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Résumé: Récemment, l’émergence de la sur-
face intelligente reconfigurable (RIS) a attiré
l’attention de l’industrie et du monde univer-
sitaire. Un RIS est une surface plane constituée
d’un grand nombre d’éléments réfléchissants
passifs à faible coût. En ajustant soigneuse-
ment les déphasages des éléments réfléchissants,
un RIS peut remodeler l’environnement sans
fil pour une meilleure communication. Cette
thèse s’articule autour de deux sujets : (i)
Etudier la modélisation et l’optimisation des
systèmes de communication assistés par RIS. (ii)
Étudier la modulation spatiale assistée par RIS,
en particulier la détection à l’aide de techniques
d’apprentissage en profondeur.

Le chapitre 1 présente le concept
d’environnements radio intelligents et RIS
comme technique de mise en œuvre. Dans
les communications futures, RIS est une tech-
nique clé pour obtenir une connectivité trans-
parente et une consommation d’énergie moindre
en même temps.

Le chapitre 2 présente les systèmes de com-
munication assistés par RIS. Le principe de
réflexion, le problème d’estimation de canal et le
problème de conception du système sont présen-
tés en détail. Les recherches de pointe sur les
problèmes d’estimation de canal et de concep-
tion de système sont passées en revue.

Le chapitre 3 étudie le comportement du
rapport signal sur bruit (SNR) en tant que
variable aléatoire dans un système MIMO (en-
trées multiples et sorties multiples) assisté par

RIS. L’évanouissement de Rayleigh et la prop-
agation en visibilité directe sont considérés sé-
parément. La dérivation théorique et la sim-
ulation numérique ont prouvé que le SNR est
équivalent en distribution au produit de trois
(évanouissement de Rayleigh) ou de deux (prop-
agation en ligne de visée) variables aléatoires in-
dépendantes.

Le chapitre 4 étudie le comportement des
interférences dans un système MIMO assisté
par RIS, où chaque station de base dessert
un équipement utilisateur (UE) via un RIS.
L’interférence au niveau d’un UE est causée par
son RIS non desservant. Il est prouvé que le rap-
port interférence/bruit est équivalent en distri-
bution au produit d’une variable aléatoire Chi-
carré et d’une variable aléatoire qui peut être
approchée avec une distribution Gamma.

Le chapitre 5 se concentre sur la modulation
spatiale assistée par RIS. Tout d’abord, nous
présentons la détection assistée par apprentis-
sage en profondeur pour les systèmes MIMO.
Ensuite, en généralisant les systèmes de modu-
lation spatiale assistés par RIS en tant que cas
particulier des systèmes de modulation spatiale
traditionnels, nous étudions la détection basée
sur l’apprentissage en profondeur pour les sys-
tèmes de modulation spatiale assistés par RIS.
Les résultats numériques valident les schémas de
détection d’apprentissage en profondeur basés
sur des données et sur des modèles pour les sys-
tèmes de modulation spatiale assistés par RIS.

Enfin, le chapitre 6 conclut la thèse et dis-
cute des pistes de recherche futures possibles.
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Abstract: Recently, the emergence of re-
configurable intelligent surface (RIS) has at-
tracted heated attention from both industry and
academia. An RIS is a planar surface that con-
sists of a large number of low-cost passive re-
flecting elements. By carefully adjusting the
phase shifts of the reflecting elements, an RIS
can reshape the wireless environment for better
communication. In this thesis, we focus on two
subjects: (i) To study the modeling and opti-
mization of RIS-aided communication systems.
(ii) To study RIS-aided spatial modulation, es-
pecially the detection using deep learning tech-
niques.

Chapter 1 introduces the concept of smart
radio environments and RIS as its implementa-
tion technique. In future communications, RIS
is a key technique to achieve seamless connec-
tivity and less energy consumption at the same
time.

Chapter 2 introduces RIS-aided communi-
cation systems. The reflection principle, chan-
nel estimation problem and system design prob-
lem are introduced in detail. State-of-the-art
research on the problems of channel estimation
and system design are overviewed.

Chapter 3 investigates the distribution of
the signal-to-noise ratio (SNR) as a ran-
dom variable in an RIS-aided multiple-input

multiple-output (MIMO) system. Rayleigh fad-
ing and line-of-sight propagation are considered
separately. The theoretical derivation and nu-
merical simulation prove that the SNR is equiv-
alent in distribution to the product of three
(Rayleigh fading) or two (line-of-sight propaga-
tion) independent random variables.

Chapter 4 studies the behavior of inter-
ference in an RIS-aided MIMO system, where
each base station serves a user equipment (UE)
through an RIS. The interference at a UE is
caused by its non-serving RIS. It is proven that
the interference-to-noise ratio is equivalent in
distribution to the product of a Chi-squared ran-
dom variable and a random variable which can
be approximated with a Gamma distribution.

Chapter 5 focuses on RIS-aided spatial mod-
ulation. First, we introduce deep learning aided
detection for MIMO systems. Then, by gen-
eralizing RIS-aided spatial modulation systems
as a special case of traditional spatial modula-
tion systems, we investigate deep learning based
detection for RIS-aided spatial modulation sys-
tems. Numerical results validate the proposed
data-based and model-based deep learning de-
tection schemes for RIS-aided spatial modula-
tion systems.

Finally, Chapter 6 concludes the thesis and
discusses possible future research directions.
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Synthèse en français
La surface intelligente reconfigurable (SIR) est considérée comme l’une des techniques

prometteuses pour les futures communications sans fil. Il a attiré l’attention de l’industrie

et du milieu universitaire. Dans cette thèse, nous nous concentrons sur les systèmes de

communication basés sur les SIF.

Dans le chapitre 1, le contexte de cette thèse est présenté. Pour répondre aux exigences de

plus en plus élevées des communications futures, une solution consiste à créer un environ-

nement radio intelligent (SRE), où le canal sans fil est une variable d’optimisation et peut

être programmé. Un RIS est une surface plane composée d’un grand nombre d’éléments

réfléchissants passifs à faible coût. La reconfigurabilité du RIS réside dans le fait que le co-

efficient de réflexion de chaque élément peut être ajusté indépendamment. En raison de sa

capacité à réaliser une connectivité transparente avec une consommation d’énergie moindre,

le RIS est considéré comme une technique clé pour activer le SRE.

Dans le chapitre 2, nous avons résumé les recherches récentes sur les systèmes de communica-

tion assistés par SIF. Le principe de réflexion, le problème d’estimation de canal et le problème

de conception de système sont présentés en détail. Les systèmes assistés par RIS peuvent être

classés en deux catégories, à savoir la transmission d’informations basée sur le SI (RBIT) où le

RIS module des informations supplémentaires, et les communications sans fil assistées par

RIS (RAWC) où le RIS ne code pas les informations. Dans cette thèse, pour les systèmes RAWC

et RBIT, nous nous concentrons sur différents sujets. La distribution du rapport signal sur

bruit (SNR) et du rapport interférence sur bruit (INR) dans les systèmes RAWC est abordée

dans les chapitres 3 et 4. Pour le RBIT, nous visons à améliorer les performances de détection

à l’aide de l’apprentissage en profondeur. Sur la base de l’idée de déploiement en profondeur,

nous proposons au chapitre 5 un schéma de détection d’apprentissage en profondeur basé

sur un modèle pour un système RBIT spécifique qui réalise une modulation d’indice via la

réflexion de RIS.

Dans le chapitre 3, nous visons à étudier le comportement du SNR dans un système MIMO

point à point assisté par RIS unique. L’évanouissement de Rayleigh et la propagation en

visibilité directe sont considérés séparément. Le théorème central limite et la théorie des

matrices aléatoires sont adoptés comme outils pour résoudre des problèmes mathématiques.

La dérivation théorique et la simulation numérique prouvent que le SNR est équivalent en

distribution au produit de trois (évanouissement de Rayleigh) ou de deux (propagation en

ligne de visée) variables aléatoires indépendantes.

Dans le chapitre 4, nous nous intéressons au comportement de l’INR d’un RIS à un autre
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Synthèse en français

RIS. Dans le système considéré, deux stations de base sont considérées, chaque station de

base dessert un équipement utilisateur (UE) via un RIS. L’interférence au niveau d’un UE est

causée par son RIS non desservant. Des résultats similaires par rapport au chapitre 3 sont

obtenus. Il est prouvé que le rapport interférence/bruit est équivalent en distribution au

produit d’une variable aléatoire Chi-carré et d’une variable aléatoire qui peut être approchée

avec une distribution Gamma. De plus, il est prouvé que le RIS est sensible aux interférences

dues à l’évanouissement de l’INR.

Le chapitre 5 se concentre sur les systèmes de modulation spatiale assistée par RIS (RIS-SM).

Tout d’abord, nous introduisons la détection assistée par apprentissage profond pour les

systèmes MIMO. Ensuite, en généralisant les systèmes de modulation spatiale assistés par RIS

comme un cas particulier des systèmes de modulation spatiale traditionnels, nous étudions

les détecteurs basés sur l’apprentissage profond pilotés par les données et les modèles pour

les systèmes RIS-SM. Le détecteur d’apprentissage profond piloté par les données est réalisé

via un réseau neuronal entièrement connecté, le détecteur d’apprentissage profond piloté

par modèle est basé sur le déploiement profond, dont l’idée principale est de déployer un

algorithme itératif et de traiter chaque itération comme une couche dans le réseau neuronal.

Les résultats numériques montrent que : dans le cas où aucun CSI n’est disponible au niveau

du récepteur, le détecteur piloté par les données proposé surpasse le détecteur glouton existant

; dans le cas où CSI est disponible au niveau du récepteur, le détecteur piloté par modèle

proposé surpasse le détecteur piloté par les données proposé. En outre, le détecteur piloté par

modèle proposé surpasse également les détecteurs ADMM et ISTA dépliés.

Enfin, le chapitre 6 conclut la thèse et discute des futures directions de recherche possibles.
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Notation
The following notation is used throughout this thesis.

x a vector

xn the nth vector

‖x‖ the norm of x

X a matrix

Xn the nth matrix

si the i th symbol
d=, ∼ Equivalent in distribution, distributed as
NÀ1= ,

NÀ1≈ ,
NÀ1∝ Equality, approximation and scaling law if N À 1

diag(x) a diagonal matrix with diagonal given by vector x

arg(x) the angle of the complex variable x.

E, V, cov Expectation, variance, covariance

Re, Im Real part, imaginary part

(·)H , 1(·) Hermitian operator, indicator function

|·|, ‖·‖ Absolute value, norm of a vector

0A×B A×B matrix with all zero entries

1A×B A×B matrix with all one entries

Iα(·), Γ(·) Bessel function of the first kind, Gamma function

sinc(x) Normalized sampling function (sin(πx)/(πx))

O (·) Big O (asymptotic) notation

N
(
m,σ2

)
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Chapter 1. Introduction

This chapter begins with Section 1.1 which introduces the challenges of 6G networks and the

concept of smart radio environments (SRE). Section 1.2 introduces reconfigurable intelligent

surface (RIS) and illustrates the working principle of RIS. In Section 1.3, we introduce merits of

RIS by summarizing potential applications of RIS in 6G networks. Section 1.4 highlights the

major contributions in this thesis work and the organization of the thesis. Section 1.5 provides

lists of publications produced during the Ph.D. thesis.
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1.1. Background

1.1 Background

Figure 1.1 – Key capabilities of 6G networks [1].

Nowadays, with the development of technologies such as multimedia and artificial intelligence

(AI), the demand for a higher wireless transmission data rate is constantly growing. As the

next-generation communication, 6G communication is expected to support usage scenarios

such as ultra-massive machine-type communications (umMTC), extremely reliable and low-

latency communications (ERLLC), further-enhanced mobile broadband (FeMBB), extremely

low-power communications (ELPC) and long-distance and high-mobility communications

(LDHMC). The detailed technical objectives of 6G networks are presented in Fig. 1.1. The

expected device connectivity density is larger than 107 devices/km2; the reliability should be

higher than 99.9999% and the latency should be smaller than 0.1 ms [5]; the peak data rate

should be at least 1 Tb/s and the user-experienced data rate should be higher than 1 Gb/s; the

energy efficiency should be ten or hundred times of 5G.

Various promising technologies have been proposed to fulfill these typical stringent require-

ments. Among the recent emerging technologies, reconfigurable intelligent surface (RIS), or

intelligent reflecting surface (IRS), draws heated attention from both industry and academia

for its ability to create smart radio environments (SRE) where the wireless propagation condi-

tions are configured to enhance wireless communication [2].

For a long time in the history of wireless communication, physical objects in the environment

are always regarded as a threat to communication because they usually have a negative

effect on wireless communication. However, the rapid developments in meta-materials have
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Chapter 1. Introduction

enabled the electromagnetic components to shape how they interact with wireless signals. In

other words, the scattering, absorption, reflection, and diffraction properties can be controlled

by software. In this thesis, we follow the definition in [2] that an SRE is a smart reconfigurable

radio environment that plays actively in transferring and processing information and that

enhances the reliability of data exchange between transmitters and receivers.

1.2 Reconfigurable intelligent surface

RIS is regarded as one of the most promising techniques to achieve SRE, the research on

RIS technology comes under other names, such as reconfigurable intelligent surface [2, 6, 7],

intelligent walls [8, 9], smart reflectarrays [10, 11, 12], low-cost devices embedded into walls

[13], software-controlled metasurfaces [14]. All of the works above aim at creating smart

radio environments. The functions of the proposed RIS technology can be different. By its

capability of amplifying and performing signal processing operations on the impinging radio

wave, they are classified into active and passive surfaces. By its capability to alter the function

of the surface, we can category them into static and dynamic/reconfigurable surfaces. In this

thesis, we focus on the nearly-passive and dynamic RIS, which is a sub-wavelength metallic or

dielectric planar surface that consists of a large number of low-cost passive reflecting elements,

which can reconfigure the wireless communication environment by imposing the desired

phase shift on the incoming signal [15, 16].

1.2.1 The working principle of RIS

Figure 1.2 – Working principle of RIS [2].

An example of the working principle of a RIS is given in Fig.1.2. An incident radio wave is

divided into two parts: the reflected and transmitted (or refracted) radio wave. The reflected

and transmitted radio waves can be reconfigured with specific arrangements of the scattering

particles on the RIS [17], which is achieved by using PIN diodes in this example. The RIS is

capable of shaping the radio waves by the generalized Snell’s laws of reflection and refraction

[18], which makes the angle of reflection radio waves controllable. Typically, the intelligent

reconfiguration is achieved with the aid of sensors embedded at the RIS and a feedback link
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1.2. Reconfigurable intelligent surface

connected to a CPU controller.

(a) Communications without RIS

(b) Communications with RIS

Figure 1.3 – An example of RIS [2].

Fig.1.3 shows a typical application scenario of an RIS. As shown in Fig.1.3 (a), when a user

equipment (UE) M wants to connect to the Internet via its nearest base station (BS) BS1, the

wireless link is blocked by the object O1. In this case, M has to choose BS2 with a weaker

signal because BS2 has a longer distance from M. In Fig.1.3 (b) where RISs are installed on

the surfaces of the objects O2, O3, and O4, the signals from BS1 can be transmitted to M by

refraction from O2 and reflection from O3 and O4. This is because the responses of RISs are

optimized to refract or reflect towards anomalous directions by the generalized Snell’s laws,

i.e., the refractions and reflections of the RISs are controllable. In future communications,

the blockage caused by environmental objects is more severe because high-frequency signals

have high penetration losses and reduced diffraction. Therefore, RIS could be a key technology

in future wireless communications.
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(a) Structure of the RE loaded with
a PIN diode proposed in [19].

(b) Structure of the circularly polarized RE
loaded with 8 PIN diodes proposed in [3].

(c) Structure of the RE loaded with four varactor diodes proposed in
[20].

(d) Structure of the RE loaded with liquid crystal
proposed in [21].

(e) Structure of the RE loaded with graphene
proposed in [22]: Reflectarray architecture and
graphene-based patch

Figure 1.4 – Structures of the REs.

