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Résumé

Il existe, a la base de la plupart des systémes de TAL, des représentations numériques
qui permettent & la machine de traiter, d’interagir avec et, dans une certaine
mesure, de comprendre le langage humain. Ces « plongements lexicaux » se
présentent sous différentes formes mais peuvent généralement étre classés en deux
groupes distincts : d’une part, les plongements statiques qui apprennent et at-
tribuent définitivement une unique représentation a chaque mot ; et d’autre part,
des plongements contextuels qui, & l'inverse, apprennent & générer des représen-
tations de mots a la volée en fonction d’un contexte courant. Dans les deux cas,
Ientrainement de ces modéles nécessite une quantité importante de textes. Cela
conduit souvent les praticiens du TAL & collecter et fusionner des textes provenant
de sources multiples, mélangeant souvent différents styles et domaines (par ex-
emple, des encyclopédies, des articles de presse, des articles scientifiques, etc.)
afin de produire des corpus suffisamment volumineux pour pouvoir entrainer des
représentations de qualité suffisante. Ces corpus dits du « domaine général » sont
aujourd’hui la base sur laquelle s’entrainent la plupart des plongements lexicaux,
limitant fortement leur utilisation dans des domaines plus spécifiques. En effet, les
« domaines spécialisés » comme le domaine médical manifestent généralement des
spécificités lexicales, sémantiques et stylistiques suffisamment notables (par exem-
ple, I'utilisation d’acronymes et de termes techniques) pour que les plongements
lexicaux généraux ne soient pas en mesure de les représenter efficacement. Dans le
cadre de cette thése, nous explorons comment différents types de ressources peu-
vent étre exploités afin soit d’entrainer de nouveaux plongements spécialisés, soit
de spécialiser davantage des représentations préexistantes.

Plus précisément, nous étudions d’abord comment des corpus de textes peuvent
étre utilisés a cette fin. En particulier, nous montrons que la taille du corpus ainsi
que son degré de similarité avec le domaine d’intérét jouent un role important dans
ce processus puis proposons un moyen de tirer parti d’un petit corpus du domaine
cible afin d’obtenir de meilleurs résultats dans des contextes a faibles ressources.
Ensuite, nous abordons le cas des modeéles de type BERT et observons que les
vocabulaires généraux de ces modeéles conviennent mal aux domaines spécialisés.
Cependant, nous montrons des résultats indiquant que des modéles formés a ’aide



de tels vocabulaires peuvent néanmoins étre comparables a des systémes entiére-
ment spécialisés et utilisant des vocabulaires du domaine du domaine, ce qui nous
amene a la conclusion que le ré-entrainement de modeles du domaine général est
une approche tout & fait efficace pour construire des systémes spécialisés. Nous
proposons également CharacterBERT, une variante de BERT capable de produire
des représentations de mots entiers en vocabulaire ouvert par I’exploitation d’une
représentation de leurs caractéres. Nous montrons des résultats indiquant que
cette architecture conduit & une amélioration des performances dans le domaine
médical tout en étant plus robuste aux fautes d’orthographe.

Enfin, nous étudions comment des ressources externes sous forme de bases de
connaissances et ontologies du domaine peuvent étre exploitées pour spécialiser
des représentations de mots préexistantes. Dans ce cadre, nous proposons une
approche simple qui consiste & construire des représentations denses de bases de
connaissances puis a combiner ces « vecteurs de connaissances » avec les plonge-
ments lexicaux cibles. Nous généralisons cette approche et proposons également
des Modules d’Injection de Connaissances, de petites couches neuronales permet-
tant l'intégration de représentations de connaissances externes au sein des couches
cachées de modeéles & base de Transformers. Globalement, nous montrons que
ces approches peuvent conduire a de meilleurs résultats. Cependant, nous avons
I'intuition que ces performances finales dépendent en fin de compte de la disponi-
bilité de connaissances pertinentes pour la tache cible au sein des bases de con-
naissances considérées.

Dans I’ensemble, notre travail montre que les corpus et bases de connaissances
du domaine peuvent étre utilisés pour construire de meilleurs plongements lexicaux
en domaine spécialisé. Enfin, afin de faciliter les recherches futures sur des sujets
similaires, nous publions notre code et partageons autant que possible nos modéles
pré-entrainés.
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Chapter 1

Introduction

1.1 Context

It is hard to deny that Language has played a major role in enabling the progress of
human civilisation. And while broadly speaking “Language” may be expressed in
several ways (e.g. visual, auditory, tactile), written text has probably contributed
the most to bringing societies together and enhancing our ability to communicate
with each other. However, with recent technological advancements leading to the
exchange of an ever-increasing amount of textual information, building systems
to decode and process the rich variety of natural languages has become more
important than ever before.

Natural Language Processing (NLP) is a field at the intersection of linguis-
tics, computer science and statistics which aims to provide artificial machines with
the ability to understand, interpret and leverage textual information. Early ap-
proaches to NLP were mainly rule-based and required in-domain knowledge from
human experts to define task-specific rules (Mauldin, 1984; Klatt, 1987). How-
ever, as statistical learning became more and more prevalent, due to the growing
availability of sufficiently large corpora, the increase in processing power as well as
the adoption of methods like Maximum Entropy (MAXENT) (Jaynes, 1957; Good,
1963), Support Vector Machines (SVM) (Cortes and Vapnik, 1995), Random De-
cision Forests (Ho, 1995) and Boosting (Freund and Schapire, 1997), the rigid
rule-based approach was slowly abandoned in favor of a more flexible Machine
Learning (ML) paradigm.

Instead of relying on pre-defined rules, MLL models are able to learn from a set
of examples and to generalize this knowledge to new unseen scenarios. However,
this process still requires human experts to provide the model with a relevant de-
scription of all examples through special variables called features. In the specific
context of NLP, raw textual information is unintelligible to a computer and byte

15



16 CHAPTER 1. INTRODUCTION

sequences cannot be directly leveraged to achieve any significant level of language
comprehension!. As a result, this information has to be converted into numeri-
cal features—often using vectorial representations—which lend themselves to the
various statistical computations occurring within a learning algorithm.

