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Chapter 1

Introduction

A phase of matter is a region in the corresponding physical parameter space

throughout which all physical properties of a material are essentially uniform

[1]. Landau was able to establish a classification mechanism for different phases

of matter on the basis of symmetries underlying the physical system [2, 3]. The

notion of the Landau paradigm is that while physical systems are disordered at

high temperatures, they do acquire order due to spontaneous symmetry breaking

below a critical temperature Tc. That means that below Tc a local magnetic order

parameter becomes finite, such that the system establishes some long-range or-

der. Quantitatively, the symmetry breaking can be captured by the behavior of a

local order parameter at the phase transition. At a first order phase transition the

local order parameter changes discontinuously, whereas at a second order phase

transition the change is continuous [4, 5].

Von Klitzing [6] described in 1980 the quantization of the Hall conductivity in

a two dimensional electron gas that was exposed to an external magnetic field.

This effect, known as the Integer Quantum Hall Effect (IQHE), is one of the most

important discoveries that describes physics beyond the Landau paradigm.

As it turns out, the classification of a Quantum hall phase cannot rely on some

local order parameter. Rather, it became clear that a different kind of mechanism
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FIGURE 1.1: Topological manifolds with different genera g. Left:
A sphere with g = 0. Middle: A torus with g = 1. Right: A

double-torus with g = 2.

is at play that involves global properties of the underlying wave function. Mathe-

matically, the field of topology came into play.

Topology is the mathematical study that is concerned with the description and

classification of the shape of things. Topology considers two mathematical objects

as equivalent as long as they can be continuously deformed into each other, i.e.

there is a continuous map between them [7]. In the pursuit of classifying ground

states in the absence of symmetry breaking, a phase obeys topological order when

the degeneracy of the ground state depends on the topology of the underlying

manifold [8]. More specifically, the ground state degeneracy is 22g where g is

the genus of the manifold [9]. The genus of a connected, orientable surface is

an integer representing the maximum number of cuttings along non-intersecting

closed simple curves without cutting the surface into pieces [10]. More intuitively,

the genus g counts the number of holes in a manifold, see Fig. 1.1.

Based on the topology of the lattice, the ground state of a system with topo-

logical order can be separated into different topological sectors [8]. Each sector

corresponds to a distinct ground state wave function which contributes to the de-

generacy of the ground state. The global nature of topological order is expressed

in the fact that there is no local order parameter which can account for the ground
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state degeneracy (based on all wave functions of all sectors), and therefore, Lan-

daus theory is not applicable [11, 8, 9].

In this thesis

In chapter 2, we introduce the reader to the main concepts of topological band

theory, graphene as a Dirac metal and the Haldane honeycomb model - the pro-

totypical model of a Chern insulator. First, we review the main concepts of Berry

phases [12] and introduce based on them the notion of Berry curvature and the

first Chern number. Furthermore, we recap the gauge independent computation

of those quantities on a discrete lattice.

Afterwards, we introduce the concept of a Dirac metal at the example of

graphene [13]. We dive into its mathematical description within a tight binding

approach and flesh out its rich low energy phenomenology.

Then, we follow in the footsteps of Haldane [14] and explore his path to find-

ing a way to realize a quantum Hall effect without the application of an external

magnetic field in a sheet of graphene.

In chapter 3, we reveal a proximity effect between a topological band (Chern)

insulator described by a Haldane model and spin-polarized Dirac particles of a

graphene layer. We show that by coupling these two systems weakly (i.e. by

proximity), we are able to induce non-trivial topology in the bulk of the graphene

layer. We dive deep the underlying mechanisms and explore in detail the rich

phenomenology of this system. Importantly, we present experimental protocols

designed to reveal the effects described mathematically. In particular, we propose

a generalized Haldane bilayer model that is designed to observe the topological

proximity effect in a cold atom experimental setup.

In chapter 4, we leave the realm of exactly solvable models and consider

strong correlations in a Chern insulator. During the past decade some progress
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has been made in the description of interacting Chern systems, in the bosonic

case [15, 16], and both for spinless [15, 17, 18, 19] and spinfull [20, 21, 22, 23, 24]

systems. However, the system we wish to study in this chapter, i.e. the spin-

less interacting Haldane model has not been convincingly solved by means of an

approximative model. Therefore, we develop a new stochastic description of the

topological properties of the Haldane honeycomb model in the presence of strong

interactions. We confirm the Mott transition’s first-order nature which has been

previously speculated [15] by means of a variational mean-field approach sup-

ported by density matrix renormalization group results and Ginzburg-Landau

arguments.

Most importantly, we introduce a new quantity dubbed stochastic Chern num-

ber which provides a measure for the topology in the system in the presence of

strong correlations. In particular, this quantity counts stochastically the number

of particle hole pairs produced due to interaction effects which act on the ground

state Chern number. We utilize the dichroism of light to build a bridge in quan-

tifying excited quasi particles and show an analogy between interaction-induced

particle- hole pairs and temperature effects.

Finally, in chapter 5, we revisit the Kane-Mele-Hubbard model. Similarly to

the interacting Haldane model in chapter 4, we develop a variational approach

to strong-correlated Z2 topological insulator. We present two different methods

to calculate the Mott transition. In particular we point out an analytical approach

starting from our stochastic decoupling scheme that allows to describe the Mott

transition line with one equation.
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Chapter 2

Concepts of topological band

theory

2.1 Topology in condensed matter physics

2.1.1 The Berry Phase

Consider some time-varying Hamiltonian H(R) where is R ≡ R(t) is a vector of

parameters that depends on time. Now, we want to investigate the evolution of

the system when moving adiabatically, i.e. slowly in comparison to other energy

scales [11] along some path through parameter space. To this end, we diagonalize

the Hamiltonian H(R) at each point in the parameter space and orthonormal

eigenbasis |n(R)〉. In fact, the eigenbasis |n(R)〉 can be determined up to a phase

factor. In order to avoid arbitrariness (which can be interpreted as choice of gauge)

of this phase factor, we require the phase to evolve smoothly when moving along

a path in parameter space spanned by the components of the parameter vector R.

Now assume that we start moving along a path in parameter space, where

we start with the inital eigenstate |n(R(0))〉. According to the adiabatic theorem

[28], the system described by the Hamiltonian H(R) and starting in the inital, in-

stantaneous eigenstate |n(R(0))〉 will along an adiabatic drive through parameter

space remain in its eigenstate. Now, we assume that the phase factor mentioned
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above is indeed the only degree of freedom that remains to be computed [11]. Let

us define the phase factor θ(t) as [12, 11]

|Ψ〉 = exp(−iθ(t))|n(R(t))〉. (2.1)

Therefore, the energy evolution of the system is described by the equation [11]

H(R(t))|Ψ〉 = ih̄
d

dt
|Ψ〉. (2.2)

The phase θ(t) can in fact not be zero, since it needs to contain at least capture

the energetic evolution of the eigenstate through parameter space, the so-called

dynamic phase [28]. To our surprise, solving the differential equation associated

with Eq. 2.2 [11] yields more than that, i.e.

θ(t) =
1

h̄

∫ t

0
En(R(t′))dt′ − i

∫ t

0
〈n(R(t′))|

d

dt
|n(R(t′)〉dt′. (2.3)

The first term is the dynamic phase related to an energy integral. The second part

is an - a priori - unexpected term which is called the Berry phase which we denote

by γBerry, i.e.

γBerry = i
∫ t

0
〈n(R(t′))|

d

dt
|n(R(t′)〉dt′. (2.4)

The Berry phase arises from the fact that the states at t and t + dt are not iden-

tical [11], or in other words, it originates from the geometrical properties of the

parameter space of the Hamiltonian [12].

From now on, let us consider only closed paths C in paramter space. First, let

us write Eq. 2.4 without the direct time dependance as [11]

γBerry = i
∮
C
〈n(R)|∇R|n(R)〉dR. (2.5)
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Then, we can in analogy to transport on manifolds define the Berry connection as

A(R) = i〈n(R)|
∂

∂R
|n(R〉, (2.6)

and then again with this definition the Berry phase is

γBerry =
∮
C

dR · A(R). (2.7)

Now, we remind ourselves that the eigenstates |n(R)〉 are determined up to a

phase, i.e. |n(R)〉 → exp(iθ)|n(R)〉, where θ is here a smooth function in pa-

rameter space θ ≡ θ(R). From a physical point of view, it would be appropriate

to call the Berry connection A(R) in fact the Berry vector potential. As such, it is

gauge dependent according to the the choice of θ, i.e.

A(R) → A(R)− ∂θ(R)

∂R
. (2.8)

Hence, the Berry phase as line integral of the Berry vector potential, Eq. 2.7

changes by [11]

γBerry → γBerry + θ(R0)− θ(R1) (2.9)

where R0 and R1 are the start and end point of the path C, respectively. Since C

is a closed path, we must have R0 = R1, and because the eigenstate basis is here

chosen single valued [11], we also have |n(R0)〉 = |n(R1)〉 since we moved along

C adiabatically. Therefore, in the case under consideration here, the only possible

solution for the closed path is [11]

θ(R0)− θ(R1) = 2πω (2.10)

where ω must be an integer. The number ω can be interpreted as a winding number

where the sign of ω determines the orientation with which we move around the
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path C

Furthermore, note that in the case of graphene, which we will have a closer

look at in chapter 2.2.2, we consider a lattice Hamiltonian with chiral symmetry.

We will point out that encircling the so-called Dirac points of the hexagonal lattice

will yield Berry phases of ±π such that we can identify these points as topological

defects.

2.1.2 Berry curvature, first Chern number and Hall conductivity

For a closed path, we can make use of Stokes theorem [7] so that we can Eq. 2.7

express as

γBerry =
∮
C

dR · A(R) =
∫
S

dS · (∇R × A(R)) . (2.11)

Here, we transformaed a line integral along the closed path C into a surface in-

tegral over the surface S where ∂S = C. Also, note that we assumed here a two

dimensional parameter space such that we could use the rotation operator ap-

plied to the Berry connection, i.e. ∇R × A(R). This expression is called the Berry

curvature F , i.e.

F (R) ≡ ∇R × A(R) (2.12)

which reads (in this two dimensional case) explicitly [7, 11]

Fij(R) =
∂Ai(R)

∂Rj
− ∂Aj(R)

∂Ri
. (2.13)

We saw previously that the Berry connection needs to be integrated to result a

physical quantity, namely the Berry phase. That means, the Berry connection is

as vector potential primarily a mathematical tool (in the same way as the electro-

magnetic vector potential in electrodynamics [29]). On the other hand, the Berry

curvature is a gauge-invariant local manifestation of the geometric properties of
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the wavefunctions in the parameter space [30]. Hence, we can make the analogy

between the Berry curvature and the magnetic field in electrodynamics [29].

Having the notion of the Berry phase and the definition of the Berry curvature

at hand, we can now define the first Chern number. In direct correspondance with

the insight we gained for the Berry phase, cf. Eq. 2.10, we define the first Chern

number as [7]

C =
1

2π

∫
S ′

dS F (R) (2.14)

=
1

2π

∫
S ′

dS

(

∂Ai(R)

∂Rj
− ∂Aj(R)

∂Ri

)

. (2.15)

Here, the integral is defined over a closed surface S ′ (i.e. without boundary). In

practice, this surface will be either the sphere or a torus. For example in chapter

2.1.3, we assume the Brillouin to have periodic boundary conditions, such that

it can be mapped on a torus. Furthermore, note that we can always make the

connection to Eq. 2.11 where S was a surface with boundary, by cutting the closed

surface S ′ into two pieces, e.g. the sphere can be cut into two hemispheres.

With our previous discussion of the Berry phase, this formula seems well mo-

tivated. From the physical side however, motivating the first Chern number can-

not be done without mentioning the Integer Quantum Hall Effect (IQHE) [6]. Von

Klitzing [6] realized the IQHE in a two-dimensional electron gas which was ex-

posed to a homogenous magnetic field oriented perpendicular to the gas. Experi-

mentally, it was found that the system is an insulator in the bulk, i.e. longitudinal

elements of the conductivity tensor σ vanish, i.e. σxx = σyy = 0. On the other

hand, the transverse element σxy was found to be quantized as [11]

σxy =
e2

h
C (2.16)

where C is an integer, and is indeed the first Chern number. The gas being a bulk
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insulator, the transverse conductivity must be connected to transport properties

at the edges [31]. Indeed, chiral edge modes carry C units e2

h of conductance,

where the sign of C determines the orientation of the edge transport. Mathe-

matically, the connection with first Chern number was described by Thouless,

Kohmoto, Nightingale, and de Nijs [32] who showed that the number C could in-

deed by computed using Eq. 2.15. The first Chern number is therefore sometimes

also called the TKNN invariant [31].

One important aspect of a system with a non-zero Chern number is its phe-

nomenology in experimental realizations. The question is, how can it be that we

obtain e.g. in a system that shows an IQHE a bulk insulator and a non-zero Hall

conductivity which indicates transport taking place in the system [11]. The solu-

tion to this question points to the occurence of edge modes, i.e. conductive modes

that only occur at an interface of the system at hand with another system that has

a different topological bulk invariant. While we will at this point only consider

the following intuitive argument, we will in the following sections closer look at

systems that exhibit such modes, namely the Haldane and Kane-Mele models. If

we create an edge in a material hosting a bulk non-zero topological number, the

material is interfaced with the vacuum which has trivial topological order. This

induces a mismatch in terms of topological invariants at the edge which can only

be resolved by the system through the creation of gapless edge or surface states

[11] . This link between a topological invariant of a system and the emergence of

surface states is the bulk-boundary correspondence

2.1.3 Gauge independent numeric computation of the Berry curvature

and Chern number

The parameter space R introduced in previous sections, will in practice be for the

momentum space in two dimensions. Explicitly, we discretize Eq. 2.14 and 2.15
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in momentum space using

k =
2π

N
l (2.17)

where the Brillouin zone of the momentum space is divided into N discrete points

and lx,y = 1, . . . , N − 1. Note that we assume periodic boundary conditions for

the Brillouin zone such that it can effectively be mapped on a torus. The Chern

number1 and Berry curvature, cf. Eq. 2.14 and 2.15, then read

C =
1

2π ∑
k∈BZ

dkxdky F (k) (2.18)

and

F (k) =
∂Ax(k)

∂ky
− ∂Ay(k)

∂kx
. (2.19)

Although it might be tempting to just use these equations in order to compute

the local Berry curvature or the global Chern number, it is unfortunately not that

straight forward. The Berry connection A is not gauge independent. In prac-

tice, this means that we get a different random phase when we diagonalize the

Hamiltonian of the system one by one for each fixed wave vector k such that the

resulting eigenstates are not smoothly connected. In order to compute the Berry

curvature and Chern number in a gauge independent manner, we follow Ref.

[33].

First, we note that we can change the gauge of an eigenstate |n(k)〉 at wave

vector k according to U(1) gauge transformation

|n(k)〉 → exp(iθ)|n(k)〉 (2.20)

where θ is a smooth function.

On the level of the Berry connection, this results in the gauge transformation

that we saw in Eq. 2.8. Then, we define U(1) link variables which capture relative

1We will from now on call the first Chern number just Chern number.
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phases of eigenstates on neighboring lattice sites as [33]

Uµ(k) =
〈n(k)|n(k + µ)〉
|〈n(k)|n(k + µ)〉| (2.21)

where µ = x, y, µ is the unit vector in direction µ with length 2π/N, and the

eigenstate |n〉 is the eigenstate corresponding to the n-th band.

Next, we define a lattice field strength by taking the product of all relative

phases around the boundary of a plaquette (which consists of neighboring lattice

sites at each vertex) [33]

F̃ (k) = log
(

Ux(k)Uy(k + x)U−1
x (k + y)U−1

y (k)
)

(2.22)

where we select the default branch of the logarithm as −π < F̃ (k)/i ≤ π. In

fact, we have F̃ (k) = F (k) if it holds that −π < F̃ (k)/i ≤ π. If F̃ (k) is outside

this range, it means that we have vortex in the plaquette [8] (which as we shall

see later on relates to a singularity in the corresponding wave functiion), and we

can bring F̃ (k) back to (−π, π] which means that we picked effectively up phase

factor of 2π. Thus, the field strength F̃ (k) counts the net number of vortices in

the Brillouin zone and the sum

C =
1

2π ∑
k∈BZ

F̃ (k) (2.23)

is the Chern number.

Finally, we refer to Fig. 2.1 which describes numerical method for the re-

construction and visulzation of the Berry curvature in the Brillouin zone. This

method will be used several times in this PhD thesis.
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FIGURE 2.1: Graphene lattice, lattice vectors, and (next) nearest
neighbor displacements. Center: Brillouin zone, reciprocal lattice
vectors and high symmetry points. Right: Reconstruction of the
Brillouin zone for the Berry curvature plot using the C3 symmetry
of the Haldane model, see following section. For each plot, the re-
sult of the Berry curvature is normalised to one, i.e. each data set
is divided by the maximum absolute Berry curvature value con-

tained in the data set.

2.2 Graphene

2.2.1 Hexagonal lattice structure

First, we define the lattice structure of graphene, the called the hexagonal or hon-

eycomb lattice. The lattice vectors, see Fig. 2.1, are given by [11, 13]

ux =
1

2

(

3,
√

3
)

uy =
1

2

(

3,−
√

3
)

. uz = (0, 0) (2.24)

where we set the bond length to unity. Furthermore, we denote nearest neighbor

displacements by [13]

ax =
1

2

(

1,
√

3
)

ay =
1

2

(

1,−
√

3
)

az =
1

2
(−1, 0) . (2.25)

In momentum space, we define the reciprocal lattice vectors as [13]

νx =
2π

3

(

1,
√

3
)

νy =
2π

3

(

1,−
√

3
)

(2.26)
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which satisfy the orthogonality condition

ui · vj = 2πδij. (2.27)

Note that the hexagonal lattice consists of unit cells containing two sites each. In

fact, the hexagonal can be seen as being made out of two interpenetrating triangu-

lar lattices [13]. One finds two distinct symmetry points K and K′ at the vertices

of the Brillouin zone of the reciprocal hexagonal lattice, cf. Fig. 2.1, at which most

of the interesting phenomena in graphene physics occur [13]. These points are

located at

K =
2π

3

(

1,
1√
3

)

K′ =
2π

3

(

1,− 1√
3

)

, . (2.28)

Now, we also introduce the next nearest neighbour displacements in a basis

of the ai, which will be helpful later on. These are then expressed as

bi = aj − ak, (2.29)

where (i, j, k) is a cyclic permutation of (x, y, z). However, note that using an ai

basis does not yield a Hamiltonian in Bloch form. In practice, we therefore em-

ploy a basis given by the lattice vectors ui (which corresponds to a gauge trans-

forming the Hamiltonian to the new basis) and define next nearest neighbour

displacements bi accordingly in terms of the ui.

2.2.2 Graphene tight binding Hamiltonian

Next, we write down the Hamiltonian of the simplest graphene model on the

honeycomb lattice including only nearest neighbor hoppings

Hg = − ∑
〈i,j〉

t1c†
i cj. (2.30)
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In momentum space, this Hamiltonian assumes the form

Hg = ∑
k

∑
p∈{x,y,z}

c†
k







0 −g (k)

−g∗ (k) 0






ck. (2.31)

Here, k runs over the whole Brillouin zone, and p runs over the links {x, y, z}.

Furthermore, the spinor basis consists of the two components c†
k =

(

c†
kA, c†

kB

)

where A and B denote the two different sites in each unit cell, cf. Fig. 2.1. Most

importantly, the function g is defined as

g (k) = t1 ∑
p∈{x,y,z}

(

cos
(

k · ap

)

− i sin
(

k · ap

))

. (2.32)

We can also choose to write the Hamiltonian Eq. 2.31 using Pauli matrices σp as

Hg = ∑
k

c†
k

(

dg · σ
)

ck. (2.33)

The interpretation of this form is that the itinerating electrons interact with a the

pseudo magnetic field dg consisting of the components

dx
g(k) = −t1 ∑

p

cos(k · ai)

d
y
g(k) = −t1 ∑

p

sin(k · ai)

dz
g(k) = 0. (2.34)

The dispersion relation of graphene can be computed by diagonalization of the

matrix in Eq. 2.31. This results in two energy bands with corresponding eigenen-

ergies [13]

E± (k) = ±t1

√

√

√

√3 + 2 cos
(√

3ky

)

+ 4 cos

(√
3

2
ky

)

cos

(

3

2
kx

)

. (2.35)
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FIGURE 2.2: Top: the three dimensional band structure of
Graphene in the Brillouin zone. Crossings of cone shape appear
at the Dirac points - so called Dirac cones. Bottom left: Two dimen-
sional band structure of graphene along high symmetry points,
cf. Fig. 2.1. Bottom right: Two dimensional band structure of
graphene along high symmetry points, with non-zero Semenoff
mass. This breaks inversion symmetry and opens a gap at the
Dirac points. Energy scales are given in terms of the nearest neigh-

bor hopping amplitude t1.

