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École des Ponts ParisTech – Laboratoire Navier
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Co-directeur de thèse: Johann GUILLEMINOT Assistant Professor
Duke University – Civil & Environmental Engineering

Co-Encadrant : Michel BORNERT Ingénieur en Chef des Ponts, Eaux et Forêts
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École des Ponts ParisTech – Laboratoire Navier

Multi-Scale Modelling & Experimentation of

Materials for Sustainable Construction

LABEX MMCD





i

Acknowledgements

And I would like to acknowledge ...





iii

Abstract

The objective of this thesis is to develop numerical modeling and simulation techniques to
describe the damage in quasi-brittle and elastoplastic composites, which can be obtained
by additive manufacturing processes like 3D-printing. We develop phase field methods to
fracture and propose several extensions and applications to composites. First, after validating
available elastoplastic phase field models on experimental results, we extend these models
to interfacial damage, which is central in composites. In a second part, we develop design
methodologies for composite microstructures to increase the resistance to cracking, for quasi-
brittle and elastoplastic composites. For this purpose, we combine the phase field method
and topology optimization (SIMP and BESO techniques). Then, models are proposed to
describe cracking in polymer-glass fiber composites obtained by 3D printing, and which are
characterized by a strong anisotropy. For this purpose, we develop an original anisotropic
elastoplastic phase field model for the macro scale. Finally, experimental images obtained by
X-Ray micro tomography are used to model the complex cracking process at the microscale
of the composites.
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Résumé

Cette thèse a pour objectif de développer des méthodologies de modélisations numériques
pour représenter l’endommagement dans les composites quasi-fragiles et élastoplastiques,
possiblement obtenus par des procédés de fabrication additive comme l’impression 3D. Nous
développons des approches de champ de phase pour modéliser la fissuration et proposons
plusieurs nouvelles extensions et applications aux composites. Premièrement, après avoir
validé des modèles de champs de phase élastoplastiques sur des résultats expérimentaux,
nous étendons ces modèles à l’endommagement aux interfaces, qui est primordial dans
les composites. Dans une deuxième partie, nous développons des méthodes de design
des microstructures en vue de résister à la fracturation, pour des composites quasi-fragiles
ou élastoplastiques. Pour cela, nous combinons la méthode de champ de phase avec des
techniques de type optimisation topologique (BESO et SIMP). Ensuite, des modèles sont
présentés pour représenter la fissuration dans les composites élastoplastiques polymer-fibres
de verres imprimés en 3D, caractérisés par une forte anisotropie du fait de leur texture par
couche. Pour cela, nous développons un modèle original de fissuration anisotrope basée sur la
méthode champ de phase dans un cadre élastoplastique pour l’échelle macroscopique. Enfin,
des images expérimentales de composites imprimés en 3D obtenues par micro tomographie
sont directement utilisées pour modéliser les phénomènes complexes de fissuration à l’échelle
de la microstructure.
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Chapter 1

Introduction and literature review

1.1 Background and motivations

Modeling the brittle/ductile fracture process in homogeneous/heterogeneous materials is of
extreme importance in engineering, since it covers several major applicative fields such as
civil engineering materials, biomechanics materials (bones), metallic materials, or architec-
tured materials obtained by 3D printing, as shown in Fig. 1.1.

Recently, several advances in formulations, numerical methods and computer capabilities
have opened the route to analyze damage of composites and heterogeneous materials directly
from their microstructure, by simulating microcracking initiation, propagation and merging
up to global failure. Such analyses offer new possibilities in material design, such as opti-
mization of the constituents composition/morphologies [152, 65, 176, 49], or investigation of
microcracking mechanisms directly from realistic microstructures, such as the ones arising
from experimental micro-CT images [129, 126].

However, several challenges are related to microstructure-based damage analyses: (i) the
development of appropriate formulations and related numerical methods to handle initiation,
propagation and interactions of micro cracks in complex geometrical domains related to
heterogeneous microstructures; (ii) the computational complexity, which warrants describing
all heterogeneities in the whole sample; (iii) the presence of interfaces which may involve
different damage mechanisms as compared to the bulk cracks.

More recently, design of structures and materials with enhanced resistance to damage and
fracture has emerged as a new challenging and exciting topic in computational mechanics.
With the quick development of 3D printing and additive manufacturing techniques [120], new
technological solutions which were not possible a few years ago can now be considered, like
on-demand geometries of multi-materials structures and microstructures. More specifically,
3D printed bi-materials [170, 75, 13] offer new exciting possibilities such as designing
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composites with non-trivial periodic microstructures and ad-hoc functionalities. Among
them, particle-matrix composites able to increase the fracture resistance as compared to
existing composites is of industrial and technological critical importance, for applications in
aircraft, automotive or biomechanics, among many others. One central ingredient for this
task is the use of topology optimization.

(a)

(b) (c)

(d)

Fig. 1.1 Damage phenomena in (a) civil engineering material [123]; (b) biomechanics
material (bone) [59]; (c) metallic material [34]; (d) 3D printed elastoplastic brittle materials
[194].
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Cohesive Zone Models: A Critical
Review of Traction-Separation
Relationships Across Fracture
Surfaces
One of the fundamental aspects in cohesive zone modeling is the definition of the
traction-separation relationship across fracture surfaces, which approximates the nonlin-
ear fracture process. Cohesive traction-separation relationships may be classified as
either nonpotential-based models or potential-based models. Potential-based models are
of special interest in the present review article. Several potential-based models display
limitations, especially for mixed-mode problems, because of the boundary conditions
associated with cohesive fracture. In addition, this paper shows that most effective
displacement-based models can be formulated under a single framework. These models
lead to positive stiffness under certain separation paths, contrary to general cohesive
fracture phenomena wherein the increase of separation generally results in the decrease
of failure resistance across the fracture surface (i.e., negative stiffness). To this end, the
constitutive relationship of mixed-mode cohesive fracture should be selected with great
caution. [DOI: 10.1115/1.4023110]

Keywords: fracture, potential, mixed-mode, constitutive relationship, cohesive zone
model, energy release rate

1 Introduction

A fundamental issue in the simulation of cohesive failure mech-
anisms is the definition of cohesive interactions along fracture
surfaces. Cohesive interactions approximate progressive nonlinear
fracture behavior, named as the cohesive zone model (see Fig. 1).
Cohesive interactions are generally a function of displacement
jump (or separation). If the displacement jump is greater than a
characteristic length (dn), complete failure occurs (i.e., no load-
bearing capacity). Notice that the cohesive zone model is not
limited to modeling a single crack tip, but is also able to describe
crack nucleation and pervasive cracking through various time and
length scales.

The cohesive constitutive relationships can be classified as
either nonpotential-based models or potential-based models.
Nonpotential-based cohesive interaction models are relatively
simple to develop, because a symmetric system is not required
[1–3]. However, these models do not guarantee consistency of the
constitutive relationship for arbitrary mixed-mode conditions,
because they do not account for all possible separation paths.

For potential-based models, the traction-separation relation-
ships across fracture surfaces are obtained from a potential func-
tion, which characterizes the fracture behavior. Note that the
existence of a potential for the cohesive constitutive relationship
is addressed in conjunction with the non-negative work for closed
processes [1,2]. Due to the nature of a potential, the first derivative
of the fracture energy potential (W) provides the traction (cohesive
interactions) over fracture surfaces, and its second derivative pro-
vides the constitutive relationship (material tangent modulus).
Several potential-based models are available in the literature; such
as, models with specific polynomial orders [4,5], models with ex-
ponential expressions [6–9], and a model with general polyno-
mials [3]. Each model possesses advantages and limitations. The

present paper critically reviews traction-separation relationships
of cohesive fracture with an emphasis on potential-based constitu-
tive models.

There are generally required characteristics for cohesive consti-
tutive relationships, which are summarized as follows:

• The traction separation relationship is independent of any
superposed rigid body motion.

• The work to create a new surface is finite, and its value corre-
sponds to the fracture energy, i.e., area under a traction-
separation curve.

• The mode I fracture energy is usually different from the
mode II fracture energy.

• A finite characteristic length scale exists, which leads to a
complete failure condition, i.e., no load-bearing capacity.

• The cohesive traction across the fracture surface generally
decreases to zero while the separation increases under the
softening condition, which results in the negative stiffness.

• A potential for the cohesive constitutive relationship may
exist, and thus the energy dissipation associated with unload-
ing/reloading is independent of a potential.

The remainder of this paper is organized as follows. In the next
section, related works are briefly mentioned. Section 3 presents

Fig. 1 Schematics of the cohesive zone model
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Fig. 1.2 Schematics of the cohesive zone model [138].

In the above background, the motivations of this PhD work are listed as follows:

• Simulate the initiation and propagation of micro cracks in elastoplastic brittle homoge-
neous materials and compare with the experimental datas, then extend this model to
heterogeneous materials with taking into account the interfacial damage.

• Develop a topology optimization framework for maximizing the fracture resistance of
quasi-brittle and ductile composites.

• Develop an anisotropic damage model for 3D printed elastoplastic materials, which
can simulate the cracks following preferential directions and cracks in 3D printed layer.
This strongly anisotropic damage phenomenon can be found in Fig. 1.1(d).

• Simulate the initiation and propagation of micro cracks in realistic models of mi-
crostructures obtained from 3D imaging techniques.

1.2 Literature review

1.2.1 Numerical modeling of damage and cracks

1.2.1.1 Cohesive Zone Models

The concept of the Cohesive Zone Models (CZMs) goes back to the 60’s and was originally
developed from Dugdale [54] and [21]. The principal idea of cohesive cracks is shown in
Fig. 1.2. The cohesive model is used in the so-called process zone, sometimes also called
cohesive zone. The complex stress state around the crack tip is lumped into a single surface.
A surface energy term which controls the displacement jump along a known surface where
a nonlinear traction-displacement jump relation must be introduced to describe the failure.
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Fig. 1.3 (a) Bilinear traction-separation law; (b) Exponential law.

The method usually associates with finite elements in which the damageable interface is
discretized by surfaces where the nodes are doubled to allow jump displacements [68]. An
important material parameter of the CZMs is the fracture energy Gc which is related to the
energy dissipation during crack opening.

In cohesive cracks, a traction-separation model is applied across the crack surface that
links the cohesive traction transmitted by the discontinuity surface to the displacement
jump, characterized by the separation vector. Fig. 1.3 shows two popular types of traction-
separation law in brittle materials: the bilinear softening law [22, 66, 139] and the exponential
softening law [181, 46]. The intrinsic form of CZMs employs cohesive surface elements
in the potential fracture area before computational simulations [71, 180]. Alternatively,
cohesive surfaces elements can be inserted during the simulation when a criterion is satisfied.
In this way, the model is so-called "extrinsic" (sometimes also called initially rigid models)
[81, 136, 137]. The drawback of the intrinsic CZM is the requirement of a priori fracture
zone while the extrinsic version needs to be employed with an adaptive mesh. It has been
shown that the extrinsic models cause numerical difficulties when elastic unloading occurs
at an early stage such that the stiffness for the unloading case tends to infinity [144]. It is
believed that extrinsic models are better suited particularly in the context of dynamic fracture.
In general, cracks in CZMs propagate by following the boundary of elements, leading to
strong mesh-dependency issues.

1.2.1.2 Embedded Finite Element Method

The basic idea of Embedded Finite Element Method (EFEM) is to introduce discontinuous
enrichment inside elements, which vanishes at the boundaries of elements, see Fig. 1.4.
This class of methods are much more flexible than schemes that allow discontinuities only
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(a) (b)

Fig. 1.4 Element with (a) one weak discontinuity and (b) two weak discontinuities.

at element interfaces, and it eliminates the need for continuous remeshing. One major
advantage of the EFEM (compared to XFEM discussed in the next section) is that the
additional unknowns could be condensed on the element level, so that discontinuities could
be captured with very small changes of the existing code. The computation costs of XFEM
and EFEM have been compared in [135]. First contributions to E-FEM can be found in
[160, 100], in which discontinuities have been assumed to be fixed. The drawbacks of EFEM
lies on unexpected approximation errors due to the lack of the continuity of the displacement
field between two elements leading to the strong mesh-dependency as well as the lack of
convergence of the solution with respect to the mesh size. More detail about EFEM, one can
find in [174].

1.2.1.3 Extended Finite Element Method

The eXtended Finite Element Method (XFEM) aims at avoiding the remeshing step in crack
propagation process within Finite Elements and linear fracture mechanics. This method
employs the local partition of unity concept [105, 164, 163] and introduces additional nodal
parameters for the elements cut by the crack. Hence, the additional unknowns cannot be
condensed on the element level as in EFEM. The displacement discontinuity depends only on
the additional nodal parameters. The basic idea of XFEM is to decompose the displacement
field into a continuous part ucont and a discontinuous part udisc:

uh(x) = ucont(x)+udisc(x). (1.1)

The continuous part is the standard FE interpolation and additional information is introduced
into the FE interpolation through the local partition of unity approach by adding an enrichment
udisc. The approximation of the displacement function for nc cracks with mt crack tips takes
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the following form:

uh(x) = ∑
I∈Θ

NI(x)uI +
nc

∑
N=1

∑
I∈Θc

NI(x)Φ
(N)
I a(N)

I +
mt

∑
M=1

∑
I∈Θt

NI(x)
Nk

∑
K=1

φ
(M)
KI b(M)

KI , (1.2)

where Θ is the set of nodes in the entire discretization, Θt is the set of nodes around the crack
tip, and Θc is the set of nodes associated to elements completely cut by the crack. Φ

(N)
I is the

enrichment function of crack N, and φ
(M)
KI is the enrichment function for the crack tip M. aI

and bKI are additional degrees of freedom that needs to be solved.
In XFEM, cracks can propagate in an arbitrary direction without dependence to the

underlying mesh. Nevertheless, in the classical XFEM, two additional issues remain: (i) the
difficulties to deal with many cracks, due to associated level-set functions which must be
constructed to describe the position of the crack front; (ii) initiation of cracks cannot be dealt
with as the method is based on classical fracture mechanics. Despite these drawbacks, XFEM
is a good alternative when dealing with fixed cracks and interface problems. Applications and
developments of XFEM can be mentioned, such as, among many others: dynamic fracture
[132, 18], hydraulic fracture [116] and ductile fracture [39].

1.2.1.4 Continuous damage model without regularization

Kachanov [73] pioneered the concept of the effective (undamaged) configuration and intro-
duced the basis for the continuum damage mechanics theories. The model characterizes
damage induced by the formation of micro-cracks. In this context, an isotropic degradation
function was introduced and involves a scalar damage parameter d ∈ [0,1]. The constitutive
equation relating the stress field σ and the strain field ε of an isotropic damage model is
written as:

σ = (1−d)C : ε, (1.3)

where C is the stiffness matrix of the elastic material. In the case of anisotropic damage
effects, a damage tensor D must be introduced. In addition, an evolution law is necessary
for d. This damage law should be chosen in order to reflect the behavior of the considered
material. For example, for quasi-brittle materials, a popular damage law is written as [140]:

d =

{
0 if κ < κ0

1− κ0
κ
((1−α)+αexp [−β (κ−κ0)]) .

(1.4)

In (1.4), the scalar parameter β describes the softening behavior; α is a scalar which controls
the residual state in the post peak stage; κ0 is the threshold for the initiation of damage and κ
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is a history scalar parameter which takes the largest value of an equivalent strain ε̃ which is a
function of ε . The reader is referred to [140] for detailed definition of ε̃ . Damage evolution
is governed by the Kuhn-Tucker inequalities as follows:

ḋ ≥ 0, f (ε̃,κ)≤ 0, ḋ f (ε̃,κ) = 0, (1.5)

where f (ε̃,κ) = ε̃ − κ is the loading function driving the evolution of damage. Early
developments in the context of numerical methods can be found in [79, 42].

The well-known drawbacks of this model are twofold mesh sensitivities: (i) dependence
on the alignment of the mesh, see the results in [64] and (ii) a non-convergence of the
response with respect to mesh density, see the results in [72]. The underlying reason is that
the dissipated energy vanishes with the size of the elements. When accumulated damage
gets to an extent, the governing equations become ill-posed. Various techniques have been
proposed in the literature to remedy for aforementioned mesh sensitivity issues, such as:

• A cosserat continuum or micropolar model e.g. [50, 82], where the governing field
equations are regularized by adding an internal length scale.

• An artificial viscosity technique [56].

• Gradient Enhanced Damage (GED) models [141].

• Nonlocal techniques using weight functions to regularize the damage fields [72, 24].

• Adding higher order gradient of deformation [118, 119].

Pros and cons of these methods have been discussed in [33]. Among those, the last
two methods are the most used in computational analysis and are called regularization
techniques. A very popular method in this context is the so-called phase field method to
fracture [36, 76, 108], which will be detailed in Section 1.2.2 and used in this thesis.

1.2.1.5 Non-local damage models

Nonlocal damage models are based on regularization through a convolution of strain, where
the localization of damage is kept in a zone defined by a given internal length, as firstly
developed in [24]. This model does not suffer from lack of mesh dependence as in local
models. Then, the driving force is a function of a nonlocal term ε , as:

f (εeq,κ) = εeq−κ, (1.6)
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Figure 3: Principle of nonlocal constitutive models with the typical bell-shaped domain of influence.

give an excellent overview on non-localmodels of the integral
types and physical motivations (see also Bažant [36]) as well
as suggestions for calibrating material parameters.

2.3. Viscous Models. The introduction of a viscosity can
also restore the well-posedness of the BVP or initial BVP
(IBVP). It can be regarded as introducing higher order time
derivatives, similar to the gradient models. Considering the
dimensions of the viscosity 𝜂 (kg/(ms)), the dimensions of the
Young’smodulus𝐸 (kg/(ms2)) and the dimension of themass
density (kg/m3), there is indeed a length scale 𝑙

𝑐ℎ
associated

with the viscosity given by [14]:

𝑙
𝑐ℎ

=
𝜂

√𝐸/
, (2)

where 𝑐 = √𝐸/ is the longitudinal propagation velocity
in 1D. However, the well-posedness of the IBVP is only
guaranteed during the time span of the viscosity (𝑡

0
=

𝑙
𝑐ℎ
/𝑐). For visco-plastic models, Etse and Willam [37] have

shown that after discretization, hyperbolicity of the linearized
momentum equation can be lost if a critical time step is
exceeded.

The introduction of a viscosity can sometimes be physi-
cally motivated. The strain rate effect and the corresponding
dynamic strength, increase, for example, can be captured by
viscous damage models [38].

2.4. Cohesive Zone Models. Cohesive zone models (CZMs)
also restore the well-posedness of the (I)BVP. In contrast to
the models described before, CZMs can be combined with
computational methods that maintain the local character of
the crack. In cohesive cracks, a traction-separation model
is applied across the crack surface that links the cohesive
traction transmitted by the discontinuity surface to the
displacement jump, characterized by the separation vector.
CZMs go back to the 60’s and were originally developed
from Dugdale [39] and Barenblatt [40]. They were applied
in metal plasticity to take into account friction along neigh-
boring grains. Hillerborg et al. [41] extended this concept to
model crack growth in concrete. They called their approach
𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑐𝑟𝑎𝑐𝑘 𝑚𝑜𝑑𝑒𝑙. The main difference between the
fictitious crackmodel of Hillerborg and the CZM byDugdale
[39] and Barenblatt [40] is that crack initiation and propaga-
tion is not restricted along a predetermined path but cracks
can initiate anywhere in the structure.

The principal idea of cohesive cracks is shown in Figure 4.
The cohesive model is used in the so-called process zone,
sometimes also called cohesive zone.The complex stress state
around the crack tip is lumped into a single surface. The
first approach by Hillerborg et al. [41] was limited to mode-I
fracture. Meanwhile, many models have been developed that
are able to handle mixed mode fracture and other complex
phenomena including irreversible deformations, stress tri-
axiality, and rate dependence [42–47]. Some CZMs include

Fig. 1.5 Principle of nonlocal constitutive models with the typical bell-shaped function [144].

where ε is defined by:

εeq(x) =
∫

Ω
g(s)εeq(x+ s)dV∫

Ω
g(s)dV

, (1.7)

where the weight function g(s) satisfies
∫

Ω
g(s)dV = 1. A popular choice is the Gauss

weighting function, as:

g(s) = exp
[
−∥x+ s∥2

αℓ2

]
. (1.8)

In (1.8), α has to be chosen by the users, ℓ is the length of the model, and s denotes
the relative position vector of a point in Ω. Another alternative is the bell-shaped function,
where the regularization occurs at a finite distance from one point through a cut-off distance
r = ∥x− s∥:

g(s) =

{
1− r2

R2 if r ≥ R,
0 if r > R.

(1.9)

This nonlocal damage model is also referred to in the literature as the integral damage
model, see Fig. 1.5. For this types of nonlocal models, changing the dimensions of the
problem requires recalibration of the parameters of the non-local model, where the parameters
can be obtained by an inverse analysis. An excellent overview on non-local models of the
integral types and physical motivations can be found in [23].

1.2.1.6 Gradient enhanced model

Gradient-enhanced models [141, 140], or briefly called gradient models, are typically de-
scribed by differential equations that contain higher order spatial derivatives. Gradient models
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are usually mentioned as a differential type nonlocal models (weakly non-local models), and
use another regularization definition of the strain field, estimated by:

εeq− c∇
2
εeq = εeq (1.10)

with an additional boundary condition [85, 117]:

∇εeq ·n = 0. (1.11)

(1.10) is obtained from a Taylor expansion of the term εeq in (1.7).
Both integral-type and differential-type model can solve the mesh-dependence issues

in presence of localization, nevertheless, induce an incorrect crack initiation, as reported in
[161]. Improvements to these problems have been proposed in later works, e.g. [62, 122].

Fig. 1.6 (a) Damage domain and (b) damage function d(φ) [151].

1.2.1.7 Thick level set method

The thick level set model was introduced in [115, 27] for modelling damage as a propagating
level set front. As a constitutive model, it allows capturing complex morphology cracks
from the initiation, branching and merging. In these models, a level-set function φ is used to
separate the undamaged zone from the damaged one, and d which depends on the level set
must be

• Equal to 1 when φ(x)≥ lc (the fully damaged zone Ωc shown in Fig. 1.6(a)).

• Equal to 0 when φ(x)≤ 0 (Ω− shown in Fig. 1.6(a)).

• d′(φ)≥ 0 when 0≤ φ ≤ lc.
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lc is a mesh-size-independent characteristic length leading to the non-local effect of the model.
However, TLS induces spurious oscillations in mechanical responses as well as complexity
related to self-contact within the crack. In [151], A. Salzman et al. gave a function for d as:

d(φ) = (
φ

lc
)2(3−2

φ

lc
) (1.12)

which can be found in Fig. 1.6(b).

(a) (b)

Fig. 1.7 (a) Classical continuum mechanics and (b) peridynamics.

1.2.1.8 Peridynamics

This technique was originally developed from [158]. It assumes that the material is described
by discrete particles which represent the continuous matter. The core of the Peridynamics
(PD) formulation is that the behavior of each material point is governed by its interaction with
other material points located within its neighborhood. The PD equation can be understood as
an integral expression of the linear momentum balance in classical continuum mechanics,
but the integral domain is within the neighborhood Hx with the distance δ of a material point
at x as shown in Fig. 1.7. The equation of motion of a material point in an elastic material
can be expressed as

ρ(x)ü(x, t) =
∫

Hx

f(u′−u,x′−x)dV ′+b(x, t), (1.13)

where f(u′−u,x′−x) is a pairwise force density vector function and u is the displacement
of the material point at x. The interaction between the material points at x and x′ corresponds
to the “bond” term [134, 193]. In this method, the rupture criterion is based on a threshold
elongation (u′− u) between two particles. When this link breaks up there is no more
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(a) (b)

Fig. 1.8 Peridynamic simulation of (a) dynamic fracture in orthotropic media [61] and (b)
hydraulic fracture [133].

interaction and the forces are redistributed on the neighborhood links. It can easily model
complex cracks patterns (see Fig. 1.8) but has several drawbacks, such as ambiguous
definition and calibration of interaction models to reproduce general mechanical behavior,
spatial convergence issues, etc.

1.2.2 Phase field models for fracture

The development of the variational approach to fracture [57, 37, 108, 112, 32, 10], also
called phase field method in the literature, offers several advantages in this context, like:
the possibility to initiate cracks from undamaged configurations; the possibility to handle
arbitrary crack networks (including branching, merging, in both 2D and 3D) without specific
treatment and use of classical finite elements; a variational framework allowing to include
many models or mechanisms, and a mesh-independence due to an appropriate regularization
process. The method requires a fine mesh along the crack path and a suitable definition for
regularization parameters (see a discussion in [128] and recent internal length-insensitive
formulations in [175, 102]). However, due to the above-mentioned advantages, the phase
field method has been widely developed and applied to many problems, such as, among many
others: brittle fracture [10, 167, 189, 95], composite delamination [147], dynamic fracture
[38, 52, 98], hydraulic fracture [171, 110, 179, 55], topology optimization for resistance to
cracking [176, 49], anisotropic material fracture [125, 28, 187], elastoplastic brittle/ductile
fracture [9, 8, 107, 30, 6, 185], ductile/fragile transition [44], fracture in micro tomography
image-based models of microstructures [126, 129, 127] and more recently adapted in machine
learning strategies in [63]. In the following, we review in detail different methods which
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will be central to this work: (a) quasi-brittle fracture models, (b) elastoplastic brittle/ductile
fracture models, and (c) anisotropic fracture models.

1.2.2.1 Quasi-brittle fracture models

To overcome the failure of Griffith’s theory to predict the initiation of cracks in the case a
crack tip is absent, Francfort and Marigo in [57] proposed a variational approach in which
the total potential energy of a cracked body is written as the sum of a buck energy Eu and a
surface energy Es, as

E(u,Γ) = Eu(u)+Es(Γ) =
∫

Ω

ψ(u,Γ)dΩ+gc

∫
Γ

ds, (1.14)

where u is the displacement field, and Γ refers to an admissible crack surface. The variational
approach does not involve any crack tip or predefined path and allows the initiation, the
branching of cracks, as long as the crack set is the solution of the minimization problem.
However, the crack set Γ is unknown, and solving this problem is nontrivial. In [36], Bourdin
et al. gave a specialization of (1.14) with a regularized version as:

E(u,v) =
∫

Ω

(g(v)+ k)ψ(u)dΩ+gc

∫
Ω

γ(v,c)dΩ, (1.15)

where

γ(v,c) =
(1− v2)

4c
+ c∇v ·∇v (1.16)

is the crack density function, and gc is the energy release rate, and v is the crack field
parameter which varies smoothly from 1 (undamaged state) to 0 (totally damage state),
g(v) is the degradation function and k is a small numerical parameter to prevent loss of
definite posedness of the elastic tensor in case of full damage. Note that in the absence of the
second right-hand term in (1.16), a local damage model is found, with well-known related
non-convergence issues with respect to the mesh discretization.

The total energy in (1.15) does not distinguish between fracture behavior in tension and
compression, which could induce unrealistic crack patterns in compression, see [36]. To
avoid such situations, H. Amor in [16] proposed a decomposition of the elastic energy density
ψ0 into volumetric and deviatoric contributions, as:

ψ
+
0 (ε) =

1
2

κ ⟨Tr(ε)⟩2++µε
dev : ε

dev, (1.17)

ψ
−
0 (ε) =

1
2

κ ⟨Tr(ε)⟩2− , (1.18)
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where κ and µ denote bulk modulus and shear modulus, respectively, ⟨x⟩± = 1
2 (x±|x|) and

εdev = ε− 1
3Tr(ε)1.

Miehe in [112] proposed another expression for the potential energy of the cracked solid
as:

E(ε,d) =
∫

Ω

[
g(d)ψ+

0 (ε)+ψ
−
0 (ε)

]
dΩ+gc

∫
Ω

γ(d)dΩ, (1.19)

where d denotes the damage variable and γ(d) is the crack density function which regular-
izes the crack. The free energy is split into positive and negative parts using the spectral
decomposition of the strain tensor:

ψ
±
0 =

1
2

λ ⟨tr [ε]⟩2±+µtr
[
ε
±]2 (1.20)

with

ε
± =

3

∑
i=1

〈
ε

i〉
±ni⊗ni, (1.21)

where ε i and ni are the eigenvalues and eigenvectors of ε . Then in [108], a staggered manner
was introduced to decouple and solve the minimization problem with a history function

H (ε) = max
s∈[0,t]

ψ
+
0 (ε,s) . (1.22)

It is considered as a robust algorithm since it overcomes the convergence difficulty of the
monolithic scheme.

In order to avoid damage occurring at low stress levels, Miehe in [111] proposed a strain
criterion with threshold by a new surface energy density function as:

ψ f rac = 2ψc

[
d +

ℓ2

2
∇d ·∇d

]
. (1.23)

Here, ψc is a specific fracture energy density. After some simple algebraic manipulation, a
new history function can be obtained as

H (ε) = max
s∈[0,t]

[〈
ψ

+
0 (ε,s)−ψc

〉
+

]
(1.24)

which ensures a linear behavior at low stress levels.
In [31], Borden et al. proposed a fourth-order phase field formulation which improves

the convergence of the fracture problem. The potential energy of the cracked solid is as:

E(ε,c) =
∫

Ω

[
c2

ψ
+
0 (ε)+ψ

−
0 (ε)

]
dΩ+gc

∫
Ω

γ(c)dΩ, (1.25)
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where c is the crack field parameter which varies smoothly from 1 (undamaged state) to 0
(totally damage state), and the fourth-order crack density function γ(c) is defined as:

γ(c) =
(1− c2)

4ℓ
+
ℓ

2
∇c ·∇c+

ℓ3

4
(∆c)2. (1.26)

In order to keep the benefit of Miehe’s model in the decomposition of the free energy and
save the computational cost, a hybrid model has been proposed in [10]:

σ(u,d) = (1−d)2 ∂ψ(ε)
∂ε

,

−ℓ2δd +d = 2ℓ
gc
(1−d)H ,

∀x : ψ
+
0 < ψ

−
0 ⇒ d := 0.

