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Chapter 1

Introduction (version francaise)

Les jeux a champ moyen (MFG) sont a la fois une théorie mathématique et un outil de
modélisation. Ils ont été introduits en 2006 indépendamment par Jean-Michel Lasry et
Pierre-Louis Lions dans [88, 89, 90] et Minyi Huang, Roland P. Malhamé, et Peter E.
Caines dans [80]. Les jeux a champ moyen sont des modeles asymptotiques de jeux non
coopératifs de joueurs rationnels, interagissant par un effet de champ moyen. Chaque
acteur optimise son propre systéme dynamique, par rapport a une certaine fonctionnelle
de cotit. Cette derniere dépend de variables de couplage, elles-mémes dépendantes de la
distribution des états et des controles.

Cette thése consiste en trois études consacrées a 'analyse et a la résolution numérique
de différents modeles de jeux a champ moyen. Nous commencgons par une introduction
aux jeux a champ moyen dans la section 2.1. Dans la section 2.2 nous proposons une
présentation détaillée des trois contributions :

2.2.1 Jeux a champ moyen en temps discret avec agents averses au risque :
en utilisant le concept de mesure de risque composite, nous étudions un modele
MFG en temps discret impliquant des agents averses au risque . Nous montrons
I’existence d’une solution via une approche point fixe. Nous montrons qu’une
politique optimale du MFG est ¢(/N)-optimale pour un certain jeu & N joueurs et
que la suite (IN') converge vers zéro lorsque le nombre de joueurs tend vers 'infini.

2.2.2 Jeux a champ moyen potentiels discrets : nous étudions des MFG a po-
tentiel en temps discret et en espace d’état fini (aussi appelé variationnel) avec
des contraintes dures, c’est-a-dire avec des potentiels convexes, éventuellement non
différenciables et avec un domaine borné. Nous définissons un probléeme primal
et un probleme dual, et nous montrons un résultat de dualité sous des conditions
de qualification appropriées. Nous montrons I’existence d’une solution au systeme
de jeu a champ moyen et montrons 1'unicité lorsque les potentiels sont dérivables.
Ensuite, nous implémentons deux familles de méthodes numériques : des méthodes
proximales primales-duales (Chambolle-Pock et Chambolle-Pock-Bregman) et des
méthodes basées sur le Lagrangien augmenté (ADMM et ADM-G). Nous com-
parons les performances de chaque méthode pour deux cas d’application : un
modele de congestion et un modele de prix, tous deux avec des contraintes dures.

2.2.3 Gradient conditionnel généralisé et apprentissage dans les jeux a champ
moyen potentiels : nous appliquons I’algorithme de gradient conditionnel généralisé
pour les jeux a champ moyen potentiels dans un cadre EDP. Nous mettons en
évidence le lien entre cet algorithme et une méthode itérative de meilleure réponse
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pour résoudre des jeux appelée algorithme de jeu fictif. Cette derniere est une
méthode d’apprentissage qui se déroule de la fagon suivante : a chaque étape,

(a) Optimisation : pour une croyance donnée de la stratégie des autres, trouver
la meilleure réponse des joueurs ;

b) Apprentissage : mettre a jour la croyance en faisant la moyenne de toutes les
pp g J y Y
meilleures réponses trouvées depuis le début de la procédure.

Dans ce cadre potentiel, la notion d’exploitabilité issue de la théorie des jeux peut
étre interprétée comme un écart primal-dual. On montre que pour la séquence
d’apprentissage 0 = 2/(k+2), le cotit potentiel converge en O(1/k), 'exploitabilité
et les variables du probleme (distribution, congestion, prix, fonction de valeur et
termes de controle) convergent en O(1/ \/E), pour des normes appropriées.

1.1 Généralités sur les jeux a champ moyen

Nous introduisons dans cette section les principaux concepts de théorie des jeux a champ
moyen qui seront approfondis dans la thése. Par commodité, nous avons décidé d’utiliser
le cadre du chapitre 5, qui est un modele en temps continu avec un espace d’état continu.
Il a la forme la plus standard (en comparaison avec la littérature actuelle), soulignons
que les cadres des chapitres 3 et 4 sont différents.

Dans la section 1.1.1 nous rappelons d’abord la notion d’équilibre de Nash dans les
jeux a N-joueurs et nous expliquons comment passer a la limite lorsque le nombre de
joueurs tend vers I'infini. Dans la section 1.1.2, nous présentons un sec:individual-control-
problem paramétré par des termes de couplage fixes v et P, et dérivons un controle
de rétroaction optimal. Dans la section 1.1.3, nous définissons un probléeme de jeu a
champ moyen ou chaque agent optimise le sec:individual-control-problem introduit dans
la section 1.1.2 avec des termes de couplage dépendant maintenant de la distribution
des états et des controles des joueurs. Nous détaillons la structure de point fixe du jeu
et mettons en évidence quelques différences entre les modeles de congestion et de prix.
Dans la section 1.1.4, nous présentons des jeux a champ moyen potentiels, qui sont des
jeux a champ moyen avec une structure variationnelle. Cette classe est particulierement
intéressante pour montrer 'unicité de solution et ’application de méthodes numériques
dont nous donnons un apercu dans la section 1.1.5.

1.1.1 Equilibres de Nash dans les jeux anonymes

Les jeux a champ moyen sont des modeles limites pour des jeux avec un grand nombre
de joueurs. Le but de cette premiere section est d’expliquer comment dériver un modele
limite pour un jeu a N joueurs et comment établir une connexion entre les deux ; plus
précisément, nous expliquons comment construire une solution approchée du jeu a N
joueurs & partir du modele limite. Pour cela, nous considérons un modele tres simple.

Jeu & N joueurs Soit N > 0 le nombre de joueurs et soit N' = {1,..., N} ensemble
des joueurs. Soit C un sous-ensemble borné de R? et soit P(C) I’ensemble des mesures
de probabilité sur C. Soit ¢: C x P(C) — R une fonction objectif. On suppose que
¢ est K-Lipschitz par rapport a sa deuxiéme variable, pour la distance de Rubinstein-
Kantorovich, notée d;. Chaque agent cherche a minimiser ¢ en choisissant une stratégie

x; € C pour une mesure donnée mg’i = ﬁ Zje/\/\{i} 6z; € P(C) des autres. On dit
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que T = (Z1,...,Zy) € CY est un équilibre de Nash si pour tout i € N,

c (a‘ci, m]fv’l> <c (x, mg’l) (1.1)

pour tout z € C. Un équilibre de Nash est un point tel qu’il n’y a pas de déviations
unilatérales profitables. De facon équivalente, nous avons que

c <:T:Z,mévz) = inf ¢ (w,mgz) = inf /c <:):,mévz) dm(z).
zeC meP(C) Jc

Limite de champ moyen Lorsque le nombre de joueurs est infini, on dit que m € P(C)
est un équilibre de Nash si et seulement si

/Cc(x,m) dm(z) = inf ¢(z,m) = inf /Cc(a:,m) dm(z). (1.2)

zeC meP(C)

De maniere équivalente, m est un équilibre de Nash si supp(m) C argmin,c. c(z,m).
Considérons une solution du modele limite, c’est-a-dire un point m satisfaisant (1.2).
L’idée principale pour construire une solution approximative a (1.1) consiste & trouver
T = (Z;)ien € CN tel que pour tout i € N,

c(Z;,m) < c(x,m), VreCl (1.3)

et tel que

1
di(m,mY) <e(N), otu:ml = v %536 € P(0).
S

En pratique Z peut étre obtenu via des inégalités de concentration [58], qui assurent que
g(N) — 0 lorsque N — oco. Nous avons

N -1 ; 1
mév = Tmé\[’z + N(;j”

donc dy(m2,m2"") < C/N et donc,
di(m, mY") < C/N + e(N).

On déduit de la continuité Lipschitz de ¢, de I'inégalité (1.3) et 'inégalité ci-dessus que
pour tout i € N,

c(zi,m) < e(x,m)+2K(C/N +¢(N)), VreCl,

ce qui prouve que Z est un équilibre de Nash approximatif pour le jeu a N joueurs.

1.1.2 Problémes de controdle individuel

Nous définissons maintenant le probléme de controle individuel résolu par tout agent
impliqué dans le probleme de jeu & champ moyen. Dans cette introduction son probleme
est un probléeme de controle optimal stochastique en temps continu paramétré par une
paire de congestion et de prix (v, P).
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Probléme de contrdle stochastique Soit (B;) [0, 7] un mouvement brownien et soit
Y une variable aléatoire, indépendante de (Bj) selo,7], avec une distribution de probabilité
mo € D1(T?) :== {m € L>°(T%), m >0, [ram(z)dz =1}. Soit F la filtration engendrée
par le mouvement brownien (Bs),c[o,7] et la variable aléatoire initiale Y. On note LE(RY)
l’ensemble des processus stochastiques v sur [0, 7] de valeur dans R? adapté a F tel que
E [ fOT |I/S|2d8:| < +00. Pour tout terme de congestion Lipschitz v et vecteur continu de

prix P, on définit le cofit individuel Z, p: LZ(R?) — R,

T
va):E[ [ B0+ P 2251 065

ou pour tout v € LZ(R?), on note (XY )sefo,r] 1a solution de I’équation différentielle
stochastique
dX, = vgds + V2dB,, X, =Y.

Le critere stochastique individuel est composé d’'un coiit courant individuel fortement
convexe L: R? — R, un cofit terminal lisse g € C®(T%), et mg € C®(T?) est la dis-
tribution de probabilité de 1’état initial Y. Le critere est également paramétré par la
congestion vy et le vecteur des prix P. Le probleme individuel est :

inf 7, p(v). 1.4
verdza) 7.p(V) (1.4)

Programmation dynamique La théorie de la programmation dynamique nous per-
met de caractériser la solution du probleme individuel présenté ci-dessus. L’idée est
d’introduire la fonction valeur u[y, P]: T¢ x [0, T] — R, définie par

T
uly, Pl(z,t) = inf E L(vs) + (P(s),vs) + v(Xs, 8)ds + g(X7) | ,
uEL%(t,T;Rd) t

paramétrée par v et P et ou X est la solution de
dX, = veds +V2dB,, X; =z (1.5)

Sous des hypotheses appropriées, la fonction u[y, P] est la solution de viscosité a I’équation
de Hamilton-Jacobi-Bellman

—owu—Au+ H(Vu+ P) = 7, (z,t) € Q,
u(z,T)= g¢g(z), z e T,

ot Q est défini par Q = T? x [0, 7] et I'application H, appelée hamiltonienne, est liée &
la transformée de Fenchel du cotit courant L. C’est-d-dire, pour tout p € R,

H(p)=L*(-p) = S;@ —(p,v) — L(v).

Si L est strictement convexe (et donc au moins continu), le supremum est atteint a
v = —Hp(p), o Hy est le gradient de 'hamiltonien. Ensuite, & partir de la solution
u[y, P], on peut dériver une fonction de rétroaction

v(z,t) = —Hp(Vu(z,t) + P(t)),

pour tout (z,t) € Q.
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Vérification La fonction de rétroaction v nous permet de construire une solution au
probleme de controle, via le systéme en boucle fermée

dX? = v(X?, s)ds + V2dBs, X =Y. (1.6)

Nous montrons ensuite que le processus stochastique v?, défini par

vy i=v(Xs,8) = —Hp(Vu(Xs, s) + P(s)),
pour tout s € [0,7], est en effet optimal. Soit v € L2(0,T;R?) et soit (XY)sepp) la
solution de (1.5). Par la formule d’It6 nous avons

T
u(X7, T) —u(Xg,0) z/ (Ou(XY,s) + Vu(XY,s) - vs + Au(X?, s))ds
0
T
—I—/ Vu(X?,s)-dBs.
0

En prenant I'espérance des deux c6tés, on obtient

E[u(Xg,0) —u(X7, T)] = (a) + (b) + (),

T
<a>=ﬂ2{£ (L(vs) + (P(), ) + (X7, ) ds]
T
<w-—E[[;<&u«¥gs>+znwxz»>—z¥ahmxas>+f«@>+nman»dﬁ,
T
(¢)=-E [/0 (L(vs) + H(Vu(XY?,s) + P(s)) + (P(s) + Vu(XY,s),vs)) ds} ,

pour tout v € LIZF(O,T :R%). Puisque u est solution de I'’équation de Hamilton-Jacobi-
Bellman, nous avons (b) = 0. De plus, par définition, u(z,T) = g(z) pour tout = € T¢.
Ainsi

Eu(Y,0)] = Z,p(v) + (¢),

ou nous avons utilisé la condition initiale X§ =Y. Par 'inégalité de Fenchel-Young, on
a
L(v) + H(Vu(z,s) + P(s)) + (Vu(z,s) + P(s),v) > 0,

pour tout (z,s) € Q et v € R% L'inégalité est une égalité lorsque v = —H,(Vu(z, s) +
P(s)). En conséquence (c) < 0 pour tout v € L2(0,T;R%) et (¢) = 0 quand v = v*.
Nous avons donc

Z,p(v") = E[u(Y.0)] < Z, p(v),

ce qui prouve que le contrdle (v?) sefo,7] est optimal.

Probleme de controdle d’équations aux dérivées partielles Les espaces de Sobolev
sont notés W™4(Q), l'ordre de dérivation n étant éventuellement non entier (suivant la
définition de [87, section II.2]). Nous fixons

WQ,LQ(Q) _ Wl,q(Q) N L9(0, T; W2’q(Td)), Wl,O,q(Q) = L9(0,T; Wl,fI(Td)).
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Soit p > d + 2. Le probleme de controle stochastique individuel a une formulation
d’équation aux dérivées partielles donnée par

inf Z, p(m,v) = / (L(v) + (P,v) + ) mdadt +/ gm(T)dzx,
(m,v)eER Q Td

ot Pensemble R est défini comme 1’ensemble des couples (m,v) € WLP(Q) x W102°(Q)
satisfaisant I’équation de Fokker-Planck

om — Am+V - (vm) =0, m(0) = my.

Le lien entre les deux problemes s’explique par le fait qu’étant donné une fonction de
rétroaction v, la solution m de ’équation de Fokker-Planck nous fournit la distribution
de probabilité de la solution du systeéme en boucle fermée (1.6). Dans le modele limite &
infinité d’agents qui sera introduit ensuite, I’équation de Fokker-Planck décrira I’évolution
de la distribution des agents, en supposant qu’ils emploient tous la méme rétroaction v
et qu’ils sont soumis & des bruits indépendants.

1.1.3 Jeux a champ moyen et couplages

Jusqu’a présent, nous avons décrit un probléme de contrdle individuel ou les deux
parametres v et P étaient fixés. Le but des jeux a champ moyen est de considérer
un continuum de joueurs identiques, chacun optimisant son propre critere, tout en inter-
agissant avec les autres a travers les termes de couplage.

Un probleme de point fixe Dans la section 1.1.2 nous avons expliqué comment
caractériser le controle optimal d’un agent représentatif grace a la théorie de la program-
mation dynamique. Nous introduisons maintenant un probléme de jeu a champ moyen,
sous la forme d’un probleme de point fixe, ol les termes de couplage v et P ne sont plus
donnés, mais font partie du probleme. Ils sont déduits de m et v via des fonctions de
couplage. Soit f: T%x D;(T?) — Ret ¢: R¥ — R? des applications Lipschitz et bornés.
Le probleme de jeu a champ moyen est donné par : trouver (m,v) € R tel que

(ﬁl,’f)) € f(a‘:;i)glél?g Z’Y,P(m7v)7 7($7t) = f(a:,m(t)), P(t) =9 (/Td v(a:,t)m(x,t)dx) )
(1.7)

pour tout ¢ € [0,7]. Ce probléme est un probleme d’équilibre de Nash (voir le lien avec
(1.2) dans la section 1.1.1). Il bénéficie d’une structure de point fixe : chaque (m,v)
induit les termes de couplage v et P via les applications de couplage f et ¢ ; et toute
paire de termes de couplage (y, P) donne une paire (m,v) via 'optimisation du probléme
individuel. Avant de décrire le systeme de jeu a champ moyen associé, nous discutons
des modeles de congestion et de prix.

Modeles de congestion Dans les modeles de congestion, l'interaction entre les acteurs
se fait a travers le terme de congestion f. Cela correspond au cas ou ¢ = 0 dans la section
ci-dessus. Une situation naturelle a considérer est celle du mouvement d’une foule ou
chaque joueur cherche a éviter des régions encombrées, pénalisées via le couplage f. Le
probleme de jeu a champ moyen est donné par

(m,v) € z(irg 1;111715 Z,0(m,v), ~(z,t) = f(x,m(t)),
m,v)eE
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pour tout ¢ € [0,T]. Dans cette situation I’état € T? d’un joueur représente par
exemple sa localisation dans une piece, une rue, etc. Le controle v est la vitesse du
déplacement.

Modeles de prix Dans un modele de prix, 'interaction se produit via le terme de prix
P. Cela correspond au cas f(z,m) = 0 pour tout € T¢, m € D;(T¢) dans la section
ci-dessus. Une situation classique est donnée par le modele de concurrence de Cournot :
chaque acteur minimise son cotit en vendant ou en achetant sur le marché. Le probleme
stochastique individuel est donné par

(. ) € argmin 2o p(m,v), P(t) = é < /T d ﬁ(x,t)m(x,t)dx> ,

(mw)eER

pour tout ¢ € [0,7]. Le vecteur des prix P(t) est fonction de la demande agrégée
D(t) = [pav(z,t)m(x,t)dz & Iinstant ¢ € [0,T]. Ensuite, dans ce probleme, un agent
représentatif controle un niveau de stock z € T¢ composé de d actifs différents. Dans la
définition de la fonction de cotlit Zy p, nous pouvons interpréter P(s) comme le prix (au
temps s) associé a vs.

Systéme de jeu de champ moyen Nous sommes maintenant préts a présenter le
systeme de jeu a champ moyen ou (u,v,m,~y, P) est I'inconnu associé au probleme de
jeu a champ moyen (MFGy 4),

(0 {—@u—Au%—H(Vu—i—P) =7, (z,t) € Q,
u(z, T) = g(x), r e Te,

(i) v=—Hp(Vu+P), (z,t) € Q,

(i) om — Am +V - (vm) =0, (z,t) € Q, (MFGy,4)
m(0,z) = mo(z), z € T4,

(iv) ~(z,t) = flz,m(t)), (z.,t) € Q,

(v) P@)=¢ (fpav(z, t)m(z,1)), t € 10,7,

ot u(x,t), m(x,t),y(z,t) € R, v(x,t) € R% et P(t) € R% Le systeme ci-dessus est un
systeme couplé d’équations aux dérivées partielles :

e L’équation (i) est I’équation de Hamilton-Jacobi-Bellman, décrivant ’évolution de
la fonction valeur du probléme individuel.

e L’équation (ii) définit le controle optimal v.

e L’équation (iii) est I’équation de Fokker-Planck, décrivant I’évolution de la distri-
bution d’état des agents. Le terme mg est la distribution initiale des agents. Sauf
mention contraire, les solutions s’entendent au sens des distributions.

e L’équation (iv) définit la congestion et 1’équation (v) le prix.

Le lien entre (1.7) et (MFGy,) est le suivant : toute solution (u,v,m,~y,P) au
systeme de jeu a champ moyen (MFGy 4) est telle que (m,v) est la solution du probleme
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d’équilibre de Nash ; pour toute solution (m, v) solution au probléme d’équilibre de Nash,
définissant

V(z,t) = f(z,m(t), P(t)=¢ (/ ﬁ(mat)m(%t)dw> ;o u=uly, P,
Td
le quintuplet (u,v,m, 7, P) est une solution du systeme de jeu a champ moyen (MFGy 4).

Structure en point fixe du systeme de jeu a champ moyen Le systeme de jeu a
champ moyen (MFGy 4) peut également étre considéré comme un probleme de point fixe.
Ce point de vue est clé pour prouver 'existence d’une solution, grace au théoréeme de
point fixe de Schauder par exemple. Nous présentons ici les dépendances entre chacune
des variables du systeme couplé et nous mettons en évidence les différences entre les
modeles de congestion et de prix. Le graphique suivant illustre cette structure pour
deux cas : les jeux a champ moyen classiques, c’est-a-dire les situations ot ¢ =0 ; et les
jeux & champ moyen avec interactions par les controles qui correspondent au cas général
considéré ici.

f
m Y
o
FP P HJB
¢ HIB

control
v U

control

Figure 1.1: Unknowns dependency graph: fixed point structure of the mean field game
problem.

Les dépendances inconnues, dans le contexte des jeux a champ moyen classiques,
sont représentées par les fleches noires. La structure est assez simple : étant donné une
congestion 7y, on peut calculer la fonction de valeur u solution de I’équation de Hamilton-
Jacobi-Bellman (HJB). Alors le gradient de u fournit le controle optimal v. Etant donné
un controle optimal v, on peut calculer la solution m de 1’équation de Fokker-Planck
(FP). Enfin la congestion v dépend de m via le mapping f.

Les jeux a champ moyen avec interactions par les controles ont une structure plus
complexe : il existe des dépendances supplémentaires, représentées par les fleches rouges,
dues a la variable prix. Etant donné un contrdle v et une distribution m, on peut calculer
le prix P via 'application ¢. Ensuite, le prix P donne une valeur u via I’équation de
Hamilton-Jacobi-Bellman et un contrble associé v. Une preuve d’existence avec une
représentation en point fixe peut étre trouvée dans [21].
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1.1.4 Jeux a champ moyen potentiels

Les jeux a champ moyen potentiels (également appelés variationnels dans la littérature)
sont des jeux a champ moyen qui peuvent étre interprétés comme les conditions du
premier ordre de deux problemes de controle appelés problemes potentiels. Le premier
probleme est un probleme de controle de 1’équation de Fokker-Planck et le second un
probleme de controle optimal de I’équation de Hamilton-Jacobi-Bellman. Il y a plusieurs
avantages a travailler avec des jeux a champ moyen potentiels. Ils offrent une maniere
différente (comparé au méthodes de point fixe) de prouver l'existence d’une solution
au systeme de jeu a champ moyen, qui peut étre déduite des solutions des problemes
potentiels. Précisons que selon les modeles, cette approche peut étre délicate a suivre
(en particulier dans le cas de diffusion dégénérée, voir [34]). De plus, la forme potentielle
permet d’utiliser des algorithmes d’optimisation pour résoudre le systeme de jeu a champ
moyen, comme nous le verrons dans la section suivante.

Dans notre cadre, il suffit de supposer que f et ¢ dérivent de potentiels pour obtenir
une structure variationnelle du jeu. On dit que f et ¢ dérivent de potentiels s’il existe
deux applications convexes F: D1 (T?) — R et &:R* — R tel que

1
F(mg)— F(my) = /0 » f(z,smao + (1 — s)my)(ma(z) — my(x))dads,

¢(2) = V.®(2),

pour tout my, my € D1(T?), et tout z € RF. On définit le critere suivant

T
J(m,v) :/ L(v)mdxdt—i—/ <F(m(t)) +@ </ v(a:,t)m(x,t)d:r)) dt—l—/ gm(T)dzx,
Q 0 Td Td
et le probleme de controéle suivant :

inf  J(m,v). P

ot (m, v) P)

En raison des termes L(v)m et @ ( i vm), le critere du probleme ci-dessus n’est pas
convexe. L’idée est d’étudier un probleme convexe étroitement lié. On définit le critere

J(m,w) = /Qi(m, w)dxdt+/0T <F(m(t)) + @ </Tdv(x,t)m(x,t)d:c>> dt+/Td gm(T)dz,

ot L: Q x R x R? — R est la fonction perspective de L,

mL (w/m), sim >0,

L(m,w) =< 0, sim=0etw=0,

400, sinon.

Il est & noter que L est convexe et semi-continue inférieurement par rapport a (m,w).
On définit I’ensemble

7% = {(m’w) € WZLP(Q) x Wl,O,oo(Q)’ ,0om —Am+V-w =0, m(O) = mO} .

Le critere J et 'ensemble R sont tous les deux convexes de sorte que le probleme suivant
est convexe,

inf J(m,v). (P)
(maw)eER
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A condition que les deux problémes aient des solutions (m, v) et (m, w) et que m(x,t) >0
pour tout (z,t) € @, les solutions des deux problémes sont telles que v = w/m. On définit
le critere dual

T
D(u,v,P) = / u(z, 0)ymo(z)dz — / (F*(y(t)) + @* (P(t))) dt, (1.8)
Td 0
et on considere le probleme dual

sup ,D(ua Vs P)a (D)
(u,y,P)eld

ot U est Pensemble de (u, 7, P) € W2LP(Q) x L®(Q) x L>®(0,T;R*) satisfaisant

-0 — Au+ H[Vu + A*P]
u(z,T)

< v (z,t) € Q,
< gla), z e T

Dualité et lien avec le systéme de jeu & champ moyen Ici, nous exposons et
expliquons les liens existants entre les problemes potentiels ci-dessus et le systeme de jeu
a champ moyen. La présentation suivante n’est pas une preuve, mais plutét un résumé
des liens et résultats que 'on peut espérer étre vrai sous des hypothéses appropriées.

cmC=o)

DC+CV

DC FOC

Figure 1.2: Résumé des liens entre (P), (P), (D), et (MFGy).

Soit (m, v, 4,7, P) une solution de (MFGy 4), par souci de simplicité, nous supposons
que m(x,t) > 0 pour tout (z,t) € (. On définit le changement de variable “a la
Benamou-Brenier” w = mu et on a v = w/m par positivité uniforme de m. Nous

présentons d’abord comment obtenir une solution a (P), (D) et (P).

DC: Par un calcul direct (essentiellement par intégration par parties), toute solution de
(MFGy 4) donne une solution de (P).

DC+H+CV: Par un calcul direct (encore par intégration par parties) et un changement
de variable w = mv, toute solution de (MFGy ;) donne une solution (m,w) a (P)

et une solution (u,%, P) a (D).

10
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Nous expliquons maintenant le lien entre (P) et (P). Ce lien peut étre utile car il est
parfois plus facile de montrer 'unicité des solutions a (P) puis de déduire 'unicité des
solutions a (P).

L: Le lien entre (P) et (f’) est donné par la fonction perspective et par le changement
de variable “4 la Benamou-Brenier”. Pour toute solution (7, @) du probleme (P),
on a que (m,v = w/m) est la solution de (P). Toute solution (m,v) a (P) est telle
que (7, W = 7M@) est la solution au probleme (P). De plus, les valeurs des deux
probléemes sont égales.

Enfin, nous expliquons le lien entre les problemes primaux (P) et (D). Nous expliquons
également pourquoi les solutions a ces problémes sont des solutions au systeme de jeu a
champ moyen (MFGy ).

Dual: Les problemes (P) et (D) sont formellement en dualité. Pour établir un tel
résultat, une approche classique consiste a utiliser le théoreme de Fenchel-Rockafellar
[109]. Selon le cadre d’analyse, le choix des espaces de fonctions peut étre une ques-
tion délicate (voir [34] pour le cas dégénéré du second ordre). Dans le cadre discret,
ce résultat est au cceur des méthodes numériques primales-duales.

FOC: Le systeme de jeu & champ moyen peut étre interprété comme des conditions de
premier ordre pour les problemes potentiels (P) et (D). On peut vérifier que pour
toutes les solutions (m,w) a (P) et pour toutes les solutions (@, 7, P), le quintuplet

(m,v = w/m,u,7, P) est une solution a (MFGy 4). Au chapitre 4, dans un cadre
discret, nous utilisons 'inégalité de Fenchel-Young pour établir un tel résultat.

1.1.5 Meéthodes numériques

La résolution numérique des jeux a champ moyen a recu une attention particuliere au
cours des dernieres années. Nous renvoyons le lecteur a [6, 91] pour une revue des
méthodes numériques utilisés pour résoudre les probléme de jeux a champ moyen. Nous
proposons ici une présentation synthétique et une classification simple. Nous distinguons
deux approches : une approche basée sur le systeme MFG et une approche Potentiel.
La premiere approche consiste a résoudre directement le systeme de jeu a champ moyen
via des méthodes d’apprentissage ou de Newton. La seconde approche consiste a min-
imiser un potentiel dont les solutions satisfont le systeme de jeu & champ moyen, via des
méthodes primales-duales ou de points-selles.

Les méthodes d’apprentissage adoptent le point de vue d’un acteur représentatif. Les
algorithmes d’apprentissage se déroulent comme suit : a chaque étape, pour une croyance
donnée sur la stratégie des autres, un agent représentatif calcule sa meilleure réponse ;
puis il apprend en faisant la moyenne de toutes les meilleures réponses trouvées depuis le
début de la procédure d’apprentissage. La question d’apprentissage est centrale dans la
théorie des jeux [60], et I’algorithme de jeu fictif a une interprétation en sciences sociales
ou en ingénierie : les équilibres de Nash peuvent étre atteints si tous les agents suivent
leurs intéréts personnels, jouent au jeu suffisamment de fois et de maniere répétée mettre
a jour leurs croyances.

Le point de départ des méthodes de Newton est de considérer le systeme de jeu a
champ moyen comme un probleme de la forme f(z) = 0 pour une fonction différentiable
f des inconnues z (typiquement la fonction valeur, la distribution des agents, les termes
de couplage). Pour résoudre un tel probleme, un algorithme de Newton peut étre utilisé
par exemple comme dans [5]. Il est & noter que dans cette derniére référence, en raison
de la dépendance entre chaque variable du probléeme, les auteurs sont en mesure de
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Approche: Classe: Méthodes:
Jeu fictif [35, 55, 77, 103]

Descente miroire [76, 101]

Apprentissage

Systeme MFG Apprentissage
par renforcement [9, 50, 75, 117, 119]
Newton algorithm [3, 4, 5, 96]
Newton

Algorithme de Gauss-Newton [30, 31]
Gradient conditionnel (Frank-Wolfe) [62]
Gradient conditionnel généralisé [24]
Primale Sinkhorn [16]

Descente de gradient stochastique [42, 43]
Algorithme d’Uzawa’s [18]

Lagrangienne [15, 17, 22, 97, 112]
Point-selle Méthodes primales-duales

proximales [22, 27, 28]

Potentiel

Figure 1.3: Classification et résumé des méthodes numériques pour les jeux a champ
moyen.

reformuler I’algorithme de Newton comme une méthode a point fixe pour les variables
de couplage.

En toute généralité ces deux premieres classes ne nécessitent aucune forme potentielle
du jeu, méme si en pratique, une forme potentielle ot la monotonie des termes de couplage
peut étre supposée afin d’assurer 1'unicité des solutions et la convergence de la méthode.
Il est & noter que dans [5], les auteurs ne supposent pas la monotonie des termes de
couplage.

Au contraire, ’approche potentielle est basée sur la minimisation des problemes po-
tentiels. Dans cette approche, nous pouvons distinguer deux classes de méthodes :

1. Méthodes primales (resp. dual), basées sur la minimisation (resp. maximisation)
du probléme primal (resp. dual). Dans cette catégorie, nous trouvons l’algorithme
de gradient conditionnel, I'algorithme de gradient conditionnel généralisé, ’algorithme
de Sinkhorn et les algorithmes de descente de gradient stochastique.

2. Les méthodes de point-selle sont des méthodes qui exploitent explicitement la struc-
ture primale-duale des probléemes potentiels. Dans cette catégorie, nous avons
les méthodes lagrangiennes (ALG2, ADMM, ADM-G), les méthodes proximales
primales-duales et ’algorithme d’Uzawa.

Parmi toutes ces références, seules [5, 22, 24, 96] sont liées aux jeux a champ moyen
avec interactions par les controles.
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Chapter 2

Introduction

Mean field games (abbreviated MFGs) are both a mathematical theory and a modeling
tool. They were introduced in 2006 independently by Jean-Michel Lasry and Pierre-
Louis Lions in [88, 89, 90] and Minyi Huang, Roland P. Malhamé, and Peter E. Caines
in [80]. Mean field games are asymptotic models of non-cooperative games of rational
players, interacting through a mean field effect. Each player optimizes its own dynamical
system, with respect to some cost functional. The latter depends on coupling variables,
which themselves depend on the state and control distribution.

This thesis consists in three studies devoted to the analysis and numerical resolution
of different mean field game models. We start with an introduction to mean field games in
Section 2.1. In Section 2.2 we provide a detailed presentation of the three contributions:

2.2.1 Discrete-time mean field games with risk averse-agents: using the concept
of composite risk measure, we study a discrete-time MFG model involving risk-
averse agents. We show the existence of a solution via a fixed point approach. We
show that an optimal policy of the MFG is (V)-optimal for a certain N-player
game. The sequence ¢(N) converges to zero as the number of players tends to
infinity.

2.2.2 Discrete potential mean field games: we study discrete time and finite state
space potential (also called variational) MFGs with hard constraints, that is with
convex potentials, possibly non-differentiable and with bounded domain. We define
a primal and a dual problem, and we show a duality result under suitable qualifica-
tion conditions. We show the existence of a solution to the mean field game system
and show the uniqueness when the potentials are differentiable. Then we implement
two families of numerical methods: primal-dual proximal methods (Chambolle-
Pock and Chambolle-Pock-Bregman) and augmented Lagrangian based methods
(ADMM and ADM-G). We compare the performance of each method for two ap-
plication cases: a congestion model and a price model, both with hard constraints.

2.2.3 Generalized conditional gradient and learning in potential mean field
games: we apply the generalized conditional gradient algorithm for potential mean
field games in a PDE framework. We highlight the connection between this algo-
rithm and a best response iterative method for solving games called fictitious play
algorithm. The latter is a learning method which goes as follows: at each step,

(a) optimize: for a given belief of the strategy of the others, find the best response
of the players;

13
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(b) learn: update the belief by averaging all the best responses found from the
beginning of the procedure.

In this potential framework the notion of exploitability from game theory can
be interpreted as a primal-dual gap. We show that for the learning sequence
0 = 2/(k + 2), the potential cost converges in O(1/k), the exploitability and the
variables of the problem (distribution, congestion, price, value function and control
terms) converge in O(1/v/k), for specific norms.

2.1 Generalities on mean field games

We introduce in this section the main concepts of mean field game theory which will be
further investigated in the thesis. For convenience, we have decided to use the framework
of Chapter 5, which is a continuous time model with continuous state space. It has the
most standard form (in comparison with the current literature), let us emphasize that
the frameworks of Chapters 3 and 4 are different.

In Section 2.1.1 we first recall the notion of Nash equilibrium in N-player games and
we explain how to pass to the limit when the number of players tends to infinity. In
Section 77 we present an individual control problem parameterized by fixed coupling
terms v and P, and derive an optimal feedback control. In Section 2.1.3, we define
a mean field game problem where each agent optimizes the individual control problem
introduced in Section 2.1.2 with coupling terms now depending on the distribution of
states and controls of the players. We detail the fixed point structure of the game
and exhibit some differences between congestion and price models. In Section 2.1.4
we present potential mean field games, which are mean field games with a variational
structure. This class is of particular interest to show uniqueness of solutions and design
numerical methods. In Section 2.1.5 we give an overview of the numerical methods for
mean field games investigated the literature.

2.1.1 Nash equilibria in anonymous games

Mean field games are limit models for games with a large number of players. The
intention of this first section is to explain how to derive a limit model for an N-player
game and how to establish a connection between the two; more precisely, we explain how
to construct an approximate solution to the N-player game from the limit model. To
this purpose, we consider a very simple model.

