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Chapter 1 Introduction

Game theory is a branch of mathematics which aims to study the behaviour of a group of players, called agents. The number of players will be denoted by N .

The dynamic of each agent depends on the interactions with the other players, in a noncooperative framework: i.e., the strategies of each player are made in order to pursue his own interest.

In this context, a generic agent chooses his own strategy, i.e. a suitable control, and set up his dynamic, typically modeled by a Stochastic Di↵erential Equation. The control is chosen in order to minimize a certain cost functional, which also depends on the strategies and the dynamics of the other players.

A fundamental tool here is the notion of Nash equilibrium, introduced by Nash in [START_REF] Nash | Non-cooperative games[END_REF]. A certain choice of strategies is called a Nash equilibrium if each agent is playing the optimal strategy in relation to the others. In other words, each player is not interested to be the only one who changes strategy.

In this framework, a crucial role is played by the value function. For each agent, the value function is defined as the cost functional of the player computed at the Nash equilibrium.

We will be more specific about the stochastic formulation and the value function later.

We will focus on di↵erential games, i.e. games in continuous time and state space, introduced for the first time by Isaacs in [START_REF] Isaacs | Di↵erential Games[END_REF] and, at the same time, by Pontryagin in [START_REF] Pontryagin | Linear Di↵erential Games I and II[END_REF]. In particular, Isaacs computed formally the link between the value function in these di↵erential games and the Hamilton-Jacobi equations. In zero-sum di↵erential games, this link became more rigorous thanks to the work of Crandall, Ishii and Lions on viscosity solutions, see Chap. 1 -Introduction [START_REF] Crandall | User's guide to viscosity solutions of second order partial di↵erential equations[END_REF] and [START_REF] Ishii | Viscosity Solutions of Fully Nonlinear Second-Order Elliptic Partial Di↵erential Equations[END_REF].

In non-zero sum di↵erential games, the work becomes harder. In this case, the value functions v N i , i = 1, . . . , N, solve a coupled system of Hamilton-Jacobi equations, called Nash system.

We give an example about the structure of the Nash system in the case of uncontrolled di↵usion. If the control of the agents acts only on the drift of the SDE and not on the di↵usion, we can write the dynamic of the generic player i in this way: 8 < :

dX i t = b(X i t , ↵ i t ) dt + p 2 (X i t )dB i t , X i t 0 = x i 0 .
(1.0.1)

Here, x i 0 2 R d , ↵ i t is the control, chosen from a certain set A, b and are respectively the drift term and the di↵usion matrix and (B t ) i , 1  i  N , are independent d-dimensional Brownian motions.

From now on, we will use the notation v to indicate a vector of R Nd defined by v = (v 1 , . . . , v N ), where v i is an already defined vector of R d .

Assume that the cost for the player i is given by the following functional:

J N i (t 0 , x 0 , ↵ • ) = E Z T t 0 L(s, X i s , ↵ i s ) + F N i (s, X s ) ds + G N i (X T ) ,
where F N i and G N i are the cost functions of the player i and L is the Langrangian cost for the control, which we assume in this example not depending on i.

With these notations, a control ↵ ⇤

• provides a Nash equilibrium if, for all controls ↵ • and for all i we have

J N i (t 0 , x 0 , ↵ ⇤ • )  J N i (t 0 , x 0 , ↵ i , (↵ ⇤ j ) j6 =i ) ,
i.e., each player chooses his optimal strategy, if we "freeze" the other players' strategies.

Hence, the value function for the generic player i corresponds to the cost functional evalutated at the optimal control:

v N i (t 0 , x 0 ) = J N i (t 0 , x 0 , ↵ ⇤ ) .
Using Ito's formula and the dynamic programming principle, one can prove that v N i solves the so-called Nash system:

8 > > > > > > < > > > > > > : @ t v N i (t, x) X j tr(a(x j )D 2 x j x j v N i (t, x)) + H(x i , D x i v N i (t, x)) + X j6 =i H p (x j , D x j v N j (x))•D x j v N i (t, x) = F N i (x) , v N i (T, x) = G N i (x) ,
(1.0.2) for (t, x) 2 [0, T ]⇥R Nd . Here H is the Hamiltonian of the system, i.e. the Fenchel conjugate of the Lagrangian, a = ⇤ and H p (x, p) denotes @H(x,p) @p , for p 2 R N . Existence of solutions for this system is well known under some hypotheses of regularity and growth of the coe cients, see [START_REF] Bensoussan | Smooth solutions of systems of quasilinear parabolic equations[END_REF] and [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF].

However, the structure of the N -players game becomes really intricate when N 1, and in that case we are naturally interested in an asymptotic behaviour of (1.0.2) as N ! 1, in order to simplify the configuration of the Nash system.

The system born to describe Nash equilibria in di↵erential games with infinitely many (small and undistinguishable) agents is called Mean Field Games system. It was introduced by J.M. Lasry and P.L. Lions ([75], [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF], [START_REF] Lasry | Mean field games[END_REF]), using tools from mean-field theories.

A similar notion of Nash equilibria was also developed in the same years by P. Caines, M.

Huang and R. Malhamé [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF].

The macroscopic description used in mean field game theory leads to study coupled systems of PDEs, where the Hamilton-Jacobi-Bellman equation satisfied by the single agent's value function u is coupled with the Kolmogorov Fokker-Planck equation satisfied by the distribution law of the population m. The simplest form of this system is the following

8 > > > > < > > > > :
@ t u tr(a(x)D 2 u) + H(x, Du) = F (x, m) ,

@ t m P i,j @ 2 ij (a ij (x)m) div(mH p (x, Du)) = 0 , m(0) = m 0 u(T ) = G(x, m(T )) , (1.0.3) 
where @ 2 ij (•) = @ 2 (•) @x i @x j denotes a second order partial di↵erentiation and div(•) is the usual divergence operator.

Unfortunately, there is no hope to obtain a convergence of the Nash system in absence of a symmetrical structure of (1.0.2). In other words, the agents and their dynamics have to be symmetric and indistinguishable. So, we suppose that the cost functions F N i and G N i Chap. 1 -Introduction are of this form:

F N i (x) = F (x i , m N,i x ) , G N i (t, x) = G(x i , m N,i x ) ,
where

m N,i x = 1 N 1 X j6 =i
x j , where x is the Dirac function at x .

If we want to describe, at least heuristically, the structure of this limit problem when N ! 1, we find a di↵erential game with infinitely many players, where the dynamic of a generic player is driven by a stochastic di↵erential equation of this type:

8 < :

dX t = b(X t , ↵ t ) dt + p 2 (X t )dB t , X t 0 = x 0 ,
and each player chooses his own strategy in order to minimize

J(t 0 , x 0 , ↵ • ) = E Z T t 0 (L(s, X s , ↵ s ) + F (X s , m(s))) ds + G(X T , m(T )) ,
where m(•) is the density of the population, obtained by the convergence of m N,i x . Since the early works of Lasry and Lions, the study of Mean Field Games Theory with infinitely many players is, in the literature, roughly divided into three main areas:

(i) Works on the Mean Field Games (MFG) system (1.0.3): study of existence, uniqueness and qualitative properties of solutions, in all possible frameworks.

(ii) Works on the convergence problem of the system with N players towards the Mean Field Games system. In other words, show that (1.0.3) is a good approximation of (1.0.2).

(iii) Works that directly study the stochastic control problem and stochastic trajectories with probabilistic approach.

There is by now an extensive literature concerning mean field game systems of this kind (1.0.3), and many fundamental issues have been discussed so far such as existence or nonexistence, regularity and uniqueness of solutions, long time behavior etc., using both an analytic and probabilistic approach. For example, in the analytic literature existence and uniqueness Sec. 1.1 -Mean Field Games System under State Invariance: Chapter 1 of smooth solutions was proved if F and G are non-decreasing operators, see [START_REF] Lasry | Mean field games[END_REF] and [START_REF] Lasry | Application of Mean Field Games to Growth Theory[END_REF].

A very general result of existence and uniqueness was subsequently proved by Porretta in [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF]. Other results, concerning also applications and numerical methods, can be found in [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF], [START_REF] Gomes | Mean Field Games Models -A Brief Survey[END_REF] and [START_REF] Gomes | Regularity theory for Mean-Field Game Systems[END_REF].

In the probabilistic literature, some pioneering results about the well-posedness of the MFG system were given in [START_REF] Bensoussan | Control and Nash Games with Mean Field e↵ect[END_REF], [START_REF] Carmona | Probabilist analysis of Mean Field Games[END_REF], [START_REF] Huang | Large population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized "-Nash Equilibria[END_REF], [START_REF] Huang | The Nash Certainty Equivalence Principle and McKean-Vlasov Systems: an Invariance Principle and Entry Adaptation[END_REF], [START_REF] Huang | An Invariance Principle in Large Population Stochastic Dynamic Games[END_REF] and [START_REF] Kolokoltsov | Mean Field Games and nonlinear Markov Processes[END_REF].

So far, most of the literature considers the case that the state variable x belongs to the flat torus (i.e. periodic solutions), or, especially in the probabilistic literature, in the whole space R d . But in many applications it is useful to work with a process that remains in a certain domain of existence. This can be obtained, for instance, by prescribing Neumann boundary conditions at the equation (1.0.3), which correspond to a reflection term in the stochastic di↵erential equation of the process. Some results of existence and uniqueness for MFG with Neumann (and Dirichlet) boundary conditions can be found in [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF] and [START_REF] Cirant | Multi-population Mean Field Games Systems with Neumann Boundary Conditions[END_REF].

Another way to confine the dinamics into a bounded domain is to choose the control, or to build the drift-di↵usion term, in order to satisfy the required restriction. In this case we talk about MFG with invariance condition or state constraint.

In this thesis I will be focused on both aspects.

In the first chapter I will study a MFG problem with state invariance, obtaining existence, uniqueness and regularity results. In the second chapter I will deal with the convergence problem in a framework of Neumann boundary conditions. We will be more specific about the convergence problem later. Finally, in the third chapter I come back to the Mean Field Games system, analyzing a model where also the di↵usion is controlled.

Mean Field Games System under State Invariance: Chapter 1

As already sad, in many applied models boundary conditions turn out to be a crucial issue. A significant case occurs when the dynamical state needs to remain inside some given domain of existence, say if some natural restriction needs to be preserved. For instance, in many models appearing in economics, a scalar state variable needs to remain above or Chap. 1 -Introduction below given thresholds (e.g. if x denotes a stock quantity, or the reserve of a fossil fuel, or a wealth level, see models described in [START_REF] Achdou | Partial di↵erential equation models in macroeconomics[END_REF], [START_REF] Guéant | Mean field games and applications[END_REF]).

There are two typical ways in which the proposed models handle this kind of situation: either one considers the state constraint control problem, in which case one uses the control in order to satisfy the required restriction, or alternatively the drift-di↵usion terms are built in the model so that the state does not leave the domain, regardless of the control. This latter situation is what we are going to study in Chapter 1 of my thesis. Namely, we assume that the state variable x belongs to a bounded domain ⌦ ⇢ R d and we will assume structure conditions, on the di↵usion and the Hamiltonian terms, which imply that the domain ⌦ is an invariant set for the underlying controlled dynamics, and this invariance occurs for any choice of the control. In the control community, sometimes this property is referred to as the invariance of the state space.

Let us stress that considering the domain to be invariant for all controls is di↵erent from considering the state constraint control problem; in very rough words, one can say that the viability of the state space plays like a regularizing condition of the underlying dynamics, whereas the state constraint problem leads to formation of singularities at the boundary, because of the forced action of the control.

In the case of uncontrolled SDEs

dX t = b(t, X t ) dt + p 2 (X t ) dW t , X 0 = x 2 ⌦ (1.1.1)
the conditions on the coe cients b and which let ⌦ be an invariant set are extensively discussed in the literature, at least in the case that and b are globally Lipschitz. We refer the reader to [START_REF] Cannarsa | Invariant measures associated to degenerate elliptic operators[END_REF], [START_REF] Da Prato | Stochastic viability for compact sets in terms of the distance function[END_REF], [START_REF] Da Prato | Stochastic viability of convex sets[END_REF] and the literature therein. The case that the di↵usion is controlled, so b = b(t, x, ↵), = (t, x, ↵) for ↵ in a set of controls, was recently discussed in [START_REF] Bardi | Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control[END_REF], [START_REF] Bardi | A Geometric Characterization of Viable Sets for Controlled Degenerate Di↵usions[END_REF] and [START_REF] Castorina | On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary[END_REF] in terms of (viscosity solutions) of the associated Bellman operators.

In our study, we let aside by now the possibility that the di↵usion part is controlled; on the other hand, we aim at giving general conditions on the di↵usion matrix and drift terms which may apply to both degenerate and non degenerate operators, to possibly unbounded for some constant C > 0, where d(x) is the distance function to the boundary, a(x) = ( ⇤ )(x) is the di↵usion matrix and tr(•) is the trace operator. This condition reduces to the well known necessary and su cient condition ( [START_REF] Cannarsa | Invariant measures associated to degenerate elliptic operators[END_REF]) if is Lipschitz continuous and ⇤ (x)Dd(x) = 0 on the boundary. However, it also includes more general cases, like being only 1/2-Hölder continuous (to this respect, it generalizes the condition used in [START_REF] Bardi | Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control[END_REF] for Hölder coe cients) and, last but not least, it also applies to the case of non degeneracy (a(x) coercive up to the boundary) if the drift b(x) is allowed to be unbounded (as in [START_REF] Leonori | Gradient bounds for elliptic problems singular at the boundary[END_REF]).

In case of Bellman operators, say if the dynamics is controlled, the viability of the state space is ensured provided the same condition as (1.1.2) is required to hold for all controls.

More specific examples will be given in the next Chapter. We point out that this kind of condition is also related to the notion of characteristic points of the boundary, namely to the question whether boundary conditions should be prescribed or not for the corresponding Bellman operator, see e.g. [START_REF] Barles | The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems[END_REF], [START_REF] Barles | A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications Comm[END_REF] and [START_REF] Fichera | Sulle equazioni di↵erenziali lineari ellittico-paraboliche del secondo ordine[END_REF] for the linear case.

We conclude this section giving a summary of the results obtained:

(i) First we obtain existence and uniqueness of bounded solutions to the Hamilton-Jacobi equation with bounded terminal conditions, with suitable hypotheses on the Hamiltonian H;

(ii) Then we prove existence and uniqueness of weak solutions in C([0, T ]; L 1 (⌦)) for the Fokker-Planck equation, with initial condition in L 1 (⌦). We will be more precise about these definitions of solutions in the next Chapter.

(iii) Collecting these results we are able to prove, under classical monotonicity assumptions on the couplings F and G, existence and uniqueness of solutions for the Mean Field

Games system with invariance conditions.

(iv) With further hypotheses on the coe cients and the data of the system, we can improve the regularity of the solutions. In particular, the value function u is globally Lipschitz continuous and semi-concave in ⌦, while the density function m is globally bounded.

We point out that these results are not restricted to smooth domains, but at the end of the chapter a generalization on domains with corners, e.g. rectangles, will be given.

Chap. 1 -Introduction

The Master Equation and the Convergence Problem:

Chapter 2

Once proved the results on the Mean Field Games problem, one naturally asks if this system can be a good approximation of the N -players system.

In this context, two kind of results can be shown:

(i) The optimal strategies in the Mean Field Games system provide approximated Nash equilibria (called "-Nash equilibria) in the N -player game.

(ii) A Nash equilibrium in the N -player game converges, when N ! +1, towards an optimal strategy in the Mean Field Games.

The first question has been widely studied, using specific tools of the Mean Field theory.

See, for instance, [START_REF] Carmona | Probabilist analysis of Mean Field Games[END_REF], [START_REF] Huang | Large population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized "-Nash Equilibria[END_REF], [START_REF] Kolokoltsov | Mean Field Games and nonlinear Markov Processes[END_REF].

Conversely, many di culties arise in the second question, due to the lack of compactness properties of the problem.

So far it has become clear that the Mean Field Games system cannot be su cient to take into account the complexity of the problem with N players.

In order to overcome this problem, Lasry and Lions in [80] introduced a new infinite dimensional equation, the so-called Master Equation, which summarizes the whole Mean Field Games system in a unique equation and is clearly connected with the Nash system.

The Master Equation is defined from its trajectories, which are solutions of the Mean Field Games system. To be more precise, we consider the solution (u, m) of the system (1.0.3) with initial condition m(t 0 ) = m 0 and we define the function

U : [0, T ] ⇥ ⌦ ⇥ P(⌦) ! R , U(t 0 , x, m 0 ) = u(t 0 , x) , (1.2.1) 
where ⌦ ✓ R d and P(⌦) is the set of Borel probability measures on ⌦.

If we compute, at least formally, the equation satisfied by U , we obtain a Hamilton-Jacobi equation in the space of measures: Here, D m U is a suitable derivative of U with respect to the measure m. We will deal about this derivation in Chapter 2. This definition, however, is strictly related to the one given by Ambrosio, Gigli and Savaré in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] and by Lions in [80].

8 > > > > > > > < > > > > > > > : @ t U (t, x, m) tr a(x)D 2 x U (t, x, m) + H (x, D x U (t, x, m)) Z
The Master Equation plays a crucial role in order to prove the convergence of the Nplayer Nash equilibria, and his relevance was recognized in di↵erent papers. For example, in [START_REF] Bensoussan | The Master Equation in mean field theory[END_REF] and [START_REF] Bensoussan | On the interpretation of the Master Equation[END_REF] Bensoussan, Frehse and Yam reformulated this equation as a PDE set on an L 2 space, and in [START_REF] Carmona | The Master Equation for large population equilibriums[END_REF] Carmona and Delarue interpreted it as a decoupling field of forward-backward stochastic di↵erential equations in infinite dimension.

Once defined the Master Equation, there are two main steps which must be handled:

(i) Prove the well-posedness of the Master Equation: existence, uniqueness and regularity of solutions.

(ii) Prove that any solution of the Nash system (1.0.2) converge towards a solution of the Master Equation (1.2.2).

Some preliminary results about the first problem were given by Lions in [80] and a first exhaustive result of existence and uniqueness was proved, with a probabilistic approach, by Chassagneux, Crisan and Delarue in [START_REF] Chassagneux | Classical solutions to the Master Equation for large population equilibria[END_REF].

But the most important work in this direction is given by Cardaliaguet, Delarue, Lasry and Lions in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF], who give a complete proof for the well-posedness of (1.2.2) and for the convergence result.

These results are obtained in two di↵erent contexts: the first case is the so-called First order Master Equation, when the control of the generic player has the form (1.1.1) and the Master Equation is (1.2.2), and the Second order Master Equation, or Master Equation with common noise. In this case, the dynamic (1.1.1) has also an additional Brownian term dW t , not depending on i (which justifies the adjective common). This leads to a di↵erent and more di cult type of Master Equation, with some additional terms depending also on the second derivative D mm U . It is relevant to say that Mean Field Games with common noise were already studied by Carmona, Delarue and Lacker in [START_REF] Carmona | Probabilistic anal-ysis of mean field games with a common noise[END_REF].

Another convergence result using the Master Equation with common noise was given by Delarue, Lacker and Ramanan in [START_REF] Delarue | From the master equation to mean field game limit theory: a central limit theorem[END_REF], using large deviations results. Finally, a convergence result of Nash equilibria without using the Master Equation was given in [START_REF] Lacker | A general characterization of the mean field limit for stochastic di↵erential games[END_REF].

Sec. 1.3 -Mean Field Games with Controlled Di↵usion: Chapter 3 the stochastic process, which contains also a reflection term at the boundary.

The convergence is obtained defining the auxiliary functions

u N i (t, x) = U (t, x i , m N,i x )
and the stochastic processes related to this functions. Then, using a probabilistic approach, we can prove that |u N i v N i | ! 0 in two di↵erent norms. See Theorem 3.7.7 for further details.

Mean Field Games with Controlled Di↵usion: Chapter 3

Finally, we come back to the Mean Field Games problem, analyzing another kind of system.

In the model example we gave previously, the control ↵ acts only on the drift. Some results with controlled di↵usion are available, see for instance the elliptic case studied in [START_REF] Dragoni | Ergodic Mean Field Games with Hörmander di↵usions[END_REF], or the probabilistic approach developed in [START_REF] Benazzoli | Mean field games with controlled jump-di↵usion dynamics: Existence results and an illiquid interbank market model[END_REF]. But, as far as we know, Mean Field Games system were mostly studied in case of uncontrolled di↵usion. This leads to the study of a system of linear or possibly quasilinear PDE.

However, in many applied models it is interesting to study a framework where the agents can play their own control also on the di↵usion term. See, for example, the financial articles of Avellaneda et al., [START_REF] Avellaneda | Combinatorial Implications of Nonlinear Uncertain Volatility Models: the case of Barrier Options[END_REF], [START_REF] Avellaneda | Pricing and hedging derivative securities in markets with uncertain volatilities[END_REF], [START_REF] Avellaneda | Managing the Volatility Risk of Portfolios of Derivative Securities: the Lagrangian Uncertain Volatility Model[END_REF].

This leads to the study of a fully nonlinear Hamilton-Jacobi equation, called in the model case parabolic Bellman equation. This equation was widely studied in the literature, both in elliptic and parabolic settings. See for instance [START_REF] Barles | Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations[END_REF], [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], [START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations[END_REF], [START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations in a Domain[END_REF], [START_REF] Lions | On the Hamilton-Jacobi-Bellman equations[END_REF], [START_REF] Tataru | Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms[END_REF].

In this chapter, we study a particular case of nonlinear Mean Field Games, namely: 8 > > < > > :

@ t u + H 1 (t, x, ru) + H 2 (t, x, u) + F (t, x, m) = 0 , @ t m (mH 2 q (t, x, u)) + div(mH 1 p (t, x, ru)) = 0 , u(T, x) = G(x, m(T )) , m(0) = m 0 .

This system comes from a dynamic for the generic player of this type: 8 <

:

dX s = ↵ s ds + s dB s , X t = x 0 , (1.3.1) 
Chap. 1 -Introduction where two bounded di↵erent controls ↵ and act on the drift and on the di↵usion term. In order to ensure a strong ellipticity condition on the di↵usion, we require bounded from above and below by two strictly positive constants.

Once defined a suitable definition of viscosity solution for the first equation (no weak solutions can be defined if there is nonlinearity in the second order term), existence and uniqueness of solutions for that one is immediately obtained.

But, since the di↵usion of the second equation depends on u, we need to improve the regularity of u in order to study the FP equation.

These further regularities are widely studied in the elliptic case, see [START_REF] Cabre | Fully Nonlinear Elliptic Equations[END_REF], [START_REF] Cabre | Regularity for viscosity solutions of fully nonlinear equations F (D 2 u) = 0[END_REF], and in particular cases of fully nonlinear parabolic equations, see [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF].

In our case, we start proving a Lipschitz bound for u, following the same ideas of [START_REF] Porretta | Global Lipschitz regularizing e↵ects for linear and nonlinear parabolic equations[END_REF].

Then we improve the regularity of u, adapting in a parabolic setting the results of [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], and proving a semiconcave bound for the value function.

Then, using a regularity result obtained by Krylov, see [START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations[END_REF] and [START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations in a Domain[END_REF], we are able to prove that u is a classical solution of the system, at least in a regular case. This allows us to linearize the equation and apply the classical regularity results we need.

Finally, we can classically prove existence and uniqueness for m, since the equation of m is quasilinear, and then existence and uniqueness for Mean Field Games system using a standard fixed point argument.

Chapter 2

Mean Field Games under Invariance Conditions for the State Space

Introduction

In this chapter, as already said, we investigate mean field game systems under invariance conditions for the state space, otherwise called viability conditions for the controlled dynamics. First we analyze separately the Hamilton-Jacobi and the Fokker-Planck equations,

showing how the invariance condition on the underlying dynamics yields the existence and uniqueness, respectively in L 1 and in L 1 . Then we apply this analysis to mean field games.

We investigate further the regularity of solutions proving, under some extra conditions, that the value function is (globally) Lipschitz and semiconcave. This latter regularity eventually leads the distribution density to be bounded, under suitable conditions. The results are not restricted to smooth domains.

The macroscopic description used in mean field game theory leads to study coupled systems of PDEs of the form (1.0.3), where the Hamilton-Jacobi-Bellman equation satisfied by the single agent's value function is coupled with the Kolmogorov Fokker-Planck equation satisfied by the distribution law of the population. We allow in this case a dependence on Chap. 2 -Mean Field Games under Invariance Conditions for the State Space t for the Hamiltonian H and the cost function F . The system assumes the following form: We said in the introduction that for a stochastic dynamic (1.1.1), the invariance condition assumes the form (1.1.2). But for a general PDE approach to the Hamilton-Jacobi equation

8 > > > > > < > > > > > : @ t u P i,j a ij (x)@ 2 ij u + H(t, x, Du) = F (t, x, m) , (t, x) 2 (0, T ) ⇥ ⌦ @ t m P i,j @ 2 ij (a ij (x)m) div(mH p (t, x, Du)) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ m(0) = m 0 u(T ) = G(x, m(T )) (2.
@ t u X i,j a ij (x)@ 2 ij u + H(t, x, Du) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ (2.1.2)
we replace the invariance condition on the dynamics with a structure condition formulated directly on the Hamiltonian function. Namely, in the same spirit as above, we require that the di↵usion matrix a(x) and the Hamiltonian H(t, x, p) satisfy the inequality

Tr(a(x)D 2 d(x)) H p (t, x, p) • Dd(x) a(x)Dd(x) • Dd(x) d(x) C d(x) 8p 2 R N (2.1.3)
for some constant C > 0, for x in a neighborhood of the boundary and t 2 (0, T ).

As it is intrinsic to mean field games, we are going to study not only the properties of the HJB equation under condition (2.1.3) but also the properties of the Kolmogorov equation which appear, roughly speaking, in a dual form. The key point, as we will see in our results, is that the invariance condition ensures that, on one hand, the uniqueness holds just in the class of bounded solutions for HJB, on another hand a global L 1 -stability holds for the KFP equation.

In the end, the contribution of this chapter will be the analysis of HJB equations, Fokker-Planck equations and, eventually, mean field games under the invariance structure conditions formulated above. In order to focus on the boundary behavior, we assume throughout Sec. 

@ t m P i,j @ 2 ij (a ij (x)m) + div(m b(t, x)) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ m(0) = m 0 admits a unique weak solution m 2 C 0 ([0, T ]; L 1 (⌦)).
Here by a weak solution we mean that

Z T 0 Z ⌦ m L( )dxdt = Z ⌦ m 0 (0)dx for every 2 C 0 ([0, T ]; L 1 (⌦)) \ L 1 such that L( ) 2 L 1 , where L( ) = @ t P i,j a ij (x)@ 2 ij b(t, x) • D .
(c) Under the conditions on a(x), H assumed in item (a) (in particular, under the invariance condition (2.1.3)), and assuming that the coupling terms F (t, x, m) and G(x, m) satisfy global bounds in L 1 and suitable continuity conditions with respect to m, we prove that the mean field game system (2.1.1) admits a weak solution, where the two equations are formulated in the sense specified, respectively, by previous results in (a) and (b). This kind of solution of (2.1.1) is also unique under usual monotonicity conditions upon F and G (with respect to m).

(d) Assuming in addition that a(x) = ( ⇤ )(x) with Lipschitz, plus a few natural structure conditions on the Hamiltonian H and further regularity of F and G, we prove additional regularity for the solution (u, m) of (2.1.1); namely, that u is (globally)

Lipschitz continuous and semi concave in ⌦. Moreover, in this case m is (globally) bounded provided P i,j [ @a ij @x i + H p j (t, x, Du)] ⌫ j 0 on the boundary, where ⌫ is the outward unit normal.

The spirit of the above results is that the invariance condition plays like a (transparent) boundary condition for the two equations. In fact, the existence of solutions will be provided by limit of (penalized) standard Neumann problems. The stochastic interpretation of the invariance condition easily explains that a kind of (transparent and soft) reflection naturally occurs near the boundary. The regularity results mentioned in item (d) show how the invariance condition may prevent the formation of singularities which, conversely, would occur in case of the state constraint problem. Indeed, global semi concavity may be lost in that case, see e.g. the recent paper [START_REF] Cannarsa | Mean Field Games with state constraints: from mild to pointwise solutions of the PDE system[END_REF].

Last but not least, we generalize our results to possibly non smooth domains. This generalization includes in particular the case that ⌦ = Q N i=1 (a i , b i ) is a N -dimensional rectangle, which is often the case in applications.

We conclude by summarizing the organization of the chapter. In Section 2 we list the main notation and the standing assumptions which hold throughout the chapter; then we give a few examples of control problems which fit our conditions and we properly state the main existence and uniqueness results which are proved. Section 3 is devoted to the study of the single HJB equation (2.1.2) under the invariance condition. Section 4 is devoted to the analysis of the single Fokker-Planck equation in the same context. The mean field game system (2.1.1) is studied and characterized in Section 5. Section 6 contains the additional regularity results on the solutions and specifically the Lipschitz and semi concavity regularity; at this stage we need to make additional assumptions on the nonlinearity and this is why those results are not mentioned earlier in Section 2. Finally, Section 7 contains the generalization to non smooth domains. We leave to the Appendix the proof of a couple of technical results.

Preliminaries: assumptions and examples

We assume throughout the chapter that ⌦ is a bounded open subset of R N , N 1. We denote Q T := (0, T ) ⇥ ⌦. We recall that the oriented distance from @⌦, denoted by d ⌦ , is the function defined by

d ⌦ (x) = ( d(x, @⌦) ifx 2 ⌦ d(x, @⌦) ifx / 2 ⌦
where, as usual, d(x, @⌦) = inf y2@⌦ |x y|. We write d instead of d ⌦ when there is no possible mistake for ⌦. It is well-known that d ⌦ is a 1-Lipschitz function which coincides with the unique viscosity solution of the eikonal equation

8 < : |Du| = 1 x 2 ⌦ u = 0 x 2 @⌦ .
Moreover, if we require some regularity for the set ⌦, we obtain further regularity for d ⌦ .

Definition 2.2.1. Let K ✓ R N . We say that K is a compact domain of class C 2 if K is a compact connected set and 9M 2 N such that 81  i  M 9B r i (x i ), x i 2 @K and a function i : B r i (x i ) ! R such that (i) @K ✓ S M i=1 B r i (x i ) (ii) @K \ B r i (x i ) = { i = 0} (iii) i is of class C 2 with D 2 i bounded in B r i (x i ).
In the following, we assume that ⌦ is an open set such that ⌦ is a compact domain of class C 2 . We set

R " := {x 2 R N : |d ⌦ (x)| < "} " := {x 2 ⌦ : d ⌦ (x) < "} = R " \ ⌦ .
We recall (see e.g. [START_REF] Cannarsa | Invariant measures associated to degenerate elliptic operators[END_REF] and [START_REF] Delfour | Shape analysis via oriented distance function[END_REF]) that

⌦ is a compact domain of class C 2 () 9" 0 > 0 : d ⌦ 2 C 2 (R " 0 )
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8x 2 " 0 9! x 2 @⌦ s.t. d ⌦ (x) = |x x| and Dd ⌦ (x) = Dd ⌦ (x) = ⌫(x) (2.2.1)
where ⌫ stands for the outward unit normal to @⌦.

Remark: Actually, we will use the function d ⌦ only near @⌦, where this is a regular function. So, from now on, when we will write d ⌦ (or d when there is no possible mistake) we will mean a C 2 (⌦) function d such that 9" 0 > 0 with d = d in " 0 .

For every r 2 R we set

D r = ⇢ x 2 ⌦ s.t. d(x) 1 r = ⌦ \ 1 r (2.2.2)
so that we build a sequence {D n } n2N of compact domains of class C 2 such that

D n ✓ D n+1 and 1 [ n=1 D n = ⌦ .
For each couple of vectors (v, w) 2 R n ⇥ R m , the tensor product v ⌦ w denotes the n ⇥ mmatrix v T w. Finally, throughout the proofs we use the notation C to denote a generic constant which may vary from line to line.

Standing assumptions.

Let us now make precise the assumptions on the coe cients a ij and on the nonlinearities H, F, G of the system (2.1.1).

We assume that a 

(x) = (a ij (x)) ij is a N ⇥ N -matrix which belongs to W 1,1 (⌦) N ⇥N and satisfies a(x)⇠ • ⇠ > 0 8 x 2 ⌦, 8⇠ 2 R N . (2.2.3) We call r 2 R >0 the constant of uniform ellipticity of a in D r , i.e. a(x)⇠ • ⇠ r |⇠| 2 8x 2 D r , 8⇠ 2 R N . ( 2 
H(t, x, 0) 2 L 1 (Q T ) (2.2.6)
and 

8 compact set K ⇢ ⌦, 9C K > 0: |H p (t, x, p)|  C K (1 + |p|) 8p 2 R N ,
|H(t, x, p)|  C K (1 + |p| 2 ) 8p 2 R N , and a.e. x 2 K, t 2 [0, T ] (2.2.8) 
for a possibly di↵erent constant C K .

The invariance condition will be formulated in terms of the di↵usion matrix a(x) and the Hamiltonian function H(t, x, p). Namely, we assume that there exist > 0 and C > 0 such that the following inequality holds:

tr(a(x)D 2 d(x)) H p (t, x, p)Dd(x) a(x)Dd(x) • Dd(x) d(x) Cd(x) 8 p 2 R N and a.e. x 2 , t 2 [0, T ], (2.2.9) 
where, we recall, is the subset of ⌦ with d(x) < .

A typical case when assumption (2.2.9) is satisfied occurs if there exists a N ⇥ N -matrix for all p 2 R N and all x in a neighborhood of @⌦. Moreover, in the case that H p (t, x, p) is Lipschitz with respect to x (uniformly in t and p), the inequality can be required to hold only for x 2 @⌦, since (2.2.9) will be equally satisfied for x in some provided the constant C is large enough. This is the typical condition which is given in the literature for linear operators, i.e. if H(t, x, p) = b(x) • p, see e.g. [START_REF] Cannarsa | Invariant measures associated to degenerate elliptic operators[END_REF].

2 W 1,1 such that a = ⇤ , ⇤ (x)Dd(x) = 0 8x 2 @⌦ , ( 2 
However, we stress that assumption (2.2.9) is meant to include more general examples.

On one hand, this condition includes the case of a = ⇤ with being only 1/2-Hölder continuous. On another hand, even the uniformly elliptic case is included in our setting, indeed a(x) could be non degenerate at the boundary provided the drift part is su ciently coercive in the (inward) normal direction. Situations of this kind were considered, for instance, in [START_REF] Leonori | Gradient bounds for elliptic problems singular at the boundary[END_REF].

Finally, the assumptions on the coupling costs F, G. Here we assume that F is a map

from Q T ⇥ C 0 ([0, T ]; L 1 (⌦)) into R. In particular, for any given m 2 C 0 ([0, T ]; L 1 (⌦)), F (•, •, m) defines a function on Q T . We assume that m 7 ! F (•, •, m) maps bounded sets of C 0 ([0, T ]; L 1 (⌦)) into bounded sets of L 1 (Q T ),
and is continuous in the L 1 (Q T )-topology.

(2.2.11)

We wish to include two model examples in the previous conditions. The simplest case is when F acts locally on the density m(t, x): this means, for instance, that F is given through

a real function f : Q T ⇥ R ! R so that F (t, x, m) := f (t, x, m(t, x)) .
In this case the condition is satisfied whenever f is continuous with respect to m and is uniformly bounded. A second class of examples is given by nonlocal functions F , as, for instance, F = K ? m for some bounded convolution kernel K.

A similar condition is assumed for G, although here we need to strengthen the requirements in order to ensure that Du is bounded up to t = T (unless H is Lipschitz continuous, see also Remak 2.5.4). Namely, we assume that G is a map from

⌦ ⇥ L 1 (⌦) into R such that m 7 ! G(•, m) is a continuous map from L 1 (⌦) into L 1 (⌦)
which maps bounded sets of L 1 (⌦) into bounded sets of W 1,1 (⌦).

(2.2.12)

As is customary in mean field game systems, we will require in addition some monotonicity of F, G in order to have uniqueness of solutions.

2.2.2 Short statement of the main results.

We list here the three main results that we prove in the chapter, standing on the assumptions previously introduced. The first one is just concerned with the Hamilton-Jacobi-Bellman equation. The notion of weak solution is a standard one and will be precisely given in 

@ t u P i,j a ij (x)@ 2 ij u + H(t, x, Du) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ u(T ) = G(x) , x2 ⌦ .
The second result gives, somehow, a counterpart for the Fokker-Planck equation. Indeed, under the invariance condition the problem turns out to be well-posed in L 1 (⌦). Here the notion of weak solution is defined in a dual way, see Definition 2.4.1, and incorporates somehow a transparent Neumann condition at the boundary.

With a slight abuse of notation, we denote by L 1 ([0, T ]; L 1 loc (⌦)) the space of measurable functions in Q T which are bounded on (0, T ) ⇥ K for every compact subset K ⇢ ⌦.

Theorem 2.2.3. Let m 0 2 L 1 (⌦), m 0 0. Let a 2 W 1,1 (⌦) satisfy (2.2.3). Assume that b 2 L 1 ([0, T ]; L 1 loc (⌦))
and that there exist 0 , C > 0 such that the following inequality holds:

tr(a(x)D 2 d(x)) b(t, x) • Dd(x) a(x)Dd(x) • Dd(x) d(x) C d(x) (2.2.13)
for almost every t 2 (0, T ) and x 2 0 . Then there is one and only one weak solution (in the sense of Definition 2.4.1) of the problem 8 > < > :

@ t m P i,j @ 2 ij (a ij (x)m) div(m b(t, x)) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ m(0) = m 0 (x) , x2 ⌦ .
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Our third main result is concerned with the mean field game system, where we join the two previous results, using the conditions on the coupling terms and the viability assumption on the Hamiltonian. If, in addition, F and G are monotone with respect to m, then the solution is unique.

The further results that we prove are concerned with the regularity of solutions, but in this case we postpone the proper statements to Section 7.

Probabilistic interpretation and examples.

Now we give the probabilistic interpretation of the system. Given a probability space ( ⌦, (F t ) t , P) (we use ⌦ instead of the classical ⌦ to avoid confusion with the state space ⌦ previously defined) and a Brownian motion (B t ) t adapted to the filtration (F t ) t , we consider for s > t the solution (X s ) s of the following stochastic di↵erential equation:

8 < : dX s = b(s, X s , ↵ s )ds + p 2 (X s )dB s X t = x (2.2.14)
where b and p 2 are, as usual, the drift and the di↵usion coe cients of the process X . , and where the control ↵ s is a progressively measurable process adapted to the filtration F t and taking values in A ✓ R N .

We recall the Ito's formula:

if 2 C 1,2 [0, T ] ⇥ R N ), then we have d (s, X s ) = t (s, X s ) + tr(a(X s )D 2 (s, X s )) + b(s, X s , ↵ s ) • r (s, X s ) ds + + p 2(r (s, X s )) ⇤ (X s )dB s .
In many applications, it is required that the process (X t ) t remains in ⌦ for every t 0 and for all available controls. This leads to the terminology of invariance condition for assumption (2.2.9), which is justified in view of the following result.

Proposition 2.2.5. Let 2 W 1,1 (⌦) and b(s, x, ↵) be (locally) Lipschitz with respect to the time and space variables, with a Lipschitz constant (locally) uniform in ↵, and suppose that, for some > 0 and C > 0: 

tr(a(x)D 2 d(x)) + b(s, x, ↵) • Dd(x) a(x)Dd(x) • Dd(x) d(x) Cd(x) 8(s, x) 2 [t, T ] ⇥ , 8↵ 2 A , (2.2 
: for ! 2 ⌦ ⌧ E (!) = inf {s t | X s (!) / 2 E} .
So, proving (2.2.16) is equivalent to prove that P (⌧ ⌦ < +1) = 0. To this purpose, we will show that, for all s > t, we have

P (⌧ ⌦  s) = 0 . (2.2.17) 
Indeed, since

{⌧ ⌦  s} ✓ {⌧ ⌦  r} for s  r and [ s {⌧ ⌦  s} = {⌧ ⌦ < +1} ,
then the assertion follows thanks to the monotone convergence theorem. To prove (2.2.17), we will show that

V (x) := log(d(x))
is, roughly speaking, a super solution up to a constant. Indeed, according to (2.2.15) we obtain 

tr(a(x)D 2 V ) + b(s, x, ↵) • DV = tr(a(x)D 2 d(x)) + b(s, x, ↵) • Dd(x) d(x) + a(x)Dd(x) • Dd(x) d(x)
U (x) = V (x) for x 2 2 , tr(a(x)D 2 U (x)) + b(s, x, ↵) • DU (x)  C for x 2 ⌦ , s 2 [t, T ] , ↵ 2 A ;
we recall that the constant C can change from line to line. To conclude, we consider a sequence of compact domains {D n } n converging to ⌦, and the associated stopping times ⌧ Dn . Applying Ito's Formula to U and taking the expectation, we have

E ⇥ U (X s^⌧ Dn ) ⇤ = U (x) + E Z s^⌧ Dn t tr(a(X r )D 2 U (X r ) + b(r, X r , ↵ r ) • DU (X r ) dr hence E ⇥ U (X s^⌧ Dn ) ⇤  U (x) + C(s t) < +1 since x 2 ⌦. Using Fatou's Lemma we get E [U (X s^⌧ ⌦ )]  lim inf n!1 E ⇥ U (X s^⌧ Dn ) ⇤  U (x) + C(s t) < +1 .
Since U (x) blows-up if x 2 @⌦, this implies

P(⌧ ⌦  s) = 0 .
For t 2 [0, T ] and x 2 ⌦, we define now the value function

u(t, x) := inf (↵s)s✓A E Z T t (F (s, X s , m(s)) + L(s, X s , ↵ s )) ds + G(X T , m(T )) ,
where, for every s, m(s) is a probability density function.

