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Abstract

“

A mathematician, like a painter or poet, is a maker of patterns. If

his patterns are more permanent than theirs, it is because they are

made with ideas.

”

G. H. Hardy

This thesis addresses di�erent therapeutic approaches for gliomas, either directly or
at the level of metabolism using optimal control theory. Indeed, we first consider

an Allen-Cahn equation modeling tumor growth, and since the structure of the model
can change in the presence of nutrients, it is then coupled with an evolution equation
for nutrient dynamics. In addition, the treatment of gliomas is considered in terms of
control that represents the concentration of the cytotoxic drug at a given rate. Our goal
in this part is to choose the control and the treatment time such that the corresponding
tumor growth and its final distribution are the best possible approximation to the desired
values. Our first step is thus devoted to the study of the well-posedness of our state
system, which allows us to define the control-to-state operator that is continuous. Then,
we show the existence of a minimizer of our cost functional, where our control-to-state
operator is Fréchet di�erentiable. Next, our cost functional is also Fréchet di�erentiable
with respect to time and control; finally, to simplify the first-order necessary optimality
condition, we consider an adjoint system using Lagrange’s principle for which this system
has a regular solution. On the other hand, we know that the progression and malignancy
of gliomas are related to metabolism, in particular to the waste product of glycolysis,
lactate. Thus, we first emphasize the fact that the more lactate the glioma produces, the
more it transports the excess into the capillary to sustain proliferation, metastasis, and
malignancy. Therefore, we consider the state equation as a parabolic problem modeling
intracellular lactate dynamics. Our first challenge is to add a biologically relevant control
that acts as a concentration of a certain drug to inhibit lactate production. Since the
drug dose and time must not exceed or fall below a certain threshold in cancer treatment,
we try to choose the best control at the most convenient time so that the correspond-
ing intracellular lactate concentration is as close as possible to our desired evolution and
final distribution of lactate. However, as aforesaid, the cell withdraws excess lactate by
transporting it across the plasma cell membrane into the capillary to maintain its prolif-
eration. This has inspired us to target lactate transport using an MCTs inhibitor that
acts as a control term in a coupled ODE system that models lactate dynamics in both
the intracellular and capillary domains. We address the question of how long a patient



Abstract

needs to be treated and what is the optimal drug dose to achieve the desired capillary
lactate concentration. To attain our goal, we consider a minimization problem with a
conventional cost functional associated with the ODE system aforementioned. First, we
show the existence of a unique regular non-negative solution of our ODE system, then we
define the control-to-state operator and show that it is continuous on the corresponding
topology. Next, we show the existence of a solution to our minimization problem under
given constraints. Then we study the existence of a unique derivative of the control-to-
state operator and its Fréchet di�erentiability. We then show the Fréchet di�erentiability
of the cost functional with respect to time and control. Moreover, we define the adjoint
system by Lagrange’s principle, simplify the first-order necessary optimality condition,
and finally, we emphasize the choice of the control term with numerical simulations.

Keywords. Tumor growth; Allen-Cahn model; Altered metabolism; glioma treatment;
lactate dehydrogenase; reaction-di�usion equation; first-order necessary optimality con-
ditions.
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Résumé

“

Science is facts; just as houses are made of stones, so is science

made of facts; but a pile of stones is not a house and a collection of

facts is not necessarily science.

”

Jules Henri Poincare

Cette thèse aborde di�érentes approches thérapeutiques pour les gliomes, soit di-
rectement, soit au niveau du métabolisme en utilisant la théorie du contrôle optimal.

En e�et, nous considérons tout d’abord un système couplant une équation d’Allen-Cahn
modélisant la croissance tumorale, avec une équation d’évolution pour la dynamique des
nutriments. Le traitement des gliomes est considéré en termes de contrôle qui représente
la concentration du médicament cytotoxique à un taux donné. Notre objectif dans cette
partie est de choisir le contrôle et le temps de traitement de telle sorte que la croissance
tumorale correspondante et sa distribution finale soient la meilleure approximation pos-
sible des valeurs désirées. Notre première étape est donc consacrée à l’étude du caractère
bien posé de notre système d’état, ce qui nous permet de définir l’opérateur contrôle-état
qui est continu. Ensuite, nous montrons l’existence d’un minimiseur de notre fonction
de coût, où notre opérateur contrôle-état est di�érentiable au sens de Fréchet. Ensuite,
notre fonctionnelle de coût est également di�érentiable au sens de Fréchet par rapport
au temps et au contrôle. Enfin, pour simplifier la condition d’optimalité nécessaire du
premier ordre, nous considérons un système adjoint utilisant le principe de Lagrange pour
lequel ce système a une solution régulière. D’autre part, nous savons que la progression
et la malignité des gliomes sont liées au métabolisme, en particulier au déchet de gly-
colyse et de lactate. Ainsi, nous soulignons d’abord le fait que plus le gliome produit
de lactate, plus il transporte l’excès dans le capillaire pour soutenir la prolifération, les
métastases et la malignité. Par conséquent, nous considérons l’équation d’état comme un
problème parabolique modélisant la dynamique du lactate intracellulaire. Notre premier
défi consiste à ajouter un contrôle biologiquement pertinent qui agit comme une concen-
tration d’un certain médicament pour inhiber la production de lactate. Puisque la dose
de médicament et le temps ne doivent pas dépasser ou descendre en dessous d’un certain
seuil dans le traitement du cancer, nous essayons de choisir le meilleur contrôle au mo-
ment le plus opportun afin que la concentration de lactate intracellulaire correspondante
soit aussi proche que possible de notre évolution souhaitée et de la distribution finale du
lactate. Cependant, comme nous l’avons dit plus haut, la cellule retire l’excès de lac-
tate en le transportant à travers la membrane plasmique de la cellule dans le capillaire
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pour maintenir sa prolifération. Ceci nous a inspiré à cibler le transport du lactate en
utilisant un inhibiteur de MCTs qui agit comme un terme de contrôle dans un système
couplé de type EDO qui modélise la dynamique du lactate dans les domaines intracel-
lulaire et capillaire. Nous abordons la question de savoir combien de temps un patient
doit être traité et quelle est la dose optimale de médicament pour atteindre la concen-
tration de lactate capillaire souhaitée. Pour atteindre notre objectif, nous considérons un
problème de minimisation avec une fonction de coût conventionnelle associée au système
d’EDO susmentionné. Tout d’abord, nous montrons l’existence d’une solution régulière
unique et non négative de notre système EDO, puis nous définissons l’opérateur contrôle-
état et montrons qu’il est continu sur la topologie correspondante. Puis, nous montrons
l’existence d’une solution à notre problème de minimisation sous des contraintes données.
Nous étudions ensuite l’existence d’une dérivée unique de l’opérateur contrôle-état et sa
di�érentiabilité de Fréchet. Nous montrons ensuite la di�érentiabilité de Fréchet de la
fonctionnelle de coût par rapport au temps et au contrôle. De plus, nous définissons le
système adjoint par le principe de Lagrange, nous simplifions la condition d’optimalité
nécessaire au premier ordre, et enfin, nous mettons en évidence le choix du terme de
contrôle par des simulations numériques.

Mots Clès. Croissance tumorale; modèle d’Allen-Cahn; métabolisme altéré; traitement
du gliome; lactate déshydrogénase; équation de réaction-di�usion; conditions d’optimalité
nécessaires de premier ordre.
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Introduction

Chapter 1

“

When you chase a dream, you learn about yourself. You learn your

capabilities and limitations, and the value of hard work and

persistence.

”

Nicholas Sparks

After cardiovascular diseases, cancer ranks second in the list of deadly diseases, according
to the WHO [40]. A fact that attracts scientists from di�erent fields to study its aspects
to develop the best therapies. So, in this work, we are interested in studying some optimal
control problems that govern glioma therapy directly at the cellular level or indirectly at
the metabolic level. The purpose of this chapter is to familiarize the reader with some
of the concepts used in the rest of our work, to display some results on some problems
concerning tumor growth and treatment, and finally to provide a summary of our main
results.

1.1 Biological background

1.1.1 The origin and development of gliomas

Cancer occurs due to genetic mutations in cells. In turn, these mutations can change
the number or activity of proteins involved in regulating cell life. Important clues about
how mutated genes cause cancer come from studying the role of their counterparts in
normal cells. A scientist described a molecular "bucket brigades" that transmits growth-
stimulating signals from outside the cell to the depths of the cell (see [77]). When cells
secrete proteins called growth factors, the growth signal between cells begins. These
proteins pass through space between cells and bind to specific receptors. The signal is
transmitted to a series of other proteins, and finally to the nucleus, which reminds the cell
to complete its growth cycle. By overstimulating the growth-promoting mechanism and
bypassing or ignoring the normal braking system (apoptosis, the programmed cell death),
cells may become malignant. The braking system, like the growth signal system, works
with the molecular "bucket brigades", in this case, it sends a signal that growth should
stop. Another important discovery is the cell clock, which is a target in the nucleus that
promotes or inhibits growth (see [71]).
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Figure 1.1 – Both increased cell division and decreased apoptosis can contribute to tumorigenesis (see [1])

Epigenetic continuous changes that result from the adjustment of chromatic structure
without alteration of the cell’s DNA sequence, also lead to cancer. But somatic muta-
tions that change DNA sequence appear to be an essential and universal characteristic,
and in this sense cancer is a genetic disease (see [1]).

Most cancers have characteristics that reflect their origin. For example, gliomas are can-
cers that originate from glial or neuroglial cells. Although they are not neurons, they play
an important role in defining synaptic contacts and maintaining the signaling ability of
neurons (see [66]). Gliomas are the most common tumors of the CNS, particularly the
brain. There are numerous classification systems in use, Gliomas are classified on the
basis of cell origin, grade, and location. According to cell type, they are divided into
ependymomas, originating from ependymal cells, astrocytomas, originating from astro-
cytes, oligodendrogliomas, originating from oligodendrocytes, and mixed gliomas, origi-
nating from di�erent glial cells. According to their grade, they are classified as low-grade
and high-grade gliomas on the basis of increased cell density, nuclear atypias, mitosis,
vascular proliferation, and necrosis. Gliomas classified by location are sorted based on
whether they are located above or below a membrane in the brain called the tentorium,
which separates the cerebrum (above) from the cerebellum (below) (see [51]).

In this thesis, we are interested in the study of cancer cells in particular, wherever cancer
is mentioned is regarded as gliomas.

1.1.2 Modes of treatment of glioms

Current cancer treatments include surgery, targeted therapy, immunotherapy (boosting
the immune system), radiotherapy (using radiation to kill cancer cells), and chemotherapy
(using drugs to kill cancer cells). The latter three treatments are usually given in cycles.
In this subsection, we present two types of treatment that we have used in our models.

≠ One of the most popular cancer treatments is chemotherapy. Tumor cells duplicate
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more than normal cells, and most therapies target proliferating cell populations (and
that’s one reason why therapies also hit healthy tissue with rapid renewal rates). To
accomplish this task, chemotherapies can target specific proteins that are present in
a phase of the cell cycle, i.e., the various stages a cell must go through to duplicate.
For example, they may target cyclins (proteins that control the transition between
phases) to keep cells in the G1 phase so they stay quiescent; these drugs are called
cytostatic drugs. It is more common to target the S or G2 (synthesis and repair)
phases when DNA duplicates. This can lead to irreversible damage and subsequent
apoptosis of the cells; these are cytotoxic drugs (see [65]).

Since chemotherapy may cause the damage of healthy cells, the treatment is applied
in cycles where a cycle is a period of treatment followed by a longer period of rest to
allow the patient’s body to produce new healthy cells. The goal of these treatments
is to shrink the tumor to a more manageable size so that surgery can be performed
(see [42]).

So, usually for a final treatment time T > 0, · œ [0, T ] represents the treatment time
of one cycle.

≠ Targeted drugs refer to drugs that specifically target, bind to, and act on cancer-
causing sites at the cellular or molecular level. These targets may be molecules that
play key roles in tumorigenesis and regulate signal transduction pathways. Drugs
that target these molecules can specifically kill tumor cells without a�ecting the
normal tissue cells around the tumor, thereby treating the tumor. Compared to
chemotherapy, targeted drugs have the advantage that they can be selected based on
the characteristics of di�erent patients and do not target normal, proliferating cells,
but they are less broadly applicable than chemotherapy(see [76]). Such therapies are
used in Chapters 3 and 4, as inhibitors for lactate production and transport.

1.1.3 Lactate dehydrogenase enzyme

In this subsection we will introduce the enzyme LDH, which is crucial to the mechanism
of lactate production and will be mentioned later in the context of this thesis as a thera-
peutic target of glioma.

Lactate dehydrogenase LDH is a tetrameric enzyme that belongs to the family of 2-
hydroxy acid oxidoreductase, it increases the rate of the simultaneous inter-conversion of
pyruvate to lactate and nicotinamide adenine dinucleotide NADH to NAD+.

Figure 1.2 – The reversible reaction of the catalysis of pyruvate and NADH to lactate and NAD+ by
LDH enzyme (see [75]).
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LDH is formed of four genes: LDHA, LDHB, LDHC, and LDHD. The first three genes use
or produce lactate, mainly LDHA is also known as the M subunit as it is predominantly
found in skeletal muscle, and LDHB is also known as the H subunit as it is predominantly
found in the heart (see [75]). Five isoenzymes can be derived from M and H subunits:
LDH-1, LDH-2, LDH-3, LDH-4, and LDH-5.

Figure 1.3 – The LDH isoenzymes are composed of di�erent ratios of LDH-M and LDH-H subunits,
transcribed from LDHA and LDHB, respectively, taken from [75].

LDHA has a higher a�nity for pyruvate, and thus preferentially converting pyruvate to
lactate and NADH to NAD+, however, LDHB has a higher a�nity to lactate and converts
lactate to pyruvate and NAD+ to NADH.

The inhibition of LDHA is a safe therapeutic approach for cancer, particularly, Gossypol,
which is a natural product found in cottonseed, has been also used as an antimalarial,
works on blocking the binding of NADH, it is now used in phase I and phase II clinical
oncology trials (see [32]).

Figure 1.4 – LDHA inhibition forces cancer cells to use oxidative phosphorylation and thus pyruvate enters
the mitochondria which leads to reactive oxygen species (ROS) generation and apoptosis (see [75]).

1.1.4 Metabolism of cancer cells

This subsection is devoted to distinguishing the metabolism of cancer cells from normal
cells. We present the mechanism of this metabolism in the presence of some enzymes, in
particular LDH, which contributes to lactate formation.

In normal cells, pyruvate is generated from glucose by glycolysis and enters the citric acid
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cycle in mitochondria, where it is oxidatively decarboxylated to form acetyl-CoA, which
is used to fuel oxidative phosphorylation, theoretically generating 36 net GLSATP per
molecule of glucose. However, when the oxygen concentration is infrequent, cells become
unable to undergo OXPHOS to produce ATP so glycolysis becomes the main generator
of ATP, producing 2ATP per one molecule of glucose. Glyceraldehyde phosphate de-
hydrogenase (GAPDH) uses NAD+ to convert glyceraldehyde 3-phosphate (GADP) to
D-1,3bisphosphoglycerate (1,3BPG) so NAD+ is needed to enable the sixth step of gly-
colysis. Usually, NAD+ is regenerated through OXPHOS by electron transport chain, so
when oxygen is scarce, NAD+ is regenerated from NADH by LDHA to maintain glycoly-
sis which in turn produce lactate from pyruvate, in a process called anaerobic glycolysis
(see [75]).

Figure 1.5 – Schematic representation of the di�erences between oxidative phosphorylation, anaerobic
glycolysis, and aerobic glycolysis (see [52]).

In cancer cells, even in the presence of oxygen, cells undergo aerobic glycolysis or War-
burg e�ect, which is observed by Otto Warburg in the 1920’s. Cancer cells uptake large
amounts of glucose to generate su�cient ATP to satisfy the metabolic needs, pyruvate is
converted into lactate utilizing LDHA enzyme.

By contrast, LDHB converts lactate into pyruvate, which makes lactate an energy source
for many cells. Also, aerobic cells may take lactate through MCT1, converts it to pyruvate
which enters TCA cycle to fuel cells, so also the inhibition of MCT1 leads to the death
of anaerobic cancer cells and is good for cancer therapy (see [70]).

1.1.5 Monocarboxylate transporters

This subsection presents the mechanism of monocarboxylate transporters as a means of
transferring a substance across the cell membrane. In particular, these transporters play
an important role in the transport of lactate from the cell to the capillary and vice versa.

Monocarboxylates such as pyruvate, lactate, and the ketone bodies (acetoacetate and —-
hydroxybutyrate) play an essential role in carbohydrate, lipid, and amino acid metabolisms
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and must be transported rapidly across the plasma membrane of cells. This transport is
mediated by proton-linked monocarboxylate transporters (MCTs, 1-4) (see [49]).

Figure 1.6 – The role of MCTs in metabolism (see [49]).

MCTs regulate e�ux and influx of lactate across the plasma membrane, high concentra-
tions of lactate resulting from increased glycolysis lead to acidification of the intracellular
milieu which is lethal to the cell, so this is prevented by the cotransport of both protons
and lactate out of cells by MCTs (see [70]). The transport mechanism of MCTs could be
described as an electroneutral 1H+monocarboxylate≠ cotransport, in other words, mono-
carboxylate transport via MCT4 is accompanied by the transport of H+ across the plasma
membrane. In agreement with this mechanism, lactate transport was pH-dependent, in-
creasing with decreasing pH.

Due to its role in regulating intracellular PH and thus avoiding the deleterious of the
cell, MCT inhibition is a cancer therapeutic approach, lactate transport was blocked by
several inhibitors such as p-chloromercuribenzoesulphonic acid and DIDS (see [31]).

Targeting MCTs leads to lactate accumulation in the intracellular domain which induces
apoptosis or inhibit lactate uptake by aerobic cells which reduces tumor angiogenesis,
metastasis, the deleterious e�ects of extracellular lactate on the immune cells and inva-
sion (see [70]).

1.1.6 Michaelis-Menten Kinetics

Lactate cannot pass from the intracellular domain to capillary and vice versa by passive
di�usion, a faster transport rate with facilitated di�usion is fulfilled through MCTs, a
process that can be described employing Michaelis-Menten kinetics. More precisely, this
expression describes what happens on the membrane of a cell, as an example (see [35]),
knowing that water-soluble molecules, mostly, cannot pass through the hydrophobic en-
vironment of the cell membrane directly and must be carried by some means. Hence,
molecular receptors embedded in the bacterial cell membrane are involved in "capturing"
these polar molecules in a loose complex, carrying them across the membrane barrier, and
releasing them to the cell’s interior.
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Figure 1.7 – Passage of nutrient molecules into the cell (see [35]).

The directions and rates of reactions are given by

C + X0
k1≠≠ÔÓ≠≠k–1

X1
k2≠≠≠æ P + X0.

C denotes external nutrient molecule, X0, an unoccupied receptor, X1, a nutrient-receptor
complex, P , a nutrient molecule successfully captured by cell. Moreover, k1, k≠1 and k2
represent the rates of reactions.

The rate of formation of P , the rate at which nutrient-receptor complex, X1, dissociates
to form product is based upon the rate constant k2 and the concentration of X1, as follows

v0 = d[P ]
dt

= k2 ◊ [X1].

But, we have
[X1] = [E]r[C]

Km + [C] ,

where [E]r is equal to the sum of concentrations of unoccupied receptor and that of
nutrient-receptor complex, in addition, we have

Km = k≠1 + k2

k1
.

The term k2[E]r represents the maximum velocity, so finally, we have

v0 = Vmax[C]
Km + [C] .

1.2 An overview on optimal control theory

This section is divided into two parts. The first part introduces the theory of optimal
control through an example. The second part, however, is intended to remind the reader
of some concepts used in the study of optimal control problems.
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1.2.1 General concept of optimal control theory

In control theory, one is interested in controlling the state of a system by using controls.
The dynamics of the system is the way in which the state changes under the influence of
the controls. In addition to the system and the state, two other concepts are needed in
control theory, namely the constraints on our controls and the objective or target state(s)
of our system.

We consider the vehicle in the figure below, as an example of optimal control concept.

u > 0u < 0

A
•t = 0

B
•t = T|

y(t)

At time t = 0, the vehicle is at position A and moves along a straight line to reach point
B at time T > 0. Suppose that the vehicle of mass m is accelerated in either direction
by a variable force u(t), so that it takes positive values when moving to the right and
negative values when moving to the left, so that the maximum value it can reach in both
directions is 1.

Taking y(t) as the position of the vehicle at time t, y0 and yT as the positions corresponding
to points A and B, respectively, Newton’s law demonstrates that.

myÕÕ(t) = u(t).
Thus, our control problem is: minimize T > 0, associated with the following constraints.

myÕÕ(t) = u(t),

y(0) = y0, yÕ(0) = 0,

y(T ) = yT , yÕ(T ) = 0,

|u(t)| Æ 1, ’ t œ [0, T ].

Here the cost functional to be minimized is the time T > 0 needed for the travel. An
initial value problem to determine the state y(t) of the system influenced by the control
u(t), under the constraints y(T ) = yT , yÕ(T ) = 0, |u(t)| Æ 1, ’ t œ [0, T ] (see [60, 73]).

1.2.2 Some preliminaries

We consider in this subsection the following optimal control problem for nonstationary
heat source

min J(y, u) := 1
2

⁄⁄

�
|y(x, t) ≠ y�|2dx dt + 1

2

⁄

�
|y(x, T ) ≠ yd|2dx dt

+⁄

2

⁄⁄

Q
|u(x, t)|2dx dt,

(1.1)
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subject to
yt ≠ �y = —u in Q := [0, T ] ◊ �,

ˆ‹y = 0 on � := [0, T ] ◊ �,

y(0, x) = 0 in �,

(1.2)

and
ua(x, t) Æ u(x, t) Æ ub(x, t) for a.e. (x, t) œ Q.

And the set of admissible controls is defined by

Uad = {u œ L2(Q) : ua(x, t) Æ u(x, t) Æ ub(x, t) for a.e. (x, t) œ Q}.

The variable y(x, t) represents the temperature at position x œ � at time t œ [0, T ], u
represents a variable heat source that serves as a control. J is the objective functional
to be minimized, i.e. the objective is to achieve the best possible approximation to the
desired evolution boundary temperature y� and a final boundary distribution temperature
yd, in addition to a minimum cost due to the e�ect of the control given by the term

⁄

2

⁄⁄

Q
|u(x, t)|2 dx dt,

where ⁄ Ø 0 can be viewed as a measure of the energy cost needed to implement the
control u, and the factor 1

2 that appears before the integrals does not a�ect the solution
of the problem. It is introduced only for sake of convenience and it cancels out later when
di�erentiating.

The study of such problems begins in showing that the state system given by the boundary
value problem (1.2) admits a unique solution y(x, t) for some control u(x, t) in a suitable
functional space.

Then, the existence of a solution for (1.1) is investigated, i.e. the existence of some optimal
control uú associated to optimal state yú, which follows again from the continuity of the
control- to- state operator S, for which to any control there is a unique state.

First order necessary optimality condition. The first order necessary optimality condition
satisfies

DuJ(yú, uú)(u ≠ uú) Ø 0, (1.3)
but we already have that S(u) = y, then (1.3) verifies

DuJ(S(uú), uú)(u ≠ uú) Ø 0. (1.4)

So, for (1.4) to be verified, we need to show that the control- to - state operator S is
Fréchet di�erentiable. Then we show that the functional J is also Fréchet di�erentiable
with respect to time and control, respectively.

One way to simplify the first order necessary optimality condition is by applying Lagrangian
technique, which may also help in having an idea about the form of the optimality condi-
tion, so the Lagrangian function L associated with the optimal control problem (1.1)-(1.2)
satisfies

L = J(y, u) ≠
⁄⁄

Q
(yt ≠ �y ≠ —u)p dx dt.

Hawraa Alsayed
9

hawraa_alsayyed@hotmail.com

hawraa_alsayyed@hotmail.com


CHAPTER 1. INTRODUCTION

The adjoint system is given by

DyL(yú, uú, p)y = 0 for all y with y(0) = 0.

Simultaneously, one can expect the following necessary optimality condition

DuL(yú, uú, p)(u ≠ uú) Ø 0 for all u œ Uad.

1.3 Modeling

In this part, we are concerned with some mathematical models that introduce our prob-
lems in Chapters 2, 3, and 4.

1.3.1 Optimal control of tumor growth in the presence of nutriennts

Starting with modeling the behavior of a cell or a living organism, first, we think of its
birth and death, given by the Lotka-Voltera model (see [65])

Y
___]

___[

dN(t)
dt

= N(t) (b(t) ≠ d(t)) ,

N(0) = N0,

where N(t) denotes the total population density of cells, b(t) and d(t) represent the birth
and death rates of the cell, respectively.

Since the birth and death rates depend on the availability of nutrients, then b and d are
usually taken as a nonlinear function R(N(t)), leading to the equation

dN(t)
dt

= N(t)R(N(t)),

many nonlinearities could be taken, such as logistic and Gompertz models.

The mathematical theory of di�usion is based on the hypothesis that the rate of transfer
of di�using substance through unit area of a section is proportional to the concentration
gradient measured normal to the section, i.e.

F = ≠D
ˆC

ˆx
,

where F is the rate of transfer per unit area of section, C the concentration of di�using
substance, x the space coordinate measured normal to the section, and D is called the
di�usion coe�cient. In some cases, D can reasonably be taken as constant such as in
dilute solutions, however in other cases not (see [59]). As an example, tumor cells invade
white matter faster than grey matter, so D changes depending on the position of the
tumor x (see [44]).

We know that the change in time of the concentration of di�using substance enclosed by
the surface equals to the mass that traverses the surface, so we have,

ˆC

ˆt
= divF.
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Consequently,
ˆC

ˆt
= D

ˆ2C

ˆx2 .

So, the reaction di�usion equation is given as follows

ut ≠ D�u = f(u),

where D�u denotes the random motion with coe�cient D, and f(u) represents the reac-
tion term which may count for the proliferation or death of the cells.

On the other hand, the Allen-Cahn equation (see [13])

ˆu

ˆt
≠ ‘2�u + f(u) = 0, in � ◊ (0, T ),

ˆ‹u = 0, on ˆ� ◊ (0, T ),
(1.5)

is important in materials science, where � represents the volume occupied by the material,
u is an order parameter corresponding, for example, to the ordering of atoms per unit
cell in a crystal lattice, and the function f is the derivative of a double-well potential F
whose wells correspond to the phases of the material is given by

F (s) = 1
4

1
s2 ≠ 1

22
. (1.6)

Equation (1.5) is based on a free energy (see [48])

E(u) = ‘2

2 |Òu|2 + f(u),

The standard derivation of the Ginzburg-Landau or Allen-Cahn equation is based on
considering the total free energy of the region � occupied by the material

�(u) =
⁄

�
E(u)dx.

The term f(u) represents the uniform energy of the order parameter u, and the term
‘2

2 |Òu|2 represent the energy of the interface. The formal variation of �(u) with respect
to fields u that vanish on ˆ� is given by

”�(u) =
⁄

�
(f Õ(u)”u + ‘Òu · ”Òu) dx =

⁄

�
(f Õ(u) + ‘�u) ”udx,

and give the following expression

”�(u)
”u

= f Õ(u) + ‘�u,

and hence the Allen-Cahn equation. Such a model prohibits discontinuities of u and
the interface is represented by a thin phase-to-phase transition layer possessing small
thickness, hence the term di�use interface model(as opposed to sharp interface models
models, which is found by making ‘ tends to zero). If the potential is defined by (1.6),
the typical width of an interface is ‘.
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In the view of tumor growth, modeling must take into account the proliferation of the cells
that depends on the nutrient uptake and apoptosis, the programmed cell death. More
importantly, what we are going to model is the cell density of two phases, a healthy phase,
and a tumor phase.

As mentioned earlier, a cancer cell arises from a normal one due to some genetic mutations.
Therefore, we will consider a phase-field model that replaces the boundary conditions at
the interface with a partial di�erential equation for the evolution of an auxiliary field
that takes the role of an order parameter. This phase-field takes two di�erent values +1
and ≠1 in each of the phases, with a smooth change between the two values in the zone
around the interface, which is then di�use with finite width. A discrete location of the
interface can be defined as the set of all points at which the phase-field takes a certain
value (e.g. 0).

Moreover, like normal tissues, cancer cells require nutrients to stay alive and proliferate.
When modeling tumor growth, it is therefore common to combine the tumor growth
equation with an equation that models the dynamics of nutrients.

So, let Ï = Ï1 ≠ Ï2 be the phase field representing the di�erence between tumor and
healthy phases, Ï = ≠1 denotes healthy phase and Ï = 1 denotes tumor phase, and let ‡
be the concentration of nutrients, we have

ˆtÏ ≠ B�Ï + f(Ï) = (P‡ ≠ A ≠ –u)h(Ï), in � ◊ (0, T ) =: Q, (1.7)
where B the di�usion coe�cient, depends on tumor mobility and interface width, h is
an interpolation function where h(≠1) = 0 and h(1) = 1, P‡h(Ï) and Ah(Ï) model the
proliferation and apoptosis, programmed cell death, of tumor cells at rates P and A,
respectively.

Many therapeutic concepts are used in cancer treatments, the direct ones may be done
through cytostatic drugs which block proliferation or cytotoxic drugs, the one we are
concerned about, which kills proliferative cells. So, here –uh(Ï) models the elimination
of proliferative tumor cells through a cytotoxic drug at rate –.

Note that when the right hand side of (1.7) is null, we have an Allen-Cahn equation of
the form

ˆtÏ ≠ B�Ï + f(Ï) = 0 in � ◊ (0, T ),

ˆ‹Ï = 0 on ˆ� ◊ (0, T ),
where

f(Ï) = Ï3 ≠ Ï.

One of the main nutrients consumed by tumor cells is lactate (see subsection 1.1.3 for
more details), when the concentration of lactate is high, it is transported to the capillaries
by MCTs, however, when the cell lacks nutrient, it uptakes lactate from capillaries in
a process called lactate shuttle, employing MCT1. Taking ‡ as the concentration of
nutrients and ‡s the nutrient concentration in a pre-existing vasculature, then — (‡s ≠ ‡)
refers to nutrient delivery from blood vessels at rate —, when ‡s > ‡ and nutrient removal
from domain when ‡s < ‡. On the other hand, the nutrient dynamics is modeled by the
following reaction di�usion equation

ˆt‡ = �‡ ≠ C‡h(Ï) + —(‡s ≠ ‡), in Q,
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where Ch(Ï) is the nutrient consumption by the proliferative cells.
Since both cells and nutrients are not supposed to flux through domain we consider
Neumann boundary conditions so that

ˆ‹Ï = ˆ‹‡ = 0 on ˆ� ◊ (0, T ),

where ‹ is the outward normal on the boundary ˆ�.

Moreover, Ï0 and ‡0 are the initial phase di�erence and nutrient concentration at x œ �.

Hence we have the following system coupling an Allen-Cahn equation and a reaction
di�usion equation

ˆtÏ ≠ B�Ï + f(Ï) = (P‡ ≠ A ≠ –u)h(Ï), in � ◊ (0, T ) =: Q, (1.8)

ˆt‡ = �‡ ≠ C‡h(Ï) + —(‡s ≠ ‡), in Q, (1.9)

ˆ‹Ï = ˆ‹‡ = 0, on � ◊ (0, T ), (1.10)

Ï(0) = Ï0, ‡(0) = ‡0, in �. (1.11)

We aim to control tumor growth through treatment with cytotoxic drugs administered to
patients in several cycles, each followed by a long rest period during which the healthy cells
can recover. In this way, we aim to minimize the growth of the tumor in Q and its final
distribution in �. Considering that the duration of a cycle in which the patient undergoes
treatment is rigorous for the patient’s health, we consider minimizing the treatment time.
Finally, a low dose of treatment does not a�ect the tumor and a high dose may cause
the tumor to adapt to the therapy and destroy the healthy cells, so we also minimize the
dosage of the drugs.

We consider for positive constants r, —u, —T , and nonnegative constants —Q, —�, —S the
functional to be minimized

Jr(Ï, u, ·) =—Q

2

⁄ ·

0

⁄

�
|Ï ≠ ÏQ|2dx dt + —�

2
1
r

⁄ ·

·≠r

⁄

�
|Ï ≠ Ï�|2dx dt

+ —S

2
1
r

⁄ ·

·≠r

⁄

�
1 + Ï(x)dx dt + —u

2

⁄ T

0

⁄

�
|u|2dx dt + —T ·.

(1.12)

Where ÏQ represents a desired evolution for the tumor cells while Ï� represents a de-
sired final distribution. The first two terms of Jr are of standard tracking type is often
considered in the literature of parabolic optimal control (see [73]) and the third term of
Jr measures the size of the tumor at the end of the treatment. The fourth term penal-
izes large concentrations of the cytotoxic drugs, and the fifth term of Jr penalizes long
treatment times (see [43]). So, the main problem becomes

minimize Jr(Ï, u, ·) subject to (1.8) ≠ (1.11), u œ Uad, · œ [r, T ].

1.3.2 Modeling the control on lactate transport

Even in the presence of ample oxygen, tumor cells predominantly rely on glycolysis to
produce energy in a phenomenon called the Warburg e�ect or aerobic glycolysis.

Based on our interest in applying therapeutic strategies in the metabolic state that target
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lactate production and transport, we will adopt a transport model (see [4] and [47]) that
describes lactate flow between cell and blood capillary, so in this model, it is interesting
to consider the elements that are important in lactate kinetics.

• The production of lactate by the cells due to glycolysis, denoted by J1.
• Exchange through BBB denoted J2.
• J3 denotes the sum of lactate consumption by mitochondria after catalysis by LDH-B

to pyruvate, and the di�usion to adjacent regions.
• Cerebral blood flow denoted by CBF .
• PH variations.

LACi and LACc denote intracellular and capillary lactate concentrations, respectively.
LACa and LACv are the arterial and venous lactate concentrations as well. Furthermore,
Vi and Vc are respectively the dimensionless capillary and intracellular volume fractions.

JCap

LACc

LACi

LACv

J1

J3Cell (Vi)

LACa

J2
CBF

CAPILLARIES (Vc)

Figure 1.8 – A scheme that describes the lactate flow from cell towards capillary, taken from [47]

The intracellular and capillary metabolic balance equations lead to the following ODE
system Y

___]

___[

Vi
dLACi

dt
= J1 ≠ J2 ≠ J3,

Vc
dLACc

dt
= Jcap + J2.

(1.13)

The contribution of CBF to the variation of capillary lactate concentration (see [74]), is
given by

Jcap(t) = CBF (t) (LACa(t) ≠ LACv(t)) ,

but
LACv(t) = 2LACc(t) ≠ LACa(t),

then
Jcap(t) = 2CBF (t) (LACa(t) ≠ LACc(t)) .

For simplicity, F (t) = 2CBF (t), and the arterial lactate concentration is considered
constant, so LACa(t) = L, then ’ t œ R+, we have

Jcap(t) = F (t) (L ≠ Lacc(t)) .
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Moreover, set J(t, LACi(t)) = J1 ≠ J2, which can be viewed as a forcing function. J is
non-negative since the cell is seen as it cannot export more lactate than it has.

Finally, the flux of lactate through BBB, J2, which in turn is a�ected by intracellular and
capillary H+ concentrations, takes the following form, which is taken from a more general
transport formula for cotransport, the Michaelis-Menten Kinetics, discussed in Subsection
1.1.6

J2 = Ÿ

A
LaciH

+
i

KH + LaciH
+
i

≠ LaccH
+
c

KH + LaccH+
c

B

,

KH , is a constant of type Michaelis-Menten, expressed in mM◊M, Ÿ is the maximum
transport rate, depending on the total area of the capillary endothelium and the density
of the MCTs. H+

i and H+
c are assumed constants.

Finally, set k = KH

H+
i

and kÕ = KH

H+
c

to obtain

J2 = Ÿ
3

Laci

k + Laci

≠ Lacc

kÕ + Lacc

4
,

and therefore
Y
____]

____[

Vi
dLACi

dt
= J(t, Laci) ≠ Ÿ

3
Laci

k + Laci

≠ Lacc

kÕ + Lacc

4

Vc
dLACc

dt
= F (t) (L ≠ Lacc) + Ÿ

3
Laci

k + Laci

≠ Lacc

kÕ + Lacc

4
.

Setting u and v as the intracellular and capillary lactate concentrations, respectively, and
‘ = Vc

Vi

as the volume separating the cell and capillary compartments, we obtain the
following system of ODEs

Y
_________]

_________[

uÕ(t) = J(t, u) ≠ Ÿ
3

u

k + u
≠ v

kÕ + v

4
, in [0, T ],

‘vÕ(t) = F (t) (L ≠ v) + Ÿ
3

u

k + u
≠ v

kÕ + v

4
, in [0, T ],

(u(0), v(0)) = (u0, v0) , in R+ ◊ R+.

(1.14)

To maintain proliferation, highly glycolytic cancer cells prevent intracellular acidification
by exporting lactate to the extracellular space via monocarboxylate transporters (MCT1
and MCT4). This, in turn, leads to acidification of the extracellular PH in the tumor mi-
croenvironment, which indeed promotes metastasis, angiogenesis, and, most importantly,
immunosuppression (see [28] and [7]).

A potential therapeutic target in cancer is therefore MCT1/4 inhibition, as it has been
shown in [7] that cell proliferation is reduced both in vitro and in vivo by pharmacolog-
ical or genetic MCT1/4 inhibition. Syronsingopine, an antihypertensive drug, is a dual
MCT1/4 inhibitor that can be used to treat cancer.

