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Résumé

Il existe, à la base de la plupart des systèmes de TAL, des représentations numériques
qui permettent à la machine de traiter, d’interagir avec et, dans une certaine
mesure, de comprendre le langage humain. Ces « plongements lexicaux » se
présentent sous différentes formes mais peuvent généralement être classés en deux
groupes distincts : d’une part, les plongements statiques qui apprennent et at-
tribuent définitivement une unique représentation à chaque mot ; et d’autre part,
des plongements contextuels qui, à l’inverse, apprennent à générer des représen-
tations de mots à la volée en fonction d’un contexte courant. Dans les deux cas,
l’entraînement de ces modèles nécessite une quantité importante de textes. Cela
conduit souvent les praticiens du TAL à collecter et fusionner des textes provenant
de sources multiples, mélangeant souvent différents styles et domaines (par ex-
emple, des encyclopédies, des articles de presse, des articles scientifiques, etc.)
afin de produire des corpus suffisamment volumineux pour pouvoir entraîner des
représentations de qualité suffisante. Ces corpus dits du « domaine général » sont
aujourd’hui la base sur laquelle s’entraînent la plupart des plongements lexicaux,
limitant fortement leur utilisation dans des domaines plus spécifiques. En effet, les
« domaines spécialisés » comme le domaine médical manifestent généralement des
spécificités lexicales, sémantiques et stylistiques suffisamment notables (par exem-
ple, l’utilisation d’acronymes et de termes techniques) pour que les plongements
lexicaux généraux ne soient pas en mesure de les représenter efficacement. Dans le
cadre de cette thèse, nous explorons comment différents types de ressources peu-
vent être exploités afin soit d’entraîner de nouveaux plongements spécialisés, soit
de spécialiser davantage des représentations préexistantes.

Plus précisément, nous étudions d’abord comment des corpus de textes peuvent
être utilisés à cette fin. En particulier, nous montrons que la taille du corpus ainsi
que son degré de similarité avec le domaine d’intérêt jouent un rôle important dans
ce processus puis proposons un moyen de tirer parti d’un petit corpus du domaine
cible afin d’obtenir de meilleurs résultats dans des contextes à faibles ressources.
Ensuite, nous abordons le cas des modèles de type BERT et observons que les
vocabulaires généraux de ces modèles conviennent mal aux domaines spécialisés.
Cependant, nous montrons des résultats indiquant que des modèles formés à l’aide
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de tels vocabulaires peuvent néanmoins être comparables à des systèmes entière-
ment spécialisés et utilisant des vocabulaires du domaine du domaine, ce qui nous
amène à la conclusion que le ré-entraînement de modèles du domaine général est
une approche tout à fait efficace pour construire des systèmes spécialisés. Nous
proposons également CharacterBERT, une variante de BERT capable de produire
des représentations de mots entiers en vocabulaire ouvert par l’exploitation d’une
représentation de leurs caractères. Nous montrons des résultats indiquant que
cette architecture conduit à une amélioration des performances dans le domaine
médical tout en étant plus robuste aux fautes d’orthographe.

Enfin, nous étudions comment des ressources externes sous forme de bases de
connaissances et ontologies du domaine peuvent être exploitées pour spécialiser
des représentations de mots préexistantes. Dans ce cadre, nous proposons une
approche simple qui consiste à construire des représentations denses de bases de
connaissances puis à combiner ces « vecteurs de connaissances » avec les plonge-
ments lexicaux cibles. Nous généralisons cette approche et proposons également
des Modules d’Injection de Connaissances, de petites couches neuronales permet-
tant l’intégration de représentations de connaissances externes au sein des couches
cachées de modèles à base de Transformers. Globalement, nous montrons que
ces approches peuvent conduire à de meilleurs résultats. Cependant, nous avons
l’intuition que ces performances finales dépendent en fin de compte de la disponi-
bilité de connaissances pertinentes pour la tâche cible au sein des bases de con-
naissances considérées.

Dans l’ensemble, notre travail montre que les corpus et bases de connaissances
du domaine peuvent être utilisés pour construire de meilleurs plongements lexicaux
en domaine spécialisé. Enfin, afin de faciliter les recherches futures sur des sujets
similaires, nous publions notre code et partageons autant que possible nos modèles
pré-entraînés.
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Chapter 1

Introduction

1.1 Context

It is hard to deny that Language has played a major role in enabling the progress of
human civilisation. And while broadly speaking “Language” may be expressed in
several ways (e.g. visual, auditory, tactile), written text has probably contributed
the most to bringing societies together and enhancing our ability to communicate
with each other. However, with recent technological advancements leading to the
exchange of an ever-increasing amount of textual information, building systems
to decode and process the rich variety of natural languages has become more
important than ever before.

Natural Language Processing (NLP) is a field at the intersection of linguis-
tics, computer science and statistics which aims to provide artificial machines with
the ability to understand, interpret and leverage textual information. Early ap-
proaches to NLP were mainly rule-based and required in-domain knowledge from
human experts to define task-specific rules (Mauldin, 1984; Klatt, 1987). How-
ever, as statistical learning became more and more prevalent, due to the growing
availability of sufficiently large corpora, the increase in processing power as well as
the adoption of methods like Maximum Entropy (MaxEnt) (Jaynes, 1957; Good,
1963), Support Vector Machines (SVM) (Cortes and Vapnik, 1995), Random De-
cision Forests (Ho, 1995) and Boosting (Freund and Schapire, 1997), the rigid
rule-based approach was slowly abandoned in favor of a more flexible Machine
Learning (ML) paradigm.

Instead of relying on pre-defined rules, ML models are able to learn from a set
of examples and to generalize this knowledge to new unseen scenarios. However,
this process still requires human experts to provide the model with a relevant de-
scription of all examples through special variables called features . In the specific
context of NLP, raw textual information is unintelligible to a computer and byte
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16 CHAPTER 1. INTRODUCTION

sequences cannot be directly leveraged to achieve any significant level of language
comprehension1. As a result, this information has to be converted into numeri-
cal features—often using vectorial representations—which lend themselves to the
various statistical computations occurring within a learning algorithm.

Early ML-oriented textual representations relied on the so-called Bag-of-Words
approach (BoW), where syntax and word order are disregarded to focus solely on
word occurrences. In this context, a text is represented as a vector of word-level
heuristics, like word frequency (Luhn, 1957) or TF-IDF (Spärck Jones, 1972),
which is supposed to provide a somewhat useful characterization of the text’s con-
tent. However, since only a limited subset of words ever appears in any given text,
BoW representations are often particularly sparse. Moreover, as the size of these
vectors is equal to the total number of words, these representations also tend to be
exceedingly large, leading to an important memory footprint that only grows expo-
nentially when including the often necessary n-gram information—i.e. additional
statistics about contiguous sequences of n words. In order to mitigate some of
these issues, dense representations of texts were also proposed, with methods like
Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997), compiling count-
based features over multiple contexts (e.g. sentences, documents) before applying
a Singular Value Decomposition (SVD). However, these only address the curse of
dimensionality (Bellman, 1966) at inference-time, as constructing large matrices
of text statistics is still required prior to the dimensionality reduction step.

Somewhat concurrently, a different approach emerged from the area dealing
with Artificial Neural Networks (ANN), a special kind of ML algorithms that
leverages an iterative optimization process called Back-Propagation (Rumelhart
et al., 1986; Werbos, 1990) to automatically learn internal hierarchies of features.
Motivated by prior work advocating learning distributed representations of sym-
bolic concepts (Hinton et al., 1986), these neural models have been applied in the
context of NLP for learning distributed representations of words, more commonly
known as word embeddings . Initially, these word representations were trained as
part of task-specific architectures, where they were shown to improve over tra-
ditional hand-crafted features (Bengio et al., 2000). However, word embeddings
trained on preliminary tasks such as Language Modeling (LM)—which consists in
predicting upcoming words in a sentence—were soon found to encode general se-
mantic and syntactic information that could be effectively transferred to a variety
of downstream tasks (Collobert and Weston, 2008; Collobert et al., 2011). Con-
sequently, pre-training word embeddings to serve as out-of-the-box text encoders
has become a major research direction. Today, building better word embeddings
is arguably the cornerstone of most state-of-the-art NLP systems, especially for

1However, we will discuss in Chapter 5.3 how these byte sequences can be leveraged indirectly
to improve state-of-the-art models.
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applications in specialized areas such as the medical domain.

1.2 Motivation
Neural Networks have become the de facto framework for constructing high -
performance NLP systems. Usually, model architectures consist in pre-trained
word embeddings, which are often fed to a general-purpose encoder, followed by one
or more task-specific layers. Generally speaking, these word embeddings are either
static, where each word is assigned a single dense representation (e.g. word2vec,
Mikolov et al. (2013)); or contextual , where the same word may have a different
representation depending on its context (e.g. ELMo, Peters et al. (2018a)). In
practice, word embeddings are rarely trained from scratch on every instance of a
new task, but rather pre-trained once, then transferred onto various downstream
tasks. The go-to task for this pre-training is often a variant of Language Modeling
as this allows to leverage large amounts of unlabeled texts. As a result, and since
the size of these pre-training corpora is known to positively correlate with the
performance of learned representations, many texts from various sources are often
pooled together (e.g. news, online encyclopedia, novels) into what is often referred
to as general-domain corpora.

General-domain corpora are often large, easily available and yield satisfactory
word representations. However, when the target task involves more specialized
kinds of texts, such as legal contracts, clinical notes or financial reports, these
general-domain representations become less relevant and lag behind word embed-
dings trained specifically for these domains. Moreover, it is possible to argue that
any given task—as general as it may seem—represents its own specific sub-domain,
and that, therefore, being able to build tailored word representations, or further
specialize existing ones, is beneficial in a broader context than just providing bet-
ter embeddings for specialized domains. In this dissertation, and with the medical
domain and the English language as a recurring use-case, we explore how such so-
lutions can be constructed by leveraging two kinds of in-domain resources, namely:
corpora and knowledge bases.

1.3 Research Objectives
Clearly put, our goal is the following:

Given a target specialized domain, improve the quality of general-domain
word representations using in-domain corpora and/or knowledge bases.

In the following paragraphs, we provide useful information relative to specific con-
cepts that are involved in this objective formulation:
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Target Specialized Domain A randomly-chosen specialized domain may not
have access to both in-domain corpora and knowledge bases. In order to be able
to experiment with either source of in-domain knowledge, as well as to combine
methods leveraging both resources at the same time, we frame our analysis in the
specific setting of the medical domain and the English language. In this context,
we are able to access large corpora such as MIMIC-III2 (clinical domain) and
PubMed3 (biomedical domain), as well as various terminologies and ontologies
from the UMLS4 Metathesaurus.

Word Representations There are a number of word embedding methods as
well as a variety of pre-trained representations that can be used out-of-the-box. In
this thesis, we consider both static and contextual types of word embeddings and
rely on, whenever appropriate, publicly available pre-trained models.

Embedding Evaluation Improving word embeddings assumes the ability to
measure the quality of a given set of word representations, which is not at all
trivial. In the context of this thesis, however, we suppose that the downstream
performance of an embedding indirectly reflects its quality. As a result, if an
embedding A, used in conjunction with some task-specific architecture, improves
the performance on a given task over some other embedding B, then A is considered
to be “better” in this specific context. Generalizing this idea, if an embedding A
systematically improves over some embedding B on several evaluation tasks, then
we consider that, overall, “embedding A is better than embedding B”. Moreover, in
order to accurately compare different systems, we systematically perform multiple
random restarts and use the resulting performance distribution to compute a mean
score, a standard deviation as well as, for later experiments, carry out statistical
significance tests. The topic of embedding evaluation is discussed in more detail
in Chapter 3.

1.4 Contributions
Along this thesis, we make the following contributions:

• We study how both the corpus size and degree of specialization affect down-
stream performance in a specialized domain. We validate the intuition that
larger corpora produce better representations but also show that large gen-
eral corpora may perform better than small specialized ones. Moreover, we

2https://physionet.org/content/mimiciii-demo/1.4/
3https://www.nlm.nih.gov/bsd/pmresources.html
4https://www.nlm.nih.gov/research/umls/index.html

https://physionet.org/content/mimiciii-demo/1.4/
https://www.nlm.nih.gov/bsd/pmresources.html
https://www.nlm.nih.gov/research/umls/index.html
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also show evidence that the degree of specialization becomes more important
than additional size when dealing with specialized corpora that are already
sufficiently large.

• We propose a method for specializing general-domain embeddings in a low-
resource context. More specifically, we consider a worst-case scenario where
only the target task corpus is available and carry out the following procedure:
first, we train static representations on the task corpus, then, we resume the
pre-training of general-domain contextual embeddings on the same task cor-
pus, and finally, we combine both static and contextual representations into
one final model. Despite only relying on resources that are readily available
for most domains (i.e. a target task corpus and pre-trained contextual em-
beddings from the general domain), we show that this method consistently
improves over only using general pre-trained embeddings out-of-the-box.

• In the specific context of BERT-like (Devlin et al., 2019) models that rely on
a vocabulary of subwords for handling unknown tokens, we tackle the issue
of using a general-domain vocabulary in a specialized domain. Specifically,
since most specialized versions of these models merely re-train them on a spe-
cialized corpus all the while keeping the original general-domain vocabulary,
we explore the impact this may have, beginning with the quality of tokeniza-
tion which we show to be worse than what is produced by a domain-specific
subword vocabulary.

• We also evaluate the usual re-training strategy against similar models which
are trained from scratch on specialized corpora using a specialized vocabu-
lary. We show that the latter configuration generally outperforms models
re-trained from a general-domain version, however, we also note that this
difference is usually relatively small. Setting aside possible issues related to
the pre-training procedure (e.g. insufficient training), and given the avail-
ability of general-domain models which can be used to initialize training for
any specialized domain, we conclude that re-training from a general model
is still appropriate as it is less expensive and leads to comparable, although
slightly lower, performance.

• Despite the fact that specialized models using general-domain subword vo-
cabularies may perform on par with fully specialized ones, we argue that
having a subword-based tokenization system is still inconvenient in practice
(e.g. splitting a single word into multiple subwords). In an effort to go back
to simpler word-level models, we propose CharacterBERT, a variant of
BERT that does not rely on subwords but rather consults word characters to
produce word-level contextual representations. We conduct an evaluation on
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several medical tasks and show that overall, this model outperforms BERT
versions that have been in identical conditions. Moreover, we provide evi-
dence supporting the fact that CharacterBERT is more robust to noisy
texts containing several types of misspellings.

• We explore ways to specialize general-domain representations using knowl-
edge bases. More specifically, we develop a strong baseline using a simple
method relying on graph embeddings and concatenation. In this framework,
we restrict the knowledge base to the single most common type of rela-
tion is_a, which produces a single graph. Then, we embed this knowledge
graph using graph embedding methods5. Finally, we combine the word and
knowledge embeddings using a simple concatenation to produce a final set
of representations. We conduct an extensive evaluation here as well and
demonstrate that both static and contextual embeddings may effectively be
specialized using this simple approach.

• We extend the previous method to the specific case of BERT-like models
by proposing new layers called Knowledge Injection Modules (KIM) that
inject the knowledge representations directly within the model architecture.
Following the standard re-training approach (i.e. general domain then spe-
cialized corpora), we pre-train medical versions of BERT and Character-
BERT as well as versions relying on Knowledge Injection Modules, then
evaluate these models on several medical tasks. Our results indicate that
pre-training on a specialized corpus using KIMs is indeed able to improve
performance over plain re-training with a standard architecture. However,
we note that these results vary from one evaluation task to another, possibly
suggesting that this approach may be more relevant in some situations than
others.

Overall, our contributions tackle rather independent facets of the main issue.
As a result, we expect that some of these methods could be used together to achieve
an even greater degree of specialization of general-domain word representations.
Nevertheless, it is also fair to point out that our experiments focused on a single
setting (i.e. the medical domain and the English language) and may very well
not generalize perfectly to other languages and domains. However, we claim that
the methodology that we propose can be applied in other settings as well, since
our methods are arguably agnostic to both the language and domain parameters.
Ultimately, we hope that our results hint at more general properties that would
hold in other similar settings. In an effort to facilitate future research on the

5As opposed to knowledge base embedding methods that would generally leverage different
types of relations.
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adaptation of word embedding to specialized domains, we open source our code
and share our pre-trained models whenever appropriate6.

1.5 Thesis Outline

This manuscript follows a simple outline which starts with a preliminary chapter on
background knowledge and related work (§2). This chapter introduces information
that is relevant to specializing word representations using in-domain knowledge.
The first section defines Transfer Learning and present ways in which it can be
used to leverage related corpora (§2.2). More specifically, we provide an overview
of Transfer Learning (§2.2.1) then proceed to focus on two specific aspects of it,
namely: Sequential Transfer (§2.2.2), which we present as the main approach that
is currently backing word embedding models; and Domain Adaptation (§2.2.3),
which includes methods to specialize models for target domains. Then, we provide
information on how to leverage external knowledge as well (§2.3). Specifically, we
introduce preliminary concepts related to ontologies and knowledge bases (§2.3.1).
Then, we present methods that leverage these external sources of knowledge to
improve existing embeddings, both static (§2.3.2) and contextual (§2.3.3). Finally,
we introduce meta-embeddings, as an additional and perhaps unorthodox way for
enhancing word representations with external knowledge (§2.3.4).

This is followed by a second preliminary chapter that briefly discusses the topic
of embedding evaluation (§3). Specifically, we give an overview of embedding
evaluation, discussing the difference between intrinsic and extrinsic approaches
(§3.2), then, we provide details about our own approach to evaluation through
means like random restarts, model ensembles and statistical significance (§3.3).

The next chapters follow closely our list of contributions. First, we focus on
leveraging text corpora (§4), which we show can be used to improve existing em-
beddings, confirming in the process the importance of both corpus size and domain
similarity (§4.2). We then propose a method for leveraging a small in-domain cor-
pus along with other widely available resources to produce results that are on par
with training in-domain representations (§4.3).

The following chapter tackles BERT-like models that use a subword vocabulary
(§5). In this context, we demonstrate that the original BERT vocabulary may not
be suited for specialized domains and train parallel models from scratch, on corpora
from different domains, using different vocabularies, to test our hypothesis (§5.2).
We then propose CharacterBERT, a new variant of BERT that does not rely
on a subword system and consults instead input tokens’ characters to produce
word-level contextual representations (§5.3).

6https://github.com/helboukkouri/phd-code

https://github.com/helboukkouri/phd-code
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Subsequently, we return to the topic of enhancing word representation with
in-domain information, this time focusing on using knowledge bases (§6). With
simplicity in mind, we develop a strong baseline consisting in knowledge base
embeddings (§6.2) and concatenation (§6.3) and demonstrate that it can lead to
important improvements when applied to both static word representations as well
as transformer-based models like BERT and CharacterBERT. Moreover, we
propose Knowledge Injection Modules (KIM) to directly incorporate knowledge
representations within the architecture of BERT-like models and show promising
results which we argue, however, to depend on how relevant the chosen external
knowledge is to the target task.

Finally, we conclude this manuscript (§7) by providing a summary of our find-
ings (§7.1), going one last time over our contributions (§7.2) and proposing multiple
future directions to further explore ways in which to improve word representations
with in-domain knowledge (§7.3).

1.6 Publications
Some of the work that we present in this manuscript has been the object of sub-
missions and/or publications in NLP conferences:

• Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, and Pierre Zweigen-
baum. 2019. Embedding strategies for specialized domains: Application to
clinical entity recognition. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Student Research Workshop,
pages 295–301, Florence, Italy. Association for Computational Linguistics

• Hicham El Boukkouri. 2020. Ré-entraîner ou entraîner soi-même ? stratégies
de pré-entraînement de BERT en domaine médical (re-train or train from
scratch ? pre-training strategies for BERT in the medical domain ). In Actes
de la 6e conférence conjointe Journées d’Études sur la Parole (JEP, 33e édi-
tion), Traitement Automatique des Langues Naturelles (TALN, 27e édition),
Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Au-
tomatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des
Étudiants Chercheurs en Informatique pour le TAL, pages 29–42, Nancy,
France. ATALA et AFCP

• Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, Hiroshi Noji, Pierre
Zweigenbaum, and Jun’ichi Tsujii. 2020. CharacterBERT: Reconciling ELMo
and BERT for word-level open-vocabulary representations from characters.
In Proceedings of the 28th International Conference on Computational Lin-
guistics, pages 6903–6915, Barcelona, Spain (Online). International Commit-
tee on Computational Linguistics

https://doi.org/10.18653/v1/P19-2041
https://doi.org/10.18653/v1/P19-2041
https://www.aclweb.org/anthology/2020.jeptalnrecital-recital.3
https://www.aclweb.org/anthology/2020.jeptalnrecital-recital.3
https://www.aclweb.org/anthology/2020.jeptalnrecital-recital.3
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
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• [Under Submission] Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
and Pierre Zweigenbaum. 2021. A Simple Approach to Specializing Both
Static and Contextual Embeddings Using Knowledge Graphs.

https://arxiv.org/
https://arxiv.org/




Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides background knowledge about two main ways in which word
representations may be constructed and further improved, namely: leveraging re-
lated tasks and corpora, and leveraging external knowledge in the form of on-
tologies and knowledge bases. These two approaches are also the two main axes
through which we explore the topic of this thesis, with Chapter 4 focusing on uti-
lizing text corpora and Chapter 6 focusing more on external resources and knowl-
edge bases. In the following, we first address leveraging related tasks and corpora
within the perspective of Transfer Learning, for which we provide an overview. We
also show how word embeddings can be positioned within this Transfer Learning
framework as a direct application of Sequential/Model Transfer. We then provide
a brief review of Domain Adaptation and show how model pre-training, which is
traditionally seen as a transfer method, can be used to adapt general-domain rep-
resentations or monolingual models to new domains and languages. Eventually,
we address the topic of external knowledge and how it can be leveraged to improve
NLP systems, more specifically word embeddings. After briefly introducing some
of the main sources of external knowledge, we delve into how both traditional (i.e.
static) word representations as well as more modern pre-trained language models
can be improved using such knowledge. Ultimately, we discuss meta-embeddings,
an approach that aims to combine multiple sets of word representations, and talk
about how these aggregated embeddings can be used in a knowledge injection
context to produce specialized word representations.

25



26 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Leveraging Related Tasks and Corpora

Three main scenarios generally occur in Machine Learning: unsupervised learning ,
when only unlabeled data is used; supervised learning , when only labeled data is
used; and semi-supervised learning , when both labeled and unlabeled data is used.
In the traditional supervised learning setting, there are two inapparent assump-
tions which are often made. First, it is assumed that the available data is large
enough to enable the training of a model with good performance. Second, it is
also assumed that any future data is similar enough that the trained model will
have no difficulty generalizing to unseen examples. In practice, however, these
assumptions rarely hold, and most often than not the actual problems which are
tackled do not come with enough labeled examples (i.e. low resource setting), and
future data is frequently different enough that the performance of trained models
slowly deteriorates with time (i.e. domain shift (Gretton et al., 2009)). As a result,
modern NLP systems usually rely on Transfer Learning (TL), a set of tools that
leverages data from different tasks and/or domains (called source) to build models
with improved performance on a specific task and/or domain of interest (called
target). In this context, our goal, which we recall to be specializing word represen-
tations using in-domain resources, can be seen as leveraging existing models from
a source domain (i.e. general-domain embeddings), along with resources from the
target domain (i.e. in-domain corpora and knowledge bases), in order to produce
better word representations for this specialized domain.

2.2.1 An Overview of Transfer Learning

While most views agree on the general definition of Transfer Learning, there is
nonetheless a variety of ways to categorize its different techniques (Shao et al.,
2014; Tan et al., 2018). One such way that is relatively up-to-date with cur-
rent state-of-the-art is (Ruder, 2019) which condenses Transfer Learning methods
into two greater categories that ultimately lead to four main approaches (see Fig-
ure 2.1). On one hand, transductive transfer deals with situations where the source
and target tasks are similar but their domains differ. This typically includes Do-
main Adaptation methods (DA), which deals with different domains within the
same language, and Cross-lingual Learning (CL), when the two domains are ac-
tually instances of two different languages. On the other hand, inductive transfer
tackles situations where the source and target domains may be similar but the ac-
tual tasks differ. In practice, this leads to instances of Multi-task Learning (MtL),
when two or more tasks are learned in parallel, or Sequential Transfer Learning
(STL) when these tasks are learned sequentially.

In what follows, we will be focusing on Sequential Transfer Learning (§2.2.2)
and Domain Adaptation (§2.2.3) as these will be covering most of the methods
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Figure 2.1: A taxonomy for transfer learning in NLP. Credits go to Ruder (2019).
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presented in this manuscript. Nevertheless, it is interesting to note that while
these two approaches are different in theory, they can be difficult to tell apart in
practice. For example, re-training a general model on a specialized corpus may be
seen as a Domain Adaptation method, however, it may very well be seen as an
instance of Sequential Transfer as well since the features that were learned during
the initial general-domain pre-training are used to initialize a second pre-training
on the specialized corpora. Generally speaking, one useful rule of thumb is that
Sequential Transfer mostly aims to learn “general features” that can be transferred
over various downstream tasks and/or domains, while Domain Adaptation mostly
focuses on learning “domain-specific features” that will be useful for a specific
domain of interest.

2.2.2 Sequential Transfer Learning

In this section, we will be going over some early non-NLP work that leveraged
Sequential Transfer before delving into the different steps of STL and how it relates
to training word representations. Finally, we briefly mention recent work that helps
alleviate some forgetting issues that arise when training models sequentially.

Sequential Transfer in Computer Vision

Sequential Transfer Learning, also known as Model Transfer (Wang and Zheng,
2015) or sometimes simply “Transfer Learning”1, refers to a general approach where
a preliminary model is built on a source task before being transferred to an often
related but usually different target task with the aim of improving downstream per-
formance. Originally, this approach gained traction within the Computer Vision
(CV) community when models trained on large labelled datasets such as Ima-
geNet(Deng et al., 2009; Russakovsky et al., 2015) were shown to significantly
improve results on other downstream tasks (Yosinski et al., 2014; Huh et al., 2016),
with notable gains on image classification (Donahue et al., 2014), image segmen-
tation (Dai et al., 2016) and image captioning (Karpathy and Li, 2015); especially
when dealing with small challenging datasets (Oquab et al., 2014). Today, state-
of-the-art vision models are rarely built from scratch; instead, models pre-trained
on large image datasets are re-used and adapted in order to boost performance on
various target tasks (Radford et al., 2021; Goyal et al., 2021).

1In fact, although Transfer Learning as a whole includes other approaches like Multi-task
Learning and Domain Adaptation, the term “Transfer Learning” is often mistakenly used to refer
specifically to the Sequential Transfer Learning paradigm.
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Sequential Transfer in Two Phases

Sequential Transfer Learning consists of two phases: a pre-training phase and a
transfer phase2. With pre-training, a distinction can be made between the su-
pervised and unsupervised paradigms, with supervised pre-training referring to
situations where the model is pre-trained on a supervised task such as image clas-
sification or object detection on ImageNet. In the context of Natural Language
Processing, there have been instances of successful model transfer using supervised
pre-training. For example, neural text encoders pre-trained on Natural Language
Inference datasets have been shown to benefit several types of downstream tasks
such as text classification, textual entailment and paraphrase detection (Conneau
et al., 2017a). However, most successful attempts to pre-train NLP systems have
relied on unsupervised pre-training, which is able to leverage large amounts of
unlabeled texts3. While some pre-training procedures are purely unsupervised,
such as Latent Dirichlet Allocation (LDA) (Blei et al., 2001) which automatically
learns a set of topics that describe the input texts, most of them however are
self-supervised4, meaning that labeled examples are generated from the unlabeled
data, typically according to some reconstruction objective that aims to recover
missing parts of the original input, effectively making these pre-training tasks
supervised. In practice, the reconstruction task is often a variant of Language
Modeling (LM) where the source model has to predict the next word in a sentence
(i.e. traditional language modeling) or fill-in missing words (e.g. masked language
modeling). Presumably, training on these tasks encourages the source model to
acquire some level of linguistic knowledge which can then be transferred to down-
stream tasks resulting in improved performance. This transfer can be achieved
through one of two main methods: either using the pre-trained model output as
fixed features (a.k.a feature extraction), or by adapting the pre-trained model on
the target task via further training—often using the model as a component within
a larger task-specific architecture (a.k.a fine-tuning).

In what follows, we discuss Sequential Transfer Learning from a specific per-
spective that is closely related to the topic of this thesis: representation learning ,
and more precisely, word embeddings and how training and using these represen-
tations can be seen as an instance of Sequential Transfer.

2Sometimes, this is called the “adaptation” phase. However, we prefer the term “transfer” as
it is less likely to be confused with Domain Adaptation methods.

3For instance, the Common Crawl Project generates several tera-bytes of text data, crawled
from the internet, every month: http://commoncrawl.org/

4As recently coined by Yann LeCun.

http://commoncrawl.org/
https://www.facebook.com/722677142/posts/10155934004262143/
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Word Embeddings & Transfer Learning

Word embeddings are dense numerical representations of words that are learned
from usually large text corpora, and serve as features for encoding raw textual
information in machine learning models, particularly neural networks. As such,
training and using word embeddings can be seen as an application of Sequen-
tial Transfer where the source model (i.e. the word embeddings) is transferred to
improve performance on target tasks.

