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Chapter 1

Introduction

A phase of matter is a region in the corresponding physical parameter space
throughout which all physical properties of a material are essentially uniform
[1]. Landau was able to establish a classification mechanism for different phases
of matter on the basis of symmetries underlying the physical system [2, 3]. The
notion of the Landau paradigm is that while physical systems are disordered at
high temperatures, they do acquire order due to spontaneous symmetry breaking
below a critical temperature T.. That means that below T; a local magnetic order
parameter becomes finite, such that the system establishes some long-range or-
der. Quantitatively, the symmetry breaking can be captured by the behavior of a
local order parameter at the phase transition. At a first order phase transition the
local order parameter changes discontinuously, whereas at a second order phase
transition the change is continuous [4, 5].

Von Klitzing [6] described in 1980 the quantization of the Hall conductivity in
a two dimensional electron gas that was exposed to an external magnetic field.
This effect, known as the Integer Quantum Hall Effect IQHE), is one of the most
important discoveries that describes physics beyond the Landau paradigm.

As it turns out, the classification of a Quantum hall phase cannot rely on some

local order parameter. Rather, it became clear that a different kind of mechanism
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FIGURE 1.1: Topological manifolds with different genera g. Left:
A sphere with ¢ = 0. Middle: A torus with ¢ = 1. Right: A
double-torus with g = 2.

is at play that involves global properties of the underlying wave function. Mathe-
matically, the field of topology came into play.

Topology is the mathematical study that is concerned with the description and
classification of the shape of things. Topology considers two mathematical objects
as equivalent as long as they can be continuously deformed into each other, i.e.
there is a continuous map between them [7]. In the pursuit of classifying ground
states in the absence of symmetry breaking, a phase obeys topological order when
the degeneracy of the ground state depends on the topology of the underlying
manifold [8]. More specifically, the ground state degeneracy is 226 where g is
the genus of the manifold [9]. The genus of a connected, orientable surface is
an integer representing the maximum number of cuttings along non-intersecting
closed simple curves without cutting the surface into pieces [10]. More intuitively,
the genus g counts the number of holes in a manifold, see Fig. 1.1.

Based on the topology of the lattice, the ground state of a system with topo-
logical order can be separated into different topological sectors [8]. Each sector
corresponds to a distinct ground state wave function which contributes to the de-
generacy of the ground state. The global nature of topological order is expressed

in the fact that there is no local order parameter which can account for the ground
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state degeneracy (based on all wave functions of all sectors), and therefore, Lan-

daus theory is not applicable [11, 8, 9].

In this thesis

In chapter 2, we introduce the reader to the main concepts of topological band
theory, graphene as a Dirac metal and the Haldane honeycomb model - the pro-
totypical model of a Chern insulator. First, we review the main concepts of Berry
phases [12] and introduce based on them the notion of Berry curvature and the
first Chern number. Furthermore, we recap the gauge independent computation
of those quantities on a discrete lattice.

Afterwards, we introduce the concept of a Dirac metal at the example of
graphene [13]. We dive into its mathematical description within a tight binding
approach and flesh out its rich low energy phenomenology.

Then, we follow in the footsteps of Haldane [14] and explore his path to find-
ing a way to realize a quantum Hall effect without the application of an external
magnetic field in a sheet of graphene.

In chapter 3, we reveal a proximity effect between a topological band (Chern)
insulator described by a Haldane model and spin-polarized Dirac particles of a
graphene layer. We show that by coupling these two systems weakly (i.e. by
proximity), we are able to induce non-trivial topology in the bulk of the graphene
layer. We dive deep the underlying mechanisms and explore in detail the rich
phenomenology of this system. Importantly, we present experimental protocols
designed to reveal the effects described mathematically. In particular, we propose
a generalized Haldane bilayer model that is designed to observe the topological
proximity effect in a cold atom experimental setup.

In chapter 4, we leave the realm of exactly solvable models and consider

strong correlations in a Chern insulator. During the past decade some progress
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has been made in the description of interacting Chern systems, in the bosonic
case [15, 16], and both for spinless [15, 17, 18, 19] and spinfull [20, 21, 22, 23, 24]
systems. However, the system we wish to study in this chapter, i.e. the spin-
less interacting Haldane model has not been convincingly solved by means of an
approximative model. Therefore, we develop a new stochastic description of the
topological properties of the Haldane honeycomb model in the presence of strong
interactions. We confirm the Mott transition’s first-order nature which has been
previously speculated [15] by means of a variational mean-field approach sup-
ported by density matrix renormalization group results and Ginzburg-Landau
arguments.

Most importantly, we introduce a new quantity dubbed stochastic Chern num-
ber which provides a measure for the topology in the system in the presence of
strong correlations. In particular, this quantity counts stochastically the number
of particle hole pairs produced due to interaction effects which act on the ground
state Chern number. We utilize the dichroism of light to build a bridge in quan-
tifying excited quasi particles and show an analogy between interaction-induced
particle- hole pairs and temperature effects.

Finally, in chapter 5, we revisit the Kane-Mele-Hubbard model. Similarly to
the interacting Haldane model in chapter 4, we develop a variational approach
to strong-correlated Z, topological insulator. We present two different methods
to calculate the Mott transition. In particular we point out an analytical approach
starting from our stochastic decoupling scheme that allows to describe the Mott

transition line with one equation.
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Chapter 2

Concepts of topological band
theory

2.1 Topology in condensed matter physics

21.1 The Berry Phase

Consider some time-varying Hamiltonian 7 (R) where is R = R(t) is a vector of
parameters that depends on time. Now, we want to investigate the evolution of
the system when moving adiabatically, i.e. slowly in comparison to other energy
scales [11] along some path through parameter space. To this end, we diagonalize
the Hamiltonian H(R) at each point in the parameter space and orthonormal
eigenbasis |n(R)). In fact, the eigenbasis |1(R)) can be determined up to a phase
factor. In order to avoid arbitrariness (which can be interpreted as choice of gauge)
of this phase factor, we require the phase to evolve smoothly when moving along
a path in parameter space spanned by the components of the parameter vector R.

Now assume that we start moving along a path in parameter space, where
we start with the inital eigenstate |7(R(0))). According to the adiabatic theorem
[28], the system described by the Hamiltonian 7 (R) and starting in the inital, in-
stantaneous eigenstate [7(R(0))) will along an adiabatic drive through parameter

space remain in its eigenstate. Now, we assume that the phase factor mentioned
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above is indeed the only degree of freedom that remains to be computed [11]. Let

us define the phase factor 6(t) as [12, 11]
'¥) = exp(=if(t))|n(R(%))). 2.1)
Therefore, the energy evolution of the system is described by the equation [11]
!
H(R(t))|Y) = zha]‘{’). (2.2)

The phase 6(t) can in fact not be zero, since it needs to contain at least capture
the energetic evolution of the eigenstate through parameter space, the so-called
dynamic phase [28]. To our surprise, solving the differential equation associated

with Eq. 2.2 [11] yields more than that, i.e.

0(t) = %/Ot En(R(t’))dt’—i/Ot<n(R(t'))Ia\n(R(t’»dt’. (2.3)

The first term is the dynamic phase related to an energy integral. The second part

is an - a priori - unexpected term which is called the Berry phase which we denote

by YBerry, i-e.

YBerry = i/Ot<n(R(t'))|%]n(R(t/))dt’. (2.4)

The Berry phase arises from the fact that the states at t and ¢ 4- dtf are not iden-
tical [11], or in other words, it originates from the geometrical properties of the
parameter space of the Hamiltonian [12].

From now on, let us consider only closed paths C in paramter space. First, let

us write Eq. 2.4 without the direct time dependance as [11]

YBerry = lﬁ<7’l<R)IVR‘7’1(R)>dR (2.5)
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Then, we can in analogy to transport on manifolds define the Berry connection as
A(R) = i{n(R)|5x[n(R), (2.6)
and then again with this definition the Berry phase is

YBerry = ]idR . A(R). (2.7)

Now, we remind ourselves that the eigenstates |#(R)) are determined up to a
phase, i.e. [n(R)) — exp(if)|n(R)), where 6 is here a smooth function in pa-
rameter space 6 = 0(R). From a physical point of view, it would be appropriate
to call the Berry connection A(R) in fact the Berry vector potential. As such, it is

gauge dependent according to the the choice of 0, i.e.

A(R) = A(R) — %‘ (2.8)

Hence, the Berry phase as line integral of the Berry vector potential, Eq. 2.7
changes by [11]

YBerry — YBerry + Q(RO) - G(Rl) (29)

where Ry and R; are the start and end point of the path C, respectively. Since C
is a closed path, we must have Ry = Rj, and because the eigenstate basis is here
chosen single valued [11], we also have |n(Rp)) = |1n(R;)) since we moved along
C adiabatically. Therefore, in the case under consideration here, the only possible

solution for the closed path is [11]
0(Ro) — 0(Ry) = 27w (2.10)

where w must be an integer. The number w can be interpreted as a winding number

where the sign of w determines the orientation with which we move around the
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path C

Furthermore, note that in the case of graphene, which we will have a closer
look at in chapter 2.2.2, we consider a lattice Hamiltonian with chiral symmetry.
We will point out that encircling the so-called Dirac points of the hexagonal lattice
will yield Berry phases of 7t such that we can identify these points as topological

defects.

2.1.2 Berry curvature, first Chern number and Hall conductivity

For a closed path, we can make use of Stokes theorem [7] so that we can Eq. 2.7

express as

Yerry = ]idR-A(R) - /SdS (Vi X A(R)). 2.11)

Here, we transformaed a line integral along the closed path C into a surface in-
tegral over the surface S where 0§ = C. Also, note that we assumed here a two
dimensional parameter space such that we could use the rotation operator ap-
plied to the Berry connection, i.e. Vg x A(R). This expression is called the Berry
curvature F, i.e.

F(R) = Vg x A(R) (2.12)
which reads (in this two dimensional case) explicitly [7, 11]

(2.13)

We saw previously that the Berry connection needs to be integrated to result a
physical quantity, namely the Berry phase. That means, the Berry connection is
as vector potential primarily a mathematical tool (in the same way as the electro-
magnetic vector potential in electrodynamics [29]). On the other hand, the Berry

curvature is a gauge-invariant local manifestation of the geometric properties of
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the wavefunctions in the parameter space [30]. Hence, we can make the analogy
between the Berry curvature and the magnetic field in electrodynamics [29].
Having the notion of the Berry phase and the definition of the Berry curvature
at hand, we can now define the first Chern number. In direct correspondance with
the insight we gained for the Berry phase, cf. Eq. 2.10, we define the first Chern

number as [7]

1
C=5- /S dS F(R) (2.14)
1 dA(R)  9A(R)
“ 5 L9s (M R ) 19

Here, the integral is defined over a closed surface S’ (i.e. without boundary). In
practice, this surface will be either the sphere or a torus. For example in chapter
2.1.3, we assume the Brillouin to have periodic boundary conditions, such that
it can be mapped on a torus. Furthermore, note that we can always make the
connection to Eq. 2.11 where S was a surface with boundary, by cutting the closed
surface &’ into two pieces, e.g. the sphere can be cut into two hemispheres.

With our previous discussion of the Berry phase, this formula seems well mo-
tivated. From the physical side however, motivating the first Chern number can-
not be done without mentioning the Integer Quantum Hall Effect (IQHE) [6]. Von
Klitzing [6] realized the IQHE in a two-dimensional electron gas which was ex-
posed to a homogenous magnetic field oriented perpendicular to the gas. Experi-
mentally, it was found that the system is an insulator in the bulk, i.e. longitudinal
elements of the conductivity tensor ¢ vanish, i.e. 0y = 0y, = 0. On the other

hand, the transverse element oy, was found to be quantized as [11]

32
Oy = .C (2.16)

where C is an integer, and is indeed the first Chern number. The gas being a bulk
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insulator, the transverse conductivity must be connected to transport properties
at the edges [31]. Indeed, chiral edge modes carry C units % of conductance,
where the sign of C determines the orientation of the edge transport. Mathe-
matically, the connection with first Chern number was described by Thouless,
Kohmoto, Nightingale, and de Nijs [32] who showed that the number C could in-
deed by computed using Eq. 2.15. The first Chern number is therefore sometimes
also called the TKNN invariant [31].

One important aspect of a system with a non-zero Chern number is its phe-
nomenology in experimental realizations. The question is, how can it be that we
obtain e.g. in a system that shows an IQHE a bulk insulator and a non-zero Hall
conductivity which indicates transport taking place in the system [11]. The solu-
tion to this question points to the occurence of edge modes, i.e. conductive modes
that only occur at an interface of the system at hand with another system that has
a different topological bulk invariant. While we will at this point only consider
the following intuitive argument, we will in the following sections closer look at
systems that exhibit such modes, namely the Haldane and Kane-Mele models. If
we create an edge in a material hosting a bulk non-zero topological number, the
material is interfaced with the vacuum which has trivial topological order. This
induces a mismatch in terms of topological invariants at the edge which can only
be resolved by the system through the creation of gapless edge or surface states
[11] . This link between a topological invariant of a system and the emergence of

surface states is the bulk-boundary correspondence

2.1.3 Gauge independent numeric computation of the Berry curvature

and Chern number

The parameter space R introduced in previous sections, will in practice be for the

momentum space in two dimensions. Explicitly, we discretize Eq. 2.14 and 2.15
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in momentum space using

27
k= WZ (2.17)

where the Brillouin zone of the momentum space is divided into N discrete points
and Iy, = 1,...,N — 1. Note that we assume periodic boundary conditions for
the Brillouin zone such that it can effectively be mapped on a torus. The Chern

number! and Berry curvature, cf. Eq. 2.14 and 2.15, then read

1

C=5- kGZBdexdky F (k) (2.18)
and
Flk) = 0 A« (k) _ 0A (k) 219

ok, ok

Although it might be tempting to just use these equations in order to compute
the local Berry curvature or the global Chern number, it is unfortunately not that
straight forward. The Berry connection A is not gauge independent. In prac-
tice, this means that we get a different random phase when we diagonalize the
Hamiltonian of the system one by one for each fixed wave vector k such that the
resulting eigenstates are not smoothly connected. In order to compute the Berry
curvature and Chern number in a gauge independent manner, we follow Ref.
[33].

First, we note that we can change the gauge of an eigenstate |n(k)) at wave

vector k according to U(1) gauge transformation

|n(k)) — exp(i0)|n(k)) (2.20)

where 6 is a smooth function.
On the level of the Berry connection, this results in the gauge transformation

that we saw in Eq. 2.8. Then, we define U(1) link variables which capture relative

IWe will from now on call the first Chern number just Chern number.
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phases of eigenstates on neighboring lattice sites as [33]

(k) = Bt ) 220

where u = x,y, p is the unit vector in direction u with length 27t/N, and the
eigenstate |n) is the eigenstate corresponding to the n-th band.

Next, we define a lattice field strength by taking the product of all relative
phases around the boundary of a plaquette (which consists of neighboring lattice

sites at each vertex) [33]
F(k) = log (Z/{x(k)bly(k U (K + y)uy_l(k)) (2.22)

where we select the default branch of the logarithm as —7t < F(k)/i < 7. In
fact, we have F (k) = F(k) if it holds that —7t < F(k)/i < 7. If F (k) is outside
this range, it means that we have vortex in the plaquette [8] (which as we shall
see later on relates to a singularity in the corresponding wave functiion), and we
can bring F (k) back to (— 7, 71] which means that we picked effectively up phase
factor of 27t. Thus, the field strength F (k) counts the net number of vortices in

the Brillouin zone and the sum

C= F(k (2.23)
21 keZBZ (k)

is the Chern number.
Finally, we refer to Fig. 2.1 which describes numerical method for the re-
construction and visulzation of the Berry curvature in the Brillouin zone. This

method will be used several times in this PhD thesis.
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FIGURE 2.1: Graphene lattice, lattice vectors, and (next) nearest
neighbor displacements. Center: Brillouin zone, reciprocal lattice
vectors and high symmetry points. Right: Reconstruction of the
Brillouin zone for the Berry curvature plot using the C3 symmetry
of the Haldane model, see following section. For each plot, the re-
sult of the Berry curvature is normalised to one, i.e. each data set
is divided by the maximum absolute Berry curvature value con-
tained in the data set.

2.2 Graphene

2.2.1 Hexagonal lattice structure

First, we define the lattice structure of graphene, the called the hexagonal or hon-

eycomb lattice. The lattice vectors, see Fig. 2.1, are given by [11, 13]

(3 v3) w=>(3-v3).  uw.=(00) (2.24)

N[ =

U, =

where we set the bond length to unity. Furthermore, we denote nearest neighbor

displacements by [13]

(1,\/5) a, = (1,—\@) a, = = (—1,0). (2.25)

NI —
NI —

ax =
In momentum space, we define the reciprocal lattice vectors as [13]

vy = 27” (1, \@) vy = 2?" (1,—@) (2.26)
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which satisfy the orthogonality condition
u;- Z)]' = 27'[(51‘]'. (2.27)

Note that the hexagonal lattice consists of unit cells containing two sites each. In
fact, the hexagonal can be seen as being made out of two interpenetrating triangu-
lar lattices [13]. One finds two distinct symmetry points K and K’ at the vertices
of the Brillouin zone of the reciprocal hexagonal lattice, cf. Fig. 2.1, at which most
of the interesting phenomena in graphene physics occur [13]. These points are

located at

27 1 , 2w 1
K_?<l,%> K =7 <1, \@> (2.28)

Now, we also introduce the next nearest neighbour displacements in a basis

of the a;, which will be helpful later on. These are then expressed as
bl' = a]- — ag, (229)

where (i, ], k) is a cyclic permutation of (x,y,z). However, note that using an a;
basis does not yield a Hamiltonian in Bloch form. In practice, we therefore em-
ploy a basis given by the lattice vectors u; (which corresponds to a gauge trans-
forming the Hamiltonian to the new basis) and define next nearest neighbour

displacements b; accordingly in terms of the u;.

