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Sintesi
In questa tesi studiamo alcuni sistemi lineari completi associati a divisori di
schemi di Hilbert di 2 punti su una superficie K3 proiettiva complessa con gruppo
di Picard di rango 1, e le mappe razionali indotte. Queste varietà sono chiamate
quadrati di Hilbert su superfici K3 generiche, e sono esempi di varietà irriducibili
olomorfe simplettiche (varietà IHS).

Nella prima parte della tesi, usando la teoria dei reticoli, gli operatori di
Nakajima e il modello di Lehn–Sorger, diamo una base per il sottospazio vettoriale
dell’anello di coomologia singolare a coefficienti razionali generato dalle classi di
Hodge razionali di tipo (2, 2) sul quadrato di Hilbert di una qualsiasi superficie
K3 proiettiva. In seguito sfruttiamo un teorema di Qin e Wang insieme a un
risultato di Ellingsrud, Göttsche e Lehn per ottenere una base del reticolo delle
classi di Hodge integrali di tipo (2, 2) sul quadrato di Hilbert di una qualsiasi
superficie K3 proiettiva.

Nella seconda parte della tesi studiamo il problema seguente: se X è il
quadrato di Hilbert di una superficie K3 generica che ammette un divisore
ampio D con qX(D) = 2, dove qX è la forma quadratica di Beauville–Bogomolov–
Fujiki, descrivere geometricamente la mappa razionale indotta dal sistema lineare
completo |D|. Il risultato principale della tesi mostra che tale X, tranne nel caso
del quadrato di Hilbert di una superficie quartica generica di P3, è una doppia
EPW sestica, cioè il ricoprimento doppio di una EPW sestica, una ipersuperficie
normale di P5, ramificato nel suo luogo singolare. Inoltre la mappa razionale
indotta da |D| coincide proprio con tale ricoprimento doppio. Gli strumenti
principali per ottenere questo risultato sono la descrizione del reticolo delle
classi integrali di Hodge di tipo (2, 2) della prima parte della tesi e l’esistenza
di un’involuzione anti-simplettica su tali varietà per un teorema di Boissière,
Cattaneo, Nieper-Wißkirchen e Sarti.
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Abstract
In this thesis we study some complete linear systems associated to divisors of
Hilbert schemes of 2 points on complex projective K3 surfaces with Picard group
of rank 1, together with the rational maps induced. We call these varieties
Hilbert squares of generic K3 surfaces, and they are examples of irreducible
holomorphic symplectic (IHS) manifold.

In the first part of the thesis, using lattice theory, Nakajima operators and
the model of Lehn–Sorger, we give a basis for the subvector space of the singular
cohomology ring with rational coefficients generated by rational Hodge classes of
type (2, 2) on the Hilbert square of any projective K3 surface. We then exploit a
theorem by Qin and Wang together with a result by Ellingsrud, Göttsche and
Lehn to obtain a basis of the lattice of integral Hodge classes of type (2, 2) on
the Hilbert square of any projective K3 surface.

In the second part of the thesis we study the following problem: if X
is the Hilbert square of a generic K3 surface admitting an ample divisor D
with qX(D) = 2, where qX is the Beauville–Bogomolov–Fujiki form, describe
geometrically the rational map induced by the complete linear system |D|. The
main result of the thesis shows that such an X, except on the case of the Hilbert
square of a generic quartic surface of P3, is a double EPW sextic, i.e., the double
cover of an EPW sextic, a normal hypersurface of P5, ramified over its singular
locus. Moreover, the rational map induced by |D| is a morphism and coincides
exactly with this double covering. The main tools to obtain this result are the
description of integral Hodge classes of type (2, 2) of the first part of the thesis
and the existence of an anti-symplectic involution on such varieties due to a
theorem by Boissière, Cattaneo, Nieper-Wißkirchen and Sarti.

Keywords: Algebraic geometry; Hilbert schemes; Irreducible holomorphic
symplectic manifolds; Hodge classes; Automorphism group; Algebraic cycles;
Linear systems
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Résumé
Dans cette thèse, nous étudions certains systèmes linéaires complets associés
aux diviseurs des schémas de Hilbert de 2 points sur des surfaces K3 projectives
complexes avec groupe de Picard de rang 1, et les fonctions rationnelles induites.
Ces variétés sont appelées carrés de Hilbert sur des surfaces K3 génériques, et
sont un exemple de variété symplectique holomorphe irréductible (variété IHS).

Dans la première partie de la thèse, en utilisant la théorie des réseaux, les
opérateurs de Nakajima et le modèle de Lehn–Sorger, nous donnons une base
pour le sous-espace vectoriel de l’anneau de cohomologie singulière à coefficients
rationnels engendré par les classes de Hodge rationnels de type (2, 2) sur le carré
de Hilbert de toute surface K3 projective. Nous exploitons ensuite un théorème
de Qin et Wang ainsi qu’un résultat de Ellingsrud, Göttsche et Lehn pour obtenir
une base du réseau des classes de Hodge intégraux de type (2, 2) sur le carré de
Hilbert d’une surface K3 projective quelconque.

Dans la deuxième partie de la thèse, nous étudions le problème suivant :
si X est le carré de Hilbert d’une surface K3 générique tel que X admet un
diviseur ample D avec qX(D) = 2, où qX est la forme quadratique de Beauville–
Bogomolov–Fujiki, on veut décrire géométriquement la fonction rationnelle
induite par le système linéaire complet |D|. Le résultat principal de la thèse
montre qu’une telle X, sauf dans le cas du carré de Hilbert d’une surface quar-
tique générique de P3, est une double sextique EPW, c’est-à-dire le revêtement
double d’une sextique EPW, une hypersurface normale de P5, ramifié sur son
lieu singulier. En plus la fonction rationnelle induite par |D| est exactement
ce revêtement double. Les outils principaux pour obtenir ce résultat sont la
description des classes de Hodge intégraux de type (2, 2) de la première partie
de la thèse et l’existence d’une involution anti-symplectique sur de telles variétés
par un théorème de Boissière, Cattaneo, Nieper-Wißkirchen et Sarti.

Mots clés: Géométrie algébrique, Variétés symplectiques, Schémas de
Hilbert, Groupes d’automorphismes, Cycles algébriques.
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Introduction (English)

A classical result in the theory of complex projective K3 surfaces says that if a K3
surface admits an ample divisor D with D2 = 2 with respect to the intersection
product, then the complete linear system |D| is basepoint free and the morphism
that it induces is a double cover of the plane P2 ramified on a sextic curve. See
[SD74] for details.

It is natural to study a similar problem for a projective IHS (Irreducible
Holomorphic Symplectic) manifold of dimension 2n with n ≥ 2, a sort of higher
dimensional generalization of K3 surfaces. By definition an IHS manifold X is a
compact simply connected Kähler manifold with H2,0(X) ∼= C · σX generated by
a closed nowhere vanishing holomorphic (2, 0)-form σX , called symplectic form.
The complex dimension of an IHS manifold is necessarily even: the only IHS
manifolds of dimension 2 are K3 surfaces, as shown by the Enriques–Kodaira
classification of compact complex surfaces. The interest in these varieties has
been increasing thanks to the Beauville–Bogomolov decomposition theorem, see
[Bea83b]: up to a finite cover, any compact Kähler manifold with trivial first
Chern class is the product of complex tori, irreducible Calabi–Yau manifolds and
IHS manifolds. These varieties have been studied in several areas of mathematics
and physics, for instance in differential geometry, string theory and mirror
symmetry. Our approach is the one of complex algebraic geometry. In this
thesis we focus on Hilbert schemes of 2 points on a K3 surface, also known as
Hilbert squares of K3 surfaces, the first example of IHS manifold other than
K3 surfaces to be found, see [Fuj83]. We denote by S[2] the Hilbert square of a
K3 surface S. In particular we consider generic K3 surfaces, i.e., projective K3
surfaces whose Picard group is generated by the class of an ample divisor. We
say that a generic K3 surface has degree 2t if its Picard group is generated by an
ample divisor H with H2 = 2t with respect to the intersection form, where t is a
non-zero positive integer. We denote a generic K3 surface of degree 2t by S2t and
its Hilbert square by S[2]

2t . An important tool in the study of IHS manifolds is
given by lattice theory: indeed the second cohomology group H2(X,Z) of an IHS
manifold X admits an integral quadratic form qX , which is known as Beauville–
Bogomolov–Fujiki (BBF) form. This coincides with the intersection form in the
case of K3 surfaces. We denote by ( · , · ) the bilinear form induced by qX . If
X = S[2] is the Hilbert square of a K3 surface S, then H2(X,Z) together with qX
is a lattice of rank rk(H2(X,Z)) = 23 isomorphic to U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2〉,
where U is the hyperbolic plane, E8(−1) is the unique negative-definite, even,
unimodular lattice of rank 8, and 〈−2〉 is a one-rank lattice whose quadratic
form takes value −2 on the generator which can be identified with the line
bundle δ ∈ Pic(X) such that 2δ = [E] is the class of the exceptional divisor of

9



INTRODUCTION (ENGLISH)

the Hilbert–Chow morphism S[2] → S(2), where S(2) is the quotient of S × S
by the involution (p, q) 7→ (q, p), with p, q ∈ S. Since the Picard group of an
IHS manifold, which is isomorphic to its Néron–Severi group, embeds in the
second integral cohomology group, the line bundle δ can be seen as an element
in H2(S[2],Z), which admits a decomposition of the following form:

H2(S[2],Z) = H2(S,Z)⊕ Zδ.

Similarly we have Pic(S[2]) = Pic(S)⊕ Zδ. This implies that a line bundle on S
induces a line bundle on S[2]. If S2t is a generic K3 surface with Pic(S2t) = ZH,
H2 = 2t, we denote by h ∈ Pic(S[2]

2t ) the line bundle induced by H in X := S
[2]
2t .

In particular we have Pic(X) = Zh ⊕ Zδ, with qX(h) = 2t, qX(δ) = −2 and
(h, δ) = 0.

The first problem that we study in this thesis is to determine the lattice of
integral Hodge classes of type (2, 2) on the Hilbert square of a K3 surface S,
which is defined as

H2,2(S[2],Z) := H4(S[2],Z) ∩H2,2(S[2]),

with integral bilinear form given by the cup product. Hodge classes are usually
studied in the context of the so-called Hodge conjecture: this states that given a
smooth complex projective variety Y , the subspace of H2k(Y,Q) generated by
algebraic cycles, i.e., classes which are obtained as fundamental cohomological
classes [Z] of subvarieties Z ⊂ Y , coincides with Hk,k(Y,Q), which is the set
H2k(Y,Q)∩Hk,k(Y ) of rational Hodge classes of type (k, k). The first important
result of this thesis is the following: using the theory of Nakajima operators,
see [Nak97], [Leh99], we find a basis of the lattice H2,2(S

[2]
2t ,Z), where S2t is a

generic K3 surface of degree 2t, cf. Theorem 3.3.17 and Corollary 3.4.11.

Theorem A. Let X = S
[2]
2t be the Hilbert square of a generic projective K3

surface S2t of degree 2t, and let h ∈ Pic(X) be the line bundle induced by the
ample generator of Pic(S2t). Then, denoting by c2(X) ∈ H4(X,Z) the second
Chern class of X, we have

H2,2(X,Z) = Zh2 ⊕ Z
h2 − hδ

2
⊕ Z

(
1

8
δ2 +

1

24
c2(X)

)
⊕ Zδ2,

where δ ∈ Pic(X) is the line bundle such that 2δ is the class of the exceptional
divisor of the Hilbert–Chow morphism S

[2]
2t → S

(2)
2t . Moreover, H2,2(X,Z) is an

odd lattice of discriminant disc(H2,2(X,Z)) = 84t3, and the Gram matrix in the
basis given above is the following:

12t2 6t2 2t −4t
6t2 t(3t− 1) t −2t
2t t 1 −1
−4t −2t −1 12

 .

We also find a basis of the lattice H2,2(S[2],Z) when S is any projective
K3 surface with known Picard group, cf. Theorem 3.4.12. We now present the
statement, without explaining the notation of Nakajima operators, which will be
introduced in Chapter 3.

10



INTRODUCTION (ENGLISH)

Theorem B. Let S be a projective K3 surface with Picard group of rank
rk(Pic(S)) = r. Let {b1, . . . , br} be a basis of Pic(S). Then:

(i) rk(H2,2(S[2],Z)) = (r+1)r
2 + r + 2.

(ii) A basis of H2,2(S[2],Z) is given by the following elements:

• q2(bi)|0〉, for i = 1, . . . , r,

• q1(1)q1(x)|0〉, where 1 ∈ H0(S,Z) is the unit and x ∈ H4(S,Z) is the
class of a point.

• 1
2

(
q1(bi)

2 − q2(bi)
)
|0〉, for i = 1, . . . , r,

• q1(bi)q1(bj)|0〉, for 1 ≤ i < j ≤ r,
• δ2, where δ ∈ Pic(S[2]) is the line bundle such that 2δ is the class of
the exceptional divisor of the Hilbert–Chow morphism S[2] → S(2).

Equivalently, the following is a basis of H2,2(S[2],Z):{
bibj ,

b2i − biδ
2

,
1

8
δ2 +

1

24
c2(S[2]), δ2

}
1≤i≤j≤r,

where c2(S[2]) ∈ H4(S[2],Z) is the second Chern class of S[2]. Moreover,
H2,2(S[2],Z) is an odd lattice.

Suppose now that X = S
[2]
2t is the Hilbert square of a generic K3 surface

admitting an ample divisor D with qX(D) = 2. This setting generalises to Hilbert
squares of generic K3 surfaces the one studied by Saint–Donat in [SD74], and
presented in the first lines. As a consequence of the Hirzebruch–Riemann–Roch
theorem we obtain dim(H0(X,OX(D))) = 6, cf. Theorem 3.1.9, hence the image
of the map induced by the complete linear system |D| is contained in P5. The
main problem of this thesis is the following.

Problem. Describe the base locus of the complete linear system |D|. Describe
geometrically the map ϕ|D| : X 99K P5 induced by |D|.

By a result obtained by Boissière, Cattaneo, Nieper-Wißkirchen and Sarti
in [BCNWS16], there exists an anti-symplectic involution ι which generates the
group Aut(X) of biregular automorphisms on X, and ι is such that ι∗[D] = [D] in
the Néron–Severi group NS(X). Here anti-symplectic means that ι∗σX = −σX ,
where σX ∈ H0(X,Ω2

X) is a symplectic form of X. The paper [O’G08b], where
O’Grady gives a classification, up to deformation equivalence, of numerical K3[2],
will play an important role in this thesis, in particular in Chapter 5. A numerical
K3[2] is by definition an IHS manifold M which admits an isomorphism of
abelian groups

ψ : H2(M,Z)→ H2(S[2],Z)

such that ∫
M

α4 =

∫
S[2]

ψ(α)4 for every α ∈ H2(M,Z),

where S is a K3 surface. In particular he showed that a numerical K3[2] is
deformation equivalent to one of the following.

11
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(i) An IHS manifold Z of dimension 4 carrying an anti-symplectic involution
ι : Z → Z such that the quotient Z/〈ι〉 is isomorphic to an EPW sextic
Y ⊂ P5, hence Z is a so-called double EPW sextic.

(ii) An IHS manifold Z of dimension 4 admitting a rational map f : Z 99K P5

which is birational onto its image Y , with 6 ≤ deg(Y ) ≤ 12.

Here an EPW sextic is a normal hypersurface of P5 of degree 6, first studied
by Eisenbud, Popescu and Walters in [EPW01], and a double EPW sextic is a
double cover of an EPW sextic ramified in its singular locus. O’Grady showed
that a double EPW sextic is an IHS fourfold of K3[2]-type, see [O’G06]. The
similarity between our problem and the one studied by O’Grady in [O’G08b]
is given by the fact that O’Grady proved the following: a numerical K3[2] is
deformation equivalent to an IHS manifold Z of K3[2]-type such that Pic(Z) is
generated by the class of an ample divisor H ∈ Pic(Z) with qZ(H) = 2, hence
the complete linear system |H| induces a rational map ϕ|H| : Z 99K P5.

Our strategy is to follow [O’G08b], using the anti-symplectic involution which
generates Aut(X) given by [BCNWS16] in order to get as much information
as possible on the geometry of the complete linear system. In the case studied
by O’Grady, an important result is the so-called irreducibility property of |H|,
where H ∈ Div(Z) is the ample divisor introduced above: if D1, D2 ∈ |H| are
two distinct divisors, then D1 ∩D2 is a reduced and irreducible surface. The
proof of this property is quite easy, for details see [O’G08b, Proposition 4.1]. In
our setting, we will show the following similar statement, cf. Theorem 4.6.5.

Theorem C. Let X be the Hilbert square S[2]
2t of a generic K3 surface S2t of

degree 2t. Let h ∈ Pic(X) be the line bundle induced by the ample generator
of Pic(S2t). Suppose that X admits an ample divisor D with qX(D) = 2. Let
D1, D2 ∈ |D| be two distinct divisors.

(i) If t = 2, then the surface D1 ∩D2 can be reducible. If so, this surface has
two irreducible components A and B, whose fundamental cohomological
classes in H2,2(X,Z) are the following:

[A] = 1
2h

2 − 1
4δ

2 − 1
2hδ −

1
12c2(X) ∈ H2,2(X,Z),

[B] = 1
2h

2 + 5
4δ

2 − 3
2hδ + 1

12c2(X) ∈ H2,2(X,Z).

(ii) If t 6= 2, then D1 ∩D2 is a reduced and irreducible surface.

Hence the irreducibility property is not true when X is the Hilbert square of a
generic K3 surface of degree 4, i.e., when t = 2: note that [A]+[B] = h2−2hδ+δ2,
which coincides with the square, with respect of the cup product, of the class
h − δ of the ample divisor D ∈ Div(S4) with qX(D) = 2. When it holds, the
irreducibility property is much harder to prove in our case than in the one studied
by O’Grady: the key point of the proof of Theorem C is the explicit description
of the lattice H2,2(X,Z) of Hodge classes of type (2, 2) on the Hilbert square of
a generic K3 surface given by Theorem A. Once having obtained Theorem C,
we can follow the same strategy used by O’Grady in [O’G08b] to study the
rational map ϕ|D| : S

[2]
2t 99K P5 when t 6= 2, where S2t is a generic K3 surface

of degree 2t. Let X be the Hilbert square of S2t such that X admits an ample
divisor D with qX(D) = 2, so that there is an anti-symplectic involution ι on X.

12
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One of the most interesting facts shown in this thesis is that the existence of this
anti-symplectic involution simplifies the solution of the Problem stated above
a lot, compared to the one of O’Grady: for instance, this implies that ϕ|D| is
finite of even degree on its image, cf. Theorem 4.5.11 and Corollary 4.5.12, while
in the case of O’Grady this is not necessarily true, which makes the problem be
more complicated to study. Let F := Fix(ι) be the locus of points on X fixed
by ι. Beauville showed in [Bea11] that F is a Lagrangian submanifold, hence
it is a smooth surface in our case, in particular its fundamental cohomological
class belongs to the lattice H2,2(X,Z) of integral Hodge classes. We now state
the main result of this thesis, cf. Theorem 4.5.11 and Theorem 4.6.5.

Theorem D. Let X = S
[2]
2t be the Hilbert square of a generic K3 surface S2t of

degree 2t such that X admits an ample divisor D with qX(D) = 2. Suppose that
t 6= 2. Let ι be the anti-symplectic involution which generates Aut(X) and let
F = Fix(ι) be the fixed locus. Then

[F ] = 5D2 − 1

3
c2(X) ∈ H2,2(X,Z),

where [F ] is the fundamental cohomological class of F in H2,2(X,Z). Moreover,
ϕ|D| : X → Y ⊂ P5 is a morphism, and it is a double cover of an EPW sextic
Y ⊂ P5, in particular Y = X/〈ι〉 and X is a double EPW sextic.

This solves the Problem given above. Note that t = 2 is not considered
in the statement of Theorem D. This is exactly the only value for which the
irreducibility property of |D| does not hold, as shown by Theorem C. In this case
the variety X := S

[2]
4 is the Hilbert square of a smooth complex quartic surface

of P3, and the morphism ϕ|D| : X → Y ⊂ P5 is finite of degree 6: its image Y is
isomorphic to the Grassmannian G(1,P3) of lines in P3, which is a quadric in P5.
This was studied in detail in [Bea83a], see also [BCNWS16], cf. Section 4.4.1.

The thesis is organised as follows. In Chapter 1 we recall some definitions
and results in Complex Algebraic Geometry. First of all we introduce basic
notions of positivity in Algebraic Geometry, like Weil and Cartier divisors on a
complex variety, the class group and the Picard group, ampleness and nefness
of divisors, bigness and pseudoeffectiveness of divisors, the notion of complete
linear system associated to a divisor and the rational map induced by a complete
linear system. Then we define the so-called Gysin homomorphism, which can
be seen as a push-forward map between singular cohomology groups induced
by a morphism between complex manifolds. We introduce topological Chern
classes of a complex vector bundle over a complex manifold, and we state the
Grothendieck–Riemann–Roch theorem. Then main results in lattice theory are
presented, and we define Pell equations and Pell-type equations. Finally we give
some useful properties of double covers.

In Chapter 2 we give the definition of IHS manifold, together with some
examples: we deal with K3 surfaces, recalling some important results, we see
details of the construction of the Hilbert square of a K3 surfaces and we introduce
double EPW sextics. We then summarize the main notions on deformation
theory in the context of IHS manifolds and we state some of the most important
properties and results concerning this family of varieties, for instance the local and
global Torelli theorems, the surjectivity of the period map and the construction

13
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of the Mukai flop, which is a fundamental example of birational map between
IHS manifolds. We then introduce the birational Kähler cone and the moving
cone of an IHS manifold, and we briefly present the pseudoeffective cone of cycles
on IHS manifolds of K3[n]-type. We conclude the chapter by stating, without
proofs, some useful results on IHS manifolds.

In Chapter 3 we begin by introducing Nakajima operators, following [Nak97]
and [Leh99]. We recall the Lehn–Sorger model presented in [LS03], which we
use to compute cup products in the ring H∗(S[2],Z), where we denote by S a
K3 surface, in terms of Nakajima operators. Then, using a result by Ellingsrud,
Göttsche and Lehn in [EGL01], we obtain an explicit description of the second
Chern class c2(S[2]) in H2,2(S[2],Z), which we exploit to prove Theorem A and
Theorem B. We conclude the chapter with results on integral Hodge classes of
type (3, 3) on Hilbert squares of K3 surfaces.

In Chapter 4 we introduce the main problem of the thesis, stated above.
First of all we recall the Bayer–Macrì theorem, which describes the nef cone, the
moving cone and the pseudo-effective cone of the Hilbert square of a generic K3
surface, cf. Theorem 4.1.1. We then show that the Hilbert square of a generic K3
surface is a Mori dream space, whose definition is given in Section 4.2. Following
[BCNWS16] and [DM19], we present the groups of regular automorphisms and
birational automorphisms on S[2]

2t , cf. Theorem 4.3.1 and Theorem 4.3.2. We then
describe S[2]

4 and S[2]
10 geometrically, following [Bea83a] and [O’G05] respectively,

and we see some important properties of the locus of points on an IHS manifold
fixed by an anti-symplectic involution. Let X = S

[2]
2t be the Hilbert square of a

generic K3 surface S2t such that X admits an ample divisor D with qX(D) = 2:
we show that the rational map ϕ|D| induced by the complete linear system |D|
factors through the quotient π : X → X/〈ι〉, where we denote by ι the anti-
symplectic involution which generates Aut(X), and we compute the fundamental
cohomological class in H2,2(X,Z) of F = Fix(ι), the locus of points on X fixed
by ι, cf. Theorem 4.5.11. We then finally prove Theorem C, and we briefly
discuss how to approach the more general case of a smooth birational model X
of the Hilbert square S[2]

2t of a generic K3 surface such that X admits an ample
divisor D with qX(D) = 2.

In Chapter 5, following the strategy developed by O’Grady in [O’G08b], with
remarkable simplifications, we prove Theorem D.

We conclude with Chapter 6, where we present open problems concerning
the topics studied in the thesis.

14
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Un résultat classique dans la théorie des surfaces K3 projectives complexes dit
que si une surface K3 admet un diviseur ample D avec D2 = 2 par rapport au
produit d’intersection, alors le système linéaire complet |D| a lieu de base vide
et le morphisme qu’il induit est un revêtementt double du plan P2 ramifié sur
une courbe sextique. Voir [SD74] pour plus de détails.

Il est naturel d’étudier un problème similaire pour une variété symplectique
holomorphe irréductible (IHS) projective de dimension 2n avec n ≥ 2, une sorte
de généralisation en dimension supérieure des surfaces K3. Par définition, une
variété X est IHS si elle est une variété lisse de Kähler compacte simplement
connexe avec H2,0(X) ∼= C ·σX engendré par une forme fermée holomorphe (2, 0)
jamais nulle, appelée forme symplectique. La dimension complexe d’une variété
IHS est nécessairement paire : les seules variétés IHS de dimension 2 sont des
surfaces K3, comme montré par la classification de Enriques–Kodaira des surfaces
complexes compactes. L’intérêt pour ces variétés a augmenté grâce au théorème
de décomposition de Beauville–Bogomolov, voir [Bea83b] : à revêtement fini
près, toute variété de Kähler compacte avec première classe de Chern triviale
est le produit de tores complexes, de variétés Calabi–Yau irréductibles et de
variétés IHS irréductibles. Ces variétés ont été étudiées dans plusieurs domaines
des mathématiques et de la physique, par exemple en géométrie différentielle, en
théorie des cordes et en symétrie miroir. Notre approche est celle de la géométrie
algébrique complexe. Dans cette thèse, nous nous concentrons sur les schémas
de Hilbert de 2 points sur une surface K3, également connus comme carrés de
Hilbert de surfaces K3, qui est le premier exemple de variété IHS de dimension
supérieure à 2 à avoir été trouvé, voir [Fuj83]. Si S est une surface K3, nous
désignons par S[2] son carré de Hilbert. En particulier, nous considérons des
surfaces K3 génériques, c’est-à-dire des surfaces K3 projectives dont le groupe de
Picard est engendré par la classe d’un diviseur ample. Une surface K3 générique
a degré 2t si son groupe de Picard est engendré par la classe d’un diviseur
ampleH avec H2 = 2t par rapport à la forme d’intersection, où t est un entier
positif non nul. Nous désignons par S2t une surface K3 générique de degré 2t et
son carré de Hilbert par S[2]

2t . La théorie des réseaux constitue un outil important
pour l’étude des variétés IHS : en effet, si X est une variété IHS, son deuxième
groupe de cohomologie H2(X,Z) admet une forme quadratique intégrale qX , la
forme de Beauville–Bogomolov–Fujiki (BBF). Celle-ci coïncide avec la forme
d’intersection dans le cas des surfaces K3. Nous désignons par ( · , · ) la forme
bilinéaire induite par qX . Si X = S[2] est le carré de Hilbert d’une surface
K3, alors H2(X,Z) et qX donnent lieu à un réseau de rang rk(H2(X,Z)) = 23
isomorphe à U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2〉, où U est le plan hyperbolique, E8(−1)
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est l’unique réseau unimodulaire, pair et défini-négatif de rang 8, et 〈−2〉 est un
réseau de rang 1 dont la forme quadratique prend la valeur −2 sur le générateur.
Celui-ci peut être identifié avec le fibré en droites δ ∈ Pic(X) tel que 2δ = [E] est
la classe du diviseur exceptionnel du morphisme de Hilbert–Chow S[2] → S(2),
où S(2) est le quotient de S × S sur l’involution (p, q) 7→ (q, p), avec p, q ∈ S.
Puisque le groupe de Picard d’une variété IHS, qui est isomorphe à son groupe
de Néron–Severi, se plonge dans le deuxième groupe de cohomologie intégrale, le
fibré en droites δ peut être vu comme un élément dans H2(S[2],Z), qui admet
une décomposition de la forme suivante :

H2(S[2],Z) = H2(S,Z)⊕ Zδ.

De la même manière, nous avons Pic(S[2]) = Pic(S)⊕ Zδ. Ceci montre qu’un
fibré en droites sur S induit un fibré en droites sur S[2]. Si S2t est une surface
K3 générique avec Pic(S2t) = ZH, H2 = 2t, nous désignons par h ∈ Pic(S[2]

2t )

le fibré en droites induit par H dans X := S
[2]
2t . En particulier, nous avons

Pic(X) = Zh⊕ Zδ, avec qX(h) = 2t, qX(δ) = −2 et (h, δ) = 0.
Soit S une surface K3: le premier problème que nous étudions dans cette

thèse est de déterminer le réseau des classes de Hodge intégrales de type (2, 2)
sur le carré de Hilbert de S, qui est défini comme

H2,2(S[2],Z) := H4(S[2],Z) ∩H2,2(S[2]),

où la forme bilinéaire intégrale est donnée par le produit cup. Les classes de
Hodge sont généralement étudiés dans le contexte de la conjecture de Hodge:
celle-ci dit que, étant donné une variété projective complexe lisse Y , le sous-espace
de H2k(Y,Q) engendré par les cycles algébriques, c’est-à-dire les classes qui sont
obtenues comme classes fondamentales en cohomologie [Z] des sous-variétés
Z ⊂ Y , coïncide avec Hk,k(Y,Q), qui est l’ensemble H2k(Y,Q) ∩Hk,k(Y ) des
classes de Hodge rationnels de type (k, k). Le premier résultat important de
cette thèse est le suivant : en utilisant la théorie des opérateurs de Nakajima,
voir [Nak97], [Leh99], nous trouvons une base du réseau H2,2(S

[2]
2t ,Z), où S2t est

une surface K3 générique de degré 2t, cf. Theorem 3.3.17 and Corollary 3.4.11.

Théorème A. Soit X = S
[2]
2t le carré de Hilbert d’une surface K3 projective

générique S2t de degré 2t, et soit h ∈ Pic(X) le fibré en droites induit par le
générateur de Pic(S2t). Alors, si c2(X) ∈ H4(X,Z) est la deuxième classe de
Chern de X, nous avons

H2,2(X,Z) = Zh2 ⊕ Z
h2 − hδ

2
⊕ Z

(
1

8
δ2 +

1

24
c2(X)

)
⊕ Zδ2,

où δ ∈ Pic(X) est le fibré en droites tel que 2δ est la classe du diviseur exceptionnel
du morphisme de Hilbert–Chow S

[2]
2t → S

(2)
2t . En plus, H2,2(X,Z) est un réseau

impair de discriminant disc(H2,2(X,Z)) = 84t3, et la matrice de Gram dans la
base donnée dessus est: 

12t2 6t2 2t −4t
6t2 t(3t− 1) t −2t
2t t 1 −1
−4t −2t −1 12

 .
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Nous trouvons également une base du réseau H2,2(S[2],Z) lorsque S est
une surface projective K3 quelconque, cf. Theorem 3.4.12. Nous présentons
maintenant l’énoncé, sans expliquer la notation des opérateurs de Nakajima, qui
sera introduite dans le Chapitre 3.

Théorème B. Soit S une surface projective K3 avec un groupe de Picard de
rang rk(Pic(S)) = r. Soit {b1, . . . , br} une base de Pic(S). Alors :

(i) rk(H2,2(S[2],Z)) = (r+1)r
2 + r + 2.

(ii) Une base de H2,2(S[2],Z) est donnée par les éléments suivants :

• q2(bi)|0〉, où i = 1, . . . , r,

• q1(1)q1(x)|0〉, où 1 ∈ H0(S,Z) est l’unité et x ∈ H4(S,Z) est la classe
d’un point.

• 1
2

(
q1(bi)

2 − q2(bi)
)
|0〉, où i = 1, . . . , r,

• q1(bi)q1(bj)|0〉, où 1 ≤ i < j ≤ r,
• δ2, où δ ∈ Pic(X) est le fibré en droites tel que 2δ est la classe du
diviseur exceptionnel du morphisme de Hilbert–Chow S[2] → S(2).

De façon équivalente, une base pour H2,2(S[2],Z) est donnée par:{
bibj ,

b2i − biδ
2

,
1

8

(
δ2 +

2

5
q∨X

)
, δ2

}
1≤i≤j≤r.

En plus, H2,2(S[2],Z) est un réseau impair.

Supposons maintenant que X = S
[2]
2t est le carré de Hilbert d’une surface

K3 générique qui admet un diviseur ample D avec qX(D) = 2. Il s’agit d’une
généralisation aux carrés de Hilbert de surfaces K3 génériques du problème
étudié par Saint–Donat dans [SD74] et présenté avant. Comme conséquence du
théorème de Hirzebruch–Riemann–Roch on obtient dim(H0(X,OX(D))) = 6,
cf. Theorem 3.1.9, donc l’image de la fonction induite par le système linéaire
complet |D| est contenue dans P5. Le problème principal de cette thèse est le
suivant.

Problem. Décrire le lieu de base du système linéaire complet |D|. Décrire
géométriquement la fonction ϕ|D| : X 99K P5 induite par |D|.

Par un résultat obtenu par Boissière, Cattaneo, Nieper-Wißkirchen et Sarti
dans [BCNWS16], il existe une involution anti-symplectique ι qui engendre
le groupe Aut(X) des automorphismes biréguliers sur X, et ι est telle que
ι∗[D] = [D] dans le groupe de Néron–Severi NS(X). Ici, anti-symplectique
signifie que ι∗σX = −σX , où σX ∈ H0(X,Ω2

X) est une forme symplectique
de X. L’article [O’G08b], où O’Grady donne une classification, à équivalence
par déformation près, des K3[2] numériques, jouera un rôle important dans
cette thèse, en particulier dans le Chapitre 5. Une K3[2] numérique M est par
définition une variété IHS qui admet un isomorphisme de groupes abéliens

ψ : H2(M,Z)→ H2(S[2],Z)
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tel que ∫
M

α4 =

∫
S[2]

ψ(α)4 pour tout α ∈ H2(M,Z),

où S est une surface K3. En particulier, il a montré qu’une K3[2] numérique est
équivalente par déformation à l’une des suivantes.

(i) Une variété IHS, que nous désignons par Z, de dimension 4 qui admet
une involution anti-symplectique ι : Z → Z telle que le quotient Z/〈ι〉 est
isomorphe à une sextique EPW, donc Z est une double sextique EPW.

(ii) Une variété IHS, que nous désignons par Z, de dimension 4 qui admet une
fonction rationnelle f : Z 99K P5 qui est birationnelle sur son image Y ,
avec 6 ≤ deg(Y ) ≤ 12.

Ici, une sextique EPW est une hypersurface normale de P5 de degré 6, étudiée
pour la première fois par Eisenbud, Popescu et Walters dans [EPW01], et une
double sextique EPW est un revêtement double d’une sextique EPW ramifié
dans son lieu singulier. O’Grady a montré qu’une double sextique EPW est
une variété IHS de dimension 4 de type K3[2], voir [O’G06]. La similarité entre
notre problème et celui étudié par O’Grady dans [O’G08b] est donnée par le
fait que O’Grady a prouvé le suivant : une K3[2] numérique est équivalent par
déformation à une variété IHS de type K3[2], que nous désignons par Z, tel
que Pic(Z) est engendré par la classe d’un diviseur ample H ∈ Pic(Z) avec
qZ(H) = 2, donc le système linéaire complet |H| induit une fonction rationnelle
ϕ|H| : Z 99K P5.

Notre stratégie consiste à suivre [O’G08b], en utilisant l’involution anti-
symplectique ι qui engendre Aut(X) afin d’obtenir le plus d’informations possible
sur la géométrie du système linéaire complet. Dans le cas étudié par O’Grady,
un résultat important est la propriété d’irréductibilité de |H|, où H ∈ Div(Z)
est le diviseur ample introduit ci-dessus : si D1, D2 ∈ |H| sont deux diviseurs
distincts, alors D1 ∩D2 est une surface réduite et irréductible. La preuve de
cette propriété est assez facile, voir [O’G08b, Proposition 4.1]. Dans notre cadre,
nous montrerons l’énoncé similaire suivant, cf. Theorem 4.6.5.

Théorème C. Soit X le carré de Hilbert S[2]
2t d’une surface K3 générique S2t de

degré 2t. Soit h ∈ Pic(X) le fibré en droites induit par le générateur de Pic(S2t).
Supposons que X admet un diviseur ample D avec qX(D) = 2. Soit D1, D2 ∈ |D|
deux diviseurs distincts.

(i) Si t = 2, alors la surface D1 ∩D2 peut être réductible. Si oui, cette surface
a deux composantes irréductibles A et B, dont les classes fondamentales
en cohomologie dans H2,2(X,Z) sont les suivantes :

[A] = 1
2h

2 − 1
4δ

2 − 1
2hδ −

1
12c2(X) ∈ H2,2(X,Z),

[B] = 1
2h

2 + 5
4δ

2 − 3
2hδ + 1

12c2(X) ∈ H2,2(X,Z).

(ii) Si t 6= 2, alors D1 ∩D2 est une surface réduite et irréductible.

La propriété d’irréductibilité n’est pas vraie si X est le carré de Hilbert d’une
surface K3 générique de degré 4, c’est-à-dire si t = 2 : nous remarquons que
[A] + [B] = h2− 2hδ+ δ2, qui coïncide avec le carré, par rapport au produit cup,
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de la classe h− δ du diviseur ample D ∈ Div(S4) avec qX(D) = 2. Lorsqu’elle
est vraie, la propriété d’irréductibilité est beaucoup plus difficile à prouver dans
notre cas que dans celui étudié par O’Grady : le point clé de la preuve du
Théorème C est la description explicite du réseau H2,2(X,Z) de classes de Hodge
de type (2, 2) sur le carré de Hilbert d’une surface K3 générique donné par le
Théorème A. Après avoir obtenu le Théorème C, nous pouvons suivre la même
stratégie utilisée par O’Grady dans [O’G08b] pour étudier la fonction rationnelle
ϕ|D| : S

[2]
2t 99K P5 quand t 6= 2, où S2t est une surface K3 générique de degré 2t.

Soit X le carré de Hilbert de S2t tel que X admet un diviseur ample D avec
qX(D) = 2, de sorte que X admet une involution anti-symplectique ι. Un des
faits les plus intéressants montrés dans cette thèse est que l’existence de cette
involution anti-symplectique simplifie beaucoup la solution du problème énoncé
ci-dessus, par rapport à celle de O’Grady : par exemple, cela implique que ϕ|D|
est fini de degré pair sur son image, cf. Theorem 4.5.11 et Corollary 4.5.12, alors
que dans le cas de O’Grady ce n’est pas nécessairement vrai, ce qui rend le
problème plus compliqué à étudier. Nous désignons par F := Fix(ι) le lieu des
points sur X fixés par ι. Beauville a montré dans [Bea11] que F est une sous-
variété lagrangienne, donc F est une surface lisse dans notre cas, en particulier
sa classe fondamentale en cohomologie appartient à H2,2(X,Z). Le résultat
principal de cette thèse est le suivant, cf. Theorem 4.5.11 et Theorem 4.6.5.

Théorème D. Soit X = S
[2]
2t le carré de Hilbert d’une surface K3 générique S2t

de degré 2t telle que X admet un diviseur ample D avec qX(D) = 2. Supposons
que t 6= 2. Soit ι l’involution anti-symplectique qui engendre Aut(X) et soit
F = Fix(ι) le lieu fixe. Alors

[F ] = 5D2 − 1

3
c2(X) ∈ H2,2(X,Z),

où [F ] est la classe fondamentale en cohomologie de F dans H2,2(X,Z). De
plus, ϕ|D| : X → Y ⊂ P5 est un morphisme, et c’est un revêtement double d’une
sextique EPW, en particulier Y = X/〈ι〉 et X est une double sextique EPW.

Ceci résout le problème donné ci-dessus. Nous remarquons que t = 2 n’est
pas considéré dans l’énoncé du Théorème D. C’est exactement la seule valeur
pour laquelle la propriété d’irréductibilité de |D| n’est pas vrai, comme montré
par le Théorème C. Dans ce cas, la variété X := S

[2]
4 est le carré de Hilbert d’une

surface quartique complexe lisse de P3, et le morphisme ϕ|D| : X → Y ⊂ P5 est
fini de degré 6 : son image Y est isomorphe à la Grassmannien G(1,P3) des
droites dans P3, qui est une quadrique dans P5. Ceci a été étudié en détail dans
[Bea83a], voir aussi [BCNWS16], cf. Section 4.4.1.

La thèse est organisée comme suit. Dans le Chapitre 1 nous rappelons quelques
définitions et résultats de Géométrie Algébrique Complexe. Tout d’abord, nous
introduisons les notions de base de positivité en Géométrie Algébrique, comme
les diviseurs de Weil et de Cartier sur une variété complexe, le groupe des classes
de diviseurs et le groupe de Picard, diviseurs amples et nef, diviseurs big et
pseudo-effectifs, la notion de système linéaire complet associé à un diviseur et la
fonction rationnelle induite par un système linéaire complet. Nous définissons
ensuite l’homomorphisme de Gysin, qui peut être vu comme un poussé en avant
entre groupes de cohomologie singuliers induit par un morphisme entre des
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variétés complexes. Nous introduisons les classes de Chern topologiques d’un
fibré vectoriel complexe sur une variété complexe, et nous énonçons le théorème
de Grothendieck–Riemann–Roch. On présente ensuite les principaux résultats de
la théorie des réseaux et on définit les équations de Pell et les équations de type
Pell. Enfin, nous donnons quelques propriétés utiles des revêtements doubles.

Dans le Chapitre 2, nous donnons la définition de variété IHS, ainsi que
quelques exemples : nous traitons des surfaces K3, en rappelant quelques résultats
importants, nous voyons les détails de la construction du carré de Hilbert d’une
surface K3 et nous introduisons les doubles sextiques EPW. Nous résumons
ensuite les notions principales sur la théorie de la déformation dans le contexte
des variétés IHS et nous énonçons certaines des propriétés et résultats les plus
importants concernant cette famille de variétés, par exemple les théorèmes de
Torelli, local et global, la surjectivité de la fonction des périodes et la construction
du flop de Mukai, qui est un exemple fondamental de fonction birationnelle entre
les variétés IHS. Nous introduisons ensuite le cône birationnel de Kähler et le cône
mobile d’une variété IHS, et nous présentons brièvement le cône pseudo-effectif
des cycles sur les variétés IHS de type K3[n]. Nous concluons le chapitre en
énonçant, sans preuves, quelques résultats utiles sur les variétés IHS.

Dans le Chapitre 3, nous introduisons les opérateurs de Nakajima, voir
[Nak97] et [Leh99]. Nous rappelons le modèle de Lehn–Sorger présenté dans
[LS03], que nous utilisons pour calculer les produits cup dans l’anneauH∗(S[2],Z),
où nous désignons par S une surface K3, en termes d’opérateurs de Nakajima.
Ensuite, en utilisant un résultat d’Ellingsrud, Göttsche et Lehn dans [EGL01],
nous obtenons une description explicite de la deuxième classe de Chern c2(S[2])
dans H2,2(S[2],Z), que nous utilisons pour prouver Théorème A et Théorème B.
Nous concluons le chapitre avec les classes de Hodge intégrales de type (3, 3) sur
les carrés de Hilbert des surfaces K3.

Dans le Chapitre 4 nous introduisons le problème principal de la thèse,
énoncé ci-dessus. Tout d’abord nous rappelons le théorème de Bayer–Macrì,
qui décrit le cône nef, le cône mobile et le cône pseudo-effective du carré de
Hilbert d’une surface K3 générique S2t, cf. Theorem 4.1.1. Nous montrons ensuite
que le carré de Hilbert d’une surface K3 générique est un Mori dream space,
dont la définition est donnée dans la Section 4.2. Nous présentons les groupes
d’automorphismes réguliers et d’automorphismes birationnels sur le carré de
Hilbert S[2]

2t , cf. Theorem4.3.1 et Theorem4.3.2, étudiés dans [BCNWS16] et
[DM19]. Nous décrivons ensuite géométriquement S[2]

4 et S[2]
10 , en suivant respec-

tivement [Bea83a] et [O’G05], et nous voyons quelques propriétés importantes
du lieu des points fixés par une involution anti-symplectique sur une variété IHS.
Soit X le carré de Hilbert d’une surface K3 générique S2t telle que X admet
un diviseur ample D avec qX(D) = 2 : nous montrons que ϕ|D|, la fonction
rationnelle induite par le système linéaire complet |D|, factorise par le quotient
π : X → X/〈ι〉, où nous désignons par ι l’involution anti-symplectique qui
engendre Aut(X), et nous calculons la classe fondamentale en cohomologie du
lieu fixe F = Fix(ι) de ι dans H2,2(X,Z), cf. Theorem 4.5.11. Nous prouvons
enfin Théorème C, et nous discutons brièvement de la manière d’aborder le cas
plus général du modèle birationnel X du carré de Hilbert S[2]

2t d’une surface K3
générique tel que X admet un diviseur ample D avec qX(D) = 2.

Dans le Chapitre 5, en suivant la stratégie développée par O’Grady dans
[O’G08b], avec des simplifications remarquables, nous prouvons Théorème D.
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Nous concluons avec le Chapitre 6, où nous présentons des problèmes ouverts
concernant les sujets étudiés dans la thèse.
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Chapter 1

Generalities on Complex
Algebraic Geometry

In this chapter we recall general definitions and results in Complex Algebraic
Geometry that we need in this thesis. In Section 1.1 positivity in Complex
Algebraic Geometry is studied: we introduce Weil and Cartier divisors, the
class group and the Picard group, ampleness and nefness of divisors and line
bundles, complete linear systems, bigness and pseudoeffectiveness of divisors and
line bundles. In Section 1.2 we define the Gysin homomorphism and we recall
the projection formula. In Section 1.3 we introduce topological Chern classes
of a vector bundle over a complex manifold, and we recall the Grothendieck–
Riemann–Roch theorem. In Section 1.4 we discuss basics on Lattice theory. In
Section 1.5 we define Pell equations and Pell-type equations. In Section 1.6 we
deal with double covers and their main properties.

1.1 Positivity in Algebraic Geometry
We call scheme a separated algebraic scheme of finite type over C and variety a
reduced and irreducible scheme. In this section we recall some classical definitions
and results of positivity in algebraic geometry. We will give statements for
complex varieties, even if they hold more generally for schemes. The main
references for this section are [Ful13], [Har13] and [Laz17].

1.1.1 Weil divisors and class group
We begin with the definition of Weil divisor.

Definition 1.1.1. Let X be a variety over C. A prime divisor on X is a closed
subvariety of codimension 1. A Weil divisor is an element of the free abelian
group generated by prime divisors, denoted by WDiv(X). A Weil divisor is of
the form

D =
∑
i

diZi,

where the sum is finite, the Zi’s are prime divisors and di ∈ Z. We say that D
is effective, and we write D ≥ 0, if di ≥ 0 for every i. A Weil Q-divisor is an
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element of the Q-vector space

WDivQ(X) := WDiv(X)⊗Z Q.

A Weil R-divisor is an element of the R-vector space

WDivR(X) := WDiv(X)⊗Z R.

Suppose that X is a normal variety over C. If Z ∈ WDiv(X) is a prime
divisor, then the local ring OX,Z is a DVR whose fraction field isMX(X). Thus
we can define a homomorphism

ordZ :MX(X)∗ → Z

as follows: if f = a/b, with a, b ∈ OX,Z , then ordZ(f) := v(a)− v(b), where v is
the valuation of the ring OX,Z . If X is not normal, OX,Z is not necessarily a
DVR: in this case, if a ∈ OX,Z , we set

ordZ(a) := lengthOX,Z
(
OX,Z

/
(a)

)
,

and if f ∈MX(X)∗ with f = a/b for some a, b ∈ OX,Z , then

ordZ(f) := ordZ(a)− ordZ(b).

The two definitions are equivalent for normal varieties, see [Ful13, Appendix A].
If ordZ(f) > 0 we say that f has a zero along Z of order ordZ(f), if ordZ(f) < 0
we say that f has a pole of order −ordZ(f). We can now associate to a non-zero
rational function a Weil divisor.

Definition 1.1.2. Let X be a variety over C, and f ∈ MX(X)∗. Then the
Weil divisor associated to f is

div(f) :=
∑

ordZ(f) · Z, (1.1.1)

where the sum is over all the prime divisors. A Weil divisor D ∈ WDiv(X)
is principal if D = div(f) for some f ∈ MX(X)∗. We denote by PDiv(X)
the subgroup of WDiv(X) of principal divisors. We say that two Weil divisors
D,D′ ∈WDiv(X) are linearly equivalent if D −D′ ∈ PDiv(X).

The definition of divisor associated to a non-zero rational function is well-
posed since the sum in (1.1.1) is always finite, see [Har13, Lemma II.6.1].

Definition 1.1.3. Let X be a variety over C. The class group of X is the
quotient group

Cl(X) := WDiv(X)
/
PDiv(X) . (1.1.2)

Let X be a normal variety. Then a Weil divisor D ∈ WDiv(X) defines a
coherent sheaf OX(D) on X given locally by

Γ(U,OX(D)) = {f ∈MX(X) | (D + div(f)) |U ≥ 0} ∪ {0}. (1.1.3)

This is a rank one reflexive sheaf, but in general this is not an invertible sheaf.
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1.1.2 Cartier divisors and Picard group
We now introduce Cartier divisors on a variety over C.

Definition 1.1.4. Let X be a variety over C. A Cartier divisor on X is a
global section of the quotient sheafM∗X/O∗X . We denote by Div(X) the group
of Cartier divisors on X, i.e.,

Div(X) = Γ (X,M∗X/O∗X) .

Equivalently, D ∈ Div(X) is given by {(Ui, fi)}i∈I , where {Ui}i∈I is an open
covering of X and fi ∈ Γ(Ui,M∗X) such that fi/fj ∈ Γ(Ui ∩ Uj ,O∗X). The
equation fi is called a local equation for D on Ui. We say that a Cartier divisor
D = {(Ui, fi)}i∈I is effective, and we write D ≥ 0, if fi ∈ OX(Ui) for every i ∈ I.
A Cartier divisor is principal if D = (X, f) for some f ∈MX(X)∗. We denote
by PDiv(X) the subgroup of Div(X) of principal divisors. Two Cartier divisors
D,D′ ∈ Div(X) are linearly equivalent if D −D′ ∈ PDiv(X). We call Cartier
Q-divisor an element of the Q-vector space

DivQ(X) := Div(X)⊗Z Q.

A Cartier R-divisor is an element of the R-vector space

DivR(X) := Div(X)⊗Z R.

If X is a projective variety over C one can show that

Div(X)
/
PDiv(X) ∼= Pic(X), (1.1.4)

where Pic(X) is the group of invertible sheaves of X up to isomorphisms, called
Picard group. See [Nak63, p.301] for a proof of isomorphism (1.1.4) for complex
projective varieties, and [Har13, Proposition II.6.15] for the case of integral
schemes.

Let X be a variety over C. A Cartier divisor D = {(Ui, fi)}i∈I defines a
coherent sheaf OX(D) defined locally as the OX -submodule ofM∗X generated
over Ui by f−1

i . We have the following fundamental proposition.

Proposition 1.1.5 (Proposition II.6 in [Har13]). Let X be a variety over C.
Then:

(i) For any Cartier divisor D, the sheaf OX(D) is invertible. Moreover, the
map D 7→ OX(D) gives a 1 : 1 correspondence between Cartier divisors
on X and invertible subsheaves ofMX .

(ii) OX(D1 −D2) ∼= OX(D1)⊗OX(D2)−1.

(iii) D1 ∼ D2 if and only if OX(D1) ∼= OX(D2) as abstract invertible sheaves.

1.1.3 Weil and Cartier divisors, cycle map
It is natural to wonder if there is a relation between Weil and Cartier divisors
on a variety X over C. There is a homomorphism of groups called cycle map,
defined by

Div(X)→WDiv(X), D = {(Ui, fi)}i∈I 7→
∑
Z

ordZ(fi) · Z,
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where the sum is taken over all the prime divisors on X and we consider an i ∈ I
such that Z ∩Ui 6= ∅. The cycle map is in general neither injective nor surjective.
It is injective if X is normal, see [Ful13, Example 2.1.1], so Cartier divisors on
a normal variety are Weil divisors which are locally everywhere represented by
a single equation. Suppose that X is locally factorial, i.e., OX,x is a UFD for
every x ∈ X. Recall that a UFD is normal, see [Eis13, Proposition 4.10]. Then
the cycle map is an isomorphism, see again [Ful13, Example 2.1.1]. Moreover,
the cycle map sends principal divisors to principal divisors. Then for locally
factorial varieties we have an isomorphism

Cl(X) ∼= Pic(X),

in particular this holds for smooth projective varieties. Moreover, one can show
that a Weil divisor D ∈ WDiv(X) is Cartier if and only if the sheaf OX(D)
given in (1.1.3) is invertible. If so, the sheaves OX(D) given in (1.1.3) and in
Section 1.1.2 coincide: this happens for instance for smooth projective varieties.

1.1.4 Globally generated invertible sheaves
In this section we introduce the notion of globally generated sheaf on a smooth
projective variety. See [Har13] and [Laz17] for more general statements.

Definition 1.1.6. Let X be a smooth projective variety and let F be a sheaf
of OX -modules on X. Then we say that F is globally generated, or generated by
its global sections, if there exist {si}i∈I , with si ∈ Γ(X,F) such that {si,x}i∈I
generate Fx as a OX,x-module for every x ∈ X.

Recall that if F is a coherent sheaf on X, by [Har13, Theorem II.5.19] the
vector space Γ(X,F) is finitely generated. Note that the set of points x ∈ X such
that F is globally generated is the complement of the support of the cokernel of
the evaluation map

ev : Γ(X,F)⊗OX → F ,
thus this is an open subset. Hence F is globally generated if and only if the
evaluation map is surjective. Since the set of closed points is dense in X, it
suffices to check global generation at every closed point x ∈ X. Then similarly to
the proof of [Har13, Proposition III.5.3], by Nakayama’s lemma this is equivalent
to the surjectivity of

evx : Γ(X,F)→ Γ(X,F ⊗ C(x)),

where C(x) := OX,x/mx is the residue field of the point x ∈ X, and mx is
the maximal ideal of OX,x. Thus, if L is an invertible sheaf on X, then L is
globally generated if and only if for each closed point x ∈ X there exists a global
section s ∈ Γ(X,L) which does not vanish on the point x, i.e., evx(s) 6= 0 in
Γ(X,L ⊗ C(x)) ∼= C(x). From now on we will write s(x) for evx(s). One can
cover X with a finite number of open subsets, thanks to the Noetherianity (which
holds since X is projective), where the property above holds, so an invertible
sheaf L is globally generated if and only if for every x ∈ X there exists a global
section s ∈ Γ(X,L) which does not vanish on x.

Example 1.1.7. The sheaf OPn(1) is globally generated by the global sections
x0, . . . , xn ∈ Γ(Pn,OPn(1)), where x0, . . . , xn are the homogeneous coordinates
of Pn.
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Given a smooth projective variety X, the following theorem gives a relation
between morphisms ϕ : X → Pn and globally generated sections of an invertible
sheaf on X.

Theorem 1.1.8 (Theorem II.7.1 in [Har13]). Let X be a smooth projective
variety over C.

(i) If ϕ : X → Pn is a morphism, then ϕ∗(OPn(1)) is an invertible sheaf
generated by the global sections si = ϕ∗(xi) for i = 0, 1, . . . , n.

(ii) If L is an invertible sheaf on X globally generated by s0, . . . , sn ∈ Γ(X,L),
then there exists a unique morphism ϕ : X → Pn such that L ∼= ϕ∗(OPn(1)),
and si = ϕ∗(xi) under this isomorphism.

1.1.5 Ampleness and nefness
In this section X will be a smooth projective variety. Given two divisors
D,D′ ∈ Div(X), we say that they are numerically equivalent, and we write
D ≡ D′, if

D · C = D′ · C for every curve C ⊆ X,

where · denotes the intersection product, see [Deb13, §1.1] for details.

Definition 1.1.9. Let X be a smooth projective variety. Then we define the
Néron–Severi group of X as the quotient group

NS(X) := Div(X) /≡ .

Sometimes the Néron–Severi group is defined as the quotient group

NS(X) := Pic(X)
/
Pic0(X) ,

where Pic0(X) := H1(X,OX)
/
H1(X,Z) . The two definitions agree up to some

torsion, see [Laz17, Remark 1.1.21], in particular they coincide when one works
with rational or real coefficient. Moreover, if H2(X,Z)f denotes the torsion free
quotient group of H2(X,Z), we have

NS(X) = H2(X,Z)f ∩H1,1(X).

We can now define very ampleness and ampleness for line bundles and divisors.

Definition 1.1.10. Let X be a smooth projective variety and let L ∈ Pic(X)
be a line bundle.

(i) We say that L is very ample if there exists a closed embedding i : X ↪→ Pn
such that i∗OPn(1) ∼= L.

(ii) We say that L is ample if for every coherent sheaf F on X there exists an
integer n0 > 0 such that F ⊗ L⊗n is globally generated for every n ≥ n0.

We say that a divisor D ∈ Div(X) is very ample, respectively ample, if the line
bundle OX(D) is so.

We recall the following theorem by Cartan, Grothendieck and Serre, see
[Laz17, Theorem 1.2.6].
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Theorem 1.1.11 (Cartan–Grothendieck–Serre). Let X be a smooth projective
variety and L ∈ Pic(X) be a line bundle. The following are equivalent.

(i) L is ample.

(ii) Given a coherent sheaf F on X, there exists a positive integer m1 = m1(F)
with the following property:

Hi(X,F ⊗ L⊗m) = 0 for all i > 0, m ≥ m1(F).

(iii) There is a positive integer m3 > 0 such that L⊗m is very ample for every
m ≥ m3.

We will often use the characterisation of ampleness given by Theorem 1.1.11,
Item (iii). The following theorem gives a necessary and sufficient condition for
the ampleness of a line bundle, see [Laz17, Theorem 1.2.23].

Theorem 1.1.12 (Nakai–Moishezon criterion). Let X be a smooth projective
variety and L ∈ Pic (X) be a line bundle. Then L is ample if and only if∫

V

c1(L)dimV > 0

for every positive dimensional subvariety V ⊆ X. Equivalently a Cartier divisor
D ∈ Div (X) is ample if and only if

DdimV · V > 0

for every positive dimensional subvariety V ⊆ X.

Note that by the Nakai–Moishezon criterion the ampleness of a divisor D
depends only on its numerical class in NS(X), so ampleness can be defined in
NS(X). We now introduce nefness of line bundles and divisors.

Definition 1.1.13. Let X be a smooth projective variety. We say that a line
bundle L ∈ Pic(X) is nef, or numerically effective, if∫

C

c1(L) ≥ 0

for every curve C ⊆ X. Similarly, a Cartier divisor D on X is nef if

D · C ≥ 0

for all curves C ⊆ X.

Note that the nefness of a Cartier divisor depends only on its numerical
equivalence class in NS(X), so the notion of nefness can be defined in NS(X).
The following theorem by Kleiman shows that nef line bundles are limits of
ample line bundles, see [Laz17, Theorem 1.4.9].

Theorem 1.1.14 (Kleiman). Let X be a smooth projective variety. A line
bundle L ∈ Pic(X) is nef if and only if∫

V

c1(L)dimV ≥ 0
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for every positive dimensional subvariety V ⊆ X. Similarly a divisor D ∈ Div(X)
is nef if and only if

DdimV · V ≥ 0

for every positive dimensional subvariety V ⊆ X.

While nefness of a line bundle L, or of a divisor D, can be checked by
definition only by computing

∫
C
c1(L), respectively D ·C, for every curve C ⊆ X,

the same does not work for ampleness. An example of a smooth projective
variety X admitting a non-ample divisor D with D · C > 0 for every curve
C ⊂ X is given in [Har06, §1.10].

We now recall the following useful proposition, see [Laz17, Proposition 1.2.13,
Corollary 1.2.28, Example 1.4.4].

Proposition 1.1.15. Let X be a smooth projective variety and let L ∈ Pic(X)
be a line bundle on X.

(i) Let f : Y → X be a proper morphism.

• If L is nef, then f∗L is nef.
• If L is ample and f is finite, then f∗L is ample.

In particular, restrictions of nef bundles to closed subschemes are nef and
restrictions of ample bundles to closed subschemes are ample.

(ii) Let f : Y → X be a proper surjective morphism.

• If f∗L is nef then L is nef.
• If f∗L is ample and f is finite then L is ample.

Recall than a cone C in a vector space V over R is a subset such that for
every x ∈ C the element αx belongs to C for every α ∈ R≥0. We conclude this
section by introducing the ample cone and the nef cone of a smooth projective
variety X.

Definition 1.1.16. The ample cone of a smooth projective variety X is the
open convex cone

Amp(X) ⊆ NS(X)⊗ R

generated by classes of ample divisors. The nef cone is the convex cone

Nef(X) ⊆ NS(X)⊗ R

generated by classes of nef divisors.

As a consequence of the Kleiman’s theorem we have the following result, see
[Laz17, Theorem 1.4.23].

Theorem 1.1.17. Let X be a smooth projective variety.

(i) The nef cone of X is the closure of the ample cone of X:

Nef(X) = Amp(X).

(ii) The ample cone of X is the interior of the nef cone of X:

Amp(X) = (Nef(X))
◦
.
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We conclude this section by recalling the Kodaira vanishing theorem, see
[Laz17, Theorem 4.2.1].

Theorem 1.1.18 (Kodaira vanishing theorem). Let X be a smooth projective
variety and let A ∈ Div(X) be an ample divisor on X. Then

Hi(X,OX(KX +A)) = 0 for i > 0 ,

where KX is a canonical divisor of X.

1.1.6 Complete linear systems
In this section we introduce complete linear systems associated to a divisor on a
smooth projective variety. This will be a fundamental definition for the second
part of this thesis. As before we work over the complex field C.

Let X be a smooth projective variety and L be an invertible sheaf on X.
Given a non-zero section s ∈ Γ(X,L) of L, we recall the construction of the
effective divisor D = (s)0, called divisor of zeros of s. Over any open set U ⊆ X
where L is trivial, let ϕ : L|U

∼−→ OU be an isomorphism. Then ϕ(s) ∈ Γ(U,OU ).
As U ranges over a covering of X, the collection {U,ϕ(s)} determines an effective
Cartier divisor D on X. Indeed, ϕ is determined up to multiplication by an
element of Γ(U,O∗U ), so we get a well defined Cartier divisor. We can now state
the following result, see [Har13, Proposition II.7.7].

Proposition 1.1.19. Let X be a smooth projective variety. Let D ∈ Div(X) be
a divisor on X and let L = OX(D) be the corresponding invertible sheaf. Then:

(i) For each non-zero s ∈ Γ(X,L), the divisor of zeros (s)0 is an effective
divisor linearly equivalent to D.

