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ABSTRACT 3
Résumé

Le sujet de cette thése est la topologie des fibres de Milnor des singularités
réelles. 11 y est établie une formule pour le calcul des groupes d’homologie des
fibres de Milnor d’un germe de singularité d’hypersurface f : (R"*1,0) — (R,0) ;
cette formule est valable sous certaines conditions portant sur les indices de Morse
des points critiques d’une petite perturbation de la singularité. Supposons que
X C R”™ est un sous-ensemble algébrique réel équidimensionnel ayant un point
singulier isolé a l'origine et que f : X — R est la restriction d’une application
polynomiale f : R® — R. Dans cette situation une formule est établie pour la
caractéristique d’Euler-Poincaré des fibres de Milnor de f a lorigine, valide sous

I’hypothése que f ait une morsification.

Keywords. Singularités Réelles, Fibre de Milnor, Fibre de Milnor Motivique
Réelle, Equivalence Blow-Nash, Equivalence Analytique Par Arcs, Cycles Evanes-
cents Réels, Morsification, Groupes d’Homologie Singulier, Caractéristique d’Euler-

Poincaré

Abstract

The subject of study in this thesis is the topology of the Milnor fibres of real
singularities. A formula for the homology groups of the real Milnor fibres of a germ
of hypersurface singularity f : (R"™1 0) — (R,0) is established; the formula in
question is valid under certain constraints pertaining to the Morse indices of the
critical points of a small perturbation of the singularity. Suppose that X C R™ is an
equidimensional real algebraic subset having an isolated singular point in the origin
and that f : X — R is the restriction of a polynomial map f : R™ — R. In this
situation a formula is established for the Euler-Poincaré characteristic of the Milnor

fibres of f at the origin, valid under the hypothesis that f has a morsification.

Keywords. Real Singularities, Milnor Fibre, Real Motivic Milnor Fibres, Blow-
Nash Equivalence, Arc-Analytic Equivalence, Real Vanishing Cycles, Morsification,

Singular Homology Groups, Fuler-Poincaré Characteristic
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CHAPTER 1
Introduction en Francais

“Opdapot  kodTel

Mazime Delphique

1. Introduction

Si 'un des buts principaux de la théorie de singularités est d’obtenir une
classification des singularités, une connaissance d’invariants calculables de nature
topologique ou algébrique des singularités est en premier lieu souhaitable, et en sec-
ond lieu une relation d’équivalence convenable qui préserve I'un de ces invariants.
Pour les singularités définies sur le corps des nombres complexes de tels invariants
sont depuis longtemps utilisés pour ce probléme de classification!, et plusieurs choix
sont a faire entre différentes relations d’équivalence de germes, comme ’équivalence
contact ou ’équivalence & p-constant, qui préservent un ou plusieurs de ces invari-
ants. Le but principal de cette thése est d’étudier les invariants algébro-topologiques
des fibres de Milnor des singularités réelles, et en premier lieu leurs nombres de

Betti, mais aussi leur caractéristique d’Euler-Poincaré.

C’est en général un probléme délicat de calculer efficacement des invariants
pour les fibres de Milnor de singularités réelles, et par conséquent les différents
problémes de classification restent en général complétement ouverts. Un progrés
notable a été fait récemment en considérant des invariants de nature motiviques,
comme différentes fonctions zéta motivigues, a aide desquels G. Fichou [22] et J.-
B. Campesato [9] ont classifié respectivement les singularités ADFE et les polyndomes
de Brieskorn, pour [’équivalence Blow-Nash des germes de Nash. Un autre but de
cette thése est ’étude des fonctions zéta motiviques introduites par G. Comte et G.
Fichou dans [11] ou est montré que la valeur du polyndéme de Poincaré virtuel des

fibres de Milnor motiviques d’une famille de fonctions polynomiales f; : R™ — R

LComme les nombres de Milnor, et de Tjurina pour ne citer que ces exemples.

9



10 1. INTRODUCTION EN FRANCAIS

paramétrée semi-algébriquement par un ensemble T, est génériquement constant,
i.e ne dépend pas du paramétre ¢ € T" en-dehors d’un ensemble semi-algébrique de

codimension positive dans T'.

2. Singularités Réelles

2.1. Les Fibres de Milnor Réelles. Dans [39] John Milnor a étudié la
topologie des ensembles analytiques réels et complexes dans un voisinage d’un point
singulier isolé d’une application analytique, établissant I'existence d’un fibré lisse
localement trivial au-dessus d’une boule épointée de rayon suffisamment petit, cen-
trée en la valeur du point critique. En d’autres termes soit, f : (R"** 0) — (R*, 0)
un germe de fonction analytique réelle. Choisissons-en un représentant f : M — RF
sur un voisinage ouvert contenant l'origine. Pour k& > 2, Milnor montre 1’énoncé

suivant.

THEOREM 1.1 ([46, Theorem 4.2]). Si la matrice jacobienne Jac(f) est de rang
mazimal en dehors de lorigine, alors il existe 5o > 0 tel que, si § € (0, 9], il existe

€0 > 0 tel que pour tout € € (0, €g] la restriction
fo BN {0 NBE T - B {0}
est une fibration lisse localement triviale.

Les fibres de cette fibration sont alors des variétés lisses et s’appellent les fibres
de Milnor de f a Dorigine. Pour k > 2 la boule épointée est connexe et donc les
fibres de Milnor

Fy= 1) nBEtk, peBE\ {0}

sont diffeomorphes. En revanche, pour k¥ = 1 il existe généralement, a difféo-
morphisme prés, deux fibres de Milnor ; la positive f~1(n) N ]B%g”k et la négative

f(=n)n IB%S”L’“, n € (0,€0). On les désigne respectivement par

+ —
]:n et ]:n .

Trés peu de propriétés topologiques générales de ces fibres réelles sont connues.
Pour les singularités isolées d’hypersurfaces complexes et pour les singularités isolées
d’intersections complétes on sait depuis J. Milnor [39, Theorem 6.5] et H. Hamm

[34, Corollary 5.10] que les fibres de Milnor complexes ont le type d’homotopie d’un
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bouquet de sphéres et que le nombre de ces sphéres peut étre calculé algébrique-
ment [34, Formula 5.11.c] comme somme alternée de rang de certains modules,
sous ’hypothése que ces modules sont de type fini. Aucun résultat comparable

n’est connu pour les fibres de Milnor réelles.

En particulier il n’existe pas de méthode systématique pour calculer leurs nom-
bres de Betti, bien que des formules aient été établies pour leur caractéristique
d’Euler-Poincaré, par G. M. Khimshiashvili [29] (voire [16, Theorem 2.3]) en 1977

quand k = 1 pour les fibres de Milnor positives et négatives }7{ et F-

n » et plus

récemment par N. Dutertre, D. Dreibelbis et R. Aratjo dos Santos [44, Corollary
3.4]) pour F, quand k > 2.

3. Fibres de Milnor Motiviques

A une variété algébrique non-singuliére irréductible X définie sur un corps k
de caractéristique zero et un morphisme non-constant f : X — A}, J. Denef et F.
Loeser [14] ont associé une fonction zéta motivique Z(f), qui est une série formelle &
coefficients dans ’anneau de Grothendieck Ko (Vary) des variétés sur k. La fibre de
Milnor motivique de f est alors définie comme une limite formelle de Z(f). Quand
k = C on retrouve a partir de cette fibre motivique la caractéristique d’Euler de la

fibre de Milnor topologique complexe.

Si k = R ces méthodes ne ménent pas & une formule analogue pour la caractéris-
tique d’Euler de ]-",J{ et F, . En revanche les fonctions zéta motiviques introduites
par G. Comte et G. Fichou permettent de retrouver, au travers de la réalisation par
la caractéristique d’Euler-Poincaré, x.(F,") et x.(F, ). Ces fonctions zéta ont des
coefficients dans ’anneau de Grothendieck des formules semi-algébriques basiques

que nous décrivons maintenant.

3.1. Formules Semi-algébriques Basiques. Dans [11] G. Comte et G. Fi-
chou définissent 'anneau de Grothendieck Ky(BSAg) de formules semi-algébriques
basiques comme un substitut, portant plus de structures géométriques, de l’anneau
de Grothendieck Ko(SAg) = Z des ensembles semi-algébriques. L’idée est de con-
sidérer a la place des ensembles semi-algébriques les formules-mémes qui les définis-

sent.
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DEFINITION 1.2 ([11, § 1.3]). Une formule semi-algébrique basique A en n
variables est un nombre fini d’égalités, inégalités et inéquations de polyndmes en
n variables. Une telle formule est donc la donnée de I,J,L C N et p;,q;,7 €
Rlx1,...,xp] pouri € 1,5 € J I € L tels que

A={p;=0, ¢ #0, m>0, VielVjelJVlelLl

Une formule semi-algébrique basique sans inégalité et sans inéquation est dite al-
gébrique (et constructible si la formule ne comporte pas d’inégalité). L’ensemble

des formules semi-algébriques basiques en n variables est désigné par BSA,, et on

écrit BSA = J,,cyy BSA,.

Si A est une formule de la forme donnée dans la définition 1.2 elle donne lieu &

un ensemble semi-algébrique réel
AR)={zeR" | pi(@)=0, ¢i(@)#0, n(x) >0, ieljeJlelL}

qui s’appelle 'ensemble de points réels de la formule A.

DEFINITION 1.3 (|11, § 1.3]). Soit G le groupe abélien libre ([A]|A € BSA) des

classes d’equivalences de formules semi-algébriques basiques modulo la relation
si A, B sont algébriques et A= B

par un isomorphisme algébrique alors [A] = [B].
Soit Ko(BSAR) le quotient de G par les relations
(1) [A,q=0]+[A,q#0]=[4], A€ BSA,r, q€Rz,...,z),
(2) [A,q>0]+[A,¢<0]+[A,¢g=0]=[4], A€ BSA,r,q€Rlx1,...,2,],

(3) Si A, B sont des formules semi-algébriques basiques avec des ensembles

disjoints de variables alors
[A][B] = [A, B],
ot A, B est la conjonction de A et B.
Rappelons qu’étant donné un corps k le groupe Grothendieck Ky(Vary) des

variétés algébriques sur k est construit de fagon a y obtenir la propriété d’excision

pour les classes des sous-variétés fermées. Plus précisément :



3. FIBRES DE MILNOR MOTIVIQUES 13

DEFINITION 1.4 ([37, Definition 1.1]). Soit G le groupe abélien libre des classes
d’isomorphismes de variétés sur k. L’anneau Grothendieck Ko(Vary) est le quotient

de G par les relations
(1) SiY C X est une sous-variété fermée alors [X] = [X \ Y]+ [Y],
(2) [X x Y] = [X][Y].

La classe [A}v] de la droite affine est désignée par Ly et s’appelle le motif de

Lefschetz.

DEFINITION 1.5 ([37, Definition 2.3]). Le polynéme de Poincaré virtuel est
Punique morphisme d’anneau Bya, : Ko(Varg) — Zu] tel que si X est compacte,

non-singuliére et avec des nombres de Betti b;(X) = dimg 9z H;(X;Z/27Z), alors

5Var(X)(U) = Z(*l)lbl(X)ul

>0
Un lien entre les deux anneaux Grothendieck Ko (Varg) et Ko(BSAR) est donné

par la proposition suivante.

PROPOSITION 1.6 (|11, Proposition 1.3]). Le morphisme
i: Ko(Varg) — Ko(BSARr), [AR)] = [4]

qui envoie la classe d’une variété algébrique sur la classe de la formule qui la définit,

est ingjectif.

Grace a cette proposition on peut étendre Syar : Ko(Varg) — Z[u] & un mor-
phisme d’anneaux Ky(BSA) — Z[u][1/2]. La définition de ce morphisme est donnée

par récurrence sur le nombre d’inégalités dans les formules basiques.

DEFINITION 1.7 ([11, Proposition 3.1]). Le polynéme de Poincaré des formules
semi-algébiques basiques est 'unique morphisme d’anneaux Bpsa : Ko(BSA) —

Z[u)[1/2] tel que

(1) Si A€ BSA et p e Rlxy,...,xz,] alors
Bpsa([A,p>0]) = iﬂBSA([A,p =2%) - iﬁBSA([Aap = —2%)

+3BmsallAp £ 0)),
(2) Si[A] € Ko(Varg) alors Bpsa([A]) = Bvar ([A]).
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Ce morphisme est alors tel que 1’évaluation en u = —1 de Bpsa ([4])(u) est la
caractéristique d’Euler-Poincaré a supports compacts de I’ensemble de points réels

de la formule A.

PROPOSITION 1.8 ([11, Proposition 3.4]). Si A € BSA alors

Bpsa([A)(=1) = xc(A(R))

ol X est la caractéristique d’FEuler-Poincaré & supports compacts.

3.2. Fibres de Milnor Motiviques Réelles. Nous rappelons dans ce qui

suit la construction des fonctions zéta motiviques de [11].

Considérons le schéma des arcs L(AZT') sur le spectre de R. Son ensemble
de points réels L(AZT!)(R) est I'ensemble des points R[[t]]-rationnels de Aptt.
Il existe un sous-schéma L(AﬁH,O) ayant pour ensemble de points réels les arcs

formels aboutissant a ’origine
LART,0)(R) = {y € (R[HD™*" | ~(0) = 0}.

Alors pour chaque k£ € N, il existe un R-schéma de type fini Ek(Aﬁﬂ), le schéma
des arcs tronqués a ordre k + 1, ayant comme ensemble de points réels ’ensemble

de points R[[t]]/t**!-rationnels de AT

Dans ce qui suit nous considérons seulement les ensembles de points réels
de ces schémas, et nous écrivons £(R"T1), L(R"1 0) et L£(R"1 0) au lieu de

LAFTH(R), LIAET, 0)(R) et Li(ART! 0)(R) respectivement.

Pour chaque k£ € N; il existe un morphisme de troncation
7, : LR 0) — L, (R, 0)
qui associe & un arc sa (k + 1)-iéme troncation. Pour chaque arc tronqué
Y € Le(R™T0), Ye(t) = aptt + ap_1t" "+ a
on définit une fonction

ord : £, (R™™,0) — NU {0},
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associant son ordre ord(7yx) & 7k, et associant ord(0) = co & l'arc v = 0. Il existe

également une application composante angulaire
ac: Li(R"™1,0) = R, ac(Vk) = Gord(yy)-
On considére alors les formules semi-algébriques basiques suivantes
Xpp o= {7 € Lk(R™,0) [ ord(f o) = k, ac(f oy) =1},

Xpp=A{v € LR™,0) | ord(f o) =k, ac(f o) = ~1},
X7y o= Iy € LuR™1,0) | ord(f 07) = k. ac(f 07) > 0}

Xip = A{v € LR™,0) | ord(f o) = k., ac(f o) < 0}.
DEFINITION 1.9 ([11, § 4.1]). Pour chaque symbole € € {£1,<,>} posons
Z(f) = Z[X/:,f]L_(nH)ka € Ko(BSAg)[L™M[T].

k>0

REMARK 1.10. ZY(f), Z71(f) € Ko(Varg)[L~Y[T].

REMARK 1.11. Par [11, Proposition 1.3| en appliquant Bpsa : Ko(BSA) —
Z[1/2] @ ZFL(f) on obtient les fonctions zéta motiviques définies dans [21].

Soit € € {#+1,<,>}. Pour démontrer la rationalité des Z¢(f), dans [11] est
établie une formule calculant les fonctions zéta motiviques via une résolution des
singularités. Pour la décrire on commence avec la donnée d’un morphisme bira-
tionnel propre o : M — R**! d’une variété lisse M tel que

(1) La restriction o : M \ (f oo)~1(0) — C**1\ f~1(0) est un isomorphisme
algébrique,
(2) Les diviseurs réduits de f o o et det Jac o sont & croisements normaux,

3) Le diviseur exceptionnel E = (¢1(0)),eq st une réunion de composantes
( p p

irréductibles de Y := ((f 0 0)71(0))eq-

Il existe ainsi des sous-ensembles 7 C N et K C J tels que

Y = UEj, E = UEk.

JjET keK

DEFINITION 1.12. Pour chaque i € J soit

N; =multg, (f o), v; — 1 := multg, det Jac(f o o).
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Comme le diviseur de f o o est & croisements normaux dans M il existe pour
chaque point p € Y un ouvert affine U C M contenant p, une suite reguliére de
fonctions reguliéres x; : U — R et un u € O tels que
(1) foo(x) =u(x) H N Vo e U.

ied

On stratifie Y afin que E soit réunion de strates, de la fagon suivante.

DEFINITION 1.13. Pour chaque sous-ensemble non-vide I C J posons
Ef:=(E\ |J E
i€l JjeINI
et soit Ny = ged,; (V).
Sie € {£1, <, >} on construit une formule semi-algébrique basique E7*“ € BSA
telle que E'I”l(R) est I’ensemble de points réels d’un revétement étale de degré Ny

de l'extension des scalaires de £9 a C. Afin que cela définisse correctement une

formule on peut utiliser (1) et argumenter localement sur des ouverts affines.

DEFINITION 1.14 ([11, § 4.1]). Pour chaque symbole € € {£1,<,>}, siU C M

est ouvert affine donné par (1) posons

Riy ={(z,t) € (ENU) xR | t""u(z) =1},

Rl_b = {(z,t) € (ByNU) xR | tNu(z) = —1},

R7y =A{(z,t) € (B NU) xR | t""u(x) > 0},

Ry =A{(z,t) € (EfNU) xR | t""u(x) < 0}.
ot Ny est comme dans la Définition 1.18 et u comme dans (1). Si M = (Up)ier,
est un recowvrement fini, posons

[ErT= ) (~)SFUR; o .] € Ko(BSA).
SCL

La rationalité des fonctions zéta motiviques Z¢(f)(T') est alors conséquence du

théoréme suivant.

THEOREM 1.15 (|11, Theorem 4.2|, |14]). Pour chaque symbole € € {£1, <, >}
les fonctions Z¢(f)(T) satisfont

€ _ |[I|—170,€ LN
2@ = Y W O[] e

INK#D el
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DEFINITION 1.16 ([11, Definition 4.5]). Pour chaque symbole € € {+1, <, >},

posons

S(f) = > (1=L)TEP € Ko(BSAg).
INK#0

En accord avec la terminologie établie dans [11] on appelle S*(f) la fibre de
Milnor motivique positive et S~1(f) la fibre de Milnor motivique negative de f en
Porigine. En introduisant de nouvelle terminologie, nous allons appeler S~ (f) le
tube de Milnor motivique positif, et S<(f) le tube de Milnor motivigue négatif. 1ls
ne dépendent pas du choix de la résolution de singularités o, d’aprés [11, Remark
4.3].

Supposons maintenant que f : R"*! — R ait un point critique isolé en ’origine.
Soit (€g,dp) des données de Milnor comme dans ’énoncé du Théoréme 1.1 et pour

chaque ¢ € (0,dp) et n € (0,€(0)) écrivons
'F'r,> = f_l((ovn)) N Bs,

Fro= 7 ((=n,0)) N Bs,
Fy=1""(n) N Bs,

Fot=f"H=n) NBs.
THEOREM 1.17 ([11, Theorem 4.12]). Si
f R SR, f(0)=0

est une fonction polynomiale avec un point critique isolé en l’origine, alors pour

chaque § € (0,0¢) et n € (0,€(9)),

Brsa(S())(=1) = (=1)"xe(Fy), ee{*l, <, >}






CHAPTER 2

Introduction

Between the idea
And the reality
Between the motion
And the act

Falls the Shadow

“The Hollow Men”
T.S Elliot

1. Introduction

If one of the principal objectives in the study of the singularities of maps of
algebraic varieties is to obtain reasonable classifications thereof, then an adequate
understanding of calculable invariants of topological or algebraic nature is desir-
able first of all, and secondly, suitable equivalence relations preserving a given such
invariant. For singularities defined over the field of complex numbers several such
invariants has been used for the classification problem, amongst others the Milnor
number and the Tjurina number, and several equivalence relations, amongst others
the contact equivalence and the p-constant equivalence relations, preserving one
or more of these invariants. The principal objective of this thesis is to study the
invariants of algebro-topological nature of the Milnor fibres of real singularities, and

in particular their Betti numbers, but also their Euler-Poincaré characteristic.

It is a delicate problem to effectively calculate topological invariants for the
Milnor fibres of real ! singularities and as a consequence, the different classifica-

tion problems at hand, are mostly completely open at the present date. There

IMore generally, in the words of Réné Thom as quoted in the introduction (p. 5) to the book
[6], real algebraic geometry, in Thom’s view an example of mathematics pertaining to phenomena
where “reality plays an essential role”, has historically been neglected in lieu of the “even too
beautiful” complex geometry. This might arguably explain at least in part why relatively little is
known of the topology of real singularities.

19
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has however recently been made a significant progress by considering instead of in-
variants of topological nature, “motivic” invariants in the form of different motivic
zeta functions. Using these G. Fichou [22] and J.-B. Campesato [9] have classified
respectively AD E-singularities and Brieskorn polynomials, up to the Blow-Nash
equivalence relation on germs of Nash functions. In light of these advances, the
secondary objective of this thesis is to study of the motivic zeta functions intro-
duced by G. Comte and G. Fichou in [11] and to establish that the value of the
virtual Poincaré polynomial of the motivic Milnor fibres of a semialgebraic family
of polynomial functions f; : R™ — R parametrised by 7', is generically constant,
that is does not depend on the parameter ¢t € T outside of a semialgebraic set of

positive codimension in T

2. Real Singularities

2.1. Introductory Remarks. In his article [40] of 1952 John Nash adressed
the question of when a compact C'°°-manifold can be given the structure of a real
algebraic variety. He defined therein that which are now called Nash manifolds and
Nash morphisms, which have since then become important objects of research in
real algebraic geometry and singularity theory? and he proved that any compact
smooth manifold is diffeomorphic (in fact isotopic) to a connected component of a
real algebraic set. The latter result was then improved upon by Tognoli, who in
1973 [49] proved that any such manifold is diffeomorphic to some nonsingular real
algebraic set. Further on, in 1981, Akbulut and King [3] proved that any nonsin-
gular real algebraic set is diffeomorphic to the interior of a compact C'°°-manifold.
As a consequence, one thus has a classification of nonsingular real algebraic sets,

up to diffeomorphism.

2.2. A Milnor Fibration. The topological behaviour of real and complex
algebraic (or more generally analytic) sets near an isolated singular point was in-
vestigated by John Milnor in his now classical treatise [39] from 1968. In it he
showed, as a means of constructing differentiable structures on topological mani-
folds and in particular to produce examples of exotic spheres, that to any singularity
of a complex hypersurface one can associate [39, Theorem 4.8] a locally trivial fi-

bration over the pointed disc. Furthermore he proved the following real analogue

2In another article, of 1969, Nash defined and studied arc spaces, used by Denef and Loeser
[14] to define motivic integration and motivic zeta functions of singularities.
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(for k > 1).

Let f: (R"** 0) — (R*,0) be a germ of real analytic function and let us choose
a representative f : M — RF on a small neighborhood M C R"™** containing the

origin and let Jac(f) denote the Jacobian matrix of this representative.

THEOREM 2.1 ([46, Theorem 4.2]). If the Jacobian matriz Jac(f) has rank k
in any x© # 0, then there exists g > 0 such that for any § € (0,dq] there exists
€0 > 0 such that for any € € (0, €] the restriction

(2) ff7HBEN{0}) NBF T — BEA {0}

is a locally trivial topological fibration where IBgH'k C R"** denotes the open (n+k)-
dimensional ball centered at the origin and of radius § and where B¥ C R* denotes

the open k-dimensional ball centered at the origin and of radius €.
When k = 1 there are thus up to diffeomorphism two fibres

Fr= N En) nBE, 0<n<e

of the locally trivial fibration 2 in the statement of the Theorem 2.1. These are
referred to as the positive and negative open Milnor fibres of f at the origin. The
closures }:f for the euclidean topology of the positive and negative open Milnor
fibres are then manifolds with boundaries and are referred to as the positive and

negative closed Milnor fibres of f at the origin.

When k > 2 there is up to diffeomorphism a unique fibre
Fo=f"tm)NBFTR, neBE\{0)

of (2) because then the codomain is connected. The manifold F,, is then referred
to as the open Milnor fiber at the origin. The closure ]:',, for the euclidean topology
of the open Milnor fibre is a smooth manifold with boundary and is referred to as

the closed real Milnor fibre of f at the origin.

2.3. An Outline of Known Results. As for the topology of the real Milnor
fibres, relatively little is known, at least if one were to compare with the situation

over the complex numbers. We now outline what has been established, beginning
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with a startling congruence which is somewhat typical in real algebraic geometry.
Here p € R™"! is an isolated critical point of a germ of polynomial function f :
(R*HL p) — (R, p) if p is an isolated critical point of any representative f : M — R

of this germ.

ProOPOSITION 2.2 ([36, Proposition 1.2]). If the origin is an isolated critical
point of the germ of a real analytic function f : (R"*1,0) — (R,0) and if (eo,50) is
Milnor data at the origin as in (Theorem 2.1) then for any n € (0,€(d)] the Euler-

Poincaré characteristic of the closed Milnor fibres satisfy the congruence relation

X(Fy)=x(Fy)  (mod 2).

This congruence relation has been proven by C. McCrory and A. Parusinski
[36]) as follows®.
Consider a representative f : M — R of the germ f : (R"*1 0) — (R,0) where
M c R™*! is a small open neighborhood of the origin and let

fC:Mc—>(C

denote a complexification of this representative where Mc C C"*! is an open
neighborhood of the origin such that Mc N R"*t = M. Let ¢ : C**! — Ct!
denote complex conjugation and let F¢ , denote a Milnor fibre (see [39, Theorem
4.8]) at the origin of the holomorphic function fc. Using the fact that the geometric
monodromy

h: ]:(cm — .7:@)7,

satisfies, up to isotopy, the relation chch = Id. McCrory and Parusiniski then ob-
tain the congruence above and moreover obtain another proof of the Theorem [13,
Theorem 1] of M. Coste and K. Kurdyka on the genericity modulo four of links of
irreducible real algebraic sets. Another proof of Proposition 2.2, using real motivic
zeta functions, is given by G.Fichou in [23]. Yet another proof follows easily in
the case of polynomial map germs from the following formula, obtained by G.M.

Khimshiashvili [29] in 1977, which we now recall.

THEOREM 2.3 ([16, Theorem 2.3]). If the origin is an isolated critical point of
the polynomial map germ f : (R"*1 0) — (R,0) and if (eo,d0) s a Milnor data at

3As remarked to me by A. Parusifiski the result also follows from the theory of algebraically
constructible functions [41, Theorem 6.6]
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the origin, as in Theorem 2.1, then for any n € (0,¢€(4)],
X(Fr) =1—(=1)""dego(Vf),  x(F,;)=1—degy(Vf)

where degy(V f) is the topological degree of the map

i
V£

where SY = OB} denotes the n-dimensional sphere of radius § centered at the

: Sy — Sy

origin.

One can note here that the following interesting corollary results.

COROLLARY 2.4. If n is odd then

X(Fy) = x(F,)-
In the case of higher codimensional (k > 2) isolated real singularities N.
Dutertre, D. Dreibelbis and R. Aratjo dos Santos have quite recently found the

following analogue of Khimshiashvilis formula.

