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Abstract

This thesis is concerned with 3 classes of problems related to graph connectivity.

Firstly, we deal with graph orientations where an orientation of a graph is obtained
by replacing every edge by an arc between the same two vertices. This chapter is di-
vided into two parts: one on orientations for arc-connectivity and one on orientations
for vertex-connectivity. For edge-connectivity, we first review some results related to the
strong orientation theorem of Nash-Williams and show that it is co-NP-complete to decide
whether a given odd-vertex pairing is admissible. This resolves a question of Frank. We
next show that it is NP-complete to decide whether a given graph has an orientation sat-
isfying some arbitrary local edge-connectivity condition and give some related problems.
We then give some partial results on the problem of determining whether a given graph has
a strongly connected orientation such that the in-degree of every vertex is of a prescribed
parity. Finally, we wish to give a connectivity property of orientations of 3-edge-connected
graphs which is located between strong connectivity and 2-arc-connectivity. This prob-
lem has been suggested by Frank and leads to the introduction of a new invariant for
3-edge-connected graphs. We give several bounds for this invariant.

For vertex-connectivity, we first give an overview of previous results. We then deal
with a problem suggested by Cheriyan, determining some restricted classes of Eulerian
graphs all of whose Eulerian orientations are highly vertex-connected.

Next, we deal with arborescence packings. We first provide an inductive method
that allows to derive theorems on packings of reachability arborescences from theorems
on packings of spanning arborescences in several settings. In particular, we conclude a
theorem of Kamiyama, Katoh and Takizawa from a strong form of the theorem of Ed-
monds. This inductive method also allows to prove a result on matroid-reachability-based
packings of mixed hyperarborescences which generalizes numerous previous results. We
next use matroid intersection to obtain a theorem on packing mixed hyperarborescences
in a setting where the roots of the arborescences are not fixed. Finally, we provide an
algorithm certifying that a problem on packing arborescences that have to satisfy a little
extra condition is FPT. The same technique allows to find algorithms certifying that two
similar problems are FPT. In one case, this resolves a question of Bang-Jensen, Havet
and Yeo.

In the last part, we deal with connectivity augmentation problems. In particular,
relying on some structure provided by Durand de Gevigney and Szigeti, we give a fast
algorithm for (2, k)-connectivity augmentation.



Résumé

Cette thèse traite 3 classes de problèmes liés à la connexité des graphes.

En premier lieu, nous traitons des orientations des graphes où une orientation d’un
graphe non-orienté est obtenue en remplaçant chaque arête par un arc entre les mêmes
deux sommets. Ce chapitre est divisé en deux parties : l’une sur les orientations pour
l’arête-connexité et l’autre sur les orientations pour la sommet-connexité. Pour l’arête-
connexité, nous présentons certains résultats liés au théorème fort de Nash-Williams sur
les orientations et nous démontrons qu’il est co-NP-complet de décider si un ”odd-vertex
pairing” donné est admissible. Ceci répond à une question posée par Frank. Ensuite,
nous prouvons qu’il est NP-complet de décider si un graphe a une orientation satisfaisant
des conditions d’arc-connexité locale arbitraires données et nous mentionnons quelques
problèmes liés. Ensuite, nous présentons certains résultats partiels sur le problème de
décider si un graphe donné a une orientation fortement connexe telle que le degré entrant
de chaque sommet a une certaine parité assignée. Finalement, nous souhaitons traiter une
propriété de connexité des orientations des graphes 3-arête-connexes qui se situe entre la
connexité forte et la 2-arc-connexité. Ce problème a été proposé par Frank et mène
à l’introduction d’un nouvel invariant des graphes 3-arête-connexes. Nous démontrons
plusieurs bornes pour cet invariant.

Pour la sommet-connexité, nous présentons d’abord une collection de résultats antérieurs.
Puis, nous traitons un problème proposé par Cheriyan, déterminant quelques classes re-
streintes de graphes eulériens tel que chacune de leurs orientations eulériennes a une
grande sommet-connexité.

Le chapitre suivant porte sur les packages d’arborescences. D’abord, nous proposons
une méthode récursive qui permet de déduire des théorèmes sur les packages d’arborescences
d’accessibilité à partir des théorèmes sur les packages d’arborescences couvrantes dans
plusieurs contextes. En particulier, nous déduisons un théorème de Kamiyama, Katoh et
Takizawa à partir d’une version forte du théorème d’Edmonds. Cette méthode récursive
permet aussi de prouver un résultat sur les packages basés sur la matröıde-accessibilité
des hyperarborescences mixtes qui généralise de nombreux résultats précédants. Puis,
nous utilisons l’intersection de matröıdes afin d’obtenir un théorème sur les packages
d’hyperarborescences mixtes dans un contexte où les racines des arborescences ne sont
pas fixées. Finalement, nous construisons un algorithme qui montre qu’un problème sur les
packages d’arborescences dans lequel les arborescences doivent satisfaire une petite condi-
tion supplémentaire est FPT. La même technique permet de montrer que deux problèmes
similaires sont FPT. Dans un cas, cela répond à une question posée par Bang-Jensen,
Havet et Yeo.

Dans la dernière partie, nous considérons des problèmes d’augmentation de connexité.
En particulier, en nous appuyant sur des résultats structurels développés par Durand
de Gevigney et Szigeti, nous donnons un algorithme rapide pour l’augmentation pour la
(2, k)-connexité.
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Chapter 1

Introduction

Networks are a structure humanity had to deal with during many stages of its develop-
ment. Historically, the task was to represent the parental relationships between the greek
gods, to decide about the distribution of consuls to provinces in ancient Rome or to plan
the tours of ships during early colonialism. Nowadays, we wish to understand the struc-
ture of a social network, to model the transportation tasks of a big logistics company or to
send information as fast as possible through a modern computer network. Despite their
diversity, all of these problems have an important feature in common: Their underlying
structure can be modeled by a set of points some of which are joined by a link. Such
a structure is called a network. One of the most important notions in the analysis of
networks is connectivity. The first important question in the context of connectivity is
the following one: Travelling along the links, can we reach every point from every other
point? Another more general question is whether we can still do so if our network is
damaged meaning that some points or links are eliminated from it.

In modern mathematics and computer science, there are two major ways of modeling
networks. The first one is called undirected graphs. In undirected graphs the points
of the network are represented by a ground set called the set of vertices and the links
are represented by a set of so-called edges. Every edge connects two vertices and it
is symmetric in the sense that it can be used to travel in either of the two directions.
For example, a road network not containing any one-way street can be modeled using
undirected graphs. The second model is called directed graphs. Again, the points of the
network are modeled by a set of vertices. The difference now is that instead of edges we
have so-called arcs where an arc goes from one vertex to another vertex and can only
be travelled in that one direction. For example, directed graphs can be used to model
a network of inland waterway transportation where the flow direction of rivers plays a
significant role.

While we postpone the formal definitions of graph connectivity to Chapter 2, we wish
to mention that there are two major notions for connectivity in undirected graphs. The
notion of edge-connectivity describes how stable the graph is with respect to the elimina-
tion of some edges and the notion of vertex-connectivity describes how stable the graph
is with respect to the elimination of some vertices. For directed graphs, we similarly
distinguish between arc-connectivity and vertex-connectivity. Despite the historical appli-
cations described earlier, it was only in the earlier 20th century that graph connectivity
was studied on high scientific level. In 1927, Menger [93] provided a collection of results
for all kinds of connectivity which, until today, can be considered the most fundamental
and influential results there are in graph connectivity.

Since then, connectivity has grown to be one of the most important notions of graph
theory in general. While connectivity serves as an important tool in a wide range of both
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structural and algorithmic fields of graph theory, there are also a lot of problem settings
which are more purely related to connectivity. While also this field is too immense to
be surveyed in a single work, the book of Frank [41] gives an excellent overview of some
of the most important problems in this field. Many of the problems considered in this
thesis have been brought to our attention through this book. The goal of this thesis is
to enrich the theory of graph connectivity by some new results. In the main part of this
thesis, more specifically Chapters 3, 4 and 5, we deal with three more specific classes of
problems related to connectivity. In Chapter 2, we give some more formal definitions and
some preliminary results. We now give a more close desription of the problems we deal
with in the 3 main chapters.

In Chapter 3, we deal with a class of problems which is located at the intersection of
undirected and directed connectivity. An orientation of an undirected graph is a directed
graph which is obtained by replacing every edge by an arc between the same two vertices.
We wish to examine whether certain connectivity properties of the original undirected
graph can be maintained through that orientation operation. The first important result
in this field is due to Robbins [100] and dates back to 1939.

In the light of the result of Robbins and a result of Nash-Williams from 1960 [96],
the possibilities of connectivity maintenance are relatively well understood for the case
when some edge-connectivity property in the undirected graph is supposed to yield an
arc-connectivity property in its orientation. Nevertheless, several refinements of these
results can be considered some of which we deal with in Section 3.1. In particular, there
is a much stronger version of the theorem of Nash-Williams. We deal with some results
related to this stronger theorem. In particular, we give a negative answer to a question
of Frank [41]. Further, we deal with some problems aiming to achieve some slightly more
sophisticated connectivity notions in the orientation. The first such connectivity notion
is defined by some local connectivity condition. Again, we give a negative result. Both
these negative results can also be found in [59]. We next consider a further orientation
problem that establishes a link between the connectivity of the orientation and a parity
consideration. Finally, we deal with a setting where we wish to achieve a connectivity
property in the orientation that is in some way in the middle between two well-known arc-
connectivity properties. This leads to the definition a new graph invariant. We provide
several bounds on the possible values of this invariant. This is based on joint work with
Szigeti [60] in response to a suggestion of Frank [45].

Much less is known for the case where a vertex-connectivity property in the undirected
graph is supposed to yield a vertex-connectivity property in its orientation. While a
theorem of Thomassen [105] implies a good characterization in a basic case, a result of
Durand de Gevigney [24] makes a similar result seem to be out of reach in the general
case. Nevertheless, many questions in this field remain wide open. In Section 3.2, we give
an overview of these results. Next, we deal with a slightly different problem suggested by
Cheriyan [19]. We show that for some restricted classes of graphs, all orientations with
a certain extra property are highly vertex-connected. This is based on joint work with
Szigeti [61].

In Chapter 4, we deal with a set of problems in directed graphs. More precisely, we
here wish to decompose a directed graph into a maximum number of subgraphs all of
which have a certain connecticity property. Graphs that minimally have this property
are called spanning arborescences and we can restate this problem as the one of finding a
maximum number of arc-disjoint spanning arborescences. In the most basic setting, this
problem is solved thanks to a fundamental theorem of Edmonds [28]. We deal with 3
generalizations of this theorem. In the first two generalizations we somewhat relax the
connectivity conditions imposed on the subgraphs in certain ways. Firstly, we show that
results for a certain relaxation of this condition can be derived from the results in the
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original setting avoiding earlier, more involved proofs. This is based on joint work with
Szigeti [63]. Secondly, we extend a result of Gao and Yang [55] on packing spanning mixed
arborescences whose roots are not fixed to a more general setting. Again, this is joint work
with Szigeti [62]. In order to obtain this result, we rely on another important object in
combinatorial optimization: matroids. Finally, we deal with another generalization of the
theorem of Edmonds in which some additional conditions are imposed on the spanning
arborescences. Our approach works for spanning arborescences and two similar objects.
These results have been obtained in joint work with Bessy, Maia, Rautenbach and Sau
[16] and give and yield an answer to a question of Bang-Jensen, Havet and Yeo [6].

In Chapter 5, we deal with connectivity augmentation problems meaning we want to
add a minimum number of edges to an undirected graph or arcs to a directed graph in
order to obtain a certain connectivity property. We give an overview of the results for
this problem which is well understood for all basic kinds of connectivity. We add a new
result for a more advanced notion of connectivity. This is joint work with Szigeti [64].
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Chapter 2

Preliminaries

In this section, we give a collection of definitions and basic results we require in this thesis.
In Section 2.1, we formally introduce the objects that play the most important role in this
thesis: graphs and similar objects like directed graphs and some more general objects. We
give some of the basic results in graph theory. In Section 2.2, we deal with two slightly
more sophisticated tools in graph theory, namely splitting off and submodularity. In
Section 2.3, we consider relevant algorithmic notions. In particular, we deal with several
complexity classes. Section 2.4 deals with a different object that also plays a significant
role in this thesis: matroids. We introduce some basics of matroids and describe a few
particular matroids.

2.1 Graphs

In this section, we formally introduce graphs and related objects. We first give some basic
notions. After, we deal with some basic operations that can be applied to graphs. Finally,
we introduce some particular graphs that play an important role in this thesis.

2.1.1 Basic notions

We first go through the basic notions for sets and bisets. After, we deal with undirected
and directed graphs and mixed hypergraphs.

2.1.1.1 Sets and bisets

Most sets considered in this thesis are finite. We consider that a set contains no identical
elements, otherwise it is called a multiset. We use ∅ to denote the set not containg any
element, also called the empty set. Any set that contains an element is called nonempty.
If a set contains a single element x, we often use x instead of {x}. Given two sets S1 and
S2, we say that S1 is a subset of S2 and write S1 ⊆ S2 if every element of S1 is also in S2.
If additionally S1 ̸= S2, we say that S1 is a proper subset of S2 and write S1 ⊊ S2. We
define the intersection of S1 and S2 by S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2} and the union
of S1 and S2 by S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2}. We say that S1 and S2 are disjoint if
S1 ∩ S2 = ∅. We further define S1 − S2 = {x : x ∈ S1 and x /∈ S2}. We say that S1 and
S2 are properly intersecting if none of S1 − S2, S2 − S1 and S1 ∩ S2 is empty. We say that
S1 separates S2 if both S1 ∩ S2 and S2 − S1 are nonempty. Next, we denote by S1 × S2

the set {(s1, s2) : s1 ∈ S1, s2 ∈ S2}. We abbreviate S1 × S1 to S2
1 . Given a set S, we call

a collection of disjoint subsets of S a subpartition of S. If in addition, the union of these
subsets is S, we speak of a partition of S. We use 2S for the power set of S, i.e. the set
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that contains all subsets of S. For a function f : S1 → S2 and X ⊆ S1, we use f [X] for
the restriction of f to X. A set that contains at least two elements is called nonsingular.

For some x ∈ S1 and y /∈ S1, we say that S1 is an xȳ-set.
We use R for the set of real numbers, Z for the set of integers and Z≥0 for the set of

nonnegative integers. For some α ∈ R, we use ⌊α⌋ to denote the biggest integer that is
not bigger than α and ⌈α⌉ to denote the smallest integer that is not smaller than α.

We now get to a somewhat less common notion that was introduced by Frank and
Jordán in [47], namely bisets. This notion will prove useful in several parts of this thesis.
Given a ground set Ω, a biset X on Ω is a tuple (XI , XO) of subsets of Ω , called the inner
set and the outer set of Ω such that XI ⊆ XO ⊆ Ω. A biset is called trivial if XI = ∅
or XO = Ω, nontrivial otherwise. More generally, given some Ω′ ⊆ Ω, we say that X is
nontrvial with respect to Ω′ if XO ⊊ Ω′ and XI ̸= ∅.

We define the complement X̄ of X by X̄I = Ω − XO and X̄O = Ω − XI . We denote
XO −XI by w(X), the wall of X. Given two bisets X and Y, we define the union X ∪ Y
by (X∪Y)I = XI ∪YI and (X∪Y)O = XO∪YO. Further, we define the intersection X∩Y
by (X ∩ Y)I = XI ∩ YI and (X ∩ Y)O = XO ∩ YO. Further, X and Y are called innerly
disjoint if XI ∩ YI = ∅.

A schematic drawing can be found in Figure 2.1.1

XI w(X) Ω −XO

YI

w(Y)

Ω − YO

XI w(X) Ω −XO

YI

w(Y)

Ω − YO

Figure 2.1.1: A schematic drawing of the union and the intersection of bisets. On the left
side, (X ∪ Y)I is depicted in dark green while w(X ∪ Y) is depicted in light green. On the
right side, (X ∩ Y)I is depicted in red while w(X ∪ Y) is depicted in orange.

For a set S ⊆ Ω, a collection of bisets {X i}ℓ1 is called a biset subpartition of S if {X i
I}ℓ1

is a subpartition of S and w(X i) ⊆ Ω− S for i = 1, . . . , ℓ.

2.1.1.2 Undirected graphs

An undirected graph is a tuple G = (V,E) where V is a set called vertex set. Further, E
is a multiset such that every e ∈ E is a multisubset of V of size exactly 2. While infinite
graphs are an active field of research (see e.g. [82]), all graphs considered in this thesis
will be finite. Often, we abbreviate an undirected graph to a graph. We abbreviate an
edge e = {u, v} to uv. We say that u and v are the ends or endvertices of e and that
e is between u and v or connects u and v. Further, we say that u and v are adjacent to
each other and incident to e. We use n and m for the number of vertices and edges of
a given graph, respectively. Also, usually, a graph is illustrated by drawing a point for
every vertex and a line between the two points that correspond to its endvertices for every
edge. An example can be found in Figure 2.1.2.

For some X ⊆ V , we denote E(X)= {e ∈ E : e ⊆ X}. A subgraph of G is a
graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E. For some v ∈ V , we use NG(v)
= {u ∈ V − v : uv ∈ E} and we call this set the set of neighbors of v. For some X ⊆ V ,
we denote by G[X] the subgraph of G that is induced on X, i.e. the graph whose vertex
set is X and whose edge set contains all the edges of E both of whose endvertices are
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Figure 2.1.2: An example for a drawing of a graph G = (V,E) where V = {v1, v2, v3, v4}
and E = {e1 = v1v2, e2 = v2v3, e3 = v3v4}

in X. We abbreviate G[V − X] to G − X. We use iG(X) for |E(G[X])|. Further, for
an edge e ∈ E, we use G − e for (V,E − e). For a new edge e /∈ E, we use G ∪ e for
(V,E ∪ e). An edge e ∈ E which contains twice the same element is called a loop. Two
edges with the same endvertices are called parallel. A graph that does not contain loops
or parallel edges is called simple. Two graphs are called edge-disjoint if their edge sets
are disjoint. For two graphs G1 = (V,E1), G2 = (V,E2) on the same vertex set V , we use
G1 ∪ G2 for (V,E1 ∪ E2). A singularly rooted graph is a graph G = (V ∪ r, E) with a
specified vertex r called the root.

Given some X ⊆ V , we denote by δG(X) the set of edges that have exactly one end
in X and we use dG(X) for |δG(X)|. For a single vertex v ∈ V , we call dG(v) the degree
of v. For X, Y ⊆ V , we use δG(X,Y ) for the set of edges that have one end in X − Y
and one end in Y − X. Further, we denote the number of edges that have one end in
X ∩ Y and one end in V − (X ∪ Y ) by δG(X,Y ). We use dG(X,Y ) and dG(X,Y )
for |δG(X, Y )| and |δG(X, Y )|, respectively. A graph all of whose vertices are of degree
k for some k ∈ Z≥0 is called k-regular. We abbreviate 3-regular to cubic. Given some
k ∈ Z≥0, we say that G is k-edge-connected if dG(X) ≥ k for all nonempty, proper subsets
X of V . We abbreviate 1-edge-connected to connected. For x, y ∈ V , we use λG(x, y) for
min{dG(X) : X is an xȳ-set }. We next give a less common notion which will be used in
Section 3.1.4. We say that G is essentially k-edge-connected if G is (k−1)-edge-connected
and dG(X) ≥ k for every X ⊆ V with |X|, |V −X| ≥ 2. We further say that G is k-vertex-
connected if |V | ≥ k+ 1 and G−X is connected for every X ⊆ V with |X| ≤ k− 1. If G
is connected, we say that some v ∈ V is a cutvertex if G− v is not connected. We further
give a mixed notion of edge-connectivity and vertex-connectivity that was introduced by
Kaneko and Ota in [72]. Given integers ℓ, k ∈ Z≥0, we say that G is (ℓ, k)-connected if
|V | ≥ ℓ + 1 and G−X is k(ℓ− |X|)-edge-connected for every X ⊆ V with |X| ≤ ℓ− 1.
For some k ∈ Z≥0, a coloring of V is a function ϕ : V → {1, . . . , k}. A coloring is called
proper if ϕ(u) ̸= ϕ(v) for all u, v with uv ∈ E. We call k the number of colors. A graph
that has a proper coloring with two colors is called bipartite. The line graph of G is the
graph whose vertex set is E and that contains an edge between two vertices e, f ∈ E if
e ∩ f ̸= ∅.

A capacitated graph is a graph G = (V,E) where E does not contain parallel elements
together with a capacity function c : E → Z≥0. Clearly, a capacitated graph can be trans-
formed into a graph by replacing every edge of a certain capacity by the corresponding
number of parallel edges and vice-versa. However, when dealing with the running times
of algorithms, the distinction is crucial.

2.1.1.3 Directed graphs

A directed graph is a tuple D = (V,A) where V is a set called vertex set. Further, A is
a multiset called the set of arcs of D where every a ∈ A is an element of V 2. The first
element of a is called the tail and the second element is called the head of a. Often, we
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abbreviate a directed graph to a digraph. We abbreviate an arc a = (u, v) to uv with
tail(a)= u and head(a)= v. We also say that that a goes from u to v. We use n and m
for the number of vertices and arcs of a given digraph, respectively. Usually, a digraph is
illustrated by drawing a point for every vertex and an arrow from the point corresponding
to its tail to the point corresponding to its head for every arc. An example can be found
in Figure 2.1.3.

v1

v2 v3

v4

a1

a2

a3

D

Figure 2.1.3: An example for a drawing of a digraph D = (V,A) where V = {v1, v2, v3, v4}
and A = {a1 = v1v2, a2 = v3v2, a3 = v4v3}.

For some X ⊆ V , we denote A(X)= {a ∈ A : tail(a), head(a) ∈ X}. A subgraph of D
is a digraph D′ = (V ′, A′) such that V ′ ⊆ V and A′ ⊆ A. For some X ⊆ V , we denote by
D[X] the subgraph of D that is induced on X, i.e. the graph whose vertex set is X and
whose arc set contains all the arcs of A whose head and whose tail is in X. We abbreviate
D[V −X] to D−X. An arc a ∈ A with head(a) = tail(a) is called a loop. Two identical
arcs are called parallel. A digraph without loops or parallel arcs is called simple. Two
digraphs are vertex-disjoint (arc-disjoint) if their vertex sets (arc sets) are disjoint. For
some v ∈ V , we use N−

D (v) = {u ∈ V : uv ∈ A} and N+
D (v) = {u ∈ V : vu ∈ A} and we

call these sets the set of inneighbors and outneighbors of v, respectively. For two digraphs
D1 = (V,A1), D2 = (V,A2) on the same vertex set V , we use D1 ∪ D2 for (V,A1 ∪ A2).

Given some X ⊆ V , we denote by δ−
D(X) the set of arcs whose tail is in V −X and

whose head is in X. We use d−
D(X) for |δ−D(X)|, δ+

D(X) for δ−D(V −X) and d+
D(X) for

|δ+D(X)|. For a single vertex v ∈ V , we call d−D(v) and d+D(v) the in-degree and out-degree
of v, respectively. Given some k ∈ Z≥0, we say that D is k-arc-connected if d−D(X) ≥ k for
all nonempty, proper subsets X of V . We use strongly connected for 1-arc-connected. For
x, y ∈ V , we use λD(x, y) for min{d+D(X) : X is an xȳ-set }. We further say that D is k-
vertex-connected for some k ∈ Z≥0 if |V | ≥ k+1 and D−X is strongly connected for every
X ⊆ V with |X| ≤ k − 1. A vertex-maximal strongly connected induced subgraph of D
is called a strongly connected component of D. The following simple result is well-known.

Proposition 2.1.1. Let D = (V,A) be a digraph. There is some X ⊆ V such that D[X]
is a strongly connected component of D and d+D(X) = 0.

The underlying graph of a digraph is obtained by replacing every arc by an edge
connecting its head and its tail. We say that a digraph is weakly connected if its underlying
graph is connected.

A vertex v ∈ V is called a sink if d+D(v) = 0. Next, a vertex r ∈ V is called a root if
d−D(r) = 0. Further, r is called a simple root if d+D(r) ≤ 1. A (simply) rooted digraph is a
digraph D = (V ∪R,A) where R is a set of (simple) roots. If R contains a single vertex,
we say that D is singularly rooted. A singularly rooted digraph D = (V ∪ r, A) such that
d−D(X) ≥ k for all nonempty X ⊆ V for some k ∈ Z≥0 is called k-root-connected. We
abbreviate 1-root-connected to root-connected.

2.1.1.4 Mixed hypergraphs

In this section we introduce a much more general object which is called mixed hypergraphs
and generalizes both graphs and digraphs.
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A mixed hypergraph is a tuple F = (V,A ∪ E) where V is a set of vertices. Next, A
is a set of directed hyperedges (dyperedges), i.e. every a ∈ A is a tuple (tail(a), head(a))
where head(a) is a vertex in V and tail(a) is a nonempty subset of V −head(a). Further,
E is a set of hyperedges, i.e. every e ∈ E is a subset of V of size at least 2. A mixed
hypergraph without hyperedges is called a directed hypergraph (dypergraph) while a mixed
hypergraph without dyperedges is called a hypergraph. We say that F is a mixed graph
if each dyperedge has a tail of size exactly one and each hyperedge contains exactly two
vertices. For some a ∈ A, its underlying hyperedge is head(a) ∪ tail(a). The underlying
hypergraph of F is obtained by replacing every a ∈ A by its underlying hyperedge.

Let X ⊆ V. We say that dyperedge a ∈ A enters X if head(a) ∈ X and tail(a)−X ̸= ∅
and a leaves X if a enters V −X. We denote by δ−

A(X) the set of dyperedges entering X
and by δ+

A(X) the set of dyperedges leaving X. We use d−
A(X) for |δ−A(X)| and d+

A(X)
for |δ+A(X)|. We say that a hyperedge e enters or leaves X if e intersects both X and V −X
and denote by dE(X) the number of hyperedges entering X. We call a vertex r a root in F
if d−A(r) = dE(r) = 0 and tail(a) = {r} for all a ∈ δ+A(r) and a simple root if additionally
d+A(r) ≤ 1. Given a subpartition {Vi}ℓ1 of V and some A′ ∪ E ′ ⊆ A ∪ E , we denote by
eA′∪E′({Vi}ℓ

1) the number of dyperedges and hyperedges in A′ ∪ E ′ entering some Vi

(i ∈ {1, . . . , ℓ}). A hypergraph H = (V, E) is called partition-connected if eE(P) ≥ |P|− 1
for every partition P of V . A dypergraph D = (V,A) is called strongly connected if
d−A(X) ≥ 1 for every nonempty X ⊊ V . Further, we call D k-dyperedge-connected if the
deletion of any k − 1 dyperedges from D leaves a strongly connected dypergraph. For
some A′ ∪ E ′ ⊆ A ∪ E , we use V (A′ ∪ E ′) for

⋃
a∈A′ tail(a) ∪ head(a)

⋃
e∈E ′ e.

Trimming a dyperedge a means that a is replaced by an arc uv with v = head(a) and
u ∈ tail(a). Trimming a hyperedge e means that e is replaced by an arc uv for some
u ̸= v ∈ e.

We define a (simply) rooted mixed hypergraph as a mixed hypergraph F = (V ∪R,A∪E)
with R being a set of (simple) roots.

A mixed hypergraph F is called grounded if A = δ+F (R). The underlying grounded
mixed hypergraph of a mixed hypergraph F is obtained by replacing all dyperedges in
A − δ+F (R) by the corresponding hyperedges. For a hyperedge e ∈ E , its corresponding
bundle Ae is the set of all possible orientations of e, i.e. Ae = {(e − v, v) : v ∈ e}. The
directed extension DF = (V ∪ R,A ∪ AE) of F is obtained by replacing every e ∈ E by
its corresponding bundle.

2.1.2 Operations on graphs and digraphs

In this section, we discuss two operations that can be applied to graphs, namely contrac-
tions and orientations.

2.1.2.1 Contraction

First let G = (V,E) be an undirected graph and X ⊆ V . We now define a graph
G′ = (V ′, E ′) where V ′ = V − X ∪ x for a new vertex x. Next, E ′ contains every edge
f = yz ∈ E with {y, z} ∩X = ∅. Further, for every edge yz with y ∈ V −X and z ∈ X,
E ′ contains the edge yx. Observe that all edges having both ends in X do not appear in
G′. We say that G′ is obtained from G by contracting X and write G′ = G/X. For some
subgraph H of G, we abbreviate G/(V (H)) to G/H . For a collection H = {H1, . . . , Ht}
of vertex-disjoint subgraphs of G, we use G/H for ((G/H1)/ . . .)/Ht. An example can be
found in Figure 2.1.4.

For a vertex v ∈ V of degree 2, observe that when the set containing v and one of its
two neighbors is contracted, twice the same graph arises. We call this the operation the
suppression of v.
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v1 v4

x

G′

Figure 2.1.4: The graph G′ is obtained from G in Figure 2.1.2 by contracting {v2, v3} into
x.

Next, let D = (V,A) be a directed graph and X ⊆ V . We now define a digraph
D′ = (V ′, A′) where V ′ = V − X ∪ x for a new vertex x. First, A′ contains every arc
f = yz ∈ A with {y, z} ∩ X = ∅. Further, for every arc yz ∈ A with y ∈ V − X and
z ∈ X, A′ contains the arc yx and for every arc yz ∈ A with y ∈ X and z ∈ V −X, A′

contains the arc xz. Observe that all arcs with head and tail in X do not appear in D′.
We say that D′ is obtained from contracting X and write D′ = D/X. For some subgraph
Q of D, we abbreviate D/(V (Q)) to D/Q.

We now give a collection of easy results that show that certain connectivity properties
are maintained through contractions.

Proposition 2.1.2. Let G = (V,E) be a graph, X ⊆ V and k ∈ Z≥0.
(a) If G is k-edge-connected, then so is of G/X.
(b) If G is essentially k-edge-connected, then so is of G/X.

Proof. (a): Let x be the vertex X is contracted to and consider some S ⊆ V − X ∪ x.
By symmetry, we may suppose that x ∈ (V − X ∪ x) − S. We then obtain dG/X(S) =
dG(S) ≥ k, so G/X is k-edge-connected.

(b): Again, let x be the vertex X is contracted to. By (a) and as G is (k − 1)-
edge-connected, we obtain that G/X is (k − 1)-edge-connected. Now consider some S
⊆ V −X ∪ x with |S|, |(V −X ∪ x) − S| ≥ 2. By symmetry, we may suppose that x ∈
(V −X∪x)−S. As G is essentially k-edge-connected and |V −S| ≥ |(V −X∪x)−S| ≥ 2,
we obtain dG/X(S) ≥ dG(S) ≥ k. It follows that G/X is essentially k-edge-connected.

Proposition 2.1.3. For a subgraph Q of a directed graph D = (V,A), we have
(a) if D is strongly connected, then so is D/Q,
(b) if D/Q and Q are strongly connected, then so is D.

Proof. The proof of (a) is similar to the one of Proposition 2.1.2 (a). For (b), let X ⊆ V .
If X ∩ V (Q) and X ∩ (V − V (Q)) are nonempty, as Q is strongly connected, we obtain
d−D(X) ≥ d−Q(X ∩ V (Q)) ≥ 1. We may hence suppose by symmetry that X ∩ V (Q) = ∅.
In that case, as D/Q is strongly connected, we obtain d−D(X) = d−D/Q(X) ≥ 1. In any

case, we have d−D(X) ≥ 1, so D is strongly connected.

2.1.2.2 Orientation

We now give the definition of an operation which will play a major role in this thesis.
Given an undirected graph G, an orientation of G is obtained by replacing every edge uv
of G by exactly one of the arcs uv and vu. For example the digraph D in Figure 2.1.3 is
an orientation of the graph G in Figure 2.1.2. The existence of orientations with certain
connectivity properties will be the main subject of Section 3. For now, we wish to give
the following basic theorem which is due to Hakimi [58].

Theorem 2.1.1. Let G = (V,E) be a graph and let m : V → Z≥0 be a function. Then

there is an orientation G⃗ of G such that d−
G⃗
(v) = m(v) for all v ∈ V if and only if∑

v∈V m(v) = |E| and |E(X)| ≤
∑

v∈X m(v) for all X ⊆ V .
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More generally, an orientation of a mixed hypergraph F = (V,A ∪ E) is obtained by
replacing every hyperedge e ∈ E by a dyperedge a with tail(a) ∪ head(a) = e.

2.1.3 Particular graphs

We here give some important classes of graphs.

2.1.3.1 A list of basic graphs

We first give a list of well-known graphs, first starting with undirected graphs and then
switching to directed graphs.

The graph on n vertices that contains exactly one edge between any pair of its vertices
is called the complete graph Kn. Given a graph G, we denote the size of the vertex set of a
biggest subgraph of G that is a complete graph by ω(G). We call a connected undirected
graph a path if it contains exactly two vertices u, v of degree 1 and all other vertices are
of degree 2. We call u and v the endvertices of the path and speak of a uv-path. All other
vertices of the path are called interior vertices. Given a graph G and u, v ∈ V (G), we say
that v is reachable from u if G contains a uv-path as a subgraph. The length of the path
is the number of its edges. We now give a fundamental theorem that relates edge-disjoint
paths in a graph to the connectivity properties of a graph. It is due to Menger [93].

Theorem 2.1.2. Let G = (V,E) be a graph and let u, v ∈ V . Then the maximum number
of edge-disjoint paths between u and v in G is exactly λG(u, v).

A cycle is a 2-regular connected graph. The length of the cycle is the number of its
edges. A tree is a connected graph that does not have a cycle as a subgraph. A vertex
that is of degree 1 in a tree is called a leaf of the tree.

An illustration can be found in Figure 2.1.5.

P C TK4

Figure 2.1.5: Examples for the graphs decribed in Section 2.1.3.1. The graph K4 is the
complete graph on 4 vertices, the graph P is a path of length 3, the graph C is a cycle of
length 4 and T is a tree whose leaves are marked in red.

A hypertree is a hypergraph that can be trimmed to a tree. We need the following
well-known result.

Proposition 2.1.4. Let H = (V, E) be a hypertree and X ⊆ V . Then there are at most
|X| − 1 hyperedges which are completely contained in X.

We now wish to introduce one more graph that has a lot of significant properties and
was first mentioned by Kempe [75]. Another such property will be added in Section 3.1.4.
The graph is called the Petersen graph. It is constructed from two cycles of length 5
C = v1, . . . , v5 and C ′ = w1, . . . , w5 by adding the edges v1w1, v2w4, v3w2, v4w5 and v5w3.
An illustration can be found in Figure 2.1.6.

We now give some similar definitions in directed graphs. An orientation of a complete
graph is called a tournament. We call a directed graph a directed path if its underlying
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Figure 2.1.6: The Petersen graph.

graph is a path and the in- and out-degree of every vertex is at most 1. Observe that a
directed path contains exactly one vertex u of indegree 0 and one vertex v of outdegree
0. We call the directed path a uv-path and say that u and v are the ends or endvertices
of the path. All vertices on the path which are distinct from u and v are called interior
vertices of the path. Given a digraph D and u, v ∈ V (D), we say that v is reachable from
u if D contains a directed uv-path as a subgraph. We now give the directed equivalent of
Theorem 2.1.2 which is also due to Menger [93].

Theorem 2.1.3. Let D = (V,A) be a graph and let u, v ∈ V . Then the maximum number
of arc-disjoint directed paths from u to v in D is exactly λD(u, v).

We are now ready to give some more notation for mixed hypergraphs.
A mixed hyperpath is a mixed hypergraph that can be trimmed to a directed path. If

for u, v ∈ V , the directed path can be chosen to go from u to v, we say that the mixed
hyperpath is a mixed hyperpath from u to v. Given a mixed hypergraph F = (V,A ∪ E)
and u, v ∈ V , we say that v is reachable from u if there is a mixed hyperpath from u to v.

For a vertex set X ⊆ V , we denote by UF
X the set of vertices which are reachable

from the vertices in X by a mixed hyperpath in F , by PF
X the set of vertices from which

X is reachable by a mixed hyperpath in F and by F [X] the mixed subhypergraph of F
induced on X.

A subgraph induced on a maximal set of vertices that are pairwise mutually reachable
from each other is called a strongly connected component of F . We now give an analogous
result of Proposition 2.1.1 which is also well-known.

Proposition 2.1.5. There is some X ⊆ V such that F [X] is a strongly connected com-
ponent of D and dE(X) = d+A(X) = 0.

In mixed graphs, we abbreviate a mixed hyperpath to a mixed path.

Coming back to digraphs, a circuit is a strongly connected orientation of a cycle. For
both directed paths and circuits, the length is the number of arcs. An illustration can be
found in Figure 2.1.7.

We will make use of the following simple well-known property of digraphs.

Proposition 2.1.6. Let D = (V,A) be a digraph with d−D(v) ≥ 1 for all v ∈ V . Then D
contains a circuit as a subgraph.

2.1.3.2 T -joins

In this section, we give a first relation between graph theory and parity. The following
well-known result is fundamental.
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P CT
Figure 2.1.7: Examples for the digraphs decribed in Section 2.1.3.1. The digraph T is a
tournament on 4 vertices, the graph P is a directed path of length 3, the graph C is a
circuit of length 4.

Proposition 2.1.7. For any graph G = (V,E), the number of vertices in V which are of
odd degree in G is odd.

Given a graph G = (V,E) and some T ⊆ V , a T -join is a set F ⊆ E such that dF (v)
is odd for all v ∈ T and dF (v) is even for all v ∈ V − T . While there is a lot of theory on
T -joins, we only require the following basic result that can for example be found in [84].

Proposition 2.1.8. Let G = (V,E) be a connected graph and let T ⊆ V . Then G
contains a T -join if and only if |T | is even.

Observe that the necessity in Proposition 2.1.8 follows immediately from Proposition
2.1.7.

2.1.3.3 Eulerian graphs

In this section, we deal with an important graph property. Its definition is slightly different
for directed and undirected graphs. We say that an undirected graph is Eulerian if the
degree of each of its vertices is even. For a directed graph D = (V,A), we say that it is
Eulerian if d−D(v) = d+D(v) for all v ∈ V . The following simple results are well-known.

Proposition 2.1.9. Let D = (V,A) be an Eulerian digraph and X ⊆ V . Then d+D(X) =
d−D(X).

Proposition 2.1.10. An undirected graph has an Eulerian orientation if and only if it
is Eulerian.

The following result will serve as a motivation in Section 3.2.2. It is an immediate
consequence of Proposition 2.1.9.

Proposition 2.1.11. Every Eulerian orientation of a 2k-edge-connected Eulerian graph
is k-arc-connected.

We now give a somewhat stronger statement that will be needed in Section 3.1.4.

Proposition 2.1.12. Let G = (V,E) be an Eulerian graph and {ev, fv} two edges incident
to v for all v ∈ V ′ ⊆ V . Then there is an Eulerian orientation of G such that exactly one
of ev and fv enters v for all v ∈ V ′.

Proof. Let G′ be the graph obtained from G by replacing each vertex v ∈ V ′ by two
vertices uv and wv such that in G′, uv is incident to {ev, fv} and wv to δG({v})−{ev, fv}.
As G is Eulerian, so is G′. Hence there exists an Eulerian orientation D′ of G′. By
contracting uv and wv in D′ for all v ∈ V ′, we obtain the required orientation.
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The following result can be found in [37] and will be needed in Section 3.1.1.3.

Theorem 2.1.4. Let G,F be edge-disjoint graphs on the same vertex set V such that G∪F
is an Eulerian graph and let F⃗ be an orientation of F . Then there is an orientation G⃗ of
G such that G⃗ ∪ F⃗ is Eulerian if and only if dG(X) ≥ d+

F⃗
(X)− d−

F⃗
(X) for all X ⊆ V .

2.1.3.4 Spanning trees

This section deals with an object that plays a significant role in this thesis: spanning
trees. Given a graph G = (V,E), a subgraph of G is called spanning if it has the same
vertex set as G. A spanning subgraph that is a tree is a spanning tree. Spanning trees
have some interesting properties we work with throughout the thesis.

The following result can be found in a stronger form as Theorem 5.3.3 in [41].

Proposition 2.1.13. Let G = (V,E) be a graph and let T1, T2 be spanning trees of G.
Then there is a function σ : E(T1) → E(T2) such that for all e ∈ E(T1) both (T1−e)∪σ(e)
and (T2 − σ(e)) ∪ e are spanning trees of G.

We call a function like in Proposition 2.1.13 a tree-mapping function from T1 to T2.

Lemma 2.1.1. Let G = (V,E) be a graph, let T1, T2 be spanning trees of G, and let σ :
E(T1) → E(T2) be a tree-mapping function from T1 to T2. Further, let e1, e2, e3 ∈ E(T1)
be all incident to a common vertex v. Then {σ(e1), σ(e2), σ(e3)} contains at least two
distinct elements.

Proof. As T1 is a spanning tree, T1 − {e1, e2, e3} contains three components C1, C2, C3

none of which contains v such that ei is incident to a vertex in V (Ci) for i = 1, 2, 3. As
(T1−ei)∪σ(ei) is a spanning tree, we obtain that σ(ei) is incident to a vertex in V (Ci) for
i = 1, 2, 3. As V (C1), V (C2) and V (C3) are pairwise disjoint, the statement follows.

We next give a result that is the first of many packing results mentioned in this thesis.
It is due to Tutte [106] and Nash-Williams [95].

Theorem 2.1.5. Let G = (V,E) be a graph and k a positive integer. Then G has k edge-
disjoint spanning trees if and only if eE(P) ≥ k(q−1) for every partition P = {V1, . . . , Vq}
of V .

The following result is an immediate corollary of Theorem 2.1.5.

Theorem 2.1.6. Every 2k-edge-connected graph has k edge-disjoint spanning trees.

Further useful properties of spanning trees will be discussed in Section 2.4.

2.1.3.5 Arborescences

We now come to a class of digraphs that is in some way the directed equivalent of spanning
trees. An r-arborescence is a singularly rooted digraph B = (V ∪ r, A) whose underlying
graph is a tree and which is root-connected from r. An example can be found in Figure
2.1.8.

We now give a few more notations for an equivalent of arborescences in mixed hy-
pergraphs. A mixed hypergraph F is called a mixed hyperarborescence if all the dyper-
edges and all the hyperedges of F can be trimmed to get an arborescence. A mixed
r-hyperarborescence for some r ∈ V is a mixed hyperarborescence together with a vertex
r where that arborescence can be chosen to be an r-arborescence. A mixed hyperarbores-
cence that does not contain a hyperedge is called a hyperarborescence.
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Figure 2.1.8: An r-arborescence.

2.1.3.6 Matchings

Given a graph G = (V,E), a matching is a set M ⊆ E such that every v ∈ V is incident to
at most one edge in M . If dM(v) = 1 for all v ∈ V , we say that M is a perfect matching.
An illustration can be found in Figure 3.2.16.

Figure 2.1.9: The edges marked in red form a perfect matching of the Petersen graph.

We need the following theorem that is due to Petersen [99] and guarantees the existence
of perfect matchings in a large class of cubic graphs.

Theorem 2.1.7. Every cubic 2-edge-connected graph has a perfect matching.

2.2 Tools

In this section, we deal with two important tools that will play an important role in this
thesis. The first one is a general concept called submodularity that will be applied in
several parts of this thesis. The second one is a well-known operation on graphs called
splitting off that will be used in Section 5.

2.2.1 Submodularity

Let S be a set and f : 2S → R a function. Then f is called submodular if f(X) + f(Y ) ≥
f(X∪Y )+f(X∩Y ) for all X, Y ⊆ S. The main motivation for us considering submodular
functions comes from the following two connections to graph theory.

Proposition 2.2.1. Let G = (V,E) be a graph. Then the degree function dG : 2V → Z≥0

is submodular.
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Proposition 2.2.2. Let D = (V,A) be a digraph. Then the in-degree function d−D : 2V →
Z≥0 is submodular.

The following consequence of this result will be used in Section 4.4. We say that in a
root-connected singularly rooted digraph D = (V ∪ r, A), an arc a ∈ A is critical if D− a
is not root-connected.

Lemma 2.2.1. Let D = (V ∪ r, A) be a 2-root-connected singularly rooted digraph and let
D′ = (V ∪ r, A′) be a root-connected singularly rooted digraph that is obtained from D by
deleting α arcs of A. Then for any v ∈ V ∪ r, there are at most α arcs which are critical
in D′ and whose tail is v.

Proof. We proceed by induction on α. The statement is trivial for α = 0. We suppose
that it holds for all integers up to some α and show that it also holds for α + 1. Let
v ∈ V ∪ r and let {a1, . . . , aα+1} be a set of arcs in A such that D2 = D − {a1, . . . , aα+1}
is root-connected. By the inductive hypothesis, v is the tail of at most α critical arcs
in D1 = D − {a1, . . . , aα}. Suppose, for the sake of a contradiction, that there are
two arcs vw1, vw2 which are critical in D2, but not in D1. It follows that there are
sets X1, X2 ⊆ V such that d−D2

(X1), d
−
D2
(X2) = 1, d−D1

(X1), d
−
D1
(X2) = 2, vw1 enters

X1 and vw2 enters X2. Since D2 = D1 − aα+1, it follows that aα+1 enters X1 ∩ X2, so
X1 ∩ X2 ̸= ∅. As D2 is root-connected, we have d−D2

(X1 ∩ X2) ≥ 1. As vwi enters Xi,
we have v ∈ V ∪ r − (X1 ∪ X2) and so both vw1 and vw2 enter X1 ∪ X2. This yields
d−D2

(X1) + d−D2
(X2) = 1 + 1 < 1 + 2 ≤ d−D2

(X1 ∩X2) + d−D2
(X1 ∪X2), a contradiction to

Proposition 2.2.2.

We further need two more properties that relate the sizes of several cuts in a graph.
Both of them are routine and can be verified by counting the contribution of each edge
or arc.

Proposition 2.2.3. Let G = (V,E) be a graph, G⃗ an orientation of G and S1, S2 ⊆ V .
Then d−

G⃗
(S1 ∪ S2) + d−

G⃗
(S1 ∩ S2) = d−

G⃗
(S1) + d−

G⃗
(S2)− dG(S1, S2)

As the following result will later be applied in the capacitated setting, we give them
here in the capacitated form.

Proposition 2.2.4. Let (G = (V,E), c) be a capacitated graph. For all X, Y ⊆ V, the
following hold:

(a) c(δG(X)) + c(δG(Y )) = c(δG(X ∩ Y )) + c(δG(X ∪ Y )) + 2c(δG(X, Y )),

(b) c(δG(X)) + c(δG(Y )) = c(δG(X − Y )) + c(δG(X − Y )) + 2c(δG(X, Y )).

2.2.2 Splitting off

We now deal with an operation called splitting off. Given a graph H = (V ∪ s, E) with a
specified vertex s and two edges su, sv ∈ E which are incident to s, we define the graph
Hu,v by V (Hu,v) = V ∪s and E(Hu,v) = E−{su, sv}∪uv. For an illustration, see Figure
2.2.1.

A similar notion exists for directed graphs. Splitting offs were first introduced by
Lovász in [87]. We are mainly interested in splitting off in the context of (2, k)-connectivity
and therefore postpone all technical results on splitting off to Section 5. Nevertheless, we
wish to mention that the theory of maintaining conncectivity properties through splitting
offs is pretty rich. Two of the most important results were proven by Lovász [87] con-
cerning global connectivity and Mader [89] concerning local connectivity. These results
have been useful for both connectivity augmentation problems and constructive charac-
terizations of graphs with certain connectivity properties. For a more detailed survey on
the applications of splitting offs, see [41], Chapter 8.
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Figure 2.2.1: An illustration of the splitting off operation. The graph Hu,v is obtained
from H by splitting off the edges su and sv.

2.3 Complexity

In this section, we give the notions on complexity theory we need in this thesis. We first
introduce the Landau notation which is the measurement for the running time of the
algorithms considered in this thesis and the basis of complexity theory as such. Next, we
describe the fundamental complexity classes P and NP and their relationship. Further,
we present several NP-complete problems that will serve for reductions in later sections.
After, we introduce two complexity classes which provide a finer complexity notion based
on the introduction of a parameter. Finally, we introduce a further complexity assumption
called the Exponential Time Hypothesis.

2.3.1 Landau notation

We now introduce this classic notation that was developped by Bachmann in the late 19th
century in order to evaluate the running time of an algorithm [2]. For an exact definition
of an algorithm using Turing machines see [91]. All algorithms considered in this thesis
are deterministic meaning that they do not take any probabilistic decision. In order to
measure the quality of an algorithm, we wish to determine how long it takes to run it for
an instance of given size. However, in order to make this measurement easily comparable,
we wish to avoid that this running time depends on the concrete implementation of the
algorithm or the machine the algorithm is run on. We therefore count the number of basic
calculations the algorithm executes for an input of given size where basic calculations
mean addition and multiplication of real numbers. However, we are not interested in
the absolute number of such calculations but rather in the asymptotic behaviour of this
number. More concretely, we say that an algorithm runs in O(f) time for some function
f that maps the input size to the integers if there is a constant c ∈ R such that for any
given input I, the number of basic calculations that the algorithm executes for the input
I is at most cf(|I|). Observe that the function f may have several arguments if there are
several parameters to measure the size of the input, for example the size of the vertex set
and the size of the edge set of a graph. We call an algorithm that runs in O(f) time for
some function f an O(f) time algorithm. If f(n) ≤ nk for all n ∈ Z≥0 for some constant
k ∈ R, we say that the algorithm runs in polynomial time and call it a polynomial time
algorithm.

2.3.2 P versus NP

All algorithmic problems considered in this thesis can be viewed as decision problems.
This means that a problem consists of a characterization of the form of the input and a
question related to that input that can be uniquely answered positively or negatively. An
instance of the problem then is a concrete input for which the problem is to be solved.
If the answer is positive (negative) for this instance, we say that the instance is positive
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(negative). The complement of a problem is obtained by exchanging the positive and
negative instances of the problem. For most discrete decision problems, trivial but very
slow algorithms that decide whether an instance is positive or negative can easily be found.
The most interesting question often is whether the problem can be solved by a polynomial
time algorithm. In this section, we introduce the two most important complexity classes
in this thesis.

2.3.2.1 P

A decision problem is said to be in P if there is an algorithm that correctly solves the
problem and runs in polynomial time. Observe that a problem is in P if and only if its
complement is in P.

2.3.2.2 NP

We now come to a different complexity class that is seemingly much larger than P. The
class NP contains all the problems for which a positive instance can be verified in poly-
nomial time. More precisely, there is a polynomial time algorithm A taking as arguments
the instance I and a socalled witness w with the following property: For every positive
instance I, there is a witness w(I) whose size is polynomial in |I| such that A(I, w(I)) is
positive and for every negative instance I, we have that A(I, w) is negative for any w. A
problem is said to be in co-NP if its complement is in NP.

2.3.2.3 NP-completeness

Observe that every problem in P is also in NP as an empty witness can be used. The
other inclusion, known as the P=NP problem, is probably the singularly most important
open problem in complexity theory. It is has first been considered by Cook [21].

Interestingly, a very concrete approach to try to prove P=NP exists. A problem is
called NP-complete if it is in NP and the existence of a polynomial time algorithm for the
problem implies P=NP. A problem is co-NP-complete if its complement is NP-complete.
Surprisingly, after Cook gave a first NP-complete problem [21], a list of very natural
NP-complete problems was provided by Karp [73]. Since then, numerous further NP-
complete problems have been found and the notion of NP-completeness has become the
most important measure of difficulty for algorithmic problems. Some such problems can
be found in Section 2.3.3. We wish to remark that an NP-completeness result also has
a structural meaning: if a problem is NP-complete, there is little hope to find a natural
characterization of the positive instances. The most common way to prove that a problem
P1 is NP-complete is to find a different problem P2 which is known to be NP-complete and
then show that a polynomial time algorithm for P1 implies a polynomial time algorithm
for P2. Such a proof is called a reduction.

2.3.3 A collection of NP-complete problems

We here give a collection of NP-complete problems we will need for reductions in the main
part of this thesis.

2.3.3.1 3-SAT

We here consider the following problem that was proven to be NP-complete by Karp
in [73]. A binary variable is a variable that can be assigned exactly one of the values
TRUE and FALSE. Given a binary variable x, the two literals on x are x and x̄ where x̄
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denotes the negation of x. For a variable set X, a truth assignment for X is a mapping
ϕ : X → {TRUE,FALSE}X . Given a truth assignement ϕ for X, we say that a literal
x(x̄) is TRUE if ϕ(x) =TRUE(FALSE). A clause is a set of literals.

3-Satisfiability (3-SAT)

Instance A set X of binary variables and a set of clauses C such that every C ∈ C
contains 3 literals on X.

Question Is there a truth assignment to the variables of X such that every C ∈ C
contains at least one true literal?

2.3.3.2 (3,B2)-SAT

The next problem is a more restricted version of 3-SAT. It has been proven that this
version remains NP-complete by Berman, Karpinski and Scott in [12].

2-balanced 3-SATisfiablity ((3,B2)-SAT)

Instance A set X of boolean variables, a formula consisting of a set C of clauses each
containing 3 distinct variables with every x ∈ X appearing exactly twice in positive and
twice in negated form.

Question Is there a truth assignment to the variables of X such that every clause in
C contains at least one true litteral?

2.3.3.3 MNAE3-SAT and CMNAE3-SAT

We here consider a different variant of the 3-SAT problem.

Monotone Not-all-equal-3-SAT (MNAE3-SAT)

Instance: A set X of boolean variables, a formula consisting of a set C of clauses each
containing 3 distinct literals, none of which are negated.

Question: Is there a truth assignment for the variables of X such that every clause
in C contains at least one true and at least one false literal?

Our interest in this problem is justified by the following result due to Schaefer [101].

Theorem 2.3.1. MNAE3-SAT is NP-complete.

Given a MNAE3-SAT formula F = (X, C), we call a truth assignment to the variables
of X feasible if every clause of C contains at least one true and at least one false literal. In
order to make this problem suitable for a reduction in Section 3.1.4, we need to slightly
adapt it. We define the formula graph GF by V (GF ) = X ∪ C and there is an edge
between the vertices corresponding to a variable xi and a clause Cj if xi is contained in
Cj. We call a formula F connected if GF is connected. We show that MNAE3-SAT stays
NP-complete with this additional assumption.

Connected Monotone Not-all-equal-3-SAT (CMNAE3-SAT)

Instance: A set X of boolean variables, a connected formula consisting of a set C of
clauses each containing 3 distinct variables none of which are negated.

Question: Is there a feasible truth assignment for the variables of X?

Lemma 2.3.1. CMNAE3-SAT is NP-complete.
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Proof. We show a reduction from MNAE3-SAT. Recall that MNAE3-SAT is NP-complete
by Theorem 2.3.1. Let F be a MNAE3-SAT formula. Let G1, . . . , Gt be the connected
components of GF . For i = 1, . . . , t, consider the MNAE3-SAT formula Fi that consists
of the variables and clauses corresponding to vertices in Gi. Observe that GFi

= Gi

and so every Fi is an instance of CMNAE3-SAT. We will show that F is a positive
instance of MNAE3-SAT if and only if all of the Fi are positive instances of CMNAE3-
SAT. First assume that there is a feasible truth assignment for F . The restriction of this
assignment to the variables of Fi yields a feasible truth assignment for Fi for all i = 1, . . . , t.
Now assume that there is a feasible truth assignment for Fi for i = 1, . . . , t. As every
vertex corresponding to a variable is contained in exactly one component, every variable
is contained in exactly one of the Fi and so we obtain a unique assignment of boolean
values to all variables. As every clause of C is contained in some Fi, this assignment is
feasible for F . This finishes the proof.

2.3.3.4 MAXCUT and AMAXCUT

We introduce one more NP-complete problem that is of slightly different nature. The
unweighted MAXCUT problem can be formulated as follows:

MAXCUT:

Instance: A graph H = (V,E) and a positive integer k.

Question: Is there some X ⊆ V such that dH(X) > k?

A proof of the following theorem can be found in [56].

Theorem 2.3.2. MAXCUT is NP-complete.

For a reduction in Section 3.1.1, we need a slightly adapted version of MAXCUT.

Adapted MAXCUT (AMAXCUT):

Instance: An Eulerian graph H = (V,E) such that |E| ≥ 6 is even and an even
positive integer k.

Question: Is there some X ⊆ V such that dH(X) > k?

Lemma 2.3.2. AMAXCUT is NP-complete.

Proof. We show this by a reduction from MAXCUT. Let (H = (V,E), k) be an instance
of MAXCUT. We may obviously suppose that |E| ≥ 3. Let H ′ = (V,E′) be the graph
which is obtained from H by replacing every edge of E by 2 parallel copies of itself.
Observe that |E ′| = 2|E| ≥ 6 is even and dH′(v) = 2dH(v) is even for all v ∈ V . Further,
for every X ⊆ V , we have dH′(X) = 2dH(X). This yields that (H, k) is a positive instance
of MAXCUT if and only if (H ′, 2k) is a positive instance of AMAXCUT.

2.3.4 XP and FPT

We now introduce two more complexity classes. For both of these complexity classes, a
parameter k is part of the input. The parameter k can either be explicitely specified in
the input or it can be implicitely contained in the remaining input, for example it can be
an invariant of a graph that is part of the input. We now say that a problem is in XP
with respect to the parameter k if there is a function c : Z≥0 → Z≥0 and an algorithm
that correctly solves the problem and that for any given input I with parameter k runs
in O(|I|c(k)). Further, we say that a problem is in FPT with respect to the parameter k
if there is a function f : Z≥0 → Z≥0 and an algorithm that correctly solves the problem
and that for any given input I with parameter k runs in f(k)|I|O(1). For a survey on
parameterized complexity, see [22].
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2.3.5 The Exponential Time Hypothesis (ETH)

We now come to a further complexity assumption that was introduced by Impagliazzo
and Paturi in [67]. While it is somewhat weaker than the assumption that P ̸= NP, it
is also considered a rather mild assumption in complexity theory. The Exponential Time
Hypothesis (ETH) states that there is some ϵ > 0 such that there is no algorithm that
solves 3-SAT correctly and runs in 2ϵℓ ·(ℓ+m)O(1) wherem denotes the number of variables
and ℓ denotes the number of clauses of the formula. We further need the following result
that shows that the ETH is equivalent to a seemingly slightly weaker version of itself.

Lemma 2.3.3 (Impagliazzo et al. [68]). Assuming the ETH, there is some ϵ > 0 such
that there is no algorithm that solves 3-SAT correctly and runs in 2ϵm · (ℓ+m)O(1) where
m denotes the number of variables and ℓ denotes the number of clauses of the formula.

2.4 Matroids

We now deal with an object called matroids that was introduced by Whitney in 1935 in
[111]. For a deep survey on the theory of matroids, see [98]. For us, matroids will mainly
serve as a tool in Section 4. We now proceed to the formal definition of a matroid. Note
that there are several equivalent ways to define a matroid. We choose the one that is
most convenient for our purposes.

Definition 2.4.1. A matroid is a set S called the ground set together with a collection
I ⊆ 2S called the collection of independent sets that satisfies the following properties:

(I0) ∅ ∈ I,

(I1) if Z ⊊ Z ′ and Z ′ ∈ I, then Z ∈ I,

(I2) if Z,Z ′ ∈ I and |Z| < |Z ′|, then there exists some x ∈ Z ′−Z such that Z∪{x} ∈ I.

