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�Il faut être toujours ivre. Tout est là : c'est l'unique question. Pour ne pas sentir

l'horrible fardeau du Temps qui brise vos épaules et vous penche vers la terre, il faut

vous enivrer sans trêve.

Mais de quoi ? De vin, de poésie ou de vertu, à votre guise. Mais enivrez-vous.

Et si quelquefois, sur les marches d'un palais, sur l'herbe verte d'un fossé, dans

la solitude morne de votre chambre, vous vous réveillez, l'ivresse déjà diminuée ou

disparue, demandez au vent, à la vague, à l'étoile, à l'oiseau, à l'horloge, à tout ce qui

fuit, à tout ce qui gémit, à tout ce qui roule, à tout ce qui chante, à tout ce qui parle,

demandez quelle heure il est ; et le vent, la vague, l'étoile, l'oiseau, l'horloge, vous

répondront : � Il est l'heure de s'enivrer ! Pour n'être pas les esclaves martyrisés du

Temps, enivrez-vous ; enivrez-vous sans cesse ! De vin, de poésie, de mathématiques

ou de vertu, à votre guise. �

-Baudelaire, Le Spleen de Paris, XXXIII
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Résumé

Dans cette thèse, on étudie les régularités des valeurs propres et vecteurs propres

de familles linéaires de matrices symétriques réelles A(t) ∈ Symd(R), t ∈ Ω ⊂ Rk.

Les éléments propres de A(t) sont singuliers en général, et Kurdyka et Paunescu

(2008) en donnent une résolution par éclatements dans l'espace Ω. Le long d'une

courbe, Rellich (1937) montre que les éléments propres de A(t) ont un prolongement

analytique. Mais le prolongement le long d'un lacet peut s'avérer di�érent du point

de départ: le premier groupe d'homotopie de l'ensemble des paramètres réguliers agit

par permutation sur le spectre de A(t), une action que l'on appelle monodromie de

A(t).

Nous relions cette monodromie avec un autre invariant, la monodromie antipodale,

et caractérisons complètement les permutations apparaissant comme monodromies

de familles à deux paramètres. En montrant que les points singuliers d'une famille

diagonale générique à un paramètre admettent des perturbations indépendantes, nous

réalisons toute permutation donnée comme la monodromie antipodale d'une famille

à deux paramètres. Pour les familles a�nes à deux paramètres, nous décrivons le

comportement des valeurs propres au voisinage des points où A(t) a une valeur propre

double.

On s'intéresse ensuite à l'existence d'une diagonalisation, ou d'une réduction par

bloc, analytique, pour A(t) ∈ Symd(R). On remarque que l'absence de monodromie

antipodale n'est pas su�sante pour factoriser une valeur propre dans le polynôme

caractéristique PA, ni l'existence d'un facteur dans PA n'assure l'existence d'une ré-

duction par bloc. On obtient cependant des résultats positifs pour les valeurs pro-

pres extrémales. Ceux-ci permettent de montrer que A(t) admet une diagonalisa-

tion analytique complète si et seulement si sa monodromie antipodale est triviale:

la monodromie antipodale est l'unique obstruction à l'existence d'éléments propres

analytiques.

En�n, nous nous concentrons sur les familles à deux paramètres dans Sym3(R).

Ici, les vecteurs propres et valeurs propres forment chacun une cubique de P2. Nous

classi�ons entièrement les couples de telles cubiques et montrons qu'il n'y existe que

9 types de telles paires. Inspiré par cette étude, on s'intéresse à la question de savoir

si les vecteurs propres fournissent une résolution des singularités des valeurs propres,

et on donne une réponse positive dans le cas des courbes, et lorsque la famille est

l'espace complet Symd(R).
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ABSTRACT

In this thesis, we study the regularities of eigenvalues and eigenvectors of linear

families of real symmetric matrices A(t) ∈ Symd(R), t ∈ Ω ⊂ Rk. The eigenelements

of A(t) are singular in general, and Kurdyka and Paunescu (2008) give a resolution

by blowing-ups in the space Ω. Along a curve, Rellich (1937) shows that the eigenele-

ments of A(t) have an analytic continuation. But the prolongation along a loop might

be di�erent from where one started: the �rst homotopy group of the set of regular pa-

rameters acts by permutation on the spectrum of A(t), an action we call monodromy

of A(t).

We rely this monodromy with another invariant, the antipodal monodromy, and

fully characterize those permutations that appear as monodromies of two-parameter

families. Showing that singular points of one-parameter generic diagonal families

have independent perturbations, we realize any given permutation as the antipodal

monodromy of a two-parameter family. Then, for two-parameter a�ne families, we

describe the behavior of the eigenvalues near the points where A(t) has a double

eigenvalue.

We then study whether A(t) ∈ Symd(R) is analytically diagonalizable, or splits

into blocks. We remark that neither the lack of antipodal monodromy is su�cient for

an eigenvalue to be factored out of the characteristic polynomial PA, nor a factor in

PA necessarily corresponds to a splitting block. However, we get positive results for

extremal eigenvalues. It leads us to prove that A(t) has full analytic diagonalization

if and only if it has trivial antipodal monodromy: the antipodal monodromy is the

only obstruction to get analytic eigenelements.

Finally, we focus on two-parameter families in Sym3(R). Here both eigenvectors

and eigenvalues form a cubic curve in P2. We fully classify the couples of those

cubics and show that there are only 9 types of such pairs. Inspired by this study, we

consider the question whether eigenvectors form a resolution of singularities for the

eigenvalues, and prove that it has a positive answer in the curve situation, and when

the family is the full space Symd(R).

xiv





Introduction

Consider a family of monic polynomials which their coe�cients belong to a certain

class of functions, the perturbation problem is whether it is possible to choose their

roots as a function of this class. The origin of this problem is in the work of Lord

Rayleigh (1894) in acoustics, and of Schrödinger (1926) in quantum mechanics. But,

the mathematical foundations of this problem were only laid by Franz Rellich (1937)

[29, 30, 31] for hyperbolic polynomials whose coe�cients are analytic functions de-

pending on one variable, and then it has been developed in the work of Tosio Kato

[17] for linear operators.

The classical result of Rellich, Rellich Theorem 1.2.1, is connected with investiga-

tion of the behavior of the eigenvalues of symmetric matrices under one-parameter

analytic perturbation. This result may be stated as follows. Rellich considered an

analytic family A(t) of d×d symmetric matrices, where t ∈ I and I ⊂ R is an interval.

He proved that the eigenvalues of A(t) can be chosen analytically on I. Consequently,

we can choose analytically eigenvectors of A(t), so we can diagonalize uniformly and

analytically the family of A(t). But, if we consider a multi-parameter analytic family

A(t), t ∈ Ω of d × d symmetric matrices, where Ω ⊂ Rk is open, then for k ≥ 2

Rellich's theorem fails, even for linear families, Example 0.0.1.

Example 0.0.1. Let

A(t1, t2) =

(
t1 t2

t2 −t1

)
= t1

(
1 0

0 −1

)
+ t2

(
0 1

1 0

)
.

Thus, we get

χA(t1,t2) = X2 − (t21 + t22),

∆A(t1,t2) = 4(t21 + t22),

where χA and ∆A are the characteristic polynomial and the discriminant of A(t1, t2),

respectively. The eigenvalues of the matrix A(t1, t2) are:

X1 =
√
t21 + t22

X2 = −
√
t21 + t22.

Note that the eigenvalues of A(t1, t2) are not analytic functions at the point (t1, t2) =

1



(0, 0). These eigenvalues satisfy the equation X2 − t21 − t22 = 0 and the surface of the

eigenvalues is a circular double cone in the space (t1, t2, X), Figure 1.

Figure 1: The eigenvalues of A(t1, t2)

In [23], Von Neumann and Wigner proved that generically the multiple eigenval-

ues of a two-parameter family of real symmetric matrices happen at isolated points.

Indeed, Arnold [3] showed that the family of matrices with multiple eigenvalues has

codimension two in the manifold of real symmetric matrices. Let us consider the

family of 2× 2 symmetric matrices that is given as follows.

A : R3 → Sym2(R)

(t1, t2, t3) 7→
(
t1 t3

t3 t2

)
.

Then, the discriminant of A can be written as a sum of squares, ∆A = (t1− t2)2 +4t23.

Note that ∆A = 0 if and only if the two eigenvalues of A coincide. Thus, we have

∆A = 0 if and only if 


t1 − t2 = 0

t3 = 0.
. (1)

Hence, in dimension two, the problem of locating the parameters such that eigen-

values coincide has a straightforward solution. But, as the dimension of the family

grows, the discriminant becomes complicated and it cannot be used in practical com-

putations. However, it can be written as a sum of squares [8], [14, 15, 16], [19],

[25] and the number of summands grows quickly as we increase the dimension of the

family. Recently, the multi-parameter version of Rellich's theorem has been studied.

First, in 2008, by Kurdyka and Paunescu [18] for real symmetric and anti-symmetric

matrices and then by Rainer (2009) [27], (2011) [28], Parusinski and Rond (2018) [26]

and Grandjean (2019) [12] for normal matrices.

In [18], Kurdyka and Paunescu proved the following:
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There exists a mapping

σ : Ω̃→ Ω

which is locally �nite composition of blowing-ups with smooth centers, such that the

family A ◦σ locally satis�es the conclusion of the theorem of Rellich. In this way, the

eigenvalues (and even eigenvectors) of the original family A(t), t ∈ Ω ⊂ Rk can be seen

as multi-valued (arc-analytic) functions on Ω. Hence, there is a natural monodromy

action of the �rst fundamental group of the complement of the centers on eigenvalues

and eigenvectors. In 2009, Rainer generalized the result of Kurdyka and Paunescu

for normal operators, [27]. In [26], Parusinsky and Rond showed that a family of

normal matrices depending on a multi-parameter ring of formal power series can be

diagonalized if we assume that the discriminant of its characteristic polynomial is

a normal crossing. In 2019, Grandjean [12] presented a new proof of the results of

Kurdyka and Paunescu, and of Rainer, for normal matrices. For further results on

the perturbation problem of hyperbolic polynomials see [7], [9], [11], [22].

We consider A(t) ∈ Symd(R), t ∈ Rk. Then, by the Implicit Function Theorem,

A(t) is diagonalizable, in an analytic way, in a neighborhood of a point t0 ∈ Rk such

that A(t0) /∈ Σ where

Σ = {A ∈ Symd(R) | ∆A = 0}

and ∆A is the discriminant of the characteristic polynomial of A. Therefore, we are

interested in studying the behavior of the eigenvalues in a neighborhood of the points

t0 ∈ Rk such that A(t0) has at least one pair of repeated eigenvalues.

The results in brief

Let us now explain our results in brief.

In chapter 2, for a multi-parameter analytic and linear family of real symmetric

matrices, we de�ne di�erent types of monodromies, monodromy σ, and antipodal

monodromy τ ′, respectively. The main result of this chapter is that the monodromy

of a linear family depending on two parameters is a square. We state it as follows.

Theorem 0.0.2. (see Theorem 2.5.1). A permutation σ ∈ Sd is a square if and only

if there are A1, A2 ∈ Symd(R) such that σ is the monodromy of the eigenvalues of the

matrix A(t) = t1A1 + t2A2 along a loop γ : [0, 1] → R2\(0, 0), γ(0) = γ(1) = t0 with

A(t0) /∈ Σ.

In chapter 3, the main results are obtained by focusing on a�ne families depending

on one and two parameters. Indeed, by focusing on one-parameter a�ne families, we
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prove that given d distinct values a1, . . . , ad in R, and σ a permutation of {a1, . . . , ad},
there exists a linear family A(t) ∈ Symd(R), t ∈ R2, whose eigenvalues at (1, 0)

are a1, . . . , ad, and whose antipodal monodromy from (1, 0) in the direction (0, 1) is

precisely σ. This result is stated as the following.

Theorem 0.0.3. (see Theorem 3.3.5). Let (b1, . . . , bd) ∈ Rd such that bi 6= bj for

i 6= j. Let τ be a permutation of {b1, b2, . . . , bd}. Then, there exists a 2-linear family

A(t1, t2) whose antipodal monodromy from (0, 1) in the direction of (1, 0) is τ .

Then, by focusing on two-parameter a�ne families, we give a description of the

behavior of the eigenvalues in a neighborhood of a matrix A(t0) which has a double

eigenvalue, Subsection 3.4.

In chapter 4, we study possible reductions of linear families of symmetric matrices.

In Section 4.2, we prove that if the monodromy of a linear family A(t) ∈ Symd(R),

t ∈ Rk, has an extremal orbit of length one or two, then there exists a homogeneous

polynomial of degree one or two that divides the characteristic polynomial of A(t).

After that, we manage to �nd an invariant subspace E(t) of dimension ` such that

the characteristic polynomial of the restriction of A(t) to E(t) is the known divisor

P (t) of degree ` of χA(t). Finally, in Section 4.3, we prove that A(t) has full analytic

diagonalization if and only if it has trivial antipodal monodromy: the existence of

non-trivial antipodal monodromy is the only obstruction for having eigenvalues as

analytic functions. We state this result as the following.

Theorem 0.0.4. ( see Theorem 4.3.1). Let A(t) ∈ Symd(R), t ∈ Rk be a k-linear

family, A 6⊂ Σ. Then, the following statements are equivalent:

1. There exists a basis (e1, e2, . . . , ek) of Rk, with A(e1) /∈ Σ and τ ′Span(e1,ei)
= Id

for all i = 2, . . . , k.

2. For any linear 2-plane P ⊂ Rk, τ ′P = Id.

3. 0 is a quasi-regular point of A(t).

4. There exists a family P (t) ∈ Od(R), analytic in t, such that P−1(t)A(t)P (t) is

diagonal.

5. There exists an orthogonal matrix P ∈ Od(R) such that P−1A(t)P is diagonal.

6. There exists a basis (e1, e2, . . . , ek) of Rk, such that A(e1) /∈ Σ and A(e1)A(ei) =

A(ei)A(e1) for i = 2, . . . , k.

7. For all (t, t′) ∈ (Rk)2, A(t)A(t′) = A(t′)A(t).
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In chapter 5, we consider A, A 6⊂ Σ, a linear subspace of dimension k of the d× d
symmetric matrices and we introduce di�erent objects. The eigenelements set of

A which is a variety made of the triple matrix and the associated eigenvalues and

eigenspaces. The eigenvalue set which is the image of the eigenelements set by the

projection that forgets the eigenvector entry. The eigenvectors set which is the

image of the eigenelements set by the projection that forgets the eigenvalue entry.

We also de�ne eigenvector portrait of A which is the image of the eigenvectors

set by the projection that forgets the matrix entry. Since all of these objects have

homogeneous behavior, it is natural to work with their counterpart in projective space.

We note that the projective eigenvector set Γ(A) is not smooth in general, so we de�ne

the set of the strict eigenvectors G(A) which is constructed by �rst removing from

Γ(A) all eigenvectors that appears for the singular matrices of A, and then we take

the topological closure. In Claim 5.1.1, we prove that Φ : G(A) ⊆ Γ(A) → Λ(A) is

a proper birational map. In Section 5.2, the main result is obtained by focusing on

the eigenelements of the two-dimensional subspaces of 3 × 3 matrices. We consider

two cubic curves: the cubic curve V (A) which is associated to eigenvectors and the

cubic curve Λ(A) that is associated to the eigenvalues of A. We give a classi�cation

of the pair (V (A),Λ(A)). For this aim, we follow a projective classi�cation of cubic

curves of P2 containing 16 con�gurations where each con�guration is the union of at

most 3 analytic components. Then, we introduce a notion of marked cubic type for

eigenvalues (resp. eigenvectors) by associating to each component Ci of Λ(A) (resp.

of V (A)), the number of eigenvalues (resp. eigenvectors) that belongs to Ci, for a

regular member of the family. Thus, we fully classify the couples of these cubics and

show that there are only 9 types of pairs (V (A),Λ(A)). This result is given as the

following.

Theorem 0.0.5. (see Theorem 5.2.4). Let A be a 2-family of 3 × 3 symmetric

matrices, A 6⊂ Σ. Then the eigenvectors type of A determines the eigenvalues type

of A. More precisely, the following 9 couples of marked cubics types, and only those,

appear as eigenvectors and eigenvalues types.
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Table 1: Table of cubics types.

Marked cubic of eigenvectors Marked cubic of eigenvalues

Continued on next page
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Table 1 � Continued from previous page

Marked cubic of eigenvectors Marked cubic of eigenvalues

Finally, in the last section, we prove that G(A) → Λ(A) is a resolution of singu-

larities of algebraic varieties in two special case: when the family is the full space

Symd(R), Proposition 5.3.2, and when the family depends on two parameters:

Theorem 0.0.6. (see Theorem 5.3.1). For any 2-linear family A 6⊂ Σ, the set G(A)

of strict eigenvectors of A is a non-singular algebraic curve.
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Chapter 1

Preliminaries

In this chapter, we present some notions which will be used throughout the thesis

and we also give an extension of the Rellich Theorem to higher dimensions.

Notation and conventions 1.0.1. All matrices that we discuss are over the real

numbers. We denote by Mm,n(R) the set of matrices with entries in R with m rows

and n columns. Whenm = n = d, we denote this set byMd(R). A matrix S ∈Md(R)

is called symmetric if S = St. We denote by Symd(R) the set of all real symmetric

matrices of dimension d.

Theorem 1.0.2. (Spectral theorem ) If A ∈ Symd(R), then there exists an orthonor-

mal matrix P such that A = P tDP , with D = diag(λ1, . . . , λd) where λ1, . . . , λd ∈ R
are the eiegnvalues of A.

Corollary 1.0.3. Let A ∈ Symd(R) be a symmetric matrix and let us denote by λmax

its largest eigenvalue and by λmin its smallest eigenvalue, then we have:

max||x||=1xtAx = λmax, x ∈ Rd

min||x||=1xtAx = λmin, x ∈ Rd.

We deduce from this corollary that the largest eigenvalue of a symmetric matrix

is convex and the smallest eigenvalue is concave.

Lemma 1.0.4. Let A ∈ Symd(R). The following properties hold true:

1. The eigenvalues of A are real.

2. Eigenvectors of A corresponding to di�erent eigenvalues are two-by-two orthog-
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onal.

De�nition 1.0.5. The set of all eigenvalues of A ∈ Symd(R), denoted by Spec(A),

is called the spectrum of A.

De�nition 1.0.6. We consider A ∈ Md(R). The characteristic polynomial of A,

denoted by χA(x), is the polynomial de�ned by

χA(x) : Symd(R)× R → R
(A, x) 7→ det(A− xId).

where Id denotes the identity matrix of dimension d.

De�nition 1.0.7 (Hyperbolic Polynomials). A monic polynomial

p(x) = xd +
d∑

i=1

aix
d−i

with real coe�cients is called a hyperbolic polynomial, if all of the roots of p(x) are

real.

Since the eigenvalues of symmetric matrices are real, the characteristic polynomial

of a real symmetric matrix is a hyperbolic polynomial.

1.1 Resultant and discriminant of polynomials

In this section, following Benedetti and Risler [5], we present the de�nitions and some

properties of the notions of the resultant and the discriminant of polynomials.

1.1.1 Resultant

De�nition 1.1.1. Let P (x) = a0 + a1x+ · · ·+ apx
p and Q(x) = b0 + b1x+ · · ·+ bqx

q

be two polynomials of degrees p and q, respectively, with coe�cients in an arbitrary

�eld F . Their resultant R(P,Q) = Rp,q(P,Q) is the element of F given by the

determinant of the (p+ q)× (p+ q) Sylvester matrix Sylp,q(P,Q) given by
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


a0 . . . aq−1 . . . ap−1 ap
. . .

a0 . . . . . . ap

b0 . . . . . . bq

b0 . . . . . . bq
. . .

b0 . . . . . . bq




.

Proposition 1.1.2. Rp,q(P,Q) is a homogeneous polynomial with coe�cients ai, bi

in an arbitrary �eld F .

1. Rp,q(P,Q) is homogeneous of degree p in a0, . . . , ap and degree q in b0, . . . , bq.

2. If ai and bi are regarded as having degree i, then Rp,q(P,Q) is homogeneous of

degree pq.

The main importance of the resultant lies in the following proposition, which often

is taken as de�nition.

Proposition 1.1.3. Let P (x) = a0 +a1x+ · · ·+apx
p and Q(x) = b0 +b1x+ · · ·+bqx

q

be two polynomials of degrees p and q, respectively, with coe�cients in an arbitrary

�eld F . Suppose that in some extension of F , P has p roots α1, . . . , αp and Q has q

roots β1, . . . , βq. Then,

1. R(P,Q) = aqpb
p
q

∏
(αi − βj) (1 ≤ i ≤ p, 1 ≤ j ≤ q)

2. R(P,Q) = aqp
∏p

i=1Q(αi) = (−1)pqbpq
∏q

j=1 P (βj).

Proof. See for instance [5], page 29.

1.1.2 Discriminant

De�nition 1.1.4. Let P (x) = a0 + a1x+ · · ·+ apx
p be a polynomial of degree p ≥ 1

with coe�cients in an arbitrary �eld F . Suppose P ′(x) is the derivative of P . The

discriminant ∆P is given by

∆P =





0 if ap = 0

( 1
ap

)R(P, P ′) if ap 6= 0
. (1.1)

In general, it is often more convenient to use the following version.
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De�nition 1.1.5. Let P (x) = a0 + a1x+ · · ·+ apx
p be a polynomial of degree p ≥ 1

with coe�cients in an arbitrary �eld F . The discriminant of P is

∆P = a2p−2
p

∏

1≤i<j≤d
(αi − αj)2,

where α1, . . . , αp are the roots of P in some extension of F .

Proposition 1.1.6. Let P be a polynomial of degree p ≥ 1 with coe�cients in a �eld

F . Then, ∆P = 0 if and only if P has a double root in some extension of F .

We denote by ∆A the discriminant of the characteristic polynomial ofA ∈ Symd(R).

The discriminant is a fundamental object and it appears in several areas of math-

ematics, from mathematical physics to real algebraic geometry, see for instance [4,

2].

Corollary 1.1.7. Let A ∈ Symd(R). Then, the discriminant of the characteristic

polynomial of A is

∆A =
∏

1≤i<j≤d
(λi(A)− λj(A))2,

where λ1(A), ..., λd(A) are the eigenvalues of A.

Proposition 1.1.8. Let A ∈ Symd(R). Then ∆A is a non-negative homogeneous

polynomial of degree d(d− 1).

Proof. See [5], page 27.

1.2 Rellich's theorem

Theorem 1.2.1 (Rellich). Let p(x, t) = xd +
∑d

i=1 ai(t)x
d−i be a monic hyperbolic

polynomial; where ai(t) are real analytic functions on an open set I ⊂ R. Then, there
are analytic functions fi : I 7→ R , i = 1, ..., d such that P (x, t) =

∏d
i=1(x− fi(t)). In

other words, we can choose analytically the roots of P .

Proof. Due to [29]. A proof can be found in [18] by Kurdyka and Paunescu. In this

paper, they gave a short proof of the Rellich Theorem by using the classical theorem

of Newton-Puiseux which we will mention in the following theorem.

Theorem 1.2.2 (Newton-Puiseux ). Let p(x, t) = xd +
∑d

i=1 ai(t)x
d−i be a monic

polynomial such that ai are real analytic functions in a neighborhood of 0 ∈ R. Then
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there are holomorphic functions hi , i = 1, ..., d and r ∈ Z such that

P (x, t) =
∏d

i=1(x− hi(t
1
r ))

for t ≥ 0 close enough to 0 and for any x ∈ C. We call fi(t) = hi(t
1
r ) a Newton-

Puiseux root of P .

Proof. A proof can be found in [21].

Proposition 1.2.3. Let A(t) ∈ Symd(R), t ∈ R be an analytic family. Then, the

eigenvalues of A(t) are analytic functions on t. Moreover, eigenvectors of A(t) can

be chosen as analytic functions on t.

Proof. See for instance [17] page 121.

Here, we give an extension of the Rellich Theorem to higher dimensions.

Proposition 1.2.4. Let P(t,x)(λ) = λd +
∑d

i=1 ai(t, x)λd−i, (t, x) ∈ U ⊂ R× Rk−1 be

an analytic family of hyperbolic polynomials. Suppose that:

1. P(0,0) has a root of order ` and d− ` simple roots;

2. P(0,x) has an analytic root λ0(x) of multiplicity `;

3. P(t,0) has ` analytic roots λ1(t), . . . , λ`(t) with λ1(0) = · · · = λ`(0) = λ0(0) and

λ′i(0) 6= λ′j(0) for i 6= j.

Then, there exists a neighborhood V of (0, 0) and analytic functions λ1, . . . , λ` on V

such that P(t,x)(λi(t, x)) = 0, λi(t, 0) = λi(t) and λi(0, x) = λ0(x).

Proof. Up to replace P(t,x)(λ) by P(t,x)(λ + λ0(x)), we suppose that λ0(x) = 0. The

d − ` simple roots of P(0,0) admit analytic continuations zi(t, x), i = ` + 1, . . . , d

for (t, x) small. Set S(t,x)(λ) =
∏d

i=`+1(λ − zi(t, x)) and note that S(t,x)(λ) divides

P(t,x)(λ). Let

Q(t,x)(λ) = λ` + a1(t, x)λ`−1 + · · ·+ a`−1(t, x)λ+ a`(t, x)

be the quotient of P(t,x)(λ) by S(t,x)(λ).

For a �xed x ∈ Rk−1, Q(t,x)(λ) is an analytic one-parameter homogeneous polyno-

mial which admits ` analytic roots. Since Q(0,x)(λ) = λ`, these roots vanish at t = 0.

Then, Vieta's formulas show that for all i = 1, . . . , `, ai(t, x) is divisible by ti.
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Now, for x = 0, write ai(t, 0) = bit
i + o(ti) and λi(t) = mit + o(t). From

Q(t,0)(λi(t)) = 0, one gets

t`(m`
i + b1m

`−1
i + b2m

`−2
i + · · ·+ b`−1mi + b`) + o(t`) = 0.

Hence, for each i = 1, . . . , `, R(mi) = 0 where

R(X) = X` + b1X
`−1 + · · ·+ b`−1X + b`.

Furthermore, for all i, j ∈ {1, . . . , `}, i 6= j, we have mi(x) 6= mj(x). So, the polyno-

mial R(X) has ` simple roots. In particular, R′(mi) 6= 0. For given i ∈ {1, . . . , d},
set

W(t,x)(µi) :=
P(t,x)((mi + µi)t)

t`
.

Notice that, since ai(t, x) is divisible by ti, so P(t,x)((mi+µi)t) is divisible by t`. Thus,

W(t,x)(µi) is analytic in terms of (t, x).

We will apply the Implicit Function Theorem to express analytically a root µi(t, x)

of W(t,x)(µi) that vanish at (0, 0). Indeed, this gives the desired extension of λi(t), by

setting λi(t, x) = mit+ µi(t, x)t. For this, notice that

W(t,0)(0) =
P(t,0)(mit)

t`
= R(mi) = 0.

In particular, 0 is a root of W(t,0)(µ). Moreover,

∂W(t,0)(0)

∂µ
=

1

t`
× ∂P(t,0)

∂λ
(mit)× t

=
1

t`−1
× ∂P(t,0)

∂λ
(mit)

=
1

t`−1

[
∂S(t,0)

∂λ
(mit)Q(t,0)(mit)

]

+
1

t`−1

[
S(t,0)(mit)

∂Q(t,0)

∂λ
(mit)

]
.

But Q(t,0)(mit) is divisible by t`,

∂Q(t,0)

∂λ
(mit) = t`−1R′(mi) + o(t`−1),
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and S(0,0)(0) 6= 0. Thus,

∂W(t,0)(0)

∂µ
|t=0 = S(0,0)(0)R′(mi) 6= 0.

To conclude, the Implicit Function Theorem applies to W(t,x)(µ):

There exists a neighborhood of (0, 0) and an analytic function µi(t, x) such that

µi(0, 0) = 0 and W(t,x)(µi(t, x)) = 0. This means that λi(t, x) = mit + µi(t, x)t is an

analytic root of P(t,x)(λ) that satis�es λi(0, x) = 0 and ∂λi
∂t

(0, 0) = mi. Notice that

since the slopes of λi(t), i = 1, . . . ` are di�erent at t = 0, P(t,0) has a unique analytic

root with the slope mi at t = 0.
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Chapter 2

Monodromy of eigenelements of a

linear family of Symd(R)

Given A(t), an analytic family of real symmetric matrices

A : U → Symd(R)

t 7→ A(t),

where U is an open subset of Rk, we study the behavior of the eigenvalues of A(t)

above the loops which turn around singular points of A(t). Along a curve, a theorem

of Rellich states that the eigenvalues extend in a unique way. But, the image of an

eigenvalue by its extension along a loop can turn out to be di�erent from the eigenvalue

from which we started: therefore, the �rst homotopy group of the complement of the

singular points acts by permutation on the spectrum of the family. This action is

called monodromy of the family. In this chapter, we introduce various de�nitions of

monodromies associated with analytic and linear families of real symmetric matrices.

In the �rst section, we introduce a set that we call super-singular set which

we denote by SA. A point t ∈ Rk is a super-singular point if there is no analytic

continuation of the eigenvalues around this point.

In the second section, we construct the analytic continuation of the eigenvalues

along continuous curves. In order to deal with paths that contain curves in Σ (the set

of symmetric matrices with multiple eigenvalues), the values of the analytic continu-

ation that we consider are in the set of germs of analytic functions. We show that if

a continuous path γ in the space of parameters does not meet SA, then there exists a
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unique analytic continuation of the germs of the eigenvalues along γ. We also show

that the end-point of the analytic continuation of a germ of an eigenvalue along γ,

only depends on the homotomy class of γ ∈ Rk\SA. As a corollary, the eigenvalues

are analytic over any open simply-connected subset of Rk that does not intersect SA.

In the third section, we de�ne the monodromy of the eigenvalues along a loop γ,

based at p, that does not meet the super-singular set. As a corollary of Section 2, we

see that the monodromy a long γ only depends on the homotomy class of γ in Rk\SA.

In the fourth section, we introduce another type of monodromy associated to k-

linear families A : Rk → Symd(R), t 7→ t1A1 + · · ·+ tkAk with A1, . . . Ak ∈ Symd(R).

Indeed, we see in Example 2.5.11 that the lack of the monodromy is not su�cient

to have eigenvalues as analytic functions while the existence of non-trivial antipo-

dal monodromy is the only obstruction for having eigenvalues as analytic functions,

Theorem 4.3.1.

In section 5, we prove that the monodromy of a 2-linear family is a square. Indeed,

we show that it is the square of the antipodal monodromy. Then, for a given permu-

tation σ, we construct a family t1A1 + t2A2 such that the antipodal monodromy of

t1A1 + t2A2 and σ have the same cycle structure. These results may be summarized

in Theorem 2.5.1.

Finally, in the last section, we give some general properties of the eigenvalues of a

one-parameter a�ne family that we use later.

2.1 Super-singular set

De�nition 2.1.1. Let A(t) ∈ Symd(R), t ∈ Rk be an analytic family. A point

t0 ∈ Rk is called a singular point of A(t), if A(t0) ∈ Σ.

De�nition 2.1.2. A point t0 ∈ Rk is called a quasi-regular point of an analytic

family A(t) ∈ Symd(R), if there exists an open neighborhood V of t0 and analytic

functions λ1, ..., λd : V → R such that

χA(t)(x) =
d∏

i=1

(x− λi(t))

for any t ∈ V and x ∈ R.

Remark 2.1.3. From isolated zero principle, if t0 is a quasi-regular point, the (an-
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alytic) maps λi are uniquely determined up to reindexing. In particular, the germs

[λi]t0 of the maps λi at t0 are chosen in a �nite set.

De�nition 2.1.4. A point t0 ∈ Rk is called a super-singular point of an analytic

family A(t) ∈ Symd(R) if t0 is not a quasi-regular point. The set of super-singular

points of A(t) is denoted by SA

SA := {t0 ∈ Rk | t0 is a super-singular point of A}.

Remark 2.1.5. The set SA is a closed subset of Rk, since the set of quasi-regular

points is open.

De�nition 2.1.6. A point t0 ∈ Rk is called a quasi-ordinary point of an analytic

family A(t) ∈ Symd(R) if ∆A(t) is a normal crossing at t0.

Theorem 2.1.7. Let P (t, x) = xd+
∑d

i=1 ai(t)x
d−i be a monic hyperbolic polynomial;

where ai(t) are real analytic functions on an open set Ω ⊂ Rk. If t0 ∈ Ω is a quasi-

ordinary point, then it is a quasi-regular point.

Proof. A proof is given in [18].

In the following example, we show that the converse of Theorem 2.1.7, is not true.

Example 2.1.8. Consider the linear 2-family A(t1, t2) ∈ Sym3(R) that is given as

follows.

A(t1, t2) =



t1 0 0

0 t1 + t2 0

0 0 t2


 .

The eigenvalues of A(t1, t2), λ1 = t1, λ2 = t1 + t2 λ3 = t2, are analytic functions on

R2. However, the discriminant of A(t1, t2)

∆A(t) = t21t
2
2(t1 − t2)2

is not a normal crossing at the origin.

Proposition 2.1.9. There exists a semi-analytic closed subset X ⊂ Rk of codimen-

sion at least 2 such that SA ⊂ X.

Proof. See [18].
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2.2 Analytic continuation of eigenvalues

Let Ω be an open subset of Rk and

ΞΩ = {(t, f); t ∈ Ω, f ∈ Ot},

where Ot stands for the ring of germs of analytic functions at t ∈ Ω ⊂ Rk.

De�nition 2.2.1. Consider a continuous path γ : [0, 1] → Ω. We say that Γ is

an analytic continuation (prolongation) of the germ [λ]γ(0) along γ if (γ,Γ) :

[0, 1] → ΞΩ satis�es that for each x ∈ [0, 1], there are ε > 0, a neighborhood Vx ⊂ Ω

of γ(x) and an analytic function f : Vx → R such that γ([x − ε, x + ε]) ⊂ Vx and

∀x′ ∈ [x− ε, x+ ε],Γ(x′) = [f ]γ(x′).

Proposition 2.2.2. Let γ : [0, 1] → Rk\SA be a continuous path. Then, there ex-

ists a unique analytic continuation Γ of the analytic germs [λ1]γ(0), ..., [λd]γ(0) of the

eigenvalues of an analytic family A(t) along γ.

Proof. Fix t0 in Rk\SA. Since t0 is a quasi-regular point, an analytic choice λi,

i = 1, . . . , d can be made on an open neighborhood V of t0. Choose an index i.

Denote by λ the corresponding analytic eigenvalue on V and set [λ]t0 for the germ

of λ at t0. We prove that we can extend analytically [λ]t0 along a (continuous) path

γ : [0, 1]→ Rk\SA, with γ(0) = t0. For this, we de�ne

E = {x ∈ [0, 1]; ∃Γ : [0, x]→ Rk\SA, analytic continuation of [λ]t0 along γ|[0,x]}

and we set xmax = supE. Then xmax > 0, since there is an a > 0 such that γ([0, a]) ⊂
V and for x ∈ [0, a], Γ(x) = [λ]γ(x) is an analytic continuation of [λ]t0 along γ|[0,x].

Moreover, since γ(xmax) /∈ SA, there exists a neighborhood W of γ(xmax) over which

the eigenvalues of A(t) are analytic functions µ1, . . . , µd. Suppose xmax 6= 1, and set

ε > 0 and y = xmax − ε such that γ([y, xmax + ε]) ⊂ W . Since y ∈ E, the germ [λ]t0

has an analytic continuation Γ along γ|[0,y], and since the germs of the eigenvalues

are chosen in a �nite set, there is a j such that Γ(y) = [µj]γ(y). Extending Γ to

[y, xmax + ε] by setting Γ(x) = [µj]γ(x) for x ∈ [y, xmax + ε] constructs an analytic

continuation of [λ]t0 along γ|[0,xmax+ε], which contradicts that xmax is the supremum of

E. So xmax = 1, and the preceding construction (but on [1− ε, 1]) shows that 1 ∈ E,
which was to be proven.

We now prove the uniqueness of the analytic continuation [λ]t0 along γ. Suppose
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that Γ1,Γ2 are analytic continuations of [λ]t0 along γ. We show that for all t ∈ [0, 1],

Γ1(t) = Γ2(t). Let

T = {t ∈ [0, 1] | Γ1(t) = Γ2(t)}.

Then, T is closed in [0, 1] and it is non-empty since 0 ∈ T . We show that T is open

in [0, 1]. Take t ∈ T , then Γ1(t) = Γ2(t). By the de�nition of analytic continuation,

for i = 1, 2, there is εi > 0 , open connected subsets Vi of γ(t), analytic functions

αi : Vi → R such that γ([t − εi, t + εi]) ⊂ Vi and for all t′ ∈ [t − εi, t + εi], Γi(t
′) =

[αi]γ(t′). Since Γ1(t) = Γ2(t), then [α1]γ(t) = [α2]γ(t) and so α1 = α2 on V1 ∩ V2. Let

ε := min(ε1, ε2), then Γ1(t′) = Γ2(t′), for all t′ ∈ [t−ε, t+ε]. By connectivity of [0, 1],

we get T = [0, 1] which �nishes the proof.

Proposition 2.2.3. Let Γ be an analytic continuation of [λ]t0 along γ : [0, 1] →
Rk\SA, γ(0) = t0, γ(1) = t. Then, Γ(1) only depends on the homotopy class (with

�xed extremities) of γ in Rk\SA.

Proof. Let F : [0, 1]2 → Rk\SA be an homotopy with γ = F (0, ·). For each y ∈ [0, 1],

[λ]t0 has an analytic continuation Γ(y, ·) along F (y, ·). It is su�cient to prove that

y 7→ Γ(y, 1) is locally constant. Fix y0 ∈ [0, 1]. The path F (y0, [0, 1]) is compact,

and covered by open neighborhood VF (y0,x) of F (y0, x) where Γ(y0, x
′) is the germ at

x′ of some analytic eigenvalue λx on VF (y0,x). We extract from it a �nite covering

Vj, j = 1 . . . , k and choose a sequence 0 = a0 < a1 < · · · < ak = 1 such that

F (y0, [aj−1, aj]) ⊂ Vj and ∀x ∈ [aj−1, aj],Γ(y0, x) = [λj]F (y0,x). For y su�ciently

close to y0, the inclusion F (y, [aj−1, aj]) ⊂ Vj remains, and the map Γ̃(y, ·) given by

Γ̃(y, x) = [λj]F (y,x) for x ∈ [aj−1, aj] de�nes an analytic continuation of [λj]t0 along

F (y, ·). Unicity of analytic continuation shows that Γ̃(y, ·) = Γ(y, ·). In particular,

Γ(y, 1) = Γ̃(y, 1) = [λk]γ(1) = Γ(y0, 1). So Γ(·, 1) is locally constant, as announced,

then it is constant.

De�nition 2.2.4. Let t0 ∈ Ω, where Ω is an open subset of Rk\SA. We call λ(t)

the end-point of the analytic continuation Γ of [λ]t0 along γ : [0, 1] → Ω, γ(0) =

t0, γ(1) = t. The end-point λ(t) is de�ned by λ(t) := Γ(1)(t).

Corollary 2.2.5. Let Ω ⊂ Rk be open, simply-connected such that Ω∩SA = ∅. Then,
there are analytic functions λi : Ω→ R, i = 1, . . . , d such that

χA(t)(x) =
d∏

i=1

(x− λi(t)),
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for any t ∈ Ω, x ∈ R.

Proof. Given t0 ∈ Ω. Since t0 is a quasi-regular point, there exists an open neigh-

borhood V of t0 and analytic functions λ1, . . . λd : V → R. Moreover, for any t ∈ Ω,

t 6= t0, there exists a path γ : [0, 1] → Ω, γ(0) = t0, γ(1) = t. Since Ω is path-

connected, the path γ that joins t0 and t exists. We now �x an index i ∈ {1, . . . d} and
we call λ the associated eigenvalue. Let λ(t) := Γ(1)(t). Since Γ(1)(t) is homotopy-

invariant and Ω is simply-connected, λ(t) is a well-de�ned function. By construction,

λ is analytic (it locally coincides with analytic functions). Therefore, any analytic

germ at t0 of an eigenvalue of A(t) can be extended analytically on Ω. The equality

χA(t)(x) =
∏d

i=1(x− λi(t)) is an equality between analytic functions, that holds in a

neighborhood of {t0}×R; from isolated zero principle, the equality holds everywhere

on the connected set Ω× R.