(ii) Every effective divisor linearly equivalent to D is of the form (s)0 for some
s ∈ Γ(X,L).

(iii) Two sections s, s′ ∈ Γ(X,L) have the same divisor of zeros if and only if
there is a λ ∈ C∗ such that s′ = λs.

From now on we will denote the C-vector space of global sections of an
invertible sheaf L on X by H0(X,L). Note that by Proposition 1.1.19, a
divisor D ∈ Div(X) of a smooth projective variety is effective if and only if
H0(X,OX(D)) 6= 0. We can now define complete linear systems.

Definition 1.1.20. We call complete linear system on a smooth projective
variety X the set of all effective divisors linearly equivalent to some given divisor
D ∈ Div(X). We denote it by |D|. A linear system δ on X is a subset of a
complete linear system |D| which is a linear subspace for the projective space
structure of |D|, so δ corresponds to a sub-vector space V ⊆ H0(X,OX(D)),
where

V = {s ∈ H0(X,OX(D)) | (s)0 ∈ δ} ∪ {0}.

Note that a complete linear system |D| can be equal to the empty set.
Moreover, by Proposition 1.1.19 we have the following isomorphism:

|D| ∼= P(H0(X,OX(D))).
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Similarly a linear system δ is such that δ ∼= P(V ) for some sub-vector space
V ⊆ H0(X,OX(D)). Recall that the support of a divisor D ∈ Div(X) on a
smooth projective variety, denoted by Supp(D), is by definition the union of the
prime divisors appearing in D =

∑
i niDi, where D is seen as a Weil divisor.

Equivalently, it is the union of all prime divisors Z of X such that a local
equation for D, seen as a Cartier divisor, in the local ring OX,Z is not a unit.

Definition 1.1.21. Let X be a smooth projective variety, and D ∈ Div(X).
The base locus of the complete linear system |D| is the subset of X defined as

Bs|D| := {x ∈ X | s(x) = 0 for every s ∈ H0(X,OX(D))}.

Equivalently,
Bs|D| =

⋂
D′∈|D|

Supp(D′).

We say that |D| is basepoint free if Bs|D| = ∅. The divisor D is basepoint free if
|D| is basepoint free. We say that D is semiample if nD is basepoint free for
some n > 0.

Similar definitions can be given for linear systems δ on a smooth projective
variety X. We now associate to a complete linear system |D| a rational map

ϕ|D| : X 99K P
(
H0(X,OX(D))∨

)
.

Let x ∈ X \Bs|D|, then ϕ|D|(x) is by definition the hyperplane in H0(X,OX(D))
consisting of those sections vanishing at x ∈ X. Alternatively, ϕ|D| can be
described as follows. Let {s0, . . . , sn} be a basis of the complex vector space
H0(X,OX(D)). If D = {(Uα, fα)}α∈A, then the global sections si can be
represented as collections {(Uα, si,α)}α∈A, where si,α : Uα → C is a holomorphic
map and

si,α(x) =
fα
fβ

(x)si,β(x) for every x ∈ Uα ∩ Uβ .

Then, if x ∈ Uα \ Bs|D|,

ϕ|D|(x) = (s0,α(x) : · · · : sn,α(x)) . (1.1.5)

Note that the definition of ϕ|D| in (1.1.5) is well posed. Indeed, if x ∈ Uα ∩ Uβ ,
we have

(s0,α(x) : · · · : sn,α(x)) =
(
fα
fβ

(x)s0,β(x) : · · · : fαfβ (x)sn,β(x)
)

= (s0,β(x) : · · · : sn,β(x)).

In a similar way one can associate to a linear system δ on a smooth projective
variety X a rational map ϕδ. We now recall the definitions of fixed part and
movable part of a complete linear system.

Definition 1.1.22. Let X be a smooth projective variety and D ∈ Div(X) be
an effective divisor. The fixed part of the complete linear system |D| is the
greatest effective divisor F such that D′ − F ≥ 0 for every D′ ∈ |D|. The
movable part of |D| is the complete linear system |M | := |D| − F .
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Thus the fixed part of |D| is the component of codimension 1 of the base
locus Bs|D|. Note that the rational map ϕ|D| can be extended to the fixed
part of |D|, except for the points which belong to the non-divisorial component
of the base locus Bs|D| of |D|, and this extension coincides with the rational
map ϕ|M |. Indeed, assume that the fixed part F of |D| is given by the effective
divisor {(Uα, gα)}α∈A with gα ∈ OX(Uα). Then, since |M | = |D| − F , we have
si,α = gα · s′i,α for i = 0, 1, . . . , n, where s′i = {(Uα, s′i,α)}α∈A and {s′0, . . . , s′N}
is a basis of H0(X,OX(M)). Note that by definition of fixed and movable part
of the complete linear system |D|, for every x ∈ Supp(F ) there exists a global
section in H0(X,OX(M)) which does not vanish on x. Moreover, the rational
maps ϕ|M | and ϕ|D| coincide out of Supp(F ), since gα(x) 6= 0 for x ∈ X\Supp(F ),
so that (gα(x) ·s′0,α(x) : · · · : gα(x) ·s′N,α(x)) and (s′0,α(x) : · · · : s′N,α(x)) coincide
as points in the projective space. Hence the map defined by

x 7→ (s′0,α(x) : · · · : s′N,α(x))

for x ∈ Uα has indeterminacy locus of codimension ≥ 2, in particular this
coincides with ϕ|M |, where |M | is the movable part of |D|. Thus, when we
study the rational map ϕ|D| induced by a complete linear system |D|, we always
consider the rational map ϕ|M | induced by the movable part.

In general, in order to study geometric properties of a smooth projective
variety, it is useful to describe morphisms ϕ : X → Pn in some projective space.
Complete linear systems can be seen as a tool to construct rational maps. First
of all, one needs to determine the base locus of a complete linear system |D|
in order to find the indeterminacy locus of ϕ|D|. Then, one has to describe
geometrically ϕ|D|. This is the problem that we will study in Chapter 4 and in
Chapter 5 for Hilbert squares of generic K3 surfaces.

1.1.7 Bigness and pseudoeffectiveness
In this section we introduce big line bundles and big divisors, and we define the
big cone and the pseudoeffective cone on a smooth projective variety over C.
For more general statements see [Laz17, §2.2].

Definition 1.1.23. Let X be a smooth projective variety, and let D ∈ Div(X)
be a divisor. The Iitaka dimension of D is defined as

κ(D) :=

{
max
m≥1
{dim Im(ϕ|mD|)} if |mD| 6= ∅ for some m > 0,

−∞ if |mD| = ∅ for every m > 0.

The Iitaka dimension of a line bundle L ∈ Pic(X) is defined as κ(D), where
D ∈ Div(X) is such that L = OX(D). If KX is a canonical divisor of X, we say
that κ(KX) is the Kodaira dimension of X.

Definition 1.1.24. Let X be a smooth projective variety, and let L ∈ Pic(X).
We say that L is big if κ(L) = dim(X). Similarly, a divisor D ∈ Div(X) is big if
κ(D) = dim(X).

We state the following lemma by Kodaira, see [Laz17, Lemma 2.2.6].
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Proposition 1.1.25 (Kodaira’s lemma). Let X be a smooth projective variety,
and consider D ∈ Div(X) a big Cartier divisor and F ∈ Div(X) an effective
Cartier divisor. Then

H0(X,OX(mD − F )) 6= 0

for m� 0.

A consequence of Kodaira’s lemma is the following characterization of big
divisors, see [Laz17, Corollary 2.2.7].

Corollary 1.1.26. Let X be a smooth projective variety and D ∈ Div(X) be a
divisor. The following are equivalent.

(i) D is big.

(ii) For any ample divisor A on X, there exists a positive integer m > 0 and
an effective divisor N on X such that mD ∼ A+N .

(iii) For some ample divisor A on X, there exists a positive integer m > 0 and
an effective divisor N on X such that mD ∼ A+N .

(iv) There exists an ample divisor A, a positive integer m > 0, and an effective
divisor N such that mD ≡ A+N .

Note that by Corollary 1.1.26, (iv), the bigness of a divisor D on a smooth
projective variety X depends only on the numerical equivalence class of D, so
bigness can be defined in NS(X).

The following is a useful criterion to determine the bigness of nef divisors.

Theorem 1.1.27 (Theorem 2.2.16 in [Laz17]). Let X be a smooth projective
variety of dimension n and D ∈ Div(X) be a nef divisor on X. Then D is big if
and only if Dn > 0.

We now state the Kawamata–Shokurov basepoint freeness theorem for smooth
projective varieties. See [KMM87, Theorem 3.1.1] for a more general statement.

Theorem 1.1.28 (Kawamata–Shokurov basepoint freeness theorem). Let X be
a smooth projective variety and L ∈ Div(X) be a nef divisor such that L−KX
is nef and big, where KX is a canonical divisor of X. Then |mL| is basepoint
free for m� 0.

We recall the Kawamata–Viehweg vanishing theorem for smooth projective
varieties, see [Laz17, Theorem 4.3.1] for a more general statement.

Theorem 1.1.29 (Kawamata–Viehweg vanishing theorem). Let X be a smooth
projective variety and D ∈ Div(X) a nef and big Cartier divisor on X. Then

Hi(X,OX(KX +D)) = 0 for every i > 0.

We can now introduce the big cone and the pseudoeffective cone of a smooth
projective variety X.

Definition 1.1.30. Let X be a smooth projective variety. The big cone

Big(X) ⊆ NS(X)⊗ R
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is the convex cone generated by classes of big divisors. The pseudoeffective cone

Eff(X) ⊆ NS(X)⊗ R

is the closure of the convex cone generated by classes of effective divisors. A
divisor D ∈ Div(X) is pseudoeffective if its numerical class lies in Eff(X).

We conclude this section with the following theorem.

Theorem 1.1.31 (Theorem 2.2.26 in [Laz17]). Let X be a smooth projective
variety. Then the closure of the big cone coincide with the pseudoeffective cone

Big(X) = Eff(X),

and the big cone coincides with the interior of the pseudoeffective cone

Big(X) =
(
Eff(X)

)◦
.

1.2 Gysin homomorphism
In this section we work with compact complex manifolds, even if definitions and
results presented hold in a more general context. Let f : X → Y be a morphism
between compact complex manifolds. There is an induced pullback morphism
between singular cohomology groups

f∗ : Hk(Y,Z)→ Hk(X,Z),

see [Voi02, §7.3.2]. We now define the Gysin homomorphism.

Definition 1.2.1. Let f : X → Y be a morphism between compact complex
manifolds. Suppose that n = dimCX, m = dimCY and let r := m− n, where r
can be negative. Then for every k ≥ 0 we define the Gysin homomorphism

f∗ : Hk(X,Q)→ Hk+2r(Y,Q)

by setting
f∗(α) := PD−1f∗PD(α) ∈ Hk+2r(Y,Q),

where we denote by PD the Poincaré duality and f∗ in the right-hand side is
the pushforward map in singular homology.

See [Bre13, IV, §4] for details on the definition of pushforward in singular
homology. We will use the same symbol f∗ for the pushforward in homology and
the Gysin homomorphism, which can be distinguished by the context. Recall
that the pullback f∗ is compatible with the cup product, i.e.,

f∗(α ∪ β) = f∗(α) ∪ f∗(β) for every α, β ∈ H∗(Y,Z).

Moreover, if dim(X) = dim(Y ) and f is a finite morphism, the following holds:

f∗ ◦ f∗ = deg(f) · Id : Hk(Y,Z)→ Hk(Y,Z), (1.2.1)

hence f∗ ◦ f∗(α) = deg(α) · α for every α ∈ Hk(Y,Z). See [Voi02, §7.3.2] for
details. Thus we have the following result, see [Deb13, Proposition 1.10] for an
equivalent statement in the case of intersection of Cartier divisors.
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Proposition 1.2.2. Let f : X → Y be a finite surjective morphism between
compact complex manifolds X and Y . Let D1, . . . , Dr be Cartier divisors on Y
with r ≥ dim(X). Then we have∫
X

c1(OX(f∗D1))∪· · ·∪c1(OX(f∗Dr)) = deg(f)

∫
Y

c1(OY (D1))∪· · ·∪c1(OY (Dr)).

We conclude this section by recalling the projection formula. Let f : X → Y
be a morphism between compact complex manifolds. By [Bre13, p.241], the
following holds in the homology groups:

f∗(α) ∩ β = f∗(α ∩ f∗(β)), (1.2.2)

where α ∈ H∗(X,Z), β ∈ H∗(Y,Z), the map f∗ is the push-forward in homology
and ∩ is the cap product. Recall that the Poincaré duality is defined by

PD : Hk(Y,Z)→ HdimR(Y )−k(Y,Z), α 7→ [Y ] ∩ α,

where [Y ] is the fundamental class of Y . We can now show the projection formula
in cohomology.

Proposition 1.2.3 (Projection formula). Let X and Y be compact complex
manifolds and consider a morphism f : X → Y . Then

α ∪ f∗(β) = f∗(f
∗(α) ∪ β),

where f∗ is the Gysin homomorphism, α ∈ Hp(Y,Z), and β ∈ Hq(X,Z).

1.3 Chern classes
Let E → X be a complex vector bundle of rank r over a compact complex
manifold X. In this section we introduce Chern classes and the Todd class of
the vector bundle E, and we state the Grothendieck–Riemann–Roch theorem.
We begin by defining the k-th topological Chern class ck(E) ∈ H2k(X,Z) of E
and the total Chern class

c(E) := c0(E) + c1(E) + · · · ∈ H∗(X,Z).

Chern classes satisfy the following axioms.

1. If rk(E) = 1, then c(E) = 1 + c1(E).

2. (Naturality). If f : Y → X is a continuous map between topological spaces
and f∗E is the pullback vector bundle, then ck(f∗E) = f∗ck(E).

3. (Whitney sum formula). The total Chern class of the direct sum E ⊕ F of
two complex vector bundles E,F on X is

c(E ⊕ F ) = c(E) ∪ c(F ),

where ∪ denotes the cup product, hence the k-th topological Chern class
of E ⊕ F is

ck(E ⊕ F ) =

k∑
i=0

ci(E) ∪ ck−i(F ).
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Alternatively, let π : P(E)→ X be the projectivization of the rank r complex
vector bundle E, and let OP(E)(1) be the Serre line bundle over P(E). We
denote by ξ ∈ H2(P(E),Z) the Euler class of OP(E)(1). By the Leray–Hirsch
theorem, see [Hat05, Theorem 4D.1], the ring H∗(P(E),Z) has a structure of
free module over H∗(X,Z) with basis 1, ξ, . . . , ξr−1. Then the topological Chern
classes ck(E) ∈ H2k(X,Z) are defined by the following relation:

r∑
k=0

(−1)kπ∗ck(E) ∪ ξr−k = 0.

Topological Chern classes obtained in this way satisfy the axioms given above,
see [Voi02, Théorème 11.23]. Moreover, these axioms uniquely characterise
topological Chern classes of a complex vector bundle. The proof of the uniqueness
uses the splitting principle, which says that for every complex vector bundle
E → X there exists a continuous map φ : Y → X such that the pullback maps
φ∗ : H l(X,Z)→ H l(Y,Z) are injective and φ∗E is a direct sum of line bundles,
see [Voi02, Lemme 11.24]. If we denote by ct(E) the Chern polynomial

ct(E) := co(E) + c1(E)t+ c2(E)t2 + · · · ∈ H∗(X,Z)[t],

then by the splitting principle we have φ∗E ∼= ⊕iLi for some line bundles Li
over Y , thus

φ∗ct(E) =
∏
i

(1 + tc1(Li)),

and this relation determines ct(E) since φ∗ is injective on H∗(X,Z). This shows
that ci(E) = 0 for i > rk(E) and that for every complex vector bundle we can
write

ct(E) =

r∏
i=1

(1 + αit),

where the αi’s are formal variables such that the k-th elementary symmetric
polynomial in the αi’s is exactly the Chern class ck(E). The αi’s are called
Chern roots of E. We then define the exponential Chern character

ch(E) =

r∑
i=1

exp(αi) ∈ H∗(X,Z)⊗Q ∼= H∗(X,Q),

where
exp(x) = 1 + x+

1

2
x2 + . . . ,

and the Todd class of E by

td(E) =

r∏
i=1

αi
1− exp(−αi)

∈ H∗(X,Q),

where
x

1− exp(−x)
= 1 +

1

2
x+

1

12
x2 − 1

720
x4 + . . . .

These are symmetric expressions on the αi, so these can be expressed as polyno-
mials in the ci(E) with rational coefficients. One can show that

ch(E) = r + c1 + 1
2 (c21 − 2c2) + 1

6 (c31 − 3c1c2 + 3c3)

+ 1
24 (c41 − 4c21c2 + 4c1c3 + 2c22 − 4c4) + . . .
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and
td(E) = 1 + 1

2c1 + 1
12 (c21 + c2) + 1

24c1c2

− 1
720 (c41 − 4c21c2 − 3c22 − c1c3 + c4) + . . .

where ci = ci(E).

Remark 1.3.1. If 0 → E′ → E → E′′ → 0 is an exact sequence of vector
bundles on X, then the Chern roots of E are the union of the Chern roots of E′
and E′′, hence we have

ch(E) = ch(E′) + ch(E′′), td(E) = td(E′) · td(E′′).

1.3.1 Grothendieck–Riemann–Roch theorem
In this section we state the Grothendieck–Riemann–Roch theorem, following
[AH59, Theorem 1], [HA62] and [Ful13, Theorem 15.2], the last reference in the
case of Chow groups.

Let X be a scheme. We first recall the constructions of the Grothendieck
group of vector bundles on X, denoted by K(X), and of the Grothendieck group
of coherent sheaves on X, denoted by K(Coh(X)). We follow [Ful13, §15.1]. The
Grothendieck group of vector bundles K(X) over X is the group of formal finite
sums

∑
i ai[Ei], where ai ∈ Z and the E′is are vector bundles over X, modulo

the relation
[E] = [E′] + [E′′]

for every exact sequence 0→ E′ → E → E′′ → 0. Note that
∑r
i=1[Ei] = 0 for

every exact sequence

0→ E1 → E2 → · · · → Er → 0.

The tensor product of vector bundles induces a structure of ring on K(X):

[E] · [F ] := [E ⊗ F ].

Moreover, if f : Y → X is a morphism, there is an induced homomorphism

f ! : K(X)→ K(Y )

given by f !([E]) := [f∗E], where f∗E is the pullback bundle. The Grothendieck
group of coherent sheaves K(Coh(X)) on X is defined as the free abelian group
generated by isomorphism classes [F ] of coherent sheaves on X, modulo the
relation

[F ] = [F ′] + [F ′′]

for each exact sequence of coherent sheaves on X of the form

0→ F ′ → F → F ′′ → 0.

The tensor product induces a structure of K(X)-module on K(Coh(X)):

K(X)⊗K(Coh(X))→ K(Coh(X)), [E] · [F ] := [E ⊗OX F ].

If f : X → Y is a proper morphism, there is a homomorphism

f! : K(Coh(X))→ K(Coh(Y ))
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defined by f!([F ]) :=
∑
i≥0(−1)1[Rif∗F ], where Rif∗F is the Grothendieck’s

higher direct image sheaf, see [Har13, § III.8] for details. The properness of
the morphism f is required to guarantee that Rif∗F is coherent when F is
coherent, see [GD66, § III.3.2.1]. Given F a coherent sheaf on X, we denote by
F∗ := Hom(F ,OX) the classical dual of F . In view of Chapter 3, it is useful to
give another definition of the dual of F , see [HL10, §1.1] for details.

Definition 1.3.2. Let X be a scheme and F ∈ Coh(X) be a coherent sheaf.
The dual of F is

F∨ :=
∑
i

(−1)iExt i(F ,OX).

For any scheme X there is a canonical duality homomorphism

K(X)→ K(Coh(X))

which maps a vector bundle to its sheaf of sections. When X is non singular,
this duality map is an isomorphism, since for every coherent sheaf F on a non
singular X there is a finite resolution by locally free sheaves

0→ En → En−1 → · · · → E1 → E0 → F → 0,

and the inverse homomorphism is given by

K(Coh(X))→ K(X), [F ] 7→
n∑
i=0

(−1)i[Ei].

See [Ful13, B.8.3] for details. Since we will always work with smooth projective
varieties, we can identify K(X) with K(Coh(X)): given a proper morphism
f : X → Y between smooth projective varieties, the induced homomorphism f!

given above will be considered as defined on the Grothendieck groups of vector
bundles.

From now on X will be a smooth projective variety. By Remark 1.3.1 the
Chern character of a vector bundle is additive on exact sequences, so we obtain
a homomorphism

ch : K(X)→ H∗(X,Q), [E] 7→ ch(E).

Recall that the Euler characteristic of a vector bundle E over X is defined as

X (X,E) :=
∑
i≥0

(−1)idim(Hi(X,E)).

Note that the definition is well posed, since Hi(X,E) is a finite dimensional
vector space by a result of Serre, see [Har13, Theorem III.5.2]. Moreover, for
every exact sequence of vector bundles of the form

0→ E′ → E → E′′ → 0

we have X (X,E) = X (X,E′) + X (X,E′′), hence we obtain a homomorphism

X : K(X)→ Z, [E] 7→ X (X,E).

We recall the Hirzebruch–Riemann–Roch theorem, see [HBS66].
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Theorem 1.3.3 (Hirzebruch–Riemann–Roch). Let X be a smooth projective
variety and E a vector bundle over X. Denote by TX the tangent bundle of X.
Then

X (X,E) =

∫
X

ch(E) ∪ td(TX).

Hence we obtain the following homomorphism:

K(X)→ H∗(X,Q), [E] 7→ ch(E) ∪ td(TX).

We can now state the Grothendieck–Riemann–Roch theorem.

Theorem 1.3.4. Let f : X → Y be a proper morphism of smooth projective
varieties. Then for all α ∈ K(X) we have

ch(f!α) ∪ td(TY ) = f∗(ch(α) ∪ td(TX)) ∈ H∗(Y,Q),

where f∗ is the Gysin homomorphism extended Q-linearly and TX is the tangent
bundle of X.

1.4 Lattices
In this section we recall the most important definitions and results of lattice
theory that we need in the next chapters. General references on lattice theory
used are [Nik80] and [CS13], see also [Men19, §2].

Definition 1.4.1. A lattice L is a free Z-module of finite rank together with a
symmetric bilinear form b : L× L→ Z. We denote by q : L→ Z the quadratic
form q(x) := b(x, x).

Let L be a lattice of rank n, and let B := {e1, . . . , en} be a Z-basis of L. The
Gram matrix of L associated to B is the n× n symmetric matrixb(e1, e1) · · · b(e1, en)

...
. . .

...
b(en, e1) · · · b(en, en)

 .

We say that a lattice L of rank n is:

• non-degenerate if for any non-zero l ∈ L there exists l′ ∈ L such that
b(l, l′) 6= 0, equivalently, det(G) 6= 0 if G is a Gram matrix of L;

• even if b(l, l) ∈ 2Z for every l ∈ L, in particular L is even if and only if
there is a Z-basis {e1, . . . , en} such that b(ei, ei) ∈ 2Z for i = 1, . . . , n;

• odd if it is not even.

The determinant of a lattice L is the determinant of a Gram matrix G of
the lattice. This does not depend on the choice of the Gram matrix: if G
and G′ are two Gram matrices associated to two distinct Z-basis of L, then
G′ = StGS, where S is an invertible matrix with integer entries, so det(S) = ±1
and det(G′) = det(G). A lattice L is unimodular if det(L) = ±1. A sublattice of
a lattice L is a free submodule L′ ⊆ L together with the symmetric bilinear form
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b′ := b|L′×L′ . The divisibility of an element l ∈ L in a lattice L is the positive
generator of the ideal

{b(l,m) |m ∈ L} ⊂ Z.

A sublattice L′ ⊆ L is primitive if L/L′ is a free module.

Example 1.4.2. Let L be a lattice, and S ⊆ L be a subset. Then the orthogonal
of S in L, defined as

S⊥ := {l ∈ L | b(l, s) = 0 for every s ∈ S},

is a primitive sublattice of L.

The direct sum of two lattices L1 and L2 is the lattice L1⊕L2 whose bilinear
form is

b(v1 + v2, w1 + w2) := b1(v1, w1) + b2(v2, w2)

for every v1, w1 ∈ L1 and v2, w2 ∈ L2, where b1 and b2 are the bilinear forms of
L1 and L2 respectively. Note that, if M is a sublattice of L, then

M ⊕M⊥ ⊆ L

is a sublattice of maximal rank, i.e., rk(M) + rk(M⊥) = rk(L).
For a lattice L of rank n we write LR := L ⊗Z R and the bilinear form b

is extended R-bilinearly to LR, similarly q is extended to LR. If the lattice is
non-degenerate, the quadratic form q on LR ∼= Rn admits an orthonormal basis
by Sylvester’s theorem, i.e., there is an R-basis {f1, . . . , fn} of LR such that

q

(
n∑
i=1

xifi

)
= ε1x

2
1 + · · ·+ εnx

2
n with ε1, . . . , εn ∈ {±1}.

After a permutation of the vectors of the basis {f1, . . . , fn} we can assume
that εi = 1 for i = 1, . . . , l(+) and εi = −1 for i = l(+) + 1, . . . , n for some
l(+) ∈ {0, . . . , n}. If l(−) := n − l(+), the signature of L is the pair of integers
(l(+), l(−)). A non-degenerate lattice is positive definite if l(−) = 0, similarly it is
negative definite if l(+) = 0, while it is indefinite if l(+), l(−) 6= 0. We now give
some examples of lattices which will appear in the next chapters.

Example 1.4.3. If k is a non-zero integer, let 〈k〉 be the rank one lattice L = Ze
with bilinear form b(e, e) = k.

Example 1.4.4. If L is a lattice, for every non-zero integer k we denote by L(k)
the lattice obtained by taking the same Z-module and bilinear form b(k) defined
as

b(k)(v, w) := kb(v, w)

for every v, w ∈ L.

Example 1.4.5. Let U be the hyperbolic lattice, i.e., the unique unimodular
lattice of rank 2 and signature (1, 1). Its Gram matrix is the following:(

0 1
1 0

)
. (1.4.1)

39



CHAPTER 1. GENERALITIES ON COMPLEX ALGEBRAIC GEOMETRY

Example 1.4.6. Let E8 be the even unimodular lattice of signature (8, 0) whose
Gram matrix is the following:

2 −1
−1 2 −1

−1 2 −1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
−1 2


.

Equivalently, E8 is represented by the following Dynkin diagram

α1

α8

α2 α3 α4 α5 α6 α7
,

where {α1, . . . , α8} is a Z-basis of E8 and the bilinear form is described as follows:

• b(αi, αi) = 2 for every i = 1, . . . , 8;

• b(αi, αj) = 0 if the nodes αi and αj in the diagram are not linked;

• b(αi, αj) = −1 if the nodes αi and αj in the diagram are linked.

Example 1.4.7. Let E8(−1) be the lattice obtained by multiplying by −1 the
Gram matrix of E8, i.e., the lattice whose Gram matrix is the following:

−2 1
1 −2 1

1 −2 1 1
1 −2 1

1 −2 1
1 −2 1

1 −2
1 −2


. (1.4.2)

It is an even unimodular lattice of signature (0, 8).

If L and L′ are two lattices with bilinear forms b and b′ respectively, we call
morphism of lattices ϕ : L→ L′ a morphism of Z-modules such that for every
l1, l2 ∈ L we have b(l1, l2) = b′(ϕ(l1), ϕ(l2)). Note that morphisms between two
non-degenerate lattices are injective. We say that a lattice embeds primitively
in a lattice L′ if there is a morphism ϕ : L→ L′ such that ϕ(L) is a primitive
sublattice of L′. An isometry is a bijective morphism of lattices. The group of
isometries of a lattice to itself is denoted by O(L). We now recall the Smith
normal form of a matrix with integer entries, see [Smi61], which we will use for
matrices representing morphisms of lattices.

Proposition 1.4.8 (Smith normal form). Let f : L1 → L2 be a morphism of
lattices. Then there exists B1 and B2 basis of L1 and L2 such that the matrix
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which represents f is of the form

λ1 0 . . . 0 . . . 0
0 λ2 . . . 0 . . . 0
...

...
...

...
...

...
0 0 . . . λr . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . 0


.

1.4.1 Discriminant group and primitive embeddings
From now on, L will be a non-degenerate lattice. A fundamental tool in lattice
theory is the discriminant group associated to a lattice L. In order to define
it, we need to introduce the dual of a lattice L, which is L∨ := HomZ(L,Z).
Consider the following morphism of lattices

φ : L ↪→ L∨, v 7→ b(v, · ).

Since the bilinear form b is non-degenerate, φ is injective. We then obtain an
isomorphism

φQ : L⊗Q ∼−→ L∨ ⊗Q.

The restriction of φ−1
Q to L∨ gives an embedding L∨ ↪→ L⊗Q, which characterizes

the dual L∨ as

L∨ = {u ∈ L⊗Z Q | b(u, v) ∈ Z for every l ∈ L}.

We now see how to obtain a basis for the dual L∨. Let B = {v1, . . . , vn} be a
basis of L and let M be the Gram matrix associated to B. If B∨ = {v∨1 , . . . , v∨n}
is the dual basis of B, then the matrix which represents φ in the basis B and B′
is matB,B∨(φ) = M . Since M is also the matrix of φQ we have

matB∨,B(φ−1
Q ) = M−1.

Moreover, φ−1
Q represents the embedding L∨ ↪→ L⊗Q, so the columns of M−1

give a basis of L∨. Note that if we use the Smith normal form of the morphism
φ : L→ L∨ of Proposition 1.4.8, we obtain the following.

Lemma 1.4.9. Let L be a non-degenerate lattice. Then there exists a basis
{v1, . . . , vn} of L and non-zero integers λ1, . . . λn ∈ Z such that { v1λ1

, . . . , vnλn } is
a basis of L∨ ⊆ L⊗Q.

Since L ⊆ L∨ is a subgroup of maximal rank, the quotient

AL := L∨/L

is a finite group: we call it the discriminant group of L. We denote by discr(L)
the order of the discriminant group: this coincides with |det(G)|, where G is a
Gram matrix of L. We see that if AL = {0}, then L is unimodular. We say that
the lattice L is p-elementary if

AL ∼=
(

Z
pZ

)⊕k
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for a prime number p and a non-negative integer k. The length l(AL) of the
discriminant group AL is the minimal number of generators of AL. In general
the dual L∨ is not a lattice according to our definition: the bilinear form bQ
obtained on L∨ by extending Q-bilinearly the bilinear form b of L can take
non-integer values. Note that, for every x1, x2 ∈ L∨ and l1, l2 ∈ L we have

bQ(x1 + l1, x2 + l2) = bQ(x1, x2) + bQ(x1, l2) + bQ(l1, x2) + bQ(l1, l2)

≡ bQ(x1, x2) (mod Z).

Hence AL is equipped with a so-called finite bilinear form

bL : AL ×AL → Q/Z, (x̄, ȳ) 7→ bQ(x, y).

Moreover, the Q-extension of the quadratic form q : L→ Z induces a quadratic
form on AL modulo Z:

qL : AL → Q/Z, x̄ 7→ qQ(x).

If L is an even lattice, we can say more: for every x ∈ L∨ and l ∈ L we have

qQ(x+ l) = qQ(x) + qQ(l) + 2bQ(x, l) ≡ qQ(x) (mod 2Z)

Thus, if L is even, AL is equipped with a so-called finite quadratic form

qL : AL → Q/2Z, x̄ 7→ qQ(x).

Both the finite bilinear form and the finite quadratic form of AL can be repre-
sented by a matrix: if {xi}i is a system of independent generators of AL, i.e., a
basis of AL, then:

• the matrix MbL = (ai,j) with ai,j = bL(xi, xj) ∈ Q/Z represents the finite
bilinear form bL;

• the matrix MqL = (ai,j) with

ai,j =

{
bL(xi, xj) ∈ Q/Z if i 6= j

qL(xi) ∈ Q/2Z if i = j

represents the finite quadratic form qL.

We conclude this part by stating the following theorem on primitive embeddings.
The original result was obtained by Nikulin, see [Nik80, Theorem 1.14.4], but
we state it in the weaker form given in [Huy16, Theorem 14.1.12].

Theorem 1.4.10 (Theorem 14.1.12 in [Huy16]). Let L be an even, unimodular
lattice of signature (l(+), l(−)) and L′ be an even lattice of signature (l′(+), l

′
(−)).

If l′(+) < l(+), l′(−) < l(−) and

l(AL′) + 2 ≤ rk(L)− rk(L′),

then there exists a primitive embedding L′ ↪→ L which is unique up to isometries
of L.
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1.4.2 Overlattices
Let L and R be two lattices such that L ⊆ R and rk(L) = rk(R). We say
that R is an overlattice of L. The discriminant group AL of a lattice L plays
an important role in the study of the overlattices of L. Note that if R is an
overlattice of L, then L has finite index in R. We have the following lemma.

Lemma 1.4.11. Let L be a lattice and R ⊇ L be an overlattice. Then

[R : L]2 =
discr(L)

discr(R)
=
|AL|
|AR|

.

Proof. Consider the following inclusions

L→ R→ R∨ → L∨,

where the composition is the canonical inclusion of L in its dual L∨. Let BL
and BR be two basis of L and R respectively, and GL and GR be the Gram
matrices associated. Let W be the matrix which represents the inclusion L ↪→ R
in the basis BL and BR. Then the transposed matrix W t represents the inclusion
R∨ ↪→ L∨, so GL = W tGRW . Since |det(W )| is equal to the index [R : L],
and |det(GR)| and |det(GL)| are by definition the discriminants of R and L
respectively, we have

[R : L]2 =
discr(L)

discr(R)
=
|AL|
|AR|

,

as we wanted.

Let L be a lattice. We say that a subgroup G ⊆ AL is isotropic if

bL(g, g′) ≡ 0 (mod Z)

for every g, g′ ∈ G. The following result gives a relation between the overlattices
of L and the isotropic subgroups of AL.

Proposition 1.4.12 (Proposition 1.4.1, Item (a), in [Nik80]). Let L be a lattice
with discriminant group AL. For every overlattice R ⊇ L, let HR be the subgroup
HR := R/L ⊆ AL. Then the following is a bijection.

{overlattices of L} ↔ {isotropic subgroups of AL},
R 7→ HR.

Proof. We refer to [Nik80, Proposition 1.4.1,(a)]. Let π : L∨ → L∨/L = AL be
the natural projection. There is a bijection between the set of groups R such
that L ⊆ R ⊆ L∨ and the set of subgroups of AL, obtained by sending R to
HR := π(R). Now, π(R) is isotropic if and only if bL(x, y) ≡ 0 for every x, y ∈ R,
i.e., bQ(x, y) ∈ Z for every x, y ∈ R. This holds if and only if R is a lattice. We
conclude that the bijection above gives a bijection between the overlattices of L
and the isotropic subgroups of AL.

Proposition 1.4.12 says that in order to determine all the overlattices of a
lattice L, it suffices to find the subgroups of the discriminant group AL which
are isotropic. Since AL is a finite group, this shows that a lattice has a finite
number of overlattices.
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1.5 Pell equations and Pell type equations
We give a brief overview of Pell equations and Pell-type equations, which will
play an important role in Chapter 4 and in Chapter 5.

Definition 1.5.1. A Pell equation is a diophantine equation of the form

x2 − dy2 = 1,

where d ∈ Z>0 is a positive integer and x, y are variables. We denote an equation
of this form by Pd(1). A Pell-type equation is a diophantine equation of the form

x2 − dy2 = n,

where d ∈ Z>0 is a positive integer, n ∈ Z \ {0} is a non-zero integer and x, y
are variables. We denote an equation of this form by Pd(n).

We are interested in integral solutions of Pell equations and Pell-type equa-
tions. Note that if the integer d is a square d = c2, c ∈ Z, the only solutions of
the Pell equation Pd(1) are (x, y) = (±1, 0), and the Pell-type equation Pd(n)
can be written as (x+ cy)(x− cy) = n, so it can be easily solved. From now on,
we will assume that d is not a square. In this case the Pell-type equation Pd(n)
can be written as

(x+ y
√
d)(x− y

√
d) = n

in the ring Z[
√
d] defined as

Z[
√
d ] := Z[x]

/
(x2 − d) ,

where Z[x] is the ring of polynomials in the variable x with integer coefficients
and
√
d is the class

√
d := [x+ (x2 − d)] ∈ Z[x]/(x2 − d).

More concretely, Z[
√
d] can be seen as the set

Z[
√
d] = {a+ b

√
d | a, b ∈ Z}

with sum and product given by

(a+ b
√
d) + (e+ f

√
d) := (a+ e) + (b+ f)

√
d,

(a+ b
√
d) · (e+ f

√
d) := (ae+ bfd) + (af + be)

√
d.

Definition 1.5.2. The conjugate of z = x+ y
√
d ∈ Z[

√
d] is defined as

z̄ := x− y
√
d ∈ Z[

√
d],

and its norm is defined as

N(z) := zz̄ = x2 − dy2 ∈ Z.

With this notation we can rewrite the Pell equation Pd(1) and the Pell-type
equation Pd(n) respectively as

N(z) = 1, N(z) = n,

where z = x+ y
√
d.
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Definition 1.5.3. Given a Pell equation Pd(1) or a Pell-type equation Pd(n),
two solutions (X,Y ) and (X ′, Y ′) are said to be equivalent if

XX ′ − dY Y ′

n
∈ Z,

XY ′ −X ′Y
n

∈ Z.

Note that two solutions (X,Y ) and (X ′, Y ′) of a Pell-type equation Pd(n)
are equivalent if z1·z2n ∈ Z[

√
d], where z1 = X + Y

√
d and z2 = X ′ + Y ′

√
d.

Definition 1.5.4. The fundamental solution (X,Y ) in an equivalence class of
solutions is the one with smallest non-negative Y if such a solution is unique in
its class. Otherwise, there are two solutions (X,Y ), (−X,Y ), which are said to
be conjugated, with smallest non-negative Y : the fundamental solution is (X,Y )
with X > 0.

One can show that the Pell equation Pd(1) is always solvable and all its
solutions are equivalent. If z0 = a+ b

√
d is the fundamental solution, then all

the other solutions are of the form

z = ±zm0 , m ∈ Z>0.

Similarly, if (X,Y ) is a fundamental solution of a Pell-type equation Pd(n), all
other solutions (X ′, Y ′) in the same equivalence class are of the form{

X ′ = aX + dbY,

Y ′ = bX + aY,

where (a, b) is a solution of Pd(1). Equivalently, if z0 is a fundamental solution
of Pd(n) and z̃0 is the fundamental solution of Pd(1), all the other solutions
equivalent to z0 are of the form

z = ±z̃m0 · z0, m ∈ Z>0.

We now recall the definition of positive and minimal solution of a Pell-type
equation.

Definition 1.5.5. Let Pd(n) be a Pell-type equation. A solution (X,Y ) is
positive if X,Y > 0. The minimal solution of Pd(n) is the positive solution with
smallest X.

Note that a minimal solution is in particular a fundamental solution.

Remark 1.5.6. The minimal solution of the Pell equation Pt(1) coincides with
the square of the minimal solution of the negative Pell equation Pt(−1), if
this exists, i.e., if a + b

√
t ∈ Z[

√
t] is the minimal solution of N(z) = −1 and

c+ d
√
t ∈ Z[

√
t] is the minimal solution of N(z) = 1, then

c+ d
√
t = (a+ b

√
t)2 = a2 + b2 + 2ab

√
t ,

hence
a2 + tb2 = c, d = 2ab. (1.5.1)

We present the following useful result by Perron, [Per13, p.106-109], see also
[Yok94, Proposition 1], which we will use in the proof of Proposition 4.6.3.
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Proposition 1.5.7. For any positive square-free integer t 6= 2, at most only one
of the following three equations is solvable in integers:

x2 − ty2 = −1, x2 − ty2 = 2, x2 − ty2 = −2.

We conclude this section with the following elementary result, which will be
useful in the proof of Theorem 4.6.5, one of the main theorems of this thesis.

Proposition 1.5.8. Let (a, b) be the minimal solution of the Pell-type equation
Pt(−1). Then b is odd.

Proof. Suppose that b is even. Then, since a2 − tb2 = −1, we have that a2 + 1
is divisible by 4, i.e., a2 + 1 = 4X for some X ∈ Z.

• If a is even, i.e., a = 2Y for some Y ∈ Z, then 4Y 2 + 1 = 4X, which is not
possible.

• If a is odd, i.e., a = 2Y + 1 for some Y ∈ Z, then 4Y 2 + 1 + 4Y + 1 = 4X,
which gives 4(X − Y 2 − Y ) = 2, which is not possible.

We conclude that b is odd.

1.6 Double covers
Double covers will play an important role in Chapter 4 and in Chapter 5. In
this section a variety will be reduced and irreducible. We recall the definition of
double cover of a variety, and we give useful results from [BHPVdV15, §I.16, I.17]
in the case of double covers between smooth varieties.

Definition 1.6.1. Let X and Y be varieties. A morphism f : X → Y is a
double cover if it is finite of degree 2, i.e., f∗OX has rank 2, and there is an
involution ι : X → X such that f ◦ ι = f and Y ∼= X/ι.

Note that the morphism f in Definition 1.6.1 is not necessarily flat. We recall
the following remark, see [DK19, Remark 2.4] for details.

Remark 1.6.2. Let f : X → Y be a finite map of degree 2 between normal
varieties. Then the existence of an involution ι : X → X such that Y ∼= X/ι is
guaranteed, i.e., f is a double cover.

If f : X → Y is a double cover, we call branch locus the set B of points
y ∈ Y such that the cardinality of f−1(y) is 1, and ramification locus the set R
of points x ∈ X such that f(x) is a point in the ramification locus. If B is empty,
we say that f is unbranched, or unramified, or étale, otherwise we say that f is
branched, or ramified. If X and Y are smooth varieties, the morphism f is flat by
[Har13, Exercise III.9.3]. Hence by Zariski–Nagata purity theorem, see [Zar58]
and [Nag58], the branch locus is either empty or of pure codimension 1. In the
second case, B and R are divisors, called branch divisor and ramification divisor
respectively. The following Hurwitz formula holds, see [BHPVdV15, §1.16]:

ωX = π∗(ωY )⊗OX(R).

We now show how to obtain a double cover from a complex manifold Y which
is connected and which admits an effective divisor whose class in Pic(Y ) is a
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multiple of a primitive line bundle. See [BHPVdV15, §1.17] for a more general
discussion. Let Y be a connected complex manifold, and suppose that there
exists a divisor B ∈ Div(X) either effective or zero such that

OY (B) = L⊗2

for some primitive line bundle L on Y . Assume that there is a global section
s ∈ H0(Y,OY (B)) vanishing exactly along B. If B = 0, let s be the constant
function 1. We denote by L the total space of L, by p : L→ X the projection and
by t ∈ H0(L, p∗L) the tautological section, i.e., t(l) = (l, l) for every l ∈ L. Then
the zero divisor of p∗s− t2 defines an analytic subspace X in L. If B 6= 0 and B
is reduced, X is an irreducible normal analytic subspace of L, and π := p|X is a
covering of degree n branched along B. If Pic(Y ) is torsion free, then B uniquely
determines L. Moreover, X has at most singularities over singular points of B.
In particular, if B is reduced and smooth, then also X is smooth. If B = 0,
then X is connected when L is exactly of order 2 in Pic(Y ): the double cover
is unramified and determined by the torsion bundle L. We conclude with the
following two useful results, see [BHPVdV15, Lemma I.17.1, Lemma I.17.2] for
more general statements.

Lemma 1.6.3. Let π : X → Y be a double cover of complex manifolds branched
along a smooth divisor B and determined by L, where L⊗2 = OY (B). Let B1 be
the reduced divisor π−1(B) on X. Then:

(i) OX(B1) = π∗L.

(ii) π∗B = 2B1.

(iii) ωX = π∗(ωY ⊗ L).

Lemma 1.6.4. Let π : X → Y be as in Lemma 1.6.3. Then

π∗OX ∼= OY ⊕ L−1.
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Chapter 2

Generalities on IHS manifolds

In this Chapter we introduce varieties which will be studied in this thesis, the
IHS manifolds. In Section 2.1 we briefly recall K3 surfaces, which will turn
out to be the only example in dimension 2 of IHS manifold, and we also define
Hodge structures, which will play an important role in Chapter 3. We then
introduce IHS manifolds in Section 2.2, focusing in particular on the construction
of Hilbert squares of K3 surfaces. Moreover, we recall the Torelli theorems for
IHS manifolds, the construction of elementary Mukai flops, the definition of
birational Kähler cone. We also define double EPW sextics, which are examples
of IHS fourfolds: they will be crucial in Chapter 5. We conclude by collecting
some useful results on IHS manifolds in Section 2.3.

2.1 K3 surfaces
We give the definition of K3 surface.

Definition 2.1.1. A K3 surface is a smooth compact complex surface S whose
canonical bundle is trivial and such that H1(S,OS) = 0.

By a result of Siu, see [Siu83], every K3 surface is a Kähler manifold. Before
discussing other properties of K3 surfaces, we give some examples.

Example 2.1.2. Let S4 ⊂ P3 be a smooth quartic surface. By the adjunction
formula the canonical bundle of S4 is given by

ωS4
= (ωP3 ⊗OP3(4))|S4

= OS4
.

Moreover, by the Lefschetz hyperplane theorem, see [Voi02, §13], the surface
S4 ⊂ P3 is simply connected, which implies H1(S4,OS4

) = 0. Thus a smooth
quartic surface in P3 is a K3 surface.

Example 2.1.3. The only other complete intersections which are K3 surfaces
are S2,3 ⊂ P4 and S2,2,2 ⊂ P5, respectively the intersection of a quadric and a
cubic hypersurface in P4 and the intersection of three quadrics in P5. See [Bea96,
Example VIII.8] for details.

Example 2.1.4. Let π : S2 → P2 be a double cover ramified along a smooth
curve C6 ⊂ P2 of degree 6. By results seen in Section 1.6, the canonical bundle
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of S2 is
ωS2

= π∗(ωP2 ⊗OP2(3)) = OS2
,

and we have
H1(S2,OS2) = H1(P2, π∗(OS2))

= H1(P2,OP2 ⊕OP2(−3))

= 0,

hence S2 is a K3 surface.

Example 2.1.5. Let A be an abelian surface and consider the involution

ι : A→ A, x 7→ −x.

There are 16 points p1, . . . , p16 ∈ A which are fixed by ι. If β : A′ → A is the
blow-up of A in p1, . . . , p16, then ι gives rise to an involution ι′ on A′ which fixes
the exceptional divisors Ei = β−1(pi). One can show that the quotient variety
S := A′/〈ι′〉 is a K3 surface, called Kummer surface. For further details on this
construction, see [Bea96, Example VIII.10].

Kodaira in [Kod64] has shown that any K3 surface is a deformation of a
smooth quartic surface in P3. In particular all the K3 surfaces are diffeomorphic.
Hence a K3 surface is simply connected. Applying the Noether formula

X (OS) =
1

12
(K2

S + e(S))

in the case of a K3 surface S, where KS is a canonical divisor and e(S) is the
Euler characteristic of S, we obtain

e(S) = 12 · X (OS) = 24,

hence the second Betti number of S is b2(S) = 22. Then the Hodge diamond of
a K3 surface is the following:

1

0 0

1 20 1

0 0

1 .

Since H1(S,OS) = 0, the Picard group Pic(S) is isomorphic to the Néron–Severi
group NS(S) and it embeds in H2(S,Z). This implies in particular that

Pic(S) ∼= H1,1(S) ∩H2(S,Z).

Combining the Noether formula and the Riemann–Roch theorem, one obtains
the following.

Theorem 2.1.6 (Riemann–Roch for K3 surfaces). Let S be a K3 surface and
L ∈ Pic(S). Then

X (L) = 2 +
1

2
c1(L)2.

If L is ample, then X (L) = dim(H0(S,L)).

49



CHAPTER 2. GENERALITIES ON IHS MANIFOLDS

In particular, if C ⊂ S is an irreducible curve, then its arithmetic genus is

pa(C) = 1 +
1

2
C2.

By the Universal Coefficient Theorem H2(S,Z) is torsion free. Moreover,
H2(S,Z) has a lattice structure with product given by the intersection pairing.
One can show the following isometry of lattices:

H2(S,Z) ∼= ΛK3 := U⊕3 ⊕ E8(−1)⊕2,

where U and E8(−1) are the lattices defined respectively in Example 1.4.5 and
in Example 1.4.7. See [BHPVdV15, §VIII.3] for details. Hence H2(S,Z) has a
structure of even unimodular lattice of signature (3, 19).

2.1.1 Complete linear systems on K3 surfaces
In this section we state two important results in the theory of complete linear
systems induced by divisors on K3 surfaces. The first one characterises the base
locus of complete linear systems induced by big and nef divisors on K3 surfaces.
See [May72] for the case of complex K3 surfaces and [SD74, Proposition 8.1] for
the case of ample divisors on a K3 surface over an arbitrary algebraically closed
field of characteristic 6= 2.

Theorem 2.1.7 (Mayer, Saint–Donat). Let X be a K3 surface with a big and
nef line bundle H ∈ Pic(X). Then H has base points if and only if H = mE+C,
where m ≥ 2, E is a smooth elliptic curve, and C is a smooth rational curve,
such that (E,C) = 1. In this case, the base locus of H is exactly C.

Rieß obtained in [Rie18] a partial generalization of this result for IHS mani-
folds of dimension greater than 2, cf. Theorem 4.6.1. The following theorem gives
an explicit geometrical description of K3 surfaces admitting an ample divisor D
with D2 = 2, where the square is taken with respect to the intersection form. A
generalization of this result to the case of the Hilbert square of a K3 surface S
with Pic(S) of rank 1 will be the aim of Chapter 4 and Chapter 5.

Theorem 2.1.8 (Saint–Donat). Let X be a projective K3 surface and suppose
that there exists an ample divisor D with D2 = 2. Then ϕ|D| : X → P2 is a
double cover of P2 ramified over a smooth sextic curve.

2.1.2 Hodge structures
In this section we recall the basic definitions and results on (pure) Hodge
structures, which we will use in Chapter 3. We discuss Hodge structures after
having introduced K3 surfaces since we will see some definitions and results
linked to the theory of K3 surfaces. We refer to [Huy16, §3]. We deal with
integral and rational Hodge structures: V will denote either a free Z-module
of finite rank or a finite-dimensional vector space over Q, and VC will be the
C-vector space obtained by scalar extension. Since V is defined over Z or Q,
which are subrings of R, the complex vector space VC admits a real structure,
the complex conjugation v 7→ v.

50



CHAPTER 2. GENERALITIES ON IHS MANIFOLDS

Definition 2.1.9. Let V be a free Z-module of finite rank or a finite-dimensional
Q-vector space. A Hodge structure of weight n ∈ Z on V is given by a direct
sum decomposition of the complex vector space VC

VC =
⊕
p+q=n

V p,q

such that V p,q = V q,p.

Example 2.1.10. (i) If X is a complex projective manifold, then the torsion
free quotient group Hn(X,Z)f of the singular cohomology group Hn(X,Z)
is an integral Hodge structure of weight n, and the rational cohomology
group Hn(X,Q) is a rational Hodge structure of weight n. The direct sum
decomposition is the standard Hodge decomposition

Hn(X,C) =
⊕
p+q=n

Hp,q(X).

Here, Hp,q(X) could either be viewed as the space of de Rham classes of
bidegree (p, q) or as the Dolbeault cohomology Hq(X,ΩpX).

(ii) Let X be a compact complex manifold of even dimension 2n. We denote
by Hk(X,Z)[2n] the k-th shifted cohomology group, which is an integral
Hodge structure of weight k − 2n with the following Hodge decomposition:

Hk(X,C)[2n] =
⊕

p+q=k−2n

Hp,q(X)[2n],

where p, q ∈ {−n, 1− n, . . . , k − n} and

Hp,q(X)[2n] = Hp+n,q+n(X).

Similarly we define the rational Hodge structure Hk(X,Q)[2n] of weight
k−2n. The same construction can be performed with an integral or rational
Hodge structure V of weight n, obtaining the shifted Hodge structure V [2k]
of weight n− 2k.

For a Hodge structure V of even weight n = 2k the intersection V ∩ V k,k is
called the space of Hodge classes in V .

Definition 2.1.11. Let V be an integral Hodge structure (respectively rational
Hodge structure) of weight n. Then a sub-Hodge structure V ′ of V is given by
a Z-submodule V ′ ⊂ V (respectively Q-linear subspace) such that the Hodge
structure on V induces a Hodge structure on V ′, i.e.,

V ′C =
⊕
p+q=n

(V ′C ∩ V p,q).

We say that a sub-Hodge structure V ′ ⊂ V of an integral Hodge structure V is
primitive if V/V ′ is torsion free.

Note that the space of all Hodge classes is a sub-Hodge structure.

Example 2.1.12. Most of the standard linear algebra constructions have ana-
logues in Hodge theory.
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(i) The direct sum V ⊕W of two Hodge structures V and W of the same
weight n is a Hodge structure of weight n by setting

(V ⊕W )p,q = V p,q ⊕W p,q.

(ii) Let V and W be Hodge structures of weight n and m respectively. The
tensor product V ⊗W is a Hodge structure of weight n+m by setting

(V ⊗W )p,q =
⊕

V p1,q1 ⊗W p2,q2 ,

where the sum is over all pairs of t-uples (p1, q1), (p2, q2) with p1 + p2 = p
and q1 + q2 = q. Note that if p is given, then necessarily q = n− p.

(iii) For a Hodge structure V of weight n, the dual V ∗ := HomZ(V,Z), or
HomQ(V,Q) if V is rational, is a Hodge structure of weight −n by setting

(V ∗)−p,−q := HomC(V p,q,C) ⊂ HomC(VC,C) = V ∗C .

Since by the universal coefficient theorem there is an isomorphism

Hn(X,C)
∼−→ Hom(Hn(X,C),C),

the torsion free quotient group Hn(X,Z)f of the singular homology group
Hn(X,Z) is a Hodge structure of weight −n, and Hn(X,Q) is a rational
Hodge structure of weight −n.

(iv) If V is a Hodge structure of weight n, then the symmetric product SymkV
is a Hodge structure of weight kn, where (SymkV )p,q is the sum of all⊗

Symki(V pi,qi) with
∑
ki = k and

∑
kipi = p. For instance, if n = 1

and k = 2 we have

(Sym2V )2,0 = Sym2 V 1,0,

(Sym2V )1,1 = V 1,0 ⊗ V 0,1,

(Sym2V )0,2 = Sym2 V 0,1.

Similarly one defines the Hodge structure of the exterior product
∧k

V .

We now define the notion of morphism between Hodge structures.

Definition 2.1.13. Let V and W be Hodge structures of weight n and m
respectively. A morphism of weight k from V to W is a Z-linear, or Q-linear,
map f : V →W such that its C-linear extension satisfies

f(V p,q) ⊂W p+k,q+k.

Note that for a non-trivial f of weight k, if V has weight n then we have
necessarily m = n+ 2k.

Remark 2.1.14. A morphism f : V →W of weight k can be seen as a morphism
f : V →W [2k] of weight zero. Then we have

Homk(V,W ) = Hom0(V,W [2k]),
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where Homk(V,W ) is the space of Hodge morphisms of weight k. Note that

Homk(V,W ) = (V ∗ ⊗W ) ∩ (V ∗ ⊗W )k,k,

which is the space of Hodge classes of the Hodge structure V ∗ ⊗W , which has
weight 2k. In particular Homk(Z, V ) = V ∩ V k,k is the space of Hodge classes
in V .

We now introduce the Hodge structures of K3 type, a family of Hodge
structures of weight 2.

Definition 2.1.15. A Hodge structure of K3 type is a (rational or integral)
Hodge structure V of weight 2 with

dimC(V 2,0) = 1 and V p,q = 0 for |p− q| > 2.

Hodge structures of K3 type have clearly a link with K3 surfaces: the
cohomology groups H2(S,Z) and H2(S,Q) of a complex K3 surface S are Hodge
structures of K3 type. Any Hodge structure of K3 type contains two natural
sub-Hodge structures: the sub-Hodge structure of all Hodge classes V 1,1 ∩ V
and the transcendental lattice or transcendental part, which we now define.

Definition 2.1.16. Let V be an integral or rational Hodge structure of K3 type.
Then the transcendental lattice or transcendental part T is the minimal primitive
sub-Hodge structure

T ⊂ V with V 2,0 = T 2,0 ⊂ TC.

The primitivity, i.e., the condition that V/T is torsion free, has to be added
for integral Hodge structures to obtain the existence of the minimal sub-Hodge
structure with the property given above. The transcendental lattice T is again
of K3 type. Note that if V = H2(S,Z) with S a complex K3 surface, then

V 1,1 ∩ V = H1,1(S) ∩H2(S,Z) ∼= NS(S) ∼= Pic(S),

and we denote the transcendental lattice T by

T (S) ⊂ H2(S,Z).

In this case, there exists another characterization of T (S).

Lemma 2.1.17 (Lemma 3.3.1 in [Huy16]). The transcendental lattice T (S) of
a complex K3 surface S is the orthogonal complement of the Néron–Severi group
in the lattice H2(S,Z):

T (S) = NS(S)⊥.

Proof. We follow [Huy16, Lemma 3.3.1]. We write N := NS(S) and T := T (S).
By the properties of the intersection pairing on a K3 surface, we have

H2,0(S)⊕H0,2(S) ⊥ H1,1(S),

where the orthogonality is with respect to the intersection pairing. Then every
integral class which is orthogonal to T is in particular orthogonal to H2,0(S),
hence it is of type (1, 1). Since for a K3 surface we have the isomorphism

N ∼= H2(S,Z) ∩H1,1(S), (2.1.1)
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we obtain
T⊥ ⊆ N. (2.1.2)

By (2.1.1) we see that H2,0(S) ⊆ N⊥C . Since by definition of transcendental
lattice we have T 2,0 = H2,0(S) and T is the minimal primitive sub-Hodge
structure of H2(S,Z) with H2,0(S) = T 2,0 we obtain T ⊆ N⊥, hence taking the
orthogonal complements

(N⊥)⊥ ⊆ T⊥. (2.1.3)

Clearly we have
N ⊆ (N⊥)⊥, (2.1.4)

so (2.1.2), (2.1.3) and (2.1.4) give

T⊥ ⊆ N ⊆ (N⊥)⊥ ⊆ T⊥. (2.1.5)

Since the inclusions in (2.1.5) are equalities, we have T ⊆ (T⊥)⊥ = N⊥. If
we show that T = (T⊥)⊥, we are done. Note that TR always contains the
positive plane (T 2,0⊕T 0,2)∩TR. If T is non-degenerate, then we get T = (T⊥)⊥,
otherwise T has exactly one isotropic direction, i.e., there is exactly one element
in an orthonormal basis of TR whose square with respect to the bilinear form
is 0, since H2(S,Z) has signature (3, 19). Consider this second case. After
diagonalizing the intersection form on H2(S,R) to (1, 1, 1,−1, . . . ,−1), we can
assume that TR has basis either {e1, e2, e3 + e4} or {e1, e2, e3 + e4, e5, . . . , en}
for n ≥ 5, hence T⊥R has basis {e3 + e4, e5, . . . , e22} or {e3 + e4, en+1, . . . , e22},
respectively. Then TR = (T⊥R )⊥, which implies T = (T⊥)⊥. We conclude that
T = N⊥, as we wanted.

Note that in the proof of Lemma 2.1.17 we have obtained following equality
of C-vector spaces for a K3 surface S:

(H1,1(S))⊥ = H2,0(S)⊕H0,2(S),

where the orthogonality is taken with respect to the C-extension of the inter-
section form. We conclude this section with the following result, which will be
fundamental in Section 3.3.4.

Lemma 2.1.18 (Lemma 3.3.3 in [Huy16]). Let T be an integral or rational
Hodge structure of K3 type such that there is no proper (primitive) sub-Hodge
structure 0 6= T ′ ⊂ T of K3 type. If a : T → T is any endomorphism of the
Hodge structure with a = 0 on T 2,0, then a = 0. Similarly, if a = id on T 2,0,
then a = id.

Proof. Suppose that a is zero on T 2,0. By assumption, T ′ := Ker(a) ⊂ T is a
Hodge structure with T ′2,0 6= 0 and T/T ′ is torsion free. Hence T ′ = T and so
a = 0. If a = id on T 2,0, repeat the argument with the endomorphsim a− id.

2.1.3 Torelli theorem and surjectivity of the period map
In this section we briefly recall the Torelli theorem for K3 surfaces and the
surjectivity of the period map.

Let S be a K3 surface. Recall the isomorphism of lattices

H2(S,Z) ∼= ΛK3 := U⊕3 ⊕ E8(−1)⊕2.
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We define a marking on a K3 surface S as an isometry η : H2(S,Z) → ΛK3,
and we call marked K3 surface a couple (S, η) given by a K3 surface S and a
marking η on S. Two marked K3 surfaces (S1, η1) and (S2, η2) are isomorphic if
there exists an isomorphism f : S1 → S2 such that η2 = η1 ◦ f∗. Let S1 and S2

be two K3 surfaces: we say that an isometry H2(S1,Z)→ H2(S2,Z) is a Hodge
isometry if the isometry is an isomorphism of Hodge structures. Recall that a
closed two-form ω on a K3 surface S is called Kähler form if it is the negative
imaginary part of a Hermitian metric h = g − iω. A class in H1,1(S,R) is called
a Kähler class if it can be represented by a Kähler form. A fundamental result
in the theory of K3 surfaces is the following Torelli theorem, see [BR75].

Theorem 2.1.19 (Torelli theorem for K3 surfaces). Let S1 and S2 be two K3
surfaces. Then S1 and S2 are isomorphic if and only if there exists a Hodge
isometry H2(S1,Z)→ H2(S2,Z). Moreover, if f : H2(S1,Z)→ H2(S2,Z) is a
Hodge isometry, then there exists an isomorphism f̃ : S2 → S1 such that f̃∗ = f
if and only if f sends a Kähler class on S1 to a Kähler class on S2. If such f̃
exists, it is unique.

Let nowMΛK3
be the moduli space of marked K3 surfaces modulo isomor-

phisms, and let

Ω := {[x] ∈ P(ΛK3 ⊗ C) | qΛK3
(x) = 0, (x, x̄)ΛK3

> 0},

where qΛK3
and ( · , · )ΛK3

are the quadratic form and the bilinear form of the
lattice ΛK3. Note that Ω is an open subset of a quadric in P(ΛK3 ⊗ C). Denote
by ηC : H2(X,C) → ΛK3 ⊗ C be the C-linear extension of a marking η. We
define the period map as follows:

P :MK3 → Ω, [(X, η)] 7→ ηC(H2,0(X)).

