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RÉSUMÉ

Les cyclones tropicaux sont des événements atmosphériques extrêmes, qui coûtent
chaque année des milliers de vies dans le monde en raison de leurs vents violents et des
inondations et marées de tempête qu’ils provoquent. Ils sont donc une préoccupation
majeure pour les scientifiques et les météorologues. Bien que fortement influencés par leur
environnement au cours de leur cycle de vie, c’est la dynamique interne des cyclones qui
régit leurs variations d’intensité. Dans sa phase mature (soit une fois le cyclone formé
et avant son déclin), l’évolution du coeur du cyclone est en effet caractérisée par une
circulation symétrique à laquelle se superposent de nombreux processus asymétriques tels
que des ondes internes discrètes (appelées ondes de Rossby de Vortex) ou des perturbations
locales de la circulation et de la convection telles que des mésovortex dans le mur de l’oeil
ou des anomalies convectives dans la zone de vents maximum. Ces processus asymétriques,
en particulier, sont étroitement liés aux variations d’intensité: ils traduisent la réponse
interne du vortex aux perturbations externes. En permettant ou non la dissipation de
l’énergie des perturbations par le cyclone, ils régissent sa capacité à "survivre" à ces
dernières. Les variations de la structure interne sont cependant difficile à observer: elles
sont en effet sporadiques, multi-échelle, et se produisent dans des zones où les vents et
leurs variations spatiales sont d’une amplitude extrême. La compréhension des variations
d’intensité des cyclones est donc un défi considérable au vu des technologies d’observation
actuelles.

Cette thèse est centrée sur l’étude des liens entre la structure interne des cyclones et
leurs variations d’intensité, dans le but d’améliorer la caractérisation de la dynamique
interne et la prévisibilité du cycle de vie des cyclones. Elle repose sur l’analyse statistique
d’une base de données conjointe d’observations et de simulations, composée de nouvelles
mesures de vent de surface à haute résolution extraites d’images SAR (Synthetic Aperture
Radar), et de simulations numériques régionales réalistes. Le travail effectué s’articule
autour des questions suivantes:

— Comment les observations SAR de vents de surface permettent-elles de mesurer la
dynamique interne des cyclones ?

— Ces mesures de la structure interne permettent-elles d’améliorer la caractérisation
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et la prévisibilité du cycle de vie des cyclones ?
— Dans quelle mesure le modèle permet-il de compléter les observations SAR et quelle

stratégie peut-on dès lors mettre en place pour améliorer le diagnostic de la dy-
namique interne des cyclones ?

Le travail de cette thèse a consisté dans un premier temps à mettre en place un
environnement de calcul permettant de traiter identiquement les images SAR et les sorties
de simulation. La procédure conçue permet d’extraire des paramètres caractérisant la
variabilité radiale et azimutale du champ de vent de surface autour du centre du cyclone.
Le cyclone est ainsi décrit à travers un ensemble de paramètres tels que les gradients
du profil moyen dans le mur de l’oeil (entre le centre et le rayon de vent maximum) et
dans la zone de vents forts (entre une et trois fois le rayon de vent maximum), ainsi que
les variances et les décompositions spectrales des distributions azimutales de forme de
l’oeil, gradient de vent dans le mur de l’oeil, ou vent maximum. Ces paramètres ont été
définis pour être reliés à la théorie des processus de restauration de l’intensité tels que la
propagation des ondes de Rossby de vortex, le mélange de vorticité entre l’oeil et le mur
de l’oeil via la formation de mésovortex (qui impactent tous la variabilité azimuthale du
champ de vent), ou la résilience du vortex au cisaillement externe (liée à la distribution
radiale de vorticité et donc au profil de vent moyen).

Les propriétés extraites des champs de vent ont ensuite été reliées à l’intensité et
au cycle de vie du cyclone, à travers les images SAR dans un premier temps. Cette
analyse a permis d’observer des propriétés dynamiques telles que la contraction de la
zone de vent fort, le raidissement du profil radial et la symétrisation avec l’intensité. La
prédominance de nombres d’ondes élevés dans le mur de l’oeil et la couronne de vent
maximum est tendanciellement plus marquée durant les phases de réintensification, ce
qui est cohérent avec la littérature sur les phénomènes de restauration d’intensité via
formation de mésovortex et propagation de VRWs discrètes.

Des simulations réalistes WRF à résolution kilométrique ont ensuite été utilisées
pour compléter l’analyse statistique du SAR. Reproduisant les analyses effectuées sur les
champs de vent de surface SAR, les simulations fournissent une continuité temporelle qui
permet d’ajouter à l’analyse des variables dépendant du temps (i.e. dérivées temporelles
de paramètres structurels internes), ce qui rend la mise en relation entre la structure
interne et le cycle de vie plus simple et plus directe. L’anneau de vent maximum et la
zone de mélange entre l’oeil et le mur de l’oeil apparaissent au travers de ces analyses
temporelles comme étant reliées aux variations d’intensité à différents échelles. À courte
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échelle de temps (5-10 heures), les augmentations d’intensité et de taux d’intensification
sont de préférence associées à un élargissement du spectre des signaux azimutaux (c’est-
à-dire une homogénéisation/symétrisation azimutale du vortex), tandis que les phases de
déclin et de baisse d’intensification vont de pair avec un rétrécissement du spectre vers
de petits nombres d’ondes (c’est-à-dire une hétérogénéisation/asymétrisation du vortex).
En comparaison, la structure radiale apparaît plus liée à l’état moyen du vortex qu’aux
variations locales et de petite échelle : elle décrit la résilience du vortex au cisaillement
externe et le mélange entre l’oeil et le mur de l’oeil à un instant donné, mais a une réponse
plus faible aux variations d’intensité.

Une méthode de machine learning a aussi été mise en place pour mesurer l’apport
des paramètres extraits de la structure interne (aussi bien du SAR que du modèle) et
de la petite échelle pour la prédictabilité des changements d’intensité. L’amélioration des
scores de prédiction avec l’ajout des paramètres internes (par rapport à une prédiction
basée uniquement sur des paramètres de plus grande échelle tels que l’intensité ou le
RMW) est constatée en particulier avec les paramètres d’asymétrie issus de la couronne
de vent fort, mettant en évidence l’importance des processus asymétriques dans la dy-
namique cyclonique. L’ajout des paramètres temporels extraits du modèle permet aussi
une amélioration des scores par rapport aux paramètres instantanés tels qu’extraits du
SAR: la variation temporelle de la structure interne, notamment à travers la définition
de transferts spectraux décrivant l’évolution de l’asymétrie de petite échelle, est donc
pertinente pour la prévision des changements d’intensité.

A travers l’analyse statistique conjointe des images satellite SAR et des sorties de mod-
èles dynamiques réalistes, cette thèse permet donc de mettre en évidence l’importance d’un
diagnostic de la structure interne des cyclones pour la compréhension et la prévision de
leurs changements d’intensité. En accord avec de nombreuses études récentes attribuant
ces changements à des phénomènes de cascades d’énergie à l’intérieur du cyclone, ce tra-
vail démontre la capacité des mesures de vents de surface à diagnostiquer des processus
énergétiques internes au vortex, et par extension à diagnostiquer son état à l’instant de
la mesure et son évolution future. L’apport du modèle en termes de continuité temporelle
met par ailleurs en valeur la nécessité d’augmenter la fréquence des observations haute
résolution de surface telles que le SAR, pour la météo comme pour une meilleure com-
préhension de ces processus internes.
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Chapter 1

INTRODUCTION

1.1 General introduction

Take a deep breath, look into my eye (Fig. 1.1)...
Picture yourself lying quietly on a white sandy beach in Miami, Cuba, Taiwan, or Noumea,
sipping a citrus cocktail, a light breeze in your hair... You’ve been in the sun for hours
now, working on your tan. Little by little, you feel the air is getting heavier. The sky is
clouding over, and waves start pounding the sand. The breeze is getting more insistent
every minute. In the distance, an alarm siren is blaring. You think to yourself that it
might be time to go home... And you are right !
Congratulations: you’ve just met a tropical cyclone (in your mind, of course). You’re
probably thinking to yourself that it wasn’t that bad, after all. And yet, in a few hours
on this beach, houses may be destroyed or flooded, roofs blown up, and trees torn down.
Tropical cyclones cost the lives of 1,386 people across the planet in 2020, and caused more
than $71 billions of material casualties.

Playing the role of relief valves of the tropical ocean, these extreme convective atmo-
spheric phenomena generate an energy equivalent to half the consumption of all the power
stations built by us, little humans (1014 Watts). They measure on average 1000 km in
diameter, and extend across the entire troposphere (about 15 km high).

Due to the damage they cause every year, TCs are major concerns of the weather
and climate forecast, and scientific communities. The complex processes involved in their
formation and evolution are also an exciting field of research. Huge progress in their un-
derstanding and forecast has been made throughout the 20th century. Forecasters "beat
the hurricane" for the first time in 1928, thanks to the awareness of two ship captains,
and the knowledge and expertise of Charles L. Mitchell (Shepherd, 1928). The first air-
plane flight over a TC was performed in 1943 (Sumner, 1943), and the first studies of TC
energetics and dynamics date back to 1950 and 1951, with the works of Herbert Riehl
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Chapter 1 – Introduction

Figure 1.1 – Hurricane Florence (2018) has a beautiful eye, but you don’t want to drown
in it. Source: NASA

(Riehl, 1950), who acknowledged the role of the ocean as the heat energy supply of the
TC, and Ernst Kleinschmidt (Kleinschmidt, 1951) who derived a formula for maximum
wind speed.
The efforts made in the observation of TCs from aircrafts and Earth observation satellites
and the gradual development of numerical models considerably improved our understand-
ing of TCs, and our ability to predict their formation and evolution.
However, while their trajectory is now well forecasted, progress is stagnating regarding
their intensity variations. These are indeed extremely complex to grasp because they in-
volve both the external environment of the TC and its internal structure, through many
multi-scale processes which, icing on the top, have the bad taste of interacting with each
other.
Throughout this manuscript, I will lead you to a journey into the internal structure of
tropical cyclones, their crazy steep eyewall, the swing of their eye shape, the roller coasters
of their extreme wind ring... And we will try to catch some interesting science regarding
these vortex attractions, and their link with the cyclone intensity variations.
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1.2 Tropical cyclones: theoretical bases

1.2.1 Steady-state structure of a tropical cyclone

Viewed from space, a TC can be pictured as a vortex made of spiraling clouds and rain
bands, and a central cloud-free eye (Fig. 1.2). Their vortex diameter, is on the order of
1000∼km on the horizontal. On the vertical, a TC reaches the top of the troposphere, that
is around 15km. This vortex can be described both dynamically and thermodynamically.

Figure 1.2 – Diagram describing the gradient wind balance governing the TC primary
circulation.

Dynamic structure

In a first approach, the TC vortex can be approximated as symmetric around its central
axis. In this perspective, it can be pictured as the superimposition of two circulations. The
primary circulation is horizontal and cyclonically rotating under the effect of the gradient
wind balance (i.e. balance between inward pressure gradient force and outward Coriolis
and centrifugal forces, cf. Fig. 1.2). This balance derives from the Navier-Stokes equations
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simplified as a steady flow and neglecting radial wind and friction. It is expressed as:

fv + v2

r
= 1

ρ

∂p

∂r
, (1.1)

where fv is the Coriolis force, v2

r
is the centrifugal force, and 1

ρ
∂p
∂r

is the radial pressure
gradient force.

To a good approximation, the hydrostatic balance also applies to the TC scales:

∂p

∂z
= −ρg (1.2)

where ∂p
∂z

is the upward pressure gradient force, ρ the density and g the acceleration of
gravity.

Multiplying eq. 1.1 by ρ and cross-differentiating eqs. 1.1 and 1.2 yields the thermal
wind balance:

∂ log ρ

∂r
+ C

g

∂ log ρ

∂z
= −1

g

∂C

∂z
(1.3)

where C = fv + v2

r
According to this equation, a decreasing tangential wind speed on the

vertical (∂v
∂z

< 0) would cause a positive radial gradient of density ∂ log ρ
∂r

> 0 and thus a
positive radial gradient of temperature, yielding a warm-cored vortex. This implication
is indeed observed on real TCs, showing the consistency of the thermal wind equation
to approximate the large-scale axisymmetric structure of TCs. These dynamical balances
however neglect the vertical speeds and the Boundary Layer (BL) specific dynamics, which
are described through a secondary circulation.

