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Abstract

Boundary treatment for noise mitigation has long been targeted by both passive and active noise control strategies. Applications range from building and vehicle sound comfort, to the more challenging reduction of the noise radiated from aircraft engines. On the one hand the passive absorbing materials are not aected by stability problems but are usually bulky and not much performant in suciently large bandwidths in the low-frequency range. On the other hand, classical active noise control systems are very much aected by modication of the external acoustic environments, such as changes in the furniture of a room, or variation of the ow-speed and incident angle in an aircraft nacelle. In this perspective, the impedance control strategy provides an ecient way to assure stability independently from the external acoustic environment. In this thesis, the impedance control concept is deeply investigated and enlarged.

The rst chapter is an introduction on the boundary treatment theoretical problem and stateof-art technologies (both passive and active). This introduction helps in the understanding of both limitations and spaces for improvements. Special attention is given to the problem of noise attenuation by boundary treatment of the parietal walls of an acoustic waveguide, as one bug industrial objective of this thesis is to provide an alternative solution to liners for the new generation of ultra-high-bypass-ratio (UHBR) turbofans. The second chapter analyses the potentialities of the pressure-based, current-driven impedance control technique to overcome the passive absorbing material limitations. The stability constraints of such impedance control are investigated analytically, numerically and experimentally, especially with respect to the inevitable time delay, and a practical solution to enlarge the stability margins is provided. The chapter ends with two broadening perspectives for such impedance control technique: the H ∞ automatic control synthesis approach, and a real-time innovative implementation featuring tunable non-linear behaviour of the absorber at low excitation amplitudes. The third chapter deals with a non-local boundary control capable of enhancing the isolation performances of the (local) impedance control, and of achieving non-reciprocal propagation in guided media. Such strategy is an enlargement of the classical impedance control, featuring convection of the surface reaction in a prescribed direction along the boundary itself. Analytical tools, along with numerical simulations are developed to fully characterize both performances and limitations of such boundary control concept. Finally, experimental tests validate its nonreciprocal character, its high isolation capabilities, as well as its stability constraints.

Keywords: active noise control, impedance control, non-linear absorber, active metamaterials, acoustic non-reciprocity.

Résumé

Le traitement aux bornes pour l'atténuation du bruit a longtemps été ciblé par les stratégies de contrôle du bruit. Les applications vont du confort sonore des bâtiments et des véhicules au réduction plus pénible du bruit émis par les moteurs d'avions. D'une part, les matériaux absorbants passifs ne sont pas aectés par des problèmes de stabilité mais sont généralement volumineux et pas très performant dans des bandes susamment larges dans la gamme des basses fréquences. D'autre part, les systèmes classiques de contrôle actif du bruit sont fortement inuencés par la modication des environnements acoustiques externes, tels que les modications du mobilier d'une pièce, ou la variation de la vitesse et de l'angle d'incidence dans une nacelle d'avion. Dans cette perspective, la stratégie de contrôle d'impédance ore un moyen ecace pour assurer la stabilité indépendamment de l'environnement acoustique.

Dans cette thèse, le concept de contrôle d'impédance est approfondi et élargi.

Le premier chapitre est une introduction au problème théorique du traitement aux bornes et à l'état de l'art des technologies existantes (à la fois passives et actives). Cette introduction aide à comprendre soit les limites soit les espaces pour améliorer. Une attention particulière est accordée au problème d'atténuation du bruit par traitement aux bornes des parois d'un guide d'ondes acoustique, vu que l'objectif industriel de cette thèse est de proposer une solution alternative aux liners pour les nouveaux génération de turboréacteurs à ultra-grand taux de des dilution (UHBR). Le deuxième chapitre analyse les potentialités de la technique de contrôle d'impédance pilotée par le courant et basée sur la pression pour surmonter les limites des matériaux absorbants passifs. Les contraintes de stabilité d'un tel contrôle d'impédance sont étudiés analytiquement, numériquement et expérimentalement, en particulier en ce qui concerne l'inévitable retard, et une solution pratique pour élargir les marges de stabilité est fournie. Le chapitre se termine par deux perspectives qui élargissent telle technique de contrôle d'impédance: l'approche H ∞ de synthèse de contrôle automatique, et une implémentation en temps réel innovante qui permet d'atteindre comportement non linéaire réglable de No. 722401. The present thesis project aims at providing innovative solutions for the acoustic liner treatments of the new generation of Ultra-high bypass ratios (UHBR) turbofan engines, which are expected to equip the next generation of aircraft to maximise eciency and reduce fuel consumption. The noise generated by these engines will concern lower frequencies compared to existing engine technologies. Also, with a thinner nacelle, absorption performances are expected to drop at low frequencies and, with a shorter nacelle, less surface area will be available for acoustic treatments, see Figure 1.1. Hence, UHBR engine technologies represent signicant challenges for the design of next-generation acoustic treatments. Electro-active membranes (such as loudspeakers) driven by digital control architectures, provide promising solutions to overcome the limitations of traditional liners at the inlet and bypass regions of the nacelle, see Figure 1.2. In this thesis, an impedance control technique is deeply investigated both in its achievable performances and stability constraints. Also, the impedance control potential is broadened by investigating optimal corrector synthesis and non-linear target dynamics of the loudspeaker. Then, the locally reacting boundary concept is expanded to produce an unconventional non-local (advective) reaction of the liner, which proves both to enhance the isolation and to break the reciprocity principle of acoustic propagation in guided media. As such noise control techniques very much interest also other elds, such as room acoustics, an eye is kept both on the so-called grazing-incidence problem (concerning liner applications) and on the room acoustics application. Though, the main focus is on the grazing incidence one, envisaging the implementation of such technologies in the turbofan nacelles. 

The theoretical problem of boundary treatment for noise mitigation

The wave control by treating the boundaries of propagative domains is a large area of research encompassing all elds from electromagnetics to solid mechanics and acoustics. In this work we are dedicated to acoustics, but some concepts could be applied to other elds as long as the interdisciplinary analogies are properly dened.

In acoustics a typical boundary treatment problem is the room modal equalization, where the objective is to damp the acoustic modes in an enclosed cavity. P. Morse [START_REF] Morse | Some aspects of the theory of room acoustics[END_REF], in 1939, provided analytical solutions for the modes in an enclosed cavity with walls uniformly treated with materials characterized by the so-called normal surface impedance. Morse arms that such quantity univocally identies the absorptive properties of a surface, as it depends only on the material and not on the incident wave (except for the variation with frequency) [START_REF] Morse | Some aspects of the theory of room acoustics[END_REF]. The surface normal acoustic impedance Z(ω), is a complex quantity dened as the ratio between the local acoustic pressure p(ω) and the local normal acoustic velocity v n (ω)

in the frequency domain (ω being the angular frequency). Morse was analysing so-called locally-reacting surfaces, whose reaction depends only on the local sound pressure, and can therefore be characterized by the surface normal impedance. But Morse identied the concept of locally reacting wall as a degeneration of a more general case, where propagation could happen inside the wall, according to an anisotropic wave propagation equation with normal and tangential phase speeds (or refractive indexes) dierent from each other. Observe that the equivalence with anisotropic media in electromagnetics is straightforward. By reducing the tangential phase speed to zero, the propagation inside the wall would produce a locally-reacting behaviour at the wall interface with air, represented by the normal surface impedance. A non-zero tangential phase speed inside the wall, characterizes the so-called non-locally reactive surfaces, where the wall reaction does not depend only upon the local pressure, but also upon its spatial distribution. Typical non-locally reacting surfaces are indeed the interfaces with porous materials, which can be modelled as propagative homogeneous media in the equivalent uid formulations [1].

The approximate analytical solutions in [START_REF] Morse | Some aspects of the theory of room acoustics[END_REF] related the modal damping factors to the wall impedances, providing an important background for optimization of boundary treatment in room acoustics and room modal equalization. Nevertheless, when the walls are only partially treated, the problem becomes far more complicated. Dierent geometries, position of the absorbing walls, presence of furniture, further increase this complexity. Recently, a plane wave approximation of the cavity modes [START_REF] Moiola | Plane wave approximation of homogeneous Helmholtz solutions[END_REF] has inspired a fast technique to reconstruct the pressure eld in rooms [START_REF] Tukuljac | Joint estimation of the room geometry and modes with compressed sensing[END_REF]. Both the plane wave decomposition and the fast sound eld reconstruction techniques allow to envisage interesting optimizations of boundary treatments in room acoustics.

Another typical boundary treatment problem in acoustics is the noise transmission mitiga-

tion in an open duct, by treating its parietal walls with the so-called liners. A great deal of this thesis has been carried out by targeting such type of implementation with our boundary control techniques. Examples of industrial elds where this problem is particularly felt are the Heating and Ventilation Air-Conditioning Systems (HVAC) and the aircraft turbofan engines. The latter eld in particular, on the one hand has to face signicant restrictions on fuel consumptions and pollutant emissions, and on the other hand is tightened by the increasingly restrictive regulations on noise pollution. These two constraints are unfortunately in conict with each other. As the fuel restrictions demand larger turbofan diameters, less number of blades and higher by-pass-ratios, the engine noise signature is shifted toward lower frequencies, which are much more challenging to mitigate by parietal treatments than high frequencies, as it is explained in the following sections. It is the case for the Ultra-High-By-Pass-Ratio turbofans, depicted in Figure 1.1. Though it constitutes a signicant simplication of the actual industrial implementations of the noise transmission mitigation techniques in waveguides, the hypothesis of no-ow will be taken all along this thesis. The theoretical and experimental preliminary study of an acoustic waveguide without ow is common practice [START_REF] Tester | The optimization of modal sound attenuation in ducts, in the absence of mean ow[END_REF] as liners are usually meant to modify the acoustic eld without signicantly impacting on the aerodynamic one. Such hypothesis is nowadays very much debated [START_REF] D'elia | Eect of ow on an array of Helmholtz resonators: Is Kevlar a magic layer[END_REF], and in any case theoretical and experimental testing with ow constitutes an important successive step for the industrial implementation of any liner technology.

The greatest diculty for the parietal treatment of a waveguide is, antonomastically, that it applies on the parietal walls ∂A (see Figure 1.3), whereas the noise propagates along the longitudinal axis x which is clearly parallel to ∂A. Such problem is usually referred to as grazing incidence problem. It is very well known that if a plane wave eld is incident on an innite surface with an elevation angle θ ∈ (0, π), where θ is taken from the tangential boundary coordinate (see Figure 1.4), then perfect absorption is achieved when the surface acoustic impedance is Z = ρ 0 c 0 / sin θ, where ρ 0 and c 0 are the air density and sound speed in the steady state. For Z = ρ 0 c 0 / sin θ, a plane wave propagating at a certain angle θ i , sees a frontal impedance Z f = ρ 0 c 0 sin θ/ sin θ i along its propagation direction, when it impacts the boundary. Therefore, if θ i = ± θ the frontal impedance encountered by the wave is equal to the characteristic impedance of air ρ 0 c 0 , and no reection occurs. The problem arises when θ i = 0 or π. C. Bardos, G. Lebeau and J. Rauch [START_REF] Bardos | Sharp sucient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] demonstrated that a sucient condition for the boundary to fully control the wave propagation is that every ray of the acoustic eld must interact with the boundary. But in case of the grazing incidence problem, i.e. in case of an acoustic eld propagating in a waveguide, there will always be some rays not directly interacting with the boundary, therefore not controllable. This is also the reason why the eectiveness of any liner in noise transmission attenuation, degrades if the cross-section area of the waveguide increases, as less number of acoustic rays will directly interact with the boundary.

Nevertheless, even if the grazing incidence problem is not fully controllable, it should still be possible to determine an optimal liner behaviour which achieves the maximum noise transmission attenuation. The rst work in this sense was done by L. Cremer [START_REF] Cremer | Theory regarding the attenuation of sound transmitted by air in a rectangular duct with an absorbing wall, and the maximum attenuation constant produced during this process[END_REF] who searched for the optimal local impedance Z cre (ω) producing the highest attenuation rate of the leastattenuated duct mode in a 2D innite acoustic waveguide lined on one side, see Figure 1.5. His Figure 1.5: Innite 2D lined duct considered in Cremer's work [START_REF] Cremer | Theory regarding the attenuation of sound transmitted by air in a rectangular duct with an absorbing wall, and the maximum attenuation constant produced during this process[END_REF].

work is indeed rooted in the so-called duct-modes solution, i.e. the solution of the dispersion problem in terms of axial wavenumbers k x,m (ω) and duct modes ψ m (y, z), corresponding to the eigenvalues and eigenfunctions of the transverse Laplace operator reduced to the waveguide cross section, as explained in Section 3.2.

Such optimal impedance is the one providing the coalescence of the rst two duct modes, which means that for Z(ω) = Z cre (ω) the rst and second wavenumber solutions of the dispersion problem merge. For Z(ω) slightly varied with respect to Z cre (ω), either the rst or the second duct mode presents an attenuation rate which is lower with respect to the case of Z cre (ω). The duct modes are arranged in rst, second, third, etc. according to the number of node lines in the shape of ψ m (y, z), in ascending order.

In an innite waveguide, the transmission between two points along the longitudinal axis is fully determined by the attenuation rate (of each duct mode involved in the noise propagation) times the distance between the two points. As the rst duct modes are the ones presenting the lowest attenuation rate Im{k x (ω)}, by maximizing it then the transmission will be minimized.

Nevertheless, the actual waveguides are not innite, neither the rst two duct modes are always the ones mainly excited by the external sources or the ones which radiate more acoustic energy outside the waveguide. B. Tester [START_REF] Tester | The optimization of modal sound attenuation in ducts, in the absence of mean ow[END_REF] reformulated the optimization problem based upon a non-conventional Green's function, allowing to slightly correct the Cremer value, and to determine the optimal impedances not only for the rst couple of modes, but also for higher order couples of modes and for dierent geometries of the duct cross section. The tube was still considered as innite and the optimal impedances were still producing the coalescence of the couple of modes to be mostly attenuated.

Such impedances found both by Cremer and Tester have all the same form: Z opt (ω) = ρ 0 c 0 (a -jb)k 0 h/π, where a and b are constant positive real numbers, k 0 = ω/c 0 is the wavenumber of the plane mode in hard-walled ducts and h is a characteristic dimension of the duct cross-section, normal to the liner. It is interesting to notice that while for free plane waves with an angle of incidence θ i ∈ (0, π), the optimal impedance is purely resistive, for grazing incidence (θ i = 0 or π), Z opt (ω) has a reactive component which has the same order of magnitude as the resistive one. Tester [START_REF] Tester | Ray models for sound propagation and attenuation in ducts, in the absence of mean ow[END_REF] provided a physical qualitative explanation for the specic value obtained for Z opt (ω), by considering a line source applied along the centre longitudinal axis of the waveguide. He found that the optimum impedance is roughly that value which allows the amplitude and phase of the singly-reected eld to cause the most ecient destructive interference with the direct eld. It becomes then more understandable the importance of the phase change of the reected eld with respect to the incident one, produced by a complex impedance.

The only issue of such optimal complex impedance function Z opt (ω) is that its inverse Fourier transform does not correspond to any real function in time domain, as it does not satisfy the so-called reality condition Z * (ω) = Z(-ω). This is so because the real part of Z opt (ω) is not a pair function, which means that such optimal impedance is not physically realisable if not for single target frequencies ω = ω target , but not on a continuous frequency span.

Another approach was instead investigated by M. Collet et al. [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF], who presented an interesting technique to nd the boundary operator assuring total absorption for any angle of incidence of impinging waves, see Chapter 3. As Morse, also Collet considered the boundary as an interface with a secondary ctitious propagative medium, whose presence is simulated by the boundary condition at the interface. Therefore, he evaluated the boundary operator to apply in order to simulate the presence of a fully propagative domain behind, with both normal and tangential phase speeds equal to the air one, c 0 . This way, as a plane wave propagates in air with any angle θ i , in impacting such boundary, it does not even realize the presence of the boundary itself, and no reection occurs. The derived boundary operator is non-local both in time and space (as non-local is the propagative domain to be simulated in behind). Though unrealistic to be implemented by active control systems (because of the number and complexity of calculations required), such boundary operator inspired the conceiving of another non-local operator which is the so-called Boundary Advection law in [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF],

whose implementation is a central argument of this manuscript.

The total absorption condition has been extensively investigated also in the eld of computational physics, in order to simulate unbounded domains. An interesting boundary condition (B.C.) was provided by R. Higdon [START_REF] Higdon | Numerical Absorbing Boundary Conditions for the Wave Equation[END_REF], which assured total absorption for multiple incident angles. For a single angle θ (and its specular one) of total absorption, such B.C. degenerates to the local real impedance Z = ρ 0 c 0 / sin θ that we already discussed above. As soon as the total absorption must be achieved for more than one couple of specular angles of impingement, a non-local character of the boundary is required.

Nevertheless, though with no doubt such perfect absorption operators are of great interest for both room and duct acoustics, it is not sure that they would provide the best isolation performances in the grazing incidence problem. We have just mentioned that, in the restricted case of locally-reacting boundaries, the optimal impedance for the grazing incidence problem should take the form proposed by Cremer [START_REF] Cremer | Theory regarding the attenuation of sound transmitted by air in a rectangular duct with an absorbing wall, and the maximum attenuation constant produced during this process[END_REF] and Tester [START_REF] Tester | The optimization of modal sound attenuation in ducts, in the absence of mean ow[END_REF], where actually the reected eld plays a more important role than the absorbed one. In any case, we have no certainty about the ideal Non-Local B.C. for the grazing incidence problem. Moreover, as both the Cremer optimal local impedance and the perfect-absorption non-local operator break down faced with their physical realisability, further investigation is required in the quest of physically admissible boundary controls for noise attenuation, both in their local and non-local connotations.

As this thesis focuses on the implementation of an active control to achieve higher performances with respect to the current state-of-art in both room-acoustics and grazing incidence problems, the following section goes through the evolution of the available technologies in boundary treatments for both these elds, with greater attention spent for the liner applications. Moreover, as our advection boundary law presents the special feature of reciprocity breaking, such eld of research is also introduced in a separate section.

Passive Boundary treatments for noise mitigation

The problem of noise attenuation can be addressed by two main general philosophies: one is to trap or reect the sound energy by means of some resonant element, and the other one is to dissipate it through viscous and heat conduction mechanisms at the solid-air interface.

Clearly, the rst idea does not exclude the second one, as dissipation inevitably occurs in passive systems, but, in resonant devices, dissipation is a secondary phenomenon respect to Porous materials are renowned for the signicant sound absorption they can achieve especially at high frequencies. Thanks to the large air-solid interface area obtained by brous and permeable microstructures (see Figures 1.6a,b,c), the viscosity and heat conduction mechanisms produce large dissipation. As dissipative forces vary linearly with the rate (e.g. viscous acoustic damping force is proportional to velocity), it follows that sound dissipation is a quadratic function of frequency. For this reason, the porous materials tend to improve their sound absorption potential as frequency increases. Moreover, as the dissipative forces mainly depend upon the acoustic velocity, the absorption is maximum at a λ/4 (λ being the wavelength of sound waves) distance from a rigid back-wall (where the acoustic velocity becomes zero). This explains the very large space required by the so-called absorbing wedges, clas- from [START_REF] Yang | Sound absorption structures: From porous media to acoustic metamaterials[END_REF].

sically used in room acoustics applications (see Figure 1.6d). Rigid porous materials, such as metal foams, are currently under investigation for applications as acoustic liners also in a harsh environment as the over-the-rotor region of the nacelle (see Figure 1.6e,f ). Because of high percentage of void into their structure, porous materials allow sound propagation into their volume in both normal and tangential directions with respect to the interface with air.

For this reason, they are dened as non-locally or bulk reacting liners, as opposed to the locally-reacting ones (see Figure 1.7).

Another classical sound-proong device is the perforated, and micro-perforated, plate. It consists of a thin, rigid (usually metallic) plate with straight holes, usually backed by a cavity in order to increase the wave amplitude at the perforated plate location through the constructing interference eect. The sound energy dissipation mechanisms through the holes are indeed the same as in porous materials.

The classical sound-proong device based upon the resonance principle is the famous Helmholtz resonator which is composed of a thin neck connecting the interface with a back-cavity. The air in the narrow neck moves as a whole, as if it were a mass, which is connected to a spring given by the back-cavity compressibility. Slight dissipative eects occurs in the neck. Another basic resonant absorber is the membrane, which is classically applied in room acoustics, where it takes the name of bass-trap (see Figure 1.9a).

All such resonant-based acoustic devices mainly suer from the narrowness of the ecient absorption bandwidth. uniform depth and (c) variable depth, from [START_REF] Ma | Development of acoustic liner in aero engine: a review[END_REF].

Figure 1.12: Sketch of variable-depth liners with narrow (a) and wide chambers (b), from [START_REF] Ma | Development of acoustic liner in aero engine: a review[END_REF].

The traditional acoustic liner technology still applied nowadays for noise transmission attenuation at the inlet and outlet portions of turbofan engines is the so-called Single-Degree-of-Freedom (SDOF) liner. It is made of a closed honeycomb structure and a perforated plate which is used to provide the dissipative eect, to add mass in order to decrease the resonance Figure 1.15: Liner with inclined microporous septa in the honeycomb, producing the so-called honeycombcorrugation hybrid structure, but with microperforations on both top facesheet and corrugations [START_REF] Tang | Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound[END_REF].

frequency, and also to maintain the aerodynamic ow as smooth as possible on the internal wall of the nacelle. As the honeycomb structure is impervious, propagation is prevented transversely to the wall, therefore it can be considered as locally reacting as long as the incident eld wavelength is much larger than the size of the honeycomb cells. The traditional SDOF liner is a quarter-wavelength resonator with a narrow absorption spectrum around λ/4, see Figure 1.10. Guess [START_REF] Guess | Calculation of perforated plate liner parameters from specied acoustic resistance and reactance[END_REF] has provided a method in three steps to evaluate the geometrical parameters of a SDOF liner, from a specied acoustic resistance and reactance, which can be tuned, for example, to the Cremer's values at a target frequency. The diculty stays in the fact that the SDOF liner parameters aect both the resistance and reactance terms at the same time, making the tuning not so straightforward.

In order to broaden the noise absorption bandwidth, a septum is used to separate the honeycomb into two or more parts, forming the so-called double (DDOF) or multi-degree-of-freedom (MDOF) congurations. They provide on the one hand larger bandwidth, but on the other excessive weight and bulky structures. Other improvements of the SDOF liner technologies have been developed, such as the mesh-cap liner [START_REF] Ma | Development of acoustic liner in aero engine: a review[END_REF] where porous sheets were inserted into the honeycomb cavities, see Figure 1.11. Compared to the integral septum in traditional MDOF liners, the mesh caps were only anchored to the cavity walls. Dierent number and types of mesh caps (with various resistances) could placed at dierent depths, in order to adjust the liner impedance. Another variant of the SDOF liner is the variable depth liner, with either narrow or wide chambers [START_REF] Parrott | Parallel-element liner impedances for improved absorption of broadband sound in ducts[END_REF], see Figure 1.12. In order to exploit the benets of a non-local reaction, the hybrid acoustic liner was conceived, where the cavity walls of the SDOF liner were substituted by perforated panels (see Figure 1.13). Another proposed alternative was to use exible walls as partitions in order to prot from the visco-elastic dissipation. Apart from the challenging environments that liners for turbofans applications must confront with, the main issue of classical boundary treatments, both for grazing incidence or room acoustics problems, are the low frequencies, especially among 100 and 1000 Hz, where the traditional soundproong techniques described above would require excessive thickness.

From here, it comes the great interest for acoustic metamaterials, and their quest toward subwavelength dimensions, i.e. to achieve picks of noise attenuation with thicknesses as much as possible below the quarter-wavelength. Most of such metamaterials combine together different traditional absorbers (such as porous materials, Helmholtz and/or quarter-wavelength resonators and membranes) in such a way to improve the overall performance. Beck et al. [START_REF] Beck | Impedance assessment of a dualresonance acoustic liner[END_REF] has improved the SDOF traditional liner with the inclusion of a Helmholtz resonator in the honeycomb cavity, which produced an additional low-frequency resonance, see Figure 1.14.

Tang et al. [START_REF] Tang | Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound[END_REF] have inserted inclined microporous septa in the honeycomb, producing the so-called honeycomb-corrugation hybrid structure, but with microperforations on both top facesheet and corrugations, see Figure 1.15. The asset of such metamaterial is its high mechanical stiness and a broader low-frequency bandwidth respect to traditional quarterwavelength absorbers.

The insertion of resonators inside porous materials has given rise to the so-called meta-porous absorbers [START_REF] Lagarrigue | Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions[END_REF] (see Figure 1.16). Another interesting perspective is the design of porous microstructures in order to achieve targeted acoustic performances [START_REF] Campeau | Experimental Validation of an Acoustical Micro-Macro Model for Random Hollow Fibre Structures[END_REF], [START_REF] Opiela | Microstructural design, manufacturing and dual-scale modelling of an adaptable porous composite sound absorber[END_REF]. While very well suited for room acoustics applications though, porous non-rigid materials would hardly resist harsh environments such as the nacelle of turbofans.

The problem of lowering the frequency of maximum absorption (usually around c 0 /4d with d the thickness of the absorber) have also been tackled by targeting the reduction of the eective sound speed in the material. In traditional porous materials the sound speed is usually the same as in air, as it tends asymptotically to c 0 / √ α ∞ , with α ∞ the so-called tortuosity of the porous material which is around unity. In [START_REF] Groby | The use of slow waves to design simple sound absorbing materials[END_REF] a periodic structure composed by narrow slits with quarter-wavelength inclusions reduces the eective sound speed. By properly designing the slow-sound eect along with the associated dissipation, subwavelength absorption performance could be achieved (see Figure 1.17). The slow-sound eect can be obtained also by folding branch tubes as proposed in the subwavelength liner of [START_REF] Aurégan | Low frequency sound attenuation in a ow duct using a thin slow sound material[END_REF], see Figure 1.18.

The space-coiling is indeed a very much pursued technique to achieve the quarter-wavelength performance with subwavelength thickness. Li et al. [START_REF] Li | Acoustic metasurface-based perfect absorber with deep subwavelength thickness[END_REF] combined a perforated plate with a coiled coplanar quarter-wavelength resonator allowing to match the air impedance at one frequency, while Chen et al. [START_REF] Chen | A low-frequency sound absorbing material with subwavelength thickness[END_REF] coiled two tubes, axially coupled in series, with dierent diameters, allowing to reproduce the subwavelength equivalent of a DDOF resonator.

Also membranes have been exploited in order to produce subwavelength metamaterial absorbers. The team of Hong Kong University of Science, Department of Physics, has provided several contributions to the so-called decorated-membrane (DM) metamaterial [START_REF] Yang | Membrane-type acoustic metamaterial with negative dynamic mass[END_REF], [START_REF] Mei | Dark acoustic metamaterials as super absorbers for low-frequency sound[END_REF], [START_REF] Ma | Acoustic metasurface with hybrid resonances[END_REF]. A DM comprises an elastic membrane with one or more rigid weights attached on its surface, as in Figure 1.9b. Rigid platelets were added to the membrane in [START_REF] Mei | Dark acoustic metamaterials as super absorbers for low-frequency sound[END_REF] leading to apping modes of the DM under normally incident plane waves. These apping modes are responsible of high energy concentration along the perimeter of the platelets. As such modes couple only to evanescent acoustic modes in the plane wave regime, the incident wave energy is dissipated in the displacement prole of the DM. The performance of the DM has then been improved by placing an air-cavity cushion behind, leading to the so-called hybrid DM [START_REF] Ma | Acoustic metasurface with hybrid resonances[END_REF] allowing to match the normal incidence air impedance at several frequencies.

Nevertheless, all passive absorbers must satisfy the integral constraint, demonstrated by Yang et al. in [START_REF] Yang | Optimal sound-absorbing structures[END_REF] and reported here:

d ≥ B ef f πρ 0 c 0 ∞ 0 1 ω 2 ln |R(ω)|dω , (1.1) 
where |R| is the absolute value of the reection coecient spectrum, B ef f is the eective Bulk Modulus (inverse of compressibility) and d is the thickness of the absorber. Such inequality states that for a certain bandwidth of ecient absorption a minimum thickness is required.

As the integrand in Eq. (1.1) presents ω 2 at the denominator, the constraint becomes even more stringent at lower frequencies, explaining the narrowness of the absorption bandwidth achieved even by the metamaterial absorbers. From such constraint [START_REF] Yang | Optimal sound-absorbing structures[END_REF], Yang et al. devised a strategy to produce an optimum absorber (in the sense of minimum thickness given by the right-hand-side of Eq. (1.1)), and proposed a broadband absorber by means of an array of channel-resonators in parallel with each other, covered by a thin porous layer, shown in Figure 1. [START_REF] Chen | A low-frequency sound absorbing material with subwavelength thickness[END_REF]. In Section 2.2 such integral constraint will be extended to the electro-active Electroacoustic Absorber (EA).

Active Boundary treatments for noise mitigation

Active acoustical devices can be dened as those requiring some active component, i.e. an external energy source, in order to achieve a certain desired acoustic behaviour. In [START_REF] Zangeneh-Nejad | Active times for acoustic metamaterials[END_REF] active devices are split into two categories according to weather the external source provides energy to the acoustic domain or not. The latter can therefore be dened as acoustically active, the former as acoustically passive [START_REF] Karkar | Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modeling to Experimental Implementation[END_REF].

The reason for employing some active device is to overcome the limitations of the passive ones. First of all, a passive device performance is xed by its own geometry and material.

As the noise frequency range of aero-engines signicantly varies with the ight phases (such as take-o, climb, cruise, approach and landing), it could be very advantageous if the target frequency bandwidth for noise mitigation could adapt accordingly. In addition, the aforementioned challenges presented by the new ultra-high bypass ratio (UHBR) turbofan engines (smaller thickness and less surface area available for acoustic treatments along with low frequency noise signature) conicts with the integral constraint relating bandwidth and thickness demonstrated by [START_REF] Yang | Optimal sound-absorbing structures[END_REF]. Therefore, several active strategies have been proposed in the attempt to better adapt the liner behaviour to the desired acoustic performance, meanwhile satisfying stricter spatial constraints at low frequencies. proposed by [START_REF] Matsuhisa | Semiactive control of duct noise by a volumevariable resonator[END_REF] (a), and the morphing resonator by shape-memory-polymer of [START_REF] Hermiller | Morphing Resonators for Adaptive Noise Reduction[END_REF] (b).

Adaptive resonators

Figure 1.21: Helmholtz resonator with variable orice area of the neck, controlling an iris diaphragm [START_REF] Esteve | Development of an adaptive Helmholtz resonator for broadband noise control[END_REF].