The following result is known as the surjectivity of the period map, see [Kul77],
[Tod80], [Siu81].

Theorem 2.1.20 (Surjectivity of the period map). The period map P defined
above is surjective.

2.2 IHS manifolds

2.2.1 Definition of IHS manifold
Let X be a complex manifold. We say that a holomorphic 2-form σ ∈ H0(X,Ω2

X)
on X is non-degenerate if the induced skew-symmetric pairing TX × TX → OX
is non-degenerate at every point x ∈ X. Note that if X admits a non-degenerate
2-form σ, then the complex dimension of X is even: for the skew-symmetry
we have σx(v, w) = −σx(w, v) for every x ∈ X and v, w ∈ TxX, so the matrix
which represents the map is anti-symmetric, and the non-degeneracy implies
that this matrix is invertible, but there are no matrix of odd order with non-zero
determinant which are anti-symmetric. Moreover, if X is a complex variety
which admits a non-degenerate form and dim(X) = 2n, then σn is a nowhere
vanishing section of the canonical bundle ωX , which is then trivial. We say that
a holomorphic 2-form σ ∈ H0(X,Ω2

X) is a symplectic structure if σ is closed and
non-degenerate.

55



CHAPTER 2. GENERALITIES ON IHS MANIFOLDS

Definition 2.2.1. An irreducible holomorphic symplectic (IHS) manifold is a
simply connected compact complex Kähler manifold X such that H0(X,Ω2

X) is
generated by a symplectic structure.

The definition of IHS manifold is a generalization to higher dimensions of
the definition of K3 surface, the only example of IHS manifold of dimension 2,
as shown by the Enriques–Kodaira classification of compact complex surfaces.
There is another possible generalization of K3 surfaces, leading to the definition
of Calabi–Yau variety, which is a compact complex manifold X with trivial
canonical bundle and Hi(X,OX) = 0 for i = 1, . . . ,dim(X)− 1. The interest in
IHS manifolds has been increasing thanks to the following Beauville–Bogomolov
decomposition theorem, see [Bea83b, Théorème 2].

Theorem 2.2.2 (Beauville–Bogomolov decomposition). Let X be a compact
Kähler manifold with c1(X)R = 0. Then there exists a finite étale cover X̃ of X
such that

X̃ = T ×
∏
i

Ci ×
∏
j

Yj ,

where T is a complex torus, Ci is an irreducible Calabi–Yau variety for every i
and Yj is an IHS manifold for every j.

If X is an IHS manifold, then the C-vector space H0(X,Ωp
X) is zero if p

is odd, and it is generated by σ
p
2 if 0 ≤ p ≤ dim(X) is even, where σ is the

symplectic form, see [Bea83b, Proposition 3]. This implies in particular that the
Picard group Pic(X) is isomorphic to the Néron–Severi group NS(X), and this
embeds in the second cohomology group H2(X,Z).

We now introduce a quadratic form on the C-vector space H2(X,C), see
[GHJ12, Definition 22.10].

Definition 2.2.3. Let X be an IHS manifold with complex dimension 2n, and
denote by σ ∈ H2,0(X) a symplectic form such that

∫
X

(σσ)n = 1. We define
the Beauville–Bogomolov form q̃X on H2(X,C) as follows. If α ∈ H2(X,C) is
of the form α = λσ + β + µσ ∈ H2(X,C), with β ∈ H1,1(X), then

q̃X(α) := λµ+
n

2

∫
X

β2(σσ)n−1.

The form q̃X gives rise to a non-degenerate integral quadratic form qX on
the second singular cohomology group H2(X,Z), which is torsion free by the
Universal Coefficient Theorem. This result is due to Beauville, Bogomolov and
Fujiki, see [Bea83b] and [Fuj87].

Theorem 2.2.4 (Beauville–Bogomolov–Fujiki form). Let X be an IHS manifold
of dimension 2n. Then there exists an integral indivisible quadratic form

qX : H2(X,Z)→ Z

and cX ∈ Q>0 such that∫
X

α2n = cX
(2n)!

n!2n
qX(α)n for all α ∈ H2(X,Z).

The quadratic form qX is called Beauville–Bogomolov–Fujiki (BBF) form, and cX
is called Fujiki constant of X. Moreover, (H2(X,Z), qX) is a lattice of signature
(3, b2(X)−3), where b2(X) is the second Betti number of X, and qX is a multiple
of the form q̃X given in Definition 2.2.3.
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2.2.2 Hilbert square of a smooth complex surface
The first example of IHS manifold of dimension greater than 2 that we discuss is
given by Hilbert squares of K3 surfaces. We recall the general construction of
the Hilbert square of a smooth complex surface S, denoted by S[2].

Let ∆ ⊂ S2 be the diagonal, i.e., ∆ = {(p, p) ∈ S2 | p ∈ S}, and denote by
β : Bl∆(S2)→ S2 the blow-up in ∆. Denote by N ⊂ Bl∆(S2) the exceptional
divisor of β. Consider the following diagrams:

Bl∆(S2) S[2]

S2 S(2),

π̃

β HC

π

N E

∆ Sing(S(2)),

π̃

β HC

π

(2.2.1)

where π is the quotient with respect to the involution of S2 given by ι : S2 → S2,
(p, q)

ι7−→ (q, p), the morphism π̃ is a double cover with ramification divisor N
and branch divisor E, and HC is the so-called Hilbert–Chow morphism, i.e., the
blow-up of S(2) in its singular locus. We show explicitly that the diagrams are
commutative, that S(2) is singular in π(∆), and that every singularity is locally
the vertex of a cone. Moreover, we show that S[2] is smooth. Note that this
construction can be performed for any smooth complex surface S.

Let
ι : S × S −→ S × S , (p, q) 7→ (q, p)

be the involution which interchanges the two factors. For p, q ∈ S, let (z1, z2)
and (w1, w2) be local coordinates near these two points, considering the structure
of complex manifold of S. Then

u1 := z1 + w1, u2 := z2 + w2 , v1 := z1 − w1, v2 := z2 − w2

are local coordinates near (p, q) ∈ S2, and the first two are invariant with respect
to the involution ι, whereas the last two are anti-invariant. Locally the image of
(p, q) in S(2) := S2/ι is thus isomorphic to the subvariety of C2 × C3 ∼= C5 with
coordinates

u1, u2, u3 := v2
1 , u4 := v1v2, u5 := v2

2 (2.2.2)

defined by the quadratic equation

u3u5 = u2
4.

Hence locally near the image of a point (p, p) ∈ S2, the variety S(2) is isomorphic
to C2×Q where Q is the subvariety of C3 defined by u3u5 = u2

4, which is a cone.
Since the cone Q is singular in the point (0, 0, 0), the variety S(2) is singular
exactly in the image of the diagonal ∆ := {(p, p) ∈ S2 | p ∈ S}.

We blow up S(2) in its singular locus to obtain a smooth variety. To see that
this gives a smooth fourfold we just need to check that the blow-up of Q in the
vertex O := (0, 0, 0) is smooth. Equivalently, we check that the strict transform
of Q in the blow-up of C3 in O is smooth. This blow-up is the subvariety of
C3 × P2, with coordinates ((u3, u4, u5), (z3 : z4 : z5)), defined by the equations

uizj − ujzi = 0, 3 ≤ i, j ≤ 5. (2.2.3)
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On the open subset where z5 = 1 these equations reduce to

u3 = u5z3, u4 = u5z4, (2.2.4)

so this open subset is isomorphic to C2×C×C2 with coordinates (u1, u2, u5, z3, z4).
Substituting the equations (2.2.4) in u3u5 − u2

4 = 0 we obtain the (reducible)
equation u2

5(z3 − z2
4) = 0. The equation u5 = 0 implies u3 = u4 = 0 which

defines the exceptional divisor O×P2 of the blow up. Hence the strict transform
of Q is defined by z3 − z2

4 = 0, so this is smooth. On this open subset one has
the coordinates (u1, u2, u5, z4), note that z3 = z2

4 . Using u5 = v2
2 , u4 = v1v2

from (2.2.2) and u4 = u5z4 from (2.2.4), this open set is the closure of the image
of the rational map

C2 × C2 −→ C2 × C2 , (u1, u2, v1, v2) 7→ (u1, u2, v
2
2 , v1/v2) .

Similarly one shows the smoothness of the strict transform of Q in the other
coordinates patches.

Another way to proceed is to first blow up S × S in ∆ to obtain a fourfold
Bl∆(S2). The involution ι of S2 lifts to an involution ι̃ on Bl∆(S2): the quotient
Bl∆(S2)/ι̃ is smooth by Chevalley–Shephard–Todd theorem, see [ST54] and
[Che55], being the fixed locus E of ι̃ of codimension 1 and ι̃ a quasi-reflection.
Moreover, Bl∆(S2)/ι̃ coincides with the blow-up of S2/ι in its singular locus.
To see this, we remark that since ∆ is locally defined by v1 = v2 = 0, the blow-
up Bl∆(S2) is locally defined by the subset of C2 × C2 × P1 with coordinates
((u1, u2, v1, v2), (w1 : w2)) given by

v1w2 − v2w1 = 0. (2.2.5)

The involution ι lifts to the involution ι̃ induced by

ι̃ : C2 × C2 × P1 → C2 × C2 × P1 ,
((u1, u2, v1, v2), (w1 : w2)) 7→ ((u1, u2,−v1,−v2), (w1 : w2)) ,

since it must coincide with ι for points with (v1, v2) 6= (0, 0) and it must preserve
the equation (2.2.5) defining the blow-up. On the open subset determined by the
equation w2 = 1, which gives v1 = v2w1, we find that the blow-up is isomorphic
to C4 with coordinates (u1, u2, v2, w1) and the involution ι̃ is the change of sign
of v2. Thus the invariants for this action are generated by u1, u2, v

2
2 , w1, so the

quotient is again isomorphic to C4. The main point is that the fixed point set
has codimension one after blowing up, and this fixed point set is exactly the
exceptional divisor, defined by (v1, v2) = (0, 0), but locally in the patch w2 = 1
by v2 = 0. As v1 = v2w1, we see that this open set of the quotient of the blow-up
is the closure of the image of the rational map:

C2 × C2 → C2 × C× C , (u1, u2, v1, v2) 7→ (u1, u2, v
2
2 , v1/v2) .

In local coordinates we thus see that Bl∆(S2)/ι̃ is isomorphic to the blow-up of
S2/ι in its singular locus. This gives the commutativity of (2.2.1).
The points of S[2] are the zero-dimensional subschemes of S of length 2. We
introduce the following notation for points x ∈ S[2]:

• x = p+ q, where p, q ∈ S are distinct points.
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• x = (p, t), where t ∈ P1 is a tangent direction through a point p ∈ S.

We will use this notation in the next sections. Fujiki showed in [Fuj83] that the
Hilbert square of a K3 surface is an IHS manifold.

Theorem 2.2.5 (Fujiki). Let S be a K3 surface. Then the Hilbert square S[2]

of S is an IHS manifold.

It was the first example of IHS manifold of dimension greater than 2 to be
found. We conclude this section by recalling the following useful result, see
[NW04, Remark 4.13].

Theorem 2.2.6. Let S be a K3 surface and X = S[2]. Then∫
X

c2(X)2 = 828,

∫
X

c4(X) = 324.

2.2.3 Hilbert schemes of n points on a K3 surface
Hilbert squares of K3 surfaces are an example of the more general construction
of the Hilbert scheme of n points on a K3 surface S, which is the scheme which
parametrises zero-dimensional closed subschemes of length n of S. We denote it
by S[n]. By a theorem of Fogarty, S[n] is a 2n-dimensional irreducible smooth
variety, see [Fog68]. If S is a projective K3 surface, S[n] is projective by a result
of Grothendieck, see [Gro61]. Let S(n) be the quotient of Sn = S × · · · × S by
the symmetric group of n elements, so that S(n) is the variety of 0-cycles of
degree n. Then the Hilbert–Chow morphism ρ : S[n] → S(n) is defined as follows:
a point [ξ] ∈ S[n] is mapped to the cycle

∑
x l(Oξ,x) · x, see [Ive06]. The singular

locus of S(n) is the so-called diagonal, i.e., the set of cycles p1 + · · ·+ pn such
that there exist distinct i and j with pi = pj . Then the Hilbert–Chow morphism
is a desingularization of S(n): the pre-image of the diagonal is an irreducible
divisor E on S[n]. The Hilbert scheme of n points on a K3 surface is an IHS
manifold by the following result by Beauville, see [Bea83b, Théorème 3].

Theorem 2.2.7 (Beauville). Let S be a K3 surface. Then S[n] is an IHS
manifold of dimension 2n for every n ≥ 2.

Let S be a K3 surface and n ≥ 2. There exists a primitive class δ ∈ Pic(S[n])
such that 2δ = [E]. Moreover, there exists a primitive embedding of lattices

i : H2(S,Z) ↪→ H2(S[n],Z)

such that H2(S[n],Z) = i(H2(S,Z))⊕ δ, and qS[n](δ) = −2(n− 1), hence there
is an isomorphism

H2(S[n],Z) ∼= U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2(n− 1)〉.

Similarly we have
Pic(S[n]) = i(Pic(S))⊕ Zδ.

See [Bea83b, §6] for details. The Fujiki constant of Hilbert schemes of n points
on a K3 surface was computed by Beauville in [Bea83b, §9].

Proposition 2.2.8 (Beauville). Let X = S[n] be the Hilbert scheme of n points
on a K3 surface S. Denote by cX the Fujiki constant of X of Theorem 2.2.4.
Then cX = 1.
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In particular, for K3 surfaces the BBF form coincides with the intersection
form. We recall the following useful result on the cohomology ring of the Hilbert
scheme of n points on a K3 surface.

Theorem 2.2.9 (Theorem 1 in [Mar07]). Let S be a projective K3 surface.
Then H∗(S[n],Z) is torsion free for every n ≥ 1.

We have seen in Section 2.1 that the Hodge diamond of a K3 surface S is
given by

1

0 0

1 20 1

0 0

1 .

The following result by Göttsche, see [Göt90], shows that the Hodge numbers of
the Hilbert scheme S[n] for n ≥ 2 are determined by the Hodge numbers of the
K3 surface S.

Theorem 2.2.10 (Göttsche). Let S be a smooth projective complex surface.
Then

∑
n≥0

0≤s,t≤2n

(−1)s+ths,t(S[n])xs−nyt−nqn =

∞∏
n=1

∏
s+t odd(1− xs−1yt−1qn)h

s,t(S)∏
s+t even(1− xs−1yt−1qn)hs,t(S)

,

where x, y, q are variables, and hp,q(S[n]) := dim(Hp,q(S[n])).

If S is a K3 surface, expanding the expression of Theorem 2.2.10 up to n = 2
we obtain that the Hodge diamond of S[2] is given by the following:

1

0 0

1 21 1

0 0 0 0

1 21 232 21 1

0 0 0 0

1 21 1

0 0

1 .

Similarly one can compute the Hodge diamond of S[n] for n > 2.

2.2.4 Other examples of IHS manifolds
We briefly present the other known examples of IHS manifolds up to deformation
equivalence, cf. Section 2.2.6.
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• Let A be an abelian surface. Consider the map

An = A× · · · ×A→ A

induced by the group law on A. Since this is commutative, we get an
induced morphism A(n) → A, where A(n) is the quotient of An on the
n-th symmetric group. Let Σn : A[n] → A be the composition of this map
with the Hilbert–Chow morphism. If n ≥ 1, we call Kn(A) := Σ−1

n+1(0)
the n-th generalised Kummer variety. In [Bea83b, §7] Beauville has shown
that Kn(A) is an IHS manifold of dimension 2n with second Betti number
b2 = 7.

• O’Grady obtained an example of an IHS manifold of dimension 10 and
second Betti number b2 = 24 in [O’G99].

• O’Grady obtained an example of an IHS manifold of dimension 6 and
second Betti number b2 = 8 in [O’G03].

We do not discuss further details on these examples since in this thesis we will
deal only with Hilbert schemes of n points on a K3 surface.

2.2.5 Birational Kähler cone and movable cone
In this section we give the definitions of the birational Kähler cone and of the
movable cone of an IHS manifold X and some useful results on this topic. We
refer to [Huy99], [Huy03], [Bou04] and [Mar11].

Recall that a closed two-form ω on a complex manifold is called Kähler form
if it is the negative imaginary part of a Hermitian metric h = g− iω. A complex
manifold which admits a Kähler form is called Kähler manifold. Projective
complex manifolds are Kähler manifolds by the Kodaira embedding theorem, see
[GH78, I, §4] for details. Let X be an IHS manifold. A class in H1,1(X,R) is
called a Kähler class if it can be represented by a Kähler form. Since a positive
linear combination of Kähler forms is again a Kähler form, the set of all Kähler
classes in H1,1(X,R) describes a convex cone.

Definition 2.2.11. Let X be an IHS manifold. The Kähler cone

KX ⊆ H1,1(X,R)

is the open convex cone of all Kähler classes [ω] ∈ H1,1(X,R). The positive cone
of X is the connected component

CX ⊆ H1,1(X,R)

of the open set {α ∈ H1,1(X,R) | qX(α) > 0} that contains KX .

By the Kodaira embedding theorem we have the equality

Amp(X) = KX ∩NS(X)R.

The following is a projectivity criterion for IHS manifolds given by Huybrechts,
see [Huy99, Theorem 3.11].
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Theorem 2.2.12 (Projectivity criterion for IHS manifolds). Let X be an IHS
manifold. Then X is projective if and only if there exists a line bundle L on X
with qX(c1(L)) > 0.

The following result characterises ampleness and nefness for line bundles on
complex projective manifolds with trivial canonical bundle.

Proposition 2.2.13 (Proposition 6.3 in [Huy99]). Let X be a projective man-
ifold with KX ∼= OX . Then a line bundle L on X is ample if and only if∫
X
c1(L)dim(X) > 0 and

∫
C
c1(L) > 0 for all curves C ⊆ X.

We have the following two corollaries when the manifold considered is an
IHS manifold. We denote as usual by ( · , · ) the BBF bilinear form.

Corollary 2.2.14 (Corollary 6.4 in [Huy99]). Let X be a projective IHS manifold
of dimension 2n and let L be a line bundle on X. Then

• L is ample if and only if c1(L) ∈ CX and
∫
C
c1(L) > 0 for all curves

C ⊆ X.

• L is nef if and only if c1(L) ∈ CX and
∫
C
c1(L) ≥ 0 for all curves C ⊆ X.

Corollary 2.2.15 (Corollary 6.5 in [Huy99]). Let X be an IHS manifold and
let L be a line bundle on X. Then L is ample if and only if c1(L) satisfies the
following:

(i) (c1(L), · ) is positive on Amp(X).

(ii) If M ∈ Pic(X) such that qX(c1(M), · ) is positive on Amp(X), then
(c1(M), c1(L)) > 0.

Similarly L is nef if and only if c1(L) satisfies the following:

(i) (c1(L), · ) is non-negative on Nef(X).

(ii) If M ∈ Pic(X) such that qX(c1(M), · ) is non-negative on Nef(X), then
(c1(M), c1(L)) ≥ 0.

We can now define the birational Kähler cone of an IHS manifold, which will
play an important role in Section 4.3.

Definition 2.2.16. Let X be an IHS manifold. Then the birational Kähler cone
of X is defined as

BKX :=
⋃
f

f∗(KX′) ⊆ H1,1(X,R),

where f ranges through all birational maps from X to an IHS manifold X ′.

We recall that a variety F of dimension n is uniruled if there is a variety F ′
of dimension n − 1 and a dominant rational map φ : F ′ × P1 99K F , i.e., the
image of φ is dense in F . A divisor of an IHS manifold is uniruled if it is a
prime divisor which is a uniruled subvariety. The following proposition gives us
examples of uniruled divisors on an IHS manifold.

Proposition 2.2.17 (Proposition 4.7 in [Bou04]). Let X be an IHS manifold.
Every irreducible effective divisor D ∈ Div(X) with qX(D) < 0 is uniruled.

62



CHAPTER 2. GENERALITIES ON IHS MANIFOLDS

We have the following characterisation of the closure of the birational Kähler
cone of an IHS manifold.

Proposition 2.2.18 (Proposition 4.2 in [Huy03]). Let X be an IHS manifold.
Then α ∈ H1,1(X,R) is in the closure BKX of the birational Kähler cone BKX
if and only if α ∈ CX and (α, [D]) ≥ 0 for all uniruled divisors D ⊂ X.

The following is a useful corollary, see for instance [Rie18, Corollary 2.3].

Corollary 2.2.19. Let X be an IHS manifold, E ∈ Pic(X) an effective divisor
and H ∈ BKX . Then (H,E) ≥ 0. In particular this applies for all nef line
bundles H ∈ Pic(X).

We now recall the definition of movable cone of a smooth projective variety.
See also Definition 1.1.22.

Definition 2.2.20. Let X be a smooth projective variety. An effective divisor
D ∈ Div(X) is movable if there exists an integer k > 0 such that |kD| has no
fixed components. A line bundle L ∈ Pic(X) is movable if it is the class of a
movable divisor. The movable cone, or moving cone, of X, is the convex cone

Mov(X) ⊆ NS(X)⊗ R

generated by movable classes.

The following corollary of Proposition 2.2.18 gives a relation between the
birational Kähler cone and the movable cone of an IHS manifold, see for instance
[Rie18, Corollary 2.6].

Corollary 2.2.21. Let X be an IHS manifold. Then

Mov(X) = BKX ∩NS(X)R.

If X is a projective IHS manifold, the closure of the movable cone admits a
wall-and-chamber decomposition, see [Mar11, §5.2] for details.

Theorem 2.2.22 (Markman). Let X be an IHS manifold. Then

Mov(X) =
⋃
f

f∗Nef(X ′),

where the union is taken over all non-isomorphic IHS birational models with
birational maps f : X 99K X ′.

2.2.6 Deformation theory
In this section we recall the most important definitions and results, without
proofs, from deformation theory. We mainly follow [Bea83b], [Huy99] and
[GHJ12, §22].

Definition 2.2.23. Let X be a compact complex manifold. Then a deformation
of X is given by a smooth proper morphism X → S, where X and S are
connected complex spaces, and by an isomorphism X ∼= X0, where 0 ∈ S is a
distinguished point and X0 is the fiber over 0 ∈ S. An infinitesimal deformation
of X is a deformation with base space S = Spec(C[ε]), where C[ε] is the algebra
of dual numbers C[ε] = C[x]/(x2).
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We will write X → (S, 0) to denote a deformation X → S with distinguished
point 0 ∈ S. We now introduce the notion of deformation equivalence.

Definition 2.2.24. Let X1 and X2 be two compact complex manifolds. We
say that X1 and X2 are deformation equivalent if there exist connected complex
spaces X and S, a smooth proper morphism X → S and two points t1, t2 ∈ S
such that X1

∼= Xt1 and X2
∼= Xt2 .

It is natural to wonder if a deformation of an IHS manifold is still an IHS
manifold.

Proposition 2.2.25 (Beauville, [Bea83b]). Let X → S be a deformation of
an IHS manifold X ∼= X0. Then for t close to 0 ∈ S, the fibre Xt is an IHS
manifold.

An example of deformation equivalent IHS manifolds is given by birational
IHS manifolds, see [Huy99, Theorem 4.6] for details.

Proposition 2.2.26 (Huybrechts). Let X and X ′ be birational IHS manifolds.
Then X and X ′ are deformation equivalent.

We now define a universal deformation, which will play an important role in
the Torelli theorems of Section 2.2.7.

Definition 2.2.27. Let X be a compact complex manifold. A deformation
X → (S, 0) of X is called universal if any other deformation X ′ → (S′, 0′) is
isomorphic to the pullback under a uniquely determined morphism ϕ : S′ → S
with ϕ(0′) = 0.

If a universal deformation exists, this is unique up to isomorphism, and we
denote it by X → Def(X), with distinguished point 0 ∈ Def(X). The following
result by Kuranishi gives a sufficient condition for the existence of a universal
deformation, see [Kur62] and [Kur65] for details.

Theorem 2.2.28 (Kuranishi). If X is a compact complex manifold such that
H0(X, TX) = 0, where TX is the tangent bundle of X, then there exists a
universal deformation of X. Moreover, the universal deformation is universal
for any of its fibers.

If X is an IHS manifold, H0(X, TX) = H0(X,Ω1
X) = 0, hence there exists

a universal deformation X → Def(X). Moreover, Def(X) is smooth and has
dimension h1(X, TX) = h1(X,ΩX) = h1,1(X), see [Bog78], [Tia87], [Ran92],
[Tod89] and [Kaw92] for details.

2.2.7 Local and global Torelli theorem
In this section we recall the most important definitions and results leading to
the local Torelli theorem and to the global Torelli theorem for IHS manifolds.
We will also recall a Hodge theoretic version of the global Torelli theorem, which
will be useful in Chapter 4. We refer to [Bea83b], [Huy99], [Huy02], [Huy03],
[Mar11], [GHJ12].

We will denote by Λ a lattice of signature (3, b− 3), where b represents the
second Betti number b2(X) of an IHS manifold X. Note that for every IHS
manifold X we have b2(X) ≥ 3 by [Gua01, Corollary 1]. We begin with the
definition of marked IHS manifold, see [Huy99, §1.15].
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Definition 2.2.29. Let Λ be a lattice of signature (3, b − 3). A marked IHS
manifold is a pair (X, η), with X an IHS manifold and η : H2(X,Z)

∼−→ Λ
an isometry of lattices, where H2(X,Z) is equipped with the BBF form. The
isometry η is called marking. Two marked IHS manifolds (X1, η1) and (X2, η2)
are said to be isomorphic if there exists an isomorphism f : X1 → X2 such that
η2 = η1 ◦ f∗.

If X is a K3 surface, the abstract lattice Λ of Definition 2.2.29 is given by

ΛK3 = U⊕3 ⊕ E8(−1)⊕2,

and if X is an IHS manifold of K3[n]-type, with n ≥ 2, the abstract lattice Λ is
given by

ΛK3[n] = U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2(n− 1)〉,
see Example 1.4.3, Example 1.4.5 and Example 1.4.7.

Let (X, η) be a marked IHS manifold, and let π : X → Def(X) be the
universal deformation introduced in Section 2.2.6. The marking η can be used to
construct a family of markings {Fb : H2(Xb,Z)→ Λ}b∈Def(X) such that F0 = η,
see [Kod06, Theorem 2.4] for details.

Definition 2.2.30. Let (X, η) be a marked IHS manifold. The local period map
is defined as

P : Def(X)→ P(Λ⊗ C), b 7→ [Fb,C(H2,0(Xb))],

where Fb,C : H2(Xb,C) → Λ ⊗ C denotes the C-linear extension of Fb, the
marking given above. The period domain is defined as

Ω := {[x] ∈ P(Λ⊗ C) | qΛ(x) = 0, (x, x̄)Λ > 0},

where qΛ and ( · , · )Λ are the quadratic form and the bilinear form of Λ.

The period domain Ω is an open subvariety of a quadric hypersurface of
P(Λ ⊗ C). Note that by Definition 2.2.3 and Theorem 2.2.4 the image of the
local period map P is contained in Ω.

Definition 2.2.31. Let (X, η) be a marked IHS manifold and

P : Def(X)→ P(Λ⊗ C)

be the local period map. The period point of (X, η) is P(0).

We can now state the local Torelli theorem for IHS manifolds by Beauville,
see [Bea83b, §8, Theorem 5, Item (b)].

Theorem 2.2.32 (Local Torelli theorem). Let (X, η) be a marked IHS manifold.
The local period map P : Def(X)→ Ω is a local isomorphism.

We now introduce parallel transport operators and monodromy operators,
which will lead us to the global Torelli theorem.

Definition 2.2.33. Let X, X1 and X2 be IHS manifolds. An isomorphism
f : H∗(X1,Z) → H∗(X2,Z) is said to be a parallel transport operator if there
exist a smooth and proper family π : X → B of IHS manifolds over an analytic
base B, points bi ∈ B, isomorphisms ψi : Xi → Xbi for i = 1, 2, and a continuous
path γ : [0, 1]→ B such that:
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• γ(0) = b1,

• γ(1) = b2,

• the parallel transport in the local system Rπ∗Z along γ induces the homo-
morphism

ψ2∗ ◦ f ◦ ψ∗1 : H∗(Xb1 ,Z)→ H∗(Xb2 ,Z).

An isomorphism g : Hk(X1,Z)→ Hk(X2,Z) is a parallel transport operator if
it is the k-th graded summand of a parallel transport operator f as above. An
automorphism f : H∗(X,Z) → H∗(X,Z) is a monodromy operator if it is a
parallel transport operator.

Every parallel transport operator is a lattice isometry. Moreover, the com-
position of two parallel transport operators is a parallel transport operator.
The set of monodromy operators gives a subgroup Mon2(X) ⊆ O(H2(X,Z)),
called monodromy group. We now define the moduli spaceMΛ of marked IHS
manifolds associated to the lattice Λ.

Definition 2.2.34. Let Λ be a lattice of signature (3, b− 3). The moduli space
of marked IHS manifolds associated to Λ, denoted byMΛ, is the set of marked
IHS manifolds (X, η), where η : H2(X,Z) → Λ is a marking on Λ, modulo
isomorphisms of marked IHS manifolds.

Using the local Torelli theorem, we obtain the following, see [Huy99, §1.18].

Theorem 2.2.35. Let Λ be a lattice of signature (3, b− 3), and suppose that the
moduli spaceMΛ of marked IHS manifolds associated to Λ is not empty. Then
the moduli spaceMΛ is a smooth non-Hausdorff complex manifold.

In particular, one can show that the moduli spaceMΛK3
has dimension 20

and the moduli spaceMΛ
K3[n]

has dimension 21 for n ≥ 2. Two marked IHS
manifolds (X1, η1) and (X2, η2) are deformation equivalent if and only if their
classes are in the same connected component ofMΛ. This happens if and only
if η−1

2 ◦ η1 is a parallel transport operator by [Mar11, Lemma 7.5].
Glueing together all the local period maps, we obtain a global period map

P :MΛ → Ω.

We can now state the following result, known as the surjectivity of the period
map, see [Huy99, Theorem 8.1].

Theorem 2.2.36 (Surjectivity period map). Let Λ be a lattice of signature
(3, b− 3) and suppose that the moduli spaceMΛ is not empty. Denote byM◦Λ
a connected component of MΛ. Then the restriction of the global period map
P :MΛ → Ω toM◦Λ is surjective.

We can now state the global Torelli theorem for marked IHS manifolds: for
the first part of the statement see [Huy99, Theorem 4.3], for the second part see
[Ver13, Theorem 1.16].

Theorem 2.2.37 (Global Torelli theorem). Let Λ be a lattice of signature
(3, b− 3), and consider the moduli spaceMΛ. If (X1, η1) and (X2, η2) are two
inseparable points inMΛ, then X1 and X2 are bimeromorphic.
LetM◦Λ be a connected component ofMΛ, and P◦ be the restriction of the global
period map toM◦Λ. Then for every p ∈ Ω the fiber P−1

◦ (p) consists of pairwise
inseparable points.
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Markman in [Mar11] gave a Hodge-theoretic version of the global Torelli
theorem, which we will use in Section 4.3.

Theorem 2.2.38 (Hodge-theoretic global Torelli theorem). Let X and Y be
two IHS manifolds which are deformation equivalent.

1. X and Y are bimeromorphic if and only if there exists a parallel transport
operator f : H2(X,Z) → H2(Y,Z) which is an isomorphism of Hodge
structures.

2. Let f : H2(X,Z)→ H2(Y,Z) be a parallel transport operator, which is an
isomorphism of integral Hodge structures. There exists an isomorphism
f̃ : X → Y such that f = f̃∗ if and only if f maps a Kähler class on X to
a Kähler class on Y .

We conclude this section with the following useful result used in the proof
of Theorem 2.2.38, see [Huy03] and [Mar11, §3]. Let X1 and X2 be two IHS
manifolds of complex dimension 2n, and suppose that they are birational. Denote
by Z ⊂ X1 ×X2 the closure of the graph of a birational map, and by [Z] the
fundamental cohomological class of Z in X1 × X2. Consider the following
homomorphism

[Z]∗ : H∗(X1,Z)→ H∗(X2,Z), α 7→ π2∗(π
∗
1(α) ∪ [Z]), (2.2.6)

where π1 and π2 are the projections of X1 ×X2 on X1 and X2 respectively.

Theorem 2.2.39 (Corollary 2.7 in [Huy03]). Keep notation as above. Then
the Hodge structures of X1 and X2 are isomorphic. In particular, Hodge and
Betti numbers of X1 and X2 coincide, and H∗(X1,Z) ∼= H∗(X2,Z) as graded
rings. Moreover, there exists an effective cycle Γ := Z +

∑
Yj in X1 ×X2 of

pure dimension 2n, with the following properties.

(i) The homomorphism [Γ]∗ : H∗(X1,Z)→ H∗(X2,Z) given by

[Γ]∗(α) = π2∗(π
∗
1(α) ∪ [Γ])

is a parallel transport operator.

(ii) The image πi(Yj) has codimension ≥ 2 in Xi for all j. In particular, [Γ]∗
and [Z]∗ defined in (2.2.6) coincide on H2(X1,Z).

(iii) The isomorphism [Γ]∗ is compatible with the BBF forms, i.e.,

qX2([Γ]∗(α)) = qX1(α) for every α ∈ H2(X1,Z).

2.2.8 Mukai flops and birational maps
In this section we recall the construction of the Mukai flop, introduced in [Muk84].
We follow [GHJ12, Example 21.7] and [O’G10, §1.3].

Let X be an IHS manifold of dimension 2n, and suppose that there exists
a submanifold P ⊂ X with P ∼= Pn. Let σ ∈ H0(X,Ω2

X) be a symplectic form.
Consider the following two short exact sequences, one the dual of the other:

0→ TP ↪→ TX |P → NP |X → 0,

0→ N ∗P |X ↪→ ΩX |P → ΩP → 0,
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where N ∗P |X is the dual vector bundle Hom(NP |X ,OP ). Since Pn does not admit
any regular 2-form, the restriction of σ to P , denoted by σP : TP → ΩP , is
trivial. Since σ is non-degenerate, we have an isomorphism σ|P : TX |P

∼−→ ΩX |P ,
and the following composition is trivial:

TP ↪→ TX |P
∼−→ ΩX |P → ΩP .

Hence TP is contained in the kernel of the surjective map TX |P → ΩP . For
dimensional reasons, TP must coincide with the kernel of the previous surjective
map, hence we obtain the following isomorphism:

NP |X ∼= ΩP .

Let β : X̂ → X be the blow-up of X in P and denote by E the exceptional
divisor. By [Voi02, §3.3.3] we have E ∼= P(ΩP ). Consider now the Euler sequence
given in [Har13, Theorem II.8.13]:

0→ ΩP → OP (−1)⊕n+1 → OP → 0.

One can show that OP (−1)⊕n+1 ∼= V ⊗OP (−1), where V is the trivial vector
bundle of rank n+ 1 of P(V ), with V a C-vector space of dimension n+ 1. A
way to see this is working on fibers over l ∈ P . Indeed, an element of the fiber
OP (−1) is of the form (l, z), where z ∈ Cn+1 lies on l, i.e., if l = (l0 : · · · : ln) is
a fixed representation of l, then z = (z0, . . . , zn) with zi = λli for some λ ∈ C, so
we can identify elements in OP (−1) with elements λ ∈ C. An element of the fiber
(V )l = (P(V )× V )l is of the form (l, (α0, . . . , αn)), where (α0, . . . , αn) ∈ Cn+1.
Hence the isomorphism of vector bundles V ⊗OP (−1) ∼= OP (−1)⊕n+1 is induced
by

(V ⊗OP (−1))l → (OP (−1))⊕n+1, (α0, . . . , αn)⊗ λ 7→ (λα0, . . . , λαn).

The inclusion ΩP ↪→ V ⊗OP (−1) implies the following:

P(ΩP ) ↪→ P(V ⊗OP (−1)) ∼= P × P ∗,

where P ∗ is the dual of P . Then E ⊂ P × P ∗ is isomorphic to the incidence
variety

{(x,H) ∈ P × P ∗ |x ∈ H} ⊂ P × P ∗,

we now sketch the proof, working again on fibers over l ∈ P . Consider the map

(OP (−1)⊕n+1)l → (OP )l, (λ0, . . . , λn) 7→ λ0l0 + · · ·+ λnln.

Since ΩP = ker(OP (−1)⊕n+1 → OP ), an element in (ΩP )l can be seen as
λ = (λ0, . . . , λn) ∈ Cn+1 such that λ0l0+· · ·+λnln = 0, i.e., it is a linear function
ϕλ : V → C such that ϕλ|l ≡ 0. Passing to P(ΩP ) ⊂ P(V )× P(V ∗) = P × P ∗,
we see that E = P(ΩP ) ⊂ P × P ∗ is the incidence variety of pairs (l,H) of lines
l ⊂ V and hyperplanes H ⊂ V such that l ⊂ H:

E = P(ΩP ) = {((l0 : · · · : ln), (λ0 : · · · : λn)) ∈ P × P ∗ |λ0l0 + · · ·+ λnln = 0}.
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In particular E ∈ |O(1, 1)|, hence adjunction formula gives the following isomor-
phisms:

ωE ∼= (ωP×P∗ ⊗O(E))|E ∼= O(−n,−n)|E ,

ωE ∼= (ωX̂ ⊗O(E))|E ∼= (β∗ωX ⊗O((n− 1)E))|E ⊗O(E)|E
∼= β∗(ωX |P )⊗O(nE)|E ,

ωP ∼= ωX |P ⊗ det(NP |X) ∼= ωX |P ⊗ det(ΩP )

∼= ωX |P ⊗ ωP .

Thus ωX |P is trivial and O(E)|E ∼= O(−1,−1)|E . By a result of Nakano and
Fujiki, see [FN71], there exists a blow-down β′ : X̂ → X ′, where X ′ is a complex
manifold of dimension 2n, and E is the exceptional divisor of β′. Moreover, the
restriction of β′ to E coincide with the projection E → P ∗ ⊂ X ′. Note that X ′
admits a symplectic form σ′ with H0(X ′,Ω2

X′)
∼= C · σ′: the restriction of σ to

X \ P can be extended on X ′ to a 2-form σ′ which is non-degenerate, otherwise
the zero locus of (σ′)2n, which is a divisor, would be in P ∗ ⊂ X ′, which has
codimension at least two. Moreover, X ′ is simply connected. We call X ′ the
elementary Mukai flop of X in P . In general the elementary Mukai flop of a
Kähler manifold X can be non Kähler, thus the elementary Mukai flop X ′ of an
IHS manifold X is an IHS manifold if X ′ is Kähler.

Elementary Mukai flops are the building blocks of birational maps between
projective IHS manifolds of dimension 4, as shown by the following theorem, see
[WW03].

Theorem 2.2.40 (Wierzba–Wiśniewski). Let X and X ′ be two projective IHS
manifolds of dimension 4, and let f : X 99K X ′ be a birational map. Then there
exists a sequence of elementary Mukai flops

f1 : X = X0 99K X1, . . . fn : Xn−1 99K Xn := X

with f = fn ◦ · · · ◦ f1.

2.2.9 Pseudoeffective cone of cycles on IHS manifolds of
K3[n]-type

In this section we recall the definitions of numerical equivalence of cycles and
of pseudoeffective cone of numerical cycles. We will give some properties that
we will use in Chapter 4. For more details on adequate equivalence relations on
cycles, see [Sam58], [And04], [Har13, Appendix A], [Ful13].

Definition 2.2.41. Let X be a variety over C. A k-cycle on X is an element
of the free abelian group generated by k-dimensional closed subvarieties of X. A
k-cycle is of the form ∑

i

ni[Vi],

where the sum is finite, ni ∈ Z and the Vi’s are closed k-dimensional subvarieties.
We denote by Zk(X) the free abelian group generated by k-dimensional subvari-
eties of X. If V ⊂ X is a k-dimensional closed subvariety of X, we denote by
[V ] the corresponding element in Zk(X).
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Let Z∗(X) be the direct sum of the groups Zk(X) for k = 0, 1, . . . ,dim(X).
Suppose that X is a smooth projective variety over C. Then one can introduce an
adequate equivalence relation on Z∗(X), which is a family of equivalence relations
satisfying some conditions, see [Sam58, (RAI)-(RAIV)]. Examples of adequate
equivalence relations are the rational equivalence, which gives rise to Chow
groups, see [Ful13], the homological equivalence, which gives rise to singular
homology groups, and by Poincaré duality to singular cohomology groups, and
numerical equivalence. We say that α, β ∈ Zk(X) are numerically equivalent,
and we write α ≡ β, if deg(α∩γ) = deg(β∩γ) for every cycle γ ∈ Zdim(X)−k(X),
where the degree map is defined as follows: for α ∈ Zk(X) and γ ∈ Zdim(X)−k(X)
closed subvarieties, deg(α ∩ γ) is the number of points of intersection of α and γ
counted with multiplicity, then we extend linearly on all the other cycles. We
denote by Nk(X) the quotient group

Nk(X) := Zk(X) /≡ .

The rational equivalence is the finest adequate equivalence relation, while the
numerical equivalence is the coarsest equivalence relation, see [And04] for details.
We can now define the pseudoeffective cone of k-cycles.

Definition 2.2.42. Let X be a smooth projective variety over C. We define
the pseudoeffective cone of k-cycles

Effk(X) ⊆ Nk(X)⊗ R

as the closure of the convex cone generated by classes of k-dimensional subvarieties
of X. The interior of Effk(X) is called the big cone of k-cycles.

If π : X → Y is a proper morphism of smooth projective varieties, from the
definition of pushforward of a cycle, see [Ful13, §1.4], we obtain the following.

Proposition 2.2.43. Let π : X → Y be a proper morphism of smooth projective
varieties. Then π∗(Effk(X)) ⊆ Effk(Y ). If π is surjective, then equality holds
both for pseudoeffective cones and big cones.

If π : X → Y is a flat morphism of relative dimension d between smooth
projective varieties, then the pullback of cycles defined in [Ful13, §1.7] induces a
pullback between numerical equivalence classes with the following property, see
[Ful13, Example 19.2.3] and [FL17, Remark 2.4].

Proposition 2.2.44 (Proposition 8.1.2 [Ful13]). Let π : X → Y be a flat
morphism of relative dimension d of smooth projective varieties. Then the flat
pullback of cycles induces a pullback

π∗ : Nk(Y )→ Nk+d(X).

Moreover, π∗(Effk(Y )) ⊆ Effk+d(X).

Suppose now that X is a smooth projective variety over C such that the
homological equivalence and the numerical equivalence coincide. Then the
pseudoeffective cone of numerical classes of codimension k can be seen as a cone
in Hk,k(X,R), i.e.,

Effdim(X)−k(X) ⊆ Hk,k(X) ∩H2k(X,R).
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This coincides with the closure of the cone generated by fundamental cohomo-
logical classes of subvarieties of complex dimension dim(X)− k. This holds for
Hilbert schemes S[n] of smooth projective varieties by [Ara06, Corollary 7.5] and
for IHS manifolds of K3[n]-type by [CM13, Theorem 1.1].

Theorem 2.2.45 (Charles–Markman). Let X be an IHS manifold deformation
equivalent to the Hilbert scheme of n points on a K3 surface. Then the homological
equivalence and the numerical equivalence coincide, so

Eff2n−k(X) ⊆ Hk,k(X) ∩H2k(X,R)

coincides with the closure of the cone generated by fundamental cohomological
classes of subvarieties of complex dimension 2n− k, with 0 ≤ k ≤ 2n.

2.2.10 Double EPW sextics
In this section we recall the definition of double EPW sextic, which is an example
of IHS fourfold of K3[2]-type. This is obtained as a double cover of an EPW
sextic, an hypersurface of P5 of degree 6, first studied by Eisenbud, Popescu and
Walters in [EPW01, Example 9.3]. We begin with the definition of EPW sextic.
We follow [O’G08a], [O’G13], [O’G12], see also [Fer12], [DK19] and [Ber20].

Let V6 be a C-vector space of dimension 6. We fix a volume form on
∧6

V6:

vol :

6∧
V6
∼−→ C.

This induces a symplectic form on
∧3

V6 given by:

ω :

(
3∧
V6

)
×

(
3∧
V6

)
→ C, (u, v) 7→ vol(u ∧ v).

Since ω is symplectic, the induced map

3∧
V6 →

(
3∧
V6

)∗
, v 7→ ω(v, · )

is an isomorphism, where
(∧3

V6

)∗
= Hom(

∧3
V6,C) is the dual vector space.

Given two subvector spaces U1, U2 ⊆
∧3

V6, we define the linear map

ωU1,U2 : U1 → U∗2 , u 7→ ω(u, · )|U2 ,

given by the composition of the inclusion U1 ↪→
∧3

V6 with the dual of the
inclusion U2 ↪→

∧3
V6.

Definition 2.2.46. An isotropic subspace i : I ↪→
∧3

V6 is a vector subspace
of
∧3

V6 on which the restriction of the symplectic form is zero. A Lagrangian
subspace i : A ↪→

∧3
V6 is an isotropic subspace whose dimension is maximal, or

equivalently ωA,A induces an exact sequence

0→ A
i−→

3∧
V6

i∗◦ωA,A−−−−−→ A∗ → 0. (2.2.7)
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In the exact sequence (2.2.7) we have denoted by i∗ the restriction map

i∗ :

(
3∧
V6

)∗
→ A∗, f 7→ f |A,

whose kernel is the annihilator of A, i.e.,

Ann(A) := {f ∈

(
3∧
V6

)∗
| f(v) = 0 for every v ∈ A}.

Note that
(

(
∧3

V6)/A
)∗ ∼= Ann(A). Moreover, we see that A is a maximal

isotropic subspace if and only if Ann(A) = A∗. Then the two definitions of
Lagrangian subspace given above are equivalent.

We can always find a basis of V6 such that the matrix associated to ω is of
the form (

0 I10

−I10 0

)
,

where I10 is the 10-dimensional identity matrix. Then a Lagrangian subspace
has always dimension 10.
We denote by Gr(10,

∧3
V6) the Grassmannian of 10-dimensional vector sub-

spaces of
∧3

V6.

Definition 2.2.47. The symplectic Grassmannian LG(
∧3

V6) is the subset of
Gr(10,

∧3
V6) given by Lagrangian subspaces with respect to the volume form

in
∧3

V6.

Since two volume forms differ by a non-zero constant, LG(
∧3

V6) does not
depend on the choice of the volume form. Moreover, it is well known that
LG(

∧3
V6) is a smooth subvariety of Gr(10,

∧3
V6) of dimension 55, see for

instance [O’G12, Corollary 1.2].
For each non-zero v ∈ V6 we can consider the Lagrangian subspace

Fv := v ∧
2∧
V6.

Since for any λ ∈ C∗ the subspaces Fv and Fλv coincide, we can define a vector
bundle F ⊂ OP(V6) ⊗

∧3
V6 on P(V6) whose fiber on [v] is Fv. Moreover, given

v ∈ V6 \ {0}, we can fix a decomposition V6
∼= Cv ⊕ V5 for some 5-dimensional

subvector space V5 ⊂ V6, which induces a decomposition
∧3

V6
∼=
∧3

V5 ⊕ Fv,
and every element of Fv can be written in the form v ∧ η for some η ∈

∧2
V5.

We then have an induced isomorphism of vector spaces

ρv : Fv →
2∧
V5, v ∧ η 7→ η.

Hence F is a vector bundle of rank 10. This is in particular a Lagrangian
subbundle of OP(V6) ⊗

∧3
V6, i.e., a vector bundle such that every fiber is a

Lagrangian subspace of
∧3

V6. The isomorphisms ρv yield an isomorphism

F ∼= S ⊗
2∧
Q,
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where S is the tautological subbundle on P(V6) and Q is the tautological quotient
bundle, which appear in the following exact sequence of vector bundles:

0→ S → OP(V6) ⊗ V6 → Q→ 0. (2.2.8)

Let A ∈ LG(
∧3

V6) be a Lagrangian subspace in
∧3

V6. Note that the exact
sequence (2.2.7) gives a canonical identification(∧3

V6

)∗
/A ∼= A∗.

Let
λA : F → OP(V ) ⊗A∗ (2.2.9)

be the inclusion F ↪→ OP(V ) ⊗
∧3

V6 followed by the projection modulo A. Note
that λA is a map of vector bundles of equal rank 10, so we can give the following
definition.

Definition 2.2.48. Consider the map

det(λA) : det(F )→ det(OP(V6) ⊗A∗)

induced by map (2.2.9). We set

YA := Z(det(λA)),

the zero locus of the determinant of λA. This is a subscheme of P(V6).

When YA is not the whole space P(V6), it is a hypersurface of degree 6. We
show it in the following lemma, see [O’G06, §1] and [Fer12, §1] for details.
Lemma 2.2.49. Keep notation as above. Then there is an isomorphism
det(F ) ∼= OP(V6)(−6), so that YA is a sextic hypersurface when it is not the
whole space. In particular, YA is never empty.

Proof. We follow [Fer12, §1] and [Ber20, Lemma 4.7]. Consider the exact se-
quence (2.2.8), obtained tensorising by OP(V )(−1) the dual of the Euler exact
sequence, see [Har13, Theorem II.8.13]. Let h ∈ Pic(P(V6)) be a hyperplane
class. Then c(S) = 1− h and c1(S) = −h. Moreover, we have

c(S) · c(Q) = c(OP(V6) ⊗ V6) = 1,

which implies c1(S) + c1(Q) = 0, hence c1(Q) = h. Now, Q is a vector bundle of
rank 5, so if α1, . . . , α5 are its Chern roots, we have c1(Q) = h = α1 + · · ·+ α5.
The Chern roots of

∧2Q are (αi + αj)i<j , hence we have

c1

(
2∧
Q

)
= 4α1 + · · ·+ 4α5 = 4h.

We conclude that

c1(F ) = c1

(
2∧
Q

)
+ rk(F )c1(L) = −6h,

which implies det(F ) ∼= OP(V6)(−6). Moreover, note that λA is a section of the
line bundle

Hom(F,OP(V6))⊗A∗ ∼= F ∗ ⊗ (OP(V6) ⊗A∗) ∼= F ∗ ⊗A∗,

so YA = Z(det(λA)) = Z(det(F ∗)) is non-empty and it is a sextic.
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We can now give the definition of EPW sextic.

Definition 2.2.50. Keep notation as above. When YA 6= P(V6), the sextic
hypersurface YA is called Eisenbud–Popescu–Walter (EPW) sextic.

The following result gives us a sufficient condition to have that YA is an EPW
sextic.

Proposition 2.2.51 (Corollary 1.5 in [O’G12]). Take A ∈ LG(
∧3

V6). If
P(A) ∩Gr(3, V6) = ∅, then YA is an EPW sextic.

This result makes us give the following definition.

Definition 2.2.52. We call ΘA the locus of the classes of decomposable vectors
in P(A), i.e.,

ΘA := P(A) ∩Gr(3, V6).

We can associate to A ∈ LG(
∧3

V6) a stratification of P(V6): for every k ≥ 0
we set

Y ≥kA := {[v] ∈ P(V6) | dim(Fv ∩A) ≥ k}.

Set-theoretically we have the equalities P(V6) = Y ≥0
A and YA = Y ≥1

A . Since A
is a Lagrangian subspace, Y ≥kA can be seen as the locus of points at which the
map λA : F → OP(V6) ⊗ A∗ has corank at least k. Using this description, we
can define a scheme structure for Y ≥kA for every k ≥ 0: this is the one given by
the vanishing of the determinants of the (11− k)× (11− k) minors of a matrix
representing λA. This structure corresponds to that of P(V6) and YA for k = 0, 1.
We also define

Y kA := {[v] ∈ P(V6) | dim(Fv ∩A) = k}.
O’Grady obtained the following explicit description of the singular locus of

an EPW sextic YA.

Proposition 2.2.53 (Corollary 1.5 in [O’G12]). If YA 6= P(V6), we have

Sing(YA) = Y ≥2
A ∪

( ⋃
W∈ΘA

P(W )

)
.

We will consider Lagrangian subspaces A such that ΘA = ∅. In this case,
Sing(YA) = Y ≥2

A and Y 3
A = Y ≥3

A , see [O’G13, Claim 3.7].

Proposition 2.2.54 (Proposition 1.9 in [O’G12]). Let A ∈ LG(
∧3

V6). Suppose
that [v] ∈ Y 2

A and that A∩Fv does not contain a non-zero decomposable element.
Then Y 2

A is smooth and 2-dimensional in a neighborhood of [v].

We denote by R the first Lagrangian cointersection sheaf, i.e., the cokernel
of the restriction of λA to YA. Then O’Grady obtained the following result, see
[O’G06, §4] and [Ber20, Theorem 4.30] for details.

Theorem 2.2.55 (O’Grady). Consider A ∈ LG(
∧3

V6) such that ΘA = ∅.
Then there is a unique double cover fA : XA → YA with branch locus Y ≥2

A such
that

(fA)∗OXA ∼= OYA ⊕R(−3),

where R is the first Lagrangian cointersection sheaf. The variety XA is normal,
and it is smooth away from f−1

A (Y 3
A). In particular, if Y 3

A = ∅, then XA is
smooth.
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Definition 2.2.56. We call double EPW sextic the double cover XA, and ιA
the associated covering involution.

We are interested in double EPW sextics since, for a general A ∈ LG(
∧3

V6),
the variety XA is smooth and it is an IHS manifold of K3[2]-type. First of all,
we have to explain what a general A ∈ LG(

∧3
V6) is.

Definition 2.2.57. We denote by

Σ := {A ∈ LG(

3∧
V6) |P(A) ∩Gr(3, V6) 6= ∅}

the set of Lagrangian subspaces which contain a non-zero decomposable vector.
We denote by

∆ := {A ∈ LG(

3∧
V6) |Y ≥3

A 6= ∅}

the set of Lagrangian subspaces whose associated third stratum is not empty.

The subsets Σ and ∆ are distinct irreducible divisors in LG(
∧3

V6), see
[O’G12, Proposition 2.1] and [O’G13, Proposition 2.2].

Definition 2.2.58. An element A ∈ LG(
∧3

V6) is generic if A 6∈ ∆∪Σ. We set

LG(

3∧
V6)0 = LG(

3∧
V6) \ (∆ ∪ Σ).

We can state the following important result, see [O’G06, Proposition 2.8],
[Fer12, Proposition 1.10], [O’G13, Theorem 4.25], [Ber20, Lemma 4.41] and
[Ber20, Lemma 4.42].

Theorem 2.2.59. Let A ∈ LG(
∧3

V6)0. Then

(i) XA is an IHS manifold of K3[2]-type.

(ii) The branch locus Y ≥2
A = Sing(YA) of the double cover fA : XA → YA is a

smooth surface of degree 40 in P(V6) with

2K
Y
≥2
A

= O
Y
≥2
A

(6),

where K
Y
≥2
A

is its canonical bundle, in particular it is a surface of general
type.

(iii) If DA := f∗AOYA(1), then DA is ample with qXA(DA) = 2, where qXA is
the BBF form of XA.

(iv) The covering involution ιA associated to fA acts in cohomology as the
inverse of the reflection with respect to ZDA. In particular ιA is non-
symplectic.

75



CHAPTER 2. GENERALITIES ON IHS MANIFOLDS

2.3 Some useful tools on IHS manifolds
In this section we collect some useful tools and results on IHS manifolds that we
will use in next sections. We begin with the divisorial Zariski decomposition for
a class of an R-divisor in H1,1(X,R), where X is an IHS manifold. See [Bou04]
for details.

Proposition 2.3.1. Let X be an IHS manifold and α ∈ H1,1(X,R). Then there
exists a divisorial Zariski decomposition of the form α = Z(α) +N(α), where
Z(α) ∈ Mov(X) and N(α) is the class of an R-uniruled divisor.

We now give two useful results concerning the basepoint freeness of some
divisors on IHS manifolds of K3[2]-type.

Lemma 2.3.2 (Lemma 2.23 in [Rie20]). Consider a K3 surface S, a line bundle
H ∈ Pic(S) and the associated line bundle h ∈ Pic(S[2]). If H is basepoint free
then h is also basepoint free.

Theorem 2.3.3 (Corollary 1.1 in [Mat17]). Let X be a K3[n]-type IHS manifold
and 0 6= L ∈ Pic(X) be a primitive nef line bundle with qX(L) = 0. Then
dimH0(X,L) = n+ 1 and |L| induces a Lagrangian fibration ϕ|L| : X → Pn. In
particular L is basepoint free.

We conclude with the following two results which will be useful in the proof
of Proposition 4.6.3.

Proposition 2.3.4 (Proposition 4.2 (ii) in [Bou04]). Let X be an IHS manifold,
and let E,F ∈ Pic(X) be effective divisors with no common component. Then
we have (E,F ) ≥ 0, where ( · , · ) is the BBF bilinear form.

Lemma 2.3.5 (Lemma 3.7 in [Mar13], Lemma 3.5 [Rie18]). Let X be an IHS
manifold. Suppose that D ∈ Pic(X) is an irreducible and reduced divisor with
qX(D) < 0. Let ( · , · ) be the BBF bilinear form and

div(D) := gcd{(α,D) |α ∈ H2(X,Z)}.

Then qX(D) | 2 div(D). In particular

−1

2
qX(D) ≤ div(D).
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Chapter 3

Hodge classes of Hilbert
squares of K3 surfaces

In this chapter we study rational and integral Hodge classes on the Hilbert
square of a projective K3 surface S. If X is a complex projective manifold of
dimension n, we have seen in Section 2.1.2 that Hi(X,Z)f and Hi(X,Q) are
Hodge structures of weight i, where Hi(X,Z)f denotes the torsion free quotient
group of the cohomology group Hi(X,Z). The even part ⊕k≥0H

2k(X,Q) of the
cohomology ring H∗(X,Q) contains all the algebraic cycles, i.e., classes which
are obtained as fundamental cohomological classes [Z] of subvarieties Z ⊂ X.
It is natural to wonder if algebraic cycles of degree 2k generate the subspace of
rational Hodge classes of type (k, k), which is by definition the subspace

H2k(X,Q) ∩Hk,k(X).

Similarly we call integral Hodge classes of type (k, k) the classes contained in

H2k(X,Z) ∩Hk,k(X).

This problem is known as the Hodge conjecture, and can be stated as follows.

Conjecture (Hodge conjecture). Let X be a smooth complex projective variety.
Then the subspace of H2k(X,Q) generated by algebraic cycles coincides with the
space of rational Hodge classes, i.e.,

H2k(X,Q) ∩Hk,k(X) = 〈[Z] |Z ⊂ X〉Q.

The same problem can be studied for integral Hodge classes. As a consequence
of the Lefschetz theorem on (1, 1)-classes, see [Gri79], the Hodge conjecture is true
for classes of type (1, 1): any element of H2(X,Z) ∩H1,1(X) is the cohomology
class of a divisor on X. The Hodge conjecture holds for Hodge classes of type
(n − 1, n − 1) by the hard Lefschetz theorem, see [Voi02, Théorème 6.25]. In
particular the Hodge conjecture is true when X has dimension at most 3. The
Hodge conjecture is in general a very difficult problem. It holds for K3 surfaces,
but it is still an open problem for products S × · · · × S, where S is a K3 surface,
see [Huy16, §3.1.2]. See also [Sch10], [Bus19] and [Huy19] for results in the case
of products S × S of two K3 surfaces.
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Our interest for Hodge classes on Hilbert squares of K3 surfaces does not
have as a goal the study of the Hodge conjecture: our aim is to obtain an explicit
description of the lattice H2,2(S[2],Z) of integral Hodge classes of type (2, 2) for
a generic K3 surface S, where by generic K3 surface we mean the following.

Definition 3.0.1. A generic K3 surface S is a projective K3 surface whose
Picard group Pic(S) is generated by the class of an ample divisor. A generic K3
surface S has degree 2t if Pic(S) ∼= ZH with H2 = 2t, t ≥ 1.

This explicit description of the lattice H2,2(S[2],Z) that we will obtain will
be used in Chapter 4 to determine the irreducibility of some surfaces obtained
as intersections of supports of effective divisors in a complete linear system |D|,
with D ∈ Div(S[2]).

The chapter is organised as follows. In Section 3.1 we will recall the description
of the intersection pairing onH4(X,Q), whereX is an IHS manifold ofK3[2]-type,
following [O’G08b, §2, §3]. In Section 3.2 Nakajima operators will be introduced,
following [Nak97], [Leh99], then we will recall the so-called Ellingsrud–Göttsche–
Lehn (EGL) formula and the Qin–Wang theorem which describes the lattice
H4(S[2],Z), where S is a K3 surface. In Section 3.3 we will study the model by
Lehn and Sorger, see [LS03], with particular emphasis on the case of Hilbert
squares of K3 surfaces: we will discuss in detail how to use the model to compute
cup products on the cohomology ring H∗(S[2],Z). Moreover, we will show how to
combine all these results to obtain a first description of the lattice H2,2(S[2],Z)
of integral Hodge classes of type (2, 2) on Hilbert squares of generic K3 surfaces
in terms of Nakajima operators. In Section 3.4 we will use the EGL-formula to
describe the second Chern class c2(S[2]) of the Hilbert square of a K3 surface
in terms of Nakajima operators. We will use this to give a more geometrical
and explicit description of H2,2(S[2],Z), for S a generic K3 surface. This will be
crucial in Chapter 4. We will also describe explicitly the lattice H2,2(S[2],Z) for
any projective K3 surface S, knowing its Picard group Pic(S). We will conclude
with Section 3.5, where rational and integral Hodge classes of type (3, 3) on
Hilbert squares of K3 surfaces will be discussed. We remark that from now on
the definition of variety is slightly different from the one used in Chapter 1 and
in Chapter 2: now a variety is not required to be necessarily irreducible.

3.1 Intersection pairing on H4(X,Q)

Let X be a projective IHS manifold of dimension 4 of K3[2]-type. In this section
we recall the general construction of the intersection pairing on H4(X,Q), and
we show that this can be expressed in terms of the BBF form on H2(X,Q).

First of all, we state the following corollary of Verbitsky’s results in [Ver96],
obtained by Guan in [Gua01], see also [O’G10, Corollary 2.5]. We denote by
bi(X) the i-th Betti number of X.