Fig. 2.2 shows the numeric result. As it can be seen, the upper and lower

bands cross exactly six points. These are in fact the K and K′ points of the Bril-

louin zone. These points are also called Dirac points - a naming that we need to

motivate. To this end, we diagonalize the Hamiltonian density matrix in Eq. 2.31

around the crossings at K and K′. For small deviations from the Dirac points
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q =
(

qx, qy

)

we obtain in the two regions the approximative Hamiltonian densi-

ties

HK (q) =







0 vF

(

−iqx + qy

)

vF

(

iqx + qy

)

0






(2.36)

and

HK′ (q) =







0 vF

(

−iqx − qy

)

vF

(

iqx − qy

)

0






, (2.37)

where νF = 3
2 t1 is called the Fermi velocity. These types of Hamiltonians is that

of massless Dirac fermions of relativistic quantum mechanics in two spatial di-

mensions [34, 11, 13], where the role of the velocity of light is essentially played

by νF.

Finally, we point out that a straightforward diagonalization of the above ma-

trices yields the eigenstates

Ψ
g
±,K

(

φq

)

=
1√
2







1

±eiφq






, Ψ

g
±,K′

(

φq

)

=
1√
2







1

±e−iφq






, (2.38)

where iqx + qy = q · eiφq and q = |q|. The ± sign refers to the positive and and

negative energy bands.

The fact that the above wave functions have two components can be associ-

ated with existence of the A and B sublattices in the hexagonal lattice. At the

same time, the reminiscence with the form of a spin 1/2 wave function, leads to

the introduction of the term pseudospin for this degree of freedom.

Furthermore, the graphene Hamiltonian has another property called chirality.

As we have seen, the wave functions Eq. 2.38 in each K point valley (i.e. the

region in proximity to either the Dirac point), take different forms. The fact that

each electrons in either valley have different chirality points to the fact that the
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pseudospin in either valley depends on the direction of the electronic momen-

tum. In fact, this has important implications for the Berry phases we find when

encircling either Dirac point. First of all, we note that when we use Eq. 2.7 to com-

pute Berry phase when encircling either Dirac point, we find an absolute Berry

phase of π (in contrast to the winding number Eq. 2.10 which is a multiple of

2π since we considered single valued wave functions). Secondly, when consid-

ering the opposite chirality in the two valleys (which is for example reflected in

the fact that φq in Eq. 2.38 comes with different signs in each valley), we find

that the Berry phase in one valley is +π while in the other valley −π. Therefore,

the Dirac points in the Brillouin zone of the hexagonal lattice can be identified

as topological defects. We shall see below how Haldane used the existence of

this defects to engineer a topological insulator from graphene by breaking time

reversal symmetry of the graphene Hamiltonian.

2.2.3 Symmetry protection of the Dirac cones

In Fig. 2.2 we observed cone shape crossings in the Brillouin zone. These Dirac

cones are protected by symmetries that preserve the system from opening a gap.

The first of these symmetries is time reversal symmetry. It can easily be seen

that the above derived local effective Hamiltonians Eq. 2.36 and 2.37 fulfill [11]

H∗
K′ (q) = HK (−q) (2.39)

which agrees with the condition for spinless Bloch Hamiltonians to respect time

reversal symmetry [11].

Time reversal symmetry is, however, not a sufficient condition for the exis-

tence of the gapless Dirac cones. In fact, we can introduce a mass term M on the

diagonal of the matrices Eq. 2.36 and 2.37 where we give M a different sign on
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each of the two sublattices, i.e. we have

HK (q) =







M vF

(

−iqx + qy

)

vF

(

iqx + qy

)

−M






, (2.40)

and in the same way for HK′ (q). The mass term M is called a staggered potential

or Semenoff mass [35]. Indeed, upon introduction of the mass term M, the time

reversal condition Eq. 2.39 is still fulfilled, however we open up a gap at the Dirac

points, cf. Fig. 2.2.

The non-zero Semenoff mass term M manually breaks another symmetry that

protects the Dirac cones - sublattice inversion symmetry. The inversion operator

acting in sublattice space can be expressed as the Pauli matrix σx. This operator

changes sublattice A → B and vice versa. Using again the matrices Eq. 2.36 and

2.37, we can easily verify that the condition [11]

HK′ (q) = σxHK (−q) σx (2.41)

is fulfilled. Due to the bipartite nature of the honeycomb lattice, we noted that we

have two distinct Dirac points. However, now we see that they are closely related

by symmetry, as in Eq. 2.39 and 2.41.

2.3 The Haldane honeycomb model

2.3.1 Quantum Hall state in graphene without external magnetic field

The previously mentioned IQHE [6] was realized by the application of an exter-

nal magnetic to a two dimensional electron gas. This system was then found to

exhibit a quantized Hall conductivity σxy. In the 1980s Haldane came to the real-

ization [14] that the source for the orbital magnetic field that generates the Hall
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conductivity is not the external magnetic field itself but the time reversal sym-

metry breaking induced by it. Haldane started from the graphene tight binding

model which we introduced in the previous section and set out to construct a

model that could realize a quantized Hall conductivity without the necessity of

an external magnetic field. This model, the Haldane honeycomb model realizes the

quantum anomalous Hall effect (QAHE).

The Haldane honeycomb model is therefore the prototypical model of what

we call today a Chern insulator [11, 36]. In fact, its name arises from the fact that its

crucial defining property is the existence of a non-zero Chern number. A Chern

insulator is an insulator in the bulk that exihibits, as we shall see, gapless chiral

modes located at the edges. The Chern number Eq. 2.14 is therefore the charac-

terizing invariant in this system.

Haldane pointed out in this seminal paper [14] that the model he proposed

was of theoretical interest, however, it might never be realized in an experimen-

tal setting. Fortunately, this is not the case and the Haldane honeycomb model

has eventually been realized [36, 11] in quantum materials [37], graphene [38],

photonic systems [39, 40, 41, 42, 43, 44] and cold atoms in optical lattices [45, 46].

2.3.2 The Haldane Hamiltonian

The Haldane honeycomb model [14] consists of two parts

Hh = − ∑
〈i,j〉

t1c†
i cj − ∑

〈〈i,j〉〉
t2e±iΦc†

i cj. (2.42)

The first term is the nearest neighbor hopping on the honeycomb lattice with

hopping amplitude t1 that we already know from the graphene tight binding

model, cf. Eq. 2.30. The second term adds complex valued next-nearest neighbor

hopping on the honeycomb lattice. Refer to Fig. 2.1 and Eq. 2.29 where we

defined the next-nearest neighbor displacements. Furthermore, t2 exp(±iΦ) is
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the complex hopping amplitude, Φ is the Peierls phase which we will fix from now

on to Φ = π/2. Crucially, the ± sign refers to the hopping orientation. We choose

the positive sign if we move clockwise around the hexagonal plaquette and the

negative sign if we move counterclockwise around the hexagonal plaquette.

The complex hopping amplitude accomplishes the breaking of time reversal

symmetry. At the same time, the different sign when moving from A → A sub-

lattice sites or B → B sublattice sites induces an effective staggered fluxes such

that the total net flux in each hexagonal plaquette is zero [31].

Similarly to Eq. 2.33 and 2.34, we can choose to write the Haldane honeycomb

Hamiltonian in momentum space using a magnetic field vector dh as

Hh = ∑
k

c†
k (dh · σ + εh · I) ck. (2.43)

The components of the magnetic field dh are the same for the x and y components

as for graphene, cf. Eq. 2.34, i.e. dx
h(k) = dx

g(k) and d
y
h(k) = d

y
g(k). On the other

hand, the z component now reads

dz
h(k) = M − 2t2 sin Φ ∑

p

sin(k · bi), (2.44)

and we have furthermore a 0-component εh which is defined as

εh = −2t2 cos Φ ∑
p

cos(k · bi) (2.45)

and I is the 2 × 2 identity matrix.

Furthermore, in the following work we will find it useful to write the Haldane

honeycomb model in matrix form analogous to the graphene matrix Hamiltonian
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Eq. 2.42. In this form, if we fix Φ = π/2, we can write Eq. 2.42 as [47]

Hh = ∑
k

∑
p∈{x,y,z}

c†
k







γ(k) −g (k)

−g∗ (k) −γ(k)






ck. (2.46)

Here, the function g(k) is defined as in Eq. 2.32. Here, we define (for Φ = π/2)

the function γ(k) as

γ(k) = M − 2t2 ∑
p

sin(k · bp), (2.47)

where M is the Semenoff mass introduced in the previous section.

2.3.3 Haldane phase diagram

We remember that we had a vanishing z component in the graphene model dg,

cf. Eq. 2.31 and in particular we noticed that (for Semenoff mass M = 0) we had

gapless modes at the Dirac points. Both, the introduction of a non-vanishing Se-

menoff mass M and the introduction of complex next-nearest neighbor hoppings

as in introduced by Haldane, add a finite z component to the model, cf. Eq. 2.44,

which opens up a gap. The Semenoff mass M breaks inversion symmetry, while

complex next-nearest neighbor hopping breaks time reversal symmetry - the two

symmetries we found to protect the Dirac cones.

In fact, we find for the z component dz
h for some small wave vector q close to

the Dirac points that

dz
h,K(q) = M − 3

√
3t2 sin(Φ) (2.48)

dz
h,K′(q) = M + 3

√
3t2 sin(Φ). (2.49)

This result points to a crucially different behavior of the inversion symmetry

breaking Semenoff mass M and the complex next-nearest neighbor hopping t2.

The Semenoff mass does not change sign when moving from K to K′, while the
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t2 term does. In chapter 3.3.1, we will show in more mathematical detail that

this change of sign is of deep importance. The change of sign refers in fact to

a band inversion at one of the two Dirac points due to the t2 term. In order to

explain what this mean for the topology in the system, let us start from the pure

graphene model. As we know, graphene is a Dirac semimetall with zero Chern

number. However, one can still define a Berry phase [12] of ±π associated with

local pseudo-spin effects in momentum space when linearizing the band struc-

ture around the two inequivalent Dirac points [13]. That means, when we con-

sider the lower energy band, and we encircle the K point, we find a Berry phase

of π, while we find a Berry phase of −π for K′. For the upper energy band, we

find the signs to be inverted. We will highlight this fact in more detail in chapter

3.2 (refer to Fig. 3.3). In particular this means that overall, we find a net Chern

number of zero since for each band the contributions from the two Dirac points

sum to zero, i.e. π − π = 0. Crucially, the additional t2 term in the Haldane

model now induces a band inversion at one of the Dirac points. This means that

the two contributions do not sum to zero but rather to ±2π (positive sign for the

lower band, negative sign for the upper band) resulting in a net Chern number of

±1 in the bands.

Let us refer back to Eq. 2.48 and 2.49. We can deduce from these equations

that depending on the choice of parameters M, t2 and Φ, there are points where

the gap at one of the Dirac points closes, i.e. where dz
h,K/K′ = 0. For the K point

this happens for example for M = 3
√

3t2 sin(Φ). In the same way we invert

the bands at one Dirac points when opening a gap when going from t2 = 0 to

t2 ∕= 0, the band closing that occurs at |M| = 3
√

3t2 sin(Φ) inverts the bands at

one of the Dirac points and thus marks a phase transition between a topologically

trivial state with zero Chern number and a topological state with Chern number

±1. The situation where we close one of the Dirac points is shown in Fig. 2.4

(bottom right). Overall, we can deduce the phase diagram [14] in Fig. 2.3.
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FIGURE 2.3: Phase diagram of the topological Haldane honey-
comb model. Here, the Chern number C1 refers to the lower, filled
band. The red and blue borders (marked with K and K’, respec-
tively) that separate the topological and trivial phases indicate at
which of the two Dirac points the gap closes when transitioning

between phases.

2.3.4 Bulk and edge band structure of the Haldane model

Lastly, we will explore the phenomenology of the Haldane honeycomb model in

some more detail. Let us start with the bulk band structure.

Starting from graphene at t2 = 0, setting some non zero t2 will open a gap

at the Dirac points. As we can see from Eq. 2.48 and 2.49, the gap size grows

linearly in t2 and for small t2 the low energy physics will be located at the Dirac

points (where we find smallest band gap), see Fig. 2.4. At t2 = 1
3
√

3
t1 (where

1
3
√

3
≈ 0.19) the bands become noticeably flat in an area spanned by the M and K

points in Brillouin zone [47]. From this point onward (for further increasing t2),

the minimal gap size ∆ will remain constant at ∆ = 2t1. In fact, for t2 >
1

3
√

3
t1

the low energy physics and the smallest band gap is located at the M symmetry

points in the Brillouin zone, see Fig. 2.4.
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FIGURE 2.4: Haldane honeycomb model bulk band structures
for different parameter configurations (where we fixed the Peierls
phase to Φ = π/2 and the energy scale is given in terms of the
nearest neighbor hopping amplitude t1). Top left: small t2 with
low energy physics located at the Dirac points. Top right: large t2

with low energy physics located at the M points. Bottom left: flat
bands for t2 = 0.19. Bottom right: gap closing at one of the Dirac

points for M = 3
√

3t2.

It is important to notice these two parameter regimes

t2 >
1

3
√

3
t1 K point physics (2.50)

t2 <
1

3
√

3
t1 M point physics. (2.51)

We will see in chapter 4 that it can be helpful to restrict a model to the K point

regime (small t2) since it can be quite insightful to construct model on the basis

of Dirac point properties as we saw in our introduction to graphene. Dirac point
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FIGURE 2.5: Edge spectrum of the Haldane honeycomb model for
t1 = 1, t2 = 1/3, and Φ = π/2. Bulk bands are gapped, only the

chiral modes located at the two edges are gapless.

properties are the source of the topology in the Haldane, thus we should seek to

exploit their rich phenomenology.

Finally, let us visually verify the presence of a non-zero Chern number in the

Haldane model. The computation of bulk bands (as in Fig. 2.4) assumes trans-

lational invariance in the lattice, and thus a lattice without edges that extends

infinitely. In order to verify the emergence of chiral edge modes in the Haldane

honeycomb model, we need to mathematically create an edge. That means we in-

tentionally break translational symmetry in one direction, say ky [48, 11]. Since ky

is then not a good quantum number any more, we need to translate the ky compo-

nent back to real space such that we end up with a Hamiltonian in a mixed form

(real and momentum space) such that we can visualize modes that are located in

the bulk as well as at the edges of the system. Fig. 5.1 shows the edge spectrum

of the Haldane honeycomb model. Bulk bands are gapped and only two chiral

edge modes cross the Fermi level corresponding to the lower and upper energy

bands which carry Chern number +1 and −1.
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2.3.5 Probing Chern numbers via the circular dichroism of light

In this last section on the topologic Haldane model, we describe an intriguing

experimental protocol to probe the topology of a Chern insulator.

The circular dichroism of light has been suggested as a measure of the Chern

number [49, 50]. Shining light on a Chern insulator induces a population of the

states in the upper band, above the band gap. The associated depletion rates and

photocurrents [51] depend on the orientation of the circular drive. The Chern

number is encoded in the difference of rates with opposite orientation.

The following discussion will be of us for us in later chapters especially with

regard to the application to the topological Haldane. However, the results in

Ref. [49] where derived under the assumption of any two-dimensional, non-

interacting spinless gas in a generic lattice, initially filled lower band, gapped

bulk bands and broken time reversal symmetry such that the topology in the

system is describe by a Chern number. Let us assume this two band system is de-

scribed by a time-independent Hamiltonian H0 and subjected to a time-periodic

ciruclar drive such that the total time-dependent Hamiltonian reads [49]

H±(t) = H0 + 2E (cos(ωt)x̂ ± sin(ωt)ŷ) (2.52)

where E is a constant electric field, ± refers to the orientation of the drive, x̂ and

ŷ are position operators, and ω is the frequency of the drive. The second part of

Eq. 2.52 can be attributed to a scalar potential V±

V±(x, y) = 2E(cos(ωt)x ± sin(ωt)y) (2.53)
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which is defined such that E± = −∇V±. Here, E± is the circularly polarized

electric field that takes the form

E± = 2E(cos(ωt)ex ± sin(ωt)ey) (2.54)

This heating of the system through irradiation with circularly polarized light

leads to a promotion of a total number of N± particles from the lower to the upper

band. In other words, the lower bands is depleted at a rate Γ± where [49]

δN±(t) ≈ −Γ±t. (2.55)

We can then use Fermi’s golden rule [49, 52] which reads for a two band model

with bands l and u

Γ±(ω) =
2π

h̄
E2|〈l|x̂ ± iŷ|u〉|2δt(εu − εl − h̄ω) (2.56)

where E is the strength of the drive or the electric field in the original basis, |u〉

and |l〉 are the eigenstates corresponding to the lower and upper bands, εl,u their

eigenenergies, and the ± selects the polarization orientation.

The electric field introduced in Eq. 2.54 can be related to a dependent vector

potential A± via E± = −∂tA± such that the vector potential takes the form

A± = −2E

ω
(sin(ωt)ex ∓ cos(ωt)ey). (2.57)

Minimal coupling of the vector potential with the current operator −∂kH0 gives

a time-dependent Hamiltonian which now reads in momentum space

H±(t) ≈ H0(k) +
2E

h̄ω

(

sin(ωt)
∂H0(k)

∂kx
∓ cos(ωt)

∂H0(k)

∂ky

)

. (2.58)
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In Ref. [49], the authors obtained this result by performing a unitary trans-

formation on the Hamiltonian in Eq. 2.52 as H± → R±H±R
−1
± generated by the

operator

R± = exp

(

i
2E

h̄ω
(sin(ωt)x̂ ∓ cos(ωt)ŷ)

)

. (2.59)

In Eq. 2.58, higher order terms in E have been omitted. Then, the depletion

rates can be expressed as [49]

Γ±
l→u (ωk, k) =

2π

h̄

(

E

h̄ω

)2
∣

∣A±
l→u

∣

∣

2
δ
(

εk
u − εk

l − h̄ω
)

(2.60)

where εk
l,u are the eigenenergies of the lower and upper bands, and

Γ±
l→u (ωk) = ∑

k∈BZ

Γ±
l→u (ωk, k) . (2.61)

Here, the transition amplitude is given by

A±
l→u = 〈uk|

1

i

∂H0

∂kx
∓ ∂H0

∂ky
|lk〉 (2.62)

We will use these equations for the depletion rates in an adapted form later on

in order to find a framework to describe the topology in the Haldane honeycomb

model in the presence of interactions.

In order to relate the depletion rates to the Chern number of the system, we

need to integrate the depletion rates over all frequencies ω (such that ω is larger

than ∆gap/h̄ where ∆gap is the band gap). This calculation yields the integrated

rates Γint
± . The idea is now that depending on the polarization direction of the

light, the integrated difference will not give the same result. The difference can

be associated to the chiral nature of the system. Hence, the integrated difference

∆Γint = Γint
+ − Γint

− should encode the Hall conductivity and therefore should be
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FIGURE 2.6: Numeric application of the dichroism of light to the
Haldane honeycomb model on Nsize × Nsize lattice, where Nsize =

200.

quantized. In fact, one finds that [49]

∆Γint = 4π
E2

h̄2
Im

(

∑
k

〈l|∂kx
H0|u〉〈u|∂ky

H0|l〉
(εu − εl)

2

)

(2.63)

which resembles the transverse conductivity σxy of the quantum Hall system

when expressed using the Kubo formula [32, 8].

Finally, a numeric example for the application of the dichroism of light to

the Haldane honeycomb model is presented in Fig. 2.6. We consider a Nsize ×

Nsize lattice, where Nsize = 200. Then, we compute the distribution of the matrix

elements [49]

W± =
2π

h̄

(

E

h̄ω

)2

|A±
l→u|

2 (2.64)

in dependence on the transition frequency ω.