There are numerous word embedding methods and they all broadly fall into
one of two categories: static embeddings and contextual embeddings . Static embed-
dings assign a single representation to each word regardless of its context. These
are methods like word2vec (Mikolov et al., 2013), which assigns random rep-
resentations then adapt them so that words that co-occur together have similar
word vectors; GloVe (Pennington et al., 2014), which achieves a similar goal by
essentially decomposing a matrix of co-occurrence statistics5; and fastText (Bo-
janowski et al., 2017), which improves over word2vec by allowing unseen words
to be represented according to their spelling using sub-words units. However,
these static representations are unable to properly represent words with multiple
meanings which vary depending on the context. This may ultimately jeopardize
downstream performance as, for instance, a word like “bank” would be assigned an
identical representation in a financial context (e.g. “I withdrew some money from
the bank.”) and a scientific context (e.g. “In geography, a bank is the land along-
side a body of water.”). To address this issue, some methods aim to learn multiple
representations for each word, either according to a pre-defined number of senses
(Chen et al., 2015), or automatically learning the different word senses on the fly
(Neelakantan et al., 2014; Trask et al., 2015). These techniques, however, were soon
overtaken by methods that are able to take the context into account to produce
a continuous spectrum of representations, with early contextualization efforts like
context2vec (Melamud et al., 2016), generalizing the word2vec objective by
learning recurrent representations of word contexts6; and CoVe (McCann et al.,
2017), pre-training a similar architecture on Machine Translation datasets. While
these methods were not proposed as contextual word embeddings per se, they pre-
train recurrent neural networks which are able to produce context-dependent word
representations at each time step. Ultimately, ELMo (Peters et al., 2018a) trained
an actual word embedding model with contextual representations in mind using

5While the original formulation of the GloVe objective is more akin to a regression than a
matrix factorization, it has been shown that this objective essentially applies an iterative matrix
decomposition of co-occurrence statistics (see Section 2.4 of Levy et al. (2015)).

6Technically, context2vec does not aim to learn contextual representations of words per
se but rather uses a recurrent model for modeling a word’s context. However, this method may
be seen as a precursor to modern contextual models since the recurrent context representations
may be used as approximate contextual embeddings for their central words.
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recurrent neural networks. The model was pre-trained using a language modeling
objective on large general-domain corpora, and was successfully transferred via
feature extraction to improve downstream performance on several NLP tasks.

Most of the aforementioned methods pre-train a source model using self-super-
vised language modeling tasks. However, it is important to note that various efforts
have successfully pre-trained models in a purely supervised setting as well, namely:
using paraphrases (Wieting et al., 2016), image captions (Kiela et al., 2018a) and
dictionary definitions (Hill et al., 2016). Nevertheless, these pre-trained represen-
tations were usually transferred in a feature extraction fashion where static, con-
textual and sometimes both types of embeddings (Peters et al., 2017) were used
as fixed components in a model that is trained from scratch on the target task.
While such approaches have led to significant performance boosts on various kinds
of tasks (Collobert et al., 2011; Pennington et al., 2014; Xiong et al., 2018), train-
ing task-specific models from scratch is ultimately not desirable. Moreover, static
word representations, which were traditionally used as fixed features, have been
shown to transfer better when fine-tuned along with the target architecture (Kim,
2014a). This has led to more models being transferred via fine-tuning, which has
become standard when transferring pre-trained models. Nevertheless, fine-tuning
large pre-trained models is not always practical either and can be costly in both
computation and labeled data (Dai and Le, 2015; Mou et al., 2016).

More recently, ULMFiT (Howard and Ruder, 2018) showed that deep neural
language models trained on large corpora could be successfully transferred as a
whole and fine-tuned to reach state-of-the-art performance on text classification
tasks. Through a number of steps including a general pre-training, a second task-
specific pre-training with layer-wise optimization and a final fine-tuning with grad-
ual layer unfreezing, ULMFiT demonstrated that model transfer with end-to-end
fine-tuning was possible with only a limited number of labeled examples from the
target task. In the meantime, a novel neural architecture called Transformer
was proposed (Vaswani et al., 2017), improving over traditional convolutional and
recurrent layers in both speed and performance. This paved the way for new
methods like OpenAI’s GPT (Radford et al., 2018) which proposed a unified ar-
chitecture for transferring language models to a variety of NLP tasks including
Natural Language Inference, Sentence Similarity and Question Answering. Soon
after, the BERT model was proposed (Devlin et al., 2019), deeply impacting the
way modern NLP is performed. Building on the observation that standard lan-
guage modeling could only leverage unidirectional information7, BERT pre-trained
a deep architecture of Transformer encoders on a Masked Language Modeling
(MLM) task, a bi-directional alternative that consists in predicting masked words

7Models like ELMo try to achieve bidirectionality by concatenating representations from two
unidirectional models, however, this is not the same as having a strictly bidirectional architecture.
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in a sentence, similar to a cloze task (Taylor, 1953). Moreover, BERT was trained
on Next Sentence Prediction (NSP), a task that aims to determine whether two in-
put sentences are consecutive or randomly sampled, which supposedly8 allows the
model to better handle tasks that are at the sentence-pair level, such as like Natu-
ral Language Inference. More importantly, BERT could be seamlessly fine-tuned,
with a minimal amount of additional parameters and in an end-to-end fashion, to
reliably achieve state-of-the-art performance on a wide variety of NLP tasks.

Since the advent of BERT, the sequential transfer of transformer-based ar-
chitectures followed by an end-to-end fine-tuning has become ubiquitous; with
variants incrementally improving over this original model spawning regularly (e.g.
RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2020)). Notwithstanding,
some of these approaches stand out for specific reasons. For instance, T5 (Raf-
fel et al., 2019) attempts to unify various frameworks by casting NLP tasks as
text-to-text problems. GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al.,
2020) push the training of large models on large corpora to the extreme and demon-
strate interesting zero and few-shot capabilities for such large pre-trained language
models. Finally, ELECTRA (Clark et al., 2020) explores pre-training models that
discriminate true texts from realistic artificial inputs in an adversarial-like setting9.

Catastrophic Forgetting & Adapter Modules

Most modern NLP pipelines rely on fine-tuning large pre-trained models, which
can quickly become inefficient when dealing with multiple target tasks. In fact,
while earlier language models like BERT could be reasonably fine-tuned for a
single target task using modern processing units, more recent architectures tend
to be significantly larger (e.g. GPT-3), making them prohibitively expensive to
use and even more expensive to fine-tune on several tasks. Moreover, training
such large models has been known to be unstable (Dodge et al., 2020), with a
high sensitivity to optimization parameters that makes them prone to catastrophic
forgetting (McCloskey and Cohen, 1989; French, 1999)—a phenomenon where a
model forgets everything it has learned so far when re-trained on a new task. To
deal with these issues, Adapter Modules have been proposed, first in the context
of Computer Vision (Rebuffi et al., 2017) and eventually for Natural Language
Processing (Houlsby et al., 2019). These small layers can be placed within the
architecture of a pre-trained model like BERT such that during fine-tuning, all
original model parameters are fixed and only the adapter layers are trained. As a
result, the original pre-trained model is preserved and a new task-specific module

8In subsequent work the Next Sentence Prediction task has been shown to degrade the overall
quality of the model (Yang et al., 2019; Joshi et al., 2020).

9The authors do not actually use an adversarial objective but instead rely on maximum
likelihood.
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may be learned for each new task, leveraging information from the source model.
Along with feature extraction and end-to-end fine-tuning , Adapter Modules are
today one of the three main ways in which pre-trained models can be leveraged to
benefit downstream target tasks.

2.2.3 Domain Adaptation

In this section, we will be providing a definition of Domain Adaptation, as well as
a taxonomy for its methods. Then, we will focus on methods that aim to achieve
such adaptation by leveraging data in particular (i.e. as opposed to altering the
model architecture or training objective). Specifically, we go over data selection
and pseudo-labeling as two common data-centric techniques for domain adaptation.
Finally, we delve into pre-training as a third approach that is especially relevant
in the context of modern, language model-based, word representations.

Definition & Taxonomy

Contrary to Sequential Transfer where the goal is to learn general features that can
be useful for a variety of downstream tasks, Domain Adaptation usually seeks to
learn domain-specific features that are relevant to a particular target domain. This
is useful when dealing, for instance, with a source domain that has access to lots of
resources (e.g. corpora, labeled datasets, external knowledge) and a target domain
that lacks such resources. Here, we adopt a broad definition where “domain” refers
to a “distribution over the feature space”, as there is no clear consensus over what
constitutes a domain (Plank, 2016). As a result, Domain Adaptation may be seen
more generally as the practice of using available data from a source distribution
to improve performance over some target dataset with a different distribution,
usually within the same task (e.g. general-domain NLI −→ medical NLI).

Historically, there have been several ways to categorize Domain Adaptation
methods, and these have changed along with the notion of domain as well as the
evolution of statistical learning (Jiang, 2008; Margolis, 2011; Weiss et al., 2016).
One recent taxonomy however, that goes over traditional methods as well as more
modern approaches (Ramponi and Plank, 2020), categorizes Domain Adaptation
into: model-centric methods, which alter elements at the model-level such as the
objective function, the model weights or the model architecture; data-centric meth-
ods, which focus on selecting relevant data (i.e. Data Selection), using a source
model to generate labeled data (i.e. Pseudo-labeling) or using large unlabeled cor-
pora and/or auxiliary tasks (i.e. Pre-training); and finally, hybrid methods , which
leverage elements from both categories. In what follows, we will be focusing on the
data-centric approach to Domain Adaptation, specifically, pre-training methods,
as these are more relevant to the work we present in this manuscript.
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Data Selection & Pseudo-labeling

Data-centric approaches to Domain Adaptation are able to leverage large datasets
to build domain-specific systems. One such method is Data Selection, which aims
to detect instances from the source dataset that are likely to be useful for training
a model for the target domain. This has been mostly explored in Machine Trans-
lation for selecting a subset of parallel data that best matches the distribution of
in-domain texts (Moore and Lewis, 2010; Yasuda et al., 2008), but has also been
proposed for other tasks like sentiment analysis (Remus, 2012) and parsing (Plank
and van Noord, 2011). In practice, a similarity metric is used to select examples
from the source data as a pre-processing step before building a model for the tar-
get domain. Traditionally, this metric is either Language Model Perplexity, where
a language model trained on in-domain data is used to score source instances; or
Jensen-Shannon Similarity, which relies on the “distance”10 between the source and
target distributions.

Another data-centric approach is Pseudo-labeling, which has its roots in semi-
supervised learning (Abney, 2007; Chapelle et al., 2009). Broadly speaking, Pseudo-
labeling consists in leveraging source labeled examples to train an initial model,
then leveraging this model along with target unlabeled examples to generate new
labeled instances, enrich the original training set, and re-train the model again.
This (hopefully) virtuous loop is repeated until model performance does not im-
prove anymore. One of the simplest pseudo-labeling methods is self-training
(Yarowsky, 1995), where a single model is used to generate labels for its own
future training. However, this usually results in this model learning from its own
mistakes which in turn can amplify errors, especially when the labeled and unla-
beled data come from two different domains. An alternative to plain self-training
is co-training (Blum and Mitchell, 1998), where this time, two models are used
on conditionally independent feature representations of the original source data.
If these representations are sufficient for training good models, then label genera-
tion and training are dissociated by having high-confidence labels from each model
serve as additional examples for re-training the other model. However, finding fea-
ture representations that are both sufficient and independent is not always easy,
and instead, a more practical alternative is to rely on the tri-training (Zhou and
Li, 2005) approach. In this framework, three models are trained on different—
usually bootstrapped—versions of the source data. Then, each model is re-trained
on samples for which the other two models are highly confident.

Both Data Selection and Pseudo-labeling are still explored in recent work (Ma
et al., 2019; Coleman et al., 2020; Arazo et al., 2020; Xu et al., 2020). However, as
pre-trained language models took over modern NLP, pre-training has also become

10The Jensen-Shannon similarity is based on the Kullback–Leibler divergence. This measure
is not technically a distance per se as it is not symmetric.
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one of the most favoured methods for leveraging large amounts of data to adapt
general models to specific domains.

Domain Adaptation Through Pre-training

We have touched upon Sequential Transfer Learning as an approach for leveraging
available source data and learning general features that can be transferred across
various downstream tasks (see Section 2.2.2). However, some instances of Sequen-
tial Transfer actually serve a domain adaptation purpose, learning features that
are relevant for a specific target domain instead. In practice, these all involve
an in-domain corpus or task during the pre-training phase and may therefore be
seen as applying Domain Adaptation ideas—specifically, Data Selection11—in the
context of Sequential Transfer Learning.

The simplest way to achieve domain adaptation through pre-training is to train
models from scratch on in-domain data. There are several examples of such models,
for instance, FlauBERT (Le et al., 2020) and AraBERT (Antoun et al., 2020)
build language-specific BERT models for French and Arabic respectively by pre-
training on monolingual corpora. Similarly, CamemBERT (Martin et al., 2020)
and RobeCzech (Straka et al., 2021) train monolingual versions of RoBERTa
(Liu et al., 2019) on French and Czech corpora respectively. Another example
is PubMedBERT (Gu et al., 2020), which builds a specialized BERT model
for the biomedical domain by training the model on a large biomedical corpus.
However, training such models from scratch is not always practical and is orig-
inally the reason why Sequential Transfer was sought, learning and leveraging a
set of general-purpose features. Consequently, instead of training models from
scratch, some models use pre-trained models from the general domain to initialize
in-domain pre-training in what can be essentially described as two consecutive
model transfers: first, an initial pre-training that learns and transfers general fea-
tures, then, a second in-domain pre-training that leverages these general features
to learn and ultimately transfer domain-specific representations. Instances of such
double transfer are numerous as well, namely: SciBERT (Beltagy et al., 2019) and
FinBERT (Yang et al., 2020), which respectively train models for the scientific
and financial domains using pre-trained weights from general-domain BERT; and
RuBERT (Kuratov and Arkhipov, 2019), which trains a Russian BERT model
by leveraging weights from the multilingual version of BERT.

Pre-training a model twice, once on a general-domain corpus then a second
time on an in-domain corpus can be framed within the broader class of multi-
phase adaptive pre-training methods (Ramponi and Plank, 2020). In fact, this
particular instance of double pre-training is sometimes called Domain-Adaptive

11Usually, the data is selected manually by the NLP practitioner. However, this could also be
achieved using automatic data selection methods.
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Pre-Training (DAPT) and has been compared to a similar approach called Task-
Adaptive Pre-Training (TAPT) where, instead of a second pre-training on large
in-domain corpora, the language models are re-trained on smaller but more specific
task datasets (Gururangan et al., 2020). While DAPT often performed better
than TAPT, in practice, the authors show that both methods can be used jointly
to improve performance even further in what is essentially a triple pre-training: a
general-domain pre-training of the language model, then an in-domain pre-training
using a large in-domain corpus and finally a task-specific pre-training using the
target task corpus12.

Similar to general-purpose Sequential Transfer, Model Transfer for Domain
Adaptation has also been explored in both the unsupervised—specifically, the
self-supervised—and supervised settings. For example, one instance that aims
to leverage available labeled data in the source domain is AdaptaBERT (Han
and Eisenstein, 2019), which pre-trains BERT on a corpus made of both modern
English (source) and historical English texts (target), then fine-tunes the result on
labeled POS tagging examples from the source domain. In this case, it is inter-
esting to note that although the method includes a fine-tuning step, it may still
be considered as a pre-training technique since the whole process is used in prepa-
ration for a model that will be transferred to the target domain (i.e. historical
English)13. Another work that leverages labeled source data for domain adapta-
tion is Supplementary Training on Intermediate Labeled data Tasks or STILTs
(Phang et al., 2018), which was first introduced as a way to improve model transfer
in general by leveraging source labeled data, but was then used for the purpose of
the domain adaptation of multilingual models to specific languages (Phang et al.,
2020). More specifically, the approach consists in using a pre-trained multilingual
model (1st source domain), fine-tuning on English labeled task data from one or
multiple tasks (2nd source domain), fine-tuning again on the English version of the
target task, and finally transferring/evaluating the model on the target language
version of this target task (target domain—e.g. Swahili, Russian, German). Similar
to TAPT where a model is pre-trained in three steps on a general, in-domain and
finally a task-specific corpus; this zero-shot cross-lingual application of STILTs
applies the same principle of adapting a general-purpose model in progressively
more specific settings but relying on source labeled data instead.

2.2.4 Summary

While in theory it is possible to train good models for any purpose given enough
labeled examples, real life problems are often more chaotic and a number of differ-

12In practice, it is likely that only the task-specific pre-training will be necessary as there are
many publicly available pre-trained models for various domains, including specialized domains.

13Recall that sequential transfer consists of two steps: a pre-training step and a transfer step.
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ent issues may occur. Most often than not, the available data is scarce, and when
enough data happens to be available, the future data cannot always be expected to
come from exactly the same distribution. For all these reasons, many research ef-
forts have tried to augment the pool of usable data by looking at related tasks and
corpora. To this end, Transfer Learning aims to leverage such related resources to
build models and learn features that can be re-used, enabling and improving tar-
get tasks. Among these methods, Sequential Transfer Learning (STL) is probably
the most ubiquitous and is used today to pre-train large neural language models
that are then fine-tuned to deal with a wide variety of NLP problems. Applied
to specialized texts, this sequential transfer can also serve a domain adaptation
purpose, learning domain-specific features instead of general ones. Nevertheless,
text corpora are not the only resource that is available for building NLP systems.
In fact, in the following section, we review a number of methods that use differ-
ent kinds of resources, namely, knowledge bases and domain ontologies, which are
leveraged to further enhance corpus-based word representations.

2.3 Leveraging External Knowledge

Today, word embeddings have become a key component for most modern NLP
systems. These representations have proven to be effective on a wide set of ap-
plications, ranging from sentiment analysis (Socher et al., 2013) to entity recogni-
tion (Guo et al., 2014). However, some word embeddings still suffer from impor-
tant limitations that are due, in part, to the fact that these vectors are usually
trained following a tacit rule called the distributional hypothesis (Harris, 1954;
Firth, 1957). This rule essentially states that in any given language, similar words
will have a tendency to occur in similar contexts. As a result, it can be ex-
pected that analyzing a word’s context may hint at its meaning. Accordingly,
most embedding algorithms—and especially earlier methods like word2vec and
GloVe—use some form of co-occurrence information to build their word rep-
resentations14. These representations are then believed to encode some form of
word meaning, however, in practice, word embeddings often encode information
about word relatedness instead (Hill et al., 2015). For instance, words with similar
meanings such as “like” and “love” usually appear in similar contexts (i.e. talking
about appreciation), which leads to their representations being close in the em-
bedding space. However, related but antonymous words such as “like” and “hate”
would generally share practically identical contexts (e.g. “I liked this movie.”, “I

14While more recent models indirectly rely on co-occurrences through language modeling,
earlier methods either explicitly bias word vectors to be similar to their contexts’ representations
(e.g. word2vec, fastText) or directly leverage co-occurrence statistics during training (e.g.
GloVe).
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hated this movie”), thus leading to some antonyms having similar co-occurrence
statistics to synonymous words and ultimately similar word representations. Con-
sequently, word embeddings usually fail to encode precise meanings of words, and
in some cases, word relatedness as well when such words appear infrequently in
the training corpus. To address these issues, incorporating external knowledge has
been explored as a way to enhance existing word representations with external
information such as prior lexical (e.g. synonyms and antonyms) or domain knowl-
edge (e.g. what drug cures which disease). Usually, this information is organized
within structures like Knowledge Bases and Ontologies, which we briefly discuss
in the following section.

2.3.1 Knowledge Bases and Ontologies

As often when dealing with definitions, there is no clear consensus on what con-
stitutes a Knowledge Base. Generally speaking, however, a Knowledge Base (KB)
may be defined as a structure containing and possibly organizing information about
the world—or more reasonably, a specific domain. Technically, the term is believed
to have been introduced to refer to one of two components which, along with an
“inference engine”, usually compose traditional expert systems (Hayes-Roth et al.,
1983). In fact, knowledge bases have been used long before they were considered for
enhancing corpus-based representations. In earlier days of Artificial Intelligence,
when expert systems were relying on unstructured rule sets to solve complex prob-
lems, researchers soon came to the realization that these systems could scale up
by benefiting from the sharing and re-use of a large amount of common knowledge
(Pérez and Benjamins, 1999). As a result, many efforts have focused on building
large knowledge bases that could support inference in what has come to be known
as knowledge-based systems (KBS). In practice, these systems required the knowl-
edge to be structured in a way that lends itself to logical inference (e.g. objects
pointing to other objects as opposed to tables with numbers and strings), which
has ultimately led to the development of domain ontologies.

Generally speaking, an Ontology is a conceptualization of a domain (Gruber,
1995) which often takes the form of a tree-like structure relating different concepts
(e.g. “fever”, “shivers”) through a number of relations (e.g. “causes”, “is caused by”).
Since the early adoption of Ontologies as part of Expert Systems, these knowl-
edge structures have been extensively used in other areas as well15, namely: the
Semantic Web (Berners-Lee et al., 2001), where domain ontologies were proposed
to annotate Web pages in an attempt to enrich their contents with semantic infor-
mation16; e-commerce, for matching users with best compatible goods and services

15For a non-exhaustive list of domain ontologies, you can refer to this Wikipedia page.
16For instance, a shopping list containing vegetables would not be a simple list of strings, but

instead, a list of annotated elements with references to concepts such as “tomato” that would in

https://en.wikipedia.org/wiki/Ontology_(information_science)#Published_examples
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(Paolucci et al., 2003) or ensuring web security (Ekelhart et al., 2007); biomedicine,
with ontologies like SNOMED RT (Spackman et al., 1997), NCIt (Golbeck et al.,
2003), enabling several medical applications (Rector et al., 2019); and many oth-
ers (Meenachi and Baba, 2012; Jain and Singh, 2013). However, building domain
ontologies from scratch can be expensive and time consuming, usually requiring
human experts from said domain, which has led to the development of the field of
ontology learning (Hazman et al., 2011; Asim et al., 2018). Interestingly enough,
we note that ontology learning methods sometimes rely on raw textual data in
order to distill a structured form of knowledge (Omelayenko, 2001; Lenci et al.,
2007), which is opposite to the current trend of corpus-based NLP models looking
at such ontologies for information they were not able to learn from similar sources
of text.

Today, Knowledge Bases and Ontologies are used in Natural Language Process-
ing to enhance models with external knowledge. In practice, the reader may come
across other kinds of knowledge structures such as Lexicons, Thesauri, Knowledge
Graphs and Terminologies. While each structure has its own somewhat subtle and
specific set of attributes that differentiate it from the rest, in the end, they all have
in common that they contain prior knowledge which can be leveraged for improving
corpus-based models and word representations in particular. In what follows, and
for the sake of simplicity, we will often use the generic terms “knowledge base” and
“external knowledge” to refer to any of the aforementioned structures, including
domain ontologies.

2.3.2 Enhancing Traditional Embeddings

In this section, we will be going over the two main approaches for leveraging exter-
nal knowledge to enhance traditional word representations (i.e. static embeddings),
namely: Joint Specialization methods which add knowledge constraints during the
training procedure, and Post-processing methods which inject this information into
already pre-trained word vectors.

Joint Specialization: Injecting Constraints During Training

As previously discussed, external knowledge has been proposed to alleviate some of
the shortcomings of traditional text-based embeddings which tend to encode am-
biguous and incomplete information. Historically, earlier approaches to leveraging
external knowledge adopted an intuitive strategy and simply altered the optimiza-
tion process, injecting knowledge constraints into the objective function. Such
approaches are known as Joint Specialization methods. For instance, the CLEAR
method (Halawi et al., 2012) uses the WordNet knowledge base (Miller, 1998) to

turn have references to other concepts like “soup” or “agriculture” within the ontology.
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extract pairs of related words (e.g. synonyms/antonyms or hypernyms/hyponyms)
then biases word embedding learning to minimize the difference between these re-
lated words. Similarly, Yu and Dredze (2014) learn word2vec representations
from a news corpus while at the same time including linguistic constraints from
WordNet as well as a paraphrase database called PPDB (Ganitkevitch et al.,
2013) so that semantically related words are encouraged to have similar represen-
tations. Other methods generalize this approach by including additional kinds of
external knowledge, namely morphological and syntactic knowledge (Bian et al.,
2014); or distinguishing relational (e.g. Paris, is_capital_of, France) from
categorical knowledge (e.g. {GB, GBR, UK} is_alias_of United Kingdom)
(Xu et al., 2014).

However, only enforcing that related words and concepts be assigned similar
representations is not always enough. In fact, we recall that words such as “love”,
“hate” and “like” are all related despite some being antonymous to others and some
referring to a more intense feeling than others. This has led subsequent work to
focus on word triples instead of word pairs with, for instance, (Liu et al., 2015)
replacing the “A is related to B” constraints with ordinal constraints such as “A
is more similar to B than it is to C”. In practice, this is achieved by having the
objective function include an additional term that optimizes the cosine similarity
between A and B to be larger than the measure between A and C. Another work,
which actually does not rely on an external knowledge base but rather extracts
its constraints directly from text, is (Schwartz et al., 2015) where symmetric pat-
terns (Davidov and Rappoport, 2006) are used to actively push away antonymous
words. This approach was subsequently improved upon with Ono et al. (2015)
using external knowledge from WordNet and Roget’s Thesaurus (Kipfer, 1993),
and eventually a similar idea being reassessed by Nguyen et al. (2016).

Post-processing: Refining Embeddings With External Knowledge

Around the same time that methods were being developed for jointly specializing
word representations using external knowledge, a new approach was focusing on
refining existing representations in a post-processing fashion. Contrary to Joint
Specialization, where a model has to be trained from scratch whenever additional
knowledge constraints are desired, Post-processing methods further adapt existing
models and therefore tend to be more lightweight. Moreover, these methods are
generally agnostic to the kind of embedding technique that is used, as they only
expect a set of word vectors as input and make no assumptions on how it was
obtained.

The first influential post-processing method is probably retrofitting17 (Faruqui
17There is another paper that appeared around the same time and proposed a similar approach

called SenseRetrofit (Jauhar et al., 2015). While this shares some ideas with the work by
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et al., 2015), which casts the specialization problem as an optimization proce-
dure where retro-fitted vectors are encouraged to be closer to related words in a
knowledge graph while at the same time being prevented from diverging too much
from the original representations. By expecting a knowledge graph, retrofitting
homogenizes the expected format of external knowledge and only asks that it is
expressed as a graph of nodes (e.g. words, concept) and edges (e.g. synonymy,
hyponymy). More importantly, the retrofitting objective is convex, which makes
it easier and faster to solve. Faruqui et al. (2015) conducted a thorough eval-
uation of retrofitting, testing various types pre-trained vectors (e.g. word2vec
and GloVe), with multiple lexicons (e.g. WordNet and PPDB) and on various
tasks (e.g. synonym detection and sentiment analysis). In most cases, the post-
processing method greatly improved over existing joint-specialization techniques.
Naturally, this has led to several variations of retrofitting which attempted to
further refine this approach.

One such variation is counterfitting (Mrkšić et al., 2016) which, seeing that
retrofitting had only focused on word relatedness, and, in the same spirit as existing
Joint Specialization methods that leverage synonym/antonym relations (Schwartz
et al., 2015; Ono et al., 2015), proposed a different objective so that synonyms
would attract each other, antonymous words would repel each other, while at the
same time preserving existing structure (i.e. distances in the original embedding).
Soon after, the counterfitting approach was further refined to leverage semantic in-
tensity information which can be automatically extracted from texts (Kim et al.,
2016a). In this framework, similar words with similar intensities are pulled to-
gether, and antonyms are used to optimize similar words with different intensities
such that an antonym is always closer to a weaker word than it is to a stronger
one.

One subsequent method was Attract-Repel (Mrkšić et al., 2017) which built
on the counterfitting method as well as an earlier technique called Paragram
(Wieting et al., 2015) that had previously managed to refine word representations
using paraphrase information. Attract-Repel introduced improvements to the
overall optimization procedure and was not only applied for refining existing rep-
resentations but also for building cross-lingual representations using multilingual
lexical information from BabelNet (Navigli and Ponzetto, 2012; Ehrmann et al.,
2014). In fact, by leveraging synonyms across multiple languages18, this method is
able to represent words from multiple languages in a joint embedding space that
is then used to improve, for instance, tasks in low-resource languages (e.g. Hebrew
and Croatian).

Building on the Attract-Repel method, an approach simply called post-

Faruqui et al. (2015), the latter is more general in the kind of external knowledge it considers.
18BabelNet compiles synonyms from different languages within structures called synsets.
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specialization (Vulić et al., 2018) tackled the issue of words that do not appear in
the external resource. In fact, all post-processing methods so far could only alter
words for which there exists some information in the various thesauri and lexicons;
for all other words, the representations would remain unchanged. In the post-
specialization approach, the Attract-Repel method is first used in conjunction
with external knowledge to learn retrofitted vectors for words appearing in the
resource. Then, given the original and transformed vectors, a neural network
is trained to reproduce the transformed representations from the original ones.
Eventually, this transformation is applied to unseen words so that all words can
be refined, which ultimately would lead to improved results.

In a similar spirit, a method called explicit retrofitting (Glavaš and Vulić, 2018)
also aims to learn a global function for specializing the whole vocabulary of words,
however, the difference lies in the way supervision is achieved: instead of relying on
an initial specialization step to generate vector pairs and learn a global transforma-
tion, explicit retrofitting directly transforms the lexical constraints into regression
examples by assigning to word pairs w1, w2, either a minimal similarity value for
synonyms (smin = −1), a maximal similarity for antonyms (smax = 1), or—in
order to preserve existing structure within the pre-trained vectors—the original
similarity value (s = cos(w1, w2) ∈ (smin, smax)) when no constraint exists for the
word pair. Recently, more advanced architectures such as Triplet Networks were
leveraged for a similar purpose (Wang et al., 2014; Schroff et al., 2015), improving
performance even further (Shah et al., 2020).