COROLLARY 2.5 (|44, Corollary 3.4]). Let f : (R™,0) — (R¥,0) withn >k > 2
be a polynomial map germ with an isolated singularity at the origin.
Let f = (f1,..., fr) be an arbitrary representative of the germ. Denote by deg,(V f;)

the topological degree of
Vi

IV fill
and let -7:—?7 denote a closed Milnor fibre as in Theorem 2.1. Then the following
holds.

(1) If n is even then x(F,) = 1 — degy(V f1) and

.qn—1 n—1
1Sy = Sy

deg(Vf1) =+ = dego(V fi).
(2) If n is odd then x(F,) =1 and
dego(V f1) = -+ = dego(V fi) = 0.

In the complex realm, as already stated, Milnor proved the existence of a fi-
bration corresponding to holomorphic germs and he moreover proved the following

classical result
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THEOREM 2.6 ([39, Theorem 6.5], [46, Theorem 7.2]). If the origin is an iso-
lated critical point of the germ of holomorphic function f : (C"*t1,0) — (C,0) then
the Milnor fibre

Fe=f"'(n)nByH(C)
has the homotopy type of a bouquet of spheres \/f:({’o) S™. The number of spheres
w = u(f,0) is called the Milnor number of f at the origin. It is nonnegative and

p =0 if and only if 0 € C"*' is a regular point of f.

REMARK 2.7. That the analoguous Milnor fibre exists and has the homotopy
type of such a bouquet of spheres have since been established for complete intersec-

tions f: (C"** 0) — (C*,0) by H. Hamm (see e.g [34, Corollary 5.10])*.

No analogue of Theorem 2.6 has to this date been established for the real Milnor
fibers of germs of isolated real singularities f : (R"*1 0) — (R¥,0) and as for the
homotopy type of the real Milnor fibers, not much can be said. Even if one were
to restrict ones attention to the singular homology groups of the real Milnor fibers,
again, not much can be said except for two results which were established in 2014
by R. Araijo dos Santos, M. Hohlenwerger, O. Saeki and T. Souza. We state their

results here for the sake of completeness.

PROPOSITION 2.8 ([45, Proposition 5.4]). Let f : (R?*,0) — (R¥,0) be a poly-
nomial map germ with an isolated singularity at the origin, k > 2. Given a repre-
sentative f = (f1,..., fx), if F, denotes a Milnor fibre at the origin (Theorem 2.1)
then

(1) Br—1 :=dim Hyx_1(F,;,Z) = (—1)* degy(V f1).
(2) The Milnor fibre F,, has the homotopy type of a bouquet

where it is meant a point if Bx_1 = 0.

They also showed

4Such bouquet decomposition theorems exist also more generally for holomorphic map germs
f : (X,0) — (C,0) such that both f and X have an isolated singular point in the origin and
dim X # 3. D. Siersma ([47, Theorem 0.1]) proved namely in this case that the Milnor fiber has
the homotopy type of a bouquet lko(X)V S™V ---V S™. A generalisation of Siersma’s result was
later established by M. Tibar [48, “Bouquet Theorem”).



3. REAL MOTIVIC MILNOR FIBERS 25

PROPOSITION 2.9 ([45, Proposition 5.6]). Let f : (RZ*+1.0) — (R*,0) with
k > 3 be a polynomial map germ with an isolated singularity at the origin. Then
the (k —1)-th homology group H;c,l(]?mZ) of the Milnor fibre is torsion free if and
only if there is a homotopy equivalence

~ Br—1
Fy~ |/ sFvstk,

i=1

3. Real Motivic Milnor Fibers

In this section we shall discuss motivic zeta functions in the case of real isolated
singularities. To put this into perspective we first recall a formula of Norbert
A’Campo and briefly discuss the classical motivic zeta functions of J. Denef and F.

Loeser.

3.1. A’Campo’s Formula. The classical formula [2, Théoréme 1] of A’Campo
implies that in the case of hypersurface singularities the Lefschetz numbers of the
iterates of the monodromy acting on the complex Milnor fibre can be computed
from a resolution of singularities and in particular this yields a formula for the

Euler characteristics of the Milnor fibre.

The situation is as follows. Let f : C"*! — C be a polynomial map with
f(0) = 0 and suppose that the origin is a critical point. Write F, = f~1(n) N B
for a representative of the Milnor fibre at the origin. By the resolution of singular-
ities theorem of Hironaka [27] there exists a proper birational map o : M — C"*!

from a smooth connected complex algebraic variety M such that the following hold.

(1) The restriction o : M \ (f o 0)~*(0) — C"*1\ f71(0) is an algebraic
isomorphism.

(2) The reduced divisor Y := (f 0 0);.},(0) C M has normal crossings.

(3) The reduced divisor E := (671(0)),q is a union of irreducible components

of Y.

It follows that if ¥ = (J;c; E; denotes the decomposition into irreducible
components of Y then there exists a subset of indices K C J such that E = Uie)c E;

is a union of irreducible components.

DEFINITION 2.10. For any i € J, let N; = multg,(f o o) be the multiplicity of
(foo)~1(0) along E;. For any I C J let N; = ged, e N;.
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Let us stratify Y in such a way that F is a union of strata.

DEFINITION 2.11. For any nonempty subset ) # 1 C J let
E;=(E\ J Ej
icl JEINI

The theorem of A’Campo now reads

THEOREM 2.12 (|2, Théoréme 1]). For any k € N, the Lefschetz number A(hy,)
of the k-th iterate of the monodromy action h : F,, — F,, of the Milnor fibre satisfies
ARy = > Nix(ED).

ICK,Ni|k
In particular the Euler characteristic of the Milnor fibre satisfies
X(Fp) = A(h%) = > Nix(E}).
ICK
A’Campo proved this theorem in 1973, by using the spectral sequence of the
sheaf of vanishing cycles as to reduce the calculation to the case of a normal cross-
ings singularity, for which the Lefschetz numbers had been computed by him in a

previous article.

Whilst constructing their theory of motivic integration, J. Denef and F. Loeser

associated in their article [14] to any nonconstant morphism
f:X = A}

from an irreducible nonsingular algebraic variety over a field k of characteristic
zero, motivic zeta functions. These are formal power series with coefficients in a
ring of motives, which is to say in this setting, a localisation of the Grothendieck
ring of varieties Ko(Varg). The coefficients are then the motives corresponding to
certain elements of the arc spaces introduced by Nash. A certain formal limit of
the motivic zeta functions is then called the motivic Milnor fibre of f. We will not
delve further into this matter, lest to say that when & = C one recovers most of the
usual invariants of the complex Milnor fibre (such as the Euler characterstic) from

the motivic Milnor fibre, by applying a certain realisation morphism.
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We will however discuss a version for real polynomial maps, due to G.Comte
and G.Fichou, from which one obtains the Euler characteristic of the real Milnor
fibres. As their construction is based on “motives” as given by a localisation of the

ring of basic semialgebraic formulas, we first need to discuss the latter.

3.2. Basic Semialgebraic Formulas. In the article [11] G. Comte and G.
Fichou introduced the Grothendieck ring Ky(BSAg) of basic semialgebraic formu-
las. They were brought to do so because of the lack of algebraic structure of the
Grothendieck ring Ky(SAg) of real semialgebraic sets; indeed the latter ring is iso-
morphic to the ring of integers generated by the class of a point. The idea then
was to consider not semialgebraic sets themselves but rather the formulas defining
them and thus produce a ring with richer structure. In what follows we will denote
Varg the category of varieties over Spec(R) and if X € Varg is a real variety we

shall denote by X (R) its set of real points.

DEFINITION 2.13 ([11, § 1.3]). A basic semialgebraic formula in n variables
A is a finite number of equalities, inequalities and inequations of polynomials in n
variables. That is, there exists I, J,L C N and polynomials p;, q;,r; € R[z1,. .., xy]
foriel jeJ andl € L such that

A={p;=0, ¢;#0, rn >0, VielVjeJVlelL}

A basic semialgebraic formula without inequalities and inequations is called alge-
braic. The set of semialgebraic formulas in n variables is denoted by BSA,. The

union of the sets BSA,, over N is denoted by BSA.

REMARK 2.14. A basic semialgebraic formula is not determined by its set of

real points
AR)={z eR" | ps(z) =0, ¢;(x)#0, nr(z)>0, iel,jeJlelL}

For instance A = {z*+a > 0} and B = {2>+b > 0} with a, b positive real numbers,

define different formulas although their sets of real points are the same.

An isomorphism of formulas is defined as follows

DEFINITION 2.15 ([11, Definition 2.6]). Let

A={Ap;>0,i=1,...,1}, B={B,¢>0,i=1,...1}
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be formulas such that A’, B’ C R™ are Zariski constructible subsets and p;,q; €
Rlzy,...,2,]. We say that A and B are isomorphic if there exists an isomorphism
of real algebraic varieties
$:A— B

where

A = {A/apl = Z%a'"apl = le}a

B: {B/7Q1 :Z%V"aql :Zl2}
such that ¢ is equivariant with respect to the action of {£1}' on A and B and such

that the morphism induced by extension of scalars ¢c : Ac — Bc is a complex

algebraic isomorphism.

DEFINITION 2.16 (|11, § 1.3]). Let G be the free abelian group ([A]|A € BSA) of
equivalence classes of basic semialgebraic formulas where if A and B are algebraic,
that is have no inequalities, and if A= B by an algebraic isomorphism then [A] =
[B]. Let Ko(BSAR) be the quotient of G by the relations

(1) [A,g=0]+[A,¢q#0]=[4], AeBSA,r, q€R[zy,...,2,],
(2) [4,¢>0]+[A,g<0]+[A,g=0]=[4], A€ BSA,r,q€Rlz1,..., 2]
(3) If A, B are basic semialgebraic formulas with disjoints sets of variables

then
[A][B] = [A, B]
where A, B is the conjunction of the formulas A and B.
Recall that given a field k the Grothendieck group® Ko(Vary) of algebraic va-

rieties over the spectrum of k is formed by isomorphism classes of varieties in such

a way that one has the excision property for closed subvarieties.

DEFINITION 2.17 ([37, Definition 1.1]). Let G be the free abelian group of iso-
morphism classes [X] of varieties X over the spectrum of k. The Grothendieck

group Ko(Vary) is the quotient of G modulo the relation
(1) If Y C X is a closed subvariety then [X] = [X \ Y]+ [Y].

The quotient of G by the above relation and by the supplementary relation

(X % Y] = [X][Y]

5More generally, in any exact category there is a notion of Grothendieck group
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gives Ko(Vary) the structure of a commutative ring. The class [A}] of the affine

line is denoted by 1L and is called the Lefschetz motive.

We have that K(Varg) is isomorphic to a subring of Ky(BSA) by the following

proposition:

PROPOSITION 2.18 ([11, Proposition 1.3]). The morphism
i: Ko(Varg) — Ko(BSAR)

defined by sending the class of an algebraic variety to the formula defining it, is an

injection of rings.

By the universal property of the Grothendieck ring Ko(Vary) if (R,-,+) is a
commutative ring and if e : Vary, — R is any application such that
(1) e(X)=e(Y) if X and Y are isomorphic k-varieties,
(2) e(X)=eY)+e(X\Y)if Y C X is a closed subvariety,
(3) e(X xxY) =e(X)-e(Y)
then there exists a unique ring homomorphism é : Ky(Vary) — R such that
é([X]) = e(X) for any X € Vary. Applications e : Vary, — R as above are called
(additive and multiplicative) invariants in the literature and ring homomorphisms
€ : Ko(Vary) — R are called realisations of Ky(Varg). When k£ = C,R the Euler
characteristics with compact supports gives an example of a realisation of Ky(Vary);
another is given by the virtual Poincaré polynomial® the existence of which in the

real case was first proven by C. McCrory and A. Parusinski.

DEFINITION 2.19 (|37, Definition 2.3]). The virtual Poincaré polynomial is the
unique ring morphism By, : Ko(Varg) — Z[u] such that

Bvar(X)(u) = Z(—l)ibi(X)ui

i>0

whenever X is a compact nonsingular real variety with Betti numbers
bi(X) = dimg 9z Hi(X;7Z/27Z), i>0

in homology with Z/2Z-coefficients.

6In the complex case another example is given by the Hodge-Deligne polynomial
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This morphism can be extended to a morphism on the Grothedieck ring of basic
semialgebraic formulas K((BSA), giving a realisation of this ring. The definition is
by induction on the number of inequalities appearing in a representative of a class

[A] € Ko(BSA). More precisely

DEFINITION 2.20 ([11, Proposition 3.1]). The virtual Poincaré polynomial of

basic semialgebraic formulas is the unique morphism of rings fpsa : Ko(BSA) —
Z]u][1/2] such that

(1) If A€ BSA and p € Rz, ...,xz,] then

Bsa(lA,p > 0]) = {BmsallA,p = 2%)) — {Busa(lA,p = —=7)

+56msa(l4,p £ 0)).
(2) I [A] € Ko(Vare) then Bpsa([A]) = Bvar, (4]

The above morphism has then the property that evaluated at —1 one recovers

the Euler characteristic with compact support of the set of real points of the formula:

PROPOSITION 2.21 ([11, Proposition 3.4]). For any basic semialgebraic

formula A,
Brsa([A]) (1) = xc(A(R))

where x. denotes Fuler characteristic with compact support.
One thus gets an extension” of Xe : Ko(Varg) — Z to a morphism
Xe : Ko(BSA) — Z[1/2].

The following proposition implies that isomorphic formulas have the same images

by the virtual Poincaré polynomial.

PROPOSITION 2.22. Suppose given formulas A, B € BSAg. If there exists an

isomorphism of formulas ¢ : A — B then the classes of A and B have the same
image Bpsa([A]) = Bpsa([B]) under Bpsa : Ko(BSAR) — Zlu][1/2]

7 As a matter of fact, the virtual Poincaré polynomial was defined by Comte and Fichou exactly
as to impose this property.
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ProOF. This follows from [11, Proposition 2.2] and from the fact that isomor-
phic real algebraic varieties define the same class in Ky(Varg) hence have the same

images under By;;. O

REMARK 2.23 (“Topology of Formulas”). Little is known on the exact relation-
ship between on the one hand the topology of the set A(R) of real points of a formula
and on the other hand the value Bpsa([A]) of the virtual Poincaré polynomial of the
class of the formula in question. The problem is quite interesting but indeed very
complicated, for, in order to find Bpsa([A]) one is required to caculate 3* terms
where k is the number of inequalities appearing in A. To calculate just one term
one is then required to find the Betti numbers of a real Zariski-constructible set. By
additivity one is eventually reduced to the case of a compact nonsingular algebraic
variety by compactifying and resolving singularities. But finding the Betti numbers,
or even the zeroeth one, of a compact, nonsingular real algebraic set is a notably
difficult problem, albeit that one knows by the results of Akbulut and King 3] that

it is diffeomorphic to some smooth manifold.

3.3. Real Motivic Milnor Fibres. In analogy with the motivic zeta func-
tions of Denef and Loeser [14] for nonconstant complex algebraic morphisms, and
the motivic zeta functions of S. Koike and A. Parusiriski [30] and of G. Fichou [20]
for real analytic maps, Comte and Fichou associated in the article [11] motivic zeta
functions to any real polynomial map f : R**! — R with f(0) = 0. As already
stated, these motivic zeta functions are formal power series with coefficients given
by motives corresponding to certain subsets of truncated arc-spaces. By a motive is
meant here an element of the localisation Ko(BSA)[Lg'] of the Grothendieck ring
of basic semialgebraic formulas with respect to the Lefschetz motive. We recall
in what follows the construction of said motivic zeta functions and their known

properties.

Consider the arc scheme L(AZT!) over the spectrum of R. Tts set of real points
L(AFTY)(R) is the set of R[[t]]-rational points of Ap*'. There exists a subscheme

L(AZT,0) having as set of real points

LA, 0)(R) = {y € (R[N | 7(0) = 0}
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For each k € N there exists a R-scheme of finite type L;(ART"), called the scheme
of truncated arcs of order k + 1, having as set of real points the set of R[[t]]/tF*1-

rationals points of Aﬁ“.

In what follows we shall only consider the set of real points of these schemes,
and we shall write £(R"*1), L(R"1,0) and Lx(R"+,0) instead of L(ART!)(R),
L(AZT0)(R) and L, (AT, 0)(R), respectively.

For each k € N there exists a truncation map

e s LR 0) = L (R, 0)
sending an arc to its (k + 1)-th truncation. For a truncated arc
Vi € ﬁk(Rn-H, 0), ’yk(t) = aktk + ak,ltk_l +---+ag

one defines a function

ord : L(R™,0) = NU {0}

sending 75 to ord(vx) and sending v, = 0 to ord(0) = oo. There also exists a map,

the angular component map
ac: L, (R"™1,0) = R, ac(Vk) = Qordys

which sends a truncated arc to its leading coefficient.

One then defines basic semialgebraic formulas
Xipyp={v € Le(R™,0) [ ord(f o) =k, ac(for) =1},
X = {y € Le(R™,0) [ord(for) =k, ac(fory)=-1},
X7 ={y € Le(R™,0) |ord(fon) =k, ac(foy) >0},
X5y ={y € LyR"™,0) |ord(foy) =k, ac(fov) <0}

The motivic zeta functions corresponding to f are then defined as follows

DEFINITION 2.24 ([11, § 4.1]). For any symbol € € {1, <, >} define

ZE(f) = [Xf L FDETE € Ko(BSAR)[L~(T].
k>0
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Note that Z*!(f) are elements of Mg[T| = Ko(Varg)[L"!][T], that is, their

coefficients are motives in the sense of Denef and Loeser.

REMARK 2.25. By applying Bpsa : Ko(BSA) — Z[1/2] to ZF'(f) one recovers
the motivic zeta functions of G. Fichou (see [21]). This follows from [11, Proposi-
tion 1.3].

In order to prove the rationality of the above motivic zeta functions, Comte
and Fichou established a certain formula for Z¢( f), analoguous to the formula [14,
Theorem 2.4] established by Denef and Loeser for their motivic zeta functions. The
content of this formula is that one can compute the zeta functions via a resolu-
tion of singularities. To describe it one starts with a proper birational morphism

o: M — R"! from a smooth manifold M such that

(1) The restriction o : M \ (f o o)71(0) — C"*1\ f=1(0) is an algebraic
isomorphism,

(2) The divisors of f oo and det Jac o are normal crossings,

(3) The reduced divisor E = (671(0)),.q is a union of irreducible components
of Y :i=((foo) 10))eq-

Under these hypotheses one can write

v=\JE, E=|JE,

JET keK

for some subsets J C N and K C J.

DEFINITION 2.26. For any i € J let

N; = multg,(f o o), v; — 1 := multg, det Jac(f o o)

As the divisor of f o ¢ is normal crossings in M there exists for any point
p € Y an affine open U C M containing p a regular sequence of regular functions
z; : U — R and a unit u € OF; such that

(3) foo(x) =u(x) H N Vo e U.

icJ
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One now stratifies Y in such a way that F is a union of strata.

DEFINITION 2.27. For any nonempty subset I C J let
Ey=(E\ |J E
i€l JjeETNI

and let N; = ged, ¢ (N;).

For any symbol € € {£1, <, >} and for any stratum E¢ one constructs a basic
semialgebraic formula E9¢ such that E?'(R) is the set of real points of an étale
covering of degree N; of the extension of scalars of EY to C. For this to indeed
yield a basic semialgebraic formula one first has to define it locally on affine open

sets, using (3).

DEFINITION 2.28 (|11, § 4.1]). For any symbol € € {+1,<,>}, if U C M 1is
the affine open set in (3) above then

Ry ={(z,t) € (E}NU) xR | t"Tu(z) =1},

Ry y = {(x,t) € (BYNU) xR | t"Tu(z) = -1},
R7y ={(z,t) e (EfNU) xR | tNtu(x) > 0},
Ry ={(z,t) € (B nU) xR | t""u(z) < 0}
where Ny is an in Definition 2.26 and u as in (3) above. For a covering M =

(U1)ier, set

[E7T =Y ()R o _p.] € Ko(BSA).
SCL

The rationality of the zeta functions Z¢(f)(T") follows from the following theo-

rem.

THEOREM 2.29 ([11, Theorem 4.2], [14]). For any symbol € € {£1,<,>} the
zeta functions Z<(f)(T) satisfy

‘ -1 0 T LT
z5 (N = Y, W=D E ] =
INK#£D iel

One considers the following formal limits of the zeta functions above:
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DEFINITION 2.30 ([11, Definition 4.5]). For any symbol € € {£1,<,>}, let

S(f) =Y (1-L)ITEY] € Ko(BSAg).
INK#)

In accordance with the terminology used in the article [11] (see also [14]) one
calls S*1(f) the motivic positive and negative Milnor fibres of f at the origin. In-
troducing new terminology we will refer to S~ (f) as the motivic positive Milnor
tube, and to S<(f) as the motivic negative Milnor tube. They do not depend on
the choice of a strong desingularisation, by [11, Remark 4.3].

In the case of isolated singularities one recovers the Euler characteristics of the

classical Milnor fibres by applying the realisation
Xe: Ko(BSAR) = Z[1/2],  Xc([X]) = Brsa([X])(=1)

as according to the following real (partial) analogue of the A’Campo formula. So
suppose that f : R"*! — R is a polynomial function having an isolated critical
point in the origin. Let (eg, dg) be Milnor data of f at the origin as in Theorem 2.1
and for any ¢ € (0,dp) and any n € (0,¢(d)) write

Fy = f71(0,n)) N B,

Fy =71 ((-n,0)) NBs,

and write
‘F% = fﬁl(n) N Bs,
Fol=f"-n)NBs

for the positive and negative Milnor fibres at the origin.

THEOREM 2.31 ([11, Theorem 4.12]). Let
f R SR, f(0)=0

be a polynomial function having the origin as an isolated critical point. Then for

any § € (0,8q) and any n € (0,¢(9)),

Xe(S(f) = (=1)"xe(F7),  e€{£], <>}

where x. denotes Fuler characteristic with compact support.
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4. A Brief Outline of Arc-Analytic Geometry

Real algebraic varieties present themselves with an immediate difference with
complex analytic varieties in that a connected component (for the euclidean topol-
ogy) of an irreducible real algebraic set X need not be itself algebraic. However,
as it turns out, certain connected components are “rigid” in the sense that after
blowing up the set of their preimages in the strict transform X constitutes exactly

the set of connected components of X.

In order to have a category containing all such rigid connected components K.
Kurdyka introduced in his article [32] from 1988, the notion of arc-analytic sets.
A slight modification of this notion, namely the AS-sets, was shortly thereafter
presented by A. Parusinski. These sets are then precisely the closed arc-analytic
sets, for the euclidean topology. For posterior reference we now briefly discuss these

notions.

DEFINITION 2.32 ([33, § 1]). A semialgebraic map f : R™ — R* is said to be
arc-analytic if for any real analytic arc v : (—=1,1) — R™ the composition f oy is

real analytic.

A semialgebraic set is AS if any real analytic arc meeting it can be prolonged

so as to be entirely included in it, except possibly in isolated points. More precicely:

DEFINITION 2.33 ([33, Proposition 3.2]). A semialgebraic set X C P™ is called
an AS-set if for any real analytic arc v : (—1,1) — P™ such that v((—1,0)) C X 1is
entirely included in X, there exists an € > 0 such that v((0,¢) C X. A semialgebraic
map is called an AS-map if its graph is an AS-set.

One then forms the category with objects AS-sets and arrows AS-maps. The

following then says that this category is constructible.

THEOREM 2.34 ([33, Theorem 4.4]). The AS-sets forms a constructible cate-
gory. That is, the following holds:

(1) AS contains the real algebraic sets.

(2) AS is stable by boolean operations. That is, arbitrary intersections and
unions of AS-sets are AS and the difference of two AS-sets is an AS-set.

(3) The inverse image of an AS-set by an AS-map is an AS-set. The image
of an AS-set under an injective AS-map is an AS-set.
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(4) For each locally compact AS-set X there exists a semialgebraic subset
Y C X withdimY < dim X — 2 such that X \'Y is Euler, that is, for any
x € X \'Y the Euler characteristics of the link of x in X \'Y is an even

integer.
In particular the category AS contains the Zariski-constructible sets.

THEOREM 2.35 ([33, Theorem 4.5]). The category of AS-sets is strictly in-
cluded in the category of real analytic sets and is the smallest constructible category

containing the connected components of compact real algebraic sets.

The relationship between the category AS and the category N of Nash-constructible
sets is described by the following result, which was first proved by A. Parusinski
[42, Theorem 4.3].

THEOREM 2.36 ([33, Theorem 3.9]). For a semialgebraic set X C P™ the fol-

lowing are equivalent:

(1) X € AS.

(2) The indicator function of X is Nash-constructible on P" (see [33, Defini-
tion 3.7]).

(3) There exists a proper, reqular morphism of real algebraic varieties f : Z —

P" and a union Z' of connected components of Z such that
reX <= x(f'2)nZ)=1 (mod2).
r¢ X = x(f Y z)NZ)=0 (mod?2).
5. Summary of Results

5.1. Motivic Milnor Fibres of Families of Singularities.
5.1.1. In chapter 3 we consider the arc-analytic equivalence of germs of Nash

functions due to J.-B. Campesato [10].

DEFINITION (Definition 3.5). Let f,g : (R™,0) — (R,0) be germs of Nash

functions. If there exists a germ of semialgebraic homeomorphism
h:(R"0) — (R",0)

with f = g o h such that h is arc-analytic and if there exists a constant ¢ > 0 such
that
| det Jac(h)| > ¢
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there where the Jacobian determinant is defined, then f is said to be arc-analytically

equivalent to g via h and one writes f ~, g or f ~ g if no ambiguity is possible.

The result [20, Theorem 4.9] of G. Fichou implies that if f, g : (R™,0) — (R,0)
are arc-analytically equivalent germs of Nash functions then the virtual Poincaré
polynomial of the positive motivic Milnor fibres of f and g are equal, Bva:(S*(f)) =

Bvar(S1(g)), and likewise the virtual Poincaré polynomials of the negative motivic

Milnor fibres of f and g are equal, Byar(S™1(f)) = Bvar(S71(g)).

5.1.2. The first result in chapter 3 is an extension of [20, Theorem 4.9] to the

positive and negative Milnor tubes.

THEOREM (Theorem 3.10). If f,g : (R™,0) — (R,0) are arc-analytically equiv-
alent germs of Nash functions then for any symbol ¢ € {£1,<,>} the virtual
Poincaré polynomial of the corresponding motivic Milnor fibres and motivic Mil-

nor tubes are equal:

Brsa(S°(f)) = Bpsa(S(9))-

5.1.3. The next result in chapter 3 concerns families
fi :R* =5 R, fi(0)=0, VteT

of polynomial maps semialgebraically parametrised by a real algebraic

set T'C R™. The methods of A. Parusinski and L. Paunescu leading to their proof
of the Whitney Fibering Conjecture [43] enable us to prove that there exists a
locally finite stratification of T having real analytic strata, such that above each
strata there exists only one equivalence class for the arc-analytic equivalence, and
that if 7" is compact then the stratification can be taken to have at most finitely

many strata.

THEOREM (Theorem 3.13). Let T' C R™ be a real algebraic set and f : T x
(R™,0) — R a polynomial map of polynomial function germs such that f(¢,0) =0
for any t € T. There exists a locally finite real analytic stratification S of T such
that if S € S is a stratum then

ft:f(t7) ~a t’:f(tla')a Vt,t'ES
in the notation of Definition 3.5. In particular

ﬂBSA(SE(ft)) = ﬁBSA(Se(ft/)), Vt,t/ cSe S, Ve € {:tl7 <, >}.
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Moreover if T is compact then S can be taken to be a finite stratification.