(1.27)

This model saves the computing time, however it fails to capture cracks in compressive
loading where the negative energy is dominant.

u

18

2
0

5
0

r=2.5

Unit of length: 
mm

equivalent plastic
 strain field

crack phase field

Fig. 1.9 The different performance for elastoplastic brittle/ductile fracture models [9].

1.2.2.2 Elastoplastic brittle/ductile fracture models

In most of elastoplastic phase field models, the total energy density ψ per unit volume can be
written as the sum of elastic energy density ψe, plastic dissipative potential ψ p and damage
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dissipative potential ψd as:

ψ(ε,ε p, p,d) = g(d)ψe
0(ε− ε

p)︸ ︷︷ ︸
ψe

+h(d)ψ p
0 (p)︸ ︷︷ ︸

ψ p

+ψ
d(d), (1.28)

where ε p is the plastic strain, and p is the equivalent plastic strain.
In these elastoplastic phase field models, according to the difference of damage mecha-

nism, there are two main categories of elastoplastic fracture models as: (a) elastoplastic brittle
fracture model, where the fracture is driven primarily by the elastic strains; (b) elastoplastic
ductile fracture model, where the fracture is driven mainly by the plastic strains. The different
performance for these two categories of models can be found in Fig. 1.9.

In [53], F.P. Duda et al. proposed an elastoplastic brittle fracture model, here the special-
ization of (1.28) is as follows:

g(d) = (1−d)2, h(d) = 1, (1.29)

ψ
p
0 =

σ2
y

E(n+1)

(
1+

√
2
3

E p
σy

)n+1

−
√

2
3

σy p, (1.30)

ψ
d = gc

(
1
2ℓ

d2 +
ℓ

2
∇d ·∇d

)
, (1.31)

where σy is the yield stress, and n is the strain hardening exponent. This model fits in the
variational framework, however there is no coupling between damage and plasticity.

In [9], Ambati et al. proposed an elastoplastic ductile fracture model based on the work
in [53]. This model employed

g(d) = (1−d)2ζ , h(d) = 1, (1.32)

ψ
p
0 = σy p+

1
2

H p2, (1.33)

where H is the hardening modulus, and ζ = p
pcrit

where pcrit as a threshold value. The variable
ζ accounts for accumulation and localization of plastic strains, the increase of the order of ζ

is expected to slow down the accumulation of damage before reaching the threshold value
pcrit (ζ < 1), and to accelerate it when the threshold is exceeded (ζ > 1). This model has a
good performance, however there is no real coupling between damage and plasticity.
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Kuhn in [80] proposed a new ductile fracture model within the variational framework.
The specialization of (1.28) is as follows:

g(d) = (1−d)2, h(d) = g(d), (1.34)

ψ
p
0 and ψd are the forms in (1.33) and (1.31), respectively. This model has a real coupling

between damage and plasticity, however the obtained yield criterion in this model is analogous
to classical plasticity and not explicitly coupled to the fracture field (see [80] for more details).
Thus, the evolution of the accumulated plastic strain becomes independent on the phase field.

In [30], Borden et al. proposed a ductile model with the same ψ
p
0 and ψd in (1.33) and

(1.31), but a new g(d) and h(d) as

g(d) = (1−d)2 (1+d(2− k)) , h(d) = g(d), (1.35)

where k > 0, for k = 2 it recovers the model in [80]. This model meets the same problem to
[80].

Alessi in [4–6] proposed a new coupling model within the variational framework. The
specialization of (1.28) is as follows:

g(d) =
(1−d)2

k− (k−1)(1−d)2 , h(d) = (1−d)2n, (1.36)

ψ
p
0 = σy p, (1.37)

ψ
d =

3gc

8

(
1
ℓ

d + ℓ∇d ·∇d
)
. (1.38)

In this model, no plastic hardening effects are considered. By our best knowledge, this model
also meets the problem that the evolution of the accumulated plastic strain is independent on
the phase field, as in [80], even if g(d) ̸= h(d) here.

Recently in [110], Miehe proposed a new ductile fracture model within the variational
framework, which is based on a gradient-extended plasticity-damage theory. The specializa-
tion of (1.28) is as follows:

ψ
p
0 =

1
2

H p2 +(σ∞−σy)

(
p+

1
η

e−η p
)
+

1
2
ℓ2

p∇p ·∇p, (1.39)

ψ
d =

(
1− (1−d)2)

ωc +
ωc

ξ
ℓ

(
d2

ℓ
+ ℓ∇d ·∇d

)
, (1.40)
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with
η > 0, σ∞ > σy, ωc > 0, ξ > 0. (1.41)

The g(d) and h(d) are same to (1.34). This formulation includes an additional internal length
scale ℓp to regularize the plastic response, and to ensure that the damage zones of ductile
fracture are contained within plastic zones. It guarantees on the computational side a mesh
objectivity in post-critical ranges. However, it seems here the evolution of the accumulated
plastic strain is also independent on the phase field.

More recently in [184], B. Yin and M. Kaliske proposed a new ductile fracture model,
whose ideas in some ways are similar to [9]. This model is based on a hardening degradation
function f (ζ ) which works on the fracture toughness as

gc = f (ζ )g0
c , (1.42)

where g0
c is a material constant representing fracture toughness for brittle fracture, and ζ is

the equivalent plastic strain, and f (ζ ) is defined as

f (ζ ) =


1 ζ < ζcr,

1−b
a2 (ζ −ζcr−a)2 +b ζcr ≤ ζ < a+ζcr,

b ζ ≥ a+ζcr,

(1.43)

where a and b are two key parameters to control the profile of the degradation function f , see
Fig. 1.10. This model has good performances in several benchmarks, however there is also
no real coupling between damage and plasticity.

Fig. 1.10 The hardening degradation function f (ζ ) [184].
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1.2.2.3 Anisotropic fracture models

Phase-field models based on the variational formulation for anisotropic fracture have recently
gained popularity, for example in [89], where an anisotropic fracture energy was employed to
simulate crack propagation in polycrystals [45, 125]. The anisotropic crack surface density
function is written by the following expression:

γ (d,∇d,ω) =
1
2ℓ

d2 +
ℓ

2
ω : (∇d⊗∇d) , (1.44)

where ω is a second order structural tensor, being invariant with respect to rotations, and is
defined by:

ω = 1+ξ (1−M⊗M) , (1.45)

where M denotes the unit vector normal to the preferential cleavage plane, ξ ≫ 0 is used
to penalize the damage on planes not normal to M. This type of fracture energy anisotropy
shows good performances in controlling the crack direction, however it is still not clear what
such a gradient energy contribution does physically represent. A higher-order anisotropic
crack surface density function can be found in [168, 88].

In [3], R. Alessi and F. Freddi proposed a phase field to simulate the unidimensional
behavior of hybrid laminates, including a competition between fracture of both layers and
debonding of the adhesive interface.

Recently in [28], J. Bleyer and R. Alessi proposed an anisotropic brittle fracture model to
simulate the longitudinal/transverse damage in unidirectional fiber-reinforced composites.
The total energy density for this model is given as:

W (ε,d1,d2) =
1
2

ε
T C(d1,d2)ε +

3g1
c

8ℓ
(
d1 + ℓ

2
∇d1 ·∇d1

)
+

3g2
c

8ℓ
(
d2 + ℓ

2
∇d2 ·∇d2

)
,

(1.46)
where d1 and d2 are longitudinal damage and transverse damage, respectively. The symmetric
damage-dependent elasticity matrix is defined for 2D case as:

C(d1,d2) =

 (1−d1)
2C11 (1−d1)(1−d2)C12 0

(1−d1)(1−d2)C12 (1−d2)
2C22 0

0 0 (1−d1)(1−d2)C66

 ,
(1.47)

where (1.47) is given by an empirical manner, thus this model can not accurately represent
all the complex constitutive behaviors of such materials but rather to capture specific features
of crack propagation in anisotropic materials in terms of elastic and/or fracture properties.
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1.2.3 Topology optimization for fracture resistance

Recently, Topology Optimization (TO) has been applied to enhance the mechanical resistance
of structures and materials subjected to damage and cracking.

One pioneering work combining TO and fracture mechanics can be traced back to Challis
et al. [43], where the level-set TO method has been used to maximize fracture resistance of
structures, defined here as the elastic energy released by the crack that are in tension and
was calculated using the virtual crack extension. J-integral calculation was employed and
crack propagation within the structure was not taken into account. Another related technique
can be found in [74], where pre-defined cracks were inserted and TO used to minimize the
J-integral as a fracture criterion.

An important progress was made by optimizing the topology while taking into account
the incremental damage response of the structure during a full load, from initiation to dam-
aged/cracked structures. A first series of works have been proposed where damage mechanics
was considered during the TO problem. In [15, 14], Amir and Sigmund used a gradient
enhanced model to define the truss topology and optimal cross sections of reinforcement
bars, and where the external work was maximized as an evaluation of the fracture energy.
In [77], Kato and Ramm investigated optimal placement and shape of reinforcement in
composites with respect to damage criterion to optimize the structural ductility during a full
incremental procedure. In [67], Hilchenbach and Ramm optimized the position and shapes
of stiff inclusions during the nonlinear loading of a structure. Even though not implying
TO, the work shares similarities with the procedures developed in TO in this context. In
[70], James and Waisman developed TO within a nonlocal damage framework using SIMP
(Solid Isotropic Material with Penalization) where TO was performed with respect to a
maximum damage criterion during the whole nonlinear load of a structure while minimizing
the quantity of material within the structure as an objective. In [99], Liu et al. investigated
TO with respect to damage induced by debonding at the interfaces between two materials
in a structure during an incremental loading with Level-set TO and XFEM description of
interfaces location. In [90–92], Li et al. proposed SIMP TO using an elastoplastic-damage
model where TO was performed to find the optimal structural topologies with high energy
absorption capacity while constraining the damage indicator.

An important recent step was to include brittle fracture propagation [173, 154] within
TO. In [191] Zhang et al. used TO with XFEM and took into account full crack propagation
to optimize several indicators such as tensile stress during loading of a structure. One issue
with XFEM as a crack propagation simulation tool is its complexity in 3D and its inability to
initiate the cracks, as well as handling multiple, complex crack networks which may connect
and merge during the process. The development of the variational approach to fracture
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[57, 35, 108, 112, 29, 11, 129, 126, 192], also called phase field method in the literature,
offers several advantages in the context of crack propagation simulation, like: the possibility
to initiate cracks from undamaged configurations; the possibility to handle arbitrary crack
networks (including branching, merging, in both 2D and 3D) without specific treatment and
use of classical finite elements; a variational framework allowing to include many models or
mechanisms, and a mesh-independence due to an appropriate regularization process. This
point is of special interest in TO approach where the use of a fixed mesh is required.

In [153], San and Waisman combined phase field and genetic algorithms to find the
optimal location of particles in order to maximize indicators such as the peak force, maximum
deformation at failure point and maximum fracture energy during an incremental procedure.
The first works to our knowledge combining phase field and TO was introduced in Xia et
al. and Da et al. in [176, 49], where the BESO TO [69] was used to optimize the fracture
resistance of two-phase structures with respect to inclusions shapes, including cracks in both
bulk and interfaces. In [148, 149], Russ and Waisman developed a SIMP TO combined with
phase field to optimize the fracture energy in one-phase material structures, and Wu et al.
[172] developed a Level-Set TO-phase field approach to optimize the fracture resistance of
composites.

1.2.4 Fracture in image-based microstructures

X-ray computed tomography (XRCT) is a nondestructive characterization technique which
provides images of the bulk of the materials. The benefits of 3D maps with high spatial
resolution to characterize internal structures led to a rapid adaptation of this technique to
many fields including materials science (e.g. investigation of the pore geometry, water flow
and water distribution at the microscopic scale in porous media [58, 60, 78, 87]), in particular
for the study of damage phenomena (e.g. brittle fracture [129, 126, 183] and ductile fracture
[155, 41]).

Because X-ray tomography is a non-destructive technique, many scans of the same sample
can be made under different conditions. As a consequence, a wide variety of mechanical tests
have been coupled with X-ray tomography characterization [165]. In order to investigate the
evolutions of a material under mechanical load, three popular procedures can be considered,
as follows:

• Post-mortem characterization: This procedure consists in performing the same test on
many specimens and stopping these test at different stages to follow evolution of the
material. It assumes that the material does not change from one specimen to another.
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• Ex-situ characterization: A unique specimen is tested up to a given level of deformation.
It is thereafter unloaded and imaged. It is then mounted again on the testing device,
loaded up to a next deformation level, unmounted and imaged again. This procedure
assumes that the unloading process and interruption of the deformation do not influence
the test.

• In-situ characterization: This procedure is similar to ex-situ, but the sample is here
loaded in a device, which is placed on the X-ray beam. Thus during scanning, the state
of sample is kept constant (deformation is stopped and maintained constant). This
procedure can prevent the influence of unloading process, e.g. the closure of crack,
which might be observed in ex-situ.

The combination of XRCT with the above testing procedure has been applied to study
damage phenomena in many works. Babout in [19] introduced the detection of damage
initiation in metallic materials. This technique was used to examine damage in civil en-
gineering materials [83, 84, 101], which were observed under mechanical loading. Crack
evolutions under fatigue loading conditions, including closure phenomena, have also been
studied by XRCT combined with in-situ fatigue testing, e.g. in [162, 96, 97]. XRCT is
particularly interesting when most of the damage development occurs within the bulk of the
studied material (e.g., nucleation, growth and coalescence of damage in 3D experiments).
Many techniques have been developed in literature to characterize quantitatively damage.
Among these techniques, Digital Volume Correlation (DVC) is more and more used. By
measuring the displacement field, this technique is used to evaluate crack crack closure and
crack propagation [96]. It can also be used to extract fracture parameters, e.g. stress intensity
factors [146] and energy release rates [103]. Calibration of elastoplastic parameters and
choice of boundary conditions via DVC analyses for the simulation of ductile damage have
been reported in [155, 41].

To date, the simulation of cracking phenomena in strongly heterogeneous materials,
especially in elastoplastic polymer composites with realistic microstructures is still a very
challenging problem. In this work, crack propagation in elastoplastic polymer composite
microstructures, which are obtained by segmenting XRCT images of real materials, is
investigated for the first time by means of an elastoplastic phase field model.

1.3 Outline of the thesis

The content of this thesis is organized as follow:
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In Chapter 2, we first review the elastoplastic brittle phase field method developed in
[53, 9] and then extend this method to model interactions between interfacial damage and
brittle fracture in elastoplastic composites. In Chapter 3, we extend our previous BESO
framework [176] to a combined SIMP and phase field for maximizing the fracture resistance
of two-phase quasi-brittle materials. In Chapter 4, we introduce a topology optimization
framework for maximizing the fracture resistance of elastoplastic ductile composites, where
interfacial damage is taken into account through a regularized description of interfaces. In
Chapter 5, we propose a phase field anisotropic damage model able to describe the behavior
of polymer structures obtained by 3D printing processes, and which are formed by a layered
structure. In Chapter 6, crack propagation in elastoplastic polymer composite microstructures,
which are obtained by segmenting XRCT images of real materials, is investigated for the
first time with the model in Chapter 2. Finally, conclusions and perspectives are drawn in
Chapter 7.



Chapter 2

Phase field modeling elastoplastic brittle
fracture

The main content of this chapter has been adapted from our published paper [94].

2.1 Introduction

In this chapter, we first review the elastoplastic brittle phase field method developed in
[53, 9] in Section 2.2. An efficient and robust staggered scheme is adopted by decoupling
the fracturing phase field and displacement field. With this numerical scheme, a three-
dimensional phase field model to simulate crack initiation and propagation in elastoplastic
brittle solids is implemented. Several comparisons with available experimental results are
proposed to validate this method.

In Section 2.3, we extend the elastoplastic brittle phase field method proposed in Section
2.2 to model interactions between interfacial damage and brittle fracture in elastoplastic
composites. We follow the framework developed in [130, 121] to interfacial damage in
composites. To introduce interfacial damage between inclusions and the matrix, a strain
density function depending on the jump due to decohesion is added to the total energy. To
maintain the regularized character of the approximation, smooth indicator functions are used
to weight the different terms in the energy with respect to the vicinity of interfaces. Then,
the different problems (mechanical and phase field problems) are derived and an algorithmic
procedure is described. The performance of the proposed framework is demonstrated using
several numerical examples.
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Fig. 2.1 Phase field approximation of a sharp crack discontinuity. (a) A sharp crack surface Γ

embedded into the solid Ω. (b) The regularized representation of the crack by the phase field
d (x).

2.2 Phase field modeling elastoplastic brittle fracture in ho-
mogeneous materials

This section is organized as follows. In Section 2.2.1 and 2.2.2, we briefly review the
elastoplastic brittle phase field method developed in [53, 9]. Section 2.2.3 provides FEM
discretization and numerical implementation. Finally, numerical examples and applications
are presented in Section 2.2.4.

2.2.1 Phase field approximation of crack

Let Ω⊂ RD be an open domain with D = 2,3, describing a cracked solid as depicted in Fig.
2.1. The external boundary of Ω is denoted by ∂Ω ∈ RD−1. Cracks which may propagate
within the solid are collectively denoted by Γ. In this work, we adopt the framework proposed
in [112, 108, 111, 12] for a regularized representation of discontinuities. In this regularized
framework, the crack is approximately represented by a scalar phase field 0≤ d (x, t)≤ 1
(see Fig. 2.1(b)), such that when d = 0 the material is undamaged, and when d = 1 the
material is fully broken.

The scalar phase field d (x, t) can be determined through solving the following boundary
value problem subjected to Dirichlet boundary conditions d = 1 on the crack (see [108] for
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more details): 
d (x, t)− ℓ2

d∆d (x, t) = 0 in Ω,
d (x, t) = 1 on Γ,

∇d (x, t) ·n = 0 on ∂Ω,

(2.1)

where ∆(·) and ∇(·) are the Laplacian and gradient operator respectively, ℓd is a length scale
parameter that governs the width of the regularization zone and gives for ℓd → 0 the exact
sharp crack in Fig. 2.1(a), and n the outward normal on ∂Ω. It can be shown that (2.1) is the
Euler-Lagrange equation associated with the variational problem:

d = Arg
{

inf
d∈Sd

Γ
d (d)

}
, Γ

d (d) =
∫

Ω

γd (d)dΩ, Sd = {d | d (x) = 1,∀x ∈Γ} , (2.2)

where Γd (d) represents the total length of the crack in 2D and the total crack surface area in
3D, and γd (d) is the crack surface density function per unit volume defined by:

γd (d) =
d2

2ℓd
+
ℓd

2
∇d ·∇d, (2.3)

where the second term in γd (d) penalizes high values of ∇d(x) and where d varies between
0 and 1. Note that in the absence of the second right-hand term in (2.3), a local damage
model is found, with well-known related non-convergence issues with respect to the mesh
discretization.

It must be noted that, ℓd does not represent physically the exact crack width, but a
parameter which is used to regularize the discontinuities. It has been shown that this
parameter can be treated as a material parameter related to the Young’s modulus, the tensile
strength, and the critical energy release rate of the material in [128, 16, 190]. In our previous
work [126], an inverse approach was developed to identify this parameter, by combining
simulations and experiments.

2.2.2 Review of the elastoplastic brittle phase field method

In this section, we briefly review the elastoplastic brittle phase field method using the
variational framework for fracture as introduced in [6, 145].

First, we introduce the total strain as:

ε = ε
e + ε

p, (2.4)
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where εe and ε p are the elastic strain and plastic strain, respectively. The plastic incompress-
ibility is assumed, i.e. Tr(ε p) = 0, Tr(.) being the trace operator. The cumulated plastic
strain is defined as:

ṗ =

√
2
3
∥ε̇ p∥ (2.5)

where ˙(.) denotes time derivative. In the following, we introduce the deviatoric parts of
the stress and of the elastic strain tensors as s = dev(σ) and ee = dev(εe), respectively,
with dev(.) = (.)− 1

3Tr(.)1, 1 being the first-order identity operator. Finally, we define the
directional derivative as:

Dv f (u) =
[

d
dh

f (u+hv)
]

h=0
. (2.6)

The damage variable d is introduced to penalize the stiffness of the material.

2.2.2.1 Total energy

Let us consider a solid whose phase is elasto-plastic with possible damage. Small strains are
assumed. In the present regularized framework, the total energy of the solid is defined by

W (u, p,d)=
∫

Ω

[
ψ

e (ε (u) , p,d)+ψ
p (p)+ψ

d (d)
]

dΩ−
∫

∂ΩF

F ·udS−
∫

Ω

f ·udΩ, (2.7)

where ψe, ψ p and ψd denote the elastic strain density function, the plastic and damage
dissipative potentials, respectively. Above, f and F are body forces and prescribed traction
over the boundary ∂ΩF , respectively. Note that the total energy is a function of 3 state
variables u, p and d.

2.2.2.2 Variational framework

We follow the framework presented in [6] to construct the variational principle, which
involves: irreversibility condition, stability condition and energy balance. In this framework,
stability condition provides mechanical balance equation, damage and plastic criteria. The
energy balance provides damage consistency and plastic flow rule.

Irreversibility condition
The irreversibility condition is imposed on the damage variable to disallow material

regeneration. It can be expressed as

ḋ ≥ 0, 0≤ d ≤ 1. (2.8)
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In the present work, the irreversibility condition is implemented by using an appropriate
history function [108].

First-order stability condition
The first order stability condition (see [113, 114, 143]) is expressed by:

DδuW (u, p,d)+Dδ pW (u, p,d)+DδdW (u, p,d)≥ 0. (2.9)

Applied to (2.7), it yields:

∫
Ω

σ : ε
e (δu)dΩ+

∫
Ω

(
−
√

3
2

σ : n̂+
∂ψ p

∂ p

)
δ pdΩ+

∫
Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ≥ 0 (2.10)

where
σ =

∂ψe

∂εe (2.11)

and n̂ is a unit tensor in the direction of the plastic flow. From (2.4):

ε
e = ε− ε

p (2.12)

and then:
Dδuε

e = ε
e(δu) = ε(δu). (2.13)

The following results stem out:

• For δ p = δd = 0 we obtain:∫
Ω

σ : ε
e (δu)dΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ = 0 (2.14)

which is the weak form of the equilibrium equation.

• For δd = 0 and δu = 0:

∫
Ω

(
−
√

3
2

σ : n̂+
∂ψ p

∂ p

)
δ pdΩ≥ 0. (2.15)

For J2-plasticity, this expression leads to

∫
Ω

(√
3
2
∥s∥−∂ψ p

∂ p

)
δ pdΩ≤ 0, (2.16)



28 Chapter Phase field modeling elastoplastic brittle fracture

which is the weak form of the plasticity yield criterion. The local form of the plastic
yield criterion can be expressed as

F p(p) =

√
3
2
∥s∥−∂ψ p

∂ p
≤ 0 in Ω (2.17)

which is the classical von Mises yield criterion.

• For δ p = 0 and δu = 0:

∫
Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ≥ 0 (2.18)

which is the weak form of the damage criterion. In local form, it can be expressed as:

Fd(d) =−
(

∂ψe

∂d
+

∂ψd

∂d

)
≤ 0 in Ω. (2.19)

Energy balance
The energy balance represents the need for the total energy to remain constant as the state

variables evolve. Following a procedure analogous to the treatment of the stability condition,
this condition leads to

∫
Ω

[
−σ : ε

e (u̇)+

(√
3
2

σ : n̂− ∂ψ p

∂ p

)
ṗ−
(

∂ψe

∂d
+

∂ψd

∂d

)
ḋ

]
dΩ

+
∫

∂ΩF

F · u̇dS+
∫

Ω

f · u̇dΩ = 0. (2.20)

The following cases are analyzed:

• For u̇ = 0 and ḋ = 0, and using (2.17), the plasticity consistency condition is obtained:

F p(p)ṗ = 0. (2.21)

• For u̇ = 0 and ṗ = 0, and using (2.19), the damage consistency condition is obtained:

Fd(d)ḋ = 0. (2.22)

Alternate minimization
In this section, a staggered alternate minimization algorithm is applied, which naturally

stems out from the energetic principles. This procedure takes advantage of the fact that
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although the global energy is non-convex, it is convex with respect to u, p and d individually
[2]. With the total energy (2.7) at hand, the alternate minimization follows.

• Minimization with respect to the displacement field:

DδuW (u, p,d) = 0 (2.23)

leads to ∫
Ω

σ : ε
e (δu)dΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ = 0 (2.24)

which corresponds to the weak form of the mechanical problem to be solved for u,
given d.

• Minimization with respect to the equivalent plastic strain:

Dδ pW (u, p,d) =
∫

Ω

(
−
√

3
2

σ : n̂+
∂ψ p

∂ p

)
δ pdΩ = 0 (2.25)

which is the weak form of the plastic yield criterion (2.15) which has to be satisfied for
ṗ≥ 0. In the present work, this condition is handled by a return-mapping algorithm
(see [159]). In [145] a regularization term was introduced in the total energy and the
above equation was verified through solving a global problem for p. Here we do not
adopt this approach and treat this criterion as a local one (at Gauss integration points).
Eqs. (2.24) and (2.25) are solved together using the return-mapping algorithm (see
Algorithm 1).

• Minimization with respect to the damage field:

DδdW (u, p,d) =
∫

Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ = 0, (2.26)

which corresponds to the global problem to be solved to find the field d(x) (phase field
problem), given u and p. Note that if ψd does not include the gradient of damage ∇d, then
(2.26) leads to a local relationship to define the damage evolution, leading to well-known
issues like non-convergence with respect to the mesh size, or dependence of the crack paths
to the mesh structure and orientation.
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2.2.2.3 Specialization

We now specialize the energy components introduced in (2.7). From [9], we define the
different strain density functions as follows:

ψ
e (u,d) = g(d)ψ

e+
0 (εe(u))+ψ

e−
0 (εe(u)) , (2.27)

with [16]

ψ
e+
0 (εe) =

1
2

κ ⟨Tr(εe)⟩2++µee : ee, (2.28)

ψ
e−
0 (εe) =

1
2

κ ⟨Tr(εe)⟩2− . (2.29)

Above, κ and µ denote bulk modulus and shear modulus, respectively, ⟨x⟩± = 1
2 (x±|x|).

g(d) = (1−d)2 + k, (2.30)

where k is a small numerical parameter to prevent loss of definite posedness of the elastic
tensor in case of full damage,

ψ
p (p) = σY p+

1
2

H p2, (2.31)

ψ
d (β ,d) = gc

(
d2

2ℓd
+
ℓd

2
∇d ·∇d

)
. (2.32)

In (2.31), σY and H are yield stress and hardening modulus, respectively. In (2.32), gc is
the fracture toughness.

Using the aforementioned constitutive specialization results, we can re-write (2.11),
(2.17) and (2.5) as:

σ = g(d)σ
+
eff +σ

−
eff, (2.33)

F p(p) =

√
3
2
∥s∥− (σY +H p)≤ 0, (2.34)

ε̇
p = ṗ

√
3
2

s
∥s∥

with ṗ≥ 0 (2.35)

where σ
+
eff and σ

−
eff are the effective tensile and compressive stresses defined as

σ
+
eff =

∂ψ
e+
0

∂εe = κ ⟨Tr(εe)⟩+ 1+2µee, σ
−
eff =

∂ψ
e−
0

∂εe = κ ⟨Tr(εe)⟩− 1. (2.36)
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The associated Euler-Lagrange equations to (2.24) are given by:
∇ ·σ + f = 0 in Ω,

u = ū on ∂Ωu,
σn = F on ∂ΩF .

(2.37)

Using (2.26) and the property:

(∆d) δd = ∇ · (∇dδd)−∇d ·∇(δd) (2.38)

as well as the divergence theorem and ∇d ·n = 0, we obtain the weak form of the phase field
problem as:

∫
Ω

({
−2(1−d)ψe+

0 +
gcd
ℓd

}
δd +gcℓd∇d ·∇(δd)

)
dΩ = 0. (2.39)

To prescribe irreversibility, we employ the strain history functional introduced in [108]:

H (εe) = max
s∈[0,t]

ψ
e+
0 (εe,s) . (2.40)

Then, the corresponding Euler-Lagrange equations to (2.39) are given by:
gc
ℓd

(
d− ℓ2

d∆d
)
= 2(1−d)H (εe)

∇d ·n = 0 on ∂Ω,

d = 1 on Γ.

(2.41)

The different equations of the model are summarized in Table 2.1. The weak forms of
the problems to be solved alternatively are summarized in Table 2.2.
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Table 2.1 Governing equations of the elastoplastic brittle phase field model.