The most intuitive active solution might be to simply adjust the geometry of classical resonant absorbers in order to change the resonance frequency per the need. This has been accomplished by varying either the acoustic stiness, i.e. the cavity ( [START_REF] Mcdonald | Method and apparatus for attenuating acoustic vibrations in a medium[END_REF], [START_REF] Matsuhisa | Semiactive control of duct noise by a volumevariable resonator[END_REF], [START_REF] De Bedout | Adaptivepassive noise control with self-tuning Helmholtz resonators[END_REF], [START_REF] Kostek | Hybrid noise control in ducts[END_REF], [START_REF] Kobayashi | Newly-developed adaptive noise absorption control technology for high speed fan noise reduction[END_REF],

[52]), see Figure 1.20, or the acoustic mass (i.e. the orice area , [START_REF] Lin | Design, fabrication, and testing of a C-shape actuator[END_REF], [START_REF] Konishi | Tunable acoustic absorbing system using a deep hole array[END_REF], [START_REF] Nagaya | Silencer consisting of two-stage Helmholtz resonator with auto-tuning control[END_REF], [START_REF] Johnson | Comparison of local and global adaptive strategies for the control of broadband noise in an enclosure using adaptive Helmholtz resonators[END_REF], [START_REF] Esteve | Development of an adaptive Helmholtz resonator for broadband noise control[END_REF] etc.)

of Helmholtz resonators, see Figure 1.21, but both these techniques tended to present complex structure, excessive weight and high energy consumption [START_REF] Ma | Development of acoustic liner in aero engine: a review[END_REF]. In [START_REF] Parente | Hybrid active/passive jet engine noise suppression system[END_REF], an adaptive Helmholtz resonator liner segment was used with the objective to scatter or redistribute energy among modes, so that to maximize the eectiveness of a neighbour passive liner segment.

An alternative to geometry adjustment, is to couple the Helmholtz resonator in series with a compliant piezoelectric composite diaphragm which substituted the rigid back plate. This way, a Double-Degree-Of-Freedom (DDOF) resonator was obtained ( [START_REF] Horowitz | Characterization of a compliant-backplate Helmholtz resonator for an electromechanical acoustic liner[END_REF], [START_REF] Liu | A multiple degree of freedom electromechanical Helmholtz resonator[END_REF]), and the piezoelectric could also work as energy harvester [START_REF] Phipps | Demonstration of a wireless, self-powered, electroacoustic liner system[END_REF].

1.3.2 Active Noise Control: from the secondary source to the impedance control concept

Instead of adjusting the Helmholtz resonator acoustic behaviour, Active Noise Control (ANC) researchers proposed to make use of an electro-mechano-acoustical system (a loudspeaker for example) as either a secondary source, therefore acoustically active, or as an Electroacoustic Absorber (EA) which is supposed to feature acoustical passivity. The objective of the secondary source was to achieve a quite zone, i.e. a zero (or minimum) sound pressure at one specic location (or in a certain area), by the destructive interference principle (or upon a total acoustic potential energy minimization) [START_REF] Elliott | Active noise control[END_REF]. Such techniques made use of one or several sensors (microphones) coupled with one or more actuators (loudspeakers) by a feedback and/or feedforward control. The main dierence between the feedforward and the feedback approaches is that in the rst case a separate reference signal, well correlated with the primary noise meant to be cancelled, is used to drive the secondary source. The destabilizing elements of the secondary source strategy (either feedback or feedforward), might be resumed and simplied in: unexpected and undesired behaviours of the acoustic surrounding environment and/or of the control architecture itself. Examples of unexpected behaviour of the acoustic environment are: modications of the primary source contents and position, changes in the geometry of surrounding cavity, presence of ow-induced measurement noise, insucient spatial modelling of the acoustic domain where noise reduction must be achieved, etc. Undesired conditions of the control architecture are: unexpected loudspeaker dynamics, time-delay (if digital) and other signal perturbations. All these issues of the secondary source approach, concern the so-called secondary path, which is the path travelled by the signal from the secondary source input, to the microphone output [START_REF] Elliott | Active noise control[END_REF]. The secondary path diers from the primary one as the latter is the one travelled by the signal from the primary noise source to the microphone. In the simplest Single-Input-Single-Output digital feedback control architecture for example, the transfer function between the disturbance (coming from the primary source) D(s) and the error signal E(s) (see Figure 1.22), is: control: the electronic sound absorber of [START_REF] Olson | Electronic Sound Absorber[END_REF] and [START_REF] Lissek | Electroacoustic absorbers: Bridging a gap between active sound absorption and shunt loudspeakers. 18[END_REF] (a), the active equivalent of the quarter wavelength resonator of [START_REF] Guicking | An active sound absorber with porous plate[END_REF] (b), and the hybrid liner controlling the pressure behind the porous layer [START_REF] Galland | Hybrid passive/active absorbers for ow ducts[END_REF], to achieve a target impedance Za [START_REF] Betgen | A new hybrid active/passive sound absorber with variable surface impedance[END_REF] (c).

E(s) D(s) = 1 1 -C(s)H(s) , (1.2) 
Figure 1.24: Evolution of the Electroacoustic Absorber (EA) concept for impedance control: the shunting techniques of [START_REF] Fleming | Control of resonant acoustic sound elds by electrical shunting of a loudspeaker[END_REF], (a), the direct impedance control of [START_REF] Furstoss | Surface impedance control for sound absorption: direct and hybrid passive/active strategies[END_REF] (b), and the self-sensing strategy of [START_REF] Leo | Self-sensing technique for active acoustic attenuation[END_REF] and [START_REF] Boulandet | Sensorless electroacoustic absorbers through synthesized impedance control for damping low-frequency modes in cavities[END_REF] (c).

where s is the Laplace variable, H(s) is the corrector and C(s) is the secondary path transfer function. From Eq. (1.2), a high phase shift introduced by C(s), can impact the stability margin, according to the well-known Nyquist criterion [START_REF] De Larminat | Automatique appliquée[END_REF].

In order to improve global noise reduction in acoustic cavities, compensating lters [START_REF] Elliott | Active noise control[END_REF], such as phase correction [START_REF] Clark | Phase compensation for feedback control of enclosed sound elds[END_REF] and velocity compensation [START_REF] Lane | Active control of a reverberant enclosure using an approximate constant volume velocity source[END_REF], have been introduced in the feedback controllers. Adaptive lters, on the other hand, rapidly evolving thanks to the digital technology, very much supported the feedforward strategies [START_REF] Miljkovic | Active noise control: From analog to digital -Last 80 years[END_REF].

Already in the rst paper on Active Noise Control, Olson and May [START_REF] Olson | Electronic Sound Absorber[END_REF] suggested to collocate sensor and actuator in order to reduce the risk of having constructive, instead of destructive, interference. The collocation of sensor and actuator, and the idea to use a resistance in front of their spot type noise reducer (see Figure 1.23a), was seminal in the active impedance control strategy. Guicking rst [START_REF] Guicking | An active sound absorber with porous plate[END_REF], and then Galland [START_REF] Galland | Hybrid passive/active absorbers for ow ducts[END_REF], developed the idea of [START_REF] Olson | Electronic Sound Absorber[END_REF] of an active equivalent of the quarter wavelength resonance absorber in normal and grazing incidence respectively (see Figure 1.23b,c). The quite zone (of zero pressure) behind a resistive layer allowed to increase the pressure gradient across the layer and improve the eective-ness of the porous material at lower frequencies. A FX-LMS adaptive lter was employed in order to achieve such hybrid behaviour in [START_REF] Galland | Hybrid passive/active absorbers for ow ducts[END_REF]. Analogously to the adaptive Helmholtz resonators of Section 1.3.1, where active means were used to adjust the resonator behaviour, here a secondary source was used to modify the eectiveness of a quarter wavelength resonator equipped with a resistive layer. The same technique was slightly modied by [START_REF] Betgen | A new hybrid active/passive sound absorber with variable surface impedance[END_REF] in the attempt to reproduce the Cremer's liner optimal impedance for the rst duct modes pair [START_REF] Cremer | Theory regarding the attenuation of sound transmitted by air in a rectangular duct with an absorbing wall, and the maximum attenuation constant produced during this process[END_REF], [START_REF] Tester | The optimization of modal sound attenuation in ducts, in the absence of mean ow[END_REF] (see Figure 1.23c). As the optimal impedance could not be achieved in a broadband sense, this interesting approach remained limited to monotonal applications.

These are examples of impedance control achieved through secondary source approaches combined with passive liners, but the collocation of sensor and actuator suggested also another avenue: the modication of the actuator (loudspeaker or else) own mechano-acoustical impedance.

Instead of using the loudspeaker as a secondary source, or to use active means to adjust the impedance of a passive absorber, one can envisage to adjust the loudspeaker own mechanoacoustical response by controlling its electrical dynamics. The objective shifts from creating a quite zone at a certain location, to achieving an optimal impedance on the loudspeaker diaphragm. That is why this concept can be referred to as Electroacoustic Absorption [START_REF] Lissek | Electroacoustic absorbers: Bridging a gap between active sound absorption and shunt loudspeakers. 18[END_REF].

Clearly, the electroacoustic absorption becomes equivalent to the secondary source approach in case of collocation between sensor and actuator, with a target impedance set to zero [START_REF] Kido | The technologies for active noise control[END_REF].

Electroacoustic absorption can either be realized by electrically shunting the loudspeaker terminals, therefore modifying the electrical dynamics through passive analogical circuits (see Figure 1.24a), or by using one or more sensor information (on pressure and/or velocity) to feed into a control algorithm [START_REF] Lissek | Electroacoustic absorbers: Bridging a gap between active sound absorption and shunt loudspeakers. 18[END_REF] (see Figure 1.24b). Electrical shunting techniques were investigated by [START_REF] Fleming | Control of resonant acoustic sound elds by electrical shunting of a loudspeaker[END_REF] and [START_REF] Lissek | Electroacoustic absorbers: Bridging a gap between active sound absorption and shunt loudspeakers. 18[END_REF] among others. The main advantage of the electrical shunting strategy is the assurance of acoustical passivity (and therefore stability [START_REF] Bao | Process Control: The Passive Systems Approach[END_REF]) as the acoustic energy was transferred through the loudspeaker diaphragm vibration, to the electrical passive shunted circuit and dissipated in heat. The so-called direct-impedance control instead, was based upon the direct measurement of both pressure and velocity on the loudspeaker diaphragm. The measured impedance then could be adjusted to the desired one, by minimizing the error signal [START_REF] Furstoss | Surface impedance control for sound absorption: direct and hybrid passive/active strategies[END_REF]. Equivalently, a certain reection coecient was targeted thanks to the two-microphone-method in [START_REF] Guicking | Active impedance control for one-dimensional sound[END_REF] and [START_REF] Orduna-Bustamantea | An adaptive controller for the active absorption of sound[END_REF]. The addition of intrusive and bulky sensors, such as accelerometers or frontal microphones, and the complexities related to the necessary adaptive lters, make these direct impedance control techniques not ideal for compact and light implementations, such as liners.

An alternative to the use of external sensors was oered by self-sensing strategies (see Figure 1.24c), as in [START_REF] Boer | Theory of Motional Feedback[END_REF], [START_REF] Leo | Self-sensing technique for active acoustic attenuation[END_REF], [START_REF] Samejima | A state feedback electro-acoustic transducer for active control of acoustic impedance[END_REF], [START_REF] Rivet | Absorbeurs électroacoustiques pour l'égalisation modale des salles: une nouvelle approche avec des haut-parleurs à double bobine (Electroacoustic Absorbers for the modal equalization in rooms: a new approach with double coil loud-speakers)[END_REF] and [START_REF] Boulandet | Sensorless electroacoustic absorbers through synthesized impedance control for damping low-frequency modes in cavities[END_REF]. [START_REF] Lissek | Electroacoustic absorbers: Bridging a gap between active sound absorption and shunt loudspeakers. 18[END_REF] introduced an unied formulation of the EA by demonstrating the equivalence between direct impedance control (based upon pressure and velocity sensing) and the shunting techniques. They highlighted how, on the one hand, the direct impedance control strongly depends upon the neutralization of the loudspeaker electrical impedance, therefore is limited by stability issues coming from wrong modelling of the electrical inductance. On the other hand, the electrical shunting equivalent, even though always stable, is often not easily realizable.

The idea was then to increase the exibility of the EA by substituting the electrical shunt with a synthesized digital corrector in [START_REF] Fleming | Control of resonant acoustic sound elds by electrical shunting of a loudspeaker[END_REF] and [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF]. In particular, [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF] proposed a mechanicalmodel-inversion-based control architecture. It detected pressure by one or more microphones placed as close as possible to the loudspeaker to achieve quasi-collocation, and drove the current (thanks to a Howland current pump [START_REF] Pease | A Comprehensive Study of the Howland Current Pump A Comprehensive Study of the Howland Current Pump Applications for the Howland Current Pump AN-1515[END_REF]) in order to equal out the own mechanical dynamics of the loudspeaker, and reproduce a desired acoustical impedance at the speaker diaphragm. The Howland current pump on the one hand, and the use of a microphone on the other, allowed to restrict the model inversion to the mechanical dynamics only, getting rid of the electrical inductance modelling issues of the direct impedance control, at the same time providing a exible controller thanks to the digital implementation. As the mechanical model uncertainties are much less critical than the electrical ones, it was possible to enlarge the frequency bandwidth of absorption. This control architecture proved great versatility and it has been employed in various applications. Rivet et al. [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF], [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF] proved the eciency of such EA concept for room modal equalization. The target impedance was set to a SDOF resonator or to the equivalent impedance of a MDOF resonator composed by more SDOFs in parallel.

Such EA strategy was originally designed in order to achieve the characteristic impedance of air ρ 0 c 0 in an as large as possible frequency bandwidth, for total absorption in normal incidence. In order to optimize the target impedance assigned on the EAs for room modal equalization, a numerical study has been conducted in [START_REF] Rivet | On the optimisation of multi-degree-offreedom acoustic impedances of low-frequency electroacoustic absorbers for room modal equalisation[END_REF] by considering purely resistive impedances and discarding the eect of the EA reactance. A plane wave approximation of the cavity modes [START_REF] Moiola | Plane wave approximation of homogeneous Helmholtz solutions[END_REF] has recently inspired a fast technique to reconstruct the pressure eld in rooms [START_REF] Tukuljac | Joint estimation of the room geometry and modes with compressed sensing[END_REF] which could be adopted to envisage more physically-grounded optimizations of the EA target impedance, taking into account both its resistance and reactance.

In [START_REF] Boulandet | Duct modes damping through an adjustable electroacoustic liner under grazing incidence[END_REF] the EA strategy has been implemented in a liner made up of small unit cells, and tested in an acoustic waveguide with and without ow. The main interest of such EA-liner is its tunability which makes it particularly attractive for reducing noise radiation from turbofan engines during dierent ight phases. The nacelle parietal walls at the inlet and bypass regions (see Figure 1.1) are the most suitable for such electro-active treatments.

The same control strategy has also been proposed to obtain a phase gradient reection coefcient, by grading the complex target impedance on an array of EAs, so that to control the reected wavefront direction [START_REF] Esfahlani | Acoustic carpet cloak based on an ultrathin metasurface[END_REF]. The interest in wave-steering ranges from carpet cloaking to noise transmission reduction for grazing incidence in an acoustic waveguide.

All the aforementioned implementations of the impedance control, target locally reacting behaviours of the treated boundaries. Nevertheless, both room acoustics and grazing incidence problems might benet from a non-local character of the controlled boundary, whose potential is yet to be fully understood. As mentioned in Chapter 1, B.C.s assuring total absorption at more than one angle of incidence might be very interesting for room modal equalization.

The eld of computational physics has provided, among many, an intriguing so-called Higdon B.C. [START_REF] Higdon | Numerical Absorbing Boundary Conditions for the Wave Equation[END_REF], assuring total absorption for multiple incident angles. It is interesting to notice how such B.C. could be achieved by controlling the EA velocity based upon the local pressure and its tangential derivatives of increasing order, which invest the boundary with a non-local character. To the limit, the B.C. assuring total absorption of waves for any angle of incidence is a pseudo-dierential operator non-local both in time and space but not physically imple-mentable because requiring an innite amount of data storage [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF]. In [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF], Collet et al. have proposed a rst-order non-local dierential operator, here called as boundary advection law, which provided interesting results for noise transmission attenuation in grazing incidence.

The boundary advection law has proven to feature broadband non-reciprocal propagation [START_REF] Karkar | Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modeling to Experimental Implementation[END_REF] (a hot topic in the metamaterial eld), thanks to a completely innovative bias-mechanism.

Next section provides a quick overview of the reciprocity-breaking state-of-art, needed in order to appreciate the following numerical and experimental demonstrations of the acoustical non-reciprocity realized by the boundary advection law, presented later in this manuscript.

Reciprocity breaking

Reyleigh has been the rst formulating the reciprocity theorem for sound in [START_REF] Strutt | Some general theorems relating to vibrations[END_REF] and demonstrating it in [START_REF] Strutt | The theory of sound[END_REF]. It states that exciting acoustic waves at any point A of an acoustic medium at rest (possibly inhomogeneous as represented by the darker purple region in Figure 1.25), the resulting velocity potential at a second point B is the same both in magnitude and in phase, as it would have been at A, had B been the source of sound. We remark that this result holds even in the presence of absorption losses and in arbitrarily inhomogeneous media. Such property is widely exploited in measurement techniques, for instance in scattering and radiation patterns measurements and transducer calibration. Nevertheless, nonreciprocal wave propagation might be convenient for energy concentration and harvesting, communications and imaging systems, signal processing or even thermal management [START_REF] Fleury | Nonreciprocal acoustics[END_REF].

The reciprocity theorem can be formulated for many physical systems supporting wave propagation, such as electromagnetics (the Lorentz theorem) or solid structures (the Betti-Maxwell theorem). A sucient condition for reciprocity is the Onsager-Casimir principle of microscopic reversibility, i.e. the invariance of the medium behaviour and properties under time reversal [START_REF] Caloz | Electromagnetic nonreciprocity[END_REF]. Mathematically speaking, time reversal (TR) is represented by the operator I [START_REF] Caloz | Electromagnetic nonreciprocity[END_REF], which, applied to a process φ(t), writes:

I[(φ(t))] = φ (-t).

(1.3) If φ (-t) = φ(t), then the system is called time-reversal symmetric, vice versa, if φ (-t) = φ(t) the system is said time-reversal asymmetric. Figure 1.26, from [START_REF] Caloz | Electromagnetic nonreciprocity[END_REF], shows a case of time-reversal symmetry (TRS) (blue and red curves), and a case of broken time-reversal symmetry (BTR) (red and green curves).

The invariance of the medium under time reversal is satised for linear time-invariant (LTI) media, whose properties does not depend on parameters (let us call them B) which are oddly symmetric under time reversal (B(-t) = -B(t)).

Hence, in order to allow for non-reciprocity to manifest, one of the hypotheses of time-reversal symmetry must be broken: either linearity, time-invariance or the absence of oddly symmetric parameters under time reversal.

Liang et al. [START_REF] Liang | Acoustic Diode: Rectication of Acoustic Energy Flux in One-Dimensional Systems[END_REF] demonstrated that nonreciprocal isolation could be achieved by pairing a nonlinear acoustic medium, playing the role of higher harmonic generator, with a sonic crystal, playing the role of a frequency selective mirror, as in Figure 1.27. Thanks to its periodic structure, the sonic crystal reects any harmonic signal of frequency f in its bandgap [f 1 , f 2 ]. The nonlinear medium is juxtaposed on the right of the sonic crystal. When the signal at frequency f ∈ [f 1 , f 2 ] enters the device from the right, it encounters the nonlinear medium which partially converts it to higher harmonics (second harmonics in [START_REF] Liang | Acoustic Diode: Rectication of Acoustic Energy Flux in One-Dimensional Systems[END_REF]). If the bandgap of the sonic crystal is so designed such that 2f / ∈ [f 1 , f 2 ], some energy traverses the crystal and is transmitted downstream, so the transmission coecient right-to-left t R→L is dierent from 0. Observe that, in this case, the transmission coecient should refer to the total transmitted power, not its frequency spectrum, as the frequency content of the transmitted signal is dierent from the incident one's. The other way around, a signal entering Figure 1.27: Non-linear isolator principle pairing a frequency-selective mirror (sonic crystal) and a non-linear medium capable of second-harmonic generation (SHG), from [START_REF] Fleury | Nonreciprocal acoustics[END_REF].

the device from the left at the same frequency f ∈ [f 1 , f 2 ], encounters rst the sonic crystal which will reect it upstream, so the transmission coecient left-to-right t L→R is almost 0.

Thanks to the excellent reection properties of the sonic crystal, the nonlinear nonreciprocal device achieves high values of the isolation coecient IS = 20 log 10 (|t R→L /t L→R |), which is the metrics adopted to quantify the transmission contrast and non-reciprocal performance.

Nevertheless, the transmission in the passing sense t R→L is relatively small, depending on the eciency of the higher-harmonic generations of the nonlinear medium, other than the losses both in the nonlinear medium and the sonic crystal.

Nonreciprocal devices (also called isolators) based upon coupling nonlinear medium and sonic crystals, present some drawbacks for practical applications. First, they require high levels of incident acoustic power to trigger the nonlinear behaviour. Second, they are typically bulky as the thickness of the sonic crystal must be much larger than the wavelength of the incoming acoustic wave, making such devices inadequate for audio and low frequency applications. In order to cope with such shortcoming, Popa and Cummer [START_REF] Popa | Non-reciprocal and highly nonlinear active acoustic metamaterials[END_REF] proposed a dierent approach, based upon a piezoelectric membrane driven by a nonlinear electronic circuit which amplies and convert the pressure signal to twice its frequency. Such electroacoustic transducer was placed between two Helmholtz resonators. Such resonators (r1 and r2) presented dierent hole diameters d 1 and d 2 to resonate at dierent frequencies f 1 and f 2 = 2f 1 , respectively.

Incident sound waves at frequency f 1 strongly couple with the resonator r 1 , which in turn eciently excites the membrane. The second-harmonic-generation (SHG) of the nonlinear electronic circuit, converts the signal at f 1 to a signal at f 2 = 2f 1 , which in turn strongly couples with the resonator r 2 placed on the other side of the membrane. This is the transmit sense. On the other hand, when the same incident wave (at f 1 ) impinges from the opposite direction, it weakly couples with the resonator r 2 , and even less with the resonator r 1 because its neck is facing the opposite direction. This way, acoustical reciprocity was broken with a device of subwavelength thickness. Though, as it is based upon Helmholtz resonators, the bandwidth of ecient isolation is narrow. A third inevitable drawback of nonlinear isolators is that they very much rely on the frequency conversion accomplished by the nonlinear medium, which signicantly alters the incident acoustic signal. Nevertheless, they are still relevant for some applications, such as the protection of systems from incident acoustic power beyond a given threshold.

The second hypothesis of reciprocity is time-invariance. Time-dependent modulation breaking reciprocity in electromagnetics is analysed in [START_REF] Sounas | Non-reciprocal photonics based on time modulation[END_REF]. An example of non-reciprocal propagation in elastic medium is in [START_REF] Wang | Observation of nonreciprocal wave propagation in a dynamic phononic lattice[END_REF], where a chain of repelling magnets is modulated by externally driven coils, producing an equivalent mass-spring lattice with spatio-temporally modulated springs, see Figure 1.28a. In [START_REF] Yi | Active metamaterials with broadband controllable stiness for tunable band gaps and non-reciprocal wave propagation[END_REF] and [START_REF] Marconi | Experimental observation of nonreciprocal band gaps in a space-time-modulated beam using a shunted piezoelectric array[END_REF], non-reciprocal propagation is achieved by spatiotemporal modulation of the stiness prole of a beam, thanks to piezoelectric patches, see Finally, the last available hypothesis to be broken to achieve non-reciprocal propagation, is to conceive a medium having some parameter which is oddly symmetric under time reversal, i.e. whose sign ips under time reversal. In electromagnetics, a typical example of such parameter is a static magnetic eld bias. A magnetic eld result from the motion of electrical charges along circular paths. If the circular motion of charges is reversed as by time reversal, the sign of the magnetic eld ips. Magnetic elds can indeed break electromagnetic reciprocity in ferrites [START_REF] Lax | Microwave ferrites and ferrimagnetics[END_REF] and acoustic reciprocity of ultrasonic waves in magnetoelastic crystals [START_REF] Kittel | Interaction of spin waves and ultrasonic waves in ferromagnetic crystals[END_REF]. Applications of such electromagnetic non-reciprocal devices employing magnetic bias, are isolators and circulators, which have long been used in the magnetic and photonics industry [START_REF] Pozar | Microwave engineering[END_REF]. Isolators are two-port devices allowing signal transmission in only one direction, see Figure 1.29a. They are used to protect sources from unwanted reections or to connect dierent circuits together in a modular way such that interference with reected signals is minimized. Circulators combine three isolators into a three-port network that allows signal transmission in an unirotational fashion, see Figure 1.29b. As they allow both a receiver and a transmitter to be connected to the same antenna, they are essential parts of radar systems, and they are becoming crucial components to enable full duplex operation in the next generation of communication devices [START_REF] Fleury | Nonreciprocal acoustics[END_REF].

In order to produce the acoustic analogue of a circulator, Fleury et al. [START_REF] Fleury | Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator[END_REF] employed uid ow as the biasing factor, by making use of three small fans, see Figure 1.30. It is the analogue of the electronic Zeeman eect [21] on an acoustic meta-atom (a ring lled with air), where the magnetic bias is substituted by uid ow which splits the azimuthal resonant modes of the ring. In other words, the azimuthal mode of the ring, gets separated in two counter-propagating modes with dierent resonance frequencies. By controlling the fan speeds attached to the ring, it is possible to excite the clockwise or anticlockwise azimuthal modes, hence realizing a tunable circulator. An alternative to uid ow bias to impart the angular momentum biasing, was also proposed by Fleury et al. [START_REF] Fleury | Subwavelength ultrasonic circulator based on spatiotemporal modulation[END_REF] via spatio-temporal modulation, see Figure 1.31. It was conceived in order to design a circulator for ultrasonic purposes, where a uid bias would have been unpractical given the small size of the cavity required. The spatio-temporal modulation was applied to three cavity volumes, symmetrically coupled to each other through small channels and to external waveguides. The modulating function, on each cavity volume, have a xed frequency and a phase dierence of 2π/3 between neighbouring cavities.

Observe that the border line between spatio-temporal modulation strategy, and the biasing technique, is very thin, as spatio-temporal modulation usually induces a bias. By the way, in both cases external energy supply is required, which constitutes the actual biasing source needed to break reciprocity in linear systems. We also remark that both [START_REF] Fleury | Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator[END_REF] and [START_REF] Fleury | Subwavelength ultrasonic circulator based on spatiotemporal modulation[END_REF] circulators, rely on resonance phenomena, hence the isolation achieved has a narrow bandwidth.

In Chapter 3, a novel reciprocity-breaking strategy is proposed, based upon the potential of programmable B.C.s. In [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF], Collet et al. rst implemented a rst-order advection equation on the boundary of an acoustic waveguide, making use of electro-acoustic transducers. The same law has been retrieved in [START_REF] Karkar | Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modeling to Experimental Implementation[END_REF], to demonstrate its potentialities to accomplish broadband non-reciprocal propagation, and its eciency has been experimentally validated beyond the resonance frequency of the actuators (loudspeakers), see Figure 1.32. Here the biasing source (electrical energy) is employed to modify the response of the boundary, achieving a convection of the local boundary reaction in an exclusive sense (either forward or backward). Such advective boundary could be seen as a non-locally reacting liner, whose non-local behaviour happens solely along one sense of propagation. The sense of propagation is given by the convection speed dened in the B.C.. If such convection speed is set equal to the speed of sound c 0 , then high isolation levels can be accomplished. We highlight that, in contrast with the circulating uid of [START_REF] Fleury | Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator[END_REF], or the spatio-temporal modulation of [START_REF] Fleury | Subwavelength ultrasonic circulator based on spatiotemporal modulation[END_REF], no biasing elds or momentum are induced in the acoustic domain if the boundary is not excited. Moreover, such non-reciprocal B.C. does not rely on resonance phenomena, so that it can potentially achieve large bandwidth of ecient isolation. The actual limitations to its operative bandwidth only depends upon the complexities related to the control systems.

Finally, it is interesting to note how such a non-local strategy has been later re-proposed in a simplied fashion by [START_REF] Sasmal | Broadband nonreciprocal linear acoustics through a non-local active metamaterial[END_REF]. Nevertheless, in [START_REF] Sasmal | Broadband nonreciprocal linear acoustics through a non-local active metamaterial[END_REF] the unidirectional non-locality is simply achieved by using loudspeakers emitting sound proportional to upstream pressure signals, see Figure 1.33. The analogy to the boundary advection law of [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF] is evident as both introduce a boundary behaviour which is either in phase advance (in the non-passing sense of propagation) or in phase delay (in the passing sense) respect to the local value of the incident pressure wave. In other words, placing microphones upstream respect to the actuators in [START_REF] Sasmal | Broadband nonreciprocal linear acoustics through a non-local active metamaterial[END_REF], plays an analogous role of the boundary advection speed in the control law implemented in [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF].

Hence, the non-reciprocal device proposed in [START_REF] Sasmal | Broadband nonreciprocal linear acoustics through a non-local active metamaterial[END_REF] can be seen as an extreme simplication of the advection boundary law, where the phenomenon of transport of the local reaction is reduced to just a gain factor between each loudspeaker vibration and the corresponding upstream microphone. By doing so, [START_REF] Sasmal | Broadband nonreciprocal linear acoustics through a non-local active metamaterial[END_REF] fails to provide any physical interpretation of the non-reciprocal eect, and prevents to take into account many important features as acoustical passivity.

In Chapter 3, the boundary advection law is investigated deeply, from its theoretical conception to its practical implementation, passing through numerical simulations of increasing complexities. Its experimental implementation is renovated with respect to both [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF] and [START_REF] Karkar | Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modeling to Experimental Implementation[END_REF], allowing to target frequencies around the resonance of the loudspeakers. All the aspects and results related to the non-reciprocal propagation achieved by the advective B.C. are highlighted throughout Chapter 3.

Thesis Overview

Here is a brief overview of the following chapters.

In Chapter 2, the pressure-based current-driven control architecture, rstly proposed in [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF],

is investigated in terms of its performances, limitations and further potentialities. In Section The Impedance Control by Digitally Adaptive Loudspeaker based upon pressure sensing and driven by electrical current

As mentioned in Section 1.3.2, the pressure sensing by one or more quasi-collocated microphones, fed into the controller, in turn driving the current in the loudspeaker coil thanks to a Howland pump, has so far proven to be the best architecture for the active impedance control [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF]. The possibility to use one or more external microphones and the use of electrical current as controller, allowed to break free from the electrical dynamics model of the loudspeaker and its related issues. Nevertheless, as the impedance control aims at controlling the ratio between two variables (acoustic pressure and velocity), sensing only the acoustic pressure inevitably brings about the characteristics of a feedforward-like system. Above all, the use of the model-inversion to achieve the target acoustic velocity producing the desired impedance value.