5.2. Isolated Real Hypersurface Singularities.

5.2.1. In chapter 4 we study the homotopy type and the singular homology
groups of the Milnor fibres of real polynomial map germs f : (R"*1,0) — (R,0)
such that f~1(0) has an isolated singular point in the origin. Since the idea is to
perturb a representative of the germ f so as to have only nondegenerate critical

points we are lead to consider R-morsifications® of polynomial map germs.

DEFINITION (Definition 4.28). Let f : (R"T1 0) — (R,0) be a germ of polyno-

mial maps. A R-morsification of f is a representative
F:MxU-—=R

of a polynomial map germ F : (R"*! x Z,0) — (R, 0) such that
(1) T

(2) F(z,0) = f(x) as germs of polynomial maps,

(3) There exists a dense subset V. C U \ {0} such that for all t € V, the

function fi : M — R is a Morse function with distinct critical values.

=~ [~1,1]F for some k € N,

A R-morsification F' is strong if for any t € V' the function fi : M — R has p(fc,0)
critical points and it is weak if for any t € V it has strictly less than p(fc,0) critical

points.

In the case where f~!(0) has an isolated singular point in the origin an R-

morsification of f always exist.

PROPOSITION (Proposition 4.29). If f : (R"*1,0) — (R,0) is a germ of real
polynomial map and if f=1(0) has an isolated singular point in the origin then f

has an R-morsification.

5.2.2. The following result is the first of the two main theorems in chapter
4. It says that after succesively attaching handles to a space homotopy equivalent
to the real Milnor fibers of f one obtains a contractible space, where each handle
corresponds to a nondegenerate critical point of f; = F(-,t) for t € V.

THEOREM (Theorem 4.47). Suppose that f : (R"1,0) — (R,0) is a germ of
real polynomial map such that f=1(0) has an isolated singular point in the origin

8«Real morsifications” have been considered by V.I Arnold and his school (see e.g [19]). These

are however holomorphic maps and since we shall in the end apply Stratified Morse Theory it is
arguably more natural for our purposes to consider real polynomial maps.
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and let (0o, €0) be Milnor data at the origin. Let
F:MxU—R

be a R-morsification of f with V C U\ {0} a dense subset such that for anyt € V
the function f; : M — R is Morse with distinct critical values. For anyn € (0,€(9))
there exists to = to(n) € R such that the following holds. Lett € V such that |t| < to
be fized and let py, ..., pm € Bs denote the critical points of fi - M — R lying inside
the ball of radius § centered at the origin and let A(p;) denote their indices. Then

Xin is contractible and there exist embeddings

. DMP) x gD HI=APD) — FoF < (0,1) U Ulgﬁi_l (DAP) x DrHI=AP)) > 2

DAPL) 5GP — FoF o (0,1), i =1,

. DrH1=AP) x gD P ]377 x (0,1) UUi<j<i1 (Dnﬂﬂ\(m) x ]D)/\(pj)) . i>2
o h;
DrH1I=APY) 5 gAY — Foox (0,1), i=1

and homeomorphisms

Xty = _;_ x (0,1)U U (]D))‘(pi) > Dn—i—l—)\(m))
1<i<m

¥
h;

Xip = 7777 x (0,1) U U (]D)"H*)\(Pi) « DMm))
1<i<m
h

where each handle DAP) x D*H1=AP) (respectively D122 x DAP ) is attached
along DMP) 5 QD" H=AP:) (respectively along D" T1=AP:) x 9DAP:) ) via b (respec-

tively via h; ).

COROLLARY (Corollary 4.60). Keep the assumptions of Theorem 4.47. Suppose
that f; : M — R has a unique critical point p of index A\(p). If ]:";‘ is nonempty
then

_ L+u P if A(p) < n,
1, ifAXp)=n+1.

_ L4+ ur®=10if A(p) > 1,
1, if Mp) =0.
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5.2.3. The analogous statement for holomorphic map germs g : (C**1,0) —
(C,0) with g~1(0) ¢ C**! having an isolated singular point in the origin says that
after attaching the Milnor number = (g, 0) of discs of dimension n the complex
Milnor fibre F¢ ,(g) becomes contractible (see [18, Proposition 5.6]). A classical
proof of this fact is due to E. Brieskorn [7]. There one takes a small perturbation
of g having the Milnor number u = u(g,0) of nondegenerate critical points with
pairwise distinct critical values. In this case each of the discs can be proven by a

geometrical argument [18, Lemma 5.3] to be attached directly to Fc,,(g).

Furthermore, these arguments enable one to use the long exact sequence of a
pair together with the Excision Theorem [26, Theorem 2.20] to deduce that the

reduced singular homology groups of F¢ ,(g) are

zZr, itk =n,

Hi(Fen(g) =
#(Feal9)) {0}, otherwise.

There are two major obstacles for this reasoning to be carried through succes-
fully in the case envisioned in Theorem 4.47 for real isolated hypersurface singu-
larities. On the one hand if given an arbitrary R-morsification F of f and at e V
such that f; has critical points p1,...,p, € Bs there might very well be the case
that there exists j,j’ € {1,...,m} such that

Ffxonu (J (020 xpriae)

1<i<m
hF

1

has the same homotopy type as

.7:-; x (0,1)U U (D/\(pi) % ]D)n—‘,—l—,\(pi)) .

1<ij ' <m
hy

On the other hand, there is no a priori reason to believe that the discs in the
statement of Theorem 4.47 can always be assumed to be attached directly to ]:"n+
(respectively .7:'77 ). This seems in our view to be the most difficult obstacle. We
shall now state conditions under the validity of which these two obstacles can be

circumvented and the homology groups of the Milnor fibres can indeed be obtained.

5.2.4. We start by showing in Lemma 4.54 the following auxiliary result. If
F': M x U" — R is a R-morsification of f : (R"T!0) — (R,0) then there exists
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another R-morsification F' : M x U — R of f such that there exists a dense open
subset V' C U such that the number m = m(t) of critical points of f; : M — R
lying inside the ball of radius § is independent of ¢ € V' and each critical point is
Morse with pairwise distinct critical values. The following result is the second main

theorem in chapter 4.

THEOREM (Theorem 4.58). Letn € N be odd and suppose that f : (R"T1,0) —
(R,0) is a germ of polynomial map such that f=1(0) has an isolated singular point
in the origin. Let (5o, €0) be Milnor data at the origin. Suppose that

F:MxU=R, f=F(t)

is a R-morsification of f and let V. C U be a dense open subset such that the
number m = m(t) of critical points of f; : M — R lying inside the ball of radius
0 is independent of t € V and each critical point is Morse with pairwise distinct
critical values. Let § € (0,60] and n € (0,€g] be fivzed. Then there exists tyg € R
such that if t € V.0 {|t| < to}, if p1,...,pm € Bs denotes the critical points of
ft : M — R lying inside the ball of radius § and if \(p;) = (n+1)/2,i=1,...,m
then .
Hy(F) = Hy(F,) = Hy(\/s"172), k>0

i=1
If given a smooth manifold or manifold with boundary X let
B(X) = rank H,(X;Z)
n>0

denote the Poincaré polynomial of X in singular homology with integral coefficients.

CoOROLLARY (Corollary 4.59). Keep the assumptions of Theorem 4.58. The

Poincaré polynomial of the real Milnor fibres are

B(FS) =1+ mu"?

and

5(.7:;) =1+ mut

5.3. Applications to Real ADFE-Singularities. As an application we can
obtain the Poincaré polynomials in singular integral homology of the Milnor fibres of
real AD E-singularities, except for one special case. Let us consider real polynomial
map germs f : (R"*1,0) — (R, 0) of the form

(1) Afs cf =aktt L% 4 22:1 x? — Zjiiﬂ a3, k>2.



5. SUMMARY OF RESULTS 43

2) DZE’S cf=atytyhl 4 2 - Z;IEH x5, k>4
3) EgES cf=atEyt+ 22:1 7 — Zjii-&-l x?
) B f=a®+ay® + 22:1 x7 — Zjiiﬂ x?
5) By: f=a+¢° + Y a2 = Y51 a?
where t +s5 =n—1,s,t > 0 and where (z,y,z1,...,2,_1) are coordinates on R"*1.
We first treat the case of curves (namely n = 1). When the map f is clear
from the context we shall let 7+ and 7~ denote a positive, respectively negative,

Milnor fibre of f at the origin in R"*1.

THEOREM (Theorem 5.1). The Poincaré polynomials in singular homology of

the Milnor fibres of ADE-singularities of curves are given as follows.

(1) Al fz,y) = o™ 442
BFHY=B(F)=1, ifk=0 (mod 2)
BF) =1+u, B(F)=0 ifk=1 (mod2).
(2) Aj : floy) =2+ -y

=0 (mod 2)
1 (mod 2)

COROLLARY (Corollary 5.2). The following holds.
(1) A.°, D/

_ 1, E=0 (mod 2)
1+un—s=1 k=1 (mod 2)
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BF) = 1, k=0 (mod 2)
B 1+ us, k=1 (mod 2)
@ af*:
BFH)=1+u""% k=1 (mod?2
B(F)=1+u"1, s#0,k=1 (mod 2)
B(F~) =0, s=0,k=1 (mod 2)
BFH)=B(F)=1, k=0 (mod2).
(3) E7:

BIFT) =1+u"",

B(F7)=1+u".
(4) B3 B§: B(FY) =B(F ) =1
The Poincaré polynomials of the Milnor fibres of D, °-singularities for k odd and

n > 1 are given as follows:

B(FF)=14u"""1, k=1 (mod 2)

D.*:
B(F)=14u?, k=1 (mod 2)

5.4. Morsifiable Real Singularities f : X — R. In the last chapter 6 we
give a generalisation of the theorem 4.47. We shall consider the following situation.
5.4.1.  Assume that X C R” is a real algebraic subset containing the origin in
R™ and that
f: X =R, f(0)=0
is the restriction of a polynomial map f : R” — R. Assume that there exist a

Whitney stratification S = (% )er of X such that f~1(0) C X is a union of strata
such that S satisfies the ag-condition of Thom [50].

5.4.2. Suppose that f : X — R is as in situation 5.4.1. Then there exists
0o > 0 such that for any ¢ € (0, o] there exists ¢y > 0 such that for any e € (0, ]

the restriction

(4) Fof7H =e d \ {0 N X NBY — [—e,¢] \ {0}

is a locally trivial topological fibration where B C R" denotes the open n-dimensional
ball centered at the origin of radius 0. The bars designates closures for the euclidean

topology. The fibres of (4) are the (closed) Milnor fibers of f at the origin and are
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denoted by

Frh=f"mnXnBs, F, =f"'(-nnXnBs ne(0e.

The set f;r is the positive closed Milnor fibre and the set .7:',7* is the negative closed
Milnor fibre.

5.4.3. To obtain the wanted generalisation of Theorem 4.47 one shall perturb
f so that restricted to each strata of X one obtains functions having only nonde-
generate critical points. It turns out that the following perturbations suffices for

this purpose.

DEFINITION (Definition 6.3). Let Y C R™ be a Whitney stratified real suban-
alytic set and let g : Y — R the restriction of a polynomial map g : R — R. A
stratified R-morsification of ¢ is the restriction G : Y x U — R of a polynomial
map
G:R" x RF - R,
such that

(1) U C R¥ is a smooth k-dimensional manifold with boundary having bound-
ary OU and interior U,
(2) U= [-1,1)* and OU contains the origin in R*,

3) G(z,0) =g,
(4) The map

®:R"xU — T'R", b(x,t) = d(ge)(x),
where T*R™ is the cotangent bundle of R™, is a submersion.

Stratified R-morsifications give indeed rise to functions having only nondegen-

erate critical points on each strata, according to the following result.

PRrOPOSITION (Proposition 6.4). Let Y C R™ be a Whitney stratified compact
real subanalytic set and let G : Y x U — R be a stratified R-morsification of
g : Y — R where g is the restriction of a polynomial function g : R® — R. Then
there exists a dense open subset V. C U such that g, : Y — R is a stratified Morse
function for any t € V, in the sense of [25, Definition 2.1].

5.4.4. To state the first of the main theorems as succinctly as possible we

introduce the following notion.
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DEFINITION (Definition 6.8). A map f : X — R is morsifiable if condition
5.4.1 is satisfied and if there exists a stratified R-morsification (Definition 6.3)

F:XxUCcCR"xR' - R, fi(z) = F(,t).
of f.
5.4.5. One also needs the following lemma and definition.
LEMMA (Lemma 6.9). Suppose that f : X — R is morsifiable and suppose that
F:XxUCR"xR' =R, fi(z) = F(x,t)

is a stratified R-morsification of f. There exists an open dense set V- C U such that
for eacht €V,
ft : XN }Bg — R

is a stratified Morse function.
DEFINITION (Definition 6.10). For anyt € V put
C(F,t) = {p(t) € X NBs | p(t) is a stratified critical point of f; : X NBs — R}

5.4.6. The following abbreviations will be used in the statement of the theo-
rem. Let t € V be fixed.

o If p; = p;(t) € C(F,t) and p; belongs to a stratum . € S denote by
Az (p;) the Morse index of f 5, at p;.

e If p; € C(F,t) belongs to a stratum . € S then because S satisfies the
Whitney conditions there exists p; > 0 such that if B, (p;) C R™ is the
closed ball centered at p; and of radius p; then 0B, (p) intersects the
strata of S transversally, see [25, 3.5]. Denote by

I"(pj) = N(p;) NB,, N fﬁm@g(sj +75),

I=(pj) = N(pj) NB,, N ftf)lmlgé (55 =55
for 0 < 7; << pj, the upper and lower half-links [25, Definition 3.9.1]
of fixnB, at the point p;. Here N(p;) is the normal slice through the
stratum . € S at p; [25, § 1.4].

e Let dim(.7)(p;) denote the dimension of the stratum containing p;.

5.4.7. The main theorem of chapter 6 says that after succesively attaching

products of discs and cones of upper half-links to the positive Milnor fiber ]:'n+
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one obtains a contractible space. Similarly after succesively attaching products of
discs and cones over lower half-links to the negative Milnor fiber }7",7 one obtains a

contractible space.

THEOREM (Theorem 6.13). Suppose that X C R"™ is a real algebraic set and
that f : X — R is a morsifiable map (see Definition 6.8) having Milnor data (eg, do)
at the origin. Suppose that

F:XxUCR"xR' =R, f,=F(,t)

is a stratified R-morsification of f (see Definition 6.3)), with V as in Lemma 6.9.
For any ¢ € (0, d0] there exists € € (0,¢€g] such that for any n € (0,€(0)] there exists
to(n) € R such that if t € V N {Jt| < to} then there exist semialgebraic sets N'(F,})
and ./\f(]:"n_) having the homotopy type of .7:"7'7“ respectively ]?,7_ and attaching maps

h;}— ) ([D)dimy(Pj)—Ay(Pj) % cone(l+(pj))> -

N( _,j') U Uf;ll DA @) =A7P3i) x cone(It(p;)), 2<j<m
N(FEH, =1
h; 0 (]D)Ay(pf) X cone(l*(pj))) —
N(F;)UUZ DM ®0) x cone(l™ (py)), 2<j<m
N(F), =

are contractible.

5.5. Applications.
5.5.1.  As an application of the theorem 6.13 we can obtain the following gen-

eralisation of Khimshiashvili’s formula [16, Theorem 2.3].

CoROLLARY (Corollary 6.15). Keep the assumptions of the Theorem 6.13 and

suppose furthermore that X is equidimensional. The Euler-Poincaré characteristic
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of the negative Milnor fibre with Q-coefficients is given by

X(Fy ) =1+ > (—A )=y > (=D @IRA ()
1<j<m 1<j<m
dim (7 (p;))=dim(X) dim (< ((p;))<dim(X)

and the Euler-Poincaré characteristic with Q-coefficients of the positive Milnor fibre

is given by
X(FH =1+ Z (—1)dm(F)(@s)+1=A (p5)
1<j<m
dim(.7)(p;))=dim(X)
+ Z (= 1)) =X 02 517 (p)))).
1<j<m
dim(.7)(p;)) <dim(X)

Moreover if dim(.#(p)) = dim X for any p € C(F,t) then these relations hold for

the Euler-Poincaré characteristics with Z-coefficients.



CHAPTER 3

Motivic Milnor Fibres of Families of Singularities

1. Introduction

This chapter is devoted to an analysis of the real motivic Milnor fibres of a
semialgebraic family of polynomial functions parametrised by a real algebraic set,
and to showing the existence of a stratification of the parameter space such that
the virtual Poincaré polynomials of the motivic Milnor fibres is invariant along the

strata.

2. The Arc-Analytic Equivalence

2.1. Nash Functions and Manifolds. We start by first recalling the arc-

analytic equivalence for Nash germs, introduced by J-B Campesato in his thesis
[8].

DEFINITION 3.1 (|40] [10, Definition 6.1]). A function f : U — R defined on an
open semialgebraic set U C R"™ is said to be Nash if it is semialgebraic and of class
C*>®. Amap f:U — R™ is said to be Nash if each of its components functions are
Nash.

By [6, Proposition 8.1.8] one has that a function f : U € R®™ — R is Nash
if and only if it is real analytic and satisfies a nontrivial polynomial equation. In
particular, by [6, Corollary 8.1.6], the ring of germs of Nash functions is isomorphic
to the ring of algebraic power series. This yields a category whose objects are
semialgebraic sets and whose arrows are Nash functions. The isomorphisms in this

category are then:

DEFINITION 3.2. A Nash diffeomorphism is a semialgebraic map ¢ : U — V

such that ¢ and its inverse are Nash functions.
The notion of manifold in this category is given by the following.

DEFINITION 3.3 ([10, Definition 6.3]). A Nash manifold of dimension d € N
is a semialgebraic subset M C R™ such that for any x € M there exists an open

49
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semialgebraic neighborhood U C R™ of x, an open semialgebraic neighborhood V' C
R™ of the origin and a Nash diffeomorphism ¢ : U — V with ¢(x) = 0 such that
(M NU) =R x {0}.

2.2. Nash-Isomorphic AS-Sets. The virtual Poincaré polynomial on com-
pact real algebraic varieties is invariant under Nash diffeomorphisms, as follows

from the result [20, Theorem 3.3] (compare [24, Proposition 1.2]).

For noncompact varieties this is no longer true; one gets a counter-example
thereof by taking X C R? to be a hyperbola. Then X is Nash diffeomorphic to the
union Y of two disjoint affine lines A'. So on the one hand 3(X) = u— 1 because if
X C P? is a projective compactification then X \ X consists of two points, whereas
on the other hand B(Y) = 28(A') = 2u by additivity. In the case of AS-sets one

defines

DEFINITION 3.4 ([20, Definition 3.2]). If A, B € AS then A and B are said to
be Nash-isomorphic if there exists compact Nash manifolds A C X and B CY and
a Nash diffeomorphism ¢ : X — Y such that $(A) = B.

Then Fichou proved [20, Theorem 3.3] that the virtual Poincaré polynomial
as defined on the AS-collection (which contains the real algebraic sets) is invariant

under Nash isomorphisms.

2.3. The Arc-Analytic Equivalence. We now turn to the arc-analytic equiv-

alence.

DEFINITION 3.5 ([10, Definition 7.1]). Let f,g : (R™,0) — (R, 0) be germs of

Nash functions. If there exists a germ of semialgebraic homeomorphism
h:(R"0) — (R",0)

with f = g o h such that h is arc-analytic and if there exists a constant ¢ > 0 such
that
| det Jac(h)| > ¢

there where the Jacobian determinant is defined, then f is said to be arc-analytically

equivalent to g via h and one writes f ~, g or f ~ g if no ambiguity is possible.

This notion is due to J.-B. Campesato. He introduced it in order to prove

that the Blow-Nash equivalence on germs of Nash functions [20], [10] is indeed an
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equivalence relation. To describe the latter we need the notion of Nash modification.
To this aim, let us first recall the notion of complexification of a real analytic

manifold.

DEFINITION 3.6 ([10, Definition 1.4]). A complezification of a real analytic
manifold M of dimension n is a complex analytic manifold Mc endowed with a real

analytic isomorphism

¢: M — ¢(M) C Mg

with ¢(M) a real analytic subvariety of Mc such that for any x € Mc there exists

a neighborhood Uz C Mc of x and a complex analytic isomorphism
Y :Uc = ¢(Uc) CC”

such that
Y(p(M)NUc) CR"Ny(Uc).

In other words M can be identified with a real analytic subvariety of its com-
plexification via ¢ and this identification respects the charts. One can show that
any real analytic manifold possesses a complexification. In the Nash category, the
construction is functorial in the sense that if ¢ : M — N is a proper Nash map
between Nash manifolds and if M¢ and N¢ are complexifications then g extends to
a proper complex analytic map gc : U — V of open neighborhoods U C M¢ and
V C N¢ of M and N, respectively.

DEFINITION 3.7 ([10, § 6.2]). A Nash map o : U C R™ — RP is said to be a
Nash modification if it is proper, surjective and if its complexification is proper and

bimeromorphic.

DEFINITION 3.8 ([20, Definition 4.2]). Let f,g : (R™,0) — (R,0) be germs of
Nash functions. One says that f and g are blow-Nash equivalent if the following
holds.

(1) There exist two germs of Nash modifications

of: (M, 0;1(0)) — (R™,0), og (M’,Ug_l(())) — (R™,0)

such that the associated divisors of fooy and goo, are normal crossings,
and such that the associated divisors of Jac(oy) and Jac(oy) are normal

Crossings.
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(2) There exists a germ of Nash isomorphisms
) -1 —1
U (M,o;7(0) = (M, 0,7(0))

preserving the multiplicities of the divisors divJac(oy) and divJac(oy)

along each of the irreducible components of the exceptional divisors 0;1(0)
and o' (0) of the modifications.

(3) The map ¥V induces a germ of semialgebraic homeomorphism
¥ (R",0) = (R",0)
making the following diagram commute

(M,071(0)) ———— (M, 0,(0))

lgf J”“’

(R, v ,0)

R",0) (R™,0
N,
(R,0)

We write f ~y_n g if f and g are blow-Nash equivalent.

Campesato then proved the following theorem.

THEOREM 3.9 ([10, Theorem 7.9]). Two germs of Nash functions
fr9: (R",0) = (R,0)

are arc-analytically equivalent if and only if they are blow-Nash equivalent.

In his thesis [8] Campesato showed that the arc-analytic equivalence is indeed

an equivalence relation.

PRrOPOSITION 3.10 ([8, Proposition 3.7.5]). The arc-analytic equivalence is an

equivalence relation.
As a consequence one obtains the corollary.

COROLLARY 3.11 ([8, Corollary 3.7.8]). The Blow-Nash equivalence is an equiv-
alence relation.
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3. Invariance Under the Arc-Analytic Equivalence

According to the result [20, Theorem 4.9] the virtual Poincaré polynomials of

the motivic Milnor fibres are invariant under the arc-analytic equivalence. We shall

begin by proving that this is also the case for the motivic Milnor tubes; the proof

is in effect a minor modification of the proof of Fichou’s result.

THEOREM 3.12. If f,g: (R™,0) — (R,0) are arc-analytically equivalent germs

of Nash functions then for any symbol € € {£1,<,>} the virtual Poincaré polyno-

mial of the respective motivic Milnor fibres and tubes S€(f) and S€(g), are equal.

PROOF. (1) According to [10, Proposition 7.9] one has that f ~, ¢ if and

ouly if f ~,_n g. Therefore there exist germs of Nash modifications
af: (M,07(0)) = (R",0),  og:(M',0,'(0)) — (R",0)

having the properties that the associated divisors of f o oy and of g o g,
are normal crossings and that the associated divisors Jac(oy) and Jac(oy)
are normal crossings, and that there exists a germ of Nash isomorphisms
(|20, Definition 3.2])

U (M,0;1(0) = (M',0,'(0))

preserving the multiplicities of the divisors div Jac(oy) and div Jac(oy)
along the irreducible components of the corresponding exceptional divisors
0;1(0) and o, 1(0).

Write

k
(9000)71(0) = |J £/

for the decomposition into irreducible components of (goo,)~*(0) and let
p € M' be a point. Since div(g o 0,) is a normal crossings divisor there

exists an affine open set U’ C M’ containing p and a system of (étale)

local coordinates 1, ...,z on U’ C M’ such that
k
N;
goa(x)=v(x) ][]
i=1

for v : U" — R an invertible Nash function. Since o, '(0) is compact

one can find a finite set L C N and open affine subsets U/,l € L of a
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neighborhood of o *(0) such that
o, 0) c [ JUr.
leL

For any subset I C {1,...,k} consider the stratification of (g o oy)~(0)

E° = EN\JE;

i€l ¢l
If E7°No;1(0) # 0 then it follows that

with strata

Er =JEr"nul.
leL

Then E}" € AS since g is a germ of Nash function, by [10, Remark 6.10],
and U’ € AS because AS is a constructible category which contains the
category of Zariski constructibles, by Theorem 2.34 ([33, Theorem 4.4]).
Hence E°NU’ € AS again by Theorem 2.34 ([33, Theorem 4.4]) because

AS is a constructible category.

For each symbol € € {£1,<,>} consider the classes in Ky(BSA) corre-
sponding to g and U’ as in Definition 2.28 and in the statement of [11,

Theorem 4.2], namely
[Rf i (9)] = [(2,1) € (B NU') x R | $N1o(2) = 1],

[R7p/(9)] = (&, 1) € (B NU") x R | t"7v(z) > 0],
[RF(9)] = [(z,1) € (B NU") xR | t¥0() < 0].

Since ¥ is a Nash isomorphism the union of the preimages E¢ := U1 (E})

gives a stratification of

(foop)H(0)

such that 0]71 (0) is a union of strata. Moreover if U’ C M’ is an affine open
set then U = U~1(U’) is an affine open set because a Nash isomorphism

is semialgebraic by [20, Definition 3.2]. Write

U= (Uy,...,0,) : (M,071(0)) = (M',0,(0)).