N-player game Let N > 0 be the number of players and let N' = {1,..., N} be
the set of players. Let C be a bounded subset of R? and let P(C) denote the set of
probability measures on C. Let ¢: C x P(C) — R be an objective function. We assume
that ¢ is K-Lipschitz with respect to its second variable, for the Rubinstein-Kantorovich
distance, denoted d;. Each agent aims at minimizing ¢ by choosing a strategy z; € C
for a given measure m>"’ = ﬁzg‘ej\/\{i} dz; € P(C) of the others. We say that
T = (Z1,---,Zy) € CV is a Nash equilibrium if for any i € N,

c (ii, mév’l> <c (z, mg’l) (2.1)

for any x € C. A Nash equilibrium is a point such that there are no profitable unilateral
deviations. Equivalently we have that

c <fz,mé\”) = inf ¢ <x,m£—c\”> = inf /c <m,mé\“) dm(x).
zeC meP(C) Jc
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Mean field limit When the number of players is infinite, we say that m € P(C) is a
Nash equilibrium if and only if

/Cc(:n,m) dm(z) = inf ¢(z,m) = inf /Cc(m,m) dm(z). (2.2)

zeC meP(C)

Equivalently, m is a Nash equilibrium if supp(m) C argmin o ¢(z,m). Let us consider
a solution to the limit model, i.e. let m satisfy (2.2). The main idea to construct an
approximate solution to (2.1) consists in finding # = (Z;);enr € CV such that for all

ieN,
c(zi,m) < c(x,m), Vrel (2.3)

and such that
1
di(m,mY) < e(N), where: mY = ¥ %:vax € P(C).

In practice Z can be obtained via concentration inequalities [58], which ensure that
e(N) = 0 as N — oo. We have

N-—-1 ;1
N _ Ni | = ¢
mE = Mz + N(Sm“
thus d; (mg,mgz) < C/N and therefore,
dy (m, mY") < C/N +&(N).

We deduce from the Lipschitz continuity of ¢, inequality (2.3), and the above inequality
that for any i € N,

(i, m) < e(x,m)+2K(C/N +e(N)), VreCl,

which proves that T is an approximate Nash equilibrium for the N-player game.

2.1.2 Individual control problems

We now define the individual control problem solved by any agent involved in the mean
field game. In this introduction his/her problem is a continuous time stochastic optimal
control problem parametrized by a pair of congestion and price (v, P).

Stochastic control problem Let (Bs)se[o,T] denote a Brownian motion and let Y
be a random variable, independent of (B;)scjo, 7], With probability distribution mg €
Di(T%) == {m € L>(T%), m >0, [ram(z)dz =1}. Let F denote the filtration gener-
ated by the Brownian motion (Bs),c[o,7r) and the initial random variable Y. We denote
by LZ(R?) the set of stochastic processes v on [0, 7] with value in R? adapted to F such
that E { fOT |1/s|2d5} < +o00. For any Lipschitz congestion term v and continuous vector

of prices P, we define the individual cost Z, p: LA(R?) — R,

T
Zv,P(V)ZE[ [ 2w+ P 2251 065

where for all v € L2(R?), we denote by (X¢)sejo,r) the solution to the stochastic differ-
ential equation
dX, = vgds + V2dB,, X, =Y.
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The individual stochastic criterion is composed of an individual strongly convex running
cost L: R? — R, a smooth terminal cost g € C>(T?), and mg € C>(T?) is the probability
distribution of the initial state Y. The criterion is also parameterized by the congestion
~ and the vector of prices P. The individual problem is:

inf Z . 2.4
e pa) v.p(v) (2.4)

Dynamic programming The dynamic programming theory allows us to characterize
the solution of the individual problem introduced above. The idea is to introduce the
value function u[y, P]: T¢ x [0,T] — R, defined by

T

b Pl = int B[ L0+ (P(9)0a) (X 5)ds 4 g()|.
vELZ(t,T;R%) t

parametrized by v and P and where X is the solution to

dX, = v,ds+V2dB,, X, =uz. (2.5)

It is well-known that, under suitable assumptions, the function u[y, P] is the viscosity
solution to the Hamilton-Jacobi-Bellman equation

—owu—Au+ H(Vu+ P) = 7, (z,t) € Q,
u(z,T) = g¢g(z), x € TY,

where Q is defined by Q = T¢ x [0, T] and the map H, called Hamiltonian, is related to
the Fenchel transform of the running cost L. That is to say, for any p € R?,

H(p) = L*(-p) = sup, —(p,v) — L(v).

If L is strictly convex (and thus at least continuous), the supremum is reached at v =
—Hp(p), where H, is the gradient of the Hamiltonian. Then from the solution u[y, P],
one can derive a feedback function

v(z,t) = —Hp(Vu(z,t) + P(t)),
for all (z,t) € Q.

Verification The feedback function v enables us to construct a solution to the control
problem, via the closed-loop system

dX? = v(X?, s)ds + V2dBs, X, =Y. (2.6)
We next show that the stochastic process v, defined by
ve =v(Xs,s) = —Hp(Vu(Xs, s) + P(s)),

for all s € [0,7], is indeed optimal. Let v € L(0,T;R?) and let (X)seo7) be the
solution to (2.5). By the It6 formula we have

T
w(Xp, T) —u(Xg,0) :/0 (Opu(XY,s) + Vu(XY,s) - vs + Au(XY,s))ds

T
+/ Vu(XY,s)-dBs.
0
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Taking the expectation of both sides, we obtain

E[u(Xg,0) — u(Xp, T)] = (a) + (b) + (¢),

T
@ =B [ (20) + (P)) + (XY, ) ds|.
0
T
(b) =-E / (Opu(X{, s) + Au(X{, s) = H(Vu(X{,s) + P(s)) + 7(X8”78))d8] :
0
T
(¢)=-E [/ (L(vs) + H(Vu(XY?,s) + P(s)) + (P(s) + Vu(XY,s),vs)) ds} ,
0
for any v € LIQF(O, T; ]Rd). Since u is solution to the Hamilton-Jacobi-Bellman equation,
we have (b) = 0. Moreover, by definition, u(x, T') = g(z) for any z € T?. Thus
Eu(Y,0)] = Z,p(v) + (c),

where we have used the initial condition X =Y. By the Fenchel-Young inequality, we
have
L(v)+ H(Vu(z,s) + P(s)) + (Vu(x, s) + P(s),v) > 0,

for any (z,5) € Q and v € R% The equality holds in the previous inequality when
v = —H,(Vu(z,s) + P(s)). As a consequence (c¢) < 0 for any v € L2(0,T;R%) and
(¢) =0 when v = v". This yields

Z,p(#") = E[u(Y,0)] < Z, p(v).

which proves that the control (vy)se(o,7) is optimal.

Partial differential equation control problem Sobolev spaces are denoted by
Wm™4(Q), the order of derivation n being possibly non-integral (following the definition
in [87, section II1.2]). We set

WZlg(Q) _ Wl,q(Q) N L0, T; W2,q(Td))’ Wl,O,q(Q) = L90,T; Wl,Q(’]I‘d)).

Let p > d + 2. The individual stochastic control problem has a partial differential
equation formulation given by

inf Z, p(m,v) = / (L(v) + (P,v) + v) mdadt +/ gm(T)dzx,
(mw)eER Q Td

where the set R is defined as the set of pairs (m,v) € W3LP(Q) x WH0:(Q) satisfying
the Fokker-Planck equation

om — Am+V - (vm) =0, m(0) = my.

The connection between the two problems is explained by the fact that given a feedback
function v, the solution m to the Fokker-Planck equation provides us with the probability
distribution of the solution to the closed-loop system (2.6). In the limit model with
infinitely many agents which will be introduced next, the Fokker-Planck equation will
describe the evolution of the distribution of the agents, assuming that they all employ
the same feedback v and that they are submitted to independent noises.
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2.1.3 Mean field games and couplings

Until now we have described an individual control problem where the two parameters
v and P were fixed. The purpose of mean field games is to consider a continuum of
identical players, each one optimizing its own criterion, while interacting with the others
through the coupling terms.

A fixed point problem In Section 2.1.2 we have explained how to characterize the
optimal control of a representative agent thanks to dynamic programming theory. We
introduce now a mean field game problem, in the form of a fixed point problem, where
the coupling terms v and P are not given anymore, but are part of the problem. They are
deduced from m and v via coupling functions. Let f: T? x D;(T?%) — R and ¢: R¥ — R?
be Lipschitz and bounded mappings. The mean field game problem is given by: find
(m,v) € R such that

(mv@) € ?;%vr)ré% Z’Y,P(mvv)v 7($’t) = f(x, m(t))v P(t) =9 (/’]I‘d U(x,t)m(x,t)dx) )
(2.7)

for all ¢ € [0,T]. This problem is a Nash equilibrium problem (see the link with (2.2) in
Section 2.1.1). It enjoys a fixed point structure: any (m,v) induces coupling terms ~ and
P via the coupling mappings f and ¢; and any pair of coupling terms (v, P) yields a pair
(m,v) via the optimization of the individual problem. Before describing the associated
mean field game system let us discuss congestion and price models.

Congestion models In congestion models, the interaction between the players occurs
through the congestion term f. This corresponds to the case where ¢ = 0 in the above
section. A natural situation to consider is the motion of a crowd where each player aims
to avoid congested regions penalized via the coupling f. The mean field game problem
is given by

(m,v) € z(argr)ni;zl Zyo0(m,v), ~(z,t) = f(z,m(t)),
m,v)e

for all t € [0, 7). In this situation the state x € T¢ of a player represents for example its
location in a room, a street, etc. The control v is the velocity of the displacement.

Price models In a price model, the interaction occurs through the price term P. This
corresponds to the case f(z,m) = 0 for any 2 € T, m € D;(T?) in the above section. A
classical situation is given by the Cournot competition model: each player minimizes its
cost while selling or buying on the market. The individual stochastic problem is given
by

(m,v) € argmin Zy p(m,v), P(t)=¢ </Td v(x,t)m(x,t)dx) ,

(mw)eER

for all ¢ € [0,T]. The vector of prices P(t) is a function of the aggregated demand
D(t) == [rav(z,t)m(z,t)dz at time t € [0,T]. Then in this problem, a representative
agent controls a stock level € T¢ composed of d different assets. In the definition of
the cost function Zy p, we can interpret P(s) as the price (at time s) associated with v;.
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Mean field game system We are now ready to present the mean field game system
with unknown (u,v,m,~, P), associated with the mean field game problem (MFGy ),

G {—ﬁtu—Au+H(Vu+P):% (z,t) € Q,
u(z, T) = g(x), z € TY,

(i) v=—Hp(Vu+P), (z,t) € Q,

(i) dm — Am +V - (vm) =0, (x,t) € Q, (MFGy.4)
m(0,x) = mo(x), x € T,

(iv) (=, t) = f(z,m(1)), (z,1) € Q,

(v) P(t)=2¢ (de v(x,t)m(x,t)) , te[0,T],

where u(x,t),m(x,t),y(z,t) € R, v(x,t) € R? and P(t) € R% The above system is a
coupled system of partial differential equations:

e Equation (i) is the Hamilton-Jacobi-Bellman equation, describing the evolution of
the value function of the individual problem.

e Equation (ii) defines the optimal control v.

e Equation (iii) is the Fokker-Planck equation, describing the evolution of the state
distribution of the agents. The term mg is the initial distribution of the agents.
Unless stated otherwise, solutions are understood in the sens of distributions.

e Equation (iv) defines the congestion and equation (v) the price.

The link between (2.7) and (MFGy,) is the following: any solution (u,v,m,~, P)
to the mean field game system (MFGy4) is such that (m,v) is solution to the Nash
equilibrium problem; for any solution (m,v) solution to the Nash equilibrium problem,
defining

ant) = flamie). PO =0 ( [ otw i), u=ubrl

the quintuplet (u,v,m,, P) is a solution to the mean field game system (MFGy ).

Fixed point structure of the mean field game system The mean field game
system (MFGy ) can also be viewed as a fixed point problem. This point of view is a
key tool for proving the existence of a solution, with the Schauder fixed-point theorem,
for example. We present here the dependencies between each variables of the coupled
system and we highlight the differences between congestion and price models. The
following graphic illustrates this structure for two cases: classical mean field games, that
is to say situations where ¢ = 0; and mean field games with interactions through the
controls which corresponds to the general case considered here.
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f
m Y
o
FP P HJB
¢ HJB
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v U
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Figure 2.1: Unknowns dependency graph: fixed point structure of the mean field game
problem.

The unknowns dependencies, in the context of classical mean field games, are repre-
sented by the black arrows. The structure is quite simple: given a congestion v, one can
compute the value function u solution to the Hamilton-Jacobi-Bellman (HJB) equation.
Then the gradient of u provides the optimal control v. Given an optimal control v, one
can compute the solution m to the Fokker-Planck (FP) equation. Finally the congestion
~ depends on m via the mapping f.

Mean field games with interactions through the controls have a more complex struc-
ture: there are additional dependencies, represented by the red arrows, due to the price
variable. Given a control v and a distribution m, one can compute the price P via the
mapping ¢. Then the price P yields a value u via the Hamilton-Jacobi-Bellman equation
and an associated control v. A proof of existence with a fixed point representation can
be found in [21].

2.1.4 Potential mean field games

Potential mean field games (also called variational in the literature) are mean field games
which can be interpreted as the first order conditions of two control problems called
potential problems. The first problem is a control problem of the Fokker-Planck equation
and the second one an optimal control problem of the Hamilton-Jacobi-Bellman equation.
There are several advantages in working with potential mean field games. They first offer
a different way (from fixed point approaches) to prove the existence of a solution to the
mean-field game, which can be deduced from solutions to the potential problems. Let
us mention that depending on the model, this approach can be delicate to follow (in
particular in the case of degenerate diffusion, see [34]). In addition, the potential form
allows to use optimization algorithms to solve the mean field game system, as we will
see in the next section.

In our framework, it is enough to assume that f and ¢ derive from potentials to
obtain a variational structure for the game. We say that f and ¢ derive from potentials
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if there exist two convex mappings F: D;(T%) — R and ® : R¥ — R such that

1
Fms) — F(my) :/0 [ Favsma+ (1= ym)ma(z) = m () dads,
P(z) = V.2(2),

for any my, ms € D1(T?), and any z € R*. We define the following criterion

T
J(m,v) —/ L(v)mdxdt—i—/ (F(m(t)) + o </ v(w,t)m(:r,t)dx)) dt—i—/ gm(T)dzx,
Q 0 Td Td
and the following control problem:

(m}lr)l)fERj(m’ v). P)

Due to the terms L(v)m and ® (f vm), the criterion of the above problem is not convex.
The idea is to study a closely related convex problem. We define the criterion

J(m,w) = /Q L(m, w)dzdt+ /0 ! (F(m(t)) + @ ( /T dv(m,t)m(z,t)dx)) dt+ /T _gm(T)da,

where L: Q x R x R? — R is the perspective function of L,

mL (w/m), if m >0,
L(m,w) =< 0, ifm=0and w=0,

400, otherwise.

Note that L is convex and lower semi-continuous with respect to (m,w). We define the
set

R = {(m,w) € W'P(Q) x W"P(Q), ym — Am +V -w =0, m(0) = mg} .

The criterion J and the set R are both convex so that the following problem is convex,

inf  J(m,v). (P)
(mw)eR

Provided that both problems have solutions (m,v) and (m,w) and that m(z,t) > 0 for
any (z,t) € @, the solutions of the two problems are such that v = w/m. We define the
dual criterion

T
D(u,~, P) = /11‘d u(z,0)mo(x)dz — /0 (F*(y(t)) + @* (P(t))) dt, (2.8)

and consider the dual problem

sup D(u,v, P), (D)
(u,'y,P)EL?

where U is the set of (u, 7y, P) € W2LP(Q) x L®(Q) x L>®(0,T;R¥) satisfying

—O0wu — Au+ H[Vu + A*P]
u(z,T)

Vs ($7t) € Q7

<
< (=), x € T
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Duality and link with the mean field game system Here we exhibit and explain
the existing links between the above potential problems and the mean field game system.
The following presentation is not a proof, rather a summary of the link that are expected
to hold under suitable assumptions.

DC+CV

DC FOC

Figure 2.2: Summary of the links between (P), (P), (D), and (MFG ).

Let (m,,4,%, P) be a solution to (MFGy,), for the sake of simplicity we assume
that m(x,t) > 0 for any (x,t) € Q. We define the change of variable “a la Benamou-
Brenier” w = mv and we have v = w/m by uniform positivity of m. We first present

how to obtain a solution to (P), (D), and (P).

DC: By a direct calculus (essentially integration by parts) it is direct to show that any
solution to (MFGy ) yields a solution to (P).

DC+CV: By a direct calculus (still integration by parts) and a change of variable
w = mw, any solution to (MFGy ) yields a solution (m,w) to (P) and a solution

(4,7, P) to (D).

We now explain the link between (P) and (P). This link can be helpful since it
is sometimes easier to show the uniqueness of a solution to (P) and then deduce the

uniqueness of a solution to (P).

L: The link between (P) and (P) is given by the perspective function and the change
of variable “A la Benamou-Brenier”. For any solution (7, @) of problem (P), we
have that (m, v = w/m) is solution to (P). Any solution (m,v) to (P) is such that
(7, @ = m®) is solution to problem (P). In addition the values of both problems
are equal.

We finally explain the link between the primal problems (P) and (D). We also
explain why the solutions to those problems are solutions to the mean field game system
(MFGy4).

Dual: Problems (P) and (D) are formally in duality. To establish such result, a classi-

cal approach is to use the Fenchel-Rockafellar Theorem [109]. Depending on the
framework, the choice of the function spaces might be a delicate issue (see [34] for
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the second-order degenerate case). In the discrete setting, this result is at the heart
of primal-dual numerical methods.

FOC: The mean field game system can be interpreted as first-order conditions for the
potential problems (P) and (D). One can verify that for all solutions (mm, @) to (P)
and for all solutions (@, ¥, P), the quintuplet (m,v = w/m,u,7, P) is a solution to
(MFGy,4). In chapter 4, in a discrete setting, we use the Fenchel-Young inequality
to establish such result.

2.1.5 Numerical methods

The numerical resolution of mean field games has received significant attention over
the last years. We refer the reader to the two surveys [6, 91] for an overview. Here
we provide a synthetic presentation and a simple classification. We distinguish two
approach: a MFG system based approach and a Potential approach. The first approach
consists in solving directly the mean field game system via learning or Newton methods.
The second approach consists in minimizing a potential whose solutions satisfy the mean
field game system, via primal-dual or saddle-point methods.

Approach: Class: Methods:
Fictitious play [35, 55, 77, 103]
MFG system Learning Reinforcement learning [9, 50, 75, 117, 119]

Online mirror descent [76, 101]

Newton algorithm [3, 4, 5, 96]
Gauss-Newton algorithm [30, 31]
Conditional gradient (Frank-Wolfe) [62]
Generalized conditional gradient [24]
Primal Sinkhorn [16]

Stochastic gradient descent [42, 43]
Uzawa’s algorithm [18]

Lagrangian based [15, 17, 22, 97, 112]
Primal-dual proximal methods [22, 27, 28]

Newton

Potential

Saddle-point

Figure 2.3: Classification and summary of numerical methods for mean field games.

Learning methods are agent based methods: they adopt the point of view of a rep-
resentative player. Learning algorithms go as follows: at each step, for a given belief
on the strategy of the others, any representative agent computes its best response; then
he/she learns by averaging all the best responses found from the beginning of the learning
procedure. The learning question is central in game theory [60], and the fictitious play
algorithm has an interpretations in social science or in engineering: Nash equilibria can
be reached if all agents follow their personal interests, play the game sufficiently many
times and repeatedly update their beliefs.

The starting point of the Newton methods is to consider the mean field game system
as a problem of the form f(z) = 0 for some differentiable function f of the unknowns x
(typically the value function, the distribution of the agents, the coupling terms). To solve
such problem, a Newton algorithm can be employed for example as in [5]. Notice that in
the latter reference, due to the dependency between each variables of the problem, the
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authors are able to recast the Newton algorithm as a fixed point method for the coupling
variables.

In full generality these first two classes do not require any potential form of the
game, even if in practice, a potential form or the monotony of the coupling terms can be
assumed to ensure uniqueness of a solution and the convergence of the method. Notice
that in [5], the authors do not assume monotonicity of the coupling terms.

On the contrary, the potential approach is based on the minimization of potential
problems. In this approach we can distinguish between two class of methods:

1. Primal methods (resp. dual), based on the minimization (resp. maximization) of
the primal (resp. dual) problem. In this category we find the conditional gradient
algorithm, the generalized conditional gradient algorithm, Sinkhorn’s algorithm
and the stochastic gradient descent algorithms.

2. Saddle point methods are methods that explicitly exploit the primal-dual struc-
ture of the potential problems. In this category we have the Lagrangian methods
(ALG2, ADMM, ADM-G) the primal-dual proximal methods, and Uzawa’s algo-

rithm.

Among all these references, only [5, 22, 24, 96] are related to mean field games with
interactions through the controls.

2.2 Contributions

We now present the different chapters of the thesis. From now on, the notations are
specific to each section. The following sections are structured as follows: summary of the
framework and main objectives of the study, comparison with the literature, presentation
of the model, presentation of the main results and the methodology, and finally some
propositions of extensions or applications. The chapters of the thesis are independent
and can be read in any order.

2.2.1 Chapter 1: Discrete-time mean field games with risk-averse agents

Framework and objectives The first chapter of the thesis is dedicated to the study
of a discrete time mean field game model with risk averse agents. The risk aversion
is modeled via coherent risk measures. In many economic situations, risk modeling is
of interest, in particular in the banking industry [98]. This work is motivated by the
development of mean field games in finance [36, 56], banking [40, 44], energy systems [8]
or network systems [19], where risk and robust controls are central questions.

Here risk aversion is modeled with the help of composite risk measures (also called
dynamic risk measures). Mathematically, a risk measure p is a map that assigns to a
random variable U a real number, which is usually high when U is very volatile. In this
way p can be used to model the reluctance of a player to face highly uncertain expenses.
We refer to the seminal work by P. Artzner, F. Delbaen, J-M. Eber and D. Heath in [10].
We will make use of composite risk measures, the natural extension of risk measures to
a multistage framework, see for example the article of A. Shapiro and A. Ruszczyriski
[111]; for an application to multistage portofolio selection one can refer to A. Shapiro
[116].
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In this chapter we study a population of identical agents which all optimize a linear
discrete-time dynamical system (in a continuous state space). In the model, the associ-
ated cost function depends on a variable called belief, which is related to the behavior of
the whole group, whence a coupling between a single agent and the population. Assuming
that the population is very large, one can consider that an isolated representative agent
has no impact on the belief. Therefore his/her behavior can be conveniently described by
dynamic programming equations, in which the belief is a parameter. Assuming that all
agents make use of the same feedback control, the distribution of their state is described
by a Kolmogorov equation. Finally for any given distribution and control, the agents
formulate a belief on the state action distribution.

Comparison with the literature Discrete-time and continuous-space mean field
game models have been studied in different works. The framework that we propose
in this article is close to the one of N. Saldi, T. Bagar and M. Raginsky [113], in partic-
ular, we make use of similar weighted spaces. A few works have already investigated the
issue of risk aversion. Most of them model risk sensitivity via exponential utility func-
tions, see for example H. Tembine, Q. Zhu and T. Basar [118]. The case of robust mean
field games is investigated in problem (P2) in the work of J. Moon and T. Basar [95].
From the risk-aversion modelization point of view, our work is closer to the reference
[13], which investigates robust mean field games in the continuous time setting.

The model Let us fix T € N*, let us set 7 := {0,...,T— 1} and T == {0,...,T}. We
first define the running cost £: 7 x R? x R% x By — R by

1
((t 2, 0,b) = - lal* + (a, P(t,0)) + F(t,2,b),

where F': T x R? x By — R is a congestion function and P: 7 x By — R% is a price
function. The set By = (P2(R??))T x Py (R?) is the set of beliefs; here we use the notation
P2(X) for the set of probability measures on X with finite second order moments. Let
m € Po(R?) be an initial distribution and let (v(t))ie7 € (P2(R?))T be the individual
noise distributions.

In this chapter we study the following risk averse mean field game system:

u(t,z) = inf (f(t, x,a,b) + sup / u(t+1l,x4+a+ y)df(y)) ,
R4

(i) acRd ceM,
U(T7 ':U) = F(T7 $7 b)?

(ii) oy(x) = argmin [ £(¢,z,a,b) + sup / ut+ 1,z +a+y)dé(y) |,
a€R? EeM; JRY

(p-MFG)
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for any (t,r) € T x R% The unknowns of the problem are: the value function u, the
feedback control «, the distribution of states m, the joint distribution of states and
controls p and the belief b.

We will describe in the next paragraph the optimal control problem leading to the
dynamic programming equations (i) and (ii). These equations involve the sets M, defined
by

M, = {g e P(RY), d¢ = Zdv(t), Z € zt} ,

where (Z;);e71 is a family of given nonempty and convex subsets

Z, C {Z e L>®(RY), /

Z(y)dv(t,y) =1, Z > O} , VteT.
Rd

Remark that in the particular case where the set M, is the singleton {v(t)}, we recover
dynamic programming equations corresponding to the risk neutral case.

Risk measures and individual control problem We define here the individual
control problem. We introduce first a general notation: given a tuple (yo,y1, ..., yr), we
write Y = (Yo, .-, y¢). Let Xo and (Yi)ie7 be (T + 1)-independent random variables
defined on a probability space (2, F,P). Let £(Xo) = m and L£(Y;) = v(t). We define
the filtration (F;)ie7, where Fy := o(Xp) is the sigma-algebra generated by Xy, and
Fir1 = 0(Xo,Yy). We denote for any ¢ € 7 and any p € [1,+00)

LP(Q,RY) := LP(Q, F;, P,RY),

the space of F; measurable random variables with finite p-th order moment and value in
R?. When the dimension is d’ = 1, we simplify the notation: L¥ := LP(2, R).

We fix a family of one-step conditional risk mappings (p)tet, pt: LL}H — L}, defined
by

pt(Ues1) (2o, Y1) = sup /QUt+1($07y[t—u,Yt(w))Z(Yt(w))dP(w), (2.9)

where the random variables U1 and p;(Ui11) are explicitly represented as measurable
functions of (wo,ypy) € R(t+2)d and (z0,Yj1—1)) € RtV respectively. By definition of
M, we have

Pt(UtH)(ﬂEo,y[f;—u): SUP/ Ut+1($0,y[t—l},yt)df(yt)-
feM, JRA

Finally we construct the associated composite risk measure p: LlT — R,
p(U) =Elpgo---opr_1(U)].

Now we are ready to describe the individual risk averse control problem of each agent
for fixed belief b € By. Given a control A € A= Ay x -+ x Ap_q, with A; = L?(Q, Rd)
for any ¢ € T, the evolution of the state of the representative player is given by

Xep1=Xe + A+ Y, VieT.
Note that by induction, X; € LZ(2,R?) for any ¢ € T. The problem of the representative

agent is given by

T-1
inf A b) = X;, A F(T, X .
/IXIEIAJ( >b) P (Z g(ta ty t7b> + ( 9 Tab)>

t=0
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The dynamic programming equations (i-ii) allow to characterize the solution to the above
problem. To motivate this assertion, observe that the individual control problem can be
recasted in the following nested form:

inf J(A,b) =E| inf ¢(0, Xy, Ag,b inf £(1,Xq1,A1,b) + -
AIEI.AJ( 7) |:Aér€l.»40(, 0y 410, )_'_pO(AiIEl/h (7 1,411, )+

+,0T—2< inf E(T— 1,XT_1,AT_1,b) + pr—1 (F(T,XT,b)>> >:|
Ar_1€AT 1

Recalling that for any ¢ € 7, the conditional risk measure p; can be written as a supre-
mum by (2.9), one can show (Proposition 3.3.5) that

inf J(A,b) =E|[u(0,Xp)].
nf J(4,b) = E[u(0, Xo)]
In addition the unique solution « to equation (ii) provides the unique solution

A = (ap(Xo), ..., ar—1(Xr_1))

to the individual control problem, where (Xt)teT is the solution to the closed-loop system

Xt+1 = Xt + Oét(Xt) + }/t, ,C(X[)) = my, VteT.

We can finally give an interpretation of the remaining equations in the model. Equa-
tion (iii) yields the probability distribution of the state variable (X;),c7, solution to the
above closed-loop system. Equation (iv) yields the probability distribution of the pair
(Xt, Ay). Finally, the belief b is defined through equation (v).

Methodology and main results Our first result is an existence result, obtained with
a standard fixed point approach (see for example the approach followed in the proof of [32,
Theorem 3.1]). Under suitable assumptions on the data (essentially Lipschitz continuity
of the congestion and price mappings, but no monotonicity assumptions) we have the
following:

m Existence: There exists a solution (u, a, m, u,b) to the mean field game system.

Our approach for proving the existence of a solution consists in formulating the system
(p-MFGQG) as a fixed point equation. For this purpose, we consider two mappings. The first
one, that we call dynamic programming mapping, assigns to a belief b the solutions u*(b)
and a*(b) to equations (p-MFG,i) and (p-MFGi,ii), respectively. The second one, the
Kolmogorov mapping, assigns to a feedback control « the triplet (m*(a), u*(«), b*(x)),
where m*(«), p*(a), and b*(«) are the solutions to (p-MFGiiii), (p-MFG,iv), and (p-
MFG,v), respectively. They allow to reformulate the system (p-MFG) as an equivalent
fixed point equation

b="b"oa”(b).

Then the result is obtained by a Schauder’s fixed point argument. The main difficulties
to obtain such result concern: the choice of functional spaces for the variables of the
problem and the proof of the continuity of the mapping a*.

Now we turn to our second main result, concerning the link between the mean field
game model and an N-player game. Let us first define the N-player game. Let N =

{1,..., N} be the set of players. For any vector (z!,...,z") we denote
x = (' ..., 2"),
x=t = (b, .. 2t ),
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We consider independent random variables (X{)ien and (Y);enr te7, such that £(X}) =
m and L(Y}) = v(t). We define the filtration (F;),c7 as follows: Fy = o(Xp) is
the sigma-algebra generated by Xo, Fi11 = 0(Xo,Y}). We denote L2(Q,RY) =
L*(Q, F;,P,RY) the space of F; measurable random variables with finite 2-nd order
moment and value in R%. For any t € T, we consider the control set

A = Lf(Q,Rd), A=Ay x - x Ar_;.

The control of player i € A is an adapted stochastic process A° € A, whose associated
trajectory (X/[A']);c7 is defined by the following state equation

=X+ A+ Y

For any A = (A’, A=%) € A", the cost of each player i € A is given by

T-1
TH(ALAT) = (Z 0(t, Xi[A"), A, b)) + F(T, Xp[A'], bﬁ)) :
t=0

where p' is the individual risk measure (see Section 3.6.1, in particular notice that players
are risk averse with respect to their individual noise only) and bﬁ is the empirical belief
(that is to say the N-player counterpart of the belief b).

Now we construct an approximate solution to the game, deduced from a fixed solution
(@, @,m, fi,b) to the mean field game system. We denote (X}),c7 the solution to the
closed-loop system ‘ ‘ A A

1 = Xp +a(Xg) + Y4

We define the control A* € A by A} = a;(X}) and we set A = (A',... AN).

m ¢-Nash equilibrium in the N-player game: There exists a constant C' > 0,
independent of N, such that the N-uplet A defined above is an e-Nash equilibrium,
that is to say

ji’N([li, A—z) < i‘nf ji,N(Ai’ A—z) + e,
Atc A
with € :== CN~"/2 and 7 > 0 depending only on the dimension d of the state space.
In addition we have that

T N(A) = TI(A,b)| < CN"T/2,
where J4(A,B) = pi (th;Ol 0(t, XI[AY, AL, b) + F(T, X}[Aﬂ,l?)) .

The proof consists in two main steps. In the first step, we estimate the distance between
the empirical belief b% of the N-player game and the belief b of the mean field model.
This is done via concentration inequalities [58]. This allows us to estimate the sensibility
of the criterion J%V(A?, A=) with respect to its second variable, in a second step.

Extension and applications Let us discuss some possible extensions and applications
of this work.

» In our analysis we require the uniqueness of the feedback «, in particular to apply
the Schauder’s fixed point theorem. Recall that « is characterized via equation
(ii). In order to prove the uniqueness of the optimization problem involved in (ii),
we need to ensure that the value function is convex, which can be achieved by
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assuming that the congestion terms and the running cost are convex. We think
that the non-convex case can be treated following the ideas developed in [113] and
would rely on Kakutani’s fixed point theorem and would require that the set of
strategies is compact.

» The risk measures that we consider here do not have the most general structure
possible. In our setting, the sets M; are fixed. In [110], these sets depend on
the current state and control (see in particular Sections 4 and 5). In this more
general context, it is still possible to derive a dynamic programming principle for
the underlying optimal control problem (see [110, Theorem 2]). However, the
convexity of the value function, which plays an important role in our analysis, is
lost in such a setting.

» Another possible extension is to consider common noise in our framework. Two
cases could be distinguished, depending on whether or not the agents are risk averse
to the common noise. In the risk neutral and continuous case, this extension
is classical and leads to the study of a master equation (an infinite dimensional
Hamilton-Jacobi equation posed over the space of probability measures). We refer
the reader to [33, 39, 86]. But up to our knowledge, there is no work available
about a master equation in discrete time and continuous space setting. A first
step, which does not necessitate to introduce the master equation, could be to
consider a common noise described by a finite scenario tree. This would require to
make the variables of the game depend on the scenarios.

» A last direction concerns numerical methods. Up to our knowledge, no poten-
tial formulation is available in this framework. As a consequence, only learning
techniques do apply: one could for example combine the stochastic dual dynamic
programming method [100] to solve the risk averse dynamic programming equation
with the fictitious play algorithm.

2.2.2 Chapter 2: Discrete potential mean field games

Framework and objectives In the second chapter of the thesis, we propose and
study a discrete time, discrete state space potential (also called variational) mean field
game problem with hard constraints. In our framework, the dynamical system of each
agent is a Markov chain, with controlled probability transitions. The congestion -y is
linked to the distribution of the agents via the subdifferential of a proper convex and
l.s.c. potential F'. The price P is related to the joint law of states and controls of the
agents via the subdifferential of a proper convex and l.s.c. potential ¢. We consider hard
constraints, which means that the potentials F' and ¢ can take the value +o0o and thus
induce constraints on the distribution of the agents. Our results are motivated by the
study of discrete models as such but can be applied to discretized MFGs.
The chapter is organized in three parts:

1. The first part is devoted to the theoretical analysis of the MFG system. We first
introduce a potential problem, involving the Kolmogorov equation, closely related
to another optimization problem, which is convex. This second problem is obtained
via a change of variable, similar to the one commonly employed in the continuous
setting (e.g. in [14]). Under a suitable qualification condition, we establish a duality
result between this problem and an optimal control problem involving the dynamic
programming equation. We show the existence of solutions to these problems and
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finally we show the existence of a solution to the MFG system. A uniqueness result
is proved (when F' and ¢ are differentiable).

. The second part is devoted to the numerical resolution of the MFG system. We

focus on two families of methods: primal-dual methods and augmented Lagrangian
methods. These two classes exploit the duality structure of the potential problems
and can deal with hard constraints. They have already been applied to continuous
MFGs, see for example the survey article [6].

In the third part we propose and solve numerically two hard constraints problems:
a congestion mean field game problem and a “Cournot” mean field game. Following
our analysis we define a notion of residuals allowing us to compare the empirical
convergence of each method in a common setting.