2.3 Monodromy around super-singular set

De�nition 2.3.1. Let A(t) ∈ Symd(R) be an analytic family. Let t0 ∈ Rk\SA. The
germ spectrum of the eigenvalues of A(t) at t0, denoted by Spec([A]t0), is de�ned

to be

Spec([A]t0) = {[λ1]t0 , . . . , [λd]t0},

where λ1(t), . . . , λd(t) are analytic functions in Spec(A(t)) in a neighborhood of t0.

De�nition 2.3.2. Let A(t) ∈ Symd(R), t ∈ Rk be an analytic family. Let γ :

[0, 1] → Rk\SA, γ(0) = γ(1) = t0 be a continuous loop in the space of parameters.

The permutation

σγ : Spec([A]t0) → Spec([A]t0)

[λi]t0 7→ Γi(1)
,

where Γi is the analytic continuation of the germ [λi]t0 along γ, is called the mon-

odromy of Spec([A]t0) along γ.

De�nition 2.3.3. Let A(t) ∈ Symd(R), t ∈ Rk be an analytic family. Let γ : [0, 1]→
Rk\SA, γ(0) = γ(1) = t0 be a continuous loop in the space of parameters, and suppose

A(t0) /∈ Σ. Then, the permutation

σγ : Spec(A(t0)) → Spec([A]t0) → Spec([A]t0) → Spec(A(t0))

λ 7→ [λ]t0 7→ [µ]t0 = σγ([λ]t0) 7→ [µ]t0(t0)
,
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where σγ([λ]t0) is the analytic continuation of the germ [λ]t0 along γ, with [µ]t0(t0) =

µ, is called the monodromy of Spec(A(t0)) along γ.

Corollary 2.3.4. From Proposition 2.2.3, the monodromies σγ and σγ of A(t) ∈
Symd(R) along γ : [0, 1] → Rk\SA, γ(0) = γ(1) = t0 (with A(t0) /∈ Σ for σγ) only

depend on the homotopy class of γ in Rk\SA.

It is natural to ask about the dependence of the monodromies on the base point

t0 of π1(Rk\SA, t0). For this, let t1 6= t0 ∈ Rk\SA, and denote by

St0 : π1(Rk\SA, t0) → S(Spec([A]t0))

γ̄ 7→ σγ
,

St1 : π1(Rk\SA, t1) → S(Spec([A]t1))

γ̄ 7→ σγ
.

Then, by Proposition 2.1.9, Rk\SA is path connected, so there exists δ : [0, 1] →
Rk\SA, δ(0) = t0, δ(0) = t1. The analytic prolongation of the germs of the eigenvalues

at t0 along δ de�nes a bijection φ from Spec([A]t0) to Spec([A]t1). We get

St1 ◦ φ = φ ◦St0 ,

and the following diagram commute.

Spec([A]t0) Spec([A]t0)

Spec([A]t1) Spec([A]t1)

St0

φ φ

St1

By the following lemma, the cycle structure of St1 is the same as the cycle structure

of St0 .

For any permutation α ∈ Sn, we can write α as the product of disjoint cycles.

Suppose that in the cycle decomposition of α, there are cycles of length k1, k2, . . . , k`,

where k1 ≥ k2 ≥ · · · ≥ k`. We call (k1, k2, . . . , k`) the cycle type of α.

Let α, β ∈ Sn, if there exists τ ∈ Sn such that β = τατ−1, we say that α and β

are conjugate in Sn.

Lemma 2.3.5. Let σ, ρ ∈ Sn be two permutations. Then, ρ and σ are conjugate if

and only if they have the same cycle type.
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Proof. Suppose that σ has the cycle type (k1, k2, . . . , k`), so σ can be written as

σ = c1c2 . . . c` where each ci is a cycle of length ki. Let τ ∈ Sn such that ρ = τστ−1,

then we have

τστ−1 = τc1 . . . c`τ
−1 = (τc1τ

−1)(τc2τ
−1) . . . (τc`τ

−1). (2.1)

Since for each i = 1, . . . , `, ci is a cycle of length ki, τc`τ−1 is also a cycle of length

ki. Moreover, since for all i 6= j, ci and cj are distinct and τ ∈ Sn is a bijection, it

follows that τciτ−1 and τcjτ−1 are also distinct. Thus, τστ−1 is a product of disjoint

cycles τciτ−1 of length ki. Therefore, any conjugate of σ, ρ = τστ−1, has the same

cycle type of σ.

Now, suppose that σ and ρ have the cycle type (k1, k2, . . . , k`), we show that σ

and ρ are conjugate. Suppose that σ = α1 . . . α` and ρ = β1 . . . β` be the cycle

decomposition of σ and ρ into the product of the disjoint cycles αi and βi of length

ki. For each i, let us write αi = (ai1ai2 . . . aiki ) and βi = (bi1bi2 . . . biki ) and we de�ne

the permutation τ ∈ Sn by τ(aij) = bij, i = 1, . . . , `, j = 1, . . . , ki. Then

ταiτ
−1 = τai1ai2 . . . aikiτ

−1 = τai1τ
−1τai2τ

−1 . . . τaikiτ
−1 = bi1bi2 . . . biki .

From this, we have

τατ−1 = (τα1τ
−1)(τα1τ

−1) . . . (τα`τ
−1) = β1β2 . . . β` = ρ.

Hence, any two elements of Sn with the same cycle type are conjugate.

De�nition 2.3.6. Let γ : [0, 1] → Rk\SA, γ(0) = γ(1) = t0 with A(t0) /∈ ∑.

Consider the bijection

D : Spec(A(t0)) → E(A(t0))

λi 7→ Eλi
,

where E(A(t0)) = ∪di=1Eλi and Eλi is the one-dimensional eigenspace associated to

λi. The permutation σEλi := D ◦ σγ ◦D−1 is called the monodromy of eigenspace

of A(t0) along γ.

Remark 2.3.7. If Γi is the analytic prolongation of the eigenvalue λi along a con-

tinuous loop γ : [0, 1] → Rk\SA, γ(0) = γ(1) = t0 with A(t0) /∈ ∑. Then D ◦ Γi is

the analytic prolongation of D ◦ λi along γ.
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2.4 Antipodal monodromy

The absence of monodromy around super-singular set is not su�cient to have analytic

eigenvalues. Thus, we introduce another type of monodromy.

In this section, we consider a linear application A : Rk → Symd(R) such that for

any t = (t1, ..., tk) ∈ Rk,

A(t) := t1A1 + ...+ tkAk

where A1, ..., Ak ∈ Symd(R). We call it shortly by a k-linear family.

De�nition 2.4.1 (Half-turn path). Take t0 ∈ Rk\{0}, and choose u ∈ Rk\{0} such
that u ⊥ t0 and ‖u‖ = ‖t0‖. The half-turn path from t0 in the direction u is the

path γ : [0, 1]→ Rk\{0} given by

γ(s) = cos(πs)t0 + sin(πs)u.

If the half-turn from t0 in the direction u avoids SA, the analytic prolongation

of the germs of the eigenvalues at t0 de�nes a bijection τ(t0,u) from Spec([A]t0) to

Spec([−A]t0). While 0 might be super-singular, we also can de�ne a continuation

of the eigenvalues of A(−t0) along the segment [−t0, t0]. Indeed, since the family is

linear, A(kt0) = kA(t0) for any k, so if λ ∈ Spec(A(t0)), [−t0, t0] 3 kt0 7→ kλ is

the unique analytic prolongation of the eigenvalue −λ ∈ Spec(A(−t0)) over [−t0, t0].

(Note that if A(t0) /∈ Σ, [−t0, t0] being an analytic arc, the existence of an analytic

prolongation of a given eigenvalue along [−t0, t0] exists by Rellich's Theorem 1.2.1;

here, the linearity of the family makes this prolongation simple). We de�ne the

antipodal monodromy of the germs from t0 in the direction u as the composition

of the analytic prolongation along the half-turn path with this prolongation along

[−t0, t0].

De�nition 2.4.2 (Antipodal monodromy of the germs). Let t0 ∈ Rk\{0}, u ⊥ t0,

‖u‖ = ‖t0‖. If the half-turn path from t0 in the direction u avoids SA, we de�ne the

antipodal monodromy from t0 in the direction u to be the permutation τ ′(t0,u) of

Spec([A]t0) given by

τ ′(t0,u) : Spec([A]t0) → Spec([A]t0)

[λ]t0 7→ −τ(t0,u)([λ]t0)

where τ(t0,u) is the analytic prolongation of the germs along the half-turn path from t0
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in the direction u.

De�nition 2.4.3 (Antipodal monodromy of the eigenvalues). Let t0 ∈ Rk\{0}, u ⊥
t0, ‖u‖ = ‖t0‖. If the half-turn from t0 in the direction u avoids SA and A(t0) /∈ Σ,

we de�ne the antipodal monodromy of the eigenvalues from t0 in the direction

u to be the permutation τ ′(t0,u) of Spec(A(t0)) given by

τ ′(t0,u) : Spec(A(t0)) → Spec([A]t0) → Spec([−A]t0) → Spec(A(t0))

λ 7→ [λ]t0 7→ [µ]t0 = τ(t0,u)([λ]t0) 7→ −[µ]t0(t0)
,

where τ(t0,u) is the analytic prolongation of the germs along the half-turn path from t0

in the direction of u with [µ]t0(t0) = µ.

Consider an analytic family A(t), t ∈ Rk. Let t0 ∈ Rk such that the eigenvalues of

A(t0) and A(−t0) are all simple. We de�ne the antipodal monodromy from t0 in the

direction u, u ⊥ t0 and ‖u‖ = ‖t0‖ as the composition of the analytic prolongation of

the eigenvalues of A(t0) along the half-turn path from t0 in the direction u with the

analytic prolongation of the eigenvalues of A(−t0) along [−t0, t0]. If there exists the

antipodal monodromy, then the eigenvalues of A(t) are not analytic functions. But,

we will see in an example that the antipodal mondromy of an a�ne family depends

on the base point t0. So, the antipodal monodromy of an analytic family is less

interesting than the antipodal monodromy of a k-linear family.

2.5 Combinatorics of monodromies

In this section, we study on monodromy around a super-singular set, antipodal mon-

odromy and the relation between them for a 2-linear family A(t), and we will prove

Theorem 2.5.1.

We say that a permutation σ ∈ Sd is a square if there exists a permutation p ∈ Sd

such that σ = p2.

Theorem 2.5.1. A permutation σ ∈ Sd is a square if and only if there are A1, A2 ∈
Symd(R) such that σ is the monodromy of the eigenvalues of the matrix A(t) =

t1A1 + t2A2 along a loop γ : [0, 1]→ R2\(0, 0), γ(0) = γ(1) = t0 with A(t0) /∈ Σ.

The proof of Theorem 2.5.1 is divided into two steps. First, we show that the

monodromy of a 2-linear family is a square, Proposition 2.5.3. Then, in Proposition

2.5.10, for a given permutation p ∈ Sd, we construct two symmetric matrices A1
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and A2 such that σ(A(t1, t2)) = p2, where σ is the monodromy of the eigenvalues

of A(t1, t2) = t1A1 + t2A2. The following lemma shows that the cycle type of a

permutation determines whether a given permutation is a square.

Lemma 2.5.2. A permutation σ ∈ Sd is a square if and only if its unique decom-

position into the product of distinct cycles contains an even number of cycles of even

length.

Proof. Let σ = C2
1 . . . C

2
i2
. . . C l

1 . . . C
l
il
be the decomposition of σ into distinct cycles

Ck
j of length k where 2 6 k 6 l, 1 6 j 6 ik. We suppose that the decomposition

of σ contains an even number of cycles of length even and we prove that σ has a

square root. For j = 0, . . . , ik
2
, if Ck

2j+1 = (a1 . . . ak) and Ck
2j+2 = (b1 . . . bk) be two

cycles of even length k in the decomposition of σ, then Ck
2j+1C

k
2j+2 = (C̃j

2k
)2 with

C̃j
2k

= (a1b1 . . . akbk). For any odd number k′ ∈ {2, . . . , l} and for all j ∈ {1, . . . , i′k},
if Ck′

j = (d1d2 . . . dk′), then Ck′
j = (C̃j

k′
)2 with C̃j

k′
= (d1d3...dk′d2...dk′−1). Finally,

σ =

ik′∏

k′ odd,j=1

Ck′
j

ik∏

k even,j=1

Ck
j (2.2)

=

ik′∏

k′ odd,j=1

(C̃j
k′

)2

ik
2∏

k even,j=0

(C̃j
k
)2 (2.3)

= (

ik′∏

k′ odd,j=1

C̃j
k′

ik
2∏

k even,j=0

C̃j
k
)2 = p2. (2.4)

Now assume that σ = p2 and let p = d1...dl′c1...cl be the decomposition of p into odd

cycles di of length k′i, i ∈ {1, . . . , l′} and even cycles cj of length kj, j ∈ {1, . . . , l}.
Then

p2 = d2
1d

2
2...d

2
l′c

2
1...c

2
l = (d′1d

′
2...d

′
l′)(e1f1...elfl) = σ,

where for i ∈ {1, ..., l′} and j ∈ {1, ..., l}, d′i = d2
i is an odd cycle of length k′i and if

cj = (a1b1a2b2 . . . akbk), then ej = (a1 . . . ak), fj = (b1 . . . bk) are even cycles of length
kj
2
. Therefore, the cycles of even length in σ come in pairs. Thus, in the decomposition

of σ into distinct cycles, the number of cycles of even length is even.
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2.5.1 The monodromy of a 2-linear family is a square

The following proposition proves that the monodromy of a 2-linear family is a square,

which �nishes one part of the proof of Theorem 2.5.1.

Proposition 2.5.3. Let A(t) ∈ Symd(R) be a 2-linear family, t0 ∈ R2\{0} and

u ⊥ t0, ‖u‖ = ‖t0‖ with A(t0) /∈ Σ. Let γ : [0, 1] → R2\{0} be the loop given by

γ(s) = cos(2πs)(t0) + sin(2πs)(u). Then, the monodromy along γ is

σγ = (τ ′(t0,u))
2,

where τ ′(t0,u) is the antipodal monodromy from t0 in the direction of u.

The main idea of the proof is to decompose γ as the combination of two loops along

which the monodromy coincide. Namely, γ is the concatenation of the half-turn path

from t0 in the direction of u followed by the straight path from −t0 to t0, and of the

straight path from t0 to −t0 followed by the half-turn path from −t0 in the direction

of −u.

Proof. Let δ : [0, 1]→ R2\(0, 0) be the half-turn path from t0 in the direction u and

η = −δ.

t0−t0

δ

η

Figure 2.1: Monodromy along the unit circle centered at the origin

We de�ne
Λδ : [0, 1]× Spec(A(t0)) → Spec(A(δ(t)))

(t, λ) 7→ Λδ(t)(λ)
,

where Λδ(t)(λ) is the value at δ(t) of the analytic continuation of λ along δ, and

similarly, we let Λη(t)(λ) be the value at η(t) of the analytic continuation of λ ∈
Spec(A(−t0)) along η, so that σγ(λ) = Λη(1)(Λδ(1)(λ)).

For a given λ ∈ Spec(A(t0)), remark that t 7→ −Λδ(t)(λ) is analytic in terms of
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t ∈ [0, 1] and belongs to −Spec(A(δ(t)). But, since A is linear,

−Spec(A(δ(t)) = Spec(A(−δ(t)) = Spec(A(η(t)).

By uniqueness of analytic continuation, we then get that Λη(t)(−λ) = −Λδ(t)(λ). In

particular, for any λ ∈ Spec(A(t0)),

σγ(λ) = Λη(1)(Λδ(1)(λ))

= −Λδ(1)(−Λδ(1)(λ))

= τ ′(t0,u) ◦ τ ′(t0,u)(λ),

where τ ′(t0,u)(λ) = −Λδ(1)(λ) is the antipodal monodromy from t0 in the direction of

u.

In Proposition 2.5.3, we proved that the monodromy along the loop γ which turns

one time around the origin is a square. Since the fundamental group of R2\(0, 0) is

isomorphic to the integers, with the path γ acting as a generator, the proposition is

true for any homotopy class of a loop γ in R2\(0, 0) which turns k times around the

origin.

Corollary 2.5.4. (Corollary of Proposition 2.5.3) If σ is the monodromy of the eigen-

values of a 2-linear family A(t) along a loop γ : [0, 1] → R2\(0, 0), γ(0) = γ(1) = t0

with A(t0) /∈ Σ, then σ is a square.

2.5.2 Construction of a linear family with prescribed mon-

odromy

We will construct the two matrices of Theorem 2.5.1 by blocks that are related to

the cycle decomposition of a square root of σ. These matrices are build from the

following two matrices:

A1 :=




1 0 · · · 0 1

0 2
. . .

...
...

...
. . . . . . 0

...

0 · · · 0 (d− 1) 1

1 · · · · · · 1 0



.
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and A2 = diag(0, . . . , 0, 1). We �rst study the monodromy of the family A(t1, t2) =

t1A1 + t2A2. For this, we blow-up the origin in the space of parameters. Namely, we

let π0 : (u, v)→ (u, uv) and π1 : (u, v)→ (uv, v) be the expressions of the blow-up π

of (0, 0) ∈ R2 in the two classical system of coordinates. The pull-back of A by π is

given in coordinates by

A ◦ π0 = uA1 + uvA2 = u(A1 + vA2) = uB(v),

A ◦ π1 = uvA1 + vA2 = v(uA1 + A2) = vB′(u).

Hence, for t1 6= 0 we get Spec(A(t1, t2)) = t1Spec(B( t2
t1

)) and for t2 6= 0, we get

Spec(A(t1, t2)) = t2Spec(B
′( t1
t2

)).

The study of the eigenvalues of A ◦ π is made in the following lemmas. We set

a0 = −∞, ak = k for k = 1, . . . , d− 1, and ad = +∞.

Lemma 2.5.5. For any v ∈ R, the matrix B(v) = A1+vA2 admits d distinct analytic

eigenvalues λ1(v), . . . , λd(v) such that for each k ∈ {1, . . . , d}, λk(v) ∈ (ak−1, ak). In

particular, A1 /∈ Σ.

Proof. Note that the super-singular set of the one-parameter familyB(v) is empty. So,

all the points are quasi-regular and all the eigenvalues of B(v) are analytic functions.

We show that for each v ∈ R, χB(v)(k) = (−1)k(k − 1)!(d − k − 1)! for a �xed

k ∈ {1, . . . , d− 1}. From χB(v)(x) = det(A1 + vA2 − xId), we get

χB(v)(k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− k 0 · · · · · · · · · · · · · · · 0 1

0 2− k . . .
...

...
...

. . . . . . . . .
...

...
...

. . . −1
. . .

...
...

...
. . . 0

. . .
...

...
...

. . . 1
. . .

...
...

...
. . . . . . 0

...

0 · · · · · · · · · · · · · · · 0 d− 1− k 1

1 · · · · · · · · · · · · · · · · · · 1 v − k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding this determinant with respect to the k-th row gives
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χB(v)(k) := (−1)k+d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− k 0 0 · · · · · · · · · · · · · · · 0

0 2− k . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . −1 0
. . .

...
...

. . . 0 1
. . .

...
...

. . . . . . 2
. . .

...
...

. . . . . . . . . 0

0 · · · · · · · · · · · · · · · 0 0 d− 1− k
1 · · · · · · · · · · · · · · · · · · · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now expanding with respect to the k-th column, we get

χB(v)(k) = (−1)d+k × (−1)d−k−1(d− 1− k)!× (−1)k−1(k − 1)! (2.5)

= (−1)k(d− 1− k)!(k − 1)! (2.6)

Therefore, for all k ∈ {1, ..., d− 1}, χB(k) is a non-zero constant, and for k < d− 1,

χB(k)χB(k + 1) < 0. In particular, by the Mean Value Theorem, χB(v) admits

a root in the interval (k, k + 1), for k = 1, . . . , d − 2. Moreover, as x → ±∞,

χB(v)(x) ∼±∞ (−1)dxd while χB(d − 1) = (−1)d−1(d − 2)! and χB(1) = −(d − 2)!,

so in a similar way, χB(v) admits a root in (−∞, 1) and another one in (d− 1,+∞).

Then, for any v, χB(v) has d distinct eigenvalues λ1(v), . . . , λd(v) such that for each

k ∈ {1, . . . , d}, λk(v) ∈ (ak−1, ak) with ak = k if k 6= d, a0 = −∞ and ad = +∞.

Lemma 2.5.6. For any v ∈ R, B(v) = A1 + vA2 has analytic eigenvalues λ1(v) <

· · · < λd(v) such that for each k = 1, . . . , d,

lim
v→−∞

λk(v) = ak−1 and lim
v→+∞

λk(v) = ak.

Proof. By Lemma 2.5.5, for any v ∈ R, B(v) has d distinct analytic eigenvalues

λ1(v), . . . , λd(v). Without loss of generality, we can suppose that λ1(v) < · · · < λd(v).

Let us �rst show that for any �xed parameter x,

deg(v 7→ χB(v)(x)) 6 1. (2.7)
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χB(v)(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− x 0 · · · 0 1

0 2− x . . .
...

...
...

. . . . . . 0
...

0 · · · 0 d− 1− x 1

1 · · · · · · 1 v − x

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We expand this determinant with respect to the d-th column. We get

χB(v)(x) = (v − x)

∣∣∣∣∣∣∣∣∣∣∣

1− x 0 · · · 0

0 2− x . . .
...

...
. . . . . . 0

0 · · · 0 d− 1− x

∣∣∣∣∣∣∣∣∣∣∣

+R,

where R does not depend on v. Hence,

χB(v)(x) = (1− x)(2− x) . . . (d− 1− x)v + g(x) (2.8)

where g(x) is a polynomial of degree d in terms of x which does not depend on v.

Now, we claim that for all k ∈ {1, . . . , d}, λk is strictly monotone. Indeed, if there

are v1, v2 ∈ R such that λk(v1) = λk(v2) = α, then χB(v1)(α) = χB(v2)(α) = 0. Notice

that α /∈ {1, . . . , d− 1} (because if α ∈ {1, . . . , d− 1}, (2.6) shows that χB(v)(α) 6= 0

for all v), so (2.8) gives v1 = v2. Since λk is injective and continuous, λk is strictly

monotone.

Our next claim is that λ′k(0) > 0. Since χB(0)(x) has d distinct roots, for any

i ∈ {1, . . . , d− 1},
∂χB(0)

∂x
(λi(0))

∂χB(0)

∂x
(λi+1(0)) < 0.

Moreover, χB(0)(x) ∼x→−∞ (−1)dxd, so limx→−∞ χB(0)(x) = +∞, then
∂χB(0)

∂x
(λ1(0)) <

0, and �nally,

sgn
∂χB(0)

∂x
(λk) = sgn (−1)k. (2.9)

Now, we �x x ∈ R. By (2.8), we get
∂χB(0)

∂v
(x) =

d−1∏

i=1

(i − x). Since, from Lemma

(2.5.5), λk(0) ∈ (ak−1, ak),

sgn

(
∂χB(0)

∂v
(λk(0))

)
= sgn

(
d−1∏

i=1

(i− λk(0))

)
= sgn (−1)k−1. (2.10)
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On the other hand, χB(v)(λk(v)) ≡ 0. Thus,

∂χB(v)

∂x
(λk(v)) +

∂χB(v)

∂v
(λk(v))λ′k(v) = 0. (2.11)

Replacing v by 0 in (2.11) gives

λ′k(0) =
−∂χB(0)

∂x
(λk(0))

∂χB(0)

∂v
(λk(0))

. (2.12)

Then by (2.9) and (2.10), we get

sgn (λ′k(0)) = sgn
(
(−1)k+1 × (−1)−k+1

)
= sgn (−1)2 = +

Finally, λk is monotone and has positive derivative at 0, so λk is strictly increasing.

Now, from (2.8), for given x ∈ (ak−1, ak), χB(v)(x) has degree exactly one in v, then

has a root. So x belongs to the image of an eigenvalue. But only λk has values in

(ak−1, ak), so x is in the image of λk. In other terms, λk is surjective onto (ak−1, ak).

Finally, λk is an increasing bijection from R to (ak−1, ak), so limv→−∞ λk(v) = ak−1

and limv→+∞ λk(v) = ak.

Lemma 2.5.7. Let B′(u) = uA1 +A2, u ∈ R. Then, d−1 analytic eigenvalues of B′,

µ1, . . . , µd−1 vanish at u = 0 and their slopes µ′1(0), . . . , µ′d−1(0) are 1, 2, . . . , d− 1.

We prove the lemma by relating the slopes of the eigenvalues of the matrix B′

that vanish at u = 0, with the �nite limits of the eigenvalues of B(v) = A1 + vA2 at

v = +∞.

Proof. Let µi, i = 1, . . . , d be the analytic eigenvalues of B′, and denote by λ1 <

· · · < λd the analytic eigenvalues of B, with B(v) = A1 + vA2 (see Lemma (2.5.5)).

Notice that

B′(u) = uA1 + A2

= u

(
A1 +

1

u
A2

)
= uB

(
1

u

)
.

So for u 6= 0, each eigenvalue µi is obtained as µi(u) = uλk
(

1
u

)
, for some k. Since

λ1 < · · · < λd, up to reindexing, we get for u > 0, µk(u) = uλk
(

1
u

)
. Now for
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k = 1, . . . , d− 1,

lim
u→0+

µk(u) = lim
u→0+

uλk

(
1

u

)
= 0,

since limu→0+ λk
(

1
u

)
= limv→+∞ λk(v) = k, by Lemma 2.5.6.

Moreover, for k = 1, . . . , d− 1,

µ′k(0) = lim
u→0+

µk(u)

u
= lim

u→0+
λk

(
1

u

)
= k.

Proposition 2.5.8. Let A(t1, t2) = t1A1 + t2A2, (t1, t2) ∈ R2. Then, the antipodal

monodromy τ ′ from t0 = (1, 0) in the direction u = (0, 1) is the permutation of the

ordered set Spec(A(1, 0)) de�ned by

τ ′ =

(
1 2 . . . d− 1 d

2 3 . . . d 1

)
.

Proof. Set A(θ) = cos(θ)A1 + sin(θ)A2. Notice that A(0) = A1, A1 /∈ Σ and denote

by λ1, . . . , λd : [0, π]→ R the analytic eigenvalues of A(θ) with λ1(0) < · · · < λd(0).

Let us show that λd(π) = −λ1(0). Since Spec(A(π
2
)) = {0, 1}, λd(π2 ) ∈ {0, 1}. We

claim that λd(π2 ) = 1. Otherwise, λd(π2 ) = 0, and there exists k ∈ {1, . . . , d− 1} such
that λk(π2 ) = +1 so λd(π2 ) < λk(

π
2
) while λd(0) > λk(0). This leads to a contradiction,

since from Lemma 2.5.5, A(θ) = cos(θ) B(tan(θ)) has distinct eigenvalues over (0, π
2
).

The same argument on (π
2
, π) shows that λd(π) > λk(π) for k = 1, . . . , d − 1 so

λd(π) = max (Spec(A(π))) = −λ1(0).

We next show that for all k 6= d, λk(π) = −λk+1(0). Notice that for all k 6= d,

λk(
π
2
) = 0, since otherwise λd(π2 ) = λk(

π
2
) = 1, contrary to the fact that the multi-

plicity of the eigenvalue 1 is 1 at θ = π
2
. Moreover, since A(θ) = sin(θ) (B′(cotan (θ)))

with B′(u) = uA1 + A2, so λk(θ) = sin(θ) µk(cotan (θ)), where µk is the analytic

eigenvalue of B′(u) that vanishes at u = 0. Thus,

λ′k(0) =
(

sin(θ) (µk(cotan (θ)))
)′
|θ=0

= −µ′k(0).

Then by Lemma 2.5.7, the slopes λ′1(0), . . . , λ′d(0) are all di�erent. Hence, the eigen-

values λ1, . . . , λd−1 coincide at π
2
with di�erent slopes, so their ordering reverse at π

2
.

Since again by Lemma 2.5.5, these eigenvalues have constant ordering on (0, π
2
) and
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(π
2
, π) we get λ1(π) > · · · > λd−1(π). However,

{λ1(π), . . . , λd−1(π)} = Spec(−A1)\{λd(π)} = {−λ2(0), . . . ,−λd(0)},

yet −λd(0) < · · · < −λ2(0), so we get �nally λk(π) = −λk+1(0) for k ∈ {1, . . . , d−1}.

Thus, the antipodal monodromy from (1, 0) in the direction of (0, 1) is given by

τ ′(λk(0)) = −λk(π)

= −(−λk+1(0)) = λk+1(0),

which �nishes the proof.

Proposition 2.5.9. Let Ai(t1, t2) ∈ Symdi(R), i = 1, . . . , k, d1 + · · · + dk = d be 2-

linear families and A(t1, t2) = diag(A1(t1, t2), . . . , Ak(t1, t2)). Suppose that A(1, 0) /∈
Σ, then the antipodal monodromy τ ′ of A(t1, t2) from (1, 0) in the direction of (0, 1)

is given by τ ′ = τ1 ◦ · · · ◦ τk, where

τi(λ) =




τ ′i(λ) if λ ∈ Spec(Ai(0))

λ Otherwise
,

where τ ′i is the antipodal monodromy of Ai from (1, 0) in the direction of u = (0, 1).

Proof. Note that χA =
k∏

i=1

χAi . Moreover, R2\(0, 0) is made of the quasi-regular

points of A(t1, t2) and each Ai. Thus, in a neighborhood V of the point (1, 0), we

have χA =
d∏

`=1

(x− λ`) and χAi =

di∏

j=1

(x− λij) where the λ` and λij are analytic and

uniquely determined. Yet, χA =
d∏

`=1

(x− λ`) =
k∏

i=1

di∏

j=1

(x− λij). Then,

{λ` ; l = 1, . . . , d} = {λij ; i = 1 . . . , k, j = 1, . . . , di},

over V . For a given λ ∈ Spec(A), let ` ∈ {1, . . . , d} be the unique index such that

λ = λ`(1, 0) and and i, j such that λ` = λij over V . Then, the analytic continuation

of λij along the half-turn path from (1, 0) in the direction of (0, 1) is an analytic

continuation of λ`, so τ ′(λ`) = τ ′i(λij(1, 0)) = τ1 ◦ · · · ◦ τk(λ).
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Proposition 2.5.10. Suppose that p ∈ Sd has the cycle decomposition p = C1C2...Cl,

where Ci is a cycle of length ki. Let

Ai(t1, t2) :=




t1 0 · · · 0 t1

0 2t1
. . .

...
...

...
. . . . . . 0

...

0 · · · 0 (ki − 1)t1 t1

t1 · · · · · · t1 t2



.

Then, there are α1, . . . , α` ∈ R such that σ = p2 is the monodromy of the eigenvalues

of the matrix A(t1, t2) = diag(A1(t1, t2) + α1Ik1 , . . . , A`(t1, t2) + α`Ik`) along a loop

γ : [0, 1]→ R2\(0, 0), γ(0) = γ(1) = t0 with A(t0) /∈ Σ.

Proof. Let t0 = (1, 0) and u = (0, 1). Then, Proposition 2.5.8 proves that the

antipodal monodromy from t0 in the direction u of the matrix Ai is a cycle of

length ki. We choose real numbers α1, . . . , α` such that for all i 6= j ∈ {1, . . . , `},
Spec(Ai(t0) + αiIki) ∩ Spec(Aj(t0) + αjIkj) = ∅. Then

A(t1, t2) :=




A1(t1, t2) + α1Ik1

A2(t1, t2) + α2Ik2

. . .

A`(t1, t2) + α`Ik`




is a block diagonal matrix associated with the permutation p such that A(t0) /∈ Σ.

By Proposition 2.5.9, the antipodal monodromy τ ′(t0,u) from t0 in the direction u

of A(t1, t2) is given by τ ′(t0,u) = p. We conclude from Proposition 2.5.3 that the

monodromy of eigenvalues of A(t1, t2) along γ is σγ = (τ ′(t0,u))
2 = p2.

Example 2.5.11. In this example, we see that the lack of monodromy is not su�cient

to have eigenvalues as analytic functions. Let

A(t1, t2) =

(
t1 t2

t2 −t1

)
= t1

(
1 0

0 −1

)
+ t2

(
0 1

1 0

)
.

In Example 0.0.1 We saw that the eigenvalues of A(t1, t2) cannot be chosen as the

analytic functions on R2. Since as we move on the circle t21+t22 = 1 we get λ1 = +1 and

λ2 = −1, the monodromy of eigenvalues of A(t1, t2) is the identity permutation, Figure

2.2. This shows that the lack of the monodromy is not su�cient to get eigenvalues

as analytic functions.
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λ(A(t1, t2))

θ

+1

−1

−π
2

π
2

π 3π
2

Figure 2.2: The eigenvalues of A(θ) = cos θA1 + sin θA2

However, the antipodal monodromy from t0 = (1, 0) in the direction of u = (0, 1)

is a cycle of length two τ ′(t0,u) = (λ1λ2).

Figure 2.3: The eigenvalues of A(t1, t2)

In Theorem 4.3.1, we will see that the existence of non-trivial antipodal mon-

odromy is the only obstruction for getting the eigenvalues as analytic functions.

Example 2.5.12. Let A(t) = t1A1 + t2A2 be the linear family of symmetric matrices

dimension three, where A1 and A2 are in the form of the matrices of Subsection 2.5.2.

We see that the monodromy of the eigenvalues along the unit circle centered at the

origin is non-trivial. Consider

A(t1, t2) =



t1 0 t1

0 2t1 t1

t1 t1 t2


 = t1




1 0 1

0 2 1

1 1 0


+ t2




0 0 0

0 0 0

0 0 1


 ,

where Spec(A1) = {−0.8, 1.3, 2.5} and Spec(A2) = {0, 0, 1}. By Lemmas 2.5.5 and

2.5.6, the eigenvalues of the B(v) = A1 +vA2 are distinct and strictly increasing such
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that for k = 1, 2, 3, limv→−∞ λk(v) = ak−1 and limv→+∞ λk(v) = ak, with ak = k

for k = 1, 2, a0 = −∞, a3 = +∞ In the following �gure, we see the graph of the

eigenvalues of B(v).

Figure 2.4: The eigenvalues of B(v)

By Lemma 2.5.7, the slopes of the eigenvalues of B′(u) = uA1 + A2 at u = 0 are

{1, 2}. By Proposition 2.5.8, the antipodal monodromy τ ′(t0,u) is a cycle of length 3.

Finally, by Proposition 2.5.10, the monodromy of the eigenvalues of A(t1, t2) is given

by σ = (τ ′(t0,u))
2. Hence, σ = (λ1λ3λ2) is a cycle of length three, Figure 2.5.

Figure 2.5: Monodromy of the eigenvalues of A(θ) = cos θA1 + sin θA2
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2.6 Slopes and asymptotes of eigenvalues

In Subsection 2.5.2, we were driven to prove some properties of eigenvalues associated

to a special family. Some of them are consequences of general facts we state below,

as we use them later.

Lemma 2.6.1. Let B : v → A1 + vA2. If λ : R → R is a continuous eigenvalue of

B(v), then limv→±∞
λ(v)
v

exists and it belongs to the spectrum of A2.

Proof. Since v 7→ λ(v) is a semi-algebraic function, limv→+∞
λ(v)
v

exists in R∪{±∞}.
Let us denote by λk(A) the k-th largest (with repetition) eigenvalue of A. Note that

the k-th eigenvalue function

φk : Symd(R) → R
A 7→ λk(A)

is continuous and we take λ(v) = φk(B(v)) in a neighborhood of +∞.

Consider the matrix
B(v)

v
=
A1 + vA2

v

whose eigenvalues are of the form λi(v)
v

, λi(v) ∈ Spec(B(v)). Since the eigenvalue

function is continuous, the eigenvalues of limv→+∞
B(v)
v

= A2 are limv→+∞
λi(v)
v

= S.

Same argument works for v = −∞, thus, the slopes of the eigenvalues of the matrix

B(v) at ±∞ are the eigenvalues of A2.

Lemma 2.6.2. Let

A(θ) = cos(θ)A1 + sin(θ)A2,

where

A2 = diag(0, ..., 0, 1).

Then, the �nite limits of the eigenvalues of the matrix B(v) = A1 + vA2 at v = ±∞
are the slopes of the eigenvalues of the matrix A(θ) at the point θ = −π

2
.

Proof. Consider an eigenvalue λi(v) of the matrix B(v) with �nite limit at v = −∞.

Suppose that

lim
v→−∞

λi(v) = Ci,

where Ci ∈ R. Suppose that µi(θ) is the corresponding eigenvalue of the matrix A(θ).
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Since u = cos θ and v = sin θ
cos θ

, we have

µi(θ) = λi(tan θ) cos θ, (2.13)

Since cos θ ∼−π
2

(θ + π
2
), λi(tan θ) ∼−π

2
Ci, we get

µi(θ) ∼−π
2
Ci × (θ +

π

2
) (2.14)

We now calculate the slope of the eigenvalue µi of A(θ) at the point θ = −π
2
,

µ′i(−
π

2
) := lim

θ→−π
2

µi(θ)

θ + π
2

.

Since µi(θ) depending on one parameter is analytic and µi(−π
2
) = 0, then by

Hopital's rule and 2.14 µ′i(−π
2
) = Ci.

Now consider a constant eigenvalue λj(v) 6= λi(v) of B(v) at v = +∞ and suppose

that

lim
v→+∞

λj(v) = Cj.

Let µj(θ) be the corresponding eigenvalue of matrix A(θ). We have

µj(θ) = λj(tan θ) cos θ, (2.15)

Since cos θ ∼+π
2

(−θ + π
2
), λj(tan θ) ∼+π

2
Cj, we get

µj(θ) ∼+π
2
Cj × (−θ +

π

2
) (2.16)

Hence, the slope of the eigenvalue µj of A(θ) at the point θ = +π
2
,

µ′j(+
π

2
) := lim

θ→+π
2

µj(θ)

−θ + π
2

.

By Hopital's rule and 2.16, we get µ′j(+
π
2
) = −Cj.

Since A(θ) = −A(θ+π), the slopes of eigenvalues of the matrix A(θ) at the points

at π
2
and −π

2
are opposite reciprocals which �nishes the proof.

Now, it is of interest to look at the slopes of the eigenvalues of the matrix A(θ) at

θ = −π
2
, Lemma 2.6.3.

40



Lemma 2.6.3. If A2 ∈ Symd(R) is diagonal with #Spec(A2) = d. Then, the slopes

of the eigenvalues A(θ) = cos(θ)A1 + sin(θ)A2 at θ = −π
2
are the diagonal elements

of the matrix A1.

Proof. Let t1 = cos θ = uv, t2 = sin θ = v. We consider B′ : u 7→ A2 + uA1, where

A2 =




α1

α2

. . .

αd



,

such that for all i, j ∈ {1, . . . , d}, αj 6= αj and

A1 =




a11 a12 · · · a1d

a12 a22 · · · a2d

...
...

. . .
...

a1d a2d · · · add



.

Since B′(u) is a one parameter family, the eigenvalues of B′(u), λi : R → R,
i = 1, . . . , d are analytic functions. Choose an index i and denote by λ(u) the corre-

sponding eigenvalue such that λ(u) = α1 +m1u+ o(u) in a neighborhood of zero. So

we have

det(B′(u)− λ(u)Id) = 0.

Therefore,

det




α1 + ua11 − λ(u) ua12 ... ua1d

ua12 α2 + ua22 − λ(u) ... ua2d

...
...

ua1d ua2d ... αd + uadd − λ(u)




= 0. (2.17)

Let

a′1 :=




a12

...

a1d


 , A′1 :=




a22 · · · a2d

...
. . .