Our main goal is to add a control term w at a rate “ representing the desired treatment
with syrosingopine, where w = 0 represents no dosing and w = 1 represents full dosing.

Hawraa Alsayed
15

hawraa_alsayyed@hotmail.com

hawraa_alsayyed@hotmail.com


CHAPTER 1. INTRODUCTION

Here, we apply the control to the term representing the transport of lactate out of the
cell into the capillary employing MCT inhibitor.

So, our new system becomes

uÕ(t) = J(t, u(t)) ≠ Ÿ

A

(1 ≠ “w) u(t)
k + u(t) ≠ v(t)

kÕ + v(t)

B

, in (0, T ), (1.15)

‘vÕ(t) = F (t)(L ≠ v(t)) + Ÿ

A

(1 ≠ “w) u(t)
k + u(t) ≠ v(t)

kÕ + v(t)

B

in (0, T ), (1.16)

(u(0), v(0)) = (u0, v0) œ R+ ◊ R+. (1.17)

Accompanied with the following objective functional to be minimized

J (v, w, ·) = 1
2

⁄ ·

0
Î(v ≠ vQ)(t)Î2 dt + 1

2r

⁄ ·

·≠r
Î(v ≠ vd)(t)Î2 dt + 1

2

⁄ ·

0
Îw(t)Î2 dt. (1.18)

Here r is a positive constant, the function vQ corresponds to the desired evolution capillary
lactate concentration and vd to the desired final capillary lactate concentration. Moreover,
a patient undergoes several cycles of treatment, so that each cycle is followed by a resting
period during which the healthy cells can recover, so that · is the treatment time of each
cycle and T is the final treatment time.

A large value of |v ≠ vQ|2 means that the patient has high levels of capillary lactate
concentration, likewise a large value of |w|2 would mean that the patient is su�ering from
a high dose of the drug.

Achieving the desired goal is accomplished by the following problem.

minimize J associated to (1.15) ≠ (1.17), w œ Wad, · œ [r, T ]. (1.19)

1.3.3 Modeling the control on lactate production

A common feature of tumor cells is the abnormal glycolytic metabolism known as the
Warburg e�ect, in which cancer cells preferentially use glycolysis even in the presence of
abundant oxygen, in contrast to healthy cells, which generally use oxidative phosphoryla-
tion for energy. The shift from oxidative phosphorylation to glycolysis, which is associated
with high glucose uptake due to the lower energetic e�ciency of glycolysis compared to
oxidative phosphorylation, is one of the hallmarks of tumors. As a result, increased lactate
production is observed, contributing to malignancy progression, lowering PH for invasion,
and triggering immune escape.

The enzyme LDH occupies a central position in the metabolic reprogramming of tumor
cells. It plays a key role in maintaining altered glycolytic metabolism and enables tumor
cell survival when glycolysis is the sole source of energy. Structurally, LDH enzyme is a
tetrameric enzyme consisting of two di�erent types of subunits LDH-A and LDH-B. LDH-
A has high activity in converting pyruvate to lactate, whereas LDH-B is more e�cient in
catalyzing the reverse reaction of lactate to pyruvate (see Subsection 1.1.3).

An isoform of LDHA, hLDH-5 (see Subsection 1.1.3), was overexpressed in a variety of
tumors, revealing a link between its increase and the aggressive phenotype of the tumor.
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In addition, hLDH-5 has been found to play an important role in the development and
maintenance of metastatic tumors, and serum hLDH-5 levels have been associated with
resistance to chemotherapy and radiotherapy. For these reasons, hLDH-5 is now consid-
ered a promising therapeutic target for the treatment of cancer(see [17, 25, 30, 32, 39, 54,
57,58,72,78]).

Several LDHA inhibitors are mentioned in the literature for either type of tumors (see
[45,56,67,68]). In this thesis, we are interested in gliomas, so we consider treatment with
gossypol, which showed dose-dependent cytotoxic activity in various cancer cells and in
gliomas in particular

We leverage from system (1.13), but if we consider spatial di�usion, we have the following
system (see [62]).

ˆtu ≠ –�u = —u + f(x, t) + ku

kÕ + u
— Ø 0, k > 0 in � ◊ (0, T ),

ˆu

ˆ‹
= 0 on ˆ� ◊ (0, T ),

u|t=0 = u0(x) in �.

Here u represents the intracellular lactate concentration. Furthermore, the non-linear
term ku

kÕ + u
stands for lactate transport from capillary, where k is the maximum transport

rate and kÕ is the Michaelis-Menten constant. The function f represents the creation and
consumption of lactate and —u stands for the loss of lactate due to the convert of lactate
to pyruvate by the LDHB enzyme and due to migration to neighboring tissues (note that
the above equation can also model the extra-cellular (capillary) lactate concentration, in
which case —u corresponds to the blood flow). One can see that

ku

kÕ + u
= k ≠ kkÕ

kÕ + u
.

Based on the previous model, we consider the following problem, for T > 0 in a bounded
domain � µ R3 with C3≠boundary �,

ˆtu ≠ –�u + —u ≠ k

kÕ + u
= J(x, t)(1 ≠ “v), in � ◊ (0, T ) =: Q, (1.20)

ˆ‹u = 0, on � ◊ (0, T ), (1.21)
u(0, x) = u0(x), in �. (1.22)

Here, we introduce a control v which represents the concentration of gossypol inhibitor,
where v = 0 stands for no dose and v = 1 stands for full dose. We further write kkÕ

kÕ + u
as

k

kÕ + u
and note that J = f ≠ k. Finally, “J(x, t)v is the inhibition of lactate production

at rate “. The cost functional to be minimized is given by

J (u, v, ·) = —Q

2

⁄ ·

0

⁄

�
|u≠uQ|2dx dt+ —�

2r

⁄ ·

·≠r

⁄

�
|u≠u�|2dx dt+ —v

2

⁄ T

0

⁄

�
|v|2dx dt, (1.23)

where uQ, u� represent the desired evolution and distributional lactate concentrations
both in L2(Q). A cancer patient is treated in cycles; each treatment cycle is followed
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by a rest period to allow the healthy cells to recover. Here · œ (0, T ] represents the
treatment time of one cycle and T > 0 is a fixed maximal time in which the patient is
allowed to undergo treatment. The first two terms of (1.23) are of standard tracking type
as often considered in the literature of parabolic optimal control (see [73]) and the third
one penalizes large concentrations of the applied inhibitor. Our problem becomes

minimize J associated to (1.20) ≠ (1.22). (1.24)

1.4 Problematic

This section is devoted to the presentation of some results that are close to our work,
so we divide it into three subsections. In the first subsection, we consider two optimal
control problems that study tumor growth models (see [23] and [43]). In the second
subsection, we consider a problem that studies a system modeling lactate kinetics in one
compartment (either intracellular or extracellular) (see [62]), for which we constructed
our control problem. Finally, the third subsection deals with an ODE model studied in
(see [46]), which we used later in our work to apply an appropriate control.

1.4.1 Some optimal control problems on tumor growth models

In [23], the target was prostate cancer through two controls as a combination of two
treatments a cytotixic drug along with a targeted therapy presented by an antiangiogenic
drug. A system of an Allen-Cahn equation and two reaction di�usion equations was
considered. The first equation models the spatial location of the tumor denoted as the
phase-field in the presence of nutrient, the second models the dynamics of nutrient and
the last equation models the dynamics of tissue PSA concentration. They consider the
following system

Y
___________________]

___________________[

ˆt„ ≠ ⁄�„ + F Õ(„) ≠ m(‡)hÕ(Â) = ≠UhÕ(„), in � ◊ (0, T ),

ˆt‡ ≠ ÷�‡ + “h‡ + “ch‡„ = Sh(1 ≠ „) + (Sc ≠ S)„, in � ◊ (0, T ),

ˆtp ≠ D�p + “pP = –h + –ch„, in � ◊ (0, T ),

„ = 0, ˆ‹‡ = ˆ‹p = 0, on � ◊ (0, T ),

„(0, x) = Ï0(x), ‡(0, x) = ‡0(x), p(0, x) = p0(x), in �,

(1.25)

where „ is a phase-field that identifies the spatial location of the tumor; ‡ is the con-
centration of a vital nutrient; and p is the tissue PSA concentration. The serum PSA
is commonly used in clinical practice can be obtained as Ps =

s
� p dx. F Õ denotes the

derivative of F , so that F („) = M„2(1 ≠ „)2 and h(„) = M„2(3 ≠ 2„), where M is a
positive constant.

“ch := “c ≠ “h, –ch := –c ≠ –h, Sch := Sc ≠ Sh.

The model parameters ⁄, ÷, D, “p, “c, “h, –c, –h, Sc and Sh are positive constants with bi-
ological significance. For the solution of the initial boundary value problem (1.25), the
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functions U(t, x) and S(t, x) are considered to be given, so that U(t, x) models the inhibit-
ing e�ect of a cytotoxic drug on tumor dynamics, while S(t, x) represents the reduction
of nutrient supply produced by an antiangiogenic drug. The function m(‡) is given by

m(‡) = mref

3
fl + A

2 + fl ≠ A

fi
arctan

3
‡ ≠ ‡l

‡r

44
,

where mref is a positive constant, while rho and A are constants that determine the rate
of cell proliferation and apoptosis. Here fl = Kfl/Kfl and A = ≠KA/KA. Where, Kfl and
KA are, respectively, the proliferation and apoptosis rates of tumor cells while Kfl and
KA are scaling positive constants. The positive constants ‡l and ‡r are, respectively, a
reference and a threshold value for the nutrient concentration.

The optimal control problem in this work was to find the functions U(t, x) and S(t, x)
that provide the optimal cytotoxic and antiangiogenic e�ects to treat a certain PCa case.
Therefore, the optimal control problem stated was

minimize{J(U, S); (U, S) œ Uad},

subject to (1.25), where the objective functional was given as

J(U, S) = k1

2

⁄ T

0

⁄

�
(„(t, x) ≠ „Q)2 dx dt + k2

2

⁄

�
(„(T, x) ≠ „�)2 dx

+k3

⁄

�
„(T, x) dx + k4

2

⁄ T

0

C3⁄

�
p(t, x) dx ≠ p�(t)

4+
D

dt

+k5

⁄

�
p(T, x) dx

= k6

2

⁄ T

0

⁄

�
U2(t, x)dx dt + k7

2

⁄ T

0

⁄

�
S2(t, x)dx dt,

(1.26)

and

Uad = {(U, S) œ (LŒ(QT ))2 ; 0 Æ U Æ Umax, 0 Æ S Æ Smax, a.e. in QT }.

And Smax, Umax are positive threshold values and QT := (0, T ) ◊ �, r+ represents a
positive part of r; the functions „Q, „� are prescribed targets fro tumor phase in QT and
in � at the final time, respectively, while p� represents an upper target function for the
spatial mean value of the tissue PSA, so that

„Q œ L2(QT ), „�œL(�), p� œ L2(0, T ).

The constants ki, i = 1, . . . , 7 in equation (1.26) are nonnegative such that there exists at
least one i so that ki > 0.

The authors has studied the optimal control problem, and illustrated some numerical
computations using isogeometric analysis, a recent generalization of finite element method
with superior approximation properties granted by the use of splines as basis functions.
These simulations suggest that antiangiogenic therapies may not be optimal for treating
PCa, because the used drugs docetaxel and bevacizumab are reference drugs in therapeutic
investigations of advanced optimal control. however, the optimal control problem used in
this work is drug-independent, i.e, it provides optimal cytotoxic and antiangiogenic drug

Hawraa Alsayed
19

hawraa_alsayyed@hotmail.com

hawraa_alsayyed@hotmail.com


CHAPTER 1. INTRODUCTION

e�ects without accounting for any specific drug delivery plan.

On the other hand, the authors in [43] considered an optimal control problem involving
a cancer treatment with cytotoxic drugs. It is well known that while cytotoxic drugs
primarily target and damage rapidly dividing cells such as tumor cells, the drugs can also
accumulate in the body and have negative side e�ects on the immune system and various
vital organs such as the kidneys and liver. In the worst case, too high a dose of cytotoxic
drugs can cause tumor cells to mutate and become resistant to treatment. Thus, from
the patient’s perspective, the shortest treatment time in which the goals of chemotherapy
are achieved is most ideal. Thus, the optimal control problem that have been studying
involves finding the optimal distribution of the drug and the optimal treatment time.

For T > 0, in a bounded domain � µ R3 with C3- boundary �, the following Cahn–Hilliard
model for tumor growth was considered (see [43]),

Y
___________________]

___________________[

ˆtÏ = �µ + (P‡ ≠ A ≠ –u) h(Ï), in � ◊ (0, T ),

µ = A�Õ(Ï) ≠ B�Ï, in � ◊ (0, T ),

ˆt‡ = �‡ ≠ C‡h(Ï) + — (‡s ≠ ‡) , in � ◊ (0, T ),

ˆ‹Ï = ˆ‹‡ = 0, ˆ‹µ = 0 on � ◊ (0, T ),

Ï(0) = Ï0, ‡(0) = ‡0, in �.

(1.27)

Where – is a positive constant, Ï denotes the dierence in volume fraction, where Ï = 1
represents the tumor phase and Ï = 1 represents the healthy tissue phase. The function
µ is a chemical potential associated to Ï, �Õ(Ï) is the derivative of a potential �(Ï) with
equal minima at Ï = ±1, ‡ is the concentration of an unspecied chemical species acting
as nutrient for the tumor cells, while u denotes the concentration of cytotoxic drugs.
The function h(Ï) is an interpolation function such that h(≠1) = 0 and h(1) = 1, the
parameters P , A, C, and B denote the constant proliferation rate, apoptosis rate, nutrient
consumption rate, and nutrient supply rate, respectively. The positive constants A and B
are related to the thickness of the interfacial layer and the surface tension, while ‹ is the
unit outward normal of �. The term h(Ï)P‡ models the proliferation of tumor cells which
is proportional to the concentration of the nutrient, the term h(Ï)A models the apoptosis
of tumor cells, and Ch(Ï)‡ models the consumption of the nutrient only by the tumor
cells. The term –uh(Ï) models the elimination of the tumor cells by the cytotoxic drugs
at a constant rate –. Meanwhile, ‡ denotes the nutrient concentration in a pre-existing
vasculature, and —(‡s ≠ ‡) models the supply of nutrient from the blood vessels if ‡s > ‡
and the transport of nutrient away from the domain � if ‡s < ‡.

For positive constants r, —u, —T , and nonnegative constants —Q, —� and —S, the objective
functional considered is as follows

Jr(Ï, u, ·) = —Q

2

⁄ ·

0

⁄

�
|Ï ≠ ÏQ|2dx dt + —�

2
1
r

⁄ ·

·≠r

⁄

�
|Ï ≠ Ï�|2dx dt

+—S

2
1
r

⁄ ·

·≠r

⁄

�
(1 + Ï) dx dt + —u

2

⁄ T

0

⁄

�
|u|2dx dt + —T ·.
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Where, · œ (0, T ] represents the treatment time, ÏQ represents a desired evolution for the
tumor cells while Ï� represents a desired final distribution. The first two terms of Jr are
of standard tracking type as often considered in the literature of parabolic optimal control,
and the third term of Jr measures the size of the tumor at the end of the treatment. The
fourth term penalizes large concentrations of the cytotoxic drugs, and the fifth term of
Jr penalizes long treatment times.

The optimal control problem studied is minJr(Ï, u, ·) associated to (1.27), where the set
of admissible controls verifies,

Uad = {u œ LŒ(0, T ; LŒ(�)) : 0 Æ u Æ 1 a.e. in Q}.

1.4.2 A reaction-di�usion equation associated with brain lactate kinetics

We have introduced earlier in Subsection 1.3.3 the mathematical model presented in
[62], which describes brain lactate kinetics in one compartment (either intracellular or
extracellular), when spatial di�usion is taken into account. Recall the considered system

Y
_________]

_________[

ˆtu ≠ –�u + —u + ku

kÕ + u
= f(x, t), in � ◊ (0, T ),

ˆ‹u = 0, on �,

u|t=0 = u0, in �.

(1.28)

The main objective of this work was to show the well-posedness of this system. First, the
author has established some apriori estimates, then considering the assumption k

k + u
Ø 1,

he obtained that the solution u is nonnegative. Moreover the solution has uniform (with
respect to time) and dissipative (in the sense that it is independent of time and bounded
sets of initial data, at least for large times) upper bound, since

0 Æ u(x, t) Æ e≠F t Îu0ÎLŒ(�) + 1
F

1
ÎfÎLŒ(�) + 1

2
a.e. (x, t).

Assuming that
Y
________]

________[

u0 œ H2
N(�) = {v œ H2(�), ˆ‹v = 0 on �}, u Ø 0 a.e. x,

f œ L1(0, T ; LŒ(�)) fl LŒ(0, T ; L2(�)) fl L2(0, T ; H1(�)) fl H1(0, T ; L2(�)), ’ T > 0,

f Ø ≠1 a.e. (x, t).

Then (1.28) possesses a unique strong solution u such that, ’ T > 0,

u œ LŒ(0, T ; H2
N(�)) fl L2(0, T ; H3(�)) and ˆtu œ LŒ(0, T ; L2(�)) fl L2(0, T ; H1(�)).

Moreover, the solution u satisfies

0 Æ u(x, t) Æ Îu0ÎLŒ(�) +
⁄ t

0
ÎfÎLŒ(�) ds + t a.e. (x, t).
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In addition, if u0 > a.e. x and f Ø 0 a.e. (x, t), then

u(x, t) Ø e≠F t

....
1
u0

....
LŒ(�)

a.e. (x, t).

1.4.3 Analysis of a mathematical model for brain lactate kinetics

Lactate kinetics has been an interest of study for many researchers, in particular, the
model (1.14) with initial conditions (u(0), v(0)) = (u0, v0), was considered in [46], the
authors have considered two cases ‘ > 0 and ‘ = 0.

When ‘ > 0, the problem is well posed, moreover

v(t) Æ max
3

v0,
T + F2L

F1

4
:= Bv.

On the other hand, setting

J(t, x) Æ BJ ’(t, x) œ R and BJ (kÕ + Bv) < ŸkÕ.

And setting
z = Bv

kÕ + Bv

+ BJ

Ÿ
,

then ’t œ R+:
u(t) Æ max

A
kz

1 ≠ z
, u0

B

:= Bu.

Moreover, lower bounds are derived

v(t) Ø min

Q

cccav0, max

Q

ccca

F1L ≠ Ÿ
Bv

kÕ + Bv

F2
, 0

R

dddb

R

dddb := Mv

and
u(t) Ø min

A

u0, Mv
k

kÕ

B

:= Mu.

And the following unique stationary point is a node

ul :=
k

3
J

Ÿ
+ vl

kÕ + vl

4

1 ≠
3

J

T
+ vl

kÕ + vl

4

and
vl := L + J

F
.

The equilibrium does not always exist, and the parameters need to satisfy

J2 + JF (L + kÕ) ≠ TFkÕ < 0.
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When ‘ = 0, and given that F (t) = F and J(t, x) = J are constants, then the limit
system is as follows

Y
__________]

__________[

uÕ
0(t) = J ≠ Ÿ

A
u0(t)

k + u0(t)
≠ v0(t)

kÕ + v0(t)

B

,

F (L ≠ v0(t)) + Ÿ

A
u0(t)

k + u0(t)
≠ v0(t)

kÕ + v0(t)

B

= 0,

u0(0) = u0 œ R+.

(1.29)

This system is well-posed, moreover the stationary point is locally stable. Moreover,
taking u and v to be the di�erence of the solution of System (1.14) and (1.29), respectively,
they get

u(t)2 + ‘v(t)2 Æ

exp

A
T 2t

F

3 8
k2 + 4

kÕ2

4B

Q

ccccccccccca

‘ (v0 ≠ � (u0))2 + k2(J + T )2
Q

ccaF + kÕT

(kÕ + L + T

F
)2

R

ddb

2
2‘2

3 2
k2 + 1

kÕ2

4

R

dddddddddddb

≠ k2 (J + T )2

Q

cccaF + kÕT
3

kÕ + L + T

F

42

R

dddb

2
2‘2

3 2
k2 + 1

kÕ2

4 ,

where �(u0) = v0.

Finally, numerical simulations were established for both cases, the functions F and J are
constants and when

J

Y
___]

___[

R+ ≠æ R+

x ‘≠æ GJ ≠ LJ + CJ

x + ‘J

,

and

F

Y
________]

________[

R+ ≠æ R+

t ≠æ

Y
___]

___[

F0 (1 + –f ) if ÷ N œ N/ (N ≠ 1) tf + ti < t < Ntf ,

F0 if not.

The simulations for this case are given in Figure 1.9
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Figure 1.9 – Intracellular and capillary lactate concentrations

1.5 Contributions

This section is concerned with a brief summary of our main results, so it is divided into
three subsections.

1.5.1 Optimal control problem of tumor growth model

The results presented in Chapter 2 is a paper accepted in the journal of Dis-

crete and Continuous Dynamical Systems Series S.

We consider for T > 0, which is the maximum treatment time, in a bounded domain
� µ Rn, n = 1, 2, 3, with C2- boundary � the system (1.8)-(1.11) described in Section
1.3.1.

Moreover, for positive constants r, —u, —T , and nonnegative constants —Q, —�, —S, we con-
sider the functional

Jr(Ï, u, ·) = —Q

2

⁄ ·

0

⁄

�
|Ï ≠ ÏQ|2dx dt + —�

2
1
r

⁄ ·

·≠r

⁄

�
|Ï ≠ Ï�|2dx dt

+—S

2
1
r

⁄ ·

·≠r

⁄

�
(1 + Ï) dx dt + —u

2

⁄ T

0

⁄

�
|u|2dx dt + —T ·.

The first two terms of Jr are of standard tracking type is often considered in the literature
of parabolic optimal control (see [73]) and the third term of Jr measures the size of the
tumor at the end of the treatment. The fourth term penalizes high concentrations of the
cytotoxic drug, and the fifth term of Jr penalizes long treatment times (see [43]).

A cancer patient undergoes treatment for several cycles, the duration of each of which is
given as · , followed by a rest period during which the healthy cells are allowed to recover.
The total treatment time is denoted by T . We tend to optimize the treatment time of
each cycle at a given drug dose such that we achieve the desired evolution of tumor cells
ÏQ in Q and their desired final distribution target Ï� in �, so that Ï can be a stable
conguration of the system such that the tumor does not grow again after the treatment
is completed. One can also choose Ï� as a conguration which is suitable for surgery.

The main objective of this chapter is to study the problem

minimize Jr associated to (1.8) ≠ (1.11) and u œ Uad, · œ [r, T ], (1.30)
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CHAPTER 1. INTRODUCTION

where the set of admissible controls satisfy

Uad := {u œ LŒ(Q) : 0 Æ u Æ 1, a.e. in Q}.

For this purpose, we consider first the following assumptions
(A) The initial conditions satisfy, Ï0, ‡0 œ H1(�), with 0 Æ ‡0 Æ 1 a.e. x œ �. The target

functions Ï�, ÏQ œ L2(Q), and the vasculature nutrient concentration ‡s satisfies
0 Æ ‡s Æ 1, a.e. in Q.

(B) The interpolation function h : R æ [0, 1] is continuously di�erentiable and Lipschitz
with Lipschitz constant M . In addition, the parameters P , A, C, — are non negative
constants, and – is a positive constant.

We start by showing that the state system is well-posed, by proving the following theorem:

Theorem 1.1 (Existence and uniqueness of weak solution)

Assume that Assumptions (A) and (B) hold. Then, Problem (1.8)-(1.11) admits a
unique weak solution (Ï, ‡) such that 0 Æ ‡ Æ 1 and

(Ï, ‡) œ Y :=
1
L2(0, T ; H2(�)) fl LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�))

22
.

Moreover, the control-to-state operator

S : L2(Q) ≠æ Y

u ‘≠æ (Ï, ‡)

is continuous for the corresponding topology.

Where Y := (L2(0, T ; H2(�)) fl LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�)))2.

Moreover, we prove that S is continuous, so that the solution of (1.8)-(1.11) is unique for
either value of u.

Now, since the solution (Ï, ‡) of (1.8)-(1.11) exists and starting from Assumption (A)
which states that 0 Æ ‡0 Æ 1, we show that 0 Æ ‡ Æ 1.

On the other hand, we show the existence of a solution for (1.30), this is done by proving
the following theorem:

Theorem 1.2

Assume that Assumptions (A) and (B) hold and let Jr be defined by (1.12). Then
there exist (uú, · ú) œ Uad ◊ [r, T ] such that

Jr(uú, · ú) Æ Jr(u, ·), for every (u, ·) œ Uad ◊ [r, T ].

To show the Fréchet di�erentiability of the control-to-state operator with respect to the
control, we first demonstrate the existence of the Fréchet derivative by considering a
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linearized System of (1.8)-(1.11) at (uú, ·ú) for w œ L2(Q) as follows
Y
___________]

___________[

ˆt� ≠ B�� + �f Õ(Ïú) = (P� ≠ –w)h(Ïú) + (P‡ú ≠ A ≠ –uú)�hÕ(Ïú), in Q,

ˆt� = �� ≠ C�h(Ïú) ≠ C‡ú�hÕ(Ïú) ≠ —�, in Q,

ˆ‹� = ˆ‹� = 0, on � ◊ (0, T ),

�(0) = �(0) = 0, in �.

(1.31)

We establish the existence of a unique regular solution of (1.31) by proving the next the-
orem, and hence the unique Fréchet derivative of S at (uú, ·ú) exists.

Theorem 1.3

Let uú œ Uad. Then, System (1.31) admits a unique solution

(�, �) in
1
L2(0, T ; H2(�)) fl H1(0, T ; L2(�)) fl C([0, T ]; L2(�))

22
.

Now, we set (Ïw, ‡w) := S(uú + w), (Ïú, ‡ú) := S(uú), and uw := uú + w, after that, we
show that the remainders

◊ = Ïw ≠ Ïú ≠ � and fl = ‡w ≠ ‡ú ≠ �,

satisfy
Î(◊, fl)Î2

Y Æ c ÎwÎ4
L2(Q) .

For this aim we prove the following theorem:

Theorem 1.4

Let (�, �) be the solution of the linearized system (1.31) at uú, then the remainders
◊ and fl satisfy

Î(◊, fl)Î2
Y Æ c ÎwÎ4

L2(Q) ,

with

Y := L2(0, s; H2(�)) fl H1(0, s; L2(�)) fl LŒ(0, s; H1(�)), s œ (0, T ).

Furthermore, the Fréchet di�erentiability of the cost functional with respect to time is
established as in [43], however, the Fréchet derivative of the cost functional with respect
to the control at (uú, · ú) is given by

DuJr(uú, · ú)w = —Q

⁄ ·ú

0

⁄

�
|Ïú ≠ ÏQ|�w dx dt + —�

⁄ ·ú

·ú≠r

⁄

�
|Ïú ≠ Ï�|�w dx dt

+—s

r

⁄ ·ú

·ú≠r

⁄

�
�w dx dt + —u

⁄ T

0

⁄

�
u w dx dt.

Since this problem is constrained, and we want to eliminate the term � from DuJr,
we considered an adjoint system by means of Lagrangian principle, then established the
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existence of regular multipliers of the following system
Y
________________]

________________[

≠ˆtp ≠ B�p = (P‡ú ≠ A ≠ –uú) hÕ(Ïú)p + —Q (Ïú ≠ ÏQ)

+ 1
2r

‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) ≠ f Õ(Ïú)p ≠ C‡úhÕ(Ïú)q, in [0, T ] ◊ �,

≠ˆtq ≠ �q = Ph(Ïú)p ≠ (Ch(Ïú) + —) q, in [0, T ] ◊ �,

ˆ‹p = ˆ‹q = 0, on [0, T ] ◊ �,

p(·ú) = q(·ú) = 0, in �.

(1.32)

For this purpose we prove this theorem:

Theorem 1.5

Let uú be an optimal control, and (Ïú, ‡ú) = S(uú) be the corresponding state.
Then the adjoint Problem (1.32) has a unique solution

(p, q) œ
1
H1(0, · ú; L2(�)) fl LŒ(0, · ú; H1(�)) fl L2(0, · ú; H2(�)) fl C([0, · ú]; H1(�))

22
.

Finally, we demonstrate that the optimal control uú satisfies the following simplified first-
order necessary optimality condition

(DuJr(uú, · ú))(u ≠ uú) = —u

⁄ T

0

⁄

�
uú(u ≠ uú) dx dt + –

⁄ ·ú

0

⁄

�
h(Ïú)(u ≠ uú)p dx dt Ø 0.

1.5.2 An Optimal Control Problem Describing Lactate Production Inhibition

The results presented in Chapter 3 is a paper published in the journal of

Applicable Analysis with doi:10.1080/00036811.2021.1999418

We leverage from the model that we presented in Subsection 1.3.3. So, we consider
for T > 0 in a bounded domain � µ R3 with C3≠ boundary �, the following problem
detailed in Subsection 1.3.3 and in Chapter 3.

Y
_________]

_________[

ˆtu ≠ –�u + —u ≠ k

kÕ + u
= J(x, t)(1 ≠ “v), in � ◊ (0, T ) =: Q,

ˆ‹u = 0, on � ◊ (0, T ),

u(0, x) = u0(x), in �.

(1.33)

In addition to the following cost functional

J (u, v, ·) = —Q

2

⁄ ·

0

⁄

�
|u≠uQ|2dx dt+ —�

2r

⁄ ·

·≠r

⁄

�
|u≠u�|2dx dt+ —v

2

⁄ T

0

⁄

�
|v|2dx dt, (1.34)

this is a conventional functional used in optimal control theory (see [73]).
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Our problem is
minimize J associated to (1.33). (1.35)

We start with the following assumptions
(C) The constants k, – Ø 0, — > 0, “ > 0, and the function J œ LŒ(Q) are such that

J Ø ≠ k

kÕ and u0 Ø 0.

(D) The control v œ Vad := {v œ LŒ(Q) : 0 Æ v Æ 1}
First, we establish that the solution u is nonnegative (thanks to Assumption (C)).

Then the existence of solution of the state System (1.33) is demonstrated by proving the
following theorem:

Theorem 1.6 (Existence and uniqueness of weak solutions)

Assume that Assumptions (C) and (D) hold and that u0 œ H1(�). Then, Problem
(1.33) admits a unique weak solution u such that u Ø 0 and

u œ Y := L2(0, T ; H2(�)) fl LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�)).

Moreover, the control-to-state operator

S : L2(Q) ≠æ Y

v ‘≠æ u

is continuous on the corresponding topology.

Now, we establish the existence of a solution for our problem (1.35) through the following
theorem:

Theorem 1.7

Assume that Assumptions (C) and (D) hold and let J be defined by (1.34). Then,
there exist (vú, · ú) œ Vad ◊ (0, T ) such that

J (vú, · ú) Æ J (v, ·), for every (v, ·) œ Vad ◊ (0, T ).

To establish the existence of the FreÊhet derivative of the control-to-state operator with
respect to the control, we consider the linearized system at uú associated to the control
vú, for w œ L2(Q).

Y
_______]

_______[

ˆtU ≠ –�U + —U = ≠ k

(kÕ + uú)2 U ≠ “Jw, in Q,

ˆ‹U = 0, on � ◊ (0, T ),

U(0, x) = 0, in �.

(1.36)

Hawraa Alsayed
28

hawraa_alsayyed@hotmail.com

hawraa_alsayyed@hotmail.com


CHAPTER 1. INTRODUCTION

Satisfying the following variational formulation, for › œ H1(�),
⁄

�
ˆtU dx + –

⁄

�
ÒU · Ò› dx + —

⁄

�
U › dx = ≠

⁄

�

k

(kÕ + uú)2 U › dx ≠ “
⁄

�
J(x, t)w › dx.

We prove the existence of a unique solution of (1.36) by proving the following theorem:

Theorem 1.8

Let vú œ Vad. Then the System (1.36) admits a unique solution

U œ L2(0, T ; H2(�)) fl H1(0, T ; L2(�)) fl C([0, T ]; H1(�)).

Moreover, for w œ L2(Q), we set uw := S(vú + w) and uú := S(vú) and U as the solution
of the linearized System (1.36) at vú. Then the remainder fl satisfy

ÎflÎ2
Y Æ c ÎwÎ4

L2(Q) .

The Fréchet derivative of the functional J with respect to time is given by

D· J (vú, · ú) = —�

2

3
Îu(· ú) ≠ u�(· ú)Î2

L2(�) ≠ 1
r

Îu(· ú ≠ r) ≠ u�(· ú ≠ r)Î2
L2(�)

4

+—Q

2 Îu(· ú) ≠ uQ(· ú)Î2
L2(�) .

For uQ œ H1(0, T ; L2(�)), u�, uú œ H1(≠r, T ; L2(�)), we deduce the following first-order
necessary optimality condition with respect to time

D· J (vú, · ú)(s ≠ · ú) Ø 0 ’ s œ [0, T ].

Furthermore, the Fréchet derivative of the cost functional with respect to the control is
given by

DvJ (vú, · ú)w = —Q

⁄ ·ú

0

⁄

�
|uú≠uQ|U dx dt+—�

⁄ ·ú

·ú≠r

⁄

�
|uú≠u�|U dx dt+—v

⁄ T

0

⁄

�
v w dx dt.

To eliminate U from the above equation, we consider the following adjoint system by
means of Lagrangian principle

Y
_______]

_______[

ˆtp + –�p = —p + k p

(kÕ + uú)2 ≠ —Q(uú ≠ uQ) + —�
r

‰[·ú≠r,·ú](t)(uú ≠ u�), in [0, T ] ◊ �,

ˆ‹p = 0, on [0, T ] ◊ �,

p(·ú) = 0, in �.

(1.37)

We have the following theorem by which we prove the existence of a regular multiplier p.
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Theorem 1.9

Let vú be an optimal control, and uú = S(vú) be the corresponding state. Then the
adjoint Problem (1.37) has a unique solution

p œ H1(0, · ú; L2(�)) fl LŒ(0, · ú; H1(�)) fl L2(0, · ú; H2(�)) fl C([0, · ú]; H1(�)).

Finally, we simplified the first-order necessary optimality condition with respect to control
by using the variational formulations of (1.31) and (1.32) to get

(DvJ (vú, · ú))(v ≠ vú) = —v

⁄ T

0

⁄

�
vú(v ≠ vú) dx dt Ø 0.

1.5.3 An Optimal Control Problem Describing Lactate Transport Inhibition

The results presented in Chapter 4 is a paper to appear.

As demonstrated in Subection 1.1.5, targeting MCTs is a good therapeutic approach for
cancer, for this aim, we consider in Chapter 4 the model (1.15)-(1.17) described in details
in Subsection 1.3.2.

Y
_______]

_______[

uÕ(t) = J(t, u(t)) ≠ Ÿ

3
(1 ≠ “w) u(t)

k + u(t) ≠ v(t)
kÕ + v(t)

4
, in (0, T ),

‘vÕ(t) = F (t)(L ≠ v(t)) + Ÿ

3
(1 ≠ “w) u(t)

k + u(t) ≠ v(t)
kÕ + v(t)

4
, in (0, T ),

(u(0), v(0)) = (u0, v0) œ R+ ◊ R+.

(1.38)

Moreover, the cost functional to be minimized is given by

J (v, w, ·) = 1
2

⁄ ·

0
Î(v ≠ vQ)(t)Î2 dt + 1

2r

⁄ ·

·≠r
Î(v ≠ vd)(t)Î2 dt + 1

2

⁄ ·

0
Îw(t)Î2 dt. (1.39)

Where (1.39) corresponds to the conventional functional in optimal theory when r tends
to 0 (see [73]). Similarly as in Chapters 2 and 3, we set · œ [r, T ] to be treatment time of
each cycle, however, T is the final treatment time.

So our main problem is

minimize J associated to (1.38). (1.40)

First, we start with the following assumptions
(E) The constants Ÿ, L > 0, k, kÕ Ø 0, 0 Æ “ Æ 1, and the function F is positive bounded

continuous function; i.e., there exist two positive constants F1 and F2, such that
F1 < F < F2. The function J is Lipschitz with respect to u such that the derivative
of J with respect to u is bounded.

(F) The control w œ Wad := {w œ L2(0, T ;R+) : 0 Æ w Æ 1}.
Recall the following definition:
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Definition 1.1

An ODE system xÕ(t) = f(t, x(t)) on Rn, x = (x1, . . . , xn)€, f = (f1, . . . , fn)€ is
called quasipositive, if the condition

x Ø 0, xk = 0 =∆ fk(t, x(t)) Ø 0,

is verified for all k = 1, . . . , n.

So, starting from nonnegative initial values (u0, v0) œ (R+)2, and since our system (1.38)
is quasipositive, then the solution is nonnegative, moreover, the existence is demonstrated
by Cauchy Lipschitz, thanks to Assumption (F), we have the following theorem:

Theorem 1.10 (Existence and uniqueness of solution)

Assume that Assumptions (E) and (F) hold and that (u0, v0) œ R+ ◊ R+. Then,
System (1.38) admits a unique solution (u, v), satisfying

(u, v) œ (C1([0, T ],R+)2.

Moreover, the control-to-state operator

S : Wad ≠æ C1([0, T ],R+)2

w ‘≠æ (u, v),

is continuous with respect to a suitable topology.

Moreover, the existence of a solution of (1.40) is demonstrated in the proposition below.