2.2.2 Graphene tight binding Hamiltonian

Next, we write down the Hamiltonian of the simplest graphene model on the

honeycomb lattice including only nearest neighbor hoppings

He=—Y hcjc;. (2.30)
(i)
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In momentum space, this Hamiltonian assumes the form
He=Y Y «of Ck- (2.31)

k pe{xyz} —g* (k) 0

Here, k runs over the whole Brillouin zone, and p runs over the links {x,y,z}.
Furthermore, the spinor basis consists of the two components ¢f = (cf 4, cip)
where A and B denote the two different sites in each unit cell, cf. Fig. 2.1. Most

importantly, the function g is defined as

gk)y=t ) (cos(k-ap)—isin(k-a,)). (2.32)
peixy.z}

We can also choose to write the Hamiltonian Eq. 2.31 using Pauli matrices ¢? as
He =Y c} (dg- ) cx (2.33)
k

The interpretation of this form is that the itinerating electrons interact with a the

pseudo magnetic field d, consisting of the components

dy(k) = —t; ) cos(k-a;)
p
dy(k) = —t1 ) _sin(k - a;)
p
dg(k) = 0. (2.34)
The dispersion relation of graphene can be computed by diagonalization of the

matrix in Eq. 2.31. This results in two energy bands with corresponding eigenen-

ergies [13]

Ei (k)= it1J 3 4 2cos (\/gky) +4cos <§ky> cos <%kx>. (2.35)
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FIGURE 2.2: Top: the three dimensional band structure of
Graphene in the Brillouin zone. Crossings of cone shape appear
at the Dirac points - so called Dirac cones. Bottom left: Two dimen-
sional band structure of graphene along high symmetry points,
cf. Fig. 2.1. Bottom right: Two dimensional band structure of
graphene along high symmetry points, with non-zero Semenoff
mass. This breaks inversion symmetry and opens a gap at the
Dirac points. Energy scales are given in terms of the nearest neigh-
bor hopping amplitude t;.

Fig. 2.2 shows the numeric result. As it can be seen, the upper and lower
bands cross exactly six points. These are in fact the K and K’ points of the Bril-
louin zone. These points are also called Dirac points - a naming that we need to
motivate. To this end, we diagonalize the Hamiltonian density matrix in Eq. 2.31

around the crossings at K and K’. For small deviations from the Dirac points
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q = (qx,qy) we obtain in the two regions the approximative Hamiltonian densi-

ties
0 or (—igx + 49
Hi (q) = . F (et ay) (2.36)
or (iqx + qy) 0
and
0 or (—igx — g
Hie () = | ( . (2.37)
vr (igx — qy) 0

where vp = 3t is called the Fermi velocity. These types of Hamiltonians is that
of massless Dirac fermions of relativistic quantum mechanics in two spatial di-
mensions [34, 11, 13], where the role of the velocity of light is essentially played
by vr.

Finally, we point out that a straightforward diagonalization of the above ma-

trices yields the eigenstates

1 1 1 1

‘FiK (#q) = V2 oita | ‘Ij(;gc,K/ (¢q) = V2 poite | (2.38)
where iy +qy, = ¢ - ei?a and g = |q|. The = sign refers to the positive and and
negative energy bands.

The fact that the above wave functions have two components can be associ-
ated with existence of the A and B sublattices in the hexagonal lattice. At the
same time, the reminiscence with the form of a spin 1/2 wave function, leads to
the introduction of the term pseudospin for this degree of freedom.

Furthermore, the graphene Hamiltonian has another property called chirality.
As we have seen, the wave functions Eq. 2.38 in each K point valley (i.e. the
region in proximity to either the Dirac point), take different forms. The fact that

each electrons in either valley have different chirality points to the fact that the
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pseudospin in either valley depends on the direction of the electronic momen-
tum. In fact, this has important implications for the Berry phases we find when
encircling either Dirac point. First of all, we note that when we use Eq. 2.7 to com-
pute Berry phase when encircling either Dirac point, we find an absolute Berry
phase of 7t (in contrast to the winding number Eq. 2.10 which is a multiple of
27 since we considered single valued wave functions). Secondly, when consid-
ering the opposite chirality in the two valleys (which is for example reflected in
the fact that ¢; in Eq. 2.38 comes with different signs in each valley), we find
that the Berry phase in one valley is +7r while in the other valley —7t. Therefore,
the Dirac points in the Brillouin zone of the hexagonal lattice can be identified
as topological defects. We shall see below how Haldane used the existence of
this defects to engineer a topological insulator from graphene by breaking time

reversal symmetry of the graphene Hamiltonian.

2.2.3 Symmetry protection of the Dirac cones

In Fig. 2.2 we observed cone shape crossings in the Brillouin zone. These Dirac
cones are protected by symmetries that preserve the system from opening a gap.
The first of these symmetries is time reversal symmetry. It can easily be seen

that the above derived local effective Hamiltonians Eq. 2.36 and 2.37 fulfill [11]

Hi (q) = Hi (—q) (2.39)

which agrees with the condition for spinless Bloch Hamiltonians to respect time
reversal symmetry [11].

Time reversal symmetry is, however, not a sufficient condition for the exis-
tence of the gapless Dirac cones. In fact, we can introduce a mass term M on the

diagonal of the matrices Eq. 2.36 and 2.37 where we give M a different sign on



2.3. The Haldane honeycomb model 21

each of the two sublattices, i.e. we have

Hi (q) = M or (Zigs+a0) ) (2.40)

v (iqx + qy) -M

and in the same way for H' (q). The mass term M is called a staggered potential
or Semenoff mass [35]. Indeed, upon introduction of the mass term M, the time
reversal condition Eq. 2.39 is still fulfilled, however we open up a gap at the Dirac
points, cf. Fig. 2.2.

The non-zero Semenoff mass term M manually breaks another symmetry that
protects the Dirac cones - sublattice inversion symmetry. The inversion operator
acting in sublattice space can be expressed as the Pauli matrix ¢*. This operator
changes sublattice A — B and vice versa. Using again the matrices Eq. 2.36 and

2.37, we can easily verify that the condition [11]
Hie (@) = 0" Hi (—q) o (2.41)

is fulfilled. Due to the bipartite nature of the honeycomb lattice, we noted that we
have two distinct Dirac points. However, now we see that they are closely related

by symmetry, as in Eq. 2.39 and 2.41.

2.3 The Haldane honeycomb model

2.3.1 Quantum Hall state in graphene without external magnetic field

The previously mentioned IQHE [6] was realized by the application of an exter-
nal magnetic to a two dimensional electron gas. This system was then found to
exhibit a quantized Hall conductivity oyy. In the 1980s Haldane came to the real-

ization [14] that the source for the orbital magnetic field that generates the Hall
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conductivity is not the external magnetic field itself but the time reversal sym-
metry breaking induced by it. Haldane started from the graphene tight binding
model which we introduced in the previous section and set out to construct a
model that could realize a quantized Hall conductivity without the necessity of
an external magnetic field. This model, the Haldane honeycomb model realizes the
quantum anomalous Hall effect (QAHE).

The Haldane honeycomb model is therefore the prototypical model of what
we call today a Chern insulator [11, 36]. In fact, its name arises from the fact that its
crucial defining property is the existence of a non-zero Chern number. A Chern
insulator is an insulator in the bulk that exihibits, as we shall see, gapless chiral
modes located at the edges. The Chern number Eq. 2.14 is therefore the charac-
terizing invariant in this system.

Haldane pointed out in this seminal paper [14] that the model he proposed
was of theoretical interest, however, it might never be realized in an experimen-
tal setting. Fortunately, this is not the case and the Haldane honeycomb model
has eventually been realized [36, 11] in quantum materials [37], graphene [38],

photonic systems [39, 40, 41, 42, 43, 44] and cold atoms in optical lattices [45, 46].

2.3.2 The Haldane Hamiltonian

The Haldane honeycomb model [14] consists of two parts

Hy=—Y ticfec;— Y te™cfc;. (2.42)
(i) (@)

The first term is the nearest neighbor hopping on the honeycomb lattice with

hopping amplitude t; that we already know from the graphene tight binding

model, cf. Eq. 2.30. The second term adds complex valued next-nearest neighbor

hopping on the honeycomb lattice. Refer to Fig. 2.1 and Eq. 2.29 where we

defined the next-nearest neighbor displacements. Furthermore, t, exp(£idP) is
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the complex hopping amplitude, ® is the Peierls phase which we will fix from now
onto ® = 71/2. Crucially, the = sign refers to the hopping orientation. We choose
the positive sign if we move clockwise around the hexagonal plaquette and the
negative sign if we move counterclockwise around the hexagonal plaquette.

The complex hopping amplitude accomplishes the breaking of time reversal
symmetry. At the same time, the different sign when moving from A — A sub-
lattice sites or B — B sublattice sites induces an effective staggered fluxes such
that the total net flux in each hexagonal plaquette is zero [31].

Similarly to Eq. 2.33 and 2.34, we can choose to write the Haldane honeycomb

Hamiltonian in momentum space using a magnetic field vector dj, as
Hy=Y ck(dy-o+e,-I)cy. (2.43)
k

The components of the magnetic field dj, are the same for the x and y components
as for graphene, cf. Eq. 2.34, i.e. dj (k) = d(k) and d (k) = dj (k). On the other

hand, the z component now reads

dj,(k) = M —2t;sin® ) sin(k - b;), (2.44)
p

and we have furthermore a 0-component €, which is defined as

e = —2trcos @) cos(k - b;) (2.45)
p

and 7 is the 2 x 2 identity matrix.
Furthermore, in the following work we will find it useful to write the Haldane

honeycomb model in matrix form analogous to the graphene matrix Hamiltonian
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Eq. 2.42. In this form, if we fix ® = 71/2, we can write Eq. 2.42 as [47]

1=y Y d U LA (2.46)

k pe{xyz} —g* (k) —’)’(k)

Here, the function g(k) is defined as in Eq. 2.32. Here, we define (for ® = 71/2)
the function y(k) as

(k) =M —2t;) sin(k-by), (2.47)
P

where M is the Semenoff mass introduced in the previous section.

2.3.3 Haldane phase diagram

We remember that we had a vanishing z component in the graphene model dg,
cf. Eq. 2.31 and in particular we noticed that (for Semenoff mass M = 0) we had
gapless modes at the Dirac points. Both, the introduction of a non-vanishing Se-
menoff mass M and the introduction of complex next-nearest neighbor hoppings
as in introduced by Haldane, add a finite z component to the model, cf. Eq. 2.44,
which opens up a gap. The Semenoff mass M breaks inversion symmetry, while
complex next-nearest neighbor hopping breaks time reversal symmetry - the two
symmetries we found to protect the Dirac cones.

In fact, we find for the z component dj for some small wave vector q close to

the Dirac points that

7.x(q) = M — 33t sin(®) (2.48)

7k (q) = M +3V3tysin(®). (2.49)

This result points to a crucially different behavior of the inversion symmetry
breaking Semenoff mass M and the complex next-nearest neighbor hopping t,.

The Semenoff mass does not change sign when moving from K to K’, while the
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tr term does. In chapter 3.3.1, we will show in more mathematical detail that
this change of sign is of deep importance. The change of sign refers in fact to
a band inversion at one of the two Dirac points due to the ¢, term. In order to
explain what this mean for the topology in the system, let us start from the pure
graphene model. As we know, graphene is a Dirac semimetall with zero Chern
number. However, one can still define a Berry phase [12] of £ associated with
local pseudo-spin effects in momentum space when linearizing the band struc-
ture around the two inequivalent Dirac points [13]. That means, when we con-
sider the lower energy band, and we encircle the K point, we find a Berry phase
of 7t, while we find a Berry phase of —7 for K'. For the upper energy band, we
find the signs to be inverted. We will highlight this fact in more detail in chapter
3.2 (refer to Fig. 3.3). In particular this means that overall, we find a net Chern
number of zero since for each band the contributions from the two Dirac points
sum to zero, i.e. T — m = 0. Crucially, the additional f, term in the Haldane
model now induces a band inversion at one of the Dirac points. This means that
the two contributions do not sum to zero but rather to £277 (positive sign for the
lower band, negative sign for the upper band) resulting in a net Chern number of
+1 in the bands.

Let us refer back to Eq. 2.48 and 2.49. We can deduce from these equations
that depending on the choice of parameters M, t; and ®, there are points where
the gap at one of the Dirac points closes, i.e. where d ;. = 0. For the K point
this happens for example for M = 34/3t;sin(®). In the same way we invert
the bands at one Dirac points when opening a gap when going from t, = 0 to
to # 0, the band closing that occurs at |M| = 3+/3t, sin(®) inverts the bands at
one of the Dirac points and thus marks a phase transition between a topologically
trivial state with zero Chern number and a topological state with Chern number
+1. The situation where we close one of the Dirac points is shown in Fig. 2.4

(bottom right). Overall, we can deduce the phase diagram [14] in Fig. 2.3.
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M/t2)/3

FIGURE 2.3: Phase diagram of the topological Haldane honey-

comb model. Here, the Chern number C; refers to the lower, filled

band. The red and blue borders (marked with K and K’, respec-

tively) that separate the topological and trivial phases indicate at

which of the two Dirac points the gap closes when transitioning
between phases.

2.3.4 Bulk and edge band structure of the Haldane model

Lastly, we will explore the phenomenology of the Haldane honeycomb model in
some more detail. Let us start with the bulk band structure.

Starting from graphene at t, = 0, setting some non zero ¢, will open a gap
at the Dirac points. As we can see from Eq. 2.48 and 2.49, the gap size grows
linearly in t; and for small ¢, the low energy physics will be located at the Dirac
points (where we find smallest band gap), see Fig. 2.4. Att, = ﬁtl (where
ﬁ ~ 0.19) the bands become noticeably flat in an area spanned by the M and K
points in Brillouin zone [47]. From this point onward (for further increasing t»),
the minimal gap size A will remain constant at A = 2¢;. In fact, for t, > 3%/51‘1
the low energy physics and the smallest band gap is located at the M symmetry

points in the Brillouin zone, see Fig. 2.4.
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FIGURE 2.4: Haldane honeycomb model bulk band structures
for different parameter configurations (where we fixed the Peierls
phase to ® = 7/2 and the energy scale is given in terms of the
nearest neighbor hopping amplitude ¢;). Top left: small t, with
low energy physics located at the Dirac points. Top right: large ¢,
with low energy physics located at the M points. Bottom left: flat
bands for t, = 0.19. Bottom right: gap closing at one of the Dirac
points for M = 3+/3t,.

It is important to notice these two parameter regimes

ty > ty K point physics (2.50)

1
3v3
th < L1?1 M point physics. (2.51)

3v3

We will see in chapter 4 that it can be helpful to restrict a model to the K point
regime (small £5) since it can be quite insightful to construct model on the basis

of Dirac point properties as we saw in our introduction to graphene. Dirac point
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FIGURE 2.5: Edge spectrum of the Haldane honeycomb model for
tj =1,t, = 1/3,and ® = /2. Bulk bands are gapped, only the
chiral modes located at the two edges are gapless.

properties are the source of the topology in the Haldane, thus we should seek to
exploit their rich phenomenology.

Finally, let us visually verify the presence of a non-zero Chern number in the
Haldane model. The computation of bulk bands (as in Fig. 2.4) assumes trans-
lational invariance in the lattice, and thus a lattice without edges that extends
infinitely. In order to verify the emergence of chiral edge modes in the Haldane
honeycomb model, we need to mathematically create an edge. That means we in-
tentionally break translational symmetry in one direction, say k, [48, 11]. Since k,
is then not a good quantum number any more, we need to translate the k, compo-
nent back to real space such that we end up with a Hamiltonian in a mixed form
(real and momentum space) such that we can visualize modes that are located in
the bulk as well as at the edges of the system. Fig. 5.1 shows the edge spectrum
of the Haldane honeycomb model. Bulk bands are gapped and only two chiral
edge modes cross the Fermi level corresponding to the lower and upper energy

bands which carry Chern number +1 and —1.
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2.3.5 Probing Chern numbers via the circular dichroism of light

In this last section on the topologic Haldane model, we describe an intriguing
experimental protocol to probe the topology of a Chern insulator.

The circular dichroism of light has been suggested as a measure of the Chern
number [49, 50]. Shining light on a Chern insulator induces a population of the
states in the upper band, above the band gap. The associated depletion rates and
photocurrents [51] depend on the orientation of the circular drive. The Chern
number is encoded in the difference of rates with opposite orientation.

The following discussion will be of us for us in later chapters especially with
regard to the application to the topological Haldane. However, the results in
Ref. [49] where derived under the assumption of any two-dimensional, non-
interacting spinless gas in a generic lattice, initially filled lower band, gapped
bulk bands and broken time reversal symmetry such that the topology in the
system is describe by a Chern number. Let us assume this two band system is de-
scribed by a time-independent Hamiltonian #( and subjected to a time-periodic

ciruclar drive such that the total time-dependent Hamiltonian reads [49]

H(t) = Ho+ 2E (cos(wt) £ £ sin(wt)7) (2.52)

where E is a constant electric field, + refers to the orientation of the drive, £ and
17 are position operators, and w is the frequency of the drive. The second part of

Eq. 2.52 can be attributed to a scalar potential V1

Vi (x,y) = 2E(cos(wt)x £ sin(wt)y) (2.53)
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which is defined such that £+ = —VV,. Here, £ is the circularly polarized

electric field that takes the form
€+ = 2E(cos(wt)ey £ sin(wt)ey) (2.54)

This heating of the system through irradiation with circularly polarized light
leads to a promotion of a total number of N particles from the lower to the upper

band. In other words, the lower bands is depleted at a rate I+ where [49]
0Ny (t) ~ —TI'it. (2.55)

We can then use Fermi’s golden rule [49, 52] which reads for a two band model

with bands [ and u

Iy (w) = %E2|<llfiiy|u>\25t(eu e hw) (2.56)

where E is the strength of the drive or the electric field in the original basis, |u)
and |I) are the eigenstates corresponding to the lower and upper bands, €; , their
eigenenergies, and the + selects the polarization orientation.

The electric field introduced in Eq. 2.54 can be related to a dependent vector

potential Ay via £1 = —0d; A1 such that the vector potential takes the form
2E , .
A, = —;(sm(wt)ex F cos(wt)ey). (2.57)

Minimal coupling of the vector potential with the current operator —d;H gives

a time-dependent Hamiltonian which now reads in momentum space

H(t) = Ho(k) + % (sin(wt)a};Lk(k) F Cos(wt)a%k(k)> : (2.58)
x y
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In Ref. [49], the authors obtained this result by performing a unitary trans-
formation on the Hamiltonian in Eq. 2.52 as H+ — R+ H R ! generated by the

operator

R+ =exp (1% (sin(wt)% F Cos(wt)g})> . (2.59)

In Eq. 2.58, higher order terms in E have been omitted. Then, the depletion

rates can be expressed as [49]

ri

Lﬁu(

27 ([ E\?
wy, k) = % <%> |Ali_>u]25 (e’,j —ef - hw) (2.60)

k

where €y

are the eigenenergies of the lower and upper bands, and

T, (wk) = Y T, (wi k) (2.61)
keBZ

Here, the transition amplitude is given by

10Hy _ 9Hy

+ — —
A =l 56 F 3,

I—u

k) (2.62)

We will use these equations for the depletion rates in an adapted form later on
in order to find a framework to describe the topology in the Haldane honeycomb
model in the presence of interactions.