1.2.2 Implementations of RIS

Some researchers are currently working to realize the RISs, different methods have been

proposed to reconfigure the reflection coefficients, such as loading PIN diodes [19], varactor

diodes [20], microelectromechanical system (MEMS) switches [23], liquid crystal [21], and

graphene [22]. In a PIN loaded RE, the PIN can be switched on/off to reverse the reflection

phase, a single PIN can achieve 1-bit phase quantization. To achieve a continuous reflection

phase shift, a varactor diode was adopted in [20]. With less insertion losses, the MEMS switches
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outperform the PIN diodes in the millimeter-wave band [23]. Graphene [22] and liquid crystal

[21] have been used to design continuously tunable reconfigurable reflectarrays at millimeter

and sub-millimeter wavelengths but are not suited to designs at lower frequencies due to high

losses [24, 25]. Some structures are displayed in Fig. 1.4.

1.3 Potential applications in 6G networks

To meet the stringent requirements of 6G networks, promising technologies such as Terahertz

(THz) communications, short packet communications (SPC), visible light communications

(VLC) and mobile edge computing (MEC) have been proposed. Moreover, RIS can be jointly

designed with these technologies and brings additional degrees of freedom to enhance com-

munication. With its ability to create a smart radio environment without increasing energy

consumption and hardware cost, RIS is a perfect supplement to these technologies to realize

6G. In the following, we list some potential applications of RIS in 6G networks.

1.3.1 Massive connectivity communications

In the future 6G, how to ensure the connectivity considering a large number of Internet-of-

Things (IoT) devices is a critical problem. RIS can be employed to solve this problem. In

[26], the system optimization of an RIS-aided massive access system is investigated. However,

the larger training overhead is still a problem. To address this issue, in [27], the sporadic

traffic pattern of machine-type communications was considered for an RIS-aided massive

access MISO system, where a matrix factorization based SCCE method was proposed. How to

further reduce the training overhead for RIS-aided massive connectivity systems remains an

interesting topic in the future.

1.3.2 THz communications

Radio spectrum is always a tightly regulated resource. Recently, THz communications operat-

ing between 100 GHz and 10 THz is considered as a key enabler for FeMBB in the next genera-

tion of wireless communication. Because high-frequency signals are much likely blocked due

to high penetration loss and reduced diffraction effects, RIS is needed THz communications

to solve the problem. In [28], a joint hybrid precoding strategy was proposed to maximize the

sum-rate for RIS-aided THz MIMO communication systems. Then, the hierarchical search

codebook design was proposed in [29] to reduce the complexity of channel estimation and

data transmission. In [30], the theoretical error rate of the system was analyzed where the RIS

was mounted on a satellite to enable signal propagation in low earth orbit satellite networks

with THz communications.
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1.3.3 Short packet communications

Short packet communications is regarded as a solution to achieve ERLLC in 6G [31]. Because of

double fading cascaded channel and hardware impairments of RIS, system design of RIS-aided

systems with SPC is also an interesting topic [32].

1.3.4 Visible light communications

VLC can ensure a large capacity within a limited distance, whose full potential can be realized

by employing RIS. RIS is capable of mitigating intensity loss and enhance signal transmission of

VLC. In [33], the reflection pattern design of RIS was investigated to extend the communication

range of VLC. In [34], the RIS-assisted dualhop VLC system was investigated.

1.3.5 Mobile edge computing

MEC is a promising technology to support low-latency services with high-performance be-

cause it can enable the resource-limited devices to partially offload their computation tasks

to the nearby computing nodes. However, the potential benefits of MEC systems are limited

due to the long-distance offloading link. This problem can be resolved by deploying an RIS

to enhance the signal transmission by passive beamforming. RIS-aided MEC systems were

considered in [35, 36], where joint design of the active and passive beamformers, RIS deploy-

ment, communications, and computing resource allocation of RIS-aided MEC systems is

investigated to further enhance the uplink offloading performance and system performance.

1.3.6 Air-ground communications

Sometimes the communication in an urban environments are moving vertical upward, there

are more and more aerial devices being developed. In [37], the RIS was deployed into the

air-ground communications with multiple aerial/terrestrial users, the RIS placement and the

active and passive beamformers are jointly designed. Furthermore, in [38], the aerial user

trajectory was further considered in the above system to achieve a higher spectrum and energy

efficiency.

1.4 Thesis Overview and Major Contributions

In this thesis, we focus on two main subjects: (i) To study the signal-to-noise ratio (SNR) and

interference-to-noise ratio (INR) of RIS-aided MIMO systems with the assumption that the

phase shifts of RIS are optimized to maximize the SNR at the receiver. (ii) To investigate the

deep learning aided detection for RIS-aided spatial modulation (SM) systems.

The main contributions of this thesis are the following:
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i) this thesis investigates the distribution of the SNR as a random variable in RIS-aided MIMO

systems. It is proven that SNR is a random variable that is equivalent in distribution to the

product of three (or two) independent random variables (chapter3).

ii) this thesis investigates the distribution of the INR as a random variable in RIS-aided MIMO

systems. A simplified system is considered where two user equipments (UE) communicate

with two BSs separately with the aid of RISs. The INR is proven to be asymptotically equivalent

in distribution to the product of a Gamma RV and a Chi-Square RV (chapter4).

iii) this thesis studies the deep learning (DL) detection for RIS-aided SM systems. Based on

deep unfolding technique, a model-driven DL detector is proposed, which has a superior bit

error rate (BER) performance against other detectors (chapter5).

1.5 Publications

Journal Paper The following is the journal publication produced from the research out-

comes of this thesis.

(J1) X. Qian, M. Di Renzo, J. Liu, A. Kammoun, and M. S. Alouini,“Beamforming Through

Reconfigurable Intelligent Surfaces in Single-User MIMO Systems: SNR Distribution

and Scaling Laws in the Presence of Channel Fading and Phase Noise”, IEEE Wireless

Communications Letters, 2020, 10(1), pp. 77-81.

Abstract: We consider a fading channel in which a multi-antenna transmitter commu-

nicates with a multi-antenna receiver through a reconfigurable intelligent surface (RIS)

that is made of N reconfigurable passive scatterers impaired by phase noise. The beam-

forming vector at the transmitter, the combining vector at the receiver, and the phase

shifts of the N scatterers are optimized in order to maximize the signal-to-noise-ratio

(SNR) at the receiver. By assuming Rayleigh fading (or line-of-sight propagation) on the

transmitter-RIS link and Rayleigh fading on the RIS-receiver link, we prove that the SNR

is a random variable that is equivalent in distribution to the product of three (or two)

independent random variables whose distributions are approximated by two (or one)

gamma random variables and the sum of two scaled non-central chi-square random

variables. The proposed analytical framework allows us to quantify the robustness of

RIS-aided transmission to fading channels. For example, we prove that the amount of

fading experienced on the transmitter-RIS-receiver channel linearly decreases with N .

This proves that RISs of large size can be effectively employed to make fading less severe

and wireless channels more reliable.
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Conference Paper The following is the conference paper produced from the research out-

comes of this thesis.

(C 1) J. Liu, X. Qian and M. Di Renzo,“Interference Analysis in Reconfigurable Intelligent

Surface-Assisted Multiple-Input Multiple-Output Systems”, IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 8067-8071.

Abstract: Reconfigurable intelligent surfaces (RISs) are regarded as an emerging tech-

nology for the next generation of wireless communications. In this paper, we consider a

multiple-input multiple-output network where each base station serves a user equip-

ment with the aid of an RIS equipped with N reconfigurable elements. We characterize

the interference at one user equipment that is caused by the signal emitted by its

non-serving (interfering) RIS. By assuming Rayleigh fading channels, we study the cor-

responding interference-to-noise- ratio (INR) under the assumption of large values of

N , and we prove that the INR is the product of a Chi-Square random variable (RV) and

an RV that is approximated with a Gamma distribution. In addition, we prove that the

amount of fading of the INR is equal to one in the large N regime.

(C 2) J. Liu, and M. Di Renzo,“Data-driven and model-driven deep learning detection for

RIS-aided Spatial Modulation”, IEEE 5G World Forum 2021, accepted.

Abstract: Reconfigurable intelligent surface (RIS) is regarded as a key technology for

the next generation of wireless communications. Recently, the combination of RIS and

spatial modulation (SM) or space shift keying (SSK) has attracted a lot of interest in

the wireless communication area by achieving a trade-off between spectral and energy

efficiency. In this paper, by generalizing RIS-aided SM/SSK system to a special case of

conventional SM system, we investigated deep learning based detection in RIS-aided

SM/SSK systems. Based on the idea of deep unfolding, we studied the model-driven

deep learning detection for RIS-aided SM systems and compare the performance against

the data-driven deep learning detectors.
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Introduction

In this chapter, the modeling and optimization of RIS-aided systems are introduced. This chap-

ter is organized as follows. In Section 2.1, we introduce the system models of RIS-aided MIMO

systems and then investigate the reflection principle of RISs. In Section 2.2, the fundamental

channel estimation problem of RIS-aided systems are introduced and the state-of-the-art

methods are overviewed. In Section 2.3 and Section 2.4, we review the system design problem

of the RIS-aided wireless communications and RIS based information transmission systems,

respectively.
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2.1 RIS-aided communication systems

In this section, first the basic system models of two communication paradigms with RISs are

introduced, then we investigate the reflection principle of RISs.

2.1.1 System models

As a nearly-passive device, an RIS needs to leverage the existing active radio waves to operate

its function. Based on the purpose of the RIS reflection, communication models with RISs can

be classified as two categories, namely RIS-aided wireless communications (RAWC) and RIS

based information transmission (RBIT) [3]. In RAWC, the RIS adjusts its reflection coefficient

matrix θ according to the CSI to assist the transmitter, thus providing additional channel

diversity. In RBIT, the RIS delivers its own message to the receiver by proactively changing its

reflection coefficient matrix θ(m).

As shown in Fig. 2.1, the transmitter-receiver, transmitter-RIS, and RIS-receiver channels

are denoted by hH
d , G and hH

r (the superscript H denotes the conjugate transpose operation),

respectively. The information message s(n) is generated at the transmitter and sent to the

receiver via the direct-link channel and the RIS-related channel, and the RIS varies its reflection

coefficient matrix via the RIS-related channel. In Fig. 2.1(a), the messages are only embedded

in s(n). In Fig. 2.1(b), the messages are embedded in s(n) or θ(m), or both.

(a) RAWC (b) RBIT

Figure 2.1 – Two communication paradigms of RIS [3].

2.1.2 Reflection principle

It is obvious that RIS-based communications rely on the design of the reflection coefficients,

which is a critical issue in practical hardware implementations. To investigate the reflection

from the electromagnetic perspective, we need to study the permittivity and permeability of

the reflective elements (REs) and solve Maxwell’s equations [39, 40, 41], which is a difficult

task. Considering that the physical size of an RE is smaller than the wavelength of the incident

signal, an adequate simplification of Maxwell’s equations is transmission line theory [7].

The characteristic of reconfigurability lies in that the reflection coefficient of each RE can
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be adjusted independently by a designed control signal. The reflection coefficient, by its

definition, is a parameter that describes how much of a wave is reflected by an impedance

discontinuity in the transmission medium.

Denote the n-th RE as Un , its reflection coefficient can be expressed as

v (n) =β (n)e jθ(n) (2.1)

where β(n) and θ(n) represent the controllable amplitude and phase shift of Un , respectively.

Let Ẽ (n) and E (n) be the electromagnetic (EM) wave impinging on Un , the EM wave reflected

from Un , separately. By its definition, the reflection coefficient v(n) can be expressed as

v(n) = Ẽ(n)

E(n)
(2.2)

Furthermore, let Z0 and Z (n) denote the impedance towards the source in the air and the

equivalent load impedance of Un , the reflection coefficient v(n) can be written as [42]

v(n) = Z (n)−Z0

Z (n)+Z0
(2.3)

Therefore, the amplitude and the phase of the reflection coefficient v(n) can be written as

β(n) =
∣∣∣∣ Z (n)−Z0

Z (n)+Z0

∣∣∣∣ (2.4)

and

θ(n) = arctan

 Im
(

Z (n)−Z0
Z (n)+Z0

)
Re

(
Z (n)−Z0
Z (n)+Z0

)
 (2.5)

Most works on RIS are mainly based on the ideal model where the phase shifts and amplitudes

can be adjusted independently. However, this is not practical due to hardware constraints.

In [4], the equivalent model for a reflecting element is investigated. As shown in Fig. 2.2,

with L1, L2, C (n), R(n) and ω denoting the bottom/inner layer inductance, top/outer layer

inductance, effective capacitance, effective resistance, and angular frequency of the incident

signal, respectively, the impedance of the n-th element is a function of Cn and Rn and is given

by

Zn(Cn ,Rn) =
jωL1

(
jωL2 + 1

jωCn
+Rn

)
jωL1 + jωL2 + 1

jωCn
+Rn

(2.6)

From (2.4) and (2.5), theoretically the amplitude and the phase of the reflection coefficient

can be carefully tuned by changing the Z (n) using an external control signal. From (2.6), it is

14



2.1. RIS-aided communication systems

observed that Z (n) is a function of the effective resistance Rn and the effective capacitance

Cn , where Rn determines the amount of power dissipation due to the losses in the devices

and Cn denotes the charge accumulation related to the semiconductor device. The behavior

of the experimental amplitude and the phase shifts of the reflection coefficient vn is given

in Fig. 2.3. It is observed that the phase shifts and amplitudes are strongly coupled and the

minimum amplitude occurs near zero phase shift and approaches unity (the maximum value)

at the phase shift of π or −π.

Figure 2.2 – Transmission line model of an RE [4].

(a) Phase shift and amplitude versus the effective
capacitance Cn and the effective resistance Rn .

(b) Amplitude versus phase shifts.

Figure 2.3 – Reflection coefficient of an RE [4].

To obtain the ideal phase shift control, where βn = 1 and θ(n) ∈ [−π,π), each element should

dissipate zero energy dissipation for reflection. However, this is impossible in practical hard-

ware. An analytical model for the phase shift which is in general applicable to a variety of

semiconductor devices used for implementing IRS is proposed in [4]. The amplitude is a

function of the phase shifts, which is given as

βn (θn) = (
1−βmin

)(sin
(
θn −φ)+1

2

)α
+βmin (2.7)
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where βmin ≥ 0, φ≥ 0 and α≥ 0 are the constants related to specific circuit implementation.

For more information, the reader can refer to [4].

2.2 Channel estimation for RIS-assisted systems

In this section, we introduce the channel estimation problem of RIS-assisted systems. In

RIS-aided communication systems, CSI is usually needed to achieve the joint design of active

beamforming at the transceiver and passive beamforming (reflection coefficient matrix) at

the RIS. However, CSI acquisition is one of the most challenging tasks for RIS-assisted systems.

This is because that the RIS is a nearly-passive device equipped with a large number of REs.

As a passive device, we cannot perform the traditional CSI acquisition methods as in active

device based systems. Consequently, it is difficult to estimate the transmitter-RIS channel

and RIS-receiver channel separately because they are coupled together with the reflection

coefficient matrix. Besides, the large number of REs cause a high training overhead.

For example, we consider an RIS-assisted multi-user multiple input single output (MISO)

system where the base station (BS) is equipped with M antennas to serve K single-antenna

users and the RIS is equipped with L REs. Denote the channel links from the BS to the RIS,

from the RIS to the k-th user, and from the BS to the k-th user by G ∈ C L×M , hr,k ∈ C L and

hd ,k ∈C M , respectively. Then the combined channel from the BS to the k-th user is given by

hH
d ,k +hH

r,k diag(v)G = hH
d ,k +vT diag

(
hH

r,k

)
G (2.8)

where v= [v (1) , ..., v (L)] is the reflection coefficients to be designed whose element is defined

in (2.1). The CSI of the direct-link hH
d ,k can be estimated by using traditional multiple input

multiple output (MIMO) channel estimation methods. From the right hand side of the above

expression, it is observed that the design of the passive reflection coefficients v does not

require the exact channel links of hr,k and G, but only requires the CSI of the direct-link hH
d ,k

and the cascaded channel:

Hk = diag
(
hH

r,k

)
G. (2.9)

To estimate the cascaded channel Hk , many methods have been proposed, which can be

classified into two categories: the separate cascaded channel estimation (SCCE) and the direct

cascaded channel estimation (DCCE). In SCCE, the BS-RIS channel and the RIS-user channel

are estimated respectively, then the cascaded channel is reconstructed. In DCCE, the cascaded

channel is estimated directly with a properly designed channel estimation protocol.