’7g

Since V¥ is a germ of Nash isomorphism it preserves the multiplicities N; of

div(gooy) along E; for each i =1, ...,k so commutativity of the diagram
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in the Definition 3.8 of the Blow-Nash equivalence yields

k

foop(y)=googoW(y) =v(T(y) [ W)™
i=1

where v o U : U — R is an invertible Nash function. All said,
[REy(N)] =[(y,1) € (ByNU) xR | tV70((y)) = 1],

[R7u()] = [(y,1) € (Bf NU) xR | tV0(T(y)) > 0],

[RFu(H)] =[(y,t) € (BfnU) xR | t¥0(¥(y)) < 0]
are the classes in Ko(BSA) corresponding to f and U = ¥~1(U’) as in
the statement of [11, Theorem 4.2].
Consider now the realisations of these sets under the virtual Poincaré poly-
nomial (Definition 2.20). We claim that the underlying set R}‘L}],(g) is an
intersection of AS-sets. Indeed E?? NU’ is AS by the above. Furthermore
v is Nash hence semialgebraic and real analytic so its graph is AS, as in
the second step of the proof of ([20, Theorem 3.3]). The inverse image
of an AS-set under an AS-map is AS, by Theorem 2.34 ([33, Theorem
4.4]), hence {v(x) = £1} are AS. Therefore Rﬁﬂ(g) is an intersection of
AS-sets hence is an AS-set by Theorem 2.34 ([33, Theorem 4.4]).
Again by the second step of the proof of [20, Theorem 3.3] the graph of
¥ is AS so W is an AS-map. Since it is an analytic isomorphism it is
injective so the images of each of the sets Rf}], (9) under the injective
AS-map

(z,t) = (P71 (2), 1)

are AS-sets, Theorem 2.34 ([33, Theorem 4.4]). Hence Rji%,(f) are AS-
sets. Since V¥ is a Nash isomorphism the application (y,t) — (¥(y),t)
gives a Nash isomorphism between Rf ;/(g9) and Rf ;(f). Since Bvar is

invariant under Nash isomorphisms by [20, Theorem 3.3] it follows that

Besa(R7u(f)) = Bvar (R u(f)) = Bvar(Rf w(1)(9)) = Besa (R v (9))

for any I C {1,...,k} and any symbol e € {£1}. If |, U] is a covering
of a neighborhood of o, '(0) by affine open sets as in the previous step 2

then

U \I/_l(Ul)

leL
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is a covering of a neighborhood of 0;1(0) by affine open sets hence

Bvar (ET(1)) = Y (=) Byae Ry, csw1 0, ()

SCL

= Z (*1)|S|+1ﬂVar(RI,ﬂsesUs (g)) - ﬁVar(E})’E(g))

SCL
SO ﬁBSA(S;) = ,BBSA(S;) by [11, Theorem 4.2].

(7) We shall prove that BBSA(S]?) = fBsa(S; ), the proof of BBSA(S?) =
ﬁBSA(S;) is similar. It follows by the Definition 2.20 of the virtual

Poincaré polynomial on basic semialgebraic formulas that

Busa(R7u (1)) = 7Bvar(ly,t) € BN U x B | ¥10(w(y)) = 7]

*%ﬂvar([(y,t) €EEYNU xR | tN1u(U(y)) = —2%])

+%,6’Var([(y,t) € EINT x R | No(W(y)) £ 0]).

To show fpsa(R7y(f)) = 6BSA(RI>\1/(U) (9)) it therefore suffices to show

that
Bvar([(z,t) € EP NU' xR | tNIU(J?) = :I:ZZD =
Brar(((y,t) € E2NU x R [ tV0(¥(y)) = £27])
and that

Bvar([(z,t) € EP NU xR | tNTw(z) # 0]) =

Bvar(((y,t) € B NU x R | tY10(¥(y)) # 0]).

The underlying sets of these classes are in each of the above cases inter-
sections of AS-sets and Zariski constructible sets hence are AS-sets by
Theorem 2.34 ([33, Theorem 4.4]). Since ¥ is a Nash isomorphism it
follows that (y,t,2) — (¥(y),t,z) = (x,t,z) gives a Nash isomorphism

between
{(y,t,2) € ESNU xR xR | tN10(T(y)) = 22}

and
{(z,t,2) e P NU xR x R | V() = 2%}

and between

{(y,t,2) € ESNU xR xR | tN10(U(y)) # 0}
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and
{(z,t,2) € EPNU’ xR xR | tN1o(z) #0}.

Thus Besa(R7(f)) = Besa(R7 g (9) for all I C {1,....k} by [20,

Theorem 3.3] so the same argument as in the previous step 6 gives

Brsa(S”(f)) = Brsa(S~(g)).

4. Arc-Wise Analytic Triviality

4.1. Arc-Wise Analytic Triviality of Function Germs. Before continu-
ing we need to recall the notion of arc-wise analytic triviality for germs of families
of analytic functions; we refer to the article [43] for further details. In the following

we shall denote by K either the field of complex, or real numbers.

DEFINITION 3.13 ([43, § 8.3]). Let T C K™ be an open analytic set. A K-
analytic family f : T x (K"~1,0) — K of germs of K-analytic functions is arc-wise
analytically trivial over T if there exists a neighborhood A C K™ x K"t of T x {0}
and a neighborhood Ay C K"~1 of {0} and an arc-wise analytic trivialisation [43,
Definition 1.2]

oc:TxAy— A

such that foo(t,z) = f(0,z).

The key result which is going to be used later on is the following theorem. Here

we only assume that 7' C K™ is analytic.

THEOREM 3.14 ([43, Theorem 8.5]). Let f : T x (K"~1,0) — K be a K-analytic
family of K-analytic function germs and letty € T. Then there exists a neighborhood
U CT of ty and a K-analytic subset Z C U with dimZ < dimU such that f is

arc-wise analytically trivial along U \ Z.

4.2. The Main Theorem. The main result of this chapter is the following
Theorem 3.15. The content of the proof is to show that in the proof of the Theorem
3.14 above, the constructed arc-analytic trivialisation of ¢ has the property that
the jacobian determinant of o, := o(¢,-) is bounded where it is defined and thus

provides the wanted arc-analytic equivalence.

THEOREM 3.15. Let T C R™ be a real algebraic set and let f : T x (R™,0) - R

be a polynomial function of polynomial map germs such that f(t,0) = 0 for any
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t € T. There ewists a locally finite real analytic stratification S of T such that if
S € S is a stratum then

ft:f(t7') ~a ft’:f(t7')v Vt,tIGS
in the notation of Definition 3.5. In particular
Bpsa(S(f1)) = Besa(S(fr)), vt,t' € S €S, Ve € {£1,<,>}.

Moreover if T is compact then S is a finite stratification.

PROOF. (1) Recalling the proof of the Theorem 3.14 ([43, Theorem 8.5])

let us write
F:TxRxR" - R, F(t,z,z) =z — f(t,x)
where = (21, ...,2,) € R™. Define
Y = {F=0}CT xRxR"

Fix ty € T. Then according to [43, Lemma 6.3] there exists a neighbor-
hood U (tp) containing to, a proper analytic subset
Z(to) C U(to), dim Z(to) < dim U(to)

and a transverse local system (Fi);jol of Zariski equisingular pseudo-
polynomials (see [43, Definition 4.1, 3.1]) such that F,4; is the Weier-
strass polynomial of F in (¢,0) for all t € U(to) \ Z(t9). By [43, Theorem
3.3] there exist for any such local system a real number e > 0 and neigh-
borhoods

Be = {t € U(to) \ Z(to) | [t —tol| < €} CR™,
Qo C R*L Q c Rrtmtl
of ty and of the respective origins and a homeomorphism
P:B. x Qp — N

preserving {zo = f(¢,z)} for each zy € R (see [43, Definition 1.2]) such
that (zo0,2) € Q, and such that the conditions (Z2 — Z3) of [43, Theorem
3.3] are satisfied, that is for all ¢ € B, and all (z,21,...,2,) € Qo the
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following holds,

(a) @ is an arc-analytic trivialisation of the standard projection 2 — B..
In particular ® is real analytic in ¢ and arc-analytic in (z, 21, ..., 2,)
and ®~! is arc-analytic.

(b) ®(¢,0) = (¢,0) and

D(tog, 2,21, ..., xn) = (to, 2,1, ..., Tn).

(c) ®(t,z,21,. ..y 2n) = (&, V1(t,2), .o, Upy1 (8,2, 21, ...y Tp)).
(d) Foreachi=2,...,n+1,

Ui(t,z,x1,...,xi—1,0) : R >R

are bi-Lipschitz with the Lipschitz constants of ¥; and of \I'i_l inde-

pendent on (¢, z,x1,...,2;—1) and
Ui(t,):R—>R

is bi-Lipschitz with Lipschitz constants of ¥; and of \I!fl indepen-
dent of ¢.

Write ®(t, z,z) = (¢, ¥(t, z,x)) (so that ¥ : B, x Q9 — Q) and consider
the functions
v, :q/(t7~7~) : Qo —>Qo, te U(to)\Z(to)

q)t == (t,‘l/t) : QO _>Be X QO.

The above conditions (1c) and (1d) imply, as in the proof of [43, Proposi-
tion 3.6], that there exist constants C, ¢ > 0, which are by condition (1d)

independent of ¢, such that the Jacobian determinants are bounded
(5) ¢ < |det Jac¥,| < C

there where they are defined. In particular ¥, is a diffeomorphism for

t € Ul(to) \ Z(to) (see also [43, Proposition 3.5]). Denote by

m:R™ xR xR" - R™ x R", 7(t,z,z) = (¢, x)
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the standard projection and put
7R 5 R”, 7(z,x) = .
Let Ag = 7(Qp) and A = w(2). Then
o:U(to) \ Z(tg) x Ag = A

given by
o(t,x) =mod(t, fo(x), x)

is an arc-wise analytic trivialisation of f along U(to)\ Z(to), by 3.14 ([43,
Theorem 8.5]).
Consider

or=o0o(t,-): Ao — A
Then by construction,
op=mo®(t, fo("),) =

=TOo (tvm(tth()? ) =mo \I/t(fO(')a )

so that one can write
oy =FoUyy =70V 0g
where H C Qg is the smooth hypersurface H = I'(fy) N g, where
L(fo) = {(z,2) e R"™ | 2 = fo(x)}
and where
g:ho—Q,  g(z)=(fo(x),2).
Let t € U(tg) \ Z(top). Then
Jac(oy)(z) = Jac(7) (Pe(fo(x), x))Tac(P:)(folx), x)Jac(g)(x)

by the chain rule. Taking local coordinates one finds that the Jacobian

matrix of g has the form

Jac(g)(x) = ((0fo/0w)(x) 1)

with I, = Idg~ the identity matrix, so Jac(g) has full rank. By 5 one has

that Jac(¥;) likewise has full rank, since its determinant is nonzero.
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(4) We claim that, after replacing if necessary U(¢g) by a smaller neighbor-

hood of the origin, for all ¢ € U(to) \ Z(to) the restriction 7|y, ) of 7 to

U, (H) is a submersion. To show this, remark that

is a submersion, by the previous step (3). This implies that there exists a
real number § > 0 such that if Bs C R»T! denotes the open ball of radius
d centered at the origin then Bs C Qg and

Vs € #(HNOBs), 7 '(s)h (H N OBs).

In particular

ﬁ-\Hﬂa]Eg :HN 6@5 — R"
is a submersion. Replacing Qg by Bs we can therefore assume that
ﬁ'leQO : HOQQ — R"

is a submersion. Remark that ¢ — ¥, is continuous by (1a) and that Py,
is the identity map on Qg by (1b). Since being a submersion is an open
condition and since H N is compact it follows that there exists an open

neighborhood U’(tg) C R™ of ¢y such that U’(tg) C U(tg) and such that
ﬁ-|‘I/t(H) : \I/t(H) — R"

is a submersion. This proves the claim.
Fix t € U(to) \ Z(to). By the previous step (4) det Jac(oy) is nonzero at
any x € Ag. Recall Hadamard’s determinant inequality: if A € M (k, k, R)

is a k x k matrix over a commutative ring R then
|det(A)] < [A-exl]... [A- e
where A - e; are the column vectors of A. Again by (1d),
[[JacT, - e;|| < K, i=1,...,n+1.
for a constant K not depending on t. Let

M := max;<;<nSup,cx,0fo/0v;()
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where Ay C R™ is the closure of Ag for the euclidean topology. Since
Jac(oy) is invertible, the chain rule and Hadamard’s inequality yield

1

| det Jac(o; ) (o (x))] = | det Jac(7 o \I/t\H)(xﬂ

1
> n —
N Hi:l [|[Jac(7 o \IJt|H) el
1 1
> n+1 = +1
IM TS [ Jac(Wy) - e — IME™

for some nonzero [ € N. Therefore there exists a positive constant
c = 1/(IMK"™*!) not depending on the parameter ¢ (because K and M
are independent of t), such that

| det Jac(a; )| > c.

By the definition [43, Definition 1.2] of an arc-wise trivialisation ®; is
arc-analytic and its inverse is arc-analytic hence o; is arc-analytic with
arc-analytic inverse. And as its determinant is bounded where it is defined
it follows by Definition 3.5 of the arc-analytic equivalence that for each
t € U(to)\ Z(to) the function o, * yields an arc-analytic equivalence f; ~,
fo- Therefore,

Prsa(S°(fi)) = Brsa(S(fr)),  VE€Ulto) \ Z(to)

by Theorem 3.12.

For each tg € T one finds a finite analytic stratification of a neighborhood
of to as follows. Let Uy = U(tg) be the neighborhood of ¢y constructed
in the previous step and let Z; = Z(to) be the corresponding proper
analytic subset. Repeating the previous step we find for each t; € Zy
a neighborhood U; C Zj of t1, a proper analytic subset Z; C U; with

dim Z7 < dimU; < dim Zp and an arc-wise analytic trivialisation
o1: U\ Z1 x Ay — AL, fooi(t,x) = £(0,x).
By induction on the dimension one finds a finite list of subsets
So(to),- .., Sn(to) C Uo
giving a stratification S(¢g) of the neighborhood Uy of ¢y € T such that

Brsa(S(ft)) = Brsa(S(fi)), Vi, t' € Si(to).
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(7) One takes a covering of T' by neighborhoods of the form U = U(t) and
one considers for each ¢ € T the corresponding finite stratifications S(t).
One defines S as a common refinement of the stratifications S(¢). If T is

compact then there exists a finite subcovering
!
Tc|Juw)
i=1

with finite stratifications S(t;) of U(t;), for each ¢ = 1,...,1 so in this case

the common refinement S is finite as well.
O






CHAPTER 4

Isolated Real Hypersurface Singularities

1. Introduction

This chapter concerns the topology of real isolated hypersurface singularities.
We prove in Theorem 4.47 that after attaching a certain number of handles the
real Milnor fibres become contractible, with each handle corresponding to a critical
point of a R-morsification (Definition 4.28); in particular one recovers the formula
of Khimshiashvili ([16, Theorem 2.3]) for the Euler characteristic of the Milnor
fibres.

We then give sufficient conditions, in Theorem 4.58 for having that the integer
homology groups of the real Milnor fibres are isomorphic to the homology groups
of a bouquet of spheres, where each sphere corresponds to a critical point of the
given R-morsification. In particular it follows in this case that the homology groups
of the real Milnor fibres are uniquely determined by the real vanishing cycles (Def-
inition 4.61). Our approach is by and large to adapt the proof of E. Brieskorn
[7, Appendix| of Milnors theorem [39, Theorem 7.2] by replacing arguments which
fails in the real case by arguments coming from Stratified Morse Theory [25] as

constructed by Goresky and MacPherson.

Throughout, Stratified Morse Theory will serve as an important aide, which

we therefore recall to facilitate the lecture.

2. Isolated Real Hypersurface Singularities

2.1. On Stratified Morse Theory. In their 1974 book [25] G. Goresky and
R. MacPherson presented an extension of classical Morse theory on compact mani-
folds, to Whitney stratified spaces. We here present some of their main results. Let
X C M be a subset of a smooth manifold M and let S be a Whitney stratification
of X.

65



66 4. ISOLATED REAL HYPERSURFACE SINGULARITIES

DEFINITION 4.1 ([25, Definition 2.1]). If fix : X — R is the restriction of a
smooth function f : M — R then p € X is said to be a critical point of fix if it is a
critical point of the restriction f|s where S € S is the stratum containing p, that is,
df (p)(T,S) = 0. A critical value s = f(p) € R is said to be an isolated critical value
if there exist v > 0 such that p is the unique critical point in f=([s —~v,s +7]).

The notion of stratified Morse functions is as follows.

DEFINITION 4.2 (|25, Definition 2.1]). A Morse function on X is the restriction
fix + X = R of a smooth function f: M — R such that

(1) fix : X — Ris proper and if p # q are distinct critical points of f|x, then
f(p) # fa).

(2) For any stratum S € S the critical points of fis : S — R are nondegener-
ate.

(3) For any critical point p belonging to a stratum S € S, if S’ € S is a stratum
such that S C S' and if (p;) € S is a sequence of points converging to p,
if

@= T

then
df (p)(Q) # 0 whenever Q # T,S.

One can prove [25, Theorem 2.2.1] that if X is a closed subanalytic subset of
an analytic manifold M then the set of smooth real-valued functions on M which
restrict to a stratified Morse function on X forms an open dense subset of the space
Cp¢(M,R) of proper smooth maps M — R, with respect to the Whitney topology.
Many of the results established by Goresky and MacPherson using stratified Morse
functions, as defined above, hold as well for a larger class of functions; namely those

functions having at most nondepraved critical points.

DEFINITION 4.3 (|25, Definition 2.3]). Let f : M — R be a smooth function
and suppose that X C M is a Whitney stratified subset with Whitney stratification
S. A critical point p € X of fix : X — R is nondepraved if the following holds:

(1) p is an isolated critical point.
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(2) The restriction fis : S — R to the stratum containing p is nondepraved,
that is, for any sequence of points (p;) € S with p; — p if

Vi — pbi —p
’ Ipi — pl

— 0, ker df|s(pi;) — T

and v & T then for all i sufficiently large

df (pi)(vi) - (f(ps) = f(p)) > 0.

(3) If S € S is the stratum containing p then for any stratum S’ € S such
that S C S if (p;) € S" is a sequence of points converging to p and
Q= ;}iiinp T, S
then
df (p)(Q) # 0 whenever Q # T,S.

Let us now recall the Main Theorem of Stratified Morse theory in the proper
nonrelative case. Let X C M be a Whitney stratified subset of a smooth manifold
as above and let f : X — R be a proper smooth function with a nondepraved
critical point p € X with value s = f(p). We endow M with a Riemannian metric
and we let

Efy (p)C M
denote the closed ball of radius > 0 and centre p, with respect to this metric.
Since X is Whitney stratified there exists 7 > 0 such that the boundary of the ball

intersects any stratum S’ € S transversally
OB, (p) M S, S’ € 8S.

Using [25, Lemma 3.5.1] it follows, by replacing n by a smaller value if necessary,

that one can assume that
fBa (pynx B)(p)NX - R

has no other critical point of value s other than p. As p is nondepraved and non-
depraved critical points are isolated there exists v > 0 such that f~!([s —v,s+7])

contains no other critical points than p.
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Let S be the stratum containing p. Let N’ C M be a smooth submanifold of
M such that
N' S, vs'eS
N'nS = {p}, dim(N’) + dim(S) = dim(M).
By the Whitney conditions there exists 7 > 0 be such that

. .
oBY (p)h S, OBY(p)mS' NN, VS €S,

DEFINITION 4.4 (|25, Definition 1.4]). The normal slice through the stratum S
at p s
N(p) =X NN nB) (p).

The link though the stratum S at the point p is
L(p) = X N N'NIB) (p).

REMARK 4.5. If the stratum S containing p is of mazimal dimension dim(S) =
dim(M) then N(p) = p. If dim(S) = 0 then N(p) is a regular neighbourhood' of p
mn X.

We fix from now on such quantities (7, 7).

DEFINITION 4.6 ([25, Definition 3.5.2]). The Local Morse datum of f at the
point p is the pair

(7, 8):=B) (PN XN (s —7s+9]),By ()N XN (s =)
Given a,b € R with a < b if one writes
Xea= [ (=00,a]) N X

then the following theorem says that the local Morse datum determine the topology

of the above space when a cross over a critical value. First recall

DEFINITION 4.7 (|25, Notational Definition 3.0]). If B C A and Y C X are

topological spaces such that there exists a continuous map
h:B—=Y
1This means that N(p) is a neighborhood of p which is a locally flat compact codimension zero

topological submanifold of X. Moreover the inclusion {p} C N is a simple homotopy equivalence
and {p} is a strong deformation retract of N(p).
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such that the identity map Y — Y has an extension to a homeomorphism
p: X —=>YUu,A

then one says that X is obtained from Y by attaching A along B via the attaching
map h.

THEOREM 4.8 ([25, Theorem 3.5.3]). If p is a nondepraved critical point of the
proper function f : X — R then there exists a topological embedding h : B — X<y~

such that the identity map X<, — X<s_ extends to a homeomorphism
)(SSJF7 — XSS*’Y Up o/

where (o7, AB) is the local Morse datum at p.

The conclusion of the theorem can be written more succinctly by the above
Definition 4.7 as
Xesiy &2 Xasy Ug o/ (*)

that is, that X<sy, is obtained from X<, . by attaching & along % via the
embedding hZ.

REMARK 4.9. In the case where X C RY is a smooth submanifold without
boundary of dimension dim X = n, Classical Morse theory implies that local Morse
data are given by the Morse index and the dimension: there is a homeomorphism
of pairs

(o, B) = (DMP) x DP=AE) gpAP) 5 pr=AP)),
In the more general situation considerered here with X C M a Whitney stratified
subset a smooth manifold, in order to determine local Morse data one needs not

only to know the Morse index and the dimension but also Normal Morse data,

which depend on the nature of the singularities of X.

The fundamental theorem of Stratified Morse theory in the proper, nonrelative
case says that local Morse datum at p is the product of the tangential and the

normal Morse data at p. We now define these terms

DEFINITION 4.10 ([25, Definition 3.6.1]). The tangential Morse datum of f at

the nondepraved critical point p is the pair

(7.7 =By (NS fH[s—7s+).B () NSNF s =)

2any pair (o7, %) such that (%) holds for some embedding h : & — X<s—~ is called Morse
datum of f at the point p
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where S € S is the stratum containing p. The normal Morse datum of f at p is the

pair
(AN, A" =BY () ANP) N F (s =5+ BY (0) " N(p) N F (s — 7))

In other words the tangential Morse datum of f at p is the local Morse datum
of the restriction f|g : S — R to the stratum S containing p, whereas the normal
Morse datum is the local Morse datum of the restriction fin(,) : N(p) — R to the

normal slice of the stratum S through the point p.

PROPOSITION 4.11 ([25, Proposition 3.5.3]). The tangential and normal Morse
data of f at the nondepraved point p are independent of the choice of Riemannian
metric on M and on the choice of 1,7y as long as these are chosen in accordance

with the above procedure.
The fundamental Theorem of Morse theory in this situation reads

THEOREM 4.12 (“Fundamental Theorem of Stratified Morse Theory”’[25, The-
orem 3.7]). If X C M is a Whitney stratified subset of a smooth manifold M and
f X — R is a proper smooth function with a nondepraved critical point p € X
then there is a .#-decomposition (|25, Definition 1.1]) preserving homeomorphism
of pairs

(A B2 (T XN, Tx N UNxT)
where (o7, B) denotes the local Morse datum of f at p, (T ,5")) denotes the tan-
gential Morse datum of f at p and (N, A") denotes the normal Morse datum of
f atp.

The following Proposition describes the tangential Morse data:

ProrosiTION 4.13 ([25, Proposition 4.5]). Let f : X — R be a proper smooth
function with a nondepraved critical point p € X and let S € S be the stratum

containing p. There exists a homeomorphism of pairs
(7,7 =~ (]D)dim(s)*As(P) x DAs paim($)=As(p) 3D>\S(P))
where \s(p) is the Morse index of the restriction fig: S — R.

In order to find the homotopy type of the normal Morse datum at a point it

suffices to know the lower halflink of the stratum containing the given point.
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DEFINITION 4.14 ([25, Definition 3.9.1]). The upper and lower half-links of X
at the point p € X with respect to f are

F(p) == Np)nBy nf (s +7),
I=(p) :==N()NBY N f(s—7).

DEFINITION 4.15 ([25, § 1.4]). The cone over a nonempty semialgebraic set L

is the topological space
cone(L) = L x [0,1]/(x,0) ~ (y,0), Vz,y € L.

To make this definition complete we define the cone over the empty set to be
a point. Indeed this situation might very well occur when one considers the cone

over an upper or lower half link if for instance N(p) = p and p € f~1(s).

COROLLARY 4.16 ([25, Corollary 3.11.2]). If f : X — R is a smooth proper
function with a nondepraved critical point in p € X then the normal Morse datum

at p has the homotopy type of the pair

(cone(l™ (p)), 1" (p))

where I~ (p) is the lower half-link.
This gives

THEOREM 4.17 ([25, Theorem 3.12]). If f : X — R is a stratified proper Morse
function on a Whitney stratified subset X C M of a smooth manifold with a critical
point p € X with critical value s = f(p) and if [a,b] C R is an interval containing

no other critical values except s € (a,b) then there exists a homotopy equivalence
Xeoty ~ Xy Uamrs®,cone(i- ())) (PP, cone(l™ (p))).

REMARK 4.18. In the book of Goresky and MacPherson this theorem is given
with f : X — R a stratified proper Morse function, but as stated in the introduction
of their book (see [25] page z.) it also holds in the case where f : X — R is a proper

smooth function with a nondepraved critical point in p € X.

2.2. Nonproper Stratified Morse Theory. There is a variant of the above
results in the case of nonproper functions. Let M be a smooth manifold and let

X C M be a closed subset endowed with a Whitney stratification S = {S;|i € .#}
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with strata indexed by a partially ordered set .#. Let X C X be a subset which is
a union of strata: there is a partially ordered subset .#’ C .# such that
X={J s
e s’
Let f : X — R be the restriction of a smooth function on M such that f is
proper with a nondepraved critical point p € X and suppose f(p) = 0. Let us fix
a Riemannian metric and let data (n,v) be chosen for f|x in accordance with the

procedure given before the definition 4.6 above.

DEFINITION 4.19 ([25, Definition 10.1, 10.3]). Let p € X and let S € S be the

stratum containing p. The normal slice through S in X at the point p is

where N (p) is the normal slice at p with respect to f : X — R. The link of S in X
at p is
Lz(p)=L(p)nX

where L(p) is the link at p with respect to f : X — R.

One defines the stratified sets

X<a :Xﬂffl(—oo,a], X[a,b] Z)N(ﬂfil[a,b].

DEFINITION 4.20 ([25, Definition 10.3]). The Local Morse datum of fix at the
point p is the pair

(T3, Bx) = BY ()N XN f (s =7 5+0),BY ()N XN f (s =)
The Tangential Morse datum of f‘f( at p is the pair

(Tx, T3) = B (D) NSO fH[s =75 +9]), By (0) NS0 fH (s =)
The Normal Morse datum of f|)~( at p is the pair

(Nz A7) = B ()N (P)NX NS ([s—,54+7),B) ()N ()N XN f~H(5—7)).

In other words the local respectively normal Morse data for fl e X — R are
the local respectively normal Morse data for f : X — R intersected with X, whereas

tangential Morse data for f\)} is the tangential Morse data for f.
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THEOREM 4.21 (|25, Theorem 10.4]). For v > 0 sufficiently small there is a

' -decomposition preserving homeomorphism
Xy =Xy Uz Az

One can then prove the following Fundamental Theorem of Stratified Morse

Theory in the nonproper case.

THEOREM 4.22 ([25, Theorem 10.5]). There is a . -decomposition preserving

homeomorphism
(T, Bg) = (Tx, Tg) X (Nz, N5)
= (y;( XL/V)"OyX XJV/XUQ)% XJVX).

Define

DEFINITION 4.23. The upper and lower half-links of X at the point p with

respect to le are
(£ (p), 0L (p)) = (I (p) N X, 017 (p) N X)),

(I (p), 0l (p)) = (" (p) N X, 01 (p) N X)
where I*(p) and I~ (p) are the upper and lower half-links of X at p with respect to
f.