Proposition 1.1

Let w œ Wad and · œ [r, T ], and let (u, v) be the solution of System (1.38) corre-
sponding to w. Then there exist wú œ Wad and ·ú œ [r, T ], such that

inf
(w,·)œWad◊[r,T ]

J (v, w, ·) = J (vú, wú, ·ú),

where (uú, vú) is the solution of (1.38) corresponding to wú.

The natural approach consists in proving that the control-to-state operator S is Fréchet
di�erentiable at wú and applying the chain rule to J (v, w) = J (S(v), v). So, let wú œ Wad

be a solution of (1.40), with corresponding state (uú, vú), and let h œ Wad. In order to
establish the existence of the Fréchet derivative of S at wú, we consider the following
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linearized system.
Y
__________]

__________[

U Õ = Ju(t, uú)U ≠ Ÿ

3
≠“h

uú

k + uú + (1 ≠ “wú) k U

(k + uú)2 ≠ kÕ V

(kÕ + vú)2

4
, on [0, T ],

‘V Õ = ≠FV + Ÿ

3
≠“h

uú

k + uú + (1 ≠ “wú) k U

(k + uú)2 ≠ kÕ V

(kÕ + vú)2

4
, on [0, T ],

U(0) = V (0) = 0.

(1.41)

We demonstrate the following theorem:

Theorem 1.11

Let wú œ Wad. Then, System (1.41) admits a unique solution

(U, V ) œ C1([0, T ],R+)2.

Now, to show that the control-to-state operator is Fréchet di�erentiable we take h œ Wad,
set (uh, vh) := S(wú + h) and (uú, vú) := S(wú) and (U, V ) = DwS(wú)h, so that we have
the theorem below.

Theorem 1.12

Let (U, V ) be the solution of the linearized system (1.41) corresponding to wú. Then
the remainders fl and ◊ defined by

fl = uh ≠ uú ≠ U and ◊ = vh ≠ vú ≠ V,

satisfy
Î(fl, ◊)Î2

LŒ(0,T ;R+)flH1(0,T ;R+) Æ c ÎhÎ4
L2(0,T ;R+) .

Concerning the Fréchet di�erentiability of the cost functional with respect to time, we
have the following proposition:

Proposition 1.2

Let vQ œ H1(0, T ;R+) and vd, vú œ H1(≠r, T ;R+). Then the mapping J : Wad ◊
[r, T ] ≠æ R+ is continuously Fréchet di�erentiable with respect to · and

D· J (wú, ·ú) = 1
2 Îv(·ú) ≠ vQ(·ú)Î2 + 1

2

3
Îv(·ú) ≠ vd(·ú)Î2 ≠ 1

r
Îv(·ú ≠ r) ≠ vd(·ú ≠ r)Î2

4
.

In addition, we have that

D· J (wú, ·ú)(s ≠ ·ú) Ø 0 ’ s œ [r, T ].

The following proposition presents the result concerning the Fréchet di�erentiability of
the cost functional with respect to the control.
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Proposition 1.3

Let (wú, ·ú) be a minimizer of J , h œ Wad so that h = w ≠ wú, and let (U, V ) be
a solution of the linearized System (1.41). Then the Fréchet derivative of the cost
functional at (wú, ·ú) with respect to the control w is given by

DwJ (wú, ·ú)h =
⁄ ·ú

0
(v ≠ vQ)V dt + 1

r

⁄ ·ú

·ú≠r
(v ≠ vd)V dt +

⁄ T

0
wú h dt. (1.42)

To eliminate the term V from Equation (1.42), we apply the Lagrangian principle. Using
the Lagrangian function, we can formally eliminate the equality constraints given by
the state System (1.38), for which we define the Lagrangian function with respective
Lagrangian multipliers p and q by

L(u, v, w, p, q) = J (v, w) ≠
⁄ T

0
p

3
uÕ ≠ J(t, u) + Ÿ ((1 ≠ “w) u

k + u
≠ v

kÕ + v

4
dt

≠
⁄ T

0
q

3
‘vÕ ≠ F (L ≠ v) ≠ Ÿ

3
(1 ≠ “w) u

k + u
≠ v

kÕ + v

44
dt.

Proposition 1.4

Let (wú, ·ú) be a solution of Problem (1.40), (uú, vú) be the solution of System (1.38)
associated to wú, and let (p, q) be two multipliers of L. Then the adjoint system is
given by

≠pÕ = Ju(uú, t)p ≠ Ÿ(1 ≠ “w) k

(k + uú)2 p + Ÿ(1 ≠ “w) k

(k + uú)2 q, in [0, T ], (1.43)

≠‘qÕ = (vú ≠ vQ) + 1
r

‰[·ú≠r,·ú](t)(vú ≠ vd) + Ÿ
kÕ

kÕ + vú
(p ≠ q) ≠ Fq, in [0, T ], (1.44)

p(·ú) = q(·ú) = 0. (1.45)

The existence of unique regular multipliers is established through the following theorem:

Theorem 1.13

Let wú be an optimal control, and (uú, vú) = S(wú) be the corresponding states.
Then the adjoint Problem (1.43)-(1.45) has a unique solution

(p, q) œ C1([0, · ú];R+)2.

We end the theoretical part by letting (wú, ·ú) to be a solution of Problem (1.40) with
corresponding state variables (uú, vú) = S(wú), and adjoint variables p and q related to uú
and vú respectively. And taking h := w ≠ wú œ Wad for any w œ Wad, and (U, V ) to be
the linearized state variables associated to h, then we establish the following proposition:
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Proposition 1.5

The optimal control wú satisfies the following simplified first-order necessary opti-
mality condition

DwJ (wú, ·ú)h =
⁄ ·ú

0
wú h dt + Ÿ

⁄ ·ú

0
“h

uú

k + uú
(p ≠ q) dt Ø 0.

To demonstrate the choice of the control, we end this chapter with numerical simulations
which verify in both considered cases; i.e., when J and F are constants and when they are
functions so that F is chosen as a periodic function. We can see in both Figures 4.2b and
4.3d that the extracellular lactate concentration drops with time when we increase the
dose of the inhibitor. However, in Figures 4.2a and 4.3c, we observe that as we increase
the dose of the inhibitor the intracellular lactate concentration increases so leading to
acidosis of the intracellular domain which inhibits tumor progression.
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Optimal control problem of tumor growth model

Chapter 2

“

What distinguishes a mathematical model from, say, a poem, a

song, a portrait or any kind of “model”, is that the mathematical

model is an image or picture of reality painted with logical symbols

instead of with words, sounds or watercolors.

”

John L. Casti

Our aim in this chapter is to study an optimal control problem for a tumor growth
model. The state system couples an Allen-Cahn equation and a reaction di�usion

equation that model the evolution of tumor in the presence of nutrient supply. Elimination
of cancer cells via cytotoxic drug is considered and the concentration of the cytotoxic
drug is represented as a control variable. To achieve the desired tumor density with an
optimal drug dosage, we consider a cost functional that depends on a free time variable
representing the treatment time to be optimized.

2.1 Introduction

2.1.1 Literature

Nowadays, various strategies are being developed in the fight against cancer, including
experimental and theoretical techniques.

From the first decades of the twentieth century to the present day, and in light of the
illustration of experimental results from di�erent areas of cancer research, scientists have
to resort to mathematical modeling. Thus, the power of mathematical modeling is used
by scientists to distinguish between di�erent mechanisms underlying important aspects
of tumor development. Applied mathematics has the potential to reduce experimenta-
tion and provide scientists with information that can help control tumors by developing
mathematical models that describe tumor growth (see [3, 6, 19,29]).

The integration of mathematical investigations and experimental work, have together
modeled our understanding of tumor development and helped to achieve some cancer
treatments, so far, it may also be possible to optimize treatment for each individual,
through collaboration between biologists, clinicians, and the development of mathemati-
cal models of tumor growth (see [9–12,15]).



CHAPTER 2. OPTIMAL CONTROL PROBLEM OF TUMOR GROWTH MODEL

The Allen-Cahn equation (see [13])

ˆu

ˆt
≠ �u + f(u) = 0, in � ◊ (0, T ), (2.1)

is important in materials science, where � represents the volume occupied by the material,
u is an order parameter corresponding, for example, to the ordering of atoms per unit
cell in a crystal lattice, and the function f is the derivative of a double-well potential F
whose wells correspond to the phases of the material is given by

F (s) = 1
4

1
s2 ≠ 1

22
.

Furthermore, this equation is important in modeling tumor growth (see [23]).

The Cahn-Hilliard equation
ˆu

ˆt
= ≠� (�u ≠ f(u)) ,

was first introduced by Cahn and Hilliard (see [14]) to explain the phenomenon of spin-
odal decomposition observed in binary metal alloys.

The phase-field theory is used to derive models for problems with moving interfaces,
specifically, they have been considered in the studies of tumor growth (see [16,37,38,63]).

The complexity of oncology has attracted the interest of mathematicians to guide the ex-
perimental research necessary for therapy development. Mathematical models, especially
those involving phase separation models, have been used to help develop therapeutic
strategies for cancer (see [23]), in particular, the authors in [43] considered the following
Cahn-Hilliard model for tumor growth

Y
___________________]

___________________[

ˆtÏ = �µ + (P‡ ≠ A ≠ –u) h(Ï), in � ◊ (0, T ),

µ = A�Õ(Ï) ≠ B�Ï, in � ◊ (0, T ),

ˆt‡ = �‡ ≠ C‡h(Ï) + — (‡s ≠ ‡) , in � ◊ (0, T ),

ˆ‹Ï = ˆ‹‡ = ˆ‹µ = 0, on � ◊ (0, T ),

Ï(0) = Ï0, ‡(0) = ‡0, in �,

(2.2)

along with the relaxed cost functional

Jr(Ï, u, ·) = —Q

2

⁄ ·

0

⁄

�
|Ï ≠ ÏQ|2dx dt + —�

2
1
r

⁄ ·

·≠r

⁄

�
|Ï ≠ Ï�|2dx dt

+—S

2
1
r

⁄ ·

·≠r

⁄

�
(1 + Ï) dx dt + —u

2

⁄ T

0

⁄

�
|u|2dx dt + —T ·.

The authors have shown the existence of a solution for the problem minJr(Ï, u, ·) as-
sociated to (2.2), in addition, they derived a simplified first-order necessary optimality
condition.
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Many mathematical models involving optimal control for tumor models have been studied.
A distributed optimal control problem for a nonlocal convective Cahn-Hilliard equation
with degenerate mobility and singular potential in three spatial dimensions is studied
in [69]. A distributed optimal control of the Cahn-Hilliard system including the case of
a double homogeneous energy density, where a first-order optimality condition for the
original problem was derived by a boundary value process, was also studied in [53]. A dis-
tributed optimal control problem for a di�use interface model of tumor growth was studied
in [21]. We can also refer the reader to many problems dealing with tumor growth mod-
els [2, 20,22,24,33,34,41–43,55,64] and the references therein.

We are interested in studying tumor growth based on a phase-field model, for this purpose,
we proceed in this work and leverage the mathematical model presented in [43].

2.1.2 Position of our problem

Cancer treatments include surgery, immunotherapy (boosting the immune system), radi-
ation therapy (using radiation to kill cancer cells), and chemotherapy (using drugs to kill
cancer cells). The latter three treatments are used in cycles, where a cycle is a period of
treatment followed by an extended period of rest to allow the patient’s body to produce
new healthy cells. The goal of these treatments is to reduce the size of the tumor until
surgery can be performed. Further treatments may be necessary to eliminate any cancer
cells that remain after surgery.

Cancer drugs are known to cause the death of rapidly dividing normal cells, such as in
bone marrow, hair follicles, which impairs the immune system and is fatal for the patient.
In addition, a high dose of these drugs may cause resistance to treatment, so the short-
est treatment time along with the optimal drug dose must be found. Thus, to optimize
the growth of the tumor, the final distribution of cancer cells, the number of drugs ad-
ministered to the patient, and the treatment time of a cycle, we consider a system that
couples the variation of tumor density with the concentration of nutrient delivery to the
tumor cells in the presence of cytotoxic drug (control). For T > 0, which is the maximum
treatment time, in a bounded domain � µ Rn, n = 1, 2, 3 with C2- boundary �, we have

ˆtÏ ≠ B�Ï + f(Ï) = (P‡ ≠ A ≠ –u)h(Ï), in � ◊ (0, T ) =: Q, (2.3)

ˆt‡ = �‡ ≠ C‡h(Ï) + —(‡s ≠ ‡), in Q, (2.4)

ˆ‹Ï = ˆ‹‡ = 0, on � ◊ (0, T ), (2.5)

Ï(0) = Ï0, ‡(0) = ‡0, in �. (2.6)

Here, Ï = ÏC ≠ ÏD, where ÏC and ÏD are the concentrations of phases C and D,
respectively. The double-well potential F (s) = 4≠1 (s2 ≠ 1)2 of derivative f allows the
coexistence of tumor and healthy cells, so that f(s) = s3 ≠ s. The constant – is positive,
B = ⁄l2 is the di�usion coe�cient of tumor cells, where ⁄ and l denote tumor mobility and
interface width, respectively. ‡ is the concentration of an unspecified chemical species that
serves as a nutrient for tumor cells, while u denotes the concentration of cytotoxic drugs.
The function h(Ï) verifying h(≠1) = 0 and h(1) = 1 is an interpolation function, and
the parameters P , A, C, — denote the constant proliferation rate, apoptosis rate, nutrient
consumption rate and nutrient supply rate, respectively. The term h(Ï)P‡ models the
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proliferation of tumor cells which is proportional to the concentration of nutrient, the
term h(Ï)A models the apoptosis of tumor cells, and Ch(Ï)‡ models the consumption
of nutrient by tumor cells only. The term –uh(Ï) models the elimination of tumor cells
by the cytotoxic drug at a constant rate –. On the other hand, ‡s denotes the nutrient
concentration in a pre-existing vasculature, and —(‡s ≠‡) models the delivery of nutrients
from blood vessels when ‡s > ‡ and the removal of nutrients from the domain � when
‡s < ‡. In this work, the function u will act as our control. For realistic applications,
the control u : [0, T ] ≠æ [0, 1], should be spatially constant, where u = 1 represents full
dosage and u = 0 represents no dosage.

In Equation (2.3), the function h is defined over R, but we are only interested here in the
physical domain, which is [≠1, 1], and since the choice of h is not unique, we can take it,
for example, as in Figure 2.1 illustrating the phase transition.

≠1.5 ≠1 ≠0.5 0.5 1 1.5

0.5

1

1.5

Ï

h(Ï)

≠1.5 ≠1 ≠0.5 0.5 1 1.5

0.5

1

1.5

Ï

h(Ï)

Figure 2.1 – Some examples for the interpolation function h

Remark 2.1

1. When the right hand side of (2.3) vanishes, we obtain the Allen-Cahn Equation
(2.1).

2. Note that, in [43], the authors considered a Cahn-Hilliard equation coupled
with a di�usion equation for tumor growth. However, in our work, we consider
coupled Allen-Cahn and di�usion equations which can also be applied to tumor
growth. Compared to the Cahn-Hilliard model studied in [43], this allows to
simplify the mathematical analysis, while still keeping important aspects of
phase separation. The numerical analysis of the model and simulations will be
addressed in future works.

Now, we consider the objective functional Jr as in [43]. For positive constants r, —u, —T ,
and nonnegative constants —Q, —�, —S

Jr(Ï, u, ·) =—Q

2

⁄ ·

0

⁄

�
|Ï ≠ ÏQ|2dx dt + —�

2
1
r

⁄ ·

·≠r

⁄

�
|Ï ≠ Ï�|2dx dt

+ —S

2
1
r

⁄ ·

·≠r

⁄

�
1 + Ï(x)dx dt + —u

2

⁄ T

0

⁄

�
|u|2dx dt + —T ·.

(2.7)

Here, · œ [r, T ] represents treatment time, ÏQ represents a desired evolution for the
tumor cells while Ï� represents a desired final distribution. The first two terms of Jr

are of standard tracking type often considered in the parabolic optimal control literature
(see [73]) and the third term of Jr measures the size of the tumor at the end of treatment.
The fourth term penalizes high concentrations of the cytotoxic drug, and the fifth term
of Jr penalizes long treatment times (see [43]).
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In this chapter, we study the optimal control problem

minimize Jr(Ï, u, ·) subject to (2.3) ≠ (2.6), u œ Uad, · œ [r, T ],

where the space of admissible controls Uad is defined by:

Uad := {u œ LŒ(Q) : 0 Æ u Æ 1, a.e. in Q}.

Assumptions

(A) The initial conditions satisfy, Ï0, ‡0 œ H1(�), with 0 Æ ‡0 Æ 1 a.e. x œ �. The target
functions Ï�, ÏQ œ L2(Q), and the vasculature nutrient concentration ‡s satisfies
0 Æ ‡s Æ 1, a.e. in Q.

(B) The interpolation function h : R æ [0, 1] is continuously di�erentiable and Lipschitz
with Lipschitz constant M . In addition, the parameters P , A, C, — are non negative
constants, and – is a positive constant.

Throughout this work, the same letter c (and, sometimes, cÕ, cÕÕ, c1, c2, cp,q) denotes a
constant that may vary in the same line.

We denote by È„Í the spatial average of a function „ in L1(�),

È„Í = 1
Vol(�)

⁄

�
„ dx.

2.2 Existence of solution

In this section, we study the existence of a unique weak solution of System (2.3)-(2.6).
More precisely, we will prove the following theorem:

Theorem 2.1 (Existence and uniqueness of weak solution)

Assume that Assumptions (A) and (B) hold. Then, Problem (2.3)-(2.6) admits a
unique weak solution (Ï, ‡) such that 0 Æ ‡ Æ 1 and

(Ï, ‡) œ Y :=
1
L2(0, T ; H2(�)) fl LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�))

22
.

Moreover, the control-to-state operator

S : L2(Q) ≠æ Y

u ‘≠æ (Ï, ‡)

is continuous for the corresponding topology.

Proof. We employ the Faedo-Galerkin method (see [26]) to show the existence of solution
of the parabolic System (2.3)-(2.6).

Existence of weak solution of (2.3)-(2.6).
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The variational problems associated with (2.4) and (2.3), are given by:
⁄

�
(ˆt‡)›dx +

⁄

�
Ò‡ · Ò›dx + —

⁄

�
‡›dx = ≠C

⁄

�
h(Ï)‡›dx + —

⁄

�
‡s›dx (2.8)

and
⁄

�
(ˆtÏ)›dx+B

⁄

�
ÒÏ ·Ò›dx+

⁄

�
f(Ï)›dx =

⁄

�
(P‡h(Ï) ≠ Ah(Ï) ≠ –uh(Ï)) ›dx, (2.9)

for almost every t œ (0, T ) and for all › œ H1(�).

A priori Estimates:

Estimate 1. Formally putting › = 2‡ in (2.8) and using Assumption (B), we get

d

dt
Î‡Î2

L2(�) + 2 ÎÒ‡Î2
L2(�) + 2— Î‡Î2

L2(�) Æ C Îh(Ï)ÎLŒ Î‡Î2
L2(�) + —2 Î‡sÎ2

L2(�) + Î‡Î2
L2(�) .

Setting c0 = min(2, 2—) and integrating over [0, t], we find

Î‡(t)Î2
L2(�) + c0

1
ÎÒ‡Î2

L2(0,t;L2(�)) + Î‡Î2
L2(0,t;L2(�))

2
Æ c Î‡Î2

L2(�) + —2 Î‡sÎ2
L2(0,t;L2(�)) + Î‡0Î2

L2(�) .

Using Gronwall’s lemma, we have

Î‡(t)Î2
L2(�) + c0 Î‡Î2

L2(0,t;H1(�)) Æ
1
—2 Î‡sÎ2

L2(0,t;L2(�)) + Î‡0Î2
L2(�)

2
ect. (2.10)

Putting › = 2Ï in (2.9), we find

d

dt
ÎÏÎ2

L2(�) + 2B ÎÒÏÎ2
L2(�) Æ Îh(Ï)ÎŒ

1
P2 Î‡Î2

L2(�) + –2 ÎuÎ2
L2(�) + ÎÏÎ2

L2(�)

2

+A2 Îh(Ï)Î2
L2(�) + ÎÏÎ2

L2(�) .

From (2.10), we know that

Î‡Î2
L2(0,t;L2(�)) =

⁄ t

0
Î‡(s)Î2

L2(�) ds Æ cÕ

c
(ect ≠ 1).

Now, integrating over [0, t] and since h is C1, u œ Uad, we have

ÎÏ(t)Î2
L2(�) + 2B ÎÒÏÎ2

L2(0,t;L2(�)) Æ A2 Îh(Ï)Î2
L2(0,t;L2(�)) + ÎÏ0Î2

L2(�)

+ Îh(Ï)ÎŒ

1
P2 Î‡Î2

L2(0,t;L2(�)) + –2 ÎuÎ2
L2(0,t;L2(�))

2
+ ÎÏÎ2

L2(0,t;L2(�)) (1 + Îh(Ï)ÎŒ) .

Thanks to Gronwall’s inequality, we infer

ÎÏ(t)Î2
L2(�) + 2B ÎÒÏÎ2

L2(0,t;L2(�)) Æ c + cect.

Estimate 2. Putting › = 2ˆt‡ in (2.8), using Young’s inequality, and Assumption (B), we
find

2 Îˆt‡Î2
L2(�) + d

dt
ÎÒ‡Î2

L2(�) + —
d

dt
Î‡Î2

L2(�) Æ C Îh(Ï)ÎŒ
d

dt
Î‡Î2

L2(�) + —2 Î‡sÎ2
L2(�) + Îˆt‡Î2

L2(�) .
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Setting c1 = min(1, —), integrating over [0, t] and using (2.10), we find

Îˆt‡Î2
L2(0,t;L2(�)) + c1 Î‡Î2

L2(0,t;H1(�)) Æ c0 Î‡0Î2
H1(�) + —2 Î‡sÎ2

L2(0,t;L2(�)) + ect.

Putting › = 2ˆtÏ in (2.9), we obtain

2 ÎˆtÏÎ2
L2(�) + B

d

dt
ÎÒÏÎ2

L2(�) Æ Îh(Ï)ÎŒ

1
P2 Î‡Î2

L2(�) + –2 ÎuÎ2
L2(�) + ÎˆtÏÎ2

L2(�)

2

+A2 Îh(Ï)Î2
L2(�) + d

dt
ÎÏÎ2

L2(�) .

(2.11)

Equivalently

ÎˆtÏÎ2
L2(�) + B

d

dt
ÎÒÏÎ2

L2(�) Æ Îh(Ï)ÎŒ

1
P2 Î‡Î2

L2(�) + –2 ÎuÎ2
L2(�)

2
+ A2 Îh(Ï)Î2

L2(�) + d

dt
ÎÏÎ2

L2(�) .

Multiplying Equation (2.3) by 1
Vol(�) and integrating over � yield

d

dt
ÈÏÍ = ≠Èf(Ï)Í + È(P‡ ≠ A ≠ –u) h(Ï)Í.

We already know that

d

dt
ÈÏÍ2 = 2ÈÏÍ d

dt
ÈÏÍ Æ ÈÏÍ2 +

A
d

dt
ÈÏÍ

B2

Æ ÈÏÍ2 + Èf(Ï)Í2 + È(P‡ ≠ A ≠ –u) h(Ï)Í2.

Using the facts that
ÈÏÍ2 Æ ÎÏÎ2

L2(�)

and
Èf(Ï)Í2 Æ ÎÏÎ2

H1(�) ,

we write

d

dt
ÈÏÍ2 Æ ÎÏÎ2

L2(�) + ÎÏÎ2
H1(�) +

Îh(Ï)Î2
L2(�)

Vol(�)2

1
P2 Î‡Î2

L2(�) + A2Vol(�)2 + –2 ÎuÎ2
L2(�)

2
.

Setting cÕ = min(B, 1) in (2.11), we have

2 ÎˆtÏÎ2
L2(�) + cÕ d

dt

1
ÎÒÏÎ2

L2(�) + ÈÏÍ2
2

Æ P2 Î‡Î2
L2(�) + –2 ÎuÎ2

L2(�) + d

dt
ÎÏÎ2

L2(�)

+ ÎÏÎ2
L2(�) + ÎÏÎ2

H1(�) +
Îh(Ï)Î2

L2(�)

Vol(�)2

1
P2 Î‡Î2

L2(�) + A2Vol(�)2 + –2 ÎuÎ2
L2(�)

2

Æ c Î‡Î2
L2(�) + c ÎuÎ2

L2(�) + A2 Îh(Ï)Î2
L2(�) + ÎÏÎ2

L2(�) + ÎÏÎ2
H1(�) + d

dt
ÎÏÎ2

L2(�) .

Finally, integrate over [0, t], and since Ï is bounded in L2(0, t; L2(�)) fl LŒ(0, t; L2(�))
and ‡ is bounded in L2(0, t; L2(�)) in addition to Assumption (B), we find

2 ÎˆtÏÎ2
L2(�) + cÕ ÎÏ(t)Î2

H1(�) Æ ect.

The last inequality yields that Ï œ LŒ(0, t; H1(�)) and ˆtÏ œ L2(0, t; L2(�)).
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Estimate 3. Equations (2.3) and (2.4) can be written in the following forms:
Y
___]

___[

≠�‡ = ≠ˆt‡ ≠ C‡h(Ï) + — (‡s ≠ ‡) , in Q,

≠B�Ï = ˆtÏ + Ï ≠ Ï3 + (P‡ ≠ A ≠ –u) h(Ï), in Q.

Since the right hand sides are in L2(�) for a.e. t œ (0, T ) and ˆ‹‡ = ˆ‹Ï = 0 on �, then
the elliptic regularity (see [61]) yields, (‡, Ï) œ H2(�)2 for a.e. t œ (0, T ), and there exists
K > 0 such that

Î‡Î2
H2(�) Æ K

1
Îˆt‡Î2

L2(�) + Î‡Î2
L2(�) + Î‡sÎ2

L2(�)

2

and

ÎÏÎ2
H2(�) Æ K

1
ÎˆtÏÎ2

L2(�) + Î‡Î2
L2(�) + Îh(Ï)Î2

L2(�) + ÎuÎ2
L2(�) + Îf(Ï)Î2

L2(�)

2
.

It follows, from Estimates 1 and 2, that (‡, Ï) œ L2(0, T ; H2(�))2. In particular, since
(ˆt‡, ˆtÏ) œ L2(0, T ; L2(�))2, then, using interpolation result, we deduce that (‡, Ï) œ
C0([0, T ]; H1(�))2 (see [36]). Therefore, we get

(‡, Ï) œ
1
L2(0, T ; H2(�)) fl H1(0, T ; L2(�)) fl C0([0, T ]; H1(�))

22
.

We will use Faedo-Galerkin method (see [26]) to show the existence of weak solution of
the parabolic System (2.3)-(2.6). First, the variational formulations associated with (2.3)
and (2.4) are given by
⁄

�
ˆtÏ ›dx+B

⁄

�
ÒÏ·Ò›dx+

⁄

�
f(Ï)›dx = P

⁄

�
‡h(Ï)›dx≠A

⁄

�
h(Ï)›dx≠–

⁄

�
uh(Ï)›dx

and ⁄

�
ˆt‡›dx +

⁄

�
Ò‡ · Ò›dx = ≠

⁄

�
(Ch(Ï) + —) ‡›dx + —

⁄

�
‡s›dx (2.12)

for almost every t œ (0, T ) and for all › œ H1(�).

The variational approximate problem.

Let Êj be an eigenfunction of the following problem
Y
__]

__[

≠�Êj = ⁄2
jÊj, in �,

ˆ‹Êj = 0, on �,

such that
ÎÊjÎ2

L2(�) =
⁄

�
|Êj|2dx = 1.

The operator LN := ≠� with Neumann boundary condition is self adjoint with compact
resolvent from L2

0(�) = {u œ L2(�) : ÈuÍ = 0} into itself, then its eigenfunctions {Êj}Œ
j=1

corresponding to the eigenvalues {⁄j}Œ
j=1 form an orthonormal basis in L2(�) and an

orthogonal basis in

D(L1/2
N ) = H1

N(�) = {Ï œ H1(�) : ÈÏÍ = 0 and ˆ‹Ï = 0 on �}.
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Consider the finite dimensional eigenspaces Vn := span {Êj, j = 1, . . . , n} and the pro-
jection Pn, then Vn µ Vn+1 and t

n
Vn = H1

N(�) (see [26]). Set Ïn
0 = PnÏ0, ‡n

0 = Pn‡0,
‡n

s = Pn‡s and un = Pnu, such that un æ u strongly in L2(0, T ; L2(�)), ‡n
s æ ‡s in

L2(0, T ; L2(�)), ‡n
0 æ ‡0 in L2(�) and Ïn

0 æ Ï0 in L2(�).

The approximated variational problem is given by

⁄

�
ˆtÏn Êjdx + B

⁄

�
ÒÏn · ÒÊjdx +

⁄

�
f(Ïn)Êjdx

= P
⁄

�
‡nh(Ïn)Êjdx ≠ A

⁄

�
h(Ïn)Êjdx ≠ –

⁄

�
unh(Ïn)Êjdx

(2.13)

and
⁄

�
ˆt‡nÊjdx +

⁄

�
Ò‡n · ÒÊjdx = ≠

⁄

�
(Ch(Ïn) + —) ‡nÊjdx + —

⁄

�
‡n

s Êjdx, (2.14)

where Ïn =
nÿ

i=1
an,i(t)Êi, ‡ =

nÿ

i=1
bn,i(t)Êi œ Vn, an,i = (Ïn, Êi) and bn,i = (‡n, Êi) ’ i =

1, . . . , n. We also have ÎPÏ0ÎH1(�) Æ ÎÏ0ÎH1(�) according to Bessel’s inequality. Equa-
tions (2.13) and (2.14) are equivalent to find an(t) and bn(t) satisfying

d

dt

nÿ

i=1
an,i

⁄

�
ÊiÊjdx + B

nÿ

i=1
an,i

⁄

�
ÒÊi · ÒÊjdx +

nÿ

i=1
an,i

⁄

�

A
nÿ

i=1
an,iÊi ≠ 1

B2

ÊiÊjdx

= P
nÿ

i=1
bn,i

⁄

�
h(

nÿ

i=1
an,iÊi)ÊiÊjdx ≠ A

⁄

�
h(

nÿ

i=1
an,iÊi)Êjdx

≠–

⁄

�
unh(

nÿ

i=1
an,iÊi)Êjdx +

nÿ

i=1
an,i

⁄

�
ÊiÊjdx

(2.15)

and

d

dt

nÿ

i=1
bn,i

⁄

�
ÊiÊjdx +

nÿ

i=1
bn,i

⁄

�
ÒÊi · ÒÊjdx

= ≠
nÿ

i=1
bn,i

⁄

�

A

Ch(
nÿ

i=1
an,iÊi) + —

B

ÊiÊjdx + —
⁄

�
‡n

s Êjdx, Êj, Êi œ Vn.

(2.16)

(2.15) and (2.16) can be written in vector form as follows

dan(t)
dt

In = ≠Ban(t)Wn + Pbn(t)Mn ≠ AHn ≠ –Un + an(t)fIn

and
dbn(t)

dt
In = ≠bn(t)Wn ≠ bn(t)Jn + —Sn,
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where
Y
_________________]

_________________[

(In)i,j =
⁄

�
ÊiÊjdx, (Wn)i,j =

⁄

�
ÒÊi · ÒÊjdx,

(Mn)i,j =
⁄

�
h

A
nÿ

i=1
an,iÊi

B

ÊiÊjdx, (Hn)j =
⁄

�
h

A
nÿ

i=1
an,iÊi

B

Êjdx,

(Jn)i,j =
⁄

�

A

Ch(
nÿ

i=1
an,iÊi) + —

B

ÊiÊjdx, (Sn)j =
⁄

�
‡n

s Êjdx,

(Un)j =
⁄

�
unh

A
nÿ

i=1
an,iÊi

B

Êjdx.

Recall that 0 Æ ‡n Æ 1 and 0 Æ un Æ 1, a.e. in Q and h is continuously di�erentiable
with values between 0 and 1, so we have a system of ODEs in the following form

Y
___]

___[

aÕ
n(t) = f(t, an(t), bn(t))

bÕ
n(t) = g(t, an(t), bn(t)).

It is obvious that F = (f, g) is locally Lipschitz with respect to the second variable, and
the system of ODEs has a unique local solution (an, bn) œ [0, T ú]2 for all T ú œ [0, T ].
Multiplying Equation (2.16) by bn,j and summing over j from 1 to n, we find

Î‡n(t)Î2
L2(�) + c Î‡nÎ2

L2(0,t;H1(�)) Æ
1
—2 Î‡n

s Î2
L2(0,t;L2(�)) + Î‡n(0)Î2

L2(�)

2
et. (2.17)

We find that ‡n is bounded in LŒ(0, T ; L2(�)) fl L2(0, T ; H1(�)). Similarly, multiply
Equation (2.15) by an,j and sum over j from 1 to n, we get

ÎÏn(t)Î2
L2(�) + ÎÒÏÎ2

L2(0,t;L2(�)) Æ ÎÏn(0)Î2
L2(�) + P2 Î‡nÎ2

L2(0,t;L2(�))

+A2 Îh(Ïn)Î2
L2(0,t;L2(�)) + –2 ÎunÎ2

L2(0,t;L2(�)) + cÕ ÎÏnÎ2
L2(0,t;L2(�)) Æ cecÕt.

(2.18)

It follows, that Ïn is bounded in LŒ(0, t; L2(�)) fl L2(0, t; H1(�)). Therefore the solution
(an(t), bn(t)) is global in [0, T ]. Multiply Equation (2.16) by dbn,j(t)

dt
and sum over j from

1 to n, we get

Îˆt‡nÎ2
L2(0,t;L2(�)) + ÎÒ‡n(t)Î2

L2(�) Æ (C + —) Î‡nÎ2
L2(0,t;L2(�)) + —2 Î‡n

s Î2
L2(0,t;L2(�)) .

We deduce that ˆt‡n is bounded in L2(0, T ; L2(�)). It follows from (2.17) that there exists
a relabeled subsequence {‡n}n such that ‡n Ô ‡ weakly in L2(0, T ; H1(�)). Multiply
Equation (2.15) by dan,j(t)

dt
and sum over j from 1 to n, we have

ÎˆtÏnÎ2
L2(0,t;L2(�)) + 2B ÎÒÏn(t)Î2

L2(�) Æ P2 Î‡nÎ2
L2(0,t;L2(�))

+ ÎÒÏn(0)Î2
L2(�) + A2 Îh(Ïn)Î2

L2(0,t;L2(�)) + –2 ÎunÎ2
L2(0,t;L2(�)) .
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Consequently, ˆtÏn is bounded in L2(0, T ; L2(�)), so there exists a relabeled subsequenceI
dÏn

dt

J

, such that dÏn

dt
Ô y weakly in L2(0, T ; L2(�)). It also follows from (2.18) that

there exists a relabeled subsequence {Ïn}n such that Ïn Ô Ï weakly in L2(0, T ; H1(�)).

Passing to the limit.

Assume that Â œ CŒ
c (0, T ; H1(�)), we have

⁄ T

0

⁄

�

dÏn

dt
Â(t)dx dt = ≠

⁄ T

0

⁄

�
Ïn(t)ÂÕ(t)dx dt

as n æ Œ, ≠
⁄ T

0

⁄

�
Ï(t)ÂÕ(t)dx dt =

⁄ T

0

⁄

�

dÏ

dt
Â(t)dx dt.

So, we deduce that y = dÏ

dt
. On the other hand

⁄ T

0

⁄

�
ÒÏn · Âdx dt = ≠

⁄ T

0

⁄

�
ÏnÒÂdx dt

as n æ Œ, ≠
⁄ T

0

⁄

�
ÏÒÂdx dt =

⁄ T

0

⁄

�
ÒÏ · Âdx dt.

Furthermore, we have that Ïn is bounded in L2(0, T ; H1(�)) compactly embedded in
L2(0, T ; L2(�)), then

Ïn ≠æ Ï strongly in L2(0, T ; L2(�)),

and as h is Lipschitz, we infer

h(Ïn) ≠æ h(Ï) strongly in L2(0, T ; L2(�))

and
f(Ïn) ≠æ f(Ï) strongly in L2(0, T ; L2(�)).

Therefore, (2.13) converges weakly to
⁄ T

0

⁄

�

dÏ

dt
Â(t)dx dt + B

⁄ T

0

⁄

�
ÒÏ · ÒÂdx dt +

⁄ T

0

⁄

�
f(Ï)Âdx dt

=
⁄ T

0

⁄

�
(P‡ ≠ A ≠ –u)h(Ï)Âdx dt.

Since Ï œ L2(0, T ; H1(�)) fl H1(0, T ; L2(�)), then Ï œ C([0, T ]; L2(�)). Now choose a
function Â œ C1([0, T ]; H1(�)) with Â(T ) = 0 in the above equation, we get

⁄ T

0

⁄

�
ÏÕÂdx dt + B

⁄ T

0

⁄

�
ÒÏ · ÒÂdx dt +

⁄ T

0

⁄

�
f(Ï)Âdx dt

=
⁄ T

0

⁄

�
(P‡ ≠ A ≠ –u)h(Ï)Âdx dt.

Thus, we have

≠
⁄ T

0

⁄

�
ÏÂÕdx dt + B

⁄ T

0

⁄

�
ÒÏ · ÒÂdx dt +

⁄ T

0

⁄

�
f(Ï)Âdx dt

=
⁄ T

0

⁄

�
(P‡ ≠ A ≠ –u)h(Ï)Âdx dt +

⁄

�
Ï(0)Â(0)dx.