In order to relate the depletion rates to the Chern number of the system, we
need to integrate the depletion rates over all frequencies w (such that w is larger
than Agy, /Tt where Aggyp is the band gap). This calculation yields the integrated
rates I'}*. The idea is now that depending on the polarization direction of the
light, the integrated difference will not give the same result. The difference can
be associated to the chiral nature of the system. Hence, the integrated difference

AT = Tt — Tint ghould encode the Hall conductivity and therefore should be
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FIGURE 2.6: Numeric application of the dichroism of light to the
Haldane honeycomb model on Ngjze X Ngize lattice, where Ngjze =
200.
quantized. In fact, one finds that [49]
. E2 1Ok, Holu) (1|0, Holl
AT — 47~ m (Y (1195, Holu) (u] o olf) (2.63)
h k (€u —€1)

which resembles the transverse conductivity oy, of the quantum Hall system
when expressed using the Kubo formula [32, 8].

Finally, a numeric example for the application of the dichroism of light to
the Haldane honeycomb model is presented in Fig. 2.6. We consider a Ngj e X
Niize lattice, where N = 200. Then, we compute the distribution of the matrix

elements [49]

2 [ E\?
We =S <%> |AE, P (2.64)

in dependence on the transition frequency w.

In particular, the figure shows W.. as an averaged number per pre-defined fre-

quency interval of width A, = 0.025/%. Integrating the two curves numerically
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and computing the difference between the red and the blue curve, yields a Chern
number

By I It -1 =1 2.65
2 Bor )T 269

where I'!" is computed in each frequency interval as the average number W..
times the corresponding density of states [49]. The density of states is computed
in each interval as p(w) = Nians/hA, Where Nyans is the number of counted

transitions within the frequency interval that belongs to w.
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Chapter 3

Topological proximity effects in

the Haldane-graphene model

In this chapter, we study the Haldane honeycomb model which we introduced in
the theory section, interfaced with a two-dimensional layer of graphene. It is our
goal to reveal a proximity effect between a topological band (Chern) insulator (the
Haldane honeycomb model) and spin-polarized Dirac particles of the graphene
layer.

Previously, proximity effects have been studied [53, 54] in classical systems
where a local order parameter (e.g. capturing superconductivity) penetrates into
a coupled material (e.g. a metallic system). More recently, topological proximity
effects have been proposed [55, 56, 57]. In this case, non-trivial topology (in the
sense of a non-zero Chern number) is induced by means of proximity into the
bulk of a topologically trivial system.

In Ref. [55], a metallic ultrathin film and a three-dimensional topological in-
sulator were experimentally coupled. To this end, one bilayer of bismuth metal
was grown on the three-dimensional topological insulator material T1BiSe,. The
authors then used spin- and angle-resolved photoemission spectroscopy, to find
evidence that the topological Dirac-cone state migrates from the surface of TIBiSe;

to the attached one-bilayer bismuth.
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The first theoretical study on the subject was done in Ref. [56]. In stark con-
trast to Ref. [55], Ref. [56] considers two coupled systems of the same dimension.
Therefore, in this case we speak of a bulk topological proximity effect. The au-
thors study a generic Chern insulator coupled to a topologically trivial system.
They show that by proximity a Chern number of e.g. +1 then induces an inverse
topological number -1 into the bulk of the coupled system.

In this chapter, we study the proximity effect when tunnel coupling a Haldane
model with a layer of graphene [58, 13]. We assume spinless particles in both
layers and the tunnel process couples the same sublattice in the two layers. As we
shall see, particle-hole processes at the interface open a gap as a result of pseudo-
spin effects, inducing an inverse topological order in the graphene system when
both layers are half-filled. While this is to be expected with Ref. [56] in mind, we
will go into a detailed description of the mechanisms at play.

In fact, the topological Chern insulator induces a gap and an opposite Chern
number on the Dirac particles at half-filling resulting in a sign flip of the Berry
curvature at one Dirac point. We study different aspects of the bulk-edge cor-
respondence and present protocols to observe the evolution of the Berry curva-
ture as well as two counter-propagating (protected) edge modes with different
velocities. In the strong-coupling limit, the energy spectrum shows flat bands.
Therefore we build a perturbation theory and address further the bulk-edge cor-
respondence. We also show the occurrence of a topological insulating phase with
Chern number one when only the lowest band is filled. Finally, we generalize the

effect to Haldane bilayer systems with asymmetric Semenoff masses.
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FIGURE 3.1: Schematic of the system and of the coupling param-

eters between the two systems. Left: Interlayer hopping between

the same sublattice sites with hopping amplitude r. Right: Inter-

layer hopping between neighboring sublattice sites with hopping
amplitude 7.

3.1 The Haldane-graphene model

We consider the Hamiltonian

where H¢ describes a graphene layer, H), the topological Haldane model, and H,
the tunnel coupling between the layers with amplitude r. We emphasize here
that we consider no displacement in the stack of the two layers. That means, the
interlayer hopping that we consider is only of the type as in Fig. 3.1 (left).

We use the definitions where t; means nearest neighbor hopping element on
the honeycomb lattice, t, next-nearest neighbor tunneling element with the asso-
ciated phases +=® for sublattices A and B as defined in the theory section 2.

In momentum space, the Hamiltonian takes the form

H = / %H(k), (3.2)
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where

wog— | 7 TF (3.3)
r-Z dp-oc+e€,-1
with the pseudo-spin Pauli matrices ¢ acting in the Hilbert space of sublattice A
and sublattice B of each layer ¢ and /, respectively [34].

In order to make an analogy with two 1/2 spins in k-space, one could also
choose to introduce two different sets of Pauli matrices o7 and o5; the results
derived below can be simplified in notations through the introduction of one set
of Pauli matrices.

In Eq. 3.3, we chose to write the previously introduced Haldane honeycomb
and graphene models using magnetic fields d%lz. These fields were introduced
in Eq. 2.33 and 2.43.

We assume that the nearest-neighbor tunneling amplitudes are identical in
both layers (for the simplicity of notations but without loss of generality). There-

fore, we have

d3 (k) = di(k) (3.4)

dj (k) = dj(k) (3.5)

Initially, for graphene (when r = 0) the magnetic field in k-space resides in the
equatorial plane d¢(k) = 0, i.e. graphene has a zero Chern number. In the nu-

merical calculations below, we fix the phase ® = 7t/2.
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3.2 Proximity effect in the Haldane-graphene model

Mapping the first Brillouin zone on a torus onto the sphere S2, the Haldane model

atr = 0 is characterized by the normalized magnetic field
d* = (sinf(k) cos p(k),sinO(k) sinp(k), cos0(k)) (3.6)

such that the Chern number associated with the two bands of the topological

Haldane insulator can be defined as

1 1
o L _ L _
Ci—zn/SZFi—qE4n/52dQ—qtl, 3.7)

with the relation between the Berry curvature and the solid angle on the sphere
52
aQ

Fi = Fsin0dbd¢ = :FT' (3.8)

In Fig. 3.2 top left, we show the Berry curvature associated with the lowest energy
band of the Haldane model, corresponding to the Chern number C* = C; = +1.
The Chern number of such spin-1/2 models on the sphere S? has been measured
in circuit Quantum electrodynamics by applying a one-dimensional path on the
Bloch sphere going from north to south poles [59, 60, 61].

The Berry curvature of the Haldane model has also been reconstructed in cold
atoms [46] through momentum space density which is obtained from time of
flight images of

n(k) = f(k)[1 —sin6(k) cos ¢(k)], (3.9)

where f(k) corresponds to the broad envelope associated with the momentum
distribution of the Wannier function [62]. In order to measure accurately the two

angles, one can create a chemical potential offset between the two sub-lattices
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FIGURE 3.2: Berry curvature in the Brillouin zone for the Haldane

and graphene layers at ¥ = 0 and small 7, showing the Berry phase

jump effect. Here, we choose the parameters t; = 1 and t, =

1/3 and the Berry curvatures and Chern numbers were calculated
using the numeric methods outlined in chapter 2.1.3.

A 4, which then acts in the quasi-momentum representation as a rotation (in mo-

mentum space), such that

¢(k) = ¢p(k) + Aapt/h (3.10)

where i = h/(2m) is the (reduced) Planck constant [62, 46]. The topology of
the Bloch bands can also be accessed through Wilson line measurements [63] and
coupling with circularly polarized light [38, 50].

The Chern number of the graphene system is equal to C§ = C, = 0 in the
absence of coupling with the topological layer, i.e. = 0. One can still define a
Berry phase [12] 7t associated with local pseudo-spin effects in k-space when

linearizing the band structure around the two inequivalent Dirac points [13], see
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Fig. 3.2 (bottom left).

Fig. 3.2 shows that when we start with a Haldane and a graphene layer with-
out coupling (the two plots on the left), and then turn on the interlayer coupling
r > 0, we induce an inverse Chern number —1 in the graphene layer. In the
graphene layer, the Berry curvature flips at one of the two Dirac points - an effect
which we will explore in more mathematical detail shortly. On the other hand,
the Berry curvature in the Haldane layer does not change much qualitatively, and
the layer retains its Chern number +1.

Now, we wish to understand in some more detail how an effective d5 mag-
netic field component can be induced in the graphene layer through the presence
of the d term in the Haldane system. One way [25] is to build a path integral
approach in the small r < (#;,t,) limit integrating out degrees of freedom of the
Haldane model. Assuming that the r tunneling term couples mostly the same
sublattice of the different layers then the partition function of the graphene layer

becomes [25]

Z, = / DY, (K)D¥, (k) exp — ( /0 b it %ifg(k) [0: (3.11)
1,2
+ dg(k)o — == (1—e)d;(k) o] (¥g(k))T),

|di () [?

with ¢ (k) = (cga(k), cgp(k)) describing an electron annihilation operator in the
graphene layer, at sublattice A and B respectively, and € an energy scale close to
ty.

However, it might seem more insightful to understand the procedure in an
intuitive manner from geometric considerations. We refer back to Fig. 3.1. Con-
sider a particle that starts from the graphene layer in sublattice A, then takes the
same sublattice interlayer hopping r to the Haldane layer, and after the action of
the next-nearest neighbor tunneling term ¢, picking up a phase ®, the particle

goes back to the graphene layer thereby producing an effective hopping t,¢¢ term
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in the graphene layer proportional to

|7|2 h
bopf o — ‘dmzdzaz (3.12)

The perturbation theory produces an additional minus sign to second-order in
perturbation theory, and should also reveal that for the B sublattice the perturba-
tion theory gives an opposite sign because of the nature of the Haldane ¢, term in
the Haldane layer.

Finally, we check that the proximity effect remains stable as long as r # 0
when introducing a more general coupling between layers, as illustrated in Fig.
3.1 (right) through the  term, which then allows for a coupling between different
sub lattices in the two layers. The main reason is that Zp ap, =0, therefore when
coupling a site A in the graphene layer with three sites B in the Haldane layer

gives a (much) smaller contribution.

3.3 Mathematical description of the Berry phase shift

3.3.1 Singularities in the eigenstates of the Haldane-graphene model

In order to study the Berry phase shift of 277 that occurs in this scenario at one
Dirac point, we investigate the low energy version of the effective graphene Hamil-

tonian in more detail. To this end, we first expand the term

dl (k) = —2tsin (@) }_sin (k- b;) (3.13)
j
around the Dirac points K and K’ to first order for small wave vectors q =
(49x,qy)- We obtain
d" (£K 4 q) ~ £33ty sin (), (3.14)
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where the positive sign corresponds to K and the negative sign to K'. Having Eq.

3.12 in mind, we define the effective mass term induced in the graphene layer
+m = +r*\/3/(9sin ty) (3.15)

which has different signs at the two Dirac points.
Expanding the off-diagonal terms d5 (k) and 4§ (k) around K and K’ respec-

tively yields the corresponding low energy Hamiltonians [13]

m or (—igx+9
Hi (q) = . g 2 (3.16)
or (iqx + qy) —m
and
_m ’Z] — / J—
Ho(@) = | P, (317)
or (igx = qy) m

with vr = 3t;/2 the Fermi velocity. Remember that in the case of pure graphene

(m = 0) diagonalization results the normalized eigenstates

1 1 1 1
L&l = , ¥, = — ,  (3.18)
+,K (‘Pq) \/E :i:ei‘i"l +,K (‘P‘l) \/E :I:e_i‘P‘l

where igy + g, = q- ¢'%1 and q = |q|. Note that ¢q — —¢q relates the Dirac points

K and K’ for the same energy band (denoted + or —) as

Yk (Pq) =¥ o (—¢q) - (3.19)
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A straightforward diagonlization of the matrices Eq. 3.16 and 3.17 with m # 0

yields the normalized eigenstates

Fok (bg) = ! o (3.20)

ARG+ (Ex (@) —m)? \ e (Ex (q) —m)

1 UFq
Vo2 + (Ex (@) +m)? \ —e 7 (Ex (q) +m)

Yok (¢q) = (3.21)

where the corresponding energy eigenvalues are

Ei (q) = £4/v3q% + m2. (3.22)

The wavefunctions ¥_ x and ¥, i are well defined in the limit ¢ — 0. Cru-
cially however, ¥, x and ¥_ i become singular as E (q) LA Hence, the
wavefunction ¥ . has a singularity in K and the wavefunction ¥_ . has a sin-
gularity in K'. The emergence of these singularities in the wavefunctions signals
that the coupling to the Haldane layer induced some non-trivial topology in the
graphene layer. Non-trivial topology arises when no global phase convention can
be determined in the Brillouin zone causing the wavefunction to develop singu-

larities [8]. However, the singularities can be avoided.

3.3.2 Lifting the singularities

First, note that the wave functions Eq. 3.20 and 3.21 fulfill the following identities

Yok (Pq) = ¥zx (—¢q)- (3.23)

Hence, contrary to Eq. 3.19 for pure graphene, substituting ¢q — —¢q relates the
wavefunction of the positive (negative) energy band at K with the wavefunction

of the negative (positive) energy band at K’. In line with this, we can conclude
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that in the pure graphene limit m — 0 we regain:

Yok (¢q) " ¥ (¢q) Yok (9q) " Ti,K’ (¢q) - (3.24)
We now follow the method outlined in [8] and divide the Brillouin zone into two
sectors S and S’, where sector S contains K and sector S’ contains K. We fo-
cus on the negative energy band. ¥_ . is well defined in S, but becomes singular
inS". As¥Y_x (¢q) = ¥4+ (—¢q) we can identify ¥, k' (—¢q) as a well de-
fined wavefunction in S’ of the negative energy band. This indicates that for K’
the positive and negative energy bands exchanged their nature upon coupling
the graphene and Haldane layers. In fact, it is suggestive to redefine the wave-
functions as follows where the new wavefunction Y., is valid in each respective

sector and energy band

(—¢q) Yok (9q) =¥ix (¢q),

¥ix (¢q)
q (¢a) , Y10 (¢q) =Fix (—¢q)-

Y k(¢q) =¥ x

Writing these wavefunctions explicitly yields

Yixx (¢q) = \/ ! oFd . (3.25)

042 + (Ex (q) £m)* \ FeT (Ex (q) £m)

This “patching” of wavefunctions in sectors is allowed as long as the wavefunc-
tions are connected by a smooth gauge transformation at the boundary between
the sectors [8]. Note that ¥ . is of the same form in S and §’. Therefore, the
gauge transition function between S and &’ is the identity. This means that K

and K’ have the same Berry phase
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The integration follows a closed path around a Dirac point. We numerically
check [33] that a — 7t Berry phase occurs at both Dirac points of graphene, Fig. 3.2.
This is reminiscent of the Haldane model when ¢, < t1, thus the behavior in the
graphene layer is similar to that of an Haldane model but only close to the Dirac

points. We also check that for the upper band of graphene
C$ =+1=-Ct (3.27)

or in other words

YK =YK =TT (3.28)

This is equivalent to changing m — —m at a Dirac point or d! — —d/.

This effective model could be perhaps realized in a bilayer graphene by ap-
plying circularly polarized light, then opening a Haldane gap in one layer [38].
If this gap is larger than the tunnel coupling, then one could rewrite the effective
tunnel coupling at the Dirac points justifying this low-energy model. Below, we
will address a generalized bilayer Haldane model which can be realized in cold
atoms.

The Berry phases could be directly measured as demonstrated in Refs. [46,
63]. Information on Berry phases could also be reconstructed from quantum Hall
conductivity [32, 64] quantum circular dichroism by shining light [50], scanning
probe [65, 66] and Klein paradox [67, 68] measurements.

Note that this analysis holds for small t; (in comparison to ¢;) when the low
energy physics of the Haldane model are centred around the Dirac points, cf. Fig.
2.4. In the Haldane layer with ¢, ~ t;, the pseudo-spin 1/2 is polarized close to
the Dirac point, and the structure of the Berry curvature is strongly modified: its
dominant contribution occurs close to the highly-symmetric M points now, cf. Fig
2.4. Futhermore, note that Berry curvatures in the Haldane layer remain almost

unchanged from r = 0 to r = 0.4, see Fig. 3.2.
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FIGURE 3.3: Band structures for ty = 1 and t, = 1/3 in the
weak and strong-coupling limits for a cylinder geometry; the lat-
tice spacing is 2 = 1. On the left, we zoom on the two low-energy
graphene bulk bands. In the green region of 60 unit cells, the total
Chern number of the two lowest bands is zero and in the grey re-
gion (of 14 unit cells) the system is a Haldane model. We observe
two counter-propagating edge modes with different velocities at
zero energy until r ~ t,. For very strong couplings, at zero energy,
the counter-propagating edge modes are only linked to properties
of the Haldane region.

In summary, upon imposing a finite coupling r between the two layers of
the Haldane-graphene honeycomb model, the wavefunction becomes singular in
one sector. The singularity can be lifted upon exchanging positive and negative
energy bands in this sector. Therefore, the Berry phase jumps by 27t at only one of

the two Dirac points.

