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] or MaPHyS [START_REF] Agullo | Hierarchical hybrid sparse linear solver for multicore platforms[END_REF][START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF] that are used through python wrappers. The import for these modules are wrapped in try ... except blocks so that ddmpy can be imported easily with or without these optional dependencies. The neighborSendRecv generator function. The ddmpy module is designed for testing and comparing parallel DDM in a distributed environment. One process per subdomain is created. It handles all local computations relative to the subdomain, and the Message Passing Interface (MPI) (The MPI Forum, 1993) is used to handle communications through the mpi4py wrapper [START_REF] Dalcin | Parallel distributed computing using Python[END_REF]. mpi4py provides both low-level functions that communicate efficiently memory-contiguous buffers, such as numpy arrays, and a higher-level interface that makes it easy to communicate any python object, with a performance penalty.

A common communication pattern in DDM is for each subdomain to send messages to all his neighbors and receive the corresponding messages. This is handled in our code by a neighborSendRecv generator function as defined in Section 4.3.2. A generator function is a function that can return several successive values (through the yield keyword) and can be used in a loop. In our case, neighborSendRecv takes a dictionnary of messages to send, and returns the received messages in the order they arrive. The arguments of this generator function are:

• messages, a dictionnary of messages: messages[i] is sent to process i. Each message can be any python object.

• comm, the MPI communicator to be used for the communication

• n_recv, the number of expected incoming messages. This argument is optional if the number of expected messages is equal to the number of sent messages (n_recv = len(messages)).

• is_ndarray, True if the specialized mpi4py routines for fast communication of memory contiguous arrays should be used, False for using the generic routines in mpi4py that can handle any python object. By default, a strategy is chosen based on the type of the objects in messages.

• dtype, used only if is_ndarray: numpy datatype of the arrays in the incoming messages.

• Listing 18: neighborSendRecv (3/5).

After this step, the n_recv incoming messages are returned in the order they arrive. For this, a call to Probe waits for an incoming message. This message is then received using the Recv (for arrays) or recv (for objects) function in mpi4py, and a tuple =(source, message) is returned where source is the MPI rank of the source message.

Probe and

A hierarchical profiler suited for python

The TimeIt context manager and decorator. In order to facilitate debugging and performance analysis, a TimeIt class enables to time the execution of selected functions and blocks of code. The advantage compared to using the standard cProfile module in python is the ability to choose which functions should be profiled and to instrument individual blocks of code inside a function. Since timed functions or code blocks can call other timed functions and code blocks, TimeIt events are created in a hierarchical fashion. Hierarchical traces generated by a distributed execution of a ddmpy DD solver are presented and analyzed in Section 4.4.4. Each instance of this class contains the information for one instrumented function or block of code. Global information is stored in two class attributes. First, events contains a history of the execution: a list of all events that have been created since the reset() function has been called. Second, the stack class attribute contains a list of events that have started but are not yet finished (the parents of the current event in the hierarchy). One can set the debug flag to True to have the trace printed on the standard output during execution. One can also limit the size of the events list by setting the max_events class attribute. It can also be used as a decorator. When called on a method of a LinearOperator instance (see Section 4.3.7), the time spent in the method is stored in an attribute of the LinearOperator instance. Each row in the result represents an event (a TimeIt block or a TimeIt-decorated function call). The five columns of an event are its name, level, starting time, duration and ending time. At the highest level (level 0), two decorated functions are called (lines 20 and 21), resulting in the first and third line in the results. During the execution of these functions, other decorated functions and blocks are executed, resulting in TimeIt events of level 1, which may, recursively, generate other events of higher level.

Distributed DD

In a distributed DD framework as presented in Section 3, each MPI process is responsible for one subdomain and stores the data related to this subdomain. Namely, each unknown is assigned to one or several subdomains, such that, from the matrix adjacency graph point of view the two vertices of each edge are assigned to at least one common subdomain. In the example presented in Figure 4.8, the 7 nodes are assigned to the following subdomains:

Node 0 1 2 3 4 5 6 Subdomain(s) 1, 3 1 1, 2 1, 2, 3 2 2, 3 3
The MPI ranks are numbered from 0 to N -1 consistently with the default MPI numbering. However, subdomains are numbered from 1 to N to stay consistent with previous chapters where index 0 is reserved for the coarse space. In the code, the subdomain Ω i is therefore identified by the rank i -1 of the MPI process it is associated with. A local numbering of the unknowns is used in each subdomain: in the example, the local indices [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]1,2,3] in Ω 1 correspond to the same global indices [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]1,2,3]. The global indices corresponding to local indices [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]1,2,3] of Ω 2 and Ω 3 are [3, 2, 4, 5] and [5, 6, 0, 3], respectively. Each subdomain has to know which unknowns it shares with which other subdomains (dotted lines in Figure 4.8 (c)). In our example, for instance, Ω 1 shares [2, 3] (in local ordering) with Ω 2 and [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]3] with Ω 3 . Ω 2 shares [1,[START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF] with Ω 1 and [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]3] with Ω 3 . Ω 3 shares [2,3] with Ω 1 and [3, 0] with Ω 2 . Consistently with the assumption in Chapter 3 that the matrix is provided in a distributed fashion (2. in Definition 1), ddmpy does not partition matrices or vectors to distribute them (from 4.8 (a) to 4.8 (c)), but uses distributed data as an input (4

0 1 2 3 4 5 6 Ω 1 Ω 2 Ω 3 (c) 0 1 2 3 (c) 0 1 2 3 (c) 0 1 2 3 Ω 1 Ω 2 Ω 3

.8 (c)).

There is no constraint on the relative position of interior and interface indices in the local ordering. For instance, in Ω 2 , the interior node (2 in local ordering) is not at the beginning or the end of the local unknown list. However, the orders of the local orderings of two neighboring subdomains on their common interface depend on each other. For instance, nodes 2 and 3 in global ordering have the same index (2 and 3) in the local ordering of Ω 1 , whereas in the local ordering of Ω 2 , they are in reverse order (1 and 0). As a result, when communicating data between Ω 1 and Ω 2 , one has to take into account the ordered list of nodes in their common interface ([2, 3] for Ω 1 and [1, 0] for Ω 2) instead of the (unordered) set of common unknowns ({2, 3} and {0, 1}) in order not to associate node 2 of Ω 1 with node 0 of Ω 2 instead of node 1, and node 3 of Ω 1 with 1 instead of 0.

This connectivity information and the MPI communicator are handled through a DomainDecomposition class, that is presented in Section 4.3.6.1. The DistVector and DistMatrix classes used to distribute linear algebra operations are then presented in sections 4.3.6.1 and 4.3.6.3.

The DomainDecomposition class

The DomainDecomposition class is presented in 4 steps: after its constructor (__init__() method), the code of its assemble() method is given. This method is used to add local contributions from a subdomain and its neighbors to a vector or matrix. Then, an interface_dd() method used to eliminate interior degrees of freedom is presented, and an example is given.

Class constructor (__init__() method). The class's constructor has three arguments:

• ni, the number of local unknowns (4 in our example).

Design of a domain decomposition toolbox in python

• neighbors, a dictionnary that maps the MPI rank of neighbor subdomains to a list containing the local indices of shared unknowns with the said subdomain (for Ω 1 of MPI rank 0, neighbors = {1: [2, 3], 2: [0, 3]}).

• comm, a MPI communicator (defaults to MPI.COMM_WORLD). The assemble() method. Using the same notations as in Chapter 2, if a vector b is a sum of local components b = N j=1 R T j b j , the restriction of b to subdomain

Ω i is R i b = R i N j=1 R T j b j = N j=1 R i R T j b j . Since R i R T j = 0 if j = i
and j is not a neighbor of i, if each component b i is only known in the process holding subdomain Ω i , neighborto-neighbor communications are required to send and receive the R i R T j b j components, in a process called vector assembly.

Similarly, if a matrix A is known as a sum of local components

A = N j=1 R T j A j R j , computing the local matrix A (AS) i = R i AR T
i of the AS preconditioner (Section 3.1) also requires a matrix assembly:

A (AS) i = R i N j=1 R T j A j R j R T i = N j=1 R i R T j A j R j R T i .
The difference between the vector and matrix assembly is that in the matrix assembly, the restrictions are applied on both sides of the matrix.

When computing a matrix-vector product y = Ax where x and y are known in each subdomain Ω i through their local restrictions x i = R i x and y i = R i y, the product is computed as

y i = R i y = R i Ax = R i N j=1 R T j A j R j x = N j=1 R i R T j A j x j .
Each process computes a local matrix-vector product y j = A j x j . The resulting vector is assembled to compute y i = N j=1 R i R T j y j . The R i and R T j matrices represent global-to-local and local-to-global index transformations. However, the global ordering is not used in the vector and matrix assembly processes: the matrix product R i R T j represents a local (in Ω j)-to-local (in Ω i) transformation. This transformation is performed implicitly by requiring that the lists in the neighbors dictionaries from two neighboring subdomains are in the same order, as stated above. In our example, the interface between subdomains Ω 1 and Ω 2 is [2, 3] in global ordering. In local ordering, these two nodes are [2,3] in Ω 1 and [1,[START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF] in Ω 2 . Notice that in Ω 2 , the nodes are not in ascending order: they are sorted so as to match the ordering of the corresponding nodes in the list in Ω 1 .

The assemble method has 3 arguments:

• v, a vector or matrix to assemble,

• dim, 1 for vector assembly, 2 for matrix assembly,

• debug, a boolean flag passed to the neighborSendRecv function. The interface_dd() method. Some DDM use an interface formulation where interior unknowns that belong to only one subdomain are eliminated. This elimination processes produces a Schur complement system on the interface unknowns. From a (a) The corresponding interface DomainDecomposition object ddG representing the interface in Figure 4.9 is available using the interface_dd() method. For both domain decompositions and for each of the three subdomains, the global indices corresponding to the local unknown are given. Then, a boolean partition of unity D is presented: the value of D for an unknown is 1 if this unknown is in the interior of the current domain or if the current domain is of smallest rank among the subdomains that the unknown belongs to. If an unknown is shared with a subdomain of smaller rank, the value of D for the index corresponding to this unknown is 0. Assembling this partition of unity, one sums locally the contributions of all neighboring subdomains. Since all but one subdomain contribute 0 on each unknown and the last subdomain (of smallest rank) contributes 1, the resulting value is 1 (assemble(D)).

0 3 2 (a) 2 3 5 (a) 0 3 5 (b) 0 2 1 (b) 1 2 3 (b) 0 2 3 (c) 0 2 1 (c) 1 0 2 (c) 1 2 0 Γ 1 Γ 2 Γ 3
The effect of the assembly process is also illustrated through the computation of a multiplicity vector: a vector x = np.ones(4) = [1, 1, 1, 1] is assembled as multiplicity = assemble(x). The result obtained by adding the contributions (1) coming from all subdomains, is the number of subdomain that each node is assigned to: an interior node (1, 4 and 6 in global ordering) has a multiplicity of 1, an interface node between two subdomains has a multiplicity of 2 (0, 2 and 5) and a crosspoint between 3 subdomains has a multiplicity of 3 (node 3 in global ordering). In the interface b i and b j on a node shared between Ω i and Ω j are the same: the distributed vector is said to be compatible on the interface. Some DDM that use for instance the N -Lagrange formulation (see Section 2.6.5) use distributed vectors that are not compatible: both sides of an interface can hold different values.

Class constructor. The DistVector class is used to handle both compatible and not compatible distributed vectors. Its constructor has 4 arguments:

• bi, the value of the vector on the nodes in Ω i , in local ordering,

• dd, a DomainDecomposition object such that bi.shape [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF] = dd.ni,

• compatible, a boolean used to define the compatibility of the vector on the interface.

If the vector is compatible, interface components are stored redundantly on all the 4. Design of a domain decomposition toolbox in python subdomains that share an interface and a partition of unity (see Section 2.7.2) has to be used to compute the dot product in order not to count interface nodes several times,

• assemble, a boolean used to specify if the vector should be assembled during the constructor.

In practice, only the three following combinations of compatible and assemble are used:

• compatible=True and assemble=False when the local components of a compatible distributed vector are known. For instance, an initial guess whose value is xi can be created as DistVector(xi, dd, compatible=True, assemble=False), or DistVector(xi, dd) using the arguments default values.

• compatible=True and assemble=True when the vector should be computed as the sum of known local contributions. For instance, when the linear system is the FEM discretization of a PDE, the right-hand side vector is known as b

= N j=1 R T j b j . The local component of b is R i b = N j=1 R i R T j b j
and can be obtained by assembling the vector (see Listing 27). The corresponding DistVector object can be created as DistVector(bi, dd, compatible=True, assemble=True) or DistVector(bi, dd, assemble=True).

• compatible=False and assemble=False when the local components of a vector are not expected to hold the same value on shared interface unknowns. This is the case for instance using an augmented or N -Lagrange formulation (see sections 2.6.1 and 2.6.5). A corresponding vector can be created as DistVector(lambda_i, dd, compatible=False, assemble=False) or, more simply, DistVector(lambda_i, dd, compatible=False).

A DistVector object has shape, ndim, __len__(), copy() and T attributes and methods that match those of numpy arrays. Arithmetic operations. Some arithmetic operations on DistVector are defined using the special methods __add__(), __sub__(), __rmul__(), __mul__(), __div__(), __truediv__() and __matmul__() that are used to implement the +, -, *, / and @ operations. The dot method between a transposed vector and a non-transposed vector computes a scalar product: the scalar products of local components are first computed, and the results are summed, using a MPI reduction.

A DistVector instance can be centralized on either one or all the MPI processes by calling its centralize() method, which has two arguments:

A = N i=1 R T i A i R i .
The constructor takes two parameters:

• Ai, the local matrix, can be any object with a dot method (using the duck-typing mechanism presented in Section 4.3.2); for instance, Ai can be a dense matrix (numpy.ndarray) or a sparse matrix (scipy.sparse.spmatrix).

• dd, a DomainDecomposition object such that Ai.shape = (dd.ni, dd.ni).

class DistMatrix(object):

def __init__(self, Ai, dd):

self.local = Ai self.dd = dd self.shape = dd.n, dd.n def copy(self):

return DistMatrix(self.local.copy(), self.dd)

Listing 33: DistMatrix (1/4).

Distributed Matrix-vector product. The matrix vector product u = Ab is implemented in two steps: first,

u i = A i b i (b i = R i b) is computed (line 6 of Listing 34).
Then, an assembly operation gives A DistMatrix object can be centralized on one or all MPI processes by calling the centralize method, which has two arguments:

u i = N j=1 R i R T j u j = R i N j=1 R T j A j R j b = R i Ab (line 7).
• root, the MPI rank of the process which will hold the global matrix. If root is None, all processes hold the global matrix.

• loc2glob, a local-to-global mapping to be used for computing the global ordering.

If None, a default global ordering is used.

def centralize(self, root=None, loc2glob=None):

"""return the global matrix on process root. The cg method in ddmpy (see sections 4.2.3 and 4.3.9.1) can handle distributed matrices and vectors and gives the same solution as the scipy.sparse.linalg.cg method applied on centralized matrices.

K = 3 i=1 R T i K i R i such that K i is

The Linear Operator interface

The ddmpy module is built upon the notion of solver as the central concept (see Section 1.1.4): a DD solver is itself built by combining several other solvers, for instance to compute a Schur complement or solve the local problem of an aS preconditioner (see sections 2.7.2 and 3.2). In ddmpy, several solvers are available as well as various ways to combine them to define new DD solvers. In this section, we focus on the choices made regarding their interface, i.e., the way they can be used regardless of their particular implementation. All the solvers in ddmpy share the same interface so that one solver can seamlessly be replaced with another one in some portion of the code. The most straightforward way to implement the operation of finding x such that Ax = b would be to define a solve function

1 x = solve(A,

b, parameters)

There are two limitations attached to this functional paradigm:

• subsequent solves with the same matrix A and multiple right-hand sides (rhs) b1, b2, ... require the matrix and all parameters to be submitted again for each rhs: it is not possible to reuse some information from previous solves (such as a factorization of A).

• the linearity of the solve operation with respect to the rhs does not appear in this formulation. Using the operation x → solve(A, x) as a preconditioner for an iterative method (e.g., using iterative refinement for this operation) requires to define a new function for this operation. Furthermore, implementing a preconditioned iterative method requires to accept a matrix or a function as a preconditioner.

Our approach is to write all solvers and preconditioners as objects with a matrix-like interface: In ddmpy, solving a distributed linear problem using, for instance, a substructuring approach in which the interior variables are eliminated using Pastix and the interface variables are solved using a Preconditioned CG (PCG) with an AS preconditioner that uses Mumps as an internal solver can be written as:

S = DistSchurSolver(A, interface = [0, 1, 2, 3], local_solver = Pastix, interface_solver = ConjGrad(M=AdditiveSchwarz(local_solver=Mumps))) x = S @ b # or S.dot(b) in python2
This implements the AS/S method [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF] used in Section 3.5.5 and Chapter 5.

The abstract class LinearOperator

All solvers in ddmpy inherit from the LinearOperator base class. An instance of a child of the LinearOperator class should have:

• a setup() method.

• a solve() method.

• optionally, a defaults class attribute (dictionnary).

Class constructor. The constructor of the LinearOperator class mainly stores the parameters given as keyword arguments in a parameters instance attribute. Parameters that are not present in the constructor arguments are taken from the defaults dictionnary.

If a matrix A is given in the constructor, the setup() method is called.

class LinearOperator(object): Listing 37: LinearOperator (1/5).

The setup() method. The setup() method of the LinearOperator abstract class merely stores a pointer to the matrix A and updates the parameters dictionary using any keyword arguments given to the function. If a parameter is a class, it is replaced by an instance of this class. This enables to write SchurSolver(local_solver=Pastix) instead of SchurSolver(local_solver=Pastix()).

Some solvers perform some operations on the matrix that do not depend on the value of the right-hand side. For instance, a direct solver can factorize the matrix without any knowledge of the right-hand side. These steps should be performed in the setup() method of the subclass.

abstract method

def setup(self, A, **kwargs):

""" Setups the solver to work on a particular matrix A Store the keyword arguments as parameters for the solver and performs all computational steps that are possible without having the RHS. The solve() method. The steps that directly depend on the rhs should be implemented in the solve() method. For compatibility with numpy and the @ operator, this method is also accessible through a dot() method and a __matmul__() method.

abstract method def solve(self, b):

"""Performs a solve with b as a right-hand side vector.

A subclass may allow multiple rhs to be specified as a matrix. Listing 39: LinearOperator (3/5).

A string representation of a LinearOperator s is accessible through its __str__() special method. print(s) prints the name of the class of the solver, and the value of all its parameters. Parameters that are themselves LinearOperator instances are recursively converted to a string representation. This ScalarMultiply operator, which is only given as a very simple example of subclass of LinearOperator, takes a vector b in argument (b) and returns x = αb, where α is a parameter (alpha) with a default value α = 0.

Then, a matrix A (whose values have thus no mathematical effect in the particular case of this dummy operator) and a vector b are created by File "<stdin>", line 1, in <module> File "ddmpy.py", line 446, in dot raise RuntimeError("The operator was not setup before" RuntimeError: The operator was not setup before performing the solve However, one can call the setup() method to provide a matrix (although its values have no effects in the particular case of this dummy solver) before calling the dot() method

s.setup(A) print(s.dot(b)) [[0.] [0.] [0.]]
A vector x = αb zero vector is obtained since the α = 0 default parameter was used. It is possible to override this default value in the setup method to instead compute x = 42b

Direct linear solvers

Direct solvers use a variation of Gaussian elimination (Section 1.1.4) to compute a factorization of A, i.e., a decomposition as a product of matrices. Then, the factorization is used to solve the linear problem. Usually, the factorization step (setup() in ddmpy) is far most expensive than the solve step (solve()).

Factorizing matrices using Scipy

A simple example of a LinearOperator subclass is the ScipyDirectSolver class, which solves the linear problem Ax = b using direct solvers available in scipy [START_REF] Anderson | LAPACK Users' Guide[END_REF][START_REF] Davis | User Guide for CHOLMOD: A sparse Cholesky factorization and modification package[END_REF][START_REF] Demmel | A supernodal approach to sparse partial pivoting[END_REF]. A should be a simple (not distributed) dense or sparse matrix (numpy.ndarray or scipy.sparse.spmatrix). A suitable solver in scipy is chosen to factorize the matrix, depending on the type of A and the symmetry parameter given to the ScipyDirectSolver constructor or setup() method.

class ScipyDirectSolver(LinearOperator):

"""Factorize a matrix using scipy Listing 42: ScipyDirectSolver.

Computing a pseudoinverse

The ScipyDirectSolver class raises an exception when trying to factorize a singular matrix; in that case, one should use a Pinv solver that computes a dense pseudoinverse of the matrix using the scipy.linalg.pinv() function. Computing a dense pseudoinverse should be avoided as it takes a lot more time and memory than factorizing the matrix, especially when it is large and sparse. In that case, one should use one of the Pastix and Mumps classes presented below.

The Mumps sparse direct solver

A good alternative to the ScipyDirectSolver and Pinv classes for direct solves (sections 4.3.8.1 and 4.3.8.2) for factorizing sparse matrices is the Mumps solver [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF]. For the purpose of this thesis, we have developed an extensive python support for the Mumps solver. This wrapper is available on https://gitlab.inria.fr/ gmarait/PYMUMPS. It can factorize scipy.sparse.spmatrix matrices in a sequential or distributed (in global ordering) fashion, as well as DistMatrix matrices in local ordering. Note that as explained in Section 4.3.3, the Mumps solver is optional for ddmpy.

The ddmpy toolbox needs only a subset of this pymumps extensive Mumps support. We therefore do not further document it in this thesis, and we only report the ddmpy Mumps class that is built on top of pymumps, exposing the four following parameters:

• a verbose boolean.

• a symmetry boolean or integer. False/0 means not symmetric, True/1 means symmetric and 2 means SPD. (Note that the native Fortran Mumps API uses different values for the id.sym variable).

• a comm MPI communicator if the matrix is distributed in global ordering.

• a ordering string that can be "auto", "Scotch" or "Metis" to choose the graph partitioner used by the solver.

class Mumps(LinearOperator):

"""Factorize a matrix using mumps Three modes:

-sequential: comm is None and A is a Scipy Sparse Matrix -distributed in global ordering: comm is not None and A is a Scipy Sparse Matrix -distributed in local ordering: A is a DistMatrix the communicator used is A.dd.comm, comm is not used Optional parameters are:

-verbose=True/False. Default: False -symmetry=0 (General), 1 (Symmetric), 2 (SPD). Default: 0.

If symmetry>0, only the lower triangular part of A is used. • a symmetry boolean or integer. False/0 means not symmetric, True/1 means symmetric and 2 means SPD.

• a refine boolean to toggle iterative refinement.

• a threads number to choose the number of threads used by Pastix; threads = "auto" for automatic selection.

• a check boolean to toggle a verification of the solution (needs x0)

• a x0 vector containing the solution.

class Pastix(LinearOperator):

"""Factorize a matrix using pastix """ defaults = {"verbose": False, "symmetry": False, "refine": True, "threads": 1, "check": False, "x0": None} @TimeIt() def setup(self, A, **kwargs):

Iterative linear solvers

Contrary to direct solvers, iterative solvers find the solution of Ax = b by building a sequence of approximate solutions that converge towards the exact solution. Currently, two iterative solvers are available in ddmpy: a CG solver for SPD matrices and a Generalized Conjugate Residual (GCR) algorithm [START_REF] Eisenstat | Variational iterative methods for nonsymmetric systems of linear equations[END_REF] for general (non SPD) matrices. A Generalized Minimal Residual (GMRES) solver [START_REF] Saad | GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF], and multipreconditioned solvers [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Greif | Multi-preconditioned GMRES[END_REF][START_REF] Spillane | An adaptive multipreconditioned conjugate gradient algorithm[END_REF] are under development.

Conjugate gradient

The cg() function. The cg() function that we introduced in Listing 13 (Section 4.2.3) was in fact a reduced version of the cg() function provided in ddmpy that we present below in Listing 46. This cg() function in ddmpy is available as a replacement for the scipy.sparse.linalg.cg() function. • maxiter, the maximum number of iterations.

• M, a preconditioner.

• callback, a function called at each iteration with the current iterate solution as an argument.

• ritz, a boolean to enable the computation of the eigenvalues of the Hessenberg matrix (Ritz values of A) from coefficients computed during the iterations (see the ritz_values() method in Listing 48).

• save_x, a boolean to toggle the conservation of the intermediate solution at each iteration in an attribute self.x_.

• setup_M, a boolean to toggle the call of M.setup().

• debug, to toggle the printing of debug info.