Here F and G are the cost functions and the Lagrangian L satisfies standard conditions.

Typically, we require the strict convexity of the function L. In a usual way, one can apply the Ito's formula and the dynamic programming principle to obtain a Hamilton-Jacobi-Bellman We give here two typical examples in which the hypotheses made so far upon H are satisfied. In particular, the invariance condition may be satisfied by using controlled perturbations of linear invariant processes.

Example 1 (bounded controls).

We consider a set of controls A ⇢ R N which is compact and a positive number M . We take b(x, ↵) := MDd(x) + ↵ .

Then, for any a(x) such that a(x)Dd(x) • Dd(x) = 0 on @⌦, the invariance condition (2.2.9)

is satisfied for M su ciently large.

Indeed, since the set of controls is bounded and a is Lipschitz, we have

a(x)Dd(x) • Dd(x) d(x) tr(a(x)D 2 d(x)) ↵ • Dd(x)  C
for some constant C > 0 independent of ↵. So (2.2.9) holds provided M is large enough.

Let us now check the other conditions assumed upon H. In this situation, the Hamiltonian H takes the form

H(x, p) = sup ↵2A ( ↵ • p MDd(x) • p L(x, ↵)) .
Of course H is a convex function with respect to the variable p. with respect to x with L x continuous with respect to ↵, then H is also C 1 in both variables.

Finally, let us stress that a similar example can be adapted to the case that a(x) does not degenerate at the boundary, namely if a(x) > 0 in ⌦. In that case, it is enough to take b(x, ↵) = M Dd(x) d(x) + ↵ in order to build a similar example.

Example 2 (unbounded controls and coercive Hamiltonian).

Here we consider a case in which the set of controls is unbounded. This gives us an

Hamiltonian with super-linear growth in p.

We take A = {↵ 2 R N s.t. ↵ i 0 8i} and we set b(x, ↵) := MDd(x) + B(x)↵ , where 8x B(x) is a N ⇥ N -real valued matrix. Let c 0 0 be such that tr(a(x)D 2 d(x)) c 0 .

Then we have

tr(a(x)D 2 d(x)) + b(x, ↵)Dd(x) M c 0 + B(x)↵ • Dd(x) M c 0 , if we choose B such that B(x)↵ • Dd(x) 0 , 8↵ 2 A . (2.2.19)
For example, we can take B(x

) ij = Dd(x) i ij . If (2.2.19
) holds, then the invariance condition (2.2.9) is satisfied provided M is su ciently large.

Let us suppose further that the matrix B(x) is bounded and continuous. As in the previous example, let the function L(x, ↵) be continuous in both arguments and strictly convex in ↵, and assume the following coercivity condition: 9⌘ > 0, q > 1, c 0 > 0 such that

L(x, ↵) ⌘|↵| q c 0 8↵ 2 A , x 2 ⌦ .
Then one can readily check the properties of H as before. In particular, the supremum that arises in the definition of H(x, p) is attained at a unique point ↵ p,x , which is continuous with respect to (x, p) and now satisfies the estimate:

|↵ p,x |  C(1 + |p| q 0 1 ) 8(x, p) ,
where q 0 is the conjugate exponent of q, i.e. q 0 = q q 1 . As a consequence, there exists a constant C > 0 such that

C(1 + |p|)  H(x, p)  C(1 + |p| q 0 ) .
Similarly, the di↵erentiability of H with respect to p and formula (2.2.18) imply that

|H p (x, p)|  C(1 + |p| q 0 1 ) ,
so that H has at most quadratic growth for q 2 and satisfies (2.2.5)-(2.2.7).

Moreover, if L and B are C 1 with respect to x, and the derivative of L is continuous in ↵, then H is C 1 in both variables. Finally, we notice that, if L x has a linear growth in ↵, then |H x (x, p)|  C(1 + |p| q 0 ).

The Hamilton-Jacobi-Bellman equation

In this Section we study the Hamilton-Jacobi-Bellman (HJB) equation

8 < : u t tr(a(x)D 2 u) + H(t, x, Du) = 0 in (0, T ) ⇥ ⌦, u(T ) = G(x) i n ⌦ . (2.3.1)
under conditions of invariance of the domain (see (2.2.9)). In particular, we observe that no boundary condition is prescribed. Here, the boundedness of u will be enough to characterize the solution.
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u t div(a(x)Du) + b(x) • Du + H(t, x, Du) = 0 u(T ) = G(x)
where b is defined as bj 

(x) = N X i=1 @a ij @x i (x) , j= 1 
(i) u 2 L 1 ([0, T ] ⇥ ⌦); (ii) u 2 L 2 ([0, T ]; W 1,2 (K)) for each K ⇢⇢ ⌦;
(iii) 8 2 C 1 c ((0, T ] ⇥ ⌦) (resp. 0) the weak formulation holds:

Z T 0 Z ⌦ u t dxdt + Z T 0 Z ⌦ a(x)Du • D dxdt + + Z T 0 Z ⌦ (H(t, x, Du) + b(x)Du) dxdt = Z ⌦ G(x) (T )dx , (resp. , )
, where b is defined above.

Remark 2.3.2. We observe that, if u is a weak solution of (2.3.1), then u 2 C([0, T ]; L p (⌦)) for each p 1. Indeed, from (ii) (iii) we have u t 2 L 2 ([0, T ]; W 1,2 (K))+L 1 ((0, T )⇥K) for each K ⇢⇢ ⌦, and so u 2 C([0, T ]; L 1 (K)) (see [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF]Theorem 2.2]). Since u 2 L 1 ([0, T ] ⇥ ⌦), one can actually conclude that u 2 C([0, T ]; L p (⌦)) for each p 1.

Existence of solutions

We start by proving the existence of at least one weak solution. This is achieved without using the invariance condition and actually follows by a standard use of global bounds and local compactness. The next lemma is by now standard, following the arguments in [START_REF] Boccardo | Existence results for some quasilinear parabolic equations[END_REF].

For the reader's convenience, since the statement may not be found exactly in this form in previous references, we will give a short proof in the Appendix.

Lemma 2.3.3. Let {⌦ " } be a sequence of domains such that ⌦ " ✓ ⌦ ⌘ ✓ ⌦ for " > ⌘, and S " ⌦ " = ⌦. Let H " be a sequence of Carathéodory functions such that

|H " (t, x, p)|  C " (1 + |p| 2 ) for a.e. (t, x) 2 (0, T ) ⇥ ⌦ " and 8p 2 R N ,
where C " is bounded (independently of ") in (0, T ) ⇥ K, for every compact set K ⇢ ⌦.

Assume that a " is a sequence of matrices which is uniformly bounded and, locally, uniformly coercive. Let u " be a sequence of solutions of

(u " ) t div(a " (x)Du " ) + H " (t, x, Du " ) = 0 , (t, x) 2 [0, T ] ⇥ ⌦ " , (2.3.3) 
such that ku " k 1 is uniformly bounded. Then there exists a function u 2 L 1 (Q T ) \ L 2 (0, T ; W 1,2 loc (⌦)) and a subsequence u " converging to u weakly in L 2 (0, T ; W 1,2 (K)) and strongly in L p ((0, T ) ⇥ K), for all compact sets K ⇢⇢ ⌦ and all p < 1.

In addition, if a " (x) converges almost everywhere in ⌦ to some matrix a(x), then u " converges to u strongly in L 2 (0, t; W 1,2 (K)) for all t < T , and the convergence holds up to t = T if u " (T ) converges almost everywhere in ⌦.

Proof. See the Appendix.

From the above Lemma we deduce the following stability result. Proposition 2.3.4. Let {⌦ " } be a sequence of domains such that ⌦ " ✓ ⌦ ⌘ ✓ ⌦ for " > ⌘, and S " ⌦ " = ⌦. Assume that H " (t, x, p) is a sequence of Carathéodory functions such that:

H " (t, x, p) ! H(t, x, p)
for a.e. (t, x) 2 (0, T ) ⇥ ⌦ and every p 2 R N .

kH " (t, x, 0)k 1  C , |H " (t, x, p)|  C " (1 + |p| 2 )
for a.e. (t, x) 2 (0, T ) ⇥ ⌦ " and every p 2 R N ,

(2.3.4)
where C is a constant independent of " and C " is a constant which is bounded (independently of ") in (0, T ) ⇥ K, for every compact set K ⇢ ⌦.

Assume that a " is a sequence of matrices which is uniformly bounded and, locally, uniformly coercive and, moreover, there exists a matrix a(x) such that a " (x) ! a(x) for a.e. x 2 ⌦ .

Finally, assume that {G " } " is a sequence of uniformly bounded functions such that 9G 2

L 1 (⌦) with G " (x) ! G(x) for a.e. x 2 ⌦ . Let u " 2 L 2 ([0, T ]; W 1,2 (⌦ "
)) be the unique solution of the approximating system 8 > > > < > > > :

(u " ) t div(a " (x)Du " ) + H " (t, x, Du " ) = 0 (t, x) 2 (0, T ) ⇥ ⌦ " u " (T ) = G " (x)
a " (x)Du " • ⌫ |@⌦" = 0 .

(2.3.5)

Then we have that there exists

u 2 L 1 (Q T ) \ L 2 (0, T ; W 1,2 loc (⌦)) and a subsequence u " such that u " ! u in L 2 (0, T ; W 1,2 (K)) \ C 0 ([0, T ]; L p (⌦)) for any p < 1
for all compact sets K ⇢ ⌦, and u is a weak solution of 8 < :

u t div(a(x)Du) + H(t, x, Du) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ u(T ) = G(x) .
Proof. Since kH " (t, x, 0)k 1 is uniformly bounded, by maximum principle we have that ku " k 1 is uniformly bounded. From Lemma 2.3.3, we deduce that there exists a function u 2 L 1 (Q T )\L 2 (0, T ; W 1,2 loc (⌦)) and a subsequence u " converging to u strongly in L p (Q T ) 8p and in L 2 (0, T ; W 1,2 (K)), for all compact sets K ⇢ ⌦. In particular, we have that Du " ! Du in L 2 ([0, T ] ⇥ K) for any compact subset K. Thanks to the pointwise convergence of H " towards H, and due to the growth assumptions, we infer by Lebesgue theorem that

H " (t, x, Du " ) ! H(t, x, Du) i nL 1 ([0, T ] ⇥ K)
for all compact sets K ⇢ ⌦. Since the equation implies that (u " ) t strongly converges in

L 2 (0, T ; W 1,2 (K)) + L 1 ([0, T ] ⇥ K), from the embedding result in [89, Theorem 2.2], we deduce that u " ! u in C 0 ([0, T ]; L 1 (K))
and due to the L 1 bound the convergence actually holds in C 0 ([0, T ]; L p (⌦)) for every p < 1. Now we can pass to the limit in the weak formulation of (2.3.5) to show that u is a weak solution.

We finally deduce the existence of a solution for our problem. 

(u " ) t div((a(x) + "I)Du " ) + H " (t, x, Du " ) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ , u " (T ) = G(x) Du " • ⌫ |@⌦ = 0 . (2.3.7) 
Applying Proposition 2.3.4 with ⌦ " = ⌦, we conclude.

We stress that an alternative way to construct a solution of (2. 

(u " ) t tr(a(x)D 2 u " ) + H(t, x, Du " ) = 0 in (0, T ) ⇥ ⌦ " , u " (T ) = G(x) in ⌦ " , a(x)Du " • ⌫ |@⌦ " = 0 . (2.3.8)
Then, up to subsequences, u " converges (in L 2 (0, T ; W 1,2 (K)), for all compact sets K ⇢ ⌦) to a weak solution u of problem (2.3.1).

Remark 2.3.7. The above compactness, and so the existence results, do not need that the matrix a(x) be globally Lipschitz in ⌦, since a local Lipschitz condition is enough. Moreover, we point out that similar results could be proved for other kind of equations, including for instance fully nonlinear equations (Bellman operators, etc...). In fact, it is clear that two only ingredients are required in the above construction: a global L 1 bound (typically ensured by the bound on kH(t, x, 0)k 1 ) and a local compactness and stability for equi-bounded solutions. For instance, in the fully nonlinear case this may be achieved in the topology of uniform convergence in order to build a viscosity solution inside. Then there is at most one bounded weak solution of the problem (2.3.1).

Uniqueness of solutions

Proof. Let u, v be two bounded solutions of (2.3.1). For " > 0, we set

v " = v + " 2 (M log d(x)) + " p T t .
A straightforward computation implies (v " ) t tr(a(x)D 2 v " ) + H(t, x, Dv " ) = v t tr(a(x)D 2 v) + H(t, x, Dv " )

+ " 2 ✓ tr(a(x)D 2 d(x))) d(x) a(x)Dd(x) • Dd(x) d(x) 2 ◆ + " 2 p T t .
By convexity of H, we have

H(t, x, Dv " ) H(t, x, Dv) + H p (t, x, Dv) • (Dv " Dv) = H(t, x, Dv) " 2 H p (t, x, Dv) • Dd(x) d(x) so we deduce (v " ) t tr(a(x)D 2 v " ) + H(t, x, Dv " ) v t tr(a(x)D 2 v) + H(t, x, Dv) + " 2 ✓ tr(a(x)D 2 d(x))) H p (t, x, Dv) • Dd(x) d(x) a(x)Dd(x) • Dd(x) d(x) 2 ◆ + " 2 p T t .
(2.3.9)

Using assumption (2.2.9), we have that there exists > 0 such that tr(a(x)D provided " is su ciently small. Thus, v " is a super solution and clearly u v " < 0 in a neighborhood of @⌦ since u, v are bounded while log d(x) ! 1. For a convenient choice of M , we also have that v " (T ) v(T ) u(T ). Therefore, u and v " are a pair of sub and super solution in any subset ⌦ \ ⌘ and u  v " on @(⌦ \ ⌘ ) if ⌘ is su ciently small. We can apply e.g. Proposition 2.1 in [START_REF] Porretta | Null controllability of viscous Hamilton-Jacobi equations[END_REF] 1 to conclude that u  v " in ⌦ \ ⌘ . Letting ⌘ ! 0, we get u  v " in (0, T ) ⇥ ⌦. As " ! 0, we obtain u  v. Reversing the roles of u, v, we conclude with the uniqueness of solutions.

The above uniqueness result yields important consequences in terms of stability of solutions. Namely, under the invariance condition all di↵erent approximations, as those suggested in the previous subsection, converge towards the same solution.

Corollary 2.3.9. Let the assumptions of Theorem 2.3.8 hold true. Then, given any sequences a " , H " , G " satisfying the hypotheses of Proposition 2.3.4, the (whole) sequence u " of solutions of (2.3.5) converges to the unique weak solution u of (2.3.1). In addition, u is also the limit of the (whole) sequence of solutions of problem (2.3.8).

The Fokker-Planck equation

In this section we turn the attention to the Fokker-Planck equation under the invariance conditions. So we consider the following equation 8 > < > :

m t P i,j @ 2 ij (a ij (x)m) div(m b(t, x)) = 0 in Q T , m(0) = m 0 in ⌦, (2.4.1) 
where

b : [0, T ] ⇥ ⌦ ! R N is a vector field which is locally bounded in [0, T ] ⇥ ⌦ (i.e. it is bounded in (0, T ) ⇥ K, for any compact set K ⇢ ⌦). Definition 2.4.1. Let m 2 L 1 ([0, T ] ⇥ ⌦).
We say that m is a weak solution of (2.4.1) if

(i) m 2 C([0, T ]; L 1 (⌦)), m 0; (ii) For each 2 C([0, T ]; L 1 (⌦)) \ L 1 ([0, T ] ⇥ ⌦) such that satisfies 8 < : t tr(a(x)D 2 ) + b • D 2 L 1 ([0, T ] ⇥ ⌦) (T ) = 0
in the sense of Definition 2.3.1, the weak formulation holds:

Z T 0 Z ⌦ m t tr(a(x)D 2 )) + b • D dxdt = Z ⌦ m 0 (0)dx .
Since a is assumed to be Lipschitz, here we also have

X i,j @ 2 ij (a ij (x)m) = div(a ⇤ (x) Dm) + div(m b(x)) ,
where b(x) is defined by (2.3.2). So, there is no loss of generality in considering only divergence form operators: 8 < : 

m t div(a ⇤ (x)Dm) div(m b(t, x)) = 0 m(0) = m 0 (2.4.

Existence of solutions

As for the existence of solutions of Hamilton-Jacobi equation, we reason through approximation and use compactness arguments. We start with the following lemma, whose proof is postponed to the Appendix.

Lemma 2.4.2. Let {⌦ " } be a sequence of domains such that ⌦ " ✓ ⌦ ⌘ ✓ ⌦ for " > ⌘, and S " ⌦ " = ⌦. Let b " 2 L 1 (0, T ; L 1 loc (⌦)) be a sequence such that, for every compact set K ⇢ ⌦, b " is bounded in (0, T )⇥K uniformly in ". Assume that a " is a sequence of matrices which is uniformly bounded and, locally, uniformly coercive. Let m " be a solution of

(m " ) t div(a ⇤ " (x)Dm " + b " m " ) = 0 in (0, T ) ⇥ ⌦ " , (2.4.3) 
such that km " (t)k L 1 (⌦) is uniformly bounded with respect to " and t 2 [0, T ].

Then there exists a function m 2 L 1 ((0, T ); L 1 (⌦)) and a subsequence m " such that

m " ! m in L 1 ((0, T ) ⇥ K)
for all compact sets K ⇢ ⌦. Moreover, if, for some m 0 , m " (0) ! m 0 in L 1 loc (⌦) and, for some a(x), b(t, x), we have a " (x) ! a(x) and b " (t, x) ! b(t, x) almost everywhere in Q T , then we also have

m " ! m in C 0 ([0, T ]; L 1 (K))
for all compact sets K ⇢ ⌦.

Proof. See the Appendix.

The next step says that, under the invariance condition, there is a global L 1 stability.

Proposition 2.4.3. Let {⌦ " } be a sequence of domains such that ⌦ " ✓ ⌦ ⌘ ✓ ⌦ for " > ⌘, and

S " ⌦ " = ⌦. Let m 0 2 L 1 (⌦), m 0 0. Assume that b " 2 L 1 ([0, T ] ⇥ ⌦ " ) is such that 8 < : 8 compact K ⇢ ⌦, b " is uniformly bounded in (0, T ) ⇥ K, b " (t, x) ! b(t, x) a.e. in Q T .
(2.4.4)

Let a " (x) be a sequence of locally uniformly coercive and Lipschitz matrices such that a " (x) ! a(x) almost everywhere in ⌦.

We call d " (x) = d ⌦" (x) and we assume that b " satisfies the following condition in ⌦ " : there exist 0 , C > 0 and two sequences r " , h " ! 0 such that

div(a " (x)Dd " (x)) b " (t, x) • Dd " (x) a " (x)Dd " (x) • Dd " (x) d " (x) + r " C(d " (x) + h " ) (2.4.5)
for all " > 0 and a.e. t 2 (0, T ),

x 2 0 \ ⌦ " . Let m " be the solution, in ⌦ " , of the Neumann problem 8 > > > < > > > : (m " ) t div(a ⇤ " (x)Dm " ) div(m " b " ) = 0 (t, x) 2 (0, T ) ⇥ ⌦ " , m " (0) = m 0 (a ⇤ " (x)Dm " + b " m " ) • ⌫ |@⌦" = 0 . . (2.4.6)
Then there exists m 2 L 1 (⌦) such that (defining

m " = 0 in ⌦ \ ⌦ " ) we have, up to a subsequence, m " ! m in C 0 ([0, T ]; L 1 (⌦))
and m is a weak solution of problem (2.4.2). ) and with h " ' " r" . A second example occurs if the drift b is unbounded near the boundary, which is certainly the case whenever a(x) does not degenerate and the invariance condition (1.1.2) holds. In this case one needs to work on internal domains and the above result can be used with ⌦ " = {x : d(x) > "}, b " = b, a " = a and r " = h " = " (see Theorem 2.4.6 below).

Proof. For simplicity, we divide the proof into steps.

Step 1: local convergence. Hereafter, we extend m " to ⌦ defining m " = 0 in ⌦ \ ⌦ " . Integrating the equation in (2.4.6), one has immediately, for each

t 2 [0, T ], Z ⌦ m " (t)dx = Z ⌦" m 0 dx ! Z ⌦ m 0 dx . (2.4.7)
Moreover, by the maximum principle, we have m " 0 in Q T . We use Lemma 2.4.2 to deduce that m " is relatively compact and, up to a subsequence, converges to some m 2 L 1 (⌦); the convergence holds almost everywhere in Q T and, in addition, in C 0 ([0, T ]; L 1 (K) for every compact subset K ⇢ ⌦.

Step 2: global L 1 convergence. Now we want to prove that, for every t 2 [0, T ],

m " (t) ! m(t) strongly in L 1 (⌦) .
Since m " 0, it su ces to prove that, for every t 2 [0, T ],

m " (t) ! m(t)
a.e. in ⌦ and

Z ⌦ m " (t)dx ! Z ⌦ m(t)dx . (2.4.8)
The almost everywhere convergence of m " (t) to m(t) is already given by Lemma 2.4.2 (up to a subsequence, which is not relabeled). For the convergence of the integrals, by (2.4.7) we have to prove that

Z ⌦ m(t)dx = Z ⌦ m 0 dx . (2.4.9)
By Fatou's lemma and (2.4.7) we have

Z ⌦ m(t)dx  Z ⌦ m 0 dx , (2.4.10) 
which in particular implies that m 2 L 1 (⌦). To prove the reverse inequality, for > 0 we consider the the auxiliary function

" = log(d " (x) + ) log . (2.4.11)
Of course we have that " ! := log(d(x) + ) log . We use " as a test function in the equation of (2.4.6). Using the Neumann condition for m " and that a " D " • ⌫  0 on @⌦ " , integrating by parts twice we obtain

Z ⌦" m " (t) " (t) dx+ Z t 0 Z ⌦" m " ( div(a " (x)D " )+b " D " ) dxds Z ⌦" m 0 " (0) dx . (2.4.12)
Computing the gradient of " we get, for " su ciently small,

Z t 0 Z ⌦" m " (div(a " (x)D " ) b " D " ) dxds = Z t 0 Z ⌦" m " d " (x) + ⇢ (div(a " (x)Dd " ) b " Dd " ) a " (x)Dd " • Dd " d " (x) + dxds Z t 0 Z ⌦" m " d " (x) + ⇢ div(a " (x)Dd " ) b " Dd " a " (x)Dd " • Dd " d " (x) + r " dxds .
Chap. 2 -Mean Field Games under Invariance Conditions for the State Space and thanks to assumption (2.4.5) we deduce

Z t 0 Z ⌦" m " (div(a " (x)D " ) b " D " ) dxds C Z ⌦"\ 0 m " d " (x) + h " d " (x) + dxds + Z t 0 Z ⌦"\ 0 m " d " (x) + ⇢ div(a " (x)Dd " ) b " Dd " a " (x)Dd " • Dd " d " (x) + r " dxds .
The first integral in the right-hand side is uniformly bounded because h "  for small ". Since b " is locally uniformly bounded in Q T , a " is Lipschitz and, for " su ciently small, d " (x) 0 2 in ⌦ \ 0 , the second integral is also bounded uniformly. So we conclude that

Z t 0 Z ⌦" m " (div(a " (x)D " ) b " D " ) dxds C
for some C > 0 independent of ", . Plugging this estimate into (2.4.12), we get

Z ⌦ m " (t) " (t) dx Z ⌦" m 0 " (0) dx C . (2.4.13)
Now we observe that the integral in the left side converges: indeed, for any ⌘ > 0 we have

(we call " ⌘ = {x : d " (x) < ⌘}) Z ⌦ |m " (t) " (t) m(t) (t)| dx  Z ⌘ |m " (t) " (t) m(t) (t)| dx + Z ⌦\ ⌘ |m " (t) " (t) m(t) (t)|dx  C log ✓ ⌘ + ◆ + Z ⌦\ ⌘ |m " (t) " (t) m(t) (t)|dx .
We let first " ! 0, using the L 1 loc convergence of m " , and then we let ⌘ ! 0, so that last two terms will vanish. Hence we deduce

Z ⌦ m " (t) " (t) dx ! Z ⌦ m(t) (t) dx .
Therefore we obtain from (2.4.13), letting

" ! 0, Z ⌦ m(t) (t) dx Z ⌦ m 0 (0) dx C . Since = log(d(x) + ) log  | log | + c we deduce that Z ⌦ m(t) dx Z ⌦ m 0 log(d(x) + ) log | log | dx C | log | .
We now let ! 0; using Lebesgue's theorem and since m 0 2 L 1 (⌦), we get

Z ⌦ m(t) dx Z ⌦ m 0 dx .
Thus (2.4.9) is proved, we have (2.4.8) and with that we conclude that m " (t) ! m(t) in L 1 (⌦), for all t > 0. By Lebesgue theorem, we also deduce the convergence of m " to m in L 1 (Q T ).

Step

3: convergence in C 0 ([0, T ]; L 1 (⌦)). First we observe that m 2 C([0, T ]; L 1 (⌦))
, with a similar argument as used above. Indeed, let

t n ! t; since m 2 C([0, T ]; L 1 loc (⌦)) we have that m(t n ) always admits a subse- quence converging to m(t) a.e. in ⌦. Since R ⌦ m(t n ) dx = R ⌦ m 0 dx = R ⌦ m(t) dx, we deduce again that m(t n ) ! m(t) in L 1 (⌦). Since m 2 C 0 ([0, T ]; L 1 (⌦)), a compactness argument implies that lim |E|!0 sup t2[0,T ] Z E m(t) dx = 0 . (2.4.14)
Using positive and negative parts, i.e. s = s + s , |s| = s + + s , we split

Z ⌦ |m " (t) m(t)| dx = Z ⌦ (m " (t) m(t)) dx + 2 Z ⌦ (m " (t) m(t)) dx = Z ⌦\⌦" m 0 dx + 2 Z ⌦ (m " (t) m(t)) dx (2.4.15) 
because of mass conservation. Last integral is restricted to where m " (t)  m(t). So, we split once more

Z ⌦ (m " (t) m(t)) dx  Z ⌦\ ⌘ (m " (t) m(t)) dx + 2 Z ⌘ m(t) dx  Z ⌦\ ⌘ |m " (t) m(t)| dx + 2 Z ⌘ m(t) dx which yields sup t2[0,T ] Z ⌦ (m " (t) m(t)) dx  sup t2[0,T ] Z ⌦\ ⌘ |m " (t) m(t)| dx + 2 sup t2[0,T ] Z ⌘ m(t) dx . Now recall that m " ! m in C 0 ([0, T ]; L 1 (K))
, for any compact subset K. So, when we let " ! 0 the first term in the right-hand side vanishes and we get lim

"!0 sup t2[0,T ] Z ⌦ (m " (t) m(t)) dx  2 sup t2[0,T ] Z ⌘ m(t) dx .
Finally, we let ⌘ ! 0 and we use (2.4.14) in the last term, and we conclude that lim

"!0 sup t2[0,T ] Z ⌦ (m " (t) m(t)) dx = 0 .
Then from (2.4.15) we deduce that lim

"!0 sup t2[0,T ] Z ⌦ |m " (t) m(t)| dx = 0 that is m " ! m in C 0 ([0, T ]; L 1 (⌦)).
Step 4: Conclusion. We take 2 C([0, T ];

L 1 (⌦)) \ L 1 ([0, T ] ⇥ ⌦) such that satisfies 8 < : t div(a(x)D ) + b • D 2 L 1 ([0, T ] ⇥ ⌦) (T ) = 0
in the weak sense. Let us consider the solution " of the following problem 8 > > > < > > > :

( " ) t div(a " (x)D " ) + b " • D " = f in (0, T ) ⇥ ⌦ " a " (x)D " • ⌫ = 0 in (0, T ) ⇥ @⌦ " " (T ) = 0 where f := t div(a(x)D ) + bD .
As always, we set " := 0 on ⌦ \ ⌦ " .

Applying Corollary 2.3.9, we have that " converges to in L 2 (0, T ; W 1,2 (K)) and in C 0 ([0, T ]; L p (⌦)) for all p < 1. Now, taking " as test function in (2.4.6) we get

Z ⌦ m 0 " (0) dx + Z T 0 Z ⌦ m " ( t div(a(x)D ) + b • D ) dxdt = 0 .
Since " (0) ! (0) a.e. in ⌦, we can pass to the limit in the first term with Lebesgue's theorem. In the second term, we use the L 1 convergence of m " towards m. Finally, we obtain that m satisfies

Z T 0 Z ⌦ m( t div(a(x)D ) + bD ) dxdt = Z ⌦ m 0 (0) dx .
Finally, we conclude with the existence part.

Theorem 2.4.5. Let m 0 2 L 1 (⌦), m 0 0. Let a 2 W 1,1 (⌦) satisfy (2.2.3). Assume that b 2 L 1 (0, T ; L 1 loc (⌦))
and that there exist 0 , C > 0 such that the following inequality holds:

div(a(x)Dd(x)) b(t, x) • Dd(x) a(x)Dd(x) • Dd(x) d(x) C d(x) (2.4.16)
for almost every t 2 (0, T ) and x 2 0 . Then there exists a solution of problem (2.4.2).

Proof. For each " we consider a " = a, b " = b and ⌦ " = {d(x) > "}. It is immediate to check that the assumptions of Proposition 2.4.3 are satisfied: indeed, since

d " (x) = d(x) " near @⌦, we have in ⌦ " div(a " (x)Dd " (x)) b " (t, x) • Dd " (x) = div(a(x)Dd(x)) b(t, x) • Dd(x) a(x)Dd(x) • Dd(x) d(x) C d(x) = a " (x)Dd " (x) • Dd " (x) d " (x) + " C d " (x) C"
which gives (2.4.5). So by solving the approximating problems (2.4.6) and passing to the limit, thanks to Proposition 2.4.3, we obtain the existence of a solution.

Uniqueness of solutions

The uniqueness of solutions for the Fokker-Planck equation comes easily from the existence of solutions of the Hamilton-Jacobi-Bellman equation.

Theorem 2.4.6. Let m 0 2 L 1 (⌦), m 0 0. Assume that a(•) 2 W 1,1 (⌦) satisfies (2.2.3).
Assume also that b 2 L 1 (0, T ; L 1 loc (⌦)) and that (2.4.16) holds true. Then there exists a unique weak solution of the Fokker-Planck equation (2.4.2).

Proof. Let m 1 and m 2 be two solutions of (2.4.2). Then m := m 1 m 2 solves in the weak sense 8 < :

m t div(a ⇤ (x)Dm) div(m b) = 0 m(0) = 0 .
Now, we take as the solution of the Hamilton-Jacobi equation 8 <

:

t div(a(x)D ) + bD = sgn(m) (T ) = 0 ,
where sgn(m) = m/|m| 1 {m6 =0} . We use as test function in the weak formulation of m, obtaining

Z T 0 Z ⌦ |m| dxdt = Z T 0 Z ⌦ m sgn(m) dxdt = 0 .
So m ⌘ 0 and the proof is concluded.

In the end, from the equivalence between the two problems (2.4.1) and (2.4.2), we have proved Theorem 2.2.3.

The Mean Field Game system

We are now ready to study the mean field game system (2.1.1) under the invariance conditions. For convenience, we rewrite here the system, which reads as

8 > < > : @ t u P i,j a ij (x)@ 2 ij u + H(t, x, Du) = F (t, x, m) , (t, x) 2 (0, T ) ⇥ ⌦ u(T ) = G(x, m(T )) (2.5.1) 8 > < > : @ t m P i,j @ 2 ij (a ij (x)m) div(mH p (t, x, Du)) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ m(0) = m 0 . (2.5.2)
Let us recall that the matrix a(x) satisfies (2.2.3), the Hamiltonian H satisfies assumptions (2.2.5)-(2.2.7) and that the invariance condition (2.2.9) holds true. The nonlinearities F, G satisfy conditions (2.2.11), (2.2.12). This implies that, for any given

m 2 C([0, T ] ⇥ L 1 (⌦)),
the HJB equation has a unique solution thanks to Theorem 2.3.5 and Theorem 2.3.8. Conversely, for every u which is locally Lipschitz, the growth condition (2.2.7) guarantees that H p (t, x, Du) is a locally bounded vector field, so the FP equation has a unique solution given by Theorem 2.4.6. This justifies our definition below.

Definition 2.5.1. We say that a couple (u, m)

2 L 1 ([0, T ] ⇥ ⌦) ⇥ C([0, T ] ⇥ L 1 (⌦)
) is a weak solution of the system (2.1.1) if u is a solution of the Hamilton-Jacobi-Bellman equation (2.5.1) in the sense of Definition 2.3.1 and m is a solution of the Fokker-Planck equation (2.5.2) in the sense of Definition 2.4.1.

Existence of solutions

Here we prove the existence of a solution to the mean field game system. Proof. For each " > 0, we define ⌦ " = {d(x) > "} and (u " , m " ) as the solution, in [0, T ]⇥⌦ " , of the mean-field game system

8 > > > > > > < > > > > > > : @ t u " tr(a(x)D 2 u " ) + H(t, x, Du " ) = F (x, m " ) , (t, x) 2 (0, T ) ⇥ ⌦ " @ t m " div(a ⇤ (x)Dm " ) div(m " (H p (t, x, Du " ) + b(x)) = 0 (t, x) 2 (0, T ) ⇥ ⌦ " m " (0) = m 0 , u " (T ) = G(x, m " (T )) a(x)Du " • ⌫ |@⌦" = 0 h a(x)Dm " + m " ( b(x) + H p (t, x, Du " )) i • ⌫ |@⌦" = 0 .
(2.5.3) As before, we extend the solutions to the whole of ⌦ by setting u " = m " = 0 in ⌦ \ ⌦ " .

By conservation of mass, we have that R ⌦" m " (t) = R ⌦ m 0 dx for all t 2 (0, T ), and additionally m " 0. Then, assumptions (2.2.11), (2.2.12) imply that F (x, m " ) and G(x, m " (T )) are uniformly bounded. By maximum principle, we deduce that ku " k 1 is uniformly bounded. Applying Lemma 2.3.3, we deduce that there exists a function u 2 L 1 (Q T )\L 2 (0, T ; W 1,2 loc (⌦)) and a subsequence u " converging to u weakly in L 2 (0, T ; W 1,2 (K)), for all compact sets K ⇢ ⌦. Moreover, the assumption upon G, the global bound on u " and the natural growth conditions ensure that the sequence Du " is also bounded in any set (0, T ) ⇥ K, for K compact. This allows us to use Lemma 2.4.2 for m " . In fact, since H p (t, x, Du " ) is locally bounded and converges a.e. to H p (t, x, Du), and since the invariance condition (2.2.9) holds, we are in the position to apply the stability result of Proposition 2.4.3 as well. Therefore, we conclude that

m " ! m in C 0 ([0, T ]; L 1 (⌦))
and m is a solution of (2.5.2). Finally, the continuity assumptions upon F and G now imply that F (t, x, m " ) converges almost everywhere to F (t, x, m) in Q T and G(x, m " (T )) converges to G(x, m(T )) a.e. and therefore in L p for all p < 1. We have now access to the stability result of Proposition 2.3.4 and we deduce that the limit function u is a solution of (2.5.1).

Uniqueness of solutions

Theorem 2.5.3. Suppose the hypotheses of Theorem 2.5.2 are satisfied and, in addition, F and G are nondecreasing with respect to m, in the sense of operators. If at least one of the two following conditions holds:

(i) 8 < : R ⌦ (F (t, x, m 0 ) F (t, x, m 1 ))d(m 0 m 1 ) = 0 ) F (t, x, m 0 ) = F (t, x, m 1 ) R ⌦ (G(x, m 0 ) G(x, m 1 ))d(m 0 m 1 ) = 0 ) G(x, m 0 ) = G(x, m 1 ) (ii) H(t, x, p 1 ) H(t, x, p 2 ) H p (t, x, p 2 )(p 1 p 2 ) = 0 ) H p (t, x, p 1 ) = H p (t, x, p 2 ) .
(2.5.4) then the solution of (2.1.1) is unique.

Proof. Let (u, m) and (v, µ) be two solutions of the mean field game system. We want to prove that v = u, µ = m.

To do this, we reason as always through approximation. Having defined ⌦ " as in Theorem 2.5.2, we consider (u " , m " ) solution of the problem

8 > > > > > > < > > > > > > : @ t u " tr(a(x)D 2 u " ) + H(t, x, Du " ) = F (t, x, m) (t, x) 2 (0, T ) ⇥ ⌦ " @ t m " div(a ⇤ (x)Dm " ) div(m " (H p (t, x, Du " ) + b(x)) = 0 (t, x) 2 (0, T ) ⇥ ⌦ " m " (0) = m 0 u " (T ) = G(x, m(T )) Du " • ⌫ |@⌦" = 0 h "Dm " + m " ( b(x) + H p (t, x, Du " )) i • ⌫ |@⌦" = 0 .
(2.5.5) Similarly, (v " , µ " ) will be the solution of the problem

8 > > > > > > < > > > > > > : @ t v " tr(a(x)D 2 v " ) + H(t, x, Dv " ) = F (t, x, µ) (t, x) 2 (0, T ) ⇥ ⌦ " @ t µ " div(a ⇤ (x)Dµ " ) div(µ " (H p (t, x, Dv " ) + b(x)) = 0 (t, x) 2 (0, T ) ⇥ ⌦ " µ " (0) = m 0 v " (T ) = G(x, µ(T )) Dv " • ⌫ |@⌦" = 0 h "Dµ " + µ " ( b(x) + H p (t, x, Dv " )) i • ⌫ |@⌦" = 0 .
(2.5.6) Notice that the equations of u " and v " are decoupled from the system, since they do not depend, respectively, upon m " and µ " . Using Corollary 2.3.9, we know that u " ! u and

v " ! v in C([0, T ]; L p (K)) and in L 2 ([0, T ]; H 1 (K)), for each compact K ⇢⇢ ⌦.
Using this information, and the local gradient bounds, we know that H p (x, Du " ) and H p (x, Dv " ) are locally bounded sequences which converge, respectively, to H p (x, Du) and

H p (x, Dv). From Proposition 2.4.3 we deduce that m " ! m and µ " ! µ in C([0, T ]; L 1 (⌦)).
Now we use the classical monotonicity argument in mean field game systems. We estimate in two di↵erent ways the quantity

Z T 0 Z ⌦" ((u " v " )(m " µ " )) t dxdt .
First, computing directly the time integral we find

Z T 0 Z ⌦" ((u " v " )(m " µ " )) t dxdt = Z ⌦" (G(x, m(T )) G(x, µ(T )))(m " (T ) µ " (T )) dx .
Besides, if we use the weak formulations of u " , v " , m " , µ " , we obtain

Z T 0 Z ⌦" ((u " v " )(m " µ " )) t dxdt = Z T 0 Z ⌦" (F (x, m) F (x, µ))(m " µ " ) dxdt Z T 0 Z ⌦" m " (H(t, x, Dv " ) H(t, x, Du " ) + H p (x, Du " )(Dv " Du " )) dxdt Z T 0 Z ⌦" µ " (H(t, x, Du " ) H(t, x, Dv " ) + H p (x, Dv " )(Du " Dv " )) dxdt which yields Z ⌦" [G(x, m(T )) G(x, µ(T ))] (m " (T ) µ " (T )) dx + Z T 0 Z ⌦" (F (x, m) F (x, µ))(m " µ " ) dxdt + Z T 0 Z ⌦" m " (H(t, x, Dv " ) H(t, x, Du " ) + H p (x, Du " )(Dv " Du " )) dxdt + Z T 0 Z ⌦" µ " (H(t, x, Du " ) H(t, x, Dv " ) + H p (x, Dv " )(Du " Dv " )) dxdt  0 .
Since H is convex, we can apply Fatou's lemma in the last two integrals. Moreover, using that (extending the functions to zero outside ⌦ " ) m " (T ) µ " (T ) ! m(T ) µ(T ) in L 1 (⌦), we can pass to the limit in the remaining two integrals. We obtain

Z ⌦ [G(x, m(T )) G(x, µ(T ))] (m(T ) µ(T )) dx + Z T 0 Z ⌦ (F (x, m) F (x, µ))(m µ) dxdt + Z T 0 Z ⌦ m(H(t, x, Dv) H(t, x, Du) + H p (x, Du)(Dv Du)) dxdt + Z T 0 Z ⌦ µ(H(t, x, Du) H(t, x, Dv) + H p (x, Dv)(Du Dv)) dxdt  0 ,
and therefore all integrals must vanish. Now we conclude with assumption (2.5.4). Indeed, if (i) holds we deduce that

F (t, x, m) = F (t, x, µ) , G (x, m(T )) = G(x, µ(T )) .
This means that u and v solve the same Hamilton-Jacobi-Bellman equation. From Theorem 2.3.8, we know that they coincide. So v = u, hence H p (x, Du) = H p (x, Dv). Coming back to the Fokker-Planck equation, we deduce that µ = m from Theorem 2.4.6. Otherwise, if (ii) holds, we proceed in the opposite way: first we deduce that H p (x, Du) = H p (x, Dv), and then µ = m, which in turn implies that u = v by uniqueness of the HJB equation.