The secondary circulation (right hand side of Fig. 1.3) is observed on a cross view of the
TC. In the Boundary Layer (BL, the area close to the surface), the gradient wind balance
is broken due to surface friction. The surface friction indeed reduces the tangential wind
speed, which in turn reduces the Coriolis and centrifugal forces, yielding a mean inflow as
the pressure gradient becomes the dominant force. The typical height of the BL is about
1km. The convergence of moist air extracting heat from the underlying warm ocean forces
air parcels to ascend, and leads to convection in the central part of the TC, called the
eyewall, as well as in its surroundings. This ascent is balanced by an outflow at the top of
the troposphere, and the circulation becomes anticyclonic as it flows outward (i.e. beyond
200km, as observed by Smith, Montgomery, and Braun, 2019). Downdrafts of outflowing
dry air complete the secondary circulation in the cloud-free areas (outside the vortex and
between spiral convective rainbands), as well as in the eye.
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Figure 1.3 – Schematic of a TC crossview, describing the TC vertical and radial structure,
secondary circulation, energetic exchanges (summarized by the idealized Carnot cycle),
and ocean internal processes interacting with the TC.

The combination of these two circulations creates the well-known spirals (Fig. 1.2)
observed when looking at a TC from above.

Thermodynamic structure

The dynamic view of the TC, and particularly the secondary circulation, is also in
part driven by thermodynamic exchanges between the TC and its environment.

As in many other atmospheric events such as clouds, thunderstorms or atmospheric
lows, convection drives the vertical movements and environmental heat transfers of air
parcels throughout the TC.

The process controlling the ascent of air parcels in TC clouds is termed moist con-
vection. It is illustrated on Fig. 1.4. Initially, a moist air parcel is raised through the air
column due to a dynamical forcing, submitted to a positive buoyancy force. During its
ascension, the parcel is adiabatically cooled due to its expansion as density decreases.
However, the moisture contained in the parcel mitigates this cooling: the moist-adiabatic
cooling is slower than the dry-adiabatic one as, when cooling, the parcel becomes satu-
rated in moisture, which then condensates and releases latent heat (i.e. thermic energy)
inside the parcel. Thus, when the parcel gets saturated (at a level termed the Lifting
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Figure 1.4 – Schematic view of the principle of moist convection and CAPE (Convective
Available Potential Energy) on a skew-T diagram. Red curve is the environmental atmo-
spheric temperature on the vertical. The moist air parcel lifted from the surface starts by
following the dry adiabat (orange), then the moist adiabat reaching the Lifting Condensa-
tion Level (LCL) as it starts to condensate (forming a cloud). At some point if the parcel
keeps lifting, it reaches the Level of Free Convection (LFC) where it becomes warmer than
the surrounding environment 2. The parcel thus keeps ascending releasing its latent heat
up until the Equilibrium State (EL) where convection stops. The CAPE is the positive
integral between the two temperature curves (i.e. air parcel and its environment).

Condensation Level (LCL)) and the moisture starts to condensate, it cools at a lower rate
than its environment. Eventually, if the parcel has a sufficient vertical velocity and enough
latent heat to release, it reaches the Level of Free Convection (LFC) where it gets warmer
than its environment. The parcel thus keeps ascending, up to a point where all the latent
heat has been released (called the Equilibrium Level (EL)). The ability of a moist parcel
to ascend through the atmosphere (e.g. of convection to appear) is determined by the
vertical distribution of temperature in the atmosphere.

The Convective Available Potential Energy (CAPE) is defined as the amount of work

2. This diagram features the structure of a thunderstorm cloud. In a Tropical Cyclone, the ascending
air parcels are warmer and the LFC is thus located lower in the troposphere, at a height of ∼1km (Smith
and Montgomery, 2012).
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exerted by the buoyancy force on a lifted air parcel:

CAPEi =
∫ EL

zi

B dz (1.4)

where zi is the initial vertical level of the parcel, EL the Equilibrium Level, z is the
height, and B is the buoyancy force equal to −g ρ−ρa

ρ
where ρ is the parcel density, ρa the

atmospheric density and g the acceleration of gravity. The CAPE determines the upper
bound on the maximum vertical velocity achievable by the air parcel due to the buoyancy
force, and thus the degree of instability of the atmosphere: a larger CAPE indicates a more
convectively unstable atmosphere, and a larger amount of potential energy convertible to
kinetic energy.

Moist convection thus explains how vertical air motions can ascend in clouds through-
out the troposphere. It is thus a primary mechanism during TC formation, where cloud
convection is still predominant in the system.

When the vortex has begun to intensify and mature, moist convection is not however
the driving mechanism per se of the secondary circulation: inside a mature TC, the cloud-
scale convection is then largely slaved to the symmetric vortex-scale circulation. Kerry
Emanuel developed, in 1986, a model of the steady-state hurricane (Emanuel, 1986) that
assimilates the TC secondary circulation to a Carnot cycle (Carnot, 1824). Initially, this
ideal thermodynamic cycle was defined by Sadi Carnot to describe the operation of an en-
gine converting heat into mechanical work. The engine is composed of two thermal sources
(warm and cold) and a gas chamber that can perform work on its environment. The cycle
is a sequence of four ideal thermodynamic transformations, during which (1) the gas ex-
changes heat with the warm source, undergoing an isothermal expansion and performing
work on its surroundings then (2) it expands and cools adiabatically, still performing work
on its surroundings, (3) it releases heat into the cold source in an isothermal compres-
sion (receiving work from the exterior), and (4) it compresses and warms adiabatically,
receiving work from its surroundings.

In the view proposed by Emanuel, 1986, (represented on the left panel of Fig. 1.3),
the warm source is assimilated to the ocean surface, and the cold source to the upper
troposphere. The cycle starts at point A with air converging to the TC center (B) at the
sea surface, accumulating entropy from enthalpy transfers with the underlying ocean sur-
face at approximately constant temperature, performing work to counter surface friction.
When reaching the eyewall (B), air parcels having acquired a substantial boost in entropy
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start a moist adiabatic ascent, releasing latent heat and following an outward slope of
constant angular momentum (B-C). When reaching the tropopause, which can be seen as
the cold source of the cycle (C), the air parcels release entropy at a constant temperature,
dissipating energy by infrared radiation in space (C-D). Finally, the cycle is completed
by a moist adiabatic descent during which the temperature increases along a constant
angular momentum surface (D-A). This idealized view thus depicts the TC as an engine
extracting heat from its environment (i.e. the ocean surface) and converting it to kinetic
energy (i.e. vertical and tangential velocity). From this approach, Emanuel derived the
theory of Maximum Potential Intensity (MPI), according to which the maximum reach-
able intensity of a TC can be estimated by computing its ideal work from the Carnot
cycle, which depends on the temperatures of the warm and cold sources of the Carnot
engine, and on the enthalpy and momentum surface fluxes responsible for energy sources
and sinks of the TC engine respectively. A simplified expression of the maximum reach-
able wind at the sea surface is given by Emanuel, 2018 (based on Bister and Emanuel,
1998) as:

|Vmax|2 = Ck

Cd

TS − TO

TO

(k∗
0 − k), (1.5)

where Vmax is the MPI at the sea surface, Ck and Cd are the enthalpy and momentum
surface transfer coefficients, TS and T0 are the temperature respectively at the sea surface
and at the tropopause (outflow temperature), k the enthalpy per unit mass and k∗

0 the sat-
uration enthalpy at the sea surface. To note, equation 1.5 is a simplification with unknown
members (i.e. outflow temperature, surface saturation enthalpy and boundary layer en-
thalpy), and limited to the sea surface (whereas the true maximum wind speed can occur
above this surface). More complex formulations and discussions regarding the MPI can be
found in Emanuel, 1986; Emanuel, 1988. Another debated aspect of the MPI formulation
concerns the effect of dissipative heating (i.e. heating due to dissipation of kinetic energy):
it was indeed included by Bister and Emanuel, 1998 through the TS−TO

TO
ratio, but was

recently judged to be overestimated by Kieu, 2015 (cf. discussion by Montgomery and
Smith, 2017).

Emanuel’s assimilation of the TC to a Carnot cycle conveniently summarizes its en-
ergetics. However, it remains a very simplified view of the system, and only describes its
idealized behaviour under several drastic assumptions regarding its dynamical (neglecting
dissipation both at the surface and in the eyewall), and structural (axisymmetry) proper-
ties. Smith, Montgomery, and Vogl, 2008 notably discussed the limitations of Emanuel’s
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steady-state hurricane model, arguing that the assumption of gradient wind balance in the
boundary layer is inaccurate owing to the fundamentally agradient nature of BL winds in
the inner-core. They showed that a more complex representation of the BL including the
outflow layer above the lower inflow layer, and the radial pressure gradient imposed by the
free troposphere, could help better prescribe steady-state dynamics. These modifications
of the steady-state model would also imply a different formulation of the MPI.

Beyond its steady state, the TC goes through a full life cycle, including genesis, inten-
sification and decay phases. We describe these phases hereafter.

1.2.2 TC life cycle

The development and life cycle of TCs depend on various factors such as atmospheric
and oceanic external conditions, the oceanic basin, the season, or internal fine scale pro-
cesses. However, there is a common pattern of life cycle that describes the bulk behaviour
of TCs: they form in the intertropical convergence zone, then they intensify up to a ma-
ture state in a time lasting from several hours to several days, they propagate westward
under the effect of ambient atmospheric synoptic flow and planet rotation, and their tra-
jectory gradually shifts poleward due to planetary vorticity (i.e. the beta-effect) (Holland,
1983; Holland, 1984). When reaching subtropics and mid-latitudes, TCs arrive into a
less favourable environment with more vertical wind shear and colder ocean mixed layer,
leading either to their collapse or to their transition to extratropical storms (Harr and
Elsberry, 2000; Harr, Elsberry, and Hogan, 2000). The typical life cycle of TCs can last a
few days up to several weeks. We describe hereafter the different phases of this life cycle,
and the conditions governing the TC’s behaviour during these phases.

Formation

As stated by Kerry Emanuel in a recent review on TC research (Emanuel, 2018),
"no aspect of tropical cyclones has proved as vexing and intractable as their formation".
The range of conditions allowing the development of such extreme events are indeed still
subject to debate, and the ability to predict their formation is yet limited.

Large-scale factors The probability for a TC to develop in an area of the globe at a
given time depends on the state of the ocean and surrounding atmosphere at that time. A
warm ocean surface is a first prerequisite to TC genesis (Palmen, 1948), as the increased
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evaporation of ocean water allows moistening of lower atmosphere, and provides fuel for
convection. The location at intertropical latitude is also a requirement as it grants a small
Coriolis force, and thus allows a stronger low-level convergence. An early attempt to
list environmental conditions necessary for TC formation was performed by Gray, 1975;
Gray, 1979, who added sufficient low-level relative vorticity, low tropospheric vertical
shear, and sufficient relative humidity and equivalent potential temperature distribution
on the vertical to the two previously cited factors. Based on these environmental factors,
several indices for tropical cyclogenesis have been developped since then. Menkes et al.,
2012 compared four of these indices and showed that the index proposed by Tippett,
Camargo, and Sobel, 2011 was overall performing the best. This index was derived from
the General Potential Index (GPI) developed by Emanuel and Nolan, 2004a; Camargo,
Emanuel, and Sobel, 2007, which depends on the following predictors:

— absolute vorticity, which must be high to ensure the low-level convergence and
trigger deep convection

— relative humidity at 700 hPa, which must also be high to provide enough fuel for
the convection

— an SST index, which includes conditions on the local SST that must be high com-
pared to environmental SST, and other parameters such as "clipped" vorticity that
limits the impact of low-level vorticity on the index above a given threshold

— vertical wind shear, which must be low to prevent disturbance of the forming
convective column and upper intrusion of dry air.

Menkes et al., 2012 also showed that while such indices quite fairly represent the sea-
sonal variability, they mostly fail at representing the interannual variability of cyclogenesis
amplitude and phase, and suggest that this may be attributable to stochastic processes
not accounted for in these large-scale environmental indices. These indices are regularly
discussed and improved owing to new developments in the field of TC research.

These prerequisite conditions can be accompanied by other processes that favor the
settlement of a mature TC: these processes are easterly waves or monsoon troughs that
favour the convergence of moist air, and can trigger the transition between a mesoscale
cluster of convective clouds and a deeply convective moist air column (Gray, 1968).