• true_res, to toggle the computation of the true residual r = b -A @ x at each iteration instead of using an iterative formula.

class ConjGrad(LinearOperator):

"""Solve Ax=b using the CG algorithm Lanczos matrix T of the CG algorithm [START_REF] Burkitt | Identity of the conjugate gradient and Lanczos algorithms for matrix inversion in lattice fermion calculations[END_REF]. These eigenvalues are Ritz values of the preconditioned matrix MA. The condition number (κ(T) = λ max /λ min) gives an approximation of the condition number of the preconditioned matrix κ(MA).

def ritz_values(self):

"""Compute the ritz values of the Hessenberg matrix.

Call this function after a solve has been performed with self.ritz==True """ if self.n_iter>1: alpha = np.zeros(self.n_iter) alpha [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF] = 1/self.omega [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF] beta = np.zeros(self.n_iter-1)

for i in range(self.n_iter-1): or in parallel as in Section 4.3.6.3.

alpha[i+1] = (1/self.omega[i+1] + self.gamma[i]/self.omega[i]) beta[i] = (np.sqrt(max(self.gamma[i], 0

Generalized conjugate residual

The GCR solver is an iterative solver suited for non-symmetric matrices [START_REF] Eisenstat | Variational iterative methods for nonsymmetric systems of linear equations[END_REF]. It is a descent method that builds a A T A-orthogonal (M T A T) set of search directions. Right preconditioning is used such that the norm of the residual used in the stopping criterion does not depend on the choice of a preconditioner M.

As for the CG solver, a standalone gcr() and a GCR class are available.

The gcr() function. x += rAMPi * MP

[i] # x i+1 = x i + (r T i AMp i)Mp i r -= rAMPi * AMP[i] # r i+1 = r i -(r T i AMp i)AMp i with
K II K IΓ K ΓI K ΓΓ u I u Γ f I f Γ .
If K II is not singular, this system is equivalent to

K II u I = f I -K IΓ u Γ , Su Γ = f Γ , where S = K ΓΓ -K ΓI K -1 II K IΓ and f Γ = f Γ -K ΓI K -1 II f I (see Section 2.4
). The solution of the linear system Ku = f can therefore be performed in four steps using two different solvers: one solver to handle K II (lines 17-51 of Listing 51) and another solver to solve the Schur complement system (lines 52-54 of Listing 51). The four steps are:

factorize K II and compute S = K ΓΓ -K ΓI K -1 II K IΓ , (4.1) compute f Γ = f Γ -K ΓI K -1 II f I , (4.2) solve Su Γ = f Γ , (4.3) solve K II u I = f I -K IΓ u Γ . (4.4)
Computing a Schur complement matrix with any solver The SchurSolver class in ddmpy solves the linear problem Ku = f using this method. It has four parameters:

• a local_solver used on K II .

• an interface_solver used on S.

• an interface list that contains the indices in Γ.

• a symmetry boolean.

The Schur complement matrix S is available as a S attribute of the solver after the setup() method has been called. Some solvers such as Mumps and Pastix in sections 4.3.8.3 and 4.3.8.4 have optimized functions to compute the Schur complement system by performing a partial factorization. The SchurSolver class tries using the local_solver.schur() if it exists to compute S. If local_solver does not provide such a method (for instance, if local_solver is a ScipyDirectSolverr instance), the Schur complement matrix is computed using Equation (4.1) (lines 22-51 of Listing 51).

class SchurSolver(LinearOperator):

""" Solve a system using a Schur complement matrix Use local_solver to eliminate all variables in A that are not in interface and compute the Schur complement matrix S. Then, use Listing 51: SchurSolver (1/3).

To compute f Γ from f and u from u Γ (see equations (4.2) and (4.4)), two methods are used: b2f() and y2x(), respectively. In the following code, the variables A, b, x, y and f are used to represent K, f , u, u Γ and f Γ , respectively. For simplification a vector

v I v Γ = v T I v T Γ T is noted [v I , v Γ] T in the code comments. @TimeIt() def b2f(self, b): # f Γ = f Γ -K ΓI K -1 II f I try: f = self.local_solver.b2f(b)
except AttributeError:

RI, RG = self.RI, self.RG bI = RI.dot(b) # b I bI_I = self.local_solver.dot(bI) # K -1 II f I bI_I_ = RI.T.dot(bI_I) # [K -1 II f I , 0] T f_ = self.A.dot(bI_I_) # [f I , K ΓI K -1 II f I] T f = RG.dot(b -f_) # f Γ -K ΓI K -1 II f I return f @TimeIt() def y2x(self, y, b): # u I = K -1 II (f I -K IΓ u Γ) # y = x Γ if len(b.shape)==1: b = b.reshape((-1,1)) try: x = self.local_solver.y2x(y, b) except AttributeError: RI, RG = self.RI, self.RG tmp = RG.T.dot(y) # [0, u Γ] T tmp = b -self.A.dot(tmp) # [f I -K IΓ u Γ , f Γ -K ΓΓ u Γ] T tmp = RI.dot(tmp) # f I -K IΓ u Γ tmp = self.local_solver.dot(tmp) # K -1 II (f I -K IΓ u Γ) tmp = RI.T.dot(tmp) # [K -1 II (f I -K IΓ u Γ), 0] T x = RG.T.dot(y) + tmp # [K -1 II (f I -K IΓ u Γ), u Γ] T return x

Design of a domain decomposition toolbox in python

Listing 52: SchurSolver (2/3).

If an iterative solver is used to solve the interface system (Equation (4.3)) up to a tolerance interface_solver.tol computed as a bound on the backward error ||f -Ku|| ||f || , tol is modified to take into account the fact that the normalization changes from || f Γ || to ||f ||. This way, the tolerance is computed on the backward error of the full system Ku = f instead of the interface system Su Γ = f Γ provided to the interface solver. @TimeIt()

def solve(self, b): # solve Ku = f f = self.b2f(b) # f Γ = f Γ -K ΓI K -1 II f I param = self.interface_solver.parameters
if "tol" in param:

||r|| || f Γ || = ||r|| ||f || ||f || || f Γ || bb = b.T.dot(b) # ||f || 2 ff = f.T.dot(f) # || f Γ || 2 ratio = np.sqrt(bb/ff)[0, 0] # ||f || || f Γ || param["global_tol"] = param["tol"] param["tol"] *= ratio y = self.interface_solver.dot(f) # solve Su Γ = f Γ x = self.y2x(y, b) # u I = K -1 II f I -K IΓ u Γ return x # [u I , u Γ] T
Listing 53: SchurSolver (3/3).

Computing a Schur complement matrix with Mumps. The Mumps solver provides functions to compute a Schur complement matrix.

([[3. , -2.], [-1. , 2.06666667]]) array([[1.], [1.], [1.], [1.], [1.]])
and a SPD linear system

A = ssp.spdiags([d*np.ones(n) for d in 2, -1, -1], [0, 1, -1], n, n) b = A.dot(np.ones((n, 1)))
4. Design of a domain decomposition toolbox in python

s = SchurSolver(A, interface=[0, 1], symmetry=True, interface_solver=ConjGrad) s.S s.dot(b) array([[2. , -1.], [-1. , 1.25]]) array([[1.], [1.], [1.], [1.], [1.]])
One can check solver information by printing the solver print(s) A distributed subclass of the SchurSolver class can be used to solve a distributed linear system using a primal interface formulation (see Section 2.5.2). The only differences with the SchurSolver class are the following:

• there is no need for an interface parameter: the interface is deduced from the dd attribute of the DistMatrix object representing the distributed matrix

A = N i=1 R T Ω i A i R Ω i . • the

N -Lagrange formulation

The N -Lagrange formulation introduced in Section 2.6.5 is implemented in ddmpy. This formulation is used on the interface system, and as such, it can be seen as a reformulation of the third step (Equation (4.3)) of the Schur solver. The system Su Γ = f Γ is solved in four steps factorize

S i = S i + T i , (4.5)
compute

RHS i = j∈N (i) R Γ i R T Γ j T j + T i W ij R Γ i R T Γ j S -1 j f (j) Γ j , (4.6)
solve λ i + j∈N (i) R Γ i R T Γ j -R Γ i R T Γ j T j +T i W ij R Γ i R T Γ j S -1 j λ j = RHS i , (4.7) solve u Γ i = S -1 i (f (i) Γ i + λ i). (4.8)
The other steps in equations (4.1), (4.2) and (4.4) are unchanged.

The NLagrangeSolver solver has 5 parameters:

• Ti, a scalar to add on the interface.

Design of the ddmpy domain decomposition toolbox in python

• local_solver, a solver used to compute the Schur complement matrix S i .

• interface_solver, a solver used to solve Equation 4.7.

• Sih_solver, a solver used to factorize the local matrix S.

• symmetry, the symmetry of the matrix.

class NLagrangeSolver(DistSchurSolver): defaults = {"Ti": 1, "local_solver": ScipyDirectSolver, "interface_solver": GCR, "Sih_solver": ScipyDirectSolver, "symmetry": False} @TimeIt() for n, i in dd.neighbors.items():

def
self.W[n] = 1 -W_[i] W_[i] = 1 self.operator = self.NLOperator(self) self.interface_solver.setup(self.operator) def communicate(self, ui, mui): # u i , µ i dd = self.S.dd res = np.zeros_like(ui) ui_mui = np.hstack((ui, mui)) # [u i , µ i] send = {n: ui_mui[dd.neighbors[n], :]
for n in dd.neighbors} for j, uj_muj in neighborSendRecv(send):

uj_muj = uj_muj.reshape((-1, 2)) # R Γ i R T Γ j [u j , µ j] uj = uj_muj[:,0:1] # R Γ i R T Γ j u j 4. Design of a domain decomposition toolbox in python muj = uj_muj[:,1:2] # R Γ i R T Γ j µ j i = dd.neighbors[j] res[i] += (muj # R Γ i R T Γ j µ j + self.Ti * self.W[j] * uj)# T i W ij R Γ i R T Γ j u j return res # j∈N (i) R Γ i R T Γ j µ j + T i W ij R Γ i R T Γ j u j # inner
= self.local_schur.b2f(bi) # f (i) Γ i SihI = self.Sih_solver # S -1 i ui = SihI.dot(fi) # u i = S -1 i f (i) Γ i mui = self.Ti*ui # µ i = T i u i # R Γ i R T Γ j µ j + T i W ij R Γ i R T Γ j u j rhs = DistVector(self.communicate(ui, mui), self.A.dd, compatible=False) li = self.interface_solver.solve(rhs).local # λ i yi = SihI.dot(fi + li) # u Γ i = S -1 i (f (i) Γ i + λ i) xi = self.local_schur.y2x(yi, b.local) # [u I i , u Γ i] T x = DistVector(xi, b.dd) return x
Listing 57: NLagrangeSolver. 4. Design of a domain decomposition toolbox in python the DistMatrix A and DistVector b are assembled on one or all processes using the centralize() methods of these objects. The local_solver can then be used to compute the global solution x_global and broadcast it to other processes if needed. The CentralizedSolver has two parameters:

• local_solver, a Solver used locally to solve the centralized problem.

• root, the MPI rank of the process that will hold the local_solver instance and execute local_solver.setup(A) and local_solver.solve(b). If None, all processes run a different instance of local_solver and perform these operations redundantly.

class CentralizedSolver(LinearOperator): Listing 58: CentralizedSolver.

Design of the ddmpy domain decomposition toolbox in python

Testing the CentralizedSolver class. The CentralizedSolver class is used to solve the same distributed matrix using the (sequential) ScipyDirectSolver solver on process 0. the TimeIt output shows that the ScipyDirectSolver setup() and solve() methods are only called on process 0.

Domain decomposition preconditioners

A preconditioner M = M L M R can be used to accelerate an iterative solver by replacing a linear system Ax = b by the equivalent system M L AM R y = M L b, where x = M R y.

Design of a domain decomposition toolbox in python

A good preconditioner for Ax = b should be close to A -1 , in some sense, and cheap to compute and apply. In ddmpy, the one-level and two-level aS preconditioners introduced in Section 2.7 and analyzed in more details in Chapter 3 are implemented.

4.3.12.1 One-level aS preconditioners Abstract Schwarz (aS) preconditioner. Since preconditioners are linear operators built from a matrix, they are implemented as subclasses of the LinearOperator class presented in Section 4.3.7. One-level aS preconditioners, introduced in Section 2.7.2, are implemented using an AbstractSchwarz class; they can be written as

M aS = N i=1 R T i A † i R i ,
and are very similar to distributed matrices

A = N i=1 R T i A i R i .
The AbstractSchwarz class is therefore also a subclass of the DistMatrix class. The local matrix A i in the definition of M aS is built from A i in several optional steps:

• an assembly step A i → A i = R i AR T i = j∈N (i) R i R T j A j R j R T i . • an addition step A i → A i + T i . • a partition of unity step A i → D -1 i A i D -1 i
where D i is a partition of unity such that N i=1 R T i D i R i = I (I is the identity matrix). D i can be computed using the multiplicity (each subdomain has the same weight) or the local matrix (the weight for an unknown is proportional to the corresponding value on the diagonal of A i), or be a boolean weight (only one subdomain is 1, its neighbors are 0).

Then, A i is factorized.

The AbstractSchwarz class has the following parameters:

• assemble, a boolean to toggle the assembly operation.

• Ti, a matrix T i to add on the interface. Can be a scalar or an interface vector; in that case, it represents the diagonal of a diagonal matrix. If None, the addition step is not performed.

• Di, a method to compute the partition of unity D i . If None, no partition of unity is used. If "multiplicity", each subdomain has a weight of 1. If "matrix", the diagonal of A i is used as a weight. If "boolean", the DomainDecomposition.D boolean partition of unity is used.

• local_solver the solver used to factorize A i .

class AbstractSchwarz(LinearOperator, DistMatrix): defaults = {"assemble": True, Additive Schwarz (AS) preconditioner. The AS preconditioner

M AS = N i=1 R T i R i AR T i -1 R i
is a particular case of aS preconditioner where only the assembly step is performed.

class AdditiveSchwarz(AbstractSchwarz): defaults = AbstractSchwarz.defaults.copy() defaults.update({"assemble": True, "Ti": None, "Di": None})

Listing 60: AdditiveSchwarz.

Neumann-Neumann (NN) preconditioner. The NN preconditioner

M N N = N i=1 R T i D i A † i D i R i ,
has only the partition of unity step. Robin-Robin (RR) preconditioner. The Robin-Robin preconditioner

M RR = N i=1 R T i (A i + T i) -1 R i ,
has only the addition step.

class RobinRobin(AbstractSchwarz): defaults = AbstractSchwarz.defaults.copy() defaults.update({"assemble": False, "Ti": 1, "Di": None})

Listing 62: RobinRobin

Testing the aS preconditioners. These three aS preconditioners (AS, NN and RR) are tested in a primal formulation (A = K) and on a primal formulation on the interface Γ (A = S). Due to the very small size of the linear problem and the poor choice of a transmission condition in the RR preconditioner used in this example, this test should not be considered as a representative comparison of these three preconditioners, but merely as a demonstration of how they can be used.

Two-level aS preconditioners

These one-level aS preconditioners can be combined, either additively or using deflation, with a coarse solve to build a two-level aS preconditioner (see Section 2.7.3).

Coarse Solve. The CoarseSolve class implements the operator

M 0 = V 0 V T 0 AV 0 -1 V T 0
where the global coarse space V 0 is defined as a concatenation of local coarse spaces

V 0 = R T 1 V 1 0 R T 2 V 2 0 • • • R T N V N 0 . The coarse matrix A 0 = V T 0 AV 0 is computed in parallel A 0 = V T 0 AV 0 = V T 0 N i=1 R T i A i R i V 0 = N i=1 V i 0 T A i V i 0 ,
where

V i 0 = R i V 0 = R i R T 1 V 1 0 R i R T 2 V 2 0 • • • R i R T N V N 0 .
V i 0 can be built by assembling one subdomain's local coarse space (V i 0) with the restriction of the coarse space of its neighbors to the common interface

(R i R T j V j 0). Since R i R T j is zero if Γ i ∩ Γ j = ∅, only neighbor-to-neighbor communications are needed to compute V i 0 .
Each column in V 0 corresponds to a coarse unknown. The coarse matrix A 0 is defined as a sum of local coarse matrices V i 0

T A i V i 0 .
The local coarse matrix of subdomain Ω i only 4.3. Design of the ddmpy domain decomposition toolbox in python has nonzero elements on coarse unknowns from Ω i or its neighbors. As a result, A 0 can be implemented as a DistMatrix built from A, but on another DomainDecomposition object dd0.

In the setup() method, first, a default coarse space is built as a partition-of-unity coarse space [START_REF] Sarkis | Partition of unity coarse spaces: Enhanced versions, discontinuous coefficients and applications to elasticity[END_REF] (lines 8 to 13). Then, neighbor-to-neighbor communications are performed using the neighborSendRecv() function presented in Section 4.3.4 to compute V i 0 (Wi) from V i 0 (Wi_) and define the coarse domain decomposition dd0 (lines 14 to 45). Then, the coarse matrix A 0 is computed and factorized (lines 46 to 51).

The parameters of the CoarseSolve linear operator are:

• Wi, a basis of the local coarse space. If None (default), a partition-of-unity coarse space is chosen

• global_solver, the distributed solver used to factorize the coarse matrix A 0 . It can be for instance:

-Mumps for a distributed factorization (see Section 5.4.2 for a presentation of this strategy implemented in the framework of the MaPHyS solver in Chapter 5)

-CentralizedSolver(local_solver=. . . , root=0)= for a centralized factorization on one MPI process (see Section 5.4.3 for a generalization of this method using a sub-communicator of possibly more than one process for handling the coarse problem); any sparse solver can be used as a local solver.

-CentralizedSolver(local_solver=. . . , root=None)= for a redundant factorization of the coarse matrix on each MPI process (see Section 5.4.5 for a generalization of this method)

The solve() method can be used to compute either M Deflated preconditioner. Instead of adding the coarse correction, it is possible to use projection techniques to project the residual on the orthogonal of the coarse space at each iteration, defining M D = M 0 + (I -P 0)M 1 (I -P T 0) where P 0 = M 0 A is the Aorthogonal projection onto V 0 (see sections 2.7.3 and 3.2). In practice, after an appropriate initial guess has been computed, the application of the preconditioner can be performed as Listing 65: DeflatedPcd

M D = (I -M 0 A)M 1 .
Testing the two-level preconditioners. The two-level preconditioners (additive or deflated) are tested alongside their one-level counterpart. Due to the size of the matrix, the number of iterations performed until convergence for this example is not at all representative of the capabilities of the tested methods.

Design of a domain decomposition toolbox in python

Testing the GenEO preconditioner The GenEO preconditioner is tested on the same distributed matrix as the preconditioners in the previous sections, both in a full primal formulation (A = K) and in a primal formulation on the interface (A = S). A Ge-nEO coarse space is built for the AS, NN and RR, with a size of 1, 2 or 3 coarse unknowns per subdomain. The coarse correction is applied using deflation for all preconditioners, and additively for AS only. Similarly to the results obtained in the previous chapter (See Section 3.5.1), a weak scalability study is performed on problems similar to what was presented in (Spillane et al., 2014a). In the previous chapter, which essentially aimed at studying the numerical behavior of the proposed methods, the considered problems were of moderate size (at the exception of Section 3.5.5 which gave an insight on the parallel behavior). In the present chapter, as well as in the following chapter, the focus is essentially on the software design and parallel scalability of the methods and code; we therefore consider larger problems. They correspond to the bâton test case presented in more details in sections 3.5.1 and 5.5.2. A Darcy equation in a heterogeneous stratified medium of size N × 1 × 1 is solved using a DD of N subdomains. Each subdomain is a 1 × 1 × 1 cube discretized with 30 Q1 elements in each direction. The subdomain matrices are generated using the genfem python module5 developed for the purpose of this thesis. All the code needed to reproduce the experiments (including the batch job script) and generate the figures in the present section is available in the .org source of this document.

Design of a domain decomposition toolbox in python

On page 177 and 178, several DD preconditioners are compared. In the first figure, CG is applied on the matrix K, whereas in the second figure, CG is applied on the Schur complement matrix S.

Both figures have a grid layout with 3 × 8 plots: the rows correspond to various degrees of heterogeneity (K=1, K=1,000 and K=1,000,000) in the conductivity of the layers in the stratified medium (see Section 5.5.2). With K = 1, the problem is a homogeneous Poisson problem; increasing the heterogeneity parameter K increases the condition number of the matrix K and makes the linear system harder to solve.

The 8 columns correspond to the following preconditioners:

0 no preconditioner.
0 D deflation on a partition-of-unity coarse space (no additional local preconditioning).

AS 1 one-level AS preconditioner M AS (no coarse correction).

AS 2 two-level AS preconditioner with an additive coarse correction with a partition-ofunity coarse space M AS,2 .

AS D deflated AS preconditioner with a partition-of-unity coarse space M AS,D .

AS GD3 deflated AS preconditioner M AS,D with an adaptive (GenEO) coarse space (n v = 3 vectors per subdomain).

N N D deflated NN preconditioner with a partition-of-unity coarse space M N N,D (when applied on the Schur complement matrix S, the N N D /S method is the BDD method [START_REF] Mandel | Balancing domain decomposition[END_REF]).

N N GD3 deflated NN preconditioner M N N,D with an adaptive (GenEO) coarse space (n v = 3 vectors per subdomain).

Note that these notations for the solvers are specific to this section. The 16 solvers (8 preconditioners applied on K or on S) compared in this study are all built using the ddmpy module presented in Section 4.3.

Each individual plot represents the time needed to solve the bâton problem of size (30N + 1) × 30 × 30 on N CPU cores (the global domain is decomposed into N subdomains). Each node on the computing platform has 24 cores, and experiments were performed for N between 3 and 3,072. Each subdomain is handled by 1 MPI process on 1 CPU core. The stopping criterion of the conjugate gradient is chosen such that the normwise backward-error of the complete system (including interior unknowns) is under the prescribed tolerance Ku-f K f K ≤ 10 -5 . All dense computations are performed using the Intel MKL library 2017 through scipy and the ScipyDirectSolver class presented in Section 4.3.8.1, whereas sparse matrix factorizations use the Pastix 6.0.0 solver through the wrapper presented in Section 4.3.8.4. The total time to solution is divided into 6 solver steps:

Schur Factorization (blue) if the PCG solver is applied on S, the interior block K I i I i is factorized in each subdomain to compute the local Schur complement matrix S i .

Experimental study

Local Pcd Setup (dark green) if a local preconditioner (AS or NN) is used, the local preconditioner matrix A i is computed and factorized.

Coarse Eigen Solve (green) a generalized eigenproblem is solved for the adaptive coarse space.

Coarse Pcd Setup (light green) the coarse matrix is assembled and factorized redundantly on each CPU core.

Direct Solve (orange) the reduced right-hand side f Γ is computed from the global right-hand side f and the interior solution u I from the interface solution uΓ if the PCG is applied on S Iterative Solve (red) PCG iterations.

The number of iteration needed to reach convergence is indicated on top of each bar plot.

Numerical convergence

According to Chapter 3, (Corollary 2 and Theorem 2, as used in Section 3.5.3) the condition number of the methods presented here is bounded by κ(MA) ≤ O(λ -1 nv+1) where λ nv+1 is the smallest eigenvalue corresponding to an eigenvector not included in the coarse space. The matrix A (N N) i of the Neumann local problem in the generalized eigenproblem is singular, and λ 1 = 0. Without CSC (n v = 0), the theoretical bound is infinite, meaning that the condition number is not bounded; this is in agreement with our experimental results where the number of iterations of the 0 and AS 1 methods increase proportionally to N .

Using a partition-of-unity coarse space (methods 0 D , AS 2 , AS D and N N D) is equivalent to setting n v = 1: the kernel of A (N N) i is the coarse space, and the bound becomes κ(MA) ≤ O(λ -1 2). Since the matrices in all the subdomains except the first and last one are the same, this bound is independent of N . However, it depends on the local matrix A i (and therefore on the heterogeneity factor K), and on the local preconditioner. In our experiments, the number of iterations of these methods is indeed bounded independently of N (but the bound varies with the chosen method and on K) for K = 1 and K = 1, 000 (for each method, the number of iterations is larger if K = 1, 000 than if K = 1). For K = 1, 000, 000, the number of iterations seems to increase proportionally to N for these methods; this indicates that the bound on the number of iterations resulting from the bound on the condition number is too large to be effective in practice: when thousands of CG iterations are performed, especially when using deflation techniques, round-off errors accumulate and prevent the algorithm from converging due to loss of orthogonality (see, for instance, [START_REF] Saad | A deflated version of the conjugate gradient algorithm[END_REF] for a description of this phenomenon and some remediation strategies that have not been implemented in ddmpy). This explains the corresponding missing bar plots in the figures.