Remark 2.5.4. We stress that the assumption on the final pay-o↵ G can be relaxed in case that H(t, x, p) is globally Lipschitz continuous with respect to p. Indeed, in this case the drift term H p (t, x, Du) is always bounded and it is not needed that the range of G be bounded in W 1,1 (⌦). It would be enough, in this case, to require that the range of G is bounded in L 1 (⌦), similar as it is done for the internal coupling F . In particular, this condition would include local couplings, i.e. G = G(x, r) is a bounded real function.

Further regularity of solutions

In this Section we get an improvement of regularity for u or m with a suitable strengthening of hypotheses.

Lipschitz regularity of the value function

We follow the classical Bernstein method in order to get gradient bounds for the solution of u. The approach is borrowed from [START_REF] Leonori | Gradient bounds for elliptic problems singular at the boundary[END_REF] and yields the global Lipschitz character of the value function.

Theorem 2.6.1. Assume that a(x) satisfies (2.2.3) and there exists a matrix

2 W 1,1 (⌦) such that a(x) = (x) (x) ⇤ . Let H 2 C 1 (Q T ⇥ R N ) satisfy conditions (2.2.5)-(2.2.7
) and, in addition, the following assumption:

H x (t, x, p) • p C (1 + |p| 2 ) 8(t, x) 2 Q T , p 2 R N (2.6.1)
for some constant C > 0. Moreover, assume that the invariance condition (2.2.9) holds true. Let F, G satisfy (2.2.11), (2.2.12) and assume that

m 7 ! F (•, m) has bounded range in L 1 ((0, T ); W 1,1 (⌦)). Then u 2 L 1 ((0, T ); W 1,1 (⌦)). Proof. Let ⌦ " = {x : d(x) > "}. We consider u " solution of the problem 8 > > > < > > > : (u " ) t tr(a(x)D 2 u " ) + H(t, x, Du " ) = F (x, m) , (t, x) 2 (0, T ) ⇥ ⌦ " u " (T ) = G(x, m(T )) Du " • ⌫ |@⌦ " = 0 . . (2.6.2)
We know from Proposition 2.3.6 that u " ! u when " ! 0, with Du " ! Du a.e. in Q T . Let us set w " := |Du " | 2 e ✓(d(x)) , where ✓ 2 C 2 (0, 1) is a bounded function to be defined later. Computing the derivatives of w " , we find:

Dw " = e ✓(d) 2Du " D 2 u " + |Du " | 2 ✓ 0 (d)Dd ; D 2 w " = e ✓(d) 2D 2 u " D 2 u " + 2Du " D 3 u " + |Du " | 2 ✓ 0 (d)D 2 d + 4✓ 0 (d)D 2 u " Du " ⌦ Dd + + e ✓(d) |Du " | 2 [✓ 00 (d) + (✓ 0 (d)) 2 ]Dd ⌦ Dd where Du " D 3 u " = P k (u " ) x k (u " ) x i x j x k .
Thus when we form the equation for w " we obtain (see also [START_REF] Leonori | Gradient bounds for elliptic problems singular at the boundary[END_REF]Lemma 8])

(w " ) t tr(a(x)D 2 w " ) + b " (t, x)Dw " + c " (t, x)w " = r " (t, x) , where b " (t, x) = H p (x, Du " ) + 2✓ 0 (d) (a(x)Dd) ; c " (t, x) = ✓ 0 (d) H p (x, Du " ) • Dd + tr(a(x)D 2 d) + ⇣ ✓ 00 (d) ✓ 0 (d) 2 ⌘ a(x)Dd • Dd; r " (t, x) = 2e ✓(d) tr(ã(u " )D 2 u " ) tr(a(x)D 2 u " D 2 u " ) H x (x, Du " ) • Du " + DF • Du " and we denoted ã(u " ) i,j = P k (a i,j (x)) x k (u " ) x k .
First we estimate the quantity tr(ã(u " )D 2 u " ) tr(a(x)D 2 u " D 2 u " ). Here, since a(•) = (•) (•) ⇤ , using Young's inequality we get

tr(ã(u " )D 2 u " ) tr(a(x)D 2 u " D 2 u " ) = = X i,j,k (a ij ) x k (u " ) x k (u " ) x i x j X i,j,k a ij (u " ) x j x k (u " ) x i x k = =2 X i,j,k,l ( " ) jl (( " ) il ) x k (u " ) x k (u " ) x i x j X k | ⇤ " D(u " ) x k | 2  C|Du " | 2 .
Using also (2.6.1) and the condition on F , we estimate

r "  C e ✓(d) 1 + |Du " | 2 .
Therefore, we have that w " satisfies

(w " ) t tr(a(x)D 2 w " ) + b " (t, x)Dw " + (c " (t, x) C)w "  C, for a suitable C > 0.
Now we estimate c " thanks to the invariance condition (2.2.9). Indeed, if d(x) < 0 , we get

c " ✓ ✓ 0 (d) d + ✓ 00 (d) ✓ 0 (d) 2 ◆ a(x)Dd • Dd C d ✓ 0 (d) .
Choosing ✓(d) = d , with 2 (0, 1), we get

c " d 1 ✓ 1 d + ( 1)d 1 d 1 ◆ a(x)Dd • Dd C d hence c " is uniformly bounded below. If d(x)
0 , we recall that u is Lipschitz by elliptic regularity, so c " is also bounded from below by a constant possibly dependent on 0 , but independent from ". We conclude that w " satisfies

(w " ) t tr(a(x)D 2 w " ) + b " (t, x)Dw " C w "  C .
Since the maximum of w " cannot be taken on the boundary due to the Neumann condition (see e.g. [79, Lemma 4]), and since at t = T we use the Lipschitz bound on G(•, m(T )), we conclude applying the maximum principle that the maximum of Dw " is uniformly bounded in ". As " ! 0, this implies that Du 2 L 1 (Q T ).

Remark 2.6.2. We stress that the above proof may admit some variants which possibly apply to other interesting cases. For instance, assume that the invariance condition is strengthened as follows:

tr(a(x)D 2 d(x)) H p (x, p)Dd(x) a(x)Dd(x) • Dd(x) d(x) 1+⇢ Cd(x) , (2.6.3) 
for some ⇢ > 0, and in addition that

a(•) = (•) (•) ⇤ with |D (x)| 2  c 0 + c 1 | (x)Dd(x)| 2 d(x) 2 ⇢ (2.6.4)
for some > 0. Then the conclusion of Theorem 2.6.1 remains true, and the proof can be easily modified accordingly.

In particular, whenever (2.6.3) is satisfied, this generalization includes the case that (x) is 1 2 -Hölder continuous with

| (x)Dd(x)| c d(x) 1 2 and |D (x)|  C d(x) 1 2
, in which case (2.6.4) holds for any 1 and the Hamiltonian satisfies, in a neighborhood of the boundary, that

< ⇢. Otherwise, (2.6.3)-(2.6.4) are satisfied if (x) is -Hölder continuous, > 1 2 , | (x)Dd(x)| c d(x) and |D (x)|  C d(x)
tr(a(x)D 2 d(x)) H p (x, p)Dd(x) c d(x) ⌘ for some ⌘ < 2
1. An assumption of this kind appears for instance in [START_REF] Bardi | Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control[END_REF], [START_REF] Castorina | On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary[END_REF].

Remark 2.6.3. An assumption as (2.6.1) may not allow the application to Hamiltonians with super linear growth and inhomogeneous coe cients. However, we point out that more general conditions on the growth of the Hamiltonian could still lead to the Lipschitz bound, exactly as it is done in [79, Theorem 4]. The strategy in that case is to use a change of unknown (typically of exponential type) in addition to the usual Bernstein method. However this leads to an increase of technicalities which we decided to omit here, for the sake of brevity.

Semiconcavity of the value function

If we require stronger assumptions, we can also prove a semi-concavity bound on u. This will be helpful to improve the regularity of m under suitable assumptions.

We recall that a function f is said to be semiconcave in ⌦ if 9 C > 0 such that

f (x + h) + f (x h) 2f (x)  C|h| 2 , (2.6.5) for each x 2 ⌦, h 2 R N such that x + h, x h 2 ⌦.
In order to prove that u is semi concave, we will follow the tripling variable method used in [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF]. To this purpose, we define the following function, that will play a crucial role:

(x, y, z) = |x z| 4 + |y z| 4 + 2|x + y 2z| 2 .
Then the semi-concavity of f is true if the following relation holds:

f (x) + f (y) 2f (z)  C p (x, y, z) , 8x, y, z 2 ⌦ .
Indeed, it su ces to take x = x 0 + h, y = x 0 h, z = x 0 to obtain (2.6.5). We also recall that an equivalent formulation of this latter condition is the following: there exists a constant 

C > 0 such that f (x) + f (y) 2f (z)  C ✓ + (x, y, z) ◆ 8 > 0 8x, y, z 2 ⌦ . Moreover, it is well-known that a function f is in W 2,1 (⌦) if and only if 9C > 0 such that |f (x) + f (y) 2f (z)|  C p , or, equivalently, 8 > 0 |f (x) + f (y) 2f (z)|  C ✓ + (x, y, z) ◆ . ( 2 
(x) = (x) (x) ⇤ , with 2 W 2,1 (⌦) and that F (•, m) 2 W 2,1 (⌦), G(•, m) 2 W 2,1 (⌦)
uniformly with respect to m. Finally, we require the following hypothesis on H: there exist constants C 0 , C 1 such that

H(t, x, p) + H(t, y, q) 2H ✓ t, z, p + q 2 ◆ C 0 (|x z| 2 + |y z| 2 + |x + y 2z|)(1 + |p + q|) C 1 |x y| |p q| (2.6.7)
for any (x, y, z) 2 ⌦, (p, q) 2 R N , t 2 (0, T ).

Then u(t, •) is a semiconcave function for all t 2 [0, T ], with a semiconcavity constant bounded uniformly for t 2 (0, T ). Namely, we have

D 2 u(t)  M 8t 2 (0, T ) ,
where M depends on T , kD 2 k 1 , kD 2 F k 1 , kD 2 Gk 1 and on H (through the constants appearing in the growth conditions).

Proof. We closely follow the proof given in [44, Theorem VII.3] with two main novelties: the boundary contribution, which will be handled through the invariance condition, and the structure condition (2.6.7) rather than the case of pure Bellman operators.

In the end, we wish to prove that there exist, M > 0 such that

u(t, x) + u(t, y) 2u(t, z)  M ✓ + 1 (x, y, z) ◆ , (2.6.8) 
for every t 2 [0, T ], every x, y, z 2 ⌦ and for any > 0 su ciently small. For a given k > 0 we consider the function v(t, x) = e k(T t) u(t, x). It satisfies the parabolic equation 8 < :

v t tr(a(x)D 2 v) + H(t, x, Dv) + kv = F (t, x, m) v(T ) = G(x, m(T )) , (2.6.9) 
with

H(t, x, p) = e k(T t) H(t, x, e k(T t) p) , F (t, x, m) = e k(T t) F (x, m) .
We note that H satisfies (2.6.7) and (2.2.9) uniformly in t, k, and that F (t, •, m) 2 W 2,1 (⌦) uniformly in t. For ( , , M) 2 (0, +1) 3 we take the following function:

'(x, y, z) = M ✓ + (x, y, z) ◆ log(d(x)d(y)d(z))
where, without loss of generality, we assume that d(x)  1 in ⌦. Hence log(d(x)d(y)d(z))  0. As usual, we assume that sup

[0,T ]⇥⌦ 3 (v(t, x) + v(t, y) 2v(t, z) '(x, y, z)) > 0 ,
and we will reach a contradiction if k, M are su ciently large and su ciently small, independently of the choice of .

Since (x, y, z) = +1 if one of x, y, z lies in @⌦, the sup is attained at a point

( t, x, ȳ, z) = ( t ,M, ,k , x ,M, ,k , ȳ ,M, ,k , z ,M, ,k ) 2 [0, T ] ⇥ ⌦ 3 .
We drop the indexes for simplicity of notation. We observe further that, if t = T , then we have

v(t, x) + v(t, y) 2v(t, z) '(x, y, z) = = G(x, m(T )) + G(y, m(T )) 2G(z, m(T )) '(x, y, z) , which implies, thanks to the regularity of G, v(t, x) + v(t, y) 2v(t, z)  (C M ) ✓ + (x, y, z) ◆  0 provided M C.
So the sup must be attained at t < T . Now we proceed with typical viscosity solutions' arguments. Indeed, standing on the uniqueness result, it is easy to see that v is also a viscosity solution. It may actually be the case that v is smooth inside the domain, but we prefer to keep the argument in viscosity sense for a possibly wider generality. By Jensen's lemma, there exists matrices X, Y, Z and scalars a, b, c such that 0

B B B @ X 0 0 0 Y 0 0 0 Z 1 C C C A  D 2 '(x, ȳ, z) (2.6.10)
and

a tr(a(x)X) + H( t, x, D x ') + kv( t, x)  F ( t, x, m( t)) b tr(a(ȳ)Y ) + H( t, ȳ, D y ') + kv( t, ȳ)  F ( t, ȳ, m( t)) c tr ✓ a(z) ✓ 1 2 Z ◆◆ + H( t, z, 1 2 D z ') + kv( t, z) F ( t, z, m( t))
where ' is computed at ( t, x, ȳ, z) and where a, b, c (the time derivatives in viscosity sense) are real numbers such that a + b  2c. We multiply by 2 the latter inequality, we sum and we get

tr(a(x)X + a(ȳ)Y + a(z)Z) + k{v( t, x) + v( t, ȳ) 2v( t, z)} + Ĥ( t, x, ȳ, z)  F ( t, x, ȳ, z)
where

Ĥ(t, x, y, z) = H(t, x, D x '(t, x)) + H(t, y, D y '(t, y)) 2 H(t, z, 1 2 D z '(t, z)) , F (t, x, y, z) = F (t, x, m(t)) + F (t, y, m(t)) 2 F (t, z, m(t)) .
We multiply inequality (2.6.10) by the matrix ⌃ = ⌃(x, y, z), which is defined (in blocks) as

⌃(x, y, z) = 0 B @ (x) ⇤ (x) (x) ⇤ (y) (x) ⇤ (z) (y) ⇤ (x) (y) ⇤ (y) (y) ⇤ (z) (z) ⇤ (x) (z) ⇤ (y) (z) ⇤ (z) 1 C A , so we estimate tr(a(x)X + a(ȳ)Y + a(z)Z)  tr ⌃(x, ȳ, z)D 2 '(x, ȳ, z) .
We also estimate, since t, x, ȳ, z is a maximum point and the maximum is positive

v( t, x) + v( t, ȳ) 2v( t, z) '(x, ȳ, z) .
Finally, we deduce that ' satisfies k'(x, ȳ, z)  F (t, x, y, z) + tr ⌃(x, ȳ, z)D 2 '(x, ȳ, z) Ĥ( t, x, ȳ, z) .

Using the W 2,1 regularity of F , which therefore satisfies (2.6.6), we get

k'(x, ȳ, z)  C ✓ + (x, ȳ, z) ◆ + tr ⌃(x, ȳ, z)D 2 '(x, ȳ, z) Ĥ( t, x, ȳ, z) . (2.6.11)
We analyse the two latter terms. From now on, we will omit the dependences from ( t, x, ȳ, z) when there will be no possible mistake. We have

tr(⌃D 2 ') = M tr(⌃D 2 ) tr ⇣ ⌃D 2 (log(d(x)d(y)d(z))) |(x,y,z)=(x,ȳ,z) ⌘ .
So, we start computing the Hessian matrix of the function . We get

D x = 4|x z| 2 (x z) + 4(x + ȳ 2z) , (2 
.6.12)

D y = 4|ȳ z| 2 (ȳ z) + 4(x + ȳ 2z) , (2.6.13) 
D z = 4|x z| 2 (x z) 4|ȳ z| 2 (ȳ z) 8(x + ȳ 2z) , (2.6.14)
and so

D 2 xx = 8(x z) ⌦ (x z) + 4|x z| 2 I + 4I , D 2 xy = 4I , D 2 xz = 8(x z) ⌦ (x z) 4|x z| 2 I 8I , D 2 yy = 8(ȳ z) ⌦ (ȳ z) + 4|ȳ z| 2 I + 4I , D 2 yz = 8(ȳ z) ⌦ (ȳ z) 4|ȳ z| 2 I 8I , D 2 zz = 8(x z) ⌦ (x z) + 4|x z| 2 I + 8(ȳ z) ⌦ (ȳ z) + 4|ȳ z| 2 I + 16I ,
Therefore, computing the first trace we found

M tr(⌃D 2 ) = 4 M tr(( (x) + (ȳ) 2 (z))( ⇤ (x) + ⇤ (ȳ) 2 ⇤ (z))+ + 4 M |x z| 2 tr (( (x) (z))( ⇤ (x) ⇤ (z))) + + 4 M |ȳ z| 2 tr (( (ȳ) (z))( ⇤ (ȳ) ⇤ (z))) + + 8 M |( ⇤ (x) ⇤ (z))(x z)| 2 + 8 M |( ⇤ (ȳ) ⇤ (z))(ȳ z)| 2 .
Using the W 2,1 continuity of the function we easily obtain

M tr(⌃D 2 )  c M (x, ȳ, z) .
A straightforward computation shows us that

D 2 (log(d(x)d(y)d(z))) |(x,y,z)=(x,ȳ,z) = = 0 B B @ D 2 d(x) d(x) Dd(x)⌦Dd(x) d 2 (x) 0 0 0 D 2 d(ȳ) d(ȳ) Dd(ȳ)⌦Dd(ȳ) d 2 (ȳ) 0 0 0 D 2 d(z) d(z) Dd(z)⌦Dd(z) d 2 (z) 1 C C A .
Then, we have tr

⇣ ⌃D 2 (log(d(x)d(y)d(z))) |(x,y,z)=(x,ȳ,z) ⌘ = = d(x) ✓ tr(a(x)D 2 d(x)) a(x)Dd(x) • Dd(x) d(x) ◆ d(ȳ) ✓ tr(a(ȳ)D 2 d(ȳ)) a(ȳ)Dd(ȳ) • Dd(ȳ) d(ȳ) ◆ d(z) ✓ tr(a(z)D 2 d(z)) a(z)Dd(z) • Dd(z) d(z)
◆ .

Now we have to analyze the Hamiltonian term.

As before, we need to split the computation in two parts, the first one including only the function and the last one involving the logarithmic term. First of all, we recall that

Ĥ( t, x, ȳ, z) = H( t, x, D x '(x, ȳ, z)) + H( t, ȳ, D y '(x, ȳ, z)) 2 H ✓ t, z, 1 2 D z '(x, ȳ, z) ◆ . Since D x '(x, ȳ, z) = M D x (x, ȳ, z) D log d(x)
and the same holds for D y ', D z ', we can write

Ĥ( t, x, ȳ, z) = H ✓ t, x, M D x ◆ Z 1 0 Hp ( t, x, p 1 ( )) Dd(x) d(x) d + + H ✓ t, ȳ, M D y ◆ Z 1 0 Hp ( t, ȳ, p 2 ( )) Dd(ȳ) d(ȳ) d 2 H ✓ t, z, M 2 D z ◆ Z 1 0 Hp ( t, z, p 3 ( )) Dd(z) d(z) d ,
where

p 1 ( ) = M D x (x, ȳ, z) D log d(x) , p 2 ( ) = M D y (x, ȳ, z) D log d(ȳ) , p 3 ( ) = M 2 D z (x, ȳ, z) + 1 2 D log d(z) .
Putting these estimates in (2.6.11), one finds

k'(x, ȳ, z)  C(1 + M ) ✓ + (x, ȳ, z) ◆ H ✓ t, x, M D x ◆ H ✓ t, ȳ, M D y ◆ + 2 H ✓ t, z, M 2 D z ◆ d(x) Z 1 0 ✓ tr(a(x)D 2 d(x)) a(x)Dd(x) • Dd(x) d(x) Hp ( t, x, p 1 ( ))Dd(x) ◆ d d(ȳ) Z 1 0 ✓ tr(a(ȳ)D 2 d(ȳ)) a(ȳ)Dd(ȳ) • Dd(ȳ) d(ȳ) Hp ( t, ȳ, p 2 ( ))Dd(ȳ) ◆ d d(z) Z 1 0 ✓ tr(a(z)D 2 d(z)) a(z)Dd(z) • Dd(z) d(z) Hp ( t, z, p 3 ( ))Dd(z) ◆ d .
We use the invariance condition (2.2.9) to get rid of the latter terms. So the inequality becomes

k'(x, ȳ, z)  C(1 + M ) ✓ + (x, ȳ, z) ◆ H ✓ t, x, M D x ◆ H ✓ t, ȳ, M D y ◆ + 2 H ✓ t, z, M 2 D z ◆ + c .
(2.6.15)

Finally, since D z = D x + D y , we use (2.6.7) to estimate the last terms involving H:

H ✓ t, x, M D x ◆ H ✓ t, ȳ, M D y ◆ + 2 H ✓ t, z, M 2 D z ◆  C 0 (|x z| 2 + |y z| 2 + |x + y 2z|)(1 + M |D x + D y |) + C 1 |x y| M |D x D y | .
Using the precise values of D x and D y , we estimate thanks to Young's inequality

C 1 |x y| M |D x D y |  C |x y| M |x z| 3 + |y z| 3  C M
and similarly

C 0 (|x z| 2 + |y z| 2 + |x + y 2z|)(1 + M |D x + D y |)  C ✓ p + M ◆  C ✓ + M ◆ .
Eventually, we end up with

H ✓ t, x, M D x ◆ H ✓ t, ȳ, M D y ◆ + 2 H ✓ t, z, M 2 D z ◆  C ✓ + M ◆ . (2.6.16) Since k'(x, ȳ, z) =kM ✓ + (x, ȳ, z) ◆ k log(d(x)d(ȳ)d(z)) kM ✓ + (x, ȳ, z) ◆ ,
we obtain from (2.6.15)-(2.6.16)

kM ✓ + (x, ȳ, z) ◆  C(1 + M ) ✓ + (x, ȳ, z) ◆ + C .
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We choose k such that kM C(1 + M ) 1 to have

 ✓ + (x, ȳ, z) ◆  C .
Choosing su ciently small we obtain a contradiction.

So, we have found that for k su ciently large and su ciently small, we have

v(t, x) + v(t, y) 2v(t, z)  M ✓ + (x, y, z) ◆ log(d(x)d(y)d(z)) ,
for every x, y, z 2 ⌦, and any > 0. Letting ! 0, we obtain

u(t, x) + u(t, y) 2u(t, z)  e kT M ✓ + (x, ȳ, z) ◆ .
So, (2.6.8) is proved and the proof is concluded.

Remark 2.6.5. We note that the hypothesis (2.6.7) is satisfied at least for classical Bellman equations where

H(x, p) = sup ↵2A ( b(x, ↵) • p L(x, ↵))
assuming that L(•, ↵) and b(•, ↵) are W 2,1 , and both conditions hold uniformly with respect to ↵ 2 A. Indeed, we have 2

✓ b(z, ↵) • ✓ p + q 2 ◆ L(z, ↵) ◆ = ( b(z, ↵) • p L(x, ↵)) + ( b(z, ↵) • q L(y, ↵)) + (L(x, ↵) + L(y, ↵) 2L(z, ↵)) = ( b(x, ↵) • p L(x, ↵)) + ( b(y, ↵) • q L(y, ↵)) + 1 2 (b(x, ↵) b(y, ↵)) • (p q) + 1 2 (b(x, ↵) + b(y, ↵) 2b(z, ↵))(p + q) + (L(x, ↵) + L(y, ↵) 2L(z, ↵))  H(x, p) + H(y, q) + C |x y| |p q| + C (|x z| 2 + |y z| 2 + |x + y 2z|) |p + q| + (L(x, ↵) + L(y, ↵) 2L(z, ↵)) .
Hence, taking the sup ↵ in the left-hand side, and using the regularity of L, implies (2.6.7).

Finally, we show with the next result that the semiconcavity of u leads to the boundedness of the function m.

Proposition 2.6.6. Assume that the hypotheses of Theorem 2.6.4 are satisfied, and, in addition, that H p (t, x, p) 2 W 1,1 (Q T ⇥ K) for all compact sets K ⇢ R N . Suppose that the following condition holds near the boundary: there exists 0 such that

⇣ b(x) + H p (t, x, p) ⌘ • Dd(x)  0 , 8x 2 0 , 8p 2 R N .
(2.6.17)

Then, if (u, m) is a solution of (2.1.1), we have m 2 L 1 ([0, T ] ⇥ ⌦).
Proof. We are going to apply the comparison principle in the equation of m. To do so, we call µ " the solution of the following problem:

8 > > > < > > > : (µ " ) t div(a(x)Dµ " ) div(( b(x) + H p (t, x, Du))µ " ) = 0 , (t, x) 2 (0, T ) ⇥ ⌦ " µ " (0) = m 0 [a(x)Dµ " + ( b(x) + H p (t, x, Du))µ " ] • ⌫ |@⌦" = 0 ,
where, as before, ⌦ " = {x : d(x) > "}. With the same arguments used previously we obtain

µ " ! m a.e.in [0, T ] ⇥ ⌦ .
Since u is a semiconcave function, we can split the last divergence term in order to get 8 > > > < > > > :

(µ " ) t div(a(x)Dµ " ) ( b + H p (t, x, Du))Dµ " + c(t, x)µ " = 0 , (t, x) 2 (0, T ) ⇥ ⌦ " µ " (0) = m 0 [a(x)Dµ " + ( b(x) + H p (t, x, Du))µ " ] • ⌫ |@⌦" = 0 ,
where c is defined as follows:

c(t, x) = div( b) tr(H px (t, x, Du)) tr(H pp (t, x, Du)D 2 u) .
Recall that in ⌦ " the matrix a(x) is elliptic, so u enjoys the standard parabolic regularity and c(t, x) is well defined (at least in Lebesgue spaces). We now estimate the function c.

Since H px (t, x, Du) is in L 1 (Q T ) (because u is globally Lipschitz) and D 2 u  CI, we get, up to changing C, c(t, x) C tr(H pp (x, Du)(D 2 u CI)) Ctr(H pp (x, Du)) k ,
for a certain k > 0 and since H pp (D 2 u CI) is a negative semi-definite matrix. Calling µ k " = e kt µ " , we have that µ k " is the solution of the following equation

8 > > > < > > > : (µ k " ) t div((a(x) + "I)Dµ k " ) ( b + H p (x, Du))Dµ k " + (k + c(t, x))µ k " = 0 µ k " (0) = m 0 ["Dµ k " + ( b(x) + H p (x, Du))µ k " ] • ⌫ |@⌦" = 0 .
We choose k such that k + c(t, x) 0 for each (t, x) 2 [0, T ] ⇥ ⌦ " . Then, thanks to (2.6.17), it is immediate to prove that M is a super-solution of the equation of µ k " , for M km 0 k 1 . Now we can easily conclude the proof: thanks to the comparison principle, we have

µ k " (t, x)  M =) µ " (t, x)  e kT M "!0 =) m(t, x)  e kT M ,
where the estimates are true almost everywhere in (t, x). Since m 0, the proof is concluded.

Non-smooth domains

Unfortunately, in many applications one needs to consider that the state variable does not belong to a C 2 domain. This implies that the distance function from the boundary of ⌦ turns out not to be a C 2 function, and the invariance condition (2.2.9) becomes meaningless.

However, a generalization of the results obtained so far is possible, in the following setting.

Theorem 2.7.1. Suppose that 9 2 C 2 (⌦) such that > 0 in ⌦, = 0 in @⌦ and the following inequality holds in a neighborhood V of @⌦:

tr(a(x)D 2 (x)) H p (t, x, p)D (x) a(x)D (x) • D (x) (x) C (x)
8 p 2 R N , 8t 2 [0, T ] and a.e. x 2 V .

(2.7.1)

Then, all the results of the previous sections remain true replacing (2.2.9) with (2.7.1).

All the proofs can be done in the same way, replacing d by and the set " by { < "}\⌦.

This generalization plays a crucial role in order that the smoothness assumption for the domain ⌦ be weakened. As an example, we define a class of non-smooth domains and we prove that hypothesis (2.7.1) is satisfied for those ones.

Definition 2.7.2. Let ⌦ ✓ R N . We say that ⌦ is a generalized C 2 domain if 9n 2 N and a collection of sets {⌦ i } 1in such that ⌦ i is a compact domain of class C 2 and ⌦ = n \ i=1 ⌦ i .
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From now on, when we write d(x) and d i (x), in the case of a generalized C 2 domain, we mean respectively d ⌦ (x) and d ⌦ i (x). Moreover, we will use the following notation:

⌦ i " = {d i (x) > "} \ ⌦ , i " = {d i (x) < "} \ ⌦ .
We now show that Theorem 2.7. 

tr(a(x)D 2 d i (x)) H p (x, p)Dd i (x) a(x)Dd i (x)Dd i (x) d i (x) C 0 d i (x) . (2.7.2)
Then all the results of the previous sections remain true for the non-smooth domain ⌦.

Proof. We have to prove that condition (2.7.1) is satisfied for a certain C 2 function .

To do that, we consider : [0, +1) ! R a C 2 function such that (s) = s when s  2 , ⌘ 1 for s and 0 (s) 0. Moreover, we require that (x) x in [0, ]. This can be done for su ciently small. We take

(x) = Q i (d i (x)
) and we prove that (2.7.1) is satisfied in V = S i for a certain > 0.

From now on, we will write i , 0 i , 00 i instead of (d i (x)), 0 (d i (x)), 00 (d i (x)) to simplify the notation. Computing the derivative D and D 2 we find

D = X i Y j6 =i j 0 i Dd i , D 2 = X i Y j6 =i j 0 i D 2 d i + X i Y j6 =i j 00 i Dd i ⌦ Dd i + X i,k6 =i Y j6 =i,k j 0 i 0 k Dd i ⌦ Dd k .
Plugging these computations in (2.7.1) we find

tr(a(x)D 2 (x)) H p (t, x, p)D (x) a(x)D (x) • D (x) (x) + C (x) = = X i Y j6 =i j 0 i tr(a(x)D 2 d i ) H p (x, p)Dd i + X i Y j6 =i j 00 i a(x)Dd i • Dd i + + X i,k6 =i Y j6 =i,k j 0 i 0 k a(x)Dd i • Dd k X i,k Q j6 =i j Q l6 =k l 0 i 0 k a(x)Dd i • Dd k Q i i + C (x).
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We start analyzing the first term. Because of the presence of 0 i , we can study each term of the sum only in i . So, choosing such that (2.7.2) holds true, we get

X i Y j6 =i j 0 i tr(a(x)D 2 d i ) H p (x, p)Dd i X i Y j6 =i j 0 i ✓ a(x)Dd i • Dd i d i C 0 d i ◆ . Since d i  i in i , one has C 0 X i Y j6 =i j 0 i d i C 1 X i Y j j C 1 (x) ,
where C 1 is a constant depending on C 0 and n that can change from line to line.

Then we look at the third and the fourth terms. Since, for

i 6 = k, Q j6 =i j Q l6 =k l Q i i = Y j6 =i,k j , then we have X i,k6 =i Y j6 =i,k j 0 i 0 k a(x)Dd i • Dd k X i,k Q j6 =i j Q l6 =k l 0 i 0 k a(x)Dd i • Dd k Q i i = X i Q j6 =i j ! 2 ( 0 i ) 2 a(x)Dd i • Dd i Q i i = X i Y j6 =i j ( 0 i ) 2 i a(x)Dd i • Dd i .
Using these estimates, we obtain

tr(a(x)D 2 (x)) H p (t, x, p)D (x) a(x)D (x) • D (x) (x) + C (x) X i Y j6 =i j a(x)Dd i • Dd i 0 i d i ( 0 i ) 2 i + 00 i ! + (C C 1 ) (x) .
(2.7.3)

To conclude, we want to prove that

0 i d i ( 0 i ) 2 i + 00 i C 2 i
for a certain constant C 2 . This is equivalent to prove that, for all x 2 R + ,

00 (x) (x)x ( 0 (x)) 2 x + 0 (x) (x) C 2 2 (x)x .
Since (s) = s in [0, 2 ], we obtain immediately that the left hand side term vanishes in this interval, and so the relation is verified. A similar computation occurs for s . Finally, for s 2 [ 2 , ] the relation is certainly satisfied for a constant C 2 depending on . Therefore we obtain from (2.7.3)

tr(a(x)D 2 (x)) H p (t, x, p)D (x) a(x)D (x) • D (x) (x) + C (x) (C C 1 C 2 ) (x) ,
which, for C su ciently large, proves that condition (2.7.1) is satisfied. This concludes the proof.

Appendix

In this Appendix, we give the proof of two technical results.

Proof of Lemma 2.3.3. We consider the sequence of compact sets

{D k } k2N defined in (2.2.2). For each k 2 N we take a cut-o↵ function ⇠ k such that 8 > > > < > > > : ⇠ k 2 C 1 c (⌦) , 0  ⇠ k  1 ⇠ k (x) ⌘ 1 for x 2 D k ⇠ k (x) ⌘ 0 for x 2 D k+1 . (2.8.1)
For " small enough and > 0, we multiply the equation (2.3.7) by e u" ⇠ 2 k and we integrate in [t, T ] ⇥ ⌦ " :

1 Z D k+1 e u" (t)⇠ 2 k dx + Z T t Z D k+1 e u" a " (x)Du " • Du " ⇠ 2 k dxdt + Z T t Z D k+1 H " (t, x, Du " )e u" ⇠ 2 k dxdt + Z T t Z D k+1 a " (x)Du " • D⇠ k 2e u" ⇠ k dxdt = 1 Z D k+1 e u" (T )⇠ 2 k dx  C
since u " is uniformly bounded. From the local uniform coercivity of a " , we have a " (x)

k+1 I for x 2 D k+1 . Using also the local uniform natural growth assumed upon H " , and a local bound on a " , we deduce that

k+1 Z T t Z D k+1 e u" |Du " | 2 ⇠ 2 k dxdt  C k Z T 0 Z D k+1 e u" (1 + |Du " | 2 )⇠ 2 k dxdt
for some constant C k only depending on k. Choosing su ciently large (depending on k),

we can bound the gradient of u " in D k . Hence, together with the L 1 bound, we deduce

that u " is bounded in L 2 ([0, T ]; W 1,2 (D k )) for each k 2 N.
From (2.3.7) now we get that (u

" ) t is bounded in L 2 ([0, T ]; W 1,2 (D k ))
. So, by [93, Corollary 4], we deduce that u " is relatively compact in L 2 (D k ). By a standard diagonal argument, we can therefore extract a subsequence, which we still denote by u " , such that

u " ! u weakly in L 2 ([0, T ]; W 1,2 (K)) and strongly in L p ([0, T ] ⇥ K) for every p < 1,
for any compact subset K ⇢ ⌦.

We now aim at getting the strong convergence. To this purpose we assume that the matrix a " (x) converges (up to subsequences) almost everywhere in ⌦ towards some matrix a(x). We further suppose by now that u " (T ) converges almost everywhere in ⌦ to some function g(x), in order to get the full convergence up to t = T . We notice that, since u " is uniformly bounded, this implies that u " (T ) ! g strongly in L p (⌦) for all p < 1.

Moreover, since (u " ) t converges to u t weakly in L 2 ([0, T ]; W 1,2 (D k )) for all D k , one has that u t 2 L 2 ([0, T ]; W 1,2 (D k )), so u 2 C 0 ([0, T ]; L 2 (D k )) and actually u(T ) = g(x) in ⌦. Now we multiply (2.3.7) by (u " u)⇠ 2
k , for a convenient increasing function to be chosen later. We proceed in a similar way as above obtaining . So we get

k+1 Z T 0 Z D k+1 0 (u " u) |Du " Du| 2 ⇠ 2 k dxdt  Z T 0 Z D k+1 0 (u " u)a " (x)Du • (Du " Du) ⇠ 2 k + C k Z T 0 Z D k+1 | (u " u)|(1 + |Du " | 2 ) ⇠ 2 k dxdt Z T 0 h@ t u " , (u " u)⇠ 2 k i , which yields, using |Du " | 2  2(|Du " Du| 2 + |Du| 2 ): Z T 0 Z D k+1 [ k+1 0 (u " u) 2C k | (u " u)|] |Du " Du| 2 ⇠ 2 k dxdt   Z T 0 Z D k+1 0 (u " u)a " (x)Du • (Du " Du) ⇠ 2 k + C k Z T 0 Z D k+1 | (u " u)|(1 + 2|Du| 2 ) ⇠ 2 k dxdt + Z T 0 h@ t u " , (u " u)⇠ 2 k i .
Z T 0 Z D k+1 |Du " Du| 2 ⇠ 2 k dxdt   C k Z T 0 Z D k+1 0 (u " u)a " (x)Du • (Du " Du) ⇠ 2 k + C k Z T 0 Z D k+1 | (u " u)|(1 + 2|Du| 2 ) ⇠ 2 k dxdt + C k Z T 0 h@ t u " , (u " u)⇠ 2 k i , (2.8.2) 
where h•, •i is the duality between W 1,2 (⌦ " ) and its dual. We conclude by showing that all terms in the right-hand side go to zero as " ! 0. Indeed, if (s) = R s 0 (r)dr, we have

Z T 0 h@ t u " , (u " u)⇠ 2 k i = Z ⌦ (u " (t) u(t))dx T I 0 + Z T 0 h@ t u, (u " u)⇠ 2 k i  Z ⌦ (u " (T ) u(T ))dx + Z T 0 h@ t u, (u " u)⇠ 2 k i dt
and the last two terms converge to zero because (u " u)⇠ 2 k weakly converges to zero in L 2 ([0, T ]; W 1,2 (D k )) and u " (T ) ! g(x) = u(T ) almost everywhere (hence (u " (T ) u(T )) ! 0 in L 1 by dominated convergence). Still using Lebesgue's dominated convergence theorem, we have that

| (u " u)|(1 + 2|Du| 2 ) ! 0 in L 1 ((0, T ) ⇥ D k+1
). Finally, using that a " (x) converges almost everywhere, we can deduce that 0 (u " u)a " (x)Du converges strongly in L 2 ((0, T ) ⇥ D k+1 ), and since Du " converges weakly to Du, the first integral in the right-hand side of (2.8.2) converges to zero as well. Therefore, (2.8.2) implies that

Z T 0 Z D k+1 |Du " Du| 2 ⇠ 2 k dxdt "!0 ! 0 which implies the strong convergence of u " to u in L 2 ([0, T ]; W 1,2 (D k )) for all D k .
We finish by noticing that, in case u " (T ) is not assume to converge strongly, then the above argument needs to be localized, which means using the test function (u " u)⇠ 2 k (T t). With the same arguments as above, in that case one concludes the strong convergence in

L 2 ([0, t]; W 1,2 (D k )) for all t < T , but not up to t = T .
We now provide the proof of the analog compactness result for the Fokker-Planck equation.

Proof of Lemma 2.4.2. We only sketch the proof since this is just a local version of compactness results which are well-known in the case of boundary value problems.

We first obtain local estimates as in [90, Lemma 3.3]: namely, for any q <

N +2 N +1 , Z T 0 Z D k |Dm " | q dxdt  C q,k (2.8.3) 
for every D k defined in (2.2.2). This estimate in particular implies that m " is bounded in L q (0, T ; W 1,q (K)) for q < N +2 N +1 , for any compact subset K. From the equation and the local boundedness of a " , b " , we deduce that (m " ) t is bounded in L q (0, T ; W 1,q (K)), so applying standard compactness results (see [START_REF] Simon | Compact sets in L p (0, T ; B)[END_REF]Corollary 4]) we get that m " is relatively compact in L 1 (0, T ; L 1 (K)). Through a diagonal procedure, we can extract a subsequence, which is not relabeled, such that m " converges almost everywhere in Q T , and in L 1 (0, T ; L 1 (K)) for every compact subset K ⇢ ⌦, towards some function m which actually belongs to L 1 ((0, T ); L 1 (⌦)) because of Fatou's lemma and the fact that km " (t)k L 1 (⌦) is uniformly bounded.