Early ML-oriented textual representations relied on the so-called Bag-of-Words
approach (BOW), where syntax and word order are disregarded to focus solely on
word occurrences. In this context, a text is represented as a vector of word-level
heuristics, like word frequency (Luhn, 1957) or TF-IDF (Spérck Jones, 1972),
which is supposed to provide a somewhat useful characterization of the text’s con-
tent. However, since only a limited subset of words ever appears in any given text,
BOW representations are often particularly sparse. Moreover, as the size of these
vectors is equal to the total number of words, these representations also tend to be
exceedingly large, leading to an important memory footprint that only grows expo-
nentially when including the often necessary N-gram information—i.e. additional
statistics about contiguous sequences of N words. In order to mitigate some of
these issues, dense representations of texts were also proposed, with methods like
Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997), compiling count-
based features over multiple contexts (e.g. sentences, documents) before applying
a Singular Value Decomposition (SVD). However, these only address the curse of
dimensionality (Bellman, 1966) at inference-time, as constructing large matrices
of text statistics is still required prior to the dimensionality reduction step.

Somewhat concurrently, a different approach emerged from the area dealing
with Artificial Neural Networks (ANN), a special kind of ML algorithms that
leverages an iterative optimization process called Back-Propagation (Rumelhart
et al., 1986; Werbos, 1990) to automatically learn internal hierarchies of features.
Motivated by prior work advocating learning distributed representations of sym-
bolic concepts (Hinton et al., 1986), these neural models have been applied in the
context of NLP for learning distributed representations of words, more commonly
known as word embeddings. Initially, these word representations were trained as
part of task-specific architectures, where they were shown to improve over tra-
ditional hand-crafted features (Bengio et al., 2000). However, word embeddings
trained on preliminary tasks such as Language Modeling (LM )—which consists in
predicting upcoming words in a sentence—were soon found to encode general se-
mantic and syntactic information that could be effectively transferred to a variety
of downstream tasks (Collobert and Weston, 2008; Collobert et al., 2011). Con-
sequently, pre-training word embeddings to serve as out-of-the-box text encoders
has become a major research direction. Today, building better word embeddings
is arguably the cornerstone of most state-of-the-art NLP systems, especially for

!'However, we will discuss in Chapter 5.3 how these byte sequences can be leveraged indirectly
to improve state-of-the-art models.
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applications in specialized areas such as the medical domain.

1.2 Motivation

Neural Networks have become the de facto framework for constructing high-
performance NLP systems. Usually, model architectures consist in pre-trained
word embeddings, which are often fed to a general-purpose encoder, followed by one
or more task-specific layers. Generally speaking, these word embeddings are either
static, where each word is assigned a single dense representation (e.g. WORD2VEC,
Mikolov et al. (2013)); or contextual, where the same word may have a different
representation depending on its context (e.g. ELMO, Peters et al. (2018a)). In
practice, word embeddings are rarely trained from scratch on every instance of a
new task, but rather pre-trained once, then transferred onto various downstream
tasks. The go-to task for this pre-training is often a variant of Language Modeling
as this allows to leverage large amounts of unlabeled texts. As a result, and since
the size of these pre-training corpora is known to positively correlate with the
performance of learned representations, many texts from various sources are often
pooled together (e.g. news, online encyclopedia, novels) into what is often referred
to as general-domain corpora.

General-domain corpora are often large, easily available and yield satisfactory
word representations. However, when the target task involves more specialized
kinds of texts, such as legal contracts, clinical notes or financial reports, these
general-domain representations become less relevant and lag behind word embed-
dings trained specifically for these domains. Moreover, it is possible to argue that
any given task—as general as it may seem—represents its own specific sub-domain,
and that, therefore, being able to build tailored word representations, or further
specialize existing ones, is beneficial in a broader context than just providing bet-
ter embeddings for specialized domains. In this dissertation, and with the medical
domain and the English language as a recurring use-case, we explore how such so-
lutions can be constructed by leveraging two kinds of in-domain resources, namely:
corpora and knowledge bases.

1.3 Research Objectives

Clearly put, our goal is the following:

Given a target specialized domain, improve the quality of general-domain
word representations using in-domain corpora and/or knowledge bases.

In the following paragraphs, we provide useful information relative to specific con-
cepts that are involved in this objective formulation:
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Target Specialized Domain A randomly-chosen specialized domain may not
have access to both in-domain corpora and knowledge bases. In order to be able
to experiment with either source of in-domain knowledge, as well as to combine
methods leveraging both resources at the same time, we frame our analysis in the
specific setting of the medical domain and the English language. In this context,
we are able to access large corpora such as MIMIC-III? (clinical domain) and

PUBMED? (biomedical domain), as well as various terminologies and ontologies
from the UMLS* Metathesaurus.

Word Representations There are a number of word embedding methods as
well as a variety of pre-trained representations that can be used out-of-the-box. In
this thesis, we consider both static and contextual types of word embeddings and
rely on, whenever appropriate, publicly available pre-trained models.

Embedding Evaluation Improving word embeddings assumes the ability to
measure the quality of a given set of word representations, which is not at all
trivial. In the context of this thesis, however, we suppose that the downstream
performance of an embedding indirectly reflects its quality. As a result, if an
embedding A, used in conjunction with some task-specific architecture, improves
the performance on a given task over some other embedding B, then A is considered
to be “better” in this specific context. Generalizing this idea, if an embedding A
systematically improves over some embedding B on several evaluation tasks, then
we consider that, overall, “embedding A is better than embedding B”. Moreover, in
order to accurately compare different systems, we systematically perform multiple
random restarts and use the resulting performance distribution to compute a mean
score, a standard deviation as well as, for later experiments, carry out statistical
significance tests. The topic of embedding evaluation is discussed in more detail
in Chapter 3.