3.4 Edge properties and strong coupling limit

3.4.1 Counter-propagating edge modes at different velocities

Now, we study in more detail the edge properties. For Haldane and graphene
layers of equal size, for r # 0, we find the formation of a gap at the edges at half-

filling, resulting from the hybridization of the zig-zag edge mode of graphene —
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FIGURE 3.4: Berry curvature for the two lowest energy bands at
strong coupling r = 0.7 (t; = 1 and t, = 1/3).
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present at r = 0 — with the topological edge mode (see black edge modes in
Fig. 3.3 (left) corresponding to the right boundary of the green cylinder). This is
also consistent with the Kane-Mele model [69], where the 7 coupling at the edges
corresponds to a spin-flip process which breaks the Z; symmetry and opens a gap
similar to the effect of the Mott transition [47, 70]. To confirm that a chiral edge
state has now appeared in the graphene layer at half-filling moving in opposite

direction as the edge state in the Haldane layer, in agreement with
(ch —c8)=2 (3.29)

in the bulk for r # 0 [71], we suggest to suppress smoothly the r tunnel coupling
at the left edge. Numerically, we check that for more than 10 unit cells in the
grey region, results are stable. Fig. 3.3 then shows two counter-propagating edge
modes with different velocities, due to the different gaps in the two layers, cross-
ing the chemical potential at half-filling (or energy zero). Alternatively, one could
build a slightly smaller layer and observe two counter-propagating edge modes,

one in each layer.
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FIGURE 3.5: Evolution of the four energy eigenstates for two val-
ues of the tunnel coupling element r between layers with t; = 1
and tp = 1/3. The right figure with r = 7.0 corresponds to the
strong coupling case. The bands are now coloured according to
their Chern number. Blue means Chern number +1 and red Chern
number —1. The T, K, K’, M and M’ points are defined in the the-
ory section. The energy scale is in terms of the nearest neighbor
hopping amplitude ¢;.

3.4.2 Strong coupling limit

The strong coupling limit of the Haldane-graphene model describes the case where

the hopping parameter between the two layers r is large, i.e.
r>> (i, t). (3.30)
Analytically, we define the field operators
(e =1/V2(cga £ cpa) (3.31)
hybridizing the sublattices A of the two layers and
X+ = 1/\/§(ch + cp) (3.32)

hybridizing the sublattices B of the two layers. Here, ¢} , and ¢}, represent cre-

ation operators at sublattice A and B in the Haldane layer and analogously for

c; AB in the graphene layer.



50 Chapter 3. Topological proximity effects in the Haldane-graphene model

To show that the strong-coupling description is very general we introduce the
magnetic fields d; and d; associated with the two layers, that we shall rewrite in
the hybridized basis. To find the effective Hamiltonian in the basis [{—, x—, {+, x+],
we can equivalently perform a unitary transformation on the Hamiltonian such

that the Hamiltonian becomes

d;+d d;—d
A1) _rz'+(12 2 . o (12 2) . o 633
(d1;d2) . I + (lezrdz) s

The energy spectrum shows two pairs of bands centered around =7, see Fig. 3.5,
and described by a Haldane model with an effective magnetic field in k space
which is equivalent to (d; + dp) - /2. The off-diagonal terms couple band pairs
of different energy which do not affect the low-energy theory. For the Haldane-
graphene bilayer with d; = dg and d, = d;, Berry curvatures of the two lowest
bands for r > t; are shown in Fig. 3.4.

In the strong coupling case at r = 7.0 of Fig. 3.3, the two lowest “hybrid”
bands are still described by a total Chern number zero and the bulk green re-
gion now behaves as the vacuum. Furthermore, we now observe two counter-
propagating edge modes with equal velocities at zero energy, when suppressing
the tunnel coupling at one edge in the cylinder geometry (in the grey region). By
making one layer slightly larger than the other, the two edges modes now entirely
connect to the Haldane bulk bands of the grey region.

Note that at quarter filling (implying that the particle density of the two lay-
ers satisfy (ny = n, = 1/4)) only the lowest band in Fig. 3.3 (right) should be
filled, and the system reveals a topological phase with Chern number 1. The edge
structure shows on average 1/2 particle in one layer moving together with 1/2

particle in the other layer.
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3.5 Experimental realization

3.5.1 The Haldane honeycomb model in ultra cold atoms

Before we can make suggestion on how to observe the bilayer effects outlined
above, we need to understand how the topological Haldane model can be real-
ized in ultra cold atoms experiments [25, 46].

In optical lattices, one can apply a time-dependent force F(t) = —miy,;(t)
corresponding to a periodic shaking protocol of the lattice. The Hamiltonian then
becomes

Higr = Ho + Z(F(t) -1;)clc;. (3.34)

Here, c; corresponds to an atom at site i with mass m on a honeycomb optical
lattice and Hg corresponds to the Hamiltonian of graphene with nearest-neighbor
tunneling coupling. The additional momentum can be absorbed by going to the
reference frame —q,; = —miy,(t). In this frame, the tight-binding Hamiltonian

corresponding to nearest-neighbor tunneling becomes modified as

Hiat = ), eiql”t'r"ffz’jczrcj- (3.35)
(&)
In the case of a periodically driven system, where #;, and therefore 1,,;(T) are
periodic functions in time, one can then apply the Floquet theory, where an ef-
fective Hamiltonian is obtained from the unitary time-evolution operator U(T,0)
over one period T of driving, such that

%log(U(T,O)) = M. (3.36)
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Using the shaking procedure for the honeycomb optical lattice, one can then re-

alize an effective Hamiltonian in the wave-vector space [46]

H(k) = M+ Y, 2tga cos(k - b;) Y 2t gpe ., (337)
Y 2t gpe’cd —M+ Y ;2tggcos(k - b;)

acting on the Hilbert space of sublattices A and B. The offset M between A and B
sites corresponds to the Semenoff mass [35]. The hopping term ¢ 45 contributes to
the nearest-neighbor graphene term t;, whereas f 44 and tgp generate the ¢, terms
in the Haldane model. To realize the topological phase of the Haldane model,
the key point is to use phase factors in the time-modulation of the lattice such
thattyq = —tgpand taq = |t2|eiq>, where the phase @ corresponds to the Peierls

phase.

3.5.2 The case of the bilayer system

The goal is to build, for instance, two graphene optical lattices. Then, one could
apply the same time-dependent force or Floquet modulation on the two layers, as
described above, to implement the same parameters ¢; and ¢, in the two layers.

In the next step, laser assisted tunneling generates the coupling of atoms of
one layer to those of the other layer, such that the 7 tunnel coupling would couple
sublattices A of the two layers on the one hand and sublattices B of the two layers
on the other hand. Another possibility would be to use one optical lattice and two
species (of synthetic dimensions).

In practice, one would however encounter a crucial problem when attempting
to realize a Haldane-graphene bilayer model. When setting up one layer of a
Haldane model by globally shaking the lattice, the shaking would necessarily
also occur in the other layer (the graphene layer), thus turning both layers into

Haldane layers.
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However, there is a way around that would allow us to distinguish the two
layers. We propose the following idea. Instead of attempting to realize a Haldane-
graphene bilayer system in a optical lattice context, one would rather consider
a Haldane-Haldane bilayer system. In order to be able to distinguish between
the two layers and to force a Berry curvature jump in one layer at a time (When
increasing the coupling parameter r), we propose to induce static and asymmetric
Semenoff masses M; and M, in the layers. The net offset Semenoff mass will force

one of the layers to encounter a Berry phase jump at smaller r than the other.

3.5.3 The Haldane-Haldane model

In order to propose an experimental setup that would allow to observe the Berry
phase jump as it occurs in the Haldane-graphene bilayer model, cf. Fig. 3.3, we
propose a Haldane-Haldane bilayer model.

Mathematically, we define this model analogously to the Haldane-graphene

Hamiltonian, Eq. 3.3, as

djj-oc+e, T r-I
Hin(k) = , (3.38)
r-Z dpp-c+e,- T
where dj; » describe Haldane models that come with the same set of parameters
for nearest and next-nearest neighbor hopping t; and t,, but that differ in their

corresponding static Semenoff masses. To this end, we adjust the z component of

the magnetic field d2'? (cf. Eq. 2.34) to contain the Semenoff mass M; ,

d'2(k) = My, — 2t sin®@ Y _sin(k - by). (3.39)
p

To observe the jumps of the Berry phases as described for the Haldane-graphene

bilayer model Fig. 3.3, we suggest to start with two different off-sets M; and M,
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in the two Haldane layers. In both layers, one starts with M; and M, smaller than
|d,(k ~ £K)| = 3v/3t, sin ®. (3.40)

That means in the absence of coupling between the two layers, the two lowest
Bloch bands are described by a Chern number +1, producing a phase with total
Chern number C = 2. That means, we start with both layers in the topological
phase of the Haldane model, cf. Fig. 2.3.

Assuming unequal masses M; and M, we observe two phase transitions by
switching on the coupling parameter r. At the two transitions, we report a jump
of Berry phase at one Dirac point only by analogy to the situation of the Haldane-
graphene layers’ situation at small r. If we start with M, > M;, cf. Fig. 3.6, the
gap for the bands 2 at the K’ point is (much) smaller than the gap separating the
upper and lower bands 4 and 1 and therefore second-order processes or particle-
hole pair virtual processes through these bands can still affect the gap of band
2, which then explains the gap closing at the K’ point at the first transition. We

qualitatively predict that the gap would close at the K’ point roughly when
33ty sin® — My — r*/(3v/3sin ®ty — My) ~ 0. (3.41)

Here, we consider the effective mass term in one of the Haldane layers, by taking
into account that through interlayer coupling r, another effective mass term is
also added to this layer due to topology in the other layer. This is essentially the
mass term that we saw was previously introduced in the graphene layer of the
Haldane-graphene model through the effective hopping amplitude t,¢¢, Eq. 3.12.

We check numerically that this equation reproduces the features of the first
transition line. At large r, the total Chern number of the two lowest bands must
be zero in agreement with the theory. We show the band structure and Berry

curvature evolve as a function of , in particular for the intermediate region with
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C = 1, where the gap at the K point progressively diminishes whereas the gap at
the K’ point now stays finite. When the gap closes at the K point, then we again
observe a sign change of the Berry curvature at this point, then producing the
entrance towards the C = 0 phase. Essentially, to enter the C = 0 phase, the band
2 must flip its Chern number to C, = —1 then closing the gap at the K point.

For equal masses M; = M, a band crossing effect occurs in the intermediate
region for r ~ 0.9, therefore the total Chern number of the two lowest bands
seemed to progressively change from C = 2 to C = 0, as described in Fig. 3.7.

The two phase transitions then do not occur for this case, and there is a band
inversion between band 2 and band 3 when r = 3t; for t, = 1/3. But, as soon
as My # My, the system tends to restore the C = 1 region as well as the two
transitions associated with the changes in the Berry curvatures at the Dirac points.

While in fact, from our discussion the physical meaning of the region with
band crossing effects is not quite clear, the issue has in the meantime been ad-
dressed in another work, Ref. [72]. In fact, the band crossing effect was found to

hide a topological semimetal with topological number C = 1/2 per plane.

3.6 Conclusion

To summarize, we have presented a proximity effect from a topological Chern in-
sulator on a graphene layer. Particle-hole processes at the interface induce a gap
in the graphene layer and therefore, the two lowest filled energy bands show
inverse quantized Chern numbers +1 and —1. We have illustrated the bulk-
edge correspondence in relation with the Kane-Mele model [73], and with general
bulk-edge correspondence in the ultra strong-coupling limit.

The effective model built in k-space close to the Dirac points could be real-
ized in graphene bilayers through circularly polarized light coupling to one layer

more prominently [38]. We have generalized the Berry phase jump phenomenon
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FIGURE 3.7: Evolution of edge spectra in the case of two Haldane
layers, with masses My = M = V/3/3. Again, we fix t; = 1,
tz = 1/3,(1) = 7'[/2.

to bilayer Haldane model. Furthermore, we have discussed implementations in

cold atom thoroughly.
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Chapter 4

Interaction effects in the Haldane

honeycomb model

The system under consideration in the previous chapter was analytically solvable
and thus allowed for a straight forward analysis in terms of band theory which
made its rich phenomenology accessible. In this chapter, we will progress be-
yond the analytic regime by introducing electron-electron interaction effects in
the Haldane honeycomb model.

Studying the effects of electron-electron interactions on a system can be done
with different goals or points of view. On the one hand, it is an important question
to understand the stability of a phase (in this case the stability of a Chern insulator
phase) towards the presence of interactions. On the other hand, interaction effects
can lead to the emergence of new phenomena such as the Kondo effect [74] or the
Mott transition [75].

In this chapter we study the important example of the interacting Haldane
honeycomb model and address two main questions: Firstly, how can we effec-
tively describe the stability of the topological phase in the Haldane honeycomb
model towards electron-electron interactions? And secondly, how and when are
topological properties of the model destroyed when interaction effects become

more important, i.e. what is the nature of the Mott transition?
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Note that while some progress has been made in the description of interacting
Chern systems, in the bosonic case [15, 16], and both for spinless [15, 17, 18, 19]
and spinfull [20, 21, 22, 23, 24] fermions, and more generally in the description
of interacting topological systems [31], several central questions remain open.
Most importantly, the system we wish to study in this chapter, i.e. the interacting
spinless interacting Haldane model has not been convincingly solved by means
of an approximative model. The nature of the Mott transition has previously
been studied using methods of exact diagonalization [15, 17] and suggested it be
of first order. We will revisit this question within our approach and provide an

explanation that reaffirms this result.

4.1 Stochastic variables and Mean field theory

4.1.1 The model Hamiltonian

We start by introducing a model Hamiltonian which we aim to turn into an effec-

tive Hamiltonian via mean field theory. We consider the model Hamiltonian
H ="Ho+ Hv, (4.1)

where H is the Haldane honeycomb model for spinless fermions at half-filling

[14] and Hy is the nearest neighbor interaction, i.e.

Ho=—Y ticici— Y e ®clc;
(i.j) (@)

Hy =V (n;—1/2) (nj—1/2). (4.2)
(i)

Here, t; represents the nearest-neighbor hopping strength which we set to unity

hereafter (t; = 1). Furthermore, t,e™® represents the next-nearest neighbor hop-

ping term where we fix the Peierls phase to ® = 71/2, for simplicity. Here, the
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positive (negative) sign refers to (counter-) clockwise hopping and the second
nearest-neighbors are represented through the lattice vectors u; that we intro-
duced in Eq. 2.24.

We can then write the next-nearest neighbor b, displacements on the honey-
comb lattice in terms of the nearest neighbor a, displacements that we introduced
in Eq. 2.25. That means, we write b, as b; = a; — a; where the tuple (i, ], k) is
a permutation of the bond-tuple (x,y,z). As in Ref. [25], the a;, basis does not
yield a Hamiltonian in Bloch form. Rather, we perform a gauge transform on the

Hamiltonian to the basis, given by the lattice vectors u;, see Fig. 2.1.

4.1.2 General remarks on the decoupling scheme

The model Hamiltonian that we considered in chapter 3 came in a quadratic form.
Therefore, we were able to treat it directly by means of band theory. In this chap-
ter, we consider interaction effects. Hence, we need to find a treatment of the
quartic terms such as

cieicle; (4.3)

that appear in our Hamiltonian . Previous studies [19, 18] have suggested that
at a mean field level the quartic interaction term can be decoupled into a charge
density wave (CDW) order parameter which then acts as a staggered potential
in sublattice space on Hy. Hence, decoupling into this channel results in a order
parameter that controls the band gap of the Haldane model at the K-points and
therefore has a direct influence on the topological nature of the bands. This seems
like a reasonable approach and a straightforward way, proposed in Ref. [18],

would be to rewrite Hy exactly as

Hy=VY (0 —1/2) (nj—1/2) = = Y_ (n; — nj)* (4.4)

(i) (i
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in order to find a simple mean-field theory for the CDW order.

Crucially however, this ansatz does not take into account the fact that the
correlator <cfcj> is finite in the Haldane model (in the form of nearest neighbor
hopping) and therefore contributes to the overall interaction energy <c:rcic;rc]->.
Hence, a valid decoupling scheme involving particle-hole channels has not been
considered previously in the case of interacting topological phases [19, 18]. When
particle-hole channels are not included, one finds the Mott phase transition to be
second-order [18].

Therefore, we propose to construct the most general decoupling scheme pos-

sible that includes all contributing channels. We will verify this scheme by vali-

dating our through energy computations in chapter 4.2.

4.1.3 Decomposition of the quartic term

Let us start by rewriting

1

HV = VZ <Tl,‘ - %) (ni+p - E) (45)
ip

2
_ t _r

i,p,r

Vv 1

-5 Z (c?ci + c;r+pci+p — E) , (4.6)
Lp

where i denotes a unit cell, p runs over the links (x, y, z), r runs over (0, x,,z) and

0" denotes the Pauli matrices acting on sublattice space with basis (i(A),i + p(B)).

Here, we introduced the coefficients #, in the second line. The above transfor-

mation (from Eq. 4.5 to Eq. 4.6) is exact as long as the coefficients 7, fulfill the the

following relations

1
o = —1z, Nx = 1y, 4 = M0 Tl (4.7)
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As previously noted, we wish in principle to choose the 7, such that the decou-
pling scheme incorporates particle-hole channels (i.e. 7., # 0) that contribute to
the total energy. A priori, a generic choice of the #, that will ultimately minimize
the total energy of the effective Hamiltonian correctly, is not obvious. Rather, a
choice of coefficients 7, needs to be justified by means of energetic analysis which
will be conducted in chapter 4.2.

A posteriori, from the energetic point of view the correct choice of coefficients
1y is

1

We can now write down the partition function and action in momentum space

as

z = / D(¥,¥)eS, 4.9)

:
S = /Oer\If;(aTJrho(k)-a)‘karHV
k

with the spinor basis ‘I’; = (Ci A czB) such that

hi(k) = —t1)_cos(k-ap), (4.10)
P

h(k) = —t1)_sin(k - ay),
14

(k) =

—2t, ) _sin(k - by).
p

4.1.4 Hubbard-Stratonovich transformations

Now, we decouple the quartic interaction term Hy via a Hubbard-Stratonovich
transformation. We follow [76] and distinguish between r € {x,y,z} and r € {0}
since the corresponding exponential terms come with different signs (due to the

choice of the 7, in Eq. 5.26).
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Forr € {x,y,z} we obtain
1%4 2
exp (g Z (C;‘rair,ierCi—&-p) ) =
Lp
D¢ exp | =Y 2V(¢i,,,)> + V] clol. ci
(P P . i+p/2 i+p/2 iYii+ptitp ’
Lp

(4.11)

and forr =0

\% 2
exp <—§ ) (c;rcrgi+pci+p> ) —

Lp
/Dcpo exp (— ZZV(¢?+P/2>2 + iV¢?+p/z (C;r‘fgi+pci+ﬁ>> :
Lp

(4.12)

Here we introduced for each r an auxiliary field ¢7, , ,, on each link between lat-
tice sites 7 (on sublattice A) and 7 + p (on sublattice B). The fields ¢* and ¢? are
particle-hole channels, ¢° corresponds to a chemical potential and ¢* to a stag-
gered chemical potential in sublattice space that captures CDW order. Impor-
tantly, ¢* acts at the same time as a Semenoff mass term on the Haldane model
and therefore controls the topological Chern number of the bands.