In particular, the figure shows W± as an averaged number per pre-defined fre-

quency interval of width ∆ω = 0.025/h̄. Integrating the two curves numerically
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and computing the difference between the red and the blue curve, yields a Chern

number

∆ω

2

h̄2

E2(2πNsize)2
(Γint

+ − Γint
− ) = 1, (2.65)

where Γint
± is computed in each frequency interval as the average number W±

times the corresponding density of states [49]. The density of states is computed

in each interval as ρ(ω) = Ntrans/h̄∆ω where Ntrans is the number of counted

transitions within the frequency interval that belongs to ω.





35

Chapter 3

Topological proximity effects in

the Haldane-graphene model

In this chapter, we study the Haldane honeycomb model which we introduced in

the theory section, interfaced with a two-dimensional layer of graphene. It is our

goal to reveal a proximity effect between a topological band (Chern) insulator (the

Haldane honeycomb model) and spin-polarized Dirac particles of the graphene

layer.

Previously, proximity effects have been studied [53, 54] in classical systems

where a local order parameter (e.g. capturing superconductivity) penetrates into

a coupled material (e.g. a metallic system). More recently, topological proximity

effects have been proposed [55, 56, 57]. In this case, non-trivial topology (in the

sense of a non-zero Chern number) is induced by means of proximity into the

bulk of a topologically trivial system.

In Ref. [55], a metallic ultrathin film and a three-dimensional topological in-

sulator were experimentally coupled. To this end, one bilayer of bismuth metal

was grown on the three-dimensional topological insulator material TlBiSe2. The

authors then used spin- and angle-resolved photoemission spectroscopy, to find

evidence that the topological Dirac-cone state migrates from the surface of TlBiSe2

to the attached one-bilayer bismuth.
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The first theoretical study on the subject was done in Ref. [56]. In stark con-

trast to Ref. [55], Ref. [56] considers two coupled systems of the same dimension.

Therefore, in this case we speak of a bulk topological proximity effect. The au-

thors study a generic Chern insulator coupled to a topologically trivial system.

They show that by proximity a Chern number of e.g. +1 then induces an inverse

topological number -1 into the bulk of the coupled system.

In this chapter, we study the proximity effect when tunnel coupling a Haldane

model with a layer of graphene [58, 13]. We assume spinless particles in both

layers and the tunnel process couples the same sublattice in the two layers. As we

shall see, particle-hole processes at the interface open a gap as a result of pseudo-

spin effects, inducing an inverse topological order in the graphene system when

both layers are half-filled. While this is to be expected with Ref. [56] in mind, we

will go into a detailed description of the mechanisms at play.

In fact, the topological Chern insulator induces a gap and an opposite Chern

number on the Dirac particles at half-filling resulting in a sign flip of the Berry

curvature at one Dirac point. We study different aspects of the bulk-edge cor-

respondence and present protocols to observe the evolution of the Berry curva-

ture as well as two counter-propagating (protected) edge modes with different

velocities. In the strong-coupling limit, the energy spectrum shows flat bands.

Therefore we build a perturbation theory and address further the bulk-edge cor-

respondence. We also show the occurrence of a topological insulating phase with

Chern number one when only the lowest band is filled. Finally, we generalize the

effect to Haldane bilayer systems with asymmetric Semenoff masses.
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FIGURE 3.1: Schematic of the system and of the coupling param-
eters between the two systems. Left: Interlayer hopping between
the same sublattice sites with hopping amplitude r. Right: Inter-
layer hopping between neighboring sublattice sites with hopping

amplitude γ.

3.1 The Haldane-graphene model

We consider the Hamiltonian

H = Hg +Hh +Hr, (3.1)

where Hg describes a graphene layer, Hh the topological Haldane model, and Hr

the tunnel coupling between the layers with amplitude r. We emphasize here

that we consider no displacement in the stack of the two layers. That means, the

interlayer hopping that we consider is only of the type as in Fig. 3.1 (left).

We use the definitions where t1 means nearest neighbor hopping element on

the honeycomb lattice, t2 next-nearest neighbor tunneling element with the asso-

ciated phases ±Φ for sublattices A and B as defined in the theory section 2.

In momentum space, the Hamiltonian takes the form

H =
∫

dk

(2π2)
H(k), (3.2)
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where

H(k) =







dg · σ r · I

r · I dh · σ + εh · I






(3.3)

with the pseudo-spin Pauli matrices σ acting in the Hilbert space of sublattice A

and sublattice B of each layer g and h, respectively [34].

In order to make an analogy with two 1/2 spins in k-space, one could also

choose to introduce two different sets of Pauli matrices σ1 and σ2; the results

derived below can be simplified in notations through the introduction of one set

of Pauli matrices.

In Eq. 3.3, we chose to write the previously introduced Haldane honeycomb

and graphene models using magnetic fields d
h,g
x,y,z. These fields were introduced

in Eq. 2.33 and 2.43.

We assume that the nearest-neighbor tunneling amplitudes are identical in

both layers (for the simplicity of notations but without loss of generality). There-

fore, we have

d
g
x(k) = dh

x(k) (3.4)

d
g
y(k) = dh

y(k) (3.5)

Initially, for graphene (when r = 0) the magnetic field in k-space resides in the

equatorial plane d
g
z (k) = 0, i.e. graphene has a zero Chern number. In the nu-

merical calculations below, we fix the phase Φ = π/2.
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3.2 Proximity effect in the Haldane-graphene model

Mapping the first Brillouin zone on a torus onto the sphere S2, the Haldane model

at r = 0 is characterized by the normalized magnetic field

d∗ = (sin θ(k) cos φ(k), sin θ(k) sin φ(k), cos θ(k)) (3.6)

such that the Chern number associated with the two bands of the topological

Haldane insulator can be defined as

Ch
± =

1

2π

∫
S2

F± = ∓ 1

4π

∫
S2

dΩ = ∓1, (3.7)

with the relation between the Berry curvature and the solid angle on the sphere

S2

F± = ∓ sin θdθdφ = ∓dΩ

2
. (3.8)

In Fig. 3.2 top left, we show the Berry curvature associated with the lowest energy

band of the Haldane model, corresponding to the Chern number Ch
− = C1 = +1.

The Chern number of such spin-1/2 models on the sphere S2 has been measured

in circuit Quantum electrodynamics by applying a one-dimensional path on the

Bloch sphere going from north to south poles [59, 60, 61].

The Berry curvature of the Haldane model has also been reconstructed in cold

atoms [46] through momentum space density which is obtained from time of

flight images of

n(k) = f (k)[1 − sin θ(k) cos φ(k)], (3.9)

where f (k) corresponds to the broad envelope associated with the momentum

distribution of the Wannier function [62]. In order to measure accurately the two

angles, one can create a chemical potential offset between the two sub-lattices
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FIGURE 3.2: Berry curvature in the Brillouin zone for the Haldane
and graphene layers at r = 0 and small r, showing the Berry phase
jump effect. Here, we choose the parameters t1 = 1 and t2 =
1/3 and the Berry curvatures and Chern numbers were calculated

using the numeric methods outlined in chapter 2.1.3.

∆AB, which then acts in the quasi-momentum representation as a rotation (in mo-

mentum space), such that

φ(k) → φ(k) + ∆ABt/h̄ (3.10)

where h̄ = h/(2π) is the (reduced) Planck constant [62, 46]. The topology of

the Bloch bands can also be accessed through Wilson line measurements [63] and

coupling with circularly polarized light [38, 50].

The Chern number of the graphene system is equal to C
g
± = C2 = 0 in the

absence of coupling with the topological layer, i.e. r = 0. One can still define a

Berry phase [12] ±π associated with local pseudo-spin effects in k-space when

linearizing the band structure around the two inequivalent Dirac points [13], see
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Fig. 3.2 (bottom left).

Fig. 3.2 shows that when we start with a Haldane and a graphene layer with-

out coupling (the two plots on the left), and then turn on the interlayer coupling

r > 0, we induce an inverse Chern number −1 in the graphene layer. In the

graphene layer, the Berry curvature flips at one of the two Dirac points - an effect

which we will explore in more mathematical detail shortly. On the other hand,

the Berry curvature in the Haldane layer does not change much qualitatively, and

the layer retains its Chern number +1.

Now, we wish to understand in some more detail how an effective d
g
z mag-

netic field component can be induced in the graphene layer through the presence

of the dh
z term in the Haldane system. One way [25] is to build a path integral

approach in the small r ≪ (t1, t2) limit integrating out degrees of freedom of the

Haldane model. Assuming that the r tunneling term couples mostly the same

sublattice of the different layers then the partition function of the graphene layer

becomes [25]

Zg =
∫

DΨg(k)DΨ̄g(k) exp−
(

∫ β

0
dτ

∫
d2k

2π2
Ψ̄g(k)

[

∂τ (3.11)

+ dg(k)σ − r2

|dh(k)|2
(1 − e−ετ)dh(k)σ

]

(Ψg(k))
T
)

,

with Ψg(k) = (cgA(k), cgB(k)) describing an electron annihilation operator in the

graphene layer, at sublattice A and B respectively, and ε an energy scale close to

t2.

However, it might seem more insightful to understand the procedure in an

intuitive manner from geometric considerations. We refer back to Fig. 3.1. Con-

sider a particle that starts from the graphene layer in sublattice A, then takes the

same sublattice interlayer hopping r to the Haldane layer, and after the action of

the next-nearest neighbor tunneling term t2 picking up a phase Φ, the particle

goes back to the graphene layer thereby producing an effective hopping te f f term
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in the graphene layer proportional to

te f f ∝ − |r|2

|dh
z |

2
dh

z σz (3.12)

The perturbation theory produces an additional minus sign to second-order in

perturbation theory, and should also reveal that for the B sublattice the perturba-

tion theory gives an opposite sign because of the nature of the Haldane t2 term in

the Haldane layer.

Finally, we check that the proximity effect remains stable as long as r ∕= 0

when introducing a more general coupling between layers, as illustrated in Fig.

3.1 (right) through the γ term, which then allows for a coupling between different

sub lattices in the two layers. The main reason is that ∑p ap = 0, therefore when

coupling a site A in the graphene layer with three sites B in the Haldane layer

gives a (much) smaller contribution.

3.3 Mathematical description of the Berry phase shift

3.3.1 Singularities in the eigenstates of the Haldane-graphene model

In order to study the Berry phase shift of 2π that occurs in this scenario at one

Dirac point, we investigate the low energy version of the effective graphene Hamil-

tonian in more detail. To this end, we first expand the term

dh
z (k) = −2t2 sin (Φ)∑

j

sin
(

k · bj

)

(3.13)

around the Dirac points K and K′ to first order for small wave vectors q =
(

qx, qy

)

. We obtain

dh
z (±K + q) ≈ ±3

√
3t2 sin (Φ) , (3.14)
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where the positive sign corresponds to K and the negative sign to K′. Having Eq.

3.12 in mind, we define the effective mass term induced in the graphene layer

± m ≡ ±r2
√

3/(9 sin Φt2) (3.15)

which has different signs at the two Dirac points.

Expanding the off-diagonal terms d
g
x (k) and d

g
y (k) around K and K′ respec-

tively yields the corresponding low energy Hamiltonians [13]

HK (q) =







m vF

(

−iqx + qy

)

vF

(

iqx + qy

)

−m






(3.16)

and

HK′ (q) =







−m vF

(

−iqx − qy

)

vF

(

iqx − qy

)

m






, (3.17)

with vF = 3t1/2 the Fermi velocity. Remember that in the case of pure graphene

(m = 0) diagonalization results the normalized eigenstates

Ψ
g
±,K

(

φq

)

=
1√
2







1

±eiφq






, Ψ

g
±,K′

(

φq

)

=
1√
2







1

±e−iφq






, (3.18)

where iqx + qy = q · eiφq and q = |q|. Note that φq → −φq relates the Dirac points

K and K′ for the same energy band (denoted + or −) as

Ψ
g
±,K

(

φq

)

= Ψ
g
±,K′

(

−φq

)

. (3.19)
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A straightforward diagonlization of the matrices Eq. 3.16 and 3.17 with m ∕= 0

yields the normalized eigenstates

Ψ̃±,K

(

φq

)

=
1

√

v2
Fq2 + (E± (q)− m)2







vFq

eiφq (E± (q)− m)






(3.20)

Ψ̃±,K′

(

φq

)

=
1

√

v2
Fq2 + (E± (q) + m)2







vFq

−e−iφq (E± (q) + m)






(3.21)

where the corresponding energy eigenvalues are

E± (q) = ±
√

v2
Fq2 + m2. (3.22)

The wavefunctions Ψ̃−,K and Ψ̃+,K′ are well defined in the limit q → 0. Cru-

cially however, Ψ̃+,K and Ψ̃−,K′ become singular as E±(q)
q→0−−→ ±m. Hence, the

wavefunction Ψ̃+,· has a singularity in K and the wavefunction Ψ̃−,· has a sin-

gularity in K′. The emergence of these singularities in the wavefunctions signals

that the coupling to the Haldane layer induced some non-trivial topology in the

graphene layer. Non-trivial topology arises when no global phase convention can

be determined in the Brillouin zone causing the wavefunction to develop singu-

larities [8]. However, the singularities can be avoided.

3.3.2 Lifting the singularities

First, note that the wave functions Eq. 3.20 and 3.21 fulfill the following identities

Ψ̃±,K

(

φq

)

= Ψ̃∓,K′

(

−φq

)

. (3.23)

Hence, contrary to Eq. 3.19 for pure graphene, substituting φq → −φq relates the

wavefunction of the positive (negative) energy band at K with the wavefunction

of the negative (positive) energy band at K′. In line with this, we can conclude
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that in the pure graphene limit m → 0 we regain:

Ψ̃±,K

(

φq

) m→0−−→ Ψ
g
±,K

(

φq

)

, Ψ̃±,K′

(

φq

) m→0−−→ Ψ
g
∓,K′

(

φq

)

. (3.24)

We now follow the method outlined in [8] and divide the Brillouin zone into two

sectors S and S ′, where sector S contains K and sector S ′ contains K′. We fo-

cus on the negative energy band. Ψ̃−,· is well defined in S , but becomes singular

in S ′. As Ψ̃−,K

(

φq

)

= Ψ̃+,K′

(

−φq

)

we can identify Ψ̃+,K′

(

−φq

)

as a well de-

fined wavefunction in S ′ of the negative energy band. This indicates that for K′

the positive and negative energy bands exchanged their nature upon coupling

the graphene and Haldane layers. In fact, it is suggestive to redefine the wave-

functions as follows where the new wavefunction Ψ±,· is valid in each respective

sector and energy band

Ψ+,K

(

φq

)

≡ Ψ̃−,K

(

−φq

)

, Ψ+,K′

(

φq

)

≡ Ψ̃+,K′

(

φq

)

,

Ψ−,K

(

φq

)

≡ Ψ̃−,K

(

φq

)

, Ψ−,K′

(

φq

)

≡ Ψ̃+,K′

(

−φq

)

.

Writing these wavefunctions explicitly yields

Ψ±,K/K′

(

φq

)

=
1

√

v2
Fq2 + (E± (q)± m)2







vFq

∓e∓iφq (E± (q)± m)






. (3.25)

This “patching” of wavefunctions in sectors is allowed as long as the wavefunc-

tions are connected by a smooth gauge transformation at the boundary between

the sectors [8]. Note that Ψ±,· is of the same form in S and S ′. Therefore, the

gauge transition function between S and S ′ is the identity. This means that K

and K′ have the same Berry phase

γK = γK′ = −1

2

∮
∇φ(k) · dk = −π. (3.26)
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The integration follows a closed path around a Dirac point. We numerically

check [33] that a −π Berry phase occurs at both Dirac points of graphene, Fig. 3.2.

This is reminiscent of the Haldane model when t2 ≪ t1, thus the behavior in the

graphene layer is similar to that of an Haldane model but only close to the Dirac

points. We also check that for the upper band of graphene

C
g
+ = +1 = −Ch

+ (3.27)

or in other words

γK = γK′ = π. (3.28)

This is equivalent to changing m → −m at a Dirac point or dh
z → −dh

z .

This effective model could be perhaps realized in a bilayer graphene by ap-

plying circularly polarized light, then opening a Haldane gap in one layer [38].

If this gap is larger than the tunnel coupling, then one could rewrite the effective

tunnel coupling at the Dirac points justifying this low-energy model. Below, we

will address a generalized bilayer Haldane model which can be realized in cold

atoms.

The Berry phases could be directly measured as demonstrated in Refs. [46,

63]. Information on Berry phases could also be reconstructed from quantum Hall

conductivity [32, 64] quantum circular dichroism by shining light [50], scanning

probe [65, 66] and Klein paradox [67, 68] measurements.

Note that this analysis holds for small t2 (in comparison to t1) when the low

energy physics of the Haldane model are centred around the Dirac points, cf. Fig.

2.4. In the Haldane layer with t2 ∼ t1, the pseudo-spin 1/2 is polarized close to

the Dirac point, and the structure of the Berry curvature is strongly modified: its

dominant contribution occurs close to the highly-symmetric M points now, cf. Fig

2.4. Futhermore, note that Berry curvatures in the Haldane layer remain almost

unchanged from r = 0 to r = 0.4, see Fig. 3.2.
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FIGURE 3.3: Band structures for t1 = 1 and t2 = 1/3 in the
weak and strong-coupling limits for a cylinder geometry; the lat-
tice spacing is a = 1. On the left, we zoom on the two low-energy
graphene bulk bands. In the green region of 60 unit cells, the total
Chern number of the two lowest bands is zero and in the grey re-
gion (of 14 unit cells) the system is a Haldane model. We observe
two counter-propagating edge modes with different velocities at
zero energy until r ∼ t2. For very strong couplings, at zero energy,
the counter-propagating edge modes are only linked to properties

of the Haldane region.

In summary, upon imposing a finite coupling r between the two layers of

the Haldane-graphene honeycomb model, the wavefunction becomes singular in

one sector. The singularity can be lifted upon exchanging positive and negative

energy bands in this sector. Therefore, the Berry phase jumps by 2π at only one of

the two Dirac points.

3.4 Edge properties and strong coupling limit

3.4.1 Counter-propagating edge modes at different velocities

Now, we study in more detail the edge properties. For Haldane and graphene

layers of equal size, for r ∕= 0, we find the formation of a gap at the edges at half-

filling, resulting from the hybridization of the zig-zag edge mode of graphene —



48 Chapter 3. Topological proximity effects in the Haldane-graphene model

FIGURE 3.4: Berry curvature for the two lowest energy bands at
strong coupling r = 0.7 (t1 = 1 and t2 = 1/3).

present at r = 0 — with the topological edge mode (see black edge modes in

Fig. 3.3 (left) corresponding to the right boundary of the green cylinder). This is

also consistent with the Kane-Mele model [69], where the r coupling at the edges

corresponds to a spin-flip process which breaks the Z2 symmetry and opens a gap

similar to the effect of the Mott transition [47, 70]. To confirm that a chiral edge

state has now appeared in the graphene layer at half-filling moving in opposite

direction as the edge state in the Haldane layer, in agreement with

(Ch
− − C

g
−) = 2 (3.29)

in the bulk for r ∕= 0 [71], we suggest to suppress smoothly the r tunnel coupling

at the left edge. Numerically, we check that for more than 10 unit cells in the

grey region, results are stable. Fig. 3.3 then shows two counter-propagating edge

modes with different velocities, due to the different gaps in the two layers, cross-

ing the chemical potential at half-filling (or energy zero). Alternatively, one could

build a slightly smaller layer and observe two counter-propagating edge modes,

one in each layer.
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FIGURE 3.5: Evolution of the four energy eigenstates for two val-
ues of the tunnel coupling element r between layers with t1 = 1
and t2 = 1/3. The right figure with r = 7.0 corresponds to the
strong coupling case. The bands are now coloured according to
their Chern number. Blue means Chern number +1 and red Chern
number −1. The Γ, K, K′, M and M′ points are defined in the the-
ory section. The energy scale is in terms of the nearest neighbor

hopping amplitude t1.