For a matroid M , we denote by I(M) the collection of independent sets of M . A set
X ⊆ S that is not independent is called dependent. A maximal independent set of M is
called a basis of M . We next define a function rM : 2S → Z≥0, called the rank function
of M by rM(Z) = max{|Y | : Y ⊆ Z, Y ∈ I(M)}.

The following routine result can be found in a similar form as Theorem 5.3.7 in [41].

Proposition 2.4.1. Let M be a matroid with ground set S. Then rM satisfies the follow-
ing properties:

(R0) 0 ≤ rM(Z) ≤ |Z| for every Z ⊆ S,

(R1) rM(Y ) ≤ rM(Z) for all Y, Z ⊆ S with Y ⊆ Z,

(R2) rM is submodular.

Further, every integer valued function satisfying (R0) − (R2) is the rank function of a
unique matroid on S.

It hence follows that a matroid is uniquely determined by its ground set and rank
function. In the following, we often define a matroid by M =(S, r) meaning that S is
the ground set of the matroid and r is its rank function. We use r(M) for r(S). The
following basic result is well-known.

Proposition 2.4.2. Let M = (S, r) be a matroid and let B be a basis of M . Then
|B| = r(S).
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Further, we define spanM(Z)= {s ∈ S : rM(Z∪s) = rM(Z)}. We need the following
simple, well-known property.

Proposition 2.4.3. Let M = (S, r) be a matroid and X1, . . . , Xt ⊆ S for some t ∈ Z≥0.
Then

⋃
i∈{1,...,t} spanM(Xi) ⊆ spanM(

⋃
i∈{1,...,t}Xi).

Some s ∈ S is called a loop in M if {s} is dependent in M . Two elements s1, s2 ∈ S
are called parallel in M if none of s1, s2 is a loop and {s1, s2} is dependent in M .

2.4.1 General results on matroids

We here describe three basic results on matroids. Firstly, we show that for two matroids
on a given ground set, the structure of sets which are independent in both matroids is
well understood. Next, we give an operation that allows to add an element to a matroid.
After, we give two operations that can be applied to obtain a new matroid from two other
ones.

2.4.1.1 Matroid intersection

We here describe two theorems that deal with the problem of computing a common
independent set of fixed size of two given matroids on the same ground set. The first one
is of structural nature and was proven by Edmonds in [30].

Theorem 2.4.1. Let M1 = (S, r1) and M2 = (S, r2) be two matroids on a common ground
set S and µ a positive integer. Then a common independent set of size µ of M1 and M2

exists if and only if r1(Z) + r2(S − Z) ≥ µ for all Z ⊆ S.

The next theorem is of algorithmic nature. It is also due to Edmonds [29]. Given a
matroid M on ground set S, an algorithm that decides whether a given subset of S is
independent in M is called an independence oracle for M .

Theorem 2.4.2. Let M1 = (S, r1) and M2 = (S, r2) be two matroids on a common ground
set S with polynomial independence oracles for M1 and M2 being available, µ a positive
integer and w : S → R a weight function. We can decide if a common independent set of
size µ of M1 and M2 exists in polynomial time. Further, if this is the case, then one of
minimum weight can be computed in polynomial time.

2.4.1.2 Parallel extension

We now describe a simple well-known method to add an element to a matroid.

Lemma 2.4.1. Let M = (S, rM) be a matroid, s ∈ S and t a new element that is not in
S. Then there is a unique matroid M ′ = (S ∪ t, rM ′) on S ∪ t such that rM ′(Z) = rM(Z)
and rM ′(Z ∪ {s, t}) = rM ′(Z ∪ t) = rM ′(Z ∪ s) = rM(Z ∪ s) for all Z ⊆ S − s.

Given a matroid M = (S, rM), some s ∈ S and some integer k ≥ 1, we say that we
replace s by k parallel copies of itself if we replace M by the matroid that is obtained
applying the above operation k − 1 times for the element s.

2.4.1.3 Direct matroid sum

We now introduce a simple matroid operation that merges two matroids into a bigger
one. It is also described in Section 5.2.2 of [41].
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Theorem 2.4.3. Let M1,M2 be matroids on disjoint ground sets S1, S2. Then {I1 ∪ I2 ⊆
S1 ∪ S2 : I1 ∈ I(M1), I2 ∈ I(M2)} forms the collection of independent sets of a matroid,
called the direct sum of M1 and M2. Moreover, if a polynomial time independence oracle
for both M1 and M2 is available, then a polynomial time independence oracle for the direct
sum of M1 and M2 is also available.

2.4.1.4 Matroid sum

We now discuss one more well-known operation on matroids. Even though its definition
has some similarity with direct matroid sums, the difference is significant. The following
result was first proven by Edmonds and Fulkerson in [32].

Theorem 2.4.4. Let M1,M2 be matroids on a common ground set S. Then {I1 ∪ I2 ⊆
S : I1 ∈ I(M1), I2 ∈ I(M2)} forms the collection of independent sets of a matroid, called
the sum of M1 and M2. Moreover, if a polynomial time independence oracle for both M1

and M2 is available, then a polynomial time independence oracle for the sum of M1 and
M2 is also available.

By repeatedly applying Theorem 2.4.4, we obtain the following result that will be used
several times in Section 2.4.2.2.

Theorem 2.4.5. Let M be a matroid on a ground set S and k a positive integer. Then
{I1 ∪ . . . ∪ Ik ⊆ S : Ij ∈ I(M) for j = 1, . . . , k} forms the collection of independent sets
of a matroid we denote by Mk. Moreover, if a polynomial time independence oracle for
M is available, then a polynomial time independence oracle for Mk is also available.

2.4.2 Particular matroids

We here introduce a collection of matroids that will prove useful in Section 4.

2.4.2.1 matroids and generalized partition matroids

Given a ground set S of size n and some nonnegative integer k ≤ n, it is easy to see that
{Z ⊆ S : |Z| ≤ k} forms the collection of independent sets of a matroid. This matroid
is called the uniform matroid Un,k. The uniform matroid Un,n is called the free matroid
on the set S. A matroid that is obtained as the direct sum of several uniform matroids is
called a partition matroid.

We now describe a partition matroid that arises in the context of arborescence pack-
ings. It has been introduced in a slightly more stricted setting by Edmonds [31]. Given
a simply rooted dypergraph D = (V ∪ R,A), its k-entering matroid is the direct sum of
the uniform matroids of rank k on δ−D(v) for all v ∈ V . Observe that the ground set of
this matroid is A as R is a set of roots.

While partition matroids are well studied, we now come to a less common, much more
general matroid which was considered in a similar form by Frank in [41], see Problem
5.3.4.

Let {S1, . . . ,Sn} be a partition of a set S and µ, αi, βi ∈ Z for all i ∈ {1, . . . , n}.
For Z ⊆ S and i ∈ {1, . . . , n}, let zi = |Z ∩ Si|. Let

I = {Z ⊆ S : zi ≤ βi for all i ∈ {1, . . . , n},
∑n

i=1max{αi, zi} ≤ µ},

B = {Z ⊆ S : αi ≤ zi ≤ βi for all i ∈ {1, . . . , n}, |Z| = µ} and

r(Z) = min{
∑n

i=1 min{βi, zi}, µ−
∑n

i=1 max{αi − zi, 0}} for all Z ⊆ S.
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We acknowledge that there is a different proof of the following result due to Szigeti
[103]. It is shorter but it uses rather sophisticated methods of the theory of generalized
polymatroids.

Theorem 2.4.6. There exists a matroid M whose set of independent sets is I, set of
bases is B and rank function is r if and only if

max{αi, 0} ≤ min{βi, |Si|} for all i ∈ {1, . . . , n}, (2.4.1)
n∑

i=1

max{αi, 0} ≤ µ ≤
n∑

i=1

min{βi, |Si|}. (2.4.2)

The matroid M in Theorem 2.4.6 is called generalized partition matroid.

Proof. First suppose that M is a matroid and let Z ∈ B. For all i ∈ {1, . . . , n}, this yields
max{αi, 0} ≤ zi ≤ min{βi, |Si|}. Further, we obtain

∑n
i=1 max{αi, 0} ≤

∑n
i=1 zi = µ and∑n

i=1max{βi, |Si|} ≥
∑n

i=1 zi = µ.
We now show sufficiency through three claims.

Claim 2.4.1. I forms the collection of independent sets of a matroid M .

Proof. We need to prove that I satisfies (I0)− (I2) from Definition 2.4.1.
(I0): By (2.4.1), we have βi ≥ 0 = |∅ ∩ Si| for i ∈ {1, . . . , n}. Further, (2.4.2) yields∑n

i=1max{αi, |∅ ∩ Si|} =
∑n

i=1max{αi, 0} ≤ µ. This yields ∅ ∈ I.
(I1): Let Z ⊊ Z ′ ∈ I. Then zi ≤ z′i ≤ βi for i = 1, . . . , n and

∑n
i=1max{αi, zi} ≤∑n

i=1max{αi, z
′
i} ≤ µ, so we have Z ∈ I.

(I2): Let Z,Z ′ ∈ I and |Z| < |Z ′|. Let J= {j ∈ {1, . . . , n} : zj < z′j}. Observe that
J ̸= ∅ as |Z| < |Z ′|. For all j ∈ J , let xj ∈ (Sj ∩Z ′)−Z and Zj = Z ∪{xj}. Observe that
for all j ∈ J , we have zjj ≤ z′j ≤ βj and zji ≤ zi ≤ βi for all i ∈ {1, . . . , n} − {j}. In order
to prove that Zj ∈ I for some j ∈ J , it remains to show that there is some j ∈ J with∑n

i=1max{αi, z
j
i } ≤ µ. If there is some j ∈ J with zj < αj, then

∑n
i=1max{αi, z

j
i } =∑n

i=1max{αi, zi} ≤ µ, so we are done. We may hence suppose that zj ≥ αj for all
j ∈ J . This yields max{αj − z′j, 0} ≥ 0 = max{αj − zj, 0} for all j ∈ J . For all
i ∈ {1, . . . , n}−J , we have zi ≥ z′i yielding max{αi−z′i, 0} ≥ max{αi−zi, 0}. This yields
max{αi − z′i, 0} ≥ max{αi − zi, 0} for all i ∈ {1, . . . , n}. As |Z| < |Z ′| and Z ′ ∈ I, for
some arbitrary j ∈ J we obtain

n∑
i=1

max{αi, z
j
i } ≤

n∑
i=1

max{αi, zi}+ 1

=
n∑

i=1

max{αi − zi, 0}+
n∑

i=1

zi + 1

≤
n∑

i=1

max{αi − z′i, 0}+
n∑

i=1

z′i

=
n∑

i=1

max{αi, z
′
i}

≤ µ.

Claim 2.4.2. Z ∈ B if and only if Z is a maximal element in I.
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Proof. First let Z ∈ B. We obtain µ = |Z| =
∑n

i=1 zi =
∑n

i=1max{αi, zi}. As βi ≥ zi
for all i ∈ {1, . . . , n}, we have Z ∈ I. Further, for any proper superset Z ′ of Z, we have∑n

i=1max{αi, z
′
i} ≥ |Z ′| > |Z| = µ, so Z ′ /∈ I. It follows that Z is maximally in I.

Now let Z be a maximal element in I. If zj < αj for some j ∈ {1, . . . , n}, let x ∈ Sj−Z
and let Z ′ = Z ∪ {x}. As αj ≤ βj and Z ∈ I, we obtain z′j ≤ zj + 1 ≤ αj ≤ βj and
z′i = zi ≤ βi for all i ∈ {1, . . . , n}−{j}. Further,

∑n
i=1max{αi, z

′
i} =

∑n
i=1 max{αi, zi} ≤

µ, so Z ′ ∈ I. This contradicts the maximality of Z. We obtain that zj ≥ αj for all
j ∈ {1, . . . , n}.

If |Z| < µ, by
∑n

i=1 min{βi, |Si|} ≥ µ, there exists some j ∈ {1, . . . , n} such that
zj < min{βj, |Sj|}. Let x ∈ Sj − Z and let Z ′ = Z ∪ {x}. We have z′j ≤ zj + 1 ≤ βj and
z′i = zi ≤ βi for all i ∈ {1, . . . , n}− {j}. Further,

∑n
i=1max{αi, z

′
i} =

∑n
i=1max{αi, zi}+

1 = |Z|+ 1 ≤ µ, so Z ′ ∈ I. This contradicts the maximality of Z. It follows that Z ∈ B.

Claim 2.4.3. The rank function of M is r.

Proof. Let Z ⊆ S and Y be a maximal element of I in Z.
As Y ∈ I and Y ⊆ Z, we obtain yi ≤ min{βi, zi} for all i ∈ {1, . . . , n}. This

yields rM(Z) = |Y | ≤
∑n

i=1 min{βi, zi}. Further, as yi ≤ zi for all i ∈ {1, . . . , n}
and Y ∈ I, we obtain

∑n
i=1 yi +

∑n
i=1max{αi − zi, 0} =

∑n
i=1max{αi − zi + yi, yi} ≤∑n

i=1 max{αi, yi} ≤ µ, so rM(Z) = |Y | ≤ µ −
∑n

i=1max{αi − zi, 0}. It follows that
rM(Z) ≤ min{

∑n
i=1min{βi, zi}, µ−

∑n
i=1max{αi − zi, 0}} = r(Z).

Let J= {j ∈ {1, . . . , n} : yj < min{zj, βj}}. If J = ∅, we obtain rM(Z) = |Y | ≥∑n
i=1 min{zi, βi} ≥ min{

∑n
i=1 min{βi, zi}, µ −

∑n
i=1 max{αi − zi, 0}} = r(Z), so we are

done. We may hence suppose that J ̸= ∅.
For all j ∈ J , let xj ∈ (Sj ∩Z)−Y and let Y j = Y ∪{xj}. Observe that for all j ∈ J ,

we have yjj = yj + 1 ≤ min{zj, βj} and yji = yi ≤ min{zi, βi} for all i ∈ {1, . . . , n} − {j}.
If

∑n
i=1 max{αi, yi} < µ, then for some arbitrary j ∈ J , we have

∑n
i=1 max{αi, y

j
i } ≤∑n

i=1max{αi, yi}+1 ≤ µ, so Y j ∈ I, a contradiction to the maximality of Y . This yields∑n
i=1max{αi, yi} = µ.

If there is some j ∈ J such that yj < αj, then
∑n

i=1 max{αi, y
j
i } =

∑n
i=1max{αi, yi} =

µ, so Y j ∈ I, a contradiction to the maximality of Y . This yields yj ≥ αj for all
j ∈ J , so, as yj ≤ zj, we obtain max{αj − yj, 0} = 0 = max{αj − zj, 0}. For all
i ∈ {1, . . . , n} − J , we have either yi = βi or yi = zi. If yi = βi, by yi ≤ zi and
αi ≤ βi, we obtain max{αi − yi, 0} = 0 = max{αi − zi, 0}. If yi = zi, we clearly obtain
max{αi−yi, 0} = max{αi−zi, 0}. It follows that max{αi−yi, 0} = max{αi−zi, 0} holds
for all i ∈ {1, . . . , n}.

This yields rM(Z) =
∑n

i=1 yi =
∑n

i=1 max{αi, yi} −
∑n

i=1 max{αi − yi, 0} = µ −∑n
i=1max{αi − zi, 0} ≥ min{

∑n
i=1min{βi, zi}, µ−

∑n
i=1max{αi − zi, 0}} = r(Z).

The three previous claims yield the theorem.

We are now ready to apply this result to a matroid that generalizes the k-entering
matroid of a dypergraph.

Corollary 2.4.1. Let D = (V,A′) be a directed hypergraph and f, g : V → Z≥0 integer
functions such that the following two conditions are satisfied:

max{k − g(v), 0} ≤ min{k − f(v), d−A′(v)} for all v ∈ V, (2.4.3)∑
v∈V

max{k − g(v), 0} ≤ k(|V | − 1) ≤
∑
v∈V

min{k − f(v), d−A′(v)}. (2.4.4)
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Then {Z ⊆ A′ : |Z| = k(|V | − 1), f(v) ≤ k − d−Z(v) ≤ g(v) for all v ∈ V } is the set of

bases of a matroid M
(k,f,g)
D on A′ with rank function

r
M

(k,f,g)
D

(Z) = min{
∑
v∈V

min{k − f(v), d−Z(v)}, k(|V | − 1)−
∑
v∈V

max{k − g(v)− d−Z(v), 0}}.

Proof. Let S = A′, µ = k(|V | − 1) and Sv = δ−A′(v), αv = k − g(v) and βv = k − f(v)
for all v ∈ V . Then (2.4.3) and (2.4.4) coincide with (2.4.1) and (2.4.2), respectively. We
can therefore apply Theorem 2.4.6 from which the statement immediately follows.

The following is an immediate corollary of the definition of M
(k,f,g)
D .

Lemma 2.4.2. Given a directed hypergraph D = (V,A′), f, g : V → Z≥0 integer functions
satisfying (2.4.3) and (2.4.4) and Z ⊆ A′, we can decide in polynomial time if Z is

independent in M
(k,f,g)
D .

2.4.2.2 Hypergraphic matroids

We here give a construction of a matroid associated to a hypergraph. Interestingly, while
the construction is well-known when restricted to graphs, its generalization to hypergraphs
has received significantly less attention. The following matroid construction was first
observed by Lorea [86] and was later rediscovered by Frank, Király and Kriesell [51].
Given a hypergraph H = (V, E), let IH = {Z ⊆ E : |V (Z ′)| > |Z ′| for all ∅ ≠ Z ′ ⊆ Z}.

Theorem 2.4.7. The set IH is the set of independent sets of a matroid MH on E.

The matroid MH is called the hypergraphic matroid of the hypergraph H. If H is a
graph, we call MH the graphic matroid of H.

For an algorithmic result in Section 4.3, we need to show that an independence oracle
for MH exists. In order to do so, we require the following two preliminaries. The first
result can be found as Corollary 2.6 in [51].

Proposition 2.4.4. Let H = (V, E) be a hypergraph. Then rMH(E) = |V | − 1 if and only
if H is partition-connected.

This result is useful due to the next one which can be found in [41] as a comment after
Theorem 9.1.22 stating that the proof of Theorem 9.1.15 is algorithmic.

Proposition 2.4.5. There is a polynomial time algorithm that decides whether a given
hypergraph H is partition-connected.

We are now ready to conclude that a polynomial time independence oracle for MH
exists.

Lemma 2.4.3. Given a hypergraph H = (V, E) and Z ⊆ E, we can decide in polynomial
time whether Z is independent in MH.

Proof. If |Z| ≥ |V |, it follows immediately from the definition of MH that Z is dependent
in MH. We may hence suppose that |Z| ≤ |V |−1. Let a hypergraph H′ be obtained from
(V,Z) by adding a set S of |V | − 1 − |Z| hyperedges each of which equals V . Observe
that |Z ∪ S| = |V | − 1.

Claim 2.4.4. Z is independent in MH if and only if H′ is partition-connected.
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Proof. First suppose that Z is independent in MH. By definition of MH, for any Z ′ ⊆ Z,
we have |V (Z ′)| > |Z ′|. For any Z ′ ⊆ Z ∪ S with Z ′ ∩ S ̸= ∅, we have |V (Z ′)| = |V | >
|Z ∪ S| ≥ |Z ′|. It follows that |V (Z ′)| > |Z ′| for all Z ′ ⊆ Z ∪ S and so by definition,
Z ∪S is independent in MH′ , so |Z ∪S| = rMH′ (Z ∪S) = |V | − 1. Now Proposition 2.4.4
yields that H′ is partition-connected.

Now suppose that H′ is partition-connected. It follows from Proposition 2.4.4 that
rMH′ (Z ∪S) = |V |− 1 = |Z ∪S|. It follows that MH′ is the free matroid, so in particular,
Z is independent in MH′ . It follows that Z is also independent in MH.

By Claim 2.4.4 and as H′ can be constructed efficiently, it suffices to check whether
H′ is partition-connected. By Proposition 2.4.5, this can be done in polynomial time.

We also need the k-sum matroid of MH, that is the matroid on ground set E in which
a subset of E is independent if it can be partitioned into k independent sets of MH. We
call this matroid k-hypergraphic matroid and refer to it as Mk

H. The following formula
for the rank function of Mk

H was proved by Frank, Király and Kriesell [51].

Theorem 2.4.8. For all Z ⊆ E, we have rMk
H
(Z) = min{eZ(P) + k(|V | − |P|) :

P a partition of V }.
We now extend the previous construction to mixed hypergraphs. Let F = (V,A ∪ E)

be a mixed hypergraph, HF = (V, EA ∪ E) the underlying hypergraph of F and DF =
(V,A ∪ AE) the directed extension of F . We now construct the extended k-hypergraphic
matroid Mk

F on A∪AE from Mk
HF

by replacing every e ∈ E by |e| parallel copies of itself,
associating these elements to the dyperedges in Ae and associating every element of EA
to the corresponding element in A. We give the following formula for the rank function
of Mk

F .

Proposition 2.4.6. For all Z ⊆ A ∪AE , we have

rMk
F
(Z) = min{|Z∩A(P)|+|{e ∈ E(P) : Z∩Ae ̸= ∅}|+k(|V |−|P|) : P a partition of V }.

(2.4.5)

Proof. Let Z ′ be obtained from Z by deleting all but one element of Z ∩ Ae for all
e ∈ E with |Z ∩ Ae| ≥ 2. As all elements in Ae are parallel in Mk

F , we obtain that
rMk

F
(Z) = rMk

F
(Z ′). As |Z ′ ∩ Ae| ≤ 1 for every e ∈ E , there exists a matroid M ′ that is

isomorphic to Mk
H, is a restriction of Mk

F and whose ground set contains Z ′. It follows
from Theorem 2.4.8 that

rMk
F
(Z) = rMk

F
(Z ′)

= rM ′(Z ′)

= min{|Z ′ ∩ A(P)|+ |Z ′ ∩ E(P)|+ k(|V | − |P|) : P a partition of V }
= min{|Z ∩ A(P)|+ |{e ∈ E(P) : Z ∩Ae ̸= ∅}|+ k(|V | − |P|) : P a partition of V }.

Again, for the algorithmic part, we need to show that an independence oracle for Mk
F

is available.

Lemma 2.4.4. Given a mixed hypergraph F = (V,A∪E) and Z ⊆ A∪AE , we can decide
in polynomial time if Z is independent in Mk

F .

Proof. If Z contains at least 2 elements of Ae for some e ∈ E , then Z is dependent in Mk
F

by definition. Otherwise, there is a matroid M ′ that is isomorphic to Mk
HF

, is a restriction
of Mk

F and whose ground set contains Z. Further, M ′ can be found efficiently. It therefore
suffices to prove that a polynomial time independence oracle for Mk

HF
is available. This

follows immediately from Lemma 2.4.3 and Theorem 2.4.5.
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2.4.2.3 Tanigawa matroids

In order to deal with this class of matroids, we first introduce some more notation that
will prove useful in Section 4. A (simply) matroid-rooted digraph is a tuple (D,M) where
D = (V ∪R,A) is a (simply) rooted digraph and M = (R, rM) is a matroid with ground
set R and rank function rM .

A (simply) matroid-rooted mixed hypergraph is a tuple (F ,M) where F = (V ∪R,A∪E)
is a (simply) rooted mixed hypergraph and M = (R, rM) is a matroid with ground set
R and rank function rM . Note that a rooted mixed hypergraph can be considered as a
matroid-rooted mixed hypergraph for the free matroid on R.

2.4.2.3.1 Tanigawa matroids from simply matroid-rooted hypergraphs

This matroid is a straightforward extension of the construction of the graphic case found
by Király, Szigeti and Tanigawa in [79]. The authors of [79] also rely on ideas of Katoh
and Tanigawa, see [74]. Given a grounded simply rooted mixed hypergraph (H = (V ∪
R, δ+H(R)∪E),M), we define I(H,M) = {X ⊆ δ+H(R)∪E : rM(R)(|V (Y)|−1)+rM(R(Y)) ≥
|Y| for all nonempty Y ⊆ X}. The following is proven for the graphic case in a slightly
different form in [79]. Its proof can be literally generalized for the hypergraphic case.

Theorem 2.4.9. I(H,M) is the set of independent sets of a matroid on δ+H(R) ∪ E.

We refer to this matroid as the Tanigawa matroid T(H,M) of (H,M).
As mentioned in [79], the following has been shown in [74].

Lemma 2.4.5. A polynomial time independence oracle for T(H,M) is available.

2.4.2.3.2 Extended Tanigawa matroids from simply matroid-rooted mixed
hypergraphs

We now extend the previous construction to matroid-rooted mixed hypergraphs. Let
(F = (V ∪R,A∪E),M) be a matroid-rooted mixed hypergraph, let DF = (V ∪R,A∪AE)
be the directed extension of F and let H = (V ∪R, δ+F (R)∪EA−δ+F (R)∪E) be the underlying
grounded rooted mixed hypergraph of F . The ground set of the extended Tanigawa
matroid of (F ,M) is A∪AE and it is constructed from T(H,M) by replacing every e ∈ E by
|e| parallel copies of itself, associating them to the elements in Ae and associating every
element of EA−δ+F (R) to the corresponding element of A − δ+F (R). We will refer to this
matroid as T(F ,M). The following result can be concluded from Lemma 2.4.5 by similar
means as those used when proving Lemma 2.4.4.

Lemma 2.4.6. A polynomial time independence oracle for T(F ,M) is available.
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Chapter 3

Orientations

In this section, we deal with problems on the relationship between the connectivity prop-
erties of a given graph and the connectivity properties of its orientations. More partic-
ularly, given a certain connectivity property in directed graphs, we wish to determine
which graphs have an orientation with this property.

This section is divided into two parts. The first one is concerned with orientations for
arc-connectivity and the second one is concerned with orientations for vertex-connectivity.

The tractability of these two problem settings is very different. In the case of arc-
connectivity, for any k ∈ Z≥0, a characterization of graphs admitting a k-arc-connected
orientation is well-known due to a result of Nash-Williams [96]. We hence discuss several
related more complicated problems in Section 3.1. Firstly, we deal with a result of Nash-
Williams that is much stronger than the above characterization and give some results
related to it. Next, we deal with a more general setting concerning orientations for local
arc-connectivity. After, we consider a problem where we search for an orientation for
which in addition to the connectivity condition, conditions on the parity of the in-degree
of every vertex are imposed. Finally, we deal with orientations of a graph that form an
intermediate step between strong connectivity and 2-arc-connectivity.

The situation for vertex-connectivity is much different. A characterization of highly
vertex-connected graphs seems out of reach due to a hardness result of Durand de Gevi-
gney [24]. We give a survey on related results. Further, we determine some small classes
of graphs all of whose Eulerian orientations are highly vertex-connected.

3.1 Orientations for arc-connectivity

This section is dedicated to finding an orientation of a given graph that satisfies some
arc-connectivity requirements. For rooted connectivity, it is easy to see that every rooted
connected graph G = (V ∪ r, E) has a root-connected orientation. The following general-
ization to arbitrary k was proven by Frank in [44].

Theorem 3.1.1. Given some positive integer k and a singularly rooted graph G = (V ∪
r, E), there is a k-root-connected orientation of G if and only if eG(P) ≥ k(|P| − 1) for
every partition P of V ∪ r.

We now turn our attention to global arc-connectivity. The following fundamental
theorem characterizes graphs having a strongly connected orientation. It was proven by
Robbins [100] and dates back to 1939.

Theorem 3.1.2. A graph has a strongly connected orientation if and only if it is 2-edge-
connected.

In 1960, this was generalized to higher connectivity by Nash-Williams [96].
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Theorem 3.1.3. For every positive integer k, a graph has a k-arc-connected orientation
if and only if it is 2k-edge-connected.

Theorems 3.1.2 and 3.1.3 can be considered the starting point of the theory of graph
orientations for connectivity. In the last decades, numerous generalizations of Theorems
3.1.2 and 3.1.3 have been found.

One such attempt is the consideration of more general objects like mixed graphs and
hypergraphs instead of graphs. Concerning hypergraphs, Theorem 3.1.3 can be general-
ized in the following way:

Theorem 3.1.4. A hypergraph H = (V, E) has a k-dyperedge-connected orientation if
and only if eE(P) ≥ k|P| holds for every partition P of V .

While for k = 1 a relatively simple algorithmic proof can be found in [41], a more
sophisticated technique is applied to obtain the more general result by Frank, Király and
Király in [50].

For mixed graphs, the following generalization of Theorem 3.1.2 was observed by
Boesch and Tindal [17]. A rather simple algorithmic proof was given by Frank [43].

Theorem 3.1.5. A mixed graph G = (V,A ∪ E) has a strongly connected orientation
if and only if the underlying graph of G is 2-edge-connected and there is no nonempty,
proper X ⊆ V with dE(X) = d−A(X) = 0.

It turns out that the problem becomes much more complicated when considering k-arc-
connected orientations for arbitrary positive integers k. Nevertheless, a pretty technical
characterization can be obtained as pointed out in Section 16.1.5 of [41]. A generalization
of this result to mixed hypergraphs by Frank, Király and Király can be found in [50]

In this section, we discuss several further extensions of Theorems 3.1.2 and Theorem
3.1.3.

First, in Section 3.1.1, we discuss a much stronger form of Theorem 3.1.3 which was
also proven by Nash-Williams in [96]. We survey some results related to this theorem and
its proof and add a new negative result.

Section 3.1.2 is concerned with the very general problem of finding orientations with a
prescribed local arc-connectivity. We show that this problem is hard in general and give
some related open problems.

In Section 3.1.3, we consider a different way of generalizing Theorems 3.1.2 and 3.1.3.
We search for an orientation in which, in addition to the arc-connectivity property, the
indegree of every vertex is required to be of a certain parity. The most interesting ques-
tion in this field is whether the existence of a strongly connected orientation with this
additional property can be decided in polynomial time. While this question remains open,
we reduce it to a special case where all vertices are of small degree. Further, we give a
negative result for the corresponding problem in mixed graphs.

In Section 3.1.4, we deal with a different problem motivated by Theorems 3.1.2 and
Theorem 3.1.3. Theorem 3.1.3 raises the question whether graphs of odd global edge-
connectivity also have some interesting orientability properties. We approach this by
allowing several orientations for a given graph and requiring that every edge is insignificant
in a certain way in some of these orientations. This leads to the definition of a graph
invariant that counts the number of necessary orientations. Concentrating on a base case
of this problem, we provide several bounds on this parameter.
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3.1.1 Well-balanced orientations

This section deals with a much stronger version of Theorem 3.1.3 that was also proven
by Nash-Williams [96]. In Section 3.1.1.1, we describe this theorem and give a rough
overview of its proof. In Section 3.1.1.2 we give an overview of possible extensions of the
theorem. Finally, in Section 3.1.1.3, we give a hardness result which is related to the proof
of the theorem.

3.1.1.1 Nash-Williams’ theorem

While Theorem 3.1.3 gives a necessary and sufficient condition for a graph admitting an
orientation of high global arc-connectivity, it does not take into account the fact that
the connectivity properties of a digraph can only be described very roughly by a single
value displaying its global arc-connectivity. For example, if the connectivity between two
vertices in a given graph is high, the connectivity in the orientation between these vertices
which is guaranteed by Theorem 3.1.3 can be small due to a small cut in the given graph
even if this cut does not separate the vertices. In order to overcome this inconvenience,
a much stronger connectivity condition for the orientation has been introduced by Nash-
Williams. Given a graph G = (V,E), an orientation G⃗ of G is called well-balanced if

λG⃗(u, v) ≥ ⌊λG(u,v)
2

⌋ for all u, v ∈ V . The famous theorem of Nash-Williams states that
such an orientation can always be found. It dates back to 1960 and can be found in [96].

Theorem 3.1.6. Every graph has a well-balanced orientation.

Despite numerous attempts, no simple proof of Theorem 3.1.6 has been found. All
proofs rely on an intermediate result which states that it is possible to add a set of edges
to a given graph such that the graph becomes Eulerian without changing the connectivity
properties of the graph too much. More concretely, given a graph G = (V,E), an odd-
vertex pairing of G is another graph F = (V,E ′) on the same vertex set such that every
vertex that is of odd degree in G is of degree 1 in F and every vertex that is of even
degree in G is an isolated vertex of F . The point of using an odd-vertex pairing F is that
we hope to find an Eulerian orientation of G∪F whose restriction to G is a well-balanced
orientation of G. We say that an odd-vertex pairing is orientation-admissible if for every
Eulerian orientation G⃗ ∪ F⃗ of G ∪ F , we have that G⃗ is a well-balanced orientation of
G. Observe that the existence of an orientation-admissible odd-vertex pairing clearly
implies a well-balanced orientation. The approach of Nash-Williams relies on proving
the existence of an odd-vertex pairing with a slightly stronger property. Given a graph
G = (V,E), an odd-vertex pairing F is called cut-admissible if dF (X) ≤ dG(X)−RG(X)

for all X ⊆ V where RG(X) = max{⌊λG(u,v)
2

⌋ : u ∈ X, v ∈ V − X}. This definition is
motivated by the following result which is part of the proof of Nash-Williams in [96]. As
the proof is very simple, we include it here.

Lemma 3.1.1. Let G = (V,E) be a graph and let F be an odd-vertex pairing of G. If F
is cut-admissible, then F is also orientation-admissible.

Proof. We show that if F is not orientation-admissible, then F is also not cut-admissible.
Suppose that F is not orientation-admissible, so there is an Eulerian orientation G⃗∪ F⃗ of
G∪F such that G⃗ is not well-balanced. This means that there are some u, v ∈ V such that
λG⃗(u, v) < ⌊λG(u,v)

2
⌋. Therefore there is some uv̄-set X ⊊ V such that d+

G⃗
(X) < ⌊λG(u,v)

2
⌋.

As G⃗ ∪ F⃗ is Eulerian, we obtain that dF (X) ≥ d−
G⃗
(X) − d+

G⃗
(X) = dG(X) − 2d+

G⃗
(X) >

dG(X)− 2⌊λG(u,v)
2

⌋ ≥ dG(X)−RG(X), so F is not cut-admissible.

On the other hand, not every orientation-admissible odd-vertex pairing is cut-admissible,
see Figure 3.1.1. The key ingredient of the proof of Theorem 3.1.6 is the following result
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X

Figure 3.1.1: The edges of G are marked in solid and those of F are marked in dashed. The
set X shows that F is not cut-admissible. On the other hand, F is trivially orientation-
admissible.

that asserts the existence of a cut-admissible pairing for every graph.

Theorem 3.1.7. Every graph has a cut-admissible odd-vertex pairing.

Observe that by Lemma 3.1.1, Theorem 3.1.7 implies Theorem 3.1.6. Taken into
account the simplicity of the proof of Lemma 3.1.1, the main difficulty of the proof of
Theorem 3.1.6 clearly is the proof of Theorem 3.1.7. The original proof of Nash-Williams is
based on an inductive argument and is very complicated. New proofs have been provided
by Frank [39] and Mader [89], but all these proofs remain pretty involved.

Further, Nash-Williams observed that his proof technique allows to obtain orientations
that have an even stronger property than being well-balanced. Given a graph G = (V,E),

an orientation G⃗ of G is called best-balanced if G⃗ is well-balanced and |d+
G⃗
(v)− d−

G⃗
(v)| ≤ 1

holds for all v ∈ V . Observe that not every well-balanced orientation is best-balanced,
see Figure 3.1.2.

v
Figure 3.1.2: It is easy to see that the digraph is a well-balanced orientation of its under-
lying graph. However, |d+

G⃗
(v)− d−

G⃗
(v)| = 2, so the orientation is not best-balanced.

Clearly, the proof technique described above using orientation-admissible pairings
yields a well-balanced orientation that is in fact best-balanced. This observation, to-
gether with Theorem 3.1.7 yields the following result:

Theorem 3.1.8. [96] Every graph has a best-balanced orientation.

Next, we wish to mention that well-balanced and best-balanced orientations can also
be found efficiently. In particular, Gabow [52] provided an algorithm that finds a cut-
admissible odd-vertex pairing in a given graph and runs in O(nm2) time. Together with
the proof technique described above, this yields an algorithm of the same running time
that finds a best-balanced orientation.

3.1.1.2 Extensions of well-balanced pairings

This part gives an overview of possible extensions of Theorems 3.1.6 and 3.1.8. While it
contains a lot of negative results, it also contains several interesting extensions of Theorems
3.1.6 and 3.1.8 and some open questions.

As a first extension, weighted versions can be considered. Most generally, for every
edge, we can associate a cost to each of its orientations. For some graph G = (V,E),
recall that AE is the set of arcs described by AE = {uv, vu : uv ∈ E}. Observe that
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for every orientation G⃗ = (V, E⃗) of G, we have E⃗ ⊆ AE. We consider the following two
problems:

Min Cost Well-Balanced orientation (MCWBO):

Instance: A graph G = (V,E), a cost function c : AE → R and a constant k ∈ R.
Question: Is there a well-balanced orientation G⃗ = (V, E⃗) of G such that c(E⃗) < k?

Min Cost Best-Balanced orientation (MCBBO):

Instance: A graph G = (V,E), a cost function c : AE → R and a constant k ∈ R.
Question: Is there a best-balanced orientation G⃗ = (V, E⃗) of G such that c(E⃗) < k?

The following negative result is proven by Bernáth et al. in [13].

Theorem 3.1.9. MCWBO and MCBBO are NP-complete.

In a more restricted setting, costs can be associated to the vertices rather than to the
possible orientations. We consider the following two problems:

Min Vertex Cost Well-Balanced Orientation (MVCWBO):

Instance: A graph G = (V,E), a cost function c : V → R and a constant k ∈ R.
Question: Is there a well-balanced orientation G⃗ of G such that∑

v∈V c(v)d−
G⃗
(v) < k?

Min Vertex Cost Best-Balanced Orientation (MVCBBO):

Instance: A graph G = (V,E), a cost function c : V → R and a constant k ∈ R.
Question: Is there a best-balanced orientation G⃗ of G such that∑

v∈V c(v)d−
G⃗
(v) < k?

Observe that MVCWBO is a special case of MCWBO as the cost of each arc in AE

can be chosen to be the cost associated to its head. Similarly, MVCBBO is a special case
of MCBBO. Nevertheless, it is proven in [13] that even these more restricted problems
are not algorithmically tractable.

Theorem 3.1.10. MVCWBO and MVCBBO are NP-complete.

A next attempt to generalize Theorems 3.1.6 and 3.1.8 is to search for well-balanced
or best-balanced orientations that satisfy some restrictions on the in- and outdegree of
each vertex. We consider the following two problems:

Bounded Well-Balanced Orientation (BWBO):

Instance: A graph G = (V,E) and two functions l+, l− : V → Z≥0.

Question: Is there a well-balanced orientation G⃗ = (V, E⃗) of G such that d+
G⃗
(v) ≥

l+(v) and d−
G⃗
(v) ≥ l−(v)?

Bounded Best-Balanced Orientation (BBBO):

Instance: A graph G = (V,E) and two functions l+, l− : V → Z≥0.

Question: Is there a best-balanced orientation G⃗ = (V, E⃗) of G such that d+
G⃗
(v) ≥

l+(v) and d−
G⃗
(v) ≥ l−(v)?

Again, the algorithmic tractability of these problems has been disproven in [13].

Theorem 3.1.11. BWBO and BBBO are NP-complete.

We will make use of the NP-completeness of BWBO in Section 3.1.2 for a reduction.
A similar problem that is still open can be obtained when only one bound is imposed

on the degrees of the orientation. In particular, the following question was asked by Frank
in [41] as Research Problem 9.8.2, see also [33].
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Research Problem 3.1.1. Let G = (V,E) be a graph and l− : V → Z≥0 be a function.

Can we check in polynomial if there is a best-balanced orientation G⃗ of G such that d−
G⃗
(v) ≥

l−(v) for all v ∈ V ?

Next, we try to find well-balanced or best-balanced orientations of a given graph G
that maintain these properties when considering their restrictions to a subgraph of G.
If G is a graph, H is a subgraph of G and G⃗ is an orientation of G, we denote by
H⃗G⃗ the orientation of H that is obtained by orienting all edges of H in the same way

they are oriented in G⃗. Taking into account the number of related hard problems, it is
perhaps surprising that Nash-Williams was able to establish the following result along
with Theorem 3.1.6 in [96].

Theorem 3.1.12. Let G be a graph and let H be a subgraph of G. Then G has a best-
balanced orientation G⃗ such that H⃗G⃗ is a best-balanced orientation of H.

However, we cannot hope to get a similar result for a longer chain of nested subgraphs
as was proven in [13].

Theorem 3.1.13. There are 3 graphs G1, G2, G3 such that G2 is a subgraph of G1, G3 is
a subgraph of G2 and there is no well-balanced orientation G⃗1 of G1 such that G⃗2G⃗1

and

G⃗3G⃗1
are well-balanced.

On the other hand, in [81], Király and Szigeti establish several strong results on
simultaneous well-balanced orientations. First, they generalize Theorem 3.1.12 for the
case when we want the orientation to be well-balanced on an arbitrary number of edge-
disjoint subgraphs.

Theorem 3.1.14. Let G = (V,E) and let G1 = (V,E1), . . . , Gt = (V,Et) be a collection
of subgraphs of G such that Ei∩Ej = ∅ for all 1 ≤ i < j ≤ t. Then there is a best-balanced

orientation G⃗ of G such that G⃗iG⃗ is best-balanced for all i = 1, . . . , t.

They also establish a result that shows that for Eulerian graphs orientations are avail-
able which maintain the property of being best-balanced when deleting an arbitrary ver-
tex.

Theorem 3.1.15. [81] Let G = (V,E) be an Eulerian graph. Then there is an Eulerian

orientation G⃗ of G such that G⃗− v is a best-balanced orientation of G− v for all v ∈ V .

They also give another result that shows that we can find best-balanced orientations
that maintain that property when certain vertex sets are contracted.

Theorem 3.1.16. [81] Let G = (V,E) be a graph and let {V1, . . . , Vt} be a partition of

V . Then G has a best-balanced orientation G⃗ such that G⃗/(V −Vi) is a best-balanced ori-

entation of G/(V −Vi) for i = 1, . . . , t and ((G⃗/V1)/ . . .)/Vt is a best-balanced orientation
of ((G/V1)/ . . .)/Vt.

Our next attempt of generalization is based on the consideration of mixed graphs
instead of undirected graphs. First we consider the question whether a given mixed graph
can be oriented to obtain a well-balanced orientation of the underlying graph. More
concretely, we consider the following two problems:

Mixed well-balanced orientation (MWBO):

Instance: A mixed graph G = (V,A ∪ E).

Question: Is there an orientation G⃗ of G that is a well-balanced orientation of the
underlying graph of G?
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Mixed best-balanced orientation (MBBO):

Instance: A mixed graph G = (V,A ∪ E).

Question: Is there an orientation G⃗ of G that is a best-balanced orientation of the
underlying graph of G?

Unfortunately, it turns out again that these problems are not algorithmically tractable.
The following result is proven in [13].

Theorem 3.1.17. MBBO is NP-complete.

The following result is due to Bernáth and Joret [14].

Theorem 3.1.18. MWBO is NP-complete.

We next propose an open problem making a different connection between well-balanced
orientations and mixed graphs. Given a mixed graph G = (V,A∪E), we define λG(u, v)
to be the maximum number of edge- and arc-disjoint mixed paths from u to v and let
λ∗

G(u, v) = min{λG(u, v), λG(v, u)}. We say that an orientation G⃗ of G is well-balanced

if λG⃗(u, v) ≥ ⌊λ∗
G(u,v)

2
⌋ for all u, v ∈ V . We here propose the following conjecture.

Conjecture 3.1.1. Every mixed graph has a well-balanced orientation.

Observe that for undirected graphs, by Theorem 2.1.2, Conjecture 3.1.1 is equivalent
to Theorem 3.1.6 and for directed graphs, Conjecture 3.1.1 trivially holds. Unfortunately,
no good equivalent of best-balanced orientations seems to exist for mixed graphs.

Finally, one can also consider well-balanced orientations of hypergraphs. Clearly,
not every hypergraph has a well-balanced orientation as can be seen by considering the
hypergraph that contains 3 vertices and whose hyperedge set consists of two copies of
the vertex set. It therefore remains to determine which hypergraphs have a well-balanced
orientation.

Research Problem 3.1.2. Determine the complexity of deciding whether a hypergraph
has a well-balanced orientation.

In [35], it is mentioned that further interesting questions could be obtained by changing
the notion of dyperedges.

3.1.1.3 Checking the admissibility of odd-vertex pairings

This section provides a negative result concerning the algorithmic verification of the ad-
missibility properties of an odd-vertex pairing.

Frank asked whether the admissibility properties of a given odd-vertex pairing can be
checked in polynomial time. This problem can be found as Research Problem 9.8.1 in
[41]. We here give a negative answer to this question following the proof in [59]. More
formally, we consider the following two problems:

Cut-admissibility (CA):

Instance: A graph G and an odd-vertex pairing F of G.

Question: Is F cut-admissible in G?

Orientation-admissibility (OA):

Instance: A graph G and an odd-vertex pairing F of G.

Question: Is F orientation-admissible in G?

While it is not clear whether CA and OA are in NP, they can easily be seen to be in
co-NP. As our main results of this section, we prove the following two theorems.
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Theorem 3.1.19. CA is co-NP-complete.

Theorem 3.1.20. OA is co-NP-complete.

In Subsection 3.1.1.3.1, we introduce a gadget we will need later in the main proof and
give some of its properties. In Subsection 3.1.1.3.2, we show through a reduction from
AMAXCUT that an intermediate problem with a more local cut condition than CA is
hard. In Subsection 3.1.1.3.3, we give the construction of the graph that is the key in our
reduction. In Subsection 3.1.1.3.4, we conclude that the reduction works indeed.

3.1.1.3.1 Augmented (α, β)-grids

In this section, we introduce a class of grid-like graphs which will be used as a gadget in
our reduction. A grid is a graph on ground set {1, . . . , µ} × {1, . . . , ν} for some positive
integers µ, ν where two vertices (i1, j1) and (i2, j2) are adjacent if |i1−i2|+|j1−j2| = 1. For
some i ∈ {1, . . . , µ}, we call {(i, 1), . . . , (i, ν)} the row i. Similarly, for some j ∈ {1, . . . , ν},
we call {(1, j), . . . , (µ, j)} the column j.

In order to define augmented (α, β)-grids for an odd integer α≥ 3 and an integer
β≥ 2, we first consider a grid with αβ rows and α+1

2
columns. Now, for some 1 ≤

γ ≤ β, let Lγ= {l1, . . . , lγ} = {(α, 1), (2α, 1), . . . , (γα, 1)} and Pγ= {p1, . . . , pγ} =
{(α, α+1

2
), (2α, α+1

2
), . . . , (γα, α+1

2
)}. We use L for Lβ and P for Pβ. We now create the

augmented (α, β)-grid W by adding an edge from (1, j) to (αβ, j) for all j = 1, . . . , α+1
2

and by adding parallel edges in the columns 1 and α+1
2

in a way that none of them is
incident to a vertex in L ∪ P and that every vertex in V (W ) − (L ∪ P ) has degree 4 in
W . Observe that this is possible because both α− 1 and α+1 are even. An example can
be found in Figure 3.1.3.

l1

l2

l3

l4

p2

p3

p4

p1

Figure 3.1.3: An augmented (3, 4)-grid.

Later, when W is not clear from the context, we use L(W ) for the set L etc. We now
collect some properties of augmented (α, β)-grids.

Lemma 3.1.2. Let W = (V,E) be an augmented (α, β)-grid for some odd integer α ≥ 3
and some integer β ≥ 2. Then W is 3-edge-connected and if dW (X) = 3 for some
nonempty X ⊊ V , then X = {v} or X = V − {v} for some v ∈ L(W ) ∪ P (W ).

Proof. Let ∅ ⊊ X ⊊ V such that dW (X) ≤ 3. Observe that every row that intersects
both X and V − X contributes at least 1 to dW (X) and every column that intersects
both X and V −X contributes at least 2 to dW (X). It follows that one of X or V −X
is contained in one row and one column. We obtain that |X| = 1 or |V −X| = 1 and so
the statement follows by construction.
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Lemma 3.1.3. Let W = (V,E) be an augmented (α, β)-grid for some odd integer α ≥ 3
and some integer β ≥ 2. Further, let X ⊆ V such that both W [X] and W [V −X] have a
connected component containing at least two vertices of L(W )∪P (W ). Then dW (X) > α.

Proof. Suppose for the sake of a contradiction that there is some X ⊆ V such that both
W [X] and W [V − X] have a connected component containing at least two vertices of
L(W )∪P (W ) and dW (X) ≤ α. We choose X so that the total number of connected com-
ponents of W [X] and W [V −X] is minimized. First suppose that W [X] is disconnected.
It follows from the assumption that W [X] has a connected component with vertex set
C such that W [X − C] has a connected component containing at least two vertices in
L(W ) ∪ P (W ). Let X ′ = X − C. We obtain dW (X ′) ≤ dW (X) ≤ α, a contradiction
to the minimal choice of X. It follows that W [X] is connected. Similarly, W [V − X] is
connected.

If every column contains an element of X and an element of V − X, each column
contributes 2 to dW (X) and so dW (X) ≥ 2α+1

2
> α. We may hence suppose by symmetry

that there is a column that is completely contained in X and that there are two vertices
li1 , li2 ∈ (V −X)∩L. Observe that every path from li1 to li2 intersects at least min{|i1 −
i2|, β − (|i1 − i2|)}α + 1 > α rows. Each of these rows contributes 1 to dW (X), so
dW (X) > α.

3.1.1.3.2 The intermediate cut problem

Let (H = (VH, EH), k) be an instance of AMAXCUT. We abbreviate |VH | and |EH | to
n and m, respectively. Let M = mn− k. We now create a graph G1 = (V1, E1) with
V1 = VH ∪ {q, s, t} where q, s and t are 3 new vertices. Let E1 consist of M edges from q
to s, m edges from s to every v ∈ VH and m edges from t to every v ∈ VH . A schematic
drawing of G1 can be found in Figure 3.1.4.

t

M edges

m edges

q s

VH

Figure 3.1.4: A schematic drawing of G1.

Lemma 3.1.4. There is some qt̄-set X ⊆ V1 such that dG1(X)−dH(X ∩VH) < M if and
only if (H, k) is a positive instance of AMAXCUT.

Proof. First suppose that (H, k) is a positive instance of AMAXCUT, so there is some
X ⊆ VH such that dH(X) > k. Let X ′ = {q, s} ∪ X. Observe that X ′ is a qt̄-set and
dG1(X

′) = mn. This yields dG1(X
′)− dH(X

′ ∩ VH) = dG1(X
′)− dH(X) < M .

Now suppose that there is some qt̄-set X ⊆ V1 such that dG1(X)− dH(X ∩ VH) < M .
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Claim 3.1.1. s ∈ X.

Proof. Suppose otherwise. If X = {q}, then dG1(X) − dH(X ∩ VH) = M − 0 ≮ M ,
a contradiction. We may hence suppose that X contains some v ∈ VH . It follows from
dH(X∩VH) ≤ m and construction that dG1(X)−dH(X∩VH) ≥ dG1(q, s)+dG1(v, t)−m =
M +m−m ≮ M , a contradiction.

By Claim 3.1.1 and construction, we obtain dG1(X) = mn. This yields dH(X ∩VH) >
dG1(X)−M = mn−M = k, so (H, k) is a positive instance of AMAXCUT.

3.1.1.3.3 The main construction

We now construct an instance (G2, F ) of CA. The graph G2 = (V2, E2) is obtained from
G1 by replacing all vertices in V1 − {q, t} by certain gadgets.

For every v ∈ VH , G2 contains an augmented (M+m+1,m+ dH(v)
2

)-grid W v. Further,
G2 contains an augmented (M +m+1,M + k

2
)-grid W s. Observe that W v for all v ∈ VH

and W s are well-defined because m, k,M and dH(v) for all v ∈ VH are even. Let V2 =
∪v∈VH

V (W v)∪V (W s)∪{q, t}. We now add an edge from q to each vertex in LM(W s). We
next add a perfect matching between (L(W s) − LM(W s)) ∪ P (W s) and ∪v∈VH

Lm(W
v).

Observe that this is possible because |(L(W s) − LM(W s)) ∪ P (W s)| = k
2
+ M + k

2
=

mn = | ∪v∈VH
Lm(W

v)|. Finally, we add an edge from every vertex in ∪v∈VH
Pm(W

v) to
t. Observe that G1 can be obtained from G2 by contracting each W v and W s into single
vertices.

We now prove an important property of G2.

Lemma 3.1.5. For any ∅ ⊊ X ⊊ V2, we have

RG2(X) = 2⌊min{max{dG2(v) : v ∈ X},max{dG2(v) : v ∈ V2 −X}}
2

⌋.

Proof. As G1 is 4-edge-connected and by Lemma 3.1.2 applied to W s and W v for all
v ∈ VH , we obtain that λG2(u, v) = min{dG2(u), dG2(v)} for all u, v ∈ V2 with {u, v} ≠
{q, t}. This shows the statement for all ∅ ⊊ X ⊊ V2 such that {q, t} ⊆ X or {q, t} ⊆
V2 − X. On the other hand, if X is a qt̄-set or a tq̄-set, we have min{max{dG2(v) : v ∈
X},max{dG2(v) : v ∈ V2 − X}} = M . As M is even, it hence suffices to prove that
λG2(q, t) = M .

We have λG2(q, t) ≤ dG2(q) = M . Next, there is an edge between q and lj1(W
s) for all

j1 = 1, . . . ,M which can be concatenated to a path from lj1(W
s) to pj1(W

s) using only
vertices of a single row of W s. Now there is an edge from pj1(W

s) to a vertex lj2(W
v)

for some j2 ∈ {1, . . . ,m} and some v ∈ VH . Finally, there is a path from lj2(W
v) to

pj2(W
v) and an edge from pj2(W

v) to t. This yields a set of M edge-disjoint qt-paths, so
λG2(q, t) ≥ M by Theorem 2.1.2.

For some v ∈ VH , let Bv denote (L(W v) − Lm(W
v)) ∪ (P (W v) − Pm(W

v)). Now we
define F to be an odd-vertex pairing of G2 in the following way: For every uv ∈ EH , F
contains an edge between Bu and Bv. This is possible because for every v ∈ VH , the set
of vertices in V (W v) which are of odd degree in G2 is exactly Bv and |Bv| = dH(v).

3.1.1.3.4 Conclusion

This subsection is dedicated to finishing the reduction. We first take care of the reduction
for CA.
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Lemma 3.1.6. (G2, F ) is a negative instance of CA if and only if there is some qt̄-set
X ⊆ V1 such that dG1(X)− dH(X ∩ VH) < M .

Proof. First suppose that there is some qt̄-setX ⊆ V1 such that dG1(X)−dH(X∩VH) < M .
Let X ′ ⊆ V2 be the set that contains q ∪ ∪v∈XV (W v) and that contains V (W s) if X
contains s. Then Lemma 3.1.5 yields dG2(X

′)− dF (X
′) = dG1(X)− dH(X ∩ VH) < M =

RG2(X
′), so (G2, F ) is a negative instance of CA.

Now suppose that (G2, F ) is a negative instance of CA, so there is some X ⊊ V2 such
that dG2(X) − dF (X) < RG2(X). We choose X among all such sets such that dG2(X) is
minimal.

Claim 3.1.2. Let W ∈ W s ∪ {W v : v ∈ VH}. Then each connected component of W [X]
or W [V2 −X] contains at least two vertices of L(W ) ∪ P (W ).

Proof. By symmetry and as dG2(X) = dG2(V2 −X), it suffices to prove the statement for
W [X]. For the sake of a contradiction, suppose that for the vertex set C of a connected
component of W [X], we have |C ∩ (L(W ) ∪ P (W ))| ≤ 1.

First suppose that X = C. If X consists of a single vertex v with dF (v) = 1, Lemma
3.1.5 yields dG2(X)− dF (X) = 3− 1 = 2 = RG2(X), a contradiction. Otherwise, Lemma
3.1.2 yields dG2(X) ≥ 4 and so, as dF (X) ≤ 1 and G∪F is Eulerian, we obtain by Lemma
3.1.5 that dG2(X)− dF (X) ≥ 4 = RG2(X), a contradiction.

We may hence suppose that X ′= X − C is nonempty, so, by Lemma 3.1.5 and as
q, t /∈ V (W ), we have RG2(X) − RG2(X

′) ≤ 4 − 2 = 2. If C consists of a single vertex
v with dF (v) = 0, we obtain dG2(X

′) − dF (X
′) ≤ dG2(X) − 2 − dF (X) ≤ RG2(X) −

2 ≤ RG2(X
′), a contradiction to the minimality of X. Otherwise, Lemma 3.1.2 yields

dG2(X) − dG2(X
′) ≥ dW (X) − 1 ≥ 4 − 1 = 3 and dF (X

′) − dF (X) ≤ 1. This yields
dG2(X

′)−dF (X
′) ≤ (dG2(X)−3)−(dF (X)−1) ≤ RG2(X)−2 ≤ RG2(X

′), a contradiction
to the minimality of X.

We are now ready to show that V (W ) ⊆ X or V (W )∩X ̸= ∅ for everyW ∈ W s∪{W v :
v ∈ VH}. Suppose otherwise, then by Claim 3.1.2, both W [X] and W [V (W )−X] have a
connected component each containing at least two vertices of L(W )∪P (W ). By Lemmas
3.1.3 and 3.1.5, this yields dG2(X) − dF (X) ≥ M + m + 1 − m > M ≥ RG′(X), a
contradiction.

Now let X∗ ⊆ V1 be the set of vertices that contains v whenever V (W v) ⊆ X and s if
V (W s) ⊆ X. Observe that dG2(X) = dG1(X

∗) ≥ 2m by construction. Also, observe that
dF (X) = dH(X

∗ ∩ VH). By symmetry, we may suppose that q ∈ X. If X is not a qt̄-set,
Lemma 3.1.5 yields dG2(X) − dF (X) ≥ dG1(X

∗) −m ≥ 2m −m = m > 4 ≥ RG2(X), a
contradiction. If X∗ is a qt̄-set, by Lemma 3.1.5, we obtain dG1(X

∗) − dH(X
∗ ∩ VH) =

dG2(X)− dF (X) < RG2(X) = M .

We next establish a similar result for OA. The following result can be obtained by
analogous methods to the proof of Lemma 3.1.6. Several arguments simplify.

Lemma 3.1.7. There is no X ⊆ V2 such that dG2(X) < dF (X).

We here prove the following result that allows for a reduction for OA. While this proof
does not require any new arguments apart from Lemma 3.1.7, we include it here for the
sake of selfcontainment. The second implication can be found in a similar form in [81].

Lemma 3.1.8. (G2, F ) is a negative instance of OA if and only if (G2, F ) is a negative
instance of CA.
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Proof. If (G2, F ) is a negative instance of OA, it also is a negative instance of CA by
Lemma 3.1.1.

For the other direction, suppose that (G2, F ) is a negative instance of CA, so there is
some nonempty X ⊊ V2 such that dG2(X)−dF (X) < RG2(X). Let u ∈ X and v ∈ V2−X

such that RG2(X) = 2⌊λG2
(u,v)

2
⌋. Let F⃗ be an orientation of F such that all the edges with

exactly one endvertex in X are directed away from X. By Lemma 3.1.7 and Theorem
2.1.4, there is an orientation G⃗2 of G2 such that G⃗2 ∪ F⃗ is Eulerian. This yields

λG⃗2
(u, v) ≤ d+

G⃗2
(X)

=
1

2
(dG2(X) + dF (X))− d+

F⃗
(X)

=
1

2
(dG2(X) + dF (X))− dF (X)

=
1

2
(dG2(X)− dF (X))

<
1

2
RG2(X)

= ⌊λG2(u, v)

2
⌋.