...

a2d · · · add


 , A′2 :=




α2

. . .

αd


 .
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Hence, we can rewrite 2.17 as

det

(
α1 + ua11 − λ(u) ua′t1

ua′1 A′2 + uA′1 − λ(u)Id−1

)
= 0.

We can write

A′2 + uA′1 − λ(u)Id−1 = A′2 − α1Id−1 + uA′1 − (λ(u)− α1)Id−1.

Since for all i ∈ {2, . . . , d}, α1 6= αi and λ(0) = α1, then at u = 0, the matrix

(A′2 + uA′1 − λ(u)Id−1) is invertible. We can choose u su�ciently small such that

(A′2 + uA′1 − λ(u)Id−1) stays invertible. De�ne x(u) ∈ Rd−1 by

x(u) = −u(A′2 + uA′1 − λ(u)Id−1)−1a′1. (2.18)

so that

(A′2 + uA′1 − λ(u)Id−1)x(u) = −ua′1.

Denote by

C ′ =

(
ua′t1

A′2 + uA′1 − λ(u)Id−1

)
,

the d × (d − 1) sub-matrix of the determinant of the matrix B′(u) − λ(u)Id. Let

us replace the �rst column C1 of the determinant of the matrix B′(u) − λ(u)Id by

C1 + C ′x(t):

C1 + C ′x(t)→ C1.

Note that under these procedures the determinant of the matrix B′(u)− λ(u)Id does
not change. We get,

det(B′(u)− λ(u)Id) = det

(
Λ(u) ua′t1

0 A′2 + uA′1 − λ(u)Id−1

)
= 0,

where

Λ(u) = α1 + ua11 − λ(u) + ua′t1x(u). (2.19)

Moreover, by replacing 2.18 in 2.19 we get,

Λ(u) = α1 + ua11 − λ(u)− u2a′t1 (A′2 + uA′1 − λ(u)Id−1)−1(a′1). (2.20)
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Thus,

χB′(λ(u)) = Λ(u)× det(A′2 + uA′1 − λ(u)Id−1)

= P1(u, λ(u))× P2(u, λ(u)),

where

P1(u, λ(u)) = Λ(u),

and

P2(u, λ(u)) = det(A′2 + uA′1 − λ(u)Id−1).

Since at u = 0, P2(u, λ(u)) 6= 0, then χB′(u) = 0 if and only if P1(u, λ(u)) = 0. If

Λ(u) = 0, we get

λ(u) = α1 + ua11 − u2a′t1 (A′2 + uA′1 − λ(u)Id−1)−1(a′1).

From this, the slope of the eigenvalue λ(u) at the point u = 0 is a11, the corresponding

diagonal element of A1. Since we can do the same procedure respect to any diagonal

element of (B′(u) − λi(u)Id), it can be concluded that slopes of the eigenvalues of

B′(u) at the point u = 0 are the diagonal elements of A1. By linearity of the family

we have the same for the eigenvalues of the matrix A(θ).
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Chapter 3

Intersection of linear families with Σ2

Given a linear family A(t) in Symd(R), we showed in the previous chapter obstructions

� the monodromy around SA and the antipodal monodromy � for the existence of

analytic eigenvalues. The monodromy is fully supported by the super-singular set.

Thus, it is of prime importance to identify in Σ the points that are super-singular for

A(t). We dedicate this chapter to study of the intersections of linear families with

Σ2, this is, matrices that have exactly one double eigenvalue. Since eigenvalues are

homogeneous, it is sometimes convenient to restrict the study to a�ne subspaces of

A(t) of codimension one, (that can be seen as charts of the corresponding projective

family). We state most of our results in this framework.

In the �rst section, we describe some underlying geometric structure of Symd(R).

We recall that Symd(R) is strati�ed according to the multiplicities of eigenvalues. The

action of the orthogonal group O(d) respects the strati�cation, and the geometry

of O(d) shows in particular through the local geometry of the smooth part of Σ,

that is Σ2. We give a local decomposition of (the tangent space to) Symd(R) in a

neighborhood of A0 ∈ Σ2 that respects TA0Σ2, and distinguish the tangent to the

orbit of A0 by O(d) and the centralizer of A0.

In the second section, we recall some results of Lax [20] and of S. Friedland, J.

Robbin and J. Sylvester [10]. Asking for the nature of the intersection of A(t) with

Σ, one could hope for some lower bound for A(t)∩Σ in terms of dim(A). Naively, Σ

being codimension one, linear 3-families (i.e., a�ne 2-families) could always intersect

Σ \ {0} (0 always belongs to A ∩ Σ). Lax Theorem shows that the later is true in

Symd(R) for d ≡ 2 mod 4. But, Friedland, Robbin and Sylvester re�nes the later

and gives the minimal k(d) such that any k(d)-linear subspace in Symd(R) intersects

45



Σ\{0}. Surprisingly, there are subsequences of k(d) that grow to in�nity. We remark

that for those large families with no non-zero intersection points with Σ, the origin is

always a super-singular point.

In another section, we focus on a�ne 1-families. There, thanks to Rellich, eigen-

values are analytic in terms of the parameter. We relate the slopes of collapsing

eigenvalues to the transversality of the family with Σ2, which will be of great use

later. The maximal number of intersection points of A(t) with Σ2 that is allowed by

the degree of χA(t), is reached for simultaneously diagonalizable families. We then

prove that the singular points of generic diagonal families admit independent pertur-

bations. In other words, given a generic diagonal a�ne family D(t) (this means, such

that D(t)∩Σ ⊂ Σ2), and choosing a subset I of D(t)∩Σ2, there exists an a�ne family

A(t) close to D(t) such that A(t)∩Σ2 is exactly made of Card(I) points close to the

points of I, Proposition 3.3.4. This result can be regarded as a version of Brusotti

Theorem (singularities of plane curves with only simple singular points can be per-

turbed independently one to the other) for determinential curves, where matrices are

perturbed instead of curves. This result leads us to construct families with prescribed

�set� antipodal monodromy. Precisely, given d distinct values a1, . . . , ad in R, and σ
a permutation of {a1, . . . , ad}, there exists a 2-linear family A(t) ∈ Symd(R), whose

eigenvalues at (1, 0) are a1, . . . , ad, and whose antipodal monodromy from (1, 0) in

the direction (0, 1) is precisely σ, Theorem 3.3.5.

In the last section of this chapter, we focus on a�ne two-dimensional families. We

give a description of the behavior of the eigenvalues in a neighborhood of a point A(t0)

ofA(t)∩Σ2. Here we use the description of TA0Σ2 that is given in the �rst section of the

chapter, and break down the analysis in terms of the dimension of the intersection of

TA0A(t) with TA0Σ2 and then of the intersection of A(t) with Σ2. The diversity of the

encountered cases dissuades to push the analysis further (increasing the dimension

of A(t)) with no new theoretical result. Among the interesting behaviors that we

enlight, we should mention that we construct non-trivial plane curves included in Σ2,

and cases where the antipodal monodromy of the a�ne family depends on the base

point. We also produce lines along which the contact order with Σ2 is 3, that refute

the naive local representation of Σ2 as a sort of bended cylindrical surface. (as it is

locally the orbit of a ��at� linear space made of diagonal matrices by the action of

the �round� group O(d)).
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3.1 Generalities on Symd(R), Σ2, O(d).

3.1.1 Stratifying Symd(R)

We �x an integer d ∈ N∗, and consider the space Symd(R) of symmetric d×dmatrices.

We �rst introduce some notations. Let ∆ : Symd(R) → R be the discriminant

function, so that Σ, the set of symmetric matrices with multiple eigenvalues, is the

zero set of ∆:

Σ = {X ∈ Symd(R); ∆(X) = 0}.

The space Symd(R) can be decomposed according to the multiplicities and the order

of the eigenvalues. Given (i1, . . . , i`) ∈ (N∗)` with i1 + · · · + i` = d, we denote by

Σi1,...,i` the matrices whose eigenvalues are of the form λ1 < · · · < λ`, λk having

multiplicity ik:

Σi1,...,i` =

{
X ∈ Symd(R); ∃λ1 < · · · < λ`, χX(λ) =

∏̀

k=1

(λk − λ)ik

}

Forgetting the order of the eigenvalues drives to consider the sets SJ , indexed by the

�nite sequences J = (j1, . . . , js) ∈ (N∗)s with
s∑

k=1

kjk = d, and made of the matrices

that have exactly jk eigenvalues of order k. The set Sj1,...,js is the disjoint union of

the Σi1,...,i` where jk is the occurrence of k in the sequence i1, . . . , i`:

Sj1,...,js =
⊔

J(i1,...,i`)=(j1,...,js)

Σi1,...,i` ,

where J(i1, . . . , i`) = (j1, . . . , js) if jk = Card{n; in = k}.

For short, and since we manly focus on it, we write Σ2 for the set Sd−2,1, made of

those matrices that have exactly 1 double eigenvalue (and d− 2 simple eigenvalues),

and which is the disjoint union of all Σi1,...,id−1
where all ik's are 1 but one that is 2.

Note that symmetric matrices also can be considered as quadratic forms, assuming

that a quadratic form can be written in coordinates as a symmetric matrix. In ([3],

Appendix 10) Arnold represent the open area Sym+
d (R) of the positive de�nite forms

in Symd(R) as the area of ellipsoid. For the �rst time, the problem of the strati�cation

of symmetric matrices was asked by Arnold. In [4], he discusses the properties of this

strati�cation. Then, in ([32], Lemma 1) Shapiro and Vainshtein give a strati�cation

of Symd(R) according to the multiplicity of the eigenvalues. In our notations, it is
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shown that :

Theorem 3.1.1. [Arnold [3], Shapiro and Vainshtein [32]]

1. The decomposition

Symd(R) =
⊔

∑s
k=1 kjk=d

Sj1,...,js

is a strati�cation of Symd(R) into smooth semi-algebraic manifolds. In par-

ticular, Σ = Symd(R) \ Sd is a �nite disjoint union of smooth semi-algebraic

manifolds.

2. The decomposition

Sj1,...,js =
⊔

J(i1,...,i`)=(j1,...,js)

Σi1,...,i` ,

is a decomposition into smooth connected components of equal dimension, and

the codimension of Sj1,...,js is given by

Codim(Sj1,...,js) =
s∑

k=1

(k − 1)(k + 2)

2
jk.

In particular, Σ2 = Sd−2,1 is a smooth manifold of codimension 2 and has d− 1

connected components.

3.1.2 Action of the orthogonal group

We denote by O(d) the orthogonal group of d× d matrices,

O(d) := {Q ∈Md(R) | QTQ = Id}.

It acts on Symd(R) by conjugation, this is, with the action α:

α : O(d)× Symd(R) → Symd(R)

(Q,A0) 7→ QTA0Q.

The orbit OA0 of an A0 ∈ Symd(R) under this action

OA0 = {QTA0Q; Q ∈ O(d)},
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is the image of the map

αA0 : O(d) → Symd(R)

Q 7→ QTA0Q,

and consists of the symmetric matrices which have the same eigenvalues (with multi-

plicities) as A0.

We �xA0 ∈ Symd(R) and describe the tangent space TA0OA0 . For this, we compute

the di�erential DIdαA0 ∈ L(TIdO(d), TA0Symd(R)). From the de�nition of O(d), we

have

TIdO(d) = ker DId(M 7→MTM − Id) = {K ∈Md(R); KT = −K}.

So TIdO(d) is the space of d × d skew-symmetric, that we denote Skewd(R). Notice

Symd(R) is linear so TA0Symd(R) = Symd(R). Direct calculation gives:

DId(αA0) : Skewd(R) → Symd(R)

K 7→ KA0 − A0K.
(3.1)

Now, TA0OA0 = ImDId(αA0), so

TA0OA0 := {KA0 − A0K | K ∈ Skewd(R)}.

In particular,

dimOA0 = dimTA0OA0

= dim TIdO(d)− dim ker(DId(αA0))

= d(d−1)
2
− dim{K ∈ Skewd(R) | KA0 − A0K = 0}.

3.1.3 Construction of tangent planes

Proposition 3.1.2. Suppose that A0 ∈ Σ2. Then,

Symd(R) = TA0OA0 ⊕ C(A0) ∩ TA0Σ2 ⊕ C(A0) ∩ TA0Σ2
⊥

and

TA0Σ2 = TA0OA0 ⊕ C(A0) ∩ TA0Σ2
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where C(A0) = {M ∈ Symd(R);MA0 = A0M} and TA0Σ2
⊥ is the complement of

TA0Σ2 , orthogonal to TA0Σ2 for the scalar product < A|B >= tr(AB), A,B ∈
Symd(R).

Proof. Let P ∈ O(d) such that P TA0P = B0 with B0 = diag(α1, α2, α3, . . . , αd),

α1 = α2 = α and for all i, j ∈ {3, . . . , d}, i 6= j, αi 6= αj 6= α. For all i, j ∈ {1, . . . , d},
let δij be the matrix whose only non-zero entry is the (i, j)-th that is 1 and de�ne

Di = δii. Let Diag ∩ TB0Σ2 be the diagonal direction in TB0Σ2 that contains B0, this

is,

Diag ∩ TB0Σ2 = span(D,D3, . . . , Dd)

where D = δ11 + δ22. Let Kij ∈ Skewd(R) be Kij = δij − δji, then Kij, i < j, form a

basis for Skewd(R). Note that {K ∈ Skewd(R);KB0 − B0K = 0} = span(K12) and

for all i < j, KijB0 − B0Kij = (αj − αi)δij + (αj − αi)δji with αj − αi 6= 0 for all

i, j ∈ {3, ..., d}. De�ne Oij = δij + δji. Then, ((Oi,j); i < j, (i, j) 6= (1, 2)) is a family

of d(d−1)
2
− 1 independent matrices which form a basis for TB0OB0 ,

TB0OB0 = Span((Oi,j); i < j, (i, j) 6= (1, 2)).

Note that Diag ∩ TB0Σ2 is a subspace of TB0Σ2. Since B0 ∈ Σ2 and Σ2 is smooth,

OB0 is a sub-manifold of Σ2. So, TB0OB0 also is a subspace of TB0Σ2 and we have

dimDiag ∩ TB0Σ2 + dimTB0OB0 = dimTB0Σ2.

Since any matrix of TB0OB0 has zero diagonal, for any matrix M1 ∈ Diag ∩ TB0Σ2

and M2 ∈ TB0OB0 , tr(M1M2) = 0. So, Diag ∩ TB0Σ2 is the orthogonal complement

of TB0OB0 in TB0Σ2 for the scalar product < A|B >= tr(AB). Thus,

TB0Σ2 = TB0OB0 ⊕Diag ∩ TB0Σ2.

Since TB0Σ⊥2 is the complement of TB0Σ2, it has dimension two and Symd(R) =

TB0Σ2 ⊕ TB0Σ2
⊥. Since TB0Σ2 = TB0OB0 ⊕Diag ∩ TB0Σ2, we have

Symd(R) = TB0OB0 ⊕Diag ∩ TB0Σ2 ⊕ TB0Σ2
⊥.

Now, consider the invertible linear map C : Symd(R) → Symd(R), X 7→ PXP T .

Since C is an invertible linear map, it preserves the direct sums of subspaces of
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Symd(R), we have

Symd(R) = C(TB0OB0)⊕ C(Diag ∩ TB0Σ2)⊕ C(TB0Σ2
⊥).

Notice that C(OB0) = OB0 , C(TB0OB0) = TA0OA0 and C(TB0Σ2) = TA0Σ2. We show

that

• C(Diag ∩ TB0Σ2) = C(A0) ∩ TA0Σ2:

C(Diag ∩ TB0Σ2) ⊆ C(A0) ∩ TA0Σ2: let B1 ∈ Diag ∩ TB0Σ2 so that C(B1) = A1.

Since B1 ∈ TB0Σ2, we get A1 ∈ TA0Σ2. Since P TA1P = B1, P TA0P = B0 and B0

and B1 are diagonal, A0 and A1 are simultaneously diagonalizable, so A1 ∈ C(A0).

C(A0)∩TA0Σ2 ⊆ C(Diag∩TB0Σ2): let A1 ∈ C(A0)∩TA0Σ2, so that C−1(A1) = B1.

We show that B1 ∈ Diag ∩ TB0Σ2. Since A1 ∈ TA0Σ2, so B1 ∈ TB0Σ2. Since

A1A0 = A0A1, C−1(A1)C−1(A0) = C−1(A0)C−1(A1). From this, B1B0 = B0B1. So,

B1 ∈ C(B0). But B1 ∈ TB0Σ2, so B1 is diagonal.

• C(TB0Σ⊥2 ) = C(A0) ∩ TA0Σ⊥2 :

C(TB0Σ⊥2 )) ⊆ C(A0)∩TA0Σ⊥2 : since for any A,B ∈ Symd(R), C preserves the inner

product < A|B >= tr(AB), for any S ∈ TB0Σ⊥2 , C(S) ∈ TA0Σ⊥2 . Since

S ∈ span(




0 1 0 · · · 0

1 0 0
...

0 0 0
. . .

...
...

. . . . . .
...

0 · · · · · · · · · 0



,




1 0 0 · · · 0

0 −1 0
...

0 0 0
. . .

...
...

. . . . . .
...

0 · · · · · · · · · 0




),

so SB0 = B0S. Thus, C(S)C(B0) = C(B0)C(S). So, C(S) ∈ C(A0).

C(A0) ∩ TA0Σ⊥2 ⊆ C(TB0Σ⊥2 ): let A1 ∈ C(A0) ∩ TA0Σ⊥2 . Since orthogonality is

preserved by C−1, C−1(A1) ∈ TB0Σ⊥2 . So, A1 = C(B1) with B1 ∈ TB0Σ⊥2 .

Therefore,

Symd(R) = TA0OA0 ⊕ C(A0) ∩ TB0Σ2 ⊕ C(A0) ∩ TA0Σ2
⊥

and TA0Σ2 = TA0OA0 ⊕ C(A0) ∩ TB0Σ2 which �nishes the proof.

51



3.2 Empty intersection

We recall a theorem of Lax (see [20]) from 1982, which shows that if d ≡ 2 (mod 4),

any 3-linear plane in Symd(R) intersects Σ2 somewhere else than the origin. We let

M be the set of real d × d matrices with real eigenvalues, and say that M ∈ M is

singular if it does not have d distinct eigenvalues.

Theorem 3.2.1 (Lax in [20]). Let A0, A1, A2 ∈ Md(R), and for t = (t0, t1, t2) ∈ R3,

denote A(t) = t0A0 + t1A1 + t2A2. Suppose ∀t ∈ R3, A(t) ∈ M. If d ≡ 2 (mod 4)

then there exists t 6= 0 such that A(t) is singular.

The theorem of Lax applies in particular to families of real symmetric matrices.

As a corollary, we state the symmetric version.

Corollary 3.2.2. Let A(t) ∈ Symd(R) be a k-linear family. Suppose d ≡ 2 (mod 4)

and k ≥ 3. Then A(t) ∩ Σ 6= {0}.

For d 6≡ 2 ( mod 4) S. Friedland, J. Robbin and J. Sylvester in [10], extended Lax's

theorem and give the minimal k(d) such that any k(d)-linear family has a non-trivial

intersection with Σ. Their proof relies on the construction of vector �elds on high

dimensional spheres and uses Adams result [1]. We must also mention that, for d = 3

and d = 4, a proof can be found in [24, Remark 4.3]. To state the theorem, we �rst

need the following de�nition (and notation):

De�nition 3.2.3. Given m ∈ N, we denote by ρ(m) the Radon-Hurwitz number of

m:

ρ(m) = 2c + 8d

where m = (2a+ 1)2c+4d with a, d ∈ Z and c = 0, 1, 2 or 3.

Theorem 3.2.4. (S. Friedland, J. Robbin and J. Sylvester) For positive integers d

and k the following are equivalent:

1. k < σ(d), where σ(d) is given by

σ(d) = 2 for d 6= 0,±1 (mod 8),

σ(d) = ρ(4b) for d = 8b, 8b± 1;

2. Either k = 1 or else there is an integer m with k < ρ(m) and d is one of the

2m− 1, 2m , 2m+ 1;
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3. There is a linear map

Ψ : Rk+1 →Md(R)

such that each matrix Ψ(α), α ∈ Rk+1\(0, ..., 0) has d distinct real eigenvalues.

4. There exists an odd continuous map

ψ : Sk →Md(R)

such that each ψ(α), α ∈ Sk, has d distinct real eigenvalues.

It can be deduced from the proof of Theorem 3.2.4 that this theorem applies to

symmetric matrices. Indeed, the proof gives an explicit construction of the family

Ψ(α) that appears in the third item, and it happens that Ψ is made of symmetric

matrices. Below, we follow the proof and we construct an explicit 4-linear family of

8× 8 symmetric matrices that has no non-trivial intersection with Σ.

Example 3.2.5 (Constructed from the proof of Theorem 3.2.4, [10]). By using the

implication (2) ⇒ (3) of Theorem 3.2.4, we give the minimal number of parameters

k such that a k-linear family of 8× 8 matrices has a non-trivial intersection with Σ.

According to the part (2) of Theorem 3.2.4, we search for m ∈ Z such that 8 = 2m−1

or 8 = 2m or 8 = 2m + 1. From this, either m = 4, m = 7
2
or m = 9

2
. Since m ∈ Z,

then m = 4. Since 4 = (2× 0 + 1)22+4×0, we get ρ(4) = 22 + 8× 0 = 4. We follow the

proof of Theorem 3.2.4, and for m = 4 with k < ρ(4) = 4, we construct

Ψ : Rk+1 →Md(R)

such that Ψ(α) is non-singular. Choose k = 3 and de�ne

A1 =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



, A2 =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0



, A3 =




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0



.

For all i, j = 1, 2, 3, i 6= j we have

Ai + ATi = 0

AiAi = −Im
AiAj + AjAi = 0.
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Consider the map
Φ : R4 → M4(R)

α 7→ α0I4 +
∑3

i=1 αiAi
.

We have

Φ(α) =




α0 −α1 −α2 −α3

−α1 α0 −α3 α2

α2 α3 α0 −α1

α3 −α2 −α1 α0




and we note that

Φ(α)Φ(α)T = |α|2I4,

for α ∈ R4. We de�ne Γ : R4 →M8(R) by

Γ(α) =

(
I4 −I4

Φ(α) Φ(α)

)
.

We can verify that for |α| = 1, we get Γ(α)Γ(α)T = 2I8. We choose,

D =

(
A 0

0 −A

)

with A = diag(a1, a2, a3, a4) and a1 > a2 > a3 > a4 > 0 are the eigenvalues of A and

we de�ne Ψ(α) = Γ(α)DΓ(α)T . Then, we get

Ψ(α) =

(
0 2AΦ(α)T

2Φ(α)A 0

)
(3.2)

=




0 0 0 0 2a1α0 −2a1α1 2a1α2 2a1α3

0 0 0 0 −2a2α1 0 2a2α3 −2a2α2

0 0 0 0 −2a3α2 −2a3α3 0 −2a3α1

0 0 0 0 −2a4α3 2a4α2 −2a4α1 0

2a1α0 −2a2α1 −2a3α2 −2a4α3 0 0 0 0

−2a1α1 0 −2a3α3 2a4α2 0 0 0 0

2a1α2 2a2α3 0 −2a4α1 0 0 0 0

2a1α3 −2a2α2 −2a3α1 0 0 0 0 0




(3.3)

We note that the eigenvalues of the symmetric matrix of Ψ(α) are ±2|α|2ai, i =

1, . . . , 4. The map Ψ : R4 → Sym8(R) satis�es the hypothesis of the part 3 of
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Theorem 3.2.4.

From Theorem 3.2.4 and De�nition 3.2.3,

• If d 6= 0,±1 (mod 8), then k(d) = 3.

• If d = 0,±1 (mod 8): We write

d = 2× 2a+4b(2c+ 1) + x

with x ∈ {−1, 0, 1}, a ∈ {0, 1, 2, 3} and b, c ∈ N and a+ 4b ≥ 2. Then, the minimum

number of parameters k(d) for intersecting Σ is k(d) = 2a + 8b + 1. Now since

a ∈ {0, 1, 2, 3}, b ∼ 1
4

log2 d. This gives k(d) ∼ 8
4

log2 d+ 9. We illustrate the behavior

of k(d) for d < 1000 in a picture bellow.

100 200 300 400 500 600 700 800 900 1000

d

0
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10

15

20

25

k(
d)

2log
2
(d)+1

(d,k(d))

Figure 3.1: The minimum number of parameters for intersecting Σ

To conclude this section, we state the following straightforward proposition. It

shows in particular that for the families that are constructed in the former (that do

not intersect Σ but at 0), 0 is always a super-singular point.

Proposition 3.2.6. Let A(t) ∈ Symd(R), d ≥ 2 be a k-linear family, and suppose

that 0 is not super-singular for A(t). Then, for all non zero t0, u, t0 ⊥ u, there exists

0 6= t1 ∈ Span(t0, u), A(t1) ∈ Σ.
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Proof. Suppose A(t0) /∈ Σ (otherwise t0 = t1 works) and denote λ1 < · · · < λd the

eigenvalues of A(t0). The analytic prolongation of each λi, i = 1, . . . , d over the half

turn [0, 1] 3 s 7→ cos(πs)t0+sin(πs)u de�nes an analytic function λi(s) on [0, 1]. Since

0 is not super-singular, the antipodal monodromy from t0 in the direction u is trivial:

τ ′t0,u = Id. In particular, for all i, λi(1) = −λi(0). So λd(s) − λ1(s) is a continuous

function on [0, 1], positive for s = 0 and negative for s = 1. Then there exists s1 ∈
(0, 1) such that λ1(s1) = λd(s1). The announced t1 is t1 = cos(πs1)t0 + sin(πs1)u.

3.3 A�ne lines and Σ2

In this section, we study the intersections of a�ne lines with Σ2. We �rst state

a useful lemma: along a transverse intersection with Σ2, the collapsing eigenvalues

intersect transversally (Lemma 3.3.1). We then notice that the maximal number of

the intersection points of an a�ne family with Σ2 is realized for diagonal families.

Constructing perturbations of these diagonal families allows us to show that any

permutation of d distinct values can be produced as the antipodal monodromy of a

2-linear family in Symd(R) (Theorem 3.3.5).

Lemma 3.3.1. Let A(t) = A0+tA1 ∈ Symd(R) with A0 ∈ Σ2 and A1 /∈ TA0Σ2. Then,

there exist ε > 0 such that A(t) /∈ Σ for t ∈ (−ε, ε), t 6= 0 and λ1, λ2 : (−ε, ε) → R
two analytic functions such that λ1(t), λ2(t) ∈ Spec(A(t)), t ∈ (−ε, ε), λ1(0) = λ2(0)

and λ′1(0) 6= λ′2(0).

Proof. Since A(t) is a one parameter family, by Rellich Theorem the eigenvalues of

A(t) are de�ned as analytic functions. Denote these analytic eigenvalues by λi(t), i =

1, . . . , d.

Let ` ∈ R be the multiple eigenvalue of A0. Then, up to diagonalization of A0,

subtracting `Id from A(t), we can assume that A0 = diag(0, 0, α3, . . . , αd), where for

all i 6= j, αi 6= αj are non-zero real numbers since A0 ∈ Σ2. Up to reindexing,

λ1(0) = λ2(0) = 0.

Since A1 /∈ TA0Σ2, after suitable change of basis in ker(A0), we can assume that
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A1 has the following form

A1 =




x 0 a1,3 · · · a1,d

0 y a2,3
...

a1,3 a2,3 a3,3
. . .

...
...

. . . . . .
...

a1,d · · · · · · · · · ad,d



, (3.4)

with x 6= y (See proposition 3.1.2).

We write the Taylor expansions of λ1(t) and λ2(t) at 0:

λ1(t) = 0 +m1t+ o(t)

λ2(t) = 0 +m2t+ o(t),

and we let e1(t) and e2(t) be analytic unit eigenvectors associated with λ1(t) and

λ2(t), respectively. We write

e1(t) = e1
0 + e1

1t+ o(t)

e2(t) = e2
0 + e2

1t+ o(t).

Since e1
0 is eigenvector associated with the eigenvalue 0 of A0,

e1(0) = e1
0 = (a, b, 0, . . . , 0) with a2 + b2 = 1.

We will show that either (a, b) = (1, 0) or (a, b) = (0, 1). We have A(t)e1(t) =

λ1(t)e1(t). So,

(A0 + tA1)(e1
0 + e1

1t+ o(t)) = (m1t+ o(t))(e1
0 + e1

1t+ o(t))

A0e
1
0 + t(A1e

1
0 + A0e

1
1) + o(t) = tm1e

1
0 + o(t).

Considering the terms in t, we get

A1e
1
0 + A0e

1
1 = m1e

1
0. (3.5)
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Denote e1
1 = (v1, v2, . . . , vd). Then, from (3.5) we get




ax

by

α3v3 + a1,3a+ a2,3b
...

αdvd + a1,da+ a2,db




=




m1a

m1b

0
...

0



.

From this ax = m1a and by = m1b. If none among a, b is 0, it gives m1 = x and

m1 = y, which contradicts x 6= y. Therefore, either a = 0 or b = 0. Assuming

e1
0 = (1, 0, . . . , 0) (the other choice exchange the roles of e1 and e2) gives m1 = x,

and by the same argument, m2 = y. Consequently, m1 = λ′1(0) 6= λ′2(0) = m2, which

�nishes the proof. Notice that, λ1 and λ2 having di�erent slopes, they are distinct

for t 6= 0 on some (−ε, ε), ε > 0, and ε might be reduced if needed to avoid other

equality between eigenvalues.

From Rellich Theorem, if A(t) = A0 + tA1 is an a�ne line in Symd(R), its eigen-

values are analytic functions λ1(t), . . . , λd(t). A point A(t) ∈ Σ corresponds to a

parameter t0 for which two di�erent λi, λj coincide: λi(t0) = λj(t0). In other terms,

since the graphs of the λi form the zero set of the characteristic polynomial χA(t), a

point in Σ is a double point of the curve χ−1
A(t)(0). Now, χA(t)(λ) is a polynomial of

degree d in (t, λ). So, the number of its double points, if it is �nite, is bounded by
d(d−1)

2
. In particular, if A(t) 6⊂ Σ, Card(A(t)∩Σ) ≤ d(d−1)

2
. It happens that this value

is reached by diagonal families, when χA(t)(λ) factors in d lines.

Claim 3.3.2. Let D(t) = Diag(a1, . . . , ad) + tDiag(b1, . . . , bd), and suppose

(
i 6= j

)
⇒ bi 6= bj, and

(
i < j, i′ < j′, (i, j) 6= (i′, j′)

)
⇒ ai − aj

bi − bj
6= ai′ − aj′
bi′ − bj′

.

Then D(t) ∩ Σ2 is made of d(d−1)
2

points.

Notice that the condition above on the ai, bi is a generic condition in (Rd)2. We say

that an a�ne family D(t) ∈ Symd(R) of diagonal matrices is in general position

when D(t) = A+tB with A = diag(a1, . . . , ad), B = diag(b1, . . . , bd) and the ai, bi, i =

1, . . . , d satisfy the hypothesis of claim 3.3.2. Because in this case, the eigenvalues

form d lines in general position.

Proof of claim 3.3.2. Here the d eigenvalues are linear, given by λi(t) = ai + tbi. For
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all i 6= j, the equation λi(t) = λj(t) has a unique solution ti,j = −ai−aj
bi−bj , and for

di�erent couples (i, j) with i < j, the ti,j di�ers.

Then, for each i < j, exactly two eigenvalues coincide at ti,j, so D(ti,j) ∈ Σ2, and

for other parameters t, the d eigenvalues are di�erent and D(t) /∈ Σ. Since there are
d(d−1)

2
couples (i, j) with i < j, the claim is proven.

Starting from an a�ne family of diagonal matrices D(t) in general position, we

will show that there exists a small perturbation A(t) = D(t) + E, E ∈ Symd(R) of

D(t) which exactly preserves any given intersection points with Σ2. The existence

of an a�ne curve having prescribed intersection with Σ2 could also be proven as

an application of the Brusotti Theorem, that we recall below [6], and of [13] that

state that in dimension 2, hyperbolic algebraic curves are the determinential curves

of a�ne families. Here we state the Brusotti Theorem, which shows that we can

smooth ordinary double points of a plane curve independently.

Theorem 3.3.3 (Brusotti). Let C be a real algebraic curve of degree d in RP2 with

ordinary double points as its only singularities. For any of these singularities, choose a

local deformation. Then it is possible to vary the curve C in the space of real algebraic

curves of degree d in RP2 in such a way that all previously chosen deformations are

realized.

Our construction is however more explicit, and our perturbation appears as a

continuous deformation of the family D(t). The idea is to consider a diagonal family

A + tB in general position, and to �nd a perturbation of the lines made by the

eigenvalues in a way that preserves some intersection points of the lines while ignoring

the other intersection.

Proposition 3.3.4. Let D(t) = diag(a1, . . . , ad) + tdiag(b1, . . . , bd) ∈ Symd(R) be a

diagonal family in general position. For 1 ≤ i < j ≤ d, set ti,j = −ai−aj
bi−bj , and choose

a subset I ⊂ {(i, j); 1 ≤ i < j ≤ d}. Then, there exist E ∈ Symd(R), arbitrary

small, and T = {t′i,j; (i, j) ∈ I} with t′i,j close to ti,j such that

A+ tB + E ∈ Σ⇔ A+ tB + E ∈ Σ2 ⇔ t ∈ T.

Proof. For notation purpose, we let δij be the matrix whose only non-zero entry is the

(i, j)-th that is 1. Note that D(t) ∈ Σ⇔ D(t) ∈ Σ2 ⇔ t ∈ {ti,j, 1 ≤ i < j ≤ d}. We

let E ∈ Symd(R) be a matrix with zero diagonal and indeterminate other coe�cients

εi,j = εj,i, i 6= j, and we investigate for conditions on the entries of E that determines
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whether A+ tB + E has a point or not in Σ for t close to ti,j.

Fix (i, j), 1 ≤ i < j ≤ d.

By de�nition of ti,j, the (i, i)-th and (j, j)-th entries of the diagonal matrix Di,j :=

A+ ti,jB coincide (Di,j ∈ Σ2) and are λij := ai+ ti,jbi = aj + ti,jbj. We let t′ = t− ti,j,
and set:

B1 = diag(b1, . . . , bi−1,
bi + bj

2
, bi+1, . . . , bj−1,

bi + bj
2

, bj+1, . . . , bd),

B2 = δii − δjj, ∆i,j = δi,j + δj,i and Ei,j = E − εi,j∆i,j.

This way, we get

A+ tB + E = Di,j + t′B1 + Ei,j +
bi − bj

2
t′B2 + εi,j∆i,j.

In this decomposition, remark that, from Proposition 3.1.2, B1 and Ei,j are indepen-

dent in TDi,jΣ2 (as soon as Ei,j 6= 0), while B2 and ∆i,j form a basis of a comple-

mentary space of TDi,jΣ2 in Symd(R). Since Σ2 is locally the graph of an analytic

function over its tangent space, there exists a neighborhood Wi,j of 0 ∈ R×R
d(d−1)

2
−1,

a neighborhood Vi,j of Di,j in Symd(R), and an analytic function

ϕi,j : Wi,j ⊂ R × R
d(d−1)

2
−1 → R2

(t′ , Ei,j) 7→ (Φi,j(t
′, Ei,j),Ψi,j(t

′, Ei,j))

such that

A+ tB + E ∈ Vi,j ∩ Σ2 ⇔





(t′, Ei,j) ∈ Wi,j,
bi−bj

2
t′ = Φi,j(t

′, Ei,j),

εi,j = Ψi,j(t
′, Ei,j).

(3.6)

Notice that dϕi,j(0) = 0, as TDi,jΣ2 is obviously tangent to Σ2 at Di,j. As a �rst

consequence, the second item in the right hand side of (3.6) can be inverted. Indeed,

∂

∂t′

[
bi − bj

2
t′ − Φi,j(t

′, Ei,j)

]

(t′,Ei,j)=(0,0)

=
bi − bj

2
6= 0,

so from the Implicit Functions Theorem,

bi − bj
2

t′ = Φi,j(t
′, Ei,j)⇔ t′ = αi,j(Ei,j), (3.7)

for some analytic function αi,j in a neighborhood of 0. We shrinkWi,j and Vi,j so that
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(3.7) holds for (t′, Ei,j) ∈ Wi,j, on the left hand side, and for Ei,j in a neighborhood

of 0, say Ui,j, on the right hand side. From this, the equivalence (3.6) becomes:

A+ tB + E ∈ Vi,j ∩ Σ2 ⇔





Ei,j ∈ Ui,j,
t′ = αi,j(Ei,j),

εi,j −Ψ′i,j(Ei,j) = 0,

(3.8)

where Ψ′i,j(Ei,j) := Ψi,j(αi,j(Ei,j), Ei,j). This will be the condition near ti,j we were

looking for.

Now, let Ψ : R
d(d−1)

2 3 E = (εi,j)1≤i<j≤d 7→ (εi,j − Ψ′i,j(Ei,j))1≤i<j≤d ∈ R
d(d−1)

2 . We

claim that Ψ is invertible at 0. Indeed, recall that the functions ϕi,j have all zero

di�erential at 0, which implies dΨ′i,j(0) = 0, then dΨ(0) = Id. We need to adjust

some neighborhoods to conclude (shrinking Vi,j, Wi,j and Ui,j might be needed). We

let U ⊂ R
d(d−1)

2 be a neighborhood of 0, and δt > 0, δE > 0 be such that:

1. |ti,j − ti′,j′ | > 2δt if (i, j) 6= (i′, j′);

2. A+ (tij − δt, ti,j + δt)B + B(0, δE) ⊂ Vi,j;

3. Ψ has an inverse de�ned on U , with Ψ−1(U) = U ′ ⊂ B(0, δE),

4. ∀t, ∀(i, j), 1 ≤ i < j ≤ d, |t− ti,j| ≥ δt ⇒ d(A+ tB,Σ) > δE.

We can now conclude. Recall that I is a set of indices, and we look for E such that

A+ tB+E has only points in Σ2 near the ti,j, for (i, j) ∈ I. Choose (ζi,j)1≤i<j≤d ∈ U
such that ζi,j = 0 ⇔ (i, j) ∈ I, and set E = Ψ−1((ζi,j)1≤i<j≤d). We claim that E

works.

First �x (i, j) ∈ I. We show that there exists a unique t′i,j ∈ (ti,j− δt, ti,j + δt) such

that A+ t′i,jB+E ∈ Σ. Indeed, for t ∈ (ti,j − δt, ti,j + δt), A+ tB+E ∈ Vi,j and since

ζi,j = 0, we have εi,j −Ψ′i,j(Ei,j) = 0. So (3.8) gives

A+ tB + E ∈ Σ2 ⇔ t′ = αi,j(Ei,j),

so t′i,j = ti,j + αi,j(Ei,j) works and is unique.

Now �x (i, j) /∈ I. We show that for all t ∈ (ti,j − δt, ti,j + δt), A + tB + E /∈ Σ.

Again, for t ∈ (ti,j−δt, ti,j+δt), A+tB+E ∈ Vi,j. But ζi,j 6= 0, so εi,j−Ψ′i,j(Ei,j) 6= 0.

Thus (3.8) shows that A+ tB + E ∈ Σ has no solution.

Finally, if ∀(i, j), |t − ti,j| ≥ δt, then d(A + tB,Σ) > δE. But E ∈ B(0, δE), so
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A+ tB +E /∈ Σ. Therefore, there are no other point in A+ tB +E ∩Σ than the t′i,j,

(i, j) ∈ I, as announced.

The previous proposition allows us to construct a 2-linear family with prescribed

monodromy.

Theorem 3.3.5. Let (b1, . . . , bd) ∈ Rd such that bi 6= bj for i 6= j. Let τ be a

permutation of {b1, b2, . . . , bd}. Then, there exists a 2-linear family A(t1, t2) whose

antipodal monodromy from (0, 1) in the direction of (1, 0) is τ .