1.4 Contributions

Along this thesis, we make the following contributions:

e We study how both the corpus size and degree of specialization affect down-
stream performance in a specialized domain. We validate the intuition that
larger corpora produce better representations but also show that large gen-
eral corpora may perform better than small specialized ones. Moreover, we

’https://physionet.org/content/mimiciii-demo/1.4/
3https://www.nlm.nih.gov/bsd/pmresources.html
‘https://www.nlm.nih.gov/research/umls/index.html
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also show evidence that the degree of specialization becomes more important
than additional size when dealing with specialized corpora that are already
sufficiently large.

We propose a method for specializing general-domain embeddings in a low-
resource context. More specifically, we consider a worst-case scenario where
only the target task corpus is available and carry out the following procedure:
first, we train static representations on the task corpus, then, we resume the
pre-training of general-domain contextual embeddings on the same task cor-
pus, and finally, we combine both static and contextual representations into
one final model. Despite only relying on resources that are readily available
for most domains (i.e. a target task corpus and pre-trained contextual em-
beddings from the general domain), we show that this method consistently
improves over only using general pre-trained embeddings out-of-the-box.

In the specific context of BERT-like (Devlin et al., 2019) models that rely on
a vocabulary of subwords for handling unknown tokens, we tackle the issue
of using a general-domain vocabulary in a specialized domain. Specifically,
since most specialized versions of these models merely re-train them on a spe-
cialized corpus all the while keeping the original general-domain vocabulary,
we explore the impact this may have, beginning with the quality of tokeniza-
tion which we show to be worse than what is produced by a domain-specific
subword vocabulary.

We also evaluate the usual re-training strategy against similar models which
are trained from scratch on specialized corpora using a specialized vocabu-
lary. We show that the latter configuration generally outperforms models
re-trained from a general-domain version, however, we also note that this
difference is usually relatively small. Setting aside possible issues related to
the pre-training procedure (e.g. insufficient training), and given the avail-
ability of general-domain models which can be used to initialize training for
any specialized domain, we conclude that re-training from a general model
is still appropriate as it is less expensive and leads to comparable, although
slightly lower, performance.

Despite the fact that specialized models using general-domain subword vo-
cabularies may perform on par with fully specialized ones, we argue that
having a subword-based tokenization system is still inconvenient in practice
(e.g. splitting a single word into multiple subwords). In an effort to go back
to simpler word-level models, we propose CHARACTERBERT, a variant of
BERT that does not rely on subwords but rather consults word characters to
produce word-level contextual representations. We conduct an evaluation on
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several medical tasks and show that overall, this model outperforms BERT
versions that have been in identical conditions. Moreover, we provide evi-
dence supporting the fact that CHARACTERBERT is more robust to noisy
texts containing several types of misspellings.

e We explore ways to specialize general-domain representations using knowl-
edge bases. More specifically, we develop a strong baseline using a simple
method relying on graph embeddings and concatenation. In this framework,
we restrict the knowledge base to the single most common type of rela-
tion is_a, which produces a single graph. Then, we embed this knowledge
graph using graph embedding methods®. Finally, we combine the word and
knowledge embeddings using a simple concatenation to produce a final set
of representations. We conduct an extensive evaluation here as well and
demonstrate that both static and contextual embeddings may effectively be
specialized using this simple approach.

e We extend the previous method to the specific case of BERT-like models
by proposing new layers called Knowledge Injection Modules (KIM) that
inject the knowledge representations directly within the model architecture.
Following the standard re-training approach (i.e. general domain then spe-
cialized corpora), we pre-train medical versions of BERT and CHARACTER-
BERT as well as versions relying on Knowledge Injection Modules, then
evaluate these models on several medical tasks. Our results indicate that
pre-training on a specialized corpus using KIMs is indeed able to improve
performance over plain re-training with a standard architecture. However,
we note that these results vary from one evaluation task to another, possibly
suggesting that this approach may be more relevant in some situations than
others.

Overall, our contributions tackle rather independent facets of the main issue.
As a result, we expect that some of these methods could be used together to achieve
an even greater degree of specialization of general-domain word representations.
Nevertheless, it is also fair to point out that our experiments focused on a single
setting (i.e. the medical domain and the English language) and may very well
not generalize perfectly to other languages and domains. However, we claim that
the methodology that we propose can be applied in other settings as well, since
our methods are arguably agnostic to both the language and domain parameters.
Ultimately, we hope that our results hint at more general properties that would
hold in other similar settings. In an effort to facilitate future research on the

5As opposed to knowledge base embedding methods that would generally leverage different
types of relations.



1.5. THESIS OUTLINE 21

adaptation of word embedding to specialized domains, we open source our code
and share our pre-trained models whenever appropriate®.

1.5 Thesis Outline

This manuscript follows a simple outline which starts with a preliminary chapter on
background knowledge and related work (§2). This chapter introduces information
that is relevant to specializing word representations using in-domain knowledge.
The first section defines Transfer Learning and present ways in which it can be
used to leverage related corpora (§2.2). More specifically, we provide an overview
of Transfer Learning (§2.2.1) then proceed to focus on two specific aspects of it,
namely: Sequential Transfer (§2.2.2), which we present as the main approach that
is currently backing word embedding models; and Domain Adaptation (§2.2.3),
which includes methods to specialize models for target domains. Then, we provide
information on how to leverage external knowledge as well (§2.3). Specifically, we
introduce preliminary concepts related to ontologies and knowledge bases (§2.3.1).
Then, we present methods that leverage these external sources of knowledge to
improve existing embeddings, both static (§2.3.2) and contextual (§2.3.3). Finally,
we introduce meta-embeddings, as an additional and perhaps unorthodox way for
enhancing word representations with external knowledge (§2.3.4).