2.3.3 Enhancing Pre-trained Language Models

While improving traditional representations with external knowledge has been ex-
tensively explored through both joint specialization and post-processing methods,
modern NLP systems usually do not rely on static representations, but instead,
tend to leverage large pre-trained language models that can produce more ex-
pressive contextual embeddings. Incidentally, accounts of successfully improving
these language models using methods that merely adapt a pre-trained model in a
post-processing fashion have been relatively sparse with, namely, Shi et al. (2019)
retrofitting ELMo using paraphrase constraints to achieve varying degrees of im-
provement on downstream tasks. The scarcity of such approaches in the context
of pre-trained language models may be due to their relative brittleness and sus-
ceptibility to catastrophic forgetting (Kirkpatrick et al., 2017; Arora et al., 2019).
Nevertheless, there have been various efforts that achieved different degrees of
knowledge injection through changes to the original model architectures and/or
the training objectives.

In the following paragraphs, we briefly discuss the knowledge that seems to
be already encoded within pre-trained language models. Then, we provide a non-



2.3. LEVERAGING EXTERNAL KNOWLEDGE 43

exhaustive list methods specializing these models with external models, grouping
together techniques with similar approaches:

Knowledge Contained in Pre-trained LM Pre-trained language models have
been shown to encode a great deal of linguistic knowledge (Goldberg, 2019; Lin
et al., 2019), with lower layers usually encoding more syntactic information (Peters
et al., 2018b; Manning et al., 2020) and the overall models encoding information
about part-of-speech, syntactic chunks, as well as semantic roles, entity types,
etc. (Tenney et al., 2019). Moreover, thanks to various probing efforts (Petroni
et al., 2019; Roberts et al., 2020), pre-trained language models have been shown to
often contain enough factual knowledge to be competitive with other methods re-
lying directly on actual knowledge bases19. Nevertheless, similar to the traditional
static representations, general-purpose language models are also able to benefit
from some degree of specialization using external knowledge.

External Knowledge but Not a Knowledge Base One example of specializ-
ing pre-trained language models with external knowledge, which, incidentally, does
not use an actual knowledge base, is SemBERT (Zhang et al., 2020). Instead, this
model leverages an external Semantic Role Labeling model to generate semantic
role representations which are ultimately concatenated with BERT’s contextual
vectors, presumably incorporating additional semantics into the language model.
While not technically leveraging a knowledge base, this work is interesting in that
it demonstrates that pre-trained models may also be used to enrich word repre-
sentations with semantic information in a way that enhances these representations
and boosts downstream performance.

Enhancing LMs by Altering the Input Text Another example of language
models improved using external knowledge is K-BERT (Liu et al., 2020), which
proposes various modules to inject knowledge base information into BERT models.
Specifically, this method relies on a knowledge layer that converts any input se-
quence (e.g. Tim Cook is visiting Beijing) into a knowledge-rich sentence tree (e.g.
Tim Cook {CEO, Apple} is visiting Beijing {capital, China; is_a, city}).
This sentence tree is then fed to an embedding layer which generates context-
independent token representations20. Then, a seeing layer produces a matrix that
informs the model of which elements from the sentence tree are visible to each
other. Finally, a different module called mask-transformer encoder uses this ma-
trix to iteratively contextualize the sentence tree, similar to how BERT encoder

19A more detailed review of the different types of knowledge that are encoded within BERT-
like models is available in (Rogers et al., 2020).

20Here, a token is an element of the tree rather than an actual token from the original sentence.
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layers contextualize subword representations but only allow visible elements to
attend to each other. Ultimately, the output vectors are used as features, improv-
ing performance on different downstream tasks when using knowledge bases from
either the general or medical domain.

Enhancing LMs Using Knowledge Embeddings Focusing more on exist-
ing attention mechanisms, the KnowBERT approach (Peters et al., 2019) adapts
BERT’s multi-head attention to directly incorporate external knowledge into the
model’s hidden representations. Interestingly, this method uses the knowledge
base implicitly by relying on knowledge base representations instead of KB triples.
Moreover, the model uses an integrated entity linker that can be trained along
with other model parameters during pre-training. In practice, for each knowledge
base, KnowBERT adds a Knowledge Attention and Recontextualization com-
ponent (KAR) to the bottom layers of BERT’s architecture which essentially
applies the following transformations: first, the incoming hidden representations
are projected down to the same size as the pre-computed knowledge base embed-
dings; then, vectors within each mention span are pooled together to produce a
single mention representation; all mention embeddings are contextualized through
self-attention so that each mention can attend to all other mentions occurring
in the input; in parallel, the integrated entity linker computes a weighted linear
combination of all candidate entities’ knowledge representations which results in
a single knowledge vector for each mention from the input text; eventually, the
contextualized mention representation is combined (through addition) with the ag-
gregated knowledge vector, producing an updated set of mention representations
that are used to re-contextualize the original hidden representations of all input
tokens via self-attention21; finally, these “knowledge-enhanced” hidden represen-
tations are fed to subsequent Transformer layers—possibly going through the
same process again if any other knowledge bases are used. While KnowBERT
is probably among the most successful attempts at leveraging knowledge graph
embeddings to inject external knowledge into transformer-based language models,
other methods have adopted a similar approach with similar results. One such
instance is ERNIE (Zhang et al., 2019), which proposes new encoder modules
that can use entity embeddings trained on Wikidata22 to contextualize BERT’s
representations. Instead of using the usual stack Transformer encoders, this
architecture relies on stack of T-Encoders, which essentially act as a vanilla
BERT model and produce contextual token representations; followed by a stack
of K-Encoders, which iteratively apply the following transformations: first, the

21More specifically, the projected versions of the original hidden representations are contextu-
alized before being projected up to their original dimension and fed forward.

22https://www.wikidata.org/

https://www.wikidata.org/
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entity embeddings of mentions occurring in the input text are contextualized; then
the token representations are contextualized as well, before both sources of infor-
mation are combined using an information fusion module which essentially applies
a dense layer on top of the concatenation of both vectors. Ultimately, the output
representations are used to compute new token and entity representations which
are eventually fed to the next K-encoder.

Enhancing LMs Using Knowledge Retrieval More recently, and in a slightly
different line of work, a Retrieval-Augmented Language Representation Model pre-
training paradigm (or REALM for short) was proposed (Guu et al., 2020), where a
BERT-style “knowledge retriever” model is trained to retrieve relevant information
from a large text corpus (e.g. Wikipedia) in order to provide useful contexts
that help a second Transformer model called “knowledge-augmented encoder”
recover correct masked tokens during pre-training. In practice, this means that
when the encoder model has to predict a masked token in a sentence like “We paid
twenty [MASK] at the Buckingham Palace gift shop.”, the knowledge retriever
model would select information from the corpus such as “Buckingham Palace is
the London residence of the British monarchy.” to disambiguate the context. As
a result, the overall system is ultimately able to retrieve relevant information
from a text corpus to support inference, which has been shown to bring notable
improvements on tasks such as Open Question Answering. Subsequently, work by
Agarwal et al. (2021) improved upon this REALM system, using a transformer-
based text-to-text model to verbalize a large amount of Knowledge Base triples
into a useful knowledge-rich corpus called KeLM.

2.3.4 Combining Text and Knowledge Representations

In this section, we present meta-embeddings , an approach that consists in com-
bining different sets of representations for achieving improved performance. First,
we review how these meta-embeddings can be leveraged in a knowledge injection
setting, combining text-based embeddings with knowledge representations. Then,
we provide some context on how this approach is used in more general settings.

Meta-embeddings for Knowledge Injection

Some of the previously mentioned methods differ slightly from all other techniques
in one particular aspect: they rely on pre-trained knowledge representations in-
stead of using the knowledge base information directly. Such methods deserve
a bit more focus as they allude to the general idea of meta-embeddings , where
two (or more) different sets of representations are combined to produce a final
set of improved embeddings. This combination may be achieved through different
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means, and may serve different end goals. For instance, KnowBERT, which we
mentioned previously, uses knowledge graph embeddings to contextualize BERT’s
internal representations. In this case, this process may be seen as using the self-
attention mechanism to combine two sets of embeddings (i.e. BERT’s hidden
representations on one hand, and the knowledge embeddings on the other) for
the purpose of enhancing the model with external knowledge. Another, perhaps
more obvious, case of using meta-embeddings for leveraging external knowledge
is (Goikoetxea et al., 2016), where the authors compare multiple ways to com-
bine corpus-based word representations with knowledge embeddings obtained us-
ing a language model that is trained on randomly generated random walks over
WordNet (Goikoetxea et al., 2015). In this work, the authors conclude that
a simple concatenation of word and knowledge representations, with possibly an
additional Principal Component Analysis (PCA) step, is sufficient to get results
that outperform other specialization methods like retrofitting. This result is fur-
ther confirmed by other experiments where, this time, PCA is shown to perform
best (Jana and Goyal, 2018). In one instance, representations from three different
modalities (text, knowledge base and images) are combined using several meth-
ods (average, concatenation, Singular Value Decomposition (SVD), etc.) and are
shown to improve significantly over uni-modal representations on word similarity
tasks (Thoma et al., 2017). Similarly, in the biomedical domain, representations
built from medical knowledge bases were combined through concatenation with
input word embeddings of neural systems and were shown to improve downstream
performance (Wu et al., 2018; Jiang et al., 2019; Wang et al., 2019).

Meta-embeddings in the General Literature

In a context where dense co-occurrence based word representations had taken
the NLP community by storm (Collobert and Weston, 2008; Mnih and Hinton,
2008; Huang et al., 2012; Mikolov et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2017), various efforts have considered ways to leverage different sets of word
embeddings for building a single improved set of final representations. In fact,
independently trained word representations seem to exhibit a great variance in
the features that they learn (Chen et al., 2013) with, for instance, monolingual
and bilingual models learning different types of semantics (Hill et al., 2014a,b).
Naturally, model ensembles have been constructed for leveraging this variance,
improving the overall downstream performance (Bansal et al., 2014). As a result,
and based on previous work showing the benefit of using multiple sets of repre-
sentations (Turian et al., 2010; Tsuboi, 2014; Luo et al., 2014; Yin and Schütze,
2015; Zhang et al., 2016), Yin and Schütze (2016) proposed a few simple methods
for effectively constructing meta-embeddings from different sets of representations,
namely: concatenation, where each vector set is normalized and possibly weighted
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according to its expected contribution before all are concatenated; SVD , where the
aforementioned concatenated vectors are projected down through singular value
decomposition before being normalized; and 1toN , a slightly more complex ap-
proach where randomly initialized meta-embeddings are trained to reproduce each
singular embedding through a linear projection. Besides bringing consistent im-
provements over source vectors, these meta-embeddings have also been shown to
alleviate out-of-vocabulary issues by leveraging representations with different lev-
els of vocabulary coverage. Later, (Bollegala et al., 2018) proposed to learn meta-
embeddings as local linear projections to leverage local information in the source
embedding spaces. Here, local representations are learned as linear combinations
of k-nearest neighbours in each source embeddings before being projected to a
common global embedding space. Subsequent work explores simpler approaches
involving linear combination. For instance, Coates and Bollegala (2018) demon-
strate that meta-embeddings can be constructed by simply averaging representa-
tions from different source embeddings—with possible additional padding. This
“frustratingly easy” method is then shown to perform on par with concatenation
while keeping dimensionality under control. Kiela et al. (2018b) then generalize
this idea and propose to use an attention mechanism (Bahdanau et al., 2015) in
order to dynamically learn the linear combination weights. To handle source em-
beddings with different sizes, the authors propose to project each set of represen-
tations to a common space with the same dimensionality. Finally, more methods
like geometric meta-embeddings (Jawanpuria et al., 2020) and word prisms (He
et al., 2020b) propose further refinements by enforcing additional orthogonality
constraints.

2.3.5 Summary

While it is natural to consider textual data when dealing with Natural Language
Processing tasks, external knowledge in the form of ontologies, lexicons and more
generally knowledge bases can also provide valuable information for further refin-
ing corpus-based systems. In this section, and with a particular focus on word
representations, we have seen different approaches for leveraging such structured
information. These methods vary according to the nature of the underlying word
embeddings, with those applied to static representations generally constraining
model training (Joint Specialization) or specializing existing representations (Post-
processing), and those refining large neural language models generally relying on
some form of modification to the model architecture and/or training objective. We
have also discussed meta-embeddings—a general approach for combining multiple
representations—highlighting its usefulness for incorporating external knowledge
as long as it is pre-encoded in vectorial form. Incidentally, and while perhaps un-
conventional, we argue that knowledge injection methods can be framed within a
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more general Transfer Learning context. For instance, Joint Specialization meth-
ods, by virtue of changing the training objective, may be seen as model-centric
domain adaptation methods. Similarly, Post-processing techniques, given they
fine-tune existing representations on auxiliary retrofitting-like tasks, may be seen
as particular instances of domain adaptive—specifically, task adaptive—transfer.
In the same spirit, meta-embeddings may be seen as combining elements from both
data-centric domain adaptation (i.e. augmenting the model features) and sequen-
tial transfer (i.e. using pre-trained knowledge embeddings), making it, in some
sense, a Transfer Learning technique as well.

2.4 Conclusion
In this chapter, we have reviewed a number of ways to specialize word repre-
sentations by leveraging two different kinds of resources, namely: corpora and
knowledge bases. By utilizing these resources together, it is expected to be able
to construct NLP systems that go beyond the usual exploitation of texts, possibly
including some extent of prior human knowledge as well. In the remainder of this
manuscript, we will be largely relying on Transfer Learning tools—specifically, Se-
quential Transfer (e.g. for pre-training word representations) and domain-adaptive
transfer (e.g. for training in-domain representations)—in order to build specialized
models from scratch or refine existing general-purpose representations for specific
target domains (e.g. the clinical and biomedical domains). In particular, we will
be investigating how corpus size and domain similarity interact in this process,
before proposing a method for building good in-domain representations while only
leveraging a possibly small target task corpus. However, leveraging such corpora
is only one side of the domain adaptation coin, as models trained using text cor-
pora, both general and specialized, can only indirectly learn about actual world
knowledge. Accordingly, we will also be exploring knowledge injection techniques
and how these may be used in a domain adaptation setting to further refine word
representations. Specifically, we will rely on meta-embeddings and will use them
to refine both static and contextual types of representations. Moreover, and con-
trary to a number of existing knowledge injection techniques, we make it a point
to adopt a simple approach which, arguably, enables the construction of strong
baselines and simplifies any subsequent improvements.



Chapter 3

Embedding Evaluation via
Downstream Performance

3.1 Introduction

Before delving into the more analytical topics of this thesis, we linger for a while on
an important question of any experimental work: model evaluation. Specifically,
we briefly review some of the different methods for evaluating word embeddings,
providing our own perspective on the topic. Then, we go over the different ways
that we have progressively adopted in this work in an effort to perform a fair and
rigorous evaluation of our models.

3.2 Overview of Embedding Evaluation Methods

The NLP literature includes various methods for evaluating word embeddings
(Bakarov, 2018) and these are generally categorized into two groups: intrinsic
and extrinsic evaluations (Schnabel et al., 2015). Intrinsic evaluations consist in
testing word representations directly for their semantic and syntactic contents, for
instance, through word similarity (e.g. WS-353—Finkelstein et al. (2001)) or word
analogy tasks (e.g. SAT—Turney et al. (2003)). These evaluations usually require
some form of knowledge resource that serves as a gold standard and through which
they are supposed to test the quality of word representations independently of any
specific NLP task. Extrinsic evaluations, on the other hand, rely on target tasks
such as sequence labeling (Xu et al., 2018), or text classification (Ravi and Ravi,
2015), and use the downstream performance on these tasks as a metric for eval-
uating the quality of the underlying embeddings. While extrinsic evaluations are
generally criticized for being too task-specific and not providing insights that are
general enough to reflect the inherent quality of tested word representations, in-
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trinsic evaluations, on the other hand, are often criticized for providing information
that is not strongly correlated with extrinsic performance (Tsvetkov et al., 2015;
Faruqui et al., 2016).

Intrinsic or Extrinsic, Which is Better? Notwithstanding, we argue that
intrinsic and extrinsic evaluations rest on a similar principle and that, in essence,
both approaches are virtually the same: they both rely on a gold resource (e.g.
thesauri, labeled classification datasets) and evaluate the ability of systems relying
on different word representations to produce results that are consistent with said
gold standard. In this context, the most notable difference between methods that
traditionally fall into either the intrinsic or extrinsic categories probably resides
in whether these systems rely on task supervision before the evaluation step. For
instance, a bag-of-word sentence similarity system that averages word represen-
tations to produce sentence-level embeddings would be evaluated “intrinsically” if
the underlying pre-trained embeddings have never been fine-tuned specifically for
this similarity task, and “extrinsically” otherwise. In the end, a practical view of
model evaluation would be that a good method is one that is best suited for the
immediate need. In that sense, a good embedding evaluation anticipates the ex-
pected purpose of these representations and compares model performance on tasks
that are likely to be performed with these word embeddings.

3.3 Our Approach to Embedding Evaluation
Throughout this thesis, we have grown progressively more sensitive to the question
of embedding evaluation and have adopted, as a result, a number of practices in
an attempt to perform a fair and careful evaluation of our representation systems.
In the following paragraphs, we discuss the main techniques which we have used
to perform these evaluations:

Multiple Random Restarts Computing a score distribution over multiple
restarts and reporting the mean and standard deviation instead of a single score is
unfortunately not a common standard in current NLP, especially in the context
of large neural models, and despite different efforts advocating such a practice
(Reimers and Gurevych, 2017; Lucic et al., 2018; Dodge et al., 2019). While re-
porting only a single performance can be harmful for the overall reproducibility of
the results (i.e. giving wrong ideas about the expected performance of a model),
this has also been shown to lead to false conclusions. For instance, Ma and Hovy
(2016) proposed a sequence labeling system that was claimed to improve over a
similar architecture by Lample et al. (2016). However, a more exhaustive explo-
ration involving multiple random restarts of these models (Reimers and Gurevych,
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2017) showed that the latter was actually better overall, with a score distribution
that is both narrower (less variance) and higher (better scores on average). In order
to avoid such biases in our own evaluations, we compute, whenever appropriate, a
sample of the score distribution by running multiple (>10) random seeds for each
model. Then, we report the mean and standard deviation for these distributions
in an attempt to provide a fair and clear picture of the model behaviours. On a
different yet related note, we also systematically train our models from scratch and
in the exact same distribution despite similar models (e.g. general-domain BERT)
being publicly available. This allows, in particular, to improve the fairness of our
evaluations when running multiple seeds is not practical (e.g. when pre-training
neural language models).

Model Ensembles Score distributions are useful and provide material for com-
puting global performance statistics such as the sample mean and standard devi-
ation, ultimately enabling a better interpretation of the results. However, com-
puting these statistics is not the only way to aggregate the score information. In
this thesis, we explore model ensembles as both a way to boost model performance
and to summarize—to some extent—the score distribution. In fact, computing the
average performance can be seen as a “downstream” approach to providing a single
representative score for each model. In this context, computing ensembles may be
seen as more of an “upstream” approach, combining models prior to the evaluation
step. In practice, we rely on a simple voting strategy to combine the predictions of
multiple models into a single one, keeping only the most frequently predicted label
for token and sequence classification tasks, and averaging the model outputs for
regression tasks. Moreover, we account for the variance of these ensembles as well
and refrain from combining all seeds into a single ensemble. Instead, we build a
set of ensembles for each model by excluding a single seed, computing an ensemble
with the remaining seeds and repeating this process. Ultimately, we compute the
mean and standard deviation of the ensemble distribution and use it for comparing
our models.

Statistical Significance Tests These are probably the safest ways to compare
models, provided that the score distributions respect the tests’ underlying assump-
tions. There have been a growing interest for applying different statistical tests
in NLP (Dror et al., 2018; Zhu et al., 2020), motivated by analyses showing the
complex relationship between model performance and statistical significance, and
advocating such formal tests as a general practice for validating metric gains in
NLP (Berg-Kirkpatrick et al., 2012). In the context of this thesis, we would argue
that computing average performance scores is a first step in the right direction. In
fact, assuming the test distributions follow a normal distribution, these averages
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could serve as the basis for t-tests (Student, 1908) which could provide information
about the statistical significance of the difference between two models. However,
in an effort to not make any particular assumptions that may bias our interpreta-
tion, we rely instead on Almost Stochastic Order tests (ASO) (Dror et al., 2019).
These methods aim to determine whether a “stochastic order” exists between two
models based on their respective sets of evaluation scores. In practice, given the
set of performance scores of two models A and B, the method computes a test-
specific value ε that indicates how far model A is from being significantly better
than model B. Specifically, this distance ε is equal to 0 when model A � B, 1 when
B � A, and 0.5 when no order can be determined.

3.4 Conclusion
Model evaluation is a complex matter, yet, its importance cannot be denied. In
present-day NLP, however, evaluation is too often performed on the basis of single
model results. These single scores can be harmful to the overall reproducibility of
the results and may even lead to false conclusions. For these reasons, we adopt
in this thesis a number of practices in an attempt to perform fair and—to some
extent—rigorous system comparisons. These methods revolve mainly around us-
ing multiple seeds to produce score distributions that can be ultimately leveraged
for computing global statistics (e.g. mean, std), model ensembles as well as sta-
tistical significance tests. Our approach, however, is not perfect and still has the
potential to be refined further. One major way in which we could improve our
methodology is to account for the fact that we sometimes make a large number of
model comparisons. In fact, along this thesis, we progressively constitute a large
set of evaluation tasks in an effort to provide a broader view of the different sys-
tems’ strengths and weaknesses. However, these multiple comparisons compound
the possible errors that may occur when comparing systems on a single task, thus
increasing in a non-obvious way the chance of a misinterpretation. Future work
may tackle this issue using Bonferonni correction (Dunn, 1961) as well as explore
any other techniques for performing robust model evaluations on multiple tasks.



Chapter 4

Improving General Representations
Using In-domain Corpora

4.1 Introduction

With word embeddings and neural architectures having become the go-to approach
for solving complex NLP tasks, leveraging text corpora to construct these embed-
dings is today a common practice. Generally, texts from different sources are
mixed together (e.g. news articles, encyclopedic entries, different genres of litera-
ture), constituting a somewhat hybrid domain that has come to be known as the
“general domain” in order to compile sufficiently large corpora that allow the train-
ing of representations with good levels of performance. In fact, the downstream
performance of word embeddings has been shown to positively correlate with the
size of their training corpus, with successive leaps in performance being attributed
to different methodological breakthroughs which have allowed the intake of larger
and larger quantities of texts (Bengio et al., 2000; Collobert and Weston, 2008;
Mikolov et al., 2013). Nevertheless, corpus size is not the only relevant parameter
when pre-training word representations, especially when aiming for an application
in a specialized context such as the medical domain. In fact, relying on corpora
from similar distributions as the target domain can drive performance further, as
these tend to exhibit similar patterns to those expected for the final task. As a
result, a natural question arises about which of a larger corpus or a more domain-
specific one is preferable when dealing with tasks in specialized domains. In the
following section (§4.2), we examine this question in the context of the medical do-
main, comparing word representations built from corpora with varying sizes and
degrees of specialization. However, in more practical situations, the specialized
domains cannot always be reasonably expected to have access to large in-domain
corpora and instead may only have the option to rely on the target task corpus
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itself. In Section 4.3, we explore how this target task corpus can be fully leveraged
using already pre-trained models, which we refine, as well as static representations
that we build from scratch1.

More generally, this work could be framed within the broader context of Trans-
fer Learning as an investigation of how two specific parameters (i.e. corpus size
and domain similarity) drive the quality of a domain adaptation achieved through
pre-training. In fact, we recall (§2.2.2) that training word representations can be
seen as an instance of sequential model transfer, where the model may be either
a simple set of vectors (i.e. static representations) or an entire neural architecture
(e.g. contextual language models). As such, it is expected that corpus size may
have a positive impact on the quality of this transfer. However, when dealing with
specialized domains, choosing an in-domain corpus becomes an option as well. In
this case, the sequential transfer procedure begins to serve a domain adaptation
purpose, learning domain-specific features instead of general-purpose representa-
tions. This leads to both corpus size and domain similarity being possible factors
for driving the quality of word representations in specialized domains, which we
explore in more details in the following sections.

4.2 Corpus Size vs. Domain Similarity

Corpus size and domain similarity are two key components of training domain-
specific word representations. In practice, most systems default to using large
in-domain corpora when such resources are available, as these allow to maximize
performance along both the size and similarity axes. For instance, a survey in the
medical domain involving over two hundred clinical NLP papers (Wu et al., 2020)
shows that among the 63% of papers that used pre-trained representations, more
than half used embeddings trained on large corpora such as MIMIC-III (Johnson
et al., 2016), a corpus of clinical notes which we use extensively in this manuscript,
and PubMed2, a corpus involving a large number of biomedical article abstracts—
which we use as well. However, despite the prevalence of large corpora in the
medical domain, such resources may not always be available in other domains,
leaving no other choice but to use general-purpose representations from the general
domain. In this section, we investigate to what extent it may be problematic to use
general-domain embeddings in a specialized context. More specifically, we train
a number of clinical entity recognition systems and compare their downstream
performance as a way to evaluate different embeddings trained on corpora with
varying sizes and degrees of specialization.

1This work has led to a publication at ACL SRW 2019: (El Boukkouri et al., 2019).
2To learn more about PubMed visit: https://pubmed.ncbi.nlm.nih.gov/about/

https://pubmed.ncbi.nlm.nih.gov/about/
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4.2.1 Corpus Selection

We consider several corpora in an attempt to cover both the size and domain
similarity spectra. First, we select two general-domain corpora:

Gigaword (Graff et al., 2003) These are news articles that have been com-
piled over multiple sources including, for instance, the New York Times. This
is a large corpus (∼ 1 billion tokens) from the general domain for which we
expect a negligible coverage of the medical field.

Wikipedia These are encyclopedic articles from the 01/10/2017 data dump3.
This corpus is large (∼ 1 billion tokens) and has possibly some limited cov-
erage of the medical field. It is mainly, however, a general-domain corpus.

Figure 4.1: A visual summary of the different corpora considered for our experi-
ments. Bubble sizes represent the corpus size and colors represent three categories
of corpora: the target task corpus (in red), the general-domain corpora (in green)
and the specialized corpora (in blue).

Then, we consider a small in-domain corpus:

i2b2 (Uzuner et al., 2011) These are clinical notes from the i2b2/VA 2010
clinical concept extraction challenge. We use texts from both the training

3Similar dumps can be downloaded at: https://dumps.wikimedia.org/enwiki/.

https://dumps.wikimedia.org/enwiki/
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set as well as the provided unlabeled dataset, reaching∼ 500K tokens. This is
a specialized domain corpus—in fact it is our target domain—and we assume
that a similar corpus is always obtainable using texts from the target task.

Finally, we consider two more in-domain corpora:

MIMIC-III (Johnson et al., 2016) This is a large collection of clinical notes
from a database of Intensive Care Unit encounters4. The corpus is around 0.5
billion tokens and is from the clinical domain. Incidentally, the i2b2 texts
are in part from MIMIC-III, making this corpus very close to the target
domain.

PubMed (2018) This is a collection of biomedical article abstracts from PubMed-
MEDLINE5. The corpus is quite large (∼ 2 billion tokens) and is from a
domain that is close yet somewhat different from our target domain (clinical).

These five corpora represent various positions in the corpus size vs. domain
similarity space (see Figure 4.1). In fact, while i2b2 is our most domain-specific
corpus, it is also the smallest and may not provide enough contexts for training
satisfactory representations. On the other hand, Gigaword and Wikipedia
are significantly larger but may not have enough coverage of the medical field (i.e.
vocabulary and contexts), which may induce biases in the resulting embeddings.
Finally, MIMIC-III and PubMed are both medical corpora. However, the
former is small and closer to the target domain while the latter is four times larger
and from a slightly different domain (biomedical vs. clinical). It will be interesting
to see whether given two corpora that are already quite large, size is worth as much
as domain specificity.

4.2.2 Evaluation Through Clinical NER

Given our selection of corpora, we would like to investigate the impact of corpus
size versus domain similarity on the quality of the resulting word representations.
In order to assess this quality, we observe the downstream performance on an in-
domain task for similar systems trained using the exact same hyper-parameters
but leveraging different word embeddings. Our hypothesis is that by controlling
all other parameters, any variation in the downstream performance will be due to
variations in the inherent “quality” of the word representations and therefore, that
“better” embeddings should result in improved performance and vice versa.

4The MIMIC-III corpus is available at: https://mimic.physionet.org/.
5The PubMed (MEDLINE) corpus can be downloaded at this url .

https://mimic.physionet.org/
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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i2b2/VA 2010 Clinical Concept Extraction

All our systems are evaluated on the Clinical Concept Detection task from the 2010
i2b2/VA challenge (Uzuner et al., 2011). The task data consists of discharge sum-
maries and progress reports from three different institutions: Partners Healthcare,
Beth Israel Deaconess Medical Center, and the University of Pittsburgh Medical
Center. These documents are labeled and split into 394 training files and 477
test files for a total of 30,946 + 45,404 ≈ 76,000 labeled sequences6. Given these
datasets, the goal is to extract three types of medical entities: problem (e.g.
“headache”), treatment (e.g. “oxycodone”) and test (e.g. “MRI”).

Table 4.2 provides some examples of entity mentions and Table 4.1 shows the
distribution of each entity type in the training and test datasets.

Entity type Train set Test set

problem 11,967 18,550
treatment 8,497 13,560
test 7,365 12,899

Overall total 27,829 45,009

Table 4.1: Distribution of medical entity types in the i2b2 task.