Irreversibility ḋ ≥ 0, 0≤ d ≤ 1

Mechanical balance ∇ ·σ + f = 0 in Ω

u = ū on ∂Ωu, σn = F on ∂ΩF

Constitutive law σ = g(d)σ
+
eff +σ

−
eff

σ
+
eff = κ ⟨Tr(εe)⟩+ 1+2µee, σ

−
eff = κ ⟨Tr(εe)⟩− 1

Damage criterion gc
ℓd

(
d− ℓ2

d∆d
)
−2(1−d)H (εe)≥ 0

H (εe) = max
s∈[0,t]

ψ
e+
0 ( εe,s)

Damage consistency
(

gc
ℓd

(
d− ℓ2

d∆d
)
−2(1−d)H (εe)

)
ḋ = 0

Plastic yield criterion F p(p) =
√

3
2 ∥s∥− (σY +H p)≤ 0,

Plastic flow rule ε̇
p = ṗ

√
3
2

s
∥s∥ with ṗ≥ 0

Table 2.2 Problems to be solved in the staggered procedure

Mechanical problem: given d, solve for u:∫
Ω

σ : εe (δu)dΩ−
∫

∂ΩF
F ·δudS−

∫
Ω

f ·δudΩ = 0

F p(p) =
√

3
2 ∥s∥− (σY +H p)≤ 0

ε̇
p = ṗ

√
3
2

s
∥s∥ with ṗ≥ 0

Phase Field problem: given u, solve for d:∫
Ω

[(
2H (u)+ gc

ℓd

)
dδd +gcℓd∇d ·∇(δd)

]
dΩ =

∫
Ω

2H (u)δddΩ.

2.2.3 Discretization and numerical implementation

In this section, we detail the weak forms and FEM discretizations for displacement and
damage problems, and finally provide the different algorithms.
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2.2.3.1 Weak forms the linearized mechanical problem

We can re-write the associated weak form for the displacement problem (2.24) as:∫
Ω

σ : ε
e (δu)dΩ =

∫
Ω

f·δudΩ+
∫

∂ΩF

F·δudS, (2.42)

where σ is given in (2.33). We can rewrite the balance equation (2.42) as

R =
∫

Ω

σ : ε
e (δu)dΩ−

∫
Ω

f·δudΩ−
∫

∂ΩF

F·δudS = 0. (2.43)

In a standard Newton method, the displacements are updated for each loading increment
by solving the tangent problem:

D∆uR
(

u(k),d
)
=−R

(
u(k),d

)
= 0, (2.44)

where u(k) is the displacement solution known from the previous iteration. The displacement
corrections are obtained as

u(k+1) = u(k)+∆u. (2.45)

In (2.44),

D∆uR
(

u(k)
)
=
∫

Ω

∂σ

∂εe : ε
e (∆ε) : ε

e (δε)dΩ, (2.46)

with
∂σ

∂εe = Cs (u,d) . (2.47)

Using (2.41), we can re-write the associated weak form for the damage problem (2.26)
as: ∫

Ω

[(
2H +

gc

ℓd

)
dδd +gcℓd∇d ·∇(δd)

]
dΩ =

∫
Ω

2H δddΩ. (2.48)

2.2.3.2 Discretization of the displacement problem

In this work, for the sake of clarity, only 2D FEM discretization is detailed. The vector form of

second-order tensors are introduced as [ε] =
[
ε11, ε22,

√
2ε12

]T
, [σ ] =

[
σ11, σ22,

√
2σ12

]T
,

as well as the FEM approximations u = Nuue, δu = Nuδue, and ∆u = Nu∆ ue where ue,
δue, ∆ue and Nu are nodal displacement components in one element, nodal trial function
components, nodal incremental displacement components and a matrix of displacement
shape function, respectively. Then we obtain:

[ε] (u) = Buue, [εe] (∆u) = Bu∆ue, [εe] (δu) = Buδue, (2.49)
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where Bu is a matrix of displacement shape function derivatives.
After discretization, the linear system (2.44) with the displacement corrections (2.45)

reduces to a standard Newton-type iteration:

Ktan∆u =−R
(

u(k)
)
,u(k+1) = u(k)+∆u, (2.50)

where u(k) is the displacement field known from the previous (k-th) Newton-Raphson itera-
tion,

Ktan =
∫

Ω

BT
u CsBudΩ, (2.51)

and
R
(

u(k)
)
=
∫

Ω

BT
u σ

(k)dΩ−
∫

Ω

NT
u fdΩ−

∫
∂ΩF

NT
u FdS, (2.52)

and where Cs is the matrix form corresponding to the fourth-order elastoplastic consistent
tangent operator Cs in (2.47), which is determined by the classical elastic predictor and
plastic corrector (return-mapping) algorithm outlined in [51]. It should be noted that an
accurate evaluation of the operator Cs is crucial to guarantee the convergence of the Newton-
Raphson iterative solution scheme. The analytical form of Cs for a J2-plasticity yield
function can be found in [8]. The iterative update (2.50) is performed until convergence is
achieved in the sense ∥∆u∥/

∥∥∥u(k+1)−u(0)
∥∥∥≤tol.

2.2.3.3 Discretization of the phase field problem

We solve alternatively the damage problem and then the mechanical problem within a
staggered procedure [108]. The damage and damage gradient are approximated in one
element by

d = Ndde, ∇d = Bdde, (2.53)

where Nd and Bd are matrices of damage shape function and of damage shape function
derivatives, respectively, and de denote nodal damage in one element.

The discretization of damage problem (2.48) results into the following discrete system of
equations:

Kdd = Fd (2.54)

in which

Kd =
∫

Ω

[(
2H +

gc

ℓd

)
NT

d Nd +gcℓdBT
d Bd

]
dΩ (2.55)

and
Fd =

∫
Ω

2NT
d H dΩ, (2.56)
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where H is given in (2.40).

2.2.3.4 Numerical implementation

In the present work, a staggered scheme is employed following [108], where at each load
increment the displacement problem is solved for fixed damage field which is known from the
previous time step. The damage problem is then solved with the new displacement field. The
overall algorithm is illustrated in Algorithm 1. The flowchart for return-mapping algorithm
on one Gauss point is provided in Algorithm 2.

Algorithm 1: Overall algorithm for elastoplastic brittle fracture model
Initialize u0, d0, ε

p
0 , and p0 with assumption of not plasticised and undamaged state.

Loop over load increments n
for i = 1, . . . ,n do

Displacement problem
Newton-Raphson iterative solution scheme
k = 1,err = 1, tol = 10−5,u(0)

i = ui−1

while err > tol do
ε = Buu(k−1)

i

Return-mapping algorithm
Given

(
ε,ε p

i−1, pi−1,di−1
)
, Compute

(
Cs,ε

p,(k)
i , p(k)i

)
from Algorithm 2

Compute Ktan and R
(

u(k−1)
i

)
from (2.51) and (2.52)

Compute ∆u from (2.50)
Update u(k)

i = u(k−1)
i +∆u

ui = u(k)
i ,ε p

i = ε
p,(k)
i , pi = p(k)i

err = ∥∆u∥/∥ui−ui−1∥ ,k = k+1
end
Damage problem
Compute H with ui and ε

p
i from (2.40)

Compute Kd and Fd from (2.55) and (2.56)
Compute the damage field di from (2.54)
i = i+1

end

2.2.4 Numerical examples and applications

In this section, all numerical computations are performed within the finite element framework
and assuming plain strain conditions for 2D cases. Both damage and displacement fields are
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discretized with 4-node quadrilateral elements for 2D cases and tetrahedron elements for 3D
case.

Algorithm 2: Return-mapping algorithm
Input: ε,ε p

i−1, pi−1,di−1

Output: Cs,ε
p,(k)
i , p(k)i

Elastic prediction
εe trial = ε− ε

p
i−1

Compute σ trial and F p (σ trial, pi−1,di−1
)

from (2.33) and (2.34)
if F p ≤ 0 then

ε
p,(k)
i = ε

p
i−1, p

(k)
i = pi−1

else
Plastic correction
Compute ∆p from F p (σ , pi−1 +∆p,di−1) = 0

∆ε p = ∆p
√

3
2

strial

∥strial∥
Update the variables
ε

p,(k)
i = ε

p
i−1 +∆ε p

p(k)i = pi−1 +∆p
end
εe = ε− ε

p,(k)
i

Compute σ from (2.33)
Compute Cs with the analytical form in [8]

2.2.4.1 Asymmetrically notched specimen

In the first example, we validate the present numerical implementation introduced in section
2.2.3.4. For this purpose, an asymmetrically notched specimen introduced in [9] ,as described
in Fig. 2.2(a) , is considered. The lower end (y = 0) of the domain is blocked along x− and
y− directions. On the upper end (y = 50), the displacement along x is fixed to zero, while
y−displacement are prescribed to an increasing value of u with ∆u = 0.002 mm during the
simulation. The spatial discretization of the model comprises 23277 4-node quadrilateral
elements, with refinement in the central region where the crack is expected to propagate
(see Fig. 2.2(b)). The material parameters from [9] are: κ = 27.28 GPa, µ = 71.66 GPa,
σY = 0.345 GPa, H = 0.25 GPa and gc = 9.31 N/mm. The length scale parameter is chosen
as ℓd = 0.2 mm.

The evolution of the crack phase field and the equivalent plastic strain field are shown
in Fig. 2.3(a) and (b), the final results from [9] are presented in 2.3(c). Fig. 2.4 shows
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the load-displacement curve. As can be observed from Fig. 2.4, our results have a good
agreement with the reference results.

u

18
2

0

5
0

r=2.5

(a) (b)

Unit of length: 
mm

Fig. 2.2 Asymmetrically notched specimen: (a) geometry and boundary conditions; (b) finite
element model.

(a) (b) (c)

u=1.24 mm u=1.44 mm u=1.8 mm u=1.24 mm u=1.44 mm u=1.8 mm

Fig. 2.3 Asymmetrically notched specimen: (a) elastoplastic brittle crack fields; (b) equivalent
plastic strains; (c) reference [9].

2.2.4.2 Three-point bending test

In this example, three-point bending test is conducted and compared with available experi-
mental results in [142]. The geometry and boundary conditions are illustrated in Fig. 2.5(a).
The finite element model with a refinement in the central region where the crack is expected
to propagate is shown in Fig. 2.5(b), where 11163 4-node quadrilateral elements are used.
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Young’s modulus is E = 48.3 GPa as reported in [142], and Poisson’s ratio is assumed to be
ν = 0.2.

0 0.3 0.6 0.9 1.2 1.5 1.8

Displacement [mm]

0

1

2

3

4

5

6

7

L
o

ad
 [

k
N

]

Fig. 2.4 Asymmetrically notched specimen. Load-displacement curve.
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(b)

Fig. 2.5 Three-point bending test: (a) geometry and boundary conditions; (b) finite element
model.

Elastic brittle fracture
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In a first test, we try simulating the available experimental results with the elastic brittle
fracture model. For this purpose, two simulations are performed: in the first one gc = 0.029
N/mm and ℓd = 13 mm, in the second one gc = 0.045 N/mm and ℓd = 20 mm. External
loading is applied by displacement control through a serious of load increments with a fixed
step value ∆u = 0.001 mm. Fig. 2.6 shows the comparison of load-displacement curves for
the two simulations and the experimental data. As can be observed from this figure, the peak
load in the first simulation with gc = 0.029 N/mm and ℓd = 13 mm shows a better agreement
with the experimental data, and the second simulation with gc = 0.045 N/mm and ℓd = 20
mm has better performance after the peak load. However, the simulated reaction forces both
drop much faster than the experimental data after reaching the peak load. These deviations on
one aspect stem from the fact that a linear fracture model is used in the simulation whereas
the real fracture is nonlinear; the model neglects any plastic deformation. The evolution of
the crack phase fields for these two simulations are shown in Fig. 2.7.
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Fig. 2.6 Load-displacement curves of elastic brittle fracture for two value of gc.

Fig. 2.8 shows the load-displacement curves for cyclic loading case and non cyclic
loading case, here gc = 0.045 N/mm and ℓd = 20 mm are used. In this figure, we can
observe that no residual deformation is maintained in the simulation after unloading which is
typical when using phase field models for elastic brittle fracture [10, 108], whereas residual
deformation is observed at the end of each unloading in the experimental data. This disparity
is mainly caused by the fact that we do not consider other dissipated process, e.g. plastic
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deformation. Thus, in the next test we use the model introduced in this section to take into
account the plastic deformation process.

(a) (b)

u=0.11 mmu=0.11 mm

u=0.2 mm

u=0.11 mm

u=0.2 mm

Fig. 2.7 Elastic brittle crack fields for (a) gc = 0.029 N/mm; (b) gc = 0.045 N/mm.
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Fig. 2.8 Load-displacement curves of elastic brittle fracture with cyclic loading and non
cyclic loading.

Elastoplastic brittle fracture
In this test, we try simulating the available experimental results with the elastoplastic

brittle fracture model. The material parameters are: σY = 2.5 MPa, H = 2 MPa and gc =

0.045 N/mm. The length scale parameter is chosen as ℓd = 20 mm. External loading
increment value is ∆u = 1×10−4 mm. Fig. 2.9 shows the comparision of simulated curves
and the experimental data. It is observed that, after several unloading processes, there
are obvious plastic deformations in the simulated curve with elastoplastic brittle fracture
model. Compared to the simulated curve with elastic brittle fracture model, the curve
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with elastoplastic brittle fracture model can reproduce satisfactorily the experimental curve,
especially the cyclic loading/unloading response. Fig. 2.10 shows the evolution of the crack
phase field and the equivalent plastic strain field. As can be observed from this figure, the
equivalent plastic strain mainly occurs at the tip of the initial crack.
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Fig. 2.9 Load-displacement curve of elastoplastic brittle fracture with cyclic loading.
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(a) (b)

Fig. 2.10 Three-point bending test with cyclic loading: (a) elastoplastic brittle crack fields;
(b) equivalent plastic strains. (see Fig. 2.9 for corresponding displacement points)
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Thickness: 4
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Fig. 2.11 I-shaped specimen: (a) geometry and boundary conditions; (b) finite element model.
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Fig. 2.12 I-shaped specimen: simulation curve and experimental curves.

2.2.4.3 I-shaped specimen

In this last example, we identify this elastoplastic brittle phase field model on a 3D printed I-
shaped specimen, which is made from Polyamide 12 (PA12). The specimen and experimental
data were kindly provided by Prof. Mohammed Nouari and Hamid Makich in LEM3
Laboratory, University of Lorraine, through a collaboration founded by the MMELED ANR
project. The geometry and boundary conditions are illustrated in Fig. 2.11(a). The finite
element model with a refinement in the central region is shown in Fig. 2.11(b), where 39594
4-node tetrahedron elements are used. External loading increment value in this simulation



2.3 Phase field modeling elastoplastic brittle fracture in heterogeneous materials with
interfaces 43

is ∆u = 0.01 mm. The material parameters are: E = 3.45 GPa, ν = 0.25, σY = 68 MPa,
H = 125 MPa and gc = 14 N/mm. The length scale parameter is chosen as ℓd = 1 mm.

(a) (b) (c)

Fig. 2.13 I-shaped specimen: (a) final crack field; (b) final equivalent plastic strain; (c)
experimental results.

The experimental curves and final failure patterns are shown in Fig. 2.12 and Fig. 2.13(c),
respectively. It is observed that the specimen exhibits an obvious plastic deformation stage
before the final failure. Meanwhile, the final failure shows a brittle crack pattern. Note that 2
specimens were experimentally tested, this is why 2 curves are presented in Fig. 2.12. The
simulated curve in Fig. 2.12 exhibits a good agreement with the experimental curves. Fig.
2.13(a) and (b) show the final crack field and final equivalent plastic strain field. As can be
observed from Fig. 2.13, the final equivalent plastic strain field is distributed in a large range
of the center of the specimen, and the final crack occurs in the center of speciment, whereas
the experimental crack is not strictly in the center of the specimen. However, it should be
noted that due to defects (microvoids) in the experimental samples, the crack does not occur
at the center (see Fig. 2.13(c)).

2.3 Phase field modeling elastoplastic brittle fracture in
heterogeneous materials with interfaces

In this section, we present an original contribution developed in this PhD work, where we
introduce a framework for modeling interfacial damage interacting with elastoplastic fracture
within the phase field method.
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2.3.1 Diffuse approximation of discontinuous fields

Let Ω⊂ RD be an open domain with D = 2,3, describing a heterogeneous medium which
contains internal interfaces between two elasto-plastic phases. The external boundary of Ω is
denoted by ∂Ω ∈ RD−1. During the loading, cracks may propagate in the medium phases
and can pass through the interfaces as depicted in Fig. 2.14(a), where the crack surfaces and
the interfaces are collectively denoted by Γ and ΓI , respectively. In this work, we adopt the
framework proposed in [12, 108] for a regularized representation of discontinuities extended
to interfaces as in [130, 179]. In this regularized framework, the cracks are approximately
represented by a scalar phase field d (x, t) (see Fig. 2.14(b)) and the interfaces by a fixed
scalar function β (x) (see Fig. 2.14(c)).

crack

interface

inclusion
matrix

F

F

I

(a) (b) (c)

Fig. 2.14 Diffused approximation of cracks and interfaces: (a) a medium containing sharp
cracks and interface; (b) diffused approximation of cracks; (c) diffuse approximation of
interfaces.

2.3.1.1 Phase field approximation of bulk cracks and interfaces

For a known fixed crack surface Γ (see Fig. 2.14(a)), the scalar crack phase field d (x, t) can
be determined through solving (2.1). With the same manner, The scalar interface function
β (x) can also be determined through solving the following boundary value problem subjected
to Dirichlet boundary conditions β = 1 on the interfaces ΓI:

β (x)− ℓ2
β

∆β (x) = 0 in Ω,

β (x) = 1 on ΓI ,
∇β (x) ·n = 0 on ∂Ω,

(2.57)

where ℓβ is a length scale parameter which governs the width of the regularization zone of
the interface and gives for ℓβ → 0 the exact sharp interfaces in Fig.2.14(a). Similarly, (2.57)
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corresponds to the Euler-Lagrange equation of the variational problem:

β = Arg

{
inf

β∈Sβ

Γ
β (β )

}
, Γ

β (β ) =
∫

Ω

γβ (β )dΩ, Sβ =
{

β | β (x) = 1,∀x ∈Γ
I} , (2.58)

where γβ (β ) is defined by:

γβ (β ) =
β 2

2ℓβ

+
ℓβ

2
∇β ·∇β . (2.59)

In the present work, the length scale parameter ℓd and ℓβ are interpreted as material
parameters. Then, one possibility to select these parameters is to perform an inverse identifi-
cation from experimental data. Such identification procedure has been described in [126]
in the context of quasi-brittle heterogeneous materials and could be extended to the present
elastoplastic framework in future studies using similar ideas. Then, in the present paper, the
numerical values of ℓd and ℓβ have been chosen arbitrarily as small values in the numerical
examples of section 2.3.4.

2.3.1.2 Regularized representation of the displacement jumps within interfaces

In this section, an approximation for the displacement jump [[u]] is introduced to consider the
interface debonding (see [130]). Let ΓI be the interface. We define ΓI as the zero level-set of
a function φ (x), such that (see [130] for its construction):

φ (x)> 0 for x ∈Ωi,
φ (x)< 0 for x ∈Ωm,
φ (x) = 0 for x ∈ΓI ,

(2.60)

where Ωi and Ωm denote the set of inclusions and matrix, respectively. Using a Taylor
expansion of the displacement field around a point x located on the interface (see Fig. 2.15):

[[u]]≃ w(x) = u
(

x+
h
2

nI
)
−u

(
x−h

2
nI
)
= h∇(u(x))nI, (2.61)

where nI is the normal vector to ΓI at the point x defined by:

nI =
∇φ (x)
∥∇φ (x)∥

(2.62)
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Fig. 2.15 Approximation of the displacement jump across an interface ΓI at a point x, with
nI the normal unit vector to ΓI .

and w(x) denotes the smooth displacement jump approximation. Above, h is a small scalar
parameter, chosen as h = he to minimize the estimation error (see [130]), with he the typical
element size of the finite element mesh around the interface. A detailed description for the
numerical computation of φ (x) is introduced in [130].

It should be noted that φ (x) and nI do not change throughout the simulation because
the interfaces do not evolve. For a sharp interface, the singular part of the strain along the
interface can be defined by:

ε
I(x) = nI(x)⊗s [[u(x)]]δ (x) ∀x ∈ Γ. (2.63)

Then using the above regularization framework, this expression can be approximated as
[130]:

ε
I(x)≃ nI(x)⊗sw(x)γβ (x) ∀x ∈Ω. (2.64)

2.3.2 Phase field modeling of elastoplastic damage interacting with in-
terfacial damage

In this section, we propose a phase field model for modeling interactions between interfacial
damage and bulk cracking in elasto-plastic composites. The framework is developed using
the variational framework for fracture as introduced in [6, 145].

Here, the total strain is introduced as:

ε = ε
e + ε

p + ε
I, (2.65)
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where ε I has been defined in (2.64).

2.3.2.1 Total energy

Let us consider a two-phase medium whose phases are elasto-plastic with possible bulk
damage and interfacial damage. Small strains are assumed. The total energy of the medium
is defined by

W (u, p,d,β ) =
∫

Ω

ψ
e (ε (u) , p,d)dΩ+

∫
Ω

[
ψ

p (p)+ψ
d (β ,d)+ψ

I (w(u) ,β )
]

dΩ

−
∫

∂ΩF

F ·udS−
∫

Ω

f ·udΩ, (2.66)

where ψ I denotes a strain density function depending on the approximated displacement
jump across the interfaces. β plays the role of a parameter, as this field does not change
during the evolution of the system.

2.3.2.2 Variational framework

We follow the same framework presented in section 2.2 to construct the variational principle,
which involves: irreversibility condition, stability condition and energy balance.

Irreversibility condition
See section 2.2.2.2.
First-order stability condition
The first order stability condition (see [113, 114, 143]) is expressed by:

DδuW (u, p,d)+Dδ pW (u, p,d)+DδdW (u, p,d)≥ 0. (2.67)

Applied to (2.66), it yields:

∫
Ω

[
σ : ε

e (δu)+
∂ψ I

∂w
·w(δu)

]
dΩ+

∫
Ω

(
−
√

3
2

σ : n̂+
∂ψ p

∂ p

)
δ pdΩ

+
∫

Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ≥ 0 (2.68)

From (2.65):

ε
e = ε− ε

p− ε
I (2.69)
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and then:
Dδuε

e = ε
e(δu) = ε(δu)− ε

I(δu). (2.70)

From (2.63),

ε
I(δu) = nI⊗s w(δu)γβ , w(δu) = h∇(δu)nI. (2.71)

From this expression, the following results stem out:

• For δ p = δd = 0 we obtain:

∫
Ω

σ : ε
e (δu)dΩ+

∫
Ω

∂ψ I

∂w
·w(δu)dΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ = 0 (2.72)

which is the weak form of the equilibrium equation.

• For δd = 0 and δu = 0, we obtain (2.15), (2.16) and (2.17).

• For δ p = 0 and δu = 0 we obtain (2.18) and (2.19).

Energy balance
The energy balance represents the need for the total energy to remain constant as the state

variables evolve. Following a procedure analogous to the treatment of the stability condition,
this condition leads to

∫
Ω

[
−σ : ε

e (u̇)− ∂ψ I

∂w
·w(u̇)+

(√
3
2

σ : n̂− ∂ψ p

∂ p

)
ṗ−
(

∂ψe

∂d
+

∂ψd

∂d

)
ḋ

]
dΩ

+
∫

∂ΩF

F · u̇dS+
∫

Ω

f · u̇dΩ = 0. (2.73)

The following cases are analyzed.

• For u̇ = 0 and ḋ = 0, the plasticity consistency condition in (2.21) is obtained.

• For u̇ = 0 and ṗ = 0, the damage consistency condition in (2.22) is obtained.

Alternate minimization
In this section, a staggered alternate minimization algorithm is applied. With the total

energy (2.66) at hand, the alternate minimization follows.

• Minimization with respect to the displacement field:
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DδuW (u, p,d) = 0 (2.74)

leads to∫
Ω

σ : ε
e (δu)dΩ+

∫
Ω

∂ψ I

∂w
·w(δu)dΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ = 0 (2.75)

which corresponds to the weak form of the mechanical problem to be solved for u,
given d.

• Minimization with respect to the equivalent plastic strain, we obtain (2.25).

• Minimization with respect to the damage field, we obtain (2.26).

2.3.2.3 Specialization

We now specialize the energy components introduced in (2.66). The new damage dissipative
potential with interfacial damage penalization is defined as:

ψ
d (β ,d) = (1−β )2 gc

(
d2

2ℓd
+
ℓd

2
∇d ·∇d

)
, (2.76)

Note that the elastoplastic brittle fracture case model can be recovered by simply setting
β = 0 in (2.76).

Following our recent work [130], we specialize the energy of interfacial jump component
as:

ψ
I (u,β ) = ψ

I (w(u))γβ (β ) , (2.77)

where the traction acting on the interface oriented by nI (see Fig. 2.15) is defined by:

t(w) =
∂ψ

I (w)

∂w
. (2.78)

Above, ψ
I is the interface strain density depending on the regularized displacement jump

w. Note that as discussed in [130], it is not required in this formulation to include history
variables for the interfaces, the diffuse damage field being used to describe the irreversibility
of the interfacial damage.

For 2D problems, the traction t(w) is in the form

t(w) =
[
tn, tt]T , (2.79)
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Fig. 2.16 Cohesive model for the interfaces: evolution of the normal traction component tn

with respect to the approximated jump normal displacement component wn.

where tn and tt denote normal and tangential parts of the traction vector t. In this paper, we
neglect the effects of the tangential component in the interface model (tt = 0), and use [169]:

tn = gI
c

wn

(δ n)2 exp
(
−wn

δ n

)
, (2.80)

where δ n is related to the interface fracture toughness gI
c and the interface fracture strength tu

by:

δ
n =

gI
c

tu exp(1)
, (2.81)

wn is the normal displacement jump defined by:

wn = w·nI, (2.82)

and w and nI are given in (2.61) and (2.62), respectively. This relationship is illustrated in Fig.
2.16, where the fracture toughness gI

c denotes the value of the interface energy function ψ I at
full crack opening. Relation (2.81) can be easily obtained by expressing the extremum of the
function (2.80) (∂ tn(wn)/∂wn = 0), which is found at wn = δ n, and then simply replacing
this solution in (2.80).

The associated Euler-Lagrange equations to (2.75) are given by:
∇ ·σ − γβ (β )fI + f = 0 in Ω,

u = ū on ∂Ωu,
σn = F on ∂ΩF .

(2.83)
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where the body force term fI is expressed by fI =−h∇t(w) ·nI , and is obtained from (2.75)
by applying the divergence theorem to the term

∫
Ω

γβ (β )t(w)h∇(δu)dΩ, and assuming
t ·n = 0 over the external boundary of the domain.

Using (2.26) and the property:

(∆d) δd = ∇ · (∇dδd)−∇d ·∇(δd) (2.84)

as well as the divergence theorem and ∇d ·n = 0, we obtain the weak form of the phase field
problem as:

∫
Ω

({
−2(1−d)ψe+

0 +(1−β )2 gcd
ℓd

}
δd +gc(1−β )2ℓd∇d ·∇(δd)

)
dΩ = 0. (2.85)

To prescribe irreversibility, we employ the technique introduced in [111] which consists
in substituting the above weak form with:∫

Ω

({
−2(1−d)H (εe)+2(1−β )2

ψcd
}

δd +2(1−β )2
ψcℓ

2
d∇d ·∇(δd)

)
dΩ = 0,

(2.86)
where

H (εe) = max
s∈[0,t]

[〈
ψ

e+
0 (εe,s)−ψc

〉
+

]
(2.87)

and ψc is a specific fracture energy density, which can be further related to a critical fracture
stress σc by:

ψc =
1

2E
σ

2
c , (2.88)

where E is the Young’s modulus.
The corresponding Euler-Lagrange equations to (2.86) are given by:

(1−β )2
ψc
(
d− ℓ2

d∆d
)
= (1−d)H (εe)

∇d ·n = 0 on ∂Ω,

d = 1 on Γ.

(2.89)

The different equations of the model are summarized in Table 2.3. The weak forms of
the problems to be solved alternatively are summarized in Table 2.4.

Remark: In the present work, we did not consider coupling between damage and
plasticity. The reason is that currently, the available models from the literature which
introduce such phenomena are not able to control the evolution of the plastic strain when
damage occurs. In other words, the plastic strain continues to increases when the damage
occurs within the crack. So far, it seems that the only model able to deal with this issue is the
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Table 2.3 Governing equations of the elastoplastic phase field model with interfacial damage.

Irreversibility ḋ ≥ 0, 0≤ d ≤ 1

Mechanical balance ∇ ·σ − γβ (β )fI + f = 0 in Ω

u = ū on ∂Ωu, σn = F on ∂ΩF

Constitutive law σ = g(d)σ
+
eff +σ

−
eff

σ
+
eff = κ ⟨Tr(εe)⟩+ 1+2µee, σ

−
eff = κ ⟨Tr(εe)⟩− 1

Cohesive law t(w) =
[
gI

c
wn

(δ n)2 exp
(
−wn

δ n

)
,0
]T

Damage criterion (1−β )2
ψc
(
d− ℓ2

d∆d
)
− (1−d)H (εe)≥ 0

H (εe) = max
s∈[0,t]

[〈
ψ

e+
0 ( εe,s)−ψc

〉
+

]
Damage consistency

(
(1−β )2

ψc
(
d− ℓ2

d∆d
)
− (1−d)H (εe)

)
ḋ = 0

Plastic yield criterion F p(p) =
√

3
2 ∥s∥− (σY +H p)≤ 0,

Plastic flow rule ε̇
p = ṗ

√
3
2

s
∥s∥ with ṗ≥ 0

the model proposed in [106], involving gradient plasticity and gradient damage and strong
plasticity-damage coupling. Extension of the present interfacial damage framework with the
gradient plasticity model could be found in Chapter 4.