In the next section, much attention is paid on the acoustical passivity which, as mentioned in 1.3.2, is the real asset of the impedance control techniques based upon adaptive actuators.

A model-inversion control

In this section, the model-inversion approach proposed in [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF] is investigated analytically, numerically and experimentally. Let us consider a closed box loudspeaker as in Figure 2.1, used as a membrane absorber, thanks to a pressure-based current-driven impedance control scheme [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF]. In this conguration, the corrector transfer function between the pressure input and the control variable (the electrical current in the loudspeaker coil) is dened based upon the assumption of knowing the mechano-acoustical dynamics of the loudspeaker. The model assumed for the loudspeaker corresponds to the classical SDOF piston-mode approximation [START_REF] Beranek | Acoustics: Sound Fields and Transducers[END_REF], and is reported in Eq. (2.1). where M m0 , R m0 and K m0 are the mechanical mass, resistance and stiness of the SDOF loudspeaker model respectively. The stiness K m0 (inverse of the compliance C m0 ) takes into account also the eect of the backing enclosure. In the following stationary regime analysis, s is exchangeable with jω, where ω = 2πf is the angular frequency (in rad/seconds) and f is the ordinary frequency (in Hz).

Z m0 (s)v(s) = S d p(s) -Bl i(s), (2.1) 
As we are interested in the acoustic behaviour, it is more convenient and intuitive to divide all the terms of Eq. (2.1) by S d so that to obtain:

Z a0 (s)v(s) = p(s) - Bl S d i(s), (2.2) 
where Z a0 (s) = M a0 s + R a0 + Ka0 s is the acoustical impedance of the EA in open circuit.

Looking at Eq. (2.2), and supposing that the pressure measured by the microphone p m (s)

be equal to the pressure on the speaker diaphragm, it is easy to derive the corrector transfer function H(s) between p(s) and i(s), in order to achieve a target impedance Z at (s) on the loudspeaker diaphragm, see Eq. (2.3): (2.3), where η a0 is at the denominator, manifests in formula the concept of model-inversion.

H(s) = i(s) p(s) = S d Bl 1 - ζ a0 (s) ζ at (s) = S d Bl 1 - η at (s) η a0 (s) (2.
The so-called Thiele-Small parameters appearing in Eq. (2.1) and (2.3) must be estimated with some technique, taking advantage of electrical and/or acoustic measurements in dierent congurations [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF]. The Thiele-Small parameters of the EA taken into account for the following simulations, have been estimated by the technique described in Appendix A, and are reported in Table 2.1.

We remind that the model of Eq. (2.1) corresponds to the piston mode approximation, and higher order mechanical modes of the loudspeaker are not taken into account in the control law (2.3). This can lead to spill-over eects, which also can contribute to the stability of the entire system. Nevertheless, in this analysis we focus on the eect of the time-delay, and the piston-mode approximation of Eq. (2.1) is considered as representing the full dynamics of the loudspeaker in our simulations.

The objective of [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF] was to attain an acoustic resistance on the loudspeaker diaphragm in an as-wide-as-possible frequency range. The target impedance Z at (s) was then chosen as a target resistance R at equal to the characteristic impedance of air ρ 0 c 0 (ζ at = η at = 1) to have perfect absorption for normally incident plane waves. In other applications, such as the lining conguration in duct acoustics, or room acoustics, the optimal value for R at becomes a more dicult choice (see [START_REF] Cremer | Theory regarding the attenuation of sound transmitted by air in a rectangular duct with an absorbing wall, and the maximum attenuation constant produced during this process[END_REF] and [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF]).

In any case, a Z at simply equal to the target resistance R at , would bring a non-proper [START_REF] Goodwin | Control System Design[END_REF] transfer function H(s), and indenitely increasing electrical current at lower and higher frequencies. Therefore, for causality and energy limits, in the expression of Z at (s) a reactive part was added to R at , see Eq. (2.4):

Z at (s) = M at s + R at + K at s , (2.4) 
where M at and K at are the target mass and resistance. Such terms can be written in terms of the acoustic mass and stiness of the EA in open circuit: M at = µ M M a0 and K at = µ K K a0 . By doing so, the coecients µ M and µ K indicate how far the target acoustical mass and stiness dier from the case of open circuit. By varying their ratio, it is possible to set the resonance frequency f at of Z at (s) at dierent values than the open-circuited EA natural frequency f 0 , see Eq. (2.5).

f at = É µ K µ M f 0 = É µ K µ M 1 2π Ê K m0 M m0 (2.5)
The target impedance (2.4) is the one of a SDOF resonator, with the mass, stiness and damping elements in series as the loudspeaker piston-mode in open circuit, which is the model to be inverted by the corrector (2.3). Nevertheless, other target impedances can be targeted, for example by considering some elements in parallel (instead of in series), producing corresponds to the case where the total sound intensity on the loudspeaker diaphragm is less than twice the sound intensity of the normal incident wave [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF]. From Figure 2.3 (both left and right) we can notice that the main impact on the bandwidth is given by the µ M coecient (in logarithmic scale on the y-axis), i.e. by the mass term, as the bandwidth signicantly enlarges when µ M is reduced. Despite what was reported in [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF] and [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF], we remark that also µ K (the stiness term) aects the ecient absorption bandwidth: the absolute bandwidth ∆f is slightly enlarged, whereas the relative bandwidth ∆f/f 0at is slightly reduced when µ K is augmented. Hence, shifting the resonance frequency f at toward higher values (increasing µ K or decreasing µ M ), brings about a larger absolute, but lower relative, bandwidth. Even keeping f at unchanged, both the absolute and relative bandwidth can still be expanded by reducing both µ M and µ K proportionally, as the eect of decreasing µ M is more important than the one induced by diminishing µ K . Concerning R at there is an optimal value (which is more than ρ 0 c 0 ) achieving the largest bandwidth.

Ideally, the impedance on the loudspeaker diaphragm realised by the controller (2.3) is exactly the target impedance Z at (s) as reported in Figures 2.2 

Eect of time delay on passivity

As any digital control system, a certain time delay happens between the input and the output of the control loop. The time delay in the control chain corresponds to an exponential transfer function e -sτ in the Laplace domain, multiplying the controller H(s) of Eq. (2.3). Supposing p m (s) = p(s), the acoustic mobility Y a (s) achieved on the loudspeaker diaphragm is:

Y a (s) = v(s) p m (s) = 1 Z m0 (s) S d -Bl H(s) e -sτ (2.6)
Because of the time delay, Y a (s) achieved on the loudspeaker diaphragm is dierent from the target one (1/Z at (s)).

In Figure 2.4 we simulate the variation of the normal absorption with respect to the target impedance parameters as in Figure 2.2, but with a control latency of τ = 2 × 10 -5 seconds applied, according to the delay estimation reported in [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF]. Figure 2.4 shows that time delay signicantly aects the acoustical passivity both around f 0 (about 500 Hz) and at higher frequencies. A locally-reacting surface can be dened as passive if the Re{Y a (jω)} is positive, that is if α n (ω) ≥ 0 for every ω. A negative absorption indicates that more acoustic energy is reected than the incident one (the reection coecient becomes |R(jω)| ≥ 1). The ratio of the energy injected by a non-passive locally reacting surface, to the incident one, at a certain frequency ω, is given by the negative value of α n (ω). The impact of time delay around f 0 is as more important as farer we push f at away from f 0 . The high-frequency loss of acoustical passivity on the other hand, gets more critical as the corrector gain increases at those frequencies, as expected. As the high-frequency gain of H(s) is given by the target acoustic mass, i.e. by the factor µ M (see Figure 2.2 left), the high-frequency enlargement of the bandwidth of ecient absorption is paid by a so-called shortage of acoustical passivity at the forthcoming frequencies. In classical control schemes, the problem of non-passive systems manifests itself when a feedback is applied between the output and the input. This is also the case here, with the peculiarity that the feedback between the output velocity and the input pressure is given by the acoustic domain in which the controlled loudspeaker is placed. Indeed, as the control system becomes acoustically non-passive at high frequencies, the problem of acoustic feedback of the secondary path, typical of ANC techniques (especially feedforward), comes back into the scenario.

Stability analysis

Coupling an acoustically non-passive device with a conservative acoustic cavity inevitably leads to instability. In Appendix B, it is briey recalled the solution of a 1D acoustic hardwalled cavity with a rigid termination on one side, and a generic acoustic element characterized by a reection coecient R(s) on the other. It is shown how a reection coecient such that |R(s p )| > 1 (where s p is a pole of the entire system) causes Re{s p } > 0, i.e. instability. In the current section, the stability is analysed by an equivalent approach dearer to control engineers: the poles calculation. By evaluating the poles of the closed-loop transfer function of the entire system coupling our EA with a 1D hard-walled rigidly terminated acoustic waveguide, we verify that the eect of each control parameter on the unstable poles is in accordance with the results of Section 2.1.1. In the following analyses, the time delay is assumed as τ = 2 × 10 -5 seconds, if not specied dierently.

In Figure 2.5 the block diagram relative to the pressure-based, current-driven impedance We highlight that it is not possible to incorporate the radiation impedance Z rad (s) into Z m0 (s) (as proposed in [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF] and [13]), because the transfer function Z rad (s) plays the role of a feedback term in the closed loop of our controlled system.

The system will be stable against perturbations (either on the measurement or on the external eld) if the transfer function of the closed loop of Figure 2.5 is stable. The closed loop transfer function between the pressure perturbation on the speaker p(s) and the diaphragm velocity is given by:

v(s) p(s) = Y a (s) 1 -Y a (s)Z rad (s) , (2.7) 
whereas the closed loop transfer function between the pressure perturbation on the measurement pm (s) and the diaphragm velocity

, is v(s)/p m (s) = -Y m (s)BlH(s)e -sτ /(1-Y a (s)Z rad (s)).
In both cases the stability margin is given by the product Y a (s)Z rad (s) with respect to the unstable point +1, as reported in [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF]. If the open loop (i.e. open eld) transfer function between the measured pressure p m (s) and the speaker diaphragm velocity v(s) is passive, being the feedback operator Z rad (s) always passive, then the entire closed loop will also be passive as passivity is preserved under feedback interconnections [START_REF] Bao | Process Control: The Passive Systems Approach[END_REF]. Since passivity is a sucient condition for stability [START_REF] Bao | Process Control: The Passive Systems Approach[END_REF], then the closed loop will be unconditionally stable.

In the plane wave assumption, the acoustic load relative to a rigidly-terminated hard-walled duct of length L corresponds to the transfer function reported in Eq. (2.8), which is derived -500 0 500

Real Axis (rad/s) Z rad (s) = -ρ 0 c 0 e sL/c0 + R term e -sL/c0 e sL/c0 -R term e -sL/c0 .

(

In the formula of Eq. (2.8), R term is the reection coecient of the termination, which is taken equal to 1 in what follows. In order to analyse the stability, we choose to calculate the poles rather than to evaluate the Nyquist diagram as the latter becomes laboured in case of resonances in the feedback term.

The presence of the exponentials in Eq. (2.7), makes it a transcendental equation. Therefore, for the poles calculation, we need to approximate it with a rational proper transfer function.

In order to do that, it is common practice to approximate the complex exponentials appearing in Eq. (2.6) and (2.8) by the Padé ratio of polynomials [START_REF] Baker | Padé approximants[END_REF]. In Both in this section and in Appendix B, we have supposed a conservative acoustic cavity in front of the EA. Similar computations can be carried out by simulating the actual damping present in the cavity, in order to assess weather the coupled system is actually stable or not.

In the latter case, an obvious remedy is to add some damping into the system. The next section proposes such simple solution to restore the acoustical passivity of the EA at high frequencies. If we are able to achieve acoustical passivity at any frequency, then the system will be stable whatever the acoustic cavity where the EA is placed.

Acoustic passivation

In order to enlarge the frequency bandwidth without becoming unstable, it is necessary in some way to restore the acoustical passivity at high frequencies. In [START_REF] Kelkar | Robust control of non-passive systems via passication [for passication read passivation[END_REF] four general possible passivation methods are presented: series, feedback, feedforward and hybrid compensation.

These methods are classically used in order to passivate a (non-passive) plant before applying the controller, therefore exploiting the robust stability properties of passivity-based control laws [START_REF] Kelkar | Robust control of non-passive systems via passication [for passication read passivation[END_REF]. In our case, it is the entire plant+controller system which has to be acoustically passivated, and it presents a time delay in series with the control itself. Therefore, a series passivation, generally through alternating poles and zeros (such as high frequencies phase-lead or lead-lag compensators, as the ones proposed in [13]) does not solve the problem. Indeed, a series passivation allowing passivity over a larger frequency range (leading to what Kelkar calls Band-Limited Positive Real systems [START_REF] Kelkar | Robust control of non-passive systems via passication [for passication read passivation[END_REF]) expanding towards higher frequencies, would also bring about a larger impact of the time-delay de-phasing eect, and hence a more serious loss of passivity at the forthcoming frequencies. Not even feedback compensation can passivate a non-minimum-phase system [START_REF] Kelkar | Robust control of non-passive systems via passication [for passication read passivation[END_REF], and in any case our architecture does not provide for a fullyfeedback control (which entails the measurement of both pressure and velocity). A possible solution could be to adopt feedforward compensation, that is a transfer function between the input pressure and the output velocity which would add up to the system transfer function Y a (s) [START_REF] Kelkar | Robust control of non-passive systems via passication [for passication read passivation[END_REF]. Nevertheless, it is hard, if not impossible, to conceive a feedforward acoustical passivation through an electrical network or controller, acting directly on current without deteriorating the performance at the operating frequencies and, mostly, being devoid of time delay.

A more straightforward and intuitive solution is instead to physically apply a porous layer in front of the loudspeaker membrane. Porous materials are renown for their good absorptive properties at high frequencies, allowing to compensate for the shortage of acoustical passivity of our EA at those frequencies. In Figure 2.7 an example of application of a porous layer in front of the speaker is depicted. The porous layer must be attached on the support of the loudspeaker so that there is never a contact between the speaker's diaphragm in vibration and the porous treatment. The acoustic impedance of the EA (the cell) with a porous layer in front has been evaluated thanks to the Impedance Translation Theorem [1], for which

Z 2 (jω) = p 2 (jω) v 2 (jω) = z c (jω) jZ 1 (jω) cot(k c (jω)d) + z c (jω) Z 1 (jω) -jz c (jω) cot(k c (jω)d) (2.9)
where Z 2 (jω) is the acoustic impedance of the EA with porous layer applied; Z 1 (jω) = 1/Y a (jω) is the acoustic impedance of the EA without porous layer; k c (jω) and z c (jω) are the wave number and the characteristic impedance of the porous medium in the equivalentuid modelling [1], obtained by the Miki semi-empirical power laws [START_REF] Miki | Acoustical properties of porous materials-Modications of Delany-Bazley models[END_REF] based upon the ow resistivity.

In Only EA EA with Porous Layer From the simulations of Figure 2.8, the porous sheet has the eect of restoring the passivity and therefore the stability, without practically aecting the performance of the EA in the operating frequency range (around the resonance of the loudspeaker).

The application of the porous sheet can be seen as a passivation through an input-output transformation matrix M , as the one proposed by Xia et al. [START_REF] Xia | Passivity indices and passivation of systems with application to systems with input/output delay[END_REF]. In our case, M is the Transmission Matrix relative to the porous medium described in Eq. (2.10) where p 1 and v 1 are, respectively, the input pressure and output velocity of the EA system, while p 2 and v 2 are, respectively, the input pressure and output velocity of the entire EA plus porous layer system (see Figure 2.7).

p 2 v 2 = M 11 M 12 M 21 M 22 p 1 v 1 = cos(k c d) -jz c sin(k c d) -jz -1 c sin(k c d) cos(k c d) p 1 v 1 (2.10)
The terms of the passivating Transformation Matrix are introduced in the block diagram of Figure 2.9, where the EA is represented by its acoustic mobility Y a (s).

We remind that the higher the delay, or the lower the µ M or R at parameters, the more serious will be the shortage of passivity. Therefore, to attain full passivation (to re-establish a positive passivity index [START_REF] Xia | Passivity indices and passivation of systems with application to systems with input/output delay[END_REF]), we need a more performant (in terms of high frequency absorption) porous layer, which usually means a thicker sample and/or a higher ow resistivity. Another possible improvement for the acoustic passivation, is to add a thin air-gap between the EA and the porous layer, so as to increase high frequency viscous dissipation at the porous location [1], as simulated in Figure 2.10. To calculate the resulting acoustic impedance in front the porous layer, the Impedance Translation Theorem has been applied recursively as described in [1]. The air-gap thickness is an additional variable which could be adjusted for the optimal design of the acoustic passivation.

We underline that this passivation technique should not be confused with a hybrid impedance control as the one proposed by [START_REF] Galland | Hybrid passive/active absorbers for ow ducts[END_REF], because in our case the porous element has the only scope of restoring passivity at high frequencies, without directly aecting the performance of the EA at the operating frequency range. In this section, the EA is experimentally tested in order to verify the eect of the time delay on passivity and stability simulated in the previous sections. In Figure 2.11 there is a picture of the EA produced in FEMTO-ST Institute, Department of Applied Mechanics, of Besançon.

The EA is composed by a loudspeaker and four microphones at the corners used to estimate an averaged pressure on the speaker diaphragm. The back case accommodates the necessary electronics. In Figure 2.11 on the right, a layer of 12 mm of melamine foam is applied in front of the loudspeaker, in keeping with the sketch of Figure 2.7. In Figure 2.12, the Kundt's tube adopted for the normal absorption measurements is photographed. The tube is made by plexiglass and supposed rigid, it is 60 cm long and has a squared cross-section of D = 53 mm side (cut-o frequency f cut-on = c 0 /2D = 3.2 kHz). The two microphones for the Two-Microphone Method (2MM) [START_REF] Standard | Stand. test method impedance Absorpt[END_REF] are spaced by 4 cm along the tube and the distance between the EA and the centre of the closest microphone is 28 cm. The source is an external loudspeaker reproducing a swept-sine noise signal from 150 Hz to 3.2 kHz. The EA is allocated on the other end of the duct, thanks to an appropriate parallelepiped casing where to clasp our EA. On the right of Figure 2.12 there is the internal view of the tube.

The absorption coecient is retrieved according to the ASTM [START_REF] Standard | Stand. test method impedance Absorpt[END_REF], to check the highfrequency behaviour induced by time delay and verify the contribution of each control parameter on the high-frequency passivity. control law (2.3), is only valid around the resonance frequency f 0 (which is about 500 Hz) of the open-circuited EA. At about 1.5 kHz, another mode appears in Figure 2.13, which anyway seems to be either amplied or weakened in a concordant way with the piston-mode.

An unexpected shortage of passivity appears at lower frequencies between 150 and 225 Hz, which is attenuated for higher values of µ K and R at . This eect is not due to the time delay but it might be related to dynamic uncertainties and spill-over eects [START_REF] De Larminat | Automatique appliquée[END_REF] on a lowfrequency mode of the speaker which is not taken into account in our control law, or to acoustic leakage inside the loudspeaker box. Another unwanted behaviour happens around the resonance frequency f 0 of the loudspeaker: the absorption coecient presents a dip just before f 0 , which critically descends toward the negative axis of α the more we shift the resonance frequency f at of the EA with respect to f 0 (see Eq. (2.5)). This must be caused mainly by a time delay which is higher than the one reported in [START_REF] Rivet | Room Modal Equalisation with Electroacoustic Absorbers[END_REF]. Other contributions might come from uncertainties in the Thiele-Small parameters along with the participation of the low/high frequency unexpected modes which are excited away from f 0 . Both dynamics and parameter incertitudes are the price to pay by a model-inversion based control. These eects and their coupling with the time delay shall be investigated in a future contribution;

in here we focus on the time delay eect at the high frequencies. Figure 2.13 conrms that increasing µ M raises the high-frequency absorption (above 1.7 kHz), reducing µ K also slightly improves high-frequency passivity, while if R at is signicantly augmented an excess of passivity is promoted. These experimental trends are in agreement with the simulations of Section 2.1.1.

In Figure 2.14 the absorption coecient is measured for two dierent time delays. By reducing the number of microphones adopted by the EA (from four to two), it was possible to increase the sampling frequency f s in the digital implementation, and consequently reduce the time delay which is directly linked to f s . It is apparent the improvement of high-frequency acoustical passivity obtained thanks to a shorter time delay. We also note that reducing the number of microphones adopted by the EA has no impact on the performance for normally incident plane waves, except for the low-frequency loss of passivity. This might be explained by an accentuation of the spill-over eect in using only two microphones instead of four, and probably suggests that the low-frequency mode of the loudspeaker (between 150 and 225 Hz) is asymmetric. In Figure 2.15 the measured normal absorption of the EA, with µ M = µ K = 0.3 and R at = ρ 0 c 0 , is compared with the case of the layer of melamine foam applied in front of the speaker. The thicker the porous layer, the more passivity is gained at high frequencies, whereas the EA performance at the resonance gets modied. This signicant eect at resonance was not predicted by the simulations of Figure 2.8, probably due to the inaccurate model of the porous material adopted in Section 2.1.3, especially at lower frequencies.

An unexpected positive eect of the foam is the restoring of acoustical passivity at the lower frequencies. The interaction between the EA low-frequency mode and the porous layer should be investigated further.

Now we propose to experimentally assess the eect of the control parameters and the porous layer on the instability induced by time-delay. Presenting experimental results about the instability of a system, is not such a trivial task. Here, we use the time histories of sound pressure recorded in a hard-walled duct with the EA on one side and a rigid termination on the other, at the upsurge of instability. In Figure 2.16 the experimental setup for the stability tests is shown. A Brüel and Kjaer impedance tube has been employed as hard-walled duct.

The rigid termination is given by the rigid piston of the Brüel and Kjaer equipment. The EA is allocated on the right end side of the duct thanks to an appropriate cylindrical casing where to clasp our EA. The distance between the EA and the rigid termination is 0.24 m and the diameter of the duct is 0.1 m. In Figure 2.17, the time history of the recorded sound pressure inside the cavity is plotted in case of EA with (red curve) and without (blue curve)

the foam layer applied. The control parameters adopted are µ M = µ K = 0.15, R at = 3ρ 0 c 0 .

As expected, with the porous layer the imaginary part of the unstable poles are lower (slower divergence of the time signal), i.e. the reection coecient is reduced (see Appendix B), as In Figure 2.18, we recorded the time histories for dierent values of µ M = µ K and of R at , with the foam layer applied. The nominal values of the control parameters are: µ M = µ K = 0.15 for the R at variation, and R at = ρ 0 c 0 for the µ M = µ K variation. We can see that augmenting µ M = µ K , as well as increasing R at reduces the imaginary part of the unstable poles, as expected. For µ M = µ K = 0.24 and R at = ρ 0 c 0 , the system is stable. 

Integral constraints on reection and transmission coecients of the EA

In order to give a further insight in the EA behaviour, both with respect to passivity and absorptive performance, an integral constraint has been derived in Appendix C. Exploiting the theorems of complex analysis, it is possible to arrive at a relationship between a frequency integral of the normal reection coecient spectrum R n (ω), the open-circuit acoustical stiness of the speaker K a0 , the static corrector transfer function H(s → 0), and the unstable zeros of the reection coecient transfer function R n (s), i.e. the zeros of R n (s) with positive real part. The relationship derived in Appendix C is reported below:

- ∞ 0 1 ω 2 ln |R n (ω)|dω = πρ 0 c 0 K a0 1 - Bl S d lim s→0 H(s) -π n Re{s n } |s n | 2 , (2.11) 
where s n are the unstable zeros of the normal incidence reection coecient transfer function R n (s), i.e. the zeros with positive real part. For lim s→0 H(s) = 0 we retrieve the integral constraint for purely passive absorbers provided by Yang [START_REF] Yang | Optimal sound-absorbing structures[END_REF], reported in Eq. (2.12)

- ∞ 0 1 ω 2 ln |R n (ω)|dω = πρ 0 c 0 d B ef f -π n Re{s n } |s n | 2 , (2.12)
where the acoustic stiness of the loudspeaker in the open-circuit conguration K a0 is substituted by the eective bulk modulus B ef f divided by the thickness of the sample d.

Imposing the acoustical passivity condition, then -

∞ 0 1 ω 2 ln |R n (ω)|dω = | ∞ 0 1 ω 2 ln |R n (ω)|dω| (because |R n (ω)| ≤ 1)
. Since Re{s n }) ≥ 0, a constraint on the minimum thickness for a xed bandwidth of ecient absorption was derived [START_REF] Yang | Optimal sound-absorbing structures[END_REF]:

d ≥ B ef f πρ 0 c 0 ∞ 0 1 ω 2 ln |R n (ω)|dω . (2.13)
Analogously, for a SDOF-in-series resonator which is purely passive, or having a null static controller H(s → 0) = 0, there is a minimum value of the acoustical compliance needed in order to achieve a certain bandwidth of ecient absorption:

C a0 ≥ 1 πρ 0 c 0 ∞ 0 1 ω 2 ln |R n (ω)|dω . (2.14)
Eq. (2.13) and (2.14) imply that high absorption in purely passive absorbers (such as porous materials or Helmholtz and quarter-wavelength resonators) is not possible for any nite thickness or nite compliance, especially at lower frequencies (look at the expression of the integrand) if not for narrow peaks [START_REF] Yang | Optimal sound-absorbing structures[END_REF].

If the pressure-based, current-driven control architecture is applied on a SDOF-in-series resonator like a loudspeaker instead, Eq. (2.11) holds. If the controller is supposed to keep the acoustical passivity of the system, then once again -

∞ 0 1 ω 2 ln |R n (ω)|dω = | ∞ 0 1 ω 2 ln |R n (ω)|dω|,
and we get:

-H(0) ≥ S d Bl K a0 πρ 0 c 0 ∞ 0 1 ω 2 ln |R n (ω)|dω . (2.15)
Therefore, H(0) must be a negative real number with a minimum absolute value depending upon the frequency bandwidth of ecient absorption and upon the acoustic stiness K a0 of the passive resonator under control, as well as the ratio S d /Bl. Indeed, -H(0)S d /Bl is the contribution of the control architecture on the loudspeaker rst mode compliance term. This means that, for any acoustic stiness (or compliance) of the passive resonator, it is possible to keep the acoustical passivity of the resonator with the control applied, and to achieve a desired bandwidth of ecient absorption, as long as sucient electrical current is supplied at the static limit.

In case of the control transfer function (2.3), H(0) = Sd/Bl(1 -1/µ K ), and the eective compliance is 1/µ K K a .

From the integral constraint (2.11), it is clear that there is a strong relationship between the frequency bandwidth of ecient absorption, the low-frequency controller transfer function (which means electrical energy supply), and the acoustical passivity. In Section 2.3, such interdependence becomes evident in the attempt to conceive an optimized lter through the H ∞ automatic control synthesis approach.

Observe that such integral constraint on the reection coecient for normal incidence, remains valid for any angle of incidence as long as R n is substituted by

R θ (ω) = ζ(ω)/ sin θ -1 ζ(ω)/ sin θ + 1 , (2.16) 
where ζ(ω) is the normalized acoustic impedance of the EA and θ is the angle of incidence, i.e. the angle between the incident pressure eld and the tangent to the boundary (normal incidence is for θ = π/2). For θ = π/2 then, Eq. (2.11) still holds, with s n being the zeros of R θ (s).

The question arises about the existence of an integral constraint for the grazing incidence transmission coecient of the EA (see Figure 2. incidence of a single locally reacting device, characterized by the acoustic mobility Y EA (ω), is described by:

19). The transmission coecient in grazing

T g (ω) = 1 1 + S d 2S ρ 0 c 0 Y EA (ω) , (2.17) 
where S d is the size of the locally-reacting device (in our case, S d is the equivalent piston area of the loudspeaker) supposed to be much lower than the wavelength, and S is the duct cross section area. Eq. (2.17) can be easily derived from the transmission matrix of an impedance Z EA (ω) = 1/Y EA (ω) in parallel with the direction of propagation of the incoming wave p + (i.e. in grazing incidence). We can notice that the transmission coecient of Eq. (2.17) has the same expression as the sensitivity transfer function of a classical feedback control loop:

S(s) = 1 1 + H ol (s) , (2.18) 
where H ol (s) is a generic open loop transfer function. The equivalence with Eq. (2.17) is evident, with H ol (s) substituted by S d 2S ρ 0 c 0 Y EA (s). According to the Bode integral constraint on sensitivity [START_REF] Goodwin | Control System Design[END_REF], for a SDOF stable control loop, with H ol (s) of relative degree n r > 0, it is:

∞ 0 ln |S(jω)|dω = - π 2 lim s→∞ sH ol (s). (2.19) 
We are only left to prove the hypothesis of the Bode integral constraint and evaluate the limit appearing on the rhs of Eq. (2.19) in the equivalence explained above, to nd the integral constraint for the transmission coecient T g (ω).

The hypothesis of stable control loop, means that the transfer function T g (s) (obtained substituting ω with s in Eq. (2.17)) does not have unstable poles. As long as Y EA (s) represents a passive acoustical device (true if we suppose no time delay in the EA), then the feedback loop is stable and the rst hypothesis is fullled.

The second hypothesis is the relative degree n r > 0 of H ol (s) which means, in our equivalence, that the denominator of the transfer function Y EA (s) must be of higher degree than the numerator. This is so for our EA, by looking at the expression of the acoustical mobility in Eq. (2.6), as long as the controller H(s) is a proper rational transfer function. Finally, the limit appearing on the rhs of Eq. (2.19) corresponds to:

lim s→∞ sY EA (s) = lim s→∞ Y a0 (s) 1 - Bl S d H(s) = 1 M a0 , (2.20) 
where Y a0 (s) = 1/Z a0 (s) is the acoustical mobility of the EA in case of open circuit. The last equality in Eq. (2.20) holds if lim s→∞ H(s) = 0, which is always true as long as highfrequency noise must be cut-o (it is the so-called roll-o rule). We can nally state the following integral constraint on the transmission coecient of the EA: For what just said, a local impedance control of the EAs entails specic limits on both the normal incidence absorption and the grazing incidence transmission.

∞ 0 ln |T g (ω)|dω = - π 2 S d S ρ 0 c 0 M a0 .
A non-local conception for the boundary control, as the boundary advection law presented in Chapter 3, might allow to break free from such physical constraints which limit the performances of locally-reacting EAs. The origins of the H ∞ problem dates back to the 1960s when Zames enunciated the small gain theorem [START_REF] Zames | On the input-output stability of time-varying nonlinear feedback systems part one: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF], but he formally posed it only 20 years later [START_REF] Zames | Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses[END_REF]. The name of such approach comes from the use of weighted H ∞ norms for the frequency response transfer functions, to be minimized in order to achieve the problem specications.