This is followed by a second preliminary chapter that briefly discusses the topic
of embedding evaluation (§3). Specifically, we give an overview of embedding
evaluation, discussing the difference between intrinsic and extrinsic approaches
(§3.2), then, we provide details about our own approach to evaluation through
means like random restarts, model ensembles and statistical significance (§3.3).

The next chapters follow closely our list of contributions. First, we focus on
leveraging text corpora (§4), which we show can be used to improve existing em-
beddings, confirming in the process the importance of both corpus size and domain
similarity (§4.2). We then propose a method for leveraging a small in-domain cor-
pus along with other widely available resources to produce results that are on par
with training in-domain representations (§4.3).

The following chapter tackles BERT-like models that use a subword vocabulary
(85). In this context, we demonstrate that the original BERT vocabulary may not
be suited for specialized domains and train parallel models from scratch, on corpora
from different domains, using different vocabularies, to test our hypothesis (§5.2).
We then propose CHARACTERBERT, a new variant of BERT that does not rely
on a subword system and consults instead input tokens’ characters to produce
word-level contextual representations (§5.3).

Shttps://github.com/helboukkouri/phd-code
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Subsequently, we return to the topic of enhancing word representation with
in-domain information, this time focusing on using knowledge bases (§6). With
simplicity in mind, we develop a strong baseline consisting in knowledge base
embeddings (§6.2) and concatenation (§6.3) and demonstrate that it can lead to
important improvements when applied to both static word representations as well
as transformer-based models like BERT and CHARACTERBERT. Moreover, we
propose Knowledge Injection Modules (KIM) to directly incorporate knowledge
representations within the architecture of BERT-like models and show promising
results which we argue, however, to depend on how relevant the chosen external
knowledge is to the target task.

Finally, we conclude this manuscript (§7) by providing a summary of our find-
ings (§7.1), going one last time over our contributions (§7.2) and proposing multiple
future directions to further explore ways in which to improve word representations
with in-domain knowledge (§7.3).

1.6 Publications

Some of the work that we present in this manuscript has been the object of sub-
missions and/or publications in NLP conferences:

e Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, and Pierre Zweigen-
baum. 2019. Embedding strategies for specialized domains: Application to
clinical entity recognition. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Student Research Workshop,
pages 295-301, Florence, Italy. Association for Computational Linguistics

e Hicham El Boukkouri. 2020. Ré-entrainer ou entrainer soi-méme 7 stratégies
de pré-entrainement de BERT en domaine médical (re-train or train from
scratch 7 pre-training strategies for BERT in the medical domain ). In Actes
de la 6e conférence conjointe Journées d’Etudes sur la Parole (JEP, 33e édi-
tion), Traitement Automatique des Langues Naturelles (TALN, 27e édition),
Rencontre des Etudiants Chercheurs en Informatique pour le Traitement Au-
tomatique des Langues (RECITAL, 22e édition). Volume 3 : Rencontre des
Etudiants Chercheurs en Informatique pour le TAL, pages 29-42, Nancy,
France. ATALA et AFCP

e Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, Hiroshi Noji, Pierre
Zweigenbaum, and Jun’ichi Tsujii. 2020. CharacterBERT: Reconciling ELMo
and BERT for word-level open-vocabulary representations from characters.
In Proceedings of the 28th International Conference on Computational Lin-
guistics, pages 6903-6915, Barcelona, Spain (Online). International Commit-
tee on Computational Linguistics
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and Pierre Zweigenbaum. 2021. A Simple Approach to Specializing Both
Static and Contextual Embeddings Using Knowledge Graphs.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides background knowledge about two main ways in which word
representations may be constructed and further improved, namely: leveraging re-
lated tasks and corpora, and leveraging external knowledge in the form of on-
tologies and knowledge bases. These two approaches are also the two main axes
through which we explore the topic of this thesis, with Chapter 4 focusing on uti-
lizing text corpora and Chapter 6 focusing more on external resources and knowl-
edge bases. In the following, we first address leveraging related tasks and corpora
within the perspective of Transfer Learning, for which we provide an overview. We
also show how word embeddings can be positioned within this Transfer Learning
framework as a direct application of Sequential/Model Transfer. We then provide
a brief review of Domain Adaptation and show how model pre-training, which is
traditionally seen as a transfer method, can be used to adapt general-domain rep-
resentations or monolingual models to new domains and languages. Eventually,
we address the topic of external knowledge and how it can be leveraged to improve
NLP systems, more specifically word embeddings. After briefly introducing some
of the main sources of external knowledge, we delve into how both traditional (i.e.
static) word representations as well as more modern pre-trained language models
can be improved using such knowledge. Ultimately, we discuss meta-embeddings,
an approach that aims to combine multiple sets of word representations, and talk
about how these aggregated embeddings can be used in a knowledge injection
context to produce specialized word representations.

25
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2.2 Leveraging Related Tasks and Corpora

Three main scenarios generally occur in Machine Learning: unsupervised learning,
when only unlabeled data is used; supervised learning, when only labeled data is
used; and semi-supervised learning, when both labeled and unlabeled data is used.
In the traditional supervised learning setting, there are two inapparent assump-
tions which are often made. First, it is assumed that the available data is large
enough to enable the training of a model with good performance. Second, it is
also assumed that any future data is similar enough that the trained model will
have no difficulty generalizing to unseen examples. In practice, however, these
assumptions rarely hold, and most often than not the actual problems which are
tackled do not come with enough labeled examples (i.e. low resource setting), and
future data is frequently different enough that the performance of trained models
slowly deteriorates with time (i.e. domain shift (Gretton et al., 2009)). As a result,
modern NLP systems usually rely on Transfer Learning (TL), a set of tools that
leverages data from different tasks and /or domains (called source) to build models
with improved performance on a specific task and/or domain of interest (called
target). In this context, our goal, which we recall to be specializing word represen-
tations using in-domain resources, can be seen as leveraging existing models from
a source domain (i.e. general-domain embeddings), along with resources from the
target domain (i.e. in-domain corpora and knowledge bases), in order to produce
better word representations for this specialized domain.