As in the proper case, albeit that the homeomorphism type of the tangential
Morse data readily can be found, this is not the case for the normal Morse data.
However its homotopy type is known; namely one can prove (see [25, Proposition
10.7.1]) the following. If the nondepraved critical point p € X lies in a stratum of
X then the normal Morse datum at p has the homotopy type

(x> Ax) ~ (cone(ly (p), 1™ (p))-

If p lies in a stratum of X \ X (that is, it is a critical point at infinity) then one
can prove (see [25, Proposition 10.7.2]) that the normal Morse datum at p has the
homotopy type

(Mz: Az) ~ (5 (p), 0% ().

This implies the following theorem

THEOREM 4.24 ([25, Theorem 10.8]). Suppose that [a,b] C R contains no crit-

ical value of f: X — R except for an isolated critical value s € (a,b) corresponding
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to a nondepraved critical point p belonging to a stratum S. If p € X then there is

a homotopy equivalence
~ ~ ~ A —
X<b = X<a Upmrs o x cone(i (p))) (D () % cone(I ().
Ifpe X\ X then there is a homotopy equivalence
Xéb = Xﬁa Ua(m*s(mxl;(p)) (D/\S(p) x l;(p))
where \s(p) is the Morse index of fs at p.

2.3. R-Morsifications. A principal idea which presents itself in geometry is
that of deforming a given object as to eliminate nongeneric properties of the object
in question whilst conserving a given geometrical invariant. One example is the
moving lemma in intersection theory whereby one can perturb two given cycles of
algebraic varieties as to intersect transversally, whilst preserving their intersection
number. Another example presents itself in the theory of singularities, where one
can deform a germ of holomorphic functions, defining an isolated hypersurface sin-

gularity, as to split the singularity into isolated quadratic singularities®.

DEFINITION 4.25 ([18, Definition 3.8]). A morsification of a germ
f:(C",0) — (C,0)

of holomorphic functions is a representative F : M x U — C of a germ of holomor-

phic functions
F:(C"™!' x C,0) - (C,0), (z,t) — fi(2)

such that
(1) F(-,0) = f(-) as germs of holomorphic functions.
(2) There ezists a subset V- C U\ {0} of complement of Lebesque measure zero
such that for allt € V the function f: M — C is a Morse function.

Moreover, F : M x U — C a called a strict morsification if in addition, for all
t € V if p # q are critical points of fi : M — C then fi(p) # fi(q).

Suppose now that the germ of holomorphic function f : (C**1,0) — (C,0) has

an isolated singular point in the origin, that is, if f : M — C is any representative

3This preserves the total Milnor number
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then 0 € f71(0) is an isolated singular point. One can show (see e.g [18, Proposition
3.18]) that in this case a strict morsification exists. Recalling that the Milnor fibre
at the origin has the homotopy type of a bouquet of real n-dimensional spheres [46,
Theorem 7.2] and that the Milnor number u(f,0) is defined as the number of such

spheres, one has moreover

PROPOSITION 4.26. Let f : (C"t1 0) — (C,0) be a germ of holomorphic func-
tions with an isolated singular point in the origin. Let F : M x U — C be a strict
morsification of f. The Milnor number u(f,0) is equal to the number of critical

points of fy : M — C, for anyt € V.
PrOOF. This follows from [18, Theorem 5.2]. O
We give an example

EXAMPLE 4.27. Consider the polynomial map f : C — C given by f(z) = 23 —y>

and let
F:C?’xC—C, F(z,t) = 2% — 3tz — 2.

Then F(z,0) = f(z) for all z € C and
Jac(fy) = [3(2% —t), —2y).
Consequently, for any t € C the critical points of f; : C — C are
pi(t) = (|t]}/2et2eM/2 ), pa(t) = (|t|Y/2elare®)/24m)i ),

The Hessian matriz is

. Consequently
det Hess(fi)(pi(t)) = —12p;(t) # 0, vt e C*

so that the critical points p;(t) are nondegenerate whenever t # 0. Their values are
distinct hence F is a strict morsification (with V. = C*) and therefore by Proposition

4.26 above the Milnor number is
u(f,0) =2.
In particular the complex (closed) Milnor fibre

Fea={ -y =n [P+l <o}, Inl<<s
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is homotopy equivalent to a bouquet of spheres S'VS'. One can remark here that if
we consider the restriction F': RxR — R of I to the real numbers then f; : R — R
has two nondegenerate critical point when t > 0 and it has no critical points when

t <0.
This serves as the inspiration for the following definition.

DEFINITION 4.28. Let f : (R"*1,0) — (R,0) be a germ of polynomial maps. A

R-morsification of f is a representative
F:MxU-—=R

of a polynomial map germ F : (R x Z,0) — (R, 0) such that
(1) I

(2) F(z,0) = f(x) as germs of polynomial maps,

(3) There exists a dense subset V. C U \ {0} such that for all t € V, the

= [—1,1]* for some k € N,

function fiy : M — R is a Morse function with distinct critical values.
An R-morsification F' is strong if for any t € V the function f; : M — R has
w(fc,0) critical points and it is weak if for any t € V it has strictly less than
w(fc,0) critical points.

In the case where the polynomial map germ has an isolated critical point in

the origin* an R-morsification of f always exist:

PROPOSITION 4.29. If f : (R"*1 0) — (R,0) has an isolated critical point in

the origin then f has an R-morsification.

ProoF. The proof of [18, Proposition 3.18] applies almost verbatim, but since
it is constructive we recall the argument. Namely let f : M — R with f(0) =0
be a representative of the germ f : (R"T10) — (R,0), for some neighborhood
M C R™*! of the origin. Consider the real algebraic subset D C R"*! of critical
values of the gradient

grad(f) : R"*1 — R !

and let 7D C R™*! denote the tangent cone of D at the origin. By the Brown-
Sard Theorem [31, Theorem 3.1], dimD < n. But then dim7D < n as well. In

particular we can choose a union

l:{(tala"'atan+l) \tG(—a,O)U(O,a)}, ac€R

4¢hat is: for any representative f : M — R the origin is an isolated critical point
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of two line segments such that each line segment does not meet any critical value.

Letting
n+1

ft= ertZaﬂi
i=1

then the critical points of f; are exactly the points p € M for which

grad(f)(p) = (ta17 s 7tan+1)'

This is a noncritical value of the gradient grad(f) hence the Hessian matrix Hess(f;)(p)
at p is invertible. But this means that p is a nondegenerate critical point of f;.
Therefore if one defines the subset V' C R by V = (—a,0) U (0,a) then for any

t € V one has that f; has only nondegenerate critical points in M. Up to changing
the vector (ai,...,an+1) by a small perturbation one can assume that f; has only
nondegenerate critical points with distinct critical values for any ¢ € V. Then the
representative

F:Mx(—a,a) = R, F(x,t) = fi(x)
of the germ
F: (R"! x [~a,d],0) = (R,0)
satisfies the conditions of the Definition 4.28 of a R-morsification, with U = (—a, a)
and V =U \ {0}. O

REMARK 4.30. As the proof shows one can always obtain a weak R-morsification
of a germ of isolated singularity f : (R"*1,0) — (R,0) having the property that
V =U\{0}. Note however that the number of critical points of fi : M — R might
be different for different choices of t € V.

We give a few examples.

EXAMPLE 4.31. In the example 4.27 the restriction of F to F : R x 71 — R
with T = [0,1] is a strong R-morsification, whereas if T = [~1,0] it is a weak

R-morsification.

In the example above one found a strong R-morsification by a change of coor-
dinates in the parameter space of a weak morsification. This is not always possible,

as the following example illustrates
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EXAMPLE 4.32. Let f : R — R be given by f(x) = 2* and let F : R x R — R
be F(x,t) = x* —tz. Then

fllx)=42® —t=0 2°=t/4

and as there are only one real third root of unity there is only one critical point of
ft : R =R for any t € R. But the Milnor number of f in the origin is pu(f,0) = 3.
Therefore there is no closed interval I containing the origin such that Flrxz is a

strong R-morsification.

However, in this example one can find another one-parameter family which is

a strong R-morsification.

EXAMPLE 4.33. Let F : R x I — R with I = [0,32/27] be given by F(z,t) =
xt — ata® + 4t%x. Then for any t € [0,32/27), the derivative f] = 4(x® — 2tx + 1)
has discriminant

A(f) =1t3(32 —271)

which is positive when 0 < t < 32/27 whence it follows that f; have exactly u(f,0) =
3 real roots. The set of t € (0,32/27] such that the critical points of f; are not Morse
is the image 7(X) of

X ={(2,t) | 32* =2t =0, 22tz +1*> =0} C R x (0,32/27]

under the projection m : R x R — R. As X is a proper intersection of two curves
it follows that dim X = 0 whence w(X) has finite cardinality. Therefore V =
(0,32/27)\7(X) is dense in I and for any t € V the functions f; are Morse. Hence

F' is a strong R-morsification.

As for the existence of strong R-morsifications let us recall the notion of M-

morsification, due to Vladimir I. Arnold.

DEFINITION 4.34 ([28]). A M-morsification of a germ of holomorphic functions
f : (C™10) — (C,0) with an isolated singularity in the origin and of Milnor

number p = pu(f,0), is a representative
F:MxU-—=C

of a germ of holomorphic functions F : (C"*! x C*=1,0) — (C,0) such that

(1) F(-,0) = f(-) as germs of holomorphic functions,
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(2) U C R*™! and there exists a subset V. C U\{0} of complement of Lebesgue
measure zero such that for all t € U the function f; = F(-,t) is Morse

with exactly p real critical points.

A M -morsification is said to be very nice if moreover the critical values of f; are

distinct, for allt € U.

Stated differently, an M-morsification is defined from a representative of the
truncated miniversal deformation® of f by restricting the base to the (open) set of

real parameters for which all nondegenerate critical points of f; are real.

Arnold established in his article [5] from 1991 the existence of very nice M-
morsifications for simple singularities of class Ay; more precisely he calculated
therein the number of connected components of the space of such morsifications.
In 1993 M.R. Entov established the existence of very nice M-morsifications for
Dy-singularities. And in his article [28] V.V. Guryunov proved their existence for
simple singularities of class Fg, E7 and Eg, showing that the number of connected
components of the space of very nice M-morsifications are 82, 768 and 4056, respec-

tively.

PROPOSITION 4.35. Let f : (R"™1, 0) — (R,0) be a germ of polynomial maps
defining an isolated singularity in the origin. Suppose that for any representative
f: M — R, where M is an open neighbourhood of the origin, the extension of
scalars fc : Mc — C is a simple isolated singularity of class ADE. Then there

exists a strong R-morsification of f.

PrOOF. (1) Suppose n = 1. As fc : Mc — C is a simple ADE-
singularity, by the results [5], [19] and [28], there exists a very nice M-
morsification

Fe:McxU—C
of fc where U C R*~! is an open neighbourhood of the origin. By defi-
nition there exists a subset V. C U \ {0} of complement of measure zero

such that the functions

f(cﬂg:Mc—)C, teV

5often called the truncated universal unfolding
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are Morse with p real critical points p,...,p, and distinct critical values.
There might be other critical points of fc; which are not real, but as we
show now this is not the case. Indeed the complement of a set A C RF
of measure zero is dense, so V' is dense. And as F¢ is a representative of
a miniversal deformation it follows by [18, Lemma 3.9] that it is a strict
morsification. By [18, Proposition 3.19] as F¢ is a morsification of f¢ it
follows that fc ; has all in all i nondegenerate critical points. Therefore all

the critical points are real. Consequently if one considers the restriction
F:MxU-=>R

to the open neighborhood M of the origin in R? then F(x,0) = f(z) for
all x € M and moreover, for any ¢ € V, the function f; = F(-,t) is Morse
with distinct critical values. Hence F' is a strong R-morsification.

If n > 1 and if f: M — R is a representative of the germ f : (R"*1 0) —
(R,0) then one can by assumption write

n+1
f@r,. . wng) = flrr,z0) + Y anf, &€ {*1}
=3

where the extension of scalars of f : M NR? = R is a simple curve

singularity of class ADFE. Notice that
= p(fe,0) = u(fc,0).
By the step above there exists a strong R-morsification
F:MNR*xU =R

of f, where U C [—6,8]#~ ! for some § > 0. By definition there exists
therefore a dense subset V' < U \ {0} such that f, = F(-,t) has u(fc,0)

critical points p1,...,p, with distinct critical values, for any ¢ € V. Let

F:MxU—R,

n+1
F(zy,...,xpy1) = F(z1,22) + Zezxf
i=3

Then for each ¢ € V the critical points of f; = F(-,t) are

pi:ﬁiX(O,...,O)CM,
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where 7 = 1,..., u. Therefore F' is a strong R-morsification.

3. Preparatory Lemmas

Consider a germ of polynomial maps f : (R"*1 0) — (R,0) with an isolated
singular point in the origin. Let f : M — R be a representative of this germ in a
neighborhood M C R"*! of the origin.

THEOREM 4.36 (see e.g [46, Theorem 4.2]). There exists 69 > 0 such that for
any 6 € (0,8y) there exists eg = €9(0) > 0 such that for any e € (0, €),

Fof7H0, ) NBs = (0,¢],

f : fﬁl((ov_e]) QB5 — (Ov _6]'

are the projections of trivial topological fibrations, where Bs C R™t! denotes the
closed ball of radius § centered at the origin. Moreover each fibre of these fibrations

are smooth manifolds with boundary.

Let us fix Milnor data (ep,dp) as in the Theorem 4.36 and let € € (0,¢q). For
any 7 € (0, €] let us write

Fy=f"mnBs,  Fr=f""(-n)NB;

for the positive and negative Milnor fibres. It follows from the triviality of the
fibrations above that if 7 is another real number such that 77 € (0, €] then there are
homeomorphisms

T+ o~ T+ F— ~ T

Fy = F, Fy = F5.
Recall the first of the Isotopy lemmas of Réné Thom:

LEMMA 4.37 (“Thom’s First Isotopy Lemma” [35, Proposition 11.1]). Let g :
M — N be a smooth function of smooth manifolds and let X C M be a closed
Whitney stratified subset. If g x : X — N is proper and if for any stratum S C X
the restriction gs : S — N is a submersion then fix : X — f(X) is a locally trivial

topological fibration.
We now can prove

LEMMA 4.38. Let f : (R™"*1,0) — (R,0) be a germ of polynomial maps defining

an isolated singular point in the origin. Let f : M — R be a representative on a
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neighborhood of the origin and let (eo,dp) be Milnor data. Suppose that
F: M x[-1,1]F =R, F(,t)=f

is a polynomial map such that F(x,0) = f(x) for all x € M. Then for any § €
(0,00) and any n € (0,€(0)) there exists ty = t4(n) € R such that for anyt € [—1,1]*

such that |t| < t[, there exists a homeomorphism

o : .7:"3: — f Y (£n) N Bs.

Proor. We will prove the assertion for the positive Milnor fibre, the other case
is analogous. By the Curve Selection Lemma [39, Lemma 3.1] one can choose §y > 0
such that for any & € (0,dy) the sphere S5 C R™™! intersects f~'(0) transversally.
Moreover one can choose €p(d) > 0 such that any n € (0,¢g) is a regular value of
f:Bs — R. Let us fix 6 € (0,0p). Then by continuity, f~1(n) and S; intersect
transversally for all n € (0,¢p). Let

F:Mx[-1,1]F - R x [-1,1]%, F(x,t) = (fi(x),t).
and denote by
m:R" x R¥ — RF, mw(x,t) =1t

the standard projection on the parameter ¢. We will show that there exists t(,(n)

such that the restricted map
T F7H({n} x (—th, t)*) N (Bs x RF) — R*
is a proper stratified submersion and then use the Isotopy Lemma to obtain the

result. To achieve this we will first find a Whitney stratification of the domain.

(1) First note that since any n € (0,¢g) is a regular value of f : Bs — R
the differential dF|MX(,171)k(x7O) has maximal rank k 4+ 1 for any = €
f~1(n) N Bs. Therefore, we can assume by continuity that if 7 is fixed
then

rank (dEMX(_171)k)(x,t) =k+1

for any « € f; ' (n) N Bs and any t € (—to,%p)*. This means that
F :Bs x (—to,t0)* — R x RF

has no critical values in {n} x (—tg,%)".
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In particular,
Fi = F1({n} x (—to, t0)*) N (Bs x (—to, t0)")

is a smooth manifold.

We claim that there exists £y = fo(n) € (0, 1] such that
Ty = F " ({n} x (—to,%0)*) N (S5 x (—t0,10)")

is a smooth manifold. For this it suffices to show the following claim: the

intersection
Fﬁl({n} X (—7:[0, Eo)k) NSs x (—Eo, l?o)k

is transverse. This will be shown using the fact that transversality is an
open condition. We have that the set of (z,t) with z € f,"'(n) such that

fr1(n) N'Ss is not transverse at z is precisely the set of (x,t) such that

T(ac,t)f;1 (n) L U(x)

where v(x) = (z,0). Since this is a closed condition, the set where
T(m)ft_l(n) is not orthogonal to v(z) is an open condition. Since the
intersection
F7H ) NS,

is transverse, 1{, o) fr 1(n) is not orthogonal to v(z). Therefore, by open-
ness, there exists a neighborhood of + = 0 in R* such that for any ¢ in
that neighborhood and any = € f;'(n), the intersection f, *(n) N'Ss is
transverse. Thus there exists a {y € R as claimed.

Let tj = min(to, o) and consider
Tz T — (—th, )", i=1,2

We claim that up to replacing ¢, by a smaller value one has that 7|, is
a submersion, for ¢ = 1,2. Suppose otherwise and that for any t¢{ there
exists a point (z,t) € 71 in which 7|5 has a critical point. By definition

this means that
T LTIRY (%)

and that dF(z,t) is parallel to T;R*. Since (x) is a closed condition, if

(x¢,t) € A is a sequence such that |t| — 0 then there would exist a
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limit point (#,0) with & € f~'(—n) N Bs such that dF(,0) is parallel to
ToR*. But then df (Z) would be zero which is impossible since & € f~1(n).
Therefore 7| 7, is a submersion. In the same vein suppose that 7|z has a

critical point (z,¢) which is to say that
Tiwy 72 L TIR".

Letting (x¢,t) € J5 be a sequence such that [¢| — 0 there would exist a
limit point (#,0) with # € f~'(n) N'Ss such that dF(z,0) is parallel to
ToRF hence df (#) = 0 which is impossible since f~!(n) NSy is transverse
at .
Therefore if

W= 7UD

then by the the steps 2 and 3 above # is a smooth manifold with boundary
hence T = {77, %2} is a Whitney stratification. Moreover, by the step 4
7T|’W W = (_t67t6)k

is a proper stratified submersion.

By Thom’s first Isotopy Lemma 4.37 (see [35, Proposition 11.1]) )y is
the projection of a locally trivial fibration. As the base is contractible it
is a trivial fibration. The fibers of a trivial fibration are homeomorphic

whence it follows that for any ¢ € (—t{,, t})* there exists a homeomorphism
-1 -1
o7 W\w(o) - 7T|W(t)v
or in other words,
Fy = f ()N Bs
which is what was to be proven.

d

REMARK 4.39. Restricted to each strata of the fibers the homeomorphism ¢; is

in fact a diffeomorphism.

REMARK 4.40. The set

St (m) NBs

is not a Milnor fibre of f; : R™*1 — R since the function f; has in general critical
points in Bs \ {0}.
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Applying this lemma in the case where F' : M x U — R is a R-morsification we

get the following corollary:

COROLLARY 4.41. Let f : (R"*1,0) — (R,0) be a germ of polynomial maps
defining an isolated singular point in the origin and let F : M x U — R be a R-
morsification. Then there exists 69 > 0 such that for any § € (0,0¢) there exists
€0 > 0 such that for any n € (0,€) there exists ty, = t((n) € R such that for any
t e Un{|t| <ty} there exists a homeomorphism

o : ]:'77i — £ (£n) N Bs.

Let us denote
Xy = [ (=n,m) N By,
‘7-_-;:17 = ftil(,r/) mBé;

ﬁtj’q = ft_l(_n) QFB(S-

REMARK 4.42. We have that .7:";'” and .7:",;,] belong to the boundary of é\_,’t,n and
that the map
ft : Xt-,n — R

has the property that its restriction to .7-_';57 and to .7-_';77 respectively has no critical

points, by the proof of Lemma 4.38.

LEMMA 4.43. For any n € (0,e0(0)) there exists a real number tj > 0 such
that for any t € U with |t| < tj, the subset X;, C M is a smooth manifold with

boundary.

PRrROOF. Let n € (0,€p(9)) be fixed. By the Lemma 4.38 there exists ¢, = t{(n)
such that for any ¢ € U such that [¢| < ¢ one has that 7 is not a critical value of
ft : Bs — R. Now the open sets

ft_l((_ooan) ﬂBg, ft_l(_naoo)mﬁé

are smooth manifolds for any ¢ € U such that |¢| < t{. Transversality is an open

condition so there exists tj € R such that the intersection

7 (=n,m) N B;s



86 4. ISOLATED REAL HYPERSURFACE SINGULARITIES

is transverse, for t € UN{|¢| < t{} hence is a smooth manifold. The same arguments

applied to f; : Ss — R shows that

f (=n,m) NSs

is a smooth manifold. This proves the assertion. O

We now show that X; , is contractible.

LEMMA 4.44. Suppose that
F:MxU—R

is a R-morsification of f where U C [—1,1]¥ is contractible. Then for any n €
(0,€0(9)) there exists tog € R such that for any t € U with |t| <ty ,

X = fi ' ([=n,m)) N Bs

is contractible.

PROOF. We put tg = min(ty(n), t;(n)) in the notation of Lemma 4.38 and 4.43.
Let
F:MxU—=RxU,  F(x,t) = (fi(z),t)

and let

7 R x RF 5 R, m(x,t) =t

be the standard projection. Consider

T = F((=n,m) x U N {lt] < to}) NBs x U,

To=F 1 ((=n,n) x Un{Jt] < to})) NSs x U,

TE=F ' ({En} x Un{|t| <to})) NB;s x U,

FE=F Y{xn} xUN{Jt| < to})) NSs x U.
Then the 77 and % are smooth manifolds and by the proof of the Lemma 4.38
F;E and Z;F are smooth manifolds. Therefore if

Y = F~([=n,n) x Un{lt] < to}) 0 (Bs x U)

then
T - {%7 <727 %i, %ﬂ:}
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is a Whitney stratification of # by transversality of their intersections. We will

prove that the restriction of the projection
T = UN{|t| <to}

is a proper stratified submersion. First of all it is a proper map since any fiber is

compact, of the form

T (s) = fi H([=n,m)) N Bs.

By the proof of Lemma 4.38
Mgt T UMt <to}, =34
are submersions. Now since
dim 7 =dim(M xU)=n+k+1

is of maximal dimension and since the stratum .7 is a smooth manifold and in par-
ticular open, 7| 7 is a submersion and since the projection mg; ¢ is a submersion.

It thus remains to show that 7|7, is a submersion. Again this follows since
dim % =dim(M xU) -1 =n+k,

since .7, is smooth manifold and in particular open and since the projection ms, « ¢/

is a submersion. Therefore one has that
W‘gyi@—)Uﬁﬂtl <t()}

is a stratified proper submersion. By the First Isotopy Lemma of Thom 4.37 (see
[35, Proposition 11.1]) it is therefore the projection of a locally trivial fibration, and
as the codomain is contractible by assumption, it is a trivial fibration. In particular

its fibres are homeomorphic thus

T (1) = Xy = f7N (=) N B = w5 0).

Therefore, to finish the proof it suffices to show that f~!([-n,n]) N Bs is con-
tractible. But it follows from ([15, Proposition 1.6]) that the inclusion f~1(0)NBs; C
f~Y([-n,n)) N Bs is a homotopy equivalence. By the Local Conic Structure of al-
gebraic sets f~1(0) N Bs is a cone over its boundary hence contractible. Hence

f~Y([=n,n]) N Bs and therefore also X; ,, is contractible. O
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4. On the Homotopy Type of The Real Milnor Fibres

4.1. Introduction. The idea now is to Whitney stratify ft,n and to use the
nonproper version of Stratified Morse Theory to obtain the homotopy type of the
real Milnor fibres. More precisely we will in Theorem 4.47 show that a tubular
neighborhood of a real Milnor fibre becomes homeomorphic to a contractible space
after succesively adjoining handles attached via embeddings, with each handle cor-

responding to a critical point of an R-morsification.

4.2. The Situation. Let f : (R"*! 0) — (R,0) be a germ of isolated singu-
larity and let
F:MxU=R,  f=F(1)
be a R-morsification of this germ, where M C R"*! is a neighborhood of the origin.

Fix Milnor data (e, dp) at the origin for f: M — R, as in Theorem 4.36.

We shall only consider those critical points which are bounded in the following

sense.

NOTATION 4.45. Let § € (0,00) and ¢ € (0,0) be fized. For any t € V with
V. C U\ {0} as in Definition 4.28 let pi1,...,pm) denote the critical points of
fi : M — R such that p; € Bs for all i = 1,...,m(t) and let s; = f;(p;) denote

their values.

REMARK 4.46. We claim that there exists to € R such that s;(t) € (—¢,¢€) for
alt e V{lt| <to}. Write U =UN{|t| <to}. We first claim that if €, denotes
the set of t € U’ such that p;(t) € Bs is a critical point of f : M — R then %, is

closed in U. Consider
€ = {(z,t) € Bs x U | rank Jac(f;)(z) = 0}.

Then € is closed in the compact set Bs x U' C M x R with respect to the Euclidean
topology and so if

7 R x RF 5 R, m(x,t) =t

denotes the standard projection onto the second factor then the image €; = 7(€)

is closed in U'. Therefore, by continuity of t — dfy, if

(P )nen, P, | <6
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is a bounded sequence of critical points such that t, € U’ and lim,_ |t,| = 0 then
the limit p = pg exists, is bounded |po| < J, and is a critical point of f. As the
origin is the unique critical point of f in the ball Bs C M it follows that

Vpi(t) € By, lim p;(t) = 0.

|t|]—0

Since f; : M — R is a representative of a germ f, : (R"*1.0) — (R,0) one has
f1(0) = 0 hence the critical values satisfy s;(t) € (—n,n) for alli=1,...,m(t) and
for allt € V. {|t| <to} forty sufficiently small.

4.3. The Theorem. The following theorem concerns the homotopy type of
the real Milnor fibres of f at the origin.

THEOREM 4.47. Suppose that F : M x U — R is a R-morsification. For any

n € (0,e(d)) there exists to = to(n) € R such that the following holds. Let t € V

(where V is as in Definition 4.28) such that |t| < to be fived and let p1, ..., p, € Bs

denote the critical points of f: : M — R lying inside the ball of radius § centered

at the origin and let A(p;) denote their indices. Then X, ,, is contractible and there
exist embeddings

DAP) 5 gD HI=APD) — Fof o (0,1) U Ur<j<io

hi - hf

1 DAWP) x gD HL=AEY) 5 B (0,1), 0= 1.

(]D)/\(pj) X ]D)nJrlf/\(pj)) .

, DrH1=AP) « gD P ]?n— x (0,1) UUi<j<io1 (DHH—A(]DJ') X [D)A(pj)) i
s hy
(2 J

DrH=AE) x gDAPY) — Foox (0,1), =1

and homeomorphism

X = Fy x (0,1)U [ (D220 preo)
1<i<m
h

where each handle DMP) x D H1=AP) (respectively D T1-AP:) 5 DAP) ) s attached
along DMP) 5 QDM H=AP:) (respectively along D™ T1=AP:) x 9DAP) ) via b (respec-

tively via h; ).