These circumstances are however more and more considered to be only catalysts of
the cyclogenesis, instead of mandatory requirements.
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Fine-scale dynamics Overall, the above listed criteria and processes only describe the
favorable conditions for TC formation. They are necessary, but not sufficient to cause the
formation of a tropical depression. As summarized by Emanuel, 2018, current observa-
tional, theoretical and modeling studies point at two main configurations for initiating
a warm-core convective cyclonic vortex. In the first case, the formation of a warm-core
cyclonic disturbance starts with an isolated mesoscale cold core perturbation caused by
environmental cyclonic circulation (Riehl, 1963; Chen and Frank, 1993). This cold core
perturbation causes mixing of moist static energy throughout the troposphere. The cir-
culation at the surface is thus originally cold-core and potentially anticyclonic, with the
presence of a cold-core TC aloft in the troposphere preventing downdrafts. Eventually, the
accumulated moisture in the column launches vertical convection and low-level conver-
gence. This triggers an inversion of the surface circulation which then becomes warm-cored
and cyclonic, further fueling the deep convection.

In a second and more recent theory owing to the high resolution modeling techniques
used to simulate it, the warm-core saturated air column forms due to a spontaneous self-
aggregation of convection (Raymond and Sessions, 2007; Nolan, Rappin, and Emanuel,
2007; Davis, 2015; Wing, Camargo, and Sobel, 2016; Muller and Romps, 2018). Such
aggregation is due to a near-surface flow from dry subsident radiatively cooled areas to
moist columns with reduced radiative cooling caused by high clouds. The ocean extracted
moist static energy near the surface is thus exported from dry to moist regions, yielding
an upgradient energy transport.

An other recent theory regarding tropical cyclogenesis synthetizes two aspects of TC
formation into a unified view (Montgomery and Smith, 2010; Kilroy, Smith, and Mont-
gomery, 2017). The first step is the so-called "marsupial paradigm", which postulates
that the formation of cyclonic tropical depressions is strongly favoured inside the Kelvin
cat’s eye of the critical layer of pre-existing synoptic-scale tropical easterly waves (i.e. the
easterly wave "pouch"). The pouch is indeed believed to protect moist air from external
dry air intrusion, while favouring the aggregation of vorticity through wave breaking and
roll-up of cyclonic vorticity, while persisting in time through a feedback between the par-
ent wave and the embedded cyclonic vorticity. This theory, first proposed by Dunkerton,
Montgomery, and Wang, 2009, was verified in cloud-resolving modeling simulations by
Wang, Montgomery, and Dunkerton, 2010a; Wang, Montgomery, and Dunkerton, 2010b;
Montgomery, Wang, and Dunkerton, 2010 and observed by Montgomery et al., 2010. It
is also the object of the Pre-Depression Investigation of Cloud-Systems in the Tropics
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(PREDICT) Experiment, which proved useful to improve genesis predictability (Mont-
gomery et al., 2012). Moreover, PREDICT observations of hurricane Karl (2010) showed
the relevance of the unified theory, while the pre-existence of a cold core perturbation
was invalidated in this case (Bell and Montgomery, 2019). Unlike previous theories that
associated TC formation to the pre-existence of a mid-level mesoscale cyclonic vortex
and required a trigger to launch deep convection, the unified theory sees TC genesis as a
gradual two-way energy cascade (Montgomery and Smith, 2010): on one hand, the parent
easterly wave breaking leads to a downscale cascade where vorticity goes from synoptic
to mesoscale; on the other, the appearance of small-scale convective structures such as
Vortical Hot Towers (VHTs) inside the wave pouch leads to an upscale aggregation of
localized vortical anomalies. This merging of asymmetric vortical structures of enhanced
convection is termed the rotating convective paradigm and was initially introduced by
Montgomery et al., 2006 to describe the genesis of Tropical Cyclones.

The research on TC formation thus combines necessary conditions (used to define
genesis indices), catalytic processes mostly linked to atmospheric large-scale circulation,
and scenarios explaining the appearance of warm-core deep convection characteristic of
mature TCs.

Intensification

Once the deep convection is initiated, the vortex enters a self-sustaining process in
which the average symmetric vortex intensifies through a feedback between moisture fluxes
from the ocean surface and deep convection in the conditionally unstable thermodynamic
environment. Several studies have attempted to describe the chain of processes controlling
this feedback; they were summarized through four main paradigms by Montgomery and
Smith, 2014 and reviewed by Montgomery and Smith, 2017.

The first paradigm, termed the Convective Instability of the Second Kind, (CISK), was
proposed by Ooyama, 1964 and Charney and Eliassen, 1964. It relies on an axisymmetric
view of the vortex in which the spinup occurs above the boundary layer through angular
momentum conservation, while the energy supply for convection occurs mainly through
the inflow of moist air in the BL caused by surface friction. In this view, the rate of
latent heat released by deep convection is proportional to the convergence of moisture
throughout the troposphere, which thus mainly occurs in the BL. The CISK paradigm
thus delivers a simple view of an axisymmetric intensifying vortex based on dynamical
arguments.
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However, CISK has several limitations (cf. Montgomery and Smith, 2014 p. 8) that
led to its modification and improvement by Ooyama, 1969 and to the introduction of the
more developed Cooperative-Intensification paradigm. Similarly to CISK, the cooperative-
intensification paradigm describes an axisymmetric TC approximately in thermal wind
balance (i.e. hydrostatic and gradient wind balances). The intensification is then described
as a feedback loop between the convectively unstable eyewall and the radial gradient
of pressure and temperature: an initially weak vortex will generate inflow in the BL,
causing convective activity where moist air converges in the BL, and heating in the center.
To keep the vortex in thermal wind balance, a deep region of negative radial gradient
of latent heating rate in the convective region draws in surfaces of constant absolute
angular momentum (M) surfaces above the boundary layer while approximately materially
conserving M. From the equation Vt = M

r
− fr

2 , the inward movement of M surfaces implies
an amplification of the tangential winds and a lowering of the sea surface pressure in the
central region via gradient wind balance. If the equivalent potential temperature in the
BL is high enough and keeps increasing with decreasing radius due to surface moisture
fluxes, the moist instability will be maintained: the air above the BL will thus continue
to be drawn inwards and the tangential winds will continue to amplify. Unlike the CISK
paradigm, this view thus limits the intensification to the degree of conditional instability of
the eyewall: at some point, the release of latent heat in the eyewall warms the troposphere
enough to reduce the instability to buoyant deep convection, and the increasing amount
of moisture in the BL reduces the moisture flux at the sea surface; convection is thus
capped.

An other approach of TC intensification was proposed by Emanuel, 1997 as the Wind-
Induced Surface Heat Exchange (WISHE) paradigm. The WISHE theory relies on the
steady-state hurricane model developed by Emanuel, 1986 and describes intensification
essentially as a positive feedback between sea surface wind speed and the amount of
heat extracted from the sea surface, which depends on the surface wind speed. WISHE
thus emphasizes the importance of sea surface heat exchanges as the driving mechanism
of intensification, instead of eyewall convection and latent heat release, as well as the
conventional spin-up process above the BL, that are viewed as implicit (Montgomery et
al., 2009).

In a more recent set of papers (Montgomery et al., 2006; Smith, Montgomery, and
Van Sang, 2009; Montgomery and Smith, 2014), an asymmetric-based view of TC inten-
sification was developed as the Rotating Convection paradigm. This paradigm is based
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on the principle of rotating convection already mentioned in section 1.2.2, in which local
updraughts amplify the cloud-scale vorticity by one to two orders of magnitude through
the process of vortex tube stretching. These highly vortical updraughts, called the Vortical
Hot Towers (VHTs), eventually aggregate and thereby amplify the vorticity of the main
parent vortex. They are thus believed to take a great part in vortex formation and inten-
sification. The rotating convection paradigm thus has the particularity of acknowledging
the importance of asymmetric and localized convective structures in the intensification
process. This asymmetric view corresponds, when summarized to an axisymmetric view,
to a revised version of the cooperative-intensification theory.

Basically, the cooperative-intensification that links the increase of near-surface equiv-
alent potential temperature to the release of latent heat by eyewall convection remains
unchanged, but the dynamics and thermodynamics of the Boundary Layer are largely
revised, implying modifications of the spin-up process and axisymmetric structure of the
intensifying TC as well. The rotating convection paradigm indeed goes with a new vision
of TC wind spin-up in which the highest winds are located inside the BL (whereas they
are located at the top of it in previous theories). This revised spin-up theory proposed by
Smith, Montgomery, and Van Sang, 2009 shows that, if the air in the BL inflows faster
than it is reduced by surface friction during its convergence, it spins-up and becomes
supergradient, yielding higher wind speeds than in the frictionless atmosphere above the
BL. In this view, the BL takes a more important role in the intensification process as it
becomes the driving mechanism for the spinup of the eyewall: instead of occuring through
the convergence of constant angular momentum air above the BL, the spin-up is trans-
ferred from the BL through vertical advection of angular momentum by eddy momentum
fluxes. These momentum fluxes are caused by rotating deep convection: they are the result
of VHTs and localized vortical poles merging and aggregating in the eyewall area, that
enhance local vorticity and transfer their momentum to the inflowing air. The transfer of
air from the BL to the eyewall deep convection above can only occur if the buoyancy of
the eyewall is able to ventilate this air: otherwise, there would be an outflow above the
BL and the vortex would spin down as in a normal convective cell. The intensification
is thus limited to the fact that the convective mass flux in the eyewall has to be strong
enough to ventilate the BL inflow: if the inflow becomes too important with respect to
eyewall convection, the air outflows above the BL and caps the intensification.

Rotating convection paradigm thus synthesizes axisymmetric and asymmetric aspects
of TC intensification to deliver a unified view of the TC vortex in which the axisym-

28



1.2. Tropical cyclones: theoretical bases

metric feedback process between eyewall latent heat release and elevation of near-surface
equivalent potential temperature by moisture fluxes appears primarily controlled by BL
dynamics and by the formation and aggregation of localized rotating convective clouds.
The new spin-up theory associated with the axisymmetric version of the paradigm has
been validated observationally and in modeling studies, and VHTs have been extensively
observed and theorized, although their role in eddy momentum fluxes distribution still
requires investigation. This new paradigm is thus a considerable step in the direction of a
coherent description of the TC life cycle, as it synthetizes dynamics and thermodynamics,
symmetric and asymmetric properties, and describes both the formation and intensifica-
tion of TCs (even the decay phase in a quiescent environment according to (Smith, Kilroy,
and Montgomery, 2021)).

Intensity variations

Environmental factors The most common sources of perturbation of TC intensifica-
tion are surface interactions (land and ocean), and vertical wind shear. Both have been
extensively studied and are not the subject of the present thesis, but a very brief summary
of their known interactions with the TC vortex is provided here.

The presence of a large and intense vortex moving above the ocean surface has various
effects on the ocean, the most easily observable being the so-called ocean surface "cold
wake". Observational evidence indeed shows that TCs leave a cold sea surface tempera-
ture (SST) wake behind them which can be significant regarding the mean temperature
(Elsberry, Fraim, and Trapnell Jr, 1976; Price, 1981) . This surface water cooling can in
turn impact the TC intensity by limiting its energy supply (Ginis, 2002; Jullien et al.,
2014). The mechanisms provoking this ocean surface cooling are multiple (they are il-
lustrated on Fig. 1.3): they include Ekman pumping caused by the cyclonic circulation
(Price, 1981; Shay, Goni, and Black, 2000), mixing induced by entrainment and shear in-
stability (Elsberry, Fraim, and Trapnell Jr, 1976; Shay, Elsberry, and Black, 1989; Jaimes
and Shay, 2009), surface heat fluxes (Andreas and Emanuel, 2001). The ocean response
depends on several factors, as the characteristics of the TC (size and translation speed
of the TC determines the intensity of Ekman pumping: the smaller and faster the TC,
the lowest the Ekman-induced surface cooling), and the structure of the ocean during the
TC’s passage (e.g. the shallower the mixed layer, the stronger the cooling (Vincent et al.,
2012; Jullien et al., 2012)). The ocean pre-existing mesoscale activity also influences the
ocean response to a TC, as they feature a specific ocean stratification that modulates the
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ocean response, and in turn its impact on the TC intensity (Bao et al., 2000; Wu, Lee,
and Lin, 2007; Jullien et al., 2014).

Vertical wind shear of the synoptic flow is another environmental factor that have con-
siderable impact on the TC as it perturbs the vertical alignment of the TC (Frank and
Ritchie, 1999; Smith, Ulrich, and Sneddon, 2000; Frank and Ritchie, 2001; Corbosiero and
Molinari, 2002). The tilt processes under the effect of shear are complex, but they usually
result in a perturbation of the convective column which, under the effect of vorticity, initi-
ates a horizontal offset between the lower and upper parts of the sheared TC. This process
and the interaction between the different shifted vertical layers of the TC eventually leads
to the formation of Vortex Rossby Waves (VRWs, see section 1.2.2 for details), which can
lead to the reformation of a coherent tilted vortex, or to the vortex collapse if the shear
is too strong (Montgomery and Kallenbach, 1997; Schubert et al., 1999; Corbosiero and
Molinari, 2003). The excitation of VRWs can indeed cause the intrusion of low entropy
air from the exterior into the vortex at mid levels, or to downdrafts of low entropy air in
the boundary layer, which can in turn impact TC intensity and make it less resilient to
shear events (Reasor, Montgomery, and Grasso, 2004; Tang and Emanuel, 2010; Riemer,
Montgomery, and Nicholls, 2010).