3.4.2 Strong coupling limit

The strong coupling limit of the Haldane-graphene model describes the case where

the hopping parameter between the two layers r is large, i.e.

r ≫ (t1, t2). (3.30)

Analytically, we define the field operators

ζ± = 1/
√

2(cgA ± chA) (3.31)

hybridizing the sublattices A of the two layers and

χ± = 1/
√

2(cgB ± chB) (3.32)

hybridizing the sublattices B of the two layers. Here, c†
hA and c†

hB represent cre-

ation operators at sublattice A and B in the Haldane layer and analogously for

c†
gA,B in the graphene layer.
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To show that the strong-coupling description is very general we introduce the

magnetic fields d1 and d2 associated with the two layers, that we shall rewrite in

the hybridized basis. To find the effective Hamiltonian in the basis [ζ−, χ−, ζ+, χ+],

we can equivalently perform a unitary transformation on the Hamiltonian such

that the Hamiltonian becomes

H̃(k) =







−rI + (d1+d2)
2 · σ

(d1−d2)
2 · σ

(d1−d2)
2 · σ rI + (d1+d2)

2 · σ






. (3.33)

The energy spectrum shows two pairs of bands centered around ±r, see Fig. 3.5,

and described by a Haldane model with an effective magnetic field in k space

which is equivalent to (d1 + d2) · σ/2. The off-diagonal terms couple band pairs

of different energy which do not affect the low-energy theory. For the Haldane-

graphene bilayer with d1 = dg and d2 = dh, Berry curvatures of the two lowest

bands for r ≫ t2 are shown in Fig. 3.4.

In the strong coupling case at r = 7.0 of Fig. 3.3, the two lowest “hybrid”

bands are still described by a total Chern number zero and the bulk green re-

gion now behaves as the vacuum. Furthermore, we now observe two counter-

propagating edge modes with equal velocities at zero energy, when suppressing

the tunnel coupling at one edge in the cylinder geometry (in the grey region). By

making one layer slightly larger than the other, the two edges modes now entirely

connect to the Haldane bulk bands of the grey region.

Note that at quarter filling (implying that the particle density of the two lay-

ers satisfy (ng = nh = 1/4)) only the lowest band in Fig. 3.3 (right) should be

filled, and the system reveals a topological phase with Chern number 1. The edge

structure shows on average 1/2 particle in one layer moving together with 1/2

particle in the other layer.
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3.5 Experimental realization

3.5.1 The Haldane honeycomb model in ultra cold atoms

Before we can make suggestion on how to observe the bilayer effects outlined

above, we need to understand how the topological Haldane model can be real-

ized in ultra cold atoms experiments [25, 46].

In optical lattices, one can apply a time-dependent force F(t) = −mr̈lat(t)

corresponding to a periodic shaking protocol of the lattice. The Hamiltonian then

becomes

Hlat = H0 + ∑
i

(F(t) · ri)c
†
i ci. (3.34)

Here, ci corresponds to an atom at site i with mass m on a honeycomb optical

lattice and H0 corresponds to the Hamiltonian of graphene with nearest-neighbor

tunneling coupling. The additional momentum can be absorbed by going to the

reference frame −qlat = −mṙlat(t). In this frame, the tight-binding Hamiltonian

corresponding to nearest-neighbor tunneling becomes modified as

H′
lat = ∑

〈i;j〉
eiqlat·rij tijc

†
i cj. (3.35)

In the case of a periodically driven system, where H′
lat and therefore rlat(T) are

periodic functions in time, one can then apply the Floquet theory, where an ef-

fective Hamiltonian is obtained from the unitary time-evolution operator U(T, 0)

over one period T of driving, such that

ih̄

T
log(U(T, 0)) = He f f . (3.36)
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Using the shaking procedure for the honeycomb optical lattice, one can then re-

alize an effective Hamiltonian in the wave-vector space [46]

H(k) =







M + ∑i 2tAA cos(k · bi) ∑i 2tABe−ik·ai

∑i 2tABeik·ai −M + ∑i 2tBB cos(k · bi)






, (3.37)

acting on the Hilbert space of sublattices A and B. The offset M between A and B

sites corresponds to the Semenoff mass [35]. The hopping term tAB contributes to

the nearest-neighbor graphene term t1, whereas tAA and tBB generate the t2 terms

in the Haldane model. To realize the topological phase of the Haldane model,

the key point is to use phase factors in the time-modulation of the lattice such

that tAA = −tBB and tAA = |t2|eiΦ, where the phase Φ corresponds to the Peierls

phase.

3.5.2 The case of the bilayer system

The goal is to build, for instance, two graphene optical lattices. Then, one could

apply the same time-dependent force or Floquet modulation on the two layers, as

described above, to implement the same parameters t1 and t2 in the two layers.

In the next step, laser assisted tunneling generates the coupling of atoms of

one layer to those of the other layer, such that the r tunnel coupling would couple

sublattices A of the two layers on the one hand and sublattices B of the two layers

on the other hand. Another possibility would be to use one optical lattice and two

species (of synthetic dimensions).

In practice, one would however encounter a crucial problem when attempting

to realize a Haldane-graphene bilayer model. When setting up one layer of a

Haldane model by globally shaking the lattice, the shaking would necessarily

also occur in the other layer (the graphene layer), thus turning both layers into

Haldane layers.
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However, there is a way around that would allow us to distinguish the two

layers. We propose the following idea. Instead of attempting to realize a Haldane-

graphene bilayer system in a optical lattice context, one would rather consider

a Haldane-Haldane bilayer system. In order to be able to distinguish between

the two layers and to force a Berry curvature jump in one layer at a time (when

increasing the coupling parameter r), we propose to induce static and asymmetric

Semenoff masses M1 and M2 in the layers. The net offset Semenoff mass will force

one of the layers to encounter a Berry phase jump at smaller r than the other.

3.5.3 The Haldane-Haldane model

In order to propose an experimental setup that would allow to observe the Berry

phase jump as it occurs in the Haldane-graphene bilayer model, cf. Fig. 3.3, we

propose a Haldane-Haldane bilayer model.

Mathematically, we define this model analogously to the Haldane-graphene

Hamiltonian, Eq. 3.3, as

Hhh(k) =







dh1 · σ + εh · I r · I

r · I dh2 · σ + εh · I






, (3.38)

where dh1,2 describe Haldane models that come with the same set of parameters

for nearest and next-nearest neighbor hopping t1 and t2, but that differ in their

corresponding static Semenoff masses. To this end, we adjust the z component of

the magnetic field dh1,2
z (cf. Eq. 2.34) to contain the Semenoff mass M1,2

dh1,2
z (k) = M1,2 − 2t2 sin Φ ∑

p

sin(k · bp). (3.39)

To observe the jumps of the Berry phases as described for the Haldane-graphene

bilayer model Fig. 3.3, we suggest to start with two different off-sets M1 and M2
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in the two Haldane layers. In both layers, one starts with M1 and M2 smaller than

|dz(k ∼ ±K)| = 3
√

3t2 sin Φ. (3.40)

That means in the absence of coupling between the two layers, the two lowest

Bloch bands are described by a Chern number +1, producing a phase with total

Chern number C = 2. That means, we start with both layers in the topological

phase of the Haldane model, cf. Fig. 2.3.

Assuming unequal masses M1 and M2, we observe two phase transitions by

switching on the coupling parameter r. At the two transitions, we report a jump

of Berry phase at one Dirac point only by analogy to the situation of the Haldane-

graphene layers’ situation at small r. If we start with M2 > M1, cf. Fig. 3.6, the

gap for the bands 2 at the K′ point is (much) smaller than the gap separating the

upper and lower bands 4 and 1 and therefore second-order processes or particle-

hole pair virtual processes through these bands can still affect the gap of band

2, which then explains the gap closing at the K′ point at the first transition. We

qualitatively predict that the gap would close at the K′ point roughly when

3
√

3t2 sin Φ − M2 − r2/(3
√

3 sin Φt2 − M1) ≈ 0. (3.41)

Here, we consider the effective mass term in one of the Haldane layers, by taking

into account that through interlayer coupling r, another effective mass term is

also added to this layer due to topology in the other layer. This is essentially the

mass term that we saw was previously introduced in the graphene layer of the

Haldane-graphene model through the effective hopping amplitude te f f , Eq. 3.12.

We check numerically that this equation reproduces the features of the first

transition line. At large r, the total Chern number of the two lowest bands must

be zero in agreement with the theory. We show the band structure and Berry

curvature evolve as a function of r, in particular for the intermediate region with
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FIGURE 3.6: Upper: Numerical Phase diagram for two Haldane layers at half-filling (t1 = 1, t2 = 1/3, Φ = π/2)

with different Semenoff masses, where M1 =
√

3/3 is fixed. Lower: Berry curvatures and band structures for

increasing coupling r along M2 = 2
√

3/3. At the first (second) phase transition, the bands touch at the K
′ (K) point

and the Berry curvature flips sign in its vicinity. In the band structures, the colors refer to the Chern number of the
bands: Blue means Chern number +1, black Chern number 0, and red Chern number −1. The properties of the

Bloch bands could be checked with fermions and bosons, at a single particle level.
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C = 1, where the gap at the K point progressively diminishes whereas the gap at

the K′ point now stays finite. When the gap closes at the K point, then we again

observe a sign change of the Berry curvature at this point, then producing the

entrance towards the C = 0 phase. Essentially, to enter the C = 0 phase, the band

2 must flip its Chern number to C2 = −1 then closing the gap at the K point.

For equal masses M1 = M2, a band crossing effect occurs in the intermediate

region for r ∼ 0.9, therefore the total Chern number of the two lowest bands

seemed to progressively change from C = 2 to C = 0, as described in Fig. 3.7.

The two phase transitions then do not occur for this case, and there is a band

inversion between band 2 and band 3 when r = 3t1 for t2 = 1/3. But, as soon

as M1 ∕= M2, the system tends to restore the C = 1 region as well as the two

transitions associated with the changes in the Berry curvatures at the Dirac points.

While in fact, from our discussion the physical meaning of the region with

band crossing effects is not quite clear, the issue has in the meantime been ad-

dressed in another work, Ref. [72]. In fact, the band crossing effect was found to

hide a topological semimetal with topological number C = 1/2 per plane.

3.6 Conclusion

To summarize, we have presented a proximity effect from a topological Chern in-

sulator on a graphene layer. Particle-hole processes at the interface induce a gap

in the graphene layer and therefore, the two lowest filled energy bands show

inverse quantized Chern numbers +1 and −1. We have illustrated the bulk-

edge correspondence in relation with the Kane-Mele model [73], and with general

bulk-edge correspondence in the ultra strong-coupling limit.

The effective model built in k-space close to the Dirac points could be real-

ized in graphene bilayers through circularly polarized light coupling to one layer

more prominently [38]. We have generalized the Berry phase jump phenomenon
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FIGURE 3.7: Evolution of edge spectra in the case of two Haldane

layers, with masses M1 = M2 =
√

3/3. Again, we fix t1 = 1,
t2 = 1/3, Φ = π/2.

to bilayer Haldane model. Furthermore, we have discussed implementations in

cold atom thoroughly.
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Chapter 4

Interaction effects in the Haldane

honeycomb model

The system under consideration in the previous chapter was analytically solvable

and thus allowed for a straight forward analysis in terms of band theory which

made its rich phenomenology accessible. In this chapter, we will progress be-

yond the analytic regime by introducing electron-electron interaction effects in

the Haldane honeycomb model.

Studying the effects of electron-electron interactions on a system can be done

with different goals or points of view. On the one hand, it is an important question

to understand the stability of a phase (in this case the stability of a Chern insulator

phase) towards the presence of interactions. On the other hand, interaction effects

can lead to the emergence of new phenomena such as the Kondo effect [74] or the

Mott transition [75].

In this chapter we study the important example of the interacting Haldane

honeycomb model and address two main questions: Firstly, how can we effec-

tively describe the stability of the topological phase in the Haldane honeycomb

model towards electron-electron interactions? And secondly, how and when are

topological properties of the model destroyed when interaction effects become

more important, i.e. what is the nature of the Mott transition?
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Note that while some progress has been made in the description of interacting

Chern systems, in the bosonic case [15, 16], and both for spinless [15, 17, 18, 19]

and spinfull [20, 21, 22, 23, 24] fermions, and more generally in the description

of interacting topological systems [31], several central questions remain open.

Most importantly, the system we wish to study in this chapter, i.e. the interacting

spinless interacting Haldane model has not been convincingly solved by means

of an approximative model. The nature of the Mott transition has previously

been studied using methods of exact diagonalization [15, 17] and suggested it be

of first order. We will revisit this question within our approach and provide an

explanation that reaffirms this result.

4.1 Stochastic variables and Mean field theory

4.1.1 The model Hamiltonian

We start by introducing a model Hamiltonian which we aim to turn into an effec-

tive Hamiltonian via mean field theory. We consider the model Hamiltonian

H = H0 +HV , (4.1)

where H0 is the Haldane honeycomb model for spinless fermions at half-filling

[14] and HV is the nearest neighbor interaction, i.e.

H0 = − ∑
〈i,j〉

t1c†
i cj − ∑

〈〈i,j〉〉
t2e±iΦc†

i cj

HV = V ∑
〈i,j〉

(ni − 1/2)
(

nj − 1/2
)

. (4.2)

Here, t1 represents the nearest-neighbor hopping strength which we set to unity

hereafter (t1 = 1). Furthermore, t2e±iΦ represents the next-nearest neighbor hop-

ping term where we fix the Peierls phase to Φ = π/2, for simplicity. Here, the
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positive (negative) sign refers to (counter-) clockwise hopping and the second

nearest-neighbors are represented through the lattice vectors ui that we intro-

duced in Eq. 2.24.

We can then write the next-nearest neighbor bp displacements on the honey-

comb lattice in terms of the nearest neighbor ap displacements that we introduced

in Eq. 2.25. That means, we write bp as bi = aj − ak where the tuple (i, j, k) is

a permutation of the bond-tuple (x, y, z). As in Ref. [25], the ap basis does not

yield a Hamiltonian in Bloch form. Rather, we perform a gauge transform on the

Hamiltonian to the basis, given by the lattice vectors ui, see Fig. 2.1.

4.1.2 General remarks on the decoupling scheme

The model Hamiltonian that we considered in chapter 3 came in a quadratic form.

Therefore, we were able to treat it directly by means of band theory. In this chap-

ter, we consider interaction effects. Hence, we need to find a treatment of the

quartic terms such as

c†
i cic

†
j cj (4.3)

that appear in our Hamiltonian H. Previous studies [19, 18] have suggested that

at a mean field level the quartic interaction term can be decoupled into a charge

density wave (CDW) order parameter which then acts as a staggered potential

in sublattice space on H0. Hence, decoupling into this channel results in a order

parameter that controls the band gap of the Haldane model at the K-points and

therefore has a direct influence on the topological nature of the bands. This seems

like a reasonable approach and a straightforward way, proposed in Ref. [18],

would be to rewrite HV exactly as

HV = V ∑
〈i,j〉

(ni − 1/2)
(

nj − 1/2
)

=
V

4 ∑
〈i,j〉

(

ni − nj

)2
(4.4)



62 Chapter 4. Interaction effects in the Haldane honeycomb model

in order to find a simple mean-field theory for the CDW order.

Crucially however, this ansatz does not take into account the fact that the

correlator 〈c†
i cj〉 is finite in the Haldane model (in the form of nearest neighbor

hopping) and therefore contributes to the overall interaction energy 〈c†
i cic

†
j cj〉.

Hence, a valid decoupling scheme involving particle-hole channels has not been

considered previously in the case of interacting topological phases [19, 18]. When

particle-hole channels are not included, one finds the Mott phase transition to be

second-order [18].

Therefore, we propose to construct the most general decoupling scheme pos-

sible that includes all contributing channels. We will verify this scheme by vali-

dating our through energy computations in chapter 4.2.

4.1.3 Decomposition of the quartic term

Let us start by rewriting

HV = V ∑
i,p

(

ni −
1

2

)(

ni+p −
1

2

)

(4.5)

= V ∑
i,p,r

ηr

(

c†
i σr

i,i+pci+p

)2

− V

2 ∑
i,p

(

c†
i ci + c†

i+pci+p −
1

2

)

, (4.6)

where i denotes a unit cell, p runs over the links (x, y, z), r runs over (0, x, y, z) and

σr denotes the Pauli matrices acting on sublattice space with basis (i(A), i + p(B)).

Here, we introduced the coefficients ηr in the second line. The above transfor-

mation (from Eq. 4.5 to Eq. 4.6) is exact as long as the coefficients ηr fulfill the the

following relations

η0 = −ηz, ηx = ηy,
1

4
= η0 − ηx. (4.7)
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As previously noted, we wish in principle to choose the ηr such that the decou-

pling scheme incorporates particle-hole channels (i.e. ηx,y ∕= 0) that contribute to

the total energy. A priori, a generic choice of the ηr that will ultimately minimize

the total energy of the effective Hamiltonian correctly, is not obvious. Rather, a

choice of coefficients ηr needs to be justified by means of energetic analysis which

will be conducted in chapter 4.2.

A posteriori, from the energetic point of view the correct choice of coefficients

ηr is

− η0 = ηx = ηy = ηz = −1

8
. (4.8)

We can now write down the partition function and action in momentum space

as

Z =
∫

D(Ψ, Ψ†)e−S , (4.9)

S =
∫ β

0
dτ ∑

k

Ψ†
k (∂τ + h0(k) · σ)Ψk +HV

with the spinor basis Ψ†
k =

(

c†
kA, c†

kB

)

such that

hx
0(k) = −t1 ∑

p

cos(k · ap), (4.10)

h
y
0(k) = −t1 ∑

p

sin(k · ap),

hz
0(k) = −2t2 ∑

p

sin(k · bp).

4.1.4 Hubbard-Stratonovich transformations

Now, we decouple the quartic interaction term HV via a Hubbard-Stratonovich

transformation. We follow [76] and distinguish between r ∈ {x, y, z} and r ∈ {0}

since the corresponding exponential terms come with different signs (due to the

choice of the ηr in Eq. 5.26).
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For r ∈ {x, y, z} we obtain

exp

(

V

8 ∑
i,p

(

c†
i σr

i,i+pci+p

)2
)

=

∫
Dφr exp

(

−∑
i,p

2V(φr
i+p/2)

2 + Vφr
i+p/2

(

c†
i σr

i,i+pci+p

)

)

,

(4.11)

and for r = 0

exp

(

−V

8 ∑
i,p

(

c†
i σ0

i,i+pci+p

)2
)

=

∫
Dφ0 exp

(

−∑
i,p

2V(φ0
i+p/2)

2 + iVφ0
i+p/2

(

c†
i σ0

i,i+pci+p

)

)

.

(4.12)

Here we introduced for each r an auxiliary field φr
i+p/2 on each link between lat-

tice sites i (on sublattice A) and i + p (on sublattice B). The fields φx and φy are

particle-hole channels, φ0 corresponds to a chemical potential and φz to a stag-

gered chemical potential in sublattice space that captures CDW order. Impor-

tantly, φz acts at the same time as a Semenoff mass term on the Haldane model

and therefore controls the topological Chern number of the bands.

Now, we rewrite the decoupled interaction part in Fourier space and obtain

the partition function and action

Z =
∫

D(Ψ, Ψ†, φ0, φx, φy, φz)e−S , (4.13)

S =
∫ β

0
dτ ∑

k

Ψ†
k (∂τ + h0(k) · σ)Ψk

+ ∑
k,q,p

Ψ†
qhV(k, q, p)Ψk + ∑

k,r

6Vφr
kφr

−k, (4.14)
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where we introduced the matrix hV(k, q, p) which can be interpreted as an inter-

action density matrix. Explicitly, it reads

hV(k, q, p) = V







e−
i
2
(k−q)·ap

(

iφ0
k−q + φz

k−q

)

− 1
2 e

i
2
(k+q)·ap

(

φx
k−q − iφ

y
k−q

)

e−
i
2
(k+q)·ap

(

φx
k−q + iφ

y
k−q

)

e
i
2
(k−q)·ap

(

iφ0
k−q − φz

k−q

)

− 1
2






.

(4.15)

In principle, one could also assign an imaginary time variable τ to the stochastic

variables. Then this would result in a frequency dependence of the variables φr
k.