We obtain that G⃗2 is not well-balanced, so (G2, F ) is a negative instance of OA.

We are now ready to give the conclusion for Theorems 3.1.19 and 3.1.20.

By Lemmas 3.1.4 and 3.1.6, we obtain that (G2, F ) is a negative instance of CA if
and only if (H, k) is a positive instance of AMAXCUT. By Lemma 2.3.2 and as the size
of (G2, F ) is polynomial in the size of (H, k), we obtain Theorem 3.1.19.

By Lemmas 3.1.4, 3.1.6 and 3.1.8, we obtain that (G2, F ) is a negative instance of OA
if and only if (H, k) is a positive instance of AMAXCUT. By Lemma 2.3.2 and as the size
of (G2, F ) is polynomial in the size of (H, k), we obtain Theorem 3.1.20.

3.1.2 Orientations for local arc-connectivity

In this part, we deal with a problem that is much more general than finding a k-arc-
connected orientation or a well-balanced orientation. Given a graph G = (V,E) and

some requirement function r : V 2 → Z≥0, we wish to find an orientation G⃗ of G such
that λG⃗(u, v) ≥ r(u, v) for all u, v ∈ V . We call r symmetric if r(u, v) = r(v, u) for
all v ∈ V . Observe that k-arc-connected orientations and well-balanced orientations are
obtained as special cases when for all u, v ∈ V , we have r(u, v) = k and r(u, v) = ⌊λG(u,v)

2
⌋,

respectively.

Formally, we consider the following problem:

Local arc-connectivity orientation (LACO):

Instance: A graph G and a requirement function r : V 2 → Z≥0.

Question: Is there an orientation G⃗ of G such that λG⃗(u, v) ≥ r(u, v) for all u, v ∈ V ?

The main result of this part is the following.

Theorem 3.1.21. LACO is NP-complete.

In Section 3.1.2.1, we prove Theorem 3.1.21. In Section 3.1.2.2, we consider some more
restricted cases of LACO.
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3.1.2.1 Hardness result

This section is dedicated to proving Theorem 3.1.21. Recall the algorithmic problem
BWBO from Section 3.1.1.2. By Theorem 3.1.11, BWBO is NP-complete.

We now give the reduction for Theorem 3.1.21.

Proof. (of Theorem 3.1.21)
We prove this by a reduction from BWBO. Let (G = (V,E), l+, l−) be an instance of

BWBO. We add two vertices x and y and for every v ∈ V , we add dG(v) edges between v
and each of x and y. We denote this graph by G′ = (V ′, E′). Observe that |V ′| = |V |+2
and |E ′| = 5|E|, so the size of G′ is polynomial in the size of G. We now define r: (V ′)2 →
Z≥0 by r(u, v) = ⌊λG(u,v)

2
⌋ for all u, v ∈ V , r(x, v) = dG(v) + l−(v), r(v, x) = 0, r(y, v) = 0

and r(v, y) = dG(v) + l+(v) for all v ∈ V, r(x, y) = 2|E| and r(y, x) = 0.
We prove that (G′, r) is a positive instance of LACO if and only if (G, l+, l−) is a

positive instance of BWBO. First suppose that (G′, r) is a positive instance of LACO, so

there is an orientation G⃗′ of G′ such that λG⃗′(u, v) ≥ r(u, v) for all u, v ∈ V ′. Observe

that dG′(x) = r(x, y) = dG′(y), so x is a root and y is a sink in G⃗′. We show that G⃗, the

restriction of G⃗′ to G, is a well-balanced orientation of G such that d+
G⃗
(v) ≥ l+(v) and

d−
G⃗
(v) ≥ l−(v) for all v ∈ V . As x is a root and y is a sink in G⃗′, for any u, v ∈ V , we

have λG⃗(u, v) = λG⃗′(u, v) ≥ r(u, v) = ⌊λG(u,v)
2

⌋, so G⃗ is well-balanced. Further, for any
v ∈ V , we have d−

G⃗
(v) = d−

G⃗′(v)− dG⃗′(x, v) ≥ λG⃗′(x, v)− dG⃗′(x, v) ≥ r(x, v)− dG⃗′(x, v) =

dG(v)+l−(v)−dG(v) = l−(v). Similarly, d+
G⃗
(v) ≥ l+(v), so (G, l+, l−) is a positive instance

of BWBO.
Now suppose that (G, l+, l−) is a positive instance of BWBO, so there is a well-

balanced orientation G⃗ of G such that d+
G⃗
(v) ≥ l+(v) and d−

G⃗
(v) ≥ l−(v) for all v ∈

V . We complete this to an orientation G⃗′ of G′ by orienting all edges incident to x
away from x and all edges incident to y toward y. As G⃗ is well-balanced, we have
λG⃗′(u, v) = λG⃗(u, v) ≥ ⌊λG(u,v)

2
⌋ = r(u, v) for all u, v ∈ V . By construction, we have

λG⃗′(x, y) =
∑

v∈V dG(V ) = 2|E| = r(x, y). For any v ∈ V , we have dG(v) arc-disjoint

xv-paths of length 1. Further, for every arc uv entering v in G⃗, we have a path xuv.
As all these paths can be chosen to be arc-disjoint, we obtain by Theorem 2.1.3 that
λG⃗′(x, v) ≥ dG⃗′(x, v) + d−

G⃗
(v) ≥ dG(v) + l−(v) = r(x, v). Similarly, λG⃗′(v, y) ≥ r(v, y), so

(G′, r) is a positive instance of LACO.

3.1.2.2 Restricted cases

Certainly, Theorem 3.1.21 cannot be the last word on the problem of finding orientations
of local arc-connectivity. Numerous special cases can be considered. For example, the
following is an immediate consequence of Theorem 3.1.6.

Corollary 3.1.1. An instance (G, r) of LACO where r is symmetric is positive if and

only if r(u, v) ≤ ⌊λG(u,v)
2

⌋ for all u, v ∈ V .

We give two further results for more restricted cases one of which is negative and one
of which is positive. The first one is a simple consequence of Theorem 3.1.6.

Corollary 3.1.2. LACO is NP-complete even if G is bipartite.

Proof. We prove this by a reduction from LACO. Let (G = (V,E), r) be an instance of
LACO. Let G′ = (V ∪ VE, E

′) be obtained from G by replacing every edge e = uv ∈ E
by a new vertex xe and the edges uxe and vxe. Observe that G′ is bipartite. We next
define r′ : V ∪ VE → Z≥0 by r′(u, v) = r(u, v) if u, v ∈ V and r(u, v) = 0 otherwise. We
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show that (G, r) is a positive instance of LACO if and only if (G′, r′) is a positive instance
of LACO.

First suppose that (G, r) is a positive instance of LACO, so there is an orientation

G⃗ = (V, E⃗) of G such that λG⃗(u, v) ≥ r(u, v) for all u, v ∈ V . Let G⃗′ be obtained from

G⃗ by replacing every e⃗ = uv ∈ E⃗ by the vertex xe and the arcs uxe and xev. Clearly, G⃗′ is
an orientation of G′ and we have λG′(u, v) = λG(u, v) ≥ r(u, v) = r′(u, v) for all u, v ∈ V ,
so (G′, r′) is a positive instance of LACO.

Now suppose that (G′, r′) is a positive instance of LACO, so there is an orientation

G⃗′ = (V ∪ VE, E⃗ ′) of G such that λG⃗′(u, v) ≥ r′(u, v) for all u, v ∈ V . We now create

an orientation G⃗ of G in the following way. If for some edge e = uv ∈ E, both the
arcs uxe and xev are contained in E⃗ ′, we orient e from u to v. On the other hand, if
d−
G⃗′(xe) ∈ {0, 2} for some e ∈ E, we give e an arbitrary orientation. For all u, v ∈ V ,

we obtain λG⃗(u, v) ≥ λG⃗′(u, v) ≥ r′(u, v) = r(u, v), so (G, r) is a positive instance of
LACO.

We next give a positive result.

Theorem 3.1.22. There is a polynomial time algorithm for LACO if r(u, v) ≤ 1 for all
u, v ∈ V .

Proof. Let (G = (V,E), r) be an instance of LACO such that r(u, v) ≤ 1 for all
u, v ∈ V . If G is 2-edge-connected, then there is a strongly connected orientation of
G by Theorem 3.1.2, so, in particular, (G, r) is a positive instance of LACO. We may
hence suppose that there is some partition (S1, S2) of V such that dG(S1, S2) ≤ 1. For
i = 1, 2, let Gi = (Si, Ei) = G[Si]. If max{r(u, v) : u ∈ S1, v ∈ S2} +max{r(u, v) : u ∈
S2, v ∈ S1} > dG(S1, S2), we obtain that (G, r) is a negative instance of LACO. Also, if
max{r(u, v) : u ∈ S1, v ∈ S2}+max{r(u, v) : u ∈ S2, v ∈ S1} = 0, then (G, r) is a positive
instance of LACO if and only if (Gi, r[Si]) is a positive instance of LACO for i = 1, 2.
By 1 ≤ max{r(u, v) : u ∈ S1, v ∈ S2} + max{r(u, v) : u ∈ S2, v ∈ S1} ≤ dG(S1, S2) ≤ 1
and by symmetry, it remains to consider the case that max{r(u, v) : u ∈ S1, v ∈ S2} =
1,max{r(u, v) : u ∈ S2, v ∈ S1} = 0 and dG(S1, S2) = 1. Let x1x2 be the edge of G
between S1 and S2 with xi ∈ Si for i = 1, 2. We now define two requirement functions ri
: (Si)

2 → Z≥0. For all u ∈ S1 − x1 for which there is a v ∈ S2 with r(u, v) = 1, we define
r1(u, x1) = 1. For all other pairs u, v ∈ S1, we define r1(u, v) = r(u, v). For all v ∈ S2−x2

for which there is a u ∈ S1 with r(u, v) = 1, we define r2(x2, v) = 1. For all other pairs
u, v ∈ S2, we define r2(u, v) = r(u, v).

We next show that (G, r) is a positive instance of LACO if and only if both (G1, r1)
and (G2, r2) are positive instances of LACO.

First suppose that (G, r) is a positive instance of LACO, so there is an orientation

G⃗ = (V, E⃗) of G such that λG⃗(u, v) ≥ r(u, v) for all u, v ∈ V . Let G⃗i = G⃗[Si] for i = 1, 2.

Clearly, G⃗i is an orientation of Gi. Further, we have λG⃗i
(u, v) = λG⃗(u, v) ≥ r(u, v) for all

u, v ∈ Si. In order to prove that (G1, r1) is a positive instance of LACO, it remains to prove
that λG⃗1

(u, x1) ≥ 1 if there is some v ∈ S2 such that r(u, v) = 1. As λG⃗(u, v) ≥ r(u, v) = 1,

there is a path from u to v in G⃗. Clearly, this path needs to use the arc x1x2. This yields
λG⃗1

(u, x1) = λG⃗(u, x1) ≥ 1. Similarly, (G2, r2) is a positive instance of LACO.
Now suppose that both (G1, r1) and (G2, r2) are positive instances of LACO, so for

i = 1, 2, there is an orientation G⃗i of Gi such that λG⃗i
(u, v) ≥ ri(u, v) for all u, v ∈ Si.

We create an orientation G⃗ of G by giving every edge in Ei its orientation in G⃗i for
i = 1, 2 and orienting the edge between x1 and x2 from x1 to x2. Clearly, if u, v ∈ Si

for some i = 1, 2, we have λG⃗(u, v) ≥ λG⃗i
(u, v) ≥ ri(u, v) = r(u, v). By assumption, it

remains to consider the case that u ∈ S1, v ∈ S2 and r(u, v) = 1. In this case, we have
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λG⃗(u, x1) ≥ λG⃗1
(u, x1) ≥ r1(u, x1), so there is a path from u to x1 in G⃗. Similarly, there

is a path from x2 to v in G⃗. Together with the arc x1x2 this yields a path from u to v. It
follows that (G, r) is a positive instance of LACO.

We repeat this operation until all the graphs in consideration are either 2-edge-
connected or consist of a single vertex. If we reach this state without having found a
negative instance, the entire instance is positive by Theorem 3.1.2. Clearly, the above
operation is executed at most |V | times, so the algorithm runs in polynomial time.

The following is an easy consequence of Theorem 3.1.22.

Corollary 3.1.3. There is a polynomial time algorithm for LACO if G is a tree.

Proof. Let (G, r) be an instance of LACO such that G is a tree. Clearly, if r(u, v) ≥ 2
for some u, v ∈ V , then (G, r) is a negative instance of LACO. Otherwise, Theorem 3.1.22
can be applied.

Numerous further special cases can be considered. Firstly, one could consider different
restrictions on the graph G.

Research Problem 3.1.3. Find further graph classes G such that there is a polynomial
time algorithm for LACO if G ∈ G.

One particularly interesting such class is complete graphs, in other words the question
whether we can find a tournament with prescribed arc-connectivities in polynomial time.
Further, planar graphs or Eulerian graphs could be considered.

One could also consider restrictions on the function r. The following question is
motivated by Theorem 3.1.22.

Research Problem 3.1.4. Given some k ∈ Z≥0, what is the complexity of LACO if
r(u, v) ≤ k for all u, v ∈ V ?

This question is open even for k = 2.
Another case to consider is when the requirement function is positive only on a small

number of vertices.

Research Problem 3.1.5. Given some k ∈ Z≥0, what is the complexity of LACO if
r(u, v) = 0 for all (u, v) ∈ V 2 − S2 for some S ⊆ V with |S| ≤ k?

Finally, the following problem has been brought to our attention by Frank [45]. It
concerns requirement functions which are close to being symmetric.

Research Problem 3.1.6. What is the complexity of LACO if |r(u, v)− r(v, u)| ≤ 1 for
all u, v ∈ V ?

3.1.3 Orientations for arc-connectivity and parity

This section is dedicated to adding a new aspect to the theory of graph orientations for
arc-connectivity: parity. Through Nash-Williams’ odd-vertex pairing theorem (Theorem
3.1.7), we have already encoutered an occasion where parity considerations in the given
graph led to an important orientation theorem. The use of T -joins in Section 3.1.4 will be
another example. In this chapter, we deal with a different relation between orientations,
connectivity and parity. Given an undirected graph, we wish to find an orientation that
satisfies some connectivity properties and such that the indegree of the vertices of the
graph is of a given parity. More precisely, given a graph G = (V,E) and some T ⊆ V , we

say that an orientation G⃗ of G is T -odd if d−
G⃗
(v) is odd for all v ∈ T and d−

G⃗
(v) is even
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for all v ∈ V − T . For two integers a, b, we use a ≡ b to denote that a and b are of the
same parity. First observe that the problem becomes easy when we drop the connectivity
condition. The following simple observation is well-known.

Proposition 3.1.1. Let G = (V,E) be a connected graph and T ⊆ V . Then G has a
T -odd orientation if and only if |T | ≡ |E|.

Proof. If G has a T -odd orientation G⃗, we have |T | ≡
∑

v∈V d−
G⃗
(v) = |E|.

To see the other direction, letG′ be obtained from G by replacing every edge e = uv by
a new vertex xe and the edges uxe and vxe. Clearly, a T -odd orientation of G corresponds
to a T ′-join in G′ where T ′ is obtained from T by adding all the new vertices. Observe
that |T ′| = |T |+ |E| ≡ 0, so the T ′-join exists by Proposition 2.1.8.

The following observation will be used several times in this chapter.

Proposition 3.1.2. Let G = (V,E) be a graph, T ⊆ V such that |T | ≡ |E| and x ∈ V .

Let G⃗ be an orientation of G such that d−
G⃗
(v) ≡ |T ∩ v| for all v ∈ V − x. Then G⃗ is

T -odd.

Proof. We only need to show that d−
G⃗
(x) ≡ |T ∩ x|. This follows from d−

G⃗
(x) = |E| −∑

v∈V−x d
−
G⃗
(v) ≡ |T |+ |T ∩ (V − x)| ≡ |T ∩ x|.

In [48], Frank, Jordán and Szigeti consider the problem of combining parity and root-
connectivity in orientations of undirected graphs. They prove the following result.

Theorem 3.1.23. Let G = (V ∪ r, E) be a singularly rooted graph, T ⊆ V ∪ r and k a
positive integer. Then there is a T -odd k-root-connected orientation of G if and only if

eG(P) ≥ kt+ s(P)

holds for every subpartition P = {X1, . . . , Xt} of V where s(P) denotes the number of
classes X of P such that iG(X) + |T ∩X|+ k is odd.

Unfortunately, there is no clear way to obtain an algorithm for the corresponding
decision problem from the proof of Theorem 3.1.23. The main focus of this chapter will
be on the following problem that is probably the most interesting one among several
related problems.

Parity constrained strongly connected orientation(PSCO)

Instance: A graph G = (V,E) and T ⊆ V .

Question: Is there a T -odd strongly connected orientation of G?

We are interested in this question both from a structural and algorithmic point of
view. Nevertheless, we state all our results in the algorithmic form and wish to determine
whether PSCO is algorithmically tractable. We hope for a possible algorithm to also
imply a characterization. Unfortunately, in [80], Király and Szabó prove that for PSCO
we cannot hope for a characterization which is similar to the one in Theorem 3.1.23.
In an attempt to resolve the algorithmic tractability of PSCO, Frank and Király find a
characterization for a problem closely related to PSCO [49]. This yields the following
algorithmic result:

Theorem 3.1.24. Given a graph G = (V,E), we can decide in polynomial time whether
for all T ⊆ V with |T | ≡ |E|, there is a T -odd strongly connected orientation of G.
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This chapter is organized as follows. In Section 3.1.3.1, we give some ideas for finding a
polynomial time algorithm for PSCO. More concretely, we show that PSCO is equivalent
to a seemingly less general problem. In Section 3.1.3.2, we try to approach the problem
from the other direction, meaning we give some problems that are harder or seem to be
harder than PSCO. Hardness results for these problems can be considered intermediate
steps for proving that PSCO is not algorithmically tractable. We show that one of these
problems is hard indeed.

3.1.3.1 Positive approaches

In this section, we consider a problem which is seemingly much less general than PSCO.
In particular, it is restricted to graphs all of whose vertices have small degree. We show
that this problem is algorithmically equivalent to PSCO. More concretely, we consider
the following problem:

Restricted Parity constrained Strongly Connected Orientation(RPSCO)

Instance: A 3-edge-connected, 2-vertex-connected graphG = (V,E) such that dG(v) ∈
{3, 4} for all v ∈ V .

Question: Is there a V -odd strongly connected orientation of G?

The following result is the main contribution of this section.

Theorem 3.1.25. There is a polynomial time algorithm for PSCO if and only if there
is a polynomial time algorithm for RPSCO.

We first collect some preliminaries for the proof of Theorem 3.1.25. Given a graph
G = (V,E) the operation of detaching some v ∈ V consists of replacing v by two vertices
v1 and v2 and adding one of the edges uv1 and uv2 for every uv ∈ E. The detachment is
called equitable if the degrees of v1 and v2 differ by at most 1 in the new graph.

Lemma 3.1.9. Let (G = (V,E), T ) be an instance of PSCO such that G is 3-edge-
connected and 2-vertex-connected and x ∈ V . Let G′ = (V ′, E ′) be obtained from G by
equitably detaching x into two vertices y and z and adding a pair of parallel edges between
y and z. Further, let T ′ ⊆ V ′ satisfy T ′−{y, z} = T −x and |T ′∩{y, z}| ≡ |T ∩x|. Then
the following hold:

(i) G′ is 3-edge-connected and 2-vertex-connected,

(ii) (G′, T ′) is a positive instance of PSCO if and only if (G, T ) is a positive instance of
PSCO.

Proof. (i): Let S be a nonempty, proper subset of V ′. If S does not separate {y, z},
without loss of generality S ∩ {y, z} = ∅, as G is 3-edge-connected, we obtain dG′(S) =
dG(S) ≥ 3. If S separates {x, y}, without loss of generality x ∈ S and y ∈ V ′−S, we obtain
from the 2-vertex-connectivity of G that dG′(S) ≥ dG′(y, z)+dG′−{y,z}(S−y, V −S−z) =
2 + dG−x(S − y, V − S − z) ≥ 2 + 1 = 3, so G′ is 3-edge-connected.

For some p ∈ V ′−{y, z}, as G− p and G′[{x, y}] are connected, so is G′− p. Further,
we have that G′ − {y, z} = G − x is connected. As the detachment is equitable and G

is 3-edge-connected, we further obtain dG′−z(y) ≥ ⌊dG(x)
2

⌋ ≥ 1, so G′ − z is connected.
Similarly, G′ − y is connected and so G′ is 2-vertex-connected.

(ii): First suppose that (G′, T ′) is a positive instance of PSCO, so there is a T ′-odd

strongly connected orientation G⃗′ of G′. Let G⃗ be obtained from G⃗′ by contracting
{y, z} into x. By Proposition 2.1.2, G⃗ is strongly connected. Further, observe that
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|T ′| ≡ |T | ≡ |E| ≡ |E ′| and d−
G⃗
(v) = d−

G⃗′(v) ≡ |T ′ ∩ v| = |T ∩ v| for all v ∈ V − x. It now

follows from Proposition 3.1.2 that G⃗ is T -odd.
Now suppose that (G, T ) is a positive instance of PSCO, so there is a T -odd strongly

connected orientation G⃗ of G. We now define three orientations of G′. First, in G⃗, we
detach x into y and z in the same way as we did when creating G′ from G. Then, we
create G⃗′

0 by adding one arc from y to z and one arc from z to y, we create G⃗′
1 by adding

two arcs from y to z and we create G⃗′
2 by adding two arcs from z to y. Observe that

G⃗′
0, G⃗

′
1 and G⃗′

2 are orientations of G′. Clearly, as G⃗ is strongly connected, so is G⃗′
0. If G⃗

′
0

is T ′-odd, there is nothing to prove, so suppose otherwise. As d−
G⃗′

0

(v) = d−
G⃗
(v) ≡ |T ∩ v| =

|T ′ ∩ v| for all v ∈ V − {y, z}, we may suppose by symmetry that d−
G⃗′

0

(y) ̸≡ |T ′ ∩ y|. As

d−
G⃗′

1

(v) = d−
G⃗′

0

(v) ≡ |T ′ ∩ v| for all v ∈ V − {y, z} and d−
G⃗′

1

(y) ≡ d−
G⃗′

0

(y) + 1 ≡ |T ′ ∩ y|, we

obtain by |T ′| ≡ |E ′| and Proposition 3.1.2 that G⃗′
1 is T ′-odd. Similarly, G⃗′

2 is T ′-odd.

We will finish the proof by showing that one of G⃗′
1 and G⃗′

2 is strongly connected.
Suppose otherwise, so there are nonempty sets S1, S2 ⊊ V ′ such that d−

G⃗′
i

(Si) = 0 for

i = 1, 2. As G⃗ is strongly connected and by construction, we obtain that y ∈ S1, z ∈
V ′ − S1, y ∈ V ′ − S2 and z ∈ S2. This yields, by Proposition 2.2.3,

0 ≤ d−
G⃗′

0

(S1 ∪ S2) + d−
G⃗′

0

(S1 ∩ S2)

= d−
G⃗′

0

(S1) + d−
G⃗′

0

(S2)− dG′(S1, S2)

≤ d−
G⃗′

1

(S1) + 1 + d−
G⃗′

2

(S2) + 1− dG′(y, z)− dG′(S1 − y, S2 − z)

= 0 + 1 + 0 + 1− 2− dG(S1 − y, S2 − z)

= −dG(S1 − y, S2 − z)

≤ 0,

so equality holds throughout. As G⃗′
0 is strongly connected, we obtain that S1 ∪ S2 = V ′

and S1∩S2 = ∅. This yields that {S1−y, S2−z} is a partition of V ′−{y, z} = V −x. As
dG(S1 − y, S2 − z) = 0, we obtain that x is a cutvertex of G, a contradiction to G being
2-vertex-connected.

We are now ready to start with the main proof of Theorem 3.1.25.

Proof. (of Theorem 3.1.25) Clearly, RPSCO is a special case of PSCO, so a polynomial
time algorithm for PSCO implies a polynomial time algorithm for RPSCO. We now
suppose that there is a polynomial time algorithm for RPSCO and show through several
claims that there is a polynomial time algorithm for PSCO.

Claim 3.1.3. There is a polynomial time algorithm that decides whether an instance
(G = (V,E), V ) of PSCO is positive if G is 3-edge-connected and 2-vertex-connected and
dG(v) ∈ {3, 4, 5} for all v ∈ V .

Proof. Let (G = (V,E), V ) be an istance of PSCO such that G is 3-edge-connected
and 2-vertex-connected and dG(v) ∈ {3, 4, 5} for all v ∈ V . By Proposition 3.1.1, we may
suppose that |E| ≡ |V |. If dG(v) ∈ {3, 4} for all v ∈ V , the desired algorithm exists by
assumption. We may hence suppose that there is some x ∈ V that is incident to exactly
5 edges e1, . . . , e5. We now create a graph G′ = (V ′, E′) by replacing x by 5 vertices
{x1, . . . , x5} such that xi is incident to ei for i = 1, . . . , 5. Further, we add the edge set
of a cycle C = x1, . . . , x5, x1 and a vertex z that is adjacent to the vertices in {x2, . . . , x5}.
Let X = {x1, . . . , x5} ∪ z. An illustration can be found in Figure 3.1.5.
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x3x4

x2x5

x1

z

Figure 3.1.5: An illustration for the gadget x is replaced by in Claim 3.1.3. The solid
edges are new while the dashed ones exist in G.

Observe that |E ′| = |E|+ 9 ≡ |V |+ 9 ≡ |V |+ 5 = |V ′|. Clearly, dG′(v) ∈ {3, 4, 5} for
all v ∈ V ′.

We next show that G′ is 3-edge-connected. Let S be a nonempty, proper subset of
V ′. If S does not separate X, say S ∩ X = ∅, we obtain that dG′(S) = dG(S) ≥ 3 as
G is 3-edge-connected. An easy case analysis shows that dG(S) ≥ 3 if S ⊆ X. We may
hence suppose that S and X are properly intersecting. As G′[X] is 2-edge-connected and
G is 2-vertex-connected, this yields dG′(S) ≥ dG′[X](S ∩X)+ dG′−X(S−X, V −S−X) ≥
2 + dG−x(S −X, V − S −X) ≥ 2 + 1 = 3, so G′ is 3-edge-connected.

We next show that G′ is 2-vertex-connected. For any p ∈ V ′ − X, observe that
G − p is connected and G′[X] is connected, so G′ − p is connected. For any p ∈ X,
observe that G− x is connected, G[X]− p is connected and there are several vertices in
X that are incident to an edge in δG′(X), so G′ − p is connected. It follows that G′ is
2-vertex-connected.

We next show that (G′, V ′) is a positive instance of PSCO if and only if (G, V ) is a
positive instance of PSCO. First suppose that (G′, V ′) is a positive instance of PSCO, so

there is a V ′-odd strongly connected orientation G⃗′ of G′. Let G⃗ be obtained from G⃗′ by
contracting X into x. By Proposition 2.1.2, G⃗ is strongly connected. Further, we have
d−
G⃗
(v) = d−

G⃗′(v) ≡ 1 for all v ∈ V − x. As |E| ≡ |V | and by Proposition 3.1.2, we obtain

that G⃗ is V -odd.
Now suppose that (G, V ) is a positive instance of PSCO, so there is a V -odd strongly

connected orientation G⃗ of G. Possibly redirecting a circuit, we may suppose that e⃗1 is
directed away from x in G⃗. We extend G⃗ to an orientation G⃗′ ofG′. First, we give all edges
in E the same orientation they have in G⃗ and orient C as a circuit. For i = 2, . . . , 5, let
xiz be oriented from xi to z if e⃗i leaves xi and from z to xi if e⃗i enters xi. By construction,
as |V ′| ≡ |E ′| and by Proposition 3.1.2, we obtain that G⃗′ is V ′-odd. Further, as G⃗ and

C⃗ are strongly connected, so is G⃗′ − z by Proposition 2.1.3(b). Finally, as G⃗′ is V ′-odd

and dG′(z) = 4, we have d−
G⃗′(z), d

+

G⃗′(z) ≥ 1, so G⃗′ is strongly connected.
We repeat the above operation as long as H contains a vertex of degree 5 where H

is the current graph at some stage of the algorithm. Let (G∗, V ∗) be the instance of
PSCO obtained after the last application of this operation. Observe that every time the
operation is applied, the number of vertices of degree 5 in H decreases by one. It follows
that the operation is applied at most |V | times. Further, |V (H)| increases by 5 and
|E(H)| increases by 9 each time the operation is applied. It follows that the size of G∗ is
polynomial in the size of G and that G∗ can be constructed from G in polynomial time.
Finally, by assumption, we can check whether (G∗, V ∗) is a positive instance of PSCO in
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polynomial time, so the statement follows.

Claim 3.1.4. There is a polynomial time algorithm that decides whether an instance
(G = (V,E), T ) of PSCO is positive if G is 3-edge-connected and 2-vertex-connected and
dG(v) ∈ {3, 4, 5} for all v ∈ V .

Proof. Let (G = (V,E), T ) be an instance of PSCO such that G is 3-edge-connected
and 2-vertex-connected and dG(v) ∈ {3, 4, 5} for all v ∈ V . If T = V , there is nothing
to prove by Claim 3.1.3, so suppose that there is some x ∈ V − T . Let G′ = (V ′, E′)
be obtained by equitably detaching x into two vertices y and z and adding two edges
between y and z and let T ′ = T ∪ {y, z}. Clearly, we have dG′(v) ∈ {3, 4, 5} for all
v ∈ V ′. Further, by Lemma 3.1.9(i), G′ is 3-edge-connected and 2-vertex-connected and
by Lemma 3.1.9(ii), we have that (G′, T ′) is a positive instance of PSCO if and only if
(G, T ) is a positive instance of PSCO.

We apply this operation as long as V (H) − T ̸= ∅ where H is the current graph
at some stage of the algorithm. Let (G∗, V ∗) be the instance of PSCO obtained after
the last application of this operation. Observe that every time the operation is applied,
|V (H)− T | decreases by one. It follows that the operation is applied at most |V | times.
Further, |V (H)| increases by 1 and |E(H)| increases by 2 each time the operation is
applied. It follows that the size of G∗ is polynomial in the size of G and that G∗ can
be constructed from (G, T ) in polynomial time. Finally, by Claim 3.1.3, we can check
whether (G∗, V ∗) is a positive instance of PSCO in polynomial time, so the statement
follows.

Claim 3.1.5. There is a polynomial time algorithm that decides whether an instance
(G = (V,E), T ) of PSCO is positive if G is 3-edge-connected and 2-vertex-connected.

Proof. Let (G = (V,E), T ) be an instance of PSCO such that G is 3-edge-connected and
2-vertex-connected. If dG(v) ≤ 5 for all v ∈ V , there is nothing to prove by Claim 3.1.4,
so suppose that there is some x ∈ V with dG(x) ≥ 6. Let G′ = (V ′, E′) be obtained by
equitably detaching x into two vertices y and z and adding two edges between y and z
and choose T ′ ⊆ V ′ such that T ′ −{y, z} = T − x and |T ′ ∩{y, z}| ≡ |T ∩ x|. By Lemma
3.1.9 (i), G′ is 3-edge-connected and 2-vertex-connected and by Lemma 3.1.9 (ii), we have
that (G′, T ′) is a positive instance of PSCO if and only if (G, T ) is a positive instance of
PSCO.

We apply this operation as long as dH(v) ≥ 6 for some v ∈ V (H) where H is the
current graph at some stage of the algorithm. At some intermediate step of the algorithm,
let M =

∑
v∈V (H) max{dH(v) − 5, 0}. Observe that every time the above operation is

applied, we have dG(x), dG′(y), dG′(z) ≥ 5 and (dG′(y)−5)+(dG′(z)−5) = (dG(x)−5)−1,
so M decreases by 1. Further, before the first application of the operation, we have
M ≤

∑
v∈V dG(v) = 2|E| and after the last application of the operation, we have M ≥ 0.

It follows that the operation is applied at most 2|E| times. Let (G∗, T ∗) be the instance
of PSCO obtained after the last application of this operation. As the operation is applied
at most 2|E| times, (G∗, T ∗) is well-defined, the size of G∗ is polynomial in the size of
G and (G∗, T ∗) can be constructed in polynomial time. Further, (G∗, T ∗) is a positive
instance of PSCO if and only if (G, T ) is a positive instance of PSCO. By Claim 3.1.4,
we can check in polynomial time whether (G∗, T ∗) is a positive instance of PSCO.

Claim 3.1.6. There is a polynomial time algorithm that decides whether an instance
(G = (V,E), T ) of PSCO is positive if G is 3-edge-connected.

Proof. Let G = (V,E) be a 3-edge-connected graph. By Proposition 3.1.1, we may
suppose that |E| ≡ |T |. If G is 2-vertex-connected, there is nothing to prove by Claim
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3.1.5. Also, if |V | ≤ 2, a decision algorithm is trivially available. We may hence suppose
that there is a partition {S1, x, S2} of V such that x is a single vertex and dG(S1, S2) = 0.
For i = 1, 2, let (Vi, Ei) = Gi = G[Si ∪ x] and let Ti be defined in the unique way
that Ti − x = T ∩ Si and |Ei| ≡ |Ti|. Clearly, for any nonempty R ⊆ Si, we have
dGi

(R) = dG(R) ≥ 3, so G1 and G2 are 3-edge-connected. We next show that (G, T ) is a
positive instance of PSCO if and only if both (G1, T1) and (G2, T2) are positive instances
of PSCO.

First suppose that (G, T ) is a positive instance of PSCO, so there is a T -odd strongly

connected orientation G⃗ of G. For i = 1, 2, let G⃗i = G⃗[Si ∪ x]. Clearly, G⃗i is a strongly
connected orientation of Gi. Further, for all v ∈ Si, we have d−

G⃗i
(v) = d−

G⃗
(v) ≡ |T ∩ v| =

|Ti ∩ v|. By |Ei| ≡ |Ti| and Proposition 3.1.2, G⃗i is Ti-odd.
Now suppose that both (G1, T1) and (G2, T2) are positive instances of PSCO, so there

are strongly connected orientations G⃗1 and G⃗2 of G1 and G2. Let G⃗ be obtained from
G⃗1∪ G⃗2 by contracting the two copies of x. Clearly, G⃗ is a strongly connected orientation
of G. Further, for all i = 1, 2 and v ∈ Si, we have d

−
G⃗
(v) = d−

G⃗i
(v) ≡ |Ti ∩ v| = |T ∩ v|. By

|E| ≡ |T | and Proposition 3.1.2, G⃗ is T -odd.
We repeat this operation as long as H contains a connected component that is not

2-vertex-connected and has at least 3 vertices where H is the current graph at some stage
of the algorithm. At any point of the algorithm, let C be the collection of connected
components of H and let M =

∑
C∈C(|V (C)| − 2). Observe that M decreases by 2 every

time the operation is applied. Further, we have M = |V | − 2 before the first application
of the operation and M ≥ 0 at any time of the algorithm. Let (G∗, T ∗) be the graph
obtained after the last application of the operation. By the above, (G∗, T ∗) is well-defined,
the size of G∗ is polynomial in the size of G and (G∗, T ∗) can be computed in polynomial
time from (G, T ). Further, (G, T ) is a positive instance of PSCO if and only if for every
connected component G∗

C = (V ∗
C , E

∗
C) of G∗, we have that (G∗

C , T
∗ ∩ V ∗

C) is a positive
instance of PSCO. By Claim 3.1.5 and as a trivial algorithm for graphs of at most 2 vertices
is available, we can decide in polynomial time whether for every connected component
G∗

C = (V ∗
C , E

∗
C) of G

∗, we have that (G∗
C , T

∗ ∩ V ∗
C) is a positive instance of PSCO.

Claim 3.1.7. There is a polynomial time algorithm that decides whether an instance
(G = (V,E), T ) of PSCO is positive.

Proof. Let (G = (V,E), T ) be an instance of PSCO. By Proposition 3.1.1, we may
suppose that |E| ≡ |T |. If G is 3-edge-connected, there is nothing to prove by Claim 3.1.6.
We may hence suppose that there is a partition (S1, S2) of V such that dG(S1, S2) ≤ 2.
If dG(S1, S2) ≤ 1, then (G, T ) is a negative instance of PSCO by Theorem 3.1.2, we may
hence suppose that dG(S1, S2) = 2. Let x1x2 and y1y2 be the two edges in δG(S) where
x1, y1 ∈ S1 and x2, y2 ∈ S2. If |T ∩ Si| ≡ iG(Si) for some i = 1, 2, then in any T -odd
orientation x1x2 and y1y2 are both oriented toward S1 or both oriented toward S2 while
in any strongly connected orientation, one of them is oriented toward S1 and one of them
is oriented toward S2. Hence (G, T ) is a negative instance of PSCO. We may therefore
suppose that |T ∩ Si| ≡ iG(Si) + 1 for i = 1, 2.

For i = 1, 2, let Gi be obtained from G[Si] by adding an edge between xi and yi and
let Ti = T ∩ Si. We show that (G, T ) is a positive instance of PSCO if and only if both
(G1, T1) and (G2, T2) are positive instances of PSCO.

First suppose that (G, T ) is a positive instance of PSCO, so there is a T -odd strongly

connected orientation G⃗ of G. Clearly, exactly one of the two edges between S1 and S2 is
oriented toward S1. By symmetry, we may suppose that x1x2 is oriented toward x2 and
y1y2 is oriented toward y1. Let G⃗1 = G⃗[S1] ∪ x1y1. Observe that G⃗1 is an orientation

of G1. As G⃗1 can be obtained from G⃗ by first contracting S2 and then suppressing the
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new vertex, we obtain by Proposition 2.1.3 that G⃗1 is strongly connected. Further, for
all v ∈ S1, we have d−

G⃗1
(v) = d−

G⃗
(v) ≡ |T ∩ v| = |T1 ∩ v|, so G⃗1 is T1-odd. It follows that

(G1, T1) is a positive instance of PSCO. Similarly, (G2, T2) is a positive instance of PSCO.
Now suppose that for i = 1, 2, (Gi, Ti) is a positive instance of PSCO, so there is a

Ti-odd strongly connected orientation G⃗i of Gi. By symmetry, we may suppose that in
G⃗1, the edge between x1 and x2 is oriented from x1 to x2. Possibly redirecting a circuit,
we may suppose that in G⃗2, the edge between y2 and x2 is oriented from y2 to x2. We now
create an orientation G⃗ of G by giving every edge in E[Si]− {xiyi} its orientation in G⃗i

for i = 1, 2 and adding the arcs x1x2 and y2y1. First observe that for i = 1, 2 and v ∈ Si,
we have d−

G⃗
(v) = d−

G⃗i
(v) ≡ |Ti∩ v| = |T ∩ v|, so G⃗ is T -odd. For the strong connectivity of

G⃗, first observe that there is a path from v to x1 for every v ∈ S1 in G⃗1 and none of these
paths uses the arc x1y1, so it still exists in G⃗. Similarly, G⃗ contains a path from v to y2
for all v ∈ S2. As there is an arc from y2 to y1 and a path from y1 to x1 in G⃗, we obtain
that there is a path from v to x1 for all v ∈ V . Similarly, there is a path from x2 to v for
all v ∈ V . As there is an arc from x1 to x2 in G⃗, we obtain that G⃗ is strongly connected.

We repeat this operation as long as H contains a connected component that is not
3-edge-connected where H is the current graph at some stage of the algorithm. At any
point of the algorithm, let C be the collection of connected components of G and let M
=

∑
C∈C(|V (C)|−1). Observe that M decreases by 1 every time the operation is applied.

Further, M = |V |− 1 before the first application of the operation and M ≥ 0 at any time
of the algorithm. Let (G∗, T ∗) be the graph obtained after the last application of the
operation. By the above, (G∗, T ∗) is well-defined, the size of G∗ is polynomial in the size
of G and (G∗, T ∗) can be computed in polynomial time from (G, T ). Further, (G, T ) is a
positive instance of PSCO if and only if for every connected component G∗

C = (V ∗
C , E

∗
C)

of G∗, we have that (G∗
C , T

∗∩V ∗
C) is a positive instance of PSCO. By Claim 3.1.5, we can

decide in polynomial time whether for every connected component G∗
C = (V ∗

C , E
∗
C) of G

∗,
we have that (G∗

C , T
∗ ∩ V ∗

C) is a positive instance of PSCO.

The combination of the above claims yields the theorem.

In the light of Theorem 3.1.25, it seems natural to study classes of graphs with even
stronger restrictions on the vertex degrees. One such class is regular graphs. For cubic
graphs, a simple characterization is available.

Theorem 3.1.26. Let (G = (V,E), T ) be an instance of PSCO such that G is cubic.
Then (G, T ) is a positive instance of PSCO if and only if |T | = 1

2
|V | and iG(X) ≤

|X ∩ T |+ 2|X − T | − 1 for every nonempty X ⊊ V .

Proof. First suppose that (G, T ) is a positive instance of PSCO, so there is a T -odd

strongly connected orientation G⃗ of G. Observe that, as G⃗ is strongly connected and T -
odd, we have d−

G⃗
(v) = 1 for all v ∈ T and d−

G⃗
(v) = 2 for all v ∈ V −T . This yields 3

2
|V | =

|E| =
∑

v∈V d−
G⃗
(v) = 2|V | − |T |, so |T | = 1

2
|V |. Further, for any nonempty X ⊊ V , since

G⃗ is strongly connected, we have iG(X) =
∑

v∈X d−
G⃗
(v)−d−

G⃗
(X) ≤ |X ∩T |+2|X−T |−1.

Now suppose that |T | = 1
2
|V | and iG(X) ≤ |X ∩T |+2|X−T |− 1 for every nonempty

X ⊊ V . By Theorem 2.1.1, there is an orientation G⃗ ofG such that d−
G⃗
(v) = 1 for all v ∈ T

and d−
G⃗
(v) = 2 for all v ∈ V −T . Clearly, G⃗ is T -odd. Further, for any nonempty X ⊊ V ,

we have d−
G⃗
(X) =

∑
v∈X d−

G⃗
(v)−iG(X) ≥ |X∩T |+2|X−T |−(|X∩T |+2|X−T |−1) = 1,

so G⃗ is strongly connected.

The next case to consider is 4-regular graphs. Let (G = (V,E), T ) be an instance of
PSCO such that G is 4-regular. We say that a cut δG(X) for some nonempty X ⊆ V is
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bad if dG(X) = 2 and |T ∩X| ≡ iG(X). Clearly, if (G, T ) contains a bad cut, then (G, T )
is a negative instance of PSCO. It is an immediate corollary of Theorem 4.1 in [49] that
this is the only nontrivial obstacle for 4-regular graphs.

Theorem 3.1.27. Let (G, T ) be an instance of PSCO such that G is 4-regular, |T | ≡ |E|
and (G, T ) does not contain a bad cut. Then (G, T ) is positive.

3.1.3.2 Negative approaches

This part approaches the complexity of PSCO from the other direction, giving a collection
of problems which might be useful as an intermediate step when trying to prove that PSCO
is NP-complete. Firstly, we show that combining connectivity and parity in orientations of
mixed graphs leads to hard problems, even when considering rooted connectivity instead of
strong connectivity. After, we give a collection of problems which are harder or seemingly
harder than PSCO and whose algorithmic tractability is open.

3.1.3.2.1 Mixed graphs

This subsection is dedicated to showing that combining parity and connectivity in orienta-
tions of mixed graphs is hard, even when considering rooted connectivity. More concretely,
we consider the following problem for some k ≥ 1:

Mixed parity-constrained k-root-connected orientation(MPkRCO)

Instance: A singularly rooted mixed graph G = (V ∪ r, A ∪ E) and T ⊆ V .

Question: Is there a T -odd orientation of G which is k-root-connected from r?

Theorem 3.1.28. MPkRCO is NP-complete for all k ≥ 1.

We show this by a reduction from (3,B2)-SAT.

Construction Suppose we are given an instance F = (X, C) of (3,B2)-SAT and some
k ≥ 1. Observe that 3|C| = 4|X|, so |C| is even. We construct an instance of MPkRCO
consisting of a singularly rooted mixed graph G = (VX ∪ VC ∪ r,A ∪ E) and some T
⊆ VX ∪ VC. First create a vertex r, let VX consist of a set of vertices Sx = {ux, vx, wx}
for every x ∈ X and let VC consist of one vertex aC for every C ∈ C. Let A contain arcs
uxvx, vxux, uxwx, k − 1 arcs from r to wx, k − 1 arcs from wx to ux and k − 1 arcs from
wx to vx for every x ∈ X and max{0, k − 2} arcs from r to aC for every C ∈ C. We next
create E by adding an edge between ux and aC whenever x ∈ C, an edge between vx and
aC whenever x̄ ∈ C and one edge from r to aC for all C ∈ C. Finally, let T = VX if k = 1,
T = VX ∪VC if k ≥ 3 is odd and T = ∅ if k is even. Observe that, as |C| is even, for k = 1,
we have |A ∪ E| = |A| + |E| = 3|X| + 4|X| + |C| ≡ 3|X| = |T | and for k ≥ 2, we have
|A∪E| = |A|+ |E| = 3k|X|+ (k− 2)|C|+ 4|X|+ |C| ≡ k|X| ≡ |T |. In any case, we have
|A ∪ E| ≡ |T |.

We show that (G, T ) is a positive instance of MPkRCO if and only if F is a positive
instance of (3,B2)-SAT. An example can be found in Figure 3.1.6.

From assignment to orientation Suppose that F has a satisfying assignment. We
create an orientation D of G in the following way. If a variable x is positive (negative)
in the assignment, we orient the edges incident to ux(vx) away from ux(vx) and the edges
incident to vx(ux) toward vx(ux). We orient the arcs between r and VC so that d−

A∪E⃗
(vC)

is odd if and only if vC ∈ T . We show that this orientation satisfies the requirements.

Claim 3.1.8. D is T -odd.
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Figure 3.1.6: An example for G when the formula consists of the clauses C1 =
{x, y, z}, C2 = {x̄, ȳ, z}, C3 = {x, ȳ, z̄} and C4 = {x̄, y, z̄} and k = 1.

Proof. First consider ux for some x ∈ X. By construction, d−
E⃗
(ux) is even. It follows

that d−
A∪E⃗

(ux) ≡ d−A(ux) = k, which is odd if and only if ux ∈ T . Similarly, d−
A∪E⃗

(vx) is

odd if and only if vx ∈ T . Further, d−
A∪E⃗

(wx) = d−A(wx) = k, which is odd if and only if

wx ∈ T . Further, we have that d−
A∪E⃗

(aC) is odd if and only if aC ∈ T by construction.

The statement now follows from the fact that |T | ≡ |E| and Proposition 3.1.2.

The following observation crucially uses the fact that the assignement is satisfying.

Claim 3.1.9. In D, there is at least one arc from VX to aC for every C ∈ C.

Proof. As the assignment is satisfying, there is at least one variable x that is set to the
literal contained in C. By construction, the edge between Sx and aC is oriented from Sx

to aC .

The following finishes the proof.

Claim 3.1.10. D is k-root-connected from r.

Proof. Suppose for the sake of a contradiction that there is a set Y ⊆ VC ∪ VX with
d−
A∪E⃗

(Y ) < k. It can readily be seen that if k ≥ 2 and Y contains one of ux, vx and wx for
some x ∈ X, then Sx ⊆ Y . If k = 1 and Y contains one of ux, vx and wx for some x ∈ X,
then Y contains ux and vx and we may suppose without loss of generality that that Y also
contains wx, so Sx ⊆ Y . We may therefore consider the digraph D′ = (V ′

X∪VC∪r, A′∪E⃗ ′)
that arises from contracting Sx to a vertex zx for all x ∈ X and obtain that this graph
contains a set Y ′ with d−

A′∪E⃗′(Y
′) < k.

First consider the case that k ≥ 2 and Y ′ ⊆ VC. As there are no arcs between the
vertices of VC, we may suppose that Y ′ = {aC} for some C ∈ C. By Claim 3.1.9 and
construction, d−

A′∪E⃗′(aC) ≥ k − 1, so d−
A′∪E⃗′(aC) = k − 1. This contradicts Claim 3.1.8.

So suppose that Y ′ contains a vertex zx ∈ VX . By construction, dA′∪E⃗′(r, zx) = k− 1 and
there is an arc from some aC ∈ VC to zx. It follows that aC ∈ Y ′. By Claim 3.1.9, there
is a variable x′ ∈ X − x such that there is an arc from Sx′ to aC . It follows that zx′ ∈ Y ′.
Now d−

A′∪E⃗′(Y
′) ≥ dA′(r, zx) + dA′(r, zx′) = 2k − 2, a contradiction as k ≥ 2.

It remains to consider the case that k = 1. By construction, d−
E⃗′(zx) = 2 = d+

E⃗′(zx)

for all x ∈ X. Also, by Claims 3.1.8 and 3.1.9, we have d−
E⃗′(aC) ≥ 2 ≥ d+

E⃗′(aC) for all
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C ∈ C. This yields d−
A′∪E⃗′(Y

′)− d+
A′∪E⃗′(Y

′) =
∑

v∈Y ′(d
−
A′∪E⃗′(v)− d+

A′∪E⃗′(v)) ≥ 0, so as the
underlying graph of D′ is connected, Y ′ has at least one arc entering, a contradition.

From orientation to assignment Suppose thatG has a T -odd orientationD that is k-
rooted connected from r. For every x ∈ X, as D is T -odd, either the edges entering ux(vx)
are both oriented toward ux(vx) or both oriented away from ux(vx). As d−A(Sx) = k − 1,
at least one of these pairs of edges is oriented toward Sx. We now define an assignment
by setting a variable x to TRUE if the edges incident to ux are oriented away from ux and
FALSE otherwise. We will show that this assignment satisfies F . Consider some clause
C ∈ C. As D is T -odd and k-rooted connected from r, there is a directed edge from Sx to
aC for some x ∈ X. It follows that this variable has been assigned the value of the literal
contained in C, so C is satisfied by the assignment.

Global connectivity This construction can easily be easily modified to obtain a hard-
ness reduction for the problem when rooted connectivity is replaced by global connectivity.
In order to see this, add an appropriate number of arcs from every vertex in VX ∪VC to r.
In particular, the problem of finding a strongly connected T -odd orientation of a mixed
graph is NP-complete.

3.1.3.3 Open algorithmic problems

One approach to generalize PSCO is to replace the condition of the orientation being
strongly connected by some higher connectivity condition. The following question can be
asked for any integer k ≥ 1.

Research Problem 3.1.7. Let G = (V,E) be a graph and T ⊆ V . What is the complexity
of deciding whether G has a T -odd k-arc-connected orientation?

Observe that for k = 1, the above problem is the same as PSCO. It is interesting to
see that the proof of Lemma 3.1.9 does not generalize for k ≥ 2, so it is not clear whether
a reduction similar to Theorem 3.1.25 is available for any k ≥ 2. This can be considered
an indication that the problem is strictly harder for k ≥ 2 than it is for k = 1. An even
harder version of the problem can be obtained when k is considered part of the input
rather than a fixed constant.

Research Problem 3.1.8. Let G = (V,E) be a graph, T ⊆ V and k ≥ 1 an integer.
What is the complexity of deciding whether G has a T -odd k-arc-connected orientation?

A different approach is to combine parity and well-balanced orientations.

Research Problem 3.1.9. What is the complexity of deciding, given a graph G = (V,E)
and some T ⊆ V , whether G has a T -odd well-balanced orientation?

While we expect this problem to be hard, the following can be established using a
technique similar to the one applied in the proof of Theorem 3.1.26.

Theorem 3.1.29. There is a polynomial time algorithm to decide, given a graph G =
(V,E) and some T ⊆ V , whether G has a T -odd best-balanced orientation.

Finally, one can consider a problem in which the parity condition is relaxed to a subset
of the vertices.

Research Problem 3.1.10. Let G = (V,E) be a graph and T, U ⊆ V with T ∩ U = ∅.
What is the complexity of deciding whether G has a strongly connected orientation G⃗ such
that d−

G⃗
(v) is odd for all v ∈ T and d−

G⃗
(v) is even for all v ∈ U?

Clearly, when T ∪U = V , we are back to PSCO, so the above problem is more general.
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3.1.4 Orientations of graphs of odd edge-connectivity

In this section, we prove some additional orientability properties that graphs of odd edge-
connectivity have. This work is based on the results in [60].

Theorem 3.1.3 states that a graph has a k-arc-connected orientation if and only if it it
is 2k-edge-connected. When raising the edge-connectivity from an even number to an odd
number by one, Theorem 3.1.3 does not yield any orientations with additional properties.
We here introduce a graph invariant that is defined on graphs of odd edge-connetcivity and
describes an additional connectivity property of their orientations. We next describe the
problem more formally. We say that an arc is deletable in a k-arc-connected orientation
of a (2k+1)-edge-connected graph if its deletion leaves it k-arc-connected. We ask about
the minimum number of orientations such that each edge of the original graph becomes a
deletable arc in at least one of the orientations. Observe that the condition of the graph
being (2k + 1)-edge-connected cannot be replaced by 2k-edge-connectivity as the arcs
associated to a 2k-edge-cut of G can never be deletable in a k-arc-connected orientation of
G. Surprisingly, the number of necessary orientations is bounded by a constant depending
only upon k. This is a consequence of a theorem of DeVos, Johnson and Seymour [23].
We focus on the case k = 1, meaning we want to find orientations of a 3-edge-connected
graph such that for every edge of the graph, the deletion of the associated arc leaves a
strongly connected graph in at least one of the orientations. In honor of András Frank
who proposed this problem and had an immense impact on the development of the theory
of graph orientations, we call the minimum number of necessary orientations for a graph
G its Frank number f(G). An example can be found in Figure 3.1.7.

Figure 3.1.7: These two orientations of the so-called prism show that the Frank number
of the prism is at most 2. In the two orientations of the prism, the deletable arcs are
marked in red. Every edge becomes a deletable arc in one of the orientations.

Observe that the Frank number of any 4-edge-connected graph is 1 as it has a 2-
arc-connected orientation by the theorem of Nash-Williams. On the other hand, any
3-edge-connected graph G containing a 3-edge-cut has Frank number at least 2. This
follows directly from the fact that in any strongly connected orientation of G, there is
one arc of the 3-edge-cut that is oriented differently than the other two arcs. This arc
cannot be deletable in this orientation, so at least one more orientation is needed. It is
an interesting question to find upper bounds for the Frank number of graphs. A first
constant bound can easily be obtained by the following theorem of DeVos, Johnson and
Seymour [23]:

Theorem 3.1.30. Let G = (V,E) be a 3-edge-connected graph. Then there is a partition
{E1, . . . , E9} of E such that G− Ei is 2-edge-connected for all i = 1, . . . , 9.

This implies the following:

Corollary 3.1.4. Every 3-edge-connected graph G satisfies f(G) ≤ 9.

Indeed, by Robbins’ Theorem, for all i = 1, . . . , 9, there is a strongly connected orien-
tation of G−Ei. Giving an arbitrary orientation to the edges of Ei yields an orientation
in which the arcs of E⃗i are deletable.
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The main contribution of this section is to further narrow down the values attained
by the Frank number. We first show a better upper bound.

Theorem 3.1.31. Every 3-edge-connected graph G satisfies f(G) ≤ 7.

In an attempt to improve on this, we also establish a relationship between our problem
and a well-known conjecture about matchings in cubic graphs, the conjecture of Berge-
Fulkerson mentioned in Section 3.1.4.1.

Theorem 3.1.32. Every 3-edge-connected graph G satisfies f(G) ≤ 5 unless the conjec-
ture of Berge-Fulkerson fails.

Further, we prove a stronger bound for two more restricted classes of 3-edge-connected
graphs.

Theorem 3.1.33. Every 3-edge-connected 3-edge-colorable graph G satisfies f(G) ≤ 3.

Theorem 3.1.34. Every essentially 4-edge-connected graph G satisfies f(G) ≤ 3.

For the lower bound, we show that there are graphs whose Frank number is strictly
bigger than 2, more precisely:

Theorem 3.1.35. The Frank number of the Petersen graph is 3.

Given a directed graph D, we call a set F ⊆ A(D) deletable if D − f is strongly
connected for all f ∈ F . Given a graph G, we call a set F ⊆ E(G) deletable if there exists

an orientation G⃗ of G such that F⃗ is deletable in G⃗.

One of the main difficulties in improving the upper bound on the Frank number
consists in finding a useful class of deletable sets. We consider the problem of testing
algorithmically whether a set is deletable. More formally, we define the following problem:

DELETABILITY

Instance: A graph G = (V,E) and a set S ⊆ E.

Question: Is there an orientation D of G such that D − s⃗ is strongly connected for
all s ∈ S?

The following result shows that an efficient algorithm for DELETABILITY seems out
of reach. This implies that a good characterization of deletable sets is hard to obtain.

Theorem 3.1.36. DELETABILITY is NP-complete for cubic 3-edge-connected graphs.

In Section 3.1.4.1, we present several classical results we will make use of and make
some preparatory observations. Also, we introduce an auxiliary graph that will help to
reduce the problems to cubic graphs later. In Section 3.1.4.2, we deal with the general case
of 3-edge-connected graphs proving Theorems 3.1.31, 3.1.32 and 3.1.33. Section 3.1.4.3 is
concerned with essentially 4-edge-connected graphs, in particular the proof of Theorem
3.1.34. In Section 3.1.4.4, we prove Theorem 3.1.35. Theorem 3.1.36 is proven in Section
3.1.4.5. Finally, in Section 3.1.4.6 we conclude our work and give directions for further
research on this topic.

3.1.4.1 Preliminaries

We first mention the Conjecture of Berge and Fulkerson that Theorem 3.1.32 is based on.
We then give two preliminary results that will be used for the main proofs in Sections
3.1.4.2 and 3.1.4.3. Finally, we give a construction that allows to reduce our problem to
cubic graphs.
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3.1.4.1.1 The conjecture of Berge and Fulkerson

We here mention mention an intensively studied conjecture which was proposed inde-
pendently by Berge and Fulkerson [102]. For more information on this conjecture see
[97].

Conjecture 3.1.2. Every cubic 2-edge-connected graph has a set of six perfect matchings
such that every edge is contained in exactly two of them.

3.1.4.1.2 Preparatory results

We first give a result that describes the structure of 3-edge-cuts in a 3-edge-connected
graph. It can be found as Theorem 7.1.2 in [41].

Proposition 3.1.3. Let G be a 3-edge-connected graph and let δ(X) and δ(X ′) be 3-edge-
cuts of G. Then δ(X) and δ(X ′) are not crossing, i.e. one of X −X ′, X ′ −X, X ∩X ′

or V (G)− (X ∪X ′) is empty.

The following characterization of deletable sets in digraphs is an immediate corollary
of the definition of such sets.

Proposition 3.1.4. Given a directed graph D = (V,A), a set F ⊆ A is deletable if and
only if δ−D(X) contains either at least one arc of A − F or at least two arcs for every
nonempty, proper subset X of V .

We next give a result that guarantees the existence of some deletable arcs in certain
digraphs.