Proof. Up to reindexing, we suppose b1 > · · · > bd, and let B = diag(b1, . . . , bd).

Given A = diag(a1, . . . , ad), such that A+ tB is in general position, we denote by

ti,j = −ai − aj
bi − bj

the abscissa of the intersection of the lines y = ai+ tbi and y = aj + tbj, for 1 ≤ i ≤ d,

1 ≤ j ≤ d, (i 6= j and ti,j = tj,i), and given I ⊂ {(i, j); 1 ≤ i < j ≤ d}, we set E(I)

for the perturbation matrix given by Proposition 3.3.4.

We prove by induction on d the following:

Claim 3.3.6 (Inductive hypothesis). Given B and τ as above, there exists A =

diag(a1, . . . , ad), there exists I ⊂ {(i, j); 1 ≤ i < j ≤ d} such that:

1. The family A+ tB is in general position;

2. ∀(i, j), (i′, j′), 1 ≤ i < j ≤ d, 1 ≤ i′ < j′ ≤ d

(
(j > j′) or (j = j′ and i > i′)

)
⇒ ti,j < ti′,j′ ;

3. The antipodal monodromy of A(t1, t2) = t1(A + E(I)) + t2B from (0, 1) in the

direction of (1, 0) is τ .

Whenever d = 1, A = 0, I = ∅ works.

Suppose the claim holds for d − 1 and prove it for d. Let bk = τ(bd), and let τ ′

be the permutation of {1, . . . , d− 1} given, if b` = τ(bi), by τ ′(i) = ` if ` < k, and

τ ′(i) = `− 1 if ` ≥ k.

We apply the inductive hypothesis to B′ = (b1, . . . , bd−1) and τ ′, and get A′ =

diag(a1, . . . , ad−1), I ′ ⊂ {(i, j); 1 ≤ i < j ≤ d − 1}. Choose ad ∈ R such that
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ad + bd(td−2,d−1 − 2) < a1 + b1(td−2,d−1 − 2). Since ad−1 + bd−1(td−2,d−1 − 2) > · · · >
a1 + b1(td−2,d−1 − 2), we get ti,d < td−2,d−1 − 2, ∀i = 1, . . . , d. Then, since bd < bi for

i = 1, . . . , d− 1, the points (1) and (2) are satis�ed for A = diag(a1, . . . , ad).

Now, we let I = I ′ ∪ {(j, d); j < k}. The antipodal monodromy σ of A(t1, t2) =

t1(A + E(I)) + t2B from (0, 1) in the direction (1, 0) is given by σ(bi) = bj if the

analytic prolongation of the eigenvalue of A + E(I) + vB that is asymptotic to biv

at +∞ is asymptotic to bjv at −∞. We denote by λ1(v), . . . , λd(v) the analytic

eigenvalues of A+ E(I) + vB indexed in such a way that λi(v) ∼+∞ biv.

Let i ∈ {1, . . . , d − 1}. Then λi(td−2,d−1 − 1) is the j + 1-th larger eigenvalue of

A+E(I) + (td−2,d−1 − 1)B with j = τ ′(i) because λd(td−2,d−1 − 1) < λi(td−2,d−1 − 1).

If j < k, then (j, d) ∈ I, so the analytic prolongation of λi intersects the pertur-

bation of the line y = ad + vbd. Then the rank of λi among the λ's is raised by 1, i.e,

becomes the j-th. So λi(v) ∼−∞ bjv, and σ(bi) = bτ ′(i) = τ(bi).

If j ≥ k, then for all j′ > j, (j, j′) /∈ I, so the rank of λi is conserved for t <

td−2,d−1 − 1, and λi(v) ∼−∞ bj+1v. But bj+1 = bτ ′(i)+1 = τ(bi). So σ(bi) = τ(bi) again.

Finally, for i = d, then λd is asymptotic to bdv at +∞, intersects k− 1 eigenvalues

since (1, d), . . . , (k− 1, d) belong to I, and no other, so its rank among the λ's at −∞
is k: λd(v) ∼−∞ bkv. Hence σ(bd) = bk = τ(bd), which concludes the proof of the

claim, and the theorem follows.

We illustrate the previous proof with the following picture, where we show the

construction of the set I in the case of a particular permutation of 5 eigenvalues. Let

τ =

(
1 2 3 4 5

5 4 1 2 3

)
.

Since τ(5) = 3 = k1, we get I1 = {(1, 5), (2, 5)} and

τ ′1 =

(
1 2 3 4

4 3 1 2

)
.

Since τ ′1(4) = 2 = k2, I2 = {(1, 4)} and

τ ′2 =

(
1 2 3

3 2 1

)
.
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Since τ ′2(3) = 1 = k3, I3 = ∅ and τ ′3 =

(
1 2

2 1

)
. We de�ne I = I1 ∪ I2 ∪ I3 =

{(1, 5), (2, 5), ((1, 4))}, Figure 3.2.

Figure 3.2: Perturbation of lines

3.4 Local study of intersections of Σ2 with a�ne planes

In this section, we study the local behavior of the eigenvalues of an a�ne plane family

P in a neighborhood of a point A0 of P∩Σ2, in order to decide whether 0 is a super-

singular point of the family. We will frequently compute antipodal monodromies, and

for this we always imply that P is parameterized as A0 + L(t), t ∈ R2, where L is

linear. We separate the cases according to the dimension of the intersection of the

tangent planes to P and Σ2 at the point A0, and we consider the di�erent possibilities

in turn.
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3.4.1 dimTA0
P ∩ TA0

Σ2 = 0.

We �rst suppose that there is no intersection between TA0P and TA0Σ2 but 0, so no

direction in TA0P belongs to TA0Σ2. We have the following proposition.

Proposition 3.4.1. Let A(t), t ∈ R2 be an a�ne family with A(0) = A0 ∈ Σ2. If

dimTA0A(t) ∩ TA0Σ2 = 0, then for all small t0 6= 0, the antipodal monodromy of

the eigenvalues of A(t) from t0 ∈ R2 in the direction of u, u ⊥ t0, ‖t0‖ = ‖u‖ is

the transposition of the two eigenvalues whose analytic continuations coincide at the

origin.

Proof. Since TA0A(t) ∩ TA0Σ2 = {A0}, there exists a neighborhood V of the origin

such that for all t ∈ V , t 6= (0, 0), A(t) /∈ Σ2. Let us take t0 ∈ V , t0 6= (0, 0) such that

γ ⊂ V , where γ is the concatenation of the half-turn path from t0 in the direction of

u, h(t0,u), followed by the straight path from −t0 to t0, [−t0, t0]. Since A(t0) /∈ Σ, we

have #Spec(A(t0)) = d.

Note that h(t0,u) ⊂ V , so the order of the eigenvalues of A(t0) is preserved along

h(t0,u). The same argument shows that this order is also preserved along the segment

(−t0, 0). Let

C(s) := A0 + s(A0 − A(−t0)) = A0 + sB,

with B = A0 − A(−t0) and s ∈ [−1, 1], so that C(−1) = A(−t0), C(0) = A0. Note

A0 ∈ Σ2, B /∈ TA0Σ2 and for all s ∈ [−1, 0), s 6= 0, we have C(s) /∈ Σ2. So, by

Lemma 3.3.1 there exists λ1, λ2 ∈ Spec(C(−1)) whose analytic prolongations along

the segment [−1, 0] coincide at 0 and have two di�erent slopes at 0. Hence, the order

of the analytic prolongations of λ1 and λ2 reverse at the origin. But A0 ∈ Σ2, so the

order between the other eigenvalues is preserved along the segment [−t0, 0]. Finally,

the order of the eigenvalues of A(t) is preserved along the segment (0, t0).

From this, the antipodal monodromy from t0 in the direction of u, is the transpo-

sition that reverse λ1 and λ2. This �nishes the proof.

Corollary 3.4.2. Under the hypotheses of Proposition 3.4.1, there exists a non-trivial

antipodal monodromy for the eigenvalues of A(t) which forbids the eigenvalues to be

analytic. Hence, (0, 0) ∈ SA.
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Example 3.4.3. Let A0 = diag(0, 0, 1), A1, A2 /∈ TA0Σ2 be given as follows.

A1 =




1 0 −1

0 −1 1

−1 1 0


 A2 =




0 1 1

1 0 1

1 1 2


 .

Consider the family

A(t) = A0 + t1A1 + t2A2 =




t1 t2 t2 − t1
t2 −t1 t1 + t2

t2 − t1 t1 + t2 2t2 + 1


 ,

The characteristic polynomial of A(t) is

χA(t1,t2)(x) = −x3 + x2(1 + 2t2) + x(3t22 + 3t21)− 8t21t2 − t21 − t22.

The family A(t) satis�es the hypothesis of Proposition 3.4.1. So, A(t)∩Σ = {A0}
in a neighborhood of the origin, and there is a non-trivial antipodal monodromy

which forbids the eigenvalues to be analytic. We see the eigenvalues of A(t) in a

neighborhood of the origin, Figure 3.3.

Figure 3.3: Eigenvalues of A(t) near the origin

3.4.2 dimTA0
P ∩ TA0

Σ2 = 1

We now suppose the intersection of TA0P with the tangent plane to Σ2 at A0 is a line.

Since Σ2 has codimension two, the intersection Σ2∩P in a neighborhood of A0 should

generically contains nothing but A0. However, it happens that Σ2 contains many
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plane curves, and this case admits di�erent subcases. In a neighborhood of A0, either

P ∩ Σ2 = {A0} or dimP ∩ Σ2 = 1. Again, we consider these di�erent possibilities in

turn.

3.4.2.1 P ∩ Σ2 = {A0}:

Proposition 3.4.4. Let A(t) = A0 + t1A1 + t2A2 ∈ P with A1 ∈ TA0Σ2 and A2 /∈
TA0Σ2. Suppose that A(t) ∩ Σ2 = {A0} in a neighborhood of the origin. Then, there

exists ε > 0 such that the antipodal monodromy of the eigenvalues of A(t) from (0, ε)

in the direction of (ε, 0) is the transposition of the two eigenvalues of A(0, ε) whose

analytic continuations coincide at 0.

Proof. Since A(t)∩Σ2 = {A0}, there exists a neighborhood V of the origin such that

for all t ∈ V , t 6= (0, 0), A(t) /∈ Σ2. There exists ε > 0 such that the concatenation of

the half-turn path from (0, ε) in the direction of (ε, 0), h(t0,u), followed by the straight

path from −(0, ε) to (0, ε) belongs to V . Since A(0, ε) /∈ Σ, we have #Spec(A(0, ε)) =

d. Moreover, h(t0,u) ⊂ V , so the order of the eigenvalues of A(0, ε) is preserved

along h(t0,u). Now, A2 /∈ TA0Σ2 and A0 ∈ Σ2. So, by Lemma 3.3.1 there exists

λ1, λ2 ∈ Spec(A(0, ε)) such that the analytic continuations of λ1 and λ2 along the

segment (−ε, ε) coincide at 0 and have two di�erent slopes at 0.

Hence, the order of λ1 and λ2 reverse at the origin. But A0 ∈ Σ2, so the order

between λi and λj is preserved along the segment (−ε, ε) for all {i, j} 6= {1, 2}. This
�nishes the proof.

Corollary 3.4.5. Under the hypotheses of Proposition 3.4.4, A0 ∈ SA.

In the following example, which illustrate the situation, we see that in a non-linear

case, the antipodal monodromy is not a satisfying invariant in the a�ne situation.

Indeed, it shows that this antipodal monodromy might depend on base point t0.

Example 3.4.6. Let A(t) = A0 + t1A1 + t2A2 ∈ P be given as follows.

A(t) =




0 t2 t1

t2 0 0

t1 0 1


 =




0 0 0

0 0 0

0 0 1


+ t1




0 0 1

0 0 0

1 0 0


+ t2




0 1 0

1 0 0

0 0 0


 .
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Note that A0 ∈ Σ2, A1 ∈ TA0Σ2 and A2 /∈ TA0Σ2. We have

χA(t1,t2)(λ) = −λ3 + λ2 + λ(t21 + t22)− t22,
∆A(t1,t2) = (2t31)2 + (

√
12t21t2)2 + (t21)2 + (

√
12t1t

2
2)2 + (

√
20t1t2)2 + (2t2(t22 − 1))2,

where χA(t1,t2)(λ) and ∆A(t1,t2) are the characteristic polynomial and the discriminant

of the matrix A(t1, t2), respectively. We have Z(∆A(t1,t2)) = {(0, 0), (0,±1)}. So

A(t) ∩ Σ2 = {A0} in a small neighborhood of the origin.

The calculation gives Spec(A(t1, 0)) = {0, 1
2
(1±

√
4t21 + 1)} and Spec(A(0, t2)) =

{−t2, 1, t2}. Note that for t0 = (0, t2), t2 6= 0 small, the antipodal monodromy from

t0 in the direction of u = (−t2, 0) is a transposition of the two eigenvalues whose

analytic continuation coincide at 0. But, for small t1 6= 0, the antipodal monodromy

from (t1, 0) in the direction of (0, t1) is trivial. Indeed, t 7→ 1 −
√

4t21 + 1 is a non-

positive analytic function on (−t1, t1) so that two eigenvalues 0 and 1
2
(1−

√
4t21 + 1)

do not exchange along the segment (−t1, t1). In Figure 3.4, we see the eigenvalues of

A(t1, t2).

(a) non-trivial monodromy (b) trivial monodromy

Figure 3.4: Antipodal monodromies of the eigenvalues

3.4.2.2 dimP ∩ Σ2 = 1:

We �rst prove that the intersection P ∩ Σ2 is an analytic curve .

Proposition 3.4.7. Let P be the image of A(t) = A0+t1A1+t2A2, A0 ∈ Σ2. Suppose

that:

1. TA0P ∩ TA0Σ2 = Span(A1)
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2. dimP ∩ Σ2 = 1.

Then, the intersection P ∩ Σ2 is a smooth analytic curve.

Proof. We choose A′ ∈ Symd(R) such that Span(A2, A
′) is a complementary subspace

of TA0Σ2 in Symd(R):

Symd(R) = TA0Σ2 ⊕ Span(A2, A
′).

Denote by π the associated projection π : Symd(R) → TA0Σ2. We note that locally

Σ2 is the graph of an analytic function over TA0Σ2. This means that there exists an

analytic function
φ : TA0Σ2 → R2

B 7→ (φ1(B), φ2(B))
,

a neighborhood V ∈ Symd(R) of A0 and a neighborhood W ∈ TA0Σ2 of 0 such that

A ∈ V ∩ Σ2 ⇔




π(A− A0) ∈W,

A = A0 + π(A− A0) + φ1(π(A− A0))A2 + φ2(π(A− A0))A′.

In particular, for (t1, t2) is a small neighborhood of the origin,

A0 + t1A1 + t2A2 ∈ V ∩ Σ2 ⇔





t1A1 ∈W,

t2 = φ1(t1A1),

φ2(t1A1) = 0.

Since, dimA(t) ∩ Σ2 = 1 and A1 ∈ TA0Σ2, for t1 close to 0, we have t1A1 ∈ W and

φ2(t1A1) = 0. So, A0 + t1A1 + t2A2 ∈ V ∩Σ2 if and only if t2 = φ1(t1A1). Hence, the

intersection P ∩ Σ2 is given by the parameterization A0 + t1A1 + φ1(t1A1)A2 which

de�nes an analytic curve as announced.

We now study the eigenvalues of the family.

Proposition 3.4.8. Let A(t) = A0 + t1A1 + t2A2 ∈ P with A0 ∈ Σ2 such that

dimTA0A(t)∩TA0Σ2 = 1. If dimA(t)∩Σ2 = 1, then A(t) admits analytic eigenvalues

µ1(t1, t2) and µ2(t1, t2) in a neighborhood of the origin which coincide at (0, 0).

Proof. Without loss of generality, we suppose that A1 ∈ TA0A(t) ∩ TA0Σ2 and A2 /∈
TA0Σ2. By Proposition 3.4.7, the intersection A(t) ∩ Σ2 is an analytic curve. Let
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A0 + xA1 +φ(x)A2 be an analytic parameterization of A(t)∩Σ2, where φ is analytic.

Let B(t, x) = A0 + xA1 + φ(x)A2 + tA2. Then, P(t,x)(λ) = χB(t,x)(λ) is an analytic

family of hyperbolic polynomials such that:

1. P(0,0)(λ) = χB(0,0) = χA0(λ) has d− 2 simple roots and one root of multiplicity

two,

2. P(0,x)(λ) = χB(0,x)(λ) = χA0+xA1+φ(x)A2(λ). Note that A0 + xA1 + φ(x)A2 is a

one-parameter analytic family in Σ2. So, by Rellich's Theorem, the eigenvalues

of A0 + xA1 + φ(x)A2 are analytic functions. Since A0 + xA1 + φ(x)A2 ∈ Σ2, it

has an analytic multiple root. We denote it by λ0(x).

3. Since A0 ∈ Σ2 and A2 /∈ TA0Σ2, then by Lemma 3.3.1, P(t,0)(λ) = χA0+tA2(λ)

has two analytic roots λ1(t), λ2(t) with λ1(0) = λ2(0), λ′1(0) = λ′2(0).

So, χB(t,x)(λ) satis�es the hypotheses of Proposition of 1.2.4. So, it has two analytic

roots λ1(t, x) and λ2(t, x) in a neighborhood of (0, 0). Now, A0 + tA1 + t2A2 =

B(t2 − φ(t1), t1). So,

µ1(t1, t2) = λ1(t2 − φ(t1), t1)

µ2(t1, t2) = λ2(t2 − φ(t1), t1).

are analytic eigenvalues of A(t1, t2).

Examples:

Recall Σ2 has codimension two in Symd(R). However, it happens that Σ2 contains

many plane curves. We give several examples of this fact. A trivial case happens

when A0 + t1A1 is block diagonal, with a constant eigenspace of dimension two (case

1). There are also non-trivial examples, where P ∩Σ2 is not a line and in particular,

P ∩ Σ2 6= TA0P ∩ TA0Σ2 (case 2).

• Case 1: The intersection P ∩ Σ2 is a line:

Example 3.4.9. Let A(t) = A0 + t1A1 + t2A2 where A0 = diag(0, 0, 1) and A1 =

diag(1, 1, 2) and

A2 =




0 1 1

1 1 0

1 0 0


 .

Note that A0, A1 ∈ Σ2 are diagonal and A2 /∈ TA0Σ2. So, the intersection of A(t) and
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Σ2 is the line A0 + t1A1. Here, A(t) satis�es the hypothesis of Proposition 3.4.8. So,

the eigenvalues of A(t) are analytic in a neighborhood of the origin, Figure 3.5.

Figure 3.5: Intersection along a line

Example 3.4.10. We give another example in dimension four, to emphasize the fact

that P might intersect Σ2 along a line that is not made of diagonal matrices, but only

block diagonal. Indeed, suppose that A0 = diag(0, 0, α3, . . . , αd) ∈ Σ2, A2 /∈ TA0Σ2

and A1 has the following form.

A1 =

(
kI2 02,d−2

0d−2,2 B

)
, (3.9)

where B is a d− 2× d− 2 symmetric matrix. Then, for all (t1, 0) in a neighborhood

of the origin A0 + t1A1 + t2A2 ∈ P has a double eigenvalue t1k. For instance, let

A0 = diag(0, 0, 1, 2),

A1 = 0.1×




1 0 0 0

0 1 0 0

0 0 −1 1

0 0 1 0



, A2 =




1 0 0 1

0 −1 0 0

0 0 0 0

1 0 0 0



.
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Note that A0 ∈ Σ2, A2 /∈ TA0Σ2 and A1 has the shape given in (3.9). We have

χA(t1,t2)(x) = (0.1t1 − t2 − x)[(0.1t1 + t2 − x)((2− x)(−0.1t1 + 1− x)− 0.01t21)

+ t22(−0.1t1 + 1− x)].

(3.10)

We have χA(t1,0)(x) = (0.1t1 − x)2(x2 + x(0.1t1 − 3) + 2− 0.2t1), whose roots are

x1 = 0.1t1

x2 = 0.1t1

x3 =
1

2
(3− 0.1t1 +

√
0.05(t21 + 4t1 + 20))

x4 =
1

2
(3− 0.1t1 −

√
0.05(t21 + 4t1 + 20))

which has a double eigenvalue t1, Figure 3.6a, and Spec(A(0, t2)) = {1,−t2, 1
2
(t2 +

2±
√

5t22 − 4t2 + 4)}, Figure 3.6b.
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Figure 3.6: The eigenvalues of the one parameter families

Note that A(0, 0) ∈ Σ2 and for all (t1, 0) in a neighborhood of the origin, A(t1, t2)

has the double eigenvalue 0.1t1. In Figure 3.7, we see the eigenvalues of A(t) in a

neighborhood of the origin.
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Figure 3.7: Intersection along a line

• Case 2: The intersection P ∩ Σ2 is not a line:

There are also planes curves in Σ2 that are not lines. Our examples is based on

the observation that the orbits of A0 under of the action of certain one-parameter

subgroups of O(d) which are plane curves are plane curves themselves. For instance,

if A0 = diag(0, 0, α3, . . . , αd) ∈ Σ2 and

G(θ) =




cos θ 0 − sin θ 0 · · · · · · 0

0 1 0 0
...

sin θ 0 cos θ 0
. . .

...

0 0 0 1
. . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . .

...

0 · · · · · · · · · · · · · · · 1




,

then, the orbit of A0 by the subgroup G = {G(θ); θ ∈ R} ⊂ O(d) is the image of

γ(θ) = G(θ)A0G(θ)T =




r(θ) 0 q(θ) 0 · · · · · · 0

0 0 0 0
...

q(θ) 0 z(θ) 0
. . .

...

0 0 0 α4
. . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . .

...

0 · · · · · · · · · · · · · · · αd




,
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with r(θ) = α3 sin2 θ, q(θ) = −α3 sin θ cos θ,z(θ) = α3 cos2 θ. So, for all θ ∈ R, γ(θ)

belongs to the a�ne plane P = A0 + Span(A1, A2), where

A1 =




1

0

−1

0
. . .

0




, A2 =




0 0 1 0 . . . 0

0 0 0 0
...

1 0 0 0
...

0 0 0
. . . . . .

...
...

. . . . . .
...

0 · · · · · · · · · · · · 0




.

In particular, the plane P contains a curve included in Σ2. Here, since A1 /∈ TA0Σ2,

this curve is the intersection P ∩ Σ2.

Example 3.4.11. Let A(t1, t2) = A0 + t1A1 + t2A2 be the a�ne family given by

A(t1, t2) =



t2 0 t1

0 −t2 0

t1 0 1


 =




0 0 0

0 0 0

0 0 1


+ t1




0 0 1

0 0 0

1 0 0


+ t2




1 0 0

0 −1 0

0 0 0


 .

Here, A(t1, t2) is tangent to Σ2 in the direction of A1 and it is transverse to Σ2 in the

direction of A2. We have

χA(t1,t2)(x) = t21t2 + t21x+ t22x− t22 − x3 + x2

= (t2 + x)(t21 + t2x− t2 − x2 + x)

Thus, Spec(A(t1, t2)) = {1
2
(t2 + 1±

√
4t21 + t22 − 2t2 + 1),−t2}.

If t2 = 0 then Spec(A0 + t1A1) = {0, 1
2
(1±

√
4t21 + 1)}, Figure 3.8a. Now, if t1 = 0

then Spec(A0 + t2A2) = {−t2, 1, t2}, Figure 3.8b.
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Figure 3.8: The eigenvalues of the one parameter families

We calculate the intersection of Σ with A(t1, t2). Notice that, A(t1, t2) ∈ Σ2, then

either −t2 is a multiple eigenvalue of A(t1, t2), or the sub-matrix

A22 :=

(
t2 t1

t1 1

)
∈ Σ2.

But the discriminant of A22 is ∆A22 = (t2 − 1)2 + 4t21, which vanishes only at (0, 1).

Now, if −t2 is a multiple eigenvalue of A(t1, t2), we have det

(
t2 + t2 t1

t1 1 + t2

)
= 0.

From this, we get (1 + t2)(2t2)− t21 = 0. So, near (0, 0), A(t1, t2) ∈ Σ along this curve

(hyperbola).

From proposition 3.4.7, the eigenvalues of A(t) are analytic functions in a neigh-

borhood of the origin: (0, 0) /∈ SA. In Figure 3.9, we see the eigenvalues of A(t) in a

neighborhood of the origin.

Figure 3.9: Intersection along a hyperbola
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3.4.3 dimTA0
P ∩ TA0

Σ2 = 2

The plane tangent to Σ2 at A0 and the tangent to P coincide. We note P = A0 +

t1A1 + t2A2, P ⊂ TA0Σ2. There are again subcases:

1. P ∩ Σ2 = {A0};

2. dimP ∩ Σ2 = 1;

3. dimP ∩ Σ2 = 2.

Except for the subcase dimP ∩ Σ2 = 2, i.e., P ⊂ Σ2, we don't have a description

simply based on dimP ∩ Σ2. Indeed, the behavior of the eigenvalues of P strongly

depends on orders of contact between P and Σ2, that can be high as the dimension of

the ambient space grows. We illustrate this fact with various examples that includes

the complete classi�cation for Sym3(R). The following proposition shows that in

dimension three, in this case, (0, 0) /∈ SA.

Proposition 3.4.12. Let P = A0 + tA1 + t2A2 ∈ Sym3(R) with A0 ∈ Σ2. Suppose

that dimTA0P ∩ TA0Σ2 = 2. Then, the eigenvalues of P are analytic functions near

the origin.

Proof. Since dimTA0P ∩ TA0Σ2 = 2, we have P ⊂ TA0Σ2. Without loss of generality,

we suppose that A0 = diag(0, 0, a) with a ∈ R, a 6= 0. Up to subtract k(t1, t2)I3 with

some linear function k to the family, we suppose that

A(t1, t2) = A0 +B(t1, t2) = A0 +




0 0 α

0 0 β

α β γ


 ,

with α, β, γ linear in (t1, t2). We show that the eigenvalues of A0 + B(t1, t2) are

analytic functions. The characteristic polynomial is

χA0+B(t1,t2)(x) = det



−x 0 α

0 −x β

α β γ + a− x




= −x
(
−x(γ + a− x)− β2

)
+ α2x

= −x
(
x2 − x(a+ γ)− β2 − α2)

)
.

Then Spec(A0 + B(t1, t2)) =
{

0, 1
2

(
γ + a±

√
(a+ γ)2 + 4(α2 + β2)

)}
. Since a 6= 0
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and γ(0, 0) = 0, this are analytic functions near (0, 0).

Remark 3.4.13. In the previous proof, we have seen that, given a direction B ∈
TA0P, the contact order of the two eigenvalues that coincide at 0 along A0 + tB is

always 2, except when the linear forms α and β have a common zero line that contains

B (in which case, A+ tB lies in Σ2). We will see that this order might vary in higher

dimensional spaces, and this sometimes create non-trivial antipodal monodromy.

3.4.3.1 P ∩ Σ2 = {A0}:

Example 3.4.14. We �rst give an example in dimension 3. In view of the proof of the

preceding proposition, this case happens for the family A(t1, t2) = A0 + t1A1 + t2A2 ∈
Sym3(R) given as follows.

A(t1, t2) =




0 0 t1

0 0 t2

t1 t2 1


 =




0 0 0

0 0 0

0 0 1


+ t1




0 0 1

0 0 0

1 0 0


+ t2




0 0 0

0 0 1

0 1 0


 .

We have χA(t1,t2) = t21x+ t22x− x3 + x2 = x(t21 + t22 − x2 + x) and so

Spec(A(t1, t2)) =

{
1

2
(1−

√
4t21 + 4t22 + 1), 0,

1

2
(1 +

√
4t21 + 4t22 + 1)

}
.

In Figure 3.10, we see the analytic eigenvalues of A(t1, t2).

Figure 3.10: The intersection is a point

Example 3.4.15. We give another example for d = 4. For P ∈ Symd(R), d > 3,

there are examples where P ∩ Σ2 = {A0} and there exists a direction along which
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the order of contact between the eigenvalues is odd, and this produces non-trivial

antipodal monodromy. Indeed, if this happens, the analytic continuation along a

segment [−t, t] exchange the order of two eigenvalues, while the order is preserved

along the half turn (since only A0 ∈ Σ). So the antipodal monodromy in this direction

is non-trivial, and (0, 0) ∈ SA.

For instance, let A(t1, t2) = A0 + t1A1 + t2A2 ∈ Sym4(R) be given as follows.

A(t1, t2) =




0 0 0 t2

0 0 t1 t1

0 t1 1 + t1 0

t2 t1 0 −1




=




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1




+t1




0 0 0 0

0 0 1 1

0 1 1 0

0 1 0 0




+t2




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0



.

The characteristic polynomial of A(t1, t2) is

χA(t1,t2) = t31x+ t21t
2
2 − 2t21x

2 + t1t
2
2x− t1x3 − t1x2 − t22x2 + t22x+ x4 − x2.

In Figures 3.11a and 3.11b, we see the eigenvalues of A(0, t2) and A(t1, 0), respectively.
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Figure 3.11: The eigenvalues of the one parameter families

In the direction of A2, the order of contact between the eigenvalues is even (order

2) while the order of contact in the direction of A1 is odd (order 3), Figure 3.12. So the

antipodal monodromy from (t1, 0) in the direction of (0, t1) exchange two eigenvalues.

In particular, (0, 0) ∈ SA.

Once again, this example shows that the antipodal monodromy might depend on

the base point in the case of a�ne families. Since in the direction of A2, the order

of contact between the eigenvalues is 2, the antipodal monodromy from (0, t2) in the
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direction of (t2, 0) is the identity.

(a) Trivial antipodal monodromy

(b) Non-trivial antipodal mon-

odromy

Figure 3.12: Antipodal monodromies of eigenvalues

Since the antipodal monodromy from (t1, 0) in the direction of (0, t1) is non-trivial,

so there is no analytic orthogonal matrix Q(t) ∈ O(d) which diagonalize A(t1, t2).

3.4.3.2 dimP ∩ Σ2 = 1

We give two examples, in dimension 3 and 5. In dimension three, Example 3.4.16,

(0, 0) is not a super-singular point as expected from Proposition 3.4.12. In this ex-

ample, the intersection P∩Σ2 is a smooth curve. In dimension �ve, Example 3.4.17,

(0, 0) also is not a super-singular point while the intersection P ∩ Σ2 is a singular

curve, a cusp.

Example 3.4.16. In dimension three, the order of contact between the eigenvalues

is two. So, the antipodal monodromy from t0, in the direction of u, u ⊥ t0, ‖t0‖ =

‖u‖ is trivial. Thus, there exists an analytic orthogonal matrix Q(t) ∈ O(d) which

diagonalize P. For instance, let A(t1, t2) = A0 + t1A1 + t2A2 ∈ Sym3(R) be given as

follows.

A(t1, t2) =



t2 0 t1

0 t2 0

t1 0 1 + 2t2


 =




0 0 0

0 0 0

0 0 1


+ t1




0 0 1

0 0 0

1 0 0


+ t2




1 0 0

0 1 0

0 0 2


 .

79



Then,

χA(t1,t2) = −t21t2 + t21x+ 2t32 − 5t22x+ t22 + 4t2x
2 − 2t2x− x3 + x2 (3.11)

= −(t2 − x)(t21 − 2t22 + 3t2x− t2 − x2 + x) = 0. (3.12)

Note that Spec(A(t1, 0)) = {0, 1
2
(1 ±

√
4t21 + 1}, Figure 3.13a and Spec(A(0, t2)) =

{t2, t2, 2t2 + 1}, Figure 3.13b.
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Figure 3.13: The eigenvalues of the one parameter families

By (3.12), we get Spec(A(t1, t2)) = {t2, 1
2
(1 + 3t2 ±

√
4t21 + (t2 + 1)2)}, where for

t1 = 0, t2 = −1, A(t) has a triple eigenvalue −1 and A(0, 0) ∈ Σ2. Note that for small

t1 6= 0, the antipodal monodromy from (t1, 0) in the direction of (0, t1) is trivial.

Indeed, t 7→ 1 −
√

4t21 + 1 is a non positive analytic function on (−t1, t1) so that

two eigenvalues 0 and 1
2
(1−

√
4t21 + 1) do not exchange along the segment (−t1, t1).

Therefore, the eigenvalues of A(t1, t2) are analytic functions in a neighborhood of the

origin, Figure 3.14.
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Figure 3.14: Eigenvalues of A(t1, t2) in a neighborhood of the origin

Example 3.4.17. This example prove that the intersection of P∩Σ2 is not necessary

a smooth curve when P ⊂ TA0Σ2. Let A(t1, t2) = A0 + t1A1 + t2A2 ∈ Sym5(R) be

given as follows.

A(t1, t2) =




0 0 0 0 t2

0 0 t1 t1 0

0 t1 1 + t1 0 0

0 t1 0 −1 0

t2 0 0 0 2



.

The characteristic polynomial of A(t1, t2) is

χA(t1,t2)(x) = (−t22 + x2 − 2x)(−t31 + 2t21x+ t1x
2 + t1x− x3 + x)

= P1(t2, x)P2(t1, x)

In Figure 3.15 we see the eigenvalues of A(t1, 0) and A(0, t2).
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Figure 3.15: The eigenvalues of the one parameter families

Let x(t2) be a root of P1(t2, x) with x(0) = 0. We write the Taylor expansion of

x(t2) at t2 = 0:

x(t2) =
∑

i>0

ait
i
2. (3.13)

By replacing (3.13) in P1(t2, x) = 0, we get −t22 + (a1t2 + a2t
2
2 + a3t

3
2 + o(t32))2 −

2(a1t2 + a2t
2
2 + a3t

3
2 + o(t32)) = 0. Now, by considering the terms in t2, t22 and t32, we

get a1 = 0, a2 = 0 and a3 = −1
2
, respectively. So, a root of P1(t2, x) with the value

zero at the origin, is of the form x(t2) = −1
2
t22 + o(t32). Similarly, it can be shown that

x(t1) = t31 + o(t31) is a root of P2(t1, x) which has the value zero at the origin. These

two roots intersect along t31 + 1
2
t22 = o(|t|3) which is singular at (0, 0). In Figure 3.16,

we see the eigenvalues of A(t1, t2).
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(a) (b)

Figure 3.16: The eigenvalues of A(t1, t2)

Notice that for any t0 and u ⊥ t0, the antipodal monodromy from t0 in the direction

of u is trivial. So (0, 0) is not a super-singular point.

3.4.3.3 dimP ∩ Σ2 = 2

In this case, P ⊂ Σ2. Since Σ2 is smooth, so the eigenvalues of P are analytic functions.

Consequently, there is an orthogonal matrix Q(t) ∈ O(d) which diagonalize P.
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Chapter 4

Reductions

In this chapter, we study possible reductions of linear families of symmetric matrices.

In a �rst attempt, if A(t) is a family of d× d symmetric matrices, one can investigate

whether there exists a regular (analytic, linear . . . ) family O(t) of orthogonal matrices

such that A′(t) := O(t)tA(t)O(t) is reduced, this is A′(t) = Diag(A1(t), . . . , An(t))

is diagonal by blocs. Recently, the question was studied by Kurdyka and Paunescu

in the case where A(0) admits n di�erent multiple eigenvalues for analytic families

[18] and then by Parusinski and Rond, Lemma 2.1 of [26], for the families of normal

matrices depending on a formal multi-parameter. We say that a family A(t) splits

into n blocks if n regular invariant linear subspaces Ei(t) exist. In full generality, to

get true splitting, one also needs to �nd �regular� basis of each Ei(t), but it won't be

problematic in the linear case.

Obtaining such reduction aggregates two di�culties. Indeed, if a family A(t) splits,

then it has a reducible characteristic polynomial χA(t), since it is the product of the

characteristic polynomials χAi(t), i = 1, . . . , n, where Ai(t) is the restriction of A(t)

to Ei(t). Now, when a polynomial family P (t) ∈ (R[t])[λ] is the product of n factors

P1(t), . . . , Pn(t), the monodromy σ associated to the roots of P (t) also factorizes. A

cycle in the decomposition of σ acts on the roots of one Pi(t), so σ can be seen as the

product of n permutations with disjoint support. We identify this situation by the

classes of the quotient of the roots of P (t) by the action of σ (that only aggregate

roots of the same factor Pi(t)).

In this chapter, we try to �nd su�cient conditions to reverse the implications (a)

and (b):

A(t) splits
(a)
=⇒ χA(t) factorizes

(b)
=⇒ σ factorizes.
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We call factorization problem the reverse of (b), this is, �nding a factor P1(t) in

χA(t) with P1(t0) =
∏`

i=1(λ − λi(t0)), when the subset {λi(t0); i = 1, . . . , `} of the
roots of χA(t0) is known to be invariant by σ. We call splitting problem the reverse

of (a), this means, �nding an invariant subspace E(t) of dimension ` such that the

characteristic polynomial of the restriction of A(t) to E(t) is the known divisor P (t)

of degree ` of χA(t).

In the �rst section, we notice some rigidities that proceed from the linearity of the

family. To be di�erentiable (and in particular analytic), an eigenvalue λ(t) of A(t)

needs to be linear, and in the same vein, if a linear family A(t) splits, the associated

invariant spaces needs to be constant. It happens that (b) cannot be reversed in

full generality. Indeed, there is an example of a 2-linear family in Sym3(R) that

admits an eigenvalue that is invariant by the antipodal monodromy but is not linear,

Proposition 4.1.4. Then we study eigenvectors associated to linear eigenvalues, and

we show that they have constraints, but not enough to make them constant, except in

the case where the eigenvalue is extremal. It happens indeed (a) is not an equivalence

either, that we illustrate by Example 4.1.10.

This invites us to consider extremal eigenvalues, section two. We achieve to solve

the factorization problem when σ has an extremal orbit of length 1 or 2. The result

might be generalized, but our method for an extremal orbit of length n requires a

construction of particular hyperbolic curves of degree n that we have not reached in

arbitrary degree. Then, still for extremal factors, we manage to solve the splitting

problem in full generality.

The last section combines consequences of the formers. In particular, we state

as a theorem (Theorem 4.3.1) the equivalence of many propositions, including the

following:

A linear family admits an analytic diagonalization if and only if the associated

antipodal monodromy is trivial if and only if any two matrices in the family commute.

4.1 Generalities

In this section, we study the splitting and factorization problems for linear families.

We �rst state some generalities that con�rm the rigidity of linear cases, and we give

examples which show that neither the lack of monodromy is su�cient for an eigenvalue

to be factored out of the characteristic polynomial, nor a factor in the characteristic
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polynomial corresponds necessarily to a splitting block of the family. However, in

the second subsection, we will obtain positive results under the assumption that the

considered eigenvalues and factors are extremal.

4.1.1 Rigidity of eigenelements

The behavior of �regular� eigenelements of linear families is very rigid. Indeed, eigen-

values need to be linear, and eigenvectors to be constant, as shown by the following

two propositions.

Proposition 4.1.1. Let A(t) ∈ Symd(R), t ∈ Rk be a linear family. Suppose λ :

Rk → R is an eigenvalue of A(t), continuous on Rk, and di�erentiable at 0. Then λ

is linear.

Proof. For given t 6= 0 and s ∈ R, A(st) = sA(t), so Spec(A(st)) = sSpec(A(t)).

Then, since Spec(A(t)) is discrete (�nite) and λ is continuous, λ is positively homo-

geneous of degree 1: ∀s > 0, λ(st) = sλ(t). For s > 0, we then get

λ(t)− dλ(0)(t) =
λ(st)− dλ(0)(st)

s
=
o(st)

s
−−→
s→0

0.

So λ(t) = dλ(0)(t) for all t (the equality is clear for t = 0), and λ is linear.

Proposition 4.1.2. Let A(t) ∈ Symd(R), t ∈ Rk be a linear family, A 6⊂ Σ. The

following are equivalent:

1. There are k independent parameters (t1, . . . , tk) ∈ Rk2
such that A(t1), . . . , A(tk)

have a common eigenvector.