H ∞ control synthesis: problem setting and simulations

The H ∞ automatic control synthesis approach makes use of the notion of to reduce the number of hypothesis, at the price of an increased computational complexity.

The latter is based upon a convex optimization problem under certain constraints of Linear Matrix Inequalities (LMIs), and was rst solved in [START_REF] Gahinet | A linear matrix inequality approach to H inf ty control[END_REF].

To write the standard problem for the local impedance control, rst thing to do is to dene the specications. The local impedance control aims at achieving a target impedance in a certain frequency bandwidth, expressed in terms of a target normalized acoustic mobility η at (jω), which means to reproduce a target acoustic velocity v at (jω) = ρ 0 c 0 η at (jω)p(jω) for any acoustic pressure, on the loudspeaker diaphragm in case of an EA. Therefore, we can dene a velocity error function v (jω) = v(jω) -v at (jω), where v(jω) is the actual acoustic speed on the loudspeaker diaphragm. In terms of the mobility transfer functions, the error reads:

v (jω) = ρ 0 c 0 [η a (jω) -η at (jω)]p(jω), (2.24) 
where η a (jω) is the actual normalized mobility. The objective in terms of performance is to minimize the transfer function η (ω) = η a (ω)η at (ω), that is:

| η (jω)| = |η a (jω) -η at (jω)| ≤ max , (2.25) 
where max is the maximum tolerated error. Since the inequality (2.25) must to be achieved in a xed frequency range, then it is useful to substitute the real value max with a frequency 

| η (jω)| ≤ 1 |W η (jω)| . (2.26) 
If W (jω) is both stable and inversely stable, then Eq. (2.25) is equivalent to:

||W η (jω) η (jω)|| ∞ ≤ 1. (2.27) 
Eq. (2.27) involving the H ∞ norm, translates into a constraint on the transfer function η a (jω) of the EA in a certain frequency bandwidth where the target mobility η at (jω) is desired and where 1/|W η | has its minimum equal to the tolerance max .

One of the greatest advantages of the optimal synthesis approaches is the possibility to write a mathematical formulation of the control problem which would take into account various specications. After having written the performance specication through a weighted H ∞ norm of the mobility transfer function, let us introduce another typical specication which is the limit on energy demand. For a current-driven control architecture, such specication expresses itself in terms of a constraint on the absolute value of the controller transfer function

H(jω).

As done in Eq. (2.27), a constraint on the electrical current can be written in terms of a weighted H ∞ norm, as:

||W i (jω)H(jω)|| ∞ ≤ 1.
(2.28)

We are now ready to write the Standard form (displayed in Figure 2.20) of the impedance control problem, with specications in terms of performance and energy limit, for the currentdriven, pressure-based architecture. So, the only available measurement y is the sound pressure and the command u is the electrical current. The vector z contains 2 signals: the acoustic velocity on the speaker diaphragm and the command (the electrical current) after being ltered by the constraint (2.28). The block-diagram of the EA with the weighting lters W (s)

and W i (s) applied, and the corresponding standard matrix problem, are reported in Figure 2.21 and in Eq.s 2.29 respectively.
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Note that the transfer function P uy (s) is zero as for the feed-forward scheme.

Having written the impedance control in the standard shape, we can derive the expression of the transfer matrix between w(s) and z(s):

z 1 z 2 = W η (s)(η a0 (s) -η at (s) -Bl S d H(s)e -sτ ) W i (s)H(s) w (2.30)
Hence, the synthesized controller H(s) must be such that the transfer matrix of Eq. (2.30) must full the inequality: Below, we resume the fundamental steps to synthesize a control by the H ∞ formulation:

W η (s)(η a (s) -η at (s)) W i (s)H(s) ∞ < γ. ( 2 
1. Dene the specications, in terms of performance and energy limits at least.

2. Dene the weighting functions constraining the transfer functions of interest (W η (s) and W i (s) for example).

3. Identify the variables of the standard problem formulation: w, u, z, y.

4. Build the block diagram of the system with the weighting functions and the standard variables.

5. Verify that the standard problem retrieves the constraints on the transfer functions of interest, according to the specications.

6. Solve the problem.

7. Check if the specications are met satisfactorily. If required, tailor the weighting functions to better full specications and reach a lower value of γ (closer to 1).

Let us consider a practical example of impedance control synthesis through the H ∞ . So, rst step is the outline of the specications in terms of performance and electrical current limit, to stay in the framework presented above.

Let us consider the simplest boundary problem, that is the case of a normally incident plane wave eld, for which the normalized target mobility is simply η at = 1. The relative frequency bandwidth where such target should be attained can be set between 100 and 1000 Hz, in order to avoid the controller to spill-over the second mode of the EA prototypes appearing in Section 2.1.4. The Thiele-Small parameters relative to such EA are taken into account.

Hence, we can now set the weighting function W η (s), which should be such that 1/|W η (s)| constrained |η a (s) -η at | below 1 in the range 100 -1000 Hz. Therefore, a band-pass lter could be employed for W η (s):

W η (s) = g η s s ω HP,η + 1 1 s ω LP,η + 1 , (2.32) 
where ω HP,η and ω LP,η are respectively the high-pass and low-pass angular frequencies, and g η is the static gain adopted in W η (s). Dierent transfer functions could be adopted for W η (s), of any order, as long as they are proper and inversely stable. We should keep in mind that higher order weightings imply higher order synthesized correctors H(s), which keep the same order as the plant P (s), i.e. of the system to be controlled, plus the introduced weighting lters. Nevertheless, a model reduction could be easily carried out a-posteriori as we show in the following.

The second typical requirement concerns the energy demand, for which we can set an upper limit on the amplitude of the controller |H(s)| as already said above. Clearly, the electrical current demand will depend upon the sound pressure excitation level. In addition, it is very important to cut the high-frequencies in H(s), that is to reduce the gain of the controller at such frequencies in order not to amplify measurement noises (typically of high-frequency content, it is the roll-o principle mentioned in Section 2.2), other perturbations, and also to reduce the risk of spilling-over higher order modes. In order to do that, W i (s) should be such that 1/|W i (s)| would constrain |H(s)| at high frequencies. As both W i (s) and its inverse should be stable transfer functions, a possible form of W i (s) is:

W i (s) = g i 1 + s ω LP,i 1 + s ω hf , (2.33) 
where g i is the static gain, ω LP,i is the cut-o angular frequency prescribed for |H(s)|, and ω hf is a pole placed as higher as possible on the imaginary axis. The latter serves uniquely to obtain a proper transfer function for W i (s). The static gain could be adjusted to the limit on electrical current according to the predicted sound pressure level.

Once the system, the target and weighting functions are all dened, the H ∞ problem can be solved with one of the method mentioned above (based upon Riccati or LMI solvers). Nevertheless, usually it is never a one time shot, as the tailoring of the weighting lters is an iterative process which requires the hand of the control designer to properly adjust them in such a way to achieve the minimum value of γ (see Eq. (2.30)). The a-posteriori simulation of the controlled system behaviour against the prescribed specications is an important step for assessing their fullment, and consequently adjusting the weighting lters. the corrector state-space representation. The balanced realization of the state space representation of H(s) is obtained thanks to the controllability and observability Gramians [START_REF] Dullerud | A course in robust control theory: a convex approach[END_REF].

In the balanced realization, the observability and controllability Gramians coincide, and their singular values, so-called Hankel singular values, are the indicators of both observability and controllability of the corresponding components in the state vector of the state-space representation of H(s). Therefore, the components presenting the lowest Hankel singular values could be eliminated in order to reduce the order of H(s). In Matlab the balanced realization is obtained by the command balreal, while the model reduction through the function modred. The impact of such model reduction is to be investigated by a-posteriori simulations as well.

From Figure 2.22, it is evident that the specications are fullled, even in a wider frequency bandwidth than expected for the performance specication. The matrix inequality of Eq.

(2.30) is indeed solved with γ very close to 1. From the normal absorption coecient though, showed on the right of Figure 2.23, it must be remarked the high frequency signicant loss of acoustical passivity. Indeed, no constraint was imposed upon acoustical passivity, and a wide bandwidth of absorption far beyond the natural frequency of the loudspeaker, which is around 500 Hz, is bound to produce a signicant shift in the phase and a consequent huge loss of acoustical passivity at high frequencies due to the time delay (as veried in Section 2.1.1).

For coping with such a passivity problem, either we can work to better tailor the weighting transfer functions, or we introduce another specication which is indeed the acoustical passivity requirement. In the rst case, W η (s) should be adjusted in order to reduce the eective bandwidth, by conning it more to lower frequencies, while for W i (s) a higher order low-pass lter could be adopted to further cut |H(s)| at high frequencies. Such approach has resulted quite time consuming. In the following, we propose a technique to introduce a constraint on acoustical passivity, which stems from the properties of the bilinear transform. The bilinear transform, usually known for the digital implementation of controller (see Appendix D), can also be dened for a generic transfer function q(s) as:

Q(s) = B[q(s)] = q(s) -1 q(s) + 1 .
(2.34)

The bilinear transform B[q(s)] maps the left half of the complex q(s)-plane to the interior of the unit circle in the complex Q(s)-plane.

Note that the reection coecient R(s) = 1-ηa(s) 1+ηa(s) is nothing else than a bilinear transform of the transfer function η a (s), with reversed sign. Therefore, the passivity condition η a (s) > 0 is equivalent to |R(s)| < 1. Moreover, if η a (s) is passive, then βη a (s) also is passive, for any real value β. In order to obtain a transfer function of the type (1 -βη a (s))/(1 + βη a ), a ctitious feedback gain β has been inserted between the output of the controlled system and the input of the corrector in the block diagram of Figure 2.24.

The signal at point A is wη a (s)/(1 + βη a ). The entry in W R (s) is therefore y -βwη a (s)/(1 + βη a (s)), which gives the bilinear transform of βη a (s) with reversed sign.

Therefore, the specication on acoustical passivity can be enforced by the weighting W R (s), giving in output an additional output signal z 3 . In order to keep the performance specication unaltered, the target normalized mobility η at (s) has been substituted by η at (s)/(1 + βη at ). The standard problem becomes as reported in Eq.s (2.35), and the inequality to be fullled by the synthesized corrector is in Eq. (2.36). 
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The performance specication (rst line in Eq. (2.36)) is satised for η a (s) approaching η at (s), while the passivity specication (third line in Eq. (2.36)) is satised as long as |W R (s)| ≥ 1, because min{γ} ≈ 1.

We highlight that the specication on the limit of |H(s)| (second line in Eq. (2.36)) gets inevitably altered by the new feedback conguration built in Figure 2.24, and that should be kept in mind during weighting lter tailoring and a-posteriori testing. Nevertheless, by keeping β suciently small the undesired implications of such ctitious feedback can be contained.

The weighting lters have been modied respect to the previous case, in order to facilitate the passivity condition. Indeed, as demonstrated in Section 2.2 the frequency bandwidth (i.e. the performance), the static corrector (second specication) and the acoustical passivity (third specication) are very much related to each other by the integral constraint of Eq. (2.11).

In Figure 2.25, the inverse amplitude of the weighting lters are plotted along with the corresponding constrained transfer functions. On the left, the standard system of block diagram of Figure 2.21 is taken into account (therefore without ctitious feedback for passivity constraint), while on the right the ltering is applied to the modied block diagram of Figure 2.24. Both the lter for performance W η (s) and the one for current limit W i (s) are kept the same to synthesize the corrector both in the standard and modied congurations. W η (s)

aims at constraining the normalized mobility at very low frequencies, in order not to enhance the high frequency phase shift due to time-delay. For the same reason, W i (s) is such that to cut the high frequencies. We remind once again that high frequencies are problematical also for the presence of higher order modes of the speaker, which are not taken into account neither in these simulations nor in the control synthesis. In addition, the low-frequency limit of |W i (s)| has been very much unleashed respect to the previous synthesis, in order to allow the corrector to reach the minimum value in case of an acoustically passive system, given by the integral constraint in Eq. (2.15).

The weighting lter W R (s) for the passivity enforcement, constrains the transfer function 1-βηa(s) 1+βηa(s) to be lower than 1 beyond the natural resonance of the loudspeaker (which is around 500 Hz), where the phase-shift induced by time-delay particularly endangers passivity. The coecient β has been set to 1 × 10 -3 .

Observe in Figure 2.25 the gap between the inverse amplitude of the weighting lters and the system transfer functions modulus, which is due to the strong interdependence between each of the system transfer functions. Indeed, as written in Eq. (2.35a), there is just one input signal w for 3 output weighted signals z 1 , z 2 and z 3 . Therefore, it results inevitable that all the transfer functions interested by the weighting process are very much linked to each other. The possibility to add another input w 2 , such as an estimation of the speaker diaphragm displacement (as proposed in [START_REF] Guo | Improving Sound Absorption Through Nonlinear Active Electroacoustic Resonators[END_REF]), could loosen up the interdependence between the system transfer functions of interest.

Nevertheless, the absorption coecients plotted in Figure 2.26 show the eectiveness of the passivity constraint achieved thanks to the ctitious feedback technique showed in the block diagram of Figure 2.24. As expected, enforcing the high-frequency passivity leads to a shift of the ecient absorption bandwidth to lower frequencies.

In Figure 2.27, two dierent weighting lters have been adopted to constrain the system acoustical passivity.

No experimental investigation has been conducted with the correctors synthesized by the H ∞ approach, as they exceeded the limit on the lter order for the control architecture provided by FEMTO-St Research Institute. Nevertheless, the main interest of the H ∞ approach is the possibility to improve the system robustness in performance and passivity, with respect to both parameters and dynamic incertitudes, i.e. with respect to errors in the SDOF identied model, and with respect to un-modelled higher order dynamics. In order to take into account such uncertainties, other constraints should be applied in the plant P (s), which means further increase in the order of the synthesized lters. For this reason, optimal real-time implementations of the digital lters could result very helpful in reducing the sensitivity To sum up, in this section we have formulated the impedance control problem for a pressurebased, current-driven electroacoustic absorber, in the automatic synthesis formulation of the H ∞ method. Other than performance and energy limit specications, we have provided a way to enforce also a passivity requirement thanks to a ctitious feedback in the system block diagram. The correctors obtained by solving the H ∞ problem conrm that, in order to enforce high-frequency passivity, the bandwidth of ecient absorption must shift toward low frequencies. The interdependence of the weighting lters employed for performance, energy limit and acoustical passivity, validates the outcome of the integral relationship found in Section 2.2.

We end up by proposing another possible employment of the H ∞ technique: the identication of an optimal causal local impedance for the grazing incidence problem, and its corresponding corrector synthesis. Faced with the unreality of the Cremer optimal local impedance for the grazing incidence, an H ∞ standard problem might be set rst for searching an optimal local impedance with respect to a transmission minimization criteria. For this purpose the 1D reduced model of Appendix G could turn to be helpful for an easy (approximative) relationship between the boundary impedance and the achieved transmission coecient. In a second moment, once an optimal causal impedance has been identied, the H ∞ technique could be exploited to synthesize the corresponding corrector to be implemented in the EA.

As the optimal control synthesis for normal absorption problem was very much aected by the integral constraint of Eq. (2.11), an optimal control synthesis for the grazing incidence problem would be aected by the integral constraint given in Eq. (2.21) in case of locally reacting EAs.

Model-inversion control strategy featuring Non-Linear dynamics at low excitation amplitudes

As wittily noted by Detroux et al. [START_REF] Detroux | Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber[END_REF], there is an increasing trend toward the exploitation of nonlinear dynamical phenomena, instead of avoiding them. In solid dynamics, the nonlinear absorber, consisting of a mass with a nonlinear spring, coupled to a linear primary structure, can produce an irreversible energy transfer, from the primary structure to the absorber. Such phenomenon is usually referred to as targeted energy transfer, energy pumping or non-linear energy sink (NES), whose dynamics was rstly described in [START_REF] Gendelman | Energy pumping in nonlinear mechanical oscillators: part Idynamics of the underlying Hamiltonian systems[END_REF] and [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part IIresonance capture[END_REF]. The NES concept has also been adopted for noise absorption using a membrane in its non-linear working regime, weakly coupled with a tube. Readers should refer to the extensive work of the team of the Laboratoire de Mécanique et d'Acoustique de Marseille, in France, such as [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF]. A major accomplishment of [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF] is the possibility for the membrane absorber to tune itself to dierent resonance frequencies. Though, one of the drawbacks of nonlinear absorbers is the fact that a certain energy threshold must be reached before the nonlinear phenomena occur.

Recently, Guo et al. [START_REF] Guo | Improving Sound Absorption Through Nonlinear Active Electroacoustic Resonators[END_REF] have targeted a Dung behaviour for the EA by sensing the pressure inside the back-cavity of the EA such that to retrieve a measurement directly proportional to the diaphragm displacement at low frequencies. The main interest resided into the tunability of the non-linear absorber as well as in the possibility of accomplishing cubic dynamics for low excitation amplitudes. In [START_REF] Guo | Improving Sound Absorption Through Nonlinear Active Electroacoustic Resonators[END_REF] the control variable, the current, is dened as:

i(t) = i L (t) + i N L (t).
(2.37)

In Eq. (2.37), i L (t) is the current relative to the IIR implementation of the linear modelinversion impedance control law, described by Eq. (2.38). The non-linear character is given by the term i N L (t), which is cubic function of the pressure measured inside the EA back-case, in turn directly proportional to the diaphragm displacement, hence we can write i N L (t) = βw 3 (t).

i L (t n ) = N b m=0 b m p(t n-m ) - Na k=1 a k i L (t n-k ), (2.38) 
In Eq. (2.38), b m and a k are the numerator and denominator coecients of the Z transform of H loc (s) as described in Appendix D. Clearly, i(t n-k ) must not comprise the non-linear contributions i N L at the instants t n-k . Hence it is very important to separate the linear from the non-linear contribution to the total current in the control implementation, as the IIR comes from an approximation of the convolution integral valid only for linear systems (as described in Appendix D).

Here we investigate the possibility of achieving a Dung behaviour of the EA at low excitation amplitudes (where classical absorbers normally exhibit linear behaviour), by exploiting the same pressure-based current-driven architecture as the one treated so far, but without the addition on a microphone in the EA back-case. In order to do so, we had to substitute the IIR real-time implementation with a Runge-Kutta (RK) scheme which is able to feature non-linear mechano-acoustical behaviour. Numerical simulations, both in the harmonic and in transient regimes advocate this approach to achieve non-linear EA dynamics, looking forward future numerical studies and experimental campaigns to nally validate it.

Before getting into the proposed non-linear control algorithm, let us rst look at the modelinversion-based corrector H loc (s) (presented in Section 2.1), from another point of view. The controller reads:

i(s) =H loc (s)p(s) = S d Bl 1 - Z a0 (s) Z at (s) p(s) = S d Bl p(s) - Z a0 (s) Z at (s) p(s) , (2.39) 
which has the objective to substitute the mechanical own dynamics of the loudspeaker with a target relationship between the acoustic velocity and pressure, given by:

v at (s) = p(s) Z at (s) , (2.40) 
where v at (s) is the target inward velocity on the speaker diaphragm. Hence, Eq. (2.39) can also be rewritten as:

i(s) = S d Bl p(s) -Z a0 (s)v at (s) , (2.41) 
where Z a0 (s) = M a0 s + R a0 + K a0 /s is the normalized impedance on the diaphragm in case of open-circuited loudspeaker terminals. The equivalent expression of i(s) in the time domain is then: equations, like a 4 th order Runge-Kutta. For example, the EA control presented in Section 2.1, considers as target operator F[p(t), w at (t)] = 0, the relationship:

i(t) = S d Bl p(t)- M a0 ẅat (t) + R a0 ẇat (t) + K a0 w at (t) , ( 2 
p(t) = M at ẅat (t) + R at ẇat (t) + K at w at (t), (2.43) 
where M at , R at and K at can be adjusted at will, for example putting them equal to µ M M a0 , ρ 0 c 0 and µ K K a0 respectively. The recursive control algorithm would be: Such control algorithm can be dened as Runge-Kutta (RK)-based as opposed to the IIR recursive implementation usually adopted for correctors synthesized in the Laplace domain.

For comparing the two control algorithms, a time-simulation is carried out on the simplest case-study of normally incident harmonic plane waves. The problem is described in Appendix E: the EA is placed at one end of an acoustic waveguide which has an anechoic termination on the other end as in Figure 2.28.

In the plane wave regime, it is a 1D problem. Because of the anechoic termination, we can x the incident plane wave p + (t) on the EA. The reected wave p -(t) is written in terms of the EA normal inward velocity ẇ(t), so that the total sound pressure on the EA is p(t) = 2p + (t) -ρ 0 c 0 ẇ(t).

Because of the inevitable time delay, the sound pressure p(t) in Eq. (D.9) or Eq. (2.42) to nd the controller i(t), must be evaluated at a number of time steps, given by the time delay divided the time steps size, before the present one. The electrical current (either coming from the IIR or RK algorithms) is then inserted in the actual mechanical dynamics equation of the loudspeaker: where p(t) must be evaluated at the present time. For harmonic incident waves p + (t), the reection R(ω) and absorption α(ω) coecients spectra can be retrieved by taking the Discrete-Fourier-Transform (DFT) of the incident and reected signals. In Figure 2.29 the time histories of the EA velocity, the reected pressure p -(t) and electrical current i(t), for harmonic incident pressure p + (t) at 500 Hz of amplitude 1 Pa, in case of IIR and RK control strategies. The normal incidence problem in time, described in Appendix E, is solved by a 4 th -order Runge-Kutta algorithm, both for the IIR and RK controllers. In seconds.

M a0 ẅ(t) + R a0 ẇ(t) + K a0 w(t) = p(t) - Bl S d i(t), (2.44 
the natural one (µ M = 1 and µ K = 4 in Figure 2.32), or with a resonance frequency half the natural one (µ M = 4 and µ K = 1 in Figure 2.33).

These Figures, show that the RK strategy slightly enhances the eect of the time delay around resonance (see Section 2.1.1) respect to the IIR implementation. The high-frequency is indeed not signicantly impacted by the RK respect to the classical IIR, and the loss of acoustical passivity above resonance in Figures 2.31 and 2.32 is due to the truncation errors in the numerical simulation of the time-response. Nevertheless, we stress here that the RK applies a Runge-Kutta scheme at each time step, in real time, which might require higher computational time than the IIR, which in turn might increase the time delay of the entire digital control architecture. In the simulations here, the time delay has been considered as constant (equal to 2 × 10 -5 seconds). Nonetheless, as already mentioned before, the RK technique seems to be currently the main way for implementing a non-linear impedance operator with a pressure-based, current-driven control architecture.

Let us now investigate the implementability of a cubic (Dung) target dynamics, as the one in Eq. (2.45):

p(t) = M at ẅat (t) + R at ẇat (t) + K at β L w at (t) + β N L w 3 at (t) , (2.45) 
where β L , always kept equal to 1 in the following, multiplies the target displacement w at (t), while the coecient β N L multiplies the cubic of the target displacement w 3 at (t), and has therefore the dimensions of m -2 . Figure 2.34 shows the DFTs at the fundamental harmonics, of the EA simulated responses for a harmonic normal incident plane wave of amplitude 1 Pa, on the EA placed at one end, and anechoic termination on the other (as in Figure 2.28), obtained through the same scheme described in Appendix E. The electrical current, acoustic mobility and normal absorption coecient are plotted in case of µ K = µ M = 1 and R at = ρ 0 c 0 , and for dierent β N L . Figure 2.34 shows the typical hardening spring eect of Dung dynamics [START_REF] Meirovitch | Elements of vibration analysis[END_REF]. Each increase of β N L of a factor 10, approximately triples the required electrical current at the pick.

Observe that the DFTs of current and mobility, as well as the absorption coecient, in Figure 2.34 are relative to the fundamental harmonics of the responses, while sub-or super-harmonics scattered by the non-linear absorber, are not taken into account here.

The time-histories relative to the linear β N L = 0 and cubic β N L = 1 × 10 13 m -2 dynamics are reported in Figure 2.35a and 2.35b for incident harmonic pressure waves at 500 Hz and 800 Hz respectively. While 500 Hz is about the resonance frequency of the linear EA (with µ M = µ K ), 800 Hz is the frequency relative to the pick of both mobility and normal absorption coecient fundamental harmonics of the cubic EA. Therefore, the reected pressure wave amplitude is minimum for excitation at f pick = 800 Hz in case of β N L = 1 × 10 13 m -2 . ried out at each time step.

A major interest for the non-linear dynamic vibration (or sound) absorbers resides into the possibility to accelerate the time-decay of vibration (or sound) levels in the primary linear system, respect to the classical linear absorbers [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF]. For this reason, we examined the transient response in a 1D acoustic cavity, simulating the response in a tube around its rst resonance f res,tube = c 0 /(2L) (in case of enclosed tube with rigid end walls), with L the length of the 1D cavity. In Figure 2.38, the 1D cavity is represented by a segment connecting a pressure source p s at one end, and the nonlinear EA at the other. In order to place the resonant frequency of the 1D cavity at the pick of absorption of the non-linear EA, the tube length has been set equal to L = c 0 /(2f pick ), where f pick is the frequency where the acoustical mobility, relative to the fundamental harmonics of the EA, approximately reaches the pick value of 1/(ρ 0 c 0 ).

Choosing µ M = µ K = 1 and R at = ρ 0 c 0 , Figure 2.34 shows that the pick of mobility and α n (relative to the fundamental harmonics) is at about f pick = 800 Hz. Hence, the length of the duct is set to L = 0.21 m, such that f res,tube = c 0 /(2L) ≈ f pick .

In , where f pick = 800

Hz, such that also the linear EA presents the pick at 800 Hz. The pressure excitation has been set to p s (t) = p s0 Heav(t)sin(2πf res,tube t), where Heav(t) is the Heaviside step-function applied between t=0 and t=0.25 seconds. The time-simulation is run up to 0.5 seconds to detect the transient regime when p s (t) = 0. In Figure 2.40, we report the time histories of the simulations carried out in COMSOL of the Finite Element (FE) model of Figure 2.38. The pressure at the source p s (t) is plotted along with the pressure at the EA location p EA (t), the displacement of the EA membrane w(t) and the necessary electrical current i(t) in case of the linear and non-linear controls.

The non-linear plots present stationary responses (between 0.1 and 0.24 seconds) with lower amplitudes than the linear case. When the source is put to 0 (p s (t) = 0), for t > 0.25 seconds, there is a sudden increase of the non-linear EA responses before the decay.

In order to compare the decay of the overall sound pressure level in the 1D cavity, achieved by the non-linear absorber respect to the linear one, the following quantity has been taken into account:

"L p (t)" = 10 log 10

L 0 p 2 (t, x)dx L 0 p 2 rms (x)dx , (2.46) 
where p rms (x) is the root-mean-square (rms) value at each point x along the 1D cavity (of length L). The rms is evaluated in the stationary-regime, which is considered to be attained between around 0.1 and 0.24 seconds. Finally, it must be said that sensing the speaker displacement or velocity, by a microphone in the EA back-case, as well as by any other external sensor, such as a laser doppler velocimeter (LDV), and then feed such measurement into the RK scheme, would surely improve the robustness of the RK approach, at the price of a relatively bulkier control system.

Conclusions

In this chapter, we studied the model-inversion control strategy in the pressure-based currentdriven EA architecture. First, the model-inversion control strategy originally proposed in [START_REF] Rivet | Broadband low-frequency electroacoustic absorbers through hybrid sensor-/shunt-based impedance control[END_REF] has been analysed in both its performance and stability aspects in Section 2.1. The eect of time-delay on passivity and therefore stability has been assessed by both simulations and experimental tests. A practical solution to acoustically passivate the system has been adopted, by applying a porous layer in front of the EA. This remedy can be considered as an input-output transformation-matrix passivating technique [START_REF] Xia | Passivity indices and passivation of systems with application to systems with input/output delay[END_REF]. Nevertheless, the elements of the transformation matrix for the porous layer, cannot be written as causal transfer functions, therefore limiting the possibility to nd an electrical equivalent to the porous passivation. An optimal passive element can be searched in order to achieve the best high-frequency passivation, which would allow to enlarge the operative bandwidth of the EA, faced with the shortage of acoustical passivity due to time-delay as well as to spill-over.

An integral constraint has been analytically determined in Section 2.2 which generalizes the one of Yang [START_REF] Yang | Optimal sound-absorbing structures[END_REF] for passive absorbers, to the impedance control of EAs. It applies for any proper rational correctors in the pressure-based, current-driven impedance control architecture and imposes a compromise between frequency bandwidth, high-frequency passivity and low-frequency energy supply.

The pressure-based, current-driven impedance control problem has been formulated in the H ∞ formalism in Section 2.3. In addition to the normal-absorption performance and current limitations, a passivity specication has been enforced thanks to the analogy between the bilinear transform of a transfer function and the reection coecient of a surface impedance. The outcomes of the H ∞ syntheses highlight the tight inter-dependence between the bandwidth of ecient absorption, the acoustical passivity and the low-frequency limit of the corrector amplitude.

Then, a real-time implementation alternative to the classical IIR, has been proposed in Section 2.4. It is based upon a Runge-Kutta solution scheme, which allows to feature non-linear target dynamics of the EA.

Next steps

Concerning the future developments, we highlight that the normal absorption testing showed the need for a dedicated analysis upon the system robustness with respect to parameters and dynamic uncertainties, as to be expected for model-inversion control strategies. The mechanical dynamics of the loudspeaker taken into account in the control syntheses, has been restricted to the rst piston-like mode, where the loudspeaker behaves as a SDOF mechanical system, excited by the external pressure force S d p(t) and the driving electromechanical force Bli(t). Clearly, such model is accurate only around the natural frequency where the loudspeaker features such mode. A controller conceived in such a way, might induce spill-over eects [START_REF] De Larminat | Automatique appliquée[END_REF] around the natural frequencies of other mechanical modes of the loudspeaker.

Usually the piston-like mode is the rst mode, and higher order modes are suciently far in frequency.

The spill-over is one of the most important factor which limits the achievable operational bandwidth of this controller, not simply because the corrector H(s) might be inecient far from the controlled mode, but especially because it might destabilise the system at the higher order natural modes of the loudspeaker. In order to cope with such drawback, one possible strategy could be to try to integrate higher-order modes in the controller synthesis, which would bring about more challenging identication processes than the ones presented in Appendix A on the one hand, and higher order lters for the control transfer function on the other. Increasing the lter order means also increasing the time delay, which has equal, if not higher impact than the spill-over, on stability.