Vortex internal processes and structure In response to external disruptions or lo-
cal scale interactions, processes internal to the vortex are triggered and interplay with
intensity variations. The modification of the internal TC structure can be viewed as a
departure from the bulk steady-state TC structure, often through transitory and asym-
metric features. In practice, all interactions of the TC with its environment modify the
structure of the wind field (and all other representative variables: pressure, precipitation,
vorticity...) either locally or at a larger scale, sometimes encompassing the whole vortex.
A systematic modification of the TC wind structure is for instance the wave number-1
asymmetry introduced on the symmetric vortex by its translation speed. The translation
speed indeed induces a difference of wind speed between the two sides of the TC, as one
side (the right one in the northern hemisphere) has tangential winds aligned with the
translation speed, while the other side has opposed cyclonic and translation velocities.
The resulting vortex is thus not symmetric, but features a difference of speed between its
two sides equal to twice the translation speed. Vertical wind shear, as previously depicted,
can tilt the vortex, generating local anomalies of wind and vorticity mixing in the eye-
wall, perturbations of the potential vorticity field, modifications of the radial structure,
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etc. Similarly, all interactions of the TC with its environment can cause distortions or
perturbations of the wind field.

The processes affecting TC intensity are detailed hereafter, and illustrated on Fig. 1.5
for vortex-scale processes, and Fig. 1.6 focusing on the TC core and eye-eyewall features.

Vortex contraction A first feature of TC internal structure changes is the vortex
contraction. This contraction is not linked to any external event, but is an intrinsic pro-
cess of TCs when they intensify. Shapiro and Willoughby, 1982 showed that heat and
momentum sources at the vortex center can rapidly affect the eyewall structure, and
have a tendency to cause eye contraction by displacing the wind maximum progressively
inside the radius of maximum wind. This contraction process is widely accepted as a gen-
eral tendency of intensifying TCs (Shapiro and Willoughby, 1982; Willoughby, Clos, and
Shoreibah, 1982; Stern et al., 2015; Li, Wang, and Lin, 2019). It is an important feature
of the TC internal structure as it directly links intensification to a modification of the
entire radial structure.

Eye thermodynamics The thermodynamical structure of the eye features a strong
inversion between upper dry air descent caused by the outflow at the top of the tropo-
sphere, and lower moist air ascent under the combined effect of sea surface heat exchange
in the eye, momentum inflow and mixing with the eyewall (Willoughby, 1998; Franklin,
Lord, and Marks Jr, 1988). The location of this inversion has been related to the intensity
and intensification phase of the TC (Jordan, 1961; Emanuel, 2018).

Eyewall mesovortices The shearing between the warm eye and the surrounding
eyewall due to the strong wind speed, and potential vorticity gradients leads to the ap-
pearance of so-called eyewall mesovortices (Lewis and Hawkins, 1982; Marks et al., 2008).
These mesovortices cause strong asymmetries in the eye shape and polygonal eyewalls
such as the triangle shape of Fig. 1.6 (Lewis and Hawkins, 1982; Muramatsu, 1986; Marks
et al., 2008; Kossin and Schubert, 2001). These polygonal eyewalls have been related in
several studies (Kuo, Williams, and Chen, 1999; Wang, 2002a) to an other major feature
of TC life-cycle, the Vortex Rossby Waves (VRWs).

Vortex Rossby Waves (VRWs) The nature and extent of the impact of VRWs on
the TC life cycle is still debated and investigated. These waves rotating around the eye and
propagating outward (cf Figs. 1.5 and 1.6) along potential vorticity gradients (similarly to
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Figure 1.5 – Schematic upper-view of a TC describing vortex-scale structure and processes
related to intensity variations. Adapted from Houze, 2010.

32



1.2. Tropical cyclones: theoretical bases

Figure 1.6 – Schematic of TC inner-core processes in the eye and eyewall area leading to
eye deformation and generation of VRWs. Background is a SAR normalized radar cross-
section from TC TRAMI (2018).

atmospheric Rossby waves) have been consistently theorized (Guinn and Schubert, 1993;
Montgomery and Kallenbach, 1997; Wang, 2002a; Wang, 2002b; Brunet and Montgomery,
2002; McWilliams, Graves, and Montgomery, 2003) and observed (Reasor et al., 2000) in
TCs. They are described as a driving mechanism of vortex axisymmetrization, restoring
symmetry and possibly promoting TC intensification (Montgomery and Enagonio, 1998;
Enagonio and Montgomery, 2001; Shapiro, 2000). These VRWs have strong signatures
on the structure of the TC, influencing inner-core asymmetric wind field. Observational
studies have linked them to low wave number (1 and 2) disturbances propagating through
the vortex (Reasor et al., 2000) causing eye rotation (Kuo, Williams, and Chen, 1999)
and coupling with inner rain bands (Chen and Yau, 2001). They were also simulated
in numerous modeling studies (Wang, 2002a; Wang, 2002b; Wang and Wu, 2004), and
their spectral distribution and extent were shown to strongly depend on model resolution
(Gentry and Lackmann, 2010).

Rainbands TC rain bands can be divided in two categories with different associated
dynamics. Inner rain bands, in the TC’s inner-core, hardly visible on TC images as they
are in the most cloudy area of the TC. They are convectively coupled to VRWs, and thus
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very related to their dynamics and propagation (Guinn and Schubert, 1993; Montgomery
and Kallenbach, 1997; Li and Wang, 2012). At larger radii, VRWs propagating outward
reach a critical radius at which their phase speed matches the bulk vortex frequency
(Schecter and Montgomery, 2003). Inner rain bands thus disaggregate in the so-called
Rapid Filamentation Zone (Rozoff et al., 2006; Wang, 2008; Li and Wang, 2012), and turn
into outer rain bands, which can be spotted as large spiral bands separated by cloud-free
areas. Outer rain bands are thus dynamically distinct from inner-core dynamics, but can
also notably impact the vortex causing intensity and size changes or Secondary Eyewall
Formations (SEFs) (Wang, 2009; Wang and Tan, 2020).

Eyewall replacement cycles (ERCs) Vortex spin-up added to eyewall contrac-
tion can sometimes eventually cause ERCs (Willoughby, Clos, and Shoreibah, 1982), that
strongly affect the TC’s intensity. This process occurs when a secondary eyewall forms out-
side of the Radius of Maximum Wind, and gradually contracts to replace the first eyewall.
Secondary eyewalls form due to the expansion of the wind field (Abarca and Montgomery,
2013) and the increased latent heating outside the Radius of Maximum Wind (RMW) that
goes with this expansion (Rozoff et al., 2012). The formation of Secondary Eyewalls that
triggers ERCs might be linked to VRW propagation and rotating-convection paradigm,
according to Terwey and Montgomery, 2008. Using idealized numerical simulations, they
showed that Secondary Eyewall Formations (SEFs) happen through the formation of a
cyclonic jet in the vorticity skirt above the RMW, which gradually intensifies into a deeply
convective eyewall due to wind-wave feedback and convergence of system-scale vorticity.
This jet results from axisymmetrization of vorticity anomalies that converge and aggre-
gate into the primary eyewall by shear turbulence and VRWs. Other studies suggest that
ERCs might also be triggered by external events, and interaction between the inner-core
and the surrounding rainbands (Rozoff et al., 2012; Judt and Chen, 2010). ERCs can cause
strong intensity fluctuations by spontaneously decreasing the TC intensity, while at the
same time further broadening the wind field (Huang, Montgomery, and Wu, 2012). They
are therefore a source of uncertainty for observational assessment of vortex maximum
intensity and size (Combot et al., 2020).

The above listed processes and features provide a non exhaustive view of the diversity
of phenomena that are currently under investigation for a better understanding of TC
formation and intensity variations.

34



1.3. Studying and forecasting TCs

Decline

Many events can cause the end of a TC event. As seen above, environmental events
such as ocean surface cooling or vertical shear in the atmosphere can cause notable per-
turbations of the TC, but they must be very strong to cause the collapse of an intense
formed vortex on their own, which rarely occurs in the tropical atmosphere. The most
common reasons for TC decay are thus either landfall or reaching high latitudes (as the
beta-effect drives their track poleward). They thus simply lose their energy supply, ei-
ther reaching dry land or colder water. Higher latitudes also have higher levels of vertical
shear, combining two sources of external perturbations. In some cases, however, TCs can
undergo an extratropical transition and become extratropical storms by tapping into the
available potential energy contained in baroclinic waves (Harr and Elsberry, 2000; Klein,
Harr, and Elsberry, 2000; Jones et al., 2003). These transitions are hard to predict and
can cause lots of damage at much higher latitudes than expected. They are the object of
a specific field of research.

To note, a recent modeling study by Smith, Kilroy, and Montgomery, 2021 attempts
to gather all aforementioned aspects of TC life cycle under a unified view based on the
rotating-convection paradigm: they show that TC genesis, intensification, mature varia-
tions and final decline are all highly asymmetric phases that can be described through
symmetric aspects of the asymmetric theory. Moreover, they propose a vision of the TC
life cycle which, even without external interactions and in a favorable environment, is in-
trinsically transient. This transient character is due in their view to the gradual decrease
of maximum wind speed and increase of RMW during the mature phase; and to the in-
evitable breaking of convection by the outflow above the BL due to insufficient ventilation
by eyewall convection.

1.3 Studying and forecasting TCs

While our knowledge of TCs at the beginning of the 20th century was limited to their
climatology, the progressive development of airborne measurements, parametric models,
satellite observations, and dynamical realistic models allowed to further witness, analyze,
and theorize their properties. Here we draw an overview of the most commonly used tools
for TC observation and modeling.
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1.3.1 TC Observation

The uncertain probability of occurrence, relative fast translation speed, large size, ex-
treme weather conditions, and wide range of interacting processes governing TC dynamics
makes their observation a scientific and technical challenge. There were however, in the
last decades, increasing observational opportunities.

Land-based and airborne observations

The first observations in TCs were performed by commercial ships crossing storms.
Nowadays, with improved weather forecast, ships mostly avoid these extremely violent
phenomena.

Moorings, buoys, drifters, and profilers deployed on existing observational net-
works, or during dedicated field campaign, can provide measurements at the sea surface
(winds, air-sea fluxes, waves), and in the ocean column (currents, temperature, salinity).
These observations are however sometimes damaged or hampered by extreme wind, and
wave conditions.

Coastal radars provide 3D observations of winds and reflectivity (Lee and Bell, 2007)
(Fig. 1.7). They have an azimuth resolution of one degree and a range resolution of 0.25
km, with a range of 230 km for velocity measurements (respectively, 1km and 460km for
reflectivity measurements). They operate with 14 elevation angles sampling from 0° (i.e.
sea surface) up to 19.5°. Given the Earth curvature and the constant azimuth resolution,
distant measurements are higher in the atmosphere and sampled at a lower resolution.
Coastal radars can however encompass the whole structure of a TC if it is close enough
to the radar.

Airborne measurements are probably the most detailed in situ measurements of
TCs. Dedicated aircrafts have been adapted to fly in TC extreme conditions. They usu-
ally follow a cross flight pattern (see Fig. 1.8C) to sample the TC radial structure, and
various TC quadrants. They carry several observational devices. Dropwindsondes are
sondes that are dropped into the TC during the flight, measuring the wind, tempera-
ture, humidity, and pressure vertical profiles as they fall (see an example on Fig. 1.8A).
Dual-Doppler radars operated from aircrafts, provide 3D kinematic and precipitation
fields by measuring reflectivity and Doppler-derived wind speeds both on the vertical and
horizontal thanks to their multiple antennas (Marks Jr and Houze Jr, 1984; Marks, 2003;
Aberson et al., 2006; Reasor, Eastin, and Gamache, 2009) (Fig. 1.8B). These data have
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Figure 1.7 – Example of coastal radar reflectivity measurement on TC IRMA (2017) from
the KBYX WSR-88D radar (Key West, Florida).

a larger coverage than dropwindsondes, and can be composited or interpolated to pro-
vide 3D-gridded wind and precipitation fields, but they can be noisy or inconsistent near
the sea surface (Reasor, Eastin, and Gamache, 2009). Finally, the Stepped Frequency
Microwave Radiometer (SFMR) is a sensor that passively acquire the microwave
emissions from the atmosphere and ocean surface. SFMR retrieves surface wind speeds at
the nadir (see Fig. 1.8C) from 6 different C-Band channels that measure surface relectivity
(Uhlhorn et al., 2007).