2. There exists a continuous e : Rk → Sd−1 that is an eigenvector of A(t).

3. There exists an analytic e : Rk → Sd−1 that is an eigenvector of A(t).

4. There exists e ∈ Sd−1 that is an eigenvector of A(t).

If these propositions are satis�ed, the associated eigenvalue is linear.

Proof. Let us prove (2) ⇒ (4). Since A 6⊂ Σ, the set Ω of regular parameters (such

that A(t) /∈ Σ) is a dense open set in Rk. Let t ∈ Ω. Then R∗t ⊂ Ω, since A is

linear. The unit eigenvectors of A(st), for s > 0 are made of 2d distinct points that

do not depend on s. The map e being continuous, 0 < s 7→ e(st) is constant, and in
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particular, e(t) = lims→0 e(st) = e(0). Finally, ∀t ∈ Ω, e(t) = e(0), so e is constant on

Ω. Then, by continuity of e and density of Ω, e is constant on Rk.

Since (4) ⇒ (3) ⇒ (2) and (4) ⇒ (1) are clear, and since a common eigenvector

of di�erent matrices is an eigenvector of any linear combination of them, we get

(1)⇒ (4) which �nishes the proof of the proposition.

Finally, if e is a constant eigenvector, the associated eigenvalue is λ(t) =< A(t)e, e >,

which is linear.

The following proposition generalizes the principle, working with invariant spaces

instead of eigenvectors. The hypothesis A(t) 6⊂ Σ below is necessary. Any continuous

E : R2 → G1
3 whose image is included in the hyperplane (0, 0, 1)⊥ is a continuous

invariant space of the family A(t1, t2) = t1diag(1, 1, 0) + t2I3.

Proposition 4.1.3. Let A(t) ∈ Symd(R), t ∈ Rk be a linear family such that A(t) 6⊂
Σ. Suppose E(t) is a continuous invariant space of A(t), then E(t) is constant.

Proof. Let Ω be the set of regular parameters t such that A(t) /∈ Σ. Since A(t) 6⊂ Σ,

Ω is a dense open set in Rk. Take t0 ∈ Ω. Since A(t) is linear, for any s ∈ R∗

the eigenspaces of A(st0) are d independent lines associated to simple eigenvalues

of A(st0). Since the invariant spaces of A(t) are all direct sums of subspaces of

eigenspaces of A(t), the set E(st0), s ∈ R∗, is discrete. Thus, by continuity of E,

s 7→ E(st0) is constant and E(t0) = lims→0E(st0) = E(0). Finally, for all t ∈ Ω, we

have E(t) = E(0). By continuity of E(t) and density of Ω in Rk, E(t) is constant on

Rk.

4.1.2 Factorization problem

In view of Proposition 4.1.1, the following example shows that the antipodal mon-

odromy fails to predict the factorization of the characteristic polynomial.

Proposition 4.1.4. There exists a 2-linear family A(t) ∈ Sym3(R) and λ ∈ R such

that :

• λ is an eigenvalue of A(1, 0) and is invariant by the antipodal monodromy from

(1, 0) in the direction of (0, 1): τ ′(1,0),(0,1)(λ) = λ;

• λ has no analytic prolongation on R2. Indeed, λ has a unique analytic prolon-

gation on R2 \ {0} that is not a linear function.
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Proof. The proof is given by the following example. Let

A(t1, t2) = t1A1 + t2A2 =




0 0 t1

0 t2 t1

t1 t1 t1 − t2


 ,

where Spec(A1) = {−1, 0, 2} and Spec(A2) = {0, 0, 1}. Notice that 0 is an eigenvalue

of A(1, 0). We show that τ ′((1,0),(0,1))(0) = 0. Let t1 = u and t2 = uv and

B(v) = A1 + vA2 =




0 0 1

0 v 1

1 1 1− v


 .

The characteristic polynomial and the discriminant of B(v) are

χB(v)(λ) = −λ3 + λ2 + (2 + v2 − v)λ− v = λv2 − (λ+ 1)v − λ3 + λ2 + 2λ,

∆B(v) = (λ+ 1)2 − 4λ(−λ3 + λ2 + 2λ) = (λ+ 1)(2λ− 1)(λ(2λ− 3)− 1).

Therefore, Z(∆B(v)) = {λ ∈ R|∆B(v)(λ) = 0} = {−1, 1
2
, 3

4
−
√

17
4
, 3

4
+
√

17
4
}. Since

∆B(v) ∼λ→±∞ 4λ4, then ∆B(v) is negative in the two intervals I1 = [−1, 3
4
−
√

17
4

] and

I2 = [1
2
, 3

4
+
√

17
4

], Figure 4.1a.
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Figure 4.1: Non-analytic eigenvalue with trivial antipodal monodromy

From this, if we choose a λ ∈ I1 ∪ I2, then there is no parameter v such that λ is

an eigenvalue of the matrix B(v). Thus, the eigenvalues of B(v) are distinct, so for

all v, λ1(v) < λ2(v) < λ3(v). Note that λ2(0) = 0 and the slopes of the eigenvalues
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of B(v) at ±∞ are −1 , 0 and 1, Lemma 2.6.1. So, λ2(v) has a �nite limit 0 at

±∞, Lemma 2.6.2 and 2.6.3. In Figure 4.1b, we see the graph of eigenvalues of B(v).

Now, let h be the half turn path from (1, 0) in the direction of (0, 1) and prh be

the analytic prolongation along h. Then, for each i = 1, 2, 3, prh(λi) = λi. Since

τ((1,0),(0,1))(λi) = −prh(λi), the antipodal monodromy from (1, 0) in the direction of

(0, 1) is the transposition of the two extremal eigenvalues −1 and 2 at (1, 0). So,

τ((1,0),(0,1))(0) = 0.

Now, we show that the eigevalue 0 does not have any anlytic continuation on R2.

We write the Taylor expansion of λ2(v) at v = 0:

λ2(v) =
∑

i>0

aiv
i. (4.1)

By replacing (4.1) in χB(v), we get −(a1v + a2v
2 + o(v2))3 + (a1v + a2v

2 + o(v2))2 +

(v2 − v + 2)(a1v + a2v
2 + o(v2))− v = 0. Now, by considering the terms in v, we get

(2a1− 1)v = 0. From this, the slope of the eigenvalue of λ2(v) at v = 0 is 1
2
. We have

λ2(v) =
1

2
v + o(v).

Note that λ2(v) is the unique analytic prolongation of the eigenvalue 0 of R2\(0, 0).

Since λ2(v) is not linear, the associated eigenvalue µ2(t1, t2) of A(t1, t2), µ2(t1, t2) =

t1λ2(v) is not linear in t1 and t2. In particular, by Proposition 4.1.1 µ2(t1, t2) is not

analytic on R2. So, 0 does not have an analytic continuation R2. In Figure 4.2, we

see the eigenvalues of A(t1, t2).

Figure 4.2: The eigenvalues of A(t)
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4.1.3 Splitting problem

From the preceding, the factorization problem has no positive answer in full generality,

even for orbits of length 1 of σ. We now consider the splitting problem. For this we

focus on linear eigenvalues (factors of degree one in χA), and try to investigate the

regularities of the associated eigenvectors. From Proposition 4.1.2, getting a splitting

for the family equates to have a constant eigenvector. We will see that again, this

cannot be reached in general. Indeed, examples below show that even the full given

of the eigenvalue set � all (t, λ) with λ ∈ Spec(A(t)) �, is not su�cient to determine

whether A(t) splits. However, the journey reveals that extremal eigenvalues play a

particular role, and we study them in a second phase.

The following is the key lemma that outlines the regularities of eigenvectors

associated to linear eigenvalues.

Lemma 4.1.5. Let A(t) ∈ Symd(R), be a 2-linear family, and suppose A(t) has a

linear eigenvalue λ(t) that is not always multiple : ∃t ∈ R2, χ′A(t)(λ(t)) 6= 0. Then,

there exists an eigenvector e(t) ∈ Sd−1 associated to λ(t), analytic on R2 \{0}, unique
up to multiplication by −1, and we have:

∀(t, t1, t2) ∈ (R2 \ {0})3, e(t) ⊥
(
A(t1)− λ(t1)Id

)
e(t2) +

(
A(t2)− λ(t2)

)
e(t1). (4.2)

Proof. Without loss of generalities, suppose (1, 0) is a parameter such that λ(1, 0)

is a simple eigenvalue of A(1, 0), and choose e0 ∈ Sd−1 to be one of the two unit

eigenvector of A(1, 0) associated with λ(1, 0). For given θ ∈ R we denote by Θ the

parameter Θ = (cos(θ), sin(θ)), and Θ + Π = (cos(θ + π), sin(θ + π)).

From Rellich Theorem, there exists a unique analytic vector e1 : R → Sd−1 such

that A(Θ)e1(θ) = λ(Θ)e1(θ) and e1(0) = e0. We claim that e1 is 2π periodic. Indeed,

notice that the equation A(Θ)v = λ(Θ)v for v ∈ Sd−1 has only two continuous

solutions (in terms of θ), that can be distinguished by their value e0 or −e0 at θ = 0,

then happens to be e1 and −e1. Now, since A(Θ + Π) = −A(Θ) and λ(Θ + Π) =

−λ(Θ), the problem A(Θ + Π))v = λ(Θ + Π)v, v ∈ Sd−1 has the same continuous

solutions. From this we deduce that either e1(θ + π) = e1(θ), and then e1(θ + 2π) =

e1(θ), or else, e1(θ + π) = −e1(θ) and then e1(θ + 2π) = −e1(θ + π) = −(−e1(θ)) =

e1(θ). In both cases, e1 is 2π periodic. The function e1 being analytic and 2π periodic,

the map e : R2 \ {0} → Sd−1 given by e(t) = e1(t/||t||) is analytic on R2 \ {0}, and
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since A(t) and λ(t) are linear, e(t) is an eigenvector of A(t) associated with λ(t). The

unicity up to central symmetry is straightforward.

We come to the relation (4.2). Let t1, t2 be two independent parameters (otherwise

the relation is trivial), and denote A1 = A(t1), A2 = A(t2), λ1 = λ(t1), λ2 =

λ(t2), e1 = e(t1), e2 = e(t2), so (A1−λ1Id)e1 = (A2−λ2Id)e2 = 0. For t ∈ R2, we set

t = αt1 + βt2 (α and β depends on t). Since e(t) is an eigenvector of A(t) for λ(t),

we have (A(t)− λ(t)Id)e(t) = 0. Then, in particular

∀t ∈ R2 \ {0}, < (A(t)− λ(t)Id)e(t) ; αe1 + βe2 >= 0.

This gives, by linearity of A and λ, and by symmetry of A− λId:

0 = < (α(A1 − λ1Id) + β(A2 − λ2Id))e(t) ; αe1 + βe2 >

= < e(t) ; (α(A1 − λ1Id) + β(A2 − λ2Id))(αe1 + βe2) >

= α2 < e(t) ; (A1 − λ1Id)e1 > . . .

· · ·+ β2 < e(t) ; (A2 − λ2Id))e2 > . . .

· · ·+ αβ < e(t) ; (A1 − λ1Id)e2 + (A2 − λ2Id))e1 >

= αβ < e(t) ; (A1 − λ1Id)e2 + (A2 − λ2Id))e1 > .

Then, for αβ 6= 0, we get < e(t) ; (A1−λ1Id)e2 + (A2−λ2Id))e1 >= 0. By continuity

and density, the equation is �nally satis�ed for all t, as announced.1

The vector
(
A(t1)− λ(t1)Id

)
e(t2) +

(
A(t2)− λ(t2)

)
e(t1) which appears in the key

lemma is associated with the linearity of eigenvectors, as suggested by the proof.

Indeed, we have the following:

Proposition 4.1.6. Let A(t1, t2) = t1A1 + t2A2 be a 2 linear family, and for i = 1, 2,

let λi ∈ R be an eigenvalue of Ai, with associated eigenvector ei ∈ Rd \ {0}. The

following are equivalent:

• (A1 − λ1Id)e2 + (A2 − λ2Id)e1 = 0,

• t1e1 + t2e2 is an eigenvector of A(t1, t2).

If this case, the eigenvector t1e1+t2e2 is associated with the linear eigenvalue λ(t1, t2) =

λ1t1 + λ2t2.

1notice that the �rst part of the proof (the existence of an analytic eigenvector on R2 \ {0}) does
not involve the linearity of λ but only its idempotency by the antipodal monodromy. In particular,
if λ has no monodromy, λ has an associated eigenvector, analytic on R2 \ {0}.
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Proof. First suppose e(t1, t2) = t1e1 + t2e2 is an eigenvector of A(t1, t2). Denote by

λ(t1, t2) the associated eigenvalue. So λ1 = λ(1, 0), λ2 = λ(0, 1). Notice that, if e1

and e2 are linearly dependent, they are both eigenvectors of the two matrices, and

the result follows immediately. Thus, we suppose e1 and e2 independent.

We have
(
A(t1, t2)− λ(t1, t2)Id

)
e(t1, t2) = 0, which gives

t1(t1λ1 − λ(t1, t2))e1 + t2(t2λ2 − λ(t1, t2))e2 + t1t2(A1e2 + A2e1) = 0. (4.3)

So, for t1t2 6= 0,

(t1λ1 − λ(t1, t2))

t2
e1 +

t2λ2 − λ(t1, t2)

t1
e2 = −A1e2 − A2e1.

Since the right hand side vector does not depends on (t1, t2) and e1, e2 are indepen-

dent, this implies t1λ1−λ(t1,t2)
t2

= c1 and t2λ2−λ(t1,t2)
t1

= c2 are constant. In particular,

λ(t1, t2) = t1λ1 − c1t2 = −t1c2 + t2λ2, so λ(t1, t2) = λ1t1 + λ2t2. Notice the equality

also holds if t1t2 = 0, so λ is linear as announced. Finally, replacing λ(t1, t2) by

λ1t1 +λ2t2 in (4.3) for t1 = 1, t2 = 1 precisely gives (A1−λ1Id)e2 + (A2−λ2Id)e1 = 0.

We now suppose (A1 − λ1Id)e2 + (A2 − λ2Id)e1 = 0. Then

(
A(t1, t2)− (t1λ1 + t2λ2)Id

)
(t1e1 + t2e2)

=
(
t1(A1 − λ1Id) + t2(A2 − λ2Id)

)
(t1e1 + t2e2)

= t1t2
(
(A1 − λ1Id)e2 + (A2 − λ2Id)e1

)

= 0.

So t1e1 + t2e2 is an eigenvector of A(t1, t2) for t1λ1 + t2λ2.

This fact can be generalized to bigger families, as follows.

Corollary 4.1.7. Let A(t) = t1A1 + · · · + tkAk be a k-linear family. Let λi be an

eigenvalue of Ai and ei ∈ Rd\{0}, i = 1, . . . , d, be an associated eigenvector. Then,

the following are equivalent:

• For all i 6= j, (Ai − λiId)ej + (Aj − λjId)ei = 0

• t1e1 + · · ·+ tkek is an eigenvector of A(t1, . . . , tk).

In this case, the associated eigenvalue is linear, λ(t1, . . . , tk) = t1λ1 + · · ·+ tkλk.
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Proof. First, we suppose that e(t) = t1e1 + · · ·+ tkek is an eigenvector of A(t). Then,

on each plane Pij = tiAi + tjAj, i 6= j, we have (Ai − λiId)ej + (Aj − λjId)ei = 0,

Proposition 4.1.6.

Now, suppose that for all i 6= j, (Ai − λiId)ej + (Aj − λjId)ei = 0. We prove that

t1e1 + · · · + tkek is an eigenvector of A(t) associated to t1λ1 + · · · + tkλk. The proof

is by induction on k, the number of parameters. If k = 2, then by Proposition 4.1.6

there is nothing to prove. We �x a k > 2 and we suppose that the corollary holds for

k − 1. We have

[t1(A1 − λ1Id) + · · ·+ tk−1(Ak−1 − λk−1Id) + tk(Ak − λkId)](t1e1 + · · ·+ tkek)

= (t1(A1 − λ1Id) + · · ·+ tk−1(Ak−1 − λk−1Id))(tkek) + tk(Ak − λkId)(t1e1 + · · ·+ tk−1ek−1)

= Σk−1
i=1 titk(Ai − λiId)ek + Σk−1

i=1 titk(Ak − λkId)ei
= Σk−1

i=1 titk((Ai − λiId)ek + (Ak − λkId)ei) = 0

So, t1e1 + · · · + tkek is an eigenvector of A(t) associated to the linear eigenvalue

t1λ1 + · · ·+ tkλk which �nishes the proof.

As a corollary, the key Lemma 4.1.5 together with Proposition 4.1.6, show that

eigenvectors associated to linear eigenvalues are at least constrained in a hyperplane.

This corollary is weak compared to the lemma, but we state it because its conclusion

seems more eloquent, and is su�cient for some applications.

Corollary 4.1.8. Let A(t) ∈ Symd(R), be a 2-linear family, and suppose A(t) has

a linear eigenvalue λ(t) that is not always multiple. Denote by e(t) the associated

eigenvector. Then there exists a hyperplane H such that ∀t, e(t) ∈ H.

Proof. We �x two independent parameters t1, t2 and we de�ne

v =
(
A(t1)− λ(t1)Id

)
e(t2) +

(
A(t2)− λ(t2)

)
e(t1).

Then, either v 6= 0, or v = 0. In the �rst case, the conclusion stands from Lemma

4.1.5, with H = v⊥. In the latter case, e(t) belongs to a two dimensional plane P ,

Proposition 4.1.6. Any hyperplane H that contains the plane P �ts.

Another corollary of the key lemma is obtained by specifying t2 to be t in its

conclusion. It gives the following corollary which is more powerful than the preceding.
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The result is remarkable because it gives a constraint on the eigenvector that is

associated with a single matrix of the family.

Corollary 4.1.9. Let A(t) ∈ Symd(R), be a 2-linear family, that admits a linear

eigenvalue λ(t), associated with the analytic eigenvector e(t) for t 6= 0. Suppose

λ0 := λ(t0) is a single eigenvalue of A0 = A(t0). Then, for all t, e(t) belongs to the

isotropic cone of A0 − λ0Id, this means,

∀t ∈ R \ {0}, e(t)t(A0 − λ0Id)e(t) = 0.

Proof. By Lemma 4.1.5, ∀t ∈ R\{0}, e(t) ⊥
(
A(t0)−λ(t0)Id

)
e(t)+

(
A(t)−λ(t)

)
e(t0).

Thus,

< e(t) | (A0 − λ0Id)e(t) > + < e(t) | (A(t)− λ(t)Id)e(t0) >= 0 (4.4)

But, < e(t) | (A(t) − λ(t)Id)e(t0) >= 0, since Im(A(t) − λ(t)Id) ⊂ e(t)⊥. Hence, for

all t ∈ R \ {0}, < e(t) | (A0 − λ0Id)e(t) >= 0 which �nishes the proof.

If, in what precedes, λ0 is an extremal eigenvalue of A0, then the quadratic form

associated to A0 − λ0Id is non-negative (or non-positive), and its isotropic cone co-

incides with its kernel, this is, the eigenspace of A0 associated with λ0. Since λ0 is

a single eigenvalue, e(t) then range in a 1-dimensional subspace. So, A(t) admits a

constant eigenvector associated with λ(t). Recall that having a constant eigenvector

(or eigenspace) is the condition to get splitting of the family. Hence, if λ(t) is a

linear eigenvalue, that is extremal for some parameter, the former proposition allows

to solve the splitting problem. This is a declination of a general fact studied in detail

later.

Before focusing on extremal eigenvalues, let us illustrate that (a) is not an equiv-

alence in general.

Example 4.1.10. In this example, we consider A(t) ∈ Sym3(R) a 2-linear family

given by

A(t1, t2) = t1A1 + t2A2 =



−t1 −t1 −t1
−t1 −t1 + t2 t1

−t1 t1 t1 − t2


 .

We show that −1 is an eigenvalue of A(1, 0) so that τ ′(1,0),(0,1)(−1) = −1 and it has

an analytic continuation on R2 which is a linear function. But, we show that there is

no analytic block diagonalization for A(t) on R2.
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Let t1 = u and t2 = uv, then we have

A(u, v) = uA1 + uvA2 = uB(v) = u



−1 −1 −1

−1 −1 + v 1

−1 1 1− v


 .

We have Spec(A1) = {−2,−1, 2} and Spec(A1) = {−1, 0, 1}. The characteristic

polynomial of the matrix B(v) is

χB(v)(λ) = (1 + λ)v2 − (2λ+ 2)v − λ3 − λ2 + 4λ+ 4 = (1 + λ)(v2 − 2v − λ2 + 4).

Thus, λ1(v) = +
√
v2 − 2v + 4, λ2(v) = −1 and λ3(v) = −

√
v2 − 2v + 4 are the

eigenvalues of B(v). In Figure 4.3a, we see the eigenvalues of B(v) and A(t).

-6 -4 -2 2 4 6

v

-6

-4

-2

2

4

6

Eigenvalues of B(v)

(a) The eigenvalues of B(v) (b) The eigenvalues of A(t)

Figure 4.3: Analytic eigenvalue with trivial antipodal monodromy

Note that the associated eigenvector µ2(t1, t2) = t1λ2(v) = t1 of A(t1, t2) is linear.

Now we study the behavior of an eigenvector X(v) associated with λ2(v) = −1.

Let X(v) =
(
x1 x2 x3

)
, so we have (B(v)− λ2(v)I3)X(v) = 0. From this we get

− x2 − x3 = 0

− x1 + vx2 + x3 = 0

− x1 + x2 + (2− v)x3 = 0,
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Thus, X(v) =
(

(1− v)x3 −x3 x3

)
= x3

(
1− v −1 1

)
. Let

X̃(v) :=
X(v)

||X(v)|| = ±(
1− v√

v2 − 2v + 3
,

−1√
v2 − 2v + 3

,
+1√

v2 − 2v + 3
). (4.5)

Note that

X̃(v) =





±( 1√
3
, −1√

3
, 1√

3
) v = 0

±(1, 0, 0) v = −∞
±(−1, 0, 0) v = +∞.

Since we have v = t2
t1
, we get

V (t1, t2) = ±(
t1−t2
t1√

( t2
t1

)2 − 2( t2
t1

) + 3
,

−1√
( t2
t1

)2 − 2( t2
t1

) + 3
,

1√
( t2
t1

)2 − 2( t2
t1

) + 3
)

= ±
(

t1−t2√
(t2−t1)2+2t21

−t1√
(t2−t1)2+2t21

t1√
(t2−t1)2+2t21

)

which are eigenvectors of A(t1, t2) associated to µ2(t1, t2) = t1λ2(v). Note that these

eigenvectors are not analytic on R2 and turn in the plane v2 + v3 = 0. So, there is no

analytic block diagonalization of A(t1, t2) in R2.

Proposition 4.1.11. There exists a 2-linear family t1A1 + t2A2 of Sym3(R) that

admits a linear eigenvalue, and (A1 − λ1)e2 + (A2 − λ2)e1 = 0 with e1 6= e2.

Proof. Let A1 = diag(−1, 0, 1),

A2 =




1 1 −2

1 0 −1

−2 −1 3




First, we note that λ1 = 0 is an eigenvalue of A1 associated to eigenvector e1 = (0, 1, 0)

and λ2 = 0 is an eigenvalue of A2 associate to eigenvector e2 = (1, 1, 1). We have,

χA(t1,t2)(λ) = λ(−λ2 + t21 + 2t1t2 + 3t22 + 4λt2)

Thus, λ(t) = 0 is the linear eigenvalue of A(t1, t2) and we have



−1 0 0

0 0 0

0 0 1







1

1

1


+




1 1 −2

1 0 −1

−2 −1 3







0

1

0


 = 0 (4.6)
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with e1 6= e2.

The following example comes as a complement of the fact that (a) cannot be re-

versed. It shows it is hopeless to search for additional data concerning the eigenvalues

to get a criterion that determines if a linear eigenvalue corresponds to a splitting.

Proposition 4.1.12. There are two linear 2-families A(t), B(t) in Sym3(R) such

that:

• χA(t) = χB(t). So A(t) and B(t) share the same eigenvalues.

• A(t) and B(t) have a (common) linear eigenvalue.

• A(t) has a constant eigenvector, and in particular, splits.

• B(t) has no constant eigenvector, and in particular, doesn't split.

Proof.

A(x, y) =




0 0 0

0 x
√

2y

0
√

2y −x


 B(x, y) =




0 y y

y x 0

y 0 −x




The characteristic polynomial of both is χ(x, y, λ) = −λ(λ2− x2− 2y2). So, 0 is a

constant eigenvalue of A(x, y) and B(x, y) associated with (1, 0, 0) for A(t) (constant

eigenvector) and with (x,−y, y) for B(t) (non constant eigenvector). Notice that

(x,−y, y) belongs to the plane Y + Z = 0.

4.2 Extremal eigenvalues

In this section we investigate if the factorization and splitting problems can be solved

with the additional hypothesis that the considered eigenvalues (or block of eigenval-

ues) are extremal. We �rst consider the factorization problem.

4.2.1 Factorization problem for extremal eigenvalues

We prove that the factorization problem has a positive answer for extremal eigenvalues

for orbits of length 1 and 2. In other terms, when an orbit of the antipodal monodromy

at some t0 is made of extremal eigenvalues, then the characteristic polynomial admits

a factor whose roots at t0 are these eigenvalues, if the orbit has length 1 or 2. We
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only consider the maximal eigenvalues, but the results holds for the minimal ones, by

replacing A(t) by its opposite.

If A(t), t ∈ Rk, is a k-linear family and P a linear subspace of dimension 2 in Rk,

notice the cycle structure of the antipodal monodromy τ ′t0,u of A(t) from t0 in the

direction u, where (t0, u) is an orthonormal basis of P, does not depends on (t0, u).

Indeed, super-singular sets have codimension 2, so the origin is the only potential

super-singular point of the restriction of A to P, and τ ′t0,u and τ ′t0,−u are inverse one

to the other, then have the same cycle structure. It allows us to write τ ′P = Id as a
shorthand for τ ′t0,u = Id for all orthonormal basis (t0, u) of P.

Proposition 4.2.1 (Factorization of extremal 1-orbit ). Let A(t) ∈ Symd(R) be a

2-linear family, t0 ∈ R2 \ SA, and λ1 > λ2 ≥ · · · ≥ λd be the eigenvalues of A(t0).

Suppose λ1 is �xed by the antipodal monodromy: τ ′(t0,u)(λ1) = λ1. Then, A(t) admits

a linear eigenvalue λ1 : R2 → R with λ1(t0) = λ1. In other terms, (λ− λ1(t)) divides

χA(t)(λ).

Proof. Without loss of generality, we suppose t0 = (0, 1), and set A(t1, t2) = t1A1 +

t2A2. Since (0, 1) /∈ SA, the eigenvalues of A(t) are uniquely determined as analytic

functions in a neighborhood V of (0, 1). We denote them by λi(t1, t2), i = 1, . . . , d,

with λi(0, 1) = λi. Since τ ′(t0,u)(λ1) = λ1, the analytic prolongation of the eigenvalue

λ1(t) de�nes a function on R2 (analytic on R2\(0, 0) and λ1(0, 0) = 0).

Let us consider the one-parameter family B(v) = A1 + vA2. Then, for t1 6= 0

su�ciently close to 0, if t1 = 1
v
, λi(t1, t1v) is an analytic function. Since A(t1, t2)

is linear, λi(t1,t1v)
t1

does not depend on t1 and λi(t1,t1v)
t1

∈ Spec(B(v)). Moreover, by

Rellich's Theorem the eigenvalues of B(v) are analytic functions for all v ∈ R. Denote
them by µ1(v), . . . , µd(v). Up to change the indexes, we have µi(v) = λi(t1,t1v)

t1
, for

t1 > 0 close to zero and t1 = 1
v
. As τ ′(t0,u)(λ1) = λ1, we have

lim
v→±∞

µ1(v)

v
= lim

v→±∞
λ1(t1, t1v)

t1v

= lim
t1→0

λ1(t1, 1)

= λ1(0, 1) = λ1.

Hence, µ1(v) ∼±∞ λ1v so the slope of the eigenvalue µ1(v) at ±∞ is λ1, the

maximal eigenvalues of A2. Yet if i 6= 1, limv→+∞
µi(v)
v

= ki,1 and limv→−∞
µi(v)
v

= ki,2

where for i = 2, . . . , d and j = 1, 2, ki,j ∈ Spec(A(0, 1)) so ki,j < λ1. Therefore, there
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exists C > 0 such that for all v ≤ −C, µ1(v) < µi(v) and for all v ≥ C, µ1(v) > µi(v).

Now consider the line L passing trough the two points p1 = (−C, µ1(−C)) and

p2 = (C, µ1(C)). Then, for any i 6= 1,

sgn (µi(C)− µ1(C)) = −sgn (µi(−C)− µ1(−C)) .

Since µ1(v), . . . , µd(v) are continuous, by Mean Value Theorem there are d− 1 inter-

section points between the graphs of µi(v), i ∈ {2, . . . , d} and the line L:

#
(
{(v, µi(v)); v ∈ R, i 6= 1} ∩ L

)
= d− 1.

Moreover, # ({(v, µ1(v)); v ∈ R} ∩ L) ≥ 2. From this, #
(
χ−1
B (0) ∩ L

)
≥ d + 1. But

deg(χB) = d, so by Bézout Theorem, if LA 6⊂ {χB = 0}, one gets #
(
χ−1
B (0) ∩ L

)
≤ d.

Thus L ⊂ {χB = 0}. So, µ1(v) is an a�ne eigenvalue of B(v),

µ1(v) = λ1v + µ1(0).

Finally, λ1(t1, t2) = t1µ1( t2
t1

) = t1(λ1
t2
t1

+µ1(0)) = λ1t2 +µ1(0)t1 is linear in (t1, t2).

This can be generalized to k-linear family as follows.

Proposition 4.2.2. Let A(t) ∈ Symd(R) be a k-linear family and suppose that there

exists t0 ∈ Rk, r > 0 and B(t0, r) ∩ SA = ∅ such that for any t ∈ B(t0, r) and

any u ⊥ t, τ ′(t,u)(λ1(t)) = λ1(t), where λ1(t) > λ2(t) ≥ λ3(t) ≥ · · · ≥ λd(t) are

the eigenvalues of A(t). Then, there exists a linear function L : Rk → R such that

(λ− L(t)) divides χA(t)(λ) and L(t0) = max Spec(A(t0)).

Proof. Let (t1, . . . , tk) ∈ B(t0, r) be a basis of Rk. We set, for (α1, . . . , αk) ∈ Rk:

L(
k∑

i=1

αiti) :=
k∑

i=1

αiL(ti). (4.7)

We claim that

∀y ∈ Conv(t1, . . . , tk), λ(y) = L(y) (4.8)

where Conv(X) denotes the convex hull of X. We show this by induction on k. For

k = 1 there is nothing to prove. Let y ∈ Conv(t1, . . . , tk). Then, y = αy′ + (1− α)tk
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with α ∈ [0, 1] and y′ ∈ Conv(t1, . . . , tk−1). Now, αy′ ∈ B(t0, r), and there exists

u ⊥ αy′ such that tk ∈ Span(αy′, u). From Proposition 4.2.1, λ is linear on this

space. Hence, λ(αy′+ (1−α)tk) = αλ(y′) + (1−α)λ(tk). From induction hypothesis,

we conclude λ(y′) = L(y′). Finally,

λ(y) = αL(y′) + (1− α)L(tk)

= L(αy′ + (1− α)tk) = L(y)

which �nishes the proof of the claim.

From this, we conclude that for any t ∈ Conv(t1, . . . , tk), χA(t)(L(t)) = 0. But,

Conv(t1, . . . , tk) is open. So, for any t ∈ Rk, χA(t)(L(t)) = 0. Then, (λ−L(t))|χA(t)(λ).

Proposition 4.2.3 (Factorization of extremal 2-orbit). Let A(t) ∈ Symd(R) be a

2-linear family, and let λ1 > λ2 > λ3 ≥ · · · ≥ λd be the eigenvalues of A(t0) for some

t0. Suppose that τ ′(t0,u)(λ1) = λ2 and τ ′(t0,u)(λ2) = λ1, where u ⊥ t0, ||u|| = 1. Then,

the characteristic polynomial of A(t) has a homogeneous divisor p(t) of degree 2 with

p(t0)(λ) = (λ− λ1)(λ− λ2).

Proof. The principle follows the proof of Proposition 4.2.1. Our goal is to construct a

hyperbola that has more intersection points with the characteristic polynomial than

Bézout Theorem allows, so that the hyperbola is included in the eigenvalues, which

provides a factor of degree 2 in χA.

We suppose t0 = (0, 1), write A(t1, t2) = t1A1 + t2A2 and let t1 = u, t2 = uv. Then,

A(u, uv) = uB(v) with B(v) = A1 + vA2. Since B(v) is a one parameter family, the

eigenvalues of B(v) are analytic functions µi : R→ R, i = 1, . . . , d.

In a neighborhood V of t0, the eigenvalues of A are analytic functions λi, i =

1, . . . , d, with λi(0, 1) = λi. We write the order one Taylor expansion of λi at (0, 1):

λi(t1, t2) = λi(0, 1) + αit1 + βi(t2 − 1) + o(t1, (t2 − 1)). (4.9)

For v > 0 su�ciently large, ( 1
v
, 1) ∈ V , so up to change the indexes, we have

µi(v) =
λi(

1
v
, 1)

1
v

, (4.10)
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and for v < 0 su�ciently large also, µi(v) is one of the
λj(

1
v
,1)

1
v

for some j (j might

di�er from i).

From (4.9) and (4.10), we get the expansion of µi(v) at +∞:

µi(v) =
v→+∞

λi(0, 1)v + αi + (βi × 0) + o

(
1

v

)
× v =

v→+∞
λi(0, 1)v + αi + o(1). (4.11)

Since τ ′(t0,u)(λ1) = λ2 and τ ′(t0,u)(λ2) = λ1, it follows that

lim
v→−∞

µ1(v)

v
= λ2, lim

v→−∞
µ2(v)

v
= λ1, (4.12)

so for v < 0 large, µ1(v) =
λ2( 1

v
,1)

1
v

and µ2(v) =
λ1( 1

v
,1)

1
v

. This gives the expansions of

µ1(v) and µ2(v) at −∞:

µ1(v) =
v→−∞

λ2v + α2 + o(1),

µ2(v) =
v→−∞

λ1v + α1 + o(1).

Now, consider the family (Ha)a∈R of hyperbolas with asymptotes µ = λ1v + α1 and

µ = λ2v + α2 given by

Ha : (µ− (λ1v + α1))(µ− (λ2v + α2))− a2 = 0, for a ∈ R.

Notice that for any v, the equation of Ha has two solutions, so the branches of Ha are

two graphs of analytic function de�ned all over the v-axis. We show that there exists

a0 ∈ R, such that the hyperbola Ha0 is included in the roots of the characteristic

polynomial of B(v).

Recall that the larger eigenvalue of B(v) is convex. For large v > 0, µ1(v) is the

maximal eigenvalue of B(v), and since we have

lim
v→+∞

(µ1(v)− λ1v − α1) = 0,

we get, for large v, µ1(v) ≥ λ1v + α1. Now, λ1 > λ2, so there exists v0 such that

µ1(v0) ≥ λ1v0 + α1 > λ2v0 + α2. Let

a0 =
√(

µ1(v0)− (λ1v0 + α1)
)(
µ1(v0)− (λ2v0 + α2)

)
.
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(The inequality above shows that the term under the root is non-negative).

We count the number of intersection points of Ha0 with {χB = 0}.

By construction of a0, (v0, µ1(v0)) ∈ Ha0 , which gives the �rst point.

We claim that each branch of the hyperbola intersects all graphs of µi, for i ≥ 3,

which gives 2(d−2) other points. Indeed, note that, for i ∈ {1, 2} and j ∈ {3, . . . , d},
we got λjv + αj < λiv + αi for large v > 0, and λjv + αj > λiv + αi for large v < 0.

Since the branches of the hyperbola are asymptotic to λiv + αi for i = 1, 2, and the

asymptotic of the µj, j > 2 stand among the λkv+αk, k = 3, . . . , d we got, for v > 0

large enough:

µj(v) < min
(v,µ)∈Ha0

µ, and µj(−v) > max
(−v,µ)∈Ha0

µ, for j = 3, . . . , d.

Since µ3, . . . , µd and the two branches of Ha0 are continuous, the previous inequal-

ities implies, by Mean Value Theorem, that there are 2(d − 2) intersection points

between the graphs of the µj, j ∈ {3, . . . , d} and the hyperbola Ha0 .

Now, we count the intersection number at in�nity. In homogeneous coordinates

[t1 : t2 : λ], the hyperbola Ha0 has equation

(
λ− (λ1t2 + α1t1)

) (
λ− (λ2t2 + α2t1)

)
− a2

0t
2
1 = 0,

then has two points at in�nity [0 : 1 : λ1] and [0 : 1 : λ2]. The tangents of Ha0 at

these points are given by λ− α1t1 − λ1t2 = 0 for [0 : 1 : λ1] and λ− α2t1 − λ2t2 = 0

for [0 : 1 : λ2]. Because λ1 is an eigenvalue of A(0, 1), the point [0 : 1 : λ1], belongs to

the zero set of χA, and similarly, λ2 is an eigenvalue of A(0, 1) so [0 : 1 : λ2] ∈ χ−1
A (0).

Beside, the tangent to the curve χ−1
A (0) at these points can be deduced from the

expansions (4.9) of λ1 and λ2. For this notice that λi is homogeneous of degree one,

which imposes βi = λi(0, 1) in (4.9). We got:

λi(t1, t2) = λi(0, 1) + αit1 + λi(0, 1)(t2 − 1) + o(t1, (t2 − 1)),

which shows that λ−αit1−λit2 = 0 is the tangent to χ−1
A (0) at [0 : 1 : λi], for i = 1, 2.

Finally, the two points [0 : 1 : λi], for i = 1, 2 belongs to both Ha and χ
−1
A (0), where

the two curves Ha and χ
−1
A (0) have the same tangent. The intersection multiplicity

of each of these two points is then at least 2. This provides an intersection number

not smaller than 4 for the points at in�nity in Ha ∩ χ−1
A (0).
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From above, #(Ha0 ∩ χ−1
A (0)) ≥ 1 + 2(d− 2) + 4 = 2d+ 1.

On another hand, deg(χA) = d and deg(Ha) = 2, so by Bézout Theorem, if the

intersection if �nite, #
(
Ha0 ∩ χ−1

A (0)
)
≤ 2d. So Ha0 ⊂ χ−1

A (0) and the polynomial

P (t1, t2, λ) =
(
λ− (λ1t2 + α1t1)

) (
λ− (λ2t2 + α2t1)

)
− a2

0t
2
1

divides the characteristic polynomial of the family, with P (0, 1)(λ) = (λ−λ1)(λ−λ2)

as claimed.

This can be generalized to k-linear families:

Proposition 4.2.4. Let A(t) ∈ Symd(R) be a k-linear family. Suppose that there

exists t0 ∈ Rk, r > 0 and B(t0, r) ∩ SA = ∅ such that ∀t ∈ B(t0, r), ∀u ⊥ t,

τ ′(t,u)(λ1(t)) = λ2(t) and τ ′(t,u)(λ2(t)) = λ1(t), where λ1(t) > λ2(t) > λ3(t) ≥ · · · ≥
λd(t) are the eigenvalues of A(t). Then, the characteristic polynomial of A(t) has a

homogeneous divisor p(t) of degree 2 with p(t0)(λ) = (λ− λ1(t0))(λ− λ2(t0)).

Proof. We need the following lemma:

Lemma 4.2.5. Let f : B(t0, r) → R be such that for any a�ne line L ∈ Rk, there

exists a quadratic function qL on L such that f|L = qL. Then, there exists a quadratic

function q such that f = q|B(t0,r)
.

Proof. By induction on k, the dimension of the ambient space. For k = 1, there is

nothing to prove. We suppose that the lemma holds for k and we prove it for k + 1.