(2.19)
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Similarly, we have in (2.13) that

≠
⁄ T

0

⁄

�
ÏnÂÕdx dt + B

⁄ T

0

⁄

�
ÒÏn · ÒÂdx dt +

⁄ T

0

⁄

�
f(Ïn)Âdx dt

=
⁄ T

0

⁄

�
(P‡n ≠ A ≠ –un)h(Ïn)Âdx dt +

⁄

�
Ïn(0)Â(0)dx,

so that by passing to the limit in this equation, we obtain

≠
⁄ T

0

⁄

�
ÏÂÕdx dt + B

⁄ T

0

⁄

�
ÒÏ · ÒÂdx dt +

⁄ T

0

⁄

�
f(Ï)Âdx dt

=
⁄ T

0

⁄

�
(P‡ ≠ A ≠ –u)h(Ï)Âdx dt +

⁄

�
Ï0Â(0)dx.

Note that after subtracting (2.19) and the above equation, we obtain
s

�(Ï(0)≠Ï0)Â(0)dx =
0. Then, we deduce that Ï(0) = Ï0 a.e. in L2(�). Similarly (2.14) converges weakly to

⁄ T

0

⁄

�
‡ÕÂdx dt +

⁄ T

0

⁄

�
Ò‡ · ÒÂdx dt = P

⁄ T

0

⁄

�
‡h(Ï)Âdx dt

≠A
⁄ T

0

⁄

�
h(Ï)Âdx dt ≠ –

⁄ T

0

⁄

�
uh(Ï)Âdx dt.

Which is equivalent to

≠
⁄ T

0

⁄

�
‡ÂÕdx dt +

⁄ T

0

⁄

�
Ò‡ · ÒÂdx dt = P

⁄ T

0

⁄

�
‡h(Ï)Âdx dt

≠A
⁄ T

0

⁄

�
h(Ï)Âdx dt ≠ –

⁄ T

0

⁄

�
uh(Ï)Âdx dt +

⁄

�
‡(0)Â(0)dx.

(2.20)

Back to (2.14), we have

≠
⁄ T

0

⁄

�
‡nÂÕdx dt +

⁄ T

0

⁄

�
Ò‡n · ÒÂdx dt = P

⁄ T

0

⁄

�
‡nh(Ïn)Âdx dt

≠A
⁄ T

0

⁄

�
h(Ïn)Âdx dt ≠ –

⁄ T

0

⁄

�
unh(Ïn)Âdx dt +

⁄

�
‡n(0)Â(0)dx.

Finally, by passing to the limit in this equation, we obtain

≠
⁄ T

0

⁄

�
‡ÂÕdx dt +

⁄ T

0

⁄

�
Ò‡ · ÒÂdx dt = P

⁄ T

0

⁄

�
‡h(Ï)Âdx dt

≠A
⁄ T

0

⁄

�
h(Ï)Âdx dt ≠ –

⁄ T

0

⁄

�
uh(Ï)Âdx dt +

⁄

�
‡0Â(0)dx.

Hence, by subtracting (2.20) and the above equation, we find that ‡(0) = ‡0 a.e. in
L2(�).

Boundedness property of ‡.

Recall that, 0 Æ ‡0 Æ 1. Let ‡≠ = min(0, ≠‡) and substitute › in Equation (2.12) by
≠‡≠ œ H1(�), we obtain

1
2

d

dt

...‡≠
...

2

L2(�)
= ≠

...Ò‡≠
...

2

L2(�)
≠ C

⁄

�
h(Ï)|‡≠|2dx ≠ —

⁄

�
‡s‡

≠dx ≠ —
⁄

�
|‡≠|2dx Æ 0.
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It follows from the positivity property of C, h, ‡s and —, that

sup
tœ(0,T ]

...‡≠(t)
...

2

L2(�)
Æ

...‡≠
0

...
2

L2(�)
.

On the other hand, since ‡0 Ø 0 a.e. in �, then, we get ‡≠(0) = 0 a.e. in � which leads
to ‡≠ = 0 a.e. in Q. Hence ‡ Ø 0 a.e. in Q.

Similarly, let (‡ ≠ 1)+ = max(0, ‡ ≠ 1), and substitute › in (2.12) by (‡ ≠ 1)+, we obtain

1
2

d

dt

...(‡ ≠ 1)+
...

2
+

...Ò(‡ ≠ 1)+
...

2

L2(�)
+

⁄

�
(Ch(Ï) + —)

---(‡ ≠ 1)+
---
2

dx

+C
⁄

�
h(Ï)(‡ ≠ 1)+dx + —

⁄

�
(1 ≠ ‡s)(‡ ≠ 1)+dx = 0.

It follows that
sup

tœ(0,T ]

...(‡ ≠ 1)+(t)
...

2
Æ

...(‡ ≠ 1)+(0)
...

2

L2(�)
.

However, ‡0 Æ 1 a.e. in �, so that ‡0 ≠ 1 Æ 0 a.e. in �, and (‡0 ≠ 1)+ = 0 a.e. in �.

We infer that (‡ ≠ 1)+ = 0 a.e. in Q, and ‡ Æ 1 a.e. in Q.

Continuous dependence on the control.

This section is devoted to study the continuous dependence of the control-to-state operator
on the control u, for this purpose, let u1, u2 œ Uad be given, along with the corresponding
solutions (Ï1, ‡1) and (Ï2, ‡2) of (2.3)-(2.6) with same initial data Ï0 and ‡0. Let u =
u1 ≠ u2, Ï = Ï1 ≠ Ï2, and ‡ = ‡1 ≠ ‡2 satisfying for all › œ H1(�)

⁄

�
ˆt‡›dx +

⁄

�
Ò‡ · Ò›dx = ≠

⁄

�
(Ch(Ï1) + —) ‡›dx ≠ C

⁄

�
‡2 (h(Ï1) ≠ h(Ï2)) ›dx

and
⁄

�
ˆtÏ›dx + B

⁄

�
ÒÏ · Ò›dx +

⁄

�
(f(Ï1) ≠ f(Ï2)) ›dx = P

⁄

�
h(Ï1)‡›dx

+
⁄

�
(P‡2 ≠ A ≠ –u1) (h(Ï1) ≠ h(Ï2)) ›dx ≠ –

⁄

�
h(Ï2)u›dx.

(2.21)

Some calculations yield

d

dt
ÎÏÎ2

L2(�) + 2B ÎÒÏÎ2
L2(�) Æ P2 Î‡Î2

L2(�) + c ÎÏÎ2
L2(�) + –2 ÎuÎ2

L2(�)

and
d

dt
Î‡Î2

L2(�) + 2 Î‡Î2
L2(�) Æ C2M2 ÎÏÎ2

L2(�) + Î‡Î2
L2(�) .

Combining the last inequalities, we have

d

dt

1
ÎÏÎ2

L2(�) + Î‡Î2
L2(�)

2
+ 2B ÎÒÏÎ2

L2(�) + 2 ÎÒ‡Î2
L2(�) Æ

(1 + P2) Î‡Î2
L2(�) + c ÎÏÎ2

L2(�) + –2 ÎuÎ2
L2(�) .
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Putting cÕ = max(1 + P2; c), integrating over [0, t] and thanks to Gronwall’s inequality,
we find

Î‡(t)Î2
L2(�) +ÎÏ(t)Î2

L2(�) +2 ÎÒ‡Î2
L2(0,t;L2(�)) +2B ÎÒÏÎ2

L2(0,t;L2(�)) Æ –2 ÎuÎ2
L2(0,t;L2(�)) ecÕt.

We can write

Î‡Î2
L2(0,t;L2(�)) + ÎÏÎ2

L2(0,t;L2(�)) =
⁄ t

0
Î‡(s)Î2

L2(�) ds +
⁄ t

0
ÎÏ(s)Î2

L2(�) ds

Æ –2

cÕ ÎuÎ2
L2(0,t;L2(�))

1
ecÕt ≠ 1

2
.

Moreover, putting › = ˆt„ in (2.21), and › = ˆt‡, we find

ÎˆtÏÎ2
L2(�) + B

d

dt
ÎÒÏÎ2

L2(�) Æ d

dt
ÎÏÎ2

L2(�) + P2 Î‡Î2
L2(�) + –2 ÎuÎ2

L2(�) + cM2 ÎÏÎ2
L2(�) (2.22)

and
Îˆt‡Î2

L2(�) + d

dt
ÎÒ‡Î2

L2(�) Æ c Î‡Î2
L2(�) + cÕ ÎÏÎ2

L2(�) . (2.23)

Putting › = 1 in (2.21) yields
d

dt
ÈÏÍ = Èf(Ï1) ≠ f(Ï2)Í ≠ ÈPh(Ï1)‡Í + È(P‡2 ≠ A ≠ –u1) (h(Ï1) ≠ h(Ï2))Í ≠ È–h(Ï2)uÍ.

Using Assumption (B), in addition to the following inequality

Îf(Ï1) ≠ f(Ï2)Î2
L2(�) Æ Îf Õ(c)ÏÎ2

L2(�) ,

it follows that
A

d

dt
ÈÏÍ

B2

Æ Îf Õ(c)ÏÎ2
L2(�) + P2 Îh(Ï1)Î2

LŒ(�) Î‡Î2
L2(�)

+M2 ÎP‡2 ≠ A ≠ –u1Î2
LŒ(�) ÎÏÎ2

L2(�) + –2 Îh(Ï2)Î2
LŒ(�) ÎuÎ2

L2(�) .

Now, we can write
A

d

dt
ÈÏÍ

B2

+ ÈÏÍ2 Æ c ÎÏÎ2
L2(�) + P2 Î‡Î2

L2(�) + –2 ÎuÎ2
L2(�) .

Adding the last inequality with (2.22), we find

ÎˆtÏÎ2
L2(�) + c

d

dt
ÎÏÎ2

H1(�) Æ d

dt
ÎÏÎ2

L2(�) + 2P2 Î‡Î2
L2(�) + 2–2 ÎuÎ2

L2(�) + c ÎÏÎ2
L2(�) .

Combining (2.23) and the above equation, and integrating over [0, t], we have

ÎˆtÏÎ2
L2(0,t;L2(�)) + Îˆt‡Î2

L2(0,t;L2(�)) + c ÎÏ(t)Î2
H1(�) + ÎÒ‡(t)Î2

L2(�) Æ –2 ÎuÎ2
L2(0,t;L2(�))

1
cecÕt + cÕÕ

2
.

In addition, we know that

ÎÏÎ2
L2(0,s;H2(�))

Æ k
1
ÎˆtÏÎ2

L2(0,s;L2(�)) + –2 ÎuÎ2
L2(0,s;L2(�)) + ÎÏÎ2

L2(0,s;L2(�)) + ÎÏÎ2
L2(0,s;H1(�))

2

Hawraa Alsayed
48

hawraa_alsayyed@hotmail.com

hawraa_alsayyed@hotmail.com


CHAPTER 2. OPTIMAL CONTROL PROBLEM OF TUMOR GROWTH MODEL

and
Î‡Î2

L2(0,s;H2(�)) Æ k
1
Îˆt‡Î2

L2(0,s;L2(�)) + Î‡Î2
L2(0,s;L2(�))

2
.

Finally, we have

ÎÏÎ2
L2(0,s;H2(�)) + Î‡Î2

L2(0,s;H2(�)) Æ c ÎuÎ2
L2(0,s;L2(�)) .

2

2.3 Existence of a minimizer

Theorem 2.2

Assume that Assumptions (A) and (B) hold and let Jr be defined by (2.7). Then
there exist (uú, · ú) œ Uad ◊ [r, T ] such that

Jr(uú, · ú) Æ Jr(u, ·), for every (u, ·) œ Uad ◊ [r, T ].

Proof. The cost functional Jr is bounded from below, and therefore it has a finite infi-
mum. Consider a minimizing sequence {(un, ·n)}nœN with un œ Uad and ·n œ [r, T ] and
the corresponding weak solutions (Ïn, ‡n)nœN on the interval [0, T ] with Ïn(0) = Ï0 and
‡n(0) = ‡0, n œ N, such that

lim
næŒ

Jr(Ïn, ·n, un) = inf
(„,w,s)

Jr(„, w, s).

We have, un œ Uad, then 0 Æ un Æ 1, a.e in Q, for all n œ N. Since {·n}n is a bounded
sequence, then there exists a relabeled subsequence ·n satisfying

lim
næŒ

·n = ·ú œ [r, T ].

We also have
Y
________]

________[

un æ uú weakly in L2(0, T ; L2(�)),

Ïn æ Ïú strongly in C([0, T ]; L2(�)) fl L2(0, T ; L2(�)),

‡n æ ‡ú strongly in C([0, T ]; L2(�)) fl L2(0, T ; L2(�)),

where the couple (Ïú, ‡ú) satisfy (2.3)-(2.6), with 0 Æ uú, ‡ú Æ 1, a.e. in Q.

Applying Lebesgue dominated convergence theorem, we obtain
Y
___]

___[

‰[0,·n](t) æ ‰[0,·ú](t) strongly in Lp(0, T ) p œ [1, Œ)

‰[·n≠r,·n](t) æ ‰[·ú≠r,·ú](t) strongly in Lp(0, T ) p œ [1, Œ).

Passing to the limit, we get
⁄ ·n

0

⁄

�
|Ïn ≠ ÏQ|2dx dt =

⁄ T

0
ÎÏn ≠ ÏQÎ2

L2(�) ‰[0,·n](t)dt
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æ
⁄ T

0
ÎÏú ≠ ÏQÎ2

L2(�) ‰[0,·ú](t)dt =
⁄ ·ú

0

⁄

�
|Ïú ≠ ÏQ|dx dt as n æ Œ in L2(0, T ; L2(�))

and
1
r

⁄ ·n

·n≠r

A
—�

2 ÎÏn ≠ Ï�Î2
L2(�) + —S

2

⁄

�
(1 + Ïn)dx

B

dt

æ 1
r

⁄ ·ú

·ú≠r

A
—�

2 ÎÏú ≠ Ï�Î2
L2(�) + —S

2

⁄

�
(1 + Ïú)dx

B

dt as n æ Œ in L2(0, T ; L2(�)).

Furthermore, using the weak lower semicontinuity of the L2(Q) norm, and the fact that
·n æ ·ú as n æ Œ, we find

lim inf
næŒ

⁄ ·n

0
ÎunÎ2

L2(�) dt ≠
⁄ ·ú

0
ÎuúÎ2

L2(�) dt Ø 0.

After passing to the limit in Jr(Ïn, un, ·n), we obtain

inf
(„,w,s)

Jr(„, w, s) = lim
næŒ

Jr(Ïn, un, ·n) Ø Jr(Ïú, uú, ·ú),

which implies that (uú, ·ú) is a minimizer of the problem. 2

2.4 Well-posedness of the linearized system

In order to establish the existence of the Fréchet derivative of the control-to-state operator
with respect to the control, we consider the linearized system at (Ïú, ‡ú) associated to the
control uú, for w œ L2(0, T ; L2(�)).

Y
___________]

___________[

ˆt� ≠ B�� + �f Õ(Ïú) = (P� ≠ –w)h(Ïú) + (P‡ú ≠ A ≠ –uú)�hÕ(Ïú), in Q,

ˆt� = �� ≠ C�h(Ïú) ≠ C‡ú�hÕ(Ïú) ≠ —�, in Q,

ˆ‹� = ˆ‹� = 0, on � ◊ (0, T ),

�(0) = �(0) = 0, in �,

(2.24)

satisfying the following variational formulations, for › œ H1(�),
⁄

�
ˆt� › dx + B

⁄

�
Ò� · Ò› dx +

⁄

�
f Õ(Ïú)�› dx =

⁄

�
(P� ≠ –w)h(Ïú) › dx

+
⁄

�
(P‡ú ≠ A ≠ –uú)�hÕ(Ïú)› dx

(2.25)

and
⁄

�
ˆt� ›dx +

⁄

�
Ò� · Ò› dx = ≠

⁄

�
((Ch(Ïú) + —) � + C‡ú�hÕ(Ïú) ›) dx. (2.26)
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Theorem 2.3

Let uú œ Uad. Then, System (2.24) admits a unique solution

(�, �) in
1
L2(0, T ; H2(�)) fl H1(0, T ; L2(�)) fl C([0, T ]; L2(�))

22
.

Proof. As we did before, we will use Galerkin method. Reconsider the finite dimentional
space spanned by the first n eigenfunctions {Êi}i associated to the first n eigenvalues of
≠� operator. We are looking for the functions of the form

�n(x, t) =
nÿ

i=1
an,i(t)Êi(x) and �n(x, t) =

nÿ

i=1
bn,i(t)Êi(x)

satisfying
⁄

�
(ˆt�nv + BÒ�n · Òv ≠ h(Ïú)(P�n ≠ –w)v) dx

≠
⁄

�
(hÕ(Ïú)(P‡ú ≠ A ≠ –uú)�n ≠ f Õ(Ïú)�n) v dx = 0

and ⁄

�
(ˆt�nv + Ò�n · Òv + Ch(Ïú)�nv + C‡úhÕ(‡)�nv + —�nv) dx = 0.

Let �n,0 = PVn�0, and �n,0 = PVn�0 such that �n,0 ≠æ �0, and �n,0 ≠æ �0 in L2(�).
Substituting Êj œ Vn, j = 1, . . . , n, for v in both equations to have

⁄

�
(ˆt�nÊj + BÒ�n · ÒÊj ≠ h(Ïú)(P�n ≠ –wÊj) dx

≠
⁄

�
(hÕ(Ïú)(P‡ú ≠ A ≠ –uú)�n ≠ f Õ(Ïú)�n) Êjdx = 0

and
⁄

�
(ˆt�nÊj + Ò�n · ÒÊj + Ch(Ïú)�nÊj + C‡úhÕ(Ïú)�nÊj + —�nÊj) dx = 0.

Consequently,
⁄

�

A
d

dt

nÿ

i=1
an,i(t)ÊiÊj + B

nÿ

i=1
an,i(t)ÒÊi · ÒÊj ≠ h(Ïú)

A
P

nÿ

i=1
bn,i(t)Êi ≠ –w

B
Êj

B
dx

≠
⁄

�
hÕ(Ïú) (P‡ú ≠ A ≠ –uú)

nÿ

i=1
an,i(t)ÊiÊjdx ≠

⁄

�
f Õ(Ïú)

nÿ

i=1
an,i(t)ÊiÊjdx = 0

(2.27)

and
⁄

�

A
d

dt

nÿ

i=1
bn,i(t)ÊiÊj +

nÿ

i=1
bn,i(t)ÒÊi · ÒÊj + Ch(Ïú)

nÿ

i=1
bn,i(t)ÊiÊj

B

dx

+
⁄

�

A

C‡úhÕ(Ïú)
nÿ

i=1
an,i(t)ÊiÊj + —

nÿ

i=1
bn,i(t)ÊiÊj

B

dx = 0
(2.28)
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Its vector form is
d

dt
an(t)In + Ban(t)Jn = h(Ïú)Pbn(t)In + h(Ïú)–Wn

+hÕ(Ïú) (P‡ú ≠ A ≠ –uú) an(t)In ≠ f Õ(Ïú)an(t)In

and
d

dt
bn(t)In + bn(t)Jn = ≠Ch(Ïú)bn(t)In ≠ C‡úhÕ(Ïú)an(t)In ≠ —bn(t)In,

where
(Jn)i,j =

⁄
ÒÊi · ÒÊjdx and (Wn)i,j =

⁄
wÊjdx.

Equivalently
Y
_____]

_____[

aÕ
n(t) = (h(Ïú)Pbn(t) + hÕ(Ïú) (P‡ú ≠ A ≠ –uú) an(t) ≠ f Õ(Ïú)an(t)) In

+ h(Ïú)–Wn ≠ Ban(t)Jn = f(t, an, bn)

bÕ
n(t) = ≠bn(t)Jn ≠ (Ch(Ïú) + —) bn(t)In ≠ C‡úhÕ(Ïú)an(t)In = g(t, an, bn).

It is easy to see that the function F = (f(t, an, bn), g(t, an, bn) is locally Lipschitz with
respect to an and bn, so the ODE system admits a unique local in time solution. Multi-
plying Equation (2.27) by an,j(t) and (2.28) by bn,j(t), and summing over j from 1 to n,
moreover, due to the fact that – is positive, —, C, P , A are non negative, we obtain

1
2

d

dt
Î�nÎ2

L2(�) + B ÎÒ�nÎ2
L2(�) Æ 1

2 Îh(Ïú)ÎŒ P2 Î�nÎ2
L2(�) + Î�nÎ2

L2(�)

+1
2 Îh(Ïú)ÎŒ –2 ÎwÎ2

L2(�) + |hÕ(Ïú)P‡ú| Î�nÎ2
L2(�) + |f Õ(Ïú)| Î�nÎ2

L2(�)

(2.29)

and
1
2

d

dt
Î�nÎ2

L2(�) + Î�nÎ2
H1(�) Æ 1

2
1
|C‡úhÕ(Ïú)| Î�nÎ2

L2(�) + Î�nÎ2
L2(�)

2
.

Adding (2.29) to the last inequality, we get
1
2

d

dt

1
Î�nÎ2

L2(�) + Î�nÎ2
L2(�)

2
+ B ÎÒ�nÎ2

L2(�) + Î�nÎ2
H1(�)

Æ c Î�nÎ2
L2(�) + cÕ Î�nÎ2

L2(�) + cÕÕ ÎwÎ2
L2(�) .

Integrating the above equation with respect to time leads to

Î�n(s)Î2
L2(�) + Î�n(s)Î2

L2(�) +
⁄ s

0
2

1
B ÎÒ�n(t)Î2

L2(�) + Î�n(t)Î2
H1(�)

2
dt

Æ Î�n(0)Î2
L2(�) + Î�n(0)Î2

L2(�) + C3 ÎwÎ2
L2(0,s;L2(�)) +

⁄ s

0

1
C1 Î�n(t)Î2

L2(�) + C2 Î�n(t)Î2
L2(�)

2
dt,

for s œ (0, T ]. By virtue of Gronwall’s lemma, we obtain

Î�n(s)Î2
L2(�) + Î�n(s)Î2

L2(�) +
⁄ s

0

1
B ÎÒ�n(t)Î2

L2(�) + ÎÒ�n(t)Î2
L2(�)

2
dt

Æ
1
c + c ÎwÎ2

L2(0,s;L2(�))

2
ecs.
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Putting › = 1 in (2.26), and multiplying it by 1
Vol(�) , we find

d

dt
È�Í = ≠Èf Õ(Ï)�Í + ÈPh(Ïú)�Í ≠ –Èwh(Ïú)Í + È(P‡ú ≠ A ≠ –uú) hÕ(Ïú)�Í,

so that A
d

dt
È�Í

B2

Æ c Î�Î2
L2(�) + P2 Î�Î2

L2(�) + –2 ÎwÎ2
L2(�) .

Consequently,

2È�Í d

dt
È�Í Æ c Î�Î2

L2(�) + P2 Î�Î2
L2(�) + –2 ÎwÎ2

L2(�) . (2.30)

Multiplying (2.27) and (2.28) by aÕ
n,j and bÕ

n,j, respectively, and summing over j from 1
to n, we find

....
d�n

dt

....
2

L2(�)
+ B

2
d

dt
ÎÒ�nÎ2

L2(�) Æ 1
2 Îh(Ïú)ÎLŒ(�)

A
P2 Î�nÎ2

L2(�) + –2 ÎwÎ2
L2(�) +

....
d�n

dt

....
2

L2(�)

B

+1
2 ÎhÕ(Ïú) (P‡ú ≠ A ≠ –uú)ÎŒ

d

dt
Î�nÎ2

L2(�) + 1
2 Îf Õ(Ïú)ÎŒ

d

dt
Î�nÎ2

L2(�) .

Adding (2.30) to the last inequality, we find
.....

d�n

dt

.....

2

L2(�)
+ c

d

dt
Î�nÎ2

H1(�) Æ 2P2 Î�Î2
L2(�) + c

d

dt
Î�nÎ2

L2(�) + 2–2 ÎwÎ2
L2(�) . (2.31)

On the other hand, we have
.....

d�n

dt

.....

2

L2(�)
+ d

dt
ÎÒ�nÎ2

L2(�) Æ |Ch(Ïú)| + —

2 Î�nÎ2
L2(�) + 1

2 (C‡úhÕ(Ïú))2 Î�nÎ2
L2(�) .

Combining (2.31) and the last inequality, and integrating over [0, t], we find
.....

d�n

dt

.....

2

L2(0,t;L2(�))
+

.....
d�n

dt

.....

2

L2(0,t;L2(�))
+ c Î�n(t)Î2

H1(�) + ÎÒ�n(t)Î2
L2(�)

Æ 2–2 ÎwÎ2
L2(0,t;L2(�)) + c Î�n(0)Î2

H1(�) + ÎÒ�n(0)Î2
L2(�)

+cÕ Î�nÎ2
L2(0,t;L2(�)) + cÕÕ Î�nÎ2

L2(0,t;L2(�)) .

Consequently, {�n} and {�n} are uniformly bounded in

LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�)),

therefore, the solution is global in time. Moreover, there exists a relabeled subsequence
such that

�n
ú

Ô � weakly star in LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�))
and

� ú
Ô � weakly star in LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�)).
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Since this system is linear, it is easy to pass to the limit. Let {(�i, �i)}i=1,2 be two weak
solutions to (2.25)-(2.26). Setting � := �1 ≠�2 and � := �1 ≠�2 with w = 0, then � and
� satisfy (2.25) and (2.26), respectively. Therefore, regularity estimates still hold and it
implies

Î�ÎLŒ(0,T ;L2(�))flL2(0,T ;H1(�)) + Î�ÎLŒ(0,T ;L2(�))flL2(0,T ;H1(�)) Æ 0,

hence � = � = 0. 2

2.5 Fréchet Di�erentiability of control-to-state operator with respect to the control

Let w œ L2(Q), set (Ïw, ‡w) := S(uú + w), (Ïú, ‡ú) := S(uú) and uw := uú + w. We
express the remainders fl and ◊ as ◊ = Ïw ≠ Ïú ≠ �, and fl = ‡w ≠ ‡ú ≠ �.

Theorem 2.4

Let (�, �) be the solution of the linearized system at uú, then the remainders ◊ and
fl satisfy

Î(◊, fl)Î2
Y Æ c ÎwÎ4

L2(Q) ,

with

Y := L2(0, s; H2(�)) fl H1(0, s; L2(�)) fl LŒ(0, s; H1(�)), s œ (0, T ).

Then the control-to-state operator is Fréchet di�erentiable with respect to the con-
trol.

Proof. The remainders ◊ and fl could be expressed as, ◊ = Ïw≠Ïú≠�, and fl = ‡w≠‡ú≠�,
such that, for all › œ H1(�), we have

⁄

�
ˆtÏ

w›dx + B
⁄

�
ÒÏw · Ò›dx +

⁄

�
f(Ïw)› dx =

⁄

�
(P‡w ≠ A ≠ –uw)h(Ïw) dx

⁄

�
ˆtÏ

ú›dx + B
⁄

�
ÒÏú · Ò›dx +

⁄

�
f(Ïú)› dx =

⁄

�
(P‡ú ≠ A ≠ –uú)h(Ïú) dx

and
⁄

�
ˆt�›dx + B

⁄

�
Ò� · Ò›dx +

⁄

�
f Õ(Ïú)�› dx

=
s

� (P� ≠ –w)h(Ïú) ›dx +
s

� (P‡ú ≠ A ≠ –uú) �hÕ (Ïú) ›dx.

Respectively,
Y
_________]

_________[

⁄

�
ˆt‡

w›dx +
⁄

�
Ò‡w · Ò›dx = ≠C

⁄

�
‡wh(Ïw)›dx + —

⁄

�
(‡s ≠ ‡w)›dx,

⁄

�
ˆt‡

ú›dx +
⁄

�
Ò‡ú · Ò›dx = ≠C

⁄

�
‡úh(Ïú)›dx + —

⁄

�
(‡s ≠ ‡ú)›dx

⁄

�
ˆt�›dx +

⁄

�
Ò� · Ò›dx = ≠C

⁄

�
�h(Ïú)›dx ≠ C

⁄

�
‡ú�hÕ(Ïú)›dx ≠ —

⁄

�
�›dx.
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Then the remainder ◊ = Ïw ≠ Ïú ≠ � satisfies, for all › œ H1(�)
⁄

�
ˆt◊›dx + B

⁄

�
Ò◊ · Ò›dx +

⁄

�
(f(Ïw) ≠ f(Ïú) ≠ �f Õ(Ïú)) › dx

=
⁄

�
(P‡w ≠ A ≠ –uw) h(Ïw)›dx ≠

⁄

�
(P‡ú ≠ A ≠ –uú) h(Ïú)› dx

≠
⁄

�
(P� ≠ –w) h(Ïú)› dx ≠

⁄

�
(P‡ú ≠ A ≠ –uú) �hÕ(Ïú)›dx.

Besides, we have that

‡wh(Ïw) ≠ ‡úh(Ïw) + ‡úh(Ïw) ≠ ‡wh(Ïú) + ‡wh(Ïú) + ‡úh(Ïú) ≠ ‡úh(Ïú)

+‡úh(Ïú) ≠ �h(Ïú) ≠ ‡ú�hÕ(Ïú)

= ‡w (h(Ïw) ≠ h(Ïú)) ≠ ‡ú (h(Ïw) ≠ h(Ïú)) + ‡wh(Ïú) ≠ ‡úh(Ïú)

≠�h(Ïú) + ‡úh(Ïw) ≠ ‡úh(Ïú) ≠ ‡ú�hÕ(Ïú)

= (h(Ïw) ≠ h(Ïú)) (‡w ≠ ‡ú) + h(Ïú) (‡w ≠ ‡ú ≠ �) + ‡ú (h(Ïw) ≠ h(Ïú) ≠ �hÕ(Ïú)) .

Thanks to Taylor expansion with integral remainder, we have

h(Ïw) ≠ h(Ïú) ≠ hÕ(Ïú)� = hÕ(Ïú)◊ + (Ïw ≠ Ïú)2
⁄ 1

0
hÕÕ(z(Ïw) + (1 ≠ z)Ïú)(1 ≠ z)dz.

The remainder
R =

⁄ 1

0
hÕÕ(z(Ïw) + (1 ≠ z)Ïú)(1 ≠ z)dz

is bounded, with
ÎRÎŒ Æ cR.

We then deduce that

(h(Ïw) ≠ h(Ïú)) (‡w ≠ ‡ú) + h(Ïú) (‡w ≠ ‡ú ≠ �) + ‡ú (h(Ïw) ≠ h(Ïú) ≠ �hÕ(Ïú))

= (h(Ïw) ≠ h(Ïú)) (‡w ≠ ‡ú) + h(Ïú)fl + ‡ú
1
hÕ(Ïú)◊ + (Ïw ≠ Ïú)2R

2
.

Therefore the variational formulation, for › œ H1(�) is given by
⁄

�
ˆt◊›dx + B

⁄

�
Ò◊ · Ò›dx +

⁄

�
(f(Ïw) ≠ f(Ïú) ≠ �f Õ(Ïú)) › dx

= P
⁄

�
(h(Ïw) ≠ h(Ïú)) (‡w ≠ ‡ú) ›dx ≠

⁄

�
–w (h(Ïw) ≠ h(Ïú)) › dx

+
⁄

�
(P‡ú ≠ A ≠ –uú)

1
hÕ(Ïú)◊ + (Ïw ≠ Ïú)2R

2
›dx +

⁄

�
Ph(Ïú)fl›dx.

(2.32)
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Now, put › = ◊ in (2.32), we get

1
2

d

dt
Î◊Î2

L2(�) + B ÎÒ◊Î2
L2(�) +

⁄

�
f Õ(Ïú)◊2 dx +

⁄

�
(Ïw ≠ Ïú)2 R◊ dx

= P
⁄

�
(h(Ïw) ≠ h(Ïú)) (‡w ≠ ‡ú) ◊dx +

⁄

�
Ph(Ïú)fl◊ dx

+
⁄

�
(P‡ú ≠ A ≠ –uú) hÕ(Ïú)◊2 dx +

⁄

�
(P‡ú ≠ A ≠ –uú) (Ïw ≠ Ïú)2 R◊ dx

≠–
⁄

�
w (h(Ïw) ≠ h(Ïú)) ◊dx.

Applying holder’s inequality, and as well as Young’s, and knowing that h is a Lipschitz
function with constant M , and R is bounded by some cR, we obtain

d

dt
Î◊Î2

L2(�) + 2B ÎÒ◊Î2
L2(�) Æ 2PM ÎÏw ≠ ÏúÎL2(�) Î‡w ≠ ‡úÎLŒ(�) Î◊ÎL2(�)

+ Îh(Ïú)ÎLŒ

1
P2 ÎflÎ2

L2(�) + Î◊Î2
L2(�)

2
+ 2c ÎhÕ(Ïú)ÎLŒ(�) Î◊Î2

L2(�)

+2cRc ÎÏw ≠ ÏúÎLŒ(�) ÎÏw ≠ ÏúÎL2(�) Î◊ÎL2(�)

+2M ÎÏw ≠ ÏúÎLŒ(�) ÎwÎL2(�) Î◊ÎL2(�) .

Using the boundedness of hÕ(Ïú), h(Ïú), and integrating with respect to time, we get

Î◊(s)Î2
L2(�) + 2B ÎÒ◊Î2

L2(0,s;L2(�))

Æ 2PM ÎÏw ≠ ÏúÎLŒ(0,s;L2(�)) Î‡w ≠ ‡úÎL2(0,s;LŒ(�)) Î◊ÎL2(0,s;L2(�))

+P2 ÎflÎ2
L2(0,s;L2(�)) + Î◊Î2

L2(0,s;L2(�)) + c Î◊Î2
L2(0,s;L2(�))

+2cR ÎÏw ≠ ÏúÎL2(0,s;LŒ(�)) ÎÏw ≠ ÏúÎLŒ(0,s;L2(�)) Î◊ÎL2(0,s;L2(�))

+2M ÎÏw ≠ ÏúÎL2(0,s;LŒ(�)) ÎwÎL2(0,s;L2(�)) Î◊ÎLŒ(0,s;L2(�)) .

Using the embedding L2(0, s; H2(�)) Òæ L2(0, s; LŒ(�)), and applying Young’s inequality,
we obtain

Î◊(s)Î2
L2(�) + 2B ÎÒ◊Î2

L2(0,s;L2(�)) Æ (PM)2 ÎÏw ≠ ÏúÎ2
LŒ(0,s;L2(�)) Î‡w ≠ ‡úÎ2

L2(0,s;H2(�))

+ Î◊Î2
L2(0,s;L2(�)) + P ÎflÎ2

L2(0,s;L2(�)) + Î◊Î2
L2(0,s;L2(�)) + c Î◊Î2

L2(0,s;L2(�))

+c2
R ÎÏw ≠ ÏúÎ2

L2(0,s;H2(�)) ÎÏw ≠ ÏúÎ2
LŒ(0,s;L2(�)) + Î◊Î2

L2(0,s;L2(�))

+M2 ÎÏw ≠ ÏúÎ2
L2(0,s;H2(�)) ÎwÎ2

L2(0,s;L2(�)) + 1
2 Î◊Î2

LŒ(0,s;L2(�)) .
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Therefore, it follows that

Î◊(s)Î2
L2(�) + 2B ÎÒ◊Î2

L2(0,s;L2(�))

Æ c1 ÎwÎ4
L2(0,s;L2(�)) + c2 Î◊Î2

L2(0,s;L2(�)) + P ÎflÎ2
L2(0,s;L2(�)) .

(2.33)

On the other hand, fl = ‡w ≠ ‡ú ≠ � satisfies the following variational inequality, for
› œ H1(�)

⁄

�
ˆtfl›dx +

⁄

�
Òfl · Ò›dx = ≠C

⁄

�
(‡w ≠ ‡ú) (h(Ïw) ≠ h(Ïú)) ›dx

≠C
⁄

�
h(Ïú)fl›dx ≠ C

⁄

�
‡úhÕ(Ïú)◊›dx ≠ C

⁄

�
‡ú(Ïw ≠ Ïú)2R›dx ≠ —

⁄

�
fl›dx.

(2.34)

Putting › = fl in (2.34), we get

1
2

d

dt
ÎflÎ2

L2(�) + ÎÒflÎ2
L2(�) + — ÎflÎ2

L2(�)

Æ C Î‡w ≠ ‡úÎLŒ(�) Îh(Ïw) ≠ h(Ïú)ÎL2(�) ÎflÎL2(�) + C Îh(Ïú)ÎLŒ(�) ÎflÎ2
L2(�)

+C
2 Î‡úÎ2

LŒ(�) ÎhÕ(Ïú)Î2
LŒ(�) Î◊Î2

L2(�) + 1
2 ÎflÎ2

L2(�)

+C Î‡úÎLŒ(�) cR ÎÏw ≠ ÏúÎLŒ(�) ÎÏw ≠ ÏúÎL2(�) ÎflÎL2(�) .