3. Echocardiogram on **DATE[Nov 6 2007] , showed ejection fraction of 55% , mild mitral
insufficiency , and 1+ tricuspid insufficiency with mild pulmonary hypertension .

DERMOPLAST TOPICAL TP Q12H PRN Pain DOCUSATE SODIUM 100 MG PO BID PRN
Constipation IBUPROFEN 400-600 MG PO Q6H PRN Pain

The patient had headache that was relieved only with oxycodone . A CT scan of the head showed
microvascular ischemic changes . A followup MRI which also showed similar changes . This was
most likely due to her multiple myeloma with hyperviscosity .

Table 4.2: Three labeled sequences from i2b2 showcasing different types of entity
mentions (problem, treatment, and test). Originally from (Roberts, 2016).

Word Embeddings

For each corpus, we train three sets of word representations using the three stan-
dard static embedding methods: word2vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014) and fastText (Bojanowski et al., 2017). We consider differ-
ent embedding methods in an effort to control for specific biases in these algorithms

6Due to limitations introduced by the Institutional Review Board (IRB), only part of the
original data is now available for research purposes at: https://www.i2b2.org/NLP/DataSets/.
Our work, however, uses the full original dataset.

https://www.i2b2.org/NLP/DataSets/
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that may affect our evaluation. For each method, the implementation and hyper-
parameters which we use are mostly standard:

word2vec We use the official implementation7 to train 256-dimensional vectors
using the CBOW variant, with a window size of 5, ignoring tokens that
appear less than 5 times, and going over the entire corpus 10 times.

GloVe We train 256-dimensional vectors using the official implementation8, ig-
noring tokens that appear less than 5 times and going over the entire corpus
10 times. However this time we use a window size of 15.

fastText Here again, we use the official implementation9 to train 256-dimensional
vectors. This time we use the Skip-Gram method with negative sampling,
using a context window of 5 with 5 negative samples. We also ignore tokens
that appear less than 5 times, use n-grams with n = 3 up to n = 6 and go
over the corpus 10 times.

Other than the aforementioned parameters, all other hyper-parameters (e.g. learn-
ing rate) are set to their default values.

Experimental Setup

After pre-training all the word embeddings, we use each set of representations to
initialize a clinical entity recognition system which is used as a proxy for evaluating
and comparing the contribution of each embedding method, and more importantly,
each underlying corpus. We use a rather standard entity recognition system that
consists in a Bi-LSTM CRF architecture (Huang et al., 2015), since this has been
shown to perform well on various sequence labeling tasks (Plank et al., 2016;
Lample et al., 2016; Habibi et al., 2017). Specifically, we use:

• a set of word embeddings, which we train along with the rest of the network;

• three bidirectional LSTM layers with 256 hidden units. Note that the overall
number of units is 512 as each uni-directional LSTM has a size of 256;

• a recurrent dropout rate of 50%. This means that for each forward pass, half
of the activations between each pair of Bi-LSTMs are randomly masked to
avoid over-fitting. This only occurs during training, however, as all activa-
tions are used during the evaluation step;

7word2vec implementation: https://code.google.com/archive/p/word2vec/
8GloVe implementation: https://nlp.stanford.edu/projects/glove/
9fastText implementation: https://github.com/facebookresearch/fastText

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText
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• a CRF (Lafferty et al., 2001), which uses the output of the last Bi-LSTM
layer as input features to predict token labels in BIO format.

For convenience, we rely on the AllenNLP framework (Gardner et al., 2018)
to define and train our entity recognition systems. All models are trained using an
early-stopping procedure that consists in monitoring performance on a validation
set built from 20% of the original training data and terminating training when this
performance no longer increases. More specifically, we use a patience value of 3 (i.e.
we stop training after three unsuccessful iterations) and monitor the exact-span
F1 measure since it is the official metric for the i2b2 clinical concept extraction
task. All models are trained multiple times using a total of 10 random seeds in an
effort to perform a fair evaluation and in accordance with the approach previously
discussed in Chapter 3.3.

4.2.3 Results & Discussion

Corpus Exact Match F1

word2vec

i2b2 82.06 ± 0.32
Gigaword 82.54 ± 0.41
Wikipedia 83.30 ± 0.25
PubMed 84.06 ± 0.14
MIMIC 84.29 ± 0.30

GloVe

i2b2 80.21 ± 0.37
Gigaword 81.38 ± 0.33
Wikipedia 81.82 ± 0.52
PubMed 82.38 ± 0.57
MIMIC 82.38 ± 0.43

fastText

i2b2 81.98 ± 0.41
Gigaword 81.77 ± 0.36
Wikipedia 82.32 ± 0.37
PubMed 82.23 ± 0.49
MIMIC 82.73 ± 0.39
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Corpus Precision Recall F1

word2vec

i2b2 82.03 ± 0.69 82.08 ± 0.42 82.06 ± 0.32
Gigaword 82.26 ± 0.72 82.82 ± 0.64 82.54 ± 0.41
Wikipedia 83.42 ± 0.78 83.20 ± 0.91 83.30 ± 0.25
PubMed 83.87 ± 0.60 84.26 ± 0.43 84.06 ± 0.14
MIMIC 83.83 ± 0.77 84.77 ± 0.52 84.29 ± 0.30

GloVe

i2b2 80.29 ± 1.19 80.15 ± 0.71 80.21 ± 0.37
Gigaword 81.18 ± 0.60 81.58 ± 0.77 81.38 ± 0.33
Wikipedia 81.35 ± 1.01 82.31 ± 0.49 81.82 ± 0.52
PubMed 82.09 ± 1.17 82.69 ± 0.45 82.38 ± 0.57
MIMIC 82.35 ± 1.03 82.43 ± 0.64 82.38 ± 0.43

fastText

i2b2 82.85 ± 1.26 81.14 ± 0.81 81.98 ± 0.41
Gigaword 81.48 ± 1.17 82.07 ± 0.84 81.77 ± 0.36
Wikipedia 82.44 ± 1.03 82.22 ± 0.83 82.32 ± 0.37
PubMed 81.85 ± 1.48 82.66 ± 1.03 82.23 ± 0.49
MIMIC 82.94 ± 1.07 82.54 ± 0.78 82.73 ± 0.39

Table 4.3: Average clinical entity recognition performance of systems leveraging
embeddings trained on different corpora. Best precision, recall and F1 measure is
shown in bold and second best is underlined.
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Table 4.3 reports the performance of trained clinical entity recognition systems
as mean ± std computed over 10 random seeds. As expected, there is some
variability in the results depending on which embedding method is used. However,
there also seems to be a number of global patterns that emerge, namely:

General-domain < In-domain Overall, we can see that the performance of
general-domain corpora is overall lower than that of in-domain (i.e. clinical and
biomedical) corpora. For instance, we see that PubMed and MIMIC respectively
score an average of 84.06 and 84.29 strict F1 when using word2vec compared
to 82.54 and 83.30 on average for Gigaword and Wikipedia. Such behavior is
expected and confirms existing results in the literature (Roberts, 2016).

Small In-domain < Large General-domain We also see that the target
task corpus, which is the most domain-specific but also many orders of magnitude
smaller than the other corpora, usually leads to the worst performance (see i2b2 vs.
word2vec and GloVe). This is interesting as it shows that domain similarity
alone is not enough for building good in-domain representations. We also note
that while i2b2 performs worst in most cases, it is nevertheless on par with large
general-domain corpora when using fastText. This could hint at methods based
on subwords being able to better leverage smaller-sized corpora, however, this can
also be due to sub-optimal hyperparameter choices that could have prevented other
corpora from being leveraged properly (see fastText vs. word2vec).

Differences among General-domain Models Looking a bit closer, we can no-
tice that Wikipedia usually leads to better results than Gigaword. While both
corpora are from the general domain, given the encyclopedic nature of Wikipedia
it can be expected that this corpus may have a better coverage of the medical field
than Gigaword. In fact, a comparison of tokens occurring in i2b2 but which
are out-of-vocabulary in the general corpora shows 5.82% OOV tokens when us-
ing Wikipedia embeddings versus 14.42% when using Gigaword. These results
serve as a reminder that so-called “general domain” corpora often include a num-
ber of different sub-domains, and hint at general corpora with different domain
compositions being potentially more relevant in certain situations than others.

Very Large Biomedical < Large Clinical Another interesting result is that
systems based on MIMIC often outperform those using PubMed embeddings
despite both corpora being from the medical domain and the latter being four
times as large. This shows that while corpus size matters (e.g. i2b2 vs. MIMIC),
it may be less important than domain similarity when sufficient size has already
been achieved. In fact, we recall that MIMIC is from the same clinical domain
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as i2b2, which makes it more similar than the biomedical articles from PubMed.
Naturally, this raises the question of what constitutes a sufficiently large corpus,
which is not at all straightforward and still remains to be answered.

4.3 Leveraging the Target Task Corpus
We have seen previously that both corpus size and domain similarity matter when
choosing a corpus for building domain-specific word representations. However, in
practice, most domains do not have access to large in-domain corpora such as
MIMIC-III or PubMed for building word embeddings with satisfactory levels of
performance. Moreover, we have seen that i2b2, a small corpus from the target
task, was not sufficient for training representations that are competitive with such
large specialized corpora, nor was it able to improve over representations produced
from large corpora from the general domain. In this section, we tackle this issue and
attempt to compensate for the unavailability of sufficiently large in-domain corpora
by leveraging a (possibly small) target task corpus along with publicly available
resources such as general-domain pre-trained language models. More specifically,
and while remaining in the context of the i2b2 clinical concept extraction task, we
explore how a combination of fine-tuning pre-trained representations and training
new ones from scratch can be employed to make the most of the target task corpus,
hopefully reaching results that are on par with word embeddings trained on large
specialized corpora (i.e. MIMIC and PubMed).

4.3.1 Embedding Strategies

The ways that a small corpus from the target task can be leveraged to build word
representations are not numerous. In the present section, we explore a couple of
different approaches:

1. we train representations from scratch directly on said corpus;

2. we use this corpus to further pre-train a set of existing representations.

In both cases, there is a choice to be made: either using static representations
or contextual language models. Since the target task corpus is assumed to be
rather small, the representations we train from scratch are static embeddings, as
larger contextual models would probably require bigger corpora in order to be
trained successfully. On the other hand, we choose to further pre-train a neural
language model as these are supposedly able to encode more information than
static representations, making them a better starting point for a domain adaptive
pre-training. These are the model configurations that we consider:
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Static Embeddings

We re-use the static representations from our previous experiments. These are
embeddings trained using word2vec, GloVe or fastText on five different
corpora: two from the general-domain (i.e. Gigaword and Wikipedia), two
from the medical-domain (i.e. MIMIC and PubMed) as well as the target task
corpus (i.e. i2b2). In practice, specialized domains may not have access to large
in-domain corpora. However, we include these in our experiments as baselines
for best-case scenario performance. Similarly, the static representations trained
on general corpora are included as baselines, and are meant to be compared with
general-purpose pre-trained language models.

Pre-trained Language Models

We choose ELMo (Peters et al., 2018a) as our pre-trained language model10.
Specifically, we consider different off-the-shelf versions of this model11:

ELMo(small) This is a general-domain model that has been trained on the
1 Billion Word Benchmark corpus (Chelba et al., 2013). It is the smallest
version of ELMo and produces 256-dimensional embeddings.

ELMo(original) This is a general-domain model trained on a mixture of Wikipedia
and newswire data. It produces 1024-dimensional embeddings.

Each model is further pre-trained12 on language modeling for a number of epochs
on the i2b2 corpus in an attempt to adapt their representations to the target
domain. At each epoch, we monitor the perplexity achieved on a validation corpus
(see Figure 4.2). Ultimately, the best model is retained:

ELMo(small)finetuned the result of fine-tuning ELMo(small) for 10 epochs. Here,
we stop at 10 epochs as the model starts to overfit if trained any longer.

ELMo(original)finetuned the result of fine-tuning ELMo(original) for 5 epochs.
Here, we fine-tune the model for fewer epochs compared to the ELMo(small)
as this larger model is more prone to overfit (see Figure 4.2 at epoch 5).

Additionally, we consider a medical version of ELMo that was pre-trained on the
biomedical corpus PubMed to serve as a baseline: ELMo(PubMed).

10Here, we chose ELMo instead of BERT (Devlin et al., 2019) since, at the time of these
experiments, BERT was still new and somewhat misunderstood. Moreover, ELMo was easier
to experiment with, namely due to its word-level nature.

11Models and model descriptions are available at: https://allennlp.org/elmo
12Using the official implementation at: https://github.com/allenai/bilm-tf

https://allennlp.org/elmo
https://github.com/allenai/bilm-tf


64 CHAPTER 4. USING IN-DOMAIN CORPORA

Figure 4.2: Language modeling perplexity during the fine-tuning of ELMo on
i2b2.

Embedding Combinations

Word representations coming from different corpora and/or originating from differ-
ent methods have already been combined in order to achieve improved downstream
performance (see Section 2.3.4). To make the most of the target task corpus, we
explore different combinations involving on one hand, the static representations
built on the target task corpus itself; and on the other hand, general representa-
tions or versions fine-tuned on the task corpus. In practice, there are many ways
to combine two representations. However, for the sake of simplicity, we consider
two simple, yet effective methods:

Concatenation This is a simple concatenation of embeddings coming from two
different models. This is denoted X ⊕ Y (e.g. i2b2 ⊕ Wikipedia).

Mixture In the specific situations where ELMo is combined with static vectors,
we can leverage ELMo’s architecture to directly incorporate the static repre-
sentations through linear combination. We denote this combination X ++ Y
(e.g. i2b2 ++ ELMo(small)).

The mixture method generalizes the way ELMo representations are combined. In
fact, we recall (see Appendix A.2.1) that given a word w, if we denote the three
internal representations produced by ELMo (i.e. the CharacterCNN, 1st Bi-
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LSTM and 2nd Bi-LSTM representations) by h1, h2, h3, we recall that the model
computes the final embedding as:

ELMo(w) = γ · (α1 · h1 + α2 · h2 + α3 · h3) (4.1)

where γ, α1, α2 and α3 are tunable task-specific coefficients13. Given hstatic, the
static representation of the word w, we compute a “mixture” representation as:

ELMomix(w) = γ · (α1 · h1 + α2 · h2 + α3 · h3 + β · hstatic) (4.2)

where β is a new tunable parameter14.

4.3.2 Experimental Setup

We keep the same experimental setup as in Section 4.2.2, namely: we evaluate
BiLSTM+CRF systems on the i2b2/VA clinical concept detection task and com-
pare these models as a proxy to evaluate the quality of our embedding strategies.
Strategies based on ELMo do not fine-tune the model but instead use it in a fea-
ture extraction setting (i.e. as a feature generator), making it essentially behave
like a set of static embeddings15. As with previous experiments, we run a number
of random restarts and report the average and standard deviation of the score dis-
tribution as our final results (see Chapter 3 on model evaluation). We also re-use
the same training and evaluation parameters as Section 4.2.2.

4.3.3 Results & Discussion

We report the performance of clinical entity recognition systems according to their
underlying embedding strategy. Given static representations trained on the target
task corpus (i.e. i2b2), we report three different strategies:

• single sets of embeddings (X);

• concatenations of i2b2 vectors and other representations (i2b2 ⊕ X);

• mixtures (i.e. internal linear combinations) of i2b2 and ELMo (i2b2 ++ X).

Given the large number of experiments, we organize our results in multiple sec-
tions (see Table 4.4). First, there are three main sections which refer to results
obtained with static representations trained using either word2vec, GloVe or

13In practice, the coefficients go through a softmax before being used in the linear combination.
14In specific cases where the ELMo model produces 1024-dimensional embeddings, we dupli-

cate the 256-dimensional word2vec embeddings so that the dimensions match before mixing.
15It is important to note that while ELMo’s hidden representations are fixed during training,

the linear combination weights, however, are trainable.
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Embedding Strategy X i2b2 ⊕ X i2b2 ++ X

word2vec

i2b2 82.06 ± 0.32 - -
Wikipedia 83.30 ± 0.25 83.35 ± 0.62 -
Gigaword 82.54 ± 0.41 83.10 ± 0.37 -

ELMo(small) 80.79 ± 0.95 84.18 ± 0.26 84.94 ± 0.94
ELMo(original) 84.28 ± 0.66 85.25 ± 0.21 85.64 ± 0.33

ELMo(small)finetuned 83.86 ± 0.87 84.81 ± 0.40 85.93 ± 1.01
ELMo(original)finetuned 85.90 ± 0.50 86.18 ± 0.48 86.23 ± 0.58

GloVe

i2b2 80.21 ± 0.37 - -
Wikipedia 81.82 ± 0.52 81.29 ± 0.42 -
Gigaword 81.38 ± 0.33 81.47 ± 0.18 -

ELMo(small) 80.79 ± 0.95 83.04 ± 1.03 84.30 ± 0.72
ELMo(original) 84.28 ± 0.66 85.00 ± 0.32 85.12 ± 0.26

ELMo(small)finetuned 83.86 ± 0.87 84.42 ± 0.75 85.19 ± 0.75
ELMo(original)finetuned 85.90 ± 0.50 86.05 ± 0.16 86.46 ± 0.36

fastText

i2b2 81.98 ± 0.41 - -
Wikipedia 82.32 ± 0.37 81.84 ± 1.48 -
Gigaword 81.77 ± 0.36 82.40 ± 0.32 -

ELMo(small) 80.79 ± 0.95 84.44 ± 0.42 85.47 ± 0.61
ELMo(original) 84.28 ± 0.66 85.57 ± 0.46 85.77 ± 0.47

ELMo(small)finetuned 83.86 ± 0.87 85.18 ± 0.67 86.27 ± 0.35
ELMo(original)finetuned 85.90 ± 0.50 86.49 ± 0.28 86.82 ± 0.29

Baselines

word2vec(PubMed) 84.06 ± 0.14
word2vec(MIMIC) 84.29 ± 0.30

ELMo(PubMed) 86.29 ± 0.61
ELMo(PubMed) ++ MIMIC 87.17 ± 0.54

ELMo(Clinical) (Zhu et al., 2018) 86.84 ± 0.16
ELMo(MIMIC) (Si et al., 2019) 87.80

Table 4.4: Performance of various strategies involving a general-domain resource
and a small in-domain corpus (i2b2). We report the exact span F1 scores as mean
± std with best values in bold and second best underlined.
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fastText. In each of these sections, there are three subsections which respec-
tively show the combination results that involve static embeddings trained on the
target task corpus (i.e. i2b2) combined with either general static representations
(i.e. Wikipedia or Gigaword), general pre-trained language models (i.e. ELMo)
or fine-tuned versions of these language models (i.e. ELMofinetuned). Finally, the
last main section reports baseline results using large in-domain corpora that come
from either our own experiments or from existing literature. All in all, our results
lead to a number of insights which we discuss in the following:

Target Task Corpus < Large Corpora We confirm that training static rep-
resentations on the target task corpus is usually a sub-optimal, with most models,
including static embeddings trained on large general-domain corpora, leading to
better results. This further showcases the difficulty in low-resource settings and
reaffirms the need for better alternatives.

ELMo(small)<All Other Models It is interesting to note that ELMo(small)
is almost systematically below all other models, including static i2b2, Gigaword
and Wikipedia vectors. One possible explanation for this is that neural language
models such as ELMo may require large enough architectures in order to perform
optimally in a way that is superior to standard static representations. Another
one is that models with smaller architectures such as ELMo(small) may not be
suited to be used in a feature extraction mode (i.e. not entirely fine-tuned on the
downstream task) when applied on a different domain than the one they were
originally trained for.

Concatenation Improves over Base Models We can see that a simple con-
catenation systematically leads to improved performance across all base models
(i.e. i2b2 ⊕ X ≥ X) with very few minor exceptions. These improvements are of-
ten small when combining i2b2 with general static representations like Gigaword
and Wikipedia. However, it is interesting to note that the models which seem to
benefit the most from this strategy are the pre-trained language models ELMo.
In fact, we can see that both ELMo(original) and ELMo(small) are affected pos-
itively by a concatenation with i2b2, with ELMo(small), in particular, improving
by several F1 points. However, this phenomenon could be explained in part by the
fact that ELMo(small) is probably sub-optimal for our specific domain, as results
obtained with this model alone are often lower than those of general-domain static
representations. Nevertheless, the concatenation of ELMo(small) with i2b2 is
fruitful enough to enable the language model to largely outperform general static
representations, making this strategy an interesting approach to leveraging small-
sized pre-trained models in a specialized and low resource context. More generally,
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concatenating static representations trained from scratch on a (rather) small cor-
pus from the target domain with readily available models from the general domain
seems to be an effective method to improving downstream results when no large
in-domain corpora are available.

Better Combinations with fastText? Another interesting result is that the
i2b2 representations built with fastText, which are originally on par with those
of word2vec (i.e. 81.98 F1 vs. 82.06 F1 respectively), somehow manage to result
in slightly better combinations with ELMo models (see word2vec vs. fast-
Text for i2b2 and ELMo combinations). While this may be true on average,
this difference may not be significant in practice given the observed variance of the
results. For instance, we observe that ELMo(small)finetuned achieves 85.93± 1.01
with word2vec vectors and 86.27± 0.35 with fastText. This shows the impor-
tance of running repeated experiments with different seeds in order to compute
both measures of location (i.e. mean) and dispersion (e.g. std).

Beneficial Pre-training on the Target Task Corpus If we look at the fine-
tuned versions of ELMo which were further pre-trained on the target task corpus,
we can see that this fine-tuning alone is able to result in systematic increases
in performance. This shows that such large pre-trained models can benefit from
further in-domain pre-training and demonstrates that a possibly small target-task
corpus can be enough for achieving successful domain adaptation of pre-trained
language models. These results echo subsequent findings in more recent work
which shows, in the context of BERT-like models, that additional task-specific
pre-training is usually beneficial (see TAPT in Section 2.2.3).

Best Strategy: Fine-tuned ELMo and In-Domain Static Vectors More
importantly, it seems that fine-tuned versions of ELMo can also be combined
through concatenation with static representations built from the target task cor-
pus in what seems to be an even superior embedding strategy. In fact, this seems to
be the best method so far, second only to replacing concatenation with an internal
mixture with ELMo’s hidden states. The mixture shows systematic improvements
over the concatenation as well, although these gains are relatively small. However,
it is important to note that the mixture combinations (i.e. i2b2 ++ X) preserve the
original embedding size while concatenation results in larger representations. With
that in mind, it is safe to say that the best embedding strategy consists in train-
ing representations from scratch on the target task corpus (i.e. i2b2), fine-tuning
existing pre-trained language models on the same task corpus (i.e. ELMofinetuned)
then incorporating the static vectors through linear combination into the freshly
fine-tuned language model. This way, we are able to achieve a 4–6 points increase
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in exact span F1 compared to training static embeddings on the target-task cor-
pus alone, as well as similar improvements compared to using pre-trained language
models from the general domain, with an additional 5–6 F1 for ELMo(small) and
2–3 F1 points for the larger ELMo(original).

Comparison with In-domain Baselines It is interesting to see that large
general-domain versions of ELMo perform on par with static representations
built on large in-domain corpora (see ELMo(original) vs. word2vec(PubMed-
/MIMIC)). This could mean that any efforts intended for training in-domain repre-
sentations may be better leveraged if focused on adapting large pre-trained models
instead of training new static vectors from scratch. However, we expect this to be
highly dependent on the kind of task at hand, with intrinsic (e.g. word relatedness)
and extrinsic types (e.g. sequence labeling) having usually different embedding re-
quirements. Nevertheless, this means in practice that our embedding strategies
are able to perform better than static representations trained on large in-domain
corpora without having to rely on such resources. The overall best performance we
get using our methods is 86.82 ± 0.29 F1 with fastText vectors. If we compare
this performance to large language models that have been pre-trained on large
in-domain corpora, we can see that we are actually able to perform better than
ELMo(PubMed) and perform on par with another version trained on a mix of
MIMIC-III clinical reports and medical Wikipedia articles (i.e. ELMo(clinical)
(Zhu et al., 2018)). Nevertheless, we are not able to reach the performance of
ELMo(MIMIC) (Si et al., 2019), which is purely trained on clinical reports, mak-
ing it more suited to the specific domain of the i2b2/VA 2010 clinical concept
extraction task. Finally, and perhaps on an unrelated note, we can also see that
the performance of ELMo(PubMed) is improved when this model is combined
using the “mixture” method with static representations built from MIMIC. This
goes to show that our methods can apply in a more general context whenever
static embeddings can be expected to improve some pre-existing model, with a
possible reason in this case being that the biomedical ELMo(PubMed) is prob-
ably missing some of the clinical knowledge that is available in the static MIMIC
vectors.

4.4 Key Takeaways

All in all, we summarize our results in the following takeaways:

• Generally speaking, it seems that the larger the corpus the better. Similarly,
the more domain-specific a corpus is, the more it is likely to result in improved
performance.
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• The question of whether a small specialized corpus performs better than a
large one from the general-domain is still open. However, for a specialized
corpus that is small enough (e.g. i2b2), large general-domain corpora seem
to be a better option (recall i2b2 vs. Gigaword and Wikipedia).

• All general-domain corpora are not made equal: depending on which sub-
domains are mixed within, some corpora may be more appropriate to specific
target tasks than others (recall Wikipedia which performs better than Gi-
gaword).

• When dealing with in-domain corpora that are already quite large, do-
main similarity seems to become more important than additional size (recall
PubMed vs. MIMIC).

• In low resource scenarios, a small corpus consisting of texts from the target
task can be leveraged in a way that achieves results that are on par with
large in-domain corpora.

• Static representations trained on the target task corpus can be used to im-
prove existing embeddings from the general domain, both static and contex-
tual.

• Meta-embeddings through means of concatenation or linear combination (re-
call the “mixture” strategies) seem to be effective for combining in-domain
and general representations.

• Neural language models may be further pre-trained on a small target task
corpus to achieve seemingly systematic improvements in the target domain.

• While fine-tuned language models and in-domain static representations sep-
arately perform better than their general-domain analogs, both can be com-
bined to achieve even greater improvements.

4.5 Conclusion
Word embeddings are an important component of modern NLP systems and cor-
pora are probably the cornerstone of building good quality representations. In this
chapter, we investigated some of the parameters that drive this quality, in partic-
ular, corpus size and domain similarity, in an attempt to shed some light on how
these parameters interact to impact downstream performance. In the context of
the medical domain, and leveraging a clinical sequence labeling task from i2b2/VA
2010, we evaluated multiple systems that relied on representations built from vari-
ous corpora and demonstrated that both corpus size and domain similarity matter:
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the former being perhaps more important when building a corpus from scratch, and
the latter becoming more crucial when sufficient size has already been achieved.
However, it is unlikely to have access to such corpora in practice, especially when
dealing with specialized domains where both cultural and regulatory reasons may
not allow sharing large amounts of in-domain texts. Therefore, we proposed meth-
ods leveraging the target-task corpus, an in-domain resource which we assume to
be always available, for building better systems than otherwise achievable in such
low-resource settings. These methods try to make the most of this task corpus by
utilizing it in two different ways: for building static representations on one hand,
and for refining existing general-domain embeddings on another. Given these two
sets of independently trained representations, we have shown in different situa-
tions that a combination of both embeddings can lead to improved results that are
often on par with systems leveraging large in-domain corpora. More specifically,
we showed that pre-trained language models from the general domain (i.e. ELMo)
could be further pre-trained on the target task corpus, then combined with static
representations trained on the same corpus through either concatenation, or by
incorporating the static vectors within the model architecture through linear com-
bination, in order to achieve noticeable improvements. All in all, these methods
tackle the low resource issue by optimizing the exploitation of available resources,
leveraging both the small amount of in-domain information and open -source gen-
eral -domain models. It is however conceivable to compensate for the lack of text
resources with other kinds of structured data, more specifically, knowledge bases,
which we explore in future parts of this manuscript (see Chapter 6). Finally, and
in an effort to facilitate future research, we share our code along with instructions
to reproduce our embedding strategies16.

16https://github.com/helboukkouri/acl_srw_2019

https://github.com/helboukkouri/acl_srw_2019




Chapter 5

BERT and the WordPiece
Vocabulary

5.1 Introduction

Before we tackle the topic of enhancing word representations using external knowl-
edge, we take a quick detour to discuss BERT and BERT-like models as these
have become the standard way to encode textual information in the NLP commu-
nity. BERT is a language model that relies on a series of Transformer layers
to contextualize input texts using a multi-headed self-attention mechanism. This
model differs from previous language models such as ELMo in that it is signif-
icantly deeper (i.e. 12 or 24 layers for BERT vs. only 2 for ELMo), relies on
transformers instead of recurrent layers, and is pre-trained on different language
modeling tasks: Masked Language Modeling (MLM), where random words are
masked and need to be recovered, and a self-explanatory Next Sentence Predic-
tion task. Another key aspect of BERT is that it relies on a WordPiece system
(Wu et al., 2016) where the model is assigned a vocabulary of subwords1. When
a token is out-of-vocabulary, this token is recursively decomposed according to
these subwords, converting it into a sequence of known elements. This sequence
is then fed to the model which produces a representation for each subword. In
the context of specialized domains, BERT models are often re-trained on large
in-domain corpora in order to specialize their hidden representation for a target
domain. However, this re-training does not affect the WordPiece vocabulary which
remains constant and may drift away from the new domain. In the next section
(§5.2), we discuss this issue and explore the impact this may have on downstream
performance in a specialized setting by comparing models that rely on either a
general or an in-domain WordPiece vocabulary. Following that (§5.3), we pro-

1A subword may be a full word but can also be a smaller part of a word or a token.
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pose CharacterBERT, a variant of BERT that does not rely on a subword
system but leverages instead a similar character-based system as ELMo in order
to represent any incoming token as a single unit. We conduct an evaluation of
CharacterBERT and train parallel versions of both BERT and its character
variant in an effort to provide a fair comparison of both architectures. The re-
sults show that CharacterBERT overall improves over its BERT counterparts
while at the same time displaying signs of improved robustness to noise and mis-
spellings. All in all, we demonstrate that a subword system is not necessary for
building transformer-based models that achieve good performance. Finally, we
open-source our fine-tuning and pre-training codes as well as pre-trained models
to enable future experiments on related topics2,3,4.