The solution proposed in Chapter 3 is to include in the coarse space the eigenvectors corresponding to these very small eigenvalues. Choosing n v = 3 eigenvectors (consistently

Performance analysis

The data presented on pages 177 and 178 represent a set of 480 different configurations: 8 preconditioners applied on K and S, for three different values of K and 10 values of N . For each of these configurations, the time needed to compute the Schur complement matrix and the local preconditioner, solve the eigenproblem and setup the coarse preconditioner, and perform the direct and iterative parts of the solve are displayed (the displayed times are the maxima among all MPI processes). These experiments compare three different ways of hybridizing an iterative solver by introducing a direct solver: one can use a local (one-level aS) preconditioner (in dark green), a coarse global preconditioner (in medium green), or a Schur complement approach (in blue). In light green, the coarse space for the coarse preconditioner is computed using an eigensolver. Each of these (optional) operations add to the setup time of the solver, and can additionally increase the cost of each iteration. Our experimental results show that, for the most difficult problems (N 1 and K 1), the overhead of these additional operations is compensated by the reduction in the number of iterations discussed in the previous sections.

Our results show that in our homogeneous test case (K = 1), the best method up to N = 768 subdomains is a simple deflated CG (on K) without a local preconditioner. In the other test cases, it is always beneficial to eliminate interior unknowns first using a Schur complement approach: replacing K by S in the iterative solver has several advantages. First, the linear system to be solved (Su Γ = f Γ instead of Ku = f) is smaller and better conditioned, hence a reduction in the number of iterations. Furthermore, in addition to being of smaller size, the local interface matrices S i are dense whereas the original local matrices K i are sparse. As such, optimized solvers as provided by the Intel MKL library can be used for computing the local preconditioner and solving the eigenproblems. For instance, the cost of computing the GenEO coarse space drops from 40 s. to 4 s. when using a Schur complement approach. Since the overhead of factorizing the interior matrix K I i I i and computing the local Schur complement matrix S i is only 5 s. (thanks to using the optimized sparse direct solver Pastix that implements this operation), it is always faster to use a Schur complement approach when computing a spectral coarse space for this bâton test case.

A comparison of the NN and AS local preconditioners show that, on K, the AS preconditioner is much more robust than NN, as the singularity of the local preconditioner matrix K (N N) i is not well handled by the Pastix solver. On S, both preconditioners show a quite similar behavior. Both AS GD3 /S and N N GD3 /S methods are extremely scalable and very robust up to N = 1, 536 or 3, 072 subdomains.

The parallel efficiency of the methods discussed above is presented in the figure page 180. We define the parallel weak efficiency as η = t 24 t N : the basis for comparison is the total time to solution on one node, each node being composed of 24 CPU cores to each of which is associated an MPI process handling a subdomain. q 0 0 D AS The adaptive CSC implemented in the AS GD3 and N N GD3 methods scales up to N = 1, 536 subdomains with a very high parallel efficiency (≥ 84%). At N = 3, 072 subdomains, some solvers failed to converge (AS GD3 /S for K = 1, 000 and AS GD3 /K for K = 1, 000, for numerical reasons related to the deflation technique [START_REF] Saad | A deflated version of the conjugate gradient algorithm[END_REF][START_REF] Giraud | A comparative study of iterative solvers exploiting spectral information for SPD systems[END_REF]. Furthermore, the parallel efficiency of some solvers drop suddenly to less than 50%, as for instance the AS GD3 /S solver for K = 1, 000. To analyze where the bottleneck is, we look in the next section at a log of the TimeIt events in this run.

A posteriori analysis using the TimeIt object

The TimeIt decorator and context manager, introduced in Section 4.3.5, is used to track the time at which different functions and other code blocks in ddmpy are entered and exited. This information can be exploited after a problem has been solved to identify where the time was spent. In the experiments presented in this chapter, the first 2,000 TimeIt events of 10 processes (at most) were saved after each run for analysis. These limitations (only 2,000 events, and only 10 processes) were introduced in order not to overload the file system, as would be the case if 3,072 processes were to write simultaneously a few tens of thousands of lines each in a file.

Even with this limitation, the information of 10 processes is still too much to represent in a pleasant way: the processes are not synchronized and their respective events overlap with each others. For instance, the processes that handle subdomains on the boundary have a smaller interface than the other ones and fewer neighbors; they often perform some operations much faster than the other subdomains. For any event (let us take, for instance, the computation of the Schur complement using Pastix), we have the time at which each of the 10 processes entered and exited the event. Instead of displaying all this information, we only display the minimum, median and maximum of the starting and ending time of the event, as in figures 4.10 and 4.11 for the N N GD3 /S method on 1,536 and 3,072 cores, respectively, for K = 1, 000.

The TimeIt events form a hierarchy, since a timed function can be called inside another one. At the lowest level [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF], one has the main DistSchurSolver setup() and solve() methods. Each of them can call other timed functions or blocks that are of level 1, which can themselves call other functions of higher levels.

The comparison of the two TimeIt traces in figures 4.10 and 4.11 shows that the drop in efficiency is due to operations that take place during the setup of the DistSchurSolver object, between the setup of the local SchurSolver object and the setup of the iterative solver ConjGrad, and to operations that take place in the setup of the GenEOPcd preconditioner, after the eigenproblem is solved. Looking at the code in Listing 56, we can see that this corresponds to the instruction 1 self.S = DistMatrix(self.local_schur.S, A.dd.interface_dd())

In order to improve the scalability of the solvers in ddmpy, one should therefore focus on the operations taking place in this line, such as the interface_dd() method of the DomainDecomposition class presented in Listing 28. We did not pursue this time consuming optimization any further. The solve step (6 s.) is much faster than the setup step (20 s.), and is condensed on the right of Figure 4.11. A zoom on this part is provided in Figure 4.12: the DistSchurSolver.solve() method (level 0) starts by computing the reduced right-hand side using the DistSchurSolver.b2f() method (level 1), the local SchurSolver.b2f() (level 2) and the Pastix.b2f() (level 3) methods. Then, the norm of the global right-hand side and of the reduced right-hand side are computed using two DistVector.dot() distributed scalar products. At this point, the interface system is solved using the ConjGrad solver. One can identify the CG initialization (first application of the preconditioner around 20.05 s.), the 5 subsequent complete iterations between 20.2 and 20.4 s. and the incomplete 6th iteration (no application of the preconditioner) before the y2x() method is called to compute the interior solution u I from the interface solution u Γ given by the CG.

One can zoom further on an individual iteration (Figure 4.13), and identify the steps of the CG algorithm (Listing 46): after the matrix-vector product (DistMatrix.dot()), two scalar products are computed (DistVector.dot()) separated by a (very fast) vector addition and subtraction. Then, the preconditioner is applied (GenEOPcd.solve()) and a third scalar product is performed. The two components of the two-level M N N,D preconditioner can be identified: a local NeumannNeumann solve (using Scipy), followed by a coarse solve. Since the coarse problem is duplicated on all processes, one only need to centralize the coarse right-hand side (centralize_b) before computing the coarse correction (ScipyDirectSolver.solve()).

The TimeIt class is a very powerful tool for analyzing the performance of distributed applications in python. The ability to profile selected functions or code blocks using a Trace of the NN GD3 /S solver on N= 3072 processes with an heterogeneity K= 1000

The three rows show the time at wich the first (row 0), 50% (row 1), or all processes (row 2) start and finish each step. decorator or a context manager makes it very easy to track the state of an application at the appropriate level, without a significant loss in performance in our case.

Limitations of the python language

Developing the ddmpy module, we encountered some difficulties related to the choice of the python language. First, it is not possible to run several threads concurrently in python. It is however possible to run external multithreaded code (such as Pastix for instance). This is due to a Global Interpretor Lock (GIL) that prevents threads from accessing python objects simultaneously. This limitation was not critical in our case since we decided to rely on a distributed paradigm.

The second difficulty we ran into was the lack of scalability of the import system in python. For each import instruction, python checks several different locations in the file system until it finds and loads the module. When many processes import the same modules simultaneously on a shared file system, they block each other and saturate the system. As a result, the standard python distributions cannot be used for largescale distributed computing due to unpredictable and slow loading time. In some of our experiments, even when using only 2 nodes (48 CPU cores), the loading time of python was more than 10 times longer than the time needed to generate and solve the linear problem. Various solutions have been proposed to remedy this problem [START_REF] Feng | Launching Python Applications on Peta-scale Massively Parallel Systems[END_REF][START_REF] Feng | Mpiimport: Python Import with MPI[END_REF][START_REF] Frings | Massively Parallel Loading[END_REF]; we tested the spindle executable [START_REF] Legendre | Spindle: Scalable dynamic library and python loading in HPC environments[END_REF] but were not able to install it successfully on the targeted machine. We decided to use a modified python interpreter [START_REF] Enkovaara | Scalable-python: Python interpreter for massively parallel HPC systems[END_REF] that remove the import congestion by rewriting the stdio.c file so that only one process does the import and 4. Design of a domain decomposition toolbox in python broadcasts the module to the other processes using MPI. Since this scalable-python interpreter is based on python2.7.13, we had to rewrite ddmpy in python2 as it was originally written in python3. We were then able to perform the parallel experiments presented in the present chapter.

The third and last limitation of python for ddmpy is the fact that it is very cumbersome to use a solver written in python in a code written in another language. As a result, although it could be quite as performant as a compiled library, the ddmpy module cannot be readily used from a compiled application. This led us to initiate the development of a new library in C++ to keep the advantages of using a high-level language like python, while being easier to interface with compiled solvers and applications, as discussed in Section 6.3.

Conclusion

In this chapter, we presented a new domain decomposition (DD) toolbox in python. In Section 4.2, we demonstrated the relevance of python as a language for numerically prototyping HPC DD solvers: the overhead of using python instead of a compiled language such as C is on the order of 10 -6 s. per program instruction in our experiments. It is therefore possible to write a competitive DD solver in python by using wrappers for calling third party HPC implementations for all computation-intensive operations. For instance, BLAS functions that operate on data arrays can be called through the numpy and scipy python modules. Using this approach, one single python instruction calls a function that perform many individual operations, and the cost of the overhead becomes negligible if the size of the data is large enough so that the time spent performing these individual operations is orders of magnitude larger than 10 -6 .

A DD toolbox in python named ddmpy was implemented following this principle and presented in Section 4.3 using a literate programming approach. Wrappers for DD operations not included in scipy, such as computing a Schur complement matrix or performing a distributed conjugate gradient, are included in ddmpy. DD methods introduced in Chapter 2, such as a N -Lagrange solver or abstract Schwarz preconditioners for primal formulations, are available in ddmpy, as well as the two-levels methods introduced in Chapter 3.

The scalability of solvers built using the ddmpy toolbox was then assessed in Section 4.4: a linear system of 88.5M unknowns was solved in less than 10 s. on 128 computing nodes with 24 CPU cores each (3,072 cores in total). The two-level solvers that include the coarse space correction introduced in Chapter 3 showed a parallel efficiency of 84% on 1,536 cores. These experiments are fully reproducible as the code needed to launch the experiments, analyze the results and plot the figures is available in the source of this document.

We then shared in Section 4.5 some drawbacks we experienced due to choosing the python language for implementing the ddmpy toolbox. The lack of scalability of the import system of python on distributed computers forced us to install a modified interpreter and backport our code from python3 to python2 to run the parallel experiments presented in Section 4.4. Furthermore, the choice of python makes it inconvenient for compiled 4.6. Conclusion applications to use ddmpy. This led us to implement one of the robust two-level methods in the MaPHyS HPC hybrid solver, in Fortran 90. Several parallelization strategies for handling the coarse space correction were implemented and are discussed in Chapter 5. A new implementation in modern C++ is underway (see Section 6.3 in the perspectives).

Chapter 5

Parallel design of coarse space correction for hybrid solvers

Introduction

After a general presentation of domain decomposition methods (DDM) in Chapter 2, the numerical convergence of abstract Schwarz (aS) methods was studied in Chapter 3 and various DDM were implemented in the ddmpy toolbox presented in Chapter 4, including two-level aS methods. For those two-level aS methods, two strategies were devised for handling the coarse space correction (CSC) in a parallel context: either handling it with a fully distributed mode or by centralizing it. The goal of the current chapter is to further study the parallelization of the CSC. For that, we consider a fully-featured sparse hybrid solver, MaPHyS. Contrary to ddmpy which has been designed to have the flexibility of instantiating various DDM, MaPHyS implements one particular DDM, the Additive Schwarz on the Schur (AS/S) method. While MaPHyS was a one-level AS/S methods only, we extend it with a CSC mechanism and propose five strategies to handle the CSC in a parallel context.

The chapter is organized as follows. First, the baseline (corresponding to the state of the code before the present thesis) one-level MaPHyS solver is described in Section 5.2. A CSC extension, as introduced in Chapter 3, and various parallelization strategies for its implementation are presented in sections 5.3 and 5.4. The resulting code has been employed to give a flavor of the potential of two-level hybrid solvers in Chapter 3 (see Section 3.5.5). More comprehensive numerical experiments and a comparison of the strategies on different test cases are presented in Section 5.5.

The baseline MaPHyS sparse hybrid solver

The additive Schwarz on the Schur (AS/S) method

The MaPHyS solver is based on a primal formulation on the interface (Section 2.6.3) with an AS preconditioner (Section 3.4). This method, referred to as Additive Schwarz on the Schur or AS/S [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF]; [START_REF] Bibliography Giraud | Parallel scalability study of hybrid preconditioners in three dimensions[END_REF], has already been introduced in previous chapters. In the present section, we present it again with a special focus on the parallel implementation.

As in previous chapters, we aim at solving a sparse linear system of the form Ku = f , where K is a large, sparse, symmetric positive definite (SPD) matrix. We note G = {V, E} the adjacency graph associated with K. In this graph, each vertex is associated with a row or column of the matrix K and it exists an edge between the vertices i and j if the entry k i,j is non zero. Figure 5.1 gives an example of matrix K (on the left) with its adjacency graph (on the right) where the red vertex corresponds to the first unknown of the linear system.

The governing idea behind the Schur complement approach is to split the unknowns into two categories: interior and interface vertices. We assume that the vertices of the graph G are partitioned into N disconnected subgraphs I 1 , . . . , I N separated by the global vertex separator Γ. We also decompose the vertex separator Γ into non-disjoint subsets Γ i , where Γ i is the set of vertices in Γ that disconnects I i from other interior sets. Notice that this decomposition is not a partition as Γ i ∩ Γ j = ∅ when the set of vertices in this intersection defines the separator of I i and I j . By analogy with classical DDM in a finite element framework, Ω i = I i ∪ Γ i is referred to as a subdomain with internal unknowns I i and interface unknowns Γ i . If we denote I = ∪ I i and order vertices in I first, we obtain the following block reordered linear system

K II K IΓ K ΓI K ΓΓ u I u Γ = f I f Γ (5.1)
where u Γ contains all unknowns associated with the separator and u I contains the unknowns associated with the interiors. Figure 5.2 gives an example of graph/matrix problem partitioning into 4 parts, with interior vertices/unknowns in blue and interface vertices/unknowns in red.

5.2. The baseline MaPHyS sparse hybrid solver

Ω 1 • • • Ω k Ω k+1 . . . Ω N Υ 1 Υ k-1 Υ k Υ k+1 Υ N -1
Figure 5.3: Planar graph partitioned into horizontal strips (1D decomposition). The interface between any two neighbors is

Υ k = Ω k Ω k+1 .
the convergence of CG. The AS/S preconditioner in MaPHyS is built as follows. First, we define Si = R Γ i SR T Γ i , where R Γ i : Γ → Γ i is the canonical point-wise restriction which maps full vectors defined on Γ into vectors defined on Γ i . Si corresponds to the restriction of the Schur complement to the interface Γ i of each subdomain. If I i is a fully connected subgraph of G, and if for each γ in Γ i , there is an edge (γ, v) in G with v in I i , then the matrix Si is dense.

With these notations the algebraic Additive Schwarz preconditioner on the Schur complement system (AS/S) given by Equation (5.1) reads

M AS/S = N i=1 R T Γ i S-1 i R Γ i .
(5.5)

We notice that this preconditioner has a form similar to the Neumann-Neumann preconditioner [START_REF] Bourgat | Variational Formulation and Algorithm for Trace Operator in Domain Decomposition Calculations[END_REF][START_REF] De Roeck | Analysis and test of a local domain decomposition preconditioner[END_REF], but in the SPD case M AS/S is always fully defined and SPD (as S is SPD [START_REF] Carvalho | Local preconditioners for twolevel non-overlapping domain decomposition methods[END_REF])); which is not always the case for Neumann-Neumann.

If we considered a planar graph partitioned into horizontal strips (1D decomposition) with Υ k = Ω k Ω k+1 as depicted on Figure 5.3, the resulting Schur complement matrix has a block tridiagonal structure as depicted in Equation (5.6),

S =        . . . S k-1,k-1 S k-1,k S k,k-1 S k,k S k,k+1 S k+1,k S k+1,k+1 . . .        . (5.6)
For that particular structure of S, the submatrices in boxes correspond to Sk and Sk+1 that are the restriction of the Schur complement S to the interface of Ω k and Ω k+1 . Such diagonal blocks, which overlap with one another, are similar to the classical block overlap of the Schwarz method when writing in a matrix form for 1D decomposition. Similar ideas have been developed in a pure algebraic context in earlier papers (e.g., [START_REF] Cai | A restricted additive Schwarz preconditioner for general sparse linear systems[END_REF]) for the solution of general sparse linear systems.

5. Parallel design of coarse space correction for hybrid solvers

Parallelization strategy for distributed memory architectures

MaPHyS is based on an algebraic domain decomposition idea whose primary motivation is to naturally exploit a coarse grained parallelism between the computation performed on each sub-problem of the decomposition using MPI.

Based on the decomposition of G we can define a decomposition of the matrix K where each sub-matrix is associated with a subdomain and is allocated to one MPI process. The local interiors are disjoint and form a partition of the interior I = I i . Consequently the matrix K II associated with the interior unknowns has a block diagonal structure; each diagonal block K I i I i corresponds to the set of internal unknowns of Ω i .

Two subdomains Ω i and Ω j are defined as neighbors if their interfaces intercept with each other, that is Γ i Γ j = ∅. The non disjoint union of the subdomain boundaries form the overall interface Γ = ∪Γ i . This implies that a special attention has to be paid for the partitioning of K ΓΓ as its entries are shared between different processes. In that respect the matrix entries of K ΓΓ must be weighted so that the sum of the coefficients on the local interface submatrices are equal to one. For that, we introduce the weighted local interface matrix K w Γ i Γ i that satisfies

K ΓΓ = N i=1 R T Γ i K w Γ i Γ i R Γ i
, where we recall that R Γ i : Γ → Γ i is the canonical point-wise restriction which maps full vectors defined on Γ into vectors defined on Γ i . In matrix terms, a subdomain Ω i may then be represented by the local matrix K i defined by

K i = K I i I i K I i Γ i K Γ i I i K w Γ i Γ i .
(5.7)

The weighted local interface matrix K w Γ i Γ i is an algebraic equivalent of the interface block of the local Neumann matrix K Γ i Γ i (see Section 2.3.2): even though it is not possible, from K, to obtain the true local interface matrix K Γ i Γ i , it is not needed to build an AS preconditioner. Any set of matrices that fulfill the sum condition

K ΓΓ = N i=1 R T Γ i K w Γ i Γ i R Γ i
can be chosen. The global Schur complement matrix S from (5.2) can then be written as the sum of elementary matrices

S = N i=1 R T Γ i S i R Γ i (5.8)
where

S i = K w Γ i Γ i -K Γ i I i K -1 I i I i K I i Γ i (5.9)
is the local Schur complement associated with subdomain Ω i . This local expression allows for computing local Schur complements independently from each other. The Si matrices, involved in the definition of M AS/S , are the restriction of the global Schur complement to Γ i and can actually be built from this data distribution of the S i matrices. To illustrate this construction, let us consider a subdomain Ω i with four neighbors and Γ i = E m ∪E g ∪E k ∪E m the union of the intersections of the boundary of Ω i with each of its neighbors (assuming there is no cross-point, i.e., interface variables shared by more than two subdomains) as depicted in Figure 5.4. The local Schur complement 5.2. The baseline MaPHyS sparse hybrid solver

Ω i Ω j E k E g E m E ℓ
S i =      S (i) m,m S m,g S m,k S m, S g,m S (i) g,g S g,k S g, S k,m S k,g S (i) k,k S k, S ,m S ,g S ,k S (i) ,     
(5.10)

where each block row or column is associated with an edge E j , j ∈ {m, g, k, }.

The matrix Si can be built from the local Schur complement S i by collecting and summing (i.e., assembling in a finite element sense) its diagonal blocks thanks to a few neighbor-to-neighbor communications. For instance, the diagonal blocks of Si associated with the shared interface E k = Γ i ∩ Γ j between Ω i and Ω j is S kk = S At each PCG iteration, one needs to apply the preconditioner M AS/S to a vector r in order to compute z = M AS/S r. The vectors r and z are handled through their restrictions r i = R Γ i r and z i = R Γ i z inside each subdomain. The preconditioner is applied in parallel as follows (5.11) where

z i = R Γ i N j=1 R T Γ j S-1 j R Γ j r = N j=1 R Γ i R T Γ j S-1 j r j = S-1 i r i + j∈N (i) R Γ i R T Γ j S-1 j r j ,
N (i) = {j = i, Γ i ∩ Γ j = 0}
is the set of neighbors of subdomain Ω i . After solving z i = S-1 i r i , the subdomain communicates with each of its neighbors to share the restriction of z i to their common interface and compute z i = z i + j∈N (i) R Γ i R T Γ j z j . After convergence of the PCG, the solution in the interiors can be computed in parallel using (5.4). The solution in I i is

u I i = K -1 I i I i (f I i -K I i Γ i R Γ i u Γ) .
(5.12)

Algorithm 1 summarizes how the classical parallel implementation of MaPHyS can be decomposed into four main phases:

Design of a coarse space correction in MaPHyS

Algorithm 3: Baseline one-level application of the preconditioner (during baseline step (4a) of Algorithm 1)

1 Solve z i = S-1 i r i 2 for j ∈ N (i) do 3 Send R Γ j R T Γ i z i to process j -1 and receive R Γ i R T Γ j z j 4 end 5 Compute z i = z i + j∈N (i) R Γ i R T Γ j z j

Design of a coarse space correction in MaPHyS

The goal of the CSC mechanism is to improve the numerical quality of the preconditioner to reduce the number of iterations, by controlling the condition number of the preconditioned system. A CSC is defined by its coarse space V 0 , and the way it is combined with the first-level preconditioner that it improves. Within a purely algebraic solver, the construction of the solver can only rely on the information provided by the application, which is K and f . However, in MaPHyS, it is possible to provide the matrix K in a distributed input mode through the local matrices K i . If these local matrices are symmetric positive semi-definite (SPSD), we can add a second level of preconditioning such that the condition number and the number of iterations to reach convergence can be bounded, as proved in Chapter 3 following a methodology closely related to the GenEO technique introduced in [START_REF] Spillane | Achieving robustness through coarse space enrichment in the two level Schwarz framework[END_REF].

For the purpose of the study conducted in this chapter, we have incorporated such a CSC to the baseline (one-level) version of MaPHyS as follows. First (Section 5.3.1), during the setup of the preconditioner , a local coarse space V i 0 is computed in each subdomain Ω i ; then, still during the setup of the preconditioner , a coarse matrix S 0 computed from S and V i 0 is computed and factorized. Second (Section 5.3.2), each application of the M AS/S preconditioner is modified to include a coarse solve, leading to the two-level AS preconditioner for the Schur complement problem denoted by M AS,2/S . The setup and application of the two-level preconditioner are detailed in the following subsections.