Comparison with the literature Few publications deal with fully discrete models;
in a seminal work, D. Gomes, J. Mohr, and R. R. Souza [65] have studied the existence of
a Nash equilibrium via a fixed point approach and investigated the long-term behavior of
the game. Up to our knowledge, this study is the first to analyze discrete and potential
mean field games. In the continuous case, four classes (summarized in the figure 2.4) of
variational mean field games can be identified. Our model is general enough to be seen
as the discrete counterpart of these four cases.

Soft Hard
7 Case 1 (y=VF): Case 2 (y € OF):
[17, 34, 89, 106] 38, 93, 114, 115]
Case 3 (P =V¢): Case 4 (P € 0¢):

¢ 21, 67, 68, 70, 72] [66]

Figure 2.4: Literature for soft and hard interactions in potential mean field games.

The
T =

Case 1: MFGs with monotone congestion terms (F is differentiable, ¢ = 0).

Case 2: MFGs with density constraints (F' has a bounded domain, ¢ = 0). These
models are of particular interest for describing crowd motions. The coupling vari-
able v has there an incentive role.

Case 3: MFGs with Cournot interactions (F' = 0, ¢ is differentiable). In this
situation, each agent optimally chooses a quantity to be sold at each time step
of the game. Interactions with the other players occur through the gradient of ¢
which maps the mean strategy (the market demand) to a market price.

Case 4: MFGs with price formation (F' = 0, ¢ has a bounded domain). These
models incorporate a hard constraint on the demand. The price variable is the
associated Lagrange multiplier and has an incentive role.

model Let 7' € N* be the duration of the game. Let 7 = {0,...,7 — 1} and
{0,...,T}. Let S = {0,...,n — 1} denote the state space and A(S) = {m: S —

[0,1]] > cgm(x) = 1} be the simplex over S. Given a finite set X, we denote by R(X)
the set of maps from X to R (i.e. R(X) = RX). With this notation at hand, we define

30



CHAPTER 2. INTRODUCTION 2.2. CONTRIBUTIONS

the following spaces:

R= R(T x8) xR(T x S?), U= R(T x8) xR(T),
C= RxR(T xS)xR(T), K= R(T xS)xU.

We fix an initial distribution mo € A(S) and four maps: a running cost ¢, a potential
price function ¢, a potential congestion cost F', and a displacement cost «,

0: T xSxR(S) = RU{+o0}, ¢: T XR—=RU{+0},

F: T xR(S)— RU{+o0}, a: T xS?—=R
Assumption 2.2.1 (Convexity). For any (t,s,z) € T xT xS, the maps {(t,x, ), F(s,-),
and ¢(t,-) are proper, convexr and lower semi-continuous. In addition dom(£L(t,x,-)) C

A(S).
We define the individual cost ¢: T x S x § x A(S) = R,

e p(t .y, p) = Ut p) + (L, 2) + alt, 2, y) P(D),

which is the cost of moving from state x € S to state y € S at time ¢t € 7 when the
control p € A(S) is implemented by the agent, given the coupling terms (v, P). When
an agent is at state z at time ¢ and plays the control p, he reaches the state y at time
t + 1 with probability p(y).

The mean field game problem under study is the following: find a quintuplet (m, 7, u,~, P)
such that for any (¢,s,2) € T x T x S,

;

t f t bl t 1) )
. u(t,e) = inf Zp (C% ,y,p) +u(t + y))

u(T,x) = (T, w),

(i) w(t,z,) €arg min > ply)(cyp(t2,5,p) +u(t + 1,y)),

pGA(S) yes
t+1 .%' th y t yax)v (8—MFG)
(iii) yes
m(O,:E) = m[)(ﬂf),

(iV) ’7(57 ) € 8F(57m(57 ))a

(v) P(t)eog|t, Z m(t,x)m(t, z, y)a(t, z,y)

(z,y)€S?

The unknowns of the system are ((m, ), (u,7y,P)) € R x K. They can be described
as follows: u(t,x) is the value function of the agents; 7 (¢, x,y) denotes the probability
transition from = € S to y € 9, for agents located at x at time ¢; m(¢,z) denotes the
proportion of agents located at € S at time ¢t € T; v and P are the coupling terms of
the MFG: ~(t, ) is a congestion term incurred by agents located at x € S at time t € T
and P(t) is a price variable.
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The potential problems We introduce the operator A: R(7 x S2) — R(T) and the
operator S: R(T x S?) — R(T x S), defined by

Zyesw(s —1,y,z) if s >0,

Alu)(t) = > w(t,z,y)alt,z,y), S@M&m%Z{O if s = 0.

(z,y)€S?

To study the mean field game system, we define four problems. We define the following
minimization problem

min_J(m,7) =Y Lnr|tz)m(t,z)+ Y ¢lAw](t) + Y Flm](s)

(m,m)ER (tz)eT xS teT S .
s.t.: m(t+ 173:) = ZyES ﬂ-(t7y7x)m(t7y)7 (t,IE) e T x Sa
m(0,z) = mo(z), x €S,

where £ is the Nemytskii operator associated to ¢ and £ is the perspective function
associated to £. We also define the convex optimization problem (that we call primal
problem)

min J(m,w) = Z £lm, w](t,z) + Z P[Aw|(t) + Z Fm|(s)

(mw)eR (t,2)ET xS teT seT (f’)
y m(t+1,2) =3 cqwtyx), (tz)€T XS,
m(0,z) = mo(zx), xeS.
We define the following dual problem
e D, P) = (mo,ul0) — S 6P — 3 PRl
’ teT seT ~
) e AP - SN r) <A(te), (La) €T xS, (D)
o u(T,z) =~(T,z), z€S.

Finally, let Uly, P] be the solution to the dynamic programming equation (9-MFG,i),
for fixed coupling terms (v, P). We define the problem

D(~., P) = D(Ul~, P],~, P). D
e (v,P) (Uly, P,~, P) (D)

Methodology and main results A first part of the results concerns existence/uniqueness
of a solution to the mean field game system. Let us start with the following:

m Existence and uniqueness: There exists a solution (m,m,u,~, P) to (0-MFG).
If F and ¢ are differentiable then (u,~, P) is uniquely defined. If F' and ¢ are
strictly convex then (0-MFG) has a unique solution.

Then we explain the link between all the optimization problems and the mean field
game system. The following results hold under the following qualification assumption.
For any € = (e1,e2,63) € K and 7 € dom(€) we define mj[e, 7] the solution to the
following perturbed Kolmogorov equation

my(t+1,z) Zml (t,y)m(t,y,z) —e1(t+ 1, x), m1(0) — e1(0) = my.
yeSs
We also define, for any (¢,z,y) € T x S x S,

wle, 7|(t,z,y) = male, 7|(t, x)7(t, x,y)
mole, 7| (t,x) = male, 7|(t, z) + e2(t, x)

Dle, 7|(t) = Z($7y)652 wle, 7| (t, z,y)a(t, z,y) + 3(t).

32



CHAPTER 2. INTRODUCTION 2.2. CONTRIBUTIONS

Assumption 2.2.2 (Qualification). There exists a > 0 such that for any € = (e1,€2,€3)
in IC with |le|| < «, there exists m € dom(£) such that

mile, ] >0, male, 7] € dom(F), Dle,n] € dom(¢p).

We provide a graphical representation to summarize the results. The labels on the
arrows correspond to one or several results proved in the chapter, that we have recast
here for presentation purpose.

L Dual U
< > — < >

DC+CV

DC FOC DC

Figure 2.5: Summary of the results obtained in Chapter 4.

s Dual: Problem (P) and (D) are in duality.
m DC+CV: Let (m,m, u,v, P) be a solution to (0-MFG). Then (m,w = mm) is

solution to (P) and (u,~, P) is solution to (D).

m FOC: Let (m,w) be a solution to (P) and (u, 7, P) be a solution to (D). Let w be
such that for any (¢,z) € T x S, n(t,x,-) = w(t, x,-)/m(t,x) if m(¢t,z) > 0 and

n(ty2,) € argmin (2, 0) + 3 ply) (P(alt, 2,9) + ult + 1,9))
PEA(S) y€S

if m(t,x) = 0. Then (m,m,u,~, P) is a solution to (O-MFG).

» L: We have val(P) = val(P). By the “Benamou-Brenier” change of variable, any

solution to Problem (P) provides a solution to Problem (P) and vice-versa.

m DC: Let (m,m, u,~, P) be a solution to (O-MFG) then (m, ) is solution to (P),
and (v, P) is solution to (D).

» U: Problems (D) and (D) have the same value. Moreover, for any solution (u,~, P)

to (D), (7, P) is a solution to (D); conversely, for any solution (v, P) to (D) (there
exists at least one), (U[v, P],~, P) is a solution to (D).

A second part of the results concerns numerical aspects. We investigate the numerical
resolution of the primal and dual problems in the hard constraint case for both congestion
and price problems. We investigate different numerical methods: primal-dual proximal
algorithms (called Chambolle-Pock and Chambolle-Pock-Bregman) [45, 46], alternating
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direction method of moments (ADMM)[61, 64], and Gaussian back alternating direction
method (ADM-G) [78]. The numerical methods are saddle-point methods which rely on
the following primal-dual formulation:

inf F(mi,w,mg, D) + G(A(m1,w, ma, D)) =

(m1,w,me,D)eC
inf P _“4* ) aP + * ) aP )
i (=A*(u,7, P)) + G"(u, 7, P)
where the maps F: C - RU{+oo} and G: K — RU{+o0} and the operator A: C — K
are defined by

F(mi,w,me, D)= > Lmi,w)(t,x)+ ) @[D](t) + Y Flmo(s),

(t,x)ET XS teT seT

Gy, y2,y3) = x(y1 +mo) + x(y2) + x(y3),
A(my,w,me, D) = (Sw—mq,m; —mag, Aw — D).

The idea is to introduce additional variables to decouple the perspective function from
the potential mapping in the criterion F. This formulation is important in our numerical
implementation. Indeed our numerical methods require to compute the proximal opera-
tor of F at each step. This way, the proximal operator of F can be decomposed as the
concatenation of three tractable proximal operators. The coupling between the variables
is recovered in the term G(A(m1,w, ma, D)). The counterpart of this decoupling is the
increase of the number of successive minimization steps that have to be done in ADMM.
Then convergence guarantee are lost for the latter algorithm since we are not in the
ALG2 framework. However, we implement a close method called ADM-G which offers a
convergence guarantee. We summarize in the following table the convergence guarantee
for each method.

Method Convergence
guarantee

ADMM No

ADM-G Yes

Primal dual
Chambolle-Pock rimal dual gap
convergence O(1/k)

Primal dual
ChambOHe—POCk—Bregman rimal dual gap
convergence O(1/k)

Figure 2.6: Convergence guarantee and execution time.
The concrete examples we solved can be found in Section 4.6.

Applications Let us discuss some possible applications of this work. In the following
applications, one should carefully show that the qualification condition (presented above)
holds, in particular when the transition probabilities are constrained.

» A direct application of this work concerns mean field game planning problems.
In those problems, we are interested in moving a crowd of identical and rational
agents from an initial spatial density to a desired target density mp € A(S) at a
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final time horizon 7' > 0. The interested reader can refer to the studies [3, 69, 99]
on the subject. The mean field game planning problem is given by (0-MFG) with
F(T,m(T,-)) = x(m(T,-) —mp(-)). In this situation, the variable (7', -) plays an
incentive role to ensure the constraint to be satisfied at final time 7.

In fact, one could also prescribe at any time the density m(t,-) via a mapping
E(t,m(t,-)) = x(m(t,-) — my(-)) with m; € A(S) for any ¢t > 0.

» The same idea applies for the price. Instead of considering the price as a function
of the aggregated behaviors, one can prescribe a quantity D(s) that should be
satisfied by the aggregation of the behaviors Aw(s) for any s > 0 (see [66] for
an application to the electricity market). This condition can be encoded with the
function ¢(s, Aw(s)) = x(Aw(s)— D(s)). In this situation, the price variable P(s)
only play an incentive role to ensure the constraint to be satisfied at time s.

2.2.3 Chapter 3: Generalized conditional gradient and learning in po-
tential mean field games

Framework and objectives In this chapter, we study the generalized conditional gra-
dient algorithm to solve potential mean field game problems. We consider the continuous
and finite time framework formulated in [21], consisting of a Hamilton-Jacobi-Bellman
equation, a Fokker-Planck equation, and other coupling equations. The generalized con-
ditional gradient method is an extension of the conditional gradient method, also called
Frank-Wolfe algorithm. We show that the generalized conditional gradient method can
be interpreted as a learning procedure called fictitious play. More precisely, each step of
the generalized conditional gradient method amounts to compute the best-response of
the representative agent, for a predicted value of the coupling terms of the game. This
perspective allows us to:

1. Borrow and apply classical tools from the conditional gradient theory and derive,
under suitable assumptions, convergence rates for the potential cost, the different
variables generated by the fictitious play algorithm, and the exploitability;

2. Show that the notion of exploitability from game theory is equivalent to a notion
of primal-dual gap (called primal gap certificate in the Frank-Wolfe literature).

The main results of this chapter deal with the well-posedness of the generalized condi-
tional gradient algorithm and its convergence to the solution of the problem. The well-
posedness is established with the help of suitable regularity estimates for the Hamilton-
Jacobi-Bellman equation and the Fokker-Planck equation. We show that for the learning
sequence O = 2/(k + 2), the potential cost converges in O(1/k), the exploitability and
the variables of the problem (distribution, congestion, price, value function and control
terms) converge in O(1/v/k), for specific norms.

Comparison with the literature Up to our knowledge, this is the first contribution
to consider the generalized conditional gradient algorithm in the mean field games liter-
ature, in a PDE setting. However, in a discrete setting, the conditional gradient method
has been studied in the recent reference [62]. In the latter reference, the link with the
fictitious play algorithm is also established.

Similarly to [62], we use the standard convergence results of the conditional gradient
method to prove that the potential cost converges at a rate O(1/k) and the exploitability
at a rate O(1/v'k), when 6, = 2/(k + 2).
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In comparison with [62], the main novelty of our work (besides the different analytical
framework) is the proof of convergence of all variables of the game: the coupling terms
(price and congestion), the distribution of the agents, and their value function, at a rate
O(1/Vk). A key tool for the proof of convergence is a kind of quadratic growth property
satisfied by the potential cost, which itself follows from the (assumed) strong convexity
of the running cost of the agents.

Let us mention that we also provide convergence rates for the case o = 1/(k + 1)
which is more standard in the fictitious play algorithm: O(In(k)/k) for the potential
cost, O(y/In(k)/k) for the exploitability and the different variables of the game.

The model In this chapter, we follow the framework developed in [21]. Following the
latter reference, there exists a unique classical solution to (m,v,u,, P) to

( (0 {—8tu—Au+H[Vu+P] =7, (x,t) € Q,

u(z,T) = g(x), r €T,

(i) v=—HpVu+ P, (z,t) € Q,
(i) om —Am+V - (vm) =0, (x,t) € Q, (MFG)

m(0,x) = mo(z), r e Te,

(iV) 7(x>t) = f(x,t,m(t)), ($,t) €qQ,

| (v) P(t)=2¢ (de U(m,t)m(x,t)) , t €[0,7],

where @Q := T¢x [0, T]. The unknown (m,v,u,~, P) is such that m(z,t) € R, v(x,t) € RY,
u(z,t) € R, y(x,t) € R, and P(t) € R?, for any (x,t) € Q. The equation (MFG.i) is a
Hamilton-Jacobi-Bellman equation and describes the evolution of the value function as
time goes backward. Equation (MFG,ii) defines the optimal control v, which is given by
the gradient H, of the Hamiltonian. Equation (MFGiiii) is a Fokker-Planck equation,
describing the evolution of the state distribution of the agents. Equation (MFG,iv)
defines the congestion v and equation (MFG,v) the price P.

Generalized conditional gradient The generalized conditional gradient algorithm
is a generalization of a method called conditional gradient or Frank-Wolfe algorithm,
first developed in [59]. The method is designed to minimize convex objective function
under a bounded and convex constraint: consider the optimization problem

min f(z) = fi(z) + fa(x),

zeK

where K is a convex and compact subset of R™ of finite diameter D, f; is a (possibly
non-smooth) convex function and f2 a continuous differentiable function with L-Lipschitz
gradient. We consider the mapping h: K x K — R defined by

hz,y) = fily) — fi(z) + (Vfa(z),y — z).
The mapping h can be seen as a first-order Taylor approximation of f(y) — f(z), where

only fo is linearized. Let (x)ren € [0, 1] a sequence of step sizes. The method generates
iteratively two sequences (Zy)ren and (zp)ren in K. At iteration k, Ty is available and
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(zk, Tr41) is obtained as follows:

xp = arg min h(Z, y),
yeK

Try1 = (1 = 6k) Tk + OpTs

The purpose of our study is to adapt the generalized conditional gradient method
presented above to compute the solution of the mean field game problem. As mentioned
in the Section 2.1.5, several methods are available to solve potential mean field games.
Here we present a new approach, and exhibit its links with the fictitious play algorithm.
In our context, the objective function to be minimized is the following potential cost

inf J(m,w) ::/QIN/[m,w]dxdt+/OT <F[m]+<I>[/Td w]> dt—l—/ngm(T)dx (B)

(maw)eR
where R is the set of all (m,w) € W>'P(Q) x W9%(Q) such that
om—Am+V -w= 0, (z,t) € Q,
m(z,0) = mo(x), z € T4

We define a linearized control problem (similar to the one defined in subsection 2.1.2, up
to a change of variable)

T
inf ~Z%p(m’,w’):/L[?TL’,w’]dxdt—l—/'ym’dacdt+/ <P,w’>dt+/ gm/(T)dz,
(m/,.w")eR Q Q 0 Td

(*)

for any (v, P). The key remark is that if y(z,t) = f(z,t,m(t)) and P(t) = ¢(t, Aw(t))
for any (x,t) € @, then the (x) part of the individual cost can be interpreted as a
linearization of the the potentials F' and ® at (m,w) € W21P(Q) x W10(Q). Then
we design a generalized conditional gradient method based on this observation. We define
the semi-linearized cost

h((m7 ’LU), (mla w/)) = Z%P(mlv w/) - Z%P(m7 w)a

of the potential cost 7, where y(z,t) = f(z,t,m(t)) and P(t) = ¢(t, Aw(t)) for any
(z,t) € Q. The generalized conditional gradient method goes as follows:

Algorithm 1 Generalized conditional gradient

Choose (g, ) € C2*ToHa/2(Q) x @y € C'H*(Q,R?%) and choose a sequence
(0K )ken € [0,1].
for 0 <k < N do

Find the solution (mg,wy) to

min _h((mg, wg), (M, w)). (2.10)
(mw)eR

Actualise (M1, Wet1) = (1 — 0) (M, k) + Ok (M, W)
end for
return (my,wy).
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a{m, w)

W2 1-R(Q) x W1.%(Q)

(m, w)

—— Domain R

Figure 2.7: Tllustration of the potential cost J, the individual cost Z, p and the ex-
ploitability o.

Connection with the fictitious play method As we explained in Subsection 2.1.2,
the problem of minimization of Et'% p(-) on R is equivalent to the individual stochastic
control problem (2.4). The quantity Z,w’.y, p(m,w) is the cost associated with the feedback
v =w/m. Let o} be defined by

op =— min _h((myg, @), (m,w)) = 25, p (M, W) — 25, p(Mk, Wi).
(mw)eR

The real number oy, is called exploitability: this is greatest reduction of cost that a repre-
sentative agent can expect, assuming that the coupling terms 7, and Pj, remain constant.
Let us mention that the notion of exploitability has received a growing attention in the
mean field game and machine learning literatures [50, 51, 62, 101, 102, 103]. In particu-
lar, the exploitability is used as a metric to evaluate the convergence of learning schemes
for mean field games.

We provide now an interpretation of the generalized gradient algorithm as a learning
procedure called fictitious play. A definition and a study of the latter learning algorithm
in the context of mean field games can be found in [35, 77]. Each iteration k of Algorithm
1 relies on the following steps:

1. Given (my, W) compute the coupling terms i (z,t) = f(x,t,mi(t)) and Pi(t) =
o(t, de wi(t)) for any (x,t) € Q. In words, the agents make a prediction of the
congestion term and the price at equilibrium, based on the belief (my, wy,).

2. Find the value function w, solution to the Hamilton-Jacobi-Bellman equation
parametrized by (v, Pg),

0 — Au+ H[Vu+ P] = v (z,t) € Q,
u(z,T)= g(x) x € T
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Then compute the optimal control vy = —H,[Vuy + P, given the value function
ug and the price Pg. This step can be interpreted as follows: for a given belief on
the distributions of the coupling terms 5 and Py, a representative agent computes
its best response vy.

3. Find the solution my to the Fokker-Planck equation for the given drift vy

om — Am+V - (yym) = 0, (x,t) € Q,
m(x,0) = mo(x), r €T,

and compute the associated distribution of controls wy = myvg. The obtained pair
(my, wg) is the solution to (2.10).

4. The actualization step of (M1, Wky1) can be interpreted as a learning step. The
learning rule consists in averaging the past realizations of the distribution of states
and controls at a rate determined by the sequence (0 )ren-

Methodology and main results Besides the connection between generalized con-
dition gradient and fictitious play, our main results deal with the convergence of the
method. The first result concern the convergence of the primal cost and is almost a
direct consequence of the convexity of the primal cost and the convexity and bounded-
ness of the constraints set. The second result concern the convergence of the variables
of the problem and relies on a sort of quadratic growth property satisfied by the poten-
tial cost, which itself followed from the (assumed) strong convexity of the running cost
of the agents. The results presented here concern the case where the learning rate is
o =2/(k+2).

m There exists C' > 0 such that ¢, < C/k, where (e)ren is the sequence of primal
gaps defined by

(m,w) :argmir}j(m,w), e = J(my, wy) — J(m,w),
(m,w)eR

for all £ € N.
m There exists C' > 0 such that o (g, @) < C/Vk and

0k — 0l L2(@uray + 1k — Ml oo (0,732 (1e)) + 10k — @l L2(srey
P = Pllg2ormey + 17k — Alpoo(@) + lluk — ll ooy < C/VE,

for all k € N. Here (@, ,m, 7, P) is the unique solution to (MFG) and @ = mo.

Extensions We now present possible research directions and extensions for this work:

1. Many improvements of the conditional gradient method have been proposed and
investigated in the literature, see for example [81]. For example, one can replace
the learning rule §; = 2/(k + 2) by a line search method. We could investigate
the applicability of these variants to the generalized conditional gradient method
in general and to potential mean field games in particular.

2. The connection between generalized condition gradient method and fictitious play
could be established in different settings, in particular, for the Lagrangian formu-
lation of first order mean field games. We expect that the convergence of the gap
and the exploitability could be proved. Some convergence results have already been
obtained in this setting in [35].
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Chapter 3

Discrete-time mean field games
with risk averse-agents

3.1 Introduction!

The class of mean field games problem was introduced by J-M. Lasry and P-L. Lions
in [88, 89, 90] and M. Huang, R. Malhamé, and P. Caines in [80], to study interactions
among a large population of players. Many developments and applications have been
proposed this last decade, in particular in economics modeling and finance; one can
refer for example to Y. Achdou and al. [1], O. Guéant, J-M. Lasry and P-L. Lions
[73], and P. Cardaliaguet and C.-H. Lehalle [37]. Economic models ”a la Cournot”,
considering interactions between the agents via a price variable, have recently received
particular attention, let us mention the works of A. Bensoussan and P. J. Graber [67],
J. F. Bonnans, S. Hadikanloo, and L. Pfeiffer [21], Z. Kobeissi [83], and P. J. Graber,
V. Ignazio, and A. Neufeld [68].

The specificity of the mean field game of this article is the risk aversion of the involved
agents. Here risk aversion is modeled with the help of composite risk measures (also called
dynamic risk measures). Mathematically, a risk measure p is a map that assigns to a
random variable U a real number, which is usually high when U is very volatile. In this
way p can be used to model the reluctance of a player to face highly uncertain expenses.
We refer to the seminal work by P. Artzner, F. Delbaen, J-M. Eber and D. Heath in [10].
We will make use of composite risk measures, the natural extension of risk measures to
a multistage framework, see for example the article of A. Shapiro and A. Ruszczyriski
[111]; for an application to multistage portofolio selection one can refer to A. Shapiro
[116].

Let us describe more precisely our coupled system and the obtained results. The
coupled system describes a population of identical agents which all optimize a linear
discrete-time dynamical system (in a continuous state space). In the model, the associ-
ated cost function depends on a variable called belief, which is related to the behavior of
the whole group, whence a coupling between a single agent and the population. Assuming
that the population is very large, one can consider that an isolated representative agent
has no impact on the belief. Therefore his/her behavior can be conveniently described
by dynamic programming equations (in which the belief is a parameter). Mathemat-
ically, the belief is the probability distribution of the states and controls of all agents
at the different time steps of the game; it is described via the Kolmogorov equation.
Our first result is an existence result, obtained with a standard fixed point approach.

'The corresponding article [23] was published in ESAIM: COCV.
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In our second result, we show that an optimal feedback control for the mean field game
yields an e-Nash equilibrium for an N-player dynamic game, where ¢ — 0 as N — oc.
The proof of this result is based on an estimate of the expectation of the Wasserstein
distance between the empirical measure of i.i.d. variables and the law of these variables,
obtained by N. Fournier and A. Guillin [58, Theorem 1]. The approach that we follow
was proposed by M. Huang, P. Caines, and R. Malhamé in [79].

Discrete-time and continuous-space mean field game models have been studied in
different works. The framework that we propose in this article is close to the one of
N. Saldi, T. Bagar and M. Raginsky [113], in particular, we make use of similar weighted
spaces. A few works have already investigated the issue of risk aversion. Most of them
model risk sensitivity via exponential utility functions, see for example H. Tembine,
Q. Zhu and T. Basar [118]. The case of robust mean field games is investigated in
problem (P2) in the work of J. Moon and T. Bagar [95]. In many economic situations, risk
modeling is of interest, in particular in the banking industry [98]. Our approach can also
be relevant in situations where mean field games are used to design telecommunication
systems or smart grids; see C. Bertucci et al. [19] and C. Alasseur, I. Ben Tahar and
A. Matoussi [8]. For example, in the latter reference, it could be interesting to take into
account the risk of individual no-energy situations or collective black-out situations via
robust control.

The article is structured as follows. In Section 3.2 we introduce notations, assump-
tions, and the system of coupled equations. In Section 3.3 we interpret this system as
a mean field game system with risk averse agents. In Section 3.4 we establish general
technical results that will be helpful in Section 3.5, where we prove the existence of a
solution to the coupled system. Finally in Section 3.6 we investigate the connection
between the coupled system and an N-player game.

3.2 Problem Formulation

3.2.1 Notations

We set T :={0,...,T — 1} and T := {0,...,T} with T € N*. For any ¢t € T and any
vector (xg, ..., x;) we denote
Ty = (To, -5 Tp).
We denote
id : RY — R?,
the identity mapping.

Functions

Let C-Lip denote the set of Lipschitz functions of modulus C' on R?. We define the
p-polynomially weighted space

G = {f: R > RY, |f() < O(lal? + 1)},

where the dimension d’ depends on the context, with associated norm

I |/ ()]

= su e ———
G T+ [P

Let Qg C Qg denote the set of convex mappings f: R? — R satisfying

—C < f(z) <CA+|zP), VzeR%L (3.1)
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Probability measures

Let P(RY) denote the set of probability measures on R%. Given p € [1,+00), we define
the set of finite p-th order moment measures

Pp(RY) := {m € P(RY), / |x|Pdm(z) < —1—00},
Rd
that we endow with the Rubinstein-Kantorovitch distance, defined by

di(p,v) == sup | $(x)d(p—v)(z),
¢cl1—Lip JRE

for any p and v € Pi(R?) (see [120, Particular case 5.15] for more details). We recall
that by the Holder inequality, P,(RY) C Py (R?) for any p > 1. Given C > 0, we define

PYRY) = {m € Pp(RY), / |z[Pdm(z) < C}.
Rd
We also consider the following sets of beliefs
By = (P(R*))" x Py(RY),  BY := (PY(R*))" x PF(RY),

endowed with the Rubinstein-Kantorovitch distances for the product topology, also de-
noted d;.
For any m and v € P(R?), we define the convolution product v * m by

/Rd h(z)d(v *m)(zx) := /Rd /Rd h(y + z)dv(y)dm(z), (3.2)

for any bounded Borel map h € RY — R. For any m € P(R%) and for any Borel map
g: RY 5 R we define the image measure gftm € P(R?) by

[ (o) @dm(a) - / h(y)dgim(y), (3.3)
Rd

Rd

for any bounded Borel map h € RY — R? .

3.2.2 Coupled system
Let us first introduce the data of the problem. We consider
e a congestion function F': T x R? x By — R
e a price function P: T x By — RY
e an initial distribution m € Py(R%)
e individual noise distributions (v(t))ier € (P2(R))T.

The running cost £: 7 x R? x R? x By — R is defined by
1
Ut x,a,b) = 5ya|2 + (a, P(t,b)) + F(t,z,b).

For modeling risk aversion, we consider a family of subsets (Z;)tc7 such that

2 C {Z € L>®(RY), / Z(y)dv(t,y) =1, Z > O}, VteT.
Rd
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For any t € T, we define
M= {€ e P(RY), de = 2du(t), Z€ 2.} (3.4)

For any ¢t € T, Z; is assumed to be nonempty and convex, thus M; is a nonempty and
convex subset of P(RY).

We propose to study a risk averse mean field game (MFG), taking the form of the
following coupled system:

. u(t,z) = inf | £(t,z,a,b) + sup / u(t+ 1,z +a+y)d(y) |,
(i) acR? ceM; JRd

uw(T,z) = F(T,z,b),

(ii)  ay(x) = argmin (E(t,x, a,b) + sup / ut+ 1,z +a+ y)df(y)) ,
a€R4 feM, JRA

(MFG)
for any (t,7) € T x R%. The five unknowns in the above system are

e the value function u € (Go)T*!

e the feedback control a € (G N 1-Lip)?

the distribution of states m € (Py)T+!

the joint distribution of states and controls pu € (P2(R?%))T

the belief b € Bs.

Let us describe briefly the coupled system; we will justify it more in detail in Section
3.3. Equation (MFG,i) is a dynamic programming equation associated with a discrete-
time optimal control problem for a representative agent. The belief b appears as a
parameter of the equation, since a single agent has no impact on it. The corresponding
optimal feedback control « is then given by (MFG.ii). Now, assuming that all agents
make use of the feedback control «, the distribution of their state m is described by the
Kolmogorov equation (MFG,iii) with initial condition m.

Our approach for proving the existence of a solution consists in formulating the system
(MFG) as a fixed point equation. For this purpose, we consider two mappings. The first
one, that we call dynamic programming mapping, assigns to a belief b the solutions
u*(b) and a*(b) to equations (MFG,i) and (MFGiii), respectively. The second one, the
Kolmogorov mapping, assigns to a feedback control « the triplet (m*(a), u*(«), b*(v)),
where m*(«), p*(«), and b*(a) are the solutions to (MFG,iii), (MFG,iv), and (MFG,v),
respectively. These two mappings will be investigated in Section 3.5. They allow to
reformulate the system (MFG) as an equivalent fixed point equation

b="b"oa”(b).
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3.2.3 Assumptions

We state now the assumptions on the data of the problem, in force all along the article.
Note that for the results of Section 3.6 (dealing with the N-player dynamic game), we
will need a slightly stronger assumption on the mapping F'.

We make use of the same constant C' to formulate the different assumptions. In the
sequel, the constant C' denotes a generic constant depending only on those involved in
the assumptions and T'; its value can change from an inequality to the next one.

Assumption 3.2.1. There exists C > 0 such that m € PS(R?) and such that for any
te T, v(t) € PY(RY).

Assumption 3.2.2. There exists C > 0 such that for any t € T and for any Z € Z,

1Z]l0 < C,
and there exists Z' € Z; such that
1
Z/ 2 6 a.e.

Remark 3.2.3. Assumption 3.2.2 implies the existence of C > 0 such that
M; CPY(RY), vteT. (3.5)

The results obtained in Section 3.5 only require (3.5) to hold. The full Assumption 3.2.2
will be used in Section 3.6.

Assumption 3.2.4. There exists C' > 0 such that for any t € T and for any by and
by € Ba,
(i) F(t’ '7b1) € an
(ii) HF(t7'7b1) _F(tv'vbQ)Hg,2 < Cdl(bhb?)a
(iii) ’P(t,bl) —P(t,bQ)‘ < Cdl(bl,bz),
(iv) |P(t,b1)| < C.

Remark 3.2.5. In economics or in finance, prices typically depend on the aggregated
demand or supply. One could consider for example

P(t,b) == <t, /Rw adp(t,x,a)> ,

where ¥: T x R — R®. In this case, if 1 is a C-Lipschitz mapping then for any by and
by € Bo, one has that

|P(t,b1) — P(t,b2)| < C '/2d ad(pr — p2)(t, z, a)| < Cdi(pr, p2) < Cdi(bi, ba),
R

which implies Assumption 3.2.4 (iii). Assumption 3.2.4 (iv) also holds if || < C.

3.3 Interpretation of the coupled system

In Subsection 3.3.1 we describe the risk averse optimal control problem associated with
(MFG,i-ii). In Subsection 3.3.2 we justify the Kolmogorov equation (MFGiiii).
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3.3.1 Dynamic programming equation
Risk measures

Let Xy and (Y;)ie7 be (T 4 1)-independent random variables defined on a probability
space (2, F,P). Let £(Xo) = m and L(Y;) = v(t). We define the filtration (F;)ieT,
where Fy := 0(Xp) is the sigma-algebra generated by Xo, and Fiy1 := o(Xo, Yy). We
denote for any ¢ € 7 and any p € [1, +00)

]Llf(Q? Rdl) = Lp(Qv 'Ft7 ]P)7 Rdl)a
the space of F; measurable random variables with finite p-th order moment and value in
R?. When the dimension is d’ = 1, we simplify the notation: L? := LP(Q, R).

Definition 3.3.1. Given t € T, we say that a mapping p;: L)}H — L} is a one-step
conditional risk mapping if it satisfies the following conditions:

e (M) Monotonicity: For any U and U’ € L}, such that U < U’, we have
pe(U) < pe(U'),  as.
e (C) Convexity: For any U and U' € L}, ,, for any a € [0, 1], we have
pr(aU + (1 —a)U") < ap(U) + (1 —a)pe(U'),  a.s.

e (TI) Translation Invariance: For any U € Ltl+1 and for any V € L}, we have

pt(U + V) = pt(U) + V, a.s.

e (PH) Positive Homogeneity: For any o > 0, for any U € L%H’ we have
pe(@U) = ap(U), a.s.

Quoting [110], the condional risk mapping p;(U;+1) can be interpreted as a fair one-
time Fi-measurable charge we would be willing to incur at time ¢ instead of the random
futur cost Ui1.