While this chapter is not clearly set in a Domain Adaptation context, it nev-
ertheless tackles topics that complement our previous investigations about cor-
pus size and domain similarity, extending the analysis to a new hyperparameter
which may affect the quality of specialized models: the WordPiece vocabulary—
specifically, its domain. In fact, while our previous observations about corpus
size and similarity do probably still hold in the context of BERT-like models,
we assume here that we have access to corpora which are sufficiently large and
domain-specific to allow for training good models. Given that, we explore how
the new WordPiece vocabulary parameter affects the quality of this training and
ultimately propose a variant of BERT that eliminates this parameter altogether
by relying on character-based representations instead.

5.2 General Vocabulary, Specialized Domain
As mentioned, BERT and BERT-like models such as RoBERTa (Liu et al., 2019),
XLNet (Yang et al., 2019) or ALBERT (Lan et al., 2020), rely on a tokenization
method that leverages subwords in order to keep the vocabulary small and handle
potential out-of-vocabulary tokens by decomposing them into a sequence of known
WordPieces. This allows to strike a good balance between the efficiency of full
words and the flexibility of characters, especially when constructing a model for a
domain that is known in advance such as the default general domain. In fact, this
WordPiece vocabulary is generally learned using a variant of BPE5 (Gage, 1994),
a compression algorithm which was adapted for tokenization purposes (Sennrich
et al., 2016) such that the most frequent symbols are iteratively merged—forming

2https://github.com/helboukkouri/recital_2020
3https://github.com/helboukkouri/character-bert
4https://github.com/helboukkouri/character-bert-pretraining
5The exact implementation used for BERT seems to be internal to Google. However, most

subsequent iterations like RoBERTa rely on the supposedly comparable BPE algorithm (see
https://github.com/google/sentencepiece#comparisons-with-other-implementations).

https://github.com/helboukkouri/recital_2020
https://github.com/helboukkouri/character-bert
https://github.com/helboukkouri/character-bert-pretraining
https://github.com/google/sentencepiece#comparisons-with-other-implementations
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character bi-grams, tri-grams, etc—and added to a subword vocabulary until a
target size is reached. As a result, the output vocabulary is highly dependent on
the corpus it was trained on—more specifically, its domain—which may entail some
issues when the downstream applications cannot be expected to remain within the
same original domain. In practice, the subword vocabulary is learned using the
exact same corpus that is used for pre-training, which ensures this vocabulary is
a perfect match for the pre-training domain. However, a mismatch occurs when
the pre-trained model is used on a task from a different domain, which, given the
cost of training domain-specific versions of such large models, is likely in practice.
Furthermore, when the resources for training such models for the target domain
are available, the most popular approach seems to be re-training existing general-
domain systems on specialized corpora (e.g. SciBERT6 (Beltagy et al., 2019),
ClinicalBERT (Alsentzer et al., 2019)), probably in an attempt to leverage pre-
existing knowledge within the model and speeding up convergence. As a result,
these models also re-use the original subword vocabulary, which could affect the
pre-training procedure in a way that may be harmful and lead to subpar models. In
this section, we explore the effect of using a general-domain WordPiece vocabulary
in the medical domain, focusing specifically on two different aspects: the quality
of the tokenization and the downstream performance7.

5.2.1 Effect on the Tokenization

In order to study the effect of using general-domain vocabularies in specialized
domains, we first look into the tokenization results. Here, we assume that we
have access to the original BERT model—which uses a general-domain WordPiece
vocabulary—and investigate how this general vocabulary holds against specialized
texts in the medical domain. Naturally, in order to have a reference to compare
to, we first need to build our own domain-specific WordPiece vocabulary.

Building a Medical WordPiece Vocabulary

Domain Corpora # of documents # of words

Medical
MIMIC-III 4.17 million 0.5 billion

PMC OA abstracts 4.65 million 0.5 billion

Table 5.1: Corpus used for training a medical WordPiece vocabulary.

6There are versions of SciBERT that use a custom scientific vocabulary as well.
7This work has led to a publication at RECITAL 2020: (El Boukkouri, 2020)
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Given a medical corpus which we put together using biomedical article ab-
stracts from PubMed Central Open Access (PMC OA)8 and MIMIC-III clinical
notes (see Table 5.1), we aim to construct a WordPiece vocabulary that will, al-
legedly, be more suited for our medical domain than the general purpose WordPiece
vocabulary occurring in BERT. To do so, we rely on an open-source implementa-
tion of the BPE algorithm9 and learn a vocabulary of around 30k domain-specific
subwords using the hyperparameters provided by default10.

Tokenization Results & Discussion

Figure 5.1: Number of subwords resulting from the tokenization of a sample of a
medical corpus (see Table 5.1) using different domain WordPiece vocabularies.

After learning a medical WordPiece vocabulary, we randomly select a large
sample (∼ 1 million tokens) from the same medical corpus and tokenize it using
either BERT’s original vocabulary (general domain) or our custom specialized
vocabulary (medical domain). Figure 5.1 shows the cumulative proportion of word
types (i.e. distinct tokens) and word occurrences (i.e. counting each token as many
times as they occur) against the number of resulting subwords after tokenization.

More Splits, More Often We notice a clear difference between the tokeniza-
tion resulting from a general vocabulary and the one resulting from a specialized

8Available at: https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
9Available at: https://github.com/google/sentencepiece

10See: https://gist.github.com/helboukkouri/374b9c74b8ee80a388f9d3943ebd245b

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://github.com/google/sentencepiece
https://gist.github.com/helboukkouri/374b9c74b8ee80a388f9d3943ebd245b
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vocabulary. We note, for instance, that the medical vocabulary already includes
∼ 95% of word occurrences as full words (i.e. 1 WordPiece) against a lower∼ 82.5%
for BERT’s default vocabulary. This means that around 12% of word occurrences
are in-vocabulary for the medical set and out-of-vocabulary for the general-domain
vocabulary. While this gap naturally tightens as the general and medical vocabu-
laries approach the 100% coverage mark, we can see nevertheless that the medical
WordPiece vocabulary leads overall to shorter subword sequences. An analysis
of word type statistics is consistent with these observations, with, for instance,
∼ 60% of distinct token types resulting in two or less subwords when using a
general vocabulary against ∼ 80% for the custom medical vocabulary.

Token Medical Tokenization General Tokenization

paracetamol [ paracetamol ] [ para, ce, tam, ol ]
choledocholithiasis [ choledoch, olithiasis ] [ cho, led, och, oli, thi, asi, s ]
borborygmi [ bor, bor, yg, mi ] [ bo, rb, ory, gm, i ]

Table 5.2: Tokenization of medical terms using different domain vocabularies.

Relatively Meaningless Subwords While having a subword vocabulary that
systematically yields longer WordPiece sequences can be inconvenient, it is how-
ever unclear how this would negatively affect the final model. However, if we look
more closely at the tokenization of some medical terms, we can notice that BERT’s
default vocabulary also leads to tokenizations involving less meaningful subwords.
In fact, looking at Table 5.2, we can see that a common drug, paracetamol, is
recognized by the medical vocabulary as a full word while on the other hand the
general tokenization yields a sequence of subwords: [para, ce, tam, ol]. While
in this situation, the prefix para is a common occurrence in everyday language
for which we may assume that BERT will be able to learn a useful represen-
tation11, the other subwords do not seem to represent any meaningful concept
and therefore, would probably be assigned somewhat meaningless embeddings12.
There are other examples that further illustrate the disparity between the medical
and general vocabularies. For instance, we see that the medical vocabulary splits
choledocholithiasis, a term which refers to the presence of gallstones in the common
bile duct, into two subwords: choledoch, an actual medical term that refers to the
common bile duct, and olithiasis, a common suffix that can be translated as “con-
dition or presence of stones”.13 On the other hand, the general-domain vocabulary

11This is perhaps also the case for the suffix ol that can be common in the context of chemistry.
12Of course, what we may assume to be meaningless can still be useful for a deep neural

network in ways that are not necessarily intuitive at first glance.
13See: https://clinicalanatomy.com/mtd-article-list/214-olithiasis

https://clinicalanatomy.com/mtd-article-list/214-olithiasis
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splits this medical term into a sequence of seemingly random subwords: [cho, led,
och, oli, thi, asi, s]. Finally, we notice that for rarer terms like borborygmi (i.e.
rumbling noises in the bowels), the medical tokenization includes less meaningful
subwords as well (e.g. bor, yg) but still manages to detect a common suffix, mi,
which occurs in the plural of some terms ending in mus. The general vocabulary,
however, produces yet again a sequence of seemingly meaningless subwords.

Summary

Given our observations so far, it seems that a medical vocabulary might be more
suited for training a domain-specific language model as it would result in less out-
of-vocabulary words and a tokenization that generates a priori more meaningful
subwords. These subwords would therefore be more likely to be assigned use-
ful representations which can in turn facilitate dealing with any future unknown
words. However, due to the nature of transformer-based models like BERT—and
deep neural networks in general—it is possible that having seemingly arbitrary
subwords may not affect the downstream performance as much as we would in-
tuitively expect, as more relevant representations could be recovered within the
model through successive contextualizations regardless of the information which
we assume to be initially encoded within the static subword vectors. Therefore,
further quantitative analysis is necessary in order to determine in practice whether
using general-domain vocabularies in a specialized context may have as much of a
negative impact as we might expect.

5.2.2 Effect on the Downstream Performance

The way domain-specific versions of BERT are constructed usually follows a sim-
ple methodology: first, the pre-trained weights from the original general-domain
model are used to initialize a new model, then, the pre-training is resumed on a
large in-domain corpus, ultimately leading to a specialized version of the model. As
mentioned previously, this implies keeping the original general-purpose WordPiece
vocabulary which, given that specialized vocabularies seem to overall produce a
better tokenization, could lead to biases that may interfere with the domain-specific
pre-training and in turn lead to overall weaker models. In this section, we inves-
tigate this idea by running a series of experiments where we compare the usual
pre-training procedure for specialized models (i.e. general-domain initialization
+ re-training) against simply training new models from scratch using a domain-
specific vocabulary. After training these models, we conduct an evaluation on
multiple tasks from the medical domain to check our hypothesis and see to what
extent, if any, the usual re-training method performs worse than training models
from the ground up using in-domain vocabularies.
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Model Configurations

Domain Corpora # of documents # of words

General
Wikipedia (EN) 11.9 million 2.14 billion
OpenWebText 3.15 million 1.28 billion

Medical
MIMIC-III 4.17 million 0.5 billion

PMC OA abstracts 4.65 million 0.5 billion

Table 5.3: Pre-training corpora from the general and medical domains.

We train a few different models using corpora from both the general and medi-
cal domains (see Table 5.3). More specifically, we rely on the BERT(base, uncased)
architecture14, which expects lowercased texts, consists of L = 12 Transformer
layers with H = 12 attention heads each, and generates 768-dimensional contex-
tual embeddings. We denote each model configuration according to three hyper-
parameters, namely: V, the vocabulary domain; C1 the pre-training corpus; C2,
a situational second pre-training corpus. The model configurations are:

(V = general, C1 = general, C2 = ∅) This is a BERT model that is trained on
a general corpus and uses a general vocabulary. Training this model may
seem redundant since there are already general-domain versions of BERT
that are publicly available (e.g. original BERT). However, we make it a point
to train all our models ourselves to ensure that their pre-training conditions
are identical—or at least, as similar as possible—and therefore, that we can
perform a fair comparison and isolate the effects of the parameters we chose
to vary. Nevertheless, in an attempt to remain faithful to original BERT,
we keep BERT’s WordPiece vocabulary and compile a general-domain cor-
pus that is the same size as the one used in the original paper (Devlin et al.,
2019). Moreover, we attempt to have a similar corpus composition as well by
using the entire English Wikipedia. However, we are forced to replace the
BooksCorpus (Zhu et al., 2015) due to it not being publicly available. In-
stead, we use OpenWebText (Gokaslan and Cohen, 2019), an open-source
reproduction or the WebText corpus15 which relies on Reddit16 upvotes to
filter through the large amount of web data.

(V = general, C1 = general, C2 = medical) We aim here to simulate the way
domain-specific versions are trained by re-training a general model on an

14See: https://github.com/google-research/bert#pre-trained-models
15See: https://en.wikipedia.org/wiki/GPT-2#Training
16See: https://en.wikipedia.org/wiki/Reddit

https://github.com/google-research/bert#pre-trained-models
https://en.wikipedia.org/wiki/GPT-2#Training
https://en.wikipedia.org/wiki/Reddit
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in-domain corpus. Specifically, we keep the general-domain vocabulary and
resume the pre-training of (V = general, C1 = general, C2 = ∅) on a
medical corpus made of MIMIC-III and PMC OA17 article abstracts.

(V = medical, C1 = medical, C2 = ∅) Contrary to previous models, this ver-
sion is purely trained on medical texts. Moreover, we also drop the general-
domain vocabulary and use instead a version that was learned specifically
for the medical domain using the BPE algorithm18 on our medical corpus.

(V = medical, C1 = medical, C2 = medical) We also consider a version that
re-trains the purely medical model a second time on the same medical corpus.
While we could simply train the first model once and for a longer period,
we consider this somewhat awkward variant in order to get something that
is directly comparable to re-training a general model on a medical corpus,
but that starts instead from a medical model using an in-domain vocabulary.
In other words, we include this configuration in our analysis in an effort to
eliminate any biases relative to the total number of parameter updates.

Pre-training Setup

This section provides more details about the pre-training setup that is used to
train our language model configurations. We perform training on 16 TeslaV100-
SXM2-16GB GPUs, using the implementation and hyperparameters provided by
NVIDIA19. Similar to original BERT, each training procedure consists of:

Phase 1 A series of 3,519 parameter updates with an overall batch size of 8,192
and a maximum input size of 128. This phase uses a learning rate of 6.10−3

and takes around 17 hours;

Phase 2 A fewer 782 parameter updates with a smaller batch size of 4096 on
longer inputs with maximum size 512. This uses a smaller learning rate of
4.10−3 and takes around 9.5 hours.

During pre-training, we use the LAMB optimizer (You et al., 2020) as this has
been shown to speed up convergence for large language models. We also use a
linear schedule where the learning rate grows linearly during a certain number of
training updates—i.e. 1000 steps for phase 1 and 100 steps for phase 2—before
reaching its desired value and decreasing linearly to zero. Finally, we use a weight
decay of 0.01 as is often the case with these models to further regularize training.

17This is the same corpus we used earlier in our tokenization experiments.
18Recall that BERT uses a slightly different implementation that is internal to Google.
19We adapt the code from: https://github.com/NVIDIA/DeepLearningExamples/tree/

67b7543feb566b4e2ec520475db411f518b713f9/PyTorch/LanguageModeling/BERT

https://github.com/NVIDIA/DeepLearningExamples/tree/67b7543feb566b4e2ec520475db411f518b713f9/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/67b7543feb566b4e2ec520475db411f518b713f9/PyTorch/LanguageModeling/BERT
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Evaluation Tasks

After pre-training our language models, we run an evaluation on multiple tasks
from the medical domain, using the models as text encoders in order to compare
the quality of their output representations. We consider the same i2b2/VA 2010
sequence labeling task as before20, however, we also include a number of additional
tasks from both the clinical and biomedical domains:

Clinical Entity Recognition This is the same sequence labelling task from
i2b2/VA 2010 which we have used in previous evaluations (§4.2.2). We
recall that this task consists in extracting three types of medical entities:
problem (e.g. “headache”), treatment (e.g. “oxycodone”) and test (e.g.
“MRI”), and uses exact span F1 as a metric. Figure 5.2 provides an example
of a labeled sequence from the i2b2/VA 2010 concept extraction task.

Figure 5.2: Example from the i2b2/VA 2010 clinical concept extraction task.

Natural Language Inference We also consider a new clinical Natural Language
Inference task: MedNLI (Romanov and Shivade, 2018). This task consists
in classifying pairs of sentences into three categories: contradiction, when
the second sentence contradicts the first one; entailment, when the second
sentence is implied by the first one; and neutral, when no clear relation-
ship exists between both sentences. This task uses prediction accuracy as a
metric. Figure 5.3 shows examples of labeled sentence pairs.

Relation Extraction In order to include a diverse range of tasks, we also evalu-
ate our models on two additional biomedical relation extraction tasks: DDI,

20Please note that for the i2b2 task as well as for all subsequent sequence labeling tasks,
when using a WordPiece-based model such as BERT, we evaluate at the level of the subword.
Specifically, we tokenize the texts at the WordPiece-level, adapt the word-level gold standard
accordingly by projecting the label of each word on its WordPieces, then predict a label for each
subword. Ultimately, the models are required to recover each WordPiece label correctly and not
simply the label of the first WordPiece of each token.
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Figure 5.3: Examples from the MedNLI task.

which is originally from SemEval 2013 - Task 9.221 and focuses on classi-
fying drug-drug interactions into advise (ddi-advise), effect (ddi-effect),
mechanism (ddi-mechanism), interaction (ddi-int), and ddi-false for no
interaction, as well as ChemProt , originally from BioCreative VI22,
which focuses on chemical-protein relations and requires them to be classified
into activator (cpr:3), inhibitor (cpr:4), agonist (cpr:5), antag-
onist (cpr:6), substrate (cpr:9) and false for no relation. Both tasks
use the micro-averaged F1 over non-negative classes as a metric. Figure 5.4
shows samples from both the ChemProt and DDI relation extraction tasks.

Figure 5.4: Examples from the ChemProt and DDI tasks.

For each evaluation task, we report in Table 5.4 the number of samples, as well as
the number of entities or positive relations when appropriate.

21See: https://www.cs.york.ac.uk/semeval-2013/task9/
22Available at: https://biocreative.bioinformatics.udel.edu/resources/corpora/

chemprot-corpus-biocreative-vi/

https://www.cs.york.ac.uk/semeval-2013/task9/
https://biocreative.bioinformatics.udel.edu/resources/corpora/chemprot-corpus-biocreative-vi/
https://biocreative.bioinformatics.udel.edu/resources/corpora/chemprot-corpus-biocreative-vi/
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i2b2/VA 2010 MedNLI ChemProt DDI

Training 24,757 (22,263) 11,232 19,460 (4,154) 18,779 (2,937)
Validation 6,189 (5,565) 1,395 11,820 (2,416) 7,244 (1,004)
Test 45,404 (45,009) 1,422 16,943 (3,458) 5,761 (979)

Table 5.4: Number of examples per evaluation task. We report the number of enti-
ties for i2b2 and positive relations for ChemProt and DDI between parentheses.

Evaluation Setup

For each evaluation task, we follow the common practice and add the usual task-
specific layers on top of the pre-trained BERT model23. We then fine-tune these
architectures for 15 epochs using a batch size of 32. After each epoch, we run an
evaluation step on the provided validation set, using 20% of the training data for
validation otherwise, and ultimately select the best performing checkpoint. Similar
to previous experiments, we account for possible randomness issues by repeating
each experiment using 10 different random seeds and computing a final score as
mean ± standard deviation (see Chapter 3 on model evaluation).

Results and Discussion

We report the performance of all model configurations in Table 5.5. Moreover, we
also provide a set of baselines by fine-tuning the original general-domain BERT
(Devlin et al., 2019) as well as BlueBERT (Peng et al., 2019), a publicly available
medical version of BERT.

Pre-training Sanity Check Given the complexity involved in training large
language models like BERT, it is useful to first compare the performance of our
general-domain model with the original BERT. Looking at the results of these
models, we can see that both have relatively similar performances with, neverthe-
less, an advantage for the original version of BERT. This may be explained by
the fact that we use slightly different pre-training corpora (i.e. OpenWebText
vs. BooksCorpus) as well as different pre-training parameters (i.e. batch size,
number of updates, learning rate)24. Moreover, this demonstrates the benefit of
training multiple models in the same conditions, as this allows to eliminate such

23You can refer to Section 4 from the original paper (Devlin et al., 2019) for the authors’
suggestions. Moreover, appendix B provides a number of illustrations including BERT-based
architecture for entity recognition, NLI and classification. However, please note that we do not
use a CRF layer in the current set of experiments.

24In fact, due to server limitations, we trained our models for half the number of steps suggested
in NVIDIA’s implementation. This could mean that our models are overall under-trained.
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Model Evaluation Task

V C1 C2 i2b2 MedNLI ChemProt DDI

G G ∅ 85.66 ± 0.18 77.31 ± 0.71 67.47 ± 0.99 75.81 ± 1.02
G G M 89.00 ± 0.17 84.91 ± 0.46 72.29 ± 0.58 78.82 ± 1.11

M M ∅ 88.80 ± 0.10 83.54 ± 0.43 71.30 ± 0.51 79.40 ± 1.15
M M M 89.20 ± 0.20 84.32 ± 0.73 72.97 ± 0.46 80.11 ± 0.79

Baselines

BERT 86.42 ± 0.31 77.85 ± 0.63 69.22 ± 0.56 77.89 ± 0.92
BlueBERT 88.70 ± 0.21 84.53 ± 0.76 68.35 ± 0.61 77.89 ± 0.65

Table 5.5: Evaluation results across different tasks from the clinical (i2b2,
MedNLI) and biomedical (ChemProt , DDI) domains. The best performance
is shown in bold and the second best is underlined. To save space, we denote
the general domain as ‘G’ and medical domain as ‘M’. BERT refers to the origi-
nal BERT(base, uncased) and BlueBERT refers to the model from (Peng et al.,
2019).

initial differences in performance and provides a level playing field for all models.
All in all, given that we are able to perform at close enough levels to the orig-
inal BERT, we may assume that our implementation is correct and resume our
analysis.

General BERT < Medical BERT As expected, we see that general models
using general vocabularies (V = G, C1 = G, C2 = ∅) perform worse than special-
ized models using in-domain vocabularies (V = M, C1 = M, C2 = ∅). Moreover,
this remains true for the original BERT (baseline) which is outperformed by our
custom medical model as well as the medical baseline BlueBERT. Incidentally, it
seems that using a medical vocabulary and training a model directly on a medical
corpus (V = M, C1 = M, C2 = ∅) leads to better results than BlueBERT, which
re-trains the original BERT on a similar medical corpus25. This could hint at using
a specialized vocabulary and training directly on in-domain data as being possibly
better than the plain re-training of a general model on a specialized corpus.

Is Training from Scratch Really Better? Despite the fact that our medi-
cal model performs better than BlueBERT, a version that retrains the original
BERT on a medical corpus, we see that training from scratch with a specialized

25Their corpus, however, includes 8 times as many biomedical texts as we do. Interestingly, we
outperform this model on ChemProt and DDI, both of which are from the biomedical domain.
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vocabulary is not necessarily better, since re-training our general model on a spe-
cialized corpus (V = G, C1 = G, C2 = M) eventually leads to better results. This
reaffirms the importance of training models in similar conditions and warrants the
inclusion of a medical model that is trained a second time on the same medical
corpus. In fact, by re-training the purely medical model a second time (V = M,
C1 = M, C2 = M), we manage to improve over the previously mentioned re-trained
version on most evaluation tasks, with the exception of MedNLI. This goes to
show that the overall training time of these models does matter, and to a point
where a purely specialized model may perform worse than a model relying on
general-domain representations if the former is not trained properly.

Summary

Our results clearly demonstrate how important it is to train models in similar con-
ditions before attempting to draw conclusions about which configuration might be
better. In fact, by constructing multiple variants of BERT using either a general-
domain or a medical vocabulary and relying on either a general or a specialized
corpus, we are able to realize that while a purely medical model does perform bet-
ter than a purely general version, re-training the general version on a specialized
corpus does overall lead to results that are on par with a model using a tailored
vocabulary with a large in-domain corpus. Moreover, we notice that besides the
domain of the WordPiece vocabulary and the training corpus, the training time
(i.e. overall number of parameter updates) plays an important role. In fact, we
show that a purely medical model may perform below a general model that uses
a general vocabulary and is retrained on a specialized corpus, especially if the
former is not trained for as long of a time. All in all, given the cost required for
training a purely specialized model twice, it seems preferable to re-train a general
model as the latter approach seems to be overall comparable in terms of perfor-
mance. This means that despite using a general-domain vocabulary that produces
seemingly meaningless subwords during tokenization, BERT is able to alleviate
these apparent issues, probably contextualizing these subwords in a way that en-
ables recovering some of the original token semantics. In the end, the domain of
the WordPiece vocabulary may or may not have an actual impact on downstream
performance. However, relying on these subwords is definitely inconvenient in
practice, leading for instance to multiple WordPiece embeddings instead of a sin-
gle word representation. In the next section, we explore the idea of a BERT model
that does not rely on such subwords, using instead a system that consults token
characters.
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5.3 Characters Instead of Subwords
Due to the compelling improvements brought by BERT, many recent representa-
tion models have adopted a similar approach, consequently inheriting the Word-
Piece tokenization system. While this subword system arguably achieves a good
balance between the flexibility of characters and the efficiency of full words, us-
ing predefined vocabularies from the general domain may not always be suitable,
especially when building models for specialized domains (e.g., the medical do-
main). Moreover, adopting a WordPiece tokenization shifts the focus from the
word level to the subword level, making the models conceptually more complex
and arguably less convenient in practice. In this section, we explore the idea
of a subword-free transformer-based language model. Specifically, we would like
to build and evaluate a variant of BERT that does not rely on the WordPiece
system. This system would consequently avoid any biases that may arise from
using pre-defined WordPiece vocabularies (e.g. a general vocabulary in a special-
ized domain) while at the same time representing a step towards reverting back
to the conceptually simpler family of word-level models. In fact, there have been
several NLP systems that achieved an open-vocabulary while representing full
words (Luong and Manning, 2016; Kim et al., 2016b; Jozefowicz et al., 2016). One
such system is the LSTM-based model ELMo which is able to produce a single
contextual representation for any arbitrary token26 by consulting its characters
and without requiring any pre-defined word or subword vocabulary that could
be domain-dependent. In this work, we propose CharacterBERT, a variant
of BERT that uses ELMo’s character-based system instead of WordPieces. By
training parallel versions of both BERT and CharacterBERT, we investigate
whether WordPieces are necessary for building good BERT-like language models
and study whether a vocabulary-free model could positively impact transfer across
different domains27.

5.3.1 CharacterBERT

CharacterBERT uses the exact same architecture as vanilla BERT but relies
on a different method for constructing its initial context-independent representa-
tions: while the original model consults a subword vocabulary to split unknown
tokens into two or more WordPieces, then embeds each unit independently using a
WordPiece embedding layer, CharacterBERT uses a Character-CNN mod-
ule (Peters et al., 2018a; Jozefowicz et al., 2016) which, much like ELMo’s initial
layer, consults the characters of each token to produce single token representations
(see Figure 5.5).

26As long as it is not unreasonably long (i.e. under 50 characters).
27This work has led to a publication at COLING 2020: (El Boukkouri et al., 2020)
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Figure 5.5: Comparison of the context-independent representation systems in
BERT and CharacterBERT. In this illustration, BERT splits the word “Apple”
into two WordPieces, then embeds each unit separately. CharacterBERT, on
the other hand, produces a single vector for “Apple” by consulting its characters.
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CharacterCNN: Building Word Representations from Characters

We use the same CharacterCNN architecture that is implemented as part of
ELMo, adding support for some special symbols that are specific to BERT (e.g.
[MASK], [CLS]). This character module constructs context-independent token rep-
resentations by following a number of steps:

1. In simple terms, each token is seen as a sequence of characters. In prac-
tice, however, each character is replaced with the appropriate UTF-8 byte
sequence, producing a long sequence of bytes for each input token which we
rely on instead of the actual characters. This has the benefit to limit the
vocabulary size to the total number of possible bytes (i.e. 256)28. Moreover,
it allows for the possibility of using the same byte vocabulary for different
kinds of inputs (e.g. different languages, non-ascii symbols).

2. Each byte sequence is truncated to a maximum size of 50. This rarely hap-
pens in practice and allows to pad all byte sequences to the same target size
in order to feed multiple sequences in batches and speed up computation.

3. Using a “character embedding layer”, each byte is converted into a 16-dimen-
sional vector. Consequently, each input word becomes a sequence of 16-d
character (byte) representations. Here, a vanilla BERT model would have
split an out-of-vocabulary token into WordPieces, producing a sequence of
subword representations. Then, this sequence would have been biased us-
ing positional and segment embeddings before being fed to a sequence of
Transformer layers for contextualization. However, with Character-
BERT, the plain character embeddings cannot be leveraged directly since,
for instance, the self-attention mechanism would not be sensitive to char-
acter order (e.g. “apple” and “palpe” would be seen as the same token) and
the character representations may not encode sufficient information. As a
result, additional processing steps are required to further digest the sequence
of character vectors.

4. Each character embedding sequence is fed to multiple CNNs with different
filters sizes in order to extract, essentially, signals at various n-gram levels.
Specifically, we use the following [filter size, number of filters ] configurations:
[1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512] and [7, 1024]. The output of
each CNN is then max-pooled across the character sequence, which can be
interpreted as filtering only the strongest signals for each n-gram. Finally,
all outputs are concatenated to form a global feature vector for each token
with dimensionality: 32 + 32 + 64 + 128 + 256 + 512 + 1024 = 2048.