2.2.1 An Overview of Transfer Learning

While most views agree on the general definition of Transfer Learning, there is
nonetheless a variety of ways to categorize its different techniques (Shao et al.,
2014; Tan et al., 2018). One such way that is relatively up-to-date with cur-
rent state-of-the-art is (Ruder, 2019) which condenses Transfer Learning methods
into two greater categories that ultimately lead to four main approaches (see Fig-
ure 2.1). On one hand, transductive transfer deals with situations where the source
and target tasks are similar but their domains differ. This typically includes Do-
main Adaptation methods (DA), which deals with different domains within the
same language, and Cross-lingual Learning (CL), when the two domains are ac-
tually instances of two different languages. On the other hand, inductive transfer
tackles situations where the source and target domains may be similar but the ac-
tual tasks differ. In practice, this leads to instances of Multi-task Learning (MTL),
when two or more tasks are learned in parallel, or Sequential Transfer Learning
(STL) when these tasks are learned sequentially.

In what follows, we will be focusing on Sequential Transfer Learning (§2.2.2)
and Domain Adaptation (§2.2.3) as these will be covering most of the methods
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Figure 2.1: A taxonomy for transfer learning in NLP. Credits go to Ruder (2019).
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presented in this manuscript. Nevertheless, it is interesting to note that while
these two approaches are different in theory, they can be difficult to tell apart in
practice. For example, re-training a general model on a specialized corpus may be
seen as a Domain Adaptation method, however, it may very well be seen as an
instance of Sequential Transfer as well since the features that were learned during
the initial general-domain pre-training are used to initialize a second pre-training
on the specialized corpora. Generally speaking, one useful rule of thumb is that
Sequential Transfer mostly aims to learn “general features” that can be transferred
over various downstream tasks and/or domains, while Domain Adaptation mostly
focuses on learning “domain-specific features” that will be useful for a specific
domain of interest.

2.2.2 Sequential Transfer Learning

In this section, we will be going over some early non-NLP work that leveraged
Sequential Transfer before delving into the different steps of STL and how it relates
to training word representations. Finally, we briefly mention recent work that helps
alleviate some forgetting issues that arise when training models sequentially.

Sequential Transfer in Computer Vision

Sequential Transfer Learning, also known as Model Transfer (Wang and Zheng,
2015) or sometimes simply “Transfer Learning”!, refers to a general approach where
a preliminary model is built on a source task before being transferred to an often
related but usually different target task with the aim of improving downstream per-
formance. Originally, this approach gained traction within the Computer Vision
(CV) community when models trained on large labelled datasets such as IMA-
GENET(Deng et al., 2009; Russakovsky et al., 2015) were shown to significantly
improve results on other downstream tasks (Yosinski et al., 2014; Huh et al., 2016),
with notable gains on image classification (Donahue et al., 2014), image segmen-
tation (Dai et al., 2016) and image captioning (Karpathy and Li, 2015); especially
when dealing with small challenging datasets (Oquab et al., 2014). Today, state-
of-the-art vision models are rarely built from scratch; instead, models pre-trained
on large image datasets are re-used and adapted in order to boost performance on
various target tasks (Radford et al., 2021; Goyal et al., 2021).

In fact, although Transfer Learning as a whole includes other approaches like Multi-task
Learning and Domain Adaptation, the term “Transfer Learning” is often mistakenly used to refer
specifically to the Sequential Transfer Learning paradigm.
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Sequential Transfer in Two Phases

Sequential Transfer Learning consists of two phases: a pre-training phase and a
transfer phase?. With pre-training, a distinction can be made between the su-
pervised and unsupervised paradigms, with supervised pre-training referring to
situations where the model is pre-trained on a supervised task such as image clas-
sification or object detection on IMAGENET. In the context of Natural Language
Processing, there have been instances of successful model transfer using supervised
pre-training. For example, neural text encoders pre-trained on Natural Language
Inference datasets have been shown to benefit several types of downstream tasks
such as text classification, textual entailment and paraphrase detection (Conneau
et al., 2017a). However, most successful attempts to pre-train NLP systems have
relied on unsupervised pre-training, which is able to leverage large amounts of
unlabeled texts®. While some pre-training procedures are purely unsupervised,
such as Latent Dirichlet Allocation (LDA) (Blei et al., 2001) which automatically
learns a set of topics that describe the input texts, most of them however are
self-supervised*, meaning that labeled examples are generated from the unlabeled
data, typically according to some reconstruction objective that aims to recover
missing parts of the original input, effectively making these pre-training tasks
supervised. In practice, the reconstruction task is often a variant of Language
Modeling (LM) where the source model has to predict the next word in a sentence
(i.e. traditional language modeling) or fill-in missing words (e.g. masked language
modeling). Presumably, training on these tasks encourages the source model to
acquire some level of linguistic knowledge which can then be transferred to down-
stream tasks resulting in improved performance. This transfer can be achieved
through one of two main methods: either using the pre-trained model output as
fixed features (a.k.a feature extraction), or by adapting the pre-trained model on
the target task via further training—often using the model as a component within
a larger task-specific architecture (a.k.a fine-tuning).

In what follows, we discuss Sequential Transfer Learning from a specific per-
spective that is closely related to the topic of this thesis: representation learning,
and more precisely, word embeddings and how training and using these represen-
tations can be seen as an instance of Sequential Transfer.

2Sometimes, this is called the “adaptation” phase. However, we prefer the term “transfer” as
it is less likely to be confused with Domain Adaptation methods.