2.2.1 Separate cascaded channel estimation

Depending on whether there exists active sensors on the RIS, RISs can be classified as semi-

passive RISs and full-passive RISs. In this section, we introduce the separate cascaded channel
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estimation for these two cases separately.

SCCE for semi-passive RIS

To estimate the RIS-related channel, a natural method is to insert some active sensors among

the passive REs at the RIS [43], which is defined as semi-passive RIS in this context. In [43], it is

assumed that the BS-RIS channel and RIS-user channel consist of a few physical transmission

paths. Using the channel sparsity, only a few training signals are needed to recover the

complete CSI. However, the semi-passive RIS scheme in [43] only works on the correlated

channel and the active sensors increase the hardware/energy cost and signal processing

complexity. Besides, the feedback link of the CSI decreases the transmission efficiency.

SCCE for full-passive RIS

When there is no active sensors at the RIS, we define the RIS as full-passive RIS in this context.

In [44, 45, 46, 47, 48, 49], SCCE methods are investigated for full-passive RIS-aided systems

without active sensors. An RIS-aided single-user MIMO system is considered in [44, 45].

Specifically, in [44], in the first stage the BS-RIS channel was estimated by iteratively solving a

fixed point equation, in the second stage the RIS-user channel was obtained by least-square

(LS) estimation. In [45], the rank-deficient property of the BS-RIS and RIS-user channel

matrix is utilized to reduce the training overhead. Particularly, in the first stage, the bi-linear

generalized approximate message passing (BiG-AMP) algorithm is adopted to solve the matrix

factorization problem, the BS-RIS channel and the product-matrix of the user-RIS channel and

the training pilots were recovered. In the second stage, a Riemannian manifold gradient-based

algorithm is introduced to solve the matrix completion problem, where the RIS-user channel

was recovered.

Under the assumption of sparse, low-rank, or quasi-static channels, the SCCE methods in

[46, 47, 48, 49] considered the channel estimation problems for RIS-aided multi-user MIMO

systems. Specifically, in [46] a matrix-calibration based matrix factorization problem was

formulated under the assumption of channel sparsity, and an iterative Bayesian inference

algorithm was derived to estimate BS-RIS channel and RIS-user channels, respectively. In

[47], the anchor-assisted two-phase channel estimation scheme was developed, where two

anchor nodes were deployed near the RIS to help the channel estimation. Particularly, in

the first phase, the two deployed anchor nodes transmit pilots successively to estimate the

square of the element-wise BS-RIS channel gain. In the second phase, the obtained partial

knowledge of the BS-RIS channel is further used to estimate RIS-user channels. The anchor-

assisted channel estimation method is efficient for RIS-assisted massive access systems since

such partial knowledge is common to all users. In [48], the parallel factor decomposition

based scheme was investigated, where the parallel factor was applied to factorize the high

dimensional tensor into a linear combination of multiple rank-one tensors and the alternating

least squares (LS) was used to recover the unknown channels from the decomposed tensors.
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2.2.2 Direct cascaded channel estimation

In this subsection, we introduce the DCCE method, which estimates the cascaded channels

directly with a properly designed channel estimation protocol.

Binary reflection based DCCE

Based on sequentially activating only one RIS element for each pilot symbol, the binary

reflection method was proposed in [50] for an RIS-assisted single-user system. An extra

training symbol is necessary to estimate the direct BS-user channel link with all the RIS

elements being deactivated. In practice, to implement the on/off switching of the massive

RIS elements is costly. Besides, as only a small portion of its elements is switched on at each

time, the channel estimation accuracy is degraded. To address this issue, a sub-group based

binary reflection was further investigated in [51] for an RIS-assisted orthogonal frequency

division multiplexing (OFDM) systems based on spatial correlation. Instead of controlling

the on/off states of a single element each time, the authors applied the on/off method on

the grouped RIS elements. In this scheme, REs are divided into multi sub-groups and each

subgroup consisting of adjacent elements shares a common reflection coefficient.

Full reflection based DCCE

To tackle drawbacks of large training overhead and low reflected signal power in binary

reflection based method, a full reflection based DCCE method was proposed in [52] where

all REs are active during the whole training timeslots.The training reflection coefficients are

designed based on the minimum variance unbiased estimation principle, which mimics

a series of discrete Fourier transforms (DFT). In [53, 54], the method in [52] is considered

together with the grouping idea in [51]. Another full reflection based DCCE method is based

on deep learning, in [55, 56] a deep learning based denoising convolutional neural network

was proposed based on the minimum mean-squared-error (MMSE) criterion.

Multi-user joint DCCE

In RIS-aided multi-user MIMO systems, the channel correlations can be utilized to obtain the

CSI. In [57, 58, 59], the cascaded channel of an arbitrary user is used to represent the cascaded

channels of the remaining users . Denote the cascaded channel of the k-th user as Hk , we

have

Hk = diag
(
hH

r,k

)
diag

(
hH

r,1

)−1︸ ︷︷ ︸
Ωk

diag
(
hH

r,1

)
G︸ ︷︷ ︸

H1

=Ωk H1 (2.10)

where Ωk is a diagonal matrix. As can be seen from the equation above, we only need to

estimate the diagonal matrixΩk if the common part H1 is given. Since the number of unknown
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parameters inΩk is much smaller than that in Hk , the estimation ofΩk is much easier than

that of Hk and the training overhead can be reduced. In [57, 58], a sequential estimation

method using the above channel correlation was proposed for a narrow-band communication

system and a wide-band communication system, respectively.

2.3 System design of RAWC systems

In this section, the system design of the joint active beamforming at the transceiver and

passive beamforming (reflection coefficient matrix) at the RIS in RAWC is overviewed.

2.3.1 System design under ideal case

In general, the optimization problems of the joint active and passive beamforming are non-

convex and difficult to solve. In this subsection, we consider the system design under ideal

case with perfect CSI and continuous phase shifts.

Reflection coefficient based optimization

This reflection coefficient based optimization (RCO) method is motivated by the fact that the

optimal active beamformer at the transceiver has a closed-form solution when the passive

beamformer (reflection coefficient matrix) is fixed. By substituting this closed-form solution

into the original problem, the reformulated problem only involves the passive beamformer

and is relatively easy to solve. Specifically, in [60], the RCO method was adopted to solve

the transmit power minimization problem in a single-user MISO system, where the passive

beamformer is then obtained using semidefinite relaxation (SDR) technique. In [61], the

RCO method was extended to solve a minimum signal-to-interference-plus-noise ratio (SINR)

maximization problem in a multi-user MISO system. However, the closed-form solution of the

active beamformer required in the RCO method cannot be generally achieved in a complicated

wireless communications system.

Alternating optimization method

To tackle the limitation in the RCO method, alternating optimization (AO) method is often

adopted as an alternative to solve the formulated non-convex problem, where the active and

passive beamformers are alternatively optimized in a iterative fashion. The AO method is

widely used in the literature to solve the spectrum/energy efficiency maximization for various

systems, e.g., multi-user MISO systems [62, 63], non-orthogonal multiple access (NOMA)

systems [64, 65], cognitive radio (CR) system [66], physical layer security [67, 68, 69, 70, 71,

72, 73], active RIS-aided networks [74], wireless powered communication networks [75], and

simultaneous wireless information and power transfer (SWIPT) systems [76]. The problem of

AO method is that it usually requires a large number of iterations to guarantee convergence,
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and no closed-form expressions are given.

Machine learning

To accelerate the convergence, in [77, 78] the projected gradient method was proposed to solve

the capacity maximization problem. This method optimizes all variables in each iteration,

resulting in a faster convergence and lower computational complexity than those in the AO

method. Besides, deep reinforcement learning (DRL) based method was adopted to solve the

joint active and passive beamformer design problems in [79, 80, 81, 82].

2.3.2 System design under hardware constraints

In this subsection, we review the system design for the RAWC under practical hardware con-

straints, i.e., discrete phase shifts, phase-dependent amplitude variation, and transmit/receive

signal distortion.

Discrete phase shifts

Continuous phase shift is an ideal assumption in literature normally for simplification. In

practical, the discrete phase shifts will cause a degradation in performance [83]. However,

system design considering discrete phase shifts is a mixed-integer non-linear program prob-

lem, which is NP hard and difficult. In [84], the branch-and-bound method and AO method

were adopted to minimize the total transmit power by considering discrete phase shift for

a single-user case and multi-user case, respectively. In [85], a new penalized Dinkelbach

block successive upper-bound minimization (BSUM) method was proposed to solve the rate

maximization problem for an RIS-aided single-user MISO system.

Phase-dependent amplitude variation

As introduced in previous section 2.1.2, in practice the amplitude of the reflection coefficient

is a function of the phase shifts of the incident wave. The relation is given in (2.7). To take

this into consideration, in [86], the RCO method and the AO method are adopted to solve

the total transmit power minimization problem for single-user and multi-user MISO cases,

respectively.

Transmit/receive signal distortion

The transmit/receive signal distortion due to the inevitable hardware impairments of ampli-

fiers, oscillators, digital-to-analog converters (DACs), and analog-to-digital converters (ADCs)

is another cause of performance degradation. In [87], the authors studied the received signal-

to-noise ratio (SNR) maximization problem considering transmit/receive signal distortion,
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the RCO method and the minorization-maximization algorithm are adopted.

2.3.3 System design under statistical or imperfect CSI

In this part, we consider the system design for the RAWC under statistical or imperfect CSI.

Because of the large training overhead of channel estimation, some literature considered

statistical CSI for system design [88, 89, 90]. In practice, the estimated CSI is usually imperfect

due to the inherent noise and limited training overhead, which will lead to certain performance

degradation. The robust joint active and passive beamforming design was studied in [91]

for a multi-user MISO system and in [92] for a multi-user MISO CR system. The AO method

was applied to deal with the coupled active and passive beamformer and S-procedure was

proposed to handle the non-convex terms stemming from the channel uncertainty. In [93],

the tradeoff between the training overhead and the energy efficiency was investigated for a

single-user MIMO system with a joint robust active and passive beamforming scheme. In

[94, 95], the robust joint active and passive beamforming design was studied to minimize total

transmission power subject to the individual outage probability constraint, where S-procedure

and constrained stochastic successive convex approximation algorithm were applied to tackle

the non-convex terms in the outage probability. In [96], the statistical information such as the

distribution of the locations of the users and the distribution of the multi-path channels was

considered, a two-phase optimization algorithm was proposed for a sum-rate maximization

problem.

2.4 System design of RBIT systems

In RBIT, RIS acts as an information transmitter which modulates information message in the

reflection coefficients of the REs [97, 98]. The merits of RBIT systems lie in that: (1) RBIT is

achieved via passive reflection, which is energy and cost effective; (2) The large number of

REs on the RIS can provide considerable spatial multiplexing or substantial diversity. In this

section, we investigated the RBIT systems with the ambient RF radio wave with modulated or

unmodulated signals.

2.4.1 RBIT with unmodulated signals

As shown in Fig. 2.4, the message transmitted by the RIS is denoted as w , which is transmitted

to the receiver leveraging the RF carrier emitted from the active transmitter. Different from

backscatter communications which only has one single RE, the RBIT system is able to serve

multiple users simultaneously. In this case, the critical design problem is the mapping between

the message symbol and the reflecting pattern.

With the phase-shift ability, it is easy for the RIS to achieve the M-ary phase shift-keying (PSK)

modulation [99]. In [100], a prototype of RIS-based transmitter with 8×32 REs and 8-PSK
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Figure 2.4 – RBIT with unmodulated signals: the active transmitter provides the RIS with the
unmodulated signals as the RF carrier [3].

was proposed. In [101], combined with the concept of index modulation, RIS-aided space

shift keying (SSK) system was proposed. Besides, quadrature amplitude modulation (QAM)

modulation was investigated in [102, 103].

2.4.2 RBIT with modulated signals

Figure 2.5 – RBIT with modulated signals: (a) No collaboration: mutual interference. (b)
Symbiotic radio with joint decoding. (c) Symbiotic radio with joint encoding and decoding.[3].

Denote the message modulated in the reflection matrix of the RIS as w1, the message em-

bedded in the active transmitter as w2, respectively. As shown in Fig. 2.5, the reflected signal
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is embedded with messages w1 and w2. If there exists a direct link, the receiver can receive

the signal directly from the active transmitter, which can be an extra interference to the re-

ceiver if the receiver is not well designed. Collaboration between the RIS-based and active

transmissions is needed to solve this problem.

If there is no collaboration between the RIS-based transmission and active transmission,

separate receivers are needed, as shown in Fig. 2.5 (a). In this case, these two sub systems will

cause interference to each other. To solve this problem, the authors in [104] exploited the large

degree of freedoms in RIS to let a slave antenna only receive the direct-link signal, and thus

by normalizing the signals at the other antenna, the receiver can cancel the unknown source

symbols. Nevertheless, the modulated carrier signal is still not so ideal that the RIS-based

transmission without any collaboration undergoes unsatisfactory achievement.

In [105], a technique called symbiotic radio (SR), is proposed to exploit the benefits and address

the drawbacks of cognitive radio (CR) and ambient backscattering communications (AmBC),

leading to mutualism spectrum sharing and highly reliable backscattering communications.

The mutual interference in Fig. 2.5 (a) can be avoided via forming the SR between the RIS-

based transmission and the active transmission [105, 106, 107]. As shown in Fig. 2.5 (b),

the active transmitter and RIS-based transmitter send the separated messages to the same

receiver. The RIS receiver is designed to have the prior knowledge on the codebooks of the two

transmissions and is thus able to adopt the joint decoding to decode the message w1 and w2

at the same time. In [108, 109], the collaboration is further extended to joint coding and joint

decoding, as shown in Fig. 2.5 (c), which exhibits better overall BER and rate performances

than other aforementioned schemes.

2.5 Conclusion

In this chapter, the RIS-aided wireless communication and RIS based information trans-

mission systems are introduced in detail, respectively. The state-of-the-art research on the

system design is overviewed. With the ability to achieve a reconfigurable and controllable

environment, RIS is a promising technique in the future communications.
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In this chapter, we consider a fading channel in which a multi-antenna transmitter commu-

nicates with a multi-antenna receiver through a reconfigurable intelligent surface (RIS) that

is made of N reconfigurable passive scatterers impaired by phase noise. The beamforming

vector at the transmitter, the combining vector at the receiver, and the phase shifts of the N

scatterers are optimized in order to maximize the signal-to-noise-ratio (SNR) at the receiver.

By assuming Rayleigh fading (or line-of-sight propagation) on the transmitter-RIS link and

Rayleigh fading on the RIS-receiver link, we prove that the SNR is a random variable that is

equivalent in distribution to the product of three (or two) independent random variables

whose distributions are approximated by two (or one) gamma random variables and the sum

of two scaled non-central chi-square random variables. The proposed analytical framework

allows us to quantify the robustness of RIS-aided transmission to fading channels. For exam-

ple, we prove that the amount of fading experienced on the transmitter-RIS-receiver channel

linearly decreases with N . This proves that RISs of large size can be effectively employed to

make fading less severe and wireless channels more reliable.

This chapter is organized as follows. In Section 3.1, we introduce the background of the

analysis of SNR in RIS-aided MIMO system. The system model is introduced in Section 3.2.

Some lemmas are summarized in Section 3.3 as preliminaries for the analysis in Section 3.4.

Simulation results are provided in Section 3.5 followed by the conclusion in Section 3.6.
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3.1. Introduction

3.1 Introduction

Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for appli-

cation to wireless communications [2]. RISs can be realized in different ways, which include

(i) implementations based on large arrays of inexpensive antennas that are usually spaced

half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces

whose scattering elements have sizes and inter-distances much smaller than the wavelength

[7]. In this thesis, we consider RISs made of scatterers that are passive, are spaced half of

the wavelength apart, and are individually configured and optimized for realizing passive

beamforming through the environment [110], [111]. Compared with other transmission tech-

nologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest

number of scattering elements, but each of them needs to be backed by the fewest and least

costly components. Also, no power amplifiers are usually needed. For these reasons, RISs

constitute an emerging and promising software-defined architecture that can be realized at

reduced cost, size, weight, and power (C-SWaP design) [112], [6].