We fix now a family of one-step conditional risk mapping (pi)ier, pr: ]LtlH — L,
defined by

pr(Ur1)(20, yje—1)) = sup /QUt+1(mo,y[t—u,K(w))Z(Ks(W))dP(W), (3.6)

where the random variables U;41 and py(Uz41) are explicitly represented as measurable
functions of (zo,yp) € RE+2) and (z0,Yp—1)) € REDE respectively. Recalling the
definition of M; (3.4), we have

Pt(UtH)(l‘an[t—l]): Sup/ Ut+1($0,y[t—1}>yt)df(yt)-
ceMy JRA

We set
Qi1 :={Q = Z(Y) as., Z € Zi}

so that p; can be expressed in the following form:

Pt(Ut+1): sup ]E[Ut+1Qt+1|]:t]'
Qt11€9Q¢11

Finally we construct the associated composite risk measure p: LlT — R,

p(U) =Elpoo--opr-1(U)],
which also satisfies (M), (C), (TI), and (PH).
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Remark 3.3.2. Given a probability space (', F',P") and given o € (0, 1], the conditional
value at risk (also called expected shortfall or average value at risk) of a random variable
Ue LYY, F ) is defined by

CV@R,(U) := inf ~ W4+a 'E[(U—-W)4],

)=, nf W B[ - W).]

where x4 = max{0,z} denotes the positive part of any x € R. It has the following dual
representation (see [57, Lemma 4.51 and Theorem 4.52]):

CV@R,(U) = sup {E[UZ] ‘ ZeL®(Q,F,P), Z¢ 0,07 as, E[Z] =1}

Therefore, a natural extension of the conditional value at risk to the framework of the
article is given by
pt(Ups1) = sup E [Up1 Z(Y2)|F]
ZeZt

where

Zy = {Z € LR | Z € 0,07 a.e., /Rd Z(y)dv(t,y) = 1} .

This particular definition of Z; satisfies Assumption 3.2.2. We refer to [57, Definition
11.8] and [47, Subsection 2.3.1] for extensions of the conditional value at risk to general
filtrations in a discrete-time setting.

Remark 3.3.3. The risk measure that we have constructed does not have the most
general structure possible. In our setting, the sets My are fized. In [110], these sets
depend on the current state and control (see in particular Sections 4 and 5). In this
more general context, it is still possible to derive a dynamic programming principle for
the underlying optimal control problem (see [110, Theorem 2]). However, the convexity
of the value function, which plays an important role in our analysis, is lost in such a
setting.

Control problem

We consider the following set of controls for any ¢t € T,
A =LIQRY), A=Ay x - x Ap_y.
Given a control A € A, the evolution of the state of the representative player is given by

Xipi=X4 + A+ Y, VteT. (C)

The initial condition is the random variable X fixed previously. Will call the the variable
(X¢),c7 associated state with A. In the notation, we do not make explicit the dependence
of (X¢),es with respect to A, which is always clear from the context. Note that by
induction, X; € L2(Q,R?) for any t € T.

For a given belief b € Bs, the risk averse multistage cost of the representative agent
is given by

T—-1
T(A,D) :==p (Z 0(t, Xy, Ay, b) + F(T, X7, b)> . (3.7)
t=0

The corresponding problem is
inf J(A,b). (P)
AcA
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In what follows, we show how equations (MFG,i) and (MFGi,ii) allow to characterize
the unique solution to (P). Let us recall that b is fixed in this subsection. Let us denote by
u € (Go)TT the solution to (MFG,i) and let us denote by o € (G; N 1-Lip)? the solution
to (MFG,ii). The existence and uniqueness of these solutions will be independently
established in Lemma 3.5.1 and Lemma 3.5.2.

Lemma 3.3.4. There exists a unique control A € A with associated state X such that
forallteT,

At = Oét(Xt), a.s. (38)
Proof. Let (X;);c7 be the solution to the closed-loop system
Xﬂ_l = Xt + Ozt(Xt) +Y;:, Vte T. (39)

It is easy to verify by induction that for all ¢t € T, the random variable X; is Fy-
measurable and has a bounded second-order moment. Indeed, o4 is Lipschitz-continuous,
thus has a linear growth; therefore, if X; has a bounded second-order moment, then
a(X;) also has a bounded second-order moment. We define now A by

At = th(Xt). (310)

Since X; is adapted to F;, we also have that A; is F;-measurable. As we already pointed
out, ay(X;) has a bounded second-order moment. This proves that A € A. Finally, it is
clear that by (3.9) and (3.10), the pair (A4, X) satisfies the state equation (C').

Let us justify the uniqueness of A. Let A € A be such that 4, = at(f(t), where X
is the associated state. Then, X is a solution to the closed-loop system (3.9). Therefore
X = X and finally A; = at(Xt) = ay(X¢) = A;. The lemma is proved. O

The following proposition states the optimality of the control A.
Proposition 3.3.5. We have
inf 7(A,b) = E [u(0, Xo)] / w(0, 2)dm(0, 2), (3.11)
AeA Rd

where u solves the dynamic programming equation (MFG.,i). Moreover, the control A
defined in Lemma 3.5.4 is the unique solution to Problem (P).

Proof. The proof is directly adapted from [110, Theorem 2]. As a consequence of the
translation invariance property (TT), the problem (P) can be expressed in a nested form

inf A b) =E| inf £(0, Xy, Ao,b inf £(1,X1,A1,b) + -
AIEIAJ( 7) |:A;I€1Ao (, 0 0’)+pO<AiI€1A1(’ 1, 1>)+

+ pT2< inf T —1,Xr-1,Ar_1,b) + pr—1 <F(T, X7, b))) e

Ar_1€AT 1
(3.12)

By (MFG,i), we have u(T, X7) = F(T, X7,b) almost surely. We also have X7 = X7_1+
Ar_1 4+ Yp_1, as a consequence of the state equation (C'). Therefore, the innermost
subproblem in (3.12) is given by

inf 0T — 1, Xp_1,Ap_1,b) + pr—1 (w(T, Xp—1 + Ap_1 + Yr_1)). (3.13)
Ar_1€AT 1

Since Xp_1, Ap_1 € Fpr_1, the unique solution to subproblem (3.13) is Ap_1 = ap_1(X7_1).

Moreover, the value of subproblem (3.13) is u(T'—1, X7_1). Proceeding iteratively for all
times ¢ € T, we conclude that (3.11) holds and that any solution A to problem (P) with
associated state X satisfies Ay = ay(X;). Therefore, by Lemma 3.3.4, A is the unique
solution to (P). The proof is complete. O
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3.3.2 Kolmogorov equation

Lemma 3.3.6. Let o: T x R — R be a continuous vector field. Suppose that the state
equation (C) is of the feedback form

X1 = X + o (Xy) + V3.

Then for anyt € T, m(t) = L(X;) € P(R?) is characterized by the Kolmogorov equation
(MFG,iv).

Proof. Let ¢ be a bounded Borel test function. For any ¢ € T, by independence of X}
and Y; we have

E (¢ (Xt+1)] = E¢ (Xt + e (Xe) + Y3)]

= [, [ ¢+ aw) + y)dmit,z)an(t.y).
R JRA
By definition of the push-forward (3.3) we obtain

y oz + au(z) + y)dm(t,x) = y o(z + y)d(id + o) dm(t, 2).

By definition of convolution (3.2) we have

/ ¢(z + y)dv(t,y)d(id + ap)im(t, 2) = / ¢(x)d (v(t) * [(id + ar)im(1)]) (),
Rd JR Rd

as was to be proved. O

3.4 Technical lemmas

This section contains independent technical lemmas. The reader only interested in the
main results of the article can skip it.

Lemma 3.4.1. Let p € [1,+00) and let C > 0. For any m1 and my in PS(R?), the
probability measure my * mo lies in ngC(Rd). In addition, given mg € PZ,C(Rd), the
mapping PPC(R”Z) 3 m — mg * m is non-expansive for the distance d;.

Proof. Let my and mg in 73pc (R%). We have
[ taPatm s ma)e) = [y ram (g)amaz)
R Rd JRA
< [ [ 27+ ppamdma ) < 2.
Rd JRA
Thus my * mgy € ngc(]Rd). Moreover, given mg € PPC (RY), we have

di(mo * my1,mg *x ma) = sup G(x)d(mo * m1 — mg * ma)(z)
ée1—Lip JRd

= sup /Rd < » Py + z)dmo(y)> d(m1 — my)(2).

¢€1—Lip
Since the mapping z — [pa ¢(y + 2)dmg(y) is non-expansive, we further obtain that
d1(mo * m1,mg * ma) < di(mq, ma),

which concludes the proof. O
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Lemma 3.4.2. Let p € [1,400) and let C > 0. For any m € Pg(Rd) and for any Borel
map g € G¥, the probability measure gtm lies in PR(R?), with ¢ = 2P~1CP(1 + C). In
addition, the inequality

di(g1fma1, gatma) < (1 + C)llg1 — g2llg1 + Cdi(ma, mo) (3.14)
holds for any my and mo in PPC(]Rd) and for any Borel maps g1 and go in G N C—Lip.
Proof. Let m € Pg(Rd) and let g € G& be a Borel map. By (3.3) we have

[ Jardgzm(e) = | lo@Pam(@) < lalf, [ 0+ lel)Pdm(z) <o

Consider (g1,m1) and (g2, m2) in glc X P},C(Rd). We have

di(g1fim1, goffma) = sup od(x)d(gi1imi — gafime)(x)
¢€l—Lip JR4

= sup /(¢Og1() ¢ o go(x))dme(z /¢091 —ma)(7)

¢€l1—Lip JR4

<llg1 — 92||g,1/ (1+ [z])dmz(z) + sup ¢ o g1(x)d(m1 —ma)(x)
R4 ¢$€l—Lip JR4

<(14+C)|g1 — g2llgn +C sup C ¢ o gi(z)d(m1 — ma)().
¢p€l—Lip Rd

Observing that C~1¢ o g1 € 1—Lip, we deduce inequality (3.14). O

Given a convex function u: R¢ — R, we define the Moreau envelope V,, and the
proximal operator prox,, of u as follows:

1 1
Vu(z) == min = |z — y|> + u(y), prox, (z) := argmin — |z — y|> + u(y). (3.15)

In the proofs, we will occasionally consider the map g, : R¢ x R — R, defined by
1 2

gu(z,y) = glo —yl” +uly).
Proposition 3.4.3. Let u: R? — R be a convex function. Then prox, and (id — prox,)
are non-expansive.
Proof. Direct consequence of [48, Proposition 12.27]. O
Lemma 3.4.4. Let R > 0 and letu € OF (the set was defined in (5.1)). Then|prox, |*> €
QQCI(R) and | prox, | € glcl (Y , where C1(R) := 8R + 2.
Proof. Let u € QIt. By Proposition 3.4.3, the map prox, is non-expansive. Thus

| prox,,(z)| < |prox, (0)] + |z|. (3.16)

In addition, from the definition of the proximal operator (3.15), we have
1
5] prox,, (0)|? + u(prox, (0)) < u(0).

Since u € QF, we deduce that | prox, (0)|?> < 4R. We further obtain with (3.16) that
| prox,, (z)|* < 2(Ja]* + | prox, (0)%) < C1(R)(1 + |zf), (3.17)
o) R)1/2

0

as was to be proved. Taking the square root of (3.17), we infer that | prox, | € G;

50



CHAPTER 3. RISK-AVERSE MFGS 3.4. TECHNICAL LEMMAS

Lemma 3.4.5. Let R > 0 and let u € Qf. Then V, € QgQ(R), where

Co(R) :== (R+1)(1 + C1(R)).

Proof. Let u € Q. Clearly V,, is convex as the infimum with respect to y € R? of the
jointly convex map (x,y) — gu(z,y). For any 2 € R%, we have

1
Vi) = 5k = prox, (@) + u(prox, (x))
by definition of V,, and prox,,. Since u € Q?, we further obtain that
—R < Vy(2) < |2 + | prox, (z)” + R(1 + | prox, () ).

Applying Lemma 3.4.4, we finally obtain that V,, € ng(R)' -

Lemma 3.4.6. Let R > 0. For any u and v in Qg, the inequality

g1 < C3(R)|lu — |5 (3.18)

|| prox,, — prox,

holds, where C3(R) := /2(1 + C1(R)).

Proof. Let u and v in Q. Observing that g, and g,, are 1-strongly convex with respect
to their second argument, we have

1

5| o, (@) — prox, (2)[* < gu(w, prox, (2)) — gu(w, prox, (v)),

1

5l prox, (z) — prox, (z)[* < gu(, prox, (z)) — gu(x, prox, ().
Summing up the two inequalities, we obtain that

| prox, () — prox, (z)|” < v(prox, (x)) — u(prox,(z)) + u(prox,(z)) — v(prox, («))
< (2 + | prox, (z)]* + | prox, (2)*) |u — vllg.2- (3.19)

By Lemma 3.4.4,

2+ | prox, (z)|* + | prox, (z)|* < 2+ 2C1(R)(1 + |2[*) < C3(R)* (1 + |=*).  (3.20)
Combining (3.19) and (3.20) and taking the square root, we obtain (3.18). O
Lemma 3.4.7. Let R > 0. For any u and v in QF, we have

Vi = Vallg 2 < Ca(R)[u — v

G2 (3.21)
where Cy(R) =1+ C1(R).
Proof. Let u and v in QF. Recalling the definitions of g, and g,, we have

Vu(@) = Vo(z) < gu(, prox, (z)) — go(x, prox, (z)) = u(prox,(z)) — v(prox,(z)).
Lemma 3.4.4 yields

Vu(z) = Vo) < (1 + [ prox, (x)

g)llu—vligz < (1+ CLBR)(1 + |2*))]lu — v

g72'

Exchanging u and v, we deduce (3.21). O
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Lemma 3.4.8. Let R > 0. For any u € QF and for any (z,y) € R? x RY,
Vu(z) = Vu(y)| < C5(R)(1 + || + [y])]z —yl, (3.22)

where C5(R) =1+ y/Ci(R).
Proof. Let u € Q?. We have

Vu(z) = Vu(y) < gu(w, prox,(y)) — gu(y, prox,(y))

1
- 3y = prox, (y)|*

= Sl = prox, ()
< %Iw +y = 2prox, (y)] - [z —yl.
We further obtain with Lemma 3.4.4 that
2+ y — 2prox, (y)] < [2l + [yl + 2T (1 + [y]) < 201 + /L) (1 + o] + ly).
Combining the two obtained inequalities and exchanging = and y, we obtain (3.22). [
Lemma 3.4.9. Let R > 0 and let M be a subset of PR(R?). Given u € QF, consider
the mapping Y[u)(x) defined for any x € R? by

Tal(w) = sup [ o+ 9)dg(w)

£emM

Then Y[u] € QgG(R), where Cg(R) = 2R(1 + R). Moreover, the map QF > u v Y[u] is
Lipschitz continuous with modulus 2(1 + R).

Proof. Let u € QF. For any ¢ € M, the map R? > z Jga u(z + y)dE(y) is convex,
as can be easily verified. Thus Y[u](z) is convex with respect to z, as a supremum of
convex maps. Moreover, for any z € R?, we have

~R < T[u)(z) < sup / OR(1+ [2? + [y[?)dé(y) < 2R(1 + | + R).
feM JRA

This proves that Y[u] € QgG(R). Consider now v € QF. We have

T [u](z) = To](z)] < sup

[t ) = ol )acto)

£eM
< u—vlg2 (Sup / (1+ o+ y|2)d§(y)> : (3.23)
EeM JRA
For any £ € M, we further have
/ (1+ | + yP)de(y) < 1+ 22 + 2R < 2(1+ R)(1 + |«]2). (3.24)
Ra

Combining (3.23) and (3.24), we deduce that
IT[u] = Tolllg.e < 2(1+ R)[lu - vllg.2,

as was to be proved. O
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3.5 Existence result

In this section we prove the main existence result. We first investigate the continuity
of the dynamic programming mapping and the continuity of the Kolmogorov mapping
introduced in Subsection 3.2.2.

3.5.1 Dynamic Programming mapping

In this section we show that for any given belief b € Ba, equations (MFG,i) and (MFG;ii)
have unique solutions u and «. We also investigate their dependence with respect to b.
These equations can be equivalently formulated as follows, with an additional variable

u € (gg)T+1:

u(t+1,2) = sup / u(t+ 1,z 4+ y)dé(y), (3.25)
EeM; JR4
1
u(t, ) = inf, 5\a|2 + (a, P(t,b)) + F(t,z,b) + a(t + 1,2 + a), (3.26)
ac
1
a(x) = argmin§|al2 + {(a, P(t,b)) + F(t,z,b) + u(t + 1,2 + a), (3.27)
a€R?
uw(T,z) = F(T,x,b), (3.28)

for all t € T and for all z € R?. The first step of our analysis consists in rewriting these
equations in a functional form, with the help of the Moreau envelope and the proximal
operator (introduced in (3.15)).

Lemma 3.5.1. Letb € By. Letu € (Go)T™L, letu € (Go)T ™, and let o € (G1N1—Lip)T.
Then, for anyt € T and for any x € R?, equations (3.25)-(3.27) hold true if and only if

a(t+1,2) = Tlu(t+1,)](2), (3.29)
u(t,z) = Var (& — P(t,)) + F(t,2,b) — %|P(t, b2, (3.30)
ar(z) = (proxg(4q,) —id)(z — P(t,b)) — P(t,0). (3.31)

Proof. Equality (3.29) is obviously equivalent to (3.25), by the definition of Y. By
the change of variable y = = + a, the dynamic programming equation (3.26) can be
reformulated as follows:

u(t, @) = inf, G\y — 22+ ((y — 2), P(L, b)) + F(t,2,b) + a(t + 1, y))

= inf <;\y — (x— P(t, )2 +a(t +1, y)) + F(t,2,b) — %|P(t, D2 (3.32)

This proves the equivalence between (3.26) and (3.30). Moreover, since @(t + 1,-) is
convex, the right-hand side of (3.32) has a unique minimizer given by

Y= proxa(HL,)(az — P(t,b))

and therefore, the unique minimizer in the right-hand side of (3.27) is y* — =z, which
proves the equivalence between (3.27) and (3.31). The lemma is proved. O

Lemma 3.5.2. Let b € By. There exists a unique triplet (u,a, ) € (Qg)Tfl x (Go)T+1 x
(G N 1-Lip)T such that (3.25)-(3.28) holds true. Moreover, for anyt € T, we have

ult,) € Q5 (3.33)
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and for any t € T, we have
ay(+) € 6% N 1-Lip, (3.34)

for some positive constants C,, and C,, independent of t and b.

Proof. Since u(T), ) is uniquely defined by the terminal condition (3.28), (7, -) is uniquely
defined by (3.29) (with ¢ = 7' —1). Then w(T — 1,-) and ar_1(-) are uniquely defined
by (3.30) and (3.31) (with t =T — 1) and so on, until ¢t = 0.

Let us prove (3.33) by backward induction. The terminal condition (7', -) = F(T,-,b)
and Assumption 3.2.4 (i) imply that u(T,-) € QY for some constant C' > 0 (independent
of b). Let us take ¢t € T and let us suppose that u(t +1,-) € Q5. Then by Lemma 3.4.9
and relation 3.5, we have u(t,) € QQC. Recall that by Lemma 3.5.1, we have

u(t,) = V(- — P(t,0)) + F(t,-,b) — %\P(t, B2, (3.35)

By Assumptions 3.2.4 (i) and (iv), F(t,-,b) — $|P(t,b)|* € QF. Using again Assumption
3.2.4 (iv) and Lemma 3.4.5, we obtain that Vy1.(- — P(t,0)) € Qf. Therefore, the
right-hand side of (3.35) lies in Q5 and finally, u(t,-) € QF, where C is independent of
b.

Let us prove (3.34). By Lemma 3.5.1, we have
ar(-) = (proxXg(sy1,) —id)(- — P(t,0)) — P(t,b). (3.36)

We already know that a(t + 1,-) € Q5. Moreover, by Assumption 3.2.4 (iv), P(t,b) is
bounded. Therefore, by Lemma 3.4.4, proxg,1.(- — P(¢,b)) € GS. Then it is easy to

show that ay(-,b) € GE, where again, C' does not depend on b. Finally, a(t,-) is non-
expansive as a consequence of (3.36) and Proposition 3.4.3. The lemma is proved. [

From now on, we denote by (u*(-,-,b),@*(+, -, b), a*(+, b)) the unique solution to (MFG.i)-
(MFG, ii).

Lemma 3.5.3. There exists C > 0 such that for any (t,b1,b2) € T x By X Ba,

||U*(t7 * bl) - U*(tv "y b2)Hg,2 < Cdl(b17 b2)7 (337)
”ﬂ*(t’ ) bl) - ﬂ*(tv *y bZ)HQQ < Cdl (b17 b2) (338)

Proof. In the proof, all constants C are independent of b; and by. We proceed by

backward induction. By Assumption 3.2.4 (iii) and by the terminal condition u* (7', -, b) =

F(T,-,b), inequality (3.37) holds true for t = T'. Let t € T. Suppose that
[u*(t+1,,b1) —u*(t +1,-,b2)llg2 < Cdi (b1, b2),

for some positive constant C' > 0 independent of b; and by. By Remark 3.2.3 and Lemma
3.4.9, we deduce that

Hﬂ*(t +1,- bl) — ﬁ*(t +1,-, bg)”gg < Cdl(bl, bg). (3.39)
By Lemma 3.5.1, we have

u*(t,x, bl) — U*(t, x, b2) = al(t,:c, bl, b2) + ag(t,x, bl, b2) + ag(t,l‘, by, b2)7 (340)
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where

(ll(t,-ﬁU, b17 b2) :

Vﬁ*(t+1,~,b1)(33 - P(t, bl)) - Va*(t+1,~,b2)(fﬁ - P(t, by ),
GQ(t7.’IT,b1,b2) : )

Var (t41,00) (@ — P(£,01)) = Vaar (141, p0) (x — P(2,b2))
1
az(t,r,by,b2) := F(t,xz,b1) — F(t,z,b) + §(|P(ta ba)|* — | P(t,b1)]?).

)
)

It remains to bound ai(t,-,b1,bs), aa(t,-, b1,b2), and asz(t,-,b1,ba) in G§. We deduce
from Lemma 3.4.7, Assumption 3.2.4 (iv), and estimate (3.39), that
lay(t, 2, b1,b2)] < [Var(t1,00) — Var(t+1,-5)llg.2(1 + |2 — P(¢,01)]%)
< CHﬁ*(t +1,, bl) - ﬂ*(t +1,, bQ)HQ,Q(l + |x’2)
< Cdi (b1, b2)(1 + [z*).
Then by Lemma 3.4.8 and Assumption 3.2.4 (iv), we have
|ag(t,x,b1,b2)| < C(1 + & — P(t,b1)| + [ — P(L, b2)[)| P (¢, b2) — P(t,b1)]
< C(l + ]x|)d1(b1, bz)
< C(l + ]m\Q)dl(bl, bg).
Finally by Assumption 3.2.4 (ii-iv), we have

|a3(t7$7b17b2)‘ < ||F(t7 'abl) - F(tv '7b2)
< C(1+ |z[*)dy (b1, bo).

g2(1+ [z[*) + C|P(t,b1) — P(t,bs)|

Then combining (3.40) and the three estimates of a1, a2, and a3, we obtain that
[u*(t, -, b1) — w(t, -, b2)llg,2 < Cdi(b1, ba),
which concludes the proof. O
Lemma 3.5.4. There exists C > 0 such that for any (t,b1,b2) € T x By X Ba,
oz (5b1) = a7 (s b2)llg.n < € (da(br, bo) /2 + di (b1, b)) (3.41)
Proof. Let (t,b1,b2) € T x Ba x By. By Lemma 3.5.1, we have
ay(z,by) — af(z,b2) = as(t, z,b1,b2) + as(t, z, b1, b2), (3.42)
where
ag(t,z,b1,b2) = Proxge(pi1,.p,) (@ — P(t,b1)) = Proxg. (141, p,) (€ — P(t,01)),
as(t,x,b1,ba) = ProXgs(z11,.p,) (T — P(t,01)) — ProXgs 111, ) (€ — P(t, b2)).

Using successively Lemma 3.4.6, Assumption 3.2.4 (iv), and estimate (3.38), we obtain

|aa(t, 2, b1, b2)| < || ProXgs 141,.b,) = PrOXgs (141,1y) lg,1 (1 + [ = P (¢, 1))
< Clla*(t+1,-,b1) =@ (t+ 1, ba)[|2(1+ Ja])
< Clldu (b1, b2)[2(1 + [a]).

Moreover, since proXgs(¢41,.p,) 1S non-expansive, we have with Assumption 3.2.4 (iii) that
las(t,z,b1,b2)| < [(z = P(t,b1)) — (x — P(t,b2))] < di(br, b2).

Combining the two obtained estimates of a4 and as with (3.42), we obtain (3.41). [
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3.5.2 Kolmogorov mapping

We study now the Kolmogorov mapping
(G N1-Lip)” 5 a — (m*, u*, ") (),
where (m*, p*, b*) is the solution to (MFG,iii-v).
Lemma 3.5.5. There exists Cy, > 0 such that for any o € (Qlc"‘ N1-Lip)T,
m*(a) € (PR, p* () € (PR, and  b*(a) € BS.
In addition the three mappings m*, u* and b* are continuous.

Proof. Let a € (G% Nn1—Lip)”. All constants C in the proof are independent of . Let
us first prove by induction that for any ¢ € T, there exists a constant C' > 0 independent
of a such that m*(t,-, «) € P (R?) and such that, m*(t, -, @) is continuous with respect
to a.. The claim is clear for ¢ = 0, since m*(0, -, ) = m € P (R%), by Assumption 3.2.1.
Now, let us assume that the claim holds true for some ¢t € 7. We recall that

m*(t+1,-,a) = v(t) * [(id + ap)tm™ (¢, -, )] .

Since v(t) € PS(R?) (by Assumption 3.2.1) and since a; € G& N 1—Lip, we obtain with
Lemma 3.4.1 and Lemma 3.4.2 that m*(t + 1,-,a) € PY(R?) and that m*(t + 1, -, ) is
a continuous function of «, by composition.

It remains to justify the boundedness of p* and b*. We recall that for any ¢t € T,

M*(t’ ) a) = (id’ O‘t)ﬁm*(ta K a)'

We deduce from Lemma 3.4.2 that p*(t,-,a) € PS(R?*?) and that p*(t,-,a) is a contin-
uous function of a, by composition. It immediately follows that b*(a) € BS and that b
is continuous. O

3.5.3 Existence of equilibrium

We are ready to prove the existence of a solution of system (MFG). The proof relies on
the Schauder fixed point theorem, that we first recall.

Theorem 3.5.6. (Schauder) Let C be a conver and compact set in a Banach space X,
and let T: C — C be a continuous mapping. Then T has a fired point, i.e. there exists
x € C such that

T(z) = z.

Theorem 3.5.7. There exists (u, a,m, u,b) € (G5 “)Tx (glc"ﬂl—Lip)Tx (7320” (Rd))T+1 X

(Pgb(RQd))T x BS® solution to system (MFG), where Cy, Cq and Cy are the constants
obtained in Lemma 3.5.2 and Lemma 3.5.5.

Proof. By Lemma 3.5.4 and Lemma 3.5.5, the mapping
BS* 3 b b* 0 a*(b) € BS

is continuous for the distance dy. Moreover, BQC ® is compact for dj, see [104, Lemma
25]. Therefore, by the Schauder fixed point theorem, there exists b e Bg ® such that
b = b oa*(b). Let us set u = u*(b), @ = a*(b), m = m*(a), and g = p*(@). Then

(u, &, m, i, b) is solution to (MFG) and lies in the announced set. O
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3.6 Connection with a finite player game

In this section we establish a connection between the coupled system (MFG) and a
dynamic game with N players. More precisely, we fix a solution (u, &, m, fi, b) of system
(MFG) and consider the situation where each of the N players adopts the feedback a.
We show that this situation is an e-Nash equilibrium for the N-player game and we
quantify the rate of convergence of € to 0 as N goes to infinity.

To show this, the following restriction on Assumption 3.2.4 (ii) will be required, in
particular to prove Lemma 3.6.12.

Assumption 3.6.1. There exists C > 0 such that for any t € T and for any by and by
in Bo,

(i) F(ta '7b1) € Qlcv

(ii) [F(t, - b1) = F(t, - b2)llg1 < Cdu(br, b2).

We have already fixed a solution to system (MFG), now we also fix the number of
players N; all constants C' appearing in the sequel are independent of N.

3.6.1 Formulation of the game

Let N :={1,...,N} and let i € N. For any vector (z',...,2") we denote

Consider a probability space (Q, F,P). Let (X{);en be i.i.d. random variables with law
L(XE) =m. Let (Y})ien te7 be independent random variables, independent of (X{)ienr,
with law L£(Y})) = v(t). We denote v(t) := Hi\il v(t). We define the filtration (F;),c7
as follows: Fy := 0(Xo) is the sigma-algebra generated by Xo, Fi11 := 0(Xo, Y}). In
this section we denote

LY(Q,RY) := LP(Q, F,B,RY),
the space of F; measurable random variables with finite p-th order moment and value

in R¥. When the dimension is d’ = 1, we simplify the notation L? = L?(Q, R). For any
t € T, we consider the control set

A =L QRY),  A=Ayx--x A, AV =][A

For any ¢ € 7 and for any constant C' > 0 we denote .Af the set of controls A € A,
such that

/ |A(w)[2dP(w) < C
Q

and we set A° := A§ x---x . A%_|. The control of player i € A is an adapted stochastic
process A* € A, whose associated trajectory (X;[A']),c7 is defined by the following state
equation

X=X+ AL+ Y,

Remark 3.6.2. Let R > 0. There exists C > 0 (depending on R) such that for any
i € N and for any Al e AR E[|X[[AYP] < C for any t € T, since L(X]) € Pa(RY)
and L(Y}) € Pa(RY).
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Given A € A", we define the random empirical measure of the positions and the
random empirical joint measure of the positions and actions of players by

1 1
m(t) := N Z Oxi[A7]» pa(t) = I Z O(Xi[Ai], Al
ieN eN

where § denotes the Dirac measure. We set
b = (WA (0), .., pA(T —1),mA(T)).
For any 7 € N and for any t € T, we define the individual conditional risk measure

P71l 1
pi: Ly — Ly,

Pt (Uss1) (@0, Yji—1)) = sup /QUt-i-l(a’Ovy[tl]vY;f(W))Z(Y?(w))dP(w)-
€zt

We define the set
Qi ={QeLy,, Q=2 as,Z€cZ}.
Then p! can be expressed in the following form:

piUi1) =  sup  E[Up1Qu1|F]. (3.43)
Qi41€Q%

In addition we have that

pi(Uss1) (0, Yp—1]) = sup / Us 1 (o, yp ) v~ (¢, y; ) dE(y}),
geM; JrR JRNG

where v=i(t) := H%N\{i} v(t). Then (pi)ier is a family of conditional risk mappings.
We define the associated individual composite risk measure p': Lt — R,

pU):=E[pyo--opp(U)].

Here players are risk averse with respect to their individual noise only. For any A € AN
the cost of the player ¢ € N is given by

T-1
t=0

Definition 3.6.3. Let ¢ > 0. We say that an N-uplet A c AV is an e-Nash equilibrium
for the N-player game if for any i € N,

TN(AL A7 < inf JUN(AT, A7) te. (3.44)
Atc A

For € = 0, we recover the usual definition of a Nash equilibrium.
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3.6.2 An approximate Nash equilibrium
For any player ¢ € N/, we denote by (Xf)tef the solution to the closed-loop system
Xip1 = X| +a(X]) + Y.
We define the control A® € A by
Al = a,(XD). (3.45)
Since X} is adapted to Fy, the control A% is also F;-measurable. Moreover, &; is 1-
Lipschitz and the random variables Xy and (Y;);e7 have a bounded second-order mo-

ment, thus A° € A. In addition, by Proposition 3.3.5, A* minimizes the following cost
T

T-1
THAL D) = p' (Z 0(t, X} [AY, AL, b) + F(T, X[ A1, b)> . (3.46)
t=0

Finally we set A = (A',...,AN). The following result states that A is an e-Nash
equilibrium.

Theorem 3.6.4. Let § € (0,1/2). There exists a constant C' > 0, independent of N,
such that the N-uplet A defined above is an e-Nash equilibrium with

e ONTTO2, o(g) = {1/2 —¢ Z:fd €{1,2},
1/d ifd> 3.
In addition we have that
(TN (A) = THA"b)| < CN T2, (3.47)
for any i € N.

The proof of the theorem can be found at the end of Subsection 3.6.3 (page 64),
which contains technical intermediate lemmas. They rely on the following result.

Theorem 3.6.5. (Fournier-Guillin) Let ¢ > 0, let & € (0,1/2), and let p € PS(RY).
Consider N i.i.d. random variables (Xi)ie{l,...,N} in RY with law 1 and denote by pn
their empirical measure, defined by

1 N
N = Z; Sx,- (3.48)

There exists a constant C' > 0 depending only on c, d, and £ such that
E [d1 (1, pv))] < CN77(,

Proof. The theorem is a direct application of [58, Theorem 1] with ¢ = TQ% ifd € {1,2}

and ¢g =2 if d > 3. 0

59



3.6. FINITE PLAYER GAME CHAPTER 3. RISK-AVERSE MFGS

3.6.3 Proof of Theorem 3.6.4

We begin with four technical lemmas dealing with the regularity of the individual risk
measures p’.

Lemma 3.6.6. For any player i € N the risk measure p' is subadditive, that is
PU+V)<p'(U) +p(V),

for any U and V in L%p.

Proof. Let us define 7(U) = U and m}(U) = piopi.;...0 pirn_1(U), for any U € L.

Note that 7} = pi o 15 for any t € T. We prove by backward induction that 7} is

subadditive for any ¢ € 7. The claim is trivial for ¢t = T. Let t € 7. Assume that

is subadditive, let us prove that 7{ is subadditive. First we observe that for any U and
V in LlT7

pi(U+V)= sup E[U+V)Q|F]

QeQi,
< sup E[UQ|Fi+ sup E[VQ|F:] = P U) +pi(V),  aus.
QGQLA QGQLA

It follows with the monotonicity of pi that

(U +V) = piom(U+V)
< Py (U) + i (V)
< ppom1(U) +ppom (V) =m(U) +m(V), as.

Recalling that p'(U) = E [pfo -0 pb_,(U)] = E[mo(U)], we conclude that p is also
subadditive. O

The following result is close to a triangle inequality for risk measures. The difference
with the triangle inequality is due to the positive homogeneity of risk measures, while
norms are absolutely homogeneous.

Lemma 3.6.7. For any i € N and for any U and V in L%, we have
AU+ V)~ 0 ()] < A (V- (3.49)
Proof. By the subadditivity and by the monotonicity of p’, we have
U+ V) = (U) < (B (U) + p (V) - p () = g (V) < oIV,
Similarly, we have
PFU) = pHU + V) = g (U +V = V) = g (U +V) < g (V) < pi(IV]).
Inequality (3.49) follows. O

Lemma 3.6.8. There exists C > 0 such that for any (i,t) € N xT and for any U € L%,

ZE[U]) < (V) < CE[U]. (3.50)
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Proof. All constants C' in the proof are independent of U. Recall the definition of 7,
introduced in the proof of Lemma 3.6.6. We prove by backward induction that for any
t € T, there exists C' > 0 such that for any U € L},

1 .
oE [|U]|F:] < m(U) < CE[IU||F], as.

The claim is trivial for t = T. Let t € 7. Assume that the claim holds true for ¢ + 1.
We first observe that for any U € Ly, ,,

%E [|U||F¢] < pi(U) < CE[U||F:], as., (3.51)

as a direct consequence of Assumption 3.2.2. It follows with the monotonicity of pi that

m(U) = pio i (U)
<y} (CE [1U] ’:Ft—&-l])
< CE [CE [|U||Fi1] |F:] < CE[|U||F:], as.