Now, we rewrite the decoupled interaction part in Fourier space and obtain

the partition function and action
zZ= / DY, ¥, ¢°, 6%, ¢, ¢7)e S, (4.13)
p
§= [ dr ¥ @+ ho(k) - @) ¥
k

+ Y Yihv(k,q,p)¥i+ Y _6Vio (4.14)
k.q,p k,r
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where we introduced the matrix hy (k, g, p) which can be interpreted as an inter-

action density matrix. Explicitly, it reads

e-sloara (ig)  +z )= et (g —igl )

e~ 2(k+q)-ap (4;;57[1 + i(p%_q> ez (k—q)-ap (i¢2_q — q;iiq) -1
(4.15)

hv(k,q,p) =V

In principle, one could also assign an imaginary time variable 7 to the stochastic
variables. Then this would result in a frequency dependence of the variables ¢;.

Below, we develop a variational approach to evaluate the stochastic vari-
ables within the ground state properties through an energy-minimization proto-
col. Therefore, we consider below a time-independent, static model and therefore
restrict the analysis to the zero frequency contribution. For ground-state observ-
ables, this stochastic variational approach is in good agreement with an iDMRG
approach which was performed as a complementary method to validate the re-
sults [26]. As we also show below, fluctuations of the stochastic variables around
their value for the minimum of energy is well controlled.

Furthermore, we restrict the discussion to leading contribution in k-space for
which scattering does not change momentum. Hence, we keep only the zero mo-
mentum contribution, i.e. k —¢q = 0. It's important to remind that sampling
stochastic variables in time suffers from the sign problem for the fermionic Hal-
dane model, which justifies our present approach. It should be emphasized that
to reproduce ground-state properties, one cannot ignore the particle-hole channel
9.

The action S now takes the form

S = Z‘H (ho(k) o+ Zhv(k, P)) Y+ Z6V(P,Z(Pr_k, (4.16)
k P

k,r
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where the interaction density matrix now reads

_ 0 1 z ik-ap X _ 4
e p) =y | ~@ TR e igh ) @i

e Rm (¢* - igV) (90 +7) — ¢
Here, we skipped the zero-momentum index of the fields, i.e. ¢" = ¢;, and re-
defined the chemical potential —i? — ¢° such that ¢° is now real for the matrix
hy(k, p) to be Hermitian (where it was imaginary before the substitution, such
that i¢” was real).

We set
Humi(k) = ho(k) - o +)_hv(k,p), (4.18)
p

and finally arrive at the effective mean field Hamiltonian
Hong = Y Vi Home (k) Vi (4.19)
k

where the mean field Hamiltonian density in matrix form reads

() = v(k) =3V (¢°+ 3) —g(k) , 4.20)

—g" (k) —7(k) =3V (¢°+ 3)

with the functions (k) and g(k) defined as

v(k) =3V¢* —2t, ) “sin(k - by), (4.21)
p
g(k) =t = V(¢* +i¢¥)])_ (cos(k - ap) —isin(k - ap)). (4.22)
p

The term 3V¢* assumes the role of a Semenoff mass term [35] in the Haldane
model, whereas the fields ¢* and ¢¥ renormalize the nearest neighbor hopping
amplitude t;.

The field ¢° can be absorbed in the chemical potential and will be fixed to ¢° =
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—1/2 at half-filling. The field ¢* changes sign in sublattice space and therefore
plays the role of a staggered chemical potential. On the one hand, it measures
the particle density difference between sublattices A and B, and captures CDW
order. Furthermore, it acts as a Semenoff mass term [35] on the Haldane model
and therefore controls the Chern number of the system [14]. The variables ¢~
and ¢¥ dress the nearest-neighbor hopping term and assuming t; is real then this
favors ¢¥ = 0 while ¢* # 0. The ¢* variable is also real in the definition of the

Hubbard-Stratonovitch transformation.

4.1.5 Self consistent mean field equations from a variational approach

Before deriving the self-consistent equations of the mean field Hamiltonian Eq.
4.20, we provide a general remark on the derivation of self-consistent mean field
equations.

Consider some general Hamiltonian ‘H = H; + H, with a quadratic, kinetic

H

part Hy and a quartic interaction part of the form Hj,x = —);; Uijc:rcic]

¢ =
— Y. nillijn; with interaction matrix Ujj. The quartic term can be decoupled by

means of a Hubbard-Stratonovich transformation as [77, 76]
exp (nz-ui]-n]-) = /d(,b exp <_4)luz](,b] — 2<piui]-n]-> , (423)

where we introduced some Gaussian auxiliary variable ¢. From the partition

function and action

zZ = /D(c,c+,gb)exp(—5), (4.24)

ﬁ . . .
S — /0 dr Y cf (9c + hy) ¢j + ¢ Uy¢) + 29" Um;,
7
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one then usually [77, 78] computes the self consistent mean field equations via

oS\ 1
<5T>i> Lo, (4.25)

which would yield in the above example

0= (Uyg/ +2Un; ) = ¢/ = =2 (n;). (4.26)

Now, the problem is that this result is not unique. The auxiliary field ¢ can be
thought of as gauge field. Essentially, we can make a transformation as ¢ — ag’

in Eq. 4.23 with some factor « to obtain
S = / dTZc e+ ) ¢j + 2P Ui + 2a¢ Usn;. (4.27)

This produces the self-consistent mean field equation

<(%> =0, = ¢ = —2 (n;). (4.28)
Hence, the self-consistent mean field equation depends on « and is therefore not
gauge independent. The problem arises, as we only minimize the action (or en-
ergy) of the decoupled, ¢-dependent Hamiltonian. Instead, we need to minimize
the energy of the decoupled Hamiltonian (which can be seen as a choice of a trial
Hamiltonian) with respect to the original, quartic Hamiltonian. This can be done
in the following way.

Let H ¢ be (a choice of) a mean field or trial Hamiltonian and H the original,
full Hamiltonian. Then, we can rewrite formally H = Hus + (H — Hme). On the

level of the free energy it follows the Bogoliubov inequality [79, 80]

F < Fg +(F — Fp) - (4.29)
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The right hand side of the inequality is a function of the mean field parameters
and we need minimize it with respect to ¢. In our case, for the full Hamiltonian
‘H in Eq. 4.2 and the mean field Hamiltonian in Eq. 4.20, we obtain the following

set of self-consistent mean field equations

¢—-%« o)+ (i) @

= () + e a
by ). as
¢ =1 ({de) ~ (o). @z

or in short hand notation using Pauli matrices

¢ = ; (ctolie;). (4.34)

The real space amplitudes are evaluated as mean over all lattice sites, for instance

(o) = ne B o) =

2
ZZ ik-
= N el apMkAy/MkBV’ <7ky’7k1/’>
sites k ouv

2 .
- Zzelk upM]tA/\MkB/\
Nsites k A

In the first line, we performed a Fourier transform of the creation and annihilation
operators in real space. In the second line, we used 7, = M} ¥Yx where M is a
unitary matrix that diagonalizes H,s. The new spinor basis fulfills <')’k W’qu/> =
d,ny for occupied states. In Eq. 4.36, 1’ and v’ run over all states, whereas A in Eq.
4.36 runs only over occupied states. The results below are obtained when solving

the coupled equations above.
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4.1.6 Numeric solution to the self consistent mean field equations

In Fig. 4.1a), we present a two-dimensional ¢, — V phase diagram obtained from
the variational the mean-field theory approach. We confirm the presence of two
phases [15, 16], a Chern insulator (CI) phase with a perfectly quantized Chern
number and a Mott or charge density wave (CDW) phase. The CDW phase is
characterized by a non-zero value of (ny — ng) or ¢* as long as (ng — np) is
not equal to unity, then ¢* can remain finite above the transition as a result of
quantum fluctuations. Fig. 4.1c) shows the numerical solution of the mean field
equations for t, = 0.1. The jump in the CDW order parameter ¢* indicates the
first-order phase transition. Here, we give some physical insight on the occur-
rence of a jump in ¢*, which is evaluated at the wave-vector k — q = 0.

At the Mott transition, the gap closes at one Dirac point such that for the
ground state we have (n4(K)) = (np(K)) whereas the gap remains visible at
the other Dirac point such that (n4(K’)) = 1. In real space, the system behaves
(approximately) as if (n4 — ng) ~ 1/2 on a given unit cell and |¢*| ~ 1/4. It's
relevant to highlight that the variable ¢* entering in the diagonal terms of the
2 x 2 matrix describing hy is taken at the wave-vector k — q = 0 instead of a
Dirac point, corresponding then to an average on all the unit cells of the lattice
in real space. This argument implies a jump in the quantum Hall conductivity
at the Mott transition. The closing of the gap at the K point gives a critical inter-
action value V; =~ 4/3t to enter into the Mott regime, suggesting then a linear
relation between V; and t, as observed in the phase diagram. In the stochastic ap-
proach, the particle-hole channel allows us to determine quantitatively (1,4 (K))
and (ng(K)) and the value of ¢* at wave-vector k — q = 0 according to Eq. 4.36,
which then results in the phase diagram of Fig. 4.1. The linear relation between

V. and t; remains visible for the range of studied parameters.
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FIGURE 4.1: (a) V — t, mean field phase diagram from the method.
The transition marks the condensation of the CDW order param-
eter ¢*. (b) Same phase diagram obtained with iDMRG [26]. (c)
Absolute value of the self-consistent ¢" variable as a function of V
for tp = 0.1. (d) Hall conductivity and (n4 — ng) from iDMRG.

We compare [26] our mean field calculations with simulations using the in-
finite density matrix renormalization group (iDMRG) by means of the python
package TENPY [81], written in the language of matrix product states. This nu-
merical method calculates the ground-state of the model Eq. 4.2 in the infinite
cylinder geometry, as well as the expectation of the CDW order parameter, (n4 — ng),
the Hall conductivity oy, the correlation length ¢ and the entanglement entropy
S. The bond dimension yx is a measure of the maximum number of states kept
by the algorithm, and sets the accuracy of the calculation. We have performed
[26] calculations up to x = 1200 for cylinder circumferences of L, = 6,12 sites

and our results show good convergence for bond dimensions as low as x 2 200,
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consistent with previous iDMRG calculations [82].

The phase diagram for x = 200 and L, = 6 is shown in Fig. 4.1b). In Fig. 4.1d)
we show the CDW order parameter and the Hall conductivity along a cut at
to/t1 = 0.1, which show a discontinuity along the transition for all xs. These
discontinuities are typical of a first-order phase transition, further supported by
the saturation of the entanglement entropy at the transition as a function of cor-
relation length. Comparing iDMRG results with the mean-field variational ap-
proach, our findings agree as long as the smallest band gap (relevant energy scale
for CDW order) is located at the K-points (relevant for topology), which is the

case for tp < 0.2, cf. Fig. 2.4. Therefore, we focus on this parameter regime.

4.2 Energetic analysis of the phase transition

We find at the mean field level a jump of the CDW order parameter ¢* at the phase
transition for the choice of parameters regime. In Fig. 4.2 (top), we show the CDW
order parameter as a function of V for different fixed values of ¢, ranging between
tp = 0.08 and t, = 0.20. Here, the self-consistent mean field equations where
solved for increasing V in small steps of AV = 0.0005 in order to show clearly
the jump in the order parameter ¢*. The jump becomes smaller the smaller ¢,
is. Therefore, at the mean field level, a clear indication of a first order phase
transition can only be given when t; is sufficiently large, i.e. at the order of t, ~
0.1. From the Ginzburg-Landau and mean field theoretical point of view, a clear
analysis of the nature of the mean field analysis for t, < 0.05 is not possible,
the phase transition appears at most rather weakly first order when ¢, is close to
zero. This observation seems to be in accordance with the literature [83], where a
second order phase transition is predicted for vanishing t».

From our perspective, the regime of small ¢, seems therefore to be the middle

ground between the clear indication of a first order phase transition in the range
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tp € (0.08,0.20) and the second order phase transition for vanishing f».
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FIGURE 4.2: CDW order parameter from mean field theory (¢*,
top) and iDMRG (L, = 6, x = 200, bottom) as a function of the
interaction strength V/t for different values of the next-nearest
neighbor hopping amplitude f,. In both cases the smaller f;
the smaller the jump in the order parameter (in agreement with
known results in the literature for t, = 0 [83]). In the mean field
diagram (left), we computed a solution to the self-consistent equa-
tions in small incremental steps of AV = 0.0005 in order to show
clearly the jump in the order parameter for the values of t; under
investigation.

In order to confirm a first order transition on the mean field level for suffi-

ciently large tp, we evaluate the total free energy of system. Let |();¢) denote
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the mean field ground state which in general depends on the self-consistently ob-
tained field ¢", i.e. [Qmf) = [Qme), - Then, we compute the free energy of the
system via F(¢) = (Que| H |OQms) = (H) where H = Ho + Hy is the original
Hamiltonian Eq. 4.2. This calculation involves exactly decomposing the quartic
term n;n; = cfcic;rc]- using Wick’s theorem [77] as

(c:fcic;rc]) = <c:rc,'>(c;rcj> — <CjC}><CiC]'> — <c?cj><c;fci>. (4.36)

.I.
i

The amplitudes such as (c]c;) are then evaluated similarly to the computation
leading to Eq. 4.36.

Evaluating the energy in both phases around the transition shows that the
energy curves cross at the transition line, see Fig. 4.3a) for t, = 0.2. This indi-
cates a first order transition as the parameter will jump at the transition to the
energetically preferable solution.

This can be further confirmed by computing the energy explicitly for small ¢~
around the saddle-point solution right before the phase transition (also for t, =
0.2). The curve obtained, Fig. 4.3b), shows a typical Mexican hat form [77] with
co-existing minima. We build a Ginzburg Landau theory, i.e. an expansion of the
free energy curve. Finding appropriately relevant terms until the order (¢%)° is a
difficult task here because V is large as well as ¢*, and therefore we perform this

task numerically. The free energy can be approximated by a polynomial of the

form

F(¢7) = Fo+a(¢?)* + B(¢)* +7(¢7)°, (4.37)

where the coefficients fulfill in general [84] « > 0, B < 0, and v > 0 to ensure the
co-existence of local minima and that the free energy is bounded from below. We
fit such a polynomial to the energy computed very close to the phase transition
for different values of ;. The results are shown in Table 4.1. In general, it is

difficult to compare these coefficients for different values of t,. For each value of
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Fo w p i

tzv =:0-12.22a515d 20913 0.0402  -1.5045  15.6428
t2V ::Oi(?goa;;d -1.8445  0.0001  -0.2575  70.7487
fzv ::0-11.§6"i1r(‘)d 18974 00010  -1.5419  31.4482
tzv ::Oilizeg%d 19232 0.0212  -1.2630  6.7646

TABLE 4.1: Ginzburg-Landau coefficients (of the polynomial Eq.
4.37). The coefficients for different values of t, are in general dif-
ficult to compare since we need for each ¢, to fix some V manu-
ally close to the phase transition, and the coefficients are subject
to change in magnitude when only moving slightly towards the
phase transition or away from it. Comparing signs is however
possible, and the configuration at hand (¢ > 0, B < 0, and y > 0)
determines a first order phase transition [84].

t» we need to fix a V that is close to the phase transition in order for Eq. 4.37 to
be valid. Varying V in the vicinity of the phase transition slightly, i.e. moving
either towards the phase transition or away from it, may change the magnitude
of the coefficients in Table 4.1. However, we can make a statement on the signs
of the coefficients. Since we get across all values of f, a consistent configuration
ofx > 0,8 < 0,and v > 0, we can confirm the first order nature of the phase
transition [84].

Furthermore, note that a plot of the energy landscape around a mean field
solution such as Fig. 4.3b) is an important tool to check the validity of the mean
field theory. If relevant mean field parameters are omitted, their weight is not cor-
rectly adjusted (the parameters #, introduced above) in the self-consistent equa-

tions and the energy curve will not show a minimum.
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FIGURE 4.3: (a) Energy of the CI and CDW Mott phases obtained
from mean field theory at ¢, = 0.2. The curves cut in one point,
forcing the CDW order parameter to jump as the system abruptly
prefers to change the phase in order to minimize energy. (b) En-
ergy landscape around the mean field solution at t, = 0.2 as a
function of the CDW order parameter ¢* at the phase transition.
The coexistence of local minima indicates a first order transition
according to Ginzburg-Landau theory.

4.3 Probing topology with light response

4.3.1 Circular dichroism of light at the Dirac points

In the theory chapter 2.3.5 we introduced the circular dichroism of light which
had been suggested as a measure of the topological invariant of the Chern num-
ber [49, 50]. Shining light on a Chern insulator induces a population of the states
in the upper band, above the band gap. The associated depletion rates and pho-
tocurrents [51] depend on the orientation of the circular drive. The Chern number
is encoded in the difference of rates with opposite orientation.

Now, we address the formulation of the Chern number in terms of the light
responses of the CI to circularly polarized light with different polarizations [49].

The topology in the Haldane honeycomb model is encoded in the high sym-
metry K and K’ points. As described in previous sections, the topology arises
from the mass inversion at one of the two Dirac points.

The circular dichroism of light as introduced in Ref. [49] considers on the

other hand the light response of the entire Brillouin zone to probe the topology
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of an Chern insulator. In the case of the topological Haldane model, the natural
question arises whether investigating the light response of the high symmetry K
and K’ points is maybe already sufficient to probe the topology since the relevant
information on mass inversion is encoded here.

In fact, it can be shown [26] that it suffices to consider the light response at
the Dirac points K and K’ only in order to retrieve information of the topology in
the Haldane honeycomb model. By expressing the transition amplitudes from the
lower to the upper band in terms of eigenstates on the Bloch sphere, one can show

[26] that the depletion rates T, (k = K, K’) encode the mass term |m| = 61/3t;

ol
which determines the size of the band gap at the K-points.

Note that the next-nearest neighbor hopping term t,¢'® breaks time-reversal
symmetry in the Haldane model, and therefore leads to different signs of m at

the K and K’ points, and therefore, to non-trivial topology [14]. Numerically, we

verify this observation by considering the depletion rate as derived in Ref. [49]

A
Iﬂl::u (wi, k) = 7 <h O> ’Alﬁu| 0 (6 - el hw) (4.38)
and
T, (wi) = Y T, (wi k) (4.39)
keBZ

Here, the transition amplitude is given by

10Hy _ oH
A = {5 F o), (4.40)

where Ay is a light-matter coupling constant with dimensionally equivalent to a
vector potential in the original basis, |uj) and |I;) are the eigenstates correspond-
ing to the lower and upper bands, ef‘/u their eigenenergies, and the =+ selects the
polarization orientation. The sum on the momenta k involves the entire Brillouin

zone.
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The mass inversion occurring at one of the Dirac points is the source for the
non-trivial topology in the Haldane model [14] and as it has been shown on the
Bloch sphere [26], we can restrict ourselves to the Dirac K and K’ points, i.e.
the substitution ) gy — Y x_gx. We verify numerically that we can evalu-
ate the Chern number in the non-interacting Haldane model with the formula at

the Dirac points only, and find for the frequency-integrated rates

1 e .
. / do Y Tf, (wi k) —T7,, (wi k) = pC (4.41)
0 k=K,K'

with the constant

o =16 AZV3 |1 [P m2. (4.42)

In the non-interacting case, the number C is one in the topological non-trivial
phase of the Haldane model and exactly zero otherwise, and is thus the (ground

state) Chern number.