Below, we develop a variational approach to evaluate the stochastic vari-

ables within the ground state properties through an energy-minimization proto-

col. Therefore, we consider below a time-independent, static model and therefore

restrict the analysis to the zero frequency contribution. For ground-state observ-

ables, this stochastic variational approach is in good agreement with an iDMRG

approach which was performed as a complementary method to validate the re-

sults [26]. As we also show below, fluctuations of the stochastic variables around

their value for the minimum of energy is well controlled.

Furthermore, we restrict the discussion to leading contribution in k-space for

which scattering does not change momentum. Hence, we keep only the zero mo-

mentum contribution, i.e. k − q = 0. It’s important to remind that sampling

stochastic variables in time suffers from the sign problem for the fermionic Hal-

dane model, which justifies our present approach. It should be emphasized that

to reproduce ground-state properties, one cannot ignore the particle-hole channel

φx.

The action S now takes the form

S = ∑
k

Ψ†
k

(

h0(k) · σ + ∑
p

hV(k, p)

)

Ψk + ∑
k,r

6Vφr
kφr

−k, (4.16)
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where the interaction density matrix now reads

hV(k, p) = V







−
(

φ0 + 1
2

)

+ φz eik·ap (φx − iφy)

e−ik·ap (φx + iφy) −
(

φ0 + 1
2

)

− φz






. (4.17)

Here, we skipped the zero-momentum index of the fields, i.e. φr ≡ φr
0, and re-

defined the chemical potential −iφ0 → φ0 such that φ0 is now real for the matrix

hV(k, p) to be Hermitian (where it was imaginary before the substitution, such

that iφ0 was real).

We set

Hmf(k) = h0(k) · σ + ∑
p

hV(k, p), (4.18)

and finally arrive at the effective mean field Hamiltonian

Hmf = ∑
k

Ψ†
kHmf(k)Ψk (4.19)

where the mean field Hamiltonian density in matrix form reads

Hmf(k) =







γ(k)− 3V(φ0 + 1
2 ) −g(k)

−g∗(k) −γ(k)− 3V(φ0 + 1
2 )






, (4.20)

with the functions γ(k) and g(k) defined as

γ(k) = 3Vφz − 2t2 ∑
p

sin(k · bp), (4.21)

g(k) = [t1 − V(φx + iφy)]∑
p

(

cos(k · ap)− i sin(k · ap)
)

. (4.22)

The term 3Vφz assumes the role of a Semenoff mass term [35] in the Haldane

model, whereas the fields φx and φy renormalize the nearest neighbor hopping

amplitude t1.

The field φ0 can be absorbed in the chemical potential and will be fixed to φ0 =
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−1/2 at half-filling. The field φz changes sign in sublattice space and therefore

plays the role of a staggered chemical potential. On the one hand, it measures

the particle density difference between sublattices A and B, and captures CDW

order. Furthermore, it acts as a Semenoff mass term [35] on the Haldane model

and therefore controls the Chern number of the system [14]. The variables φx

and φy dress the nearest-neighbor hopping term and assuming t1 is real then this

favors φy = 0 while φx ∕= 0. The φz variable is also real in the definition of the

Hubbard-Stratonovitch transformation.

4.1.5 Self consistent mean field equations from a variational approach

Before deriving the self-consistent equations of the mean field Hamiltonian Eq.

4.20, we provide a general remark on the derivation of self-consistent mean field

equations.

Consider some general Hamiltonian H = Ht + HInt with a quadratic, kinetic

part Ht and a quartic interaction part of the form HInt = −∑i,j Uijc
†
i cic

†
j cj ≡

−∑i,j niUijnj with interaction matrix Uij. The quartic term can be decoupled by

means of a Hubbard-Stratonovich transformation as [77, 76]

exp
(

niUijnj

)

=
∫

dφ exp
(

−φiUijφ
j − 2φiUijnj

)

, (4.23)

where we introduced some Gaussian auxiliary variable φ. From the partition

function and action

Z =
∫

D(c, c†, φ) exp (−S) , (4.24)

S =
∫ β

0
dτ ∑

i,j

c†
i (∂τ + ht) cj + φiUijφ

j + 2φiUijnj,
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one then usually [77, 78] computes the self consistent mean field equations via

〈

δS

δφi

〉

!
= 0, (4.25)

which would yield in the above example

0 =
〈

Uijφ
j + 2Uijnj

〉

⇒ φj = −2
〈

nj

〉

. (4.26)

Now, the problem is that this result is not unique. The auxiliary field φ can be

thought of as gauge field. Essentially, we can make a transformation as φi → αφi

in Eq. 4.23 with some factor α to obtain

S =
∫ β

0
dτ ∑

i,j

c†
i (∂τ + ht) cj + α2φiUijφ

j + 2αφiUijnj. (4.27)

This produces the self-consistent mean field equation

〈

δS

δφi

〉

!
= 0, ⇒ φj = −2

α

〈

nj

〉

. (4.28)

Hence, the self-consistent mean field equation depends on α and is therefore not

gauge independent. The problem arises, as we only minimize the action (or en-

ergy) of the decoupled, φ-dependent Hamiltonian. Instead, we need to minimize

the energy of the decoupled Hamiltonian (which can be seen as a choice of a trial

Hamiltonian) with respect to the original, quartic Hamiltonian. This can be done

in the following way.

Let Hmf be (a choice of) a mean field or trial Hamiltonian and H the original,

full Hamiltonian. Then, we can rewrite formally H = Hmf + (H−Hmf). On the

level of the free energy it follows the Bogoliubov inequality [79, 80]

F ≤ Fmf + 〈F −Fmf〉 . (4.29)
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The right hand side of the inequality is a function of the mean field parameters

and we need minimize it with respect to φ. In our case, for the full Hamiltonian

H in Eq. 4.2 and the mean field Hamiltonian in Eq. 4.20, we obtain the following

set of self-consistent mean field equations

φ0 =− 1

2

(〈

c†
i ci

〉

+
〈

c†
i+pci+p

〉)

, (4.30)

φx =− 1

2

(〈

c†
i ci+p

〉

+
〈

c†
i+pci

〉)

, (4.31)

φy =− 1

2
i
(

−
〈

c†
i ci+p

〉

+
〈

c†
i+pci

〉)

, (4.32)

φz =− 1

2

(〈

c†
i ci

〉

−
〈

c†
i+pci+p

〉)

, (4.33)

or in short hand notation using Pauli matrices

φr = −1

2

〈

c†
i σr

ijcj

〉

. (4.34)

The real space amplitudes are evaluated as mean over all lattice sites, for instance

〈

c†
i ci+p

〉

=
2

Nsites
∑
k

eik·ap

〈

c†
kAckB

〉

(4.35)

=
2

Nsites
∑
k

∑
µ′,ν′

eik·apM∗
kAµ′MkBν′

〈

γ†
kµ′γkν′

〉

=
2

Nsites
∑
k

∑
λ

eik·apM∗
kAλMkBλ.

In the first line, we performed a Fourier transform of the creation and annihilation

operators in real space. In the second line, we used γk = M†
kψk where Mk is a

unitary matrix that diagonalizes Hmf. The new spinor basis fulfills
〈

γ†
kµ′γkν′

〉

=

δµ′ν′ for occupied states. In Eq. 4.36, µ′ and ν′ run over all states, whereas λ in Eq.

4.36 runs only over occupied states. The results below are obtained when solving

the coupled equations above.
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4.1.6 Numeric solution to the self consistent mean field equations

In Fig. 4.1a), we present a two-dimensional t2 − V phase diagram obtained from

the variational the mean-field theory approach. We confirm the presence of two

phases [15, 16], a Chern insulator (CI) phase with a perfectly quantized Chern

number and a Mott or charge density wave (CDW) phase. The CDW phase is

characterized by a non-zero value of 〈nA − nB〉 or φz; as long as 〈nA − nB〉 is

not equal to unity, then φx can remain finite above the transition as a result of

quantum fluctuations. Fig. 4.1c) shows the numerical solution of the mean field

equations for t2 = 0.1. The jump in the CDW order parameter φz indicates the

first-order phase transition. Here, we give some physical insight on the occur-

rence of a jump in φz, which is evaluated at the wave-vector k − q = 0.

At the Mott transition, the gap closes at one Dirac point such that for the

ground state we have 〈nA(K)〉 = 〈nB(K)〉 whereas the gap remains visible at

the other Dirac point such that 〈nA(K
′)〉 = 1. In real space, the system behaves

(approximately) as if 〈nA − nB〉 ≈ 1/2 on a given unit cell and |φz| ≈ 1/4. It’s

relevant to highlight that the variable φz entering in the diagonal terms of the

2 × 2 matrix describing hV is taken at the wave-vector k − q = 0 instead of a

Dirac point, corresponding then to an average on all the unit cells of the lattice

in real space. This argument implies a jump in the quantum Hall conductivity

at the Mott transition. The closing of the gap at the K point gives a critical inter-

action value Vc ≈ 4
√

3t2 to enter into the Mott regime, suggesting then a linear

relation between Vc and t2 as observed in the phase diagram. In the stochastic ap-

proach, the particle-hole channel allows us to determine quantitatively 〈nA(K)〉

and 〈nB(K)〉 and the value of φz at wave-vector k − q = 0 according to Eq. 4.36,

which then results in the phase diagram of Fig. 4.1. The linear relation between

Vc and t2 remains visible for the range of studied parameters.
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FIGURE 4.1: (a) V − t2 mean field phase diagram from the method.
The transition marks the condensation of the CDW order param-
eter φz. (b) Same phase diagram obtained with iDMRG [26]. (c)
Absolute value of the self-consistent φr variable as a function of V

for t2 = 0.1. (d) Hall conductivity and 〈nA − nB〉 from iDMRG.

We compare [26] our mean field calculations with simulations using the in-

finite density matrix renormalization group (iDMRG) by means of the python

package TENPY [81], written in the language of matrix product states. This nu-

merical method calculates the ground-state of the model Eq. 4.2 in the infinite

cylinder geometry, as well as the expectation of the CDW order parameter, 〈nA − nB〉,

the Hall conductivity σxy, the correlation length ξ and the entanglement entropy

S. The bond dimension χ is a measure of the maximum number of states kept

by the algorithm, and sets the accuracy of the calculation. We have performed

[26] calculations up to χ = 1200 for cylinder circumferences of Ly = 6, 12 sites

and our results show good convergence for bond dimensions as low as χ ≳ 200,
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consistent with previous iDMRG calculations [82].

The phase diagram for χ = 200 and Ly = 6 is shown in Fig. 4.1b). In Fig. 4.1d)

we show the CDW order parameter and the Hall conductivity along a cut at

t2/t1 = 0.1, which show a discontinuity along the transition for all χs. These

discontinuities are typical of a first-order phase transition, further supported by

the saturation of the entanglement entropy at the transition as a function of cor-

relation length. Comparing iDMRG results with the mean-field variational ap-

proach, our findings agree as long as the smallest band gap (relevant energy scale

for CDW order) is located at the K-points (relevant for topology), which is the

case for t2 ≤ 0.2, cf. Fig. 2.4. Therefore, we focus on this parameter regime.

4.2 Energetic analysis of the phase transition

We find at the mean field level a jump of the CDW order parameter φz at the phase

transition for the choice of parameters regime. In Fig. 4.2 (top), we show the CDW

order parameter as a function of V for different fixed values of t2 ranging between

t2 = 0.08 and t2 = 0.20. Here, the self-consistent mean field equations where

solved for increasing V in small steps of ∆V = 0.0005 in order to show clearly

the jump in the order parameter φz. The jump becomes smaller the smaller t2

is. Therefore, at the mean field level, a clear indication of a first order phase

transition can only be given when t2 is sufficiently large, i.e. at the order of t2 ∼

0.1. From the Ginzburg-Landau and mean field theoretical point of view, a clear

analysis of the nature of the mean field analysis for t2 < 0.05 is not possible,

the phase transition appears at most rather weakly first order when t2 is close to

zero. This observation seems to be in accordance with the literature [83], where a

second order phase transition is predicted for vanishing t2.

From our perspective, the regime of small t2 seems therefore to be the middle

ground between the clear indication of a first order phase transition in the range
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t2 ∈ (0.08, 0.20) and the second order phase transition for vanishing t2.
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FIGURE 4.2: CDW order parameter from mean field theory (φz,
top) and iDMRG (Ly = 6, χ = 200, bottom) as a function of the
interaction strength V/t for different values of the next-nearest
neighbor hopping amplitude t2. In both cases the smaller t2

the smaller the jump in the order parameter (in agreement with
known results in the literature for t2 = 0 [83]). In the mean field
diagram (left), we computed a solution to the self-consistent equa-
tions in small incremental steps of ∆V = 0.0005 in order to show
clearly the jump in the order parameter for the values of t2 under

investigation.

In order to confirm a first order transition on the mean field level for suffi-

ciently large t2, we evaluate the total free energy of system. Let |Ωmf〉 denote
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the mean field ground state which in general depends on the self-consistently ob-

tained field φr, i.e. |Ωmf〉 ≡ |Ωmf〉φ . Then, we compute the free energy of the

system via F (φ) = 〈Ωmf| H |Ωmf〉 ≡ 〈H〉 where H = H0 +HV is the original

Hamiltonian Eq. 4.2. This calculation involves exactly decomposing the quartic

term ninj = c†
i cic

†
j cj using Wick’s theorem [77] as

〈c†
i cic

†
j cj〉 = 〈c†

i ci〉〈c†
j cj〉 − 〈c†

i c†
j 〉〈cicj〉 − 〈c†

i cj〉〈c†
j ci〉. (4.36)

The amplitudes such as 〈c†
i ci〉 are then evaluated similarly to the computation

leading to Eq. 4.36.

Evaluating the energy in both phases around the transition shows that the

energy curves cross at the transition line, see Fig. 4.3a) for t2 = 0.2. This indi-

cates a first order transition as the parameter will jump at the transition to the

energetically preferable solution.

This can be further confirmed by computing the energy explicitly for small φz

around the saddle-point solution right before the phase transition (also for t2 =

0.2). The curve obtained, Fig. 4.3b), shows a typical Mexican hat form [77] with

co-existing minima. We build a Ginzburg Landau theory, i.e. an expansion of the

free energy curve. Finding appropriately relevant terms until the order (φz)6 is a

difficult task here because V is large as well as φx, and therefore we perform this

task numerically. The free energy can be approximated by a polynomial of the

form

F (φz) = F0 + α(φz)2 + β(φz)4 + γ(φz)6, (4.37)

where the coefficients fulfill in general [84] α > 0, β < 0, and γ > 0 to ensure the

co-existence of local minima and that the free energy is bounded from below. We

fit such a polynomial to the energy computed very close to the phase transition

for different values of t2. The results are shown in Table 4.1. In general, it is

difficult to compare these coefficients for different values of t2. For each value of
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F0 α β γ

t2 = 0.20 and
V = 1.6250

-2.0913 0.0402 -1.5045 15.6428

t2 = 0.08 and
V = 1.2074

-1.8445 0.0001 -0.2575 70.7487

t2 = 0.12 and
V = 1.3610

-1.8974 0.0010 -1.5419 31.4482

t2 = 0.14 and
V = 1.4250

-1.9232 0.0212 -1.2630 6.7646

TABLE 4.1: Ginzburg-Landau coefficients (of the polynomial Eq.
4.37). The coefficients for different values of t2 are in general dif-
ficult to compare since we need for each t2 to fix some V manu-
ally close to the phase transition, and the coefficients are subject
to change in magnitude when only moving slightly towards the
phase transition or away from it. Comparing signs is however
possible, and the configuration at hand (α > 0, β < 0, and γ > 0)

determines a first order phase transition [84].

t2 we need to fix a V that is close to the phase transition in order for Eq. 4.37 to

be valid. Varying V in the vicinity of the phase transition slightly, i.e. moving

either towards the phase transition or away from it, may change the magnitude

of the coefficients in Table 4.1. However, we can make a statement on the signs

of the coefficients. Since we get across all values of t2 a consistent configuration

of α > 0, β < 0, and γ > 0, we can confirm the first order nature of the phase

transition [84].

Furthermore, note that a plot of the energy landscape around a mean field

solution such as Fig. 4.3b) is an important tool to check the validity of the mean

field theory. If relevant mean field parameters are omitted, their weight is not cor-

rectly adjusted (the parameters ηr introduced above) in the self-consistent equa-

tions and the energy curve will not show a minimum.
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a) b)

FIGURE 4.3: (a) Energy of the CI and CDW Mott phases obtained
from mean field theory at t2 = 0.2. The curves cut in one point,
forcing the CDW order parameter to jump as the system abruptly
prefers to change the phase in order to minimize energy. (b) En-
ergy landscape around the mean field solution at t2 = 0.2 as a
function of the CDW order parameter φz at the phase transition.
The coexistence of local minima indicates a first order transition

according to Ginzburg-Landau theory.

4.3 Probing topology with light response

4.3.1 Circular dichroism of light at the Dirac points

In the theory chapter 2.3.5 we introduced the circular dichroism of light which

had been suggested as a measure of the topological invariant of the Chern num-

ber [49, 50]. Shining light on a Chern insulator induces a population of the states

in the upper band, above the band gap. The associated depletion rates and pho-

tocurrents [51] depend on the orientation of the circular drive. The Chern number

is encoded in the difference of rates with opposite orientation.

Now, we address the formulation of the Chern number in terms of the light

responses of the CI to circularly polarized light with different polarizations [49].

The topology in the Haldane honeycomb model is encoded in the high sym-

metry K and K’ points. As described in previous sections, the topology arises

from the mass inversion at one of the two Dirac points.

The circular dichroism of light as introduced in Ref. [49] considers on the

other hand the light response of the entire Brillouin zone to probe the topology
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of an Chern insulator. In the case of the topological Haldane model, the natural

question arises whether investigating the light response of the high symmetry K

and K’ points is maybe already sufficient to probe the topology since the relevant

information on mass inversion is encoded here.

In fact, it can be shown [26] that it suffices to consider the light response at

the Dirac points K and K’ only in order to retrieve information of the topology in

the Haldane honeycomb model. By expressing the transition amplitudes from the

lower to the upper band in terms of eigenstates on the Bloch sphere, one can show

[26] that the depletion rates Γ±
l→u(k = K, K′) encode the mass term |m| = 6

√
3t2

which determines the size of the band gap at the K-points.

Note that the next-nearest neighbor hopping term t2eiΦ breaks time-reversal

symmetry in the Haldane model, and therefore leads to different signs of m at

the K and K’ points, and therefore, to non-trivial topology [14]. Numerically, we

verify this observation by considering the depletion rate as derived in Ref. [49]

Γ±
l→u (ωk, k) =

2π

h̄

(

A0

h̄ω

)2

|Al→u|
2 δ

(

εk
u − εk

l − h̄ω
)

(4.38)

and

Γ±
l→u (ωk) = ∑

k∈BZ

Γ±
l→u (ωk, k) . (4.39)

Here, the transition amplitude is given by

Al→u = 〈uk|
1

i

∂H0

∂kx
∓ ∂H0

∂ky
|lk〉, (4.40)

where A0 is a light-matter coupling constant with dimensionally equivalent to a

vector potential in the original basis, |uk〉 and |lk〉 are the eigenstates correspond-

ing to the lower and upper bands, εk
l,u their eigenenergies, and the ± selects the

polarization orientation. The sum on the momenta k involves the entire Brillouin

zone.
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The mass inversion occurring at one of the Dirac points is the source for the

non-trivial topology in the Haldane model [14] and as it has been shown on the

Bloch sphere [26], we can restrict ourselves to the Dirac K and K’ points, i.e.

the substitution ∑k∈BZ → ∑k=K,K′ . We verify numerically that we can evalu-

ate the Chern number in the non-interacting Haldane model with the formula at

the Dirac points only, and find for the frequency-integrated rates

1

2

∫
∞

0
dω ∑

k=K,K′

Γ+
l→u (ωk, k)− Γ−

l→u (ωk, k) = ρC (4.41)

with the constant

ρ = 16π3A2
0

√
3 |t1|

2 m−2. (4.42)

In the non-interacting case, the number C is one in the topological non-trivial

phase of the Haldane model and exactly zero otherwise, and is thus the (ground

state) Chern number.