Similarly we prove that 7(|U|) > SE[|U] ’.’Ft] a.s. Recalling that p'(U) = E [mo(U)],
we finally obtain (3.50). O

The following lemma is an estimate of the second-order moment of suboptimal con-
trols (for problem (3.44)).

Lemma 3.6.9. There exists C > 0 such that for any i € N, if Al satisfies

ToN(AL AT < inf g0V (AT, AT 41, (3.52)
Ate A

then A' € AC.

Proof. Let i € N and let Al satisty (3.52). All constants C in the proof are independent
of A'. We have

T
TN (A A7) < JN (0, A7) +1 = pf (ZF <t,XZ[0],bé\é7Ai))> + 1

t=0

By Assumption 3.2.4 (i), Lemma 3.6.8, and Remark 3.6.2,

T T
o (ZF (t,Xf[O],bf\&A_i))) < CE|T+ Y |xi[0])| <C.
t=0 t=0
Therefore, o A
TN (AT A7 < C. (3.53)

We need now to bound JHV (@,A‘i) from below. We obtain by using successively
Lemmma 3.6.8, Assumptions 3.2.4 (i) and (iv), and Young’s inequality that

T-1

1~ 7
> (1R - 1)

t=0

T-1

> 1A

t=0

ji,N(A\i’A—i) Z l]E

1
—C>_=E
C =

= —C. (3.54)

We deduce then from (3.53) and (3.54) that E [ZtT:_Ol ‘;{%’2} < C, which concludes the
proof. O
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In the following we fix a constant ¢ > 0 such that the result of Lemma 3.6.9 holds
and such that A* € A° for any i € N. Let b and b in B, for any (¢,t/,z) € T x T x R?
we define

AP(t,b, V) := P (t,b) — P(t,V), AF({t 2, b,b) = F(t',x,b) — F(t',z,V).

For any (z,A) € RT4 x A we define

~

T
Al(x, A,b, V) =Y (A, AP(£,b,1) + Y AF(t,21,b,0).
t t=0

Il
o

Remark 3.6.10. For anyt € T and for any b and V' in Bs, we have
JAF (t,,b,8) |lg1 < 2Cdy(b,b')/2.
Indeed if di(b,V') > 1, Assumption 3.6.1 (i) yields

IAF (t,7,5,) lox <2 sup [F (¢,-,5) l]g < 2C.
€b2

If di(b, V') < 1, by Assumption 3.6.1 (i) we have
JAF (t,-,b,V) |lg1 < Cdi(b,b') < Cdy(b,b)"/2.

In the following lemma we study the convergence of the empirical belief to the refer-
ence belief b € Bs.

Lemma 3.6.11. There exists C > 0 such that for any i € N and for any A* € A,
E [dl (bfﬁ, A,i),B)] < CON-T@, (3.55)
Proof. Let i € N and let A® € A°. For any t € T, we have by the triangle inequality

i (1 a0® ) < di (1 400, 15®) +di (W0, 40) . (3.56)

Let us consider the first term of the right-hand side. By definition of the distance dj,
1 o _ S
i (i a0 i) < - (XFLA] = XL+ 14 = ), as (357)

Since the controls A® and A’ belong to .A°, the first-order moment of X;[A!] and X; are
finite as a consequence of Remark 3.6.2, thus

E [|X{[A7 - X{| + |4; - 4}[] < C. (3.58)
Therefore, by (3.57) and (3.58), we have

@y (i a0 150) < 5 (359)

Let us consider now the second-term of the right-hand side of (3.56). We recall that
f(t) = (id, ap)fm(t). Since A7 = a(X}), we also have u%(t) = (id, o_zt)ﬁm%(t). We
deduce from the Lipschitz continuity of (id, @) and from Lemma 3.4.2 that
dy (s (1), (1)) = du ((id, ae)gmy (¢), (id, ap)gm(t))
< Ody (mfy(t),m(t)) . (3.60)
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The random variables X7 are independent and £(X7) ~ m(t). Therefore, Theorem 3.6.5
applies and yields
E [di (m]) (t),m(t))] < ON~". (3.61)

Combining (3.56), (3.59), (3.60), and (3.61), we obtain
B [dr (4o (0)(0)] < ON—T@),
It is then easy to verify that
E [dl (mgg A,i)(T),m(T))} < ON—T@),
Estimate (3.55) follows immediately. O

Lemma 3.6.12. There exists C > 0 such that for any i € N, for any t € T, and for
any A* € A°, we have

E HAF (t,Xf[Ai],b&i’ . b)H < ON-T@D/2,

)7
Proof. Let N € N* and let t € T. By Remark 3.6.10, we have
o _ o N\ 1/2
E HAF (t,Xg[AZ],b&i’A,i),b)H < CE [(1 + X047 dy (béVAiA,i),b) } . (3.62)

Since A" € A, by Remark 3.6.2 we have that E [|X][AY]|?] < C. We obtain with the
Cauchy-Schwarz inequality and Lemma 3.6.11 that

if Al 7\ /2 ir 4i11\211/2 2\11/2
E [(1+\Xt[A]y)d1 (W 40D) } <E[(1+ X407 E [dr (55 4m0).5)]
< N2, (3.63)
Combining (3.62) and (3.63), we obtain the announced inequality. O

Lemma 3.6.13. There exists C > 0 such that for any i € N, for anyt € T and for any
Al € A°, we have

E H<A:g, AP (t, b 4 6))] } < ON—T@D/2, (3.64)

Proof. Let i € N, let t € T, and let A® € A°. By the Cauchy-Schwarz inequality, we
have

g Gty | B [ GO [
We obtain with Assumptions 3.2.4 (iii-iv) and Lemma 3.6.11 that
E “AP (t, b&-,h),g) ‘2] < 2CE HAP (t,b&ﬁ),l‘;) H
< CE [dl (bgf4 Aty b)} < CON-T@, (3.66)
Combining (3.65) and (3.66), we deduce (3.64). O

We finally prove the main result of the section.
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Proof of Theorem 3.6.4. Let i € N'. We first show that for any A’ € A, the inequality
TN (AT, A0 — T AL D) < CN @72 (3.67)

holds for some constant C' > 0 independent of A’. This will imply (3.47). For any
Al € A°) we can write 9N (AY, A7) = pi(Y) and J¥(A%,b) = p*(Z), where

T-1
Y= 0£<t X{[AT, AL -,)) +F(T,X%[A’],béi,i,p)),
t=
T-1
Z:= Y0 (t X{[A], AL D) + F (T, Xi[A7),D).
t=0

Applying Lemma 3.6.7 with U = Z and V =Y — Z we have
(TN (AL AT = THAYD) = 10" (Y) = 0 (2)| < p(IY — Z)).
In addition, Lemma 3.50 yields
i 'L i1 IV 7
pi(lY — Z|) <CE[|Y — Z|] = CEHM(X FURDAp, b)H

We finally obtain (3.67) with Lemma 3.6.12 and Lemma 3.6.13.
Let us fix now A? € A such that

LN (AL A7) < £ gNAl AT ind1, N~T@/21 3.68
TN (A )_<A1;éAL7 ( >>+mm{, } (3.68)

By Lemma 3.6.9, we have A € A°. Thus inequality (3.67) yields

Ji(Ab) < JWN (A1 A1) 4 N2

IN

< inf 75N (A Ai)) + N2, (3.69)
Ate A

We apply again inequality (3.67) to A = A’. Using also the optimality of A* (with
respect to ji), we obtain

JN(A) — CNTTDR < 714 p) < J(AD). (3.70)

Finally, combining (3.69) and (3.70) we have

ji,N( ) inf jz N(Az A—Z) + CN—T(d)/Z,
Alc A

which shows that A is an e-Nash equilibrium with e = CN—7(@)/2, ]

3.7 Conclusion

This paper has studied a mean field game model with risk averse agents, and provided a
framework under which an equilibrium holds, for a large class of composite risk measures
and congestion terms. The specific structure of the integral cost of the agents has been
exploited in order to rewrite the dynamic programming equations in a functional form
(using the Moreau envelope and the proximal operator). In that way, the coupled system
could be formulated as an equivalent fixed point equation, yielding the existence of a
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solution. Regularity properties have been obtained for risk averse agents. This has
allowed to show that an optimal feedback control (for the mean field game) results in an
e-Nash equilibrium for a related dynamic game with N players. Future work could focus
on the uniqueness of the Nash equilibrium with contraction arguments and smallness
assumptions on the coupling terms. In this work, risk averse (with respect to their own
noise) agents have been considered; investigating a mean field game model with common
noise and risk averse agents would be of particular interest. Finally, we could investigate
variants of our model involving agents driven by nonlinear dynamical systems, nonconvex
data functions, or exponential utility cost functions. In such a setting we cannot expect
anymore the value function to be convex and thus, a feedback policy cannot be defined
in a unique manner. A different notion of equilibrium must then be employed. An
appropriate one may rely on the distribution of the controls of the agents at each time,
conditioned to their position, as for example in [113], where an existence result is obtained
with Kakutani’s theorem.
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Chapter 4

Discrete potential mean field
games

4.1 Introduction!

The class of mean field game (MFG) problems was introduced by J.-M. Lasry and P.-
L. Lions in [88, 89, 90] and M. Huang, R. Malhamé, and P. Caines in [80] to study
interactions among a large population of agents. The agents of the game optimize their
own dynamical system with respect to a criterion; the criterion is parameterized by some
endogenous coupling terms. These coupling terms are linked to the collective behavior of
all agents and thus induce an interaction between them. It is assumed that an isolated
agent has no impact on the coupling terms and that all agents are identical. At a
mathematical level, MFGs typically take the form of a system of coupled equations: a
dynamic programming equation (characterizing the optimal behavior of the agents), a
Kolmogorov equation (describing the distribution of the agents), and coupling equations.

In this work we study a class of discrete time and finite state space mean field games
with potential structure. The dynamical system of each agent is a Markov chain, with
controlled probability transitions. Our results are motivated by discrete time and discrete
space models as such but can be applied to discretized MFGs. Few publications deal with
fully discrete models; in a seminal work, D. Gomes, J. Mohr, and R. R. Souza [65] have
studied the existence of a Nash equilibrium via a fixed point approach and investigated
the long-term behavior of the game.

Potential (also called variational) MFGs are coupled systems which can be interpreted
as first-order conditions of two control problems in duality whose state equations are
respectively a Kolmogorov equation and a dynamic programming equation. The primal
problem (involving the Kolmogorov equation) can be interpreted as a stochastic optimal
control problem with cost and constraints on the law of the state and the control. Its
numerical resolution is thus of interest beyond the context of MFGs.

In our model, the agents interact with each other via two coupling terms: a congestion
variable v and a price variable P. The congestion « is linked to the distribution of the
agents via the subdifferential of a proper convex and l.s.c. potential F. The price P
is linked to the joint law of states and controls of the agents via the subdifferential
of a proper convex and l.s.c. potential ¢. A specificity of our discrete model is that
the potentials F' and ¢ can take the value +o0o and thus induce constraints on the
distribution of the agents, referred to as hard constraints. In the continuous case, four
classes of variational MFGs can be identified. Our model is general enough to be seen as

!The corresponding article [22] has been submitted to Mathematical Programming.
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the discrete counterpart of these four cases. Case 1: MFGs with monotone congestion
terms (F' is differentiable, ¢ = 0). The first variational formulation was given in [89]
and has been widely studied in following works [17, 34, 38, 93, 106]. Case 2: MFGs with
density constraints (F has a bounded domain, ¢ = 0). These models are of particular
interest for describing crowd motions. The coupling variable v has there an incentive
role. The reader can refer to [38, 93, 114, 115]. Case 3: MFGs with Cournot interactions
(F =0, ¢ is differentiable). In this situation, each agent optimally chooses a quantity to
be sold at each time step of the game. Interactions with the other players occur through
the gradient of ¢ which maps the mean strategy (the market demand) to a market price.
See for example [21, 67, 68, 70, 72]. Case 4: MFGs with price formation (F' = 0, ¢ has
a bounded domain). These models incorporate a hard constraint on the demand. The
price variable is the associated Lagrange multiplier and has a incentive role. We refer to
[66].

The first part of the article is devoted to the theoretical analysis of the MFG system.
We first introduce a potential problem, shown to be equivalent to a convex problem
involving the Kolmogorov equation via a change of variable, similar to the one widely
employed in the continuous setting (e.g. in [14]). Under a suitable qualification condi-
tion, we establish a duality result between this problem and an optimal control problem
involving the dynamic programming equation. We show the existence of solutions to
these problems and finally we show the existence of a solution to the MFG system. A
uniqueness result is proved (when F' and ¢ are differentiable).

The second part of the article is devoted to the numerical resolution of the MFG
system. We focus on two families of methods: primal-dual methods and augmented
Lagrangian methods. These two classes exploit the duality structure discussed above
and can deal with hard constraints. They have already been applied to continuous
MFGs, see for example the survey article [6]. Primal-dual methods have been applied
to stationary MFGs with hard congestion terms in [28] and to time-dependent MFGs in
[27]. Augmented Lagrangian methods have been applied to MFGs in [15] and to MFGs
with hard congestion terms in [17]. Other methods exploiting the potential structure
have been investigated in the literature, they are out of the scope of the current article.
Let us mention the fictitious play method [35, 55, 77] and the Sinkhorn algorithm [16].
Let us emphasize that the above references all deal with interaction terms depending
on the distribution of the states of the agents; very few publications are concerned by
interactions through the controls (see [5]). The present work is the first to address
methods for “Cournot” mean field games.

Let us comment further on the families of methods under investigation and our
contribution. The primal-dual algorithms that we have implemented were introduced by
A. Chambolle and T. Pock [45]. A novelty of our work is to show that the extension of
primal-dual methods of [46], involving nonlinear proximity operators (based on Bregman
divergences), can also be used to solve MFGs. The augmented Lagrangian method that
we have implemented is applied to the dual problem (involving the dynamic programming
equation), as originally proposed in [14] for optimal transportation problems. As in [14],
we have actually implemented a variant of the augmented Lagrangian method, called
alternating direction method of multipliers (ADMM). The method was introduced by
R. Glowinski and A. Marroco [64] and studied by D. Gabay and B. Mercier [61]. It relies
on a successive minimization of the augmented Lagrangian function. One of the main
limitations of ADMM is that when the number of involved variables is greater or equal
to three, as it is the case for our problem, convergence is not granted. A novelty of our
work is to consider a variant of ADMM, the alternating direction method with Gaussian
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back substitution (ADM-G), introduced in [78]. At each iteration of this method, the
ADMM step is followed by a Gaussian back substitution step. Convergence is ensured.
The practical implementation of the additional step turns out to be inexpensive in our
framework.

The last contribution of this work is to propose and solve numerically two hard
constraints problems: a congestion mean field game problem and a “Cournot” mean
field game. Following our analysis we define a notion of residuals allowing us to compare
the empirical convergence of each method in a common setting.

The article is organized as follows. In section 4.2 we provide the main notations,
the mean field game system under study and the underlying individual player problem.
In section 4.3 we formulate a potential problem and perform the announced change of
variable. In section 4.4 we form a dual problem and we establish a duality result. In
section 4.5 we provide our main results: existence and uniqueness of a solution to the
mean field game. In section 4.6 we provide a detailed implementation of the primal-dual
proximal algorithms, ADMM and ADM-G, and we give theoretical convergence results
when possible. In section 4.7 we present numerical results for two concrete problems. We
provide outputs obtained for each method: errors, value function, equilibrium measure,
mean displacement, congestion, demand and price.

4.2 Discrete mean field games

4.2.1 Notation

Sets. Let T' € N* denote the duration of the game. We set T = {0,...,T — 1} and
T ={0,...,T}. Let S ={0,...,n — 1} denote the state space. We set

A(S) = {w; S —[0,1] Y w(x) = 1},

€S

A= {W:TXSXS% 0,1]| 7 (t,z, ) € A(S), V(t,x)ETxS}.

For any finite set A, we denote by R(A) the finite-dimensional vector space of mappings
from A to R. All along the article, we make use of the following spaces:

R= R(T x8) xR(T x S?), U= R(T x8)xR(T),
C= RxR(T xS)xR(T), K= R(T xS)xU.
Convex analysis. For any function ¢g: R? = R U {400}, we denote
dom(g) = {z € X ‘ g(z) < 400} .
The subdifferential of g is defined by
dg(z) = {x e R | g(a') > g(z) + (a*,2/ —x), V' € Rd} .

By convention, dg(z) = 0 if g(x) = +oo. Note also that 2* € 9g(x) if and only if
g(x) + g*(2*) = (x,2*), where g* is the Fenchel transform of g, defined by

g*(a") = sup (z,2") — g().
zER?

Note that the subdifferential and Fenchel transforms of ¢, F', and ¢ (introduced in the
next paragraph) are considered for fixed values of the time and space variables.
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We denote by x the indicator function of {0} (without specifying the underlying
vector space). For any subset C' C R%, we denote by x¢ the indicator function of C. For
any x € C, we denote by N¢(z) the normal cone to C' at x,

Ne(z) = {x* € ]Rd’ (x*,2' — ) <0, Va' € C}.
We set No(z) =0if z ¢ C.

Nemytskii operators. Given two mappings g: X x Y — Z and u: X — ), we call
Nemytskii operator the mapping g[u]: X — Z defined by

glul(z) = g(z,u(x)).

We will mainly use this notation in order to avoid the repetition of time and space
variables, for example, we will write £[7](¢, ) instead of £(t, z, w(t, x)).

All along the article, we will transpose some notions associated with g to the Nemyt-
skii operator g[u]. When ) = R? and Z = R U {+00}, we define the domain of g by
dom(g) = {u: X — R? | u(z) € dom(g(x,-)), Vo € X}.

We define g*[v]: R? — R U {400} by g*[v](z) = g*(x,v(z)), where ¢g* is the Fenchel
transform of g with respect to the second variable.

4.2.2 Coupled system

Data and assumption. We fix an initial distribution mo € A(S) and four maps:
a running cost ¢, a potential price function ¢, a potential congestion cost F, and a
displacement cost «,

0: T xSxR(S)— RU{+o0}, ¢: T xR —= RU{+o0},
F: T xR(S)— RU{+o0}, a: T xS? =R

The following convexity assumption is in force all along the article. Note that we will
later make use of an additional qualification assumption (Assumption 4.4.1).

),

57
and ¢(t,-) are proper, convexr and lower semi-continuous. In addition dom({(t,z,-)) C

A(S).

Coupled system. The unknowns of the MFG system introduced below are denoted
((m,7), (u,v,P)) € R x K. They can be described as follows:

« 7 and P are the coupling terms of the MFG: ~(¢, z) is a congestion term incurred
by agents located at x € S at time ¢ € T and P(t) is a price variable

. m(t,z,y) denotes the probability transition from z € S to y € S, for agents located
at x at time ¢

.« m(t,x) denotes the proportion of agents located at x € S at time t € T

o u(t,x) is the value function of the agents.
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For any (v, P) € U, we define the individual cost ¢: T x S x S x A(S) = R,

ey, p(t, @y, p) = Ut @, p) +(t,2) + at, z,y) P(t).

Given (m, ) € R, we denote

Qlm.xl(t) = > mit,x)r(t,z,y)alt,z,y).

(z,y)€8?

We aim at finding a quintuplet (m, 7, u,~, P) such that for any (¢,s,2) € T x T x S,
t,x) inf p(y (cPta;yp—i-ut—i-ly)
. u( nf Z ) )+ ult +1,y)
uw(T,xz) = ~(T, x),

(i) (t,a,) € argmin 3 p(y) (crp(t 2, 0) +ult +1,9) ),

PEA(S) yes
MFG
m(t+1,x) thy (t,y,z), ( )
(iif) yes
m(0,x) = mo(z),

(iv)  ~(s,:) € OF(s,m(s,")),

| (v) P(t)e 3¢(t,Q[m,7T](t)).

Heuristic interpretation.

« The dynamical system of each agent is a Markov chain (XT),.+ controlled by
7 € A, with initial distribution mq: for any (¢,z,y) € T x S2,

P (X7 =yIXT =2) =n(t,z,y), P(XJ=1z)=mo(x).

Given the coupling terms (v, P) € U, the individual control problem is

inf Sy p(n) = E( Y e p(t X7 X7 7 XT) + (T XF)). (41)
teT

The equations (MFG,i-ii) are the associated dynamic programming equations:
given (v, P) € U, if u and 7 satisfy these equations, then 7 is a solution to (4.1).
The reader can refer to [20, Chapter 7] for a detailed presentation of the dynamic
programming approach for the optimal control of Markov chains.

« Given m € A, denote by m™ the probability distribution of X7, that is, m™(t,x) =
P(X] = z). Then m™ is obtained by solving the Kolmogorov equation (MFGjiii).
In the limit when the number of agents tends to oo, the distribution m™ coincides
with the empirical distribution of the agents.

. Finally, the equations (MFG,iv-v) link the coupling terms v and P to the distri-
bution of the agents m and their control 7.

In summary: given a solution (m,m,u,v, P) € R x K to (MFQG), the triplet (m,~, P) is
a solution to the mean field game

7 € argminJ, p(p), € OF[m"], P € 0¢[Q[m",n]l.
pPEA
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Remark 4.2.2. o At any timet € T, it is possible to encode constraints on the tran-
sitions of the agents located at x € S by defining £ in such a way that dom(¢(t,x, "))
is strictly included into A(S). An example will be considered in Section 4.7.

o If F and ¢ are differentiable, then their subdifferentials are singletons and thus the
coupling terms v and P are uniquely determined by m and w through the equations

(MFG,iv-v).

« The equations (MFG,iv-v) imply that m € dom(F') and Q[m, ] € dom(¢). Thus
they encode hard constraints on m and 7 if the coupling functions F or ¢ take the
value +o0o. For example, they can be chosen in the form G: R? — R U {400},
G = g+ xK, where g: R — R is convex and differentiable and where K is a closed
and convex subset of R?. Then by [11, Corollary 16.38],

0G(z) = Vg(z) + Ng(z), VzeR<

4.2.3 Further notation

We introduce now two linear operators, A and S. They will allow to bring out the con-
nection between the coupled system and the potential problem. The operator A: R(7T X
S%) — R(T) and its adjoint A*: R(T) — R(T x S?) are given by

Alw|(t) = Y w(tz,y)alt,z,y), APt z,y) =alt,z,y)P(t).
(z,y)€S52

The operator S: R(7T x S?) — R(T x S) and its adjoint §*: R(T x S) — R(T x S?) are
given by

S*ul(t,x,y) =u(t+1,y).

w(s—1,y,xz) if s >0,
S[w](s"r):{gyes ( | its=0

We can now reformulate the dynamic programming equations of the coupled system
(MFG,i-ii) as follows:

(0 {u(t, x) + € [—A*P — S*u|(t,z) = v(t, x),
U(Ta x) = ’Y(Tv :C),

(i) (€[x] + £ [-A*P — S*u))(t, ) = —(n(t,z), (A*P + S*u)(t, x)).

4.3 Potential problem and convex formulation

4.3.1 Perspective functions

Given h: R? — RU{+o0} a proper l.s.c. and convex function with bounded domain, we
define the perspective function h: R x R? — R U {+o00} by

Oh(z/0) if 6> 0,
h6,z) =140 if (0,2) = (0,0),

400 otherwise.
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Lemma 4.3.1. The perspective function h is proper, convex, l.s.c. and its domain is
given by dom(h) = {(0,z) € Ry x R? ‘ z € fdom(h)}. For any (6*,2*) € R x R?, we
have .

(6%, 2%) = xq (0%, x¥), (4.2)
where Q := {(6*,2*) € R x RY, h*(z*) + 0* < 0}.
Proof. The proof is a direct application of [25, Lemmas 1.157, 1.158] when h has a

bounded domain. In this case the recession function of A is the indicator function of
Zero. OJ

Lemma 4.3.2. Let (6, z), (0*,2*) € R x R%. Then (0*,x*) € h(0,z) if and only if

either:  h*(z*)+6* <0 and (0,z)=(0,0)
or: h*(z*)+6* =0, h(xz/0)+h*(z*)—(x/0,2*) =0, and 6>0.

Proof. Direct application of [48, Proposition 2.3]. O

4.3.2 Potential problem

We define the following criterion

J(m,m)= Y mt)x](tz)+ ) ¢lQm,x|(t) + Y Flm(s)

(t,x)eT XS teT seT

and the following potential problem (recall that m™ is the solution to the Kolmogorov
equation (MFG,iii), given m € A):
inf J(m,7w), subject to: m=m". (P)
(m,m)ER
The link between the mean field game system (MFG) and the potential problem (P) will
be exhibited in Section 4.5. Notice that Problem (P) is not convex. Yet we can define a
closely related convex problem, whose link with (P) is established in Lemma 4.3.3.
We denote by £: T x S x R x R(S) — RU {400} the perspective function of ¢ with

respect to the third variable. By Lemma 4.3.1 the function £(¢,z,-,-) is proper convex
and Ls.c. for any (t,x) € T x S. We define

Jmaw)= > Lmw](t,z)+ Y ¢lAw](t) + > Flm|(s).

(tx)eT xS teT seT

In the above definition, £ is the Nemytskii operator of £, that is, for any (t,z) e T x S,

> m(t,x)
e[m7 w] (t’ l‘) f 0’ lf m(t’ $) = O a,nd w(t,l‘, ) — 07

400, otherwise.

m(t,:p)f(t,x w(t’x")), if m(t,x) >0,

We consider now the following convex problem:

( in)f Rj(m,w), subject to: Sw —m +mg =0, (P)
m,w)e

where mg € R(T x 9) is defined by

(5, 7) = { mo(z) if s =0,

0 otherwise.
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Lemma 4.3.3. Let val(P) and val(P) respectively denote the values of problems (P) and

(P). Then val(P) = val(P). In addition, if Problem (P) is feasible, then both problems
(P) and (P) have a non-empty bounded set of solutions.

Proof. Step 1: val(P) > val(P). Let (m,7) € dom(J) be such that m = m™. Let
w(t,z, ) :=m(t,z)r(t,z,-), (4.3)
for any (t,x) € T x S. Then (m,w) is feasible for problem (P) and
m(t, x)0(t, z,w(t, 2, ) = 0t z, mt,z), w(t,z,-)), (4.4)

for any (¢, ) € TxS. Indeed by definition of £(t, , -, -), if m(t, ) > 0 then (4.4) holds and

if m(t, ) = 0 then w(t,z,-) = 0 and (4.4) still holds. It follows that J(m,n) = J(m,w)

and consequently, val(P) > val(P).
Step 2: val(P) < val(P). Let (m,w) € dom(J) be such that Sw —m = 7mg and let 7 be
such that

{ﬂ(t,x, ) =w(t,z,))/m(t,z) if m(t,z) >0, (5)

w(t,z,) € dom(l(t, x,-)) otherwise,

for all (t,z) € T x S. Then (4.4) is satisfied and (m, ) is feasible for (P). Thus
J(m, ) = J(m,w), and consequently, val(P) < val(P).

Step 3: non-empty and bounded sets of solutions. Since J(m™, ) is L.s.c. with non-empty
bounded domain, it reaches its minimum on its domain. Then the set of solutions to (P)

is non-empty and bounded. Now let (m, ) be a solution to (P) and let w be given by
(4.3). We have that

J(m,w) = J(m,n) = val(P) = val(P),

thus we deduce that the set of solutions to (P) is non-empty. It remains to show that
the set of solutions to (P) is bounded. Let (m,w) be a solution to (P). The Kolmogorov
equation implies that 0 < m(t,x) < 1, for any (t,2) € T x S. By Lemma 4.3.1, we have
w(t,z,-) € m(t,z)A(S), which implies that 0 < w(t, z,y) < 1. O

Note that the above proof shows how to deduce a solution to (}5) out of a solution
to (P) and vice-versa, thanks to relations (4.3) and (4.5).

4.4 Duality

We show in this section that Problem (P) is the dual of an optimization problem, de-
noted (D), itself equivalent to an optimal control problem of the dynamic programming

equation, problem (D). For this purpose, we introduce a new assumption (Assumption
4.4.1), which is assumed to be satisfied all along the rest of the article.

4.4.1 Duality result

The dual problem is given by
sup  D(u,7, P) := (mo,u(0,-)) = Y #*[PI(t) = Y F*[Y)(s),
(wnP)ek teT seT

u(t,z) + £ [—A*P — S*u(t,z) < ~v(t,z) (t,x) €T xS,

subject to:
u(T,x) =~(T,x), rxes.
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Note that the above kind of dynamic programming equation involves inequalities (and
not equalities as in (MFG,i)).

We introduce now a qualification condition, which will allow to prove the main duality
result of the section. For any € = (1,¢2,e3) € K and 7 € dom(£) we define m e, 7] the
solution to the following perturbed Kolmogorov equation

mi(t+1,z) = Zml(t,y)w(t,y,x) —e1(t+1,2), m1(0) —e1(0) =mo.  (4.6)
yeS

We also define, for any (¢,z,y) € T X S x S,
U)[&‘, W](tv xz, y) = m1[€7 F] (t? {L‘)ﬂ'(t, z, y)

male, w|(t,x) = mile, 7|(t, x) + e2(t, x) (4.7)
Die,7](t) = Dz y)es? wle m(t z,y)alt, z,y) + e3(t).

Assumption 4.4.1 (Qualification). There exists a > 0 such that for any e = (¢1,€2,€3)
in IC with |le|| < «, there exists m € dom(£) such that

mile, ] >0, male,n] € dom(F), Dle, 7] € dom(¢p). (4.8)

Note that the qualification assumption implies the feasibility of Problems (]5) and
(P).

Remark 4.4.2. Assume that int(dom(F')) and int(dom(¢)) are non-empty sets. Then
in this case, Assumption 4.4.1 is satisfied if there exists m € dom(£) such that

m1 [0, 7] = ma[0, 7] € int (dom(F) NR4(T x S)), DI[0,n] € int(dom(g)).

Theorem 4.4.3. Let Assumption 4.4.1 hold true. Then the dual problem (D) has a

bounded set of solutions and val(D) = val(P).

Proof. The primal problem (P) can formulated as follows:

inf F(mi,w,ma, D) + G(A(my,w, ma, D)), (B)

(m1,w,mo,D)eC

where the maps F: C - RU{+o0} and G: K — RU{+o0} and the operator A: C — K
are defined by

]:<m17w’m27D): Z E[ml,w](t,x)+z¢[D](t)—&—ZF[mﬂ(s),

(t,I)ETXS teT seT

Gy, y2,y3) = x(y1 +mo) + x(v2) + x(y3), (4.9)

A(my,w,me, D) = (Sw—my,m; —mg, Aw — D).
We next prove that the qualification condition
0 € int (dom(G) — Adom(F))

is satisfied. This is equivalent to show the existence of o > 0 such that for any ¢ =
(e1,€9,e3) € K, with ||e]| < «, there exists (m1,w, mg, D) € dom(F) satisfying

(Sw —mi+E1, M — Mo + 52,Aw — D+ 83) S dom(g) = {mo} X {0} X {O}
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This is a direct consequence of Assumption 4.4.1. Therefore, we can apply the Fenchel-
Rockafellar theorem (see [109, Theorem 31.2]) to problem (). It follows that the fol-
lowing dual problem has the same value as (3) and possesses a solution:

(u’q{l’I}Df;eKP(_A (’LL?’)/,P)) +g (’LL,’)/, P) (9)

It remains to calculate F*, G*, and A*. For any (s,z) € T x S, we define
Qv = {(a,b) e R xR(S), *(s,z,b)+a<0}, ifs<T,
" l{aeR, a=0}, if s="1T.

We then define
Q= ][] @se (4.10)

(s,2)ET xS

For any (y1,v2,¥3,y4) € C we have by Lemma 4.3.1 that

F*(y1, v2,y3,94) = xQ (W1, y2) + Y & lyal(t) + > F*[ys](s).
teT seT

The adjoint operator A*: KL — C is given by
A*(u,v,P) = (y —u, A*P + S*u, —v, —P).
It follows that

FH(=A*(u,7, P) = xq(u—7,—A*P — §*u) + > _ ¢*[P)(t) + Y _ F*[](s).
teT seT

Moreover, G*(u, 7y, P) = —(u(0, ), mo). It follows that (D) and (D) are equivalent, which
concludes the proof of the theorem. O

4.4.2 A new dual problem

We introduce in this section a new optimization problem, equivalent to (D). We define
the mapping U: U — R(T x S) which associates with (v, P) € U the solution u €
R(T x S) to the dynamic programming equation

{u(t, z) + 0 [—A*P — S*u|(t,z) = v(t,z) (t,z) €T x S, (411)
u(T,z) =~(T,x), xes.
We define the following problem
(7%§§u9(77 P):=D(Uly, P|,v,P) (D)
= (mo, Uy, Pl) = Y #*[P](t) = Y F*[y)(s).
teT seT

Lemma 4.4.4. Problems (D) and (D) have the same value. Moreover, for any solution
(u,v, P) to (D), (v, P) is a solution to (D); conversely, for any solution (v, P) to (D)
(there exists at least one), (Ulvy, P|,v, P) is a solution to (D).
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Proof. Let (v,P) € U. Then (u := Uly, P],~, P) is feasible for problem (D) and by
definition, D(u,~, P) = D(y, P). Therefore, val(D) > val(D).

Conversely, let (u,~, P) be feasible for (D). Let @ = Uly, P]. Now we claim that
a(t,r) > u(t,x), for any (t,z) € T x S (this is nothing but a comparison principle for
our dynamic programming equation). The proof of the claim relies on a monotonicity
property of £*. Given b and b’ € R(S), we say that b < ¥ if b(z) < V/(z), for all z € S.
Since £(t,z,-) has its domain included in A(S), we have

b<b = 0*(t,z,b) < 0*(t,z,b).

Using the above property, it is easy to prove the claim by backward induction. It follows
that D(vy,P) = D(i,v,P) > D(u,v, P) and finally, val(D) > val(D). Thus the two
problems have the same value.

The other claims of the lemma are then easy to verify. O

Lemma 4.4.5. For any (t,z) € T x S, the map (v, P) € U — Uly, P](t, x) is concave.

Proof. Let (t,z) € T x S. Given m € A, consider the Markov chain (X7 )s—¢
by

7 defined

11111

P (X;!_1 =yl XTI = ZL‘) =n(s,z,y), VYs=t,...T—1, X[ =u.

By the dynamic programming principle, we have

T
Uly, P(t, x) = ﬂi_ggE(;c%P (t, X7 Xs+17 m(s, X7)) + (T, X%))

The criterion to be minimized in the above equality is affine with respect to (v, P), thus
it is concave. The infimum of a family of concave functions is again concave, therefore,
Uy, P](t, ) is concave with respect to (v, P). O

As a consequence of the above Lemma, the criterion D is concave.

4.5 Connection between the MFG system and potential
problems

The connection between the MFG system and the potential problems can be established
with the help of seven conditions, which we introduce first. We say that (m1,w, mg, D) €
C and (u,~, P) € K satisfy the condition (C1) if for any (t,z) € T x S,

either: { u(t’ x) + E*[_A*P - S*u](t’ l‘) < 7(t7 CL‘),
(ma(t, ), w(t,2)) = (0,0),

u(t, z) + £ [-A*P — §*ul(t, x) = ~(t, ),
or: L[r](t, z) + E*[ A*P — S*u)(t,x) + (n(t,x), (A*P + S*u)(t,x)) = 0,
ml(t, )

where 7(t,2) = w(t,x)/m1(t, ). We say that the conditions (C2-C7) are satisfied if

(C2) u(T) =~(T), (C5) m1 = Sw+m,
(03) v e 8F[m2], (06) mi = mao,
(C4) P e ag[D], (C7) D= Aw.
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We show in the next lemma that the conditions (C1-C7) are necessary and sufficient
optimality conditions for (J3) and (D).