Quantifying the performance of optimized RIS-empowered multi-antenna wireless systems is

an open research issue. In particular, several researchers have developed algorithms for jointly

optimizing the beamforming vector (q) at the transmitter, the matrix of phase shifts at the RIS

(Φ), and the combining vector (w) at the receiver [7, Sec. V-J]. In general, however, the optimal

triplet (q,Φ,w) cannot be formulated in closed-form and can only be computed numerically.

An exception is constituted by wireless systems in which the transmitter and receiver are

equipped with a single antenna. For this reason, currently available analytical frameworks and

scaling laws are only applicable to single-antenna transmitters and receivers. Representative

contributions include [60]-[113]. In [60] and [84], in particular, the authors show that the

average SNR at the receiver scales with the square of the number of tunable elements (N )

of the RIS. In [99], the authors study the error probability over Rayleigh fading channels by

using the central limit theorem. In [114] and [115], the authors quantify the impact of phase

noise for transmission over Rayleigh and Rician fading channels, respectively. In [113], the

authors analyze the impact of phase noise and hardware impairments for transmission over

line-of-sight (LOS) channels.

Motivated by these considerations, we consider a fading channel in which a multi-antenna

transmitter communicates with a multi-antenna receiver through an RIS whose N scattering

elements are impaired by phase noise. We introduce an analytical approach for characteriz-

ing the distribution of the SNR and for determining its scaling laws as a function of N . Over

Rayleigh fading or LOS channels, we prove that the SNR can be formulated, for any phase noise

distribution, as the product of gamma and scaled non-central chi-square random variables.

With the aid of numerical simulations, in addition, we show that the SNR can be well approxi-

mated with a gamma random variable whose parameters are formulated in closed-form. The

proposed approach unveils the scaling laws of the mean, the variance, and the amount of
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fading (AF) [116] of the SNR as a function of N . Our analysis confirms that RISs of large size

can be effectively employed to make the transmission of information over fading channels

more reliable.

3.2 System model

We consider a point-to-point wireless system in which a transmitter equipped with NT anten-

nas and a receiver equipped with NR antennas communicate through an RIS. The RIS is made

of N antenna elements that are spaced half-wavelength apart and that apply independent

phase shifts to the incident signal. The phase shift applied by the nth element is denoted byφn

for n = 1,2, . . . , N . For ease of notation, the N phase shifts are collected in the N ×N diagonal

matrixΦ. The nth phase shift is assumed to be subject to phase noise, e.g., due to the finite

resolution of the phase shifts or to phase estimation errors. The phase noise is assumed to be

independent among the N phase shifts. We defineφn =φ(opt)
n +δn , whereφ(opt)

n is the optimal

phase shift in the absence of phase noise and δn is the phase noise. The distribution of δn is

arbitrary but its mean is assumed to be zero. Examples of phase noise distributions are given

in Section 3.4. The NT ×1 unit-norm beamforming vector at the transmitter is denoted by q

and the NR ×1 unit-norm combining vector at the receiver is denoted by w. The triplet (q,Φ,w)

is jointly optimized to maximize the receive SNR. As detailed in Section 3.3, we assume that

the RIS operates in the far-field regime. Hence, N can be large but cannot tend to infinity [7,

Sec. IV-D].

3.2.1 Channel model

The NR ×N channel matrix on the RIS-receiver link is denoted by G. Its entries are assumed to

be independent and identically distributed (i.i.d.) complex Gaussian random variables with

zero mean and unit variance, i.e., G ∼C N
(
0NR×N ,INR×N

)
, i.e., Rayleigh fading is considered.

This assumption is motivated by the mobility of the receiver and, hence, the difficulty of

establishing an LOS link. The N ×NT channel matrix on the transmitter-RIS link is denoted by

H. Two canonical case studies are considered for this link.

Rayleigh fading

H ∼C N
(
0N×NT ,IN×NT

)
, similar to the RIS-receiver link. This setup is representative of sce-

narios in which the RISs are randomly deployed, e.g., on spatial blockages whose locations are

not under the control of the system designer, and, thus, the locations of the RISs cannot be

optimized [117]. Thus, LOS propagation cannot be ensured.
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Deterministic LOS

H = p
NT NR aRISaH

T , where aT and aRIS are the array responses of the transmitter and RIS,

respectively. aT is an NT ×1 unit-norm (i.e., ‖aT ‖2 = 1) vector whose generic entry is aT (t ) =(
1/
p

NT
)

exp
(− j 2π f (t )

)
, where f (t ) depends on the geometry of the transmit array, and aRIS is

an N×1 unit-norm (i.e., ‖aRIS‖2 = 1) vector whose generic entry is aRIS (t ) = (
1/
p

N
)

exp
(− j 2πg (n)

)
,

where g (n) depends on the geometry of the RIS. Explicit expressions for aT and aRIS can be

found in [113, Eq. (2)]. This setup is representative of scenarios in which the locations of the

RISs can be appropriately optimized for ensuring an LOS link [111].

For ease of notation, the case study in which Rayleigh fading is assumed on both links is

denoted by the subscript “RR”, the setup in which LOS and Rayleigh fading are assumed on

the first and second link, respectively, is denoted by the subscript “LR”. The analysis of other

channel models is left to future research.

3.3 Problem formulation

In [93], the authors have recently proved that, by jointly optimizing the triplet (q,Φ,w), the

SNR in single-user multi-antenna systems can be tightly approximated as follows:

SNRRR ≈ γ0N 2 maxl ,k

{
λl ,Gλk,H

∣∣Υl ,k
∣∣2

}
Υl ,k =∑N

n=1

∣∣vl ,G (n)
∣∣ ∣∣uk,H (n)

∣∣exp
(

jδn
) (3.1)

SNRLR ≈ γ0NT N maxl
{
λl ,G|Ψl |2

}
Ψl =

∑N
n=1

∣∣vl ,G (n)
∣∣exp

(
jδn

) (3.2)

where: (i) γ0 is a scaling factor that accounts for, e.g., the transmission distances, the geometric

size of the RIS, the transmission bandwidth, the noise figure [118]. In this thesis, it is consid-

ered to be a constant; (ii) λl ,G is the l-th non-zero eigenvalue of the matrix WG = (1/N )GH G

and λl ,H is the l-th non-zero eigenvalue of the matrix WH = (1/N )HHH ; (iii) vl ,G and ul ,G

are the l th eigenvectors of WG and WGH , respectively, that correspond to λk,G; (iv) and vk,H

and uk,H are the kth eigenvectors of WH and WHH , respectively, that correspond to λk,H. As

mentioned, the SNRs in (3.1) and (3.2) are applicable in the far-field regime, as defined in

[118], [119]. Thus, N can be large but it needs to be finite [7, Sec. IV-D].
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3.3.1 Preliminaries

The semi-analytical expressions of the SNR in (3.1) and (3.2) are the departing point for

calculating the distribution and the scaling laws of the SNR as a function of N (see Section

3.4). First, we summarize some lemmas to enable such analysis.

Lemma 3.1 Let λ+
H and λ+

G be the largest eigenvalues of WH and WG, respectively. λ+
H and λ+

G
are well approximated by Gamma random variables whose mean and variance are:

E
{
λ+

X

}=α1 (M , N )−α0β1 (M , N )

V
{
λ+

X

}=β0β
2
1 (M , N )

(3.3)

where X = {G,H}, M = NT if X = H and M = NR if X = G, α0 = 1.7711, β0 = 0.8132, and:

α1 (M , N ) =
(
1+p

M/N
)2

β1 (M , N ) = N−2/3
(
1+p

M/N
)(

1+p
N /M

)1/3 (3.4)

Proof 3.1 It follows from [120] and [121] by applying results on random matrix theory and by

calculating numerically the mean and the variance of the Tracy-Widom distribution.

Remark 3.1 λ+
H and λ+

G may be approximated by a shifted Gamma random variable [121]. We

consider a Gamma random variable due to its simplicity yet satisfactory accuracy.

Lemma 3.2 Let vl ,G and uk,H be the eigenvectors in (3.1) and (3.2). For any N , they are i.i.d.

and uniformly distributed vectors on the N −1 sphere, i.e., on the surface of the unit N -ball.

Thus, their distribution is equivalent to (for any l ,k):

vl ,G
d=v/‖v‖ ul ,H

d=u/‖u‖ (3.5)

where v (n) ∼ C N (0,1) and u (n) ∼ C N (0,1) are mutually i.i.d. random variables for n =
1,2, . . . , N .

Proof 3.2 See [122].

Remark 3.2 From Lemma 3.2, we evince that, for every finite N , the eigenvectors of a Wishart

matrix with zero mean complex Gaussian entries (i.e., WH and WG) do not point towards any

privileged direction. If the entries are not Gaussian, this result does not hold in general [122].

Lemma 3.3 For any l , the eigenvalues λl ,X and the eigenvectors vl ,X or ul ,X for X = {G,H} are

independent.
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3.3. Problem formulation

Proof 3.3 See [122].

Lemma 3.4 Let y be an N × 1 vector whose entries are i.i.d. standard complex Gaussian

random variables, i.e., y (n) ∼ C N (0,1) for n = 1,2, . . . , N . Define the normalized vector

ŷ (n) = ∣∣y (n)
∣∣/∥∥y

∥∥. Then, ŷ2 (n) ∼B (1, N −1) and:

E
{

ŷ2 (n)
}= 1/N

E
{

ŷ (n)
}= (p

π
/

2
)

(Γ (N )/Γ (N +1/2))
(3.6)

Proof 3.4 Since y (n) ∼ C N (0,1) for n = 1,2, . . . , N , then ŷ2 (n) = Y1
/

(Y1 +Y2) where Y1 =
ŷ2 (n) ∼G (1,1) and Y2 =∑N

m 6=n=1 ŷ2 (m) ∼G (N −1,1) are independent random variables. Thus,

Y1
/

(Y1 +Y2) ∼B (1, N −1), and (3.6) follows from the moments of a Beta random variable.

Lemma 3.5 Let y be an N ×1 vector of i.i.d. standard complex Gaussian random variables, i.e.,

y (n) ∼C N (0,1) for n = 1,2, . . . , N . Define ŷ (n) = ∣∣y (n)
∣∣/∥∥y

∥∥. For m 6= n = 1,2, . . . , N , we have

E
{

ŷ (n) ŷ (m)
}=π/(4N ).

Proof 3.5 Define the variable z =∑N
k=1

∣∣y (k)
∣∣2. By using the notable integral

∫ +∞
0 e−zt d t = 1/z

for z > 0, we obtain:

E
{

ŷ (n) ŷ (m)
}= E{∣∣y (n)

∣∣ ∣∣y (m)
∣∣ (1/z)

}
(3.7)

(a)=
∫ +∞

0
E
{
Jn (t )

}
E
{
Jm (t )

} N∏
k=1 6=n,m

E
{
Jk (t )

}
d t

where (a) follows because the entries of y are independent and we defined Jn (t ) = ∣∣y (n)
∣∣exp

(
− ∣∣y (n)

∣∣2 t
)
,

Jm (t ) = ∣∣y (m)
∣∣exp

(
− ∣∣y (m)

∣∣2 t
)
, Jk (t ) = exp

(
−∣∣y (k)

∣∣2t
)
. The proof follows by computing

each expectation since the distribution of
∣∣y (n)

∣∣2 is known, i.e.,
∣∣y (n)

∣∣2 ∼G (1,1), and by using

the notable integral
∫ +∞

0 (1+ t )1+N d t = 1/N .

Lemma 3.6 Consider Υl ,k and Ψl in (3.1) and (3.2) for l ,k = 1,2, . . . , N . For η = 1,2, let us

define the moments m
(η)
R = E{(

Re
{
Υl ,k

})η}, m
(η)
I = E{(

Im
{
Υl ,k

})η}, m(η)
R

= E{
(Re{Ψl })η

}
, and

m(η)
I

= E{
(Im{Ψl })η

}
. Then, we have:

m
(1)
R = N (π/4)(Γ (N )/Γ (N +1/2))2c1

m
(1)
I = N (π/4)(Γ (N )/Γ (N +1/2))2s1

m
(2)
R = (1/N )c2 +

(
π2/16

)
((N −1)/N )c2

1

m
(2)
I = (1/N ) s2 +

(
π2/16

)
((N −1)/N ) s2

1

(3.8)
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Table 3.1 – Examples of phase noise distributions (s1 = 0)

Distribution c1 c2 s2
δn = 0 1 1 0

δn ∼U (−π,π) 0 1/2 1/2
δn ∼U (−επ,επ) sinc(ε) (1+ sinc(2ε))/2 (1− sinc(2ε))/2

δn ∼ V M (0,κ) I1(κ)
I0(κ)

I1(κ)−κI2(κ)
κI0(κ)

I1(κ)
κI0(κ)

m(1)
R

= N (
p
π/4)(Γ (N )/Γ (N +1/2))c1

m(1)
I

= N (
p
π/4)(Γ (N )/Γ (N +1/2)) s1

m(2)
R

= c2 + (π/4)(N −1)c2
1

m(2)
I

= s2 + (π/4)(N −1) s2
1

(3.9)

where c1 = E {cos(δn)}, s1 = E {sin(δn)}, c2 = E
{
cos2 (δn)

}
, are s2 = E

{
sin2 (δn)

}
are given in

Table 3.1.

Proof 3.6 It follows by re-writing (3.1) and (3.2) by using (3.5), and by computing the moments

using Lemmas 3.4 and 3.5.

Lemma 3.7 Consider Υl ,k and Ψl in (3.1) and (3.2) for l ,k = 1,2, . . . , N . The two random

variables Re
{
Υl ,k

}
and Im

{
Υl ,k

}
and the two random variables Re{Ψl } and Im{Ψl } are uncor-

related for any l ,k = 1,2, . . . , N if the distribution of δn , for every n = 1,2, . . . , N , is symmetric

around zero.

Proof 3.7 By definition of covariance, we have:

cov
{
Re

{
Υl ,k

}
Im

{
Υl ,k

}}= (1/N )E {sin(2δn)}
/

2

+ (
π2/16

)
((N −1)/N )c1s1 −m

(1)
R m

(1)
I

(3.10)

cov{Re{Ψl } Im{Ψl }} = E {sin(2δn)}
/

2

+ (π/4)(N −1)c1s1 −m(1)
R

m(1)
I

(3.11)

The proof follows by noting that E {sin(2δn)} = 0 and s1 = 0 if the distribution of δn is symmetric

around zero.

Remark 3.3 Based on Table 3.1, the distribution of δn is usually symmetric around zero, and

the real and imaginary parts ofΥl ,k andΨl can be assumed to be uncorrelated.
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Remark 3.4 As N grows large, we obtain cov
{
Re

{
Υl ,k

}
Im

{
Υl ,k

}}=O (1/N ), since, for N À 1,

Γ (N )/Γ (N +1/2) = N−1/2(1+(8N )−1+O
(
N−2

)
). This implies that the real and imaginary parts

ofΥl ,k are asymptotically (i.e., for large values of N ) uncorrelated even if the distribution of δn

is not symmetric around zero.

Lemma 3.8 Assume that N grows large (i.e., N À 1). The random variables
∣∣Υl ,k

∣∣2 and |Ψl |2
for l ,k = 1,2, . . . , N are (asymptotically) equivalent in distribution to the sum of two scaled

non-central chi-square random variables:

∣∣Υl ,k
∣∣2 = (

Re
{
Υl ,k

})2 + (
Im

{
Υl ,k

})2 NÀ1= σ
2
RCR +σ2

I CI

CR ∼X 2
1

(
µ

2
R

)
CI ∼X 2

1

(
µ

2
I

)
(3.12)

|Ψl |2 = (Re{Ψl })2 + (Im{Ψl })2 NÀ1= σ̄2
RCR +σ2

I C I

CR ∼X 2
1

(
µ2

R

)
CI ∼X 2

1

(
µ2

I

)
(3.13)

where, for S = {R,I }, σ
2

S = m
(2)
S −

(
m

(1)
S m

(1)
S

)
, µS = m

(1)
S

/
σS , and σ2

S = m(2)
S

−
(
m(1)

S
m(1)

S

)
,

µS = m(1)
S

/
σS .