Airborne measurement techniques allowed most of scientific progress between the 40s
and the 70s, including our understanding of TC formation, intensification and dynamical
balances (Stith et al., 2018). They are still extensively used nowadays, and are mainly
operated by the National Hurricane Center in the United States, although measurements
were recently made by other agencies (Fu et al., 2020). Their two main limitations are: 1)
the human and economical resources they require, which limits their use to some basins or
some agencies, 2) their limited geographical extent, as they don’t encompass the full TC
structure being limited to cross-sections, and they are limited to TCs close to US coasts
(i.e. Eastern Pacific and Northern Atlantic basins surveyed by NHC).
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Figure 1.8 – Examples of aircraft acquisitions in TCs. (A) Dropwindsondes soundings:
Launch locations of eyewall dropsondes during the 1997-1999 period (upper panel) and
example of dropsonde vertical profile of wind speed acquired in TC GEORGES (1998),
taken from Franklin, Black, and Valde, 2003. (B) Dual-Doppler radar acquisitions during
TC IRMA: wind speed fields at 0.5km (upper left) and 3km (right) altitudes, and wind
speed vertical cross-section (lower panels), source: NOAA HRD. (C) SFMR acquisition
during TC HARVEY (2017): flight track (flight level winds in color) on the upper panel,
and along-track profiles of measured flight-level (green) and surface (blue) wind speeds,
and surface rain rate (red), source: NOAA

38

https://www.aoml.noaa.gov/hrd/Storm_pages/irma2017/radar.html
https://www.aoml.noaa.gov/hrd/Storm_pages/harvey2017/20170824H2.html


1.3. Studying and forecasting TCs

Satellite observations

Since summer 1961, when Television Infrared Observation Satellite 3 (TIROS-3) cap-
tured the first satellite images of hurricanes (Bandeen, Kunde, and Thompson, 1964), the
satellite era has brought a whole new diversity of available TC observations, and granted
a global coverage of events. Various orbits and sensors allow various types of measure-
ments with assets and drawbacks for each of them. They are summarized in Table 1.1,
and detailed hereafter.

Geostationary satellites They provide passive measurements of the top of the cloud
visible reflectivity and infrared emissions (Fig. 1.9A). A method of classification of TC
intensity and life cycle phase based on an assessment of cloud features and TC morphol-
ogy (and their evolution in time) from visual and infrared images has been developed
by Dvorak, 1975. It is still one of the tools used by weather agencies for TC forecast.
Geostationary measurements have high spatial and temporal resolutions of respectively 1
km and 1 min, but only give access to the top of the clouds.

Low-orbiting satellites They provide measurements around the globe with a given
repeat cycle. They therefore may cross TC tracks once or several times (sometimes none,
depending on the TC track velocity and direction with respect to platform orbit and swath
properties). To note, NASA has recently launched a constellation of 8 micro-satellites
(with small sensors using the Global Navigation Satellite Systems signal) with a specific
orbit (inclination of 35°) to maximize the coverage in the Tropical band and thus reduce
gaps between observations of a given TC (Ruf et al., 2012; Ruf et al., 2018). Here, I
will only detail microwave sensors, which wavelength larger than visible and infrared
measurements allows to penetrate through clouds. Infrared or visible sensors are also
used, for instance to retrieve sea surface temperature (SST), or biogeochemical ocean
surface properties such as chlorophyll-a.

Radiometers , which are passive microwave sensors, measure the brightness tem-
perature. Regarding TC wind observation, they can be separated into 2 types: multi-
frequency imagers, and L-band radiometers.

Multi-frequency imagers, such as SSMI (Fig. 1.9C) and AMSR-2, are used to
retrieve surface wind speeds (Zabolotskikh, Mitnik, and Chapron, 2013), Cloud Water
Vapor, cloud liquid water, and precipitation rate (Meissner and Wentz, 2009; Wang and
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Figure 1.9 – Examples of acquisitions in TCs from several types of satellites. (A) Infrared
Brightness Temperature from the Visible Infrared Imaging Radiometer Suite aboard the
Suomi-NPP geostationnary satellite (NASA/NOAA) acquired on TC DORIAN (2019).
(B) Significant Wave Height measured by 3 different altimeter satellites (HaiYang-2B,
Copernicus Sentinel-3A, AltiKa) on TC LAURA (2020). (C) Microwave (91 GHz) Bright-
ness Temperature measured by SSMI on TC LESTER (2016). (D) Precipitation rate
from the combined DPR-GMI product measured by the Global Precipitation Measure-
ment (GPM) program, acquired on TC LESTER (2016).
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Hankes, 2016) with a resolution between 13 and 70 km depending on the frequency band.
Polarimetric radiometers such as WindSat can in addition retrieve wind vectors (Gaiser
et al., 2004), but with a lower accuracy than scatterometers.

L-band radiometers such as SMOS or SMAP provide estimates of soil moisture and
ocean surface salinity by measuring the surface brightness temperature, with a resolution
varying between 10 and 40 km. They were shown to be able to retrieve the intense surface
wind speeds of TCs (Reul et al., 2012; Meissner, Ricciardulli, and Wentz, 2017, Fig.
1.10A). They allow to estimate the maximum surface wind intensity, and the large scale
asymmetry, but not the smaller-scale features. For instance, the eye is not distinguishable
for intense contracted TCs (Fig. 1.10A).

To note, radiometers also include microwave sounders, but these devices only retrieve
brightness temperature and are thus used to compute atmospheric temperature and water
vapor, with no access to wind speeds.

Active radars emit a beam and measure the intensity of the backscattered signal.
Altimeters are nadir single beam radars designed to measure sea surface height. They
also measure ocean waves height (Fig. 1.9B), and were shown to be able to retrieve
surface wind speed, and precipitation rates in TCs along the altimeter track (Quilfen,
Tournadre, and Chapron, 2006). Scatterometers (such as QuickSCAT or ASCAT) are
multiple viewing angles (multiple or rotating antennas) radars, with a nominal resolution
of 25 km that can be reconstructed to 12.5 km resolution estimates (Williams and Long,
2011). They allow to retrieve wind speed and direction (Fig. 1.10B). They are however
more sensitive to rain and ocean impacts than L-band radiometers, and saturate at high
winds. Synthetic Aperture Radars (SAR) use a single antenna with a "synthetic
aperture" technique, which consists in processing several consecutive acquired signals to
build a synthetic along-track antenna much larger than the real one. Various acquisition
modes and polarizations allow to retrieve wave spectra, and wind speeds with a very high
spatial resolution ranging from 10m to 1km. A comparison between SAR and SMAP or
ASCAT wind fields is shown on Fig. 1.10, and highlights the better representation of the
TC eyewall, the small-scale wind features and asymmetries provided by SAR. The SAR
1-km wind field data are the main source of observations used in this thesis, and will be
further detailed in the chapter II.

Finally, data such as the Global Precipitation Measurement (GPM) DPR-GMI prod-
uct combine active and passive sensors (i.e. radar and radiometer) to synthesize a 3D
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Figure 1.10 – Examples of satellite radiometer, scatterometer and SAR wind speed re-
trievals. (A) SMAP radiometer acquisition on TC LESTER (2016); (B) ASCAT scat-
terometer acquisition on TC LIONROCK (2016) with retrieved directions indicated by
black arrows; (C) Sentinel-1 SAR acquisition on TC LESTER (2016).

precipitation field at 5km horizontal and 125m vertical resolutions (Fig. 1.9D). They pro-
vide a view of the vertical structure of the vortex, with however significant uncertainty
as the retrieval of vertical profiles is based either on model simulations or on observed
profiles from secondary sources, which limits their reliability.

1.3.2 TC simulation

Analytical models

The development of analytical idealized axisymmetric models allowed to work on the
theory of TC intensification. The CISK theory that first conceptualized the intensification
of a TC was the result of the modeling studies by Charney and Eliassen, 1964 and Ooyama,
1964, who modelled the relationship between low-level moisture convergence, and latent
heat release in the eyewall. This simple model allowed the first forecasts of TC intensity.
Later, Emanuel, 1986 and Emanuel, 1988 developed axisymmetric models to test the
validity and limitations of the WISHE theory for TC intensification and the definition
of MPI, which proved to be closer to observations in modeling studies than CISK-based
models that usually did not reach high intensity and needed too drastic conditions for TCs
to appear. Analytical models have been the verification basis for most intensification and
internal dynamics theories, notably for the VRW theory developed by Montgomery and
Kallenbach, 1997, as well as for the dual spin-up theory developed by Smith, Montgomery,
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Table 1.1 – Comparison of different types of TC satellite observations, their main charac-
teristics, their assets, and disadvantages.

Observation source Geostationnary MW imager L-band radiometers Scatterometers SAR
Band Visible, Near In-

frared and Infrared
(∼300THz,∼1µm)

K to W-band (∼20-
∼90 GHz, ∼15mm-
∼3mm)

L-band (∼1.4 GHz;
∼20cm)

C-band (∼5.35 GHz;
∼5 cm), Ku-band
(∼14 GHz; ∼2cm)

C-band (∼5.35GHz;
∼5cm)

Signal Brightness T Brightness T Brightness T Intensity of backscat-
tered signal

Intensity of backscat-
tered signal (NRCS)

Revisit time - ∼12h ∼2-3 days ∼7h ∼6 days
Measured parameters Cloud cover Precipitation, Inte-

grated Water Vapor,
wind speed at the sea
surface

Wind speed, tempera-
ture, integrated water
vapor at the sea sur-
face

Wind speed and direc-
tion at the sea surface

Wind Speed and di-
rection at the sea sur-
face

Product resolution 750m 13 km ∼40 km 25-50 km 1 km
Assets Frequency of acqui-

sitions, large swath
(∼3000km), can fol-
low TC life cycle evo-
lution, high resolution

Large swath, multi-
ple frequency allows to
measure different pa-
rameters and improve
precipitation retrieval

Large swath
(∼1000km), see
through clouds, high
wind sensitivity

Large coverage
(∼800km), see
through clouds,
direction retrieval

High resolution, see
through clouds

Limitations No penetration
through clouds

Impacts of rain on
wind fields due to el-
evated frequency

Low resolution, no
wind vectors

Signal sensitivity
decreases at very high
wind speed, Rain,
ocean surface cur-
rent, SST can impact
NRCS

Not a large coverage,
reduced opportunity
to get acquisitions
over TCs, Impacts of
rain and waves exist

and Van Sang, 2009.

Parametric models

Parametric analytical models of the surface wind and pressure fields allow to recon-
struct an idealized wind field based on the parameterization of the wind or pressure profile
given a limited range of parameters (central and ambient pressure, outflow temperature,
RMW, depending on the parameterization) (Ruiz-Salcines et al., 2019). The first concep-
tual view of a vortex is the Rankine vortex, which describes the vortex wind profile as
linear (i.e. solid body rotation, constant vorticity) in its inner part and inversely propor-
tional to the radius after the RMW (with zero vorticity). Later, many parametric models
were developped to improve the description of the wind profile. For instance, Holland,
1980 derived a wind profile based on environmental and central pressure and RMW, while
Willoughby, Darling, and Rahn, 2006 joined two sections of the profile (inner increasing
portion, and outer exponentially decaying portion) on composites from aircraft observa-
tions to derive a complete parametric profile. More recently, Chavas, Lin, and Emanuel,
2015 regrouped the physical arguments developed in Emanuel et al., 2004 and Emanuel
and Rotunno, 2011, relating the mean radial profile to dynamical conditions on the struc-
ture of the boundary layer and outflow, to compute and join the mean wind profile in the
inner and outer core areas. Although this theory for the outflow control on TC intensity
was criticized by Montgomery, Persing, and Smith, 2019; Montgomery and Smith, 2019
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as having problematic aspects regarding the causality of wind spin-up and the importance
given to asymmetric processes, the attempt made by Chavas, Lin, and Emanuel, 2015 to
synthetize a physical theory into a parametric model is relevant regarding forecast and
risk assessment improvements. Such parametric vortices are indeed widely used for storm
surge and wave forecasting, as well as for ocean forcing applications.

Dynamical models

With the increase in computer capacity, dynamical models have developed and have
been increasingly used over the last decades. Dynamical models solve the Navier-Stokes
(NS) equations in three dimensions on discrete time-space grid. Subgrid-scale processes,
that cannot be solved are parameterized. As these models include the various processes
involved in TC formation and evolution, their realism depends both on the resolution,
and the parameterization of unresolved processes.