In order to obtain a strong convergence in C 0 ([0, T ]; L 1 loc (⌦)), we use some renormalization argument similar as in [89, Theorem 6.1]. To this purpose, we use the auxiliary function

S n (r) = n S ⇣ r n ⌘ , where S(r) = R r 0 S 0 (r)dr, S 0 (r) = 8 > > > < > > > : 1 if |s|  1 2 |s| if 1 < |s|  2 0 if |s| > 2 (2.8.4)
so that S n is a sequence of bounded functions which converges to the identity locally uniformly as n ! 1. Let ⇠ k be the cut-o↵ function defined in (2.8.1). By choosing

(1 S 0 n (m " ))⇠ 2 k as test function in (2.4.3) one obtains Z ⌦ (m " S n (m " ))(t)⇠ 2 k dx + k+1 1 n Z t 0 Z D k |Dm " | 2 1 {n<m"<2n} dxds  C k ( Z t 0 Z D k+1 m " 1 {n<m"} dxds + Z t 0 Z D k+1 |Dm " |1 {n<m"} dxds ) + Z ⌦ (m " (0) S n (m " (0))) ⇠ 2 k dx ,
where we used the local ellipticity of a " , and the local boundedness of a " and b " . Since 0  r S n (r)  r 1 {r>n} , and since m " (0) converges in L 1 (K) for all compact subsets K, last term is small as n ! 1, uniformly with respect to ". The same holds for the previous terms in the right-hand side due to the local bounds on m " , Dm " . Hence it holds

lim n!1 sup " 1 n Z T 0 Z ⌦ |Dm " | 2 1 {n<m"<2n} ⇠ 2 dxdt = 0 (2.8.5) and lim n!1 sup {">0,t2[0,T ]} Z ⌦ (m " S n (m " ))(t)⇠ 2 dx = 0 (2.8.6)
for any cut-o↵ function ⇠.

Now one can renormalize the equation for m " . Indeed, thanks to (2.8.5) the function

S n (m " ) satisfies (S n (m " )) t div(a ⇤ " (x)DS n (m " ) + b " m " S 0 n (m " )) = R ",n in (0, T ) ⇥ ⌦ " (2.8.7)
where R ",n is such that

lim n!1 sup " Z T 0 Z ⌦ |R ",n | ⇠ 2 dxdt = 0 . (2.8.8) 
Consider now a sequence {m n j } in L 2 (0, T ; W 1,2 loc (⌦)) approximating the function S n (m) with the following properties: 8 > < > :

@ t m n j = j(m n j S n (m)) , km n j k 1  n m n j j!1 ! S n (m) in L 2 (0, T ; W 1,2 (K)), m n j (0) j!1 ! S n (m 0 ) in L 1 (K),
for any compact K ⇢ ⌦. We take T 1 (S n (m " ) m n j ) ⇠ 2 as test function in (2.8.7) and we obtain (we denote

⇥ 1 (r) = R r 0 T 1 (s)ds): Z ⌦ ⇥ 1 S n (m " ) m n j (t) ⇠ 2 dx + C Z t 0 Z ⌦ |DT 1 (S n (m " ) m n j )| 2 ⇠ 2  Z ⌦ ⇥ 1 S n (m " (0)) m n j (0) ⇠ 2 dx Z t 0 Z ⌦ b " m " S 0 n (m " )DT 1 (S n (m " ) m n j ) ⇠ 2 Z t 0 Z ⌦ a ⇤ " (x) Dm n j DT 1 (S n (m " ) m n j ) ⇠ 2 dxds Z t 0 Z ⌦ (m n j ) t T 1 (S n (m " ) m n j ) ⇠ 2 dxds 2 Z t 0 Z ⌦ [a ⇤ " (x) DS n (m " ) + b " m " S 0 n (m " )]D⇠ T 1 (S n (m " ) m n j ) ⇠ dxds + sup " Z T 0 Z ⌦ |R ",n | ⇠ 2 dxdt .
We will let first " ! 0 and then j ! 1. Since all the integrals are localized in a compact subset of ⌦, we use the almost everywhere convergence of m " (hence S n (m " ) converges in L 1 ) and the weak convergence of DS n (m " ) in L 2 , as well as the convergences of a " (x) and b " (t, x). Then we find, as " ! 0: lim sup

"!0 Z ⌦ ⇥ 1 S n (m " ) m n j (t) ⇠ 2 dx  Z ⌦ ⇥ 1 S n (m 0 ) m n j (0) ⇠ 2 dx Z t 0 Z ⌦ b m S 0 n (m)DT 1 (S n (m) m n j ) ⇠ 2 Z t 0 Z ⌦ a ⇤ (x) Dm n j DT 1 (S n (m) m n j ) ⇠ 2 dxds Z t 0 Z ⌦ (m n j ) t T 1 (S n (m) m n j ) ⇠ 2 dxds 2 Z t 0 Z ⌦ [a ⇤ (x) DS n (m) + b m S 0 n (m)]D⇠ T 1 (S n (m) m n j ) ⇠ dxds + sup " Z T 0 Z ⌦ |R ",n | ⇠ 2 dxdt .
Thanks to the properties of m n j we have (m n j ) t T 1 (S n (m) m n j ) 0. Hence that term can be dropped. For all other terms, we let j ! 1; using that m n j converges to S n (m) and m n j (0) to S n (m 0 ) we conclude that lim sup

j!1 lim sup "!0 Z ⌦ ⇥ 1 S n (m " ) m n j (t) ⇠ 2 dx  !(n) , !(n) := sup " Z T 0 Z ⌦ |R ",n | ⇠ 2 dxdt .
(2.8.9)

Last term will vanish as n ! 1 due to (2.8.8). Now we estimate

Z ⌦ |S n (m " ) S n (m)|(t) ⇠ 2 dx  Z ⌦ |S n (m " ) m n j |(t) ⇠ 2 dx + Z ⌦ |S n (m) m n j |(t) ⇠ 2 dx .
Using that |s|  C max(⇥ 1 (s), p ⇥ 1 (s)), due to (??) and to the convergence of m n j towards S n (m), we get after letting " ! 0 and j ! 1:

lim sup "!0 Z ⌦ |S n (m " ) S n (m)|(t) ⇠ 2 dx  C!(n) n!1 ! 0 ,
and the above holds uniformly with respect to t 2 [0, T ]. Putting together this estimate with (2.8.6), we conclude that lim

"!0 sup [0,T ] Z ⌦ |m " (t) m|(t) ⇠ 2 dx = 0 . Hence m 2 C 0 ([0, T ]; L 1 loc (⌦)
) and the uniform convergence holds.

Chapter 3

The Master Equation in a Bounded Domain with Neumann Conditions

Introduction

In this chapter we analyze the asymptotic behaviour of an N -players di↵erential game, where each player chooses his own control and plays his dynamic in a bounded domain ⌦ ✓ R d , with a reflecting process at the boundary @⌦.

As said in the Introduction of my thesis, this convergence problem is studied using the so-called Master Equation, an equation in the space of measures introduced by P.-L. Lions in his courses at College de France, who gives also a formal link with the Nash system. See [80].

There are many papers about the well-posedness of the Master Equation. Buckhdan, Li, Peng and Rainer in [START_REF] Buckdahn | Mean-field stochastic di↵erential equations and associated PDEs[END_REF] proved the existence of a classical solution using probabilistic arguments, when there is no coupling and no common noise. We point out here also the work of Chassagneux, Crisan and Delarue in [START_REF] Chassagneux | Classical solutions to the Master Equation for large population equilibria[END_REF], who gave the first existence result of solution on the Master Equation with di↵usion and without common noise. Furthermore, Gangbo and Swiech proved a short time existence for the Master Equation with common noise, see [START_REF] Gangbo | Existence of a solution to an equation arising from the theory of mean field games[END_REF].

But the most important result in this framework was achieved by Cardaliaguet, Delarue, Lasry and Lions in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF], who proved existence and uniqueness of solutions for the Master Equation with and without common noise, and also the convergence problem, in a periodic setting (⌦ = T d ).

Many other results about the convergence problem are given in the literature. The convergence in the whole space, under weaker condition than in [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF], was given by Carmona and Delarue in [START_REF] Carmona | Probabilistic theory of mean field games with applications[END_REF]. In [START_REF] Cardaliaguet | Remarks on nash equilibria in mean field game models with a major player[END_REF], Cardaliaguet, Cirant and Porretta studied the convergence for the major-minor problem. Very important are the works of Delarue, Lacker and Ramanan, who used the Master Equation for the analysis of the large deviation problem and the central limit theorem, see [START_REF] Delarue | From the master equation to mean field game limit theory: a central limit theorem[END_REF][START_REF] Delarue | From the master equation to mean field game limit theory: Large deviations and concentration of measure[END_REF]. As regards finite state problems, some recents developments were studied by Bayraktar and Cohen in [START_REF] Bayraktar | Analysis of a finite state many player game using its master equation[END_REF] and by Cecchin and Pelino in [START_REF] Cecchin | Convergence, fluctuations and large deviations for finite state mean field games via the master equation[END_REF].

There are also convergence result obtained without using Master Equation. See, for example, the work by Lacker in [START_REF] Lacker | On the convergence of closed-loop Nash equilibria to the mean field game limit[END_REF]. Other important papers about Master Equation and convergence problem are [START_REF] Cardaliaguet | The convergence problem in mean field games with local coupling[END_REF][START_REF] Carmona | The Master Field and the Master Equation[END_REF][START_REF] Cecchin | On the convergence problem in mean field games: a two state model without uniqueness[END_REF][START_REF] Doncel | Discrete mean field games: Existence of equilibria and convergence[END_REF][START_REF] Fischer | On the connection between symmetric n-player games and mean field games[END_REF][START_REF] Lacker | A general characterization of the mean field limit for stochastic di↵erential games[END_REF][START_REF] Nutz | A mean field competition[END_REF].

However, most of these papers proves the convergence in a periodic framework (⌦ = T d ) or in the whole space R d . But in many applications it is useful to work in a framework with boundary conditions, in particular reflections at the boundary; see for instance the models analyzed by Achdou, Bardi and Cirant in [START_REF] Achdou | Mean Field Games models of segregation[END_REF].

Here we want to extend the convergence results in our context. The chapter is clearly inspired by the ideas of [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF], but, as already said in the introduction, many issues appear in the further technical estimates, and more e↵ort has to be done in order to gain the same results.

The chapter is divided as follows. In section 3.2 we define some useful tools and we state the main assumptions we will need in order to prove the next results.

The rest of the chapter is divided into two parts. In the first part (section 3. 

8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : @ t U (t, x, m) tr a(x)D 2 x U (t, x, m) + H (x, D x U (t, x, m)) Z ⌦ tr (a(y)D y D m U (t, x, m, y)) dm(y)+ Z ⌦ D m U (t, x, m, y) • H p (y, D x U (t, y, m))dm(y) = F (x, m) in (0, T ) ⇥ ⌦ ⇥ P(⌦) , U (T, x, m) = G(x, m) in⌦ ⇥ P(⌦) , a(x)D x U (t, x, m) • ⌫(x) = 0 for (t, x, m) 2 (0, T ) ⇥ @⌦ ⇥ P(⌦) , a(y)D m U (t, x, m, y) • ⌫(y) = 0 for (t, x, m, y) 2 (0, T ) ⇥ ⌦ ⇥ P(⌦) ⇥ @⌦ , (3.1.1)
where ⌫ is the normal outward at @⌦ and D m U is a derivation of U with respect to the measure, whose precise definition will be given later.

We stress the fact that the Neumann condition aD m U • ⌫ = 0 is completely new in the literature. Actually, we have to pay attention to the space where U is defined, i.e.

[0, T ] ⇥ ⌦ ⇥ P(⌦). Then, together with final data and Neumann condition with respect to

x, there is another boundary condition caused by the boundary of P(⌦).

The idea is quite classical: for each (t 0 , m 0 ) we consider the MF G system in [t 0 , T ] ⇥ ⌦ with a Neumann condition:

8 > > > > > > > < > > > > > > > : u t tr(a(x)D 2 u) + H(x, Du) = F (x, m(t)) , m t div(a(x)Dm) div(m( b + H p (x, Du))) = 0 , m(t 0 ) = m 0 , u (x, T ) = G(x, m(T )) , a(x)Du • ⌫(x) |@⌦ = 0 ⇣ a(x)Dm + ( b + H p (x, Du))m ⌘ ⌫ |@⌦ = 0 , (3.1.2)
where b is a vector field defined as follows:

bi

(x) = d X j=1 @a ji @x j (x) , i= 1, . . . , d .
Then we define

U (t 0 , x, m 0 ) = u(t 0 , x) (3.1.3)
and we prove that this U is a solution of the Master Equation.

Since the function U depends also on the measure, a suitable distance between these measures has to be defined: this is called the Wasserstein distance, which definition will be given in section 3.2. For a more detailed description about this kind of distance, see [START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF].

The main issue is to prove the C 1 character of U with respect to m, and Section 3.3 3.5

are completely devoted to prove technical results to ensure this kind of di↵erentability.

In section 3.3 we prove a first estimate of a solution (u, m) of the Mean Field Games system, namely

kuk 1+ ↵ 2 ,2+↵  C , d 1 (m(t), m(s))  C|t s| 1 2 ,
where d 1 is the Wasserstein distance defined in Section 3.2. This implies

kU (t, •, m)k 2+↵  C .
In section 3.4 we use the definition of U from the Mean Field Games system in order to prove a Lipschitz character of U with respect to m:

kU (t, •, m 1 ) U (t, •, m 2 )k 2+↵  Cd 1 (m 1 , m 2 ) .
In section 3.5 we prove the C 1 character of U with respect to m. This passes through di↵erent estimates on linearized MFG systems.

Once proved the C 1 character of U , we can prove that U is actually the unique solution of the Master Equation (3.1.1). This will be done in Section 3.6.

In the second part we analyze the asymptotic behavior of the N -players game and the convergence of the Nash system towards a solution of the Master Equation. To do that, we need to give a precise stochastic interpretation of the di↵erential game in this framework.

We start considering a finite control problem with N players, where each player chooses his own strategy in order to minimize a certain cost functional.

The dynamic of the player i, with 1  i  N , is given by the following stochastic di↵erential equation:

<

:

dX i t = b(X i t , ↵ i t ) dt + p 2 (X i t )dB i t dk i t , X i t 0 = x i 0 . (3.1.4)
Here, ↵ i t is the control, chosen from a certain set A, b : [0, T ] ⇥ ⌦ ⇥ A ! R d is the drift function, : ⌦ ! R d⇥d is the di↵usion matrix, a = ⇤ and ⌫ is the outward normal at @⌦.

Moreover, (B t ) i , 1  i  N are independent d-dimensional Brownian motions, x i 0 2 ⌦ and k i t is a reflected process along the co-normal. According to [START_REF] Lions | Stochastic Di↵erential Equations with Reflecting Boundary Conditions[END_REF], this reflected process satisfies the following properties:

k i t = Z t 0 a(X i s )⌫(X i s ) d|k| i s , |k| i t = Z t 0 {X i s 2@⌦} d|k| i s ,
where ⌫ is the outward normal at @⌦ . This reflection along the co-normal forces the process to stay into ⌦ for all t 0.

Existence results for stochastic di↵erential equations with reflection were already obtained in [START_REF] Bensoussan | Contrôle Impulsionnel et Inéquations Quasi-Variationnelles[END_REF], [START_REF] El Karoui | Un problème de réflexion et ses applications au temps local et aux équations di↵érentielles stochastiques sur R, Cas continu[END_REF], [START_REF] Lions | Construction de processus de di↵usion réfléchis par pénalisation du domaine[END_REF], [START_REF] Lions | Stochastic Di↵erential Equations with Reflecting Boundary Conditions[END_REF], [START_REF] Skorokhod | Stochastic equations for diflusion processes in a bounded region 1, 2[END_REF], [START_REF] Stroock | Di↵usion Processes with boundary conditions[END_REF], [START_REF] Tanaka | Stochastic di↵erential equations with reflecting boundary condition in convex regions[END_REF], so we will not discuss about it here.

Throughout the chapter we use the notation v to indicate a vector of R Nd defined by v = (v 1 , . . . , v N ), where v i is an already defined vector of R d . We consider a control ↵ • and a starting position x 0 at time t 0 . The cost for the player i is given by the following functional:

J N i (t 0 , x 0 , ↵ • ) = E Z T t 0 L(X i s , ↵ i s ) + F N,i (X s ) ds + G N,i (X T ) ,
where L is called Lagrangian of the system and F N,i and G N,i are the cost functions for the player i.

In order to obtain a convergence when N is large, we need to assume that the players are indistinguishable: i.e., there has to be some symmetry in the cost functional.

So we assume that, for certain functions F and G,

F N,i (x) = F (x i , m N,i x ) , G N,i (x) = G(x i , m N,i x ) , with m N,i x = 1 N 1 X j6 =i
x j , where x is the Dirac function at x .

(3.1.5)

The optimal control strategy for each players appears in the study of Nash equilibria.

Namely, a control ↵ ⇤ • provides a Nash equilibrium if, for all controls ↵ • and for all i we have

J N i (t 0 , x 0 , ↵ ⇤ • )  J N i (t 0 , x 0 , ↵ i , (↵ ⇤ j ) j6 =i ) ,
i.e., each player chooses his optimal strategy, if we "freeze" the other players' strategies.

Now we define the value function for the generic player i as the cost functional at the optimal control:

v N i (t 0 , x 0 ) = J N i (t 0 , x 0 , ↵ ⇤ ) .
A well-known computation, using Ito's formula and dynamic programming principle (see [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF]), proves that, if v N i solves the so-called Nash system,

8 > > > > > < > > > > > : @ t v N i X j tr(a(x j )D 2 x j x j v N i ) + H(x i , D x i v N i ) + X j6 =i H p (x j , D x j v N j )•D x j v N i = F (x i , m N,i x ) , v N i (T, x) = G(x i , m N,i x ) , a(x j )D x j v N i • ⌫(x j ) |x j 2@⌦ = 0 , j = 1, • • • , N , (3.1.6) 
then v N i is the value function of a Nash equilibrium. In Section 3.7 we analyze this convergence problem. This is done by defining the following functions u N i :

u N i (t, x) = U (t, x i , m N,i x ) ,
and proving that u N i solves "almost" the Nash system, with an error of order 1 N . Then we define the following related process for v N i : 8 < :

dY i t = H p (Y i t , D x i v N i (t, Y t )) dt + p 2 (Y i t )dB i t dk i t , Y i t 0 = Z i ,
where Z = (Z i ) i are i.i.d. random variables of law m 0 , and we prove that

|u N i (t 0 , Z)| v N i (t 0 , Z)|  C N P a.s. , E Z T t 0 D x i v N i (t, Y t ) D x i u N i (t, Y t ) 2 dt  C N 2 .
With these asymptotic estimates, we are able to prove the two main convergence results.

Actually, if we define

m N x := 1 N X i x i ,
we have

sup i |v N i (t 0 , x) U (t 0 , x i , m N x )|  C N .
Moreover, if we set

w N i (t 0 , x i , m 0 ) := Z ⌦ N 1 v N i (t 0 , x) Y j6 =i m 0 (dx j ) , then w w w N i (t 0 , •, m 0 ) U (t 0 , •, m 0 ) w w L 1 (m 0 )  C! N , (3.1.7) 
where

! N = 8 > > < > > : CN 1 d if d 3 , CN 1 2 log(N ) if d = 2 , CN 1 2 if d = 1 .

Notation and assumptions

Throughout this chapter, we fix a time T > 0. ⌦ ⇢ R d will be the closure of an open bounded set, with boundary of class C 2+↵ , and we define

Q T := [0, T ] ⇥ ⌦.
First, we need to define some useful tools.

For n 0 and ↵ 2 (0, 1) we denote with C n+↵ (⌦), or simply C n+↵ , the space of functions 2 C n (⌦) with, for each `2 N r , 1  r  n, the derivative D ` is Hölder continuous with Hölder constant ↵. The norm is defined in the following way:

k k n+↵ := X |`|n w w wD l w w w 1 + X |`|=n sup x6 =y |D ` (x) D ` (y)| |x y| ↵ .
Sometimes, in order to deal with Neumann boundary conditions, we will need to work with a suitable subspace of C n+↵ (⌦).

So we will call C n+↵,N (⌦), or simply C n+↵,N , the set of functions 2 C n+↵ such that aD • ⌫ |@⌦ = 0, endowed with the same norm k k n+↵ .

Then, we define several parabolic spaces we will need to work with during the chapter, 

starting from C n+↵ We say that : [0, T ] ⇥ ⌦ ! R is in C n+↵ 2 ,n+↵ ([0, T ] ⇥ ⌦) if
k k n+↵ 2 ,n+↵ := X 2r+sn kD r t D s x k 1 + X 2r+s=n sup t kD r t D s x (t, •)k ↵ + X 0<n+↵ 2r s<2 sup x kD r t D s x (•, x)k n+↵ 2r s 2 .
The space of continuous space-time functions which satisfy a Hölder condition in x will be denoted by C 0,↵ ([0, T ] ⇥ ⌦). It is endowed with the norm

k k 0,↵ = sup t2[0,T ] k (t, •)k ↵ .
The same definition can be given for the space C ↵,0 . Finally, we define the space C 1,2+↵

of functions di↵erentiable in time and twice di↵erentiable in space, with all derivatives in C 0,↵ (Q T ). The natural norm for this space is

k k 1,2+↵ := k k 1 + k t k 0,↵ + kD x k 1 + w w D 2 x w w 0,↵ .
We note that, thanks to Lemma 5.1.1 of [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF], the first order derivatives of 2 C 1,2 satisfy also a Hölder condition in time. Namely

kD x k 1 2 ,↵  C kf k 1,2+↵ . (3.2.1)
In order to study distributional solutions for the Fokker-Planck equation, we also need to define a structure for the dual spaces of regular functions.

We define, for n 0 and ↵ 2 (0, 1), the space C (n+↵) (⌦), called for simplicity C (n+↵) in this article, as the dual space of C n+↵ , endowed with the norm

k⇢k (n+↵) = sup k k n+↵ 1 h⇢, i .
With the same notations we define the space C (n+↵),N as the dual space of C n+↵,N endowed with the same norm:

k⇢k (n+↵),N = sup k k n+↵ 1 aD •⌫ |@⌦ =0
h⇢, i .

Finally, for k 1 and 1  p  +1, we can also define the space W k,p (⌦), called for simplicity W k,p , as the dual space of W k,p (⌦), endowed with the norm

k⇢k W k,p = sup k k W k,p 1
h⇢, i .

Definition 3.2.1. Let m 1 , m 2 2 P(⌦) two Borel probability measures on ⌦.

We call the Wasserstein distance between m 1 and m 2 , and we write d 1 (m 1 , m 2 ) the quantity

d 1 (m 1 , m 2 ) := sup Lip( )1 Z ⌦ (x)d(m 1 m 2 )(x) . (3.2.2)
We note that we can also write (3.2.2) as

d 1 (m 1 , m 2 ) := sup k k W 1,1 C Lip( )1 Z ⌦ (x)d(m 1 m 2 )(x) , (3.2.3) 
for a certain C > 0. Actually, for a fixed x 0 2 ⌦, we can restrict ourselves to the functions such that (x 0 ) = 0, since

Z ⌦ (x)d(m 1 m 2 )(x) = Z ⌦ ( (x) (x 0 ))d(m 1 m 2 )(x) ,
and these functions obviously satisfies k k W 1,1  C for a certain C > 0. We will always work with (3.2.3), where the restriction in W 1,1 allows us to obtain some desired estimates with respect to d 1 .

In order to give a sense to equation (3.1.1), we need to define a suitable derivation of U with respect to the measure m. Definition 3.2.2. Let U : P(⌦) ! R. We say that U is of class C 1 if there exists a continuous map K : P(⌦) ⇥ ⌦ ! R such that, for all m 1 , m 2 2 P(⌦) we have

lim t!0 U (m 1 + s(m 2 m 1 )) U (m 1 ) s = Z ⌦ K(m 1 , x)(m 2 (dx) m 1 (dx)) . (3.2.4)
Note that the definition of K is up to additive constants. Then, we define the derivative U m as the unique map K satisfying (3.2.4) and the normalization convention

Z ⌦ K(m, x)dm(x) = 0 .
As an immediate consequence, we obtain the following fundamental equality, that we will use very often in the rest of the chapter: for each m 1 , m 2 2 P(⌦) we have

U (m 2 ) U (m 1 ) = Z 1 0 Z ⌦ U m ((m 1 ) + s(m 2 m 1 ), x)(m 2 (dx) m 1 (dx)) .
Finally, we can define the intrinsic derivative of U with respect to m. We need the following assumptions Hypotheses 3.2.4. Assume that

(i) (Uniform ellipticity) ka(•)k 1+↵ < 1 and 9 > 0 s.t. 8⇠ 2 R d ha(x)⇠, ⇠i |⇠| 2 ; 
(ii) (iv) F satisfies, for some 0 < ↵ < 1 and C F > 0,

H : ⌦ ⇥ R d ! R, G : ⌦ ⇥ P(⌦) ! R
Z ⌦ F (x, m) F (x, m 0 ) d(m m 0 )(x) 0 and sup m2P(⌦) kF (•, m)k ↵ + w w w w F m (•, m, •) w w w w ↵,2+↵ ! + Lip ✓ F m ◆  C F , with Lip ✓ F m ◆ := sup m 1 6 =m 2 d 1 (m 1 , m 2 ) 1 w w w w F m (•, m 1 , •) F m (•, m 2 , •) w w w w ↵,1+↵ ! ;
(v) G satisfies the same estimates as F with ↵ and 1 + ↵ replaced by 2 + ↵, i.e. 

sup m2P(⌦) kG(•, m)k 2+↵ + w w w w G m (•, m, •) w w w w 2+↵,2+↵ ! + Lip ✓ G m ◆  C G , with Lip ✓ G m ◆ := sup m 1 6 =m 2 d 1 (m 1 , m 2 ) 1 w w w w G m (•, m 1 , •) G m (•, m 2 , •)
|@⌦ = 0 , ⌧ a(y)D y G m (x, m, y), ⌫(y) |@⌦ = 0 , ha(x)D x G(x, m), ⌫(x)i |@⌦ = 0 ,
for all m 2 P(⌦).

Some comments about the previous hypotheses: the first five are standard hypotheses in order to obtain existence and uniqueness of solutions for the Mean Field Games system. The hypotheses about the derivative of F and G with respect to the measure will be essential in order to obtain some estimates on a linearized MFG system.

As regards hypotheses (vi), the second and the third boundary conditions are natural But first, we have to prove some preliminary estimates about the Mean Field Games system and some other estimates on a linearyzed Mean Field Games system, which will be essential in order to ensure the C 1 character of U with respect to m.

Preliminary estimates and Mean Field Games system

In this section we start giving some technical results for linear parabolic equations, which will be useful in the rest of the Chapter.

Then we will obtain some preliminary estimates for the Master Equation, obtained by a deep analysis of the Mean Field Games related system.

We start with this technical Lemma.

Lemma 3.3.1. Suppose a satisfies (i) of Hypotheses 3.2.4, b, f 2 L 1 (Q T ). Furthermore, let 2 C 1+↵,N (⌦), with 0  ↵ < 1.
Then the unique solution z of the problem 8 > > > < > > > :

z t tr(a(x)D 2 z) + b(t, x) • Dz = f (t, x) , z(T ) = , aDz • ⌫ |@⌦ = 0 satisfies kzk 1+↵ 2 ,1+↵  C kf k 1 + k k 1+↵ . (3.3.1)
Proof. Note that, if f and b are continuous bounded functions, with b depending only on x, this result is simply Theorem 5.1.18 of [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF]. In the general case, we argue as follows.

We can write z = z 1 + z 2 , where z 1 satisfies

8 > > > < > > > : (z 1 ) t tr(a(x)D 2 z 1 ) = 0 , z 1 (T ) = , aDz 1 • ⌫ |@⌦ = 0 . (3.3.2)
and z 2 satisfies 8 > > > < > > > :

(z 2 ) t tr(a(x)D 2 z 2 ) + b(t, x) • Dz 2 = f (t, x) b(t, x) • Dz 1 , z 2 (T ) = 0 , aDz 2 • ⌫ |@⌦ = 0 , (3.3.3) 
Since in the equation (3.3.2) of z 1 we do not have a drift term depending on time, we can apply Theorem 5.1.18 of [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF] and obtain

kz 1 k 1+↵ 2 ,1+↵  C k k 1+↵ .
As regards (3.3.3), obviously z 2 (T ) 2 W 2,p (⌦) 8p, and from the estimate of z 1 we know that f bDz 2 L 1 . So we can apply the Corollary of Theorem IV.9.1 of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] to obtain that, that 8r d+2 2 ,

kz 2 k 1 d+2 2r ,2 d+2 r  C kf bDzk 1  C kf k 1 + k k 1+↵ .
Choosing r = d+2 1 ↵ , one has 2 d+2 r = 1 + ↵, and so (3.3.1) is satisfied for z 2 . Since z = z 1 + z 2 , estimate (3.3.1) holds also for z. This concludes the proof.

If the data f = 0, we can generalize the result of Lemma 3.3.1 if is only a Lipschitz function.

This result is well-known if a 2 C 2 (⌦), by applying a classical Bernstein method. In our framework, we have the following result. Lemma 3.3.2. Suppose a and b be bounded continuous functions, and 2 W 1,1 (⌦). Then the unique solution z of the problem 8 > > > < > > > :

z t tr(a(x)D 2 z) + b(t, x) • Dz = 0 , z(T ) = , aDz • ⌫ |@⌦ = 0 (3.3.4)
satisfies a Hölder condition in t and a Lipschitz condition in x, namely 9C such that In the general case, we take

|z(t, x) z(s, x)|  C k k W 1,1 |t s| 1 2 , |z(t, x) z(t, y)|  C k k W 1,1 |x y| . ( 3 
n 2 C 1 such that n ! in C([0, T ] ⇥ ⌦) and k n k 1  C k k W 1,1
, and we want to make a suitable approximation of it in order to obtain a function ˜ n 2 C 1,N , also converging to . In order to do that, we first need some useful tools.

For > 0, d(•) the distance function from @⌦, ⌦ = {x 2 ⌦ | d(x)
} and x 2 ⌦ \ ⌦ , we consider the following ODE in R d : 8 < :

⇠ 0 (t; x) = a(⇠(t; x))⌫(⇠(t; x)) , ⇠(0; x) = x , (3.3.6) 
where ⌫ is an extension of the outward unit normal in ⌦ \ ⌦ . Actually, we know from [START_REF] Delfour | Shape analysis via oriented distance function[END_REF] that Dd(x) |@⌦ = ⌫(x) , so a suitable extension can be ⌫(x) = Dd(x) . Then we consider the corresponding hitting time of @⌦ :

T (x) := inf {t 0 | ⇠(t; x) / 2 ⌦ \ ⌦ } .
We have that T (x) < +1 for each x 2 ⌦ \ ⌦ . To prove that, we consider the auxiliary function (t, x) = d(⇠(t; x)).

So, the function T (x) can be rewritten as

T (x) = inf {t 0 | (t, x) = 0} ,
and his finiteness is an obvious consequence of the decreasing character of in time:

@ t (t, x) = Dd(⇠(t; x)) • ⇠ 0 (t; x) = ha(⇠(t; x))⌫(⇠(t; x)), ⌫(⇠(t; x))i  < 0 .
Moreover, thanks to Dini's theorem we obtain that T (x) is a C 1 function and his gradient is given by

rT (x) = r x (T (x), x) @ t (T (x), x) = ⌫(⇠(T (x); x))Jac x ⇠(T (x); x) ha⌫, ⌫i(⇠(T (x); x)) .
Actually, thanks to the regularity of a and ⌦, we can di↵erentiate w.r.t. x the ODE (3.3.6) and obtain that ⇠(t;

•) 2 C 1 .
Now we define the approximating functions ˜ n in the following way:

˜ n (x) = ( n (x) i f x 2 ⌦ , n (⇠(T (x); x)) if x 2 ⌦ \ ⌦ , (3.3.7) eventually considering a C 1 regularization in ⌦ \ ⌦ 2 .
From the definition of ˜ n and the C 1 regularity of ⇠ and T we have ˜ n 2 C 1 and

k ˜ n k 1  C k n k 1  C k k W 1,1 .
Moreover, since near the boundary ˜ n is constant along the trajectories a(•)⌫(•), we have that on @⌦ a

(x)D ˜ n (x) • ⌫(x) |@⌦ = @ ˜ n @(a⌫(x)) (x) |@⌦ = 0 , so ˜ n 2 C 1,N .
Now we consider z n as the solution of (3.3.4) with replaced by ˜ n . Then Lemma 3.3.1 implies that ˜ n satisfies

kz n k 1 2 ,1  Ck ˜ k 1  C k k W 1,1 .
Then, Ascoli-Arzelà's Theorem tells us that 9z such that z n ! z in C([0, T ] ⇥ ⌦). Passing to the limit in the weak formulation of z n , we obtain that z is the unique solution of (3.3.4).

Finally, since z n satisfies (3.3.5), we can pass to the pointwise limit when n ! +1 and obtain the estimate (3.3.5) for z. This concludes the Lemma.

Now we start with the first estimates for the Master Equation.

The first result is obtained by the study of some regularity properties of the MF G system, uniformly in m 0 . Proposition 3.3.3. The system (3.1.2) has a unique classical solution (u, m) 2 C 1+ ↵ 2 ,2+↵ ⇥ C([0, T ]; P(⌦)), and this solution satisfies

sup t 1 6 =t 2 d 1 (m(t 1 ), m(t 2 )) |t 1 t 2 | 1 2 + kuk 1+ ↵ 2 ,2+↵  C , (3.3.8) 
where C does not depend on (t 0 , m 0 ). Furthermore, m(t) has a positive density for each t > 0 and, if m 0 2 C 2+↵ and satisfies the Neumann boundary condition

⇣ a(x)Dm 0 + ( b(0, x) + H p (x, Du(0, x)))m 0 ⌘ • ⌫ |@⌦ = 0 , (3.3.9) then m 2 C 1+ ↵ 2 ,2+↵
. Finally, the solution is stable: if m 0n ! m 0 in P(⌦), then there is convergence of the corresponding solutions of (3.

1.2): (u n , m n ) ! (u, m) in C 1,2 ⇥ C([0, T ]; P(⌦)).
Proof. We use a Schauder fixed point argument. Let X ⇢ C([t 0 , T ]; P(⌦)) be the set

X := n m 2 C([t 0 , T ]; P(⌦)) s.t. d 1 (m(t), m(s))  L|t s| 1 2 8s, t 2 [t 0 , T ] o ,
where L is a constant that will be chosen later.

It is easy to prove that X is a convex compact set for the uniform distance. We define a map : X ! X as follows.

Given 2 X, we consider the solution of the following Hamilton-Jacobi equation 8 > > > < > > > :

u t tr(a(x)D 2 u) + H(x, Du) = F (x, (t)) u(T ) = G(x, (T )) a(x)Du • ⌫(x) |@⌦ = 0 . (3.3.10)
Thanks to hypothesis (iv) of 3.2.4, we have F (•, (•)) 2 C ↵ 2 ,↵ and its norm is bounded by a constant independent of . For the same reason G(•, (T )) 2 C 2+↵ . It is well known that these hypotheses guarantee the existence and uniqueness of a classical solution. A proof can be found in [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF], Theorem V.7.4. So, we can expand with Taylor formula the gradient term and obtain a linear equation satisfied by u:

8 > > > < > > > : u t tr(a(x)D 2 u) + H(x, 0) + V (t, x) • Du = F (x, (t)) u(T ) = G(x, ↵(T )) a(x)Du • ⌫ @⌦ = 0 , with V (t, x) := Z 1 0 H p (x, Du(t, x)) d .
Thanks to the Lipschitz hypothesis on H, (ii) of 3.2.4, we know that V 2 L 1 . So, we can use the Corollary of Theorem IV.9.1 of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] to obtain

Du 2 C ↵ 2 ,↵ =) V 2 C ↵ 2 ,↵ .
So, we can apply Theorem IV.5.3 of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] and get

kuk 1+ ↵ 2 ,2+↵  C ⇣ kF k ↵ 2 ,↵ + kGk 2+↵ ⌘ ,
where the constant C does not depend on , t 0 , m 0 . Now, we define ( ) = m, where m 2 C([t 0 , T ]; P(⌦)) is the solution of the Fokker-Planck equation 8 > > > < > > > :

m t div(a(x)Dm) div(m( b(x) + H p (x, Du))) = 0 m(t 0 ) = m 0 ⇣ a(x)Dm + ( b + H p (x, Du))m ⌘ • ⌫ |@⌦ = 0 . (3.3.11)
It is easy to prove that the above equation has a unique solution in the sense of distribution.

A proof in a more general case will be given in the next section, in Proposition 3.5. for each 2 L 1 satisfying in the weak sense 8 < :

t tr(a(x)D 2 ) + H p (x, Du) • D 2 L 1 (Q T ) aD • ⌫ |@⌦ = 0 .
Take (•) a 1-Lipschitz function in ⌦. So, we choose in the weak formulation as the solution in [t, T ] of the following linear equation 

8 > > > < > > > : t tr(a(x)D 2 ) + H p (x, Du) • D = 0 , (t) = , a(x)D • ⌫ |@⌦ = 0 . ( 3 
( n,m ) t tr(a(x)D 2 n,m ) + H p (x, Du n ) • D n,m = (H p (x, Du m ) H p (x, Du n )) • D m , n,m (t) = 0 , a(x)D n,m • ⌫ |@⌦ = 0 ,
and so Lemma 3.3.1 implies

k n,m k 1+↵ 2 ,1+↵  C k(H p (x, Du m ) H p (x, Du n )) • D m k 1  C kDu m Du n k 1  !(n, k)
, where !(n, k) ! 0 when n, k ! 1, and where we use Lemma 3.3.2 in order to bound D m in L 1 , without compatibility conditions. Using (3.3.12) with (m n , n ) and (m k , k ), for n, k 2 N, s = 0, and subtracting the two equalities, we get

Z ⌦ (x)(m n (t, dx) m k (t, dx)) = Z ⌦ ( n (0, x) k (0, x))m 0 (dx)  !(n, k) .
Taking the sup over the 1-Lipschitz and over t 2 [0, T ], we obtain

sup t2[0,T ] d 1 (m n (t)), m k (t))  !(n, k) ,
which proves that {m n } n is a Cauchy sequence in X. Then, 9m such that m n ! m in X.

Passing to the limit in ( 

= m 2 . So F (x, m 1 (t)) = F (x, m 2 (t)), G(x, m 1 (T )) = G(x,
m t tr(a(x)D 2 m) m div ⇣ b(x) + H p (x, Du) ⌘ ⇣ 2 b(x) + H p (x, Du) ⌘ Dm = 0 m(t 0 ) = m 0 ⇣ a(x)Dm + ( b + H p (x, Du))m ⌘ • ⌫ |@⌦ = 0 .
Then, thanks to Theorem IV.5.3 of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF], m is of class C 1+ ↵ 2 ,2+↵ . The stability of solutions is obtained in the same way we used for the continuity of . This concludes the proof.

With this proposition, we have obtained that

sup t2[0,T ] sup m2P(⌦) kU (t, •, m)k 2+↵  C , (3.3.14) 
which gives us an initial regularity result for the function U .

To complete the previous proposition, we need the following lemma, based on the so-called 

+ Z T t 0 Z ⌦ (H(x, Du 1 ) H(x, Du 2 ) H p (x, Du 2 )(Du 1 Du 2 ))m 2 (t, dx)dt  Z ⌦ (u 1 (t 0 , x) u 2 (t 0 , x))(m 01 (dx) m 02 (dx)) . (3.3.15)
Proof. The idea is to estimate the quantity

d dt Z ⌦ (u 1 u 2 )(m 1 (t, dx) m 2 (t, dx)) .
Using (3.1.2) and integrating by parts, we find

d dt Z ⌦ (u 1 u 2 )(m 1 (t, dx) m 2 (t, dx)) = = Z ⌦ (F (x, m 1 (t)) F (x, m 2 (t))) (m 1 (t, dx) m 2 (t, dx)) + Z ⌦ (H(x, Du 2 ) H(x, Du 1 ) H p (x, Du 1 )(Du 2 Du 1 ))m 1 (t, dx) + Z ⌦ (H(x, Du 1 ) H(x, Du 2 ) H p (x, Du 2 )(Du 1 Du 2 ))m 2 (t, dx) .
Integrating the above equality for t 2 [t 0 , T ] we find

Z T t 0 Z ⌦ (H(x, Du 2 ) H(x, Du 1 ) H p (x, Du 1 )(Du 2 Du 1 ))m 1 (t, dx)dt + Z T t 0 Z ⌦ (H(x, Du 1 ) H(x, Du 2 ) H p (x, Du 2 )(Du 1 Du 2 ))m 2 (t, dx)dt  Z T t 0 Z ⌦ (F (x, m 1 (t)) F (x, m 2 (t))) (m 1 (t, dx) m 2 (t, dx)) dt Z ⌦ (G(x, m 1 (T )) G(x, m 2 (T )))(m 1 (T, dx) m 2 (T, dx)) Z ⌦ (u 1 (t 0 , x) u 2 (t 0 , x))(m 01 (dx) m 02 (dx)) .
Using the monotonicity of the couplings F and G we obtain (3.3.15) and we conclude.