Proof 3.8 It follows from the central limit theorem if N À 1: Re
{
Υl ,k

}∼N
(
m

(1)
R ,σ

2

R

)
, Im

{
Υl ,k

}∼
N

(
m

(1)
I ,σ

2

I

)
, Re{Ψl } ∼N

(
m(1)

R
,σ2

R

)
, and Im{Ψl } ∼N

(
m(1)

I
,σ2

I

)
.

Remark 3.5 If the distribution of δn is symmetric around zero, the non-central chi-square

random variables in (3.12) and (3.13) are independent. This originates from Remark 3, and

because the real and imaginary parts ofΥl ,k andΨl converge, asymptotically (i.e., N À 1), to

Gaussian random variables.

Remark 3.6 Readers are referred to [123] for the sum of independent scaled non-central chi-

square random variables.

3.4 Analysis of the Signal-to-Noise-Ratio

In this section, we analyze the distribution, the mean, the variance, and the AF of the SNR, as

well as the corresponding scaling laws as a function of N . The AF of the SNR is, in particular,

a unified statistical measure that quantifies the severity of fading and, correspondingly, the

robustness of transmission technologies against channel fading. Some results are applicable

to arbitrary values of N , while others apply only for large values of N . This is elaborated in

further text.
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3.4.1 Equivalent in Distribution Representation

For an arbitrary N , the following theorem yields an equivalent in distribution representation

of the SNRs in (3.1) and (3.2).

Theorem 3.1 Consider the SNRs in (3.1) and (3.2). The following equivalent in distribution

representations hold true:

SNRRR
d=γ0N 2λ+

Gλ
+
H

∣∣∣∑N
n=1 v̂ (n) û (n)exp

(
jδn

)∣∣∣2
(3.14)

SNRLR
d=γ0NT Nλ+

G

∣∣∣∑N
n=1 v̂ (n)exp

(
jδn

)∣∣∣2
(3.15)

where v̂ (n) = |v (n)|/‖v‖, û (n) = |u (n)|/‖u‖, and v (n) ∼ C N (0,1), u (n) ∼ C N (0,1) are i.i.d.

for n = 1,2, . . . , N .

Proof 3.9 From Lemma 3.2 and Remark 2, the eigenvectors of a Wishart matrix with zero mean

complex Gaussian entries are equal in distribution, and, thus, the maximization in (3.1) and

(3.2) is determined only by the distribution of the (largest) eigenvalues. From Lemma 3.3, the

eigenvectors and the eigenvalues of a Wishart matrix with zero mean complex Gaussian entries

are independent. This concludes the proof.

Theorem 3.1 provides us with a general tool for the analysis of RIS-aided wireless systems.

Let us consider, e.g., SNRRR. The same comments apply to SNRLR. Equation (3.14) holds

true for any N and it brings to our attention that the SNR is equivalent in distribution to

the product of three independent random variables. There exist different approaches for

computing the distribution of the product of independent random variables, e.g., [124]. For

example, the distribution of the square absolute value of the sum in (3.14) may be obtained by

first computing the Laplace transform of the sum of independent random variables, which is

equal to the product of Laplace transforms of the individual random variables. In this thesis,

we do not purse this line of research, since the resulting analytical expressions are likely not to

be sufficiently tractable to gain insights for system design. In the next two sub-sections, on

the other hand, we focus our attention on the case study in which N À 1, which is relevant for

RIS-aided wireless systems.

3.4.2 Channel Model: Rayleigh Fading – Rayleigh Fading

In this section, we analyze the statistics of SNRRR in (3.14) under the assumption that N is

large, i.e., N À 1.
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Table 3.2 – SNR scaling laws as a function of N (s1 = 0). ζv1 = −6+β0
(
N−1/3

T +N−1/3
R

)
and

ζv1 =−5+β0N−1/3
R .

SNRRR SNRLR
oe0 = 1 oe0 = NT
oe1 = (

π2/16
)

c2
1 oe1 = (π/4) NT c2

1
ov0 = 2

(
c2

2 + s2
2

)
ov0 = 2N 2

T

(
c2

2 + s2
2

)
ov1 =

(
π2/4

)
c2

1 c2

+
(
π4/256

)
ζv1c4

1

ov1 =πN 2
T c2

1 c2

+
(
π4/16

)
N 2

T ζv1c4
1

Theorem 3.2 Let us assume the same notation and definitions as in Section 3.3. If N À 1, the

following holds true:

SNRRR
NÀ1= γ0N 2PGPH

(
σ

2

RCR +σ2
I CI

)
(3.16)

where PX ∼ G
((
E
{
λ+

X

})2
/
V

{
λ+

X

}
,V

{
λ+

X

}/
E
{
λ+

X

})
for X = {G,H} and CS ∼ X 2

1

(
µ

2

S

)
for S =

{R,I } are four mutually independent random variables.

Proof 3.10 It follows from (3.14) by using Lemmas 3.1 and 3.8.

Proposition 3.1 Let us assume N À 1. The mean and the variance of SNRRR in (3.14) can be

formulated as follows:

E {SNRRR}
NÀ1= γ0N 2MGMHM

V {SNRRR}
NÀ1= γ2

0N 4
(
TGTHT −M 2

GM 2
HM

2
) (3.17)

where MX = E{
λ+

X

}
and TX =V{

λ+
X

}+(
E
{
λ+

X

})2 for X = {G,H}, and M =
(
σ

2

R

(
1+µ2

R

)
+σ2

I

(
1+µ2

I

))
,

T =
(
2σ

4

R

(
1+2µ

2

R

)
+2σ

4
I

(
1+2µ

2
I

))
.

Proof 3.11 It follows from the independence of the random variables in (3.16) and by using

Lemma 3.1 and Lemma 3.8.

3.4.3 Channel Model: Line-of-Sight – Rayleigh Fading

In this section, we analyze the statistics of SNRLR in (3.15) under the assumption that N is

large, i.e., N À 1.

Theorem 3.3 Let us assume the same notation and definitions as in Section 3.3. If N À 1, the

following holds true:

SNRLR
NÀ1= γ0NT N PG

(
σ2

RCR +σ2
I CI

)
(3.18)
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where PG ∼G
((
E
{
λ+

G

})2
/
V

{
λ+

G

}
,V

{
λ+

G

}/
E
{
λ+

G

})
and CS ∼X 2

1

(
µ

2

S

)
for S = {R,I } are three

mutually independent random variables.

Proof 3.12 It is similar to the proof of Theorem 3.2.

Proposition 3.2 Let us assume N À 1. The mean and the variance of SNRLR in (3.15) can be

formulated as follows:

E {SNRLR}
NÀ1= γ0NT NMGM

V {SNRLR}
NÀ1= γ2

0N 2
T N 2

(
TGT −M 2

GM
2
) (3.19)

where MG = E
{
λ+

G

}
, TG = V

{
λ+

G

}+ (
E
{
λ+

G

})2, M = (
σ2

R

(
1+µ2

R

)+σ2
I

(
1+µ2

I

))
, and T =(

2σ4
R

(
1+2µ2

R

)+2σ4
I

(
1+2µ2

I

))
.

Proof 3.13 It is similar to the proof of Proposition 3.1.

3.4.4 Scaling Laws and Insights

From Propositions 3.1 and 3.2, explicit analytical expressions for the mean and the variance of

the SNR can be obtained. The resulting formulas are, however, not tractable enough to gain

insights for system design. Therefore, we analyze the dominant terms (scaling laws) in the

asymptotic regime N À 1.

Proposition 3.3 Define D = {RR,LR}, and assume s1 = 0 and N À 1. Let AFSNRD =V {SNRD}
/

(E {SNRD})2

be the AF of SNRD. As a function of N , while keeping the other system parameters fixed, the

following scaling laws hold true:

E {SNRD}
NÀ1∝ oe0N 11 (c1 = 0)+oe1N 21 (c1 6= 0)

V {SNRD}
NÀ1∝ ov0N 21 (c1 = 0)+ov1N 31 (c1 6= 0) (3.20)

AFSNRD

NÀ1∝ ov0

o2
e0

N 01 (c1 = 0)+ ov1

o2
e1

N−11 (c1 6= 0)

where oe0, oe1, ov0, and ov1 are defined in Table 3.2.

Proof 3.14 It follows from (3.17), (3.19), (3.4) since α1 (M , N ) = 1 +O
(
N−1/2

)
, β1 (M , N ) =

M−1/6N−1/2 +O
(
N−1

)
.

From Proposition 3.3, we can draw the following conclusions on the scaling laws of the SNR as

a function of N .
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3.5. Numerical Results
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Figure 3.1 – AF of the SNR. (γ0 = 1, NT = NR = 4, δn ∼U (−επ,επ)).

– The scaling laws highly depend on whether c1 = 0 or c1 6= 0. From Table 3.1, e.g., the condition

c1 = 0 corresponds to the case study of totally random phase noise. Also, the condition c1 = 0

can be thought of as representative of a scenario with no controllable RIS, in which the RIS

is a conventional wall whose phase response is unknown and cannot be optimized. If c1 = 0,

in particular, the AF is constant with N , since the RIS is not capable of customizing the radio

waves. If c1 6= 0, on the other hand, the AF decays linearly with N . This unveils the capability

of RISs of reducing the fading severity and, as a result, making the transmission of information

more robust.

– The robustness of RISs against the phase noise can be quantified by studying the ratios

oe1 (c1)
/

oe1 (c1 = 1) and ov1 (c1,c2)
/

ov1 (c1 = 1,c2 = 1) defined in Table 3.2, since c1 = c2 = 1 for

the benchmark setup with no phase noise (see Table 3.1). This provides a simple tool for

quantifying, e.g., the discretization of the phase shifts that yields a suitable trade-off between

performance and implementation complexity.

3.5 Numerical Results

Figure 3.1 shows the AF obtained from Monte Carlo (MC) simulations [93, Proposition 1]

(markers), and compares it against the analytical frameworks in (3.17) and (3.19) (solid lines),

and the scaling laws in (3.20). Figure 3.2 shows the cumulative distribution function (CDF) of
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Figure 3.2 – CDF of SNRRR (γ0 = 1, NT = NR = 4).

the SNR obtained from Monte Carlo simulations [93, Proposition 1], and compares it against

the distributions in (3.16), and a Gamma-based approximation for the SNR, i.e., PSNRRR ∼
G

(
(E {SNRRR})2

/
V {SNRRR},V {SNRRR}

/
E {SNRRR}

)
. The proposed analytical approach is in

good agreement with the simulations and confirm our findings.

3.6 Conclusion

We have introduced an analytical framework to quantify the performance of RIS-aided multi-

antenna transmission. If N À 1, we have proved that the AF of the SNR linearly decreases

with N . Also, we have shown that the distribution of the SNR can be well approximated with a

Gamma random variable. The proposed approach can be generalized to multiple scenarios,

e.g., the analysis of multi-user and multi-RIS transmission.
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In this chapter, we consider a multiple-input multiple-output network where each base station

serves a user equipment with the aid of an RIS equipped with N reconfigurable elements. We

characterize the interference at one user equipment that is caused by the signal emitted by

its non-serving (interfering) RIS. By assuming Rayleigh fading channels, we study the corre-

sponding interference-to-noise-ratio (INR) under the assumption of large values of N , and

we prove that the INR is the product of a Chi-Square random variable (RV) and an RV that is

approximated with a Gamma distribution. In addition, we prove that the amount of fading of

the INR is equal to one in the large N regime.

This chapter is organized as follows. In Section 4.1, we introduce the background of the analysis

of INR in the simplified RIS-aided two-user MIMO system. The system model is introduced in

Section 4.2. With the aid of the lemmas derived in Chapter 2, we analyze the behavior of INR

as a random variable in Section 4.3. Simulation results are provided in Section 4.4 followed by

the conclusion in Section 4.5.
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4.1. Introduction

4.1 Introduction

A reconfigurable intelligent surface (RIS) is an emerging technology for increasing the re-

liability of wireless communications at a reduced hardware cost and energy consumption

[2], [7]. An RIS is capable of realizing passive beamforming by adding customized phase

shifts to the incident waves, thus appropriately shaping the scattered waves towards specified

locations [118], [125]. In contrast with traditional relays, an RIS does not need power ampli-

fiers, introduces no additive noise, and no self-interference in full-duplex implementations [6].

Modeling and analyzing the performance of RIS-aided wireless systems is an open research

issue. As outlined in a recent survey and tutorial paper [7], several authors have investigated

the joint optimization of the beamforming vector at the transmitter, the matrix of phase shifts

at the RIS, and the combining vector at the receiver. However, very few papers have tackled the

evaluation of the performance of multiple-input multiple-output (MIMO) RIS-aided systems

in fading channels [126]. In [126], the authors have recently characterized the distribution of

the signal-to-noise-ratio (SNR) by using tools from random matrix theory and by capitalizing

on the optimization framework introduced in [93]. The existing works, however, consider a

single transmitter, a single RIS, and a single receiver. Thus, they ignore the interference that

is generated by the presence of multiple RISs that are optimized for serving their respective

transmitters and receivers.

Motivated by these considerations, we analyze a two-user interference channel in the presence

of two RISs. Each MIMO transmitter communicates with its intended MIMO receiver with

the aid of an RIS. Each RIS is equipped with N reconfigurable elements that are optimized to

maximize the received SNR of each intended user. Therefore, each RIS constitutes a source of

interference for the non-intended user. We introduce an analytical approach for characteriz-

ing the distribution of the interference-to-noise-ratio (INR) at each receiver, and to study its

scaling laws as a function of N in terms of mean, variance, and amount of fading (AF) [116].

Numerical results are illustrated to validate the analysis.

4.2 System model

We consider the RIS-aided communication system depicted in Fig. 4.1, which is made of

two BSs, two UEs, and two RISs. BSi communicates with UEi via RISi , i = 1,2, where BSi is

equipped with NT transmit antennas, UEi is equipped with NR receive antennas, and RISi

is made of N reconfigurable elements that apply independent phase shifts to the incident

signal. We assume that perfect channel state information (CSI) is known at the BSs, the UEs,

and the RISs. The impact of channel estimation and configuration can be taken into account

as recently described in [93], but it is here not considered for simplicity.
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Figure 4.1 – RIS-aided MIMO communication system.

The NT ×1 unit-norm beamforming vector at BSi is denoted by qi and the NR ×1 unit-norm

combining vector at the receiver is denoted by wi . The phase shift applied by the nth element

of RISi is denoted as φi ,n . For ease of notation, the N phase shifts of RISi are collected in

the N ×N diagonal matrix Φi , i = 1,2, that is defined as Φi = diag
(
e jφi ,1 ,e jφi ,2 , . . . ,e jφi ,N

)
. To

simplify the analysis, we assume that the channel link from BSi to RIS j (i 6= j ) is blocked. This

implies that the interference is available only at the UEs. Our goal is to study the interference

at UE1 caused by RIS2 (a similar analysis can be applied at UE2).

Assuming a unit noise power and normalizing with respect to the path-loss, the received

signal-to-noise-ratio (SNR) at UEi can be written as follows [93]:

SNRi =
∣∣wH

i GiΦi Hi qi
∣∣2

(4.1)

where Hi ∼C N
(
0N×NT ,IN×NT

)
is the channel from BSi to RISi and Gi ∼C N

(
0NR×N ,INR×N

)
is the channel from RISi to UEi , i = 1,2. Also, G12 ∼ C N

(
0NR×N ,INR×N

)
is the channel link

from RIS2 to UE1.