Denote by (x′, xk+1) a system of a�ne coordinate centered at t0. From induction

hypothesis, for all xk+1 with |xk+1| < r, fxk+1
: x′ 7→ f(x′, xk+1) is the restriction

of a quadratic function: Denoting by (mα(x′))α∈A, (mβ(x′))β∈B the collections of all

monomials of respective degree 2 and 1 in therms of x′,

f(x1, . . . , xk+1) =
∑

α∈A
aα(xk+1)mα(x′) +

∑

β∈B
bβ(xk+1)mβ(x′) + c(xk+1). (4.13)

On the other hand, for any x′,

fx′ : xk+1 7→ f(x′, xk+1) (4.14)

is quadratic. Choosing (x′i)i∈I such that the vectors ((mα(x′i))α∈A, (mβ(x′i))β∈B, 1)

form a basis of RCard(A)+Card(B)+1, we obtain that ∀α ∈ A, ∀β ∈ B, aα(xk+1),bβ(xk+1)
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and c(xk+1) is quadratic. It remains to prove that the aα are constant and the bβ
have degree 1. For this, notice that given ` ∈ Rk, s ∈ R 7→ f(s`, s) is quadratic, and

f(s`, s) =
∑

α∈A
aα(s)s2mα(`) +

∑

β∈B
bβ(s)smβ(`) + c(s); (4.15)

so, choosing again (`i)i∈I in such a way that the vectors ((mα(`i))α∈A, (mβ(`i))β∈B, 1),

for i ∈ I, form a basis of RCard(A)+Card(B)+1 gives rise to an invertible system with

quadratic second member, which shows that aα(s)s2 is quadratic, bβ(s)s is quadratic

and c(s) is quadratic, so aα is constant and bα is linear. Finally,

f(x1, . . . , xk+1) =
∑

α∈A
aα(xk+1)mα(x′) +

∑

β∈B
bβ(xk+1)mβ(x′) + c(xk+1)

is quadratic as announced. This �nishes the proof of the lemma.

Now we prove the proposition. Choose t1, . . . , tk in such a way that (t0, t1, . . . , tk−1)

form a basis of Rk. From Proposition 4.2.3, L(t) = λ1(t) + λ2(t) is linear on each

a�ne line of B(t0, r)∩ t0 +Span(t1, . . . , tk) and f(t) = λ1(t)λ2(t) is quadratic on each

a�ne line of B(t0, r)∩ t0 +Span(t1, . . . , tk), and λ2−L(t)λ+ f(t) divides χA(t) for all

t ∈ B(t0, r). Then, L(t) is linear on B(t0, r) and by Lemma 4.2.5, f(t) is quadratic

on B(t0, r). Then, p(t0)(λ) := λ2 − L(t)λ + f(t) is an homogeneous polynomial

of degree two and χA(t) vanishes over an open subset of the connected zeros of p,

so χA identically vanish over p−1(0), so p divides χA. This �nises the proof of the

proposition.

We don't know if the procedure we develop in the former proofs can be adapted for

an arbitrary large collection of extremal eigenvalues that is invariant by the antipodal

monodromy, but the question deserves to be stated.

Question 4.2.6. Let A(t) ∈ Symd(R) be a 2-linear family, and let

λ1 > · · · > λk > λk+1 ≥ · · · ≥ λd

be the eigenvalues of A(t0) for some t0. Suppose τ ′(t0,u)({λ1, . . . , λk}) = {λ1, . . . , λk}.
Does the characteristic polynomial of A(t) have an homogeneous divisor p(t) of degree

k with p(t0)(λ) =
∏k

i=1(λ− λi) ?

In an attempt to adapt the previous proofs, one constructs the same analytic

eigenvalues µi(v) of the one-dimensional family B(v) = A1 + vA2, where A(t1, t2) =

105



t1A1 + t2A2, and t0 = (0, 1). The µi are asymptotic at +∞ to d lines, say

µi(v) =
v→+∞

λiv + αi + o(1).

At −∞, each µi is also asymptotic to one of these lines, not necessary the same, but

since the set {λi; i = 1, . . . , k} is invariant by the monodromy, if

µj(v) =
v→−∞

λiv + αi + o(1),

then either i and j both belong to {1, . . . , k}, or else i and j both belong to {k +

1, . . . , d}.

The family of all hyperbolic polynomial of degree k, whose roots are k graphs (say,

of g1, . . . , gk), that are asymptotic at in�nity to the lines µ = λiv+αi, for i = 1, . . . , k

can be constructed. It is a k(k− 1)/2 dimensional family, parameterized by all k× k
symmetric matrices C with zero diagonal, to which one associates the polynomial

PC(v, λ) = det
(
Diag(α1, . . . , αk) + C + vDiag

(
λ1, . . . , λ1

)
− λIk

)
.

(We do not claim the parameterization is one to one).

There are intersections of the two curves P−1
C (0) and χ−1

A (0) that exist indepen-

dently from C. Indeed, the k points of P−1
C (0) at in�nity belongs to χ−1

A (0), and are

double points in this intersection (same asymptotic line). This gives 2k points. There

are also k(d− k) points obtained with the extremal condition on the λi, i = 1, . . . , k.

From Mean Value Theorem, each graph µi, i = k + 1, . . . , d intersects each graph

gj, j = 1, . . . , k since from the asymptotics, µi − gi is positive at −∞ and negative

at +∞. So we have 2k + k(d − k) = kd − k(k − 2) intersection points for any C in

the family, when Bézout allows kd points. The di�culty is then to choose C in such

a way that the intersection number of PC with the graphs of the µi, i = 1, . . . , k,

realizes at least k(k − 2) + 1 other points. This would contradict Bézout, and then

provide a factor in χA as wanted. This number, k(k− 2) + 1, must be compared with

the dimension k(k−1)/2 of the family PC . For k = 1, the family has dimension 0 and

there are no missing points. The proof is direct for the line. For k = 2, the family

has dimension 1 and there is one missing point. A choice must, and can be made

(the value a0 in the proof), to get the right hyperbola. For k = 3, the family has

dimension 3, but 4 intersection points are missing. The situation seems to deteriorate

when k grows, since k(k−2) + 1−k(k−1)/2 increases rapidly. It let us think that, if
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the process works, a good knowledge of the roots of PC and some accurate properties

of the graphs of the extremal eigenvalues are required to conclude.

4.2.2 Splitting problem for extremal eigenvalues

Here we show that the splitting problem always have a positive solution in the case

of extremal eigenvalues.

Proposition 4.2.7. Let A(t) ∈ Symd(R) be a 2-linear family whose characteristic

polynomial χ(t, λ) admits a homogeneous divisor P (t, λ) of degree k: ∀t, χ(t, λ) =

P (t, λ)Q(t, λ). Suppose that for some parameter t0, the roots of P (t0) are strict max-

imal in Spec(A(t0)), this is,

P (t0)(λ) =
k∏

i=1

(λ− λi),

where λ1 ≥ · · · ≥ λk > λk+1 ≥ · · · ≥ λd are the roots (enumerated with multiplicity)

of χ(t0). Then, there exists an orthogonal matrix O such that

OtA(t)O = diag(A′(t), A′′(t)),

where A′(t) ∈ Symk(R), A′′(t) ∈ Symd−k(R) and P (t) is the characteristic polynomial

of A′(t).

The proof requires to notice that the sum of the k values of a quadratic form q over

an orthonormal family of k vectors is maximal if and only if these k vectors generate

the invariant space associated with the k greater eigenvalues of q. It is the following

lemma. For notation purpose, we set

V d
k = {(e1, . . . , ek) ∈ (Rd)k; ∀(i, j), etiej = δji },

where δji is 1 if i = j and 0 otherwise. V d
k is the set of all orthonormal families

of k vectors in Rd. Notice that V d
k is a smooth compact sub-manifold of (Rd)k (of

codimension k(k+1)
2

).

Lemma 4.2.8. Let A ∈ Symd(R) with eigenvalues λ1 ≥ · · · ≥ λk > λk+1 ≥ · · · ≥ λd,

and let f : V d
k → R be given by f(e1, . . . , ek) =

∑k
i=1 e

t
iAei. Then f admits its

maximum λ1 + · · · + λk at e1, . . . , ek if and only if Vect(e1, . . . , ek) is the invariant

subspace of A associated with λ1, . . . , λk.
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Proof. It is an optimization with constraints problem on (Rd)k. The constraints are

given by the

gij(e1, . . . , ek) := etiej − δji , i = 1, . . . , d, j = i+ 1, . . . , d,

that have di�erentials dgij = etidej + etjdei. The function to be optimized has di�er-

ential

df = 2
k∑

i=1

etiAdei,

so, from Lagrange Multipliers Theorem, if f has a critical point under the constraints

gij = 0, then there are αij ∈ R such that df =
∑

i,j αijdgij. Since the linear forms dei
are independent, this gives, for all i:

etiA =
k∑

j=1

(αij + αji)e
t
j.

In particular, for all i, Aei belongs to Vect(e1, . . . , ek), so Vect(e1, . . . , ek) is an invari-

ant space for A.

Recall that the invariant spaces of A are all direct sums of subspaces of eigenspaces

of A, and also, that if H is a k-dimensional invariant subspace, f(e1, . . . , ek) does not

depend on the choice of an orthonormal basis (e1, . . . , ek) of H since f(e1, . . . , ek)

is nothing but the trace of the restriction to H of the endomorphism associated to

A. So, if (e1, . . . , ek) is an orthonormal basis of a k-dimensional invariant subspace,

f(e1, . . . , ek) is the sum of k values among the eigenvalues of A (multiplicities taken

into account). Among all possible choices, the sum λ1 + · · ·+λk is maximal, so �nally,

f(e1, . . . , ek) is maximal whenever V ect(e1, . . . , ek) is the invariant subspace that is

the direct sum of the eigenspaces of A associated to λi for i = 1, . . . , k.

We can now prove Proposition 4.2.7.

Proof of Proposition 4.2.7. Without loss of generality, we suppose that t0 = (0, 1)

and set A(1, 0) = A1, A(0, 1) = A2 and B(v) = A1 + vA2. Since B(v) is a one

parameter family, B(v) admits analytic eigenvalues µ1(v), . . . , µd(v) associated with

an analytic orthonormal basis of eigenvectors (e1(v), . . . , ed(v)). We set χB(v)(µ) =

det(B(v) − µId) and write p(v) = P (1, v) and q(v) = Q(1, v), so χB = pq. The
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polynomial P is homogeneous of degree k so p can be written as:

p(v)(µ) =
k∑

i=0

pi(v)µk−i, with deg(pi) = i.

We let p1(v) = p0 + p1v. Notice that p0 = 1.

Recall that the limits limv→+∞
µi(v)
v

are the eigenvalues of A(0, 1), taken with

multiplicity, which are the λi for i = 1, . . . , d. Up to reorder indices we suppose that

for all i,

µi(v) =
v→+∞

λiv + o(v).

By unicity of analytic prolongation, ∀v, p(v)(µ) =
∏k

i=1(µ−µi(v)). In particular, for

all v, p0 + p1v =
∑k

i=1 µi(v), which leads to

p1 =
k∑

i=1

λi (4.16)

by identi�cation of the dominant terms in the asymptotic at +∞.

We now study the asymptotic near v = 0, and for this, we set

∀i, ei(v) =
v→0

ei + ve′i + o(v).

Since µi(v) = ei(v)tB(v)ei(v), we get

p0 + p1v =
k∑

i=1

µi(v)

=
k∑

i=1

ei(v)tB(v)ei(v)

=
k∑

i=1

(ei + ve′i + o(v))t(A1 + vA2)(ei + ve′i + o(v))

=
k∑

i=1

etiA1ei + v
(
2etiA1e

′
i + etiA2ei

)
+ o(v)

(4.17)

Notice that, since ei(v)tei(v) ≡ 1, we get etie
′
i = 0. Since ei = ei(0), etiA1 = µi(0)eti
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so etiA1e
′
i = 0. Then the terms of order v in (4.17) reduce to:

p1 =
k∑

i=1

etiA2ei,

which, according to (4.16) gives

k∑

i=1

etiA2ei =
k∑

i=1

λi. (4.18)

But A2 has eigenvalues λ1 ≥ · · · ≥ λk > λk+1 ≥ · · · ≥ λd, so according to lemma 4.2.8,

the equation (4.18) implies that (e1, . . . , ek) is an orthonormal basis of the invariant

space H of A2 associated to the eigenvalues λ1, . . . , λk.

We can now conclude. H is an invariant space of A2, and since for i = 1, . . . , k,

ei = ei(0) is an eigenvector of A1, H is invariant for A1 too. So H is invariant for all

combinations t1A1 + t2A2, this means, for A(t), and its orthogonal H⊥ also. Then, if

O is the orthogonal matrix of (e1, . . . , ed), the matrix OtA(t)O is diagonal by block,

OtA(t)O = diag(A′(t), A′′(t)), and the identity P (t) = χA′(t) follows from the equality

near t = (0, 1) and unicity of analytic prolongation.

This can be generalized to k-linear families.

Proposition 4.2.9. Let A(t) ∈ Symd(R) be a k-linear family whose characteristic

polynomial χ(t, λ) admits a homogeneous divisor P (t, λ) of degree `: ∀t, χ(t, λ) =

P (t, λ)Q(t, λ). Suppose that for some parameter t0, P (t0)(λ) =
∏`

i=1(λ − λi), where
λ1 ≥ · · · ≥ λ` > λ`+1 ≥ · · · ≥ λd are the roots (enumerated with multiplicity) of χ(t0).

Then, there exists an orthogonal matrix O such that

OtA(t)O = diag(A′(t), A′′(t)),

where A′(t) ∈ Sym`(R), A′′(t) ∈ Symd−`(R) and P (t) is the characteristic polynomial

of A′(t).

Proof. Let (e1, . . . , ek) be a basis of Rk. For all t ∈ Rk, we have t = t1e1+· · ·+tkek and
we set A(ei) = Ai. Suppose that t0 = e1. There exists a neighborhood V of t0 such

that the eigenvalues of A(t) are uniquely determined as analytic functions on V and for

all t ∈ V , P (t)(λ) =
∏`

i=1(λ − λi(t)) where λ1(t) ≥ · · · ≥ λ`(t) > λ`+1 ≥ · · · ≥ λd(t)

with λi(e1) = λi, i = 1, . . . , d. Let t ∈ Span(e1, ei)∩V , i 6= 1, then there exists t1, ti ∈
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R such that A(t1, ti) = t1A1 + tiAi. By Proposition 4.2.7, there exists an invariant

subspace H of dimension ` for A1 associated to λ1, . . . , λ` which is also invariant for

each Ai, i = 2, . . . , k. So, H is invariant for all combination of t1A1 + · · · + tkAk.

Since for all t ∈ V , H is invariant by A(t), H⊥ is invariant by A(t). Therefore,

there exists an orthonormal matrix O, such that OtA(t)O = diag(A′(t), A′′(t)), where

A′(t) ∈ Sym`(R), A′′(t) ∈ Symd−`(R). This is an equality between analytic functions,

that holds in a neighborhood of t0; from isolated zero principle, the equality holds

everywhere on Rk. Since P (t) = χA′(t) holds in a neighborhood of t0, by unicity of

analytic prolongation for all t ∈ Rk we get P (t) = χA′(t).

4.3 Full reduction

In this section, we mix the previous results to study the problem of the full reduction

of a linear family. Even through, in full generality, the antipodal monodromy cannot

predict the factorization of the characteristic polynomial (Proposition 4.1.4), nor the

factorization is su�cient to get splitting (Example 4.1.10). For a full reduction, one

can use recursively the positive results obtained for extremal eigenvalues (Section 4.2)

to get the following theorem. In particular, it shows that the existence of a non-trivial

antipodal monodromy is the only obstruction for the existence of a diagonalization

of the family.

We �rst state the result, and present a proof that relies on the postponed Corollary

4.3.3. Then we exhibit a su�cient condition to get a partial diagonalization (Propo-

sition 4.3.2). The extremal case of this proposition is exactly Corollary 4.3.3 that is

needed to complete the proof of Theorem 4.3.1. Finally, as an application, we give a

complete description of the 2 linear families of Sym2(R).

Theorem 4.3.1. Let A(t) ∈ Symd(R), t ∈ Rk be a k-linear family, A 6⊂ Σ. Then,

the following statements are equivalent:

1. There exists a basis (e1, e2, . . . , ek) of Rk, with A(e1) /∈ Σ and τ ′Span(e1,ei)
= Id

for all i = 2, . . . , k.

2. For any linear 2-plane P ⊂ Rk, τ ′P = Id.

3. 0 is a quasi-regular point of A(t).

4. There exists a family P (t) ∈ Od(R), analytic in t, such that P−1(t)A(t)P (t) is

diagonal.
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5. There exists an orthogonal matrix P ∈ Od(R) such that P−1A(t)P is diagonal.

6. There exists a basis (e1, e2, . . . , ek) of Rk, such that A(e1) /∈ Σ and A(e1)A(ei) =

A(ei)A(e1) for i = 2, . . . , k.

7. For all (t, t′) ∈ (Rk)2, A(t)A(t′) = A(t′)A(t).

Proof. Some implications between these statements are straightforward. We �rst

show (7)⇒ (6)⇒ (5)⇒ (4)⇒ (3)⇒ (2)⇒ (1), and (5)⇒ (7). Remains (1)⇒ (5)

that we deduce from the postponed Proposition 4.3.2 which contains in fact the core

of the proof.

(7) =⇒ (6): For any (t, t′) ∈ (Rk)2, A(t) commutes with A(t′). So in particular,

for any (e1, ei) ∈ (Rk)2, i 6= 1, A(e1) commutes with A(ei).

(6) =⇒ (5): Write A(t) =
∑k

i=1 tiA(ei). For any i 6= 1, A(ei) commutes with

A(e1), thus there exists an orthogonal basis of Rd where A(ei) and A(e1) are diagonal.

But A(e1) /∈ Σ so A(e1) is diagonal in only one basis (up to permutation). So all

A(ei) are diagonal in this basis, and therefore A(t) also.

(5) =⇒ (4): There is a P ∈ Od(R) which diagonalize A(t), so in particular, there

is an analytic diagonalization for A(t).

(4) =⇒ (3): χA = χP−1AP =
d∏

i=1

(x − λi(t)), where by assumption the λi are

analytic, so 0 is a quasi-regular point.

(3) =⇒ (2): Since 0 is a quasi-regular point of A(t), for each i, λi(t) is analytic

in a neighborhood of 0, so τ ′P = Id.

(2) =⇒ (1): For all linear 2-plane P, τ ′P = Id, so in particular, τ ′Span(e1,ei)
= Id.

(5) =⇒ (7): Let (t, t′) ∈ (Rk)2 be two independent parameters. By (5), there

exists an orthogonal matrix P such that P−1A(t)P and P−1A(t′)P are diagonal, so

they commute.

Finally, we show (1) ⇒ (5) which is the main part of the proof of the theorem.

The key point of the proof of (1)⇒ (5) is Proposition 4.3.2.

Proposition 4.3.2. Let A(t) ∈ Symd(R) be a k-linear family, and (e1, . . . , ek) be a

basis of Rk. Suppose the eigenvalues (with multiplicity) of A(e1) satisfy the ordering

λ1 > · · · > λ` > λ`+1 ≥ · · · ≥ λd. Let Λ = {λ1, · · · , λ`} and assume that there exists a

partition of Λ, Λ = P1 ∪ · · · ∪Pm formed by singletons or consecutive pairs (λi, λi+1),
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i = 1 . . . , `− 1 such that for all j = 1, . . . ,m, τ ′(e1,ei)(Pj) = Pj. Then, there exists an

orthogonal matrix P ∈ O(d) such that

P−1A(t)P =




Λ1(t)
. . .

Λm(t)

B(t)




where B(t) ∈ Symd−`(R) and for j = 1, . . . ,m, Λj(t) ∈ Sym(#Pj)(R) and Λj(e1) =

diag(Pj).

Proof. The proof is by induction on m, the number of extremal blocks �xed by the

antipodal monodromies. For t ∈ Rk, we write t =
∑k

i=1 tiei and A(ei) = Ai.

For m = 0, there is nothing to prove.

We �x m > 1 and we suppose that the proposition holds for m − 1. Choose

i ∈ {2, . . . , k}, then the two linear family t1A1 + tiAi satis�es the hypothesis of

Proposition 4.2.1 or Proposition 4.2.3 for (t1, ti) = (1, 0) and u ⊥ (1, 0).

In the �rst case, from Proposition 4.2.1, for each i 6= 1, t1A1 + tiAi admits a linear

eigenvalue λ1,i(t1, ti) = t1λ1 + tiµi with λ1,i(1, 0) = λ1. In particular, for any i 6= 1,

p(t1, ti) = (λ−λ1,i(t1, ti)) divides the characteristic polynomial of t1A1+tiAi. Since for

any i 6= 1, t1A1 + tiAi satis�es the hypothesis of the Proposition 4.2.7, there exists an

invariant subspace H of dimension one for A1 associated to λ1 which is also invariant

by each Ai, i = 2, . . . , k. So, H is invariant for all combination t1A1 + · · · + tkAk.

Since H⊥ is invariant by A(t), there exists P1 ∈ O(d) such that

P−1
1 A(t)P1 =

(
Λ1(t) 0

0 C(t)

)
, (4.19)

where Λ1(t) = λ1(t) = t1λ1 + t2µ2 + · · ·+ tkµk and C(t) is a k-linear symmetric matrix

of size d− 1× d− 1 whose eigenvalues for t = e1, are λ2 > · · · > λ` > λ`+1 ≥ · · · ≥ λd

with τ ′(e1,ei)(Pj) = Pj for j = 2, . . . , `.

In the other case, from Proposition 4.2.3, the characteristic polynomial of t1A1 +

tiAi has a homogeneous divisor p(t1, ti) of degree two such that p(1, 0)(λ) = (λ −
λ1)(λ − λ2). Since for any i 6= 1, t1A1 + tiAi satis�es the hypothesis of Proposition

4.2.7, there exists an invariant subspace H of dimension two for A1 associated to
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λ1, λ2 which is also invariant by each Ai, i = 2, . . . , k. So, H is invariant for all

combination t1A1 + · · ·+ tkAk. Since H⊥ is invariant by A(t), there exists P1 ∈ O(d)

such that

P−1
1 (t)P1 =

(
Λ1(t) 0

0 C(t)

)
, (4.20)

where Λ1(t) ∈ Sym2(R), Λ1(e1) = diag(λ1, λ2) and C(t) is a k-linear symmetric

matrix of size d− 2× d− 2 whose eigenvalues for t = e1, are λ3 > · · · > λ` > λ`+1 ≥
· · · ≥ λd and satis�es τ ′(e1,ei)(Pj) = Pj for j = 2, . . . , `.

From the inductive hypothesis, there exists a d−1×d−1 or d−2×d−2 orthogonal

matrix P2 such that

P−1
2 C(t)P2 =




Λ2(t) 0 · · · 0 0

0
. . . . . .

...
...

...
. . . . . . 0

...

0 · · · 0 Λm(t) 0

0 · · · · · · 0 B(t)



,

where the matrix B(t) is a symmetric matrix of dimension = d− `.

De�ne the d × d matrix R =

(
1 0

0 P2

)
if P2 ∈ O(d − 1) or R =




1 0 0

0 1 0

0 0 P2


 if

P2 ∈ O(d− 2) and let P = RP1. Then, P is an orthogonal matrix and we have

P−1A(t)P =

(
Λ1(t) 0

0 P−1
2 C(t)P2

)
.

This �nishes the proof.

Corollary 4.3.3. Let A(t) ∈ Symd(R) be a k-linear family, and (e1, . . . , ek) be a

basis of Rk. Suppose the eigenvalues (with multiplicity) of A(e1) satisfy the ordering

λ1 > · · · > λd. Let Λ = {λ1, · · · , λd} and assume that there exists a partition of Λ,

Λ = P1∪· · ·∪Pm formed by singletons or consecutive pairs (λi, λi+1), i = 1, . . . , d−1

such that for all j = 1, . . . ,m, τ ′(e1,ei)(Pj) = Pj. Then, there exists an orthogonal

matrix P ∈ O(d) such that P−1A(t)P is diagonal by 1× 1 blocks and 2× 2 blocks.

Proof. This is exactly Proposition 4.3.2 with ` = d.
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This corollary �nishes the proof of (1) ⇒ (5), and so the proof of the theorem is

�nished.

In the following proposition, we study on all 2-linear family A ∈ Sym2(R) and

give a computational necessary and su�cient condition for having the eigenvalues as

analytic functions.

Proposition 4.3.4. Consider the 2-linear family

A(t1, t2) = t1A1 + t2A2 = t1

(
a1 b

b a2

)
+ t2

(
a′1 b′

b′ a′2

)
; a1, a2, b, b

′, a′1, a
′
2 ∈ R,

and let

C =

(
a1 − a2 a′1 − a′2

b b′

)
.

Let t0 ∈ R2\(0, 0) and u ⊥ t0. Then the following alternative holds.

1. Either

(a) det(C) 6= 0,

(b) and τ ′(t0,u) is a transposition,

(c) and the eigenvalues of A(t1, t2) are not analytic functions near origin,

2. or else,

(ã) det(C) = 0,

(b̃) and τ ′(t0,u) = Id,

(c̃) and there exists an orthogonal matrix P such that P tA(t1, t2)P is diagonal.

Proof. It is to prove the equivalence of (a), (b), (c) and the negations ¬(ã) of (ã), ¬(b̃)

of (b̃), and ¬(c̃) of (c̃). We prove (a)⇒ (b)⇒ (c)⇒ ¬(b̃)⇒ ¬(c̃)⇒ ¬(ã)⇒ (a).

Let ∆A(t1,t2) be the discriminant of A(t1, t2). We remark that ∆A(t1,t2) is the sum of

the squares of the two linear forms L1 = 2(bt1 +b′t2) and L2 = (a1−a2)t1 +(a′1−a′2)t2:

∆A(t1,t2) = 4(bt1 + b′t2)2 + [(a1 − a2)t1 + (a′1 − a′2)t2]2

= L2
1(t1, t2) + L2

2(t1, t2).
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So ∆A(t1,t2) = 0 equates the linear system





(a1 − a2)t1 + (a′1 − a′2)t2 = 0

bt1 + b′t2 = 0,
(4.21)

whose coe�cient matrix is C.

If det(C) 6= 0, then (0, 0) is the unique parameter for ∆A(t1,t2) = 0. In this case, for

given t0, u, if λ1 < λ2 denotes the eigenvalues of A(t0), then the analytic continuations

τ(λ1), τ(λ2) of λ1 and λ2 along the half-turn path from t0 in the direction of u

satisfy τ(λ1) < τ(λ2). But Spec(A(−t0)) = {−λ1,−λ2}. So, τ(λ1) = −λ2 and

τ(λ2) = −λ1. Finally, τ ′t0,u(λ1) = −τ(λ1) = λ2 and τ ′t0,u(λ2) = −τ(λ2) = λ1, so τ ′t0,u
is a transposition: (a)⇒ (b). Then, (b)⇒ (c)⇒ ¬(b̃)⇒ ¬(c̃) are given by Theorem

4.3.1. Now, the direct calculation of A1A2−A2A1 shows that det(C) = 0 is equivalent

to A1A2 = A2A1. So Theorem 4.3.1 again shows ¬(c̃) ⇒ ¬(ã). Since ¬(ã) ⇒ (a) is

clear, this �nishes the proof.
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Chapter 5

Resolution of eigenvalues by

eigenvectors

In this chapter, we study linear subspaces of Symd(R) by means of their eigenspaces.

In the �rst section � Projectivization � we introduce di�erent objects: the variety

made of the triples matrix and the associated eigenvalues and eigenspaces, and those

of its projections that are of interest to us. Since these objects have homogeneous

behavior, it is convenient to systematically quotient by scalar multiplication and work

in projective spaces. This quotients are described in the same section.

In the second section � Cubics of eigenelements �, we focus on the eigenelements

of the two-dimensional subspaces of 3× 3 matrices. This case is of particular interest

as we will see that for these families, both the eigenspaces and the eigenvalues form

a cubic curve in the projective plane P2. A 2-linear family of Sym3(R) hence realizes

a matching between two cubic curves, that happens to be birationnal. We introduce

a �marked cubic type� for those curves (the given of a cubic con�guration together

with a number of eigenelements for each component of the cubic). We prove that

the marked cubic of the eigenspaces determines the marked cubic of the eigenvalues,

Theorem 5.2.4. Indeed, we give a complete enumeration of all possible marked cubics

of the pairs eigenvectors, eigenvalues. It happens that there exist only 9 such pairs,

when the full combinatorics of pairs of marked cubic types is way heavier.

In the third section � Resolution of singularities of eigenvalues � we discuss a ques-

tion that arises naturally. The preceding study enlightens the fact that eigenspaces

sometimes contains arti�cial points, appearing as combination of eigenvectors associ-
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ated to multiple eigenvalues but disappearing by small perturbation. Removing these

arti�cial points from eigenvectors produces a set, that we call strict eigenvectors, and

which is a smooth curve in all cases studied in section 2, even when the correspond-

ing curve of eigenvalues is singular. It is then natural to ask whether the birationnal

mapping that maps eigenvectors to eigenvalues is a resolution of singularities. We

prove that this question has a positive answer in two situations : when the family is

a 2-linear family and when the family is the full space Symd(R), Section 5.3.

5.1 Projectivization

In this section, we introduce di�erent sets made of symmetric matrices, eigenspaces

and eigenvalues, and describe their elementary properties. Let A, A 6⊂ Σ, be a k-linear

family of Symd(R), i.e., A is a linear subspace of dimension k of the d× d symmetric

matrices. For short, we write A(t) for the image of Rk 3 t 7→ A(t) ∈ Symd(R)

whenever A comes with a given linear parameterization.

5.1.1 Eigenelements and their projections

The eigenelements of A are the triples (A0, λ, v) where A0 range in A, λ is an

eigenvalue of A0 and v an eigenvector1 of A0 associated with λ. We denote the set

of eigenelements of A by Ẽ(A), or Ẽ when A is clear from context. Ẽ admits the

following de�nition:

Ẽ(A) = {(A0, λ, v) ∈ Symd(R)×R×Rd; A0 ∈ A, det(A0−λId) = 0, (A0−λId)v = 0}, 2

which makes Ẽ(A) an algebraic surface of dimension k + 1 and degree d. 3

Whenever A = A(t) is parameterized always with the minimum number of param-

eters, we also refer to Ẽ(A(t)) for the similar set where the parameter of the family

replaces the matrix entry:

Ẽ(A(t)) = {(t, λ, v) ∈ Rk × R× Rd; det(A(t)− λId) = 0, (A(t)− λ)v = 0}.
1Only in this subsection, we consider 0 as an eigenvector, even if it contradicts the usual de�nition,

in order to get algebraic de�nitions below.
2Due to the fact that A0v = λv always holds when v = 0, Ẽ cannot be simply described by the

equation (A− λId)v = 0; this limitation disapears onces we consider projective sets.
3All the dimensions we give here and below are the generic ones. It might happen that the

dimension behave badly. If A contains Id, the �ber of E(A) over (Id, 1) has dimension d, and d could
be larger than k.
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The sets we study in this chapter are various projections of Ẽ. Namely, we call

eigenvalues set of the family A the image of Ẽ(A) by the projection that forgets

the eigenvectors entry, and eigenvectors set of the family A the image of Ẽ(A) by

the projection that forgets the eigenvalues entry. The eigenvalues set of A is denoted

by Λ̃(A) and given by

Λ̃(A) = {(A0, λ) ∈ Symd(R)× R; A0 ∈ A, det(A0 − λId) = 0},

and the eigenvector set is denoted by Γ̃(A) and given by

Γ̃(A) = {(A0, v) ∈ Symd(R)× Rd; A0 ∈ A, A0v ∧ v = 0}.

These two projections are algebraic sets, as it is shown by their equations. Λ̃ has

dimension k and degree d, and Γ̃ dimension k + 1 also and degree 3. For notation

purpose, again we drop the dependence in A if the context allows, and, whenever A is

parameterized, we make no distinction between the eigenvectors and eigenvalues sets

of the family and the similar sets de�ned in terms of the parameters of the family

instead of the matrix itself.

Finally, we call eigenvectors portrait of the family A, or portrait of A for short,

the set denoted by Ṽ (A) and made of the points in Rd that are eigenvectors of some

member of the family, this is, the image of the eigenvectors set by the projection that

forgets the matrix entry. Again, this projection happens to be an algebraic set. To see

the later, �x a linear basis A1, . . . , Ak of A. Then the vector v belongs to Ṽ (A) if and

only if there exists A0 in A, and λ ∈ R, such that A0v = λv. So v ∈ Ṽ (A) if and only

if there are (t1, . . . , tk, λ) ∈ Rk+1, such that t1A1v + t2A2v + · · ·+ tkAkv− λv = 0. In

other terms, v ∈ Ṽ (A) i� the k+1 vectors A1v,A2v, . . . , Akv, v are linearly dependent.

Hence,

Ṽ (A) = {v ∈ Rd, rk(A1v,A2v, . . . , Akv, v) < k + 1}.

Since the inequality rk(A1v, A2v, . . . , Akv, v) < k + 1 is equivalent to the nullity of

all (k+ 1)× (k+ 1) minors of the matrix (A1v, A2v, . . . , Akv, v) (it is always satis�ed

if d < k + 1), the condition above shows the algebraicity of Ṽ (A). The set Ṽ (A) is

then either Rd if d < k + 1, or an algebraic set of degree k + 1 and dimension less or

equal than k + 1.

To refer to the di�erent projection mappings that links A and all the sets we have

introduced, we use the symbol π̃ decorated with the source space as upscript and
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target space as downscript. We then get π̃EΓ : Ẽ → Γ̃, π̃EV : Ẽ → Ṽ , π̃Γ
V : Γ̃→ Ṽ , π̃EΛ :

Ẽ → Λ̃, π̃EA : Ẽ → A, π̃Λ
A : Λ̃→ A, π̃Γ

A : Γ̃→ A.

It would be natural to de�ne mappings between Γ̃ and Λ̃, since eigenvalues and

eigenvectors are associated to each other. However, from eigenvectors to eigenvalues,

the convention we adopt (the fact that we allow 0 to be an eigenvector), while needed

to get algebraic sets, forbids us to construct such function, since 0 becomes an eigen-

vector associated to di�erent eigenvalues (the mapping π̃EΓ is not injective then can't

be inverted). From eigenvalues to eigenvectors, the situation is even worse since full

dimension of eigenvectors are associated to eigenvalues. These obstructions invite us

to consider eigenspaces as subsets of projective instead of linear spaces, which will

dispel unnecessary limitations.

5.1.2 Projective Eigenelements

Recall that, L being a linear space, the quotient L \ {0}/R∗ of L \ {0} by scalar

invertible multiplication is called projective space associated to L. We denote it

by PL, except in the particular cases of projective spaces associated to Rd+1, for

which we keep the usual notation Pd. If L is a linear space of dimension d + 1, PL
is an algebraic smooth compact variety of dimension d. When L is equipped with

coordinates x1, . . . , xk, PL has homogeneous coordinates denoted by [x1 : · · · : xk].

We also denote by [·] the quotient operator. So [x] denotes the class of x ∈ L \ {0} in
PL, and [X] ⊂ PL is the image of X ⊂ L by the quotient. We say that the quotient

respects a subset X ⊂ L if X \ {0} is a union of �bers of the quotient, i.e., if X is

invariant by invertible scalar multiplication.

The dual L∗ of L, being isomorphic to L, is also associated to a projective space

PL∗ that is isomorphic to PL. The choice of a non-degenerated bilinear form B de-

termines all isomorphisms between L and L∗, via x 7→ B(x, .). Dealing with matrices

of automorphisms that are self-adjoint for the canonical scalar product, we always

identify Rk+1 and its dual through the isomorphism de�ned by the canonical scalar

product. Consequently, we equip Pk with an orthogonality relation ([x] ⊥ [y] in Pk if
and only if < x, y >= 0), and systematically identify Pk and Pk∗ through the isomor-

phism that is given by the canonical dot product. For instance, the orthogonal of a

point p in P2 is, for us, the line p⊥ in P2 made of the classes of all non-zero points of

the plane of R3 that is orthogonal to the line in R3 whose non-zero points have class

p in P2.
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Let us now see how the former applies to our sets of eigenelements. As announced,

eigenspaces are better understood as subsets of projective spaces. Indeed, if v is a

non-zero eigenvector of A associated with λ, the whole class [v] does. So the sets which

we de�ned before have natural projective counterpart where the eigenvectors entries

are replaced by projective coordinates. Similarly, since eigenvalues are homogeneous

of degree one in terms of matrices, the couples (A0, λ) ∈ Λ̃ admits coherent projective

representative [A0 : λ] ∈ P(Symd(R) × R) ∼ P
d(d+1)

2 when A0 range in a linear

space. Also, if the family A = {A(t); t ∈ Rk} has a linear parameterization, the

couples (A(t0), λ) are homogeneous of degree one in terms of the parameterization,

so the quotient (A(t0), λ) ∈ A × R 7→ [t0, λ] ∈ Pk respects our set Λ̃. Finally, since

eigenspaces are invariant by invertible scalar multiplication of the couple matrix,

eigenvalue, the quotient Symd(R)×R×Rk → P
d(d+1)

2 ×Pk (or (Rk×R)×Rd → Pk×Pd−1

for parameterized families) respects the set Ẽ. The remaining projections, π̃Γ
A and

π̃Λ
A, also have projective counterparts, where the target space becomes PSymd(R) or

PA = Pk−1.

To summarize, given a k-linear family of d × d symmetric matrices, we get a

projective counterpart E(A) of Ẽ(A):

E(A) = {([A0 : λ], [v]) ∈ P(Symd(R)× R)× Pd−1; [A0] ∈ PA, (A0 − λId)v = 0}, 4

or E(A(t = (t1, . . . , tk))) = {([t1 : · · · : tk : λ], [v]) ∈ Pk × Pd−1; (A(t)− λId)v = 0},

which is algebraic of degree 2, and has dimension k − 1. We have a projective coun-

terpart Λ(A) of Λ̃(A):

Λ(A) = {[A0 : λ] ∈ P(Symd(R)× R); A0 ∈ A, det(A0 − λId) = 0},

or Λ(A(t = (t1, . . . , tk))) = {[t1 : · · · : tk : λ] ∈ Pk; det(A(t)− λId) = 0},

algebraic of degree d, with dimension k − 1, a projective counterpart Γ(A) of Γ̃(A):

Γ(A) = {([A0], [v]) ∈ PSymd(R)× Pd−1; [A0] ∈ PA, A0v ∧ v = 0},

or Γ(A(t)) = {([t], [v]) ∈ Pk−1 × Pd−1; A(t)v ∧ v = 0},
4Notice that the unpleasant behavior of the non projective equation for v = 0 now disapears
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algebraic of degree 3 and dimension k − 1, a projective eigenvectors portrait V (A):

V (A) = {[v] ∈ Pd−1; rk(A1v, . . . , Akv, v) < k + 1}

(where (A1, . . . , Ak) stands for a linear basis of A), algebraic of degree k with dimen-

sion k − 1 if d ≥ k + 1 and d− 1 otherwise. Except for V , all these sets map onto a

projective family [A] of dimension k− 1. Notice that all equations that appear in our

de�nitions are homogeneous in terms of their projective coordinates, and then, are

well founded. We denote by the letter π with source upscript and target subscript

the mapping that factors the corresponding π̃ through the quotient operators.

It is now possible to construct a mapping between eigenvectors set and eigenvalues

set. Indeed, if ([A0], [v]) is given in Γ(A), there is a unique point ([A′0 : λ], [v′]) in

E(A) such that [A′0] = [A0] and [v] = [v′]. In fact, one has [A0 : λ] = [A0 :< A0v, v >].