28Counting the special symbols such as [CLS] and [SEP], the final vocabulary size is 263.
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5. Each feature vector goes through two successive Highway layers (Srivastava
et al., 2015) which apply non-linearities with residual connections and even-
tually project these representations down to a final embedding size which
we choose to match BERT’s 768-dimensional output29. Ultimately, the final
output for each token is a single context-independent vector that is supposed
to play a similar role to BERT’s WordPiece representations.

As with BERT, we add position and segment encodings to the aforementioned
token embeddings—i.e the CharacterCNN vectors—before feeding the resulting
representations to the downstream Transformer layers for contextualization.
Since CharacterBERT does not split out-of-vocabulary tokens into WordPieces,
each input token goes through the system as a single vector, ultimately leading to
a single contextual representation.

5.3.2 Experiments

In order to evaluate the impact of using a CharacterCNN instead of the usual
WordPiece embeddings, we compare BERT and CharacterBERT on several
medical tasks. In a similar spirit to previous pre-training experiments, we train
each CharacterBERT model alongside a BERT counterpart, in the exact same
settings, in order to dissociate the impact of the CharacterCNN from other
effects related to model training (e.g. training corpora and hyperparameters).

Model Configurations

We train multiple models following the BERT(base, uncased) architecture which
expects lowercase texts and uses 12 Transformer layers with 12 attention heads,
producing 768-dimensional representations. This architecture has ≈ 109.5M pa-
rameters, which become in the case of CharacterBERT ≈ 104.6M parameters.
It is interesting to note that using a CharacterCNN actually results in an over-
all smaller model despite using a character module which may look complex at first
glance. This may be explained by the fact that BERT’s WordPiece embeddings
matrix has ≈ 30K × 768-d vectors while CharacterBERT uses smaller 16-d
character embeddings and mostly small-sized CNNs.

For each architecture, we consider two different model configurations: one gen-
eral and one specialized (i.e. medical). The specialized versions are re-trained from
the general models in accordance with the usual way in which BERT is adapted
to new domains. We use the following model configurations:

29Assuming we are using the BERT(base, uncased) architecture.
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BERTgeneral This is a general-domain model obtained by pre-training BERT on
a general corpus. It uses the same architecture and WordPiece vocabulary
as BERT(base, uncased), which it is meant to replicate.

BERTmedical This is a medical version of BERT that is the result of re-training
BERTgeneral on a large medical corpus.

CharacterBERTgeneral This is a general-domain model obtained by training
CharacterBERT on a general corpus. Besides the CharacterCNN, it
uses the same architecture as BERTgeneral, which it is meant to replicate
with a different tokenization and representation approach.

CharacterBERTmedical This is a medical version of CharacterBERT that
is the result of re-training CharacterBERTgeneral on a large medical cor-
pus. This is supposed to be the CharacterCNN analog of BERTmedical.

Pre-training Setup

We use the same general and medical corpora as with previous pre-training experi-
ments (see §5.2.2, Table 5.3). We recall that the general corpus is slightly different
from BERT’s original corpus due to replacing BooksCorpus with OpenWeb-
Text and that the medical corpus is comprised of clinical notes from MIMIC-III
and biomedical article abstracts from PMC-OA. Following the common practice
for BERT, we pre-train our models on two different tasks: Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). BERT and Character-
BERT are pre-trained identically. However, during Masked Language Modeling
we mask and predict entire tokens with CharacterBERT instead of the usual
subwords that are masked when using BERT. This is a natural consequence of
having a word-level model and can be seen as enforcing Whole Word Masking for
free, which, incidentally, has been shown to improve the quality of vanilla BERT
models30 (Cui et al., 2019). We pre-train all model configurations following the
exact same procedure described in Section 5.2.2.

Evaluation Tasks

We evaluate our model configurations on a wide range of tasks which includes
previously presented evaluations tasks (§5.2.2) as well as an additional sentence
similarity task, always in an attempt to consider a diverse range evaluation setups.

30Google has updated their model repository with Whole Word Masking versions which were
shown to improve over the original BERT. See: https://github.com/google-research/bert

https://github.com/google-research/bert
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Medical Entity Recognition We reuse the i2b2/VA 2010 clinical concept ex-
traction task which aims to extract three types of medical concepts: prob-
lem (e.g. “headache”), treatment (e.g. “oxycodone”), and test (e.g. “MRI”).
This uses exact span F1 as a metric.

Natural Language Inference We also reuse the clinical natural language in-
ference task MedNLI, which aims to classify sentence pairs into three cate-
gories: contradiction, entailment, and neutral. This uses prediction
accuracy as a metric.

Relation Classification We reuse the two biomedical relation classification tasks
as well, namely: ChemProt and DDI, which respectively focus on classify-
ing chemical-protein interactions: activator (cpr:3), inhibitor (cpr:4),
agonist (cpr:5), antagonist (cpr:6), or substrate (cpr:9); and drug-
drug interactions: advise (ddi-advise), effect (ddi-effect), mechanism
(ddi-mechanism), or interaction (ddi-int). These tasks use a micro-
averaged F1 on positive classes as a metric.

Sentence Similarity Finally, we include an additional sentence similarity task
from the clinical domain: ClinicalSTS (Wang et al., 2020). This is a task
from the BioCreative/OHNLP Challenge 2018, Task 2 (Wang et al., 2018)
which aims to produce similarity scores for sentence pairs that correlate with
the gold standard. As a similarity task, this uses Pearson correlation as a
metric.

Figure 5.6 provides examples from each evaluation task and Table 5.6 reports
the number of samples, entities and positive relations for these same tasks.

i2b2 MedNLI ChemProt DDI ClinicalSTS

Train. 24,757 (22,263) 11,232 19,460 (4,154) 18,779 (2,937) 600
Val. 6,189 (5,565) 1,395 11,820 (2,416) 7,244 (1,004) 150
Test 45,404 (45,009) 1,422 16,943 (3,458) 5,761 (979) 318

Table 5.6: Number of examples per evaluation task. We report the number of enti-
ties for i2b2 and positive relations for ChemProt and DDI between parenthesis.

Evaluation Setup

We take the same approach to evaluating our models as with previous experiments.
Namely, given a pre-trained model, and evaluation task and a seed i ∈ 1..10:

1. We fine-tune a task-specific architecture for 15 epochs, using batches of 32.
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Figure 5.6: Examples from each evaluation task.

2. After each epoch, we evaluate the model on a validation set that is either
given or computed as 20% of the training set. According to the validation
performance, we may save the model.

3. After completion, we load and evaluate the best model on the test set.

This process is repeated for all seeds to compute a final performance as mean ±
std . We have mentioned previously how this allows to account for some of the
variability during training. However, this time we also use the multiple seeds to
build ensembles as detailed in Section 3.3. These ensembles are eventually used
to compute a final score as mean ± std . All fine-tuning experiments are run on a
single TeslaV100-PCIE-32GB using Adam (Kingma and Ba, 2015) with a learning
rate of 3e-5, a warm-up ratio of 10%, and a weight decay of 0.1.

5.3.3 Results & Discussion

Speed Benchmark

Pre-training Pre-training a single model through phases 1 and 2 using our hy-
perparameters takes around 26.5 hours for BERT and 55 hours for Character-
BERT, despite both architectures having about the same number of parameters.
This great difference in pre-training speed is partly due to the CharacterCNN
being a bit slower to train, being more complex than the original WordPiece em-
bedding matrix (i.e. multiple CNNs and Highway layers). However, the main
reason for the pre-training being slower is probably that we are not able to use
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a very specific trick during Masked Language Modelling which BERT is able to
use to speed up computation. In fact, when using BERT, all input tokens are
elements of the WordPiece vocabulary given that the tokenization step splits any
new unknown token into a sequence of known subwords from said vocabulary.
As a result, when performing MLM predictions, recovering the masked symbol
is the same as selecting the most likely element from the WordPiece vocabulary.
Consequently, the output and input vocabularies are the same and BERT is able
to share its WordPiece embedding matrix with the output layer, which tends to
speed up training. On the other hand, with CharacterBERT, a consequence
of dropping the WordPiece system is that our model does not have a subword
embedding matrix anymore and that the input text is tokenized into full words.
Since the input token representations are generated on the fly using the Char-
acterCNN, it is not straightforward how to re-use the same system to recover
masked tokens during Masked Language Modeling. As a result, we are compelled
to build a temporary output vocabulary which we limit to the top 100K tokens
in the training corpus and use as MLM targets. One direct consequence of this
is that only symbols from the 100K vocabulary are allowed to be masked, which
may limit the assimilation of rarer words and expressions. While there might be a
clever way to invert the CharacterCNN in order to use it for generating MLM
predictions and share it with the output layer similar to what is done with vanilla
BERT, it is unclear how that would affect the quality of the final models. One
possible solution that might be worth exploring is using methods like Noise Con-
trastive Estimation (Mnih and Kavukcuoglu, 2013) to iteratively contrast more or
less likely tokens instead of the costly discriminative selection of specific elements
from a large vocabulary. These methods, however, are left for future work.

Fine-tuning In addition to the pre-training speed, we also report the elapsed
time for fine-tuning as well as for inference. Figure 5.7 shows that Character-
BERT is much less at a disadvantage when it comes to fine-tuning (19% slower on
average instead of 108%). However, in the specific case of the DDI task, we can
see that CharacterBERT is actually 14% faster than BERT. While surprising
at first, we notice that the DDI texts include an important number of complex
terms which are not part of BERT’s original vocabulary (e.g. cholestyramine,
which becomes [cho, les, ty, ram, ine]), which leads to an increased average input
length for BERT relative to the vocabulary-free alternative, CharacterBERT.
For instance, the minimum, average and maximum input lengths from the DDI
test set are respectively 4, 34, and 94 for CharacterBERT against 9, 79, and
169 for BERT. Given the quadratic complexity of these BERT-like models with
respect to their input length, this could explain why CharacterBERT is faster
during the fine-tuning on DDI task. At inference time, we can see that Charac-
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terBERT is overall faster than vanilla BERT, as the CharacterCNN is not as
slow during inference as it is during optimization. All in all, there seems to be an
interplay between, on one hand, the word-level tokenization which leads to shorter
input sequences and makes CharacterBERT faster, and, on the other hand,
the complexity of the CharacterCNN module which slows down the model in
situations where back-propagation is applied.

Figure 5.7: Speed comparison during fine-tuning and inference.

Preliminary Analysis

Reproducing Vanilla Models We report the performance of BERT(base, un-
cased) as well as BlueBERT(base, uncased) (Peng et al., 2019), a medical model
pre-trained on MIMIC-III and PubMed abstracts31. As with previous exper-
iments, we include these two baselines in order to compare our custom general
and medical BERT to external models trained by the community and evaluate
the quality of our pre-training procedure. Note that BERTgeneral and BERTmedical

are the same two models that use a general vocabulary and which we have pre-
sented in Section 5.2.2. Figure 5.8 shows that BERTgeneral performs slightly worse

31Note that BlueBERT is trained on PubMed abstracts while our medical models are trained
on the smaller set of PMC OA abstracts.
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than the original BERT despite using exactly the same architecture. We have
commented on this previously and we now validate this result using the ensemble
scores and on an additional sentence similarity task. As mentioned previously,
this difference may be attributed to either the different general-domain corpora
(OpenWebText instead of BooksCorpus) or to differences in pre-training pa-
rameters (number of updates, batch size...). Moreover, we see that BERTmedical

performs at the same level as BlueBERT, sometimes outperforming the latter
substantially (≈ +4 F1 on ChemProt ), which allows us to safely assume the
proper functioning of our pre-training procedure.

Figure 5.8: Comparison of pre-trained models when fine-tuned on several medical
tasks. For each model, the test performance of 10 random seeds is expressed as
mean ± std and is shown in blue for single models and orange for ensembles.
The test set performance of the best validation seed is shown as a red symbol.

Ensembles and Model Selection Figure 5.8 shows the average ensemble per-
formance (orange bars) as well as the average performance of single models (blue
bars). One immediate observation is that ensembles systematically perform better
than single models, sometimes with great improvements (e.g. ∼ +3 F1 for Char-
acterBERTgeneral on ChemProt and ∼ +2 F1 for CharacterBERTmedical
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on DDI). While not surprising per se, it is worth noting that these ensembles
were produced using a simple majority voting strategy which can be easily and
cheaply applied as a post-processing step. Moreover, if we assume the availability
of multiple runs per experiment—which we argue is a always a good practice—one
common approach is to select the best performing seed on the validation set and
use that as a final model. Our results show that this model (shown as a red sym-
bol) performs always worse than the average ensemble model. Additionally, we
can see that model ensembles have substantially lower variances compared to sin-
gle models, which, all in all, suggests that computing model ensembles is an easy
and effective way to improve the overall performance while allowing for a more
reliable comparison across different model configurations.

Detailed Test Scores Along with graphical representations of the results, we
also provide a more detailed version of the test scores in Figure 5.9. For each
model, either using the single model scores (i.e. row prepended with ‘S’) or the
model ensembles (i.e. rows with ‘E’), we compute the first, second (median), and
third quartiles of the score distribution. We also use a blue-red color gradient
to highlight for each column the values at both ends of the spectrum (i.e. blue <
red). A quick look at the table shows a concentration of high scores for the medical
BERT and CharacterBERT models, with the latter performing better for all
tasks but ClinicalSTS. Incidentally, while the bar plot for ClinicalSTS (Fig-
ure 5.8) shows a great variance for single CharacterBERTmedical models, the
detailed quartile values give some insights on where this variance comes from. In
fact, we can see that the first quartile of the single model performance is very low
with a correlation of 82.92 while medical BERT achieves a higher value of 84.80.
However, we also see that the difference is smaller for the median and third quar-
tiles with respective deltas of only 0.18 and 0.05. Therefore, CharacterBERT’s
performance on ClinicalSTS may be explained with the presence of a few “bad
seeds” where the model does not manage to converge properly. Such seeds would
have a substantially worse performance and would only count in the computation
of the first quartile of the score distribution, explaining the large variance and the
mismatch between the first and other quartiles32.

BERT Vs. CharacterBERT: How Significant Is the Difference?

Our evaluation results show that, overall, we are able to outperform original
BERT using the CharacterBERT and without relying on any kind of sub-
word system. This is evidenced by the visual color coding in Figure 5.9, as well as

32To be clear, these “bad seeds” are probably not “unlucky seeds” but rather a manifestation
of a heavier tail at the lower end of the score distribution.
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the bar plots from Figure 5.8 where we can see in particular that Character-
BERTmedical improves over the ensemble performance of BERTmedical by ∼ 1.5
points on ChemProt , ∼ 2 points on DDI, and ∼ 0.5 points on MedNLI and
i2b2. However, we also see that the medical CharacterBERT model performs
worse than its BERT analog in the specific case of ClinicalSTS, which we as-
sume to be partly due to the presence of a few bad random seeds. Nevertheless,
we can notice that the results with general-domain models seem to also be in favor
of CharacterBERT as well. However, these differences may not be substan-
tial after all. In an effort to provide a more rigorous comparison of these models,
we perform statistical significance tests for each pair of models, namely, Almost
Stochastic Order tests (ASO) (Dror et al., 2019), which we discuss in more detail
in Section 3.3. Ultimately, given a pair of models A and B, the ASO test produces
a value ε such that ε = 0 when model A � B, ε = 1 when B � A, and ε = 0.5 when
no order can be determined. Figure 5.10 shows the values of ε for all model pairs as
well as for each task. Aside from these task-specific significance matrices, we also
compute the average significance matrix as a way to provide a single aggregated
signal33. Using this global matrix, we can see that CharacterBERTgeneral im-
proves over its BERT counterpart (row d, column c). Moreover, we also see that
the overall best model is CharacterBERTmedical as evidenced by the bottom
blue row (cells [f, a] to [f, e]). This is also shown on the single significance matri-
ces with a blue bottom line for all tasks but, as expected, ClinicalSTS. All in
all, the performed ASO tests provide additional evidence that CharacterBERT
is indeed able to improve over vanilla BERT both as a general and specialized
model.

Robustness to Noise and Misspellings

Since CharacterBERT uses multiple character-level CNNs to compute context-
independent word representations, it may be expected that this model could be
robust to different kinds of noise such as typos and misspellings. In order to
investigate this idea, we create noisy versions of the MedNLI task where, given
a noise level of X%, we transform each token from the original task corpus, with
probability X%, into a misspelled version via either swapping two consecutive
characters or by removing, adding or replacing a single character. We then use
these corpora to run two sets of evaluations: one where the noise is added to the
training, validation as well as the test set of the MedNLI task; and one where we
only add noise to the test. We consider these two settings in an attempt to see,
in case CharacterBERT proves to be more robust than BERT, whether this
difference disappears when BERT is given the chance to adapt to the additional

33Note that the average significance score may not be seen as an actual significance score per
se. However, this aggregated score may be useful for providing a global signal.
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Figure 5.10: Statistical significance: Minimal distance ε for Almost Stochastic
Order at level α = 5%. Blue cells mean that the left model is significantly better
than the bottom model. Red cells mean the opposite.
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noise.

Figure 5.11: Comparing BERT and CharacterBERT on noisy (misspelled)
versions of MedNLI test.

Figure 5.11 shows the results for BERTmedical and CharacterBERTmedical

using various levels of noise on either the test set only or on all splits of the
task dataset. As expected, we see that CharacterBERT is indeed more robust
to misspellings, as evidenced by the slower decrease in performance compared to
BERT in both situations. In particular, when a noise level of 40% is applied
to the test set only, CharacterBERT is ∼ 5 F1 points higher than BERT
whereas the original difference between the two models is only < 1 F1 point.
When both models are given the chance to adapt to the additional noise (i.e. noisy
train/dev/test), the overall loss in performance when increasing the noise level is
less important. However, the difference between BERT and CharacterBERT
continues to increase along with the increase noise, confirming once again that
CharacterBERT is more robust in comparison.

Summary

Overall, CharacterBERT seems to either perform at the same level or improve
over the vanilla BERT architecture. This is especially true for the specialized ver-
sions and is further validated by ASO significance tests. The new variant is open-
vocabulary and produces word-level representations. Moreover, it exhibits signs
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of superior robustness to different forms of misspellings. This improved robust-
ness is desirable as the original BERT seems to be sensitive to such misspellings
(Pruthi et al., 2019; Sun et al., 2020). On the downside, CharacterBERT is
slower to pre-train, although not as slow to fine-tune and even slightly faster at
inference time. Future work may focus on applying a similar CharacterCNN
to more recent transformer-based models such as ALBERT (Lan et al., 2020) or
ERNIE (Zhang et al., 2019). Other directions may attempt to optimize the pre-
training architecture to improve its speed or explore any other advantages that
a character-level system may provide over WordPieces. It is however fair to note
that other character-based Transformer models have been proposed around
the same time as CharacterBERT. These are, for instance, CharBERT (Ma
et al., 2020), which relies on both character and subword information; Char-
former (Tay et al., 2021), which automatically learns latent subword represen-
tations using the character information; and CANINE (Clark et al., 2021), which
can operate without any tokenization on raw character sequences.

5.4 Conclusion

BERT has definitely had a major impact on the way modern NLP is practiced,
with most modern systems relying on either BERT or one of the several variants
that has been spawning, attempting to improve over the original architecture in
some specific way. In most cases, the tokenization procedure used by these models
remains the same and relies on a pre-defined vocabulary of subwords to handle any
new unseen tokens. While this system may be effective for dealing with the same
general domain these WordPiece vocabularies are usually built for, issues may
arise when re-training general models on in-domain corpora in an attempt to han-
dle new specialized domains such as the medical domain. In fact, we have seen that
a general vocabulary tends to produce seemingly less meaningful decompositions
of domain-specific terms when compared to a specialized vocabulary, suggesting
that a fully specialized model may be more suitable than a re-trained version re-
lying on a general-domain model. While we verify this hypothesis to some extent,
comparing a re-trained model using a general vocabulary to a medical model using
a specialized vocabulary, it is clear, however, that building such specialized mod-
els from scratch is not as convenient as re-training pre-trained models from the
general domain. In an attempt to take a step towards a BERT model that can be
seamlessly re-trained on different domains without having to worry about a poten-
tial mismatch with the WordPiece vocabulary, we propose CharacterBERT, a
variant that achieves an open-vocabulary and word-level model by consulting word
characters. We show that in addition to being more convenient to use, this model
overall outperforms a BERT analog that is trained in identical conditions, while
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at the same time exhibiting signs of superior robustness to misspellings. However,
CharacterBERT is slower to pre-train, although not as slow to fine-tune and
slightly faster during inference. While it is still unclear whether this architec-
ture is more suited for model transfer across different domains, we argue that it
has, nevertheless, a few assets that weight in its favor: a unique byte vocabulary
that can encode tokens from different languages as well as non-ascii symbols and
a CharacterCNN that can be repeatedly re-trained to fit any new domain of
interest.



Chapter 6

Specializing Representations Using
In-domain Knowledge

6.1 Introduction

In previous chapters, we have touched upon the domain adaptation of word em-
beddings in the context of re-training general models on large specialized corpora.
While this is probably the most popular and successful approach for constructing
domain-specific word representations, we argue that knowledge bases—which are
sometimes used to provide supervision (e.g. knowledge base completion tasks) or
for evaluation purposes (e.g. in graph embedding evaluation)—may also be uti-
lized as external sources of in-domain knowledge to enhance general-purpose word
embeddings. In fact, there have been multiple efforts to leverage knowledge bases
for improving the quality of word embeddings (see Background and Related Work,
Section 2.3). However, these methods often focus on injecting linguistic knowl-
edge and rarely explore how such external knowledge can be used to specialize
pre-trained models to new domains. Moreover, existing methods either only ap-
ply to static representations or, instead, focus on modern language models and
require complex procedures and/or architecture modifications. In this chapter,
we consider external knowledge injection from a domain adaptation perspective.
Specifically, we attempt to leverage in-domain knowledge bases to enrich existing
representations, both traditional (e.g. static vectors) and modern (e.g. pre-trained
language models), all the while focusing on keeping the overall method as simple
as possible. In fact, we argue that by seeking a simple approach it is possible to de-
velop strong baselines that can be refined easily by replacing any component from
the global pipeline with improved and more advanced alternatives. In this spirit,
investigate whether successful knowledge injection can be achieved using a simple
approach comprising two components, namely: knowledge embeddings—and more
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specifically, graph representation methods—which will be used to encode input
knowledge bases into dense numerical representations; and meta-embeddings—
specifically, vector concatenation—which will be used to combine existing word
embeddings with pre-trained knowledge representations. Moreover, we explore
how this simple approach can be generalized to deep neural language models by
proposing a variant of BERT that incorporates external knowledge representations
within its hidden layers, using a similar concatenation process. As for previous
chapters, we focus on the medical domain in the specific context of the English
language1.

From a Transfer Learning perspective, this chapter explores yet another aspect
of domain adaptation. In fact, while previous chapters aimed to investigate the
impact of different hyperparameter choices on the quality of corpus-based domain-
adaptive pre-training—namely, the corpus size vs. domain similarity tradeoff (§4)
and, in case of BERT-like models, subword-tokenization (§5)—the current chap-
ter explores how such domain adaptation can be achieved by leveraging external
knowledge in the form of knowledge bases as well as hybrid meta-embeddings that
combine both text and knowledge representations. Interestingly, these methods
assume very little about the nature of the word representations and therefore,
may also be used in conjunction with corpus-based techniques.

6.2 Knowledge Bases as Dense Representations

Let us assume that a knowledge base may be represented as a set of triples (h, r, t),
where h and t are respectively the “head” and “tail” entities, and r is a (possibly
directed) relation linking h to t. In this context, a fact such as “Paris is the capital
of France” may appear in the knowledge base as (Paris, capital_of, France).
Given this definition, there are different ways to leverage the knowledge base in-
formation, which we broadly categorize into two groups: methods that use the
triple information directly (e.g. retrofitting methods—§2.3.2), and those that use
it indirectly by first converting the knowledge base into dense knowledge embed-
dings. In upcoming experiments, we investigate how existing word representations
may be enhanced through the simple process of vector concatenation. Therefore,
a necessary step is to first convert input knowledge bases into dense knowledge
embeddings, which we develop in the next paragraph.

Knowledge Graph Embeddings There are several methods for embedding
knowledge graphs (Ji et al., 2021). In their simplest form, these can rely on sim-
ple translational principles such as TransE (Bordes et al., 2013), which optimizes

1This work has led to an article that is currently under submission.
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head, tail and relation embeddings according to the linear constraint ĥ + r̂ ≈ t̂;
and TransR (Lin et al., 2015), which introduces separate spaces for entities {h, t}
and relations {r} and uses a different constraint Mr · h + r ≈ Mr · t, such that
Mr is a relation-specific projection matrix which projects entities into the relation
space. More recent methods, however, can be more complex and sometimes rely
on neural networks like ConvE (Dettmers et al., 2018), which uses Convolutional
Neural Networks; and KG-BERT (Yao et al., 2019), which relies on BERT in order
to encode KB triples. In this chapter, we aim to provide a working yet simple so-
lution for enhancing word representations using knowledge graphs. Consequently,
we choose a simple method for converting input knowledge bases into dense rep-
resentations, namely, one that only uses the relation information indirectly. In
fact, most knowledge bases have a relation that is analog to is_a. This relation
is usually the most frequent and provides useful information about parent-child
relationships that connect the different entities of the knowledge base. As a first
approximation, we focus on this single relation which allows to extract a a ho-
mogeneous graph of entities (i.e. as opposed to a set of KB triplets) which we
leveraged using graph-level methods like node2vec (Grover and Leskovec, 2016).
These graph embedding methods encode the structure of the input graph into
dense numerical vectors and may eventually be replaced with more advanced KB
embedding models such as TransR and ConvE.

6.2.1 UMLS, MeSH & SNOMED CT

Given our focus on the medical domain, we consider the Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004), a popular resource that involves mul-
tiple medical knowledge bases and ontologies. More specifically, the UMLS is a
“Metathesaurus” that includes multiple subsets (a.k.a vocabularies), each organiz-
ing a specific set of medical concepts, as well as the different forms associated
with these concepts (a.k.a terms or strings), according to a usually large number
of varied relations (e.g. active_ingredient_of, associated_with, branch_of).
Among the different vocabularies that are part of the UMLS, we select the Med-
ical Subject Headings2 (MeSH), which mainly organizes concepts and terms from
the biomedical domain, as well as the Systematized Nomenclature Of Medicine -
Clinical Terms3 (SNOMED_CT), which is larger and has a focus on the clinical
domain. Given these two vocabularies we can query4 the UMLS and recover all
pairs of Concept Unique Identifiers (CUI) for concepts and terms related through
the is_a relation (e.g. Chronic Bronchitis is a Chronic disease). While there
are many more types of relations that we can leverage, we focus on the single most

2https://www.nlm.nih.gov/mesh/meshhome.html
3https://www.nlm.nih.gov/healthit/snomedct/index.html
4SQL scripts are provided in the code repository.

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/healthit/snomedct/index.html
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frequent5 type is_a in order to extract a single graph from each vocabulary and
use the graph-level embedding method node2vec.

6.2.2 Dense Representations with node2vec

The node2vec Method Roughly speaking, node2vec (Grover and Leskovec,
2016) can be seen as an extension of word2vec (Mikolov et al., 2013) for learning
node representations. By using random walks on the input graph, this method
generates a set of node sequences that can be used as pseudo word sequences,
producing node embeddings via a word2vec-like objective. While this approach
is not specific to node2vec per se and has in fact been explored in earlier methods
like DeepWalk (Perozzi et al., 2014), the former introduces a more flexible type of
random walks that allows it to explore a more diverse set of node neighbourhoods.

Learning node2vec Embeddings for the UMLS We build a graph of con-
cepts from each vocabulary by limiting ourselves to triples with the is_a relation
and replacing head and tail entities with their Concept Unique Identifier (CUI).
We then run the official Python implementation of node2vec6 with default pa-
rameters on each vocabulary graph, which produces 256-dimensional node (i.e.
concept) representations. In total, this step yields 29,738 CUI embeddings for
MeSH concepts and 389,872 CUI embeddings for SNOMED with 15,418 overlap-
ping CUIs having both a MeSH and a SNOMED representation. The visualization
of these embeddings using a PCA (see Figure 6.1) shows that this method is able
to separate different categories of medical concepts in different subspaces, which
suggests some level of encoded medical knowledge in the learned node2vec rep-
resentations.

Using node2vec Embeddings in Practice While the node2vec embed-
dings are interesting per se, we ultimately would like to combine these represen-
tations with existing word vectors in order to investigate whether this can benefit
the performance on downstream tasks. As a result, we need to be able to map
any input token with an appropriate knowledge representation using the learned
node2vec vectors. We adopt the following procedure:

1. Given our global vocabulary of concepts (CUIs), we concatenate both sets
of knowledge embeddings (i.e. MeSH and SNOMED) in order to get a final
512-dimensional knowledge vector for each CUI. When a concept occurs only

5In the entire 2021AA version of the UMLS, there are ∼ 3.5 million pairs with the is_a
relation. For comparison, the frequencies for the other top-10 most frequent types relations
range from ∼ 1.7 million to ∼ 500K.

6https://github.com/aditya-grover/node2vec

https://github.com/aditya-grover/node2vec
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Figure 6.1: PCA of MeSH and SNOMED graph embeddings highlighting four
different categories of medical concepts.

in either MeSH or SNOMED, we use zero-padding in place of the missing
representation.