Proposition 3.1.1 (Guan). Let X be an IHS manifold of dimension 4. Then
b2(X) ≤ 23. If equality holds then b3(X) = 0 and moreover the map

Sym2H2(X,Q)→ H4(X,Q) (3.1.1)

induced by the cup product is an isomorphism. This happens when X is an IHS
fourfold of K3[2]-type.
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Since X is a compact complex manifold of dimension dimC(X) = 4, the
singular cohomology group H4(X,Z) has an intersection pairing

〈 · , · 〉 : H4(X,Z)×H4(X,Z)→ Z, 〈α, β〉 := ε ((α ∪ β) ∩ [X]) ,

where

• [X] ∈ H8(X,Z) is the fundamental class of X,

• ∪ : H4(X,Z)⊗H4(X,Z)→ H8(X,Z) is the cup product,

• ∩ : H8(X,Z)⊗H8(X,Z)→ H0(X,Z) is the cap product,

• ε : H0(X,Z)
∼−→ Z is the usual isomorphism between the zeroth homology

group and Z, see [Bre13, Theorem IV.2.1] for details.

Equivalently, the isomorphism H8(X,Z) ∼= Z identifies the unit with an integral
volume form ω on X, which is in particular an orientable manifold, being a
complex manifold, hence

〈α, β〉 =

∫
X

α ∪ β. (3.1.2)

Note that
∫
X
α ∪ β ∈ Z since α ∪ β = kω for some k ∈ Z. Moreover,

∫
X
ω ∈ Z

since ω is integral. See [Bre13], [GH78] and [Hat05] for details on cap product and
cup product. From now on we will usually write αβ to denote the cup product
α ∪ β. Since dimR(X) = 8, again by Poincaré duality 〈 · , · 〉 is unimodular,
i.e., if {α1, . . . , αN} is a basis of H4(X,Z), then the matrix A = (ai,j)i,j with
ai,j := 〈αi, αj〉 has determinant detA = ±1. Moreover, A is symmetric.

The following result of Hodge theory explains how the cup product on the
ring H∗(X,C) for X a complex Kähler manifold behaves with respect to the
Hodge decomposition. We state it for projective complex manifolds.

Proposition 3.1.2 (Corollaire 6.15 in [Voi02]). Let X be a projective complex
manifold. The cup product

Hk(X,C)⊗H l(X,C)→ Hk+l(X,C)

is bigraded for the bigraduation given by the Hodge decomposition.

Let now X be an IHS fourfold of K3[2]-type and let

〈 · , · 〉C : H4(X,C)×H4(X,C)→ C

be the C-bilinear extension of 〈 · , · 〉. The following classical result of Hodge
theory can be obtained from Proposition 3.1.2.

Corollary 3.1.3. Let X be an IHS fourfold of K3[2]-type and α, β ∈ H4(X,C).
Suppose that α and β have bidegree (p, q) and (p′, q′) respectively with respect to
the Hodge structure on H4(X,C). If (p+ p′, q + q′) 6= (4, 4) then 〈α, β〉C = 0.

Proof. We have h4,4(X) = 1 and hp,q(X) = 0 if either p or q is strictly bigger
than 4 since X is a projective complex manifold of dimension 4. Assume that
α, β ∈ H4(X,C) are two classes which have bidegree (p, q) and (p′, q′) respectively.
By Proposition 3.1.2 the cup product αβ ∈ H8(X,C) has bidegree (p+p′, q+q′),
so it is zero if (p+ p′, q + q′) 6= 0. By (3.1.2) this implies 〈α, β〉C = 0.
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By Proposition 3.1.1 we have an isomorphism Sym2H2(X,Q) ∼= H4(X,Q).
A similar isomorphism does not hold when we pass to integer coefficients by the
following result obtained by Boissière, Nieper-Wißkrichen and Sarti, see also
[Kap16a, Proposition 2.2].

Proposition 3.1.4 (Proposition 3 in [BNWS13]). Let X be an IHS fourfold of
K3[2]-type. Then

H4(X,Z)

Sym2H2(X,Z)
∼=
(

Z
2Z

)⊕23

⊕
(

Z
5Z

)
,

where by Sym2H2(X,Z) we mean its image in H4(X,Z) under the map induced
by the cup product.

We extend by Q-bilinearlity the intersection pairing 〈 · , · 〉, obtaining

〈 · , · 〉Q : H4(X,Q)×H4(X,Q)→ Q,

so that 〈 · , · 〉Q gives a Q-valued intersection pairing on Sym2H2(X,Q). From
now on we will use the notation 〈 · , · 〉 for 〈 · , · 〉Q. We then have the following
relation between 〈 · , · 〉 and the Q-extension of the BBF form on H2(X,Q).

Proposition 3.1.5 (Remark 2.1 in [O’G08b]). Let X be an IHS fourfold of
K3[2]-type. The intersection pairing 〈 · , · 〉Q defined above on

Sym2H2(X,Q) ∼= H4(X,Q)

is the bilinear form on Sym2H2(X,Q) given by

〈α1α2, α3α4〉 = (α1, α2)(α3, α4) + (α1, α3)(α2, α4) + (α1, α4)(α2, α3) (3.1.3)

for every α1, α2, α3, α4 ∈ H2(X,Q), where ( · , · ) denotes the BBF form on
H2(X,Q).

Proof. By Theorem 2.2.4 we have∫
X

α4
i = 3(αi, αi)

2, 1 ≤ i ≤ 4. (3.1.4)

We have also∫
X

(αi + αj)
4 = 3(αi + αj , αi + αj)

2, 1 ≤ i < j ≤ 4.

Expanding the powers and using the equalities (3.1.4) we obtain

4

∫
X

α3
iαj + 4

∫
X

αiα
3
j + 6

∫
X

α2
iα

2
j = 12(αi, αj)

2 + 6(αi, αi)(αj , αj)

+12(αi, αi)(αi, αj) + 12(αi, αj)(αj , αj)
(3.1.5)

for 1 ≤ i < j ≤ 4. Similarly, expanding the powers in∫
X

(αi + αj + αk)4 = 3(αi + αj + αk, αi + αj + αk)2, 1 ≤ i < j < k ≤ 4,
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using (3.1.4) and (3.1.5) we have

12

∫
X

α2
iαjαk + 12

∫
X

αiα
2
jαk + 12

∫
X

αiαjα
2
k = 12(αi, αi)(αj , αk)

+12(αj , αj)(αi, αk)

+12(αi, αj)(αk, αk)

+24(αi, αj)(αi, αk)

+24(αi, αj)(αj , αk)

+24(αi, αk)(αj , αk).

(3.1.6)
Finally, expanding the powers in∫

X

(α1 + α2 + α3 + α4)2 = 3(α1 + α2 + α3 + α4, α1 + α2 + α3 + α4)2,

and using the equalities (3.1.4), (3.1.5), (3.1.6) we obtain

24

∫
X

α1α2α3α4 = 24(α1, α2)(α3, α4) + 24(α1, α3)(α2, α4) + 24(α1, α4)(α2, α3),

hence∫
X

α1α2α3α4 = (α1, α2)(α3, α4) + (α1, α3)(α2, α4) + (α1, α4)(α2, α3).

By Proposition 3.1.1, we have H4(X,Q) ∼= Sym2H2(X,Q), and the isomorphism
is induced by the cup product. This, together with (3.1.2), implies that∫

X

α1α2α3α4 = 〈α1α2, α3α4〉,

as we wanted.

Let qX be the BBF quadratic form on X. Let {e1, . . . , e23} be a basis of
H2(X,Q) and {e∨1 , . . . , e∨23} be the dual basis in H2(X,Q)∨, i.e.,

e∨i (ej) = δi,j .

Then we have
qX =

∑
i,j

gi,je
∨
i ⊗ e∨j

where gi,j := (ei, ej), in particular (gi,j) is a symmetric matrix. The dual of qX
is then an element in H4(X,Q) of the form

q∨X =
∑
i,j

mi,jeiej , (3.1.7)

where (mi,j) = (gi,j)
−1 and eiej denotes the cup product ei ∪ ej . The following

proposition shows how to compute the product 〈q∨X , α〉 for every α ∈ H4(X,Q).
See [O’G08b, Proposition 2.2] for a more general statement.
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Proposition 3.1.6. Let X be an IHS fourfold of K3[2]-type. Let 〈 · , · 〉 be
the bilinear form on H4(X,Q) ∼= Sym2H2(X,Q) described in Proposition 3.1.5.
Then 〈 · , · 〉 is non-degenerate and

〈q∨X , αβ〉 = 25(α, β) for all α, β ∈ H2(X,Q),

〈q∨X , q∨X〉 = 23 · 25.

Proof. We consider the inclusion H2(X,Q) ↪→ H2(X,C) and we extend the
BBF form C-bilinearly to H2(X,C). Let {e1, . . . , e23} be an orthonormal basis
of H2(X,C) with respect to the BBF form. Then by (3.1.7) and by definition of
the coefficients gi,j given above we have

q∨X =

23∑
i=1

eiei.

Let α, β ∈ H2(X,Q). We first show that 〈q∨X , αβ〉 = 25(α, β). If we consider α
and β as elements of H2(X,C), we can write

α =

23∑
i=1

αiei, β =

23∑
i=1

βjej , (3.1.8)

for some αi, βj ∈ C. By linearity, it suffices to show it when α = ei and β = ej
for i, j ∈ {1, . . . , 23}. By Proposition 3.1.5 we have

〈q∨X , eiej〉 = 〈
23∑
k=1

ekek, eiej〉

=

23∑
k=1

〈ekek, eiej〉

=

23∑
k=1

((ek, ek)(ei, ej) + 2(ek, ei)(ek, ej)) .

If i 6= j, we obtain
〈q∨X , eiej〉 = 0,

which is equal to (ei, ej). Otherwise, if i = j we have

〈q∨X , eiei〉 = 25(ei, ei).

Similarly, we show that 〈q∨X , q∨X〉 = 23 · 25. For every i ∈ {1, . . . , 23} we have

〈eiei,
23∑
j=1

ejej〉 = 〈eiei,
23∑

j 6=i,j=1

ejej〉+ 3(ei, ei)
2 = 22 + 3 = 25,

hence

〈q∨X , q∨X〉 = 〈
23∑
i=1

eiei,

23∑
j=1

ejej〉 = 23 · 25,

as we wanted.
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We obtain the following corollary.

Corollary 3.1.7. Let X be an IHS fourfold of K3[2]-type. Then q∨X ∈ H2,2(X,Q),
i.e., q∨X is a rational Hodge class of X of type (2, 2).

Proof. Let σ ∈ H2,0(X) be a symplectic form such that
∫
X

(σσ)2 = 1. We have
seen in Theorem 2.2.4 that the BBF form is a scalar multiple of the following
bilinear form, which we call b: given α1, α2 ∈ H2(X,C) with

α1 = λ1σ + β1 + µ1σ, α2 = λ2σ + β2 + µ2σ,

where λ1, λ2, µ1, µ2 ∈ C and β1, β2 ∈ H1,1(X), then

b(α1, α2) =
1

2
(λ1µ2 + λ2µ1) +

∫
X

β1β2σσ. (3.1.9)

Assume that

q∨X = (q∨X)4,0 + (q∨X)0,4 + (q∨X)3,1 + (q∨X)1,3 + (q∨X)2,2 ∈ H4(X,Q), (3.1.10)

where (q∨X)i,j ∈ Hi,j(X) is the component of type (i, j) of q∨X in H4(X,C) for
the Hodge decomposition. By Proposition 3.1.6 we have

〈q∨X , σ2〉 = 25(σ, σ) = 0, (3.1.11)

where the last equality comes from (3.1.9). Since dimC(H0,4(X)) = 1, we have
(q∨X)0,4 = µσ for some µ ∈ C. By Corollary 3.1.3 and (3.1.10) we have

〈q∨X , σ2〉 = 〈(q∨X)0,4, σ2〉
= 〈µσ2, σ2〉
= 2µ(σ, σ)2.

(3.1.12)

Since (σ, σ) 6= 0, by (3.1.11) and (3.1.12) we obtain (q∨X)0,4 = 0. Similarly
from 〈q∨X , σ2〉 = 0 we get (q∨X)4,0 = 0. Suppose now that {α1, . . . , α23} is an
orthonormal basis of H2(X,C) such that {α1, . . . , α21} ⊂ H1,1(X). We have
seen in Section 2.2.3 that dimC(H3,1(X)) = 21, so a basis of H3,1(X) is given
by {σα1, . . . , σα21}, hence we can write

(q∨X)3,1 =

21∑
i=1

xi · σαi (3.1.13)

for some xi ∈ C. By Proposition 3.1.6 we have for j = 1, . . . , 21 that

〈q∨X , σαj〉 = 25(σ, αj) = 0 (3.1.14)

where the last equality comes from (3.1.9). Using Corollary 3.1.3, from (3.1.10)
and (3.1.13) we have

〈q∨X , σαj〉 =

21∑
i=1

xi〈σαi, σαj〉

= xj(σ, σ).

(3.1.15)

Since (σ, σ) 6= 0, for j = 1, . . . , 23 we obtain from (3.1.14) and (3.1.15) that
xj = 0, hence (q∨X)3,1 = 0. Similarly (q∨X)1,3 = 0. We then conclude that
q∨X ∈ H2,2(X,Q).
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We can say more on q∨X ∈ H2,2(X,Q). O’Grady in [O’G08b, §3] has shown
that it is a rational multiple of c2(X), the second Chern class of the tangent
bundle of X. We state the precise result in the following proposition.

Proposition 3.1.8 (O’Grady). Let X be a projective IHS fourfold of K3[2]-type.
Then

6

5
q∨X = c2(X) ∈ H2,2(X,Z).

Moreover, 2
5q
∨
X ∈ H2,2(X,Z) is an integral Hodge class of X of type (2, 2).

Proof. If Z is an IHS manifold of dimension 2n and α is a class which is of
bidegree (2, 2) on all small deformations of Z and which is contained in the
image of Sym2H2(Z,Q)→ H4(Z,Q), Fujiki showed in [Fuj87] that there exists
a constant cα ∈ Q such that∫

Z

αβ2(n−1) = cαqZ(β)n−1 for every β ∈ H2(Z,Q),

which is a multiple of qZ(β), see also [Huy99, §1.11]. Hence α is a rational
multiple of q∨Z . We can apply this argument in our case with α = c2(X), since by
[NW02, §2, Remark 5] rational Chern classes of an IHS manifold are topological
invariants, so we have c2(X) = aq∨X for some a ∈ Q. Let h ∈ Pic(X) be an
ample class. By [Miy87, Theorem 1] and Proposition 3.1.6 we have

0 ≤ 〈c2(X), h2〉 = 〈aq∨X , h2〉 = 50a,

so a ≥ 0. By Theorem 2.2.6 we have c2(X)2 = 828, hence

828 = c2(X)2 = 〈aq∨X , aq∨X〉 = a223 · 25.

Since a ≥ 0, we conclude that a = 6
5 and

c2(X) =
6

5
q∨X ∈ H2,2(X,Z).

Recall that the lattice (H2(X,Z), qX) is isomorphic to E8(−1)⊕2 ⊕ U⊕3 ⊕ 〈−2〉,
so it has discriminant disc(H2(X,Z)) = 2. We see from (3.1.7) that this implies
2q∨X ∈ H2,2(X,Z), hence

H2,2(X,Z) 3 2c2(X)− 2q∨X =
2

5
q∨X .

We conclude this section with the following Riemann–Roch formula for IHS
manifolds of K3[2]-type, see [O’G10, Formula (2.2.7)].

Theorem 3.1.9. Let X be an IHS manifold deformation equivalent to the Hilbert
square of a K3 surface. Let L ∈ Pic(X) be a line bundle on X. Then the Euler
characteristic of L is

X (L) =
1

8
(qX(L) + 4)(qX(L) + 6). (3.1.16)

In particular, if L is ample, then X (L) = h0(X,L) = dim(H0(X,L)).
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Proof. By Theorem 1.3.3 we have

X (L) =

∫
X

ch(L) ∪ td(TX),

where ch(L) is the exponential Chern character of L and td(TX) is the Todd
class of X introduced in Section 1.3. We have

ch(L) = 1 + c1(L) +
1

2
c1(L)2 +

1

6
c1(L)3 +

1

24
c1(L)4 (3.1.17)

and, since all odd Chern classes of X vanish,

td(TX) = 1 +
1

12
c2(X)− 1

720
(−3c2(X)2 + c4(X)) . (3.1.18)

Note that in (3.1.17) and (3.1.18) powers are taken with respect to the cup
product. Let h ∈ Div(X) such that L = OX(h). From now on we write h instead
of c1(OX(h)). We get

X (L) =

∫
X

(
1 + h+

1

2
h2 +

1

6
h3 +

1

24
h4

)(
1 +

1

12
c2 −

1

720
(−3c22 + c4)

)
.

(3.1.19)
From Theorem 2.2.6 we have c2(X)2 = 828 and c4(X) = 324. Moreover by
Proposition 3.1.8 we have

c2(X) =
6

5
q∨X ∈ H4(X,Q). (3.1.20)

By Theorem 2.2.4 and Proposition 2.2.8 we obtain∫
X

h4 =
4!

2! · 22
qX(h)2 . (3.1.21)

Then by (3.1.19), (3.1.20) and (3.1.21) we get

X (L) =

∫
X

(
1

240
c22 −

1

720
c4

)
+

∫
X

(
1 + h+

1

2
h2 +

1

6
h3 +

1

24
h4

)(
1 +

1

12
c2

)
= 3 +

1

24

(∫
X

h4

)
+

1

24

(∫
X

c2(X)h2

)
= 3 + 1

24 · 3 · qX(h)2 + 1
24 ·

6
5 · 25 · qX(h)

= 1
8 (qX(L) + 4)(qX(L) + 6),

where in the third equality we have used Proposition 3.1.6. We conclude that:

X (L) = 3 +
1

24
· 3 · qX(L)2 +

1

24
· 6

5
· 25 · qX(L)

= 1
8 (qX(L) + 4)(qX(L) + 6).

Thus we obtain (3.1.16), as we wanted. Now, if L is ample, since ωX ∼= OX ,
using Theorem 1.1.18 we have that h0(X,L) = X (L), which shows the second
part of the statement.
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3.2 Nakajima operators
In this section we introduce the Nakajima operators. We first recall the most
important definitions and results from [Nak97], [Leh99], [Boi05], [BNW07],
[BNWS13]. We will then see how the theory of Nakajima operators applies
in the case of the Hilbert square X of a K3 surface, with the computation of an
integral basis of H2(X,Z) and H4(X,Z) given by Qin and Wang in [QW05].

3.2.1 Basic definitions and results
Let S be a smooth irreducible complex projective surface. For any integer n ≥ 0
let S[n] be the Hilbert scheme of n points on S. The idea is to study the singular
cohomology groups with rational coefficients of S[n] for every n ≥ 0 taken all
together. We define

HSn :=

4n⊕
i=0

Hi(S[n],Q), HS :=
⊕
n≥0

HSn .

The unit of the Q-algebra (with cup-product) HS0 ∼= Q is called vacuum vector
and it is denoted by |0〉. The unit in HS for the cup product is given by

|1〉 :=
∑
n≥0

1S[n] .

The space HS is double graded by (n, i): we say that n is the conformal weight
and i is the cohomological degree, denoted by | · |. Let f ∈ End(HS) be a
linear operator. We say that f is homogeneous of bidegree (ν, ι) if for any n we
have f

(
Hi(S[n],Q)

)
⊂ Hi+ι(S[n+ν],Q). The commutator of two homogeneous

operators f, g ∈ End(HS) is defined by:

[f, g] := f ◦ g− (−1)|f|·|g|g ◦ f.

We can define an intersection pairing 〈 · , · 〉 on HS generalizing the construction
of 〈 · , · 〉 given in Section 3.1. First of all, fix an integer n ≥ 0, and let α, β ∈ HSn .
We set

〈 · , · 〉 : HSn ×HSn → Q, 〈α, β〉 :=

∫
S[n]

α ∪ β.

In particular we have 〈α, β〉 = 0 if |α|+ |β| 6= 4n. Then 〈 · , · 〉 extends naturally
to a non-degenerate graded-symmetric bilinear form on HS , which we denote
again by 〈 · , · 〉. If f ∈ End(HS) is a homogeneous operator, we define the adjoint
operator f† as the homogeneous operator characterised by the relation

〈f(α), β〉 = (−1)|f|·|α|〈α, f†(β)〉.

In order to define Nakajima operators, we have to define S[n,n+k], an irreducible
subvariety of S[n]×S×S[n+k], for any integers n ≥ 0, k > 0. For this construction
we follow [Leh99, §1.2]. We denote by X [n,n+k] ⊂ S[n] × S[n+k] the uniquely
determined closed subscheme with the property that any morphism

f = (f1, f2) : T → S[n] × S[n+k]
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from an arbitrary variety T factors through X [n,n+k] if and only if the following
holds:

(f1 × idS)−1(ΞSn) ⊂ (f2 × idS)−1(ΞSn+k),

where ΞSn ⊂ S[n] × S is the universal family of subschemes parametrized by S[n].
Closed points in X [n,n+k] corresponds to pairs (ξ, ξ′) of subschemes with ξ ⊆ ξ′.
Then one obtains a morphism similar to the Hilbert–Chow morphism:

ρ : X [n,n+k] → SymkS.

We set X [n,n+k]
0 := ρ−1(∆), where ∆ ⊂ SymkS is the small diagonal, and we

consider on X [n,n+k]
0 the reduced induced subscheme structure. Set-theoretically

we can identify X [n,n+k]
0 with the following subset of S[n] × S × S[n+k]:

X
[n,n+k]
0 := {(ξ, x, ξ′) | ξ ⊆ ξ′ and Supp(Iξ/Iξ′) = x}, (3.2.1)

where Iξ is the ideal sheaf of ξ. We define S[n,n+k] as

S[n,n+k] := {(ξ, x, ξ′) ∈ X [n,n+k]
0 | l(ξx) = 0},

where the closure is the Zariski closure. Then S[n,n+k] is an irreducible subvariety
of S[n] × S × S[n+k] of dimension 2n+ k + 1 by [Leh99, Lemma 1.1].

Consider the following diagram:

S[n] × S × S[n+k]

S[n] S S[n+k],

ϕ ρ
ψ (3.2.2)

where ϕ, ρ and ψ are the projections respectively on S[n], S and S[n+k]. We can
now define the Nakajima operators.

Definition 3.2.1. Let S be a smooth irreducible complex projective surface.
We define the Nakajima creation operators (known also as Heisenberg operators)

qk : H∗(S,Q)→ End(HS), k ≥ 0

in the following way: for α ∈ H∗(S,Q) and x ∈ H∗(S[n],Q) we set

qk(α)(x) := ψ∗

(
PD−1

[
S[n,n+k]

]
· ϕ∗(x) · ρ∗(α)

)
, (3.2.3)

where
[
S[n,n+k]

]
∈ H4n+2k+2(S[n] × S × S[n+k],Q) is the fundamental class of

S[n,n+k], PD is the Poincaré duality, the dot is the cup product, and ψ∗ is
the Gysin homomorphism given in Definition 1.2.1. The Nakajima annihilation
operators are defined as

qk(α) := (−1)−kq−k(α)† for all k < 0.

By convention, q0 = 0. Note that the unit |1〉 ∈ HS can be represented in terms
of the Nakajima operators as

|1〉 =
∑
n≥0

1S[n] = exp(q1(1S))|0〉,

which gives

1S[n] =
1

n!
q1(1)n|0〉. (3.2.4)

87



CHAPTER 3. HODGE CLASSES OF HILBERT SQUARES OF K3 SURFACES

The following commutation formula was obtained by Nakajima in [Nak97].

Theorem 3.2.2 (Nakajima). The operators qi satisfy the following commutation
formula:

[qi(α), qj(β)] = i · δi+j,0 ·
∫
S

αβ · idHS ,

where δ is the Kronecker delta.

3.2.2 The boundary operator
We now want to define a derivative for a linear operator f ∈ End(HS). In order
to do that, we introduce the boundary operator. Fix a positive integer n > 0 and
let λ = {λ1 ≥ λ2 ≥ · · · ≥ λs > 0} be a partition of n, i.e., an s-uple of ordered
positive integers such that λ1 + λ2 + · · ·+ λs = n. Consider the Hilbert–Chow
morphism

ρ : S[n] → SymnS.

We set

Symn
λS := {α ∈ SymnS |α =

∑
1≤i≤s

λixi, xi ∈ S pairwise distinct}

for a fixed partition λ. By a theorem of Briançon, see [Bri77], S[n]
λ := ρ−1(Symn

λS)

is irreducible of dimension n + s. For example, S[n]
(1,1,...,1) is the open subset

of S[n] which corresponds to the configuration space of unordered n-tuples of
pairwise distinct points: it is the only stratum which is open. The only stratum
of codimension 1 is S[n]

(2,1,...,1).

Definition 3.2.3. The boundary of S[n] for n ≥ 2 is the irreducible divisor

∂S[n] :=
⋃

λ 6=(1,1,...,1)

S
[n]
λ = S

[n]
(2,1,...,1).

Remark 3.2.4. Clearly for n = 1 the boundary ∂S[n] is the empty set.

There exists another description of the divisor ∂S[n] in sheaf theoretic terms.
Consider the universal family of subschemes

Ξn ⊂ S[n] × S.

Let p : Ξn → S[n] be the projection on the first factor. Since p is a flat morphism
of finite degree n, we have that

O[n]
S := p∗(OΞn) ∈ Coh(S[n])

is a locally free sheaf of rank n.

Lemma 3.2.5 (Lemma 3.7 in [Leh99]). Keep notation as above. Then we have

[∂S[n]] = −2c1(O[n]
S ).

We can now define the boundary operator.
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Definition 3.2.6. The boundary operator d : HS → HS is the homogeneous
linear map of bidegree (0, 2) given by

d(x) := c1(O[n]
S ) · x = −1

2
[∂S[n]] · x for all x ∈ H∗(S[n]).

For any endomorphism f ∈ End(HS) we define the derivative of f as

f′ := [d, f] = d ◦ f− f ◦ d.

We denote by f(n) the higher derivatives.

Note that as a consequence of the Jacobi identity, f 7→ f′ is a derivation, i.e.,
for any a, b ∈ End(HS) the Leibniz rule holds:

(ab)′ = a′b + ab′ and [a, b]′ = [a′, b] + [a, b′].

The following relation is part of the main result of [Leh99].

Theorem 3.2.7 (Theorem 3.10 in [Leh99]). Let S be a smooth irreducible
complex projective surface and K be the canonical class of X. Then the following
holds for all n,m ∈ Z and α, β ∈ H∗(S,Q):

[q′n(α), qm(β)] = −nm ·
{
qn+m(αβ) +

|n| − 1

2
δn+m,0 ·

∫
S

Kαβ · idH
}
,

where δ is the Kronecker delta. In particular, for any integers n,m such that
n+m 6= 0 and cohomology classes α, β ∈ H∗(S,Q) we have

[q′n(α), qm(β)] = −nm · qn+m(αβ).

3.2.3 Ellingsrud–Göttsche–Lehn formula
In this section we state the Ellingsrud–Göttsche–Lehn (EGL) formula. This will
be a fundamental tool for our computation of the lattice H2,2(S[2],Z) of the
Hilbert square of a generic K3 surface S.

Let ΞSn ⊂ S[n] × S be the universal family of subschemes parametrized
by S[n]. Then by [Leh99, Theorem 1.9], we have that S[n,n+1] is a smooth
irreducible variety which is isomorphic to the blow-up of S[n] × S along ΞSn , i.e.,
S[n,n+1] ∼= BlΞSn(S[n]×S), where ΞSn is the universal family. We get the following
diagram

S[n,n+1] S[n+1]

S[n] × S

S[n] ΞSn S,

ϕ ρ

σ

ψ

p q
ι

(3.2.5)

where σ is the blow-up in ΞSn , the morphism ι is the inclusion and the other maps
are the projections. If N is the exceptional divisor of σ, let L := OS[n,n+1](−N).
We denote by Tn the tangent bundle T S[n] and by ωS the canonical bundle of S.
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Recall that given a smooth irreducible projective variety X and F ∈ Coh(X),
by Definition 1.3.2 the dual is

F∨ :=
∑
i

(−1)iExt i(F,OX).

We can now state the Ellingsrud–Göttsche–Lehn formula.

Proposition 3.2.8 (Proposition 2.3 in [EGL01]). Keep notation as above. The
following relation holds in K(S[n,n+1]):

ψ!Tn+1 = ϕ!Tn + L − L · σ!(O∨Ξn) + L∨ · ρ!ω∨S

−L∨ · σ!(OΞn) · ρ!ω∨S − ρ!(OS − TS + ω∨S ).

We will use the EGL-formula to compute the second Chern class c2(X) of
the Hilbert square X = S[2] of a K3 surface in terms of Nakajima operators.

3.2.4 Hilbert squares of K3 surfaces and Nakajima operators
We apply the general theory on Nakajima operators to the case of Hilbert squares
of projective K3 surfaces. Let S be a projective K3 surface. Let {αi}i=1,...,22

be an integral basis of H2(S,Z), denote by 1 ∈ H0(S,Z) the unit and by
x ∈ H4(S,Z) the class of a point. The following theorem by Qin and Wang
describes the integral basis of of H2(S[2],Z) and H4(S[2],Z) in terms of the
Nakajima operators. We state it as presented in [BNWS13, p.17], for a more
general statement see [QW05, Theorem 5.4, Remark 5.6].

Theorem 3.2.9 (Qin–Wang). Let S be a projective K3 surface and X = S[2]

be its Hilbert square. Let {αi}i=1,...,22 be an integral basis of H2(S,Z). Denote
by 1 ∈ H0(S,Z) the unit and by x ∈ H4(S,Z) the class of a point.

(i) An integral basis of H2(X,Z) in terms of Nakajima operators is given by

1

2
q2(1)|0〉, q1(1)q1(αi)|0〉,

with i = 1, . . . , 22.

(ii) An integral basis of H4(X,Z) in terms of Nakajima operators is given by

q1(1)q1(x)|0〉, q2(αi)|0〉, q1(αi)q1(αj)|0〉 with i < j,

m1,1(αi)|0〉 := 1
2

(
q1(αi)

2 − q2(αi)
)
|0〉,

with i, j = 1, . . . , 22.

Remark 3.2.10. If X = S[2] is the Hilbert square of a projective K3 surface,
then by Definition 3.2.1 with k = 2, n = 0, we have 1

2q2(1)|0〉 = δ, and if
α ∈ H2(S,Z), then by Definition 3.2.1 with n = k = 1 we obtain that α seen as
an element of H2(S[2],Z) is represented by q1(1)q1(α)|0〉.

Let S be a K3 surface and τ2 : S → S × S be the diagonal embedding.
We denote the Gysin homomorphism followed by the Künneth isomorphism by
τ2∗ : H∗(S,Z)→ H∗(S,Z)⊗H∗(S,Z). We can write

τ2∗1 =
∑
i,j

µi,jαi ⊗ αj + a(1⊗ x) + b(x⊗ 1) (3.2.6)
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for some µi,j ∈ Z such that µi,j = µj,i, i, j ∈ 1, . . . , 22, and some a, b ∈ Z.
We want to explicitly determine the µi,j ’s. We have seen in Section 2.1 that
H2(S,Z) ∼= E8(−1)⊕2 ⊕ U⊕3. We will use the basis {α1, . . . , α22} of H2(S,Z)
obtained as follows: let {α1, . . . , α8} and {α9, . . . , α16} be the basis of the two
copies of E8(−1) with the Gram matrix given in Example 1.4.7 and {α17, α18},
{α19, α20}, {α21, α22} be the basis of the three copies of U with Gram matrix
given in Example 1.4.5. The values of the µi,j ’s are given by the following lemma.

Lemma 3.2.11. Let X = S[2] be the Hilbert square of a K3 surface S. Assume
that {α1, . . . , α22} is the basis of the lattice H2(S,Z) constructed above. Then

τ2∗1 =
∑
i,j

µi,jαi ⊗ αj + 1⊗ x+ x⊗ 1,

where the µi,j ’s are represented in Table 3.1 (we write down only the µi,j ’s which
are non zero and such that i ≤ j):

µ1,1 = −4 µ1,2 = −7 µ1,3 = −10 µ1,4 = −8 µ1,5 = −6
µ1,6 = −4 µ1,7 = −2 µ1,8 = −5 µ2,2 = −14 µ2,3 = −20
µ2,4 = −16 µ2,5 = −12 µ2,6 = −8 µ2,7 = −4 µ2,8 = −10
µ3,3 = −30 µ3,4 = −24 µ3,5 = −18 µ3,6 = −12 µ3,7 = −6
µ3,8 = −15 µ4,4 = −20 µ4,5 = −15 µ4,6 = −10 µ4,7 = −5
µ4,8 = −12 µ5,5 = −12 µ5,6 = −8 µ5,7 = −4 µ5,8 = −9
µ6,6 = −6 µ6,7 = −3 µ6,8 = −6 µ7,7 = −2 µ7,8 = −3
µ8,8 = −8 µ9,9 = −4 µ9,10 = −7 µ9,11 = −10 µ9,12 = −8
µ9,13 = −6 µ9,14 = −4 µ9,15 = −2 µ9,16 = −5 µ10,10 = −14
µ10,11 = −20 µ10,12 = −16 µ10,13 = −12 µ10,14 = −8 µ10,15 = −4
µ10,16 = −10 µ11,11 = −30 µ11,12 = −24 µ11,13 = −18 µ11,14 = −12
µ11,15 = −6 µ11,16 = −15 µ12,12 = −20 µ12,13 = −15 µ12,14 = −10
µ12,15 = −5 µ12,16 = −12 µ13,13 = −12 µ13,14 = −8 µ13,15 = −4
µ13,16 = −9 µ14,14 = −6 µ14,15 = −3 µ14,16 = −6 µ15,15 = −2
µ15,16 = −3 µ16,16 = −8 µ17,18 = 1 µ19,20 = 1 µ21,22 = 1

Table 3.1: The µi,j ’s.

Proof. Let 〈 · , · 〉 be the intersection pairing of HS seen in Section 3.2.1. Since
the map τ2∗ is the adjoint of the cup product, we have the relation

〈τ2∗1, αk ⊗ αl〉 =

∫
S

αkαl,

which gives, together with τ2∗1 =
∑
i,j µi,jαi ⊗ αj + a(1 ⊗ x) + b(x ⊗ 1), the

following system: ∑
i,j

µi,j

∫
S

αiαk

∫
S

αjαl =

∫
S

αkαl. (3.2.7)

From (3.2.7), with the help of a computer, we can compute the coefficients µi,j .
The solution of the system is given in Table 3.1, where we have written down
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only the µi,j ’s which are non zero and such that i ≤ j, since µi,j = µj,i. Similarly,
from the relations

〈τ2∗1, 1⊗ x〉 =

∫
S

x = 1, 〈τ2∗1, x⊗ 1〉 =

∫
S

x = 1,

we obtain a = b = 1.

3.3 Lehn–Sorger model
In this section we introduce the algebraic model developed by Lehn and Sorger
in [LS03], see also [HHT12] and [Kap16a]. Using this model, one can find a basis
of the cohomology ring H∗(S[n],Q) in terms of the Nakajima operators starting
from a basis of H∗(S,Q). We will show in detail the case n = 2. Moreover, the
model will give us tools to compute explicitly the cup product between elements
in H∗(S[n],Q). As an example we will describe the cup product between elements
in H2(S[2],Z) in Lemma 3.3.9.

3.3.1 The algebraic model: graded Frobenius algebras
We begin with the definition of graded Frobenius algebra.

Definition 3.3.1. A graded Frobenius algebra of degree d is a finite dimensional
graded vector space

A =

d⊕
i=−d

Ai

endowed with a graded commutative and associative multiplication A⊗A→ A
of degree d, i.e., deg(ab) = deg(a) + deg(b) + d, and unit element 1, necessarily
of degree −d, together with a linear form

T : A→ Q

of degree −d such that the induced symmetric bilinear form 〈a, b〉 := T (ab) is
non-degenerate and of degree 0.

Since 1 · 1 = 1, we see that d must be an even number. Note that the
degree convention is taken in such a way that A is centered around degree 0.
The degree of an element A will be denoted by |a|, as seen in Section 3.2.1. A
typical example is A := H∗(X,Q)[2n], the shifted cohomology ring of a compact
complex manifold X of even dimension 2n, see Example 2.1.10, (ii).

From now on, we consider A := H∗(S,Q)[2], where S is a projective K3
surface. The linear form T : A→ Q is

T (α) := −
∫
S

α, (3.3.1)

and the induced bilinear form 〈 · , · 〉 is then

〈α, β〉 = T (αβ) = −
∫
S

αβ,
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where as always αβ denotes the cup product α ∪ β. Note that the bilinear form
is just the intersection pairing already seen in Section 3.2.1 with a change of
sign.

If A is a graded Frobenius algebra, then A⊗n has an induced structure
of Frobenius algebra. As remarked in [HHT12], if A = H∗(S,Q)[2] with S a
projective K3 surface, then A has only graded pieces of even degree, so the
general construction of Lehn–Sorger simplifies. In this case, the multiplication
induced on A⊗n is

(a1 ⊗ · · · ⊗ an) · (b1 ⊗ · · · ⊗ bn) = (a1b1)⊗ · · · ⊗ (anbn), (3.3.2)

and the linear form is

T : A⊗n → Q, a1 ⊗ · · · ⊗ an 7→ T (a1)T (a2) . . . T (an).

Denote by Sn the symmetric group of order n. Then Sn acts on A⊗n as

π(a1 ⊗ · · · ⊗ an) := aπ−1(1) ⊗ · · · ⊗ aπ−1(n).

Given a partition n = n1 + · · ·+nk with n1, . . . , nk ∈ Z>0, we have a generalized
multiplication map A⊗n → A⊗k defined by

a1 ⊗ · · · ⊗ an 7→ (a1 . . . an1)⊗ · · · ⊗ (an1+···+nk−1+1 . . . an1+···+nk). (3.3.3)

Given a finite set I ⊂ {1, . . . , n}, let A⊗I denote the tensor power with factors
indexed by elements of I. Given a surjection φ : I → J , there is an induced
multiplication

φ∗ : A⊗I → A⊗J (3.3.4)

defined as above. Let
φ∗ : A⊗J → A⊗I

denote the adjoint of φ∗, i.e.,

〈φ∗a, b〉 = 〈a, φ∗b〉

for a ∈ A⊗I and b ∈ A⊗J . If I and J are finite sets, we can use the same
construction: it suffices to identify I and J with the finite sets {1, 2, . . . , |I|}
and {1, 2, . . . , |J |} respectively. Consider the multiplication of A, i.e., the cup
product ∪ : A⊗A→ A. We denote by ∆∗ its adjoint, so we have the composite

A
∆∗−−→ A⊗A→ A. (3.3.5)

Let
e := e(A) (3.3.6)

denote the image of 1 under the composed map.

Remark 3.3.2 (Remark 3.1 in [HHT12]). Let ∆S denote the fundamental
cohomological class of the diagonal in H∗(S × S,Z) ∼= H∗(S,Z)⊗H∗(S,Z). Let
{e1, . . . , e24} be a homogeneous basis of H∗(S,Q) with dual basis {e∨1 , . . . , e∨24},
i.e., ∫

S

eie
∨
j = δi,j ,
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see also [MS16, Theorem 11.10]. By [MS16, Theorem 11.11] we have

∆S =

24∑
j=1

ej ⊗ e∨j .

Let α, β ∈ H∗(S,Z): we can write α =
∑
i αiei and β =

∑
i βkek for some

αk, βk ∈ Q. We obtain

〈∆S , α⊗ β〉 = 〈
24∑
j=1

ej ⊗ e∨j , α⊗ β〉

=

24∑
j=1

T (ejα)T (e∨j β)

=

24∑
j=1

(
−
∫
S

ejα

)(
−
∫
S

e∨j

24∑
k=1

βkek

)

=

∫
S

α

 24∑
j=1

βjej


=

∫
S

αβ,

while by definition of ∆∗ we have

〈∆∗1, α⊗ β〉 = 〈1, αβ〉
= T (αβ)

= −
∫
S

αβ.

Hence we obtain
∆∗1 = −∆S .

Note that in the same way, if 〈 · , · 〉 is the intersection pairing on HS seen in
Section 3.2.1 and τ2∗ is the map given in Section 3.2.4, then we have

∆∗ = −τ2∗, τ2∗1 = ∆S .

See also [Kap16b, Remark 13.6].

Let n be a fixed positive integer, π ∈ Sn be a permutation and 〈π〉 ⊂ Sn be
the subgroup generated by π. If [n] := {1, . . . , n}, denote by 〈π〉 \ [n] the set of
orbits. We set

A {Sn} :=
⊕
π∈Sn

A⊗〈π〉\[n] · π.

The grading of an element a · π is |a · π| := |a|.

Example 3.3.3. If n = 2, we have S2 = {id, (1 2)} and

〈id〉 \ [2] = {{1}, {2}} , 〈(1 2)〉 \ [2] = {{1, 2}} ,

hence we obtain
A {S2} = A⊗2id⊕A(1 2).

Similarly for n = 3 we have

A {S3} = A⊗3id⊕A⊗2(1 2)⊕A⊗2(1 3)⊕A⊗2(2 3)⊕A(1 2 3)⊕A(1 3 2).
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Let σ ∈ Sn. There is a bijection

σ : 〈π〉 \ [n]→ 〈σπσ−1〉 \ [n], x 7→ σx

and an isomorphism

σ̃ : A {Sn} → A {Sn} , aπ 7→ σ∗(a)σπσ−1. (3.3.7)

Thus we obtain an action of the symmetric group Sn on A {Sn}. We denote by

A[n] := (A {Sn})Sn

the subspace of invariants.

3.3.2 Description of the canonical isomorphism
We can now state the main theorem of [LS03].

Theorem 3.3.4 (Theorem 3.2 in [LS03]). Let S be a projective K3 surface.
Then there is a canonical isomorphism of graded rings

(H∗(S,Q)[2])[n] ∼−→ H∗(S[n],Q)[2n].

The structure of graded Frobenius algebra of H∗(S[n],Q)[2n] is obtained by
setting

T (a) := (−1)n
∫
S[n]

a for all a ∈ H∗(S[n],Q).

Note that the sign convention agrees with the one taken for H∗(S,Q)[2] in (3.3.1)
if n = 1. We do not prove the theorem. We will describe the product which
gives a ring structure to (H∗(S,Q)[2])[n] in Section 3.3.3. Our aim now is to
see explicitly how to obtain a basis of H∗(S[n],Q)[2n] starting from a basis of
H∗(S,Q)[2].

We introduce the space

V(A) := Sym∗(A⊗ t−1Q[t−1]),

called the bosonic Fock space modelled on the graded vector space A. Then
V(A) is bigraded by degree and weight, where an element a⊗ t−m ∈ A⊗ t−m
has degree |a| and weight m. The component of V(A) of constant weight n is
the graded vector space

V(A)n ∼=
⊕
||α||=n

⊗
i

SymαiA, (3.3.8)

where the direct sum is taken over all the possible partitions α = (1α1 , 2α2 , . . . )
of n, and

||α|| := α1 · 1 + α2 · 2 + α3 · 3 + . . . .

We now fix π ∈ Sn. Let f : {1, 2, . . . N} → 〈π〉 \ [n] be an enumeration of the
orbits of π ∈ Sn. We denote by li the length of the i-th orbit, i.e., li := |f(i)|.
We define

Φ′ : A⊗N → V(A)
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by setting

a1 ⊗ · · · ⊗ aN
Φ′7−→ 1

n!
(a1 ⊗ t−l1) . . . (aN ⊗ t−lN ). (3.3.9)

Let
Φ :
⊕
n≥0

A {Sn} → V(A)

be defined on each summand A⊗〈π〉\[n] · π by the composition

A⊗〈π〉\[n] · π f̃−1

−−→ A⊗N
Φ′−→ V(A),

where f̃−1 denotes the identification of A⊗〈π〉\[n] · π with A⊗N through the
enumeration f . The first step to obtain the isomorphism of Theorem 3.3.4 is
given by the following.

Proposition 3.3.5 (Proposition 2.11 in [LS03]). Φ induces an isomorphism of
graded vector spaces

A[n] → V(A)n.

We now give the second part of the isomorphism of Theorem 3.3.4. We have
to explain how to obtain an element of H∗(S[n],Q)[2n] starting from an element
of V(A)n.

Theorem 3.3.6 (Theorem 3.6 in [LS03]). There is an isomorphism of graded
vector spaces

Ψ : V(A)→
⊕
n≥0

H∗(S[n],Q)[2n]

given by

(a1 ⊗ t−n1) . . . (as ⊗ t−ns) 7→ qn1(a1) . . . qns(as)|0〉. (3.3.10)

The notation in [LS03] is different from the one we use: in [LS03] the Nakajima
operator qni is denoted by p−ni and the vacuum vector |0〉 is denoted by 1. The
Nakajima operators in the shifted cohomology are defined in the same way as
seen in Section 3.2.1 (we only change the cohomological degrees).

Combining (3.3.9) and (3.3.10) we can obtain a basis of H∗(S[n],Q)[2n] from
a basis of H∗(S,Q)[2]. Note that in order to use correctly the isomorphism of
Theorem 3.3.4, if A := H∗(S,Q)[2], we have to work with elements of A{Sn}
which are invariant for the action of Sn. This will be especially important for the
computations of the cup product in Section 3.3.3. The basis of H∗(S[n],Q)[2n]
obtained is clearly also a basis of H∗(S[n],Q) with the standard grading. As an
example, we show in detail the case n = 2.

Example 3.3.7. Let n = 2. By Theorem 3.3.4 there is an isomorphism of
graded vector spaces

(H∗(S,Q)[2])[2] ∼−→ H∗(S[2],Q)[4]. (3.3.11)

Let A = H∗(S,Q)[2]. By Proposition 3.3.5 and isomorphism (3.3.8) we have
A[2] ∼= Sym2A⊕A. We now impose the isomorphism between the components
of degree −2 in (3.3.11), obtaining

H2(S[2],Q) ∼= H0(S,Q)⊕
(
H0(S,Q)⊗H2(S,Q)

)
,
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we omit the shifting of the cohomology groups. Let 1 ∈ H0(S,Q) be the unit
and {α1, . . . , α22} be a basis of H2(S,Q). With the notation used above, we
describe the map Φ′ from A⊗2 and A to V(A). By Example 3.3.3 we have
A{S2} = A⊗2id⊕A(1 2), and from (3.3.9) we have

Φ′ : A⊗2 → V(A) Φ′ : A→ V(A)

a1 ⊗ a2 7→ 1
2 (a1 ⊗ t−1)(a2 ⊗ t−1) a 7→ 1

2a⊗ t
−2.

(3.3.12)

We now describe Ψ on elements of the form 1
2 (a1 ⊗ t−1)(a2 ⊗ t−1) and 1

2a⊗ t
−2:

from (3.3.10) we have

1
2 (a1 ⊗ t−1)(a2 ⊗ t−1)

Ψ7−→ 1
2q1(a1)q1(a2)|0〉, 1

2a⊗ t
−2 Ψ7−→ 1

2q2(a)|0〉.
(3.3.13)

Note that Theorem 3.2.2 implies that q1(a1)q1(a2)|0〉 = q1(a2)q1(a1)|0〉 for all
a1, a2 ∈ A. As remarked above, we have to consider elements of A{S2} which
are invariant for the action of S2. Thus the images of 1 and 1⊗αi+αi⊗ 1 under
the composition Ψ ◦ Φ′ will give us a basis of H2(S[2],Q). Combining (3.3.12)
and (3.3.13) we have

1
Φ′7−→ 1

2
1⊗ t−2 Ψ7−→ 1

2
q2(1)|0〉,

and
1⊗ αi + αi ⊗ 1

Φ′7−→ (1⊗ t−1)(αi ⊗ t−1)
Ψ7−→ q1(1)q1(αi)|0〉.

We conclude that a basis of H2(S[2],Q) is given by{
1

2
q2(1)|0〉, q1(1)q1(αi)|0〉

}
,

which is consistent with Theorem 3.2.9. Note that this basis corresponds by
Remark 3.2.10 to

{δ, α1, . . . , α22} ,
where α1, . . . α22 are now seen as elements of H2(S[2],Q). This shows that
H2(S[2],Q) ∼= H2(S,Q)⊕Qδ.
We now give a basis for H4(S[2],Q). Imposing the isomorphism between the
components of degree 0 in (3.3.11) we have

H4(S[2],Q) ∼= H2(S,Q)⊕
(
H0(S,Q)⊗H4(S,Q)

)
⊕ Sym2(H2(S,Q)). (3.3.14)

Let x ∈ H4(S,Q) be the class of a point. With the same procedure seen above,
a basis of H4(S[2],Q) is obtained as follows:

αi
Φ′7−→ 1

2αi ⊗ t
−2 Ψ7−→ 1

2q2(αi)|0〉,

1⊗ x+ x⊗ 1
Φ′7−→ (1⊗ t−1)(x⊗ t−1)

Ψ7−→ q1(1)q1(x)|0〉,

αi ⊗ αj + αj ⊗ αi
Φ′7−→ (αi ⊗ t−1)(αj ⊗ t−1)

Ψ7−→ q1(αi)q1(αj)|0〉 if i < j,

αi ⊗ αi
Φ′7−→ 1

2 (αi ⊗ t−1)(αi ⊗ t−1)
Ψ7−→ 1

2q1(αi)
2|0〉.

Thus we have the basis{
1

2
q2(αi)|0〉, q1(1)q1(x)|0〉, q1(αi)q1(αj)|0〉,

1

2
q1(αi)

2|0〉
}
,
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where i, j ∈ {1, . . . , 22} and i ≤ j. Equivalently, a basis of H4(S[2],Q) is given
by

{q2(αi)|0〉, q1(1)q1(x)|0〉, q1(αi)q1(αj)|0〉,m1,1(αi)|0〉} ,

where i, j ∈ {1, . . . , 22}, i < j and m1,1(αi)|0〉 := 1
2

(
q1(αi)

2 − q2(αi)
)
|0〉. This

is consistent with Theorem 3.2.9.

3.3.3 The cup product
In this section we describe the product of (H∗(S,Q)[2])[n] defined in [LS03] to
give the structure of ring. This corresponds by the isomorphism of graded rings

(H∗(S,Q)[2])[n] ∼−→ H∗(S[n],Q)[2n]

of Theorem 3.3.4 to the cup product on H∗(S[n],Q)[2n]. As an example, we
will use the product of (H∗(S,Q)[2])[n] to compute explicitly the cup product
between elements in H2(S[2],Z) in Lemma 3.3.9. See [HHT12] for the case n = 3.

We set A := H∗(S,Q)[2]. The idea is to define a product on A{Sn} such
that A[n] becomes a commutative subring of A{Sn}. We follow [LS03, §2], see
also [Kap16a, §1].

Let H ⊂ K be subgroups of Sn and let H \ [n] and K \ [n] be the sets of orbits.
We have a surjection H \ [n] � K \ [n], then by (3.3.3) and (3.3.4) (identify
H \ [n] and K \ [n] with the sets {1, . . . , |H \ [n]|} and {1, . . . , |K \ [n]|}) we have
a multiplication map

fH,K : A⊗H\[n] → A⊗K\[n].

Let
fK,H : A⊗K\[n] → A⊗H\[n]

be the adjoint of fH,K . From now on, if H = 〈π〉 is the subgroup generated by
the permutation π, we omit 〈− 〉 in the notation.

We now define the graph defect map. Let H ⊂ Sn be a subgroup and
B ⊂ [n] = {1, . . . , n} be an H-stable subset. Denote by H \B the orbit space
for the induced action. If π, ρ ∈ Sn and 〈π, ρ〉 is the subgroup of Sn generated
by π and ρ, the graph defect

g(π, ρ) : 〈π, ρ〉 \ [n]→ Z≥0

is the map given by

g(π, ρ)(B) :=
1

2
(|B|+ 2− |π \B| − |ρ \B| − |πρ \B|) .

Another notation is the following, adopted in [Kap16a]: if pπ : π\[n]→ 〈π, ρ〉\[n]
is the natural surjection of orbit spaces, then g(π, ρ) : 〈π, ρ〉 \ [n]→ Z≥0 is given
by

g(π, ρ)(B) =
1

2

(
|B|+ 2− |p−1

π ({B})| − |p−1
ρ ({B})| − |p−1

πρ ({B})|
)
.

Note that g(π, ρ) takes value in Z≥0 by [LS03, Lemma 2.7].
Let e be the element of A defined in (3.3.6). For any numerical function

ν : I → Z≥0, we define
eν := ⊗i∈Ieν(i) ∈ A⊗I .
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For π, ρ ∈ Sn, we set

mπ,ρ : A⊗π\[n] ⊗A⊗ρ\[n] → A⊗πρ\[n],

mπ,ρ(a⊗ b) := f〈π,ρ〉,πρ
(
fπ,〈π,ρ〉(a) · fρ,〈π,ρ〉(b) · eg(π,ρ)

)
,

where the dot is the multiplication given in (3.3.2), i.e., it is the cup product on
each tensor factor.

We can now define the product in A{Sn}.

Definition 3.3.8. Keep notation as above. The product on A{Sn} is given by

A{Sn} ×A{Sn}
·−→ A{Sn}, aπ · bρ := mπ,ρ(a⊗ b)πρ.

The notation used in [LS03] for the product of two permutations is from right
to left, i.e., it is such that, for example, in S3 we have (1 2 3) = (1 3)(1 2). By
[LS03, Proposition 2.13] this product gives a (non-commutative) ring structure
on A{Sn}, and the ring structure is preserved by the conjugation action of Sn
on A{Sn} induced by (3.3.7). Hence A[n] is a subring of A{Sn}. Moreover,
by [LS03, Proposition 2.15] it is contained in the centre of A{Sn}, so A[n] is
a commutative subring. By Theorem 3.3.4 this product on A[n] corresponds
to the cup product on H∗(S[n],Q)[2n]. As an example, we compute the cup
product between elements in H2(S[2],Z), obtaining the following lemma, see
also [BNWS13, p.18].

Lemma 3.3.9. Let X = S[2] be the Hilbert square of a projective K3 surface S.
Let {α1, . . . , α22} be the basis of the lattice H2(S,Z) used in Lemma 3.2.11.
Denote by 1 ∈ H0(S,Z) the unit and by x ∈ H4(S,Z) the class of a point. Then
the following equalities hold in H4(X,Z).

(i) For every α ∈ H2(S,Z) we have

1

2
q2(1)|0〉 ∪ q1(1)q1(α)|0〉 = q2(α)|0〉.

(ii) For every α, β ∈ H2(S,Z) we have

q1(1)q1(α)|0〉 ∪ q1(1)q1(β)|0〉 =

(∫
S

αβ

)
q1(1)q1(x)|0〉+ q1(α)q1(β)|0〉.

(iii) If µi,j , with i, j = 1, . . . , 22, are the coefficients computed in Lemma 3.2.11,
then

1

2
q2(1)|0〉∪1

2
q2(1)|0〉 = −

∑
i<j

µi,jq1(αi)q1(αj)|0〉−
1

2

∑
i

µi,iq1(αi)
2|0〉−q1(1)q1(x)|0〉.

Proof. Let A := H∗(S,Q)[2]. By Example 3.3.3 we have

A{S2} = A⊗2id⊕A(1 2).

(i) Let π = (1 2) and ρ = id. Then 〈π, ρ〉 \ [2] = (1 2) \ [2] = {{1, 2}} and
id \ [2] = {{1}, {2}}, so

g(π, ρ)({1, 2}) =
1

2
(2 + 2− 1− 2− 1) = 0,
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hence eg(π,ρ) = 1 in the definition of the product of A{S2}. Moreover,
A⊗(1 2)\[2](1 2) and A⊗id\[2]id can be identified respectively with A and
A⊗2. We then have

f id,〈π,ρ〉 : A⊗2 → A, a1 ⊗ a2 7→ a1a2,

f (1 2),(1 2) : A→ A, a 7→ a,

i.e., f (1 2),(1 2) = idA = f(1 2),(1 2). Thus

a(1 2) · (b⊗ c)(id) = abc(1 2),

where a(1 2) ∈ A(1 2) and (b ⊗ c)(id) ∈ A⊗2id. We want to compute
1
2q2(1)|0〉 ∪ q1(1)q1(α)|0〉 for every α ∈ H2(S,Z) by computing the corre-
sponding product in A[2], using Theorem 3.3.4. As already remarked, we
need to take elements in A{S2} which are invariant for the action of S2.
By (3.3.12) and (3.3.13) we have

1
Ψ◦Φ′7−−−→ 1

2
q2(1)|0〉, α⊗ 1 + 1⊗ α Ψ◦Φ′7−−−→ q1(1)q1(α)|0〉.

Note that we have used the equality q1(1)q1(α)|0〉 = q1(α)q1(1)|0〉 given
by Theorem 3.2.2. Since

1(1 2) · (α⊗ 1 + 1⊗ α)(id) = 2α(1 2), α
Ψ◦Φ′7−−−→ 1

2
q2(α)|0〉,

we conclude that

1

2
q2(1)|0〉 ∪ q1(1)q1(α)|0〉 = q2(α)|0〉.

(ii) Let π = ρ = id. Since 〈π, ρ〉 \ [2] = id \ [2] = {{1}, {2}}, we have for
i ∈ {1, 2}

g(π, ρ)({i}) =
1

2
(1 + 2− 1− 1− 1) = 0,

so eg(π,ρ) = 1 ⊗ 1 in the definition of the product of A{S2}. Clearly
f id,id = fid,id = idA⊗2 and we have

(a⊗ b)(id) · (c⊗ d)(id) = (ac⊗ bd)(id)

for every a, b, c, d ∈ A. As before, in order to compute products in A[2] we
consider elements in A{S2} which are invariant for the action of S2. We
want to compute q1(1)q1(α)|0〉 ∪ q1(1)q1(β)|0〉 for every α, β ∈ H2(S,Z).
We have

α⊗ 1 + 1⊗ α Ψ◦Φ′7−−−→ q1(1)q1(α)|0〉, β ⊗ 1 + 1⊗ β Ψ◦Φ′7−−−→ q1(1)q1(β)|0〉,

and

(α⊗1+1⊗α)(id)·(β⊗1+1⊗β)(id) = (αβ⊗1+α⊗β+β⊗α+1⊗αβ)(id).
(3.3.15)
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If x ∈ H4(S,Z) is the class of a point, we have

αβ ⊗ 1 + 1⊗ αβ Ψ◦Φ′7−−−→
(∫

S

αβ

)
q1(1)q1(x)|0〉,

α⊗ β + β ⊗ α Ψ◦Φ′7−−−→ q1(α)q1(β)|0〉.

We conclude that

q1(1)q1(α)|0〉 ∪ q1(1)q1(β)|0〉 =

(∫
S

αβ

)
q1(1)q1(x)|0〉+ q1(α)q1(β)|0〉.

(iii) Let π = ρ = (1 2). Since 〈π, ρ〉 \ [2] = (1 2) \ [2] = {{1, 2}}, we have

g(π, ρ)({1, 2}) =
1

2
(2 + 2− 1− 1− 2) = 0,

hence eg(π,ρ) = 1 in the definition of the product of A{S2}. Note that

f id,(1 2) : A⊗2 → A, a1 ⊗ a2 7→ a

is the multiplication map of A, so its adjoint f(1 2),id is the map ∆∗ given
in (3.3.5) and in Remark 3.3.2. We then have for every a, b ∈ A

a(1 2) · b(1 2) = ∆∗(ab)(id).

We want to compute 1
2q2(1)|0〉 ∪ 1

2q2(1)|0〉. As we have already seen,

1
Ψ◦Φ′7−−−→ 1

2
q2(1)|0〉,

and
1(1 2) · 1(1 2) = ∆∗(1)(id).

By Remark 3.3.2 we have ∆∗ = −τ2∗1, and by Lemma 3.2.11

τ2∗1 =
∑
i,j

µi,jαi ⊗ αj + 1⊗ x+ x⊗ 1,

where x ∈ H4(S,Z) is the class of a point, {α1, . . . α22} is the basis of
the lattice H2(S,Z) given in Lemma 3.2.11 and Table 3.1 gives the µi,j ’s.
Since

αi ⊗ αj + αi ⊗ αj
Ψ◦Φ′7−−−→ q1(αi)q1(αj)|0〉,

1⊗ x+ x⊗ 1
Ψ◦Φ′7−−−→ q1(1)q1(x)|0〉,

we conclude that

1

2
q2(1)|0〉∪1

2
q2(1)|0〉 = −

∑
i<j

µi,jq1(αi)q1(αj)|0〉−
1

2

∑
i

µi,iq1(αi)
2|0〉−q1(1)q1(x)|0〉.
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Note that in the proof the fact that we work with elements of A{S2} which
are invariant for the action of S2 is important: for instance, in the product
q1(1)q1(α)|0〉 ∪ q1(1)q1(β)|0〉, if we take only the non invariant elements 1⊗ α
and 1⊗ β in A{S2}, we have

(1⊗ α) · (1⊗ β) = (1⊗ αβ)
Ψ◦Φ′7−−−→ 1

2

(∫
S

αβ

)
q1(1)q1(x)|0〉,

while as we have seen

q1(1)q1(α)|0〉 ∪ q1(1)q1(β)|0〉 =

(∫
S

αβ

)
q1(1)q1(x)|0〉+ q1(α)q1(β)|0〉.

Remark 3.3.10. The result for the product 1
2q2(1)|0〉 ∪ 1

2q2(1)|0〉 given in
[BNWS13, p.18] is not correct: we need to change the sign of the right-hand
side. The map ∆∗ in [BNWS13, p.18] corresponds to τ2∗ in our notation: in the
article the cohomology ring taken is H∗(S,Q), without the shifting used in the
Lehn–Sorger model, which gives the change of sign of the intersection pairing on
H∗(S,Q)[2], as seen above.

3.3.4 Hodge structures on the Lehn–Sorger model
Let S be a projective K3 surface. The rational cohomology groups H2i(S,Q)
and H2j(S[n],Q), where i, j ∈ Z≥0, are Hodge structures of weight 2i and 2j
respectively, as seen in Section 2.1.2. We have the following Hodge decomposi-
tions:

H2i(S,C) =
⊕

p+q=2i

Hp,q(S), H2j(S[n],C) =
⊕

r+s=2j

Hr,s(S[n]), (3.3.16)

where p, q ∈ {0, 1, . . . , i} and r, s ∈ {0, 1, . . . , j}. Consider now the shifted coho-
mology groups H2i(S,Q)[2] and H2j(S[n],Q)[2n]: as seen in Example 2.1.10, (ii),
these are Hodge structures of weight 2i− 2 and 2j − 2n respectively, with the
following Hodge decompositions

H2i(S,C)[2] =
⊕

p+q=2i−2

Hp,q(S)[2],

H2j(S[n],Q)[2n] =
⊕

r+s=2j−2n

Hr,s(S[n])[2n],

where p, q ∈ {−1, 0, . . . , i− 1} and r, s ∈ {−n, 1− n, . . . , j − n}, and

Hp,q(S)[2] = Hp+1,q+1(S), Hr,s(S[n])[2n] = Hr+n,s+n(S[n]).