Setup of the two-level preconditioner M AS,2/S

The setup of the preconditioner (step (3) of Algorithm 1) is performed as detailed in Algorithm 4 in the case of the two-level preconditioner M AS,2/S . Additionally to the one-level setup (Algorithm 2 as well as steps 1-2 of Algorithm 4), the CSC is set up as follows (steps 3-10 of Algorithm 4). In each subdomain Ω i , the following generalized eigenproblem is solved to compute the n v smallest eigenvalues and their corresponding eigenvectors, thus including the kernel of S i if n v ≥ rank(ker(S i))

D -1 i S i D -1 i p i k = λ i k Si p i k ,
where D i is a partition of unity, such that N i=1 R T Γ i D i R Γ i = I, where I the identity matrix (step 3). The number n v of eigenvectors per subdomain can be chosen a priori or adapted depending on a convergence estimate as shown in Section 3.5.3. The CSC we have incorporated into MaPHyS is built in the setup of the preconditioner step of the solver. Its application occurs in the solve step at each iteration of the PCG algorithm. As stated in Section 5.3, a special care has to be taken in order to favor the parallel scalability when designing the CSC mechanism that must be numerically and computationally effective. We have designed five parallel strategies to build and apply the CSC; they differ in the parallel scheme employed for the factorization of the coarse matrix S 0 (step 10 of Algorithm 4) and the corresponding coarse solve (step 7 of Algorithm 5). Indeed:

Solve D -1 i S i D -1 i p i k = λ i k Si p i k for the n v smallest eigenvalues Compute V i 0 = [p i 1 p i 2 • • • p i nv] for j ∈ N (i) do Send R Γ j R T Γ i V i 0 to process j -1 and receive R Γ i R T Γ j V j 0 end Compute V i 0 = [R Γ i R T Γ 1 V 1 0 • • • R Γ i R T Γ N V N 0] Compute S i 0 = V i 0 T S i V i 0 10 Factorize S 0 = N i=1 S i 0 (
i = S-1 i r i for j ∈ N (i) do Send R Γ j R T Γ i z i to process j -1 and receive R Γ i R T Γ j z j end Compute z i = z i + j∈N (i) R Γ i R T Γ j z j // CSC Compute r i 0 = V i 0 T r i Solve z 0 = S -1 0    r 1 0 . . .
• S 0 can be formed as either a dense (D) or a sparse (S) matrix.

• The associated factorization and solve steps can be handled on a single (1) process, on all the N processes (11 in the example of Figure 5.5) of the main MaPHyS communicator (comm_main) or on a sub-communicator comm_CSC of CSC_NP processes (with 1 ≤ CSC_NP ≤ N).

• Parallel distributed direct solvers (and especially sparse solvers such as Mumps and Pastix) often propose both a centralized (C) and a distributed (D) input format for the matrix; in the case of the centralized interface, note that the solver can be executed in a parallel distributed context (on CSC_NP processes), but the matrix and right-hand side must be first centralized (by MaPHyS in our case) on a single process and the solution is finally returned on that process (to MaPHyS).

• If S 0 is handled on a dedicated comm_CSC sub-communicator, it can optionally be built hierarchically (H) or replicated (R) on multiple such sub-communicators.

We now give a brief overview of five combinations we have considered (and implemented) in this thesis, which will be further detailed in sections 5.4.1 to 5.4.5.

• Dense Centralized (DC) strategy: The coarse matrix S 0 is formed as a dense (D) matrix and processed (factorized and solved) with a centralized (C) input matrix format. In the current version, we rely on Lapack, therefore S 0 can be handled by only 1 process. If we note CSC_NP the number of processes associated with the factorization (and corresponding solve step) of S 0 and DC(CSC_NP) the corresponding DC strategy, we can therefore currently only assess DC(1). Note that it would be possible to consider a centralized interface to a distributed dense solver (for instance using ScaPAPACK) on CSC_NP > 1 processes but we did not implement that variant. The comm_main communicator is the only one used (see Figure 5.5a), S 0 being factorized on its root process, CSC_master (P0 in Figure 5.5a). Every iteration when the CSC needs to be applied, the residual is indeed first gathered on the root process of comm_main communicator, a centralized solve is performed and the solution is broadcast back to all the MPI processes (see Section 5.4.1). Such an implementation might be effective for moderate size problems using also a moderate number of MPI processes so that it is not worth exploiting the sparsity of S 0 .

5.4. Parallel strategies for the factorization (and corresponding solve step) of the coarse matrix S 0

• Sparse Distributed (SD) strategy: This variant exploits the sparsity (S) of S 0 and relies on all (CSC_NP = N) the MPI processes to factorize S 0 with a sparse direct solver using a distributed (D) input matrix. Similarly to DC(1), it only requires one communicator (see Figure 5.5a once again). However, here the reason is that all the N processes of the comm_main communicator are involved in the factorization of S 0 (comm_CSC would exactly match comm_main). Compared to DC, S 0 should be large enough and the number of MPI processes moderate enough to allow for an efficient parallel sparse solution using this SD(N) scheme. Section 5.4.2 further details this strategy.

• Sparse Centralized (SC) strategy: Sparse direct solvers may not adopt an optimal strategy for processing small or moderate size matrices such as S 0 with respect to the number of computational units. SC(CSC_NP) dedicates a group of CSC_NP processes (3 in the example of Figure 5.5b) associated with a comm_group subcommunicator (G0 in Figure 5.5b) to factorize S 0 . In this strategy, this comm_group sub-communicator is employed as the comm_CSC communicator. See Section 5.4.3 for the algorithm description.

• Sparse Hierarchical Distributed (SHD) strategy: In this variant, all the MPI processes from the original MaPHyS communicator are first split into NP_CSP balanced sub-communicators (G0, G1, G2 and G3 in Figure 5.5c). All the processes of a sub-communicator compute their contribution to S 0 and make this contribution available on their master (P0, P3, P6 and P9, respectively). All the CSC_NP masters (P0, P3, P6 and P9) of the sub-communicators are hierarchically (H) merged into a new comm_masters communicator (in red in Figure 5.5c) that is used to factorize S 0 . In the SHD strategy, this comm_masters communicator is employed as the comm_CSC communicator. Every iteration, each MPI process provides its contribution for the right-hand side of the coarse problem to its master. The masters then altogether solve the coarse problem and broadcast back the solution to the processes associated with their local communicator (G0, G1, G2 and G3, respectively). See Section 5.4.4 for the algorithm description corresponding to this SHD strategy. We note SHD(CSC_NP) the strategy set up with a comm_masters of CSC_NP processes (4 in the example of Figure 5.5c).

• Sparse Replicated Centralized (SRC) strategy: This variant is similar to SC, but all the entries of S 0 are first redundantly stored on different MPI processes (P0, P3, P6 and P9 in Figure 5.5c) that will act as masters of different sub-communicators (G0, G1, G2 and G3, respectively) of size CSC_NP (equal to 3 for G0, G1 and G2, and to 2 for G3 in this imbalanced example). Each such sub-communicator (G0, G1, G2 and G3) redundantly plays the role of comm_CSC communicators (and thus in particular redundantly factorizes S 0). This variant allows one to express more parallelism with a better locality in the communication scheme when broadcasting the solution once the coarse problem is solved. See Section 5.4.5 for the algorithm description corresponding to this SRC(CSC_NP) strategy and for the role of the comm_masters communicator in that strategy.

Parallel design of coarse space correction for hybrid solvers

The DC(1) and SD(N) strategies do not use another communicator than comm_main, as the CSC is handled either by the master process of comm_main alone (DC(1)), or by all the processes in comm_main (SD(N)). However, in SC(CSC_NP), the CSC is handled by a sub-communicator comm_CSC (equal to comm_group = G0 in Figure 5.5b) of comm_main with CSC_NP processes. In the SHD(CSC_NP) strategy, a sub-communicator comm_CSC of CSC_NP processes is also defined on the comm_masters. The comm_main communicator is partitioned into CSC_NP sub-communicators comm_group(g), where 1 ≤ g ≤ CSC_NP, such that each process in comm_CSC is the master of a comm_group. In the SRC(CSC_NP) strategy, the comm_main communicator is partitioned in N/CSC_NP sub-communicators comm_group(g) (1 ≤ g ≤ N/CSC_NP) of size CSC_NP (or possibly CSC_NP -1 for some of them if N is not a multiple of CSC_NP), each of them playing redundantly the role of a comm_CSC communicator. In the algorithms below, i is the index of the subdomain (such that the associated MPI rank is i-1), and g is the index of the group/sub-communicator.

Forming the matrix S 0 or the right-hand side r 0 is performed through gather -like MPI collective communications (MPI_Gather, MPI_Allgather or a combination of both depending on the schemes, see below). Conversely, the redistribution of the solution z 0 would ideally be performed with scatter -like MPI collective communications. Because the overlapping regions of the AS preconditioner are stored redundantly on each associated process in the considered baseline MaPHyS parallel scheme (see Section 5.2.2), a scatterlike MPI collective handling overlapping regions would be necessary to do so. However, there is no such support in the MPI standard. A two-step scheme could be considered, consisting of a scatter -like MPI collective communication followed by neighbor-to-neighbor communications. We did not implement such a scheme. Instead z 0 is simply broadcast (with MPI_Bcast). The overhead due to this extra data movement has not been significantly penalizing and we keep the study of alternatives for future work.

Before getting in the details of each of those five considered parallel variants we have implemented in MaPHyS, note that the CSC designed for ddmpy in the previous chapter (Section 4.3.12.2) only supported the SD(N), SC(1) and SRC(1) strategies.

Dense centralized (DC) strategy

This strategy consists of using a dense sequential direct solver (e.g., any Lapack implementation) on a single MPI process to apply the CSC. All the processes compute the contribution of their subdomain to S 0 and these contributions are then gathered and summed (i.e., assembled/reduced) onto a single process.

Figure 5.5a gives an example of MPI configuration for this implementation when using 11 MPI processes in comm_main (in black). Only CSC_NP = 1 MPI process is used to factorize the coarse matrix (CSC_master = P0).

For factorizing the coarse matrix, Algorithm 6 shows at line 1 that a first communication is performed in order to centralize and assemble the coarse matrix on the process of rank CSC_master (see Figure 5.6a). Then, the coarse matrix is factorized using a dense solver on the CSC_master process (line 3 in the algorithm and Figure 5.6b).

Then, at each iteration, one has to perform a coarse solve (Algorithm 7): the righthand side is centralized and assembled on process CSC_master (line 1 in the algorithm and Figure 5.7a), before the solution can be computed sequentially by this process (line 4) hierarchically builds the CSC on comm_masters: comm_masters = comm_CSC. SRC(3) redundantly handles the CSC on comm_group(g), 1 ≤ g ≤ 4: G0, G1, G2 and G3.

3 and Figure 5.7b) and broadcast back to all the MPI processes that pick up their part of z 0 (line 5 and Figure 5.7c). Note once again that the subdomains are indexed from 1 to N (index 0 is reserved for the coarse space) whereas the MPI rank are numbered from 0 to N -1, the MPI rank associated with subdomain i is i-1. This implementation consists of using a sparse direct solver with a distributed input mode for the matrix (e.g. the Mumps solver): all the MPI processes in comm_main can take 5. Parallel design of coarse space correction for hybrid solvers part in the coarse factorization and solve. Each process only computes its contribution S i 0 to S 0 and calls the parallel sparse direct solver; the sparse direct solver is then responsible for redistributing the data if needed in order to assemble these contributions and factorize S 0 . Algorithm 8 shows the factorization call for this implementation strategy which, as can be seen, involves no additional communication on MaPHyS side in its setup of the preconditioner step (see also Figure 5.6c). Indeed, the communications required to factorize the coarse matrix are performed by the sparse direct solver internally (see Figure 5.6d).

Regarding the MPI configuration, Figure 5.5a gives an example when using N = 11 MPI processes in comm_main (in black), implying the use of the same CSC_NP = 11 MPI processes for the sparse direct solver to factorize the coarse matrix.

The preconditioner application process is given by Algorithm 9. In this algorithm, we suppose the input mode for the right-hand side of the solver is centralized, as well as for the output of the solution1 , both provided and available on the CSC_master MPI process (P0 in Figure 5.5a). This strategy implies to gather the coarse right-hand side on the CSC_master MPI process (line 1 of the algorithm and Figure 5.7d) and broadcast the coarse solution in return (line 3 and Figure 5.7f) after the solve step (line 2 and Figure 5.7e).

The main advantage of this strategy is that most of the work is delegated to the distributed sparse direct solver: the implementation in MaPHyS is simpler, and the sparse direct solver, having access to all the resources in the main communicator, should be able (in theory) to optimize the parallel factorization and solve. In practice, it is often beneficial to guide the sparse direct solver by running it on a sub-communicator of comm_main, as proposed with the next strategies.

Algorithm 8: SD: compute S -1 0 1 Factorize S 0 using the sparse direct solver in distributed input mode on comm_main Algorithm 9: SD: M AS,2/S application 1 Gather r i 0 and assembly into r 0 on CSC_master 2 Solve z 0 = S -1 0 r 0 using the sparse direct solver on comm_main 3 Broadcast the solution z 0 from CSC_master to all MPI processes in comm_main

Sparse centralized (SC) strategy

In this strategy, the sparse direct solver runs in a sub-communicator comm_CSC of the main communicator comm_main to perform the coarse factorization and solve. For the sparse solvers we have considered in this study, it means that the coarse matrix S 0 must first be gathered and summed on the root process of comm_main (CSC_master). For the factorization of the coarse matrix, Algorithm 10 shows that the coarse matrix is first centralized and assembled on the CSC_master process (line 1 of the algorithm and Figure 5.6e). Then, the assembled coarse matrix is factorized in a distributed way on the communicator comm_CSC by the sparse direct solver (line 3 of the algorithm and Figure 5.6f).

The coarse solve in the application of M 0 (Algorithm 11) requires first the centralization and the assembly of the coarse right-hand side on the CSC_master MPI process (line 1 of the algorithm and Figure 5.7g). Then, the coarse problem is solved by the sparse direct solver on the comm_CSC communicator (line 3 and Figure 5.7h). After this solve, the coarse solution is broadcast on the comm_main communicator (line 6 and Figure 5.7i).

Algorithm 10: SC: compute S -1 0 1 Gather S i 0 and assembly into S 0 on CSC_master process 2 if i -1 ∈ comm_CSC then 3 Factorize S 0 using the sparse direct solver on comm_CSC (with centralized input mode for S 0). 4 end Algorithm 11: SC: M AS,2/S application 1 Gather r i 0 and assembly into r 0 on CSC_master 2 if i -1 ∈ comm_CSC then 3 Solve z 0 = S -1 0 r 0 using the sparse direct solver on comm_CSC 4 end 5 Broadcast the centralized solution z 0 from CSC_master to all MPI processes in comm_main

In terms of communication scheme, this mode is very close to the dense direct solver mode. On the performance side, using a sparse direct solver instead of a dense direct solver becomes more interesting when the size of the coarse system increases, causing scaling issues with the centralized dense direct solver strategy.

Sparse hierarchical distributed (SHD) strategy

This parallel strategy is similar to a strategy proposed in [START_REF] Jolivet | Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems[END_REF]. The coarse problem is factorized and solved using a parallel sparse direct solver on a subcommunicator comm_CSC of comm_main of size CSC_NP. A distributed input mode for the matrix: comm_main is partitioned into CSC_NP sub-communicators comm_group(g) (1 ≤ g ≤ CSC_NP), such that each process in comm_CSC is the master of a distinct 5. Parallel design of coarse space correction for hybrid solvers comm_group(g). To introduce the communicators involved in this strategy, we consider the example given in Figure 5.5c. The main communicator comm_main with 11 MPI processes is split into 4 sub-communicators (in blue: G0 = comm_group(1), . . . , G3 = comm_group(4)). The comm_masters sub-communicator (in red) is formed by the masters (P0, P1, P2 and P3) of group and is employed as comm_CSC communicator.

In this strategy, the coarse factorization (Algorithm 12) is performed in two steps: first, the coarse matrix is partially gathered and summed on the master process of each comm_group(g) communicator (line 1 of the algorithm and Figure 5.6g). Then, the sparse direct solver with distributed matrix input is called to run on the sub-communicator comm_CSC of all these local masters (line 2 and Figure 5.6i).

The corresponding coarse solve is given by Algorithm 13. Similarly to the other strategies, we suppose that the input mode for the right-hand side of the solver is centralized as well as the output of the solution. The gathering of the right-hand side can be performed directly in one gathering step as in the previous three strategies (see figures 5.7a, 5.7d or 5.7g). We present an alternative in two steps, consisting of a first gathering step (line 1 of the algorithm and Figure 5.7j) in each comm_group(g) (1 ≤ g ≤ CSC_NP) followed by another gathering step on the comm_master communicator (line 3 of the algorithm and Figure 5.7k). This two-step variant is equivalent, leading to the centralization and the assembly of the coarse right-hand side on the CSC_master MPI process, but its presentation here will allow to better understand in Section 5.4.5 how the SRC strategy gathering step of the right-hand side differs from the one of the four other variants including the SHD strategy. After that, the coarse problem is solved by the sparse direct solver on the comm_CSC communicator (line 4 and Figure 5.7l). The coarse solution is eventually broadcast on the comm_main communicator (line 5 and Figure 5.7m) as in the previous three strategies.

Notice that if CSC_NP = 1, this SHD(1) strategy is the same as SC(1) (and similar to DC(1) except for the management of the sparsity). On the contrary, if CSC_NP = N , SHD(N) is the same as SD(N). This strategy extends the SC strategy by allowing to replicate the coarse problem on disjoint and equally sized sub-communicators of the comm_main MPI communicator. By similarity with the SHD strategy, these communicators are called comm_group(g); however, here, CSC_NP represents the size of these sub-communicators instead of the number of groups. This strategy allows us to replace a global scatter/gather-like pattern at each iteration involving all processes of comm_main by a more local one in each group.

A parallel distributed solver is used on each sub-communicator comm_group(g) to factorize and solve the coarse system. Figure 5.5a shows an example of this strategy with 11 MPI processes in comm_main. First, the comm_main is split into 4 sub-communicators with CSC_NP = 3 MPI processes (in blue): G0 (comm_group(1)), . . . , G3 (comm_group(4)).

Notice that G3 has one less MPI process because CSC_NP = 3 does not divide N = 11. The masters of all groups are assembled into a comm_masters sub-communicator (in red).

The centralization of the coarse matrix occurs here in two steps. The coarse matrix is first partially centralized and assembled into each comm_group(g) sub-communicator (line 1 in Algorithm 14 and Figure 5.6j). Then, the partially centralized coarse matrices are allgathered and summed on the comm_masters communicator (line 3 and Figure 5.6k). After these communications, the entire coarse system is duplicated on the masters of all the comm_group(g) sub-communicators. Then, the duplicated coarse system is (redundantly) factorized concurrently on each comm_group(g) communicator (line 5 and Figure 5.6l).

The centralization communication scheme of the coarse right-hand side and the solution in Algorithm 15 is performed in a way very similar to the factorization scheme (see figures 5.7n to 5.7p), the coarse solution being eventually broadcast redundantly within each comm_group(g) sub-communicator (line 6 and Figure 5.7q).

This strategy was designed to enhance the scalability of the preconditioner application on a large number of MPI processes. Despite the required allgather operation occuring when centralizing and assembling the coarse right-hand side, replacing the broadcast operation on comm_main in the SC strategy (Algorithm 11 line 5) by a broadcast on each comm_CSC(g) might lead to better parallel performance. (e) gather(main)

G0 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (f) facto(group) SHD(4) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (g) gather(groups) P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (h) ∅ G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (i) facto(masters) SRC(3) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (j) gather(groups) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (k) allgather(masters) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10
(l) facto(groups) (e) solve(main)

P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (f) broadcast(main) SC(3) P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (g) gather(main) G0 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (h) solve(group) P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (i) broadcast(main) SHD(4) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (j) gather(groups) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (k) gather(masters) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (l) solve(masters) P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (m) broadcast(main) SRC(3) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (n) gather(groups) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (o) allgather(masters) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10 (p) solve(groups) G0 G1 G2 G3 P0 P1 P2 P3 P3 P4 P6 P4 P5 P9 P10
(q) broadcast(groups) (5.15)

The equation is discretized using the Finite Element Method. Each local subdomain is a cube of 30 × 30 × 30 elements. Along the vertical dimension, each cube is divided into 6 layers (of 30 × 5 × 30 Q 1 elements) of alternating conductivity k = 1 and k = 10, 000, as presented in Figure 5.8a. The genfem python module3 developed in the context of this thesis is employed for generating the problems. Two different sets of test cases are built from these local cubic subdomains, only differing in the relative positions of the subdomains:

• the cuboid test case (Figure 5.8b), where the total number N of subdomains is decomposed into N = N 1 × N 2 × N 3 such that the global domain is as cubic as possible. Given a number N of subdomains, we use a pre-processing script to compute its prime number decomposition and group them in order to obtain three factors as close as possible. Table 5.1 gives the values used for N 1 , N 2 and N 3 in the experiments.

• the bâton test case (Figure 5.8c), where the N subdomains are all aligned on the horizontal axis (N 1 = N , N 2 = N 3 = 1) in a 1D-decomposition in a similar fashion 5. Parallel design of coarse space correction for hybrid solvers to the Darcy test case in [START_REF] Spillane | Achieving robustness through coarse space enrichment in the two level Schwarz framework[END_REF]. It corresponds to the setup employed for Chapter 4 (see Section 4.4.1) as well as Section 3.5.5 and more details are provided in the present section (in particular in Table 5.1).

In both cases, the global domain is the cuboid The tolerance threshold for the CG algorithm is set to 10 -6 . In the following, we first study the impact of the various parallel strategies for handling the CSC proposed above in Section 5.5.2.2. We then study the opportunity to combine two-level preconditioning (object of this thesis) with two-level (MPI+thread) parallelism (an additional feature of the resulting hybrid solver) in Section 5.5.2.2.

[0, N 1] × [0, N 2] × [0, N 3]

Performance results with MaPHyS (without multithreading)

The baseline MaPHyS solver is compared to the two-level extension proposed in this thesis with 1, 3 or 5 eigenvectors per subdomain. Due to the layered geometry, one can expect [START_REF] Galvis | Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media[END_REF]) that 3 eigenvectors per subdomain are enough to cancel the effect of the heterogeneity. The five parallel strategies introduced in Section 5.4 are compared.

Figure 5.9 shows that the CSC limits the number of iterations to be performed by the conjugate gradient. In the bâton problem, it even allows convergence to be reached with a larger number of subdomains ; with 1 eigenvector per subdomain, the number of iterations remains below 167 iterations, while using 3 eigenvectors per subdomain decreases this number to 14. As expected, increasing the number of eigenvectors per subdomain beyond 3 does not significantly improve the convergence. In the cuboid case, the effect of CSC is not as definite: the number of iterations to reach convergence keeps growing up to 12,288 subdomains, although it is 4 times less than without CSC. This is not in contradiction with the bound on the condition number in Chapter 3, in which there is a factor N 2 c , where N c -1 is the maximum number of neighbors of a subdomain. In the bâton test case, each 5.5. Experimental study q q q q q q q q q q q q q q q q q Bâton Cuboid 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2 6 1 4 4 1 2 2 8 8

Number of subdomains

Number of iterations

Number of eigenvectors/subdomain (n v): q 0 1 3 5 Figure 5.9: Number of iterations to reach convergence (Ku-f / f < 10 -6). Increasing the number of eigenvectors per subdomain from 0 to 3 improves the convergence.

5. Parallel design of coarse space correction for hybrid solvers interior subdomain has only two neighbors (one on each side), and N 2 c = 3 2 = 9. In the cuboid test case, each interior subdomain has 26 neighbors (including those that only share a corner), and N 2 c = 27 2 = 729. Since the local subdomain geometry is the same in both test cases, all the other factors in the bound are the same. This negative effect of the number of neighbors in the cuboid case could be mitigated by applying the CSC using a deflation (or projection) mechanism (AS,D/S, developed for ddmpy but not incorporated into MaPHyS) instead of the additive correction (AS,2/S, made available for both ddmpy and MaPHyS) from Equation (5.13). One can also note that the maximum number of subdomains in one direction is only 32 in the cuboid case; we expect that the number of iterations would stop increasing if experiments with an even larger number of subdomains were to be performed.

The reduction of the number of iterations achieved by using a CSC and increasing the number of eigenvectors per subdomain comes at a cost: one has to factorize and solve a global coarse problem whose size increases with the total number of subdomains and the number of eigenvectors per domain. This reflects in the time spent in the setup of the preconditioner (Figure 5.10) and in the solve step (Figure 5.11). The total time to solution for 1 right-hand side is given in Figure 5.12. q n The results show that the SD and DC strategies do not scale and can only be used on a small number of subdomains. For the SD strategy, this is a limitation of distributed 5.5. Experimental study q n 5. Parallel design of coarse space correction for hybrid solvers q n 5.5. Experimental study direct solvers: the granularity of the problem (between n v = 1 and n v = 5 unknowns per process) is too small and the solver is not able to use efficiently all the CPU cores available. On the contrary, the DC strategy centralizes the problem on one core. The scalability of this strategy is limited by both the ability of one single process to solve the global coarse problem and the communications needed to centralize the right-hand side and broadcast the solution to the other processes.

v = 1 n v = 3 n v =
v = 1 n v = 3 n v =
v = 1 n v = 3 n v =
The SC strategy allows the coarse problem to be solved on a sub-communicator of appropriate size, ensuring that the direct solver is used at the most efficient granularity. However, global communications are still needed since the coarse problem is centralized onto the sub-communicator. The SRC strategy performs slightly better by replicating the coarse problem, splitting the global communications into a set of local communications inside each communicator. The SHD strategy is even faster for the setup of the preconditioner , while being very competitive for the solve step, yielding the best overall scalability of the total time to solution.