In particular, there exists a unique map φ : Γ(A) → Λ(A) such that the following

diagram commute:

E(A) Λ(A)

Γ(A)

πEΓ

πEΛ

φ

The variety Γ(A) is not smooth in general. For instance, if A ⊂ Sym3(R) is the

2-linear diagonal family given by A(t1, t2) = t1diag(1, 1, 0) + t2diag(0, 1, 1), Γ(A) is

the union of the 6 lines `1, . . . , `6 in P1 × P2 given by

`1 = P1 × {[1 : 0 : 0]}, `2 = P1 × {[0 : 1 : 0]}, `3 = P1 × {[0 : 0 : 1]},

`4 = {[1 : 1]}×{[v]; v1 = 0}, `5 = {[0 : 1]}×{[v]; v2 = 0}, `6 = {[1 : 0]}×{[v]; v3 = 0}.

Thus, Γ(A) is singular at the 6 intersection points `i ∩ `j (that exist for i = 1, 2, 3

and j = 4, 5, 6 if j 6= i+ 3). In section 3, we will study a subset G of Γ, that we call

strict eigenvectors, and we consider the question whether G
Φ−→ Λ is a resolution

of singularities for Λ. The set G(A) is constructed by �rst removing from Γ(A) all

eigenvectors that appears for the singular matrices of A, and then take the topological

closure. Precisely, suppose A ⊂ Symd(R) is a k-linear family, and A 6⊂ Σ. We set

G(A) = Clos
(
Γ \ [Σ]× Pd−1

)
. (5.1)

In the former example, with A(t1, t2) = t1diag(1, 1, 0)+ t2diag(0, 1, 1), the set G(A) is
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the union of the three lines `1, `2, `3, which are the eigenvectors of the family A that

matters, in the sense that all and only those appear as image of an analytic section

of the mapping πΓ
A.

Claim 5.1.1. Let A be a k-linear family in Symd(R), and suppose that A 6⊂ Σ. Then

the mapping Φ : G(A)→ Λ(A) is a proper birationnal map.

Proof. Let ([t1 : · · · : tk], [v]) ∈ G(A), then Φ([t1 : · · · : tk], [v]) = [t1 : · · · : tk : λ]

with λ = <A(t)v,v>
||v||2 is a rational map that is de�ned everywhere which belongs to

Λ(A). We show that it has as a rational inverse Ψ : Λ(A) → G(A). Let us take

[t1 : · · · : tk : λ] ∈ Λ(A). The eigenspace of A(t) associated to λ is the set of solutions

of the d× d system

(t1A1 + · · ·+ tkAk − λId)v = 0 (5.2)

Since A 6⊂ Σ, for a generic point t ∈ Rk, this system has rank d− 1, so we can delete

one equation from (5.2) and we obtain an equivalent system

B(t)v = 0, (5.3)

where B(t) is a matrix of dimension (d − 1) × d. Let Mi be the determinant of the

(d−1)× (d−1) matrix obtained from B(t) by deleting the i-th column. By Cramer's

rule we obtain that

v = [−M1(t) : · · · : (−1)kMk(t) : · · · : (−1)dMd(t)] (5.4)

is a non-zero solution of (5.2). So, Ψ([t1 : · · · : tk : λ]) = ([t1, . . . , tk, ], [v]) is de�ned

on a generic point [t : λ] ∈ Λ(A). Finally, since G(A) is compact and Φ is continuous,

Φ is proper.

The relations between the sets and functions we introduced until now are described

in the following diagram, where the quotient operator [.] is written as a dashed arrow

between two algebraic sets.
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(A0, λ, v) ∈ Ẽ(A) (A0, λ) ∈ Λ̃(A)

(A0, v) ∈ Γ̃(A) A0 ∈ A

v ∈ Ṽ (A) ([A0, λ], [v]) ∈ E(A) ([A0, λ]) ∈ Λ(A)

([A0], [v]) ∈ Γ(A) [A0] ∈ [A]

[v] ∈ V (A)

π̃EΓ

π̃Γ
V

π̃EΛ

π̃Γ
A

π̃Λ
A

πΛ
[A]

πEΛ

πEΓ

πΓ
[A]

πΓ
V

φ

Figure 5.1: Projections

5.1.3 Rellich and monodromies

We �nish this section by restating a version of Rellich Theorem in our framework,

and use it to de�ne the monodromies associated to the projective eigenelements.

Theorem 5.1.2 (Rellich). Let A ⊂ Symd(R) be a linear family, A0 ∈ A \Σ, and let

c : R → [A] be a parameterized analytic curve in [A], with c(0) = [A0]. Choose an

eigenvalue λ0 ∈ Spec(A0) and let v0 be an associated eigenvector of A0. Then c admits

a unique analytic lift in E(A) issued from ([A0 : λ0], [v0]) and C(0) = ([A0 : λ0], [v0]).

Proof. Let

E(A)|c = {(s, [B : λ], [v]) ∈ R× Pk × Pd−1 ; c(s) = [B], Bv = λv}.

Recall that we have a double analytic covering

Symd(R) ⊃ S
d(d−1)

2 → P(Symd(R)),

so in particular, there exists a unique analytic c̃ : R → A\{0} such that [c̃] = c

and c̃(0) = A0. Since c̃ depends on one parameter, by Rellich Theorem, there exists
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analytic functions λ(s) and v(s) such that λ(0) = λ0 and v(0) = v0. We de�ne

C : R → E(A)

s 7→ ([c̃(s) : λ(s)], [v(s)])

which is the analytic prolongation of λ0 and v0 along c in E(A). We have C(0) =

([A0 : λ(0)], [v0]) and by unicity of analytic continuation this lift is unique.

As in chapter 2, this version of Rellich Theorem allows to de�ne a monodromy

associated with the projective family and eigenvalues. Indeed, if ` : [0, 1]→ [A] \ S[A]

(where S[A] is the image of the super-singular set of A by the projective quotient)

and [A0 : λ] ∈ Λ(A) with [A0] = `(0), then ` has a unique lift `λ in Λ(A) satisfying

`λ(0) = [A0 : λ]. The lift `λ is not a loop in general. If `λ(1) = [A0 : µ], the function

σ` : [A0 : λ] 7→ [A0, µ] de�nes a permutation of the �ber of Λ over [A0] that is called

projective monodromy of the eigenvalues of A associated with `. Replacing the

given of an eigenvalue with an eigendirection [v] ∈ Pd−1, one constructs a monodromy

for eigenvectors. Denoting by `[v] the unique lift of ` in Γ with `[v](0) = ([A0], [v]), and

`[v](1) = ([A0], [w]), the function δ` : [v] 7→ [w] de�nes a permutation of the �ber of Γ

over [A0] that we call projective monodromy of the eigenvectors of A associated

with `.

It is clear that, if ` is the projectivization of a loop ˜̀ : [0, 1] → A\SA, σ` is

nothing but the projective image of the monodromy associated with ˜̀. However, not

all loops in [A]\S[A] are projectivization of loops in A\SA. For instance, if A1, A2 are

independent symmetric matrices, [0, 1] 3 t 7→ cos(πt)A1 + sin(πt)A2 ∈ Symd(R) is

not a loop while [0, 1] 3 t 7→ [cos(πt)A1 +sin(πt)A2] ∈ PSymd(R) does. This explains

that we use a di�erent terminology, but we frequently drop the word �projective� for

short when the context is clear. Actually, the projective monodromy truly di�ers

from the linear monodromy since it recovers the antipodal monodromy. If A(t) is a

linear family and A(t0) /∈ Σ, u ⊥ t0, then the projective image [γ] : [0, 1] → [A] of

the half turn γ from t0 in the direction u is a loop in [A], and is then associated to

projective monodromies.

Claim 5.1.3. Let A(t) be a k-linear family. Suppose that h : [0, 1] → A\SA is

the half turn path from t0 in the direction u, u ⊥ t0 and A(t0) /∈ Σ. Then, the

projective monodromy of the eigenvalues associated with [h] is the projective image of

the antipodal monodromy from t0 in the direction u.
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Proof. Let h : [0, 1]→ A\SA be the half turn path from t0 in the direction of u, σ be

the antipodal monodromy and p the projective monodromy. Let λ ∈ Spec(A0) and

denote by prh(λ) the analytic prolongation of λ along h. Then, σ(λ) = −prh(λ). So,

the projective image of σ, [σ], satisfy

[σ]([A(t0) : λ]) = [A(t0) : −prh(λ)].

On the other hand,

p([A(t0) : λ]) = [−A(t0) : prh(λ)] = [σ]([A(t0) : λ]),

which �nishes the proof.

We therefore keep the terminology antipodal monodromy for the projective

monodromy of eigenvalues associated to half turns, and extend the notion and de-

�ne the antipodal monodromy of eigenvectors. Notice that, eigenvalues and

eigenvectors being associated one to the other, the cycle structure of the antipodal

monodromy is the same for eigenvalues and eigenvectors. There is a small glitch

that must be revealed here: an antipodal monodromy for eigenvectors could take into

account an orientation of the direction [v], that we do not consider here. Our antipo-

dal monodromy of eigenvectors is rather an antipodal monodromy of eigendirections.

However, one occurrence of this oriented antipodal monodromy appears as a remark

(Remark 5.2.24) in section 2 of this chapter.

5.2 Cubics of eigenelements

We have seen in the former section that for a given k-family A(t) of d× d symmetric

matrices, the set Λ(A) is an algebraic set of degree d and dimension k− 1 in Pk, and
the portrait V (A) is an algebraic set of degree k + 1 and dimension k − 1 in Pd−1

if d ≥ k + 1. Many reasons invite us to focus on the case k = 2, d = 3. Indeed,

for k = 1, the projective family is one point, and for k = 2, d < 3, the portrait is

the full space, so the case k = 2, d = 3 minimizes the values of k and d among the

interesting ones, then probably, minimizes the complexity. Also, and more generally,

k = d− 1 makes V (A) an hypersurface, same as Λ(A), which makes these cases of a

prior interest. Finally, for k = 2, d = 3 the couple (V (A),Λ(A)) is made of two cubic

curves of P2. The classi�cation of cubics being su�ciently restraint, it is possible to

go through entirely, but it is still large enough to allow interesting phenomenon to

126



occur.

5.2.1 Marked cubic types and results

Our goal here is to give a complete classi�cation of the pair (V (A),Λ(A)) that can be

encountered where A is a 2-family of 3× 3 symmetric matrices. For this we de�ne a

notion of marked cubic type. It is the invariant by which we classify. We follow the

projective classi�cation of cubic curves below of P2, which contains 16 con�gurations.

Each con�guration is the union of �nitely (at most 3) analytic components (denoted

by (Ci)i∈IC ). To each component, we associate a number among 0, 1, 2, 3, which will

represent the number of eigenelements that belongs to a component for A0 ∈ A \ Σ.

We give in the following table the explicit list of all cubic types, together with their

decomposition into components. We also associate a symbolic picture to each cubic

and component, which will be used in our classi�cation instead of the (unnecessary

heavy) explicit description.

Table 5.1: Table of cubics types.

Cubic types Components Example Symbol

Elliptic with

an oval
Oval:

Pseudo-line:

x3 − zy2 −
3xz2 = 0

Elliptic

connected Pseudo-line:
x3 − y2z −
xz2 − z3 = 0

Rational

cuspidal Cusp: x3 − y2z = 0

Rational

crunodal Crunodal:

x3 − y2z −
3xz2 + 2z3 =

0

Rational

acnodal
Point:

Pseudo-line:

zy2 − x2(x −
z) = 0

Continued on next page
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Table 5.1 � Continued from previous page

Cubic types Components Example Symbol

Disjoint

union of a

non

degenerate

conic and a

line

Conic:

Line:

(x − 2y −
4z)(x2 + y2 −
z2) = 0

Union of a

non

degenerate

conic and a

tangent line

Conic:

Line:

(y − z)(x2 +

y2 − z2) = 0

Union of a

non

degenerate

conic and a

secant line

Conic:

Line:

y(x2 + y2 −
z2) = 0

Product of a

line and an

empty conic

Line:
x(x2 + y2 +

z2) = 0

Disjoint

union of a

conic point

and a line

Point:

Line:

(x − 2y −
4z)(x2+y2) =

0

Product of a

line and a

conic point

on the line

Point:

Line:

(x − 2y −
4z)((x2 +(y+

2z)2) = 0

Union of

three lines in

general

position

Line:

Line:

Line:

(x − 2y +

4z)(2x − y +

5z)(x + y −
3z) = 0

Continued on next page
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Table 5.1 � Continued from previous page

Cubic types Components Example Symbol

Three

concurrent

lines

Line:

Line:

Line:

(2x − 3y +

5z)(3x+ 4y−
7z)(9x− 5y+

8z) = 0

Product of a

double line

and a single

line

Double line:

Line:

(2x − 3y +

5)(3x + 4y −
7)2 = 0

A triple line Triple line: x3 = 0

P2 P2: 0 = 0

De�nition 5.2.1. A marked cubic type is the given of a cubic con�guration C

(an entry in the con�guration list above) with components (Ci)i∈IC together with a

map s : (Ci)i∈IC → {0, 1, 2, 3}.

To associate a couple of marked cubics to A, we remark the following :

Lemma 5.2.2 (Eigenvalues type). Let A be a 2-family of 3× 3 symmetric matrices,

A 6⊂ Σ. Let C be a component of Λ(A). Then, the cardinality Card(C ∩ (πΛ
A)−1([A0]))

of the �ber of C over [A0] is at most 3 and does not depend on A0 ∈ A \ Σ.

Proof. Since χA(t) is a hyperbolic polynomial of degree 3, there are at most three

points in the �ber of Λ(A) over [A0].

Let A0 6= B0 be two points in [A]\[Σ]. Denote by `, the analytic parameterization

of [A] given by
` : R → [A]

t 7→ cos(t)A0 + sin(t)B0

Since A0 /∈ Σ, there exists λ1, λ2, λ3 such that

Λ(A) ∩ (πΛ
A)−1(A0) = {[A0 : λ1], [A0 : λ2], [A0 : λ3]}.
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Then, by Rellich Theorem, there are three unique lifts

`i : R → Λ(A)

t 7→ [A(t) : λi(t)]

such that λi(0) = λi.

Suppose that [A0 : λi] ∈ C. Then, there exists a neighborhood V of [A0 : λi] such

that V ∩ C = Λ ∩ C, since A0 /∈ Σ. Then, λi being analytic, there exists ε > 0

such that for all t ∈ (−ε,+ε), [A(t) : λi(t)] ∈ C. But, C is an analytic set and λi is

analytic, so for all t ∈ R, [A(t) : λi(t)] ∈ C. For t = π
2
, this gives [B0 : λi(

π
2
)] ∈ C.

Then,

Card(C ∩ (πΛ
A)−1(B0)) ≥ Card(C ∩ (πΛ

A)−1(A0)).

By exchanging the role of A0 and B0, we get

Card(C ∩ (πΛ
A)−1(B0)) ≤ Card(C ∩ (πΛ

A)−1(A0))

which shows that this number does not depend on A0. This �nishes the proof.

Lemma 5.2.3 (Eigenvectors type,). Let A be a 2-family of 3×3 symmetric matrices,

A 6⊂ Σ. Let C be a component of V (A). Then, the cardinality Card(C ∩ (πΓ
A)−1(A0))

is at most 3 and does not depend on A0 ∈ A \ Σ.

Proof. A regular symmetric matrix of dimension 3 has three eigendirection. The

same principle of the proof of Lemma 5.2.2 shows that Card(C ′ ∩ (πΓ
A)−1(A0)) does

not depend on A0 /∈ A\Σ where C ′ is a component of Γ. The result then follows from

the fact that any component of V (A) is the union of the images of certain components

of Γ.

From lemmas 5.2.2 and 5.2.3, if A is a 2-family of 3× 3 symmetric matrices that

is not included in Σ, one can associate a marked cubic type for eigenvalues (resp.

eigenvectors), by de�ning a function s which associates to each components Ci of

Λ (resp. of V ), the number of eigenvalues (resp. eigenvectors) that belongs to Ci,

for a regular member of the family. We respectively call those marked cubic types

eigenvalues type and eigenvectors type of the family.

We can now state the main result of this section.
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Theorem 5.2.4. Let A be a 2-family of 3 × 3 symmetric matrices, A 6⊂ Σ. Then

the eigenvectors type of A determines the eigenvalues type of A. More precisely, the

following 9 couples of marked cubics types, and only those, appear as eigenvectors and

eigenvalues types.

Table 5.2: Table of cubics types.

Marked cubic of eigenvectors Marked cubic of eigenvalues

Continued on next page
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Table 5.2 � Continued from previous page

Marked cubic of eigenvectors Marked cubic of eigenvalues

The proof goes as follows. In subsection 5.2.2, we give a collection of lemmas in

which our proof is based on. In subsection 5.2.3, we enumerate all combinatoric can-

didates for the eigenvectors type, and either we eliminate the case from the lemmas,

or we deduce the corresponding eigenvalues type. Finally, in Subsection 5.2.4, we

construct an explicit family that have these prescribed eigenvectors and eigenvalues

types.

5.2.2 Cubic types properties

In this subsection, we give some properties of eigenvectors types and eigenvalues

types that will be su�cient for us to eliminate all marked cubic types that cannot

be encountered as types of linear families. We �rst need to introduce the analogous

of the set G(A) in V (A), this is, the set of strict eigenvectors. For this, we call

regular eigenvector of A a point in V (A) that is the eigenvector of a regular member

A0 ∈ A \ Σ of A:

Vreg(A) = {[v] ∈ P2; ∃A0 ∈ A \ Σ, A0v ∧ v = 0},

and a virtual eigevector is an eigenvector associated to multiple eigenvalues:

Vvir(A) = {[v] ∈ P2; ∃([A0, λ], [v]) ∈ E, dim((πEΛ )−1([A0, λ])) > 0}.
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Notice that a regular eigenvector might also be virtual (if it is associated to both

regular and singular elements of A), and that a non-virtual eigenvector might not be

regular (if it is associated to the simple eigenvalue of an element in A∩Σ2). Finally, a

strict eigenvector is an eigenvector that can be approached in Vreg(A). So, the set

of strict eigenvectors Vstr(A) is the topological closure of Vreg(A). Notice that Vstr(A)

is nothing but the image of G(A) by πΓ
V :

Vstr(A) = Clos(Vreg(A)) = πΓ
V (G(A)). (5.5)

Intersecting Σ has a deep in�uence in V (A), since then, V (A) has a linear factor, and

in particular, V is reducible.

Fact 5.2.5. Let A ∈ Sym3(R) be a 2-linear family, A 6⊂ Σ. If [A] ∩ [Σ] 6= ∅, V (A)

contains a line.

Proof. If [A0] ∈ [A] ∩ [Σ], A0 has a multiple eigenvalue, whose associated eigenspace

has dimension at least 2. The projective quotient of this eigenspace contains a pro-

jective line.

Virtual eigenvectors come by packs of projective lines. There are at most 3 of

them, if the family does not meet [Id].

Fact 5.2.6. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. Then, Vvir is a

union of at most 3 lines, or Vvir = P2.

Proof. In an a�ne chart, the discriminant of the characteristic polynomial has degree

6 and its roots are double, then it has at most three roots. The dimension of the

associated eigenspaces is 2 or 3. Thus, either Vvir = P2, or it is the union of at most

three lines.

Lemma 5.2.7. Let A(t) ∈ Sym3(R) be a 2-linear family such that A 6⊂ Σ. Then,

V (A) = P2 if and only if there exists a parameter t0 such that λI3 ∈ A(t0).

Proof. If there exists a parameter t0 ∈ R2 such that λI3 ∈ A(t0), then the associated

eigenspace is R3. So, V (A) = P2.

Note that the �ber of each element of [A\Σ], [A ∩ Σ2] and [A ∩ Σ3] in Γ(A) has

dimension 0, 1 and 2, respectively. Since A 6⊂ Σ, the dimension of A∩Σ2 and A∩Σ3
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is at most 0. We have dim(V (A)) ≤ dim(Γ(A)) and

dim(Γ(A)) = max(dim[A\Σ] + 0, dim[A ∩ Σ2] + 1, dim[A ∩ Σ3] + 2).

Thus, V (A) = P2 gives dim[A ∩ Σ3] = 0. This means that there exists a parameter

t0 such that A(t0) ∈ Σ3 which �nishes the proof.

Lemma 5.2.8. Let A(t) ∈ Symd(R) be a diagonal 2-linear family such that A(t) 6⊂ Σ.

Then, either V (A) is the union of three lines in general position, or V (A) = P2.

Proof. Let A(t) = t1A1 + t2A2 with A1 = diag(a, b, c), A2 = diag(a′, b′, c′). Then,

V (A) = {[x : y : z] ∈ P2 | kxyz = 0} with

k =

∣∣∣∣∣∣∣

a a′ 1

b b′ 1

c c′ 1

∣∣∣∣∣∣∣
.

If

rk






a

b

c


 ,



a′

b′

c′


 ,




1

1

1





 = 3,

then I3 /∈ A(t) and V (A) is the union of three lines x = 0, y = 0, z = 0. Otherwise,

I3 ∈ A(t) which means V (A) = P2. This, �nishes the proof.

We notice that if for two di�erent parameters, e is an eigenvector of A(t), then it

is an eigenvector of the family for all parameters.

Fact 5.2.9. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. If e is an eigenvector

of both A(t1), A(t2) for independent t1, t2, then e is an eigenvector of A(t) for all t.

In this case, the associated eigenvalue is linear, and Λ contains a line.

Proof. For a given t ∈ R2, set t = α(t)t1 + β(t)t2, so α and β are linear in terms of t.

Then, we have A(t) = α(t)A(t1) + β(t)A(t2). Thus,

A(t)e = (α(t)λ1 + β(t)λ2)e,

where λ1 and λ2 are the respective eigenvalues associated with e for A(t1) and A(t2).

So for all t, e is an eigenvector of A(t) associated with the linear eigenvalue α(t)λ1 +
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β(t)λ2. The set

{[t : α(t)λ1 + β(t)λ2] ∈ P2; t ∈ R2 \ {0}}

is included in Λ and is a projective line.

Recall that the eigenspaces of a symmetric matrix are orthogonal.

Fact 5.2.10. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. Then, for all

parameters t ∈ R2 \ Σ, the three eigenvectors of A(t) are two by two orthogonal.

Lemma 5.2.11. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ, and let C be a

component of V (A). If C 6⊂ Vvir, then C ⊂ Vstr.

Proof. By Fact 5.2.6, Vvir is the union of at most 3 lines or Vvir = P2. But, C 6⊂ Vvir,

so Vvir 6= P2. Let C̃ ∈ Γ(A) be the projective preimage of the component C of V (A),

C̃ = πΓ
V
−1

(C). Moreover, Clos(C̃\Σ) = C̃, since Σ has codimension 1 inA, But, by the

de�nition of strict eigenvectors of Γ(A), Equation (5.1), we have Clos(C̃\Σ) ⊂ G(A).

We have Vstr(A) = πΓ
V (G(A)), Equation (5.5). Finally, since C̃ ⊂ G(A), so C ⊂ Vstr

which �nishes the proof.

Lemma 5.2.12. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ, and suppose

V (A) 6= P2. If ` is a line included in V (A), then `∩Vstr contains at least two di�erent

points.

Proof. Let R 3 s 7→ [B(s)], be a parameterization of [A]. If ` ⊂ Vstr, then ` ∩ Vstr
contains at least two di�erent points. If ` 6⊂ Vstr, then by Lemma 5.2.11, ` ⊂ Vvir.

Then, there exists a parameter s0 and λ such that ` = ker(B(s0) − λId). Since

A 6⊂ Σ, for small ε 6= 0, B(s0 + ε) /∈ Σ. Let λ1(s0 + ε), λ2(s0 + ε) and λ3(s0 + ε)

be the analytic eigenvalues of B(s0 + ε). Up to change of indices, we suppose that

limε→0 λi(s0 +ε) = λ, i = 1, 2. Let e1(s0 +ε) and e2(s0 +ε) be eigenvectors associated

to the eigenvalues λ1(s0 + ε) and λ2(s0 + ε), respectively. Note that for all small ε,

ei(s0 + ε) ∈ Vstr, i = 1, 2. Since, ei(s0), i = 1, 2, is an eigenvector of B(s0) associated

to λ and ` = ker(A(s0)−λId), ei(s0) ∈ `. We have limε→0 ei(s0 + ε) = ei(s0), i = 1, 2,

so ei(s0) ∈ Vstr. Since for ε 6= 0, < e1(s0 + ε), e2(s0 + ε) >= 0 and the inner product

function is continuous, we get e1(s0) ⊥ e2(s0). This means ` ∩ Vstr contains at least
two di�erent points, which �nishes the proof.

We prove that the components of V (A) that contains non-virtual eigenvectors are

fully covered by strict eigenvectors. Indeed, these components are exactly the analytic
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prolongation of them.

Lemma 5.2.13. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. Let C be a

component of V (A) and e ∈ C \Vvir. Then C is the image of the analytic prolongation

of e.

Proof. Let s 7→ [B(s)] be a 1-periodic parameterization [A], and denote by [e1(s)],

[e2(s)] and [e3(s)] the analytic eigenvectors of [B(s)]. Set

Ii = {([B(s)], [ei(s)]), s ∈ R}, i = 1, 2, 3. (5.6)

Since I1, I2 and I3 are connected, and G = ∪3
k=1Ik, each component of G is a union of

some Ik. Moreover, if two Ik have non-empty intersection, they coincide, since each

Ik is the analytic prolongation of each of its elements. So, the components of G are

exactly the Ik (some Ik might coincide).

Recall that C is the image of a union of the analytic components of Γ by πΓ
V . Since

Since e ∈ C \ Vvir, e ∈ C \ Vstr, Lemma 5.2.11. So, these components lies in G. Say

C =
⋃
j∈J π

Γ
V (Ij). We claim that this union is disjoint. Indeed, if v ∈ πΓ

V (I1)∩πΓ
V (I2),

I1 6= I2. Then, there exists s1 6= s2 such that ([B(s1)], [v]) ∈ I1 and ([B(s2)], [v]) ∈ I2,

then [v] is an eigenvector of B(s) for all s ∈ R, Lemma 5.2.9. So, [A] × {[v]} is a
component of G, then I1 = [A]× {[v]} = I2 which is forbidden. Thus,

C = ∪̇j∈J πΓ
V (Ij). (5.7)

But, the πΓ
V (Ij) are closed and C is connected, so C = πΓ

V (Ij1). In the other words,

C is the image of the analytic prolongation of each of its points. This �nishes the

proof.

Lemma 5.2.14. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. If e ∈ Vreg∩Vvir,
then either e ∈ Vstr, or for all t, ([A(t)], [e]) ∈ Γ.

Proof. Let R 3 s 7→ [B(s)] be a parameterization of [A] with `(0) = [B(s0)]. Since e

is a regular eigenvector, it has unique analytic prolongation e(s), e(s0) = e. If e(s) is

not constant, let C be the component of V (A) which contains e(s). For small s 6= 0,

B(s0 + s) /∈ Σ, so C 6⊂ Vvir. Then, C ⊂ Vstr, Lemma 5.2.11, and e ∈ Vstr.

Proposition 5.2.15. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. Suppose

V (A) 6= P2. If V (A) is irreducible, it has at least two components.
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Proof. Being irreducible, V contains no line, so from Fact 5.2.6, Vvir = ∅, then A∩Σ =

∅.

Suppose V has only one component. Denote by λ1, λ2, λ3 the three (di�erent)

eigenvalues of A(1, 0), and respectively by e1, e2, e3 ∈ P2 the associated eigenvectors.

The projectivized 1-periodic half-turn

p : R 3 s 7→ [cos(πs)A(1, 0) + sin(πs)A(0, 1)] ∈ [A]

is a parameterization of [A], bijective when reduced to [0, 1), and has three di�erent

lifts in Γ, (p(t), e1(t)), (p(t), e2(t)), (p(t), e3(t)), which satisfy ei(0) = ei for i = 1, 2, 3.

We claim that for each i, ei(1) 6= ei(0) and prove it for i = 1. If e1(1) = e1, then

e1(t) is 1-periodic. But V is the image of e1(t) from Fact 5.2.13. So there exists

t ∈ (0, 1), e1(t) = e2. So e2 is an eigenvector of A(1, 0) and of A(cos(t), sin(t)), then

of the whole family by Fact 5.2.9. In particular, the analytic continuation e2(t) of e2

is constant, which contradicts that V is the image of e2(t) from Fact 5.2.13. Hence,

e1(1) 6= e1.

Since all permutations of 3 elements that have no �xed points are cycles of length

3, the antipodal monodromy of eigenvectors of family is a cycle. From this, the

antipodal monodromy of the eigenvalues of family is a cycle of length three. But,

a cyclic antipodal monodromy needs a non empty intersection with Σ, which is a

contradiction.

Proposition 5.2.16. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ, and C1,

C2 be two components of Vstr. Then C1 ∩ C2 = ∅.

Proof. Recall that G(A) is the disjoint union of its components, that have disjoint

intersection by πΓ
V . Since, C1 and C2 are components of Vstr, they are the images of

the components of G(A) by πΓ
V . So, C1 = C2 or C1 ∩ C2 = ∅.

Fact 5.2.17. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. Then Λ belongs to

the following list:

1. Elliptic with an oval: two eigenvalues on the oval and one on the pseudo-line.

2. Rational crunodal: three eigenvalues on the rational crunodal.

3. Union of a non-degenerated conic and a (disjoint, secant or tangent) line: Two

eigenvalues on the conic and one on the line.
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4. Union of three lines in general position or concurrent: each line contains one

eigenvalue.

Proof. Since A 6⊂ Σ, in an a�ne chart, Λ is the union of three graphs of eigenvalues

and there exists a parameter t0 with A(t0) /∈ Σ. Now, since the characteristic polyno-

mial of A(t) is a hyperbolic polynomial of degree 3, there exists a point p /∈ Λ(A) such

that all the lines passing through p intersect Λ(A) in exactly three points. Thus, it

remains only four possibilities for the cubic con�guration of Λ: elliptic with an oval,

rational crunodal, non degenerate conic with a line, three lines. Since in an a�ne

chart, there are three eigenvalues lying in di�erent graphs for non-singular parameters,

it is su�cient to associate the number of eigenvalues to each component.

Proposition 5.2.18. Let A(t) ∈ Sym3(R) be a 2-linear family, A(t) 6⊂ Σ. If Λ(A)

contains a line, Vstr contains a line or an isolated point.

Proof. By Corollary 4.1.8, an eigenvector associated to a linear eigenvalue is restrained

to an hyperplane, this means a line here. If the line is not covered by the eigenvector,

it is a constant isolated eigenvector.

5.2.3 Proof of Theorem 5.2.4: forbidden types

In this subsection we prove the �rst part of Theorem 5.2.4. For this, we go through

the full combinatoric of marked cubics, and discuss the compatibility of the given

marked cubic with the properties of eigenvectors types that we saw in the former

subsection. If the marked cubic is not found to be forbidden as an eigenvectors type,

we show that it can be associated to only one eigenvalues type. An example of each

type that is not proven to be forbidden is given in Subsection 5.2.4. For a fast journey

through the enumeration, see Table 5.12 at the end of the section.

To organize the enumeration, we proceed as follows. We �rst pick up a cubic

con�guration to be the con�guration of V . Then for each line ` ⊂ V , we decide

whether ` ⊂ Vvir. In the pictures, a line in Vvir is symbolized by a doted line. Then,

from Lemma 5.2.13, the remaining components contains at least 1 eigenvector, so

we associate a number in 1 . . . 3 to them, keeping in mind that the total number of

regular eigenvectors is at most 3. If this total is smaller than 3, we associate the

remaining ones to virtual lines. Below, we discuss all marked cubic types that satisfy

these combinatoric constraints.
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I) V is elliptic with an oval. There are two possibilities for the eigenvectors

type, described in table 5.3.

Cubic con�guration Marked cubic type

I) (a). (b).

Table 5.3: Elliptic cubic with an oval

It happens that both cases are realizable. We discuss the eigenvalues type.

In both cases, the fact that Vstr has two components determines an antipodal

monodromy made of one cycle of length 2 and one �xed point. Beside, since V

is irreducible, [A] ∩ Σ = ∅. So, the corresponding eigenvalues type must have

two components that do not intersect. From Fact 5.2.17, it is either elliptic with

an oval or a disjoint union of a conic with a line. By Proposition 5.2.18, the

later must be removed since Vstr does not have a line or an isolated point. So

the eigenvalue type is prescribed: it is elliptic with an oval.

(a) The oval has two non-virtual eigenvectors and the pseudo-line one, Exam-

ple 5.2.20.

(b) The pseudo-line has two non-virtual eigenvectors and the oval one, Exam-

ple 5.2.21.

II) V is elliptic connected, . . .

III) . . . or V is rational crunodal, . . .

IV) . . . or V is rational cuspidal, Table 5.4.

Cubic con�gurations

II) III) IV)

Table 5.4: One component irreducible cubic types
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In all of these cases, V is irreducible and has one component, which contradicts

Proposition 5.2.15. The three cases are impossible.

V) V is rational acnodal, Figure 5.2.

Figure 5.2: Cubic type V

The case is impossible. Indeed, V has no virtual eigenvectors, Fact 5.2.6. Then

from 5.2.11, the isolated point p is an eigenvector for all parameters. By Fact

5.2.10, the other eigenvectors are restrained to p⊥. This contradicts Fact 5.2.13,

that the pseudo-line component is covered by regular eigenvectors, while it is

not included in p⊥.

VI) V is the disjoint union of a non-degenerate conic and a line. There are

many subcases summarized in table 5.5 below.

Cubic con�guration Marked cubic type

VI) (a). (b).

(c). (d). (e).

Table 5.5: Disjoint union of a non-degenerate conic and a line

(a) The line is not in Vvir and has one eigenvector, the cubic has two eigenvec-

tors.

The case exists, we discuss the eigenvalues. The corresponding eigenvalues
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type must have two components that do not intersect. By Fact 5.2.17, there

are two possibilities. Either elliptic with an oval, or the disjoint union of a

conic with a line. We show that the �rst case is impossible:

Let {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be the orthonormal basis

of R3 and suppose that the projective line ` of the cubic is generated by

the two vectors e2 and e3. Thus, for each parameter, a vector of the form

[0 : y : z] belongs to the line `. Since for all parameters, the line ` is

covered by a strict eigenvector, there exists two di�erent parameters t1, t2
such that e3 and e2 are regular eigenvectors of A(t1) and A(t2), respectively.

We suppose t1 = (1, 0) and t2 = (1, 0) and we write

A(t1, t2) = t1



α γ 0

γ β 0

0 0 λ(1, 0)


+ t2



a 0 b

0 λ(0, 1) 0

b 0 c


 .

v = [0 : y : z] is an eigenvector ofA(t1, t2) if and only if det
(
A1v A2v v

)
=

0. We have

∣∣∣∣∣∣∣

γy bz 0

βy λ(0, 1)y y

λ(1, 0)z cz z

∣∣∣∣∣∣∣
= (bλ(1, 0)− bβ)yz2 + (γλ(0, 1)− cγ)y2z = 0.

From this, we get λ(1, 0) = β and λ(0, 1) = c. Now, we show that the

associated eigenvalue λ(t1, t2) is linear. We have (t1A1+t2A2)v = λ(t1, t2)v,

so we get




t1γy + t2bz

t1λ(1, 0)y + t2λ(0, 1)y

t1λ(1, 0)z + t2λ(0, 1)z


 =




0

λ(t1, t2)y

λ(t1, t2)z


 .

So, λ(t1, t2) = t1λ(1, 0) + t2λ(0, 1) is linear.

Therefore, the marked cubic of eigenvalues is the disjoint union of a conic

and a line. See Example 5.2.22.

(b) The line is not in Vvir and has two eigenvectors, the conic has one, . . .

(c) . . . or, the line is in Vvir and carry two distinct non-virtual eigenvectors,
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the conic has one.

These cubics do not happen to be a cubic of eigenvectors. Indeed, by

Fact 5.2.10, the two eigenvectors on the line ` are orthogonal to the third

one, which is then assigned to be �xed at `⊥ for all non singular parame-

ters. This is a contradiction with Proposition 5.2.13, since the conic is not

covered by non-virtual eigenvectors.

(d) The conic carries two eigenvectors . . .

(e) . . . or the conic carries three eigenvectors.

These cubics do not happen to be a cubic of eigenvectors. Indeed, in both of

cases, the virtual line has at most one strict eigenvector, which contradicts

Lemma 5.2.12.

VII) V is the union of a non-degenerate conic and a line with two inter-

section points. There are again subcases for the marked type, summarized in

table 5.6.

Cubic con�guration Marked cubic type

VII) (a). (b).

(c). (d). (e).

Table 5.6: Union of a line and a non-degenerate conic that intersect twice.

(a) The line is not virtual and has one . . .

(b) . . . or two eigenvectors, the conic has the other(s).

Both cases are impossible. Indeed, by Proposition 5.2.16, two components

in Vstr do not intersect.

(c) The line is virtual and carries two . . .
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(d) . . . or one regular eigenvector(s).

By Lemma 5.2.14, each eigenvector on the virtual line is �xed. Now, from

Fact 5.2.10, all other eigenvectors on the conic must be orthogonal to any

�xed non-virtual eigenvector on the line. This is a contradiction with

Lemma 5.2.13, since the conic curve is covered by strict eigenvectors and

does not included in the orthogonal of a point. The cases are impossible.

(e) The line is virtual and carries no regular eigenvectors.

The case exists. Since Vstr is connected, the antipodal monodromy is a

cycle of length 3. So Λ has one component. By Fact 5.2.17, only rational

crunodal cubic has one component in the con�gurations of the cubics, see

Example 5.2.25.

VIII) V is the union of a conic and a tangent line. The subcases are in the

following table 5.7.

Cubic con�guration Marked cubic type

VIII) (a). (b).

(c). (d). (e).

Table 5.7: Union of a non-degenerate conic and a tangent line

(a) The line is not virtual and has two . . .

(b) . . . or one eigenvector(s), the conic has the other(s).

From Proposition 5.2.16, two components in Vstr do not intersect. Impos-

sible cases.

(c) The line is virtual and carries two . . .

(d) . . . or one regular eigenvector.
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The cases are impossible. Indeed, by Lemma 5.2.14, the eigenvectors on

a virtual line are constant. By Fact 5.2.10, all other eigenvectors must be

orthogonal to any �xed non-virtual eigenvector on the line. But, the conic

curve is covered but strict eigenvectors, Lemma 5.2.13, and not included

in the orthogonal of a point.

(e) The line is virtual and carries no regular eigenvectors.

The only intersection of the line with Vstr is the tangency point. But, by

Lemma 5.2.12, there must be at least two di�erent strict eigenvectors on

the virtual line. This case is impossible.

IX) V is the disjoint union of a conic point and a line. There is only one

type, but we discuss two possibilities, depending whether the line is regular. See

table 5.8.

Cubic con�guration Marked cubic type

IX) (a). (b).

Table 5.8: A conic point and a disjoint line

(a) The line is non-virtual, and has two eigenvectors, the conic point is the

third one. This case happens. Since there is a constant eigenvector, the

associated eigenvalue is linear and Λ contains a line. There is no virtual

eigenvector, so [A] does not meet Σ. Then, Λ contains only one line (any

two lines intersect). So Λ is the union of a line with one eigenvalue, and a

disjoint non-degenerate conic with the other two. See Example 5.2.23.

(b) The line is virtual and carries two regular eigenvectors. Then the three

eigenvectors are constant, and the family is diagonal. But, the cubic type

of eigenvectors of a diagonal family is either three lines in general position,

or P2, Lemma 5.2.8. This case never happens.

X) V is the product of a line and a conic point on the line . . .

XI) . . . or V is the product of a line and an empty conic.
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There is now way to set three two-by-two orthogonal vectors on a line, so these

cases are forbidden.

XII) V is the union of three lines in general position. There are many

subcases. We do not enumerate all types when less than two lines are virtual,

since we can eliminate all by the same argument. Table 5.9.

Table 5.9: Three lines in general position

Cubic con�guration Marked cubic type

XII (a). (b).

(c). (d). (e).

(f).

(a) No line . . .

(b) . . . or only one line is virtual.

Both cases are impossible. Indeed, non-virtual lines are fully covered by

strict eigenvectors, Lemma 5.2.13, and cannot intersect by Proposition

5.2.16.