Lipschitz continuity of U

Proposition 3.4.1. Let (u 1 , m 1 ) and (u 2 , m 2 ) be two solutions of system (3.1.2), with m 1 (t 0 ) = m 01 , m 2 (t 0 ) = m 02 . Then

ku 1 u 2 k 1,2+↵  Cd 1 (m 01 , m 02 ) , sup t2[t 0 ,T ] d 1 (m 1 (t), m 2 (t))  Cd 1 (m 01 , m 02 ) , (3.4.1) 
where C does not depend on t 0 , m 01 , m 02 . In particular

sup t2[0,T ] sup m 1 6 =m 2 h (d 1 (m 1 , m 2 )) 1 kU (t, •, m 1 ) U (t, •, m 2 )k 2+↵ i  C .
So, the solution of the Master Equation is Lipschitz continuous in the measure variable. This will be essential in order to prove the C 1 character of U with respect to m.

Proof. For simplicity, we show the result for t 0 = 0. First step: An initial estimate. Thanks to the hypotheses on H and the Lipschitz bound of u 1 and u 2 , (3.3.15) implies

Z T 0 Z ⌦ |Du 1 Du 2 | 2 (m 1 (t, dx) + m 2 (t, dx))dt   C Z ⌦ (u 1 (0, x) u 2 (0, x))(m 01 (dx) m 02 (dx))  C ku 1 u 2 k 1+↵ 2 ,1+↵ d 1 (m 01 , m 02 ).
Second step: An estimate on m 1 m 2 . We call m := m 1 m 2 . We take a su ciently regular function satisfying aD • ⌫ = 0, which will be chosen later. By subtracting the weak formulations (3.3.12) of m 1 and m 2 for s = 0 and for as test function, we obtain

Z ⌦ (t, x)m(t, dx) + Z t 0 Z ⌦ t tr(a(x)D 2 ) + H p (x, Du 1 )D m(s, dx)ds+ + Z t 0 Z ⌦ (H p (x, Du 1 ) H p (x, Du 2 ))D m 2 (s, dx)ds = Z ⌦ (0, x)(m 01 (dx) m 02 (dx)) . (3.4.2)
We choose as the solution of (3.3.13) related to u 1 , with terminal condition 2 W 

Z ⌦ (x)m(t, dx)  C ✓Z t 0 Z ⌦ |Du 1 Du 2 | 2 m 2 (s, dx) ◆ 1 2 + Cd 1 (m 01 , m 02 )   C ✓ ku 1 u 2 k 1 2 1+↵ 2 ,1+↵ d 1 (m 01 , m 02 ) 1 2 + d 1 (m 01 , m 02 ) ◆ ,
and finally, taking the sup over the 1-Lipschitz and the over t 2 [0, T ],

sup

t2[0,T ] d 1 (m 1 (t), m 2 (t))  C ✓ ku 1 u 2 k 1 2 1+↵ 2 ,1+↵ d 1 (m 01 , m 02 ) 1 2 + d 1 (m 01 , m 02 ) ◆ . (3.4.3)
Third step: Estimate on u 1 u 2 and conclusion. We call u := u 1 u 2 . Then u solves the following equation 8 > > > < > > > :

u t tr(a(x)D 2 u) + V (t, x)Du = f (t, x) u(T ) = g(x) a(x)Du • ⌫ |@⌦ = 0
, where

V (t, x) = Z 1 0 H p (x, Du 1 (t, x) + (1 )Du 2 (t, x)d ; f (t, x) = Z 1 0 Z ⌦ F m (x, m 1 (t) + (1 )m 2 (t), y)(m 1 (t, dy) m 2 (t, dy))d ; g(x) = Z 1 0 Z ⌦ G m (x, m 1 (T ) + (1 )m 2 (T ), y)(m 1 (T, dy) m 2 (T, dy))d .
From the regularity of u 1 and u 2 , we have V (t, •) bounded in C ↵ 2 ,↵ . We want to apply Theorem 5.1.21 of [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF]. To do this, we have to estimate sup

t kf (t, •)k ↵ First, we call m (•) := m 1 (•) + (1 )m 2 (•) . We get sup t2[0,T ] kf (t, •)k ↵  sup t2[0,T ] Z 1 0 w w w w D y F m (•, m (t), •) w w w w ↵,1 d d 1 (m 1 (t), m 2 (t))  C sup t2[0,T ] d 1 (m 1 (t), m 2 (t)) ,
where C depends on the constant C F in hypotheses 3.2.4.

In the same way

kg(•)k 2+↵  C sup r2[0,T ] d 1 (m 1 (r), m 2 (r)) . (3.4.4)
So we can apply Theorem 5.1.21 of [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF] and obtain 

ku 1 u 2 k 1,2+↵  C sup r2[0,T ] d 1 (m 1 (r), m 2 (r)) . ( 3 
d 1 (m 1 (t), m 2 (t))   C 0 @ sup r2[0,T ] d 1 (m 1 (r), m 2 (r)) ! 1 2 d 1 (m 01 , m 02 ) 1 2 + d 1 (m 01 , m 02 ) 1 A ,
and, using a generalized Young's inequality, this allows us to conclude:

sup t2[0,T ] d 1 (m 1 (t), m 2 (t))  Cd 1 (m 01 , m 02 ) . (3.4.6)
Plugging this estimate in (3.4.5), we finally obtain

ku 1 u 2 k 1,2+↵  Cd 1 (m 01 , m 02 ) .

Linearized system and di↵erentiability of U with respect to the measure

The proof of existence and uniqueness of solutions for the Master Equation strongly relies on the C 1 character of U with respect to m.

The definition of the derivative U m is strictly related to the solution (v, µ) of the following Sec. 3.5 -Linearized system and di↵erentiability of U with respect to the measure linearized system:

8 > > > > > > > < > > > > > > > : v t tr(a(x)D 2 v) + H p (x, Du) • Dv = F m (x, m(t))(µ(t)) , µ t div(a(x)Dµ) div(µ(H p (x, Du) + b)) div(mH pp (x, Du)Dv) = 0 , v(T, x) = G m (x, m(T ))(µ(T )) , µ(t 0 ) = µ 0 , a(x)Dv • ⌫ |@⌦ = 0 , ⇣ a(x)Dµ + µ(H p (x, Du) + b) + mH pp (x, Du)Dv ⌘ • ⌫ |@⌦ = 0 , (3.5.1)
where we use the notation

F m (x, m(t))(⇢(t)) := ⌧ F m (x, m(t), •), ⇢(t)
and the same for G.

We want to prove that this system admits a solution and that the following equality holds:

v(t 0 , x) = ⌧ U m (t 0 , x, m 0 , •), µ 0 . (3.5.2)
First, we have to analyze separately the well-posedness of the Fokker-Planck equation in distribution sense:

8 > > > < > > > : µ t div(a(x)Dµ) div(µb) = f , µ(0) = µ 0 , (a(x)Dµ + µb) • ⌫ |@⌦ = 0 , (3.5.3) where f 2 L 1 (W 1,1 ), µ 0 2 C (1+↵) , b 2 L 1 .
A suitable distributional definition of solution is the following:

Definition 3.5.1. Let f 2 L 1 (W 1,1 ), µ 0 2 C (1+↵) , b 2 L 1 . We say that a function µ 2 C([0, T ]; C (1+↵),N ) \ L 1 (Q T ) is a weak solution of (3.5.3) if, for all 2 L 1 (⌦), ⇠ 2 C 1+↵,N and solution in [0, t] ⇥ ⌦ of the following linear equation 8 > > > < > > > : t div(aD ) + bD = , (t) = ⇠ , aD • ⌫ |@⌦ = 0 , (3.5.4)
the following formulation holds:

hµ(t), ⇠i + Z t 0 Z ⌦ µ(s, x) (s, x) dxds = hµ 0 , (0, •)i + Z t 0 hf (s), (s, •)i ds , (3.5.5)
where h•, •i denotes the duality between C (1+↵),N and C 1+↵,N in the first case, between C (1+↵) and C 1+↵ in the second case and between W 1,1 and W 1,1 in the last case.

We note that the definition is well-posed. Actually, (s, •) is in C 1+↵ 8s thanks to Lemma (3.3.1), so hµ 0 , (0, •)i and hf (s), (s, •)i are well defined. Moreover, we have

k (s, •)k W 1,1  C .
Hence, since f 2 L 1 (W 1,1 ), the last integral is well defined too.

Remark 3.5.2. We are mainly interested in a particular case of distribution f . If there exists an integrable function c

: [0, T ] ⇥ ⌦ ! R n such that 8 2 W 1,1 hf (t), i = Z ⌦ c(t, x) • D (x) dx ,
then we can write the problem (3.5.3) in this way:

8 > > > < > > > : µ t div(a(x)Dµ) div(µb) = div(c) , µ(0) = µ 0 , (a(x)Dµ + µb + c) • ⌫ |@⌦ = 0 ,
writing f like a divergence and adjusting the Neumann condition, in order to make sense out of the integration by parts in the regular case.

In this case, in order to ensure the condition f 2 L 1 (W 1,1 ), we can simply require c 2 L 1 (Q T ). Actually we have, using Jensen's inequality,

kf k L 1 (W 1,1 ) = Z T 0 sup k k W 1,1 1 ✓Z ⌦ c(t, x) • D (x) dx ◆ dt  C Z T 0 Z ⌦ |c(t, x)| dxdt = kck L 1 ,
where

| • | is any equivalent norm in R d .
The next Proposition gives us an exhaustive existence and uniqueness result for (3.5.3).

Proposition 3.5.3. Let f 2 L 1 (W 1,1 ), µ 0 2 C (1+↵) , b 2 L 1 .
Then there exists a unique solution of the Fokker-Planck equation (3.5.3). This solution satisfies

sup t kµ(t)k (1+↵),N + kµk L p  C ⇣ kµ 0 k (1+↵) + kf k L 1 (W 1,1 ) ⌘ , (3.5.6)
where p = d+2 d+1+↵ . Finally, the solution is stable: if

µ n 0 ! µ 0 in C (1+↵) , {b n } n uniformly bounded and b n ! b in L p 8 p, f n ! f in L 1 (W 1,1
), then, calling µ n and µ the solutions related, respectively, to

(µ n 0 , b n , f n ) and (µ 0 , b, f), we have µ n ! µ in C([0, T ]; C (1+↵),N ) \ L p (Q T ).
Proof. For the existence part, we start assuming that f , b, µ 0 are smooth functions, and that µ 0 satisfies (a(x

)Dµ 0 + µ 0 b) • ⌫ |@⌦ = 0 . (3.5.7)
In this case, we can split the divergence terms in (3.5.3) and obtain that µ is a solution of a linear equation with smooth coe cients. So the existence of solutions in this case is a straightforward consequence of the classical results in [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF], [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF].

We consider the unique solution of (3. Then the right hand side term of (3.5.8) is bounded in this way:

hµ 0 , (0, •)i + Z t 0 hf (s), (s, •)i ds  C k⇠k 1+↵ ✓ kµ 0 k (1+↵) + Z t 0 kf (s)k W 1,1 ◆ .
Coming back to (3.5.8) and passing to the sup when ⇠ 2 C 1+↵,N , k⇠k 1+↵  1, we obtain

sup t kµ(t)k (1+↵),N  C ⇣ kµ 0 k (1+↵) + kf k L 1 (W 1,1 )
⌘ .

(3.5.10)

Now we have to prove the L p estimate. We consider the solution of (3.5.4) with t = T , ⇠ = 0 and 2 L r , with r > d + 2 (we recall that in this chapter we call d the dimension of the space.).

Chap. 3 -The Master Equation in a Bounded Domain with Neumann Conditions

Then the Corollary of Theorem IV.9.1 of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] tells us that Thanks to (3.5.11) we can estimate the terms on the right-hand side and obtain

k k 1 d+2 2r ,2 d+2 r  C k k L r . ( 3 
Z T 0 Z ⌦ µ dxds  C k k L r ⇣ kµ 0 k (1+↵) + kf k L 1 (W 1,1 )
⌘ .

(3.5.12)

Passing to the sup for k k L r  1, we finally get

kµk L p  C ⇣ kµ 0 k (1+↵) + kf k L 1 (W 1,1 )
⌘ , with p defined as the conjugate exponent of r, i.e. p = d+2 d+1+↵ . This proves estimates (3.5.6) in the regular case.

In the general case, we consider suitable smooth approximations

µ k 0 , f k , b k converging to µ 0 , f , b respectively in C (1+↵),N , L 1 (W 1,1 ) and L q (Q T ) 8q
1, with b k bounded uniformly in k and with µ k 0 satisying (3.5.7). We call µ k the related solution of (3.5.3). The above convergences tells us that, for a certain C,

kµ k 0 k (1+↵)  C kµ 0 k (1+↵) , kb k k 1  C kbk 1 kf k k L 1 (W 1,1 )  C kf k L 1 (W 1,1 )
.

Then we apply (3.5.6), to obtain, uniformly in k, 

sup t kµ k (t)k (1+↵),N + kµ k k L p  C ⇣ kµ 0 k (1+↵) + kf k L 1 (W 1,1 ) ⌘ , ( 3 
k , f = f k f h + div(µ h (b k b h )), µ 0 = µ k 0 µ h 0 . Then estimates (3.5.6) tell us that sup t kµ k,h (t)k (1+↵),N + kµ k,h k L p  C ⇣ kµ k 0 µ h 0 k (1+↵) + kf k f h k L 1 (W 1,1 ) + kdiv(µ h (b k b h ))k L 1 (W 1,1 )
⌘ ,

The first two terms in the right-hand side easily go to 0 when h, k ! +1, since µ k 0 and f k are Cauchy sequences. As regards the last term, calling p 0 the conjugate exponent of p, we have

kdiv(µ h (b k b h ))k L 1 (W 1,1 )  C Z T 0 Z ⌦ µ h (b k b h ) dxdt  Ckb k b h k L p 0 , (3.5.14)
since µ k is bounded in L p by (3.5.13) (here C depends also on µ 0 and f ). So, also the last term goes to 0 since b k is a Cauchy sequence in L q 8q 1. Hence, {µ k } k is a Cauchy sequence, and so there exists

µ 2 C([0, T ]; C (1+↵),N ) \ L p (Q T ) such that µ k ! µ strongly in C([0, T ]; C (1+↵),N ) , strongly in L p (Q T ) .
Furthermore, µ satisfies (3.5.6).

To conclude, we have to prove that µ is actually a solution of (3.5.3) in the sense of Definition 3.5.1.

We take and k as the solutions of (3.5.4) related to b and b k . The weak formulation for µ k implies that

hµ k (t), ⇠i + Z t 0 Z ⌦ µ k (s, x) (s, x) dxds = hµ k 0 , k (0, •)i + Z t 0 hf k (s), k (s, •)i ds ,
We can immediately pass to the limit in the left-hand side, using the convergence of µ k previously obtained.

For the right-hand side, we first need to prove the convergence of k towards . This is immediate: actually, the function ˜ k := k satisfies 8 > > > < > > > :

˜ k t div(aD ˜ k ) + b k D ˜ k = (b k b)D , ˜ k (t) = 0 , aD • ⌫ |@⌦ = 0 .
Then, the Corollary of Theorem IV.9.1 of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] implies, for a certain q > d + 2 and depending on ↵,

k ˜ k k 1+↵ 2 ,1+↵  Ck(b k b)D k L q ! 0 , since D is bounded in L 1 using Lemma 3.3.1. Hence, k ! in C 1+↵ 2 ,1+↵
. This allows us to pass to the limit in the right-hand side too and prove that (3.5.5) holds true, and so that µ is a weak solution of (3. For the uniqueness part, we consider µ 1 and µ 2 two weak solutions of the system. Then, by linearity, the function µ := µ 1 µ 2 is a weak solution of 8 > > > < > > > :

µ t div(a(x)Dµ) div(µb) = 0 , µ(0) = 0 , (a(x)Dµ + µb) • ⌫ |@⌦ = 0 .
Hence, the weak estimation (3.5.5) implies, 8 2 L 1 and 8⇠ 2 C 1+↵,N ,

hµ(t), ⇠i + Z t 0 Z ⌦ µ(s, x) (s, x) dxds = 0 , which implies kµk L 1 = sup t2[0,T ] kµ(t)k (1+↵),N = 0
and concludes the uniquess part.

Finally, the stability part is an easy consequence of the estimates obtained previously. Let 

f n ! f , µ n 0 ! µ 0
k (1+↵),N + kμ n k L p  C kµ n 0 µ 0 k (1+↵) + kf n f k L 1 (W 1,1 ) + kdiv(µ(b n b))k L 1 (W 1,1 ) ,
The first two terms in the right-hand side go to 0. For the last term, the same computations of (3.5.14) imply

kdiv(µ(b n b))k L 1 (W 1,1 )  Ckb n bk L p 0 ! 0 . Then µ n ! µ in C([0, T ]; C (1+↵),N ) \ L p (Q T ), which concludes the Proposition.
The last proposition allows us to get another regularity result of µ, when the data b is more regular. This result will be essential in order to improve the regularity of U m with respect to y.

Corollary 3.5.4. Let µ 0 2 C (1+↵) , f 2 L 1 (W 1,1 ), b 2 C ↵ 2 ,↵ . Then the unique solution µ of (3.5.3) satisfies sup t2[0,T ] kµ(t)k (2+↵),N  C ⇣ kµ 0 k (2+↵) + kf k L 1 (W 1,1 ) ⌘ . (3.5.15)
Proof. We take as the solution of (3.5.4), with ⇠ 2 C 2+↵,N (⌦) and = 0. Then we know from the classical results of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF], [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF] (it is important here that b 2

C ↵ 2 ,↵ ), that k k 1+ ↵ 2 ,2+↵  C k⇠k 2+↵ .
The weak formulation of µ (3.5.5) tells us that hµ(t), ⇠i = hµ 0 , (0,

•)i + Z T 0 hf (s), (s, •)i ds  C ⇣ kµ 0 k (2+↵) + kf k L 1 (W 1,1 ) ⌘ k⇠k 2+↵ .
Hence, we can pass to the sup for ⇠ 2 C 2+↵,N with k⇠k 2+↵  1 and obtain (3.5.15).

Remark 3.5.5. We stress the fact that we shall not formulate problem (3.5.3) directly with µ 0 2 C (2+↵) . Actually, the core of the existence theorem is the L p bound in space-time of µ, and this is obtained by duality, considering test functions with data 2 L r . For this function it is not guaranteed that (0, •) 2 C 2+↵ (⌦), and an estimation like (3.5.12) is no longer possible.

We can also obtain some useful estimates for the density function m, as stated in the next result. 

m t div(aDm) div(m(H p (x, Du 1 ) + b)) = div(m 2 (H p (x, Du 2 ) H p (x, Du 1 ))) , m(t 0 ) = m 01 m 02 , h aDm + m b + m 1 H p (x, Du 1 ) m 2 H p (x, Du 2 ) i • ⌫ |@⌦ = 0 , i.e. m is a solution of (3.5.3) with f = div(m 2 (H p (x, Du 2 ) H p (x, Du 1 ))), µ 0 = m 01 m 02 , b = H p (x, Du 1
). Then estimations (3.5.6) imply

km 1 m 2 k L p (Q T )  C ⇣ kµ 0 k (1+↵) + kf k L 1 (W 1,1 )
⌘ .

We estimate the right-hand side term. As regards µ 0 we have

kµ 0 k (1+↵) = sup k k 1+↵ 1 Z ⌦ (x)(m 01 m 02 )(dx)  Cd 1 (m 01 , m 02 ) .
For the f term we argue in the following way:

kf k L 1 (W 1,1 ) = Z T 0 sup k k W 1,1 1 ✓Z ⌦ H p (x, Du 2 ) H p (x, Du 1 )D m 2 (t, dx) ◆ dt  C ku 1 u 2 k 1+↵ 2 ,1+↵  Cd 1 (m 01 , m 02 ) ,
which allows us to conclude.

In order to prove the representation formula (3.5.2), we need to obtain some estimates for a more general linearized system of the form

8 > > > > > > > < > > > > > > > : z t tr(a(x)D 2 z) + H p (x, Du)Dz = F m (x, m(t))(⇢(t)) + h(t, x) , ⇢ t div(a(x)D⇢) div(⇢(H p (x, Du) + b)) div(mH pp (x, Du)Dz + c) = 0 , z(T, x) = G m (x, m(T ))(⇢(T )) + z T (x) , ⇢(t 0 ) = ⇢ 0 , a(x)Dz • ⌫ |@⌦ = 0 , ⇣ a(x)D⇢ + ⇢(H p (x, Du) + b) + mH pp (x, Du)Dz + c ⌘ • ⌫ |@⌦ = 0 , (3.5.18)
where we require

z T 2 C 2+↵ , ⇢ 0 2 C (1+↵) , h 2 C 0,↵ ([t 0 , T ] ⇥ ⌦), c 2 L 1 ([t 0 , T ] ⇥ ⌦) .
Moreover, z T satisfies

aDz T • ⌫ |@⌦ = 0 . ( 3 

.5.19)

A suitable definition of solution for this system is the following:

Definition 3.5.7. We say that a couple (z, ⇢) 2 C 1,2+↵ ⇥ C([0, T ]; C (1+↵),N (⌦)) \ L 1 (Q T ) is a solution of the equation (3.5.18) if
• z is a classical solution of the linear equation;

• ⇢ is a distributional solution of the Fokker-Planck equation in the sense of Definition 3.5.1.

We start with the following existence result.

Proposition 3.5.8. Let hypotheses 3.2.4 hold for 0 < ↵ < 1. Then there exists a unique solution (3.5.18). This solution satisfies, for a certain p > 1,

(z, ⇢) 2 C 1,2+↵ ⇥ C([0, T ]; C (1+↵),N (⌦)) \ L 1 (Q T ) of system
kzk 1,2+↵ + sup t k⇢(t)k (1+↵),N + k⇢k L p  CM , (3.5.20)
where C depends on H and where M is given by

M := kz T k 2+↵ + k⇢ 0 k (1+↵) + khk 0,↵ + kck L 1 . (3.5.21)
Proof. As always, we can assume t 0 = 0 without loss of generality.

The main idea is to apply Schaefer's Theorem.

Step 1: Definition of the map satisfying Schaefer's Theorem. We set

X := C([0, T ]; C (1+↵),N ), endowed with the norm k k X := sup t2[0,T ] k (t)k (1+↵),N .
For ⇢ 2 X, we consider the classical solution z of the following equation 8 > > > > < > > > > :

z t tr(a(x)D 2 z) + H p (x, Du)Dz = F m (x, m(t))(⇢(t)) + h(t, x) , z(T ) = G m (x, m(T ))(⇢(T )) + z T , a(x)Dz • ⌫ |@⌦ = 0 . (3.5.22)
We note that, from Hypotheses 3.2.4, we have

ha(x)D x G(x, m), ⌫(x)i |@⌦ = 0 8m 2 P(⌦) =) ⌧ a(x)D x G m (x, m(T ))(µ(T )), ⌫(x) |@⌦ = 0 .
Hence, compatibility conditions are satisfied for equation (3.5.22) and, from Theorem 5.1.21 of [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF], z satisfies

kzk 1,2+↵  C kz T k 2+↵ + sup t2[0,T ] k⇢(t)k (2+↵),N + khk 0,↵ !  C M + sup t2[0,T ] k⇢(t)k (1+↵),N ! , (3.5.23)
where we also use hypothesis (vi) of 3.2.4, for the boundary condition of F m . Then we define (⇢) := ⇢, where ⇢ is the solution in the sense of Definition 3.5.1 to:

8 > > > < > > > : ⇢t div(a(x)D ⇢) div(⇢(H p (x, Du) + b)) div(mH pp (x, Du)Dz + c) = 0 ⇢(0) = ⇢ 0 ⇣ a(x)D ⇢ + ⇢(H p (x, Du) + b) + mH pp (x, Du)Dz + c ⌘ • ⌫ |@⌦ = 0 . (3.5.24)
Thanks to Proposition 3.5.3, we have ⇢ 2 X. We want to prove that the map is continuous and compact.

For the compactness, let {⇢ n } n ⇢ X be a subsequence with k⇢ n k X  C for a certain C > 0. We consider for each n the solutions z n and ⇢n of (3.5.22) and (3.5.24) associated to ⇢n . Using (3.5.23), we have kz n k 1,2+↵  C 1 , where C 1 depends on C. Then, thanks to Ascoli-Arzelà's Theorem, and using also (3.2.1), 9z s.t. z n ! z up to subsequences at least in

C([0, T ]; C 1 (⌦)).
Using the pointwise convergence of Dz n and the L p boundedness of m stated in (3.5.16), we immediately obtain

mH pp (x, Du)Dz n + c ! mH pp (x, Du)Dz + c in L 1 (Q T ) , which immediately implies div(mH pp (x, Du)Dz n + c) ! div(mH pp (x, Du)Dz + c) in L 1 (W 1,1 ) .
Hence, stability results proved in Proposition 3.5.3 proves that ⇢n ! ⇢ in X, where ⇢ is the solution related to Dz. This proves the compactness result.

The continuity of can be proved used the same computations of the compactness.

Finally, in order to apply Schaefer's theorem, we have to prove that

9M > 0 s.t. ⇢ = (⇢) and 2 [0, 1] =) k⇢k X  M .
We will prove in the next step that, if ⇢ = (⇢), then the couple (z, ⇢) satisfies (3.5.20). This allows us to apply Schaefer's theorem and also gives us the desired estimate (3.5.20), since each solution (z, ⇢) of the system satisfies ⇢ = (⇢) with = 1.

Step 2: Estimate of ⇢ and z.

Let (⇢, ) 2 X ⇥ [0, 1] such that ⇢ = (⇢). Then the > > > > > > > < > > > > > > > : z t tr(a(x)D 2 z) + H p (x, Du)Dz = F m (x, m(t))(⇢(t)) + h(t, x) ⇢ t div(a(x)D⇢) div(⇢(H p (x, Du) + b)) div(mH pp (x, Du)Dz + c) = 0 z(T, x) = G m (x, m(T ))(⇢(T )) + z T (x) ⇢(0) = ⇢ 0 a(x)Dz • ⌫ |@⌦ = 0 ⇣ a(x)D⇢ + ⇢(H p (x, Du) + b) + (mH pp (x, Du)Dz + c) ⌘ • ⌫ |@⌦ = 0 .
We want to use z as test function for the equation of ⇢. This is allowed since z satisfies (3.5.4) with

= F m (x, m(t))(⇢(t)) + h(t, x) 2 L 1 (⌦) , ⇠ = G m (x, m(T ))(⇢(T )) + z T (x) 2 C 1+↵,N
We obtain from the weak formulation of ⇢:

Z ⌦ (⇢(T, x)z(T, x) ⇢ 0 (x)z(0, x)) dx = Z T 0 Z ⌦ hc, Dzidxdt+ Z T 0 Z ⌦ ⇢(t, x) ✓ F m (x, m(t))(⇢(t)) + h ◆ dxdt Z T 0 Z ⌦ mhH pp (x, Du)Dz, Dzi dxdt .
Using the terminal condition of z and the monotonicity of F and G, we get a first estimate:

Z T 0 Z ⌦ mhH pp (x, Du)Dz, Dzi dxdt  sup t2[0,T ] k⇢(t)k (2+↵),N kz T k 2+↵ + k⇢k L p khk 1 + kzk 1,2+↵ ⇣ k⇢ 0 k (2+↵),N + kck L 1 ⌘  M sup t2[0,T ] k⇢(t)k (1+↵),N + k⇢k L 1 + kzk 1,2+↵ ! . (3.5.25)
We already know an initial estimate on z in (3.5.23). Now we need to estimate ⇢.

Using (3.5.6) we obtain sup t2[0,T ] k⇢k (1+↵),N + k⇢k L p  C ⇣ k mH pp (x, Du)Dzk L 1 + kck L 1 + k⇢ 0 k (1+↵) ⌘ (3.5.26)
As regards the first term in the right hand side, we can use Hölder's inequality and

(3.5.25) to obtain

kmH pp (x, Du)Dzk L 1 = sup k k 1 1 2L 1 (Q T ;R d ) Z T 0 Z ⌦ mhH pp (x, Du)Dz, i dxdt  ✓Z T 0 Z ⌦ mhH pp (x, Du)Dz, Dzi dxdt ◆ 1 2 ✓Z T 0 Z ⌦ mhH pp (x, Du) , i dxdt ◆ 1 2  M 1 2 sup t2[0,T ] k⇢(t)k 1 2 (1+↵),N + k⇢k 1 2 L 1 + kzk 1 2
1,2+↵

!

Putting these estimates into (3.5.26) we obtain sup

t2[0,T ] k⇢k (1+↵),N + k⇢k L p  C M + M 1 2 sup t2[0,T ] k⇢(t)k 1 2 (1+↵),N + k⇢k 1 2 L 1 + kzk 1 2 1,2+↵ !! .
Using a generalized Young's inequality with suitable coe cients, we get .5.27) This gives us an initial estimate for ⇢, depending on the estimate of z.

sup t2[0,T ] k⇢k (1+↵),N + k⇢k L p  C ✓ M + M 1 2 kzk 1 2 1,2+↵ ◆ . ( 3 
Coming back to (3.5.23), (3.5.27) implies

kzk 1,2+↵  C ✓ M + M 1 2 kzk 1 2 1,2+↵
◆ .

Using a generalized Young's inequality with suitable coe cients, this implies

kzk 1,2+↵  Cm .
Plugging this estimate in (3.5.27), we finally obtain

kzk 1,2+↵ + sup t2[0,T ] k⇢k (1+↵),N + k⇢k L p  CM .
This concludes the existence result.

Step 3. Uniqueness. Let (z 1 , ⇢ 1 ) and (z 2 , ⇢ 2 ) be two solutions of (3.5.18). Then the couple (z, ⇢) := (z 1 z 2 , ⇢ 1 ⇢ 2 ) satisfies the following linear system:

8 > > > > > > > < > > > > > > > : z t tr(a(x)D 2 z) + H p (x, Du)Dz = F m (x, m(t))(⇢(t)) = 0 , ⇢ t div(a(x)D⇢) div(⇢(H p (x, Du) + b)) div(mH pp (x, Du)Dz) = 0 , z(T, x) = G m (x, m(T ))(⇢(T )) , ⇢(t 0 ) = 0 , a(x)Dz • ⌫ |@⌦ = 0 , ⇣ a(x)D⇢ + ⇢(H p (x, Du) + b) + mH pp (x, Du)Dz ⌘ • ⌫ |@⌦ = 0 ,
i.e., a system of the form (3.5.18) with h = c = z T = ⇢ 0 = 0. Then estimation (3.5.20) tells us that

kzk 1,2+↵ + sup t2[0,T ] k⇢k (1+↵),N + k⇢k L p  0 .
and so z = 0, ⇢ = 0. This concludes the Proposition.

We are ready to prove that (3.5.1) has a fundamental solution. This solution will be the desired derivative U m .

Proposition 3.5.9. Equation (3.5.1) has a fundamental solution, i.e. there exists a function K : [0, T ] ⇥ ⌦ ⇥ P(⌦) ⇥ ⌦ ! R such that, for any (t 0 , m 0 , µ 0 ) we have

v(t 0 , x) = (1+↵) hµ 0 , K(t 0 , x, m 0 , •)i 1+↵ (3.5.28) Moreover, K(t 0 , •, m 0 , •) 2 C 2+↵ (⌦) ⇥ C 1+↵ (⌦) with sup (t,m)2[0,T ]⇥P(⌦) kK(t, •, m, •)k 2+↵,1+↵  C , (3.5.29) 
and the second derivatives w.r.t. x and the first derivatives w.r.t. y are continuous in all variables.

Proof. From now on, we indicate with v(t, x; µ 0 ) the solution of the first equation of (3.5.1) related to µ 0 . We start considering, for y 2 ⌦, µ 0 = y , the Dirac function at y. We define

K(t 0 , x, m 0 , y) = v(t 0 , x; y )
Thanks to (3.5.20), one immediately knows that K is twice di↵erentiable w.r.t. x and

kK(t 0 , •, m 0 , y)k 2+↵  C k y k (1+↵) = C
Moreover, we can use the linearity of the system (3.5.18) to obtain

K(t 0 , x, m 0 , y + he j ) K(t 0 , x, m 0 , y) h = v(t 0 , x; h,j y ) ,
where h,j y = 1 h ( y+he j y ). Using stability results for (3.5.1), proved previously, we can pass to the limit and find that @K @y j (t 0 , x, m 0 , y) = v(t 0 , x; @ y j y ) ,

where the derivative of the Dirac delta function is in the sense of distribution. Since @ y i y is bounded in C (1+↵) for all i, j, from (3.5.20) we deduce that the second derivatives of K with respect to x are well defined and bounded.

The representation formula (3.5.28) is an immediate consequence of the linear character of the equation and of the density of the set generated by the Dirac functions. This concludes the proof. Now we are ready to prove the di↵erentiability of the function U with respect to the measure m.

In particular, we want to prove that this fundamental solution K is actually the derivative of U with respect to the measure. Theorem 3.5.10. Let (u 1 , m 1 ) and (u 2 , m 2 ) be two solutions of the Mean Field Games system (3.1.2), associated with the starting initial conditions (t 0 , m 1 0 ) and (t 0 , m 2 0 ). Let (v, µ) be the solution of the linearized system (3.5.1) related to (u 2 , m 2 ), with initial condition (t 0 , m 1 0 m 2 0 ). Then we have

ku 1 u 2 vk 1,2+↵ + sup t2[0,T ] km 1 (t) m 2 (t) µ(t)k (1+↵),N  Cd 1 (m 1 0 , m 2 0 ) 2 , (3.5.30)
Consequently, the function U defined in (3.1.3) is di↵erentiable with respect to m.

Proof. We call (z, ⇢) = (u 1 u 2 v, m 1 m 2 µ). Then (z, ⇢) satisfies 8 > > > > > > > < > > > > > > > : z t tr(a(x)D 2 z) + H p (x, Du 2 )Dz = F m (x, m 2 (t))(⇢(t)) + h(t, x) , ⇢ t div(a(x)D⇢) div(⇢(H p (x, Du 2 ) + b)) div(mH pp (x, Du 2 )Dz + c) = 0 , z(T, x) = G m (x, m 2 (T ))(⇢(T )) + z T (x) , ⇢(t 0 ) = 0, , a(x)Dz • ⌫ |@⌦ = 0 , ⇣ a(x)D⇢ + ⇢(H p (x, Du) + b) + mH pp (x, Du)Dz + c ⌘ • ⌫ |@⌦ = 0 , h(t, x) = h 1 (t, x) + h 2 (t, x) , h 1 = Z 1 0 (H p (x, sDu 1 + (1 s)Du 2 ) H p (x, Du 2 )) • D(u 1 u 2 ) ds , h 2 = Z 1 0 Z ⌦ ✓ F m (x, sm 1 (t) + (1 s)m 2 (t), y) F m (x, m 2 (t), y) ◆ (m 1 (t) m 2 (t))(dy)ds, c(t) = c 1 (t) + c 2 (t) , c 1 (t) = (m 1 (t) m 2 (t))H pp (x, Du 2 )(Du 1 Du 2 ) , c 2 (t) = m 1 Z 1 0 (H pp (x, sDu 1 + (1 s)Du 2 ) H pp (x, Du 2 )) (Du 1 Du 2 ) ds , z T = Z 1 0 Z ⌦ ✓ G m (x, sm 1 (T ) + (1 s)m 2 (T ), y) G m (x, m 2 (T ), y) ◆ (m 1 (T ) m 2 (T ))(dy)ds .
So, (3.5.20) implies that

ku 1 u 2 vk 1,2+↵ + sup t2[0,T ] km 1 (t) m 2 (t) µ(t)k (1+↵),N  C ⇣ khk 0,↵ + kck L 1 + kz T k 2+↵ ⌘ .
(3.5.31) Now we bound the right-hand side term in order to obtain (3.5.30). We start with the term h = h 1 + h 2 . We can write

h 1 = Z 1 0 Z 1 0 s hH pp (x, rsDu 1 + (1 rs)Du 2 ) (Du 1 Du 2 ) , (Du 1 Du 2 )i drds .
Using the properties of Hölder norm and (3.4.1), it is immediate to obtain

kh 1 k 0,↵  C kD(u 1 u 2 )k 2 0,↵  Cd 1 (m 1 0 , m 2 0 ) 2 .
As regards the h 2 term, we can immediately bound the quantity

|h 2 (t, x) h 2 (t, y)| by |x y| ↵ d 1 (m 1 (t), m 2 (t)) Z 1 0 kD m F (•, sm 1 (t) + (1 s)m 2 (t), •) D m F (•, m 2 (t), •)k ↵,1 ds .
Using the regularity of F and (3.4.1), we get

kh 2 k 0,↵ = sup t2[0,T ] kh 2 (t, •)k ↵  Cd 1 (m 1 0 , m 2 0 ) 2 .
A similar estimate holds for the function z T . As regards the function c, we have

kc 1 k L 1 = Z T 0 Z ⌦ H pp (x, Du 2 )(Du 1 Du 2 )(m 1 (t, dx) m 2 (t, dx)) dt  C ku 1 u 2 k 1,2+↵ d 1 (m 1 (t), m 2 (t))  Cd 1 (m 1 0 , m 2 0 ) 2 ,
and, using the notation

u 1+s := sDu 1 + (1 s)Du 2 , kc 2 k L 1 = Z 1 0 Z T 0 Z ⌦ (H pp (x, Du 1+s ) H pp (x, Du 2 )) (Du 1 Du 2 )m 1 (t, dx) dtds  C kDu 1 Du 2 k 2 1  Cd 1 (m 1 0 , m 2 0 ) 2 .
Substituting these estimates in (3.5.31), we obtain (3.5.30) and we conclude the proof.

Since

v(t 0 , x) = Z ⌦ K(t 0 , x, m 02 , y)(m 01 (dy) m 02 (dy)) , equation (3.5.30) implies w 
w w w U (t 0 , •, m 01 ) U (t 0 , •, m 02 ) Z ⌦ K(t 0 , •, m 02 , y)(m 01 m 02 )(dy) w w w w 1  Cd 1 (m 01 , m 02 ) 2 .
As a straightforward consequence, we have that U is di↵erentiable with respect to m and U m (t, x, m, y) = K(t, x, m, y) .

Consequently, using (3.5.29) we obtain

sup t w w w w U m (t, •, m, •) w w w w 2+↵,1+↵  C . (3.5.32) 
But, in order to make sense to equation (3.1.1), we need at least that U m is almost everywhere twice di↵erentiable with respect to y.

To do that, we need to improve the estimates (3.5.20) for a couple (v, µ) solution of (3.5.1). Proposition 3.5.11. Let µ 0 2 C (1+↵) . Then the unique solution (v, µ) satisfies

kvk 1,2+↵ + sup t2[0,T ] kµ(t)k (2+↵),N  C kµ 0 k (2+↵) .
(3.5.33)

Proof. We consider the solution (v, µ) obtained in Proposition 3.5.8. Since µ satisfies µ = (µ) with = 1, we can use (3.5.23) with z T = h = 0 and obtain

kvk 1,2+↵  C sup t2[0,T ] kµ(t)k (2+↵),N . (3.5.34) 
We want to estimate the right-hand side. Using (3.5.15) we have sup

t2[0,T ] kµ(t)k (2+↵),N  C ⇣ kµ 0 k (2+↵) + kmH pp (x, Du)Dvk L 1 ⌘ . (3.5.35) 
The last term is estimated, as in Proposition 3.5.8, by

k mH pp (x, Du)Dvk L 1  C ✓Z T 0 Z ⌦ mhH pp (x, Du)Dv, Dvi dxdt ◆ 1 2 . (3.5.36) 
The right-hand side term can be bounded using (3.5.25) with h = z T = c = 0:

Z T 0 Z ⌦ mhH pp (x, Du)Dv, Dvi dxdt  kvk 1,2+↵ kµ 0 k (2+↵) . (3.5.37) Hence, plugging estimates (3.5.36) and (3.5.37) into (3.5.35) we obtain 
sup t2[0,T ] kµ(t)k (2+↵),N  C ✓ kµ 0 k (2+↵) + kvk 1 2 1,2+↵ kµ 0 k 1 2 (2+↵),N ◆ . (3.5.38) 
Coming back to (3.5.34) and using a generalized Young's inequality, we get

kvk 1,2+↵  C kµ 0 k (2+↵) ,
and finally, substituting the last estimate into (3.5.38), we obtain (3.5.33) and we conclude.