4.3.2 Ground state circular dichroism

Using the light response of the entire Brillouin zone Eq. 4.38, we now compute the
circular dichroism of light of the ground state of the effective mean field model
of the interacting Haldane honeycomb model. In the mean field ground state,
we find as expected that the topological Chern number is exactly one as in the
CI phase and exactly zero in the CDW phase. However, when considering the
light response of the Brillouin zone, we can still reveal differences in the depletion
rate profiles for increasing interaction strength V, even though the Chern number
does not change. Figs. 4.4 (a-c) visualize the results. 4.4 (a) and (b) show the
ground state depletion in the TI phase (both have Chern number equal to one)
for different interaction strengths V. In the TI phase, the CDW order parameter
is zero. On the other hand however, the particle-hole channel ¢* is finite (cf. Fig.

4.1) and renormalizes thus for increasing V the function g in Eq. 4.22 which leads
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FIGURE 4.4: (a-c) Ground state depletion rate I'y
Y keBZ l"li_m(wk,k) as a function of frequency for f;
0.1 and different fixed values of the interaction strength
V. (d) Stochastic frequency-integrated depletion rate '+ =
[ dw Yg—k x TT,, (wy, k) at the Dirac points as a function of V.

to the difference in depletion rate profile in Eq. 4.4 (a) and (b). Finally, considering
Fig. 4.4 (c), the sign flip of the mass term at one K-point at the CDW transition is

reflected by regions of blue curve (I'") turning red (I'").

4.4 Stochastic Chern number

Here, we introduce the stochastic Chern number which accounts for the pro-
duction of particle-hole pairs in the topological phase due to deviations of the
stochastic variables from their ground state values, and more precisely, when
sampling on the whole distribution of stochastic variables. First, we show that
this formalism can e.g. describe randomness in the nearest-neighbors” interac-
tion induced by a fluctuating staggered lattice potential and include the effect of

an interacting environment [85, 86].
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Then, we apply the methodology to study the light response and the Mott
transition. We also show an analogy with temperature effects in the production of
particle-hole pairs. This formalism then allows to classify different mechanisms
creating particle-hole pairs due to interaction effects, regarding their topological

response.

4.4.1 Stochastic Topological Number and Interpretation as a Disordered

Situation

Here, we show that the sampling on the stochastic variable ¢* can be equally
understood as a sampling on the interaction strength V. These arguments below
then show that the stochastic topological number corresponds to situations with
a slightly disordered interaction strength. Since we also have nang = ¢35 — ¢?,
we deduce that fluctuations in the interaction V between nearest-neighbour sites
can be produced either by a fluctuating mean-density or a fluctuating staggered
potential on the lattice corresponding to a Semenoff mass with zero mean and a
Gaussian distribution.

We define the stochastic topological number as

—+00
c= [ dgpig)c(y), (443)

with ¢ = ¢* and the Gaussian distribution

P(¢) = 1 e*%(‘l’*qﬁmf)z@*l(v), (4.44)

V2rE(V)

with (V) =1/(12V).
Since C can be equally measured through the pseudo-spin magnetizations
(0%) at the poles [26], this is equivalent in this calculation of C as if ¢* = ¢V = 0

since g(k) = 0 at the poles in the Hamiltonian hy of Eq. 4.15. For a given value of
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V, we can insert the precise value of ¢, obtained from the variational mean-field
approach with simply ¢+ = 0 in the topological phase.

From statistical physics arguments, then we have
1
z _ —Bhy z
(c*(¢)) = —ZTr (e o ) , (4.45)

assuming 6 values equal to 0 and 7r. Therefore, Eq. 4.43 is then equivalent to

define the ensembled-averaged variable

) = [ applg)ie (). (446

Now, hy is symmetric under the variables ¢ and V. Therefore, we equivalently

have

(%) = / 5P (3) (0% (), (4.47)

with
P(6) = —— e 3FEW) (4.48)

where = (V —V)/V = ¢ — ¢* . measures deviations from the mean value V for
the interaction strength between sublattices A and B. Including fluctuations, the
diagonal term in H ¢ in Eq. 4.20 now involves 3V 7 + 3V ¢Z . showing the relation
with a fluctuating staggered potential equal to 3V3. From the formulation of
C as a current density we infer that the stochastic topological number can be
measured through the quantum Hall conductivity and the circular dichroism of
light corresponding e.g. to an average on different samples.

Eq. 4.43 is therefore useful to describe lattice effects or the effect of an interact-
ing environment. As the term 3V ¢* plays the role of a Semenoff mass term acting
on the Haldane model in Eq. 4.21, we can also define - for a given V - ¢? such
that 3V|¢?| = 3+/3t,. Then, all states with |¢?| < |¢?| produce a Chern number

C(¢) = 1 to C while all other |¢*| contribute zero.
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FIGURE 4.5: (a) Band structure (blue pair of bands) for small t; <

0.2 with t; = 1. The low energy physics is centered around the

Dirac points, where the stochastic approach applies. If we allow

for fluctuations at V > 0, the sampling of ¢* corresponds to the

creation of quasi states that change the band gap at the K and K’

points. (b) Haldane band structure for large ¢, > 0.2 such that the
low energy regime is located at the M-points.

When V approaches (energetically) the order of the the smallest band gap
around the K-points in Fig. 2.4a), particle-hole pairs will start to form and this
leads to the formation of a mixed state. The stochastic topological number is
equivalent to

Coe=1-2 (:o dpP(¢). (4.49)
The integral goes to zero when V' — 0 corresponding to a pure (ground-)state,

justifying that in this case Cst = C¢s = 1. For small interactions, C can be approx-

imated as

+00
Ca=1-2[ “dpP@)o(p~ Igil) ~1-2P(p ~1gZl),  (450)

keeping the dominant term in the series development of the erfc-function. There-

fore, this leads to

Cot — 1 o g™/ (ke Ters)? (4.51)

with kpT,¢f o V/V. This argument then shows that deviations from unity of the

topological number come from the creation of particle-hole pairs. This implies
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that fluctuations in the interaction strength or fluctuations in the charge environ-
ment on the lattice is equivalent to produce a finite probability to reach the upper
band. In this sense, the definition of the stochastic Chern number can describe the
effect of interaction-induced particle-hole pairs in the topological phase. We also
observe that V plays a similar role as a Landau-Zener mechanism on the sphere
[87]. In this sense, the stochastic Chern number may find various applications.
The parameter kg T, s above leads to an analogy with temperature effects that

we study below in Sec. 4.4.4.

4.4.2 Light-Matter Response and Mott Transition

To evaluate the light response in a mixed state, we consider Eq. 4.41, substitute
Ho — H™ and here sample all the stochastic variables with a distribution P(¢")
according to Eq. 4.44. Importantly, ¢* acts as Semenoff mass term on the Hal-
dane model modifying the band gap at the Dirac points. Sampling ¢* around
the saddle point solution generates excited states with smaller energy band gaps,
see the light red bands in Fig. 4.5a). We sample the fields (¢*, ¢, p*) = ¢ ac-
cording to P(¢") while keeping the chemical potential constant at half-filling, i.e.
¢° = —1/2. In Fig. 4.4d), we show the evolution of the ensemble-averaged rates
I'; and I'_ as a function of V, when sampling on the variables ¢. These variables
are now hidden in the eigenenergies in Eq. 4.38.

For each configuration we can also associate a ¢-dependent Chern number
C(¢) via Eq. 4.41 that will be either one or zero. Then, for completeness, we

evaluate
—+o0

Cst = N d¢P(¢)C(¢), (4.52)

which can take non-integer values when it refers to a mixed state. Computing
Cg for 10° random configurations, as a function of V, then we obtain the result

in red in Fig. 4.6a), which can be compared to the ground state Chern number
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FIGURE 4.6: (a) Evaluation of the ground state Chern number Cgs

and stochastic Chern number Cg as a function of V. The grey

curve comes from the analytical formula in Eq. (4.50). (b) Cy, from
Eq. (4.54) at V = 0 as a function of kpT.

Cgs in blue obtained when ¢* = ¢7 . The quantity Cgs determines the quantum
Hall conductivity, in agreement with iDMRG (see Fig. 4.1d)) and with the Bloch
sphere arguments.

Hence, we can also write Cy via Eq. 4.50, which results in the grey curve in
Fig. 4.6a). This highlights the correspondence between the ensemble-averaged
values of I'y —I'_ in Fig. 4.4d), and C as a function of V. It’s interesting to
observe that Cg; still reveals the first-order Mott transition through a small jump

in Fig. 4.6a).

4.4.3 Energy distribution of excited quasi particles

Finally, we would like to comment on the stochastic approach to the interacting
Chern insulator from the energetic point of view. Allowing the mean field pa-
rameters ¢" to fluctuate around the saddle point solution changes the energy of
the quasi state under consideration. We sample the fields ¢*¥* and for each con-
figuration we can compute the energy of this quasi state with respect to the wave

function

) = 1Q(¢%, 9%, ¢%)) - (4.53)
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FIGURE 4.7: Energy of the mean field ground state as function

of V (red line). Also shown is the energy distribution of quasi

states obtained from sampling (¢*, ¢Y,¢*) = ¢ around the sad-

dle point. This creates quasi-excited states at energies higher than

the mean field ground state. Each quasi-state can be attributed

a Chern number C(¢) which will be either one (green) or zero
(blue).

Repeating this procedure for 10° sampled configurations of the ¢*¥ for each
respective V yields Fig. 4.7. The red line gives the energy of the mean field ground
state which is the lowest energy state for each V. Sampling the ¢ fields will result
in a quasi state at a higher energy. Each quasi state can be associated with a Chern
number of either one or zero (depending on ¢7).

For small V, the mean field ground state (red line) as well as states close to
it have Chern number one. Close to the phase transition, it then becomes more
likely to create a state with Chern number zero when moving away from the

saddle point. At the phase transition, the ground state acquires Chern number

0 and for further increasing V it becomes more and more unlikely to create an
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excited state with non-trivial topology. This analysis also shows the occurrence of
a jump in the topological Chern number at the phase transition, from the ground

state, as obtained with iDMRG in Fig. 4.1d).

4.4.4 Analogy with Temperature Effects

Here, we also formulate an analogy with the finite-temperature version of the

Hall conductivity [88] and introduce a finite-temperature version of Eq. 4.41

1 [ _
E/ dwz (pkl“;f (wi, k) — pFT; (wk,k)) = pCy, (4.54)
0 o,k
where
p* = (1+exp(e, /ksT)) ™! (4.55)

is the Fermi distribution, kp is the Boltzmann constant, and the variable &« here
refers to {I — u,u — I} such that p* effectively mixes the states of the lower
and upper band. We then allow in Eq. 4.54 for heating of the bulk to contribute
to Cy, [88]. From Eq. 4.54, we find that at low temperatures (kgT < m), the

finite-temperature Chern number Cy, decreases smoothly as
1— e m/ksT (4.56)

in Fig. 4.6.

In the presence of interactions, we observe an analogy with heating in the
sense that the probability to create a particle-hole pair in the topological phase
will be dominated by values of |¢p*| ~ |$Z|, producing a reduction of Cg evolving
as

P(|¢7| ~ |9F]) o e/ kaTeyp)? (4.57)

from Eq. 4.20, with an effective temperature such that kT, ¢ o V/V in Fig. 4.6.
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We also observe a similar behavior of C in the presence of band-crossing ef-
fects on the Bloch sphere [87], which then suggests various possible further ap-

plications of this formalism.
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Chapter 5

Analytical approach to the
Kane-Mele-Hubbard model

In the previous sections, we learned that Haldane [14] proposed a model that re-
alizes the IQHE without an external magnetic field. We reviewed how Haldane
outlined how to explicitly break time-reversal symmetry in order to induce non-
trivial topology in the bulk of graphene. While Haldane published his seminal
paper in 1988, his ideas gained traction almost twenty years later when Kane and
Mele [73, 89] and independently Zhang and Bernevig [90] described the Quan-
tum Spin Hall Effect (QSHE). The QSHE is realized [73] by two copies of a Hal-
dane model, where the Peierls phases ® are chosen to be 7t and — 7, respectively.
Hence, (the lower band of) one copy carries a Chern +1, while the other one car-
ries a Chern number of —1, cf. Fig. 2.3. The interpretation is that each copy
corresponds to a spin-3 particle with opposing chirality, i.e. a ?-particle with pos-
itive chirality (Chern number +1) and a |-particle with negative chirality (Chern
number —1). Thus, in contrast to the Haldane model, the Kane-Mele model fea-
tures counter-propagating, spin-filtered helical edge modes and most importantly,
does not break time reversal symmetry.

Crucially, we note that the total Chern of the Kane-Mele vanishes,ie. 1 —1 =

0. This hints that the Chern number is indeed not a suitable quantity in order to
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classify the Kane-Mele model topologically. In fact, the helical nature of the edge
modes in the Kane-Mele model points to a Z, topological invariant which we will
introduce in this section. Therefore, the Kane-Mele is the prototypical model of

the so-called Z, topological insulator.

5.1 The Kane-Mele model

5.1.1 Model Hamiltonian

Mathematically, the Kane-Mele model [73, 89, 47, 11, 31] can be written in real
space as

Hiw=—t Y Y chen—its Y Y vijchozacip G
(i) « (i) wp

(i

Here, c:-ra and c;, denote regular fermionic creation and annihilation operators, re-
spectively. t; and t, are the amplitudes of the nearest-neighbor and next-nearest
neighbor hopping, respectively. That means that (i, j) denotes nearest neighbor
lattice sites while ((i, j)) denotes next-nearest neighbors. Furthermore, the coeffi-
cient v;; changes sign, i.e. v;; = +1 depending on whether going from i to j means
moving clockwise or counter-clockwise around the plaquette. Moreover, 0* de-
notes the third of the Pauli matrices that span spin space of the spin components
a, B € {1, 1]} Finally, note that we here present a version of the Kane-Mele model
that does not consider Rashba spin-orbit coupling, [11].

We switch from real to momentum space by using the Fourier transform

2

kR;
'Ck (5.2)
Neels k ¢

el

Cin =

where N5 is the number of unit cells and R; the lattice vector of lattice site i. In

momentum space, the Kane-Mele Hamiltonian Eq. 5.1 can then be conveniently
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written as Hxm = Yx Y Hxm k¥ where the spinor basis is defined as
k Pk7tKMk Tk P

+ fo+ ot 4
¥y = (CkAT/ CkB1rCkALs Ckm) - (5.3)

In analogy to the way we wrote the Hamiltonian density of the Haldane honey-
comb model in momentum space, refer to Eq. 2.46, the Kane-Mele Hamiltonian

density can be written as [47]

v(k)  —g(k)

—o (k) —y(k
Hrmx = k) k) : (5.4)

The functions 7 and g where defined in Eq. 2.32 and 2.47.

In Eq. 5.4, the upper left block matrix describes a Haldane honeycomb model
with Chern number +1 as in Eq. 2.46, whereas the lower right block matrix de-
scribes a Haldane honeycomb model with Chern number —1. Each copy of a
Haldane honeycomb model is attached to a spin flavor 1 or |, as we can see from
the definition of the spinor basis Eq. 5.3. Hence, armed with the knowledge of

the Haldane honeycomb model, we can write Eq. 5.4 simply as

Hpp (k)
Hewx = | 1 . (5.5)

Hp, (k)
The bulk band structures of the Kane-Mele model will therefore resemble the
band structures of the Haldane model, cf. Fig. 2.4, only that each band is now

doubly degenerate.
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e —

FIGURE 5.1: Edge spectrum of the Kane-Mele model for t; = 1,
ty = 1/3,and ® = 71/2. Here, a Semenoff mass term M = 0.2v/3
has been imposed to make the degenerate, counter-propagating
helical modes visible. Bulk bands are gapped, only the counter-
propagating, helical modes located at the two edges are gapless.

5.1.2 The Z; topological invariant

We already noted that the total Chern number in the Kane-Mele model is zero.
However, since the Chern number of each band is non-zero, it makes sense to
define a new topological quantity which takes this fact into account. Hence, we

define the spin Chern number Cy, as [71]

CTi = (CT_C¢>/2 (5.6)

where C; /| refers to the Chern number of the lower band of H}, 1, . This quantity
is robust [71] since we noted that the Kane-Mele Hamiltonian can be decomposed
into two independent parts corresponding to the two spin components 1 and J.
Another way to quantify the topology in the time reversal symmetric topo-
logical insulator was introduced by Kane and Mele [73, 89] who made use of the

Pfaffian invariant in order to define a Z, invariant. While several formulations of
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the Z, invariant exist, here, we follow Fu and Kane [69].
To this end, we introduce the notation as introduced in Ref. [69, 47], i.e. we

rewrite the Hamiltonian density Eq. 5.4 as

5

Himp = Y di(k)I (5.7)
i=1

Here, we introduced the coefficients d; in Eq. 5.7 can be identified in the following
way [69, 47]. d1 and d; correspond to the real and imaginary part of the function
g, cf. Eq. 4.22, d5 corresponds to the function v, cf. Eq. 4.21, and finally, d3 and dy
are zero here (in the absence of Rashba term [73, 89, 69].

Furthermore, we introduced the gamma matrices I which are defined as

M=rwlI (5.8)
rr=1vgl (5.9)
=7 (5.10)
M=7gd (5.11)
I° =17 ®d. (5.12)

where [ refers to the 2 x 2 identity matrix, T to the Pauli matrices in sublattice
space and ¢ the Pauli matrices in spin space. As we saw already, the Kane-Mele
Hamiltonian can be written as a 4 x 4 matrix. In other words, it can be written as
the sum of an identity matrix and 15 generators of the SU(4) group [11]. The I"

are 5 of these 15 generators, which form a Clifford or Dirac algebra [11], i.e.

{T", T/} = 26, (5.13)
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where {-,-} is the anticommutator. The other 10 generators are formed by the

commutators [69, 11, 47]
1

= [rl’,rf} . (5.14)

Now, we introduce the time reversal operator 7 [69] as
T =i(I®d)K (5.15)

where K refers to the complex conjugation operator. And furthermore, we intro-

duce the parity operator P as [47]
P=1"xI=T. (5.16)

We note that the Gamma matrices above are invariant under time reversal
parity PT, i.e. [47]
(PTT(PT) ! =T (5.17)

Hence, P77 commutes with the Hamiltonian [47, 69].