Putting c = min(1; —) and using the boundedness of h(Ïú), hÕ(Ïú), ‡ú, in addition to
the fact that h is Lipschitz with constant M , and the embedding L2(0, s; H2(�)) Òæ
L2(0, s; LŒ(�)), then integrating on [0, s) for s œ [0, T ], we get

Îfl(s)Î2
L2(�) + 2c ÎflÎ2

L2(0,s;H1(�))

Æ (CM)2 Î‡w ≠ ‡úÎ2
L2(0,s;H2(�)) ÎÏw ≠ ÏúÎ2

LŒ(0,s;L2(�)) + ÎflÎ2
L2(0,s;L2(�))

+C ÎflÎ2
L2(0,s;L2(�)) + c Î◊Î2

L2(0,s;L2(�)) + ÎflÎ2
L2(0,s;L2(�))

+C2c2
R ÎÏw ≠ ÏúÎ2

L2(0,s;H2(�)) ÎÏw ≠ ÏúÎ2
LŒ(0,s;L2(�)) + ÎflÎ2

L2(0,s;L2(�))

Æ c3 ÎwÎ4
L2(0,s;L2(�)) + c4 ÎflÎ2

L2(0,s;L2(�)) + c5 Î◊Î2
L2(0,s;L2(�)) .

Combining (2.33) and the above inequality, we find

Îfl(s)Î2
L2(�) + Î◊(s)Î2

L2(�) + 2c ÎflÎ2
L2(0,s;H1(�)) + 2B ÎÒ◊Î2

L2(0,s;L2(�))

Æ c6 ÎwÎ4
L2(0,s;L2(�)) + c7 ÎflÎ2

L2(0,s;L2(�)) + c8 Î◊Î2
L2(0,s;L2(�))

Æ c6 ÎwÎ4
L2(0,s;L2(�)) + c9

1
ÎflÎ2

L2(0,s;L2(�)) + Î◊Î2
L2(0,s;L2(�))

2
, c9 Ø c7 and c9 Ø c8.
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Applying Gronwall’s inequality, we get

Îfl(s)Î2
L2(�) + Î◊(s)Î2

L2(�) + 2c ÎflÎ2
L2(0,s;H1(�)) + 2B ÎÒ◊Î2

L2(0,s;L2(�))

Æ c6e
c9s ÎwÎ4

L2(0,s;L2(�)) , s œ [0, T ].

Furthermore, putting › = ˆt◊ in (2.32), we obtain

Îˆt◊Î2
L2(�) + B

2
d

dt
ÎÒ◊Î2

L2(�) Æ 1
2

d

dt
Î◊Î2

L2(�) + ccR ÎÏw ≠ ÏúÎLŒ(�) ÎÏw ≠ ÏúÎL2(�) Îˆt◊ÎL2(�)

+P Îh(Ïw) ≠ h(Ïú)ÎLŒ Î‡w ≠ ‡úÎL2(�) ÎˆtflÎL2(�) + P2 Îh(Ïú)Î2
Œ

1
2 ÎflÎ2

L2(�) + c
1
2

d

dt
Î◊Î2

L2(�)

+– ÎwÎL2(�) Îh(Ïw) ≠ h(Ïú)ÎLŒ Îˆt◊ÎL2(�) ,

using the Lipschitz property of the function h, in addition to the boundedness of ‡ú,
hÕ(Ïú), h(Ïú), and R in addition to Young’s inequality, and the continuous embedding
H2(�) Òæ LŒ(�), we get

Îˆt◊Î2
L2(�) + B

d

dt
ÎÒ◊Î2

L2(�) Æ d

dt
Î◊Î2

L2(�) + 2ccR ÎÏw ≠ ÏúÎLŒ ÎÏw ≠ ÏúÎL2(�) Îˆt◊ÎL2(�)

+2PM ÎÏw ≠ ÏúÎLŒ Î‡w ≠ ‡úÎL2(�) ÎˆtflÎL2(�) + P ÎflÎ2
L2(�) + M2–2 ÎwÎ2

L2(�) ÎÏw ≠ ÏúÎ2
H2(�) .

Integrating over [0, s), and applying Young’s and Schwartz inequalities, as well as the
embedding

L2(0, s; H2(�)) Òæ L2(0, s; LŒ(�)),
we obtain

Îˆ◊Î2
L2(0,s;L2(�)) + B ÎÒ◊(s)Î2

L2(�) Æ ccR ÎÏw ≠ ÏúÎ2
L2(0,s;H2(�)) ÎÏw ≠ ÏúÎ2

LŒ(0,s;L2(�))

+c Î◊(s)Î2
L2(�) + (PM)2 ÎÏw ≠ ÏúÎ2

L2(0,s;H2(�)) Î‡w ≠ ‡úÎ2
LŒ(0,s;L2(�)) + ÎˆflÎ2

L2(0,s;L2(�))

+P ÎflÎ2
L2(0,s;L2(�)) + (M–)2 ÎwÎ2

L2(o,s;L2(�)) ÎÏw ≠ ÏúÎ2
L2(0,s;H2(�)) .

(2.35)

On the other hand, putting › = ˆtfl in (2.34), and proceeding in the same way like above,
we get

ÎˆtflÎ2
L2(�) + d

dt
ÎÒflÎ2

L2(�) Æ (CM)2 Î‡w ≠ ‡úÎ2
LŒ(�) ÎÏw ≠ ÏúÎ2

L2(�) + ÎˆtflÎ2
L2(�)

+ C d

dt
ÎflÎ2

L2(�) + c12 Î◊Î2
L2(�) + c ÎˆtflÎ2

L2(�) + (CcR)2 ÎÏw ≠ ÏúÎ2
LŒ ÎÏw ≠ ÏúÎ2

L2(�) .

Integrating with respect to time, using the embedding L2(0, s; H2(�)) Òæ L2(0, s; LŒ(�)),
and the continuous dependence on control, we obtain

ÎˆtflÎ2
L2(0,s;L2(�)) + ÎÒfl(s)Î2

L2(�) Æ c ÎwÎ4
L2(0,s;L2(�)) + cÕ Î◊Î2

L2(0,s;L2(�)) + C Îfl(s)Î2
L2(�) .

Combining (2.35) and the above inequality, we obtain

Îˆt◊Î2
L2(0,s;L2(�)) + ÎˆtflÎ2

L2(0,s;L2(�)) + B ÎÒ◊(s)Î2
L2(�) + ÎÒfl(s)Î2

L2(�)

Æ c ÎwÎ4
L2(0,s;L2(�)) + c1 ÎflÎ2

L2(0,s;L2(�)) + c2 Î◊(s)Î2
L2(�) + c3 Î◊Î2

L2(0,s;L2(�)) + C Îfl(s)Î2
L2(�) .
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Noting that, there exist a constant c4 such that c4 Ø c1 and c4 Ø c3, we have

c1 ÎflÎ2
L2(0,s;L2(�)) + c3 Î◊Î2

L2(0,s;L2(�)) Æ c4
1
ÎflÎ2

L2(0,s;L2(�)) + Î◊Î2
L2(0,s;L2(�))

2

Æ c4

3⁄ s

0

1
Îfl(t)Î2

L2(�) + Î◊(t)Î2
L2(�)

2
dt

4
Æ c4 (ec9s ≠ 1) ÎwÎ4

L2(0,s;L2(�))

and a constant c5 such that c5 Ø c2 and c5 Ø C, we also have

c2 Î◊(s)Î2
L2(�) + C Îfl(s)Î2

L2(�) Æ c5
1
Î◊(s)Î2

L2(�) + Îfl(s)Î2
L2(�)

2

Æ c5
1
c9e

c9s ÎwÎ4
L2(0,s;L2(�))

2
.

Finally, we obtain

Îˆt◊Î2
L2(0,s;L2(�)) + ÎˆtflÎ2

L2(0,s;L2(�)) + B ÎÒ◊(s)Î2
L2(�) + ÎÒfl(s)Î2

L2(�) Æ c ÎwÎ4
L2(0,s;L2(�)) .

One can view (2.32) and (2.34) as the weak formulations of the following problem

≠B�◊ = ≠ˆt◊ + P (h(Ïw) ≠ h(Ïú)) (‡w ≠ ‡ú) + h(Ïú)fl + ‡úhÕ(Ïú)◊ + (Ïw ≠ Ïú)2 R

and
≠�fl = ≠ˆtfl ≠ C (h(Ïw) ≠ h(Ïú)) (‡w ≠ ‡ú) ≠ Ch(Ïú)fl

≠C‡úhÕ(Ïú)◊ ≠ C‡ú (Ïw ≠ Ïú)2 R ≠ —fl.

Thus, using elliptic regularity, we get

Î◊Î2
L2(0,s;H2(�)) +

...fl2
...

L2(0,s;H2(�))
Æ c ÎwÎ4

L2(0,s;L2(�)) .

2

2.6 Di�erentiability of the cost functional

2.6.1 Di�erentiability of the cost functional with respect to time

The Fréchet derivative of the reduced cost functional at (uú, · ú) with respect to time is
given as follows:

D· Jr(uú, · ú) = —Q

2

⁄

�

1
|Ï(· ú) ≠ ÏQ(· ú)|2 ≠ |Ï(0) ≠ ÏQ(0)|2

2
dx

+—�

2r

⁄

�

1
|Ï(· ú) ≠ Ï�(· ú)|2 ≠ |Ï(· ú ≠ r) ≠ Ï�(· ú ≠ r)|2

2
dx

+—s

2r

⁄

�
(Ï(· ú) ≠ Ï(· ú ≠ r)) dx + —u

2

⁄

�
|uú(T )|2dx + —T ,

which is equivalent to

D· Jr(uú, · ú) = —Q

2 ÎÏ(· ú) ≠ ÏQ(· ú)Î2
L2(�) + —s

2r

⁄

�
(Ï(· ú) ≠ Ï(· ú ≠ r)) dx

+—u

2 Îu(T )Î2
L2(�) + —�

2r

3
ÎÏ(· ú) ≠ Ï�(· ú)Î2

L2(�) ≠
...Ï(· ú ≠ r) ≠ Ï�(· ú ≠ r)2

...
L2(�)

4
+ —T ,
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the proof of the di�erentiability of the cost functional with respect to time follows as
in [43].

2.6.2 Fréchet di�erentiability of the cost functional with respect to the control

Furthermore, the Fréchet derivative of the cost functional at (uú, · ú) with respect to the
control is given as follows:

DuJr(uú, · ú)w = —Q

⁄ ·ú

0

⁄

�
|Ïú ≠ ÏQ|�w dx dt + —�

⁄ ·ú

·ú≠r

⁄

�
|Ïú ≠ Ï�|�w dx dt

+—s

r

⁄ ·ú

·ú≠r

⁄

�
�w dx dt + —u

⁄ T

0

⁄

�
u w dx dt.

In order to eliminate the term �w from the above equation, we apply Lagrangian principle,
to this end, we define the Lagrangian function with respective Lagrangian multipliers p
and q by

L(Ï, ‡, u, p, q) = Jr(Ï, u) ≠
⁄⁄

Q
(ˆt‡ ≠ �‡ + C‡h(Ï) ≠ —(‡s ≠ ‡)) q dx dt

≠
⁄⁄

Q
(ˆtÏ ≠ B�Ï ≠ (P‡ ≠ A ≠ –u) h(Ï) + f(Ï)) p dx dt.

2.6.3 Adjoint system

The adjoint system is given as follows

DÏL(Ïú, ‡ú, uú, p, q)Ï = 0

and
D‡L(Ïú, ‡ú, uú, p, q)‡ = 0,

where

DÏL(Ïú, ‡ú, uú, p, q)Ï = 1
2r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) Ïdx dt

—Q

⁄ ·ú

0

⁄

�
(Ïú ≠ ÏQ)Ïdx dt +

⁄ ·ú

0

⁄

�
ˆtpÏ dx dt + B

⁄ ·ú

0

⁄

�
�pÏ dx dt

+
⁄ ·ú

0

⁄

�
(P‡ú ≠ A ≠ –uú) hÕ(Ïú) pÏ dx dt ≠

⁄ ·ú

0

⁄

�
f Õ(Ïú)pÏ dx dt

≠
⁄ ·ú

0

⁄

�
C‡úhÕ(Ïú)qÏdx dt, · ú œ [r, T ]

and

D‡L(Ïú, ‡ú, uú, p, q)‡ =
⁄ ·ú

0

⁄

�
ˆtq‡ dx dt +

⁄ ·ú

0

⁄

�
�q‡ dx dt +

⁄ ·

0

⁄

�
Ph(Ïú) p‡ dx dt

≠C
⁄ ·

0

⁄

�
h(Ïú)q‡ dx dt ≠ —

⁄ ·

0

⁄

�
q‡ dx dt.
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The adjoint system is then written as
Y
________________]

________________[

≠ˆtp ≠ B�p = (P‡ú ≠ A ≠ –uú) hÕ(Ïú)p + —Q (Ïú ≠ ÏQ)

+ 1
2r

‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) ≠ f Õ(Ïú)p ≠ C‡úhÕ(Ïú)q, in [0, T ] ◊ �,

≠ˆtq ≠ �q = Ph(Ïú)p ≠ (Ch(Ïú) + —) q, in [0, T ] ◊ �,

ˆ‹p = ˆ‹q = 0, on [0, T ] ◊ �,

p(·ú) = q(·ú) = 0, in �.

(2.36)

Theorem 2.5

Let uú be an optimal control, and (Ïú, ‡ú) = S(uú) be the corresponding state.
Then the adjoint Problem (2.36) has a unique solution

(p, q) œ
1
H1(0, · ú; L2(�)) fl LŒ(0, · ú; H1(�)) fl L2(0, · ú; H2(�)) fl C([0, · ú]; H1(�))

22
.

Proof. The variational formulations of the adjoint system, for › œ H1(�), are given by:

≠
⁄

�
ˆtp ›dx + B

⁄

�
Òp · Ò› dx =

⁄

�
(P‡ú ≠ A ≠ –uú) hÕ(Ïú)p › dx +

⁄

�
—Q (Ïú ≠ ÏQ) ›dx

+ 1
2r

⁄

�
‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) ›dx ≠

⁄

�
f Õ(Ïú)p› dx ≠

⁄

�
C‡úhÕ(Ïú)q›dx

(2.37)

and

≠
⁄

�
ˆtq › dx +

⁄

�
Òq · Ò› dx =

⁄

�
Ph(Ïú)p › dx ≠

⁄

�
(Ch(Ïú) + —) q › dx. (2.38)

Now, we will establish the a priori estimates for (2.36), for this purpose, we put › = p in
(2.37) and › = q in (2.38) in addition to using f Õ(Ïú)p2 Ø ≠p2, to obtain

d

dt
ÎpÎ2

L2(�) + 2B ÎÒpÎ2
L2(�) Æ c ÎpÎ2

L2(�) + Î—Q(Ïú ≠ ÏQ)Î2
L2(�)

+
....

1
2r

(2—�(Ïú ≠ Ï�)) + —s

....
2

L2(�)
+ 2 ÎpÎ2

L2(�) + cÕ
1
ÎpÎ2

L2(�) + ÎqÎ2
L2(�)

2

Æ c ÎpÎ2
L2(�) + cÕ ÎqÎ2

L2(�) + cÕÕ.

(2.39)

On the other hand, we have

d

dt
ÎqÎ2

L2(�) + 2 ÎÒqÎ2
L2(�) + 2— ÎqÎ2

L2(�) = ≠2
⁄

�
Ch(Ïú)q2dx +

⁄

�
Ph(Ïú)pq dx.

Therefore
d

dt
ÎqÎ2

L2(�) + 2 ÎÒqÎ2
L2(�) Æ P2 ÎpÎ2

L2(�) + (2C + 1) ÎqÎ2
L2(�) .
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Combining (2.39) and the above inequality, and putting c0 = min(2; 2—), we obtain

d

dt

1
ÎpÎ2

L2(�) + ÎqÎ2
L2(�)

2
+ 2B ÎÒpÎ2

L2(�) + ÎqÎ2
H1(�) Æ c ÎpÎ2

L2(�) + cÕ ÎqÎ2
L2(�) + cÕÕ

Æ c1
1
ÎpÎ2

L2(�) + ÎqÎ2
L2(�)

2
+ cÕÕ,

where c1 is a constant depending on P , C, A, –, —, so that c Æ c1 and cÕ Æ c1. Integrating
over time and applying Gronwall’s lemma, we find

Îp(s)Î2
L2(�) + Îq(s)Î2

L2(�) + 2B ÎÒpÎ2
L2(0,s;L2(�)) + ÎqÎ2

L2(0,s;H1(�)) Æ cÕÕec1s, s œ (0, ·ú], (2.40)

where c2 depends on cÕÕ, Îp0Î2
L2(�) and Îq0Î2

L2(�). Furthermore, putting › = ˆtp in (2.37)
and › = ˆtq in (2.38), we obtain

ÎˆtpÎ2
L2(�) + B

d

dt
ÎÒpÎ2

L2(�) + ÎˆtqÎL2(�) + d

dt
ÎÒqÎ2

L2(�)

Æ c ÎpÎ2
L2(�) + cÕ ÎˆtpÎ2

L2(�) + c1 ÎqÎ2
L2(�) + c2 ÎˆtqÎ2

L2(�) + c
d

dt
ÎpÎ2

L2(�) + cÕÕ.

Consequently,

ÎˆtpÎ2
L2(0,s;L2(�)) + B ÎÒp(s)Î2

L2(�) + ÎÒq(s)Î2
L2(�) + ÎˆtqÎL2(0,s;L2(�)) Æ c ÎpÎ2

L2(0,s;L2(�))

+c1 ÎqÎ2
L2(0,s;L2(�)) + c Îp(s)Î2

L2(�) + cÕÕs + B ÎÒp(0)Î2
L2(�) + B ÎÒq(0)Î2

L2(�) .

(2.41)

However, due to (2.40), we have

ÎpÎ2
L2(0,s;L2(�)) + ÎqÎ2

L2(0,s;L2(�)) =
s s

0 Îp(t)Î2
L2(�) dt +

s s

0 Îq(t)Î2
L2(�) dt Æ

s s

0 cÕÕec1tdt Æ c (ec1s ≠ 1) .

As well, we know that
A

d

dt
ÈpÍ

B2

+ ÈpÍ2 Æ c ÎpÎ2
L2(�) + Î—Q (Ïú ≠ ÏQ)Î2

L2(�) + c ÎqÎ2
L2(�)

+
....

1
2r

(2—� (Ïú ≠ Ï�) + —s)
....

2

L2(�)
.

Adding the above inequality to (2.41), and integrating over [0, t], we find

ÎˆtpÎ2
L2(0,s;L2(�)) + B ÎÒp(s)Î2

L2(�) + Îq(s)Î2
H1(�) + ÎˆtqÎL2(0,s;L2(�)) Æ c.

Therefore, we deduce that

(p, q) œ
1
H1(0, · ú; L2(�)) fl LŒ(0, · ú; H1(�)) fl C([0, · ú]; L2(�))

22
.
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Rewriting the adjoint equations as

≠B�p = ˆtp + (P‡ú ≠ A ≠ –uú) hÕ(Ï)p + —Q (Ïú ≠ ÏQ)

+ 1
2r

‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) ≠ C‡úhÕ(Ïú)q ≠ f Õ(Ïú)p, in [0, T ] ◊ �,

≠�q = ˆtq + Ph(Ïú)p ≠ (Ch(Ïú) + —) q, in [0, T ] ◊ �,

ˆ‹p = ˆ‹q = 0, on [0, T ] ◊ �,

p(· ú) = q(· ú) = 0, in �,

and thanks to elliptic regularity, we deduce that (p, q) œ (L2(0, · ú, H2(�)))2.

Existence of solution for the adjoint system. We apply a Galerkin approximation
and consider a basis {Êi}iœN of H1(�) that is orthonormal in L2(�). Look for the functions

pn,i(x, t) =
nÿ

i=1
Pn,i(t)Êi(x) and qn,i(t, x) =

nÿ

i=1
Qn,i(t)Êi(x)

such that
pn(0) = pn

0 , qn(0) = qn
0 , pn(· ú) = qn(· ú) = 0,

which satisfy the following approximate problem:

≠
⁄

�
ˆtpn v dx + B

⁄

�
Òpn · Òv dx =

⁄

�
(P‡ú ≠ A ≠ –uú) hÕ(Ïú)pn v dx

+
⁄

�

3
—Q(Ïú ≠ ÏQ) + 1

2r
‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s)

4
v dx

≠
⁄

�
C‡úhÕ(Ïú)qn v dx ≠

⁄

�
f Õ(Ïú)pnv dx

(2.42)

and

≠
⁄

�
ˆtqn v dx +

⁄

�
Òqn · Òv dx =

⁄

�
Ph(Ïú)pn v dx ≠

⁄

�
(Ch(Ïú) + —) qn v dx, (2.43)

for all v œ Vn = span {Êi, i = 1, . . . , n}. In particular, put v = Êj in (2.42) and (2.43) to
get, ’ i, j = 1, . . . , n,

≠ d

dt

nÿ

i=1
Pn,i(t)

⁄

�
Êi(x) Êj(x) dx + B

nÿ

i=1
Pn,i(t)

⁄

�
ÒÊi(x) · ÒÊi(x) dx

=
nÿ

i=1
Pn,i(t)

⁄

�
(P‡ú ≠ A ≠ –ú) hÕ(Ïú)Êi(x) Êj(x)dx

+
⁄

�
—Q(Ïú ≠ ÏQ)Êj(x) dx +

⁄

�

1
2r

‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) Êj(x) dx

≠
nÿ

i=1
Qn,i(t)

⁄

�
C‡úhÕ(Ïú)Êi(x) Êj(x) dx ≠

nÿ

i=1
Pn,i(t)

⁄

�
f Õ(Ïú)Êi(x) Êj(x) dx

(2.44)
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and

≠ d

dt

nÿ

i=1
Qn,i(t)

⁄

�
Êi Êj dx +

nÿ

i=1
Qn,i(t)

⁄

�
ÒÊi(x) · ÒÊj(x) dx

=
nÿ

i=1
Pn,i(t)

⁄

�
Ph(Ïú)Êi(x) Êj(x) dx ≠

nÿ

i=1
Qn,i(t)

⁄

�
(Ch(Ïú) + —) Êi(x) Êj(x) dx.

Consequently, the above equation and (2.44) are ODEs of the following forms:

≠ Pn(t)ÕIn + BPn(t)J = Pn(t)K + L + ‰[·ú≠r,·ú](t)M ≠ Qn(t)H ≠ Pn(t)F (2.45)

and
≠ Qn(t)ÕIn + Qn(t)J = Pn(t)N ≠ Qn(t)R, (2.46)

with the conditions pn(x, · ú) = qn(x, · ú) = 0. Here
Y
____________________]

____________________[

Ji,j =
⁄

�
ÒÊi(x) · ÒÊj(x) dx, Ki,j =

⁄

�
(P‡ú ≠ A ≠ –ú) hÕ(Ïú)Êi(x) Êj(x)dx,

Ni,j =
⁄

�
Ph(Ïú)Êi(x) Êj(x) dx, Ri,j =

⁄

�
(Ch(Ïú) + —) Êi(x) Êj(x) dx,

Hi,j =
⁄

�
C‡úhÕ(Ïú)Êi(x) Êj(x) dx, Fi,j =

⁄

�
f Õ(Ïú)Êi(x) Êj(x) dx,

Lj =
⁄

�
—Q(Ïú ≠ ÏQ) Êj(x) dx,

Mj =
⁄

�

1
2r

(2—� (Ïú ≠ Ï�) + —s) Êj(x) dx.

First, we will consider the Cauchy Problem (2.45)-(2.46) on the interval (· ú ≠ r, · ú], so
that it has the form

Pn(t)ÕIn = BPn(t)J ≠ Pn(t)K ≠ L ≠ M ≠ Qn(t)H + Pn(t)F

and
Qn(t)ÕIn = Qn(t)J ≠ Pn(t)N + Qn(t)R.

In other words, we have

(xÕ(t), yÕ(t))€ = (f(t, x(t), y(t)), g(t, x(t), y(t)))€.

The right hand side of the above equation is locally Lipschitz with respect to (x, y), hence
according to Cauchy Lipschitz theorem, the Problem (2.45)-(2.46) has a unique solution
on (· ú ≠ r, s), where s œ (· ú ≠ r, · ú].

As well, we consider the System (2.45)-(2.46) on the interval (0, · ú ≠ r), we have

Pn(t)ÕIn = BPn(t)J ≠ Pn(t)K ≠ L + Qn(t)H (2.47)

and
Qn(t)ÕIn = Qn(t)J ≠ Pn(t)N + Qn(t)R. (2.48)

We then rewrite System (2.47)-(2.48) as

(xÕ(t), yÕ(t))€ = (f(t, x(t), y(t)), g(t, x(t), y(t)))€,
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where f(t, x(t), y(t)) = BxJ ≠xK ≠L+yH and g(t, x(t), y(t)) = yJ ≠xN +yR. The func-
tion (f(t, x(t), y(t)), g(t, x(t), y(t)))€ is locally Lipschitz with respect to (x, y), so Cauchy
Lipschitz theorem implies that the System (2.47)-(2.48) has a unique solution on the in-
terval (0, s) where s œ (0, · ú ≠ r).

It follows from the a priori estimates derived formally in the previous section, but for the
approximated solution (pn, qn), that the solution is global and is defined on the whole
interval [0, · ú]. Then the a priori estimates yields that up to a relabeled subsequence,

(pn, qn) ú
Ô (p, q), weakly star in LŒ(0, · ú, L2(�))

and
(pn, qn) Ô (p, q), weakly in L2(0, · ú, H1(�)).

Moreover (pn, qn) œ C([0, · ú], L2(�))2.

Passing to the limit. Recall that, the variational formulations of the approximate
system are given by

≠ d

dt
(pn, v)L2(�) + B(Òpn, Òv)L2(�) = ((P‡ú ≠ A ≠ –uú) hÕ(Ïú)pn, v)L2(�)

+
33

—Q(Ïú ≠ ÏQ) + 1
2r

‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s)
4

, v
4

L2(�)

≠(C‡úhÕ(Ïú)qn, v)L2(�) ≠ (f Õ(Ïú)p, v)

and

≠ d

dt
(qn, v)L2(�) + (Òqn, Òv)L2(�) = (Ph(Ïú)p, v)L2(�) ≠ ((Ch(Ïú) + —) qn, v)L2(�).

Integrating by parts over [0, · ú], ’ Â œ D([0, · ú)), we obtain
⁄ ·ú

0
(pn(t), vÂÕ(t))L2(�) dt + B

⁄ ·ú

0
(Òpn(t), ÒvÂ(t))L2(�) dt

=
⁄ ·ú

0
((P‡ú ≠ A ≠ –uú) hÕ(Ïú)pn(t), vÂ(t))L2(�) dt + (pn

0 , vÂ(0))L2(�)

+
⁄ ·ú

0

3
—Q(Ïú ≠ ÏQ) + 1

2r
‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) , vÂ(t)

4

L2(�)
dt

≠
⁄ ·ú

0
(C‡úhÕ(Ïú)qn, vÂ(t))L2(�) dt ≠

⁄ ·ú

0
(f Õ(Ïú)pn, vÂ(t))L2(�) dt

and
⁄ ·ú

0
(qn(t), vÂÕ(t))L2(�)dt +

⁄ ·ú

0
(Òqn(t), ÒvÂ(t))L2(�)dt = (qn

0 , vÂ(0))L2(�)

+
⁄ ·ú

0
(Ph(Ïú)pn(t), vÂ(t))L2(�)dt ≠

⁄ ·ú

0
((Ch(Ïú) + —) qn(t), vÂ(t))L2(�)dt.

Noting that
⁄ ·ú

0
(pn(t), vÂÕ(t))L2(�)dt + B

⁄ ·ú

0
(Òpn(t), ÒvÂ(t))L2(�)dt

æ
⁄ ·ú

0
(p(t), vÂÕ(t))L2(�)dt + B

⁄ ·ú

0
(Òp(t), ÒvÂ(t))L2(�)dt

Hawraa Alsayed
65

hawraa_alsayyed@hotmail.com

hawraa_alsayyed@hotmail.com


CHAPTER 2. OPTIMAL CONTROL PROBLEM OF TUMOR GROWTH MODEL

and
⁄ ·ú

0
((P‡ú ≠ A ≠ –uú) hÕ(Ïú)pn(t), vÂ(t))L2(�)dt + (pn

0 , vÂ(0))L2(�)

æ
⁄ ·ú

0
((P‡ú ≠ A ≠ –uú) hÕ(Ïú)p(t), vÂ(t))L2(�)dt + (p0, vÂ(0))L2(�).

On the other hand
⁄ ·ú

0
(qn(t), vÂÕ(t))L2(�)dt +

⁄ ·ú

0
(Òqn(t), ÒvÂ(t))L2(�)dt ≠ (qn

0 , vÂ(0))L2(�)

æ
⁄ ·ú

0
(q(t), vÂÕ(t))L2(�)dt +

⁄ ·ú

0
(Òq(t), ÒvÂ(t))L2(�)dt ≠ (q0, vÂ(0))L2(�)

and
⁄ ·ú

0
(Ph(Ïú)pn(t), vÂ(t))L2(�)dt ≠

⁄ ·ú

0
((Ch(Ïú) + —) qn(t), vÂ(t))L2(�)dt

æ
⁄ ·ú

0
(Ph(Ïú)p(t), vÂ(t))L2(�)dt ≠

⁄ ·ú

0
((Ch(Ïú) + —) q(t), vÂ(t))L2(�)dt.

Using (2.37) and (2.38), as well as the fact that t
n

Vn is dense in H1(�), we find, for all
v œ Vn, Â œ D([0, · ú])

⁄ ·ú

0
(p(t), vÂÕ(t))L2(�)dt + B

⁄ ·ú

0
(Òp(t), ÒvÂ(t))L2(�)dt = (p(0), vÂ(0))L2(�)

+
⁄ ·ú

0
((P‡ú ≠ A ≠ –uú) hÕ(Ïú)p(t), vÂ(t))L2(�)dt +

⁄ ·ú

0
(—Q (Ïú ≠ ÏQ) , vÂ(t))L2(�)dt

+ 1
2r

⁄ ·ú

0
(‰[·ú≠r,·ú](t) (2—� (Ïú ≠ Ï�) + —s) , vÂ(t))L2(�)dt

≠
⁄ ·ú

0
(C‡úhÕ(Ïú)q, vÂ(t))L2(�)dt ≠

⁄ ·ú

0
(f Õ(Ïú)p, vÂ(t))L2(�)dt

and
⁄ ·ú

0
(q(t), vÂÕ(t))L2(�)dt +

⁄ ·ú

0
(Òq(t), ÒvÂ(t))L2(�)dt = (q(0), vÂ(0))L2(�)

+
⁄ ·ú

0
(Ph(Ïú)p(t), vÂ(t))L2(�)dt ≠

⁄ ·ú

0
((Ch(Ïú) + —) q(t), vÂ(t))L2(�) dt.

Thus, it follows that p(0) = p0, and q(0) = q0 a.e. in L2(�). 2

2.7 Simplification of the first-order necessary optimality condition for the control

Let (uú, · ú) be a minimizer of the problem with corresponding state variables (Ïú, ‡ú) =
S(uú), and adjoint variables (p, q) associated to (Ïú, ‡ú). Let w := u ≠ uú œ L2(Q) for
any u œ Uad, and let (�, �) be the linearized state variables associated to w.
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Proposition 2.1

The optimal control uú and the optimal treatment time · ú satisfy the following
simplified first-order necessary optimality conditions

(DuJr(uú, · ú))(u≠uú) = —u

⁄ T

0

⁄

�
uú(u≠uú) dx dt+–

⁄ ·ú

0

⁄

�
h(Ïú)(u≠uú)p dx dt Ø 0.

and
D· Jr(uú, · ú)(s ≠ · ú) Ø 0, ’ s œ [r, T ].

Proof. Setting Ï(t) = Ï0 for t Æ 0, and ÏQ œ H1(0, T ; L2(�)), Ïú, Ï� œ H1(≠r, T ; L2(�),
then the cost functional (??) can be expressed as

Jr(Ï, u, ·) = —u

2 ÎuÎ2
L2(Q) + —T · + —Q

2

⁄ ·

0

⁄

�
|(Ï ≠ ÏQ)(t)|2dx dt

+—�

2r

⁄ ·

0

⁄

�

1
|(Ï ≠ Ï�)(t)|2 ≠ |(Ï ≠ Ï�)(t ≠ r)|2

2
dx dt

+—S

2r

⁄ ·

0

⁄

�
(Ï(t) ≠ Ï(t ≠ r)) dx dt + —�

2r

⁄ 0

≠r

⁄

�
(Ï0 ≠ Ï�(t)) dx dt

+—S

2r

⁄ 0

≠r

⁄

�
(1 + Ï0) dx dt.

We have

D· Jr(uú, · ú) = —T + —Q

2 ÎÏú(· ú) ≠ ÏQ(· ú)Î2
L2(�) + —S

2r

⁄

�
(Ïú(· ú) ≠ Ïú(· ú ≠ r)) dx

+—�

2r

1
Î(Ïú ≠ Ï�)(· ú)Î2

L2(�) ≠ Î(Ïú ≠ Ï�)(· ú ≠ r)Î2
L2(�)

2
.

So, the optimal control and time (uú, · ú) satisfy the following first order necessary opti-
mality condition with respect to time

D· Jr(uú, · ú)(s ≠ · ú) Ø 0, ’ s œ [r, T ].

This condition can be simplified by taking the following arguments on s. If · ú œ (r, T ),
take s = · ú + h or s = · ú ≠ h for h > 0, then we obtain D· Jr(uú, · ú) = 0. If · ú = r, then
s ≠ · ú Ø 0 for any s œ [r, T ], so we have D· Jr(uú, · ú) Ø 0. Finally, if · ú = T , we deduce
that D· Jr(uú, · ú) Æ 0.
The optimal control uú satisfies the following first-order necessary optimality condition

(DuJr(uú, ·ú))(u ≠ uú) = (DuJr(uú, ·ú))w = —Q

⁄ ·ú

0

⁄

�
(Ïú ≠ ÏQ)�dx dt

+—�
r

⁄ ·ú

·ú≠r

⁄

�
(Ïú ≠ Ï�)�dx dt + —s

2r

⁄ ·ú

·ú≠r

⁄

�
�dx dt + —u

⁄ T

0

⁄

�
uú(u ≠ uú)dx dt Ø 0.

(2.49)
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In order to simplify this condition, put › = � in (2.37), › = � in (2.38) and integrate
over [0, · ú], which yields

≠
⁄ ·ú

0

⁄

�
ˆtp� dx dt = ≠B

⁄ ·ú

0

⁄

�
Òp · Ò� dx dt +

⁄ ·ú

0

⁄

�
(P‡ú ≠ A ≠ –uú) hÕ(Ïú)p� dx dt

+
⁄ ·ú

0

⁄

�
—Q (Ïú ≠ ÏQ) � dx dt +

⁄ ·ú

·ú≠r

⁄

�

1
2r

(2—�(Ïú ≠ Ï�) + —s) � dx dt

≠
⁄ ·ú

0

⁄

�
C‡úhÕ(Ïú)q�dx dt ≠

⁄ ·ú

0

⁄

�
f Õ(Ïú)p�dx dt

(2.50)
and

≠
⁄ ·ú

0

⁄

�
ˆtq� dx dt = ≠

⁄ ·ú

0

⁄

�
Òq · Ò� dx dt

+
⁄ ·ú

0

⁄

�
Ph(Ïú)p� dx dt ≠

⁄ ·ú

0

⁄

�
(Ch(Ïú) + —) q� dx dt.

(2.51)

On the other hand, substituting › for p in (2.25) and q in (2.26) leads to
⁄ ·ú

0

⁄

�
ˆt�p dx dt + B

⁄ ·ú

0

⁄

�
Ò� · Òp dx dt =

⁄ ·ú

0

⁄

�
(P� ≠ –w) h(Ïú)p dx dt

+
⁄ ·ú

0

⁄

�
(P‡ú ≠ A ≠ –uú) hÕ(Ïú)�p dx dt ≠

⁄ ·ú

0

⁄

�
f Õ(Ïú)�pdx dt

(2.52)

and ⁄ ·ú

0

⁄

�
ˆt�q dx dt +

⁄ ·ú

0

⁄

�
Ò� · Òq dx dt

= ≠
⁄ ·ú

0

⁄

�
(Ch(Ïú) + —) �q dx dt ≠

⁄ ·ú

0

⁄

�
C‡úhÕ(Ïú)�q dx dt.

(2.53)

Due to the facts that p(· ú) = q(· ú) = 0, and �(0) = �(0) = 0, and upon integrating by
parts with respect to time, we obtain

≠
⁄ ·ú

0

⁄

�
ˆtp� dx dt =

⁄ ·ú

0

⁄

�
pˆt� dx dt.

Consequently, substituting (2.50) into (2.52), we obtain
⁄ ·ú

0

⁄

�
—Q(Ïú ≠ ÏQ)� dx dt +

⁄ ·ú

·ú≠r

⁄

�

1
2r

(2—�(Ïú ≠ Ï�) + —s) � dx dt

=
⁄ ·ú

0

⁄

�
(P� ≠ –w) h(Ïú)p dx dt +

⁄ ·ú

0

⁄

�
C‡úhÕ(Ïú)q�dx dt.

(2.54)

As well, upon substituting (2.51) into (2.53), we obtain
⁄ ·ú

0

⁄

�
Ph(Ïú)�p dx dt = ≠

⁄ ·ú

0

⁄

�
C‡úhÕ(Ïú)�q dx dt.

Combining (2.54) and the above equation leads to
⁄ ·ú

0

⁄

�
—Q(Ïú ≠ ÏQ)� dx dt +

⁄ ·ú

·ú≠r

⁄

�

1
2r

(2—�(Ïú ≠ Ï�) + —s) � dx dt

+–
⁄ ·ú

0

⁄

�
h(Ïú)wp dx dt = 0.
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Substituting the above equation into (2.49) to obtain

(DuJr(uú, · ú))(u ≠ uú) = —u

⁄ T

0

⁄

�
uú(u ≠ uú) dx dt + –

⁄ ·ú

0

⁄

�
h(Ïú)(u ≠ uú)p dx dt Ø 0.