2.3.3 Discretization and numerical implementation

In this section, we detail the weak forms and FEM discretizations for displacement and
damage problems, and finally provide the different algorithms.

2.3.3.1 Weak forms the linearized mechanical problem

Using (2.77) and (2.78), we can re-write the associated weak form for the displacement
problem (2.75) as:∫

Ω

σ : ε
e (δu)dΩ+

∫
Ω

γβ t·w(δu)dΩ =
∫

Ω

f·δudΩ+
∫

∂ΩF

F·δudS, (2.90)

where t and σ are given in (2.79) and (2.33), respectively. We can rewrite the balance
equation (2.90) as

R =
∫

Ω

σ : ε
e (δu)dΩ+

∫
Ω

γβ t·w(δu)dΩ−
∫

Ω

f·δudΩ−
∫

∂ΩF

F·δudS = 0. (2.91)
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Table 2.4 Problems to be solved in the staggered procedure

Mechanical problem: given d, solve for u:∫
Ω

σ : εe (δu)dΩ+
∫

Ω
γβ (β )t(w)·w(δu)dΩ−

∫
∂ΩF

F ·δudS−
∫

Ω
f ·δudΩ = 0

F p(p) =
√

3
2 ∥s∥− (σY +H p)≤ 0

ε̇
p = ṗ

√
3
2

s
∥s∥ with ṗ≥ 0

Phase Field problem: given u, solve for d:∫
Ω

([
H (u)+(1−β )2ψc

]
dδd +(1−β )2ψcℓ

2
d∇d ·∇(δd)

)
dΩ =

∫
Ω

H (u)δddΩ.

In a standard Newton method, the displacements are updated for each loading increment
by solving the tangent problem:

D∆uR
(

u(k),d
)
=−R

(
u(k),d

)
= 0, (2.92)

where u(k) is the displacement solution known from the previous iteration. The displacement
corrections are obtained as

u(k+1) = u(k)+∆u. (2.93)

In (2.92),

D∆uR
(

u(k)
)
=
∫

Ω

∂σ

∂εe : ε
e (∆ε) : ε

e (δε)dΩ+
∫

Ω

γβ

∂ t(w)

∂w
: ∆w : δwdΩ, (2.94)

with
∂σ

∂εe = Cs (u,d) . (2.95)

Using (2.89), we can re-write the associated weak form for the damage problem as:∫
Ω

{[
H +(1−β )2

ψc

]
dδd +(1−β )2

ψcℓ
2
d∇d·∇(δd)

}
dΩ =

∫
Ω

H δd dΩ. (2.96)

2.3.3.2 Discretization of the displacement problem

In this work, for the sake of clarity, only 2D FEM discretization is detailed. The vector form of

second-order tensors are introduced as [ε] =
[
ε11, ε22,

√
2ε12

]T
, [σ ] =

[
σ11, σ22,

√
2σ12

]T
,

as well as the FEM approximations u = Nuue, δu = Nuδue, and ∆u = Nu∆ ue where ue,
δue, ∆ue and Nu are nodal displacement components in one element, nodal trial function
components, nodal incremental displacement components and a matrix of displacement
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shape function, respectively. Then we obtain:

[ε] (u) = Buue, [εe] (∆u) = Bw∆ue, [εe] (δu) = Bwδue, (2.97)

and
w(u) = hNBue, ∆w(u) = hNB∆ue, δw = hNBδue, (2.98)

where Bu is a matrix of displacement shape function derivatives, and

N =

[
n1 n2 0 0
0 0 n1 n2

]
, (2.99)

B =
[

∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

]T
=

[
∂

∂x1

∂

∂x2
0 0

0 0 ∂

∂x1

∂

∂x2

]T

Nu, (2.100)

where n1 and n2 are the x- and y- components of the normal vector nI in (2.62) and Bw is a
modified spatial strain-displacement matrix defined by:

Bw = Bu−hγβ MB (2.101)

in which M is a matrix expressed by [130]:

M =

 n1 0
0 n2

1√
2
n2

1√
2
n1

N =

 n2
1 n1n2 0 0

0 0 n1n2 n2
2

1√
2
n1n2

1√
2
n2

2
1√
2
n2

1
1√
2
n1n2

 . (2.102)

After discretization, the linear system (2.92) with the displacement corrections (2.93)
reduces to a standard Newton-type iteration:

Ktan∆u =−R
(

u(k)
)
,u(k+1) = u(k)+∆u, (2.103)

where u(k) is the displacement field known from the previous (k-th) Newton-Raphson itera-
tion,

Ktan =
∫

Ω

BT
wCsBwdΩ+

∫
Ω

γβ (hNB)T CI (hNB)dΩ, (2.104)

and

R
(

u(k)
)
=
∫

Ω

BT
wσ

(k)dΩ+
∫

Ω

γβ (hNB)T t
(

w(k)
)

dΩ−
∫

Ω

NT
u fdΩ−

∫
∂ΩF

NT
u FdS,

(2.105)
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where

CI =
∂ t(w)

∂w
=

[
∂ tn

∂wn 0
0 0

]
, (2.106)

and where Cs is the matrix form corresponding to the fourth-order elastoplastic consistent
tangent operator Cs in (2.95). The iterative update (2.103) is performed until convergence is
achieved in the sense ∥∆u∥/

∥∥∥u(k+1)−u(0)
∥∥∥≤tol.

2.3.3.3 Discretization of the phase field problem

The damage and damage gradient are approximated in one element by

d = Ndde, ∇d = Bdde, (2.107)

where Nd and Bd are matrices of damage shape function and of damage shape function
derivatives, respectively, and de denote nodal damage in one element.

The discretization of damage problem (2.96) results into the following discrete system of
equations:

Kdd = Fd (2.108)

in which

Kd =
∫

Ω

{[
H +(1−β )2

ψc

]
NT

d Nd +(1−β )2
ψcℓ

2
dBT

d Bd

}
dΩ (2.109)

and
Fd =

∫
Ω

NT
d H dΩ, (2.110)

where H is given in (2.87).

Table 2.5 Material parameters used in the numerical simulations, from [104]

Name Symbol Material I Material II

Shear modulus κ 27.28 GPa 70.3 GPa
Bulk modulus µ 71.66 GPa 136.5 GPa

Yield stress σY 0.345 GPa 0.443 GPa
Hardening modulus H 0.25 GPa 0.3 GPa

Critical fracture stress σc 1 GPa 2 GPa
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2.3.3.4 Numerical implementation

In the present work, a staggered scheme is employed following [108], where at each load
increment the displacement problem is solved for fixed damage field which is known from
the previous time step. The damage problem is then solved with the new displacement field.
The overall algorithm is illustrated in Algorithm 3.

Algorithm 3: Overall algorithm for elastoplastic brittle fracture model with inter-
faces

Initialize u0, d0, ε
p
0 , and p0 with assumption of not plasticised and undamaged state.

Compute the level-set function φ and interface damage β .
Loop over load increments n
for i = 1, . . . ,n do

Displacement problem
Newton-Raphson iterative solution scheme
k = 1,err = 1, tol = 10−5,u(0)

i = ui−1

while err > tol do
εep = Bwu(k−1)

i , w = hNBu(k−1)
i

Compute t(w) and CI from (2.79) and (2.106)
Return-mapping algorithm
Given

(
εep,ε p

i−1, pi−1,di−1
)
, Compute

(
Cs,ε

p,(k)
i , p(k)i

)
from Algorithm 2

Compute Ktan and R
(

u(k−1)
i

)
from (2.104) and (2.105)

Compute ∆u from (2.103)
Update u(k)

i = u(k−1)
i +∆u

ui = u(k)
i ,ε p

i = ε
p,(k)
i , pi = p(k)i

err = ∥∆u∥/∥ui−ui−1∥ ,k = k+1
end
Damage problem
Compute H with ui and ε

p
i from (2.87)

Compute Kd and Fd from (2.109) and (2.110)
Compute the damage field di from (2.108)
i = i+1

end

2.3.4 Numerical examples

In this section, all numerical computations are performed within the finite element framework
and assuming plain strain conditions. Both damage and displacement fields are discretized
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with 4-node bilinear elements. The material properties are shown in Table 2.5. Displacement
controlled conditions are always assumed. We adopt the staggered solution strategy presented
in 2.3.3.4. For the sake of simplicity, we recall that both length scale parameters ℓd and ℓβ

are assumed to be equal, i.e ℓd = ℓβ = ℓ.

U

5
0
 m

m

18 mm

r=2.5mm

(a) (b)

Fig. 2.17 Semicircular notched specimen: (a) geometry and boundary conditions; (b) finite
element model.
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Fig. 2.18 Semicircular notched specimen: a1-c1 crack phase field and a2-c2 equivalent plastic
strain field at three different prescribed displacements (see Fig. 2.20).

2.3.4.1 Semicircular notched specimen

In this example, we fist validate the convergence of the elastoplastic phase field with respect
to mesh refinement, in absence of interfaces. Then, we analyze the influence of the critical
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fracture stress σc. For this purpose, a specimen with a semicircular notch, as described in Fig.
2.17(a), is considered. The boundary conditions are as follows: on the lower end (y = 0),
the y-displacement are fixed, while the x-displacement are free and the node (x = 0,y = 0) is
fixed. On the upper end, the x-displacement are free, while the y-displacement are prescribed
to an increasing value of U with ∆U = 0.001 mm during the simulation. The material
parameters are those of Material I in Table 2.5 and ℓ= 0.5 mm. The spatial discretization
of the model comprises 8953 4-node quadrilateral elements, with refinement in the central
region where the crack is expected to propagate (see Fig. 2.17(b)). Fig. 2.18 shows the
evolution of the crack phase field and the equivalent plastic strain field at three different
prescribed displacements. As can be observed from Fig. 2.18 (a1)-(c1), the crack propagates
horizontally towards the right-end boundary. The equivalent plastic strain as shown in Fig.
2.18 (a2)-(c2) is maximum at the notch root and localization branches form near the notch at
an angle of about 45◦. The same simulation has been repeated on two other finite element
meshes of 6834 and 11,325 elements (coarse and fine mesh) to study the convergence with
respect to the mesh size. Results are provided in Fig. 2.19, demonstrating the convergence of
the method as the mesh is refined. In the following, the medium mesh has been used to limit
the computational costs.
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Fig. 2.19 Load-displacement curve of a semicircular notched specimen showing convergence
with respect to the finite element mesh size (6834, 8953 and 11,325 elements).
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Fig. 2.20 and Fig. 2.21 show the effect of the critical fracture stress σc on results in
terms of load-displacement curve, crack path and the equivalent plastic strain field. As can
be observed, with the increase of the critical fracture stress σc, the prescribed displacement
corresponding to the point (maximum load) of initiation of the fracture rises, thus leading
to an increase of the equivalent plastic strain field. This observation has been reported in
many other works [107, 30, 20]. Here we define the critical fracture stress σc as a material
parameter which controls the initiation of the fracture.
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Fig. 2.20 Load-displacement curve of a semicircular notched specimen: sensitivity with
respect to the critical fracture stress σc.

2.3.4.2 Fatigue cracking

In this next example, we include a cohesive interface and validate the convergence of the
model with respect to the mesh size. Additionally we investigate the capability of the
framework to handle fatigue cracking under cyclic loading. A square domain is considered.
The domain contains a cohesive interface, whose geometry is depicted in Fig. 2.22(a). In
order to provide a good balance between simulation accuracy and computational costs, a
finely refined mesh is used in the region close to the cohesive interface, with finite element
size: he = 0.05 mm (see Fig. 2.22(b)). The material parameters are those of Material I in
Table 2.4, in addition to ℓ = 0.1 mm, h = he = 0.05 mm in (2.61), fracture strength and
toughness tu = 10 MPa and gI

c = 0.1 N/mm, respectively.
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Fig. 2.21 Semicircular notched specimen: effect of the critical fracture stress σc on the
fracture process; a1-c1: crack phase field; a2-c2: equivalent plastic strain field at three
different prescribed displacements (see Fig. 2.20).
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(a) (b)

Fig. 2.22 Definition of the fatigue crack test: (a) geometry and boundary conditions; (b) finite
element model (medium mesh).
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Fig. 2.23 Fatigue crack test: (a) evolution of the load; (b) effect of the mesh size (3500, 6800
and 10,028 elements) on the load-displacement curve.

In a first case, we validate the convergence with respect to the mesh refinement. For
this purpose, two other finite element meshes have been used: a coarse mesh with 3500
elements and a fine mesh with 10,028 elements. A displacement U (∆U = 0.001 mm) whose
evolution is described in Fig. 2.23(a) is prescribed on the upper end, as depicted in Fig.
2.22(a). Results for 3 meshes are provided in Fig. 2.23(b), which show the convergence of
the method with mesh refinement. In the following case, the medium mesh has been used to
limit the computational costs.
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Fig. 2.24 Fatigue crack test: (a) evolution of the load; (b) corresponding load-displacement
curve.
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Fig. 2.25 Fatigue crack test: (a) equivalent plastic strain and damage with respect to the
prescribed displacement; (b) displacement jump along y with respect to the load number; (c)
cohesive traction with respect to the displacement jump; (d) cohesive traction with respect to
the prescribed displacement.
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In this next case, the evolution of U (∆U = 0.001 mm) is described in Fig. 2.24(a),
involving multiple cycles. The corresponding load-displacement curve is depicted in Fig.
2.24(b). As shown in this figure, the irreversible strains upon unloading are well produced
by this model. The evolution of the equivalent plastic strain in the element near node A
(which is located in the center of the domain) and damage on node A are depicted in Fig.
2.25(a). The computed displacement jump along y in the element near node A is shown
in Fig. 2.25(b). The normal traction force in the element near node A, with respect to the
computed displacement jump and the prescribed displacement, are depicted in Fig. 2.25(c)
and (d), respectively.

U

10 mm

r=2.5mm

(a) (b)

Fig. 2.26 Traction test of a microstructure with a single fiber: (a) geometry and boundary
conditions; (b) finite element model.

 

(a) 

 

(b) 

 

(c) 

 

             

(a)                                                                  (b) 

66.72°
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Fig. 2.27 Traction test of a microstructure with a single fiber: (a) smeared interface repre-
sented by the interface phase field β (x); (b) corresponding level-set function φ (x).
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2.3.4.3 Traction test of a microstructure with a single fiber

In this example, we investigate a microstructure involving one fiber in an elastoplastic matrix
with damageable interface. The importance of interfacial damage and the influence of its
parameters on the results will be studied. The geometry and boundary conditions are depicted
in Fig. 2.26(a). The finite element model (medium mesh with 24,688 elements) is shown in
Fig. 2.26(b). External loading is applied by displacement control through a series of load
increments with a fixed step value ∆U = 5× 10−4 mm. The material parameters for the
matrix and fiber are those of Material I and Material II in Table 2.4, in addition to ℓ= 0.2
mm, h = 0.1 mm, gI

c = 0.1 N/mm and tu = 0.3 MPa (model I). An illustration of the interface
indicator β (x) and associated level-set φ (x) for the present microstructure is depicted in Fig.
2.27. In this composite example, we also validate the mesh convergence with two other finite
element meshes: a coarse mesh with 13,268 elements and a fine mesh with 34,802 elements.
The load-displacement curves are shown in Fig. 2.28(a). The evolution of the crack phase
field is presented in Fig. 2.29. From these results it is observed that the crack nucleates from
the interface and then kinks into the matrix when reaching a certain point. This leads to the
final predicted semi-debonding angle of 65.10◦ which is similar to the quasi brittle cases
[131, 188]. The difference compared with similar cases but involving a quasi brittle matrix
[130, 188] is that the initial interface debonding position in this model is about 45◦ direction
in the fiber surface (see Fig. 2.29(a)).
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Fig. 2.28 Traction test of a microstructure with a single fiber: (a) load-displacement curves
for three finite element meshes (13,268, 24,688 and 34,802 elements); (b) comparison of
load-displacement curves for different interfacial damage models.
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Fig. 2.29 Traction test of a microstructure with a single fiber. Evolution of the crack phase
field for an applied traction displacement U : (a) U = 0.095 mm, (b) U = 0.105 mm and (c)
U = 0.17 mm.
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Fig. 2.30 Traction test of a microstructure with a single fiber. Crack phase field for for an
applied traction displacement U and different interfacial models: (a) model I (U = 0.17 mm),
(b) model II (U = 0.17 mm), (c) model III (U = 0.17 mm) and (d) no interface damage
(U = 0.906 mm)

To evaluate the capability of the method to describe interfacial damage and investigate the
effect of the interfacial cohesive model, another three simulations are performed: in the first
one, called “model II”: gI

c = 0.1 N/mm and tu = 1 MPa, in the second one, called “model III”:
gI

c = 0.2 N/mm and tu = 1 MPa and in the third one, called “no interface damage ”model,
only takes into account damage of the bulk (basic phase field method). The comparison
of load-displacement curves for all four simulations is depicted in Fig. 2.28(b). The crack
phase fields are shown in Fig. 2.30. For the three cohesive models, it can be observed that
the cracks are similar which nucleate from the interface and then propagate into the matrix,
while for the no interface damage model, the cracks nucleate and propagate within the matrix
around the boundary after a very long plastic hardening process. We can then observe that
the different interfacial damage models do not have a significant influence on the response,
but when removed, the response of the sample is drastically changed. This shows the crucial
importance of incorporating such interfacial damage model to properly describe the overall
behavior of damaged microstructures.
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(a)

U

10 mm

(b)

Fig. 2.31 Traction test of a microstructure with randomly distributed fibers: (a) geometry
of the domain and boundary conditions; (b) smeared interfaces represented by the interface
phase field β (x).

2.3.4.4 Traction test of a microstructure with randomly distributed fibers

A microstructure with elastoplastic matrix and damageable interfaces, containing 9 randomly
distributed circular fibers (radius r = 1 mm) is considered, whose geometry and boundary
conditions are illustrated in Fig. 2.31(a). External loading is applied by displacement control
through a serious of load increments with a fixed step value ∆U = 2×10−4 mm. The material
parameters for the matrix and fiber are those of Material I and Material II in Table 2.4, in
addition to ℓ= 0.2 mm and h = 0.1 mm. The cohesive model parameters are gI

c = 0.1 N/mm
and tu = 0.3 MPa. The distribution of interface phase field is shown in Fig. 2.31(b). It is
observed that the diffusive interface concentrates in the nearby area of the interface, and
quickly attenuates. The microcracking initiation and final distribution for 9 realizations of
microstructures is depicted in Fig. 2.32. The corresponding load-displacement curves are
depicted in Fig. 2.33. In the different figures of Fig. 2.32, we can note that in each case,
the cracks nucleate at the interface between the matrix and the fibers, and then kink into
the matrix. For most cases, a crack path is created between the fibers passing through the
interfaces and then leading to the rupture of the specimen. This example illustrates well the
capability and robustness of the technique to handle brittle crack propagation from interfaces
to the bulk in elasto-plastic composites. In Fig. 2.33, it can be observed that all curves match
with each others in the elastic and plastic stages. However, a large dispersion of the individual
results in the damaged stage is observed. This shows a strong sensitivity of the overall brittle
response to the local distribution of fibers in microstructure as well as the capability of the
proposed method to capture these effect.
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Fig. 2.32 Evolution of crack networks in random elastoplastic microstructures subjected to
traction. For each realization, the crack phase field is depicted at early and final stages of
propagation. The microstructures are subjected to displacement traction U .
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Fig. 2.33 Load-displacement curves corresponding to 9 realizations of random microstruc-
tures with interfacial damage subjected to traction.
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10 mm

Fig. 2.34 Traction test of a sample whose geometry is obtained from microtomography: (a)
geometry of the microstructure and boundary conditions; (b) smeared interface represented
by the interface phase field β (x).

2.3.4.5 Traction test of a sample whose complex microstructure is obtained from mi-
crotomography

In this example, we investigate the capabilities of the method to simulate microcrack propa-
gation in complex microstructures such as obtained by experimental imaging techniques, like
X-ray microtomography. The geometry and mechanical boundary conditions are illustrated
in Fig. 2.34(a). The material parameters for the matrix and inclusion are those of Material
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I and Material II in Table 2.4, in addition to ℓ = 0.1 mm and h = 0.1 mm. The cohesive
model parameters are gI

c = 0.1 N/mm and tu = 0.3 MPa. External loading is applied by
displacement control through 1800 load increments with a fixed step value ∆U = 1×10−4

mm. The distribution of interface phase field is shown in Fig. 2.34(b). Comparing with the
single fiber system and the randomly distributed fibers system, it is much more complicated
due to material heterogeneities.

(a) (b) (c) (d)

Fig. 2.35 Traction test of an elastoplastic sample whose microstructure is obtained from
microtomography. Evolution of the crack phase field for traction displacements U = 0.09
mm, U = 0.11 mm, U = 0.13 mm and U = 0.18 mm.
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Fig. 2.36 Traction test of an elastoplastic sample whose microstructure is obtained from
microtomography: load-displacement curve.

The microcracking evolution in the domain is presented in Fig. 2.35. We can observe
that with the increase of the external loading, cracks are initiated in the form of interface
debonding and then migrate into the matrix in the form of matrix cracks. Subsequently,
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these interface cracks and matrix cracks are interconnected and then lead to the final failure
of the microstructure. The crack paths are very complex and show the potential of the
method to describe microcracking with interfacial damage in very complex, heterogeneous
microstructures. The corresponding load-displacement curve is depicted in Fig. 2.36. It can
be seen that the load–displacement curve shows several abrupt stress drops. These stress
drops result mainly from the initiation of the microcracking in the complex, heterogeneous
microstructure.

2.4 Conclusion

In this chapter, we have firstly presented a numerical implementation framework to simulate
brittle fracture in elastoplastic solids as proposed in [53, 9]. Application of the variational
principle provides the different equations to be solved in a straightforward manner. A
staggered scheme for solving the different equations is implemented to simulate crack
initiation and propagation in elastoplastic solids. The modeling of fracture response can be
achieved efficiently and robustly by decoupling the fracturing phase field and displacement
field. Both 2D and 3D comparisons with available experimental results have validated the
present numerical implementation framework.

Then, we have extended the elastoplastic brittle phase field method to consider interfacial
damage. To introduce interfacial damage, the energetic formulation has been modified by
adding: (i) a strain density depending of the displacement jump related to matrix/inclusions
decohesion; (ii) a modified description of the total energy involving a regularized approx-
imation of the singular strain part along the interfaces and (iii) the use of a regularized
description of interfaces through diffuse weighting functions which are introduced in the
energetic formulation to differentiate the bulk and interfacial damage mechanisms. In that
manner, different damage mechanisms can be associated with interfaces as compared to the
matrix cracking mechanisms. As a result, the technique allows simulating initiation, propaga-
tion and interactions between both fracture and interfacial cracks in elastoplastic composites
without special treatment and using standard finite elements. Several numerical examples
involving complex microstructures (composites, concrete micro tomography images) have
shown the capability of the method to handle complex micro cracks interactions for arbitrary
complexity of the microstructures, and convergent solutions with respect to the mesh size.

In Chapter 4, we extend this chapter to gradient plasticity models such as in [106] to
involve full damage and plasticity coupling, then a topology optimization framework with
this extention is provided to improve elastoplastic fracture resistance of composite solids.



Chapter 3

A SIMP-Phase field topology
optimization framework to maximize
quasi-brittle fracture resistance of 2D
and 3D composites

The main content of this chapter is adapted from our submitted paper in [93].

3.1 Introduction

In this chapter, we extend our previous BESO framework [176] to a combined SIMP and
phase field for maximizing the fracture resistance of two-phase materials. It is worth noting
that the present framework shares many similarities with the recent framework of [149]:
phase field and SIMP are combined for maximizing fracture resistance and the objective
function used in both of these works include the external work computed incrementally
during a full crack propagation simulation. The main contribution here is the application of
the SIMP-phase field to two-material structures, where the objective here is not to minimize
the total weight as in [149] but to modify the topology of a second phase material under
the constraint of a volume fracture. Another contribution is that we compare our results
with BESO formulations with respect to convergence and performance (value of objective
function). Finally, the last contribution is applications of this framework to 3D 2-material
structures which show the full potential of the approach.

This chapter is organized as follows. In Section 3.2, we review the phase field method for
brittle fracture based on the variational framework and provide the details of the finite element
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discretization. In Section 3.3, we propose the SIMP topology optimization approach for the
design of brittle composites to maximize the fracture resistance in two-phase composites.
Section 3.4 provides the overall algorithms to practically implement the present framework.
Finally, a series of 2D and 3D numerical examples are presented in Section 3.5 to show the
efficiency and potential of the approach.

3.2 Phase field fracture formulation

In this section, we briefly review the phase field method for fracture which will serve as one
main ingredient in the present topology optimization framework.

3.2.1 Variational framework

We follow the framework presented in [6] to construct the variational principle, which
involves: irreversibility condition, stability condition and energy balance. In this framework,
stability condition provides mechanical balance equation and damage criteria. The energy
balance provides damage consistency. The total energy for a cracked body is defined as

W (u,d) =
∫

Ω

ψe (ε (u) ,d)dΩ+
∫

Ω

ψd (d)dΩ−
∫

∂ΩF

F ·udS−
∫

Ω

f ·udΩ, (3.1)

in which u is displacement field, ε (u) = 1
2

(
∇u+∇uT), f and F are body forces and pre-

scribed traction over the boundary ∂ΩF , respectively. Above, ψd is the damage dissipative
potential defined as

ψd = gcγd (d) , (3.2)

where γd (d) is defined in (2.3). ψe is the stored elastic energy density function defined as
[108]

ψe (ε,d) =
(
(1−d)2 + k

)
ψ

+
e (ε)+ψ

−
e (ε) (3.3)

in which k is a small numerical parameter to prevent loss of definite posedness of the elastic
tensor in case of full damage, ψ+

e and ψ−e are the tensile and compressive energies,

ψ
±
e =

1
2

λ ⟨tr [ε]⟩2±+µtr
[
ε
±]2 , (3.4)

with λ and µ the standard lame parameters. Note that only tensile damage degradation is
taken into account in the elastic energy density (3.3) through a decomposition of the elastic
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strain ε into tensile/positive and compressive/negative parts:

ε = ε
++ ε

− with ε
± =

3

∑
i=1

〈
ε

i〉
±ni⊗ni, (3.5)

where ⟨x⟩± = 1
2 (x±|x|), ε i and ni are the eigenvalues and eigenvectors of ε .

3.2.1.1 Irreversibility condition

See section 2.2.2.2.

3.2.1.2 First-order stability condition

The first order stability condition (see [113, 114, 143]) is expressed by:

DδuW (u,d)+DδdW (u,d)≥ 0, (3.6)

Applied to (3.1), it yields:

∫
Ω

σ : ε (δu)dΩ+
∫

Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ≥ 0 (3.7)

where

σ =
∂ψe

∂ε
=
(
(1−d)2 + k

)(
λ ⟨tr [ε]⟩+ 1+2µε

+
)
+λ ⟨tr [ε]⟩− 1+2µε

− (3.8)

in which 1 is the second-order identity tensor and σ+/σ− are the undamaged tensile/compressive
stress tensors.

From (3.7), the following results stem out:

• For δd = 0, find u ∈Su, Su =
{

u|u(x) = ū on ∂Ωu, u ∈ H1(Ω)
}

such that:∫
Ω

σ : ε (δu)dΩ−
∫

∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ = 0, (3.9)

which is the weak form of the mechanical equilibrium equation, with δu ∈ S 0
u ,

S 0
u =

{
δu|δu(x) = 0 on ∂Ωu, u ∈ H1(Ω)

}
.

• For δu = 0 we obtain: ∫
Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ≥ 0 (3.10)
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which is the weak form of the damage criterion. In local form, it can be expressed as:

f d(d) =−
(

∂ψe

∂d
+

∂ψd

∂d

)
≤ 0 in Ω. (3.11)

3.2.1.3 Energy balance

The energy balance represents the need for the total energy to remain constant as the state
variables evolve. Following a procedure analogous to the treatment of the stability condition,
this condition leads to∫

Ω

[
−σ : ε (u̇)−

(
∂ψe

∂d
+

∂ψd

∂d

)
ḋ
]

dΩ+
∫

∂ΩF

F · u̇dS+
∫

Ω

f · u̇dΩ = 0. (3.12)

For u̇ = 0, and using (3.11), the damage consistency condition is obtained:

f d(d)ḋ = 0. (3.13)

3.2.1.4 Alternate minimization

In this section, a staggered alternate minimization algorithm is applied, which naturally
stems out from the energetic principles. With the total energy (3.1) at hand, the alternate
minimization follows.

• Minimization with respect to the displacement field:

DδuW (u,d) = 0 (3.14)

which leads to

R1 =
∫

Ω

σ : ε (δu)dΩ−
∫

∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ = 0 (3.15)

which corresponds to the weak form of the mechanical problem to be solved for u,
given d.

• Minimization with respect to the damage field:

DδdW (u,d) =
∫

Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ = 0. (3.16)

which corresponds to the global problem to be solved to find the field d(x) (phase field
problem), given u.
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3.2.1.5 Governing equations

The associated Euler-Lagrange equations to (3.15) are given by:
∇ ·σ + f = 0 in Ω,

u = ū on ∂Ωu,
σn = F on ∂ΩF .