As an immediate Corollary, we get the desired estimate for U m .

Corollary 3.5.12. Suppose hypotheses 3.2.4 satisfied. Then the derivative U m is twice di↵erentiable with respect to y, together with its first and second derivatives with respect to x, and the following estimate hold:

w w w w U m (t, •, m, •) w w w w 2+↵,2+↵  C . (3.5.39) 
Proof. We want to prove that, 8 i, j, the incremental ratio

R h i,j (x, y) := @ y i U m (t 0 , x, m 0 , y + he j ) @ y i U m (t 0 , x, m 0 , y) h (3.5.40)
is a Cauchy sequence for h ! 0 together with its first and second derivatives with respect to x. Then we have to estimate, for h, k > 0, the quantity

D l x R h i,j (x, y) D l x R k i,j (x, y) , for |l|  2.
We already know that

@ y i U m (t 0 , x, m 0 , y) = v(t 0 , x; @ y i y ) .
Using the linearity of the system (3.5.1), we obtain that

D l x R h i,j (x, y) D l x R k i,j (x, y) = D l x v ⇣ t 0 , x; j h ( @ y i y ) j k ( @ y i y ) ⌘ ,
where j h ( @ y i y ) = 1 h (@ y i y+he j @ y i y ) . Hence, estimate (3.5.33) and Lagrange's Theorem implies

D l x R h i,j (x, y) D l x R k i,j (x, y)  C w w w j h ( @ y i y ) j k ( @ y i y ) w w w (2+↵) = sup k k 2+↵ 1 ✓ @ y i (y + he j ) @ y i (y) h @ y i (y + ke j ) @ y i (y) k ◆ = sup k k 2+↵ 1 ⇣ @ 2 y i y j (y ,h ) @ 2 y i y j (y ,k ) ⌘  sup k k 2+↵ 1 |y ,h y ,k | ↵  |h| ↵ + |k| ↵ ,
for a certain y ,h in the line segment between y and y + he j and y ,k in the line segment between y and y + ke j .

Since the last term goes to 0 when h, k ! 0, we have proved that the incremental ratio (3.5.40) and its first and second derivative w.r.t x are Cauchy sequences in h, and so converging when h ! 0. This proves that D l x U m is twice di↵erentiable with respect to y, for all 0  |l|  2 .

In order to show the Hölder bound for U m w.r.t. y, we consider y, y 0 2 ⌦ and we consider the function

R h i,j (x, y) R h i,j (x, y 0 ) .
Then we know from the linearity of (3.5.1)

R h i,j (x, y) R h i,j (x, y 0 ) = v(t 0 , x; j h ( @ y i y ) j h ( @ y i y 0 )) ,
and so, using (3.5.33) and

w w wR h i,j (•, y) R h i,j (•, y 0 ) w w w 2+↵  C w w w j h ( @ y i y ) j h ( @ y i y 0 ) w w w (2+↵)
. Now we pass to the limit when h ! 0. It is immediate to prove that j h ( @ y i y ) j h ( @ y i y 0 ) h!0 ! @ y j @ y i y @ y j @ y i y 0 in C (2+↵) .

Since D l x R h i,j (x, y) ! @ 2 y i y j D l x U m (x, y) for all |l|  2, we can use Ascoli-Arzelà to obtain that w w w w @ 2 y i y j U m (t, •, m, y) @ 2 y i y j U m (t, •, m, y 0 ) w w w w 2+↵  C w w @ y j @ y i y @ y j @ y i y 0 w w (2+↵)  C|y y 0 | ↵ ,
which proves (3.5.39) and concludes the proof.

We conclude this part with a last property on the derivative D m U , which will be essential in order to prove the uniqueness of solutions for the Master Equation and the convergence problem.

Corollary 3.5.13. The function U satisfies the following Neumann boundary conditions:

a(x)D x U m (t, x, m, y) • ⌫(x) = 0 , 8x 2 @⌦, y 2 ⌦, t 2 [0, T ], m 2 P(⌦) , a(y)D m U (t, x, m, y) • ⌫(y) = 0 , 8x 2 ⌦, y 2 @⌦, t 2 [0, T ], m 2 P(⌦) .
Proof. Since U m (t 0 , x, m 0 , y) = v(t 0 , x), where (v, µ) is the solution of (3.5.1) with µ 0 = y , the first condition is immediate because of the Neumann condition of (3.5.1).

For the second condition, we consider y 2 @⌦ and we take µ 0 = @ w ( y ) , with w = a(y)⌫(y) .

We want to prove that (v, µ) = (0, µ) is a solution of (3.5.1) with µ 0 = @ w y , where µ is the unique solution in the sense of Definition 3.5.1 of We only have to check that, if µ is a solution of this equation, then v = 0 solves 8 > > > > < > > > > :

8 > > > < > > > : µ t div(a(x)Dµ) div(µ(H p (x, Du) + b)) = 0 , µ(t 0 ) = µ 0 , ⇣ a(x)Dµ + µ(H p (x, Du) + b) ⌘ • ⌫ |@⌦ = 0 .
v t tr(a(x)D 2 v) + H p (x, Du) • Dv = F m (x, m(t))(µ(t)) , v(T, x) = G m (x, m(T ))(µ(T )) , a(x)Dv • ⌫ |@⌦ = 0 , (3.5.41) 
which reduces to prove that

F m (x, m(t))(µ(t)) = G m (x, m(T ))(µ(T )) = 0 .
We will give a direct proof. Choosing a test function (t, y) satisfying (3.5.4), with (t, y) = 0 and ⇠(y) = F m (x, m(t), y), we have from boundary conditions of F m that is a C 1+↵ 2 ,1+↵ function satisfying Neumann boundary conditions.

It follows from the weak formulation of µ that

F m (x, m(t))(µ(t)) = hµ(t), F m (x, m(t), •)i = hµ 0 , (0, •)i = 0 , since aD • ⌫ |@⌦ = 0 and hµ 0 , (0, •)i = h @ w y , (0, •)i = a(y)D (0, y) • ⌫(y) = 0 .
Same computations hold for G m , proving that v = 0 satisfies (3.5.41). Then we can easily conclude:

a(y)D m U (t 0 , x, m 0 , y) • ⌫(y) = D y U m (t 0 , x, m 0 , y) • w = ⌧ U m (t 0 , x, m 0 , •), µ 0 = v(t 0 , x) = 0 .

Solvability of the first-order Master Equation

The C 1 character of U with respect to m is crucial in order to prove the main theorem of this chapter. 

Sec. 3.6 -Solvability of the first-order Master Equation

Proof. We start from the existence part.

Existence. We start assuming that m 0 is a smooth and positive function satisfying (3.3.9), and we consider (u, m) the solution of MF G system starting from m 0 at time t 0 . Then @ t U (t 0 , x, m 0 ) can be computed as the sum of the two limits:

lim h!0 U (t 0 + h, x, m 0 ) U (t 0 + h, x, m(t 0 + h)) h
and lim

h!0 U (t 0 + h, x, m(t 0 + h)) U (t 0 , x, m 0 ) h .
The second limit, using the very definition of U , is equal to

lim h!0 u(t 0 + h, x) u(t 0 , x) h = u t (t 0 , x) = tr(a(x)D 2 u(t 0 , x)) + H(x, Du(t 0 , x)) F (x, m(t 0 )) = tr(a(x)D 2 x U (t 0 , x, m 0 )) + H(x, D x U (t 0 , x, m 0 )) F (x, m 0 ) .
As regards the first limit, defining m s := (1 s)m(t 0 )+sm(t 0 +h) and using the C 1 regularity of U with respect to m, we can write it as

lim h!0 Z 1 0 Z ⌦ U m (t 0 + h, x, m s , y) (m(t 0 + h, y) m(t 0 , y)) h dyds = Z 1 0 Z ⌦ U m (t 0 , x, m 0 , y)m t (t 0 , y) dyds = Z ⌦ U m (t 0 , x, m 0 , y)m t (t 0 , y) dy = Z ⌦ U m (t 0 , x, m 0 , y) div ⇣ a(y)Dm(t 0 , y) + m(t 0 , y)( b + H p (y, Du(t 0 , y))) ⌘ dy .
Taking into account the representation formula (3.5.2) for U m , we integrate by parts and use the boundary condition of U m and m to obtain

Z ⌦ [H p (y, D x U (t 0 , y, m 0 ))D m U (t 0 , x, m 0 , y) tr (a(y)D y D m U (t 0 , x, m 0 , y))] dm 0 (y)
So with the computation of the two limits we obtain

@ t U (t, x, m) = tr a(x)D 2 x U (t, x, m) + H (x, D x U (t, x, m)) Z ⌦ tr (a(y)D y D m U (t, x, m, y)) dm(y)+ Z ⌦ D m U (t, x, m, y) • H p (y, D x U (t, y, m))dm(y) F (x, m) .
So the equation is satisfied for all m 0 2 C 1 satisfying (3.3.9), and so, with a density argument, for all m 0 2 P(⌦).

The boundary conditions are easily verified thanks to Corollary 3.5.13. This concludes the existence part.

Uniqueness. Let V be another solution of the Master Equation (3.1.1) with Neumann boundary conditions. We consider, for fixed t 0 and m 0 , with m 0 smooth satisfying (3.3.9), the solution m of the Fokker-Planck equation:

8 > > > < > > > : mt div(a(x)D m) div ⇣ m ⇣ H p (x, D x V (t, x, m)) + b⌘⌘ = 0 , m(t 0 ) = m 0 , h a(x)D m + ( b + D x V (t, x, m)) i • ⌫(x) |@⌦ = 0 .
This solution is well defined since D x V is Lipschitz continuous with respect to the measure variable.

Then we define ũ(t, x) = V (t, x, m(t)). Using the equations of V and m, we obtain

ũt (t, x) = V t (t, x, m(t)) + Z ⌦ V m (t, x, m(t), y) mt (t, y) dy 
= V t (t, x, m(t)) + Z ⌦ V m (t, x, m(t), y) div(a(y)D m(t, y)) dy 
+ Z ⌦ V m (t, x, m(t), y) div ⇣ m ⇣ H p (x, D x V (t, x, m)) + b⌘⌘ dy .
We compute the two integrals by parts. As regards the first, we have

Z ⌦ V m (t, x, m(t), y) div(a(y)D m(t, y)) dy = Z ⌦ a(y)D m(t, y) D m V (t, x, m(t), y) dy + Z @⌦ V m (t, x, m(t), y) a(y)D m(t, y) • ⌫(t, y) dy = Z ⌦ div(a(y)D y D m V (t, x, m(t), y)) m(t, y) dy Z ⌦ a(y)D m V (t, x, m(t), y) • ⌫(y) m(t, y)dy + Z @⌦ V m (t, x, m(t), y) a(y)D m(t, y) • ⌫(t, y) dy , while for the second Z ⌦ V m (t, x, m(t), y) div ⇣ m ⇣ H p (x, D x V (t, x, m)) + b⌘⌘ dy = Z ⌦ ⇣ H p (x, D x V (t, x, m)) + b⌘ D m V (t, x, m, y) m(t, y)dy + Z @⌦ V m (t, x, m(t), y) ⇣ H p (x, D x V (t, x, m)) + b⌘ • ⌫(y) m(t, y)dy .
Putting together these estimates and taking into account the boundary conditions on V and m:

h a(x)D m + ( b + D x V (t, x, m)) i • ⌫(x) |x2@⌦ = 0 , a(y)D m V (t, x, m, y) • ⌫(y) |y2@⌦ = 0 ,
and the relation between the divergence and the trace term

div(a(x)D (x)) = tr(a(x)D 2 (x)) + b(x)D (x) , 8 2 W 2,1 (⌦) , we find ũt (t, x) = V t (t, x, m(t)) + Z ⌦ tr(a(y)D y D m V (t, x, m, y)) d m(y) Z ⌦ H p (y, D x V (t, y, m))D m V (t, x, m, y) d m(y) = tr(a(x)D 2 x V (t, x, m(t))) + H(x, D x V (t, x, m(t))) F (x, m(t)) = tr(a(x)D 2 ũ(t, x)) + H(x, Dũ(t, x)) F (x, m(t)) .
This means that (ũ, m) is a solution of the MFG system (3.1.2). Since the solution of the Mean Field Games system is unique, we get (ũ, m) = (u, m) and so V (t 0 , x, m 0 ) = U (t 0 , x, m 0 ) whenever m 0 is smooth. Then, using a density argument, the uniqueness is proved.

The convergence problem

In this section we analyze the convergence of the Nash system of N players towards a solution of the Master Equation.

We consider, for an integer N 2, a classical solution v N i of the Nash System:

8 > > > > > < > > > > > : @ t v N i X j tr(a(x j )D 2 x j x j v N i ) + H(x i , D x i v N i ) + X j6 =i H p (x j , D x j v N j )•D x j v N i = F (t, x i , m N,i x ) , v N i (T, x) = G(x i , m N,i x ) , a(x j )D x j v N i • ⌫(x j ) |x j 2@⌦ = 0 , j = 1, • • • , N . (3.7.1) 
where 1  i  N and m N,i x is defined in (3.1.5).

If hypotheses 3.2.4 are satisfied, then there exists a unique solution of the Master Equation (3.1.1).

In order to prove the convergence of v N i towards U , the main idea is to work with suitable finite dimensional projections of U , proving that these projections are nearly solutions to the Nash-system. So, for N 2 and 1  i  N , we define the following functions u N i :

u N i (t, x) = U (t, x i , m N,i x ) . (3.7.2) 
Thanks to the regularity of U , we already know that

u N i 2 C 1+ ↵ 2 ,2+↵
with respect to the couple (t, x i ) .

In order to prove a regularity result for u N i with respect to the other variables (x j ) j6 =i , we need to prove two technical results about the solution U of the Master Equation (3.1.1).

The first theorem is the following: Theorem 3.7.1. Suppose hypotheses 3.2.4 are satisfied. Then the derivative of the Master Equation U m is Lipschitz continuous with respect to the measure:

sup t2[0,T ] sup m 1 6 =m 2 (d 1 (m 1 , m 2 )) 1 w w w w U m (t, •, m 1 , •) U m (t, •, m 2 , •) w w w w 2+↵,1+↵  C . (3.7.4) 
Proof. We consider, for i = 1, 2, the solution (v i , µ i ) of the linearized system (3.5.1) related to (u i , m i ).

To avoid too heavy notations, we take t 0 = 0 and we define

H 0 i (t, x) := H p (x, Du i (t, x)) , H 00 i (t, x) = H pp (x, Du i (t, x)) , F 0 (x, m, µ) = Z ⌦ F m (x, m, y)µ(dy) , G 0 (x, m, µ) = Z ⌦ G m (x, m, y)µ(dy) .
Then the couple (z, ⇢) := (v 1 v 2 , µ 1 µ 2 ) satisfies the following linear system:

8 > > > > > > < > > > > > > : z t tr(a(x)D 2 z) + H 0 1 • Dz = F 0 (x, m 1 (t), ⇢(t)) + h , ⇢ t div(a(x)D⇢) div(⇢(H 0 1 + b)) div(m 1 H 00 1 Dz + c) = 0 , z(T, x) = G 0 (x, m 1 (T ), ⇢(T )) + z T , ⇢(t 0 ) = 0 , a(x)Dz • ⌫ |@⌦ = 0 , ⇣ a(x)D⇢ + ⇢(H 0 1 + b) + mH 00 1 Dz + c ⌘ • ⌫ |@⌦ = 0 , where h(t, x) = h 1 (t, x) + h 2 (t, x) , h 1 (t, x) = F 0 (x, m 1 (t), µ 2 (t)) F 0 (x, m 2 (t), µ 2 (t)) , h 2 (t, x) = (H 0 1 (t, x) H 0 2 (t, x)) • Dv 2 (t, x) , c(t, x) = µ 2 (t)(H 0 1 H 0 2 )(t, x) + [(m 1 H 00 1 m 2 H 00 2 )Dv 2 ](t, x) , z T (x) = G 0 (x, m 1 (T ), µ 2 (T )) G 0 (x, m 2 (T ), µ 2 (T )) .
Applying (3.5.20) we obtain this estimate on z:

kzk 1,2+↵  C ⇣ kz T k 2+↵ + khk 0,↵ + kck L 1
⌘ .

Now we estimate the terms in the right-hand side.

The term with z T , thanks to (3.5.20), is immediately estimated:

kz T k 2+↵  w w w w G m (•, m 1 (T ), •) G m (•, m 2 (T ), •) w w w w 2+↵,1+↵ kµ 2 (T )k (1+↵),N  Cd 1 (m 01 , m 02 ) kµ 0 k (1+↵) .
As regards the space estimate for h, we have

kh(t, •)k ↵  w w F 0 (•, m 1 (t), µ 2 (t)) F 0 (•, m 2 (t), µ 2 (t)) w w ↵ + w w (H 0 1 H 0 2 )(t, •)Dv 2 (t, •) w w ↵ . The first term is bounded as z T : w w F 0 (•, m 1 (t), µ 2 (t)) F 0 (•, m 2 (t), µ 2 (t)) w w ↵  Cd 1 (m 01 , m 02 ) kµ 0 k (1+↵)
. The second term, using (3.4.1) and (3.5.20) can be estimated in this way:

w w (H 0 1 H 0 2 )(t, •)Dv 2 (t, •) w w ↵  C k(u 1 u 2 )(t)k 1+↵ kv 2 (t)k 1+↵  Cd 1 (m 01 , m 02 ) kµ 0 k (1+↵) . In summary, khk 0,↵ = sup t2[0,T ] kb(t, •)k ↵  Cd 1 (m 01 , m 02 ) kµ 0 k (1+↵) .
Finally, we estimate kck L 1 . We have

kck L 1 = Z T 0 Z ⌦ (H 0 1 H 0 2 )(t, x) µ 2 (t, dx) dt + Z T 0 Z ⌦ H 00 1 (t, x)Dv 2 (t, x) (m 1 (t) m 2 (t))(dx) dt + Z T 0 Z ⌦ (H 00 1 H 00 2 )(t, x) Dv 2 (t, x) m 2 (t, dx) dt  C ku 1 u 2 k 1+↵ 2 ,1+↵ kµ 2 k L 1 + C ku 1 k 1+↵ 2 ,1+↵ kv 2 k 1+↵ 2 ,1+↵ km 1 m 2 k L 1 + C ku 1 u 2 k 1+↵ 2 ,1+↵ kv 2 k 1+↵ 2 ,1+↵ 119 
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The first term in the right-hand side, thanks to (3.4.1) and (3.5.20), is bounded by

C ku 1 u 2 k 1+↵ 2 ,1+↵ kµ 2 k L 1  C d 1 (m 01 , m 02 ) kµ 0 k (1+↵) ,
while the second term is estimated from above, using (3.5.17) and (3.5.20), by

C ku 1 k 1+↵ 2 ,1+↵ kv 2 k 1+↵ 2 ,1+↵ km 1 (t) m 2 (t)k L 1 (⌦)  C d 1 (m 01 , m 02 ) kµ 0 k (1+↵) .
Finally, for the third term we use again (3.4.1) and (3.5.20) in order to obtain this bound:

C ku 1 u 2 k 1+↵ 2 ,1+↵ kv 2 k 1+↵ 2 ,1+↵  C d 1 (m 01 , m 02 ) kµ 0 k (1+↵) . Then kck L 1  Cd 1 (m 01 , m 02 ) kµ 0 k (1+↵)
. Putting together all these estimates, we finally obtain:

kzk 1,2+↵  Cd 1 (m 01 , m 02 ) kµ 0 k (1+↵) . Since z(t 0 , x) = Z ⌦ ✓ U m (t 0 , x, m 1 , y) U m (t 0 , x, m 2 , y) ◆ µ 0 (dy) ,
we have proved (3.7.4).

This theorem is a fundamental step in order to prove this technical lemma. Proof. For simplicity, we divide the proof in two steps.

Step 1. We start proving the following inequality for all m 0 , m 1 2 P(⌦): 

w w w w U (t, •, m 1 ) U (t, •, m 0 ) Z ⌦ U m (t, •, m 0 , y)d(m 1 m 0 )(y) w w w w 1+↵  Cd 1 (m 1 , m 0 ) 2 . (3.7.6) Since U (t, x, m 1 ) U (t, x, m 0 ) = Z 1 0 Z ⌦ U m (t,
Z ⌦ U m (t, •, m, y)d((id + )]m m)(y) w w w w 1+↵  Cd 1 ((id + )]m, m) 2  C k k 2 L 2 (m) . So, it is su cient to prove that w w w w Z ⌦ U m (t, •, m, y)d((id + )]m m)(y) Z ⌦ D m U (t, •, m, y)• (y) dm(y) w w w w 1+↵  C k k 2 L 2 (m) .
Since 

k k 2 L 2 (m)  C k k 2 L 2 (m) ,
where we used (3.5.39) in the last passage. This concludes the proof. Now we are ready to prove a regularity result for the u N i functions defined in (3.7.2). Proposition 3.7.3. For all j 6 = i, the following formulas for the derivatives of u N i hold true:

D x j u N i (t, x) = 1 N 1 D m U (t, x i , m N,i x , x j ) , (3.7.8) 
D 2 x i ,x j u N i (t, x) = 1 N 1 D x D m U (t, x i , m N,i
x , x j ) , (3.7.9)

D 2 x j ,x j u N i (t, x) 1 N 1 D y D m U (t, x i , m N,i x , x j )  C N 2 , (3.7.10)
where the last inequality holds a.e. x 2 ⌦ N .

Proof. Thanks to the regularity of D m U , the second equality is an obvious consequence of the first one. So, we restrict ourselves to the proof of the first formula.

We consider x = (x 1 , . . . , x N ) with x j 6 = x k when j 6 = k and " := min

j6 =k |x j x k |.
We fix a vector v = (v 1 , . . . , v N ) with v i = 0 and we consider a smooth and bounded vector field such that, for all x 2 B " 3 (x j ), (x) = v j .

We note that

u N i (t, x + v) = U (t, x i , (id + )]m N,i x ) , u N i (t, x) = U (t, x i , m N,i x ) .
Then, (3.7.5) implies that

u N i (t, x + v) = u N i (t, x) + Z ⌦ D m U (t, x i , m N,i x , y) • (y) dm N,i x (y) + o ⇣ kvk L 2 (m N,i x )
⌘ So, computing the integral and the norm in the right-hand side, we find

u N i (t, x + v) = u N i (t, x) + 1 N 1 X j6 =i D m U (t, x i , m N,i x , x j ) • v j + o(|v|) .
This Taylor expansion proves the first formula for all points x with x j 6 = x k when j 6 = k. Since this subset is dense in ⌦ N , the theorem is concluded thanks to the continuity of D m U .

As regards the last inequality, we start showing that D x j u N i is a Lipschitz function in the space variable. Actually

|D x j u N i (t, x) D x j u N i (t, y)|  C N |D m U (t, x i , m N,i x , x j ) D m U (t, x i , m N,i x , y j )| + C N |D m U (t, x i , m N,i x , y j ) D m U (t, x i , m N,i y , y j )| .
The first term in the right-hand side is immediately controlled by

C N |x y| .
As regards the second term, we have

C N |D m U (t, x i , m N,i x , y j ) D m U (t, x i , m N,i y , y j )|  C N d 1 (m N,i x , m N,i y )  C N |x y| .
This means that D 2 x j ,x j u N i exists almost everywhere, and w w wD 2

x j ,x j u N i w w w 1  C N .
To prove (3.7.10), we estimate the quantity

D x j u N,i (t, x + he k j ) D x j u N,i (t, x) h 1 N 1 @ y k D m U (t, x i , m N,i x , x j ) ,
where e jk = (e 1 jk , . . . , e N jk ), with e l jk = 0 if l 6 = j and e j jk = e k 2 R d . Using (3.7.8), we can bound the quantity above by

C N D m U (t, x i , m N,i x+he k j , x j + he k ) D m U (t, x i , m N,i x , x j + he k ) h + C N D m U (t, x i , m N,i x , x j + he k ) D m U (t, x i , m N,i x , x j ) h @ y k D m U (t, x i , m N,i x , x j ) .
The first term is estimated from above, using (3.7.4), by

C Nh d 1 (m N,i x+he k j , m N,i x )  C N 2 ,
while the second term, using Lagrange's Theorem and (3.5.39), is equal to

C N |@ y k D m U (t, x i , m N,i x , x h ) @ y k D m U (t, x i , m N,i x , x j )|  C N h ↵ ,
for a certain x h in the line segment between x j and x j + he k . Then, for h su ciently small, we obtain

D x j u N,i (t, x + he k j ) D x j u N,i (t, x) h 1 N 1 @ y k D m U (t, x i , m N,i x , x j )  C N 2 ,
and, passing to the limit as h ! 0 for all 1  k  d,

D 2 x j ,x j u N i (t, x) 1 N 1 D y D m U (t, x i , m N,i x , x j )  C N 2 ,
which is exactly (3.7.10).

Now we are ready to prove a first result, showing that (u N i ) 1iN is "almost" a solution to the Nash system (3. 

N i 2 C 1 ([0, T ] ⇥ ⌦ N ) , u N i (t, •) 2 W 2,1 (⌦ N
) and u N i solves almost everywhere the following equation:

8 > > > > > > > < > > > > > > > : @ t u N i X j tr(a(x j )D 2 x j x j u N i ) + H(x i , D x i u N i ) + X j6 =i H p (x j , D x j u N j )•D x j u N i = F (t, x i , m N,i x ) + r N i (t, x) , u N i (T, x) = G(x i , m N,i x ) , a(x j )D x j u N i • ⌫(x j ) |x j 2@⌦ = 0 , j = 1, • • • , N , (3.7.11) 
where

r N i 2 L 1 with w w r N i w w 1  C N .
Proof. The regularity of u N i follows from (3.7.3) and Proposition 3.7.3. The boundary condition of u N i is an immediate consequence of the representation formula for the derivatives of u N i and the boundary conditions of (3.1.1). Actually for j = i we have

a(x i )D x i u N i • ⌫(x i ) |x i 2@⌦ = a(x i )D x U (t, x i , m N,i x ) • ⌫(x i ) |x i 2@⌦ = 0
for the first boundary condition of (3.1.1). On the other hand, for j 6 = i we have

a(x j )D x j u N i • ⌫(x j ) |x j 2@⌦ = 1 N 1 a(x j )D m U (t, x i , m N,i x , x j ) • ⌫(x j ) |x j 2@⌦ = 0
for the second boundary condition of (3.1.1). Since U is a solution of the Master Equation, we find, evaluating (3.1.1) at (t, x i , m N,i x ),

@ t U tr a(x i )D 2 x U + H(x i , D x U (t, x, m)) Z ⌦ tr a(y)D y D m U (t, x i , m N,i x , y) dm N,i x (y) + Z ⌦ D m U (t, x i , m N,i x , y) • H p (y, D x U (t, y, m N,i x ))dm N,i x (y) = F (t, x i , m N,i x ) .
So, as @ t U (t, x i , m N,i x ) = @ t u N i (t, x) and D x U (t, x i , m N,i x ) = D x i u N i (t, x), we obtain initially this equation for u N i :

@ t u N i tr(a(x i )D 2 x i x i u N i ) + H(x i , D x i u N i ) Z ⌦ tr a(y)D y D m U (t, x i , m N,i x , y) dm N,i x (y) + 1 N 1 X j6 =i H p (x j , D x U (t, x j , m N,i x ))•D m U (t, x i , m N,i x , x j ) = F (t, x i , m N,i x ) .
Thanks to the derivative formulas of u i N , we know that 1

N 1 D m U (t, x i , m N,i x , x j ) = D x j u N i (t, x) =) w w D x j u N i w w 1  C N .
Moreover, using the Lipschitz continuity of D x U with respect to m, stated in (3.7.4), we have

|H p (x j , D x U (t, x j , m N,i x )) H p (x j , D x U (t, x j , m N,j x ))|  Cd 1 (m N,i x , m N,j x )  C N .
Hence, we get

1 N 1 X j6 =i H p (x j , D x U (t, x j , m N,i x ))•D m U (t, x i , m N,i x , x j ) = X j6 =i H p (x j , D x j u N j )• D x j u N i + O ✓ 1 N ◆ .
We conclude analyzing the last integral term. We have

Z ⌦ tr a(y)D y D m U (t, x i , m N,i x , y) dm N,i x (y) = 1 N 1 X j6 =i tr(a(x j )D y D m U (t, x i , m N,i x , x j )) = X j6 =i D 2 x j ,x j u N i (t, x) + O ✓ 1 N ◆ .
Collecting all these estimations, we obtain (3.7.11), which concludes the theorem. Now we turn to the main convergence result. To do that, we consider the two functions (u N i ) i and (v N i ) i , where u N i is defined in (3.7.2) and (v N i ) i are solutions of the system (3.7.1). We note that these solutions are symmetrical. This means that there exist two functions V N and U N : ⌦ ⇥ ⌦ N 1 ! R such that, for all x 2 ⌦, the functions (y 1 , . . . , y N 1 ) ! V N (x, (y 1 , . . . , y N 1 )) and (y 1 , . . . , y N 1 ) ! U N (x, (y 1 , . . . , y N 1 )) are invariant under permutations and

v N i (t, x) = V N (x i , (x 1 , . . . , x i 1 , x i+1 , . . . , x N )) , u N i (t, x) = U N (x i , (x 1 , . . . , x i 1 , x i+1 , . . . , x N )) .
We fix t 0 2 [0, T ), m 0 2 P(⌦) and Z = (Z i ) i a family of i.i.d random variables of law m 0 .

We consider the process Y t = (Y i t ) i solution of the following system: 8 < :

dY i t = H p (Y i t , D x i v N i (t, Y t )) dt + p 2 (Y i t )dB i t dk i t , Y i t 0 = Z i , (3.7.12) 
where k t i is a reflected process along the co-normal. We need to use an extension of the Ito's formula, stated in the following Lemma. Lemma 3.7.5. Let : [0, T ] ⇥ ⌦ ! R a W 2,1 function with respect to x and a C 1 function with respect to t, such that a(x)D (x) • ⌫(x) |@⌦ = 0 .

Let m 0 2 P(⌦) and let X t be a process in the probability space ( ⌦, (F t ) t , P), with initial density m 0 , satisfying dX t = b(t, X t ) dt + (X t ) dB t dk i t , where (B t ) t is a Brownian motion, b and are bounded functions respectively in L 1 and C 1+↵ , with a uniformly elliptic matrix, and k t i is a reflected process along the co-normal. Then the following formula holds 8t and a.s. in ! 2 ⌦:

(t, X t ) = (0, X 0 ) + Z t 0 ✓ t (s, X s ) + 1 2 tr(a(X s )D 2 (s, X s )) + b(s, X s ) • D (s, X s ) ◆ ds + Z t 0 (X s )D (s, X s ) dB s .
Proof. We consider n a sequence of C 1,2,N functions, bounded uniformly in n together with their derivatives, such that n ! pointwise together with its first order derivatives in space and time, and almost everywhere for the second order derivatives in space.

We define a = ⇤ . The classical Ito's formula for n tells us that

n (t, X t ) = n (0, X 0 ) + Z t 0 ✓ n t (s, X s ) + 1 2 tr(a(X s )D 2 n (s, X s )) + b(s, X s ) • D n (s, X s ) ◆ ds + Z t 0 (X s )D n (s, X s )dB s Z t 0 a(X s )D n (s, X s )⌫(X s )d|k| s ,
and so, since n satisfies a(x)

D n • ⌫ |@⌦ = 0 , n (t, X t ) = n (0, X 0 ) + Z t 0 ✓ n t (s, X s ) + 1 2 tr(a(X s )D 2 n (s, X s )) + b(s, X s ) • D n (s, X s ) ◆ ds + Z t 0 (X s )D n (s, X s )dB s .
Since n ! pointwise, we can pass to the limit for the terms outside the integrals. For the term in the deterministic integral, we note that the law m(t) of the process X t satisfies the following Fokker-Planck equation:

8 > > > < > > > : m t div(a(x)Dm) div(m(b + b)) = 0 , m(0) = m 0 , h aDm + m(b + b) i • ⌫ |@⌦ = 0 ,
and so, with the same strategies of Corollary (3.5.6), we have that m is globally bounded in L p (Q T ) for some p > 1.

Hence, we have

E Z t 0 n t (s, X s ) + 1 2 tr(a(X s )D 2 n (s, X s )) + b(s, X s ) • D n (s, X s ) t (s, X s ) 1 2 tr(a(X s )D 2 (s, X s )) b(s, X s ) • D (s, X s ) ds  Z t 0 Z ⌦ ✓ | n t t | + 1 2 |tr(aD 2 ( n ))| + |b • (D n D )| ◆ m(s, x) dxds ! 0 ,
where the dominated convergence is guaranteed by the a.e. convergence of n t , D n , D 2 n and the global boundedness of m in L p and of n t , D n and D 2 n in L 1 . As regards the last term, the a.s. convergence is guaranteed by the property of the stochastic integral. Actually we have

E " ✓Z t 0 s D n (s, X s )dB s Z t 0 s D (s, X s )dB s ◆ 2 # = E Z t 0 | s (D n D )(s, X s )| 2 ds  C kD n D k 2 1 ! 0 .
This concludes the Lemma.

We note that, if there are no reflection terms, then the boundary condition for can be removed.

The last theorem before the main result is the following.

Theorem 3.7.6. Assume hypotheses 3.2.4 hold. Then, for any 1  i  N , we have

E Z T t 0 D x i v N i (t, Y t ) D x i u N i (t, Y t ) 2 dt  C N 2 . (3.7.13)
Moreover, P-a.s.,

|u N i (t 0 , Z) v N i (t 0 , Z)|  C N . (3.7.14)
Proof. The proof is almost exactly the same of Theorem 6.2.1 of [START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF]. Without loss of generality, we work with t 0 = 0 and we start proving (3.7.13).

To simplify the rest of the proof, we will use the following notations:

U N,i t = u N i (t, Y t ) , DU N,i,j t = D x j u N i (t, Y t ) , V N,i t = v N i (t, Y t ) , DV N,i,j t = D x j v N i (t, Y t ) .
Using Lemma 3.7.5 and the equation (3.7.1) satisfied by v N i , we obtain

dV N,i t = h H(Y i t , DV N,i,i t ) DV N,i,i t • H p (Y i t , DV N,i,i t ) F (Y i t , m N,i Y t ) i dt + p 2 X j (Y i t )DV N,i,j t dB j t
Similarly, using equation (3.7.11) satisfied by u N i , we obtain

dU N,i t = h H(Y i t , DU N,i,i t ) DU N,i,i t • H p (Y i t , DU N,i,i t ) F (Y i t , m N,i Y t ) r N i (t, Y t ) i dt X j DU N,i,j t ⇣ H p (Y j t , DV N,j,j t ) H p (Y j t , DU N,j,j t ) ⌘ dt + p 2 X j (Y i t )DU N,i,j t dB j t
Both reflection terms are null, because of the boundary conditions on u N i and v N i , and Lemma 3.7.5. Now we apply the Ito's formula to the process

⇣ U N,i t V N,i t ⌘ 2 , obtaining d ⇣ U N,i t V N,i t ⌘ 2 = (A t + B t )dt + 2 p 2 ⇣ U N,i t V N,i t ⌘ X j h (Y i t )(DV N,i,j t DU N,i,j t ) i dB j t ,
where

A t = 2(U N,i t V N,i t ) ⇣ H(Y i t , DU N,i,i t ) H(Y i t , DV N,i,i t ) ⌘ 2(U N,i t V N,i t ) ⇣ DU N,i,i t (H p (Y i t , DU N,i,i t ) H p (Y i t , DV N,i,i t )) ⌘ 2(U N,i t V N,i t ) ⇣ (DU N,i,i t DV N,i,i t )H p (Y i t , DV N,i,i t ) r N i (t, Y t ) ⌘ and B t = 2 X j ha(Y t i )(DU N,i,j t DV N,i,j t ), DU N,i,j t DV N,i,j t i 2(U N,i t V N,i t ) X j DU N,i,j t ⇣ H p (Y j t , DV N,j,j t
) H p (Y j t , DU N,j,j t )

⌘

Now we want to integrate from t to T the above formula and take the conditional expectation given Z.

We recall that a is a uniformly elliptic matrix, and 9⌫ > 0 such that ha(x)v, vi ⌫|v| 2 , for all v 2 ⌦ .

Moreover, thanks to the previous results,

|DU N,i,j t |  C N , |r N i |  C N for a certain C > 0 .
We obtain:

E Z h |U N,i t V N,i t | 2 i + 2⌫ X j E Z Z T t |DU N,i,j s DV N,i,j s | 2 ds  C N Z T t E Z ⇥ |U N,i s V N,i s | ⇤ ds + C Z T t E Z ⇥ |U N,i s V N,i s | • |DU N,i,i s DV N,i,i s | ⇤ ds + C N X j6 =i Z T t E Z ⇥ |U N,i s V N,i s | • |DU N,j,j s DV N,j,j s | ⇤ ds .
By a standard convexity argument, with the use of a generalized Young's inequality, we get

E Z h |U N,i t V N,i t | 2 i + ⌫E Z Z T t |DU N,i,i s DV N,i,i s | 2 ds  C N 2 + C Z T t E Z ⇥ |U N,i s V N,i s | 2 ⇤ ds + ⌫ 2N X j E Z Z T t |DU N,j,j s DV N,j,j s | 2 ds .
(3.7.15)

The last term in the right-hand side can be removed by taking the mean of the inequalities over i 2 1, . . . , N. So we get 1 N

X i E Z h |U N,i t V N,i t | 2 i + ⌫ 2N X i E Z Z T t |DU N,i,i s DV N,i,i s | 2 ds  C N 2 + C N X i Z T t E Z ⇥ |U N,i s V N,i s | 2 ⇤ ds .
(3.7.16)

Then we use Gronwall's Lemma and the terminal condition on u N i and v N i in order to obtain sup 0tT "

1

N X i E Z [|U N,i t V N,i t | 2 ] #  C N 2 .
Plugging the last bound in (3.7.16) one has

1 N X i E Z Z T 0 |DU N,i,i s DV N,i,i s | 2 ds  C N 2 .
Finally, using this estimation in (3.7.15) and applying again Gronwall's Lemma, we conclude the first step:

sup 0tT E Z [|U N,i t V N,i t | 2 ] + E Z Z T t |DU N,i,i s DV N,i,i s | 2 ds  C N 2 . (3.7.17) 
This proves (3.7.13).

From (3.7.17), evaluated in t = 0, we obtain P-almost surely

|u N i (0, Z) v N i (0, Z)| 2 = E Z [|U N,i t V N,i t | 2 ] |t=0  C N 2 .
So, (3.7.14) is proved. Now we are ready to the last theorem of this chapter, which proves the main convergence result of the Nash systems towards the Master Equation.

Theorem 3.7.7. Suppose hypotheses (3.2.4) hold true. Then, if we define

m N x := 1 N X i x i , we have sup i |v N i (t 0 , x) U (t 0 , x i , m N x )|  C N . (3.7.18)
Moreover, if we set

w N i (t 0 , x i , m 0 ) := Z ⌦ N 1 v N i (t 0 , x) Y j6 =i m 0 (dx j ) , then w w w N i (t 0 , •, m 0 ) U (t 0 , •, m 0 ) w w L 1 (m 0 )  C! N , (3.7.19) 
where

! N = 8 > < > : CN 1 d if d 3 , CN 1 2 log(N ) if d = 2 , CN 1 2 if d = 1 .
Proof. We start choosing m 0 = 1. Then, (3.7.14) implies

|U (t 0 , Z i , m N,i Z ) v N i (t 0 , Z)|  C N P a.s. .
Since the support of m 0 is ⌦, this means, thanks to the continuity of v N i and U , that

|U (t 0 , x i , m N,i x ) v N i (t 0 , x)|  C N 8x 2 ⌦ N .
By the Lipschitz continuity of U , we have

|U (t 0 , x i , m N,i x ) U (t 0 , x i , m N x )|  Cd 1 (m N,i x , m N x )  C N .
Putting together the last two inequalities, we obtain (3.7.18).

To prove (3.7.19), we use the results of [START_REF] Ajtai | On optimal matchings[END_REF], [START_REF] Dereich | Schottstedt: Constructive quantization: approximation by empirical measures[END_REF], [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] in order to obtain

Z ⌦ N 1 |u N i (t 0 , x) U (t 0 , x i , m 0 )| Y j6 =i m 0 (dx j )  C Z ⌦ N 1 d 1 (m N,i x , m 0 ) Y j6 =i m 0 (dx j )  C! N ,
where ! N is defined exactly as in the right-hand side of (3.7.19).