2
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On an Optimal Control Problem Describing Lactate Production Inhibition

Chapter 3

“

Doing the best at this moment puts you in the best place for the

next moment.

”

Oprah Winfrey

Altered metabolism, characterized by high concentration levels of lactate enzyme,
contributes to tumor development, malignancy, and metastasis and introduces metabolic

liabilities that can be employed in cancer treatment. Here, this chapter aims to reach a
desired lactate concentration, under the action of an optimal treatment dose, represented
by a control, at an optimal treatment time. We consider an objective functional to be
minimized associated with a system modeling lactate dynamics in the presence of con-
trol. We show the existence of a minimizer of this functional, and we derive a first-order
necessary optimality condition.

3.1 Introduction

A common feature of tumor cells is the glycolytic abnormal metabolism known as the
Warburg e�ect, by which and even in the presence of ample oxygen, cancer cells preferen-
tially use glycolysis, unlike healthy cells which usually rely on oxidative phosphorylation
to produce energy. The shift from oxidative phosphorylation towards glycolysis, which is
accompanied by a high glucose uptake due to the lower energetic e�ciency of glycolysis
compared with oxidative phosphorylation, is one of the hallmarks of tumors. As a result,
one observes elevated production levels of lactate which contributes to malignant progres-
sion, lowering PH for invasion and triggering immune escape.

LDH enzyme covers a central position in the metabolic reprogramming of tumor cells,
playing a key role in the maintenance of altered glycolytic metabolism and permitting the
survival of tumor cells when glycolysis represents the only energetic source. Structurally,
the LDH enzyme is a tetrameric enzyme composed of two di�erent kinds of subunits
LDH-A and LDH-B. LDH-A has high activity in converting pyruvate into lactate whereas
LDH-B is more e�cient in the catalysis of the reverse reaction from lactate to pyruvate.

An isoform of LDHA, hLDH-5, was found to be overexpressed in a wide range of tumors
linking its increase to aggressive tumor phenotype. Moreover, it has been established that
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hLDH-5 may play an important role in the development and maintenance of metastatic
tumors and serum hLDH-5 levels have been correlated with resistance to chemotherapy
and radiotherapy. For these reasons hLDH-5 is now being considered a very promising
therapeutic target for the treatment of cancer (see [17, 25, 30, 32, 39, 54, 57, 58, 72, 78]).
Several LDHA inhibitors are mentioned in the literature for either type of tumors (see
[45,56,67,68]). In this chapter, we are interested in gliomas, so we consider the treatment
with gossypol which showed dose-dependent cytotoxic activity in diverse cancer cells and
in particular in gliomas.

In [62], Miranville considered the following reaction-di�usion equation modeling lactate
kinetics in one compartment

ˆtu ≠ –�u + —u + ku

kÕ + u
= f(x, t).

Here u represents the intracellular lactate concentration. Furthermore, the non-linear
term ku (kÕ + u)≠1 stands for lactate transport from capillary, where k is the maximum
transport rate and kÕ is the Michaelis-Menten constant. The function f represents the
creation and consumption of lactate and —u stands for the loss of lactate due to the convert
of lactate to pyruvate by the LDHB enzyme (note that the above equation can also model
the extra-cellular (capillary) lactate concentration, in which case —u corresponds to the
blood flow). One can see that

ku

kÕ + u
= k ≠ kkÕ

kÕ + u
.

Based on the previous model, we consider the following problem, for T > 0 in a bounded
domain � µ R3 with C3≠boundary �

ˆtu ≠ –�u + —u ≠ k

kÕ + u
= J(x, t)(1 ≠ “v), in � ◊ (0, T ) =: Q, (3.1)

ˆ‹u = 0, on � ◊ (0, T ), (3.2)

u(0, x) = u0(x), in �. (3.3)

Here, we introduce a control v which represents the concentration of gossypol inhibitor,
where v = 0 stands for no dose and v = 1 stands for full dose. We further write
kkÕ (kÕ + u)≠1 as k (kÕ + u)≠1 and note that J = f ≠ k. Finally, “J(x, t)v is the in-
hibition of lactate production at rate “. The cost functional to be minimized is given
by

J (u, v, ·) = —Q

2

⁄ ·

0

⁄

�
|u≠uQ|2dx dt+ —�

2r

⁄ ·

·≠r

⁄

�
|u≠u�|2dx dt+ —v

2

⁄ T

0

⁄

�
|v|2dx dt, (3.4)

where uQ, u� represent the desired evolution and distributional lactate concentrations
both in L2(Q), · œ (0, T ] represents the treatment time, T > 0 is a fixed maximal time
in which the patient is allowed to undergo treatment. The first two terms of (3.4) are of
standard tracking type as often considered in the literature of parabolic optimal control
(see [73]), the third term penalizes large concentrations of the applied inhibitor. Our
problem becomes

minimize J associated to (3.1) ≠ (3.3). (3.5)
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Cancer therapy is of interest to many researchers, particularly the application of optimal
control theory to find an optimal treatment dose at an optimal time (see [43] and [23]),
but most of these models target the cancer cell itself. In this work, we consider the cancer
cell, its proliferation, malignancy, and metastasis from a di�erent perspective, for exam-
ple at the level of metabolism. To this end, we consider the parabolic problem in [62]
the more lactate the cell produces, the more malignant it becomes. As excess lactate is
transported to the capillaries with Michaelis-Menten kinetics, this promotes metastasis,
malignancy, and resistance to therapy. Considering these facts, we think of inhibiting lac-
tate production by finding a biologically relevant control to achieve our goal. Moreover,
cancer treatment must not exceed or fall below a certain dose and treatment time. Thus,
the goal of this work is to choose the control and treatment time such that the corre-
sponding state u(t, x) is the best possible approximation to a desired evolutionary lactate
concentration and a stationary final lactate distribution in �. A mathematical di�culty
lies in the singularity of the nonlinear term k (k + u)≠1, showing that our solution is non-
negative is another challenge, however, we also emphasize that our objective functional
depends on the free final time, which is also a challenge to show the di�erentiability of the
coast functional with respect to time. So, in this work, we first show the well-posedness
of (3.1)-(3.3), and consequently, we define the control-to-state operator, which we show
is Fréchet di�erentiable with respect to the control v, we also prove that a minimizer of
(3.4) exists. Moreover, the objective functional (3.4) is also Fréchet di�erentiable with
respect to time and control. Finally, we derive a simplified first-order necessary optimality
condition.

Assumptions
(C) The constants k, – Ø 0, — > 0, “ > 0, and the function J œ LŒ(Q) are such that

J Ø ≠kÕ

k
and u0 Ø 0.

(D) The control v œ Vad := {v œ LŒ(Q) : 0 Æ v Æ 1}.

3.2 Existence of solutions

In this section, we study the existence of a unique weak solution of System (3.1)-(3.3).
More precisely, we will prove the following theorem:

Theorem 3.1 (Existence and uniqueness of weak solutions)

Assume that Assumptions (C) and (D) hold and that u0 œ H1(�). Then, Problem
(3.1)-(3.3) admits a unique weak solution u such that u Ø 0 and

u œ Y := L2(0, T ; H2(�)) fl LŒ(0, T ; H1(�)) fl H1(0, T ; L2(�)).

Moreover, the control-to-state operator

S : L2(Q) ≠æ Y

v ‘≠æ u

is continuous.
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Proof. The variational formulation of (3.1), for u, › œ H1(�), is given by
⁄

�
ˆtu› dx + –

⁄

�
Òu · Ò› dx + —

⁄

�
u › dx =

⁄

�

k

kÕ + u
› dx +

⁄

�
J(x, t)(1 ≠ “v)› dx. (3.6)

Nonnegativity of u:

Estimate 1. Set U = u + kÕ. Then (3.1) is equivalent to

ˆtU ≠ –�U + —U ≠ k

U
= —kÕ + J(1 ≠ “v).

Multiplying the above equation by ≠ 1
U

and integrate by parts to have

d

dt

⁄

�
ln 1

U
dx + –

⁄

�

|ÒU |2

U2 dx +
⁄

�

k

U2 dx = —Vol(�) ≠
⁄

�

—kÕ

U
dx ≠

⁄

�

J(1 ≠ “v)
U

dx.

From the above equation, we deduce that

d

dt

⁄

�
ln 1

U
dx Æ c

1
1 + ÎJÎ2

LŒ(�) Î1 ≠ “vÎ2
L2(�)

2
.

Whence, upon integrating over [0, t], we find
⁄

�
ln 1

U(t)dx Æ
⁄

�
ln 1

U0
dx + c

1
t + ÎJÎ2

LŒ(Q) Î1 ≠ “vÎ2
L2(Q)

2
.

This implies that U > 0, and thus u > ≠kÕ.

Estimate 2. Set u≠ = max(0, ≠u). Then, multiplying Equation (3.1) by ≠u≠, and
integrating over �, we get

1
2

d

dt

...u≠
...

2

L2(�)
+ –

...Òu≠
...

2

L2(�)
+ —

...u≠
...

2

L2(�)
= ≠

⁄

�

A
k

kÕ + u
+ J(1 ≠ “v)

B

u≠dx.

If u Ø 0, then u≠ = 0. On the contrary, from Estimate 1, we have ≠kÕ < u Æ 0, and
consequently k

kÕ + u
Ø k

kÕ . So, by using Assumption (C) in the above equation, we deduce
that

d

dt

...u≠
...

2

L2(�)
Æ 0.

It follows, from the fact that u0 Ø 0, that

sup
·œ[0,T ]

...u≠(·)
...

2

L2(�)
Æ

...u≠(0)
...

2

L2(�)
= 0.

Therefore u≠ = 0, and hence u Ø 0 a.e. in Q.

Regularity estimates:

Estimate 1. Putting › = 2u in (3.6) gives

d

dt
ÎuÎ2

L2(�) + 2– ÎÒuÎ2
L2(�) + 2— ÎuÎ2

L2(�) = 2
⁄

�

ku

kÕ + u
dx + 2

⁄

�
J(x, t)(1 ≠ “v)u dx.
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Let ⁄ = min(–, —), we find

d

dt
ÎuÎ2

L2(�) + 2⁄ ÎuÎ2
H1(�) Æ 2kVol(�) + ÎJÎ2

LŒ(�) Î1 ≠ “vÎ2
L2(�) + ÎuÎ2

L2(�)

Æ 2kVol(�) + ÎJÎ2
LŒ(�)

1
Vol(�) + “2 ÎvÎ2

L2(�)

2
+ ÎuÎ2

L2(�) .

Integrating over [0, t), and applying Gronwall’s lemma, we have

Îu(t)Î2
L2(�) + 2⁄ ÎuÎ2

L2(0,t;H1(�)) Æ Îu0Î2
L2(�)

+
⁄ t

0

1
2kVol(�) + ÎJÎ2

LŒ(�)

1
Vol(�) + “ ÎvÎ2

L2(�)

22
ds +

⁄ t

0
Îu(s)Î2

L2(�) ds.

Consequently, we get

Îu(t)Î2
L2(�) + 2⁄ ÎuÎ2

L2(0,t;H1(�))

Æ
3

Îu0Î2
L2(�) +

⁄ t

0

1
2kVol(�) + ÎJÎ2

LŒ(�)

1
Vol(�) + “ ÎvÎ2

L2(�)

22
ds

4
et.

We deduce that u is bounded in LŒ(0, t; L2(�)) fl L2(0, t; H1(�)).

Estimate 2. Putting › = 2ˆtu in (3.6), we find

ÎˆtuÎ2
L2(�) + –

d

dt
ÎÒuÎ2

L2(�) + —
d

dt
ÎuÎ2

L2(�)

Æ kVol(�) + ÎJÎ2
LŒ(�)

1
Vol(�) + “2 ÎvÎ2

L2(�)

2
+ ÎˆtuÎ2

L2(�) .

Taking ⁄ = min(–, —), and integrating over [0, t], we get

ÎˆtuÎ2
L2(0,t;L2(�)) + ⁄ Îu(t)Î2

H1(�) Æ kVol(�)t + Vol(�) ÎJÎ2
L2(0,t;LŒ(�))

+“2 ÎJÎ2
LŒ(0,t;LŒ(�)) ÎvÎ2

L2(0,t;L2(�)) + ⁄ Îu0Î2
H1(�) .

Therefore, we deduce that u is bounded in LŒ(0, t; H1(�)), and ˆtu is bounded in
L2(0, t; L2(�)).

Estimate 3. We rewrite (3.1) in the form

≠–�u = ≠ˆtu ≠ —u + k

kÕ + u
+ J(x, t)(1 ≠ “v),

and since the right-hand side is in L2(�), then elliptic regularity (see [36]), implies that
u œ H2(�). Moreover there exists some l so that

ÎuÎH2(�) Æ l
1
ÎˆtuÎL2(�) + ÎuÎL2(�) + ÎvÎL2(�) + ÎJÎL2(�)

2
.

Consequently

ÎuÎL2(0,t;H2(�)) Æ l
1
ÎˆtuÎL2(0,t;L2(�)) + ÎuÎL2(0,t;L2(�)) + ÎvÎL2(0,t;L2(�)) + ÎJÎL2(0,t;L2(�))

2
.
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Therefore, we infer that u œ L2(0, t; H2(�)) fl LŒ(0, t; H1(�)) and ˆtu œ L2(0, t; L2(�)),
hence u œ C0([0, t]; H1(�)) (see [8]).

Existence of solution. We have seen in the previous part that any regular solution of
(3.1)-(3.3) is non-negative, so in the view of that, we set

Ï(s) =

Y
___]

___[

≠k

kÕ + s
; if s Ø 0,

≠ k

kÕ + s

kÕ ; if s < 0,

and we consider the following problem

ˆtu ≠ –�u + —u + Ï(u) = J(x, t)(1 ≠ “v), in � ◊ (0, T ) =: Q,

ˆ‹u = 0, on � ◊ (0, T ),

u(0, x) = u0(x), in �.

In order to establish the existence of solution, we will employ Faedo-Galerkin method, to
this end, we consider Vn = Span{Êi ; i = 1, . . . , n} where {Êi}i form an orthonormal basis
of L2(�). Let Pn be the projection of L2(�) on Vn. Set

un
0 = Pnu0, vn = Pnv, Jn = PnJ, and un = Pnu,

so that un =
nÿ

i=1
an,i(t)Êi(x), and Jn æ J strongly in L2(Q), un

0 æ u0 strongly in L2(�),

and vn æ v strongly in L2(Q). Then the approximated variational problem is given by

d

dt

nÿ

i=1
an,i(t)

⁄

�
Êi Êj dx + –

nÿ

i=1
an,i(t)

⁄

�
ÒÊi · ÒÊj dx + —

nÿ

i=1
an,i(t)

⁄

�
Êi Êj dx

= ≠
⁄

�
Ï

A
nÿ

i=1
an,i(t)Êi

B

Êj dx +
⁄

�
Jn (1 ≠ “vn) Êj dx, i, j = 1, . . . , n.

(3.7)

Equivalently, we have

aÕ
n(t)In + –an(t)Mn + —an(t)In = Kn + Jn ≠ “Vn, (3.8)

where
Y
____]

____[

(In)i,j =
⁄

�
Êi Êj dx, (Mn)i,j =

⁄

�
ÒÊi · ÒÊj dx,

(Kn)j =
⁄

�
Ï

A
nÿ

i=1
an,i(t)Êi

B

Êj dx, (Jn)j =
⁄

�
JnÊj dx, (Vn)j =

⁄

�
vnÊj dx.

The Problem (3.8) can be written as the following form

aÕ
n(t) = f(t, an(t)), (3.9)

with a vectorial function f Lipschitz with respect to the second variable an(t). Then (3.9)
admits a unique local solution over [0, T ú], where T ú œ [0, T ].
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Multiplying Equation (3.7) by an,j, and summing over j from 1 to n, and putting ⁄ =
min(–, —), we find

d

dt
ÎunÎ2

L2(�) + 2⁄ ÎunÎ2
H1(�) Æ kVol(�) + ÎJnÎ2

LŒ(�) Î1 ≠ “vnÎ2
L2(�) + 2 ÎunÎ2

L2(�) .

Hence

Îun(T ú)Î2
L2(�) + 2⁄ ÎunÎ2

L2(0,T ú;H1(�))

Æ
3⁄ t

0

1
ÎJnÎ2

LŒ(�) Î1 ≠ “vnÎ2
L2(�) + kVol(�)

2
ds + Îun

0 Î2
L2(�)

4
e2T ú

.

Now, multiplying Equation (3.7) by aÕ
n,j, and summing over j from 1 to n, we have

2 ÎˆtunÎ2
L2(�) + ⁄

d

dt
ÎunÎ2

H1(�) Æ kVol(�) + ÎJnÎ2
LŒ(�) Î1 ≠ “vnÎ2

L2(�) + ÎˆtunÎ2
L2(�) .

Equivalently, we have

ÎˆtunÎ2
L2(0,T ú;L2(�)) + ⁄ Îun(T ú)Î2

H1(�)

Æ kVol(�)T ú + ÎJnÎ2
LŒ(0,T ú;LŒ(�)) Î1 ≠ “vnÎ2

L2(0,T ú;L2(�)) + ⁄ Îun
0 Î2

H1(�) .

We deduce that un is bounded in L2(0, T ú; H1(�)), and ˆtun is bounded in L2(0, T ú; L2(�)),
hence the solution an of the ODE (3.9) is global over [0, T ], and un œ C0([0, T ]; L2(�)).
Moreover, there exists some relabeled subsequence {un}n which converges weakly to u in
L2(0, T ; H1(�)).

Passage to the limit. Let Â œ CŒ
c ([0, T ]), and › œ H1(�), we have

⁄ T

0

⁄

�
ˆtun›Âdx dt + –

⁄ T

0

⁄

�
(Òun · Ò›) Âdx dt

= ≠—
⁄ T

0

⁄

�
un›Âdx dt +

⁄ T

0

⁄

�
Ï(un)›Âdx dt +

⁄ T

0

⁄

�
Jn(1 ≠ “vn)›Âdx dt.

(3.10)

Therefore ⁄ T

0

⁄

�
ˆtun›Âdx dt = ≠

⁄ T

0

⁄

�
un›ÂÕdx dt,

but ⁄ T

0

⁄

�
un›ÂÕdx dt ≠æ

⁄ T

0

⁄

�
u›ÂÕdx dt = ≠

⁄ T

0

⁄

�
ˆtu›Âdx dt.

So, ⁄ T

0

⁄

�
ˆtun›Âdx dt ≠æ ≠

⁄ T

0

⁄

�
ˆtu›Âdx dt.

Besides, we have that
⁄ T

0

⁄

�
(Òun · Ò›) Âdx dt ≠æ

⁄ T

0

⁄

�
(Òu · Ò›) Âdx dt

and

≠—

⁄ T

0

⁄

�
un›Âdx dt +

⁄ T

0

⁄

�
Jn(1 ≠ “vn)›Âdx dt ≠æ ≠—

⁄ T

0

⁄

�
u ›Âdx dt +

⁄ T

0

⁄

�
J(1 ≠ “v)›Âdx dt.
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The compact embedding

W := {un œ L2(0, T ; H1(�)), ˆtun œ L2(0, T ; L2(�))} Òæ L2(0, T ; L2(�))

(see [8]) yields that un converges strongly to u in L2(0, T ; L2(�)), and since Ï(un) is
Lipschitz continuous, then

⁄ T

0

⁄

�
Ï(un)›Âdx dt ≠æ

⁄ T

0

⁄

�
Ï(u)›Âdx dt.

Now choose Â œ CŒ
c ([0, T ]), so that Â(T ) = 0. Then, we have in (3.6)

⁄ T

0

⁄

�
ˆtu›Âdx dt + –

⁄ T

0

⁄

�
(Òu · Ò›) Âdx dt

= ≠—
⁄ T

0

⁄

�
u›Âdx dt +

⁄ T

0

⁄

�
Ï(u)›Âdx dt +

⁄ T

0

⁄

�
J(1 ≠ “v)›Âdx dt,

which is equivalent to

≠
⁄ T

0

⁄

�
u›ÂÕdx dt + –

⁄ T

0

⁄

�
(Òu · Ò›) Âdx dt = ≠—

⁄ T

0

⁄

�
u›Âdx dt

+
⁄ T

0

⁄

�
Ï(u)›Âdx dt +

⁄ T

0

⁄

�
J(1 ≠ “v)›Âdx dt +

⁄

�
u(0)›Â(0)dx.

(3.11)

Similarly, we have in (3.10)

≠
⁄ T

0

⁄

�
un›ÂÕdx dt + –

⁄ T

0

⁄

�
(Òun · Ò›) Âdx dt

= ≠—

⁄ T

0

⁄

�
un›Âdx dt +

⁄ T

0

⁄

�
Ï(un)›Âdx dt +

⁄ T

0

⁄

�
Jn(1 ≠ “vn)›Âdx dt +

⁄

�
un(0)›Â(0)dx.

Passing to the limit in the above equation, we find

≠
⁄ T

0

⁄

�
u›ÂÕdx dt + –

⁄ T

0

⁄

�
(Òu · Ò›) Âdx dt

= ≠—
⁄ T

0

⁄

�
u›Âdx dt +

⁄ T

0

⁄

�
Ï(u)›Âdx dt +

⁄ T

0

⁄

�
J(1 ≠ “v)›Âdx dt +

⁄

�
u0›Â(0)dx.

Subtracting (3.11) and the above equation, we get
⁄

�
u(0)›Â(0)dx =

⁄

�
u0›Â(0)dx,

we deduce that u(0) = u0 a.e in L2(�).

Continuity of the control-to-state operator. Let u1, u2 be two solutions of (3.1)-
(3.3) with same initial data, and let v1, v2 be two controls. Set u = u1≠u2, and v = v1≠v2,
set ⁄ = min(–, —), we have

⁄

�
ˆtu›dx + –

⁄

�
Òu · Ò›dx + —

⁄

�
u› dx = ≠

⁄

�

ku

(kÕ + u1)(kÕ + u2)›dx ≠ “

⁄

�
J(x, t)v›dx. (3.12)

Put › = 2u in (3.12), we obtain
d

dt
ÎuÎ2

L2(�) + 2⁄ ÎuÎ2
H1(�) Æ “2 ÎJÎ2

LŒ(�) ÎvÎ2
L2(�) + 2 ÎuÎ2

L2(�) .
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Thus, integrating with respect to time, and using Gronwall’s inequality, we get

Îu(t)Î2
L2(�) + 2⁄ ÎuÎ2

L2(0,t;H1(�)) Æ
1
“2 ÎJÎ2

LŒ(0,t;LŒ(�)) ÎvÎ2
L2(0,t;L2(�))

2
e2t.

Put › = 2ˆt in (3.12), we have

2 ÎˆtuÎ2
L2(�) + ⁄

d

dt
ÎuÎ2

H1(�) Æ ≠2
⁄

�

k

(kÕ + u1)(kÕ + u2)
uˆtu dx ≠ 2“

⁄

�
J(x, t)vˆtudx

Æ 2 d

dt
ÎuÎ2

L2(�) + “2 ÎJÎ2
LŒ(�) ÎvÎ2

L2(�) + ÎˆtuÎ2
L2(�) .

Hence

ÎˆtuÎ2
L2(0,t;L2(�)) + ⁄ Îu(t)Î2

H1(�) Æ “2 ÎJÎ2
LŒ(0,t;LŒ(�)) ÎvÎ2

L2(0,t;L2(�))

1
2e2t + 1

2
.

Recall that
≠–�u = ≠ˆtu ≠ —u + ku

(kÕ + u1)(kÕ + u2)
≠ “J(x, t)v.

Since the right-hand side lies in L2(�), then elliptic regularity gives that u œ H2(�), and
there is a constant l so that

ÎuÎH2(�) Æ l
1
ÎuÎL2(�) + ÎvÎL2(�) + ÎˆtuÎL2(�)

2
.

Finally, we get

ÎuÎL2(0,t;H2(�)) Æ l
1
ÎuÎL2(0,t;L2(�)) + ÎvÎL2(0,t;L2(�)) + ÎˆtuÎL2(0,t;L2(�))

2
,

and hence the desired result. 2

3.3 Existence of a minimizer

The cost functional J defined by (3.4) is bounded from below, so consider a minimizing se-
quence (vn, ·n)nœN with vn œ Vad, and ·n œ (0, T ) such that (un)nœN are the corresponding
solutions of (3.1)-(3.3) on the interval [0, T ] with un(0) = u0, ’ n œ N such that

lim
næŒ

J (un, vn, ·n) = inf
(w,s)œVad◊[0,T ]

J („, w, s),

where „ is the solution of (3.1)-(3.3) for the corresponding control w. In particular,
vn œ Vad implies that 0 Æ vn Æ 1 in Q, ’ n œ N. As {·n}nœN is a bounded sequence, there
exists a relabeled subsequence, such that

·n æ · ú œ [0, T ], as n æ Œ.

We also have
vn æ vú weakly in L2(Q), as n æ Œ

and
un æ uú strongly in C0([0, T ]; L2(�)) fl L2(Q), as n æ Œ,

where (uú, vú) satisfy (3.1)-(3.3), with 0 Æ vú Æ 1 a.e. in Q.
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Lebesgue dominated convergence theorem gives, ’ p œ [1, Œ),

‰[0,·n](t) æ ‰[0,·ú](t)

and
‰[·n≠r,·n](t) æ ‰[·ú≠r,·ú](t),

strongly in Lp(0, T ). Thus, since un ≠ uQ converges strongly to uú ≠ uQ, and un ≠ u�
converges strongly to uú ≠ u� in L2(Q), in addition to the strong convergence of ‰[0,·n](t)
to ‰[0,·ú](t), and ‰[·n≠r,·n](t) to ‰[·ú≠r,·ú](t), also in L2(Q), we have

⁄ ·n

0

⁄

�
|un ≠ uQ|2dx dt =

⁄ T

0
Îun ≠ uQÎ2

L2(�) ‰[0,·n](t)dt

æ
⁄ T

0
Îuú ≠ uQÎ2

L2(�) ‰[0,·ú](t)dt =
⁄ ·ú

0

⁄

�
|uú ≠ uQ|2dx dt,

and
⁄ ·n

·n≠r

⁄

�
|un ≠ u�|2dx dt =

⁄ T

0
Îun ≠ u�Î2

L2(�) ‰[·n≠r,·n](t)dt

æ
⁄ T

0
Îuú ≠ u�Î2

L2(�) ‰[·ú≠r,·ú](t)dt =
⁄ ·ú

·ú≠r

⁄

�
|uú ≠ u�|2dx dt.

By passing to the limit in J (un, vn, ·n), and using the lower semi continuity of the L2(Q)
norm, we infer

inf
(w,s)œVad◊[0,T ]

J („, w, s) = lim
næŒ

J (un, vn, ·n) Ø J (uú, vú, · ú),

which implies that (uú, · ú) is a minimizer of (3.5).

3.4 Fréchet di�erentiability of the control to state operator

In order to establish the existence of the Fréchet derivative of the control-to-state operator
with respect to the control, we consider the linearized system at uú associated to the
control vú, for w œ L2(Q).

ˆtU ≠ –�U + —U = ≠ k

(kÕ + uú)2 U ≠ “Jw, in, Q

ˆ‹U = 0, on, � ◊ (0, T )

U(0, x) = 0, in, �

(3.13)

satisfying the following variational formulation, for › œ H1(�),
⁄

�
ˆtU dx + –

⁄

�
ÒU · Ò› dx + —

⁄

�
U › dx = ≠

⁄

�

k

(kÕ + uú)2 U › dx ≠ “

⁄

�
J(x, t)w › dx. (3.14)
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Theorem 3.2

Let vú œ Vad. Then the System (3.13) admits a unique solution

U œ L2(0, T ; H2(�)) fl H1(0, T ; L2(�)) fl C([0, T ]; H1(�)).

Proof. Regularity estimates. Putting › = 2U in (3.14), we have
d

dt
ÎUÎ2

L2(�) + 2⁄ ÎUÎ2
H1(�) = ≠

⁄

�

2k

(kÕ + uú)2 |U |2dx ≠ 2“
⁄

�
J(x, t)wU dx

Æ “2 ÎJÎ2
LŒ(�) ÎwÎ2

L2(�) + c ÎUÎ2
L2(�) .

Hence
ÎU(t)Î2

L2(�) + 2⁄ ÎUÎ2
L2(0,t;H1(�)) Æ “2 ÎJÎ2

LŒ(0,t;LŒ(�)) ÎwÎ2
L2(0,t;L2(�)) ect. (3.15)

On the other hand, putting › = 2ˆtU in (3.14) yields

2 ÎˆtUÎ2
L2(�) + ⁄

d

dt
ÎUÎ2

H1(�) Æ 2 d

dt
ÎUÎ2

L2(�) + “2 ÎJÎ2
LŒ(�) ÎwÎ2

L2(�) + ÎˆtUÎ2
L2(�) .

Integrating over [0, t], t œ [0, T ], and using (3.15), we get

ÎˆtUÎ2
L2(0,t;L2(�)) + ⁄ ÎU(t)Î2

H1(�) Æ “2 ÎJÎ2
LŒ(0,t;LŒ(�)) ÎwÎ2

L2(0,t;L2(�))

1
2ect + 1

2
.

Consequently, we deduce that U is bounded in LŒ(0, t; H1(�)) fl L2(0, t; H1(�)), and ˆtU
is bounded in L2(0, t; L2(�)). Rewrite (3.13) as

≠–�U = ≠ˆtU ≠ —U ≠ k

(kÕ + uú)2 U ≠ “Jw,

and due to elliptic regularity (see [61]), we deduce that U is in H2(�). Moreover there
exists some l such that

ÎUÎ2
H2(�) Æ l

1
ÎˆtUÎ2

L2(�) + ÎUÎ2
L2(�) + ÎwÎ2

L2(�)

2
.

Thus, we get

ÎUÎ2
L2(0,t;H2(�)) Æ l

1
ÎˆtUÎ2

L2(0,t;L2(�)) + ÎUÎ2
L2(0,t;L2(�)) + ÎwÎ2

L2(0,t;L2(�))

2
.

Therefore, U œ L2(0, t; H2(�)) fl LŒ(0, t; H1(�)), and ˆtU œ L2(0, t; L2(�)), so that
U œ C([0, t]; H1(�)).

Existence. By applying Faedo-Galerkin method, one can easily show the existence of
solution of a linear system (see [27]).

Uniqueness. Let U1 and U2 be two solutions of (3.13) with w = 0, set U = U1 ≠ U2, we
find

ÎUÎ2
LŒ(0,t;L2(�))flL2(0,t;H1(�)) Æ “2 ÎJÎ2

LŒ(0,t;LŒ(�)) ÎwÎ2
L2(Q) ect Æ 0,

hence U = 0. 2

3.5 Fréchet Di�erentiability of control-to-state operator with respect to the control

Let w œ L2(Q), set uw := S(vú + w), and uú := S(vú).
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Theorem 3.3

Let U be the solution of the linearized System (3.13) at vú. Then the remainder fl
satisfy

ÎflÎ2
Y Æ c ÎwÎ4

L2(Q) ,

where
Y := L2(0, s; H2(�)) fl H1(0, s; L2(�)) fl LŒ(0, s; H1(�)).

Proof. The remainder fl could be expressed as, fl = uw ≠ uú ≠ U , and set vw = vú + w,
such that for all, › œ H1(�), we have
⁄

�
ˆtu

w›dx + –
⁄

�
Òuw · Ò›dx = ≠—

⁄

�
uw›dx +

⁄

�

k

kÕ + uw
›dx +

⁄

�
J(x, t) (1 ≠ “vw) ›dx,

⁄

�
ˆtu

ú›dx + –
⁄

�
Òuú · Ò›dx = ≠—

⁄

�
uú›dx +

⁄

�

k

kÕ + uú ›dx +
⁄

�
J(x, t) (1 ≠ “vú) ›dx,

and
⁄

�
ˆtU›dx + –

⁄

�
ÒU · Ò›dx = ≠—

⁄

�
U›dx ≠

⁄

�

k

(kÕ + uú)2 U›dx ≠ “
⁄

�
J(x, t)w›dx.

Then the remainder fl = uw ≠ uú ≠ U satisfies, for all › œ H1(�)
⁄

�
ˆtfl›dx + –

⁄

�
Òfl · Ò›dx + —

⁄

�
fl›dx =

⁄

�

A
k

kÕ + uw
≠ k

kÕ + uú + k

(kÕ + uú)2U

B

›dx.

Setting f(u) = k

kÕ + u
, Taylor with integral remainder gives

f(uw) ≠ f(uú) ≠ f Õ(uú)U = f Õ(uú)fl + (uw ≠ uú)2
⁄ 1

0
f ÕÕ (zuw + (1 ≠ z)uú) (1 ≠ z) dz.

However, the remainder

R :=
⁄ 1

0
f ÕÕ (zuw + (1 ≠ z)uú) (1 ≠ z) dz

is bounded, so that
ÎRÎŒ Æ cR.

Thus, fl satisfies the variational formulation
⁄

�
ˆtfl ›dx + –

⁄

�
Òfl · Ò›dx + —

⁄

�
fl ›dx =

⁄

�
f Õ(uú)fl ›dx +

⁄

�
(uw ≠ uú)2 R ›dx. (3.16)

Estimates:

Estimate 1. Putting › = 2fl in (3.16), gives
d

dt
ÎflÎ2

L2(�) +2– ÎÒflÎ2
L2(�) +2— ÎflÎ2

L2(�) = ≠2
⁄

�

k

(kÕ + uú)2 |fl|2dx+2
⁄

�
(uw ≠ uú)2 R fl dx.

Consequently, taking ⁄ = min(–, —), we find
d

dt
ÎflÎ2

L2(�) + 2⁄ ÎflÎ2
H1(�) Æ 2 ÎflÎ2

L2(�) + 2cR Îuw ≠ uúÎLŒ(�) Îuw ≠ uúÎL2(�) ÎflÎL2(�) .
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Integrating over [0, t), we obtain

Îfl(t)Î2
L2(�) + 2⁄ ÎflÎ2

L2(0,t;H1(�)) Æ ÎflÎ2
L2(�) + 2cR

⁄ t

0
Îuw ≠ uúÎLŒ(�) Îuw ≠ uúÎL2(�) ÎflÎL2(�) ds

Æ ÎflÎ2
L2(�) + 2cR Îuw ≠ uúÎLŒ(0,t;L2(�))

⁄ t

0
Îuw ≠ uúÎLŒ(�) ÎflÎL2(�) ds.

Applying Holder’s and Young’s inequalities, and using the embedding

L2(0, t; H2(�)) Òæ L2(0, t; LŒ(�)),

we find

Îfl(t)Î2
L2(�) + 2⁄ ÎflÎ2

L2(0,t;H1(�)) Æ c Îuw ≠ uúÎ2
LŒ(0,t;L2(�)) Îuw ≠ uúÎ2

L2(0,t;H2(�)) + cÕ ÎflÎ2
L2(0,t;L2(�)) .

Consequently

Îfl(t)Î2
L2(�) + 2⁄ ÎflÎ2

L2(0,t;H1(�)) Æ c ÎwÎ4
L2(0,t;L2(�)) ecÕt. (3.17)

Estimate 2. Putting › = 2ˆtfl in (3.16), and taking ⁄ = min(–, —), we find

2 ÎˆtflÎ2
L2(�) + ⁄

d

dt
ÎflÎ2

H1(�) Æ d

dt
ÎflÎ2

L2(�) +
⁄

�
(uw ≠ uú)2

R ˆtfl dx

Æ d

dt
ÎflÎ2

L2(�) + cR Îuw ≠ uúÎLŒ(�) Îuw ≠ uúÎL2(�) ÎˆtflÎL2(�) .

Hence and using (3.17), we get

ÎˆtflÎ2
L2(0,t;L2(�)) + ⁄ Îfl(t)Î2

H1(�) Æ Îfl(t)Î2
L2(�) + c2

R Îuw ≠ uúÎ2
L2(0,t;LŒ(�)) Îuw ≠ uúÎ2

LŒ(0,t;L2(�))

Æ c ÎwÎ4
L2(0,t;L2(�)) ecÕt + c Îuw ≠ uúÎ2

L2(0,t;H2(�)) Îuw ≠ uúÎ2
LŒ(0,t;L2(�))

Æ c ÎwÎ4
L2(0,t;L2(�)) .

Estimate 3. We can view the variational formulation as a variational formulation of an
elliptic problem

≠–�fl = ≠ˆtfl ≠ —fl + f Õ(uú)fl + (uw ≠ uú)2 R.

Since the right-hand side lies in L2(�), the elliptic regularity of the Neumann problem
yields that fl lies in H2(�). Moreover, there is a constant l, so that

ÎflÎH2(�) Æ l
1
ÎflÎL2(�) + ÎˆtflÎL2(�) + ÎwÎ2

L2(�)

2
.

Consequently

ÎflÎL2(0,t;H2(�)) Æ l
1
ÎflÎL2(0,t;L2(�)) + ÎˆtflÎL2(0,t;L2(�)) + ÎwÎ2

L2(0,t;L2(�))

2
.