(3.17)

Using (3.16) and the property:

(∆d) δd = ∇ · (∇dδd)−∇d ·∇(δd) (3.18)

as well as the divergence theorem and ∇d ·n = 0, we obtain the weak form of the phase field
problem as:

∫
Ω

({
−2(1−d)ψ+

e +
gcd
ℓd

}
δd +gcℓd∇d ·∇(δd)

)
dΩ = 0. (3.19)

To prescribe irreversibility, we employ the technique introduced in [111] which consists
in substituting the above weak form with:∫

Ω

(
{−2(1−d)H (ε)+2ψcd}δd +2ψcℓ

2
d∇d ·∇(δd)

)
dΩ = 0, (3.20)

in which
H (ε) = max

s∈[0,t]

[〈
ψ

+
e (ε,s)−ψc

〉
+

]
(3.21)

and ψc is a specific fracture energy density, which can be further related to a critical fracture
stress σc by:

ψc =
1

2E
σ

2
c , (3.22)

where E is the Young’s modulus.
The corresponding Euler-Lagrange equations to (3.20) are given by:

ψc
(
d− ℓ2

d∆d
)
= (1−d)H (ε)

∇d ·n = 0 on ∂Ω,

d = 1 on Γ.

(3.23)

The different equations of the model are summarized in Table 3.1.
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Table 3.1 Governing equations of the phase field model.

Irreversibility ḋ ≥ 0, 0≤ d ≤ 1

Mechanical balance ∇ ·σ + f = 0 in Ω

u = ū on ∂Ωu, σn = F on ∂ΩF

Constitutive law σ =
(
(1−d)2 + k

)(
λ ⟨tr [ε]⟩+ 1+2µε+

)
+λ ⟨tr [ε]⟩− 1+2µε−

Damage criterion ψc
(
d− ℓ2

d∆d
)
− (1−d)H (ε)≥ 0

H (ε) = max
s∈[0,t]

[
⟨ψ+

e ( ε,s)−ψc⟩+
]

Damage consistency
(
ψc
(
d− ℓ2

d∆d
)
− (1−d)H (ε)

)
ḋ = 0

3.2.2 Finite element discretization

The weak form of the mechanical problem can be found in (3.15). Using (3.23), we can
re-write the associated weak form for the damage problem (3.16) as: find d(x) ∈ Sd ,
Sd =

{
d|d(x) = 1 on Γ, d ∈ H1(Ω)

}
:

R2 =
∫

Ω

{
(H +ψc)dδd +ψcℓ

2
d∇d·∇(δd)

}
dΩ−

∫
Ω

H δd dΩ = 0. (3.24)

and δd(x) ∈S 0
d , S 0

d =
{

δd|δd(x) = 0 on ∂Ω, d ∈ H1(Ω)
}

. In this work, we adopt the
same finite element discretization for the approximation of the crack phase field d and the
displacement field u. We can express the discretization of the phase field problem as:

d = Ndde, ∇d = Bdde, (3.25)

where Nd and Bd are matrices of damage shape function and of damage shape function
derivatives, respectively, and de denote nodal damage in one element. The discretization of
damage problem (3.24) results into the following discrete system of equations:

Kdd = Fd (3.26)

in which
Kd =

∫
Ω

{
[H +ψc]NT

d Nd +ψcℓ
2
dBT

d Bd
}

dΩ (3.27)

and
Fd =

∫
Ω

NT
d H dΩ, (3.28)
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where H is given in (3.21). The displacement problem can be discretized as:

u = Nuue, δu = Nuδue, [ε] (u) = Buue, [ε] (δu) = Buδue (3.29)

where ue, Nu and Bu are nodal displacement components in one element, a matrix of displace-
ment shape function and a matrix of displacement shape function derivatives, respectively.
Using the weak form (3.15), we obtain the following discrete system of equations:

Kuu = Fu (3.30)

with the force vector
Fu =

∫
Ω

NT
u fdΩ+

∫
∂ΩF

NT
u FdS (3.31)

and the stiffness matrix

Ku =
∫

Ω

BT
u

[
(1−d)2

(
λR+ [1] [1]T +2µP+

)
+
(

λR− [1] [1]T +2µP−
)]

︸ ︷︷ ︸
∂ [σ ]
∂ [ε]

BudΩ (3.32)

where [σ ] and [ε] are the vector forms corresponding to the second order tensors of stress σ

and strain ε . R± and P± are two operators for the decomposition of strain into the tensile and
compressive parts (see [129] for more details) and P± are the matrix forms corresponding to
the fourth order projection tensor P± = ∂ε±

∂ε
, which can be found in [109, 7].

3.3 SIMP Topology optimization formulation

In this section, we present a SIMP topology optimization framework for maximizing the
fracture resistance of a two-phase (composite) structure.

3.3.1 Optimization problem statement

The topology optimization problem is conducted with respect to a density variable ρ(x)
which is associated with the inclusion phase. In other words, ρ(x) = 1 corresponds to
inclusion phase and ρ(x) = 0 corresponds to the matrix phase.

For stability considerations, here displacement-controlled loading is adopted. For a
prescribed displacement load, the fracture resistance maximization is equivalent to the
maximization of the mechanical work. Recalling that the fracture problem is quasi-static,
we introduce a pseudo time t associated with the external load evolution, with t ∈ [0, tmax],
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where tmax denotes the maximum loading time corresponding to the maximum prescribed
displacement umax at the failure step.

The optimization problem is then defined as follows:

Maximize : J(ρ,u,d) (3.33)

subject : R1 (ρ,u(t),d(t)) = 0, ∀t ∈ [0, tmax] (3.34)

R2 (ρ,u(t),d(t)) = 0, ∀t ∈ [0, tmax] (3.35)

f inc =
V (Ωinc)

V (Ω)
=

∫
Ω

ρ(x)dΩ

V (Ω)
(3.36)

0≤ ρ(x)≤ 1 (3.37)

u(t) ∈Su (3.38)

d(t) ∈Sd, (3.39)

where V (Ωinc) is the inclusion volume, V (Ω) is the total volume of the domain, and

J =
∫ tmax

0
Fext(t) ·u(t)dt, (3.40)

where R1 and R2 are given by (3.15) and (3.24), Fext is the external force response at the load
point and f inc is the prescribed volume fraction of the inclusion phase.

Following [26], the material interpolations for the two-phase material are defined as{
E(x) = (ρ(x))p Einc +(1− (ρ(x))p)Emat ,

ψc(x) = (ρ(x))p
ψc,inc +(1− (ρ(x))p)ψc,mat ,

(3.41)

where E and ψc are the Young’s modulus and the fracture energy density. (·)inc and (·)mat

are the parameters corresponding to the inclusion and the matrix phase, respectively. The
Poisson’s ratios of the two material phases are assumed identical. Above, p is the penalty
coefficient to enforce solutions close to ρ = 0 or 1. Following [156], we choose p = 3. Fig.
3.1 shows the difference of Young’s modulus interpolation for SIMP and BESO [176]. The
continuous material interpolations for SIMP ensures that the optimization problem is smooth
and that the objective function is differentiable.

3.3.2 Discrete topology optimization problem

The design domain Ω is discretized into Ne finite elements and each element e is assigned
with a topology design variable, or element density ρe, which is allowed to vary continuously
in the range [0,1]. Here, a density of ρe = 1 corresponds to an element completely filled with
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Fig. 3.1 Young’s modulus interpolations for SIMP and BESO.

the inclusion phase, whereas ρe = 0 corresponds to an element completely filled with the
matrix phase. We define the vector {ρ}= {ρ1,ρ2, ...,ρNe} containing the discrete values of
densities in elements of the mesh.

The discrete form of (3.33)-(3.39) is then defined as:

Maximize : J∆u(ρ,u,d) (3.42)

subject : Kn
uun−Fn

u = 0, n = 1,2, ...,nload (3.43)
Ne

∑
e=1

ρeve/(
Ne

∑
e=1

ve) = f inc (3.44)

0≤ ρe ≤ 1, e = 1,2, ...,Ne (3.45)

un ∈Su, n = 1,2, ...,nload (3.46)

dn ∈Sd, n = 1,2, ...,nload, (3.47)

and J∆u in (3.42) is approximated by:

J∆u =
nload

∑
n=1

∆Jn ≈ 1
2

nload

∑
n=1

(
Fn

ext +Fn−1
ext
)T

∆un, (3.48)

where ∆un denotes the prescribed load increment at load n. Above, ve is the volume (area in
2D) of the e-th element and f inc is the target inclusion volume which is prescribed during
the optimization process. The stiffness matrix Kn

u at the n-th load increment is constructed
following (3.32).
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It should be noted that in this work the continuous topology design variable ρe ∈ [0,1]
allows using well-proven gradient-based optimization update approaches (e.g., Optimality
Criteria methods (OC) [156, 17], the Method of Moving Asymptotes (MMA) [166] and so
on), in turn ensuring algorithmic convergence within a reasonable number of topological
iterations (from 10 to 1000 iterations) [157].

Another important remark is that in the present paper, we do not explicitly use the
second constraint (3.35) in the discrete problem (3.42)-(3.47) and in the following sensitivity
analysis. In fact, this constraint is taken into account implicitly as the regularized fracture
problem is solved in a staggered solving procedure. When the mechanical problem (3.15) is
solved, the damage variable d(x) is assumed to be known from previous iteration and then
the phase field problem equation R2 in (3.24) is supposed to be verified. This assumption
considerably simplifies the sensitivity analysis presented next.

3.3.3 Sensitivity analysis

In order to solve the optimization problem (3.42)-(3.47), the sensitivity of the objective
function J corresponding to change in the design variable must be determined. The derivation
of the sensitivity requires using the adjoint method (e.g., [40, 176]). Assuming that the
mechanical problem (3.30) has been solved, we introduce the Lagrangian:

J∆u ≈ J =
1
2

nload

∑
n=1

{(
Fn

u +Fn−1
u
)T

∆un +(λ n
1 )

T Rn +(λ n
2 )

T Rn−1
}

(3.49)

in which Rn and Rn−1 are the residuals of (3.30) at n-th and (n− 1)-th load increments,
respectively. λ n

1 and λ n
2 are Lagrange multipliers which have the same dimension with the

displacement vector u.
Notice that for displacement-controlled loading problem, displacement components at the

boundary nodes and force components at the free nodes are fixed, hence, they are independent
of the current value of ρ . Here we introduce a division of all degrees of freedom into essential
(index E; associated with Dirichlet boundary conditions) and free (index F) nodal values. For
a vector v and a matrix M we have

v∼

[
vE

vF

]
and M∼

[
MEE MEF

MFE MFF

]
. (3.50)



3.3 SIMP Topology optimization formulation 81

We then have these unknowns at the n-th load increment

∂un

∂ρe
=

[
0

∂un
F

∂ρe

]
,

∂∆un

∂ρe
=

[
0

∂∆un
F

∂ρe

]
, Fn

u =

[
Fn

u,E

0

]
,

∂Fn
u

∂ρe
=

[
∂Fn

u,E
∂ρe

0.

]
(3.51)

Here for arbitrary load increment indices n = 1, ...,nload, m = 1, ...,nload, we have

∂

∂ρe

(
(Fm

u )
T

∆un
)
=

(
∂Fm

u
∂ρe

)T

∆un +(Fm
u )

T ∂∆un

∂ρe
=

(
∂Fm

u
∂ρe

)T

∆un. (3.52)

With the above property at hand, the derivative of the objective function J in (3.49) is
given by

∂J
∂ρe

=
1
2

nload

∑
n=1

{
∂
(
Fn

u +Fn−1
u
)T

∂ρe
∆un +(λ n

1 )
T ∂Rn

∂ρe
+(λ n

2 )
T ∂Rn−1

∂ρe

}
. (3.53)

The derivatives of Rm at the equilibrium of the m-th load increment with respect to ρe

can be expanded as
∂Rm

∂ρe
=

∂Fm
u

∂ρe
− ∂Km

u
∂ρe

um−Km
u

∂um

∂ρe
. (3.54)

Using (3.51) and (3.54), (3.53) can be reformulated as

∂J
∂ρe

=
1
2

nload

∑
n=1

{(
∂Fn

u,E

∂ρe

)T (
∆un

E +λ
n
1,E
)
+

(
∂Fn−1

u,E

∂ρe

)T (
∆un

E +λ
n
2,E
)

− (λ n
1 )

T
(

∂Kn
u

∂ρe
un +Kn

u
∂un

∂ρe

)
− (λ n

2 )
T
(

∂Kn−1
u

∂ρe
un−1 +Kn−1

u
∂un−1

∂ρe

)}
.

(3.55)

In order to eliminate the unknowns
∂Fn

u,E
∂ρe

and
∂Fn−1

u,E
∂ρe

in (3.55), we choose

λ
n
1,E =−∆un

E and λ
n
2,E =−∆un

E. (3.56)

Then we can re-write (3.55) as

∂J
∂ρe

=−1
2

nload

∑
n=1

{
(λ n

1 )
T ∂Kn

u
∂ρe

un +
(
Kn

u,FEλ
n
1,E +Kn

u,FFλ
n
1,F
)T ∂un

F
∂ρe

+(λ n
2 )

T ∂Kn−1
u

∂ρe
un−1 +

(
Kn−1

u,FEλ
n
2,E +Kn−1

u,FFλ
n
2,F

)T ∂un−1
F

∂ρe

}
.

(3.57)
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To eliminate the unknowns ∂un
F

∂ρe
and ∂un−1

F
∂ρe

in (3.57), we choose

λ
n
1,F =

(
Kn

u,FF
)−1 Kn

u,FE∆un
E and λ

n
2,F =

(
Kn−1

u,FF

)−1
Kn−1

u,FE∆un
E. (3.58)

Using (3.56) and (3.58), we can obtain the final objective derivative

∂J
∂ρe

=−1
2

nload

∑
n=1

{
(λ n

1 )
T ∂Kn

u
∂ρe

un +(λ n
2 )

T ∂Kn−1
u

∂ρe
un−1

}
. (3.59)

For each element e, (3.59) can be re-written as

αe =
nload

∑
n=1

(∆αe)
n

=−1
2

nload

∑
n=1

{(
λ

n
1,e
)T ∂kn

u,e

∂ρe
un

e +
(
λ

n
2,e
)T ∂kn−1

u,e

∂ρe
un−1

e

}
,e = 1, . . . ,Ne,

(3.60)

in which (·)e is the element component of (·) and kn
u,e is the element stiffness matrix for

element e at the n-th load step. For the sake of simplicity, we use αe and α to represent
element sensitivity and vector of all element sensitivities. It should be noted that in this work
we need to evaluate the sensitivities of all elements, unlike our previous works [176, 49]
which only compute the sensitivities of the inclusion elements and set directly the sensitivities
of the matrix elements to zeros.

3.4 Overall algorithm

This section present the overall algorithms of the proposed method. We first introduce the
algorithm used to simulate one crack simulation from the initial nucleation to complete failure,
which will be used within one step of the topology optimization. During this simulation, the
sensitivities are computed at the same time than the fracture evolution. Then, the overall
topology optimization is presented.

In the fracture evolution problem, a staggered scheme is employed following [108], where
at each load increment the crack phase field problem is solved for fixed displacement field
which is known from the previous time step. The displacement problem is then solved for the
obtained crack phase field. Finally the sensitivity analysis is implemented after the staggered
scheme.
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The flowchart for fracture evolution problem and sensitivity calculations is provided in
Algorithm 4.

Algorithm 4: Fracture evolution problem and sensitivity calculations.
Input: Densities

{
ρk}

Output: the total mechanical work Jk and sensitivity vector αk

Initialize u0 = 0,H 0 = 0,J0 = 0 and α0 = 0.
Loop over load increments nload

for n = 1, . . . ,nload do
%% Crack phase field problem %%
Given un−1 and H n−1,
Compute H n by (3.21)
Compute Kn

d and Fn
d from (3.27) and (3.28)

Compute the crack phase field dn from (3.26)
%% Displacement problem %%
Given un and dn

Compute Kn
u and Fn

u from (3.32) and (3.31)
Compute the displacement field un from (3.30)
%% Sensitivity calculations %%
Compute Lagrange multipliers λ n

1 and λ n
2 from (3.56) and (3.58)

Compute increment of sensitivity vector ∆αn with λ n
1 and λ n

2 from (3.60)
Compute increment of mechanical work ∆Jn from (3.48)
Update αn = αn−1 +∆αn and Jn = Jn−1 +∆Jn

n = n+1
end
αk = αnload and Jk = Jnload

In order to remove instabilities such as checkerboard patterns and to avoid mesh-
dependency in topology optimization process, element sensitivities are smoothed by means
of a filtering scheme [156]

αe =
∑

Ne
j=1 we jα j

∑
Ne
j=1 we j

, (3.61)

in which we j is a linear weight factor

we j = max(0,rmin−∆(e, j)) (3.62)

which is determined by the prescribed filter radius rmin and the element center-to-center
distance ∆(e, j) between element e and j.
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The optimization problem (3.33)-(3.39) could be solved using several different ap-
proaches such as OC method [156, 17] and the MMA [166] as illustrated in section 3.3.2. In
this work, the OC method is employed to update the design variables. The overall algorithm
is illustrated in Algorithm 5.

Algorithm 5: Overall topology optimization algorithm
Initialize inclusion densities

{
ρ1}.

%% Topology optimization iteration %%
Set k = 1,Err = 1 and iterative tolerance tol
while Err > tol do

%% Regularized fracture problem and sensitivity calculations %%
Compute regularized fracture problem, obtain sensitivity vector αk and total
mechanical work Jk with ρk (x) from Algorithm 4
%% Filtering scheme %%
Obtain the smoothed αk with (3.61)
%% OC method %%
Update the design variable ρk+1 with smoothed αk

%% Compute convergence %%
if k ≥ 10 then

Err = |∑
k
m=k−4 Jm−∑

k−5
n=k−9 Jn|

∑
k−5
n=k−9 Jn

else
Err = 1

end
k = k+1

end

3.5 Numerical examples

In this section we present several examples in both 2D and 3D to show the capability and
convergence of the method, and compare the results with our previous work done by BESO
method [176]. In all 2D examples uniform meshes of quadrilateral bilinear elements with the
plane strain assumption have been employed. Uniform meshes of eight-node cubic elements
have been used for the 3D examples. Both damage and displacement fields are discretized
with the same finite element meshes. The characteristic length scale parameter ℓd for the
phase field problem in (2.3) and the filter radius rmin in (3.62) are both set to be twice the
typical finite element size ℓd = rmin = 2he. For the sake of clear visualization, only the crack
phase field with values higher than 0.4 in 2D examples and values higher than 0.95 in 3D
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examples are plotted. The material properties are shown in Table 3.2. The inclusion volume
fraction f inc is defined by (3.36). In the different simulations, the following features are
noted.

• For SIMP topology optimization simulations, there is no initialization of the inclusion
geometry. The initial density ρ1

e is set to be uniform and equal to f inc.

• For BESO topology optimization simulations, an initial geometry of inclusion is
required to match f inc at the first iteration. If a homogeneous design is used, the
volume fraction has to be reduced at each iteration by setting ρe = 0 in more elements,
as ρe can only be zero or one in each element. We refer to this initial geometry to
"initial BESO design".

• To evaluate the improvement of the fracture resistance in the present SIMP context
which does not require an initial geometry, a "guess" design is defined in some examples
to evaluate the improvement of the fracture resistance between optimized and guess
designs.

• The volume fraction f inc is fixed during the whole optimization process.

• To avoid interfering with the topology optimization process, a region around the initial
crack is defined where the design variable are enforced to ρe = 0 (remain matrix
material). This region is defined as embedding all nodes at a distance 2ℓd from the
initial crack surface.

• The incremental loading process goes on until the reaction force is below a prescribed
value, indicating that the structure is fully broken.

3.5.1 2D reinforced plate with one pre-existing crack notch

In the following example, a 2D plate with one pre-existing crack notch, as described in Fig.
3.2, is considered. The structure is composed of a matrix material, and we seek the shape
of an inclusion which provides the maximal fracture resistance for the whole composite
structure. The dimensions of the plate are 100× 50 mm2, and the domain is uniformly
discretized into 120×60 square bilinear elements. The boundary conditions are as follows:
on the upper and lower ends, the y-displacement are fixed, while the x-displacement are
free. On the left and right ends, the horizontal displacements are prescribed with incremental
displacement loads with ∆U = 0.004 mm for the first five load increments and ∆U = 0.001
mm for the following load increments. The pre-existing crack is simulated by prescribing
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Dirichlet conditions on the crack phase field with d = 1 along the crack. Additionally, the
optimality convergence tolerance is set at 10−5 (tol = 10−5).

Table 3.2 Material parameters used in the numerical simulations [176]

Name Notations Inclusion Matrix

Young’s modulus E inc, Emat 52 GPa 10.4 GPa
Poisson’s ratio ν 0.3 0.3

Critical fracture stress σ inc
c , σmat

c 0.03 GPa 0.01 GPa

50 mm

100 mm

13 mm

12.5

U-U

100

5
0

Fig. 3.2 Plate with one pre-existing crack notch subjected to incremental traction load:
geometry and boundary conditions.

Fig. 3.3 shows the evolution histories of inclusion topologies and their final crack patterns.
Here, the inclusion volume fraction is set to f inc = 5%. As can be observed from Fig. 3.3, the
fracture resistance of the composite structure increases with accumulation of the inclusion
material around the crack paths obtained from previous design iteration and reduction of
intermediate densities (sometimes called "grey zones" in the topology optimization studies),
and then converges to an almost constant value of 18.8 mJ. Detailed propagation of the
crack phase field corresponding to its load-displacement curve for the optimized design is
shown in Fig. 3.4. The crack propagates vertically into the inclusion material and two other
cracks initiate around the left and right corners of the inclusion pattern, and then continue to
propagate until the structure is fully broken.
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Fig. 3.3 Evolution of inclusion topologies and associated final crack patterns ( f inc = 5%).
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Fig. 3.4 Load-displacement curve and crack propagation for the optimized design: (a) U = 0
mm; (b) U = 0.023 mm; (c) U = 0.034 mm; (d) U = 0.038 mm; (e) U = 0.041 mm.
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Fig. 3.5 Evolution of inclusion topologies and associated final crack patterns ( f inc = 2%).
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Fig. 3.6 Evolution of inclusion topologies and associated final crack patterns ( f inc = 10%).
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In order to illustrate the robustness of the method for other inclusion volume fractions
and investigate the influence of f inc on the numerical results, two additional simulations are
conducted: f inc = 2% and f inc = 10%. Fig. 3.5 and Fig. 3.6 show the evolution histories
of inclusion topologies and their final crack patterns for cases f inc = 2% and f inc = 10%,
respectively. Fig. 3.7 shows comparison of the optimized designs and corresponding final
crack patterns for cases f inc = 2%, f inc = 5% and f inc = 10%. As can be observed, with the
increase of the volume fraction, significant changes and more complex shapes of inclusions
are obtained, in tandem with an increase of the fracture resistance.

J=15.7 mJ J=18.8 mJ J=19.5 mJ

(a) (b) (c)

1

0

d

1

ρ

0

Fig. 3.7 Comparison of optimized inclusion designs and corresponding final crack pattern at
the failure load: (a) f inc = 2%, (b) f inc = 5% and (c) f inc = 10%.

i  Anitial design

i  Bnitial design

i  Cnitial design

optimized design crack pattern   
   J=19.6 mJ

crack pattern   
   J=18.8 mJ

crack pattern   
   J=18.8 mJ

(a)

(b)

(c)

optimized design

optimized design

Fig. 3.8 Influence of initial design on the optimized inclusion topologies using BESO method
( f inc = 5%). Crack and inclusions are denoted by red and blue color, respectively.
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In the following, we compare the proposed SIMP approach with BESO topology op-
timization solution [176]. Three additional simulations using the BESO method with the
same volume fraction f inc = 5% but different initial designs (see Fig. 3.8) are performed. To
fully display the convergence histories of BESO method, we do not prescribe a convergence
criterion for these three BESO simulations and let the algorithm run until a maximum number
of iterations equal to 500 is reached. Fig. 3.9 shows the comparison of convergence histories
for BESO and SIMP solutions. We can note that in the case of BESO, the initial designs have
a strong influence on the optimized objective function and on the convergence rate: (i) using
BESO with design B, C or SIMP, the same convergence value 18.8 mJ is reached, while for
initial design A with BESO the convergence value is about 19.6 mJ; (ii) solutions by BESO
with initial designs B, C and SIMP solution require a similar number of convergence steps
of about 200, while for initial design A with BESO the convergence number is about 400.
From Fig. 3.9, we can also observe spurious oscillations for initial design A and C with
BESO after a stable convergence value, while this does not seem to occur with SIMP. Fig.
3.8 shows the influence of initial design on the optimized design with BESO method. Fig.
3.10 shows the comparison of load-displacement curves for the 7 optimization processes.
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Fig. 3.9 Convergence of the topology optimization scheme for BESO and SIMP schemes
( f inc = 5%).

From Fig. 3.9 and Fig. 3.10, we can conclude that even though SIMP has slightly better
convergence properties with less oscillations, the convergence of both methods is comparable
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Fig. 3.10 Load-displacement curves for initial and optimized designs ( f inc = 5%).

when an initial design is set such as the target volume fraction f inc is met at the first iteration.
The final results are also very close. The only difference is that starting from the target volume
fraction f inc is simpler with SIMP, as a value can be set in each element between 0 and 1,
while in BESO an initial guess design matching the target volume fraction is required, which
may be not trivial to define for more complex geometries. However, an initial homogeneous
desigh is also possible using BESO, but the actual volume fraction will be changed at each
iteration to reach f inc as ρe in each element can only be 0 or 1. We investigate this case in
Figs 3.9 and 3.10 (solution referred to as "homogeneous design, BESO": we can see that
the convergence curve (Fig. 3.9) shows much more oscillations for BESO than SIMP for
a homogeneous design, even though we can note in Fig. 3.10 that the optimized fracture
energy is higher for BESO.

3.5.2 3D reinforced sample with one pre-existing crack notch surface

In this example, the aim is to illustrate the applicability and convergence of the present
method for 3D problems. For this purpose, a 3D sample with one pre-existing crack notch
surface, as described in Fig. 3.11(a), is considered. The dimensions of the 3D sample are
20×20×60 mm3. The domain is discretized into 40×40×120 eight-node cubic elements.
The dimensions of the pre-existing crack notch surface are 10×10 mm2. As in the 2D case
of section 3.5.1, the pre-existing crack is modeled by prescribing Dirichlet conditions on
the crack phase field with d = 1 along the crack surface. On the upper and lower ends of
the sample, vertical incremental displacement loads with ∆U = 0.005 mm are prescribed
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for the first four load increments and ∆U = 0.002 mm for the following load increments.
Additionally, the optimality convergence tolerance is set at 10−5 (tol = 10−5).

(a) (b)
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Fig. 3.11 3D sample with one pre-existing crack subjected to uniaxial tension: (a) geometry
and boundary conditions; (b) guess design ( f inc = 5%). Crack and inclusions are denoted by
red and blue color, respectively.
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Fig. 3.12 3D sample with one pre-existing crack: evolution of inclusion topologies and
associated final crack patterns ( f inc = 5%). Crack and inclusions are denoted by red and blue
color, respectively.



3.5 Numerical examples 93

global view
10 200

10

20

30

40

50

60

X

Z

10 200

10

20

30

40

50

60

Y

Z

10 020

10

20

30

40

50

60

Y

Z

10 200

10

20

X

Y

X
Y

Z

Fig. 3.13 Different views of the optimized design of inclusion for the 3D sample with one
pre-existing crack.
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Fig. 3.14 Load-displacement curve and crack evolution for the optimized design in the 3D
sample with one pre-existing crack: (a) U = 0.03 mm; (b) U = 0.032 mm; (c) U = 0.034
mm; (d) U = 0.038 mm. Crack and inclusions are denoted by red and blue color, respectively.

In Fig. 3.11(b) we provide a guess design for the inclusion, with f inc = 5%, corresponding
to a simple parallelepipedic domain which will serve as a comparison with the SIMP
optimized topology solution. Fig. 3.12 shows the evolution histories of inclusion topologies
and their final crack patterns. For 3D visualization purpose, only values of ρe ≥ ρthr are
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plotted in constant blue color (ρthr is a threshold value, defined to make sure elements
with volume fraction around f inc appear). Here the SIMP solution converges in roughly 10
iterations and strictly in 77 iterations. As a comparison, BESO with initial homogeneous
design takes 150 iterations to reach f inc = 0.05, showing the lower computational cost
and better convergence of SIMP in this case. Different views of the optimized design are
shown in Fig. 3.13. Detailed propagation of the crack phase field corresponding to its
load-displacement curve for the optimized design is shown in Fig. 3.14. It can be observed
that the crack first initiates from the surface of the inclusion phase and then interacts with the
pre-existing crack. Next, it propagates along the surface of the inclusion phase until crossing
the whole domain and leading to the failure of the structure. Fig. 3.15 shows comparison of
load-displacement curves and final crack patterns for guess and optimized design. Here, the
fracture resistance of the optimized design is 20% higher as compared with the guess design.

Displacement [mm]

0

0.5

1

1.5

2

2.5

3

3.5

L
oa

d 
[k

N
]

 Guess design

 Final design

0 0.01 0.02 0.03 0.04

Guess design
  J=121.5 mJ

Final design
 J=145.4 mJ

Fig. 3.15 Load-displacement curves and final crack pattern for guess and optimized design in
the 3D structure with one pre-existing crack. On the right figure, crack and inclusions are
denoted by red and blue color, respectively.