As explained above, the CSC is much more effective on the bâton test case compared to the cuboid test case, for two reasons: first, each subdomain has 9 times more neighbors in the cuboid than in the bâton. As a result, both the number of iterations and the cost of all neighbor-to-neighbor communications are higher in the cuboid case. The second reason is that the number of iterations needed to reach convergence without CSC grows linearly with the diameter of the domain, which is N 1 = N for the bâton and max(N 1 , N 2 , N 3) ≈ N 1 3 for the cuboid. As a result, the baseline solver without CSC performs much better on the cuboid test case, and the CSC is not as much needed as in the bâton test case.

Performance results with MaPHyS, combining two-level preconditioning with two-level parallelism

MaPHyS can benefit from two-level (MPI+thread) parallelism by using several cores to handle each subdomain. Keeping the number of cores constant, two-level parallelism makes possible to reduce the total number of subdomains (while increasing their respective sizes) and can improve the robustness of the iterative solve in MaPHyS. This feature can be used together with the newly implemented CSC described in the present chapter. We first consider experiments on the test example associated with a long bâton as described on Figure 5.8. The dimensions of the bâton are: (30 × 3072 + 1) × 31 × 31, that results in a linear system of size larger than 88 million. We vary the number of subdomains from 3,072 down to 128, while increasing the number of threads per subdomain from 1 up to 24, so that the total number of cores is kept constant equal to 3,072; the number of unknowns per core remains constant. The heterogeneity of the problem has been set to 10,000. The sparse direct solver employed both within the subdomains and for the CSC is Mumps. We display in Figure 5.13 the total time to solution decomposed into the time to factorize the local matrices and compute the local Schur complements (denoted Schur Factorization, in blue), the time spent in setting up the preconditioner (denoted Pcd Setup, in green) and eventually the time in the iteration loop plus the solution inside the subdomains (denoted Iterative Solve, in red); the number of PCG iterations needed to reach convergence is displayed above the bars representing the time of these three steps. The first set of experiments was conducted without CSC (first subfigure on the 5. Parallel design of coarse space correction for hybrid solvers left: AS 1 /S). It can be observed that the MPI+threads implementation allows us to solve linear systems that are not tractable without this two-level implementation because the numerical behaviour of the scheme is too poor on a large number of domains. The second observation is that the best balance between the number of processes and threads depends on whether the linear system has to be solved once or for several right-hand sides given in sequence. For the first situation, 4 threads per MPI process gives the shortest time to solution. For multiple right-hand sides, 12 threads per process exhibits the best trade off as the time in the setup is reasonable and the iterative part is the fastest. This is particularly interesting on non SPD problems where generic scalable preconditioners might not exist. Although not discussed here, this MPI+thread implemenation also allows for a better memory scalability. We refer to the PhD thesis of [START_REF] Nakov | On the design of sparse hybrid linear solvers for modern parallel architectures[END_REF] for a complete description of this two-level MPI+thread implementation.

We have considered two other sets of experiments with CSC, referenced to as AS G+3 /S, since: (1) MaPHyS is based on AS/S, (2) we have incorporated an additive (+) correction, (3) with a GenEO (G) coarse space, (4) parametrized here with 3 vectors per subdomain. The first other set is based on the SRC parallel strategy (second subfigure in the middle: AS G+3 /S -SRC(12)). The second other set is based on the SC parallel strategy (third subfigure on the right: AS G+3 /S -SC(12)). In both cases, CSC_NP = 12 cores are dedicated for the CSC. A few observations can be made. On that example the two strategies perform very similarly in terms of performance. Second, for this scale of problem and platform sizes, the CSC with one thread per process achieves the best performance as the CSC already performs a very good numerical job.

Experimental study

The weak scalability of the CSC used together with two-level parallelism is assessed on a bâton as described on Figure 5.8 but with larger subdomains. Each subdomain is a cube of 90 × 90 × 90 elements. The number of threads per subdomain is set to 12, which corresponds to half the number of cores per node on the GENCI Occigen platform, and allows MaPHyS to be tested on a larger number of unknowns. The total number of unknowns of the problem is (N × 90 + 1) × 91 2 where N is the number of subdomains. For N = 1, 344, there are more than 1 billion unknowns. The performance results of Ma-PHyS are displayed in Figure 5.14, where the numbers on top of the bars are the numbers of iterations. We compare the performance of the baseline MaPHyS version (left part "No_csc" of the figure) relying on the Mumps internal sparse direct solver to the performance of MaPHyS with a CSC relying on a sparse centralized parallel strategy handled on a sub-communicator of 24 processes (SC(24)), relying on either Mumps (center) or Pastix (right) internal sparse direct solver for performing the Schur Factorization step.

Several observations can be made. First, because we consider weak scaling, the time spent in the Schur factorization is constant. Second, we can observe some artefacts when there are only two subdomains. Indeed, the local Schur complement are twice smaller than in the other test cases (the subdomain interface is composed of only one face, instead of two in the other experiments). Furthermore, the local component of the one-level preconditioner is equal to the global Schur complement, so that CG converges in one iteration. Third, without the CSC (left part "No_csc"), one can observe the expected growth of the number of iterations that is essentially proportional to the number of domains, yet limited thanks to the usage of multithreading which allows for reducing the number of subdomains (thus by a factor of 12 in this setup). With the CSC preconditioner (center and right), we can see that the number of iterations remains constant while most of the time is spent in the setup of the preconditioner, mainly in the solution of the local generalized eigenvalue problem. All the numerical kernels scale well as the time does not depend on the number of subdomains. The usage of Mumps (center) and Pastix (right) internal sparse direct solvers both led to very high performance, with a slight advantage when relying on Pastix. The results obtained with Pastix correspond the latest research version at the moment the experiments were conducted while the ones obtained with Mumps correspond to the community released version of the direct solver (and does not include all the multithreading features designed in Sid Lakhdar (2014)).

This figure also illustrates the hybrid nature of the linear solver that bears some resemblance to the direct methods where the setup, that corresponds to the factorization for direct methods, is also the most time consuming part of the solution and can be amortized if several right-hand sides have to be solved. For instance, on 1344 subdomains, the problem with 10 9 unknowns has a setup time of 19 min. for a solve time of 15.5 s. per right-hand side. On the other hand, the cost of the iterative part of the hybrid solver, because the number of iterations is monitored by the CSC mechanism, does scale perfectly which is usually not true for the forward/backward substitution phases of the sparse direct solvers.

Both the bâton and cuboid Darcy test cases are very regular due to the geometric domain decomposition: all the subdomains are identical to one another, thus eliminating all load-balancing issues from the analysis. We therefore now consider more irregular test cases arising from airflow and plasma propulsion applications from the Alya and AVIP 5. Parallel design of coarse space correction for hybrid solvers simulation software, respectively. We do not study the combined effects of two-level preconditioning with two-level parallelism in the following but focus only on the former effect, main object of this thesis.

A respiratory airflow application using the Alya code

Test case

Alya is a high performance computational mechanics code to solve coupled multi-physics / multi-scale problems, which are mostly coming from engineering applications [START_REF] Vázquez | Alya: Multiphysics engineering simulation toward exascale[END_REF]. The physics considered in this study is the incompressible Navier-Stokes equations. They are solved implicitly, using an algebraic fractional step based strategy described in [START_REF] Houzeaux | Extension of fractional step techniques for incompressible flows: The preconditioned orthomin (1) for the pressure schur complement[END_REF]. We consider here the simulation of the airflow through the nose. The mesh is characterised by a very elongated geometry with small passages in the nasal cavity, leading to a pseudo-1D elongated domain decomposition when parallelizing through partitioning the mesh, see Figure 5.15. Due to the elongated geometry, low frequencies are hardly damped with a one-level DDM approach, motivating the use of a CSC.

The discretization of the problem leads to a coupled algebraic system to be solved at each time step. This algebraic system is split to solve independently the momentum and the continuity equations. At each time step, the momentum and continuity equations are solved repeatedly until the solution converges to the monolithic solution. Due to the splitting strategy, it is necessary to solve the momentum and the continuity equations twice per time step. A in-house Alya solver is used to solve the unsymmetric momentum equation, while the continuity equation is SPD and is solved using the MaPHyS solver. For a complete description of this test case, we refer to [START_REF] Calmet | Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation[END_REF].

5. Parallel design of coarse space correction for hybrid solvers

Performance results with MaPHyS

The parallel benchmarks have been conducted on 264, 528, 1,056 and 2,112 CPU cores. In this configuration, we have thus employed 264, 528, 1,056 and 2,112 MPI processes, respectively. Since Alya has a dedicated "master" MPI process, these calculations were performed with 263, 527, 1,055 and 2,111 subdomains, respectively. The stopping criterion is set to 10 -6 with a maximum of 2,000 iterations. For each experiment, 10 time steps are performed, each time step requiring to solve the linear systems twice. Number of processes Time (seconds), log scale Number of eigenvectors/subdomain (nv): q 2 3 5 CSC strategy: q q q q q DC(1) SC(12) SD(N) SHD(N/132) SRC(12)

(a) Total time to solve the continuity problem Number of processes Time (seconds), log scale Number of eigenvectors/subdomain (nv): q 2 3 5 CSC strategy: q q q q q DC(1) SC(12) SD(N) SHD(N/132) SRC(12)

(b) Global preconditioner application time q q q q q 1 2 4 264 528 1056 2112

Number of processes speed-up, log scale Number of eigenvectors/subdomain (nv): q 2 3 5 CSC strategy: q q q q q DC(1) SC(12) SD(N) SHD(N/132) SRC(12)

(c) Speedup in solving the continuity equation q q q q q 30 60 90 120 264 528 1056 2112

Number of processes

Efficiency (%)

Number of eigenvectors/subdomain (nv): q 2 3 5 CSC strategy: q q q q q DC(1) SC(12 The five parallel strategies proposed in Section 5.4 for handling the CSC are assessed, with a number of n v = 2, 3 and 5 eigenvalues per subdomain. We only report the performance for the number of eigenvalues n v leading to the lowest total computation time, the shape of the points indicating the associated n v value (circle, triangle and square for n v = 2, 5.5. Experimental study 3 and 5, respectively). As the matrix changes between each time step, MaPHyS has to perform several times its factorization step in order to factorize the local interior problems and compute the local Schur complements. However, MaPHyS has been set up so that the preconditioner (both for the local and coarse components) remains fixed through the ten considered time steps. If necessary, it could be set up to be recomputed at a given frequency but that was not critical in our experiments and we do not report further on that option.

Consistently with the results presented in Section 5.5.2, SD strategy does not scale: the distributed sparse direct solver is not able to efficiently use all the available computing units without further guidance. The DC strategy does not scale well either when the size of the coarse space increases. Instead of providing the global communicator to the direct solver and letting it handle data distribution as in SD, the SC strategy centralizes the coarse matrix on a process and provides a smaller sub-communicator of size 12 to the sparse direct solver. This strategy scales well up to 1,056 processes, but its parallel efficiency drops from 90% to 50% on 2,112 processes. The hierarchical SHD strategy does not perform better. The replicated SRC strategy outperforms all the other strategies with a parallel efficiency of 70% on 2,112 processes with respect to 264 processes.

Performance results with ddmpy

The performance of 14 ddmpy solvers was also assessed on the same respiratory test case with 1,055 subdomains (Figure 5.17). Besides the preconditioners already introduced in Section 4.4.1, the AS G+3 preconditioner is an additive two-level AS preconditioner that uses a GenEO coarse space with 3 vectors per subdomain (see Section 3.4). These results confirm the relevance of two-level methods based on the Schur complement system. However, on this test case, using the adaptative coarse space with 3 vectors per subdomains instead of the simpler partition-of-unity coarse space does not improve significantly the convergence, as can be seen by comparing the results of the AS 2 /S and AS G+3 /S methods for additive CSC or the AS D /S and AS GD3 /S methods for deflated CSC.

Note that the deflated preconditioners in ddmpy are based on A-orthogonal projections and should be recomputed if the matrix A changes. As a result, the best method for this airflow test case is the additive two-level AS preconditioner based on a partition-of-unity coarse space applied on the Schur complement system (AS 2 /S).

A plasma propulsion application using the AVIP code

Test case

Electric propulsion can reach higher exhaust velocities compared to chemical systems, resulting in lower propellant mass requirements and a significant possible saving for the space industry. Among the different electric propulsion systems, Hall effect thrusters are used for spatial propulsion since the 1970s. However inside a Hall thruster, complex physical phenomena such as erosion or electron anomalous transport which may lower thruster efficiency and lifetime, are not yet fully understood. Thanks to HPC, numerical simulations are now considered for understanding the plasma behavior. With the renewed interest for such electric propulsion to supply small satellites, parallel numerical solvers able to predict accurately the real thruster efficiency have become crucial for industry. Accuracy and reliability are of course essential and different numerical plasma models with various orders of accuracy have emerged. On the one hand, Particle-In-Cell (PIC) models follow the trajectories of a representative number of physical particles called macroparticles in the presence of electromagnetic fields. They are often coupled to a Monte Carlo (MCC) module to deal with statistical collisions and a Maxwell or Poisson solver to solve electromagnetic fields. On the other hand, fluid models describe the macroscopic behavior of each population of particles.

The design and development of the AVIP code is an on-going joint effort between CERFACS and the Laboratoire de Physique des Plasmas at École Polytechnique. The AVIP code solves the plasma equations in complex industrial geometries using 3D unstructured parallel efficient schemes based either a PIC approach or a fluid methodology. While full 3D PIC simulations of a Hall thruster still require very high computational resources, fluid models provide 3D results on the plasma behavior inside the discharge channel in a reasonable time . On the other hand the PIC approach is more accurate and does not rely on additional hypotheses as the fluid model does. Finally, the electric potential is resolved via the solution of a Poisson equation. For more details on AVIP and the selected models we refer to [START_REF] Joncquieres | A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster[END_REF].

When the plasma is simulated using the PIC model, highly computing intensive calculation on the particles are involved that further parallelizes naturally. Consequently, the solution of the linear systems resulting from the discretization of the Poisson equation becomes rapidly a bottleneck on large computing platforms. Its solution requires the use of a scalable linear solver in the strong sense; that is, that remains effective when the 5.5. Experimental study number of unknowns per CPU core shrinks while the number of cores increases to keep the PIC calculation affordable. Figure 5.18 shows the strong scalability experiments performed on a mesh with 12 million cells using PRACE Tier-0 computing resource, leading to a linear system with about 6 million unknowns for the Poisson system, and 2.5 million particles. For those experiments, the linear system is solved with the "best" PETSc solver selected by the AVIP team after many experiments with various solvers available in PETSc [START_REF] Balay | PETSc Web page[END_REF] (it corresponds to a MinRes with local SOR preconditioner). It can be seen that most of the numerical kernels involved in the PIC calculation scale almost perfectly (sorting, MCC, interpolation, transport) while the time to solution for the Poisson problem increases for a number of cores larger that 2,000; that is, when the number of unknowns per core becomes lower that 3,000. Figure 5.19 shows a strong scalability comparison between the PETSc solver and MaPHyS (without CSC, as this feature was not available at the time the collaboration between the AVIP and MaPHyS teams started), still on a PRACE Tier-0 machine. We can first observe that MaPHyS performs better than PETSc on this half million problem and that MaPHyS also exhibits strong scalability issues when the number of unknowns per core becomes smaller than 1,000 (daily calculations of AVIP use a few thousands of unknowns per core). Although not described here, not only did MaPHyS outperform PETSc in terms of time to solution, but MaPHyS was also much more robust to the heterogeneity in the mesh size of the considered test case. This heterogeneity translates into heterogeneity in the linear system entries, which often prevents the PETSc solver to converge to the targeted accuracy. Those results and observations motivated the integration of MaPHyS in AVIP and the complementary performance study presented in the next section.

Performance results with MaPHyS

Since each iteration in AVIP requires a solution with the same matrix, the setup step is performed only once and its cost becomes negligible in comparison with the accumulated time of solving for a different right-hand side at each iteration. As a result, the performance of the Poisson solver in AVIP is governed by the performance of the solve step.

The performance of the five CSC strategies applied on the AVIP test case with n v = 3, 5 and 10 eigenvectors per subdomain are presented in Table 5.2 and Figure 5.20. Using a tolerance of 10 -10 as a threshold for the stopping criterion in MaPHyS (as needed for AVIP simulations), the best performance is achieved using the SC(24) strategy with a coarse space of n v = 3 eigenvectors per subdomain. The solve time with this CSC strategy is 4.004 s. which is an improvement of 40% from the solve time using the baseline one-level version of MaPHyS (6.831 s.). The four other strategies have a solve step that is about 25% longer than SC.

Within a PRACE Tier-0 project the AVIP team had been allocated 30 million corehours; most of the simulations were performed using MaPHyS without the CSC feature presented in this chapter. If the CSC implementation in MaPHyS had been available at the beginning of the PRACE Tier-0 project, extrapolating the MaPHyS performance displayed in Table 5.2, the use of AS G+3 /S instead of AS 1 /S would have allowed to save about 6 million core-hours (a fifth of the total allocation), if all the runs had been 5. Parallel design of coarse space correction for hybrid solvers Figure 5.18: Parallel performance of the AVIP code on a mesh with 12 million elements and 2.5 million particles performed on about a thousand of cores where the solution of the Poisson equation roughly corresponds to half of the time to solution (the additional setup cost is negligible due to the number of successive solves). This interpolation is computed based on the performance observed with a stopping criterion threshold equal to 10 -10 , that covers most of the AVIP calculation. This simple extrapolation exercise highlights how crucial is the choice of efficient parallel linear solvers in computational sciences and the continuous need to design numerically and computationally efficient parallel solvers.

Performance results with ddmpy

The performance of 13 ddmpy solvers was also assessed on the same test case and is reported in Figure 5.21 and Table 5.3. Unfortunately, the computation of the GenEO coarse space for the Schur complement system on that test case resulted in an error (not further investigated at the time of writing this thesis), and the preconditioners AS G+3 , AS GD3 and N N G+3 could therefore only be applied on K and not on the interface system S.

For a tolerance of 10 -10 , the best solver regarding the total time to solution is a deflated AS preconditioner based on a partition-of-unity coarse space (AS D /K). The solver with the fastest solve step is AS GD3 /K solver, which is 4 times faster that the baseline AS 1 /S 5.5. Experimental study

Conclusion

In this chapter, we introduced and compared five parallel strategies for the coarse space correction presented in Chapter 3. After the algorithms corresponding to these strategies are exposed, they are tested on 3 different test cases, including a heterogeneous diffusion problem with up to one billion unknowns on 16,128 cores. These parallel strategies for two-level hybrid solvers are not restricted to the computation of coarse space correction. They can be applied for any application where a sparse linear system needs to be factorized and solved with a very small granularity (only a few unknowns per MPI process). Our experiments show that distributed sparse direct solvers should not be expected to handle well such extreme data distributions. On the contrary, the corresponding Sparse Distributed strategy was always one of the two least scalable strategies.

Good parallel performance is achieved by redistributing the data and handling the 5.6. Conclusion

Conclusion

In this thesis manuscript, we investigated different ways to design algebraic hybrid solvers that use domain decomposition ideas and principles. In Chapter 2, we proposed an overview of classic domain decomposition methods in a continuous setting as well as their algebraic counterparts. Then, in Chapter 3, we analyzed the convergence of a subset of these methods known as two-level abstract Schwarz methods for symmetric positive definite (SPD) problems and proposed a new coarse space for these methods based on the GenEO methodology [START_REF] Nataf | A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps[END_REF][START_REF] Spillane | Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms[END_REF]Spillane et al., 2014a) such that the convergence rate is independent of the number of subdomains and the difficulty of the original problem. Interestingly, the proposed methodology turns out to be a comparison of the considered particular abstract Schwarz method with generalized versions of both Neumann-Neumann and Additive Schwarz for tackling the lower and upper part of the spectrum, respectively. We furthermore showed that the application of the considered coarse space corrections in an additive fashion is robust in the Additive Schwarz case although it is not robust for abstract Schwarz methods in general. In Chapter 4, the relevance of python as a language for designing HPC domain decomposition solvers has been assessed and a new parallel toolbox ddmpy was presented using a literate programming approach for reproducible science. Its flexibility allowed us to design, study and compare a large spectrum of solvers. In Chapter 5, we considered the fully-featured MaPHyS solver, implementing an Additive Schwarz on the Schur. We incorporated a coarse space correction in an additive fashion (shown to be robust in the Additive Schwarz case in Chapter 3). We designed multiple parallel strategies whose parallel efficiencies were assessed thanks to the integration of MaPHyS in two large application codes, namely, Alya developed at BSC and AVIP jointly developed by CERFACS and Laboratoire de Physique des Plasmas at École Polytechnique. For this latter code, part of the parallel experiments were conduced on a PRACE Tier-0 machine within a PRACE Project Access.

This work opens new challenges and perspectives that are detailed in the following sections:

• the robust preconditioners presented in Chapter 3 can only be applied on SPD problems and two different ideas for solving general (non SPD) problems are the 6.2. Robust methods for general (non SPD) problems following:

use a N -Lagrange formulation with a transmission matrix T i supplied by the application alongside the local matrix K i . With a well chosen transmission matrix, no coarse space is needed to ensure good convergence [START_REF] Japhet | Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d'Orde 2[END_REF] use a multipreconditioned approach [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Greif | Multi-preconditioned GMRES[END_REF][START_REF] Spillane | An adaptive multipreconditioned conjugate gradient algorithm[END_REF] to enrich the search space of iterative methods during the iterations instead of building a coarse space beforehand.

• the implementations presented in chapters 4 and 5 use the Fortran 90 and python languages, respectively. Whereas the python language brings agility, flexibility and expressivity without compromising on the performance, we experienced some difficulties for deploying the python ecosystem on clusters for large-scale experiments.

Although we solved the encountered issues, it results in a fragile environment. This led us to consider of rewriting of both the MaPHyS solver and the ddmpy toolbox in C++ in order to benefit from the strengths of both high-level languages (such as python) and compiled languages (such as Fortran). The new library will be available at https://gitlab.inria.fr/solverstack/maphys/maphyspp.

6.2 Robust methods for general (non SPD) problems 6.2.1 Algebraic interface for the N -Lagrange and for the Optimized Schwarz methods

The N -Lagrange method [START_REF] Nataf | Domain Decomposition Methods for Fluid Dynamics[END_REF] introduced in sections 2.5.7 and 2.6.5 is a method of choice for unsymmetric problems [START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF][START_REF] El Bouajaji | Discontinuous Galerkin discretizations of Optimized Schwarz methods for solving the timeharmonic Maxwell equations[END_REF]. Both the N -Lagrange and the Optimized Restricted Additive Schwarz [START_REF] St-Cyr | Optimized multiplicative, additive, and restricted additive Schwarz preconditioning[END_REF] methods are based on a parallel Schwarz method with Robin transmission conditions as introduced by Lions (1988Lions (, 1989[START_REF] Lions | On the Schwarz alternating method III: A variant for nonoverlapping subdomains[END_REF]. The algebraic N -Lagrange method and the ORAS method can be applied algebraically as long as a transmission matrix T i is provided to the solver alongside the subdomain matrix K i . The N -Lagrange method is implemented (Listing 57), and a symmetric version of ORAS is implemented as a Robin-Robin preconditioner (Listing 62) in ddmpy and also available in the latest releases of MaPHyS. They could however not be tested with an optimized transmission matrix for lack of a test case: discretizing a transmission condition was outside the scope of the work presented in this thesis, and we were not yet able to obtain it from any of the applications that use MaPHyS as an internal solver. In an on-going work in collaboration between the Inria HiePACS and Nachos teams, Cristobal Samaniego Alvarado is comparing the Robin-Robin preconditioner in MaPHyS with the internal N -Lagrange solver considered in [START_REF] Li | A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations[END_REF].

Multipreconditioned solvers

Another promising method for improving the convergence of an algebraic DD solver is to use multipreconditioning [START_REF] Bridson | A multipreconditioned conjugate gradient algorithm[END_REF][START_REF] Greif | Multi-preconditioned GMRES[END_REF]. Spillane (2016)

Conclusion and perspectives

showed that in the SPD case, this method could be used to generate a coarse space for abstract Schwarz preconditioners during the CG iterations, eliminating the need for the costly solution of the generalized eigenproblems in the GenEO coarse space. After a sufficient number of these multipreconditioned iterations, one can automatically switch to regular deflated PCG iterations.

Multipreconditioning in the context of aS methods is akin to a form of optimized variable preconditioning: the aS preconditioner

M aS = N i=1 R T i A † i R i
is replaced by

M µ aS = N i=1 µ i R T i A † i R i
where the vector µ = (µ 1 , . . . , µ N) T is chosen at each iteration as to minimize a norm of the error.