(c) One line is non-virtual, and carry one regular eigenvector.

By Lemma 5.2.14, there are two �xed regular eigenvectors on the virtual

lines. So, the regular eigenvector on the non-virtual line is restrained at

the point orthogonal to the eigenvectors on the virtual lines, then cannot

cover the line, which is a contradiction with Lemma 5.2.13.

(d) One line ` is non-virtual, and carry two eigenvectors. The third one has
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to be orthogonal to `, and since by Lemma 5.2.12, any line must contain

at least two strict eigenvectors, this point must be the intersection of the

two virtual lines. This case exists. Since there is a constant eigenvector,

the corresponding eigenvalue is linear and Λ contains a line. The rest of Λ

must have a unique component since the antipodal monodromy contains

a cycle of length 2. So, Λ is made of a line and a non-degenerate conic.

There are two virtual lines, which correspond to two parameters such that

the family intersect Σ2. Thus, the conic and the line in Λ intersect in two

points. See Example 5.2.26.

(e) A unique regular line carries three eigenvectors. This is impossible as the

three vectors must be two-by-two orthogonal.

(f) The three lines are virtual.

By Lemma 5.2.12, each line must contain at least two strict eigenvectors.

There is only one way to distribute three eigenvectors on the three lines in

such a way that each line contains at least two vectors: the three eigenvec-

tors lie at the three intersection points. This case exists. The three strict

eigenvectors are �xed, so the family is diagonal. The associated eigenval-

ues are linear, so Λ is the union of three lines. These lines cannot have

a common intersection point, otherwise [Id] belongs to [A], and P2 ⊂ V ,

Lemma 5.2.7. Hence, Λ is made of three lines in general position, Example

5.2.27.

XIII) V is made of three concurrent lines. Again we don't precise the type when

there are more than one non-virtual line. Table 5.10

Table 5.10: Three distinct concurrent lines

Cubic con�guration Marked cubic type

XIII)
(a). (b).

(c). (d). (e).

Continued on next page
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Table 5.10 � Continued from previous page

Cubic con�guration Marked cubic type

(f).

(a) There are no virtual lines . . .

(b) . . . or one virtual line.

By Lemma 5.2.13, non-virtual lines are fully covered by strict eigenvectors.

But, they cannot intersect, Proposition 5.2.16. Both cases are impossible.

(c) The only non-virtual line carries one eigenvector. Then, the two eigenvec-

tors on the virtual lines are �xed, Lemma 5.2.14. From this, the eigenvector

on the non-virtual line must be �xed. This is contrary to Lemma 5.2.13.

(d) The only non-virtual line carries two eigenvectors. One of the virtual lines

gets only one intersection point with Vvir, which is a contradiction with

Lemma 5.2.12.

(e) The only virtual line carries three eigenvectors; but they must be two-by-

two orthogonal, Fact 5.2.10. This case does not happen to be a cubic of

eigenvectors.

(f) The three lines are virtual. By Lemma 5.2.14, there are three �xed eigen-

vectors. But, there is no way to distribute 3 regular eigenvectors in such a

way that each line contains at least two of them. This is a contradiction

with Lemma 5.2.12.

XIV) V is the product of a double and a single line. The types are described

in table 5.11. The bold line stand for the double one.

147



Table 5.11: Product of a double and a single line.

Cubic con�guration Marked cubic type

XIV (a).

(b). (c). (d).

(e). (f). (g).

(h).

(a) The three lines are non-singular. Thus, by Lemma 5.2.13, the lines are

covered by strict eigenvectors. But, they cannot intersect, Proposition

5.2.16. This case is impossible.

(b) The single line is virtual and carries two �xed points. By orthogonality,

the double line cannot be covered by a strict eigenvector which is a con-

tradiction with Lemma 5.2.13.

(c) The single line is virtual and carries one point. By Lemma 5.2.14, there is

one constant eigenvector on the virtual line which correspond to a linear

eigenvalue λ of the family. Without loss of generality, we suppose that

λ = 0 and e = (1, 0, 0) is the associated eigenvector on the virtual line, and

we let

A(t1, t2) = t1




0 0 0

0 a b

0 b c


+ t2




0 0 0

0 a′ b′

0 b′ c′


 .
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Then, for all parameters two eigenvectors on the double line must be or-

thogonal to e = (1, 0, 0). So, the double line is given by x2 = 0.

Now, v = (x, y, z) is an eigenvector of A(t1, t2) if and only if p(x, y, z) =

det
(
A1v A2v v

)
= 0, we have

p(x, y, z) =

∣∣∣∣∣∣∣

0 0 x

ay + bz a′y + b′z y

by + cz b′y + c′z z

∣∣∣∣∣∣∣
= x

∣∣∣∣∣
ay + bz a′y + b′z

by + cz b′y + c′z

∣∣∣∣∣ .

But, p(x,y,z)
x

does not depend on x. Thus, x2 is not a divisor of p(x, y, z).

This case is impossible.

(d) The double line has 3 eigenvectors. But, then they cannot be two-by-two

orthogonal. This case is impossible.

(e) The double line is virtual and has two regular eigenvectors. By orthogo-

nality, the third one cannot cover the simple line which is a contradiction

with Lemma 5.2.13.

(f) The double line is virtual and has a �xed regular eigenvector. This case

exists. The family has a �xed eigenvector that correspond to a linear eigen-

value. The other eigenvectors have non-trivial monodromy, so Λ has only

one other component, a non-degenerate conic. The double line correspond

to one parameter such that the family intersect Σ2. So, the line and the

conic are tangent, see Example 5.2.28.

(g) The single line carries three eigenvectors. They cannot be two-by-two

orthogonal. This case is impossible.

(h) The two lines are virtual. Thus, the eigenvectors are �xed, Lemma 5.2.14,

and so the case is diagonal. But, by Lemma 5.2.8, the eigenvector type of

the diagonal families is made of three general lines or P2. That's impossible.

XV) V is a triple line. The eigenvectors cannot be orthogonal two-by-two, which

eliminate the case.

XVI) V is P2. Then, by Lemma 5.2.7, the family contains [Id], and the eigenvalue

type is made of three concurrent lines, Example 5.2.29.

The following table summarizes all discussed cases, together with a symbol stand-

ing for the main argument that eliminates the case when it is proven to be forbidden.
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The symbols are as follows:

The symbol ” < 2 comp.” stands for Proposition 5.2.15, ” ⊥ ” for Fact 5.2.10,

”∩ = ∅” for Proposition 5.2.16, ”Diag.” for Lemma 5.2.8, ” < 2 str.” for Lemma

5.2.12 and ”Impossible” for the argument given in XIV(c).

Table 5.12

Cubic con�guration Marked cubic type Λ

I) I(a). exists

I(b). exists

II) < 2 comp.

III) < 2 comp.

IV) < 2 comp.

V) ⊥

VI) (a). VI(a) exists

(b). ⊥

(c). ⊥

(d). < 2 str.

(e). < 2 str.

VII) (a). ∩ = ∅

(b). ∩ = ∅
Continued on next page
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Table 5.12 � Continued from previous page

Cubic con�guration Marked cubic type Λ

(c). ⊥

(d). ⊥

(e). exists.

VIII) (a). ∩ = ∅

(b). ∩ = ∅

(c). ⊥

(d). ⊥

(e). < 2 str

IX)
(a). IX(a). exists

(b). Diag.

X) ⊥

XI) ⊥

XII) (a). ∩ = ∅

(b). ∩ = ∅
Continued on next page
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Table 5.12 � Continued from previous page

Cubic con�guration Marked cubic type Λ

(c). ⊥

(d). XII(d). exists

(e). ⊥

(f). XII(f). exists

XIII) (a). ∩ = ∅

(b). ∩ = ∅

(c). ⊥

(d). < 2 str

(e). ⊥

(f). < 2 str

XIV) (a). ∩ = ∅

(b). ⊥

(c). Impossible

(d). ⊥

(e). ⊥

(f). XIV(f). exists

(g). ⊥
Continued on next page
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Table 5.12 � Continued from previous page

Cubic con�guration Marked cubic type Λ

(h). Diag.

XV) ⊥

XVI) XVI. exists

5.2.4 Examples of cubics

In this section, we give 9 examples for the marked cubics of the pairs of eigenvectors

and eigenvalues of a 2-linear family.

Lemma 5.2.19. Suppose that C is a real cubic curve of P2 whose cubic type is an

elliptic with an oval and p is a point on C. Let L be a tangent line to C at the point

p. Then, L ∩ C = {p, q} where p 6= q and the point q belongs to the pseudo line.

Proof. First, note that any line on the real projective plane intersect a cubic either

at three real roots or at one point. Moreover, the number of intersection points of a

line with an oval is even. Since p is a point of multiplicity two, q cannot be on the

oval, so it belongs to the pseudo line.

Example 5.2.20. Here, we give an example for the marked cubic I.(a) of eigenvectors.

Figure 5.3: Marked cubic I.(a)

Let

A(t1, t2) = t1A1 + t2A2 =




0 2t1 t1

2t1 t2 0

t1 0 −t2


 . (5.8)
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A vector v = [X : Y : Z] ∈ P2 is an eigenvector of A(t1, t2) if and only if P (X, Y, Z) =

det
(
A1v A2v v

)
= 0,

∣∣∣∣∣∣∣

2Y + Z 0 X

2X Y Y

X −Z Z

∣∣∣∣∣∣∣
= Y

∣∣∣∣∣
2Y + Z X

X Z

∣∣∣∣∣+ Z

∣∣∣∣∣
2Y + Z X

2X Y

∣∣∣∣∣

= Y (2Y Z + Z2 −X2) + Z(2Y 2 + ZY − 2X2)

= 4Y 2Z + 2Y Z2 −X2Y − 2ZX2

In the chart Z = 1, we get

p(x, y) = 4y2 + 2y − x2y − 2x2

= 4y2 + y(2− x2)− 2x2

We have

∆p(x,y)(x) = (2− x2)2 + 32x2.

So, for any �xed x ∈ R, p(x, y) = 0 has two real roots y =
(x2−2)±

√
(2−x2)2+32x2

8
such

that p(x, y) = 0. In Figure 5.7, we see the graphs of [X : Y :
√

1−X2 − Y 2] 7→
P (X, Y,

√
1−X2 − Y 2) = 0 and v = (X, Y, Z) 7→ P (X, Y, Z) = 0.

-0.5 0.5
x

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

y

(a) The graph of P (X,Y,
√

1−X2 − Y 2) = 0 in

P2
(b) The graph of P (X,Y, Z) = 0
in R3

Figure 5.4: Cubic of eigenvectors and eigenvectors of A(t)

Note that the asymptotics of p(x, y) = 0 are y = 1
4
x2− 1

2
and y = −2 and we have

154



p(0, 0) = p(0,−1
2
) = 0. So, any two lines y = k, k ∈ (−1

2
, 0) and y = −2 separates

the projective plane P2 in two components such that each component of P2 contains

a part of the cubic. So, the cubic contains 2 components. There are two possibilities.

Either, the cubic type is an elliptic with an oval, or a line and a conic. The later

is not possible. Indeed, for any x, p(x,−2) 6= 0, the cubic of eigenvectors does not

contain a line. Hence, the cubic type of eigenvectors is an irreducible cubic with two

components. The only possibility for the cubic type of eigenvectors is an elliptic with

an oval.

Now, we show that there is only one non-virtual eigenvector on the pseudo line:

We have ∂p
∂x

(x, y) = −2yx− 4x and ∂p
∂x

(x, y) = 8y + 2− x2. So, the tangent line to

p(x, y) = 0 at the origin is y = 0. The intersection of y = 0 with P (X, Y, Z) = 0 gives

X2Z = 0. So, the intersection points are the double point [0 : 0 : 1] and the simple

point [1 : 0 : 0]. By Lemma 5.2.19, the point [1 : 0 : 0] belongs to the pseudo line.

Since the cubic type of eigenvectors is an elliptic with an oval, A(t1, t2) ∩ Σ = ∅.
Now, [1 : 0 : 0] is an eigenvector of A(0, 1) associated to the eigenvalue 0 and

Spec(A(0, 1)) = {−1, 0, 1}. Thus, there is a monodromy between two eigenvectors

associated to the eigenvalues −1 and 1, so these eigenvectors are in the same com-

ponents. So, there is one eigenvector on the pseudo line and two eigenvectors on the

oval.

By Theorem 5.2.4, the cubic type of the eigenvalues is an elliptic with an oval. Let

B(v) = A1 + vA2, then we have

χB(v)(x) = −x3 + (5 + v2)x+ 3v (5.9)

∆B(v)(x) = 9− 20x2 + 4x4 = 0 (5.10)

We have Z(∆B(v))(x) = {± 1√
2
,± 3√

2
}. So, ∆B(v)(x) < 0 on the two intervals I1 =

[− 3√
2
,− 1√

2
] and I2 = [ 1√

2
, 3√

2
]. Then, if x ∈ I1 ∪ I2, there is no v ∈ R such that

χB(v)(x) = 0. In Figure 5.5, we see the graph of the eigenvalues.
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v

-5

5

Eigenvalues of B(v)

(a) The eigenvalues of B(v) (b) Eigenvalues of A(t1, t2)

Figure 5.5: Eigenvalues of B(v) and A(t1, t2)

Example 5.2.21. Here, we give an example for the marked cubic I.(b) of eigenvectors,

Figure 5.6.

Figure 5.6: Marked cubic I.(b)

Let A(t1, t2) = t1A1 + t2A2 be given as follows.

A(t1, t2) =




0
√

3t1 0√
3t1 t2

√
2t1

0
√

2t1 −t2


 = t1




0
√

3 0√
3 0

√
2

0
√

2 0


+ t2




0 0 0

0 1 0

0 0 −1


 . (5.11)

First, we show that the marked cubic of the eigenvalues is elliptic with an oval. For

this, let B(v) = A1 + vA2, then we have

χB(v)(x) = −x3 + (5 + v2)x+ 3v (5.12)

which is the characteristic polynomial of the matrix given in previous example. From

Example 5.2.20, the cubic type of the eigenvalues is an elliptic with an oval. Thus,

the cubic type of eigenvectors is elliptic with an oval.

We show that there is only one non-virtual eigenvector on the oval:
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A vector v = [X : Y : Z] ∈ P2 is an eigenvector of A(t1, t2) if and only if the three

vectors A1v,A2v and v are co-linear, i.e. P (X, Y, Z) = det
(
A1v A2v v

)
= 0,

∣∣∣∣∣∣∣

√
3Y 0 X√

3X +
√

2Z Y Y√
2Y −Z Z

∣∣∣∣∣∣∣
= Y

∣∣∣∣∣

√
3Y X√
2Y Z

∣∣∣∣∣+ Z

∣∣∣∣∣

√
3Y X√

3X +
√

2Z Y

∣∣∣∣∣

= −
√

3X2Z −
√

2XY 2 −
√

2XZ2 + 2
√

3ZY 2

In the chart Z = 1, we get

p(x, y) = −
√

3x2 −
√

2xy2 −
√

2x+ 2
√

3y2

= −
√

3x2 − (
√

2y2 +
√

2)x+ 2
√

3y2

In Figure 5.7, we see the graphs of [X : Y :
√

1−X2 − Y 2] 7→ P (X, Y,
√

1−X2 − Y 2) =

0 and v = (X, Y, Z) 7→ P (X, Y, Z) = 0.

-0.5 0.5

x

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8
y

(a) The graph of P (X,Y,
√

1−X2 − Y 2) = 0 in

P2
(b) The graph of P (X,Y, Z) = 0
in R3

Figure 5.7: Cubic of eigenvectors and eigenvectors of A(t)

Now, the tangent line to p(x, y) = 0 at the point (0, 0) is

∂p

∂x
(0, 0)(x− 0) +

∂p

∂y
(0, 0)(y − 0) = 0.

We have ∂p
∂x

(x, y) = −2
√

3x − (
√

2y2 +
√

2) and ∂p
∂x

(x, y) = 2(−
√

2x + 2
√

3)y. So,

the tangent line to p(x, y) = 0 at the origin is x = 0. The intersection of x = 0
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with P (X, Y, Z) = 0 gives Y 2Z = 0. So, the intersection points are the double point

[0 : 0 : 1] and the simple point [0 : 1 : 0]. By Lemma 5.2.19, the point [0 : 1 : 0]

belongs to the pseudo line.

The eigenvector [0 : 1 : 0] is associated to the eigenvalue 1 ofA(0, 1) and Spec(A(0, 1)) =

{−1, 0, 1}. By the same argument used in the previous example, two eigenvectors

associated to the eigenvalues −1 and 1 are in the same component. Thus, two eigen-

vectors [0 : 1 : 0] and [0 : 0 : 1] belong to the pseudo line, while the only eigenvector

on the oval is [1 : 0 : 0].

Example 5.2.22. Here, we give an example for the marked cubic VI.(a) of eigenvec-

tors, Figure 5.8.

Figure 5.8: Marked cubic VI.(a)

Let A(t1, t2) = t1A1 + t2A2 be given as follows.

A(t1, t2) =




0 t1 t1

t1 t2 0

t1 0 −t2


 = t1




0 1 1

1 0 0

1 0 0


+ t2




0 0 0

0 1 0

0 0 −1


 . (5.13)

A vector v = [X : Y : Z] ∈ P2 is an eigenvector of A(t1, t2) if and only if

P (X, Y, Z) =

∣∣∣∣∣∣∣

Y + Z 0 X

X Y Y

X −Z Z

∣∣∣∣∣∣∣
= Y

∣∣∣∣∣
Y + Z X

X Z

∣∣∣∣∣+ Z

∣∣∣∣∣
Y + Z X

X Y

∣∣∣∣∣ (5.14)

= (Y + Z)(2Y Z −X2) = 0 (5.15)

Now, if Z = 1, we get p(x, y) = −(y + 1)(2y − x2) where 2y − x2 = 0 is the equation

of a hyperbola which does not intersect the line y = −1. So, the cubic type of

eigenvectors is the disjoint union of a line and a non degenerate conic. In Figure 5.9,

we see the graphs of [X : Y :
√

1−X2 − Y 2] 7→ P (X, Y,
√

1−X2 − Y 2) = 0 and

v = (X, Y, Z) 7→ P (X, Y, Z) = 0.
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(a) The graph of P (X,Y,
√

1−X2 − Y 2) = 0 in

P2
(b) The graph of P (X,Y, Z) = 0 in

R3

Figure 5.9: Cubic of eigenvectors and eigenvectors of A(t)

Since eigenvectors are two-by-two orthogonal, there is one eigenvector on the line

while the others are on the conic.

By Theorem 5.2.4, the cubic type of eigenvalues is the disjoint union of a line and

an irreducible conic. We have

Λ = {[t1 : t2 : λ] | det(t1A1 + t2A2 − λI3) = 0} (5.16)

= {[t1 : t2 : λ] | λ(−λ2 + 2t21 + t22) = 0}. (5.17)

In Figure 5.10, we see the graphs of the eigenvalues B(v) = A1 + vA2 and A(t1, t2).

-3 -1 1 3

v

-3

-1

1

3

Eigenvalues of B(v)

(a) The eigenvalues of B(v)

(b) Eigenvalues of

A(t1, t2)

Figure 5.10: Eigenvalues of B(v) and A(t1, t2)

Example 5.2.23. Here, we give an example for the cubic IX.(a) of eigenvectors,
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Figure 5.11.

Figure 5.11: Marked cubic IX.(a)

A(t1, t2) =




0 0 0

0 t2
√

2t1

0
√

2t1 −t2


 = t1




0 0 0

0 0
√

2

0
√

2 0


+ t2




0 0 0

0 1 0

0 0 −1


 . (5.18)

Then, χA(t1,t2)(λ) = −λ3 + (2t21 + t22)λ which is the characteristic polynomial of the

matrix given in Example 5.2.22. So, the cubic type of the eigenvalues is the disjoint

union of a line and a non-degenerate conic.

Now v = [X : Y : Z] ∈ P2 is an eigenvector ofA(t1, t2) if and only if det
(
A1v A2v v

)
=

0,

∣∣∣∣∣∣∣

0 0 X√
2Z Y Y√
2Y −Z Z

∣∣∣∣∣∣∣
= X

∣∣∣∣∣

√
2Z Y√
2Y −Z

∣∣∣∣∣

= −
√

2X(Y 2 + Z2)

So, the marked cubic of the eigenvectors is the disjoint union of the conic point

Y 2+Z2 = 0 and the lineX = 0. There is one constant eigenvector [1 : 0 : 0] associated

to the analytic eigenvalue 0 on the conic point, and two non-virtual eigenvectors

[0 : 0 : 1] and [0 : 1 : 0] are on the line XZ2 = 0. The marked cubic of eigenvectors is

the disjoint union of a conic point and a line.

Remark 5.2.24. The analytic prolongation of eigenvectors associated to the extremal

eigenvalues 1 and −1 along the half turn path changes in Example 5.2.20 (resp.

5.2.22), but not in Example 5.2.21 (resp. 5.2.23). This orientation is a factor which

cannot be seen by the antipodal monodromy of the eigenvectors, but this would

have been manifested if we had constructed a monodromy in taking into account an

orientation of eigenvectors.
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Example 5.2.25. Here, we give an example for the cubic VII.(e) of eigenvectors,

Figure 5.12.

Figure 5.12: Marked cubic VII.(e)

Let A(t1, t2) = t1A1 + t2A2 be given as follows.

A(t1, t2) =



t1 0 t1

0 2t1 t1

t1 t1 t2


 = t1




1 0 1

0 2 1

1 1 0


+ t2




0 0 0

0 0 0

0 0 1


 . (5.19)

From Example 2.5.12, the monodromy of the eigenvalues is a cycle of length three. So,

the cubic type of the eigenvalues is the rational crunodal. From this, the marked cubic

of eigenvectors is the union of a non-degenerate conic and a line with two intersection

points in which the conic has three regular eigenvectors.

Indeed, v = [X : Y : Z] ∈ P2 is an eigenvector of A(t1, t2) if and only if

P (X, Y, Z) =

∣∣∣∣∣∣∣

X + Z 0 X

2Y + Z 0 Y

X + Y Z Z

∣∣∣∣∣∣∣
= −Z

∣∣∣∣∣
X + Z X

2Y + Z Y

∣∣∣∣∣ (5.20)

= −Z(Y (X + Z)−X(2Y + Z)) (5.21)

= −Z(−XY + Y Z −XZ) = 0 (5.22)

This is a reducible cubic and Z = 0 is the equation of the line of the cubic and

−XY + Y Z − XZ is a non-degenerate conic. Note that the line Z = 0, intersect

the conic in two points [1 : 0 : 0] and [0 : 1 : 0]. In Figure 5.13, we see the graph of

eigenvectors.
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Figure 5.13: The graph of P (X, Y, Z) = 0

Example 5.2.26. Here, we give an example for the cubic XII.(d) of eigenvectors,

Figure 5.14.

Figure 5.14: Marked cubic XII.(d)

A(t1, t2) =




0 t2 0

t2 t1 0

0 0 −t1


 = t1




0 0 0

0 1 0

0 0 −1


+ t2




0 1 0

1 0 0

0 0 0


 . (5.23)

v = [x : y : z] ∈ P2 is an eigenvector of A(t1, t2) if and only if det
(
A1v A2v v

)
= 0,

∣∣∣∣∣∣∣

0 y x

y x y

−z 0 z

∣∣∣∣∣∣∣
= −y

∣∣∣∣∣
y y

−z z

∣∣∣∣∣+ x

∣∣∣∣∣
y x

−z 0

∣∣∣∣∣

= −y(2yz) + x2z

= z(x2 − 2y2) = z(x−
√

2y)(x+
√

2y)

So, the cubic type of eigenvectors is the union of three lines in general position. Note

that [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1] are eigenvectors of the non-singular matrix

A(1, 0) associated to the eigenvalue 0 , 1 and −1, respectively. Two eigenvectors

[1 : 0 : 0] and [0 : 1 : 0] belong only to the line z = 0, while [0 : 0 : 1] belongs only to

the intersection of the two lines x−
√

2y = 0 and x+
√

2y = 0.

Therefore, the cubic type of the eigenvalues is the union of a line and a non-
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degenerate conic with two intersection points. We have

Λ = {[t1 : t2 : λ] | det(t1A1 + t2A2 − λI3) = 0} (5.24)

= {[t1 : t2 : λ] | (t1 + λ)(t1λ+ t22 − λ2) = 0} (5.25)

In Figure 5.15, we see the eigenvalue of A(t1, t2).

Figure 5.15: The eigenvalue of A(t1, t2)

Example 5.2.27. Here, we give an example for the cubic XII.(f) of eigenvectors,

Figure 5.16.

Figure 5.16: Marked cubic XII.(f)

A(t1, t2) =



t2 0 0

0 t1 + 2t2 0

0 0 −t1 + 3t2


 = t1




0 0 0

0 1 0

0 0 −1


+ t2




1 0 0

0 2 0

0 0 3


 . (5.26)

We have Spec(A(t1, t2)) = {t2, t1 + 2t2,−t1 + 3t2} which two by two intersect along

three di�erent lines. So, the cubic type of the eigenvalues is union of three lines in

general position.
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Now, v = [X : Y : Z] ∈ P2 is an eigenvector of A(t1, t2) if and only if

∣∣∣∣∣∣∣

0 X X

Y 2Y Y

−Z 3Z Z

∣∣∣∣∣∣∣
= −X

∣∣∣∣∣
Y Y

−Z Z

∣∣∣∣∣+X

∣∣∣∣∣
Y 2Y

−Z 3Z

∣∣∣∣∣

= 3XY Z

which is the union of three lines X = 0, Y = 0, Z = 0 in general position. Note that

eigenvectors of the non-singular parameter (1, 0) are v1 = [1 : 0 : 0], v2 = [0 : 1 : 0]

and v3 = [0 : 0 : 1]. We have v1 ∈ {Z = 0} ∩ {Y = 0}, v2 ∈ {Z = 0} ∩ {X = 0}
and v3 ∈ {X = 0} ∩ {Y = 0}. Thus, the marked cubic of eigenvectors is the union of

three lines in general position.

Example 5.2.28. Here, we give an example for the cubic XIV.(f) of eigenvectors,

Figure 5.17.

Figure 5.17: Marked cubic XIV.(f)

Let

A(t1, t2) =




0 0 0

0 2t1 t1 + t2

0 t1 + t2 2t2


 = t1




0 0 0

0 2 1

0 1 0


+ t2




0 0 0

0 0 1

0 1 2


 . (5.27)

Let B(v) = A1 + vA2. We have

χB(v)(x) = −x(x2 − x(2 + 2v)− v2 + 2v − 1) (5.28)

Spec(B(v)) = {0, (1 + v)±
√

2(v2 + 1)} (5.29)

We have Spec(B(1)) = {0, 0, 4}, ∂χB
∂x

(v, x) = 2x−(2+2v) and ∂χB
∂v

(v, x) = −2x−2v+2.

So, the tangent line to the hyperbola x2− x(2 + 2v)− v2 + 2v− 1 at (v, x) = (1, 0) is

x = 0. So, the marked cubic of the eigenvalues is the union of a non-degenerate conic

and a tangent line, Figure 5.18.
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Figure 5.18: Eigenvalues of B(v) and A(t1, t2)

Now, v = [X : Y : Z] ∈ P2 is an eigenvector of A(t1, t2) if and only if

P (X, Y, Z) =

∣∣∣∣∣∣∣

0 0 X

2Y + Z Z Y

Y y + 2Z Z

∣∣∣∣∣∣∣
= x

∣∣∣∣∣
2Y + Z Z

Y Y + 2Z

∣∣∣∣∣

= 2X(Y + Z)2

If Z = 1, we get p(x, y) = 2x(y + 1)2. The cubic type of the eigenvector is the

product of a double line and a single line such that the intersection point happens

at [0 : −1 : 1]. For the non-singular parameter (t1, t2) = (1, 0), [0 : −1 : 1 +
√

2],

[1 : 0 : 0] and [0 : 1, 1+
√

2] are eigenvectors of A(t1, t2) associated with the eigenvalues

1 −
√

2, 0 and 1 +
√

2, respectively. Note that only [1 : 0 : 0] belongs to the double

line (Y + Z)2 = 0 while two vectors [0 : −1 : 1 +
√

2] and [0 : 1 : 1 +
√

2] belong only

to the simple line X = 0. So, the marked cubic of eigenvectors is the product of a

double line with a simple line.

Example 5.2.29. Here, we give an example for the cubic XVI of eigenvectors, Figure

5.19.

Figure 5.19: Marked cubic XVI
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Let

A(t1, t2) =



t2 + t1 0 0

0 2t1 + t2 0

0 0 t2 + 3t1


 = t1




1 0 0

0 2 0

0 0 3


+ t2




1 0 0

0 1 0

0 0 1


 . (5.30)

First, we note that the eigenvalues of A(t1, t2) are λ1(t1, t2) = t1 +t2, λ2(t1, t2) = 2t1 +

t2, and λ2(t1, t2) = 3t1+t2 which intersect two-by-two over t1 = 0 since A(0, t2) = t2I3.

So, the cubic of the eigenvalues is made of three concurrent lines. From this, the cubic

type of eigenvectors is the projective plane P2.

We have

V (A) = {v ∈ P2 | det
(
A1v A2v v

)
= 0}

= {v ∈ P2 | 0 = 0} = P2

and for a non-singular parameter (t1, 0) there are three constant eigenvectors v1 =

[1 : 0 : 0], v2 = [0 : 1 : 0], v3 = [0 : 0 : 1] associated with three di�erent eigenvalues t1,

2t1 and 3t1 respectively.

5.3 Resolution of singularities of eigenvalues

In Subsection 5.1.2, we saw that there exists a map φ : Γ(A)→ Λ(A) where Γ(A) is the

set of eigenvectors and Λ(A) is the set of the eigenvalues. Note that the variety Γ(A)

is not smooth in general. In Claim 5.1.1, we proved that Φ : G(A) ⊆ Γ(A) → Λ(A)

is a proper birational map, where for a k-linear family A ∈ Symd(R), A 6⊂ Σ,

G(A) = Clos
(
Γ \ [Σ]× Pd−1

)
. (5.31)

Here, we show that the map Φ is a resolution of singularities of algebraic varieties

when the family is a 2-linear family and when the family is the full space Symd(R).

Recall that a subset of Rn, respectively of Cn, is called constructible if it is

a �nite union of di�erences of algebraic sets. The Euclidean closure of a complex

constructible set is an algebraic set. However, in general, this not true in the real

case. For instance, a real cubic with isolated point, when we delete this point we

obtain a closed (for the Euclidean topology) constructible set which is not algebraic.

So, a priori, our set G(A) may not be algebraic. We conjecture that indeed G(A) is
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an algebraic set. However we are able to prove it only for curves, what is actually

needed in this chapter.

5.3.1 Resolution of a 2-linear family

In can be concluded from the following theorem and Claim 5.1.1 that the map Φ :

G(A) → Λ(A) is a resolution of singularity for Λ(A) if A ∈ Symd(R) is a 2-linear

family.

Theorem 5.3.1. For any 2-linear family A 6⊂ Σ the set G(A) of strict eigenvectors

of A is a non-singular algebraic curve.

Proof. We shall consider an a�ne chart of the projectivization of A, that is an a�ne

family in one parameter of the form

A(t) = A0 + tA1, t ∈ R,

where A0, A1 are real symmetric matrices. We assume that A0 ∈ Σ. In this chart

ΓR := Γ(A(t)) = {(t, [v]) ∈ R× Pd−1(R); A(t)v ∧ v = 0}.

Now we consider its complexi�cation

ΓC := Γ(A(z)) = {(z, [v]) ∈ C× Pd−1(C); A(z)v ∧ v = 0}.

By the theorem of Rellich there are distinct real analytic functions λj : R → R,
j = 1, . . . , d such that SpecA(t) = {λ1(t), . . . , λd(t)} for all t ∈ R. We consider their

complexi�cations, denoted again by λj(z), which are well de�ned and holomorphic in

a small disk D around the origin in C. Shrinking D, if necessary, we may assume that

for any z ∈ D∗ := D \ {0} all λ1(z), . . . , λd(z) are pairwise distinct. In other words,

∆(z) 6= 0 for z ∈ D∗, where ∆(z) stands for the discriminant of the characteristic

polynomial of the matrix A(z). Again by the theorem of Rellich there are analytic

functions [vj] : R→ Pd−1(R), j = 1, . . . , d which represent eigendirections associated

to λj(t), that is

A(t)vj(t) = λj(t)vj(t), t ∈ R.

Again we can take the complexi�cations [vj] : D → Pd−1(C), j = 1, . . . , d which
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satisfy clearly

A(z)vj(t) = λj(z)vj(z), z ∈ D. (5.32)

We denote by Vj the graph of [vj] which is a smooth holomorphic submanifold of

C× Pd−1(C). The following inclusion is important

(D∗ × Pd−1(C)) ∩ ΓC ⊂
d⋃

j=1

Vj. (5.33)

Indeed, let (z, [v]) ∈ D∗ × Pd−1(C)) ∩ ΓC, then [v] is an eigendirection of A(z). Since

∆(z) 6= 0, the matrix A(z) has d distinct eigendirections. Therefore, [v] = [vj](z) for

some j ∈ {1, . . . , d}.

Let ΣC := {z ∈ C : ∆(z) = 0} which is actually a �nite set. The set

ΓC \ (ΣC × Pd−1(C))

is a complex constructible set. So (see for instance Lojasiewicz [21], Proposition 2,

VII.8.3, page 394) its Euclidean closure, denoted by GC, is a complex algebraic subset

of C× Pd−1(C). Therefore

H = GC ∩ (R× Pd−1(R))

is a real algebraic set. It is enough to prove that GR = H. The inclusion GR ⊂ H is

obvious. To prove the converse assume that (0, [v]) ∈ H, it means that there exists a

sequence

(D∗ × Pd−1(C)) ∩ ΓC) 3 (zn, [w(zn)]→ (0, [v]), n→∞.

By the inclusion (5.33), there exists j ∈ {1, . . . , d} such that [w(zn)] = [vj](zn) for

almost all n ∈ N, because eigendirection maps [vi] are continuous with disjoint graphs.

Therefore

(0, [v]) = lim
t→0

(t, [vj](t)) ∈ GR.

To make the �nal conclusion that the set GR is algebraic, we apply the above

argument over each point t ∈ R such that A(t) ∈ Σ. Note that there are �nitely

many such points.

To prove that GR is actually non-singular observe that its complexi�cation GC

is non-singular (as analytic set) at each point GR, since it is locally a graph of a
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holomorphic mapping. It follows from a lemma of Serre ([21], VII.16.1 Corollary,

page 458) that each point of GR is regular in the algebraic sense. In other words, it

has a local description by a regular submersion.

5.3.2 Resolution of a
d(d+1)

2 -linear family

From Claim 5.1.1 and the following proposition, the map Φ : G(A) = Γ(A) → Λ(A)

is a resolution of singularity for Λ(A) if A ∈ Symd(R) is a d(d+1)
2

-linear family.

Proposition 5.3.2. Γ = {([A], [V ]) ∈ PSymd(R)× Pd−1 | V is an eigenvector of A}
is a smooth algebraic set of codimension d− 1.

Proof. Let φ be the map given by

φ : PSymd(R)× Pd−1 → PΛ2(Rd)

([A], [V ]) 7→ [A.V ∧ V ]
.

We consider the map ψ given by

ψ : Symd(R)× Rd → Λ2(Rd)

(A, V ) 7→ A.V ∧ V

and we de�ne Γ̃ = {(A, V ) ∈ Symd(R) × Rd | V is a non-zero eigenvector of A}.
Note that (A, V ) ∈ Γ̃ if and only if ψ(A, V ) = 0, ψ being a polynomial, it follows that

Γ̃ = ψ−1(0) is algebraic. Now, we show that for any (A, V ) ∈ Γ̃ ⊂ Symd(R)×Rd, the

rank of the di�erential of ψ is d− 1. For this, we show that the image of d(A,V )ψ has

dimension d− 1.

The di�erential of ψ is given by

d(A,V )ψ(a, v) = a.V ∧ V + A.v ∧ V + A.V ∧ v

Now, if (A, V ) ∈ Γ̃, then V = e1 is an eigenvector of A. Let {e2, . . . , ed} such that

{e1, e2, . . . , ed} is an orthonormal basis of Rd which is formed by eigenvectors of A. We

denote by (λ1, . . . , λd) the associated eigenvalues of A. Let a = (aij) be a symmetric
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matrix. Then,

d(A,e1)ψ(a, ei) = a.e1 ∧ e1 + A.ei ∧ e1 + A.e1 ∧ ei
= a.e1 ∧ e1 + λiei ∧ e1 + λ1e1 ∧ ei
= a.e1 ∧ e1 + (λi − λ1)ei ∧ e1

= (a.e1 + (λi − λ1)ei) ∧ e1

So, any member of the image of d(A,e1)ψ(a, v) is included Rd ∧ e1. Conversely, let

w ∈ Rd, then there exists a symmetric matrix a such that ae1 = w. So, d(A,e1)ψ(a, 0) =

ae1 ∧ e1 = w ∧ e1. Therefore, d(A,V )ψ has rank d− 1 on Γ̃.

Let d1 = dim(Symd(R) × Rd), d2 = dim(Λ2(Rd)). Since the rank of d(A,V )ψ

is d − 1, its matrix has some d − 1 × d − 1 non-zero minor. By ordering the co-

ordinates, we may assume that it is the upper-left minor. We label the coordi-

nates (x1, . . . , xd−1, y1, . . . , yd1−(d−1)) on Symd(R)× Rd and we label the coordinates

(u1, . . . , ud−1, v1, . . . , vd2−(d−1)) on Λ2(Rd). Then, we may write

ψ(x, y) = (Q(x, y), R(x, y)),

where Q is the projection on u = (u1, . . . , ud−1) and R is the projection on v =

(v1, . . . , vd2−(d−1)) with ∂Q
∂x

non-singular. Note that for (A, V ) ∈ Γ̃, d(A,V )Q has the

maximum rank d− 1. Since determinant is continuous and the rank function is lower

semi-continuous, there exists a neighborhood U ⊂ Symd(R)×Rd of (A, V ) such that

for any u ∈ U , duQ has a constant rank d− 1. So, Q : U → V has constant rank on

U where V is an open set around Q(A, V ). Now, by constant rank theorem, for any

point p ∈ U , we can �nd a smooth coordinate chart (U0, g) centered at p and (V0, h)

centered at Q(p) with U0 ⊂ U and Q(U0) ⊂ V0 ⊂ V such that

h ◦Q ◦ g−1(x1, . . . , xd−1, xd, . . . , xd1) = (x1, . . . , xd−1)

Note that Q−1(0) ∩ U0 = {x1 = · · · = xd−1 = 0}. We deduce that Q−1(0) is a

smooth algebraic set of codimension d − 1. Up to restriction of U0 on an open ball

Br(a) centered at a = (A, V ), Q−1(0) is connected (path-connected). We show that

Q−1(0) = Γ̃ on this ball. We remark that Γ̃ ⊂ Q−1(0) on Br(a). Now we show that

Q−1(0) ⊂ Γ̃ on Br(a). Let m ∈ Q−1(0) ∩ Br(a) and v be one of the functions which

de�nes Γ̃. Then, we can write v(m) =
∫
γ
dv where γ is a continuous path in Q−1(0)

from 0 to m. Since the rank of ψ on all the points of Q−1(0) ∩ Br(a) is p − 1 and
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du1, . . . , dud−1 are independent, then dv is a combination of du1, . . . , dud−1 on all the

points of Q−1(0)∩Br(a). Thus, we get v(m) = 0 which proves Q−1(0) ⊂ Γ̃ on Br(a).

Thus, we deduce that Γ̃ is a smooth algebraic set of codimension d− 1. Therefore, Γ

also is a smooth algebraic set of codimensoin d− 1. This �nishes the proof.

Corollary 5.3.3. The algebraic variety

E := {([A : λ], [V ]) ∈ P(Symd(R)× R)× Pd−1 | (A− λId)V = 0}

is smooth.
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