3.5.3 3D reinforced sample with two pre-existing crack surfaces and a
parallelepipedic cavity

This final example demonstrates the potential of the method in complex 3D structural
problems. The geometry and boundary conditions for this example are shown in Fig. 3.16.
The dimensions of the 3D sample are 50× 50× 60 mm3. The domain is discretized into
100×100×120 eight-node cubic elements. As can be observed from Fig. 3.16, there are two
pre-existing crack notch surfaces and a parallelepipedic cavity. The first pre-existing crack
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Fig. 3.16 3D sample with two pre-existing cracks and including parallelepipedic cavity: (a)
geometry and boundary conditions.

notch whose geometry is 26×10 mm2 is embedded in the left surface of the whole sample,
the second pre-existing crack notch whose geometry is 16×8 mm2 is embedded in the left
surface of the parallelepipedic cavity, and the parallelepipedic cavity whose geometry is
20×20×7.5 mm3 is created by removing the elements at the position of the parallelepipedic
cavity. Similar to the 3D case in section 3.5.2, the pre-existing cracks are simulated by
prescribing Dirichlet conditions on the crack phase field with d = 1 along the crack surfaces.
On the upper and lower ends of the sample, vertical incremental displacement loads with
∆U = 0.005 mm are prescribed with for the first four load increments and ∆U = 0.002 mm
for the following load increments. Additionally, the optimality convergence tolerance is set
at 10−3 (tol = 10−3).

Fig. 3.17 shows the evolution histories of inclusion topologies and their final crack
patterns. Here f inc is set to 5%. As can be observed from Fig. 3.17, the inclusion material
tends to accumulate around the pre-existing crack notch surfaces and the parallelepipedic
cavity to prevent crack propagation and interaction in the sample. From Fig. 3.17, we can
note that the SIMP solution is converged in roughly 12 iterations and strictly in 23 iterations.
As a comparison, BESO with initial homogeneous design takes about 150 iterations to reach
f inc = 0.05, showing again much less computational costs and better convergence of SIMP
in this case. For better visualization, different views of the optimized design are shown in Fig.
3.18. Detailed propagation of the crack phase field corresponding to its load-displacement
curve for the optimal design is shown in Fig. 3.19. It can be observed that the cracks nucleate
firstly at the two pre-existing crack notch surfaces and the corners of the cuboidal cavity, and
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then propagate and interact following the surface of the inclusion phase until reaching the
fully broken state of the sample.
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Fig. 3.17 3D sample with two pre-existing cracks: convergence of the topology optimization
process, evolution of inclusion topologies and associated final crack patterns ( f inc = 5%).
Crack and inclusions are denoted by red and blue color, respectively.
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Fig. 3.18 Different views of the optimized design for the 3D sample with two pre-existing
crack. Crack and inclusions are denoted by red and blue color, respectively.
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Fig. 3.19 Load-displacement curves and crack pattern evolution for optimized design in
the 3D structure with two pre-existing crack: (a) U = 0.03 mm; (b) U = 0.032 mm; (c)
U = 0.034 mm; (d) U = 0.036 mm. Crack and inclusions are denoted by red and blue color,
respectively.

Table 3.3 Computational times for the different examples

Problem No. elements No. design
iterations

Average CPU
time (s)

Total simu-
lation time
(h)

2D reinforced plate ( f inc = 5%) 7200 244 33.6 2.28
3D reinforced sample in 3.5.2 192,000 77 924 19.77
3D reinforced sample in 3.5.3 1,176,000 23 5055 32.3

3.5.4 Computational times

Finally, a summary of the computational times for the different examples is reported in Table
3.3. In this work, a workstation with 4 cores, 16 Go Ram and 3.00 GHz processor was used
for all 2D cases. For all 3D cases, a workstation with 24 cores, 768 Go Ram and 2.70 GHz
processor was used. The present code has been implemented in Matlabr.
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3.6 Conclusion

In this chapter, another contribution has been introduced, by proposing a framework employ-
ing SIMP topology optimization and phase field method to fracture to maximize the fracture
resistance of composites (two-phase materials) structures. The method allows taking into
account the whole fracture process, from initiation to complete failure of the specimen. The
continuous density representation of density obtained by the SIMP method allows a good
convergence of the scheme and to improve the fracture resistance of a structure embedding a
reinforcement phase (inclusion) for a fixed volume fraction.

We have observed that even though SIMP has slightly better convergence properties with
less oscillations than BESO, the convergence of both SIMP and BESO is comparable when
the initial volume fraction is set by an appropriate initial design in BESO. The final results
are also very close. However, it is not always easy to define such initial design, especially in
3D. When using a homogeneous design with BESO, the convergence can be much slower
(up to 6 times in some examples) than SIMP, as the actual volume fraction will be changed at
each iteration by removing/adding material in each element. Then, starting with an initial
homogeneous design is straightforward and leads to faster convergence with the present
SIMP framework than with BESO.

This has been illustrated by conducting 3D applications in complex configurations, where
defining an initial design with a given volume fraction may be non-trivial. Then, the present
SIMP-phase field framework is a good candidate for reducing the computational times in
designing materials and structures with enhanced fracture energy.



Chapter 4

Phase field topology optimization
maximizing the fracture resistance of
elastoplastic composites

4.1 Introduction

This chapter introduces a topology optimization framework for maximizing the fracture
resistance of elastoplastic composites. It constitutes an original contribution by extending
the topology optimization framework [176, 93] for maximizing the fracture resistance where
the ductile phase field model is employed for bi-materials, possibly including interfaces. As
compared to Chapter 2, an elastoplastic phase field formulation with gradient plasticity is
applied to simulate complex ductile fracture. This formulation includes an additional internal
length scale to regularize the plastic response, and to ensure that the damage zones of ductile
fracture are contained within plastic zones. Different examples are provided to illustrate the
proposed methodology.

4.2 Phase field modeling ductile fracture with interfaces
and plasticity gradient

In this section, we present the elastoplastic phase field formulation with plasticity gradient.
For this purpose, we follow the framework developed in [130, 121] to interfacial damage and
in [145] to bulk ductile cracking.
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plastic zone

crack zone

(a) (b)

Fig. 4.1 Regularization of (a) the equivalent plastic strain p(x) and (b) the crack phase field
d(x).

4.2.1 Variational framework

We follow the framework presented in [6] to construct the variational principle, which
involves: irreversibility condition, stability condition and energy balance. In this framework,
stability condition provides mechanical balance equation, damage and plastic criteria. The
energy balance provides damage and plastic consistency. The total energy for an elastoplastic
cracked body embedding interfaces is defined here as

W (u, p,d,β ) =
∫

Ω

ψ
e (ε (u) , p,d)dΩ+

∫
Ω

[
ψ

p (p,d)+ψ
d (β ,d)+ψ

I (w(u) ,β )
]

dΩ

−
∫

∂ΩF

F ·udS−
∫

Ω

f ·udΩ, (4.1)

in which ψe, ψd and ψ I have been defined in (2.27), (2.76) and (2.77) in Chapter 2. ψ p is
the stored plastic energy density function defined as

ψ
p (p,d) = (1−d)2

(
σY p+

1
2

H p2 +
1
2
ℓ2

p∇p ·∇p
)
, (4.2)

where we note a new term 1
2ℓ

2
p∇p ·∇p is introduced to regularize the plastic field. Above,

ℓp is a plastic length scale related to a strain-gradient hardening effect and accounts for size
effects to overcome the nonphysical mesh sensitivity of the localized plastic deformation in
softening materials. For ductile fracture, we require additionally that ℓp ≥ ℓd such that the
regularized crack zone lies inside of the plastic zone, as shown in Fig. 4.1 and outlined in
[106, 1].
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4.2.1.1 Irreversibility condition

The irreversibility condition is prescribed on the damage and plastic variable. For damage
irreversibility condition, it can be found in (2.8). For plastic irreversibility condition, it can
be expressed as

ṗ≥ 0, (4.3)

which is applied numerically by simply considering the cumulated plastic strain value
corresponding to the previous load step as the minimum admissible level of cumulated plastic
strain for a given position in the body.

4.2.1.2 First-order stability condition

The first order stability condition is expressed by:

DδuW (u, p,d)+Dδ pW (u, p,d)+DδdW (u, p,d)≥ 0. (4.4)

Applied to (4.1), it yields:

∫
Ω

[
σ : ε

e (δu)+
∂ψ I

∂w
·w(δu)

]
dΩ+

∫
Ω

(
−
√

3
2

σ : n̂δ p+Dδ pψ
p

)
dΩ

+
∫

Ω

(
∂ψe

∂d
+

∂ψ p

∂d
+

∂ψd

∂d

)
δddΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ≥ 0, (4.5)

where σ has been obtained in (2.33) and εe has been expressed in (2.69).
From (4.5), the following results stem out:

• For δ p = δd = 0, find u ∈Su, Su =
{

u|u(x) = ū on ∂Ωu, u ∈ H1(Ω)
}

such that:∫
Ω

σ : ε
e (δu)dΩ+

∫
Ω

γβ t·w(δu)dΩ−
∫

∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ = 0 (4.6)

which is the weak form of the mechanical equilibrium equation, with δu ∈ S 0
u ,

S 0
u =

{
δu|δu(x) = 0 on ∂Ωu, u ∈ H1(Ω)

}
.

• For δd = 0 and δu = 0, we first express the term:

Dδ pψ
p = (1−d)2 (

σyδ p+H pδ p+ ℓ2
p∇p ·∇δ p

)
. (4.7)
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We then obtain:

∫
Ω

[(√
3
2
∥s∥− (1−d)2 (σY +H p)

)
δ p− (1−d)2 ℓ2

p∇p ·∇δ p

]
dΩ≤ 0, (4.8)

which is the weak form of the plasticity yield criterion. The local form of the plastic
yield criterion can be expressed as

F p(p) =

√
3
2
∥s∥−(1−d)2 (

σY +H p− ℓ2
p∇ ·∇p

)
≤ 0 in Ω. (4.9)

• For δ p = 0 and δu = 0, it leads to

∫
Ω

{
(1−d)

(
2ψ

e+
0 +2σY p+H p2 + ℓ2

p∇p ·∇p
)

δd

− (1−β )2
(

gc

ℓd
dδd +gcℓd∇d ·∇δd

)}
dΩ≤ 0,

(4.10)

which is the weak form of the damage yield criterion. The local form of the damage
yield criterion can be expressed as

Fd(d) =(1−d)
(
2ψ

e+
0 +2σY p+H p2 + ℓ2

p∇p ·∇p
)

− (1−β )2
(

gc

ℓd
d−gcℓd∇ ·∇d

)
≤ 0 in Ω.

(4.11)

4.2.1.3 Energy balance

The energy balance represents the need for the total energy to remain constant as the state
variables evolve. Following a procedure analogous to the treatment of the stability condition,
this condition leads to

∫
Ω

[
−σ : ε

e (u̇)− ∂ψ I

∂w
·w(u̇)+

(√
3
2

σ : n̂− ∂ψ p

∂ p

)
ṗ−
(

∂ψe

∂d
+

∂ψ p

∂d
+

∂ψd

∂d

)
ḋ

]
dΩ

+
∫

∂ΩF

F · u̇dS+
∫

Ω

f · u̇dΩ = 0. (4.12)

The following cases are analyzed.
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• For u̇ = 0 and ḋ = 0, and using (4.9), the plasticity consistency condition is obtained:

F p(p)ṗ = 0. (4.13)

• For u̇ = 0 and ṗ = 0, and using (4.11), the damage consistency condition is obtained:

Fd(d)ḋ = 0. (4.14)

4.2.1.4 Alternate minimization

In this section, a staggered alternate minimization algorithm for u, p and d is applied. With
the total energy (4.1) at hand, the alternate minimization follows.

• Minimization with respect to the displacement field:

DδuW (u, p,d) = 0 (4.15)

leads to

Ru =
∫

Ω

σ : ε
e (δu)dΩ+

∫
Ω

γβ t·w(δu)dΩ−
∫

∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ= 0 (4.16)

which corresponds to the weak form of the mechanical problem.

• Minimization with respect to the equivalent plastic strain:

Rp = Dδ pW (u, p,d) =
∫

Ω

{[√
3
2
∥s∥− (1−d)2 (σY +H p)

]
δ p

− (1−d)2 ℓ2
p∇p ·∇δ p

}
dΩ = 0,

(4.17)

which is the weak form of the plastic yield criterion to be solved for p with ṗ≥ 0. The
increment of the plastic strain tensor can be obtained from the incremental equivalent
plastic strain as

ε̇
p =

√
3
2

ṗ
s
∥s∥

(4.18)
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• Minimization with respect to the damage field:

Rd = DδdW (u, p,d) =
∫

Ω

{
(1−d)

(
2ψ

e+
0 +2σY p+H p2 + ℓ2

p∇p ·∇p
)

δd

− (1−β )2
(

gc

ℓd
dδd +gcℓd∇d ·∇δd

)}
dΩ = 0.

(4.19)
To prescribe damage irreversibility, we employ the technique introduced in [111] which
consists in substituting the above weak form with:

Rd =
∫

Ω

[
(1−d)H δd− (1−β )2 (

ψcdδd +ψcℓ
2
d∇d ·∇δd

)]
dΩ = 0, (4.20)

where

H (εe, p) = max
s∈[0,t]

[〈
ψ

e+
0 (εe,s)+σY p(s)+

1
2

H p(s)2 +
1
2
ℓ2

p∇p(s) ·∇p(s)−ψc

〉
+

]
(4.21)

and ψc is a specific fracture energy threshold.

The weak forms of the problems to be solved alternatively are summarized in Table 4.1

Table 4.1 Problems to be solved in the staggered procedure.

Displacement problem: given d and p, solve for u :

Ru =
∫

Ω
σ : εe (δu)dΩ+

∫
Ω

γβ t·w(δu)dΩ−
∫

∂ΩF
F ·δudS−

∫
Ω

f ·δudΩ = 0

σ = (1−d)2 (
κ ⟨Tr(εe)⟩+ 1+2µee)+κ ⟨Tr(εe)⟩− 1

t(w) =
[
gI

c
wn

(δ n)2 exp
(
−wn

δ n

)
,0
]T

ε̇
p =

√
3
2 ṗ s
∥s∥

Plastic problem: given u and d, solve for p :

Rp =
∫

Ω

[(√
3
2 ∥s∥− (1−d)2 (σY +H p)

)
δ p− (1−d)2 ℓ2

p∇p ·∇δ p
]

dΩ = 0

Phase Field problem: given u and p, solve for d :

Rd =
∫

Ω

[
(1−d)H δd− (1−β )2 (

ψcdδd +ψcℓ
2
d∇d ·∇δd

)]
dΩ = 0



4.2 Phase field modeling ductile fracture with interfaces and plasticity gradient 105

4.2.2 Finite element discretization and numerical implementation

In this section, we detail the FEM discretizations for displacement, plastic and damage
problems, and finally provide the overall algorithm.

4.2.2.1 Discretization of the displacement problem

In this work, we use an iterative approach to solve this nonlinear problem in (4.16). After
rearranging, the discrete version of (4.16) can be expressed globally as

Kuu = Fu (4.22)

with the force vector

Fu =
∫

Ω

BT
wCε

p,(k)dΩ+
∫

Ω

NT
u fdΩ+

∫
∂ΩF

NT
u FdS−

∫
Ω

γβ (hNB)T t
(

w(k)
)

dΩ (4.23)

and the stiffness matrix
Ku =

∫
Ω

BT
wCBwdΩ (4.24)

with

C =

{
(1−d)2 (κII+2µIId) Tr(εe)≥ 0
κII+(1−d)2 2µIId Tr(εe)< 0

(4.25)

and

II =

 1 1 0
1 1 0
0 0 0

 , IId =


2
3 −1

3 0
−1

3
2
3 0

0 0 1

 . (4.26)

Above, Bw, Nu, N and B can be found in Section 2.3.3.2, and (.)(k) denotes the value of k-th
iteration for each load step.

4.2.2.2 Discretization of the plastic problem

We first rewrite (4.18) with small pseudo-time step assumption as

∆ε
p =

√
3
2

∆p
s
∥s∥

(4.27)
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where ∆p = pn+1− pn is the incremental equivalent plastic strain. Then we can rewrite
(4.17) as

Rp =
∫

Ω

(1−d)2

[(√
3
2

∥∥str
eff
∥∥−3µ p+3µ pn−σY −H p

)
δ p− ℓ2

p∇p ·∇δ p

]
dΩ = 0.

(4.28)
Here, for the sake of simplicity, the subscript n+1 for pn+1 is omitted.

The equivalent plastic strain and equivalent plastic strain gradient are approximated in
one element by

p = Nppe, ∇p = Bppe, (4.29)

where Np and Bp are matrices of equivalent plastic strain shape function and of equivalent
plastic strain shape function derivatives, respectively, and pe denote nodal equivalent plastic
strain in one element.

The discretization of plastic problem (4.28) results into the following discrete system of
equations:

Kpp = Fp (4.30)

in which
Kp =

∫
Ω

(1−d)2 [(3µ +H)NT
p Np + ℓ

2
pBT

p Bp
]

dΩ (4.31)

and

Fp =
∫

Ω

(1−d)2 NT
p

(√
3
2

∥∥str
eff
∥∥+3µ pn−σY

)
dΩ. (4.32)

4.2.2.3 Discretization of the damage problem

The damage and damage gradient are approximated in one element by

d = Ndde, ∇d = Bdde, (4.33)

where Nd and Bd are matrices of damage shape function and of damage shape function
derivatives, respectively, and de denote nodal damage in one element.

The discretization of damage problem (4.20) results into the following discrete system of
equations:

Kdd = Fd (4.34)

in which

Kd =
∫

Ω

{[
H +(1−β )2

ψc

]
NT

d Nd +(1−β )2
ψcℓ

2
dBT

d Bd

}
dΩ (4.35)
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and
Fd =

∫
Ω

NT
d H dΩ, (4.36)

where H is given in (4.21).

4.2.2.4 Overall algorithm

In the present work, a staggered iterative scheme is employed following [145]. It con-
sists of solving successively (4.22), (4.30) and (4.34). First, (4.22) is solved to obtain
u(k+1)

i with given
(

u(k)
i , p(k)i ,d(k)

i

)
. Subindices i and supraindices k denoting the load

step and subiteration, respectively. In a second step, (4.30) is solved to obtain p(k+1)
i

with given
(

u(k+1)
i , p(k)i ,d(k)

i

)
. In a third step, (4.34) is solved to obtain d(k+1)

i with given(
u(k+1)

i , p(k+1)
i ,d(k)

i

)
. At each load step, the subiteration is performed until convergence

is achieved by using three independent tolerances tu, tp and td . The detailed algorithm is
illustrated in Algorithm 6.

Algorithm 6: Overall algorithm for elastoplastic ductile fracture model with inter-

faces
Initialize u0, p0 and d0 with assumption of elasticity and undamaged state.

Compute the level-set function φ and interface damage β .

Loop over load increments n

for i = 1, . . . ,n do
k = 0,erru = errp = errd = 1

u(0)
i = ui−1, p

(0)
i = pi−1,d

(0)
i = di−1

while erru> tu or errp> tp or errd > td and k ≤ kmax do
Given u(k)

i , p(k)i and d(k)
i , compute u(k+1)

i from (4.22)

Given u(k+1)
i , p(k)i and d(k)

i , compute p(k+1)
i from (4.30)

Given u(k+1)
i , p(k+1)

i and d(k)
i , compute d(k+1)

i from (4.34)

erru =
∥∥∥u(k+1)

i −u(k)
i

∥∥∥ ,errp =
∥∥∥p(k+1)

i − p(k)i

∥∥∥ ,errd =
∥∥∥d(k+1)

i −d(k)
i

∥∥∥
k = k+1

end

ui = u(k+1)
i , pi = p(k+1)

i ,di = d(k+1)
i

i = i+1
end
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4.3 Topology optimization without interfaces

In this section, we present a SIMP topology optimization framework for maximizing the
ductile fracture resistance of a two-phase structure. The elastoplastic ductile fracture model
introduced in Section 4.2 is used but without considering interface damage by simply setting
β = 0.

4.3.1 Topology optimization formulation

4.3.1.1 Material interpolation and optimization problem statement

Similarly to Section 3.3.2, the design domain Ω is discretized into Ne finite elements and
each element e is assigned with a topology design variable, or element density ρe, which is
allowed to vary continuously in the range [0,1]. Following [26], the material interpolations
for the two-phase material are defined as

µe = ρ
p
e µinc +

(
1−ρ

p
e
)

µmat

κe = ρ
p
e κinc +

(
1−ρ

p
e
)

κmat

σY,e = ρeσY,inc +(1−ρe)σY,mat

he = ρehinc +(1−ρe)hmat

ψc,e = ρeψc,inc +(1−ρe)ψc,mat .

(4.37)

Where (·)e are the parameters of the e-th element. (·)inc and (·)mat are the parameters
corresponding to the inclusion and the matrix phase, respectively. Following Section 3, we
choose p = 3 in this work.

Similarly to Section 3, we optimize the total mechanical work to optimize the fracture
resistance. The optimization problem is then defined as follows:

max
ρ

: J (ρ,u,p,d)

subject to : R = 0

:
Ne

∑
e=1

ρeve/(
Ne

∑
e=1

ve) = f inc

: 0≤ ρe ≤ 1,e = 1, . . . ,Ne.

(4.38)

In the above, ve is the volume (area in 2D) of the e-th element and f inc is the target
inclusion volume which is prescribed during the optimization process. The total mechanical
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work is approximated by:

J ≈ 1
2

nload

∑
n=1

(
Fn

ext +Fn−1
ext
)T

∆un, (4.39)

where Fn
ext is the external force response of the load point at the n-th load step. R denotes the

nodal residual force:
R = Fext−

∫
Ω

BT
u σdΩ. (4.40)

As in Section 3, we do not explicitly use the plastic and damage constraint in (4.38) and
in the following sensitivity analysis. In fact, these two constraints are taken into account
implicitly as the regularized plasticity and fracture problem are solved in a staggered solving
procedure.

4.3.1.2 Sensitivity analysis

In this section, in order to solve the optimization problem in (4.38), we first need to derive
the sensitivity of the objective function J corresponding to change in the design variable.
For this purpose, the adjoint method in [176] is employed. Assuming that the mechanical
problem (4.40) has been solved, nothing is changed by rewriting the objective function J in
(4.39) as

J ≈ J =
1
2

nload

∑
n=1

{(
Fn

ext +Fn−1
ext
)T

∆un +(λ n
1 )

T Rn +(λ n
2 )

T Rn−1
}

(4.41)

in which Rn and Rn−1 are the residuals of (4.40) at n-th and (n− 1)-th load increments,
respectively.

The derivatives of Rm at the equilibrium of the m-th load increment with respect to ρe

can be expanded as

∂Rm

∂ρe
=

∂Fm
ext

∂ρe
−
∫

Ω

BT
u

∂σm

∂ρe
dΩ−Km

u
∂um

∂ρe
. (4.42)



110
Chapter Phase field topology optimization maximizing the fracture resistance of

elastoplastic composites

With (4.42), the derivatives of (4.41) can be reformulated as

∂J
∂ρe

=
1
2

nload

∑
n=1

{(
∂Fn

ext,E

∂ρe

)T (
∆un

E +λ
n
1,E
)
+

(
∂Fn−1

ext,E

∂ρe

)T (
∆un

E +λ
n
2,E
)

− (λ n
1 )

T
∫

Ω

BT
u

∂σn

∂ρe
dΩ− (λ n

2 )
T
∫

Ω

BT
u

∂σn−1

∂ρe
dΩ

−
(
Kn

u,FEλ
n
1,E +Kn

u,FFλ
n
1,F
)T ∂un

F
∂ρe

−
(

Kn−1
u,FEλ

n
2,E +Kn−1

u,FFλ
n
2,F

)T ∂un−1
F

∂ρe

}
.

(4.43)

In order to eliminate the unknowns as shown in (3.51), we choose

λ
n
1,E =−∆un

E, λ
n
1,F =

(
Kn

u,FF
)−1 Kn

u,FE∆un
E

λ
n
2,E =−∆un

E, λ
n
2,F =

(
Kn−1

u,FF

)−1
Kn−1

u,FE∆un
E.

(4.44)

Then we can obtain the final objective derivative

∂J
∂ρe

=−1
2

nload

∑
n=1

{
(λ n

1 )
T
∫

Ω

BT
u

∂σn

∂ρe
dΩ+(λ n

2 )
T
∫

Ω

BT
u

∂σn−1

∂ρe
dΩ

}
. (4.45)

For each element e, (4.45) can be re-written as

αe =
nload

∑
n=1

(∆αe)
n =−1

2

nload

∑
n=1

{(
λ

n
1,e
)T
∫

Ω

BT
u

∂σn
e

∂ρe
dΩ

+
(
λ

n
2,e
)T
∫

Ω

BT
u

∂σn−1
e

∂ρe
dΩ

}
,e = 1, . . . ,Ne,

(4.46)

in which (·)e is the element component of (·). For the sake of simplicity, we use αe and α to
represent element sensitivity and vector of all element sensitivities.

As shown also in Section 3.4, in order to remove instabilities such as checkerboard pat-
terns and to avoid mesh-dependency in topology optimization process, element sensitivities
are smoothed by means of a filtering scheme as (3.61). Finally, the OC method is employed
to update the design variables.
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4.3.2 Numerical example

In this section we present a 2D example to illustrate the method. For this purpose, a specimen
with two asymmetrical notches, as described in Fig. 4.2(a), is considered. Plain strain is
assumed. For the sake of simplicity of the topology process, uniform meshes of quadrilateral
bilinear elements with element size he = 0.4 mm are used, as shown in Fig. 4.2(b), where
the red meshes at the notches are removed from the finite element mesh. The boundary
conditions are as follows: on the lower end (y = 0), the y-displacement are fixed, while
the x-displacement are free and the node (x = 0,y = 0) is fixed. On the upper end, the
x-displacement are free, while the y-displacement are prescribed to an increasing value of U
with ∆U = 0.005 mm during the simulation. The incremental loading process goes on until
the reaction force is below a prescribed value, indicating that the structure is fully broken.
The characteristic length scale parameter ℓd for damage problem and ℓp for plastic problem
are set to be ℓd = he and ℓp = 2he, respectively. The filter radius rmin for topology process is
chosen as rmin = 2he. The material parameters are shown in Table 4.2.

Table 4.2 Material parameters used in the numerical simulations

Name Symbol Matrix Inclusion

Shear modulus κ 27.28 GPa 70.3 GPa
Bulk modulus µ 71.66 GPa 136.5 GPa

Yield stress σY 0.345 GPa 0.443 GPa
Hardening modulus H 0.25 GPa 0.3 GPa

Fracture energy threshold ψc 0.03 GPa 0.04 GPa

Fig. 4.3 shows the crack propagation, equivalent plastic strains and corresponding load-
displacement curve of the asymmetrically notched specimen without the reinforced material.
It can be seen that the equivalent plastic strain is maximum at both notches and localization
branches form between the notches. The cracks initiate at both notch roots and propagate
within the plastic strain localization band and eventually merge leading to complete failure.
Similar simulation results can also be found in [9, 145].

Fig. 4.4 shows the evolution histories of inclusion topologies. Here, the inclusion volume
fraction is set to f inc = 5%. As expected, the fracture resistance of the composite structure
increases with accumulation of the inclusion material around the crack paths and reduction
of intermediate densities. The external work finally converges to an almost constant value of
7.72 J. Detailed propagation of the crack phase field corresponding to its load-displacement
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Fig. 4.2 Asymmetrically notched specimen: (a) geometry and boundary conditions; (b) finite
element model.

curve for the optimized design is shown in Fig. 4.5. As can be observed from Fig. 4.5, the
cracks initiate at both notch roots and go through the inclusion phase near the notches and
then propagate following the inclusion surface until reaching the final failure.
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Fig. 4.3 Asymmetrically notched specimen without inclusion material: (a) load-displacement
curve; (b) crack propagation and (c) equivalent plastic strains for U = 0.55 mm, U = 0.6
mm and U = 0.71 mm.
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Fig. 4.4 Asymmetrically notched specimen. Evolution of inclusion topologies ( f inc = 5%).
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Fig. 4.5 Asymmetrically notched specimen: (a) load-displacement curve, (b) crack propaga-
tion and (c) equivalent plastic strains for the optimized design for U = 1 mm, U = 1.2 mm
and U = 1.59 mm. The inclusion meshes are shown for 2D visualization.

To illustrate the effectiveness of the proposed approach for improving the fracture re-
sistance not simply by setting the inclusion at the crack path obtained from homogeneous
sample (in other words, it is not easy to guess a good design which has the similar fracture
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Fig. 4.6 Comparison of optimized design and guess design. The inclusion meshes are shown
for 2D visualization.

resistance to the optimized design), we compare the optimized design with a guess design
which is obtained by putting the inclusion at the crack path obtained from homogeneous
sample. The guess design and corresponding comparisons can be found in Fig. 4.6. It can be
observed that the fracture resistance of the optimized design is 10% higher as compared with
the guess design.

The fracture resistance of the optimized design is further validated through another
comparison study. With the same inclusion volume fraction f inc = 5%, another two topology
optimizations using the same parameter setting have been carried out by considering only
linear elastic behavior or elastoplastic behavior without accounting for crack propagation:
elastic design and plastic design. Detailed comparison of these three designs is shown in Fig.
4.7. From both load–displacement curves and design objective values, the ductile design is
greater 76% and 55% as compared with the elastic design and plastic design, respectively.

4.4 Topology optimization with interfaces

In this section, we present a topology optimization framework for maximizing the ductile
fracture resistance, considering the interfaces in the heterogeneous structure. For the sake
of simplicity, BESO was used here. The elastoplastic ductile fracture model with interfaces
introduced in Section 4.2 is employed for modeling of fracture. Extended BESO method in
[176, 49] is adopted to redistribute the inclusion phase with constant volume fraction. In
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Fig. 4.7 Optimized design and corresponding final crack phase field and equivalent plastic
strain: (a) elastic design; (b) plastic design and (c) ductile design, (d) load-displacement
curves. The inclusion meshes are shown for 2D visualization.

the following, the topology optimization formulation is proposed in 4.4.1, then a numerical
example is presented in Section 4.4.2 to show the robustness of the approach.