In order to face possible parameters uncertainties in the piston model, it might be useful to employ the measurement of the speaker diaphragm velocity in the control law, without invoking the electrical dynamics. By doing so, the feedforward (pressure-based) impedance control would combine with a velocity feedback which can improve the robustness with respect to model uncertainties [START_REF] Devasia | Should model-based inverse inputs be used as feedforward under plant uncertainty[END_REF]. An interesting idea in this sense, is presented in [START_REF] Guo | Improving Sound Absorption Through Nonlinear Active Electroacoustic Resonators[END_REF], where an additional microphone is placed inside the back cavity of the loudspeaker enclosure. As the back cavity behaves as a compliant/stiness element, then the acoustic pressure is directly proportional to the displacement of the speaker diaphragm. This way, both the acoustic variables interested in the impedance control would be sensed, and a corrector could potentially be synthesised in such a way to reduce the impact of the errors in the loudspeaker mechanical dynamics model. Nevertheless, this approach is still limited to the bandwidth of the rst natural mode of the loudspeaker, as far from it the higher order modes of the speaker would impact the back-cavity dynamics, and the simple compliance/stiness model assumed for the back-cavity would become inaccurate. We can also foresee the use of properly designed loudspeakers, or even dierent types of actuators, which would present a simpler dynamics, described by a simple mechanical model in a wider frequency range.

To sum up, we demonstrated that an optimization of the entire system entails the need to take into account the acoustical passivity from the very early design stage. The H ∞ synthesis approach can indeed give the basis for next optimization processes targeting robustness, such as the so-called µ-strategy [START_REF] Dullerud | A course in robust control theory: a convex approach[END_REF].

Concerning the non-linear EA concept, a deeper numerical analysis is required to optimize the NES phenomenon.

Both the H ∞ approach and the non-linear EA concept, look forward to their experimental validation.

Chapter 3

The boundary advection law

As already mentioned at the beginning of Chapter 1.1, Morse [START_REF] Morse | Some aspects of the theory of room acoustics[END_REF] in 1939 introduced the locally reacting surface as a particular case of a general interface ∂Ω (see Figure 3.1) between two propagative media: one Ω air characterized by the wave equation in air, the other one Ω f ict (ctitious) represented by an anisotropic wave equation, of the type:

c 2 y ∂ 2 y p + c 2 t (∂ 2 x p + ∂ 2 z p) = ∂ 2 t p (3.1) 
where c y was the phase speed along the normal y to the surface, and c t the tangential phase speed parallel to the surface. Such anisotropic wave equation could even be more generalized by considering the possibility of dierent phase speeds along x and z (where z is the out-of-plane direction in Figure 3.1), as well as the presence of a convection speed V c :

c 2 x ∂ 2 x p + c 2 y ∂ 2 y p + c 2 z ∂ 2 z p = (∂ t + V c • ∇) 2 p (3.2)
According to Morse, a locally reacting surface could be interpreted as the interface between air and a domain Ω f ict , characterized by Eq. (3.2) with c x = c z = V c = 0. This way, Eq.

(3.2) degenerates into a 1D wave equation, where wave propagation in Ω f ict is allowed only along the normal direction y to the surface ∂Ω, with a phase speed equal to c y . The boundary ∂Ω would then be seen as a locally-reacting surface by Ω air , with characteristic impedance ρ f ict c y , with ρ f ict the density in Ω f ict . For Ω f ict extending to innity along the +y direction, then the characteristic impedance becomes the surface impedance of the locally-reacting surface ∂Ω. By contemplating complex values of c y and/or ρ f ict , complex impedances would be reproduced on the interface ∂Ω. Such considerations are retrieved in the equivalent uid model for porous media [1].

Non-locally reacting surfaces can be attained if c x and/or c z are dierent from 0 in Eq. (3.2). It is the case of non-locally reacting liners for example, where the y-dimension of Ω f ict is bounded by a rigid back wall [START_REF] Ingard | Noise reduction analysis[END_REF]. In the following discussion, Ω f ict will be considered always as extending indenitely from the boundary ∂Ω toward all three coordinate directions (±x,±z,+y), as showed in Figure 3.1 for the 2D case.

In [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF], Collet et al. presented a Fourier-space-based approach in order to provide the boundary operator (applying on ∂Ω) corresponding to a propagative domain Ω f ict behind. In particular, Collet was interested in a boundary operator, i.e. a relationship between the pressure and velocity, assuring total absorption for any angle of incidence, as mentioned at the beginning of Chapter 1.1. In order to do that, he considered a Ω f ict characterized by the same wave equation as Ω air , i.e. c 2 0 ∇ 2 p = ∂ 2 t p in the absence of convection, and imposed on the interface ∂Ω the continuity of pressure and its y-derivative:

p = p f ict on ∂Ω ∂ y p = ∂ y p f ict on ∂Ω, (3.3) 
where p f ict is the acoustic variable dened in the ctitious domain Ω f ict . Hence, the boundary operator, i.e. the relationship between ∂ y p and p, presented in [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF], is:

c 0 ∂ y p = - È ∂ 2 t -(c 2 0 ∂ 2 x + c 2 0 ∂ 2 z )
p on ∂Ω.

(3.4)

The result of Eq. (3.4) is quite intuitive, and is derived here formally, without getting into the details of Fourier transform of non-integer operators [START_REF] Montseny | Diusive representation of pseudo-dierential time-operators[END_REF]. Supposing no boundary at all, but simply an innite domain Ω air , and operating the Fourier transform for both the time and space variables of the wave equation (which is equivalent to assuming the wave function ansatz p = p 0 e jωt-jkxx-jkyy , and inserting it into the wave equation), we get the well-known wave number equation in air:

(jω) 2 = c 2 0 (-jk x ) 2 + c 2 0 (-jk y ) 2 + c 2 0 (-jk z )) 2 on ∂Ω.

(3.5)

Isolating the k y term, we get:

-c 0 jk y = ± È jω -c 2 0 (-jk x ) 2 -c 2 0 (-jk z ) 2 on ∂Ω. (3.6) 
In order to attain a passive boundary (absorbing and not radiating), only the minus sign should be accounted for, in Eq. (3.6) (this can be easily veried if we suppose a locallyreacting boundary). Re-transforming Eq. (3.6) in the time-space domain, we get Eq. (3.4).

By imposing Eq. (3.4) on the surface ∂Ω, such boundary would become transparent, i.e. totally absorbing, for waves coming from Ω air , for any angle of incidence. The reasoning can be generalized to evaluate the boundary operator relative to an Ω f ict (behind the boundary) characterized by the anisotropic and convected wave equation (3.2), with advection speed taken as V c = c a x (the subscript in c a stays for advection):

c y ∂ y p = - È (∂ t + c a ∂ x ) 2 -(c 2 x ∂ 2 x + c 2 z ∂ 2 z )
p on ∂Ω.

(3.7)

The operator appearing on the rhs of Eq.s (3.4) and (3.7) is of fractional order, non-local both in time and space, hence requiring huge computational eorts, as mentioned in Section 1.1. Nevertheless, for c x = c z = c a = 0 such B.C. degenerates to the one relative to a locally reactive surface. We remark that Ω f ict is a ctitious domain, therefore it can be assumed that the eld in Ω f ict , governed by Eq. ( 3.2) is purely potential and inviscid. Therefore, even though a convection is considered in Ω f ict , no vortex sheet has to be expected at the interface with the actual air domain Ω air , and the continuity of normal velocity, that is of normal pressure gradient (in our case ∂ y p), is still valid as long as there is no airow in Ω air [START_REF] Ingard | Inuence of uid motion past a plane boundary on sound reection, absorption, and transmission[END_REF].

Supposing c x = c z = 0, Eq. (3.7) degenerates into:

c y ∂ y p = -(∂ t + c a ∂ x )p on ∂Ω. (3.8) 
Eq. (3.8) is the advection B.C. law rst reported in [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF].

Hence, we can nally dene the advection law as the boundary operator simulating the interface with a domain Ω f ict governed by an anisotropic convected equation of the type of Eq. (3.2) with convection speed V c = c a x, and phase speeds c x and c z degenerating to 0.

Therefore, the advection boundary law simulates the interface with a ctitious domain Ω f ict where wave propagation is allowed only along the direction y normal to the boundary as for locally reacting surfaces, but where such propagation is convected along sign(c a ) x. Note that in [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF], c y is taken as equal to c a and Eq. (3.8) is not derived from the general boundary operator (3.7) simulating the interface with an anisotropic propagative and convective ctitious domain Ω f ict .

In terms of the normal velocity at the boundary, Eq. (3.8) reads:

ρ 0 c y ∂ t v y = ∂ t p + c a ∂ x p on ∂Ω.
(3.9)

Observe that for c a = 0, Eq. (3.9) retrieves a locally reacting boundary of surface acoustic impedance Z Loc = ρ 0 c y . In order to take into account a general complex local impedance Z Loc (jω), Eq. (3.9) is to be rewritten in terms of the dierential operator Z Loc [•] corresponding to the complex-valued Z Loc (jω) in the Fourier ω-space, applied to the normal acceleration: given by: y(t) = 0,

Z Loc [∂ t v y ] = ∂ t p + c a ∂ x p = D t | ca p on ∂Ω.
x(t) = x 0 + c a t, (3.11) 
with x 0 any initial x-position, denes a characteristic line of the transport equation (3.10).

Indeed, along x(t), the advective B.C. (3.10) becomes:

Z Loc [∂ t v y ( x(t))] = ∂ t p( x(t)), (3.12) 
or, by dening the mobility operator

Y Loc [•] = 1/Z Loc [•]: ∂ t v y ( x(t)) = Y Loc [∂ t p( x(t))].
(3.13)

Eq. (3.13) clearly shows that the local reaction (given by the operator Y Loc [•]), is convected along the characteristic line x(t) = x 0 + c a t on the boundary.

In the following, the eects of such B.C. are investigated rst analytically on a semi-innite domain Ω air , and then also numerically and experimentally in an acoustic waveguide.

Advection boundary law on a semi-innite domain

In order to investigate the performance and passivity of such advection boundary law, an 

R(jω)

= ζ Loc (jω) sin θ i -(1 -ca c0 cos θ i ) ζ Loc (jω) sin θ i + (1 -ca c0 cos θ i ) , (3.14) 
where ζ Loc (jω) = Z Loc (jω)/ρ 0 c 0 . In Appendix F the steps bringing to Eq. (3.14) are given.

We remind that Eq. (3.14) is valid for free plane incident waves, in a semi-innite domain bounded on top by the advection law, as in Figure 3.2.

Supposing a purely real local impedance ζ Loc , the reection coecient R becomes independent of the frequency. We can therefore plot |R| versus the angle of incidence θ i in Figure 3. In the next section, the acoustical passivity is interpreted from another point of view, which allows to assess the acoustical passivity of a B.C. by solving a dispersion problem.

Passivity and wave-number angles

It is well known in structural mechanics [START_REF] Cremer | Structure-borne sound: structural vibrations and sound radiation at audio frequencies[END_REF] that the solution of the dispersion problem in a semi-innite domain as represented in Figure 1.4, bounded by a plate travelled by a bending wave, gives the condition for the bending wave to be radiative, leading to the denition of coincidence frequency. Let us retrieve such result in the domain of The acoustic eld radiated by the bending wave, both in Ω air,1 and Ω air,2 , can be written as p(x, y) = p 0 e jωt-jkxx-jkyy , with k x and k y the wave number components. From the Euler equation, the acoustic velocity v a is:

v a (x, y, t) = - 1 ρ 0 jω ∂ y p(x, y, t) = 1 ρ 0 c 0 k y k 0 p(x, y, t) (3.15)
The continuity condition imposes the equality of velocity at the interface both with Ω air,1 and Ω air,2 , hence: (3.17)

v a (x, y = 0, t) = v b0 (x, t) (3.16) 
Since the equality of Eq. (3.17) must hold for any x [START_REF] Filippi | Acoustics: basic physics, theory, and methods[END_REF], then:

p 0 = v 0 ρ 0 c 0 k 0 k y , (3.18) 
k x = k x,b . (3.19) 
From the wave equation k 2

x + k 2 y = k 2 0 , the wavenumbers relative to the acoustic wave propa- gating in Ω air,1 and Ω air,2 , write:

k y,1,2 = ±k 0 É 1 - c 0 c b , (3.20) 
where the plus sign correspond to the wave propagating in Ω air,2 and the minus sign to the wave propagating in Ω Let us keep the same system of Figure 3.6 and follow the same reasoning also for a generic B.C. at the interface between Ω air,1 and Ω air,2 , as in Figure 3.7. First, let us consider a locally-reacting boundary in order to start with a well-understood case. A locally-reacting boundary can be dened by the relationship between pressure and normal velocity:

n 1 • v(x, ω) = η(ω) ρ 0 c 0 p(x, y = 0, ω), (3.21) 
where η(ω) is the normalized acoustic mobility on the boundary surface. Observe that n 1 is the normal to ∂Ω, inward with respect to the domain Ω air,2 , and outward with respect to Ω air,1 . This means that, if Re{η(ω)} > 0, the boundary ∂Ω is passive with respect to Ω air,1 , i.e. if sound waves in Ω air,1 impinges the boundary ∂Ω, the reected acoustic energy is lower than the incident one. On the other hand, for sound waves impinging the boundary coming from Ω air,2 , than ∂Ω is non-passive.

Dening the radiated pressure eld p(x, y) = p 0 e jωt-jkxx-jkyy as before, and imposing the continuity of velocity at the interface with both acoustic domains Ω air,1 and Ω air,2 , we get:

k y k 0 = η. (3.22)
Notice that y coincides with n 1 .

From the wave equation, we retrieve k x :

k x k 0 = ± 1 -η 2 (3.23)
The wave-number angles are therefore:

θ k1,2 = atan2 Re{k x }, Re{k y } = atan2 Re{η}, ±Re{ È 1 -[Re{η}] 2 } , (3.24) 
where atan2 is the arctangent on the four quadrants. From Eq. (3.24), θ k1,2 ∈ (0, 180) if Re{η} is positive. Reminding, from Eq. (3.21), that a Re{η} > 0 means passive boundary with respect to Ω air,1 , and non-passive boundary with respect to Ω air,2 , then we conclude that the passivity condition with respect to Ω air,1 is met as long as θ k1,2 ∈ (0, π). Vice versa, the boundary ∂Ω is passive with respect to Ω air,2 , as long as θ k1,2 ∈ (π, 2π). Moreover, we know that a purely real normalized mobility 0 < η ≤ 1 provides total absorption for waves with angle of incidence θ αtot = ± sin -1 η, see Appendix F. Looking at Eq. (3.24), we realize that, for 0 < η ≤ 1, the wave-number angles coincide with the angles of total absorption for waves coming from Ω air,1 . It is easy to verify that for non-passive locallyreacting surface, i.e. for Re{η} < 0, the wave-number angles correspond to the angles of highest (greater than 1) reection coecient amplitudes (check the following).

Notice also that, while for the travelling bending wave of Figure 3.6, the wave-number angles gave the direction of radiation from the plate to the acoustic domains Ω air,1 and Ω air,2 , for a locally-reacting surface ∂Ω, the wave-number angles give the directions of highest absorption or highest reection depending upon weather the boundary is passive or not.

The relationship between passivity and wave-number angles just found for a locally-reacting boundary, can be extended to general (possibly non-locally) reacting boundaries, where the relationship between pressure and normal velocity is not simply denable by a mobility η. We can indeed state the following acoustical passivity criterion for general (locally or non-locally) reacting boundaries on the semi-innite domain Ω air,1 :

Acoustical Passivity ⇔ θ k1,2 = atan2(Re{k x }, Re{k y }) ∈ (0, 180) 

v n (x, ω) = η Loc (jω) ρ 0 c 0 p + c a jω ∂ x p(x, ω) , (3.26) 
where v n = n 1 • v and η Loc (jω) = ρ 0 c 0 /Z Loc (jω). Once again, dening the radiated pressure eld p(x, y) = p 0 e jωt-jkxx-jkyy as before, and imposing the continuity of velocity at the interface with both acoustic domains Ω air,1 and Ω air,2 , we get:

k y k 0 = η Loc 1 - c a c 0 k x k 0 (3.27)
From the wave equation, the dispersion relation in terms of k x is found as in Eq. (3.28), where the normalized quantities kx = k x /k 0 and ĉa = c a /c 0 have been adopted. In Figure 3.12, the acoustical passivity condition as reported in Section 2.1.1 is compared Clearly, the passivity criterion of Eq. (3.25) is equivalent to the one based upon weather the reection coecient amplitude is higher or lower than 1. Both the computation of |R| and of the wavenumber angles, assess that the advective B.C. is non passive if |c a | > c 0 , in an analogous way to the radiativity condition for a plate travelled by a bending wave. We have to remark that such passivity condition is always respected as long as |c a | ≤ c 0 , independently from the values (real or complex) of ζ Loc = 1/η Loc .

In the next section though, we show how a complex local impedance ζ Loc , lining an acoustic waveguide, can bring about amplications of sound even for |c a | ≤ c 0 , at some frequencies.

This might seem in contrast with the results of the present section. Nevertheless, one important hypothesis of the above conclusions is removed: the semi-innity of the acoustic domain. After having discussed the acoustical passivity of the boundary advection law, let us investigate its performance into an acoustic waveguide starting from the duct mode analysis. Duct modes are fundamental to understand the propagation characteristics in a waveguide. Consider an innite duct of constant cross-section A in the plane y, z (as in Figure 1.3) with boundary ∂A and normal n. Assuming a time-harmonic sound eld in the usual complex notation (+jωt) in the duct: p(x, y, z, t) = p(x, y, z, ω)e jωt the wave equation reduces to the Helmholtz equation: 

Duct modes analysis in 2D waveguide

∇ 2 p + k 2 0 p = 0.
∇ 2 ⊥ ψ m (y, z) + (k 2 0 -k 2 x,m )ψ m (y, z) = 0 fory, z ∈A B[ψ m (y, z), k x,m ] = 0 fory, z ∈∂A, (3.31) with eigenvalues k 2 0 -k 2
x,m . The axial wavenumbers relative to each duct mode is therefore given by the eigenvalue of Eq. (3.31). Observe that for classical boundaries the B.C. does not involve the axial wavenumber k x,m . The sense of propagation and the attenuation of a duct mode ψ m (y, z) along its propagation are given by the group velocity c g,m [START_REF] Collet | Structural energy ow optimization through adaptive shunted piezoelectric metacomposites[END_REF] and Im{k x,m } respectively. The group velocity for each duct mode can be dened as:

c g,m = I m E m , (3.32) 
where I m and E m are the acoustic intensity and twice the kinetic energy of the mode m, respectively, whose expressions are below:

I m = h 0 Re p m (x, y, t)v x,m (x, y, t) * dy E m = h 0 ρ 0 |v x,m (x, y, t)| 2 dy (3.33)
where p m is the acoustic pressure and v x,m is the acoustic velocity along the longitudinal axis of the duct, of mode m as shown in Eq.s (3.34). The width of the 2D duct has been called h.

p m (x, y, t) = C m ψ m (y)e jωt-jkx,mx v x,m (x, y, t) = - 1 ρ 0 jω ∂ x p = k x,m ρ 0 ω C m ψ m (y)e jωt-jkx,mx , (3.34) 
Hence, the complex conjugate of v x,m is:

v * x,m (x, y, t) = k * x,m ρ 0 ω C * m ψ * m (y)e -jωt+jk * x,m x , (3.35)
where the superscript " * indicates the complex conjugate. We can now write the expressions for I m and E m appearing in the denition of the group velocity.

I m =Re e -j(kx,m-k * x,m )x k * x,m ρ 0 ω C 2 m h 0 |ψ m (y)| 2 dy = =e 2Im{kx,m}x Re{k x,m } ρ 0 ω C 2 m h 0 |ψ m (y)| 2 dy = (3.36) E m =e 2Im{kx,m}x |k x,m | 2 ρ 0 ω 2 C 2 m h 0 |ψ m (y)| 2 dy (3.37)
And nally:

c g,m = I m E m = Re{k x,m }ω |k x,m | 2 (3.38)
Since the sign of c g,m depends only on Re{k x,m }, a Re{k x,m }> 0 means a +x sense of propagation, and Im{k x,m } < 0 means an attenuation of the duct mode amplitude along its propagation.

Here we report and discuss the solution of the duct mode problem in case of the boundary advection law as B.C., in which the purely locally reacting liner is a special case (for c a = 0).

The duct-modes eigenvalue problem writes:

∇ 2 ⊥ ψ m (y) -(k 2 0 -k 2 x,m )ψ m (y) = 0 for y ∈A n • ∇ψ m (y) = -jη Loc k 0 - c a c 0 k x,m
ψ m (y) for y ∈∂A. 

A ψ∇ 2 ⊥ ψ m dydz + (k 2 0 -k 2 x,m ) A ψψ m dydz = 0 (3.40a) ∂A ψ∂ n ψ m dydz - A ∇ ⊥ ψ • ∇ ⊥ ψ m dydz + (k 2 0 -k 2 x,m ) A ψψ m dydz = 0 (3.40b) -jη Loc k 0 - c a c 0 k x,m ∂A ψψ m dydz - A ∇ ⊥ ψ • ∇ ⊥ ψ m dydz + (k 2 0 -k 2 x,m ) A ψψ m dydz = 0 (3.40c)
The weak contribution is the rst term on the lhs of Eq. 3.40c.

The duct modes solutions discussed here are for a 2D (x,y) waveguide with cross section width h = 0.05 m, hence with a cut-on frequency of higher-order duct modes in case of rigid boundaries f cut-on = c 0 /2h = 3430 Hz. The upper and lower boundaries of the duct are lined. First, the solutions relative to a purely resistive boundary, with η Loc = 1 (mode 1 -) propagating toward -x. Indeed, both sides of the boundary advection law Eq. 3.9 are identically equal to zero for a plane mode propagating toward sign(c a )x. The reciprocity of the system is broken and the mode shapes are not the same if propagating toward +x or -x.

Let us now investigate the variation of the duct modes solutions with respect to the advection speed c a . In Figure 3.17a the wavenumber solutions of the rst and second duct modes propagating in both senses are plotted in the complex plane for c a varying from -2c 0 to +2c 0 . In Figure 3.17b the real and imaginary parts of k x are plotted separately versus c a /c 0 . Zooming around Im{k x } = 0 gives Figure 3.18, showing how the rst duct mode propagating toward +x becomes unstable for c a > c 0 , while the rst duct mode propagating toward -x becomes unstable for c a < -c 0 . This is so, because Im{k x } assumes the same sign as Re{k x } when |c a | > c 0 , meaning amplication of the mode along its sense of propagation.

Hence, the duct modes analysis conrms the result on passivity of Section 3.1.1, i.e. the boundary advection law is non passive if |c a | > 1.

Notice also that increasing the boundary advection speed c a produces higher Im{k x }. Looking at the mode 1 + in Figure 3.17, for negative values of c a , a higher |c a | brings about higher attenuations, that is the Im{k x } is negative and augments in absolute value. Since for |c a | > c 0 either mode 1 + (for c a > 0) or 1 -(for c a < 0) becomes unstable, we deduce the maximum attenuation of the least attenuated mode is achieved when c a is equal to -c 0 or +c 0 , for positive or negative propagation respectively.

After having analysed the eect of the boundary advection speed, let us now check the inuence of the local resistive impedance ζ Loc = R at /ρ 0 c 0 . Figure 3.19a shows the evolution of the rst two least attenuated modes propagating toward +x and -x, for c a = -c 0 and varying the resistive ζ Loc . Figure 3.19a shows that the negative propagating plane mode 1 -is not aected by the variation of ζ Loc . Both Figures 3.19a and 3.19b show that lower values of ζ Loc brings greater attenuation at lower frequencies for mode 1 + . Such tendency is inverted at higher frequencies. We bring the attention over the mode 1 + as it is the least attenuated one for positive sense of propagation, therefore decisive for the transmission loss (TL) performance below f cut-on . From these gures, we conclude that low ζ Loc and a c a = -c 0 leads to signicant attenuation of the least attenuated mode propagating toward +x.

The results just assessed by the duct mode analysis, in case of purely real ζ Loc , are summarized below:

1. An advection speed c a = 0 introduces an asymmetrical propagation between forward and backward propagating modes.

2. For c a = -c 0 , duct mode 1 + is highly attenuated, while mode 1 -is a plane wave.

Hence the acoustical reciprocity is strongly broken for f < f cut-on . Also higher forwardpropagating duct modes present larger attenuation than the backward propagating ones, assuring non-reciprocal propagation also for f ≥ f cut-on . The contrary happens for c a = c 0 (forward duct modes less attenuated than backward duct modes). 4. For |c a | > c 0 mode 1 sign(ca) becomes unstable, as the Im{k x } changes its sign and becomes concordant with Re{k x }. Hence, the highest forward attenuation achievable before duct-mode instability is obtained for c a = -c 0 . 

ζ Loc (jω) = 1 ρ 0 c 0 M at jω + R at + K at jω , (3.41) 
where M at = µ M M a0 and K at = µ K K a0 as in Section 2.1.

Following the same procedure of analysis as above, let us start with the duct modes solutions in case of locally-reacting boundary, i.e. for c a = 0, but this time with the complex ζ Loc (jω) Hz for µ K = µ M ). Observe also that the maximum of |Im{k x }| reduces, and the bell around resonance narrowed, for higher reactive as well as higher resistive components. Figure 3.22a displays the Re{k x } and Im{k x } for the rst duct mode, in frequency, with varying µ M = µ K .

This plot reveals how by increasing the reactive component (by making the resonance more evident), the pick of Im{k x } moves toward lower frequencies (toward the resonance). Same plot, but by varying R at is displayed in Figure 3.22b, making it clear that by reducing R at higher attenuation is achieved around resonance.

Before, introducing an advection speed c a = 0, let us resume the eects of each term of a SDOF in-series impedance on the duct modes:

1. Increasing the quality factor (augmenting the reactive with respective to the resistive components) of ζ Loc (jω), the attenuation of each duct mode gets concentrated around resonance.

2. Increasing µ M = µ K and/or decreasing R at reduces the pick value of attenuation for mode 1, and shifts it toward lower frequencies. Once the eect of each component of a locally reacting SDOF impedance on the dispersion of the rst duct modes has been assessed, we can now investigate the case of boundaries lined with the advection law Eq. (3.9). Figures 3.23 shows the dispersion plots of k x (ω) for µ M = µ K = 0.2 and R at = ρ 0 c 0 . The modes are not labelled referring to their sense of propagation (positive or negative) as the Re{k x } happens to change its sign with frequency, while sign of Im{k x } is unaltered. Mode 1b corresponds to the plane wave always present for c a = ±c 0 , here propagating backward as sign(c a )< 0. Mode 1a is the rst mode propagating toward +x. Nevertheless, the Re{k x } of mode 1a approaches zero very closely just above resonance, prospecting a possible change of sign (and a reversed sense of propagation) for some parameter variation. We will see in the following that increasing the quality factor (reducing R at or augmenting the reactive coecients µ M and µ K ) can make k x,1a to change its sign above resonance. both boundaries are treated with an advection law. Therefore, we expect such phenomenon to dwindle by reducing either the reactive or the advective character of the B.C., or by increasing the duct section width h.

In Figures 3.24 we report the dispersion plots in complex plane of the rst four duct modes (1a, 1b, 2a, 2b), with µ M = µ K = 0.2, R at = ρ 0 c 0 and varying advection speed c a from 0 to -c 0 . Mode 2a is unstable for a wide frequency range as both Re{k x } and Im{k x } are negative, meaning a duct mode propagating toward -x with an increasing amplitude. Mode 2b instead, presents unstable propagation at lower frequencies where both Re{k x } and Im{k x } are positive. Mode 1a does not show instability but for c a = -c 0 , Re{k x } becomes zero at a certain frequency, suggesting that either by increasing |c a | or the reactive components of ζ Loc (jω) will lead to instability. mode 1a. A similar eect is on modes 2a and 2b which comes back to the stable condition (Re{k x } and Im{k x } with opposite signs) for suciently low values of the reactance and/or suciently high values of the resistance in ζ Loc (jω). Figure 3.27 shows the eect of varying the duct width h on modes 1a, 1b, 2a and 2b. As expected, larger cross sections reduces the unstable character of mode 1a around resonance, and of modes 2a and 2b at low frequencies, while mode 1b looks unaected. In Figures 3.28a, 3.28b, 3.28c and 3.28d, we focus on the dispersion curves in frequency, of mode 1a. Figure 3.28a conrms that for c a = -c 0 the Re{k x } is about to change its sign above resonance, while sign of Im{k x } is unaltered. Figures 3.28b and 3.28c demonstrate how increasing the quality factor can lead to unstable propagation around resonance. Finally, Figure 3.28d, certies the role of the duct cross section width h on stability of the duct mode 1a, illustrating how instability withdraws for larger duct sections.

In order to fully understand the physical mechanism underlying such unstable propagation, deeper analyses are required, and for that scope, we believe that inspiration might be found in the discussion on duct modes instabilities in case of another type of convection: a mean ow in the duct [START_REF] Quinn | On the production and absorption of sound by lossless liners in the presence of mean ow[END_REF], [START_REF] Rienstra | Hydrodynamic instabilities and surface waves in a ow over an impedance wall[END_REF], [START_REF] Rienstra | A classication of duct modes based on surface waves[END_REF], [START_REF] Brambley | Surface-waves, stability, and scattering for a lined duct with ow[END_REF], [START_REF] Rienstra | An analytic Green's function for a lined circular duct containing uniform mean ow[END_REF]. An advection of the boundary reaction means a phase travelling along the wall. Each point of the advective boundary has therefore two contributions to its phase, one given by the local reaction and the other given by the travelling boundary wave. We are brought to imagine that the presence of a reecting wall in front of a boundary advection law, the de-phasing introduced by a complex ζ Loc (jω), and a suciently high wall advection speed, can cause the amplication of the waves reected from the facing wall to the advected boundary.

Let us resume the outcomes of the duct-modes simulation in case of complex ζ Loc (jω):

1. For non-zero reactive terms (µ M = 0 and/or µ K = 0) all duct modes can become unstable even for values of |c a | < c 0 , except mode 1b (plane wave propagating toward sign(c a )x). The duct-modes instability is related to a change of sign of the Re{k x }, i.e.

a ip in the sense of propagation of the duct modes.

2. The duct modes, except mode 1b, propagating toward sign(c a )x can be unstable at low frequencies (below resonance). Modes propagating toward -sign(c a )x can be unstable above resonance.

3. Increasing the quality factor of ζ Loc (jω) enhances the duct-modes instability. For suciently low quality factors, the stability of duct mode 1a can be restored.

4. For suciently large duct cross section, the stability of duct mode 1a can be restored, highlighting the role of the niteness of the transversal dimension of the acoustic domain (not taken into account in Section 3.1) in such instability phenomenon.

The reader is invited to look at Appendix G to verify the possibility to obtain the duct mode solutions for the rst positive and negative propagating modes by a 1D reduced model. The interest of such 1D solutions is that they can be computed analytically, as the lined waveguide is treated as a medium with dierent propagation characteristics, analogously to the porous equivalent uid models and the eective properties in periodic media.