C++ implementation

The methods introduced in chapters 2 and 3 were implemented in chapters 4 in python and 5 in Fortran 90, respectively. Although it is much easier and more pleasant to develop and maintain a module in python, we encountered some challenges using this language, as explained in Section 4.5. This led us to initiate the development of a new library1 in C++. Most of the structures presented in Section 4.3.2 for python have C++ equivalents. Most notably, it is possible in C++20 to use templates and concepts to have duck-typing at compilation. Using the boost.python library [START_REF] Abrahams | Building hybrid systems with Boost[END_REF] or the SWIG interface compiler [START_REF] Beazley | SWIG: An Easy to Use Tool for Integrating Scripting Languages with C and C++[END_REF], this new library will be available from ddmpy.

 context 1.1.1 Newton, Leibniz and the introduction of Calculus

Figure 1

 1 Figure 1.1: Problem (1.4): steady-state heat equation in a rectangle, with a Dirichlet BC on the left and Neumann BC on the top, right and bottom.

Ω

 ∆u v dΩ = Ω -v dΩ,which after integration by parts gives the symmetric weak formulation find u such that ∀vΩ ∇u • ∇v dΩ = Ω v dΩ.

 (a) matrix with 54% of nonzero elements.(b) matrix with 3% of nonzero elements.

Figure 1 . 4 :

 14 Figure 1.4: Sparse matrices contains only a very few percentage of nonzero elements.With 54% of nonzero elements the matrix in (a) cannot be referred as sparse whereas, with only 3% of non zero elements, the matrix in (b) satisfies a sparsity criterion.

 Figure 1.5: The solution to problems (1.4), in red, and (1.7), in blue. The solutions are constant along the y axis (not represented).

 in step 3: 3. a) a graph partitioner is used to partition the set of unknowns, 3. b) Ku = f is replaced by an equivalent formulation N i=1 R T i A i R i = b using the partition from 3. a), 3. c) local linear systems are solved using direct solvers, 3. d) the global problem is solved using an iterative solver.

 2. a) the global domain is decomposed in smaller subdomains with new BC on the interfaces between subdomains, 2. b) the local problems are discretized, yielding a set of local algebraic problems A i x i = b i , 3. a) an algebraic linear solver is used to compute the solution of the local subproblems, 3. b) an iterative solver is used enforce the compatibility of the solution between the subdomains.

 the interior and u Γ = v D on Γ. Replacing u I i and u Γ by this Dirichlet solution in the Neumann problem (2.16) gives a Neumann BC

Figure 2 . 5 :

 25 Figure2.5: Three decompositions in four subdomains for the same global domain. An interface unknown can be shared by two subdomains (green) or more (red), in which case it is called a crosspoint. Crosspoints occur where interfaces cross with one another, as in 2.5a. They can be avoided using a 1D decomposition as in 2.5b or a different discretization method such as the Hybridizable Discontinuous Galerkin (HDG) method[START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF] as in 2.5c.

Figure 3

 3 Figure3.1: Imposing an a priori bound χ on the condition number using deflation. Whatever the chosen target χ, we ensure that the condition number of the iterative problem κ(MA) remains below χ. Each preconditioner (AS, NN, Sh) can be applied either on the original matrix K (aS/K), left, or in a substructuring context on S (aS/S), right.

Figure 3

 3 Figure 3.2: Number of iterations when imposing an a priori bound χ on the condition number.

Figure 3

 3 Figure3.3: Maximum size of the local coarse space when imposing an a priori bound χ on the condition number. Note that AS and NN overlap with each other. In most cases, only few vectors per subdomain are enough but the least robust methods can induce a relatively large local coarse space V i 0 in some cases.

 Figure3.5: Up to a certain level, the sparsification does not break the robustness of the method: using a big enough coarse space (n v = 5), it is possible to discard 88.8% of the entries in the factorization of the preconditioner without losing convergence.

}

 4.2.1 Comparison of C and python for basic linear algebra operations 4.2.1.1 Vector addition in C and python (daxpy) When adding two vectors of size n, 2n read operations, n write operations, and n additions are performed: each computation requires 3 data accesses. The performance is here essentially governed by the time needed to transfer data between the CPU and the memory: it is said to be memory-bound, by opposition to compute-intensive operations such as the matrix product in Section 4.2.1.2 which is said to be compute-bound. Several implementations for the addition are presented in listings 1 to 6 and compared. void loop__C(const double* x, double* y, const unsigned int n) { for (unsigned int i = 0; i < n; i++) { y[i] += x[i]; } Listing 1: loop/C: straightforward implementation of y ← x + y using loops in C. void blas__C(const double* x, double* y, const unsigned int n) { cblas_daxpy(n, 1., x, 1., y, 1); } Listing 2: blas/C: HPC implementation of y ← x+y using the optimized BLAS function (daxpy) as provided by the Intel MKL library called from C. def loop__python(x, y):

4. 2 .

 2 Performance of some elemental operators in python def loop_type__cython(x, y): cdef int i, n = len(x) cdef double *x_ = <double *>malloc(n * sizeof(double)) cdef double *y_ = <double *>malloc(n * sizeof(double))

 Listing 5: numpy/python: implementation of y ← x + y using the numpy module in python, where the input are of type numpy.ndarray instead of list. def blas__python(x, y): return scipy.linalg.blas.daxpy(x, y) Listing 6:

Figure 4 . 1 :

 41 Figure 4.1: Time needed to perform a vector addition (daxpy).

Figure 4 . 2 :

 42 Figure 4.2: Performance of the vector addition (daxpy).

 void loop__C(const double* A, const double* B, double* C, const unsigned int n) { for (unsigned int i = 0; i < n; i++){ for (unsigned int j = 0; j < n; j++){ for (unsigned int k = 0; k < n; k++) { C[j + n*i] += A[k + n*i] * B[j + n*k]; loop/C: straightforward implementation of C ← AB + C using loops in C. void blas__C(const double* A, const double* B, double* C, const unsigned int nblas/C: HPC implementation of C ← AB + C using the optimized BLAS function (dgemm) as provided by the Intel MKL library called from C. The results presented in figures 4.3 and 4.4 and in Table4.2 show that the optimized MKL dgemm routine used in the blas/C version (Listing 8) is 60 times faster than the loop/C version (Listing 7), 990 times faster than the loop_cython version (Listing 9), 2,857 times faster than the loop/python version (Listing 9). The loop_type/cython implementation (Listing 10) performs quite similarly to the loop/C version: the overhead of converting the python list to C arrays is negligible for large matrices since it involves O(n 2) data movements and the matrix product involves O(n 3) operations. The numpy/python version (Listing 11) is only 5% slower than the blas/C version. However, the blas/python (Listing 12) version is 30% slower. This may come from some known restrictions on the wrapper issue 2 (this performance overhead was not investigated further).

4. 2 .

 2 Performance of some elemental operators in python def loop__python(A, B, C): n = len(A) for i in xrange(n): for j in xrange(n): for k in xrange(n):

 def loop_type__cython(A, B, C): cdef int i, j, k, n = len(A) cdef double *A_ = <double *>malloc(n*n * sizeof(double)) cdef double *B_ = <double *>malloc(n*n * sizeof(double)) cdef double *C_ = <double *>malloc(n*n * sizeof(double)) for i in xrange(n): for j in xrange(n):

 for i in xrange(n): for j in xrange(n): for k in xrange(n): C_[j + n*i] += A_[k + n*i] * B_[j + n*k] for i in xrange(n): for j in xrange(n):C[i][j] = C_[j + n*i] free(A_) free(B_) free(C_)Listing 10: loop_type/cython: mixed implementation of C ← AB + C using loops with typed data using cython (the python list are converted to C arrays before and after the computations).def numpy__python(A, B, C):C += A.dot(B) # C += A @ B in python3 return CListing 11: numpy/python: implementation of C ← AB + C using the numpy module in python, where the input are of type numpy.ndarray instead of list.

4 .

 4 Design of a domain decomposition toolbox in python 1 def blas__python(A, B, C): 2 return scipy.linalg.blas.dgemm(1., A, B, 1., C, 1, 0, 0) Listing 12:

Figure 4 . 3 :

 43 Figure 4.3: Time needed to perform a matrix multiplication (dgemm).

Figure 4 . 4 :

 44 Figure 4.4: Performance of the matrix multiplication (dgemm)

Figure 4 . 5 :

 45 Figure 4.5: Time needed to compute the Schur complement matrix. The matrix is the FEM discretization of a 2D with n 2 unknowns or a 3D domain with n 3 unknowns. The Schur complement matrix is of size 4(n -1) or 6n 2 -12n + 8, respectively.

Figure 4 . 6 :

 46 Figure 4.6: Comparison of the scipy.sparse.linalg.cg that calls a CG implementation in Fortran and a custom python implementation.

4 .

 4 Design of a domain decomposition toolbox in python

 3. def cg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None): bb = b.T @ b) maxiter = len(b) if maxiter is None else maxiter x = 0 * b if x0 is None else x0 r = b -A @ x if r.T @ r <= tol * tol * bb: return x, 0 z = r if M is None else M r.T @ r <= tol * tol * bb: return x, 0 z = r if M is None else M @ r 4.3. Design of the ddmpy domain decomposition toolbox in python rz, rzold = r.T @ z, rz beta = (rz / rzold)[0,0] p = z + beta * p return x, i Listing 13: A simple CG implementation in python (cg_python) with the same signature as the scipy.sparse.linalg.cg function.

 dependencies. Without these optional dependencies, ddmpy falls back onto the required dependencies to perform all operations.4.3.4 An abstraction layer over the MPI for a domain decomposition methods dd4. Design of a domain decomposition toolbox in python

The

 TimeIt class can be used as a context manager to time individual blocks of code. def __init__(self, name=""): self.name = name def __enter__(self): self.begin = time.time() -self.t0 self.end = np.nan self.duration = np.nan self.level = len(self.stack) self.events.append(self) self.stack.append(len(self.events)-1) if TimeIt.debug: print(self.__str__(which="current")) return self 4. Design of a domain decomposition toolbox in python def __exit__(self, type, value, traceback): self.end = time.time() -self.t0 self.duration = self.end -self.begin if TimeIt.debug: print(self.__str__(which="current"

 def __call__(self, f): def timed_f(*args, **kwargs): # We create a default name name = self.name if name=="": name = type(args[0]).__name__ + " " + f.__name__ # We time and run the function # We create a new TimeIt instance because self is created # at function declaration and is the same object for all # executions of the function with TimeIt(name) as t: res = f(*args, **kwargs) # Store the duration in the object if len(args)>0 and isinstance(args[0], LinearOperator): solver = args[0] key = "t_" + name.replace(" ", "_") if key in solver.parameters: solver.parameters[key] += tthe history by calling print(TimeIt()). def __str__(self, which="all"): if which=="current": s = "{:50s} | {:2d} | {:12.7f} | {:12.7f} |\ {:12.7f}".format("! "*self.level + self.name, 4.3. Design of the ddmpy domain decomposition toolbox in python self.level, self.begin, self.duration, self.end) elif which=="all": s = "\n".join([t.__str__(which="current") for t in self.events[:TimeIt.max_events]]) else: # "stack" s = "\n".join([self.events[i].__str__(which="current") for i in self.stack]) return s Listing 24: TimeIt (4/5).The origin of time can be reset, along with the events and stack class attributes by calling the reset class method. If running in parallel, a MPI barrier() call is used to synchronize the origins of all processes.Testing the TimeIt class. The TimeIt class can be tested by executing the follow-Hello, world!" s2 = "How are you?" s = "\n".join((s1, s2)) 4. Design of a domain decomposition toolbox in python c 0.0107880 | 0.0000100 | 0.0107980 ! ! compute the sum | 2 | 0.0107930 | 0.0000019 | 0.0107949 ! sum of squares | 1 | 0.0108030 | 0.0010269 | 0.0118299

4. 3 .

 3 Design of the ddmpy domain decomposition toolbox in python

Figure 4 . 8 :

 48 Figure 4.8: The global domain in (a) is partitioned in three subdomains Ω 1 , Ω 2 and Ω 3 in (b). Each subdomain can use a local ordering of its unknowns as in (c); duplicate unknowns in different subdomains are linked by a dotted line.

#

 = np.unique(np.hstack(neighbors.values())) self.nG = len(self.interface) self.nI = ni -self.nG self.comm = comm self.n_subdomains = comm.Get_size() self.rank = comm.Get_rank() Number of unknowns of smaller rank offset = n_per_subdomain[:self.rank].sum() # global numbering of the subdomain's unknowns self.global_indices = np.zeros((self.ni), dtype=int) self.global_indices[ind_responsible] = range(offset, offset+n_responsible) # Send global numbering of shared nodes to neighbors send = {n: self.global_indices[neighbors[n]] for n in neighbors if self.rank<n} n_recv = len([n for n in neighbors if n<self.rank]) for n, recv in neighborSendRecv(send, n_recv=n_recv, is_ndarray=True, dtype=int): 4.3. Design of the ddmpy domain decomposition toolbox in python self.global_indices[neighbors[n]] += recv.ravel() Listing 26: DomainDecomposition (1/4).

 elif dim==2: # matrix assembly indices = {n: np.ix_(i,i) if len(i)>1 else(i,i) for n, i in self.neighbors.items()} 4. Design of a domain decomposition toolbox in python else: raise ValueError("dim should be 1 or 2") v_ = v.copy() send = {j: v[indices[j]] for j in indices} for j, recv in neighborSendRecv(send, debug=debug): if recv.shape != send[j].shape: recv = recv.reshape(send[j].shape) v_[indices[j]] += recv return v_ Listing 27: DomainDecomposition (2/4).

Figure 4 . 9 :

 49 Figure 4.9: The interior unknowns can be eliminated from the domain presented in Figure4.8 to keep only interface unknown that are shared by two subdomains or more (a). A global interface numbering is introduced (b). The global interface can be expressed as the union of the three local interfaces Γ 1 , Γ 2 and Γ 3 in (c). An interface Domain Decomposition is a particular case of Domain Decomposition where all unknowns are assigned to more than one subdomain.

4. 3 .

 3 Design of the ddmpy domain decomposition toolbox in python Testing the DomainDecomposition class. A DomainDecomposition object dd representing the domain in Figure 4.8 is available by using the test() static method of the DomainDecomposition class , # interface with Ω 2 2: [0, 3]} # interface with Ω 3 ni = 4 # number of local unknowns elif rank==1: # Ω 2 neighbors = {0: [1, 0], # interface with Ω 1 2: [0, 3]} # interface with Ω 3

4 .

 4 Design of a domain decomposition toolbox in python DomainDecomposition object, all interior nodes of multiplicity 1 are eliminated and all remaining nodes have a multiplicity of 2 or more. from ddmpy import * comm = MPI.COMM_WORLD rank = comm.Get_rank() dd = DomainDecomposition.test() # Figure 4.8 ddG = dd.interface_dd() # Figure 4.9 for dd_ in [dd, ddG]: multiplicity = dd_.assemble(np.ones(dd_.ni, int)) D_assembled = dd_.assemble(dd_.D) for i in range(3DistVector class A global vector b in ddmpy can be stored through its local component b i = R i b in the subdomain Ω i handled by the current MPI process. The values of the local components

 self.dd = dd self.shape = dd.n, bi.shape[1] self.ndim = len(self.shape) 4.3. Design of the ddmpy domain decomposition toolbox in python self.(self.local, self.dd, self.compatible) other.transposed = not self.transposed other.shape = self.shape[::-1] return other Listing 30: DistVector (1/3).

@

 TimeIt() def __add__(self, other): # self + other with TimeIt("Local __add__"): return DistVector(self.local + other.local, self.dd, self.compatible) @TimeIt() def __sub__(self, other): # self -other with TimeIt("Local __sub__"): return DistVector(self.local -other.local, self.dd, self.compatible) @TimeIt() def __rmul__(self, scalar): # scalar * self with TimeIt("Local __rmul__"): return DistVector(scalar * self.local, self.dd, self.compatible) @TimeIt() def __mul__(self, scalar): # self * scalar 4. Design of a domain decomposition toolbox in python with TimeIt("Local __mul__"): return DistVector(self.local * scalar, self.dd, self.compatible) @TimeIt() def __div__(self, scalar): # self / scalar with TimeIt("Local __div__"): return DistVector(self.local / scalar, self.dd, self.compatible) def __truediv__(self, scalar): # self / scalar return self.__div__(scalar) @TimeIt() def dot(self, other): dd = self.dd if self.transposed: # self.T @ other # multiplication along the distributed dimension assert(self.dd==other.dd) if not isinstance(other, DistVector): return NotImplemented with TimeIt("Local dot"): if self.compatible: # don't count redundant entries twice local_dot = self.local.T.dot(self.dd.D*other.local) else: local_dot = self.local.T.dot(other.local) with TimeIt("MPI reduce"): global_dot = dd.comm.allreduce(local_dot) return global_dot else: # self @ other # multiplication along the global dimension return DistVector(self.local.dot(other), dd, self.compatible) def __matmul__(self, other): # self @ other return self.dot(other) Listing 31: DistVector (2/3).

@

 TimeIt() def dot(self, b, transpose=False): assert(isinstance(b, DistVector)) assert(self.dd==b.dd) 4. Design of a domain decomposition toolbox in python with TimeIt("Local dot"): if transpose: Abi = self.local.T.dot(b.local) .local.dot(b.local) # A i b i return DistVector(Abi, self.dd, assemble=True) # R i Ab def __matmul__(self, b): return self.dot(b) def __rmatmul__(self, b): return self.dot(b.T, transpose=True).T Listing 34: DistMatrix (2/4).

 the laplacian matrix of the graph of the local domain plus the identity matrix. @staticmethod def test(): 4.3. Design of the ddmpy domain decomposition toolbox in python dd = DomainDecomposition.test(

 @ DistVector(np.ones((4, 1)), dd)x, i = cg(K, b) # ddmpy distributed CG from Listing 46 if dd.rank == 0

4. 3 .

 3 Design of the ddmpy domain decomposition toolbox in python S = LinearOperator(A, parameters) x = S @ b # or S.dot(b) in python2 or S = LinearOperator(parameters) S.setup(A, updated_parameters) x = S @ b # or S.dot(b) in python2

4 .

 4 Design of a domain decomposition toolbox in python defaults = {} def __init__(self, A=None, **kwargs): """ Constructor of the solver Store the keyword arguments as parameters for the solver, performs all the analysis steps that are possible without having the matrix A and performs the setup if the matrix A is provided """ if hasattr(self, "defaults"): self.parameters = OrderedDict(sorted(self.defaults.items(), key=lambda x:str.lower(x[0]))) self.parameters.update(kwargs) else: self.parameters = OrderedDict(kwargs.items()) self.setup_performed = False if A is not None: self.setup(A)

 self.shape = A.shape self.parameters.update(kwargs) 4.3. Design of the ddmpy domain decomposition toolbox in python # some default parameters are solver types instead of # instance and a type v has to be replaced by an # instance of v for k, v in self.parameters.items(): if type(v)==type: instance = v.__new__(v) instance.__init__() self.parameters[k] = instance self.setup_performed = True Listing 38: LinearOperator (2/5).

 "The operator was not setup before" " performing the solve") def __matmul__(self, b): # self @ b return self.dot(b) def matvec(self, b): # scipy.sparse.linalg.aslinearoperator() return self.dot(b)

 def __str__(self, level=0): s = [self.__class__.__name__] 4. Design of a domain decomposition toolbox in python for key, value in self.parameters.items((" "*(1+level) + k + " : " + v) return "\n".join(s) Listing 40: LinearOperator (4/5). For easier use, a parameter p of a LinearOperator instance s is available as s.p in addition to the classical s.parameters[p]. def __getattr__(self, item): if item != "parameters" and item in self.parameters: return self.parameters[item] elif item in self.__dict__: return self.__dict__[item] else: raise AttributeError("No {} in {}.".format(item, self))Listing 41: LinearOperator (5/5).4.3.7.2 Testing the LinearOperator classTo test the LinearOperator class, a very simple ScalarMultiply subclass is defined by:

4. 3 .

 3 Design of the ddmpy domain decomposition toolbox in python A = np.arange(9).reshape((3, 3)) b = np.ones((3, 1)) eventually an instance is created with default parameters s Since no matrix has been provided yet to s, its dot() method cannot be properly invoked s.dot(b) Traceback (most recent call last):

4 .

 4 Design of a domain decomposition toolbox in pythonThanks to the @TimeIt decorators above the method definitions in the class, the time spent in the methods is automatically added to the instance parameters printpossible to supply the matrix and parameters at initialization s = ScalarMultiply(A, dummy_parameter="toto")

 Choose an appropriate Scipy solver according to the format (dense/sparse) and symmetry of A. Optional parameters are: -symmetry=True/False. Default: False Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers 4.3. Design of the ddmpy domain decomposition toolbox in python

 solve(self, b): return self.A_pinv.dot(b) 4. Design of a domain decomposition toolbox in python Listing 43: Pinv (pseudoinverse).

4. 3 .#

 3 Design of the ddmpy domain decomposition toolbox in python -comm, optional. We split the function in two part to be able # to easily add the Schur code in between self.init() self.factorize() def init(self): self.driver = pymumps.Mumps('D') id = self.driver.id A = self.A # Set id.par, id.comm and id.sym before init id.par = 1 # Process 0 takes part in the facto if ssp.issparse(A): if self.comm is None: = A.dd.comm id.comm_fortran = self.comm.py2f() 4. Design of a domain decomposition toolbox in python if self.ordering == "auto": self.driver.ICNTL[7] = 7 elif self.ordering == "Scotch": self.driver.ICNTL[7] = 3 elif self.ordering == "Metis": self.driver.ICNTL[7] = 5 id.sym = self.symmetry if self.symmetry>0: id.sym = 3 -id.sym # 0 Ge, 1 SPD, 2 Sym self.A_internal = ssp.tril(self.A_internal) self.driver.initialize() if self.verbose: id.icntl[0:4] = [6, 0, 6, 3] self.driver.ICNTL[11] = 2 # compute main stats .set_RHS(b_) self.driver.drive(3) x_ = self.driver.get_solution() x_.shape = b.shape 4.3. Design of the ddmpy domain decomposition toolbox in python x = x_ if self.comm is not None: self.comm.Bcast(x_, root=0) if isinstance(A, DistMatrix): x = DistVector(b.dd.Ri.dot(x_), b.dd) return x Listing 44: Mumps (1/2). Functions related to computing a Schur complement matrix with Mumps are presented in Section 4.3.10.1 (Listing 54). 4.3.8.4 The Pastix sparse direct solver The Pastix class uses the pypastix module available with recent releases of Pastix 4 . It can factorize scipy.sparse.spmatrix matrices. Current versions do not handle distributed matrices, although they can exploit shared-memory parallelism internally. The Pastix class has 6 parameters: • a verbose boolean or integer level (0/False, 1/True or 2).

4 .

 4 Design of a domain decomposition toolbox in python LinearOperator.setup(self, A, **kwargs) self.init(A) pypastix.task_analyze(self.pastix_data, self.spmA) pypastix.task_numfact(self.pastix_data, self.spmA) def init(self, A): """ Register the options in iparm and dparm, and setup A""" iparm, dparm = pypastix.initParam() self.iparm, self.dparm = iparm, dparm # Verbose d = {0: pypastix.verbose.Not, 1: pypastix.verbose.Yes, 2: pypastix.verbose.No} iparm[pypastix.iparm.verbose] = d[self.verbose] # Threads if self.threads=="auto": iparm[pypastix.iparm.thread_nbr] = -1 else: iparm[pypastix.iparm.thread_nbr] = self.threads # Symmetry d = {0: pypastix.factotype.LU, 1: pypastix.factotype.LDLT, 2: pypastix.factotype.LLT, "SPD": pypastix.factotype.LLT} self.factotype = d[self.symmetry] self.iparm[pypastix.iparm.factorization] = self.factotype # init self.pastix_data = pypastix.init(iparm, dparm) self.spmA = pypastix.spm(related to computing a Schur complement matrix with Pastix are presented in Section 4.3.10.1 (Listing 55).

4. 3 .