4.4.1 Topology optimization formulation

In order to clearly show the interfaces between matrix and inclusion phase, we use a discrete
topology design variable ρe ∈{0;1} indicates the associated material phase (matrix/inclusion)
of the e-th element. The new material interpolations for the two-phase material are defined as

µe = ρeµinc +(1−ρe)µmat

κe = ρeκinc +(1−ρe)κmat

σY,e = ρeσY,inc +(1−ρe)σY,mat

he = ρehinc +(1−ρe)hmat

ψc,e = ρeψc,inc +(1−ρe)ψc,mat .

(4.47)
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As in Section 4.3, we optimize the total mechanical work to represent the optimization of
the the fracture resistance. The optimization problem based on the discrete definition is then
defined as follows:

max
ρ

: J (ρ,u,p,d)

subject to : R = 0

:
Ne

∑
e=1

ρeve/(
Ne

∑
e=1

ve) = f inc

: ρe = 0 or 1,e = 1, . . . ,Ne.

(4.48)

Above, R denotes the nodal residual force, when considering the interfaces, R is defined by
[49]:

R = Fext−
Ne

∑
e=1

ρe

∫
Ωe

BT
u σedΩe, (4.49)

Based on the sensitivity analysis as formulated in Section 4.3.1.2, the derivative of the
total mechanical work J in (4.39) with respect to the topology design variable ρe can be
stated as:

∂J
∂ρe

=−1
2

nload

∑
n=1

{(
λ

n
1,e
)T
∫

Ωe

BT
u σ

n
e dΩe +

(
λ

n
2,e
)T
∫

Ωe

BT
u σ

n−1
e dΩe

}
. (4.50)

Above, λ n
1 and λ n

2 can be solve by:

λ
n
1,E =−∆un

E, λ
n
1,F =

(
Kn

u,FF
)−1 Kn

u,FE∆un
E

λ
n
2,E =−∆un

E, λ
n
2,F =

(
Kn−1

u,FF

)−1
Kn−1

u,FE∆un
E,

(4.51)

where Ku is given in (4.24).
The extended BESO method developed in [176, 49] is then employed here to update

the design variables. In this method, the sensitivity numbers associated with the relative
ranking of the element sensitivities are chosen to determine material phase exchange. When
uniform meshes are used, the sensitivity numbers for the considered objective are defined as
the following using the element sensitivity computed from (4.50):

αe =


(

∂J
∂ρe

)η

, if ρe = 1

0, if ρe = 0
(4.52)

in which η is a numerical damping coefficient. When η = 1, we recover the conventional
sensitivity numbers for linear elastic designs [178]. In the presence of dissipative effects,
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the sensitivity numbers vary by several orders of magnitude resulting in instabilities of the
topology evolution process, especially when removing certain structural branches. For this
reason, the sensitivity numbers are damped in this work with η = 0.5 as suggested in [177].

In order to remove instabilities such as checkerboard patterns and to avoid mesh-
dependency in topology optimization process, element sensitivities are smoothed by means
of a filtering scheme introduced in (3.61) in Section 3. Then the current sensitivity numbers
are needed to be averaged with their historical information to improve the design convergence

α
n
e ←

(
αn

e +αn−1
e
)

2
. (4.53)

2
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U

(a)

(b)

Fig. 4.8 A composite specimen with two symmetrical notches: inclusion shape (left), in-
terfacial damage (center) and level-set function (right) for (a) initial design and (b) final
design.

4.4.2 Numerical example

In this section, we present a 2D example to show the effectiveness of the method. For this
purpose, a composite specimen with two symmetrical notches and a single fiber, as described
in Fig. 4.8(a), is considered. Plain strain is assumed. For the sake of simplicity of topology
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process, uniform meshes of quadrilateral bilinear elements with element size he = 0.5 mm
are used. The boundary conditions are as follows: on the left end (x = 0), the x-displacement
are fixed, while the y-displacement are free and the node (x = 0,y = 0) is fixed. On the right
end, the y-displacement are free, while x-displacement are prescribed to an increasing value
of U with ∆U = 0.005 mm during the simulation. The same stopping criterion based on
reaction force indicating that the structure is fully broken is used. The characteristic length
scale parameter ℓd for damage problem and ℓp for plastic problem are set to be ℓd = he and
ℓp = 2he, respectively. The filter radius rmin for topology process is chosen as rmin = 6he.
The material parameters are shown in Table 4.2. Besides, the parameters related to interface
are: gI

c = 0.1 MPa, tu = 0.2 MPa and ℓβ = h = he.

Fig. 4.9 Load-displacement curve and crack evolution for the initial design in the specimen
with two symmetrical notches: (a) U = 0.3 mm; (b) U = 0.35 mm; (c) U = 0.41 mm.

During the optimization process, the inclusion volume fraction f inc is maintained constant
( f inc = 0.258). Fig. 4.8(b) shows the final design of inclusion topology. It is observed that the
inclusion phase on the center moves outside, and finally distributes into a square-shape with
an approximate ellipsoidal hole. Detailed propagation of the phase field crack of the initially
and finally designed composite structure is shown in Fig. 4.9 and Fig. 4.10, respectively. In
Fig. 4.9, we can see that the cracks initiate from the notch tips and propagate vertically to the
surface of the inclusion phase and then propagate following the surface, finally interact at
the right end of the specimen resulting in final failure of structure. From Fig. 4.10, we can
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observe that the cracks also initiate from the notch tips and propagate vertically to the surface
of the inclusion phase, while then another two cracks initiate from the top and bottom corner
of the right surface of the inclusion phase and then interact with the crack initiating from the
right end of the specimen, finally the cracks follow and interact at the surface of inclusion
phase resulting in the fully broken state of the structure. We can see that the propagation of
the cracks in final design structure meets more obstacles than that in initial design structure.
Fig. 4.11 shows comparison of load-displacement curves and final crack patterns for initial
and final design. Here, the fracture resistance of the final design is 13% higher as compared
with the initial design.

Fig. 4.10 Load-displacement curve and crack evolution for the final design in the specimen
with two symmetrical notches: (a) U = 0.3 mm; (b) U = 0.35 mm; (c) U = 0.395 mm.

4.5 Topology optimization of elastoplastic periodic struc-
tures with interfaces

In this section, we extend the topology optimization framework of optimal fracture resistance
to elastoplastic periodic composites, considering the interfacial damage in the structure. The
ductile phase field method presented in Section 4.2 is employed for modeling fracture propa-
gation in the composite. Here, the composite is assumed to be composed of the substructure
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Initial design
J=2.07 J

Final design
J=2.33 J

Fig. 4.11 Load-displacement curves and final crack pattern for initial and final design in the
specimen with two symmetrical notches.

or representative volume element (RVE) periodically. Therefore, the optimization is carried
out only on the RVE, but takes into account the response of the whole composite specimen to
maximize its fracture resistance. Extended BESO method in 4.4.1 is adopted to redistribute
the inclusion phase in the RVE with constant volume fraction. In the following, Section 4.5.1
provides the topology optimization model for maximizing the fracture resistance of periodic
composites, then a numerical example is presented in Section 4.5.2 to show the efficiency of
the approach.

4.5.1 Topology optimization formulation

In this section, the optimization problem for finding the optimal material distribution or
topology of the inclusion phase within the RVE of the periodic composites. It is assumed
that the total number of substructures/RVEs in the composites is Nk. The fracture resistance
maximization problem then can be formulated using the design variable ρk

e , where k and e
denote the substructure number and the element number in each substructure, respectively.
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The optimization problem is then defined as follows:

max
{ρ1,··· ,ρk}

: J (ρ,u,p,d)

subject to : R = 0

:
Ne

∑
e=1

ρ
k
e vk

e/(
Ne

∑
e=1

vk
e) = f inc, k = 1, . . . ,Nk

: ρ
1
e = · · ·= ρ

k
e , e = 1, . . . ,Ne

: ρ
k
e = 0 or 1, e = 1, . . . ,Ne,

(4.54)

where J is known as the fracture energy which is calculated by using numerical integration
as (4.39). R denotes the nodal residual force in (4.49). vk

e is the volume (area in 2D) of the
e-th element in the k-th RVE, and Ne is the number of elements in each RVE. The condition
ρ1

e = · · · = ρk
e , e = 1, . . . ,Ne ensures that the composites are periodic during the whole

optimization process. The same material interpolation model as (4.47) is employed.
Based on the sensitivity analysis as formulated in Section 4.3.1.2, the derivative of the

total mechanical work J with respect to the topology design variable ρe can be stated as:
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}
. (4.55)

Above, λ n
1 and λ n

2 can be solved as (4.51).
However, since the considered composites are periodic in this scheme, and the opti-

mization process is carried out only within the substructure/RVE. Therefore, the element
sensitivity numbers at the same location in each substructure need to be consistent to enforce
the periodic array of the substructures. They are then defined as the sum of the sensitivity of
corresponding elements in all substructures, i.e. the sensitivity number ρe is formulated as
[48]:

αe =
Nk

∑
k=1

∂J
∂ρk

e
. (4.56)

As a result, the above sensitivity information takes into account the fracture response of the
whole periodic composite.

Following Section 4.4.1, the sensitivity numbers associated with the relative ranking of the
element sensitivities are treated with the damping as (4.52). In order to avoid checkerboard
patterns, the above formulated sensitivity numbers are then smoothed by means of a filtering
scheme as (3.61). Due to the discrete nature of design variable of the adopted method and to
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avoid oscillations in evolutionary history of the design objective value, the current sensitivity
number are further averaged with its historical information as (4.53).

4.5.2 Numerical example

This section presents a 2D example to show the effectiveness of the method in the topology
of periodic structure. For this purpose, the composite structure in Section 4.4.2 is employed
to reproduce a periodic structure, as described in Fig. 4.12(a). Plain strain is assumed.
The boundary conditions are same as Section 4.4.2 as follows: on the left end (x = 0), the
x-displacement are fixed, while the y-displacement are free and the node (x = 0,y = 0) is
fixed. On the right end, the y-displacement are free, while x-displacement are prescribed to
an increasing value of U with ∆U = 0.005 mm during the simulation. The same parameters
as shown in Section 4.4.2 are used.

75

U5
0

interfacial 
damage

level-set 
function

(a) (b)

Fig. 4.12 A periodic specimen: inclusion shape (top), interface damage (center) and level-set
function (bottom) for (a) initial design and (b) final design.
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During the optimization process, the inclusion volume fraction f inc is maintained constant.
Based on their sensitivity numbers, the inclusion phase will be redistributed within the
periodic cell by the extended BESO method so as to improve the fracture resistance of the
whole periodic composite. Fig. 4.12(b) shows the final design of inclusion topology. We
can see that the inclusion phase on the center moves to the notch tips and to the left and
right end of the periodic cell, and finally distributes a complex composite structure. Detailed
propagation of the phase field crack of the initially and finally designed composite structure
is shown in Fig. 4.13 and Fig. 4.14, respectively. In Fig. 4.13, we can see that the cracks
initiate from all the notch tips at the same time, then the two cracks initiating from the right
hole propagate following the surface of inclusions, finally interact at the right end of the
specimen resulting in final failure of structure. From Fig. 4.14, we can observe that the
cracks initiate from the inclusion surface and propagate following the surface of inclusions
and then continue to propagate until reaching the right end of the specimen. Fig. 4.15 shows
comparison of load-displacement curves and final crack patterns for initial and final design.
Here, the fracture resistance of the final design is 48% higher as compared with the initial
design.

Fig. 4.13 Load-displacement curve and crack evolution for the initial design in the periodic
specimen: (a) U = 0.6 mm; (b) U = 0.725 mm; (c) U = 0.76 mm.



124
Chapter Phase field topology optimization maximizing the fracture resistance of

elastoplastic composites

Fig. 4.14 Load-displacement curve and crack evolution for the final design in the periodic
specimen: (a) U = 0.9 mm; (b) U = 0.925 mm; (c) U = 0.985 mm.

4.6 Conclusion

In this chapter, we have developed topology optimization procedure for maximizing the
fracture resistance of elastoplastic composites. A plasticity gradient phase field model [145]
has been applied to better constrain the damage zone within the plastic zone. Interfacial
damage has been taken into account through a regularized description of interfaces, and a
diffuse weighting function to differentiate the bulk and interfacial behaviors, following [130].
Three cases have been investigated: (i) the case without considering interfacial damage
between inclusion and matrix phase; (ii) the case considering interfacial damage between
inclusion and matrix phase and (iii) the case considering interfacial damage for periodic
structures. Three numerical tests have been presented to demonstrate the potential of the
proposed topology optimization framework. In all cases, it has been shown that significant
improvement of the fracture resistance of the considered composite structures can also be
achieved for final designs when compared to the initial designs.

To summarize, the following original contributions have been introduced in this chapter:
(i) a framework for modeling interfacial damage interacting with bulk ductile fracture
within the gradient plasticity phase field method and (ii) a topology optimization of ductile
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Initial design
J=8.34 J

Final design
J=12.34 J

Fig. 4.15 Load-displacement curves and final crack pattern for initial and final design in the
periodic specimen.

fracture resistance for elastoplastic composites with the proposed phase field model. Finally,
the present framework seems to be very promising for improving fracture resistance of
elastoplastic composites where both interfacial damage and bulk ductile fracture occur.





Chapter 5

A phase field anisotropic damage model
for 3D printed elastoplastic materials

5.1 Introduction

In this chapter, we propose a damage model able to describe the behavior of polymer
structures obtained by 3D printing processes, and which are formed by a layered structure.
Such layered structure induces a preferential crack propagation direction along weak planes
associated with the process, and related e.g. to a higher porosity between each layer of
deposited powder or in polymer fuse deposition modeling. In addition to the induced
anisotropic damage model, the behavior can be elastoplastic when the sample is loaded in
a direction parallel to the layers, but brittle along a direction perpendicular to the layers.
To our best knowledge, a model able to take into account both these characteristics is not
available in the literature. The objective of this chapter is then to propose such model. A
first contribution then consists into developing a full anisotropic elastoplastic phase field
damage model, such that depending on the orientation and on the chosen parameters, the
behavior can be differentiated into elastoplastic or quasi-brittle, depending on the underlying
layers direction. A second contribution is an original methodology to construct the elastic
energy functional within the phase field model by means of numerical calculations on a
Representative Volume Element (RVE). Then, instead of using an empirical model, this elastic
function is fully consistent with the full-field response of the microstructure. Numerical
examples are provided to illustrate the capabilities of the present model.
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5.2 Phase field approach to anisotropic damage in 3D printed
elastoplastic materials

Phase-field models based on the variational formulation for anisotropic fracture have recently
gained popularity, for example in [89, 168], where an anisotropic fracture energy was
employed to simulate crack propagation in polycrystals [45, 125]. In [3], R. Alessi and F.
Freddi used phase field model to investigate the complex failure process of unidirectional
hybrid laminates. More recently in [28], J. Bleyer and R. Alessi proposed an anisotropic
brittle fracture model to simulate the longitudinal/transverse damage in unidirectional fiber-
reinforced composites.

5.2.1 Damage variables

We consider a 3D printed elastoplastic material in plane stress conditions, as described in
Fig. 5.1(a), where the material frame (e1,e2) has an angle θ with respect to the global frame
(ex,ey). When the material is loaded in tension there are two different damage mechanisms:
(i) the first one, as shown in Fig. 5.1(b), corresponds to failure oriented along e1 occurring in
the interface between two layers, called interfacial damage and represented by an associated
damage variable α and (ii) the second one, Fig. 5.1(c), corresponds to failure oriented along
e2 in the layers, called bulk fracture and represented by d.

In order to capture the directional fracture θ and d in the global frame (ex,ey), two
anisotropic crack surface density functions extended from (2.3) are written by the following
expressions:

γα (α) =
α2

2ℓα

+
ℓα

2
ωα : (∇α⊗∇α) , (5.1)

γd (d) =
d2

2ℓd
+
ℓd

2
ωd : (∇d⊗∇d) , (5.2)

where ℓα and ℓd are the length scale parameter of regularization for α and d, respectively.
More explanation on this point can be found in Chapter 2. ωα and ωd are two second-order
structural tensors, being invariant with respect to rotation of frame (e1,e2).

In order to make the energy release rate orientation-dependent, the tensors ωα and ωd

can be defined by [45, 125]:

ωα = 1+ξα (1−Mα ⊗Mα) , (5.3)

ωd = 1+ξd (1−Md⊗Md) , (5.4)
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(a)

layer

(b) (c)

Fig. 5.1 Illustration of 3D printed materials for (a) layer direction, (b) interfacial damage and
(c) bulk fracture.

where Mα and Md denote the unit vectors normal to e1 and e2, respectively. ξα ,ξd ≫ 1 are
used to prevent damage α and d to develop on planes not normal to Mα and Md , respectively.
An estimation of the anisotropy introduce in the surface energy by this formulation can been
found in [124].

5.2.2 Variational formulation

To construct the anisotropic damage model which can be quasi-brittle or elastoplastic depend-
ing on the orientation, we introduce two modifications as compared to the model in Chapter 2.
First, the elastic strain density function is now dependent on the intra-layer damage variable
α , as discussed in more details in the following. Second, an additional crack functional
associated with α is added. The new proposed energy functional is in the form:

W (u, p,d,α) =
∫

Ω

ψ
e (ε (u) , p,d,α)dΩ+

∫
Ω

[
ψ

p (p)+ψ
d (d)+ψ

α (α)
]

dΩ

−
∫

∂ΩF

F ·udS−
∫

Ω

f ·udΩ, (5.5)

where ψ p (p) is the stored plastic energy density function and has been defined in (2.31).
ψα (α) and ψd (d) are the damage dissipative potentials with respect to α and d, respectively.
They are defined as

ψ
α (α) = gα

c γα (α) , ψ
d (d) = gd

c γd (d) , (5.6)
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gα
c and gd

c are the fracture toughnesses with respect to α and d, respectively. We introduce
the elastic strain density function ψe in the form

ψ
e (ε (u) , p,d,α) =

1
2
(εe)T C(α,d)ε

e, (5.7)

where C(α,d) is the matrix form of elasticity tensor corresponding to the vector of elastic
strain components εe =

[
εe

11, εe
22, 2εe

12
]T in the material frame (e1,e2). The dependence to

θ defining the angle between e1 and the printed layer direction will be discussed in section
5.3.1.

In the reference frame (e1,e2), we assume that the damage-dependent elasticity matrix is
given by:

C(α,d) = g(d)Cα (α) , (5.8)

where g(d) has been defined in (2.30). Cα (α) is the interfacial damage-dependent elasticity
matrix. A detailed description for the numerical computation of Cα (α), based on a numerical
homogenization method, is provided in Section 5.3.

It should be noted that Cα (α) in this work is constructed by taking into account the
real mechanical reactions of a RVE from 3D printed materials, unlike in [28], where the
anisotropic brittle fracture model is based on an empirical damage-dependent elasticity
tensor.

5.2.2.1 Irreversibility condition

The irreversibility condition is prescribed on the bulk fracture d and interfacial damage
α . For bulk fracture irreversibility condition, it can be found in (2.8). For interfacial
damage irreversibility condition, it can be expressed with the similar manner to the plastic
irreversibility condition in (4.3).

5.2.2.2 First-order stability condition

The first order stability condition (see [113, 114, 143]) is expressed by:

DδuW (u, p,d,α)+Dδ pW (u, p,d,α)+DδdW (u, p,d,α)+DδαW (u, p,d,α)≥ 0. (5.9)

With (5.5), (5.9) yields:

∫
Ω

σ : ε
e (δu)dΩ+

∫
Ω

(
−
√

3
2

σ : n̂+
∂ψ p

∂ p

)
δ pdΩ+
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∫
Ω

(
∂ψe

∂d
+

∂ψd

∂d

)
δddΩ+

∫
Ω

(
∂ψe

∂α
+

∂ψα

∂α

)
δαdΩ−

∫
∂ΩF

F ·δudS−
∫

Ω

f ·δudΩ≥ 0

(5.10)
where εe has been expressed in (2.12) and

σ =
∂ψe

∂εe = g(d)Cα (α)ε
e. (5.11)

Then, the following results stem out:

• For δ p = δd = δα = 0, we obtain (2.14).

• For δd = δα = 0 and δu = 0, we obtain (2.15)-(2.17).

• For δ p = δα = 0 and δu = 0, we obtain (2.18) and (2.19).

• For δ p = δd = 0 and δu = 0, we obtain:

∫
Ω

(
∂ψe

∂α
+

∂ψα

∂α

)
δαdΩ≥ 0 (5.12)

which is the weak form of the damage criterion. In local form, it can be expressed as:

Fα(α) =−
(

∂ψe

∂α
+

∂ψα

∂α

)
≤ 0 in Ω. (5.13)

5.2.2.3 Energy balance

Similarly than in Chapter 2, the consistency conditions for plasticity, bulk damage and
interfacial damage are obtained as:

F p(p)ṗ = 0, Fd(d)ḋ = 0, Fα(α)α̇ = 0. (5.14)

5.2.2.4 Alternate minimization

With a similarly staggered alternate minimization algorithm in Chapter 2, the weak forms
for displacement problem, plastic problem, bulk fracture problem and interfacial damage
problem are obtained:

• Minimization with respect to the displacement field, the weak form for displacement
problem as in (2.24) is obtained.

• Minimization with respect to the equivalent plastic strain p, the weak form for plastic
problem as in (2.25) is obtained.
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• Minimization with respect to the bulk fracture d, the weak form for bulk fracture
problem as in (2.26) is obtained.

• Minimization with respect to the interfacial damage α:

DδαW (u, p,d,α) =
∫

Ω

(
∂ψe

∂α
+

∂ψα

∂α

)
δαdΩ = 0, (5.15)

which is the weak form for interfacial damage problem.

More specifically, the staggered procedure to solve the four problems is summarized in
Table 5.1.

Table 5.1 Problems to be solved in the staggered procedure

Displacement problem and plastic problem: given d and α , solve for u:∫
Ω

σ : εe (δu)dΩ−
∫

∂ΩF
F ·δudS−

∫
Ω

f ·δudΩ = 0

σ = g(d)Cα (α)εe

F p(p) =
√

3
2 ∥s∥− (σY +H p)≤ 0

ε̇
p = ṗ

√
3
2

s
∥s∥ with ṗ≥ 0

Bulk fracture problem: given u and α , solve for d:∫
Ω

[(
2H (u)+ gd

c
ℓd

)
dδd +gd

cℓd∇dωd∇(δd)
]

dΩ =
∫

Ω
2H (u)δddΩ

H (u) = max
s∈[0,t]

ψe
0 (u,s) with ψe

0 = 1
2εeCα (α)εe

Interfacial damage problem: given u and d, solve for α:∫
Ω

[
1
2g(d)εe ∂Cα

∂α
εe +

gα
c
ℓα

αδα +gα
c ℓα∇αωα∇(δα)

]
dΩ = 0.

5.3 Construction of Cα (α) based on a numerical homoge-
nization method

A major difficulty for this proposed model is to determine the influence of interfacial damage
evolution on the elasticity matrix Cα (α) in (5.8). In this section, we propose a novel
approach to construct Cα (α) based on a numerical homogenization method.
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Fig. 5.2 (a) 3D printed material in the frame (e1,e2); (b) Representative volume element
geometry and FE mesh.
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Fig. 5.3 The degradation function G(α) for various parameter χ .

We consider a 3D printed material in the frame (e1,e2), as described in Fig. 5.2(a). An
RVE with FE mesh is shown in Fig. 5.2(b), where the blue mesh corresponds to the layers
and the red mesh corresponds to an interface between two layers. In order to simulate the
degradation of the interface domain caused by the evolution of interfacial damage, we define
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the Young’s modulus EI for interface mesh as

EI(α) = G(α)E, G(α) =
(1−α)2

χ− (χ−1)(1−α)2 with χ ≥ 1, (5.16)

where the degradation function G(α) is found from [6]. Fig. 5.3 shows the performance of
G(α) with different parameter χ . The Poisson’s ratio νI for interface mesh is assumed as
νI = ν .

With the plane stress assumption, the elasticity matrix for the interface mesh can be
expressed as

CI (α) =
EI(α)

1−ν2
I

 1 νI 0
νI 1 0
0 0 1−νI

2

 . (5.17)

5.3.1 Strain approach

A localization problem based on strains, i.e., assuming that the RVE is subjected to a
homogeneous strain field is used here. An effective elasticity tensor is computed for each
given value of α , which defines the local elasticity tensor in the RVE C0(x) according to
(5.21). Then, the displacement solution of the localization problem can be expressed as [186]

u(x) =
[

u(11)(x) u(22)(x) u(12)(x)
]

︸ ︷︷ ︸
U

 ε11

ε22

2ε12


︸ ︷︷ ︸

[ε]

, (5.18)

where [ε] is the macroscopic strain of the RVE in vector form, and u(i j)(x) is the FEM
solution of the localization problem for the corresponding macroscopic strain component
ε i j =

[
1 0; 0 0

]
,
[

0 0; 0 1
]

and
[

0 1
2 ; 1

2 0
]
, prescribed through periodic

boundary conditions over the nodes of the external boundary of the RVE mesh. A detailed
description on how to prescribe the periodic boundary conditions is provided in Section 5.3.2.

Then in each element, we can obtain the stress:

[σ(x)] = C(x)B(x)Ue [ε] , (5.19)

where C(x) is the elasticity matrix for plane stress conditions, and B(x) is a matrix of
displacement shape function derivatives, and Ue is the element component of U. With the
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spatial average of (5.19), we obtain macroscopic stress of the RVE in vector form

[σ ] =

 1
V

∫
Ωe

C(x)B(x)UedΩ
e︸ ︷︷ ︸

C0

 [ε] , (5.20)

where
C0

=
1
V

∫
Ωe

C(x)B(x)UedΩ
e (5.21)

is the effective elasticity matrix.
Then, we can obtain Cα (α) through polynomial fitting of the evolution of C with respect

to the interfacial damage α ∈ [0,1]. A detailed numerical example on specialization of Cα

is provided in Section 5.5.1. For an arbitrary rotation angle θ , the final effective elasticity
tensor is given by

Ci jkl(θ) = Rip(θ)R jq(θ)Rkr(θ)Rls(θ)C0
pqrs, (5.22)

with

R(θ) =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (5.23)

5.3.2 Periodic boundary conditions

In this section, we detail how to prescribe the periodic boundary conditions over the nodes of
the external boundary of the RVE mesh. Compared to other types of boundary conditions, it
ensures that the obtained effective properties converge with respect to a single periodic cell.

Considering two nodes m and n on opposite faces of the RVE, the displacements on the
two nodes have the forms:

ui(xm) = ε i jxm
j + ũi(xm) (5.24)

and
ui(xn) = ε i jxn

j + ũi(xn). (5.25)

As the fluctuation ũ is periodic on ∂Ω, we have

ũi(xm) = ũi(xn). (5.26)
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Then, we can obtain
ui(xm)−ui(xn) = ε i j(xm

j − xn
j). (5.27)

Based on a technique of Lagrange multipliers to ensure the constrained minimization
problem, we can add the periodicity constraints in (5.27) into the linear system for displace-
ment solving as (see [186] for more details):[

K PT

P 0

][
u
Λ

]
=

[
0
R

]
(5.28)

where K is the stiffness matrix obtained after discretization of the elastic problem in Section
5.3.1 before prescribing the Dirichlet boundary conditions, P is a matrix relating the coupled
nodes indices to the whole set of nodes indices, Λ is the vector of Lagrange multipliers
associated with the periodicity constraints, and R is the vector containing ε i j(xm

j − xn
j) for all

coupled nodes.
It should be noted that four nodes on the corners in Fig. 5.2(b) should be prescribed

through kinematically uniform boundary conditions to prevent matrix singularity when
solving (5.28).

5.4 Numerical implementation

In this section, we detail the FEM discretizations for displacement, bulk damage and interfa-
cial damage problems.

5.4.1 Displacement problem

We refer to sections 2.2.3.1 and 2.2.3.2, where the procedure is identical than for the present
problem.

5.4.2 Bulk damage problem

The discretization of bulk damage problem in Table 5.1 results into the following discrete
system of equations:

Kdd = Fd (5.29)

in which

Kd =
∫

Ω

[(
2H +

gd
c
ℓd

)
NT

d Nd +gd
cℓdBT

d ωdBd

]
dΩ (5.30)
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and
Fd =

∫
Ω

2NT
d H dΩ, (5.31)

where H is given in Table 5.1.

5.4.3 Interfacial damage problem

The discretization of interfacial damage problem in Table 5.1 results into the following
discrete system of equations:

Kαα +Fα(α) = 0 (5.32)

in which

Kα =
∫

Ω

(
gα

c
ℓα

NT
d Nd +gα

c ℓαBT
d ωαBd

)
dΩ (5.33)

and
Fα(α) =

∫
Ω

1
2

g(d)εe ∂Cα

∂α
ε

edΩ. (5.34)

Note that in general, (5.32) is a nonlinear problem and must be solved through a standard
Newton-type iteration as used in Section 2.2.3.2. In section 5.5.1, we will fit a quadratic
model to the components C(α) to keep (5.32) linear.