The duct mode analysis carried out in this section will be very helpful in the interpretation of the scattering performances in a waveguide, which are presented in the following. In this section the boundary advection law of Eq. (3.9) is analysed in terms of the scattering performances in the plane wave regime, achieved by a lined segment of length 0.33 m in a 2D acoustic waveguide without ow, as illustrated in Figure 3.29. The lining B.C. is applied continuously on the boundary of the waveguide in the lined segment. The duct transversal dimension is h = 0.05 m as in the duct mode analysis of Section 3.2. Such dimensions correspond, approximately, to the experimental setup that will be presented in Section 3.5.

The scattering matrix coecients are dened in Figure 3.29 and Eq. (3.42) in the plane wave regime, which is the one treated here. The results have been obtained by FE simulations in COMSOL. The FE mesh has been built suciently ne to resolve frequencies up to f cut-on , according to the criterion d max ≈ λ cut-on /10, where d max is the maximum element size in the mesh. The scattering problem has been outlined by dening so-called Plane Wave Radiation conditions at the inlet and outlet cross-sections of the duct, in order to reproduce anechoic terminations in the plane wave regime. Such B.C. also allows for dening incident pressure elds, without losing the anechoic character of the terminations. The scattering coecients T ± g and R ±

g have been retrieved by exciting either the left (+) or the right (-) termination.

Reminding that, in the plane wave regime p = p + + p -and v x = (p + -p -)/(ρ 0 c 0 ), by retrieving pressure p and velocity v x on two cross sections, placed upstream and downstream the lined segment, suciently far from the treated area (in order for the evanescent waves to fully vanish), the amplitudes of sound pressure waves propagating toward +x or -x can be computed by the relationships: The scattering coecients are then obtained by exploiting the anechoic terminations assumption, thanks to which T ± = p ± 2 /p ± 1 and R ± = p ∓ 1 /p ± 1 , where p ± 1 and p ± 2 are the sound pressure waves amplitudes at the upstream (superscript 1) and downstream (superscript 2) cross-sections.

p ± = p ± ρ 0 c 0 v x 2 .
As indicators of the reective, absorptive and transmissive performances of the liner, we preferred to plot the transmission loss T L ± g = 10 log 10 (1/|T ± | 2 ), the power reection coecient |R ± g | 2 and the power absorption coecient α

± g = 1 -|R ± g | 2 -|T ± | 2 respectively
, where the subscript g stays for grazing incidence. The Insertion Loss (I L ± g ) gives the eect of in- serting the liner with respect to the case of no boundary treatment, and is dened as the dierence between the transmission losses evaluated before and after the boundary treatment, i.e. IL ± g = T L ± g | af ter -T L ± g | bef ore . As, in simulations, T L ± g | bef ore = 0 because it corresponds to a perfectly rigid boundary, then IL ± g = T L ± g | af ter . The acoustical passivity in the scattering problem is assured as long as α ± g (ω) ≥ 0 at all frequencies.

As done in the previous sections, let us start with the case of ζ Loc purely resistive. In Figure 3.30, the scattering performances are plotted with varying c a from 0 to -2c 0 conrming the results of previous sections about both passivity and non-reciprocal propagation. Looking at Figure 3.30a we remark that increasing |c a | leads to higher IL + g due to a signicant increase of the reection coecient |R + g |, while the absorption α + g is lowered. In Figure 3.30b, the scattering conrms the perfect non-reciprocal propagation for c a = -c 0 , and the loss of acoustical passivity, already found in previous sections, for |c a | > c 0 . In Figure 3.31, same computations are carried out in case of a complex ζ Loc (jω) as in Eq. (3.41), for µ M = µ K = 0.2 and R at = ρ 0 c 0 . First thing catching the eye in Figure 3.31a is the negative value of α g at very low frequencies, for values of |c a | ≤ c 0 and just above resonance for c a = c 0 . While the latter result was expected from the duct mode analysis of Section 3.2, the former was not. Indeed, we have veried in Section 3.2 that the presence of a reactive term in ζ Loc (jω) can cause unstable duct modes propagation even for |c a | ≤ c 0 around and beyond resonance.

Nevertheless, the low-frequency non-passivity of the advection boundary law was predicted neither by the analytical formulation in semi-innite domain (Section 3.1) nor by the duct mode analysis in an innite duct. Hence we deduce that it might be linked to the abrupt change in the B.C. from the rigid to the advective boundary.

The advection B.C. features higher IL + g due to a signicant increase in backward reection, respect to a locally-reacting boundary (c a = 0). Figure 3.31b conrms the perfect nonreciprocal propagation for c a = -c 0 even for complex ζ Loc (jω).

The eect of the variation of the reactive and resistive components of ζ Loc (jω) is described in Figures 3.32a and 3.32b respectively. Apart from the low-frequency unexpected loss of passivity, the impacts on acoustical passivity of both the resistive and reactive terms conrm the results of the duct mode analysis, specically the one relative to the mode 1a (see Figure 3.28) as it is the one dominating the propagation in the lined segment for f < f cut-on . While reducing the reactive terms leads to a larger bandwidth of ecient isolation (of high IL + g ), reducing R at increases the pick of reection and of IL + g as well, at the same time endangering the acoustical passivity around resonance.

Finally, in Figures 3.33 the duct width h is varied, conrming that a larger cross section, by reducing the impact of the lining treatment on the acoustic propagation, also dwindles the non-passive character around resonance (as was in the duct modes analysis), as well as the one at very low frequencies. Thepropagation instead is not aected by cross section width and the non-reciprocal propagation is conrmed in the frequency bandwidth of ecient isolation achieved by the advection B.C., for c a = -c 0 . Let us resume the main outcomes of the 2D scattering results for f < f cut-on :

1. For a purely resistive ζ Loc (for µ M = µ K = 0), the scattering performances are coherent with the duct modes analysis of Section 3.2.

2. The non-reciprocal propagation is conrmed for |c a | = c 0 , as perfect transmission happens in the sign(c a ) sense, while high isolation is achieved in the opposite sense. bigger than 1. This result is in agreement with the duct modes analyses, where mode 1 -sign(ca) showed an unstable propagation for a value of |c a | beyond a threshold lower than c 0 . Such phenomenon dwindles by reducing the quality factor of ζ Loc (jω) and/or by enlarging the duct cross-section width, in agreement with the duct mode analyses.

6. An additional unexpected loss of acoustical passivity happens at very low frequencies, which was unexpected by the duct mode analyses. Henceforth, This is probably due to the niteness of the lined segment and the abrupt introduction of a convected boundary reaction, at the section of interface between the rigid and the advective B.C.. Such loss of acoustical passivity is related to an increase of |R sign(ca) g

| 2 beyond 1.

7. Even for complex ζ Loc (jω), the transmission in the sign(c a ) direction is perfect in the plane wave regime for |c a | = c 0 , hence maintaining the strong non-reciprocal character.

Observe that also for the scattering performances, the 1D reduced model provides very satisfactory results (see Appendix G) which could be employed for fast predictions and liner design.

In the following section, a 3D waveguide is considered and the eect of B.C. discretization as well as time delay in the digital control implementation, are investigated. 

Scattering simulations in 3D waveguide

i(s) = H loc (s)p(s) + H grad (s) ∂x p(s), (3.44) 
where p(s) and ∂x p(s) are the local pressure and its x-derivative on each speaker diaphragm, The transfer functions H loc (s) and H grad (s) are obtained by equating the velocity of the speaker diaphragm from its mechano-acoustical dynamics (2.2), and the velocity corresponding to the advection B.C. (3.10), and by imposing Z Loc (s) = Z at (s). Their expressions in the Laplace space are given in Eq.s (3.45) and (3.46).

H loc (s) = S d Bl 1 - Z a0 (s) Z at (s) , (3.45) 
H grad (s) = S d Bl Z a0 (s) Z at (s) c a s F hp (s), (3.46) 
where F HP in H grad (s) is a high-pass lter necessary in order for H grad (jω) not to become innite for ω → 0. Equations (3.45) and (3.46) are implemented in the simulation in order to retrieve the electrical current on each EA. The mechano-acoustical dynamics equation (2.2) is then employed to retrieve the velocity assigned on each EA disk.

The scattering performances have been simulated by FE in COMSOL. The FE mesh has been built suciently ne to resolve frequencies up to f cut-on , according to the criterion d max ≈ λ cut-on /6. The scattering problem has been outlined thanks to the Port functionality available in COMSOL for 3D geometries, which allows to dene one or more incident modes assuring the non-reecting condition for that mode. Our problem is restricted to the plane wave mode, but such utility could be in future exploited to study the multi-modal scattering problem. By dening a port at the inlet and outlet sections of the duct, the Port functionality outputs directly the scattering coecients between the two ports.

In Figure 3.36a, the scattering coecients achieved by the advection law with c a = -c 0 , are traced along with the ones relative to open circuit (H loc = H grad = 0) and local control (µ M = µ K = 0.5, R at = ρ 0 c 0 and c a = 0) applied on the EAs.

As in the 2D case, the advection law demonstrates higher isolation capabilities, though being acoustically non-passive at very low frequencies, as well as after resonance.

A time delay τ = 2 × 10 -5 seconds is also taken into account by the exponential e -jωτ multiplying the controllers, leading to high frequency loss of acoustical passivity (α g < 0), which is more signicant in case of c a = 0.

In Figure 3.36b, the electrical current spectra of all the EAs are summed up to visualize how the advection law requires a much higher level of electrical current (up to 3 times) with respect to the local control. Also the sum of velocities v(ω) on the 24 EAs is reported showing once again higher levels required by the advection control law. To sum up:

1. Discretizing the B.C. on separate disks (simulating the EAs loudspeakers) obviously reduces the liner performances as less surface area is available to treatment.

2. The advective control law is implemented by an additional transfer function H grad (s) multiplying the estimation of the pressure x-gradient. As H loc (s), also H grad (s) is based upon a model inversion of the EA mechano-acoustical dynamics.

3. The 3D scattering performances, with discretized boundary treatment and controller dynamics simulations, conrm the results of previous sections. Isolation is highly enhanced the advective law, though paying the price of non-passivity at very low frequencies and around resonance. Strong non-reciprocity is also conrmed.

4. Evaluating the pressure and its x-gradient through averaging and nite dierence of corner microphones, introduce a high-frequency de-phasing endangering the acoustical passivity. This eect is more evident in case of advective control law, where thenite dierence approximation of rst order is subjected to aliasing problems at those frequencies. Such pressure-evaluation eects can induce energy injection downstream (I L g < 0).

5. Time delay also jeopardize high-frequency passivity, possibly causing downstream energy injection (I L g < 0).

6. Both pressure approximation and time delay also impacts the sign(c a ) scattering performances.

7. The application of a thin porous layer (even of 6 mm thickness), can restore highfrequency passivity, without signicantly aecting the performances around resonance.

In the next section, the scattering performances are measured on an experimental test-bench with same EA prototypes as the one described in Section 2.1.4. The baggage of simulations showed so far will help in the interpretation of the experimental trends.

Experimental results

In this section, the advection control law is experimentally tested on an array of 24 EAs prototypes lining a squared cross-section duct of about 0.05 m side, as illustrated in the photos of where we labelled as A, B, C and D the sound pressure wave amplitudes, upstream and downstream the lined segment, and p 1 , p 2 , p 3 and p 4 the total sound pressures at the four microphones locations. From Eq.s (3.47), the sound pressure wave amplitudes can be expressed in terms of the total pressures at the 4 microphones as:

A(ω) = j p 1 (ω)e -jk0x2 -p 2 (ω)e jk0x1
2 sin

k 0 (x 1 -x 2 ) , (3.48a) B(ω) = j p 2 (ω)e -jk0x1 -p 1 (ω)e -jk0x2
2 sin Eq.s (3.48), in terms of the transfer functions spectra H 1n (ω) between microphone 1 (used as reference) and microphone n, gives the expressions:

k 0 (x 1 -x 2 ) , (3.48b) 
A(ω) = j S 11 e -jk0x2 -H 21 e jk0x1
2 sin

k 0 (x 1 -x 2 ) , (3.49a) B(ω) = j S 11 H 21 (ω)e -jk0x1 -e -jk0x2
2 sin 2 sin

k 0 (x 1 -x 2 ) , (3.49b 
k 0 (x 3 -x 4 ) , (3.49d) 
where S 11 is the autospectrum of microphone 1. In order to estimate the scattering coecients, the amplitudes of Eq.s (3.49) must be evaluated in 2 dierent congurations, which can be obtained by changing the duct termination (also called acoustic load) at the other side respect to the source. Hence, 2 set of measurements are conducted, one per each conguration. The scattering problem for both acoustic loads can be written in matrix form as:

C a C b B a B b = T + R - R + T - A a A b D a D b , (3.50) 
where the subscripts a and b correspond to the two dierent load congurations. By inverting the last matrix on the rhs of Eq. (3.50), the scattering coecients can be obtained as:

T + (ω) = C a D b -C b D a A a D b -A b D a , (3.51a) R -(ω) = -C a A b + C b A a A a D b -A b D a , (3.51b) R + (ω) = B a D b -B b D a A a D b -A b D a , (3.51c) 
T

-(ω) = -B a A b + B b A a A a D b -A b D a .
(3.51d) In order to produce another load condition, additional to the quasi-anechoic one given by the 45 cm of foam, we removed the foam and get an open termination. Nevertheless, for the scattering performances R -and T -, it is better to invert the position of the external source for having higher coherence.

In Figures 3.43 ). The spectra are plotted between 100 and 3100 Hz, as below 100 Hz the external source does not deliver sucient acoustic power, and beyond 3100 Hz the higher order duct modes starts to aect the measurements.

The signicant increase in isolation achieved by the advection strategy respect to the local control law is conrmed, both in bandwidth and in the maximum, as most energy is reected backward. As T L + g is really high around resonance (about 500 Hz), a low signal to noise ra- tio is produced, especially in case of advection control law, and the coherence of the transfer functions is very small. For this reason, the values around 500 Hz attained by the IL + g , R + g and α + g plots might not be exact.

Above 2 kHz, observe the higher decit of acoustical passivity in the case of advection control respect to the local strategy. Such eect was predicted by the numerical simulations and mainly associated to the aliasing eect due to the rst-order nite dierence approximation of the x-gradient of pressure.

In The presence of another mechanical mode of the speaker around 1500 Hz (also discussed in Section 2.1.4), which is not included in the simulations, surely aects the trends above resonance. On the other hand, low frequencies are probably touched by both an additional mode of the speaker (either mechanical or, more likely acoustical due to a Helmholtz resonator eect produced by a small construction hole on the EA cell), or to a structural mode of the tube or of the skeleton holding the EAs. Then the slight shift between measurements and simulation plots around resonance, evident in the O.C. and Local Control plots, is probably due to two main reasons. A rst one, is linked to the time-delay in the digital implementation of the controller, which is likely higher than the 2 × 10 -5 seconds considered in simulations. A second aspect to take into account is the variability of the Thiele-Small parameters among the EAs, whereas, in simulation the Thiele-Small parameters have been dened uniquely for all the EAs (taking the average values of all the EAs prototypes).

Looking at the advection control case, we remark that measurements do not present the losses of acoustical passivity either at low frequencies or around resonance, which were expected by simulations. While for low frequencies the above mentioned discrepancy must be due to modes present either in the EA or in the test-rig structure, around resonance the low coherence (due to low signal-to-noise ratio) does not allow for detecting the exact value of IL + g , likely underestimating the backward reection and, hence, overestimating α + g . De- spite high-frequency modes of the speakers (not considered in the numerical model), the high frequency shortage of acoustical passivity in the advection control, is detectable also from measurements. An additional source of dicult predictability of experimental results are the errors in the mechanical model adopted in the control laws. These errors, either linked to parameter or dynamics uncertainties, are not considered in simulations, while aecting performances at all frequencies in the experimental control implementation.

In Figures 3.45 In Figure 3.45, the minimum value for µ M is 0.5, as below it the system becames unstable for the reasons exposed in Section 2.1.2. Increasing µ M moves the pick of IL g and of |R g | 2 towards lower frequencies, but the resonance of Z a0 (jω) (at f a0 ) is not fully equalled out by the model-inversion based control law, because of both time delay (as predicted by simulations) and model uncertainties, so that there is still a residual pick at about 500 Hz. Increasing µ M up to 2, brings a loss of acoustical passivity slightly below f a0 . Figure 3.46 shows how varying µ k can move the pick of IL g towards either lower frequencies (where the isolation performances are mainly due to an increase in the reection coecient), or toward higher frequencies (where the IL g is mainly achieved thanks to higher absorption). Once again, the residual pick at f a0 is not eliminated by the controller. Interestingly, the acoustical passivity just before f a0 , is more endangered by moving f at towards higher, rather than towards lower frequencies. This is so, because moving the resonance of Z at (jω) away from f a0 requires an increase in the corrector gain |H loc (ω)| at f at . Hence, if f at > f a0 , then |H loc (ω)| will increase at higher frequencies (see Figures 2.2), augmenting the de-phasing eect introduced by the time delay (which also increases with frequency). Nevertheless, we remark that an eective isolation IL g ≥ 20 dB, can be accomplished by moving f at from 200 to 2000 Hz. that higher quality factors of Z at (jω) (i.e. increasing the reactive terms µ M and µ K , and/or reducing R at ) led to harsher loss of passivity around f a0 , independently of time delay. This is because the backward reected energy becomes higher than the incident one as an outcome of the combined non-local and reactive nature of the boundary. Such phenomenon is conrmed by Figures 3.48 ing at Figure 3.52, where the external source has been placed on the other side with respect to the lined segment, and the (-) scattering performances have been measured. For |c a | > c 0 the system becomes non-passive as expected by both duct-modes analysis (Section 3.2) and scattering simulations (Section 3.4). Clearly, even if c a = -c 0 , the loudspeakers dynamics is not totally annihilated, because of time delay as well as of dynamics and model uncertainties in the control law. Therefore, the reection and absorption coecients are not perfectly equal to 0 (as it was in the simulations), but the insertion loss is about 30 dB lower than in the open circuit conguration at resonance, and, with respect to the other sense of propagation, it is more than 20 dB lower from 300 to 600 Hz, and more than 40 dB lower from 400 to 500 Hz (see Figure 3.53).

In order to cope with the high-frequency shortage of acoustical passivity, as in Section 2.1.3, a 6 mm layer of foam has been applied in front of the EAs, as illustrated in Figure 3.54, without losing the ush condition of the EAs in the waveguide. The eects of the porous employment on the scattering performances are given in Figure 3.55a and 3.55a for the local and advective controls respectively. Surprisingly, the thin layer of foam shifts the pick of IL g toward higher frequencies as in the normal absorption performance of Section 2.1.4. This was not predicted by simulations (see Figure 3.38), where the Miki model for porous materials was considered, with a ow resistivity of 4000 Pa/(m/s) extrapolated by normal absorption coecient measurements of the foam adopted. According to such model, the porous layer is acoustically transparent below 2000 Hz. This discrepancy is likely due to the inadequacy of the model adopted for simulating the porous behaviour, which, in addition, is so thin that it can be subjected to vibrations under acoustic excitation. Nonetheless, thanks to the foam application the reactive components µ M and µ K could have been reduced from 0.5 (in case of no foam) to 0.3, hence slightly enlarging the bandwidth of ecient isolation, as it can be seen in Figure 3.55. Note that in the Local control case (Figure 3.55a), the high-frequency acoustical-passivity restoring eect accomplished by the foam is more evident than in the advective case (Figure 3.55b). Nevertheless, also with the advective control law, the minimum coecients µ M and µ K before instability, have decreased from 0.5 to 0.3.

The main points of scattering performance measurements are reported below:

1. The experimental set-up follows the same arrangement of EA as the one in the 3D simulations of Section 3.4.

2. The measured trends around resonance follows the simulated ones, except from slight shifts probably due to an actually higher time delay than the predicted one, as well as dierences in the Thiele-Small parameters among EAs. In case of advective control law, the isolation achieved is so high that low signal-to-noise ratios are obtained in the downstream microphones, henceforth the low coherence at these frequencies, and the underestimation of the reective performances of the advective control law around resonance.

3. Below resonance there is probably an unpredicted mode: either a structural on (of the duct) or an Helmholtz resonator eect due to very little construction holes on the surface of the EA prototypes. It causes the low-frequencies discrepancy between simulation and measurements.

4. Above resonance, the trends are aected by a loudspeaker mode at 1500 Hz (not taken into account either in simulations or in the model-inversion control law). 5. The presence of time delay in the control implementation, as well as of inevitable model uncertainties, prevent to perfectly cancel out the loudspeaker own dynamics. Therefore, a residual pick around 500 Hz is always there even for f at = f 0 . 6. In the Local control case, shifting f at toward higher frequencies increases the shortage of acoustical passivity at high-frequencies. Indeed, to impose a f at > f 0 , higher amplitude of the corrector transfer function is demanded at higher frequencies, thereby enhancing the dephasing eect of time delay at those frequencies.

7. Both in Local and Advective control cases, reducing R at sharpens and augments the pick of reection. It lowers the absorption, but increase the IL. In addition, it endangers the acoustical passivity at high frequencies, as expected.

8. The advective control law conrms to isolate better respect to the local strategy, though acoustical passivity is concerned both around resonance (especially for narrow ducts)

and at high frequencies (because of aliasing eects on the pressure x-gradient estimation).

9. In order to achieve high isolation performance without too much concerning acoustical passivity, the parameters of the advective control law must be chosen according to two conicting needs. On the one hand |c a | must be limited to the threshold assuring the passivity around resonance. Such a limit is more stringent for narrower ducts, and higher reactive components (µ M and µ K ) in Z Loc (jω). On the other hand, the lower limit of the reactive component µ M is given by the high-frequency passivity issue related to time-delay. This is probably due to the uncertain behaviour of the such foam at those frequencies, both in terms of its viscous absorption and mechanical vibration.

Conclusions

In this chapter, the boundary control has been enlarged toward a non-local conception. The rst order dierential boundary operator rst proposed in [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF], also called advective B.C., has here been deeply analysed starting from its origins and physical interpretations.

From a mathematical point of view, we showed that it simulates an interface with a ctitious propagative and advective domain Ω f ict behind, where the phase speeds along the tangential directions (x and z) degenerate to 0, and where the advection speed c a is along the tangential The duct mode analysis in an acoustic waveguide has allowed to verify the non-reciprocal behaviour achieved: the plane wave mode propagating toward -sign(c a )x testies perfect transmission in that sense. In the opposite sense, a high |Im{k x }| demonstrates isolation.

The duct mode analysis also conrmed the passivity conclusions of the semi-innite domain analysis. Nevertheless, another unexpected passivity shortage has resulted in case of complex Z Loc (jω). Such unstable duct modes propagation can be ascribed to an increased phase shift between local pressure and velocity at the boundary, due to the reection of sound waves on the two opposite faces of the duct, along with the convection of the boundary reaction.

Simulations in 2D and 3D waveguides conrm the break of the acoustical reciprocity principle. Also the enhanced isolation performances achieved by the advective strategy respect to the local impedance control, are featured. The duct modes unstable propagation due to the reactive components of Z Loc (jω) manifests itself in a reection coecient higher than 1 in amplitude. A further concern has appeared at very low frequencies, where the abrupt change of boundary behaviour (from rigid to advective) probably induces an additional loss of acoustical passivity.

Despite the apparent distance between the reality of the control system and the simulations, experimental tests on a duct lined with EAs prototypes validate the numerical results in terms of isolation performances, non-reciprocal propagation, and stability concerns. In order to assure acoustical passivity in the operating frequency range, all the parameters involved in the control law must be carefully chosen. The advection speed must be limited to the threshold assuring the passivity around resonance. Such a limit is more stringent for narrower ducts, and higher reactive components (µ M and µ K ) in Z Loc (jω) = Z at (jω). On the other hand, the lower limit of the reactive component µ M is given by the high-frequency passivity issue related to time-delay (as demonstrated in Chapter 2).

A foam applied on the EAs, as done in Chapter 2, can allow to cope with the high-frequency passivity issues, highlighting the importance of a correct porous layer design.

Next steps

The natural further development in the analysis of the advective strategy, is to investigate its multi-modal scattering performances. Moreover, it will be interesting to study the application of an advective B.C. on a convected acoustic domain (with a mean ow). This is currently under development, and the advection control law is showing to perform better isolation performances respect to the local control strategy, even in presence of mean ow.

The addition of another degree of freedom, i.e. the non-locality, in the boundary control can very much stimulate the fantasy of the interested researchers. The non-reciprocity allows also to device a focal concentration of acoustic energy (currently under testing), as well as other fanciful sound trajectory steering.

Finally, as the technological architecture employed for the advective strategy is the same as the local impedance control, the next developments proposed in Section 2.6, in terms of control optimization, are prospected here as well.

Chapter 4

Innovations achieved and next developments

This small chapter is dedicated to the main accomplishment achieved in this thesis work.

Much eort has been spent at the beginning to overcome stability issues of the boundary control strategies. This has led to an important insight on the acoustical passivity, and the high-frequency eect of time delay. From that, the knowledge about porous materials, has opened up to the possibility of exploiting the high-frequency absorptive qualities of foams to passivate the impedance controlled EA. Such hybrid system diers from the classical ones as here the passive absorber has the only scope to enlarge the acoustical passivity margin of the EA.

A great deal of study has been devoted to provide analytical tools to understand subtle aspects of the impedance control strategies. An example is the extension of the integral constraint to our electro-active impedance controlled devices. Originally, an integral constraint was obtained by Yang et al. [START_REF] Yang | Optimal sound-absorbing structures[END_REF] in 2017 for passive sound absorbing materials. Though, we were not aware of this result when we performed the analytical computations for the EA.

The motivation for such analytical eort was given by a kind of waterbed eect observed when the system were pushed by the corrector at frequencies below or beyond resonance.

The integral constraint for the EA, allows to understand both the value and the drawbacks of the electro-active impedance control with respect to purely passive absorbing materials. As the result of Yang has lead to an optimal design strategy of passive absorbers, the integral constraint here presented can drive optimal design of EAs. An interesting perspective in this sense, is to study target impedances other than the SDOF in-series one. In parallel elements (as proposed by Auregan et al. [2]) can indeed allow to eciently target the bandwidth below resonance, and keep perfect acoustical passivity beyond it (currently under testing).

The importance of the integral constraint resides also in the better understanding of the performances of the correctors automatically synthesized by the H ∞ method. Never before, such approach has been used for the acoustical impedance control. In this work, we formulated the impedance control in the H ∞ formalism, and provided also a smart way to enforce passivity in the specications. Experimental tests will soon be performed to complete such study. Then, the next developments will have to take into account robustness with respect to parameter and dynamic uncertainties.

An innovative real-time implementation of the impedance control has been proposed to conceive non-linear dynamics of the EA, without the use of additional sensors. The feasibility of such Runge-Kutta based control strategy must also be validated experimentally. Though numerical simulations in both stationary and transient regimes advocate such approach.

Concerning the advection control law, its experimental implementation has been for long time a hurdle since its rst appearance in 2009 [START_REF] Collet | Active acoustical impedance using distributed electrodynamical transducers[END_REF]. A better mathematical and physical understanding was required, which have been partially achieved in this work. Moreover, the advection B.C. has been here presented for the rst time as an extension of the local impedance control, realizing its advective behaviour and consequent reciprocity-breaking phenomenon.

The resulted non-reciprocal device is an unique case in non-reciprocal acoustics, as it does not rely upon internal bias elds (such as the air ow in [START_REF] Fleury | Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator[END_REF]), but it is based upon a programmable boundary reaction.

The parametric analyses performed both numerically and experimentally, allow now to make use of such control strategies, being aware of the impacts of each parameter both on stability and performances. The lter here designed for the implementation of the advective B.C., is currently showing exceptional performances also in case of a mean ow in the duct, in the plane wave regime.

A study in case of multi-modal excitation is strongly required, as the duct mode analysis of Section 3.2 has raised important concerns on the stability of higher duct modes propagation.

Nevertheless, we should not prevent ourselves from envisaging dierent advective strategies to target higher order modes isolation, as well as exploiting the non-local character to conceive other boundary operators allowing larger absorption performances.
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Typical application of the

The residue of F (s) in zero, Res(F (s), 0), is calculated reminding that F (s) has a double pole in zero (the s 2 at the denominator).

Res{F (s), 0} = lim We highlight that Eq. (2.11) is valid for any proper transfer function H(s) applied as a controller in the current-driven, pressure-based impedance control. This means that for any type of controller H(s) (even dierent from the one dened in Eq. 2.3 and analysed in this contribution), the integral constraint (2.11) still applies. We want to emphasize that such IX integral constraint, for purely passive resonators retrieves the one found by Yang in 2017 [START_REF] Yang | Optimal sound-absorbing structures[END_REF],

which has its analogous for electro-magnetic waves in the work of Fano [START_REF] Fano | Theoretical limitations on the broadband matching of arbitrary impedances[END_REF] and Rozanov [START_REF] Rozanov | Ultimate thickness to bandwidth ratio of radar absorbers[END_REF].

The dierence between our formalism (based upon the Laplace complex variable s, dearer to control engineers) and the one provided by [START_REF] Fano | Theoretical limitations on the broadband matching of arbitrary impedances[END_REF], [START_REF] Rozanov | Ultimate thickness to bandwidth ratio of radar absorbers[END_REF] and [START_REF] Yang | Optimal sound-absorbing structures[END_REF] (based upon the complex wave-length λ), is simply caused by the fact that Eq. As only the rst mode can be taken into account in such 1D model reduction, the pressure at the boundary can be expressed in terms of the average pressure in the tube as:

p b (x, t) = a 1 p(x, t),

(G.6)
with a 1 a constant multiplicative factor and the average pressure p(x, t) assimilated to the rst plane mode. Observe that for non-reciprocal propagation the rst modes propagating in one sense or the other, can be dierent from each other, hence the coecient a 1 can be not the same. In addition, it can vary with frequency as the mode slightly changes in dispersion.

In Eq. (G.7) we drop the tilde above p for simplicity. Once the modal problem has been solved for the 1D reduced system, the scattering problem can be tackled. Supposing a nite segment of the 1D acoustic waveguide lined with the boundary advection law, the scattering coecients can be retrieved by imposing the continuity conditions at the input and output section of the lined segment, of length L. Upstream and downstream the lined segment, the 1D propagation is characterized by the wavenumber k 0 as rigid boundaries are supposed in such regions. The continuity conditions on pressure and velocity at the input and output sections of the lined segments, are reported in Eq.s (G.11) and (G.12) respectively. The continuity equations can be rearranged according to the scattering matrix formulation.