The receiver combining vector at UEi , the transmit beamforming vector at BSi , and the phase

shifts matrix at RISi are jointly optimized to maximize SNRi in (4.1). In [93], the authors have

recently proved that the maximum SNRi that is obtained by optimizing the triplet (qi ,Φi ,wi )

can be formulated as:

SNRi ≈ γ0N 2maxl ,k

{
λk,Giλl ,Hi

∣∣Υl ,k
∣∣2

}
Υl ,k =∑N

n=1

∣∣vk,G (n)
∣∣ ∣∣ul ,H (n)

∣∣ (4.2)

where: (i) λk,Gi is the kth non-zero eigenvalue of the matrix WGi = 1
N GH

i Gi and λl ,Hi is the l th

non-zero eigenvalue of the matrix WHi = 1
N HH

i Hi ; (ii) vk,Gi and uk,Gi are the kth eigenvectors

of WGi and WGH
i

; and (iii) vl ,Hi and ul ,Hi are the l th eigenvectors of WHi and WHH
i

, respectively.
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4.2. System model

Denoting the optimal indices (k, l ) that maximize SNRi in (4.2) by (ki , li ), the triplet (qi ,Φi ,wi )

that maximizes SNRi is:

wH
i = uH

ki ,Gi
, qi = vli ,Hi

φi ,n =−arg
{

v∗ki ,Gi
(n)uli ,Hi (n)

} (4.3)

The distribution of SNRi in (4.2) is characterized in [126]. In this chapter, on the other hand,

we focus our attention on the INR at UE1 that is obtained by considering the optimized triplet

(q2,Φ2,w1) in (4.3). In particular, the INR at UE1 can be written as follows:

INR = ∣∣wH
1 G12Φ2H2q2

∣∣2
(4.4)

Let Hi = ∑rHi
r=1

√
Nλr,Hi ur,Hi vH

r,Hi
be the singular value decomposition of Hi where rHi =

rank(Hi ) is the rank of Hi . From (4.3), we have Hi qi =
√

Nλli ,Hi uli ,Hi , which implies:

INR = Nλl2,H2

∣∣∣uH
k1,G1

G12Φ2ul2,H2

∣∣∣2
(4.5)

By denoting κ= uH
k1,G1

G12Φ2ul2,H2 , (4.5) can be rewritten as follows:

INR=Nλl2,H2
|κ|2 (4.6)

Based on Lemma 3.2, uH
k1,G1

, ul2,H2 , vk2,G2 are equivalent in distribution to the following random

variables:

uH
k1,G1

d= û1 = u1/‖u1‖
ul2,H2

d= û2 = u2/‖u2‖
vk2,G2

d= v̂2 = v2/‖v2‖

(4.7)

where u1 ∼C N
(
01×NR ,11×NR

)
, u2 ∼C N (01×N ,11×N ), and v2 ∼C N (01×N ,11×N ) are mutu-

ally independent.

By denoting p = û1G12, we have κ = pΦ2û2. From the definition of Φ2, we can have that

κ=∑N
n=1 p (n) û2 (n)exp

(
jφ2,n

)
. Therefore, κ simplifies to:

κ=∑N
n=1

∣∣p(n)
∣∣ |û2(n)|exp( jδ(n)) (4.8)
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where, from (4.3), we have:

δ(n) = arg
(
p (n) û2 (n)

)−arg
{

v∗k2,G2
(n) û2 (n)

}
= arg

(
p (n)

)+arg
(
vk2,G2 (n)

) (4.9)

Since arg(vk2,G2 (n))
d=arg(ul2,H2 (n))

d=arg(û2(n)), then κ in (4.8) is equivalent in distribution to

the following:

κ
d=∑N

n=1 û2 (n)p (n) (4.10)

Based on (4.10), we evince that the phase shift φ2,n introduced by RIS2 does not change the

distribution of κ. From (4.6), the INR can be formulated as follows:

INR
d=Nλl2,H2

∣∣∣∑N
n=1 û2 (n)p (n)

∣∣∣2
(4.11)

Next, we characterize the distribution of the INR in (4.11).

4.3 Analysis of the Interference-to-Noise-Ratio

In this section, we analyze the distribution, the mean, the variance, and the AF of the INR in

(4.11), as well as the corresponding scaling laws as a function of N .

Theorem 4.1 Consider the INR in (4.11). The following approximate equivalent in distribution

representation holds true:

INR
d≈Nλ+

H

∣∣∣∑N
n=1 û2 (n)p (n)

∣∣∣2
(4.12)

where û1 = u1
‖u1‖ , û2 = u2

‖u2‖ , u1 ∼C N
(
01×NR ,11×NR

)
, u2 ∼C N (01×N ,11×N ), p (n)=∑NR

m=1 û1 (m)G12 (m,n),

G12 ∼C N
(
0NR×N ,1NR×N

)
, and λ+

H is a Gamma RV, whose mean and variance are defined as

follows:

E
(
λ+

H

)=α1 (NT , N )−α0β1 (NT , N )

V
(
λ+

H

)=β0β
2
1 (NT , N )

(4.13)

where α0 = 1.7711, β0 = 0.8132 and:

α1 (NT , N ) =
(
1+

√
NT /N

)2

β1 (NT , N ) = N−2/3
(
1+

√
NT /N

)(
1+

√
N /NT

)1/3
(4.14)

Proof 4.1 From Lemma 3.3, the eigenvectors and the eigenvalues of a Wishart matrix with
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zero mean complex Gaussian entries are independent. Also, λl2,H2 in (4.11) is the maximum

eigenvalue of the WH2 = 1
N HH

2 H2 whose distribution can be well approximated with a Gamma

RV as stated in Lemma 3.1 based on [121, 120]. This concludes the proof.

Theorem 4.2 If N À 1, the following holds true:

INR
NÀ1= N

2
λ+

HQ (4.15)

where λ+
H ∼ G ((E(λ+

H))2/V(λ+
H),V(λ+

H)/E(λ+
H)) is a Gamma RV with E(λ+

H) and V(λ+
H) given in

(4.13), and Q ∼χ2(2) is a Chi-Squared RV with two degrees of freedom.

Proof 4.2 From Theorem 4.1, λ+
H can be approximated as a Gamma random variable as follows:

λ+
H ∼G

((
E
(
λ+

H

))2/V
(
λ+

H

)
,V

(
λ+

H

)
/E

(
λ+

H

))
(4.16)

For N À 1, by virtue of the central limit theorem, κ=∑N
n=1 û2 (n)p (n) in (4.12) can be approxi-

mated with a Gaussian RV. By definition, p = û1G12, denote ϑ (n,m) = û1 (m) û2 (n)G12 (m,n),

we have:

E (κ) = E
(∑N

n=1 û2 (n)p (n)
)

=∑N
n=1

∑NR

m=1E (ϑ (n,m))
(4.17)

Since G12, û1 and û2 are mutually independent and E (G12(m,n)) = 0, we have E(ϑ(n,m)) = 0

and E(κ) = 0. Thus, V(κ) = E((κ−E(κ))(κ−E(κ))∗) = E(κκ∗) is:

V (κ) = E
(

N∑
n1=1

NR∑
m1=1

N∑
n2=1

NR∑
m2=1

ϑ (n1,m1)ϑ∗ (n2,m2)

)
(4.18)

If (n1,m1) 6= (n2,m2), G12 (m1,n1) and G12 (m2,n2) are independent, then we can have that

E
(
G12 (m1,n1)G∗

12 (m2,n2)
)= E (G12 (m1,n1))E

(
G∗

12 (m2,n2)
)= 0. Therefore, (4.18) is non-zero

only for (n1,m1) = (n2,m2), and it simplifies to:

V (κ) =
∑N

n1=1

∑NR

m1=1E
(|ϑ (n1,m1)|2) (4.19)

From Lemma 3.4, we obtain E(|û1(m1)|2) = 1
NR

, E(|û2(n1)|2) = 1
N . Also, E(|G12(m1,n1)|2) = 1

because G12(m1,n1) ∼C N (0,1). Therefore, (4.19) is equal to:

V (κ) = 1 (4.20)
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From the central limit theorem, we have κ∼C N (0,1). Consequently,
p

2ℜ(κ),
p

2ℑ(κ) ∼N (0,1)

and Q = 2|κ|2 can be written as Q = (
p

2ℜ(κ))2 + (
p

2ℑ(κ))2 ∼χ2(2). This concludes the proof.

Based on Theorem 4.2, we evince that, for N À 1, the INR is the product of an (approximate)

Gamma RV and a Chi-Square RV with two degrees of freedom. Also, the two RVs are mutually

independent. In the following propositions, we characterize the mean, the variance, and the

AF of the INR based on Theorem 4.2.

Proposition 4.1 Assume N À 1. The mean and the variance of the INR in (4.15) can be formu-

lated as follows:

E (INR)
NÀ1= NE

(
λ+

H

)
V (INR)

NÀ1= 2N 2V
(
λ+

H

)+N 2(E(
λ+

H

))2
(4.21)

Proof 4.3 From (4.15), we obtain:

E(INR)
NÀ1= (N /2)E(λ+

H)E(Q)
(a)= NE(λ+

H)

E(INR2)
NÀ1= (N /2)2E((λ+

H)2)E(Q2)

(b)= 2N 2E((λ+
H)2)

(4.22)

where (a) follows from E(Q) = 2 and (b) follows from E(Q2) = V(Q) + (E(Q))2 = 8. Using

E((λ+
H)2) =V(λ+

H)+(E(λ+
H))2 andV(INR) = E(INR2)−(E(INR))2, we obtain (4.21). This concludes

the proof.

From Proposition 4.1, we can infer the scaling laws of the mean, variance, and AF as a function

of N by taking into account the distribution of λ+
H in Theorem 4.1. The final result is formally

stated in the following proposition.

Proposition 4.2 Assuming N À 1 and let the AF of the INR be AFINR =V (INR)/(E (INR))2. As a

function of N , while keeping the other parameters fixed, the following scaling laws hold:

E (INR)
NÀ1∝ N

V (INR)
NÀ1∝ N 2

AFINR
NÀ1∝ 1

(4.23)

Proof 4.4 Consider the definitions in (4.12) and (4.13). When N À 1, we have (1+p
NT /N )

NÀ1∝ 1

and (1+p
N /NT )

NÀ1∝ p
N /NT . Thus, we obtainα1 (NT , N )

NÀ1∝ 1 andβ1(NT , N )
NÀ1∝ NT

−1/6N−1/2,
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Figure 4.2 – Mean and variance of the INR.

and, from (4.13), we have:

E
(
λ+

H

)=α1 (NT , N )−α0β1 (NT , N )

NÀ1∝ 1−α0NT
−1/6N−1/2 NÀ1∝ 1

V
(
λ+

H

)=β0β
2
1 (NT , N )

NÀ1∝ β0NT
−1/3N−1

(4.24)

Therefore, from (4.21), we obtain:

E (INR)
NÀ1= NE

(
λ+

H

)NÀ1∝ N

V (INR)
NÀ1= 2N 2V

(
λ+

H

)+N 2(E(
λ+

H

))2

NÀ1∝ 2β0NT
−1/3N +N 2 NÀ1∝ N 2

(4.25)

Finally, we have AFINR =V (INR)/(E (INR))2 NÀ1∝ 1. This concludes the proof.

4.4 Numerical Results

In this section, we illustrate some numerical results in order to substantiate the obtained

analytical findings against Monte Carlo (MC) simulations. Figure 4.2 shows the mean and

variance of the INR, and compares MC simulations and Proposition 4.1. Figure 4.3 compares

the AF obtained from MC simulations against the analytical definition of the AF obtained from

(4.21), and the scaling laws in (4.23). In both figures, we obtain a good agreement for N À 1.

Finally, Fig. 4.4 reports the cumulative distribution function (CDF) of the INR obtained from

MC simulations, and compares it against the corresponding CDF obtained from Theorems 4.1

and 4.2. Also in this case, we obtain a good agreement between analysis and simulations.
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By comparing the distribution of the INR with that of the SNR obtained in [126], we evince

that an RIS is capable of reducing the AF of the intended link linearly with N , while this scaling

law is not observed for the INR (i.e., the AF is constant with N ). The study conducted in this

chapter highlights that the interference-aware optimization of RISs may be needed to achieve

a better robustness to the interference.
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4.5 Conclusion

We have introduced an analytical framework to characterize the distribution of the INR in

RIS-aided systems. Over Rayleigh fading, in particular, we have proved that the INR is asymp-

totically equivalent in distribution to the product of a Gamma RV and a Chi-Square RV. Also,

the AF is proved to be independent of the number N of reconfigurable elements.

Generalizations of the results reported in this chapter include the analysis and optimization of

RIS-assisted communications based on electromagnetic-compliant communication models,

such as that recently introduced in [39] and [40].
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5 Data-driven and model-driven deep
learning detection for RIS-aided Spa-
tial Modulation
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Chapter 5. Data-driven and model-driven deep learning detection for RIS-aided Spatial
Modulation

Reconfigurable intelligent surface (RIS) is regarded as a key technology for the next generation

of wireless communications. Recently, the combination of RIS and spatial modulation (SM)

or space shift keying (SSK) has attracted a lot of interest in the wireless communication area

by achieving a trade-off between spectral and energy efficiency. In this chapter, we first in-

troduce how to utilize deep unfolding in MIMO detection. Then, by generalizing RIS-aided

SM/SSK system to a special case of conventional SM system, we investigate deep learning

based detection in RIS-aided SM/SSK systems. Based on the idea of deep unfolding, we

propose a model-driven deep learning detection for RIS-aided SM systems and compare the

performance against the data-driven deep learning detectors.

This chapter is organized as follows. In Section 5.1, we introduce the deep learning and RIS-

aided SM/SSK system. A review of MIMO detectors including conventional model-based

algorithms and deep learning is given in Section 5.2. The system model and the traditional de-

tection algorithms for RIS-SSK/SM systems are introduced in Section 5.3. The data-driven and

the model-driven DL detectors are presented in Section 5.4. Simulation results are provided in

Section 5.5 followed by the conclusion in Section 5.6.
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Chapter 5. Data-driven and model-driven deep learning detection for RIS-aided Spatial
Modulation

5.1 Introduction

5.1.1 RIS-SSK/SM

Future wireless communication is expected to provide reliable connections between a large

amount of devices with limited energy consumption. To overcome the unreliable wireless

communication environment, reconfigurable intelligent surface (RIS) is considered as an

important approach to enhance the classical communication channels [2, 7]. By imposing

customized phase shifts to the incident waves, an RIS can appropriately shape the scattered

waves towards specified locations [118, 125]. Compared to traditional relays, an RIS does not

need power amplifiers, thus reducing the interference and power consumption [6].

Recently, the idea of combing RIS and spatial modulation (SM) is getting heated discussion. In

[101], Basar et al. proposed to utilize the RIS to maximize the received signal to noise ratio

(SNR) on a chosen antenna of the receiver. In this chapter, by generalizing RIS-SSK/SM to

a special case of conventional SM system, we aim to investigate deep learning detectors for

RIS-SSK/SM.

5.1.2 Deep Unfolding

In deep learning, the structure design of a neural network is critical. To integrate the model

expert knowledge into the network structure and design model-driven deep learning (DL)

detectors, instead of using a conventional DNN, deep unfolding [127] takes an iterative al-

gorithm with a fixed number of iterations, unfolds its structure, and introduces a number of

trainable parameters. The basic idea of deep unfolding is to treat an iteration as a layer in

a neural network. This model-driven DL approach can achieve or exceed the performance

of corresponding iterative algorithms since the advantages of model-driven and data-driven

approach are effectively complementary to each other. Deep unfolding can mitigate the

negative impact of time-varying channels, reduce the number of trainable parameter in the

neural network and accelerate the convergence.

5.1.3 Literature Study

By unfolding the model-based iterative detection algorithms into a neural network, there has a

surge of works on deep unfolding of MIMO detection in recent years. [128] theoretically proved

that deep unfolding will guarantee a better performance against the original iterative algorithm.

It is also proved that data-driven DL detector can approach the optimal MAP detector with

enough training, while the performance of the model-driven DL detector depends on the

original iterative algorithm.
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Generic iterative algorithms

The MIMO detectors based on Richardson iteration [129, 130], successive over-relaxation

(SOR) [131, 132] and Jacobi iteration [133] all have a similar iterative structure. Exploiting

the idea of Deep Unfolding, the parameters in the detectors can be set random initially and

trained using a DNN. The deep learning based detector exhibits a better performance than

the iterative detectors in [129, 130, 131, 132, 133].

Projected Gradient (PG)

Based on PG, [134, 135] proposed a deep learning detector named as DetNet, where extra

dimensions are added to enhance the performance of MIMO detection. [136, 137] proposed

to train the step-size and projection parameter in PG iterations. In massive overloaded MIMO

system where the number of transmit antennas is much greater than that of receive antennas,

the unfolded PG-based detector exhibited a good performance.