2. Using these representations requires locating concept mentions in the text,
which refers to the task of concept normalization (a.k.a entity linking) whose
aim is to identify the various linguistic forms that a given concept can take. In
practice, concept normalization is a complex task, involving picking the right
concept to disambiguate an entity mention among possibly several hundreds
of thousands candidates from the knowledge base, all the while taking into
account the different variations (i.e. strings) that may exist for each concept
in the gold resource as well as the different forms that occur in natural text
though casing, misspellings, etc. There are different systems for concept
normalization which appear, for instance, in the various challenges that are
organized on this topic7. However, in this work, we opt for a simple way
to perform this normalization using an exact string matching between the
reference linguistic forms from the UMLS8 (i.e. strings/terms) and the target
texts. This usually allows to disambiguate a reasonable amount of mentions,
and the use of stronger or more advanced entity linkers is left for future work.

7See for instance: https://n2c2.dbmi.hms.harvard.edu/track3
8Which are available in the MRCONSO table of the metathesaurus.

https://n2c2.dbmi.hms.harvard.edu/track3
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3. Once our concept vocabulary has been projected onto the input texts, we as-
sociate each token with its concept representation, using zero-valued vectors
for any tokens that are “out-of-entity”.

6.3 Simple Approach to Knowledge Injection

Now that we have a way to compute concept representations and to associate them
to our input text, we return to our investigation on whether existing word represen-
tations can be improved using external knowledge and a basic set of tools, namely:
graph-level knowledge embeddings and concatenation. To find out whether this is
possible, we consider different static and contextual (i.e. neural language models)
representations from both the general and medical domains, and conduct several
evaluations on a wide range of clinical and biomedical tasks.

6.3.1 Embedding Specialization Methods

Static Representations

Although static representations have been arguably outclassed by more recent con-
textual language models, we argue that these methods are still useful in situations
where large neural models cannot be implemented due to the lack of resources,
as well as in the context of intrinsic tasks such as word and sentence similarity.
Moreover, including these static representations in our analysis allows us to see
whether our approach behaves differently on this simpler class of models before
delving into the generally more complex neural representations. In practice, we
use the fastText method to learn word representations on corpora from differ-
ent domains, then attempt to specialize these embeddings through concatenation,
combining the word and knowledge vectors at the token-level. Since we have al-
ready trained fastText representations in Section 4.2, we can simply re-use these
representations, for which we recall the different source corpora:

Gigaword (Graff et al., 2003) A newswire corpus including sources such as
the New York Times. It is a general-domain corpus with ∼ 1 billion tokens.

PubMed (MEDLINE) A corpus of biomedical article abstracts. This is a med-
ical (biomedical) domain corpus with ∼ 2 billion tokens.

MIMIC (Johnson et al., 2016) A corpus of clinical notes from several hospi-
tals. This is a medical (clinical) domain corpus with ∼ 0.5 billion tokens.
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Contextual Representations

We also experiment with contextual embeddings since these are the most popular
option today. Ultimately, we would like to be able to improve over state-of-the-art
neural language models which may or may not rely on a Transformer archi-
tecture. In our experiments, however, we consider BERT (Devlin et al., 2019)
and CharacterBERT (El Boukkouri et al., 2020)9. The former is included
as a strong baseline for modern transformer-based embeddings and the latter is
included as a word-level variant that performs well in the medical domain (see
Section 5.3). Furthermore, considering two different models allows us to have a
larger sample size for measuring the impact of our strategies on transformer-based
representations. In practice, we specialize these models in two different ways:

Concatenation Similar to static representations, we combine WordPiece repre-
sentations coming from BERT or token representations coming from Char-
acterBERT with the appropriate knowledge vector as explained in Sec-
tion 6.2.2.

Knowledge Injection Modules (KIM) We propose these small neural layers
in an attempt to generalize the idea of concatenating word and knowledge
embeddings to the internal states of a transformer-based model. When
placed after any given layer, this module concatenates the hidden repre-
sentations from that layer hi with the appropriate knowledge representations
KGi. Then, it projects this concatenation to recover a set of new states which
we call “enhanced states” hi, with the same dimensionality as the original
hidden representations. Since this operation could lead to some loss of the
information originally available in the hidden states, we compute a linear
combination of the enhanced and original states using trainable parameters
α ∈ [0, 1] and β = 1− α. Finally, we feed the resulting representation hi to
the next model layer. In summary:

hi = α hi + β hi

where hi = [hi; KBi] W + b and W, b are respectively the weight matrix and
bias of the linear projection operation (see Figure 6.2). Our KIM layers
are loosely related to the idea of Adapter Modules (Houlsby et al., 2019;
Wang et al., 2021) which we discuss in Section 2.2.2. However, our mod-
ules are conceptually simpler and built specifically to incorporate external
representations into the hidden states of transformer-based models.

9We use the “base-uncased” versions of these models.
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6.3.2 Experiments

Embedding Configurations

In what follows, and unless explicitly stated, Model may be either a BERT, Char-
acterBERT or fastText model. With that in mind, these are the various
embedding configurations that we evaluate:

Random These are randomly initialized 256-dimensional static embeddings used
as a baseline for static word representations. Moreover, when combined with
node2vec vectors, these representations are supposed to provide us with
insights on the raw contribution of external knowledge embeddings.

Model These can be either 256-dimensional static embeddings of the form
fastText(corpus), where corpus is one of the corpora presented in Sec-
tion 6.3.1, or 768-dimensional BERT or CharacterBERT representations.

[Model, node2vec] This is the token-level concatenation of Model with the
pre-trained 512-dimensional node2vec representations from Section 6.2.2.

Model(medical) When Model is either BERT or CharacterBERT, this is a
medical model resulting from the re-training of a general version of Model
on a large medical corpus consisting of ∼ 0.5 billion tokens from MIMIC-III
and ∼ 0.5 billion tokens from PMC-OA biomedical abstracts.10

EnhancedModel(medical) WhenModel is either BERT or CharacterBERT,
this is the same configuration as Model(medical) but this time the architec-
ture is modified to use a randomly initialized Knowledge Injection Module
(KIM) after every Transformer layer, as well as either the WordPiece em-
bedding layer for BERT, or the CharacterCNN for CharacterBERT.11

For the last two configurations, we follow a standard pre-training procedure that
comprises both Masked Language Modeling (MLM) and Next Sentence Predic-
tion (NSP), and adapt the implementation from Section 5.3 while keeping similar
hyperparameters.12

Evaluation Tasks

Insights from model evaluation can be misleading, especially when only a limited
number of tasks is considered. In an effort to conduct a more thorough evaluation

10This is the same corpus that we have used in previous experiments (see Section 5.3).
11More precisely, we add the Knowledge Injection Module after the static token representations

have been combined with the segment and position embeddings.
12A bash script including the exact hyperparameter values is available at this URL.

https://github.com/helboukkouri/character-bert-pretraining/blob/main/bash_scripts/run_pretrainin g.bert.step_1.sh
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Entity Recognition Rel. Extraction Semantic Similarity NLI

i2b2 BC5-Dis. BC5-Chem. ChemProt DDI BIOSSES ClinicalSTS MedNLI

Train. 22.263 4.182 5.203 4.154 2.937 64 600 11.232
Val. 5.565 4.244 5.347 2.416 1.004 16 150 1.395
Test 45.009 4.424 5.385 3.458 979 20 318 1.422

Table 6.1: Number of entities, positive relations or samples for each task.

of our models, we consider various tasks from both the biomedical and clinical
domains, ranging from entity recognition to sentence similarity. More specifically,
we consider previously used evaluation tasks (see Section 5.2.2) as well as two ad-
ditional sequence labeling tasks and a sentence similarity task from the biomedical
domain (see Table 6.1).

i2b2 We reuse the i2b2/VA 2010 clinical concept extraction task (Uzuner et al.,
2011), which aims to detect three categories of clinical entities: problem (e.g.
“headache”), treatment (e.g. “oxycodone”) and test (e.g. “MRI”). This uses
Exact match F1 measure as an evaluation metric.

BC5-Disease/Chemical These are two additional sequence labeling tasks
from BioCreative V CDR (Li et al., 2016), which respectively aim to detect
disease (e.g. “hepatitis”) and chemical (e.g. “corticosteroid”) entities. It uses
Exact F1 as a metric.

DDI We reuse this relation extraction task, which we recall focuses on classifying
drug-drug interactions into five categories: advise (ddi-advise), effect (ddi-
effect), mechanism (ddi-mechanism), interaction (ddi-int), and ddi-false for
no interaction. It uses the micro-averaged F1 over non-negative classes as a metric.

ChemProt We also reuse this relation extraction task, which focuses on clas-
sifying chemical-protein relations into six categories: activator (cpr:3), in-
hibitor (cpr:4), agonist (cpr:5), antagonist (cpr:6), substrate (cpr:9)
and false for no relation. The micro-averaged F1 measure over non-negative
classes as metric.

BIOSSES This is an additional and small (i.e. 100 samples total) sentence sim-
ilarity dataset in the biomedical domain (Soğancıoğlu et al., 2017). This uses the
Pearson correlation of predicted and gold similarities is used as a metric.

ClinicalSTS We reuse this clinical domain sentence similarity task. Natu-
rally, this uses Pearson correlation as well.
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MedNLI We reuse this clinical natural language inference task, which aims to
classify pairs of sentences into three categories: entailment, contradiction,
and neutral. Here we use classification accuracy as a metric.

Evaluation Architectures

Since we will be fine-tuning models that rely on either static or BERT-like repre-
sentations, it is important to clearly state which architectures are used in which
situations since these can differ greatly depending on the kind of embedding as
well as the nature of the evaluation task (e.g. sentence similarity vs. sequence la-
beling). Moreover, being aware of these different architectures may also be useful
for interpreting potential differences in behaviour in these different settings.

Sequence Labeling For tagging tasks, we use a classic architecture comprising
an encoder followed by a classification layer and a Conditional Random Field
layer (CRF) (Lafferty et al., 2001). Depending on the situation, the encoder
is changed to adapt to the type of word representations: fastText are fed
to a Bi-LSTM13; [fastText, node2vec] are concatenated prior to be-
ing fed to a Bi-LSTM as well; variants of BERT and EnhancedBERT
are considered as their own encoders and are used as-is. Finally, variants
of [BERT, node2vec] concatenate token and knowledge representations
before feeding them forward. In this last setting, it is important to note that
the transformer representations are contextualized prior to being combined
with the node2vec vectors while all other configurations involving knowl-
edge representations (e.g. [fastText, node2vec], EnhancedBERT)
are combined with node2vec before the contextualization step, which hap-
pens either through a Bi-LSTM or via Transformer layers.

Classification The architecture for relation extraction tasks, which we frame
here as classification tasks, is similar but requires a summarized represen-
tation at the example-level. As a result, the encoder needs to aggregate
token vectors to produce a single summarized representation for each input
text. Here again, fastText and [fastText, node2vec] are fed to a
Bi-LSTM, but this time, the output is average-pooled to produce a single
feature vector. With variants of BERT and EnhancedBERT, we fol-
low the common practice and use the pooler representation14. Finally, when

13In all future mentions of a Bi-LSTM, we will be referring to a 3-layer network with 50%
recurrent dropout and an overall output size of 512.

14We recall that BERT expects an input that starts with a special symbol called [CLS].
This symbol’s representation is supposed to encode global information about the model’s input,
however, in practice, the [CLS] vector goes through an additional dense layer called the pooler
before being used as a feature vector for sentence-level downstream tasks.
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using variants of [BERT, node2vec], the knowledge representations are
combined through average-pooling and the resulting vector is concatenated
with BERT’s aforementioned pooler representation.

Natural Language Inference For NLI tasks, we require a global summarized
representation at the sentence-pair level that we can ultimately feed to a
classification layer. For static embeddings, we compute an average-pooled
Bi-LSTM representation for the first sentence u as well as for the second
one v, then compute a global feature vector [u, v, |u − v|, u ∗ v] following
the approach of InferSent (Conneau et al., 2017b). When using variants of
BERT and EnhancedBERT, we simply use the pooler representation as
these models can accept sentence pairs. Finally, with variants of [BERT,
node2vec], we concatenate the pooler output with InferSent-style features
computed using the node2vec knowledge representations.

Sentence Similarity For STS tasks, the overall approach is different depending
on whether we use static or contextual representations. For static embed-
dings, we follow the common practice and compute a bag-of-word represen-
tation for each sentence; then, we measure the cosine similarity between the
two representations. Perhaps unusually, we frame these models in a super-
vised setting and backpropagate errors to adapt the static representations
during training. When contextual embeddings are involved, we frame the
sentence similarity tasks as regression problems and use the same encoder
as for classification, adding the appropriate output layer to produce similar-
ity scores. In the specific case of [BERT, node2vec] variants, just like
for STS, we concatenate the pooler output with node2vec InferSent-style
features.

We provide illustrations for each of these architectures in the Appendix B.

Evaluation Setup

We fine-tune all model parameters, including the static and node2vec vectors,
using the following hyper-parameters:

• Validation Set : when no validation set is available, we use 20% of the training
data as validation data.

• Epochs : we train each model for 15 epochs for all tasks, except BIOSSES
and ClinicalSTS for which we run 100 and 50 epochs respectively15.

15This also means that the ClinicalSTS results are expected to differ from those of previous
chapters where a different number of epochs (i.e. 15) was used.
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• Batch Size: we use batches of 32 examples.

• Optimizer & Learning Rate: we use the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 1e-3 for all non-transformer weights and
a learning rate of 3e-5 for transformer weights, for which we also use a
weight decay of 0.1 and a linear schedule with 10% warm-up.

As for all previous experiments, we account for some of the randomness during
the fine-tuning procedure by evaluating each model, on each task, using 10 different
random seeds. We then use these seeds as the basis for computing ensemble scores
as well as statistical significance tests (see Chapter 3.3 for more details).

6.3.3 Results & Discussion

Table 6.2: Performance of model ensembles on evaluation tasks from the medical
domain. Results are displayed in pairs: baseline model on the top line and spe-
cialized version (either through concatenation or KIM) on the bottom line. The
colors show statistical significance, with bluer colors meaning the specialized mod-
els improve more significantly over the baselines and redder colors showing a more
significant degradation in performance.
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For better visibility, and given the large number of experiments, we organize
our results in pairs composed of a baseline along with our specialized version of
that baseline. We report the average ensemble performances of each model pair as
two consecutive rows with the baseline on top (see Table 6.2). We also emphasize
in bold the best performance, within each pair, on each task (column). Moreover,
we color the specialized version according to its ASO distance (ε) to the baseline
model. These colors range from red (ε = 0) for a significant degradation, to blue
(ε = 1) for a significant improvement. Please note that the font weight and color
system show related yet different kinds of information (i.e. scores vs. statistical
significance) and that the color coding for these results is opposite to what we have
used in previous sections (i.e. contrary to §5.3.3, here we use: blue > red).

Random vs. [Random, node2vec] It is interesting to note that randomly
initialized static embeddings manage to achieve reasonable results, sometimes even
outperforming pre-trained fastText representations (see Random vs. {Gigaword
or PubMed} on MedNLI). However, given the random nature of these vectors,
we can expect in-domain knowledge representations to be able to easily improve
the baseline performance on downstream in-domain tasks. While this is verified
in most situations (see i2b2 through ChemProt ), we also note a degradation
on BIOSSES and MedNLI. While it is difficult to propose a rigorous explanation
for this phenomenon, it is nonetheless interesting as it could point to situations
where the external knowledge may not be relevant to the task at hand (notice, for
instance, the majority of red cells in the MedNLI column).

fastText(X) vs. [fastText(X), node2vec] Overall, using concatenation
to combine node2vec knowledge representations with fastText embeddings
seems to result in consistent gains, notably on tagging and classification tasks (see
top-left section of the table). Moreover, these results seem to hold regardless of the
domain of origin, as word embeddings trained on Gigaword (general domain),
PubMed (biomedical domain) and MIMIC (clinical domain) all seem to benefit
from this combination. However, we can also see that the results on STS are sig-
nificantly worse, with drops of up to 30 points of correlation on BIOSSES with
fastText(Gigaword). This degradation may be explained by the fact that the
“bag-of-word + cosine similarity” rests on the idea that sentence representations
can be constructed by summing the vectors of individual words within a sentence.
While this is a usual practice when dealing with distributional representations like
word2vec, it is however unclear that this is suited for knowledge base represen-
tations computed using node2vec. Therefore, our STS architecture may not be
adapted to meta-embeddings made of both word and knowledge representations
and could explain our overall failure to produce satisfactory sentence similarity
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models. Moreover, we note that the node2vec vectors are rather sparse (most
concepts do not have both a MeSH and SNOMED representation) and twice as
large as the word representations, which may further contribute to the overall
negative effect as, for instance, a majority of zeros can easily distort the average
representations computed in the context of bag-of-word systems.

BERT vs. [BERT, node2vec] Looking at the results for general-domain
contextual embeddings (i.e. BERT, [BERT, node2vec] and their Character-
BERT analogs), we notice multiple instances where the concatenation with node2vec
proves to be beneficial (see BC5 and BIOSSES for BERT and all tasks but
i2b2 and MedNLI for CharacterBERT). However, there also seems to be
some discrepancies where this concatenation sometimes improves the Charac-
terBERT baseline on one hand, but impairs the BERT baseline on the other
(see ChemProt and DDI). A closer look at these situations shows that plain
CharacterBERT performs slightly lower than plain BERT16, which could ex-
plain why CharacterBERT is improved by the node2vec concatenation while
BERT is not. In fact, if we suppose that the baseline CharacterBERT model
may be missing some information that is relevant for these specific tasks17, then
we may assume that the knowledge representations compensate for this missing
information which, supposedly, may be already available in the baseline BERT
model.

BERT(medical) vs. EnhancedBERT(medical) Adding Knowledge Injec-
tion Modules to the original architectures of BERT and CharacterBERT seems
to produce different results depending on the evaluation task. In fact, we can see
that EnhancedBERT and EnhancedCharacterBERT respectively lose 1.05
and 1.28 F1 relative to their baselines on the DDI task. However, we also notice
that these same models lead to gains of 1.6 and 1.45 F1 on the BC5-Disease
task. Incidentally, the BC5 tasks are particularly interesting as they are based on
the exact same corpus but focus on two different types of entities: disease and
chemical. As a result, given that EnhancedBERT(medical) performs better
than BERT(medical) on BC5-Disease and worse on BC5-Chemical, it is safe
to assume that this is not due to the Knowledge Injection Modules being inherently
harmful but rather to the information available in the knowledge representations
themselves being, relative to what is already available in the base model, more
relevant for the first task than for the second one. Consequently, we may assume

16Note that this BERT model is the original version from (Devlin et al., 2019) and not the
one we train ourselves in Section 5.2.2

17Recall that our general-domain BERT performed below original BERT, which we assumed
to be due to differences in training and corpora. For similar reasons, general CharacterBERT
may be missing some knowledge that is available in original BERT.
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that the Knowledge Injection Modules can be useful for incorporating external
information into a model but that the final downstream performance may depend
on how relevant this information is for any given task. Moreover, it is important
to note that the baseline models for EnhancedBERT and EnhancedCharac-
terBERT are already specialized. In fact, we recall that BERT(medical) and
CharacterBERT(medical) are the result of re-training general models on large
in-domain corpora, which may explain why it is seemingly more difficult to achieve
further specialization using external knowledge with these models.

6.3.4 Summary

Overall, our approach seems to be sufficient for improving existing representations
using external knowledge. In fact, we show that encoding knowledge bases via
node2vec then using concatenation to enhance existing word embeddings leads
to consistent results for static representations, with the exception of sentence sim-
ilarity tasks for which we argue that the “bag-of-words + cosine similarity” is not
fully appropriate. Moreover, we also demonstrate that the plain concatenation can
be successful for specializing transformer-based models. However, we suggest that
the injected knowledge be chosen appropriately so that it is relevant enough for
the target task. Finally, we show multiple instances where the proposed Knowl-
edge Injection Modules successfully improve over a vanilla medical-domain model.
However, we insist here again on the relevance of the injected knowledge.

6.4 Conclusion

In this section, we focused on exploring the extent to which specialized information
from a knowledge graph could be injected into existing word embeddings using a
very simple set of tools: graph embeddings and concatenation. While focusing on
the medical domain in the English language, we conducted multiple evaluations
on tasks ranging from entity recognition to sentence similarity. These evaluations
demonstrated that the concatenation with in-domain graph representations can be
a simple yet effective approach to model specialization, with significant gains on
multiple settings. Moreover, applying the same process of concatenation within
transformer-based contextual models proved to be beneficial as well, with notable
improvements using Knowledge Injection Modules (KIM) on several downstream
tasks. Notwithstanding, our goal was to construct a strong enough baseline using
simple components so that straightforward improvements can be achieved using
more elaborate methods. As a result, there is still room for improvement.
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Knowledge Embeddings As mentioned in Section 6.2.1, there are many more
types of relations that we could use to improve the quality of the knowledge repre-
sentations. An interesting path may be to use recent meta-embedding methods like
Word Prisms (He et al., 2020a), in conjunction with knowledge embedding meth-
ods that learn different concept representations for different kinds of relations like
TransR (Lin et al., 2015), to learn multi-faceted knowledge representations.

Pre-training Objective Monitoring the values of the linear combination weights
within enhanced versions of BERT and CharacterBERT (recall α, β from Fig-
ure 6.2 and see Figure 6.3), we notice that the final contribution α of the “enhanced
states” after pre-training is noticeably small (< 5%). This may indicate that the
external knowledge was not very useful during pre-training, probably leading the
final models to probably under-utilize this information. Future work may define
additional objectives to encourage the model to exploit these external representa-
tions more strongly.
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Chapter 7

Conclusion

This chapter provides an overview of the different contributions we have made
throughout this thesis as well as possible future directions which we think may be
interesting to explore.

7.1 Summary

In this dissertation, we have investigated different ways to improve general out-
of-the-box word representations using in-domain corpora and knowledge bases. In
Chapter 2, we have provided relevant background knowledge on Transfer Learning
and Domain Adaptation as ways to leverage related tasks and corpora. Moreover,
we have touched upon methods for leveraging external knowledge like retro-fitting
and introduced meta-embeddings which we ultimately use to enhance word repre-
sentations with in-domain knowledge.

Subsequently, in Chapter 3, we provided an overview of word embedding evalu-
ation, discussing intrinsic and extrinsic approaches then sharing our perspective on
the matter. We also reviewed the different ways in which we attempt throughout
this thesis to perform fair and rigorous evaluations, mentioning random restarts,
model ensembles and statistical significance.

In Chapter 4, we focused on how text corpora can be used to improve existing
embeddings and confirmed that both corpus size and domain similarity play an
important role in this process. We then proposed a method for leveraging a small
in-domain corpus along with other widely available resources to produce results
that are on par with training in-domain representations.

Chapter 5 goes on a slight tangent and tackles the topic of BERT-like models
and the WordPiece vocabulary. In this chapter, we demonstrated that the orig-
inal BERT vocabulary may not be suited for specialized domains then trained
parallel models from scratch, on corpora from different domains, using different
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vocabularies. This led us to conclude that the slight improvements made by the
fully specialized models were not worth the trouble of training such models from
scratch and suggest in practice to re-train general versions. Moreover, we proposed
a new variant of BERT that does not rely on WordPieces, using instead a char-
acter module inspired from ELMo. We then showed that this new variant, called
CharacterBERT, outperformed a BERT model trained in similar conditions
while at the same time being more robust to misspellings.

Finally, in Chapter 6 we returned to the topic of enhancing word representations
with in-domain information, this time focusing on using knowledge bases. With
simplicity in mind, we developed a strong baseline consisting in knowledge base
embeddings and concatenation. We showed that this method can lead to significant
gains when applied to static word representations as well as transformer-based
models like BERT and CharacterBERT. Moreover, we proposed Knowledge
Injection Modules (KIM) to directly incorporate knowledge representations within
the architecture of BERT-like models. We showed that these modules may lead
to some improvements as well, however, we argue that such improvements are
probably largely dependent on the relevance of the chosen external knowledge to
the target task.

7.2 Contributions

Throughout this thesis we have made the following contributions:

Corpus Size vs. Similarity In Section 4.2, we confirm the result that both cor-
pus size and similarity to the target task domain have a positive impact on
the downstream performance. Moreover, we also show that given sufficiently
large corpora, increased domain similarity seems to be more desirable than
increased size. However, what constitutes a sufficiently large corpus is still
unclear.

Leveraging a Small Task Corpus In Section 4.3, we propose a simple method
for leveraging the potentially small corpus of a target task to build good in-
domain representations. Among the several variants that we have tested, the
best-performing one consists in using a general-domain ELMo model which
we further pre-train on the task corpus. We then also train static representa-
tions with fastText on this task corpus and combine both representations.
While a simple concatenation of both embeddings works well, we show, in
the specific context of using ELMo, that the static vectors can be injected
directly in the internal linear combination of the model to reach results that
are on par with medical variants of ELMo.
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General WordPieces in a Specialized Domain We construct an in-domain
WordPiece vocabulary and show that general-domain WordPieces lead to a
seemingly less meaningful tokenization when used on texts from a specialized
domain. While it is not obvious that this would necessarily have an impact
on the downstream performance, it is still interesting to be aware of such
biases when re-training a general BERT model on a specialized corpus.

Re-training vs. Training from Scratch We train parallel versions of BERT:
one using a general WordPiece vocabulary, which we train on a general corpus
before re-training on a corpus from the specialized domain; and another using
a specialized vocabulary, which we train directly on specialized corpora. We
show that while the medical model is initially superior to the general one,
both models ultimately perform at the same level, despite a slight edge for
the fully specialized version. As a result, and given the cost of training
models from scratch, we suggest building specialized models by re-training
from a general version.

CharacterBERT We propose a new variant of BERT which drops the Word-
Piece system altogether and uses a CharacterCNN borrowed from ELMo
instead. We show that this variant improves over versions of BERT that are
trained in similar conditions and demonstrate that it can be more robust to
misspellings while at the same time being word-level and open-vocabulary.

Encoding Knowledge Bases into Dense Vectors As a preliminary step be-
fore attempting to enhance word representations using external knowledge,
we have extracted graphs of concepts from the UMLS meta-thesaurus and
subsequently trained knowledge representations using node2vec for two
medical vocabularies: MeSH and SNOMED CT.

Combining Word and Knowledge Representations We demonstrate that a
simple concatenation can lead to improvements when used to combine exist-
ing word representations, either static or contextual, with node2vec knowl-
edge embeddings. Moreover, we extend this framework to the internal rep-
resentations of transformer-based models and propose Knowledge Injection
Modules (KIM), which effectively incorporates external knowledge within
the hidden states of BERT-like models. Nevertheless, we argue that select-
ing the appropriate information to inject is key and that it should remain
the primary focus when attempting to specialize existing representations
with external knowledge.

Code and Pre-trained Models We compile all the code we have produced through-
out this work and share it along with our pre-trained models to benefit the
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NLP community and assist future research on the topic of specializing word
embeddings using in-domain corpora and knowledge bases1.

7.3 Future Directions
We review a number of ideas related to the topics we have covered so far and that
may be worth exploring in future work:

Corpus Size vs. Similarity Given the seemingly diminishing returns of increas-
ing corpus size while keeping domain similarity constant, it is important to
be able to say what constitutes an optimal corpus size for a given task. How-
ever, the underlying dynamics are probably more complex than it seems and
may involve other aspects such as vocabulary coverage and co-occurrence
frequencies. In fact, given that most embedding methods rely more or less
directly on co-occurrences to learn word representations, an interesting fu-
ture direction would be, given a large in-domain corpus, to programmatically
sample sub-corpora while controlling both the vocabulary coverage and co-
occurrence frequencies to rigorously analyse the impact of these parameters.
In this context, vocabulary coverage would indirectly represent domain simi-
larity while co-occurrence frequencies would indirectly represent corpus size.

Leveraging a Small Task Corpus We have seen how off-the-shelf ELMo rep-
resentations can be used along with a small task corpus to produce good
in-domain embeddings. Future directions may attempt to apply the same
idea to more recent transformer-based models. One approach is to simply use
concatenation (as we have done for ELMo). More elaborated solutions may
attempt to adapt modern meta-embedding approaches, which would expect
two sets of static vectors, to the case of transformer-based models on one
hand and static vectors on the other. On an unrelated note, other directions
could investigate how data selection can be applied to generally available
corpora (e.g. Wikipedia) to augment the target task corpus. Interestingly,
this idea could be used in conjunction with the meta-embedding approach
to produce potentially greater improvements.

General WordPieces in a Specialized Domain Given the ultimately satisfac-
tory results of medical versions of BERT that are constructed via re-training
from a general model, it is clear that despite the seemingly worse tokeniza-
tion of the general WordPiece vocabulary when used on specialized texts,
the final model is able to nonetheless construct relevant internal represen-
tations. This may mean that the first layers of the models are partially

1https://github.com/helboukkouri/phd-code

https://github.com/helboukkouri/phd-code
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used for contextualizing seemingly meaningless WordPiece representations
into more meaningful vectors. An interesting research topic would be in-
vestigating whether this contextualization happens then understanding its
mechanics. Once understood this may shed some light on ways to construct
good character-level transformer-based models which would only use single
character (or byte) WordPieces.

Re-training vs. Training from Scratch While our experiments compare two
standard approaches (i.e. re-training vs. training from scratch), they fail to
highlight the impact of using a general vocabulary in a specialized domain.
One supplementary experiment which would show this effect more clearly
would be training a model from scratch on a specialized corpus but using
a general vocabulary. Comparing this configuration to the fully specialized
version would allow to have a definitive answer on whether this affects down-
stream performance or not.

CharacterBERT Given that the BERT model that was trained parallel to
CharacterBERT performs below original BERT, we have reasons to think
that our versions of CharacterBERT can be further optimized. Moreover,
there are many BERT-like models that can be converted into character-based
versions using the same principle (i.e. dropping the WordPieces and using
a CharacterCNN instead). Finally, since CharacterBERT does not
rely on a WordPiece vocabulary, an interesting direction would be to train
a multi-lingual version of the model as well as to investigate its zero-shot
capabilities in a cross-lingual context.