3For instance, the Common Crawl Project generates several tera-bytes of text data, crawled
from the internet, every month: http://commoncrawl.org/

4As recently coined by Yann LeCun.
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Word Embeddings & Transfer Learning

Word embeddings are dense numerical representations of words that are learned
from usually large text corpora, and serve as features for encoding raw textual
information in machine learning models, particularly neural networks. As such,
training and using word embeddings can be seen as an application of Sequen-
tial Transfer where the source model (i.e. the word embeddings) is transferred to
improve performance on target tasks.

There are numerous word embedding methods and they all broadly fall into
one of two categories: static embeddings and contextual embeddings. Static embed-
dings assign a single representation to each word regardless of its context. These
are methods like WORD2VEC (Mikolov et al., 2013), which assigns random rep-
resentations then adapt them so that words that co-occur together have similar
word vectors; GLOVE (Pennington et al., 2014), which achieves a similar goal by
essentially decomposing a matrix of co-occurrence statistics®; and FASTTEXT (Bo-
janowski et al., 2017), which improves over WORD2VEC by allowing unseen words
to be represented according to their spelling using sub-words units. However,
these static representations are unable to properly represent words with multiple
meanings which vary depending on the context. This may ultimately jeopardize
downstream performance as, for instance, a word like “bank” would be assigned an
identical representation in a financial context (e.g. “I withdrew some money from
the bank.”) and a scientific context (e.g. “In geography, a bank is the land along-
side a body of water.”). To address this issue, some methods aim to learn multiple
representations for each word, either according to a pre-defined number of senses
(Chen et al., 2015), or automatically learning the different word senses on the fly
(Neelakantan et al., 2014; Trask et al., 2015). These techniques, however, were soon
overtaken by methods that are able to take the context into account to produce
a continuous spectrum of representations, with early contextualization efforts like
CONTEXT2VEC (Melamud et al., 2016), generalizing the WORD2VEC objective by
learning recurrent representations of word contexts®; and COVE (McCann et al.,
2017), pre-training a similar architecture on Machine Translation datasets. While
these methods were not proposed as contextual word embeddings per se, they pre-
train recurrent neural networks which are able to produce context-dependent word
representations at each time step. Ultimately, ELMO (Peters et al., 2018a) trained
an actual word embedding model with contextual representations in mind using

5While the original formulation of the GLOVE objective is more akin to a regression than a
matrix factorization, it has been shown that this objective essentially applies an iterative matrix
decomposition of co-occurrence statistics (see Section 2.4 of Levy et al. (2015)).

6Technically, CONTEXT2VEC does not aim to learn contextual representations of words per
se but rather uses a recurrent model for modeling a word’s context. However, this method may
be seen as a precursor to modern contextual models since the recurrent context representations
may be used as approximate contextual embeddings for their central words.



2.2. LEVERAGING RELATED TASKS AND CORPORA 31

recurrent neural networks. The model was pre-trained using a language modeling
objective on large general-domain corpora, and was successfully transferred via
feature extraction to improve downstream performance on several NLP tasks.

Most of the aforementioned methods pre-train a source model using self-super-
vised language modeling tasks. However, it is important to note that various efforts
have successfully pre-trained models in a purely supervised setting as well, namely:
using paraphrases (Wieting et al., 2016), image captions (Kiela et al., 2018a) and
dictionary definitions (Hill et al., 2016). Nevertheless, these pre-trained represen-
tations were usually transferred in a feature extraction fashion where static, con-
textual and sometimes both types of embeddings (Peters et al., 2017) were used
as fixed components in a model that is trained from scratch on the target task.
While such approaches have led to significant performance boosts on various kinds
of tasks (Collobert et al., 2011; Pennington et al., 2014; Xiong et al., 2018), train-
ing task-specific models from scratch is ultimately not desirable. Moreover, static
word representations, which were traditionally used as fixed features, have been
shown to transfer better when fine-tuned along with the target architecture (Kim,
2014a). This has led to more models being transferred via fine-tuning, which has
become standard when transferring pre-trained models. Nevertheless, fine-tuning
large pre-trained models is not always practical either and can be costly in both
computation and labeled data (Dai and Le, 2015; Mou et al., 2016).

More recently, ULMFIT (Howard and Ruder, 2018) showed that deep neural
language models trained on large corpora could be successfully transferred as a
whole and fine-tuned to reach state-of-the-art performance on text classification
tasks. Through a number of steps including a general pre-training, a second task-
specific pre-training with layer-wise optimization and a final fine-tuning with grad-
ual layer unfreezing, ULMFIT demonstrated that model transfer with end-to-end
fine-tuning was possible with only a limited number of labeled examples from the
target task. In the meantime, a novel neural architecture called TRANSFORMER
was proposed (Vaswani et al., 2017), improving over traditional convolutional and
recurrent layers in both speed and performance. This paved the way for new
methods like OpenAl’'s GPT (Radford et al., 2018) which proposed a unified ar-
chitecture for transferring language models to a variety of NLP tasks including
Natural Language Inference, Sentence Similarity and Question Answering. Soon
after, the BERT model was proposed (Devlin et al., 2019), deeply impacting the
way modern NLP is performed. Building on the observation that standard lan-
guage modeling could only leverage unidirectional information”, BERT pre-trained
a deep architecture of TRANSFORMER encoders on a Masked Language Modeling
(MLM) task, a bi-directional alternative that consists in predicting masked words

"Models like ELMo try to achieve bidirectionality by concatenating representations from two
unidirectional models, however, this is not the same as having a strictly bidirectional architecture.
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in a sentence, similar to a cloze task (Taylor, 1953). Moreover, BERT was trained
on Next Sentence Prediction (NSP), a task that aims to determine whether two in-
put sentences are consecutive or randomly sampled, which supposedly® allows the
model to better handle tasks that are at the sentence-pair level, such as like Natu-
ral Language Inference. More importantly, BERT could be seamlessly fine-tuned,
with a minimal amount of additional parameters and in an end-to-end fashion, to
reliably achieve state-of-the-art performance on a wide variety of NLP tasks.
Since the advent of BERT, the sequential transfer of transformer-based ar-
chitectures followed by an end-to-end fine-tuning has become ubiquitous; with
variants incrementally improving over this original model spawning regularly (e.g.
ROBERTA (Liu et al., 2019), ALBERT (Lan et al., 2020)). Notwithstanding,
some of these approaches stand out for specific reasons. For instance, T5 (Raf-
fel et al., 2019) attempts to unify various frameworks by casting NLP tasks as
text-to-text problems. GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al.,
2020) push the training of large models on large corpora to the extreme and demon-
strate interesting zero and few-shot capabilities for such large pre-trained language
models. Finally, ELECTRA (Clark et al., 2020) explores pre-training models that
discriminate true texts from realistic artificial inputs in an adversarial-like setting®.