Conjugate Gradient (CG)

To accelerate the convergence rate of gradient descent while avoiding the high computational

cost (for example, in Newton Method the inverse of the Hessian matrix is needed), CG is

proposed in [138]. In [139], a MIMO detector based on CG is proposed. In [140], the authors

proposed to unfold CG iteartions and train the step-sizes in each iteration.

Proximal Gradient Descent

For the regularized least squares estimation, proximal gradient methods such as iterative

soft thresholding algorithm (ISTA), approximate message passing (AMP) and alternating

direction method of multipliers (ADMM) [141] are standard approaches to circumvent the

non-smoothness of the regularizer while simplifying the optimization problem into a sequence

of computationally efficient operations. [142] proposed to learn the ISTA. The idea of unfolding

ISTA and AMP is further discussed in [143]. A deep detector based on unfolding ADMM is

proposed in [144].

5.2 Deep Unfolding in MIMO detection

We consider a MIMO system with NT transmit antennas and NR receive antennas, the input-

output relation of data transmission over a frequency-flat MIMO channel is as follows:

yc = Hc xc +nc (5.1)

where the index c stands for complex-valued, yc ∈CNR×1 is the complex-valued receive vector,

Hc ∈CNT ×NR is the complex-valued MIMO channel matrix whose elements follow complex
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Gaussian distribution, i.e., Hc ∼C N
(
0,INT ×NR

)
, xc ∈CNT ×1 is the vector of transmit symbols,

and nc ∈CNR×1 is the noise vector whose elements follows the complex Gaussian distribution

C N
(
0,σ2

nINR×1
)
, where σn is the noise power.

We convert the complex-valued model into the corresponding real-valued one for ease of

representation and computation. The system model becomes real-valued as

y = Hx+n (5.2)

where T = 2NT , R = 2NR and

y =
[

Re
(
yc

)
Im

(
yc

) ]
∈RR×1 (5.3)

H =
[

Re(Hc ) −Im(Hc )

Im(Hc ) Re(Hc )

]
∈RT×R (5.4)

x =
[

Re(xc )

Im(xc )

]
∈RT×1 (5.5)

w =
[

Re(wc )

Im(wc )

]
∈RR×1 (5.6)

5.2.1 Conventional Detectors

The optimal solution to Eq. (5.2) is the maximum likelihood (ML) detection, which requires a

huge calculation complexity.

x̂ML = argmin
x

∥∥y−Hx
∥∥2

F (5.7)

When the number of antennas is huge, the conventional linear detection methods such

as matched filter (MF), zero-forcing (ZF), minimum mean square error (MMSE) are more

practical in implementation.

x̂MF = HT y (5.8)

x̂ZF = (
HT H

)−1
HT y (5.9)

x̂MMSE = (
HT H+σ2

nIT
)−1

HT y (5.10)
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To tackle the complexity in matrix inversion

We can rewrite (5.10) as

x̂ = A−1b (5.11)

where A = HT H+σ2IT and b = HT y. In massive MIMO systems where the number of antennas

are huge, the matrix inversion in Eq. (5.11) is a problem. To approximate or avoid the matrix

inversion, many algorithms have been proposed, many of them adopt an iterative fashion,

which can be combined with deep learning with the aid of deep unfolding.

5.2.2 Unfold Projected Gradient Descent

With the loss function defined to evaluate the performance as L (x) = ∥∥y−Hx
∥∥2

F , the well-

known gradient descent algorithm allows us to obtain the solution via an iterative fashion:

x̂t+1 = x̂t −δt
∂L (x)

∂x
(5.12)

which leads to the following iteration:

x̂t+1 = x̂t −δt HT y+δt HT Hx̂t (5.13)

where δt corresponds to the step-size parameter which controls the convergence behavior

such as the convergence to a fixed point and the convergence speed.

Unfold the Gradient Descent Detector

Intuitively, we can build a L-layer neural network using the iteration in Eq. (5.13). In t-th layer,

the operation of the neural network is expressed as:

x̂t+1 = x̂t −At HT y+Bt HT Hx̂t , t = 1,2, ...,L (5.14)

where the T ×T matrices {At ,Bt }L
t=1 are considered as trainable parameters, x̂L+1 is the final

output.

DetNet

To enhance the performance of the unfolded detector, [134] and [135] proposed a deep de-

tector named as “DetNet" which introduces extra dimensions with the following iteration:

zt = ReLU

(
W1t

[
x̂t −δ1t HT y−δ2t HT Hx̂t

vt

]
+b1t

)
, (5.15)
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x̂t+1 =σ (W2t zt +b2t ) , (5.16)

v̂t+1 = W3t zt +b3t , (5.17)

where σ (·) is a logistic sigmoid. The set of trainable parameters is

{W1t ,W2t ,W3t ,b1t ,b2t ,b3t ,δ1t ,δ2t : t = 0, ...,T −1} (5.18)

Compared to Eq. (5.13), DetNet introduces extra dimensions by adding a new parameter vt .

To address the problems in deep network training such as vanishing gradients, saturation of

the activation functions, sensitivity to initialization, etc., inspired by [145], DetNet adopted a

loss function that takes into account the outputs of all of the layers, which is given by

l (x, x̂L) =
L∑

l=1
log(l )‖x− x̂L‖2 (5.19)

To further enhance the performance, a residual feature from [146] where the output of each

layer is a weighted average with the output of the previous layer is added.

x̂l =αx̂l−1 + (1−α) x̂l (5.20)

where α is chosen as 0.9 in the implementation.

Overloaded MIMO

In [136, 137], the authors proposed a massive overloaded MIMO detector based on unfolding

PG algorithm. The considered PG algorithm is given by

rt = x̂t −δt HT y+δt HT Hx̂t (5.21)

x̂t+1 = tanh(ξrt ) (5.22)

Compared to Eq. (5.13), in the projection step Eq. (5.22) a soft projection function tanh(·) is

applied to rt to obtain the estimate x̂t+1 of the t th iteration. The soft projection ensures that

the estimate takes a real value close to ±1. In this projection step, the parameter ξ adjusts the

softness of the soft projection.

By unfolding the iterative process in Eq. (5.21) and (5.22), the authors proposed a trainable
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algorithm given by

rt = x̂t −δt W
(
y−Hx̂t

)
(5.23)

x̂t+1 = tanh(|ξt |rt ) (5.24)

where W = HT
(
HHT

)−1
or W = HT

(
HHT +σ2

nIT
)−1

. Compared to Eq. (5.21) and Eq. (5.22),

HT is replaced by W because this modification improves the BER performance [147]. It is

proved that in [137] that the former W has a poor detection performance when the ratio R/T

is relatively large.

5.2.3 Conjugate Gradient Descent

In [139], the authors proposed to use CG in MIMO detection. The estimated signal x̂ for Eq.

(5.11) can be obtained using

x̂(n+1) = x̂(n) +α(n)p(n) (5.25)

where α(n) is a scalar parameter and p(n) is the conjugate direction with respect to A, i.e.,

(p(n))H Ap(m) = 0 for n 6= m (5.26)

More specific, the iteration of the CG detector can be expressed as

1. Initialization: i = 0, x̂0 = 0, d̂0 = r̂0 = b

2. Update the step-size: αi =
(
rH

i ri
)

/
(
rH

i Adi
)

3. Update the estimate: x̂i+1 = x̂i +αi di

4. Update the residual: ri =− f ′(x̂i ) = ri−1 −αi−1Adi−1

5. Update the direction step-size: βi =
(
rH

i+1ri+1
)

/
(
rH

i ri
)

6. Update the direction: di = ri +βi−1di−1

7. i = i +1

In [140], the authors proposed to use deep unfolding to improve the CG detector. In the

proposed learned CG detector, the update of step-sizes in Eq. (5.27) is implemented using

deep learning.

αi =
(
rH

i ri
)

/
(
rH

i Adi
)

βi =
(
rH

i+1ri+1
)

/
(
rH

i ri
) (5.27)
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In the deep network, the performance is further improved using vector step-sizes, where the

trainable variables are:

Θ(i )
v = {α(i )

r ∈ 2Nt×1,β(i )
r ∈ 2Nt×1} (5.28)

5.2.4 Deep Unfolding the generic iterative algorithms

The MIMO detectors based on Richardson iteration [129, 130], successive over-relaxation

(SOR) [131, 132] and Jacobi iteration [133] all have a similar iterative structure. Exploiting

the idea of Deep Unfolding, the parameters in the detectors can be set random initially and

trained using a DNN. The deep learning based detector exhibits a better performance than

the iterative detectors in [129, 130, 131, 132, 133].

(1) Generic Iterative Detectors

Richardson Iteration In [129, 130], an iterative MIMO detector based on the Richardson

iteration is given by

x̂i = x̂i−1 +ω {b−Ax̂i−1} (5.29)

where ω is a constant scale factor.

SOR In [131, 132], the iterative algorithm based on SOR can be expressed as

((1/ω)D+L) x̂i = b+{
(1/ω−1)D−LH }

x̂i−1 (5.30)

where ω is a constant scale factor, D is the main diagonal of the MMSE filtering matrix A in Eq.

(5.11), L is the lower triangular matrix of A.

Jacobi Iteration In [133], the iterative detector based on Jacobi iteration is given by

x̂i =ω
(−D−1Ex̂i−1 +D−1b

)+ (1−ω) x̂i−1 (5.31)

where E is the off-diagonal of A, i.e., E = A−D.

(2) Unfold the Iterations

The above iterative detectors all share the same structure:

x̂i = Ax̂i−1 +Bb, (5.32)
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which inspires a T -layer neural network whose each layer is defined as

x̂t+1 = At x̂t +Bt b (5.33)

where {At ,Bt }T
t=1 are trainable parameters.

5.2.5 Proximal Gradient Descent

Instead of solving the unconstrained least squares estimation in Eq. (5.11), a popular method

is to solve the regularized least squares estimation by adding a penalty term. The added

regularization function penalizes values that are less likely or desirable as solutions, forces x̂

to be close to the mean value E(x). The well-known LASSO regression [148] is given by

x̂ = argmin
x

1

2
‖b−Ax‖2 +λ‖x‖1 (5.34)

To solve the regularized least squares estimation problem, proximal gradient methods such

as iterative ISTA, approximate message passing (AMP) and ADMM are standard approaches

which avoid the over-fitting problem.

ISTA

To solve (5.34), a simple solution is ISTA [149]:

vt = y−Hx̂t

x̂t+1 = ηst
(
x̂t +HT vt ;λ

) (5.35)

where ηst is the soft thresholding shrinkage function, which is defined component-wise as

ηst (x,λ) = sign(x) ·max(|x|−λ,0) (5.36)

With the aid of deep unfolding, the t-th layer of the unfolded ISTA network [143] can be

expressed as

vt = y−At x̂t ,

x̂t+1 = ηst (x̂t +Bt vt ;λt )
(5.37)

where {At ,Bt ,λt }T
t=1 are trainable parameters.
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AMP

To enhance the performance of ISTA, [150] proposed an AMP algorithm, which can be ex-

pressed as

vt = y−Hx̂t +bt vt−1,

x̂t+1 = ηst
(
x̂t +HT vt ;λt

) (5.38)

where bt = ‖x̂t‖0/R, λt = α‖vt‖2/
p

R, α is the tuning parameter. Compared to (5.35), the

added term bt vt−1 is called Onsager correction, which aims to decouple the errors across

iterations. Similarly, the t-th layer of the unfolded AMP network [143] can be written as

vt+1 = y−At x̂t+1 +bt+1vt ,

x̂t+1 = ηst

(
x̂t +Bt vt ;αt‖vt‖2/

√
NR

) (5.39)

where {At ,Bt ,αt }T
t=1 are trainable parameters.

ADMM

The alternating direction method of multipliers (ADMM) [141] is an algorithm that solves

convex optimization problems. More specific, ADMM is for problems with an objective

function that is the sum of two separate convex functions with linear constraints. In [144], the

authors proposed to unfold ADMM. The MIMO detector based on ADMM can be expressed as

z(k) = sign
(
x(k−1) −u(k−1)

)
,

u(k) = z(k) −x(k−1) +u(k−1),

x(k) = (
diag(λ)+HT H

)−1
(
HT y+λ¯

(
z(k) +u(k)

)) (5.40)

where λ= [λ1, ...,λT ]T is the non-negative penalty parameter and ¯ denotes the Hardmard

product.

To unfold the iterations, firstly the sign function of each iteration is replaced by a projection

function given by

Υt ,β (x) =−β+ ReLU
(
x+β¯ t

)
t

− ReLU
(
x−β¯ t

)
t

(5.41)

The operation of the k-th layer of the unfolded network (k = 1, ...,L) can be expressed as

z(k) =Υtk−1,βk

(
x(k−1) −u(k−1)

)
,

u(k) = z(k) −x(k−1) +u(k−1),

x(k) = D
(
HT y+ (

p¯ωk
)¯ (

z(k) +u(k)
)) (5.42)
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where D = (
diag

(
ω0 ¯p

)+HT H
)−1

and x(0) = 0,u(0) = 0,p = diag
(
HT H

)
. The final output is

x̂ (θ) =ΥtL ,1
(
x(L)

)
.

The trainable parameters are θ =
{

{ωl ,tl }L
l=0 ,

{
βk

}L
k=1

}
and the loss function is given by

l (s; x̂ (θ)) =
N∑

n=1
‖hn‖2

2 (xn − x̂n (θ))2 (5.43)

5.2.6 Performance Comparison

In this section, we simulated all the unfolded detectors to compare the performance. In all the

experiments, the unfolded models are trained using TensorFlow [151]. The learning rate is set

as 0.0001. The channel matrix is fixed and constant. The training SNR is a fixed high SNR (e.g.,

30dB).

Figure 5.1 – NT = 32, NR = 64, BPSK. BER performance comparison of unfolded detectors.

The BER performance comparison of different unfolded detectors is given in Fig. 5.1. We can

observe that, of all the unfolded detectors we investigated, unfolded Richardson, AMP and

ADMM performs better performance.
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Figure 5.2 – The framework of an RIS-aided SM system.

5.3 RIS-SSK/SM

5.3.1 System Model

Based on the concept of RIS-AP introduced in [152], RIS-SSK/SM scheme is proposed in

[101]. A schematic diagram of RIS-aided SM system is given in Fig. 5.2. The RIS is a part of

the transmitter, it reflects the signals generated by a near RF source in a deliberate manner

to convey information bits. We consider a RIS consists of N passive and low-cost reflector

elements (reconfigurable meta-surfaces) and a receiver with NR antennas, The receiver lies in

the far-field of the RIS and does not receive transmission from the RF source. The wireless

fading channel between the l-th receive antenna of the receiver and i -th reflector element

is characterized by gl ,i = βl ,i e− jψl ,i for l = 1, · · · , NR and i = 1, · · · , N , and follows C N (0,1)

distribution under the assumption of flat Rayleigh fading channels, where βl ,i and ψl ,i are

the absolute value and phase of gl ,i , respectively. For intelligent reflection, the RIS has the

knowledge of channel phases ψl ,i for all l and i . We also assume that all wireless channels are

uncorrelated and the receiver has perfect channel state information (CSI).

In each transmission of RIS-SSK, log2(NR ) bits are utilized to choose one out of NR receive

antennas. After the antenna selection, the RIS phase shifts are adjusted to maximize the SNR

at the target receive antenna. Assuming the chosen antenna index is u, the phase shifts of the

RIS are adjusted as

Ψ= [e jφu,1 , ...,e jφu,N ]T ∈CN×1 (5.44)

where φu,i =−arg(gu,i ) =ψu,i for i = 1, · · · , N .

To further improve the spectral efficiency, an RIS-SM system conveys extra log2M bits in each
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transmission to modulate a M-PSK/QAM symbol, which is transmitted from the RF source to

the RIS.

Denote G = {
gl ,i , l = 1, · · · , NR , i = 1, · · · , N

}
as the channel matrix between the RIS and the

base station (BS) with NR receiver antennas, the received signal ȳ ∈CNR×1 can be expressed as

RIS-SSK: ȳ = GΨ+ n̄ (5.45)

RIS-SM: ȳ = GΨx + n̄ (5.46)

where n̄ ∈CNR×1 is the additive white Gaussian noise (AWGN), which follows C N
(
0NR×1, N0INR×1

)
with N0 denoting the noise power. In RIS-SM, x ∈ S is the modulated M-PSK/QAM signal

drawn from a discrete constellation S.