 3 Design of the ddmpy domain decomposition toolbox in python 4.3.8.5 Test of the direct solvers The direct solvers presented above can be tested from ddmpy import * A_Gen = np.array([[1./(1+i+2.*j) for i in range(3solvers: for symmetry in False, True: A = A_SPD if symmetry else A_Gen b = A.dot(np.ones((3, 1))) s.setup(A, symmetry=symmetry) x = s.dot(b

 def cg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None, ritz=False, save_x=False, debug=False, true_res=False): """Solves the linear problem Ax=b using the Conjugate Gradient algorithm. Interface compatible with scipy.sparse.linalg.cg Parameters ----------A : matrix-like object A is the linear operator on which we want to perform the solve operation. The only requirement on A is to provide a method dot(self, x) where x is a vector-like object. b : vector-like object b is the right-hand side of the system to solve. The only requirement on b is to provide the following methods: __len__(self) (not necessary if maxiter is provided), copy(self), __add__(self, w), __sub__(self, w), __rmul__(self, a), dot(self, w) where w is a vector-like and a is a scalar x0 : vector-like object starting guess for the solution, optional tol : float Relative tolerance to achieve, optional, default: 1e-5 4.3. Design of the ddmpy domain decomposition toolbox in python maxiter : integer Maximum number of iterations, optional, default: len(b) xtype : not used (compatibility with scipy.sparse.linalg.cg) M : matrix-like object Preconditioner for A, optional callback : function After each iteration, callback(x) is called, where x is the current solution, optional ritz : boolean Store the dot products in order to compute the Ritz values later, optional save_x : boolean Store the value of x at each iteration, optional debug : boolean print debug info, optional true_res : boolean recompute the residual at each iteration, optional """ bb = b.T.dot(b) # ||b|| 2 = b T b maxiter = A.shape[0] if maxiter is None else if x0 is None else x0 r = b -A.dot(x) # r = b -Ax rr = r.T.dot(r) # ||r|| 2 = r T r if rr / bb <= tol * tol: Design of the ddmpy domain decomposition toolbox in python

 initial guess for the solution, default=0*b -tol, relative tolerance to achieve, default=1e-5 -maxiter, maximum number of iterations, default=len(b) -M, preconditioner for A -callback, after each iteration, callback(x) is called, where x is the current solution -ritz=True/False, whether to compute the ritz values (approximate eigenvalues of A), default=False -save_x=True/False, whether to store x at each iteration, default=False -setup_M=True/False, whether to try and call M.setup(A) during the setup phase -debug=True/False, whether to print debug info -true_res=True/False, whether to recompute the Design of the ddmpy domain decomposition toolbox in python

 Testing the ConjGrad class. The ConjGrad class can be used in sequential b = A_SPD.dot(np.ones((3

 def gcr(A, b, x0=None, tol=1e-5, maxiter=None, M=None): bb = b.T.dot(b) # ||b|| 2 = b T b maxiter = A.shape[0] if maxiter is None else maxiter with TimeIt("Instrumentation"Design of the ddmpy domain decomposition toolbox in python for i in range(maxiter): Mr = M.dot(r) if M is not None else r.copy() MP.append(Mr) AMP.append(A.dot(MP[i])) # orthonormalization for j in range(i): # (AMp i) T AMp j = 0 alpha = np.asscalar(AMP[i].T.dot(AMP[j])) MP[i] -= alpha * MP[j] AMP[i] -= alpha * AMP[j] normAMPi = np.asscalar(np.sqrt(AMP[i].T.dot(AMP[i]))) MP[i] /= normAMPi AMP[i] /= normAMPi # ||AMp i || 2 = 1 # update x and r rAMPi = np.asscalar(r.T.dot(AMP[i]))

#

 We setup the preconditioner if possible and # asked for by the user if self.setup_M: if hasattr(self.M, "setup"): 4. Design of a domain decomposition toolbox in python self.M.setup(.reshape((-1, 1)) # Call the standalone gcr function x, self.i = gcr(self.A, b, self.x0, self.tol, self.maxiter, self.10.1 Schur solver From a linear system Ku = f of size (n, n) and a partition of the indices {0, 1, . . . , n-1} = I∪Γ, one can reorder the rows and columns (symmetric permutation) such that the system 4.3. Design of the ddmpy domain decomposition toolbox in python becomes

 .setdiff1d(range(n), interface) RI = ssp.csc_matrix((np.ones_like(interior), (range(nI), interior)), shape=(nI, n)) # R I RG = ssp.csc_matrix((np.ones_like(interface), (range(nG), interface)), shape=(nG, n)) # R Γ self.RI, self.RG = RI, RG if isinstance(A, np.ndarray): A = ssp.csc_matrix(A) with TimeIt("Schur_AII"): AII = RI.dot(A.dot(RI.T)) RG.dot(A.dot(RI.T))).A # K ΓI with TimeIt("Schur_AGG"): self.S = (RG.dot(A.dot(RG.T))).A # S = K ΓΓwith TimeIt("Schur_AII^{-1}AIG"):# -K ΓI K -1 II K IΓ if self.symmetry: self.S -= AIG.T.dot(self.local_solver.dot(AIG)) else: 4.3. Design of the ddmpy domain decomposition toolbox in python self.S -= AGI.dot(self.local_solver.dot(AIG)) if self.interface_solver is not None: self.interface_solver.setup(self.S, symmetry=self.symmetry)

@

 TimeIt() def schur(self, A, interface, **kwargs): """ Perform a partial factorization and compute the Schur complement matrix S LinearOperator.setup(self, A, **kwargs) self.init() self.driver.set_schur_listvar(interface) self.factorize() self.S = self.driver.get_schur() self.interface = interface return self.S @TimeIt() def b2f(self, b): 4.3. Design of the ddmpy domain decomposition toolbox in python """ Compute the reduced RHS f from the complete RHS b """ self.driver.set_RHS(b) f = self.driver.schur_forward() Compute the complete solution x from the Schur complement solution y """ if not self.is_forward: self.b2f(b) x = self.driver.schur_backward(y) x.shape = b.shape self.complement matrix with Pastix. The Pastix solver provides functions to compute a Schur complement matrix. @TimeIt() def schur(self, A, interface, **kwargs): """Perform a partial factorization and compute the Schur complement matrix S """ LinearOperator.setup(self, A, **kwargs) self.init(A) self.iparm[pypastix.iparm.schur_solv_mode] = (pypastix.solv_mode.Interface) schur_list = np.asarray(interface, pypastix.pastix_int) self.schur_list = schur_list + self.spmA.findBase() pypastix.setSchurUnknownList(self.pastix_data, self.schur_list) pypastix.task_analyze(self.pastix_data, self.spmA) pypastix.task_numfact(self.pastix_data, self.spmA) 4. Design of a domain decomposition toolbox in python nschur = len(schur_list) self.nschur = nschur self.S = np.zeros((nschur, nschur), order='F', dtype=A.dtype) pypastix.getSchur(self.pastix_data, self., pypastix.dir.Forward, x) if self.factotype == pypastix.factotype.LLT: pypastix.subtask_trsm(self.pastix_data, pypastix.side.Left, pypastix.uplo.Lower, pypastix.trans.NoTrans, pypastix.diag.NonUnit, x) else: pypastix.subtask_trsm(self.pastix_data, pypastix.side.Left, pypastix.uplo.Lower, pypastix.trans.NoTrans, pypastix.diag.Unit, x) if self.factotype == pypastix.factotype.LDLT: pypastix.subtask_diag(self.pastix_data, xself.nschur:] = y if self.factotype == pypastix.factotype.LDLT: pypastix.subtask_trsm(self.pastix_data, pypastix.side.Left, pypastix.uplo.Lower, pypastix.trans.Trans, pypastix.diag.Unit, x) elif self.factotype == pypastix.factotype.LLT: pypastix.subtask_trsm(4.3. Design of the ddmpy domain decomposition toolbox in python self.pastix_data, pypastix.side.Left, pypastix.uplo.Lower, pypastix.trans.Trans, pypastix.diag.NonUnit, x) else: # LU pypastix.subtask_trsm(self.pastix_data, pypastix.side.Left, pypastix.uplo.Upper, pypastix.trans.NoTrans, pypastix.diag.NonUnit, x) pypastix.subtask_applyorder(self.pastix_data, pypastix.dir.Backward, x) if self.check and self.x0 is not None: self.spmA.checkAxb(self.x0, b, x) return x Listing 55: Pastix (2/2). Testing the SchurSolver class. The SchurSolver class is tested on a general problem from ddmpy import * n = 5 A = ssp.spdiags([d*np.ones(n) for d in 3, -2, -1], [0, 1, -1], n, n) b = A.dot(np.ones((n, 1

4 .

 4 interface_solver parameter must accept a DistMatrix object: a ConjGrad or a Mumps solver can be used as an interface_solver, whereas a ScipyDirectSolver or Pastix solver can not. Design of a domain decomposition toolbox in python def y2x(self, y, b): xi = self.local_schur.y2x(y.local, b.local) x = DistVector(xi, b.dd) return x Listing 56: DistSchurSolver Testing the DistSchurSolver class. The DistSchurSolver is tested on the distributed matrix DistMatrix.test(). from ddmpy import * K = DistMatrix.test() b = K @ DistVector(np.ones((4, 1)), K.dd) dd = K.dd s = DistSchurSolver(K) x = (s @ b).centralize(root=0) if dd.rank == 0

 setup(self, A, **kwargs): LinearOperator.setup(self, A, **kwargs) # Compute the Schur interface_solver = self.parameters["interface_solver"] self.parameters["interface_solver"] = None DistSchurSolver.setup(self, A, **kwargs) self.parameters["interface_solver"] = interface_solver # Factorize Sih self.Sih_solver.setup(self.S.local + self.Ti*ssp.eye(A.dd.nG)) # compute W dd = self.S.dd self.W = {} W_ = np.zeros((dd.ni, 1))

 class representing the linear operator class NLOperator(object): def __init__(self, NLSolver): self.NLSolver = NLSolver ni = np.array(NLSolver.S.dd.ni) n = ni.copy() self.NLSolver.A.dd.comm.Allreduce(ni, n) self.shape = (np.asscalar(n), np.asscalar(n)) @TimeIt() def dot(self, l): li = l.local SihI = self.NLSolver.Sih_solver ui = -SihI.dot(li) mui = li + self.NLSolver.Ti*ui li_ = li + self.NLSolver.communicate(ui, mui) return DistVector(li_, l.dd, compatible=False) @TimeIt() def solve(self, b): with TimeIt("rhs"): bi = b.dd.D * b.local fi

4. 3 .

 3 Design of the ddmpy domain decomposition toolbox in python Testing the NLagrangeSolver class. The NLagrangeSolver class is tested on the same .11 Centralizing a distributed problem A distributed linear system Ax = b can be solved using a local (i.e., not distributed) solver such as ScipyDirectSolver or Pastix through the CentralizedSolver class:

 = A.centralize(self.root) if self.root is None or self.root==A.dd.rank: self.local_solver.setup(self.A_global) .comm.Bcast(x_global, root=self.root) xi = x_global[b.dd.global_indices, :] return DistVector(xi, b.dd)

 range(3): dd.comm.Barrier() if dd.rank == i: print("rank: {}\n{}\n".format(dd.rank, TimeIt()

4. 3 .#

 3 Design of the ddmpy domain decomposition toolbox in python Add T i on the interface for Robin if self.Ti is not None: if np.isscalar(self.Ti): Ti = self.Ti * ssp.eye(A.dd.nG) elif self.Ti.shape[1] == 1: Ti = ssp.diags(self.Ti) ones_like(A.dd.interface), (range(A.dd.nG), A.dd.interface)), shape=(A.dd.nG, A.dd.ni)) # R Γ Ti = RG.T.dot(Ti).dot(RG) self.Aih += Ti # Partition of unity for Neumann Neumann if self.Di is not None: self.D = self.partition_of_unity(A, self.Di) D_inv = ssp.diags(1./self.D.clip(1e-12)) self.Aih = D_inv.dot(D_inv.dot(self.Aih.T).T) # dense.dot(sparse) => (sparse.T.dot(dense.T)).T # factorize A i if self.local_solver is not None: self.local_solver.setup(self.Aih) DistMatrix.__init__(self, self.local_solver, A.dd) partition_of_unity(A, Di="matrix"): 4. Design of a domain decomposition toolbox in python if Di == "multiplicity": mult = np.ones(A.dd.ni, dtype=np.int) for i in A.dd.neighbors.values(should be 'multiplicity'," "'matrix' or 'boolean'. It is '{}'.").format(Di)) return D Listing 59: AbstractSchwarz.

4. 3 .

 3 Design of the ddmpy domain decomposition toolbox in python

0 with

 0 0 b, or P 0 b = M 0 A b if the project argument is set to True. TimeIt("MPI assemble"): send = {j: (Wi.shape[1], # number of coarse vectors Wi[dd.neighbors[j], :], # coarse vectors 4. Design of a domain decomposition toolbox in python x: [1. 1. 1. 1. 1. 1. 1.] u0.T @ K @ uL: 1.1657341758564144e-15 Additive two-level preconditioner. A two-level preconditioner can be obtained by adding a coarse solve to a one-level preconditioner M 2 = M 0 + M 1 (see sections 2.7self, A, **kwargs): LinearOperator.setup(self, A, **kwargs) if not getattr(self.B, "setup_performed", True): self.B.setup(A) if not getattr(self.C, "setup_performed", True): self.C.setup(A) @TimeIt() def solve(self, b): return self.B.dot(b) + self.C.dot(b) Listing 64: AdditivePcd.

 self, A, **kwargs): LinearOperator.setup(self, A, **kwargs) if not getattr(self.M0, "setup_performed", True): self.M0.setup(A) 4.3. Design of the ddmpy domain decomposition toolbox in python if not getattr(self.M1, "setup_performed", True): self.M1.setup(A) @TimeIt() def solve(self, b): y = b if self.M1 is None else self.M1.dot(b) # M1 b return y -self.M0.project(y) # (I -P 0)M 1 b @TimeIt() def x0(self, b): # Compute an appropriate initial guess x 0 = M 0 b return self.M0.dot(b)

 {}_{} / {}: {} iterations".format(MaS1.__name__, suffix, mat, iterative_solver.n_iter))

, 4 .

 4 Design of a domain decomposition toolbox in python

Figure 4 .

 4 Figure 4.12: A zoom on the Solve step of Figure 4.11. The 6 CG iterations can be identified.

Figure 4 .

 4 Figure 4.13: A zoom on one CG iteration of Figure 4.12.

5. 2 .

 2 Figure 5.1: Example of a matrix and its adjacency graph.

Figure 5 . 4 :

 54 Figure 5.4: A given subdomain Ω i with four neighbors

 each diagonal block of the local Schur complement matrices, we obtain the local assembled Schur complementm S m,g S m,k S m, S g,m S g,g S g,k S g, S k,m S k,g S k,k S k, S ,m S ,g S ,k S ,

0 5.

 0 Update zi ← z i + V i 0 zParallel design of coarse space correction for hybrid solvers 5.4 Parallel strategies for the factorization (and corresponding solve step) of the coarse matrix S 0

5. 4 .

 4 Parallel strategies for the factorization (and corresponding solve step) of the coarse matrix S

Figure 5 . 5 :

 55 Figure 5.5: Communicator setup for the five parallel strategies employed for the CSC design on 11 processes. DC(1) and SD(11) rely only on the comm_main communicator. SC(3) needs an additional communicator comm_group for the CSC: comm_group = comm_CSC = G0. SHD(4) hierarchically builds the CSC on comm_masters: comm_masters = comm_CSC. SRC(3) redundantly handles the CSC on comm_group(g), 1 ≤ g ≤ 4: G0, G1, G2 and G3.

Algorithm 6 : 0 1Factorize S 0

 600 DC: compute S -1 Gather the S i 0 and sum them into S 0 on the master CSC_master of comm_main 2 if i -1 == CSC_master then 3 using the dense direct solver on CSC_master 4 end Algorithm 7: DC: M AS,2/S application 1 Gather the r i 0 and sum them into r 0 on CSC_master 2 if i -1 == CSC_master then 3 Solve z 0 = S -1 0 r 0 using the dense direct solver on CSC_master 4 end 5 Broadcast the solution z 0 from CSC_master to all MPI processes in comm_main 5.4.2 Sparse distributed (SD) strategy

5. 4 . 0 Figure 5 .

 405 Figure 5.5b gives an example of MPI configuration for this CSC implementation when using 11 MPI processes in comm_main. The CSC communicator responsible for factorizing and solving the coarse problem is comm_CSC. It contains CSC_NP = 3 MPI processes in the example of Figure 5.5b.For the factorization of the coarse matrix, Algorithm 10 shows that the coarse matrix is first centralized and assembled on the CSC_master process (line 1 of the algorithm and Figure5.6e). Then, the assembled coarse matrix is factorized in a distributed way on the communicator comm_CSC by the sparse direct solver (line 3 of the algorithm and Figure5.6f).The coarse solve in the application of M 0 (Algorithm 11) requires first the centralization and the assembly of the coarse right-hand side on the CSC_master MPI process (line 1 of the algorithm and Figure5.7g). Then, the coarse problem is solved by the sparse direct solver on the comm_CSC communicator (line 3 and Figure5.7h). After this solve, the coarse solution is broadcast on the comm_main communicator (line 6 and Figure5.7i).

Algorithm 12 : 0 1 4 Solve z 0 = 0 5. 4 . 5

 12040045 SHD: compute S -1 Partially gather S i 0 and assembly into S (g) 0 on the master of comm_group(g) 2 Factorize S 0 with the sparse direct solver in distributed input mode on comm_CSC Algorithm 13: SHD: M AS,2/S application 1 Gather r i 0 and assembly into r into r 0 on process CSC_master S -1 0 r 0 with the sparse direct solver on comm_CSC 5 end 6 Broadcast the solution z 0 from CSC_master to all MPI processes in comm_main 5.4. Parallel strategies for the factorization (and corresponding solve step) of the coarse matrix S Sparse replicated centralized (SRC) strategy

 S 0 on comm_masters communicator 4 end 5 Factorize S 0 with the sparse direct solver in centralized input mode on comm_group(g)

Figure 5 . 6 : 0 Solve z 0 =

 5600 Figure 5.6: Parallel strategies for computing S -1 0 .

Figure

 Figure 5.7: Parallel strategies for applying S -1 0 .

Figure 5

 5 Figure5.10: Time spent in the setup of the preconditioner . The additional cost of CSC depends on the the size of the coarse space (number of subdomains ×n v), the number of available CPU cores (equal to the number of subdomains) and the chosen CSC strategy.

Figure 5 .

 5 Figure 5.11: Time spent in the solve step. Depending on the geometry and the chosen CSC strategy, the solve time can be orders of magnitude lower than in the baseline solver.

Figure 5 .

 5 Figure 5.12: Total time to solution for 1 right-hand side. The CSC improves the solver scalability.

Figure 5 .

 5 Figure 5.13: Step by step time for MaPHyS with two-level parallelism on 3,072 cores for solving a bâton with heterogeneity 10,000 and 88 million unknowns.

Figure 5 .

 5 Figure 5.14: Step by step time for MaPHyS, with either Mumps (left and center) or Pastix (right) internal sparse direct solver, on a large bâton test case with 91 × 91 × 91 = 7.5 10 5 unknowns per subdomain (1.0 10 9 unknowns for N = 1, 344 subdomains). Either no CSC is employed (left) or the SC(24) parallel strategy is employed for handling the CSC (center and right).

 Figure 5.15: Respiratory test case: pseudo-1D domain decomposition into 255 subdomains.

 Figure 5.16: Evaluation of MaPHyS strong scaling with different CSC implementations on the respiratory test case.

 Schur Factorization Local Pcd Setup Coarse Eigen Solve Coarse Pcd Setup Direct Solve Iterative Solve

Figure 5 .

 5 Figure 5.17: Step by step time for ddmpy on Alya respiratory test case (1,055 domains).

Figure 5 .

 5 Figure 5.19: Strong scalability comparison between the AVIP-PETSc solver and Maphys on a 500,000 problem size

Figure 5 .

 5 Figure 5.20: Step by step time for MaPHyS on AVIP test case

Figure 5 .

 5 Figure 5.21: Step by step time for ddmpy on AVIP test case

 Introduction of an interface in the global domain a coupling between the two local solutions u 1 and u 2 through boundary conditions on Γ, ensuring that u 1 and u 2 are part of the same global solution u, i.e., u i = u| Ω i .

). The compatibility equations (2.2 -2.3) introduce 2.2.

 In the example, if the value of u 2 on Γ is u 2 (2, •) = k a D k cos(kπy), the solution in Ω 1 of the Dirichlet problem (2.8) with v

	2. Domain decomposition methods
	2.4.1 Dirichlet-to-Neumann operator for the PDE
	In Section 2.3, we presented the local subproblem in a subdomain associated with a
	Dirichlet, Neumann or Robin BC on the interface Γ. An optimal choice for the BC on Γ
	would give a local subproblem in each subdomain Ω i whose solution u i is the restriction
	in Ω i of the solution u of the global problem in Ω. Then, the global solution u could be
	obtained by solving the local subproblems instead of the global problem. For instance, in
	Ω 2 , a comparison between equations (2.4 -2.7) and (2.19 -2.20) shows that the optimal
	value for T 2 (u 2) should be equal to N 1 (u 1), where u 1 is a solution of the local equations in
	Ω 1 with u 1 = u 2 on Γ. More precisely, if a Dirichlet BC u 1 = u 2 | Γ on Γ is introduced for
	Ω 1 , it is possible to solve this subdomain's local subproblem; the solution u 1 can then be
	expressed as a (linear) function of u 2 | Γ , and, it is possible to eliminate it from the global
	problem. This process, in turn, gives an optimal BC for Ω 2 that accounts for the effect
	of Ω 1 on Γ viewed by Ω 2 . This process is detailed in a continuous setting in Section 2.4.1
	and with algebraic notations in Section 2.4.2.

 .53) Each unknown in Γ is then assigned to the local interfaces Γ i , Γ j , . . . of the closest (w.r.t. the graph distance) interiors I i , I j , . . . (each unknown in Γ may then belong to the local interface of several subdomains). As such, Γ is equal to the (non-disjoint) union of subdomain's interfaces Γ = 1≤i≤N Γ i . Introducing the two sets of canonical restriction 2. Domain decomposition methods matrices R Ω i from the global set of indices Ω to Ω i = I i ∪ Γ i , and R Γ i from Γ to Γ i , one can partition K by choosing a decomposition of the interface matrix and of the right-hand side

Table 4 .

 4 1: Relative performance of the different implementations for the vector addition for the largest size n available.

	blas C	1
	blas python	0.98524
	loop C	0.9957
	loop cython	0.05078
	loop python	0.00703
	loop_type cython 0.03139
	numpy python	0.99193
	4.2.1.2 Dense matrix multiplication in C and python (dgemm)

Table 4 .

 4 2: Relative performance of the different implementations for the matrix multiplication for the largest size n available.

	blas C	1
	blas python	0.72309
	loop C	0.01661
	loop cython	0.00101
	loop python	0.00035
	loop_type cython 0.02936
	numpy python	0.94456
	4.2.2 Comparison of Scipy and Pastix for computing the Schur
	complement matrix	

 4.2. Performance of some elemental operators in pythonTable 4.3: Relative performance of the different implementations for the Schur complement matrix computation.

	Schur_pastix python schur2D	1
	Schur_scipy python schur2D 0.0315
	Schur_pastix python schur3D	1
	Schur_scipy python schur3D 0.1566
	4.2.3 Comparison of Scipy and a custom implementation of the
	conjugate gradient	

Table 4 .

 4 4: Relative performance of the different implementations for the Conjugate Gradient algorithm.

	cg_python python	1
	cg_scipy python	0.435
	performed in lines 3,	

 Figure 4.7: The Primal, Primal/Γ and N -Lagrange formulations presented in Figure 2.3 are implemented in ddmpy; aS preconditioners (Section 2.7.2) for both primal formulations are presented in Section 4.3.12.

	4. Design of a domain decomposition toolbox in python
		Simple				Augmented
	(non-augmented)			2.6.1
		u I	λ	Primal		λ u I
	u Γ	Simple/Γ	λ	2.6.3 4.3.6.3 u I	λ	Augmented/Γ 2.6.2 u Γ
	Dual/Γ 2.6.4			Primal/Γ 2.6.3 4.3.10.2		Aug. Dual/Γ 2.6.4	N -Lagrange 2.6.5 4.3.10.3

 4.3. Design of the ddmpy domain decomposition toolbox in python4.3.3 Dependencies (required and optional) All the operations in the ddmpy package can be performed using only common python packages available in any scientific distribution: numpy, scipy and mpi4py.

	from __future__ import print_function
	from collections import OrderedDict
	import traceback
	import time
	import numpy as np
	import scipy.sparse as ssp
	import scipy.linalg as la
	import scipy.sparse.linalg as sla
	from mpi4py import MPI
	Listing 14: Required dependencies.