The aim of this section is to see how the isomorphism of graded rings given by
Theorem 3.3.4 behaves with respect to the Hodge structures. First of all, we
need to describe the Hodge structure taken on A[n], where A := H∗(S,Q)[2].
Recall that by Proposition 3.3.5 we have

A[n] ∼=
⊕
||α||=n

⊗
i

SymαiA.
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Remark 3.3.11. Let (A[n])2i be the component of A[n] of degree 2i− 2n. By
Example 2.1.12, (i), (ii), (iv) the Hodge structures H2j(S,Q)[2] seen above give
rise to a Hodge structure on (A[n])2i. Since the weights of the Hodge structures
considered depend only on the (shifted) cohomological degrees, we have that
(A[n])2i is a Hodge structure of weight 2i− 2n. Note that H2i(S[n],Q)[2n] is a
Hodge structure of weight 2i− 2n and that we have (A[n])2i ∼= H2i(S[n],Q)[2n]
by Theorem 3.3.4.

It is natural to wonder if the isomorphism (A[n])2i ∼= H2i(S[n],Q)[2n] maps
a cycle of bidegree (p, q) to a class of bidegree (p, q), i.e., if it is an isomorphism
of Hodge structures of weight 0.

We have seen that the isomorphism (A[n])2i ∼= H2i(S[n],Q)[2n] describes the
elements in H2i(S[n],Q)[2n] in terms of the Nakajima operators. Recall the
diagram given in (3.2.2). We extend Definition 3.2.1 to complex coefficients, i.e.,
to

qk : H∗(S,C)→ End(HS ⊗ C), k ≥ 0,

by setting
qk(α)(x) := ψ∗(PD

−1[S[n,n+k]] · ϕ∗(x) · ρ∗(α))

for every α ∈ H∗(X,C) and x ∈ H∗(S[n],C), so we consider the cup product and
the Gysin homomorphism with complex coefficients. Suppose that α ∈ Hr,s(S)
and x ∈ Hp,q(S[n]). We want to determine the bidegree of qk(α)(x). Note
that we are working with the standard gradings for the moment. The following
proposition will be very useful, see [Voi02, §7.3.2].

Proposition 3.3.12. Let f : X → Y be a morphism between two complex
projective manifolds. Let n = dimC(X), m = dimC(Y ) and r = m− n, where r
can be negative.

(i) The pullback map
f∗ : Hk(Y,Q)→ Hk(X,Q)

is a morphism of Hodge structures of weight 0 for every k ≥ 0.

(ii) The Gysin homomorphism

f∗ : Hk(X,Q)→ Hk+2r(Y,Q)

is a morphism of Hodge structures of weight r for every k ≥ 0.

We then obtain the following lemma.

Lemma 3.3.13. Let S be a projective K3 surface. Consider α ∈ Hr,s(S) and
x ∈ Hp,q(S[n]) for some integer n > 0. Then qk(α)(x) is a cohomology class of
bidegree (k − 1 + p+ r, k − 1 + q + s) in S[n+k], i.e.,

qk(α)(x) ∈ Hk−1+p+r,k−1+q+s(S[n+k]).

Proof. Since S[n,n+k] is a subvariety of S[n] × S × S[n+k] of complex dimension
2n+ k + 1, we have that PD−1[S[n,n+k]] is a Hodge class, i.e.,

PD−1[S[n,n+k]] ∈ H2n+k+1,2n+k+1(S[n] × S × S[n+k],Q),
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in particular it belongs to H2n+k+1,2n+k+1(S[n]×S×S[n+k]). Consider diagram
(3.2.2). By Proposition 3.3.12, (i), we have

ϕ∗(x) ∈ Hp,q(S[n] × S × S[n+k]), ρ∗(α) ∈ Hr,s(S[n] × S × S[n+k]).

Hence by Proposition 3.1.2 we have

PD−1[S[n,n+k]] · ϕ∗(x) · ρ∗(α) ∈ H2n+k+1+p+r,2n+k+1+q+s(S[n] × S × S[n+k]),

and by Proposition 3.3.12, (ii) we obtain

ψ∗

(
PD−1[S[n,n+k]] · ϕ∗(x) · ρ∗(α)

)
∈ Hk−1+p+r,k−1+q+s(S[n+k]),

i.e., qk(α)(x) ∈ Hk−1+p+r,k−1+q+s(S[n+k]).

As a consequence we obtain the following proposition.

Proposition 3.3.14. Let S be a projective K3 surface. Fix integers n > 0,
N > 0 and l1, . . . , lN > 0 such that

∑N
i=1 li = n. If ai ∈ Hpi,qi(S) for i ≤ i ≤ N ,

then
ql1(a1) . . . qlN (aN )|0〉 ∈ Hn+P−N,n+Q−N (S[n]),

where P =
∑N
i=1 pi and Q =

∑N
i=1 qi.

Proof. First of all, we apply Lemma 3.3.13 with x = |0〉 and α = aN , obtaining

qlN (aN )|0〉 ∈ H lN−1+pN ,lN−1+qN (S[lN ]).

Then we apply again Lemma 3.3.13 with x = qlN (aN )|0〉 and α = aN−1, obtaining
that qlN−1

(aN−1)qlN (aN )|0〉 is a cohomology class of S[lN+lN−1] of bidegree
(lN + lN−1 +pN +pN−1−2, lN + lN−1 + qN + qN−1−2). Iterating the procedure,
we have

ql1(a1) . . . qlN (aN )|0〉 ∈ H
∑N
i=1(li+pi)−N,

∑N
i=1(li+qi)−N (S[

∑N
i=1 li]),

i.e.,
ql1(a1) . . . qlN (aN )|0〉 ∈ Hn+P−N,n+Q−N (S[n]),

where P :=
∑N
i=1 pi and Q :=

∑N
i=1 qi.

We now explicitly state the following result, which is well known to experts
and implicitly given in [LS03].

Theorem 3.3.15. Let S be a projective K3 surface. Let A := H∗(S,Q)[2] and
consider the isomorphism (A[n])2i ∼= H2i(S[n],Q)[2n] induced by Theorem 3.3.4
on the components of (shifted) cohomological degree 2i− 2n. Take on (A[n])2i

the Hodge structure of weight 2i− 2n of Remark 3.3.11 and on H2i(S[n],Q)[2n]
the Hodge structure of weight 2i− 2n induced by shifted cohomology. Then

(A[n])2i ∼−→ H2i(S[n],Q)[2n]

is an isomorphism of Hodge structures of weight 0.
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Proof. Since A[n] ∼=
⊕
||α||=n

⊗
i Sym

αiA and A[n] is the subset of elements of
A{Sn} =

⊕
π∈Sn A

⊗〈π〉\[n] ·π which are invariant for the action of Sn, it is enough
to show that the composition Ψ ◦ Φ′ described in Section 3.3.2 maps an element
a1⊗· · ·⊗aN ∈ A⊗〈π〉\[n], with ai ∈ Hpi,qi(S)[2], in an element of H∗(S[n],C)[2n]

of bidegree (
∑N
i=1 pi,

∑N
i=1 qi). Seen as elements of the cohomology ring with

standard grading, we have αi ∈ Hpi+1,qi+1(S). By (3.3.9) and (3.3.10) we have

a1 ⊗ · · · ⊗ aN
Ψ◦Φ′7−−−→ ql1(a1) . . . qlN (aN )|0〉,

where li is the length of the i-th orbit of π ∈ Sn. By Proposition 3.3.14 we have

ql1(a1) . . . qlN (aN )|0〉 ∈ Hn+P,n+Q(S[n]),

where P =
∑N
i=1 pi, Q =

∑N
i=1 qi. If we see ql1(a1) . . . qln(aN )|0〉 as an element

of the shifted cohomology group H2n+P+Q(S[n],C)[2n], then this has bidegree
(n+ P − n, n+Q− n) = (P,Q), i.e.,

ql1(a1) . . . qlN (aN )|0〉 ∈ HP,Q(S[n])[2n],

as we wanted.

3.3.5 Hodge classes on Hilbert squares of K3 surfaces
Let S be a projective K3 surface and consider its Hilbert square S[2]. In this
section we give a basis for the vector space H2,2(S[2],Q) of rational (2, 2)-Hodge
classes and a basis for the lattice H2,2(S[2],Z) of integral (2, 2)-Hodge classes.
We begin with the rational case: the idea is to use Theorem 3.3.15.

Theorem 3.3.16. Let S be a projective K3 surface with Picard group of rank
rk(Pic(S)) = r. Let {b1, . . . , br} be a basis of Pic(S). Then:

(i) dim(H2,2(S[2],Q)) = (r+1)r
2 + r + 2.

(ii) A basis of H2,2(S[2],Q) is given by the following elements:

• 1
2q2(bi)|0〉 for i = 1, . . . , r.

• q1(1)q1(x)|0〉, where 1 ∈ H0(S,Q) is the unit and x ∈ H4(S,Q) is
the class of a point.

• 1
2q1(bi)

2|0〉 for i = 1, . . . , r.

• q1(bi)q1(bj)|0〉 for 1 ≤ i < j ≤ r.

• −
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉,

where {α1, . . . , α22} is the basis of H2(S,Z) used in Lemma 3.2.11
and the µi,j’s are given in Table 3.1.

Proof. As seen in Example 3.3.7, we have an isomorphism

H4(S[2],Q) ∼= H2(S,Q)⊕
(
H0(S,Q)⊗H4(S,Q)

)
⊕ Sym2(H2(S,Q)), (3.3.17)

we omit the shiftings of the cohomology groups. By Theorem 3.3.15, this is
an isomorphism of Hodge structures of weight 0. The Hodge classes of S[2] of
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bidegree (2, 2) have bidegree (0, 0) in the shifted cohomology, so we look for the
components of (shifted) bidegree (0, 0) in the right-hand side of (3.3.17). Recall
that H2(S,Q) can be decomposed as

H2(S,Q) ∼= NS(S)Q ⊕ T (S)Q, (3.3.18)

where NS(S) is the Néron-Severi group of S and T (S) = (NS(S))⊥ is the
transcendental lattice.
The first summand of (3.3.17) has as component of bidegree (0, 0) the Q-vector
space NS(S)Q[2]. Since NS(S) ∼= Pic(S) and rk(Pic(S)) = r by assumption, the
component of bidegree (0, 0) of H2(S,Q)[2] has dimension r. By (3.3.9) and
(3.3.10) we have

bi
Ψ◦Φ′7−−−→ 1

2
q2(bi)|0〉,

so 1
2q2(bi)|0〉 is in a basis of H2,2(S[2],Q) for i = 1, . . . , r.

The second summand of (3.3.17) is H0(S,Q)[2]⊗H4(S,Q)[2], which is a vector
space over Q of dimension 1. This is generated by 1⊗ x, which is an element of
bidegree (0, 0). Since

1⊗ x+ x⊗ 1
Ψ◦Φ′7−−−→ q1(1)q1(x)|0〉,

the element q1(1)q1(x)|0〉 is in a basis of H2,2(S[2],Q).
Consider Sym2(H2(S,Q)[2]), the third summand of (3.3.17). Using (3.3.18), we
can decompose it as

Sym2(H2(S,Q)[2]) ∼= Sym2(Pic(S)Q[2])⊕ Sym2(T (S)Q[2])

⊕(Pic(S)Q[2]⊗ T (S)Q[2]).

By assumption rk(Pic(S)) = r, so Sym2(Pic(S)Q[2]), whose elements have all
bidegree (0, 0), has dimension (r+1)r

2 as Q-vector space. By (3.3.9) and (3.3.10)
we have:

bi ⊗ bi
Ψ◦Φ′7−−−→ 1

2q1(bi)
2|0〉

bi ⊗ bj + bj ⊗ bi
Ψ◦Φ′7−−−→ q1(bi)q1(bj)|0〉

for i, j ∈ {1, . . . , r} and i < j. Then the elements 1
2q1(bi)

2|0〉, for i = 1, . . . , r,
and q1(bi)q1(bj)|0〉, for 1 ≤ i < j ≤ r, are in a basis of H2,2(S[2],Q). Note that
Pic(S)Q[2]⊗T (S)Q[2] does not contain any element of bidegree (0, 0). It remains
to determine

(Sym2(T (S)Q[2]))0,0 ∩ (Sym2(T (S)Q[2])).

Consider T (S)Q⊗T (S)Q with the standard grading. We know that T (S)Q is the
minimal sub-Hodge structure of H2(S,Q) with H2,0(S) = T (S)2,0

Q , in particular
T (S)Q is a Hodge structure of weight 2. By Example 2.1.12, (iii), the dual
T (S)∗Q = Hom(T (S)Q,Q) is a Hodge structure of weight −2, and there is an
isomorphism of Hodge structures of weight −2 from T (S)Q to T (S)∗Q. This
implies that

(T (S)Q ⊗ T (S)Q)2,2 ∼−→ (T (S)∗Q ⊗ T (S)Q)0,0,

and by Remark 2.1.14 we have

Hom0(T (S)Q, T (S)Q) ∼= (T (S)∗Q ⊗ T (S)Q) ∩ (T (S)∗Q ⊗ T (S)Q)0,0,
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where Hom0(T (S)Q, T (S)Q) denotes the space of Hodge endomorphisms on
T (S)Q of weight 0. Since S is a K3 surface we have T (S)2,0

Q
∼= H2,0(S) ∼= C · σS ,

where σS is a symplectic form on S. Then for every ϕ ∈ Hom0(T (S)Q, T (S)Q)
the C-linear extension gives a map ϕ2,0 of C-vector spaces

T (S)2,0
Q T (S)2,0

Q

C · σS C · σS .

ϕ2,0

∼ ∼

ϕ2,0

By Lemma 2.1.18 the map ϕ is uniquely determined by ϕ2,0, so we have

Hom0(T (S)Q, T (S)Q) ∼= Q · id

Passing to the shifted cohomology groups, this implies that the Q-vector space
(Sym2(T (S)Q[2]))0,0 ∩ (Sym2(T (S)Q[2])) has dimension 1. We now describe
the element induced by its generator on H4(S[2],Q). Let {βr+1, . . . , β22} be
an orthogonal basis of T (S)Q with respect to the intersection form, and let
{β∨r+1, . . . , β

∨
22} be the basis of T (S)∗Q given by

β∨i := (βi, · ) ∈ Hom(T (S)Q,Q) ∼= T (S)∗Q

for i ∈ {r + 1, . . . , 22}. Then

id =

22∑
i=r+1

1

(βi, βi)
β∨i ⊗ βi ∈ T (S)∗Q ⊗ T (S)Q,

since for every k ∈ {r + 1, . . . , 22} we have(
22∑

i=r+1

1

(βi, βi)
β∨i ⊗ βi

)
(βk) =

22∑
i=r+1

1

(βi, βi)
(βi, βk) · βi

= βk.

Note that (βi, βi) 6= 0 since {βr+1, . . . , β22} is an orthogonal basis and the
intersection form on H2(S,Q) is non-degenerate. Since T (S)Q ∼= T (S)∗Q by the
map βi 7→ β∨i , we have that the identity, seen as element in T (S)Q ⊗ T (S)Q, is

id =

22∑
i=r+1

1

(βi, βi)
βi ⊗ βi ∈ T (S)Q ⊗ T (S)Q.

We see that id is invariant for the action of the symmetric group S2 on A{S2},
where A := H∗(S,Q)[2], so we obtain the following element of H4(S[2],Q)[4]:

id Ψ◦Φ′7−−−→ 1

2

22∑
i=r+1

1

(βi, βi)
q1(βi)

2|0〉. (3.3.19)

Hence the last element of the basis of H2,2(S[2],Q) is (3.3.19). For later discus-
sions, we prefer to substitute this element in the basis of H2,2(S[2],Q) obtained
with

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

q1(αi)
2|0〉 − q1(1)q1(x)|0〉.
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We show why this is possible. Let {β1, . . . , βr} be a orthogonal basis of Pic(S)Q.
Then {β1, . . . , β22} is a orthogonal basis for H2(S,Q), and

Ψ ◦ Φ′(id) +
1

2

r∑
i=1

1

(βi, βi)
q1(βi)

2|0〉 =
1

2

22∑
i=1

1

(βi, βi)
q1(βi)

2|0〉. (3.3.20)

The orthogonal basis {β1, . . . , βr} of Pic(S)Q is obtained with the Gram–Schmidt
procedure from the basis {b1, . . . , br} of Pic(S), so βk, for every k = 1, . . . , r, is
a rational linear combination of b1, . . . , br. Recall that, by definition, Nakajima
operators are linear, and q1(α)q1(β)|0〉 = q1(β)q1(α)|0〉 by Theorem 3.2.2 for
every α, β ∈ H2(S,Q). Then q1(βk)2|0〉, for k = 1, . . . , r, is a rational linear
combination of 1

2q1(bi)
2|0〉 and q1(bi)q1(bj)|0〉, where i, j ∈ {1, . . . , r} and i < j,

so (3.3.20) is a rational linear combination of elements of the basis of H2,2(S[2],Q)
obtained before. Moreover, repeating the proof of Lemma 3.2.11 with the
orthogonal basis {β1, . . . , β22} of H2(S,Q), we obtain

τ2∗1 =

22∑
i=1

1

(βi, βi)
βi ⊗ βi + 1⊗ x+ x⊗ 1,

where τ2∗ is the map seen in Section 3.2.4. With the same argument of the proof
of Lemma 3.3.9, (iii), with the basis {β1, . . . , β22}, we have

δ2 = −
22∑
i=1

1

(βi, βi)
q1(βi)

2|0〉 − q1(1)q1(x)|0〉, (3.3.21)

where δ ∈ Pic(S[2]) is the class such that 2δ is the class of the excpetional divisor
of the Hilbert–Chow morphism. By Lemma 3.3.9, (iii) we have

δ2 = −
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉. (3.3.22)

From (3.3.21) and (3.3.22) we see that the following set

1
2q2(bi)|0〉 for i = 1, . . . , r.

q1(1)q1(x)|0〉,
1
2q1(bi)

2|0〉 for i = 1, . . . , r.

q1(bi)q1(bj)|0〉 for 1 ≤ i < j ≤ r.

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉,

(3.3.23)

is a set of linearly independent elements. Moreover, this generates H2,2(S[2],Q)

by construction. We conclude that dim(H2,2(S[2],Q)) = (r+1)r
2 + r + 2 and

(3.3.23) is a basis of the Q-vector space H2,2(S[2],Q).

We can combine Theorem 3.3.16 with Theorem 3.2.9 in order to study the
lattice H2,2(S[2],Z) of integral Hodge classes of type (2, 2) when S is a generic
K3 surface.
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Theorem 3.3.17. Let S be a generic K3 surface and h ∈ Pic(S) be the ample
generator of Pic(S). Then a basis of the lattice H2,2(S[2],Z) of integral Hodge
classes of type (2, 2) is given by the following elements:

q2(h)|0〉, q1(1)q1(x)|0〉, 1
2

(
q1(h)2 − q2(h)

)
|0〉,

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉,

where x ∈ H4(S,Z) is the class of a point, 1 ∈ H0(S,Z) is the unit, {α1, . . . , α22}
is the basis of H2(S,Z) used in Lemma 3.2.11 and the µ′i,js are the integers given
by Table 3.1.

Proof. By Proposition 3.3.16 we have dim
(
H2,2(S[2],Q)

)
= 4. Moreover, by

Theorem 2.2.9, the lattice H4(S[2],Z) is torsion-free. Hence H2,2(S[2],Z) is a
lattice of rank 4. After a slight modification of the basis of H2,2(S[2],Q) given
by Theorem 3.3.16, we obtain the following basis for H2,2(S[2],Q):

q2(h)|0〉, q1(1)q1(x)|0〉, 1
2

(
q1(h)2 − q2(h)

)
|0〉,

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉. (3.3.24)

In order to prove the theorem, we give a basis of the lattice H4(S[2],Z) which
contains the elements in (3.3.24). Since h is an ample line bundle on S, we have
h2 = 2t with respect to the intersection form on S for some integer t > 0. By
Theorem 1.4.10 the Picard group Pic(S) ∼= Zh can be primitively embedded
in H2(S,Z) in a unique way, up to isometries. We can assume that such an
embedding is obtained by mapping h to α17 + tα18. We will identify h with
α17 + tα18. We show that the following is a basis of H4(S[2],Z):

q1(1)q1(x)|0〉
q2(βi)|0〉 for i = 1, . . . , 22,

q1(βi)q1(βj)|0〉 for i < j and (i, j) 6= (21, 22),
1
2

(
q1(βi)

2 − q2(βi)
)
|0〉 for i = 1, . . . , 22,

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉,

(3.3.25)

where βi := αi if i 6= 17 and β17 := α17 + tα18 = h. We call L the sublattice
of H4(S[2],Z) whose basis is (3.3.25). By Table 3.1 we have µ21,22 = 1, so
the elements in (3.3.25) are linearly independent in H4(S[2],Q), which implies
that rk(L) = rk(H4(S[2],Z)). We want to show that L = H4(S[2],Z). Clearly
{β1, . . . , β22} is a basis of H2(S,Z), so by Theorem 3.2.9 the following is a basis
of H4(S[2],Z):

q1(1)q1(x)|0〉, q2(βi)|0〉, q1(βi)q1(βj)|0〉,
1
2

(
q1(βi)

2 − q2(βi)
)
|0〉,

(3.3.26)

where i, j ∈ {1, . . . , 22} and i < j. Note that substituting q1(β21)q1(β22)|0〉
in (3.3.26) with −

∑
µi,jq1(αi)q1(αj)|0〉 − 1

2

∑
µi,iq1(αi)

2|0〉 − q1(1)q1(x)|0〉 we
obtain (3.3.25). The following elements are in L:
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• q1(α17)q1(αi)|0〉 for i ≥ 19, since

q1(β17)q1(βi)|0〉 = q1(α17 + tα18)q1(αi)|0〉
= q1(α17)q1(αi)|0〉+ tq1(α18)q1(αi)|0〉,

and q1(β17)q1(βi)|0〉 and q1(α18)q1(αi)|0〉 are in (3.3.25) for i ≥ 19.

• q1(αi)q1(α17)|0〉 for i ≤ 16, since

q1(βi)q1(β17)|0〉 = q1(αi)q1(α17 + tα18)|0〉
= q1(αi)q1(α17)|0〉+ tq1(αi)q1(α18)|0〉,

and q1(βi)q1(β17)|0〉 and q1(αi)q1(α18)|0〉 are in (3.3.25) for i ≤ 16.

• q1(α17)q1(α18)|0〉. Indeed, q1(β17)q1(β18)|0〉 is in (3.3.25), and

q1(β17)q1(β18)|0〉 = q1(α17 + tα18)q1(α18)|0〉
= q1(α17)q1(α18)|0〉+ tq1(α18)2|0〉.

Moreover, 1
2 (q1(β18)2 − q2(β18))|0〉 and q2(β18)|0〉 are in (3.3.25), hence

tq1(α18)2|0〉 = 2t · 1

2

(
q1(β18)2 − q2(β18)

)
|0〉+ tq2(β18)|0〉

is in L, so q1(α17)q1(α18)|0〉 is the difference of two elements of L.

• q2(α17)|0〉, since q2(β17)|0〉 = q2(α17 + tα18)|0〉 = q2(α17)|0〉+ tq2(α18)|0〉
and q2(α18)|0〉 is in (3.3.25).

• 1
2 (q1(α17)2 − q2(α17))|0〉, since 1

2 (q1(β17)2 − q2(β17))|0〉 is in (3.3.25) and

1
2

(
q1(α17)2 − q2(α17)

)
|0〉 = 1

2

(
q1(β17)2 − q2(β17)

)
|0〉 − tq1(α17)q1(α18)|0〉

− t
2

2

(
q1(α18)2 − q2(α18)

)
|0〉 − t2−t

2 q2(α18)|0〉

is an integral linear combination of elements in L: note that t2−t
2 is an

integer for every t ≥ 1.

From Table 3.1, the integer µi,i is even for every i = 1, . . . , 22. Hence the
following is an element in L:

µ21,22q1(α21)q1(α22)|0〉 = −
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉

+

(∑
i

µi,i
2
· (q1(αi)

2 − q2(αi))|0〉

)

+
∑
i

µi,i
2

q2(αi)|0〉

+
∑
i<j

(i,j)6=(21,22)

µi,jq1(αi)q1(αj)|0〉

+q1(1)q1(x)|0〉.
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Since µ21,22 = 1, we have q1(α21)q1(α22)|0〉 ∈ L. Hence every element in (3.3.24)
is in L. We conclude that L = H4(S[2],Z) and

q2(h)|0〉, q1(1)q1(x)|0〉, 1
2

(
q1(h)2 − q2(h)

)
|0〉,

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉

is a basis of H2,2(S[2],Z), as we wanted.

3.4 Second Chern class of the Hilbert square of
a K3 surface

Let S be a generic K3 surface and X := S[2] be its Hilbert square. We have seen
that Theorem 3.3.17 gives a basis of the lattice H2,2(X,Z) in terms of Nakajima
operators. In this section we want to obtain a description of this basis which
does not depend on Nakajima operators. Let q∨X ∈ H2,2(X,Q) be the dual of
the BBF form introduced in Section 3.1. As always we denote by δ ∈ Pic(X)
the class such that 2δ is the class of the exceptional divisor of the Hilbert–Chow
morphism S[2] → S(2). First of all, we give another basis of H2,2(X,Q).

Proposition 3.4.1. Let X = S[2] be the Hilbert square of a generic K3 surface
and let h ∈ Pic(X) be the class induced by the ample generator of Pic(S). Then

{h2, hδ, δ2,
2

5
q∨X}

is a basis of the Q-vector space H2,2(X,Q).

Proof. We denote by h both the ample generator of Pic(S) and the line bundle
that this induces on X. We have h2 = 2t for some integer t > 0 with respect
to the intersection form on S. By Remark 3.2.10 we have δ = 1

2q2(1)|0〉 and
h = q1(1)q1(h)|0〉, hence applying Lemma 3.3.9 we obtain

h2 = 2tq1(1)q1(x)|0〉+ q1(h)2|0〉, hδ = q2(h)|0〉,

δ2 = −
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉, (3.4.1)

where 1 ∈ H0(S,Z) is the unit, x ∈ H4(S,Z) is the class of a point, {α1, . . . , α22}
is the basis of H2(S,Z) used in Lemma 3.2.11 and the µi,j ’s are the integers given
in Table 3.1. By Theorem 1.4.10, the lattice Pic(S) ∼= Zh can be primitively
embedded in a unique way, up to isometries, in H2(S,Z): we can assume that
such embedding is obtained by mapping h to α17 + tα18. Then by (3.4.1) we
have that h2, hδ and δ2 are linearly independent in H2,2(S[2],Q). Suppose that

2

5
q∨X = xh2 + yhδ + zδ2 ∈ H2,2(X,Q) (3.4.2)

for some x, y, z ∈ Q. By Proposition 3.1.6 we have

〈2
5
q∨X , h

2〉 = 20t, 〈2
5
q∨X , hδ〉 = 0, 〈2

5
q∨X , δ

2〉 = −20. (3.4.3)
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From (3.4.2) and (3.4.3) we obtain, using Proposition 3.1.5,

x =
5

4t
, y = 0, z = −5

4
.

Again by Proposition 3.1.6 we have 〈 25q
∨
X ,

2
5q
∨
X〉 = 92, while

〈 5

4t
h2 − 5

4
δ2,

5

4t
h2 − 5

4
δ2〉 = 50.

We get a contradiction, hence {h2, hδ, δ2, 2
5q
∨
X} is a set of linearly independent

elements in H2,2(X,Q). By Theorem 3.3.16 the Q-vector space H2,2(X,Q) has
dimension 4, so {h2, hδ, δ2, 2

5q
∨
X} is a basis for H2,2(X,Q).

3.4.1 Example: basis of H2,2(S
[2]
2 ,Z)

Let S be a generic K3 surface and X = S[2] be its Hilbert square. Let h ∈ Pic(X)
be the line bundle induced by the ample generator of Pic(S). By Theorem 3.3.16
the element q1(1)q1(x)|0〉 is in a basis of H2,2(X,Q), where as usual x ∈ H4(S,Z)
is the class of a point. We wonder how this element is described in terms of
h2, hδ, δ2, 2

5q
∨
X ∈ H2,2(X,Q). This information, together with Lemma 3.3.9 and

Theorem 3.3.17, will give us a basis of the lattice H2,2(X,Z) in terms of some
rational linear combinations of the elements

h2, hδ, δ2,
2

5
q∨X ∈ H2,2(X,Q).

It is possible to conjecture such a basis by finding it explicitly when X = S
[2]
2

is the Hilbert square of the generic K3 surface of degree 2, i.e., qX(h) = 2. We
first need to recall the following general fact. Let S be a generic K3 surface
with Pic(S) ∼= Zh, and h2 = 2t > 0 for some integer t > 0. Suppose that the
Pell-type equation P4t(5) is solvable: this implies the existence of a (−10)-class
ρ ∈ H2(X,Z) of divisibility 2, i.e., qX(ρ) = −10 and div(ρ) = 2 is the positive
generator of the ideal

{(ρ, x) |x ∈ H2(X,Z)}.
Geometrically this means that there exists a 2-dimensional subvariety P ⊂ X
such that P ∼= P2, cf. Theorem 4.1 and Theorem 2.2.40. Denoting by [P ] the
fundamental cohomological class of P in X, by [HT09, §5] and [Bak15, p.17] we
have that [P ] ∈ H2,2(X,Z) is equal to

[P ] =
1

24
(3ρ2 + c2(X)) ∈ H2,2(X,Z).

Since c2(X) = 6
5q
∨
X by Proposition 3.1.8, and ρ = 2b5h− a5δ, where (a5, b5) is

the minimal solution of the Pell-type equation P4t(5), we obtain

[P ] =
1

2
b25h

2 +
1

8
a2

5δ
2 − 1

2
a5b5hδ +

1

20
q∨X ∈ H2,2(X,Z). (3.4.4)

In Example 3.4.2 we will use some Sage packages, see [SDWSDJ+20], in particular
sage.modules.free_quadratic_module_integer_symmetric, to define lattices, and
sage.modules.torsion_quadratic_module, to obtain an explicit description of the
finite bilinear form associated to a discriminant group. Both the packages have
been developed by Simon Brandhorst, with a contribution by Paolo Menegatti
in the first one.
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Example 3.4.2. Let X := S
[2]
2 , where S2 is the double cover of the plane P2

ramified over a smooth sextic curve with Pic(S2) ∼= Zh and h2 = 2. Denote by
h ∈ Pic(X) also the class induced by h on X. The Pell-type equation P4(5) has
minimal solution (a5, b5) = (3, 1), so ρ = 2h − 3δ ∈ H2(X,Z) is a (−10)-class
of divisibility 2. By the discussion above, there is a 2-dimensional subvariety
P ⊂ X and by (3.4.4) we obtain the following integral Hodge class of type (2, 2):

[P ] =
1

2
h2 +

9

8
δ2 − 3

2
hδ +

1

20
q∨X ∈ H2,2(X,Z).

By (3.4.1) we have

h2 − hδ
2

=
1

2

(
q1(h)2 − q2(h)

)
|0〉+ q1(1)q1(x)|0〉 ∈ H2,2(X,Z),

which is indivisible in H2,2(X,Z) by Theorem 3.3.17. Moreover, the following is
an element in H2,2(X,Z):

[P ]− δ2 + hδ − h2 − hδ
2

=
1

8

(
δ2 +

2

5
q∨X

)
∈ H2,2(X,Z).

Thus the following is a sublattice of H2,2(X,Z):

L := Zh2 ⊕ Z
h2 − hδ

2
⊕ Z

1

8

(
δ2 +

2

5
q∨X

)
⊕ Zδ2 ⊆ H2,2(X,Z). (3.4.5)

Note that rk(L) = 4 by Proposition 3.4.1. In order to obtain H2,2(X,Z), we look
for the overlattices of L. There is a bijection, by Proposition 1.4.12, between
overlattices of L and isotropic subgroups of the discriminant group AL := L∨/L

of L. The Gram matrix of the lattice L in the basis {h2, h
2−hδ

2 , 1
8

(
δ2 + 2

5q
∨
X

)
, δ2}

is the following (recall that the bilinear form is the restriction of 〈·, ·〉 to L× L):
12 6 2 −4
6 2 1 −2
2 1 1 −1
−4 −2 −1 12

 .

Since |det(L)| = 22 · 3 · 7, by Lemma 1.4.11 an overlattice R of L strictly
bigger than L is such that [R : L] = 2. Using a Sage program, we find a basis
{v1, v2, v3, v4} of AL such that the finite bilinear form is represented by the
following Gram matrix with values in Q/Z:

1
2 0 0 0
0 1

2 0 0
0 0 2

3 0
0 0 0 3

7

 . (3.4.6)

We denote by w1, w2, w3, w4 the images of h2, h
2−hδ

2 , 1
8

(
δ2 + 2

5q
∨
X

)
, δ2 respec-

tively under the embedding L ↪→ L∨. A Sage program gives us the following
equivalences modulo L hold:

v1 ≡ 1
2w2 + 1

2w4,

v2 ≡ 1
2w1 + 1

2w2 + 1
2w4,

v3 ≡ 1
3w1 + 2

3w3 + 1
3w4,

v4 ≡ 1
7w1 + 2

7w3 + 4
7w4.

(3.4.7)
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We have remarked that an overlattice R of L which strictly contains L is such that
[R : L] = 2, so R corresponds to an isotropic subgroup of AL whose cardinality
is 2. We see from (3.4.6) that the only isotropic subgroup of AL of cardinality 2
is the one generated by v1 + v2, and from (3.4.7) we have

v1 + v2 ≡
1

2
w1 (mod L).

We conclude that the only overlattice of L is the one generated by L and h2

2 . By
(3.4.1) we have

h2

2
= q1(1)q1(x)|0〉+

1

2
q1(h)2|0〉 ∈ H2,2(X,Q),

which is not an element of H2,2(X,Z) by Theorem 3.3.17. We conclude that
H2,2(X,Z) = L, i.e.,

H2,2(X,Z) = Zh2 ⊕ Z
h2 − hδ

2
⊕ Z

1

8

(
δ2 +

2

5
q∨X

)
⊕ Zδ2.

Example 3.4.2 makes us conjecture the following: if S is a generic K3 surface,
X = S[2] and h ∈ Pic(X) is the class induced by the ample generator of Pic(S),
then

H2,2(X,Z) = Zh2 ⊕ Z
h2 − hδ

2
⊕ Z

1

8

(
δ2 +

2

5
q∨X

)
⊕ Zδ2. (3.4.8)

We will show this conjecture in Corollary 3.4.11. Note that using Lemma 3.3.9

we can represent h2, h2−hδ
2 and δ2 in terms of Nakajima operators. In order

to obtain (3.4.8) from the description of H2,2(X,Z) given in Theorem 3.3.17
we need to express 2

5q
∨
X ∈ H2,2(X,Z) in terms of Nakajima operators. Recall

that 6
5q
∨
X = c2(X) by Proposition 3.1.8, so we will look for a representation of

c2(X) ∈ H2,2(X,Z) in terms of Nakajima operators. This is the aim of the next
section.

3.4.2 EGL formula and c2(S
[2])

Let S be a projective K3 surface. In this section we will use the EGL formula
given in Proposition 3.2.8 to describe c2(S[2]), the second Chern class of S[2], in
terms of Nakajima operators.

We denote by T2 := TS[2] the tangent bundle of S[2]. From now on, we
will denote by · the cup product. We define the following operator on the
cohomology ring H∗(S[2],Q):

ch(T2) : H∗(S[2],Q)→ H∗(S[2],Q), x 7→ ch(T2) · x.

By the general construction of S[n,n+k] seen in Section 3.2.1, if ∆ ⊂ S × S is the
diagonal, we have S[1,2] ∼= Bl∆(S2). Diagram (3.2.5) for n = 1 gives

S[1,2] S[2]

S × S

S ∆ S.

ϕ ρ

σ

ψ

p q
ι

(3.4.9)
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Note that the morphisms ϕ, ρ and ψ appearing in diagram (3.4.9) correspond to
the morphisms ϕ, ρ and ψ of diagram (3.2.2), with n = k = 1, precomposed with
the inclusion of S[1,2] in S × S × S[2]. With this notation, the definition of the
Nakajima operator q1 is the same of (3.2.3) without the component PD−1[S[1,2]],
i.e., for α, x ∈ H∗(S) we have

q1(α)(x) = ψ∗ (ϕ∗(x) · ρ∗(α)) .

By properties of cup and cap product, the latter denoted by ∩, the following
equality holds in H∗(S[1,2]) for every α, x ∈ H∗(S):

ϕ∗(x) · ρ∗(α) = PD−1
(

[S[1,2]] ∩ ϕ∗(x) · ρ∗(α)
)
.

Then we have

ch(T2) · q1(α)(x) = ch(T2) · ψ∗ (ϕ∗(x) · ρ∗(α))

= ch(T2) · PD−1ψ∗
(
[S[1,2]] ∩ ϕ∗(x) · ρ∗(α)

)
= PD−1ψ∗

(
[S[1,2]] ∩ ψ∗(ch(T2)) · ϕ∗(x) · ρ∗(α)

)
= PD−1ψ∗

(
[S[1,2]] ∩ ch(ψ!T2) · ϕ∗(x) · ρ∗(α)

)
,

where ψ∗ in the first equality is the Gysin homomorphism, while in the other
equalities is the pushforward in homology, and the third equality comes from
the projection formula. By Proposition 3.2.8 applied with n = 1 and ωS trivial,
we then obtain:

ch(T2) · q1(α)(x) = PD−1ψ∗
(
[S[1,2]] ∩ ϕ∗(ch(TS) · x) · ρ∗(α)

)
+PD−1ψ∗

(
[S[1,2]] ∩ ch(L) · ϕ∗(x) · ρ∗(α)

)
−PD−1ψ∗

(
[S[1,2]] ∩ ch(L) · σ∗(ch(O∨∆)) · ϕ∗(x) · ρ∗(α)

)
+PD−1ψ∗

(
[S[1,2]] ∩ ch(L∨) · ϕ∗(x) · ρ∗(α)

)
−PD−1ψ∗

(
[S[1,2]] ∩ ch(L∨) · σ∗(ch(O∆)) · ϕ∗(x) · ρ∗(α)

)
−PD−1ψ∗

(
[S[1,2]] ∩ ϕ∗(x) · ρ∗(ch(2OS − TS))

)
,
(3.4.10)

where L := OS[1,2](−N) and N is the exceptional divisor of the blowing up
σ : Bl∆(S2) → S2. If we set x := q1(1)|0〉 and α := 1, we can use formula
(3.4.10) to compute c2(S[2]) in terms of Nakajima operators. Recall that here
the dual of F ∈ K(X) for X a smooth irreducible projective variety is

F∨ :=
∑
i

(−1)iExt i(F,OX),

while we will denote by F ∗ := Hom(F,OX) the classical dual. We recall the
following three useful general results.

Proposition 3.4.3 (Proposition III.6.3 in [Har13]). Let (X,OX) be a ringed
space and G be a sheaf of OX-modules. Then:

(i) Ext 0(OX ,G) = G.

(ii) Ext i(OX ,G) = 0 for i > 0.
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Proposition 3.4.4 (Proposition III.6.7 in [Har13]). Let L be a locally free sheaf
of finite rank, and let L∗ = Hom(L,OX) be its classical dual. Then, if F and G
are two sheaves, we have

Ext i(F ⊗ L,G) ∼= Ext i(F ,L∗ ⊗ G) ∼= Ext i(F ,G)⊗ L∗.

Lemma 3.4.5 (Lemma 1 in [Sch]). Let X be a nonsingular algebraic variety, L
be a line bundle on X and Z ⊆ X be a locally complete intersection of codimension
r ≥ 2. Let L′ be the line bundle detNZ|X ⊗ i∗L on Z, where i : Z ↪→ X is the
inclusion embedding. For every q ≥ 0 we have

Ext q(OZ ,L) ∼= Ext q(OZ ,OX)⊗ L ∼=
{
L′ if q = r
0 otherwise

We now study the duals appearing in the right-hand side of (3.4.10).

Lemma 3.4.6. Keep notation as above. Then:

(i) The dual L∨ is isomorphic to the dual L∗ = Hom(L,OS[1,2]).

(ii) O∨∆ = O∆.

Proof. (i) By Proposition 3.4.4 we have

Ext i(L,OS[1,2]) ∼= Ext i(OS[1,2] ,OS[1,2])⊗ L∗,

and by Proposition 3.4.3 we have

Ext i(OS[1,2] ,OS[1,2]) =

{
0 if i > 0,

OS[1,2] if i = 0.

We conclude that
∑
i(−1)iExt i(L,OS[1,2]) ∼= L∗.

(ii) We apply Lemma 3.4.5 with X = S × S, Z = ∆ and L = OS×S . We
have Ext i(O∆,OS×S) = 0 if i 6= 2 and Ext 2(O∆,OS×S) = detN∆|S×S .
Moreover, N∆|S×S = TS and det TS ∼= OS since S is a K3 surface. We
conclude that

∑
i(−1)1Ext i(O∆,OS×S) = O∆, as we wanted.

We now compute the Chern character of O∆, where O∆ := i∗O∆ with
i : ∆ ↪→ S × S the inclusion map.

Lemma 3.4.7. Let S be a K3 surface and ∆ ⊂ S × S be the diagonal. Denote
by [∆] ∈ H4(S × S,Z) the fundamental cohomological class of ∆ in S × S. Then
we have

ch(O∆) = [∆]− 2y,

where y ∈ H8(S × S,Q) is the class of a point in S × S.

Proof. This follows from the Grothendieck–Riemann–Roch theorem. Indeed, let
i : ∆ ↪→ S × S be the inclusion. By Theorem 1.3.4 we have

ch(O∆) = i∗ (ch(O∆) · td(S)) · td(S × S)−1

= i∗
(
td(S) · i∗td(S × S)−1

)
= i∗

(
td(S)−1

)
,
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where i∗ is the Gysin homomorphism. Let x ∈ H4(S,Q) be the class of a point
of S. The Todd class of a K3 surface is td(S) = 1 + 2x, hence we obtain

ch(O∆) = [∆]− 2y.

Consider formula (3.4.10). We introduce the following notation:

L1 := ch(T2) · q1(α)(x),

R1 := PD−1ψ∗
(
[S[1,2]] ∩ ϕ∗(ch(TS) · x) · ρ∗(α)

)
,

R2 := PD−1ψ∗
(
[S[1,2]] ∩ ch(L) · ϕ∗(x) · ρ∗(α)

)
,

R3 := PD−1ψ∗
(
[S[1,2]] ∩ ch(L) · σ∗(ch(O∨∆)) · ϕ∗(x) · ρ∗(α)

)
,

R4 := PD−1ψ∗
(
[S[1,2]] ∩ ch(L∨) · ϕ∗(x) · ρ∗(α)

)
,

R5 := PD−1ψ∗
(
[S[1,2]] ∩ ch(L∨) · σ∗(ch(O∆)) · ϕ∗(x) · ρ∗(α)

)
,

R6 := PD−1ψ∗
(
[S[1,2]] ∩ ϕ∗(x) · ρ∗(ch(2OS − TS) · x)

)
.

Recall that we have taken x = q1(1)|0〉 and α = 1. We can compute c2(S[2]) in
terms of Nakajima operators.

Proposition 3.4.8. Let S be a projective K3 surface. Then the second Chern
class c2(S[2]) ∈ H2,2(S[2],Z) of S[2] in terms of Nakajima operators is

c2(S[2]) = 27q1(1)q1(x)|0〉+ 3
∑
i<j

µi,jq1(αi)q1(αj)|0〉+
3

2

∑
i

µi,iq1(αi)
2|0〉,

where 1 ∈ H0(S,Z) is the unit and x ∈ H4(S,Z) is the class of a point,
{α1, . . . , α22} is the basis of the lattice H2(S,Z) used in Lemma 3.2.11 and
the µi,j’s are given in Table 3.1.

Note that by Table 3.1 the integers µi,i are all even, so the expression given
above for c2(S[2]) is really an element of H2,2(S[2],Z).

Proof. We make some computations on L1, R1, . . . , R6 introduced above.

• We have L1 = ch(T2) · q1(α)(x) = ch(T2) · q1(1)q1(1)|0〉. The exponential
Chern character of T2 is, by Section 1.3,

ch(T2) = 4− c2(S[2]) +
1

12
c2(S[2])2 − 1

6
c4(S[2]),

where ci(S[2]) = ci(T2) for i ≥ 0, and (3.2.4) gives

q1(1)q1(1)|0〉 = 2 · 1S[2] .

Thus we obtain

L1 = 8 · 1S[2] − 2c2(S[2]) +
1

6
c2(S[2])2 − 1

3
c4(S[2]).
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• Since S is a K3 surface we have c1(S) = 0 and c2(S) = 24x, where
x ∈ H4(S,Z) is the class of a point on S. Hence ch(TS) = 2− 24x and we
obtain

R1 = 2q1(1)q1(1)|0〉 − 24q1(1)q1(x)|0〉
= 4 · 1S[2] − 24q1(1)q1(x)|0〉,

where the second equality comes from (3.2.4).

• Let d := c1(L). Then we have

ch(L) =
∑
ν≥0

1

ν!
dν .

Now, [Leh99, Lemma 3.9] implies that the cycle [S[1,2]] ∩ dν induces the
operator q(ν)

1 , as observed in the proof of [Leh99, Lemma 4.2], hence we
obtain

R2 =
∑
ν≥0

1

ν!
q

(ν)
1 (α) · x

=
∑
ν≥0

1

ν!
q

(ν)
1 (1)q1(1)|0〉.

We now compute q
(ν)
1 (1)q1(1)|0〉 for every ν ≥ 0. If ν = 0, we have

q
(0)
1 (1)q1(1)|0〉 = q1(1)q1(1)|0〉 = 2 · 1S[2] ∈ H0(S[2],Z).

If ν = 1, by Theorem 3.2.7 we have

q′1(1)q1(1)|0〉 = −q2(1)|0〉 ∈ H2(S[2],Z). (3.4.11)

If ν = 2, we have

q
(2)
1 (1)q1(1)|0〉 = (∂q′1 − q′1∂) (1)q1(1)|0〉

= ∂q′1(1)q1(1)|0〉 − q′1∂(1)q1(1)|0〉.

The boundary of S is empty by Remark 3.2.4, so q′1∂(1)q1(1)|0〉 = 0.
Moreover, using (3.4.11), we get

∂q′1(1)q1(1)|0〉 = −∂q2(1)|0〉,

and by Definition 3.2.6 we obtain

q
(2)
1 (1)q1(1)|0〉 =

1

2
q2(1)|0〉 · q2(1)|0〉 ∈ H4(S[2],Z).

Similarly for ν = 3 and ν = 4 we obtain the following:

q
(3)
1 (1)q1(1)|0〉 = − 1

2q2(1)|0〉 · 1
2q2(1)|0〉 · q2(1)|0〉 ∈ H6(S[2],Z),

q
(4)
1 (1)q1(1)|0〉 = 1

2q2(1)|0〉 · 1
2q2(1)|0〉 · 1

2q2(1)|0〉 · q2(1)|0〉 ∈ H8(S[2],Z).

If ν ≥ 5, we obtain an element in H2ν(S[2],Z) = 0. We conclude that

R2 = 2 · 1S[2] − q2(1)|0〉+ 1
2q2(1)|0〉 · 1

2q2(1)|0〉
− 1

3

(
1
2q2(1)|0〉 · 1

2q2(1)|0〉 · 1
2q2(1)|0〉

)
+ 1

12

(
1
2q2(1)|0〉 · 1

2q2(1)|0〉 · 1
2q2(1)|0〉 · 1

2q2(1)|0〉
)
.
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• As before, we set d := c1(L). By Lemma 3.4.6 we have ch(O∆) = ch(O∨∆),
and by Lemma 3.4.7 we have ch(O∆) = [∆]− 2y, where y ∈ H8(S × S,Z)
is the class of a point. Moreover, Lemma 3.2.11 gives

[∆] =
∑
i,j

µi,jαi ⊗ αj + 1⊗ x+ x⊗ 1,

where {α1, . . . , α22} is the basis of H2(S,Z) used in Lemma 3.2.11 and the
µi,j ’s are given in Table 3.1. Recall diagram (3.4.9)

S[1,2] S[2]

S × S

S ∆ S,

ϕ ρ

σ

ψ

p q
ι

where p and q are the two projections, σ is the blowing up of S × S in
the diagonal and ϕ = p ◦ σ, ρ = q ◦ σ. By the Künneth theorem we have
y = x⊗ x. Then

σ∗(ch(O∆)) = σ∗

∑
i,j

µi,jαi ⊗ αj + 1⊗ x+ x⊗ 1− 2(x⊗ x)


=

∑
i,j

µi,jϕ
∗(αi) · ρ∗(αj)

+ϕ∗(1) · ρ∗(x) + ϕ∗(x) · ρ∗(1)− 2 (ϕ∗(x) · ρ∗(x)) .

Proceeding as for R2 we get

R3 =
∑
i,j

µi,j
∑
ν≥0

1

ν!
q

(ν)
1 (αi)q1(αj)|0〉

+
∑
ν≥0

1

ν!
q

(ν)
1 (x)q1(1)|0〉

+
∑
ν≥0

1

ν!
q

(ν)
1 (1)q1(x)|0〉

−2
∑
ν≥0

1

ν!
q

(ν)
1 (x)q1(x)|0〉.

(3.4.12)

We call R3ν=i the component of R3 obtained by putting ν = i in (3.4.12)
for i ≥ 0. Using the commutativity rule given by Theorem 3.2.2 we have

R3ν=0 =
∑
i,j

µi,jq1(αi)q1(αj)|0〉+ 2q1(1)q1(x)|0〉 − 2q1(x)q1(x)|0〉.

Note that q1(αi)q1(αj)|0〉 ∈ H4(S[2],Z) and q1(x)q1(x)|0〉 ∈ H8(S[2],Z).
If ν ≥ 3 we obtain elements in Hi(S[2],Q) with i ≥ 10, so these are equal
to zero. We do not compute explicitly R3ν=1: we will see that this is
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not necessary. If ν = 2, using Definition 3.2.6 we obtain, after some
computations,

R3ν=2 =
∑
i,j

µi,j
1

2

(
1

2
q2(1)|0〉 · 1

2
q2(1)|0〉

)
· q1(αi)q1(αj)|0〉

+ 1
2q2(1)|0〉 · 1

2q2(1)|0〉 · q1(1)q1(x)|0〉,

which is an element of H8(S[2],Z). Note that we have not written down
the element

−
(

1

2
q2(1)|0〉 · 1

2
q2(1)|0〉

)
· q1(x)q1(x)|0〉

since it belongs to H12(S[2],Z), hence it is zero. We conclude that

R3 =
∑
i,j

µi,jq1(αi)q1(αj)|0〉

+2q1(1)q1(x)|0〉
−2q1(x)q1(x)|0〉
+R3ν=1

+ 1
2

∑
i,j

µi,j
1

2
q2(1)|0〉 · 1

2
q2(1)|0〉 · q1(αi)q1(αj)|0〉

+ 1
2q2(1)|0〉 · 1

2q2(1)|0〉 · q1(1)q1(x)|0〉.

• By Lemma 3.4.6 the dual L∨ is isomorphic to Hom(L,OS[1,2]), which is
the classic dual. Hence if d := c1(L) we have

ch(L∨) =
∑
ν≥0

(−1)ν

ν!
dν .

Thus R4 is computed in the same way as R2, with a change of sign for the
components obtained when ν = 1 and ν = 3. We obtain

R4 = 2 · 1S[2] + q2(1)|0〉+ 1
2q2(1)|0〉 · 1

2q2(1)|0〉
+ 1

3

(
1
2q2(1)|0〉 · 1

2q2(1)|0〉 · 1
2q2(1)|0〉

)
+ 1

12

(
1
2q2(1)|0〉 · 1

2q2(1)|0〉 · 1
2q2(1)|0〉 · 1

2q2(1)|0〉
)
.

• By Lemma 3.4.6 we have L∨ = Hom(L,OS[1,2]) and O∨∆ = O∆, so R5 is
computed in the same way as R3, with a change of sign for the component
R3ν=1, so we obtain

R5 =
∑
i,j

µi,jq1(αi)q1(αj)|0〉

+2q1(1)q1(x)|0〉
−2q1(x)q1(x)|0〉
−R3ν=1

+ 1
2

∑
i,j

µi,j
1

2
q2(1)|0〉 · 1

2
q2(1)|0〉 · q1(αi)q1(αj)|0〉

+ 1
2q2(1)|0〉 · 1

2q2(1)|0〉 · q1(1)q1(x)|0〉.
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• Since S is a K3 surface, we have

ch(2OS − TS) = 2− ch(TS)

= 2− 2 + c2(S)

= 24x,

where x ∈ H4(S,Z) is the class of a point. Then

R6 = 24q1(1)q1(x)|0〉,

where we have used q1(x)q1(1)|0〉 = q1(1)q1(x)|0〉 from Theorem 3.2.2.

Thus formula (3.4.10) with x = q1(1)|0〉 and α = 1 gives

L1 = 8 · 1S[2]

−52q1(1)q1(x)|0〉+ 2
(

1
2q2(1)|0〉 · 1

2q2(1)|0〉
)
− 2

∑
i,j

µi,jq1(αi)q1(αj)|0〉

+ 1
6

(
1
2q2(1)|0〉 · 1

2q2(1)|0〉 · 1
2q2(1)|0〉 · 1

2q2(1)|0〉
)

+4q1(x)q1(x)|0〉

−
∑
i,j

µi,j
1

2
q2(1)|0〉 · 1

2
q2(1)|0〉 · q1(αi)q1(αj)|0〉

−2
(

1
2q2(1)|0〉 · 1

2q2(1)|0〉 · q1(1)q1(x)|0〉
)
,

(3.4.13)
where

L1 = 8 · 1[2]
S − 2c2(S[2]) +

1

6
c2(S[2])2 − 1

3
c4(S[2]). (3.4.14)

We now impose equalities between elements belonging to H4(S[2],Z) in the
right-hand side of (3.4.13) and (3.4.14). We obtain

c2(S[2]) = 26q1(1)q1(x)|0〉 − 1

2
q2(1)|0〉 · 1

2
q2(1)|0〉+

∑
i,j

µi,jq1(αi)q1(αj)|0〉.

Using the commutativity rule of Theorem 3.2.2 and Lemma 3.3.9, (iii), we get

c2(S[2]) = 27q1(1)q1(x)|0〉+ 3
∑
i<j

µi,jq1(αi)q1(αj)|0〉+
3

2

∑
i

µi,iq1(αi)
2|0〉,

and we are done.

3.4.3 Another description of H2,2(S[2],Z)
Using Proposition 3.4.8 we can finally prove the following theorem.

Theorem 3.4.9. Let S be a projective K3 surface and X = S[2] be its Hilbert
square. Consider q∨X ∈ H2,2(X,Q) the dual of the BBF form. Then

2

5
q∨X = 9q1(1)q1(x)|0〉+

∑
i<j

µi,jq1(αi)q1(αj)|0〉+
1

2

∑
i

µi,iq1(αi)
2|0〉 ∈ H2,2(X,Z),

(3.4.15)
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where 1 ∈ H0(S,Z) is the unit, x ∈ H4(S,Z) is the class of a point, {α1, . . . , α22}
is the basis of H2(S,Z) used in Lemma 3.2.11 and the µi,j’s are the integers
given in Table 3.1. Moreover, 2

5q
∨
X is indivisible in H2,2(X,Z) and

1

8

(
δ2 +

2

5
q∨X

)
= q1(1)q1(x)|0〉 ∈ H2,2(X,Z). (3.4.16)

Proof. By Proposition 3.1.8 we have 6
5q
∨
X = c2(X), so Proposition 3.4.8 implies

(3.4.15). Moreover, taking the basis of H4(X,Z) given by Theorem 3.2.9, we
see that 2

5q
∨
X is indivisible in H4(X,Z), i.e., there is no α ∈ H4(X,Z) such that

nα = 2
5q
∨
X for some integer n ∈ Z>1: it suffices to find some µi,j which are

coprime with 9, the coefficient of q1(1)q1(x)|0〉 in (3.4.15), by Table 3.1. This
implies that 2

5q
∨
X is indivisible also in H2,2(X,Z). Recall that by Lemma 3.3.9

we have

δ2 = −
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉, (3.4.17)

thus from (3.4.15) and (3.4.17) we obtain

δ2 +
2

5
q∨X = 8q1(1)q1(x)|0〉 ∈ H2,2(X,Z),

which implies

1

8

(
δ2 +

2

5
q∨X

)
= q1(1)q1(x)|0〉 ∈ H2,2(X,Z).

Note that (3.4.16) is consistent with (3.4.13) and (3.4.14) in the proof of
Proposition 3.4.8. Indeed, imposing the equality between the elements belonging
to H8(S[2],Z) in the right-hand side of (3.4.13) and (3.4.14) we have

1
6c2(S[2])2 − 1

3c4(S[2]) = 1
6

(
1
2q2(1)|0〉 · 1

2q2(1)|0〉 · 1
2q2(1)|0〉 · 1

2q2(1)|0〉
)

+4q1(x)q1(x)|0〉

−
∑
i,j

µi,j
1

2
q2(1)|0〉 · 1

2
q2(1)|0〉 · q1(αi)q1(αj)|0〉

−2
(

1
2q2(1)|0〉 · 1

2q2(1)|0〉 · q1(1)q1(x)|0〉
)
.
(3.4.18)

Let z ∈ H8(S[2],Z) be the class of a point of S[2]. By Theorem 2.2.6 we have
c2(S[2])2 = 828z and c4(S[2]) = 324z, so the left-hand side of (3.4.18) is 30z. The
first term in the right-hand side is 1

6δ
4, which is equal to 2z as a consequence of

Theorem 2.2.4, being qX(δ) = −2. The second term is 4z. By Lemma 3.3.9, (ii),
we have

q1(αi)q1(αj)|0〉 = q1(1)q1(αi)|0〉 · q1(1)q1(αj)|0〉 −
(∫

S

αiαj

)
q1(1)q1(x)|0〉,

Moreover, by Theorem 3.4.9 we have

1

2
q2(1)|0〉 · 1

2
q2(1)|0〉 · q1(1)q1(x)|0〉 = 〈δ2,

1

8

(
δ2 +

2

5
q∨X

)
〉z = −z, (3.4.19)
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thus we get

1

2
q2(1)|0〉 · 1

2
q2(1)|0〉 · q1(αi)q1(αj)|0〉 =

(
〈δ2, αiαj〉+

∫
S

αiαj

)
z. (3.4.20)

Using (3.4.20) and Table 3.1 it is possible to show that

−
∑
i,j

µi,j
1

2
q2(1)|0〉 · 1

2
q2(1)|0〉 · q1(αi)q1(αj)|0〉 = 22z.

By (3.4.19) the last term of (3.4.18) is 2z. We conclude that the right-hand side
of (3.4.18) is 30z, which is equal to 1

6c2(S[2])2 − 1
3c4(S[2]) as seen above.

Theorem 3.4.9 is consistent with the computation of ch(S[2]) given by the
Maude program in [BNW07, §11]. See [CDE+02] for documentation about
Maude. The output of the program is given in Figure 3.4.1.

Figure 3.4.1: Output of ch(S[2])

Without going into details, in Figure 3.4.1 the canonical bundle of S is
represented by K. In our case K is trivial, and the program gives

ch(S[2]) = 2q1(1)q1(1)|0〉+
5

8
q11(e)|0〉 − q1(1)q1(e)|0〉 − 3

2
q11(1)|0〉,

where e = 24x is the Euler class of S, with x ∈ H4(S,Z) the class of a point,
and by definition

q11(α) = (q1 ◦ q1)τ2∗α

=
∑
i

q1(αi1)q1(αi2),

where τ2∗(α) =
∑
i α

i
1⊗αi2 ∈ H∗(S)⊗H∗(S) and τ2∗ : H∗(S)→ H∗(S)⊗H∗(S)
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is the map defined in Section 3.2.4. In particular we have

c2(S[2]) = 24q1(1)q1(x)|0〉+ 3
2 (q1 ◦ q1)(τ2∗(1))

= 24q1(1)q1(x)|0〉+ 3
2 (q1 ◦ q1)

∑
i,j

µi,jαi ⊗ αj + 1⊗ x+ x⊗ 1


= 24q1(1)q1(x)|0〉+ 3

∑
i<j

µi,jq1(αi)q1(αj)|0〉+
3

2

∑
i

µi,iq1(αi)
2|0〉

+3q1(1)q1(x)|0〉

= 27q1(1)q1(x)|0〉+ 3
∑
i<j

µi,jq1(αi)q1(αj)|0〉+
3

2

∑
i

µi,iq1(αi)
2|0〉,

where as usual {α1, . . . , α22} is the basis of H2(S,Z) used in Lemma 3.2.11 and
the µi,j ’s are given in Table 3.1. Note that the second equality comes from
equation (3.2.6). Then we have

2

5
q∨X = 9q1(1)q1(x)|0〉+

∑
i<j

µi,jq1(αi)q1(αj)|0〉+
1

2

∑
i

µi,iq1(αi)
2|0〉,

which is (3.4.15).

Remark 3.4.10. If S is a projective K3 surface, the lattice H2,2(S[2],Z) is
always an odd lattice: this follows from the product

〈1
8

(
δ2 +

2

5
q∨X

)
,

1

8

(
δ2 +

2

5
q∨X

)
〉 = 1.

Let now S be a generic K3 surface. We denote by h both the class which
generates Pic(S) and the class induced onX. Theorem 3.4.9 can be used, together
with Lemma 3.3.9 and Theorem 3.3.17, to obtain the following description
of H2,2(S[2],Z) which does not depend on Nakajima operators, proving the
conjecture made in (3.4.8).

Corollary 3.4.11. Let S be a generic K3 surface of degree 2t and X = S[2] be
its Hilbert square. Let h ∈ Pic(X) be the class induced by the ample generator of
Pic(S). Then

H2,2(X,Z) = Zh2 ⊕ Z
h2 − hδ

2
⊕ Z

1

8

(
δ2 +

2

5
q∨X

)
⊕ Zδ2.

Moreover, H2,2(X,Z) is an odd lattice of discriminant disc(H2,2(X,Z)) = 84t3,
and the Gram matrix in the basis given above is the following:

12t2 6t2 2t −4t
6t2 t(3t− 1) t −2t
2t t 1 −1
−4t −2t −1 12

 .