4.3.2 Ground state circular dichroism

Using the light response of the entire Brillouin zone Eq. 4.38, we now compute the

circular dichroism of light of the ground state of the effective mean field model

of the interacting Haldane honeycomb model. In the mean field ground state,

we find as expected that the topological Chern number is exactly one as in the

CI phase and exactly zero in the CDW phase. However, when considering the

light response of the Brillouin zone, we can still reveal differences in the depletion

rate profiles for increasing interaction strength V, even though the Chern number

does not change. Figs. 4.4 (a-c) visualize the results. 4.4 (a) and (b) show the

ground state depletion in the TI phase (both have Chern number equal to one)

for different interaction strengths V. In the TI phase, the CDW order parameter

is zero. On the other hand however, the particle-hole channel φx is finite (cf. Fig.

4.1) and renormalizes thus for increasing V the function g in Eq. 4.22 which leads
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a) b)

c) d)

FIGURE 4.4: (a-c) Ground state depletion rate Γ± ≡
∑k∈BZ Γ±

l→u(ωk, k) as a function of frequency for t2 =
0.1 and different fixed values of the interaction strength
V. (d) Stochastic frequency-integrated depletion rate Γ± ≡∫

dω ∑k=K,K′ Γ±

l→u(ωk, k) at the Dirac points as a function of V.

to the difference in depletion rate profile in Eq. 4.4 (a) and (b). Finally, considering

Fig. 4.4 (c), the sign flip of the mass term at one K-point at the CDW transition is

reflected by regions of blue curve (Γ+) turning red (Γ−).

4.4 Stochastic Chern number

Here, we introduce the stochastic Chern number which accounts for the pro-

duction of particle-hole pairs in the topological phase due to deviations of the

stochastic variables from their ground state values, and more precisely, when

sampling on the whole distribution of stochastic variables. First, we show that

this formalism can e.g. describe randomness in the nearest-neighbors’ interac-

tion induced by a fluctuating staggered lattice potential and include the effect of

an interacting environment [85, 86].
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Then, we apply the methodology to study the light response and the Mott

transition. We also show an analogy with temperature effects in the production of

particle-hole pairs. This formalism then allows to classify different mechanisms

creating particle-hole pairs due to interaction effects, regarding their topological

response.

4.4.1 Stochastic Topological Number and Interpretation as a Disordered

Situation

Here, we show that the sampling on the stochastic variable φz can be equally

understood as a sampling on the interaction strength V. These arguments below

then show that the stochastic topological number corresponds to situations with

a slightly disordered interaction strength. Since we also have nAnB = φ̂2
0 − φ̂2

z ,

we deduce that fluctuations in the interaction V between nearest-neighbour sites

can be produced either by a fluctuating mean-density or a fluctuating staggered

potential on the lattice corresponding to a Semenoff mass with zero mean and a

Gaussian distribution.

We define the stochastic topological number as

C =
∫ +∞

−∞

dφP(φ)C(φ), (4.43)

with φ = φz and the Gaussian distribution

P(φ) =
1

√

2πξ(V)
e−

1

2
(φ−φmf)

2ξ−1(V), (4.44)

with ξ(V) = 1/(12V).

Since C can be equally measured through the pseudo-spin magnetizations

〈σz〉 at the poles [26], this is equivalent in this calculation of C as if φx = φy = 0

since g(k) = 0 at the poles in the Hamiltonian hV of Eq. 4.15. For a given value of
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V, we can insert the precise value of φmf obtained from the variational mean-field

approach with simply φmf = 0 in the topological phase.

From statistical physics arguments, then we have

〈σz(φ)〉 = 1

Z
Tr

(

e−βhV σz
)

, (4.45)

assuming θ values equal to 0 and π. Therefore, Eq. 4.43 is then equivalent to

define the ensembled-averaged variable

〈σz〉 =
∫ +∞

−∞

dφP(φ)〈σz(φ)〉. (4.46)

Now, hV is symmetric under the variables φ and V. Therefore, we equivalently

have

〈σz〉 =
∫ +∞

−∞

dṽP(ṽ)〈σz(ṽ)〉, (4.47)

with

P(ṽ) =
1

√

2πξ(V)
e−

1

2
ṽ2ξ−1(V) (4.48)

where ṽ = (Ṽ −V)/V = φ − φz
mf measures deviations from the mean value V for

the interaction strength between sublattices A and B. Including fluctuations, the

diagonal term in Hmf in Eq. 4.20 now involves 3Vṽ + 3Vφz
mf showing the relation

with a fluctuating staggered potential equal to 3Vṽ. From the formulation of

C as a current density we infer that the stochastic topological number can be

measured through the quantum Hall conductivity and the circular dichroism of

light corresponding e.g. to an average on different samples.

Eq. 4.43 is therefore useful to describe lattice effects or the effect of an interact-

ing environment. As the term 3Vφz plays the role of a Semenoff mass term acting

on the Haldane model in Eq. 4.21, we can also define - for a given V - φz
c such

that 3V|φz
c | = 3

√
3t2. Then, all states with |φz| < |φz

c | produce a Chern number

C(φ) = 1 to Cst while all other |φz| contribute zero.
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a) b)

FIGURE 4.5: (a) Band structure (blue pair of bands) for small t2 <

0.2 with t1 = 1. The low energy physics is centered around the
Dirac points, where the stochastic approach applies. If we allow
for fluctuations at V > 0, the sampling of φz corresponds to the
creation of quasi states that change the band gap at the K and K’
points. (b) Haldane band structure for large t2 > 0.2 such that the

low energy regime is located at the M-points.

When V approaches (energetically) the order of the the smallest band gap

around the K-points in Fig. 2.4a), particle-hole pairs will start to form and this

leads to the formation of a mixed state. The stochastic topological number is

equivalent to

Cst = 1 − 2
∫ +∞

|φz
c |

dφP(φ). (4.49)

The integral goes to zero when V → 0 corresponding to a pure (ground-)state,

justifying that in this case Cst = Cgs = 1. For small interactions, C can be approx-

imated as

Cst = 1 − 2
∫ +∞

|φz
c |

dφP(φ)δ(φ ∼ |φz
c |) ≈ 1 − 2P(φ ∼ |φz

c |), (4.50)

keeping the dominant term in the series development of the erfc-function. There-

fore, this leads to

Cst − 1 ∝ e−m2/(kBTe f f )
2

(4.51)

with kBTe f f ∝
√

V. This argument then shows that deviations from unity of the

topological number come from the creation of particle-hole pairs. This implies
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that fluctuations in the interaction strength or fluctuations in the charge environ-

ment on the lattice is equivalent to produce a finite probability to reach the upper

band. In this sense, the definition of the stochastic Chern number can describe the

effect of interaction-induced particle-hole pairs in the topological phase. We also

observe that Ṽ plays a similar role as a Landau-Zener mechanism on the sphere

[87]. In this sense, the stochastic Chern number may find various applications.

The parameter kBTe f f above leads to an analogy with temperature effects that

we study below in Sec. 4.4.4.

4.4.2 Light-Matter Response and Mott Transition

To evaluate the light response in a mixed state, we consider Eq. 4.41, substitute

H0 → Hmf and here sample all the stochastic variables with a distribution P(φr)

according to Eq. 4.44. Importantly, φz acts as Semenoff mass term on the Hal-

dane model modifying the band gap at the Dirac points. Sampling φz around

the saddle point solution generates excited states with smaller energy band gaps,

see the light red bands in Fig. 4.5a). We sample the fields (φx, φy, φz) = φ ac-

cording to P(φr) while keeping the chemical potential constant at half-filling, i.e.

φ0 = −1/2. In Fig. 4.4d), we show the evolution of the ensemble-averaged rates

Γ+ and Γ− as a function of V, when sampling on the variables φ. These variables

are now hidden in the eigenenergies in Eq. 4.38.

For each configuration we can also associate a φ-dependent Chern number

C(φ) via Eq. 4.41 that will be either one or zero. Then, for completeness, we

evaluate

Cst ≡
∫ +∞

−∞

dφP(φ)C(φ), (4.52)

which can take non-integer values when it refers to a mixed state. Computing

Cst for 105 random configurations, as a function of V, then we obtain the result

in red in Fig. 4.6a), which can be compared to the ground state Chern number



84 Chapter 4. Interaction effects in the Haldane honeycomb model

*
*

*
*
* * * * *

*
*
* * * * * *

*

a) b)

FIGURE 4.6: (a) Evaluation of the ground state Chern number Cgs

and stochastic Chern number Cst as a function of V. The grey
curve comes from the analytical formula in Eq. (4.50). (b) Cth from

Eq. (4.54) at V = 0 as a function of kBT.

Cgs in blue obtained when φz = φz
mf. The quantity Cgs determines the quantum

Hall conductivity, in agreement with iDMRG (see Fig. 4.1d)) and with the Bloch

sphere arguments.

Hence, we can also write Cst via Eq. 4.50, which results in the grey curve in

Fig. 4.6a). This highlights the correspondence between the ensemble-averaged

values of Γ+ − Γ− in Fig. 4.4d), and Cst as a function of V. It’s interesting to

observe that Cst still reveals the first-order Mott transition through a small jump

in Fig. 4.6a).

4.4.3 Energy distribution of excited quasi particles

Finally, we would like to comment on the stochastic approach to the interacting

Chern insulator from the energetic point of view. Allowing the mean field pa-

rameters φr to fluctuate around the saddle point solution changes the energy of

the quasi state under consideration. We sample the fields φx,y,z and for each con-

figuration we can compute the energy of this quasi state with respect to the wave

function

|Ω〉 ≡ |Ω(φx, φy, φz)〉 . (4.53)
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FIGURE 4.7: Energy of the mean field ground state as function
of V (red line). Also shown is the energy distribution of quasi
states obtained from sampling (φx, φy, φz) = φ around the sad-
dle point. This creates quasi-excited states at energies higher than
the mean field ground state. Each quasi-state can be attributed
a Chern number C(φ) which will be either one (green) or zero

(blue).

Repeating this procedure for 103 sampled configurations of the φx,y,z for each

respective V yields Fig. 4.7. The red line gives the energy of the mean field ground

state which is the lowest energy state for each V. Sampling the φp fields will result

in a quasi state at a higher energy. Each quasi state can be associated with a Chern

number of either one or zero (depending on φz).

For small V, the mean field ground state (red line) as well as states close to

it have Chern number one. Close to the phase transition, it then becomes more

likely to create a state with Chern number zero when moving away from the

saddle point. At the phase transition, the ground state acquires Chern number

0 and for further increasing V it becomes more and more unlikely to create an
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excited state with non-trivial topology. This analysis also shows the occurrence of

a jump in the topological Chern number at the phase transition, from the ground

state, as obtained with iDMRG in Fig. 4.1d).

4.4.4 Analogy with Temperature Effects

Here, we also formulate an analogy with the finite-temperature version of the

Hall conductivity [88] and introduce a finite-temperature version of Eq. 4.41

1

2

∫
∞

0
dω ∑

α,k

(

pkΓ+
α (ωk, k)− pkΓ−

α (ωk, k)
)

= ρCth (4.54)

where

pk = (1 + exp(εk
u,l/kBT))−1 (4.55)

is the Fermi distribution, kB is the Boltzmann constant, and the variable α here

refers to {l → u, u → l} such that pk effectively mixes the states of the lower

and upper band. We then allow in Eq. 4.54 for heating of the bulk to contribute

to Cth [88]. From Eq. 4.54, we find that at low temperatures (kBT ≪ m), the

finite-temperature Chern number Cth decreases smoothly as

1 − e−m/kBT (4.56)

in Fig. 4.6.

In the presence of interactions, we observe an analogy with heating in the

sense that the probability to create a particle-hole pair in the topological phase

will be dominated by values of |φz| ∼ |φz
c |, producing a reduction of Cst evolving

as

P(|φz| ∼ |φz
c |) ∝ e−m2/(kBTe f f )

2

(4.57)

from Eq. 4.20, with an effective temperature such that kBTe f f ∝
√

V in Fig. 4.6.



4.4. Stochastic Chern number 87

We also observe a similar behavior of C in the presence of band-crossing ef-

fects on the Bloch sphere [87], which then suggests various possible further ap-

plications of this formalism.
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Chapter 5

Analytical approach to the

Kane-Mele-Hubbard model

In the previous sections, we learned that Haldane [14] proposed a model that re-

alizes the IQHE without an external magnetic field. We reviewed how Haldane

outlined how to explicitly break time-reversal symmetry in order to induce non-

trivial topology in the bulk of graphene. While Haldane published his seminal

paper in 1988, his ideas gained traction almost twenty years later when Kane and

Mele [73, 89] and independently Zhang and Bernevig [90] described the Quan-

tum Spin Hall Effect (QSHE). The QSHE is realized [73] by two copies of a Hal-

dane model, where the Peierls phases Φ are chosen to be π and −π, respectively.

Hence, (the lower band of) one copy carries a Chern +1, while the other one car-

ries a Chern number of −1, cf. Fig. 2.3. The interpretation is that each copy

corresponds to a spin- 1
2 particle with opposing chirality, i.e. a ↑-particle with pos-

itive chirality (Chern number +1) and a ↓-particle with negative chirality (Chern

number −1). Thus, in contrast to the Haldane model, the Kane-Mele model fea-

tures counter-propagating, spin-filtered helical edge modes and most importantly,

does not break time reversal symmetry.

Crucially, we note that the total Chern of the Kane-Mele vanishes, i.e. 1 − 1 =

0. This hints that the Chern number is indeed not a suitable quantity in order to
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classify the Kane-Mele model topologically. In fact, the helical nature of the edge

modes in the Kane-Mele model points to a Z2 topological invariant which we will

introduce in this section. Therefore, the Kane-Mele is the prototypical model of

the so-called Z2 topological insulator.

5.1 The Kane-Mele model

5.1.1 Model Hamiltonian

Mathematically, the Kane-Mele model [73, 89, 47, 11, 31] can be written in real

space as

HKM = −t1 ∑
〈i,j〉

∑
α

c†
iαcjα − it2 ∑

〈〈i,j〉〉
∑
α,β

νijc
†
iασz

αβcjβ (5.1)

Here, c†
iα and ciα denote regular fermionic creation and annihilation operators, re-

spectively. t1 and t2 are the amplitudes of the nearest-neighbor and next-nearest

neighbor hopping, respectively. That means that 〈i, j〉 denotes nearest neighbor

lattice sites while 〈〈i, j〉〉 denotes next-nearest neighbors. Furthermore, the coeffi-

cient νij changes sign, i.e. νij = ±1 depending on whether going from i to j means

moving clockwise or counter-clockwise around the plaquette. Moreover, σz de-

notes the third of the Pauli matrices that span spin space of the spin components

α, β ∈ {↑, ↓}. Finally, note that we here present a version of the Kane-Mele model

that does not consider Rashba spin-orbit coupling, [11].

We switch from real to momentum space by using the Fourier transform

ciα =
2

Ncells
∑
k

eikRi ckα (5.2)

where Ncells is the number of unit cells and Ri the lattice vector of lattice site i. In

momentum space, the Kane-Mele Hamiltonian Eq. 5.1 can then be conveniently
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written as HKM = ∑k Ψ†
kHKM,kΨk where the spinor basis is defined as

Ψ†
k =

(

c†
kA↑, c†

kB↑, c†
kA↓, c†

kB↓
)

. (5.3)

In analogy to the way we wrote the Hamiltonian density of the Haldane honey-

comb model in momentum space, refer to Eq. 2.46, the Kane-Mele Hamiltonian

density can be written as [47]

HKM,k =



















γ(k) −g(k)

−g∗(k) −γ(k)

−γ(k) −g(k)

−g∗(k) γ(k)



















. (5.4)

The functions γ and g where defined in Eq. 2.32 and 2.47.

In Eq. 5.4, the upper left block matrix describes a Haldane honeycomb model

with Chern number +1 as in Eq. 2.46, whereas the lower right block matrix de-

scribes a Haldane honeycomb model with Chern number −1. Each copy of a

Haldane honeycomb model is attached to a spin flavor ↑ or ↓, as we can see from

the definition of the spinor basis Eq. 5.3. Hence, armed with the knowledge of

the Haldane honeycomb model, we can write Eq. 5.4 simply as

HKM,k =







Hh,↑(k)

Hh,↓(k)






. (5.5)

The bulk band structures of the Kane-Mele model will therefore resemble the

band structures of the Haldane model, cf. Fig. 2.4, only that each band is now

doubly degenerate.
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FIGURE 5.1: Edge spectrum of the Kane-Mele model for t1 = 1,

t2 = 1/3, and Φ = π/2. Here, a Semenoff mass term M = 0.2
√

3
has been imposed to make the degenerate, counter-propagating
helical modes visible. Bulk bands are gapped, only the counter-
propagating, helical modes located at the two edges are gapless.

5.1.2 The Z2 topological invariant

We already noted that the total Chern number in the Kane-Mele model is zero.

However, since the Chern number of each band is non-zero, it makes sense to

define a new topological quantity which takes this fact into account. Hence, we

define the spin Chern number C↑↓ as [71]

C↑↓ = (C↑ − C↓)/2 (5.6)

where C↑/↓ refers to the Chern number of the lower band of Hh,↑/↓. This quantity

is robust [71] since we noted that the Kane-Mele Hamiltonian can be decomposed

into two independent parts corresponding to the two spin components ↑ and ↓.

Another way to quantify the topology in the time reversal symmetric topo-

logical insulator was introduced by Kane and Mele [73, 89] who made use of the

Pfaffian invariant in order to define a Z2 invariant. While several formulations of
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the Z2 invariant exist, here, we follow Fu and Kane [69].

To this end, we introduce the notation as introduced in Ref. [69, 47], i.e. we

rewrite the Hamiltonian density Eq. 5.4 as

HKM,k =
5

∑
i=1

di(k)Γ
i. (5.7)

Here, we introduced the coefficients di in Eq. 5.7 can be identified in the following

way [69, 47]. d1 and d2 correspond to the real and imaginary part of the function

g, cf. Eq. 4.22, d5 corresponds to the function γ, cf. Eq. 4.21, and finally, d3 and d4

are zero here (in the absence of Rashba term [73, 89, 69].

Furthermore, we introduced the gamma matrices Γi which are defined as

Γ1 = τx ⊗ I (5.8)

Γ2 = τy ⊗ I (5.9)

Γ3 = τz ⊗ σx (5.10)

Γ4 = τz ⊗ σy (5.11)

Γ5 = τz ⊗ σz. (5.12)

where I refers to the 2 × 2 identity matrix, τ to the Pauli matrices in sublattice

space and σ the Pauli matrices in spin space. As we saw already, the Kane-Mele

Hamiltonian can be written as a 4 × 4 matrix. In other words, it can be written as

the sum of an identity matrix and 15 generators of the SU(4) group [11]. The Γi

are 5 of these 15 generators, which form a Clifford or Dirac algebra [11], i.e.

{Γi, Γj} = 2δij, (5.13)
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where {·, ·} is the anticommutator. The other 10 generators are formed by the

commutators [69, 11, 47]

Γij =
1

2i

[

Γi, Γj
]

. (5.14)

Now, we introduce the time reversal operator T [69] as

T = i(I ⊗ σy)K (5.15)

where K refers to the complex conjugation operator. And furthermore, we intro-

duce the parity operator P as [47]

P = τx × I = Γ1. (5.16)

We note that the Gamma matrices above are invariant under time reversal

parity PT , i.e. [47]

(PT )Γi(PT )−1 = Γi. (5.17)

Hence, PT commutes with the Hamiltonian [47, 69].

Now, we consider some special points [69] k = ξi, i = 1, . . . , 4, which are

the only time reversal points in the Brillouin zone. Time reversal points need to

fulfil ξi = 1
2 (n1ν1 + n2ν2) where ν are the reciprocal lattice vectors, cf. Eq. 2.1

and ni ∈ {0, 1}. This can be seen [69] from the fact that these points need to

fulfil −ξi = ξi + G where G is a reciprocal lattice such that a corresponding wave

function is periodic in the Brillouin zone, i.e. |Ψk〉 = |Ψk+G〉.

Refering to Fig. 2.1, the points ξi correspond to the high symmetry points Γ,

M and M’. Then, the Z2 invariant z = 0, 1 which is either zero for a conventional

insulator and one for a topological insulator can then be defined [69, 47] as

(−1)z =
4

∏
i=1

δ(ξi) (5.18)
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where

δ(ξi) = −sgn(d1(Γi)). (5.19)

In particular, one finds for the Kane-Mele model [47] that δ(ξ1,2,3) = −1 (for

t1 = 1) and δ(ξ4) = 1 such that

z = 1. (5.20)

Hence, the Kane-Mele model is a Z2 topological insulator since z does not vanish

and the bulk band spectrum is gapped throughout the Brillouin zone.