Lemma 3.1.10. Let D be a strongly connected orientation of a 3-edge-connected graph
G and C a circuit in D. Then C contains an arc a such that D− a is strongly connected.

Proof. Let (G,D,C) be a counterexample that minimizes the number of vertices of D.
Let e be an edge of G that is incident to a vertex of C and that does not belong to C.
By the 3-edge-connectivity of G, e exists. Since D is strongly connected, e⃗ belongs to a
directed path P whose endvertices belong to C but whose internal vertices do not. By
symmetry, we may suppose that the tail of e⃗ is in V (C). Then P can be extended by a
possibly trivial directed subpath of C to form a circuit C∗.

If V (C∗) = V , let a be the arc on C that has the same tail as e⃗. Clearly, we have
a ∈ A(C)− A(C∗). Further, as C∗ is strongly connected and C∗ is a subgraph of D − a
on the same vertex set, we obtain that D − a is strongly connected.

We may hence suppose that V (C∗) ̸= V . Let (G′, D′, C′) be obtained from (G,D,C)
by contracting C∗. Then, by Propositions 2.1.2(a) and 2.1.3(a), the assumptions of the
lemma are satisfied for (G′, D′, C ′). By the minimality of (G,D,C), C ′ contains an arc a′

such that D′ − a′ is strongly connected. Let a be the arc of C in D that corresponds to
a′. Since D′ − a′ and C∗ are strongly connected, by Proposition 2.1.3(b), so is D− a.

3.1.4.1.3 Cubic extensions

We introduce for any graph G = (V,E) of minimum degree at least 3 an auxiliary graph
HG that is cubic. For each v ∈ V of degree at least 4, HG contains a set Sv of dG(v)
vertices. For each v ∈ V of degree 3, let Sv = {v}. Next, for each v ∈ V of degree at
least 4, we add a cycle Cv whose vertex set is Sv. Finally, for each edge uv ∈ E, we
add an edge between Su and Sv to HG. We do this in a way so that HG becomes cubic.
We call HG a cubic extension of G. Note that HG is not unique. This ambiguity has no
consequences though.
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Proposition 3.1.5. Let G = (V,E) be a graph of minimum degree at least 3 and HG be
a cubic extension of G.

(a) If G is 3-edge-connected and G − v is connected for all v ∈ V , then HG is 3-edge-
connected.

(b) If G is essentially 4-edge-connected and G − v is 2-edge-connected for all v ∈ V ,
then HG is essentially 4-edge-connected.

Proof. (a) Assume for a contradiction that dHG
(X) ≤ 2 for some nonempty, proper subset

X of V (HG). Since G is 3-edge-connected, there is at least one v ∈ V such that Sv ∩X
and Sv−X are nonempty. It follows that 2 ≤ dCv(X) ≤ dHG

(X) ≤ 2. This yields that for
every u ∈ V − v we have Su ⊆ X or Su ⊆ V (HG)−X and for all uw ∈ E with v /∈ {u,w}
we have Su ∪ Sw ⊆ X or Su ∪ Sw ⊆ V (HG) − X. If there are vertices u,w ∈ V such
that Su ⊆ X and Sw ⊆ V (HG)−X, it follows that G− v is not connected, contradicting
the assumption. Therefore, by symmetry we may assume that X is a nonempty, proper
subset of Sv. We then have dCv(X) ≥ 2 and there is at least one additional edge between
X and V (HG)− Sv, a contradiction to dHG

(X) ≤ 2.
(b) By (a), HG is 3-edge-connected. For the sake of a contradiction, suppose that

there is some nonsingular, proper subset X of V (HG) with |V (HG) − X| ≥ 2 such that
dHG

(X) = 3. If there are two vertices u, v ∈ V such that Su ∩ X, Su − X, Sv ∩ X and
Sv −X are nonempty, we have 2 + 2 ≤ dCu(X) + dCv(X) ≤ dHG

(X) ≤ 3, a contradiction.
Now consider the case that there is exactly one v ∈ V such that Sv∩X and Sv−X are

nonempty. We have that dHG
(X)−dCv(X) ≤ 1. It follows that in HG there is at most one

edge between X−Sv and V (HG)−X−Sv. If X−Sv and V (HG)−X−Sv are nonempty,
then G− v is not 2-edge-connected, a contradiction to the assumption. By symmetry, we
may therefore assume that X ⊆ Sv. We have that dCv(X) = 2 and there are |X| edges
between X and V (HG)− Sv. It follows that |X| = 1, which is a contradiction.

Finally assume that Sv ⊆ X or Sv ∩X = ∅ for all v ∈ V . Let X ′ = {v ∈ V : Sv ⊆ X}.
As G is essentially 4-edge-connected, we may assume by symmetry that X ′ = {v} for
some vertex v of degree 3. This yields that |X| = |Sv| = 1, which is a contradiction.

3.1.4.2 3-edge-connected graphs

This section is dedicated to proving Theorems 3.1.31, 3.1.32 and 3.1.33. In the first part,
we show that a certain class of edge sets is deletable. After, we show how to cover the
edge sets of cubic 3-edge-connected graphs with such sets. Next, we use this to conclude
cubic versions of Theorems 3.1.31 and 3.1.32 and to prove Theorem 3.1.33. Finally, we
extend this to obtain the general versions of Theorems 3.1.31 and 3.1.32.

3.1.4.2.1 A class of deletable edge sets

Given a packing C of cycles in a 3-edge-connected graph G, the special set of C is defined
to be the set of edges in E(G)− E(C) that belong to no 3-edge-cut of G/C. An example
can be found in Figure 3.1.8.

Lemma 3.1.11. Let M be the special set of a cycle packing C of a 3-edge-connected graph
G. Then M is deletable.

Proof. Let G′ = G/C and let M ′ be the set of edges in M that exist in G′. Since G is
3-edge-connected, so is G′ by Proposition 2.1.2(a). Consider a well-balanced orientation
D′ of G′ which exists by Theorem 3.1.6. Then D′ is strongly connected. Let D be the
orientation of G obtained from D′ by orienting all cycles of C as a circuit and giving an
arbitrary orientation to all remaining edges that do not exist in G′.
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Figure 3.1.8: An example for a special set. The edges marked in black form a cycle
packing whose special set is marked in red.

By Proposition 2.1.3 (b), D is strongly connected. We have to show that D − f⃗ is
strongly connected for all f ∈ M. By construction, that is the case for all f ∈ M −M ′,
so, by Proposition 2.1.3(b), it is enough to show that D′ − f⃗ is strongly connected for all

f ∈ M ′. Let f⃗ = uv for some f ∈ M and suppose that there exists some nonempty, proper
subset X of V (D′) with |δ+

D′−f⃗
(X)| = 0. Obviously u ∈ X and v ∈ V (D′)−X. Since G′ is

3-edge-connected and f belongs to no 3-edge-cut in G′, we obtain λG′(u, v) ≥ 4. As D′ is

well-balanced, it follows that 0 = |δ+
D′−f⃗

(X)| = |δ+D′(X)| − 1 ≥ ⌊λG′ (u,v)
2

⌋ − 1 ≥ 2− 1 = 1,

a contradiction.

3.1.4.2.2 Covering cubic graphs with special sets

In the following we show that any cubic 3-edge-connected graph can be covered by 7
special sets. For technical reasons, we will need the following slight strengthening.

Lemma 3.1.12. For every cubic 3-edge-connected graph, there exist 7 cycle packings
satisfying the following conditions:

(a) Every edge is in the special set of at least one cycle packing.

(b) Every edge is in exactly 4 of the cycle packings.

Proof. For the sake of a contradiction, let G = (V,E) be a counterexample to the lemma
that minimizes |V |.

Claim 3.1.11. G is essentially 4-edge-connected.

Proof. For the sake of a contradiction, let {S1, S2} be a partition of V (G) such that
|Si| ≥ 2 and a 3-edge-cut F := {e1, e2, e3} exists between S1 and S2. Construct the graphs
Gi from G by contracting S3−i to vi. As Gi is cubic, 3-edge-connected by Proposition
2.1.2(a) and smaller than G, there exists a set of cycle packings Ci = {Ci

1, . . . , Ci
7} of

Gi satisfying (a) and (b).
Observe that since Gi is cubic, (b) implies that for j ∈ {1, 2, 3}, there are exactly two

cycle packings in Ci that contain {e1, e2, e3}−{ej}. It follows that vi is in exactly 6 cycle
packings of Ci. By relabeling if needed, we may assume that Ci

1 is the cycle packing that
does not contain vi and {e1, e2, e3} − {ej} is contained in Ci

2j and Ci
2j+1. We may also

assume, by (a), that ej is in the special set of Ci
2j.
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We construct C = {C1, . . . , C7} so that E(Ck) = E(C1
k) ∪ E(C2

k) for k = 1, . . . , 7.
Observe that this is a set of seven cycle packings. We finish the proof by showing that C
satisfies (a) and (b).

First observe that (b) follows directly from the construction and the fact that an edge
is in Ck if and only if it is in C1

k or C2
k . For (a), let first e be an edge in G[Si]. By (a),

there exists a k ∈ {1, . . . , 7} such that e is in the special set of Ci
k. First observe that e is

in E(G)−E(Ck). If e is in a 3-edge-cut F ′ of G/Ck, since F ′ is not a 3-edge-cut of Gi/Ci
k,

F ′ contains an edge of G[S3−i]. This yields that F and F ′ are crossing 3-edge-cuts of G,
a contradiction to Proposition 3.1.3.

Now consider the edge ej for some j ∈ {1, 2, 3}. As ej ∈ E(Gi) − E(Ci
2j), we have

ej ∈ E(G)−E(C2j). Again, assume that ej is in a 3-edge-cut F ′ of G/C2j. As F ′ is not a
3-edge-cut in G1/C1

2j and G2/C2
2j, we obtain that F ′ and F are crossing in G contradicting

Proposition 3.1.3. This finishes the proof of the claim.

By Theorem 2.1.7, G contains a perfect matching M . Since G is cubic, the connected
components of G − M form a cycle packing C1. Now consider the graph G′ which is
obtained from G by contracting every cycle of C ∈ C1 into a vertex vC and adding a
loop at vC for every edge in M that has both ends in V (C). Further, let T be its set of
odd-degree vertices.

Claim 3.1.12. The edge set of G′ can be partitioned into three T -joins F1, F2 and F3.

Proof. As G is essentially 4-edge-connected by Claim 3.1.11, G′ is essentially 4-edge-
connected by Proposition 2.1.2(b). As G is essentially 4-edge-connected, it follows that
dG′(vC) ≥ dG(C) ≥ 4 for every C ∈ C1, so G′ is 4-edge-connected. By Theorem 2.1.6,
there exist two edge-disjoint spanning trees F ′

1, F
′
2 of G′. By Proposition 2.1.8, each of

them contains a T -join Fi, i = 1, 2. As F1 ∪ F2 is Eulerian, F3 = E(G′)− F1 − F2 is also
a T -join.

Claim 3.1.13. For i = 1, 2, 3, there exist V -joins S2i and S2i+1 of G such that S2i∩S2i+1 =
Fi and S2i ∪ S2i+1 = (E −M) ∪ Fi.

Proof. For i = 1, 2, 3, let Ti be the set of vertices in V not incident to an edge in Fi.
Let C ∈ C1. Observe that, as G is cubic and Fi ⊆ M is a matching in G, we obtain
|V (C)| ≡ dG(V (C)) = dG′(vc) and |V (C) ∩ V (Fi)| ≡ dFi

(V (C)) = dFi
(vc). As Fi is a T -

join in G′, this yields |Ti ∩ V (C)| = |V (C)| − |V (C) ∩ V (Fi)| ≡ dG′(vC)− dFi
(vC) ≡ 0, so

|Ti∩V (C)| is even. Hence, by Proposition 2.1.8, we obtain that G−M contains a Ti-join
Ni. Let S2i := Fi∪Ni and S2i+1 := Fi∪(E−M−Ni). By construction, we have that S2i

and S2i+1 are V -joins in G such that S2i ∩S2i+1 = Fi and S2i ∪S2i+1 = (E−M)∪Fi.

For j = 2, . . . , 7, we define Cj to be the set of nonsingular connected components of
G− Sj. Observe that all of them are cycles as Sj is a V -join and G is cubic.

Claim 3.1.14. C1, . . . , C7 satisfy (a) and (b).

Proof. (a) For e ∈ M , since G is essentially 4-edge-connected, e is in the special set of C1.
For e ∈ E −M , let f and g be the two edges of M adjacent to e. Since F1, F2 and F3

are disjoint, there is an Fi that contains neither f nor g. Then, since G is cubic and by
Claim 3.1.13, one of the V -joins S2i and S2i+1, say Sj, contains e but none of the edges
adjacent to e. It follows that both endvertices of e in G are in cycles of Cj. As G is
essentially 4-edge-connected, it follows that both endvertices of e in G/Cj are of degree at
least 4. As G is essentially 4-connected, so is G/Cj by Proposition 2.1.2(b). This yields
that e is in no 3-edge-cut of G/Cj and so e is in the special set of Cj.
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(b) For e ∈ M , by Claim 3.1.12, e is in exactly one Fi, say F1. Then, by Claim 3.1.13,
e is in C4, . . . , C7 and not in C1, C2, C3.

For e ∈ E − M , e is in C1 and, by Claim 3.1.13, in exactly one of C2i and C2i+1 for
i = 1, 2, 3.

Claim 3.1.14 finishes the proof of Lemma 3.1.12.

3.1.4.2.3 Cubic case

We first show how to conclude a cubic version of Theorem 3.1.31.

Theorem 3.1.37. Let G be a cubic 3-edge-connected graph. Then f(G) ≤ 7.

Proof. Lemma 3.1.12 yields that E(G) can be covered by 7 special sets S1, . . . , S7. By
Lemma 3.1.11, there exist orientations D1, . . . , D7 of G such that Si is deletable in Di

for i = 1, . . . , 7. It follows that the Frank number of G is at most 7.

Next, we use Lemma 3.1.11 to show that perfect matchings with a certain additional
property are deletable. As corollaries, we obtain Theorem 3.1.33 and a cubic version of
Theorem 3.1.32.

Lemma 3.1.13. Let M be a perfect matching of a cubic 3-edge-connected graph G inter-
secting every 3-edge-cut of G in exactly one edge. Then M is deletable.

Proof. As G is cubic and M is a perfect matching of G, the connected components of
G−M form a packing C of cycles. We show that G/C is 4-edge-connected. By Proposition
2.1.3(a) and since G is 3-edge-connected, so is G/C. A 3-edge-cut of G/C would provide
a 3-edge-cut of G intersecting M in 3 edges contradicting the assumption. It follows that
M is the special set of C and therefore deletable by Lemma 3.1.11.

We first show how to conclude Theorem 3.1.33 from Lemma 3.1.13.

Proof. (of Theorem 3.1.33) Let G be a 3-edge-colorable 3-edge-connected graph. Then
G is cubic and has 3 disjoint perfect matchings M1,M2,M3 covering the edge set of
G. Let δ(X) be a 3-edge-cut of G. Since G is cubic and d(X) = 3, we obtain that
|X| is odd. Then, since Mi is a perfect matching, we obtain that δ(X) intersects each
Mi. As d(X) = 3 and the matchings are disjoint, we obtain that δ(X) intersects each of
M1,M2,M3 exactly once. It follows by Lemma 3.1.13 that each ofM1,M2,M3 is deletable,
so f(G) ≤ 3.

Next, we prove in a similar way the following cubic version of Theorem 3.1.32.

Theorem 3.1.38. Let G be a cubic 3-edge-connected graph that satisfies Conjecture 3.1.2.
Then f(G) ≤ 5.

Proof. By assumption, there exist 6 perfect matchings M1, . . . ,M6 of G covering each
edge of G exactly twice.

Let δ(X) be a 3-edge-cut of G. Since G is cubic and d(X) = 3, we obtain that |X| is
odd. Then, since Mi is a perfect matching, δ(X) intersects each Mi. Since each of the 3
edges of δ(X) belongs to exactly 2 Mi’s, δ(X) intersects each of M1, . . . ,M6 exactly once.
It follows by Lemma 3.1.13 that each of M1, . . . ,M6 is deletable. As every edge of G is
covered by at least one of M1, . . . ,M5, it follows that f(G) ≤ 5.
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3.1.4.2.4 Non-cubic case

We first show how to prove the general case of Theorem 3.1.31.

Proof. (of Theorem 3.1.31) Let G be a counterexample minimizing |V (G)|.

Claim 3.1.15. G is 2-vertex-connected.

Proof. For the sake of a contradiction, assume that G has a cut vertex v. So G has two
nonsingular subgraphs G1 and G2 such that G1 = G/G2 and G2 = G/G1. As G is
3-edge-connected, so is Gi by Proposition 2.1.2(a). Since Gi is smaller than G, Gi has
Frank number at most 7. So there exist 7 orientations Di

j of Gi such that for each edge e
of Gi, one of Di

j − e⃗ is strongly connected. We can now construct the 7 orientations Dj

of G by giving each edge in Gi its orientation in Di
j also in Dj. Now consider an edge e

of Gi and let Di
j − e⃗ be strongly connected. Since Di

j − e⃗ = (Dj − e⃗)/D3−i
j and D3−i

j are
strongly connected, Proposition 2.1.3(b) implies that so is Dj − e⃗. It follows that G has
Frank number at most 7, a contradiction.

Let HG be a cubic extension of G as defined in Section 3.1.4.1.3. By Claim 3.1.15
and Proposition 3.1.5(a), HG is 3-edge-connected. Then, by Theorem 3.1.37, the Frank
number of HG is at most 7, that is there exist 7 orientations D′

i of HG such that for each
edge e of HG, one of D

′
i− e⃗ is strongly connected. Let Di be the orientation of G obtained

from D′
i by contracting the subgraphs Cv for all v ∈ V (G). For any e ∈ E(G) ⊆ E(HG),

one of D′
i − e⃗ is strongly connected, therefore, by Proposition 2.1.3(a), so is Di − e⃗. It

follows that the Frank number of G is at most 7, a contradiction.

The same reduction and Theorem 3.1.38 show Theorem 3.1.32.

3.1.4.3 Essentially 4-edge-connected graphs

This section is dedicated to proving Theorem 3.1.34. Again, first we prove the result for
cubic graphs and then we show how it implies the non-cubic case.

3.1.4.3.1 Cubic case

In the case of essentially 4-edge-connected graphs, we can show that every matching is
deletable. We prove the following slightly stronger statement.

Lemma 3.1.14. Let G be an essentially 4-edge-connected graph, M a matching of G and
C a cycle packing of G−M . Then there exists an orientation of G in which M⃗ is deletable
and each cycle of C is oriented as a circuit.

Proof. Let F be the set of maximal 2-edge-connected subgraphs of G − M . Let G′ =
(V ′, E′) be the graph obtained from G by contracting each graph of F and let M ′

= M ∩ E ′. Note that G′ − M ′ is a forest. Since G is essentially 4-edge-connected, by
Proposition 2.1.2(b), so is G′ and every vertex of degree 3 in G′ is an original vertex of
G. Then, since M is a matching of G, every vertex v of degree 3 in G′ is incident to at
least 2 edges e1

v, e
2
v in E ′ −M ′.

By Theorem 3.1.7 and Lemma 3.1.1, there exists an orientation-admissible pairing
P of G′. As G′ ∪ P is Eulerian, Proposition 2.1.12 yields that G′ ∪ P has an Eulerian
orientation G⃗′ ∪ P⃗ such that for each vertex v of degree 3 in G′, one of e⃗1v, e⃗

2
v enters v
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and the other one leaves v. By the definition of orintation-admissible pairings, G⃗′ is a
well-balanced orientation of G′.

For all F ∈ F , by Proposition 2.1.2(a), Theorem 3.1.2 and Proposition 2.1.3(b), there

exists a strongly connected orientation F⃗ of F such that each cycle of C contained in F
is oriented as a circuit.

Let G⃗ be the orientation of G obtained by combining G⃗′ and F⃗ for all F ∈ F and
giving an arbitrary orientation to the arcs in M −M ′. Proposition 2.1.3(b) yields that G⃗
is strongly connected. Since each cycle C of C belongs to some F ∈ F , C is oriented as a
circuit in G⃗.

We will finish the proof by showing that G⃗ − e⃗ is strongly connected for all e ∈ M .
Since F⃗ is strongly connected for all F ∈ F and

⋃
F∈F E(F ) contains no edge in M, it

suffices to prove, by Proposition 2.1.3(b), that G⃗′− e⃗ is strongly connected for all e ∈ M ′.
Let X be a subset of V ′. By Proposition 3.1.4, it is enough to prove that either at least
two arcs or at least one arc of E⃗ ′ − M⃗ ′ leave X.

If there are x ∈ X and y ∈ V ′ − X of degree at least 4, then, since G′ is essentially
4-edge-connected, there is no 3-edge-cut separating x and y in G′ and therefore, as G⃗′ is
well-balanced, there are 2 arcs leaving X, so we are done.

Hence, by considering V ′ − X and ⃗G′ if necessary, we may assume without loss of
generality that X only contains vertices of degree 3 and there is no arc of E⃗ ′ leaving X.
By construction, every vertex v of X has at least one arc e⃗1v or e⃗2v of E⃗ ′ leaving v. As

there is no arc of E⃗ ′ leaving X, we obtain that G⃗′[X] contains a circuit C⃗ of arcs in E⃗ ′

by Proposition 2.1.6. The corresponding cycle C provides a contradiction since G′ −M
is a forest.

We are now ready to prove a cubic version of Theorem 3.1.34.

Theorem 3.1.39. Let G be a cubic essentially 4-edge-connected graph. Then f(G) ≤ 3.

Proof. Since G is cubic and 2-edge-connected, by Theorem 2.1.7, G has a perfect matching
M1 and the connected components of G − M1 form a packing C of cycles. By Lemma
3.2.16, there exists an orientation D1 of G such that each cycle of C is oriented as a circuit
and M1 is deletable in D1. By Lemma 3.1.10, each Ci ∈ C contains a deletable arc e⃗i in
D1. Note that the connected components of G − M1 − ∪{ei : Ci ∈ C} form a packing
of paths which is the union of two matchings M2 and M3. By Lemma 3.2.16, there exist
orientations D2 and D3 of G such that M2 is deletable in D2 and M3 is deletable in D3.
Since E(G) = M1 ∪M2 ∪M3 ∪ {ei : Ci ∈ C}, Theorem 3.1.39 follows.

3.1.4.3.2 Non-cubic case

We now generalize the results of the previous part to arbitrary essentially 4-edge-connected
graphs.

Proof. (of Theorem 3.1.34). Let G = (V,E) be a counterexample minimizing |V |.

Claim 3.1.16. G− v is 2-edge-connected for all v ∈ V.

Proof. For the sake of a contradiction, suppose that G−v is not 2-edge-connected for some
v ∈ V. If G− v is disconnected, we obtain a contradiction using the same argument as in
the proof of Claim 3.1.15. We therefore have a partition {S1, S2} of V − {v} such that
S1 and S2 are only connected by a single edge e0 in G− v. Let us denote the endvertices
of e0 by ui ∈ Si. Consider the graph Gi that arises from G by contracting AS−i∪{v} into
a vertex vi. Note that E(G1)∩E(G2) = {e0}. Since G is essentially 4-edge-connected, so
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is Gi by Proposition 2.1.2 (b). Moreover, Gi is smaller than G. It follows that there exist
3 orientations Di

j of Gi such that one of Di
j − e⃗ is strongly connected for all e ∈ E(Gi).

We may suppose that D1
1 − e⃗0 and D2

1 − e⃗0 are strongly connected. Reversing the arcs
in D2

j if needed, we may assume that e0 has the same orientation in D1
j and D2

j . We can
construct the 3 orientations Dj of G by merging D1

j and D2
j . We will finish the proof by

showing that for all e ∈ E, there exists a j such that Dj − e⃗ is strongly connected. Let
e ∈ E and j ∈ {1, 2, 3} such that both D1

j − e⃗ and D2
j − e⃗ are strongly connected. Observe

that if e ̸= e0, then either D1
j − e⃗ = D1

j or D
2
j − e⃗ = D2

j . Assume that there is a nonempty,
proper subset X of V that has no arc leaving in Dj − e⃗. Without loss of generality, we
may assume that v ∈ X. As (X ∩ Si) ∪ {vi} has an arc leaving in Di

j − e⃗, we obtain that
e = e0 and e0 must be directed away from vi in Di

j for i = 1, 2. This is a contradiction as
D1

j and D2
j were chosen to both have the same orientation of e0.

Let HG be a cubic extension of G as defined in Section 3.1.4.1.3. By Claim 3.1.16 and
Proposition 3.1.5(b), HG is a cubic essentially 4-edge-connected graph. Then, by Theorem
3.1.39, the Frank number of HG is at most 3. There exist therefore 3 orientations D′

j

of HG such that for each edge e ∈ E(HG), there is some j ∈ {1, 2, 3} such that D′
j − e⃗

is strongly connected. Consider now the 3 orientations Dj of G which arise from D′
j by

contracting the subgraphs Cv for all v ∈ V. By Proposition 2.1.3(a), if D′
j − e⃗ is strongly

connected for an edge e ∈ E , so is Dj − e⃗. It follows that the Frank number of G is at
most 3, a contradiction.

3.1.4.4 The Petersen graph

In this section, we show that there are graphs of Frank number higher than two, more pre-
cisely we prove Theorem 3.1.35. While this result can also be established computationally,
we prefer to give a proof by hand.

Proof. (of Theorem 3.1.35) Let G = (V,E) be the Petersen graph, see Figure 2.1.6. We
frequently make use of the symmetry properties of G. By Theorem 3.1.34 and since G is
essentially 4-edge-connected, but not 4-edge-connected, it suffices to prove that its Frank
number is different from 2. Suppose that G has Frank number 2 and let D1 = (V,A1)
and D2 = (V,A2) be two orientations of G such that

D1 − e⃗ or D2 − e⃗ is strongly connected for each edge e of G. (∗)

We say that an arc of D1 is stable if the same arc exists in D2, otherwise it is changing.
Let S and C be the set of stable and changing arcs, respectively. Note that D1 and ⃗D2

also satisfy (∗) and stable and changing arcs are exchanged. Hence, whatever is proved
for stable arcs is also true for changing arcs.

We first show that S and C induce a 2-edge-coloring of G with certain properties and
then that no such 2-edge-coloring exists. Observe that none of the considered colorings
are required to be proper. For a 2-edge-coloring R,B of G, we define an auxiliary graph
HR,B := (V, F ) where uv ∈ F if there exists a 3-path tuvw in G(R) or in G(B) or there
exists a (u, v)-path that is a connected component of G(R) or of G(B).

Lemma 3.1.15. G has a 2-edge-coloring R,B such that

no monochromatic 3-star exists, (3.1.1)

HR,B is bipartite. (3.1.2)
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Proof. We show that the 2-edge-coloring induced by S and C satisfies (3.1.1) and (3.1.2).
To show (3.1.1) we need the following claim.

Claim 3.1.17. Each vertex is incident to at least one stable arc.

Proof. Suppose that a vertex v is incident only to changing arcs. Since G is cubic and
D1 is strongly connected, either the in-degree or the out-degree of v is 1, say e⃗ is the only
arc entering v. Then ⃗e is the only arc leaving v in D2. Then, D1 − e⃗ and D2 − ⃗e are not
strongly connected, which is a contradiction.

To show (3.1.2) we need the following claims.

Claim 3.1.18. The weakly connected components of D1(S) are directed paths or circuits.

Proof. By Claim 3.1.17 applied for stable arcs and then for changing arcs, the connected
components of D1(S) are paths or cycles. If two stable arcs are incident to a vertex v, then
one of them enters and the other one leaves v. Otherwise, let e be the third arc incident
to v. Then, D1 − e⃗ and D2 − ⃗e are not strongly connected, which is a contradiction. Now
the claim follows.

Claim 3.1.19. Let P be a weakly connected component of D1(S) that is a directed (u, v)-
path. Then the in-degrees of u and v in D1 are of different parity.

Proof. Since G is cubic and u and v are incident to exactly one stable arc in D1, u and v
are incident to exactly two changing arcs in D1. Then, by Claim 3.1.18 applied for D1(C),
exactly one changing arc enters both u and v in D1. Since P is a directed path between
u and v, the claim follows.

Claim 3.1.20. Let tuvw be a 3-path in D1(S). Then the in-degrees of u and v are of
different parity in D1.

Proof. By Claim 3.1.18, exactly one stable arc enters both u and v in D1. By Claim 5.2.4,
the two other arcs incident to u and v are changing. If both are entering or leaving then
D1−uv and D2−uv are not strongly connected, which is a contradiction. Now the claim
follows.

Claim 3.1.21. HS,C is a bipartite graph.

Proof. Since G is cubic and D1 and D2 are strongly connected, each vertex is of in-degree
1 or 2. By Claims 3.1.19 and 3.1.20, each edge of HS,C is between a vertex of in-degree 1
and a vertex of in-degree 2, so HS,C is bipartite.

By Claim 5.2.4 applied for R := S and B := C and by Claim 3.1.21, Lemma 3.1.15
follows.

We show that G does not admit any 2-edge-coloring satisfying (3.1.1) and (3.1.2) and
obtain a contradiction to Lemma 3.1.15.

The following result yields a strong property such a coloring would have to satisfy.

Lemma 3.1.16. Let R,B be a 2-edge-coloring satisfying (3.1.1) and (3.1.2). Then G
has a 5-cycle that contains a monochromatic 4-path whose endvertices are incident to 2
edges of the other color.

Proof. We first show two weaker statements which are useful in the proof later on.

Claim 3.1.22. G has a monochromatic 3-path.
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Proof. Suppose not. Since G is cubic, there are two adjacent edges of the same color,
without loss of generality ab, ae ∈ R. Then, by the assumption for deab, eabc, eabi and
heab, we obtain that de, bc, bi, eh ∈ B. Thus, by the assumption for cbih, cbij and dehg,
we obtain that jihg forms a monochromatic 3-path, contradicting the assumption. See
Figure 3.1.9a.

This result is helpful in proving a strengthening of itself.

Claim 3.1.23. G has a 5-cycle that contains a monochromatic 4-path.

Proof. Suppose not. By Claim 3.1.22, without loss of generality bc, cd, de ∈ B. Then,
by the assumption for abcde, we obtain that ab, ae ∈ R. By (3.1.1) for a, c and d, we
obtain that af ∈ B and cg, dj ∈ R. By (3.1.1) for f , one of fg and fj is in R. By
symmetry, without loss of generality fg ∈ R. Then, by (3.1.1) for g, gh ∈ B. So, by the
assumption for cdehg, we obtain that eh ∈ R. Then, by the assumption for abihe, we
obtain that hi, bi ∈ B. Thus cbihg forms a monochromatic 4-path in the 5-cycle cbihg,
that contradicts the assumption. See Figure 3.1.9b.

By Claim 3.1.23, without loss of generality ab, bc, de, ea ∈ R. Then, by (3.1.2) for
abcde, we obtain that cd ∈ B. By (3.1.1) for a, b and e, we obtain that af, bi, eh ∈ B.
If hi ∈ B, then, by the 3-paths of deabc and by ehib, we obtain that HR,B contains the
3-cycle abe that contradicts (3.1.2). See Figure 3.1.9c. Hence, hi ∈ R. If cg, dj ∈ R, then,
by the 3-paths of jdeabcg and by cd, we obtain that HR,B contains the 5-cycle abcde that
contradicts (3.1.2). See Figure 3.1.9d. Hence, by symmetry, we may suppose that dj ∈ B.

Now suppose for the sake of a contradiction that G does not contain a 5-cycle that
contains a monochromatic 4-path whose endvertices are incident to 2 edges of the other
color. If cg ∈ B, then abcde contradicts the assumption. See Figure 3.1.9e. Hence cg ∈ R.
If ij ∈ B, then bcdji contradicts the assumption. See Figure 3.1.9f. Hence ij ∈ R. If
gh ∈ R, then, by the 3-paths of abcghij and by bi, we obtain that HR,B contains the
5-cycle bcghi that contradicts (3.1.2). See Figure 3.1.9g. Hence gh ∈ B. If fg ∈ B,
then afghe contradicts the assumption. See Figure 3.1.9h. Hence fg ∈ R. Then, by
the 3-paths of deabcgf and by ehg, we obtain that HR,B contains the 5-cycle abcge that
contradicts (3.1.2). See Figure 3.1.9i. This finishes the proof of Lemma 3.1.16.

Lemma 3.1.16 yields that G has a 5-cycle, without loss of generality abcde, that con-
tains a monochromatic 4-path whose endvertices are incident to 2 edges of the other color.
By similar arguments as before, we obtain the partial coloring of Figure 3.1.9e. By (3.1.1)
for f , one of fg and fj is in R. By symmetry, without loss of generality fj ∈ R.

Suppose that fg ∈ B. Then, by (3.1.1) for g, gh ∈ R. If ij ∈ R, then, by the 3-paths
of deabc and for ghij, and by eh and ib, HR,B contains the 5-cycle eabih contradicting
(3.1.2). See Figure 3.1.9j. If ij ∈ B, then, by the 3-paths of afgcdji and by fj, we obtain
that HR,B contains the 5-cycle fgcdj contradicting (3.1.2). See Figure 3.1.9k.

Hence fg ∈ R. Then, by (3.1.2) for fghij, one of hg and ij is in B. By symmetry,
we may suppose that ij ∈ B. If hg ∈ R, then, by the 3-paths of jfghi and for deab, and
by eh and af , we obtain that HR,B contains the 5-cycle fghea contradicting (3.1.2). See
Figure 3.1.9l. If hg ∈ B, then, by the 3-paths of deabc and by bijdcghe, we obtain that
HR,B contains the 3-cycle eab contradicting (3.1.2). See Figure 3.1.9m.

In all cases we obtain a contradiction which implies that G has Frank number different
from 2. This finishes the proof of Theorem 3.1.35.
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3.1.4.5 Algorithmic aspects

This section is dedicated to proving Theorem 3.1.36.
Our reduction is from CMNAE3-SAT, see Section 2.3.3.3. First, we introduce our

construction and show that the constructed graph is cubic and 3-edge-connected. The
remaining two parts are dedicated to showing that the reduction works indeed.

The construction Let F = (X, C) be a CMNAE3-SAT formula withX = {x1, . . . , xm}.
If there is a variable x ∈ X that is contained in only one clause C ∈ C, then F is satisfiable
if and only if (X − x, C −C) is satisfiable. We may therefore assume that every xi ∈ X is
contained in at least 2 clauses. For i = 1, . . . ,m, we define pi to be the number of clauses
xi is contained in.

We now construct an instance (G = (V,E), S) of DELETABILITY. For i = 1, . . . ,m,
let G contain a cycle Ki of length 2pi. We abbreviate V (Ki) to Vi and E(Ki) to Ei. Ob-
serve that Vi can be partitioned into two stable sets in a unique way. We call one of these
sets Ai and the other one Bi. Note that |Ai| = |Bi| = pi. For every clause C, G contains
a vertex vC . We denote {vC : C ∈ C} by VC. Further, G contains a cycle K of length
3|C|. We abbreviate V (K) to VK and E(K) to EK . We add a perfect matching between
{vC : xi ∈ C} and Ai for every i = 1, . . . ,m and between

⋃m
i=1 Bi and VK . Observe

that this is possible because |Ai| = pi and |
⋃m

i=1Bi| =
∑m

i=1 pi = 3|C| = |VK |. Finally,
we define S =

⋃m
i=1Ei. Note that |V | = 10|C| and |E| = 15|C|, so the construction is

polynomial indeed.

vC1 vC2 vC3

K1 K2 K3 K4

K

Figure 3.1.10

Figure 3.1.10 shows the constructed graph for the formula consisting of the variables
x1, . . . , x4 and the clauses C1 = {x1, x2, x3}, C2 = {x1, x2, x4} and C3 = {x1, x3, x4}. The
edges of S are marked in red.

Observe that G is cubic as every clause contains exactly 3 variables and by construc-
tion. We show that it also satisfies the other desired structural property.

Lemma 3.1.17. G is 3-edge-connected.

Proof. Assume for the sake of a contradiction that G contains some cut δ(Z) which
consists of at most 2 edges. Without loss of generality, we may assume that VK ∩ Z is
nonempty.

Claim 3.1.24. VK ⊆ Z.
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Proof. Assume that there is a vertex w ∈ VK −Z. As G−VK arises from GF by replacing
vertices by cycles and GF is connected by assumption, G−VK is connected. Then, since a
perfect matching exists between

⋃m
i=1Bi and VK , we obtain that G−EK is also connected.

As K is 2-edge-connected, it follows that 2 ≥ dG(Z) = dK(Z) + dG−EK
(Z) ≥ 2 + 1 = 3, a

contradiction.

Claim 3.1.25. VC ⊆ Z.

Proof. Consider a vertex vC where C contains the variables xi, xj, xℓ. By construction,
both vC and K have a neighbor in each of Vi, Vj and Vℓ and Ki, Kj and Kℓ are connected.
As VK ⊆ Z by Claim 3.1.24, there are 3 edge-disjoint paths from vC to Z. It follows, by
dG(Z) ≤ 2, and Theorem 2.1.2 that vC ∈ Z.

By Claims 3.1.24 and 3.1.25, there exists a vertex v ∈ Vi − Z for some i = 1, . . . ,m
and v is connected to VK ∪VC ⊆ Z by a path of length 1 and two paths of length 2 and all
of these are edge-disjoint. By Theorem 2.1.2, this is a contradiction to Z being separated
from v by a cut of at most 2 edges. This finishes the proof of Lemma 3.1.17.

The remaining part of this section is dedicated to showing that our construction is
indeed correct, i.e. F is a positive instance of CMNAE3-SAT if and only if (G,S) is a
positive instance of DELETABILITY.

From orientation to truth assignment Suppose that (G,S) is a positive instance of
DELETABILITY, so there is an orientation D of G such that D− s⃗ is strongly connected
for all s ∈ S. Before finding a feasible truth assignment of the formula, we need the
following result about the orientation.

Claim 3.1.26. Let i ∈ {1, . . . ,m}. Then all the arcs between Ai and Bi are directed in
the same way.

Proof. Let v be any vertex of Ki and e, f the two edges of Ki incident to v. Since e, f ∈ S,
D − e⃗ and D − f⃗ are strongly connected. Then, as G is cubic, e⃗ and f⃗ are either both
entering or both leaving v. Since Ki is connected, the claim follows.

Using Claim 3.1.26, we now define a truth assignment of X in the following way: a
variable xi is assigned the value TRUE if the arcs between Ai and Bi are directed from
Bi to Ai and FALSE if the arcs between Ai and Bi are directed from Ai to Bi.

Consider a clause C = {xi, xj, xℓ}. The vertex vC has one neighbor in each of Ai, Aj

and Aℓ in G. As D is strongly connected and G is cubic, vC has one in-neighbor w, say in
Aℓ and w has an in-neighbor in D[Vℓ]. It follows by construction that xℓ is set to TRUE
in the truth assignment. Similarly, one of xi, xj, xℓ is set to FALSE. It follows that the
assignment is feasible.

From truth assignment to orientation Assume that there is a feasible truth assign-
ment for an instance F of CMNAE3-SAT consisting of a variable set X = {x1, . . . , xm}
and a clause set C. Relabeling variables, we may assume that there is some t ∈ {0, . . . ,m}
such that xi is set to TRUE for i = 1, . . . , t and xi is set to FALSE for i = t + 1, . . . ,m.
Let A1 =

⋃t
i=1Ai, A2 =

⋃m
i=t+1Ai, B1 =

⋃t
i=1Bi and B2 =

⋃m
i=t+1 Bi.

We define an orientation D of G as follows. We orient all edges from P to R where P
and R are two consecutive sets in A1, VC,A2,B2, VK ,B1,A1. Finally, we orient the edges
of K as a circuit.
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Figure 3.1.11

Figure 3.1.11 shows the obtained orientation for the formula consisting of the variables
x1, . . . , x4 and the clauses C1 = {x1, x2, x3}, C2 = {x1, x2, x4} and C3 = {x1, x3, x4} when
x1 and x2 are set to TRUE and x3 and x4 are set to FALSE.

The following is the orientation’s decisive property:

Claim 3.1.27. In D, every vertex vC ∈ VC has an in-neighbor in A1 and an out-neighbor
in A2.

Proof. Let C contain the 3 variables xi, xj and xℓ. As the truth assignment is feasible, one
of xi, xj, xℓ, say xi, is set to TRUE and a different one, say xj, is set to FALSE. Then, by
construction, D contains an arc from Ai ⊆ A1 to vC and an arc from vC to Aj ⊆ A2.

The following result will finish the proof:

Claim 3.1.28. Let s ∈ S. Then D − s⃗ is strongly connected.

Proof. SinceK is oriented as a circuit, all vertices ofK are in the same strongly connected
component Q. By construction, all vertices in B1 have an in-neighbor in VK ⊆ Q and all
vertices in A1 have 2 in-neighbors in B1 in D, so at least one in D − s⃗. It follows, by
Claim 3.1.27, that all vertices in A1 ∪ B1 ∪ VC are reachable from Q in D − s⃗. By similar
arguments, Q is reachable from all vertices in A2 ∪ B2 ∪ VC. This yields that VC ⊆ Q.
Finally, from every vertex in A1 ∪ B1 there exists a directed path of length 1 or 2 to a
vertex vC ∈ VC. Similarly, to every vertex in A2∪B2 there exists a directed path of length
1 or 2 from a vertex vC ∈ VC. It follows that D − s⃗ is strongly connected.

This reduction proves Theorem 3.1.36.

3.1.4.6 Conclusion

Our work shows that f(G) ≤ 7 for every 3-edge-connected graph G and that f(G) = 3 if
G is the Petersen graph. Also, we show a better bound for the more restricted classes of
essentially 4-edge-connected graphs and 3-edge-colorable, 3-edge-connected graphs. Fur-
ther, we show that a graph of Frank number bigger than 5 would imply the failure of
Conjecture 3.1.2. Moreover, the decision problem whether all edges of a given subset can
become deletable in one orientation is proven to be NP-complete.

The most obvious remaining problem is to improve these bounds on the Frank number
in the general case. Considering the indications found during our work, we propose the
following conjecture:
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Conjecture 3.1.3. Every 3-edge-connected graph G satisfies f(G) ≤ 3.

A possible way to make progress towards Conjecture 3.1.3 would be the following
generalization of Lemmas 3.1.13 and 3.2.16. Using the fact that cubic graphs are 4-
edge-colorable [109] and similar arguments as before, Conjecture 3.1.4 would imply that
f(G) ≤ 4 for any 3-edge-connected graph.

Conjecture 3.1.4. Let M be a matching of a 3-edge-connected graph G intersecting each
3-edge-cut of G in at most one edge. Then M is deletable.

It would also be interesting to generalize Frank numbers to arbitrary odd connectivity.
There are two possible such generalizations. Observe that for fixed k the solution to the
first problem is at least as large as the solution to the second one.

Research Problem 3.1.11. Given a (2k+ 1)-edge-connected graph G, what is the min-
imum number of k-arc-connected orientations such that each edge becomes an arc whose
deletion does not destroy k-arc-connectivity in at least one of these orientations?

Research Problem 3.1.12. Given a (2k + 1)-edge-connected graph G = (V,E), what is
the minimum number of orientations such that for every F ⊆ E with |F | ≤ k, we have

that D − F⃗ is strongly connected for at least one of these orientations D?

It follows from a theorem in [23] that these numbers are bounded by a constant
depending only upon k. We are particularly interested in whether or not these numbers
can be bounded by a constant not depending upon k.

3.2 Orientations for vertex-connectivity

In this section, we consider orientations that satisfy different connectivity conditions than
in Section 3.1. We want the orientations to be highly vertex-connected. In Section 3.2.1,
we give an overview of the results concerning the most natural analogue of the results
in Section 3.1. We search for graphs admitting one orientation of high global vertex-
connectivity.

In Section 3.2.2, we search for Eulerian graphs with a much stronger property: we
want each of their Eulerian orientations to be highly vertex-connected. We identify some
such graph classes.

3.2.1 Finding one highly vertex-connected orientation

In many aspects, the theory of orientations for vertex-connectivity is much more compli-
cated than the theory of orientations for arc-connectivity. To start with, a good necessary
condition for a graph having a k-vertex-connected orientation is not entirely obvious. The
following characterization was conjectured by Frank in [42].

Conjecture 3.2.1. A graph G = (V,E) having at least k + 1 vertices has a k-vertex-
connected orientation if and only if G−X is 2(k− |X|)-edge-connected for every X ⊆ V
with |X| ≤ k.

Partial results for Conjecture 3.2.1 for k = 2 were found by Gerards [57], Berg and
Jordán [11] and Cheriyan, Durand de Gevigney and Szigeti [20]. Finally, Thomassen
managed to prove Conjecture 3.2.1 for k = 2 in [105]. While the proof of Thomassen is
elementary and not very long, its writing is very dense and it actually is pretty technical.
It would therefore be interesting to find a simple proof of this result.
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On the negative side, Conjecture 3.2.1 was disproven by Durand de Gevigney in [24].
Two more counterexamples for k = 3 due to Szigeti can be found in [61]. The first one
is interesting because it only contains 6 vertices and therefore is smaller than the one in
[24]. The second one is interesting because it is the first counterexample not containg any
double edges. The idea of the constructions comes from [24, 25].

Further, Durand de Gevigney proved in [24] that the corresponding algorithmic prob-
lem is not tractable, so a nice characterization seems out of reach.

Theorem 3.2.1. For any k ≥ 3, the problem of deciding whether a given graph has a
k-vertex-connected orientation is NP-complete.

It remains interesting to consider approximative versions of Conjecture 3.2.1. In par-
ticular, the following conjecture which is due to Thomassen [104] is still open.

Conjecture 3.2.2. For every k ∈ Z≥0, there is some f(k) such that every f(k)-vertex-
connected graph has a k-vertex-connected orientation.

Observe that the theorem of Thomassen gives an affirmative answer to Conjecture
3.2.2 for k = 2, namely it shows that f(2) = 4. In the light of Theorem 3.2.1, there
is no hope to find a good characterization of mixed graphs admitting highly vertex-
connected orientations. Nevertheless, the following problem remains open. It is hinted at
by Thomassen in [105] and explicitely asked by Bang-Jensen, Huang and Zhu in [7].

Research Problem 3.2.1. Is there a polynomial time algorithm that decides whether a
mixed graph has a 2-vertex-connected orientation?

Clearly, a positive answer to Research Problem 3.2.1 should imply the theorem of
Thomassen. We next show that such a result would also imply an algorithmic result that
is closely related to the result on finding 2-arc-connected orientations of Frank, Király
and Király in [50].

Theorem 3.2.2. If there is a polynomial time algorithm that decides whether a given
mixed graph has a 2-vertex-connected orientation, then there is also a polynomial time
algorithm that decides whether a given mixed graph has a 2-arc-connected orientation.

Proof. Let G = (V,A ∪ E) be a mixed graph. Clearly, if there is some v ∈ V that is
incident to at most 1 arc or edge in G, then G does not have a 2-arc-connected orientation,
so we may suppose that d−A(v) + d+A(v) + dE(v) ≥ 2 for all v ∈ V . We create another
mixed graph H = (V ′, A′ ∪ E′). For every v ∈ V , we let V ′ contain a set Xv of
d−A(v)+d+A(v)+dE(v) vertices. For every v ∈ V and for every x, y ∈ Xv, we let A

′ contain
an arc from x to y and an arc from y to x. For every uv ∈ A, we let A′ contain an arc
from Xu to Xv and for every uv ∈ E, we let E ′ contain an edge between Xu and Xv. We
do this in a way so that for every v ∈ V and every x ∈ Xv, we have that x is incident to
exactly one arc or edge in (A′ ∪ E ′)− A′[Xv]. An example can be found in Figure 3.2.1.

Observe that |V ′| =
∑

v∈V (d
−
A(v) + d+A(v) + dE(v)) = 2|A ∪ E|, |E ′| = |E| and

|A′| =
∑
v∈V

2

(
d−A(v) + d+A(v) + dE(v)

2

)
+ |A|

≤
∑
v∈V

(d−A(v) + d+A(v) + dE(v))
2 + |A|

≤ (2(|A|+ |E|))2 + |A|.

It follows that the size of H is polynomial in the size of G. Further, by assumption,
we have a polynomial time algorithm that decides whether H has a 2-vertex-connected
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G H

Figure 3.2.1: An example for the construction in Theorem 3.2.2.

orientation. It hence suffices to prove that H has a 2-vertex-connected orientation if and
only if G has a 2-arc-connected orientation.

First suppose that H has a two-vertex-connected orientation H⃗. In particular, H⃗ is
2-arc-connected. As |Xv| ≥ 2 for all v ∈ V , we can now create an orientation G⃗ of G

by contracting Xv into v for all v ∈ V . By Proposition 2.1.2 (a), we obtain that G⃗ is
2-arc-connected.

Now suppose that G has a 2-arc-connected orientation G⃗. Let an orientation H⃗ of H
be obtained from G⃗ by replacing v by Xv and adding the arcs of H[Xv] for all v ∈ V .

Let v ∈ V and x ∈ Xv. We need to show that H⃗ − x is strongly connected. As G⃗ is
2-arc-connected, we have that G⃗ − a is strongly connected, where a is the unique arc in
A(H⃗) − A′(Xv) that is incident to x. Further, as |Xv| ≥ 2, we have that H⃗[Xv − x] is

strongly connected and H⃗[Xw] is strongly connected for all w ∈ V ′ − v. It hence follows

that H⃗ − x is strongly connected by Proposition 2.1.3(b).

3.2.2 Graphs all of whose Eulerian orientations are highly vertex-
connected

By Proposition 2.1.11, any Eulerian orientation of an Eulerian 2k-edge-connected graph is
k-arc-connected. Clearly, the analogous statement does not hold for vertex-connectivity
as can be seen by considering a triangle all of whose edges are doubled. Nevertheless, the
question of finding more restricted classes of such graphs remains interesting. We focus on
2k-regular graphs. More concretely, we say that a 2k-regular graph having at least k + 2
vertices is good if each of its Eulerian orientations is k-vertex-connected, bad otherwise.
The study of good graphs has been initiated by Levit, Chandran and Cheriyan [85] where
the following result is proved.

Theorem 3.2.3. Hypercubes are good.

A simpler proof of Theorem 3.2.3 has been found by Szigeti, see [61]. Cheriyan asked
whether more classes of good graphs can be found [19]. We here give a new, simpler proof
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for hypercubes being good and provide some more classes of good graphs. This work is
based on [61].

3.2.2.1 Preliminaries

We first give a preparatory result that contains a reformulation of the definition of bad
graphs. It will be used frequently throughout this section.

Proposition 3.2.1. A 2k-regular simple graph G = (V,E) with at least k + 1 vertices is
bad if and only if there exists an orientation D of G and a partition of V into nonempty
sets Z, S and T such that

d−D(v) = d+D(v) = k for all v ∈ V, (3.2.1)

|Z| = k − 1, (3.2.2)

every edge of δG(S, T ) is oriented from S to T in D. (3.2.3)

Further, if an orientation D of G satisfies (3.2.1)–(3.2.3) with some partition of V into
S, T and Z, it also satisfies

G[S] contains a cycle, (3.2.4)

d−D(S) ≤ kmin{|Z|, |S|}, (3.2.5)

dG(S, T ) ≤ k2 − k − iG(Z). (3.2.6)

Moreover, S can be chosen so that

|S| ≤ |T |, (3.2.7)

every vertex s of S has an out-neighbor in S in D. (3.2.8)

Proof. First suppose that G is bad, so there is an Eulerian orientation D of G that is
not k-vertex-connected. As D is Eulerian, (3.2.1) holds. As D is not k-vertex-connected,
there is a set Z of size k− 1 such that D−Z is not strongly connected. As D−Z is not
strongly connected, there is a nonempty, proper subset S of V −Z such that d−D−Z(S) = 0.
Setting T = V − Z − S, we obtain (3.2.2) and (3.2.3).

We next show that if any orientation D satisfies (3.2.1)–(3.2.3) with a partition of V
into S, T and Z, it also satisfies (3.2.4)–(3.2.6) with the same partition.

As G is simple, so is D. Together, with (3.2.2), this yields dD(Z, s) ≤ k − 1 for every
s ∈ S. Further, by (3.2.3), we have dD(T, s) = 0. Using (3.2.1), we obtain d−D[S](s) =

d−D(s)− dD(Z, s)− dD(T, s) ≥ k− (k− 1)− 0 = 1. As s was chosen arbitrarily, we obtain
that D[S] contains a circuit by Proposition 2.1.6. Clearly, this yields a cycle in G[S], so
(3.2.4) holds. Since, by (3.2.1), d−D(s) = k for all s ∈ S, it follows that

d−D(S) ≤
∑
s∈S

d−D(s) =
∑
s∈S

k = k|S|.

Moreover, by (3.2.3), all arcs entering S come from Z. Further, by (3.2.1), we have
d+D(z) = k for all z ∈ Z. This yields

d−D(S) ≤ d+D(Z) ≤
∑
z∈Z

d+D(z) =
∑
z∈Z

k = k|Z|.

The last two equations yield (3.2.5).
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S T

Z

Figure 3.2.2: An example for the orientation and the partition in Proposition 3.2.1. The
thick arcs between the sets indicate the orientation of all arcs between these sets. The
arcs corresponding to the cycle in G[S] are marked in red.

By (3.2.3), we have dG(S, T ) ≤ d+D(S). By (3.2.1) and Proposition 2.1.9, we have
d+D(S) = d−D(S). By (3.2.3), we have d−D(S) ≤ d+D(Z). Further, (3.2.2) yields |Z| = k − 1.
We obtain

dG(S, T ) ≤ d+D(S) = d−D(S) ≤ d+D(Z) =
∑
z∈Z

(d+D(z)− d+D[Z](z))

= k|Z| − iG(Z) = k2 − k − iG(Z),

so (3.2.6) holds.
In order to show (3.2.7) and (3.2.8), let us choose an orientation D of G and a partition

Z, S and T of V satisfying (3.2.1) – (3.2.3) so that |S| is minimum. Observe that the

orientation ⃗D that is obtained from D by reversing all arcs of D also satifies the conditions
(3.2.1)–(3.2.3) when considering the partition of V into S ′ = T, T ′ = S and Z. As |S| was
chosen to be minimum, we have |S| ≤ |S ′| = |T |. This yields (3.2.7).

The fact that G is simple and (3.2.4) imply |S| ≥ 2. Suppose that there is some
s ∈ S with d+D[S](s) = 0. Let S ′ = S − s and T ′ = T ∪ s. Observe that D also satisfies

(3.2.1)–(3.2.3) with the partition of V into S ′, T ′ and Z. As |S ′| < |S|, this contradicts
the choice of S, so (3.2.8) follows.

Now suppose that G has an orientation D satisfying (3.2.1)–(3.2.3). By (3.2.1), we
have that D is Eulerian and by (3.2.2) and (3.2.3), we have that D is not k-vertex-
connected. It follows by definition that G is bad.

An example for an orientation and a partition like in Proposition 3.2.1 for K9 can
be found in Figure 3.2.2. Unfortunately, it turns out that only very limited classes of
graphs can be proven to be good. As an indication for that, we next show that almost all
complete graphs are bad which rules out a big number of natural graph classes.

Theorem 3.2.4. The complete graphs K2k+1 are bad for all k ≥ 4.

Proof. Let k ≥ 4 be an integer and G = (V,E) the complete graph K2k+1. By k ≥ 4, we
have ⌊k

2
⌋ ≥ 2. This yields

(⌊k
2
⌋+ 1) + 2(⌈k

2
⌉+ 1) = (⌊k

2
⌋+ ⌈k

2
⌉) + (⌈k

2
⌉+ 2) + 1

≤ 2(⌊k
2
⌋+ ⌈k

2
⌉) + 1

= 2k + 1.

77



We can hence choose three disjoint sets S, T and Z ′ in V such that |S| = ⌊k
2
⌋+ 1 and

|T | = |Z ′| = ⌈k
2
⌉+ 1. Let Z := V \ (S ∪ T ). Note that Z ⊇ Z ′ and

|Z| = |V | − |S| − |T | = 2k + 1− (⌊k
2
⌋+ 1)− (⌈k

2
⌉+ 1) = k − 1.

Let M be the empty set if k is even and a perfect matching of the graph G′ = (T ∪
Z ′, δG(T, Z

′)) if k is odd. Since |T | = |Z ′| and G is a complete graph, G′ is a regular
complete bipartite graph, so M exists. Let us orient all edges in δG(S, T ) from S to T ,
all edges in δG(T, Z

′) \M from T to Z ′ and all edges in δG(Z
′, S) from Z ′ to S. Let F be

the set of edges that are oriented already and observe that d+
F⃗
(v) = ⌈k

2
⌉ + 1 = d−

F⃗
(v) for

all v ∈ S ∪ T ∪Z ′ and d+
F⃗
(v) = 0 = d−

F⃗
(v) for all v ∈ Z ′ −Z. It follows that F⃗ induces an

Eulerian directed graph. Hence, by Proposition 2.1.10, F induces an Eulerian subgraph
of G. Since G is Eulerian, G−F is also Eulerian, so G−F has an Eulerian orientation by
Proposition 2.1.10. Combining the orientation of F with an arbitrary Eulerian orientation
of G−F , we have an orientation D of G and a partition {Z, S, T} of V that satisfy (3.2.1),
(3.2.2) and (3.2.3). Thus, by Proposition 3.2.1, G = K2k+1 is bad. An illustration for K9

can be again be found in Figure 3.2.2.

3.2.2.2 Classes of good graphs

In this section, we show that the following graph families are good: the complete bipartite
graphs K2k,2k, the incidence graphs of projective planes of even degree, the line graphs of
regular complete bipartite graphs, the line graphs of complete graphs and the hypercubes
Q2k. In the last case, this is a new proof for the theorem of Levit, Chandran and Cheriyan.

We will apply the following easy observation: for all triples of real numbers (a, b, c)
with a, b ≥ c, since (a− c)(b− c) ≥ 0, we have

ab ≥ c(a+ b− c). (3.2.9)

Let a be a non-negative integer. We use the notation
(
a
2

)
for a(a−1)

2
and we apply the

following inequality: (
a

2

)
≥ max{a− 1, 2a− 3}. (3.2.10)

3.2.2.2.1 Complete bipartite graphs

Let us first consider even regular complete bipartite graphs. For some k ∈ Z≥0, the regular
complete bipartite graph K2k,2k is defined by V (K2k,2k) = V1 ∪ V2 for two sets V1, V2 of
size 2k and E(K2k,2k) = {v1v2 : v1 ∈ V1, v2 ∈ V2}. For an illustration, see Figure 3.2.3.

Theorem 3.2.5. The complete bipartite graphs K2k,2k are good for all k ≥ 1.

Proof. We assume for a contradiction that the bipartite graph G = (V1, V2;E) = K2k,2k

is bad. By Proposition 3.2.1, there exists an orientation D of G and a partition of V1∪V2

into nonempty sets Z, S and T such that (3.2.1) – (3.2.6) are satisfied. For i = 1, 2, let
Zi:= Z ∩ Vi, Si:= S ∩ Vi and Ti:= T ∩ Vi and zi:= |Zi|, si:= |Si| and ti:= |Ti|. Note that
we have z1, z2 ≥ 0 and, by (3.2.2), we have z1 + z2 = |Z| = k − 1.