Lemma 4.5.1. We have that (mi,w,mq,D) € C and (u,v,P) € K are respectively
solutions of (B) and (D) if and only if the conditions (C1-C7) hold.

Proof. Let (m1,w,ma,D) € C and (u,7, P) € K. We define the two quantities a and b
as follows:

a = F(myi,w,ma, D) + F*(—A*(u,v, P)) + {(m1,w, ma, D), A*(u,v, P)),
b= g(A(m17w7m27D)) + g*(uv’y’P) - <A(m1awam25D)v (u777P)>

By Theorem 4.4.3, (my,w, mo, D) € C and (u,v, P) € K are respectively solutions of
() and (D) if and only if a + b = 0. Then we have the following decomposition

a = Z al(t,x)+Za2(:1:)+2a3(3)+2a4(t),

(s,x)ET XS zeS seT teT

b=> bi(t)+ Y ba(s) +bs(s),

teT seT

where

ar(t,z) == Lmy,w](t, z) + xQ,, ((v —u)(t,x), (—A*P — S*u)(t,))
+(ma(t, ), (u—7)(t,2)) + (w(t, z), (A*P + S*u)(t, x)),

az(z) == XQr.((y —u)(T,z)) + (mi(T, ), (u = )(T, z)),
ag(s) := F[ma](s) + F*[y](s) — (ma(s),7(s)),
ag(t) == @[D](t) + ¢*[P)(t) — (D(t), P(t)),
bi(t) ;= x((Aw — D)(t)) — (P(t), (Aw — D)(1)),
ba(s) == x((Sw —m1 +1mo)(s)) = (u(s), (Sw —m1 +mo)(s)),
b3(s) == x((m1—m2)(s)) = (¥(s), (m1 = m2)(s)),

for any (t,s,z) € T x T x S. By the Fenchel-Young inequality,

ai(s,x) 20, az(z) 20, as(s) =0, as(t) >0,
bi(t) >0,

52(8) Z 0, bg(s) Z 0.
Then a + b = 0 if and only if

AV

(4.12)

By Lemma 4.3.2 we have that (C1) holds if and only if a;(s,z) = 0 and it is obvious that
(C2-C7) holds if and only if as(x) = as(s) = as(t) = b1(t) = ba(s) = bs(s) = 0. Then the
conditions (C1-C7) hold if and only if (4.12) holds, which concludes the proof. O
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Proposition 4.5.2. Let (my, 7, u,v,P) € R x K be a solution to (MFG) and let
w(t>$7 ) :ml(t¢$)7r(t7xa')7 mo =my, D= Aw,

for any (t,x) € T x S. Then (m1,w,mz2, D) and (u,v, P) are respectively solutions to
(B) and (D). Moreover, (my,w) is solution to (P), (m,m) is solution to (P), and
(v, P) is solution to (D).

Proof. The conditions (C1-C7) are obviously satisfied. It immediately follows from
Lemma 4.5.1 that (mi,w,mg, D) and (u,~, P) are optimal for (3) and (®). The op-
timality of (my,w) and (mq, ) is then deduced from the proof of Lemma 4.3.3. The
optimality of (v, P) is a consequence of Lemma 4.4.4. O

For any (m,w) € R, (u,v, P) € K we define the set 7w[m, w, u,~y, P] of controls m € A
satisfying
w(t,z,-) = w(t,z,-)/m(t,x)

if m(t,z) > 0 and

w(t,x,-) € argmin (t,2,p) + Y p(y)(P(H)al(t, z,y) + ut +1,y))
pEA(S) yes

if m(t,z) = 0, for any (¢t,z) € T x S. Note that for any 7 € w[m,w,u,~, P], we have
w(t,z, ) = m(t,x)n(t, ), for any (t,z) € T x S. We have now the following converse
property to Proposition 4.5.2.

Proposition 4.5.3. Let (m1,w, ma, D) and (u,~y, P) be respectively solutions to () and
(D). Let t = Uly, P] and let m € w[m,w,a,v, P]. Then (m,#,a,~, P) is a solution to
(MFG).

Proof. By Lemma 4.4.4, (u,~, P) is a solution to (D). The pairs (m1,w, mg, D) and
(@, y, P) are solutions to () and (D)), respectively, therefore they satisfy conditions (C1-
C7), by Lemma 4.5.1. Equations (MFG,iii-v) are then obviously satisfied. By definition,
G satisfies (MFG,i). Finally, (MFG,ii) is satisfied, by condition (C1) and by definition of
the set w[m, w,u,~, P]. It follows that (m,r,u,7, P) € R x K is solution to (MFG). O

Since the existence of solutions to (3) and (D) has been established in Lemmas 4.3.3
and 4.4.4, we have the following corollary.

Corollary 4.5.4. There exists a solution to (MFG).
We finish this section with a uniqueness result.

Proposition 4.5.5. Let (m,m,u,~y, P) and (m/, @', u',~", P") be two solutions to the cou-
pled system (MFG). Assume that F and ¢ are differentiable with respect to their second
variable. Then (u,~y, P) = (u/,~', P"). If moreover, for any (t,x) € T x S, £(t,x,-) is
strictly convex, then (m,m) = (m/, ") and thus (MFG) has a unique solution.

Proof. 1t follows from Proposition 4.5.2 that (m,w := mm,m,D := Aw) is a solution
to ('B) and that (u,v, P) and (u’,+', P") are solutions to (). Thus by Lemma 4.5.1,
the conditions (C3) and (C4) are satisfied, both for (m,w, m, D) and (u,~, P) and for
(m,w,m, D) and (u',~', P"), which implies that v = VF[m] =+ and P = V¢[D] = P'.
It further follows that u = Uy, P] = U[y, P'| = u/.

If moreover £(t, z, -) is strictly convex for any (¢, z) € 7 x.S then the minimal argument
in (MFG,ii) is unique, which implies that 7 = 7’/ and finally that m = m™ = mT =
m'. O
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4.6 Numerical methods

In this section we investigate the numerical resolution of the problems (3) and (D). We
investigate different methods: primal-dual proximal algorithms, ADMM and ADM-G.
For all methods, it is assumed that the prox operators (defined below) of £(t, x, ), F(t, )
and ¢(t,-) are known. We explain in the Appendix 4.8 how to calculate the prox of ¢
(and the nonlinear proximator based on the entropy function) in the special case where £
is linear on its domain. We explain in Section 4.6.4 how to recover a solution to (MFG).

4.6.1 Notations

Let X; be a subset of R, let X; denote its closure. Let f: X1 — R. Assume that the
following assumption holds true.

Assumption 4.6.1. The set X is convex and the map f is continuous and 1-strongly
convex on X1. There exists an open subset Xo containing X1 such that f can be extended
to a differentiable function on Xs.

We define then the Bregman distance dy: X1 x X7 — R by

df(z,y) = f(z) = f(y) = (V(y),z —y).
If f is the Euclidean distance |- |2, then df(z,y) = 1|z — y/|*.
Given a l.s.c., convex and proper function g: R — R, we define its proximal operator
prox,: R? — R as follows:

1
prox,(z) = argmin |z — y* + g(y).
yERd 2

For any non-empty, convex and closed K C R%, we define the projection operator proj
of z € R on K by
projy (x) = prox, (z).

Finally, we denote a(t) = >, ,)esxs a(t,z,y)? for any t € T.

4.6.2 Primal-dual proximal algorithms

In this subsection we present the primal-dual algorithms proposed by A. Chambolle and
T. Pock in [45] and [46]. For the sake of simplicity, we denote by x the primal variable
(m1,w, mg, D) and by y the dual variable (u,~, P). The primal-dual algorithms rely on
the following saddle-point problem

min L(z,y) = F(z) = G (y) + (Az,y), (4.13)

which is equivalent to problem () (defined in the proof of Theorem 4.4.3). Let C; and
K1 be two subsets of C and K, respectively. Let f: C; — R and let g: K; — R satisfy
Assumption 4.6.1.

For any 7,0 > 0 and for any (2/,y') € C x K we define:

Iteration (Z,9) = Srolds, dgl (2, '),

(i) 2 =argming,.c, F(z)+ (x,A"y) + %df(ﬂj’,l‘/),
(i) &=24— 4, (4.14)
arg minyEKl g*(y) - <Aq~;7 y> + %dg(y7 y,)

Q
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Then we define the following algorithm.

Algorithm 2 Chambolle-Pock

Choose o,7 > 0 and (2°,9°) € C x K
for 0 <k < N do
Compute (zFH1 1) = S, [[ds, dg](z*, y).
end for
return (zV,yV).

Theorem 4.6.2. Let 7,0 > 0 be such that 70| A||?> < 1, where ||A|| denotes the operator
norm of A (for the Euclidean norm). Assume that dom(F) C C; and dom(G) C K;.
Assume that the iteration (4.14) is well-defined, that is, the minimal arguments in (i)
and (iii) exist. Let (z*,y*)ren denote the sequence generated by the algorithm. For any

k € N we set
k k

1 1
=k n —k n
= E 2", and §¥ = Z g y". (4.15)

n=0 n=0

Let (z,y) € C x K. Then the following holds:

1. The sequence (T¥)yeny converges to a solution of (P) and the sequence (§*)nen
converges to a solution of (D). In addition the saddle-point gap is such that

LG, y) ~ £@,7) < 1 (Ao, 8/7 + dy(0,5) /o~ (Al = %), (5~ "))

(4.16)

| =

2. If f and g are the Fuclidean distance %\ - |2, then the sequence (xF)ren converges
to a solution of (P) and the sequence (y*)ren converges to a solution of (D).

Proof. Point 1 holds as a direct application of [46, Theorem 1]. Point 2 holds as a direct
application of [45, Theorem 1], applied with § = 1. O

Remark 4.6.3. Fiz (x,y), solution to (4.13). Let (,3) € C x K . Then we have that
0<d(z):=L(2,y) — L(z,y) and 0 < §'(9) := L(z,y) — L(x,7), with equality if T (resp.
7) is a primal (resp. dual) solution. These measures of optimality (for the saddle-point
problem) trivially satisfy

0 <6(2)+3'(9) = L(3",y) — L(x,5"), (4.17)
for which an upper-bound is provided by (4.16).

Lemma 4.6.4. Let a = maxyer a(t). Then ||A|| < /max{n+ a,4}, where n is the
cardinal of the set S.

Proof. For any (my,w,ms, D) € C, we have

[A(m1, w,mg, D)? < [Sw —ma|* + [m1 — ma|* + | Aw — DJ?
< (1Al + IISIDIwl* + 4jma|* + 2lmaf* + 2| DP?.

We have ||A|| < a and ||S|| < n, which concludes the proof. O
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Euclidean distance

Now we explicit the update rule (4.14) in the case where f and g are both equal to the
Fuclidean distance %| - |2 and defined on C and K respectively. In this situation (i,4.14)
and (iii,4.14) can be expressed via proximal operators:

{(1) xr = pI‘OXT]:(x - TA Yy )7 (418)
p

(iii) g = prox,g«(y + 7AZ).

Now we detail the computation of the proximal steps in the above algorithm.

Primal step. For any z = (21,29, 23,24) € C, we have by Moreau’s identity

prox, r(z) =z — Tpl"OX]_-*/T(LU/T).
As a consequence of (4.11), the proximal operator of F* is given by
1
prox . (r) = argmin ~ |z — 2'|? + xo (), z5) + Z F*(s,25(s)) + Z &*(t, 2y (1)).
z'eC 2 =
seT teT
Then (i,4.18) is given by
(i, ) = (m}, — 74/ — )0 — (AP + §*))
— 7 projg(m} /T —~' +u'),w' /T — AP — ™), (4.19)
and for any (t,8) € T x T,
/

ia(s) = my(s) +77(s) = T Proxps o)/ (Ma(5)/7 +7'(s)),

(4.20)
D)= D'(t)+7P'(t)—1 prox¢*(t)/T(D’(t)/T + P'(t)).

Dual step. It follows from (4.9) that prox,g«(y1,v2,43) = (y1 + 0mo,y2,¥3). Then
(iii,4.18) is given by

i =+ o(Sw— 11 +mg), 4=+ +o(m —ma), P=P +0(Ad— D).

Kullback-Leibler divergence

In this section we slightly modify the Euclidean framework above. Instead of considering
a Euclidean distance dy in (i,4.14), we consider an entropy based Bregman distance called
Kullback-Leibler divergence. Let us define

Ci = {(ml,w,mg,D) €ClO<m(t,r) <1,0<w(tzy) < 1},

Co = {(m1,w,ms, D) € €0 < my(t,2) < 2,0 < wit,z,y) < 2}
For any (my,w, mg, D) € C1, we define

f(m17w7m27D) = Z m1(37x> ln(m1(87$))
(s,z)ET %S

1
+ Z w(taxay) ln(w(t,x,y))+§|(m2,D)|2. (421)
(t,z,y)eT xS?
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Then for any (my,w, mg, D) and (m},w’,mb, D’) € C1, we have

df((m1,w,mg, D), (my,w',my, D)) = drr((m1,w), (my,w"))

+5lma, D) — (b, D,
where
dice((ms, w), (mh,w)) = 37 (s, 2) (G (s, )/ (5,2)) — 1)

(s,x)eT xS

+ Z w(t,z,y)(In(w(t, z,y) /W' (t, z,y)) — 1). (4.22)
(t,z,y)€T xS52

As can be easily verified, the map f is 1-strongly convex on C;. The domain of F is not
contained in C; in general (as required by Theorem 4.6.2), however f is not 1-strongly
convex on C. This is a minor issue, since any solution to (4.13) lies in C;, thus we can
replace F by F + X, without modifying the solution set to the problem.

Compared to the Subsection 4.6.2, the computations of (4.20) still hold. The projec-
tion step (4.19) is now replaced by

(mq,w) = arg min Z Llmy, w)(t, x) + (my,~ — ') + (w, A*P' + S*u')
(m1,w)E€R (¢ NeTxs

+%dKL((m1,w),(m’1,w’))+ S e (mita)—1).  (423)
(t,x)ET xS

Note that it is not necessary to explicit the constraint w(t, z,y) < 1 in the above problem;
it is satisfied as a consequence of Assumption 4.2.1 and Lemma 4.3.1.

4.6.3 ADMM and ADM-G
We now present ADMM and ADM-G. Introducing the variables

(a,b) = (u—~,—A*P — S*u) (4.24)

and recalling the defintion of @ and F* (see the proof of Theorem 4.4.3), the problem
(D) can be written as follows:

(u,7,P)EK, (a,b)eQ
; u(s,x) —y(s,z) = a(s,x) (s,z) €T xS, (4.25)
s.t.:
—a(t,z,y)P(t) —u(t +1,y) = b(t,z,y) (t,z,y) €T x %

Remark 4.6.5. Let Dy and D, be finite difference operators defined for any (t,x,y) €
T xS xS by

DyJu](t, z) :{u(t+1,x)—u(t,a:) ift <T,

—u(T, x) ift="T,

Dﬂ?[u](t7m7y) = u(t + 17:[;) —u(t+ 1ay)'
Since dom(L(t, x,-)) € A(S), for any (u,b) € R we have that

L[+ S*u|(t,z) = £[b+ Dyul(t,x) — u(t + 1,2),
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for any (t,z) € T x S. Then we have that (a,b) € Q if and only if (@,b) € Q, where

i) = alte) —ut+ La), Bt ,y) = bty ) +ult + 1),
Thus the problem (4.25) can be alternatively written

Dyu=—v—a,

su D(u,~,P), subject to: -
p (u,7, P) ] {Dxu:A*Per'

(u;y,P) EK, (dvi)) €qQ

This problem is close to the problem studied in [1/, Section 4] in the context of optimal
transport theory.

Let » > 0. The Lagrangian and augmented Lagrangian associated with problem
(4.25) are defined by

L= D(’LL,’)/,P) - XQ(a7 b) + <mau -7 CL> + <w7 —A*P — S*u — b> (426)

L, = L(u,7,P,a,b,m,w) + g|(u —~v—a,—A"P — S*u — b)|2,
when evaluated at (u,~, P,a,b,m,w). Note that their definition is different from the
one introduced in (4.13). We define an ADMM step which consists in the updates of u,

(v, P) and (a, b) via three successive minimization steps and in the update of (m,w) via
a gradient ascent step of the augmented Lagrangian:

Iteration (u, 7, P,a, B,m,w) = L,(u,v, P,a,b,m,w),

(i) € arg min,cg(7xs) Ly (u,v, P,a,b,m,w),

(i) (%, {3) € arg min('y,P)ER(TXS)X[RS’T) L, (t,~, P,a,b,m,w), (4.27)
(iii) (a,b) € argming, pyeq L+ (1, %, P, a, b, m, w),

(iv) (m,w) = (m,w)+r(a—4% — a, —A*[P] — S*[a] — b).

ADMM
The ADMM method is given by Algorithm 3.

Algorithm 3 ADMM
Choose r > 0, (m%,w®) € R, (u’,7°, P°) € K, (a°,0°) € Q .
Let v° = (u,~, P,a,b,m,w).
for 0 <k < N do
ADMM step: v**1 = L,.(v%),
end for

return v?.

Unlike in [14] this algorithm does not reduce to ALG2, thus we have no theoretical
guarantee about the convergence. But as we will see in subsection 4.6.3, convergence
results are available for ADM-G. The relation (4.27,i) is given by

uFtt = —(mF — mg — Sw®) /r + 4% + aF — S[A* P 4 bR
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The relation (4.27,ii) can be written under a proximal form,

P (s) = proxp. (o, (m(s)/r + w1 (5) — a(s))

PR(1) = proxge oy raqn) (Alw® /r = §7uF = 1¥)(1)/a() ),
for any (t,s) € T x T. The relation (4.27, iii) can be written as a projection step

(@167 = projg ((m"/r + o+ —AF Wk /e — AXPFF — g )) o (4.28)

ADM-G

We explicit now the implementation of the ADM-G algorithm introduced in [78]. To fit
their framework we define

Al = id ) A2 = i 0 ’ A3 = —d O )
—8* 0 —-A* 0 —id

with appropriate dimensions, so that the constraint of problem (4.25) writes Aju +
As(vy, P) + Az(a,b) = 0. We define

rA5As 0 0 rA3A, 0 0
M = TA§A2 TA§A3 0 , H= 0 TA§A3 0
0 0 id/r 0 0 id/r

Then we have
id _(A§A2)71A2A3 0

(MHYH =10 id 0
0 0 id

Algorithm 4 ADM-G
Choose 7 > 0 and ¢ € (0,1). Let (m° w®) € R, (u°,~1°, P°) € K, (a®,8°) € Q .
Let v° = (v, P,a,b, m,w).
for 0 <k < N do
ADMM step: (aF+1, 551 = L,.(u,vb),

k+1 __ k *r—1\—1(~k k
. . v = v +€(M H ) (U —v )7
Substitution step: { AL gl
end for

return (uV,v).

Theorem 4.6.6. Let (uk,'yk,Pk,ak,bk,mlf,wk)keN be the sequence generated by Algo-
rithm 4, and let m§ = mk, D = Aw®, for any k € N. Then the sequence (m¥, w¥, m5, D*)en
converges to a solution of (P) and the sequence (u¥,~* P*)ren converges to a solution

of (D).

Proof. By [78, Theorem 4.7] we have that (u®,~* Pk a¥ % m¥ w*)en converges to a
saddle-point of the Lagrangian (4.26). Thus by definition of (m%, D¥), the sequence

(m¥, wk m&, D¥)ren converges to a solution of (B) and the sequence (u¥,+*, P¥)pen
converges to a solution of (D). O
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Remark 4.6.7. In our case the first equality of the Gaussian back substitution step in
Algorithm (4) can be written

= F 4 g(MrHTY) TR - oY)
= (7" — €@ — "), P* - g(AAa) T A8 = bh), b B, ).

The Gaussian back substitution step is thus given by

P =k —g@ - ), (4.29)
PR = Pk _¢(AA%)TTA* 0k — b¥), (4.30)

k+1 k41 pk+1  k+1 | k+1\ _ (~k =~k 7k ~k =~k
(W a T BT m T W) = (@, A", bt mt, ),

where (AA*)"LP(t) = P(t)/a(t) for any t € T. Then the differences between ADM-G
and ADMM can be summarized by the two corrections (4.29) and (4.30).

4.6.4 Residuals

Let (m%, w®, mk, D¥)eny and (uF, +*, PF)ren denote the two sequences generated by a

numerical method. Let us consider

W = UR*, P¥] and 7% e w[mk, w* a* +*, P (4.31)

It was shown in Proposition (4.5.3) that if for some k& € N, (m#, w*, m§, D¥) and

(uF,~*, P*) are solutions to () and (D), then (m¥, 7%, a* +*, P*) is a solution to (MFG).

Therefore, we look the sequence (m’lf7 7, 0k, y*, P*)cn as a sequence of approximate
solutions to (MFG). Note that (MFG,i) is exactly satisfied, by construction. We con-
sider the residuals (e, ex,6+,6p) € R x U defined as follows, in order to measure the

satisfaction of the remaining relations in the coupled system:

= (f[x] + £ [-A*P — S*a))(t,x) — (n(t,z), (A*P + §*0)(t, 2)),

= m"(s,x) —m(s,x),

)
)
ey(s) = m(s) = Projopspy)(s)(m(s)),
[ er(t) = Q[m,7](t) — Projogspjw) (QIm, 7] () Az),
for all (¢,5,2) € T x T x S. If the residuals are null, then (m¥, 7% a* 4 P¥) is a solution

to (MFG). The errors are then defined as the norms of e, &, €, and ep.

4.7 Numerical Results

In this section we provide two problems that we solve with the algorithms presented in
the previous section. We set n = T' = 50 and we define two scaling coefficients A, = 1/n
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and A, = 1/T. We solve two instances of the following scaled system:

( 0 {u(t, 2) /Ay + L[~ AP — S*u/ N (¢, x) = y(t, ),
U(Tv $) = ’Y(Tv 33)7

(i) (€[r] + €[~ A*P — S*u/Ay))(t,z) = —(x(t, z), (A*P + S*u/A)(t,z)),

m(t+1,2)= > m(ty)m(ty,),
(i) ves
m(0,z) = mo(x)/As,

(iv) v € OF[m],

(v) P €0gQm,7]A.].

(MFGAa)
One can show that this system is connected to two optimization problems of very similar
nature as Problems (3) and (©), which can be solved as described previously. For both
examples, ¢ is defined by

A 2
f5.0) = X2 080 2.0) + s Bt = (- 52) /4 @22)
yes

where ( is a displacement cost from state = to state y and S; = {z,z — L,z + 1} N
{0,...,n—1} is an admissible transition set. In Appendix 4.8 the reader can find detailed
computations of the Euclidean projection (4.19) (Subsection 4.8.1) and the computation
of (4.23) (Subsection 4.8.2) for this particular choice of running cost ¢. The notion of
residuals that we use in the following is adapted from Section 4.6.4 to the scaled system
(MFGA). In all subsequent graphs, the state space is represented by {0, A, ...,1} and
the set of time steps by {0, Ay, ...1}.

4.7.1 Example 1

In our first example, we take ¢ = 0 and o = 0. We consider a potential F' of the form
F[m] = Fi[m] + F>[m], where

Film](s) = [m(s)*/2,  Fa[m](s) = X[o,( (m(5)), (4.33)

and where 1 € R4(T x S) is given by

0.5 ifT/3<s<2T/3andn/3<xz<2n/3,
o {2 AT S5

3 else,

for any (s,z) € TxR(S). We refer to Fy as the soft congestion term and to Fb as the hard
congestion term. We call narrow region the set of points (s, z) for which n(s,z) = 0.5
and we call spacious region the set of points for which 7(s,x) = 3. In this situation the
state of an agent represents its physical location on the interval [0,1]. Each agent aims
at minimizing her displacement cost and avoids congestion as time evolves from time
t =0tot=1. The congestion term is linked to n by the following relation (see Remark
4.2.2):

v € OF[m] = VF1[m| + 0F2[m] = m + N, (m).
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penalisation
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Statg 08 15 00

Figure 4.1: Hard contraint n

As shown on the graphs below, we have two regimes at equilibrium: in the spacious
regions v plays the role of a classical congestion term and 4 = VFi[m]. In the narrow
region the constraint is binding, 7 is such that the constraint m € [0,7] is satisfied at
the equilibrium and is maximal for the dual problem.

We give a representation of the solution to the mean field game system in Figure 4.2.
Since it is hard to give a graphical representation of m, we give instead a graph of the
mean displacement v, defined by

) = Z n(t,z,y)y—x), V{E,z)eT xS.

yeS

For each variable, a 3D representation of the graph and a 2D representation of the
contour plots are provided. For the contour plots, the horizontal axis corresponds to the
state space and the vertical axis to the time steps (to be read from the bottom to the
top).

Let us comment the results. We start with the interpretation of the measure m and
the mean displacement v. At the beginning of the game, the distribution of players is
given by the initial condition m(0) = mg. Then the players spread since they are in the
spacious region to avoid congestion.

Thus the mean displacement is negative on the left (black region) and positive on
the right (yellow region), around ¢ = 0. The distribution becomes uniform after some
time. In a second phase, the agents move again towards the border of the state space,
anticipating the narrow region. They start their displacement before entering into the
narrow region due to their limited speed and displacement cost. Then we are in a
stationary regime (purple region), the mean displacement is null and the mass does not
vary until the end of the narrow region. At the end of the narrow region, the agents
spread again along the state axis and the distribution m becomes uniform.

We now interpret the value w and the congestion . The value function has to be
interpreted backward in time. At the end of the game, the terminal condition imposes
that the value is equal to the congestion. Since the congestion is positive and accumu-
lates backward in the value function (which can be seen in the dynamic programming
equation), the value function increases backward in time. At the end and at the be-
ginning of the narrow region we observe irregularities in the value function due to the
irregularities of the congestion term 7. But the impact on the value function is limited
due to the trade-off between the variables v and = in the dual problem. At the beginning
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Figure 4.2: Solution of Example 1
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of the game the value function is higher at the middle of the space because of the initial
distribution of players that are accumulated at this point. The congestion term 7 is
high enough at the beginning of the narrow region to ensure that the constraint on the
distribution of players is satisfied at this point. Then « is high enough at the end of the
narrow region to ensure that the constraint on the distribution of players is satisfied for
all time indices 7'/3 < s < 27'/3. At the exception of these two moments, v plays the
role of a classical congestion term.

Convergence results
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Figure 4.3: Errors plots for Example 1

Figure 4.3 shows the evolution of the error terms in function of the iterations. The
convergence is faster for ADMM and ADM-G than for Chambolle-Pock’s algorithm.
The execution time of each algorithm is given in the following table.

Chambolle-Pock | Chambolle-Pock-Bregman | ADMM | ADM-G
Time (s) 1600 1300 2000 2000

Figure 4.4: Execution time of each algorithm for Example 1, with N = 10000

4.7.2 Example 2

Here we assume that F = (. In this situation the state of an individual agent represents
a level of stock. We set a(t,z,y) = y — x; it represents the quantity bought in order to
“move” from x to y. Therefore the variable D (used in the primal problem) is the average
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quantity which is bought; it has to be understood as a demand, since at equilibrium,

D(t) = Q[m.7(t)= ) mlt.a)n(t,z,y)altz,y).

(x.y)eS?
We define the potential ¢[D] = ¢1[D] + ¢2[D], where

1 _
¢1[D] = Z(D + D)%, $2[D] = X(—c0, D] (D)-
The potential ¢ is the sum of a convex and differential term ¢ with full domain and a
convex non-differentiable term ¢2. The quantity D is a given exogenous quantity which
represent a net demand (positive or negative) to be satisfied by the agents. In this
example D(t) = 2sin(4nt/(T — 1)) for any t € T and Dyax = 0.

Market equilibrium

20 — Dot — B

Demand
[l
&
Demand
| |
- = o
&5 B
C
i

00 02 04 06 08 10 oo 0z 04 08 08 10
time time

(a) Exogenous quantity D and effective de- (b) Maximal aggregated demand Dy,., and
mand D.g demand D

05 — Price
04
03

v

2

£

0.2

01

(¢c) Price P

In this situation each agent faces a price and chooses to increase or deplete her stock.
The price mechanism is given by

P(t) € 0¢[D](t) = V1(D] + 8[D] = 5Dun(t) + N, 0l (D1)

where Deg := D + D is called the effective demand and follows two regimes.

When the constraint on the demand D is not binding, we are in a soft regime, the
price plays the role of a classical price term and is given by P(t) = %Deﬂ'(t). The
quantity D is an exogenous quantity which can be positive or negative. If the quantity
D(t) > 0, the exogenous quantity is interpreted as being a demand and the agents have
an incentive to deplete their stock to satisfy this demand. If D(¢) < 0, the exogenous
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(b) Measure m, contour plot

0.0

-0.2
-0.6
-1.0

(¢) Mean displacement v, 3d plot (d) Mean displacement v, contour plot
0.000

-0.005

-0.010

—0.015

-0.020

—0.025

=0.030

-0.035

(e) Value function u, 3d plot (f) Value function u, contour plot

Figure 4.6: Solution of Example 2

quantity is interpreted as being a supply. In the absence of a hard constraint, the agents
would have interest to increase their stock to absorb this supply. When the constraint
on the demand is binding, we are in a hard regime and the price plays the role of an
adjustment variable so that the constraint D(t) < Dya. is satisfied and is maximal for
the dual problem.

In the case where it is not profitable to buy or sell, we have that D(¢) = 0 and
thus Deg(t) = D(t). This situation occurs when the quantity D(t) < 0, since the hard
constraint prevents the agents from buying on the market. On the graph this corresponds
to the case where the red and the black curves coincide.

When D(t) > 0 we observe that the red curve is lower than the black curve meaning
that a certain amount (given by the blue curve on the following graph) of the demand
has been satisfied by the agents. Three effects prevent the agents from fully satisfying
the demand: their level of stock, their trading cost and their depletion speed limitation.

At the optimum we observe that the demand D is indeed below the threshold Dyax,
meaning that the constraint is satisfied. We now comment the measure m, the mean
displacement v and the value function u. For a given initial distribution of the level of
stock, we observe that the measure m is shifted to the left with time. This means that
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the agents deplete their stocks with time. This is consistent with the mean displacement
v where we observe two regimes: either the agents choose to sell as much as possible
or the agents choose not to sell on average. The value function u can be interpreted
backward. At the end of the game the value is null due to the terminal condition. Then
the higher the level of stock, the lower the value function that is to say the value function
is increasing in time and decreasing in space. This comes from the definition of a and
the constraint D < 0, which implies that the price is positive.

Convergence results
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Figure 4.7: Errors plots for Example 2

Figure 4.7 shows that for Example 2, ADMM and ADM-G again converge faster.
The execution time of each algorithm is given in the following table.

Chambolle-Pock | Chambolle-Pock-Bregman | ADMM | ADM-G
Time (s) 1700 1300 2200 2200

Figure 4.8: Execution time of each algorithm for Example 2 and N = 10000

4.8 Appendix

We detail here the calculation of the projection on () and the non-linear proximity
operator in (4.23), for a running cost of the form

Ut.z,p) =D p(y)BE2.Y) + Xa(s)(p)-

yes

The adaptation to the case where ¢ is defined by (4.32) is straightforward.
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4.8.1 Projection on

We detail the computation of projg, as it appears in (4.19) and (4.28). First notice
that the projection is decoupled in space and time, then for any (t,z) € T x S and
(@,b) € R x R(S), we need to compute

projg, , (a,0) = argmin (a —a)®/2+ ) (b(y) — b(y))*/2,
(Cl,b)EQt,m yes

where Q. = {(a,b) € R x R(S), a+ b(y) — B(y) < 0}. The corresponding problem is

. \2 . 7 2
min ((a a°/2+  min > (b(y) = b(y)) /2>- (4.34)
b(y)<B(y)—a, vyesS Y5

For any a € R, the solution of the inner minimization problem is given by

b*(a,y) == min{b(y), B(y) —a}, Vy€S.

Then replacing into (4.34), the minimization problem is now given by

ming(a), g(a) = (a—a)*/2+ 3 max(0,a — B())>/2.

a€eR
yeS

where B(y) := B(y)—b(y). It is now relatively easy to minimize g. Let us sort the sequence

(B(y))yes, that is, let us consider (y;);cqo,...n—1} such that Blyo) < -+ < Byn—1). It
is obvious that the function ¢ is strictly convex and polynomial of degree 2 on each of
the intervals (—oo,B(yo)), (B(yg),B(yl)),..., and (B(yn—1),+o0). One can identify on
which of these intervals a stationary point of g exists, by evaluating 89(,5’(3/2-), for all
i =0,....,n — 1. Then one can obtain an analytic expresison of the (unique) stationary
point a*, which minimizes g. Finally, we have projg, . (a,b) = (a*,b*(a*,")).

4.8.2 Entropic proximity operator

Here we detail the computation of the solution to (4.23). For notational purpose we set
cg =7(—u' +4') and co = 7(8 + A*P’ + S*u'). By definition of the running cost ¢, we
have that

Z E[mlaw](t7x) = <w7ﬂ> + Xdom(f)(mbw)'
(t,x)eT xS

Problem (4.23) writes
. 1
min _{my,ec1) + (w, c2) + —dgr((m1,w), (m},w’))
(m1,w)ER T
mi (tvx) < 1

subject to:
mi(t,x) — Eyes w(t,x,y) = 0.

To find the solution, we define the following Lagrangian with associated multipliers
()\1,)\2) S R(T X S) X R+(T X S)

L(mi,w, M\, A2) = (my,c1) + (w, c2) + dir((my, w), (m},w'))

+ 3 ata) (i) =Y wtey)+ D delsa)mlsa) - 1).

(t,x)eT xS yeS (s,2)ET xS
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For any (t,s,z,y) € T x T x S x S, a saddle point of the Lagrangian is given by the
following first order conditions,

(T, z) exp(—=A2(T, z) — 1 (T, @),

ny(t,x)  =mi(t, x)exp(=A\(t,x) — No(t,x) — 1 (¢, x)),

w(t,z,y) =w'(tzy)exp(M(t, z) — ca(t, 2, y)), (4.35)
it ) =3 eg(t z,y),

0 = min {A2(s, ), m1(s,x) — 1}.

mi(T,x) =m

=~ =~

Case 1: \o(s,z) > 0. At time s = T we have that mi(s,2) = 1. For any s < T we
have that 1y (s,2z) = 1 and ) cgw(s,2,y) = 1 and by a direct computation we have
that

m1(57$) =1,

w(s,z,y) = w'(s,z,y)exp(—ca(s, z,y))C(s, 7),
A(s,z)  =In(C(s,x)),

Xo(s,z)  =In(m)(s,2)/C(s,x))) — c1(s,x),

(4.36)

where C(s,x) = 3 cqw'(s, 2, y) exp(—ca(s, ,y)).
Case 2: \y(s,z) = 0. At time s = T we have that m; (s, z) = m/ (s, z) exp(—ci(s, x)).
For any s < T we have by a direct computation

(4.37)

1/2
where C(s,z) = (m’l(s,x) exp(—cl(s,m))/zyes w'(s,z,y) exp(—cﬂs,x,y))) .