A convenient way to obtain the scattering coecients without bringing along too large expressions, is to split the problem into the scattering at section x = 0 and at section x = L. The scattering at x = 0 is written in the matrix Eq. (G.13), while the scattering at x = L is given by Eq. (G.14). The coecients appearing in the matrices of Eq.s (G.13) and Eq. The intermediate scattering coecients are reported in Eq.s (G.15):

T + a→b = 2 1 + k + b /k 0 (G.15a) R - b = - 1 + k - b /k 0 1 + k + b /k 0 (G.15b) R + a = 1 -k + b /k 0 1 + k + b /k 0 (G.15c) XXII T - b→a = k + b /k 0 -k - b /k 0 1 + k + b /k 0 (G.15d)
Eq.s (G.15) results to be quite intuitive. From the matrix Eq.s (G.13) and (G.14) and the expression of the intermediate scattering coecients (G.15), the global scattering coecients, dened in Eq. G.16, are retrieved in Eq.s G.17.

c + a - [START_REF] Brambley | Surface-waves, stability, and scattering for a lined duct with ow[END_REF]) (G. [START_REF] Chen | A low-frequency sound absorbing material with subwavelength thickness[END_REF] Eq.s G.18 and G.19 are the formula of reection and transmission through a 1D acoustic medium of wavenumber k b , applying also to equivalent uid formulations for example [1].

T + R - R + T - a + c - (G.
T + = T + a→b T + b→c 1 -R - b R + b (G.17a) R + = R + a + R + b (-R + a R - b + T + a→b T - b→a ) 1 -R - b R + b (G.17b) T -= T - c→b T - b→a 1 -R - b R + b (G.17c) R -= R + c + R - b (-R - c R + b + T + b→c T - c→b ) 1 -R - b R + b (G.
Indeed, the 1D model reduction has reduced the treated segment of the duct to an equivalent uid with wavenumbers k + b and k - b for the positive and negative propagation. respectively. As in case of advective B.C. the rst mode-shape signicantly diers from the plane mode, the a1 coecient will dier from 1, and the mode-conversion at the input and output sections of the lined segment might involve higher order duct modes. These are the causes of lower accuracy in the 1D reduced model results. In order to improve the model reduction, another mode might be taken into account, as presented in [START_REF] Aurégan | Slow sound in lined ow ducts[END_REF].

The usefulness of a 1D model reduction is in providing quick low-frequency analytical results approximating both dispersion and scattering obtained by a boundary treatment in an acoustic waveguide. Such fast solutions might be exploited both for liner impedance eduction and in a rst stage of boundary treatment design.
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 1 Figure 1.13: Sketch of hybrid locally/non-locally reacting liners with perforated (a) and exible (b) cavity walls, from [77].

Figure 1 . 14 :

 114 Figure 1.14: Double resonant liner [8].

Figure 1 . 16 :

 116 Figure 1.16: Meta-porous with resonant-inclusions photo (a) and normal absorption performances (b) [67].

Figure 1 . 17 :

 117 Figure1.17: Slow-sound absorber by periodical structure of narrow slits with quarter-wavelength inclusions[START_REF] Groby | The use of slow waves to design simple sound absorbing materials[END_REF].

Figure 1 .

 1 Figure 1.18: Slow-sound liner (a) with folded branches obtained by hollowed plates (b), [3].

Figure 1 . 19 :

 119 Figure 1.19: Optimal absorber designed by [122], made of an array of channel-resonators (a), and its normal absorption αn performance without (b) and with (c) the addition of a sponge layer 1 cm thick.

Figure 1 . 20 :

 120 Figure 1.20: Helmholtz resonator liner examples with variable cavity volume: the semi-active control concept

Figure 1 . 22 :

 122 Figure 1.22: Idealised physical illustration (left) and its equivalent block diagram (right) of a SISO feedback secondary source approach, from [32].

Figure 1 . 23 :

 123 Figure 1.23: Evolution of the hybrid strategy (secondary source behind a resistive layer) for impedance

Figure 1 . 25 :

 125 Figure 1.25: Rayleigh reciprocity theorem in acoustics from [38]. The velocity potential φ at the receiver point B for a sound source placed in A (a), is equal to the velocity potential at the point A for a source at point B (b).

Figure 1 . 26 :

 126 Figure1.26: Time reversal (TR) operation applied on the process φ(t) in red. The blue curve describes the case where the time-reversal symmetry (TRS) holds, in green the case when the TRS is broken (from[START_REF] Caloz | Electromagnetic nonreciprocity[END_REF]).

Figure 1 . 28 :

 128 Figure 1.28: Examples of non-reciprocal propagation in elastic media: equivalent mass-spring lattice with spatio-temporally modulated springs [120] (a); spatio-temporal modulation of beam stiness by piezoelectric patches [125] (b), [78] (c).

Figure 1 . 29 :

 129 Figure 1.29: Schematics of the isolator allowing transmission from port 1 to 2 but not vice versa (a), and of the circulator allowing transmission between ports in an unirotational fashion (b), from [38].

Figures 1 .

 1 Figures 1.28b,c.

Figure 1 . 30 :

 130 Figure 1.30: Acoustic circulator based upon biasing uid ow, proposed in [40]: schematics of the one-way circulation of the acoustic wave (from port 1 to port 3) (a); experimental realization with internal fans (b); achievable isolation in terms of transmission coecients amplitude between port 1 and 3 |S31| and between port 1 and 2 |S21| (b).

Figure 1 . 31 :

 131 Figure 1.31: Ultrasonic circulator based upon volumes spatio-temporal modulation proposed in [39]. Top: schematics of three interconnected cavities whose volume is dynamically modulated (a); experimental realization with internal fans (b). Bottom: colour eld plots showing the one way achievable propagation.

Figure 1 . 32 :

 132 Figure 1.32: Two-dimensional sketch of the waveguide lined by electroactive devices reproducing the advection B.C. (left) and insertion-loss measurements (right) relative to incident waves directed towards the positive x direction (forward) and towards the negative x direction (backward), from [59].

Figure 1 . 33 :

 133 Figure 1.33: Sketch of the non-reciprocal system proposed by [109]: the sensors (microphones) and actuators (speakers) are arrayed along the waveguide and the output of each sensor is fed forward a distance d f f to its corresponding actuator, from [109].

Figure 2 . 1 :

 21 Figure 2.1: Schematic representation of the closed-box electrodynamic loudspeaker. p(s) and v(s) are the acoustic pressure and inward velocity, respectively, on the speaker diaphragm; i(s) is the electrical current in the loudspeaker coil; H(s) is the corrector transfer function which applies to the measured pressure pm(s).

  where s is the Laplace variable, v(s) is the mechanical inward velocity of the loudspeaker diaphragm (check Figure2.1), p(s) is the sound pressure on the diaphragm front face, S d is the equivalent piston area (also called eective area), Bl is the force factor of the moving coil, i(s) is the current circulating in the moving coil. Z m0 (s) is the mechanical impedance of the SDOF loudspeaker model in open circuit conguration, and it writes Z m0 (s) = M m0 s + R m0 + Km0 s ,
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 22212 Figure 2.2: Variation of the amplitude of corrector H(ω) (left) and normal absorption coecient αn(ω) (right) with respect to each of the target impedance parameters µM , µK and Rat. The default values are µM = 0.2, µK = 0.2 and Rat = ρ0c0 respectively.

and 2. 3 . 2 Figure 2 . 3 :

 3223 Figure 2.3: Variation of the absolute bandwidth ∆f (left) and of the relative bandwidth (∆f/f0 at ) (right) of ecient normal absorption, with respect to each of the control parameters (µM , µK and Rat), separately. The default values are µM = 0.2, µK = 0.2 and Rat = ρ0c0 respectively.

Figure 2 . 4 :

 24 Figure 2.4: Variation of the normal absorption coecient αn(ω) with respect to the control parameters, in case of a delay in the control loop equal to τ = 2 × 10 -5 seconds. The default values chosen for the target impedance parameters are µM = 0.2, µK = 0.2 and Rat = ρ0c0.

Figure 2 . 5 :

 25 Figure 2.5: Block diagram of the pressure-based, current-driven impedance control.

Figure 2 . 6 :

 26 Figure 2.6: Closed loop poles migration with varying control parameters: µM (left), Rat (right).

Figure 2 .

 2 6 we compute the migration in the complex plane of the poles of the closed loop transfer function (2.7) with L = 0.24 m, by varying the control parameters. The nominal values of µ M , µ K and R at are the same as the ones of Section 2.1. From Figure 2.6 it is visible how reducing µ M causes the unstable poles to increase their positive real-part signicantly, which means quicker divergence of pressure. Decreasing R at also appreciably move the unstable poles toward the rhp. The trends shown by the unstable poles with the parameters variation of Figures 2.6

  are coherent with their eects on passivity presented in Section 2.1.1.

Figure 2 .

 2 8 we simulate the normal absorption coecient (on the left) and the poles of the closed loop transfer function (on the right) of the EA (in blue) and of the EA with a porous layer applied (in red). The porous layer has thickness d = 1.2 cm and ow resistivity σ = 4 × 10 3 rayl/m (these are the characteristics of the foam used in the experimental tests of Section 2.1.4). The mobility of the EA with porous layer applied Y 2 (jω) = 1/Z 2 (jω) has a transcendental expression, thus Y 2 (jω) has been substituted by a proper rational transfer function which perfectly ts the actual Y 2 (jω) in all the frequency range of interest (not shown here), in order to evaluate the poles of the closed loop of Eq. (2.7) (in Eq. (2.7) read Y 2 (s) instead of Y a (s) in case of porous layer applied).

Figure 2 . 7 :

 27 Figure 2.7: Sketch of the porous layer arrangement on the EA.

Figure 2 . 8 :

 28 Figure 2.8: Simulated absorption coecient (left) and poles of the closed loop transfer function (right), in case of simple EA (blue) and EA plus porous layer (red). The control parameters for the EA are set to: µM = µK = 0.2, Rat = ρ0c0. The porous layer has a thickness of 12 mm and ow resistivity σ = 4 × 10 3 rayl/m.

Figure 2 . 9 :

 29 Figure 2.9: Block diagram of the input-output transformation matrix for passivation applied to our controlled EA.

Figure 2 . 10 :

 210 Figure 2.10: Simulated normal absorption of the EA only (in blue), of the EA plus a porous layer (in red) and of the EA plus a porous layer with a 1 cm air-gap between them. The EA control parameters are: µM = µK = 0.2, Rat = ρ0c0; the porous layer thickness considered is 1 cm with a ow resistivity σ = 4 × 10 3 rayl/m.

Figure 2 . 11 :

 211 Figure 2.11: Our EA, before (left) and after (right) the application of the porous layer.

Figure 2 .

 2 Figure 2.12: Kundt's tube.

Figure 2 .

 2 Figure 2.13: Variation of the measured normal absorption coecient α with respect to the control parameters, in case of a delay in the control loop equal to τ = 2 × 10 -5 seconds. The default values chosen for the control parameters are µM = 0.2, µK = 0.2 and Rat = ρ0c0.

Figure 2 .

 2 13 illustrates the variation of the absorption coecient with the control parameters, as in the simulations of Figure 2.4.In the actual EA, the piston-mode modelled by Eq. (2.1) and taken into account in our

Figure 2 . 14 :

 214 Figure 2.14: Measured normal absorption coecient α for two dierent sampling frequencies fs and consequent time delays. The control parameters are µM = 0.3, µK = 0.3 and Rat = ρ0c0.

Figure 2 . 15 :

 215 Figure 2.15: Measured normal absorption coecient α in case of a layer of melamine foam applied of varying thickness.

Figure 2 . 16 :

 216 Figure 2.16: Experimental setup for stability tests. Brüel and Kjaer tube with rigid piston termination on the left and EA on the right.

Figure 2 . 17 :

 217 Figure 2.17: Time history of the pressure signal recorded at the upsurge of instability, in case of absence (blue curve) and presence (red curve) of the 12 mm foam layer.

Figure 2 . 18 :

 218 Figure 2.18: Time history of the pressure signal recorded at the upsurge of instability, for dierent values of µM = µK and of Rat, with the foam layer applied.

Figure 2 . 19 :

 219 Figure 2.19: Sketch dening the scattering coecients (transmission Tg and reection Rg) of a single EA in grazing incidence.

(2. 21 )

 21 Observe that Eq. (2.21) holds for any proper controller transfer function H(s) respecting the roll-o condition. It is interesting to highlight that while the integral constraint on the normal incidence reection coecient is ruled by the EA acoustic stiness, the integral constraint on the grazing incidence transmission coecient is determined by the open-circuit acoustic mass.

Figure 2 . 20 :

 220 Figure 2.20: Block diagram of the Standard Problem.

Figure 2 . 21 :

 221 Figure 2.21: Block diagram of the EA problem with weighting lters for specications of performance and current limit.

Figure 2 . 22 :

 222 Figure 2.22: Amplitudes of the inverse of the weighting lters and corresponding (constrained) system transfer functions.

Figure 2 . 23 :

 223 Figure 2.23: Amplitude of the controller transfer function |H(s)| on the left, and simulated absorption coecient for normal incidence αn on the right.

Figure 2 . 24 :

 224 Figure 2.24: Block diagram of the EA problem with weighting lters for specications of performance, current limit and acoustical passivity constraint.

Figure 2 . 25 :

 225 Figure 2.25: Amplitudes of the inverse of the weighting lters and corresponding (constrained) transfer functions modulus relative to system of Figure 2.21 (on the left) and 2.24 (on the right). The weighting lters Wη(s) and Wi(s) are the same between right and left plots.

Figure 2 . 26 :

 226 Figure 2.26: Simulated normal absorption coecient before and after the application of the passivity constraint. The weighting lters Wη(s) and Wi(s) are the same.

Figure 2 . 27 :

 227 Figure 2.27: Simulated normal absorption coecients obtained by applying dierent passivity constraints.

Figure 2 . 28 :

 228 Figure 2.28: Normal incidence problem, with anechoic termination on one side and EA on the other (see Appendix E).
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 230231 Figure 2.30: Simulated normal absorption coecients obtained directly in frequency domain from H(jω) (in black) compared with the values obtained by the IIR (in blue) and RK (in dashed red) time implementations of the controller. On the left no time delay is assumed while on the right a time delay of 2 × 10 -5 seconds is considered. The target impedance operator is set with values: µM = µK = 1 and Rat = ρ0c0.

Figure 2 .

 2 [START_REF] Devasia | Should model-based inverse inputs be used as feedforward under plant uncertainty[END_REF], we show the normal absorption coecients retrieved computing the DFT of the incident and reected pressures signals after the transient, in case of IIR and RK control implementation, as well as the curve of α n (ω) obtained directly from the Frequency-Response-Functions (FRFs) of the EA acoustic mobility as done in Section 2.1. The FRFs though, are here evaluated by taking the Tustin transform of the discrete corrector H(z) in order to obtain H(s), so that the transfer function H(s) (i.e. H(jω)) be equivalent to H(z) in the sense described in Appendix D.The target acoustic impedance operator is the same SDOF-in-series as considered in Section 2.1 and in Eq. 2.43, with µ M = µ M = 1 and R at = ρ 0 c 0 .The two real-time implementation strategies (IIR or RK-based) look equivalent both in Figure 2.29 and 2.30. Figure2.30 shows that the Runge-Kutta algorithm for the resolution of the normal incidence problem in time domain, produces a phase-shift, due to numerical errors, which grows up in frequency. Indeed, such a phase shift is present independently of delayed or perfectly synchronized controllers, as showed in Figure2.30. Therefore, the loss of acoustical passivity displayed by α n (ω) from 2 kHz and above, must be related to truncation errors of the numerical scheme, which is more important as the frequency increases, for a xed time resolution.InFigures 2.31

, 2 .Figure 2 . 32 :Figure 2 . 33 :

 2232233 Figure 2.32: Simulated acoustic mobility (on the left) and normal absorption coecient (on the right) obtained directly from H(jω) (in black), and retrieved from the time-response either with the IIR or RK algorithm. The target impedance operator is set with values: µM = 1, µK = 4 and Rat = ρ0c0. The time delay is 2 × 10 -5seconds.

Figure 2 .

 2 Figure 2.35b clearly shows a multi-harmonic response of the EA.

Figures 2 .

 2 Figures 2.36aand 2.36b show the eect of varying the reactive and resistance, respectively, in the EA target dynamics. The tunability of the RK-control strategy is demonstrated also for a non-linear (Dung) target dynamics of the EA: reducing the reactive terms enlarges the bandwidth, while decreasing the resistive term sharpens the pick of EA response. Let us now check the eect of time delay on such non-linearly controlled EA.

2 )Figure 2 . 34 :Figure 2 . 35 :

 2234235 Figure 2.34: DFTs of the stationary harmonic responses of the EA, in terms of electrical current, acoustic mobility v/p and normal absorption coecient, relative to the fundamental harmonics, in case of µM = µK = 1, Rat = ρ0c0 and with varying βNL (dimensions m -2 ).

Figure 2 .

 2 Figure2.37 shows the eect of time delay on the normal absorption coecient α n relative to the fundamental harmonics scattered by the non-linear EA with µ M = µ K = 1, R at = ρ 0 c 0 and β N L = 1 × 10 13 m -2 . Apparently, a time delay of τ = 2 × 10 -5 seconds can induce the loss of acoustical passivity before f 0 ≈ 500 Hz. We must remark though, that a RK-scheme time-implementation might require a bigger time delay, as more computations must be car-

Figure 2 . 36 :

 236 Figure 2.36: DFTs of the simulated stationary harmonic responses of the EA, in terms of electrical current, acoustic mobility v/p and normal absorption coecient, relative to the fundamental harmonics, in case of varying µM = µK and Rat = ρ0c0 (a), or with µM = µK and varying Rat (b), and βNL = 1 × 10 13 m -2 .
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 222 39 the fundamental-harmonics of electrical current, acoustical mobility and normal absorption coecient of the non-linear EA, are compared to a linear EA control. The linear EA used for the comparison, has µ M = 1, R at = ρ 0 c 0 and µ K = µ M f

Figure 2 . 37 :

 237 Figure 2.37: Eect of time delay τ on the normal absorption coecient αn relative to the fundamental harmonics scattered by the non-linear EA with µM = µK = 1, Rat = ρ0c0 and βNL = 1 × 10 13 m -2 .

Figure 2 . 38 :

 238 Figure 2.38: Sketch of the 1D problem used for simulations: at the left end the pressure source ps and at the right end the EA whose target dynamics is described by its equivalent mechanical SDOF system. The SDOF absorber is characterized by a target acoustical mass Mat, a resistance Rat and a Dung stiness operator Kat βL(•) + βNL(•) 3

.

  

  K = 2.9164, R at = 0 c 0 , nL = 0 M = 1, K = 1, R at = 0 c 0 , nL = 1 10 13

Figure 2 . 39 : 2 .Figure 2 . 40 :

 2392240 Figure 2.39: DFTs of the stationary harmonic responses of the EA, in terms of electrical current, acoustic mobility v/p and normal absorption coecient, relative to the fundamental harmonics, in case of linear EA with µM = 1, µK = 2.9 and Rat = ρ0c0, and non-linear EA with µM = µK = 1, Rat = ρ0c0 and βNL = 1×10 13 m -2 .
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 241102 Figure 2.41: "Lp" = 10 log 10

Figure 2 .

 2 Figure 2.41a clearly highlights the faster decay at the rst stage of the transient regime achieved by the non-linear EA (between 0.25 and 0.3 seconds, see Figure 2.41b), respect to the exponential (linear in dB) descent obtained by the linear control. After this rst transient stage, the nonlinear phenomenon is less ecient and the decay is classically exponential as in the linear control. This is a classical behavior of NES observed with mechanical NES resonators [46].

Figure 3 . 1 :

 31 Figure 3.1: Interface ∂Ω between two semi-innite domains: Ωair and Ω f ict . Ωair is lled with still air, and extends indenitely toward ±x and -y. Ω f ict extends indenitely toward ±x and +y, and is an anisotropic acoustic medium characterized by Eq. (3.2).

(3. 10 )

 10 In Eq. (3.10) D t | ca is the Lagrangian derivative with respect to a convection speed c a , indicating that the boundary local reaction is convected by a boundary advection speed equal to c a . Dening the boundary plane as y = 0, as in Figure3.1, the trajectory x(t) = (x(t), y(t))

  Figure 3.2: .
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 3334 Figure 3.3: Reection coecient modulus |R| versus the angle of incidence θi for ζLoc = 1, and varying boundary advection speed ca. The three plots from left to right increasingly zoom toward |R| = 0.

Figure 3 . 5 :

 35 Figure 3.5: Reection coecient modulus |R| versus the angle of incidence θi for ζLoc = 2, and for varying boundary advection speed ca. The three plots from left to right increasingly zoom toward |R| = 0.

Figure 3 . 6 :

 36 Figure 3.6: Bending plate separating two propagative domains lled with air: Ωair,1 and Ωair,2. Wavenumbers k1 and k2 are the dispersion solutions giving the radiation angles θ k,1 and θ k,2 .

Figure 3 . 6 ,

 36 where a plate separates two semi-innite domains, Ω air,1 and Ω air,1 , each of them propagative and lled with air. The plate is supposed of negligible thickness The bending wave on the plate is described by the transversal velocity eld v b (x, t) = v b0 e jωt-jk x,b x , where v b is the velocity along y, k x,b = ω/c b is the wave number of the boundary wave and c b is the corresponding phase speed.

Figure 3 . 7 :

 37 Figure 3.7: Boundary ∂Ω separating two propagative domains lled with air: Ωair,1 and Ωair,2. Wavenumbers k1 and k2 are the dispersion solutions for a generic B.C. which is acoustically passive in Ωair,1.

, 1 .

 1 If c b < c 0 both waves are evanescent, whereas if c b ≥ c 0 , the radiated waves propagate in Ω air,2 and Ω air,1 with angles θ k1 = atan2 Re{k x }, Re{k y,1 } and θ k2 = atan2 Re{k x }, Re{k y,2 } respectively. The angles θ k1,2 are labelled here as wavenumber angles, as they dene the wave-number directions. As for exural waves c b grows with √ ω (dispersive behaviour), the coincidence frequency is dened as the frequency for which c b = c 0 [25] and the exural wave becomes radiative. In general, supersonic boundary waves of the transversal velocity v b are propagative.

(3. 25 )Figure 3 . 8 :

 2538 Figure 3.8: Wave-number angles relative to the boundary advection law, varying ca, for three dierent values of ζLoc = 1/ηLoc: 0.5 (left), 1 (middle) and 2(right).

k2 x 1 + ĉa η 2 Loc-2ĉ a η 2 ( 3 . 28 )

 122328 Loc kx + η 2 Loc -1 = 0 Solving this simple quadratic equation in kx , and substituting kx in Eq. (3.27) allows to evaluate the radiation/absorption angle and check the passivity of such non-locally reacting boundary, according to the acoustical passivity criterion of Eq. (3.25). In Figure 3.8, the radiation angles are plotted for the boundary advection law, with ζ Loc = 1/η Loc = 0.5 (left), ζ Loc = 1/η Loc = 1 (middle) and ζ Loc = 1/η Loc = 2 (right), and varying c a . It can be veried, by comparing Figure 3.8 with Figures 3.4, 3.3 and 3.5, that each wave-number angle coincides with the angle of maximum absorption (of minimum |R| < 1)when it ∈ (0, 180), while it corresponds to the angle of maximum reection |R| > 1 when it ∈ (-180, 0) (or equivalently ∈ (180, 360)). Observe that the angles on the x-axis of the reection coecient plots 3.4 to 3.5, are the angles of the incident wave, related to the reection angle by θ r = 2π -θ i in the convention adopted inFigures 3.8

  .

Figures 3 .

 3 Figures 3.9 to 3.11 better shows that the wave-number angles coincide either with the incident angles of highest absorption, or with the opposite of the incident angles of highest reection.

Figures 3 .Figure 3 . 9 :Figure 3 .

 3393 Figures 3.9a to 3.11a retrieve the same plots of the reection coecient amplitude versus the incident angle, for ζ Loc = 1, and varying c a in (-2c 0 , -c 0 ), [-c 0 , c 0 ] and (c 0 , 2c 0 ) respectively. Figures 3.9b to 3.11b give the contour plot of |R| versus θ i and c a /c 0 . The curves of θ k1,2 versus c a /c 0 are also traced to show that they coincide with the incident angles of highest absorption

Figure 3 .

 3 Figure 3.11: (a): reection coecient amplitude |R| versus incidence angle θi, varying ca in [c0, 2c0]; (b): contour plot of |R| versus θi and ca/c0, along with the wavenumber angles θ k1 and θ k2 plots versus ca/c0 in [c0, 2c0]. The value of ζLoc is set to 1.

Figure 3 . 12 :

 312 Figure 3.12: Acoustical passivity of a Local Impedance Control with µM = µK = 0.2 and Rat = ρ0c0, examined in terms of the normal absorption coecient α and radiation angles θ k,1 and θ k,2 . The time delay is taken as 2 × 10 -5 seconds.

Figure 3 .

 3 Figure 3.13: Dispersion plots for the wavenumbers relative to the rst four duct modes propagating in both senses, in case of purely resistive boundary, with resistance ρ0c0.

Figure 3 . 14 :Figure 3 . 15 :

 314315 Figure 3.14: First four mode shapes ψm(y) normalized with respect to the maximum value, in case of purely resistive boundary, of impedance ρ0c0.

Figure 3 . 16 :

 316 Figure 3.16: First four mode shapes ψm(y) normalized with respect to the maximum value.

(3. 39 )

 39 Notice the non-standard character of such eigenvalue problem, where the eigenvalue appears in the B.C. as well. Solutions for such eigenvalue problem have been found by Finite Elements (FE) in COMSOL where the presence of an eigenvalue-dependent B.C. has been enforced directly in the weak-formulation, by a so-called weak-contribution. The weak formulation of the eigenvalue problem of Eq.s (3.39) is reported in Eq.s (3.40) following the steps of integration by parts (application of Green formula) 3.40b till the nal expression 3.40c with the assimilation of the B.C..
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 317318319 Figure 3.17: Complex plane plot (a) of the rst two positive and negative propagating modes, with varying ca/c0 from -2 to 2, at f = 100 Hz. The values for ca = 0 are identied with o symbols. In (b) the Re{kx} and Im{kx} are plotted versus ca/c0 for f = 100 Hz.

Figure 3 . 20 :

 320 Figure 3.20: Dispersion plots relative to the rst four duct modes propagating in both senses, in case of locally reacting boundary with complex impedance ζLoc of Eq. (3.41), with µM = µK = 0.2 and Rat = ρ0c0.

Figure 3 . 21 :

 321 Figure 3.21: Dispersion plots in complex plane, relative to the rst two duct modes, in case of complex boundary impedance ζLoc(jω) of Eq. (3.41), with µM = µK = 0.2 and Rat varying from 0.25ρ0c0 to 2ρ0c0.

3 .

 3 Increasing |c a | augments the attenuation of modes propagating toward -sign(c a )x.

5 .

 5 Reducing ζ Loc also increases attenuation at low frequencies, up to f cut-on approximately. Unfortunately, a purely real local impedance is not physically realisable. Hence, let us analyse the duct modes solutions for a complex ζ Loc which has the classical shape of a SDOF resonator, to maintain consistency with Section 2.1. With such a scope, the mass and stiness reactive parts of ζ Loc will be taken as proportional to the acoustic mass and stiness of the EA in open circuit, as presented in Section 2.1. Keeping the same formalism then:
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 3223233241 Figure 3.22: Plot of kx(ω) in its real and imaginary part, of the mode 1a relative to complex locally reacting boundaries, with Rat = ρ0c0 and varying µM = µK = 0.2 (a), or with µM = µK = 0.2 and varying Rat (b).

Figure 3 . 25 :

 325 Figure 3.25: Dispersion plots in complex plane, relative to the rst four duct modes, in case of boundary advection law of Eq. (3.9), with Rat = ρ0c0, ca = -c0 and varying µM = µK from 0 to 1.

Figure 3 . 26 :

 326 Figure 3.26: Dispersion plots in complex plane, relative to the rst four duct modes, in case of boundary advection law of Eq. (3.9), with µM = µK = 0.2, ca = -c0 and Rat varying from 0.25ρ0c0 to 2ρ0c0.
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 3327 Figures 3.25 and 3.26 show the eect of varying µ K = µ M and R at respectively, on the dispersion plots of the rst four modes. Nominal values of µ K = µ M and R at are, as usual, set to 0.2 and ρ 0 c 0 respectively. Mode 1b is not aected by the variation of either the reactive or the resistive components of ζ Loc (jω) as expected. Increasing the quality factor of ζ Loc (jω), i.e. augmenting µ K = µ M and/or reducing R at , enhances the dissipation at resonance but pushes Re{k x } toward negative values, therefore possibly causing unstable propagation for

Figure 3 . 28 :

 328 Figure 3.28: Plot of kx(ω) in its real and imaginary part, of the mode 1a relative to boundaries lined with the advection B.C. Eq. (3.9), with (a) varying ca, (b) varying µM = µK , (c) varying Rat and (d) varying the duct cross section width h. The nominal values are µM = µK = 0.2, Rat = ρ0c0 and ca = -c0 and h = 0.05 m.

3. 3 Figure 3 . 29 :

 3329 Figure 3.29: Lining segment and scattering coecients denition in a 2D waveguide lined on both sides.

Figure 3 . 30 :

 330 Figure 3.30: Scattering performances in a 2D waveguide of cross section width h = 0.05 m with lined segment of length L = 0.33 m, lined on both sides by the boundary advection law with ζLoc = Rat/ρ0c0, and varying ca.

Figure 3 . 31 :

 331 Figure 3.31: Scattering coecients in a 2D waveguide of cross section width h = 0.05m with lined segment of length L = 0.33 m, lined on both sides by the boundary advection law with µM = µK = 0.2, Rat = ρ0c0 and varying ca.

Figure 3 . 32 :

 332 Figure 3.32: Scattering coecients in a 2D waveguide of cross section width h = 0.05m with lined segment of length L = 0.33 m, lined on both sides by the boundary advection law with ca = -c0, (a) with varying µM = µK and Rat = ρ0c0, or (b) with µM = µK = 0.2 and varying Rat.

Figure 3 . 33 :

 333 Figure 3.33: Scattering coecients in a 2D waveguide of variable cross section width h, lined segment of length L = 0.33 m, lined on both sides by the boundary advection law with ca = -c0, Rat = ρ0c0 and µM = µK = 0.2.

3 . 4 .

 34 The main eect of the advection speed c a on isolation is a signicant increase in the energy reected backward (|R sign(ca) g | 2 ). The higher |c a | the bigger are both |R sign(ca) g For |c a | > c 0 , energy is injected in the waveguide as α g becomes negative (loss of acoustical passivity of the advective B.C.). 5. For complex ζ Loc (jω) (for µ M and µ K non zero), acoustical passivity around resonance can be lost for a value of |c a | lower than c 0 . This is featured by a value of |R sign(ca) g | 2

Figure 3 . 34 :

 334 Figure 3.34: 3D geometry for scattering simulations, in case of EAs disks applied ush on the duct boundary (a), and EAs disks placed behind a porous layer 6 mm (b).