5.2 The Kane-Mele-Hubbard model

The Kane-Mele model is as a prototypical model exactly solvable within a tight-

binding approach as presented above. When electron-electron interactions are

added to the model, and the topological band insulator is challenged by corre-

lation physics, this is not anymore the case. The Kane-Mele-Hubbard model has

been extensively studied [31, 47, 70, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103] with various approximative methods in the past decade, and its behavior is

in principle well understood.

The Kane-Mele-Hubbard model reads

HKMH = H0 +HU HU = U ∑
i

ni↑ni↓ (5.21)

where H0 is the Kane-Mele Hamiltonian Eq. 5.1 and HU is the repulsive Hubbard

on-site interaction with the interaction strength U > 0 that acts on spin space. A

solution of this model comprises two phases. First, up to some critical interaction

strength [31] Uc " t1 the topological band insulator is stable towards electron-

electron interactions. Upon reaching the critical Uc, the system transitions to a

magnetically ordered phase (spin density wave). In this phase, the system prefers

to antiferromagnetically order in the x − y plane only. This behavior has been
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previously explained by the derivation of an effective Hamiltonian in the strong

coupling limit [47, 31]

He f f =
4t2

1

U ∑
〈i,j〉

SiSj +
4t2

2

U ∑
〈〈i,j〉〉

(

−Sx
i Sx

j − S
y
i S

y
j + Sz

i Sz
j

)

. (5.22)

Due to the bipartite nature of the honeycomb lattice, the Heisenberg model

(the first part of the above equation concerning interacting nearest neighbor spins),

exhibits Néel order in the ground state [31]. Therefore, the next-nearest neighbor

terms in the z-plane compete with the nearest neighbor terms. Hence, the system

chooses to solve this frustration by ordering in the x − y plane [31, 47] so that the

z-interaction is neutralized.

This result has been pointed out [31] to be in good agreement with several

numeric studies [70, 96, 97, 103, 99, 104].

5.3 The Kane-Mele-Hubbard model from a variational prin-

ciple

Here, we follow an approach similar to the one we used to treat the interacting

Haldane model in the previous chapter. This variational mean field approach will

describe the correct decomposition scheme of the Kane-Mele-Hubbard model

by all relevant physical channels, including those that were missing in previous

studies [47].

We present a new analytical approach to the Kane-Mele-Hubbard model in

chapter 5.4 that builds directly on the decomposition scheme outlined in this sec-

tion.
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5.3.1 Kane-Mele-Hamiltonian decoupling scheme

In order to prepare the decoupling of the quartic interaction term, we can write

HU exactly as

U ∑
i

ni↑ni↓ = U ∑
i

c†
i↑ci↑c†

i↓ci↓ (5.23)

= U ∑
i,r

ηr

(

c†
iασr

αβciβ

)2
(5.24)

where i denotes a lattice site, r ∈ {0, x, y, z}, and σr denotes the Pauli matrices

acting on spin space spanned by {↑, ↓} The coefficients ηr need to fulfill the rela-

tions

η0 = −ηz f ηx = ηy
1

4
= η0 − ηx. (5.25)

By means of a variational approach to the construction of the mean field theory

which we will outline below, we find that the following choice of the coefficients

ηr.

− η0 = ηx = ηy = ηz = −1

8
. (5.26)

5.3.2 Hubbard-Stratonovich transformations

Now, we turn to the decoupling of the decomposed quartic terms and write down

the partition function and action

Z =
∫

D(Ψ, Ψ†)e−S (5.27)

S =
∫ β

0
dτ ∑

k

Ψ†
k (∂τ +H0,k(k))Ψk +HU (5.28)

where we defined the spinor basis Ψ†
k in Eq. (5.3) and the Hamiltonian density of

the Kane-Mele model in momentum space in Eq. (5.4).
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Decoupling the quartic interaction term HU via a Hubbard-Stratonovich [77] trans-

formation for each r ∈ {x, y, z} yields

exp

(

U

8 ∑
i

(

c†
iασr

αβciβ

)2
)

(5.29)

=
∫

Dφr exp

(

−∑
i

2U(φr
i )

2 + Uφr
i

(

c†
iασr

αβciβ

)

)

, (5.30)

and for r = 0

exp

(

−U

8 ∑
i

(

c†
iασ0

αβciβ

)2
)

(5.31)

=
∫

Dφ0 exp

(

−∑
i

2U(φ0
i )

2 + iUφ0
i

(

c†
iασ0

αβciβ

)

)

. (5.32)

Here we introduced for each r an auxiliary field φr
i on each lattice site i. Effec-

tively, we traded a quartic interaction for the introduction of additional order

parameters φr
i that will need to be solved for self-consistently.

5.3.3 Interaction density matrix

Now, we consider the auxiliary fields φr to be homogeneous on the lattice, i.e.

we suppress the index lattice index i. Then, we rewrite the decoupled interaction

part in Fourier space and obtain the partition function

Z =
∫

D(Ψ, Ψ†, φ0, φx, φy, φz)e−S (5.33)

where the action S reads

S =
∫ β

0
dτ ∑

k

Ψ†
k (∂τ +H0,k)Ψk

+ ∑
k,q,p

Ψ†
qHU,k,q,pΨk + ∑

k,r

2Uφr
kφr

−k (5.34)
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where the interaction density matrix reads

HU,k,q,p = U



















iφ0
k−q + φz

k−q φx
k−q − iφ

y
k−q

iφ0
k−q + φz

k−q φx
k−q − iφ

y
k−q

φx
k+q + iφ

y
k−q iφ0

k−q − φz
k−q

φx
k−q + iφ

y
k−q iφ0

k−q − φz
k−q



















.

(5.35)

We would like to consider a time-independent, static model and therefore re-

strict the analysis to the zero frequency contribution. Furthermore, we restrict the

discussion to leading contribution in momentum space for which scattering does

not change momentum. Hence, we keep only the zero momentum contribution,

i.e. k − q = 0. The action S now takes the form

S = ∑
k

Ψ†
k

(

H0,k +HU,k,p

)

Ψk + ∑
k,r

2Uφr
kφr

−k, (5.36)

where the interaction density matrix now reads

HU,k,p =



















φ0 + φz φx − iφy

φ0 + φz φx − iφy

φx + iφy φ0 − φz

φx + iφy φ0 − φz



















(5.37)

Here we skipped the zero-momentum index of the fields, i.e. φr ≡ φr
0, and rede-

fined the chemical potential −iφ0 → φ0 such that φ0 is now real for the matrix

HU,k,p to be Hermitian (where it was imaginary before the substitution, such that

iφ0 was real).

We set

Hmf
KMH,k = H0,k +HU,k,p, (5.38)



100 Chapter 5. Analytical approach to the Kane-Mele-Hubbard model

and finally arrive at the effective mean field Hamiltonian

Hmf
KMH = ∑

k

Ψ†
kH

mf
KMH,kΨk. (5.39)

where the mean field Hamiltonian density in matrix form explicitly reads

Hmf
KMH,k = HKM,k +



















U(φ0
A + φz

A) U(φx
A − iφ

y
A)

U(φ0
B + φz

B) U(φx
B − iφ

y
B)

U(φx
A + iφ

y
A) U(φ0

A − φz
A)

U(φx
B + iφ

y
B) U(φ0

B − φz
B)



















.

(5.40)

Here, HKM,k is the Kane-Mele model Hamiltonian density in momentum space,

Eq. 5.4. Furthermore, in Eq. 5.40 we distinguished φr by the sublattice s ∈ {A, B}

they are living on.

Having set up the mean field Hamiltonian, we now turn the derivation of the

fields φr in a self-consistent manner.

5.3.4 Self-consistent mean field equations

We minimize the total energy 〈HKMH〉 of the system (before the decoupling) Eq.

5.21 with respect to the wave function of the mean field Hamiltonian Eq. 5.39.

This way, the mean field energy of the mean field Hamiltonian Eq. 5.39 equates

the total energy, i.e.
〈

Hmf
KMH

〉

= 〈HKMH〉. We find the following self-consistent
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equations for r ∈ {0, x, y, z}

φ0 = −1

2

(〈

c†
i↑ci↑

〉

+
〈

c†
i↓ci↓

〉)

(5.41)

φx = −1

2

(〈

c†
i↓ci↑

〉

+
〈

c†
i↑ci↓

〉)

(5.42)

φy = −1

2

(

−i
〈

c†
i↓ci↑

〉

+ i
〈

c†
i↑ci↓

〉)

(5.43)

φz = −1

2

(〈

c†
i↑ci↑

〉

−
〈

c†
i↓ci↓

〉)

(5.44)

or in shorthand notation

φr = −1

2

〈

c†
iασr

αβcβ

〉

. (5.45)

Here, φ0 is a chemical potential, and φx,y,z are magnetic order parameters. The

amplitudes of the form
〈

c†
iαciβ

〉

are computed in the following manner [105].

We introduce the matrix U that diagonalizes the matrix Hmf
KMH,k for a fixed set

of parameters φr and fixed k as

Ψ†
kH

mf
KMH,kΨk = Ψ†

kUkU
†
kH

mf
KMH,kUkU

†
k Ψk (5.46)

= Ω†
kH̃

mf
KMH,kΩk (5.47)

where Uk is an appropriate unitary matrix. The new spinor basis is defined as

Ωk ≡ U †
k Ψk, and the diagonal matrix as H̃mf

KMH,k ≡ U †
kH

mf
KMH,kUk.

Now we compute the amplitudes in Eq. (5.41-5.44) as

〈

c†
iαciβ

〉

=
2

Nsites
∑
k

〈

c†
kαckβ

〉

(5.48)

=
2

Nsites
∑
k

∑
µ′,ν′

U ∗
kµµ′Ukνν′

〈

Ω†
kµ′Ωkν′

〉

(5.49)

=
2

Nsites
∑
k,λ

U ∗
kµλUkνλ (5.50)

In the first line, we carried out a Fourier transform. The composite indices µ and ν
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FIGURE 5.2: (a) Honeycomb lattice with sublattices A (red) and
B (blue). The vectors ux,y are the lattice vectors and the vectors
ax,y,z (bx,y,z) denote the (next) nearest neighbor displacements. (b)
Brioullin zone of the honeycomb lattice in momentum space. We
denote the reciprocal lattice vectors by νx,y and show high sym-

metry points.

correspond to iα and iβ, respectively. Furthermore, the indices µ′ and ν′ run over

all eigenvectors, while λ in the last line only runs over occupied states. Finally,

Nsites = 2Ncells is the number of lattice sites.

We now solve the self-consistent mean field equations Eq. (5.41-5.44) for a given

set of initial values for the fields φr by iteration. In each step, a new set of φr

is computed from the previous set by computing the amplitudes
〈

c†
iαciβ

〉

. This

procedure is repeated until sufficient convergence is reached.

5.3.5 Solution to the self-consistent mean field equations

Fig. 5.2 shows the solution of the self-consistent mean field equations. Fig 5.2

(a) shows the evolution of the mean field parameters for fixed t2 = 0.5. At the

phase transition, the magnetic order parameters condense, i.e. φx = φy ∕= 0 in the

Mott phase. Furthermore, they change sign depending on the sublattice (s = A

or s = B) which indicates an antiferromagnetic behavior. Hence, the topological

insulator transitions to a antiferromagnetic with net magnetization in the x − y

plane.

Finally, Fig. 5.2 (b) shows a two-dimensional U − t2 phase diagram. Here,

the quantity φxyz =
√

(φx)2 + (φy)2 + (φz)2 captures the net magnetization. The
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position of the transition line is in overall good accordance with previous results

[31].

5.4 Analytical approach to the Kane-Mele-Hubbard model

In this section, we follow closely Ref. [27]. We show a new analytical approach

to the Kane-Mele-Hubbard model, that was presented in Ref. [27]. This approach

directly builds on the decomposition scheme described in the previous section.

5.4.1 Decomposition and Hubbard-Stratonovich transformation

We start off, by reminding ourselves of the important Eq. 5.52 in combination

with the side constraints on the coefficients ηr in Eq. 5.25. In Here, we choose to

write Eq. 5.52 as

U ∑
i

ni↑ni↓ = U ∑
i

c†
i↑ci↑c†

i↓ci↓ (5.51)

= U ∑
i,r

ηrSr
i Sr

i (5.52)

where we set Sr
i ≡ c†

iασr
αβciβ. Then, we use the symmetric decomposition corre-

sponding to the choice of the Eq. 5.26, i.e. η0 = 1/8, ηx,y,z = −1/8 and choose to

write the interaction Hamiltonian HU as [27]

HU =
U

8 ∑
i

〈Si, Si〉M +
U

4 ∑
i

(ni↑ + ni↓), (5.53)

where we used the Minkowski inner product 〈Si, Si〉M = (S0
i )

2 − (Sx
i )

2 − (S
y
i )

2 −

(Sz
i )

2.

Analogously to the previous section, we now perform a Hubbard-Stratonovich

transformation in order to decouple the quartic interaction terms. We start with
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the action [27]

S [ψ†, ψ] = S0[ψ
†, ψ] +

∫ β

0
dτ

U

8 ∑
i

〈Si, Si〉M, (5.54)

where S0[ψ†, ψ] is the action for the non-interacting Kane-Mele model (including

the chemical potential shift U
4 from Eq. 5.53.

We perform the Hubbard-Stratonovich transformation [76, 77] by introduc-

ing Gaussian auxiliary bosonic fields φr
i corresponding to each Sr

i channel and

renormalize by the constant determinant. The resulting path integral is [27]

Z =
∫

ΠrDφr
∫

Dψ†Dψ exp

(

− S [ψ†, ψ]− 2U
∫ β

0
dτ ∑

i,r

φr
i φr

i

)

, (5.55)

where Πr refers to the product on r = 0, x, y, z.

Now, we use the linear transformations of the bosonic fields [27]

φ0
i → i

2
φ0

i +
i

4
S0

i , φ
p
i → 1

2
φ

p
i +

1

4
S

p
i (5.56)

where p ∈ x, y, z. We then compensate the interaction term in −S [ψ†, ψ] such that

Z =
i

16

∫
ΠrDφr

∫
Dψ†Dψ exp

(

− S0[ψ
†, ψ]

+
U

2

∫ β

0
dτ ∑

i

(〈φi, φi〉M + 〈φi, Si〉M)

)

, (5.57)

where we have defined the four-vector φi ≡ (φ0
i , φx

i , φ
y
i , φz

i ) and used the Minkowski

inner product again.

In the previous section, we derived the self-consistent mean field equations

by minimizing the total energy of the system (i.e. the energy derived from the

Hamiltonian before decoupling it into the various channels φr) with respect to

the wave function of the mean field Hamiltonian. This way, the total energy of

the equates the mean field energy, i.e.
〈

Hmf
KMH

〉

= 〈HKMH〉.
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Here, we rather obtain the classical field equations from minimization of the

mean field Hamiltonian with respect to the various parameters φr, i.e.

δS

δφr
i

= 0. (5.58)

This way, we find that analogously to the previous section

φi = −1

2
〈Si〉 = −1

2
〈c†

iασαβciβ〉. (5.59)

In Ref. [27], in order to obtain an insulator, we fix the particle density at half-

filling such that φ0 = −1/2. The stochastic fields are static variables allowing

us to evaluate the electron Green’s function and energetics for a given fields con-

figuration and then to apply the variational principle to find the most favorable

distribution of those variables [27].

Similarly to the previous section (cf. Eq. 5.40), we find the following mean

field Hamiltonian

HMF(k) =



















γ(k) + U
2 φz

A −g(k) U
2 (φ

x
A + iφ

y
A) 0

−g∗(k) −γ(k) + U
2 φz

B 0 U
2 (φ

x
B + iφ

y
B)

U
2 (φ

x
A − iφ

y
A) 0 −γ(k)− U

2 φz
A −g(k)

0 U
2 (φ

x
B − iφ

y
B) −g∗(k) γ(k)− U

2 φz
B



















.

(5.60)

with the corresponding action [27]

S =
∫ β

dτ

[

∑
k

ψ†
k

(

∂τ +
U

2
+HMF(k)

)

ψk −
U

2 ∑
k,s

〈φks, φ−ks〉M
]

. (5.61)

Here, the functions γ and g are as previously defined in Eq. 2.47 and 2.32.
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5.4.2 Transition line from saddle point conditions

Then, we transform the action into frequency space so that φnks = βδiωn,0φks or

equivalently φr
nks = βδiωn,0φr

ks, where ωn are fermionic Matsubara frequencies

and φks is independent of frequency and time [27]

ψ(τ) =
1

β ∑
iωn

ψne−iωnτ. (5.62)

Next, we follow Ref. [27] and integrate out the fermions to get a determinant

Z =
i

16

∫
Πr,k,sdφr

ks det(−βG−1(iωn))

× exp

(

βU

2 ∑
k,s

(φks · φ−ks)

)

, (5.63)

where the inverse fermion Green’s function is

G−1
qk (iωn) =

(

iωn −
U

2
−HMF(k)

)

δq,k. (5.64)

Thus, we have the effective Hubbard-Stratonovich action [27]

SHS =− βU ∑
k

(φk · φ−k)− tr(ln(−βG−1(iωn))), (5.65)

where tr denotes the trace over Matsubara frequencies, momentum space, spin

space and pseudospin space.

Following our previous results, Fig. 5.2, we impose the following assump-

tions concerning the mean field parameters φr

φ
x,y,z
kA = −φ

x,y,z
kB ≡ φ

x,y,z
k (5.66)
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We vary the Hubbard-Stratonovich action with respect to the HS fields to get the

saddle-point conditions [27]

δSHS

δφr
p

=± 2βUφr
−p − tr

[

G(iωn)
δG−1(iωn)

δφr
p

]

, (5.67)

Here, the positive sign holds for r ∈ {x, y, z} and the negative sign holds for

r = 0. In particular, we have [27]

δSHS

δφ0
0

= −2β
√

NUφ0 − U

2
√

N
∑

iωn,k

tr(G(iωn, k)), (5.68)

δSHS

δφr
0

= 2β
√

NUφr +
U

2
√

N
∑

iωn,k

tr

(

G(iωn, k)(σr ⊗ τz)

)

, . (5.69)

where N is the number of unit cells (not to be confused with Nsites, the number of

lattice sites that we introduced earlier). Note that τ refers to the Pauli matrices in

sublattice space, while σ refers to the Pauli matrices in spin space as usual.

In Ref. [27], we evaluated the Matsubara Green’s function as

G(iωn, k
¯
) =

(iωn − U
2 )I +HMF(k

¯
)

(iωn − Ek
¯
+
)(iωn − Ek

¯
−)

, (5.70)

where the poles of the Green’s function are the quasi-particle energies

Ek± =
U

2
±

√

ε2
k + 2γk

(

U

2

)

φz +

(

U

2

)2

φ · φ. (5.71)

Here, we can see that the chemical potential is effectively shifted by U
2 .

The traces in Eq. (5.68), (5.69) are readily evaluated [27]. At zero temperature,

the saddle-point conditions δSHS

δφr = 0 then yield [27]

φx,y =
Uφx,y

4N ∑
k

1
√

ε2
k + 2γk(

U
2 )φ

z + (U
2 )

2φ · φ

. (5.72)
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FIGURE 5.3: Magnetization profile for t2 = 0.3t1. Figure extracted
from Ref. [27]

There is a second-order transition in this magnetic order parameter as shown in

Fig. 5.3. Linearizing φ around the zero vector, one finds the critical coupling

1

U
x,y
c

=
1

4N ∑
k

1

εk
, (5.73)

as shown in Fig. 5.4. This result shows remarkable quantitative agreement with

quantum Monte Carlo and cluster dynamical mean field theory for small t2 [97,

70, 106].