With this inequality, we can conclude in this way:

w w w N i (t 0 , •, m 0 ) U (t 0 , •, m 0 ) w w L 1 (m 0 ) = Z ⌦ Z ⌦ N 1 v N i (t 0 , x) U (t 0 , x i , m 0 ) Y j6 =i m 0 (dx j ) m 0 (dx i )  E ⇥ |v N i (t, Z) u N i (t, Z)| ⇤ + Z ⌦ N |u N i (t 0 , x) U (t, x i , m 0 )| Y j m 0 (dx j )  C N + C! N  C! N .
Chapter 4

Mean Field Games PDE with Controlled Di↵usion

Introduction

In the last chapter of my thesis we study a general class of Mean Field Games of this form:

8 > > < > > : @ t u + H 1 (t, x, ru) + H 2 (t, x, u) = F (t, x, m) , (t, x) 2 (0, T ) ⇥ R n , @ t m (mH 2 q (t, x, u)) + div(mH 1 p (t, x, ru)) = 0 , (t, x) 2 (0, T ) ⇥ R n , u(T, x) = G(x, m(T )) , m(0, x) = m 0 (x) , x2 R n . (4.1.1) 
Here, H 1 (t, x, p) and H 2 (t, x, q) denotes the two Hamiltonians of the system, F is the running cost and G the final pay-o↵; with the notation H 1 p and H 2 q we mean respectively the gradient and the derivative of H 1 and H 2 with respect to the last variable.

The most important di↵erence with the other Mean Field Games systems we studied before is that here the nonlinearity of the Hamilton-Jacobi equation regards not only the first order term, but the second order too. This class of MFG systems appears when, in the stochastic modelization, the control of the generic agent involves not only the drift, but also the di↵usion term.

In the next Section we will give a significative modelization of this situation. For now, we stress the fact that models with controlled di↵usion are widely required in financial applications, see for instance the works of Avellaneda et al. in [START_REF] Avellaneda | Combinatorial Implications of Nonlinear Uncertain Volatility Models: the case of Barrier Options[END_REF], [START_REF] Avellaneda | Pricing and hedging derivative securities in markets with uncertain volatilities[END_REF], [START_REF] Avellaneda | Managing the Volatility Risk of Portfolios of Derivative Securities: the Lagrangian Uncertain Volatility Model[END_REF].

From stochastic model to deterministic PDEs

Now we give a stochastic interpretation of the system (4.1.1).

In this framework, the generic player choose two controls, ↵ • and • , and plays his dynamic, modelized by the following process:

8 < : we require that, for some constants

dX ↵, s = b(X ↵, s , ↵ s )ds + (X ↵, s , s )dB s X ↵, t = x, , (4. 
M > 0, 2 > 1 > 0, |b(x, ↵)|  M 8x 2 R n , ↵ 2 U , 1 < (x, ) < 2 8x 2 R n 2 S . (4.2.2) 
In particular, is bounded from below (and from above) by a positive constant, in order to ensure the uniform ellipticity of the process. We denote the spaces of admissible controls where ↵ and live respectively as A U t and A S t . From now on we omit the superscripts on the process to simplify the notations.

The cost function for the player is defined as

J (x, t, ↵ • , • ) := E Z T t (L 1 (s, X s , ↵ s ) + L 2 (s, X s , s ) + F (s, X s , m(s))) ds + G(X T , m(T )) , (4.2.3)
where m(s) is a density function, which is fixed at the moment and which will denote the density of the generic player, with initial condition X 0 = m 0 .

Our aim is to find a Hamilton-Jacobi equation, which is solved by the function

u(x, t) := inf ↵•2A U t •2A S t J (x, t, ↵ • , • ) . ( 4 

.2.4)

For this we use the dynamic programming principle written in the following form:

u(x, t) = inf ↵•2A U t •2A S t E Z t+h t (L 1 (s, X s , ↵ s ) + L 2 (s, X s , s ) + F (s, X s , m(s))ds + v(X t+h , t + h)] . (4.2.5)
The proof of the verification theorem in this general case is quite technical and can be found in [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF]. We will give here a direct proof in a simpler case, where the process of the generic player follows the equation 8 <

:

dX ↵, s = ↵ s ds + s dB s X ↵, t = x , (4.2.6) 
where the time dependent control variables ↵ s , s live in the space of bounded controls U ⇥ S, denoting in this case the compact sets U ⇢ R n and S ⇢ R, and S is bounded from below (and from above) by a positive constant.

The following lemma will come in handy in the proof of the main result:

Lemma 4.2.1. Let t, r 2 [0, T ],
x, y 2 R n . We consider the two processes 8 <

:

dX s = ↵ s ds + s dB s , X t = x (4.2.7) and 8 < 
:

dY s = s ds + ⌘ s dB s , Y r = y , (4.2.8) 
with X s = x for s < t and Y s = y for s < r, and where ↵

• , • 2 A U t , • , ⌘ • 2 A S t are bounded processes in [0, T ].
Let h > 0. Then there exists a constant C (not depending on h) such that

E " sup tst+h |X s Y s | #  C ⇣ |x y| + p |t r| + M p h ⌘ , (4.2.9) 
where C depends on k↵k 1 , k k 1 , k k 1 , k⌘k 1 and where M := k↵ k 1 + k⌘ k 1 . In particular, we have

E " sup tst+h |X s x| #  C p h . ( 4 

.2.10)

Proof. Without loss of generality, we suppose t > r.

We start noticing that (4.2.10) is a directly consequence of (4.2.9). Actually, taking a process (X s ) s satisfying (4.2.7), the constant process Y s = x satisfies (4.2.8) with r = t, y = x, s = 0, ⌘ s = 0. Then (4.2.9) tells us that

E " sup tst+h |X s x| #  C p h .
Hence, we only have to prove (4.2.9). Since t > r, we can write

X s Y s = x + Z s t (↵ u u )du + ( u ⌘ u )dB u y Z t r u du + ⌘ u dB u .
Using the boundedness of ↵ and , we get for s 2

[t, t + h] |X s Y s |  |x y| + Mh + C(t r) + Z s t ( u ⌘ u )dB u + Z t r ⌘ u dB u ,
and so

E " sup tst+h |X s x| #  |x y| + C(t r) + Ch + E " sup s2[t,t+h] Z s t ( u ⌘ u )dB u # + E  Z t r ⌘ u dB u . (4.2.11) 
The last two terms in the right-hand side are estimated using (7.23) and (7.17) of [START_REF] Baldi | Stochastic Calculus. An Introduction Through Theory and Exercises[END_REF]:

E " sup s2[t,t+h] Z s t ( u ⌘ u )dB u #  v u u t E " sup s2[t,t+h] ✓Z s t ( u ⌘ u )dB u ◆ 2 #  C s E Z t+h t ( u ⌘ u ) 2 du  CM p h .
In an easier way we estimate the last term:

E  Z t r ⌘ u dB u  v u u t E " ✓Z t r ⌘ u dB u ◆ 2 # = s E Z t r ⌘ 2 u du  C p t r .
Plugging these estimates in (4.2.11), we obtain (4.2.9). Now we are able to prove the following theorem.

Theorem 4.2.2. Suppose that L 1 , L 2 , F and G are Lipschitz continuous in the space variable and globally bounded. Furthermore, suppose that L 1 and L 2 are continuous in time and space, and that the function

(t, x) ! F (t, x, m(t))
is continuous in time and space.

Then u is a viscosity solution of the Hamilton-Jacobi equation

8 < : u t (t, x) + H 1 (t, x, ru(t, x)) + H 2 (t, x, u(t, x)) + F (t, x, m(t)) = 0 , u(T, x) = G(x, m(T )) , (4.2.12) 
where

H 1 (t, x, p) := inf ↵2U {hp, ↵i + L 1 (t, x, ↵)} and H 2 (t, x, q) := inf 2S ⇢ 2 2 q + L 2 (t, x, ) (4.2.13) 
are the so called Hamiltonians.

We observe that the condition on F is satisfied, for instance, if 

F : [0, T ] ⇥ R n ⇥ P(⌦) ! R
(L 1 (s, X ",n s , ↵ ",n s ) + L 2 (s, X ",n s , ",n s ) + F (s, X ",n s , m(s))) ds + G(X ",n T , m(T ))  u(t n , x n ) + " ,
where X ",n s is the process related to the controls ↵ ",n s and ",n s , with X ",n s = x n for s < t n . We take the process (X s ) s defined X s = x for s < t and satisfying for s t 8 <

:

dX s = ↵ ",n s ds + ",n s dB s , X t = x .
Then we have, using the hypotheses on the cost functions and the Lagrangians,

u(t, x)  E Z T t (L 1 (s, X s , ↵ ",n s ) + L 2 (s, X s , ",n s ) + F (s, X s , m(s))) ds + G(X T , m(T ))  E Z T tn (L 1 (s, X s , ↵ ",n s ) + L 2 (s, X s , ",n s ) + F (s, X s , m(s))) ds + G(X T , m(T )) + C|t n t|  CE " sup t2[0,T ] |X s X ",n s | # + C|t n t| + u(t n , x n ) + "  C ⇣ |x n x| + p |t n t| ⌘ + u(t n , x n ) + " ,
where we used in the last step (4.2.9) with M = 0. So, passing to the lim inf when (t n , x n ) ! (t, x), we obtain 

u(t, x)  lim inf (tn,xn)!(t,x) u(t n , x n ) + " , which 
= inf ↵•2A U t •2A S t E Z t+h t (L 1 (s, X s , ↵ s ) + L 2 (s, X s , s ) + F (s, X s , m(s)))ds + u(t + h, X t+h ) u(t, x)  inf ↵•2A U t •2A S t E Z t+h t (L 1 (s, X s , ↵ s ) + L 2 (s, X s , s ) + F (s, X s , m(s)))ds + '(t + h, X t+h ) '(t, x) . ( 4 
 E Z t+h t ⇢ [' t (s, X s ) + hr'(s, X s ), ↵ s i + 2 s 2 '(s, X s ) ds + E Z t+h t {L 1 (s, X s , ↵ s ) + L 2 (s, X s , s ) + F (s, X s , m(s))} ds ,
for each control ↵ • and • . Now it is necessary to write down our PDE as a purely deterministic expression. For this, we consider for now only a subset of the control spaces A U t and A S t , namely the set of constant controls. This controls are denoted by ↵ and instead of ↵ s and s , taking values in U ⇢ R n and S ⇢ R. Our inequality now reads

0  E Z t+h t ⇢ [' t (s, X s ) + hr'(s, X s ), ↵i + 2 2 '(s, X s ) ds + E Z t+h t {L 1 (s, X s , ↵) + L 2 (s, X s , ) + F (s, X s , m(s))} ds ,
Now we divide by h and we let h ! 0. Using the a.s. time continuity of the trajectories X • (!) and the continuity of the cost functions and the Lagrangians, we obtain

0  t (t, x) + hr (t, x), ↵i + 2 2 (t, x) + L 1 (t, x, ↵) + L 2 (t, x, ) + F (t, x, m(t)) .
Passing to the inf when ↵ 2 U and 2 S, we get

0 ' t (t, x) H 1 (t, x, r'(t, x)) H 2 (t, x, '(t, x)) F (t, x, m(t, x)) (4.2.15)
for all test functions ', which proves that u(t, x) is indeed a viscosity sub solution for our PDE.

Step 3: Supersolution argument. Now we take ' 2

C 1 b ([0, T ] ⇥ R n ), a test function with '( t, x)  u( t, x), 8( t, x) 2 [0, T ] ⇥ R n
and a maximum value at the point (t, x), where

'(t, x) = u(t, x).
As before, the dynamical programming principle (4.2.5) gives 0 inf

↵•2A U t •2A S t E Z t+h t (L 1 (s, X s , ↵ s ) + L 2 (s, X s , s ) + F (s, X s , m(s)))ds + '(t + h, X t+h ) '(t, x) .
Using the definition of , we take controls ↵ h s , h s and the related process X h s such that

E Z t+h t (L 1 (s, X h s , h s ) + L 2 (s, X h s , ↵ h s ) + F (s, X h s , m(s)))ds + '(t + h, X h t+h ) '(t, x)  h 2 .
Applying Ito's formula we obtain

E " Z t+h t ( ' t (s, X h s ) + hr'(s, X h s ), ↵ h s i + ( h s ) 2 2 '(s, X h s ) ) ds # + E Z t+h t n L 1 (s, X h s , ↵ h s ) + L 2 (s, X h s , h s ) + F (s, X h s , m(s)) o ds  h 2 .
We estimate all the terms in the same way, using the Lipschitz continuity of the cost functions with respect to x and Lemma 4.2.1. For instance, for the L 1 term we get

E Z t+h t L 1 (s, X h s , ↵ h s ) ds E Z t+h t ⇣ L 1 (s, x, ↵ h s ) |X h s x| ⌘ ds E Z t+h t L 1 (s, x, ↵ h s ) ds hE " sup s2[t,t+h] |X h s x| # E Z t+h t L 1 (s, x, ↵ h s ) ds Ch p h .
Hence, with all these estimates we get

E " Z t+h t ( ' t (s, x) + hr'(s, x), ↵ h s i + ( h s ) 2 2 '(s, x) ) ds # + E Z t+h t n L 1 (s, x, ↵ h s ) + L 2 (s, x, h s ) + F (s, x, m(s)) o ds  h 2 + Ch p h  Ch p h .
Using the definition of H 

H 2 (t, x, q) := inf ⌘2S 0 {⌘q + L 3 (t, x, ⌘)} , where L 3 (t, x, ⌘) = L 2 (t, x, p 2⌘ 
). Henceforth, when we will talk about this simplified model case, we will refer to

H 1 (t, x, p) := inf ↵2U {hp, ↵i + L 1 (t, x, ↵)} , H 2 (t, x, q) := inf ⌘2S 0 {⌘q + L 3 (t, x, ⌘)} .
(4.2.17)

The Hamilton-Jacobi Equation

This Section is completely devoted to the study of the following equation:

8 < : u t + H 2 (t, x, u) + H 1 (t, x, ru) = F (t, x) , (t, x) 2 [0, T ] ⇥ R N , u(T, x) = G(x) ,
where

H 1 (t, x, p) := inf ↵2U {hp, b(x, ↵)i + L 1 (t, x, ↵)}
Now we are ready to prove the comparison principle, by adapting the proof given by Crandall, Ishii and Lions in [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF].

Theorem 4.3.4. Suppose (4.2.2) is satisfied. Moreover, suppose that

• L 1 continuous in all variables and Hölder in x, uniformly in t 2 [0, T ] and locally uniformly in p, i.e. 8|p|  L 9K L such that

|L 1 (t, x, p) L 1 (t, y, p)|  K L |x y| , for a certain 0 <  1 , 8t 2 [0, T ] .
The same hypotheses hold for L 2 .

• , b and G are Lipschitz in the space variable.

Then the comparison principle holds for equation (4.3.2), i.e., if u and v are respectively a subsolution and a supersolution of (4.3.2), then u(t, x)  v(t, x) for all (t, x) 2 (0, T ] ⇥ R n .

Proof. Suppose, by contradiction, that 9(s, z) 2 (0, T ] ⇥ R n such that u(s, z) v(s, z) = > 0.

We consider, for ↵, ⌫ > 0, the following quantity

u(t, x) v(t, y) ↵ 2 |x y| 2 1 ↵ |x| 2 ⌫ t . (4.3.3) 
Due to the coercive term 1 ↵ |x| 2 and the boundedness of u of v, we know that (4.3.3) achieves a maximum. We denote the maximum by M and one of its maximum points with ( t, x, ȳ) 2 (0, T ] ⇥ R 2n .

We must have, for ⌫ su ciently small and ↵ su ciently large,

u( t, x) v( t, ȳ) ↵ 2 |x ȳ| 2 1 ↵ |x| 2 ⌫ t u(s, z) v(s, z) 1 ↵ |z| 2 ⌫ s 2 = 2 . (4.3.4)
This implies, thanks to the boundedness of u and v,

1 ↵ |x| 2 + ↵ 2 |x ȳ| 2  u( t, x) v( t, ȳ)  C =) lim ↵!1 |x ȳ| = 0 .
This cannot happen if t = T . In this case we have

2  u(s, z) v(s, z) 1 ↵ |z| 2 ⌫ s  u T (x) v T (ȳ) ↵ 2 |x ȳ| 2 1 ↵ |x| 2 .
Since G is Lipschitz, u T  v T and |x ȳ| ! 0, we have for ↵ su ciently large

u T (x) v T (ȳ)  3 =) u T (x) v T (ȳ) ↵ 2 |x ȳ| 2 1 ↵ |x| 2  3 ,
which gives a contradiction. Then we must have t 2 (0, T ). Applying Proposition 4.3.3 with

u 1 (t, x) = u(t, x) , u 2 (t, y) = v(t, y) , (t, x, y) = ↵ 2 |x y| 2 + 1 ↵ |x| 2 + ⌫ t ,
we obtain that there exist a, b, X, Y such that (a, r x ( t, x, ȳ), X)

2 P 2,+ u( t, x) , ( b, r y ( t, x, ȳ), Y ) 2 P 2, v( t, ȳ) , and 
a + b = ⌫ t2 , X 0 0 Y !  D 2 ( t, x, ȳ) . (4.3.5)
From now on, we will omit for the function his dependence on ( t, x, ȳ). Since u is a subsolution and v a supersolution, one has

a H 2 ( t, x, tr(X)) H 1 ( t, x, r x ) + u( t, x)  0 , b H 2 ( t, ȳ, tr(Y )) H 1 ( t, ȳ, r y ) + v( t, ȳ) 0 .
Subtracting the two inequalities we obtain In order to estimate the last two terms of the right-hand side term, we first compute the derivatives of . We have

⌫ t2 + (u( t, x) v( t, ȳ))  H 2 ( t,
r x = ↵(x ȳ) + 2 ↵ x , r y = ↵(x ȳ) , D 2 = ↵ I I I I ! + 2 ↵ I 0 0 0 ! .
Using the very definition of H 2 , we obtain, calling the optimal control for H 2 ( t, ȳ, tr(Y )),

H 2 ( t, x, tr(X)) H 2 ( t, ȳ, tr(Y ))  (x, ) 2 2 tr(X) + (ȳ, ) 2 2 tr(Y ) + e (T t)) L 2 ( t, x, ) L 2 ( t, ȳ, )  C|x ȳ| + tr ✓ (x, ) 2 2 X + (ȳ, ) 2 2 Y ◆  !(↵) + tr ✓ (x, ) 2 2 X + (ȳ, ) 2 2 Y ◆ .
The last term is estimated as follows.

We have tr

✓ (x, ) 2 2 X + (ȳ, ) 2 2 Y ◆ = 1 2 tr B X 0 0 Y !! , where B is equal to (x, ) 2 (x, ) (ȳ, ) (x, ) (ȳ, ) (ȳ, ) 2 ! .
Since B is non-negative definite, we can use (4.3.5) to obtain tr

✓ (x, ) 2 2 X + (ȳ, ) 2 2 Y ◆  tr BD 2 = = ↵n| (x, ) (ȳ, )| 2 + 2n ↵ (x, ) 2  C↵|x ȳ| 2 + !(↵) ,
where !(↵) is a quantity depending on ↵ such that !(↵) ! 0 when ↵ ! 1.

We argue in a similar way in order to bound the H 1 term. We have, calling ↵ 0 the optimal control for H 1 ( t, ȳ, r y ),

H 1 ( t, x, r x ) H 1 ( t, ȳ, r y )  hb(x, ↵ 0 ), r x i + hb(ȳ, ↵ 0 ), r y i + e (T t) L 1 ( t, x, ↵ 0 ) L 1 ( t, ȳ, ↵ 0 )  |x ȳ| + hb(x, ↵ 0 ) b(ȳ, ↵ 0 ), ↵(x ȳ)i + 2 ↵ hb(x, ↵ 0 ), xi  C↵|x ȳ| 2 + !(↵) ,
where in the last passage we used the Lipschitz bound on b and the boundedness of b.

Putting together all the estimates in (4. 

(t, x) u(t, y)|  M ✓ + |x y| 2 ◆ , 8 > 0 , (4.3.10) 
for a certain constant M > 0. So, we will prove (4.3.10). We consider, for , , ⌫ > 0, the following quantity We denote one of its maximum points with ( t, x, ȳ) 2 (0, T ] ⇥ R 2n . Suppose t = T . Then

u(t, x) u(t, y) M ✓ + |x y| 2 ◆ |x| 2 ⌫ t . ( 4 
u(t, x) u(t, y) M ✓ + |x y| 2 ◆ |x| 2 ⌫ t  G(x) G(ȳ) M ✓ + |x ȳ| 2 ◆ |x| 2 ⌫ T ,
which implies for M su ciently large, since G is Lipschitz, In order to estimate the last two terms of the right-hand side term, we first compute the derivatives of . We have

u(t, x) u(t, y)  M ✓ + |x y| 2 ◆ + |x| 2 + ⌫ t . ( 4 
r x = 2M (x ȳ) + 2 x , r y = 2M (x ȳ) , D 2 = 2M I I I I ! + 2 I 0 0 0 ! .
Using the very definition of H 2 , we obtain, calling the optimal control for H 2 ( t, ȳ, tr(Y )),

H 2 ( t, x, tr(X)) H 2 ( t, ȳ, tr(Y ))  (x, ) 2 2 tr(X) + (ȳ, ) 2 2 tr(Y ) + e (T t) L 2 ( t, x, ) L 2 ( t, ȳ, )  C|x ȳ| + tr ✓ (x, ) 2 2 X + (ȳ, ) 2 2 Y ◆ .
The last term is estimated as in the comparison Theorem. We have tr

✓ (x, ) 2 2 X + (ȳ, ) 2 2 Y ◆ = 1 2 tr B X 0 0 Y !! , where B is equal to (x, ) 2 (x, ) (ȳ, ) (x, ) (ȳ, ) (ȳ, ) 2 ! . 
Since B is non-negative definite, we can use (4.3.15) to obtain tr

✓ (x, ) 2 2 X + (ȳ, ) 2 2 Y ◆  tr BD 2 = 2M n| (x, ) (ȳ, )| 2 + 2 n (x, ) 2  C 2M n|x ȳ| 2 + 2 n (x, ) 2  CM ✓ + |x ȳ| 2 ◆ + C .
We argue in a similar way in order to bound the H 1 term. We have, calling ↵ the optimal control for H 1 ( t, ȳ, r y ),

H 1 ( t, x, r x ) H 1 ( t, ȳ, r y )  hb(x, ↵), r x i + hb(ȳ, ↵), r y i + e (T t) L 1 ( t, x, ↵) L 1 ( t, ȳ, ↵)  C|x ȳ| + 2M hb(x, ↵) b(ȳ, ↵), (x ȳ)i + 2 ↵hb(x, ↵), xi  CM ✓ + |x ȳ| 2 ◆ + C |x| ,
where in the last passage we used the Lipschitz bound on b and the boundedness of b.

Because of (4.3.14), we have |x| ! 0 when ! 0.

Putting together all the estimates, we obtain, for M large enough,

M ✓ + |x ȳ| 2 ◆  CM ✓ + |x ȳ| 2 ◆ + !( ) ,
where !( ) is a quantity that tends to 0 when ! 0.

So, for small enough and > 1, we obtain a contradiction. So in each case (4.3.12) remains true and, letting and ⌫ go to 0, we get

u(t, x) u(t, y)  M ✓ + |x y| 2 ◆
for all > 0. Finally, choosing = |x y| and reversing the role of x and y, we conclude:

|u(t, x) u(t, y)|  2M |x y| .
Our next goal is to show that, with a strengthening of hypotheses, u satisfies a stronger estimate, which includes, as a direct consequence, a twice di↵erentiability almost everywhere with respect to the x variable.

For this reason, we introduce the notion of semiconcavity: Definition 4.3.7. We say that a function f : ⌦ ! R is semiconcave if for all x 2 ⌦ and for all h such that x + h, x h 2 ⌦ we have

f (x + h) + f (x h) 2f (x)  C|h| 2 (4.3.16)
for a certain constant C.

A semiconcave function is twice di↵erentiable almost everywhere. Actually, the following result holds (see [START_REF] Cannarsa | Sinestrari: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control[END_REF]):

Remark 4.3.8. The following properties are equivalent:

• f is a semiconcave function;

• There exists a constant C such that f (x) C|x| 2 is a concave function;

for each x 2 ⌦, h 2 R n such that x + h, x h 2 ⌦.

We choose x = x+y 2 , h = x y 2 , obtaining (up to changing C)

f (x) + f (y) 2f ✓ x + y 2 ◆  C|x y| 2 .
Then we have, using the Lipschitz bound on f ,

f (x) + f (y) 2f (z)  C|x y| 2 + 2f ✓ x + y 2 ◆ 2f (z)  C |x y| 2 + |x + y 2z|
Writing x y = (x z) + (y z) and using a generalized Young's inequality, we get

f (x) + f (y) 2f (z)  C ✓ + 1 |x z| 4 + |y z| 4 + |x + y 2z| 2 ◆ ,
and so (4.3.17) holds.

Finally, if f is W 2,1 then f and f are Lipschitz and semiconcave functions. Then (4.3.17) holds for f and f , proving that (4.3.18) is true. Proposition 4.3.10. Suppose hypotheses of theorem 4.3.6 are satisfied. Furthermore, suppose that G, L 1 , and L 2 are Lipschitz and semiconcave functions in the space variable, and b and are W 2,1 functions in the space variable .

Then, every solution of (4.3.2) is semiconcave in the space variable.

Proof. We want to prove that

u(t, x) + u(t, y) 2u(t, z)  C ✓ + 1 |x z| 4 + |y z| 4 + |x + y 2z| 2 ◆ ,
for a certain C > 0 and for all > 0, t 2 (0, T ], x, y, z 2 ⌦. In fact, choosing x = z + h, y = z h, = |h| 2 , we obtain (4.3.16).

To do that, we argue as in the Lipschitz case, following the ideas of Theorem VII.3 of [START_REF] Ishii | Viscosity Solutions of Fully Nonlinear Second-Order Elliptic Partial Di↵erential Equations[END_REF].

We consider the following auxiliary function: 

(t, x, y, z) = M ✓ + 1 |x z| 4 + |y z| 4 + |x + y 2z| 2 ◆ + |x| 2 + ⌫ t , (4.3 
+ b + c = ⌫ t2 , 0 B @ X 0 0 0 Y 0 0 0 Z 1 C A  D 2 ( t, x, ȳ, z) . (4.3.24)
From now on, we will omit for the function its dependence on ( t, x, ȳ, z).

It is immediate to prove that, if (c, r z , Z) 2 P We estimate the H 2 terms in (4.3.25). Choosing as the optimal control for H 2 t, z, We estimate the trace term in the following way: So we obtain, with standard computations, tr( (x, ) 

◆  C + C ,
where C depends also on n.

We reason in a similar way in order to bound the H 1 term. We have, choosing ↵ as the optimal control for H 1 ( t, x, 1 2 r z ), and since r z = (r x + r y ) + 2 x, H 1 ( t, x, r x ) + H 1 ( t, ȳ, r y ) 2H 1 Putting together all the estimates, we obtain, for M large enough,

 C + !( ) ,
where !( ) is a quantity that tends to 0 when ! 0.

So, for small enough and 1, we obtain a contradiction. Then, if u is the unique solution of (4.3.1), we have u 2 C 1+ 2 ,2+ ([0, T ] ⇥ R n ) , for a certain 0 < < 1 .

Proof. We define 8 r the function M r = M , where M (t, x, , B, p, s) = H 2 t, x, 1 tr(B) + H 1 t, x, 1 p .

Hence, the concavity of H (vii) The continuity of M follows from the continuity of H 1 and H 2 . We prove only the estimate for |M x i x j |, since the |M t | goes along the same computations. We have Thanks to the hypotheses, the coe cients H 2 q , H 1 p are in L 1 and G x i 2 C 2+↵ . Moreover, with the same ideas of Theorem 4.3.6 (see also [START_REF] Porretta | Global Lipschitz regularizing e↵ects for linear and nonlinear parabolic equations[END_REF]), we have that |Du| is globally bounded in L 1 , which implies, thanks to (4.4.12), H 2

|M x i x j |  | H 2 x i x j (t,
x i (t, x, u) + H 1 x i (t, x, Du) 2 L 1 .

With these hypotheses we know from standard regularity results (see e.g. [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF]) that Proof. We consider a sequence H 2,k and H 1,k of smooth functions converging to H 2 and H 1 , taking, for > 0, the convolutions

H 2,k = H 2 ⇤ ⇢ , H 1,k = H 1 ⇤ ⇢ ,
where ⇢ 0 is a non-negative function with compact support in B(0, ). Then we take the related solutions u k of (4.3.1).

It is immediate to prove that H 2,k and H 1,k satisfy conditions from (4.4.2) to (4.4.9) and from (4.4.12) to (4.4.14), with all bounds independent on k. Just to give an example, we show that H 1,k p (t, x, p) • p H 1,k (t, x, p) C .

We have Hence, we can use Ascoli-Arzelà Theorem on any compact set K ⇢ R n and obtain that 9 u such that, up to subsequences, u k ! u pointwise with all the derivatives. Moreover, u satisfies (4.5.1).

H 1,k p (t, x, p) • p H 1,k (t, x, p) = Z T 0 Z R n Z +1
Passing to the limit in the equation of u k , we obtain that u satisfies (4.3.1). This concludes the Proposition. Remark 4.5.2. We stress the fact that condition (4.4.6) is satisfied at least in the model case (4.2.17), where H 1 (t, x, p) := inf ↵2U {hp, ↵i + L 1 (t, x, ↵)} , H2 (t, x, q) := inf ⌘2S 0 {⌘q + L 3 (t, x, ⌘)} , provided L 1 and L 3 are uniformly bounded and strictly convex with respect to the last variable.

Actually, the linear character of hp, ↵i and ⌘q with respect to ↵ and ⌘ and the strict convexity of the Lagrangian functions immediately imply that the inf in H 1 and H 2 is attained at a unique point ↵ t,x,p , ⌘ t,x,q .

The uniqueness of the argmin plays a crucial role in order to obtain the C 1 character of H 1 and H 2 with respect to the last variable. Actually, we have H 1 p (t, x, p) = ↵ t,x,p , H 2 q (t, x, q) = ⌘ t,x,q , and so |H 1 p (t, x, p) • p H 1 (t, x, p)| = |L 1 (t, x, ↵ t,x,p )|  C , |H 2 q (t, x, q) • q H 2 (t, x, q)| = |L 3 (t, x, ⌘ t,x,p )|  C . Moreover, if we strengthen the regularity hypotheses on L 1 and L 3 with respect to all variables, we obtain that also conditions (4.4.2),. . . ,(4.4.9) of Theorem 4.4.3 are satisfied.

Finally, we note that the convexity condition of L 3 is satisfied if we require, in (4.2.13), that L 2 is convex and non-increasing with respect to the last variable. Actually, from Remark 4.2.3 L 3 (t, x, ⌘) = L 2 (t, x, p 2⌘) , and so, if L 3 and L 2 are twice di↵erentiable in the last variable, @ 2 ⌘⌘ L 3 (t, x, ⌘) = @ 2 L x (t, x, p 2⌘)(2⌘)

1 2 @ L 2 (t, x, p 2⌘)(2⌘)
4.6 The Fokker-Planck Equation and The Mean Field Games

System

The existence and uniqueness for the Fokker-Planck equation follow from well-known arguments, thanks to its linearity character.

Before starting the study of the Mean-Field Games system, we need to prove the following Proposition about some regularity estimates of m. 

for all p < p 0 .

Proof. We start assuming m 0 smooth, and we consider the process satisfying 8 < : dX t = b(t, X t )dt + (t, X t )dB t ,

X 0 = Z ,
where Z is a random variable of law m 0 , (B t ) t is a standard Brownian motion and ⇤ = a.

Then, assuming without loss of generality that t > s, we have  C|t s| where 2 L q (⌦) for a certain q which will be specified later. Then, Theorem IV.9.1 of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] tells us that k k W 1,q ([0,T ]⇥R n )  C k k L q . Hence, for q > n + 1, satisfies a Hölder estimate in space and time. Multiplying the equation of m by and integrating by parts, we obtain

E[|X t X s |]  E
Z T 0 Z R n (t, x)m(t, x) dxdt = Z R n (0, x)m 0 (dx)  C k k L q ,
which implies that kmk L p  C , for all p < p 0 , where p 0 is the conjugate exponent of n + 1. Since these estimates do not depend on the smoothness of m 0 , with a standard approximation we can obtain (4.6.2) 8m 0 2 P(R n ), which concludes the Proposition. Now we are ready to study the full Mean-Field Games system. We handle the case where our couplings F and G are non-local.

It is immediate to note that X is a convex closed space.

We want to apply the Schauder fixed point Theorem. First, we define a suitable functional .

For 2 X we consider u as the solution of the Hamilton-Jacobi equation m t (mH 2 q (t, x, u)) + div(mH 1 p (t, x, ru)) = 0 , (t, x) 2 (0, T ) ⇥ R n , m(0, x) = m 0 (x) ,

x 2 R n .

(4.6.6)

Thanks to the regularity results for u, we know that m is well-defined in the space C([0, T ]; P(⌦)). Proposition 4.6.1 implies that, if we choose wisely C in the definition of X, we have m 2 X and, in addition to that,

kmk L p  C ,
with C not depending on .

In order to apply Schauder's Theorem we need to show the continuity of and that (X) is a relatively compact set.

We start by showing that (X) is relatively compact.

Let { n } n ⇢ X, and let u n and m n be the solutions of (4.6.5) and (4.6.6) related to n . From (4.4.15) we know that

ku n k 3+↵ 2 ,3+↵  C ,
where C does not depend on n. Hence, Ascoli-Arzelà and Banach-Alaoglu Theorems imply that 9{u n k } k , u 2 C 1+ ↵ 2 ,3+↵ such that u n k ! u in C 1,3 loc and all the derivatives converge pointwise.

For simplicity, we call the subsequence u n k as u n , forgetting the dependence on k.

To prove the convergence of {m n } n (up to subsequences), we consider the processes X We analyze each term. The last term is equal to

E Z t 0 ⇣q 2H 2 q (s, X n s , u n (s, X n s )) q 2H 2 q (s, X k s , u k (s, X k s )) ⌘ 2 ds  E Z t 0 ⇣q 2H 2 
q (s, X n s , u n (s, X n s )) q 2H 2 q (s, X n s , u k (s, X n s ))

⌘ 2 ds + E Z t 0 ⇣q 2H 2 
q (s, X n s , u k (s, X n s )) q 2H 2 q (s, X k s , u k (s, X k s ))

⌘ 2 ds  C Z t 0 Z R n | (u n u k )| 2 m n (s, x) dxds + C Z t 0 E h |X n s X k s | 2 i = !(n, k) + C Z t 0 E h |X n s X k s | 2 i ,
where we use the Lipschitz bound of H 2 q and u n . In order to handle the first integral in the right-hand side, we consider a bounded domain E ✓ R n and we write

Z t 0 Z R n | (u n u k )| 2 m n (s, x) dxds = Z t 0 Z E | (u n u k )| 2 m n (s, x) dxds + Z t 0 Z E c | (u n u k )| 2 m n (s, x) dxds .
The first integral goes to 0 for any E bounded, thanks to the uniform convergence of u n in bounded sets and the L p bound of m n . For the second integral, we note that | (u n u k )| 2 is uniformly bounded and that m n has a finite first order moment thanks to (4.6.2). Hence, 8 " > 0 we can choose E su ciently large such that Z For the arbitrariness of ", we obtain

E Z t 0 ⇣q 2H 2 q (s, X n s , u n (s, X n s )) q 2H 2 q (s, X k s , u k (s, X k s )) ⌘ 2 ds  !(n, k) + C Z t 0 E h |X n s X k s | 2 i ,
where !(n, k) is a quantity converging to 0 when n, k ! 1.

Similar estimates are made in order to bound the first term of (4.6.7). Hence we get

E[|X n t X k t | 2 ]  !(n, k) + C Z t 0 E h |X n s X k s | 2 i ,
and so, applying Gronwall's inequality, Hence, we have proved that {m n } n is a Cauchy sequence in X. Then, up to subsequences, 9m such that m n ! m. This proves the relatively compactness of (X).

E[|X n t X k t |]  E[|X n t X k t | 2 ]  C!(n, k) = !(n, k) ,
The continuity is an easy consequence of the compactness. We consider n ! . From the compactness, there exist subsequences {u n k } k , {m n k } k converging to some u, m. Passing to the limit in the formulations of u n k and m n k , we obtain that u and m are the (unique) solutions of (3.3.10) and (3.3.11) related to and u.

Then, for each converging subsequence {m n h } h , we must have m n h ! m. This means that the whole sequence ( n ) = m n ! m = ( ). This proves the continuity of .

So we can apply Schauder's theorem and obtain a classical solution of the problem (4.1.1).

To prove the uniqueness, let (u 1 , m 1 ), (u 2 , m 2 ) be two solutions of (4.1.1).

We want to estimate in two di↵erent ways the quantity On the other hand, if we compute the derivative and use the weak formulation of (u 1 , m 1 ) and (u 2 , m 2 ), we obtain H 2 (t, x, u i ) H 2 (t, x, u j ) H 2 q (t, x, u j ) (u i u j ) m j (t, dx)dt = 0 , Z T 0 Z R n H 1 (t, x, Du i ) H 1 (t, x, Du j ) H 1 p (t, x, Du j )D(u i u j ) m j (t, dx)dt = 0 , for (i, j) = (1, 2) or [START_REF] Achdou | Partial di↵erential equation models in macroeconomics[END_REF][START_REF] Achdou | Mean Field Games models of segregation[END_REF]. This allows us to conclude: actually, thanks to the hypotheses, there are two cases:

Z T 0 Z R n (F (x,

  drifts and possibly non Lipschitz matrix . For the dynamics (1.1.1) in a C 2 domain ⌦, we formulate this invariance condition by requiring that the following inequality holds in a neighborhood of the boundary: tr(a(x)D 2 d(x)) + b(t, x) • Dd(x) a(x)Dd(x) • Dd(

⌦

  tr (a(y)D y D m U (t, x, m, y)) dm(y)+ Z ⌦ D m U (t, x, m, y) • H p (y, D x U (t, y, m))dm(y) = F (x, m) , U (T, x, m) = G(x, m) .
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Remark 2 . 4 . 4 .

 244 Despite the above statement is given in a general version, the reader should keep in mind at least two typical examples of approximations. The first one occurs if a(x) degenerates on the boundary in the normal direction, i.e. if a(x)Dd(x) • Dd(x) = 0 on @⌦, and if b(t, x) is bounded in Q T and the invariance property (1.1.2) holds true. In this case we can use this result with ⌦ " = ⌦, b " = b and a " (x) = a(x) + " I. Then (2.4.5) is satisfied provided " = o(r "

  Now we choose such that s (s) 0 and k+1 0 (s) 2C k | (s)| > 0 for all s 2 R. A typical choice is e.g. (s) = se bs 2 with b =

  3 to 3.6), we analyze the well-posedness of the Master Equation with a Neumann condition on @⌦ with Sec. 3.1 -Introduction respect to x and m:

Definition 3 . 2 . 3 .

 323 Let U : P(⌦) ! R. If U is of class C 1 and U m is of class C 1 with respect to the last variable, we define the intrinsic derivative D m U : P(⌦) ⇥ ⌦ ! R d as D m U (m, x) := D x U m (m, x) .

  The following Neumann boundary conditions are satisfied: ⌧ a(y)D y F m (x, m, y), ⌫(y)

  compatibility conditions, essential to obtain a classical solution for the MF G and the linearized MF G system. The first boundary condition will be essential in order to prove the Neumann boundary condition of D m U , see Corollary 3.5.13. With these hypotheses we are able to prove existence and uniqueness of a classical solution for the Master Equation (3.1.1).

.3. 5 )

 5 Proof. If 2 C 1,N , estimates (3.3.5) is guaranteed by (3.3.1) of Lemma 3.3.1.

(

  3. We want to check that m 2 X. Thanks to the distributional formulation, we have Z ⌦ (t, x)m(t, dx) t tr(a(x)D 2 ) + H p (x, Du) • D )m(r, dx)dr = 0 , (3.3.12)

m 2 (

 2 T )) and u 1 and u 2 solve the same Hamilton-Jacobi equation, which implies u 1 = u 2 . The proof of uniqueness is complete. Finally, if m 0 2 C 2+↵ satisfies (3.3.9), then, splitting the divergence terms in(3.3.11)

.4. 5 )

 5 Coming back to (3.4.3), this implies sup t2[0,T ]

5 . 4 )

 54 with = 0 and ⇠ 2 C 1+↵,N . Multiplying the equation of µ for and integrating by parts in [0, t] ⇥ ⌦ we obtain hµ(t), ⇠i = hµ 0 , (0, •)i + Z t 0 hf (s), (s, •)i ds . (3.5.8) Thanks to Lemma 3.3.1, we know that k k 1+↵ 2 ,1+↵  C k⇠k 1+↵ . (3.5.9)

.5. 11 )

 11 Choosing r = d+2 1 ↵ , one has 2 d+2 r = 1 + ↵. Integrating in [0, T ] ⇥ ⌦ the equation of µ one has Z T 0 Z ⌦ µ dxds = hµ 0 , (0, •)i + Z T 0 hf (s), (s, •)i ds .