Claim 3.2.1. The following hold:

s1 + s2 + t1 + t2 = 3k + 1, (3.2.11)

1 ≤ s1, s2, t1, t2 ≤ k, (3.2.12)

s1, s2, t1, t2 ∈ Z. (3.2.13)
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Figure 3.2.3: A drawing of the complete bipartite graph K4,4.

Proof. By |V (G)| = 4k and |Z| = k − 1, we have

s1 + s2 + t1 + t2 = |S|+ |T | = |V (G)| − |Z| = 4k − (k − 1) = 3k + 1,

so (3.2.11) holds. By S ̸= ∅, without loss of generality we may assume that there exists
v ∈ S ∩V1, so s1 ≥ 1. Then, by (3.2.1) and because G is bipartite and simple, v has k in-
neighbors in V2. By (3.2.3), z1+z2 = k−1 and z1 ≥ 0, we obtain that z2 = (z1+z2)−z1 ≤
(k− 1)− 0 = k− 1, so dD(Z2, v) ≤ k− 1. By (3.2.3), we have dD(T2, v) = 0. This yields,
dD(S2, v) = d−D(v)− dD(Z2, v)− dD(T2, v) ≥ k − (k − 1)− 0 = 1, so in particular s2 ≥ 1.
By similar arguments, we obtain t1, t2 ≥ 1. Moreover, by (3.2.1), (3.2.3), v ∈ S ∩ V1 and
the fact G is a complete bipartite graph, we have k = d+D(v) ≥ dG(v, T ∩ V2) = t2 and
similarly s1, s2, t1 ≤ k, so (3.2.12) holds. By definition, (3.2.13) obviously holds.

Claim 3.2.2. The minimum of s1t2 + s2t1 subject to (3.2.11), (3.2.12) and (3.2.13) is
k2 + k.

Proof. Let the minimum be attained at (s1, s2, t1, t2). First suppose that k > s1 > 1 and
k > t2 > 1. By symmetry, we may suppose that k > s1 ≥ t2 > 1. We now consider
(s′1, s

′
2, t

′
1, t

′
2) := (s1 + 1, s2, t1, t2 − 1). By (3.2.11), we have

s′1 + s′2 + t
′
1 + t

′
2 = (s1 + 1) + s′2 + t

′
1 + (t

′
2 − 1)

= s1 + s2 + t1 + t2

= 3k + 1,

so (s′1, s
′
2, t

′
1, t

′
2) satisfies (3.2.11). Clearly, we also have s′1 > s1 ≥ 1, 1 ≤ s′2 = s2 ≤ k, 1 ≤

t
′
1 = t1 ≤ k and t′2 < t2 ≤ k. Further, by (3.2.13), we also have s′1 = s1+1 ≤ (k−1)+1 = k
and t

′
2 = t2 − 1 ≥ 2− 1 = 1. It follows that (s′1, s

′
2, t

′
1, t

′
2) satisfies (3.2.12). By definition

and (3.2.13), we obtain that (s′1, s
′
2, t

′
1, t

′
2) also satisfies (3.2.13).

Further, by s1 ≥ t2, we obtain

s′1t
′
2 + s′2, t

′
1 = (s1 + 1) · (t2 − 1) + s2t1

= s1t2 + s2t1 − s1 + t2 − 1

< s1t2 + s2t1.

This contradicts the choice of (s1, s2, t1, t2). So either max{s1, t2} = k or min{s1, t2} =
1. Similarly, either max{s2, t1} = k or min{s2, t1} = 1. Suppose that one of min{s1, t2}
and min{s2, t1} equals 1, say s1 = min{s1, t2} = 1. In this case, by (3.2.12) and (3.2.11),
we obtain 3k+1 = s1+s2+ t1+ t2 ≤ 1+k+k+k = 3k+1, so equality holds throughout.
This yields s2 = t1 = t2 = k. In any case, we have max{s1, t2} = k = max{s2, t1}.
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By (3.2.11), this yields

s1t2 + s2t1 = max{s1, t2} ·min{s1, t2}+max{s2, t1} ·min{s2, t1}
= k(min{s1, t2}+min{s2, t1})
= k(3k + 1− (max{s1, t2}+max{s2, t1}))
= k(3k + 1− 2k)

= k2 + k.

By Claims 3.2.1 and 3.2.2 and (3.2.6), we have k2+k ≤ s1t2+s2t1 = dG(S, T ) ≤ k2−k.
Then, by k ≥ 1, we have a contradiction that completes the proof of Theorem 3.2.5.

We mention that the previous proof can be easily modified to show that the bipartite
graphs obtained from K2k+1,2k+1 by deleting a perfect matching are good for all k ≥ 1.

3.2.2.2.2 Incidence graphs of projective planes

Let G be the incidence graph of a non-degenerate projective plane of order 2k − 1. It
is well-known that G is a simple connected 2k-regular bipartite graph with unique color
classes V1 and V2 both being of size (2k− 1)2 + (2k− 1) + 1 = 4k2 − 2k+1. For an exact
definition of G, see [53]. For our purposes, it suffices to know the following important
property of G:

any two vertices in Vi have exactly one common neighbor for i ∈ {1, 2}. (3.2.14)

Theorem 3.2.6. The incidence graph G = (V1, V2;E) of a projective plane of order 2k−1
is good for all k ≥ 1.

Proof. We assume for a contradiction that G is bad. Then, by Proposition 3.2.1, there
exists an orientation D of G and a partition of V1 ∪ V2 into nonempty sets Z, S and T
such that (3.2.1) – (3.2.8) are satisfied.

For i = 1, 2, let Si, Ti, Zi be Vi ∩S, Vi ∩ T and Vi ∩Z, respectively, and let si := |Si|,
ti := |Ti| and zi := |Zi|.

Claim 3.2.3. s1t1 ≤ z2k
2 + dG(S, T )(2k − 1).

Proof. For every pair (s, t) ∈ S1×T1, by (3.2.14), exactly one (s, t)-path of length 2 exists.
We say that a pair (s, t) ∈ S1 × T1, is of Type 1 if the interior vertex of this path is in Z2

and of Type 2 if it is in S2 ∪ T2. Observe that every pair (s, t) ∈ S1 × T1 is of exactly one
of the 2 types. We let γi denote the number of pairs of Type i for i = 1, 2.

For a vertex z ∈ Z2, since dG(z, S1)+dG(z, T1) ≤ dG(z) = 2k, there are dG(z, S1)dG(z, T1) ≤
k2 pairs (s, t) ∈ S1 × T1 such that the interior vertex of the path of length 2 between s
and t is z. It follows that γ1 ≤ k2z2.

Observe that for every pair (s, t) of Type 2, there is an edge in δG(S, T ) that is on the
unique path of length 2 between s and t. Let uv ∈ δG(S, T ) with u ∈ S1 and v ∈ T2. Then
for every pair (s, t) ∈ S1×T1 such that uv is on the unique path of length 2 between s and
t, we have s = u and t ∈ NG(v)− s. It follows that there are at most |NG(v)|−1 = 2k−1
pairs (s, t) ∈ S1 × T1 such that uv is on the unique path of length 2 between s and t.
Similarly, for every edge uv with u ∈ S2 and v ∈ T1, there are at most |NG(v)|−1 = 2k−1
pairs (s, t) ∈ S1×T1 such that uv is on the unique path of length 2 between s and t. This
yields γ2 ≤ dG(S, T )(2k − 1). We obtain s1t1 = γ1 + γ2 ≤ z2k

2 + dG(S, T )(2k − 1).
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By (3.2.7), we have s1 + s2 = |S| ≤ |T | = t1 + t2, so either s1 ≤ t1 or s2 ≤ t2, say
s1 ≤ t1.

Since G is bipartite and simple, (3.2.4) implies that G[S] contains a cycle of length at
least 4. As G is bipartite, this cycle must contain at least 2 vertices v1, v2 ∈ S2. As G is
2k-regular, (3.2.1) and (3.2.3) imply |NG(vi) ∩ (S1 ∪ Z1)| ≥ d−D(vi) ≥ k for i = 1, 2. Now
(3.2.14) yields

s1 + z1 ≥ |NG(v1) ∩ (S1 ∪ Z1)|+ |NG(v2) ∩ (S1 ∪ Z1)| − |NG(vi) ∩NG(v2) ∩ (S1 ∪ Z1)|
≥ k + k − 1

= 2k − 1.

Then, by z1 ≤ k − 1 and t1 ≥ s1, we have t1 ≥ s1 ≥ 2k − 1− z1 ≥ k.
By (3.2.9) applied to (s1, t1, k) and s1+t1+z1 = |V1|, we obtain s1t1 ≥ k(s1+t1−k) =

k(|V1| − z1 − k). Now Claim 3.2.3, (3.2.2), (3.2.6), |V1| = 4k2 − 2k + 1 and k ≥ 1 yield

k(|V1| − z1 − k) ≤ s1t1

≤ z2k
2 + dG(S, T )(2k − 1)

≤ (k − 1− z1)k
2 + (k2 − k)(2k − 1)

= k(3k2 − 4k + 1− z1k)

< k(|V1| − k − z1),

a contradiction that completes the proof of Theorem 3.2.6.

3.2.2.2.3 Line graphs of regular complete bipartite graphs

Let us consider the regular complete bipartite graph Kk+1,k+1 and denote its biparti-
tion classes by {x1, . . . , xk+1} and {y1, . . . , yk+1}. This part deals with its line graph
L(Kk+1,k+1): the vertex set of L(Kk+1,k+1) is the set {(xi, yj) : 1 ≤ i, j ≤ k + 1} and
two distinct vertices (xi, yj) and (xi′ , yj′) are connected by an edge if i = i′ or j = j′. We
mention that L(Kk+1,k+1) is also called rook graph. The graph L(Kk+1,k+1) for k = 2 is
given in Figure 3.2.4.

C1

R1

Figure 3.2.4: A drawing of L(K3,3) with the row R1 and the column C1.

Note that L(Kk+1,k+1) is 2k-regular.

By a row Ri (resp. column Cj) of L(Kk+1,k+1) we denote the vertex set {(xi, yj) : 1 ≤
j ≤ k + 1} (resp. {(xi, yj) : 1 ≤ i ≤ k + 1}). The set of rows (resp. columns) is denoted
by R (resp. C). By a line we mean a row or a column. The set of lines is denoted by L.
Observe that R contains k + 1 rows, C contains k + 1 columns, L contains 2k + 2 lines
and every line contains k + 1 vertices. Note that, by construction, it follows that

(a) each line of L(Kk+1,k+1) is a clique of L(Kk+1,k+1),
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(b) a line and a stable set of L(Kk+1,k+1) have at most one vertex in common.

We need the following preparatory result that was proven in a slightly different form by
König [83]

Proposition 3.2.2. Every induced subgraph H of L(Kk+1,k+1) has a proper coloring with
ω(H) colors.

We are now ready to proceed to the main proof.

Theorem 3.2.7. L(Kk+1,k+1) is good for all k ≥ 1.

Proof. Let G = L(Kk+1,k+1) for some k ≥ 1 and assume for a contradiction that G is bad.
Then, by Proposition 3.2.1, there exists an orientation D of G and a partition of V (G)
into nonempty sets Z, S and T such that (3.2.1) – (3.2.6) are satisfied. For a line Li ∈ L,
let si, ti and zi denote |Li ∩S|, |Li ∩T | and |Li ∩Z|, respectively. Since |Li| = k+1, the
following holds:

si + ti + zi = k + 1. (3.2.15)

Let RS (resp. RT ) be the set of rows that are disjoint from T (resp. S). The column
classes CS and CT are similarly defined. Let LS := RS ∪ CS, LT := RT ∪ CT and L′ the
rest of the lines.

Note that, by definition, we have

the intersection of a line of LS and a line of LT is in Z. (3.2.16)

In the first part of the proof we show that one of LS or LT contains at least half of the
lines. We first provide a lower bound on the number of lines in LS ∪ LT .

Claim 3.2.4. LS ∪ LT contains at least k + 2 lines.

Proof. Let Li in L′. By definition of L′, we have si, ti ≥ 1. Hence, by (3.2.9) applied to
(si, ti, 1), we obtain that siti ≥ 1(si + ti − 1) = si + ti − 1. By (a) and (3.2.15), this yields
that Li contains at least si + ti − 1 = k − zi edges between S and T .

Observe that, as every vertex belongs to exactly one row and one column and by
(3.2.2), we have

∑
Li∈L zi = 2(k − 1).

Therefore, by (3.2.6), we have

(k − 1)k ≥ dG(S, T ) ≥
∑
Li∈L′

(k − zi) ≥ |L′|k − 2|Z| > (|L′| − 2)k,

thus |L′| ≤ k. Hence, by |L| = 2k + 2, we have

|LS|+ |LT | = |L| − |L′| ≥ (2k + 2)− k = k + 2.

Now we show in several steps that one of LS and LT is almost empty.

Claim 3.2.5. One of RS,RT , CS and CT is empty.

Proof. Suppose for a contradiction that none of RS,RT , CS and CT are empty. Hence
|RS|, |CT | ≥ 1 and so, by (3.2.9) applied to (|RS|, |CT |, 1), we obtain |RS||CT | ≥ 1(|RS|+
|CT | − 1) = |RS|+ |CT | − 1. Similarly, |RT ||CS| ≥ |RT |+ |CS| − 1.
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Ci Cj

Figure 3.2.5: A schematic drawing for Claim 3.2.6. The orange vertices belong to s, the
blue vertices belong to T , more exactly X. The black vertices can belong to an arbitrary
class of the partition. Observe that all edges have been left out.

By Claim 3.2.4, (3.2.2) and (3.2.16), this yields

|RS||CT |+ |RT ||CS| ≥ (|RS|+ |CT | − 1) + (|RT |+ |CS| − 1)

= |LS|+ |LT | − 2

≥ (k + 2)− 2

> |Z|
≥ |RS||CT |+ |RT ||CS|,

a contradiction.

By Claim 3.2.5, we may suppose that CS is empty. Indeed, by symmetry of G, we
can exchange the rows and columns of G if needed, we may hence suppose that one of
CS and CT is empty. Observe that in the digraph obtained from D by reversing all arcs
the partition of V (G) into Z, T and S satifies (3.2.1), (3.2.2) and (3.2.3). Therefore,
eventually exchanging the role of S and T and reversing the arcs of D, we may suppose
that CS is empty.

Claim 3.2.6. At most one column contains at least k vertices of S.

Proof. Suppose there exist two columns Ci and Cj such that si, sj ≥ k. By CS = ∅, we
have ti, tj ≥ 1. Then, by (3.2.15) and zi ≥ 0, we have k + 1 ≥ si + ti ≥ k + 1, so si = k
and ti = 1. Similarly, we have sj = k and tj = 1. Let vi (vj) be the unique vertex in
T ∩ Ci (T ∩ Cj) and let X := {vi, vj}.

Note that |X| = 2, X ⊆ T and (Ci ∪ Cj) \X ⊆ S.
So, by (3.2.3), all the neighbors of X in Ci and Cj are in-neighbors of X, and hence

all the arcs leaving X enter columns different from Ci and Cj. By (a), we obtain that
d−D(X) ≥ d−Ci

(vi)+d−Cj
(vj) ≥ 2k. Further, by |C| = k+1, we have d+D(X) ≤ dG−(Ci∪Cj)(vi)+

dG−(Ci∪Cj)(vj) ≤ 2(k − 1). This yields d+D(X) < d−D(X), a contradiction to (3.2.1) by
Proposition 2.1.9. A schematic drawing can be found in Figure 3.2.5.

Claim 3.2.7. LS contains at most one line.

Proof. Suppose for a contradiction that |LS| ≥ 2. Since CS is empty, we have |RS| ≥ 2.
By Claim 3.2.6, at most one column Ci satisfies si ≥ k.

Now consider some column Cj ̸= Ci. We have sj + zj ≥ |RS| ≥ 2. Further, as j ̸= i,
by (3.2.15), we have tj + zj = (k + 1)− sj ≥ (k + 1)− (k − 1) = 2.
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Applying (3.2.9) to (sj, tj, 2−zj), we hence obtain by (3.2.15) that sjtj ≥ (2−zj)(sj+
tj−(2−zj)) = (2−zj)(k−1). By (a), we get that every column Cj ∈ C′ := C \(CT ∪{Ci})
contains at least (2− zj)(k − 1) edges between S and T .

By (3.2.16), the columns in CT contain at least |RS||CT | vertices of Z. Observe that
by |C| = k + 1, we have |C ′| = |C − Ci| − |CT | = k − |CT |. Also, note that, by (3.2.2) and
as C ′ and CT are disjoint, we have

k − 1 = |Z|

≥
∑
Cj∈C′

zj +
∑

Cj∈CT

zj

≥
∑
Cj∈C′

zj + |RS||CT |.

Then, by (3.2.6), since the G[Cj]’s are edge-disjoint and |RS| ≥ 2, we have

(k − 1)k ≥ dG(S, T )

≥
∑
Cj∈C′

dG[Cj ](S, T )

≥
∑
Cj∈C′

(2− zj)(k − 1)

≥ (k − 1)
(
2(k − |CT |)− ((k − 1)− |RS||CT |)

)
> (k − 1)(k + (|RS| − 2)|CT |)
≥ (k − 1)k,

a contradiction.

We can now see that LT contains at least half of the lines. Indeed, Claims 3.2.4 and
3.2.7 imply that

Claim 3.2.8. LT contains at least k + 1 lines.

In the second part of the proof our goal is to give an upper bound on the size of S. In
order to do that we consider a particular vertex-coloring of H := G[S]. By Proposition
3.2.2, there exists a proper vertex-coloring I of H with ω(H) colors.

Claim 3.2.9. S contains at most 2ω(H)− 1 vertices.

Proof. Let U be the set of vertices in the lines of LT , Z
′ = Z ∩ U and Z′′= Z \ Z ′.

Let I be a color class in I. Since I is a stable set in S, by (b), each vertex in U has at
most one neighbor in I and each vertex of Z ′′ has at most two neighbors in I. Since every
inneighbor of a vertex in S either belongs to S or to Z, we obtain

d−D(S) =
∑
I∈I

|δ−D(S) ∩ δ−D(I)| ≤
∑
I∈I

(|Z ′|+ 2|Z ′′|) = ω(H)(|Z ′|+ 2|Z ′′|). (3.2.17)

Let v be a vertex in a color class I ∈ I. It follows, by (a) and Claim 3.2.8, that v has at
least |LT | ≥ k+1 neighbors in U . So I has at least |I|(k+1) neighbors in U , each being,
by (3.2.3), either a vertex in Z ′ or an outneighbor of v in D. Hence

d+D(S) =
∑
I∈I

|δ+D(S) ∩ δ+D(I)| ≥
∑
I∈I

(|I|(k + 1)− |Z ′|) = |S|(k + 1)− ω(H)|Z ′|. (3.2.18)

Then, (3.2.18),(3.2.1), Proposition 2.1.9, (3.2.17), Z ′ ∪ Z ′′ = Z and (3.2.2) yield that
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|S| ≤ ⌊d
+
D(S) + ω(H)|Z ′|

k + 1
⌋

= ⌊d
−
D(S) + ω(H)|Z ′|

k + 1
⌋

≤ ⌊ω(H)(|Z ′|+ 2|Z ′′|) + ω(H)|Z ′|
k + 1

⌋

= ⌊2ω(H)(|Z ′|+ |Z ′′|)
k + 1

⌋

= ⌊2ω(H)(k − 1)

k + 1
⌋

≤ 2ω(H)− 1.

A schematic drawing can be found in Figure 3.2.6.

RT

CT

Figure 3.2.6: A schematic drawing for Claim 3.2.9. The vertices of T are marked in blue,
the vertices of Z ′ are marked in dark green and the vertices of Z ′′ are marked in light
green. An independent set I of G[S] has been marked in yellow, while the remaining
vertices of S are marked in orange. Again, all edges have been left out.

Since each clique of G is contained in a line, we can choose a line Li that contains
ω(H) vertices of S. Note that si ≥ 1. Let Si := Li ∩ S and S′

i := S \ Si.

Finally, in order to derive a contradiction, we provide bounds for dG(S, T ) and dG(S,Z).

Claim 3.2.10. siti + ksi − (|Z| − zi) + |S ′
i| ≤ dG(S, T ).

Proof. By (a), we have siti = dG(Si, T ∩ Li). Next observe that every element of Si

has k neighbors which are not in Li and these neighborhoods are disjoint. As at most
|Z \Li|+ |S ′

i| of these vertices are in Z ∪ S, we obtain that at least ksi − (|Z \Li|+ |S ′
i|)

of them are in T . By (a), this yields that ksi − (|Z| − zi) − |S ′
i| ≤ dG(Si, T \ Li). Now

consider a vertex v ∈ S ′
i. By (a) and Claim 3.2.8, v has at least k+1 neighbors in V (LT ).

As by definition, none of them is in S, at least k + 1− |Z| = (k + 1)− (k − 1) = 2 are in
T .

This yields 2|S ′
i| ≤ dG(S

′
i, T ). By dG(Si, T ∩Li)+dG(Si, T \Li)+dG(S

′
i, T ) = dG(S, T ),

the claim follows.
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Claim 3.2.11. dG(S,Z) ≤ si|Z|+ |S ′
i|.

Proof. By (a), we have sizi = dG(Si, Z ∩ Li). Every element of Z \ Li has, by Si ⊆ Li,
at most one neighbor in Si and clearly at most |S ′

i| in S ′
i. This gives, by Claim 3.2.9 and

ω(H) = si, that dG(Z \Li, S) ≤ (|S ′
i|+1)(|Z|− zi) ≤ si(|Z|− zi). Since S

′
i ∩Li = ∅, every

element of S ′
i has at most one neighbor in Li ∩ Z and hence dG(Z ∩ Li, S

′
i) ≤ |S ′

i|. By
dG(Si, Z ∩ Li) + dG(S,Z \ Li) + dG(S

′
i, Z ∩ Li) = dG(S,Z), the claim follows.

Now we are ready to conclude. Claim 3.2.10, (3.2.3), (3.2.1), Proposition 2.1.9 and
Claim 3.2.11 yield that

siti + ksi − (|Z| − zi) + |S ′
i| ≤ dG(S, T )

≤ d+D(S)

= d−D(S)

≤ dG(S,Z)

≤ si|Z|+ |S ′
i|.

Then, by (3.2.15), (3.2.2), ti ≥ 0 and si ≥ 1, we have

0 ≥ siti + ksi − (|Z| − zi) + |S ′
i| − (si|Z|+ |S ′

i|)
≥ siti + si(k − |Z|)− (|Z| − zi)

= siti + si − (si + ti − 2)

= ti(si − 1) + 2

≥ 2,

a contradiction. This completes the proof of Theorem 3.2.7.

3.2.2.2.4 Line graphs of complete graphs

Let us consider the complete graph Kk+2 and denote its vertex set by U . This part
deals with its line graph L(Kk+2). Note that a pair of adjacent (resp. non-adjacent)
edges in Kk+2 corresponds to a pair of adjacent (resp. non-adjacent) vertices in L(Kk+2).
Since each edge of Kk+2 is adjacent to exactly 2k other edges, L(Kk+2) is 2k-regular. An
illustration can be found in Figure 3.2.7.

Figure 3.2.7: An illustration for the construction of the line graph. The graph K4 is
depicted in black and its line graph is depicted in red.

Theorem 3.2.8. L(Kk+2) is good for all k ≥ 1.
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v1

v2

v3

v4
Figure 3.2.8: This is a drawing of K4 with a marking of its edge set that correspons to the
partition of V (G) into S, T and Z. The edges corresponding to vertices in S are marked
in orange, the edges corresponding two vertices in T are marked in blue and the edges
corresponding to vertices in Z are marked in green. The vertices corresponding to the
edges v2v4 and v2v3 form a pair in P1 while the vertices corresponding to the edges v2v4
and v1v3 form a pair in P2.

Proof. Let G = L(Kk+2) for some k ≥ 1 and suppose for a contradiction that G is bad.
Clearly, k ≥ 2. Then, by Proposition 3.2.1, there exists an orientation D of G and a
partition of V (G) into nonempty sets Z, S and T such that (3.2.1) – (3.2.8) are satisfied.

For a vertex set X of G, we denote by EX the corresponding edge set of Kk+2. For a
vertex v ∈ U , let sv, tv and zv be the number of edges incident to v that are in ES, ET

and EZ , respectively. We call an ordered pair (e, f) of edges of Kk+2 an (S, T )-pair if
e ∈ ES and f ∈ ET . The sets of adjacent and non-adjacent (S, T )-pairs are denoted
by P1 and P2, respectively. Observe that |P1| = dG(S, T ) and |S||T | = |P1| + |P2|. An
illustration can be found in Figure 3.2.8. First we provide an upper bound on |P1|.

Claim 3.2.12. |P1| ≤ k2 − k −max{0, k − 4}.

Proof. Note that every pair of edges in EZ which shares a vertex v in Kk+2 provides an
edge in G[Z]. It follows that a vertex v ∈ U provides exactly

(
zv
2

)
edges in G[Z]. Then,

as every such pair shares exactly one vertex in Kk+2, by (3.2.10) and (3.2.2), we have
iG(Z) =

∑
v∈U

(
zv
2

)
≥

∑
v∈U(zv − 1) = 2|EZ | − |U | = 2(k − 1) − (k + 2) = k − 4. Also,

clearly, we have iG(Z) ≥ 0. Thus, by (3.2.6), we have |P1| = dG(S, T ) ≤ k2− k− iG(Z) ≤
k2 − k −max{0, k − 4}.

We next prove an upper bound on |P2|.

Claim 3.2.13. 2|P2| ≤ (k − 1)|P1|+ k2 − 3k + 2.

Proof. A 4-cycle of Kk+2 is called special if it contains a non-adjacent (S, T )-pair. Let C
be the set of special cycles. A special cycle is said to be of type i if it contains i edges of
EZ for i = 0, 1, 2. Let ni denote the number of special cycles of type i for i = 0, 1, 2.

Note that every special cycle of type 1 or 2 contains exactly one non-adjacent (S, T )-
pair and every special cycle of type 0 contains at most 2 non-adjacent (S, T )-pairs. An
illustration can be found in Figure 3.2.9. Further, every non-adjacent (S, T )-pair can be
completed to a 4-cycle in two different ways, so every non-adjacent (S, T )-pair is part of
exactly 2 special cycles. It follows that

2|P2| =
∑
p∈P2

∑
C∈C

p⊊E(C)

1 =
∑
C∈C

∑
p∈P2

p⊊E(C)

1 ≤ 2n0 + n1 + n2. (3.2.19)

Observe that every special cycle of type i contains 2−i adjacent (S, T )-pairs for i = 0, 1, 2.
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C1 C2 C3 C4

Figure 3.2.9: This drawing shows several special cycles. The edges corresponding to
vertices in S are marked in orange, the edges corresponding to vertices in T are marked
in blue and the edges corresponding to vertices in Z are marked in green. The cycle C1 is
a special cycle of type 2, C2 is a special cycle of type 1, C3 is a special cycle of type 0 that
contains one non-adjacent (S, T )-pair and C4 is a special cycle of type 0 that contains two
non-adjacent (S, T )-pairs.

Also every adjacent (S, T )-pair can be completed to a 4-cycle by adding one of k − 1
vertices, so every adjacent (S, T )-pair is contained in exactly (k− 1) 4-cycles. This yields

2n0 + n1 =
∑
C∈C

∑
p∈P1

p⊊E(C)

1 =
∑
p∈P1

∑
C∈C

p⊊E(C)

1 =
∑
p∈P1

(k − 1) = (k − 1)|P1|. (3.2.20)

Next observe that every special cycle of type 2 contains 2 non-adjacent edges of EZ , every

pair of non-adjacent edges is contained in exactly two 4-cycles and there are at most
(
k−1
2

)
pairs of non-adjacent edges of EZ . This implies that

n2 ≤ 2

(
k − 1

2

)
= k2 − 3k + 2. (3.2.21)

The inequalities (3.2.19), (3.2.20) and (3.2.21) imply the claim.

We use the previous results to show an upper bound on |S|.

Claim 3.2.14. |S| ≤ k.

Proof. Otherwise, by (3.2.7), we have |T | ≥ |S| ≥ k + 1. By (3.2.2), we have |S|+ |T | =
|V (G)| − |Z| =

(
k+2
2

)
− (k − 1). Then, by (3.2.9) applied to (|S|, |T |, k + 1), we have

|S||T | ≥ (k + 1)(|S||T | − (k + 1)) = (k + 1)(
(
k+2
2

)
− 2k) = k3+k+2

2
. Then Claims 3.2.13

and 3.2.12 and k ≥ 1 yield

k3 + k ≤ 2|S||T | − 2

= 2|P2|+ 2|P1| − 2

≤ (k + 1)|P1|+ k2 − 3k

≤ (k + 1)(k2 − k −max{0, k − 4}) + k2 − 3k

= k3 + k − (5k − k2)−max{0, k2 − 3k − 4}
= k3 + k −max{k(5− k), 2(k − 2)}
< k3 + k,

a contradiction.

The following result shows that the edges of ES are adjacent to many edges of ES∪Z .

Claim 3.2.15. For every uv ∈ ES, su + zu + sv + zv ≥ k + 3.
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Proof. By (3.2.1), (3.2.3) and (3.2.8), the vertex of D that corresponds to uv has k in-
neighbors in S ∪ Z and at least one out-neighbor in S in D and their corresponding
edges in Kk+2 are incident to u or v. As uv is counted in su and sv, we obtain that
su + zu + sv + zv ≥ k + 3.

The next result shows that S forms a clique in G.

Claim 3.2.16. The edges of ES are pairwise adjacent.

Proof. Suppose that ES contains two non-adjacent edges v1v2 and v3v4. Note that Kk+2

has 6 edges having both ends in {v1, v2, v3, v4}. Observe that an edge in ES ∪ EZ con-
tributes 2 to

∑4
i=1(svi + zvi) if it belongs to these 6 edges and 1 otherwise. Apply-

ing Claim 3.2.15 to both v1v2 and v3v4 and using Claim 3.2.14 and (3.2.2), we obtain
2(k + 3) ≤

∑4
i=1(svi + zvi) ≤ |ES|+ |EZ |+ 6 ≤ 2k + 5, a contradiction.

Claim 3.2.17. The edges of ES do not form a triangle in Kk+2.

Proof. Suppose that ES forms a triangle on v1, v2, v3 in Kk+2. Observe that every edge
in EZ is incident to at most one of v1, v2, v3 and every edge in ES is incident to exactly
two of v1, v2, v3. Applying Claim 3.2.15 to all 3 edges of ES, we get

3(k + 3) ≤
∑

uv∈ES

(su + zu + sv + zv)

= 2
3∑

i=1

(svi + zvi)

≤ 2(2|ES|+ |EZ |)
≤ 2(6 + (k − 1)),

that contradicts k ≥ 2.

By Claims 3.2.16 and 3.2.17, the edges of ES are all incident to a vertex v in Kk+2.
Let Q be the clique of size k + 1 in G that corresponds to the set of edges incident to
v in Kk+2. Note that |S| = |Q ∩ S| = sv, |Q ∩ T | = tv and |Q ∩ Z| = zv. Since every
edge of EZ that is not incident to v is adjacent to at most 2 edges of ES in Kk+2, each
vertex of Z \Q is adjacent to at most 2 vertices of S in G. This implies, by (3.2.3), that
d−D(S) ≤ dG(S,Z \ Q) + dG(S,Z \ Q) ≤ 2|Z \ Q| + svzv. By (3.2.4), we have |S| ≥ 2.
Then, by (3.2.1), sv = |S| ≥ 2, (3.2.2), G[S] is a clique, |Q| = k+1 and (3.2.10), we have

0 =
∑
u∈S

(d−D(u)− k)

= d−D(S) +

(
|S|
2

)
− |S|k

≤ 2|Z \Q|+ svzv +

(
sv
2

)
− sv(sv − 1 + tv + zv)

≤ 2(k − 1− zv)− 2tv −
(
sv
2

)
= 2(sv − 2)−

(
sv
2

)
< 0,

a contradiction. This completes the proof of Theorem 3.2.8.
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3.2.2.3 Conclusion

We provided four classes of good graphs in this section. Further investigations could allow
the identification of more classes of good graphs. We are particularly interested in the
graph class described below which extends two classes of good graphs.

Let W be a set of size w. The Hamming graph H(d, w) is the graph with vertex set
W d, where two vertices are adjacent if they differ in exactly one coordinate. Note that
H(1, w) is the complete graph Kw, H(d, 2) is the hypercube of dimension d and H(2, w)
is the line graph of Kw,w. It is easy to see that H(d, w) is d(w−1)-regular. We conjecture
that H(d, w) is a good graph whenever d(w− 1) is even and d ≥ 2. This would generalize
Theorems 3.2.7 and 3.2.3. We also wish to mention the following problem which has been
brought to our attention by Bessy [15].

Research Problem 3.2.2. Is there a polynomial time algorithm that decides whether a
given 2k-regular graph is good?
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Chapter 4

Arborescence packing

4.1 Introduction to arborescence packing

The main object we deal with in this section is arborescences. Arborescences are a well-
studied object in combinatorial optimization. For example, arborescences play a major
role in determining the structure of shortest paths in a given rooted digraph, see Corollary
3.1.10 in [41]. Problems on covering the arc set of a given rooted digraph by spanning
arborescences have been considered by Vidyasankar in [108].

The problems we are interested in in this section belong to a different class: the packing
of arborescences. In the most basic setting, we are given a singularly rooted digraph
D = (V ∪ r, A) and want to find a fixed number of arc-disjoint spanning r-arborescences
in it. We call such a set of arcdisjoint arborescences a packing of arborescences. In 1973,
Edmonds proved the following fundamental theorem on packing spanning arborescences in
[28]. It gives a complete characterization of singularly rooted digraphs admitting a packing
of spanning r-arborescences and it is the starting point of all research on arborescence
packings.

Theorem 4.1.1. Let D = (V ∪ r, A) be a singularly rooted digraph and k ∈ Z≥0. There
exists a packing {B1, . . . , Bk} of spanning r-arborescences in D if and only if d−A(X) ≥
k for all ∅ ≠ X ⊆ V.

There are several proofs of Theorem 4.1.1. Apart from the original one of Edmonds,
we wish to mention the ones of Mader [90] and Lovász [88].

Further, since the appearance of Theorem 4.1.1, an enormous amount of generaliza-
tions has been found. In this section, we will discuss some of these generalizations.

As a first such generalization we consider the setting in which instead of searching for
spannning arborescences all having the same root, for every arborescence, we prescribe
one particular vertex to be the root of it. Theorem 4.1.1 easily allows to conclude a
characterization for this more general case. The phenomenon that a more general result
can be obtained from a less general one via a reduction occurs several times in this section.
For the sake of an illustration, we give this theorem and its proof completely.

Theorem 4.1.2. ([28]) Let D = (V ∪R,A) be a simply rooted digraph. Then there exists
a packing of spanning r-arborescences {Br}r∈R in D if and only if for all X ⊆ V ∪R with
X −R ̸= ∅, we have

d−A(X) ≥ |R−X|. (4.1.1)

Proof. For the necessity, let {Br}r∈R be a packing of spanning r-arborescences in D and
consider some X ⊆ V ∪ R with X − R ̸= ∅. For every r ∈ R −X, there must be an arc
in Br that enters X. As all the Br are arc-disjoint, we obtain d−A(X) ≥ |R−X|.

91



For the sufficiency, let D′ = (V ∪ r,A′) be obtained by contracting all vertices of
R into a single vertex r. For every X ⊆ V , we have d−A′(X) = d−A(X) ≥ |R −X| = |R|.
Hence, by Theorem 4.1.1, we obtain that D′ contains a packing of |R| arc-disjoint r-
arborescences. As every r ∈ R has exactly one outgoing arc in D, this yields the desired
packing in D.

A further generalization of Theorem 4.1.1 that has also been proven by Edmonds in
[28] is the following one where the simplicity condition on the rooted digraph has been
omitted in comparison to Theorem 4.1.2.

Theorem 4.1.3. Let D = (V ∪ R,A) be a rooted digraph. Then there exists a spanning
arborescence packing {Br}r∈R in D if and only if every X ⊆ V ∪ R with X − R ̸= ∅
satisfies (4.1.1).

It is interesting to remark that Theorem 4.1.3 is in some way an exception to the
rule mentioned above. The only proof we know of Theorem 4.1.3 is self-contained and
somewhat more technical than the proof of Theorem 4.1.1. It would be interesting to find
a way to conclude Theorem 4.1.3 from Theorem 4.1.1.

In the remaining part of Section 4.1, we give an overview of previous generalizations
of Theorem 4.1.1.

In Subsections 4.1.1 and 4.1.2, we consider generalizations of Theorem 4.1.1 to more
general objects than digraphs, namely directed hypergraphs and mixed graphs, respec-
tively.

In Subsection 4.1.3, we consider a much more general condition on the arborescence
packing than all of the arborescences being spanning, namely matroid-based arborescence
packings.

In Subsection 4.1.4, we discuss another connection between arborescence packings and
matroid theory, namely a way of modeling the arc set of a packing of arborescences as
the intersection of two matroids.

In Subsection 4.1.5, we discuss algorithmic aspects of arborescence packings.
After, we discuss some new generalizations of Theorem 4.1.1.
In Section 4.2, we consider a problem in which the conditions of the arborescences being

spanning is somewhat relaxed. Given a digraph D = (V,A) and some r ∈ V , a reachability
r-arborescence is an r-arborescence that spans all the vertices which are reachable from r
in D. We deal with several problems concerning the packing of reachability arborescences.

In Section 4.3, we deal with a problem on packing spanning arborescences where
the condition of the roots of the arborescences being fixed is relaxed. Given a digraph
D = (V,A), a positive integer k ∈ Z≥0 and two functions f, g : V → Z≥0, we want to find
a packing of k arborescences such that every v ∈ V is the root of at least f(v) and at
most g(v) of them. Again, we deal with this problem in several different settings.

In Section 4.4, we study packings of spanning arborescences with fixed roots where a
further condition on the arborescences is imposed. More concretely, we require that in
each of the arborescences, when deleting some vertex different from the root, there is still
a certain number of vertices reachable from the root. Taking this number as a parameter,
we prove that the problem is FPT. We show similar results for two related objects.

Before going into the details, we wish to point out that this survey on arborescence
packings is far from exhaustive. For example, there are theorems on the packing of
infinite arborescences ([1], [70]), on the packing of arborescences that only have to span a
given subset of the vertices [4] and results on vertex-independent spanning arborescences
([66],[65],[112]).
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4.1.1 Packing of spanning dyperarborescences

We consider the problem of packing dyperarborescences in directed hypergraphs. The
following litteral generalization of Theorem 4.1.2 was proven by Frank, Király and Kriesell
in [51].

Theorem 4.1.4. Let D = (V ∪ r,A) be a singularly rooted dypergraph and k ∈ Z≥0.
There exists a packing {B1, . . . , Bk} of spanning r-dyperarborescences in D if and only if
d−A(X) ≥ k for all ∅ ≠ X ⊆ V.

Clearly, when every a ∈ A has exactly one tail, we obtain Theorem 4.1.1, so Theorem
4.1.4 is more general indeed. While the original proof in [51] is based on trimming, an
elegant method to conclude Theorem 4.1.4 from Theorem 4.1.1 has been found by Fortier
et. al in [38].

We can conclude the following statement from Theorem 4.1.4

Theorem 4.1.5. Let D = (V,A) be a dypergraph and R a multiset in V of size k. Some
A′ ⊆ A is the dyperedge set of a packing {Br : r ∈ R} of spanning r-hyperarborescences
in D if and only if the underlying hyperedge set of A′ is the hyperedge set of a packing of
k spanning hypertrees and d−A′(v) = k − |R ∩ v| for all v ∈ V.

Proof. First suppose that A′ is the dyperedge set of a packing {Br : r ∈ R} of spanning
r-hyperarborescences in D. The underlying hyperedge set of every arborescence forms a
spanning hypertree, so A′ forms the hyperedge set of a packing of k spanning hypertrees.
Further, for every v ∈ V and each of the arborescences, the arborescence contains a
dyperedge entering v if and only if v is not the root of the arborescence. It follows that
d−A′(v) = k − |R ∩ v|.

Now suppose that A′ is the hyperedge set of a packing of k spanning hypertrees and
d−A′(v) = k−|R∩ v| for all v ∈ V and consider the dypergraph D′ = (V,A′). Let X ⊆ V .
As the underlying hypergraph of D′ is the union of k hyperedge-disjoint hypertrees, there
are at most k(|X| − 1) dyperedges in A′ whose head and tail are completely contained
in X. It follows from Proposition 2.1.4 that d−A′(X) ≥

∑
v∈X d−A′(v) − k(|X| − 1) =

k|X| − |R ∩ X| − k(|X| − 1) = k − |R ∩ X|. It hence follows from Theorem 4.1.4 that
D′ contains a packing of dyperarborescences {Br : r ∈ R}. As this packing contains
k(|V | − 1) dyperedges, the statement follows.

4.1.2 Packing of mixed arborescences

We consider the problem of packing mixed arborescences in mixed graphs. The following
characterization was proven by Frank in [44].

Theorem 4.1.6. Let F = (V ∪ r, A∪E) be a singularly rooted mixed graph and k ∈ Z≥0.
Then there exists a packing {B1, . . . , Bk} of spanning mixed r-arborescences in F if and
only if

eE(P) ≥
q∑

i=1

(k − d−A(Vi))

holds for every subpartition P = {V1, . . . , Vq} of V .

It is not difficult to see that if E = ∅, Theorem 4.1.6 is equivalent to Theorem 4.1.1.
Further, if A = ∅, Theorem 4.1.6 reduces to Theorem 2.1.5. Hence Theorem 4.1.6 is a
common generalization of Theorems 4.1.1 and Theorem 2.1.5.
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4.1.3 Matroid-based packings

In this section, we discuss arborescence packings that have a more general property than
all of the arborescences in it being spanning: matroid-based packings. Given a matroid-
rooted digraph (D = (V ∪ R,A),M), an arborescence packing {Br : r ∈ R} is called
matroid-based if {r ∈ R : v ∈ V (Br)} is a basis of M for all v ∈ V . The study of
matroid-based packings is relatively recent, the following characterization has been found
by Durand de Gevigney, Nguyen and Szigeti in 2013 [26].

Theorem 4.1.7. Let (D = (V ∪R,A),M = (R, rM)) be a simply matroid-rooted digraph.
Then there exists a matroid-based arborescence packing in (D,M) if and only if for all
nonempty X ⊆ V ∪R with X ∩R = spanM(N−

D (X ∩ V )), we have

d−A(X) ≥ rM(R)− rM(X ∩R). (4.1.2)

Observe Theorem 4.1.7 yields Theorem 4.1.2 ifM is the free matroid on R, so Theorem
4.1.7 is a generalization of Theorem 4.1.1 indeed. Further interesting problems can be
created when matroid-based packings are combined with the more general settings studied
in Subsections 4.1.1 and 4.1.2. Given a matroid-rooted mixed hypergraph (F = (V ∪R,A∪
E)), a packing of mixed hyperarborescences {Br : r ∈ R} is calledmatroid-based if for every
r ∈ R, there is a trimming Br of Br such that {Br : r ∈ R} is a matroid-based packing of
arborescences. These questions have been investigated in [38]. In particular, the following
theorem is proven. It is an example for the appearance of bisets in arborescence packings.
It is an interesting question whether a deep connection between bisets and arborescence
packings can generally be established.

Theorem 4.1.8. ([38]) Let (F = (V ∪R,A∪E),M = (R, rM)) be a simply matroid-rooted
mixed hypergraph. Then there exists a matroid-based mixed hyperarborescence packing in
(F ,M) if and only if for every biset subpartition {Xi}ℓ1 of V with w(Xi) = spanM({r ∈
R : N+

F (r) ∩X i
I ̸= ∅}) for i = 1, . . . , ℓ, we have

eE({X i
I}ℓ1) +

ℓ∑
i=1

d−A(X
i) ≥

ℓ∑
i=1

(rM(R)− rM(w(Xi))). (4.1.3)

4.1.4 Arborescence packings and matroid intersection

This subsection deals with another connection between arborescence packings and ma-
troid theory. This connection has algorithmic consequences which will be discussed in
Subsection 4.1.5. For the basic setting, given a singularly rooted digraph D = (V ∪ r, A)
and some k ∈ Z≥0, we now define two matroids on A. Let the matroid M1 be the k-sum
of the graphic matroid of the underlying graph of D and let M2 be the matroid that is
obtained as the direct sum of the (k, d−D(v))-uniform matroids on δ−D(v) for all v ∈ V . The
following fruitful connection was discovered by Edmonds [31].

Theorem 4.1.9. The arc sets of the packings of k spanning r-arborescences in D are
exactly the common independent sets of M1 and M2 of size k|V |.

We next mention a result that extends Theorem 4.1.9 to a more general setting. It is
due to Király, Szigeti and Tanigawa [79].

Theorem 4.1.10. Let (D = (V ∪ R,A),M = (R, rM)) be a simply matroid-rooted di-
graph. Then there exist two matroids M1,M2 on A such that the arc sets of the M-based
arborescence packings of arborescences in D are exactly the common independent sets of
M1 and M2 of size rM(R)|V |. Further, independence oracles for M1 and M2 are available.

We now extend this result to mixed hypergraphs.
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4.1.4.1 Matroid intersection for matroid-based packings of mixed hyper-
graphs

This section is dedicated to modeling the hyper-and dyperedge sets of matroid-based
packing of mixed hyperarborescences as the intersection of two matroids. This extends a
method from [79].

We first review a slight extension of a result of [79] characterizing matroid-based
packings of hyperarborescences in simply rooted dypergraphs as the intersection of two
matroids. We then conclude a generalization to matroid-based packings of mixed hyper-
arborescences from it.

The following result was proven in [79] for the digraphic case in a slightly different
form. Its proof can be literally generalized to the case of dypergraphs.

Theorem 4.1.11. Let (D,M) be a matroid-rooted dypergraph. Then the dyperedge sets
of the matroid-based packings of (D,M) are exactly the common independent sets of size
r(M)|V | of the Tanigawa matroid of (D,M) and the r(M)-entering matroid of D.

Let (F = (V ∪ R,A ∪ E),M) be a simply matroid-rooted mixed hypergraph and let
DF = (V ∪ R,A ∪ AE) be the directed extension of F . We say that a matroid-based
packing of hyperarborescences in (DF ,M) is feasible if it contains at most one dyperedge
of the bundle Ae for all e ∈ E . It is easy to see that (F ,M) has a matroid-based packing
of mixed hyperarborescences if and only if (DF ,M) has a feasible matroid-based packing
of hyperarborescences. We are now ready to give the desired characterization. Let M1

be the Tanigawa matroid of (F ,M) and let M2 be the rM(R)-entering matroid of DF .

Theorem 4.1.12. The dyperedge sets of the feasible matroid-based packings of hyperar-
borescences in (DF ,M) are exactly the common independent sets of size r(M)|V | of M1

and M2.

Proof. First let A′ be the dyperedge set of a feasible matroid-based packing of hyperar-
borescences in (DF ,M). It follows from Theorem 4.1.11 that A′ is a common independent
set of size r(M)|V | of T(DF ,M) and M2. As A′ is feasible, A′ contains at most one dyper-
edge of the bundle Ae for all e ∈ E . It follows that A′ is also independent in M1. As
r(M1) ≤ r(T(DH,M)), the statement follows.

Now let A′ be a common independent set of size r(M)|V | of M1 and M2. As
r(T(DF ,M)) = r(M2), it follows that A′ is also an independent set of size r(M)|V | of
T(DF ,M). It follows from Theorem 4.1.11 that A′ is the dyperedge set of a matroid-based
packing of hyperarborescences in (DF ,M). As A′ is independent in M1, A′ contains at
most one dyperedge of the bundle Ae for all e ∈ E and so A′ is feasible.

4.1.5 Algorithmic aspects

In this section, we discuss algorithmic problems related to arborescence packings. There
are two important related algorithmic problems. Firstly, we may want to find some
arborescence packing in a certain setting. Secondly, we may want to find a minimum
cost arborescence packing with respect to a given cost function. For both questions, a
subtlety that has to be taken care of is that we do not only wish to find the arc set of the
desired arborescence packing but also the actual arborescences. On the other hand, if in
in a certain setting we have an algorithm that finds an arbitrary packing of arborescences
and we also have an algorithm that yields the arc set of a packing of minimum weight,
we can also find a packing of minimum weight. This can be obtained by applying the
first algorithm to the result of the second one. For the first problem, in most settings
polynomial time algorithms can be obtained straight from the corresponding proofs. For
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example, the following result is an immediate consequence of Lovasz’ proof of Theorem
4.1.1 in [88].

Theorem 4.1.13. Let D = (V ∪ r, A) be a singularly rooted digraph and k ∈ Z≥0. Then
a packing of k spanning r-arborescences can be found in polynomial time if such a packing
exists.

The following similar result in a much more general setting was given by Fortier et.
al in [38].

Theorem 4.1.14. Let (F ,M) be a simply matroid-rooted mixed hypergraph. Then a
matroid-based packing of mixed hyperarborescences in (F ,M) can be found in polynomial
time if such a packing exists.

For the weighted problem, in the basic setting, we are given a singularly rooted digraph
D = (V ∪ r, A), an integer k ∈ Z≥0 and a weight function on A. Our aim is to find a
packing of k spanning r-arborescences whose arc set is of minimum total weight. Due to
Theorem 2.4.2, matroid intersection serves as a valuable tool for these weighted problems.
For example, the following result is an immediate consequence of Theorems 2.4.2 and 4.1.9.

Theorem 4.1.15. Let D = (V ∪ r, A) be a singularly rooted digraph, k ∈ Z≥0 and c :
A → R a weight function. Then a packing of spanning r-arborescences B = {B1, . . . , Bk}
minimizing c(B) can be found in polynomial time if such a packing exists.

Similarly, the following theorem can be obtained by combining Lemma 2.4.6, Theorem
2.4.2 and Theorem 4.1.12.

Theorem 4.1.16. Let (F = (V ∪ R,A ∪ E),M) be a simply matroid-rooted mixed hy-
pergraph and c : A ∪ E → R a weight function. Then a matroid-based packing of mixed
hyperarborescences B in (F ,M) minimizing c(B) can be found in polynomial time if such
a packing exists.

We acknowledge that there is a different proof of Theorem 4.1.16 by Király[77].

4.2 Reachability in arborescence packings

In this section, we deal with a problem that is more general than packing spanning
arborescences, namely packing reachability arborescences. Unless specified otherwise, all
the results in this chapter can be found in [63].

Given a rooted digraph D = (V ∪ R,A) for which there is some r ∈ R and some
v ∈ V such that v is not reachable from r, the only information we obtain from Theorem
4.1.2 is that no packing of spanning arborescences {Br}r∈R exists. This raises the question
whether a statement crediting the connectivity properties of D in a finer way can be made
when adapting the desired properties of the arborescences in the packing. This motivated
Kamiyama, Katoh and Takizawa to introduce the notion of reachability arborescences
in 2009 [71]. Given a rooted digraph D = (V ∪ R,A) and some r ∈ R, a reachability
r-arborescence is an r-arborescence that spans all the vertices reachable from r in D. For
an illustration, see Figure 4.2.1.

It turns out that the problem of packing reachability arborescences can easily be dealt
with in singularly rooted digraphs. It suffices to delete all vertices that are not reachable
from the root and to apply Theorem 4.1.1. The problem becomes much more interesting
when dealing with rooted digraphs with bigger root sets, so the set of vertices that needs
to be spanned is not the same for every arborescence. More concretely, given a rooted
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R

V

r
Figure 4.2.1: This is a drawing of a rooted digraph D = (V ∪ R,A) where the vertices
which are reachable from r are marked in red and the arcs of an r-reachability arborescence
are marked in green.

R

V

r1 r2
Figure 4.2.2: This is a drawing of a rooted digraph D = (V ∪ {r1, r2}, A) with a packing
of reachability arborescences. The arcs in the reachability r1-arborescence are marked in
violet and the arcs of the r2-reachability arborescence are marked in green.

digraph D = (V ∪R,A), we wish to determine whether there is a packing of reachability
r-arborescences {Br}r∈R. Often, we abbreviate a a packing of reachability r-arborescences
{Br}r∈R to a reachability arborescence packing {Br}r∈R. For an illustration, see Figure
4.2.2.

Our main contribution is a new proof technique that allows to conclude some theo-
rems on packing reachability arborescences from the corresponding theorems on spanning
arborescences.

In Section 4.2.1, we show how, using Theorem 4.1.3, this technique allows to give a
new proof for a theorem of Kamiyama, Katoh and Takizawa which is fundamental to the
packing of reachability arborescences. In Section 4.2.2, we consider a problem combining
reachability arborescences and matroid-based packings. Our proof technique allows to
conclude a theorem of Király from Theorem 4.1.7. In Section 4.2.3, we consider a further
generalization to mixed hypergraphs. Again, our proof technique can be applied. Finally,
in Section 4.2.4, we deal with the algorithmic aspects of our results.

4.2.1 Basic setting

We here deal with the following result of Kamiyama, Katoh and Takizawa which is fun-
damental to the theory of reachability arborescence packings.
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R
V

C

D

Figure 4.2.3: This is a drawing of a rooted digraph D = (V ∪R,A) with the set C.

Theorem 4.2.1. ([71]) Let D = (V ∪ R,A) be a rooted digraph. Then there exists a
reachability arborescence packing {Br}r∈R in D if and only if for all X ⊆ V ∪ R with
X ∩ V ̸= ∅, we have

d−A(X) ≥ |PD
X ∩R| − |X ∩R|. (4.2.1)

Observe that if every v ∈ V is reachable from every r ∈ R, then PD
X ∩ R = R for all

X ⊆ V ∪ R with X ∩ V ̸= ∅. It follows that Theorem 4.2.1 generalizes Theorem 4.1.2
indeed. The original proof of Theorem 4.2.1 in [71] is based on submodular optimization
and pretty involved. A somewhat simplified version by Frank can be found in [41]. We here
give a new, rather simple proof which uses Theorem 4.1.3 and is self-contained otherwise.

Proof. (of Theorem 4.2.1) For the necessity, suppose that there is some reachability ar-
borescence packing {Br}r∈R in D and consider some X ⊆ V ∪ R with X ∩ V ̸= ∅. For
every r ∈ (PD

X ∩R)− (X ∩R), we obtain that Br needs to contain some arc entering X.
As all the Br are arc-disjoint, the statement follows.

For sufficiency, let D = (V ∪R,A) be a minimum counterexample. Obviously, V ̸= ∅.
By Proposition 2.1.1 and as V has no arc leaving in D, there is a strongly connected

component of D[V ] which has no arc leaving in D. We denote its vertex set by C. Note
that each vertex of C is reachable in D from the same set of roots since D[C] is strongly
connected. An example can be found in Figure 4.2.3. We can hence divide the problem
into two subproblems, a smaller one on reachability arborescence packing and one on
spanning arborescence packing.

Let D1 = (V1∪R,A1) = D − C. Note that D1 is a rooted digraph.

Lemma 4.2.1. D1 has a reachability arborescence packing {B1
r}r∈R.

Proof. By d+A(C) = 0, we have d−A1
(X) = d−A(X) and PD1

X = PD
X for all X ⊆ V1∪R. Then,

since D satisfies (4.2.1), so does D1. Hence, by the minimality of D, the desired packing
exists in D1.

We now create an auxiliary digraph D2 = (V2 ∪ R2, A2). First let V2= C ∪ T where
T = {tuv: uv ∈ δ−A(C)} is a set of new vertices and R2 = PD

C ∩ R. Next, let A2 contain
A(D[C])∪{rtuv : r ∈ R2, u ∈ UD

r , tuv ∈ T}. Finally, for all tuv ∈ T, let A2 contain a set of
|R2| arcs from v to tuv and one arc from tuv to v. An illustration can be found in Figure
4.2.4.

Lemma 4.2.2. D2 has a spanning arborescence packing {B2
r}r∈R2.

Proof. We show in the following claim that D2 satisfies (4.1.1).

Claim 4.2.1. d−A2
(X) ≥ |R2 −X| for all X ⊆ V2 ∪R2 with X −R2 ̸= ∅.

98



C

D2

R2

V2

Figure 4.2.4: An illustration for the construction of D2 from D.

R

C

D

V

Z

C

X

D′
R′V ′

Figure 4.2.5: An illustration of the sets X and Z.

Proof. If X ∩C = ∅, we obtain from X −R2 ̸= ∅ that there is some tuv ∈ X. Further, we
have v ∈ C ⊆ V2−X. By construction, this yields d−A2

(X) ≥ dA2(v, tuv) = |R2| ≥ |R2−X|.
IfX∩C ̸= ∅, then, sinceD[C] is strongly connected, we have R2 = PD

C ∩R = PD
X∩C∩R.

In order to obtain a lower bound on d−A2
(X), we consider a vertex set Z in D and show

that there is an injection from the arcs entering Z in D to the arcs entering X in D2. Let
Y = (V ∪R)−UD

R2−X , Z = (X ∩C)∪Y and uv ∈ δ−A(Z). For an illustration, see Figure
4.2.5.

Since, by the definition of Y , we have δ−A(Y ) = ∅, we otain v ∈ X ∩C. If u ∈ C, then
uv ∈ δ−A2

(X). If u /∈ C, then u ∈ UD
R2−X , so there is some r ∈ R2 −X such that u ∈ UD

r .
Further, as uv ∈ δ−A(C), we know that T contains the vertex tuv and A2 contains tuvv.
Also, as u ∈ UD

r , we have that A2 contains the arc rtuv. Since v ∈ X and r /∈ X, we obtain
that one of rtuv or tuvv is in δ−A2

(X). Thus, by (4.2.1), Z ⊆ PD
Z , PD

Z ∩R2 = PD
C ∩R2 = R2

and the definition of Z, we obtain

d−A2
(X) ≥ d−A(Z)

≥ |(PD
Z − Z) ∩R|

= |(PD
Z − Z) ∩R2|+ |(PD

Z − Z) ∩ (R−R2)|
= |PD

Z ∩R2| − |Z ∩R2|+ |PD
Z ∩ (R−R2)| − |Z ∩ (R−R2)|

= |R2| − |X ∩R2|+ |R−R2| − |R−R2|
= |R2 −X|.

By Claim 4.2.1 and Theorem 4.1.3, the desired packing exists in D2. This completes
the proof of Lemma 4.2.2.
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D1
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D2
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V

C

D

Figure 4.2.6: An example of how the packing in D is obtained from merging the packings
in D1 and D2.

With the help of the packings {B1
r}r∈R in D1 and {B2

r}r∈R2 in D2 obtained in Lemmas
4.2.1 and 4.2.2, a packing in D can be constructed yielding a contradiction. For an
illustration, see Figure 4.2.6.

Lemma 4.2.3. D has a reachability arborescence packing.

Proof. For all r ∈ R − R2, let Br = B1
r and for all r ∈ R2, let Br be obtained from the

union of B1
r and B2

r − (R2 ∪ T ) by adding the arc uv for all tuvv ∈ A(B2
r ). Since {B1

r}r∈R
and {B2

r}r∈R2 are packings, so is {Br}r∈R. For r ∈ R−R2, Br = B1
r is an r-arborescence

and it spans UD1
r = UD

r . Let now r ∈ R2. Since B
1
r and B2

r do not contain circuits, neither
does Br. Observe that for all v ∈ V (B1

r ) − r, we have d−A(B1
r )
(v) = 1. Further, for all

v ∈ C, we have d−A(B2
r )
(v) = 1, so, as tuvv ∈ A(B2

r ) is replaced by uv ∈ A(Br), we also

have d−A(B2
r )
(v) = 1. It follows that Br is an r-arborescence. Since B1

r spans UD1
r and B2

r

spans V2 ∪ r, we obtain that Br spans UD1
r ∪ C = UD

r . It follows that {Br}r∈R has the
desired properties. This completes the proof of Lemma 4.2.3.