Now, we consider some special points [69] k = ¢;, i = 1,...,4, which are
the only time reversal points in the Brillouin zone. Time reversal points need to
fulfil ¢; = %(nlvl + nv2) where v are the reciprocal lattice vectors, cf. Eq. 2.1
and n; € {0,1}. This can be seen [69] from the fact that these points need to
tulfil —¢; = ¢; + G where G is a reciprocal lattice such that a corresponding wave
function is periodic in the Brillouin zone, i.e. |¥x) = [¥xic)-

Refering to Fig. 2.1, the points §; correspond to the high symmetry points I',
M and M'. Then, the Z, invariant z = 0, 1 which is either zero for a conventional

insulator and one for a topological insulator can then be defined [69, 47] as

(=1 =TTa(&) (5.18)
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where

6(8i) = —sgn(di(I)). (5.19)

In particular, one finds for the Kane-Mele model [47] that §(123) = —1 (for
t1 = 1) and 6(¢4) = 1 such that
z=1. (5.20)

Hence, the Kane-Mele model is a Z; topological insulator since z does not vanish

and the bulk band spectrum is gapped throughout the Brillouin zone.

5.2 The Kane-Mele-Hubbard model

The Kane-Mele model is as a prototypical model exactly solvable within a tight-
binding approach as presented above. When electron-electron interactions are
added to the model, and the topological band insulator is challenged by corre-
lation physics, this is not anymore the case. The Kane-Mele-Hubbard model has
been extensively studied [31, 47, 70, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103] with various approximative methods in the past decade, and its behavior is
in principle well understood.

The Kane-Mele-Hubbard model reads
Hxmu = Ho + Hu Hy = Uzniﬂlw (5.21)
i

where Hy is the Kane-Mele Hamiltonian Eq. 5.1 and H; is the repulsive Hubbard
on-site interaction with the interaction strength U > 0 that acts on spin space. A
solution of this model comprises two phases. First, up to some critical interaction
strength [31] U, g t; the topological band insulator is stable towards electron-
electron interactions. Upon reaching the critical U, the system transitions to a
magnetically ordered phase (spin density wave). In this phase, the system prefers

to antiferromagnetically order in the x — y plane only. This behavior has been
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previously explained by the derivation of an effective Hamiltonian in the strong

coupling limit [47, 31]

M= yss 40y (—sysy—sisl+s:57) . (5.22)

u ="y = 17y 7] 17y

(i) (@)

Due to the bipartite nature of the honeycomb lattice, the Heisenberg model
(the first part of the above equation concerning interacting nearest neighbor spins),
exhibits Néel order in the ground state [31]. Therefore, the next-nearest neighbor
terms in the z-plane compete with the nearest neighbor terms. Hence, the system
chooses to solve this frustration by ordering in the x — y plane [31, 47] so that the
z-interaction is neutralized.

This result has been pointed out [31] to be in good agreement with several

numeric studies [70, 96, 97, 103, 99, 104].

5.3 The Kane-Mele-Hubbard model from a variational prin-
ciple

Here, we follow an approach similar to the one we used to treat the interacting
Haldane model in the previous chapter. This variational mean field approach will
describe the correct decomposition scheme of the Kane-Mele-Hubbard model
by all relevant physical channels, including those that were missing in previous
studies [47].

We present a new analytical approach to the Kane-Mele-Hubbard model in
chapter 5.4 that builds directly on the decomposition scheme outlined in this sec-

tion.
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5.3.1 Kane-Mele-Hamiltonian decoupling scheme

In order to prepare the decoupling of the quartic interaction term, we can write

Hy exactly as

Uannw = UZC;TCiTC;i-ij (523)
i i
2
=U Z 1y (c;raagﬁciﬁ) (5.24)
ir
where i denotes a lattice site, r € {0,x,y,z}, and 0" denotes the Pauli matrices

acting on spin space spanned by {1, ]} The coefficients 7, need to fulfill the rela-

tions

1
Moo=~ fux=my =10 (525)

By means of a variational approach to the construction of the mean field theory

which we will outline below, we find that the following choice of the coefficients

M.
1
5.3.2 Hubbard-Stratonovich transformations

Now, we turn to the decoupling of the decomposed quartic terms and write down

the partition function and action

Z= / D(¥,¥H)eS (5.27)

B
S = /O dr Y ¥ (3c + Hox(k)) Yi + Hu (5.28)
k

where we defined the spinor basis ¥} in Eq. (5.3) and the Hamiltonian density of

the Kane-Mele model in momentum space in Eq. (5.4).
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Decoupling the quartic interaction term #Hy; via a Hubbard-Stratonovich [77] trans-

formation for each r € {x,y,z} yields

exp (% D (c;rwiﬁcz'ﬁ) 2) (5.29)
~ [ Dy exp (— 22U (¢7)* + Ug; (cjaa;ﬁciﬁ)> , (5.30)

and forr =0

exp (—% Z <C:'ra025Ciﬁ>2> (5.31)
- / D¢’ exp (— Y 2U(¢)? + ity (cjaagjﬁci,g)> . (5.32)

Here we introduced for each r an auxiliary field ¢; on each lattice site i. Effec-
tively, we traded a quartic interaction for the introduction of additional order

parameters ¢! that will need to be solved for self-consistently.

5.3.3 Interaction density matrix

Now, we consider the auxiliary fields ¢" to be homogeneous on the lattice, i.e.
we suppress the index lattice index i. Then, we rewrite the decoupled interaction

part in Fourier space and obtain the partition function
2= [D(E,¥',¢%,9%, ¢, ¢7)e S (533)
where the action S reads

B
S:/O d YW (3. + Hox) Y
k

+ kz T;Hu,k,q,p‘fk + kZthp,Q(pi k (5.34)
4P 7
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where the interaction density matrix reads

. i oY
14’2711 + Qbi,q qb;cch - l¢k—q

iRy + Py Pi_g — bk g
Pig ity W3 g ~ Py

(Plf—q + i‘Pqu iq)gfq B (Plzc—q
(5.35)

HU,k,q,p =Uu

We would like to consider a time-independent, static model and therefore re-
strict the analysis to the zero frequency contribution. Furthermore, we restrict the
discussion to leading contribution in momentum space for which scattering does
not change momentum. Hence, we keep only the zero momentum contribution,

i.e. k — g = 0. The action S now takes the form

S=Y ¥ (Hox +Huryp) ¥r+ Y_2UPrd" 1, (5.36)
k k,r
where the interaction density matrix now reads

P+ o~ ig"
0 ¥4 X _— iy
Hukp = Fre e (5.37)
o+ ig! P - ¢
¢x + 14)}/ ¢0 o (PZ

Here we skipped the zero-momentum index of the fields, i.e. ¢" = ¢, and rede-
fined the chemical potential —ip? — ¢° such that ¢ is now real for the matrix
Huk,p to be Hermitian (where it was imaginary before the substitution, such that
i¢® was real).

We set

Hivrk = Hok + Hikp, (5.38)
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and finally arrive at the effective mean field Hamiltonian

where the mean field Hamiltonian density in matrix form explicitly reads

u(¢h + ¢3) u(gy — i)

u 0 z U(d® —i Y

HKMHk M+ | (4’3 + ‘PB) (‘PB “PB)
Uy +igl) U — ¢%)

U(gy + idp) U(of — ¢3)
(5.40)

Here, Him i is the Kane-Mele model Hamiltonian density in momentum space,
Eq. 5.4. Furthermore, in Eq. 5.40 we distinguished ¢" by the sublattice s € {A, B}
they are living on.

Having set up the mean field Hamiltonian, we now turn the derivation of the

tields ¢" in a self-consistent manner.

5.3.4 Self-consistent mean field equations

We minimize the total energy (Hxm) of the system (before the decoupling) Eq.
5.21 with respect to the wave function of the mean field Hamiltonian Eq. 5.39.
This way, the mean field energy of the mean field Hamiltonian Eq. 5.39 equates

the total energy, i.e. (H2 ;) = (Hikwmmu). We find the following self-consistent
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equations for r € {0, x,y,z}

=3 () () o
=3 (e} (1) o0
S —% (—i <C?¢Cir> +i <Ci+TCi¢>) (5:43)
= -1 ({eer) ) oo

or in shorthand notation
1
o == <c:ra(7£ﬁc/;> . (5.45)

Here, 4)0 is a chemical potential, and ¢*¥* are magnetic order parameters. The
amplitudes of the form <cJ-r c,'/g> are computed in the following manner [105].
We introduce the matrix ¢/ that diagonalizes the matrix HKMH . for a fixed set

of parameters ¢" and fixed k as

HKMH =Y ukukHKMH AU (5.46)

HKMH k (5.47)

where U is an appropriate unitary matrix. The new spinor basis is defined as
Q) = L[‘L‘I’k, and the diagonal matrix as HKMH K= U,i?—l%{,[H Uk

Now we compute the amplitudes in Eq. (5.41-5.44) as

2

(cheip) = Naites ; <CL’<C"5> (5.48)
2

= Nsltes ;‘HZV/ ukyy/Z/{kvv/ <Qky’0k" > (549)
2

= Ny 2t 5.50

Naites k,ZA kurtkva ( )

In the first line, we carried out a Fourier transform. The composite indices y and v
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2)y.o/s=A s=B op? b) 5 I 0.4
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FIGURE 5.2: (a) Honeycomb lattice with sublattices A (red) and

B (blue). The vectors uy, are the lattice vectors and the vectors

axy,z (bxy,z) denote the (next) nearest neighbor displacements. (b)

Brioullin zone of the honeycomb lattice in momentum space. We

denote the reciprocal lattice vectors by vy, and show high sym-
metry points.

correspond to ix and if, respectively. Furthermore, the indices y' and v’ run over
all eigenvectors, while A in the last line only runs over occupied states. Finally,
Nsites = 2N a11s 1 the number of lattice sites.

We now solve the self-consistent mean field equations Eq. (5.41-5.44) for a given
set of initial values for the fields ¢" by iteration. In each step, a new set of ¢"
is computed from the previous set by computing the amplitudes (c],cig). This

procedure is repeated until sufficient convergence is reached.

5.3.5 Solution to the self-consistent mean field equations

Fig. 5.2 shows the solution of the self-consistent mean field equations. Fig 5.2
(a) shows the evolution of the mean field parameters for fixed t, = 0.5. At the
phase transition, the magnetic order parameters condense, i.e. $* = ¢V # 0in the
Mott phase. Furthermore, they change sign depending on the sublattice (s = A
or s = B) which indicates an antiferromagnetic behavior. Hence, the topological
insulator transitions to a antiferromagnetic with net magnetization in the x —y
plane.

Finally, Fig. 5.2 (b) shows a two-dimensional U — ¢, phase diagram. Here,

the quantity ¢p*/* = \/ (¢%)* + (¢¥)* + (¢%)* captures the net magnetization. The
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position of the transition line is in overall good accordance with previous results

[31].

5.4 Analytical approach to the Kane-Mele-Hubbard model

In this section, we follow closely Ref. [27]. We show a new analytical approach
to the Kane-Mele-Hubbard model, that was presented in Ref. [27]. This approach

directly builds on the decomposition scheme described in the previous section.

5.4.1 Decomposition and Hubbard-Stratonovich transformation

We start off, by reminding ourselves of the important Eq. 5.52 in combination
with the side constraints on the coefficients 7, in Eq. 5.25. In Here, we choose to

write Eq. 5.52 as

u Z NN = u Z C?TCiTCLCii (551)
i i
=U) n:S;S; (5.52)
ir

where we set S” = ¢ o7 BCip- Then, we use the symmetric decomposition corre-

sponding to the choice of the Eq. 5.26, i.e. 770 = 1/8, 77y, = —1/8 and choose to

write the interaction Hamiltonian H;, as [27]

u u
Hu = g Y1ASi Sidaa+ 7 Y (mir + 1), (5.53)

8 &
1
where we used the Minkowski inner product (S;, Si)y = (S9)2 — (S¥)2 — (S7)? —
i
Analogously to the previous section, we now perform a Hubbard-Stratonovich

transformation in order to decouple the quartic interaction terms. We start with
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the action [27]
t t P u
S, ) = Soly" 9l + [ drg (5. S0, (554

where So[i, 9] is the action for the non-interacting Kane-Mele model (including
the chemical potential shift ¥ from Eq. 5.53.

We perform the Hubbard-Stratonovich transformation [76, 77] by introduc-
ing Gaussian auxiliary bosonic fields ¢! corresponding to each S channel and

renormalize by the constant determinant. The resulting path integral is [27]

Z= / I1,Dg¢’ / Dy'Dyp exp < _S[yt,¢] —2u /0 ’ dr_2¢;¢;>, (5.55)

where I1, refers to the productonr =0, x, y, z.
Now, we use the linear transformations of the bosonic fields [27]

i i 1 1
¢ — E(])ZQ + ZS?’ ¢ — Egbf + Zsf (5.56)

where p € x,v,z. We then compensate the interaction term in —S[¢", ¢] such that

Z = 11—6 / I1,D¢" / Dy Dy exp <— So[y", ¢]

p
+ %/0 dTZi:(<¢i/ $i)m + (i, si>M)>, (5.57)

where we have defined the four-vector ¢; = (¢?, ¢, 7, ¢7) and used the Minkowski
inner product again.

In the previous section, we derived the self-consistent mean field equations
by minimizing the total energy of the system (i.e. the energy derived from the
Hamiltonian before decoupling it into the various channels ¢") with respect to
the wave function of the mean field Hamiltonian. This way, the total energy of

the equates the mean field energy, i.e. (H%{;) = (Hxmn)-
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Here, we rather obtain the classical field equations from minimization of the

mean field Hamiltonian with respect to the various parameters ¢, i.e.

58

e 0. (5.58)

This way, we find that analogously to the previous section

1 1

&1 = —5(5) = —5{chawscip) (5:59)

In Ref. [27], in order to obtain an insulator, we fix the particle density at half-
filling such that ¢° = —1/2. The stochastic fields are static variables allowing
us to evaluate the electron Green’s function and energetics for a given fields con-
figuration and then to apply the variational principle to find the most favorable
distribution of those variables [27].

Similarly to the previous section (cf. Eq. 5.40), we find the following mean

field Hamiltonian

(k) +5¢5  —g(k) 5 (9% +igy) 0
= | E® R +50 0 7 (95 +igp)
5 (9% —igry) 0 (k)= 5¢5  —s(k)
0 Lipx —ipy)  —g" (k) (k) — 595

(5.60)

with the corresponding action [27]

B
5= [ar| Tui (o 5 + Ml )i - 5 Dl o] 6D

k,s

Here, the functions vy and g are as previously defined in Eq. 2.47 and 2.32.



106 Chapter 5. Analytical approach to the Kane-Mele-Hubbard model

5.4.2 Transition line from saddle point conditions

Then, we transform the action into frequency space so that ¢,xs = Bdiw, 0Pks OF

equivalently ¢! = = B, 0f),, where w, are fermionic Matsubara frequencies

and ¢y is independent of frequency and time [27]

¥(T) = ; Y e T, (5.62)

iwy,

Next, we follow Ref. [27] and integrate out the fermions to get a determinant

2 = [ Tl sdg}, det(~pG " (iwn))

X exp <‘BTU 2(¢ks . ¢—ks)>/ (5.63)

k,s

where the inverse fermion Green’s function is
1. . u
Gox (iwn) = { iwy — 5~ Hwmr(k) ) Oq k- (5.64)
Thus, we have the effective Hubbard-Stratonovich action [27]
Sus = — BUY (k- ¢k) — tr(In(=G (iwn))), (5.65)
k

where tr denotes the trace over Matsubara frequencies, momentum space, spin
space and pseudospin space.
Following our previous results, Fig. 5.2, we impose the following assump-

tions concerning the mean field parameters ¢"

T 560
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We vary the Hubbard-Stratonovich action with respect to the HS fields to get the

saddle-point conditions [27]

0SHs
5(]);,

5G (iw,)
sp, |

=+ 2pUP" , — tr| G (iw,) (5.67)

Here, the positive sign holds for ¥ € {x,y,z} and the negative sign holds for

r = 0. In particular, we have [27]

0Sus o U .
sl 28V NU¢ 5 \/Nigktr(g(zwn,k)), (5.68)
‘5;125 = 2[5\/NU4>7+%igktr<g(iwn,k)(ar®TZ)>,. (5.69)

where N is the number of unit cells (not to be confused with Ngjtes, the number of
lattice sites that we introduced earlier). Note that T refers to the Pauli matrices in
sublattice space, while ¢ refers to the Pauli matrices in spin space as usual.

In Ref. [27], we evaluated the Matsubara Green’s function as

(iwn — 5)1 + Hwmr (k)
(iwy — El_(+)(iwn — E1_<*>

G (iwn, k) = , (5.70)

where the poles of the Green'’s function are the quasi-particle energies

2
Epl = %j: \/ei + 27k <%>¢Z + (%) ¢ P (5.71)

Here, we can see that the chemical potential is effectively shifted by %

The traces in Eq. (5.68), (5.69) are readily evaluated [27]. At zero temperature,

the saddle-point conditions 552{,5 = 0 then yield [27]

(Px,y — U(Px,y Z 1 (5.72)

INCF g v+ (D9
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¢x,y

04l

0.2
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FIGURE 5.3: Magnetization profile for t, = 0.3t;. Figure extracted
from Ref. [27]

There is a second-order transition in this magnetic order parameter as shown in

Fig. 5.3. Linearizing ¢ around the zero vector, one finds the critical coupling

1 1 1
-y 5.73
U7 T AN e 673)

as shown in Fig. 5.4. This result shows remarkable quantitative agreement with
quantum Monte Carlo and cluster dynamical mean field theory for small t, [97,
70, 106].

Then, as pointed out in Ref. [27], the saddle-point condition for ¢* is

_ 1 T+ 3¢ .
2N oD+ (g g

¢ (5.74)
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U/t
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0.2 0.4 0.6 0.8 1.0 2/ 1

FIGURE 5.4: Onset of antiferromagnetic XY order at the Mott tran-
sition line defined through U, in Eq. 5.72 versus t,/t;. Figure
extracted from Ref. [27]

Linearizing ¢ about the zero vector, and noting that % is odd under inversion

also gives the critical coupling [27]
) M. (5.75)
k

Since |gx|> < €2 for all t, > 0, we see that U.Y < UZ? except at t, = 0 at which
point the transition lines are identical and the full SU(2) symmetry is restored.
Thus as we approach from the normal state, the spins will first order antiferro-
magnetically in the x — y plane. In fact, we can go a step further. For t, > 0, it
turns out that ¢* must vanish for any U. We can see this by combining Eq. 5.72
and 5.74 to get [27]

1

z z Yk
="+ ) : (5.76)
NE et m@)e + ($)2g -9
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In order for the sum to vanish at finite t;, the denominator must be invariant
under inversion. This only happens for ¢* = 0, so we confirm that the ordering
strictly takes place in the plane for all U, in agreement with quantum Monte Carlo
and strong-coupling results [97, 47]. As long as ¢* = 0, then we verify from
Eq. 5.71 that the gap does not close at the phase transition, but is uniformly
renormalized by (U/2)%¢ - ¢.