  .5.13) where C actually depends on b k , but since b k ! b it is bounded uniformly in k. Moreover, the function µ k,h := µ k µ h also satisfies (3.5.3) with data b = b

  5.3). This concludes Chap. 3 -The Master Equation in a Bounded Domain with Neumann Conditions the existence part.

  and b n ! b. Then the function μn := µ n µ satisfies (3.5.3) with b , µ 0 and f replaced by b n , µ n 0 µ 0 , f n f + div(µ(b n b)). Then we use (3.5.6) to obtain sup t kμ n

Corollary 3 . 5 . 6 .

 356 Let (u, m) be the solution of the MFG system defined in (3.1.2). Then we have m 2 L p (Q T ) for p = d+2 d+1+↵ , with kmk L p  C km 0 k (1+↵) . (3.5.16) Furthermore, if (u 1 , m 1 ) and (u 2 , m 2 ) are two solutions of (3.1.2) with initial conditions m 01 and m 02 , then we have km 1 m 2 k L p (Q T )  Cd 1 (m 01 , m 02 ) . (3.5.17) Proof. Since m satisfies (3.5.3) with µ = m 0 2 P(⌦) ⇢ C (1+↵) , b = H p (x, Du) + b 2 L 1 and f = 0, inequality (3.5.16) comes from Proposition 3.5.3.For the second inequality, we consider m := m 1 m 2 . Then m solves the equation 8

113Chap. 3 -

 3 The Master Equation in a Bounded Domain with Neumann Conditions

Theorem 3 . 6 . 1 .

 361 Suppose hypotheses 3.2.4 are satisfied. Then there exists a unique classical solution U of the Master Equation (3.1.1).

Lemma 3 . 7 . 2 . C k k 2 L 2

 37222 Suppose hypotheses of the previous theorem are satisfied. Then, if m 2 P(⌦) and 2 L 2 (m, R d ) is a bounded vector field, w w w w U (t, •, (id + )]m) U (t, •, m) Z ⌦ D m U (t, •, m, y) • (y) dm(y) (m) . (3.7.5)

⌦

  D m U = D y U m , the left-hand side can be rewritten as w •, m, y + (y)) U m (t, •, m, y) D m U (t, •, m, y) • (y) U (t, •, m, y + t (y)) D m U (t, •, m, y)) • (y) dm(y)dt sD y D m U (t, •, m, st (y)) (y) (y) dm(y) dt ds

3 -

 3 The Master Equation in a Bounded Domain with Neumann Conditions Theorem 3.7.4. Let hypotheses 3.2.4 satisfied. Then u

2 . 1 )

 21 where x 2 R n , t 2 [0, T ) and also the random variable X s takes values in the whole space R n .The time dependent control variables ↵ s , s live in the space of bounded controls U ⇥ S, whereas for the continuous functions b : R n ⇥ U ! R n , : R n ⇥ S ! R

.3. 11 )

 11 Due to the coercive term |x| 2 and the boundedness of u, we know that the function in (4.3.11) achieves a maximum.

( 4 . 3 . 25 )

 4325 In order to estimate the right-hand side terms, we first compute the derivatives of . We haver x = 4M |x z| 2 (x z) + (x + ȳ 2z) + 2 x , r y = 4M |ȳ z| 2 (ȳ z) + (x + ȳ 2z) , r z = 4M |x z| 2 (x z) |ȳ z| 2 (ȳ z) 2(x + ȳ 2z) , x z) ⌦ (x z) + |x z| 2 I + I + 2 x z) ⌦ (x z) + |x z| 2 I + 2I , D 2 yy = 4M 2(ȳ z) ⌦ (ȳ z) + |ȳ z| 2 I + I , D 2 yz = 4M 2(ȳ z) ⌦ (ȳ z) + |ȳ z| 2 I + 2I , D 2 zz = 4M2(x z) ⌦ (x z) + |x z| 2 I + 2(ȳ z) ⌦ (ȳ z) + |ȳ z| 2 I + 4I .

  tr( (x, ) 2 X + (ȳ, ) 2 Y + (z, ) 2 Z) on the left is non-negative definite and thanks to(4.3.24).

  x, ↵), r x i + hb(ȳ, ↵), r y i+ hb(z, ↵), r z i + e (T t) L 1 ( t, x, ↵) + L 1 ( t, ȳ, ↵) 2L 1 ( t, z, ↵)  C + 4M |x z| 2 hb(x, ) b(z, ), x zi + 4M |ȳ z| 2 hb(ȳ, ) b(z, ), ȳ zi + 2M hb(x, ) + b(ȳ, ) 2b(z, ), x + ȳ 2zi + 2 hb(x, ), xi  C + C |x| .Because of (4.3.23), we have |x| ! 0 when ! 0.

  2 and H 1 , with conditions (4.4.3) and (4.4.6), easily allow to obtain a bound for |M |. Similar and easier computations are made in order to bound |M b ij x | and |M x |, using (4.4.5) and (4.4.7).

kvk 1+↵ 2 ,↵ 2 ,

 22 1+↵  C , where C depends on G, H 2 , H 1 .Coming back to the linear equation(4.4.11) satisfied by u, we get thatV, Z, b 2 C ↵ 2 ,↵ , G2 C 2+↵ .Hence, Theorem IV.5.1 of[START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] implies thatu 2 C 1+ ↵ 2 ,2+↵and kuk 1+ ↵ 2 ,2+↵  C . Now, the coe cients of the equation (4.4.16) are in C ↵ and G x i 2 C 2+↵ . Applying again Theorem IV.5.1 of[START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF] we obtainkvk 1+ ↵ 2 ,2+↵  C =) kuk 1+ ↵ 2 ,3+↵  C ,which concludes the proof.

1 H 1 p 1 H 1 p 1 H 1 pSec. 4 . 5 -

 11111145 (t s, x y, p r) • p H 1 (t s, x y, p r) ⇢ (s, y, r) dsdydr= (t s, x y, p r) • (p r) H 1 (t s, x y, p r) ⇢ (s, y, r) dsdydr (t s, x y, p r) • r⇢ (s, y, r) dsdydr C ,where we use in the last passage hypotheses (4.4.4) and (4.4.6) for H 1 . Then, from the results of the previous sections,ku k k 1+ ↵ 2 ,3+↵  C .Regular solutions for the Bellman operator

Proposition 4 . 6 . 1 .

 461 Let m be the unique solution in C([0, T ];P(R n )) of 8 < : m t (a(t, x)m) + div(mb(t, x)) = 0 , (t, x) 2 (0, T ) ⇥ R n , m(0, x) = m 0 (x) , x 2 R n , (4.6.1)where a is uniformly elliptic, a, b bounded in L 1 , and m 0 2 P(R n ). Then m satisfies, for a certain p 0 > 1 and C > 0 both independent of m 0 ,kmk L p ([0,T ]⇥R n ) + sup s6 =t d 1 (m(t), m(s)) t, dx)  C ,



  , X r )| dr + E  Z t s (r, X r ) dB r C|t s| + E Z t s | (r, X r )| 2 dr 1 2

1 2 .

 12 Since X t has law m(t) and X s has law m(s), To prove the L p bound for m, we consider as the solution in [0, T ] ⇥ R n of 8 < :t a(t, x) + b(t, x) • D = , (T ) = 0 ,

Finally, we consider

  as the solution in [0, t] ⇥ R n of 8 < : t a(s, x) + b(s, x) • D = 0 , (s) = |x| .From standard regularity results (see e.g.[START_REF] Porretta | Global Lipschitz regularizing e↵ects for linear and nonlinear parabolic equations[END_REF]), we know thatsup s2[0,t] k (s, •)k 1  C(1 + |x|) .Hence, multiplying the equation of m by and integrating by parts, we obtainZ R n |x|m(t, x) dxdt = Z R n (0, x)m 0 (dx)  C

  H 2 (t, x, u) + H 1 (t, x, ru) + F (t, x, (t)) = 0 , (t, x) 2 [0, T ] ⇥ R N , u(T, x) = G(x, (T )) , x 2 R n .(4.6.5)and then we define ( ) = m, where m is the solution of 8 < :

|

  (u n u k )| 2 m n (s, x) dxds  " .

d 1

 1 (m n (t)), m k (t))  !(n, k) .

Chap. 4 -((u 1 u 2 )

 42 Mean Field Games PDE with Controlled Di↵usion Z (m 1 m 2 )) t First, computing directly the time integral we obtain Z R n (G(x, m 1 (T )) G(x, m 2 (T )))(m 1 (T ) m 2 (T )) dx 0 . (4.6.8)

((u 1 u 2 )

 2 (m 1 m 2 )) t = 0 , which means Z R n (G(x, m 1 (T )) G(x, m 2 (T )))(m 1 (T ) m 2 (T )) dx = 0 , Z x, m 1 (t)) F (x, m 2 (t))) (m 1 (t, dx) m 2 (t, dx)) = 0 , Z

  1.1)Here ⌦ ✓ R N is an open and bounded set and x 2 ⌦ represents the dynamical state of the generic agent, m(t) is the distribution law of the agents at time t (and m(t, x) denotes its

density, if m(t) 2 L 1 ), F (t, x, m), G(x, m(T )) are respectively a running cost and a final pay-o↵ and H(t, x, Du) is the Hamiltonian function associated to the cost of dynamic control of the individuals. More details on the interpretation of solutions in terms of stochastic control will be given later.

  Mean Field Games under Invariance Conditions for the State Space

	Chap. 2 -
	.2.10)
	and
	tr(a(x)D 2 d(x)) H p (t, x, p)Dd(x) 0

  Definition 2.3.1. Under the invariance condition, it turns out that the problem is well-posed in the class of (globally) bounded solutions, with no need of prescription of the boundary condition.

Theorem 2.2.2. Assume that a(x) and H(t, x, p) satisfy assumptions (2.2.3), (2.2.5)-(2.2.7) and the invariance condition (2.2.9), and that G 2 L 1 (⌦).

Then there is one and only one bounded weak solution of the problem 8 > < > :

  Now, by a standard localization argument, we obtain a non-negative C 2 function U such that 8 <

	:

2  C , for each (s, x) 2 [t, T ] ⇥

and for each ↵ 2 A.

  2 -Mean Field Games under Invariance Conditions for the State SpaceNote that in this formulation we do not have a function F , since, for m fixed, it can be included in the Hamiltonian H. Since F does not depend on Du, the derivative H p does

	not change, and the conditions of invariance (2.2.9) are not a↵ected from this inclusion.
	We assume that G is a bounded function and the Hamiltonian H satisfies (2.2.6) and
	(2.2.8).	
	Di↵erent notions of solutions could be used for problem (2.3.1). Since we are assuming
	a to be Lipschitz continuous, the problem can be formulated in divergence form as well,
	namely	8 <
		:

  Now we prove that the HJB equation (2.3.1) has a unique solution if the invariance condition holds. The strategy is classical and relies on the existence of a blow-up supersolution and the convexity of H; a similar principle can be found e.g. in[START_REF] Leonori | Gradient bounds for elliptic problems singular at the boundary[END_REF] Lemma 6].

	Theorem 2.3.8. Suppose G 2 L 1 (⌦). Assume that a(x) satisfies (2.2.3), that H(t, x, p) satisfies (2.2.5)-(2.2.7) and that the invariance condition (2.2.9) holds true.

  .6.6) Theorem 2.6.4. Suppose the hypotheses of Theorem 2.6.1 are satisfied. Moreover, suppose that a

  1 applies to generalized C 2 domains. be a generalized C 2 domain. Suppose that 9 , C 0 > 0 s.t. 8 p 2 R N , 81  i  n and 8 x 2 i the following inequality holds:

	Proposition 2.7.3. Let ⌦ =

n T i=1 ⌦ i

  Choosing L = C, we have proved that m 2 X. Since X is convex and compact, to apply Schauder's theorem we only need to show the continuity of . Let n ! , and let u n and m n the solutions of (3.3.10) and(3.3.11) related to n . Since {u n } n is uniformly bounded in C 1+ ↵ 2 ,2+↵ , from Ascoli-Arzelà's Theorem we have u n ! u in C 1,2 .To prove the convergence of {m n } n , we take n as the solution of (3.3.13) with Du replaced by Du n . Then, as before, { n } n is a Cauchy sequence in C 1 . Actually, the di↵erence

	Thanks to Lemma 3.3.2, we know that (•, x) 2 C bounded uniformly if is 1-Lipschitz.	1 2 ([0, T ]) and its Hölder norm in time is
	Coming back to (3.3.12), we obtain				
	Z		Z			
	⌦	(x)(m(t, dx) m(s, dx)) =	⌦	( (t, x)	(s, x))m(s, dx)  C|t s|	1 2 ,
	and taking the sup over the 1-Lipschitz,			
		d 1 (m(t), m(s))  C|t s|	1 2 .
	n,m := n	m satisfies				
	8 > > > <					
	> > > :					
							.3.13)

  Du 2 ) H(x, Du 1 ) H p (x, Du 1 )(Du 2 Du 1 ))m 1 (t, dx)dt +

			3.3.11), we immediately obtain m = ( ), which conclude the proof
	of continuity.
	So we can apply Schauder's theorem and obtain a classical solution of the problem (3.1.2).
	The estimate (3.3.8) follows from the above estimates for (3.3.10) and (3.3.11).
	To prove the uniqueness, let (u 1 , m 1 ), (u 2 , m 2 ) be two solutions of (3.1.2).
	We use inequality (3.3.15), whose proof will be given in the next lemma, with m 01 (t 0 ) =
	m 02 (t 0 ) = m 0 :
	Z	T	Z
	t 0 (H(x, + ⌦ Z T Z
		t 0	

⌦ (H(x, Du 1 ) H(x, Du 2 ) H p (x, Du 2 )(Du 1 Du 2 ))m 2 (t, dx)dt  0

Since H is strictly convex, the above inequality gives us Du 1 = Du 2 in the set {m 1 > 0} [ {m 2 > 0}. Then m 1 and m 2 solve the same Fokker-Planck equation, and for uniqueness we have m 1

  Lemma 3.3.4. Let (u 1 , m 1 ) and (u 2 , m 2 ) be two solutions of System (3.1.2), with m 1 (t 0 ) = m 01 , m 2 (t 0 ) = m 02 . Then Du 2 ) H(x, Du 1 ) H p (x, Du 1 )(Du 2 Du 1 ))m 1 (t, dx)dt

	Z	T	Z
			(H(x,
		t 0	⌦
	Lasry-Lions monotonicity argument.

  1,1 . Using the Lipschitz continuity of H p with respect to p, we get Du 2 |m 2 (s, dx)ds + Cd 1 (m 01 , m 02 ) ,

	Z since, for Lemma 3.3.2, is Lipschitz continuous with a constant bounded uniformly if ⌦ (x)m(t, dx)  C Z t 0 Z ⌦ is 1-Lipschitz. |Du 1 Sec. 3.4 -Lipschitz continuity of U Now we use the Young's inequality and the first step to obtain

  x, m s , y)(m 1 (dy) m 0 (dy)) ds , with m s = sm 1 + (1 s)m 0 , we have that the left-hand side of (3.7.6) is equal to

	w w w w	Z 1 0	Z	⌦	✓	U m	(t, •, m s , y)	U m	(t, •, m 0 , y)	◆	(m 1 m 0 )(dy) ds	w w w w	1+↵	.	(3.7.7)
	Using (3.7.4), (3.7.7) is estimated from above by w w w w U m (t, •, m s , •) U m (t, •, m 0 , •) w w w w 1+↵,1+↵	d 1 (m s , m 0 )  Cd 1 (m 1 , m 0 ) 2 ,
	which concludes the first step.								
	Step 2. In this step we prove (3.7.5).							
	Thanks to (3.7.6), we know that w w w w U (t, •, (id + )]m) U (t, •, m)							

  The first step consists to check the continuity of the value function u in both variables. Let (t n , x n ) ! (t, x). Using the definition of u, for each " > 0 we considers controls ↵ ",n

		s
	and ",n s	such that
	Z	T
	E	
	tn

, where P(⌦) is the space of Borel probability measures with finite first order moment, equipped with the Wasserstein distance d 1 defined in (3.2.3), is continuous in all variables, and if

m : [0, T ] ! P(⌦) is continuous. Proof.

Step 1: Continuity of u.

  .2.14)We now use Ito's formula on ' and obtain, for any admissible control (↵ s , s ),

	2	
	s 2	'(s, X s ) ds
	This expression, combined with (4.2.14), gives us	
	0	

E['(t + h, X t+h ) '(t, x)] = E Z t+h t ⇢ [' t (s, X s ) + hr'(s, X s ), ↵ s i +

  1 and H 2 , we obtain Now we divide by h and we use the continuity of H 1 and H 2 in time variable, which is an immediate consequence of the time continuity of L 1 and L 2 . We finally obtain '

	E	Z	t	t+h	' t (s, x) + H 1 (s, x, r (s, x)) + H 2 (s, x,	(s, x)) + F (s, x, m(s)) ds  Ch p h .
	H 2 can be rewritten as	n	2 2 | 2 S	o	, the function

t (t, x) H 1 (t, x, r'(t, x)) H 2 (t, x, '(t, x)) F (t, x, m(t, x)) 0 , (4.2.16)

which proves that u is a supersolution of the HJB equation and concludes the Theorem.

Remark 4.2.3. We observe that, up to defining the set S 0 :=

  C↵|x ȳ| 2 + !(↵) , which gives a contradiction for ↵ su ciently small and su ciently large, and proves the Theorem.Theorem 4.3.5. Suppose hypotheses of Theorem 4.3.4 and (4.2.2) are satisfied, and suppose that G 2 C 2 (R n ) with bounded derivatives. Then there exists a unique viscosity solution for equation (4.3.2), and, consequently, (4.3.1). Now, we prove some regularity results for the solution u. These results will be essential in order to work with the Fokker-Planck equation. Theorem 4.3.6. Suppose (4.2.2) hold true and hypotheses of theorem 4.3.4 with = 1 are satisfied. Moreover, suppose that G is a globally Lipschitz function.Then, every solution of (4.3.2) (and consequently of (4.3.1)) is globally Lipschitz in the space variable, with a Lipschitz constant bounded uniformly in t.

	3.6), we obtain |u(t, x) u(t, y)|  L|x y| , ↵ 2 for a certain constant L. Using Young's inequality, the last inequality is equivalent 2 + |x ȳ| 2  Proof. We have to prove that |u

  .[START_REF] Bensoussan | The Master Equation in mean field theory[END_REF] Due to the coercive term |x| 2 and the boundedness of u, we know that the quantity

	and		
	a		
	u(t, x) + u(t, y) 2u(t, z)	(t, x, y, z)	(4.3.20)

  2,+ ( 2u)( t, z), then Hence, since u is both a subsolution and a supersolution, one hasa H 2 ( t, x, tr(X)) H 1 ( t, x, r x ) + u( t, x)  0 , b H 2 ( t, ȳ, tr(Y )) H 1 ( t, ȳ, r y ) + u( t, ȳ)  0 ,The first term in the left-hand side is non-negative, so we can ignore it. For the second term, we use(4.3.22) to get M ✓ + 1 |x z| 4 + |y z| 4 + |x + y 2z| 2 ◆  H 2 ( t, x, tr(X)) + H 2 ( t, ȳ, tr(Y )) 2H 2 ( t, x, r x ) + H 1 ( t, ȳ, r y ) 2H 1

		✓	c 2	,	1 2	r z ( t, x, ȳ, z),	1 2	Z	◆	2 P 2, u( t, z)
	.											
	c 2	H 2	✓	t, z,	1 2	tr(Z)	◆	H 1	✓	t, z,	1 2	r z
													✓	✓ t, z, t, z, 1 2	1 2 r z	tr(Z) ◆ .
	+ H 1 ✓	✓ t, z, t, z, 1 2	1 2 r z	tr(Z) ◆ .	◆

◆

+ u( t, z) 0 .

Adding the first two equalities and subtracting twice the third we obtain

⌫ t2 + (u( t, x) + u( t, ȳ) 2u( t, z))  H 2 ( t, x, tr(X)) + H 2 ( t, ȳ, tr(Y )) 2H 2 ◆ + H 1 ( t, x, r x ) + H 1 ( t, ȳ, r y ) 2H 1

  1 2 tr(Z) , we obtainH 2 ( t, x, tr(X)) + H 2 ( t, ȳ, tr(Y )) 2H 2 (T t) L 2 ( t, x, ) + L 2 ( t, ȳ, ) 2L 2 ( t, z, )

		✓	t, z,	1 2	tr(Z)	◆		(x, ) 2 2	tr(X) +	(ȳ, ) 2 2	tr(Y )
	+	(z, ) 2 2 tr(Z) + e  C + 1 2 tr( (x, )								

2 X + (ȳ, ) 2 Y + (z, ) 2 Z) .

  2 X + (ȳ, ) 2 Y + (z, ) 2 Z) Using the hypotheses on , we finally obtain this bound for the H 2 term:H 2 ( t, x, tr(X)) + H 2 ( t, ȳ, tr(Y )) 2H 2

	4M ⇥ + n ( (x, ) + (ȳ, ) 2 (z, )) 2 ⇤ (2 + n)|x z| 2 ( (x, ) (z, )) 2 + (2 + n)|ȳ z| 2 ( (ȳ, )  + 2 n 2 (x, ) .	(z, )) 2 +
	✓	t, z,	1 2	tr(Z)

  So in each case (4.3.21) remains true and, letting and ⌫ go to 0, we getu(t, x) + u(t, y) 2u(t, z)  M ✓ + 1 |x z| 4 + |y z| 4 + |x + y 2z| 2 ◆ ,which concludes the proof.With these hypotheses, we can state the main result we will use in order to prove the classical regularity of u. This is Theorem 1.1 of[START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations[END_REF].Theorem 4.4.2. Let, for r 2 N, (M r ) r a sequence of function such that M r 2 M 8 r. Let morever 2 C 2+↵ , for a certain 0 < ↵ < 1. Then, if we defineM = inf M (t, x, 1, D 2 u, Du, u) = 0 , (t, x) 2 (0, T ) ⇥ R n u(0, x) = (x) , x2 R n admits a unique solution u 2 C 2+ ([0, T ] ⇥ R n ),where 2 (0, 1) . Now we are ready to prove the C 1+ ↵ 2 ,2+↵ regularity of u. Theorem 4.4.3. Let H 1 and H 2 be di↵erentiable with respect to t and twice continuously di↵erentiable with respect to the other variables. Let, moreover, G 2 C 2+↵ (R n ), for a certain 0 < ↵ < 1. Furthermore, we suppose that H 2 and H 1 are concave with respect to the last variable, and H 2

	M r , we have that
	r
	the problem
	8 < : p (t, x, p) • p H 1 (t, x, p) u t w w H 1 (•, •, 0) w w H 2 q (•, •, •) w w H 2 w w 1 + w w 1 + qx (•, •, •) w w H 2 (•, •, 0) w w H 1 p (•, •, •) w w w w 1  C , 1  C , w w 1  C , H 1 C , H 2 q (t, x, q) • q H 2 (t, x, q) |H 1 px (4.4.7) (4.4.3) (4.4.4) (4.4.5) C , (4.4.6) w w H 2 xx (•, •, q) w w 1 + w w H 2 t (•, •, q) w w 1  C(1 + |q|) , (4.4.8) w w H 1 xx (•, •, p) w w 1 + w w H 1 t (•, •, p) w w 1  C(1 + |p|) , (4.4.9)

q (t, x, q) ⌫ 8(t, x, q) 2 [0, T ] ⇥ R n ⇥ R and for a certain ⌫ > 0 .

(

4.4.2)

Finally, we require the following assumptions:

9 C > 0 such that i (t, x, p) • p H 1 x i (t, x, p)|  C , |H 2 qx i (t, x, q) • q H 2 qx i (t, x, q)|  C ,

  x, 1 tr(B))| + | H 1 x i x j (t, x, 1 p)|  C |tr(B)| + |p| +  C q 2 + |p| 2 + |B| 2 ,where we used (4.4.8), (4.4.9). Then M 2 M and we are allowed to apply Theorem 4.4.2. This concludes the proof. Since u is a classical function, we are allowed to linearize problem (4.3.1). Actually, we Now we can use the linear character of the equation (4.4.11) in order to improve the regularity of u. The theorem is the following: Theorem 4.4.4. Suppose the hypotheses of Theorem 4.4.3 are satisfied. Furthermore, assume that, for some k > 0 and C > 0 ,  C L 8|p|  L, |q|  L , (4.4.13) and all the derivatives H 2 q , H 1 p , H 2 x , H 1 x be Lipschitz in the last variable. Finally, suppose that G 2 C 3+↵ , with Then the solution u of (4.3.1) satisfies the following estimate: where C depends on H 2 , H 1 , G, T , n . Proof. We consider, for 1  i  N , the function v := u x i . Di↵erentiating the equation (4.3.1) with respect to x i , we obtain for the function v H 2 q (t, x, u) v H 1 p (t, x, Du)•Dv = H 2 x i (t, x, u) + H 1 x i (t, x, Du) , v(T, x) = G x i (x) .

									kuk 1+ ↵ 2 ,3+↵  C ,	(4.4.15)
	8 <	v t					
	:							
	get that u satisfies	8 < :	u(T, x) = G(x) , u t V (t, x) u Z(t, x)Du = b(t, x) ,	(4.4.11)
	where							
	V (t, x) =	Z 1 0	H 2 q (t, x,	u(t, x)) d ,	Z(t, x) =	0 Z 1	H 1
		|H 2				
	w w H 2 q (•, •, q)	w w	↵ 2 ,↵ +	w w H 1 p (•, •, p)	w w	↵ 2 ,↵ +	w w H 2 x (•, •, q) 2 ,↵ kGk 3+↵  C . w w ↵ 2 ,↵ + w w H 1 x (•, •, p) w w ↵	(4.4.14)

p (t, x, Du(t, x)) d , b(t, x) = H 2 (t, x, 0) + H 1 (t, x, 0) . x (t, x, q)| + |H 1 x (t, x, p)|  C(1 + |p|) 8t 2 [0, T ], x 2 R n .

(4.4.12)

Morever, we require, for a certain ↵ 2 (0, 1),

  4.5 Regular solutions for the Bellman operatorIt is not obvious at all to have in our examples C 2 Hamiltonian in all variables. In order to handle this problem, we introduce the following Proposition. Proposition 4.5.1. Let H 2 and H 1 be almost everywhere twice di↵erentiable in the space and in the last variable, and almost everywhere di↵erentiable in the time variable, and suppose H 1 and H 2 be concave in the last variable and satisfying estimates from (4.4.2) to (4.4.9) and from (4.4.12) to (4.4.14), where pointwise estimates have to be intended almost everywhere.Then the unique solution u of (4.3.1) satisfies

	kuk 1+ ↵ 2 ,3+↵  C .	(4.5.1)

  m 1 (t)) F (x, m 2 (t))) (m 1 (t, dx) m 2 (t, dx)) dt H 2 (t, x, u 2 ) H 2 (t, x, u 1 ) H 2 q (t, x, u 1 ) (u 2 u 1 ) m 1 (t, dx)dt H 2 (t, x, u 1 ) H 2 (t, x, u 2 ) H 2 q (t, x, u 1 ) (u 1 u 2 ) m 2 (t, dx)dtSince H 2 and H 1 are concave functions, all the above integrals are non-positive. Then, combining this result with (4.6.8), we obtain

	Z		T	Z	
	+				
	Z	0	T	Z	R n
	+				
	Z	0 T	Z	R n
	+				
	0		R

n H 1 (t, x, Du 2 ) H 1 (t, x, Du 1 ) H 1 p (t, x, Du 1 )D(u 2 u 1 ) m 1 (t, dx)dt + Z T 0 Z R n H 1 (t, x, Du 1 ) H 1 (t, x, Du 2 ) H 1 p (t, x, Du 2 )D(u 1 u 2 ) m 2 (t, dx)dt

even if[START_REF] Porretta | Null controllability of viscous Hamilton-Jacobi equations[END_REF] Proposition 

2.1] is written with a(x) = I, the same proof applies without any change to the case of a bounded coercive matrix a(x).

,n+↵ ([0, T ] ⇥ ⌦).

> 0 .
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Chap. 4 -Mean Field Games PDE with Controlled Di↵usion

Some cases of fully nonlinear Mean Field Games were studied in the literature. In [START_REF] Dragoni | Ergodic Mean Field Games with Hörmander di↵usions[END_REF] there are results for an ergodic Mean Field Games (so elliptic) with nonlinear second order term, and in [START_REF] Benazzoli | Mean field games with controlled jump-di↵usion dynamics: Existence results and an illiquid interbank market model[END_REF] we find another class of fully nonlinear Mean Field Games systems, studied with a probabilistic approach.

But, as far as we know, there are no results for the well-posedness of a Mean Field Games system like (4. 1.1). This is the aim of this chapter.

We give a short summary of the results.

In Section 2, as already said, we give a stochastic interpretation of the system, with a process controlled by two di↵erent controls, ↵ for the drift term and for the di↵usion term. We emphasize that, for simplicity, we will work with a unidimensional di↵usion term, which allows us to work with a function H 2 of the Laplacian. However, some generalization to the general case with H 2 depending on the whole D 2 u could be given. Then we prove, in a simpler case, that the value function of this game is actually a viscosity solution of a fully nonlinear Hamilton-Jacobi equation.

In Section 3 we start studying the Hamilton-Jacobi equation of the system (4.1.1). Equations of this type has been studied in the literature, see for instance the works [START_REF] Barles | Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations[END_REF], [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], [START_REF] Lions | On the Hamilton-Jacobi-Bellman equations[END_REF] and [START_REF] Tataru | Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms[END_REF].

We start giving a suitable definition of viscosity solution. Then we prove existence and uniqueness of bounded solutions. Further we obtain, with a strengthening of the hypotheses, Lipschitz and semiconcave estimates for u.

In Section 4 we restrict ourselves in a regular case, with stronger hypotheses on H 1 and H 2 ; applying a regularity result of Krylov,see [START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations[END_REF] and [START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations in a Domain[END_REF], we obtain that u 2 C 1+ 2 ,2+ for a certain 0 < < 1, and so u is actually a solution of a linear PDE. Then, using the regularity results of [START_REF] Ladyženskaja | ceva: Linear and Quasi-linear Equations of Parabolic Type[END_REF], we obtain first an estimate for u in C 1+ ↵ 2 ,2+↵ , and then a C 3+↵ regularity for u in the space.

These regularity results will be essential in order to obtain, by approximation, a C 1+ ↵ 2 ,3+↵ solution for the value function u in our case of Bellman operators. This will be done in Section 5. This regularity will be essential in Section 6, where we finally prove existence and uniqueness of solutions for the problem (4.1.1), with a classical fixed point argument. and

Since there is no dependence on m in this step, we can omit F in (4.3.1), including it into H 1 (up to changing the Lagrangian L 1 ). Hence, the equation we want to study is the following 8 < :

We note that, with the change of variable v(t, x) = e (T t) u(t, x), the system (4.3.1) is equivalent to the following one:

where

for each > 0.

So, in order to prove existence, uniqueness and regularity of solutions, we will work with (4.3.2). For simplicity, we will write H 1 and H 2 instead of H 1 and H 2 , up to changing again the Lagrangians L 1 and L 2 .

Due to the non-linearity of the second-order term, we need to work in viscosity sense.

First, for each u : (0, T ) ⇥ R n ! R we define the following sets: Definition 4.3.1. We denote with P 2,+ u(t 0 , x 0 ) the set of all points (a, p, X) 2 R ⇥ R n ⇥ Sym(n, n) such that for (t, x) ! (t 0 , x 0 ) we have

Similarly, we define P 2, u(t 0 , x 0 ) = P 2,+ ( u)(t 0 , x 0 ), i.e. the set of all points (a, p, X) 2
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Now we give a suitable definition of solution.

Definition 4.3.2. We say that a function u 2 USC((0, T ] ⇥ R n ) and bounded from above is a subsolution of (4.3.2) if 8(t, x) 2 (0, T ) ⇥ R n and 8(a, p, X) 2 P 2,+ u(t, x) we have a H 2 (t, x, tr(X)) H 1 (t, x, p) + u(t, x)  0 ; moreover, 8x 2 R n we require u(T, x)  G(x).

Similarly, we say that a function u 2 LSC((0, T ] ⇥ R n ) and bounded from below is a supersolution of (4.3.2) if 8(t, x) 2 (0, T ) ⇥ R n and 8(a, p, X) 2 P 2, u(t, x) we have a H 2 (t, x, tr(X)) H 1 (t, x, p) + u(t, x) 0 ; moreover, 8x 2 R n we require u(T, x) G(x).

Finally, we say that a bounded continuous function u is a solution of (4.3.2) if it is both a subsolution and supersolution.

The new term u and the boundedness hypotheses play an essential role in order to prove the comparison principle.

In order to prove it, we also need the following proposition (Theorem 8.3 of [START_REF] Crandall | User's guide to viscosity solutions of second order partial di↵erential equations[END_REF]) , which will be also useful in the rest of the section. Proposition 4.3.3. Let u 1 , . . . , u N subsolutions of (4.3.2). Consider a function : (0, T ) ⇥ R Nn ! R, once continuously di↵erentiable in t and twice continuously di↵erentiable in (x 1 , . . . , x N ). Suppose that

achieves his maximum in ( t, x1 , . . . , xN ).

Then there exist a

Chap. 4 -Mean Field Games PDE with Controlled Di↵usion

The existence of solutions of (4.3.2) is a natural adaptation of the elliptic case, whose proof can be found in [START_REF] Crandall | User's guide to viscosity solutions of second order partial di↵erential equations[END_REF]. Following the ideas of that article, existence of solutions is guaranteed if there exists a continuous subsolution u and a continuous supersolution u such that (in the case of Dirichlet conditions)

The solution turns to be the following one:

We look for a function u of this type:

Obviously (4.3.8) is satisfied. In order to have u subsolution of (4.3.2), it has to be

for each (t, x)

) with bounded derivatives, we obtain that the right-hand side of (4.3.9) is bounded from below. So it is su cient to take ⇠ as the solution of 8 < :

with M su ciently large.

Reasoning in the same way, a good supersolution u will be:

with ⇠ solution, for M su ciently large, of the ODE 8 < :

As regards uniqueness, it is an obvious consequence of the comparison principle. 

we obtain that there exist a, b, X, Y such that (a, r x ( t, x, ȳ), X)

and

From now on, we will omit for the function his dependence on ( t, x, ȳ). Since u is both a subsolution and a supersolution, one has a H 2 ( t, x, tr(X))

Subtracting the two inequalities we obtain

The first term in the left-hand side is non-negative, so we can ignore it. For the second term, we use (4.3.13) to get

• f is a.e. twice di↵erentiable and there exists a constant C such that

where I is the n⇥n-identity matrix.

From this remark we immediately obtain:

C for a certain C, and so the third condition of the remark is satisfied.

More generally, if f is in W 2,1 then f and f are semiconcave functions.

In order to prove the semiconcave regularity for the value function, we need the following technical lemma on semiconcave and W 2,1 functions: Lemma 4.3.9. Let f : ⌦ ! R. Suppose that the following inequality holds for every x, y, z 2 ⌦, > 0 and for a certain C > 0:

Then f is locally Lipschitz and semiconcave. Furthermore, if f is Lipschitz and semiconcave then (4.3.17) holds for all x, y, z 2 ⌦, > 0 and for a certain C > 0.

Finally, if f 2 W 2,1 (⌦) then there exists a C > 0 such that, for every x, y, z 2 ⌦ and > 0

Proof. If (4.3.17) is true, then, taking x = z + h, y = z h, = |h| 2 , we obtain (4.3.16) and this proves that f is semiconcave. Furthermore, if we wake z = y and = |x y| from (4.3.17) we obtain

proving that f is locally Lipschitz. On the other hand, suppose that f is Lipschitz and semiconcave. Then we know from (4.3.16) that

achieves a maximum. We denote one of its maximum points with ( t, x, ȳ, z) 2 (0, T ] ⇥ R 3n . Suppose t = T . Then

Since G is Lipschitz and semiconcave, the right-hand side term is non-positive for M suciently large, using (4.3.17). This implies 

and, since u is Lipschitz,

for a certain C > 0.

Since 2u(t, x) is a subsolution of z t H2 (t, x, z) H1 (t, x, rz) = 2F (t, x) , with H2 (t, x, q) = 2H 2 (t, x, 1 2 q) and H1 (t, x, p) = 2H 1 (t, x, 1 2 p), we can apply Proposition 4.3.3 with u 1 (t, x) = u(t, x) , u 2 (t, y) = u(t, y) , u 3 (t, z) = 2u(t, z) , (t, x, y, z) as defined before , obtaining that there exist a, b, c, X, Y, Z such that (a, r x ( t, x, ȳ, z), X) 2 P 2,+ u( t, x) , (b, r y ( t, x, ȳ, z), Y ) 2 P 2,+ u( t, ȳ) , (c, r z , Z) 2 P 2,+ ( 2u)( t, z) 2 P 2,+ ( 2u)( t, z) ,

Classical solutions in a regular case

In this section we want to prove that, for a specified class of C 2 Hamiltonians, the solution u of (4.3.1) is actually in the space C 1+ 2 ,2+ , for some > 0. This estimate allows us to linearize problem (4.3.1) and apply the classical regularity results of linear parabolic equations in order to obtain a C 1+ ↵ 2 ,3+↵ , depending only on the coe cients H 1 , H 2 and the data G. This last estimation will be crucial in order to obtain a C 1+ ↵ 2 ,3+↵ solution in our framework.

To do that, we need to use the regularity results obtained by Krylov in 1983. According to [START_REF] Krylov | Boundedly Nonhomogeneous Elliptic and Parabolic Equations[END_REF], we define a class of functions for which the C 1+ 2 ,2+ regularity will hold. ij and p = (p i ) i . We say that M 2 M if the following conditions are satisfied:

(i) M is positive homogeneous of first order, with respect to the variables ( , B, p, s) ;

(ii) M is twice continuously di↵erentiable in the variables (x, , B, p, s), for all t 2 [0, T ] ;

(iv) M is concave with respect to (b ij ) ij ;

(v) The second order directional derivative of M with respect to (B, p, s) along a vector (B 0 , p 0 , s 0 ) is bounded from above by

for a certain C > 0 ;

(vi) There exists C > 0 such that, 8i, j ,

(vii) M continuous in all variables and di↵erentiable with respect to t, with

We note that this definition is well-posed, since 2 R >0 , and we have

So, if we can apply Theorem 4.4.2, we will obtain a C 1+ 2 ,2+ solution for (4.3.1), and we will have finished.

We only have to check that M 2 M . We check all the conditions required by Definition 4.4.1.

(i), (ii). The positive homogeneity with respect to ( , B, p) and the twice continuously di↵erentiability with respect to (x, , B, p) are immediate consequences of the definition of M and the hypotheses of regularity for H 1 , H 2 .

(iii). Since M depends only on b ij when i = j, we have,

(iv) Since > 0, the concavity of M with respect to (b ij ) is a direct consequence of the concavity of H 2 with respect to q. Actually, we have

(v) Take a vector (B 0 , p 0 ) and define the function (r) = M (t, x, , B + rB 0 , p + rp 0 ) . We have to prove that 00 (0

Computing the first derivative, we find 0 (r) = H 2 q (t, x, 1 tr(B + rB 0 ))tr(B 0 ) + H 1 p (t, x, 1 (p + rp 0 )) • p 0 , and so

Using the concavity of H 2 and the semiconcavity of H 1 with respect to the last variable, (4.4.10) is proved.

(vi) We analyze each term of (4.4.1). As regards M b ij and M p i , we have for (4.4.4)

For M , we compute the derivative and we obtain

Chap. 4 -Mean Field Games PDE with Controlled Di↵usion

Hypotheses 4.6.2.

in the time variable, for a certain ↵ 2 (0, 1), satisfying

Furthermore, F and satisfies a Lipschitz estimate with respect to the measure:

For G, we required that is a C 3+↵ function in the space variable satisfying (4.6.3), with a C 3+↵ norm bounded uniformly in m . Furthermore, if one of these conditions is satisfied:

(i) H 1 and H 2 strictly concave with respect to the last variable and F and G nondecreasing with respect to m:

(ii) H 1 and H 2 concave with respect to the last variable and F and G strictly increasing with respect to m, i.e. F and G satisfy (4.6.4) and in addition:

then the solution is unique.

Proof. The existence relies on Schauder fixed point Theorem.

We consider the following metrix space:

o , where C will be defined later.

Sec. 4.6 -The Fokker-Planck Equation and The Mean Field Games System (i) if F and G are strictly increasing, then (ii) if H 1 and H 2 are strictly concave, we argue in a similar way. Actually, we have for example

which implies

Hence, m 1 and m 2 solve the same FP equation, which implies m 1 = m 2 . Coming back to the HJB equation, we have that F (t, x, m 1 (t)) = F (t, x, m 2 (t)) and G(x, m 1 (T )) = G(x, m 2 (T )). So u 1 and u 2 solve the same HJB equation, which implies

Hence, the proof of uniqueness is completed.
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