2
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3.6 Di�erentiability of the cost functional

3.6.1 Di�erentiability of the cost functional with respect to time

For any function f œ L1(0, ·, L1(�)), we have the following relation
⁄ ·

·≠r

⁄

�
f(s)dx ds =

⁄ 0

·≠r

⁄

�
f(s)dx ds +

⁄ ·

0

⁄

�
f(s)dx ds

=
⁄ ≠r

·

⁄

�
f(s)dx ds +

⁄ 0

≠r

⁄

�
f(s)dx ds +

⁄ ·

0

⁄

�
f(s)dx ds

=
⁄ ·

0

⁄

�
(f(s) ≠ f(s ≠ r)) dx ds +

⁄ 0

≠r

⁄

�
f(s)dx ds.

So, we can rewrite the objective functional as

J (u, v, ·) = —v

2 ÎvÎ2
L2(Q) + —�

2r

⁄ 0

≠r

⁄

�
|(u ≠ u�) (t)|2dx dt

+1
2

⁄ ·

0

⁄

�

3
—Q|(u ≠ uQ) (t)|2 + —�

3
|(u ≠ u�) (t)|2 ≠ 1

r
|(u ≠ u�) (t ≠ r)|2

44
dx dt.

The first two terms are independent of time, so they vanish when we compute the Fréchet
derivative with respect to the time, for f œ H1(0, T ) Òæ LŒ(0, T ) and h > 0, so that for
· œ (0, T ), · + h œ (0, T ), we find

⁄ ·+h

0
|f(s)|2ds ≠

⁄ ·

0
|f(s)|2ds ≠ h|f(·)|2 =

⁄ ·+h

·
|f(s)|2ds ≠ h|f(·)|2

=
⁄ ·+h

·

1
|f(s)|2 ≠ |f(·)|2

2
ds =

⁄ ·+h

·
(|f(s)| ≠ |f(·)|) (|f(s)| + |f(·)|) ds

Æ 2 ÎfÎLŒ(0,T )

⁄ ·+h

·
(|f(s)| ≠ |f(·)|) ds Æ 2 ÎfÎLŒ(0,T ) h

3
2 ÎˆtfÎL2(0,T ) .

Thus, we get
D·

3⁄ ·

0
|f(t)|2dt

4
= |f(·)|2.

So, we deduce that

D· J (vú, · ú) = —Q

2 Îuú(· ú) ≠ uQ(· ú)Î2
L2(�)

+—�

2

3
Îuú(· ú) ≠ u�(· ú)Î2

L2(�) ≠ 1
r

Îuú(· ú ≠ r) ≠ u�(· ú ≠ r)Î2
L2(�)

4
.

For uQ œ H1(0, T ; L2(�)), u�, uú œ H1(≠r, T ; L2(�)), we deduce the following first-order
necessary optimality condition with respect to time

D· J (vú, · ú)(s ≠ · ú) Ø 0 ’ s œ [0, T ].

To simplify this condition, if · ú œ (0, T ), then s ≠ · ú Ø 0 if s Ø · ú, and s ≠ · ú Æ 0 if
s Æ · ú, so that D· J (vú, · ú) = 0. If · ú = 0, then s ≠ · ú Ø 0 and hence D· J (vú, · ú) Ø 0.
If · ú = T , then s ≠ · ú Æ 0 and hence D· J (vú, · ú) Æ 0.
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3.6.2 Di�erentiability of the cost functional with respect to the control

The Fréchet derivative of the reduced cost functional at (vú, · ú) with respect to the control
v is given by

DvJ(vú, · ú)w = —Q

⁄ ·ú

0

⁄

�
|uú≠uQ|U dx dt+—�

⁄ ·ú

·ú≠r

⁄

�
|uú≠u�|U dx dt+—v

⁄ T

0

⁄

�
vú w dx dt.

In order to eliminate the term U from the above equation, we apply Lagrangian principle,
to this end, we define the Lagrangian function with respective Lagrangian multiplier p by

L(u, v, p) = J(u, v) ≠
⁄⁄

Q
p

A

ˆtu ≠ –�u + —u ≠ k

kÕ + u
≠ J(x, t)(1 ≠ “v)

B

dx dt

3.6.3 Adjoint system

The adjoint system is given by

DuL(uú, vú, p)u = 0,

where

DuL(uú, vú, p)u = —Q

⁄ ·ú

0

⁄

�
|uú ≠ uQ|u dx dt + —�

r

⁄ ·ú

·ú≠r

⁄

�
|uú ≠ u�|u dx dt

+
⁄⁄

Q

(ˆtp + –�p) u dx dt ≠ —

⁄⁄

Q

p u dx dt ≠
⁄⁄

Q

k

(kÕ + uú)2 p u dx dt, ·ú œ [0, T ]

=
⁄ ·ú

0

⁄

�

3
—Q(uú ≠ uQ) + —�‰[·ú≠r,·ú](t)(uú ≠ u�) + ˆtp + –�p ≠ —p ≠ k

(kÕ + uú)2 p

4
u dx dt.

The adjoint system is then written as
Y
_______]

_______[

ˆtp + –�p = —p + k p

(kÕ + uú)2 ≠ —Q(uú ≠ uQ) ≠ —�
r

‰[·ú≠r,·ú](t)(uú ≠ u�), in [0, T ] ◊ �,

ˆ‹p = 0, on [0, T ] ◊ �,

p(·ú) = 0, in �.

(3.18)

Theorem 3.4

Let vú be an optimal control, and uú = S(vú) be the corresponding state. Then the
adjoint Problem (3.18) has a unique solution

p œ H1(0, · ú; L2(�)) fl LŒ(0, · ú; H1(�)) fl L2(0, · ú; H2(�)) fl C([0, · ú]; H1(�)).

Proof. The variational formulation of the adjoint system, for › œ H1(�), is given by:

≠
⁄

�
ˆtp ›dx + –

⁄

�
Òp · Ò› dx + —

⁄

�
p › dx = ≠

⁄

�

k

(kÕ + uú)2 › dx

+—Q

⁄

�
(uú ≠ uQ)› dx + —�

r

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)› dx.

(3.19)
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Regularity estimates:

Estimate 1. Put › = 2p in (3.19), we find

d

dt
ÎpÎ2

L2(�) + 2⁄ ÎpÎ2
H1(�) Æ —2

Q Îuú ≠ uQÎ2
L2(�) +

A
—�

r

B2

Îuú ≠ u�Î2
L2(�) + c ÎpÎ2

L2(�) .

Hence

Îp(t)Î2
L2(�) + 2⁄ ÎpÎ2

L2(0,t;H1(�))

Æ
Q

a—2
Q Îuú ≠ uQÎ2

L2(0,t;L2(�)) +
A

—�

r

B2

Îuú ≠ u�Î2
L2(0,t;L2(�)) + Îp0Î2

L2(�)

R

b ect.

We deduce that p is bounded in LŒ(0, t; L2(�)) fl L2(0, t; H1(�)).

Estimate 2. Put › = 2ˆtp in (3.19), we have

2 ÎˆtpÎ2
L2(�) + ⁄

d

dt
ÎpÎ2

L2(�) Æ —2
Q Îuú ≠ uQÎ2

L2(�) +
A

—�

r

B2

Îuú ≠ u�Î2
L2(�) + ÎˆtpÎ2

L2(�) .

Hence
ÎˆtpÎ2

L2(0,t;L2(�)) + Îp(t)Î2
H1(�) Æ Îp(0)Î2

H1(�)

+—2
Q Îuú ≠ uQÎ2

L2(0,t;L2(�)) +
A

—�

r

B2

Îuú ≠ u�Î2
L2(0,t;L2(�)) .

Therefore, p is bounded in LŒ(0, t; H1(�)), and ˆtp is bounded in L2(0, t; L2(�)).

Estimate 3. Rewrite (3.18) in the elliptic form using the Neumann boundary conditions

≠–�p = ˆtp ≠ —p ≠ k

(kÕ + uú)2 p + —Q(uú ≠ uQ) + —�‰[·ú≠r,·ú](t)(uú ≠ u�),

since the right-hand side of this equation is in L2(�), so using elliptic regularity, we deduce
that p œ H2(�), and there is a constant l such that

ÎpÎH2(�) Æ l
1
ÎpÎL2(�) + ÎuúÎL2(�) + ÎˆtpÎL2(�)

2
.

Consequently

ÎpÎL2(0,t;H2(�)) Æ l
1
ÎpÎL2(0,t;L2(�)) + ÎuúÎL2(0,t;L2(�)) + ÎˆtpÎL2(0,t;L2(�))

2
.

Existence of solution for the adjoint system. We apply a Galerkin approximation
and for this purpose, we consider a basis {Êi}iœN of H1(�) that is orthonormal in L2(�).

Look for the function pn,i(x, t) =
nÿ

i=1
Pn,i(t)Êi(x), pn(0) = pn

0 so that pn
0 æ p0 strongly in

L2(�) and pn(· ú) = 0, which satisfy the following approximate problem:

≠
⁄

�
ˆtpn v dx + –

⁄

�
Òpn · Òv dx = ≠—

⁄

�
pn v dx

≠
⁄

�

k

(kÕ + uú)2 pn v dx + —Q

⁄

�

A

(uú ≠ uQ) + —�

r
‰[·ú≠r,·ú] (uú ≠ u�)

B

v dx.
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for all v œ Vn = span {Êi, i = 1 . . . , n}. In particular, put v = Êj in the above equation
to get, ’ i, j = 1, . . . , n,

≠ d

dt

nÿ

i=1
Pn,i(t)

⁄

�
Êi(x) Êj(x) dx + –

nÿ

i=1
Pn,i(t)

⁄

�
ÒÊi(x) · ÒÊi(x) dx

= ≠—
nÿ

i=1
Pn,i(t)

⁄

�
Êi Êj dx ≠

nÿ

i=1
Pn,i(t)

⁄

�

k

(kÕ + uú)2 Êi Êj dx

+—Q

⁄

�
(uú ≠ uQ)Êj dx + —�

r

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)Êj dx.

Consequently, we can write the above equation in the form

≠ Pn(t)ÕIn + –Pn(t)Jn = ≠—Pn(t)In ≠ Pn(t)Kn + —QUQ + —�

r
‰[·ú≠r,·ú](t)U� (3.20)

with the condition Pn(· ú) = 0, where
Y
____]

____[

(In)i,j =
⁄

�
Êi Êj dx, (Jn)i,j =

⁄

�
ÒÊi · Êj dx, (Kn)i,j =

⁄

�

k

(kÕ + uú)2 Êi Êj dx,

(UQ)j =
⁄

�
(uú ≠ uQ)Êj dx, (U�)j =

⁄

�
(uú ≠ u�)Êj dx

We rewrite (3.20) as
P Õ(t) = f(t, Pn(t)).

It is easy to see that f is Lipschitz with respect to Pn, so by Cauchy Lipschitz theorem,
we deduce that (3.20) has unique solution over [0, s), s œ (0, · ú]. With estimates similar
to the regularity estimates, we can show that this solution is global over [0, · ú], and that
pn is bounded in L2(0, · ú; H2(�)), so there exists a relabeled subsequence (pn)n, so that

pn Ô p, weakly in L2(0, · ú, H2(�)).

Moreover, pn œ C([0, · ú], L2(�)).

Passage to the limit. Let Â œ CŒ
c (0, · ú; H1(�)), we find

≠
⁄ ·ú

0

⁄

�
ˆtpnÂ dx dt + –

⁄ ·ú

0

⁄

�
Òpn · ÒÂ dx dt +

⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 pn Â dx dt

+—

⁄ ·ú

0

⁄

�
pnÂ dx dt ≠ —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)Â dx dt ≠ —�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)Â dx dt

(3.21)

≠æ ≠
⁄ ·ú

0

⁄

�
ˆtpÂ dx dt + –

⁄ ·ú

0

⁄

�
Òp · ÒÂ dx dt + —

⁄ ·ú

0

⁄

�
pÂ dx dt

+
⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 p Â dx dt ≠ —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)Â dx dt

≠—�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)Â dx dt.

(3.22)
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In particular, choose Â so that Â(· ú) = 0, and integrate (3.21) by parts with respect to
time, we get

⁄ ·ú

0

⁄

�
pnˆtÂ dx dt + –

⁄ ·ú

0

⁄

�
Òpn · ÒÂ dx dt =

⁄

�
pn(0)Â(0) dx ≠ —

⁄ ·ú

0

⁄

�
pnÂ dx dt

≠
⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 pn Â dx dt + —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)Â dx dt

+—�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)Â dx dt.

Passing to the limit, we get
⁄ ·ú

0

⁄

�
pˆtÂ dx dt + –

⁄ ·ú

0

⁄

�
Òp · ÒÂ dx dt =

⁄

�
p0Â(0) dx ≠ —

⁄ ·ú

0

⁄

�
pÂ dx dt

≠
⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 p Â dx dt + —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)Â dx dt

+—�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)Â dx dt.

(3.23)

Similarly, integrating (3.22) with by parts with respect to time, we obtain
⁄ ·ú

0

⁄

�
pˆtÂ dx dt + –

⁄ ·ú

0

⁄

�
Òp · ÒÂ dx dt =

⁄

�
p(0)Â(0) dx ≠ —

⁄ ·ú

0

⁄

�
pÂ dx dt

≠
⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 p Â dx dt + —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)Â dx dt

+—�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)Â dx dt.

We infer, after subtracting (3.23) and the above equation that
⁄

�
p(0)Â(0)dx ≠

⁄

�
p0Â(0) dx = 0,

hence, we have p(0) = p0 a.e. in L2(�). 2

3.7 Simplification of the first-order necessary optimality condition for the control

Let (vú, · ú) be a minimizer of the problem with corresponding state variable uú = S(vú),
and adjoint variable p associated to uú. Let w := v ≠ vú œ L2(Q) for any v œ Vad, and let
U be the linearized state variables associated to w.

Proposition 3.1

The optimal control vú satisfies the following simplified first-order necessary opti-
mality condition

(DvJ (vú, · ú))(v ≠ vú) = —v

⁄ T

0

⁄

�
vú(v ≠ vú) dx dt Ø 0.
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Proof. The optimal control vú satisfies the following first-order necessary optimality
condition

(DuJ (vú, · ú))(v ≠ vú) = (DuJ (vú, · ú))w = —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)Udx dt

+—�

r

⁄ ·ú

·ú≠r

⁄

�
(uú ≠ u�)Udx dt + —v

⁄ T

0

⁄

�
vú(v ≠ vú)dx dt Ø 0.

(3.24)

In order to simplify this condition, put › = U in (3.19), and integrate over [0, · ú], which
yields

≠
⁄ ·ú

0

⁄

�
ˆtpU dx dt + –

⁄ ·ú

0

⁄

�
Òp · ÒU dx dt = ≠—

⁄ ·ú

0

⁄

�
p U dx dt

≠
⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 p U dx dt + —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ) U dx dt

+—�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)U dx dt,

(3.25)

and put › = p in (3.13), then integrate over [0, · ú], we find

≠
⁄ ·ú

0

⁄

�
ˆtU p dx dt + –

⁄ ·ú

0

⁄

�
ÒU · Òp dx dt

= ≠—
⁄ ·ú

0

⁄

�
U p dx dt ≠

⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 U p dx dt ≠ “
⁄ ·ú

0

⁄

�
J(x, t)w p dx dt.

(3.26)

Using the fact that p(· ú) = 0 and U(0) = 0, we have

≠
⁄ ·ú

0

⁄

�
ˆtp U dx dt =

⁄ ·ú

0

⁄

�
p ˆtU dx dt.

Substituting, and comparing with (3.25) and (3.26), we get

≠—
⁄ ·ú

0

⁄

�
p U dx dt ≠

⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 p U dx dt = ≠—
⁄ ·ú

0

⁄

�
p U dx dt

≠
⁄ ·ú

0

⁄

�

k

(kÕ + uú)2 p U dx dt + —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)U dx dt

+—�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)U dx dt.

Thus, we have

—Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)U dx dt + —�

r

⁄ ·ú

0

⁄

�
‰[·ú≠r,·ú](t)(uú ≠ u�)U dx dt = 0.

Consequently, upon substituting the above equation into (3.24), we obtain

DvJ (vú, · ú)w = —Q

⁄ ·ú

0

⁄

�
(uú ≠ uQ)Udx dt + —�

r

⁄ ·ú

·ú≠r

⁄

�
(uú ≠ u�)Udx dt

+—v

⁄ T

0

⁄

�
vú(v ≠ vú)dx dt Ø 0,

therefore
—v

⁄ T

0

⁄

�
vú(v ≠ vú)dx dt Ø 0.

2
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On an Optimal Control Problem Describing Lactate Transport Inhibition

Chapter 4

“

Strong, deeply rooted desire is the starting point of all

achievement.

”

Napoleon Hill

In this chapter, the e�ect of inhibition of monocarboxylate transporters on intracellular
and extracellular lactate concentration is investigated using an optimal control problem.

A control term that represents the concentration of the inhibitor is used in an ODE model
that models the lactate kinetics between the cell and the capillary. Finally, some numerical
simulations were performed to confirm the e�ciency of the control term for the problem.

4.1 Introduction

Tumor cancer cells take up high amounts of glucose to generate su�cient ATP to maintain
cell proliferation and, as a result, produce large amounts of lactate in a process known as
aerobic glycolysis.

To maintain proliferation, highly glycolytic cancer cells prevent intracellular acidification
by exporting lactate to the extracellular space via monocarboxylate transporters (espe-
cially MCT1 and MCT4). This, in turn, leads to acidification of the extracellular PH in
the tumor microenvironment, which indeed promotes metastasis, angiogenesis, and, most
importantly, immunosuppression (see [28] and [7]).

A potential therapeutic target in cancer is therefore MCT1/4 inhibition, as it has been
shown in [7] that cell proliferation is reduced both in vitro and in vivo by pharmaco-
logical or genetic MCT1/4 inhibition. Syronsingopine, an antihypertensive drug, is a
dual MCT1/4 inhibitor that can be used to treat cancer. For more information on ther-
apeutic approaches in lactate metabolism, please see the following and the references
therein. [17, 25,30,32,39,54,57,58,72,78].

In this work, we consider the model presented in [46], which describes the lactate kinetics
between a cell and the capillary network in its neighborhood. Here, u represents the
intracellular lactate concentration, v the capillary lactate concentration and ‘ represents
the volume separating the compartments. Lactate cotransport through brain blood is
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taken into account by a simplified version of the equation for carrier-mediated symport.
This nonlinear term depends on the maximum blood-cell transport rate, Ÿ, and the mod-
ified Michaelis-Menten positive constant for both the intracellular and capillary lactate
concentrations (k and kÕ, respectively).

Our main goal is to add a control term w at a rate “ representing the desired treatment
with syrosingopine, where w = 0 represents no dosing and w = 1 represents full dosing.
Here, we add the control to the term representing the transport of lactate out of the cell
into the capillary employing MCT inhibitor.

F (t)L
v(t)

u(t)

F (t)v

J1

J2

Cell

Capillary

To the neighboring tissues

MCT inhibition

Figure 4.1 – Lactate transport inhibition from the cell to the capillary

Referring to [47], J1 and J2 denote lactate production and di�usion to the neighboring
tissues, respectively, so that J(t, u(t)) = J1 ≠ J2. In addition, F (t) = 2CBF , where CBF
is the cerebral blood flow, L is the lactate arterial concentration so that F (t)L represents
the flow of lactate from arteries, F (t)v, the flow of lactate to the veins.

The dynamics treated in Figure 4.1 is given in the following system, that is, for T > 0.

uÕ(t) = J(t, u(t)) ≠ Ÿ

A

(1 ≠ “w) u(t)
k + u(t) ≠ v(t)

kÕ + v(t)

B

, in (0, T ), (4.1)

‘vÕ(t) = F (t)(L ≠ v(t)) + Ÿ

A

(1 ≠ “w) u(t)
k + u(t) ≠ v(t)

kÕ + v(t)

B

in (0, T ), (4.2)

(u(0), v(0)) = (u0, v0) œ R+ ◊ R+. (4.3)

And the cost functional to be minimized is given by

J (v, w, ·) = 1
2

⁄ ·

0
Î(v ≠ vQ)(t)Î2 dt + 1

2r

⁄ ·

·≠r
Î(v ≠ vd)(t)Î2 dt + 1

2

⁄ ·

0
Îw(t)Î2 dt. (4.4)

Here r is a positive constant, the function vQ corresponds to the desired evolution capillary
lactate concentration and vd to the desired final capillary lactate concentration. Targeting
lactate transport from the cell to the capillary leads to acidification of the intracellular
domain, which in turn is lethal to the tumor and its proliferation. At the same time, the
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lower the lactate concentration in the capillary, the lower the malignancy of the tumor.
Moreover, a patient undergoes several cycles of treatment, so that each cycle is followed
by a resting period during which the healthy cells can recover, so that · is the treatment
time of each cycle and T is the final treatment time. So our main problem is

minimize J associated to (4.1) ≠ (4.3), w œ Wad, · œ [r, T ]. (4.5)

In this chapter, we first show the well-posedness of the System (4.1)-(4.3), then, we define
the control-to-state operator S which is continuous, Fréchet di�erentiable with respect
to the control w. We show the existence of a solution to our Problem (4.5), Fréchet
di�erentiability of the objective functional with respect to time and control. Then, we
derive a simplified first-order necessary optimality condition. Finally, we support the
result with numerical simulations.

Assumptions
(E) The constants Ÿ, L > 0, k, kÕ Ø 0, 0 Æ “ Æ 1, and the function F is positive bounded

continuous function; i.e., there exist two positive constants F1 and F2, such that
F1 < F < F2. The function J is Lipschitz with respect to u such that Ju, the
derivative of J with repect to u, is bounded.

(F) The control w œ Wad := {w œ L2(0, T ;R+) : 0 Æ w Æ 1}..

Notations

• ((·, ·)) and Î·Î represent the usual inner product and norm of R+, respectively.

• We write A . B, if there exists a constant C > 0 independent of A and B, such that

A Æ CB.

4.2 Well-posedness

In this section, we investigate the existence of a unique solution of the System (4.1)-(4.3).

Definition 4.1

An ODE system xÕ(t) = f(t, x(t)) on Rn, x = (x1, . . . , xn)€, f = (f1, . . . , fn)€ is
called quasipositive, if the condition

x Ø 0, xk = 0 =∆ fk(t, x(t)) Ø 0,

is verified for all k = 1, . . . , n.

Theorem 4.1 (Existence and uniqueness of solution)

Assume that Assumptions (E) and (F) hold and that (u0, v0) œ R+ ◊ R+. Then,
System (4.1)-(4.3) admits a unique solution (u, v), satisfying

(u, v) œ (C1([0, T ],R+)2.
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Moreover, the control-to-state operator

S : Uad ≠æ C1([0, T ],R+)2

w ‘≠æ (u, v),

is continuous.

Proof.

• The solution is nonnegative. System (4.1)-(4.3) can be viewed as

uÕ(t) = f(t, u(t), v(t))

vÕ(t) = g(t, u(t), v(t)).

For u = 0, v Ø 0, then
f(t, 0, v) = J + Ÿ

v

kÕ + v
Ø 0.

For u Ø 0, v = 0, then

g(t, u, 0) = FL + Ÿ(1 ≠ “w) u

k + u
Ø 0.

Hence, the system is quasi-positive and so the solution

(u, v) œ R+ ◊ R+ ’ t > 0.

• Existence of solution. System (4.1)-(4.3) can be rewritten in the form
Y
___]

___[

X Õ(t) = F (t, X(t))

X(0) = X0,

where X(t) := (u(t), v(t)) and F (t, X(t)) := (f(t, u, v), g(t, u, v)). We know that, for
nonnegative u1 and u2

u1

k + u1
≠ u2

k + u2
= u1(k + u2) ≠ u2(k + u1)

(k + u1)(k + u2)
= k(u1 ≠ u2)

(k + u1)(k + u2)
and, for nonnegative v1 and v2

v1

kÕ + v1
≠ v2

kÕ + v2
= kÕ(v1 ≠ v2)

(kÕ + v1)(kÕ + v2)
.

As well, using Assumption (E), we have
-----J(t, u1) ≠ J(t, u2) ≠ Ÿ(1 ≠ “w) k(u1 ≠ u2)

(k + u1)(k + u2)
+ Ÿ

kÕ(v1 ≠ v2)
(kÕ + v1)(kÕ + v2)

-----

. |u1 ≠ u2| + |v1 ≠ v2|
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and
1
‘

-----F (v1 ≠ v2) + Ÿ(1 ≠ “w) k(u1 ≠ u2)
(k + u1)(k + u2)

≠ Ÿ
kÕ(v1 ≠ v2)

(kÕ + v1)(kÕ + v2)

-----

. |u1 ≠ u2| + |v1 ≠ v2|

We deduce that F is globally Lipschitz with respect to u and v, so System (4.1)-(4.3)
admits a unique solution (u, v) œ C1([0, T ],R+)2.

• Continuous dependence on control. Let w1, w2 be two controls in Uad and (u1, v1),
(u2, v2) be their corresponding solutions of System (4.1)-(4.3) with same initial data. Set
u = u1 ≠ u2, v = v1 ≠ v2, and w = w1 ≠ w2, then, we have

uÕ = J(t, u1) ≠ J(t, u2) ≠ Ÿ

3
ku

(k + u1)(k + u2) ≠ “
k (w1u + u2w)

(k + u1)(k + u2) ≠ kÕv

(kÕ + v1)(kÕ + v2)

4
(4.6)

and

‘vÕ = ≠Fv + Ÿ

A
ku

(k + u1)(k + u2)
≠ “

k (w1u + u2w)
(k + u1)(k + u2)

≠ kÕv

(kÕ + v1)(kÕ + v2)

B

. (4.7)

Step one. Multiply Equation (4.6) by u in R+, we find

((uÕ, u)) = ((J(t, u1) ≠ J(t, u2), u)) ≠ Ÿ

AA
ku

(k + u1)(k + u2)
, u

BB

≠Ÿ“

AA
k (w1u + u2w)

(k + u1)(k + u2)
, u

BB

≠ Ÿ

AA
kÕv

(kÕ + v1)(kÕ + v2)
, u

BB

,

Thanks to Cauchy Schwartz inequality, we get

1
2

d

dt
ÎuÎ2 Æ ÎJ(t, u1) ≠ J(t, u2)Î ÎuÎ + Ÿk

.....
u

(k + u1)(k + u2)

..... ÎuÎ

+Ÿk“

.....
w1u

(k + u1)(k + u2)

..... ÎuÎ + Ÿ“

.....
u2w

(k + u1)(k + u2)

..... ÎuÎ + ŸkÕ
.....

kÕv

(kÕ + v1)(kÕ + v2)

..... ÎuÎ .

Now using Assumption (E) and Young’s inequality, we have
d

dt
ÎuÎ2 . ÎuÎ2 + ÎwÎ2 + ÎvÎ2 . (4.8)

On the other hand, multiplying Equation (4.7) by v in R+, using Assumption (E) and
Young’s inequality, we get

d

dt
ÎvÎ2 . ÎuÎ2 + ÎwÎ2 + ÎvÎ2 . (4.9)

Combining Equation (4.8) and Equation (4.9), then integrating over [0, t], where t œ [0, T ],
we get

Îu(t)Î2 + Îv(t)Î2 .
⁄ t

0
Îw(s)Î2 ds +

⁄ t

0

1
Îu(s)Î2 + Îv(s)Î2

2
ds.

So, owing to Gronwall’s inequality, we obtain

Îu(t)Î2 + Îv(t)Î2 . ÎwÎ2
L2(0,t;R+) ect, t œ [0, T ]. (4.10)
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On the other hand, since
ÎuÎ2

L2(0,t;R+) =
⁄ t

0
Îu(s)Î2 ds,

then, using Equation (4.10), we find
⁄ t

0
Îu(s)Î2 ds .

⁄ t

0
ÎwÎ2

L2(0,s;R+) ecsds . ÎwÎ2
L2(0,t;R+) (ect ≠ 1), ’t œ [0, T ]. (4.11)

Similarly, we have
ÎvÎ2

L2(0,t;R+) . ÎwÎ2
L2(0,t;R+) (ect ≠ 1). (4.12)

Step two. Similarly to Step one, multiplying Equation (4.6) and Equation (4.7) by uÕ

and vÕ, respectively, we get

ÎuÕÎ2 Æ ÎJ(t, u1) ≠ J(t, u2)Î ÎuÕÎ + c

2
d

dt
ÎuÎ2 + c ÎwÎ ÎuÕÎ + c ÎvÎ ÎuÕÎ

. ÎuÎ ÎuÕÎ + d

dt
ÎuÎ2 + ÎwÎ ÎuÕÎ + ÎvÎ ÎuÕÎ .

Let ” > 0. Applying Young’s inequality, we obtain

(1 ≠ c”) ÎuÕÎ2 . ÎuÎ2 + d

dt
ÎuÎ2 + ÎwÎ2 + ÎvÎ2 .

Where c > 0 constant independent of ”. Choosing ” << 1 such that 1≠c” = 1
2 , we obtain

1
2 ÎuÕÎ2 . ÎuÎ2 + d

dt
ÎuÎ2 + ÎwÎ2 + ÎvÎ2 . (4.13)

By similar way, we obtain

‘ ÎvÕÎ2 . d

dt
ÎvÎ2 + c ÎuÎ + ÎwÎ . (4.14)

Further, integrating (4.13) and (4.14) over [0, t], t œ [0, T ], and using (4.10), we get

ÎuÕÎ2
L2(0,t;R+) . ÎuÎ2

L2(0,t;R+) + Îu(t)Î2 + ÎvÎ2
L2(0,t;R+) + ÎwÎ2

L2(0,t;R+) . ÎwÎ2
L2(0,t;R+)

and
‘ ÎvÕÎ2

L2(0,t;R+) . Îv(t)Î2 + ÎuÎ2
L2(0,t;R+) + ÎwÎ2

L2(0,t;R+) ,

hence
ÎvÕÎ2

L2(0,t;R+) . ÎwÎ2
L2(0,t;R+) .

The proof is thus complete. 2

4.3 Existence of a minimizer

In this section, we want to prove the existence of optimal control and time; i.e., we will
prove the following result.
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Proposition 4.1

Let w œ Wad and · œ [r, T ], and let (u, v) be the solution of System (4.1)-(4.3)
corresponding to w. Then there exist wú œ Wad and ·ú œ [r, T ], such that

inf
(w,·)œWad◊[r,T ]

J (v, w, ·) = J (vú, wú, ·ú),

where (uú, vú) is the solution of (4.1)-(4.3) corresponding to wú.

Proof. The cost functional J defined by (4.4) is bounded from below, consequently,
we consider a minimizing sequence (wn, ·n)nœN with wn œ Wad and ·n œ [r, T ], such
that (vn)nœN are the corresponding solutions of (4.1)-(4.3) on the interval [0, T ] with
vn(0) = v0, ’ n œ N, such that where (Â, „) is the solution of System (4.1)-(4.3) for the
corresponding control w. In particular wn œ Wad’ n œ N. As {·n}nœN is a bounded
sequence, there exists a relabeled subsequence such that

lim
næŒ

J (vn, wn, ·n) = inf
(w,·)œWad◊[r,T ]

J (v, w, ·),

where (u, v) is the solution of (4.1)-(4.3) for the corresponding control w. As {·n}nœN is
a bounded sequence, there exists a relabeled subsequence such that

·n æ ·ú œ [r, T ], as n æ Œ.

Since wn œ Wad. Then there exists wú œ Wad such that

wn æ wú weakly in L2([0, T ],R+), as n æ Œ.

On the other hand, from Theorem 4.2, there exists (uú, vú) œ C1([0, T ];R+)2 solution of
System (4.1)-(4.3) associated to wú. Further, we have

vn æ vú strongly in L2([0, T ];R+), as n æ Œ.

Moreover, from Lebesgue dominated convergence theorem, we have

‰[0,·n](t) æ ‰[0,·ú](t), strongly in L2(0, T )

and
‰[·n≠r,·n](t) æ ‰[·ú≠r,·ú](t), strongly in L2(0, T ).

It follows from the strong convergence of vn to vú in L2([0, T ];R+), that
⁄ ·n

0
Îvn ≠ vQÎ2 dt =

⁄ T

0
Îvn ≠ vQÎ2 ‰[0,·n](t)dt

æ
⁄ T

0
Îvú ≠ vQÎ2 ‰[0,·ú](t)dt =

⁄ ·ú

0
Îvú ≠ vQÎ2 dt

and ⁄ ·n

·n≠r
Îvn ≠ vdÎ2 dt =

⁄ T

0
Îvn ≠ vdÎ2 ‰[·n≠r,·n](t)dt

æ
⁄ T

0
Îvú ≠ vdÎ2 ‰[·ú≠r,·ú](t)dt =

⁄ ·ú

·ú≠r

|vú ≠ vd|2dt.
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Finally, passing to the limit in J (vn, wn, ·n), and using the lower semi continuity of the
norm of L2(0, T,R+) along with the weak convergence of wn to wú, we infer

inf
(w,·)œWad◊[r,T ]

J (v, w, ·) = lim
næŒ

J (vn, wn, ·n) Ø J (vú, wú, ·ú),

which implies that (wú, ·ú) is a minimizer of (4.5). 2

4.4 Fréchet di�erentiability of the control to state operator

The natural approach consists in proving that the control-to-state operator S is Fréchet
di�erentiable at wú and applying the chain rule to J (v, w) = J (S(v), v). So, let wú œ Wad

be an optimal control in (4.5), with corresponding state (uú, vú), and let h œ Wad. In order
to establish the existence of the Fréchet derivative of S at wú, we consider the following
linearized system

U Õ = Ju(t, uú)U ≠ Ÿ

A

≠“h
uú

k + uú + (1 ≠ “wú)
k U

(k + uú)2 ≠ kÕ V

(kÕ + vú)2

B

, on [0, T ], (4.15)

‘V Õ = ≠FV + Ÿ

A

≠“h
uú

k + uú + (1 ≠ “wú)
k U

(k + uú)2 ≠ kÕ V

(kÕ + vú)2

B

, on [0, T ], (4.16)

U(0) = V (0) = 0. (4.17)

Theorem 4.2

Let wú œ Wad. Then, System (4.15)-(4.17) admits a unique solution

(U, V ) œ C1([0, T ],R+)2.

Proof. Let (U1, V1), (U2, V2) be two solutions of the System (4.15)-(4.17), which can be
written in the form

X Õ = H(t, X(t)),
where X = (U, V ) and H(t, U, V ) = (F (t, U, V ), G(t, U, V )), we know that

|F (t, U1, V1) ≠ F (t, U2, V2)| + |G(t, U1, V1) ≠ G(t, U2, V2)|

=
-----Ju(t, uú) (U1 ≠ U2) ≠ Ÿ

A

(1 ≠ “wú)
k

(k + uú)2 ≠ kÕ

(kÕ + vú)2 (V1 ≠ V2)
B-----

+1
‘

-----F (V1 ≠ V2) + Ÿ

A

(1 ≠ “wú)
k

(k + uú)2 ≠ kÕ

(kÕ + vú)2 (V1 ≠ V2)
B-----

Æ
3

||Ju||Œ +
3

Ÿ + Ÿ

‘

44
|U1 ≠ U2| +

3
Ÿ + Ÿ

‘

4
|V1 ≠ V2|

Æ
3

||Ju||Œ +
3

Ÿ + Ÿ

‘

44
||U1 ≠ U2, V1 ≠ V2|| ,

which yields that H is lipchitz with respect to X, and therefore the System (4.15)-(4.17)
admits a unique solution (U, V ) œ C1([0, T ],R+)2 (see [18]). 2
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4.5 Fréchet Di�erentiability of control-to-state operator with respect to the control

Let h œ Wad, set (uh, vh) := S(wú + h) and (uú, vú) := S(wú) and (U, V ) = DwS(wú)h.

Theorem 4.3

Let (U, V ) be the solution of the linearized system (4.15)-(4.17) corresponding to
wú. Then the remainders fl and ◊ defined by

fl = uh ≠ uú ≠ U and ◊ = vh ≠ vú ≠ V,

satisfy
Î(fl, ◊)Î2

LŒ(0,T ;R+)flH1(0,T ;R+) Æ c ÎhÎ4
L2(0,T ;R+) ,

and thus the control-to-state operator is fréchet di�erentiable.

Proof. The remainders flh and ◊h satisfy

flÕ = J(t, uh) ≠ J(t, uú) ≠ JuU ≠ Ÿ

A

(1 ≠ “wú)
A

uh

k + uh

≠ uú

k + uú
≠ k

(k + uú)2 U

BB

+Ÿ

A
vh

kÕ + vh

≠ vú

kÕ + vú
≠ kÕ

(kÕ + vú)2 V + “h
3

uh

k + uh

≠ uú

k + uú

4B

and

‘◊Õ
h = ≠F◊h + Ÿ

A

(1 ≠ “wú)
A

uh

k + uh

≠ uú

k + uú
≠ k

(k + uú)2 U

BB

≠Ÿ

AA
vh

kÕ + vh

≠ vú

kÕ + vú
≠ kÕ

(kÕ + vú)2 V

B

≠ “h
3

uh

k + uh

≠ uú

k + uú

4B

.

Setting f(u) = k

k + u
and g(v) = kÕ

kÕ + v
, Taylor with integral remainder gives

f(uh) ≠ f(uú) ≠ f Õ(uú)U = f Õ(uú)fl + (uh ≠ uú)2
⁄ 1

0
f ÕÕ (zuh + (1 ≠ z)uú) (1 ≠ z) dz

and

g(vh) ≠ g(vú) ≠ gÕ(vú)V = gÕ(vú)◊ + (vh ≠ vú)2
⁄ 1

0
gÕÕ (zvh + (1 ≠ z)vú) (1 ≠ z) dz.