Lemma 4.2.3 contradicts the fact that D is a counterexample and hence the proof of
Theorem 4.2.1 is complete.

4.2.2 Matroid-reachability-based arborescence packings

In this section, we consider a generalization of Theorem 4.2.1 to the matroid-based set-
ting. Given a matroid-rooted digraph (D = (V ∪ R,A),M), we say that a packing of
r-arborescences {Br}r∈R is matroid-reachability-based if {r ∈ R : v ∈ V (Br)} is a basis of
PD
v ∩ R in M for all v ∈ V . The following characterization of matroid-rooted digraphs

admitting a matroid-reachability-based arborescence packing was given by Király [76].

Theorem 4.2.2. ([76]) Let (D = (V ∪R,A),M = (R, rM)) be a matroid-rooted digraph.
Then there exists a matroid-reachability-based arborescence packing in (D,M) if and only
if for all X ⊆ V ∪R with X ∩ V ̸= ∅, we have

d−A(X) ≥ rM(PD
X ∩R)− rM(X ∩R). (4.2.2)

Observe that if M is the free matroid, then Theorem 4.2.2 reduces to Theorem 4.2.1
and if every v ∈ V is reachable from every r ∈ R, then Theorem 4.2.2 reduces to Theorem
4.1.7, so Theorem 4.2.2 generalizes both Theorem 4.2.1 and Theorem 4.1.7. The original
proof of Király does not use any other theorem on arborescence packings. Again, we wish
to apply our proof technique to conclude Theorem 4.2.2 from the corresponding theorem
that does not include the reachability property which is Theorem 4.1.7. In order to do so,
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we first need the following slight strengthening of Theorem 4.1.7 in which the simplicity
condition is omitted.

Theorem 4.2.3. Let (D = (V ∪R,A),M = (R, rM)) be a matroid-rooted digraph. Then
there exists a matroid-based arborescence packing in (D,M) if and only if every X ⊆ V ∪R
with X ∩ V ̸= ∅ and X ∩R = spanM(N−

D (X ∩ V ) ∩R) satisfies (4.1.2).

d−A(X) ≥ rM(R)− rM(X ∩R). (4.2.3)

The relationship between Theorem 4.2.3 and Theorem 4.1.7 is the same as between
Theorem 4.1.2 and Theorem 4.1.3. Interestingly, while no way to conclude Theorem 4.1.3
from Theorem 4.1.2 is known, the matroid setting allows to conclude Theorem 4.2.3 from
Theorem 4.1.7 in a pretty simple manner.

Proof. (of Theorem 4.2.3) Suppose that (D,M) admits a matroid-based arborescence
packing {Br}r∈R and consider some X ⊆ V ∪ R with X ∩ V ̸= ∅. Let v ∈ X ∩ V and
Rv= {r ∈ R : v ∈ V (Br)}. By definition of matroid-based packings, Rv is a basis of
M , so |Rv| = rM(R) by Proposition 2.4.2. Further, as Rv is independent in M , we have
|Rv ∩ X| ≤ rM(X ∩ R). It follows that |Rv − X| ≥ rM(R) − rM(X ∩ R). For every
r ∈ Rv −X, the arborescence Br contains an arc entering X. As the Br are arc-disjoint,
the statement follows.

For sufficiency, let (D′ = (V ∪ R′, A′),M ′ = (R′, rM ′)) be the simply matroid-
rooted digraph obtained from (D,M) by replacing every root r ∈ R by a setQr of |N+

D (r)|
simple roots in the digraph such that N+

D′(Qr) = N+
D (r) and by |Qr| parallel copies of r

in the matroid.
Now let X ′ ⊆ V ∪ R′ with X ′ ∩ R′ = spanM ′(N−

D′(X ′ ∩ V ) ∩ R′). Observe that for
every r ∈ R, either Qr ⊆ X ′ or Qr ∩ X ′ = ∅. Let X = (X ′ ∩ V ) ∪ {r ∈ R : Qr ⊆ X ′}.
Observe that X ∩ R = spanM(N−

D (X ∩ V ) ∩ R). Further, we have d−A(X) = d−A′(X ′),
rM(R) = rM ′(R′) and rM(X ∩R) = rM ′(X ′ ∩R′). Then, by (4.2.3), we obtain d−A′(X ′) =
d−A(X) ≥ rM(R)− rM(X ∩R) = rM ′(R′)− rM ′(X ′ ∩R′), that is (D′,M ′) satisfies (4.1.2).
We can now apply Theorem 4.1.7 to obtain in (D′,M ′) a matroid-based arborescence
packing {B′

r′}r′∈R′ .
For all r ∈ R, let Br be obtained from {B′

r′}r′∈Qr by contracting all vertices of Qr into
r. Since {B′

r′}r′∈R′ is a packing, so is {Br}r∈R. Let r ∈ R. Since {r′ ∈ R′ : v ∈ V (B′
r′)}

is independent in M ′ for all v ∈ V and Qr is a set of parallel elements in M ′, {B′
r′}r′∈Qr

is a set of vertex-disjoint r′-arborescences in D′ and hence Br is an r-arborescence in D.
Moreover, for all v ∈ V , we have that {r ∈ R : v ∈ V (Br)} is a basis of M because
{r′ ∈ R′ : v ∈ V (B′

r′)} is a basis of M ′. Thus, the packing {Br}r∈R of arborescences has
the desired properties.

We are now ready to proceed to the main proof of Theorem 4.2.2.

Proof. (ofTheorem 4.2.2) For necessity, suppose that (D,M) has a matroid-reachability-
based packing {Br}{r∈R} and consider some X ⊆ V ∪ R with X ∩ V ̸= ∅. For every
v ∈ X, let Rv= {r ∈ R : v ∈ V (Br)} and let RX= ∪v∈XRv. By Proposition 2.4.3 and as
{Br}r∈R is a matroid-reachability-based packing, we obtain

spanM(RX) = spanM(∪v∈XRv)

⊇ ∪v∈XspanM(Rv)

= ∪v∈X(P
D
v ∩R)

= PD
X ∩R,
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so rM(RX) ≥ rM(PD
X ∩R). Now Proposition 2.4.1 yields

|RX −X| ≥ rM(RX −X)

≥ rM(RX)− rM(X ∩R)

≥ rM(PD
X ∩R)− rM(X ∩R).

As Br contains an arc entering X for all r ∈ RX − X and the Br are disjoint, the
statement follows.

For sufficiency, let (D = (V ∪ R,A), M = (R, rM)) be a minimum counterexample.
Obviously V ̸= ∅. By Proposition 2.1.1 and as V has no arc leaving, there is a strongly
connected component of D[V ] which has no arc leaving in D. We denote its vertex set by
C.

Let D1 = (V1∪R,A1) = D − C. Note that (D1,M) is a matroid-rooted digraph.

Lemma 4.2.4. (D1,M) contains a matroid-reachability-based arborescence packing {B1
r}r∈R

and PD1
v = PD

v for all v ∈ V1.

Proof. By d+A(C) = 0, we have d−A1
(X) = d−A(X) and PD1

X = PD
X for all X ⊆ V1∪R. Then,

since D satisfies (4.2.2), so does D1. Hence, by the minimality of D and PD1
v = PD

v for
all v ∈ V1, the desired packing exists in D1.

By Lemma 4.2.4, (D1,M) has a matroid-reachability-based arborescence packing {B1
r}r∈R.

We now define an auxiliary matroid-rooted digraph (D2,M2) which depends on these
arborescences. Let R2 = PD

C ∩ R and M2 the restriction of M to R2. We now define
D2 = (V2 ∪ R2, A2). First let V2= C ∪ T , where T = {tuv : uv ∈ δ−A(C)} is a set of new
vertices. We first let A2 contain A(D[C]) ∪ {rtuv : r ∈ R2, u ∈ V (B1

r ), tuv ∈ T}. Further,
for every tuv ∈ T , we let A2 contain one arc from tuv to v and rM2(R2) arcs from v to tuv.

Lemma 4.2.5. (D2,M2) has a matroid-based arborescence packing {B2
r}r∈R2.

Proof. We show in the following claim that (D2,M2) satisfies (4.2.3). Let X ⊆ V2 ∪ R2

with X ∩ V2 ̸= ∅ and X ∩R2 = spanM2(N
−
D2
(X ∩ V2) ∩R2).

Claim 4.2.2. d−A2
(X) ≥ rM2(R2)− rM2(X ∩R2).

Proof. If X ∩ C = ∅, we obtain from X − R2 ̸= ∅ that there is some tuv ∈ X. By
construction, this yields d−A2

(X) ≥ dA2(v, tuv) = rM2(R2) ≥ rM2(R2)− rM2(X ∩R2).
IfX∩C ̸= ∅, then, sinceD[C] is strongly connected, we have R2 = PD

C ∩R = PD
X∩C∩R.

Let Y = (V ∪ R) − UD
R−X and Z = (X ∩ C) ∪ Y . Observe that PD

Z ∩ R = R2 and
Z ∩R = X ∩R2.

Proposition 4.2.1. d−A2
(X) ≥ d−A(Z).

Proof. Let uv ∈ δ−A(Z). Since, by the definition of Y , we have δ−A(Y ) = ∅, we otain
v ∈ X ∩ C. If u ∈ C, then uv ∈ δ−A2

(X).
If u /∈ C, then u ∈ UD

R−X , so there is some r̄ ∈ R−X such that u ∈ UD
r̄ .

Further, as uv ∈ δ−A(C), we know that T contains the vertex tuv and A2 contains the
arc tuvv. Then, by uv ∈ A and v ∈ X ∩ C, we have r̄ ∈ PD

u ∩R ⊆ PD
X∩C ∩R = R2. Note

that {r ∈ R : r̄ ∈ V (B1
r )} = {r̄} = PD

r̄ . If tuv ∈ X, then, since {r ∈ R : u ∈ V (B1
r )} is a

basis of PD
u ∩R in M , we have

r̄ /∈ X ∩R2 = spanM2(N
−
D2
(X −R2) ∩R2)

⊇ spanM2(N
−
D2
(tuv) ∩R2)

= spanM2({r ∈ R2 : u ∈ V (B1
r )})

= spanM({r ∈ R : u ∈ V (B1
r )}) ∩R2

⊇ PD
u ∩R2 ⊇ {r̄},
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a contradiction. Thus tuv /∈ X and so tuvv ∈ δ−A2
(X). We have thus found an injection

from the arcs entering Z in D to to the arcs entering X in D2.

By Proposition 4.2.1 and (4.2.2), we have d−A2
(X) ≥ d−A(Z) ≥ rM(PD

Z ∩ R)− rM(Z ∩
R) = rM2(R2)− rM2(X ∩R2) and the proof of Claim 4.2.2 is complete.

By Claim 4.2.2 and Theorem 4.2.3, the desired packing exists in D2. This completes
the proof of Lemma 4.2.5.

By Lemma 4.2.5, (D2,M2) has a matroid-based arborescence packing {B2
r}r∈R2 . With

the help of the packings {B1
r}r∈R and {B2

r}r∈R2 , a packing in (D,M) can be constructed
yielding a contradiction.

Lemma 4.2.6. (D,M) has a matroid-reachability-based arborescence packing.

Proof. For all r ∈ R − R2, let Br = B1
r and for all r ∈ R2, let Br be obtained from the

union of B1
r and B2

r − (R2 ∪ T ) by adding the arc uv for all tuvv ∈ A(B2
r ). Since {B1

r}r∈R
and {B2

r}r∈R2 are packings, so is {Br}r∈R. Since B1
r and B2

r are arborescences, for all
r ∈ R and v ∈ V , we have d−A(Br)

(v) ≤ 1. Further, if d+A(Br)
(v) ≥ 1, then d−A(Br)

(v) = 1
or v = r. It follows that Br is an r-arborescence indeed. For v ∈ V − C, we have
{r ∈ R : v ∈ V (Br)} = {r ∈ R : v ∈ V (B1

r )} which is a basis of PD
v ∩ R in M by Lemma

4.2.4. For v ∈ C, we have {r ∈ R : v ∈ V (Br)} = {r ∈ R2 : v ∈ V (B2
r )} which is a basis

of M2, so a basis of R2 = PD
v ∩ R in M . It follows that {Br}r∈R has indeed the desired

properties.

Lemma 4.2.6 contradicts the fact that (D,M) is a counterexample and hence completes
the proof of Theorem 4.2.2.

4.2.3 Reachability in packings of mixed hyperarborescences

Several extensions of Theorem 4.1.2 and Theorem 4.1.7 from digraphs to more gen-
eral objects like mixed graphs and dypergraphs have been provided. Given a matroid-
rooted mixed hypergraph (F = (V ∪ R,A ∪ E),M), we say that a packing of mixed
r-hyperarborescences {Br}r∈R is matroid-reachability-based if for every r ∈ R, there is
a trimming Br of Br such that {Br : r ∈ R} is matroid-reachability-based packing
of arborescences. Observe that the reachability condition refers to the reachability in
the original mixed hypergraph. A characterization for rooted dypergraphs admitting a
reachability-based packing of mixed dyperarborescences was given by Bérzci and Frank
[10]. This was generalized to matroid-reachability-based packings by Fortier et al. in [38].

The characterizations for the problems combining mixed graphs and reachability are
somewhat more complicated as they include biset partitions. The case of reachability-
based packings in mixed graphs was settled by Matsuoka and Tanigawa [92] and the
case of matroid-reachability-based packings in mixed graphs was settled by Gao and
Yang [54]. A careful analysis of the proof of Gao and Yang in [54] shows that it can be
litteraly generalized to matroid-reachability-based packings in mixed hypergraphs. We
use a different approach and settle this case by concluding it from Theorem 4.1.8. More
concretely, we prove the following result.

Theorem 4.2.4. Let (F = (V ∪ R,A ∪ E),M = (R, rM)) be a matroid-rooted mixed hy-
pergraph. Then there exists a matroid-reachability-based mixed hyperarborescence packing
in (F ,M) if and only if for every strongly connected component C of F −R and for every
biset subpartition {Xi}ℓ1 of C such that w(Xi) = PF

w(Xi) for all i = 1, . . . , ℓ, we have

eE({X i
I}ℓ1) +

ℓ∑
i=1

d−A(X
i) ≥

ℓ∑
i=1

(rM(PF
C ∩R)− rM(X i

O ∩R)). (4.2.4)
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Figure 4.2.7: An illustration of the extensions of Theorem 4.1.2.

As a corollary, we obtain the following result which characterizes matroid-rooted mixed
hypergraphs admitting a reachability-based packing of mixed hyperarborescences by ap-
plying Theorem 4.2.4 to the free matroid.

Corollary 4.2.1. Let F = (V ∪ R,A ∪ E) be a rooted mixed hypergraph. Then there
exists a reachability mixed hyperarborescence packing {Br}r∈R in F if and only if for
every strongly connected component C of F −R and for every biset subpartition {Xi}ℓ1 of
C such that w(Xi) = PF

w(Xi) for all i = 1, . . . , ℓ, we have

eE({X i
I}ℓ1) +

ℓ∑
i=1

d−A(X
i) ≥

ℓ∑
i=1

(|PF
C ∩R| − |X i

O ∩R|). (4.2.5)

For an illustration of the extensions of Theorem 4.1.2 discussed in this chapter, see
Figure 4.2.7.

Our proof of Theorem 4.2.4 uses Theorem 4.1.8 and follows the same ideas as the
proofs of Theorem 4.2.1 and Theorem 4.2.2. Again, we first need a slightly stronger
version of Theorem 4.1.8 where the simplicity condition is omitted.

Theorem 4.2.5. Let (F = (V ∪ R,A ∪ E),M = (R, rM)) be a matroid-rooted mixed
hypergraph. Then there exists a matroid-based mixed hyperarborescence packing in (F ,M)
if and only if for every biset subpartition {Xi}ℓ1 of V with w(Xi) = spanM({r ∈ R :
N+

F (r) ∩X i
I ̸= ∅}) for i = 1, . . . , ℓ, we have

eE({X i
I}ℓ1) +

ℓ∑
i=1

d−A(X
i) ≥

ℓ∑
i=1

(rM(R)− rM(w(Xi))). (4.2.6)

Proof. We first prove necessity. Suppose that there exists a matroid-based mixed hyperar-
borescence packing {Br}r∈R. By definition, for every r ∈ R, there is an r-arborescence Br

that is a trimming of Br with {r ∈ R : v ∈ V (Br)} being a basis of M for all v ∈ V . Let
{Xi}ℓ

1 be a biset subpartition of V such that w(Xi) = spanM({r ∈ R : N+
F (r) ∩X i

I ̸= ∅})
for all i = 1, . . . , ℓ.
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Let i ∈ {1, . . . , ℓ}, Ri = {r ∈ R−X i
O : V (Br)∩X i

I ̸= ∅} and v ∈ X i
I . By Proposition

2.4.1, we have

|Ri| ≥ rM(Ri)

≥ rM(Ri ∪ (X i
O ∩R))− rM(X i

O ∩R)

≥ rM({r ∈ R : v ∈ V (Br)})− rM(X i
O ∩R)

= rM(R)− rM(X i
O ∩R).

Since w(Xi) ⊆ R, no dyperedge and no hyperedge enters w(Xi) in F . Then, as w(Xi)∩Ri =
∅, every Br with r ∈ Ri has an arc that enters Xi, that is Br contains either a dyperedge
in A entering Xi or a hyperedge in E entering X i

I . Thus, since {Br}r∈R is a packing and
the X i

I are disjoint, we have

eE({X i
I}ℓ1) +

ℓ∑
i=1

d−A(X
i) ≥

ℓ∑
i=1

|Ri|

≥
ℓ∑

i=1

(rM(R)− rM(X i
O ∩R))

=
ℓ∑

i=1

(rM(R)− rM(w(X i))).

For sufficiency, we define a simply matroid-rooted mixed hypergraph (F ′ = (V ∪
R′,A′ ∪E),M ′ = (R′, rM ′)) obtained from (F ,M) by replacing every root r ∈ R by a
set Qr of |N+

F (r)| simple roots such that N+
F ′(Qr) = N+

F (r) in the mixed hypergraph and
by |Qr| parallel copies of r in the matroid.

Now let {Xi}ℓ
1 be a biset subpartition of V with w(Xi) = spanM ′({r′ ∈ R′ : N+

F ′(r′) ∩
X i

I ̸= ∅}) for i = 1, . . . , ℓ. Let i ∈ {1, . . . , ℓ}. Note that for all r ∈ R, either Qr ⊆
w(Xi) or Qr ∩ w(Xi) = ∅. Let Yi = (X i

I ∪ {r ∈ R : Qr ⊆ w(Xi)}, X i
I). Observe that

w(Yi) = spanM({r ∈ R : N+
F (r) ∩ X i

I ̸= ∅}), d−A(Yi) = d−A′(Xi), rM(R) = rM ′(R′) and
rM(w(Yi)) = rM ′(w(Xi)). Then, as X i

I = Zi
I for i = 1, . . . , ℓ and by (4.2.6), we obtain

eE({X i
I}ℓ1) = eE({Y i

I }ℓ1)

≥
ℓ∑

i=1

(rM(R)− rM(w(Yi))− d−A(Y
i))

=
ℓ∑

i=1

(rM ′(R′)− rM ′(w(Xi))− d−A′(X
i)),

that is (F ′,M ′) satisfies (4.1.3).
We now apply Theorem 4.1.8 to obtain in (F ′,M ′) a matroid-based mixed hyperar-

borescences packing {B′
r′}r′∈R′ with arborescences {B′

r′}r′∈R′ as trimmings. For all r ∈ R,
let Br be obtained from {B′

r′}r′∈Qr by contracting all vertices of Qr into r. As in the
proof of Theorem 4.2.3, we can see that {Br}r∈R is a matroid-based arborescence pack-
ing. Finally, for all r ∈ R, let Br be obtained from {B′

r′}r′∈Qr by contracting all vertices
of Qr into r. As Br is a trimming of Br for all r ∈ R, {Br}r∈R is a packing of mixed
hyperarborescences with the desired properties.

We are now ready to proceed to the main proof of Theorem 4.2.4.
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Proof. (of Theorem 4.2.4)
We first prove necessity. Suppose that there exists a matroid-reachability-based mixed

hyperarborescence packing {Br}r∈R. By definition, for every r ∈ R, there is an r-
arborescence Br that is a trimming of Br with {r ∈ R : v ∈ V (Br)} being a basis of
PF
v ∩ R in M for all v ∈ V . Let {Xi}ℓ

1 be a biset subpartition of a strongly connected
component C of F −R such that w(Xi) = PF

w(Xi) for all i = 1, . . . , ℓ.

Let i ∈ {1, . . . , ℓ}, Ri = {r ∈ R−X i
O : V (Br) ∩X i

I ̸= ∅} and v ∈ X i
I . Then we have

rM(Ri ∪ (X i
O ∩R)) ≥ rM({r ∈ R : v ∈ V (Br)}) = rM(PF

v ∩R) = rM(PF
C ∩R).

Thus, by Proposition 2.4.1, we have

|Ri| ≥ rM(Ri) ≥ rM(Ri ∪ (X i
O ∩R))− rM(X i

O ∩R) ≥ rM(PF
C ∩R)− rM(X i

O ∩R).

Since w(Xi) = PF
w(Xi), no dyperedge and no hyperedge enters w(Xi) in F . Then, by

w(Xi)∩Ri = ∅, every Br with r ∈ Ri has an arc that enters Xi, that is Br contains either
a dyperedge in A entering Xi or a hyperedge in E entering X i

I . Thus, since {Br}r∈R is a
packing and the X i

I are disjoint, we have

eE({X i
I}ℓ1) +

ℓ∑
i=1

d−A(X
i) ≥

ℓ∑
i=1

|Ri| ≥
ℓ∑

i=1

(rM(PF
C ∩R)− rM(X i

O ∩R)).

For sufficiency, let (F = (V ∪R,A∪E), M = (R, rM)) be a minimum counterexample.
Obviously, V ̸= ∅. By Proposition 2.1.5 and as there is no dyperedge or hyperedge leaving
V in F , there is a strongly connected component of F [V ] which has no dyperedge or
hyperedge leaving. We denote its vertex set by C.

Let F1 = (V1∪R,A1∪E1) = F − C. Note that (F1,M) is a matroid-rooted mixed
hypergraph.

Lemma 4.2.7. (F1,M) has a matroid-reachability-based mixed hyperarborescence packing
{B1

r}r∈R and PF1
v = PF

v for all v ∈ V1.

Proof. The fact that d+A(C) = dE(C) = 0 implies that for all X ⊆ V1 ∪ R, we have
PF1
X = PF

X , for every subpartition P of V ∪ R1, we have eE(P) = eE1(P), and for every
biset X on V1 ∪R, we have d−A1

(X) = d−A(X). Then, since (F ,M) satisfies (4.2.4), so does
(F1,M). Hence, by the minimality of F and PF1

v = PF
v for all v ∈ V1, the desired packing

exists.

By Lemma 4.2.7, (F1,M) has a matroid-reachability-based mixed hyperarborescence
packing {B1

r}r∈R. By definition, B1
r can be trimmed to an r-arborescence B1

r for all r ∈ R
such that {r ∈ R : v ∈ V (B1

r )} is a basis of PF1
v ∩R = PF

v ∩R in M for all v ∈ V1.
We now define a matroid-rooted mixed hypergraph (F2 = (V2∪R2,A2∪E2),M2) which

depends on the arborescences {B1
r}r∈R. Let R2 = PF

C ∩R and M2 the restriction of M to
R2. Next, let V2 contain C and a set T which contains a vertex ta for every a ∈ δ−A(C).
Firstly, A2 contains all dyperedges whose head and tail are completely contained in C.
Next for all a ∈ δ−A(C), A2 contains a dyperedge a′ whose tail is (tail(a) ∩ C) ∪ ta and
whose head is head(a) and rM2(R2) parallel arcs head(a)ta. Further, A2 contains the arc
rta for r ∈ R2 and a ∈ δ−A(C) whenever tail(a) ∩ V (B1

r ) ̸= ∅. Finally, we let E2 contain
all the hyperedges which are completely contained in C. Observe that E2 contains no
hyperege entering C.

Lemma 4.2.8. (F2,M2) contains a matroid-based mixed hyperarborescence packing {B2
r}r∈R2.
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Proof. We show in the following claim that (F2,M2) satisfies (4.2.6). Let {Xi}ℓ
1 be a

biset subpartition of V2 = C ∪ T with w(Xi) = spanM2({r ∈ R2 : N+
F2
(r) ∩X i

I ̸= ∅}) for
all i = 1, . . . , ℓ.

Claim 4.2.3. eE2({X i
I}ℓ1) ≥

∑ℓ
i=1(rM2(R2)− rM2(w(X

i))− d−A2
(Xi)).

Proof. Suppose that X i
I ∩ C ̸= ∅ for all i ∈ {1, . . . , j} and X i

I ∩ C = ∅ for all i ∈
{j + 1, . . . , ℓ}. For i ∈ {j + 1, . . . , ℓ}, as X i

I − V2 ̸= ∅, there is some a ∈ δ−A(C) such
that ta ∈ X i

I . As w(Xi) ⊆ R, it follows that head(a) ∈ V2 − X i
O. This yields d−A2

(Xi) ≥
dA2(head(a), ta) ≥ rM2(R2). We obtain 0 ≥ rM2(R2)− rM2(w(X

i))− d−A2
(Xi).

Let now i ∈ {1, . . . , j}. Since F [C] is strongly connected, we have R2 = PF
C ∩ R =

PF
Xi

I∩C
∩R. Let Y i = (V ∪R)−(UF

R−w(Xi)∪C) and Zi = ((X i
I∩C)∪Y i, X i

I∩C). Note that

Zi
I = X i

I∩C and Zi
O∩R = Y i∩R = R−(R−w(Xi)) = w(Xi), so rM(Zi

O∩R) = rM2(w(X
i)).

Proposition 4.2.2. d−A2
(Xi) ≥ d−A(Z

i).

Proof. Let a ∈ δ−A(Z
i).

If (tail(a)−Zi
O)∩C ̸= ∅ and (tail(a)−C) ̸= ∅, then a′ ∈ δ−A2

(Xi). If (tail(a)−Zi
O)∩C ̸=

∅ and (tail(a)− C) = ∅, then a ∈ δ−A2
(Xi).

We may hence suppose that (tail(a) − Zi
O) ∩ C = ∅. Let u ∈ tail(a) − Zi

O − C, so
u ∈ V ∪R−C −Y i ⊆ UF

R−w(Xi). It follows that u ∈ UF
r̄ for some r̄ ∈ R−w(Xi). Further,

as a ∈ δ−A(C), we know that T contains the vertex ta and A2 contains the arc a′.
Thus, by a ∈ A, we have r̄ ∈ PF

u ∩ R ⊆ PF
Xi

I∩C
∩ R = R2. Note that {r ∈ R : r̄ ∈

V (B1
r )} = {r̄} = PF

r̄ . If ta ∈ X i
I , then, since {r ∈ R : u ∈ V (B1

r )} is a basis of PF
u ∩ R in

M , we obtain

r̄ /∈ w(Xi) = spanM2({r ∈ R2 : N
+
F2
(r) ∩X i

I ̸= ∅})
⊇ spanM2({r ∈ R2 : ta ∈ N+

F2
(r)})

= spanM2({r ∈ R2 : tail(a) ∩ V (B1
r ) ̸= ∅})

⊇ spanM({r ∈ R : u ∈ V (B1
r )}) ∩R2

⊇ PF
u ∩R2 ⊇ {r̄},

a contradiction. It follows that ta /∈ X i
I and hence ta /∈ X i

O. This yields that a′ ∈
δ−A2

(Xi).

Since w(Zi) ∩ C = ∅, we have that {Zi
I}

j
1 is a biset subpartition of C. Moreover, no

dyperedge and no hyperedge leaves UF
R−w(Xi) ∪ C, so w(Zi) = Y i = PF

Y i = PF
w(Zi). Then,

as X i
I ∩C = Zi

I ∩C for i = 1, . . . , j, E2 = E [C], by (4.2.4) and Proposition 4.2.2, we have

eE2({X i
I}ℓ1) = eE2({X i

I}
j
1)

= eE({Zi
I}

j
1)

≥
j∑

i=1

(rM(PF
C ∩R)− rM(Zi

O ∩R)− d−A(Z
i))

≥
j∑

i=1

(rM2(R2)− rM2(w(X
i))− d−A2

(Xi))

≥
ℓ∑

i=1

(rM2(R2)− rM2(w(X
i))− d−A2

(Xi)),

that completes the proof of Claim 4.2.3.
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By Claim 4.2.3 and Theorem 4.2.5, the desired packing exists in F2.

By Lemma 4.2.8, (F2,M2) has a matroid-reachability-based mixed hyperarborescence
packing {B2

r}r∈R2 with r-arborescences {B2
r}r∈R2 as trimmings. With the help of the

packings {B1
r}r∈R and {B2

r}r∈R2 , a packing of (F ,M) can be constructed yielding a con-
tradiction.

Lemma 4.2.9. (F ,M) has a matroid-reachability-based mixed hyperarborescence packing.

Proof. For r ∈ R−R2, let Br = B1
r and for r ∈ R2, let Br be obtained from the union of

B1
r and B2

r −R2−T by adding an arc uv for all tav ∈ A(B2
r ) for some u ∈ tail(a)∩V (B1

r ).
As in the proof of Theorem 4.2.2, we can see that {Br}r∈R is a packing of arborescences
such that the root of Br is r for all r ∈ R and {r ∈ R : v ∈ V (Br)} is a basis of PF

v ∩ R
in M for all v ∈ V .

Finally, for r ∈ R − R2, let Br = B1
r and for r ∈ R2, let Br be obtained from B1

r and
B2
r−R2−T by adding the dyperedge a ∈ A for all a′ ∈ A(B2

r). The above argument shows
that this is a packing of mixed hyperarborescences in F (with arborescences {Br}r∈R as
trimmings) with the desired properties.

Lemma 4.2.9 contradicts the fact that (F ,M) is a counterexample and hence the proof
of Theorem 4.2.4 is complete.

4.2.4 Algorithmic aspects

Again, there are two algorithmic problems we may want to consider. Firstly, we may
want to find some arbitrary packing of reachability arborescences and secondly, we can
search for such a packing of minimum weight.

We first deal with the unweighted case. Again, observe that we wish to find the actual
arborescences, not just the arc set of the packing.

For the basic setting, we show that our proof of Theorem 4.2.1 yields a polynomial time
algorithm for finding the desired packing of reachability arborescences. We acknowledge
that so does the original proof in [71]. We first mention that the packings in Theorem
4.1.3 can be found in polynomial time, following the proof of Frank (Theorem 10.2.1 in
[41]). Using this, we can turn our proof of Theorem 4.2.1 into a recursive polynomial
time algorithm for finding the desired packing of arborescences. Recursively, we first find
the arborescences B1

r in the smaller instance D − C in polynomial time. As the size of
D2 is polynomial in the size of D, we can apply the algorithm mentioned above to obtain
the arborescences B2

r in polynomial time. The obtained arborescences can be merged
efficiently to obtain the arborescences Br.

For the matroidal setting, we show that our proof of Theorem 4.2.2 yields an algorithm
for finding the matroid-reachability-based arborescence packing if an independence oracle
for M is given. We acknowledge that so does the original proof in [76]. We first recall that
the packings in Theorem 4.1.7 can be found in polynomial time given an independence
oracle for M as mentioned in [26]. It is easy to see that using this algorithm the proof
of Theorem 4.2.3 yields a polynomial time algorithm for finding a matroid-based packing
of arborescences in a matroid-rooted digraph if an independence oracle for M is given.
By similar arguments as before and the fact that an independence oracle for M yields
independence oracles for all matroids considered, we obtain that the proof of Theorem
4.2.2 can be turned into a polynomial time algorithm if an independence oracle for M is
available.

For the most general setting, using the fact that the proof of Theorem 4.1.8 is al-
gorithmic if an independence oracle is given ([38]), we obtain that also Theorems 4.2.5
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and 4.2.4 yield polynomial time algorithms given independence oracles. In particular, the
arborescences in Corollary 4.2.1 can be found in polynomial time.

We now deal with the weighted case. Observe that here it suffices to find the arc set of
the minimum weight packing as we can then find the arborescences by applying the above
algorithm to the rooted digraph which is restricted to these arcs. We first wish to mention
that there is a result of Király, Szigeti and Tanigawa that shows that the arc sets of the
matroid-reachability-based arborescence packings in matroid-singularly rooted graphs can
be modeled as the intersection of two matroids [79]. We thus obtain a polynomial time
algorithm for the problem of finding a matroid-reachability-based arborescence packing
of minimum weight whenever an independence oracle for the input matroid is available.
Their matroid construction is pretty involved. Nevertheless, this has recently been gen-
eralized to matroid-reachability-based packings of mixed hypergraphs by Király [78]. We
follow a different approach. Based on our proof of Theorems 4.2.1,4.2.2 and 4.2.4, we give
an algorithm that only uses basic methods apart from applying the corresponding results
for the problems where the reachability condition is omitted.

We give a more detailed description of this algorithm for the most general setting
discussed in this section. More concretely, we show how to obtain the following result
from Theorem 4.1.16 and the proof of Theorems 4.2.5 and 4.2.4.

Theorem 4.2.6. Given a simply matroid-rooted mixed hypergraph (F = (V ∪R,A∪E),M)
with an independence oracle for M being available and a cost function w : A ∪ E → R, a
matroid-reachability-based packing of mixed hyperarboresecences B minimizing w(B) can
be computed in polynomial time if such a packing exists.

In order to prove this, we first need the following slight strengthening of Theorem
4.1.16.

Theorem 4.2.7. Given a matroid-rooted mixed hypergraph (F = (V ∪R,A∪E),M) with
an independence oracle for M being available and a cost function w : A ∪ E → R, a
matroid-based packing of mixed hyperarboresecences B minimizing w(B) can be computed
in polynomial time if such a packing exists.

Proof. Let (F = (V ∪R,A∪E),M) be a matroid-rooted mixed hypergraph. Let (F ′,M ′)
be obtained like in the proof of Theorem 4.2.5 and let w′ : E ∪ A′ → R be obtained by
w′(e) = w(e) for all e ∈ E , w′(a) = w(a) for all a ∈ A − δ+A(R

′) and w′(a) = w(a′) for all
a ∈ δA(Qr, V ) for all r ∈ R′ where a′ is the arc from r to V that corresponds to a. It is
easy to see that a matroid-based packing of mixed hyperarborescences in (F ,M) yields
a matroid-based packing of mixed hyperarborescences in (F ′,M ′) of the same weight
and vice-versa. Hence a minimum weight solution for the problem in (F ′,M ′) yields a
minimum weight solution in (F ,M). By Theorem 4.1.16, the minimum weight solution
in (F ′,M ′) can be computed in polynomial time.

We now turn our attention to the proof of Theorem 4.2.4. The following observation
is crucial and an immediate consequence of the proof of Theorem 4.2.4.

Lemma 4.2.10. Every matroid-reachability-based packing of (F −C,M) can be extended
to a matroid-reachability-based packing of (F ,M).

This yields the following stronger statement.

Lemma 4.2.11. Let B1 = {B1
r}r∈R be a matroid-reachability-based packing of (F−C,M)

minimizing w(B1). Then B1 can be extended to a matroid-reachability-based packing B of
(F ,M) minimizing w(B).
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Proof. Let B∗ = {B∗
r}r∈R be a matroid-reachability-based packing of (F ,M) minimizing

w(B∗) and consider F ′= (V ∪ R,A′ ∪ E ′) with A′= A − (A(C) ∪ δ−A(C) − A(B∗)) and
E ′= E − (E(C) − E(B∗)). Observe that B∗ is a matroid-reachability-based packing in
(F ′,M) and B1 is a matroid-reachability-based packing in (F ′−C,M). By Lemma 4.2.10,
B1 can be extended to a matroid-reachability-based packing in (F ′,M). Due to cardinality
considerations, we obtain that (A(B1)∪E(B1))∪((A(B∗)∪E(B∗))∩(A(C)∪δ−A(C)∪E(C)))
is the dyper-and hyperedge set of a matroid-reachability-based packing in (F ′,M) and
therefore also in (F ,M). By the minimality of B1, we obtain that B1 can be extended in
the desired way.

We are now ready to proceed to the main proof of Theorem 4.2.6.

Proof. (of Theorem 4.2.6). By the above remarks, we may suppose that (F ,M) has a
matroid-reachability-based packing of mixed hyperarborescences. Inductively, we may
suppose that a matroid-reachability-based packing B1 in (F − C,M) minimizing w(B1)
can be constructed in polynomial time. Now construct the auxiliary matroid-rooted mixed
hypergraph (F2,M2) like in the proof of Theorem 4.2.4 and define the weight function
w′: A2 ∪ E2 → R by w′(a) = w(a) for all a ∈ A(C), w′(e) = w(e) for all e ∈ E(C),
w′(a′) = w(a) for all a′ ∈ δ−A2

(C) and w′(a) = 0 all a ∈ δ−A2
(T ). By Lemma 4.2.11,

B1 can be extended to a matroid-reachability-based packing of mixed hyperarborescences
of (F ,M) and so (F2,M2) has a matroid-based packing of mixed hyperarborescences.
By Theorem 4.2.7, a matroid-based packing of mixed hyperarborescences B2 in (F2,M2)
minimizing w′(B2) can be computed in polynomial time. We now obtain B by merging B1

and B2 as in the proof of Theorem 4.2.4. It is easy to see that B minimizes w(B) among
all the matroid-reachability-based packings extending B1. By Lemma 4.2.10, w(B) is
minimal among all matroid-reachability-based packings of mixed hyperarborescences of
(F ,M).

4.3 Packings of mixed hyperarborescences with flex-

ible roots

This section is based on [62]. We deal with a generalization of Theorem 4.1.2 in which the
conditions of the arborescences being fixed is relaxed. Given a digraph, we wish to find a
packing of a fixed number of arborescences without specifying their roots. However, we
prescribe for every vertex of the digraph a lower and an upper bound on the number of
arborescences whose root is this vertex.

4.3.1 Previous work

Given a digraph D = (V,A), an integer k ∈ Z≥0 and functions f, g : V → Z≥0, we
say that a packing of spanning arborescences is (k, f, g)-flexible if it contains k spanning
arborescences and every v ∈ V is the root of at least f(v) and at most g(v) of them. In
the basic setting, the problem has been succesfully treated by Frank. In [44], he proved
the following theorem.

Theorem 4.3.1. Let D = (V,A) be a digraph, k ∈ Z≥0 and f, g : V → Z≥0 functions.
There exists a (k, f, g)-flexible packing of spanning arborescences in F if and only if we
have

f(v) ≤ g(v) for every v ∈ V, (4.3.1)

eA(P) ≥ k(|P| − 1) + f(V − ∪P) for every subpartition P of V, (4.3.2)

d−A(X) ≥ k − g(X) for every nonempty X ⊆ V. (4.3.3)
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Observe that if f = g, then Theorem 4.3.1 reduces to Theorem 4.1.2, so Theorem 4.3.1
generalizes Theorem 4.1.2 indeed.

Again, extensions of this result to mixed graphs and dypergraphs can be considered.
A packing of mixed hyperarborescences {Bi}i∈{1,...,k} is called (k, f, g)-flexible if there is
a trimming Bi of Bi for every i = 1, . . . , k such that {Bi}i∈{1,...,k} is a (k, f, g)-flexible
packing of arborescences. We first wish to mention that Theorem 4.3.1 can readily be
generalized to dypergraphs using the reduction in [38]. The following extension to mixed
graphs has recently been found by Gao and Yang [55].

Theorem 4.3.2. Let F = (V,A ∪ E) be a mixed graph, k ∈ Z≥0 and f, g : V → Z≥0

functions. There exists a (k, f, g)-flexible packing of mixed arborescences in F if and only
if we have

f(v) ≤ g(v) for every v ∈ V, (4.3.4)

eE∪A(P) ≥ k(|P| − 1) + f(V − ∪P) for every subpartition P of V, (4.3.5)

eE∪A(P) ≥ k|P| − g(∪P) for every subpartition P of V. (4.3.6)

We wish to remark that the proof of Theorem 4.3.2 does not easily generalize to mixed
hypergraphs. We give an extension to mixed hypergraphs by proving the following result.

Theorem 4.3.3. Let F = (V,A∪E) be a mixed hypergraph, k ∈ Z≥0 and f, g : V → Z≥0

functions. There exists a (k, f, g)-flexible packing of mixed hyperarborescences in F if and
only if we have

f(v) ≤ g(v) for every v ∈ V, (4.3.7)

eE∪A(P) ≥ k(|P| − 1) + f(V − ∪P) for every subpartition P of V, (4.3.8)

eE∪A(P) ≥ k|P| − g(∪P) for every subpartition P of V. (4.3.9)

Even though Theorem 4.3.3 is a literal generalization of Theorem 4.3.2, the approach of
our proof is completely different from the one used in [55]. Our proof is based on matroid
intersection. To our best knowledge, this is the first time in the context of arborescence
packing that matroid intersection is used not only for algorithmic consequences but also
in order to obtain a characterization. We also obtain the following algorithmic result.

Theorem 4.3.4. Let F = (V,A ∪ E) be a mixed hypergraph, k ∈ Z≥0, f, g : V → Z≥0

functions and w : A∪E → R a weight function. Then a (k, f, g)-flexible packing of mixed
hyperarborescences of minimum weight can be computed in polynomial time, if there exists
one.

We wish to mention that there is no natural combination of matroid-based arbores-
cence packings and arborescence packings with flexible roots. A combination of flexible
roots and reachability is more interesting. However, a more restricted form of this problem
has been proven to be NP-complete by Bérczi and Frank in [10].

4.3.2 Matroid intersection

We here describe how to model the problem of packing spanning mixed hyperarborescences
with flexibe roots via matroid intersection. The basic insight of our approach is that,
given a packing of k spanning arborescences, for every vertex v ∈ V , the number of
arborescences in the packing whose root is v plus the in-degree of v in the packing is
equal to k. Given a mixed hypergraph F = (V,A∪ E), we say that a packing of k mixed
spanning dyperarborescences in its directed extensionDF is (k, f, g)-feasible if every v ∈ V
is the root of at least f(v) and at most g(v) of the hyperarborescences and the packing
contains at most one dyperedge of Ae for all e ∈ E . The following simple result relates
(k, f, g)-feasible packings and (k, f, g)-flexible packings.
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Lemma 4.3.1. Let F = (V,A∪E) be a mixed hypergraph, DF = (V,A∪AE) its directed
extension, f, g : V → Z≥0 integer valued functions and k ∈ Z≥0. Then F has a (k, f, g)-
flexible packing if and only if DF has a (k, f, g)-feasible packing.

Proof. First suppose that F has a (k, f, g)-flexible packing B = {Bi : i ∈ {1, . . . , k}}.
Then there is a (k, f, g)-flexible packing B = {Bi : i ∈ {1, . . . , k}} of arborescences such
that Bi is a trimming of Bi for all i ∈ {1, . . . , k}. For every e ∈ E(B), let ve be the head
of the arc to which e is trimmed in B and let e⃗ ∈ Ae be the orientation of e where ve is
chosen to be its head. Then the set of dyperedges A(B)∪ {e⃗ : e ∈ E(B)} can be trimmed
to B and it contains at most one dyperedge of Ae for all e ∈ E . It follows that DF has a
(k, f, g)-feasible packing.

Now suppose that DF has a (k, f, g)-feasible packing B. By definition, AE ∩ A(B)
contains at most one dyperedge in Ae for all e ∈ E . Replacing a dyperedge in Ae ∩A(B)
by e for all e ∈ E , we obtain the dyper- and hyperedge set of a (k, f, g)-flexible packing
in F .

The most important ingredient of this section is the following result that characterizes
the arc sets of (k, f, g)-feasible packings as the intersection of two matroids.

Theorem 4.3.5. Let F = (V,A ∪ E) be a mixed hypergraph, DF = (V,A′ = A ∪AE) its
directed extension, f, g : V → Z≥0 integer valued functions and k ∈ Z≥0. Suppose that
(2.4.3) and (2.4.4) are satisfied. Then the dyperedge sets of the (k, f, g)-feasible packings

in DF are exactly the common independent sets of size k(|V | − 1) of Mk
F and M

(k,f,g)
DF

.

Proof. For the sake of simplicity, we use M1 and M2 for Mk
F and M

(k,f,g)
DF

, respectively.
As (2.4.3) and (2.4.4) are satisfied, Corollary 2.4.1 yields that M2 is well-defined.

First, let Z be the dyperedge set of a (k, f, g)-feasible packing in DF . Then the
underlying undirected hypergraph of (V,Z) is the union of k hyperedge-disjoint spanning
hypertrees and Z contains at most one dyperedge of the bundle Ae for all e ∈ E . It follows
that Z is an independent set of M1. As Z is the dyperedge set of a packing of k spanning
hyperarborescences, we have |Z| = k(|V |−1). Since the packing is (k, f, g)-feasible, every
vertex v is the root of at least f(v) and at most g(v) of the k spanning hyperarborescences
of the packing. It follows that k − g(v) ≤ d−Z(v) ≤ k − f(v), so Z is an independent set
of M2.

Now let Z be a common independent set of M1 and M2 of size k(|V | − 1). Then, by
f ≥ 0, the underlying hypergraph of (V,Z) is the union of k hyperedge-disjoint spanning
hypertrees and d−Z(v) ≤ k − f(v) ≤ k for all v ∈ V . Let R be the multiset in V in which
every vertex v in V is contained k − d−Z(v) times. Observe that this value is nonnegative
for all v ∈ V . As |Z| = k(|V | − 1), we have |R| =

∑
v∈V (k − d−Z(v)) = k|V | − |Z| =

k|V | − k(|V | − 1) = k. Also, by construction d−Z(v) = k − |R ∩ v| for all v ∈ V . Theorem
4.1.5 therefore implies that Z is the set of dyperedges of the union of k dyperedge-disjoint
spanning hyperarborescences with root set R, so each v ∈ V is the root of k − d−Z(v) of
them. As Z is an independent set of M2, we obtain that k − g(v) ≤ d−Z(v) ≤ k − f(v),
so f(v) ≤ k − d−Z(v) ≤ g(v). Finally, as Z is independent in M1, Z contains at most
one dyperedge of the bundle Ae for all e ∈ E . It follows that Z is the dyperedge set of a
(k, f, g)-feasible packing in DF .

For the proof of Theorems 4.3.3 and 4.3.4, we further need two slightly technical
lemmas. The first one shows the necessity in Theorem 4.3.3 and is also used in the proof
of Theorem 4.3.4.

Lemma 4.3.2. Let F = (V,A ∪ E) be a mixed hypergraph, f, g : V → Z≥0 integer
functions and k ∈ Z≥0. If there exists a (k, f, g)-flexible packing in F , then (4.3.7),
(4.3.8) and (4.3.9) are satisfied.
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Proof. By Lemma 4.3.1, DF has a (k, f, g)-feasible packing B = {Bi : i ∈ {1, . . . , k}}. For
some X ⊆ V , let s(X) denote the number of hyperarborescences in B whose roots are
in X. Then for every vertex v ∈ V, f(v) ≤ s(v) ≤ g(v) and hence (4.3.7) is satisfied. Let
now P be a subpartition of V. Let Z be the dyperedge set of B. By definition, Z contains
at most one dyperedge in Ae for all e ∈ E . It follows that eE∪A(P) ≥

∑
X∈P d−Z(X). Since

B is a packing of spanning hyperarborescences, we have d−Z(X) ≥ k− s(X) for all X ∈ P .
Thus eE∪A(P) ≥ k|P| − s(∪P). Since s(V ) = k and f(v) ≤ s(v) ≤ g(v) for all v ∈ V, we
have s(∪P) = s(V ) − s(V − ∪P) ≤ k − f(V − ∪P), yielding (4.3.8). Further, we have
s(∪P) ≤ g(∪P) yielding (4.3.9).

The second one allows us to use Theorem 4.3.5 in the proofs of Theorems 4.3.3 and
4.3.4.

Lemma 4.3.3. Let F = (V,A ∪ E) be a mixed hypergraph, DF = (V,A′ = A ∪ AE) its
directed extension, f, g : V → Z≥0 integer functions and k ∈ Z≥0. If (4.3.7), (4.3.8) and
(4.3.9) are satisfied, then (2.4.3) and (2.4.4) are satisfied.

Proof. By (4.3.8) for P = ∅ and f ≥ 0, we obtain

k = −k(|∅| − 1) ≥ f(V − ∅)− eE∪A(∅) = f(V ).

By (4.3.9) for P = {V }, we obtain

k = k|{V }| ≤ g(V ) + eE∪A({V }) = g(V ).

This yields f(V ) ≤ k ≤ g(V ).

Now let v ∈ V . By (4.3.7), we obtain k − g(v) ≤ k − f(v). By f(V ) ≤ k and f ≥ 0,
we obtain 0 ≤ k − f(V ) ≤ k − f(v). By (4.3.9) for P = {v}, we obtain

k − g(v) = k|P| − g(∪P) ≤ eE∪A(P) = eE∪A({v}) = d−A′(v).

Then, by 0 ≤ d−A′(v), (2.4.3) follows.

Let V ′ = {v ∈ V : k − g(v) > 0}. We obtain∑
v∈V

max{k − g(v), 0} =
∑
v∈V ′

(k − g(v))

= k|V ′| − g(V ′)

= k(|V | − 1)− (g(V ′) + k(|V − V ′| − 1)).

If V ′ ̸= V , by g ≥ 0 we obtain g(V ′) + k(|V − V ′| − 1) ≥ g(V ′) ≥ 0. If V ′ = V , by
g(V ) ≥ k, we obtain g(V ′) + k(|V − V ′| − 1) = g(V ) − k ≥ 0. This yields the first
inequality of (2.4.4).

Let V ′′ = {v ∈ V : k − f(v) < d−A′(v)}. Let P = {{v} : v ∈ V − V ′′}. Note that
any element in E(P) ∪ A(P) provides at least one dyperedge in A′ entering a vertex in
V − V ′′. Hence, by (4.3.8), we obtain∑

v∈V

min{k − f(v), d−A′(v)} =
∑
v∈V ′′

(k − f(v)) +
∑

v∈V−V ′′

d−A′(v)

≥ (k|V ′′| − f(V ′′)) + eE∪A(P)

≥ (k|V ′′| − f(V ′′)) + k(|P| − 1) + f(V − ∪P)

= (k|V ′′| − f(V ′′)) + k(|V − V ′′| − 1) + f(V ′′)

= k(|V | − 1).

It follows that the second inequality of (2.4.4) is satisfied.
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4.3.3 Proof of Theorem 4.3.3

We are now ready to show how Theorem 4.3.5 and Theorem 2.4.1 imply Theorem 4.3.3.

Proof. (of Theorem 4.3.3)
Necessity is proved in Lemma 4.3.2.
To see sufficiency, suppose that (4.3.7), (4.3.8) and (4.3.9) are satisfied. Let DF =

(V,A′ = A ∪ AE) be the directed extension of F . By Lemma 4.3.3, (2.4.3) and (2.4.4)

are satisfied. It now follows from Corollary 2.4.1 that M
(k,f,g)
DF

is well-defined. Again, we

use M1 and M2 for Mk
F and M

(k,f,g)
DF

, respectively. Suppose for a contradiction that no
(k, f, g)-flexible packing of mixed hyperarborescences exists in F . By Lemma 4.3.1, no
(k, f, g)-feasible packing of hyperarborescences exists in DF . Now Theorem 4.3.5 implies
that M1 and M2 do not have a common independent set of size k(|V | − 1). The next
result allows us to fix a certain structure leading to a contradiction later.

Claim 4.3.1. There exist a partition P of V and K ⊆ E(P) such that

k(|P| − 1) > |K|+ rM2(A(P) ∪ AE(P)−K). (4.3.10)

Proof. As M1 and M2 do not have a common independent set of size k(|V |−1), Theorem
2.4.1 implies that there exists a dyperedge set Z ′ ⊆ A′ such that k(|V | − 1) > rM1(Z ′) +
rM2(A′ − Z ′). By Proposition 2.4.6, there exists a partition P of V such that, for K
= {e ∈ E(P) : Z ′ ∩ Ae ̸= ∅}, we have rM1(Z ′) = |Z ′ ∩ A(P)| + |K| + k(|V | − |P|). By
Proposition 2.4.1 and AE(P)−K ∩ Z ′ = ∅, we have

|Z ′ ∩ A(P)|+ rM2(A′ −Z ′) ≥ rM2(Z ′ ∩ A(P)) + rM2(A′ −Z ′)

≥ rM2((Z ′ ∩ A(P)) ∪ (A′ −Z ′))

= rM2(A′ − (Z ′ −A(P)))

≥ rM2(A(P) ∪ AE(P)−K).

The above three inequalities yield

k(|P| − 1) > rM1(Z ′) + rM2(A′ −Z ′)− k(|V | − |P|)
= |Z ′ ∩ A(P)|+ |K|+ rM2(A′ −Z ′)

≥ |K|+ rM2(A(P) ∪ AE(P)−K).

Let P be the partition of V and K the hyperedge set from Claim 4.3.1 and let Z=
A(P) ∪ AE(P)−K. For some X ∈ P , a dyperedge a ∈ A ∪ AE−K contributes to either of∑

v∈X d−Z(v) and d−A∪AE−K
(X) if and only if head(a) ∈ X and tail(a)−X ̸= ∅. This yields∑

v∈X

d−Z(v) = d−A∪AE−K
(X). (4.3.11)

For all P ′ ⊆ P , as every hyperedge in E(P ′) contributes to one of |K| and
∑

X∈P ′ d
−
AE−K

(X),
we have

|K|+
∑
X∈P ′

d−A∪AE−K
(X) ≥ eE∪A(P ′). (4.3.12)

Using Corollary 2.4.1, we distinguish two cases depending on where the rank of Z in
M2 is attained.

Case 4.3.1. rM2(Z) =
∑

v∈V min{k − f(v), d−Z(v)}.
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Let P ′ = {X ∈ P : d−Z(v) ≤ k− f(v) for all v ∈ X}. For all X ∈ P ′, by the definition
of P ′ and (4.3.11), we have∑

v∈X

min{k − f(v), d−Z(v)} =
∑
v∈X

d−Z(v) = d−A∪AE−K
(X).

For all X ∈ P −P ′, there exists a vertex vX ∈ X with k− f(vX) < d−Z(vX), and then, by
f, k − f, d−Z ≥ 0, we have

k − f(X) ≤ k − f(vX)

= min{k − f(vX), d
−
Z(vX)}

≤
∑
v∈X

min{k − f(v), d−Z(v)}.

Then, by (4.3.10), the case distinction made, (4.3.12) and (4.3.8) for P ′, we obtain

k(|P| − 1) > |K|+ rM2(A(P) ∪ AE(P)−K)

= |K|+
∑
v∈V

min{k − f(v), d−Z(v)}

= |K|+
∑
X∈P ′

∑
v∈X

min{k − f(v), d−Z(v)}+
∑

X∈P−P ′

∑
v∈X

min{k − f(v), d−Z(v)}

≥ |K|+
∑
X∈P ′

d−A∪AE−K
(X) +

∑
X∈P−P ′

(k − f(X))

≥ eE∪A(P ′) + k(|P| − |P ′|)− f(V − ∪P ′)

≥ k(|P| − |P ′|) + k(|P ′| − 1)

= k(|P| − 1),

a contradiction.

Case 4.3.2. rM2(Z) = k(|V | − 1)−
∑

v∈V max{0, k − g(v)− d−Z(v)}.

Let P ′′ = {X ∈ P : k − g(v) − d−Z(v) ≥ 0 for all v ∈ X}. For all X ∈ P ′′, by the
definition of P ′′ and (4.3.11), we have∑

v∈X

max{0, k − g(v)− d−Z(v)} =
∑
v∈X

k − g(v)− d−Z(v)

= k|X| − g(X)− d−A∪AE−K
(X).

For all X ∈ P −P ′′, there exists a vertex vX ∈ X with 0 > k− g(vX)−d−Z(vX), and then,
by g, d−Z ≥ 0, we have∑

v∈X

max{0, k − g(v)− d−Z(v)} =
∑

v∈X−vX

max{0, k − g(v)− d−Z(v)}

≤ k(|X| − 1).

By (4.3.10) and the case distinction we made, we obtain

k(|P| − 1) > |K|+ rM2(Z)

= |K|+ k(|V | − 1)−
∑
v∈V

max{0, k − g(v)− d−Z(v)}.
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This yields

k(|V | − |P|) + |K| <
∑
v∈V

max{0, k − g(v)− d−Z(v)}

=
∑
X∈P ′′

∑
v∈X

max{0, k − g(v)− d−Z(v)}+
∑

X∈P−P ′′

∑
v∈X

max{0, k − g(v)− d−Z(v)}

≤
∑
X∈P ′′

(k|X| − g(X)− d−A∪AE−K
(X)) +

∑
X∈P−P ′′

k(|X| − 1)

= k(|V | − |P − P ′′|)−
∑
X∈P ′′

(g(X) + d−A∪AE−K
(X)).

We obtain by (4.3.12) and (4.3.9) for P ′′ that

k|P ′′| > |K|+
∑
X∈P ′′

d−A∪AE−K
(X) +

∑
X∈P ′′

g(X)

≥ eA∪E(P ′′) + g(∪P ′′)

≥ k|P ′′|,

a contradiction.

The case distinction is complete which finishes the proof of Theorem 4.3.3.

4.3.4 Algorithmic aspects

We here deal with the algorithmic aspects of flexible packings of mixed hyperarbores-
cences. As matroid intersection is already used to prove Theorem 4.3.3, we obtain Theo-
rem 4.3.4 as a simple corollary.

Proof. (of Theorem 4.3.4) It can be checked efficiently whether (2.4.3) and (2.4.4) are
satisfied. If not, then, by Lemma 4.3.3, one of (4.3.7), (4.3.8) and (4.3.9) is not satisfied.
By Lemma 4.3.2, no (k, f, g)-flexible packing of mixed hyperarborescences exists in F .

Otherwise, by Theorem 4.3.5, the common independent sets of Mk
F and M

(k,f,g)
DF

of size
k(|V | − 1) are exactly the dyperedge sets of the (k, f, g)-feasible packings in DF .

Define w′: A∪AE → R by w′(a) = w(a) for all a ∈ A and w′(a) = w(e) for all a ∈ Ae

for all e ∈ E . We first check if there is a common independent set of Mk
F and M

(k,f,g)
DF

of size k(|V | − 1) and if this is the case, we find a common independent set A∗ of Mk
F

and M
(k,f,g)
DF

of size k(|V | − 1) minimizing w′(A∗). This can be done in polynomial time

using Theorem 2.4.2 because polynomial time independence oracles for Mk
F and M

(k,f,g)
DF

are available by Lemmas 2.4.4 and 2.4.2. Now consider the subdypergraph D∗ = (V,A∗)
of DF and let R be the multiset in V in which every v ∈ V is contained k − d−A∗(v)
times. By Theorem 4.1.14, A∗ can be decomposed into the dyperedge set of a packing of
spanning hyperarborescences with root set R in polynomial time. Replacing dyperedges
in Ae by e for all e ∈ E , we obtain, by Lemma 4.3.1, the desired packing in F .
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4.4 Packing k-safe arborescences and related objects

This section is based on [16]. We generalize the concept of Theorem 4.1.1 in a way which
is in some way the inverse of what is done in Sections 4.2 and 4.3. Instead of relaxing
some of the conditions on the arborescences, we impose an additional one on them which
we call being k-safe. Moreover, while most of the techniques used in Sections 4.2 and 4.3
yield characterizations, the results in this section are purely algorithmic. We first deal
with packing k-safe r-arborescences and then with two objects with similar properties
called (r, k)-safe flow branchings and (r, k)-safe spanning trees.