Impact of resolution Coarse simulations such as climate simulations run for climate
change scenarii have resolutions ranging between 25 km (for high resolution runs focused
on specific processes) and 200 km (for global runs). They do not correctly represent TCs
producing only cyclone-like vortices, which presents some characteristics of TCs but much
lower intensities (Sugi, Noda, and Sato, 2002; Camargo and Sobel, 2005; Scoccimarro
et al., 2011). They also fail in some regions to accurately represent the favorable envi-
ronmental conditions for tropical cyclogenesis. They can however be used to run global
simulations over several years, providing useful material for climate studies. On the other
tail of model spectrum, Large Eddy Simulations (LES) have a much higher resolution of a
few tens of meters, which allows featuring very small-scale processes such as BL rolls (Zhu,
2008) and turbulent mesoscale eddies (Rotunno et al., 2009). Their use over a whole basin,
and during an entire TC life cycle however requires unrealistic computational resources.
Regional mesoscale simulations are a compromise between these two types of simulations.
They can quite realistically represent the TC life cycle, its maximum intensity, and small
scale processes of interest like polygonal eyewalls or VRWs (Wang, 2002a; Wang, 2002b;
Gentry and Lackmann, 2010). It is the type of simulation that was used in this thesis.

Coupled modeling As TCs are strongly coupled systems, coupled modeling is also
extensively used for TC forecast and research (Lin et al., 2005; Bender et al., 2007; Wu,
Lee, and Lin, 2007). It consists in running concurrently atmosphere, ocean, and wave
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models, and exchange information that impact their respective solving, building a model
that concurrently solves the different environments. For instance, in an ocean-atmosphere
coupled model, the ocean model provides the sea surface temperature and currents to
the atmospheric model, which computes the surface heat and momentum fluxes required
as surface condition to the atmosphere dynamics, and provides them back to force the
ocean model. Coupling consequently improves the representation of cold wakes, wave field
asymmetries, and consequently sea-surface drag, air-sea surface exchanges in general, and
their feedback to the TC itself (Lengaigne et al., 2019; Pianezze et al., 2018; Jullien et al.,
2014). It is however computationally expensive, as it requires to run several models to
solve the different Earth compartments, and this cost increases with the resolution of the
different models. Coupling was not used in this thesis for the aforementioned reasons, and
because the focus was not on the impact of air-sea exchanges, but it is seen as a promising
perspective to improve the realism of the simulations as well as to study the impact of
air-sea interactions on the studied TC internal fine scale features formation and evolution.

Data assimilation in models For TC forecast or reanalysis, dynamical models can also
assimilate atmospheric and ocean observations to partially constrain the simulations to
better match observed events. Indeed, model solutions are not perfect, they are discretized
on a grid of a certain resolution, and sub-grid processes are parameterized leading to
uncertainties and eventually bias of the model solutions compared to observations. On
top of that, NS equation mathematical solution is unknown, and its numerical solution
relies on the stochastic representation of turbulence, leading to a stochastic "nature" of
the atmosphere and ocean dynamics, limiting their forecast. Assimilation of observations
is thus a way to constrain the model solution towards observed data. However, as it
modifies model physics, free simulations (without assimilation) are preferable to study
the properties of a specific physical process.

Statistical models

Statistical models are extensively used for TC forecasting, and were until the 2000s
the most performing tools to predict TC track and intensity (DeMaria and Kaplan, 1994;
DeMaria and Kaplan, 1999; DeMaria et al., 2014). They use linear statistical regression
techniques to predict intensity changes, taking as inputs several parameters character-
izing the current state of the TC (i.e. its maximum intensity, intensification rate and
track), climatological conditions, and large-scale environmental descriptors such as ver-
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tical wind shear. The development of dynamical models over years allowed to compute
these large-scale parameters directly from simulations, creating a new category of mod-
els called statistical-dynamical models, that have a lower computational cost and runtime
and equivalent or better performance than dynamical models alone regarding TC intensity
forecasting (Kucas, 2010; DeMaria et al., 2014; Neetu et al., 2017).

1.3.3 TC Forecast

TC forecasting improvement remains an important goal of TC research, as it could
help reducing human and material casualties. TC forecast relies on a cooperative use of
modeling and observation tools. Forecasters base their forecast on the joint analysis of
available observations (in situ, and satellite), dynamical, and statistical modeling of TC
events. Observations are also used as input parameters for statistical models, and for their
assimilation in dynamical models: the more frequent and reliable the observations, and
the more effective the assimilation techniques, the better the forecast. Ensemble numerical
simulations are run to take into account the uncertainty associated to initial conditions,
observations, and stochasticity to provide probability maps of track and intensity of a
given event.

Track forecast has nicely improved in the last decades, with errors going down to
less than 185km within 72h, and less than 55km within 12h (against respectively 740km
and 140km in 1970) (DeMaria et al., 2014; Cangialosi and Franklin, 2019). TC tracks
are indeed mostly determined by the synoptic flow, and in particular the combination
of beta-drift and large-scale shear or tropospheric events. These large-scale processes are
now quite well-resolved and represented by dynamical models. TC track forecasts have
thus improved along with those of synoptic-scale.

Intensity forecasts, on the other hand, although having considerably improved (errors
under 15 knots within 120h against almost 25 knots 20 years ago), still remain quite
inaccurate (almost no improvement of the 12h forecast, which remains stuck around 5
knots of error), and brutal changes of intensity such as Rapid Intensifications (RI) are often
badly forecast (Cangialosi and Franklin, 2019). The limited efficiency of intensity forecasts
is due to a combination of factors. Our still limited understanding and representation of
BL physics is one of the most limiting factors: accurate observations are rare, notably
regarding the nature of fine scale BL processes under extreme wind conditions, as well as
air-sea exchange processes, and their role in TC dynamics and thermodynamics. The role
of the ocean subsurface structure in TC intensity predictability is also crucial (eddies,
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ocean mixed layer temperature and density), and still poorly observed in real-time. In
the atmosphere, moist convection added to vertical wind shear disturbances can cause
upscale error growths in predictability as shown by Zhang and Tao, 2013. Improving
TC intensity predictability thus relies on both improved observations of TCs (notably
in the BL and under the ocean surface), and improved numerical simulations (towards
increased resolution, and improved resolution of turbulent and coupled processes at the
air-sea interface). A better physical understanding of TC dynamics, and especially of the
BL is one of the crucial point, and my work contributes to this goal.

1.4 Thesis problematics and outline

I summarized in this introduction the different aspects of TC dynamics, and the main
challenges of TC meteorological research and forecast. TCs still lack understanding in
many ways, making them both a mysterious and exciting domain of geophysics: as for
many geophysical processes, their large-scale dynamics are tightly related to processes of
smaller-scale, even reaching turbulence scale. Moreover, their extreme nature makes their
observation difficult and, consequently, their parameterization and modeling too.

In recent years, the growing abilities in high-resolution modeling and the improvement
of observational coverage and resolution under TCs has cast light upon the small-scale and
asymmetric features of TC formation, intensification and intensity variations. Specifically,
the unified theory on TC formation, the rotating-convective paradigm for TC intensifi-
cation, the VRW theory regarding TC intensity restoration and the related theories on
eyewall and eye dynamics all rely on asymmetric aspects of TCs. This recent view of the
TC as an asymmetric system, strongly controlled by its Boundary Layer (through the BL
spinup theory notably) and governed by energy transfers and internal waves propagating
throughout its radial and vertical structure, was the conceptual basis for my thesis.

Spaceborne SAR measurements appeared as a valuable tool in this context as they al-
low to study the TC inner-core BL structure thanks to their surface-level, high resolution,
and large spatial extent acquisitions that encompass the whole TC vortex. This thesis thus
also relies on an important effort to gather these observations and analyze them concur-
rently with model simulations. Both observations and modeling are extensively used for
TC study, but rarely in synergy: observations are used as a validation dataset for modeling
studies, and models as a support to design new types of observations, but few studies rely
on a joint study of both observation and modeling sources. As my lab gathers researchers
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with both expertises, the environment was favorable for such an approach.
The work that I did during my PhD follows three major steps: first, I set up a working

environment of observation and modeling suitable for TC study; second, I figured out a
procedure able to study these two data sources jointly and take out their individual ad-
vantages, while identifying and managing their drawbacks; finally, I used this joint dataset
to address the relationships between the observed asymmetric fine-scale structures of the
inner-core and their evolution, and the modulation of TC intensity. As TC genesis, inten-
sification and mature life cycle are distinct domains of TC studies (although the recent
theory draws numerous bridges between them notably through the rotating-convective
paradigm), I focused my studies on the mature TC life cycle, i.e. the evolution of the
TC when reaching the level of a Tropical Storm (above 18 m/s). This part of the TC life
cycle is indeed of great interest for operational meteorology as it is both hard to predict
and particularly dangerous, and is thus also more sampled by SAR acquisitions. SAR
images were used as a tool to measure the wind field radial and azimuthal characteristics,
notably the sharpness, size and asymmetry of the eyewall and maximum wind ring, and
their energy distribution. The dynamical modeling framework set up jointly with this ob-
servational dataset was designed to provide a realistic representation of these properties,
and to be comparable and complementary to SAR. In particular, it was used to assess the
time evolution of the TC structure, which is not accessible from SAR observations due to
the SAR sampling frequency. A statistical analysis was finally designed, using a machine
learning approach, to evaluate the added-value and predictability potential of SAR and
model extracted parameters.

The technical background for my thesis is thus a joint dataset including SAR surface
wind speed observations, and dynamical simulations used to mimic SAR observations
with a higher temporal sampling resolution. This technical support was used to address
the following problems:

1. Which aspects of TC internal dynamics can we diagnose from high res-
olution surface wind speeds ?

2. What does it bring to our understanding of TC intensity variations ?

The overarching hypothesis is that SAR observations and joint simulations could help
diagnose internal vortex properties linked to symmetric BL spinup, asymmetric convective
structures (such as VHTs and eyewall mesovortices), and energetic processes (such as
vorticity transport by VRWs). Thus, given the link drawn by recent theories between
these interconnected features and TC intensity restoration and variations, a statistical
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study of SAR-extracted parameters could help improve the diagnostic and forecast of
ongoing changes in the TC’s internal structure and intensity. More specifically, the main
diagnostics performed on SAR images and dynamical model outputs were based on these
interrogations:

— How can we estimate TC symmetric properties in order to relate them
to the symmetric TC theory (spinup, resilience) ?

— Can surface wind asymmetries measured from SAR be related to VRW,
VHT and mesovortical activity and, by extension, to TC intensity vari-
ations?

— What is the added value of SAR symmetric and asymmetric estimates
in terms of predictability of TC intensity changes ?

The second chapter of the thesis describes the framework and methodological steps
followed to set up the database for both SAR observations and numerical simulations.
SAR technology is introduced, along with the different steps of image processing, and pa-
rameter extractions allowing the estimation of inner-core parameters. The SAR database
is presented, including a validation of the dataset. The modeling infrastructure is then
described i.e. the WRF model, the configuration and parametrizations of our set of sim-
ulations. I finally present the statistical methods used to study SAR observations and
simulations, including a machine learning algorithm designed to link SAR-extracted pa-
rameters to TC intensity variations, and a method deriving temporal variations of the
internal structure from WRF simulations and linking them to vortex-scale changes.

The third chapter focuses on the exploitation of the SAR database and the statisti-
cal study of SAR-extracted TC properties, and their link with TC intensity variations.
This chapter is based on an article submitted to in Journal of Atmospheric Sciences in
2020. It further describes the SAR extraction methods, and the link between intensity
and both radial structure and azimuthal asymmetry. Contraction and sharpening of the
radial profile, as well as decrease in azimuthal asymmetry coefficients, and broadening
of the spectral decomposition towards high wave numbers are observed with increasing
intensity. The machine learning method is applied to show the improvement in dissociat-
ing intensifying and declining TCs allowed by the measurement of small-scale azimuthal
wavenumbers (especially WNs 4-5) composing 1-D characteristic signals such as maximum
wind distribution or eye shape.

The fourth chapter intends to go further in the estimation of temporal correlation
between inner-core structure and vortex-scale properties by introducing the modeling
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database, based on WRF regional high-resolution simulations. The temporal resolution
of simulations indeed allows to improve the study of internal structure by going from
snapshot-estimated diagnostics to temporal derivatives and second derivatives of these
properties, and thus have access to energy propagation and WN transfers, which are
essential in the frame of intensity restoration theories. The study performed on WRF
outputs reproduces the analyses performed on SAR images, adding new variables to quan-
tify temporal changes. Case studies and average properties are analyzed to highlight the
connection between, notably, changes in the azimuthal spectra of the eyewall and maxi-
mum wind areas, and intensity variations. The machine learning algorithm is re-applied
to assess the contribution of time-dependent structural descriptors to the classification
of intensitfication rates, showing that they more significantly improve the scores than
non-temporal variables.