PROOF. Let to(n) = min(t;(n),t;(n)) in the notation of Lemma 4.44. Then
for any t € U N {|t| < to} we have that +n are regular values of f; : X;, — R,
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and consequently no point of ]:"fn are critical points. We now fix ¢ € V such that

‘t| < tg.

(1)

Let
5”1 = iIltXtm, yQ - Xt,n N S5

Sy = ]:{t_n’
and let S = {FA,... %%} As|t| <t it follows from the Lemma 4.43 that
.7 are smooth manifolds, for ¢ = 1,2. As [t| < ¢, it follows from the steps

1 and 3 of the proof of 4.38 that .; are smooth manifolds, for i =3,...,6.

S =F,

t,n

5 =0F,, Se=0F,,

Moreover as
=) NBs = S US4 US

is a manifold with boundary its strata satisfy the Whitney conditions (see

e.g [25, Definition 1.2]). As the same holds for
o (=mm) NS5 = S US U

its strata satisfy the Whitney conditions. But then by tranversality (step
3 in the proof of 4.38) the strata of S satisfy also the Whitney conditions.
Therefore it is a Whitney stratification of X;, such that X;, is a union
of strata.

Let us consider the function f; : M — R. It restricts to a proper function
fr 2 Xy = [=n,m] CR.

At the points p € ffn this function have depraved stratified critical points

since f; is constant there. However any critical point
€ X, \Fr U T
p t,n tn t.n
is necessarily nondepraved, as we now prove. So we need to show that if
p € & is a critical point of

ft\lyi:'%lHR7 i1=1,2

then it is nondepraved. For this, we first show f;| &, has no critical point.

Indeed suppose not. Then

ft|SE : 85 — R
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would have a critical point p € Ss with critical value s € (—n,n) hence
dft‘Ss (p) =0 and

T,Ss C ker dfys, (p)- (%)

However the intersections f; ' (4n) N'S; are transverse, by Lemma 4.38
for all ¢ sufficiently small (that is, up to replacing to be a smaller value).
Therefore by continuity if  is fixed, then f; ' (s)NBs is transverse for all s €
(=n,n). Then (x) implies that ker dfys, (p) = Tpf; ' (s) and we conclude
that 7,Ss C T,f; *(s), which is impossible since we had a transverse
intersection. Therefore .% has no critical points and it remains to show
that any critical point p in %) is nondepraved. Since .%; is a smooth

manifold one can apply [25, Proposition 2.4] to
fﬂyl : Yl — R

which gives that any critical point is nondepraved. All said, any stratified
critical point of f; : X, — R which belongs to a stratum .%; for i = 1,2
necessarily belong to the first, and is a nondepraved point.

We now apply the nonproper version of Stratified Morse Theory with the
stratified subset &; , and the proper function f; : A_’t,n — R. We will use
Theorem 4.21 ([25, Theorem 10.4]) in conjunction with the Fundamental
Theorem 4.22 ([25, Theorem 10.5]).

Let p € X, ,, be a critical point with value s = f(p). By the previous
step, p € .7 is an interior point. As .} has maximal dimension dim.; =
dim M it follows that its normal slice is Ny, , (p) = p whence it follows by

its very definition that the normal Morse data is

(N, Na,,) = (p,0).

Therefore by the Fundamental Theorem 4.22 (|25, Theorem 10.5]) the
local Morse data for fx,, at the point p € 1 is homeomorphic to the

tangential Morse data
("Q{Xt,n ) '@Xt,n) = (th,n’ 9./{‘,,,7,)

for fyx,, at the point, which is by definition the tangential Morse data
of fi at p. By 4.13 (|25, Proposition 4.5]) the tangential Morse data at p
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is homeomorphic by a decomposition-preserving homeomorphism to
/ o n+1l1—X\ A n+l—X\ A

(T, Tx,,) = (D s() x s D s(P) x oDAs(P)),

Thus by Theorem 4.21 ([25, Theorem 10.4]) one has that if [s — v, s + 7]

contains no critical values except s = f;(p) then

Fotms+ ) NBs 2 [N (=5 =) NBs Ugy T,
which is to say that there exists an embedding

h : DVHIASP) 5 gAs () £ (g s — ) N Bs

such that the identity map extends to a homeomorphism

FN=n, s +7) NBs =

fr (=5 =) NBs U, (D”“*AS(”) x DAS(’”’) :

(4) By the Remark 4.46 if pi,...,pn € Bs denote the critical values of fy.o,

we can order the corresponding critical values s; = f;(p;) as follows
< s < < Sy <)

For each ¢ = 1,...,m choose a real number 7; > 0 such that s; is the only

critical value contained in [s; — v;, $; + ;] and such that
Si + Vi = Sit1 — Vitl, 1=1,....m—1.
The previous step 3 gives that there exist an embedding
J Drti=As(pm)  gpAsPm) _y (=1, Sm — Ym) N Bs
such that
Kim 2 171 (=1, 5 — Ym) N Bs Uy (DnJrlf)\yl (Pm) 5 DA (pm)) ,
Similarly there exists an embedding
By DPFITASEm) s gDAS 1)y 7Y (50 g — 1) N B

such that

ftfl(_nﬂgm - ’YM) HE(; = ftfl(_nvsmfl +’7m71> ﬂ@g
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= ft_l(_na Sm—1 — Vm—l) N Bé Uh*

m—1

(Dn+1—>\y1 (Pm—-1) » DA (pnz—l)) )
Therefore &, is homeomorphic to

m—1

(ft_l(—m Sm—1 = Ym—1) N Bs U), - (ID)"H*’\"1 (Pro=1) 5 DA (p"I*l))>

U=

m

(Dn+1f)\y1 (pm) % D 1 (Pm)) .

Continuing inductively this yields
Xy & ft_l(*n, s1—71) N Bs U U (D”H*)‘yl (Pi) » DA (p")) .
1<i<m
hi
(5) Since the dimension of the stratum .7 is maximal, the index of f; s, at

a critical point is equal to the index of f; : M — R so
Az (pi) = A(pi)-
It therefore remains to show that
fit (=m0 —m) NBs = F < (0,1).
Now,
fot(=ns1 —m) NBs = f (=0 +71/2) NBs x (=n,51 — 1)
and
fot=n =m0 —m) NBs 2 f7H(=n) NBs X (=1 — 71,51 = 71)

by Thom’s Isotopy Lemma 4.37 ([85, Proposition 11.1]) because by con-
struction f; : M — R has no critical values in (—n — 71,81 —71) and it

moreover follows that

fit(=ns1 —m) NBs = f7 (=0 — 71,51 — 1) N Bs.

But then

Fig =1 (=) nBs = f7 (=n+n/2) NB;

and consequently f;'(—7,s1 — 1) NBs = _7:'77_ x (0, 1) because .7?;77 ~ 7,
by Lemma 4.38. Finally that X;, is contractible follows from Lemma
4.44.
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Figures (1-2) illustrate Theorem 4.47 in the case of a quadratic singularity.

FIGURE 1. The positive Milnor fibre, in blue, of f = xy with the
handle D! x D!, represented by the white strip, attached along the
two disjoint segments D' x SP.

N/

Fi1GURE 2. The region in white, representing X}, is homeomor-
phic to the space obtained from the positive Milnor with a handle
attached as in Figure 1.

COROLLARY 4.48. With the same assumptions as in Theorem 4.47 there exist

attaching maps

oDnH=A:) ]:';' UlUi<j<i—1 DrtI=Ae) 5> 2
H: Hf
oD 5 FE =1

oD AP ]?n— UUi<jcioi D@D 4> 2
H Hy
oDAMPY) — Foo =1

and homotopy equivalences
Xy ~ FT UH? prti=Al) ... Upt Dn+1_>\(pm)7

Xy ~ Ft UH{ DAPY ... Up- D A@m)

where each disc D" AP) (respectively DMP9) ) is attached along its boundary via

H;" (respectively via H] ).
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PRroOOF. The proof consists of repeating steps (3-5) of the previous Theorem
4.47 but using homotopy Morse data [25, Definition 3.3] instead of Morse data.

Let t € VN{[|t| < to} be fixed, with ¢ is as Lemma 4.44. In particular F;, = F,
and X, is contractible. Let again p € X;, be a critical point of f; : X, — R
and let s = f;(p). In step 3 of the proof of Theorem 4.47 was established that the
local Morse data of fx, , at p is homeomorphic to the tangential Morse data of f;
at p. Furthermore it was established that the tangential Morse data of f; at p is

homeomorphic to

(DnJrlf/\s(P) % ID)AS(P)’]D)”ﬂLl*)\S(P) % aDAS(P))_

By [25, Remark 3.5.4] there exists a homotopy equivalence

(Dn+1—/\s(p) % ]D)As(p)’]D)n-s-l—/\s(p) « 3@/\5@)) ~ (]D))‘S(p), 8D>‘S(p)).

By [25, Remark 3.3] this implies that if v = 7(p) > 0 is chosen as in step 3 of the
proof of Theorem 4.47 then there exists an attaching map
Hs : 6D>\(p) — ft_l(_na s —= ’7) N ]R6

and a homotopy equivalence

FN(=n s +79) NBs ~ ;7 (=n, 5 — ) NBs Uy, DM@,

(1) In general if real numbers ~1,...,7,, > 0 are chosen as in step 4 of The-
orem 4.47 then it follows that there exist for each ¢ = 1,...,m attaching
maps

H - 0DMP) 5 £ (—p, s, — ;) N Bs

and homotopy equivalences

fit(=n, s +3) NBs ~ 71 (=n, 5, — v;) N Bs Ug- DA Po),

This gives
Xtaﬁ ~ ftil(_nv Sm — ’Vm) N B(; Uf{% ]D)/\(an)
~ ftil(_n’ Sm—1 — ’mel) n Bé‘ Uﬁ;_l ]D)/\(p7n71) Uf—[,; D/\(p'm).

Continuing in this manner one obtains

X ~ [ (=151 =) NBs U= DXPV U Uy DAP),



96 4. ISOLATED REAL HYPERSURFACE SINGULARITIES
Since by step 5 of the proof of Theorem 4.47,
fiH (=50 —m) NBs = Fr x (0,1)
one gets that
r— A A(pm
Xy ~ F~x (0,1) U= DXV Uy DA,

(2) Let
¢ F x(0,1) = F~

be a deformation retraction. Then ¢; extends by [38, Lemma 3.7] to a

homotopy equivalence
B X = _omA
o T~ x (0,1) Ug- DXPY) — Fouy o DAPY.
In turn applying [38, Lemma 3.7] to ¢» gives a homotopy equivalence
¢3: F~ x (0,1) Ug- DX g DAP2)

— A A
—F U¢>10H1_ D (pl)U¢2OH2— D (Pz).

Continuing in this manner one eventually obtains a homotopy equivalence

between
~ F— . A(p1) . ~ A(Pm)
KXo~ F x(O,l)UH;D U---Ug-D
and
— A A(Pm
F ™ Ugonz DXPIU--uy g DA,
Then H; :=¢; 0 ﬁ;,i =1,...,m are the wanted attaching maps.

O

One recovers the formula of Khimshiashvili [16, Theorem 2.3] from this Corol-

lary by taking the Euler-Poincaré characteristic.

COROLLARY 4.49. With the same assumptions as in Theorem 4.47 one has
X(F)=1- Z(_l)n-‘rl—/\(m)’ XFr)=1- Z(_l),\(p,-).
=1 i=1

PRrROOF. It was established in the Corollary 4.48 that

‘7-_—;:»77 UH? Dn""l_)‘(pl) J.-- UH;;L Dn"rl_)‘(pWL)
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is contractible. For any k= 1,...,m let
My o= Fly U DTIAPU Gy DPHIARR),
My = ‘;Et—t_n'
For any pair (X, A) of topological spaces consider the Euler characteristic
X(X,A) = (~1)"rank H, (X, A;Z)
n>0

in relative singular homology with Z-coefficients. From the long exact sequence of

a triple (X, A, B) with B C A C X one has that x is additive in the sense that
X(X, B) = x(X, 4) + x(A, B).

Since

MogC My C---C M,

is an ascending filtration of topological spaces and since M; ~ M;_1U+ Drt1i=Alp:)
for ¢ = 1,...,m one obtains

m

X(Mom, M) = x(Mi, M _y).

i=1
Using the Excision Theorem [26, Theorem 2.20] applied to the pair (M;, M;_1)
and the subspace M,_; \ H;"; (D" +1=A#4)) gives

x(Mi, Mi_y) = X(DnJrl*)\(Pi)’aDnJrl*)\(:Di)) — (_1)n+1*>\(pi)

(see also [38, I § 5]) hence

m

(M, Mo) = Z(il)nJrl*)\(m)'

i=1

One the other hand, applying additivity of x to the ascending filtration
0c My=F cMy,

of topological spaces one obtains

X(Ff,

tn

) = X(Mm) - X(Mm;MO)’

Since )?tﬂ, ~ M, is contractible and since .7?;57 = .7:";]" this yields

m

X(F) =1= 3 (e

i=1
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whence the first assertion. The proof of the second assertion is analoguous. O

REMARK 4.50. The proof of Khimshiashvili’s formula which is known to us®
is the one given in [16, Theorem 2.3]. It uses Morse theory for manifolds-with-

boundaries. Theorem 4.47 is not stated in the literature and it does not follow

from of the proof [16, Theorem 2.3].
Another corollary is the following.

COROLLARY 4.51. In the notation of Theorem 4.47 if there exists t € V' with
[t| < to such that f; = F(x,t) has no critical points inside the ball of radius &
centered at the origin then the positive and negative Milnor fibres are contractible.

REMARK 4.52. If f : (C"*1 0) — (C,0) is a germ of complex hypersurface
singularities then it is never the case that a Milnor fibre (see e.g [39, Theorem 4.8])
of [ is contractible. Indeed the Milnor fibre is contractible if and only if the origin
is a nonsingular point of (f~1(0),0), according to a theorem |1, Théoréme 3| of

Norbert A’Campo, generalising a result of Milnor for isolated singularities.
We give another example of Theorem 4.47 .

EXAMPLE 4.53. Let f : R? — R be given by f(z,y) = y*> — x3. Then
F:R?*x[0,1] - R, F(x,y,t) =y* — 2% —tx
is a R-morsification. Indeed
Jac(fy)(x,y) = [~(32% + 1), 2y]

has full rank, for any t > 0. Therefore f, : R> = R has no critical points and hence
the Milnor fibres .7:"3: are both contractible by Corollary 4.51 . Remark that if we

instead consider the R-morsification
G:R?*x[0,1] - R, G(x,y,t) =y* — 2%+t

then
Jac(gt)(:c, y) = [t - 3372, 2y]
has for t > 0 nonmazimal rank in p1(t) = (1\/t/3,0) and in p2(t) = (—+/t/3,0).

Since
—6x 0

0 2

Hess(g:) =

5The original article [29] is not avaible online
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one obtains the Morse indices M\(p1(t)) = 1 and A(p2(t)) = 0. As a consequence
J’:'n+ x (0,1) remains contractible after attaching a handle D' x D! along D' x OD!
and then attaching a handle D° x D? along D° x OD?2,

5. On the Homology of The Real Milnor Fibres

According to the previous Theorem 4.47 one obtains a contractible space by
succesively attaching handles (Definition 4.7) to (a space having the homotopy type
of) the positive (respectively negative) real Milnor fibres. However this gives no
information about the manner in which the handles are attached. Moreover it might

be the case that there exist t € V and 1 <4, j < m and a pair of handles

(AP PrAL=AE) PAPS) ¢ prtl=Ales))

such that é?tm has the homotopy type of

FFx(0,1)u J DX xcprtimAty
1<l#4,5<m
An example of this phenomenon is provided by Example 4.53 where one knows by
using the R-morsification F' that the positive Milnor fibre is contractible so that
the pair of handles provided by the R-morsification G does not contribute to the
homotopy type of X .

One therefore concludes that the homology groups of the Milnor fibres cannot
be obtained directly from Theorem 4.47. However we shall now state conditions
under the validity of which, all of the handles are up to homotopy attached to a
real Milnor fibre.

Throughout this section we fix Milnor data (g, €g) for f: (R"T10) — (R,0).

5.1. A Lemma. By restricting the parameter space U one can always find a
R-morsification such that the number of nondegenerate critical points lying inside

the closed ball of radius ¢ is independent of the parameter.

LEMMA 4.54. Let F': M x U — R be a R-morsification of
f: (R*10) — (R,0). There exists a finite set of nonempty connected semialge-
braic subsets

Ui,...,Uy CU CRF
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each containing the origin such that if t,t' € U; then m(t) = m(t') (Definition
4.45) and such that V NU; = U; \ {0}. That is, the number of critical points of
ft : M — R lying inside the ball of radius § is independent of t € V NU; and each

critical point is Morse with pairwise distinct critical values.

PROOF. Since F' : M x U — R is a representative of a polynomial map, M and

U are semialgebraic. Since
P:teU peM: rankJac(fy)(p) =0, detHess(f:)(p)#0

Q:teU p,q€ M :rank Jac(f;)(p) = rank Jac(f;)(q) =0,
p#q = filp) # fir(@)

are semialgebraic conditions one can assume (Definition 4.28) that V' C U \ {0} is

semialgebraic. Let
¢v ={(p,t) € M x V| rank Jac(f¢)(p) = 0}.
Then %y is a semialgebraic set. Let
7R x RF — RF, w(x, t) =t

denote the standard projection onto the second factor. Then 74, is a semialge-
braic, continuous map and its fiber dimension is the number of critical points of f;y .
By Hardt’s Theorem [12, Theorem 4.1] one can decompose V' into a finite union of
semialgebraic subsets V1,..., VL C V such that 7, is semialgebraically trivial (see
e.g[12, § 4.1.1]) over each V;. The fiber dimension dim 7T|_<gl (t) is therefore indepen-
dent of ¢ € V;. In other words the number of critical points of f; is independent of
t € V;, each critical point is Morse and the critical values are pairwise distinct. Since
(0,...,0) € V by the Morse Lemma [38, Lemma 2.2] there exists a subcollection
{Vi,...,Vn} C {V4,...,Vi} such that (0,...,0) € V;,i = 1,...,N. Every semi-
algebraic set has a decomposition into a finite number of connected semialgebraic
components by [6, Theorem 2.4.5] so we can assume that Vi, ..., Vi are connected.

Then U; = V; U{0},i=1,..., N satisfy the conditions of the Lemma. O

REMARK 4.55. One can thus always obtain a R-morsification F such that that
fi: M — R is a Morse function with exactly m = m(t) critical points with distinct

critical values for all t € U \ {0}. Indeed this follows from the previous Lemma



5. ON THE HOMOLOGY OF THE REAL MILNOR FIBRES 101

4.54 since one can replace a given R-morsification F : M x U — R by a new R-
morsification F' : M x U; — R where U; is one of the connected semialgebraic sets

given by Lemma 4.5/ and where the dense set V C U is replaced by by U; \ {0}.

5.2. The Local Milnor Fibres. We shall now introduce the local Milnor
fibres. In this subsection F': M x U — R is a R-morsification of f such that m(t)
is independent of ¢, denoted m = m(t), and such that V =U \ {0}.

Let t € V. By the Morse Lemma [38, Lemma 2.2] each of the critical points
pi = pi(t) € Bs of f, - M — R defines a quadratic singularity in the fibre f;*(s;),
where s; = fi(p;). One can therefore apply the Fibration Theorem of Milnor 4.36
[46, Theorem 4.2] to deduce the following.

For each i = 1,...,m there exists a §; o = d;0(¢) > 0 such that for any ¢; €

(0, 6;,0] there exist an €; o > 0 such that for any ¢; € (0,¢; o) the restrictions

(6) feo f7 M ((sinsi 4 €6]) N Bs, (pi) = (83,85 + €]
and
(7) feo f7 M ([si = €6,80)) N Bs, (pi) = [si — €5, 84)

are projections of trivial (topological) fibrations where Bs, (p;) is the open ball cen-
tered at p; and of radius ¢;. The pair (d; 0, €;,0) = (0:,0(¢), €;,0(t)) will be called local
Milnor data at the point p;.

REMARK 4.56. We shall write Bs, instead of Bs,(p;) when no confusion is

possible.

DEFINITION 4.57. Let t € V' be fized and let §; € (0,8, 0] and n; € (0,€;0]. The
fibers

‘Fz'J,rloc = f;l(Si—i—T]i)ﬂB(;” izl,...,m

Fitoe = frt(si —mi) N Bs,, i=1,....m
of the fibrations 6 and 7 are called the local positive (respectively negative) open
Milnor fibres at the point p; = p;(t) with respect to the R-morsification F. Their
closures

ﬁi ::ft_l(si+ni)ﬁ]B5i, i:l,...,m

i,loc
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F* = £ (si —mi) N Bs,, i=1,....m

i,loc
are called the local positive (respectively negative) closed Milnor fibres at the point

p; with respect to F.

The following schematic Figure 3 serves to illustrate the local Milnor fibres and

also the proof of the next Theorem 4.58.

Ls

-n S; () Sj ’I]

FIGURE 3. A set of two local Milnor fibres

5.3. The Main Theorem. The main result of this section is the following

theorem. We assume throughout that F," and ¥,  are nonempty

THEOREM 4.58. Let F : M x U — R be a R-morsification of a germ of isolated
singularity f : (R"*10) — (R,0) with n = 1 (mod2) and n > 1. Let § €
(0,80] and n € (0,e0] and recall that m = m(t) for all t € V (where m(t) is as
in Definition 4.45 and V is as in Definition 4.28). Let ty be as in Lemma 4.44
and let t € V N {|t| < to} be fivred. Denote by py,...,pm € Bs the critical points
of ft + M — R lying inside the ball of radius 6 and let \(p;) denote their Morse
indices. If N(p;) = (n+1)/2,i=1,...,m then

Ho(F) = Hy(F, ) = Hk(\/ §=1/2). k> 0.

i=1
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PrOOF. Using the Isotopy Lemma 4.37 ([35, Proposition 11.1]) together with
Corollary 4.48 we first show that the contractible space Xt,n is obtained by attaching
discs DMP4) along their boundaries IDMP:) to certain spaces which by using [25,
Proposition 3.2] are shown to be homotopy equivalent to different copies of the
negative Milnor fibre of f. Using the Excision Theorem [26, Theorem 2.20] one is
the able to obtain the integral homology groups of the negative Milnor fibre. The

case with the positive Milnor fibres is then obtained by considering — f; instead of
ft-
(1) Fixt e V. Let §; = 5i(t) S (O,(Si’o(t)) and ¢; = Ei(t) € (0,61"0((51')) be

local Milnor data as in Definition 4.57. For each ¢ = 1,...,m one can
assume by the Morse Lemma [38, Lemma 2.2] that ¢; is chosen such that
there exists local coordinates z1,...,x,41 : Bs; — R™t! with zj(pi) =

(0,...,0),7=1,...,n+ 1 such that

A n+1

2 2

fiws, == 3 @5+ >
j=1 I=A+1

up to precomposing f with a diffcomorphism, where A := A(p;),i =

1,...,m. Put
Zi = f; (s — €, 8+ €) N Bs,
Zi = 7 (85 — €1, 50 + €]) N By,
YVi=2,NB;, = ft_l(si — €, 8 +€)NBs,.

For each i = 1,...,m choose real positive numbers 7; > 0 such that the

interval [s; — i, 8; + ;] contains no critical value of ft‘@ , except s; and

such that
Si + % = Si41 — Vit1, t1=1,...,m—1,
—N=381—7, N=3m+Vm-
Put
Xi = ftfl(si — Vi, Si +7’L) O]E(sa
X, = 7 ([si — i 80 + i) N Bs.
Then the union of the sets Xj,i = 1,...,m is the manifold with corners

X, := X, of Lemma 4.44. In particular it is contractible. By Lemma

4.43 one has that each X; and Z; are smooth manifolds with corners. By
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smoothening their corners one deduces that X; ~ X; and Z; ~ Z;. Let
i € {1,...,m}. We shall now use Goresky and MacPherson’s method of
“moving the wall” to deduce that X, is homeomorphic to Z;. For this

consider

={(z,r) eRx[0,1] | x € [s; — 1y — (L = r)e;, s; + v + (1 — r)e]}

and endow W with its natural Whitney stratification. If 7 : Rx R — R
is the standard projection 7(x,7) = r then 7))y is a proper submersion by
construction. Now, by the choice of t; € R one has that f; : Bs — R is

transverse to [—¢, €] hence f, 5, is transverse to
Wre=1[si—rvi— (1 —1r)e,8i +rvi+ (1 —1)e] C[—¢ €]

for all r € [0,1]. One can therefore apply [25, Theorem 4.8]. This gives a

stratum-preserving homeomorphism

Ft (80 — €y si + &) NBs =2 £ ([si — i, 80 + 7)) N Bs.

As a consequence X; =2 Z; and therefore also X; ~ Z;.

For any i = 1,...,m consider the map
ft : Zi \yl — (S, — €i,8; + Ei).
It is proper since its fibers are of the form

Fih () = £7M(s) 1 (Bs \ Bs,)

and hence are compact. From the assumption

n+1

Alpr) == Apm) = —;

follows that if we choose 7; € (0,¢;],4 = 1,...,m then local Milnor fibres
(Definition 4.57) are of the form

(n+1)/2 n+1
Fhee={zeBs, | — Y a2+ > al=n}=F,.
j=1 j=(n+3)/2

In particular the boundaries of the local Milnor fibres ]:'f

i.loc are nonempty

so the fibers of f;z,\y, are nonempty. Note that the only stratified critical

point of f; z, is by construction p; € J;. Therefore, in order to show that
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ft|z,\y, 18 a proper stratified submersion it suffices to show that
fo: fr (si — €y 80+ €) N Ss; =@ R
is a submersion, that is, that the map
ft : Sgi — R

has no critical values in (s; — €;, s; + €;). It has no critical values s # s;

because
e f[l((Si,Si +€]) NBs, — (54,8 + €il,

feo f7 (s — €6, 8i]) N By, = [si — €i,5:)
are stratified submersions and because f; !(s;) NS;, is transverse by con-
struction (Definition 4.57) and so f; : S5,;) — R has no critical point

above s;. All said f; z,\y, is a proper stratified submersion so by Thom’s

First Isotopy Lemma 4.37 ([35, Proposition 11.1]),
ZAYV:i = f N (s) N (Bs \ Bs,) x (85 — €5, 81 + €),
for all s € (s;—¢;, s;+¢€;). This yields in particular a deformation retraction
Zi~ f7H(s) N (Bs \Bs,) UV =

=71 (s)NBs U Y, S € (8; — €, 8+ €).
(3) We claim that Z; ~ Z;_; for all i = 1,...,m. To prove this we shall show
that both Z; and Z;_; deformation retracts to homeomorphic spaces.
From the Morse Lemma [38, Lemma 2.2] follows that there exists a dif-

feomorphism Y;_1 = );. By the previous step 2 it suffices therefore to

show that
St (si —mi) 0 (Bs \ Bs,) = fi ' (si—1 +ni—1) N (Bs \ Bs,_, ).

The interval [s; — 7;,5;) contains no critical values of the proper map
fym,- There exists therefore by [25, Proposition 3.2] a stratum-preserving”

homeomorphism

it i (=00, sic1 +mic1]) NBs — fi ' ((—o0,si — n]) N By

7By the proof of |25, Proposition 3.2], which is a simple consequence of [25, Theorem 4.4], it
follows that ¢; is in fact smooth on strata. This follows also from [25, Remark 7.2] where one uses
the First Isotopy Lemma to lift a certain smooth vector field to construct the homeomorphism ¢;.
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which hence restricts to a stratum-preserving homeomorphism

Gija, t Ai = f  (sic1 +mim1) NBs — By = f (s — mi) N Bs.