In order to identify which of the two cases arises, one can compute a solution with
formula (4.36) and check a posteriori that Aa(s,z) > 0. If this is not the case, we deduce
that the solution to (4.35) is given by (4.37).
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Chapter 5

Generalized conditional gradient
and learning in potential mean
field games

5.1 Introduction

Mean field games were introduced by J.-M. Lasry and P.-L. Lions in [88, 89, 90] and
M. Huang, R. Malhamé, and P. Caines in [80], to study interactions among a large pop-
ulation of players. Mean field games have found various applications such has epidemic
control [52, 54], electricity management [7, 49], finance and banking [37, 40, 41, 56, 84],
social network [12], economics [2, 74], crowd motion [85]. In these models, the nature of
the interactions can be of two kinds. Interactions through the density m of players, which
appear typically in epidemic or crowd motion models, will be modeled in the following
by a congestion function denoted f. Interactions through the controls v, which rather
appear in economics, finance or energy management models, will be modeled by a price
function denoted ¢.

Framework In this article, we study the generalized conditional gradient algorithm
to solve potential mean field game problems. We consider the continuous and finite
time framework formulated in [21], consisting of a Hamilton-Jacobi-Bellman equation,
a Fokker-Planck equation, and other coupling equations. We show that the generalized
conditional gradient method can be interpreted as a learning procedure called fictitious
play. This perspective allows us to:

1. borrow and apply classical tools from the conditional gradient theory and derive,
under suitable assumptions, convergence rates for the potential cost, the different
variables generated by the fictitious play algorithm, and the exploitability;

2. show that the notion of exploitability from game theory is equivalent to the notion
of primal-dual gap defined (as defined in Section 5.5).

Potential mean field games We say that a mean field game has a convex potential
formulation if the congestion and price mappings f and ¢ derive from convex potentials
F and ®. In the mean field game literature, potential (or variational) mean field games
were first considered in [89]. This class of games has been widely investigated, we refer
the reader to [17, 34, 38, 93, 106] for congestion interactions and [21, 67, 68, 71, 70, 72]
for price interactions. A key interest of potential mean field games is that the mean field

97



5.1. INTRODUCTION CHAPTER 5. GCG IN POTENTIAL MFGS

game system stands as sufficient first order conditions for the potential control problem.
This is of particular interest for numerical resolution: in such a case one expects classical
optimization algorithms to be applicable.

Algorithms The numerical resolution of mean field games has been widely studied,
see [6] for a survey. Primal-dual methods [22, 27, 28] fully use the primal-dual structure
of the potential problem. The augmented Lagrangian algorithm [15, 17, 22] is a primal
method based on successive minimization of the primal variable and gradient ascent step
of dual variables. Other methods have been investigated such as the Sinkhorn algorithm
[16].

Let us emphasize that most of the above references deal with interaction terms de-
pending on the distribution of the states of the agents; few publications are concerned
with interactions through the controls (see [5, 22]).

Generalized conditional gradient The generalized conditional gradient algorithm
is a variant of the conditional gradient algorithm, also called Frank-Wolfe algorithm, first
developed in [59]. The conditional gradient method is designed to minimize a convex
objective function on a convex and compact set. The idea is to linearize the objective
function at each iteration k € N, at a given point Ty, and to find a minimizer zj of
this linearized problem. Then a new point Zp11 = (1 — dx)Zx + Sxxy is computed for
some step size 0 € [0,1]. As we will see later, the step size J; can be interpreted as a
learning rate for games. A classical choice of step size is given by 0y = 2/(k + 2) (see
[53, 81]) which yields the convergence of the objective function in O(1/k). For a recent
description of the conditional gradient algorithm, we refer to [82, Chapter 1]. In our study
we consider the generalized conditional gradient algorithm (first studied in [26]), which
is based on a semi-linearization of the objective function instead of a full linearization.
An interesting feature of this method is that most of the existing convergence results
obtained for the conditional gradient remain true for the generalized conditional gradient
method. We refer to [107] for a study. We mention that the previous references deal with
finite dimensional problems but these algorithms have been also investigated in infinite
dimensional setting, see [26, 105, 121] respectively for studies in Hilbert, measures and
Banach spaces.

Learning and exploitability Since most models in social science or engineering rely
on Nash equilibria, one can wonder whether such equilibria can be reached if all agents
follow their personal interests. Learning is thus a central question in game theory [60].
Fictitious play is a best response iterative method for solving games, introduced in
[29, 108]. The idea is the following: at each step of the algorithm, for a given belief on
the strategy of the others, find the best response of the players; then learn by averaging
all the best responses found from the beginning of the learning procedure. An application
of the fictitious play to potential games can be found in [94]. The fictitious play has been
investigated in [35, 55, 77, 103]. The convergence results for learning methods can be of
various forms. In potential games, one can study the convergence of the potential cost
along a sequence generated by the fictitious play algorithm. In general, one can consider
the exploitability of the game at each iteration and try to show its convergence to zero.
Given a player and a belief on the others behaviors, the exploitability is the expected
relative reward that the player can get by choosing a best response. This notion has
recently received a growing attention [50, 51, 62, 101, 102, 103]. The convergence of the
exploitability has been addressed in [103] in the context of continuous time learning and
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discrete mean field games, and a convergence rate is provided.

Link between the generalized conditional gradient and fictitious play A key
message of this article is that, in the context of continuous potential mean field games,
the generalized conditional gradient algorithm can be interpreted as a fictitious play
method. It relies on the following fact: at each step of the method, the problem to be
solved (arising from a semi-linearization of the potential problem) coincides with the
individual control problem of the agents, for a given belief of the coupling terms. The
update formula Zy1 = (1 —0x)ZTx + 0k corresponds to the learning step in the fictitious
play algorithm, where the agents update their belief by averaging the past and the new
distributions of states and controls.

This interpretation has already been highlighted in a very recent work [62], for a class
of potential mean field games with some discrete structure. To the best of our knowledge,
no other contribution in the literature has investigated the conditional gradient method
for mean field games and has pointed out this interpretation. A minor difference between
our framework and the one of [62] is the linearity of the running cost of the agents, so
that they can apply the classical conditional gradient algorithm (and do not need to rely
on semi-linearizations of the potential cost). In our PDE setting, we must employ the
standard change of variable “a la Benamou-Brenier” and the perspective function of the
running cost to get a convex potential problem. It turns out that in order to get an
interpretation of the method as a learning method, the contribution of the perspective
function (in the potential cost) must not be linearized, whence the use of the generalized
conditional gradient algorithm.

Contributions Our contributions concern the well-posedness of the generalized con-
ditional gradient algorithm and its convergence to the solution of the problem. The well-
posedness is established with the help of suitable regularity estimates for the Hamilton-
Jacobi-Bellman equation and the Fokker-Planck equation.

Similarly to [62], we use the standard convergence results of the conditional gradient
method to prove that the potential cost converges at a rate O(1/k) and the exploitability
at a rate O(1/v'k), when 6, = 2/(k + 2).

In comparison with [62], the main novelty of our work (besides the different analytical
framework) is the proof of convergence of all variables of the game: the coupling terms
(price and congestion), the distribution of the agents, and their value function, at a rate
O(1/Vk). A key tool for the proof of convergence is a kind of quadratic growth property
satisfied by the potential cost, which itself follows from the (assumed) strong convexity
of the running cost of the agents.

Let us mention that we also provide convergence rates for the case 0y = 1/(k + 1)
which is more standard in the fictitious play algorithm: O(In(k)/k) for the potential
cost, O(+/In(k)/k) for the exploitability and the different variables of the game.

Plan of the paper In Section 5.2 we provide our framework, the mean field game
system we are interested in, and give our main assumptions. In Section 5.3 we study a
stochastic individual control problem. We derive the Hamilton-Jacobi-Bellman equation
associated with the value function of the control problem, and provide some regularity
results. We link this problem with a partial differential equation (PDE) control problem
of a Fokker-Planck equation and show existence of a (regular) optimal policy. In Section
5.4 we explicit the potential problem under study. We derive uniqueness results for the
potential and the individual control problem. In Section 5.5 we recall the generalized
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conditional gradient algorithm and apply it to our context. We show that the algorithm
is well-defined. We define the exploitability and show the equality with the primal-dual
gap. At the end of the section we exhibit the link with the fictitious play learning method.
Finally, in Section 5.6, we provide our convergence results.

5.2 Data and main assumptions

5.2.1 Notations

We fix T' > 0 the duration of the game and d, k € N* two dimensional coefficients.

Sets We set Q = T¢ x [0,7]. Given a metric space X, we denote by X* its dual.
For any o € (0,1), we denote by C*(Q) the set of Hélder continuous mappings on
Q of exponent o and by C2tel+e/ 2(Q) the set of continuous mappings u with Holder
continuous derivatives dyu, Vu and D? u on @Q of exponent a. We also denote by
C1Ho(Q; R?) the set of all v € C¥(Q; R?) with Dyv € C*(Q, R*Y).

Sobolev spaces are denoted by W™4(Q), the order of derivation n being possibly
non-integral (following the definition in [87, section I1.2]). We set

WQ,LQ(Q) _ Wl’q(Q) N L9(0, T; W2’q(Td)), Wl,O,q(Q) = L9(0,T; Wl,fI(Td)).

We define

Dy (T?) = {m e L®(TY, m >0, [ m(x)dz = 1} .

Td
We fix a real number p such that p > d + 2.

Nemytskii notations For any mappings ¢g: Q x R* — R% and u: Q — R, we define
glu]: @ =R,

glu)(z,t) = g(z,t,u(z, 1))
called Nemytskii operator. This notation will mainly be used for the Hamiltonian H.

Note that H), will denote the Nemytskii operator associated with the partial derivative
of H with respect to p (a similar notation will be used for the other partial derivatives).

Data of the problem We fix an initial distribution and a terminal cost
mg € D1(TY), g: T > R,

and four maps: a running cost L, a congestion cost f, a vector of price ¢ and an
aggregation term a,

Q xR 5 R,

Q x D1(T%) — R,

[0,T] x R¥ — R%,

Q — RFx4,

s e

We assume that L is strongly convex, more precisely, we assume that there exists a
constant Cy > 0 such that for any v, v’ € R? and for any (z,t) € Q, we have

(Lo(@,£,0) — Ly, £,0),0 — ') > C{O|v ). (A1)
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For any (z,t,p) € Q x R?%, we define the Hamiltonian H,

H(x,t,p) = sup —{p,v) — L(z,t,0).
veERE

The strong convexity assumption on L ensures that H takes finite values and is contin-
uously differentiable (more regularity properties on H are collected in Appendix 5.7 ).
We define the perspective function L: Q x R x R — R,

mL (m,t,%) , ifm >0,
f/(JUa t,m,w) =< 0, ifm=0and w=0, (5.1)

400, otherwise.

Note that L is convex and lower semi-continuous with respect to (m,w). We define
A LYQ;RY) — LY(0,T;R¥) and A* : L' (0, T;RF) — LY(Q;R?) as follows,

Alw](t) = /]I‘d a(z, t)w(z,t)dx, A*[P](z,t) = a*(x,t)P(t),
for any (z,t) € Q.

5.2.2 Coupled system and assumptions

The mean field game system under study is the following,

0 {—atu —Au+ H[Vu+ A*Pl=v,  (2,t)€Q,
u(z,T) = g(z), r €T,

(i) v=—Hpy[Vu+ A*P], (x,t) € Q,

(i) om — Am+V - (vm) =0, (x,t) € Q, (MFG)
m(ovx) = mO(‘T)’ T e Tda

(iv) 7($’t) = f(:c,t,m(t)), (xvt) € Q7

(v)  P(t) = ¢[Alvm]](t), t€[0,T7,

where the unknown is (m,v,u,v,P) with m(z,t) € R, v(z,t) € RY wu(zx,t) € R,
y(z,t) € R, and P(t) € R¥, for any (z,t) € Q. The equation (MFG,i) is a Hamilton-
Jacobi-Bellman equation and describes the evolution of the value function as time goes
backward. Equation (MFG,ii) defines the optimal control v, which is given by the gradi-
ent H, of the Hamiltonian. Equation (MFGiiii) is a Fokker-Planck equation, describing
the evolution of the state distribution of the agents. Equation (MFG,iv) defines the
congestion v and equation (MFG,v) the price P.

Regularity assumptions We assume that L, is differentiable with respect to x and
v and that a is differentiable with respect to x. All along the article, we make use of the
following assumptions.
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Growth assumptions There exists Cy > 0 such that for all (z,t) € Q,y € T?, v € R?,
z € R¥, and m € Dy(T9),

L(z,t,v) < Colv|* 4 Co, (A2)
|L(x, t,0) — L(y,t,v)| < Colz —y|(1+ [v]), (A3)
(¢, 2)| < Co, (A4)
|f (@, t,m)| < Co. (A5)

Holder and Lipschitz continuity assumptions For all R > 0, there exists ag €
(0,1) such that

L e COCO(BR), o

L,e C%(ByRY) € C(Bg R,

Lus € Co(Bp, R @€ CR(QRT). (59)
v Rs ) D.a € CO‘O(Q,RkXdXd),

Ly, € C*(Bp,R¥9),

where B = Q x B(R%, R) and Bj, = [0,T] x B(R¥, R). There exists ap € (0,1) and
Co > 0 such that

| f(z2,t2,ma) — f(z1,t1,m1)| < Co <|$2 — 1]+ [t — 1 |* + [[m2 — m1||L2(Td)) , (A7)

for all (z1,t1) and (z2,t2) € Q and for all m; and my € D1(T?). We further assume that
¢ is Lipschitz continuous with respect to its second variable,

9(t, 22) — ¢(t, 21)| < Colzz — 21], (A8)
for all (x,t) € Q, for all z; and 2z € R¥.

Remark 5.2.1. Note that compared to the framework of [21] the Assumptions (A4) and
(A7) are strengthened. Indeed, we require here more regularity: on f with respect to its
third variable; on ¢ with respect to its second variable.

Boundary conditions and convention on constants We assume that there exists
g0 > 0 such that mo(z) > go for any z € T There exists ag € (0,1) such that

mg € CEroo(Td), g e c?rao(Td). (A9)

All along the article, we make use of two generic constants C' > 0 and « € (0,1). The
value of C' may increase from an inequality to the next one; the value of & may decrease.
The constants depend on the data of the problem introduced above.

5.2.3 Potentials

Congestion We assume that f is monotone, that is to say,
[ tmz) = fGatm)) o) — (@) > 0
T

for any my and may € D1(T?) and for any ¢ € [0,T]. We assume that f has a primitive,
that is, we assume the existence of a map F': [0,7] x D;(T%) such that

1
F(t,mg) — F(t,my) = /0 » f(z,t,sma + (1 — s)my)(ma(x) — my(z))deds.  (5.2)
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The monotonicity assumption implies that
F(t.ma) = F(tomn) + [ . tomn)mao) - m(z)da.
T

Since this inequality holds for any m; € D;(T%), F is convex with respect to its second
variable as the supremum of affine functions.

Price We assume that ¢ has a convex potential @, that is to say there exists a measur-
able mapping ® : [0, 7] x R¥ — R, convex with respect to its second variable and such
that ¢(t,2) = V,®(t, 2) for any (t, 2) € [0,T] x RF.

5.3 Estimates for the individual control problem

In this section we establish regularity results on the variables u, v, and m, when obtained
by solving the equations (MFG,i-iii), for fixed congestion and price. We investigate the
stochastic optimal control problem associated with the HJB equation (MFG,i). In the
section we fix § € (0,1) and we consider

Uu? =ct#(Q) x 40, T; RY). (5.3)
We also fix a pair (7, P) € U”® and a constant R > 0 such that
7z (@) + IV oo (@iray + 1Pl oo (0.7mF) < R- (5.4)

5.3.1 The individual problem as a stochastic optimal control problem

Let (Bs)se[o,7) denote a Brownian motion and let Y be a random variable, independent
of (Bs) se[o,7], with probability distribution mg. Let F denote the filtration generated
by the Brownian motion (Bjs)gcp,7] and the initial random variable Y. We denote by

LIQF(t,T;Rd) (resp. L?F’K(t,T;Rd), for some constant K > 0) the set of progressively

measurable stochastic processes v on [t,T] with value in R? such that E [ ftT |1/S\2ds} <

+oo (resp. E [ftT |1/s|2ds} < K). For all v € L&(t,T;R%), we denote by (XY)sejo,r) the
solution to the stochastic differential equation

dX, = veds + V2dB,, X,=Y.

We define the individual cost Z, p: L(0,T;RY) — R,

T
Zypv)=E [/0 L(XY, s,vs) + (A*[P|(XY,s),vs) +v(XZ,8)ds + g(X7)| . (5.5)

We consider the following stochastic individual control problem

inf Z . P
ueL]%l(I(},T;Rd) el (Pp)

This problem will play an important role in the following, in particular in learning
procedures: at each step, a representative player assumes the behavior of the others to
be given and solves (P, p).
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We define the mapping J, p: @ x L2(0,T;R?) — R,

T
Jyp(z,t,v) =E [/ L(Xs, s,vs) + (A*[P)(Xs, 8), vs) + 7(Xs, s)ds + g(X7) | ,
t
where (Xs)e[,7) is the solution to

dX, = vgds + V2dB,, X, =z.

We define by u[y, P]: @ — R the value function associated with the individual control
problem (P, p),

uly, Pl(x,t) = ueLﬁi(Itl,fT;Rd) Jy.p(x,t,v). (5.6)

Lemma 5.3.1. Let u = u[y, P]. There exists a constant C > 0, only depending on R,
such that

u(z,t) = , icnf Jy.p(z,t,v)
veLy" (t,T;R?)

for a.e. (x,t) € Q, i.e. the optimization set in (5.6) can be restricted to L;’C(t,T;Rd)
(the set is defined in the beginning of section 5.5.1).

Proof. We first derive a lower bound of L. By assumption (A6), L(x,t,0) and L,(x,t,0)
are bounded. It follows then from the strong convexity assumption (A1) that there exists
a constant C' > 0 such that

1
5‘”‘2 —C < L(z,t,v), forall (z,t,v) € QxR (5.7)
Then, for any (z,s) € Q and for any v € R, we have the following estimates:

1
L(z,5,v) + (A*[P)(x,5),v) = SV = |l Lo (qupenay | P(s)][V] = C
1

> S~ PGP ~1) 2 S (v - 1),

Let t € [0,7], let € € (0,1) and let ¥ € L2(t,T;R?) be an e-optimal process. Using the
bound on ¢ given in Assumption (A9) and using inequality (5.4), we deduce from the
above inequality that

T
E [/ |ﬂs|2ds} <C inf  J,p(x,t,v)+e+1
t VGL%(t,T;Rd)
< C(uly, Pl(,t) +2) < C,
where the constant C' does not depend on ¢ and . Thus any e-optimal process lies in

L;’C(t, T;R%), which concludes the proof. O

We now consider the Hamilton-Jacobi-Bellman equation

—Ou— Au+ H[Vu+ A*P] = 7, (z,t) € Q,

u(z,T)= g(x), r €T (5:8)

By the classical dynamic programming theory, we know that u[y, P] is the unique vis-
cosity solution to (5.8).

Lemma 5.3.2. There exists o € (0,1), depending on v and P, such that u[y, P] €
CQ+°"1+°‘/2(Q). In addition there exists a constant C > 0, only depending on R, such
that

luly, Plllw210(q) + IVuly, Plllwzisq) < C.
Proof. The proof is given in Appendix 5.7.4. O
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5.3.2 The individual problem as a PDE optimal control problem

We consider in this subsection an equivalent formulation of (P, p) as an optimal control
problem of the Fokker-Planck equation. To this purpose, we consider the mapping
m: WH0(Q) — W2LP(Q) which associates to any v € WH0°(Q) the solution to the
Fokker-Planck equation

om—Am+V - (vm) = 0, (x,t) € Q,

m(x,0) = mo(z), r €T (5.9)

Lemma 5.3.3. The mapping m is well defined. Moreover, for any v € Wh0>(Q), we
have m[v](z,t) > 0, for any (z,t) € Q.

Proof. Direct consequence of Lemma 5.7.9. O

We define BP = W21P(Q) x Wh0:0(Q) (recall that p > d + 2 is fixed) and we define

R ={(m,v) € BP,0om — Am + V - (vm) = 0, m(0) = myg, (z,t) € Q},
R = {(m,w) € B”, dym — Am+V -w = 0, m(0) = mg, m(z,t) >0, (z,t) € Q}.

Lemma 5.3.4. The mapping x: R — R given by x(m,v) = (m,mv) is well-posed and
bijective. Its inverse is given by x~*(m,w) = (m,w/m).

Proof. Let (m,v) € R. We have that m = m[v] € W21P(Q), thus m € L*®(Q) and
Vm € L>®(Q;R%), by Lemma 5.7.6. It follows that w = m[v]v € W1%(Q). Moreover,
m > 0, by Lemma 5.3.3. Therefore (m,w) € R, that is, x is well defined. Similarly, for
any (m,w) € R, we have that w/m € W%°(Q) and m[w/m] € W>'?(Q). Obviously
we have y o x~' = id and x ! o ¥ = id, which concludes the proof. O

Remark 5.3.5. Let (m,v) € R and let (m,w) = x(m,v) € R. Recalling the definition
of the perspective function (5.1), we have

/Q Livjmdadt — /Q £[m, w]dadt.

This fact, together with the existence of a bijection between R and R, will allow to prove
the equivalence of the optimal control problems, introduced later, posed over R and R.

We define the individual cost Z, p: R — R,

T
Z, p(m,v) = / (L[v] + ) mdadt —i—/o (Almv], P)dt + /Td gm(T)dzx.

Q

We define the following individual control problem

(miqrzl)feR Z, p(m,v). (Py.p)

Here the state equation of the agent is a Fokker-Planck equation with controlled drift v.
We define the individual cost Z, p: R — R,

Z, p(m,w) = /Q (i[m,w] + ym) dzdt + /OT<A[w], P)dt + /]I‘d gm(T)dz,
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where L is the perspective function of L (see the definition (5.1)), and the following
control problem

inf _Z, p(m,w). (Py,p)
(m,w)eR

Given v € W19°°(Q), we denote (X3)sejo,r) the solution to the following stochastic
differential equation

dX, = v(X,,s)ds +V2dB,, Xo=Y. (5.10)
We further consider the associated control v? € L2(0,T;R?) defined by v? = v(s, X?).

Lemma 5.3.6. For any v € WH%®(Q,R?), we have

Z,p(V") = 2, p(ml],v) = Z,.p 0 x(m[u],v).

Proof. 1t is clear that Z, p(m[v],v) = Z, p o x(m[v],v), see Remark 5.3.5. Since v €
W022(Q,RY), the process v lies in L2(0,T;RY) and Z, p(v*) < +oc. For any t € [0, 7],
m[v](-,t) is the probability density of the distribution of X/. In addition we have by
definition that vy = v(t, X}'), which yields that Z, p(v¥) = Z, p(m[v],v). O

Lemma 5.3.7. Let u = u[y, P] and let v = —H,[Vu + A*P]. Let m = m[v] and let
(m, w) = x(m,v).

1. There exists a € (0,1), depending on v and P, such that

= Cl—l—oz,oz(Q;]Rd)7 m e C2+a,1+a/2(Q)’ = Cl+a’a(Q;Rd).

2. There exists C' > 0, depending only on R, such that

HUHWLOW(Q;Rd) <C, HmHW?’LP(Q) <C, HWHWLO»oo(Q;Rd) <C.

3. The stochastic process (vg)sepo,1] is the solution to (P, p).

4. The pair (m,v) is a solution to (P.p) and (m,w) is a solution to (P p).

Proof. Point 1. We know that H), is Holder continuous (Lemma 5.7.1), Vu is Holder
continuous (Lemma 5.3.2), and P is Holder continuous by assumption. Thus v is Holder
continuous. Now we show that D,v € C%(Q,R%*?). The derivative of v is given by

Dyv = —Hp[Vu + A*P] — Hpp[Vu + A*P)(D2,u + D, A*P). (5.11)

Assumption (A6) yields D, A*P € C%(Q;R%*?). In addition we have that Vu € C*(Q;R?)
and D2 u € C*(Q;R¥?). TFinally the Holder continuity of Hp, (see Lemma 5.7.1)
yields v € C*®2(Q). Tt follows that m € C?t®1t%/2(Q;R?%), by Theorem 5.7.7 and
w = mv € CH**(Q;RY), as was to be proved.
Point 2. The constants C used for proving the second point only depend on C. By
Lemma 5.7.1, Hy,, Hp,, and H,, are Holder continuous. By (5.4) and Lemma 5.3.2,
there exists C' > 0 only depending on R such that ||v[| e (g.re) < C.

We use again formula (5.11) for proving that D,v is uniformly bounded. We know
that a and D,a are bounded (Assumption (A6)) and by Lemma 5.3.2, Vu and D,x?u are
bounded in L by some constant depending on R. We conclude that [|v||y1.0.00 () <
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C, for some C depending only on R. Now we have that m is the solution to the Fokker-
Planck equation

om — Am+m(V-v)+Vm-v= 0, (x,t) € Q,
m(0,z) = mo(x), r € Td.

Since |[[v|ly1.0.00(Qrey < C, we have that m is the solution of a parabolic PDE with
bounded coefficients, which implies that [|m|y21..g) < C, by Theorem 5.7.3. By
Lemma 5.7.6, we have [|m[/p=(q) < C and [[Vmy|[pepre) < C. It follows that
w1000 (irey < C since w = mo.

Point 3. The statement holds by a classical verification argument.

Point 4. This is a direct consequence of Point 3 and Lemma 5.3.6. Indeed, for any
(m/,v") € R, we have

Z%p(m',v’) = Z%p(y”,) > Z, p(VY) = Z, p(mv],v),

which proves the optimality of (m[v],v). The optimality of x(m[v],v) follows then from
Remark 5.3.5. O

5.4 Properties of the solution to the mean field game sys-
tem

We first recall the main result of [21] concerning the existence and uniqueness of a solution

(m, v, 4,7, P) to (MFG). Then we establish a quadratic growth property (inequality
(5.13)) which is at the heart of our convergence analysis in Section 5.6. It allows to show
that (m,v) is the unique solution to an optimization problem (P) and that (m,mv) is
the unique solution to an equivalent convex potential problem (f’) With an analogous

reasonning, we prove the uniqueness of the solutions to problems (P, p) and (P,,p).

Theorem 5.4.1. There exists a € (0,1) such that (MFG) has a unique classical solution

(m,v,u,y, P), with

m e 62+o¢71+a/2(Q)’
= Cl+a’a(Q;Rd)
= C2+a,1+a/2(Q)’ (5'12)
e CHQ),
Pec C*0,T;R").
Proof. Direct application of [21, Theorem 1, Proposition 2]. O

We define the following primal problem

T
(mlﬂl)l)feR J(m,v) = /QL[v]mdxdt —l—/o (F[m] + ®[A[mv]]) dt + /Tl‘d gm(T)dz. (P)

Lemma 5.4.2. Let (m, v, 4,7, P) be the solution to (MFG). Then there exists a constant
C > 0 such that for any (m,v) € R we have the following estimate:

T(m,v) — T (i, 5) > = / v — B[2mdzd. (5.13)
C g
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Proof. By [21, Proposition 2], we have that (m,) is solution to Problem (P). By
(MFG,ii) we have that v = —H,[Va + A*P]. Then by Lemma 5.7.2,

L[v](z,t)m(x,t) — L[v)(x, t)m(z,t) > —H[Vu + A*P)(z,t)(m(z,t) — m(z,t))
—((Vu + A*P)(z,t),w(z,t) — w(z,t)) + %h}(m,t) —o(z, t)*m(z,t), (5.14)
for all (z,t) € Q, v € C'TY(Q;RY) where (w,w) = (mv, mv). By (MFG,i),
/ _H[Vi + A*P|(m — m)dadt = / (0, — Al — F)(m — m)dedt.  (5.15)
Q Q

By (MFG,iv) we have that ¥(x,t) = f(z,t,m(t)) thus by convexity of F,
T
/ (Flm] — Fm])dt > / 5(m — m)dad. (5.16)
0 Q
By (MFG,v) we have that P = ¢[Aw] thus by convexity of ®,
T T -
/ (B[A[u]] — B[A[a]) dt > / (P, Ajw — @)dt — / (A*P,w — @)dedt.  (5.17)
0 0 Q
Combining (5.14), (5.15), (5.16), and (5.17) and integrating by parts we obtain that
J(m,v) — J(m,v) z/ ((Opu — Au)(m —m) — Va(w — w)) dedt
Q

_ 1 _2
—i—/Td(m(T) —m(T))gdx—i—C/QW—U! mdxdt

2/ w(O(m —m) — A(m —m)+ V- (w—w))dadt
Q
_ 1 _
+ /’]I‘d (0)(m(0) — mo)dz + C/Q lv — o*mdadt.

Then (5.13) holds since (m,w) and (7, @) lie in R. O
We next consider the problem

. T
(mvlg)feﬁj(m,w) = /QL[m, w]dzdt +/0 (F[m| + ®[Aw]) dt + /]l‘d gm(T)dz. (P)

Corollary 5.4.3. Let (m, v, 4,7, P) be the unique solution to (MFG). Then (m, ) is the
unique solution to Problem (P) and (m,w) = x(m,v) is the unique solution to Problem

(P).

Proof. Let (m,v), (m/,v") € R be two solutions to Problem (P). Then by Lemma 5.4.2
we have fQ |v — v'|*mdxdt = 0 which yields v = v since m is positive. Then m and m’
are solution to the same Fokker-Planck equation and thus m = m’. Finally, (m, ) is

the unique solution to (P), by Remark 5.3.5. O

Lemma 5.4.4. Let 3 € (0,1), let (v, P) € UP, let u = u[y, P] and let v = —H,[Vu+ P].
Then (m[v],v) is the unique solution to Problem (P, p) and x(m[v],v) is the unique
solution to Problem (P, p).
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Proof. The optimality of (m[v],v) and x(m[v],v) has been established in Lemma 5.3.7.
Following the proof of Lemma 5.4.2, one can easily show that

1
2, (i 0) = 2y p(mfol,v) = [ 0= oPdadt,
Q

for any (m’,v") € R. Applying the same reasoning as in the proof of Corollary 5.4.3 and
using Remark 5.3.5 allows to conclude the proof. O

5.5 Generalized conditional gradient

In this section we first present the generalized conditional gradient method in an abstract
framework. Then we present a generalized conditional gradient method for our potential
mean field game. We show that this procedure is linked with the fictitious play method,
a learning procedure. The generalized conditional gradient point of view allows us to
link two notions from different areas: the notion of exploitability from game theory and
the notion of duality gap defined in (generalized) conditional gradient theory.

Abstract framework We present here the main ideas of the generalized conditional
gradient method in a finite dimensional setting. Consider the optimization problem

min f(z) = fi(z) + f2(x), (Pr)

zeK

where K is a convex and compact subset of R™ of finite diameter D, f; is a (possibly
non-smooth) convex function and f a continuous differentiable function with L-Lipschitz
gradient. We consider the mapping h: K x K — R defined by

hz,y) = fi(y) — fi(z) + (Va(),y — 2).

The mapping h is a kind of first-order approximation of f(y) — f(x), where only fo
is linearized. Let (dg)ren € [0, 1] be a sequence of step sizes. The method generates
iteratively two sequences (Zy)ren and (zp)ren in K. At iteration k, Ty is available and
(xk, Tx+1) is obtained as follows:

x € arg min h(Zg, y),
yeK
Try1 = (1= 6k) Tk + Opxs-

We also consider the mapping o: K — R defined by

o(x) = —minh(z,y) > 0.
yeK

We call o(z) the primal-dual gap at € K. This terminology is motivated by the
following. Consider the Lagrangian £: K x R? x R? — R,

‘C(xzyv)‘) = fl(l‘) + f?(y) + <)"$ - y>
It is easy to verify that (Pf) can be formulated as follows:

inf sup L(z,y, ).
zeK,yeR? ) cpd
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In particular, for z € K, we have f(z) = supycga L(x,z, X'). The dual problems writes

sup inf  L(z,y,\).
AcRd zEK,ycR?

Given x € K, a candidate for the dual problem is A = V fa(x). The dual cost is then
inf  L(2',y',\) = inf N+ (N2 inf " —(V Y
e g (a9, A) = inf fi(2") +{ $>+y}ngfz(y) (Vfa(z),y)
— f@) + inf h(z,7) = f(z) - o(2)
e K

Thus o(x) is nothing but the difference between the primal cost at =, and the dual cost
at Vfa(xz). We will later see that it coincides with the notion of exploitability in the
context of mean field games.

Under the previous assumptions, one can show that (see [107, Lemma 2.4])

0 < f(zg) — f(Z) < o(Tg), (5.18)

where Z is a solution to problem (Py). In words, any point « € K is o(z)-optimal.

Application to potential mean field games Our framework is infinite dimensional,
we aim at minimizing the potential J (m, w) under the constraint (m,w) € R. Following
the ideas presented in the previous paragraph, we define a mapping h: R x R — R,

h((m7 w)v (m/7 w/)) = Z%P(mlv w/) - Z%P(m> w)

= /Q (i[m’,w’] — Lim, w]) dzdt +/ g(m' —m)(T)dx

Td
+ /Q V(! — m)dadt + /0 A wl, Pyt (5.19)

where vy(z,t) = f(z,t,m(t)) and P(t) = ¢(t, Aw(t)) for any (x,t) € Q. By analogy
with the previous abstract framework, we can interpret h((m,w), (m/,w’)) as a partial
linearization of J(m/,w’) — J(m,w): we have a non-linearized part composed of the
perspective function L (analogous to the term f1) and a linearized part composed of
all the other terms (analogous to the term f2): the congestion +, the price P and the

terminal cost g. Two reasons motivates this choice of linearization:

1. In general the perspective function L is not differentiable.

2. This particular choice of linearization allows to link the generalized conditional
gradient method with the fictitious play algorithm, as explained in the end of this
section.

We define the following generalized conditional gradient algorithm for potential mean
field games as follows:

Algorithm 5 Generalized conditional gradient

Choose (g, o) € C2H01+a/2(Q) x ¢+ (Q; RY) with g (z,t) > 0 for any (z,t) € Q
and choose a sequence (dx)ken € [0, 1].
for 0 <k < N do

Find (my,wy) = arg min(m’ )R

wyen MM, W), (m, w))
Actualise (mpg41, Wkr1) = (1 — 0x) (Mg, Wx) + O (M, wi)
end for
return (my,wy).
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a{m, w)

W2 1-R(Q) x W1.%(Q)

(m, w)

—— Domain R

Figure 5.1: Tllustration of the potential cost J, the individual cost Z, p and the ex-
ploitability o.

We first justify the well-posedness of the algorithm (in particular, we need to justify
the existence and uniqueness of (my,wy)). To this goal, we introduce the following
sequences

Pk(t) = ¢(tsAﬁ}k(t))a ’}‘k(x'.! t) = f(xs t, 'ﬁlk(t)),
uk(xa t) = uh’kr Pk] (xa t), Uk(:lf,t) = _Hp[vuk 1= A*Pk]](.’l?, t)r

for any (x,t) € Q. For future reference, we define
Vg = W/ M-

In the next lemma, we provide an explicit formula to the minimization step, directly
derived from Lemma 5.3.7.

Lemma 5.5.1. For all k € N, we have (my, wy) = x(mvg],vp). Moreover, there exists
ag € (0,1) such that

My, g € CFrowlter/2(Q),
Vg, Wk, Wy € CI1H%(Q: RY),
$ up € CHromlta/2(Q), (5.20)

T € C*(Q),
P.e Co(0,T;RF).