Proof. We denote by h both the class which generates Pic(S) and the class
induced on X. By Theorem 3.3.17 the following is a basis for the lattice
H2,2(X,Z):

{q2(h)|0〉, q1(1)q1(x)|0〉, 1

2

(
q2(h)− q1(h)2

)
|0〉, δ2}. (3.4.21)
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Note that the following is another basis of H2,2(X,Z):

{2tq1(1)q1(x)|0〉+ q1(h)2|0〉, 1
2

(
q2(h)− q1(h)2

)
|0〉+ tq1(1)q1(x)|0〉,

q1(1)q1(x)|0〉, δ2},
(3.4.22)

where qX(h) = 2t for some integer t > 0. Indeed, every element in (3.4.21) is
an integral linear combination of elements in (3.4.22). By Lemma 3.3.9, the
equalities in (3.4.1) and Theorem 3.4.9, the basis (3.4.22) is equal to

{h2,
h2 − hδ

2
,

1

8

(
δ2 +

2

5
q∨X

)
, δ2},

as we wanted. By Remark 3.4.10 the lattice H2,2(X,Z) is odd, and the Gram
matrix is easily computed using Proposition 3.1.5 and Proposition 3.1.6.

3.4.4 H2,2(S[2],Z) for any projective K3 surface S
Let S be a projective K3 surface. In Theorem 3.3.16 we have given a basis of
the vector space H2,2(S[2],Q) for any projective K3 surface S. Then we have
described in Theorem 3.3.17 a basis of the lattice H2,2(S[2],Z) when S has Picard
group of rank r = 1. We now present a basis of the lattice H2,2(S[2],Z) for any
projective K3 surface S with Picard group of rank r, where 1 ≤ r ≤ 20. We will
use results obtained in Section 3.4.2 and in Section 3.4.3.

Theorem 3.4.12. Let S be a projective K3 surface with Picard group of rank
rk(Pic(S)) = r. Let {b1, . . . , br} be a basis of Pic(S). Then:

(i) rk(H2,2(S[2],Z)) = (r+1)r
2 + r + 2.

(ii) A basis of H2,2(S[2],Z) is given by the following elements:

• q2(bi)|0〉, for i = 1, . . . , r,

• q1(1)q1(x)|0〉, where 1 ∈ H0(S,Z) is the unit and x ∈ H4(S,Z) is the
class of a point.

• 1
2

(
q1(bi)

2 − q2(bi)
)
|0〉, for i = 1, . . . , r,

• q1(bi)q1(bj)|0〉, for 1 ≤ i < j ≤ r,

• −
∑
i<j

µi,jq1(αi)q1(αj)|0〉−
1

2

∑
i

µi,iq1(αi)
2|0〉− q1(1)q1(x)|0〉, where

{α1, . . . , α22} is the basis of H2(S,Z) used in Lemma 3.2.11 and the
µi,j’s are given in Table 3.1.

Equivalently, the following is a basis of H2,2(S[2],Z):{
bibj ,

b2i − biδ
2

,
1

8

(
δ2 +

2

5
q∨X

)
, δ2

}
1≤i≤j≤r.

(3.4.23)

Moreover, H2,2(S[2],Z) is an odd lattice.

Proof. By Theorem 3.3.16 we have dim(H2,2(S[2],Q)) = (r+1)r
2 + r + 2. Since

by Theorem 2.2.9 the cohomology groups Hi(S[2],Z) are torsion free for i ≥ 0,
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we obtain that rk(H2,2(S[2],Z)) = (r+1)r
2 + r + 2. After a slight modification of

the basis given in Theorem 3.3.16, we have that the following is a basis of the
Q-vector space H2,2(S[2],Q):

q2(bi)|0〉 for i = 1, . . . , r

q1(1)q1(x)|0〉
1
2

(
q1(bi)

2 − q2(bi)
)
|0〉 for i = 1, . . . , r

q1(bi)q1(bj)|0〉 for 1 ≤ i < j ≤ r

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉.

(3.4.24)

In order to prove the theorem, we look for a sublattice L of H4(S[2],Z) of
maximal rank such that

L ∩H2,2(S[2],Q) = H2,2(S[2],Z)

and such that a basis of L contains the elements in (3.4.24). Since the Picard
group Pic(S) of S can be primitively embedded in H2(S,Z), there exists a basis
of H2(S,Z) of the form

{b1, . . . , br, br+1, . . . , b22}

for some br+1, . . . , b22 ∈ H2(S,Z). By Theorem 3.2.9 the following is a basis of
H4(S[2],Z):

q1(1)q1(x)|0〉, q2(bi)|0〉, q1(bi)q1(bj)|0〉,
1
2

(
q1(bi)

2 − q2(bi)
)
|0〉,

(3.4.25)

where i, j ∈ {1, . . . , 22} and i < j. Recall that by Lemma 3.3.9 we have

δ2 = −
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉, (3.4.26)

where {α1, . . . , α22} is the basis of the lattice H2(S,Z) used in Lemma 3.2.11
and the µi,j ’s are the integers given in Table 3.1. Using the same procedure of
Lemma 3.2.11 and Lemma 3.3.9 with the basis {b1, . . . , b22}, we obtain

δ2 = −
∑
i<j

σi,jq1(bi)q1(bj)|0〉 −
1

2

∑
i

σi,iq1(bi)
2|0〉 − q1(1)q1(x)|0〉 (3.4.27)

for some integers σi,j . Then the µi,j ’s are associated to the basis {α1, . . . , α22}
by the description of δ2 in (3.4.26), and the σi,j ’s are associated to the basis
{b1, . . . , b22} by the description of δ2 in (3.4.27). We show that there exist
positive integers l and k with l < k and k ≥ r + 1 such that σl,k 6= 0.

Suppose by contradiction that σi,j = 0 for every (i, j) such that i < j and
j ≥ r + 1. Then (3.4.27) becomes

δ2 = −
∑

1≤i<j≤r

σi,jq1(bi)q1(bj)|0〉−
1

2

22∑
i=1

σi,iq1(bi)
2|0〉−q1(1)q1(x)|0〉. (3.4.28)
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Consider the transcendental lattice T (S), which is, by Lemma 2.1.17, the or-
thogonal to the Néron–Severi group NS(S) ∼= Pic(S). Let x ∈ T (S). Since
H2(S,Z) is a unimodular lattice, there exists y ∈ H2(S,Z) such that

∫
S
xy = 1.

By Proposition 3.1.5 we have

〈δ2, xy〉 = −2. (3.4.29)

By (3.4.28), Lemma 3.3.9 and Theorem 3.4.15 we have

〈δ2, xy〉 = 〈−
∑

1≤i<j≤r

σi,j

[
bibj −

(∫
S

bibj

)(
1

8
δ2 +

1

20
q∨X

)]

− 1
2

22∑
i=1

σi,i

[
b2i −

(∫
S

b2i

)(
1

8
δ2 +

1

20
q∨X

)]
−
(

1
8δ

2 + 1
20q
∨
X

)
, xy〉.

(3.4.30)

Since x ∈ T (S) we have ∫
S

bix = 0 for i = 1, . . . , r,

hence the right-hand side of (3.4.30) is equal to

−
∑

1≤i<j≤r

σi,j

[∫
S

bibj +
1

4

∫
S

bibj −
5

4

∫
S

bibj

]

− 1
2

r∑
i=1

σi,i

[∫
S

b2i +
1

4

∫
S

b2i −
5

4

∫
S

b2i

]

− 1
2

22∑
i=r+1

σi,i

[∫
S

b2i + 2

∫
S

bix

∫
S

biy +
1

4

∫
S

b2i −
5

4

∫
S

b2i

]
.

Note that∫
S

bibj +
1

4

∫
S

bibj −
5

4

∫
S

bibj = 0,

∫
S

b2i +
1

4

∫
S

b2i −
5

4

∫
S

b2i = 0,

hence we finally obtain

〈δ2, xy〉 = −
22∑

i=r+1

σi,i

∫
S

bix

∫
S

biy − 1. (3.4.31)

Thus (3.4.29) and (3.4.31) imply

22∑
i=r+1

σi,i

∫
S

bix

∫
S

biy = 1. (3.4.32)

The σi,i’s are all even, otherwise by Theorem 3.2.9 the element δ2 in (3.4.27)
would not be integral, since a basis of H4(S[2],Z) is given by (3.4.25). Hence
the left-hand side of (3.4.32) is even, so it cannot be equal to 1. We get a
contradiction, so there exist l, k positive integers with l < k and k ≥ r + 1 such
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that σl,k 6= 0. Let now L be the sublattice of H4(S[2],Z) with the following
basis:

(i) q1(1)q1(x)|0〉,
(ii) q1(bi)q1(bj)|0〉 with 1 ≤ i < j ≤ 22 and (i, j) 6= (l, k),

(iii) δ2 = −
∑
i<j

σi,jq1(bi)q1(bj)|0〉 −
1

2

∑
i

σi,iq1(bi)
2|0〉 − q1(1)q1(x)|0〉,

(iv) q2(bi)|0〉 for i = 1, . . . , 22,

(v) 1
2

(
q1(bi)

2 − q2(bi)
)
|0〉 for i = 1, . . . , 22.

(3.4.33)
Recall that by (3.4.27) the element in (iii) is also equal to

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉.

Since σl,k 6= 0, the elements in (3.4.33) give a basis for H4(S[2],Q), thus L is
a sublattice of H4(S[2],Z) of maximal rank. If σl,k = ±1, then q1(bl)q1(bk)|0〉
can be obtained as an integral linear combination of elements in (3.4.33), hence
every element in the basis (3.4.25) of H4(S[2],Z) is in L, so L = H4(S[2],Z) and
(3.4.24) is a basis of H2,2(S[2],Z). If σl,k 6= ±1, then L 6= H4(S[2],Z). More
precisely, we have

H4(S[2],Z)

L
∼=

Z
|σl,k|Z

(3.4.34)

generated by q1(bl)q1(bk)|0〉. We show that

L ∩H2,2(S[2],Q) = H2,2(S[2],Z).

The inclusion L ∩ H2,2(S[2],Q) ⊆ H2,2(S[2],Z) is clear. We now prove the
inclusion L∩H2,2(S[2],Q) ⊇ H2,2(S[2],Z) by showing that if z 6∈ L∩H2,2(S[2],Q)
then z 6∈ H2,2(S[2],Z). If z 6∈ H2,2(S[2],Q) we are done. Suppose now that
z 6∈ L. Clearly we have

H4(S[2],Z) ∩H2,2(S[2],Q) = H2,2(S[2],Z).

Since the quotient in (3.4.34) is generated by q1(bl)q1(bk)|0〉, it suffices to
show that q1(bl)q1(bk)|0〉 6∈ H2,2(S[2],Q) to get the inclusion. Suppose by
contradiction that q1(bl)q1(bk)|0〉 ∈ H2,2(S[2],Q). Hence q1(bl)q1(bk)|0〉 is a
rational linear combination of elements in (3.4.24). Recall that the last element
in (3.4.24) can be written as

δ2 = −
∑
i<j

σi,jq1(bi)q1(bj)|0〉 −
1

2

∑
i

σi,iq1(bi)
2|0〉 − q1(1)q1(x)|0〉.

Since q1(bl)q1(bk)|0〉 appears only in δ2 among the elements in (3.4.24), we see
that q1(bl)q1(bk)|0〉 ∈ H2,2(S[2],Q) only if

σi,j = 0 for i ≤ j, j ≥ r + 1 and (i, j) 6= (l, k). (3.4.35)
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Let again x ∈ T (S) and y ∈ H2(S,Z) such that
∫
S
xy = 1. Similarly to (3.4.31)

we have

〈δ2, xy〉 = −
∑
i<j

j≥r+1

σi,j

(∫
S

bix

∫
S

bjy +

∫
S

bjx

∫
S

biy

)

− 1
2

22∑
i=r+1

σi,i

(
2

∫
S

bix

∫
S

biy

)
− 1,

(3.4.36)

which implies by (3.4.29) the following:

∑
i<j

j≥r+1

σi,j

(∫
S

bix

∫
S

bjy +

∫
S

bjx

∫
S

biy

)
+

22∑
i=r+1

σi,i

(∫
S

bix

∫
S

biy

)
= 1.

Thus we see that (3.4.35) is not true, otherwise (3.4.36) becomes

σl,k

(∫
S

blx

∫
S

bky +

∫
S

bkx

∫
S

bly

)
= 1,

which is false since by assumption σl,k 6= ±1. Hence there exists (l̄, k̄) 6= (l, k)
with l̄ ≤ k̄ and k̄ ≥ r+ 1 such that σl̄,k̄ 6= 0. As remarked above, this shows that
q1(bl)q1(bk)|0〉 6∈ H2,2(S[2],Q). Then

L ∩H2,2(S[2],Q) = H2,2(S[2],Z).

We conclude that (3.4.24) is a basis of H2,2(S[2],Z). To show that (3.4.23) is a
basis of H2,2(S[2],Z), we remark that by Lemma 3.3.9 and Theorem 3.4.9 the
following equalities hold for elements in the basis (3.4.24):

q2(bi)|0〉 = biδ,

q1(1)q1(x)|0〉 = 1
8

(
δ2 + 2

5q
∨
X

)
,

1
2

(
q1(bi)

2 − q2(bi)
)
|0〉 = 1

2

(
b2i −

∫
S

b2i

(
1

8
δ2 +

1

20
q∨X

)
− biδ

)
,

q1(bi)q1(bj)|0〉 = bibj −
∫
S

bibj

(
1

8
δ2 +

1

20
q∨X

)
,

−
∑
i<j

µi,jq1(αi)q1(αj)|0〉 −
1

2

∑
i

µi,iq1(αi)
2|0〉 − q1(1)q1(x)|0〉 = δ2.

(3.4.37)
It is now easy to see that every element in (3.4.37) is an integral linear combination
of elements in (3.4.23), which all belong to H2,2(S[2],Z). Hence (3.4.23) is a
basis of H2,2(S[2],Z), which is odd by Remark 3.4.10.

3.5 Hodge classes of type (3, 3) on Hilbert squares
of K3 surfaces

Let S be a projective K3 surface. In this section we study rational and integral
Hodge classes of type (3, 3) on the Hilbert square S[2].
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3.5.1 BBF form on second homology group
Before discussing H3,3(S[2],Q) and H3,3(S[2],Z), where S is a K3 surface, we
recall a useful correspondence between primitive elements in H2(X,Z) and
primitive elements in H2(X,Z)f , where X is an IHS manifold and H2(X,Z)f
is the torsion free quotient group of the homology group H2(X,Z). We follow
[HT01].

Let X be an IHS manifold. Since H2(X,Z) is torsion free, the universal
coefficient theorem gives an isomorphism

h : H2(X,Z)
∼−→ Hom(H2(X,Z)f ,Z), h([f ])([x]) := f(x) (3.5.1)

induced by evaluating a cochain on a chain. By [Hat05, Pag.239, Formula (∗)]
the isomorphism h can also be described by

h(v)(R) = ε(R ∩ v), (3.5.2)

where ε : H0(X,Z)
∼−→ Z is the isomorphism given in [Bre13, Theorem IV.2.1].

Then h induces the following isomorphism:

h∨ : Hom (Hom(H2(X,Z)f ,Z),Z)
∼−→ Hom(H2(X,Z),Z), h∨(g) := g ◦ h.

Moreover, since H2(X,Z)f is free and finitely generated, the following evaluation
map gives an isomorphism between H2(X,Z)f and its double dual

e : H2(X,Z)f
∼−→ Hom (Hom(H2(X,Z)f ,Z),Z) ,

where R ∈ H2(X,Z)f is mapped to eR, described as follows:

eR : Hom(H2(X,Z)f ,Z)→ Z, ϕ 7→ ϕ(R).

Then, for every R ∈ H2(X,Z)f we have h∨(eR) = eR ◦h, and the following holds
for every v ∈ H2(X,Z):

eR ◦ h(v) = eR(h(v)) = h(v)(R)

= ε(R ∩ v),

where the last equality comes from (3.5.2). We conclude that there is an
isomorphism

ψ : H2(X,Z)f
∼−→ Hom(H2(X,Z),Z), R 7→ {ψR : v 7→ ε(R ∩ v)}. (3.5.3)

This shows that H2(X,Z)f can be equipped with the BBF form, denoted as
usual by ( · , · ), with values in Q of the dual lattice Hom(H2(X,Z),Z), denoted
also by (H2(X,Z))∨. We can now prove the following.

Proposition 3.5.1 (Hassett–Tschinkel). Let X be an IHS manifold and denote
by H2(X,Z)f the torsion free quotient group of H2(X,Z). Then there is a
correspondence between primitive elements in H2(X,Z) and primitive elements
in H2(X,Z)f . In particular:

(i) For every primitive element R ∈ H2(X,Z)f there exists a unique class
ω ∈ H2(X,Q) such that

ε(R ∩ v) = (ω, v) for every v ∈ H2(X,Z).

The primitive ρ ∈ H2(X,Z) associated to R is the primitive element such
that cρ = ω for some c ∈ Q>0.
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(ii) For every primitive element ρ ∈ H2(X,Z) of divisibility div(ρ) = d in
H2(X,Z), there exists a unique primitive R ∈ H2(X,Z)f such that

d · ε(R ∩ v) = (ρ, v) for every v ∈ H2(X,Z).

Proof. (i) Let ψ : H2(X,Z)f
∼−→ (H2(X,Z))∨ be the isomorphism seen in

(3.5.3). Let {αi} be a basis of the lattice H2(X,Z) obtained by applying
Lemma 1.4.9, and denote by α∨i ∈ H2(X,Z)∨ the element α∨i := (αi, · ).
Again by Lemma 1.4.9 there is a basis of (H2(X,Z))∨ of the form { 1

λi
α∨i }

for some non-zero integers λi ∈ Z. Let R ∈ H2(X,Z)f be a primitive
element. Then ψR =

∑
i xiα

∨
i for some xi ∈ Q. We show that the

primitive ω ∈ H2(X,Q) is ω :=
∑
i xiαi. Indeed:

(ω, v) = (
∑
i xiαi, v) =

∑
i xiα

∨
i (v)

= ψR(v)

= ε(R ∩ v)

for every v ∈ H2(X,Z). Note that the isomorphism (3.5.3) gives the
uniqueness of such an ω ∈ H2(X,Q). Then ρ ∈ H2(X,Z) is the primitive
element such that cρ = ω for a certain c ∈ Q>0.

(ii) Let ρ ∈ H2(X,Z) be primitive with div(ρ) = d. Then

1

d
ρ ∈ (H2(X,Z))∨

is primitive. We take

R := (h∨ ◦ e)−1

(
1

d
ρ

)
∈ H2(X,Z)f .

Then R ∈ H2(X,Z)f is primitive by construction and by (i) we have

ε(R ∩ v) =
1

d
(v, ρ)

for every v ∈ H2(X, Z). Hence

d · ε(R ∩ v) = (v, ρ) for every v ∈ H2(X,Z).

Example 3.5.2. Let S be a K3 surface and X := S[n] be the Hilbert scheme
of n points on S. By Theorem 2.2.9 and by the universal coefficient theorem,
H2(X,Z) is free. Let 2δ ∈ H2(X,Z) be the class of the exceptional divisor of the
Hilbert–Chow morphism. We have seen above that H2(X,Z) can be identified
with the dual (H2(X,Z))∨, so we can embed it in H2(X,Q). We show that
the primitive element δ∨ in H2(X,Z) associated to δ, seen as an element in
H2(X,Q) ∼= H2(X,Z)⊗Q, is

δ∨ =
1

2(n− 1)
δ, (δ∨, δ∨) = − 1

2(n− 1)
.
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Using notations of Proposition 3.5.1, we have d = 2(n− 1) and

2(n− 1)δ∨ ∩ v = (δ, v)

for every v ∈ H2(X,Z). In particular, taking v = δ, since (δ, δ) = −2(n− 1), we
obtain δ∨∩δ = −1. Now, we know that there exists a unique ω ∈ H2(X,Q) such
that δ∨ ∩ v = (ω, v) for every v ∈ H2(X,Z). In particular δ∨ ∩ δ = (ω, δ) = −1.
Moreover, (x, δ) = 0 for every x ∈ H2(S,Z), hence ω = αδ for some positive α.
Since (αδ, δ) = −1 we obtain α = 1

2(n−1) .

Example 3.5.3. Let S be a generic K3 surface and let X := S[2] be its Hilbert
square. We denote by h both the ample generator of Pic(S) and the line bundle
induced on X. We have h2 = 2t for some t ≥ 1. We show that h∨ = h as
elements in H2(X,Q), similarly to Example 3.5.2.
Let {α1, . . . , α22} be the basis of H2(S,Z) used in Lemma 3.2.11. Then by
Theorem 1.4.10 we have that Pic(S) can be primitively embedded in H2(S,Z)
in a unique way up to isometries, and we can suppose that such an embedding
identifies h with α17 + tα18. Clearly

{α1, . . . , α16, h, α18, . . . , α22}

is another basis of H2(S,Z). Since (h, α18) = 1, we have div(h) = 1. Let

h∨ = a1α1 + . . . , a16α16 + a17h+ . . . ,+a22α22 + a23δ,

with ai ∈ Q. Since div(h) = 1, we have h∨ ∩ v = (v, h) for every v ∈ H2(X,Z).

• If v = α18, we obtain h∨ ∩ α18 = a17 and (α18, h) = 1, hence a17 = 1.

• If v = h, we obtain h∨ ∩ h = a17 · 2t+ a18 and (h, h) = 2t. Since a17 = 1,
we get a18 = 0.

• If v = δ, we obtain h∨ ∩ δ = −2a23 and (δ, h) = 0, hence a23 = 0.

• If v = xi for i = 1, . . . , 16, 19, . . . , 22, the system obtained by imposing
h∨ ∩ αi = (h, αi) = 0 gives αi = 0.

We conclude that h∨ = h.

Remark 3.5.4. Taking the dual of a primitive element of H2(X,Z) is not
linear, i.e., if

∑
i aixi ∈ H2(X,Z) is primitive, with ai ∈ Z, xi ∈ H2(X,Z),

then (
∑
i aixi)

∨ 6=
∑
i aix

∨
i . For example, if X = S

[2]
4 is the Hilbert square

of a smooth quartic surface S4 ⊂ P3, then a simple computation shows that
(h− δ)∨ = h∨ − 2δ∨ ∈ H2(X,Z).

Recall that H2(X,Z)f and H2(X,Q) are Hodge structures of weight −2 by
Example 2.1.12, (iii). Similarly to the case of cup product of Proposition 3.1.2
one can show that the cap product

H2(X,Z)⊗H2(X,Z)f → H0(X,Z)

is a morphism of Hodge structures of weight 0, see [PS08] for details. This
shows that, if R ∈ H2(X,Z)f is primitive of type (−1,−1), the corresponding
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ρ ∈ H2(X,Z) is primitive of type (1, 1), and viceversa. Similarly, the Poincaré
duality

PD : H6(X,Z)
∼−→ H2(X,Z)f

is an isomorphism of Hodge structures of weight −4. Thus Proposition 3.5.1
implies the following.

Corollary 3.5.5. Let S be a K3 surface. Suppose that {α1, . . . , αr} is a basis
of Pic(S[2]) ∼= NS(S[2]). Then a basis of the Z-module H3,3(S[2],Z) is given by

{cl(α∨1 ), . . . , cl(α∨r )},

where α∨i ∈ H2(S[2],Z) is the primitive element associated to αi ∈ H2(S[2],Z) by
Proposition 3.5.1, and cl(α∨i ) is the inverse of the Poincaré dual of α∨i . Moreover,
this is a basis also for the Q-vector space H3,3(S[2],Q).

Proof. First of all, by Theorem 2.2.9 and by the universal coefficient theorem,
H2(S[2],Z) is free. Let {α1, . . . , αr} be a basis of Pic(S[2]). As remarked above,
the correspondence of Proposition 3.5.1 is such that α∨i ∈ H2(S[2],Z) is of type
(−1,−1), and viceversa every primitive element of H2(S[2],Z) of type (−1,−1)
is associated to an element of type (1, 1) in H2(S[2],Z). Then {α∨1 , . . . , α∨r } is a
basis of

H−1,−1(S[2],Z) := H2(S[2],Z) ∩H−1,−1(S[2]),

where H−1,−1(S[2]) is the component of type (−1,−1) of H2(S[2],C). Moreover,
as remarked above, the Poincaré duality

PD : H6(S[2],Z)
∼−→ H2(S[2],Z)

is an isomorphism of Hodge structures of weight −4, so we have

H3,3(S[2],Z)
∼−→ H−1,−1(S[2],Z).

We conclude that {cl(α∨1 ), . . . , cl(α∨r )} is a basis of H3,3(S[2],Z). Clearly this is
a basis also for the Q-vector space H3,3(S[2],Q), since H3,3(S[2],Z) is free.

3.5.2 The case of Hilbert squares of generic K3 surfaces
Corollary 3.5.5 describes the space H3,3(S[2],Q) of rational Hodge classes of
type (3, 3) and the lattice H3,3(S[2],Z) of integral Hodge classes of type (3, 3)
on the Hilbert square of a K3 surface S. If S is a generic K3 surface, we can be
more precise.

Theorem 3.5.6. Let S be a generic K3 surface of degree 2t, and h ∈ Pic(S[2])
be the class induced by the ample generator of Pic(S). Then:

(i) H1,1(S[2],Z) = Zh ⊕ Zδ, where δ ∈ Pic(S[2]) is as usual the line bundle
such that 2δ is the class of the exceptional divisor of the Hilbert–Chow
morphism S[2] → S(2).

(ii) Let h∨, δ∨ ∈ H2(S[2],Z) be the primitive classes in the second homology
group which correspond to h, δ ∈ H2(S[2],Z) by Proposition 3.5.1, and let

h∨6 , δ
∨
6 ∈ H6(S[2],Z)
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be PD−1(h∨) and PD−1(δ∨) respectively. Then

H3,3(S[2],Z) ∼= Zh∨6 ⊕ Zδ∨6 .

Moreover,

h∨6 =
1

6t
h3, δ∨6 =

1

4t
h2δ

and the following equalities hold in H3,3(S[2],Z):

δ3 = −3

t
h2δ, hδ2 = − 1

3t
h3, q∨Xh =

25

6t
h3, q∨Xδ =

25

2t
h2δ.

Proof. (i) is obvious by assumption. We now show (ii). The cup product
with h2 gives an isomorphism between H1,1(S[2],Q) and H3,3(S[2],Q). Then
H3,3(S[2],Q) is 2-dimensional and it is generated by h3 and h2δ. We now
represent δ3, hδ2, q∨Xh and q∨Xδ in terms of this basis. If δ3 = xh3 + yh2δ with
x, y ∈ Q, using Proposition 3.1.5 we have{

hδ3 = 0 = x〈h2, h2〉+ y〈h2, hδ〉 = 12t2x,

δ4 = 3 · (−2)2 = x〈h2, hδ〉+ y〈h2, δ2〉 = −4ty,

which gives x = 0 and y = − 3
t , hence

δ3 = −3

t
h2δ. (3.5.4)

Similarly we obtain

hδ2 = − 1

3t
h3, q∨Xh =

25

6t
h3, q∨Xδ =

25

2t
h2δ. (3.5.5)

Consider now H3,3(S[2],Z). Since by Theorem 2.2.9 the cohomology group
H6(S[2],Z) is torsion free, and H3,3(S[2],Q) has dimension 2 as already seen
above, we have rk(H3,3(S[2],Z)) = 2. Let h∨, δ∨ ∈ H2(S[2],Z) be the primitive
classes which correspond, by Proposition 3.5.1, respectively to the primitive
classes h, δ ∈ H2(S[2],Z). By Example 3.5.2 and Example 3.5.3 we have h∨ = h
and δ∨ = δ

2 . Then h∨6 := PD−1(h∨) and δ∨6 := PD−1(δ∨) give a basis of
H3,3(S[2],Z) by Corollary 3.5.5, so we have

H3,3(S[2],Z) ∼= Zh∨6 ⊕ Zδ∨6 .

Moreover, if · denotes the cup product and ∩ the cap product, we have∫
S[2]

h∨6 · x = ε(h∨ ∩ x),

∫
S[2]

δ∨6 · x = ε(δ∨ ∩ x) (3.5.6)

for every x ∈ H2(S[2],Z), see [Hat05, p.249]. By Proposition 3.5.1 we have

ε(h∨ ∩ h) = (h, h) = 2t, ε(h∨ ∩ δ) = (h, δ) = 0. (3.5.7)

If we write h∨6 = αh3 + βh2δ for some α, β ∈ Q, by Proposition 3.1.5 we obtain∫
S[2]

h∨6 · h = α〈h2, h2〉+ β〈h2, hδ〉 = 12αt2,∫
S[2]

h∨6 · δ = α〈h2, hδ〉+ β〈h2, δ2〉 = −4βt.

(3.5.8)

134



CHAPTER 3. HODGE CLASSES OF HILBERT SQUARES OF K3 SURFACES

Then (3.5.6), (3.5.7) and (3.5.8) give α = 1
6t and β = 0, hence

h∨6 =
1

6t
h3.

Similarly we obtain

δ∨6 =
1

4t
h2δ. (3.5.9)

and we are done

Note that Proposition 3.5.1 and Theorem 3.5.6 give two equivalent methods
to compute the intersection product between an element x ∈ H1,1(S[2],Z) and
an element y ∈ H−1,−1(S[2],Z), where S is a generic K3 surface. If we use
Proposition 3.5.1, we see x and y as elements in H2(S[2],Q), and we compute
the intersection product as (x, y), where ( · , · ) denotes the BBF bilinear form
extended Q-bilinearly to H2(S[2],Q), otherwise we take y∨6 ∈ H3,3(S[2],Z), the
element which correspond to y by Theorem 3.5.6, (ii), and we compute the
product 〈x, y∨6 〉 using the bilinear form 〈 · , · 〉 of Proposition 3.1.5. In the second
method, if y∨6 = α 1

6th
3 + β 1

4th
2δ for some α, β ∈ Z, then

〈x, y∨6 〉 =
α

6t
〈xh, h2〉+

β

4t
〈xh, hδ〉.

Theorem 3.5.6 will be used in the proof of Proposition 5.1.3 in the analysis of
the rational map induced by the complete linear system associated to an ample
divisor D of a smooth birational model X of the Hilbert square S[2] of a generic
K3 surface S, with qX(D) = 2.
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Chapter 4

Complete linear systems on
IHS manifolds

In this chapter we begin to study the main problem of the second part of this
thesis. Let X be the Hilbert square of a generic K3 surface S2t of degree 2t, and
suppose that there exists an ample divisorD ∈ Div(X) with qX(D) = 2. We want
to describe geometrically the map induced by |D|, the complete linear system
associated to D. This is a generalization of a problem studied by Saint–Donat
in [SD74]: if S is a K3 surface which admits an ample divisor D with D2 = 2
with respect to the intersection product, then the complete linear system |D| is
basepoint free and the morphism that it induces is a double cover of P2 ramified
on a sextic curve.

In Section 4.1 we recall an application of the Bayer–Macrì theorem which
describes the nef cone and the movable cone of the Hilbert square of a generic
K3 surface S2t of degree 2t. In Section 4.2 we show that S[2]

2t and all its smooth
birational models are Mori Dream Spaces. In Section 4.3 we recall the descriptions
of the group Aut(X) of regular automorphisms on X and of the group Bir(X)

of birational automorphisms on X, where X = S
[2]
2t , obtained respectively in

[BCNWS16] and [DM19], and we prepare the setting of the main problem. In
Section 4.4 we describe what happens in the cases t = 2 and t = 5, already
analysed respectively by Beauville and O’Grady. The case t = 5 is interesting,
since there is a big and nef divisor D with qX(D) = 2 which is not ample. In
Section 4.5, starting from a result in [CGM19], we compute the fundamental
cohomological class in H2,2(X,Z) of the fixed locus Fix(ι), where X is the Hilbert
square of a generic K3 surface which admits an ample divisor D with qX(D) = 2
and ι is the anti-symplectic involution which fixes the class of D and generates
Aut(X). We also show that the map induced by the complete linear system |D|
factors through the quotient π : X → X/〈ι〉. In Section 4.6 we first recall a result
by Rieß, which characterises the divisorial base component of the complete linear
system |D| given by a big and nef divisor on an IHS manifold of K3[n]-type. We
conclude by proving Theorem 4.6.5, which says that in our case, if t 6= 2, then
the surface D1 ∩D2 is reduced and irreducible for every D1, D2 ∈ |D| distinct
divisors. This will be crucial for Chapter 5. We conclude with Section 4.6.3,
where we show that, except for this last theorem, the results of this section hold
also when X is a smooth birational model of the Hilbert square of a generic K3
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surface S2t such that X admits an ample divisor D with qX(D) = 2.

4.1 Bayer–Macrì theorem for IHS fourfolds
As in Chapter 3, a generic K3 surface of degree 2t will be a projective K3
surface S2t with Pic(S2t) = ZH and H2 = 2t, t ≥ 1. The following fundamental
theorem by Bayer and Macrì describes the movable cone, the nef cone and the
pseudoeffective cone of the Hilbert square S[2]

2t of a generic K3 surface S2t, see
[BM14, Proposition 13.1].

Theorem 4.1.1 (Bayer–Macrì). Let S2t be a generic K3 surface, H ∈ Pic(S2t)

be the ample generator of Pic(S2t), where H2 = 2t, t ≥ 1, and let h ∈ Pic(S[2]
2t )

be the class induced by H. Then the cones of classes of divisors on X := S
[2]
2t

can be described as follows:

1. The extremal rays of the closure of the movable cone Mov(X) are spanned
by h and h− µtδ, where:

• if t is a perfect square, µt =
√
t;

• if t is not a perfect square and (c, d) is the minimal solution of the
Pell equation Pt(1), then µt = t · dc .

2. The extremal rays of the nef cone Nef(X) are spanned by h and h− νtδ,
where:

• if the equation P4t(5) is not solvable, νt = µt;

• if the equation P4t(5) is solvable and (a5, b5) is its minimal solution,
νt = 2t · b5a5 .

3. The extremal rays of the pseudoeffective cone Eff(X) are spanned by δ and
h− ωtδ, where:

• if t is a perfect square, ωt =
√
t;

• if t is not a perfect square, ωt = c
d , where (c, d) is the minimal solution

of Pt(1).

Note that the theorem implies that the closure of the movable cone Mov(X)
is the dual of the pseudoeffective cone Eff(X) with respect to the BBF form.
This holds for every IHS manifold, as shown in the following proposition.

Proposition 4.1.2 (Proposition 4.4 in [Bou04]). Let X be an IHS manifold.
Then (Eff(X))∨ = Mov(X), where the dual is taken with respect to the BBF
form.

Proof. Suppose that x ∈ (Eff(X))∨, so (x, y) ≥ 0 for every y ∈ Eff(X). In
particular (x, y) ≥ 0 for every y which is a class of a uniruled divisor, hence
by Proposition 2.2.18 we have x ∈ BKX ∩ Pic(X)R, where BKX is the closure
of the birational Kähler cone of X. Moreover, by Corollary 2.2.21 we have
Mov(X) = BKX ∩ Pic(X)R, hence (Eff(X))∨ ⊆ Mov(X).
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Let now x ∈ Mov(X). We show that (x, y) ≥ 0 for every y ∈ Eff(X).
Applying Proposition 2.3.1 we can write

y = y1 + y2 ∈ H1,1(X,R),

where y1 ∈ Mov(X) and y2 is the class of a uniruled divisor. Then (x, y2) ≥ 0
by Proposition 2.2.18 and Corollary 2.2.21. If we show that (x, y1) ≥ 0 we are
done. Suppose first that at least one between x and y1 is big, so in the interior
part of Eff(X). Without loss of generality we can assume that x is big. By
Proposition 1.1.25 we have H0(X,mx) 6= 0 for m� 0, so by Corollary 2.2.19 we
have (mx, y1) ≥ 0, which implies (x, y1) ≥ 0. Suppose now that both x and y1

are not big. Since they are both in Mov(X), they must be nef for some smooth
birational model of X. Hence by Theorem 1.1.27 and Theorem 2.2.4 we have
qX(x) = qX(y1) = 0. Thus,

qX(x+ y1) = qX(x) + qX(y1) + 2(x, y1)

= 2(x, y1),

and qX(x+ y1) ≥ 0 since x+ y1 ∈ Mov(X), which is contained in the closure of
the positive cone CX . Then (x, y1) ≥ 0. We conclude that (x, y) ≥ 0 for every
y ∈ Eff(X), so x ∈ (Eff(X))∨.

4.2 Hilbert squares of K3 surfaces andMori dream
spaces

In this section we show that if X is the Hilbert square of a generic K3 surface,
then X is a Mori dream space. We recall the definition of small Q-factorial
modification, see [HK00, Definition 1.8], and the definition of Mori dream space,
see [HK00, Definition 1.10]. Recall that a normal variety X is Q-factorial if for
every Weil divisor D ∈WDiv(X) there exists n ∈ Z>0 such that nD ∈ Div(X)
is a Cartier divisor.

Definition 4.2.1. Let X be a normal and Q-factorial projective variety. A
small Q-factorial modification of X is a birational map g : X 99K X̃, where X̃ is
normal, projective and Q-factorial, and g is an isomorphism in codimension 1.

Definition 4.2.2. Let X be a normal and Q-factorial projective variety. We
say that X is a Mori dream space if the following properties hold:

(i) The Picard group Pic(X) is finitely generated, equivalently, h1(OX) = 0;

(ii) The nef cone Nef(X) ⊆ H1,1(X,R) is generated by the classes of finitely
many semiample divisors, see Definition 1.1.21;

(iii) There is a finite collection of small Q-factorial modifications gi : X 99K Xi,
for i = 1, . . . , r, such that every Xi satisfies condition (ii), and

Mov(X) =

r⋃
i=1

g∗i (Nef(Xi)).

We can state the following result.
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Theorem 4.2.3. Let X = S
[2]
2t , where S2t is a generic K3 surface. Then X is

a Mori dream space. The same holds for any IHS manifold X ′ birational to X.
Moreover, Mov(X) is closed.

Proof. Condition (i) of Definition 4.2.2 is satisfied by the Hilbert square of a
K3 surface by definition of IHS manifold. We now show that condition (ii) is
verified. By Theorem 2.2.22, the closure of Mov(X) is divided into chambers
which represent the nef cones of smooth birational models of X. Thus, if we
show that every element in Mov(X) is semiample for some birational model of X,
then Nef(X ′), which has two extremal rays, is in particular generated by the
classes of finitely many semiample divisors for every smooth birational model X ′
of X, which is (ii). If x ∈ Mov(X) is in the interior part of Mov(X), then the
class x is ample for some birational model X ′ of X, so nx is very ample for
n� 0 if seen as a class of X ′, hence x ∈ Nef(X ′) is semiample. Consider now a
class in the boundary of a chamber of Mov(X). Suppose that this class is on
the extremal ray of Mov(X) generated by h ∈ Pic(X), the line bundle induced
by the ample generator of Pic(S2t). Since by Lemma 2.3.2 we have that h is
basepoint free, hence semiample, every class on this extremal ray is semiample
for the IHS manifold X.

If t is a perfect square, by the Bayer–Macrì theorem the other extremal ray of
Mov(X) is generated by a primitive element n ∈ Pic(X) with qX(n) = 0. This
element n is basepoint free, hence semiample, by Theorem 2.3.3. In particular
Mov(X) = Mov(X) is closed. In order to show that elements in the interior of
Mov(X) are semiample, one proceeds exactly as in the next case, so we now
suppose that t is not a perfect square.

If t is not a perfect square, by Bayer–Macrì theorem Mov(X) is strictly
contained in the interior of the positive cone, i.e., for every l ∈ Mov(X) we have
qX(l) > 0. In particular this holds for the primitive classes which generate the
extremal rays of the chambers of Mov(X). Each chamber represents the nef
cone of a birational model of X, hence these primitive classes are nef for some
birational model. Since both the top-self intersection and the BBF quadratic
form of a nef class D are non-negative, see for instance Proposition 2.2.13,
Corollary 2.2.14 and Corollary 2.2.15, by Theorem 2.2.4 we have that D4 > 0
if and only if qX(D) > 0. Hence by Theorem 1.1.27 we have that D is big.
Thus the extremal rays of the chambers of Mov(X) are generated by big and
nef primitive classes for a birational model of X. We conclude that these are
semiample for a birational model of X by Theorem 1.1.28. This shows that
condition (ii) is verified for every birational model of X. Note that also in this
case Mov(X) = Mov(X) is closed. Now Theorem 2.2.22 shows that condition
(iii) is verified. This concludes the proof.

4.3 Regular and birational automorphisms on S [2]
2t

Let X = S
[2]
2t be the Hilbert square of a generic K3 surface S2t. We recall the

description of the group of biregular automorphisms Aut(X) and of the group of
birational automorphisms Bir(X) given respectively in [BCNWS16] and [DM19].

Theorem 4.3.1 (Proposition 4.3, Proposition 5.1, Lemma 5.3, Theorem 5.5
in [BCNWS16]). Let S2t be a generic K3 surface of degree 2t, with t ≥ 1. Let
h ∈ Pic(S[2]

2t ) be the line bundle induced by the ample generator of Pic(S2t).
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1. If t = 1, then S2 is the double cover of P2 branched along a smooth sextic
curve and if ι is the covering involution then

Aut(S[2]
2 ) = {id

S
[2]
2
, ι[2]} ∼= Z/2Z.

2. If t ≥ 2, then X := S
[2]
2t admits a non-trivial automorphism if and only if

one of the following equivalent conditions is satisfied:

• t is not a square, the Pell-type equation P4t(5) has no solution and
the negative Pell equation Pt(−1) has a solution.

• There exists an ample class D ∈ NS(S
[2]
2t ) such that qX(D) = 2.

Moreover, if this is the case, the class D is unique, the automorphism ι
is unique and it is a non-natural anti-symplectic involution. Its action on
NS(S

[2]
2t ) is the reflection in the span of the class D of square 2 represented

in the basis {h,−δ} by the matrix(
c −d
td −c

)
, (4.3.1)

i.e.,
ι∗(xh− yδ) = (cx− dy)h− (tdx− cy)δ,

where (c, d) is the minimal solution of the Pell equation Pt(1),

Theorem 4.3.2 (Proposition B.3 in [DM19]). Let S2t be a generic K3 surface
with Pic(S2t) = ZH and H2 = 2t, t ≥ 1. Let h ∈ Pic(S[2]

2t ) be the line bundle
induced by H. Then the group Aut(S[2]

2t ) is trivial and the group Bir(S[2]
2t ) is

not trivial if and only if t > 1, and either t = 5 or 5 - t, and both equations
Pt(−1) and P4t(5) are solvable, in which case Bir(S[2]

2t ) ∼= Z/2Z is generated by
a non-natural non-regular anti-symplectic involution ι. Moreover, the action of ι
on NS(S

[2]
2t ) is a non-trivial isometry, in particular it is the reflection in the span

of the class D with qX(D) = 2 represented in the basis {h,−δ} by the matrix in
(4.3.1), where (c, d) is the minimal solution of the Pell equation Pt(1).

Remark 4.3.3. Let S2t be a generic K3 surface with Pic(S2t) ∼= ZH, H2 = 2t,
and let X := S

[2]
2t . Suppose that there exists a non natural ι ∈ Bir(X). Then

the action of ι on NS(X) preserves the closure of the movable cone Mov(X),
exchanging the two extremal rays. Moreover, the class D of Theorem 4.3.2 is
the unique class in the moving cone of X with qX(D) = 2. For further details,
see [Mar11, Lemma 6.22] and [BC20]

Let X = S
[2]
2t be the Hilbert square of a generic K3 surface of degree 2t with

t > 1, and suppose that the Pell-type equation Pt(−1) is solvable, so that there
exists a unique divisor D ∈ Div(X) with qX(D) = 2 in the moving cone of X.
We now briefly discuss three possible cases that one can study, depending on
the solvability of the Pell-type equation P4t(5). See [DM19, Appendix B], for
more details and [BC20] for a discussion on Aut(S[n]

2t ) and Bir(S[n]
2t ), where S[n]

2t

is a generic K3 surface and n ≥ 2. As above, we denote by h ∈ Pic(X) the line
bundle induced by the ample generator of Pic(S2t). For a divisor D ∈ Div(X),
we will denote by D also its class in Pic(X).
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• Case 1. Suppose that Pt(−1) is solvable and P4t(5) is not solvable.
Consider X := S

[2]
2t . Then by Theorem 4.3.1 and Theorem 4.3.2 we have

Aut(X) ≡ Bir(X) ∼= 〈ι〉, where ι is an anti-symplectic involution that fixes
the class of the ample divisor D with qX(D) = 2, i.e., ι∗D ∼= D. Explicitly,
D = bh − aδ, where (a, b) is the minimal solution of the negative Pell
equation Pt(−1). As an example we represent the nef cone Nef(S[2]

4 ) for
t = 2 in Figure 4.3.1. By Theorem 4.1.1 the nef cone and the movable
cone of X coincide. The only primitive (−2)-classes are δ and ι∗δ. The
extremal rays of the nef cone, which we call R1 and R2, are the orthogonal
respectively to δ and ι∗δ, i.e., every integral class x ∈ NS(X) on R1

is such that (x, δ) = 0, similarly every y ∈ NS(X) on R2 is such that
(y, ι∗δ) = 0. By Remark 4.3.3 the action of ι on NS(S

[2]
2t ) preserves the

nef cone, exchanging the extremal rays R1 and R2, and fixes the ray RD
which passes through the ample class D.

Nef(X)

h

−δ D

Figure 4.3.1: The nef cone of S[2]
4

• Case 2, t=5. Both Pt(−1) and P4t(5) are solvable, and this is the only
case where the divisor class D with qX(D) = 2 is nef and big but not
ample, we will explain why later. Let X := S

[2]
10 : by Theorem 4.3.1 and

Theorem 4.3.2 we have Aut(X) = {id} and Bir(X) ∼= 〈ι〉, where ι is
an anti-symplectic involution whose indeterminacy locus is a subvariety
P ⊂ X isomorphic to P2. Moreover, the class of D = h− 2δ is fixed by ι,
i.e., ι∗D ∼= D. We will see details in Section 4.4.2. By Theorem 4.1.1, the
nef cone is strictly contained in the movable cone. We represent the two
cones in Figure 4.3.2. The extremal rays of Mov(X), call them R1 and R2,
are the orthogonal to the (−2)-classes δ and ι∗δ. The other extremal ray
of Nef(X), which we call RD, passes through D and it is fixed by ι. Since
P4t(5) is solvable, there is a (−10)-class ρ = 2h− 5δ which is, in this case,
fixed by ι, i.e., ι∗ρ = ρ. The extremal ray RD is the orthogonal to ρ. We
conclude that Mov(X) has two chambers, Nef(X) and Nef(X ′), where X ′
is an IHS manifold birational to X with Aut(X ′) = {id} and Bir(X ′) ∼= 〈ι〉.
By Theorem 4.3.2 and Remark 4.3.3, the action of ι on NS(X) preserves
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the closure of the movable cone, exchanges the two chambers of Mov(X),
and ι∗R1 = R2. Let g : X 99K X ′ be a birational map and consider the
pullback map g∗ : H2(X ′,Z)→ H2(X,Z). Then g∗ is a parallel transport
operator by Theorem 2.2.39 and it is an isomorphism of Hodge structures
by Theorem 2.2.39. Similarly ι∗ : H2(X,Z) → H2(X,Z) is a parallel
transport operator which is an isomorphism of Hodge structures, so the
same holds for (g ◦ ι)∗. Moreover, (g ◦ ι)∗ maps ample classes of X ′ to
ample classes of X. By Theorem 2.2.38 we conclude that X and X ′ are
isomorphic.

Nef(X)

Nef(X ′)

R1h

−δ

D

RD
R2

R1

Figure 4.3.2: Case 2, t=5

• Case 3. Suppose that both Pt(−1) and P4t(5) are solvable, and t 6= 5.
Let X := S

[2]
2t and D = bh − aδ, where (a, b) is the minimal solution

of Pt(−1), so qX(D) = 2. In Figure 4.3.3 we represent Mov(X) and
Nef(X). The class D is outside Nef(X), otherwise by Theorem 4.3.1 the
Pell-type equation Pt(−1) would be solvable. Moreover it is in the interior
of Mov(X), otherwise by Remark 4.3.3 the action of ι on NS(X) would
exchange it with h, but we know that ι∗D ∼= D by Theorem 4.3.2. Hence D
is ample for another smooth birational model of X, call it X ′. As for
the case t = 5, we have Aut(X) = {id}, Bir(X) = 〈ι〉 where ι is a non-
regular anti-symplectic involution. The class D is fixed by ι, i.e., ι∗D ∼= D,
hence if RD is the ray passing through D we have ι∗RD = RD. Then
by Theorem 4.3.2 and Remark 4.3.3 the action of ι on NS(X) preserves
the closure of the movable cone Mov(X), exchanging the two extremal
rays, call them R1 and R2. Moreover, R1 and R2 are the orthogonal to
the classes δ and ι∗δ. Since P4t(5) is solvable, there is a (−10)-class ρ,
and ι∗ρ is another (−10)-class. The other extremal ray of Nef(X), call
it R3, is the orthogonal to ρ, and if we consider the ray R4 := ι∗R3, we
have that R4 is the orthogonal to the class ι∗ρ. We conclude that Mov(X)
is divided into three chambers: Nef(X), cone(R3, R4) and cone(R4, R2),
where cone(Ri, Rj) is the closed (semi)cone of R2 ∼= NS(X)R generated by
the rays Ri and Rj . The second chamber is the nef cone Nef(X ′) of the
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birational model of X which contains the class D in its ample cone, while
the third chamber is the nef cone Nef(X ′′) of an IHS manifold X ′′ birational
to X. If g : X 99K X ′ is a birational morphism and ι′ := g ◦ ι ◦ g−1, we
have (ι′)∗(Nef(X ′)) = Nef(X ′), which implies by Theorem 2.2.38 that ι′
extends to a biregular involution on the variety X ′, hence Aut(X ′) = 〈ι′〉.
Moreover, ι∗(Nef(X)) = Nef(X ′′): proceeding as seen for the case t = 5,
we conclude that X and X ′′ are isomorphic. The IHS manifold X ′ is not
isomorphic to the Hilbert square of a K3 surface by [BC20, Corollary 6.5].

Nef(X)

Nef(X ′)

Nef(X ′′)

h

−δ

R1

R2 R4 RD

R3

D

Figure 4.3.3: Case 3

Given a generic K3 surface S2t of degree 2t, the value t ≥ 1 is said n-irregular
if the group Bir(S[n]

2t ) contains an involution which is not biregular on any IHS
birational model of S[n]

2t , see [BC20, §1]. By [BC20, Table 1], the only 2-irregular
positive integer t is t = 5. This shows that t = 5 is the only value such that S[2]

2t

admits a non-ample big and nef divisor D with qX(D) = 2, otherwise, proceeding
as in Case 3, the class D would be in the interior of the nef cone of a smooth
birational model X ′ of X, and Aut(X ′) = 〈ι′〉, with ι′ not trivial.

Let now X be a variety of the type discussed in Case 1: so X is the Hilbert
square of a generic K3 surface S2t of degree 2t, with t > 1, such that Pt(−1)
is solvable and P4t(5) is not solvable. Let D ∈ Div(X) be the ample divisor
with qX(D) = 2. Since D ∈ Div(X) is ample, by Theorem 1.1.18 we have
Hi(X,OX(D)) = 0 for i > 0, recalling that the canonical bundle of an IHS
manifold is trivial. Moreover, since qX(D) = 2, by Theorem 3.1.9 we obtain

dim(H0(X,OX(D))) = 6.

This shows that the rational map associated to the complete linear system |D|
has P5 as codomain, i.e.,

ϕ|D| : X 99K P5.

We state the main problem of the second part of this thesis.
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Problem 4.3.4. Let X = S
[2]
2t be the Hilbert square of a generic K3 surface of

degree 2t, and suppose that X admits an ample divisor D ∈ Div(X) such that
qX(D) = 2. Determine the base locus of the complete linear system |D| and
describe the rational map

ϕ|D| : X 99K P5.

The case t = 5 will be studied separately: this is the only one with t 6= 1
where there exists a big and nef divisor D ∈ Div(X) with qX(D) = 2 which is
not ample. The same problem can be studied for varieties of Case 3 denoted
by X ′, i.e., smooth birational models of generic K3 surfaces of degree 2t, where
t > 1 is such that Pt(−1) and P4t(5) are solvable, admitting an ample divisor
D ∈ Div(X ′) with qX′(D) = 2. All the results that we will see, except for
Theorem 4.6.5 which is still an open problem, hold also for these varieties.

Remark 4.3.5. As observed in [BCNWS16, §1], the first values of t which gives
varieties of Case 1 are t = 2, 10, 13, etc. One verifies that the first value of t
which gives a variety of Case 3 is t = 29. If the Pell-type equation Pt(−1) is
solvable and (a, b) is the minimal solution, then for t ≥ 10 we have a ≥ 3. This
will be useful in the proof of Theorem 4.6.5, see also Appendix B.

4.4 Base locus of |D| for t = 2, 5

In this section we study Problem 4.3.4 for t = 2, i.e., when X = S
[2]
4 is the

Hilbert square of a generic smooth quartic surface of P3, following [Bea83a] and
[BCNWS16]. We also analyse the special case t = 5, following [O’G05], [O’G08a],
where the divisor D is big and nef, but not ample.

4.4.1 Case t = 2

Let t = 2: then X = S
[2]
4 is the Hilbert square of a smooth quartic surface

S4 ⊂ P3 with Pic(S4) = ZH, H2 = 4. Let h ∈ Pic(X) be the line bundle induced
by H. The movable cone Mov(X), which is closed by Theorem 4.2.3, coincides
with the nef cone Nef(X) by Theorem 4.1.1, and its extremal rays are generated
by h and 3h− 4δ, see Figure 4.3.1.

Consider the class D := h − δ. Figure 4.3.1 shows that D is in the ample
cone. Moreover, qX(D) = 2, so by Theorem 1.1.18 and Theorem 3.1.9 we get a
rational map

ϕ|D| : S
[2]
4 99K P

5 .

Beauville in [Bea83a] gave a finite morphism

f : S
[2]
4 → G(1,P3),

where G(1,P3) is the Grassmannian of lines in P3, which can be embedded as
a smooth quadric hypersurface in P5 through the Plücker embedding. Using
the notation of Section 2.2.2, a point x ∈ S[2]

4 is either of the form p+ q, with
p, q ∈ S4 distinct points, if x is a reduced subscheme, or of the form (p, t),
where t ∈ P1 represents a tangent direction through the point p ∈ S4 if x is a
non-reduced subscheme. In both cases, x ∈ S[2]

4 gives a unique line lx ⊂ P3: the
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one passing through p and q if x = p+ q, otherwise the one tangent to S in p
with direction t ∈ P1 if x = (p, t). We then set

f(x) := lx ∈ G(1,P3).

Since S4 ⊂ P3 is a generic K3 surface, S4 does not contain any line. Then f is
a finite morphism of degree 6, since a generic line of P3 intersects S4 in four
distinct points. Moreover, S[2]

4 admits an involution called Beauville involution:
given x ∈ S[2]

4 , the line lx ⊂ P3 intersects S4 in

lx ∩ S4 = x ∪ x′,

for some x′ ∈ S[2]
4 . For instance, in the very general case, if x = p + q, then

lx ∩ S4 = {p, q, r, s}, with p, q, r, s ∈ S4 pairwise distinct, and then x′ = r + s.
The Beauville involution is defined as follows:

ι : S
[2]
4 → S

[2]
4 , x 7→ x′.

Note that ι is everywhere well-defined since S4 ⊂ P3 does not contain any line.
Moreover, by Theorem 4.3.1 we have Aut(S[2]

4 ) = 〈ι〉, and ι is an anti-symplectic
involution. By the geometrical constructions of f and ι we see that f ◦ ι = f , so
we obtain the following commutative diagram:

S
[2]
4 G(1,P3)

S
[2]
4 .

f

ι
f

Let F := Fix(ι) be the locus of points in S[2]
4 which are fixed by ι. Then F is

given by the following points x ∈ S[2]
4 :

• x = p + q, with p, q ∈ S4 distinct points, such that the line lx ⊂ P3 is
bitangent to the surface S4, i.e., S4 ∩ lx = {p, q} and lx intersects S4 with
multiplicity 2 in both the points.

• x = (p, t), with t ∈ P1 tangent direction to p ∈ S4, and S4 ∩ lx = {p}, so
the line lx intersects S4 in p with multiplicity 4.

As we will see in Lemma 4.5.2 the fixed locus F ⊂ S[2]
4 is a Lagrangian surface,

we will give details in Section 4.5. We denote by φ : S
[2]
4 → P5 the composition

φ : S
[2]
4

f−→ G(1,P3)
Pl
↪−→ P5,

where Pl : G(1,P3) ↪→ P5 is the Plücker embedding. We now show that the
rational map ϕ|D| coincides with φ.

Theorem 4.4.1. Keep notation as above. The complete linear system |D| is
basepoint free, and the morphism ϕ|D| induced by the complete linear system |D|
coincides with

φ : X → G(1,P3) ↪→ P5.

described above.
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Proof. Let OP5(1) ∈ Pic(P5) be the hyperplane bundle of P5, and denote by
OG(1,P3)(1) := OP5(1)|G(1,P3) its restriction to the Grassmannian G(1,P3) em-
bedded in P5 through the Plücker embedding. By Proposition 1.1.15 the line
bundle OG(1,P3)(1) is ample, and since f : S

[2]
4 → G(1,P3) is a finite morphism,

the pullback f∗OG(1,P3)(1) is ample on S[2]
4 . Consider∫

S
[2]
4

c1
(
f∗OG(1,P3)(1)

)4
.

By Proposition 1.2.2 this is equal to

deg(f) ·
∫
G(1,P3)

c1
(
OG(1,P3)(1)

)4
.

We have seen that deg(f) = 6, and since G(1,P3) is embedded in P5 as a quadric
hypersurface, we have ∫

G(1,P3)

c1
(
OG(1,P3)(1)

)4
= 2.

Thus we obtain ∫
S

[2]
4

c1
(
f∗OG(1,P3)(1)

)4
= 12, (4.4.1)

which is equal to
3 · qX(f∗OG(1,P3)(1))2 (4.4.2)

by Theorem 2.2.4 and Proposition 2.2.8. Since f∗OG(1,P3)(1) is ample as seen
above, by Corollary 2.2.14 we have qX(f∗OG(1,P3)(1)) > 0, so by (4.4.1) and
(4.4.2) we obtain

qX(f∗OG(1,P3)(1)) = 2.

By Theorem 4.3.1 there is a unique ample divisor D ∈ Div(S
[2]
4 ) with qX(D) = 2.

The class of D is h− δ. This implies that OX(D) = f∗OG(1,P3)(1) = φ∗OP5(1).
Then φ is induced by a linear system of |D|. As remarked in [BCNWS16, §6.1],
if φ was induced by a proper linear system of |D|, the span of the image of φ
would be contained in a hyperplane of P5, but the image of the morphism φ is a
quadric hypersurface of P5. Thus φ is the map induced by the complete linear
system |D|, i.e., ϕ|D| = φ. In particular, since φ is a morphism, the base locus
of |D| is empty.

We now describe the cohomology ring of G(1,P3), see [GH78, §1.5, §6.2],
[EH16] and [KNT17, §6] for more details. Fix a complete flag

v0 ∈ L0 ⊂ H0 ⊂ P3,

i.e., let v0 be a point in P3, L0 be a line in P3 and H0 be a plane in P3 such
that v0 ∈ L0 ⊂ H0. We define the following Schubert varieties in G(1,P3), see
[GH78, §1.5] to see explicitly that these are projective subvarieties of G(1,P3):

Σ0 := G(1,P3),

Σ1 := {L ∈ G(1,P3) |L ∩ L0 6= ∅},
Σ1,1 := {L ∈ G(1,P3) |L ⊂ H0}, Σ2 := {L ∈ G(1,P3) | v0 ∈ L},
Σ2,1 := {L ∈ G(1,P3) | v0 ∈ L ⊂ H0},
Σ2,2 := {L0}.

(4.4.3)
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We denote the fundamental cohomological classes of Σi,j in the cohomology ring
H∗(G(1,P3)) by σi,j . Then these classes generates the cohomology ring:

H0(G(1,P3),Z) ∼= Zσ0,

H2(G(1,P3),Z) ∼= Zσ1,

H4(G(1,P3),Z) ∼= Zσ1,1 ⊕ Zσ2,

H6(G(1,P3),Z) ∼= Zσ2,1,

H8(G(1,P3),Z) ∼= Zσ2,2.

The cup products between the Schubert cycles are given by:

σ2
1 = σ1,1 + σ2,

σ2
1,1 = σ2

2 = σ1 · σ2,1 = σ2,2,

σ1,1 · σ2 = 0,

σ1 · σ2 = σ1 · σ1,1 = σ2,1.

(4.4.4)

As shown in [GH78], the cohomology ring of G(1,P3) is isomorphic to its Chow
ring, see [Ful13] for details on the theory of Chow groups. We have seen in
Section 1.1.3 that for smooth varieties the class group and the Picard group are
isomorphic. Moreover, the class group coincide with the Chow group of cycles of
codimension 1, see [Ful13, §1]. Since the Chow ring and the cohomology ring of
G(1,P3) coincide, we obtain

Pic(G(1,P3)) ∼= H2(G(1,P3)) ∼= Zσ1,

so we can identify σ1 with c1(OG(1,P3)(1)). Thus by Theorem 4.4.1 we have
c1(OX(D)) = f∗σ1, and c1(OX(D))2 = f∗σ2

1 = f∗(σ2 + σ1,1). From (4.4.3) the
hyperplane section of G(1,P3) can be associated to the set of lines in P3 incident
to the fixed line L0 ⊂ P3. Hence the intersection of two hyperplane sections,
which we denote by H and H ′, is represented by the set of lines in P3 incident
to two fixed lines L0, L

′
0 ⊂ P3. If these two lines are disjoint, then H ∩H ′ is

irreducible. If they intersect in a point v0, then H ∩ H ′ has two irreducible
components: the set of lines contained in the plane generated by L0 and L′0, and
the set of lines passing through v0. The classes of these two components are σ1,1

and σ2. This explains the equality σ2
1 = σ1,1 + σ2.

Let Bit(S4) ⊂ G(1,P3) be the surface of bitangents line to S4 ⊂ P3.

Remark 4.4.2. Consider the restriction of the map f : S
[2]
4 → G(1,P3) to the

fixed locus F = Fix(ι) of the Beauville involution. By the geometrical description
of F seen above, we obtain the following isomorphism:

f |F : F
∼−→ Bit(S4), x 7→ lx.