. + . . . .
Since F;", . C int(4;) it follows that d)i']::;l,loc is a homeomorphism
onto its image. Since .7-';_ 110c @nd F.,  are diffeomorphic by [38, Lemma

2.2] it follows that the image of O l is homeomorphic to F;, . Then

i,loc*
qgilf“i\fﬁl,zoc P A; \]:iJ:l,loc — Bi \(bi(]:itl,loc) = B \]:ijloc
gives the wanted homeomorphism. This yields
Zi~ [ (i —mi) N (Bs \ Bs,) U
= 7 (sic1 +mi-1) N (Bs \ Bs,_, ) UYi1 ~ Zi1.
By the proof of Theorem 4.47 and Corollary 4.48 applied to
fo: f7 (si — €, 8i + €]) NBs - R
there exists an attaching map
hy 0D — fi (s — ;) N Bs,
and a homotopy equivalence
Vi~ fi (s —ni) N B, Up- DA

where one uses the fact that ); ~ f[l (si—e€i, si+€;)NBs which follows from
the Tubular Neighborhood Theorem [26, Proposition 3.42] for topological
manifolds with boundaries. Applying instead Theorem 4.47 and Corollary
4.48 to

—fi: f{l([si — ¢, 8+ €])NBs = R

one obtains an attaching map
hf 0D — f (i +mi) N Bs,
and a homotopy equivalence

Vi~ fi ' (si+m:) NBs, Uyr D,
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Applying the previous step 2 yields deformation retractions

f (s +mi) NBs Uys DX,

Zi~ _
£ (si —mi) NBs Up- DA

Using [25, Proposition 3.2] one obtains homeomorphisms
o f7 (s +mi) NBs — £ (si + i) N Bs,

¢; : f; H(si —mi) NBs — f;(si — i) N Bs
so that applying [38, Lemma 3.7] and step 4 one obtains homotopy equiv-
alences
f (si 4 7i) NBs Uy o+ D,
FH (s =) NBs Uy - DN
By the first step 1 one has X; ~ X; and X; ~ Z; foralli =1,...,m. By

Z; ~

step 3 one has Z; ~ Z;, 1 for all i = 2,...,m. Hence

X~ i (=n) NBs Uy, D

for certain attaching maps H;, by step 5.

Consider the long exact sequence of the pair (X, F,

+,) in integral ho-

mology:

= Hyo(Fp,) = Ho(Xew) = Ho( X, Fiy)

Since by Lemma 4.44 X, ,, is contractible this gives

ﬁk<ﬁtjn> = H’f+1(‘X_ ,T],]:tjn)a vk > 0.
By the previous step 6 and the fact that X; ~ X; gives
Xy~ Fi,Ug, D U---uy DA

where
Hi : 8]D)>‘ — ./_:._

b t=1,....,m

are attaching maps. Therefore

Hi(Fi,) & Hepa (Fi,, Ug, DYU---Ug DN F ).
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Since A > 0 the closure of
Fo\ U Hi(op*)
i=1
is contained in the interior of .7?,7’ so using the Excision Theorem [26,
Theorem 2.20] yields

Therefore

where we have used the fact that ]:—tjn = ]:'n’ by Lemma 4.44.

5.4. Consequences. We now discuss some consequences.

COROLLARY 4.59. Keep the assumptions of the Theorem 4.58. The Poincaré

polynomial of the real Milnor fibres are

B(]-:;r) =14+ mu"?

and

B( n’):l—kmu’\’1

The following result, which follows from 4.47, will be of considerable use in the

next chapter when we consider AD E-singularities.

COROLLARY 4.60. Keep the notations of Theorem 4.47 and suppose f; : M — R
has a unique critical point p of index A\(p). If .7:'; 1s nonempty then

. L+ 2P if Mp) <,
1, ifAp)=n+1

_ L4+ ur®=10 if A(p) > 1,
1L, if Mp) = 0.
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PRrOOF. We shall treat the second assertion, the first assertion follows by con-
sidering — f; instead of f; and repeating the arguments below. By the Corollary
4.48 there is an attaching map

h:oDMP) — Fr

such that
/?tm ~ ﬁtj’f] UaD)\(p) DA(p)

is contractible. If A(p) = 0 then D* is a point attached to .7?;,] along the empty
set. Then either ]:—tjn = () in which case .7:'77’ ={, or .7:?77 is contractible in which
case B(F, ) = 1. So suppose F,~ # () and that A(p) > 0. Then F; is nonempty as
well so one can apply the long exact sequence in homology [18, Proposition 4.12],
yielding

ﬁk(]:—n_) = HkJrl(/?t,m]:tTn)‘

Since A(p) > 0 the closure of F;, \ h(9D*®)) is contained in the interior of 7, so
one can use the Excision Theorem [26, Theorem 2.20]%. This gives

Hy,(F,)) = Hia (Fi ) Yopa DM, Fp)

= Hyyy (DM®, 0DAP)).
The claim follows. O

5.5. Real Vanishing Cycles. In this subsection F' : M x U — R is a R-
morsification such that m = m(t) and such that V = U \ {0}, as in subsection 5.2.
We assume furthermore that .7:"; and F~ are nonempty. Fix ¢ € V and consider
for each ¢ = 1,...,m the local Milnor fibres (Definition 4.57)

‘FiJ,rloc = ftil(si + ’71) N Blsi
]:ijloc = ftil(si - nl) n B5i
at the critical point p; = p;(t) € Bs of fi = F(-,t). Let A(p;) be the Morse index of

ft at p;. Then Corollary 4.60 gives
Z, k=0,n—X\p),
HL(Fio) = e
' {0}, otherwise

80ne can also take a neighbourhood A D .7?,:" such that int(A) UD>?) deformation retracts
to ]:—tim Uspr(p) DMP) and such that A NDMP) = §DAP) and apply the Excision Theorem to A
and B = DM P),
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_ Za kZOaA(p)_lv
Hk(fi,loc) = . '
{0}, otherwise
for each i = 1,...,m. Thus the local Milnor fibres have the homology groups of

spheres.

DEFINITION 4.61. Suppose that A\(p;) < n. A generator

’V;r C Ijlnf)\(pi)(]:Jr ) = an)\(

i,loc

)(Sn—/\(m))

pi

is called a positive vanishing cycle with respect to F at the point p;.

Suppose that \(p;) > 1. A generator

Vi C FI/\(pi)—l(}—iTloc) = H/\(pi)—l(SA(pi)fl)

is called a negative vanishing cycle with respect to F' at the point p;.
If \(p;) = n+1 one says that F' has no positive vanishing cycles at p;. If A(p;) =0

one says that F has no negative vanishing cycles at p;.

In contrast to the situation for complex hypersurface singularities this notion
of vanishing cycle depends of course on the choice of morsification.

If the conditions of the Theorem 4.58 are satisfied then a set of positive, or
equivalently negative, real vanishing cycles is a generating set of the top-dimensional

homology groups of the real positive and negative Milnor fibres.

COROLLARY 4.62. Suppose that the conditions of Theorem 4.58 are satisfied.
Then i ,...,7., is a set of generators of the homology group

Hy(F5) = H(F,),  k=(n-1)/2.
Proor. Consider the spaces
Vi = ft_l(sz‘ —€;,8 +¢€)NB;

as in the proof of Theorem 4.58. There are isomorphisms

Hi(Fy) = Hygr (X, Fry) & @Hk+l(}/;afijloc)

i=1
because Y; ~ F; Ugps D* by the proof of Theorem 4.58. We claim that ) is
contractible. The Morse Lemma [38, Lemma 2.2] gives that )); is homeomorphic

to

Qi_l(fgﬁ) = {761‘ < Qi(l’l, c. ,$n+1) < 61'}
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where @; : U — R is a quadratic form of index A defined in a neighborhood
of the origin U C R™*! with Q;(0,...,0) = 0. Then Q;'(0) C Q;'(—¢,¢) is
by [15, Proposition 1.6] a deformation retract. By the Local Conic Structure of
algebraic sets Q; '(0) is contractible. Hence ) is contractible. Since F; . # 0 as
A= (n+1)/2 > 0 it follows from the long exact sequence of the pair (;, F;,.)
that

Hir(Vi, Frppe) = Hi(F7

i,loc i,loc

), k>0

hence

1%

Hk( 77]7) @ﬁk(]:ijloc% k Z O

i=1

The only nontrivial homology group is in dimension k = (n—1)/2 so the right-hand
side is generated by the negative vanishing cycles 71 ,...,7,,. Hence these generate

the left-hand side as well. O

A set of vanishing cycles corresponding to an arbitrary R-morsification does not
generate the homology groups of the Milnor fibres (for an example see e.g Example
4.53). This is to compare with the situation over the complex numbers, where the
vanishing cycles determine not only the homology groups of the complex Milnor

fibre but also its homotopy type.






CHAPTER 5

Applications to Real AD FE-Singularities

1. Introduction

In this brief chapter we gather some further consequences of the results of the
previous chapters. We show in Corollary 5.2 how the Theorems 4.47 and 4.58,
taken in tandem, enables us to find in the case of an AD F-singularity, the Poincaré
polynomials of the Milnor fibres, except for the case with a D, **-singularity (see

the list 2 below) where k is even.

2. On the Topology of Real ADFE-Singularities

In this section we shall consider isolated singularities f : R"*! — R of the

following form:

(1) A f=ab g2 4300 0 =50 2, k=2
) Dis, *:L'Zyﬁ:yk’lJer 11’2*2;;”;1;5?7 k>4
(3) E6isif_x £y +Zl LT — Zjii-&-lx?
(4) Bs: f=a®+uy® +Zz 19512 Z;+§+1 x?
() B3:f=a®+y>+ 20 07 - 350, 4]
where t +s =n—1,s,¢ > 0 and where (z,y,z1,...,2,_1) are coordinates on R" 1,

To simplify the notation we shall write 7+ = }"7;“ (f) for a positive Milnor fibre and
F~ = F(f) for a negative Milnor fibre at the origin.

The idea will be to first treat the case of curves (namely n = 1) and find for each
of the classes above a R-morsification of a particularly simple character, with few
critical points. It is then easy to find R-morsifications in the general case (namely

n>2).

The following result gives the Poincaré polynomials of the Milnor fibres of

AD E-singularities of curves.

113
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THEOREM 5.1. For a topological space X let B(X) denote the Poincaré polyno-

mial in singular homology with Z-coefficients. Then
(1) A 1 fla,y) = a5+ 4 g2
BF)=BF) =1, ifk=0 (mod?2)
BF)=14u, BF)=0 ifk=1 (mod2).
(2) Ay« fla,y) =aFH =y

1, k=0 (mod 2)
2, k=1 (mod 2)

1, k=0 (mod 2)
2, k=1 (mod 2)

(5) E6jE cf(xyy) =23 £, B(FH) =B(F ) =1
(6) Er: f(z,y) =2 +ay®, B(FT) = B(F) =2
(7) Es : f(x’y) = x3+y5, B(]:-—i_) :ﬁ(]?_) =1

PrROOF. We are going to find, in each of the cases above, a R-morsification
having either one unique critical point, or no critical points at all and in the case
D, with k odd, a R-morsification with two critical points. To begin with we treat

the case of an Aj-singularity.
(1) Consider f:R? — R given by f(z,y) = 2**! + ¢
Suppose that k=0 (mod 2) and let
F:R*x[0,1] =R
F(x,y,t) = 2" 4 to + 42

Then
Jac(fy) = [(k + 1)z* +¢,2y],
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so f; has no critical point for ¢ # 0. Hence applying Theorem 4.47 we get
BF)=BF)=1

since the Milnor fibres are contractible.
Suppose that k =1 (mod 2). Then F~ = ) because f is nonnegative.
Letting

F:R?2x[0,1]] =R,  F(x,yt)=a"" — (k+ 1)tz +y°

then
Jac(fi) = [(k + 1)(z* — 1), 2y,

so that there is a unique critical point p = (t'/*,0) and then

k(k 4 1)t=D/k @

Hess(f¢)(p) = 0 )

Since t > 0 it follows that A(p) = 0. Therefore we can apply Corollary
4.60 to deduce that
B(FT)=1+u.
Consider f: R? — R given by f(z,y) = xF+1 — 42,
Suppose that k=0 (mod 2) and define

F:R*x[0,1] = R, F(z,y,t) = 2" 4t — o2
Then
Jac(f) = [(k+1)a* +1,-2y),  te[0,1]
Since k is even, f; has no critical points whenever ¢ is nonzero. Therefore
the positive and negative Milnor fibres are both contractible, by Theorem
4.47 so
B(FE) =1.

Suppose that k =1 (mod 2). Then one considers F : R? x [-1,0] — R
given by the same formula as in the case k even and one gets instead that

ft = F(x,t) has a unique critical point

p=((=t/(k+1))"/*,0).
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in which the Hessian matrix is

M _\(k=1)/k
Hess(f1)(p) = (k+1)(k71)/7c( t) 0
0 -2
Since t is negative there is only one negative eigenvalue so the index is

A(p) = 1. One applies Corollary 4.60 and concludes that

BF) = HF) =2
Let k > 4 and consider a D; -singularity f(z,y) = 2%y + y* L.

Suppose first that £ =0 (mod 2) and consider
F:R?x[-1,0] = R,

F(x,y,t) = 2%y + 2ta® + y* 1 — ty.
Then
Jac(fy) = [2a(y + 2t), 2% + (k = 1)y* % — ]

has nonmaximal rank in a point p = (x,y) if and only if either one of the

following sets of equations is satisfied

r=0, (k—1)y*" 2=t or
2 =t(1-2"2(k—1)t"3), y= -2t

Remark first of all that if £ # 0 then (k — 1)y*~2 = ¢ has no real solutions
because k is even and ¢ < 0. Furthermore, since ¢t < 0 and since (k — 3) is

odd,
1

(k —1)2k—2
hence 1 —2*=2(k — 1)t*=3 > 0. Therefore the second set of equations has

vt <0, tF 3 <0<

no real solutions for t # 0 either. As a consequence f; : R> — R has
no critical points whenever ¢ # 0. Thus applying Theorem 4.47 one gets
that the Milnor fibres are contractible and so B(F*+) = B(FT) = 1 by
homotopy invariance.
Suppose now that k=1 (mod 2). Put

1

I'=(- ((k — 1)21972)1/(’@*3)

;0]

and consider the R-morsification

F:R*xI—R,
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F(z,y,t) = 2%y + 2t + y* 1 — ty.
Since k —3 =0 (mod 2) one has

1

k—3
viel, < iy

Therefore if ¢t € T\ {0} then
2 =t (1-2F2(k - 1)t"?)

has no real solutions. As a consequence the only critical point of f; is
p(t) = (0, (t/k — 1)*=2). The Hessian Hess(f;)(p(t)) is

k—3

2t(2 + i) 0
0 (k= 1)k — () +=24=)
Since
k—3=(k-2)(k—3)=0 (mod 2)

it follows that if ¢ € I\ {0} then A(p) = 1. Using Corollary 4.60 one
deduces that
BF) = BF) = 2.

Let k > 4 and consider a D, -singularity f(z,y) = 2%y — y*~L.

Suppose that k=1 (mod 2) and let
F:R*x[0,1] - R, F(x,y,t) = 2%y —y* 1 + (k — Dty.

Then
Jac(f) = [2xy,a® + (k = 1)(t — y"7?)].

If t # 0 then there is only one critical point
p(t) = (0,¢1/02))
and one find the Hessian to be given by

o1/ (k=2) 0
Hess(f:)(p(t)) = 0 (k= 1)(k — 2)¢E=3)/(+=2)

Therefore A(p(t)) = 1 whenever ¢ # 0 hence

BFF) =B(F7) =B =2
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by Corollary 4.60.
Suppose that £ =0 (mod 2) and let

F:R*x[0,1] - R, F(z,y,t) = 2%y —y* 1 + (k — Dty.

Then
Jac(fi) = [2zy, 2 + (k= 1)(t — y*7?)].

If t # 0 then there are two critical points
pa(t) = (0, £/F72), pa(t) = (0, —/ )
and the Hessian matrices are

+2¢1/(k=2) 0

Hess(f:)(p(t)) = 0 Tk — 1)(k — 2)t=3)/(=2)

As a consequence, since t > 0, the Morse indices are

Alp1) = Ap2) = 1.

Since n 4+ 1 — A(p;) = A(p;) one can apply the Theorem 4.47 to deduce
that

B(Fy) =BE° VS =3.
Consider a Egt—singularity [ (z,y) =23 £yt If

FE:R2x[0,1] =R,  FE(x,y,t) =23+ 3te +¢*

and if f = F%(-,t) then

Jac(f;) = [32% + 3t,44°%),

Jac(f) = [3z% + 3t, —4y°]
so that neither f;” nor f,” has any critical points whenever ¢ # 0 hence

BFT) = BF) =1

by Theorem 4.47. The same holds for FEg-singularities because if one

defines

F:R*x[0,1] - R, F(z,y,t) = F(z,y,t) = 23 + 3tz + ¢
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then
Jac(fy) = [32% + 3t, 5y"

so f¢ has no critical points whenever ¢ is nonzero hence the Milnor fibres
are contractible.

It remains the case of an Er-singularity. In this case, put
F:R*x[0,1] =R, F(z,y,t) = 2® + 3tz + zy® + ty>.
The Jacobian matrix is
Jac(fy) = [3(2® +t) + ¢°,3y° (z + t)]
which has nonmaximal rank in p = (z,y) if and only if either

224+t=0, y=0, or
, Yy ==3(t2 +1).

However if ¢ # 0 then the first set of equations has no real solutions and

one finds that f; has a unique critical point in
p(t) = (=, =(3)V3(#* + 1)'/?)
The Hessian matrix is given by

6z 3y
3y% 6y(z +1)

and one finds that evaluated in p(t) its eigenvalues are

Ap(t) = =3t + \/9t2 + 310/3(¢2 + 1)4/3,

Ay (t) = =3t — \/9t2 + 310/3(42 4 ¢)4/3.

For t sufficiently small, Ay (p(t)) > 0 and A_(p(¢)) < 0. Hence the Morse
index at p = p(t) is A(p) = 1 and, applying the Corollary 4.60 one gets
that

BFN) =B(F7) =2

O

From this we can easily deduce the corresponding result for higher dimensions,

except for the case D, with k even and n > 2.
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COROLLARY 5.2. The Poincaré polynomials in singular homology with integer
coefficients of the Milnor fibres of the isolated singularities A,fs,Dz,'s and E; are
given as follows.

(1) A.°, D/
_ 1, k=0 (mod 2)
BF*) = "= ,
1+unrsh k=1 (mod 2)
k=0 (mod 2)
1+ us, k=1 (mod 2)

(2) E%:

+ue k=1 (mod 2)

+ oyt s#0,k=1 (mod 2)
s=0,k=1 (mod 2)

) =B(F) =1, k=0 (mod2).

The Poincaré polynomials of the Milnor fibres of D, ®-singularities for k odd and

n>1 are
) BEFD =1+u k=1 (mod 2)

Cl BF ) =1tw, k=1 (med2)

PRrOOF. Consider an R-morsification

F:R*xU =R, fi=F(t)

of any of the AD FE-singularities f :R? — R given in the proof of Theorem 5.1 and

let
} t s+t
FRTESR = flay)+) e - DA
i=1 j=t+1
If
t s+t
F:R"™ xU >R, F:F+Zx?72x?
i=1 j=t+1

then the critical points of f; = F(-,t) are the points p = (p,0,...,0) with p a

critical point of f;. Moreover these are Morse whenever p is Morse, with Hessian
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Hess(fi)(p) 0 0
Hess(f:)(p) = 0 2, 0
0 0 =21
where I; and I denotes the identity matrices of size ¢ x ¢ and s X s, respectively.
As a consequence, if A(p) is the Morse index of f; at p then A(p) = s + A(p) is the
Morse index of f; at p. Since in each of the cases there is either one critical point or
none at all the result follows immediately from Corollary 4.60 and from Theorem
4.47 of the previous chapter.

O

We can remark here that G. Fichou (see [22]) has classified the real ADE-
singularities above using the blow-Nash equivalence relation. The following defini-

tions can be found on page 184 of [4].

DEFINITION 5.3 ([4, II]). Let X be a manifold and suppose that a Lie group G
acts on X. Let x € X. The modality of x under the action of G is the least number
m such that there exists a neighborhood x € U C M and a covering of U by finitely
many m-parameter families of orbits. If m = 0 then one says that x is simple. If

m =1 one says that x is unimodal and if m = 2 one says that x is bimodal.

In other words, a point x € X is simple if it has a neighborhood U intersecting

only finitely many orbits of G.

DEFINITION 5.4 ([4, I1]). Let f: (R""1 0) — (R,0) be a real analytic function
germ. The modality of f is the modality of its jet j* f, for k € N sufficiently large,
in the space of jets of functions R"*! — R having a critical point 0 € R"T! and
a critical value 0 € R, under the action of the Lie group Diff(R"T1) of diffeomor-
phisms of R"1.

Returning to Fichou’s result, he showed that if

frg9: (R™™10) = (R,0)

are two germs of Nash functions with one of them simple (as a germ of real an-
alytic function), say f, then f,g are blow-Nash equivalent if and only if they are

analytically equivalent, and then g is simple as well. So for simple Nash function
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germs the blow-Nash equivalence coincides with the analytic equivalence. Conse-
quently, the list 2 given in the beginning of this section gives a complete list of

simple singularities up to the blow-Nash equivalence.



CHAPTER 6

Morsifiable Real Singularities

1. Introduction

The purpose of this chapter is to generalise the results of Chapter 4 to the case
of real singularities f : X — R defined on a real algebraic set X C R™ containing
the origin such that f is morsifiable, see Definition 6.8. In Theorem 6.13 is obtained
a formula for the Euler characteristics of the Milnor fibres of such singularities, gen-
eralising the formula of Khimshiashvili [16, Theorem 2.3]. In Theorem 6.15 a result
on the generic value of the Euler-Poincaré characteristic of the link of an irreducible

algebraic subset is obtained.

2. The Situation

2.1. Introduction. Assume that X C R" is a real algebraic subset containing
the origin. Assume that
f: X =R, f(0)=0
is the restriction of a polynomial map f : R™ — R and that there exists a strat-
ification S = (5%—)1-61 of X such that S satisfies the Whitney conditions, Thom’s
as-condition (see e.g[50]) and that f~'(0) C X is a union of strata of S.

2.2. A Milnor Fibration. Under the assumptions above one can show the

existence of a locally trivial topological fibration over a small punctured interval.

PROPOSITION 6.1. There exists 6o > 0 such that for any 6 € (0,dq) there exists

€0 > 0 such that for any € € (0, €y) the restriction
(8) 7 (e d\{0) N X NBY — [—e €\ {0}

is a locally trivial fibration, where B} C R™ denotes the closed n-dimensional ball
centered at the origin of radius ¢.

123
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PROOF. One copies verbatim the proof of [17, Theorem 1.1] for f and X

complex analytic. ([

The data (eg, o) will be referred to as Milnor data for f at the origin. The
fibers

Fr=ftmnxnB},  F, =f(-nnXnBj, ne(0

of (8) will be referred to as a positive, respectively negative, Milnor fiber of f at

the origin.

Since S satisfies the Whitney conditions [25] it follows that, if o is chosen
small enough then for any § € (0,Jy] and any stratum 5 having the origin in its
closure, the intersection <N BIE_B(’; is transverse. Furthermore, since S satisfies the
as-condition it follows that if § € (0, o] and 7 € (0, ¢o] are fixed and if z € f~1(n)

then for any 7 € I the intersection
f7Hm) NS N OBy
is transverse at x. As a consequence the positive Milnor fiber is stratified by strata
fi)nnBy, el

) nsnoBy, el
and the negative Milnor fiber is stratified by strata

= nginBy, el

Y= nsnoBy,  iel.

REMARK 6.2. When no confusion is possible we shall write Bs instead of BY
for the n-dimensional ball of radius § centered at the origin in R™ and write S

instead of 8@3‘ for its boundary sphere.

3. Stratified R-morsifications

3.1. Stratified R-morsifications. To obtain the wanted generalisation of
Theorem 4.47 in chapter 4 the guiding principle will be to perturb f : X — R to

obtain a stratified Morse function. To this aim we introduce the following notion.

DEFINITION 6.3. Let Y C R" be a Whitney stratified real subanalytic set and
let g : Y — R the restriction of a polynomial map ¢ : R™ — R. A stratified
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R-morsification of g is the restriction G : Y x U — R of a polynomial map

G:R" x RF - R,
such that

U C R* is a smooth k-dimensional manifold with boundary having boundary OU
and interior U,
U = [-1,1]* and OU contains the origin in R”,
G(,0) = g,
The map
P :R*"x U — T*R", D(x,t) = d(g:)(x),

where T*R™ is the cotangent bundle of R™, is a submersion.

The following proposition shows that if G : Y x U — R is a stratified R-
morsification of ¢ : ¥ — R as in Definition 6.3 and if ¥ C R™ is compact then
there exists a dense open subset V' C U of such that for each ¢ € V the function
G(-,t) = gt : Y — R is a stratified Morse function.

PROPOSITION 6.4. LetY C R™ be a Whitney stratified compact real subanalytic
set and let G : Y x U — R be a stratified R-morsification of g : Y — R where g is
the restriction of a polynomial function g : R™ — R. Then there exists a dense open
subset V- C U such that g; - Y — R is a stratified Morse function for any t € V, in
the sense of Definition 4.2 [25, Definition 2.1].

PROOF. Since U is a smooth manifold, since Y is compact and since & is a
submersion one can apply the Theorem [25, Theorem 2.2.3| to deduce that there
exists a dense open subset V' C U such that g; : ¥ — R is a stratified Morse
function, for any t € V. O

4. Preparatory Lemmas

We start by proving the following lemma.

LEMMA 6.5. Suppose that f : X — R satisfies the assumptions in subsection
2.1. Then Milnor data (eg,dg) for f at the origin can be chosen so that if § € (0, ]
and € € (0, ¢g] then

S ([=n,m) N X NBs

is contractible.
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Before proving the lemma we shall need to invoke a result proved by A. H.
Durfee in the article [15]. If M C R™ is a semialgebraic set and ¥ C M is a
compact semialgebraic subset recall [15] that a semialgebraic rug function of Y in

M is a proper, semialgebraic function « : M — R such that
Vee M a(x) >0, a ' (0)=Y.

Recall furthermore that if « is a semialgebraic rug function for Y in M and if &’ > 0
is small enough, then the inclusion Y C a~1(]0,4']) is a homotopy equivalence.
Indeed, as remarked on page 525 of [15] this can be proved as [15, Proposition 1.6].

We shall now use this fact to prove the lemma.