5.5 Conclusion and comparison of the two methods

First, in chapter 5.3, we derived a variational decomposition scheme for the on-
site Hubbard interaction acting on the Kane-Mele model. We then derived self-
consistent mean field equations from a variational principle in which we mini-
mize the mean field wave function with respect to the original (i.e. non-decoupled)
Hamiltonian. Finally, we solved the self-conistent mean field equations numeri-
cally to find the Mott transition line in Fig. 5.2.

Secondly, in chapter 5.4, we followed Ref. [27] and explored an alternative
approach to find the Mott transition line. Here, we started off with the same
decomposition scheme as developed in chapter 5.3. Most notably, this method
yields a closed form equation for the Mott transition line, Eq. 5.73.

However, we notice that the transition lines in Fig. 5.2 and 5.4 are not the
same. In fact, they differ by a factor of two. This difference can be explained by a
different choice of mean field in the methods.

As we explain in Ref. [27], the choice in chapter 5.4 corresponds to a Heisenberg-
like mean field that preserves the SU(2) symmetry of the interaction. We write the

interaction as a “spin” Hamiltonian, where the spin vectors S; = cfaaaﬁci,g form
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the natural mean fields

u u
Hu = ¢ (S, Si)m + ¥ Y (miy + i) (5.77)

Q

5 20 (1050, 590+ (50 (S = (5, (Shaa +259)

Recalling that (S;) = —2¢;, we have [27]

i

Hu ~ —% Z(th‘, Si)m — % 2<¢ir ¢i)m + % ZS?~ (5.79)

Fourier transforming gives [27]

u UN

Hu =~ ZlP:tEHinthk - T(<¢A’¢A>M + (@B, PB) M), (5.80)

k

where

1/2—¢% + ¢4 0 ¢y +id’ 0

- 0 1/2 — ¢ + ¢ 0 ¢F + iy
int =
¢% — i 0 1/2—¢% — ¢4 0
0 Py — ity 0 1/2—¢% — ¢

(5.80)

On the other hand, the choice in chapter 5.3 corresponds to an Hartree-Fock-like
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mean field decomposition where (1), <C$C 1) <CICT> (which are linear combina-

tions of the ¢’s) form the natural mean fields [27]

Uy nminy ~ U}, [Wm +my(ny) — (cfeg)efer
- <c1c¢>c}rc¢ — (ny)(ny) + <C$C¢><CICT>] (5.81)
uy. [ ¢F i )chrci, + (¢F — i )cf e

~ (= P = 0+ g — (i) 582)
Fourier transforming gives [27]
Uy magni =~y yiu (ﬁmt ! ) Pk — UN((Ppa, pa)m + (¢5, P)Mm). (5.83)
i k

Comparing to Eq. 5.80, we see that this decomposition gives a mean-field inter-

action that is a factor of two larger than the Heisenberg-like decoupling.
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Chapter 6

Conclusion

In chapter 2, we introduced relevant concepts of topological band theory and
graphene as a Dirac metal. Then, in chapter 3 we directly build on this knowledge
and studied in depth a new interface between the Haldane honeycomb model -
the prototypical model of a Chern insulator - and graphene.

We revealed the mechanism of a topological proximity effect. Here, proximity
refers to particle hole processes between the Haldane and graphene layer. We
showed how this interlayer hopping induces a gap in the bulk of graphene and
we argued by means of an approximative model how graphene acquires therefore
non-trivial topology. In fact, we observered that the Haldane model with Chern
number 41 induced a Chern number —1 in the graphene layer.

Moreover, we illustrated the bulk-edge correspondence in relation with the
Kane-Mele model and described the state of the system in the strong coupling
limit.

Finally, we proposed in detail a possible pathway for an experimental real-
ization of the topological proximity effect in cold atoms. In particular, we gener-
alized the effects observed in the Haldane-graphene model to a Haldane bilayer
model with asymmetric Semenoff masses which could possibly be realized in

cold atoms.
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In chapter 4, we have introduced a stochastic theory to describe interaction ef-
fects in the spinless, fermionic Haldane model with nearest-neighbor interactions.
In particular, we derived a stochastic mean field decomposition scheme from a
variational principle. We found that from the solution of the self-consistent mean
field equations we were able to accurately describe the Mott transition in the in-
teracting Haldane honeycomb model. These results were supported by comple-
mentary iDMRG calculations [26]. In fact, we were able to confirm the speculated
[15] first order nature of the Mott transition, by means of our mean field theory,
iDMRG computations, and Ginzburg-Landau arguments.

Furthermore, we have studied the effect of light-matter coupling and we have
shown that the Mott transition can be probed through circular dichroism of light.

Then, we have introduced in new quantity dubbed stochastic Chern number
which corresponds to a sampling of the ground-state Chern number on the whole
ensemble of stochastic variables. Physically, this situation can describe disorder
effects in the interaction strength resulting, e.g., from fluctuations in the lattice
potential and producing a mixed state.

Moreover, we pointed out that fluctuations resulting from interaction effects
produce a substantial amount of excited particle-hole pairs which act on the ground
Chern number. We provided with the stochastic Chern number a non-quantized
quantity which can act as a measure of the number of excited states in the system.
Therefore, the stochastic Chern number can be seen as a stochastic manifestation
of the topology in the system in the presence of strong interactions.

Finally, we fleshed out an analogy of these stochastic measures with temper-
ature effects.

The stochastic approach to the interacting Haldane honeycomb model is phys-
ically intuitive, easy to implement, and leads the way to further studies of inter-
action effects. In particular, possible generalizations to bi- or multilayer systems,

or similar systems such as the Kane-Mele model provide exciting pathways for
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future research. Another interesting direction could be a possible application of
the approach to attractive interactions instead of repulsive ones.

Last but not least, in chapter 5.4, we applied our variational stochastic func-
tional path integral approach to the Mott transition in the interacting Kane-Mele-
Hubbard model. In particular, we described - starting from the same variational
decomposition scheme - two different kinds of mean field theories, which are in
principal both valid approaches but deliver different results for the Mott transi-
tion line in the Kane-Mele-Hubbard model.

First, we described a variational mean field ansatz which aims (similar to the
approach in the interacting Haldane model) to minimize the total energy of the
original (i.e. undecoupled) Hamiltonian with respect to a variational mean field
wave function. This approach delivers a set of self-consistent equations which are
independent from the choice of gauge of the Gaussian auxiliary field introduced
by means of a Hubbard-Stratonovich transformation.

One the other hand, we described an alternative pathway to a mean field the-
ory. This method, although in principle not gauge independent, is based on the
idea of SU(2) symmetry preservation. It delivers an analytic transition line that
has proved to be very close to results obtained from approximative numeric sim-
ulations. The method may be developed further to study fractional topological

phases and interacting topological superconductors.
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Résumé en francais

Une phase de matiere est une région de 1’espace des parametres physiques cor-
respondants dans laquelle toutes les propriétés physiques d"un matériau sont es-
sentiellement uniformes [1]. Landau a pu établir un mécanisme de classifica-
tion des différentes phases de la matiere sur la base des symétries sous-jacentes
au systeme physique [2, 3]. La notion de paradigme de Landau est que, si les
systéemes physiques sont désordonnés a haute température, ils acquiérent un or-
dre en raison d’une rupture spontanée de symétrie en dessous d'une température
critique T.. Cela signifie qu’en dessous de T, un parametre d’ordre magnétique
local devient fini, de sorte que le systéme établit un certain ordre a longue portée.
Quantitativement, la rupture de symétrie peut étre capturée par le comportement
dun parameétre d’ordre local a la transition de phase. Lors d"une transition de
phase de premier ordre, le parametre d’ordre local change de facon discontinue,
alors que lors d’une transition de phase de second ordre, le changement est con-
tinu.

Von Klitzing [6] a décrit en 1980 la quantification de la conductivité de Hall
dans un gaz d’électrons bidimensionnel exposé a un champ magnétique externe.
Cet effet, connu sous le nom d’effet Hall quantique entier (IQHE), est 1'une des
découvertes les plus importantes qui décrivent la physique au-delid du paradigme
de Landau.

Il s’avere que la classification d'une phase de Hall quantique ne peut pas re-

poser sur un parametre d’ordre local. Au contraire, il est apparu clairement qu'un



118 Chapter 6. Conclusion

FIGURE 1: Variétés topologiques avec différents genres g. A
gauche : Une spheére avec ¢ = 0. Au milieu : Un tore avec g = 1.
A droite : Un tore double avec g = 2.

autre type de mécanisme est en jeu, impliquant des propriétés globales de la fonc-
tion d’onde. Mathématiquement, le domaine de la topologie est entré en jeu.

La topologie est la branches des mathématiques qui s’intéresse a la description
et a la classification de la forme des objets mathématiques. La topologie considére
deux objets mathématiques comme équivalents tant qu’ils peuvent étre déformés
de fagon continue 'un dans l'autre, c’est-a-dire qu'il existe une déformation con-
tinue entre eux [7]. Dans le cadre de la classification des états fondamentaux en
’absence de brissure de symétrie, une phase obéit a un ordre topologique lorsque la
dégénérescence de I'état fondamental dépend de la topologie de la variété sous-
jacent [8]. Plus précisément, la dégénérescence de I'état fondamental est de 2% ot
g est le genre de la variété [9]. Le genre d"une variété topologique et orientable est
un entier relatif représentant le nombre maximum de coupes le long de courbes
simples fermées non intersectées sans couper la surface en morceaux [10]. Plus
intuitivement, le genre ¢ compte le nombre de trous dans une variété, voir Fig. 1.

Sur la base de la topologie du réseau, 1’état fondamental d"un systéeme d’ordre
topologique peut étre séparé en différents secteurs topologiques [8]. Chaque
secteur correspond a une fonction d’onde distincte de I’état fondamental qui con-

tribue a la dégénérescence de l'état fondamental. La nature globale de 1'ordre
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topologique est exprimée par le fait qu’il n’existe pas de parametre d’ordre lo-
cal pouvant expliquer la dégénérescence de I'état fondamental (sur la base de
toutes les fonctions d’onde de tous les secteurs), et par conséquent, la théorie de

Landaus n’est pas applicable [11, §, 9].

Dans cette thése

Dans le chapitre 2, nous présentons au lecteur les principaux concepts de la théorie
des bandes topologiques, le graphene en tant que métal de Dirac et le modéle de
Haldane - le modele prototypique d"un isolant de Chern. Tout d’abord, nous pas-
sons en revue les principaux concepts des phases de Berry [12] et introduisons
sur cette base la notion de courbure de Berry et le premier nombre de Chern. De
plus, nous récapitulons le calcul indépendant de la jauge de ces quantités sur un
réseau discret.

Ensuite, nous introduisons le concept d'un métal de Dirac a 1'exemple du
graphene [13]. Nous nous plongeons dans sa description mathématique et étoffons
sa riche phénoménologie a basse énergie.

Ensuite, nous suivons les traces de Haldane [14] et explorons son chemin
pour trouver un moyen de réaliser un effet Hall quantique sans 1’application d"un
champ magnétique externe dans une couche de graphéne.

Dans le chapitre 3, nous révélons un effet de proximité entre un isolant a
bande topologique (Chern) décrit par un modele de Haldane et des particules de
Dirac d"une couche de graphéne. Nous montrons qu’en couplant faiblement ces
deux systemes (c’est-a-dire par proximité), nous sommes capables d’induire un
index topologique non triviale dans la couche de graphéne. Nous plongeons dans
les mécanismes sous-jacents et explorons en détail la riche phénoménologie de ce

systeme. De maniere importante, nous présentons des protocoles expérimentaux
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congus pour révéler ses effets. En particulier, nous proposons un modéle de Hal-
dane bicouche, congu pour observer 'effet de proximité topologique dans un dis-
positif expérimental a atomes froids.

Dans le chapitre 4, nous quittons le domaine des modeles exactement solv-
ables et considérons les corrélations fortes dans un isolant de Chern. Au cours de
la derniere décennie, des progres ont été réalisés dans la description des systemes
de Chern fortement corrélés, dans le cas bosonique [15, 16], et a la fois pour les
systemes sans spin [15, 17, 18, 19] et avec spin [20, 21, 22, 23, 24]. Cependant, le
systeme que nous souhaitons étudier dans ce chapitre, c’est-a-dire le modele de
Haldane fortement corrélé sans spin n’a pas été résolu de maniere convaincante au
moyen d'un modele approximatif. Par conséquent, nous développons une nou-
velle description stochastique des propriétés topologiques du modele de Haldane
en nid d’abeille en présence des fortes corrélations. Nous confirmons la nature de
premier ordre de la transition de Mott (qui a été précédemment spéculée [15]) au
moyen d’une approche variationnelle du champ moyen soutenue par les résultats
du groupe de renormalisation de la matrice de densité (iDMRG) et les arguments
de Ginzburg-Landau.

Plus important encore, nous introduisons une nouvelle quantité appelée nom-
bre de Chern stochastique qui fournit une mesure de la topologie du systeme en
présence de fortes corrélations. En particulier, cette quantité compte de maniére
stochastique le nombre de paires de particules-trous produites en raison des effets
de corrélation qui agissent sur le nombre de Chern de I'état fondamental. Nous
utilisons le dichroisme de la lumiere pour faire le lien dans la quantification des
quasi-particules excitées et montrons une analogie entre les paires de particules-
trous induites par les corrélations et les effets de température.

Enfin, dans le chapitre 5, nous revisitons le model de Kane-Mele-Hubbard.
De méme que pour le modéle de Haldane avec des fortes corrélations, dans le

chapitre 4, nous développons une approche variationnelle de I'isolant topologique
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a forte corrélation Z,. Nous présentons deux méthodes différentes pour calculer
la transition de Mott. En particulier, nous montrons une approche analytique par-
tant de notre schéma de découplage stochastique qui permet de décrire la ligne

de transition de Mott avec une seule équation.
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Résumé : Ces derniéres décennies, de grands
progres ont été réalisés dans la description des
phases de la matiére quantique au-dela du paradigme
de Ginzburg-Landau. Parmi les développements les
plus cruciaux figure I'observation expérimentale de
I'effet Hall quantique par von Klitzing. C’est ensuite
Haldane qui a développé un modele simple et élégant
- le modéle prototypique d’un isolant de Chern - qui
présente un effet Hall quantigue sans la nécessité
d’'un champ magnétique externe appliqué. Pres de
vingt ans aprés la publication de Haldane, Kane et
Mele ont décrit I'effet Hall quantique de spin (QSHE).
Dans cette these, nous explorons la riche
phénoménologie du modéle de Haldane ainsi que
du modéle de Kane-Mele dans un contexte de
nouvelles interfaces et d’effets des correlations
fortes. Nous étudions d’abord le modele Haldane-
graphéne bicouche et révélons un effet de proxi-
mité intrigant qui permet d’induire un indice to-
pologique dans le graphéne. Nous explorons en
détail la riche phénoménologie de ce systeme. De
maniere importante, nous présentons des proto-
coles expérimentaux congus pour révéler les effets.
En particulier, nous proposons un modele de Hal-

Titre : Effet de proximité topologique dans les systemes bicouches et approche stochastique des phases

Mots clés : Phases topologiques, modéle bicouche, physique de Mott, phases fortement corrélées

dane bicouche généralisé qui est congu pour obser-
ver l'effet de proximité topologique dans un contexte
expérimental d’atomes froids.

Ensuite , nous étudions le modéle de Haldane avec
des interactions fortes. Nous développons un schéma
de découplage stochastique, calculons la ligne de
transition de Mott soutenue par des calculs iDMRG
et confirmons la nature de premier ordre de la tran-
sition de phase au moyen d’arguments de Ginzburg-
Landau. Ensuite, nous proposons une nouvelle quan-
tité appelée nombre de Chern stochastique qui fournit
une mesure de la topologie du systeme en présence
de fortes corrélations. Nous utilisons le dichroisme de
la lumiére pour faire le lien dans la quantification des
quasi particules excitées et montrons une analogie
entre les paires de particules-trous induites par cor-
relation et les effets de température.

Enfin, nous étudions la transition de Mott dans le
modele de Kane-Mele-Hubbard en appliquant notre
schéma de décomposition stochastique variation-
nelle. Nous comparons deux types de théories de
champ moyen dont I'une fournit une expression ana-
lytiqgue décrivante la ligne de transition de Mott.

Abstract : The past decades have shown great pro-
gress in the description of phases of quantum matter
beyond the Ginzburg-Landau paradigm. Among the
most crucial developments was von Klitzings experi-
mental observation of the quantum Hall effect. It was
then Haldane who developed a simple, elegant mo-
del - the prototypical model of a Chern insulator - that
exhibits a quantum Hall effect without the necessity of
an applied external magnetic field. The, almost twenty
years after Haldane seminal paper, Kane and Mele
described the Quantum Spin Hall Effect (QSHE).

In this thesis, we explore the rich phenomenology of
the Haldane honeycomb model as well as the Kane-
Mele model in a context of novel interfaces and inter-
action effects. First we study the Haldane-graphene
bilayer model and reveal an intriguing proximity effect
that allows to induce a topological index into the bulk
of graphene. We explore in detail the rich phenome-
nology of this system. Importantly, we present experi-
mental protocols designed to reveal the effects. In par-
ticular, we propose a generalized Haldane bilayer mo-
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del that is designed to observe the topological proxi-
mity effect in a cold atom experimental setup.
Furthermore, we study the Haldane honeycomb mo-
del with nearest neighbor interactions. We develop
a stochastic decoupling scheme, compute the Mott
transition line supported with iDMRG calculations and
confirm the first order nature of the phase transition by
means of Ginzburg-Landau arguments. Then, we pro-
pose a new quantity dubbed stochastic Chern number
which provides a measure for the topology in the sys-
tem in the presence of strong correlations. We utilize
the dichroism of light to build a bridge in quantifying
excited quasi particles and show an analogy between
interaction induced particle-hole pairs and tempera-
ture effects.

Finally, we study the Mott transition in the Kane-Mele-
Hubbard model by applying our variational stochas-
tic decomposition scheme. We compare two kinds of
mean field theories where one of them provides a clo-
sed analytic expression for the Mott transition line.
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