.

Proof. We prove the result by induction. Let k € N. Assume that there exists a € (0,1)
such that my, € C?t*1+2/2(Q), @) € C1H*(Q; RY).
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Step 1: P, € C%(0,T;R¥) and v, € C*(Q). By assumptions (A6) and (A8),

|Pr(t2) — Pr(t1)] = |p[Awg](t2) — ¢[Awg](t1)]
< O ([t2 — t1]™ + [Awg (t2) — Awg(t1)])

<C <’t2 — t1|0¢ + HGHLoo(Q;kad) /Td ”u_)k(tg) — ’U_)k(tl)’d.%) ,

for all ¢1,to € [0,T]. It follows that Py is Holder continuous, since by induction assump-
tion, 1wy € C(Q;R?Y). The announced regularity on v is a direct consequence of the
induction assumption (my, € C2T*1¥2/2(Q)) and Assumption (A7).

Step 2: wy, € C*t142/2(Q). The regularity of P, and -y, obtained in the previous steps
allows us to apply 5.3.2, which yields the announced regularity on uy.

Step 3: (my,wy) = x(m[vg],vg). By Lemma 5.3.7 and Lemma 5.4.4, x(m[vg],vx) is the
unique minimizer of Z,, p,, thus the unique minimizer of h((my,wy),-) on R.

Step 4: v, € CHH*(Q;RY), my € C*TH2(Q), and wy, € CT(Q;R%). Direct
consequence of the previous steps and Point 1 of Lemma 5.3.7.

Conclusion. By Step 4 and by the induction assumption, we have that (mgy1, Wgi1) €
C2telta/2(Q) x C1H(Q;R%). Thus the induction assumption holds at k + 1, which
concludes the proof. O

Link with the fictitious play Let us consider the primal-dual gap

O =— min _ h((mk,ﬂ}k), (m, w)) (5.21)
(m,w)eR
As mentioned earlier, oy, is a primal gap certificate; it provides us with an upper bound
of J (i, @Wy) — J (m, ) (this will be proved in Lemma 5.6.2). In the current mean field
game context, it coincides with the notion of exploitability: it is the largest decrease in
cost that a representative agent can reach by playing its best response, assuming that
all other agents use the feedback vy, := wy/my. Indeed, we have

(m,w)eR

veL2(t,TR%)

by Lemma 5.3.7 and Lemma 5.5.1.

We provide now an interpretation of the generalized gradient algorithm as a learning
procedure called fictitious play. A definition and a study of the latter learning algorithm
in the context of mean field games can be found in [35, 77]. Each iteration k of Algorithm
5 relies on the following steps:

For k € N let (mg,wy) be a given belief and 75 and Py the resulting beliefs on
congestion and price. Then there are four main steps:

1. Given (mg,wy) compute the congestion terms Py and 7. In words, the agents
make a prediction of the congestion term and the price at equilibrium, based on
the belief (my, wy,).

2. Find the value function wuj solution to the Hamilton-Jacobi-Bellman equation
parametrized by (v, Pr). Then compute the optimal control vy, given the value
function ug and the price P. This step can be interpreted as follows: for a given
belief on the distributions of the others (my,wy), a representative agent computes
its best response vy.
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3. Find the solution mj to the Fokker-Planck equation for the given drift v; and
compute the associated distribution of controls wy.

4. The actualization step of (M1, Wk+1) can be interpreted as a learning step. The
learning rule consists in averaging the past realizations of the distribution and flow
at a rate determined by the sequence (dx)xen.

5.6 Convergence Results

In this section, the generic constants C' and « depend on the data of the problem (intro-
duced in Section 5.2.2) and depend on the pair (mg,wy) chosen to initialize Algorithm
5.

Lemma 5.6.1. There exists C' > 0 such that for any k € N,

H%HWLO»oo(Q;Rd) <C Imillwz1eq) <C
HPkHLoo(o,T;Rk) <C Hwknwlvo""’(Q;Rd) <C
g w2100 <C [0l lwz1 (@) <cC
[Vukllwz1p@rey <C [kl w000 (@rey < C.

[okllwrocerey <C
In addition, we have

my(z,t) > 1/C, my(x,t) > 1/C, [|Ug]| Lo (irey < C,
for all (x,t) € Q.

Proof. Let k € N. Assume that there exists C' > 0 such that the bounds hold for all
ie{0,... k—1}.

Step 1: Bounds of v, and Py. These bounds directly follow from assumptions (A4),
(A5), and (A7). They imply the existence of C' > 0 such that

Vel oo (@) + VYKl Lo (ire) + [Pl oo (0,7mEy < C

so that we can employ the technical Lemmas of Section 5.3 to prove the other announced
bounds.

Step 2: Bounds of up, and Vuy. Direct consequence of Step 1 and Lemma 5.3.2.

Step 3: Bounds of v, my and wy. Direct consequence of the previous steps and Point 2
of Lemma 5.3.7.

Step 4: Bounds of my and wy. This is a direct consequence of the fact that (myg, wy)
can be expressed as a convex combination of (my, wy)i=o,.. k-1 and (Mg, Wo).

Step 5: mg(x,t), my(x,t) > 1/C for any (x,t) € Q. Since my, = mlvg] with [Jvg[ly1.000(Qray <
C and mg(x) > &g for any x € T9, therefore my(x,t) > 1/C by Lemma 5.7.9. Then
my(x,t) > 1/C as a convex combination of (mg)i=o, . k-1

Step 6: ||Ug | oo (@urey < C. By Step 4 and Step 5,

||@k||L°°(Q;]Rd) = ||wk/mk”Loo(Q;Rd) <C.

Conclusion. Since (g, wo) € C2H1H/2(Q) x 1+ (Q; R?) with mg(z,t) > 0 for any
(z,t) € Q, the conclusion follows by induction. O
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Recall the definition of the exploitability oy, given in (5.21). We define the sequence
of primal gaps (ex)ren as follows

er = J (g, wy) — J (i, ).

We recall that (m,w) = arg e J(m,w). The following Lemma is a certificate
result, similar to inequality (5.18).

Lemma 5.6.2. We have that €, < oy,.
Proof. For any (m,w) € R we have that

h((mkvwk)7 (m’ w)) = j(mvw) - j(mka wk) +a+ b7

where
T
a= / F[my| — F[m]dt + / f(z, t,mi(t))(m(z,t) — myg(z,t))dedt <0,
0 Q
T T
b= / ®[Awy] — ®[Aw]dt + / (p(t, Aw(t)), Alw — wy](t))dt <0,
0 0

by convexity of F and ®. Then we have that

inf N h((mkv wk)a (m) w)) < inf ~ j(ma U)) - j(mlm wk)a (522)
(m,w)eR (m,w)eR
and the conclusion follows. O

Lemma 5.6.3. There exists C > 0 such that for any 6 € [0,1], it holds:
J(m, w)) < T (my, o) — doy, + 6°C, (5.23)
where (mi’ wg) = 5(mk7 wk,’) + (1 - 5)(mk‘a wk‘)

Proof. The convexity of L yields

/ Lme, @f)dedt < / Lpmy i) + 5 (Elmy, @] — Lpmgwy]) dadt.— (5.24)
Q Q

Using that F' is the primitive of f in the sense of (5.2), we have for all ¢ € [0, 7],
Flm(t) = Flmy)(1)
1
P / F (@t g (t) + s6(mp(t) — mu(t))) (mu(e, ) — my(e, O)deds,  (5.25)
0 Jra
For any (z,t) € @, the Lipschitz-continuity of f yields

(st mi(t) + s6(mi(t) — me(t))) < [, t,mp(t) + s6Cm(t) — me(t)l| L2 (ra)
< f(x,t,mi(t)) + séC,

since my, my, are uniformly bounded by Lemma 5.6.1. Plugging into (5.25) yields

Fia)e) = Flml()+ 8 [ f(o.tmelt)(milant) = mule 0)do +5C. (526
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Now using that ® is the primitive of ¢, we have
B[AD) (1) < BLAGLI(E) + d((t, Ay (1)), Alwy — we] (1)) + 02| Al — @) (1)
by Assumption (A8). Using that wy, wy are uniformly bounded by Lemma 5.6.1 yields
[Alwr = @r](£)] < [la(®)]] poo (payllwr () — Wk (E)| oo (ray < C.
Combining the two last inequalities yields
BLAB (1) < B[AW](1) + 6(6(t, Aty (1)), Alwy — w)(1)) +62C. (5.27)

Then inequality (5.23) holds combining the Assumption (A9) on g and inequalities (5.24),
(5.26), and (5.27) which concludes the proof. O

Lemma 5.6.4. We have that
€hr1 < (1= 0p)er, + 62C.
Proof. A direct application of Lemma 5.6.3 yields,
T (M1, W) < T (g, 0x) — S0, + 02C.

Thus €41 < € — 0o + cﬁK and the conclusion follows by Lemma 5.6.2 since —oj <
—€p- ]

Lemma 5.6.5. Let Lo := max{ey/2,C} and Li := max{2¢;,C}/In(2). We have that

(1) e < 2o if 0 = 125, for any k € N,
(5.28)
(i) e < kDI 5, = L for any k € N \ {0}.

The above Lemma summarizes the rate of convergence of the sequence (€x)xen for two
learning rates. The first result (5.28,i) is classical in the context of conditional gradient
algorithm (see [53, 59]). For the sake of completeness we recall how to derive this result
in the following proof. The second result (5.28,ii) corresponds to the classical fictitious
play learning rate.

Proof. Step 1: (5.28,i) holds. Let ¢ = 2/(k + 2) for any k € N. For k = 0, it is clear
that (5.28,i) holds. For k£ > 0, assume that ¢ satisfies the inequality (5.28,i). By Lemma
5.6.4 we have that

2 4L 4C 4Lo(k+1 4L
€1 < <1 > 0 < o(k+1) 0

_ <
k+2 k:+2+(k+2)2— (k+2)2 — (k+3)

and by induction the step 1 is proved.

Step 2: (5.28,ii) holds. Let d = 1/(k + 1) for any k € N. For k = 1, it is clear that
(5.28,ii) holds by Lemma 5.6.4. For k > 1 assume that € satisfies the inequality (5.28,ii)
then by Lemma 5.6.4 we have

oy L \WE+DL c
S Y A R S )l
Then to prove (5.28,ii) it is enough to check

Eln(k+1)L1 +C _ In(k+2)
(k+1)2 - (k+2)
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Multiplying both side by (k + 1)?(k + 2), the inequation (5.28,ii) holds if

(k + 2)LC1 < (k+1)?In(k +2) — k(k +2)In(k + 1)

< k(k+2)In (1 + kL) +1In(k +2). (5.29)

The concavity of the logarithm yields In (1 4+ 1/(k + 1)) > In(2)/k. Thus the inequality
(5.29) holds whenever

C In(k + 2)

— < In(2 _—

Ly — Il( ) + E+2 7
which holds by definition of Li. Then Step 2 is proved, which concludes the proof. [

Lemma 5.6.6. There exists C > 0 such that o, < C’e,lg/2 for all k € N.

Proof. For any 8 € [0,1], Lemma 5.6.3 yields J(m,w) < J (i, @) — 0oy, + 62C. It
follows that
o < en/5+6C, V8 e (0,1], (5.30)

by Lemma 5.6.5. The optimal choice of § € (0,1] in the latter inequality is given by
d = min{+/€;/C,1}. Since the sequence (€x)gen is uniformly bounded from above, we
can increase the constant C', so that one can choose 6 = /€ /C € (0, 1]. For this choice
of ¢, inequality (5.30) yields the announced result. O]

For any k£ € N we denote

om, =1 —m, ow,, = w — W, 0, = U — U,

6P, =P, —P, o = —7 oup = up — U.
Theorem 5.6.7. There exists C > 0 such that for all k € N,

100k | L2(Qiray + 10k || oo (0,722 (7)) + 16Wk| £2(Qira)

2
I8Pl 20 gy + | 2,

Proof. Step 1: ||0vgmg| r2(qmay < Ce,lc/z. By Lemma 5.4.2, we have
1 o, o -
ol |00k | *midedt < T (my, 0x) — T (M, V) = €.
Q

Combining the above inequality with |||z (g) < C yields the desired estimate.
Step 2: |60kl r2(qura)y < Ce,lg/Q. By Step 1 and Lemma 5.6.1,

_ _ _ 1/2
1650 2 (uray < 10Tk 2 (e |1/l L) < Cey”,

and Step 2 holds.
Step 3: ||0m| co,m;2(Tay) < 062/2. We have that dmy, satisfies

O0my — Admy, + 'V - (77577%) = -V (5@kmk), (.CE, t) €Q,
dmy(0,z) = 0, x €T
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We define the space V = W2!(T9) and its dual V*. Then dm;, is solution of a parabolic
equation of the form

dm(t) + B(t)m(t) = [f(t), (z,t) €Q,
m(0,z) = 0, z € T¢,

where B(t) € L(V,V*) and f(t) € V*. It is easy to verify that since v € W10>(Q; R?),
there exists a constant C' such that (B(t)y,y)v < C|lyllv|y'|v, for a.e. t € (0,T) and
for all y and ¢’ in V. For any y € V we further have that

B)s)v = [ (~By+ V- 50+ (50). V) o
2 2 1 2 C 2

> [ 19y + ClyP - CIVyllgldz > Lol — Sllaqme

Td

where we have used that — [, [Vyl|lyldz > -1 [, |Vy[>/C + C|y[*dz. Then B(t) is
semi-coercive, uniformly in time. Thus by [92, Chapter 3, Theorem 1.2] we have

6kl 20,750y + 100kl 20,050+ < Cllf 220,17+
< OV - dvpmg |l 20,70+

I 1/2
< C||5vkmk||L2(Q;Rd) < Cék/ .
We conclude Step 3 with the continuous inclusion (see [92, Chapter 3, Theorem 1.1])
{m e L*(0,T;V); oym € L*(0,T;V*)} C C(0,T; L*(T%)).
Step 4: ||0Wg || r2(gray < 062/2. By definition of jwj, we have
_ o oo 1/2
1@kl 2 qime) < 5B 2(@umey + [90mll 2 gime) < O/,

where the last inequality follows from Step 1 and Step 3.
Step 5: |6 Pkl r200,7mry < C’e,lf/2 and ||6vk || L (@) < Ce,le/Q. Using that ¢ is Lipschitz with
respect to its second variable (see Assumption (AS)),

0P ()] = | (t, Awg(t)) — ¢(t, Aw(t))| < ClAdw(t)]

for almost every ¢ € [0, T]. Since
|Adwy (1) = ‘/Td a(x, t)0wg(z, t)dz| < [la(t)| oo (raprxa) |00k ()] L1 (re;Ra)
Since [|al| Lo (g;rrxay < C', Step 4 yields the desired estimate

_ 1/2
16Pk || 20,0y < Cllwkl L2(gmey < Cei>.
Using that f is Lipschitz with respect to its third variable (see Assumption (A7)) yields
[0k (2, ) = [f (2,8, mi () = f (@, 6, m(t))] < Cllomg ()] L2 (pay,

for any (x,t) € Q. Taking the supremum over (z,t) € @ both sides of the inequality
yields that [|6vkcq) < C’e,lﬁ/2 by Step 3, which concludes the step.
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1/2 . _
Step 6: [ourllc(q) < Ce/”. Since [[llz=(q) < C, [Pellzormr) < C; IIilli=(@) < C,
and || Pl 2o r;rry) < €, Lemma 5.3.1 yields

dug(x,t) = inf o P (T, t, ) — inf J- p(z,t,a)
aeL>® (t,T;RY) Ttk o' L2 (t,T;R9) " ’

for any (x,t) € Q. We denote (X)) the solution to the stochastic differential

S

equation dX; = asds + v/2dB, with X = =, for any a € L(t,T;R?). Then

|5Uk(l’,t)| < sup |erk7Pk(l’,t,Oé) _J"Y,P(:L‘ataaﬂ
acLC (t,T;R9)

T
< sw E[/ (A TSPL(X, 8), )| + 69X, 8)]ds]
acLC (t,T;R9) ¢

For any (z,s) € Q and o € R, the Cauchy-Schwarz inequality yields

(A*[6Pc](z, 8), )| < [{a(z, s)6 Pr(s)]|c|
< [|all oo (@;rrxay| 6 Pr(s)]] |-

Since ||a|| foo(grixay < C, we finally have

\(Suk(:v,tﬂ < C (HéPkHLQ(O’T;Rk) + H(S’)’kHLoo(Q)) .
Thus Step 6 holds by Step 5, which concludes the proof. ]

Let us comment our last convergence results: Lemma 5.6.6 and Theorem 5.6.7.
For the fictitious play learning rate 6 = 1/(k + 1), we have proved that the primal
gap sequence (e)ren converges in O(In(k)/k) and the exploitability sequence (o )ren
and the sequence of variables (my, Wk, Uk, Pk, Yk, uk)ken converge in O(y/In(k)/k). We
have obtained a sharper convergence result for the Frank-Wolfe learning rate §; =
2/(k 4 2). For this choice, we have shown that the primal gap sequence (e)ren con-
verges in O(1/k) and the exploitability sequence (o)ren and the sequence of variables
(M, Wk, Uk, Py Vi, Uk )ken converge in O(M) The convergence results for the vari-
ables of the problem (myg, Wy, U, Pk, Yk, ur) are new in the mean field game literature.

We conclude this section with a discussion on our results. The results concerning
the convergence of the primal gap and the exploitability (Lemmas 5.6.5 and 5.6.6) are
the same as those obtained in [62] for different mean field game models, with a dis-
crete structure. These results are indeed general, since they only rely on the convexity
structure of the potential problem and the regularity properties of the coupling terms.
Therefore, they could certainly be adapted to other models, for example first order mean
field games.

We also expect that similar convergence results, for the coupling terms, the value
function, and the distribution, could be obtained in a different framework. A key step
in the proof would be to establish a quadratic growth property (as the one obtained in
Lemma 5.4.2), under a strong convexity assumption on the running cost L.

5.7 Appendix

5.7.1 Regularity of the Hamiltonian

Some properties of the Hamiltonian can be deduced from the convexity assumption (A1)
and the Holder continuity of L and its derivatives (Assumption (A6)). They are collected
in the following lemmas. whose proofs can be found in [21].

118



CHAPTER 5. GCG IN POTENTIAL MFGS 5.7. APPENDIX

Lemma 5.7.1. The Hamiltonian H is differentiable with respect to p and H, is differ-
entiable with respect to x and p. Moreover, for all R > 0, there exists a € (0,1) such
that H € C%(Bg), H, € C*(Bg,R%), H,, € C*(Bg,R¥™%), and H,, € C*(Bg,R¥*9).

Proof. See [21, Lemma 1]. O

Lemma 5.7.2. There exists a constant C > 0 such that for all (x,t) € Q, for all p € R?
and for all v € R,

1
H(w,t,p) + L(w,t,0) + () = S lo+ Hy(a, t,p)f (5.31)

In addition for any m,m >0 and v = —Hp(x,t,p) we have that

L($7t7v)m - L(:L'at’@)m Z _H('Ivtap)(m - m) - <pa w — U_)> + %|’U - ,U|2m’ (532)

where (w,w) = (mv,mv).

Proof. See [21, Proof of Proposition 2]. O

5.7.2 A priori bounds for parabolic equations
In this appendix we provide estimates for the following parabolic equation:

ou — oAu+ (b,Vu) + cu= h, (z,t) € Q,

w(z,0) = wug(z), T, (5.33)

for different assumptions on b, ¢, h, and ug. The proofs of the following results can
be found in the Appendix of [21]; they largely rely on [87]. We recall that p is a fixed
parameter and p > d + 2.

Theorem 5.7.3. For all R > 0, there exists C > 0 such that for all ug € WP»?=2/P(T4),
for all b € LP(Q;RY), for all c € LP(Q), for all h € LP(Q), satisfying

[wollwr2-2/pray < Rs o [Dllrrey S By lellr@) < B |hllze@) < R,

equation (5.33) has a unique solution u in W*P(Q). Moreover, |lully 21.0(q) < C.

Theorem 5.7.4. For q € (1,00), the trace at time t = 0 of elements of W214(Q) belongs
to Wa2=2/4(Q).

Theorem 5.7.5. There exists C > 0 such that for all ug € W?=2/PP(T%) and for all
h € LP(Q), the unique solution u to (5.33) (with b =0 and c = 0) satisfies the following
estimate:

lullwzn@) < € (Iuollwa-2msray + Ibllzo)) -
Lemma 5.7.6. There exists 6 € (0,1) and C > 0 such that for all u € W>LP(Q),

[ulles @y + [IVullesoirey < Cllullwzipq)-

Theorem 5.7.7. For all 5 € (0,1), for all R > 0, there exist a € (0,1) and C > 0 such
that for all ug € C**P(T?), b € CPB2(Q;RY), ¢ € CPP/2(Q) and h € CPPI2(Q) satisfying

luollez+e(ray < R, [|blles.srzgiray < Ry lcllessrz) < R, and ||hllcss/2(q) < R,

the solution to (5.33) lies in C2>T*1+/2(Q) and satisfies [ullgztaitarzgy < C.
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5.7.3 Maximum principle

In this appendix we establish a maximum principle for the Fokker-Planck equation. We
study the parabolic equation (5.33) with h = 0,

om —oAm+ (b,Vm) + ecm = 0, (z,t) € Q,

m(x,0) = mo(z), r €T (5.34)

We assume that my satisfies Assumption (A9) and define the mapping m: L>®(Q;R%) x
L>®(Q) — W?LP(Q) which associates to any (b,c) the solution to (5.34). By Theorem
5.7.3 the mapping m is well-defined.

Lemma 5.7.8. The mapping m is continuous.

Proof. Consider the mapping ¢ : W2MP(Q) x L®(Q;RY) x L®(Q) — W»2=2/P(T?) x
LP(Q) defined by

wlm, b, c] = (m(0,-) — mo(-),Om — cAm + (b, Vi) + cm).

We define
¥o [m] = m(ov ')a 902[ma b] = <by vm>a

p1lm] = om — oAm, p3lm,c] =cm,

so that ¢[m, b, c] = (po[m] —mo(:), p1[m] + p2[m, b] + p3[m,c]). By Theorem 5.7.3 and
Theorem 5.7.4, there exists a constant C' > 0 such that

lolm]llwr2-2/pray < Cllmllwzisq), [p2[m, b][| e (@) < 16l Lo (@) Imllw210(q),
le1[mllze (@) < Clmllwzir)  lesim, clllizeq) < llelize@llmllwzirg)-

Thus ¢g and ¢1 (resp. @2 and ¢3) are C* as bounded linear (resp. bi-linear) applications.
It follows that ¢ is C*®. Let (m,b,c) € W2LP(Q) x LP(Q;R?) x LP(Q) be such that
@[m,b,c] = 0. For any direction z € W2P(Q), we have

Dpplm, b, clz = (2(0,-), 0z — 0 Az + (b, Vz) + cz).
For any (hg, hy) € WP2=2/P(T?%) x LP(Q), the equation

Oz — oAz + (b,Vz) +cz= hy, (z,t) € Q,
z(x,0) = hy, zreTe,

has a unique solution z € W21P(Q), by Theorem 5.7.3. Then D,,¢[m,b, ] is bijective
and thus invertible. The conclusion follows by the implicit function theorem. O

Lemma 5.7.9. Letv € WH0(Q;RY) and let m = m[v, V-v] € W2LP(Q) be the solution
to (5.34) with (b,c) = (v,V -v). Assume that mo(x) > &9 > 0 for any x € T¢. Then

m(z,t) > egexp (= TV - vll(g)), V(z,t) € Q. (5.35)

Proof. We first prove the result when v € Cl+°"0‘/2(Q;Rd), for some o € (0,1). By
Theorem 5.7.7, m € C*1(Q). Let & > ||V - v||00(g). We define

y(x,t) = e (m(az,t) — 606_Ht) ,
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for all (z,t) € Q. By a direct computation we have

Oy(z,t) = —y(x,t)(k — V- v(x,t)) + Ay(x,t) + (v(z,t), Vy(z,t))
tepe 2 (k4 V - v(x,1)). (5.36)

Next we show that y(z,t) > 0 for all (z,t) € Q. Let (zo,%0) € argmin, ycq y(z,t). Let
us assume, by a way of contradiction, that y(xg,to) < 0. Since y(0,2) > 0 for any = € T¢,
we have that ¢y > 0 and thus d;y(z¢, %) < 0. Since zg € T¢, we have that Vy(xo, to) = 0.
Moreover, since m is twice differentiable with respect to its second variable, we have that
Ay(zo,t0) > 0. Then it follows from (5.36) that

Ay(xo,t0) > —y(wo,to)(k — V - v(w0, t0)) + £0e 20 (k + V - v(z0, 1)) -

The right-hand side is positive since & > ||V - v|| (). This contradicts the inequality
Owy(xo,t0) < 0 and proves that y(x,t) > 0, for any (z,t) € Q. It follows then from the
definition of y that m(x,t) > ege™", for any (z,t) € Q. Passing to the limit when x —
yields (5.35).

We now consider the general case when v € WH0°(Q: R?%) and proceed by density.
Let (pr)ken be a sequence of regularizing kernels in C*°(Q). We define vy = pg *x v €
C>=(Q;R%), where * is the convolution product. We next define mj, = mluvy, V - v;] for
any k € N. Applying (5.35) to my, we obtain that

mi(z,t) > eoexp (= TV - vl o)), V(z,t) € Q.

Since vy (resp. V) uniformly converges to v (resp. Vv) and since m is continuous for
the uniform topology, we deduce that mj, converges to m in W2LP(Q) and finally that
my, uniformly converges to m, by Lemma 5.7.6. This allows us to pass to the limit in
the above inequality, which concludes the proof of the lemma. O

5.7.4 Existence and uniqueness of a classical solution to the Hamilton-
Jacobi-Bellman equation

In this appendix we prove Lemma 5.3.2, that is, we establish the existence of a solution
to the Hamilton-Jacobi-Bellman equation

-0 — Au+ H[Vu+ A*P] = ~, (x,t) € Q,

u(z,T) = g(x), r€TY, (5.37)

in C%1(Q). By classical, we mean that (5.37) can be understood in a pointwise manner.
We recall that g € C?t*(T%) and that (v, P) € U (defined in (5.3)). Moreover, the
constant R > 0 is such that

[Vl oo (@) + IVl oo (@iray + 1Pl Loo (0,7mK) < R (5.38)
The proof of the lemma relies on a fixed point approach. To this purpose, we introduce
the mapping 7 : W2LP(Q) x [0,1] — W2LP(Q) which associates to any u € W>LP(Q)
the classical solution T [u, 7| to the linear parabolic equation
-0 — Au+ TH[Vu+ A*P] = 77 (x,t) € Q,
w(z, T) = 7g(x) z € T4

For any (u,7) € W3P(Q) x [0,1], we have 7(y — H[Vu+ A*P]) € L>(Q), thus T [u, 7]
lies in W21?(Q), by Theorem 5.7.3, proving that 7 is well-defined.
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Lemma 5.7.10. The mapping T: W3LP(Q) x [0,1] — W?2LP(Q) is continuous and
compact. In addition, for all K > 0, there exists o € (0,1) and C > 0 depending on K,
7, and P such that [lullwz10q) < K implies ||T[u, 7]||c2tavar2(g) < C.

Proof. Step 1: Continuity of T. Let (ug, ) € W21P(Q) %[0, 1] be a sequence converging
to (u,7) € W2P(Q) x [0,1]. Then Vuy — Vu in L®(Q;R?) by Lemma 5.7.6. Then
(v — H[Vu, + A*P]) — 7(y — H[Vu + A*P]) in L>=(Q;R?) by continuity of the
Hamiltonian (see Lemma 5.7.1). Finally the continuity of T follows by Theorem 5.7.5.

Step 2: Compactness of T. Let K > 0 and let (u,7) € W3LP(Q) x [0,1] be such that
|ullw2.1p(@) + 7| < K. Combining Lemma 5.7.6 and Lemma 5.7.1 there exist a € (0,1)
and C' > 0 such that |[7(y — H[Vu + A*P])[|ca(q) < C. Then applying Theorem 5.7.7,
there exist o € (0,1) and C > 0 such that |7 [u, 7]llc2+a14a/2(g) < C. By the Arzela-
Ascoli Theorem the centered ball of C2+:1+e/ 2(Q) of radius C > 0 is a relatively compact

subset of W21P(Q). As a consequence 7T [u, 7] is a compact mapping and the conclusion
follows. u

Theorem 5.7.11. (Leray-Schauder) Let X be a Banach space and let T : X x[0,1] — X
be a continuous and compact mapping. Assume that T(x,0) = 0 for allz € X and assume
there exists C > 0 such that ||z||x < C for all (z,7) € X % [0,1] such that T'(xz,7) = z.
Then, there exists x € X such that T'(z,1) = x.

Proof. See [63, Theorem 11.6]. O

Proof of Lemma 5.3.2. Step 1: Existence of a classical solution. We have that T [u, 0] =
0 for all u € W3LP(Q). Now let (u,7) € W21P(Q) x [0,1] such that T[u, 7] = u. From
Lemma 5.7.10, the mapping 7 is continuous and compact, in addition u is a classical
solution and thus the viscosity solution to the Hamilton-Jacobi-Bellman equation

—Ou — Au+TH[Vu+ A*P) = 77 (x,t) € Q,
u(z,T) = 7g(x) x € TY,

and can be interpreted as the value function associated to the following stochastic control
problem

T
it 78| [ L s0) 4 (ATIPIXT 9, 08) 4 (X7 80+ 9XF)
veL2(0,T;R%) 0

where (X7)sepr) is the solution to dXy = 7veds + v2dB,, Xg = Y. Following [21,
Proposition 1, Step 2|, there exists a constant C' > 0, depending only on R, such
that [|ullpee @) + [Vl oo (irey < C. Assumption (5.38) yields that |[H[Vu + A*P] —
Y@y < C. Then u is the solution to a parabolic PDE with bounded coefficients
and thus [|ully2.15(@) < C, by Theorem 5.7.3. Again, C only depends on R. By the
Leray-Schauder Theorem 5.7.11, there exists a classical solution to (5.37).

Step 2: Uniqueness. Let u; and ug be two classical solutions to (5.37). Then w; and ug
are viscosity solutions to (5.37). Since the viscosity solution is unique, u; = us.

Step 3: |lullw21p(Q) + IVullw21pg) < C. We have already obtained a bound on
|u[lw2.1p(q) in Step 1. It remains to show that ||[Vu|y21.0g) < C. Let i € {1,...,d}.
We have that u’ := d,,u is the solution to the following equation

—Oput — Aul + 0, H[Vu + A*P] + H,[Vu + A*P] - (Vu' + 0, A*P) = 0,,7,
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for any (z,t) € Q. By Lemma 5.7.1, 0,, H and H), are continuous, thus
0 HIVU -+ APl ey < €. [V + APl e g < C.

since [|Vullga(grey < C and [|A*P||peo(re) < C. By Assumption (A6), Or,a is con-
tinuous, therefore |0y, A*P||poo(grey < C. We further have ||Vykl|o(grey < C and
1029l 0o (pay < C, by Assumption (A9). Tt follows that uj, is the solution of a parabolic

PDE with bounded coefficients, thus by Theorem 5.7.3, ||[u’[[y2.15(g) < C and the Step
3 is proved which concludes the proof. O
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Résumé :

Les jeux a champ moyen (abrégés MFG) sont a
la fois une théorie mathématique et un outil de
modélisation. Développés indépendamment en 2006
par Jean-Michel Lasry et Pierre-Louis Lions, et Mi-
nyi Huang, Roland P. Malhamé, et Peter E. Caines,
les MFG offrent un cadre particuliérement adapté
pour analyser les interactions stratégiques entre
un grand nombre de joueurs rationnels et ano-
nymes. Dans cette thése, nous proposons plusieurs
développements a cette théorie :

1) En utilisant le concept de mesure de risque compo-
site, nous étudions un modéle MFG en temps discret
impliquant des agents averses au risque. Nous mon-
trons I'existence d'une solution via une approche de
point fixe. Nous montrons qu’'une politique optimale
du MFG est (N)-optimale pour un certain jeu a N
joueurs. La suite £(N) converge vers zéro lorsque le
nombre de joueurs tend vers l'infini.

2) Nous étudions des MFG potentiels (aussi appelés
variationnels) en espace de temps discret et en es-
pace d'état fini avec des contraintes dures, c'est-a-
dire avec des potentiels convexes, éventuellement

Titre : Jeux a champ moyen : méthodes numériques et cas d’agents averses au risque

Mots clés : Jeux a champ moyen, mesures de risque, jeux potentiels, contraintes dures, gradient conditionnel

non différentiables et a domaine borné. Nous étudions
un probléme primal et un probléme dual, et nous
montrons : un résultat de dualité, I'existence et
l'unicité (dans le cas différentiable) d'une solu-
tion au systéme MFG. Ensuite, nous implémentons
deux familles de méthodes numériques des
méthodes proximales primales-duales (Chambolle-
Pock et Chambolle-Pock-Bregman) et des méthodes
de Lagrangien augmenté (ADMM et ADM-G). Nous
proposons un modéle de congestion et un modéle
de prix que nous résolvons avec ces méthodes. Nous
comparons les performances empiriques de chacune
des méthodes pour chaque probleme.

3) Nous appliquons l'algorithme du gradient condi-
tionnel généralisé pour les MFG potentiels, dans un
cadre EDP. Nous mettons en évidence le lien entre
cet algorithme et une méthode d'apprentissage ap-
pelée fictitious play. On montre que pour le taux
d’'apprentissage o = 2/(k + 2), le co(t potentiel
converge en O(1/k); 'exploitabilité et les variables du
probléme convergent en O(1/vk), pour des normes
spécifiques.

gradient, learning.

Abstract :

Mean field games (abbreviated MFGs) are both a ma-
thematical theory and a modeling tool. Developed in
2006 independently by Jean-Michel Lasry and Pierre-
Louis Lions and Minyi Huang, Roland P. Malhamé,
and Peter E. Caines, MFGs provide a framework to
analyze interactions among a large number of ratio-
nal and anonymous agents. In this thesis we provide
several developments to this theory:

1) Using the concept of composite risk measure,
we study a discrete-time MFG model involving risk-
averse agents. We show the existence of a solution
via a fixed point approach. We show that an optimal
policy of the MFG is £(NV)-optimal for a certain N-
player game. The sequence =(NN) converges to zero
as the number of players tends to infinity.

2) We study discrete time and finite state space
potential (also called variational) MFGs with hard
constraints, that is with convex potentials, possi-

Title : Mean field games: numerical methods and case of risk-averse agents

Keywords : Mean field games, risk measures, potential games, hard constraints, generalized conditional

bly non-differentiable and with bounded domain. We
study a primal and a dual problem, and we show: a
duality result, the existence and uniqueness (in the
differentiable case) of a solution to the MFG sys-
tem. Then we implement two families of numerical
methods: primal-dual proximal methods (Chambolle-
Pock and Chambolle-Pock-Bregman) and augmented
Lagrangian based methods (ADMM and ADM-G). We
propose a congestion model and a price model that
we solve with these methods. We compare the empi-
rical performance of each method for each problem.
3) We apply the generalized conditional gradient al-
gorithm for potential MFGs in a PDE framework. We
highlight the connection between this algorithm and
a learning method called fictitious play algorithm. We
show that for the learning rate &, = 2/(k + 2), the
potential cost converges in O(1/k); the exploitability
the variables of the problem converge in O(1/v%), for
specific norms.
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