PrOOF. Let § € (0, o] and consider
a: XNBs — R, afz) = f(z)?.
Then « is semialgebraic and since X N B is compact «a is proper. Furthermore,
Yz € X NBy, a(z) >0,

a1 (0) = f710)Nn X NB;s

S0 « is a semialgebraic rug function for f~1(0)N X NBs in X NBs. If y € R is such
that y > 0 then

a([0,9]) = FH([=v/, Vul) N X N Bs.
By the proof of [15, Proposition 1.6] it follows that if € is sufficiently small then

for all € € (0, €]
FHO)NXNBs C f 1 ([—€€¢)) N X NB;s

is a homotopy equivalence. By the Local Conical Structure of algebraic sets,
HO)N X NB;
is a cone over f~1(0) N X N'S; hence is contractible. Therefore,
FH e d)n X NBs

is contractible. Thus, up to replacing €y(d) by a smaller value €(§), one obtains

Milnor data (dg, €)) for which the statement of the lemma holds true. O

We now give a generalisation of Lemma 4.38 in the third chapter.
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LEMMA 6.6. Let X C R™ be a real algebraic set containing the origin in R™.
Suppose that f : X — R is the restriction of a polynomial map f : R* — R
satisfying the assumptions in subsection 2.1 and let (g, dy) be Milnor data for f at
the origin. Suppose that
F:R"xR' =R, leN
is a polynomial map such that F(-,O) = f and let F' = EXXRI. Then for any
§ € (0,38] and any n € (0,€(0)] there exists to = to(n) € R such that for any t € R

such that |t| < to there exists a homeomorphism
b FE N X NBs — f7 () N X NBs.

PROOF. Fix § € (0,80]. As the Whitney stratification S of X satisfies the
Thom ay-condition it follows that for any n € (0,€0(d)] the sphere Ss intersects
f~Y(n) N.7,i € I transversally at any = € f~'(n). Fix n € (0,¢). Then 7 is a

regular value of the restriction
f:.%NBs —> R, Viel.

Consider

G:R" xR - R xR,
G(x,t) = (F(z,1),1)
and let
m:R" xR =R, w(x,t) =t

denote the standard projection onto the second factor. We will show that there

exists tg € R such that
7 GTH{n} x (=to, to) ) N X NBs x R! — R

is a proper stratified submersion and then use the First Isotopy Lemma 4.37 ([35,
Proposition 11.1]) to obtain the result.

For each i € I if z € f~1(n) then
dG(x,0) : To(7 NBs) x ToR' — T, o) (R x RY)

has full rank, because 7 is a regular value of f‘ 7w, 1t follows that there exists
t!, € R such that dG(x,t) has full rank for any = € f~'(n) and any t € (—t}, t))".
By continuity of the differential dG this then holds for any z € f;"!(n).
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As a consequence if 7 € I then
G ({n} x (—th, tp)") N Fi N Bs x R!

is a smooth manifold.

We will show that there exists ¢y € R such that if i € I then
G ({n} x (=to, 1)) N NSs x R!
is a smooth manifold. To this aim it suffices to show that
G {0} x (=to, 1)) M F NS5 x (=lo, T0) (%)

is a transverse intersection. The set of points (z,t) where the intersection (x) is not

transverse is the set of (z,t) with z € X NSs and ¢ € (—tg,o)! such that

—1
T(Jj,t) tljimsé (7]) J‘ (I70)'

Notice that this is a closed condition and that

TS s, (D) £ (2,00 Vil

because f~!(n) is transverse to ;NS for any stratum .7 containing the origin in
its closure. Therefore there exists a neighborhood U of the origin in R! such that
for any ¢ € U and any x € X NSy the intersection f;" () N.% N'S; is transverse
for all i € I. Hence there exists to satisfying (*).

Letting to = min(t, %) one gets a stratified map
7 W =G Y {n} x (—to, 1)) N X NBs x R! - R

with compact fibers

Ty () = fr ()N X NBs
hence 7y is proper. We shall show that, up to replacing ¢y by a smaller value, it

is is a submersion on each of the strata
=G ({n} x (—to,t0)") N7 N By, Viel,
S =G {0} x (—to, t0)) N NSs Viel
For this one argues as in the proof of the Lemma 4.38.

(a) Indeed suppose there exists i € I such that for any ¢ one has that

ool l
'/lei//.x %R
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is not a submersion. This means that there exists a « € f; () N.% N Ss

such that for any ¢ one has that
Twn ! LTRY (%)

which in turn implies that the differential dé(x,t) is parallel to T;R'.
Since (*x) is a closed condition one can find a sequence (x,t) with z, €
f71(n) N.%; N'Ss such that dG(xy,t) is parallel to T,R!. Letting [t| — 0
there would exist a limit point y € f~1(n) N 2 N'Ss for some j € I such
that .%; C .%;. But then dG(y,0) is parallel to TyR so df(y) = 0. This
contradicts the fact that the intersection f~1(n) N.% NSy is transverse.

(b) In a similar way if

were not a submersion then there would exist a y € f~1(n) N 5% N Ss
such that df(y) = 0. Then y € f~(n) would be a critical point of f :

5’2- N Bs — R for some i € I, contradiction.

(5) Therefore m 4 is a proper stratified submersion above (—to, )" C R' so by the
first Isotopy Lemma 4.37 ([35, Proposition 11.1]) it is the projection of a trivial
topological fibration. In particular its fibers are homeomorphic which gives the

homeomorphism of the statement.

The following lemma is an analogue of Lemma 4.44.

LEMMA 6.7. Keep the assumptions of the Lemma 6.6. For any 6 € (0,0] there
exists € € (0,¢€0] such that for any n € (0, €] there ezists tj, € R such that for any
te RIN{|t| < ty} the semialgebraic set

S (=nm) N X NBs
is contractible.

PRrROOF. Keep the notation of the proof of Lemma 6.6. By the proof of Lemma
6.6 there exists tg € R such that if for each i € I one defines

Zl = éil((‘ﬁﬂ?) X (_thtO)l) N ’522 OB(S X Rlv

‘%2 = éil((inan) X (7t07t0)l) N tSZz n Sé X Rl7

T = G ({£n} x (~to,t0)") N7 NBs x R,
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T = G {£n} x (—to, t0)') N F N Ss x R

then z;t are smooth manifolds for j = 3,4. For each i € I, dim .9} = dim.%; N
Bs x R! and dim Z» = dim.%, N'Ss x R!. Since

T € F;NBs x R
Tin C F,NSs x R
are open Z;; and 9;; are smooth manifolds. For each ¢ € I put
T =417, 7+, j=1,2, =34}

and let 7 = (%);er. Then T is a stratification of

Y = Gil([invn] X (7t07t0)l) nx QB(S X Rl'

Since S satisfies the a;-condition f|Xm]E§,; M [—n, n] so, up to replacing ¢ty by a smaller
value,
é\Xﬁ@ngl t ([=n,n] X (—to,t0)") -
But then
G ([=n,n) % (—to,t0)") N X NBs x R

is Whitney stratified by the strata of T (see [25, § 1.3]). Consider the restriction
Moy Y — R!

of the standard projection 7 : R” x R — R onto the second factor. We shall show
that up to replacing to by a smaller value one has that m 4 is a proper stratified

submersion. Its fibres are of the form
T (t) = 7 ([=nm]) N X N Bs
and if K C R! is compact then
W@(K) =G Y[-n,n) x K)n X NBs x R
is compact so g is proper. For any ¢ € I and any j = 1,2 the maps
Mo, Ty 2R, j=1,2
are submersions. Indeed the strata .7;; and .7, are smooth of dimension

dim(F;) = dim(.%, NBs) +1,  dim(F) = dim(.% N Ss) +
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respectively and the projections
7.7 NBs x RN = R,
7:.%NSs x RN - R
are both submersions because each of the strata % intersects the ball Bs and the
sphere S transversally, by the Whitney conditions. Hence these intersections are
all smooth manifolds. It remains to show the claim for i = 3,4. Suppose not. Then

as in the proof of Lemma 6.6 there would exists i € I and a sequence (x¢,t) with

|t| tending to zero with
€ f7A) NS NBs U f7 N (=n) N N Bs
in case j = 3 respectively
z e [T ) N.ZNSs U 7 =n) NN Ss
in case j = 4, such that dG(x,t) is parallel to T,R!. Suppose that
z € f7(n) N7 NB;s

Then there would exists a limit y € f;"(n) N ,5% with y € Bs such that df (y) = 0,

for some ¢ € I. Suppose instead that
z € f7 1) N7 NSs.

Then there would exists a limit y € f;*(n) N <72 with y € S5 such that df (y) = 0,

for some 7 € I. But this contradicts in both cases the fact that
f: f_l(Sw) ﬂXﬂ]B5 — Sn

is a stratified submersion, by construction (see 2.1). Therefore 74 is a proper
stratified submersion. By the First Isotopy Lemma 4.37 ([35, Proposition 11.1])
7| is the projection of a trivial topological fibration. Therefore there exist for any

t € (—tg,t9)! a homeomorphism
—1 —1
O : ﬂ‘@(t) — 71'|@,(0)7
which is to say that

o (=) N X NBs 2 7 ([—n,m]) N X N Bs.

Since by Lemma 6.5 the space to the right is contractible the result follows. O
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5. On the Homotopy Type of the Milnor Fibres

5.1. Morsifiable Maps. We shall now apply Stratified Morse Theory ([25])
to obtain a contractible space by adjoining cells to the real Milnor fibres. In the
statement of the main theorem 6.13 one shall need to assume the existence of a

stratified R-morsification wherefore we introduce the following definition.

DEFINITION 6.8. Let X C R" be a real algebraic set containing the origin. The
restriction f : X — R of a polynomial map f : R" — R is called morsifiable if there
exists a Whitney stratification S of X satisfying the Thom af-condition such that

f71(0) C X is a union of strata, and if there exists a stratified R-morsification
F:XxUCR"xR' =R, fi(z) = F(x,t)
of f: X —R.

5.2. The Main Constructions. In the remainder of this section f: X — R
is morsifiable. The corresponding stratification is denoted by .¥ = (.%,),i € I and

the corresponding stratified R-morsification of f is
F:XxUCR"xR' =R,  fi(z)= F(z,1).

Fix 6 € (0,00] and n € (0,€(d)]. We now show that for an open dense subset of

parameters the restriction of f, to X NBs is a stratified Morse function
LEMMA 6.9. There exists an open dense set V- C U such that for eacht € V,
fi: XNBs; = R
is a stratified Morse function.

PROOF. Since S = (5%-)1-6[ satisfies the Whitney conditions if & = ()¢ is
the stratification of X NBs C R™ having strata

S =SNBs, =SNS5, iel

then S is a Whitney stratification. Since X N Bs is compact, by Proposition 6.4 it
follows that there exist a dense subset V' C U such that

VteV, fi: XNBs - R

is a stratified Morse function with respect to S. (]
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DEFINITION 6.10. Ift € V put
C(F,t) = {p(t) € X NBs | p(t) is a stratified critical point of f; : X NBs; — R}

As critical points of stratified Morse functions are isolated and since the critical

values are pairwise distinct by [25, Definition 2.1], one can write

CE ) ={p1(D), -, pm(B)},  fe(C(F 1)) = {s1(D), ..., sm(t)},
m(t) = |C(F,t)|.

REMARK 6.11. Since X NBs is compact for any i =1,...,k the critical values

of fyxrg, are bounded. By continuity of the differentials of the map
(f,t): XNBs xU - R x U,

(z,t) = (fe(z), 1)
the critical values of fxng, tend to the critical values of fixrp, when [t| — 0.
But the origin is the only critical value of the latter by Proposition 6.1 so one can
therefore assume that if to = min(to,t,) in the notation of the Lemmas 6.6 and 6.7

then the critical values of fy xqg, lie in (—n,n) for allt € V' such that [t| < to.

Before stating the main theorem we shall introduce some further notation.

o If p; = p;(t) € C(F,t) and p; belongs to a stratum . € S denote by
A (p;) the Morse index of f 5, at p;.

o If p; € C(F,t) belongs to a stratum . € S then because S satisfies the
Whitney conditions there exists p; > 0 such that if B, (p;) C R" is the
closed ball centered at p; and of radius p; then 0B, (p) intersects the
strata of S transversally, see [25, 3.5]. Let

" (p;) = N(pj) "By, N frirs, (85 + %)

1= (p;) = N(pj) "By, N fy i, (85— 75)
for 0 < «; << p; denote the upper and lower half-links [25, Definition

3.9.1] of fy xns, at the point p;. Let dim(-#")(p;) denote the dimension of

the stratum containing p;.

REMARK 6.12. Remark that

1= (p) =15 (pj) N f (=n,m)
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by definition. In other words

+ — £ i
=(p;) = lxm]B%}mffl(fnm) (p3)-

In particular the upper (lower) half-links of the proper function Jyxns; are the
upper (lower) half-links of the restriction of f; to X NBs N f; *(=n,n).

5.3. The Main Theorem. The main result of this chapter is the following

theorem.

THEOREM 6.13. Suppose that X C R™ is a real algebraic set and that f : X — R
is a morsifiable map (see Definition 6.8) having Milnor data (eg,00) at the origin.
Suppose that

F:XxUCR"xR =R, f=F(,1t)
is a stratified R-morsification of [ (see Definition 6.3) with V as in Lemma 6.9.
For any ¢ € (0, d0] there exists € € (0,¢€g] such that for any n € (0,€(0)] there exists
to(n) € R such that if t € V.0 {|t| <to} then there exist semialgebraic sets N (F})
and /\/'(]:'n_) having the homotopy type of .7?;‘ and ]:'n_ respectively, and attaching
maps
hj 10 (Ddimy(”j)*)‘y(z’j) X cone(l*(pﬂ)) —

N(FF)UULZ) DIim @) =27 05 5 cone(it(p;)), 2<j<m
N(FH, =1
h; 0 (D/\”(pf) X cone(l_(pj))> —
N(F;)UUZ DY ®2) x cone(l™(py), 2<j<m
N(F), j=1

with p; € C(F,t) and m = |C(F,t)| as in Definition 6.10, such that
NFEHU U (Ddim(y)—/\y’(llj) X COne(l+(pj))) 7

n

N(F, U U (]D)Ay(pj) X cone(l*(pj)))

are contractible.

ProoF. Fix § € (0,00] and n € (0,¢(d)] and let ¢y € R be as in Lemma 6.6
and Lemma 6.7. Using Lemma 6.9 one can find a dense open set V' C U such that

if t € V then fyxng, is a stratified Morse function. Fix t € V. n{[t| < to}. By
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Remark 6.11 one can order the critical values as
<5 << 5 <N

Since fy xng, is a stratified Morse function one can choose for each j = 1,...,m
a 7; > 0 such that [s; — ;,s; + ;] contains no other critical value except s;. By

[25, Remark 3.4] ~; > 0 can be chosen so that
85+ = Sj+1 — Vi+1s J=1....,m—-1
because the topological type of
FH (085 =i + )N XNBs,  j=1,...,m

is independent of the choice of y; > 0 as long as [s; —+;, s; +7;] contains no critical

value except s;. Let us consider the following semialgebraic sets
‘)Etm = ftfl([_nvn]) nx QPB(;?
X = ffl(—nﬂ?) NX NB;,
X/, = f(=n,n) N X NBs,
X = (—nm) N X NS
Notice that X;, is Whitney stratified by strata
ft_l(inﬂ?)my? ft_l(in)ﬂy7 s eS8

and that if .# € S then dim f; '(—n,n) N.# = dim.”. We shall apply stratified
Morse theory for the proper map f; : ‘/?t,n — R and the subspace &} ,. We claim that
[t restricted to &, has only nondepraved critical points. However since f; xng, is
Morse, its critical points are isolated so if there was a critical point p € ft_l(—n, nia
X NBjs then this point must be isolated, as well. But then, by [25, Proposition 2.4]

p is necessarily nondepraved.
By [25, Theorem 10.8] there exists an attaching map
hy, - O Pm)  cone I (pm)) = fi (=1, S — Ym) N X NBs
and a homotopy equivalence
FoH (=, 8m - m) N X N By ~

(f7 (=1, 8m — Ym]) N X NBs) Uy,— (DY Pm) x cone 1™ (pm)).-

m
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In a similar way, using [25, Theorem 10.8] there exists an attaching map

b,y O Pr=1) s cone I (pm_1)) = fi 2=, Sm_1 — Ym—1) N X N Bs

m

and a homotopy equivalence
ft_l(fnasm - ’)/m) NnX OB(S = ft_l(*n,sm_l + ")/m_l) NnxX ﬂ@g ~

(ffl(—n, Sm—1—Ym-1]) N XN @5) Uh;m_1 (D’\y(p’"*l) x cone I~ (pm—1)).

Continuing in this way one obtains that f{l(—n, Sm + Ym) has the homotopy type
of

NEFEHU U (Dkyu’ﬁxcone(r(pj)))

1<i<m
h

i

where
./\/'(.7:',;) = 7 (=n,51 — 1) N X NBs.
The same argument as in the last part of the proof of Theorem 4.47, using the First
Isotopy Lemma 4.37 ([35, Proposition 11.1]), gives that there exists' a homeomor-
phism
NEFED) = [T En) 0 X 0Bs x (=0 — 71,51 — M)
By Lemma 6.7
ftfl([_{’%n]) nxn PB!S = f_l([_ﬁﬂ?}) nxn ]B(S
by a stratum-preserving homeomorphism so

Xy = fH(=n,m) N X NBs.

We have that f~*([-n,7]) N X NB; is contractible and we claim that f~!(—n,n)N

X N B; is contractible as well. For this we consider the trivial fibrations

(9) Fof7H0,m) N X NBs — (0,7]

(10) Ff7H=n,0) N X NBs — (=1, 0]

By the Tubular Neighborhood Theorem (see e.g [26, Proposition 3.42]) there exists
a homotopy equivalence h* between (0,7] and (0,7) such that

ho.s = .z, 0<p <<

IThis also follows from the fact that the coarse Morse data [25, Definition 3.4] of f: at pq is
independent of the choice of v1 > 0, by [25, Remark 3.4]
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By the homotopy lifting property there exists a lift of A* by (9) to a homotopy
equivalence
HY: f7H(0,n) N X NBs — f71(0,7) N X NBs

which is the identity on f~1((0,5]) N X N Bs. In a similar way using (10) there

exists a homotopy equivalence
H™: 7 ([=n,0)n X NBs = /' ((—n,0)) N X NBs
which is the identity on f~1((0,]) N X N B;. Therefore
=) N X NBs ~ f~1(=n,n) N X NBs.

As a consequence A} ,, is contractible.

Let
W={(z,r) eRx[0,1] |z € [-n, (L =7r)n+7(sm +7m)]} CR xR

and let 7 : R x R — R be the standard projection w(z,r) = r. For each r € [0,1]
let

W, =7 (r)nw.
Since by construction (s, + ¥m,n] contains no critical values of ft|xnB, there exists

by [25, Theorem 4.3] (see also [25, Remark 7.2]) a stratum-preserving homeomor-

phism
Xy = ftIXﬂBs (Wo) = ft\XﬁIB(g W) = £ Y (=, 8m + ym]) N X NB;s
hence
’U—ft ( 77>3m+’Ym)QXﬂB§
Since

Fy = 7 (=n)nXNB;s
by Lemma 6.6 the result for the negative Milnor fibre follows. The result for the
positive Milnor fibre is obtained by considering — f; instead of f;. ([

6. Consequences

6.1. The Euler Characteristics of The Milnor Fibres. We shall now

draw several consequences from Theorem 6.13. To begin with we can obtain the
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Euler-Poincaré characteristic of the Milnor fibres. We denote by
X() =Y (1) dim H;(-, R)
Jj=20
the Euler-Poincaré characteristic in reduced singular homology with coefficients in

a given principal ideal domain R.

COROLLARY 6.14. Keep the assumptions of the Theorem 6.13 and suppose fur-
thermore that X is equidimensional. The Euler-Poincaré characteristic of the neg-
ative Milnor fibre with Q-coefficients is given by
X(Fy ) =1+ > (—1) @)ty > (=M P31 (p;))

1<j<m 1<j<m

dim (. (p;))=dim(X) dim(7((p;))<dim(X)

and the Euler-Poincaré characteristic with Q-coefficients of the positive Milnor fibre

is given by
X(ﬁ;—) 1 Z (_1)dim(:7)(pj)+1—>\y(ibj)
1<j<m
dim () (p;))=dim(X)
LY C)EmEeI ey (p,).
1<j<m

dim (%) (p;)) <dim(X)
Moreover if dim(.(p)) = dim X for any p € C(F,t) then these relations hold for

the Euler-Poincaré characteristics with Z-coefficients.

PRrROOF. We shall prove the first formula in the statement; the second formula
is analoguous. By e.g [39, L. § 5] if A C X is a subspace of a topological space X
and R = QQ,Z then the Euler characteristic
X(X,A) =) "(~1)"rank H, (X, A; R)
n>0

is additive; namely if A C B C X then

(11) X(X; A) = x(X, B) + x(B, A).

Let N(F, ) C &i, be as in the statement of the Theorem 6.13 and let us write
N = N(ﬁ,,‘) to simplify the notation. Applying (11) to the filtration

DCNCXx,

gives

X(Fy) = xWN,0) = x(Xi,0) — x(Xi, N)



6. CONSEQUENCES 139

= 1 — X(Xt,'ﬂ’N)'

On the other hand there exists by Theorem 6.13 a filtration
(12) NcC---CB,CA,C---CXyp

where p goes through the set C(F,t) and where each consecutive term is obtained

from the previous as

Ap = By Up, (D ) x cone I~ (p))
for an attaching map

hy = O(D** P x cone I~ (p)) — B,.

Recall that m = |C(F,t)|. Applying (11) to the filtration (12) one obtains

m

X(Xeqs N) =D x(Ap, By)

=1

=> "> (~1)"rank Hy(Ap, By; R)
j=1n>0
so that
(13) X(Fy)=1=>_> (~1)"rank H,(A,, By; R)
Jj=1n>0

and by the Excision Theorem [26, Theorem 2.20] applied to

B, \ hy (a(DW () % cone z—(p)))
one obtains
(14)  Hy(A,, B,) = H, (DM@) x cone(I~(p), D *® x cone(z—(p)))

where the homology groups have R-coefficients. For any ¢ = 1,...,k and any
j=1,...,m;if p=pj;; € C;(F,t) is such that dim(.#(p;;)) is maximal, hence equal
to dim X, then the normal slice is N(p) = p by |25, p.8 § 1.2]. Then [~ (p) = 0 by
Definition 4.14 [25, Definition 3.9.1] so the only nontrivial homology group is

H,(A,, B,) = H, (DM@), aﬂw’(f’)) =Z,  n=Xsp).
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The equations (14) and (13) then give

\F)=1- Y (e
1<j<m
dim(~(p;))=dim X

=14+ Z (1) 7)1

1<5<m
dim (& (p;))=dim X

where we can take the coefficients to be in R = Z. So suppose that not all critical
points lie in maximal dimensional strata and let us take R = Q. In this case one
can apply the Kiinneth Theorem for relative homology [26, Theorem 3.18]. This

yields an isomorphism

HTL(Apa Bp) = @ Hl(DAy(p)7 6D>\y(p)) ® Hn_l(COI’le l_(p)a l_(p))
1>0

which is trivial unless I = A\ & (p), because the relative homology of the pair (D*~ (), DA~ (P))

is trivial in all degrees except [ = A (p), in which case one obtains

(15) Hy(Ap, By) = Hy,_ 5, p(cone 1™ (p),1” (p))

hence

X(]:"n) =1- Z Z(—l)”rank Hy, ., (p)(cone I (p), 1™ (p))-

J=1n>0

One must distinguish between two cases.

If p does not belong to a stratum of maximal dimension then the normal slice is of

positive dimension so [~ (p) is nonempty and then the long exact sequence of the
pair (cone(l™(p)),1™(p)) gives
Hn—)\y(p) (cone li(p)a li(p)) = Hn—)\y(p)—l(li(p))
= H, (S WH(17)(p))

where S*# (P)+1(1=1(p)) denotes the (A (p)+1)-th iterated (unreduced) suspension

[26] of the lower half-link. In particular the suspension of the lower half-link satisfies
YNeEN,  x(SM(IT)p) = (DX (p))-

If p belong to a maximal dimensional stratum then [~ (p) = . The cone over the

empty set is a point (see the convention 4.14) so

Hn—)\y(p)(cone li(p)v li(p)) = Hn—/\y(p)(pt) = HH(SAy(p))'
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Combining 1 and 2 and applying equations (15) and (13) then give the result. O

6.2. On the Link of Algebraic Subsets. In this subsection illustrate one
potential use of the Theorem 6.13 and in particular the general Khimshiashvili
formula established in 6.14, to prove a result on the generic value of the Euler char-

acteristic of links of irreducible real algebraic subsets.

For convenience we recall, following the article [36] of C. McCrory and A.
Parusinski, that the link of a compact real algebraic subset Y of a real algebraic

set X C RY in a nonsingular point € Y is defined as
XNN,NSY(2)

where N, is the normal tangent space of ¥ C RY at z and SV (z) C RY is a
sphere of radius ¢ > 0 centered at x. The link is thus undefined in singular points
of Y which motivates the definition [36, § 1.3] of the localised link. As Y is per
assumption compact there exists a polynomial map f : R™ — R restricting to a
proper, nonnegative map f : X — R such that f~(0) = Y. Then the localised link
of Y in X at z € X is defined as

Ik (Y;X) = f~He) NBs(z), 0<e<<d.

Stated in other terms it is the positive Milnor fibre of f : X — R at . We can

state the following theorem:

THEOREM 6.15. Let X C RY be an equidimensional real algebraic set endowed
with a Whitney stratification S = (%)ier and let Y C X be an irreducible real
algebraic subset. Suppose that there exists a polynomial map f :R™ — R such that
f restricts to a morsifiable proper, nonnegative map f : X — R with 7o) =Y.
Then there exists a real algebraic subset Z C'Y with dim Z < dimY such that for
any x € Y \ Z there exists a stratified Morse function

g=¢,: XNB; - R

such that
X(Ik (Y5 X)) =2 > (—1) 7 ®2)

1<j<m
dim (7 (p,)) =dim(X),
dim(&)=1
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+ > (=M@ R (py) — %) (py)]
1<j<m
dim (.~ (p;))<dim(X)
dim(.#)=0
- > (=)@ R (p)) + %) (py)]
1<j<m
dim((p;))<dim(X)
dim()=1
where pj,j = 1,...,m are the critical points of g and where A\ (p;) is the Morse

index of p; at the stratum ¥ € S.

PRrOOF. Let Z = Sing(Y") denote the singular locus of Y. Then dim Z < dimY
and since Y is irreducible the complement Y \ Z is a dense open set for the Zariski

topology. For any = € Y\ Z the localised link at x is the positive Milnor fibre
ko (Y;X) = f7He) NBs(z), 0<e<<é
of f: X — R and since f is nonnegative,
fH (=€) N Bs(z) = 0.

Since f is morsifiable it follows that there exists a stratified R-morsification F :
YNBs xU — R. Let t € V so that ¢ := f, is a stratified Morse function and let
its critical points be denoted p1,...,p,,. Remark that

VEEN,  X(S*(I™(p) = (=) 3~ (p))

where S*(1~(p)) denotes the k-th (unreduced) suspension [26] of [~ (p), so by Corol-
lary 6.14,

T ONBs@) =14 Y (~)Im e
1<j<m
dim(.# (p;)) =dim(X)
+ Z (_Udim(y)(Pj)—Ay(Pj)f((l-i-(pj))
1<5<m

dim(.# (p;))<dim(X)
and
xX(f ' (—e)NBs(z)) =1+ > (—1) 7)1

1<j<m
dim (. (p, ))=dim(X)

FY R y).
1<j<m
dim(~(p;))<dim(X)

Substracting these quantities yields the result. (I
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