A final chapter summarizes and synthesizes the results of both studies, and discusses
several perspectives and fields of improvement for the future.
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DATA AND METHODS

2.1 Motivation and constraints

This work relies on a dual approach combining a newly gathered database of TC SAR
observations, and a set of realistic dynamical simulations.

SAR observations are still uncommon in TC studies for several reasons:
— the relevant dual polarization for TC wind retrieval is available on recently launched

SARs (only Radarsat-2 launched in 2007, Sentinel-1 A and B launched in 2014 and
2016 and Gaofen-3 launched in 2016)

— algorithms of dual-polarized wind inversion are quite recent (Mouche et al., 2017)
— the availability of a relatively large number of useful acquisitions is also recent,

relying on an effort made by scientists and space agencies to schedule acquisitions
over TCs based on their track forecasts and other priority requirements.

Such observations have the advantage of being innovative with possible new applications in
TC research and forecasting, but also require to develop new processing methods compared
to more widely used observational sources.

The outstanding resolution of the SAR allows to sample small-scale structures such as
eyewall mesovortices and polygonal eyewalls and convective asymmetries in the inner-core
(cf. the triangular eye shape featured on Fig. 2.1A). SAR post-processing and product
delivery are however associated with several issues: wind directions estimated from a mix
between SAR surface wind streaks and interpolated dynamical models are not reliable
for the moment; the retrieved wind field can be impacted by rain signatures that are not
entirely understood and dealt with yet (see the example of rain-caused attenuation in the
maximum wind area featured on Fig. 2.1A): some anomalies related to the wind inversion
algorithm such as subswath signatures can still appear. Moreover and most importantly,
although SARs can capture a wide range of TC events on all basins and categories,
their temporal sampling is very sparse, and there is no continuity in acquisitions. Their
characterization of TC surface wind speeds is thus limited to instantaneous snapshots and
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Figure 2.1 – Comparison of a SAR acquisition (A) and a WRF simulated surface wind field
(B) illustrating the specificities and issues of each dataset. Red circles show the location of
the maximum wind area, which is not shown by the SAR due to heavy rain attenuation.
Yellow ellipses highlight distortions of the eye shape on the SAR image, characteristic of
the presence of eyewall mesovortices.

only one or a few snapshots per TC event.
The study of SAR observations is thus, in the present thesis complemented by 3D

realistic dynamical simulations, which are used to provide additional information for the
interpretation of high-resolution TC wind fields. Dynamical modelling brings the tempo-
ral continuity missing in SAR observations, but also brings its own issues and drawbacks.
For instance, the simulated wind field, although showing small-scale structures compara-
ble with SAR, is smoother and does not reproduce the maximum intensity (Fig. 2.1B).
The simulated wind fields are thus evaluated, their limitations are discussed, but overall
they are used to estimate temporal changes in the TC inner-core surface wind field at
short-scale (i.e. energy transfers and distortions occurring on hourly scales in the eyewall
and maximum wind areas) and longer time-scale (i.e. intensity variations and structural
changes at a daily or weekly scale). The access to the complete life cycle of simulated TCs
is crucial in the frame of this study, as one goal is to link inner-core dynamics to intensity
variations occurring either during the initial intensification, or the mature state variations,
or the final decline. In the following subsections, I first describe SAR imagery technology
and the modeling framework. I then describe the methodology used to characterize the
TC structure and its evolution with intensity variations.
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2.2 SAR observations

2.2.1 SAR overview

Synthetic Aperture Radar (SAR) technology was invented in 1951 by Carl A. Wiley
and has become over the years a prominent remote sensing technique. It is a side-looking
microwave sensor operating mainly in L (1-2 GHz), C (4-8 GHz) and X (8-12GHz) bands.
It provides kilometer to meter-resolution two-dimensional images used for numerous appli-
cations including military surveillance, forestry, glaciology, oceanography or volcano and
earthquake monitoring. SARs can estimate surface roughness by measuring the intensity
of the backscattered signal, i.e. the intensity of the signal received after its emission by the
radar and reflection by the Earth surface. The Normalized Radar Cross Section (NRCS),
i.e. the backscattered intensity normalized according to individual scene geometry and ra-
diometry (Small, 2011), is in practice the variable measured by SARs and will be referred
to hereafter. As a radar, SAR has two substantial advantages regarding the observation
of the sea surface. First, as an active sensor emitting its own source signal, it can measure
water and ground surface properties indifferently by day or night, contrary to optical ra-
diometers installed on geostationnary satellites that need an external light source to be
able to record. Second, it emits in microwave wavelengths which allows a good penetration
of the atmosphere, so SARs can reach the Earth surface through clouds. The first opera-
tional spaceborne SAR was launched in 1978 aboard the SEASAT-A NASA mission, later
followed in the 90s by ERS-1 and ERS-2 (European missions, 1991 and 1993), JERS-1
(Japanese mission, 1992), RADARSAT 1 (Canadian mission, 1995), and ENVISAT (Eu-
ropean mission, 2002). It has since then become a common source of spaceborne Earth
surface observation.

2.2.2 SAR high resolution

SAR provides estimates of the sea surface wind fields at a spatial resolution of 1km.
The resolution of raw NRCS data is even higher, reaching about 10 meters. Other remote
sensing techniques such as scatterometers and radiometers provide retrievals of 2D surface
wind speed estimation, but with much lower resolution (usually 12.5 to 25 km for scat-
terometers, about 40 km for radiometers). Moreover, scatterometers saturate above 15-20
m.s−1 (Bentamy, Croize-Fillon, and Perigaud, 2008; Chou et al., 2010; Yang et al., 2011;
Chou, Wu, and Lin, 2013) while SAR does not show saturation even at category 5 above
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Figure 2.2 – Schematic of Synthetic Aperture Radar operation

60 m.s−1 (Combot et al., 2020). The exceptional spatial resolution of SAR is allowed
by a specific technology. The resolution is determined differently on range (cross-flight
direction) and azimuth (along-flight direction) axes. The diagram on Fig. 2.2 shows the
operation of SAR acquisitions and illustrates its resolution. Range resolution is directly
determined by the emitted pulse frequency and time length. The position of an object on
the surface located at a given range from the satellite is indeed deduced from the time
between emission and reception of the signal. Given this time lapse, the incidence angle
and the speed of the electromagnetic signal, the distance, and thus the position in geo-
graphic coordinates can be computed. The resolution is determined by the time necessary
to emit and receive two signals at the closest and furthest ranges from the satellite (i.e.
inner and outer limits of the beam on Fig. 2.2): the pulse frequency must exceed this time
lapse to avoid confusion between two signals emitted and received from a given incidence
angle. This threshold can be reduced by limiting the time length of the pulse, however a
reduction causes a critical loss of emitted power. In practice, modulating the frequency of
the emitted signal allows to gain power while lowering the pulse length, which allows to
increase the range resolution up to a few meters (5 meters for Sentinel-1). Moreover, the
swath width is further increased by emitting consecutively at several incidence angles, cre-
ating a ground swath composed of several aligned subswaths (the sketch on Fig. 2.2 shows
only one large subswath). The azimuthal resolution is determined by a different princi-
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ple called synthetic aperture. This technique consists in processing together the phase
and amplitude of several consecutively emitted signals to build a synthetic along-track
antenna much larger than the real one. A given point on the ground being illuminated
during a given amount of time by the moving satellite (see consecutive beams on the
ground on Fig. 2.2 illuminating points A and B several times), a synthetic echo can be
computed using the Doppler shift between the different echoes. The point is thus virtually
illuminated by an array as big as the satellite path during this time (LSAR on Fig. 2.2),
i.e., the beam width on the ground. This increase in the antenna size narrows the beam,
resulting in an increase in azimuthal resolution.

2.2.3 SAR operations

Acquisition modes

In practice, SARs can be operated with different exclusive configurations and set-
tings to provide observations suited for various applications. In this study, we rely only
on Sentinel-1 A & B, and Radarsat-2 acquisitions, which provide dual-polarization, i.e.
acquire data using both co-polarization (vertical-vertical (VV) or horizontal-horizontal
(HH)), and cross-polarization (vertical-horizontal (VH) or horizontal-vertical (HV)) modes.
The combination of these two polarization modes to retrieve surface wind speeds was
introduced by Mouche et al., 2017. The purpose is to use the lower saturation of cross-
polarization at high wind speeds to compensate the saturation of co-polarization, and
on the other hand to use co-polarization in low signal-to-noise areas where the cross-
polarization is noisier (cf. Fig. 4 of (Mouche et al., 2017)). This combination allows a
great improvement of retrieved surface wind speeds at all TC categories. We thus only
describe the operating modes of these three satellites.

Sentinel-1A&B were launched respectively in 2014 and 2016 by ESA in continuity of
ERS-1&2, and ENVISAT. They are on a Low Earth Orbit (LEO) of 700km, and have an
orbital period of 98.6 minutes, and a revisit time of 12 days combining the 2 satellites.
They operate in C-band with four different and exclusive acquisition modes summarized
in Table 2.1. Only IW and EW modes are used to compute 1km surface wind gridded
products used in the present work.

RADARSAT-2 was launched in 2007 by the Canadian Space Agency (CSA). It is on
an 800km LEO orbit, and has an orbital period of 100.7 minutes, with a revisit time
of 24 days. Similarly to Sentinel-1, it is equipped with a C-Band SAR with several ex-
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Table 2.1 – Summary of Sentinel-1 SAR acquisition modes and their main characteristics

Acqsuisition Mode Swath width Nominal resolution Main ESA applications
Interferometric Wide
Swath (IW)

250km 5x20m Main mode, Land Imaging

Extra Wide Swath
(EW)

400km 20x40m Sea-ice, oil spill monitoring

Strip Map (SM) 80km 5x5m Small islands, natural hazards
Wave Mode (WV) 20x20km 5x5m Wave and ocean surface

clusive acquisition modes. The one used to retrieve SAR wind speed products is the
SCW (SCANSAR-Wide) mode resolved at 100x100m with a swath width of 500x500km.
RADARSAT-2 was the first SAR to provide dual-polarization.

Operational constraints

The memory and technical requirements relative to SAR acquisitions prevent these
sensors from recording continuously. Moreover, the different acquisition modes are exclu-
sive and cannot be activated simultaneously, while several modes can be of interest for
a given event (for instance, a TC can cause natural hazards on islands, and there is a
choice to make between IW, EW, or SM modes). Thus, acquisitions must be planned
and respond to economical and political constraints, and the satellite must be remotely
activated to record. Due to these requirements, and to the small revisit period of their low
orbits, the number of SAR wind field acquisitions over TCs is reduced: not all TCs can be
sampled, only one or few acquisitions are usually obtained for a given event, and fewer get
to encompass the whole vortex as the forecast tracks transmitted before acquisitions may
be inaccurate, leading to misses in the planned acquisitions. The operational planning of
SAR acquisitions for their use in TC observation is thus a complex procedure that results
from a consequent effort of coordination between meteorological forecast centers, research
centers, and mission planning teams in space agencies.

The SHOC acquisition campaign

The SAR acquisitions used for this study are the result of a cooperation between IFRE-
MER (my employer for this thesis), CLS (an organism dedicated to satellite data collection
and processing) within their VIGISAT program, and ESA-Copernicus (European Space
Agency managing the Sentinel-1A and B satellites). Collection of Radarsat-2 acquisitions
was also carried out thanks to a partnership between VIGISAT and the Canadian Space
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Agency, which plans and processes Radarsat-2 acquisitions. This acquisition campaign
named SHOC (Satellite Hurricane Observation campaign), to which I took part during
my thesis, allowed over the past few years (SHOC started in 2016) to build a consequent
database of SAR TC images (cf. subsection 2.2.5).

2.2.4 SAR processing: from acquisitions to L2 wind product

The processing of SAR images involves a specific chain of management, coordinated
between space agencies and research institutes. In the case of Sentinel-1 data used in this
work, the level-0 data are first processed by ESA to level-1, and then by IFREMER and
CLS to level-2. The level-0 raw data collected by the satellite are processed to level-1
by projecting them on ground range coordinates, yielding pixel intensities on a regular
geographic grid. The Normalized Radar Cross Section (NRCS) is computed on level-1 data
through radiometric calibration of pixel intensities. The calibration consists in correcting
the noise present on the recorded NRCS due to radiation, by applying coefficients that
depend on the absolute range, the subswath considered, and on the range inside each
subswath.