In the present work, a staggered scheme is employed, where at each load increment
the displacement problem is solved for fixed bulk and interfacial damage field which is
known from the previous time step. The bulk damage problem is then solved with the new
displacement field and previous interfacial damage field. Finally, the interfacial damage
problem is solved with the new displacement field and bulk damage field.

5.5 Numerical examples

For all of the following numerical examples, a mesh of 4-node quadrilateral elements and
plane stress assumption has been used. The material parameters for layer are as follows
(unless otherwise stated): E = 10 GPa, ν = 0.25, σY = 0.08 GPa and H = 0.1 GPa. The
fracture toughness for bulk fracture and interfacial damage are gd

c = 2×10−3 kN/mm and
gα

c = 1× 10−3 kN/mm, respectively. The length scale parameters for bulk damage and
interfacial damage are ℓd = ℓα = 0.2 mm. ξα = ξd = 30 is used.
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5.5.1 Specialization of Cα

As mentioned above, to maintain the problem related to α as linear, we introduce a quadratic
fit of the different components of C(α). Here the material parameters of the interface
elements in Fig. 5.2(b) have been defined in Section 5.3 as: EI(α) = G(α)E and νI = ν .
The effective elasticity matrix is computed by the above procedure as shown in Section 5.3.
The evolution of the different effective components are depicted in Fig. 5.4. We can see that
the effective elasticity components C12, C22 and C33 decrease to zero when α = 1, and the
effective elasticity component C11 decreases slightly to a nonzero constant when α = 1.

(a) (b)

(d)(c)

(a) (b)

(d)(c)

Fig. 5.4 Evolution of C with respect to the interfacial damage α .

In order to ensure the properties: (i) 0≤ α ≤ 1 and (ii) α → 1 for H → ∞ when solving
(5.32), a second-order function as

Ci j(α) = a1 +a2(1−α)2 (5.35)
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is employed to interpolate the evolution of the effective elastic components which are thought
as a function of α , as shown in Fig. 5.4, where the Cα is obtained as

Cα (α) = C(α) =

 8.999+1.668(1−α)2 2.667(1−α)2 0
2.667(1−α)2 10.667(1−α)2

0 0 4(1−α)2

 . (5.36)

It can be seen that the interpolation function (5.35) still can provide a very satisfying
performance in fitting the computing data when χ = 10, especially for the effective elasticity
components C12, C22 and C33.

5 mm
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U
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5
 m

m

Fig. 5.5 One-notch square plate: the geometry and boundary conditions.

5.5.2 One-notch square plate

In this example, we investigate this proposed model with an one-notch square plate, as
shown in Fig. 5.5. The boundary conditions are as follows: on the lower end (y = 0), the
y-displacement are fixed, while the x-displacement are free and the node (x = 0,y = 0) is
fixed. On the upper end, the x-displacement are free, while the y-displacement are prescribed
to an increasing value of U with ∆U = 5×10−4 mm during the simulation.

Fig. 5.6 shows the load-displacement curves for different layer directions. It can be seen
that the curves for θ = 0◦ and θ = 30◦ are very close, and the curve for θ = 60◦ shows a
higher peak load and the three curves all do not perform a significant plastic stage, while
for θ = 90◦ the curve shows a long plastic stage before the final failure of the plate. Fig.
5.7 shows the final interfacial damage and bulk crack for different layer directions. We
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can see that, for θ = 0◦ and θ = 30◦, the directions of interfacial crack are the same to the
layer directions, and the final failure of the plate is caused by the evolution of the interfacial
damage. For θ = 60◦, the interfacial crack and bulk crack both occur, while the failure of
the plate is mainly caused by the evolution of the interfacial damage (when the interfacial
crack reaches the top boundary, the bulk crack initiates and propagates vertically to the layer
direction causing the final failure of the plate). For θ = 90◦, after a long plastic stage, the
evolution of the bulk crack perpendicular to the layer direction causes the final failure of the
plate.
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Fig. 5.6 One-notch square plate. Load-displacement curves for different layer directions.

We can note that the present model is able to describe an elastoplastic-damage model
when the sample is loaded in one direction, while the response if quasi-brittle in the other
direction.

5.5.3 Two-notch specimen

In this next example, we investigate this proposed model with a two-notch specimen, as
shown in Fig. 5.8(a). The boundary conditions are same to the example in Section 5.5.2.
The spatial discretization of the model comprises 10,803 4-node quadrilateral elements, with
refinement in the central region where the crack is expected to propagate (see Fig. 5.5.2(b)).

The load-displacement curves for different layer directions are shown in Fig. 5.9. We
can see that the peak load increases with the rise of layer directions, and the curves for
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all four layer directions do not show a significant plastic stage. Fig. 5.10 shows the final
interfacial damage and bulk crack for different layer directions. It can be seen that when
θ = 0◦, θ = 30◦ and θ = 60◦, the failure of the structure is mainly caused by the evolution
of the interfacial crack, and for θ = 90◦ the bulk crack perpendicular to the layer direction
causes the final failure of the structure.

(a)

(b)

(d)

(c)

Fig. 5.7 One-notch square plate. Final interfacial damage and bulk crack for different layer
directions.
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Fig. 5.8 Two-notch specimen: (a) geometry and boundary conditions; (b) finite element
model.
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Fig. 5.9 Two-notch specimen. Load-displacement curves for different layer directions.
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(a) (b)

(d)(c)

Fig. 5.10 Two-notch specimen. Final interfacial damage and bulk crack for different layer
directions.

5.5.4 Two-hole specimen

In this last example, we investigate this proposed model with a relatively complex structure,
e.g., a structure with two asymmetric holes, as shown in Fig. 5.11(a). The boundary
conditions are same to the example in Section 5.5.2. The spatial discretization of the model
comprises 13,839 4-node quadrilateral elements, with refinement around the holes where the
crack is expected to propagate, see Fig. 5.11(b).

Fig. 5.12 shows the load-displacement curves for different layer directions. It can be seen
that compared to the curves for θ = 0◦, θ = 30◦ and θ = 60◦, the curve for θ = 90◦ shows
a plastic stage before the final failure of the structure. Fig. 5.13 shows the final interfacial
damage and bulk crack for different layer directions. We can see that the bulk cracks and
interfacial cracks both initiate from the hole notches, and the evolution of interfacial cracks
cause the final failure of the structure for θ = 0◦, θ = 30◦ and θ = 60◦, and for θ = 90◦ it is
the bulk crack perpendicular to the layer direction that causes the final failure of the structure.
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As a conclusion, we can note that the present model is able to describe a complex anisotropic
response of a layered structure, differentiating quasi-brittle and elastoplastic dmage behavior
according to the layer direction, even in complex geometries.
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Fig. 5.11 Two-hole specimen: (a) geometry and boundary conditions; (b) finite element
model.
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Fig. 5.12 Two-hole specimen. Load-displacement curves for different layer directions.
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(a) (b)

(d)(c)

Fig. 5.13 Two-hole specimen. Final interfacial damage and bulk crack for different layer
directions.

5.5.5 Removing constraint on the bulk crack direction

In this section, the model without constraining the bulk crack direction is investigated by
simply setting ξd = 0 in (5.4). In order to delay the initiation of the bulk crack and let
the results be more reasonable, a new fracture toughness gd

c = 4× 10−3 kN/mm is used.
The results for one-notch square plate are shown in Fig. 5.14 and 5.15. For the two-notch
specimen and the two-hole specimen, the length scale parameters for bulk damage and
interfacial damage are ℓd = ℓα = 0.4 mm. The results for these two specimens are shown in
Fig. 5.16-Fig. 5.19.

As can be seen from Fig. 5.14 and 5.15, the cracks in Fig. 5.15 are very similar to the
results in Fig. 5.7 except that the bulk crack for θ = 60◦ is not vertical to the layer direction.
Compared to Fig. 5.6, the curve in Fig. 5.14 for θ = 90◦ shows a long softening stage after
the peak force, unlike in Fig. 5.6, where the curve has a sharp degraded process, inducing
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Fig. 5.14 One-notch square plate. Load-displacement curves for different layer directions
with ξd = 0.

more dissipation. Then, removing the bulk crack direction constraint allows more flexibility
when identifying elastoplastic-damage processes.

The results in Fig. 5.16 and 5.17 are very similar to the results in Fig. 5.9 and 5.10, here
we do not talk about them. In Fig. 5.19, it can be seen that for θ = 90◦, the failure of the
sample is caused by both the interfacial cracks and the bulk crack, unlike the results in Fig.
5.13.

5.6 Conclusion

In this chapter, a phase field model for anisotropic, elastoplastic damage model of crack
propagation in layered 3D printed structures has been proposed. As compared to available
anisotropic phase field models for fracture available in the literature, we have introduced two
main contributions. First, we have extended the phase field anisotropic models for fracture to
elastoplastic behaviors, which is done here for the first time, to our best knowledge. Secondly,
the elasticity density function is identified from numerical calculations on an RVE. We have
uses a quadratic fit for the different elasticity components with respect to the layer damage
variable, which maintains the linearity of the problems in the staggered procedure. As a
result, the procedure allows describing different damage behaviors according to the local
strain field with respect to a given orientation of the 3D printed layered structure, quasi-
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brittle, elastoplastic with damage, or a combination of both in complex configurations. A
short perspective of this work will be the identification of the model and its validation on
experimental 3D printed layered samples.

(a)

(b)

(d)

(c)

Fig. 5.15 One-notch square plate. Final interfacial damage and bulk crack for different layer
directions with ξd = 0.
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Fig. 5.16 Two-notch specimen. Load-displacement curves for different layer directions with
ξd = 0.

(a) (b)

(d)(c)

Fig. 5.17 Two-notch specimen. Final interfacial damage and bulk crack for different layer
directions with ξd = 0.
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Fig. 5.18 Two-hole specimen. Load-displacement curves for different layer directions with
ξd = 0.

(a) (b)

(d)(c)

Fig. 5.19 Two-hole specimen. Final interfacial damage and bulk crack for different layer
directions with ξd = 0.





Chapter 6

Micro cracking simulations in
image-based models of 3D-printed
composite microstructures

6.1 Introduction

In this chapter, we investigate crack propagation in realistic microstructures obtained by
segmented images arising from X-Ray micro-tomography (XR-µCT) images. More specif-
ically, the material is a 3D printed composite, with polymer matrix, and embedding glass
fibers. The material is obtained by Selective Laser Sintering (SLS) of PA12 polymer powder
embedding glass fibers and additive particles. This material is investigated within the ANR
MMELED Project, whose objective is to understand the damage mechanisms in 3D printed
composites used in aircraft industry. The samples have been provided by Weare Aerospace
Company. An experimental analysis conducted at Navier Laboratory (M. Bornert, T.X. Le
and P. Aimedieu) has shown that the material was composed of 5 phases, including: the
polymer (PA12) matrix, glass fibers, pores, iron particles and additive particles, which could
be flame retardant (see Fig. 6.1). The objective of this chapter is to show the capability of
the elastoplastic phase field model developed in this thesis to conduct crack propagation
simulations in realistic image-based models of microstructures, and to provide preliminary
results regarding the sensitivity of the response of the Representative Volume Element with
respect to material parameters and ortientation of the microstructures.
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 particle
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matrix
(PA12)

(a) (b)

Fig. 6.1 3D printed polymer composite: (a) sample (b) XR-µCT image (grey image) of its
microstructure.

6.2 Obtaining realistic microstructures by XR-µCT

In this section, we briefly describe the procedure used to obtain the realistic microstruc-
tural model used in the simulations from XR-µCT. The tomography and segmentation
processes are introduced in Section 6.2.1 and 6.2.2 respectively. Section 6.2.3 introduces the
construction of the finite element mesh.

4.2. Preliminary test on an EPS concrete sample 105

beam. Those radios are used by a reconstruction software to obtain a three dimensional image,
which represents the heterogeneous distribution of µ. A schematic illustration of an XR-CT
experiment setup is depicted in Fig. 4.3.

Figure 4.3: Schematic illustration of the in-situ compression test in a XR-CT device

The CT images of this work were captured on the XR-CT laboratory scanner available at
Laboratoire Navier (Ultratom from RX-Solution) using a micro-focus source Hamamatsu L10801
(230 kV, 200 W, 5 µm) and a “flat-panel" imager Paxscan Varian 2520 V (1920x1560 pixels,
pixel size 127 µm). The hollow rotation stage is able to support heavy samples (up to 100 kg)
and was designed to receive in-situ experiments. A view of the in-situ experiments realized on
the laboratory tomograph is depicted in Fig. 4.4.

Figure 4.4: Global view of in-situ compression test combined with XR-CT at Laboratoire Navier

The XR-CT images are reconstructed by using the GPU-based reconstruction software Xact
developped by the RX solutions. Some filters may be used to correct some artifacts as ring
artifacts.

Fig. 6.2 Schematic illustration of the in-situ compression test in a XR-µCT device. [123].
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(a)

(b)

X-Ray source

Sample

In-situ machine

CCD

Fig. 6.3 (a) In-situ compression machine and (b) in-situ compression test combined with
XR-µCT at Laboratoire Navier.
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6.2.1 Tomography

Nowadays XR-µCT is widely developed for material science. This nondestructive technique
is used for visualizing interior features of solid materials or structures, and for obtaining
information on their 3D geometries. The XR-µCT is based on X-ray radiography: an X-ray
beam is sent on the sample and the transmitted beam is recorded on a detector. The ratio of
the number of transmitted to incident photons, according to Beer-Lambert law, is related to
the integral of the absorption coefficient of the material µ along the path that the photons
follow through the sample:

I = I0 exp(−µx) , (6.1)

where I0 and I are the initial intensity of X-rays and the X-ray intensity measured after
crossing the object, respectively. In Eq. (6.1) x is the path length of the X-rays through
the object and µ is the linear attenuation coefficient. X-ray absorption is a function of the
nature of the atoms constitutive of the material and their number as well as the energy of
the rays. Using the detector which is generally a combination of a scintillator (a system that
converts X-ray energy into visible light) and a CCD sensor in modern tomographs, we can
record a series of radiographs corresponding to various angular positions of the sample in
the beam. Those radios are used by a reconstruction software to obtain a three dimensional
image, which is related to the heterogeneous distribution of µ . A schematic illustration of an
XR-µCT experiment setup is depicted in Fig. 6.2.

The CT images of this work were captured on the XR-µCT laboratory scanner available
at Navier Laboratory (Ultratom from RX-Solution) by Prof. Michel Bornert, Dr. Thi Xiu Le
and P. Aimedieu, through a collaboration within the ANR MMELED project. A view of the
in-situ experiments conducted on the laboratory tomograph is depicted in Fig. 6.3.

6.2.2 Segmentation

As shown in Fig. 6.1(b), the 3D printed polymer composite specimen is composed of five
phases: a polymer PA12 matrix, pores, glass fibers, iron and additive particles. The detailed
segmentation procedures for these five phases is described as follows:

• Grey images are attributed to pure phases (5 phases) and interphase phases (10 phases).
Volume fractions of each phase is evaluated. The reader is referred to [86] for more
details of this procedure.

• Each fiber particle, including pure phase and surrounding interphase, is represented by
equivalent parallelepiped by considering the partial volume effect.
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• Some voxels are added around pure pores, iron and additive particle phases under the
constraint of their volume fractions, and the remaining voxels are added to the pure
matrix phase.

An example of 2D segmented result is shown in Fig. 6.4.

Segmented image

pore

glass 
fiber

matrix

additive 
particle

iron particle

(a) (b)

Fig. 6.4 (a) Grey image and (b) Segmented image.

6.2.3 Construction of the microstructural mesh

In this work, a software was used to construct unstructured meshes where the interfaces
are explicitly meshed, from the voxel-based images. Today several softwares are capable
to perform such task automatically, like e.g. Cgal, Tetgen, Iso2mesh and AVIZO, among
others. In the present work, through a collaboration with LEM3 Lab., Lorraine University
(M. Nouari, B. Haddag, H. Makich), the Avizor software has been used to construct a mesh
from the previous CT images, see Fig. 6.5, where pore phases were not meshed. Examples
of simulations using this unstructured mesh are presented in Section 6.3.
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Fig. 6.5 (a) Whole mesh model; (b) mesh model for glass fibers (green), iron particles (grey)
and additive particles (blue); (c) mesh model for iron particles (grey) and additive particles
(blue).
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Table 6.1 Material parameters used in the numerical simulations

Name Symbol Matrix Fiber Iron Additive Unit

Young’s modulus E 1.7 55 120 3 GPa
Poisson’s ratio ν 0.32 0.25 0.3 0.25 [−]

Yield stress σY 0.1 − − − GPa
Hardening modulus H 0.25 − − − GPa
Fracture toughness gc 7 60 500 10 N/mm

Z

X

Y

U

a b c

Z

X Y

(a) (b) (c)

Fig. 6.6 Traction test of a microtomography image-based polymer composite sample in
3D: (a) Sample; (b) geometry of the sub-volume extracted from the sample and boundary
conditions; (c) whole mesh model (see Fig. 6.5 for more details).

6.3 Numerical simulations

In this section, the above realistic microstructural models (see Fig. 6.6) are used to conduct
crack propagation simulations. Note that even though experimental in-situ results are readily
available, at the time this chapter is written we lacked time to perform rigorous comparisons
between experiments and simulations. Then, we only present simulations where the boundary
conditions do not represent the conditions in the experiments. The objective here is more
to demonstrate the capability of such model to represent complex fracture mechanisms in
realistic microstructures rather that to provide direct comparisons with experiments. Such
comparisons are reported to future short-term works.
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The dimensions of the microstructure are a= b= c= 4 mm. The boundary conditions are
as follows: on the lower end (z = 0), the (x,y,z)-displacements are fixed. On the upper end,
the (x,y)-displacements are free, while the z-displacements are prescribed to an increasing
value of U with ∆U = 5×10−4 mm during the simulation. The mesh model has 697,659
tetrahedral elements. The material parameters are taken from the literature and are detailed
in Table 6.1, here the matrix (PA12) is thought as an elastoplastic brittle fracture behaviour,
and the glass fiber, iron and additive particles are thought as elastic brittle fracture behavior.
The regularization length is taken as ℓ= 0.05 mm.

Fig. 6.7 shows the load-displacement curve for the 3D microstructure problem in tension.
We can see that the curve has an obvious plastic hardening stage before the final failure of
the microstructure. The corresponding cracks are depicted in Fig. 6.8. Here for the sake of
clear visualization, only the crack phase field with values higher than 0.9 is plotted. For the
sake of clarity, we plot the crack path within several planes. The results are depicted in Fig.
6.9. We observe that the crack initiates from the boundaries of the pores, and then propagates
into the matrix, surrounding the particles and fibers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Displacement [mm]

0

0.4

0.8

1.2

1.6

2

L
o

ad
 [

k
N

]

(b)(a)

(c)

(d)

Fig. 6.7 The load-displacement curve for the 3D microstructure problem in tension.
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Fig. 6.8 Traction test of a microtomography image-based polymer composite sample in 3D.
Evolution of the crack phase field for an applied traction displacement U : (a) U = 0.45 mm,
(b) U = 0.5 mm, (c) U = 0.55 mm and (d) U = 0.65 mm. The yellow, green, grey, blue and
red refer to the PA12 matrix, the glass fiber, the iron particle, the additive particle and the
crack, respectively.
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Fig. 6.9 Crack phase field for U = 0.65 mm in different planes: (a) x = 3 mm, (b) x = 2 mm,
(c) x = 1 mm, (d) y = 1 mm, (e) y = 2 mm and (f) y = 3 mm.
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Fig. 6.10 Comparison of load-displacement curves for different gm
c .
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Fig. 6.11 Crack phase fields for (a) gm
c = 5 N/mm, (b) gm

c = 6 N/mm (c) gm
c = 7 N/mm. The

yellow, green, grey, blue and red refer to the PA12 matrix, the glass fiber, the iron particle,
the additive particle and the crack, respectively.

This complex and realistic elastoplastic example has been run on a Matlab code and
on a workstation with 24 cores, 768 Go Ram and 2.70 GHz processor. The computational
time is about 168 h (only 12 cores in this workstation were used). It should be noted that
the assembly of the different matrices (e.g. Ktan in (2.51) and Kd in (2.55)) is parallelized
[47], and an iterative Biconjugate gradient stabilized solver [150] was used to solve the
largest systems (2.50) and (2.54). Each assembly of the different matrices only costs several
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seconds, and most of computational time (about 95% of total time) was used to solve the
largest system (2.50).

To investigate the effect of the fracture toughness of matrix (gm
c ), two additional sim-

ulations are conducted with gm
c = 5 N/mm and gm

c = 6 N/mm respectively. The load-
displacement curves are shown in Fig. 6.10. The different crack phase fields are shown in
Fig. 6.11. It can be observed that an increase of gm

c increases the plastic hardening stage and
delays the initiation of crack.

We can then observe that the different gm
c do not have a significant influence on the

response of curve after the peak load, and the final crack phase fields are very similar, as
shown in Fig. 6.11.

(a)

(b)

crack/pore

crack/pore

fiber

iron

additive

Fig. 6.12 Comparison of crack in (a) grey images obtained from in-situ tests and (b) numerical
simulation (“y-direction” in the following).
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To illustrate the capability of the proposed model to describe qualitatively the local
damage mechanisms in the 3D printed polymer-glass fibers composite, a comparison of crack
obtained from in-situ tests and numerical simulation is performed in Fig. 6.12. The in-situ
test, conducted by Xiu Le and Michel Bornert at Navier Lab. involves the compression of a
cylindrical sample. For the sake of brievety and due to the fact that the next results do not
intend to provide rigorous comparisons between simulations and experiments, the details
of this test are reported to a separated work. After a given load, buckling occurs and lateral
cracking is observed due to a state of local tension during the bending of the sample. The
simulation involves a pure tension test of the cubic RVE. Then, the mechanical state is not
exactly the same than in the experiment. In addition, the geometry of the microstructure is
also not in the same location of the sample. From Fig. 6.12(a), it can be seen that the cracks,
which surround the particles and glass fibers and connect the existing pores, cause the final
failure of microstructures. The simulations in Fig. 6.12(b). provide a qualitative comparison,
where we can note that local microcracks also merge to form a macro crack.
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Fig. 6.13 Comparison of load-displacement curves for different loading direction.

Finally, we investigate the effects of the printing orientation to the mechanical response
of the microstructure. Then, two additional simulations with gm

c = 7 N/mm are performed:
(i) in the first one, called “y-direction”, the boundary conditions are as follows: on the plane
y = 0, the (x,y,z)-displacements are fixed, on the plane y = max(y), the (x,z)-displacements
are free, while the y-displacements are prescribed to an increasing value of U , and (ii) in
the second one, called “x-direction”, the (x,y,z)-displacements are fixed on the plane x = 0,
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on the plane x = max(x), the (y,z)-displacements are free, while the x-displacements are
prescribed to an increasing value of U . Fig. 6.13 shows the comparison of load-displacement
curves for different loading direction. We can see a clear effect of the orientation from the
numerical simulations on the mechanical response. First, the effective elastic moduli are
different. Then, according to the ortientation, different plastic stage and different damage
response are found. This can be explained by the fact that the 3D-printed material has an
anisotropic microstructure due to the manufacturing process: (a) the fibers are oriented in
the plane associated with each layer during the laser sintering process and (b) after each
path of the laser, a roller compress the powder and then induces a preferential orientation
of the fibers in the plane of the layer. We can see that such model where the microstructure
directly arises from the experimental XR-µCT allows capturing such anisotropic effect on
the mechanical response.

6.4 Conclusion

In this chapter, we have conducted crack propagation simulations in image-based models of
realistic microstructures from 3D printed polymer-glass fibers composite. The elastoplastic
phase field model developed in Chapter 2 has been employed. Due to lack of time, we were
not able to perform quantitative comparisons with in-situ tests. However, our contribution in
this chapter was to conduct crack propagation in elastoplastic microstructures with realistic
geometries arising from XR-micro CT images, and to show that we could qualitatively repro-
duce some complex microstrutural damage mechanisms such as diffuse crack interactions
merging into more macro cracks and caputuring the effects of the anisotropic microstructure
induced by the manufacturing process. More rigorous comparisons with in-situ experiments
are reported to short-term perspective of this thesis work.

Computationally, we have observed that even though the assembly of the different
matrices is parallelized, and an iterative Biconjugate gradient stabilized solver was used to
solve the largest systems, such simulations still remain computationally highly demanding.
Here most of computational time about 95% of total time was used to solve the linear system
of FEM equations. We believe that there remains significant room for improvement in term
of time reduction, by employing e.g. parallel solving of the linear system. Several solutions
could be explored, like AMG (Algebraic Multigrid method) [182, 25].
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Fig. 6.14 Crack phase fields for different loading direction: (a) z-direction, (b) y-direction
and (c) x-direction. The yellow, green, grey, blue and red refer to the PA12 matrix, the glass
fiber, the iron particle, the additive particle and the crack, respectively.





Chapter 7

Conclusions and perspectives

7.1 General conclusions

In the present thesis work, we have investigated the modeling of crack propagation in quasi-
brittle and elastoplastic micro-structured materials. The main contributions deal with the
development of interfacial damage within elastoplastic phase field crack models, topology
optimization of heterogeneous materials with respect to crack resistance in quasi-brittle
and elastoplastic composites, modeling of cracks in 3D printed materials using anisotropic
phase field models, and modeling of cracks in image-based models of elastoplastic 3D
printed composite microstructures. The detailed contributions developed in this thesis are
summarized as follows.

First, in Chapter 2, we have validated available elastoplastic phase fields models for crack
propagation with respect to experimental results on original configurations. We have then
extended the elastoplastic brittle phase field method to consider interfacial damage. For
this purpose, the energetic formulation has been modified by adding: (i) a strain density
depending of the displacement jump related to matrix/inclusions decohesion; (ii) a modified
description of the total energy involving a regularized approximation of the singular strain
part along the interfaces and (iii) the use of a regularized description of interfaces through
diffuse weighting functions which are introduced in the energetic formulation to differentiate
the bulk and interfacial damage mechanisms. In that manner, different damage mechanisms
can be associated with interfaces as compared to the bulk.

In Chapter 3, we have proposed for the first time a framework combining SIMP topology
optimization and phase field method to maximize the fracture resistance of composites
(two-phase materials) structures. It has been demonstrated that the continuous density
representation obtained by the SIMP method allows a good convergence of the scheme and
improves the fracture resistance of a structure embedding a reinforcement phase (inclusion)
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for a fixed volume fraction. 2D and 3D applications have been presented, involving a complex
3D application with 1,176,000 eight-node cubic elements. Such 3D application can be dealt
with owing to the fast convergent process of the proposed SIMP topology optimization
framework.

In Chapter 4, we have developed a topology optimization procedure for maximizing the
fracture resistance of elastoplastic composites. A plasticity gradient phase field model with
damage-plasticity coupling has been applied to better constrain the damage zone within the
plastic zone. Interfacial damage has been taken into account through a regularized description
of interfaces. We have then combined it with a topology optimization for maximizing the
fracture resistance of elastoplastic composites for the first time to our best knowledge.

In Chapter 5, with the aim of modeling 3D printed layered polymer-glass fibers compos-
ites, a phase field model for anisotropic, elastoplastic damage model of crack propagation
has been proposed. The added-value as compared to available anisotropic phase field models
for fracture is as follows: first, we have extended the anisotropic phase field models for
fracture to elastoplastic behaviors, which is done here for the first time, to our best knowledge.
Secondly, the elastic strain density function is here identified from numerical calculations
on an RVE. We have used a quadratic fit for the different components of the elastic tensor
with respect to a layer damage variable, which maintains the linearity of the problems in the
staggered procedure.

Finally in Chapter 6, we have investigated the crack propagation in microstructural models
obtain from experimental images of elastoplastic 3D-printed polymer composite, by using
the elastoplastic phase field model introduced in Chapter 2. The studied polymer composite
has five phases: matrix (PA12), glass fibers, pores, iron particles and additive particles. The
image-based model in this work has been constructed by XR-µCT and can be used to define
position and geometry of each phase within the microstructure. The preliminary calculations
have provided encouraging results which will be the basis for future studies, with the aim to
characterize and understand the damage mechanisms in 3D-printed composites.

7.2 Perspectives

There are many potential research directions from the results and methodologies developed
in this work, which are listed as follows:

• The elastoplastic brittle phase field model presented in Chapter 2 could be extended
by employing a Drucker–Prager type plasticity model to simulate elastoplastic brittle
fracture in pressure-sensitive geological materials. In the present work, we have used a
von Mises yield criterion which is a pressure insensitive yield criterion.
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• In the present topology optimization work, the damage and plasticity constraints are
taken into account implicitly as the regularized fracture and plasticity problem are
solved in a staggered solving procedure. These two constraints are not explicitly used
in the sensitivity analysis process. Thus, developing a new framework to explicitly
use these two constrains in the sensitivity analysis is another possible extension of this
work.

• The constructed phase field model for anisotropic, elastoplastic damage model of
crack propagation in layered 3D printed structures still requires identification and
validation from experiments. Such study combining the present numerical simulations
and experiments on 3D-printed samples of composites is a short-range perspective of
this work.

• Combining XR-µCT images and in-situ experimental tests to identify and validate
crack propagation in elastoplastic models of 3D-printed microstructures is another
challenging and exciting follow-up of this work. Using the developed microstructural
models, direct comparisons of crack paths could be conducted between simulations and
in-situ tests, using techniques developed in previous studies like e.g. using sub-volume
method, image-correlation techniques and inverse approaches (see e.g. [126]).

• Finally, a longer-term perspective will be to identify damage models for 3D-printed
composites, and use them in topology optimization procedures to design new materials
and structures with tailored mechanical and physical properties, including resistance to
damage.
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