Catastrophic Forgetting & Adapter Modules

Most modern NLP pipelines rely on fine-tuning large pre-trained models, which
can quickly become inefficient when dealing with multiple target tasks. In fact,
while earlier language models like BERT could be reasonably fine-tuned for a
single target task using modern processing units, more recent architectures tend
to be significantly larger (e.g. GPT-3), making them prohibitively expensive to
use and even more expensive to fine-tune on several tasks. Moreover, training
such large models has been known to be unstable (Dodge et al., 2020), with a
high sensitivity to optimization parameters that makes them prone to catastrophic
forgetting (McCloskey and Cohen, 1989; French, 1999)—a phenomenon where a
model forgets everything it has learned so far when re-trained on a new task. To
deal with these issues, Adapter Modules have been proposed, first in the context
of Computer Vision (Rebuffi et al., 2017) and eventually for Natural Language
Processing (Houlsby et al., 2019). These small layers can be placed within the
architecture of a pre-trained model like BERT such that during fine-tuning, all
original model parameters are fixed and only the adapter layers are trained. As a
result, the original pre-trained model is preserved and a new task-specific module

8In subsequent work the Next Sentence Prediction task has been shown to degrade the overall
quality of the model (Yang et al., 2019; Joshi et al., 2020).

9The authors do not actually use an adversarial objective but instead rely on maximum
likelihood.
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may be learned for each new task, leveraging information from the source model.
Along with feature extraction and end-to-end fine-tuning, Adapter Modules are
today one of the three main ways in which pre-trained models can be leveraged to
benefit downstream target tasks.

2.2.3 Domain Adaptation

In this section, we will be providing a definition of Domain Adaptation, as well as
a taxonomy for its methods. Then, we will focus on methods that aim to achieve
such adaptation by leveraging data in particular (i.e. as opposed to altering the
model architecture or training objective). Specifically, we go over data selection
and pseudo-labeling as two common data-centric techniques for domain adaptation.
Finally, we delve into pre-training as a third approach that is especially relevant
in the context of modern, language model-based, word representations.

Definition & Taxonomy

Contrary to Sequential Transfer where the goal is to learn general features that can
be useful for a variety of downstream tasks, Domain Adaptation usually seeks to
learn domain-specific features that are relevant to a particular target domain. This
is useful when dealing, for instance, with a source domain that has access to lots of
resources (e.g. corpora, labeled datasets, external knowledge) and a target domain
that lacks such resources. Here, we adopt a broad definition where “domain” refers
to a “distribution over the feature space”, as there is no clear consensus over what
constitutes a domain (Plank, 2016). As a result, Domain Adaptation may be seen
more generally as the practice of using available data from a source distribution
to improve performance over some target dataset with a different distribution,
usually within the same task (e.g. general-domain NLI — medical NLI).

Historically, there have been several ways to categorize Domain Adaptation
methods, and these have changed along with the notion of domain as well as the
evolution of statistical learning (Jiang, 2008; Margolis, 2011; Weiss et al., 2016).
One recent taxonomy however, that goes over traditional methods as well as more
modern approaches (Ramponi and Plank, 2020), categorizes Domain Adaptation
into: model-centric methods, which alter elements at the model-level such as the
objective function, the model weights or the model architecture; data-centric meth-
ods, which focus on selecting relevant data (i.e. Data Selection), using a source
model to generate labeled data (i.e. Pseudo-labeling) or using large unlabeled cor-
pora and/or auxiliary tasks (i.e. Pre-training); and finally, hybrid methods, which
leverage elements from both categories. In what follows, we will be focusing on the
data-centric approach to Domain Adaptation, specifically, pre-training methods,
as these are more relevant to the work we present in this manuscript.
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Data Selection & Pseudo-labeling

Data-centric approaches to Domain Adaptation are able to leverage large datasets
to build domain-specific systems. One such method is Data Selection, which aims
to detect instances from the source dataset that are likely to be useful for training
a model for the target domain. This has been mostly explored in Machine Trans-
lation for selecting a subset of parallel data that best matches the distribution of
in-domain texts (Moore and Lewis, 2010; Yasuda et al., 2008), but has also been
proposed for other tasks like sentiment analysis (Remus, 2012) and parsing (Plank
and van Noord, 2011). In practice, a similarity metric is used to select examples
from the source data as a pre-processing step before building a model for the tar-
get domain. Traditionally, this metric is either Language Model Perplexity, where
a language model trained on in-domain data is used to score source instances; or
Jensen-Shannon Similarity, which relies on the “distance”!? between the source and
target distributions.