Then, as pointed out in Ref. [27], the saddle-point condition for φz is

φz =
1

2N ∑
k

γk +
U
2 φz

√

ε2
k + 2γk(

U
2 )φ

z + (U
2 )

2φ · φ

. (5.74)
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FIGURE 5.4: Onset of antiferromagnetic XY order at the Mott tran-
sition line defined through Uc in Eq. 5.72 versus t2/t1. Figure

extracted from Ref. [27]

Linearizing φ about the zero vector, and noting that γk is odd under inversion

also gives the critical coupling [27]

1

Uz
c

=
1

4N ∑
k

|gk|
2

ε3
k

. (5.75)

Since |gk|
2
< ε2

k for all t2 > 0, we see that U
x,y
c < Uz

c except at t2 = 0 at which

point the transition lines are identical and the full SU(2) symmetry is restored.

Thus as we approach from the normal state, the spins will first order antiferro-

magnetically in the x − y plane. In fact, we can go a step further. For t2 > 0, it

turns out that φz must vanish for any U. We can see this by combining Eq. 5.72

and 5.74 to get [27]

φz = φz +
1

2N ∑
k

γk
√

ε2
k + 2γk(

U
2 )φ

z + (U
2 )

2φ · φ

. (5.76)
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In order for the sum to vanish at finite t2, the denominator must be invariant

under inversion. This only happens for φz = 0, so we confirm that the ordering

strictly takes place in the plane for all U, in agreement with quantum Monte Carlo

and strong-coupling results [97, 47]. As long as φz = 0, then we verify from

Eq. 5.71 that the gap does not close at the phase transition, but is uniformly

renormalized by (U/2)2φ · φ.

5.5 Conclusion and comparison of the two methods

First, in chapter 5.3, we derived a variational decomposition scheme for the on-

site Hubbard interaction acting on the Kane-Mele model. We then derived self-

consistent mean field equations from a variational principle in which we mini-

mize the mean field wave function with respect to the original (i.e. non-decoupled)

Hamiltonian. Finally, we solved the self-conistent mean field equations numeri-

cally to find the Mott transition line in Fig. 5.2.

Secondly, in chapter 5.4, we followed Ref. [27] and explored an alternative

approach to find the Mott transition line. Here, we started off with the same

decomposition scheme as developed in chapter 5.3. Most notably, this method

yields a closed form equation for the Mott transition line, Eq. 5.73.

However, we notice that the transition lines in Fig. 5.2 and 5.4 are not the

same. In fact, they differ by a factor of two. This difference can be explained by a

different choice of mean field in the methods.

As we explain in Ref. [27], the choice in chapter 5.4 corresponds to a Heisenberg-

like mean field that preserves the SU(2) symmetry of the interaction. We write the

interaction as a “spin” Hamiltonian, where the spin vectors Si = c†
iασαβciβ form
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the natural mean fields

HU =
U

8 ∑
i

〈Si, Si〉M +
U

4 ∑
i

(ni↑ + ni↓) (5.77)

≈ U

8 ∑
i

(

〈〈Si〉, Si〉M + 〈Si, 〈Si〉〉M − 〈〈Si〉, 〈Si〉〉M + 2S0
i

)

.

Recalling that 〈Si〉 = −2φi, we have [27]

HU ≈ −U

2 ∑
i

〈φi, Si〉M − U

2 ∑
i

〈φi, φi〉M +
U

4 ∑
i

S0
i . (5.79)

Fourier transforming gives [27]

HU ≈ ∑
k

ψ†
k

U

2
Hintψk −

UN

2
(〈φA, φA〉M + 〈φB, φB〉M), (5.80)

where

Hint ≡



















1/2 − φ0
A + φz

A 0 φx
A + iφ

y
A 0

0 1/2 − φ0
B + φz

B 0 φx
B + iφ

y
B

φx
A − iφ

y
A 0 1/2 − φ0

A − φz
A 0

0 φx
B − iφ

y
B 0 1/2 − φ0

B − φz
B



















.

(5.80)

On the other hand, the choice in chapter 5.3 corresponds to an Hartree-Fock-like
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mean field decomposition where 〈nσ〉, 〈c†
↑c↓〉, 〈c†

↓c↑〉 (which are linear combina-

tions of the φ’s) form the natural mean fields [27]

U ∑
i

ni↑ni↓ ≈ U ∑
i

[

〈n↑〉n↓ + n↑〈n↓〉 − 〈c†
↑c↓〉c†

↓c↑

− 〈c†
↓c↑〉c†

↑c↓ − 〈n↑〉〈n↓〉+ 〈c†
↑c↓〉〈c†

↓c↑〉
]

(5.81)

= U ∑
i

[

(φx
i + iφ

y
i )c

†
i↑ci↓ + (φx

i − iφ
y
i )c

†
i↓ci↑

− (φ0
i − φz

i )ni↑ − (φ0
i + φz

i )ni↓ − 〈φi, φi〉M
]

. (5.82)

Fourier transforming gives [27]

U ∑
i

ni↑ni↓ ≈ ∑
k

ψ†
kU

(

Hint −
1

2
I

)

ψk − UN(〈φA, φA〉M + 〈φB, φB〉M). (5.83)

Comparing to Eq. 5.80, we see that this decomposition gives a mean-field inter-

action that is a factor of two larger than the Heisenberg-like decoupling.
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Chapter 6

Conclusion

In chapter 2, we introduced relevant concepts of topological band theory and

graphene as a Dirac metal. Then, in chapter 3 we directly build on this knowledge

and studied in depth a new interface between the Haldane honeycomb model -

the prototypical model of a Chern insulator - and graphene.

We revealed the mechanism of a topological proximity effect. Here, proximity

refers to particle hole processes between the Haldane and graphene layer. We

showed how this interlayer hopping induces a gap in the bulk of graphene and

we argued by means of an approximative model how graphene acquires therefore

non-trivial topology. In fact, we observered that the Haldane model with Chern

number +1 induced a Chern number −1 in the graphene layer.

Moreover, we illustrated the bulk-edge correspondence in relation with the

Kane-Mele model and described the state of the system in the strong coupling

limit.

Finally, we proposed in detail a possible pathway for an experimental real-

ization of the topological proximity effect in cold atoms. In particular, we gener-

alized the effects observed in the Haldane-graphene model to a Haldane bilayer

model with asymmetric Semenoff masses which could possibly be realized in

cold atoms.
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In chapter 4, we have introduced a stochastic theory to describe interaction ef-

fects in the spinless, fermionic Haldane model with nearest-neighbor interactions.

In particular, we derived a stochastic mean field decomposition scheme from a

variational principle. We found that from the solution of the self-consistent mean

field equations we were able to accurately describe the Mott transition in the in-

teracting Haldane honeycomb model. These results were supported by comple-

mentary iDMRG calculations [26]. In fact, we were able to confirm the speculated

[15] first order nature of the Mott transition, by means of our mean field theory,

iDMRG computations, and Ginzburg-Landau arguments.

Furthermore, we have studied the effect of light-matter coupling and we have

shown that the Mott transition can be probed through circular dichroism of light.

Then, we have introduced in new quantity dubbed stochastic Chern number

which corresponds to a sampling of the ground-state Chern number on the whole

ensemble of stochastic variables. Physically, this situation can describe disorder

effects in the interaction strength resulting, e.g., from fluctuations in the lattice

potential and producing a mixed state.

Moreover, we pointed out that fluctuations resulting from interaction effects

produce a substantial amount of excited particle-hole pairs which act on the ground

Chern number. We provided with the stochastic Chern number a non-quantized

quantity which can act as a measure of the number of excited states in the system.

Therefore, the stochastic Chern number can be seen as a stochastic manifestation

of the topology in the system in the presence of strong interactions.

Finally, we fleshed out an analogy of these stochastic measures with temper-

ature effects.

The stochastic approach to the interacting Haldane honeycomb model is phys-

ically intuitive, easy to implement, and leads the way to further studies of inter-

action effects. In particular, possible generalizations to bi- or multilayer systems,

or similar systems such as the Kane-Mele model provide exciting pathways for
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future research. Another interesting direction could be a possible application of

the approach to attractive interactions instead of repulsive ones.

Last but not least, in chapter 5.4, we applied our variational stochastic func-

tional path integral approach to the Mott transition in the interacting Kane-Mele-

Hubbard model. In particular, we described - starting from the same variational

decomposition scheme - two different kinds of mean field theories, which are in

principal both valid approaches but deliver different results for the Mott transi-

tion line in the Kane-Mele-Hubbard model.

First, we described a variational mean field ansatz which aims (similar to the

approach in the interacting Haldane model) to minimize the total energy of the

original (i.e. undecoupled) Hamiltonian with respect to a variational mean field

wave function. This approach delivers a set of self-consistent equations which are

independent from the choice of gauge of the Gaussian auxiliary field introduced

by means of a Hubbard-Stratonovich transformation.

One the other hand, we described an alternative pathway to a mean field the-

ory. This method, although in principle not gauge independent, is based on the

idea of SU(2) symmetry preservation. It delivers an analytic transition line that

has proved to be very close to results obtained from approximative numeric sim-

ulations. The method may be developed further to study fractional topological

phases and interacting topological superconductors.
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Résumé en français

Une phase de matière est une région de l’espace des paramètres physiques cor-

respondants dans laquelle toutes les propriétés physiques d’un matériau sont es-

sentiellement uniformes [1]. Landau a pu établir un mécanisme de classifica-

tion des différentes phases de la matière sur la base des symétries sous-jacentes

au système physique [2, 3]. La notion de paradigme de Landau est que, si les

systèmes physiques sont désordonnés à haute température, ils acquièrent un or-

dre en raison d’une rupture spontanée de symétrie en dessous d’une température

critique Tc. Cela signifie qu’en dessous de Tc, un paramètre d’ordre magnétique

local devient fini, de sorte que le système établit un certain ordre à longue portée.

Quantitativement, la rupture de symétrie peut être capturée par le comportement

d’un paramètre d’ordre local à la transition de phase. Lors d’une transition de

phase de premier ordre, le paramètre d’ordre local change de façon discontinue,

alors que lors d’une transition de phase de second ordre, le changement est con-

tinu.

Von Klitzing [6] a décrit en 1980 la quantification de la conductivité de Hall

dans un gaz d’électrons bidimensionnel exposé à un champ magnétique externe.

Cet effet, connu sous le nom d’effet Hall quantique entier (IQHE), est l’une des

découvertes les plus importantes qui décrivent la physique au-delà du paradigme

de Landau.

Il s’avère que la classification d’une phase de Hall quantique ne peut pas re-

poser sur un paramètre d’ordre local. Au contraire, il est apparu clairement qu’un
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FIGURE 1: Variétés topologiques avec différents genres g. A
gauche : Une sphère avec g = 0. Au milieu : Un tore avec g = 1.

A droite : Un tore double avec g = 2.

autre type de mécanisme est en jeu, impliquant des propriétés globales de la fonc-

tion d’onde. Mathématiquement, le domaine de la topologie est entré en jeu.

La topologie est la branches des mathématiques qui s’intéresse à la description

et à la classification de la forme des objets mathématiques. La topologie considère

deux objets mathématiques comme équivalents tant qu’ils peuvent être déformés

de façon continue l’un dans l’autre, c’est-à-dire qu’il existe une déformation con-

tinue entre eux [7]. Dans le cadre de la classification des états fondamentaux en

l’absence de brissure de symétrie, une phase obéit à un ordre topologique lorsque la

dégénérescence de l’état fondamental dépend de la topologie de la variété sous-

jacent [8]. Plus précisément, la dégénérescence de l’état fondamental est de 22g où

g est le genre de la variété [9]. Le genre d’une variété topologique et orientable est

un entier relatif représentant le nombre maximum de coupes le long de courbes

simples fermées non intersectées sans couper la surface en morceaux [10]. Plus

intuitivement, le genre g compte le nombre de trous dans une variété, voir Fig. 1.

Sur la base de la topologie du réseau, l’état fondamental d’un système d’ordre

topologique peut être séparé en différents secteurs topologiques [8]. Chaque

secteur correspond à une fonction d’onde distincte de l’état fondamental qui con-

tribue à la dégénérescence de l’état fondamental. La nature globale de l’ordre



Chapter 6. Conclusion 119

topologique est exprimée par le fait qu’il n’existe pas de paramètre d’ordre lo-

cal pouvant expliquer la dégénérescence de l’état fondamental (sur la base de

toutes les fonctions d’onde de tous les secteurs), et par conséquent, la théorie de

Landaus n’est pas applicable [11, 8, 9].

Dans cette thèse

Dans le chapitre 2, nous présentons au lecteur les principaux concepts de la théorie

des bandes topologiques, le graphène en tant que métal de Dirac et le modèle de

Haldane - le modèle prototypique d’un isolant de Chern. Tout d’abord, nous pas-

sons en revue les principaux concepts des phases de Berry [12] et introduisons

sur cette base la notion de courbure de Berry et le premier nombre de Chern. De

plus, nous récapitulons le calcul indépendant de la jauge de ces quantités sur un

réseau discret.

Ensuite, nous introduisons le concept d’un métal de Dirac à l’exemple du

graphène [13]. Nous nous plongeons dans sa description mathématique et étoffons

sa riche phénoménologie à basse énergie.

Ensuite, nous suivons les traces de Haldane [14] et explorons son chemin

pour trouver un moyen de réaliser un effet Hall quantique sans l’application d’un

champ magnétique externe dans une couche de graphène.

Dans le chapitre 3, nous révélons un effet de proximité entre un isolant à

bande topologique (Chern) décrit par un modèle de Haldane et des particules de

Dirac d’une couche de graphène. Nous montrons qu’en couplant faiblement ces

deux systèmes (c’est-à-dire par proximité), nous sommes capables d’induire un

index topologique non triviale dans la couche de graphène. Nous plongeons dans

les mécanismes sous-jacents et explorons en détail la riche phénoménologie de ce

système. De manière importante, nous présentons des protocoles expérimentaux
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conçus pour révéler ses effets. En particulier, nous proposons un modèle de Hal-

dane bicouche, conçu pour observer l’effet de proximité topologique dans un dis-

positif expérimental à atomes froids.

Dans le chapitre 4, nous quittons le domaine des modèles exactement solv-

ables et considérons les corrélations fortes dans un isolant de Chern. Au cours de

la dernière décennie, des progrès ont été réalisés dans la description des systèmes

de Chern fortement corrélés, dans le cas bosonique [15, 16], et à la fois pour les

systèmes sans spin [15, 17, 18, 19] et avec spin [20, 21, 22, 23, 24]. Cependant, le

système que nous souhaitons étudier dans ce chapitre, c’est-à-dire le modèle de

Haldane fortement corrélé sans spin n’a pas été résolu de manière convaincante au

moyen d’un modèle approximatif. Par conséquent, nous développons une nou-

velle description stochastique des propriétés topologiques du modèle de Haldane

en nid d’abeille en présence des fortes corrélations. Nous confirmons la nature de

premier ordre de la transition de Mott (qui a été précédemment spéculée [15]) au

moyen d’une approche variationnelle du champ moyen soutenue par les résultats

du groupe de renormalisation de la matrice de densité (iDMRG) et les arguments

de Ginzburg-Landau.

Plus important encore, nous introduisons une nouvelle quantité appelée nom-

bre de Chern stochastique qui fournit une mesure de la topologie du système en

présence de fortes corrélations. En particulier, cette quantité compte de manière

stochastique le nombre de paires de particules-trous produites en raison des effets

de corrélation qui agissent sur le nombre de Chern de l’état fondamental. Nous

utilisons le dichroı̈sme de la lumière pour faire le lien dans la quantification des

quasi-particules excitées et montrons une analogie entre les paires de particules-

trous induites par les corrélations et les effets de température.

Enfin, dans le chapitre 5, nous revisitons le model de Kane-Mele-Hubbard.

De même que pour le modèle de Haldane avec des fortes corrélations, dans le

chapitre 4, nous développons une approche variationnelle de l’isolant topologique
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à forte corrélation Z2. Nous présentons deux méthodes différentes pour calculer

la transition de Mott. En particulier, nous montrons une approche analytique par-

tant de notre schéma de découplage stochastique qui permet de décrire la ligne

de transition de Mott avec une seule équation.
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Titre : Effet de proximité topologique dans les systèmes bicouches et approche stochastique des phases

topologiques fortement corrélées

Mots clés : Phases topologiques, modèle bicouche, physique de Mott, phases fortement corrélées

Résumé : Ces dernières décennies, de grands

progrès ont été réalisés dans la description des

phases de la matière quantique au-delà du paradigme

de Ginzburg-Landau. Parmi les développements les

plus cruciaux figure l’observation expérimentale de

l’effet Hall quantique par von Klitzing. C’est ensuite

Haldane qui a développé un modèle simple et élégant

- le modèle prototypique d’un isolant de Chern - qui

présente un effet Hall quantique sans la nécessité

d’un champ magnétique externe appliqué. Près de

vingt ans après la publication de Haldane, Kane et

Mele ont décrit l’effet Hall quantique de spin (QSHE).

Dans cette thèse, nous explorons la riche

phénoménologie du modèle de Haldane ainsi que

du modèle de Kane-Mele dans un contexte de

nouvelles interfaces et d’effets des correlations

fortes. Nous étudions d’abord le modèle Haldane-

graphène bicouche et révélons un effet de proxi-

mité intrigant qui permet d’induire un indice to-

pologique dans le graphène. Nous explorons en

détail la riche phénoménologie de ce système. De

manière importante, nous présentons des proto-

coles expérimentaux conçus pour révéler les effets.

En particulier, nous proposons un modèle de Hal-

dane bicouche généralisé qui est conçu pour obser-

ver l’effet de proximité topologique dans un contexte

expérimental d’atomes froids.

Ensuite , nous étudions le modèle de Haldane avec

des interactions fortes. Nous développons un schéma

de découplage stochastique, calculons la ligne de

transition de Mott soutenue par des calculs iDMRG

et confirmons la nature de premier ordre de la tran-

sition de phase au moyen d’arguments de Ginzburg-

Landau. Ensuite, nous proposons une nouvelle quan-

tité appelée nombre de Chern stochastique qui fournit

une mesure de la topologie du système en présence

de fortes corrélations. Nous utilisons le dichroı̈sme de

la lumière pour faire le lien dans la quantification des

quasi particules excitées et montrons une analogie

entre les paires de particules-trous induites par cor-

relation et les effets de température.

Enfin, nous étudions la transition de Mott dans le

modèle de Kane-Mele-Hubbard en appliquant notre

schéma de décomposition stochastique variation-

nelle. Nous comparons deux types de théories de

champ moyen dont l’une fournit une expression ana-

lytique décrivante la ligne de transition de Mott.

Title : Topological proximity effect in bilayer systems and stochastic approach to interacting topological phases

Keywords : Topological phases, bilayer model, Mott physics, strongly-correlated phases

Abstract : The past decades have shown great pro-

gress in the description of phases of quantum matter

beyond the Ginzburg-Landau paradigm. Among the

most crucial developments was von Klitzings experi-

mental observation of the quantum Hall effect. It was

then Haldane who developed a simple, elegant mo-

del - the prototypical model of a Chern insulator - that

exhibits a quantum Hall effect without the necessity of

an applied external magnetic field. The, almost twenty

years after Haldane seminal paper, Kane and Mele

described the Quantum Spin Hall Effect (QSHE).

In this thesis, we explore the rich phenomenology of

the Haldane honeycomb model as well as the Kane-

Mele model in a context of novel interfaces and inter-

action effects. First we study the Haldane-graphene

bilayer model and reveal an intriguing proximity effect

that allows to induce a topological index into the bulk

of graphene. We explore in detail the rich phenome-

nology of this system. Importantly, we present experi-

mental protocols designed to reveal the effects. In par-

ticular, we propose a generalized Haldane bilayer mo-

del that is designed to observe the topological proxi-

mity effect in a cold atom experimental setup.

Furthermore, we study the Haldane honeycomb mo-

del with nearest neighbor interactions. We develop

a stochastic decoupling scheme, compute the Mott

transition line supported with iDMRG calculations and

confirm the first order nature of the phase transition by

means of Ginzburg-Landau arguments. Then, we pro-

pose a new quantity dubbed stochastic Chern number

which provides a measure for the topology in the sys-

tem in the presence of strong correlations. We utilize

the dichroism of light to build a bridge in quantifying

excited quasi particles and show an analogy between

interaction induced particle-hole pairs and tempera-

ture effects.

Finally, we study the Mott transition in the Kane-Mele-

Hubbard model by applying our variational stochas-

tic decomposition scheme. We compare two kinds of

mean field theories where one of them provides a clo-

sed analytic expression for the Mott transition line.
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