5.3.2 ML and Greedy Detection

The maximum likelihood (ML) detector for RIS-SSK/SM [101] is given as

ûRIS−SSK
ML = arg min

u∈{1,...,NR }

∥∥∥∥ȳ−G
[

e jφu,1 , ...,e jφu,N

]T
∥∥∥∥2

2
(5.47)

(
ûRIS−SM

ML , x̂RIS−SM
ML

)
= arg min

u∈{1,...,NR },x∈S

∥∥∥∥ȳ−G
[

e jφu,1 , ...,e jφu,N

]T
x

∥∥∥∥2

2

(5.48)

The authors in [101] also proposed a greedy detector (GD) with reduced complexity to estimate

the activated antenna index, which is given as

ûRIS−SSK/SM
GD = argmax

i

∣∣yi
∣∣ (5.49)

where yi is the i -th element of the received ȳ. After the estimation of u using (5.49), an

estimation of x in RIS-SM can be obtained as

x̂RIS−SM
GD = argmin

x

∣∣∣∣∣yu −x
N∑

i=1
βu,i

∣∣∣∣∣
2

(5.50)

5.3.3 RIS-SM: A special case of conventional SM

Let B be a N ×NR matrix whose elements
{
bl ,i

}
are described as

bl ,i = g∗
l ,i /

∣∣gl ,i
∣∣= e jψl ,i , (5.51)
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then we can rewrite (5.45) and (5.46) as

ȳ = GBc̄+ n̄, (5.52)

where c̄ is defined for RIS-SSK and RIS-SM separately as

RIS-SSK: c̄ =
0, ..., 1︸︷︷︸

u−th

, ...,0

T

RIS-SM: c̄ =
0, ..., x︸︷︷︸

u−th

, ...,0

T
(5.53)

Thus, (5.45) and (5.46) can be written as

ȳ = H̄eq c̄+ n̄, (5.54)

where H̄eq is the equivalent channel matrix defined as

H̄eq = GB. (5.55)

In fact, under the assumption that G being flat Rayleigh fading channel, when N À 1, for

i , j = 1, · · · , NR and j 6= i , we can obtain the distribution (see Appendix 5.7.1) of the diagonal

and non-diagonal elements of H̄eq as

hi i ∼N

(
N

2

p
π,

N

4
(4−π)

)
,

hi j ∼C N (0, N ) ,
(5.56)

Therefore, when N À 1, the distortion of H̄eq mainly comes from the diagonal element, which

explains the advantage to adopt greedy detection in RIS-SSK/SM.

From the expression in (5.54), we can observe that the RIS-SM system is equivalent to the

conventional SM system with the difference in the channel matrix. Therefore, the detection of

RIS-SM can utilize the variety of detection algorithms in conventional SM systems.

5.4 Detection based on deep learning

In this section, we introduce data-driven and model-driven DL detectors separately. To avoid

handling complex values in detection, (5.54) is re-parameterized into a real-valued signal

model as

y = Hc+n, (5.57)
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Input Layer
Hidden Layers Output Layer

Figure 5.3 – Network structures for the data-driven DL detectors.

where

y =
[

Re
(
ȳ
)

Im
(
ȳ
) ]

∈R2NR×1 (5.58)

c =
[

Re(c̄)

Im(c̄)

]
∈R2NR×1 (5.59)

n =
[

Re(n̄)

Im(n̄)

]
∈R2NR×1 (5.60)

and

H =
[

Re
(
H̄eq

) −Im
(
H̄eq

)
Im

(
H̄eq

)
Re

(
H̄eq

) ]
∈R2NR×2NR (5.61)

where Re(·) and Im(·) denote the real and imaginary parts separately. In the following, we

introduce the data-driven and model-driven DL detectors for RIS-SSK/SM, respectively.

5.4.1 Data-driven DL Detector

We consider a data-driven DL detector with a fully-connected ReLU DNN, the network struc-

ture is illustrated in Fig. 5.3. The deep neural network (DNN) of the detector consists of input

and output layers, l ∈N hidden layers and neuron assignment d = (d0,d1, ...,dl ,dl+1) ∈Nl+1.

The number of nodes in the input layer is determined by the knowledge of CSI. Denote the

output of the DNN as b, and the input of the DNN is a. When CSI is unknown, the input of
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the DNN is a = {
y
}
, thus we have d0 = 2NR for the input layer of RIS-SSK/SM. When CSI is

available, the input of the DNN is a = {
y, vec (H)

}
, where vec(·) stands for vectorization. In

this case, we have d0 = 2NR +4N 2
R for the input layer of RIS-SSK/SM.

The binary cross entropy (BCE) between the output b of the DNN and the one-hot encoding

of c̄ is adopted as the loss function, which can be expressed as

fl oss = BCE
(
b, b̄

)
(5.62)

where b̄ is the one-hot encoding of c̄ and is defined as

b̄ =
0, ..., 1︸︷︷︸

υ−th

, ...,0

T

(5.63)

In RIS-SSK, υ is the chosen antenna index u. In RIS-SM, when the modulated signal x is the

m-th constellation in S, we have υ= M(u −1)+m. Therefore, we have dl+1 = NR for RIS-SSK

and dl+1 = M NR for RIS-SM.

The set of all trainable parameters of the DNN can be expressed as

Θ= {vec(Wi ) ,bi }l
i=0 , (5.64)

where Wi ∈Rdi+1×di is the weight matrix connecting the i -th layer to the (i +1)-th layer, and

bi ∈Rdi+1 is the bias vector of the (i +1)-th layer for i ∈ {0,1, ..., l }. The total number of trainable

parameters is
∑l

i=0 di+1 (di +1).

For the activation function, we choose rectified linear units (ReLU) for the hidden layers and

softmax for the output layer. Finally, the DNN can be expressed as

b =ψdl+1

(
Al

(
ϕdl

(
Al−1

(
ϕdl−1

(· · ·(ϕd1 (A0 (a))
))))))

(5.65)

where ψdl+1 : Rdl+1 → Rdl+1 is the entry-wise softmax function, Ai : Rdi → Rdi+1 is the affine

transformation with weight Wi and bias bi and ϕdi : Rdi →Rdi is the entry-wise rectified linear

units (ReLU) activation function for i ∈ {0, ..., l }.

For ease of notation, we denote the data-driven fully connected DL detector without/with CSI

as D1 and D2, respectively.

5.4.2 Model-driven DL Detector with CSI

In this section we introduce the model-driven DL detector based on deep unfolding. Based on

the idea of well-known gradient descent, we can obtain the estimated ĉ in an iterative fashion
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Input:  H, y, ĉi
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Figure 5.4 – Schematic diagram of the i -th iteration of D3.

as:

ĉi+1 = ĉi −δi
∂
∥∥y−Hc

∥∥2

∂c

∣∣
c=ĉi (5.66)

where δi is the step-size of iteration, c1 can be initialized as zeros. Thus we obtain

ĉi+1 = ĉi +2δi HT y−2δi HT Hĉi (5.67)

Consequently, following the idea of deep unfolding, we can design a L-layer neural network by

unfolding the iterations in (5.67) as:

ĉi+1 =ϕ
(
ĉi −Bi

(
HT y

)+Ci
(
HT Hĉi

))
(5.68)

where ϕ: R2NR → R2NR is the entry-wise ReLU activation function for i ∈ {0, ..., l }, Bi ,Ci :

R2NR → R2NR are the affine transformations with weight W1,i ,W2,i and bias b1,i ,b2,i , respec-

tively. For simplicity, we denote the model-driven detector as D3. In Fig. 5.4, we plot the i -th

iteration of D3, the whole signal-flow graph of D3 can be obtained by stack multiple Fig. 5.4.

The set of trainable parameters of D3 is given as

Θ= {
vec

(
W1,i

)
,b1,i ,vec

(
W2,i

)
,b2,i

}L
i=1 (5.69)

The total number of trainable parameters is 2NR L (2NR +1). The loss function is defined as

the mean squared error (MSE) of the estimation ĉ and the original vector c, which is given as

floss = MSE(c, ĉ) (5.70)
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Figure 5.5 – The BER performance of the DL detectors and conventional ML and greedy
detectors for RIS-SSK system with NR = 4 and N = 64.
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Figure 5.6 – The BER performance of the model-driven DL detectors for RIS-SSK system with
NR = 4 and N = 64.

5.5 Numerical results

In this section, the performance of the DL detectors is evaluated by computer experiments.

Time-invariant and time-varying Rayleigh fading channels are investigated. For all the DL
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Figure 5.7 – The BER performance of the DL detectors and conventional ML and greedy
detectors for RIS-SM system with NR = 4 and N = 64.
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Figure 5.8 – The BER performance of the model-driven DL detectors for RIS-SM system with
NR = 4 and N = 64.

detectors, we choose Adam as the optimizer [153]. The learning rate is 0.001 for all the DL

detectors. The data-driven DNNs (D1 and D2) have 3 hidden layers. The model-driven DNN
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(D3) has 4 layers (or iterations).

In Fig. 5.5, we compare the BER performance in RIS-SSK systems over time-invariant and

time-varying channels. The model-based greedy, ML detectors and data/model-driven DL

detectors are investigated and compared in a RIS-SSK system with NR = 4 and N = 64. We

have (di ,d1,d2,d3,d4) = (8,72,144,72,4) for D1, (di ,d1,d2,d3,d4) = (72,72,144,72,4) for D2.

From Fig. 5.5, we can observe that the proposed DL detectors outperform the greedy detector.

With CSI, D2 exhibits a better performance than D1. The performance of D3 is better than D1

and D2 with fewer training samples.

The numbers of all the trainable parameters are 21892, 26500 and 288 for D1, D2 and D3,

respectively. Because that D3 has a smaller set of trainable parameter, D1 and D2 need much

more training batches to converge, in the simulation the number of training batches is 20000

for D1 and D2 and 10000 for D3. Each training batch consists of 5000 channel realizations.

Fig. 5.6 gives a BER comparison of different model-driven DL detectors for RIS-SSK over

time-invariant and time-varying channels. The performance of unfolded ISTA detector [154]

and unfolded ADMM detector [144] are investigated. We can observe that our proposed

model-driven DL detector has better performance against the other model-driven DL de-

tectors. In Fig. 5.7, similar performance comparisons are given for RIS-SM system over

time-invariant and time-varying channels. We have (di ,d1,d2,d3,d4) = (8,144,288,72,4) for

D1, (di ,d1,d2,d3,d4) = (72,144,288,72,4) for D2. In Fig. 5.8, we compare the BER performance

of different model-driven DL detectors for RIS-SM with NR = 4 and N = 64. Compared with

unfolded ISTA and ADMM detector, D3 has a better performance.

5.6 Conclusion

In this chapter, we proposed to detect the RIS-SSK/SM systems with the aid of data-driven and

model-driven deep learning. The numerical results show that our proposed data-driven DL

detector and model-driven DL detectors have better performance against conventional greedy

detection. Besides, with a simple design, our proposed model-driven DL detector exhibits a

promising performance against the unfolded ISTA and ADMM detectors.

5.7 appendices

5.7.1 Distribution of Heq when N À 1

Denote gi , j ,hi , j as the (i , j ) element of G, Heq , respectively. From (5.55), we have

hi i =
∑N

k=1

∣∣gi k
∣∣ (5.71)
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hi j =
∑N

k=1

gi k g∗
j k∣∣g j k
∣∣ (5.72)

To better analyze the equivalent channel matrix, we give the following lemmas.

Lemma 5.1 Given g ∼C N (0,1), we have
∣∣g ∣∣∼ Rayleigh

(p
1/2

)
, whose moments are given as

E
(∣∣g ∣∣n)= Γ (1+n/2).

Proof 5.1 Omitted.

Lemma 5.2 If N À 1, hi i ∼N
( N

2

p
π, N

4 (4−π)
)
.

Proof 5.2 From 5.1, we have

E (hi i ) = E
(∑N

k=1

∣∣gi k
∣∣)=∑N

k=1E
∣∣gi k

∣∣= N

2

p
π. (5.73)

Because

h2
i i =

∑N
k=1

∑N
l=1

∣∣gi k
∣∣ ∣∣gi l

∣∣
=∑N

k=1

∣∣gi k
∣∣2 +∑N

k=1

∑N
l 6=k

∣∣gi k
∣∣ ∣∣gi l

∣∣, (5.74)

we have

E
(
h2

i i

)= E(∑N
k=1

∣∣gi k
∣∣2

)
+E

(∑N
k=1

∑N
l 6=k

∣∣gi k
∣∣ ∣∣gi l

∣∣)
=∑N

k=1E
(∣∣gi k

∣∣2
)
+∑N

k=1

∑N
l 6=k E

(∣∣gi k
∣∣)E

(∣∣gi l
∣∣)

= N +N (N −1)
π

4

(5.75)

V (hi i ) = E(
h2

i i

)− [E (hi i )]2 = N − N

4
π (5.76)

From central limit theorem, when N À 1, we have hi i ∼N
( N

2

p
π, N

4 (4−π)
)
.

Lemma 5.3 If N À 1, hi j ∼C N (0, N ) for i 6= j .
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Proof 5.3 E
(
hi j

)= E(∑N
k=1

gi k g∗
j k

|g j k |
)
=∑N

k=1E
(
gi k

)
E
(
g∗

j k /
∣∣g j k

∣∣)= 0

hi j h∗
i j =

∑N
k=1

gi k g∗
j k∣∣g j k
∣∣ ∑N

l=1

g∗
i l g j l∣∣g j l

∣∣
=∑N

k=1

∣∣gi k
∣∣2 +∑N

k=1

∑N
l 6=k

gi k g∗
j k∣∣g j k
∣∣ g∗

i l g j l∣∣g j l
∣∣

(5.77)

Therefore, V
(
hi j

) = E(
hi j h∗

i j

)
= N . From central limit theorem, when N À 1, we have hi j ∼

C N (0, N ).
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This chapter highlights conclusions of the thesis and discusses possible directions for future

work.

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 SNR/SINR Analysis in more complicated systems . . . . . . . . . . . . . . 77

6.2.2 Research on joint channel estimation and data detection for RIS-SM . . 77

6.2.3 Research on RIS-based differential spatial modulation and generalized

spatial modulation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

76



6.1. Summary

6.1 Summary

In general, this thesis provides contributions on: (i) the distributions of the SNR and INR in

RIS-aided MIMO systems, (ii) deep learning based detection methods in RIS-aided spatial

modulation systems.

In Chapter 1, the RIS is introduced as a promising technique to realize SRE. The state of

research is introduced.

In Chapter 2, the RIS-aided communication systems are summarized and introduced in

detail. The reflection principle, channel estimation problem, and system design problem are

overviewed.

Chapter 3 introduces the SNR analysis of the RIS-aided MIMO system where the phase shifts

are already optimized to maximize the received SNR.

Chapter 4 considers a two-RIS aided MIMO system. The interference is investigated by

characterizing the behavior of the INR as a random variable.

Chapter 5 studies the detection for RIS-aided SM systems. First, we introduce deep unfolding

in MIMO detection. Then, by generalizing RIS-aided SM systems as a special case of traditional

SM systems, we propose data-driven and model-driven deep learning detectors for RIS-aided

SM systems.

6.2 Future Work

6.2.1 SNR/SINR Analysis in more complicated systems

We have analyzed the SNR in a wireless communication system with a single RIS and a single

user. The analysis of the SNR/SINR in more general systems with multiple users or multiple

RISs is still an open issue.

6.2.2 Research on joint channel estimation and data detection for RIS-SM

In RIS-SM system, channel estimation is required at the RIS to adjust the phase shifts. The

system design of joint channel estimation and data detection based on deep learning is a

interesting topic.

6.2.3 Research on RIS-based differential spatial modulation and generalized spa-
tial modulation systems

Research on the variants of RIS-SM systems such as differential spatial modulation and

generalized spatial modulation is another future direction. How to design the reflection
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coefficient which could realize the index modulation remains a challenging task.
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