Another data-centric approach is Pseudo-labeling, which has its roots in semi-
supervised learning (Abney, 2007; Chapelle et al., 2009). Broadly speaking, Pseudo-
labeling consists in leveraging source labeled examples to train an initial model,
then leveraging this model along with target unlabeled examples to generate new
labeled instances, enrich the original training set, and re-train the model again.
This (hopefully) virtuous loop is repeated until model performance does not im-
prove anymore. One of the simplest pseudo-labeling methods is self-training
(Yarowsky, 1995), where a single model is used to generate labels for its own
future training. However, this usually results in this model learning from its own
mistakes which in turn can amplify errors, especially when the labeled and unla-
beled data come from two different domains. An alternative to plain self-training
is co-training (Blum and Mitchell, 1998), where this time, two models are used
on conditionally independent feature representations of the original source data.
If these representations are sufficient for training good models, then label genera-
tion and training are dissociated by having high-confidence labels from each model
serve as additional examples for re-training the other model. However, finding fea-
ture representations that are both sufficient and independent is not always easy,
and instead, a more practical alternative is to rely on the tri-training (Zhou and
Li, 2005) approach. In this framework, three models are trained on different—
usually bootstrapped—versions of the source data. Then, each model is re-trained
on samples for which the other two models are highly confident.

Both Data Selection and Pseudo-labeling are still explored in recent work (Ma
et al., 2019; Coleman et al., 2020; Arazo et al., 2020; Xu et al., 2020). However, as
pre-trained language models took over modern NLP, pre-training has also become

10The Jensen-Shannon similarity is based on the Kullback-Leibler divergence. This measure
is not technically a distance per se as it is not symmetric.
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one of the most favoured methods for leveraging large amounts of data to adapt
general models to specific domains.

Domain Adaptation Through Pre-training

We have touched upon Sequential Transfer Learning as an approach for leveraging
available source data and learning general features that can be transferred across
various downstream tasks (see Section 2.2.2). However, some instances of Sequen-
tial Transfer actually serve a domain adaptation purpose, learning features that
are relevant for a specific target domain instead. In practice, these all involve
an in-domain corpus or task during the pre-training phase and may therefore be
seen as applying Domain Adaptation ideas—specifically, Data Selection!!—in the
context of Sequential Transfer Learning.

The simplest way to achieve domain adaptation through pre-training is to train
models from scratch on in-domain data. There are several examples of such models,
for instance, FLAUBERT (Le et al., 2020) and ARABERT (Antoun et al., 2020)
build language-specific BERT models for French and Arabic respectively by pre-
training on monolingual corpora. Similarly, CAMEMBERT (Martin et al., 2020)
and ROBECZECH (Straka et al., 2021) train monolingual versions of ROBERTA
(Liu et al., 2019) on French and Czech corpora respectively. Another example
is PUBMEDBERT (Gu et al., 2020), which builds a specialized BERT model
for the biomedical domain by training the model on a large biomedical corpus.
However, training such models from scratch is not always practical and is orig-
inally the reason why Sequential Transfer was sought, learning and leveraging a
set of general-purpose features. Consequently, instead of training models from
scratch, some models use pre-trained models from the general domain to initialize
in-domain pre-training in what can be essentially described as two consecutive
model transfers: first, an initial pre-training that learns and transfers general fea-
tures, then, a second in-domain pre-training that leverages these general features
to learn and ultimately transfer domain-specific representations. Instances of such
double transfer are numerous as well, namely: SCIBERT (Beltagy et al., 2019) and
FINBERT (Yang et al., 2020), which respectively train models for the scientific
and financial domains using pre-trained weights from general-domain BERT; and
RUBERT (Kuratov and Arkhipov, 2019), which trains a Russian BERT model
by leveraging weights from the multilingual version of BERT.

Pre-training a model twice, once on a general-domain corpus then a second
time on an in-domain corpus can be framed within the broader class of multi-
phase adaptive pre-training methods (Ramponi and Plank, 2020). In fact, this
particular instance of double pre-training is sometimes called Domain-Adaptive

1 Usually, the data is selected manually by the NLP practitioner. However, this could also be
achieved using automatic data selection methods.
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Pre-Training (DAPT) and has been compared to a similar approach called Task-
Adaptive Pre-Training (TAPT) where, instead of a second pre-training on large
in-domain corpora, the language models are re-trained on smaller but more specific
task datasets (Gururangan et al., 2020). While DAPT often performed better
than TAPT, in practice, the authors show that both methods can be used jointly
to improve performance even further in what is essentially a triple pre-training: a
general-domain pre-training of the language model, then an in-domain pre-training
using a large in-domain corpus and finally a task-specific pre-training using the
target task corpus'?.

Similar to general-purpose Sequential Transfer, Model Transfer for Domain
Adaptation has also been explored in both the unsupervised—specifically, the
self-supervised—and supervised settings. For example, one instance that aims
to leverage available labeled data in the source domain is ADAPTABERT (Han
and Eisenstein, 2019), which pre-trains BERT on a corpus made of both modern
English (source) and historical English texts (target), then fine-tunes the result on
labeled POS tagging examples from the source domain. In this case, it is inter-
esting to note that although the method includes a fine-tuning step, it may still
be considered as a pre-training technique since the whole process is used in prepa-
ration for a model that will be transferred to the target domain (i.e. historical
English)!3. Another work that leverages labeled source data for domain adapta-
tion is Supplementary Training on Intermediate Labeled data Tasks or STILTSs
(Phang et al., 2018), which was first introduced as a way to improve model transfer
in general by leveraging source labeled data, but was then used for the purpose of
the domain adaptation of multilingual models to specific languages (Phang et al.,
2020). More specifically, the approach consists in using a pre-trained multilingual
model (1% source domain), fine-tuning on English labeled task data from one or
multiple tasks (2"¢ source domain), fine-tuning again on the English version of the
target task, and finally transferring/evaluating the model on the target language
version of this target task (target domain—e.g. Swahili, Russian, German). Similar
to TAPT where a model is pre-trained in three steps on a general, in-domain and
finally a task-specific corpus; this zero-shot cross-lingual application of STILTs
applies the same principle of adapting a general-purpose model in progressively
more specific settings but relying on source labeled data instead.

2.2.4 Summary

While in theory it is possible to train good models for any purpose given enough
labeled examples, real life prob