The notion of k-safe arborescences was introduced by Bang-Jensen and Yeo in [8]. For
an r-arborescence X = (V + r, A) and some v ∈ V , we use Bv

X for the subgraph induced
on the vertices reachable from v. We say that X is k-safe if n−|V (Bv

X)| ≥ k for all v ∈ V
where n = |V + r|. Notice that it is enough that only the out-neighbours of r satisfy this
latter condition for X to be k-safe. Bang-Jensen and Yeo prove the following negative
result showing that in general not even the problem of finding a single k-safe spanning
r-arborescence is tractable.

Theorem 4.4.1 (Bang-Jensen and Yeo [8]). Given a singularly rooted digraph D = (V ∪
r, A), deciding whether D has an (n−k)-safe spanning r-arborescence is NP-complete for
any fixed k ≥ 3.

In this light, a characterization in the shape of Theorem 4.1.1 clearly seems out of
reach. It nevertheless remains interesting to investigate the possibility of finding arc-
disjoint k-safe spanning r-arborescences for small values of k. This question has been
dealt with by Bang-Jensen, Havet and Yeo [6]. On the negative side, they implicitly
prove the following result which shows that there is little hope to algorithmically find a
packing of k(n)-safe spanning r-arborescences if k is a function that does not grow too
slowly. While a polynomial-time algorithm for the problem they consider would not imply
P=NP, it would imply the failure of the Exponential Time Hypothesis.

Theorem 4.4.2. Suppose that the ETH holds, let ε > 0 be arbitrary and let k : Z≥0 → Z≥0

be a function such that (log(n))1+ε ≤ k(n) ≤ n
2
for all n > 0. Further, suppose that there

exists a constant C∗ such that for all c ≥ C∗ there exists an n such that k(n) = c. Then
there is no algorithm running in time nO(1) for deciding whether a given singularly rooted
digraph D = (V ∪ r, A) has two arc-disjoint k(n)-safe spanning r-arborescences.

On the positive side, they show that the problem becomes tractable when fixing the
value of k. While several results considered in this section hold for finding an arbitrary
number of disjoint objects, we focus on the case where we want to find just two of them in
order to avoid technicalities. In Section 4.4.6 we discuss the generalization to more than
two objects.

Theorem 4.4.3 ([6]). Deciding whether a given singularly rooted digraph D = (V ∪ r, A)
contains two arc-disjoint k-safe spanning r-arborescences is XP with parameter k.

Our first contribution is to improve Theorem 4.4.3 by showing that the problem is
fixed-parameter tractable (FPT).

Theorem 4.4.4. Deciding whether a given singularly rooted digraph D = (V ∪ r, A)
contains two arc-disjoint k-safe spanning r-arborescences is FPT with parameter k. More
precisely, it can be solved in time 2O(k2·log k) · nO(1). Further, if they exist, the two arc-
disjoint k-safe spanning r-arborescences can be computed within the same running time.
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The second structure we consider is called (r, k)-flow branchings. It builds a connec-
tion between the theory of packing spanning arborescences and flow problems. It was
introduced by Bang-Jensen and Bessy in [3].

A flow in a digraph D = (V,A) is a function z : A → Z≥0. Given a singularly rooted
digraph X = (V + r, A) and a capacity function c : A → Z≥0, an (r, c)-branching flow is
a flow z : A → Z≥0 such that z(a) ≤ c(a) for all a ∈ A, z(δ+(r))− z(δ−(r)) = n− 1 and
z(δ−(v))− z(δ+(v)) = 1 for all v ∈ V . If X admits an (r, c)-branching flow, we say that
D is an (r, c)-flow branching. If for some positive integer k, we have c(a) = n− k for all
a ∈ A, we speak of an (r, k)-branching flow and an (r, k)-flow branching. Given a digraph
D, an (r, k)-branching flow X that is a subgraph of D is spanning in D if it has the same
vertex set as D.

If a singularly rooted digraph D = (V ∪r, A) admits a k-safe spanning r-arborescence,
then it is easy to see that D is an (r, k)-flow branching, but the converse is not necessarily
true, as pointed out in [6].

Bang-Jensen and Bessy [3] consider the problem of finding arc-disjoint spanning flow
branchings in a singularly rooted digraph. Among others, they show the following negative
result that makes a characterization in the shape of Theorem 4.1.1 seem out of reach.

Theorem 4.4.5. Given a singularly rooted digraph D = (V ∪r, A) and a capacity function
c : A → Z≥0, it is NP-complete to decide whether D contains two arc-disjoint spanning
(r, c)-flow branchings even if c(a) ∈ {1, 2} for all a ∈ A.

The above result has been strengthened in [6].

Theorem 4.4.6. Given a singularly rooted digraph D = (V ∪ r, A) and a fixed positive
integer k ≥ 2, it is NP-complete to decide whether D contains two arc-disjoint spanning
(r, n− k)-flow branchings.

On the other hand, the problem of finding arc-disjoint spanning (r, k)-flow branchings
for some small values of k turns out to be more tractable. The study of such span-
ning flow branchings has surprisingly many similarities with the study of k-safe spanning
arborescences.

On the negative side, the following result is proven in [6]. It shows that there is
little hope to algorithmically find arc-disjoint spanning (r, k(n))-flow branchings if k is a
function that does not grow too slowly. It can be viewed as an analogue of Theorem 4.4.2
for (r, k)-flow branchings.

Theorem 4.4.7 ([6]). Suppose that ETH holds, let ε > 0 be arbitrary and let k : Z≥0 →
Z≥0 be a function such that (log(n))1+ε ≤ k(n) ≤ n

2
for all n > 0. Further, suppose that

there exists a constant C∗ such that for all c ≥ C∗ there exists an n such that k(n) = c.
Then there is no algorithm running in time nO(1) for deciding whether a given singularly
rooted digraph D = (V ∪ r, A) has two arc-disjoint spanning (r, k(n))-flow branchings.

On the positive side, Bang-Jensen and Bessy [3] showed that the case k = 1 can be
solved in polynomial time. This result was again generalized by Bang-Jensen, Havet and
Yeo [6] who proved that the problem can be solved in polynomial time for every fixed
value of k ≥ 1. The following result can be viewed as an analogue of Theorem 4.4.3 for
(r, k)-flow branchings.

Theorem 4.4.8 (Bang-Jensen, Havet and Yeo [6]). Deciding whether a given singularly
rooted digraph D = (V ∪ r, A) contains two arc-disjoint spanning (r, k)-flow branchings is
XP with parameter k.

The authors of [6] ask whether the above problem is FPT. Our second contribution is
an affirmative answer to this question.
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Theorem 4.4.9. Deciding whether a given singularly rooted digraph D = (V ∪ r, A)
contains two arc-disjoint spanning (r, k)-flow branchings is FPT with parameter k. More
precisely, it can be solved in time 2O(k2·log k) · nO(1). Further, if they exist, the two arc-
disjoint spanning (r, k)-flow branchings can be computed within the same running time.

Finally, we consider a similar problem in undirected graphs that has also been intro-
duced in [6]. The object we deal with is called (r, k)-safe spanning trees. Given a rooted
tree T = (V + r, E) and some v ∈ V , we use Cv

T for the subgraph of T − v that arises
from deleting the component of T − v containing r. We say that T is (r, k)-safe if for
every v ∈ V , we have |V − V (Cv

T )| ≥ k. In the same way as problems on packing k-safe
r-arborescences generalize Theorem 4.1.1, (r, k)-safe spanning trees generalize Theorem
2.1.5. The following result has been proven by Bang-Jensen, Havet and Yeo in [6].

Theorem 4.4.10 (Bang-Jensen, Havet, and Yeo [6]). Deciding whether a given singularly
rooted graph G = (V ∪ r, E) contains two edge-disjoint (r, k)-safe spanning trees is XP
with parameter k.

Again, we improve Theorem 4.4.10 as follows.

Theorem 4.4.11. Deciding whether a given singularly rooted graph G = (V ∪ r, E) con-
tains two edge-disjoint (r, k)-safe spanning trees is FPT with parameter k. More precisely,
it can be solved in time 2O(k2·log k) ·nO(1). Further, if they exist, the two edge-disjoint (r, k)-
safe spanning trees can be computed within the same running time.

Since a hardness result in the spirit of Theorem 4.4.2 and Theorem 4.4.7 was not
provided in [6], we fill this gap and prove the following theorem whose proof is inspired
by the one of [6, Theorem 5.2]. It shows that the problem is hard even if we want to find
one single (r, k)-safe spanning tree.

Theorem 4.4.12. Let p ≥ 1 be a fixed positive integer. Deciding whether a given sin-
gularly rooted graph G = (V ∪ r, E) has p edge-disjoint (r, k)-safe spanning trees is NP-
complete. Moreover, let ε > 0 be arbitrary and let k : Z≥0 → Z≥0 be a function such that
(log(n))2+ε ≤ k(n) ≤ n

2
for all n > 0. Further, suppose that there exists a constant C∗

such that for all c ≥ C∗ there exists an n such that k(n) = c. Then, assuming the ETH,
there is no algorithm running in time nO(1) for deciding whether a given singularly rooted
graph contains p edge-disjoint (r, k)-safe spanning trees.

We next give a rough description of the technique which is used to prove Theorems
4.4.4, 4.4.9 and 4.4.11.

In order to obtain the FPT algorithms for the three considered problems, we follow
a common strategy. In a nutshell, the main ideas used in the XP algorithms of [6] and
how we manage to improve them to FPT algorithms can be summarized as follows. The
algorithms of Bang-Jensen, Havet and Yeo [6] are all based on proving the following general
property for each of the considered problems where all the substructures are (singularly)
rooted:

A given (di)graph contains the required substructure X (i.e., a pair of disjoint spanning
arborescences, flow branchings, or spanning trees) if and only if it contains another type
of substructure X ′ of size bounded by a function of k and such that, if found, it can be
extended to the required substructure X in polynomial time.

Once the above property is proved, an XP algorithm follows naturally: generate all candi-
date substructures X ′ in time nf(k) and, for each of them, try to extend it to a substructure
X in polynomial time. Our main contribution is to prove that the above general property
is still true if we replace X ′ with another type of substructure X ′′ having the crucial
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property that the candidate substructures X ′′ can be all enumerated in time f(k) · nO(1),
hence yielding an FPT algorithm. In order to achieve this, we prove that we can restrict
ourselves to objects X ′′ whose “non-sink” vertices (i.e., those with positive (out-)degree in
X ′′) have (out-)degree, in the original (di)graph, bounded by some function of k, namely
O(k) or O(k2). Intuitively, this is possible because, given a pair X ′ = {X1, X2} containing
a vertex v of large (out-)degree (as a function of k) in, say, X1, we can safely prune the
“branch” of X1 hanging from v, with the guarantee that it will always be possible to
extend the pruned substructure to another substructure of the original type. Note that
since the substructures X ′′ have size and maximum (out-)degree bounded by a function
of k, we can indeed generate all candidate substructures in time f(k) · nO(1), as required.

Let us first focus on the problem of finding two arc-disjoint k-safe spanning r-arborescences.
In this case, the substructure X ′ is an extendable pair of arc-disjoint classic (r, k)-kernels.
In Theorem 4.4.3, we restate a result from [6] that shows that the existence of this sub-
structure is sufficient for the existence of two arc-disjoint k-safe spanning r-arborescences.
We then introduce compact (r, k)-kernels. An extendable pair of arc-disjoint compact
(r, k)-kernels corresponds to the substructure X ′′. In Lemma 4.4.10, we show that the
existence of an extendable pair of arc-disjoint compact (r, k)-kernels is also sufficient for
the existence of two arc-disjoint k-safe spanning r-arborescences. The proof of Lemma
4.4.10 is our main technical contribution. Having Lemma 4.4.10 at hand, the proof of
Theorem 4.4.4 is easy.

As for packing (r, k)-flow branchings, the substructure X ′ defined in [6] is an extendable
pair of arc-disjoint classic (r, k)-cores. In Theorem 4.4.7, we restate a result from [6] that
shows that the existence of this substructure is sufficient for the existence of two arc-
disjoint (r, k)-flow branchings. We then introduce compact (r, k)-cores. An extendable
pair of arc-disjoint compact (r, k)-cores corresponds to the substructure X ′′. In Lemma
4.4.11, we show that the existence of an extendable pair of arc-disjoint compact (r, k)-
cores is also sufficient for the existence of two arc-disjoint (r, k)-flow branchings. Again,
the proof of Lemma 4.4.11 is our main technical contribution and is similar to the one of
Lemma 4.4.10. Again, having Lemma 4.4.11 at hand, the proof of Theorem 4.4.9 is easy.

Finally, for packing (r, k)-safe spanning trees, the substructure X ′ defined in [6] is a
completable pair of edge-disjoint classic (r, k)-certificates. In Theorem 4.4.9, we restate
a result from [6] that shows that the existence of this substructure is sufficient for the
existence of two arc-disjoint (r, k)-safe spanning trees. We then introduce compact (r, k)-
certificates. A completable pair of edge-disjoint compact (r, k)-certificates corresponds to
the substructure X ′′. In Lemma 4.4.12, we show that the existence of a completable pair
of edge-disjoint compact (r, k)-certificates is also sufficient for the existence of two edge-
disjoint (r, k)-safe spanning trees. Again, the proof of Lemma 4.4.12 is our main technical
contribution and is similar to the one of Lemma 4.4.10 and Lemma 4.4.11. Again, having
Lemma 4.4.12 at hand, the proof of Theorem 4.4.11 is easy.

In Section 4.4.1, we give some preliminary results for our work. In Sections 4.4.2, 4.4.3,
4.4.4, and 4.4.5 we give the proof of Theorems 4.4.4, 4.4.9, 4.4.11, and 4.4.12, respectively.
Finally, we conclude our work on balanced structures in Section 4.4.6.

4.4.1 Preliminaries

In this section we collect some more technical previous results and prove several prelim-
inary statements. We first give some general results on graphs and digraphs and then
some which are more specific to each of the particular applications.
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4.4.1.1 General preliminaries

Given a 2-root-connected rooted digraph D = (V ∪ r, A), a pair of subgraphs (X1 =
(V1 ∪ r, A1), X2 = (V2 ∪ r, A2)) of D is called extendable if both D − A1 and D − A2

are root-connected. The following is an immediate consequence of the fact that checking
whether a digraph is root-connected can clearly be done in polynomial time.

Lemma 4.4.1. Given a rooted digraph D = (V ∪ r, A) and a pair of two subgraphs
(X1 = (V1 ∪ r, A1), X2 = (V2 ∪ r, A2)), we can decide in polynomial time whether (X1, X2)
is extendable.

We now give one more result in undirected graphs.

Lemma 4.4.2. Let G = (V,E) be a graph and let T be a spanning tree of G. Let
e = uv ∈ E − E(T ). Then there is some f ∈ E(T ) that is incident to u such that
(T − e) ∪ f is a spanning tree of G.

Proof. The graph T ∪ f contains a unique cycle C such that uv ∈ E(C) and the deletion
of an arbitrary edge of E(C) yields a spanning tree of G. As C is is a cycle, E(C) contains
an edge f different from e that is incident to u. This edge satisfies the condition.

4.4.1.2 Preliminaries on k-safe spanning r-arborescences

Given a rooted digraph D = (V ∪ r, A), a classic (r, k)-kernel is a subarborescence X =
(V ′ ∪ r, A′) of D such that X is k-safe and |V ′| = 2k − 2. The XP algorithm of 4.4.3 is
based on the following result, which we reformulate here using our terminology.

Lemma 4.4.3 (Bang-Jensen, Havet, and Yeo [6]). Let D = (V ∪ r, A) be a singularly
rooted digraph with |V | ≥ 2k − 2. Then D contains two arc-disjoint k-safe spanning
r-arborescences if and only if D contains an extendable pair of arc-disjoint classic (r, k)-
kernels. Further, the two arc-disjoint k-safe spanning r-arborescences can be constructed
from the extendable pair of classic (r, k)-kernels in polynomial time.

4.4.1.3 Preliminaries on spanning (r, k)-flow branchings

We first need the following result that allows to recognize (r, k)-flow branchings.

Lemma 4.4.4 (Bang-Jensen, Havet, and Yeo [6]). Given a rooted digraph D = (V ∪ r, A)
and a non-negative integer k, we can decide in polynomial time whether D is an (r, k)-flow
branching.

Given a digraph D = (V,A) and two vertices u, v ∈ V , a uv-path flow is a flow z such
that z(a) = 1 for all arcs a ∈ A(P ) and z(a) = 0 for all a ∈ A − A(P ) for some uv-path
P . Similarly, a cycle flow is a flow z such that z(a) = 1 of all a ∈ A(C) and z(a) = 0 for
all a ∈ A−A(C) for some cycle C. We need the following result on flows which is proven
in a more general form in [5].

Lemma 4.4.5. Let X = (V ∪ r, A) be a flow branching and z : A → Z≥0 be a branching
flow in X. Then there is an rv-path flow zv for all v ∈ V and a set of cycle flows
{zC : C ∈ C} for some set of cycles C such that z =

∑
v∈V zv +

∑
C∈C zC.

We now use Lemma 4.4.5 to prove an important property of arc-minimal (r, k)-flow
branchings. A singularly rooted digraph X = (V ∪ r, A) is called triple-free if it does not
contain more than two arcs in the same direction between the same two vertices.

Lemma 4.4.6. Let X = (V ∪ r, A) be an arc-minimal (r, k)-flow branching with |V | ≥
2k − 1. Then X is triple-free.
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Proof. Suppose that X contains three arcs a1, a2, a3 whose tail is u and whose head
is v for some u, v ∈ V ∪ r. Further, let z : A → Z be an (r, k)-branching flow. By
Lemma 4.4.5, we obtain that z =

∑
v∈V zv +

∑
C∈C zC where zv is an rv-path flow for all

v ∈ V and zC is a cycle flow for all C ∈ C for some set of cycles C. Let z′ =
∑

v∈V zv.
Observe that z′ is an (r, k)-branching flow. As all of the zv are path flows, we obtain
z′(a1) + z′(a2) + z′(a3) ≤ |V | < 2(n− k). It follows that we can define a flow z′′ : A → Z
such that z′′(a1) + z′′(a2) = z′(a1) + z′(a2) + z′(a3), z

′′(a3) = 0 and z′′(a) = z′(a) for all
a ∈ A− {a1, a2, a3}. It is easy to see that z′′ is an (r, k)-branching flow, so X − a3 is an
(r, k)-flow branching, a contradiction to the minimality of X.

Given a singularly rooted digraph D = (V ∪r, A) with |V ∪r| ≥ 2k, a classic (r, k)-core
is an (r, k)-flow branching X = (V ′ ∪ r, A′) that is a subgraph of D with |V ′| = 2k − 1.
The XP algorithm of Theorem 4.4.8 is based on the following result, again reformulated
using our terminology.

Lemma 4.4.7 (Bang-Jensen, Havet, and Yeo [6]). Let D = (V ∪ r, A) be a rooted digraph
with |V | ≥ 2k − 1. Then D contains two arc-disjoint spanning (r, k)-flow branchings if
and only if D contains an extendable pair of arc-disjoint classic (r, k)-cores. Further,
the two arc-disjoint spanning (r, k)-flow branchings can be constructed in polynomial time
from the extendable pair of arc-disjoint classic (r, k)-cores.

4.4.1.4 Preliminaries on (r, k)-safe spanning trees

We first define an equivalent for extendability in undirected graphs. Given a singularly
rooted graph G = (V ∪ r, E), a pair of subtrees (X1, X2) is called completable, if there are
edge-disjoint spanning trees T1, T2 of G such that E(Xi) ⊆ E(Ti). Note that we require
a completable pair of trees to be edge-disjoint. This is in contrast to the fact that, in
Subsections 4.4.1.2 and 4.4.1.3 we do not require the elements in an extendable pair to
be arc-disjoint. We adopt this asymmetric choice for technical reasons arising from the
proofs. The following result that allows to test completabality can be established using
matroid theory as mentioned in [6].

Lemma 4.4.8. Given a graph G = (V ∪ r, E) and a pair of subtrees (X1, X2), we can
decide in polynomial time whether (X1, X2) is completable.

Given a singularly rooted graph G = (V ∪ r, E) with |V ∪ r| ≥ 2k − 1, a classic
(r, k)-certificate is an (r, k)-safe subtree X = (V ′ ∪ r, E ′) of G with |V ′| = 2k − 2. The
XP algorithm of Theorem 4.4.10 is based on the following result, again restated using our
terminology.

Lemma 4.4.9 (Bang-Jensen, Havet, and Yeo [6]). Let G = (V ∪ r, E) be a singularly
rooted graph. Then G contains two edge-disjoint (r, k)-safe spanning trees if and only if G
contains a completable pair of classic (r, k)-certificates. Further, given a completable pair
of classic (r, k)-certificates, we can compute two edge-disjoint (r, k)-safe spanning trees in
polynomial time.

4.4.2 An FPT algorithm for packing k-safe spanning arbores-
cences

This section is concerned with proving Theorem 4.4.4. Given a singularly rooted digraph
D = (V ∪ r, A) and a positive integer k, we say that a vertex v ∈ V ∪ r is large if
|N+

D (v)| ≥ 6k − 5 and small otherwise. We let LD (resp. SD) be the set of vertices in
V ∪ r which are large (resp. small) in D.
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We are now ready to introduce a new notion of (r, k)-kernels for k-safe spanning r-
arborescences. A compact (r, k)-kernel is a subgraph X = (V ′ ∪ r, A′) of D with |V ′| ≤
2k − 2 satisfying the following:

� X is an r-arborescence,

� all vertices in (V ′ ∪ r) ∩ LD are sinks of X, and

� a k-safe r-arborescence Y can be obtained from X by adding a set V ∗ of 2k−2−|V ′|
new vertices and adding an arc from a vertex in (V ′ ∪ r) ∩ LD to v for all v ∈ V ∗.

Observe that Y is not necessarily a subgraph of D. The following result shows that
compact (r, k)-kernels can be used in a similar way as classic (r, k)-kernels.

Lemma 4.4.10. Let D = (V ∪ r, A) be a 2-root-connected singularly rooted digraph with
|V | ≥ 2k − 2. Then D contains two arc-disjoint k-safe spanning r-arborescences if and
only if D contains an extendable pair of arc-disjoint compact (r, k)-kernels. Further, given
an extendable pair of arc-disjoint compact (r, k)-kernels, we can find a pair of arc-disjoint
k-safe spanning r-arborescences in polynomial time.

Proof. By Lemma 4.4.3, for the first part it suffices to prove that D contains a pair of arc-
disjoint extendable compact (r, k)-kernels if and only if D contains a pair of arc-disjoint
extendable classic (r, k)-kernels.

First let (X1 = (V1∪r,A1), X2 = (V2∪r,A2)) be an extendable pair of arc-disjoint
classic (r, k)-kernels. Let X ′

i = (V ′
i ∪ r,A′

i) be obtained from Xi by deleting Bv
Xi

− v
for all v ∈ (Vi ∪ r) ∩ LD. By construction, the X ′

i are r-arborescences and all vertices in
(V ′

i ∪r)∩LD are sinks in X ′
i. Let Yi be obtained from X ′

i by adding the vertices in Vi−V ′
i

and adding an arc from a vertex v ∈ (V ′
i ∪ r) ∩ LD to a vertex w ∈ Vi − V ′

i whenever
w ∈ V (Bv

Xi
) − v. Observe that Yi is an arborescence with |V (Yi)| = 2k − 1. Further,

note that |(Vi ∪ r) − V (Bv
Yi
)| = |(Vi ∪ r) − V (Bv

Xi
)| ≥ k for all v ∈ V ′

i and |V (Bv
Yi
)| = 0

for all v ∈ Vi − V ′
i . This yields that |(Vi ∪ r) − V (Bv

Yi
)| ≥ |(Vi ∪ r) − V (Bv

Xi
)| ≥ k for

all v ∈ Vi and so Yi is a k-safe arborescence. By definition, we obtain that (X ′
1, X

′
2) is

a pair of arc-disjoint compact (r, k)-kernels. Further, D − Ai is a subgraph of D − A′
i

that is root-connected, so D − A′
i is root-connected as well. This yields that (X ′

1, X
′
2) is

extendable.
Now let (X1 = (V1∪r,A1), X2 = (V2∪r,A2)) be an extendable pair of arc-disjoint

compact (r, k)-kernels. By definition, there are k-safe arborescences Y1, Y2 such that Yi

is obtained from Xi by adding a set V ∗
i of 2k − 2 − |Vi| new vertices and an arc from a

vertex in Vi ∩ LD to v for all v ∈ V ∗
i . Let (X

′
1 = (V ′

1 ∪ r,A′
1), X

′
2 = (V ′

2 ∪ r,A′
2)) be

a pair of subgraphs of D that are vertex-maximal with the following properties:

(i) X ′
i is obtained from Xi by repeatedly adding another vertex v ∈ V − Vi and an arc

of A that goes from a vertex in Vi ∩ LD to v,

(ii) d+X′
i
(v) ≤ d+Yi

(v) for all v ∈ Vi ∩ LD,

(iii) A′
1 and A′

2 are disjoint, and

(iv) (X ′
1, X

′
2) is extendable.

Note that (X1, X2) satisfies conditions (i)-(iv), so (X ′
1, X

′
2) is well-defined. Also ob-

serve that if condition (ii) is satisfied with equality for all v ∈ Vi∩LD, then X ′
i is isomor-

phic to Yi, so X ′
i is a k-safe arborescence and by definition also a classic (r, k)-kernel. If

this is the case for both X ′
1 and X ′

2, we are done by conditions (iii) and (iv).
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We may therefore suppose by symmetry that there is a vertex v ∈ V1 ∩ LD with
d+X′

1
(v) < d+Y1

(v). For any a = vza with za ∈ N+
D (v)−V ′

1 , let Xa = (V ′
1∪za, A′

1∪a). By the

maximality of X ′
1, we obtain that Xa violates one of conditions (i)-(iv) for all a ∈ δ+D(v)

with za ∈ N+
D (v) − V ′

1 . By construction and the choice of v, Xa satisfies conditions (i)
and (ii) for all a ∈ δ+D(v) with za ∈ N+

D (v) − V ′
1 . If Xa violates (iii), then za ∈ V ′

2 . By
(ii), we have |V ′

2 | ≤ |V2 ∪ V ∗
2 | = 2k − 2 and so this is the case for at most 2k − 2 vertices

za ∈ N+
D (v)−V ′

1 . If Xa does not satisfy (iv), then a is critical in D−A′
1. As D is 2-root-

connected and X ′
1 is an arborescence by construction, Lemma 2.2.1 implies that this is the

case for at most |A′
1| = |V ′

1 | ≤ |V1∪V ∗
1 | = 2k−2 vertices za ∈ N+

D (v)−V ′
1 . As v ∈ LD and

|V ′
1 | ≤ |V1∪V ∗

1 | = 2k−2, we have |N+
D (v)−V ′

1 | ≥ (6k−5)− (2k−2) > (2k−2)+(2k−2),
so there is at least one vertex in z ∈ N+

D (v) − V ′
1 and an arc a = vz such that Xa does

not violate any of conditions (i)-(iv), a contradiction.
Observe that the second part of the proof yields an algorithm for computing a pair

of arc-disjoint extendable classic (r, k)-kernels. Indeed, every time we try to add an arc
a = vz to X ′

i, we test if (Xa, X
′
3−i) satisfies conditions (i)-(iv). Conditions (i)-(iii) can

clearly be checked in polynomial time and, by Lemma 4.4.1, condition (iv) can also be
checked in polynomial time. Never testing an arc that is parallel to one that we have
tested already, after at most 4k − 4 failed attempts, we manage to add a new vertex to
V ′
i . We repeat this procedure |V ∗

i | ≤ 2k − 2 times. It follows that a pair of arc-disjoint
extendable classic (r, k)-kernels can be computed in time k2 ·nO(1) = nO(1). By the second
part of Lemma 4.4.3, we can then find the arc-disjoint k-safe spanning arborescences in
D in time nO(1). Therefore, the overall running time of the algorithm is polynomial, as
claimed.

We are now ready to proceed to the proof of Theorem 4.4.4.

Proof. (of Theorem 4.4.4)
We may suppose that there are at most two parallel arcs from u to v for any u, v ∈ V .

If |V | < 2k − 2, the problem can be solved by a brute force algorithm in time 2O(k2), by
generating all pairs of subgraphs of D and checking whether any of these pairs satisfies
the required conditions. We may hence also suppose that |V | ≥ 2k − 2.

We can first decide in time nO(1) if D is 2-root-connected. If it is not, the answer
is negative, so we may suppose it is. Let X1 = (V1 ∪ r,A1), X2 = (V2 ∪ r,A2) be
two subgraphs of D with |V1|, |V2| ≤ 2k − 2. In order to test whether Xi is a compact
(r, k)-kernel, we first verify if Xi is an r-arborescence such that all the vertices in Vi ∩LD

are sinks in Xi. If this is the case, we add a set V ∗
i of 2k − 2 − |Vi| new vertices to Xi.

We then test all possibilities to add one arc from (Vi ∪ r) ∩ LD to v for all v ∈ V ∗
i . As

|Vi ∪ r| ≤ 2k and |V ∗
i | ≤ 2k, there are at most 2k2k = 2O(k·log k) possibilities to check. For

each of these possibilities, we can then check in polynomial time whether the obtained
graph is a k-safe arborescence.

For each such pair X1, X2, by the definition of classic (r, k)-kernels, we can therefore
check in time 2O(k·log k) whether both X1 and X2 are compact (r, k)-kernels. By Lemma
4.4.1, we can therefore decide in time 2O(k·log k)+nO(1) if (X1, X2) is an extendable pair of
arc-disjoint compact (r, k)-kernels in D. By Lemma 4.4.10, it therefore suffices to prove
that there are at most 2O(k2·log k) possible candidates for the extendable pair of arc-disjoint
compact (r, k)-kernels, and that these can be generated within this running time.

Let X = (V ′ ∪ r, A′) be a compact (r, k)-kernel in D. Observe that every vertex in
V ′ can be reached from r by a directed path all of whose interior vertices are in SD and
whose length is at most k − 1. As every vertex in SD has at most 6k − 6 out-neighbors,
we obtain that the number of vertices that can be reached by such a path is at most
1+(6k−6)+(6k−6)2+ . . .+(6k−6)k−1 ≤ (6k)k. As V ′ contains at most 2k−2 vertices,

there are at most
(
(6k)k

2k−2

)
≤ (6k)2k

2
possibilities to choose V ′.
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Now suppose that we have chosen V ′ of size 2k − 2. As there are at most two arcs in
the same direction between any two vertices, there are at most 4

(|V ′∪r|
2

)
≤ 16k2 arcs that

have their head and tail in V ′ ∪ r. As |A′| = 2k − 2, there are at most
(
16k2

2k−2

)
≤ (16k2)2k

possibilities to choose A′. It follows that there are at most (6k)2k
2 ·(16k2)2k possibilities to

choose a compact (r, k)-kernel X. As these can be computed by a brute force method, the

algorithm can finish after checking less than f(k) =
(
(6k)2k

2 ·(16k2)2k
2

)
= 2O(k2·log k) candidates

for the extendable pair of arc-disjoint compact (r, k)-kernels.
If no extendable pair of arc-disjoint compact (r, k)-kernels exists, by Lemma 4.4.10,

D does not contain two arc-disjoint k-safe spanning arborescences. On the other hand,
once we have found an extendable pair of arc-disjoint compact (r, k)-kernels, we can
compute the two arc-disjoint k-safe spanning r-arborescences in polynomial time by the
second part of Lemma 4.4.10. The overall running time of the obtained algorithm is
2O(k2·log k) · nO(1).

4.4.3 An FPT algorithm for packing spanning (r, k)-flow branch-
ings

This section is concerned with proving Theorem 4.4.9. Slightly modifying the terminology
introduced in Section 4.4.2, given a 2-root-connected singularly rooted digraph D = (V ∪
r, A) and a positive integer k, we say that a vertex v is large if |N+(v)| ≥ 20k2 + 1, and
small otherwise. Again, we let LD (resp. SD) be the set of vertices in V ∪ r which are
large (resp. small) in D.

We are now ready to introduce a new notion of (r, k)-cores for spanning (r, k)-flow
branchings. A compact (r, k)-core is a subgraph X = (V ′ ∪ r, A′) of D with |V ′| ≤ 2k− 1
satisfying the following:

� all vertices in (V ′ ∪ r) ∩ LD are sinks in X and

� an (r, k)-flow branching Y can be obtained from X by adding a set V ∗ of 2k−1−|V ′|
new vertices and adding an arc from a vertex in (V ′ ∪ r) ∩ LD to v for all v ∈ V ∗.

Observe that Y is not necessarily a subgraph of D. The following result, which is
similar to Lemma 4.4.10, shows that compact (r, k)-cores can be used in a similar way as
classic (r, k)-cores.

Lemma 4.4.11. Let D = (V ∪ r, A) be a 2-root-connected singularly rooted digraph with
|V | ≥ 2k − 1. Then D has two arc-disjoint spanning (r, k)-flow branchings if and only
if D contains an extendable pair of arc-disjoint compact (r, k)-cores. Further, given an
extendable pair of triple-free arc-disjoint compact (r, k)-cores, we can find a pair of arc-
disjoint spanning (r, k)-flow branchings in polynomial time.

Proof. By Lemma 4.4.7, for the first part it suffices to prove thatD contains an extendable
pair of arc-disjoint compact (r, k)-cores if and only if D contains an extendable pair of
arc-disjoint classic (r, k)-cores.

First let (X1 = (V1∪r,A1), X2 = (V2∪r,A2)) be an extendable pair of arc-disjoint
classic (r, k)-cores. Let X ′

i = (V ′
i ∪r,A′

i) be obtained from Xi by first deleting all arcs in
Ai whose tail is a large vertex and then restricting to the subgraph that is root-connected
from r. As A′

i ⊆ Ai, (X
′
1, X

′
2) is extendable. It remains to show that X ′

1 and X ′
2 are

compact (r, k)-cores. By construction, all vertices in (V ′
i ∪ r)∩LD are sinks in X ′

i. As Xi

is an (r, k)-flow branching, there is an (r, k)-branching flow z : Ai → Z in Xi. Create Yi

from Xi by attaching z(δ+Xi
(v)) arcs directed away from v to every vertex v ∈ (V ′

i ∪r)∩LD.
Assigning z′(a) = 1 for all arcs leaving a large vertex in Yi and z′(a) = z(a) for all
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remaining arcs, we obtain that z′ is an (r, k)-branching flow in Yi, so Yi is an (r, k)-flow
branching. Furthermore, we have |V (Yi)− r| = z′(δ+Yi

(r)) = z(δ+Xi
(r)) = |Vi| = 2k − 1. It

follows by definition that X ′
i is a compact (r, k)-core.

Now let (X1 = (V1 ∪ r,A1), X2 = (V2 ∪ r,A2)) be an extendable pair of arc-
disjoint compact (r, k)-cores. Possibly deleting arcs, we may suppose by Lemma 4.4.6
and as |V | ≥ 2k − 1 that X1 and X2 are triple-free. By definition, there are (r, k)-flow
branchings Y1, Y2 such that Yi is obtained from Xi by adding a set V ∗

i of 2k − 1 − |Vi|
new vertices and adding an arc from a vertex in Vi ∩ LD to v for all v ∈ V ∗

i . Let
X ′

1 = (V ′
1 ∪ r,A′

1) and X ′
2 = (V ′

2 ∪ r,A′
2) be subgraphs of D that are vertex-maximal

with the following properties:

(i) X ′
i is obtained from Xi by repeatedly adding another vertex v ∈ V − Vi and an arc

of A that goes from a vertex in (Vi ∪ r) ∩ LD to v,

(ii) d+X′
i
(v) ≤ d+Yi

(v) for all v ∈ (Vi ∪ r) ∩ LD,

(iii) A′
1 and A′

2 are disjoint, and

(iv) (X ′
1, X

′
2) is extendable.

Note that (X1, X2) satisfies conditions (i)-(iv), so (X ′
1, X

′
2) is well-defined. Further,

observe that if condition (ii) is satisfied with equality for all v ∈ (Vi ∪ r) ∩ LD, then
X ′

i is isomorphic to Yi, so X ′
i is an (r, k)-flow branching, thus by definition also a classic

(r, k)-core. If this is the case for both X ′
1 and X ′

2, we are done by conditions (iii) and
(iv).

We may therefore suppose by symmetry that there is some v ∈ (V1 ∪ r) ∩ LD with
d+X′

1
(v) < d+Y1

(v). For any a = vza with za ∈ N+
D (v) − V ′

1 , let Xa = (V ′
1 ∪ za, A

′
1 ∪ a).

By the maximality of X ′
1, Xa violates one of conditions (i)-(iv) for all a ∈ δ+D(v) with

za ∈ N+
D (v)−V ′

1 . By construction and the choice of v, Xa satisfies conditions (i) and (ii)
for all a ∈ δ+D(v) with za ∈ N+

D (v) − V ′
1 . If Xa violates condition (iii), then za ∈ V ′

2 . As
|V ′

2 | ≤ |V (Y2)| = 2k, this is the case for at most 2k vertices in N+
D (v) − V ′

1 . If Xa does
not satisfy (iv), then a is critical in D − A′

1. As X1 is triple-free and |V ′
i | ≤ 2k and by

construction, we obtain that |A′
1| ≤ 4

(|V ′
1 |
2

)
≤ 16k2. Now Lemma 2.2.1 implies that this is

the case for at most 16k2 vertices in N+
D (v)−V ′

1 . As v ∈ LD and |V ′
1 | ≤ |V1∪V ∗

1 | = 2k−1,
we have |N+

D (v)− V ′
1 | ≥ (20k2 + 1)− (2k− 1) > 2k+ 16k2, so there is at least one vertex

z ∈ N+
D (v)−V ′

1 and an arc a = vz such that Xa does not violate any of conditions (i)-(iv),
a contradiction.

Observe that the second part of the proof yields an algorithm for computing a pair
of arc-disjoint extendable classic (r, k)-cores. Indeed, every time we try to add an arc
a = vz to X ′

i, we test if (Xa, X
′
3−i) satisfies conditions (i)-(iv). Conditions (i)-(iii) can

clearly be checked in polynomial time and, by Lemma 4.4.1, condition (iv) can also be
checked in polynomial time. Never checking an arc a which is parallel to an arc we have
already checked, after at most 20k2 failed attempts, we manage to add a new vertex
to V ′

i . We repeat this procedure at most |V ∗
i | ≤ 2k times. It follows that a pair of

arc-disjoint extendable classic (r, k)-cores can be computed in time 40k3 · nO(1) = nO(1).
By the second part of Lemma 4.4.7, we can then find the arc-disjoint spanning (r, k)-
flow branchings in D in polynomial time. The overall running time of the algorithm is
polynomial, as claimed.

We are now ready to proceed to the proof of Theorem 4.4.9.

Proof. (of Theorem 4.4.9) First consider the case that |V | < 2k − 1. Observe that any
arc-minimal spanning (r, k)-flow branching has at most |V | parallel arcs between any two
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vertices. It follows that, for any two vertices u, v, at most γ = 4k2 different distribu-
tions of the arcs between u and v among the two candidates for the spanning (r, k)-flow
branchings have to be considered, including taking none of these arcs. Since there are µ
=

(|V |
2

)
= O(k2) pairs of vertices, the total number of choices for these distributions is

γµ = 2O(k2·log k). The problem can therefore be solved by a brute force algorithm in time
2O(k2·log k), by generating all 2O(k2·log k) pairs of candidate subgraphs of D and checking
whether any of these pairs satisfies the required conditions. We may hence suppose that
|V | ≥ 2k − 1.

By Lemma 4.4.6, we may also suppose that there are at most four parallel arcs between
any two vertices in D. We can first decide in polynomial time if D is 2-root-connected. If
it is not, the answer is negative, so we may suppose it is. Let X1 = (V1 ∪ r,A1), X2 =
(V2 ∪ r,A2) be two subgraphs of D with |V1|, |V2| ≤ 2k − 1. In order to test whether
Xi is a compact (r, k)-core, we first test if all vertices in (Vi ∪ r) ∩ LD are sinks in Xi.
We then add a set V ∗

i of 2k − 1 − |Vi| new vertices to Xi. We then test all possibilities
to add one arc from (Vi ∪ r) ∩ LD to v for all v ∈ V ∗

i . As |Vi|, |V ∗
i | ≤ 2k, there are

at most 2k2k = 2O(k·log k) possibilities to check. By Lemma 4.4.4, we can check in time
polynomial in k whether each of the resulting graphs is an (r, k)-flow branching. Thus, we
can check in time 2O(k·log k) whether both X1 and X2 are compact (r, k)-cores. By Lemma
4.4.1, we can therefore decide in time 2O(k·log k) + nO(1) if (X1, X2) is an extendable pair
of arc-disjoint compact (r, k)-cores in D. By Lemma 4.4.11, it therefore suffices to prove
that there are at most 2O(k2·log k) possible candidates for the extendable pair of arc-disjoint
compact (r, k)-cores, and that these can be generated within the same running time.

Let X = (V ′ ∪ r,A′) be a compact (r, k)-core in D. Observe that every vertex in
V ′ can be reached from r by a directed path all of whose internal vertices are in SD and
whose length is at most 2k − 1. As every vertex in SD has at most 20k2 out-neighbors,
we obtain that the number of vertices that can be reached by such a path is at most
1 + 20k2 + (20k2)2 + . . .+ (20k2)2k−1 ≤ (20k2)2k. As V ′ contains at most 2k − 1 vertices,

there are at most
(
(20k2)2k

(2k−1)

)
≤ (20k2)4k

2
possibilities to choose V ′. Now suppose that we

have chosen V ′ of size at most 2k−1. As there are at most four arcs in the same direction
between any two vertices, there are at most 8

(|V ′|
2

)
≤ 32k2 arcs that have their head and

tail in V ′∪r. As all arcs of A′ have both ends in V ′∪r, there are at most 232k
2
possibilities

to choose A′. It follows that there are at most (20k2)4k
2 · 232k2 possibilities to choose a

compact (r, k)-core X. As these can be computed by a brute force method, the algorithm

can finish after checking less than f(k) =
(
(20k2)4k

2 ·232k2

2

)
= 2O(k2·log k) candidates for the

extendable pair of compact (r, k)-cores.
If no such extendable pair of arc-disjoint compact (r, k)-cores exists, by Lemma 4.4.11,

D does not contain two arc-disjoint spanning (r, k)-flow branchings. On the other hand,
if we find an extendable pair of arc-disjoint compact extendable (r, k)-cores, we also find
such a pair (X1, X2) where X1 and X2 are arc-minimal, so by Lemma 4.4.6 triple-free. By
the second part of Lemma 4.4.11, we can compute the two arc-disjoint spanning (r, k)-
flow branchings in polynomial time. The overall running time of the obtained algorithm
is 2O(k2·log k) · nO(1).

4.4.4 An FPT algorithm for packing (r, k)-safe spanning trees

This section is concerned with proving Theorem 4.4.11. Again, slightly modifying the
terminology introduced in Section 4.4.2 and reused in Section 4.4.3, given a singularly
rooted graph G = (V ∪ r, E) and a positive integer k, we say that a vertex v ∈ V ∪ r is
large if |NG(v)| ≥ 8k− 7, and small otherwise. And again, we let LG (resp. (SG)) be the
set of vertices in V which are large (resp. small) in G.
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We are now ready to introduce a new notion of certificates for (r, k)-safe spanning
trees. A compact (r, k)-certificate is a subgraph X = (V ′ ∪ r, E ′) of G with |V ′| ≤ 2k − 2
satisfying the following:

� X is a tree,

� all vertices in (V ′ ∪ r) ∩ LG are leaves of X and

� an (r, k)-safe spanning tree Y can be obtained from X by adding a set V ∗ of 2k −
2− |V ′| new vertices and adding an edge from a vertex in (V ′ ∪ r) ∩ LG to v for all
v ∈ V ∗.

Observe that Y is not necessarily a subgraph of G. The following result, which is
similar to Lemma 4.4.10 and Lemma 4.4.11, shows that compact certificates can be used
in a similar way as classic certificates.

Lemma 4.4.12. Let G = (V ∪ r, E) be a singularly rooted graph with |V | ≥ 2k− 2. Then
G has two edge-disjoint (r, k)-safe spanning trees if and only if G contains a completable
pair of compact (r, k)-certificates. Further, given a completable pair of compact (r, k)-
certificates, we can find a pair of edge-disjoint (r, k)-safe spanning trees in polynomial
time.

Proof. By Lemma 4.4.9, for the first part it suffices to prove that G contains a completable
pair of compact (r, k)-certificates if and only if G contains a pair of completable classic
(r, k)-certificates.

First let (X1 = (V1 ∪ r, E1), X2 = (V2 ∪ r, E2)) be a completable pair of classic
(r, k)-certificates. Let X ′

i = (V ′
i ∪ r, E′

i) be obtained from Xi by deleting Cv
Xi

for all
v ∈ (Vi∪r)∩LG. By construction, theX

′
i are trees and all vertices in (V ′

i ∪r)∩LG are leaves
inX ′

i. Let Yi be obtained fromX ′
i by adding the vertices in Vi−V ′

i and adding an edge from
a vertex v ∈ (V ′

i ∪r)∩LG to a vertex w ∈ Vi−V ′
i whenever w ∈ V (Cv

Xi
). Observe that Yi is a

tree with |V (Yi)| = 2k−1. Further, we have |Vi−V (Cv
Yi
)| = |Vi−V (Cv

Xi
)| ≥ k for all v ∈ V ′

i

and |V (Cv
Yi
)| = 0 for all v ∈ Vi−V ′

i . This yields that |Vi−V (Cv
Yi
)| ≥ |Vi−V (Cv

Xi
)| ≥ k for

all v ∈ Vi and so Yi is an (r, k)-safe tree. By definition, we obtain that (X ′
1, X

′
2) is a pair

of compact (r, k)-certificates. Further, as E(X ′
i) ⊆ E(Xi) and (X1, X2) is completable,

we obtain that (X ′
1, X

′
2) is completable.

Now let (X1 = (V1 ∪ r, E1), X2 = (V2 ∪ r, E2)) be a completable pair of compact
(r, k)-certificates. By definition, there are (r, k)-safe trees Y1, Y2 such that Yi is obtained
from Xi by adding a set V ∗

i of 2k − 2 − |Vi| new vertices and an edge from a vertex in
(Vi ∪ r) ∩ LG to v for all v ∈ V ∗

i . Let (X ′
1 = (V ′

1 ∪ r, E′
1), X

′
2 = (V ′

2 ∪ r, E′
2)) be a

pair of subgraphs of G that are vertex-maximal with the following properties:

(i) X ′
i is obtained from Xi by repeatedly adding another vertex v ∈ V −Vi and an edge

of E that goes from a vertex in (Vi ∪ r) ∩ LG to v,

(ii) dX′
i
(v) ≤ dYi

(v) for all v ∈ (Vi ∪ r) ∩ LG, and

(iii) (X ′
1, X

′
2) is completable.

Note that (X1, X2) satisfies conditions (i)-(iii), so (X ′
1, X

′
2) is well-defined. Observe

that if condition (ii) is satisfied with equality for all v ∈ (Vi∪r)∩LG, thenX ′
i is isomorphic

to Yi, so X ′
i is an (r, k)-safe tree and by definition also a classic (r, k)-certificate. If this is

the case for both X ′
1 and X ′

2, we are done by condition (iii).
We may therefore suppose by symmetry that there is a vertex v ∈ (V1 ∪ r)∩LG with

dX′
1
(v) < dY1(v). For any e = vze ∈ δG(v) with ze ∈ NG(v)−V ′

1 , let Xe = (V ′
1∪ze, E

′
1∪e).

By the maximality of X ′
1, we obtain that Xe violates one of conditions (i)-(iii) for all
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e = vze ∈ δG(v) with ze ∈ NG(v) − V ′
1 . By construction and the choice of v, Xe satisfies

conditions (i) and (ii) for all e = vze ∈ δG(v) with ze ∈ NG(v) − V ′
1 . It follows that

(Xe, X
′
2) violates condition (iii) for all e = vze ∈ δG(v) with ze ∈ NG(v)−V ′

1 . As (X
′
1, X

′
2)

is completable, there are two disjoint spanning trees T1, T2 of G such that E ′
i ⊆ E(Ti) for

i = 1, 2.

Claim 4.4.1. There is no e = vze ∈ δG(v)− (E(T1) ∪E(T2)) with ze ∈ NG(v)− V ′
1 such

that (Xe, X
′
2) violates condition (iii).

Proof. Suppose otherwise. By Lemma 4.4.2, there is an edge f ∈ E(T1) incident to ze
such that T ′

1 = (T1 − f) ∪ e is a spanning tree of G. As ze /∈ V ′
1 , we obtain that f /∈ E ′

1,
yielding E(Xe) ⊆ E(T ′

1). As T ′
1 and T2 are edge-disjoint, we obtain that (Xe, X

′
2) is

completable, a contradiction.

Claim 4.4.2. There are at most 6k−6 vertices z ∈ NG(v)−V ′
1 such that (Xe, X

′
2) violates

condition (iii) for some e = vz ∈ E(T2).

Proof. Suppose otherwise. As |V ′
2 | ≤ |V (Y2)| − 1 = 2k − 2, we obtain that there are at

least 4k − 3 vertices z ∈ NG(v)− V ′
1 such that (Xe, X

′
2) violates condition (iii) for some

e = vz ∈ E(T2) − E2. Let σ : E(T2) → E(T1) be a tree-mapping function from T2 to
T1. By Lemma 2.1.1 and since |E ′

1| ≤ 2k − 2, there is some z ∈ NG(v) − V ′
1 and an

edge e = vz ∈ E(T2) − E2 such that σ(e) ∈ E(T1) − E1. By definition of tree-mapping
functions, T ′

1 = (T1 − σ(e)) ∪ e and T ′
2 = (T2 − e) ∪ σ(e) are edge-disjoint spanning trees

of G. As E(Xe) ⊆ E(T ′
1) and E(X2) ⊆ E(T ′

2), we obtain that (Xe, X
′
2) is completable, a

contradiction.

As v ∈ LG and |V ′
1 | ≤ |V1∪V ∗

1 | = 2k−2, we have |NG(v)−V ′
1 | ≥ (8k−7)− (2k−2) >

6k − 6. It now follows from Claims 4.4.1 and 4.4.2 that there is at least one vertex in
z ∈ NG(v) − V ′

1 and an edge e = vz such that Xe does not violate any of conditions
(i)-(iii), a contradiction.

Observe that the second part of the proof yields an algorithm for computing a com-
pletable pair of classic (r, k)-certificates from (X1, X2). Every time we try to add an edge
e to X ′

i, we test if (Xe, X
′
3−i) satisfies conditions (i)-(iii). Conditions (i)-(ii) can clearly

be checked in polynomial time and, by Lemma 4.4.8, condition (iii) can also be checked in
polynomial time. Never checking an edge that is parallel to one we have already checked,
after at most 6k − 6 failed attempts, we manage to add a new vertex to V ′

i . We repeat
this procedure |V ∗

i | ≤ 2k − 2 times. It follows that a completable pair of classic (r, k)-
certificates can be computed in time k2 · nO(1) = nO(1). By the second part of Lemma
4.4.9, we can then find two edge-disjoint (r, k)-safe spanning trees in G in polynomial
time. The overall running time of the algorithm is polynomial, as claimed.

We are now ready to proceed to the proof of Theorem 4.4.11.

Proof. (of Theorem 4.4.11) We may suppose that there are at most two parallel edges
from u to v for any u, v ∈ V ∪ r. If |V | < 2k − 2, the problem can be solved by a brute
force algorithm in time 2O(k2), by generating all pairs of subgraphs of G and checking
whether any of these pairs satisfies the required conditions. We may hence also suppose
that |V | ≥ 2k − 2.

Let X1 = (V1 ∪ r, E1), X2 = (V2 ∪ r, E2) be two subgraphs of G. In order to
test whether Xi is a compact (r, k)-certificate, we first check whether Xi is a tree such
that all the vertices in (Vi ∪ r) ∩ LG are leaves of X. If this is the case, we add a set
V ∗

i of 2k − 2 − |Vi| new vertices to Xi. We then test all possibilities to add one edge
from (Vi ∪ r) ∩ LG to v for all v ∈ V ∗

i . As |Vi ∪ r| ≤ 2k and |V ∗
i | ≤ 2k, there are at

most 2k2k = 2O(k·log k) possibilities to check. For each of them, we can check in time
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polynomial in k if the obtained graph is an (r, k)-safe spanning tree. By the definition
of compact (r, k)-certificates, we can therefore check in time 2O(k·log k) whether both X1

and X2 are compact (r, k)-certificates. By Lemma 4.4.8, we can therefore decide in time
2O(k·log k) + nO(1) if (X1, X2) is a completable pair of compact (r, k)-certificates in G. By
Lemma 4.4.12, it therefore suffices to prove that there are at most 2O(k2·log k) possible
candidates for the completable pair of compact (r, k)-certificates, and that they can be
generated within the same running time.

Let X = (V ′ ∪ r, E′) be a compact (r, k)-certificate in G. Observe that every
vertex in V ′ can be reached from r by a path all of whose interior vertices are in SG

and whose length is at most k − 1. As every vertex in SG has at most 8k − 8 neighbors,
we obtain that the number of vertices that can be reached by such a path is at most
1+(8k−8)+(8k−8)2+ . . .+(8k−8)k−1 ≤ (8k)k. As V ′ contains at most 2k−2 vertices,

there are at most
(
(8k)k

2k−2

)
≤ (8k)2k

2
possibilities to choose V ′.

Now suppose that we have chosen V ′ of size 2k − 2. Observe that there are at most
2
(|V ′∪r|

2

)
≤ 8k2 edges that have both ends in V ′ ∪ r. As |E ′| = 2k − 2, there are at most(

8k2

2k−2

)
≤ (8k2)2k possibilities to choose A′. It follows that there are at most (8k)2k

2 ·(8k2)2k

possibilities to choose a compact (r, k)-certificate X. As these can be computed by a brute

force method, the algorithm can finish after checking less than f(k) =
(
(8k)2k

2 ·(8k2)2k
2

)
=

2O(k2·log k) candidates for the pair of compact (r, k)-certificates.
If no completable pair of compact (r, k)-certificates exists, by Lemma 4.4.9, G does

not contain two edge-disjoint (r, k)-safe spanning trees. On the other hand, once we have
found a pair of completable compact (r, k)-certificates, we can compute in polynomial
time the two edge-disjoint (r, k)-safe spanning trees by the second part of Lemma 4.4.9.
The overall running time of the obtained algorithm is 2O(k2·log k) · nO(1).

4.4.5 A hardness result for packing (r, k)-safe spanning trees

In this section we prove Theorem 4.4.12. As pointed out in Section 2.3.3.1, the 3-SAT
problem is NP-complete.

The proof of Theorem 4.4.12 given below is strongly inspired from the reduction given
in [6, Theorem 5.2], but we provide it here entirely for the sake of completeness.

Proof. (of Theorem 4.4.12) Observe that, given a singularly rooted graph G = (V ∪ r, E)
and two positive integers p and k, G contains an (r, k)-safe spanning tree if and only if the
graph that is obtained from G by replacing each of its edges by p parallel copies of itself
contains p edge-disjoint (r, k)-safe spanning trees. Hence, it suffices to prove the statement
for p = 1. Let F be an instance of 3-SAT, with variables x1, x2, . . . , xℓ and clauses
C1, C2, . . . , Cm. Adding a variable that is not contained in any clause if necessary, we
can assume that ℓ is even. We construct a singularly rooted graph G = (V ∪ r, E) as
follows; see Figure 4.4.1 for an illustration.

For i = 1, . . . , ℓ let Vi be an independent set containing two vertices vi and v̄i, and
let r and t be two extra vertices. Add all possible edges between r and V1, between Vi

and Vi+1 for i = 1, . . . , ℓ− 1, and between Vℓ and t. Next, add m vertices c1, . . . , cm and
link ci to vj (resp. v̄j) with a path containing ℓ/2 interior vertices if xi (resp. x̄i) is a
literal of Ci. Finally, let k = 1 + ℓ+ 3ℓm/2 +m and add to G an independent set Q on
q vertices all linked to t, where q > k − ℓ− 1 will be specified later. Notice that we have
n = |V | = q + k + ℓ+ 1.

We now prove that F is satisfiable if and only if G admits an (r, k)-safe spanning tree.
First assume that G contains an (r, k)-safe spanning tree T . Observe that, by construction
and the definition of (r, k)-safe spanning tree, T − r has exactly two components whose
vertex sets we denote by T1 and T2. We may assume that T1 contains t. Then G[T1]
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Figure 4.4.1: The singularly rooted graph G in the proof of Theorem 4.4.12 with C1 =
x̄1 ∨ x2 ∨ x̄4.

contains a path P from V1 to t and T1 contains Q. As a shortest path from V1 to t
contains ℓ+ 1 vertices, we have |T1| ≥ q + ℓ+ 1 and n− |T1| ≤ k. As T is (r, k)-safe, we
obtain that |T1| = q+ ℓ+1 and T1 consists exactly of the vertex set of the path P , which
contains exactly ℓ+1 vertices, and the whole set Q. In particular, P intersects each Vi in
exactly one vertex. Now for every variable xi, we set xi to TRUE if P contains v̄i and to
FALSE if P contains vi. For each clause Cj, there must be a path from the corresponding
vertex cj to V1 in T2. Then one of the vertices corresponding to a literal of Cj must not
be contained in P and so, this literal is set to TRUE and Cj is satisfied by it. It follows
that the constructed assignment satisfies F .

Conversely, assume that F admits a truth assignment. Let P be the path defined so
that, for every i = 1, . . . , ℓ, it contains vi if xi is set to FALSE and v̄i if xi is set to TRUE.
Further, let T1 = V (P ) ∪ t ∪ Q. As F is satisfied, for every 1 ≤ j ≤ m, there exists a
path from cj to V1 ∪ · · · ∪ Vℓ in G − (T1 ∪ r). It follows that G − (T1 ∪ r) is connected
and we select a spanning tree of it. The union of this spanning tree with G[T1], r, and
the edges incident to r is a spanning tree of G. In order to see that this spanning tree is
(r, k)-safe, it suffices to observe that, as q > k − ℓ− 1, we have |T1| = q + ℓ + 1 > k and
|V − T1| = q + k + 1 + ℓ− (q + ℓ+ 1) = k.

If we fix q = k, then the size of G is bounded by a polynomial in ℓ and m. Thus, the
above reduction implies that, as 3-SAT is NP-complete, given a rooted graph G and an
integer k, deciding whether G admits an (r, k)-safe spanning tree is NP-complete.