Figure 3 . 35 :

 335 Figure 3.35: Sketch of the 4-microphones EA control, corresponding to Eq. (3.44).

Figure 3 .

 3 Figure 3.36: (a): scattering coecients in a 3D waveguide of cross section width h = 0.05 m with open circuit EAs, Local (µM = µK = 0.5, Rat = ρ0c0) and advective (ca = -c0) controls. (b): sum of electrical current modulus spectra of all EAs |i(ω)| (up), and sum of velocity modulus spectra on all EAs |v(ω)| (bottom), in case of Local and Advective controls.
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 338339 Figure 3.37: 3D surface plots.

Figures 3 .

 3 Figures 3.37 show the surface plots of the total acoustic pressure along the duct in case of open circuit (Figures 3.37a, 3.37b and 3.37c), local control (Figures 3.37d, 3.37e and 3.37f)

, 3 .

 3 37b and 3.37c), local control (Figures 3.37d

, 3 .

 3 37e and 3.37f) and advection control law (Figures 3.37g

, 3 .

 3 37h and 3.37i) at 300, 500 and 700 Hz, giving a visual perception of the isolation levels achieved.In order to assess the eect of the pressure estimation from the 4 corner microphones on each EA, in case of Local Control applied (c a = 0),Figures 3.38 compare the scattering performances achieved by considering, in the controller, the acoustic pressure obtained from the 4 microphone positions, with the ones obtained by considering the average pressure on each EA disk, as well as the eect of the time delay. The zoom in Figure3.38b shows that retrieving the acoustic pressure by averaging the values at the four microphones locations, slightly reduces the high-frequency absorption α g , adding up to the dephasing eect introduced by the time delay. On the same gures, the eect of placing a layer of porous material on each EA (see Figure3.34b) is also evaluated. The porous layer is modelled by the semi-empirical Miki model[START_REF] Miki | Acoustical properties of porous materials-Modications of Delany-Bazley models[END_REF], according to which the porous behaviour is determined just by its ow resistivity (set to about 4000 Pa/(m/s) ) and thickness (set to 6 mm), as in Section 3.5. Apparently, the conguration with the porous layer and the EA behind allows to satisfactorily recover the high-frequency acoustical passivity.In Figures 3.39, the simulated scattering performances are plotted in case of advection boundary control, comparing the case where the pressure x-gradient is determined by rst-order nite dierence as illustrated in Figure3.35 with the results achieved by considering the average of ∂ x p on each disk, into the controller of each EA. The eect of the nite dierence approximation of ∂ x p further endangers the high-frequency acoustical passivity, as α + g becomes negative after 3 kHz. The application of a porous layer though, can still restore the high-frequency acoustical passivity.

Figure 3 .

 3 40 and in the sketch of Figure 3.41. The EAs are placed 6 per each side of the duct, as showed in Figure 3.40. Each EA has a surface area of about 0.05 × 0.05 m 2 , for a total lined segment length of about 0.33 m in the duct. Both ends of the tube are lled with 45 cm of foam to reproduce quasi-anechoic conditions at the input and output of the waveguide. The external acoustic source is placed ush with the duct surface just ahead of the foam termination, suciently far from the lined portion of duct and from microphones M1 and M2 for plane waves to fully develop. The control architecture is illustrated in Figure 3.42, which highlights the autonomous character of each cell (EA) driven by a current source through a numerical card specically developed for the purpose by the FEMTO-st Institute, in the department of Applied Mechanics of the Université Bourgogne Franche-Comté. Each cell implements the control as described in Section 3.4. The scattering performances have been estimated according to the Standard [57], based upon

Figure 3 .

 3 Figure 3.40: Unit EA (left); waveguide (middle) for the scattering evaluation, with internal view of the lined segment (right).

Figure 3 . 41 :

 341 Figure 3.41: Sketch of the test-bench.

Figure 3 . 42 :

 342 Figure 3.42: Architecture for the EAs control.
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 343344 Figure 3.43: Comparison among the open circuit, the local and advection control laws in terms of scattering performances (a) and the transfer function H31 (b).

Figure 3 . 45 :Figure 3 . 46 :

 345346 Figure 3.45: Experimental scattering performances in case of Local Control (ca = 0), with varying µM , µK = 0.5 and Rat = ρ0c0.

  ) C(ω) = j S 11 H 31 e jk0x4 -H 41 e jk0x3 2 sin k 0 (x 3 -x 4 ) , (3.49c) D(ω) = j S 11 H 41 e -jk0x3 -H 31 e -jk0x4

Figure 3 . 47 :

 347 Figure 3.47: Experimental scattering performances in case of Local Control (ca = 0), with µM = µK = 0.5 and varying Rat.

Figure 3 . 48 :

 348 Figure 3.48: Experimental scattering performances with external incident eld propagating toward +x, in case of Advective Control, with ca = -c0, varying µM , µK = 0.5 and Rat = ρ0c0.

  , the measurements outputs are compared among the open circuit, the local and advective control strategies. Figure 3.43a shows the scattering performances while Figure 3.43b present the transfer function H 31 , between microphones 3 and 1, in order to visualize the coherence of the measurements. Around resonance, both the open circuit, and the controlled cases, present low coherences due to the low signal at the downstream microphones (M3 and M4

Figure 3 . 49 :

 349 Figure 3.49: Experimental scattering performances with external incident eld propagating toward +x, in case of Advective Control, with ca = -c0, µM = 0.5, varying µK and Rat = ρ0c0.

Figure 3 .

 3 [START_REF] Gendelman | Energy pumping in nonlinear mechanical oscillators: part Idynamics of the underlying Hamiltonian systems[END_REF] the measured scattering performances are compared to the simulated ones, in the cases of Open Circuit (a), Local Control (b) (with µ M = µ K = 0.5, R at = ρ 0 c 0 ) and Advection Control law (c) (with c a = -c 0 ). It is striking the great discrepancy between measurements and simulations especially for frequencies below and above the resonance region.

Figure 3 . 50 :

 350 Figure 3.50: Experimental scattering performances with external incident eld propagating toward +x, in case of Advective Control, with ca = -c0, µM = µK = 0.5 and varying Rat.

Figure 3 . 51 :

 351 Figure 3.51: Experimental scattering performances with external incident eld propagating toward +x, in case of Advective Control, with varying ca, µM = µK = 0.5 and Rat = ρ0c0.

  , 3.46 and 3.47, the scattering performances of the local control law are plotted for dierent values of the µ M , µ K and R at respectively. The nominal values are set to µ M = µ K = 0.5 and R at = ρ 0 c 0 as in the previous plots and in the 3D simulations.

Figure 3 . 52 :

 352 Figure 3.52: Experimental scattering performances with external incident eld propagating toward -x, in case of Advective Control, with varying ca, µM = µK = 0.5 and Rat = ρ0c0.

Figure 3 .

 3 Figure 3.47 conrms the higher isolation performances achieved by reducing the resistive component of the EA impedance, leading to higher backward reection.

Figure 3 . 53 :

 353 Figure 3.53: Scattering performances relative to external incident eld propagating toward +x (forward, in solid green) compared to the ones relative to backward incident eld (in solid red), in case of advective B.C. with µM = µK = 0.5, Rat = ρ0c0 and ca = -c0. Also the scattering achieved by the Open Circuit conguration is plotted for comparison.

  , 3.49 and 3.50. In particular, inFigures 3.48 and 3.49, where f at is varied with respect to f a0 , such passivity shortage is worsened by the dephasing eect of time-delay, already present in the purely local control strategy.

Figures 3 .

 3 Figures 3.51 and 3.52 show the scattering performances by varying c a , for positive and negative propagating incident elds respectively.Figure 3.51 conrms that higher values of |c a |

Figure 3 .

 3 Figures 3.51 and 3.52 show the scattering performances by varying c a , for positive and negative propagating incident elds respectively.Figure 3.51 conrms that higher values of |c a |produce greater isolation, but reduce the acoustical passivity at resonance. A value of |c a | lower than c 0 can anyway be found such that to improve the IL + g respect to the purely local control strategy, while keeping the acoustical passivity at resonance.

Figure 3 . 54 :

 354 Figure 3.54: View of the waveguide interior. In pink, the layers of foam applied in front of the loudspeakers without interfering with the mechanical vibration of the diaphragms, and maintaining the ush condition of the liner.

Figure 3 . 55 :

 355 Figure 3.55: Eect of the 6 mm foam layer on the scattering performances in case of Local (a) and advective (b) controls.

10 .

 10 In case of advective control law with |c a | = c 0 , waves propagating in the passing sense are not totally passing, because of the non-perfect cancellation of the loudspeakers own dynamics. Though, the insertion loss is about 30 dB lower than in the open circuit conguration at resonance, and, with respect to the other sense of propagation, it is more than 20 dB lower from 300 to 600 Hz, and more than 40 dB lower from 400 to 500 Hz. Hence the breaking of reciprocity is experimentally validated.11. The application of a thin (6 mm thickness) porous layer in front of the loudspeakers, allows to restore high-frequency acoustical passivity, especially in the Local Control case. Unexpectedly, the foam aects also the isolation performances around resonance.

  coordinate x. The phase speed along y and the advection celerity are the degree of freedom of such B.C.. The phase speed along y can be generalized to take into account complex values. From that, the denition of the advection B.C. constituted by a rst local term (characterized by a certain local impedance Z Loc (jω) multiplying the local pressure) and an additional term which confers the advective character, given by the advection speed c a multiplying the pressure x-gradient. From a physical point of view, we showed that such B.C. entails the advection of the local reaction (described by the local operator Z Loc (•) along a characteristic line on the boundary x-dimension, in the direction of sign(c a ). The transport of the boundary reaction breaks the reciprocity of transmission in an acoustic waveguide. Higher isolation respect to the local boundary control is achieved for incident waves directed toward -sign(c a )x. Responsible of such isolation is a backward reection which is as higher as |c a |. Instead, waves propagating toward sign(c a )x are ideally perfect transmitted downstream, if |c a | = c 0 . This confers the waveguide treated by the advective B.C. the feature of non-reciprocal device. The performances of the advective B.C. are rst analysed in a semi-innite domain. The reection coecient has been evaluated according to the classical ray acoustics theory, conrming the asymmetrical behaviour for incident waves coming from left or right. The reection coecient computation has featured a loss of acoustical passivity for |c a | > c 0 . This has been conrmed also by another passivity criterion which has been announced here. It is based upon the evaluation of the solution of the dispersion problem of the B.C. applied on a semi-innite acoustic domain. The wave-number solutions of such problem have been demonstrated to give the directions of highest absorption (when the boundary behaves as passive) or highest reection (when the boundary behaves as non-passive). Hence, by looking at those angles, it is possible to assess the acoustical passivity of any boundary operator, either locally or non-locally reacting.
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 35 Figure C.1: Contour in the complex plane for the application of the Cauchy Integral Theorem to the function F (s) dened in Eq. (C.1).

(C. 6 )

 6 where C is the closed counter-clockwise right circular indentation at the origin, of innitesimal radius , C ∞ is the clockwise semi-circle of radius which tends to innity, and C i-is the entire imaginary axis except the origin. Let us evaluate each integral on the rhs of Eq. (C.6). From the Residue Theorem[START_REF] Scott | Complex Variables and Applications[END_REF]: C F (s)ds = jπRes{F (s), 0} + jπRes{G(s)}.

ln[ 1 -.(C. 8 )

 18 η a (s)] -ln[1 + η a (s)] ª The limit appearing in Eq. (C.8) can be separated in the two following contributions:

(C. 10 ) 12 )F

 1012 where η a (s) is the normalized acoustic mobility of the controlled EA: η a (s) = Y a (s)ρ 0 c 0 . Reminding the expression of Y a (s) of (2.6), it appears the mechanical mobility in the Open Circuit case Y m0 (s) = 1/Z m0 (s) which has a zero in zero, and the controller H(s) which must be a proper and stable transfer function. Hence, also η a (s) must have at least a zero in zero. From the expression of η a (s) from Eq. (2.6), and developing the derivative, we nd VIII (C.8), (C.9) and (C.10), and (C.11), we get the integral along the rst term on the rhs of Eq. (C.7):The residual of G(s) on the rhs of Eq. (C.7) instead sums up to zero, hence:C along C ∞ , can be written in terms of the contribution of F (s) and G(s).

From(ln[ 1 -Fnn } |s n | 2 (C. 19 )

 1219 the Jordan's Lemma[START_REF] Scott | Complex Variables and Applications[END_REF]:C∞ F (s)ds = -jπ lim s→∞ s F (s) = 0 η a (s)] -ln[1 + η a (s)] F (s)is an even function of s according to its denition (C.3), the integral along C i-becomes: (jω)dω(C.17)The contribution of G(s) over C i-is instead:C i- G(s)ds = -2jπ n Re{s n } |s n | 2 , (C.18) so we get the last contribution of F (s) on C i-: Re{s Therefore, inserting Eq. (C.19), (C.14) and (C.12) in (C.6), we get the integral constraint:

Figure G. 2 :

 2 Figure G.2: Comparison between 2D FE simulations and 1D analytical solutions of the dispersion plots relative to the rst duct mode propagating in both senses, in case of locally-reactive liner (with µM = µK = 0.2, Rat = ρ0c0 and ca = 0) (a), and in case of advective boundary (with µM = µK = 0.2, Rat = ρ0c0 and ca = -c0) (b).

Figure G. 3 :

 3 Figure G.3: Comparison between 2D FE simulations and 1D analytical solutions of the scattering performances in case of locally-reactive liner (with µM = µK = 0.2, Rat = ρ0c0 and ca = 0) (a), and in case of advective boundary (with µM = µK = 0.2, Rat = ρ0c0 and ca = -c0) (b).
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 22110 n p(x, γ, t) = -η Loc Loc[-] is the time operator corresponding to the local normalized mobility η Loc (jω) in the frequency domain. On the right-hand side of Eq. (G.2), we can now insert the boundary advection law:1 tt p(x, t) -∂ xx p(x, t) = -1 S ∂A -η Loc 1 c 0 ∂ t p b (x, t) + c a c 0 ∂ x p b (x, t) dγ (G.4)Denoting the mean acoustic pressure eld along the boundary contour p b (x, t)= 1 Lp ∂Ω p(x, s)ds, XX where L p is the perimeter length of the cross-section treated by a the boundary advection law (the rest is supposed as rigid), we nally get: 1 tt p(x, t) -∂ xx p(x, t) =t p b (x, t) + c a c 0 ∂ x p b (x, t) (G.5)
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 12 tt p(x, t) -∂ xx p(x, t) = -L p a 1 S -η Loc 1 c 0 ∂ t p(x, t) + c a c 0 ∂ x p(x, t) (G.7)The multiplicative factor on the rhs Lpa1 S is labelled as G, as it is a constant depending upon the geometry and upon the rst mode. Dierent geometries and/or partial treatment of the waveguide boundary, would require to properly modify such parameter.We can now pass to the frequency domain in order to nd the 1D dispersion relation, allowing to determine the wave numbers of the rst modes propagating toward +x or -x. The rst 1D mode has the expression:p(x, t) = p 0 e j(ωt-kxx) .(G.8)Inserting this ansatz in the 1D reduced model of Eq. (G.7), comes:k 2 x -jGη Loc c a c 0 + k 0 (jGη Loc -k 0 ) = 0. (G.9)Hence the two wavenumber solutions result from the quadratic formula: 0 (k 0 -jGη Loc ) .

(G. 10 )

 10 Notice that such expression, in general, takes into account the possibility to have k x,1 = -k x,2 .
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 4 Figure G.4: Denition of the forward and backward plane modes in the waveguide: upstream (A), into (B) and downstream (C ) the lined segment.
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 14 can be labelled as intermediate scattering coecients.

4 e 2 1 -e -2jk b L 1 -k b /k0 1+k b /k0 2 .(G. 18 ) 2 1

 4212182 17d) We save the reader from the explicit formulas of the global scattering coecients, nevertheless it is interesting to report their expression in case of k + b = -k - b = k b , i.e. in case of a general reciprocal boundary treatment application:T + = T -= -jk b L k b /k0 (1+k b /k0) R + = R -= 1 -k b /k 0 1 + k b /k 0 -2e -2jk b L k b /k0 (1+k b /k0) -e -2jk b L 1-k b /k0 1+k b /k0 2 .

Figures G. 2

 2 Figures G.2 show the comparison between the 2D FE and 1D analytical solutions of the wavenumbers of the rst duct mode propagating in both directions, in a waveguide fully lined by either a locally reacting liner (in G.2a), with µ M = µ K = 0.2 and R at = ρ 0 c 0 , or by an advective boundary law (in G.2a), with µ M = µ K = 0.2, R at = ρ 0 c 0 and c a = -c 0 . In Figures G.3, the 2D FE and 1D analytical solutions are compared in terms of the scattering performance for locally reacting (Figure G.3a) and advective B.C. (Figure G.3b and G.3c for positive and negative propagating incident eld respectively). Apparently the 1D model reduction provides pretty accurate solutions, almost perfectly overlapping the 2D FE simulations both in terms of duct modes and scattering performances. The case of advective B.C. results slightly less accurately described by the 1D reduced model, even though it perfectly detects the non-reciprocity as well as the trends and levels of the scattering performances.The accuracy achieved by the 1D reduced model is mainly related to the assumption of a

  and G.1b show the rst duct-mode shapes in case of locally-reacting and advective B.C.s

  

  

Table 2 .

 2 1: Thiele-Small parameters of the EA.

  outputs: the vector w represents external entries, u represents the commands, the signals z are chosen to characterise the good functioning of the control, and y is the vector of available measurements to elaborate the controller. The corresponding matrix equation is in Eq.s(2.22).The H ∞ approach aims at synthesizing the corrector H(s) such that the matrix transfer function between w and z, usually called P (s) K(s) (where indicates the so-called Rhedeer product) or F l (P (s), K(s)) (where F l indicates the so-called Linear Fractional Transformation) is asymptotically stable (poles have strictly negative real part) and the inequality ||P (s) K(s)|| ∞ < γ holds. The correctors assuring the smallest value of γ are called op-

	z y	=	P wz P uz P wy P uy	w u	(2.22a)
			u = H(s)y		(2.22b)

Standard Problem. The relative block diagram is displayed in Figure 2.20, where H(s) is the controller and P (s) is the matrix transfer function (so-called Plant) between two sets of entries and two sets of timal. The matrix transfer function P (s) K(s) is expanded in Eq. (2.23) for the general standard problem dened in Eq. (2.22). z(s) = P (s) K(s) w(s) = P wz (s) + P uz (s)H(s) I -P uy (s)H(s) -1 P wy (s) w(s). (2.23) Two methods are available to solve such problem: the simplest one based upon solving a series of Riccati equations, requires the fullment of numerous hypotheses which are not necessaries for the H ∞ standard problem to admit a solution. A second approach allows

  .42) where w at (t) is the target displacement corresponding to the Laplace velocity expression of

	Eq. (2.40), and the upper dot indicates the time derivative. The expression (2.42) is indeed
	approximated by an IIR system obtained through a zero-order-holder or Tustin discretization
	of H(s), as described in Appendix D.

Nevertheless, Eq.

(2.42) 

gives us the freedom to dene any type of impedance operator, also non-linear, based upon the evaluation of the target displacement w at (t) solution of any ordinary dierential operator of the type F[p(t), w at (t)] = 0. Based upon the real-time measurement of pressure p(t), w at (t) can be retrieved by a solver method for ordinary dierential
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Loudspeaker Mechano-Acoustical Dynamics Identication

In this Appendix, we describe the methods adopted to retrieve the Thiele-Small parameters of the EA. In order to implement the model-inversion based control laws of Eq.s (3.45) and (3.46), the mechano-acoustical dynamics of the EA in open circuit is required along with the factor Bl/S d multiplying the electrical current (the controller). In the frequency range around the piston-mode of the speaker, the mechano-acoustical dynamics of the EA in open circuit (O.C.) is described by the acoustical impedance Z a0 (jω) = M a0 jω +R a0 +K a0 /jω. The open-circuit impedance of the EA can be estimated experimentally either with a Kundt's tube by the 2-microphone-method (2MM), or by direct measurement of pressure and velocity on the loudspeaker diaphragm. Figure 2.12 shows the Kundt's tube designed for the EA, while Apparently, the use of the Kundt's tube introduces unexpected cavity modes (see the one around 1 kHz) which can aect the precision of the curve-tting.

In order to estimate Bl/S d , an additional measurement is required. A possibility is to exploit the current-driven control architecture to impose a proportional controller (P.C.) i(jω) = gp(jω), with g a constant gain. By doing so, the acoustic impedance at the speaker diaphragm becomes:

As Z a0 (jω) has already been estimated from the O.C. measurement, another curve-tting can be carried out to retrieve Bl/S d , see Z e (jω)i(jω) = Blv(jω).

As the inductance term is usually much lower than R e at lower frequencies, it can be discarded to obtain i(jω) ≈ v(jω)Bl/R e . By inserting such expression in the mechano-acoustical II According to the plane wave decomposition [START_REF] Kinsler | Fundamentals of acoustics[END_REF] the acoustic pressure in the duct is described by p(x, t) = p + (x, t) + p -(x, t), where p + (x, t) and p -(x, t) are the forward and backward propagating plane waves respectively. Introducing the complex frequency Ω = ω + jβ as in [START_REF] Kinsler | Fundamentals of acoustics[END_REF], the solution of the lossless wave equation can be written in terms of Fourier components, as:

p(x, t, jΩ) = p + 0 (jΩ)e j(Ωt-Kx) + p - 0 (jΩ)e j(Ωt+Kx)

= p - 0 (jΩ) R(jΩ)e j(Ωt-Kx) + e j(Ωt+Kx)

where K = Ω/c 0 is the complex wave number and R(jΩ) = p + 0 (jΩ)/p - 0 (jΩ) is the complex reection coecient. By imposing the boundary condition on x = 0: v(0, t, jΩ) = -Y a (jΩ)p(0, t, jΩ), V where Y a (jΩ) is the acoustic mobility at x = 0 (referred to the inward velocity, which explains the minus sign in Eq. (B.2)). For the Euler equation [START_REF] Kinsler | Fundamentals of acoustics[END_REF], the acoustic velocity is v(x, t) = 1 ρ0c0 (p + (x, t) -p -(x, t)). Therefore, from Eq. (B.1) and (B.2), we retrieve the denition of the reection coecient [START_REF] Filippi | Acoustics: basic physics, theory, and methods[END_REF]: Appendix C

The Integral Constraint on the reection coecient of an Impedance Controlled system

Let us consider the complex function

where:

By dening:

and:

then:

The reection coecient transfer function R(s) is multiplied by n s+s * n s-sn in order for R(s) to not have unstable zeros (zeros with positive real part). For a stable system then, R(s) has neither poles nor zeros in the right-half complex plane (rhp) and ln[ R(s)] is analytic in the rhp. The use of the natural logarithm in Eq. (C.1) is convenient in order to separate numerator and denominator of a rational function (like R n (s)), which is indeed a common practice in deriving the Bode integral constraints in the classical control theory (see [START_REF] Goodwin | Control System Design[END_REF] for example). The s 2 at the denominator is present in order to compensate for the unboundedness of ln( R(s)) for large |s|. Hence F (s) is also analytic in the whole rhp except the origin, therefore for the CauchyGoursat Theorem [START_REF] Goodwin | Control System Design[END_REF]: Appendix D

The digital implementation of the controller

The correctors H loc (s) dened in Sections 2.1 and 2.3, as well as H grad (s) illustrated in Section 3.5, are digitally implemented in real time by an Innite Impulse Response (IIR) method.

In Section 2.4 instead, another real time implementation is proposed in order to reproduce a non-linear mechanical behaviour of the loudspeaker, which is based upon a 4 th order Runge-Kutta method.

In this appendix, the IIR implementation of H(s) is described, along with its balancedrealization in the state space.

The application of an analogical causal lter H c (s) in time domain corresponds to the convolution integral operator:

with h c (t) the inverse Laplace transform of H c (s). On a discrete set of time samples kT s with sampling period T s , the convolution product becomes:

If H c (s) is a real rational transfer function, then h k = 0 ∀k ∈ [0, +∞). For this reason a convolution system of the type (D.2) is called as Innite Impulse Response (IIR) system.

The Laplace transform L(•) of Eq. (D.2), with the discrete functions written as distributions of Dirac δ, is:

with:

where the variable z comes from the change of variable z = e -kTss , and gives the name of Z-transform. The functions i(z), p(z) are the Z-transform of the continuous signals i(t), p(t), XI i.e. the Laplace transform of the discrete signals i(kT s), p(kT s ). From the denition of z = e Tss , then the transfer function H(z) is equivalent to H c (s) as long as:

Nevertheless, the transfer function H(z) dened in Eq. (D.5) is not a real rational transfer function in z. In order for the corrector H(z) to realize a discrete transfer function which produce a recurrence equation, also H(z) must be a real rational transfer function, as H c (s).

Therefore, the equivalence relationship s = 1 Ts ln(z) between the Laplace and the Z space, must be substituted by a rational expression (called transposition) which would keep as much as possible the equivalence between H c (s) and H(z). Two main equivalence conditions are required: the discrete transfer function H(z) must be stable if and only if also H c (s) is stable, and the frequency responses associated with the two transfer functions must coincide as much as possible. Dierent transpositions between s and z can be achieved based upon dierent integration techniques of a continuous signal from discrete values. The integral approximation by the sum of lower rectangles, leads to the transposition s ⇔ z-1

Ts , also called zero-order-holder (zoh) transform. The upper rectangles sum leads to s ⇔ z-1 zTs . Both these transpositions do not full the equivalence condition between the stability of H(z) and H c (s).

The trapezoidal rule for integral approximation, instead, brings the transposition s ⇔ 2

Ts z-1 z+1

(the so-called bilinear or Tustin transform) which satises the equivalence condition given below:

Re(s) < 0 ⇔ |z| < 1. Concerning the frequency response, the trapezoidal technique obviously leads to a better approximation respect to the rectangular sums. In particular, the level of approximation achieved by the bilinear transform in the frequency response, is given by the relationship between the angular frequency ω c corresponding to the frequency response in s (substituting s with jω c ) and the angular frequency corresponding to the frequency response in z (substituting z with e Tsjω ) in the transposition s = 2 Ts z-1 z+1 . It results then:

For low T s ω c (low sampling time or low frequencies), the two frequency responses coincide.

Thanks to the zoh or Tustin transforms, a corrector H c (s) is transposed to a rational transfer function H(z) in the z-space of the type: (D.9)

The recursive Eq. (D.9), dierently from Eq. (D.2), requires a nite number of operations, and can be digitally implemented.

Nevertheless, the recursive algorithm (D.9) is not optimal in terms of round-o errors and required computational time. The balanced form of the state-space representation of a digital lter H(z) has demonstrated [START_REF] Mullis | Synthesis of minimum roundo noise xed point digital lters[END_REF] to provide the lowest sensitivity to round-o errors. A statespace representation of the discrete corrector H(z) is:

where x is a ctitious state vector. The pressure in the state vector dynamics equation (the second in Eq. (D.10)) is evaluated at the time t n-m del where m del T s is the time delay in the control architecture. The state-space matrices A, B, C and D, corresponding to the balanced realization of H(z) can be obtained by the Matlab function balreal.

Another important operation for the implementation of H(z) is the elimination of the uncontrollable or unobservable states of the H(z) state-space model. This can be achieved by evaluating the Gramian of the balanced realization as briey described in Section 2.3. Another important tool is the Matlab function minreal (which stays for minimal realization) which cancels the overlapping pole-zero pairs from the transfer function.

Both the minimal and balanced realization are very useful when we deal with high order lters, which are usually more sensitive to numerical round-o and often present several close-spaced zero-pole couples.

XIII Appendix E

Normal incidence problem for time domain simulations

Let us consider a hard-walled waveguide as in Figure E.1 with our EA (or any other acoustic system) of inward normal displacement w(t) on one side, and an anechoic termination on the other. A source is radiating a plane wave of amplitude p s toward the EA. Since no reection occurs at the anechoic termination, p s ≡ p + in amplitude. In the plane wave regime, it is a 1D problem, where the incident wave p s (t) is supposed to be known at any time, and the reected wave p -(t) is unknown. From the plane wave assumption:

p(x, t) = p + (x -c 0 t) + p -(x + c 0 t),

From the Euler equation at the interface x = 0 with the EA:

Hence, from Eq. (E.1):

where we have dened as p + (t) and p -(t) the incident and reected pressure waves at the interface with the EA. From Eq. (E.3), the reected pressure wave at the EA interface, can be written in terms of the velocity of the EA, as p -(t) = p + (t) -ρ 0 c 0 ẇ(t). In order to solve XV the normal-incidence problem, the dynamics of the EA (or any other acoustic device) must be dened as an operator L(p(t), w(t)) = 0 relating the displacement w(t) and the total sound pressure p(t). For a linear locally reacting acoustic system, such operator is usually represented in the frequency domain as an acoustic impedance, so we can call it as impedance operator. For our EA, the impedance operator takes into account also the controller, that is the electrical current which is function of the measured total sound pressure. The total sound pressure to be considered in the operator L(p(t), w(t)) = 0 is p(t) = p + (t) + p -(t), where p + (t) is supposed to be known at any time, while p -(t) can be written in terms of the EA velocity as seen just before.

Therefore, p(t) = 2p + (t) -ρ 0 c 0 ẇ(t) and the impedance operator becomes a function of just p + (t) and w(t) and its derivatives. As p + (t) is known, L(p(t), w(t)) = 0 can be solved by a numerical scheme to retrieve w(t).

Appendix F Interface with the boundary advection law, in free eld

In this Appendix we give the demonstration of the reection coecient formula reported in Eq. (3.14), for the boundary advection law (Eq. (3.10)), in the hypothesis of free plane incident eld in a 2D semi-innite domain as the one in Figure 3.2. The incident wave can be expressed as:

The reected wave eld is supposed to respect the classical Snell-Descartes law of refraction, according to which the reected plane wave propagates with a specular angle with respect to the incident one, i.e. θ r = -θ i . The presence of a transport at the boundary gives no reason to modify this assumption, in an analogous way to the case of air-ow dierent from 0 in the acoustic domain [START_REF] Ingard | Inuence of uid motion past a plane boundary on sound reection, absorption, and transmission[END_REF].

Hence, the reected wave from a boundary advection law can be written as:

The acoustic velocity v y normal to the boundary is obtained by the Euler equation of acoustics -ρ∂ t v y = ∂ y p, where p = p o + p r . Substituting Eq.s (F.1) and (F.2) in the Euler equation, we nd the normal velocity on the boundary v y (y = 0):

Also, the boundary advection law (3.10) can be applied to the total pressure p = p i + p r to give: where γ is a curvilinear coordinate along ∂A and ∂ n is the gradient along the outward direction. In Eq. (G.3) the boundary advection law is rewritten in terms of ∂ n p(x, s, t):