However, the remainders

R1 :=
⁄ 1

0
f ÕÕ (zuh + (1 ≠ z)uú) (1 ≠ z) dz and R2 :=

⁄ 1

0
gÕÕ (zvh + (1 ≠ z)vú) (1 ≠ z) dz,

are bounded, so that
ÎR1ÎŒ Æ cR1 and ÎR2ÎŒ Æ cR2 .

Thus, fl satisfies

flÕ
h = Ju(t, uú)flh + (uh ≠ uú)2R1 ≠ Ÿ

1
(1 ≠ “wú)

1
f Õ(uú)flh + (uh ≠ uú)2R1

22

+Ÿ
1
gÕ(vú)◊h + (vh ≠ vú)2R2 + “h (f(uh) ≠ f(uú))

2
.
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Equivalently, we have

flÕ
h = Ju(t, uú)flh + (uh ≠ uú)2R1 ≠ Ÿ

1
(1 ≠ “wú)

1
f Õ(uú)flh + (uh ≠ uú)2R1

22

+Ÿ
1
gÕ(vú)◊h + (vh ≠ vú)2R2 + “h (f Õ(uú) (uh ≠ uú)) + (uh ≠ uú)2R1

2 (4.18)

and ◊ satisfies

‘◊Õ
h = ≠F◊h + Ÿ(1 ≠ “wú)

1
f Õ(uú)flh + (uh ≠ uú)2 R1

2

≠Ÿ
1
gÕ(vú)◊h + (vh ≠ vú)2R2 + “h (f(uh) ≠ f(uú))

2
.

Which is equivalent to

‘◊Õ
h = ≠F◊h + Ÿ(1 ≠ “wú)

1
f Õ(uú)flh + (uh ≠ uú)2 R1

2

≠Ÿ
1
gÕ(vú)◊h + (vh ≠ vú)2R2 + “h

1
f Õ(uú)(uh ≠ uú) + (uh ≠ uú)2 R1

22
.

(4.19)

We need to prove some estimates.

Estimate 1. Multiplying (4.18) by flh and (4.19) by ◊h, we find

((flÕ
h, flh)) = ((Ju(t, uú)flh, flh)) + (((uh ≠ uú)2R1, flh)) ≠ Ÿ(((1 ≠ “wú)f Õ(uú)flh, flh))

≠Ÿ(((1 ≠ “wú)(uh ≠ uú)2R1, flh)) + Ÿ((gÕ(vú)◊h, flh)) + Ÿ(((vh ≠ vú)2R2, flh))

+Ÿ((“hf Õ(uú)(uh ≠ uú), flh)) + Ÿ((h(uh ≠ uú)2R1, flh))

and

((‘◊Õ
h, ◊h)) = ≠((F◊h, ◊h)) + Ÿ(((1 ≠ “wú)f Õ(uú)flh, ◊h))

+Ÿ(((1 ≠ “wú)(uh ≠ uú)2R1, ◊h)) ≠ Ÿ((gÕ(vú)◊h, ◊h)) ≠ Ÿ(((vh ≠ vú)2R2, ◊h))

≠Ÿ((“hf Õ(uú)(uh ≠ uú), ◊h)) ≠ Ÿ((“h(uh ≠ uú)2R1, ◊h)).

Consequently, after using Assumptions (E) and (F), and Cauchy Schwartz inequality, we
get

d

dt
ÎflhÎ2 . ÎflhÎ2 + Îuh ≠ uúÎ2 ÎflhÎ + Î◊hÎ ÎflhÎ

+c Îvh ≠ vúÎ2 ÎflhÎ + ÎhÎ Îuh ≠ uúÎ ÎflhÎ +
...h(uh ≠ uú)2

... ÎflhÎ
(4.20)

and

‘
d

dt
Î◊hÎ2 . Î◊hÎ2 + ÎflhÎ Î◊hÎ + Îuh ≠ uúÎ2 Î◊hÎ + Îvh ≠ vúÎ2 Î◊hÎ

+ ÎhÎ Îuh ≠ uúÎ Î◊hÎ +
...h(uh ≠ uú)2

... Î◊hÎ .

(4.21)
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Combining (4.20) and (4.21), integrating over [0, t], and using Holder’s inequality, we get

Îflh(t)Î2 + ‘ Î◊h(t)Î2 . ÎflhÎ2
L2(0,t;R+) + Î◊h(s)Î2

L2(0,t;R+) + Î◊hÎL2(0,t;R+) ÎflÎL2(0,t;R+)

+ Îuh ≠ uúÎLŒ(0,t;R+) Îuh ≠ uúÎL2(0,t;R+)

1
ÎflhÎL2(0,t;R+) + Î◊hÎL2(0,t;R+)

2

+ Îvh ≠ vúÎLŒ(0,t;R+) Îvh ≠ vúÎL2(0,t;R+)

1
ÎflhÎL2(0,t;R+) + Î◊hÎL2(0,t;R+)

2

+ ÎhÎL2(0,t;R+) Îuh ≠ uúÎLŒ(0,t;R+)

1
ÎflhÎL2(0,t;R+) + Î◊hÎL2(0,t;R+)

2

+ ÎhÎL2(0,t;R+) Îuh ≠ uúÎ2
LŒ(0,t;R+)

1
ÎflhÎL2(0,t;R+) + Î◊hÎL2(0,t;R+)

2
.

Consequently, using Young’s inequality, Assumption (F), Equations (4.10), (4.11), and
(4.12), we have

Îflh(t)Î2 + ‘ Î◊h(t)Î2 . c ÎflhÎ2
L2(0,t;R+) + Î◊hÎ2

L2(0,t;R+) + c ÎhÎ4
L2(0,t;R+)

+ ÎhÎ6
L2(0,t;R+) . ÎhÎ4

L2(0,t;R+) .

(4.22)

Estimate 2. Multiplying (4.18) by flÕ
h, and (4.19) by ◊Õ

h, we find

((flÕ
h, flÕ

h)) = ((Ju(t, uú)flh, flÕ
h)) + (((uh ≠ uú)2R1, flÕ

h)) ≠ Ÿ(((1 ≠ “wú)f Õ(uú)flh, flÕ
h))

≠Ÿ(((1 ≠ “wú)(uh ≠ uú)2R1, flÕ
h)) + Ÿ((gÕ(vú)◊h, flÕ

h)) + Ÿ(((vh ≠ vú)2R2, flÕ
h))

+Ÿ((“hf Õ(uú)(uh ≠ uú), flÕ
h)) + Ÿ((h(uh ≠ uú)2R1, flÕ

h))

and

((‘◊Õ
h, ◊Õ

h)) = ≠((F◊h, ◊Õ
h)) + Ÿ(((1 ≠ “wú)f Õ(uú)flh, ◊Õ

h))

+Ÿ(((1 ≠ “wú)(uh ≠ uú)2R1, ◊Õ
h)) ≠ Ÿ((gÕ(vú)◊h, ◊Õ

h)) ≠ Ÿ(((vh ≠ vú)2R2, ◊Õ
h))

≠Ÿ((“hf Õ(uú)(uh ≠ uú), ◊Õ
h)) ≠ Ÿ((“h(uh ≠ uú)2R1, ◊Õ

h)).

Then, using Cauchy Schwartz inequality, we get

ÎflÕ
hÎ2 . d

dt
ÎflhÎ2 + Î◊hÎ ÎflÕ

hÎ + Îuh ≠ uúÎ2 ÎflÕ
hÎ + Îvh ≠ vúÎ2 ÎflÕ

hÎ

+ ÎhÎ Îuh ≠ uúÎ ÎflÕ
hÎ + ÎhÎ Îuh ≠ uúÎ2 ÎflÕ

hÎ
(4.23)

and

‘ Î◊Õ
hÎ2 . d

dt
Î◊hÎ2 + ÎflhÎ Î◊Õ

hÎ + Îuh ≠ uúÎ2 Î◊Õ
hÎ + Îvh ≠ vúÎ2 Î◊Õ

hÎ

+ ÎhÎ Îuh ≠ uúÎ Î◊Õ
hÎ + ÎhÎ Îuh ≠ uúÎ2 Î◊Õ

hÎ .

(4.24)
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Combining (4.23) and (4.24), and integrating over [0, t]. In addition to that, using As-
sumption (F) and Young’s inequality, we have

ÎflÕ
hÎ2

L2(0,t;R+) + ‘ Î◊Õ
hÎ2

L2(0,t;R+) . Îflh(t)Î2
L2(0,t;R+) + Î◊h(t)Î2 + Î◊hÎ2

L2(0,t;R+) + ÎflhÎ2
L2(0,t;R+)

+ Îuh ≠ uúÎ2
LŒ(0,t;R+) Îuh ≠ uúÎ2

L2(0,t;R+) + Îvh ≠ vúÎ2
LŒ(0,t;R+) Îvh ≠ vúÎ2

L2(0,t;R+)

+ ÎhÎ2
L2(0,t;R+) Îuh ≠ uúÎ2

LŒ(0,t;R+) + ÎhÎ2
L2(0,t;R+) Îuh ≠ uúÎ4

LŒ(0,t;R+) .

Further, using Equations (4.22), (4.10), (4.11), and (4.12), we infer

ÎflÕ
hÎ2

L2(0,t;R+) + ‘ Î◊Õ
hÎ2

L2(0,t;R+) . ÎhÎ4
L2(0,t;R+) ,

and hence the result. 2

4.6 First-Order Necessary Optimality Condition

The purpose of this section is to derive a first-order necessary optimality condition in the
form of a variational inequality for an admissible control to be an optimal control. We
divide this section into two subsections.

4.6.1 Di�erentiability of the cost functional with respect to time

Proposition 4.2

Let vQ œ H1(0, T ;R+), vd and vú œ H1(≠r, T ;R+). Then the mapping J : Wad ◊
[r, T ] ≠æ R+ is continuously Fréchet di�erentiable with respect to · and

D· J (wú, ·ú) = 1
2 Îvú(·ú) ≠ vQ(·ú)Î2 + 1

2

3
Îvú(·ú) ≠ vd(·ú)Î2 ≠ 1

r
Îvú(·ú ≠ r) ≠ vd(·ú ≠ r)Î2

4
.

In addition, assume that

D· J (wú, ·ú) (s ≠ ·ú) Ø 0 ’ s œ [r, T ].

Proof. For any function f œ L1(0, ·,R+), we have the following relation
⁄ ·

·≠r
f(s) ds =

⁄ 0

·≠r
f(s) ds +

⁄ ·

0
f(s) ds

=
⁄ ≠r

·
f(s) ds +

⁄ 0

≠r
f(s) ds +

⁄ ·

0
f(s) ds

=
⁄ ·

0
(f(s) ≠ f(s ≠ r)) ds +

⁄ 0

≠r
f(s) ds.

So, we can rewrite the objective functional as

J (v, w, ·) = 1
2 ÎwÎ2

L2(0,T ;R+) + 1
2r

⁄ 0

≠r

1
Î(v ≠ vd) (t)Î2

2
dt

+1
2

⁄ ·

0

3
Î(v ≠ vQ) (t)Î2 +

3
Î(v ≠ vd) (t)Î2 ≠ 1

r
Î(v ≠ vd) (t ≠ r)Î2

44
dt.
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Since the first two terms are independent of time, consequently, they vanish after com-
puting the Fréchet derivative with respect to time. For f œ H1(0, T ) Òæ LŒ(0, T ) and
h > 0, so that for · œ (0, T ), · + h œ (0, T ), we find

⁄ ·+h

0
|f(s)|2ds ≠

⁄ ·

0
|f(s)|2ds ≠ h|f(·)|2 =

⁄ ·+h

·
|f(s)|2ds ≠ h|f(·)|2

=
⁄ ·+h

·

1
|f(s)|2 ≠ |f(·)|2

2
ds

=
⁄ ·+h

·
(|f(s)| ≠ |f(·)|) (|f(s)| + |f(·)|) ds

Æ 2 ÎfÎLŒ(0,T )

⁄ ·+h

·
(|f(s)| ≠ |f(·)|) ds

Æ 2 ÎfÎLŒ(0,T ) h
3
2 ÎˆtfÎL2(0,T ) .

Thus, we obtain
D·

3⁄ ·

0
|f(t)|2dt

4
= |f(·)|2.

So, we deduce that

D· J (wú, ·ú) = 1
2 Îvú(·ú) ≠ vQ(·ú)Î2+1

2

3
Îvú(·ú) ≠ vd(·ú)Î2 ≠ 1

r
Îvú(·ú ≠ r) ≠ vd(·ú ≠ r)Î2

4
.

Simplification of the first-order necessary optimality condition with respect

to time. For vQ œ H1(0, T ;R+), vd and vú œ H1(≠r, T ;R+), we deduce the following
first-order necessary optimality condition with respect to time

D· J (wú, ·ú)(s ≠ · ú) Ø 0 ’ s œ [r, T ].

In fact, if ·ú œ (r, T ), then s≠·ú Ø 0 if s Ø ·ú and s≠·ú Æ 0 if s Æ ·ú, so D· J (wú, ·ú) = 0.
If ·ú = r, then s ≠ ·ú Ø 0 and hence D· J (wú, ·ú) Ø 0, if ·ú = T , then s ≠ ·ú Æ 0 and
hence D· J (wú, ·ú) Æ 0. The proof is thus complete. 2

4.6.2 Di�erentiability of the cost functional with respect to the control

Proposition 4.3

Let (wú, ·ú) be a minimizer of J , h œ Wad so that h = w ≠ wú, and let (U, V ) be
a solution of the linearized System (4.1)-(4.3). Then the Fréchet derivative of the
cost functional at (wú, ·ú) with respect to the control w is given by

DwJ (wú, ·ú)h =
⁄ ·ú

0
(vú ≠ vQ)V dt + 1

r

⁄ ·ú

·ú≠r
(vú ≠ vd)V dt +

⁄ T

0
wú h dt. (4.25)

Proof. By direct calculations, we get the above Fréchet derivative of the Functional (4.5).
2

To eliminate the term V from Equation (4.25), we apply the Lagrangian principle. Using
the Lagrangian function, we can formally eliminate the equality constraints given by the
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state System (4.1)-(4.4), for which we define the Lagrangian function with respective
Lagrangian multipliers p and q by

L(u, v, w, p, q) = J (v, w) ≠
⁄ T

0
p

3
uÕ ≠ J(t, u) + Ÿ ((1 ≠ “w) u

k + u
≠ v

kÕ + v

4
dt

≠
⁄ T

0
q

3
‘vÕ ≠ F (L ≠ v) ≠ Ÿ

3
(1 ≠ “w) u

k + u
≠ v

kÕ + v

44
dt.

Proposition 4.4

Let (wú, ·ú) be a solution of Problem (4.5), (uú, vú) be the solution of System (4.1)-
(4.4) associated to wú, and let (p, q) be two multipliers of L. Then the adjoint
system is given by

≠pÕ = Ju(uú, t)p ≠ Ÿ(1 ≠ “w) k

(k + uú)2 p + Ÿ(1 ≠ “w) k

(k + uú)2 q, in [0, T ],(4.26)

≠‘qÕ = (vú ≠ vQ) + 1
r

‰[·ú≠r,·ú](t)(vú ≠ vd) + Ÿ
kÕ

kÕ + vú
(p ≠ q) ≠ Fq, in [0, T ],(4.27)

p(·ú) = q(·ú) = 0. (4.28)

Proof. The adjoint system verifies
Y
___]

___[

R1 := DuL(uú, vú, wú, p, q)u = 0

R2 := DvL(uú, vú, wú, p, q)v = 0,

where

R1 =
⁄ ·ú

0
pÕu dt +

⁄ ·ú

0
Ju(uú, t)pu dt ≠ Ÿ

⁄ ·ú

0
(1 ≠ “w) k

(k + uú)2 up dt

+Ÿ
⁄ ·ú

0
(1 ≠ “w) k

(k + uú)2 uq dt, · ú œ [0, T ]

=
⁄ ·ú

0

A

pÕ + Ju(uú, t)p ≠ Ÿ(1 ≠ “w) k

(k + uú)2 p + Ÿ(1 ≠ “w) k

(k + uú)2 q

B

u dt

and

R2 =
⁄ ·ú

0
(vú ≠ vQ)v dt + 1

r

⁄ ·ú

0
‰[·ú≠r,·ú](t)(vú ≠ vd)v dt

= +Ÿ
⁄ ·ú

0

kÕ

kÕ + vú
v(p ≠ q) dt +

⁄ ·ú

0
‘qÕv dt ≠ F

⁄ ·ú

0
qv dt

=
⁄ ·ú

0

A

(vú ≠ vQ) + 1
r

‰[·ú≠r,·ú](t)(vú ≠ vd) + Ÿ
kÕ

kÕ + vú
(p ≠ q) + ‘qÕ ≠ Fq

B

v dt.

2
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Theorem 4.4

Let wú be an optimal control, and (uú, vú) = S(wú) be the corresponding states.
Then the adjoint Problem (4.26) has a unique solution

(p, q) œ C1([0, · ú];R+)2.

4.7 Simplification of the first-order necessary optimality condition for the control

Let (wú, ·ú) be a solution of Problem (4.5) with corresponding state variables (uú, vú) =
S(wú), and adjoint variables p and q related to uú and vú respectively. Let h := w ≠ wú œ
Wad for any w œ Wad, and (U, V ) be the linearized state variables associated to h.

Proposition 4.5

The optimal control wú satisfies the following simplified first-order necessary opti-
mality condition

DwJ (wú, ·ú)h =
⁄ ·ú

0
wú h dt + Ÿ

⁄ ·ú

0
“h

uú

k + uú
(p ≠ q) dt Ø 0.

Proof. The optimal control wú satisfies the following first-order necessary optimality
condition

(DuJ (wú, ·ú))(w ≠ wú) = (DuJ (wú, ·ú))h

=
⁄ ·ú

0
(vú ≠ vQ)V dt + 1

r

⁄ ·ú

·ú≠r
(vú ≠ vd)V dt +

⁄ ·ú

0
wúh dt Ø 0.

To simplify this condition, multiply Equation (4.26) by U and Equation (4.15) by p and
integrate over [0, ·ú], which after taking advantage of the fact that p(·ú) = q(·ú) = 0 and
U(0) = V (0) = 0, gives

≠
⁄ ·ú

0
pU Õ dt +

⁄ ·ú

0
Ju(uú, t)pU dt ≠ Ÿ

⁄ ·ú

0
(1 ≠ “wú)

k

(k + uú)2 (p ≠ q)U dt = 0 (4.29)

and
⁄ ·ú

0
pU Õ dt ≠

⁄ ·ú

0
Ju(uú, t)Up dt

+Ÿ
⁄ ·ú

0

A

≠“h
uú

k + uú
+ (1 ≠ “wú)

k

(k + uú)2 U ≠ kÕ

(kÕ + vú)2 V

B

p dt = 0.

Adding (4.29) and the above equation, we find

Ÿ
⁄ ·ú

0
(1 ≠ “wú)

k

(k + uú)2 qU dt = Ÿ
⁄ ·ú

0

A

“h
uú

k + uú
+ kÕ

(kÕ + vú)2 V

B

p dt. (4.30)
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Similarly, multiplying Equation (4.27) by V and Equation (4.16) by q and integrating
over [0, ·ú], we obtain

≠‘
⁄ ·ú

0
qV Õ dt ≠

⁄ ·ú

0
FqV dt ≠ Ÿ

⁄ ·ú

0

kÕ

kÕ + vú
(q ≠ p)V dt

+
⁄ ·ú

0
(vú ≠ vQ)V dt +

⁄ ·ú

0
‰[·ú≠r],·ú(t)(vú ≠ vd)V dt = 0

(4.31)

and
‘

⁄ ·ú

0
qV Õ dt +

⁄ ·ú

0
FV q dt + Ÿ

⁄ ·ú

0
“h

uú

k + uú
q dt

≠Ÿ
⁄ ·ú

0

A

(1 ≠ “wú)
k

(k + uú)2 U ≠ kÕ

(kÕ + vú)2 V

B

qdt = 0.

Adding (4.31) and the above equation, we infer

Ÿ
⁄ ·ú

0

kÕ

kÕ + vú
V p dt +

⁄ ·ú

0
(vú ≠ vQ)V dt +

⁄ ·ú

0
‰[·ú≠r,·ú](vú ≠ vd)V dt

+Ÿ
⁄ ·ú

0
“h

uú

k + uú
q dt ≠ Ÿ

⁄ ·ú

0
(1 ≠ “wú)

k

(k + uú)2 Uq dt = 0.

Substituting (4.30) into the above equation, we find
⁄ ·ú

0
(vú ≠ vQ)V dt +

⁄ ·ú

0
‰[·ú≠r,·ú](vú ≠ vd)V dt = Ÿ

⁄ ·ú

0
“h

uú

k + uú
(p ≠ q) dt.

Consequently, the simplified first-order necessary optimality condition is given by

DwJ (wú, ·ú)h =
⁄ ·ú

0
wú h dt + Ÿ

⁄ ·ú

0
“h

uú

k + uú
(p ≠ q) dt Ø 0.

2

4.8 Numerical Simulations

As aforementioned, high concentrations of lactate lead to over-acidification of the in-
tracellular milieu that is lethal for the cell, this is prevented by the cotransport of both
protons and lactate from the cells by MCTs. Moreover, acidification of the extracellular
domain promotes tumor malignancy and metastasis. Therefore, targeting MCTs leads
to lactate accumulation in the intracellular domain, which induces apoptosis or inhibits
lactate uptake by aerobic cells, reducing tumor angiogenesis, metastasis, the deleterious
e�ects of extracellular lactate on immune cells, and invasion (see [70]).

Thus, in this section, the e�ect of adding the control term, which represents the concen-
tration of the therapeutic drug given at a certain rate, on the intracellular and capillary
lactate concentrations is shown through some numerical simulations. For this purpose, we
leverage from the parameters proposed in [46], then, we proceed by assuming two cases.
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Numerical simulations with F and J constants. We assume that F and J are
constants, then, we consider the parameters in Table 4.1:

Parameter Ÿ k kÕ L J F ‘

value 0.01 3.5 3.5 0.3 0.0057 0.0272 0.1

Unit mM.s≠1 mM mM mM mM.s≠1 s≠1 s≠1

Table 4.1 – Parameters values.

When the control is zero, we get the same results as in [46], however, in Figure 4.2a, we
can observe that the intracellular lactate concentration increases when the control value
is close to 1 until it reaches a constant value. Simultaneously, in Figure 4.2b, the cap-
illary lactate concentration decreases until it reaches a constant value, which illustrates
the mode of action of the control (syronsigopine) on both intracellular and extracellular
lactate concentration in this case.
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Figure 4.2 – Intracellular and capillary lactate concentrations for several values of “w

Numerical simulations with non-constant F and J. We assume that it is biolog-
ically relevant to take a function J that does not depend on t since it is to be expected
that a cell controls its lactate concentration by the amount, but not by the duration
of the experiment. Moreover, we expect a cell to import more lactate when its lactate
concentration is low. Thus, we consider the function J (see [46]) as follows

J

Y
___]

___[

R+ ≠æ R+

x ‘≠æ GJ ≠ LJ + CJ

x + ‘J

,

which contains a creation term, a consumption term, and an import term. This function,
J , is a bounded and Lipschitz continuous function. Moreover, we follow [4] and define the
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function

F

Y
________]

________[

R+ ≠æ R+

t ≠æ

Y
___]

___[

F0 (1 + –f ) if ÷ N œ N/ (N ≠ 1) tf + ti < t < Ntf ,

F0 if not.

The parameters of these functions are given in Table 4.2:

Parameter F0 –f ti tf CJ ‘J GJ LJ

value 0.012 0.5 50 100 5.7 ◊ 10≠5 0.01 0.02 0.01

Unit s≠1 1 s s mM2.s≠1 mM mM2.s≠1 mM2.s≠1

Table 4.2 – Parameters for F and J .

We also consider the parameters given in [5] and [50]. In that case, (u0, v0) = (1.15, 1)
and the parameters’ values are given in Table 4.3:

Parameter Ÿ k kÕ L ‘

value 0.01 3.5 3.5 0.3 0.001

Unit mM.s≠1 mM mM mM. s≠1

Table 4.3 – Parameters values.

The Functions F and J are given in Figure 4.3:
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Figure 4.3 – Intracellular and capillary lactate concentrations for several values of “w when F and J are non-
constants

Also, if we assume that the control is zero, then, we have the same results as those obtained
in [46]. Moreover, in Figure 4.3c with an increasing value of “w, we can observe that
the lactate concentration increases with time, simultaneously, the extracellular lactate
concentration decreases with time and emerges in a sinusoidal form as shown in Figure
4.3d.
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Conclusion and open Problems

“

Do the best you can until you know better. Then when you know

better, do better.

”

Maya Angelou

The objective of this thesis was to investigate three optimal control problems that
describe glioma therapy directly, and at the level of metabolism. First, we showed

in Chapter 2 the well-posedness of a state system that couples an Allen-Cahn equation
modeling the tumor growth in the presence of a cytotoxic drug as a control term with
a reaction-di�usion equation. This allowed us to define the control-to-state operator,
which we proved to be continuous on a suitable topology. Next, we proved the existence
of a minimizer (uú, · ú) using the lower semicontinuity of the L2-norm, then, we proved
the existence of a unique Fréchet derivative through a linearized system at uú for any
w œ L2(Q). Moreover, the control-to-state operator is Fréchet di�erentiable. On the
other hand, we have proved that the cost functional is Fréchet di�erentiable for both
time and control. Consequently, we have shown the existence of regular multipliers by
employing an adjoint system. At the end of Chapter 2, we simplified the first-order
necessary optimality condition.

In Chapter 3, we first modeled our optimal control problem, for this purpose, we
considered the PDE model in [62] and added a biologically relevant control term with a
given rate and set an objective functional to be minimized, which is the usual functional
in optimal control theory (see [73]). Then, we studied the well-posedness of the state
system, which allowed us to define the control-to-state operator. Consequently, we have

J (u, v) = J (S(v), v),

Moreover, we established the existence of a minimizer for J , the existence of Fréchet
derivative of the control-to-state operator S by means of the existence and uniqueness of
solution for a linearized system at vú. As well, we showed that S is Fréchet di�erentiable
with respect to the control. Regarding the functional J , we have shown that this func-
tional is Fréchet di�erentiable with respect to time and control, moreover, to reduce the
first-order necessary optimality condition, we have considered an adjoint system, shown
that this system is well-posed, and derived the simplified first-order necessary optimality
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condition.

Finally, in Chapter 4, we considered the ODE model provided in [46], but added the
control term to inhibit lactate transport to the capillaries and thus acidify the intracellu-
lar domain, contributing to tumor regression.

Then, we set up an objective functional equivalent to the conventional functional used in
optimal control theory. In this chapter, we first showed that the system is quasi-positive,
and therefore we have a non-negative solution starting from non-negative initial data,
then, we used Cauchy-Lipschitz theory to show the existence of a solution for our ODE
system, and then we defined the control-to- state operator S. In addition, we demon-
strated the existence of a minimizer, then the existence of the Fréchet derivative of the
operator S using a linearized system of our ODE-model at the minimizer wú. Since the
unique Fréchet derivative exists, we have then shown the Fréchet di�erentiability of the
operator S. Moreover, the objective functional is Fréchet di�erentiable with respect to
time and control, respectively. Since this is a constrained problem, the existence of regular
multipliers was proved by means of an adjoint system. Then, the simplified first-order nec-
essary optimality condition was demonstrated. Finally, to verify our results, we performed
some numerical simulations by considering two cases where, in one case the functions F
and J are constant in the model, and in the other case J is a monotonically decreasing
function and F is a periodic function. The results are shown in Figures 4.2a-4.2b and
Figures 4.3c-4.3d, respectively.

As we mentioned earlier in this chapter, cancer cells transport excess lactate into the
capillaries to maintain their proliferation and malignancy, in addition to resistance to
therapy. In this way, we consider in Chapter 4 the ODE model provided in [46] and
searched for a biologically relevant control whose main purpose is to inhibit lactate trans-
port into the capillaries, thus acidifying the intracellular domain, which contributes to
tumor regression. The main goal here is to choose the control, which is the concentration
of the inhibitor, and the treatment time so that the capillary lactate concentration is the
best approximation of the desired concentration during and at the end of treatment.

To this end, we set up an objective functional, J , equivalent to the conventional func-
tional used in optimal control theory, such that we seek some (wú, ·ú) that minimizes J .
In this chapter, we first showed that the state system is quasi-positive, and hence we have
a non-negative solution starting from non-negative initial data. Furthermore, we have
used the Cauchy-Lipschitz theory to show the existence and uniqueness of a solution to
our ODE system, so we have defined the control-to-state operator S. Moreover, we have
shown the existence of a minimizer of J and then proved the existence of the Fréchet
derivative of the operator S with respect to the control using a linearized system of our
ODE-model at wú. Since the unique Fréchet derivative exists, we have then shown the
Fréchet di�erentiability of the operator S. Moreover, the objective functional is Fréchet
di�erentiable with respect to time and control, respectively. Since this is a constrained
problem, the existence of regular multipliers was proved by means of an adjoint system.
Consequently, the simplified first-order necessary optimality condition was demonstrated.
Finally, to verify the e�ciency of our control, we performed some numerical simulations
by considering two cases: In one case, the functions F and J are assumed to be constants
in the model, and in the other case J is a monotonically decreasing function and F is
a periodic function. The results are shown in Figures 4.2a-4.2b and Figures 4.3c-4.3d
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respectively.

Therapeutic strategies of various cancers using the theory of optimal control are very in-
teresting, starting from the behavior of the cell, what a�ects its proliferation, malignancy,
and metastasis, in other words, knowing the key helps in deciphering the puzzle.

As open problems, we can emerge from the ones we have studied. For example, in Prob-
lem (4.1)-(4.3), we can also target lactate production, leading to two controls, moreover,
we can also consider the spatial di�usion of lactate by a reaction-di�usion equation.

As well, Problem (3.1)-(3.3) may also model lactate transport inhibition by changing the
position of the control in the equation.

Although this science is vast, and perhaps, sometimes require more complex models to
target cancer, but a little is still better than nothing, and as we aforesaid, mathematical
modeling is a major player in helping clinicians and physicians fight cancer. For this,
we can recite Cohen’s adage which says:"Mathematics’ is Biology’s next microscope; only
better. Biology is mathematics’ next Physics; only better."
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Titre: Etude et controle optimal de modeles de croissance de cellules gliales

Mots Clès: Croissance tumorale; modèle d’Allen-
Cahn; métabolisme altéré; traitement du gliome; lactate
déshydrogénase; équation de réaction-di�usion; conditions
d’optimalité nécessaires de premier ordre.

Résumé: Cette thèse aborde di�érentes approches
thérapeutiques pour les gliomes, soit directement, soit au
niveau du métabolisme en utilisant la théorie du contrôle
optimal. En e�et, nous considérons tout d’abord un sys-
tème couplant une équation d’Allen-Cahn modélisant la
croissance tumorale, avec une équation d’évolution pour
la dynamique des nutriments. Le traitement des gliomes
est considéré en termes de contrôle qui représente la con-
centration du médicament cytotoxique à un taux donné.
Notre objectif dans cette partie est de choisir le contrôle
et le temps de traitement de telle sorte que la croissance
tumorale correspondante et sa distribution finale soient
la meilleure approximation possible des valeurs désirées.
Notre première étape est donc consacrée à l’étude du carac-
tère bien posé de notre système d’état, ce qui nous permet
de définir l’opérateur contrôle-état qui est continu. En-
suite, nous montrons l’existence d’un minimiseur de notre
fonction de coût, où notre opérateur contrôle-état est dif-
férentiable au sens de Fréchet. Ensuite, notre fonction-
nelle de coût est également di�érentiable au sens de Fréchet
par rapport au temps et au contrôle. Enfin, pour simpli-
fier la condition d’optimalité nécessaire du premier ordre,
nous considérons un système adjoint utilisant le principe de
Lagrange pour lequel ce système a une solution régulière.
D’autre part, nous savons que la progression et la ma-
lignité des gliomes sont liées au métabolisme, en partic-
ulier au déchet de glycolyse et de lactate. Ainsi, nous
soulignons d’abord le fait que plus le gliome produit de
lactate, plus il transporte l’excès dans le capillaire pour
soutenir la prolifération, les métastases et la malignité. Par
conséquent, nous considérons l’équation d’état comme un
problème parabolique modélisant la dynamique du lactate
intracellulaire.

Notre premier défi consiste à ajouter un contrôle biologique-
ment pertinent qui agit comme une concentration d’un cer-
tain médicament pour inhiber la production de lactate.
Puisque la dose de médicament et le temps ne doivent pas
dépasser ou descendre en dessous d’un certain seuil dans le
traitement du cancer, nous essayons de choisir le meilleur
contrôle au moment le plus opportun afin que la concen-
tration de lactate intracellulaire correspondante soit aussi
proche que possible de notre évolution souhaitée et de la
distribution finale du lactate. Cependant, comme nous
l’avons dit plus haut, la cellule retire l’excès de lactate en
le transportant à travers la membrane plasmique de la cel-
lule dans le capillaire pour maintenir sa prolifération. Ceci
nous a inspiré à cibler le transport du lactate en utilisant
un inhibiteur de MCTs qui agit comme un terme de con-
trôle dans un système couplé de type EDO qui modélise
la dynamique du lactate dans les domaines intracellulaire
et capillaire. Nous abordons la question de savoir com-
bien de temps un patient doit être traité et quelle est la
dose optimale de médicament pour atteindre la concentra-
tion de lactate capillaire souhaitée. Pour atteindre notre
objectif, nous considérons un problème de minimisation
avec une fonction de coût conventionnelle associée au sys-
tème d’EDO susmentionné. Tout d’abord, nous montrons
l’existence d’une solution régulière unique et non négative
de notre système EDO, puis nous définissons l’opérateur
contrôle-état et montrons qu’il est continu sur la topolo-
gie correspondante. Puis, nous montrons l’existence d’une
solution à notre problème de minimisation sous des con-
traintes données. Nous étudions ensuite l’existence d’une
dérivée unique de l’opérateur contrôle-état et sa di�éren-
tiabilité de Fréchet. Nous montrons ensuite la di�érentia-
bilité de Fréchet de la fonctionnelle de coût par rapport
au temps et au contrôle. De plus, nous définissons le sys-
tème adjoint par le principe de Lagrange, nous simplifions
la condition d’optimalité nécessaire au premier ordre, et en-
fin, nous mettons en évidence le choix du terme de contrôle
par des simulations numériques.

Keywords. Tumor growth; Allen-Cahn model; Altered
metabolism; glioma treatment; lactate dehydrogenase;
reaction-di�usion equation; first-order necessary optimal-
ity conditions.

Abstract: This thesis addresses di�erent therapeutic ap-
proaches for gliomas, either directly or at the level of
metabolism using optimal control theory. Indeed, we first
consider an Allen-Cahn equation modeling tumor growth,
and since the structure of the model can change in the pres-
ence of nutrients, it is then coupled with an evolution equa-
tion for nutrient dynamics. In addition, the treatment of
gliomas is considered in terms of control that represents the
concentration of the cytotoxic drug at a given rate. Our
goal in this part is to choose the control and the treatment
time such that the corresponding tumor growth and its fi-
nal distribution are the best possible approximation to the
desired values. Our first step is thus devoted to the study
of the well-posedness of our state system, which allows us
to define the control-to-state operator that is continuous.
Then, we show the existence of a minimizer of our cost
functional, where our control-to-state operator is Fréchet
di�erentiable. Next, our cost functional is also Fréchet dif-
ferentiable with respect to time and control; finally, to sim-
plify the first-order necessary optimality condition, we con-
sider an adjoint system using Lagrange’s principle for which
this system has a regular solution. On the other hand, we
know that the progression and malignancy of gliomas are
related to metabolism, in particular to the waste product of
glycolysis, lactate. Thus, we first emphasize the fact that
the more lactate the glioma produces, the more it trans-
ports the excess into the capillary to sustain proliferation,
metastasis, and malignancy.

Therefore, we consider the state equation as a parabolic
problem modeling intracellular lactate dynamics. Our first
challenge is to add a biologically relevant control that acts
as a concentration of a certain drug to inhibit lactate pro-
duction. Since the drug dose and time must not exceed or
fall below a certain threshold in cancer treatment, we try
to choose the best control at the most convenient time so
that the corresponding intracellular lactate concentration
is as close as possible to our desired evolution and final dis-
tribution of lactate. However, as aforesaid, the cell with-
draws excess lactate by transporting it across the plasma
cell membrane into the capillary to maintain its prolifera-
tion. This has inspired us to target lactate transport using
an MCTs inhibitor that acts as a control term in a coupled
ODE system that models lactate dynamics in both the in-
tracellular and capillary domains. We address the question
of how long a patient needs to be treated and what is the
optimal drug dose to achieve the desired capillary lactate
concentration. To attain our goal, we consider a minimiza-
tion problem with a conventional cost functional associated
with the ODE system aforementioned. First, we show the
existence of a unique regular non-negative solution of our
ODE system, then we define the control-to-state operator
and show that it is continuous on the corresponding topol-
ogy. Next, we show the existence of a solution to our min-
imization problem under given constraints. Then we study
the existence of a unique derivative of the control-to-state
operator and its Fréchet di�erentiability. We then show the
Fréchet di�erentiability of the cost functional with respect
to time and control. Moreover, we define the adjoint system
by Lagrange’s principle, simplify the first-order necessary
optimality condition, and finally, we emphasize the choice
of the control term with numerical simulations.
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