Moreover, if X := S
[2]
4 , then [F ] = 5D2− 2

5q
∨
X ∈ H2,2(S

[2]
4 ,Q): we will show that

an equality of this form holds in a more general context, cf. Theorem 4.5.11, so
we do not prove it now.

Remark 4.4.3. Let S[2]
4 → S

(2)
4 be the Hilbert–Chow morphism and consider

the exceptional divisor E ∈ Div(S
[2]
4 ). Recall that

Pic(S[2]
4 ) = Zh⊕ Zδ,
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where h ∈ Pic(S[2]
4 ) is the line bundle induced by the ample generator of Pic(S4),

and δ ∈ Pic(S[2]
4 ) is such that 2δ = [E]. Consider the supports Supp(E) and

Supp(ι∗E). The former is the set of points in S[2]
4 of the form (p, t), where t ∈ P1

is a tangent direction through p ∈ S4, the latter is the set of points x ∈ S[2]
4 such

that ι(x) ∈ Supp(E). Hence

B := Supp(E) ∩ Supp (ι∗E) = {x ∈ S[2]
4 |x = (p, t) and ι((p, t)) = (q, t)},

i.e., B is the set of points of the form (p, t) such that the line of P3 passing
through p with tangent direction t is tangent to S4 also in another point q ∈ S4.
Note that we can have p = q. In other words, if x ∈ B, then S4∩ lx = x∪x′, and
either lx ⊂ P3 is bitangent to S4 in two distinct points p, q ∈ S4 with x = (p, t)
and x′ = (q, t), or lx ⊂ P3 intersects S4 in a unique point p with multiplicity 4,
and x = x′ = (p, t). We put on B the induced closed subscheme structure. Thus
the restriction of the map f to B has degree two:

f |B : B
2:1−−→ Bit(S4), x 7→ lx.

We write Bit(S4) also for the fundamental cohomological class of the surface
Bit(S4) in H4(G(1,P3),Z). We now compute the classes in H4(S

[2]
4 ,Z) of the

pullbacks f∗Bit(S4), f∗σ1,1 and f∗σ2.

Proposition 4.4.4. Let S4 ⊂ P3 be a generic smooth quartic surface, i.e.,
Pic(S4) ∼= ZH, H2 = 4. Let X := S

[2]
4 be the Hilbert square of S4, denote by

h ∈ Pic(X) the line bundle induced by H and by δ ∈ Pic(X) the line bundle such
that 2δ is the class of the exceptional divisor of the Hilbert–Chow morphism. Let
f : X → G(1,P3) be the map defined above. Then the following equalities hold
in H2,2(X,Z):

f∗Bit(S4) = 20h2 + 8δ2 − 32hδ − 8
5q
∨
X ,

f∗σ1,1 = 1
2h

2 − 1
4δ

2 − 1
2hδ −

1
10q
∨
X ,

f∗σ2 = 1
2h

2 + 5
4δ

2 − 3
2hδ + 1

10q
∨
X .

Moreover, f∗Bit(S), f∗σ1,1 and f∗σ2 are pseudoeffective classes of H2,2(X,Z).

Proof. We have

Bit(S4) = 12σ2 + 28σ1,1 ∈ H2,2(G(1,P3),Z). (4.4.5)

see for instance [Wel81] and [ABT01, Proposition 3.3]. Let

f∗Bit(S4) = xh2 + yδ2 + zhδ + w · 2

5
q∨X ∈ H2,2(X,Z)

for some x, y, z, w ∈ Q. We want to determine the coefficients x, y, z, w ∈ Q. We
denote by D := h − δ ∈ Pic(S[2]

4 ) the class of the ample divisor on S
[2]
4 with

qX(D) = 2.

• By (4.4.4) and (4.4.5) we have
∫
G(1,P3)

Bit(S4) ·(σ2 +σ1,1) = 40. Recall that
rational equivalence and the homological equivalence coincide in G(1,P3).
Then, since deg(f) = 6, by (1.2.1) we have f∗f∗Bit(S4) = 6 · Bit(S4). By
the projection formula we have

f∗f
∗Bit(S4) · (σ2 + σ1,1) = f∗ (f∗Bit(S4) · f∗(σ2 + σ1,1)) .
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By Theorem 4.4.1 we have f∗σ1 = c1(D), where D = h − δ ∈ Pic(X),
hence f∗(σ1,1 + σ2) = c1(D)2 and

〈f∗Bit(S4), c1(D)2〉 = 240. (4.4.6)

Equation (4.4.6) gives

40x+ 4y + 16z + 20w = 240. (4.4.7)

• Similarly, ∫
G(1,P3)

Bit(S4)2 =

∫
G(1,P3)

(12σ2 + 28σ1,1)2 = 928,

hence
〈f∗Bit(S4), f∗Bit(S4)〉 = 5568,

which gives

48x2 − 16xy + 80xw + 12y2 − 40yw − 8z2 + 92w2 = 5568. (4.4.8)

• By Remark 4.4.2 we have deg(f |F ) = 1, hence f∗[F ] = Bit(S4), where
[F ] ∈ H4(S

[2]
4 ,Z) is the fundamental cohomological class of the surface F .

Recall that by Remark 4.4.2 we have [F ] = 5D2 − 2
5q
∨
X , where X = S

[2]
4 ,

cf. Theorem 4.5.11. By the projection formula we have

f∗ (f∗Bit(S4) · F ) = Bit(S4) · f∗F = Bit(S4) · Bit(S4) = 928,

so we obtain
〈f∗Bit(S4), F 〉 = 928,

which gives
160x+ 40y + 80z + 8w = 928. (4.4.9)

• By Remark 4.4.3 we have deg(f |B) = 2, hence f∗B = 2Bit(S4). By the
projection formula we have∫

G(1,P3)

f∗ (f∗Bit(S4) ·B) =

∫
G(1,P3)

Bit(S4) · f∗B

=

∫
G(1,P3)

Bit(S4) · 2Bit(S4)

= 1856.

Since B = Supp(E) ∩ Supp(ι∗E), where E ∈ Div(S
[2]
4 ) is the exceptional

divisor of the Hilbert–Chow morphism, and [E] = 2δ in Pic(S[2]
4 ), we have

〈f∗Bit(S4), 2δ(4h− 6δ)〉 = 1856,

which gives
96x− 144y − 64z + 240w = 1856. (4.4.10)
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The system given by (4.4.7), (4.4.8), (4.4.9) and (4.4.10) has the following
solution with multiplicity 2: 

x = 20,

y = 8,

z = −32,

w = −4.

Hence we obtain

f∗Bit(S4) = 20h2 + 8δ2 − 32hδ − 8

5
q∨X ∈ H2,2(X,Z). (4.4.11)

We now compute f∗σ1,1 and f∗σ2. As already remarked, f∗σ1 = D implies
f∗(σ2 + σ1,1) = D2 = h2 + δ2 − 2hδ. Hence

f∗Bit(S4) = f∗(12σ2 + 28σ1,1)

= f∗(12σ2 + 12σ1,1 + 16σ1,1)

= 12D2 + f∗(16σ1,1)

= 12h2 + 12δ2 − 24hδ + 16f∗σ1,1.

(4.4.12)

From (4.4.11) and (4.4.12) we obtain

f∗σ1,1 = 1
2h

2 − 1
4δ

2 − 1
2hδ −

1
10q
∨
X ,

f∗σ2 = 1
2h

2 + 5
4δ

2 − 3
2hδ + 1

10q
∨
X ,

and the first part of the lemma is proven. We pass to the pseudo-effectiveness
of f∗Bit(S4), f∗σ1,1 and f∗σ2. As observed in [Voi10, proof Lemma 2.8], the
extremal rays of the pseudoeffective cone of 2-cycles in G(1,P3) are generated by
the Schubert cycles σ1,1 and σ2, which are in particular pseudoeffective. Moreover,
recall that by Theorem 2.2.45 the numerical equivalence and the homological
equivalence coincide in S[2]

4 . Hence by Proposition 2.2.44 the pullbacks f∗Bit(S4),
f∗σ1,1 and f∗σ2 are pseudoeffective.

Keep notation as above. Proposition 4.4.4 says that, if D1, D2 ∈ |D| are two
distinct divisors, then the surface D1 ∩D2 can have two irreducible components,
whose fundamental cohomological classes in H2,2(X,Z) are f∗σ1,1 and f∗σ2.
Theorem 4.6.5 will show that if D1 ∩D2 is a reducible surface, then necessarily
[D1 ∩D2] = f∗σ1,1 + f∗σ2, where [D1 ∩D2] is the fundamental cohomological
class of the surface D1 ∩D2 in H4(S

[2]
4 ,Z).

The equality Bit(S4) = 12σ2+28σ1,1 can be seen geometrically in the following
way. As shown in [HV14, §8.1], the number of bitangents passing through a
fixed point p ∈ S4 is six, and each bitangent, if seen as (p, t) with t ∈ P1 tangent
direction through p, must be counted twice, since (ι(p), t) represents the same
line. Moreover, by a classical result of Plücker a plane quartic curve has 28
bitangents.

We conclude this section by showing that every big and nef line bundle on
X = S

[2]
4 is basepoint free.

Proposition 4.4.5. Let S4 ⊂ P3 be a generic K3 surface of degree 4. Then
every big and nef line bundle on X = S

[2]
4 is basepoint free.
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Proof. By Theorem 4.1.1 the nef cone of S[2]
4 is generated by the classes h and

3h− 4δ in NS(S
[2]
4 ). The Hilbert basis of Nef(S[2]

4 ) is given by {h, h− δ, 3h− 4δ},
i.e., every class in Nef(S[2]

4 ) is a linear combination with positive coefficients of
the classes h, h − δ, 3h − 4δ. Hence it suffices to show that every element in
the Hilbert basis of Nef(S[2]

4 ) is basepoint free. By Lemma 2.3.2 the class h is
basepoint free, the class h− δ is basepoint free by Theorem 4.4.1, and 3h− 4δ is
basepoint free since ι∗h = 3h− 4δ, see Theorem 4.3.1 and Remark 4.3.3, where
we denote by ι the Beauville involution.

4.4.2 Case t = 5

Let t = 5, and consider X := S
[2]
10 the Hilbert square of the generic K3 surface of

degree 10. As already remarked, t = 5 is the only 2-irregular value, i.e., it is the
only value of t such that Bir(S[2]

2t ) contains an involution which is not biregular
on any IHS birational model of S[2]

2t . The Pell-type equations Pt(−1) and P4t(5)
are both solvable, so there exists a unique divisor D ∈ Div(X) with qX(D) = 2
whose class is in the moving cone of X and the nef cone is strictly contained in
the moving cone, see Figure 4.3.2. The class of the divisor D is h− 2δ ∈ Pic(X),
and this is on the boundary of the nef cone, hence it is big and nef, but not
ample. We now recall the geometric description, given by O’Grady, of the map
induced by the complete linear system |D|. The main references are [O’G05],
[O’G08a], [O’G13] and [IM15].

First of all, we describe the generic K3 surface S10. Mukai showed that S10

is given by the following intersection:

S10 = F ∩Q,

where F is the Fano 3-fold of index 2, i.e., ωF = OF (−2), and degree 5, and Q
is a quadric hypersurface of P9. More precisely, the Fano 3-fold F is obtained as

F = Gr(2, 5) ∩ Σ ⊂ P9,

where Gr(2, 5) is the Grassmannian parametrizing 2-dimensional linear subspaces
of a vector space of dimension 5, equivalently this is the Grassmannian G(1,P4)
parametrizing lines in P4, and Σ ∼= P6 is a linear subspace of P9 of dimension 6.
Here the Grassmannian Gr(2, 5) is embedded in P9 as a smooth subvariety of
dimension 6 given by the intersection of five quadrics Q1, . . . , Q5 ⊂ P9. Hence
the variety S10 is the intersection of 6 quadrics in P9 and of a linear 6-dimensional
subspace Σ ⊆ P9. See [Muk88] for details. Since S10 is a generic K3 surface, it
does not contain lines and conics.

We now define a birational involution on S
[2]
10 . First, we introduce some

notation from [O’G05, §4.3].

• Let R(F ) be the Hilbert scheme parametrizing lines contained in F .

• Let W (F ) be the Hilbert scheme parametrizing conics contained in F .

• Let BF := {[Z] ∈ F [2] | span(Z) ⊂ F}, i.e., BF is the closed subset of F [2]

of 0-dimensional subschemes of length 2 contained in lines contained in F .
We put on BF the reduced induced scheme structure.
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• For every [Z] ∈ F [2], we set WZ := {[C] ∈ W (F ) |Z ⊂ C}, i.e., WZ is
the closed subset of F [2] of conics of F containing Z. We put on WZ the
reduced induced scheme structure.

We can now state the following lemma, see [Isk78, Corollary 6.6] for item (i) and
[O’G05, Lemma 4.20] for items (ii), (iii) and (iv).

Lemma 4.4.6 (Iskovskih–O’Grady). Keep notation as above.

(i) R(F ) ∼= P2.

(ii) W (F ) ∼= P4.

(iii) Let [Z] ∈ F [2] \BF . Then WZ consists of a single conic CZ .

(iv) Let [Z] ∈ BF . Then WZ parametrizes the reducible conics in F containing
span(Z).

We now define the O’Grady involution

ι : S
[2]
10 99K S

[2]
10 .

Since S[2]
10 ⊂ F [2], we can set

P := BF ∩ S[2]
10 , U := S

[2]
10 \ P,

hence U is the open subset of points x ∈ S[2]
10 such that the line span(x) is not

contained in F . By Lemma 4.4.6, (iii), for every x ∈ U there exists a unique
conic Cx contained in F which contains x: using the notation of Section 2.2.2, if
x = p + q with p, q ∈ S10 distinct points, there exists a unique conic Cx in F
passing through p and q, and if x = (p, t), with t ∈ P1 tangent direction through
p ∈ S10, there exists a unique conic Cx in F passing through p with tangent
direction t. Since S10 = F ∩Q, the conic Cx intersects Q in two other points,
which can coincide, in such a case Cx is tangent to Q in this other point. Hence
there exists x′ ∈ S[2]

10 such that

Cx ∩ S10 = Supp(x) ∪ Supp(x′).

We then set ι(x) := x′. Note that the restriction of ι to U is a regular map

ι|U : U → S
[2]
10

whose image is U , i.e., ι|U : U
∼−→ U is a biregular involution. Moreover,

ι : S
[2]
10 99K S

[2]
10 is a birational involution whose indeterminacy locus is P . Indeed,

if x ∈ P , then span(x) is contained in F , and conics in F containing x are
reducible conics given by the union of span(x) and another line contained in F .
Note that by Lemma 4.4.6, (i), we have R(F ) ∼= P2, so we see that we cannot
define the involution ι on P . Moreover, P ∼= P2.

We now define a morphism

f : S
[2]
10 → |IS10

(2)|∨.
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First of all, we remark that |IS10
(2)|∨ ∼= P5. Indeed, consider the exact sequence

of the ideal sheaf of S10 given by the embedding ϕ|H| : S10 ↪→ P6, where
H ∈ Div(S10) is the divisor whose class generates Pic(S10):

0→ IS10
→ OP6 → OS10

→ 0.

Tensorising by OP6(2) we get

0→ IS10(2)→ OP6(2)→ OS10(2H)→ 0,

which gives a long exact sequence in cohomology

0 → H0(P6, IS10
(2)) → H0(P6,OP6(2)) → H0(S10,OS10

(2H))
→ H1(P6, IS10

(2)) → . . . .

We recall the following result, see [Huy16, Corollary 2.2.5].

Lemma 4.4.7. Let C be an irreducible, smooth, non-hyperelliptic curve of genus
g > 2 on a K3 surface S. Then the linear system L = OS(C) is projectively
normal, i.e., the pullback under ϕL defines for all k ≥ 0 a surjective map

H0(Pg,OPg (k))� H0(S,L⊗k).

Lemma 4.4.7 implies the surjectivity ofH0(P6,OP6(2))→ H0(S10,OS10
(2H)).

Moreover, we have

dim(H0(P6,OP6(2))) = 28, dim(H0(S10,OS10
(2H))) = 22,

where the second equality is given by Theorem 2.1.6. Thus we obtain

dim(H0(P6, IS10(2))) = 6,

so |IS10
(2)|∨ ∼= P5. Since S10 = Q1 ∩ · · · ∩Q5 ∩Q ∩ Σ ⊂ P9, a basis of |IS10

(2)|
is given by {Q1, . . . , Q5, Q}. We set

f : S
[2]
10 → |IS10

(2)|∨, [Z] 7→ {Q̃ ∈ |IS10
(2)| | span(Z) ⊂ Q̃}.

For instance, let x ∈ S[2]
10 such that span(x) ⊂ F . Then span(x) is contained in

Q1, . . . , Q5, and since S10 does not contain any line, span(x) is not contained
in Q. This shows that f maps x to the point of |IS10

(2)|∨ which corresponds
to Q, hence P is contracted to a point. Moreover, we show that deg(f |U ) = 2
and f |U is induced by ι|U : U

∼−→ U . If x ∈ U , there exists a unique conic
Cx ⊂ F containing x. Consider ι(x). Then span(x) and span(ι(x)) intersect
the same conic Cx, so they are in the same plane, and they intersect in a non-
empty set. If a quadric in |IS10(2)| contains span(x), then it contains ι(x) and
span(x) ∩ span(ι(x)), so it contains span(ι(x)). This shows that f(x) = f(ι(x))
and f(x) 6= f(y) for y 6= x, ι(x).

Denote by Y ⊂ P5 the image of f . Then O’Grady has shown in [O’G13, §4]
that Y is an EPW sextic. The pullback f∗OP5(1)|Y is a big and nef divisor which
is not ample by Proposition 1.1.15, since f contacts P , which is isomorphic to P2.
Moreover, since |IS10(2)|∨ ∼= P5, we have qX(f∗OP5(1)) = 2. The only big and
nef divisor D ∈ Div(S

[2]
10 ) with qX(D) = 2 is the one with class h−2δ ∈ Pic(S[2]

10 ),
so we have

f∗OP5(1) = D = h− 2δ ∈ Pic(S[2]
10 ), (4.4.13)
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which shows that f is a morphism induced by a linear system of |D|. If f was
induced by a proper linear system of |D|, its image would be contained in a
hyperplane of P5, similarly to the proof of Theorem 4.4.1. Now, Y ⊂ P5 is an
EPW sextic, so its span is P5, thus f = ϕ|D| is the morphism induced by the
complete linear system |D|. See [O’G05, §4.3, §5.2.4] and [O’G13, §4] for more
details. In particular we obtain that the base locus of |D| is empty, and the
morphism ϕ|D| is the double cover of an EPW sextic ramified in its singular
locus. Moreover, by Theorem 4.3.2, the action induced by ι on H2(S

[2]
10 ,Z) is

the reflection in the span of the class D, and Aut(S[2]
10 ) = {id}, Bir(S[2]

10 ) = 〈ι〉.
We conclude this section by showing that every big and nef line bundle on

the Hilbert square S[2]
10 is basepoint free. We recall, without going into details,

the following result, see [Cat20, Lemma 1.3].

Lemma 4.4.8. Let S2t be a generic K3 surface of degree 2t, with t ≥ 2, and
denote by h ∈ Pic(S[2]

2t ) the line bundle induced by the ample generator of Pic(S2t).
Then h− δ ∈ Pic(S[2]

2t ) is basepoint free.

We can now state the following.

Proposition 4.4.9. Let S10 be the generic K3 surface of degree 10. Then every
big and nef line bundle on S[2]

10 is basepoint free.

Proof. By Theorem 4.1.1 the nef cone of S[2]
10 is generated by the classes h and

h − 2δ in NS(S
[2]
10 ), and every nef class is big, see the proof of Theorem 4.2.3.

The Hilbert basis of Nef(S[2]
10 ) is given by {h, h− δ, h− 2δ}, i.e., every class in

Nef(S[2]
10 ) is a linear combination with positive coefficients of the classes h, h− δ

and h−2δ. If every element of the Hilbert basis of Nef(S[2]
10 ) is basepoint free, we

are done. Now, h is basepoint free by Lemma 2.3.2, the class h− δ is basepoint
free by Lemma 4.4.8, and h− 2δ is basepoint free by the discussion above, see in
particular (4.4.13).

We have seen in Section 4.3, Case t = 5, that the movable cone Mov(S
[2]
10 ) is

divided into two chambers: the first chamber is the nef cone of S[2]
10 , the other

chamber is the nef cone of an IHS manifold isomorphic to S[2]
10 , that we have

called X ′.

Corollary 4.4.10. Let X ′ be the IHS manifold described above. Then every big
and nef line bundle on X ′ is basepoint free.

Proof. We have seen in Section 4.3, Case t = 5, that X ′ is isomorphic to S[2]
10 , so

we conclude by Proposition 4.4.9.

4.5 Fixed locus of anti-symplectic involutions on
IHS manifolds

Let X be the Hilbert square of a generic K3 surface S2t of degree 2t, and assume
that X admits an ample divisor D ∈ Div(X) with qX(D) = 2. We have seen
that Aut(X) ∼= 〈ι〉, where ι is an anti-symplectic involution. In this section
we study some properties of the fixed locus F = Fix(ι), which is a Lagrangian
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surface, cf. Lemma 4.5.2. We will compute the fundamental cohomological class
of F in H2,2(X,Z) and we will show that the map induced by the complete
linear system |D|, denoted by ϕ|D| : X 99K P5, factors through the quotient
π : X → X/〈ι〉. We will remark that these results hold also for a smooth
birational model X of the Hilbert square of a generic K3 surface such that X
admits an ample divisor D with qX(D) = 2.

4.5.1 Connectedness of Fix(ι)
We first recall the following general definition.

Definition 4.5.1. Let X be a complex manifold which admits a symplectic
form ω ∈ H2,0(X), i.e., a nowhere vanishing holomorphic closed 2-form. A
submanifold Y ⊆ X is an isotropic submanifold if the symplectic form restricts
to zero on Y , and it is a Lagrangian submanifold if it is an isotropic submanifold
of maximal dimension dim(Y ) = 1

2dim(X).

Note that, as seen in the definition of IHS manifold in Section 2.2, the
dimension of a complex manifold which admits a symplectic form is always even.
The following result by Beauville gives a description of the fixed locus of an
anti-symplectic involution on an IHS manifold.

Lemma 4.5.2 (Lemma 1 in [Bea11]). Let X be an IHS manifold which admits
an anti-symplectic involution ι. Then the fixed locus F = Fix(ι) of ι is a smooth
Lagrangian submanifold of X.

The fixed locus of an anti-symplectic involution on an IHS manifold is not
necessarily connected. For instance, the following result holds for K3 surfaces,
see [Nik83, Theorem 4.2.], [Kon00, Theorem 6.1], [AST11, Theorem 4.1] and
[AS15, Theorem 1.1].

Theorem 4.5.3. Let ι be an anti-symplectic involution on a K3 surface. The
fixed locus of ι is either empty, the disjoint union of two elliptic curves or the
disjoint union of a smooth curve of genus g ≥ 0 and j smooth rational curves.

We show that in the case that we are considering the fixed locus F = Fix(ι)
of the anti-symplectic involution ι is connected. This property will hold also for
varieties of Case 3 of Section 4.3, so we assume that X is a smooth birational
model of the Hilbert square of a generic K3 surface of degree 2t which admits an
ample divisor D with qX(D) = 2. We need a result from [BCMS19]. LetMρ

〈2〉
be the moduli space which parametrizes triples (X, ιX , iX), where X is an IHS
manifold of K3[n]-type, ιX ∈ Aut(X) is an anti-symplectic involution whose
action on H2(X,Z) is the reflection in the class of an ample divisor D with
qX(D) = 2, and iX : 〈2〉 ↪→ NS(X) is a primitive embedding such that i(〈2〉)
contains the class of D. Such an X is said to be 〈2〉-polarised. Then we have the
following result.

Theorem 4.5.4 (Corollary 4.1 and Theorem 5.2 in [BCMS19]). Any two points
(X, ιX , iX), (Y, ιY , iY ) ∈Mρ

〈2〉, whereM
ρ
〈2〉 is the moduli space described above,

are deformation equivalent.

We can now prove the following corollary of Theorem 4.5.4.
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Corollary 4.5.5. Let X be a smooth birational model of a Hilbert square of a
generic K3 surface S2t such that X admits an ample divisor D with qX(D) = 2.
Let ι : X → X be the anti-symplectic involution which generates Aut(X). Then
the locus F = Fix(ι) of the points fixed by ι is connected.

Proof. By Theorem 4.5.4, the triples (X, ιX , iX) ∈ Mρ
〈ι〉, where X is as in

the statement of the corollary, are deformation equivalent. Since deformation
equivalence preserves topological properties of Fix(ι), it suffices to find a triple
(X, ιX , iX) ∈Mρ

〈ι〉 such that Fix(ιX) is connected, whereX is as in the statement

of the corollary. Let X = S
[2]
4 be the Hilbert square of the generic smooth quartic

surface of P3, and let ιX ∈ Aut(X) be the Beauville involution of Section 4.4.1.
Then by [Wel81, Corollary 3.4.4], we have that Fix(ιX) is connected. This proves
the corollary.

Another way to obtain the connectedness of the fixed locus F = Fix(ι) ⊂ X
is using the following theorem in [FMOS20].

Theorem 4.5.6 (Main Theorem in [FMOS20]). Let (X,λ) be a polarized IHS
manifold of K3[n]-type such that qX(λ) = 2, and let ι ∈ Aut(X) be the involution
associated to λ. Then the number of connected components of Fix(ι) is equal to
the divisibility div(λ) in the lattice (H2(X,Z), qX).

If X is a smooth birational model of the Hilbert square of a generic K3
surface S2t which admits an ample divisor D ∈ Div(X) with qX(D) = 2, then
D = bh−aδ, where (a, b) is the minimal solution of the Pell-type equation Pt(−1).
Note that the integers a and b are coprime, and b is odd by Proposition 1.5.8.
Moreover H2(S2t,Z) is unimodular, so there exists x ∈ H2(X,Z) such that
(h, x) = 1. Note that if the variety X is of the form X ′ in Case 3 of Section 4.3,
we are using the isomorphism H2(X,Z) ∼= H2(S

[2]
2t ,Z) of Theorem 2.2.39, which

is compatible with the BBF forms. Thus there exist α, β ∈ Z such that

(D,αδ + βx) = bβ + 2aα = 1.

This shows that div(D) = 1. We conclude by Theorem 4.5.6 that F = Fix(ι)
has one connected component.

4.5.2 Action induced by ι on |D|
Let X the Hilbert square of a generic K3 surface S2t such that X admits an ample
divisor D with qX(D) = 2, and let ι be the anti-symplectic involution which
generates Aut(X). By [CGM19, §3], the quotient variety X/〈ι〉 is singular along
π′(F ), where π′ : X → X/〈ι〉 is the quotient map, more precisely the singularities
of X/〈ι〉 are canonical and not terminal. Hence the desingularization of X/〈ι〉,
which we call W , is the blow-up of X/〈ι〉 on its singular locus. Equivalently,
consider the blow-up BlF (X) of X in the fixed locus F . The involution ι gives
rise to an involution ι̃ on BlF (X) which fixes the exceptional divisor E ⊂ BlF (X).
One can show that the quotient BlF (X)/〈ι̃〉 is isomorphic to W , obtaining the
following commutative diagram, see [CGM19, Theorem 3.6] for more details:

BlF (X) W

X X/〈ι〉 .

π

β β′

π′

(4.5.1)
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Let B ∈ Div(W ) be the branch divisor of π : BlF (X)→W . Then there exists a
divisor N ∈ Div(W ) such that OW (2N) ∼= OW (B) in Pic(W ), see Section 1.6.

Let D be the ample divisor on X with qX(D) = 2, and ϕ|D| : X 99K P5 be
the map induced by the complete linear system |D|. We show the following
result, similar to [vGS07, Proposition 2.7,(2)] obtained in the case of K3 surfaces
admitting a symplectic involution.

Proposition 4.5.7. Keep notation as above. Consider the diagram in (4.5.1).
Let D := OX(D) and N := OW (N). There exists a line bundle DW ∈ Pic(W )
such that π∗DW = β∗D. Moreover, the vector space H0(X,D) decomposes as

H0(X,D) ∼= H0(W,DW )⊕H0(W,DW −N ), (4.5.2)

which is the decomposition of H0(X,D) into ι∗-eigenspaces.

In order to prove Proposition 4.5.7, we need the following technical lemma,
see [DHH+15, Lemma 4.3] for a more general statement.

Lemma 4.5.8. Let π : X → Y be a double cover of a smooth projective variety
such that the branch locus is a smooth prime divisor B ∈ Div(Y ), and denote
by ι ∈ Aut(X) the involution associated to the double cover. If Pic(X)ι is the
subgroup of ι-invariant line bundles on X, then π∗Pic(Y ) ∼= Pic(X)ι.

Proof Lemma 4.5.8. We show that every divisor D ∈ Div(X) whose class is in
Pic(X)ι is linearly equivalent to a pullback of a divisor on Y .

Suppose that ι∗(D) = D as divisors, where ι∗ : Div(X) → Div(X) is the
pushforward defined in [Ful13, §1.4]: then D is of the form a1E1 + · · ·+ asEs,
where ai ∈ Z and the Ei’s are reduced invariant divisors, i.e., every Ei is the
sum of all the prime divisors contained in a 〈ι〉-orbit. Thus it suffices to consider
the case D = Ei. If D is the ramification divisor, i.e., π∗(D) = B, then we
apply Lemma 1.6.3, (i). If π∗(D) 6= B, since by assumption ι∗(D) = D, we have
Supp(D) = π−1(Supp(π∗(D))) and π is not ramified in X \ π−1(Supp(B)), so
D = π∗π∗(D).

Suppose now that ι∗(D) 6= D. By definition ι acts trivially on Pic(X)ι, so
D − ι∗(D) = div(g) for some g ∈M∗X(X). Consider the following map

τ : H0(X,OX(D))→ H0(X,OX(D)) , f 7→ ι∗f

g
.

Note that ι∗f
g ∈ H

0(X,OX(D)): indeed,

div
(
ι∗f
g

)
+D = div(ι∗f)− div(g) +D

= ι∗(div(f))− div(g) +D
= ι∗(div(f)) + ι∗(D)−D +D
= ι∗(div(f)) + ι∗(D) ,

and, since ι is a regular involution, ι∗(div(f)) + ι∗(D) is effective if and only if
div(f) +D ≥ 0, which is true since f ∈ H0(X,OX(D)).

We show that τ is a linear isomorphism and, after rescaling g, the order
of τ divides 2. Since D − ι∗(D) = div(g) and ι∗(D) −D = div(ι∗g), we have
div(g) + div(ι∗g) = 0. Then gι∗g = 1 after rescaling g. Hence

f
τ7−→ ι∗f

g

τ7−→ ι∗
(
ι∗f

g

)
· 1

g
=

f

gι∗g
= f ,
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which shows that the order of τ divides 2. Let now h ∈ H0(X,OX(D)) be
an eigenvector of τ . We set D′ := div(h) + D. Then D′ is ι-invariant, i.e.,
ι∗(D

′) = D′ as divisors, since

ι∗(D
′) = div(ι∗h) + ι∗(D)

= div(g · τ(h)) +D − div(g)
= div(g) + div(±h) +D − div(g)
= div(h) +D
= D′ .

By the first part of the proof D′ is a pullback, then D is linearly equivalent to a
pullback of a divisor.

Proof of Proposition 4.5.7. Consider π : BlF (X) → W appearing in diagram
(4.5.1): by Lemma 4.5.8 we obtain a divisor DW ∈ Div(W ) whose class DW in
Pic(W ) is such that π∗DW = β∗D in Pic(BlF (X)). Lemma 4.5.8 can be applied:
F ⊂ X is smooth by Lemma 4.5.2 and connected by Corollary 4.5.5, so the
exceptional divisor of β and the branch divisor of π are smooth prime divisors.
Since β is a birational morphism, we have H0(X,D) ∼= H0(BlF (X), β∗D), which
is isomorphic to H0(BlF (X), π∗DW ), being β∗D = π∗DW . Moreover,

π∗(π
∗DW ) ∼= π∗(π

∗DW ⊗OBlF (X))
∼= DW ⊗ π∗OBlF (X)

where the second isomorphism is obtained by applying the Projection formula.
By Lemma 1.6.4 we have

π∗OBlF (X)
∼= OW ⊕OW (−N),

where B ∈ Div(W ) is the branch divisor and N ∈ Div(W ) is the divisor such
that OW (2N) ∼= OW (B) in Pic(W ). Thus we obtain the isomorphism

π∗(π
∗DW ) ∼= DW ⊗ (OW ⊕OW (−N)) ∼= DW ⊕ (DW −N ).

Hence decomposition (4.5.2) holds. Moreover, this is the decomposition of
H0(X,D) in ι∗-eigenspaces. Indeed, two global sections s, t ∈ H0(X,D) are in
the same eigenspace if and only if the rational function f = s/t is ι-invariant, and
this is true when the sections belong both to H0(W,DW ) or H0(W,DW −N ) in
the decomposition, hence each of these two spaces is contained in an eigenspace
of H0(X,D). We conclude that H0(W,DW ) and H0(W,DW −N ) are isomorphic
to the two eigenspaces by decomposition (4.5.2).

Let DW ∈ Pic(W ) be the line bundle such that π∗DW ∼= β∗D given by
Proposition 4.5.7. We recall the following relation between the dimension of the
vector space H0(W,DW ) and (D|F )2, see [CGM19, Proposition 7.3] for a more
general statement.

Proposition 4.5.9 (Camere–Garbagnati–Mongardi). Keep notation as above.
Then

dim(H0(W,DW )) =
7

2
+

1

16
(D|F )2.
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Proof. By [CGM19, Proposition 7.3] we have

χ(DW ) =
1

2
χ(D) +

1

16
(D|F )2 − 1

2
χ(OX) + χ(OW ).

Since W is a Calabi–Yau variety and X is an IHS manifold of K3[2]-type, we
have the following equalities:

• χ(D) = 1
8 (qX(D) + 4)(qX(D) + 6) by Theorem 3.1.9.

• χ(OW ) = 2, since by definition of Calabi–Yau variety dim(Hi,0(W )) = 0
for i = 1, . . . ,dim(W )− 1.

• χ(OX) = 3 because dim(Hi,0(X)) = 0 for i odd and dim(H2,0(X)) = 1.

• By Theorem 1.1.29 we have

χ(DW ) = dim(H0(W,DW )) and χ(D) = dim(H0(X,D)),

since D is ample, DW is big and nef by [CGM19, Lemma 7.1] and the
canonical bundles of X and W are trivial.

• dim(H0(X,D)) = 6 by Theorem 3.1.9, since qX(D) = 2 by assumption.

We conclude that

dim(H0(W,DW )) = 3 +
1

16
(D|F )2 − 3

2
+ 2 =

7

2
+

1

16
(D|F )2,

as we wanted.

Another useful result is the following computation of the Euler characteristic
of the fixed locus of the anti-symplectic involution ι by Beauville. We give the
result in our setting, see [Bea11, Theorem 2] for a more general statement.

Lemma 4.5.10. Let X be the Hilbert square of a generic K3 surface S2t such
that X admits an ample divisor D with qX(D) = 2 Let ι : X → X be the
anti-symplectic involution which generates Aut(X). Let F = Fix(ι) be the fixed
locus of ι. Then the Euler characteristic of F is

χ(F ) = 192.

Proof. By [Bea11, Theorem 2], we have χ(F ) = 1
2 (t2 + 23), where t is the trace

of ι∗ acting on H1,1(X). If a and b are the dimensions respectively of the (+1)
and (−1)-eigenspaces of ι∗ on H2(X), then a+ b = 23 and a− b = t− 2. In our
case, the first eigenspace is generated by the class of D, hence a = 1 and b = 22,
hence t = −19 and χ(F ) = 192.

Similarly to the case studied in [vGS07, §2.6], since ι∗D ∼= D, there is an
induced involution on P(H0(X,D)∨), which has two fixed spaces Pa and Pb,
where a + 1 + b + 1 = 6, and a = −1 if the corresponding eigenspace of ι∗ on
H0(X,D) is zero, similarly for b. By Proposition 4.5.7 the direct sum (4.5.2) is
the direct sum of the ι∗-eigenspaces of H0(X,D), so Pa and Pb are isomorphic
respectively to P(H0(W,DW )∨) and to P(H0(W,DW −N )∨). If {s0, . . . , s5} is
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a basis of H0(X,D), the induced involution ῑ on P(H0(X,D)∨) is described by
the following:

X P(H0(X,D)∨)

X P(H0(X,D)∨),

ϕ|D|

ι ῑ

ϕ|D|

x (s0(x) : · · · : s5(x))

ι(x) (s0(ι(x)) : · · · : s5(ι(x))).

Then ϕ|D| factors through the quotient X → X/〈ι〉 if and only if the action of ῑ
on P(H0(X,D)∨) is trivial, which happens if and only if either H0(W,DW ) or
H0(W,DW −N ) is zero. We can now state the main theorem of this section.

Theorem 4.5.11. Let X be the Hilbert square of a generic K3 surface S2t such
that X admits an ample divisor D with qX(D) = 2. Let ι : X → X be the
anti-symplectic involution which generates Aut(X). Let F = Fix(ι) be the fixed
locus of ι. Then

[F ] = 5D2 − 2

5
q∨X ∈ H2,2(X,Z), (4.5.3)

where [F ] denotes the fundamental cohomological class of F in H2,2(X,Z).
Moreover, let ϕ|D| : X 99K P5 be the map induced by the complete linear system
|D|. Then the following diagram is commutative:

X P5

X/〈ι〉,

ϕ|D|

π′ (4.5.4)

where π′ : X → X/〈ι〉 is the quotient map.

Proof. Let DW ∈ Pic(W ) be the line bundle such that π∗DW ∼= β∗D. By
Proposition 4.5.9 we have

dim(H0(W,DW )) =
7

2
+

1

16
(D|F )2.

By decomposition (4.5.2) and dim(H0(X,D)) = 6 we get

dim(H0(W,DW )) ∈ {0, 1, . . . , 6},

so we obtain the following possible values for (D|F )2:

dim(H0(W,DW )) = 0 ⇔ (D|F )2 = −56.

dim(H0(W,DW )) = 1 ⇔ (D|F )2 = −40.

dim(H0(W,DW )) = 2 ⇔ (D|F )2 = −24.

dim(H0(W,DW )) = 3 ⇔ (D|F )2 = −8.

dim(H0(W,DW )) = 4 ⇔ (D|F )2 = 8.

dim(H0(W,DW )) = 5 ⇔ (D|F )2 = 24.

dim(H0(W,DW )) = 6 ⇔ (D|F )2 = 40.

(4.5.5)
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Since D is ample, D|F is ample on F by Proposition 1.1.15, hence (D|F )2 > 0
by Theorem 1.1.12. This implies that

dim(H0(W,DW )) ∈ {4, 5, 6}.

We show that dim(H0(W,DW )) = 6 by computing [F ] ∈ H2,2(X,Z), where we
denote by [F ] the fundamental cohomological class of the fixed locus F = Fix(ι)
of the involution ι. Let h ∈ Pic(X) be the line bundle induced by the ample
generator of Pic(S2t). By Proposition 3.4.1 we can write

[F ] = xh2 + yhδ + zδ2 + w · 2

5
q∨X ∈ H2,2(X,Z), (4.5.6)

with x, y, z, w ∈ Q to determine. Recall that D = bh− aδ, with (a, b) minimal
solution of the Pell-type equation Pt(−1). We denote by 〈 · , · 〉 the bilinear form
of H4(X,Z) of Proposition 3.1.5. We have the following four conditions.

1. 〈[F ], (σ + σ̄)2〉 = 0, where σ is the symplectic form σ ∈ H0(X,Ω2
X), since

F is Lagrangian by Lemma 4.5.2. If η := (σ + σ̄, σ + σ̄), we have:

〈h2, (σ + σ̄)2〉 = qX(h)η + 2(h, σ + σ̄) = 2tη, (4.5.7)

and similarly
〈δ2, (σ + σ̄)2〉 = −2η

〈hδ, (σ + σ̄)2〉 = 0

〈 25q
∨
X , (σ + σ̄)2〉 = 10η.

(4.5.8)

Note that η 6= 0, see Definition 2.2.3 and Theorem 2.2.4, so we obtain from
〈[F ], (σ + σ̄)2〉 = 0 and (4.5.6) the following condition:

tx− z + 5w = 0. (4.5.9)

2. From Lemma 4.5.10 we have c2(F ) = 192, i.e., 〈[F ], [F ]〉 = 192. This gives,
together with (4.5.6), the following condition:

3t2x2 − ty2 + 3z2 + 23w2 − 2txz + 10xwt− 10zw = 48. (4.5.10)

3. Consider the action induced by ι on H2,2(X,Q), described in the basis
{h2, hδ, δ2, q∨X} by

ι∗(h2) = ι∗h · ι∗h,
ι∗(hδ) = ι∗h · ι∗δ,
ι∗(δ2) = ι∗δ · ι∗δ,
ι∗(q∨X) = q∨X ,

(4.5.11)

where · denotes the cup product. Since F is the locus of points fixed by ι,
we have ι∗([F ]) = [F ], i.e., if

ι∗([F ]) = x̃h2 + ỹhδ + z̃δ2 +
2

5
w̃q∨X ,

with x̃, ỹ, z̃, w̃ ∈ Q, then x = x̃, y = ỹ, z = z̃, w = w̃. The last equation
comes from the equality c2(X) = 6

5q
∨
X of Proposition 3.1.8 and the fact

that ι is an automorphism. Alternatively, from Theorem 2.2.39 we have
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qX(α) = qX(ι(α)) for every α ∈ H2(X,Z). Imposing x = x̃ we obtain the
following condition:

x− c2x− cdy − d2z = 0. (4.5.12)

One remarks a posteriori that y = ỹ, z = z̃ and w = w̃ give the same
condition (4.5.12).

4. By (D|F )2 ∈ {8, 24, 40} we have 〈[F ], D2〉 ∈ {8, 24, 40}, since the bilinear
form 〈 · , · 〉 represents the intersection form by Proposition 3.1.5. This
gives, together with (4.5.6), the following:

(t+ 2t2b2)x+ 2abty + (2a2 − 1)z + 5w = 2 ⇐⇒ 〈[F ], D2〉 = 8,
(t+ 2t2b2)x+ 2abty + (2a2 − 1)z + 5w = 6 ⇐⇒ 〈[F ], D2〉 = 24,
(t+ 2t2b2)x+ 2abty + (2a2 − 1)z + 5w = 10 ⇐⇒ 〈[F ], D2〉 = 40.

(4.5.13)

If 〈[F ], D2〉 = 8, which is equivalent to dim(H0(W,DW )) = 4 by (4.5.5), the
system given by (4.5.9), (4.5.10), (4.5.12) and the first condition in (4.5.13)
has solutions with x, y, z, w 6∈ Q, which is impossible. We obtain the same
contradiction if 〈[F ], D2〉 = 24, i.e., if dim(H0(W,DW )) = 5. We conclude that
〈[F ], D2〉 = 40, which is equivalent to dim(H0(W,DW )) = 6. With the help of a
computer, the system given by (4.5.9), (4.5.10), (4.5.12) and the third condition
in (4.5.13) implies w ∈ {−1,− 13

12}. By Corollary 3.4.11 we cannot have w = − 13
12 ,

hence w = −1. Imposing w = −1, we necessarily obtain only one admissible
solution, which is the following: 

x = 5b2,

y = −10ab,

z = 5a2,

w = −1.

We conclude that
[F ] = 5D2 − 2

5
q∨X ∈ H2,2(X,Z).

Moreover, we have obtained

H0(X,D) ∼= H0(W,DW ),

so by (4.5.2) we have H0(W,DW − N ) = {0}, which shows that the action ῑ
on P(H0(X,D)∨) is trivial, i.e., ϕ|D| factors through the quotient X → X/〈ι〉.
Thus we obtain the commutative diagram (4.5.4).

We conclude this section with a useful corollary of Theorem 4.5.11. We first
need to introduce some notation. We follow [O’G08b, §4]. Let X and D be as
in Theorem 4.5.11, and consider

ϕ|D| : X 99K P5.

More precisely, we choose an isomorphism |D|∨ ∼−→ P5 and we denote by

f : X 99K P5
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the composition X 99K |D|∨ ∼−→ P5. Let B be the base locus of |D|, and
βB : X̃ → X be the blow-up of X in B. We denote by f̃ : X̃ → P5 the regular
map which resolves the indeterminacies of f . Let Y := Im(f̃), which is a closed
subset of P5. We then obtain a dominant map, which we call f by abuse of
notation

f : X 99K Y.

Let deg(f) be the degree of f .

Corollary 4.5.12. Let X and D be as in Theorem 4.5.11. Let f : X 99K Y ⊂ P5

be the map induced by the complete linear system |D|. Then deg(f) is even.

Proof. By Theorem 4.5.11 the map f factors through π′ : X → X/〈ι〉, which
has degree two, so deg(f) is even.

Remark 4.5.13. Ferretti in [Fer12, Lemma 4.1] obtained the same relation of
(4.5.3) in the Chow ring of a smooth double EPW sextic X: in his case F was
the branch locus of the double cover f : X → Y ⊆ P5, where Y is an EPW
sextic.

4.6 Case t 6= 2, 5, first part

Let X = S
[2]
2t be the Hilbert square of a generic K3 surface of degree 2t such

that there exists an ample divisor D ∈ Div(X) with qX(D) = 2. In the first
part of this section we recall a result by Rieß in [Rie18] which describes the
divisorial base component of the complete linear system |D|, in particular we
will see that |D| is movable, i.e., its fixed part is zero, see Definition 1.1.22. In
the second part of this section we study the reducibility of the surface D1 ∩D2

for the case t 6= 2, where D1, D2 ∈ |D|. In the final part we show which of the
results obtained hold for a smooth birational model X of the Hilbert square of
a generic K3 surface of degree 2t such that X admits an ample divisor D with
qX(D) = 2 and with both Pt(−1) and P4t(5) solvable, see Case 3 of Section 4.3.

4.6.1 Divisorial base component
Let X be an IHS manifold of K3[n]-type, and consider a big and nef divisor
D ∈ Div(X). The fixed part of the complete linear system |D| is described by
the following result obtained by Rieß in [Rie18, Proposition 8.2], which can be
seen as a partial generalization of Theorem 2.1.7. See [Rie18, Theorem 4.7] for a
more general statement.

Theorem 4.6.1 (Rieß). Let X be an IHS manifold of K3[n]-type and consider
a big and nef divisor D ∈ Div(X). Then |D| has a fixed part if and only if
D = mL+ F , where m ≥ 2, the class of L is movable with qX(L) = 0 and F is
a reduced and irreducible divisor with qX(F ) < 0 and (L,F ) = 1. In this case F
is the fixed part of |D|.

We obtain the following corollary.

Corollary 4.6.2. Let X be the Hilbert square of a generic K3 surface S2t of
degree 2t. Consider a big and nef divisor D ∈ Div(X). Then |D| has no fixed
part.
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Proof. Let h ∈ Pic(S[2]
2t ) be the line bundle induced by the ample generator of

Pic(S2t). Then Pic(X) = Zh ⊕ Zδ, and qX(h) = 2t, qX(δ) = −2, (h, δ) = 0.
Hence (D1, D2) is an even integer for every D1, D2 ∈ Div(X), in particular we
have (D1, D2) 6= 1. By Theorem 4.6.1 the complete linear system |D| has fixed
part if and only if D = mL+F , with m ≥ 2, where L is movable with qX(L) = 0
and F is a reduced and irreducible divisor of negative square with (L,F ) = 1.
The Gram matrix for Pic(X) in the basis {h,−δ} is(

2t 0
0 −2

)
,

hence there are no L,F ∈ Pic(X) such that (L,F ) = 1. We conclude that the
complete linear system |D| has no fixed part.

While Theorem 2.1.7 completely characterises the base locus of a complete
linear system associated to a big and nef divisor on a K3 surface, for higher
dimensional IHS manifolds of K3[n]-type Theorem 4.6.1 does not give any
information on the non-divisorial component of the base locus of the complete
linear system |D|. There exist examples of complete linear systems on Hilbert
squares of a generic K3 surface S2t of degree 2t whose base locus is non empty
and of codimension greater than 1: if X = S

[2]
2 and Pic(X) = Zh⊕Zδ, where as

usual h is the line bundle induced by the ample generator of Pic(S2), Rieß has
shown in [Rie20] that the base locus of the complete linear system |D|, where D
is the ample divisor with class 2h− δ, is isomorphic to P2.

4.6.2 Reducibility of the surface D1 ∩D2

Let X = S
[2]
2t be the Hilbert square of a generic K3 surface such that X admits

an ample divisor D with qX(D) = 2. In this section we study the reducibility of
the surface D1 ∩D2, where D1, D2 ∈ |D| are distinct divisors. The case t = 2
will be studied separately: it is the only case in which D1 ∩D2 can be reducible.
If t 6= 2, we will show that D1 ∩D2 is reduced and irreducible.

First of all, we show that every divisor in the complete linear system |D| is
reduced and irreducible.

Proposition 4.6.3. Let X and D be as in Theorem 4.5.11. Then every divisor
D′ ∈ |D| is reduced and irreducible.

Proof. By abuse of notation, we write D for an effective divisor D′ which belongs
to the complete linear system |D|. Since qX(D) = 2, the divisor D is reduced,
i.e., it is not of the form D = αE with α ∈ Z, α 6= ±1, and E ∈ Div(X). Suppose
by contradiction that

D = D1 +D2 (4.6.1)

where D1 =
∑
i niD1,i and D2 =

∑
jmjD2,j are effective divisors with D1,i, D2,j

prime divisors which are pairwise distinct, and ni,mj ∈ Z>0. Without loss of
generality we can assume that D1 has only one component, i.e., it is irreducible.
We have

qX(D) = 2 = qX(D1) + qX(D2) + 2(D1, D2). (4.6.2)

Since D1 and D2 are effective divisors with no common components, we can
apply Proposition 2.3.4, obtaining (D1, D2) ≥ 0. Note that we cannot have
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neither qX(D1) = 0 nor qX(D2) = 0. Indeed, the equation qX(xh− yδ) = 0 has
a non zero solution (x, y) ∈ Z2 only when t is a perfect square. If t was a perfect
square, the Pell-type equation Pt(−1) would be solvable only for t = 1, which is
a case that we are not considering. Hence t is not a perfect square and we have
qX(D1) 6= 0, qX(D2) 6= 0.

Since H2(X,Z) is an even lattice, we have only two possibilities: either one
between D1 and D2 is zero, or (at least) one of the two has negative square with
respect to the BBF form. We show that qX(Di) > 0 for i = 1, 2. Assume by
contradiction that at least one between D1 and D2 has negative square. This
can happen only if there exists a component D1,i or D2,j whose square with
respect to the BBF form is negative. Without loss of generality, we can suppose
that qX(D1,1) < 0. Recall that H2(X,Z) ∼= H2(S2t,Z) ⊕ 〈−2〉, where S2t is
a K3 surface, and H2(S2t,Z) is a unimodular lattice. Then the divisibility in
H2(X,Z) of a primitive class can be only 1 or 2. Hence by Lemma 2.3.5 we
have either qX(D1,1) = −2 or qX(D1,1) = −4. We show that qX(D1,1) = −4 is
not possible. Indeed, if t = 2, the class of D1,1 in Pic(X) is necessarily h− 2δ,
which is outside the pseudoeffective cone, whose extremal rays are generated
by δ and 2h− 3δ by Theorem 4.1.1, obtaining a contradiction. If t 6= 2, there
exists a (−4)-class if and only if the Pell-type equation Pt(2) is solvable: since
by assumption Pt(−1) has solutions, by Proposition 1.5.7 we have that Pt(2)
has no solution, hence there are no (−4)-classes. We conclude that D1,1 must be
a (−2)-class, hence it is either δ or ι∗δ, where ι is the anti-symplectic involution
on X which generates Aut(X), see Theorem 4.3.1. Since ι∗D = D, it is enough
to show that D1,1 = δ is not possible. If D1,1 = δ, from (4.6.1) we get

D = n1δ +D2,

where n1 ≥ 1 since D1 is effective by assumption, hence

D2 = D − n1δ = bh− (a+ n1)δ,

where as usual (a, b) is the minimal solution of the negative Pell equation Pt(−1).
We show that D2 is outside the pseudoeffective cone. By Theorem 4.1.1 the
extremal rays of the pseudoeffective cone are generated by the classes δ and
ι∗δ = dh − cδ, where (c, d) is the minimal solution of the Pell equation Pt(1).
Using (1.5.1), we obtain ι∗δ = 2abh− (a2 + tb2)δ, hence we need to check that
a + n1 >

a2+tb2

2a in order to show that D2 is outside the pseudoeffective cone.
This is true since a2 − tb2 = −1. We obtain a contradiction, so qX(Di) ≥ 0 for
i = 1, 2. Moreover, we have already remarked that qX(Di) 6= 0 for i = 1, 2, thus
qX(Di) > 0. We get a contradiction with (4.6.2), so one between D1 and D2 is
zero. If D2 = 0, then n1 = 1 since qX(D) = n2

1qX(D1,1) = 2, so D is reduced
and irreducible. If D1 = 0, we repeat the argument for D = D2 until we obtain
a D which is reduced and irreducible.

Suppose now that D1, D2 ∈ |D| are two distinct divisors. We want to study
the surface D1 ∩D2 and see if it is reduced and irreducible. The fundamental
tool to do this is Corollary 3.4.11. First of all, we need the following technical
lemma.

Lemma 4.6.4. Let X and D be as in Theorem 4.5.11 and let D1, D2 ∈ |D| be
two distinct divisors. Denote by ι the anti-symplectic involution which generates
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the automorphism group Aut(X). Suppose that there is no decomposition of the
form

[D1 ∩D2] = A+B ∈ H2,2(X,Z),

where [D1 ∩D2] is the fundamental cohomological class of the surface D1 ∩D2,
and A,B ∈ H2,2(X,Z) are effective classes such that ι∗(A) = A and ι∗(B) = B.
Then the surface D1 ∩D2 is reduced and irreducible.

Proof. Suppose that

[D1 ∩D2] = A1 +A2 + · · ·+An ∈ H2,2(X,Z),

where Ai ∈ H2,2(X,Z) are effective classes, not necessarily pairwise distinct.
Recall that by Theorem 4.3.1 we have ι∗D = D, hence

ι∗(A1 + · · ·+An) = A1 + · · ·+An.

If n > 1 is odd, then there exists i such that ι∗Ai = Ai since ι is an involution,
hence we take A := Ai and B := A1 + · · · + Ai−1 + Ai+1 + · · · + An. Thus
ι∗A = A and ι∗B = B. We obtain a contradiction with the assumption that
there is no decomposition of this form. Suppose now that n = 2 and ι∗A1 = A2.
We show that this is not possible. Recall that D = bh− aδ, with (a, b) minimal
solution of the Pell-type equation Pt(−1). By Corollary 3.4.11 a basis of the
lattice H2,2(X,Z) is given by {h2, h

2−hδ
2 , 1

8

(
δ2 + 2

5q
∨
X

)
, 2

5q
∨
X} (note that we have

substituted δ2 in the basis given by Corollary 3.4.11 with 2
5q
∨
X : this slightly

simplifies the computations). Hence the classes A1 and A2 in H2,2(X,Z) are of
the form

A1 =
(
x+ y

2

)
h2 + z

8δ
2 − y

2hδ +
(

1
8z + w

)
2
5q
∨
X ,

A2 =
(
b2 − x− y

2

)
h2 +

(
a2 − z

8

)
δ2 +

(
−2ab+ y

2

)
hδ −

(
1
8z + w

)
2
5q
∨
X ,

for some x, y, z, w ∈ Z. By Theorem 4.3.1 and (4.5.11), we obtain

ι∗A1 =
(
c2
(
x+ y

2

)
+ cd

(
−y2
)

+ z
8d

2
)
h2

+
(
t2d2

(
x+ y

2

)
− cdty2 + c2 z8

)
δ2

+
(
−2cdt

(
x+ y

2

)
+ c2 y2 + td2 y

2 − 2cd z8
)
hδ

+
(

1
8z + w

)
2
5q
∨
X ,

and similarly

ι∗A2 =
(
c2
(
b2 − x− y

2

)
+ cd

(
y
2 − 2ab

)
+ d2

(
a2 − z

8

))
h2

+
(
t2d2

(
b2 − x− y

2

)
+
(
y
2 − 2ab

)
cdt+ c2

(
a2 − z

8

))
δ2

+
(
−2cdt

(
b2 − x− y

2

)
+ (c2 + td2)

(
2ab− y

2

)
− 2cd

(
a2 − z

8

))
hδ

−
(

1
8z + w

)
2
5q
∨
X .

Imposing ι∗A1 = A2, we obtain a system whose solution is
x = 1

2b
2 − ab,

y = 2ab,

z = 4a2,

w = −a
2

2 .
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Recall that b is odd by Proposition 1.5.8, so x 6∈ Z, which is not possible. Since
by assumption we cannot have ι∗A1 = A1, one between A1 and A2 is zero, so
D1 ∩D2 is reduced and irreducible. If n > 1 is even, if there exists an i such
that ι∗Ai = Ai, we proceed as in the case of n odd, otherwise without loss of
generality we can assume that ι∗A1 = A2. Then, taking A := A1 + A2 and
B := A3 + · · · + An, we have ι∗A = A and ι∗B = B, which contradicts the
assumption. We conclude that D1 ∩D2 is reduced and irreducible.

We can now state the main theorem of this section.

Theorem 4.6.5. Let X be the Hilbert square of a generic K3 surface S2t of
degree 2t such that X admits an ample divisor D ∈ Div(X) with qX(D) = 2. Let
D1, D2 ∈ |D| be two distinct divisors.

(i) If t = 2, then the surface D1 ∩D2 can be reducible. If [D1 ∩D2] = A+B,
where [D1 ∩ D2] is the fundamental cohomological class of D1 ∩ D2 in
H2,2(X,Z), then the effective classes A and B are:

A = 1
2h

2 − 1
4δ

2 − 1
2hδ −

1
10q
∨
X ∈ H2,2(X,Z),

B = 1
2h

2 + 5
4δ

2 − 3
2hδ + 1

10q
∨
X ∈ H2,2(X,Z).

Moreover, if f : X = S
[2]
4 → G(1,P3) is the map seen in Section 4.4.1

and σ1,1, σ2 are the generators of H4(G(1,P3),Z), then A = f∗σ1,1 and
B = f∗σ2.

(ii) If t 6= 2, then D1 ∩D2 is a reduced and irreducible surface.

Proof. We begin with t = 2, so X = S
[2]
4 is the Hilbert square of a generic

smooth quartic surface of P3 and the class of D is h− δ ∈ Pic(X), where h is the
class induced by the ample generator of Pic(S4). By Lemma 4.6.4, the surface
D1 ∩D2 can be reducible only if there exist effective classes A,B ∈ H2,2(X,Z)
such that [D1∩D2] = A+B and ι∗(A) = A, ι∗(B) = B, where ι is the Beauville
involution. By Corollary 3.4.11 a basis of the lattice H2,2(X,Z) is given by
{h2, h

2−hδ
2 , 1

8

(
δ2 + 2

5q
∨
X

)
, 2

5q
∨
X} (we have again substituted δ2 in the basis given

by Corollary 3.4.11 with 2
5q
∨
X to simplify the computations). Hence we have

A =
(
x+ y

2

)
h2 + z

8δ
2 − y

2hδ +
(

1
8z + w

)
2
5q
∨
X ∈ H2,2(X,Z),

B =
(
1− x− y

2

)
h2 +

(
1− z

8

)
δ2 +

(
y
2 − 2

)
hδ −

(
1
8z + w

)
2
5q
∨
X ∈ H2,2(X,Z),

for some x, y, z, w ∈ Z.

• By assumption A and B are effective. Moreover, h ∈ Pic(X) is nef by
Theorem 4.1.1. Then by Theorem 1.1.14 we have

〈A, h2〉 ≥ 0, 〈B, h2〉 ≥ 0,

where 〈 · , · 〉 is the bilinear form of H4(X,Z) given in Proposition 3.1.5,
which coincides with the intersection pairing. We obtain the following
condition:

0 ≤ 12x+ 6y + z + 10w ≤ 10. (4.6.3)
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• Let σ ∈ H0(X,Ω2
X) be the symplectic form. Then, since A, and B are

effective classes in H2,2(X,Z) by assumption, we have∫
A

(σ + σ̄)2 = 2

∫
A

σ ∧ σ̄ ≥ 0,

∫
B

(σ + σ̄)2 = 2

∫
B

σ ∧ σ̄ ≥ 0,

since σ ∧ σ̄ ∈ H2,2(X) is a volume form on A and on B. Note that σ ∧ σ̄
can be zero on A or B, for instance when A or B are Lagrangian. Hence

〈A, (σ + σ̄)2〉 ≥ 0, 〈B, (σ + σ̄)2〉 ≥ 0.

Using (4.5.7) and (4.5.8) we obtain the following condition:

0 ≤ 4x+ 2y + z + 10w ≤ 2. (4.6.4)

• The class D is ample, and by assumption A and B are effective. Hence by
Theorem 1.1.12 we have

〈A,D2〉 > 0, 〈B,D2〉 > 0,

and we obtain the following condition:

0 < 40x+ 12y + 3z + 20w < 12. (4.6.5)

• By Theorem 4.3.1 and (4.5.11) we have

ι∗A =
(
9x+ 3

2y + 1
2z
)
h2

+
(
16x+ 2y + 9

8

)
δ2

−
(
24x+ 7

2y + 3
2z
)
hδ

+
(

1
8z + w

)
2
5q
∨
X .

Since ι∗A = A, we obtain the system
9x+ 3

2y + 1
2z = x+ y

2 ,

16x+ 2y + 9
8z = z

8 ,

24x+ 7
2y + 3

2z = y
2 ,

which gives the following condition

16x+ 2y + z = 0. (4.6.6)

We look for x, y, z, w ∈ Z which satisfy (4.6.3), (4.6.4), (4.6.5) and (4.6.6). Note
that (4.6.3) and (4.6.4) imply

−2 ≤ 8x+ 4y ≤ 10,

and since x, y ∈ Z we have

2x+ y ∈ {0, 1, 2}. (4.6.7)

• Suppose that 2x + y = 0. By (4.6.6) we have z = −12x, and (4.6.5)
becomes

0 < w − x < 3

5
.

Since w − x ∈ Z, this condition is never satisfied.
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• Suppose that 2x + y = 1. By (4.6.6) we have z = −12x − 2, and (4.6.5)
becomes

− 3

10
< w − x < 3

10
.