 The DistMatrix class is used to store a matrix A stored as a sum of local components

	4. Design of a domain decomposition toolbox in python 4.3. Design of the ddmpy domain decomposition toolbox in python
	if rank == i: global_indices:[5 6 0 3]
	x:	print(("rank: {}\n" [0 1 2 3]
	y:		"global_indices:{}\n" [3 1 2 6]
	rmul:		"x: [6 2 4 12]	{}\n"
	add:		"y: [9 3 6 18]	{}\n"
	sub:		"rmul: [3 1 2 6]	{}\n"
			"add:	{}\n"
	x.T @ x:	"sub: [[42]]	{}\n")
	.format(rank, dd.global_indices, y.T @ y: [[64]]
	y_glob:		x.local[:, 0], y.local[:, 0], [2 1 3 6 2 3 1]
	rmul.local[:, 0], add.local[:, 0], y_glob.T @ y_glob: [[64]]
			sub.local[:, 0]))
	4.3.6.3 The DistMatrix class
	xx = x.T.dot(x) Class constructor.
	yy = y.T.dot(y)	
	y_glob = y.centralize(root=0)
	yy_g = y_glob.T.dot(y_glob)
	if rank==0:	
	print("x.T @ x:	{}\n"
		"y.T @ y:	{}\n"
		"y_glob:	{}\n"
		"y_glob.T @ y_glob: {}"
		.format(xx, yy, y_glob[:, 0], yy_g))
	mpirun -np 3 python testDistVector.py
	rank: 0		
	global_indices:[0 1 2 3]
	x:		[0 1 2 3]
	y:		[2 1 3 6]
	rmul:		[4 2 6 12]
	add:		[6 3 9 18]
	sub:		[2 1 3 6]
	rank: 1		
	global_indices:[3 2 4 5]
	x:		[0 1 2 3]
	y:		[6 3 2 3]
	rmul:		[12 6 4 6]
	add:		[18 9 6 9]
	sub:		[6 3 2 3]
	rank: 2		

 Design of a domain decomposition toolbox in python with the number of high-conductivity layers in the subdomains) is enough: the number of iterations for the AS GD3 and N N G D3 methods are bounded by 24. If these methods are applied on S, the number of iterations is bounded by 7.

	Time (s)	144 235 418 790 1533 3020 5998 11953 1142 1549 2066 2956 4472 6563 10906 3927 5675 8142 11498 17638 26127 41109 Step by step comparison of the solvers (on K) 104 118 119 120 122 124 125 126 128 1145 1372 1635 2004 2561 2903 2907 2858 5177 7075 10043 12719 19265 26208 6 12 28 80 178 363 727 1557 17 37 75 160 324 537 874 16 34 73 161 336 686 1371 0 0 D AS 1 0 0 0 0 0 0 243 10594 12236 13711 15496 2 5 10 18 33 63 123 242 479 950 5 10 17 31 58 94 153 270 505 974 1914 7 13 25 29 34 35 37 39 43 46 18 39 64 110 195 255 259 255 251 244 18 39 66 127 229 436 849 1664 AS 2 3 8 16 31 60 118 236 471 941 1872 2 5 8 12 13 12 12 12 12 11 11 4 4 4 4 4 4 4 4 4 15 24 42 80 158 211 211 208 201 198 15 26 45 88 179 358 709 1397 AS D 6 10 17 24 37 44 46 45 44 42 41 6 11 18 27 45 78 146 282 552 1087 0 0 0 0 0 0 1 1 1 1 2 3 3 3 3 3 3 10 11 12 15 15 19 21 21 24 23 37 11 12 12 12 13 13 15 15 19 21 1 1 1 1 1 1 2 4 7 14 29 15 AS GD3 NN D 3 6 10 17 29 36 39 38 37 36 3 7 12 19 34 63 122 240 474 940 1 1 1 1 1 1 1 1 1 1 1 3 3 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 4 8 13 24 34 32 32 31 30 29 8 1 1 1 1 1 1 3 4 3 3 NN GD3 , 4 12 26 52 99 142 226 388 3 4 5 6 6 6 7 7 7 7 6 1 1 4.	K=1 K=1000 K=1000000
		3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2	3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2	3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2	3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2	3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2	3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2	3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2	3 6 1 2 2 4 4 8 9 6 1 9 2 3 8 4 7 6 8 1 5 3 6 3 0 7 2
					Number of MPI processes	
			Solver step:	Schur Factorization	Local Pcd Setup	Coarse Eigen Solve	Coarse Pcd Setup	Direct Solve	Iterative Solve
									Weak scalability: constant subdomain size.

 The local 5.3. Design of a coarse space correction in MaPHyS

	Algorithm 4: two-level setup of the preconditioner (two-level step
	(3) of Algorithm 1)
	// Baseline preconditioner (available before this thesis)
	Compute Si from S i by assembling diagonal blocks with neighbor to neighbor
	communications
	Compute S-1 i	(i.e., factorize Si)
	// CSC (extension designed for this thesis)

 parallelizations discussed in Section 5.4)

	Algorithm	5:	two-level application of the preconditioner (during
	two-level step (4a) of Algorithm 1)
	// Baseline preconditioner
	Solve z		

 and has (30 N 1 + 1) × (30 N 2 + 1) × (30 N 3 + 1) vertices. A Dirichlet boundary condition is applied on the left of the domain (x = 0) and a Neumann condition on every other boundary.

				Bâton				Cuboid	
	N	N 1	N 2 N 3 ndofs	N 1 N 2 N 3 ndofs
	24	24	1	1	0.96M 4	3	2	0.67M
	48	48	1	1	1.4M	4	4	3	1.3M
	96	96	1	1	2.8M	6	4	4	2.7M
	192	192	1	1	5.5M	8	6	4	5.3M
	384	384	1	1	11M	8	8	6	11M
	768	768	1	1	22M	12 8	8	21M
	1,536	1,536 1	1	44M	16 12 8	42M
	3,072	3,072 1	1	88M	16 16 12 83M
	6,144	-	-	-	-	24 16 16 167M
	12,288 -	-	-	-	32 24 16 333M

Table 5

 5

.1: Number of subdomains and degrees of freedom per dimension

Table 5 .

 5 2: MaPHyS coarse space correction implementations tested on the AVIP test case (1,008 domains). The Setup, Solve and Total times are the max among all subdomains, in seconds (s). Each subdomain is associated with one MPI process binded on one CPU core. Parallel design of coarse space correction for hybrid solvers

			Tolerance 10 -6	Tolerance 10 -10
		n v	# it. Setup Solve Total	# it. Setup Solve Total
	No csc	0	15 11.37 1.672 13.06	64 11.17 6.831 18.03
	DC(1)	3	5 72.35 0.892 73.26	27 74.10 5.016 79.14
	SD(1008) 3	5 77.31 0.939 78.26	27 78.43 4.975 83.43
	SC(24)	3	5 72.57 0.874 73.47	27 74.09 4.004 78.12
	SRC(24)	3	5 72.19 1.037 73.25	27 73.83 5.264 79.12
	SHD(42) 3	5 73.44 1.077 74.53	27 74.15 5.137 79.33
	DC(1)	5	5 74.91 0.910 75.84	25 75.44 4.868 80.33
	SD(1008) 5	5 88.03 1.134 89.19	25 87.98 5.247 93.24
	SC(24)	5	5 72.43 1.170 73.63	25 74.08 4.755 78.85
	SRC(24)	5	5 74.17 0.938 75.13	25 73.48 4.618 78.12
	SHD(42) 5	5 74.24 0.985 75.24	25 74.64 4.086 78.75
	DC(1)	10	5 86.76 1.520 88.31	23 86.44 6.624 93.11
	SD(1008) 10	5 94.54 1.178 95.74	23 93.07 4.851 97.94
	SC(24)	10	5 78.30 0.837 79.17	23 77.39 4.383 81.82
	SRC(24) 10	5 76.06 1.111 77.19	23 76.58 4.359 80.95
	SHD(42) 10	5 74.77 1.065 75.86	23 76.52 4.538 81.08

See https://gitlab.inria.fr/solverstack/maphys/

https://www.bsc.es/research-development/research-areas/engineering-simulations/ alya-high-performance-computational

https://gitlab.inria.fr/solverstack/maphys/maphyspp

10 12 ×

× 8 bytes = 16 × 10 12 bytes. Each complex element requires 2 × 8 bytes, 8 bytes for imaginary part and 8 for real part, in double precision.

1: the forward substitution that solves the triangular systems Ly = b; 2: the backward substitution that solves U x = y.

http://www.ddm.org/

See https://gitlab.inria.fr/solverstack/maphys/

https://gitlab.inria.fr/solverstack/genfem

https://gitlab.inria.fr/solverstack/maphys/maphys

see https://www.python.org/dev/peps/pep-0465/

see issue https://github.com/scipy/scipy/issues/6779

https://docs.python.org/3/glossary.html

Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers

https://gitlab.inria.fr/solverstack/pastix

https://gitlab.inria.fr/solverstack/genfem

Notice that the Mumps solver now allows one to provide the right-hand side in distributed input mode, which was not the case at the beginning of this study. Using this feature would remove this gathering step.Algebraic Domain Decomposition Methods for Hybrid (direct/iterative) Solvers

https://www.bsc.es/research-development/research-areas/engineering-simulations/ alya-high-performance-computational

https://gitlab.inria.fr/solverstack/genfem

https://gitlab.inria.fr/solverstack/maphys/maphyspp

Remerciements Acknowledgments

The work presented in this document was performed in very close collaboration with my supervisors Luc Giraud and Emmanuel Agullo.

We would like to thank Nicole Spillane for proofreading an early draft of Chapter 3. This chapter was submitted for publication and we also thank the anonymous referees whose constructive comments enabled us to significantly improve the manuscript. The experiments presented in sections 3.5.2 to 3.5.4 were carried out using the PLAFRIM experimental testbed, being developed under the Inria PlaFRIM development action with support from Bordeaux INP, LABRI and IMB and other entities: Conseil Régional d'Aquitaine, Université de Bordeaux and CNRS (and ANR in accordance to the programme d'investissements d'Avenir).

The experiments in Section 4 were performed on the GENCI Occigen cluster at CINES. Part of the Chapter 5 is extracted from an article in preparation, written in collaboration with Emmanuel Agullo, Matthieu Kuhn, Gilles Marait and Luc Giraud; the experiments in this chapter were also carried out on the Occigen cluster, by Matthieu Kuhn and Gilles Marait. We would also like to thank the AVIP team at CERFACS for close scientific exchanges and collaborations as well as the opportunity we had to access PRACE Tier-0 computing resource; we acknowledge PRACE for awarding us access to Curie at GENCI@CEA, France. We also thank the Alya team at BSC for the fruitful collaboration and access to the BSC computing facilities.

://www.bsc.es/research-development/research-areas/engineering-simulations/ alya-high-performance-computational 6 https://gitlab.inria.fr/solverstack/maphys/maphyspp 18 Louis POIREL

After all messages are received, one waits for all the send requests to terminate.

Wait for Send to terminate for req in requests: req.wait() Listing 20: neighborSendRecv (5/5).

Testing the neighborSendRecv function. The previous function can be tested by exporting the following code in a file test_neighborSendRecv.py import ddmpy as dd n = dd.MPI.COMM_WORLD.Get_size() rank = dd.MPI.COMM_WORLD.Get_rank() send_messages = {i: "message from {} to {}".format (rank, i) for i in range(n) if i != rank} SendRecv = dd.neighborSendRecv(send_messages) recv_messages = {src: message for src, message in SendRecv} if rank==0: print("send:{}\nrecv:{}".format(send_messages, recv_messages))

and running mpirun -np 3 python test_neighborSendRecv.py send:{1: 'message from 0 to 1', 2: 'message from 0 to 2'} recv:{1: 'message from 1 to 0', 2: 'message from 2 to 0'} Process 0 sends and receives one message from each of the two other processes.

Design of the ddmpy domain decomposition toolbox in python

• root, the MPI rank of the process that will eventually hold the global vector. If root is None, all processes eventually hold the global vector.

• loc2glob, a local-to-global mapping to be used for computing the global ordering.

If None, a default global ordering is used.

def centralize(self, root=None, loc2glob=None): Listing 32: DistVector (3/3).

Testing the DistVector class. Two vectors x and y are defined with their local index as an input (see Figure 4.8). The vector x is defined as a non-compatible vector, and subdomains may have distinct values from each other. For instance, the central node of global index 3 is numbered 3 in Ω 1 and Ω 3 and 0 in Ω 2 . The vector y is a compatible vector obtained by assembling (summing) these local indices. Its value on the same central node is therefore 3 + 0 + 3 = 6. Operations on DistVector objects are performed so as to compute rmul = 2*y, add = y + rmul and sub = rmul -y (hence add = 3*y and sub = y). .format(i, np.sqrt(rr/bb) [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF][START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF]))

if rr / bb <= tol * tol:

Listing 46: cg() standalone function.

The ConjGrad solver. This standalone cg() function is also available through a ConjGrad solver class with the following parameters:

• x0, an initial guess for the solution.

• tol, the stopping criterion (relative backward error). Computing the eigenvalues of the tridiagonal matrix. If the ritz parameter is set to True, it is possible, after the solve, to compute the eigenvalues of the tridiagonal Testing the CoarseSolve class. A coarse solve should give the A-orthogonal projection of the solution onto the coarse space. In particular, if the solution is in the coarse space, a call to CoarseSolve(K).dot(b) should return the exact solution. If not specified, the local coarse space is computed from a partition of unity, and the constant vector is in the coarse space. from ddmpy import * K = DistMatrix.test() dd = K.dd b = K @ DistVector(np.ones((4, 1)), dd)

print("u0.T @ K @ uL: {}".format(np.asscalar(scal)))

mpirun -np 3 python3 testCoarse.py

GenEO coarse space for aS preconditioners

If A is SPD and A i is SPSD, the coarse space can be built following the GenEO method introduced in Chapter 3 for our algebraic context. The coarse space is computed by solving generalized eigenproblems in each subdomain.

Solving Generalized Eigenproblems in python. In scipy, two methods are available to solve generalized eigenproblems Au = λBu:

• the scipy.linalg.eigh() function for dense matrices, that uses a Lapack implementation [START_REF] Anderson | LAPACK Users' Guide[END_REF].

• the scipy.sparse.linalg.eigsh() function for sparse matrices, that relies on the ARPACK solver [START_REF] Lehoucq | ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods[END_REF].

The dense version computes all the eigenpairs. It is therefore quite costly. The sparse version computes a selection of eigenpairs using an iterative method. It is much faster but is not as robust: it does not converge for some matrices. As a result, the ddmpy package provides a eigen() function that calls the appropriate version depending on the type of the input matrices (lines 2-12 and 13-22 of Listing 66 for dense and sparse matrices, respectively). If the sparse version does not converge, it falls back to the dense version (lines 20-22). Its parameters are:

• A and B, representing the matrices A and B.

Design of the ddmpy domain decomposition toolbox in python

• B_I, representing B -1 (optional).

• n_v, the number of eigenpairs to compute.

• dense, whether to force the dense version.

• local_solver, a LinearOperator to be used to factorize B.

def eigen(A, B, B_I=None, n_v=None, dense=True, local_solver=None):

if dense or n_v is None:

with TimeIt("eigen_dense"):

if ssp.issparse(A) and ssp.issparse(B):

if n_v is None: n_v = A.shape [START_REF] Klawonn | Adaptive coarse spaces for FETI-DP in three dimensions[END_REF] else: Computing the GenEO coarse space. The GenEO coarse space associated with an aS preconditioner can be built using the genEO_space() function. It has the following arguments:

• M1, a one-level aS preconditioner.

• alpha and beta, representing the α and β parameters in the definition of the coarse space in Section 3.3.

• n_v, a maximum number of coarse vectors per subdomain.

• local_solver, a LinearOperator used to factorize local matrices. Listing 67: genEO_space() function for computing the GenEO coarse space.

If the one-level aS preconditioner M1 used in the method is AS or NN, one of the two eigenproblems from Section 3.3 becomes trivial and only the other eigenproblem needs to be solved.

The GenEO preconditioner. The basis of the GenEO coarse space returned by the genEO_space() function can be used to build a two-level aS preconditioner, using the GenEOPcd class. It has the following parameters:

• M1, the one-level aS preconditioner to use.

• local_solver, the solver to use for factorizing local matrices.

Design of the ddmpy domain decomposition toolbox in python

• global_solver, the solver to use for factorizing the (global) coarse problem.

• deflated, to toggle the use of a deflated coarse correction instead of an additive coarse correction.

• alpha, beta and n_v, the GenEO parameters used to build the coarse space.

class GenEOPcd(LinearOperator): Listing 68: GenEOPcd. Trace of the NN GD3 /S solver on N= 1536 processes with an heterogeneity K= 1000

The three rows show the time at wich the first (row 0), 50% (row 1), or all processes (row 2) start and finish each step. Trace of the NN GD3 /S solver on N= 3072 processes with an heterogeneity K= 1000

The three rows show the time at wich the first (row 0), 50% (row 1), or all processes (row 2) start and finish each step. Eliminating u I from the second block row (with a direct method in our case, see below) of Equation (5.1) leads to the reduced system

(5.

3)

The matrix S is referred to as the Schur complement matrix (see sections 2.4 and 2.5.2) and inherits the symmetric positive definite property of K. This reformulation leads to a general strategy for solving (5.1). A Preconditioned Conjugate Gradient (PCG) can be implemented to solve the reduced system (5.2). Once u Γ has been computed the interior variables u I can be computed with one additional solve for the interior unknowns via

Because a direct solver is considered for this last step one can notice that

we use therefore the following normwise backward error stopping criterion for the PCG iterations

While the Schur complement system is significantly smaller and better conditioned than the original matrix K, it is important to consider further preconditioning to accelerate Algorithm 1: MaPHyS algorithm 1 partitioning step 2 factorization of the interiors 3 setup of the preconditioner 4 solve step

• (1) the partitioning step, consisting of partitioning the adjacency graph G of K into several subdomains and distributing the K i to different cores. This step is in practice often performed by the application, whose partitioning must match the hypothesis in Equation (3.9) on page 63;

• (2) the factorization of the interiors and the computation of the local Schur complement S i using K i . This step is performed independently by each MPI process and is common whether or not the CSC mechanism is applied and is thus not described further;

• (3) the setup of the preconditioner by assembling diagonal blocks of S i via a few neighbor to neighbor communications and factorization of this one. In the one-level baseline version of MaPHyS, this step corresponds to Algorithm 2;

Algorithm 2: Baseline one-level setup of the preconditioner (baseline step (3) of Algorithm 1)

1 Compute Si from S i by assembling diagonal blocks with neighbor to neighbor communications 2 Compute S-1 i (factorize Si)

• (4) the solve step, where (4a) a parallel preconditioned Krylov method is performed on the reduced system (Equation (5.2)) to compute x Γ i , followed by (4b) independent back solves on the interiors to compute each x I i (Equation (5.12)). For SPD systems, the Krylov method of choice is the PCG. A PCG iteration is composed of a matrix-vector product Sx, an application of the preconditioner M AS/S x, two dot products (plus one for the stopping criterion) and several vector additions, subtractions and scalar multiplications. The application of the one-level baseline preconditioner (Equation (5.11)) during step (4a) is described in Algorithm 3.

Note that subdomain Ω j is handled by MPI process j -1: as explained in Section 4.3.6, index 0 is reserved for the coarse space so that subdomains are numbered from 1 to N whereas MPI ranks are numbered from 0 to N -1.

When the CSC is turned on, the setup (Algorithm 2) and application (Algorithm 3) of the preconditioner are enhanced to compute it and apply it, respectively, as further discussed below. coarse space basis can then be defined from these eigenvectors (step 4); in a matrix form it writes

and the global coarse space basis can be formally defined as

In practice, V 0 is never explicitly formed, and no communication is required for this first step. Solving the eigenproblems may take a lot of time, but it is purely local and consequently fully scalable.

The two-level preconditioner we have incorporated into MaPHyS for illustrating the experimental study conducted in this chapter is then defined as

where

The coarse matrix S 0 can be computed in parallel using Equation (5.8):

where

, only neighbor-to-neighbor communications are needed to compute V i 0 (steps 5-8 of Algorithm 4). The local coarse matrix S i 0 can then be computed without any communication (step 9). However, the assembly (or not) and factorization of S 0 (step 10) to compute M 0 require some global communication and several parallelization strategies for these operations are detailed below in Section 5.4.

Application of the two-level preconditioner M AS,2/S

The application of the preconditioner (detailed in Equation (5.11) and Algorithm 3 for the baseline preconditioner M AS/S) needs to be modified to include the coarse solve M 0 required by the two-level preconditioner M AS,2/S defined in Equation (5.13).

The restriction of the coarse solve M 0 r to a subdomain can be computed as

where r i = R Γ i r.

Computing the products V i 0 T r i and V i 0 z 0 (where z 0 = S -1 0 V T 0 r) can be done locally and do not present any particular challenge. However, the implementation of the coarse solve (step 7 of Algorithm 5) depends on the strategy used for the parallel factorization of the coarse matrix S 0 (step 10 of Algorithm 4). In the next section, we discuss several parallel implementations for the coarse matrix factorization and corresponding solve steps.

Parallel design of coarse space correction for hybrid solvers

Algorithm 15: SRC: M AS,2/S application 1 Gather r i 0 and assembly into r (g) 0 on the master of comm_group(g)

0 and assembly into r 0 on comm_masters communicator 4 end 5 Solve z 0 = S -1 0 r 0 with the sparse direct solver on comm_group(g) 6 Broadcast the solution z 0 from the master to all MPI processes in comm_group(g)

Experimental study

Experimental setup

All the parallel experiments presented in this study were performed on the GENCI Occigen cluster, hosted at CINES. The part of the cluster in use is composed of 2 dodeca-core (24 cores per node) Haswell Intel Xeon E5-2690 v3 @ 2.6 GHz nodes with 64 and 128 Go RAM per node.

The code was compiled with Intel compiler version 17.0.0 and linked with the Intel MPI version 2017.0.0. The sparse computations were performed using either Pastix or Mumps. All dense computations (including solving the eigenproblems) rely on the multithreaded Intel MKL version 2017.0.0. Using the dsygvx Lapack routine, only selected eigenpairs are computed.

All the experiments are designed such that the nodes of the cluster are fully occupied (hence the number of cores is always a multiple of 24). MaPHyS uses one MPI process per subdomain and each thread is bound to one core in the presented experiments. MaPHyS can process each subdomain using multithreading [START_REF] Agullo | Hierarchical hybrid sparse linear solver for multicore platforms[END_REF], but unless stated otherwise (Section 5.5.2.3), the solver is set up with one thread per process, resulting in an equal total number of subdomains, MPI processes, threads and CPU cores. For instance, an execution on 12,288 subdomains (x-axis) in figures 5.9 to 5.12 was executed with 12,288 MaPHyS MPI processes on 12,288 CPU cores (512 nodes). Multithreading is only assessed in Section 5.5.2.3 where each subdomain and its corresponding MPI process may use multiple threads and CPU cores. Notice that on the Occigen cluster, memory swapping is disabled by default so that all the runs are performed in memory without time overhead due to the swap. The simulation campaigns were realized using the JUBE Benchmarking Environment [START_REF] Frings | A flexible, application-and platform-independent environment for benchmarking[END_REF].

The rest of this section is organized as follows. First in Section 5.5.2 we investigate the parallel performance of the various strategies on the Darcy academic test case, consistently with the studies conducted in the previous chapters (see sections 3.5.1 and 4.4.1). The performance of the solver integrated in two applications is then considered. Section 5.5.3 tackles the simulation of an airflow through the nose by solving the incompressible Navier-Stokes equations with the Alya 2 simulation code for high performance computational mechanics developed at the Barcelona Supercomputing Center. In Section 5.5.4, we present 5. Parallel design of coarse space correction for hybrid solvers coarse problem on a sub-communicator of the main communicator. This way, the size of the sub-communicator can be adjusted such that the granularity of the coarse problem is optimal with regards to the sparse direct solver in use. Depending on the test case, different strategies following this principle achieve the best performance.

This optimized two-level version of MaPHyS in Fortran 90 was compared with solvers provided by the ddmpy toolbox exposed in Chapter 4. Although, for any particular method, the Fortran implementation is faster than the python implementation, a greater range of methods were implemented in python thanks to the language expressivity. The flexibility offered by the ddmpy toolbox makes up for the difference in term of pure performance, as it is easier to adjust the method for a particular test case.

Because there is no support for scatter -like MPI collective handling overlapping regions in the MPI standard, we instead broadcast z 0 . For ensuring further scaling, one option would be to design a two-step scheme consisting of a scatter -like MPI collective communication followed by neighbor-to-neighbor communications. In any case, while we have considered the opportunity to provide the CSC matrix S 0 in distributed input mode (SD and SHD schemes), we considered only a centralized input mode for handling the right-hand side r 0 and the solution z 0 . Indeed, the Mumps solver, onto which we rely to handle the CSC in a parallel distributed context, did not provide a distributed input mode for those vectors. This option is now available and we plan to investigate it in the future work.

A new implementation in modern C++ is underway as mentioned in Section 6.3. Some recent features of this language should make it possible to combine the flexibility of Chapter 7