Encoding Knowledge Bases into Dense Vectors We have used node2vec
in an effort to simplify our overall knowledge injection method. Future
research directions may focus on using actual knowledge base embedding
techniques such as TransE (and also more recent alternatives), that lever-
age knowledge triples to produce entity representations while considering
all available kinds of relations. Another orthogonal direction would be to
leverage the knowledge triples directly, however that would imply adopt-
ing a different knowledge injection approach. Nevertheless, we can imagine
training word representations in a multi-task fashion, using both the original
pre-training objective and an additional retrofitting-style constraint.

Combining Word and Knowledge Representations Concatenation is a strong
baseline for meta-embeddings, however, there are many more alternatives
which are likely to produce better results. Future directions may investi-
gate other meta-embedding methods such as the previously mentioned Word
Prisms which could leverage knowledge embedding methods that produce
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relation-specific entity representations. Another less obvious direction, which
may be tedious but is nonetheless likely to benefit our method, is better
concept normalization (i.e. entity linking). In fact, we recall that we used
a naive baseline for normalization which consists in projecting the UMLS
terms onto our corpora. As a result, there have been multiple instances of
out-of-concept tokens that were wrongly linked to concepts and vice versa.
Another related direction is to investigate the impact of casing on this nor-
malization as, for instance, the medical domain has multiple acronyms that
may be confused with common word when converted to lowercase (e.g. “AS”
for “Aortic Stenosis”).



Appendix A

Neural Networks and Deep Learning

In this appendix, we provide a bit of technical background for understanding the
main neural architectures that are commonly used in Natural Language Processing
in general, as well as in the context of this thesis in particular. Namely, in Sec-
tion A.1, we go over some basic components and concepts that occur when dealing
with such neural models. These are, for instance, the usual activation functions,
neural layers (e.g. convolutional, recurrent layers, etc) and regularization com-
ponents. Then, in Section ??, we delve more specifically into the architecture of
two models that play an important role in the work presented in this manuscript,
namely: ELMo (Peters et al., 2018a) and BERT (?).

A.1 Fundamental Concepts
Neural networks have varied greatly in both form and implementation since the
original instances developed during the 1950’s. In fact, the first widely recognized
type of neural networks was the perceptron (a.k.a. artificial neuron), a linear model
with parameters w ∈ Rd and b ∈ R that could produce a binary signal according
to its input features x ∈ Rd :

Perceptron(x) =

{
1 if w · x + b > 0,

0 otherwise
(A.1)

However, this simple prototype lacked expressive power and was unable to model
basic phenomena such as the XOR function (Minsky and Papert, 1988).

In modern Deep Learning, the neural architectures that are commonly used
are usually far more complex than a single neuron and can be utilized to solve a
wide range of problems, often with state-of-the-art performance. To achieve such
power, the basic idea behind these architectures is to compose multiple layers that
successively transform the input information into a final set of features that can be
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mapped to a desired output. The field of Machine Learning that is interested in
coming up with such nested neural network architectures is called Deep Learning
(Schmidhuber, 2015; Salakhutdinov, 2014).

Most often than not, neural networks consist of multiple layers that are stacked
on top of each other. There is a rich variety of layers in the Deep Learning literature
which we do not attempt to cover here. However, we go over some fundamental
components which usually appear in the context of NLP and specifically in the
work presented in this manuscript.

A.1.1 Activation Functions

The power of neural networks stems in part from their ability to model complex
non-linear functions. In order to achieve this, these models rely on so-called acti-
vation functions that introduce non-linearities in the otherwise linear system.

Sigmoid Although there is a larger family of sigmoid functions, the term “sig-
moid” usually refers in Deep Learning to the standard logistic function:

σ(x) =
1

1 + e−x
=

ex

1 + ex
(A.2)

d

dx
σ(x) =

ex

(1 + ex)2
= σ(x)

(
1− σ(x)

)
(A.3)

This is a strictly increasing function that is used, in practice, to bound a layer’s
output within the range (0, 1) while introducing some level of non-linearity.

Tanh The hyperbolic tangent function can be defined in different ways. One
common way is using the hyperbolic sine and cosine functions, which are respec-
tively defined as the odd and even parts of the exponential function:1

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
(A.4)

d

dx
tanh(x) =

cosh2(x)− sinh2(x)

cosh2(x)
= 1− tanh2(x) (A.5)

However, a more practical way to look at it is as a sigmoid analogue that allows
for negative values. In fact, we have the following relation:

tanh(x) = σ(2x)− e−2x

1 + e−2x
= 2σ(2x)− 1 ∈ (−1, 1) (A.6)

1You can read more about odd-even decomposition in this Wikipedia article.

https://en.wikipedia.org/wiki/Even_and_odd_functions#Even%E2%80%93odd_decomposition
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ReLU One common problem with the previous activation functions is the so-
called “vanishing gradient” issue (Hochreiter et al., 2001). This problem occurs
during back-propagation when applying the chain-rule throughout the network
and multiplying multiple small valued gradients2, effectively killing the back-
propagation signal and preventing the network from training properly. An al-
ternative to these “saturating non-linearities” that is both mathematically and
biologically motivated is the ReLU function (Hahnloser et al., 2000; Hahnloser
and Seung, 2000):

ReLU(x) = x+ = max(0, x) (A.7)

ReLU functions are more computationally efficient and have been shown to im-
prove neural network training (Glorot et al., 2011; Maas et al., 2013).

GELU This is a smooth variant of ReLU that often performs better in practice
by basically weighting input values according to how large they are to other inputs
(Hendrycks and Gimpel, 2016). In the context of GELU, input values are assumed
to be distributed according to a standard normal distribution3 which leads to:

GELU(x) = x · PN (0,1)(X < x) = x · Φ(x) ≈ x · σ(1.702x) (A.8)

where Φ is the cumulative function of the normal distribution N (0, 1).

Figure A.1: Comparison of various activation functions.

2The absolute values of the tanh and sigmoid derivatives always fall in the open interval (0, 1).
3This is a reasonable assumption in many cases, especially when using normalization layers.
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A.1.2 Regularization & Normalization

Other important aspects of neural network architectures are regularization and
normalization. In fact, as large neural layers are stacked to achieve greater ex-
pressive power, neural networks become both more prone to overfitting (i.e. over
adapt to the training data and do not generalizing well to unseen data) and more
unstable (i.e. do not converge properly to an “optimal” model).

Dropout To mitigate overfitting in large neural networks, Dropout (Srivas-
tava et al., 2014) randomly turns off a subset of neurons (i.e. multiplies the outputs
by zero) at each training iteration (see Figure A.2). Conceptually, this is similar
to training by alternating between multiple smaller models that are less likely
to overfit instead of a single larger one. At test time, however, all neurons are
activated to allow the model to use all of its activations.

Figure A.2: Comparison of a neural network with two hidden layers before and
after applying Dropout (Srivastava et al., 2014).

Let y ∈ Rn be the output of some given neural network layer and p ∈ (0, 1)
the chosen dropout probability, then:

Dropout(y) =

 y · z at training time,

y at inference time
(A.9)
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where z = [z1, z2, . . . , zn] ∈ {0, 1}n is re-sampled from a Bernouilli B(p) distribu-
tion for each mini-batch of training data.

BatchNorm As the parameters of a neural network’s layers are updated dur-
ing back-propagation, their output distributions change as well. This makes the
end-to-end training of deep neural networks unstable as subsequent layers may
not expect such changes in input distributions. To address this so-called “inter-
nal covariate shift”,4 Batch Normalization was proposed to shift and scale hidden
activations to zero mean and unit variance (Ioffe and Szegedy, 2015):

BatchNorm(xi) = γ · xi − Eminibatch(xi)√
Vminibatch(xi) + ε

+ β (A.10)

where xi are the i-th activations produced by a given layer over the mini-batch,
Eminibatch and Vminibatch are the estimated mean and variance over the mini-batch,
ε is a small positive value for numerical stability and γ, β are respectively scaling
and bias parameters to recover the model’s expressive power.

LayerNorm The main drawback of BatchNorm is the fact that it requires
larger batch sizes to achieve a good estimation of the sample mean and variance.
This makes it less suited for situations with small batch sizes like Online Learning
(i.e. having a single example per batch) or training with gradient accumulation.
Instead of normalizing each activation using the estimated mean and variance over
all examples in a mini-batch, Layer Normalization (Ba et al., 2016) normalizes each
activation using parameters estimated over all other activations at the example-
level, thus removing the dependency to the batch size:

LayerNorm(x) = γ · x− Eexample(x)√
Vexample(x) + ε

+ β (A.11)

where x are the activations produced by a given layer for a specific example,
Eexample and Vexample are the estimated mean and variance over x and ε, γ, β play
the same role as in BatchNorm.

A.1.3 Common Neural Network Layers

In this section we introduce different types of neural network layers that are used
in architectures relevant to the topics of this thesis.

4BatchNorm was first thought to improve neural network training by reducing the Inter-
nal Covariate Shift, however, this seems not to be the case. Instead, batch normalization was
shown to smooth the optimization landscape which is now thought to be the main reason for its
performance (Santurkar et al., 2018).
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Dense Layers These are arguably the fundamental building blocks of all neural
networks. Dense layers (a.k.a linear or fully connected layers) apply a simple
affine transformation between spaces of usually different dimensions, followed by
an optional non-linear activation function. For example, given an input size n
and an output size m, a dense layer with sigmoid activation applies the following
transformation:

Denseσ(x) = σ(Ax + b) (A.12)

where x ∈ Rn are the input features and A ∈ Rm×n, b ∈ Rm are respectively the
weight and bias parameters of the dense layer.

Highway Layers Neural network layers are usually stacked into deep architec-
tures. In these situations, training can be difficult as the backpropagation signal
may have a hard time traveling through the entire depth of the model. For this
reason, Highway layers (Srivastava et al., 2015) introduce a “gating” mechanism
that allows the model to smoothly vary a layer’s behaviour between applying the
intended transformation and simply passing through the input features to the
next layer. Given an original layer with transformation f , applying a Highway
transformation consists in: Highway(x, f) = g(x) · f(x) +

(
1− g(x)

)
· x

g(x) = σ(Agx + bg) ∈ (0, 1)
(A.13)

where x ∈ Rn are the input features and g is the gating mechanism, which is itself
a dense layer with sigmoid activation and parameters Ag ∈ Rn×n, b ∈ Rn.

Convolutional Layers These are the main building blocks of Convolutional
Neural Networks (CNN) (LeCun et al., 1989) that were originally developed in
the context of computer vision (Fukushima and Miyake, 1982) before being ap-
plied to other types of data like texts as well (Kim, 2014b). Generally speaking,
Convolutional layers rely on a set of (usually) small 2D filters (a.k.a kernels) to
transform in input image into multiple feature maps (one for each filter). These
feature maps are obtained by scanning the input image and computing dot prod-
ucts between local areas of the image and each filter through a process called
convolution,5 usually followed by a ReLU activation function. In the context of
NLP, if each word in a sentence of size n is represented as a vector of size m, then
the input can be seen as an n×m matrix and the same process6 can be applied.

5Follow this link for a visual representation of the convolution operation.
6The only difference is that instead of scanning the input along both image dimensions, all

local regions of the text input span over the entire embedding dimension and the matrix is

https://en.wikipedia.org/wiki/Convolution#Visual_explanation
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Figure A.3: Illustration of a convolutional layer converting text into features.

Convolutional layers are useful to detect local patterns—as well as more global
and abstract patterns by stacking multiple such layers —in large structures such
as images (by looking at neighbouring pixels) or sentences (by looking at neigh-
bouring words or characters). In practice, we often extract feature maps using
different convolutional layers before applying some type of pooling followed by
concatenation to recover a final feature vector (see Figure A.3).

Recurrent Layers These are the go-to type of layers when dealing with sequen-
tial data where the information at a specific time-step benefits from the history
of all previous time-steps. In order to condition each element of the input (e.g. a
sequence of words) on the value or state of previous elements, Recurrent Neural
Networks (RNNs) feed back the activations of each element as additional inputs
when computing the output for the next element (see Figure A.4). Such RNNs
are supposed to be able to keep a memory of previous inputs however, in practice,
they seem to only be able to keep a short-term memory. To address this issue,
Long-Short Term Memory networks (or LSTMs) (Hochreiter and Schmidhuber,
1997) introduce a type of explicit memory that can be accessed and altered using
a number of different gates. Let {xt}0≤t≤n a sequence of input vectors (e.g. word
embeddings), then the LSTM memory (a.k.a cell state) is:

ct = ft · ct−1 + it · c̃t (A.14)

where ct−1 is the memory at the previous time-step, c̃t is a candidate update to
the memory and ft, it are respectively the forget and input gates which, together,
determine how the cell state is altered. Given the current memory ct, the output

scanned along the sentence dimension only. This is often referred to as a 1d convolution.
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Figure A.4: A basic RNN unfolding as a sequence of dense layers.

of the RNN at time-step t is:

ht = ot · tanh(ct) (A.15)

where ot is the output gate. All three gates it, ft ot as well as the candidate
update c̃t are computed using the current input xt as well as the previous output
ht−1 using the following formulas:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wc̃xt + Uc̃ht−1 + bc̃)

(A.16)

where W(·), U(·) are respectively weight parameters for the current input and
previous output, and b(·) are the bias parameters, all for the different gates: i (in-
put), o (output), f (forget) and c̃ (cell state update). Note that all gates produce
non-negative values with the exception of the cell state update.

Transformer Layers These are the main components of recent state-of-
the-art models like BERT. Transformer layers (Vaswani et al., 2017) consist
in a relatively complex architecture that has been developed in the context of
sequence-to-sequence tasks (e.g. for Machine Translation), and that originally in-
volved both an encoder and a decoder module (see Figure A.5). However, due



A.1. FUNDAMENTAL CONCEPTS 135

Figure A.5: The Transformer architecture. Original figure from Vaswani et al.
(2017). The encoder module is surrounded by a red line and the decoder module
is highlighted with a blue dash-line.
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to BERT and other subsequent transformer-based models relying exclusively on
the encoder part, the term “Transformer” has become somewhat synonymous
with “Transformer encoder”. Loosely speaking, Transformer layers can be
seen as an alternative to RNNs that is able to condition each element from the
input sequence in a truly bi-directional fashion—as opposed to concatenating two
uni-directional representations (e.g. Bi-LSTM)—and in a way that lends itself
more easily to parallel computing. Moreover, this architecture allows every to-
ken to directly attend to all other tokens of the input sequence, which can be
contrasted with keeping a “memory” that indirectly gives information about the
input’s content as is usual with recurrent layers.

At the heart of every Transformer lies a mechanism called Multi-head
Attention that is responsible for “contextualizing” each element of the input
sequence. This mechanism relies on three sets of vectors called queries Q, keys
K and values V , which, put simply, are used to compute for each input element
a weighted sum of the values {vt}1≤t≤n using weights that reflect how similar
the current element’s query q is to all the other elements’ keys {kt}1≤t≤n. In
practice, the query, key and value vectors are learned as projections of the input
representations, and the overall attention computation is repeated for multiple
“heads”, each consisting in a different projection of the input vectors, before all
heads’ outputs are concatenated and projected down to produce the final sequence
of contextualized representations. If we stack all d-dimensional input vectors into
a matrix X, then the Multi-head Attention output can be expressed as:


Multi-Head Attention(X) = [head1,head2, . . . ,headh] ·W o

headi = softmax
(
Qi ·KT

i√
dk

)
· Vi, i ∈ {1, . . . , n}

Qi = XWQ
i , Ki = XWK

i , Vi = XW V
i

(A.17)

where WQ
i , WK

i , W V
i ∈ Rd×dk are respectively the projection matrices for the

queries, keys, values of the i-th attention head, and W o is the final projection
matrix of the attention mechanism.

While the Multi-Head Attention mechanism is perhaps the most impor-
tant aspect of Transformer layers, there are various other components that
contribute to the architecture’s efficacy such as residual connections, feed-forward
layers, normalization layers, etc (see Figure A.5). Another such component that is
crucial for the proper functioning of these layers is the use of positional encodings .
In fact, as the position information does not play a role in the attention compu-
tation process (i.e. the same vector in different positions would produce the same
output), transformer-based architectures need to bias their input representations
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using vectors that hint to each token’s position. In the original Transformer
by Vaswani et al. (2017), the authors proposed to add to each input token’s vec-
tor a d-dimensional sinusoid-based representation that would depend the token’s
position p:

PosEncoding(p) =

[
. . . , sin

(
p

100002i/d

)
, cos

(
p

10000(2i+1)/d

)
, . . .

]
(A.18)

The authors also experimented with learned positional encodings and showed that
both versions achieve similar results. In subsequent models such as BERT, the
sinusoid-based encodings were dropped in favour of learned positional embeddings.

A.2 Contextual Language Models
In recent years, there have been an important shift in the way textual information
is represented in Natural Language Processing tasks, specifically in word embed-
ding models which have transitioned from a static paradigm, where each word
is assigned a single vector; to a contextual paradigm, where the same word may
have different representations according to its context. In this section we provide
an overview of two main architectures responsible for producing such context-
dependent word representations, namely: ELMo Peters et al. (2018a) and BERT
(?).

A.2.1 ELMo

Embeddings from Language Models, or ELMo for short, is a neural architecture
that was conceived in an attempt to produce context-dependent word representa-
tions. Specifically, the model uses an architecture based on bi-directional recurrent
layers that is first trained on a language modeling task (i.e. predicting the next
word in a sentence). Then, the language modeling head is discarded and the models
internal representations are combined to form contextualized word representations.

ELMo’s exact architecture comprises three modules: a CharacterCNN then
two successive Bi-LSTMs (see Figure A.6). The CharacterCNN is responsible
of converting input words into initial context-independent representations before
they can be contextualized using the downstream recurrent layers. The exact pro-
cess involves converting each word into a sequence of characters, embedding each
character, using a set of CNN layers to compute convolutions over the sequence
then combining the CNN outputs into a final vector that can be projected down
to a desired size.7. The two following Bi-LSTM layers then rely on this initial

7To avoid redundancy, we do not detail the inner-workings of the CharacterCNN which
are further discussed in Section 5.3.1.
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Figure A.6: Overview of ELMo’s architecture. The model is trained on language
modeling then used as a feature extractor on various downstream tasks.
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embedding to produce a contextualized representation which can serve as a basis
for the language modeling pre-training task. Ultimately, after the pre-training is
complete, ELMo can be used as a contextual embedding generator (i.e. feature
extraction), producing for any word or token w, features in the form of:

ELMo(w) = γ · (α1 · h1 + α2 · h2 + α3 · h3) (A.19)

where γ, α1, α2 and α3 are tunable task-specific coefficients and h1, h2 and h2 re-
spectively the CharacterCNN, 1st and 2nd Bi-LSTM representations. It is im-
portant to note however that while the linear combination weights α1, α2 and α3

can take any real value, they actually undergo a softmax transformation that con-
verts them in to positive values that sum to 1.

A.2.2 BERT

Bidirectional Encoder Representations from Transformers , or BERT for short, is
yet another neural language model that is able to produce context-dependent word
representations. However, contrary to ELMo, which relies on a CharacterCNN
and two recurrent layers to generate such representations, BERT adopts a differ-
ent approach that consists of a WordPiece tokenization system (Wu et al., 2016)
coupled with Transformer layers.

Figure A.7: Overview of BERT’s input. Both input sequences are joined using
special tokens [CLS] and [SEP], then the WordPiece embedding of each token
looked up then biased using segment and position embeddings.

The WordPiece tokenization system relies on a predefined set of subwords
(called WordPieces) which are learned on the same corpus that is used for pre-
training. Given this subword vocabulary, any incoming token that is out-of-
vocabulary is decomposed into the fewest number of subwords with a possible
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fallback at the level of the characters. As a result, instead of using a Charac-
terCNN module like ELMo, BERT can simply train a WordPiece embedding
matrix, split potential OOVs into subwords and embed each unit accordingly.
BERT being a model that relies purely on attention-based layers, it is by default
not able to encode information about the position of a token in a sentence as would
otherwise a recurrent layer (i.e. for a Transformer layer, a sequence and the
same sequence but shuffled produce the same representations). To deal with this
issue, the initial static WordPiece representations are enriched with position and
segment embeddings (see Figure A.7).

After the initial embedding layer, the static WordPiece representations go
through a series of Transformer layers (see definition in previous section) even-
tually resulting in contextual subword representations that can be used to encode
texts of interest. However, contrary to ELMo which is used in a feature extraction
fashion (i.e. generating representations that serve as “fixed”8 features for down-
stream layers), BERT is used as an encoder and is traditionally fine-tuned in an
end-to-end fashion with the appropriate task-specific heads.

One last characteristic of BERT is its pre-training procedure. In fact, while
more traditional language models would be trained on a task consisting in predict-
ing the next words in a sentence, BERT is trained on Masked Language Modeling
which takes advantage of the bidirectional nature of the model and aims to predict
masked words in a sentence using both the left and right contexts. Moreover, this
model is also trained on a second task called Next Sentence Prediction where pairs
of sentences have to be classified as either successive or random. This task how-
ever is widely thought to be detrimental to the overall quality of the model and is
ignored in subsequent variants of BERT such as RoBERTa (Liu et al., 2019).

8While the ELMo architecture is fixed, the linear combination weights remain trainable.
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Knowledge Injection Architectures

Since literal model descriptions can be ambiguous, we provide complementary
illustrations for each of the model architectures from Section 6.3.2.

Figure B.1: Knowledge Injection for NER: fastText.
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Figure B.2: Knowledge Injection for NER: [fastText, node2vec].
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Figure B.3: Knowledge Injection for NER: CharacterBERT.
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Figure B.4: Knowledge Injection for NER: [CharacterBERT, node2vec].
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Figure B.5: Knowledge Injection for NER: EnhancedCharacterBERT.
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Figure B.6: Knowledge Injection for Classification: fastText.
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Figure B.7: Knowledge Injection for Classification: [fastText, node2vec].
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Figure B.8: Knowledge Injection for Classification: CharacterBERT.
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Figure B.9: Knowledge Injection for Classification: [CharacterBERT,
node2vec].
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Figure B.10: Knowledge Injection for Classification: EnhancedCharacter-
BERT.
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Figure B.11: Knowledge Injection for STS: fastText.
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Figure B.12: Knowledge Injection for STS: [fastText, node2vec].
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Figure B.13: Knowledge Injection for STS: CharacterBERT.
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Figure B.14: Knowledge Injection for STS: [CharacterBERT, node2vec].
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Figure B.15: Knowledge Injection for STS: EnhancedCharacterBERT.
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Figure B.16: Knowledge Injection for NLI: fastText.
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Figure B.17: Knowledge Injection for NLI: [fastText, node2vec].
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Figure B.18: Knowledge Injection for NLI: CharacterBERT.
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Figure B.19: Knowledge Injection for NLI: [CharacterBERT, node2vec].
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Figure B.20: Knowledge Injection for NLI: EnhancedCharacterBERT.
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Titre: Adaptation au domaine de plongements lexicaux via l’exploitation de corpus et
de bases de connaissances spécialisés
Mots clés: Plongements lexicaux, Domaine spécialisé, Domaine médical, Adaptation au domaine,
Traitement automatique des langues, Base de connaissances

Résumé: Il existe, à la base de la plupart des
systèmes de TAL, des représentations numériques
appelées « plongements lexicaux » qui permettent
à la machine de traiter, d’interagir avec et, dans
une certaine mesure, de comprendre le langage hu-
main. Ces plongements lexicaux nécessitent une
quantité importante de textes afin d’être entraînés
correctement, ce qui conduit souvent les praticiens
du TAL à collecter et fusionner des textes provenant
de sources multiples, mélangeant souvent différents
styles et domaines (par exemple, des encyclopédies,
des articles de presse, des articles scientifiques, etc.).
Ces corpus dits du « domaine général » sont au-
jourd’hui la base sur laquelle s’entraînent la plu-
part des plongements lexicaux, limitant fortement
leur utilisation dans des domaines plus spécifiques.
En effet, les « domaines spécialisés » comme le do-
maine médical manifestent généralement assez de
spécificités lexicales, sémantiques et stylistiques (par
exemple, l’utilisation d’acronymes et de termes tech-
niques) pour que les plongements lexicaux généraux
ne soient pas en mesure de les représenter efficace-
ment. Dans le cadre de cette thèse, nous explorons
comment différents types de ressources peuvent être
exploités afin soit d’entraîner de nouveaux plonge-
ments spécialisés, soit de spécialiser davantage des
représentations préexistantes.

Plus précisément, nous étudions d’abord com-
ment des corpus de textes peuvent être utilisés à
cette fin. En particulier, nous montrons que la taille
du corpus ainsi que son degré de similarité au do-
maine d’intérêt jouent un rôle important dans ce
processus puis proposons un moyen de tirer parti
d’un petit corpus du domaine cible afin d’obtenir
de meilleurs résultats dans des contextes à faibles
ressources. Ensuite, nous abordons le cas des mod-
èles de type BERT et observons que les vocab-
ulaires généraux de ces modèles conviennent mal
aux domaines spécialisés. Cependant, nous mon-
trons des résultats indiquant que des modèles for-

més à l’aide de tels vocabulaires peuvent néanmoins
être comparables à des systèmes entièrement spé-
cialisés et utilisant des vocabulaires du domaine du
domaine, ce qui nous amène à la conclusion que
le ré-entraînement de modèles du domaine général
est une approche tout à fait efficace pour construire
des systèmes spécialisés. Nous proposons également
CharacterBERT, une variante de BERT capable
de produire des représentations de mots entiers en
vocabulaire ouvert via la consultation des caractères
de ces mots. Nous montrons des résultats indiquant
que cette architecture conduit à une amélioration
des performances dans le domaine médical tout en
étant plus robuste aux fautes d’orthographe.

Enfin, nous étudions comment des ressources ex-
ternes sous forme de bases de connaissances et on-
tologies du domaine peuvent être exploitées pour
spécialiser des représentations de mots préexis-
tantes. Dans ce cadre, nous proposons une approche
simple qui consiste à construire des représentations
denses de bases de connaissances puis à combiner
ces “vecteurs de connaissances” avec les plongements
lexicaux cibles. Nous généralisons cette approche
et proposons également des Modules d’Injection de
Connaissances, de petites couches neuronales per-
mettant l’intégration de représentations de connais-
sances externes au sein des couches cachées de mod-
èles à base de Transformers. Globalement, nous
montrons que ces approches peuvent conduire à de
meilleurs résultats, cependant, nous avons l’intuition
que ces performances finales dépendent en fin de
compte de la disponibilité de connaissances perti-
nentes pour la tâche cible au sein des bases de con-
naissances considérées.

Dans l’ensemble, notre travail montre que les
corpus et bases de connaissances du domaine peu-
vent être utilisés pour construire de meilleurs plonge-
ments lexicaux en domaine spécialisé. Enfin, afin
de faciliter les recherches futures sur des sujets simi-
laires, nous publions notre code et partageons autant
que possible nos modèles pré-entraînés.
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Abstract: There are, at the basis of most NLP
systems, numerical representations that enable the
machine to process, interact with and—to some ex-
tent—understand human language. These “word
embeddings” come in different flavours but can be
generally categorised into two distinct groups: on
one hand, static embeddings that learn and assign a
single definitive representation to each word; and on
the other, contextual embeddings that instead learn
to generate word representations on the fly, accord-
ing to a current context. In both cases, training
these models requires a large amount of texts. This
often leads NLP practitioners to compile and merge
texts from multiple sources, often mixing different
styles and domains (e.g. encyclopaedias, news ar-
ticles, scientific articles, etc.) in order to produce
corpora that are sufficiently large for training good
representations. These so-called “general domain”
corpora are today the basis on which most word em-
beddings are trained, greatly limiting their use in
more specific areas. In fact, “specialized domains”
like the medical domain usually manifest enough lex-
ical, semantic and stylistic idiosyncrasies (e.g. use of
acronyms and technical terms) that general-purpose
word embeddings are unable to effectively encode
out-of-the-box. In this thesis, we explore how dif-
ferent kinds of resources may be leveraged to train
domain-specific representations or further specialise
preexisting ones.

Specifically, we first investigate how in-domain
corpora can be used for this purpose. In particular,
we show that both corpus size and domain similarity
play an important role in this process and propose
a way to leverage a small corpus from the target
domain to achieve improved results in low-resource

settings. Then, we address the case of BERT-like
models and observe that the general-domain vocab-
ularies of these models may not be suited for spe-
cialized domains. However, we show evidence that
models trained using such vocabularies can be on
par with fully specialized systems using in-domain
vocabularies—which leads us to accept re-training
general domain models as an effective approach for
constructing domain-specific systems. We also pro-
pose CharacterBERT, a variant of BERT that
is able to produce word-level open-vocabulary rep-
resentations by consulting a word’s characters. We
show evidence that this architecture leads to im-
proved performance in the medical domain while be-
ing more robust to misspellings.

Finally, we investigate how external resources
in the form of knowledge bases may be leveraged
to specialise existing representations. In this con-
text, we propose a simple approach that consists in
constructing dense representations of these knowl-
edge bases then combining these knowledge vec-
tors with the target word embeddings. We gener-
alise this approach and propose Knowledge Injec-
tion Modules, small neural layers that incorporate
external representations into the hidden states of a
Transformer-based model. Overall, we show that
these approaches can lead to improved results, how-
ever, we intuit that this final performance ultimately
depends on whether the knowledge that is relevant
to the target task is available in the input resource.

All in all, our work shows evidence that both
in-domain corpora and knowledge may be used to
construct better word embeddings for specialized do-
mains. In order to facilitate future research on sim-
ilar topics, we open-source our code and share pre-
trained models whenever appropriate.
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