Since w − x ∈ Z, we get x = w, and (4.6.4) gives x ∈ {−1, 0}. We obtain
the following two solutions:

x = 0,

y = 1,

z = −2,

w = 0,

and


x = −1,

y = 3,

z = 10,

w = −1,

which coincide by Proposition 4.4.4 with the effective classes f∗σ1,1 and
f∗σ2 respectively. Moreover, with the same technique it is possible to show
that f∗σ1,1 and f∗σ2 are reduced and irreducible.

• The case 2x + y = 2 is symmetric to the case 2x + y = 0, i.e., if A is a
class obtained in this case, then A coincides with a class B obtained in the
case 2x+ y = 0. Since there are no classes in the case 2x+ y = 0, there
are no classes in the cases 2x+ y = 2.

We conclude that if D1 ∩D2 is a reducible surface, then it is reduced with two
irreducible components whose fundamental cohomological classes in H2,2(X,Z)
are f∗σ1,1 and f∗σ2.

Suppose now that t 6= 2. We want to show that the surface D1 ∩ D2 is
reduced and irreducible. By Lemma 4.6.4 it is enough to show that we cannot
have [D1 ∩D2] = A+B for effective A,B ∈ H2,2(X,Z) such that ι∗A = A and
ι∗B = B. The technique is the same seen before. Recall that D = bh−aδ, where
(a, b) is the minimal solution of the Pell-type equation Pt(−1). Since t 6= 2, we
have t ≥ 10 and a ≥ 3, see Remark 4.3.5. By Corollary 3.4.11 we can write

A =
(
x+ y

2

)
h2 + z

8δ
2 − y

2hδ +
(

1
8z + w

)
2
5q
∨
X ,

B =
(
b2 − x− y

2

)
h2 +

(
a2 − z

8

)
δ2 +

(
−2ab+ y

2

)
hδ −

(
1
8z + w

)
2
5q
∨
X ,

for some x, y, z, w ∈ Z.

• By assumption A and B are effective. Moreover, the class h is nef by
Theorem 4.1.1. Thus by Theorem 1.1.14 we have

〈A, h2〉 ≥ 0, 〈B, h2〉 ≥ 0.

We obtain the following condition:

0 ≤ 6tx+ 3ty + z + 10w ≤ 6tb2 − 2a2. (4.6.8)

• Let σ ∈ H0(X,Ω2
X) be the symplectic form. Since A and B are effective,

similarly to the case t = 2 we have

〈A, (σ + σ̄)2〉 ≥ 0, 〈B, (σ + σ̄)2〉 ≥ 0.

Using (4.5.7) and (4.5.8), and recalling that a2 − tb2 = −1, we obtain the
following condition:

0 ≤ 2tx+ ty + z + 10w ≤ 2. (4.6.9)
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• The class D is ample, and by assumption A and B are effective. Hence by
Theorem 1.1.12 we have

〈A,D2〉 > 0, 〈B,D2〉 > 0,

and we obtain, after some computations, the following condition:

0 < (4t+ 8t2b2)x+ (2t+ 4t2b2− 4abt)y+ (1 + tb2)z+ 20w < 12. (4.6.10)

• By Theorem 4.3.1 and (4.5.11) we have

ι∗A =
(
c2
(
x+ y

2

)
+ cd(−y2 ) + z

8d
2
)
h2

+
(
t2d2

(
x+ y

2

)
− cdty2 + c2 z8

)
δ2

+
(
−2cdt

(
x+ y

2

)
+ c2 y2 + td2 y

2 − 2cd z8
)
hδ

+
(

1
8z + w

)
2
5q
∨
X .

Since ι∗A = A we obtain the following condition:

8tdx+ 4(td− c)y + dz = 0. (4.6.11)

Note that (4.6.8) and (4.6.9) implies

−1

t
≤ 2x+ y ≤ 2b2 +

1

t
.

Since 2x+ y ∈ Z and t ≥ 10 we have

2x+ y ∈ {0, 1, . . . , 2b2}.

Note that, similarly to the case t = 2 seen above, a class A obtained by imposing
2x + y ∈ {b2 + 1, . . . , 2b2} coincide with a class B obtained for 2x + y ∈
{0, 1, . . . , b2}. Hence it suffices to study 2x + y ∈ {0, 1, . . . , b2}. Suppose that
2x+ y = k, where k ∈ {0, 1, . . . , , b2}. By (4.6.9) we have

−tk ≤ z + 10w ≤ 2− tk,

and since z + 10w ∈ Z we have

z + 10w ∈ {−tk,−tk + 1,−tk + 2}.

Suppose that z + 10w = −tk. Then (4.6.10) gives, after some computations,

−4t2b2k < −4abty + a2z < −4t2b2k + 12.

Since −4abty + a2z ∈ Z, we have

−4abty + a2z = −4t2b2k + h, h ∈ {1, 2, . . . , , 11}.

With the help of a computer we obtain

w =
−5a2tk + 2ha2 − 4tk + h

10a2
.
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Then w is an integer only if

4tk − h ≡ 0 (mod a2).

If k = 0, then −h ≡a2 0 only if h = 9 and a = 3, being a ≥ 3. This happens
only when t = 10, and we get w = 19

10 , which is not an integer. Suppose now
that k 6= 0. Since k ≤ b2, we have 4tk − h ≤ 4a2 + 4− h, hence in order to get
4tk − h ≡a2 0 we must have

4tk − h ∈ {a2, 2a2, 3a2, 4a2}.

If 4tk − h = a2, then

k =
tb2 + h− 1

4t
.

If h 6= 1, 11, then h − 1 is not divisible by t ≥ 10, and k is not an integer. If
h = 1, then k = b2

4 , which is not an integer by Proposition 1.5.8.
If h = 11, then h − 1 = 10 is divisible by t ≥ 10 if and only if t = 10, which
implies b = 1: thus k = 1

2 , which is not an integer.
In a similar way it is possible to show that all the other remaining cases are

not possible: we give details of these computations in Appendix B.
We conclude that there are no effective classes A,B ∈ H2,2(X,Z) such that

[D1 ∩D2] = A+B, hence D1 ∩D2 is a reduced and irreducible surface.

We conclude this chapter with two corollaries in the case t 6= 2, which are
the analogue of [O’G08b, Corollary 4.2]. Keep the notation given at the end
of Section 4.5.2. Let X0 := X \ B, which is open and dense in X, and let
Y0 := f(X0), which contains an open dense subset of Y . We then obtain a
regular map

f0 : X0 → Y0

by restricting f to X0.

Corollary 4.6.6. Let X and D be as in Theorem 4.6.5 with t 6= 2, and keep
notation as above. If L ⊂ P5 is a linear subspace of codimension at most 2, then
L ∩ Y0 is reduced and irreducible and, if non empty, it has pure codimension
equal to cod(L,P5).

Proof. The proof is the same as [O’G08b, Corollary 4.2, (i)]. If L ∼= P5, there
is nothing to prove. Let cod(L,P5) = 1. Denote by D1 ∈ |D| the divisor which
corresponds to L in the isomorphism |D|∨ ∼= P5. Then [D1 ∩X0] = f∗0L, where
[D1 ∩ X0] is the fundamental cohomological class of D1 ∩ X0 and f∗0 is the
pullback in cohomology. Since X0 is open and dense in X and f0 is surjective,
Proposition 4.6.3 implies the result.

Let cod(L,P5) = 2, so L = L1 ∩L2 with L1, L2 ⊂ P5 hyperplanes. As before,
let D1, D2 ∈ |D| the divisors which correspond to L1, L2 in the isomorphism
|D|∨ ∼= P5. We have [D1 ∩D2 ∩X0] = f∗0L, moreover X0 is an open and dense
subset of X and f0 is surjective, so the thesis follows from Theorem 4.6.5, (ii).

Corollary 4.6.7. Let X and D be as in Theorem 4.6.5 with t 6= 2. Then the
base locus B = Bs|D| has dimension at most 1. Let Bred be the reduced scheme
associated to B and B1

red be the union of the irreducible components of Bred of
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dimension 1. If D1, D2, D3 ∈ |D| are linearly independent, then D1 ∩D2 ∩D3

has pure dimension 1 and there exists a unique decomposition

[D1 ∩D2 ∩D3] = Γ + Σ, (4.6.12)

where Γ,Σ are effective 1-cycles such that

• Supp(Γ) ∩Bred is either 0-dimensional or empty,

• Supp(Σ) = B1
red.

Note that [D1 ∩ D2 ∩ D3] in the statement of Corollary 4.6.7 denotes the
fundamental cycle of D1 ∩D2 ∩D3, see [Ful13, §1.5].

Proof. Since by Theorem 4.6.5, (ii), the surfaceD1∩D2 is reduced and irreducible,
and D1, D2, D3 are linearly independent, the intersection D1 ∩D2 ∩D3 has pure
dimension 1 and the base locus has dimension at most 1.

We pass to the unicity of the decomposition (4.6.12). Let Γ0 ∈ Z1(X0) be
the fundamental cycle of (D1 ∩ D2 ∩ D3) \ B and Γ ∈ Z1(X) be its closure.
Since D1 ∩D2 ∩D3 ⊃ B and dim(B) ≤ 1, we obtain the desired decomposition
with this choice of Γ. Vice versa, if we have such a decomposition, then Γ is
necessarily the closure of Γ0 and so the decomposition is unique.

Remark 4.6.8. In Chapter 5 we will see the equality in (4.6.12), by abuse of
notation, as an equality between the cohomological class induced in H3,3(X,Z)
by [D1 ∩D2 ∩D3] and Γ + Σ.

4.6.3 Other birational models
Let S2t be a generic K3 surface of degree 2t and let X be a smooth birational
model of S[2]

2t . Then there is an isomorphism H2(S
[2]
2t ,Z) ∼= H2(X,Z) which is

compatible with the BBF forms by Theorem 2.2.39 and an isomorphism of graded
rings H∗(S[2]

2t ,Z) ∼= H∗(X,Z). Note that the image of the dual of the BBF form
of S[2]

2t under this isomorphism is the dual of the BBF form on X, being the
isomorphism compatible with the BBF forms. Moreover, the Hodge structures
of the cohomology groups of S[2]

2t and X are isomorphic. Let now t 6= 1, 5 such
that the Pell-type equations Pt(−1) and P4t(5) are solvable. Suppose that X
admits an ample divisor D with qX(D) = 2, so X is a variety denoted by X ′ in
Case 3 of Section 4.3. Recall that there exists an anti-symplectic involution ι
such that Aut(X) ∼= 〈ι〉 and ι∗(D) = D in Pic(X). We now see which of the
results obtained in Section 4.5.2, Section 4.6.1 and Section 4.6.2 hold also for
these varieties. We begin by stating the results which correspond respectively to
Theorem 4.5.11, Corollary 4.6.2 and Proposition 4.6.3.

Theorem 4.6.9. Let S2t be a generic K3 surface of degree 2t with t 6= 1, 5 such
that both the Pell-type equations Pt(−1) and P4t(5) are solvable. Let X be a
smooth birational model of S[2]

2t which admits an ample divisor D with qX(D) = 2.
Denote by ι : X → X the anti-symplectic involution which generates Aut(X)
and by F the fixed locus of ι. Then

[F ] = 5D2 − 2

5
q∨X ∈ H2,2(X,Z),
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where [F ] denotes the fundamental cohomological class of F in H2,2(X,Z).
Moreover, let ϕ|D| : X 99K P5 be the map induced by the complete linear system
|D|. Then the following diagram is commutative:

X P5

X/〈ι〉,

ϕ|D|

π

where π : X → X/〈ι〉 is the quotient map.

Proof. All the results of Section 4.5.2 stated before Theorem 4.5.11 hold also
for X. Recall that the Hodge structures of S[2]

2t and X are isomorphic. Then
the proof is the same of Theorem 4.5.11, since we have only used properties of
intersection numbers in H2,2(S

[2]
2t ,Z), which are preserved by the isomorphism

of graded rings H∗(S[2]
2t ,Z) ∼= H∗(X,Z), and we have remarked that in this

isomorphism q∨X corresponds to q∨
S

[2]
2t

.

Proposition 4.6.10. Let S2t be a generic K3 surface of degree 2t and X be a
smooth birational model of S[2]

2t . Consider a big and nef divisor D ∈ Div(X).
Then |D| has no fixed part.

Proof. Since the isomorphism H2(S
[2]
2t ,Z) ∼= H2(X,Z) is compatible with the

BBF forms, the proof is the same of Corollary 4.6.2.

Proposition 4.6.11. Let X and D be as in Theorem 4.6.9. Then every divisor
D′ ∈ |D| is reduced and irreducible.

Proof. Since the isomorphism H2(S
[2]
2t ,Z) ∼= H2(X,Z) is compatible with the

BBF forms, the proof is the same of Proposition 4.6.3. Moreover, pseudoeffective
classes are preserved by this isomorphism by Proposition 4.1.2, since clearly the
closure of the movable cone of S[2]

2t coincides with the closure of the movable
cone of X.

Let X and D be as in Theorem 4.6.9. Consider D1, D2 ∈ |D| two distinct
divisors. It is still an open problem to determine if the surface D1∩D2 is reduced
and irreducible. Indeed, if one tries to use the same procedure of the proof of
Theorem 4.6.5, if h ∈ Pic(S[2]

2t ) is the line bundle induced by the ample generator
of Pic(S2t), then h is not nef as a class of X, thus it is not clear if the products
〈A, h2〉 and 〈B, h2〉 are still both non-negative.
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Chapter 5

Geometric description of
〈2〉-polarised Hilbert squares
of generic K3 surfaces

In this chapter we prove the following theorem, which solves Problem 4.3.4
introduced in Section 4.3.

Theorem 5.0.1. Let X be the Hilbert square of a generic K3 surface S2t of
degree 2t such that X admits an ample divisor D with qX(D) = 2. Suppose that
t 6= 2, and denote by ι the anti-symplectic involution which generates Aut(X).
Then the complete linear system |D| is basepoint free, and the morphism

ϕ|D| : X → Y ⊂ P5

is a double cover whose ramification locus is the surface F of points fixed by ι.
Moreover, Y ∼= X/〈ι〉 and X is a double EPW sextic.

Such an X, as seen in Section 4.5.1, is also known as a 〈2〉-polarised Hilbert
square of a generic K3 surface. Double EPW sextics, introduced in Section 2.2.10,
are IHS manifolds of K3[2]-type. From now on we denote by f : X 99K Y ⊂ P5

the map induced by the complete linear system |D|, recall the notation given in
Section 4.5.2 and in Section 4.6.2. We will prove Theorem 5.0.1 in several steps,
which we now summarize.

(i) dim(Y ) = 4.

(ii) deg(f) · deg(Y ) ≤ 12 and the equality holds if and only if Bs|D| = ∅.

(iii) Either deg(f) = 2 and deg(Y ) = 6 or deg(f) = 4 and deg(Y ) = 3. In
particular, by Item (ii), Bs|D| = ∅ and f is a morphism.

(iv) The case deg(f) = 4 and deg(Y ) = 3 never holds.

(v) The variety X is a double EPW sextic.

Each step will be studied in a dedicated section. The structure of the proof is
similar to the case studied by O’Grady in [O’G08b], which we briefly recall. Two
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IHS manifolds M1 and M2 of dimension 2n are numerically equivalent if there is
an isomorphism of abelian groups

ψ : H2(M1,Z)
∼−→ H2(M2,Z)

such that ∫
M1

α2n =

∫
M2

ψ(α)2n

for all α ∈ H2(M1,Z). An IHS manifold M of dimension 4 is a numerical K3[2]

if it is numerically equivalent to S[2], where S is a K3 surface. Then O’Grady
showed the following, see [O’G08b, Theorem 1.1].

Theorem 5.0.2 (O’Grady). A numerical K3[2] is deformation equivalent to
one of the following.

(i) An IHS manifold X of dimension 4 carrying an anti-symplectic involution
ι : X → X such that the quotient X/〈ι〉 is isomorphic to an EPW sextic
Y ⊂ P5, hence X is a double EPW sextic.

(ii) An IHS manifold X of dimension 4 admitting a rational map f : X 99K P5

which is birational onto its image Y , with 6 ≤ deg(Y ) ≤ 12.

The first step of the proof of Theorem 5.0.2 is the following: using the
surjectivity of the period map and the projectivity criterion of Theorem 2.2.12,
a numerical K3[2] is deformation equivalent to a 4-dimensional IHS manifold X
such that:

(1) X admits an ample divisor H with qX(H) = 2.

(2) H1,1(X,Z) = Zh, where h = c1(OX(H)).

(3) If Σ ∈ Z1(X) is an integral algebraic 1-cycle on X and [Σ] ∈ H3,3(X,Q) is
its fundamental cohomological class, then [Σ] = mh3/6 for some m ∈ Z.

(4) If V ⊂ H4(X) is a rational sub Hodge structure, then VC = V1 ⊕ V2 ⊕ V3,
where V1 ⊂ Ch2 ⊕ Cq∨X , V2 is either 0 or equal to Ch ⊗ h⊥, where the
orthogonality is with respect to the BBF form, and V3 is either 0 or equal
to

W (h) := (q∨X)⊥ ∩ Sym2(h⊥),

where (q∨X)⊥ is the orthogonal with respect to the BBF form.

(5) If H4(X,Z)f is the torsion free quotient group of H4(X,Z), then the image
of h2 in H4(X,Z)f is indivisible.

(6) H2,2(X,Z)f ⊂ Zh2

2 ⊕ Z q∨X
5 .

Items (5) and (6) imply the so-called irreducibility property of |H|: the surface
D1 ∩D2, where D1, D2 ∈ |H| are distinct divisors, is reduced and irreducible,
see [O’G08b, Proposition 4.1]. The proof of this property is quite easy. This
corresponds to Theorem 4.6.5 in our case, which is much more complicated to
obtain: we have seen that the key point was the explicit description of the lattice
H2,2(S

[2]
2t ,Z) given by Corollary 3.4.11, where S2t is a generic K3 surface of

degree 2t, whose proof was basically the aim of the whole Chapter 3. Moreover,
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note that in our case Item (1) is true by assumption, Item (3) corresponds to
Theorem 3.5.6 and Item (5) can be shown to follow from Corollary 3.4.11. Since
we will not use this last property, we omit the proof. Using the ampleness of H
and the irreducibility property of |H|, O’Grady showed that one of the following
holds.

• Item (i) or Item (ii) of Theorem 5.0.2 holds.

• If f : X 99K P5 is the map induced by |H|, then Y = Im(f) is one of the
following.

(a) A 3-fold of degree at most 6.

(b) A 4-fold of degree at most 4.

Items (a) and (b) never hold, since they contradict either the irreducibility
of the surface D1 ∩ D2 or Item (4). This is not at all trivial, see [O’G08b]
for details. O’Grady could not show that Item (ii) of Theorem 5.0.2 never
holds, since under his assumptions the variety X does not admit necessarily
an anti-symplectic involution. In our case this holds by Theorem 4.3.1. Once
having obtained Corollary 3.4.11 and Theorem 4.6.5, the proof of Theorem 5.0.1
becomes much easier than the one of Theorem 5.0.2, thanks to the existence
of the anti-symplectic involution ι such that ι∗D = D, where D is the ample
divisor with qX(D) = 2. This will also show that a case similar to Item (ii) of
Theorem 5.0.2 never holds in our situation. Moreover, a variety X satisfying
the hypothesis of Theorem 5.0.1 is itself a double EPW sextic, and not only
deformation equivalent to a double EPW sextic, giving a strong geometric
characterization.

5.1 Step 1: dim(Y ) = 4

We begin by showing that dim(Y ) = 4. Recall the following classical result.

Proposition 5.1.1 (Proposition 0 in [EH87]). If X ⊂ Pr is a non-degenerate
variety, then deg(X) ≥ 1 + cod(X,Pr).

First of all, we prove an analogue of [O’G08b, Corollary 4.3]. Keep the
notation given at the end of Section 4.5.2 and before Corollary 4.6.6.

Proposition 5.1.2. Let X and D be as in Theorem 4.6.5 with t 6= 2. Consider

f : X 99K Y ⊂ P5,

the map induced by the complete linear system |D|. Then dim(Y ) ∈ {3, 4}.

Proof. Clearly we have 1 ≤ dim(Y ) ≤ 4. Suppose that dim(Y ) = 1: then Y is
a non-degenerate irreducible curve in P5, hence by Proposition 5.1.1 we have
deg(Y ) ≥ 5. Let L ⊂ P5 be a generic hyperplane. Then Y0 ∩ L is given by
deg(Y ) points, where Y0 was introduced before Corollary 4.6.6, since Y0 contains
an open dense subset of Y . By Corollary 4.6.6 this is irreducible and reduced,
hence we have a contradiction.

Suppose now that dim(Y ) = 2, so Y is a non-degenerate irreducible surface
in P5. By Proposition 5.1.1 we have deg(Y ) ≥ 4. Let L ⊂ P5 be a generic linear
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subspace of codimension 2. Then Y0 ∩ L is given by deg(Y ) points, since by
construction Y0 contains an open dense subset of Y . But this is irreducible and
reduced by Corollary 4.6.6, and we obtain a contradiction. We conclude that
dim(Y ) is either 3 or 4.

We now focus on the case dim(Y ) = 3. We want to show that this never
holds. First of all, similarly to [O’G08b, Proposition 4.5], we give boundaries to
the value deg(Y ).

Proposition 5.1.3. Keep notation as above and suppose that dim(Y ) = 3.
Then 3 ≤ deg(Y ) ≤ 6. Moreover, if deg(Y ) = 6, then the base locus Bs|D| is
0-dimensional.

Proof. Let dY := deg(Y ). Since Y ⊂ P5 is a non-degenerate subvariety, from
Proposition 5.1.1 we have dY ≥ 3. Let now L1, L2, L3 ⊂ P5 be three generic
hyperplanes. Then the intersection Y ∩L1 ∩L2 ∩L3 is transverse and it is given
by dY points, which we call p1, . . . , pdY . Let Γ0,i := f−1

0 (pi) for i = 1, . . . , dY ,
and let Γi be the closure of Γ0,i in X. Let D1, D2, D3 ∈ |D| be the divisors
which correspond to L1, L2, L3 in the isomorphism |D|∨ ∼= P5. Since L1, L2, L3

are generic, D1, D2, D3 are linearly independent, and by Corollary 4.6.7 we have

[D1 ∩D2 ∩D3] =

dY∑
i=1

Γi + Σ, (5.1.1)

where the equality is in H3,3(X,Z), see Remark 4.6.8, and we write by abuse
of notation Γi and Σ for their classes in H3,3(X,Z). Recall that D = bh − aδ
with (a, b) minimal solution of the Pell-type equation Pt(−1), and b is odd by
Proposition 1.5.8. Similarly to Example 3.5.3 we get D∨ = bh∨−2aδ∨. Moreover,
as remarked in Section 4.5.1 the divisibility of D in H2(X,Z) is div(D) = 1,
hence by Proposition 3.5.1 we have

D ·D∨ =
(
bh− aδ, bh− 2

a

2
δ
)

= 2.

Since D1, D2, D3 ∈ |D| and ι∗D ∼= D, we have

ι∗[D1 ∩D2 ∩D3] = [D1 ∩D2 ∩D3],

where [D1 ∩D2 ∩D3] is the fundamental cohomological class of D1 ∩D2 ∩D3

in H3,3(X,Z), hence
dY∑
i=1

ι∗Γi + ι∗Σ =

dY∑
i=1

Γi + Σ.

We know from Theorem 4.3.1 that the only class in Pic(X) which is fixed
by the anti-symplectic involution ι is D. Since from Theorem 3.5.6 we have
H3,3(X,Z) ∼= Zh∨6 ⊕ Zδ∨6 , the only class fixed by the action induced by ι on
H3,3(X,Z) ∼= H1,1(X,Z) is D∨. Moreover, from Theorem 4.5.11 we know that f
factors through the quotient by ι, so ι∗Γi ∼= Γi, since Γi = f−1

0 (pi). Then the
class of Γi is either some positive multiple ofD∨, or it is of the form Γi = Γ′i+ι

∗Γ′i,
where Γ′i is an effective class. Since qX(D) = 2, which gives

∫
X
c1(OX(D))4 = 12

by Theorem 2.2.4 and Proposition 2.2.8, we have

12 = 〈D,
dY∑
i=1

Γi + Σ〉.
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Note that 〈D,Γi〉 is either 〈D,αD∨〉 = 2α, where α ∈ Z≥1, or 〈D,Γ′i+ ι∗Γ′i〉 ≥ 2,
being D ample. Hence 12 ≥ 〈D,Σ〉+ 2dY , i.e.,

dY ≤ 6.

Moreover, if dY = 6, then Σ = 0, otherwise 〈D,Σ〉 > 0 by Theorem 1.1.12, thus
the base locus Bs|D| is 0-dimensional, since the 1-dimensional component of
Bs|D| is contained in Σ by Corollary 4.6.7.

Note that in the proof of Proposition 5.1.3 the anti-symplectic involution ι
is strongly used, together with the fact that f factors through the quotient
π : X → X/〈ι〉. This gives some differences with the analogue result by O’Grady
in [O’G08b, Proposition 4.5]. We now recall the definition of linearly normal
variety.

Definition 5.1.4. Let Y ⊆ Pn be a closed irreducible subvariety of Pn. Then
Y ⊆ Pn is linearly normal for the given embedding if the natural map

H0(Pn,OPn(1))→ H0(Y,OY (1))

is surjective.

Geometrically an irreducible variety Y ⊆ Pn is linearly normal if it cannot
be obtained by a linear projection from a projective space of higher dimension,
except the trivial case of being contained in a proper linear subspace. Note that
if f : X 99K Pn is the map induced by a complete linear system |D| on X and
Y := Im(f̃), where we denote by f̃ : X̃ → Pn the morphism which resolves the
indeterminacies of the map f , then Y ⊆ Pn is linearly normal by definition of
map induced by a complete linear system, see also Theorem 1.1.8 applied to f̃ .

We now come back to our problem. We have shown that if dim(Y ) = 3, then
Y ⊂ P5 is a non-degenerate irreducible subvariety of degree at most 6. Moreover,
since it is obtained from the map induced by a complete linear system, it is
linearly normal. We prove that this is in contradiction with Corollary 4.6.6. We
follow [O’G08b, §5]. The key point is the following result obtained by O’Grady,
see [O’G08b, Proposition 5.1].

Proposition 5.1.5 (O’Grady). Let Y ⊂ P5 be a 3-dimensional non-degenerate
linearly normal subvariety of degree at most 6.

(i) If deg(Y ) ≤ 5, then given an arbitrary non-empty subset U ⊂ Y there
exists a 3-dimensional linear subspace L ⊂ P5 such that L ∩ U is reducible.

(ii) If deg(Y ) = 6 then there exists a 3-dimensional linear subspace L ⊂ P5

such that L ∩ Y is not reduced or reducible.

We omit the proof of Proposition 5.1.5. We can now show the main result of
this section, which is the analogue of [O’G10, §5].

Proposition 5.1.6. Let X and D be as in Theorem 4.6.5 with t 6= 2. Consider

f : X 99K Y ⊂ P5

the map induced by the complete linear system |D|. Then dim(Y ) = 4.
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Proof. By Proposition 5.1.2 we know that dim(Y ) is either 3 or 4. If dim(Y ) = 3,
by Proposition 5.1.3 we have 3 ≤ deg(Y ) ≤ 6. Suppose that deg(Y ) ≤ 5. We
denote by U ⊂ Y the interior of Y0. Then U 6= ∅, and by Proposition 5.1.5
there exists a 3-dimensional linear subspace L ⊂ P5 such that L∩U is reducible.
Moreover, U is an open subset of Y0, so L ∩ Y0 is reducible, which contradicts
Corollary 4.6.6.

Suppose now that deg(Y ) = 6. First of all, we show that Y = Y0. By
Proposition 5.1.3 we have dim(Bs|D|) = 0. Let n be a positive integer such
that nD is very ample, and let D1 ∈ |nD| be a generic divisor. Since the
base locus is given by a finite number of points, we can choose D1 such that
Supp(D1) ⊂ X \B = X0. We show that f0(D1) = Y . Since dim(Y0) = 3, by the
fiber dimension theorem, see [Har13, Exercise II.3.22], the generic fiber of f0 has
dimension 1. Hence D1 intersects a generic fiber in a finite number of points. In
particular f0(D1) has dimension 3. Since f0(D1) is a closed subset of Y and the
variety Y is irreducible of dimension 3, we have f0(D1) = Y , hence Y = Y0. Now,
since Y is an irreducible, non-degenerate, linearly normal variety and deg(Y ) = 6,
by Proposition 5.1.5 there exists a 3-dimensional linear subspace L ⊂ P5 such
that L ∩ Y0 is not reduced or not irreducible. This contradicts Corollary 4.6.6.
We conclude that dim(Y ) = 3 does not hold, so dim(Y ) = 4.

5.2 Step 2: deg(f) · deg(Y ) ≤ 12

Keep notation as above. We have seen that, if f : X 99K Y ⊂ P5 is the map
induced by the complete linear system |D|, then Y has dimension 4. We now
state the analogues of [O’G08b, Proposition 4.6] and [O’G08b, Corollary 4.7].

Proposition 5.2.1. Keep notation as above. Let D1, D2, D3, D4 ∈ |D| be
generic divisors, in particular we assume that D1, D2 and D3 are linearly inde-
pendent. Let Γ and Σ be the effective 1-cycle of Corollary 4.6.7. Then

deg(Y ) · deg(f) +
∑

p∈Bred

multp (Γ ·D4) +

∫
Σ

c1(OX(D)) = 12. (5.2.1)

Proof. The sum which appears in (5.2.1) is finite since Supp(Γ) ∩Bred is either
0-dimensional or empty by Corollary 4.6.7. Let L1, L2, L3, L4 ⊂ P5 be the
hyperplanes which correspond to D1, D2, D3, D4 in the isomorphism |D|∨ ∼= P5.
Since D1, D2, D3, D4 are generic, also L1, L2, L3, L4 are generic. Let f̃ : X̃ → P5

be the resolution of f : X 99K P5 and let Z ⊂ Y be the subset of points p
such that dim(f̃−1(p)) > 0. If E ⊂ X̃ is the exceptional divisor of the blow-up
β : X̃ → X in the base locus Bs|D|, then Z = f̃(E) because D is ample, thus
no curve in X \ B is contracted. This implies that dim(Z) ≤ 2. Moreover, f̃
is a projective morphism, hence it is a closed map, so Z is closed and we get
the inequality dim(f̃(supp(E))) ≤ dim(supp(E)) = 3. Since L1, L2, L3, L4 are
generic, we have

∅ = L1 ∩ L2 ∩ L3 ∩ L4 ∩ Z = L1 ∩ L2 ∩ L3 ∩ L4 ∩ f̃(E) (5.2.2)

and
|L1 ∩ L2 ∩ L3 ∩ L4 ∩ Y | <∞. (5.2.3)
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From (5.2.3) the effective divisors f̃∗L1, . . . f̃
∗L4 intersect properly on X̃, and

(5.2.2) shows that this intersection is contained in the open subset X0, seen as a
subset of X̃. We obtain

deg(Y )·deg(f) = f̃∗L1 ·f̃∗L2 ·f̃∗L3 ·f̃∗L4 =
∑
p∈X0

multp(D1 ·D2 ·D3 ·D4). (5.2.4)

By the decomposition of Corollary 4.6.7 and qX(D) = 2, which implies as already
seen

∫
X
c1(OX(D))4 = 12, we have

12 =

∫
X

c1(OX(D))4 = (Γ + Σ) ·D = Γ ·D4 +

∫
Σ

c1(OX(D)). (5.2.5)

Since supp(Σ) = B1
red, the restrictions of Γ and [D1 ∩D2 ∩D3] to X0 coincide,

so we obtain

Γ ·D4 =
∑
p∈X0

multp(D1 ·D2 ·D3 ·D4) +
∑

p∈Bred

multp(Γ ·D4). (5.2.6)

From (5.2.4), (5.2.5) and (5.2.6) we get

deg(Y ) · deg(f) +
∑

p∈Bred

multp(Γ ·D4) +

∫
Σ

c1(OX(D)) = 12,

which is exactly (5.2.1).

Corollary 5.2.2. Keep notation as above. Then

deg(Y ) · deg(f) ≤ 12

with equality if and only if Bs|D| = ∅, i.e., if and only if f is a morphism.

Proof. Since D is ample and Σ is either effective or empty, by Theorem 1.1.12
we have

∫
Σ
c1(OX(D)) ≥ 0, and the equality holds if and only if Σ is the empty

set. Clearly deg(Y ) · deg(f) ≥ 0 and∑
p∈Bred

multp(Γ ·D4) ≥ 0,

thus Proposition 5.2.1 implies deg(Y ) · deg(f) ≤ 12.
Suppose that Bs|D| = ∅. We have∑

p∈Bred

multp(Γ ·D4) = 0, Σ = ∅,

hence Proposition 5.2.1 implies deg(Y ) · deg(f) = 12.
Suppose now that deg(Y ) · deg(f) = 12. If Σ 6= ∅, by Theorem 1.1.12 we
have

∫
Σ
D > 0, which contradicts Proposition 5.2.1. Hence we get Σ = ∅ and

[D1 ∩D2 ∩D3] = Γ, and supp(B) ⊆ supp(Γ). By Definition 1.1.21 we also have
supp(B) ⊆ supp(D). Then every point p ∈ supp(B) is in supp(D) ∩ supp(Γ).
Since by assumption deg(Y ) ·deg(f) = 12, we have that Proposition 5.2.1 implies∑

p∈suppB

multp(D · Γ) = 0

We conclude that Bs|D| = ∅.
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5.3 Step 3: the divisor D is basepoint free
We now study the possible values that deg(Y ) and deg(f) can take.

Proposition 5.3.1. Let X and D be as in Theorem 4.6.5 with t 6= 2. Then |D|
is basepoint free, i.e., Bs|D| = ∅. Moreover, if f : X → Y ⊂ P5 is the morphism
induced by |D|, one of the following holds.

(i) deg(f) = 2 and deg(Y ) = 6.

(ii) deg(f) = 4 and deg(Y ) = 3.

Proof. Recall that the following diagram is commutative by Theorem 4.5.11:

X Y ⊂ P5

X/〈ι〉,

f

π f̄

where ι is the anti-symplectic involution which generates Aut(X). In particular
by Corollary 4.5.12 we know that deg(f) is even. Suppose that deg(f) = 2. In
this case deg(f̄) = 1, so f̄ is birational. As observed by O’Grady in the proof of
[O’G08b, Proposition 4.9], if σ is the symplectic form on X, since ι∗(σ) = −σ
we have ι∗(σ ∧ σ) = σ ∧ σ, so if W is any desingularization of X/〈ι〉, we have
H0(W,ωW ) 6= 0 and so H0(Ỹ , ωỸ ) 6= 0, where Ỹ is any desingularization of
the variety Y . Alternatively, in our case from [CGM19, §3] we know that a
desingularization of X/〈ι〉 is a Calabi–Yau variety W , see Section 4.5.2, so
H0(W,ωW ) ∼= C, hence H0(Ỹ , ωỸ ) ∼= C for a desingularization of Y . By
[O’G08b, (4.0.30)] we have

H0(ωỸ ) = H0(IZ(deg(Y )− 6)),

where Z ⊂ P5 is a subscheme supported on sing(Y ). Since H0(ωỸ ) ∼= C, we have
deg(Y ) ≥ 6. By Corollary 5.2.2 we conclude that deg(Y ) = 6 and deg(f) = 2,
hence Bs|D| = ∅.

The remaining cases to analyse are the following:

(i) deg(Y ) = 2.

(ii) deg(Y ) = 3, deg(f) = 3, Bs|D| 6= ∅.

(iii) deg(Y ) = 3, deg(f) = 4, Bs|D| = ∅.

(iv) deg(Y ) = 4, deg(f) = 3, Bs|D| = ∅.

(v) deg(Y ) = 6, deg(f) = 2, Bs|D| = ∅.

By Corollary 4.5.12, cases (ii) and (iv) are not possible. Consider case (i), so we
suppose that deg(Y ) = 2, i.e., Y is a quadric hypersurface. We show that there
exists a 3-dimensional linear subspace L ⊂ P5 such that L ∩ Y , and so L ∩ Y0,
is reducible. We show it for Y of rank 6, the other cases are similar. We can
suppose that in the homogeneous coordinates (x0 : · · · : x5) of P5 the quadric Y
is represented by the zero locus of the homogeneous polynomial x2

0 +x2
1 + · · ·+x2

5.
If L is obtained as the intersection of the hyperplanes H1 and H2 represented
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by the polynomials x0 + ix1 and x2 + ix3 respectively, then Y ∩H1 ∩H2 can
be represented by (x4 + ix5)(x4 − ix5), i.e., Y ∩ H1 ∩ H2 is reducible. This
contradicts Corollary 4.6.6, hence we conclude that (i) is not possible. The only
remaining possible cases are (iii) and (v), in particular we have Bs|D| = ∅.

Note that we have again strongly used the anti-symplectic involution ι and
the fact that f factors through the quotient π : X → X/〈ι〉. This simplifies the
situation, compared to the one in [O’G08b], where much longer discussions are
needed to show that Items (ii) and (iv) never hold.

5.4 Step 4: deg(Y ) = 6 and deg(f) = 2

Keep notation as above. The aim of this section is to prove that deg(Y ) = 6
and deg(f) = 2. Before doing that, we remark that we cannot proceed following
[O’G08b, §5.5]. In that case, the fact that the variety considered is a deformation
of the Hilbert square of a K3 surface plays a central role in the proof. If M
is an IHS manifold of K3[2]-type and h ∈ H1,1(M,Q) is an element such that
qM (h) 6= 0, then O’Grady shows that H4(M,C) can be decomposed as

H4(M,C) =
(
Ch2 ⊕ Cq∨M

)
⊕
(
Ch⊗ h⊥

)
⊕W (h),

where the orthogonality is with respect to the BBF form and

W (h) := (q∨M )⊥ ∩ Sym2(h⊥),

where (q∨M )⊥ is the orthogonal with respect to the intersection product. As
already seen, O’Grady takes an IHS variety X deformation equivalent to M
such that properties (1)-(6) seen in the introduction to this Chapter hold. In
particular property (4), which we now recall, is strongly used in the proof. See
[O’G08b, Proposition 3.2, Lemma 3.3] for more details.

• If V ⊂ H4(X) is a rational sub Hodge structure, then VC = V1 ⊕ V2 ⊕ V3,
where V1 ⊂

(
Ch2 ⊕ Cq∨X

)
, V2 is either 0 or equal to Ch ⊗ h⊥ and V3 is

either 0 or equal to W (h).

In our case, there is no reason why a similar result holds, without deforming
the variety X = S

[2]
2t that we are studying. In our setting we exploit once again

the anti-symplectic involution ι and Theorem 4.5.11. Recall that we have the
following commutative diagram:

X Y ⊂ P5

X/〈ι〉.

f

π f̄

Note that f is a morphism by Proposition 5.3.1.

Proposition 5.4.1. Let X and D be as in Theorem 4.6.5 with t 6= 2. Then the
morphism f : X → Y ⊂ P5 induced by the complete linear system |D| is such
that deg(f) = 2 and deg(Y ) = 6.
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Proof. By Proposition 5.3.1 it suffices to show that deg(f) = 4 and deg(Y ) = 3
never holds. Suppose by contradiction that deg(f) = 4 and deg(Y ) = 3. First
we show that Y ⊂ P5 is a normal variety. Since Y ⊂ P5 is a hypersurface,
then by [Har13, Proposition II.8.23] we have that Y is normal if and only if
codY (Sing(Y )) ≥ 2 . Suppose that dim(Sing(Y )) = 3. Note that Y does not
contain planes, otherwise we would get a contradiction with Corollary 4.6.6.
As observed by O’Grady in [O’G08b, Claim 5.10], since in P5 hyperplanes and
quadrics contain planes, a cubic hypersurface of P5 which is either non reduced
or reducible contains planes. Hence in our case Y is reduced and irreducible.
Then, as in [O’G08b, Lemma 5.17], the intersection between the variety Y and a
generic plane of P5 is a singular cubic curve which is reduced and irreducible. In
particular this has only one singular point, so Sing(Y ) has exactly one irreducible
component Σ ∼= P3 of degree 1. Thus Y ⊃ Σ, and it contains planes. This
contradicts Corollary 4.6.6. We conclude that codY (Sing(Y )) ≥ 2, hence Y is
normal.

Since deg(f) = 4 by assumption, by the commutativity of the diagram above
we have deg(f̄) = 2. Let Ỹ := X/〈ι〉. Since X is smooth and Aut(X) ∼= 〈ι〉 is
a finite group, the quotient Ỹ is a normal variety. Both Ỹ and Y are normal
varieties, hence by Remark 1.6.2 there is a non trivial involution τ : Ỹ → Ỹ
such that Y ∼= Ỹ /τ . We show that τ lifts to an automorphism on X. We use a
technique from [O’G13, p.179] and [DK18, Proposition B.8]. Let F = Fix(ι) be
the fixed locus of the anti-symplectic involution ι. Since Sing(Ỹ ) = π(F ) and τ is
an automorphism on Ỹ , we have τ(Sing(Ỹ )) = Sing(Ỹ ). Let Y ′ := Ỹ \ Sing(Ỹ ).
Then the restriction of τ to Y ′ gives an involution τ |Y ′ : Y ′ → Y ′ of Y ′. We
set τ ′ := τ |Y ′ . Since codX(F ) = 2 and X is simply connected, we have that
X ′ := X \ F is simply connected. Thus if we restrict π to X ′ we obtain the
following universal cover:

π′ := π|X′ : X ′ → Y ′.

Then by the lifting criterion we have that τ ′ lifts to an automorphism on X ′.
Thus we obtain a birational map τ̃ : X 99K X which is not defined a priori on
the fixed locus F . By Theorem 4.3.2 we have Bir(X) ∼= Aut(X) ∼= 〈ι〉, so τ̃
is either the identity or ι. This implies that the involution τ : Ỹ → Ỹ is the
identity, which is a contradiction. We conclude that deg(f̃) cannot be 2, hence
we get deg(f) = 2 and deg(Y ) = 6.

5.5 Step 5: the variety S [2]
2t is a double EPW sextic

Keep notation as above. In order to complete the proof of Theorem 5.0.1, we
show that Y ⊂ P5 is an EPW sextic and that f can be identified with the natural
double cover of an EPW sextic. We need a result in [O’G06]. We first recall the
definition of numerical (K3)[2] from [O’G08b].

Definition 5.5.1. An irreducible symplectic 4-fold X is a numerical (K3)[2] if
there exists a K3 surface S and an isomorphism of abelian groups

ψ : H2(X,Z)
∼−→ H2(S[2],Z)

such that ∫
M

α4 =

∫
S[2]

ψ(α)4
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for all α ∈ H2(X,Z).

Recall the definition of double EPW sextics and the notation introduced in
Section 2.2.10. We have the following result, see [O’G06, Theorem 1.1].

Theorem 5.5.2 (O’Grady). Let X be a numerical (K3)[2] and H be an ample
divisor on X such that qX(H) = 2. Suppose that there exists an anti-symplectic
involution ι : X → X and denote by Y := X/〈ι〉 the quotient. Assume that
Bs|D| = ∅ and that the morphism induced by the complete linear system |H| is
the composition of the quotient map f : X → Y and an embedding Y ↪→ |H|∨.
Then there exists A ∈ LG(

∧3
V6) such that f : X → Y is identified with the

natural double cover XA → YA.

We can finally prove Theorem 5.0.1.

Proof of Theorem 5.0.1. By Proposition 5.4.1 the morphism

f : X → Y ⊂ P5

induced by the complete linear system |D| has degree 2 and deg(Y ) = 6. More-
over, we have obtained the following commutative diagram

X Y ⊂ P5

X/〈ι〉.

f

π f̄

where π : X → X/〈ι〉 is the quotient with respect to ι, the anti-symplectic
involution which generates Aut(X). Thus we apply Theorem 5.5.2, and we
obtain that X is a double EPW sextic.
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Chapter 6

Future perspectives

In this chapter we present some open problems concerning the topics studied in
this thesis.

6.1 Problem 4.3.4 for birational models of S [2]
2t

Theorem 5.0.1 gives a geometric description of Hilbert squares X = S
[2]
2t of

generic K3 surfaces of degree 2t admitting an ample divisor D with qX(D) = 2:
if t 6= 2, the complete linear system |D| induces a morphism of degree 2 which is
the double cover of an EPW sextic, so X is a double EPW sextic. These are the
varieties appearing in Case 1 in Section 4.3. However, Problem 4.3.4 is still open
for varieties of Case 3 in Section 4.3, i.e., when X is a smooth birational model of
the Hilbert square S[2]

2t , where t is such that both Pt(−1) and P4t(5) are solvable,
and X admits an ample divisor D with qX(D) = 2. The problem is that we do
not know if Theorem 4.6.5 holds in this case: in the proof given for varieties
of Case 1 we use the nefness of h ∈ Pic(S[2]

2t ), the class induced by the ample
generator of Pic(S2t), but this class is not nef when seen as a class for varieties
appearing in Case 3, see Figure 4.3.3. By Theorem 2.2.40 we know that X is
a elementary Mukai flop of S[2]

2t . Using the notation introduced in the proof of
Theorem 4.6.5, if one shows that the products 〈A, h2〉 and 〈B, h2〉 are still non
negative, then the result holds, together with all the statements of Chapter 5,
so D is basepoint free and the variety X is a double EPW sextic. Otherwise, if
one shows that the surface D1 ∩D2 is not reduced or not irreducible for some
distinct divisors D1, D2 ∈ |D|, then the procedure of Chapter 5 cannot be used.
In this case, we expect that the variety X has a different and special description,
as seen for the case t = 2 in Section 4.4.1. Moreover, in such a case we conjecture
that the surface D1 ∩D2 contains as a component the subvariety P ∗ ⊂ X, where
we denote by P ∗ the dual of the subvariety P ⊂ S

[2]
2t where the Mukai flop is

performed, and P ∗ can be the base locus of the complete linear system |D|, if
this is not empty.

Problem. Solve Problem 4.3.4 for varieties appearing in Case 3 in Section 4.3.
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6.2 Pseudoeffective cone of 2-cycles
Consider Theorem 4.6.5. The technique used in the proof exploits necessary con-
ditions for the psedoeffectiveness of a class in H2,2(S

[2]
2t ,Z), i.e., if the procedure

gives a decomposition

[D1 ∩D2] = A+B ∈ H2,2(S
[2]
2t ,Z)

where D1, D2 ∈ |D| are distinct divisors and A,B ∈ H2,2(S
[2]
2t ,Z), then it can

happen that A and B are not effective. This is why in the case t = 2 once we have
obtained such a decomposition we have remarked that A = f∗σ1,1 and B = f∗σ2,
where f : S

[2]
4 → G(1,P3) is the map described in Section 4.4.1 and σ1,1 and σ2

are the generators of H4(G(1,P3),Z): since σ1,1 and σ2 are effective, A and B
are effective. Let now t = 5, the special case studied in Section 4.4.2: the big
and nef divisor D with class h − 2δ is not ample and qX(D) = 2. Repeating
the procedure of the proof of Theorem 4.6.5, we obtain the following possible
decomposition:

[D1 ∩D2] = 2A+B ∈ H2,2(S
[2]
10 ,Z),

A = 1
2h

2 + 25
8 δ

2 − 5
2hδ + 1

20q
∨
X ∈ H2,2(S

[2]
10 ,Z),

B = − 9
4δ

2 + hδ − 1
10q
∨
X ∈ H2,2(S

[2]
10 ,Z).

Note that A is the class of a 2-dimensional subvariety P ⊂ S
[2]
10 with P ∼= P2,

see (3.4.4) and [Bak15, p.17], hence A is effective. We do not know if B is
effective or not. This shows that in general it could be useful to have more
information on the pseudoeffective cone of 2-cycles Eff2(S

[2]
2t ). There are some

results on effective classes of IHS manifolds: if S is a K3 surface, then the classes
of Lagrangian surfaces contained in S[2] lie in the boundary of Eff2(S[2]), see
[Ott15, Proposition 2.3], and if S2t is a generic K3 surface, then the Chern
classes ck(S

[2]
2t ) are not big for 1 ≤ k ≤ n, see [Ott15, Lemma 2.5]. In the case of

Hilbert squares of generic K3 surfaces, it could be interesting to understand if
Theorem 4.2.3 can be useful. Note that describing explicitly Eff2(S

[2]
2t ) could be

very hard: this is a cone in the 4-dimensional vector space H2,2(S
[2]
2t ,Q).

Problem. Find information on Eff2(S
[2]
2t ) for a generic K3 surface S2t.

6.3 Generalize Problem 4.3.4 to K3[n]

It is natural to study Problem 4.3.4 for Hilbert schemes of n points on generic
K3 surfaces, where n ≥ 3. Cattaneo obtained in [Cat19] a complete description
of the group of biregular automorphisms Aut(S[n]

2t ) of the Hilbert scheme of n
points on a generic K3 surface S2t of degree 2t. If the integer t > 0 respects
some numerical conditions, then Aut(S[n]

2t ) is generated by a non-symplectic
involution which fixes the class of an ample divisor D with square 2 with respect
to the BBF form. In [BC20] Beri and Cattaneo described the group of birational
automorphisms Bir(S[n]

2t ). Starting from these results, we can try to study the
following problem.
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Problem. Let S2t be a generic K3 surface of degree 2t and let X be a smooth
birational model S[2]

2t which admits an ample divisor D with qX(D) = 2. Deter-
mine Bs|D| and describe geometrically the map induced by the complete linear
system |D|:

ϕ|D| : X 99K PN .

As for n = 2, the group of biregular automorphisms on such an X is generated
by an anti-symplectic involution which fixes the class of the ample divisor D. We
wonder if, similarly to the case n = 2 in Theorem 4.5.11, the map ϕ|D| factors
through the quotient X → X/〈ι〉. Moreover, we have seen in Theorem 5.0.1 that,
for n = 2, the Hilbert square S[2]

2t admitting an ample divisor D with qX(D) = 2
with t 6= 2 is a double EPW sextic. If t = 2, then ϕ|D| is a finite morphism of
degree 6 with image the Grassmannian G(1,P3). What makes the case t = 2
different from the others is the fact that the surface D1 ∩D2, for D1, D2 ∈ |D|,
can be reducible, while for t 6= 2 this is always reduced and irreducible, as seen
in Theorem 4.6.5. For n = 3 we expect that special examples arise whenever
a similar property of reducibility holds. In order to study such a problem, we
need to explicitly describe the lattice Hi,i(S

[n]
2t ,Z) for every 1 ≤ i ≤ 2n− 1. In

general it could be complicated to obtain a description which does not depend
directly on Nakajima operators, as in Corollary 3.4.11.

Problem. Let S2t be a generic K3 surface of degree 2t. Describe the lattice
Hi,i(S

[n]
2t ,Z) for n ≥ 3 and 1 ≤ i ≤ 2n − 1. Study the same problem for any

projective K3 surface S.

6.4 Base loci of other complete linear systems

Let X := S
[2]
2t be the Hilbert square of a generic K3 surface S2t. We denote by

h ∈ Pic(X) the class induced by the ample generator of Pic(S2t). If t = 1, then
Rieß in [Rie20] showed that the only big and nef divisor which is not basepoint
free is 2h− δ, whose base locus is isomorphic to P2. Moreover, X admits another
smooth birational model X ′, whose big and nef divisors are all basepoint free.
For t = 2 and t = 5, by Proposition 4.4.5 and Proposition 4.4.9 every big and
nef divisor on X is basepoint free. We would like to describe the base loci of
big and nef divisors for other values of t. The examples seen above make us
conjecture the following.

Conjecture. Let X = S
[2]
2t be the Hilbert square of a generic K3 surface. Suppose

that D is a big and nef divisor on X. Then the base locus Bs|D| is either empty
or isomorphic to a disjoint union of copies of P2.

Clearly it is enough to study the problem for divisors whose classes belong
to the Hilbert basis of the nef cone.
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Example 3.4.2: code

We present the Sage program used in Example 3.4.2: I thank Simon Brandhorst
for useful explanations and clarifications on Sage and on this code. The Sage
packages used are:
sage.modules.free_quadratic_module_integer_symmetric,
sage.modules.torsion_quadratic_module.

sage: M=matrix(ZZ, 4, 4, [[12, 6, 2, -4], [6, 2, 1, -2], [2, 1, 1, -1],
[-4, -2, -1, 12]])

sage: L=IntegralLattice(M)
sage: D=L.discriminant_group()
sage: print(D)
Finite quadratic module over Integer Ring with invariant (2, 42)
Gram matrix of the quadratic form with values in Q/Z:
[1/2 1/2]
[1/2 2/21]
sage: G1=[g.lift() for g in L.gens()] #the generating set of D used
sage: D.normal_form()
Finite quadratic module over Integer Ring with invariants (2, 42)
Gram matrix of the quadratic form with values in Q/Z:
[1/2 0 0 0]
[ 0 1/2 0 0]
[ 0 0 2/3 0]
[ 0 0 0 3/7]
sage: G2=D.normal_form().gens()
((1, 0), (1, 21), (0, 14), (0, 6))

We explain some details on the code. Keep notation of Example 3.4.2. We
denote by g1 and g2 the two generators given by G1 in the code, i.e.,

g1 = 1
2w2 − 1

2w4,

g2 = 1
42w1 − 20

21w3 − 19
21w4.

(A.0.1)

Then G2 gives us the elements v1, v2, v3, v4 in the form

v1 = g1,

v2 = g1 + 21g2,

v3 = 14g2,

v4 = 6g2.

(A.0.2)
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Then (A.0.1) and (A.0.2) give the following equivalences modulo L:

v1 ≡ 1
2w2 + 1

2w4,

v2 ≡ 1
2w1 + 1

2w2 + 1
2w4,

v3 ≡ 1
3w1 + 2

3w2 + 1
3w4,

v4 ≡ 1
7w1 + 2

7w3 + 4
7w4,

which are exactly the equivalences in (3.4.7) of Example 3.4.2.
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Theorem 4.6.5: details of the
proof

We present details of the proof of Theorem 4.6.5. Recall that X = S
[2]
2t is the

Hilbert square of a generic K3 surface S2t of degree 2t, admitting an ample
divisor D with qX(D) = 2. The class of D is bh− aδ ∈ Pic(X), where (a, b) is
the minimal solution of Pt(−1). Let D1, D2 ∈ |D| be two distinct divisors, and
suppose that

[D1 ∩D2] = A+B ∈ H2,2(X,Z),

where [D1∩D2] is the fundamental cohomological class of D1∩D2 in H2,2(X,Z)
and A,B ∈ H2,2(X,Z) are effective classes such that ι∗(A) = A and ι∗(B) = B.
Here ι is the anti-symplectic involution which generates Aut(X), as shown by
Theorem 4.3.1. We recall conditions (4.6.8), (4.6.9), (4.6.10), (4.6.11) respec-
tively:

0 ≤ 6tx+ 3ty + z + 10w ≤ 6tb2 − 2a2,

0 ≤ 2tx+ ty + z + 10w ≤ 2,

0 < (4t+ 8t2b2)x+ (2t+ 4t2b2 − 4abt)y + (1 + tb2)z + 20w < 12,

8tdx+ 4(td− c)y + dz = 0,

where (c, d) is the minimal solution of the Pell equation Pt(1). Recall that we are
considering t ≥ 10 and a ≥ 3. In the proof of Theorem 4.6.5 we have obtained

2x+ y ∈ {0, 1, . . . , 2b2},

and we have remarked that it suffices to study the cases

2x+ y ∈ {0, 1, . . . , b2}.

Suppose that 2x+ y = k, where k ∈ {0, 1, . . . , b2}. By (4.6.9) we have

−tk ≤ z + 10w ≤ −tk + 2,

and since z + 10w ∈ Z we have

z + 10w ∈ {−tk,−tk + 1,−tk + 2}.

191



APPENDIX B. THEOREM 4.6.5: DETAILS OF THE PROOF

Case 1: suppose that z + 10w = −tk. Then (4.6.10) gives, after some computa-
tions,

−4t2b2k < −4abty + a2z < −4t2b2k + 12.

Since −4abty + a2z ∈ Z, we have

−4abty + a2z = −4t2b2k + h, h ∈ {1, 2, . . . , , 11}.

With the help of a computer we obtain

w =
−5a2tk + 2ha2 − 4tk + h

10a2
.

Then w is an integer only if

4tk − h ≡ 0 (mod a2).

If k = 0, then −h ≡a2 0 only if h = 9 and a = 3. This happens only when t = 10,
and we get w = 19

10 , which is not an integer. Suppose now that k 6= 0. Since
k ≤ b2, we have 4tk − h ≤ 4a2 + 4− h, hence in order to get 4tk − h ≡a2 0 we
must have

4tk − h ∈ {a2, 2a2, 3a2, 4a2}.

• If 4tk − h = a2, then

k =
tb2 + h− 1

4t
.

If h 6= 1, 11, then h− 1 is not divisible by t ≥ 10, and k is not an integer.
If h = 1, then k = b2

4 , which is not an integer by Proposition 1.5.8.
If h = 11, then h − 1 = 10 is divisible by t if and only if t = 10, which
implies b = 1: thus k = 1

2 , which is not an integer.

• If 4tk − h = 2a2, then

k =
2tb2 + h− 2

4t
.

If h 6= 2, then h− 2 is not divisible by t ≥ 10, and k is not an integer.
If h = 2, then k = b2

2 , which is not an integer by Proposition 1.5.8.

• If 4tk − h = 3a2, then

k =
3tb2 + h− 3

4t
.

If h 6= 3, then h− 3 is not divisible by t ≥ 10, and k is not an integer.
If h = 3, then k = 3

4b
2, which is not an integer by Proposition 1.5.8.

• If 4tk − h = 4a2, then

k =
4tb2 + h− 4

4t
.

If h 6= 4, then h− 4 is not divisible by t ≥ 10, and k is not an integer.
If h = 4, then k = b2, and we obtain

w =
−5tb2 + 4

10
,

which is not an integer since 4 is not divisible by 5.
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Since we always obtain a contradiction with k,w ∈ Z, we conclude that Case 1
never holds.

Case 2: suppose that z + 10w = −tk + 1. Then (4.6.10) gives

−4t2b2k − 2 < −4abty + a2z < −4t2b2k + 10,

and since −4abty + a2z ∈ Z we have

−4abty + a2z = −4t2b2k + h, h ∈ {−1, 0, . . . , 9}.

With the help of a computer we obtain

w =
−5a2tk + (2h+ 1)a2 − 4tk + h

10a2
.

Then w is an integer only if

4tk − h ≡ 0 (mod a2).

If k = 0, then −h ≡a2 0 only if either h = 0 or h = 9, being a ≥ 3. If h = 0, then
w = 1

10 , which is not an integer. If h = 9, then necessarily a = 3 and t = 10:
after some computations we obtain x = 3

4 , which is not an integer. Suppose now
that k 6= 0. Since k ≤ b2, we have 4tk − h ≤ 4a2 + 4− h, hence in order to get
4tk − h ≡a2 0 we must have

4tk − h ∈ {a2, 2a2, 3a2, 4a2}.

• If 4tk − h = a2, then

k =
tb2 + h− 1

4t
.

If h 6= 1, then h− 1 is not divisible by t ≥ 10, and k is not an integer.
If h = 1, then k = b2

4 , which is not an integer by Proposition 1.5.8.

• If 4tk − h = 2a2, then

k =
2tb2 + h− 2

4t
,

If h 6= 2, then h− 2 is not divisible by t ≥ 10, and k is not an integer.
If h = 2, then k = b2

2 , which is not an integer by Proposition 1.5.8.

• If 4tk − h = 3a2, then

k =
3tb2 + h− 3

4t
.

If h 6= 3, then h− 3 is not divisible by t ≥ 10 and k is not an integer.
If h = 3, then k = 3

4b
2, which is not an integer by Proposition 1.5.8.

• If 4tk − h = 4a2, then

k =
4tb2 + h− 4

4t
.

If h 6= 4, then h− 4 is not divisible by t ≥ 10 and k is not an integer.
If h = 4, then k = b2, and with the help of a computer we get the following
equation for x:

x2 − xb2 − tb4 +
b4

4
+ b2 = 0. (B.0.1)

Then x is not an integer, otherwise (B.0.1) is not true, since b4

4 is not an
integer by Proposition 1.5.8.
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We always obtain a contradiction with x, k ∈ Z, then Case 2 never holds.
Case 3: suppose that z + 10w = −tk + 2. Then (4.6.10) gives

−4t2b2k − 4 < −4abty + a2z < −4t2b2k + 8.

Since −4abty + a2z ∈ Z we have

−4abty + a2z = −4t2b2k + h, h ∈ {−3,−2, . . . , 7}.

With the help of a computer we obtain

w =
−5a2tk + (2h+ 2)a2 − 4tk + h

10a2
.

Then w is an integer only if

4tk − h ≡ 0 (mod a2).

If k = 0, then −h ≡a2 0 only if h = 0, being a ≥ 3. If h = 0, we obtain
w = 1

5 , which is not an integer. Suppose now that k 6= 0. Since k ≤ b2 we have
4tk − h ≤ 4a2 + 4− h, hence in order to get 4tk − h ≡a2 0 we must have

4tk − h ∈ {a2, 2a2, 3a2, 4a2}.

• If 4tk − h = a2, then

k =
tb2 + h− 1

4t
.

If h 6= 1, then h− 1 is not divisible by t ≥ 10 and k is not an integer.
If h = 1, then k = b2

4 , which is not an integer by Proposition 1.5.8.

• If 4tk − h = 2a2, then

k =
2tb2 + h− 2

4t
.

If h 6= 2, then h− 2 is not divisible by t ≥ 10 and k is not an integer.
If h = 2, then k = b2

2 , which is not an integer by Proposition 1.5.8.

• If 4tk − h = 3a2, then

k =
3tb2 + h− 3

4t
.

If h 6= 3, then h− 3 is not divisible by t ≥ 10, and k is not an integer.
If h = 3, then k = 3

4b
2, which is not an integer by Proposition 1.5.8.

• If 4tk − h = 4a2, then

k =
4tb2 + h− 4

4t
.

If h 6= 4, then h− 4 is not divisible by t ≥ 10, and k is not an integer.
If h = 4, then k = b2 and

w =
−5tb2 + 6

10a2
,

which is not an integer since 6 is not divisible by 5.

Since we always obtain a contradiction with k,w ∈ Z, Case 3 never holds.
We conclude that there are no effective 2-cycles A,B ∈ H2,2(X,Z) such that
[D1 ∩D2] = A+B, hence D1 ∩D2 is a reduced and irreducible surface.
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