Let now ε be a positive constant and assume that k is an integer function satisfying
(log(n))2+ε ≤ k(n) ≤ n

2
for all n > 0. Furthermore, suppose that there exists a constant

C∗ such that for all c ≥ C∗ there exists an n such that k(n) = c. Finally, for the sake of
a contradiction assume that there exists a polynomial-time algorithm A, running in time
O(nc0) for some c0 > 0, for deciding if a given singularly rooted graph G = (V ∪ r, E)
on n vertices contains an (r, k(n))-safe spanning tree. Then let F be a 3-SAT formula
with ℓ variables and m clauses. We may assume that ℓ and m are large enough so that
1 + ℓ + 3ℓm/2 + m ≥ C∗. Adding copies of clauses which are alreday contained in the
formula if necessary, we may also assume that ℓ ≤ m. By hypothesis, there exists n
such that k(n) = 1 + ℓ + 3ℓm/2 + m. So, in the above reduction, we choose q to be
n− (k(n) + ℓ + 1), in order to have n = q + k(n) + ℓ + 1. Then, using algorithm A, one

could decide if F is satisfiable in time O(nc0) = O(2c0·logn) = O(2c0·k(n)
1/(2+ε)

), where we
have used the hypothesis that k(n) ≥ (log(n))2+ε. Moreover, in the previous construction,
we have k(n) = 1+ℓ+3ℓm/2+m ≤ 3m+3m2/2 ≤ 3m2. So we could decide whether F is

satisfiable in time O(2c0·(3m
2)1/(2+ε)

) = O(2c
′
0·mε′

) with ε′ = 2/(2 + ε) < 1, a contradiction
to Lemma 2.3.3 assuming the ETH.
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4.4.6 Conclusion

We considered three problems on finding certain disjoint substructures in graphs and
digraphs. While in our proofs we restrict to finding two of these substructures for the
sake of simplicity, our results can be generalized to allow for finding an arbitrary number
of them using the same proof techniques. More concretely, the following results can be
established using the techniques of this article. We omit the proofs of these generalized
statements.

Theorem 4.4.13. Given a singularly rooted digraph D = (V ∪r, A) and an integer p ≥ 2,
deciding whether D contains p arc-disjoint k-safe spanning r-arborescences is FPT with
parameter k. More precisely, the problem can be solved in time 2O(p·k2·log k) · nc, where c
is a constant depending on p. Further, if they exist, the p arc-disjoint k-safe spanning
r-arborescences can be computed within the same running time.

Theorem 4.4.14. Given a singularly rooted digraph D = (V ∪r, A) and an integer p ≥ 2,
deciding whether D contains p arc-disjoint (r, k)-flow branchings is FPT with parameter
k. More precisely, the problem can be solved in time 2O(p·k2·log k) ·nc, where c is a constant
depending on p. Further, if they exist, the p arc-disjoint (r, k)-flow branchings can be
computed within the same running time.

Theorem 4.4.15. Given a singularly rooted graph G = (V ∪ r, E) and an integer p ≥ 2,
deciding whether G contains p arc-disjoint (r, k)-safe spanning trees is FPT with parameter
k. More precisely, the problem can be solved in time 2O(p·k2·log k) ·nc, where c is a constant
depending on p. Further, if they exist, the p edge-disjoint (r, k)-safe spanning trees can be
computed within the same running time.

It is natural to ask whether the dependency on k of our FPT algorithms can be im-
proved. In the case of k-safe spanning r-arborescences (cf.Theorem 4.4.4), we can derive
a lower bound from Theorem 4.4.2. Indeed, a corollary of Theorem 4.4.2 is that, assuming
the ETH, for any two constants ε > 0 and c > 0, deciding whether a singularly rooted
digraph contains two arc-disjoint k-safe spanning arborescences cannot be solved in time
2c·k

1−ε ·nO(1). To see this, note that if such an algorithm existed, letting k(n) := (log(n))1+ε

we would obtain an algorithm in time 2c·(log(n))
(1+ε)(1−ε) · nO(1) = nO(1), contradicting The-

orem 4.4.2. In other words, assuming the ETH, the problem cannot be solved in time
2O(k1−ε) · nO(1) for any ε > 0.

Similarly to Theorem 4.4.2, Theorem 4.4.7 implies a lower bound for packing (r, k)-flow
branchings (cf. Theorem 4.4.4): assuming the ETH, deciding whether a rooted digraph
contains two arc-disjoint (r, k)-flow branchings cannot be solved in time 2O(k1−ε) ·nO(1) for
any ε > 0. Also, concerning (r, k)-safe spanning trees (cf.Theorem 4.4.11), a consequence
of Theorem 4.4.12 is that, assuming the ETH, for every p ≥ 1, deciding whether a
singularly rooted graph contains p edge-disjoint (r, k)-safe spanning trees cannot be solved

in time 2O(k1/2−ε) · nO(1) for any ε > 0.
There is still a significant gap between the above lower bounds, which are 2O(k1−ε) or

2O(k1/2−ε), and the function 2O(k2·log k) in our FPT algorithms.
We did not focus on optimizing the polynomial factors in n of our algorithms, and we

leave it for further research. Further, we leave as an open question whether any of the
considered problems admits a polynomial kernel parameterized by k. Finally, it would
be interesting to find a Theorem on packing k-safe mixed arborescences in mixed graphs,
hence generalizing both Theorem 4.4.13 and Theorem 4.4.15.
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Chapter 5

Connectivity augmentation

The problems we deal with in this section are augmentation problems. Given an undi-
rected or directed graph, we wish to determine the minimum number of edges or arcs
we need to add to the graph in order to obtain a certain connectivity property. We are
interested in both minmax theorems for the necessary number of arcs or edges and in
polynomial time algorithms for finding the actual augmentations.

For all problems treated in this section, the version with edge capacities and the
version without edge capacities can be easily reduced to each other by replacing an edge
with a capacity by multiple edges and vice-versa. Yet, this does not mean algorithmic
equivalence. All the running times we give hold for the case with edge capacities, assuming
that all basic operations can be executed in constant time. For this reason, all technical
statements in Section 5.2 will be given in the capacitated form. In Section 5.1, however,
we describe the problems in the uncapacitated form for the sake of simplicity.

In Section 5.1, we give a survey on the results and methods for the most basic connec-
tivity augmentation problems, namely edge-, arc- and vertex-connectivity augmentation.
In Section 5.2, we deal with the more specific problem of edge augmentation for (2, k)-
connectivity in undirected graphs.

5.1 Edge-, arc- and vertex-connectivity augmenta-

tion

We first deal with the problem on connectivity augmentation which is best understood,
namely edge connectivity augmentation for undirected graphs. The following theorem
that gives a minmax-formula for the number of edges needed to make a graph k-edge-
connected was proven by Cai and Sun in [18].

Theorem 5.1.1. Let G = (V,E) be a graph and k ≥ 2 an integer. Then the minimum
number γ of edges needed to be added to G to obtain a k-edge-connected graph is

γ = ⌈
max{

∑
X∈P(k − dG(X)) : P a subpartition of V }

2
⌉.

An algorithm that computes an actual augmentation and runs in polynomial time
when k is fixed was provided by Watanabe and Nakamura in [110].

A different method of handling this problem was introduced by Frank [40]. This
method allowed a simpler proof of Theorem 5.1.1 as well as an algorithm for computing
the augmentation that runs in polynomial time even if k is part of the input. This method
consists of two steps. In the first one a new vertex as well as edges connecting it to the
given graph are added to have the required connectivity condition. Such a graph with
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the minimum even number of new edges is called a minimal even extension. The second
step applies splitting off. A minimum augmentation of G can be obtained by repeatedly
applying splitting offs maintaining the connectivity requirements and finally deleting the
added vertex. Using this method, several other augmentation problems can be treated
similarly.

More precisely, Frank [40] provided an O(n5) time algorithm based on the approach
described above. In order to achieve this running time, he uses a slightly involved method
for the splitting off part. Carefully choosing the pairs of edges to be split off, he manages
to finish with a complete splitting off after a linear number of splitting off operations in
n while the obvious approach results in a quadratic number. Nagamochi and Ibaraki
[94] provided an even more efficient implementation of the method described above.
They managed to find a minimum k-edge-connected augmentation in O((n log n)(m +
n log n)) time. An important ingredient in their work is an O(n(m + n log n)) time
mincut algorithm, see Lemma 5.2.1. We also make use of this mincut algorithm as a
subroutine in Section 5.2.

Several generalizations of this concept have been considered. In [40], Frank proved
a result that gives a minmax-formula for the number of edges needed to be added to a
graph to make it satisfy some arbitrary given local edge-connectivity condition. We omit
it here because it is slightly technical, but we give the following algorithmic corollary that
is an immediate consequence of the proof of the theorem.

Theorem 5.1.2. Let G = (V,E) be a graph and let r : V 2 → Z be a requirement
function. Then a set E ′ of minimum cardinality such that for G′ = (V,E ∪ E ′), we have
λG′(u, v) ≥ r(u, v) can be found in O(n6).

The method applied in the algorithm is the same as for the case of global edge-
connectivity except that no way to linearize the number of splitting offs is known. Un-
fortunately, when we replace the minimum cardinality condition by a minimum cost con-
dition with respect to an arbitrary cost function, there is no hope for a polynomial time
algorithm even for the case of global connectivity. More concretely, the following result
was proven by Eswaran and Tarjan [36].

Theorem 5.1.3. Let G = (V,E) be a graph, k ∈ Z≥0, c : V 2 → R a cost function and
M ∈ R a constant. Then it is NP-complete to decide whether there exists a new edge set
E ′ such that (V,E ∪ E ′) is k-edge-connected and c(E ′) ≤ M .

On the other hand, Frank [40] provided a polynomial time algorithm when the costs
are restricted to vetex costs.

Theorem 5.1.4. Let G = (V,E) be a graph, k ∈ Z≥0, c : V → R a cost function and
M ∈ R a constant. Then there is a polynomial time algorithm to decide whether there
exists a new edge set E ′ such that (V,E ∪E ′) is k-edge-connected and

∑
v∈V c(v)dE′(v) ≤

M .

We next deal with arc-connectivity augmentation problems in directed graphs. The
following fundamental theorem has been proven by Frank [40].

Theorem 5.1.5. Let D = (V,A) be a digraph. Then the minimum number γ of arcs
needed to be added to D to obtain a k-arc-connected digraph is

γ = ⌈1
2
max{max{

∑
X∈P

(k − d−D(X)),
∑
X∈P

(k − d+D(X))} : P a subpartition of V }⌉.
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The proof of Theorem 5.1.5 again is similar to the proof of Theorem 5.1.1 and also
yields a polynomial time algorithm for finding the actual augmentation. On the other
hand, Frank also proved that the corresponding problem for local connectivity is not
tractable in directed graphs.

Theorem 5.1.6. Let D = (V,A) be a digraph and let r : V 2 → Z be a requirement
function. Then computing a set A′ of minimum cardinality such that for D′ = (V,A∪A′),
we have λD′(u, v) ≥ r(u, v) is an NP-complete problem.

Frank also proves in [40] that the algorithmic tractability of mincost versions in di-
rected graphs behaves similarly to the one in undirected graphs.

Theorem 5.1.7. Let D = (V,A) be a digraph, k ∈ Z≥0, c : V
2 → R a cost function and

M ∈ R a constant. Then it is NP-complete to decide whether there exists a new arc set
A′ such that (V,A ∪ A′)is k-arc-connected and c(A′) ≤ M .

Theorem 5.1.8. Let D = (V,A) be a digraph, k ∈ Z≥0, c
+, c− : V → R cost functions

and M ∈ R a constant. Then there is a polynomial time algorithm to decide whether there
exists a new arc set A′ such that (V,A ∪ A′) is k-arc-connected and

∑
v∈V (c

+(v)d+A′(v) +
c−(v)d−A′(v)) ≤ M .

We now turn our attention to vertex-connectivity. In undirected graphs, we consider
the problem of adding a set E ′ of minimum cardinality to a given graph in order to make it
k-vertex-connected for some given positive integer k. A rather technical minmax theorem
as well as an algorithm that runs in polynomial time for constant k have been provided
by Jackson and Jordán [69].

The following is one of the most important open problems on connectivity augmenta-
tion, see [34].

Research Problem 5.1.1. For the problem of finding a minimum k-vertex-connected
augmentation of a given graph G, provide an algorithm that runs in polynomial time even
if k is part of the input.

In directed graphs, a rather involved minmax formula for the number of edges that
need to be added to make a given graph k-vertex-connected for some positive integer k
has been provided by Frank and Jordán [47]. This article also includes the first use of
bisets. Bisets will also play a decisive role in Section 5.2. While their original proof did not
yield a combinatorial polynomial time algorithm for computing the actual augmentation,
the same authors gave a more elementary algorithm that runs in polynomial time for
constant k in [46]. Finally, in contrast to the undirected case, an algorithm that also runs
in polynomial time if k is part of the input has been provided by Végh and Benczúr in
[107].

5.2 Mixed connectivity augmentation

We here deal with a problem generalizing vertex- and edge-connectivity augmentation.
This section is based on [64].

The concept of (ℓ, k)-connectivity has been introduced by Kaneko and Ota in [72].
Clearly, (ℓ, k)-connectivity generalizes both edge- and vertex-connectivity. Most problems
on mixed connectivity augmentation are wide open. The most desirable result would be
a positive answer to the following problem.

Research Problem 5.2.1. Given integers ℓ, k and a graph G = (V,E), can we compute
a minimum (ℓ, k)-connected augmentation of G in polynomial time?
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Clearly, a positive answer to Research Problem 5.2.1 would imply a positive answer to
Research Problem 5.1.1. One might therefore first wish to consider the following weaker
version where ℓ is fixed.

Research Problem 5.2.2. Let ℓ be a fixed integer. Given an integer k and a graph
G = (V,E), can we compute a minimum (ℓ, k)-connected augmentation of G in polynomial
time?

An even weaker version can be obtained when also fixing the value of k.

Research Problem 5.2.3. Let ℓ, k be fixed integers. Given a graph G = (V,E), can we
compute a minimum (ℓ, k)-connected augmentation of G in polynomial time?

Similar questions can be asked for directed connectivity.
The purpose of this section is to give a positive answer for a more restricted special

case, namely we give an affarmative answer to Research Problem 5.2.2 for ℓ = 2. We
strongly rely on the work of Durand de Gevigney and Szigeti in [27]. They prove the
following minmax-formula for edge augmentation for (2, k)-connectivity.

Theorem 5.2.1. Let (H = (V,E), c) be a capacitated graph and k a positive integer.
Then the minimum number γ of edges that need to be added to obtain a (2, k)-connected
graph is

⌈1
2
max{

∑
X∈X

(2k−(k|w(X)|+c(δG(XI , V−XO))) : X a set of innerly disjoint bisets on V }⌉.

Their proof follows the method of Frank. The creation of a minimum even (2, k)-
connected extension can easily be turned into a polynomial time algorithm. The splitting
off procedure uses a splitting off theorem of [27] that will be introduced in Section 5.2.1
and turning it into a polynomial time algorithm is a little more complicated. While a
careful analysis of the proof in [27] yields a rather slow polynomial time algorithm, no
explicit mention of such an algorithm is made. The aim of this section is to provide a
more efficient such algorithm. In Section 5.2.1, we give some results from [27] we need and
prove some basic preliminary results. In Section 5.2.2, we show how to efficiently compute
a minimal (2, k)-connected extension. Further, we prove that a seeming difficulty in the
splitting off process does not actually occur. This yields a rather simple O(n4(m+n log n))
time algorithm for the augmentation problem. In Section 5.2.3, we show how to obtain
an algorithm that runs in O(n3(m+ n log n)) time by linearizing the number of splitting
offs.

5.2.1 Basic definitions and previous results

5.2.1.1 Minimum cuts

Given a capacitated graph (G = (V,E), c), the mincut problem consists of finding a set
∅ ≠ S ⊊ V that minimizes c(δG(S)). This problem has been widely studied. Due to the
specific nature of our application, we are interested in a slight variation of this problem:
given a capacitated graph (H = (V ∪ s, E), c) with a distinguished vertex s /∈ V , we want
to find a set ∅ ≠ S ⊊ V that minimizes c(δH(S)). In other words, we additionally require
that no side of the cut consists of s only. We denote the capacity of such a minimum cut
by λ(H,c)(V ). We say that (H = (V ∪ s, E), c) is k-edge-connected in V for some positive
integer k if λ(H,c)(V ) ≥ k. We strongly rely on the following algorithmic result which is
due to Nagamochi and Ibaraki [94].

Lemma 5.2.1. Given a capacitated graph (H = (V ∪ s, E), c), we can compute λ(H,c)(V )
and a set ∅ ≠ S ⊊ V that minimizes c(δH(S)) in O(n(m+ n log n)) time.
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5.2.1.2 Bisets

Given a capacitated graph (G = (V,E), c) and a positive integer k, we define a function
f on the bisets on V by f(X)= k|w(X)|+ c(δG(XI , V −XO)). Observe that f(X) = f(X).
This function will play a crucial role throughout this section.

We can now rephrase the definition of (2, k)-connectivity in terms of bisets. A capac-
itated graph (G = (V,E), c) with |V | ≥ 3 is (2, k)-connected if for every biset X which
is nontrivial with respect to V , we have f(X) ≥ 2k. We also need the following slightly
more advanced notion: A capacitated graph (H = (V ∪ s, E), c) with |V | ≥ 3 is called
(2, k)-connected in V if for every biset X on V which is nontrivial with respect to V , we
have f(X) ≥ 2k. Observe that in H = (V ∪ s, E) the vertex s belongs to X for any
X ⊆ V .

5.2.1.3 Splitting off

Let (H = (V ∪ s, E), c) be a capacitated graph. For v ∈ NH(s) and a nonnega-
tive integer α ≤ c(sv), we denote by (H, c)αv the capacitated graph obtained from
(H, c) by decreasing the capacity of sv by α. If c(sv) = 0 after the operation, we
delete sv from H. For (H, c) that is (2, k)-connected in V , we denote U(H,c)= {v ∈
V | (H, c)1v is (2, k)-connected in V }, a set that will play a significant role later on. For a
vertex v ∈ NH(s), we denote by (H, c)max

v the capacitated graph (H, c)αv where α is the
maximum integer such that (H, c)αv is well-defined and (2, k)-connected in V .

For u, v ∈ NH(s) and a positive integer α ≤ min{c(su), c(sv)}, we denote by (H, c)αu,v
the capacitated graph obtained from (H, c) by decreasing c(su) and c(sv) by α and in-
creasing c(uv) by α. We delete edges of capacity 0 and create the edge uv if it does not
exist yet. We also delete the arising loop if u = v. We call this operation the α-multiple
splitting off of su and sv and say that this α-multiple splitting off contains su and sv. We
abbreviate 1-multiple splitting off to splitting off. Suppose that (H, c) is (2, k)-connected
in V . We say that a pair (su, sv) is admissible if (H, c)1u,v is (2, k)-connected in V . For
u, v ∈ NH(s), let α be the maximum integer such that (H, c)αu,v is well-defined and (2, k)-
connected in V . We call an α-mutiple splitting off of (su, sv) a maximal splitting off of
(su, sv) and denote (H, c)max

u,v = (H, c)αu,v. Observe that every maximal splitting off can
be viewed as a series of splitting offs.

We next give an important characterization of admissible pairs in H. Given a pair
(su, sv), a biset X which is nontrivial with respect to V with either f(X) ≤ 2k + 1 and
u, v ∈ XI or f(X) = 2k, u, v ∈ XO and {u, v} ∩ XI ̸= ∅ is said to block (su, sv). The
following result can be found as Lemma 3.1 in [27] and will be frequently used.

Lemma 5.2.2. Given a capacitated graph (H = (V ∪ s, E), c) that is (2, k)-connected in
V and u, v ∈ NH(s), (su, sv) is admissible if and only if there is no biset blocking it.

A biset that blocks a pair of edges (su, sv) with u ̸= v is called horrifying. Note that
the wall of a horrifying biset contains at most one vertex. Further, observe that we can
check whether a given biset is horrifying in O(m) time by applying the definition.

While the following result is not explicitly proven in [27], its proof is almost literally
the same as the one of Lemma 3.4 in [27]. We therefore omit it. The result nevertheless
plays a key role in our algorithm.

Lemma 5.2.3. Let (H = (V ∪ s, E), c) be a capacitated graph that is (2, k)-connected in
V with c(δH(s)) even. Let X be a horrifying biset, u ∈ XI ∩NH(s) and v ∈ NH(s)−XI .
If a biset Y blocks (su, sv), then either X∪Y is horrifying or X and Y have the same wall
of size 1.

We also require the following result that can be found in [27] as Proposition 3.2.
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Lemma 5.2.4. Let (H = (V ∪ s, E), c) be a capacitated graph that is (2, k)-connected in
V and let X be a horrifying biset. Then NH(s)−XO ̸= ∅.

A series of splitting offs at s that results in a capacitated graph in which s is an isolated
vertex is called a complete splitting off of (H, c). It is easy to see that a complete splitting
off exists if and only if c(δH(s)) is even. A complete splitting off is admissible if each of
the splitting offs it contains is admissible in the current capacitated graph when being
chosen. This is equivalent to the finally obtained capacitated graph being (2, k)-connected
after deleting s. Finding such a complete admissible splitting off is the main difficulty
in our algorithm. We strongly rely on a characterization of capacitated graphs having a
complete admissible splitting off that can be found in [27]. Before stating it, we need the
following definition:

Let (H = (V ∪ s, E), c) be a capacitated graph that is (2, k)-connected in V and
with c(δH(s)) even. An obstacle is a collection B of bisets in V and a vertex t ∈ NH(s)
satisfying the following:

c(st) is odd and t ∈ U(H,c), (5.2.1)

w(B) = {t} and f(B) = 2k for all B ∈ B, (5.2.2)

BI ∩B′
I = ∅ for all distinct B,B′ ∈ B, (5.2.3)

NH(s)− {t} ⊆
⋃
B∈B

BI . (5.2.4)

We say that t is the special vertex of the obstacle. It is easy to see that a capacitated
graph containing an obstacle does not have a complete admissible splitting off, as every
splitting off of (st, su) for some u ∈ NH(s) is blocked by the biset B ∈ B with u ∈ BI and
by Lemma 5.2.2. In [27], it is proved that the converse is also true:

Theorem 5.2.2. Let (H = (V ∪ s, E), c) be a capacitated graph that is (2, k)-connected
in V for some k ≥ 2 with c(δH(s)) even. Then (H, c) has a complete admissible splitting
off at s if and only if (H, c) does not contain an obstacle.

5.2.1.4 Basic algorithms

In this section, we show that we can efficiently compute the maximum decrease of the
capacity of an edge and the maximum multiplicity of a splitting off of an edge pair that
maintain certain connectivity requirements. We first show this for the case of edge-
connectivity and then apply this for the case of (2, k)-connectivity. All of these results
are simple consequences of Lemma 5.2.1.

Lemma 5.2.5. Given a capacitated graph (H = (V ∪ s, E), c) that is k-edge-connected in
V and a vertex v ∈ NH(s), we can compute the maximal α such that (H ′, c′) = (H, c)αv is
k-edge-connected in V in O(n(m+n log n)) time. Further, if c′(sv) ̸= 0, we can compute
a set S with v ∈ S ⊊ V and c′(δH′(S)) = k in O(n(m+ n log n)) time.

Proof. Let γ = c(sv) and (Hγ, cγ) = (H, c)γv . Obviously we have α ≤ γ. The other
condition α needs to satisfy is that c′(δH′(X)) ≥ k for every ∅ ̸= X ⊊ V . If v /∈ X,
we obtain c′(δH′(X)) = c(δH(X)) ≥ k. If v ∈ X, the condition is satisfied if and only if
0 ≥ k − c′(δH′(X)) = k − (cγ(δHγ (X)) − α + γ) = α − (γ − k + cγ(δHγ (X))). It follows
that α = min{γ, γ − k+ λ(Hγ ,cγ)(V )}. By Lemma 5.2.1, we can compute λ(Hγ ,cγ)(V ), and
hence α, and also a set S ⊊ V with cγ(δHγ (S)) = λ(Hγ ,cγ)(V ) in O(n(m+ n log n)) time.
If c′(sv) ̸= 0, we have v ∈ S and c′(δH′(S)) = k.
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Lemma 5.2.6. Given a capacitated graph (H = (V ∪ s, E), c) that is k-edge-connected in
V and vertices u, v ∈ NH(s), we can compute the maximal α such that (H ′, c′) = (H, c)αu,v
is k-edge-connected in V in O(n(m + n log n)) time. Further, if c′(su), c′(sv) ̸= 0, we
can compute a set S with u, v ∈ S ⊊ V and c′(δH′(S)) ≤ k + 1 in O(n(m + n log n))
time.

Proof. Let γ = min{c(su), c(sv)} and (Hγ, cγ) = (H, c)γu,v. Obviously we have α ≤ γ.
The other condition α needs to satisfy is that c′(δH′(X)) ≥ k for every ∅ ≠ X ⊊ V .
If {u, v} − X ̸= ∅, we obtain c′(δH′(X)) = c(δH(X)) ≥ k. If u, v ∈ X, the condition
is satisfied if and only if 0 ≥ k − c′(δH′(X)) = k − (cγ(δHγ (X)) − 2α + 2γ) = 2(α −
(γ + 1

2
cγ(δHγ (X)) − 1

2
k)). It follows that α = min{γ, ⌊γ + 1

2
λ(Hγ ,cγ)(V ) − 1

2
k⌋}. By

Lemma 5.2.1, we can compute λ(Hγ ,cγ)(V ), and hence α, and also a set S ⊊ V with
cγ(δHγ (S)) = λ(Hγ ,cγ)(V ), in O(n(m + n log n)) time. If c′(su), c′(sv) ̸= 0, we have
u, v ∈ S and c′(δH′(S)) ≤ k + 1.

Lemma 5.2.7. Given a capacitated graph (H = (V ∪ s, E), c) that is (2, k)-connected in
V and a vertex v ∈ NH(s), we can compute (H, c)max

v in O(n2(m+ n log n)) time.

Proof. By definition, (H, c)max
v = (H, c)αv where α is the maximum integer such that

(H, c)αv is 2k-edge-connected in V and (H, c)αv − x is k-edge-connected in V − x for all
x ∈ V . We first compute the maximum integer α′ such that (H, c)α

′
v is 2k-edge-connected

in V . Using Lemma 5.2.5, this can be done in O(n(m + n log n)) time. Next observe
that for any nonnegative integer β, (H, c)βv − v = (H, c) − v is always k-edge-connected
in V − v by assumption. Now consider x ∈ V − v and observe that for any nonnegative
integer β, we have (H, c)βv − x = (H − x, c)βv . It follows from Lemma 5.2.5 that we can
compute the maximum integer αx such that (H, c)αx

v − x is k-edge-connected in V − x in
O(n(m + n log n)) time. We now can compute α = min{α′,minx∈V−v αx}. The overall
running time is O(n2(m+ n log n)).

Lemma 5.2.8. Given a capacitated graph (H = (V ∪ s, E), c) that is (2, k)-connected in
V and vertices u, v ∈ NH(s), we can compute (H ′, c′) = (H, c)max

u,v in O(n2(m+n log n))
time. Further, if c′(su), c′(sv) ̸= 0, we can compute a biset blocking (su, sv) in (H ′, c′) in
O(n2(m+ n log n)) time.

Proof. By definition, (H ′, c′) = (H, c)αu,v where α is the maximum integer such that
(H, c)αu,v is 2k-edge-connected in V and (H, c)αu,v − x is k-edge-connected in V − x for

all x ∈ V . We first compute the maximum integer α′ such that (H, c)α
′

u,v is 2k-edge-
connected in V . Using Lemma 5.2.6, this can be done in O(n(m + n log n)) time. For
x ∈ V − {u, v}, we can compute, by Lemma 5.2.6, the maximum integer αx such that
(H, c)αx

u,v−x = (H−x, c)αx
u,v is k-edge-connected in V−x inO(n(m+n log n)) time. We can

compute, by Lemma 5.2.5, the maximum integer αu such that (H, c)αu
u,v−u = (H−u, c)αu

v is
k-edge-connected in V −u in O(n(m+n log n)) time. We similarly compute αv. We now
can compute α = min{α′,minx∈V αx}. The overall running time is O(n2(m+ n log n)).

Now suppose that c′(su), c′(sv) ̸= 0. If α = α′, that is (H ′, c′) = (H, c)α
′

u,v, then,
by Lemma 5.2.6, a set S ⊊ V with u, v ∈ S and c′(δH′(S)) ≤ 2k + 1 can be found in
O(n(m+ n log n)) time. We obtain that (S, S) is a biset blocking (su, sv) in (H ′, c′). If
α = αx for some x ∈ V −{u, v}, that is (H ′, c′)−x = (H−x, c)αx

u,v, then, by Lemma 5.2.6,
a set S ⊊ V −x with u, v ∈ S and c′(δH′−x(S)) ≤ k+1 can be found in O(n(m+n log n))
time. We obtain that (S∪{x}, S) is a biset blocking (su, sv) in (H ′, c′). Finally, if α = αu

or αv, say αu, that is (H
′, c′)− u = (H − u, c)αu

v , then, by Lemma 5.2.5, a set S ⊊ V − u
with v ∈ S and c′(δH′(S)) = k can be found in O(n(m+ n log n)) time. We obtain that
(S ∪ {u}, S) is a biset blocking (su, sv) in (H ′, c′).
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5.2.2 Minimal even extensions for (2, k)-connectivity

A minimal even extension for (2, k)-connectivity of a capacitated graph (G = (V,E0), c0)
is obtained by adding a new vertex and edges incident to this vertex so that the obtained
capacitated graph becomes (2, k)-connected in V and so that the total capacity of the
new edges is even and minimal. The importance of minimal even extensions for (2, k)-
connectivity is due to a theorem from [27] that shows that minimum augmentations for
(2, k)-connectivity can be computed from minimal even extensions for (2, k)-connectivity
by a complete admissible splitting off. We first give a simple algorithm to compute minimal
even extensions for (2, k)-connectivity and give some basic properties. We further show
a property of minimal even extensions for (2, k)-connectivity which is essential to our
splitting off algorithms. This then allows us to give a naive algorithm for the (2, k)-
connectivity augmentation problem which is slower than the algorithm which is the main
result of this section and is given later.

We first introduce the algorithm for computing a minimal even extension for (2, k)-
connectivity. In order to avoid a technical definition whose details are not essential to this
work, Algorithm 1 will also serve as a definition for minimal even extensions for (2, k)-
connectivity. Algorithm 1 takes a capacitated graph (G = (V,E0), c0) as input and adds a
new vertex s as well as edges of sufficiently high capacity between s and all other vertices
to make the capacitated graph (2, k)-connected in V . It then reduces these capacities in
a greedy way as much as possible while maintaining (2, k)-connectivity in V . Finally, if
the degree of s is odd, it augments the capacity of a certain chosen edge by 1.

Algorithm 1 Minimal even extensions for (2, k)-connectivity

Input: A capacitated graph (G = (V,E0), c0), an integer k ≥ 2.
Output: A minimal even extension for (2, k)-connectivity of (G, c0).

1 Create (H, c) by adding a vertex s to V and adding an edge of capacity 2k
between s and every v ∈ V ;

2 Let (v1, . . . , vn) be an arbitrary ordering of the vertices of V ;
3 for i = 1, . . . , n do
4 (H, c) = (H, c)max

vi
;

5 if c(δH(s)) is odd then
6 choose the maximum i∗ such that c(svi∗) is odd;
7 c(svi∗) = c(svi∗) + 1;

8 Return (H, c) ;

Given a capacitated graph (G, c0), a capacitated graph (H, c) which is obtained by
applying Algorithm 1 to (G, c0) is called a minimal even extension for (2, k)-connectivity
of (G, c0).

Proposition 5.2.1. Given a capacitated graph (G, c0), a minimal even extension for
(2, k)-connectivity of (G, c0) can be computed in O(n3(m+ n log n)) time.

Proof. By definition, a minimal even extension for (2, k)-connectivity can be computed
by Algorithm 1. It follows from Lemma 5.2.7 that line 4 can be executed in O(n2(m +
n log n)) time. As line 4 is executed n times and the rest of Algorithm 1 can be executed
efficiently, Algorithm 1 runs in O(n3(m+ n log n)) time.

We next collect some basic properties of minimal even extensions for (2, k)-connectivity.

Proposition 5.2.2. Let (H = (V ∪ s, E), c) be a minimal even extension for (2, k)-
connectivity of a capacitated graph (G = (V,E0), c0). Then the following hold:
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(a) (H, c) is (2, k)-connected in V ,

(b) c(δH(s)) is even,

(c) c(sv) is even for all v ∈ U(H,c),

(d) (H, c)2v is not (2, k)-connected in V for any v ∈ V .

Proof. We obtain (a) as an immediate consequence of the construction of Algorithm 1.
If the if-condition in line 5 is not satisfied, c(δH(s)) is even and remains unchanged

in the rest of the algorithm. Otherwise, c(δH(s)) is odd and is augmented by 1 in line 7.
This yields (b).

We denote by (Hi, ci) the capacitated graph defined in line 4 in iteration i. Since
line 4 is executed, for all i ∈ {1, . . . , n} with ci(svi) ≥ 1, there exists a biset Xi such
that vi ∈ X i

I and f(Hi,ci)(X
i) = 2k. If the if-condition in line 5 is not satisfied, then

f(H,c)(X
i) ≤ f(Hi,ci)(X

i) = 2k for all i ∈ {1, . . . , n} with ci(svi) ≥ 1 and so U(H,c) = ∅. If
the if-condition in line 5 is satisfied, then i∗ is defined in line 6. For all i ∈ {1, . . . , i∗ − 1}
with ci(svi) ≥ 1, since ci(svi) ≥ 1, ci(svi∗) = 2k and f(Hi,ci)(X

i) = 2k, we have vi∗ /∈ X i
I .

This yields f(H,c)(X
i) ≤ f(Hi,ci)(X

i) = 2k, so vi /∈ U(H,c). For all i ∈ {i∗, . . . , n}, c(svi) is
even after the execution of line 7. This proves (c).

For any vi ∈ V with c(svi) ≥ 1, we have f(H,c)(X
i) ≤ f(Hi,ci)(X

i) + 1 = 2k + 1. This
proves (d).

We now give the following theorem which is the reason for us considering minimal even
extensions for (2, k)-connectivity. Its proof can be found in [27]. It shows that minimum
augmentations for (2, k)-connectivity can be computed from minimal even extensions for
(2, k)-connectivity if we can find a complete admissible splitting off at s.

Theorem 5.2.3. Let (G = (V,E0), c0) be a capacitated graph, (H = (V ∪ s, E), c) a
minimal even extension for (2, k)-connectivity of (G, c0) and let (H ′, c′) be obtained from
(H, c) by a complete admissible splitting off. Then (H ′, c′) − s is a minimum (2, k)-
connected augmentation of (G, c0).

We now prove an important result that shows that when finding a complete admissible
splitting off, we do not need to worry about obstacles.

Lemma 5.2.9. Let (H = (V ∪s, E), c) be a minimal even extension for (2, k)-connectivity
of a capacitated graph (G, c0) and let (H1, c1) be obtained from (H, c) by a series of ad-
missible splitting offs. Then (H1, c1) contains no obstacle.

Proof. Suppose that (H1, c1) contains an obstacle B with special vertex t. By (5.2.1),
c1(st) is odd and t ∈ U(H1,c1) ⊆ U(H,c). It follows by Proposition 5.2.2 (c) that c(st) is
even, so st was split off with an edge sv. By Proposition 5.2.2 (d), we have v ̸= t. Let
(H2, c2) be the capacitated graph such that (H1, c1) = (H2, c2)

1
t,v.

Claim 5.2.1. (H2, c2) contains no obstacle.

Proof. Suppose otherwise, so (H2, c2) contains an obstacle B′. By (5.2.1), the special
vertex of B′ cannot be t because c2(st) = c1(st) + 1 is even. It follows by (5.2.4) that
t ∈ B′

I for some B′ ∈ B′. Now (5.2.2) yields f(H2,c2)(B
′) = 2k which contradicts that by

(5.2.1), t ∈ U(H1,c1) ⊆ U(H2,c2).
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By Claim 5.2.1 and Theorem 5.2.2, (H2, c2) has a complete admissible splitting off. In
particular, as c2(st) ≥ 2, there exist x, y ∈ NH2(s) (possibly x = y) such that (H3, c3) =
((H2, c2)

1
t,x)

1
t,y is (2, k)-connected in V. By Proposition 5.2.2(d), (H, c)1t,t = (H, c)2t is not

(2, k)-connected in V and hence neither is (H2, c2)
1
t,t, so x, y ̸= t. Obviously x, y ̸= v, so,

by (5.2.4), x, y ∈
⋃

B∈B BI . Then, by (5.2.2), we have

2 + |B|k ≤ 2 +
∑
B∈B

c3(δH3−t(BI))

=
∑
B∈B

c2(δH2−t(BI))

= 1 +
∑
B∈B

c1(δH1−t(BI))

= 1 + |B|k,

a contradiction.

We are now ready to give a first naive algorithm for finding a complete admissible
splitting off of minimal even extensions for (2, k)-connectivity.

Algorithm 2 Naive splitting off

Input: A minimal even extension for (2, k)-connectivity (H = (V ∪ s, E), c) of a
capacitated graph (G, c0).

Output: A minimum (2, k)-connected augmentation of (G, c0).
1 for u ̸= v ∈ NH(s) do
2 (H, c) = (H, c)max

u,v ;

3 Return (H, c)− s ;

By Lemma 5.2.9, no obstacle is created during the execution of Algorithm 2 and so,
by Theorems 5.2.2 and 5.2.3, the output of Algorithm 2 is a minimum (2, k)-connected
augmentation of (G, c0). As line 2 is executed at most n2 times and by Lemma 5.2.8,
Algorithm 2 runs in O(n4(m + n log n)) time. Together with Algorithm 1, this yields an
O(n4(m+ n log n)) time algorithm for the (2, k)-connectivity augmentation problem.

5.2.3 A fast splitting off algorithm

This section is dedicated to refining Algorithm 2 in order to improve its running time
from O(n4(m+n log n)) time to O(n3(m+n log n)) time. Together with Algorithm 1 and
Theorem 5.2.3, this yields an O(n3(m+n log n)) time algorithm for the (2, k)-connectivity
augmentation problem.

While Algorithm 2 executes maximal splitting offs for all pairs of edges incident to s
and therefore executes maximal splitting offs for a number of pairs which is quadratic in
n before terminating, the refined version, Algorithm 3, carefully chooses the pairs to be
split off. This allows us to terminate after a number of maximal splitting offs which is
linear in n.

In order to achieve this, Algorithm 3 maintains not only a capacitated graph that is
obtained from the minimal even extension for (2, k)-connectivity that is its input by a
series of splitting offs. It also stores the information obtained from the fact that certain
pairs are not admissible in the form of a biset X. If two edges incident to s both have
their second endvertex in the inner set of X, their splitting off is not admissible. The
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maintenance of X therefore allows us to avoid attempts of splitting offs of pairs which are
known to be nonadmissible.

During each iteration of the algorithm, we execute one or two maximal splitting offs.
If none of these maximal splitting offs delete an edge incident to s, we modify X. The
number of neighbors of s which are not covered by XO never increases. Further, after
a small constant number of iterations of our algorithm, either an edge incident to s is
deleted or the number of neighbors of s not covered by XO decreases. This allows us to
obtain the desired running time.

In the first part of this section, we show a key lemma that is needed to modify X in a
favorable way. After, we describe the algorithm in the form of a pseudocode. Finally, we
prove the correctness of the algorithm and analyze its running time.

5.2.3.1 Key lemma

This part gives a result that allows us to modify the biset X.

Lemma 5.2.10. Let (H = (V ∪ s, E), c) be a capacitated graph that is (2, k)-connected in
V for some k ≥ 2 and has a complete admissible splitting off. Let X be a horrifying biset,
u ∈ XI ∩NH(s), v ∈ NH(s)−XO, Y a biset blocking (su, sv), z ∈ (XI − YI) ∩NH(s) and
suppose that X∪Y is not horrifying. Let Z be a biset blocking (sv, sz). Then X∪Y ∪ Z is
horrifying.

Proof. By Lemma 5.2.3, we have w(X) = w(Y) = {p} for some vertex p ∈ V. Since
{u}, {v} ≠ w(X) = w(Y) and Y blocks (su, sv), we have u, v ∈ YI . Let (H

′, c′) = (H, c)−p
and d′(S) := c′(δH′(S)) for S ⊆ V − p. For S1, S2 ⊆ V − p, we use d′(S1, S2) for
c′(δH′(S1∩S2, ((V ∪s)−p)−(S1∪S2))). Observe that (H ′, c′) is k-edge-connected in V −p
since (H, c) is (2, k)-connected in V . This yields that d′(S) ≥ k for any ∅ ≠ S ⊊ V − p.

We distinguish two cases depending on where the wall of Z is located.

Case 5.2.1. w(Z) = {p}.

We show that in this case X ∪ Y ⊆ Z and hence X ∪ Y ∪ Z = Z is horrifying. For
the sake of a contradiction, suppose that (XI ∪ YI) − ZI ̸= ∅. In order to use some
symmetry arguments, let A1 = XI , A

2 = YI and A3 = ZI . Then, by z ∈ (XI ∪ZI)− YI ,
v ∈ (YI∪ZI)−XI , and the assumption that (XI∪YI)−ZI ̸= ∅, we obtain (Ai∪Aj)−Aℓ ̸= ∅
whenever {i, j, ℓ} = {1, 2, 3}. Since X,Y and Z are horrifying bisets whose wall is {p}, we
have d′(Ai) ≤ (2k + 1)− k = k + 1 for i ∈ {1, 2, 3}.

Claim 5.2.2. Aℓ ⊆ Ai ∪ Aj whenever {i, j, ℓ} = {1, 2, 3}.

Proof. Suppose that Aℓ − (Ai ∪ Aj) ̸= ∅ for some {i, j, ℓ} = {1, 2, 3}. By z ∈ XI ∩
ZI ∩ NH(s), v ∈ YI ∩ ZI ∩ NH(s) and u ∈ XI ∩ YI ∩ NH(s), we have Ai ∩ Aj ̸= ∅ and
d′(Ai ∪ Aj, Aℓ) ≥ |(Ai

I ∪ Aj
I) ∩ Aℓ

I ∩NH(s)| ≥ 2. As Ai ∩ Aj ̸= ∅ and (Ai ∪ Aj)− Aℓ ̸= ∅,
it follows that d′(Ai ∩Aj), d′((Ai ∪Aj)−Aℓ) ≥ k. Then, as d′(Ai), d′(Aj), d′(Aℓ) ≤ k+ 1,
Proposition 2.2.4(a) and (b) yield

3(k + 1)− k ≥ d′(Ai) + d′(Aj)− d′(Ai ∩ Aj) + d′(Aℓ)

≥ d′(Ai ∪ Aj) + d′(Aℓ)

= d′((Ai ∪ Aj)− Aℓ) + d′(Aℓ − (Ai ∪ Aj)) + 2d′(Ai ∪ Aj, Aℓ)

≥ 2k + 4,

a contradiction.

Claim 5.2.3. For any i ̸= j ∈ {1, 2, 3}, we have d′(Ai, Aj) ≤ 1.
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Proof. Let ℓ be the remaining element in {1, 2, 3}−{i, j}. By assumption, (Ai∪Aℓ)−Aj ̸=
∅. By Claim 5.2.2, Aℓ − (Ai ∪ Aj) = ∅. This yields Ai − Aj = ((Ai ∪ Aℓ) − Aj) − (Aℓ −
(Ai ∪ Aj)) ̸= ∅. Similarly, Aj − Ai ̸= ∅. It follows that d′(Ai − Aj), d′(Aj − Ai) ≥ k. As
d′(Ai), d

′(Aj) ≤ k + 1, Proposition 2.2.4(b) yields 2d′(Ai, Aj) = d′(Ai) + d′(Aj)− d′(Ai −
Aj)− d′(Aj − Ai) ≤ 2(k + 1)− 2k = 2.

Claim 5.2.4. d′(XI ∪ YI) ≥ k + 2.

Proof. As (H, c) has a complete admissible splitting off, there exist x, y ∈ NH(s) such
that (H ′′, c′′) := ((H, c)1z,x)

1
v,y is (2, k)-connected in V . Since z ∈ XI ∩ ZI , v ∈ YI ∩ ZI

and X,Y,Z are horrifying, we obtain x /∈ XI ∪ZI and y /∈ YI ∪ZI . Then, by Claim 5.2.2,
x, y /∈ XI ∪ YI . If x = p = y, then f(H′′,c′′)(Z) = f(Z) − 2, so, since (H ′′, c′′) is (2, k)-
connected in V and Z is horrifying, we have 2k ≤ f(H′′,c′′)(Z) = f(Z)− 2 ≤ (2k+1)− 2 =
2k − 1, a contradiction. So one of x and y belongs to V − (X ∪ Y)O and hence X ∪ Y
is a nontrivial biset with respect to V . Then, since X ∪ Y is not horrifying, we have
d′(XI ∪ YI) = f(X ∪ Y)− |w(X ∪ Y)|k ≥ (2k + 2)− k = k + 2.

By Claim 5.2.2, we have XI ∪ YI = XI ∪ YI ∪ ZI and every edge that contributes
to d′(XI ∪ YI ∪ ZI) also contributes to d′(Ai, Aj) for some i ̸= j ∈ {1, 2, 3}. By k ≥ 2,
and Claims 5.2.4 and 5.2.3, we obtain 4 ≤ k + 2 ≤ d′(XI ∪ YI) = d′(XI ∪ YI ∪ ZI) ≤∑

i ̸=j d
′(Ai, Aj) ≤ 3, a contradiction. This finishes the case.

Case 5.2.2. w(Z) ̸= {p}.

By symmetry, we may suppose that v ∈ ZI . As z ∈ XI , v ∈ NH(s) − XI ,Z blocks
(sz, sv) and w(Z) ̸= {p}, we may apply Lemma 5.2.3 to obtain that X ∪ Z is horrifying.
Since z, v ∈ (X ∪ Z)I , X ∪ Z blocks (sz, sv). As v ∈ YI , z ∈ NH(s) − YI , we may apply
Lemma 5.2.3 once more and obtain that either X∪Y∪Z is horrifying or w(X∪Z) = w(Y).
In the first case we are done, so we may suppose that w(X ∪ Z) = w(Y) = {p}. If
YI − (XI ∪ ZI) = ∅, we obtain that X ∪ Y ∪ Z = X ∪ Z is horrifying.

We may therefore suppose that YI − (XI ∪ ZI) ̸= ∅. As z ∈ (XI ∪ ZI) − YI , we
obtain that d′(YI − (XI ∪ ZI)) ≥ k and d′((XI ∪ ZI)− YI) ≥ k. Also, as X ∪ Z and Y are
horrifying bisets whose wall is {p}, we obtain d′(XI ∪ZI) ≤ k+ 1 and d′(YI) ≤ k+ 1. As
u, v ∈ (XI∪ZI)∩YI∩NH(s), Proposition 2.2.4 (b) yields 2(k+1) ≥ d′(XI∪ZI)+d′(YI) =
d′((XI ∪ ZI)− YI) + d′(YI − (XI ∪ ZI)) + 2d′(XI ∪ ZI , YI) ≥ 2k + 4, a contradiction.

5.2.3.2 Decription of the algorithm

We are now ready to describe the algorithm in the form of a pseudocode. It first is
initialized with the input capacitated graph and an empty biset X. The main part of
the algorithm consists of a while-loop in which maximal splitting offs are executed and
X is modified. In order to apply the structure found in Lemma 5.2.10, we need X to be
horrifying. Therefore, the first part of the while-loop in lines 3 to 7 is concerned with
reinitializing X with a horrifying biset if X is not horrifying before the iteration. The main
part from line 9 to 24 deals with the case when X is horrifying. Algorithm 3 then performs
up to two maximal splitting offs of pairs of edges incident to s whose choice depends on
X. If none of these two maximal splitting offs leads to the deletion of an edge incident to
s, Algorithm 3 augments X in a beneficial way. After the last iteration of the while-loop,
Algorithm 3 outputs the obtained capacitated graph after deleting s.
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Algorithm 3 Complete admissible splitting off

Input: A minimal even extension for (2, k)-connectivity (H = (V ∪ s, E), c) of a
capacitated graph (G, c0).

Output: A minimum (2, k)-connected augmentation of (G, c0).
1 X := (∅, ∅);
2 while |NH(s)| ≥ 2 do
3 if X is not horrifying then
4 let u ̸= v ∈ NH(s);
5 (H, c) = (H, c)max

u,v ;

6 if c(su), c(sv) > 0 then
7 let X be a biset blocking (su, sv);

8 else
9 let u ∈ XI ∩NH(s);

10 let v ∈ NH(s)−XO;
11 (H, c) = (H, c)max

u,v ;

12 if c(su), c(sv) > 0 then
13 let Y be a biset blocking (su, sv);
14 if X ∪ Y is horrifying then
15 X = X ∪ Y;
16 else
17 if XI ∩NH(s) ⊆ YI then
18 X = Y;
19 else
20 let z ∈ (XI − YI) ∩NH(s);
21 (H, c) = (H, c)max

v,z ;

22 if c(sv), c(sz) > 0 then
23 let Z be a biset blocking (sv, sz);
24 X = X ∪ Y ∪ Z;

25 return (H, c)− s;

5.2.3.3 Analysis of the algorithm

This last section is dedicated to the analysis of Algorithm 3. We first give a collection of
properties of the capacitated graphs and bisets obtained at intermediate steps of Algo-
rithm 3. We then conclude the correctness and the running time of Algorithm 3.

Proposition 5.2.3. The following hold for every iteration i of the while-loop starting in
line 2:

(a) All steps in iteration i are well-defined.

(b) (H, c) is (2, k)-connected in V and has a complete admissible splitting off after iter-
ation i.

(c) f(X) ≤ 2k + 1, |w(X)| ≤ 1 and XO ̸= V after iteration i.

Proof. By Lemma 5.2.9, (b) holds before iteration 1 and trivially (c) also holds. Induc-
tively, we may suppose that (a), (b) and (c) hold for all iterations 1, . . . , i − 1. We show
that they also hold for iteration i:

(a): The choice of u and v in line 4 is justified by the fact that the while-condition
in line 2 was satisfied. If X is horrifying, the choice of u in line 9 is justified and Lemma
5.2.4 justifies the choice of v in line 10. The choice of z in line 20 is justified by the fact
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that the if-condition in line 17 was not satisfied. The horrifying bisets in lines 7,13 and
23 exist by Lemma 5.2.2.

(b): It follows immediately from the construction that c(δH(s)) always remains even
and (H, c) always remains (2, k)-connected in V . By Lemma 5.2.9, no obstacle in (H, c)
can ever be created. Now Theorem 5.2.2 yields that (H, c) has a complete admissible
splitting off after iteration i.

(c): As splitting offs do not increase f , it suffices to prove that X either remains
unchanged or is horrifying after iteration i. First suppose that the if-condition in line 3
is satisfied. If the if-condition in line 6 is not satisfied, X remains unchanged. Otherwise,
X is replaced by a horrifying biset in line 7.

Now suppose that the else-case starting in line 8 is executed. If the if-condition in
line 12 is not satisfied, X remains unchanged, so suppose otherwise. If the if-condition in
line 14 is satisfied, X is replaced by a horrifying biset in line 15, so suppose otherwise. If
the if-condition in line 17 is satisfied, X is replaced by a horrifying biset in line 18. So
suppose that the else-case starting in line 19 is executed. If the if-condition in line 22 is
not satisfied, X remains unchanged. Otherwise, u ∈ XI∩NH(s), v ∈ NH(s)−XO,Y blocks
(su, sv), z ∈ (XI − YI) ∩ NH(s),Z blocks (sv, sz) and X ∪ Y is not horrifying. Together
with (b), Lemma 5.2.10 yields that X∪Y∪Z is horrifying, so X is replaced by a horrifying
biset in line 24.

We now obtain the correctness of our algorithm as a simple corollary:

Theorem 5.2.4. If Algorithm 3 terminates, it outputs a minimum (2, k)-connected aug-
mentation of (G, c0).

Proof. By Theorem 5.2.2, it is sufficient to prove that Algorithm 3 executes a complete
admissible splitting off of the input capacitated graph. Let (H, c) be the current capac-
itated graph after the last iteration of the while-loop. By construction, |NH(s)| ≤ 1. If
NH(s) contains a single vertex u, by Proposition 5.2.2 (d), (su, su) is not admisible in the
input capacitated graph. As (H, c) has been obtained by admissible splitting offs, (su, su)
is neither admissible in (H, c). It follows that (H, c) does not have a complete admissible
splitting, a contradiction to Proposition 5.2.3 (b). Hence s is an isolated vertex in (H, c)
and so, by Proposition 5.2.3 (b), Algorithm 3 executed a complete admissible splitting off.

The remaining part is concerned with the running time analysis of Algorithm 3.

Theorem 5.2.5. Algorithm 3 runs in O(n3(m+ n log n)) time.

Proof. Obviously the initialization of Algorithm 3 and the final output can be executed
efficiently. Also, it follows from Lemma 5.2.8 and the fact that we can check in O(m)
time whether a given biset is horrifying that every iteration of the while-loop starting in
line 2 can be executed in O(n2(m + n log n)) time. It remains to show that the while-
loop runs a linear number of times. In order to do this, we define the parameter M
= |NH(s)| + |NH(s) − XO|. The decrease of M measures the progress of our algorithm.
We next prove two claims that show that M regularly decreases.

Claim 5.2.5. If in an iteration i the else-case starting in line 8 is executed, then M
decreases in iteration i.

Proof. If the if-condition in line 12 is not satisfied, |NH(s)| decreases in iteration i and X
remains unchanged, so suppose otherwise. If the if-condition in line 14 is satisfied, then
in line 15 X is replaced by a biset containing X and v leaves NH(s)−XO, so |NH(s)−XO|
decreases and NH(s) remains unchanged. Otherwise, by Lemma 5.2.3, we have w(X) =
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w(Y). Therefore, if the if-condition in line 17 is satisfied, X is replaced by Y in line 18
and Y satisfies XO ∪{v} ⊆ YO, so |NH(s)−XO| decreases and NH(s) remains unchanged.
So suppose that the else-case starting in line 19 is executed. If the if-condition in line
22 is not satisfied, |NH(s)| decreases in iteration i and X remains unchanged, so suppose
otherwise. Then in line 23 X is replaced by a biset containing X and v leaves NH(s)−XO,
so |NH(s)−XO| decreases and NH(s) remains unchanged.

Claim 5.2.6. If in an iteration i the if-condition in line 3 is satisfied, then either M
decreases in iteration i or M remains unchanged in iteration i and decreases in iteration
i+ 1.

Proof. If the if-condition in line 6 is not satisfied, |NH(s)| decreases in iteration i and
X remains unchanged, so suppose otherwise. By Proposition 5.2.3(c), |XO ∩ NH(s)| ≤ 2
before iteration i. As X is replaced by a horrifying biset in line 7, we have |XO∩NH(s)| ≥ 2
after iteration i. As NH(s) remains unchanged, M does not increase in iteration i. As X
is horrifying after iteration i, it follows that in iteration i+1 the else-case starting in line
8 is executed, so M decreases in iteration i+ 1 by Claim 5.2.5.

Claims 5.2.5 and 5.2.6 show that M never increases and decreases in at least one
of two consecutive iterations. Further observe that M is always an integer satisfying
0 ≤ M ≤ 2n. It follows that the while-loop runs at most 4n times. This finishes the
proof.
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Chapter 6

Conclusion

In this thesis, we have contributed to 3 different aspects of the theory of graph connectivity.
In the first part, we have dealt with orientations for arc-connectivity and vertex-

connecticity. For arc-connectivity, this problem setting is relatively well understood due
to Theorems 3.1.2, 3.1.3 and 3.1.6. While Theorems 3.1.2 and 3.1.3 are well integrated
into the theory of connectivity, Theorem 3.1.6 has a somewhat isolated position. Our
negative results in Theorems 3.1.19 and 3.1.20 confirmed the difficulty of relating Theorem
3.1.6 to the remaining theory. On the other hand, for Theorems 3.1.2 and 3.1.3, further
generalizations can be considered. For the main problem considered in Section 3.1.3, the
question whether this generalization exists remains open. However, we have given some
approaches, both for the positive and the negative side. Another such generalization is
the introduction of the Frank number in Section 3.1.4. Here, we have managed to develop
some theory. Nevertheless, several important questions remain open.

For vertex-connectivity, much less is known. Despite the results of Thomassen and
Durand de Gevigney, several fundamental problems are still unsolved, in particular Con-
jecture 3.2.2. With the consideration of good graphs, we deal with a new class of problems.
Even though the classes we could identify are very limited, the depth of our proofs is sig-
nificant. The identifcation of further classes of good graphs is another possible direction
of research.

In the second part, we have dealt with arborescence packings. Since Edmonds proved
Theorem 4.1.1, numerous generalizations of Theorem 4.1.1 have been developped. One of
them is the consideration of reachability arborescences instead of spanning arborescences.
We provided a new inductive method to deal with reachability arborescence packings.
This allowed for a new proof of Theorem 4.2.1 and to settle the last open case in a series
of generalizations involving mixed hypergraphs, reachability arborescences and matroid-
based packings. Further, we showed that the connection between matroid intersection
and arborescence packing that was observed by Edmonds can also be exploited in a much
more general setting. This allowed to prove Theorem 4.3.3 that deals with packings of
mixed hyperarborescences with flexible roots. Further, we considered a different way of
generalizing Theorem 4.1.1 in which an additional balance condition was imposed on the
spanning arborescences. While this problem is not tractable in general, an algorithm
certifying that the problem is FPT for the case when at least a minimum of balance is
required could be provided.

Finally, we dealt with the problem of (2, k)-connectivity augmentation. While the
properties of (2, k)-connected graphs were deeply studied by Durand de Gevigney and
Szigeti, a fast algorithm for (2, k)-connectivty augmentation was missing in their work.
Using the structure provided by them, we managed to fill this gap.

148



Bibliography

[1] R. Aharoni, C. Thomassen, Infinite, highly connected digraphs with no two arc-
disjoint spanning trees, Journal of Graph Theory, 13(1): 71-74, 1989,

[2] P. Bachmann, Analytische Zahlentheorie, Teubner, Leipzig, 1894,

[3] J. Bang-Jensen, S. Bessy, (Arc-)disjoint flows in networks, Theoretical Computer
Science, 526: 28-40, 2014,

[4] J. Bang-Jensen, A. Frank, B. Jackson, Preserving and increasing local edge-
connectivity in mixed graph, SIAM Journal on Discrete Mathematics, 8(2): 155-178,
1995,

[5] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd edi-
tion, Springer-Verlag, 2009,

[6] J. Bang-Jensen, F. Havet, A. Yeo, The complexity of finding arc-disjoint branching
flows, Discrete Applied Mathematics, 209: 16-26, 2016,

[7] J. Bang-Jensen, J. Huang, X. Zhu, Completing orientations of partially oriented
graphs, Journal of Graph Theory, 87(3): 285-304, 2018,

[8] J. Bang-Jensen, A. Yeo, Balanced branchings in digraphs, Theoretical Computer
Science, 595: 107-119, 2015,

[9] K. Bérzci, A. Frank, Packing arborescences, Lecture Notes, RIMS Kokyuroku
Bessatsu B23: Combinatorial Optimization and Discrete Algorithms, ed. S. Iwata,
1-31, 2010,
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