The level-2 wind field can then be retrieved by applying the Geophysical Model Func-
tion (GMF). This processing step is carried out by both IFREMER and CLS for the data
used in this work. Surface wind speed is related to NRCS through momentum transfers at
the sea surface, i.e. wind-induced waves that deform the sea surface increasing its rough-
ness and thus the backscattered signal. The GMF thus computes wind speed from the
NRCS considering incidence angle and satellite attitude parameters. Figure 2.3 illustrates
level-1 NRCS and level-2 retrieved wind field for a TC case. It shows that the impact of
the incidence angle (shown by the gradual increase of signal amplitude with range) seen
on the NRCS is corrected in the retrieved wind field.

The GMFs used in our case are the CMOD5N (Hersbach, 2010) GMF (used origi-
nally for ERS-2 and ASCAT radiometers) for co-polarization mode (VV), and the MS1A-
HW (Mouche et al., 2017) GMF (revised MS1A for high winds up to 70m/s) for cross-
polarization mode (VH). This combination of co-and cross-polarizations intends to mit-
igate the disadvantages of both modes (Mouche et al., 2017): co-polarization (VV and
HH) mode is less noisy and better renders wind directions but saturates at high wind,
cross-polarization (VH or HV) mode has a higher signal-to-noise ratio but is more sen-
sitive to high winds (Vachon and Wolfe, 2010; Zhang and Perrie, 2012). The GMF and
retrieved winds were validated by Mouche et al., 2019. A more extensive validation was
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Figure 2.3 – (A) Level-1 NRCS from SAR acquisition on TC TRAMI (2019/08/28,09:35);
(B) Surface wind field retrieved after application of CMOD5n-MS1A-HW GMF

performed in the study of Combot et al., 2020, which I co-authored (Appendix I), through
comparison to SFMR flight high-resolution data and best track estimates and proved to
be very accurate. The study conducted in Combot et al., 2020 was focused on the val-
idation of maximum wind, RMW, and characteristic 34, 50, and 64 knots wind radii.
Very good agreement between SAR and SFMR for maximum wind speed estimates was
found (RMSE of 3.86m.s−1 with SFMR, and 6.71m.s−1 with best-tracks), as well as a
fair agreement for RMW (RMSE of 3.17km with SFMR, and 11.6km with best-tracks),
with however several outliers. The causes of these discrepancies between SAR and BT or
SFMR were investigated, and rain impacts and secondary eyewalls were identified as the
main causes of wrong estimations on SAR images, while other discrepancies were mostly
attributed to best-track coarseness. This validation study was focused on best-track equiv-
alent parameters, with no analysis of the internal structure, which is the purpose of the
present work.
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Figure 2.4 – Summary of Sentinel-1 and RADARSAT-2 acquisitions over TCs since 2012.
(A) Footprints of all images colored by satellite; (B) Number of acquisition by season
(colored by satellite); (C) number of acquisition by TC category. Taken from https:
//cyclobs.ifremer.fr

2.2.5 The SAR dataset

The SAR dataset gathered through the SHOC campaign, and processed through the
dual-polarization GMF is regularly updated with the most recent TC-matching SAR
acquisitions. All new upcoming acquisitions are processed through the post-processing
algorithms, and added to the level-2 database of SAR images at IFREMER. The compo-
sition of this dataset to this day is summarized on Fig. 2.4, taken from the CYCLOBS
data access and visualization website gathering SHOC acquisitions.

As shown by the geographical and temporal distributions represented on Fig. 2.4A,B,
the dataset covers all TC ocean basins, and provides a large number of acquisitions (548
in total, 396 from Sentinel-1, and 153 from Radarsat-2), with much more Sentinel-1 ac-
quisitions since 2016 (beginning of the SHOC campaign). The dataset also covers all TC
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categories (panel C). This dataset includes all images that were programmed during TC
acquisitions. However, a number of them are missed acquisitions, i.e. planned to hit the
TC eye on its trajectory but not matching it. These images (99 in total) were not con-
sidered in the present work as it is focused on the TC’s inner core. Other images were
ignored for the purpose of the analysis:

— tropical storm category (188 images, about one third of the complete dataset) was
not considered, as these acquisitions often show no formed eye, and thus impede
or degrade the estimation of TC properties

— acquisitons too close to land or islands were also ignored to avoid landfalling hurri-
canes and land interactions in the analyses (as the focus is on intensity modulations
of the mature TC); they represent about 50 images from the original dataset.

The true processed dataset, although constantly evolving with the addition of new acqui-
sitions, was thus originally composed of 173 Sentinel-1 acquisitions, and 70 Radarsat-2
images, eye-matching, above Tropical Storm category, and suited for the analysis of TC
inner-core properties and intensity modulations.

2.3 Best-track data

Best-track files are of formatted files provided by meteorological agencies to describe
the main characteristics of TC events: the center longitude and latitude, the maximum
wind, the minimum pressure, the storm nature (i.e. tropical storm, depression, minor/major
TC, or extratropical storm), and (if available) a few characteristic wind radius.

They are provided by various agencies which are organized to provide a complete
tracking and surveillance of all TCs globally. These agencies can be national or regional
meteorological centers such as the Regional Specialized Meteorological Centers (RSMCs)
located in Honolulu, La Réunion, Miami, Nadi, New Delhi and Tokyo that are responsible
for TC monitoring in their assigned region (for instance, Miami RSMC provides best-track
information for TCs in the West Atlantic and East Pacific basins). Australia and New
Zealand also have TC Warning Centers (TCWC) in Brisbane, Darwin, Perth and Welling-
ton dedicated to TC vigilance. National agencies such as the Shanghai Typhoon Institute
of the Chinese Meteorological Administration, the Hong Kong Observatory, the Australian
Bureau of Meteorology or the American National Hurricane Center (NHC), Central Pa-
cific Hurricane Center, Joint Typhoon Warning Center (JTWC) and National Center for
Atmosperic Research (NCAR) also provide TC tracking files and re-analysis. These nu-
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merous sources provide partial TC information often restricted to their own region and
basin of interest. Moreover, they are not all coordinated which can lead to discrepancies
depending on the methods used for TC monitoring. Due to these discrepancies, and the
absence of a globalized database grouping these different sources, the International Best
Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010) was developed in
2010 by the National Oceanic and Atmospheric Administration (NOAA, USA) to gather
TC information, and provide a uniform and complete best-track dataset. The IBTrACS
dataset gathers best-track data over a period going from 1848 to present. All sources
are provided separately in the same format, except when they are coherent and can be
grouped (such as different WMO agencies that are all gathered under a unique WMO
ID, or USA agencies that are gathered under the USA ID). The USA source from the
IBTrACs database was used in the present work as the best-track reference. In some rare
cases where IBTrACS was not available (usually most recent events), the ATCF (Auto-
mated Topical Cyclone Forecasting) database was used to complete the database, but this
only concerns a very small part of our dataset (3 images over the 200 composing the final
database). ATCF provides near real-time provisional best-track files that are available for
even the current storms and TCs, although not re-analyzed and thus less reliable than
IBTrACS. It also provides re-analyzed best-track files at the end of each season, those
tracks are included in the IBTrACS database.

IBTrACS is designed to be used for research purposes, and is extensively cited and
used in TC scientific literature.

Best-track files were used in the first part of this work to retrieve the metadata of
each SAR image, i.e. to identify the event, basin, and category of the observed storm.
They are also used as a validation/comparison basis to compare statistical distributions
and relationships describing the internal structure retrieved from SAR. Finally, best-
track information is used in our study to estimate temporal variations of characteristic
variables, given the sparse distribution of SAR acquisitions over time, and the consequent
impossibility to have a temporal continuity. In the first step of our extraction method, each
SAR image is thus matched with the corresponding best-track file based on the netCDF
file characteristics (i.e. date and position of the image). Before even opening the SAR
netCDF files and retrieving the wind field, a first estimation of maximum intensity, Radius
of Maximum Wind (RMW), translation speed, and intensification rate is thus obtained
by interpolating the best-track vectors at the acquisition time. Those estimations however
have to be carefully considered and criticized given their coarse resolution, and the fact
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that they gather many different sources including some that do not describe the surface
wind field (as IR images describing the cloud cover, or coarser resolved measurements from
radiometers). We indeed showed in Combot et al., 2020 that several discrepancies between
SAR and best-track maximum winds were caused by the interpolation of best-tracks that
have a coarser resolution in their maximum wind values.

2.4 Numerical simulations

Given the wide representation provided by the SAR dataset (about one hundred dif-
ferent events are sampled, describing all intensity categories and basins), setting up a
database describing the life cycle of all these events with a dynamical model, at an ef-
fective spatial resolution of about 1km (which is the SAR product resolution), was not
feasible. The adopted simulation framework is thus a compromise between a statistical
description of TCs (i.e. a sufficient variety of situations, basins, intensity changes), and
simulating realistic internal dynamics and the corresponding life cycle changes and po-
tential interactions between both scales, but at a reasonable computing cost. To achieve
such a compromise, seven TC simulations were launched to feature seven different events,
with a strategy of increased resolution close to the TC inner-core (up to 1km horizontal
mesh). The focus was on the mature life cycle (TC genesis and late decline stages were
not simulated), and the events were chosen to avoid external processes such as landfalls,
island interactions, and extratropical transitions, and to feature long life cycles, with sev-
eral re-intensifications. The Weather Research and Forecasting (WRF) model described
hereafter provides a sophisticated modelling framework suitable for such range of TC
realistic simulations.

2.4.1 The WRF model framework

The Weather Research and Forecasting (WRF) model was released in December 2000,
and has since become the world’s most used atmospheric model. Initially developed by the
National Center for Atmospheric Research (NCAR), which is operated by the University
Corporation for Atmospheric Research (UCAR), it has been designed and built as a
community model. Its high adaptability and support of massively parallel computation
on many different platforms makes it suitable for simulations ranging from global climate
to Large Eddy Simulations (LES).
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2.4. Numerical simulations

WRF solves the Navier-Stokes equations in 3D on a rectangular Arakawa-C grid.
Here we use the ARW (Advanced Research WRF, Skamarock and Klemp, 2008) solver,
which enhanced effective resolution allowed by high order numerical schemes is partic-
ularly suitable for mesoscale dynamics and regional simulations. The dynamical solver
comes with a range of editable options, and is complemented by a physics package, where
parametrizations regarding convection, microphysics, radiation, and planetary BL can be
chosen among a large, and regularly updated state-of-the-art selection.

The model architecture is designed to be easily usable and editable: once the model
sources are compiled, simulations can be set up through namelist text files that con-
trol physics and dynamics parametrizations, grid and domain settings, solver parameters,
as well as input/output variables. The run preparation is also facilitated by the WRF
Preprocessing System (WPS), which consists in configuring domains and geographical in-
formation (geogrid program), ingesting, reformating, and interpolating global analysis or
model forecast files to the domains (ungrib program), putting input fields on the model’s
vertical levels, and generating lateral and initial conditions (metgrid program). The simu-
lation framework used in this thesis also benefited a lot from the simulation infrastructure,
tutorials, and scripts developed for coupled model simulations (but used here in the case of
WRF-only simulations) by the Coastal and Regional Ocean Community Model (CROCO)
team.

The simulations were run on the DATARMOR supercomputer, located in Brest (FRANCE),
which is dedicated to scientific applications. This modeling framework allowed to set up
a range of realistic TC simulations which characteristics are described in the following
paragraph.

2.4.2 Model configuration

The settings adopted for WRF simulations are designed to realistically feature the
entire mature life cycle of several TC events, with a spatial resolution sufficient to study
the internal structure and its variations, and compare them to SAR extracted parameters.

The choice of physical parameterizations and numerical schemes was based on pre-
vious work on TC coupled simulations carried out by my advisory team (Jullien et al.,
2014; Samson et al., 2014; Lengaigne et al., 2019), and myself during my Master’s intern-
ship. The Betts–Miller–Janjic (BMJ) convective scheme was used for the 9km domain, (as
convection is explicitly solved in the 3 and 1km nested domains); the Yonsei University
(YSU) PBL with revised MM5 Monin-Obukhov was used for surface layer parameteriza-
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tion, the classical Charnock relation was used for the surface drag coefficient, the WRF
single-moment six-class (WSM-6) for microphysics, the Dudhia scheme for shortwave ra-
diatione, and the Rapid Radiation Transfer Model (RRTM) for long-wave radiation.

Each TC case is simulated using 3 domains: 1 parent domain at 9km resolution that
encompasses the whole TC track, and two vortex-following domains at 3km, and 1km res-
olution. The two nested domains move every 15 minutes following the TC vortex, thanks
to an automatic tracking of low pressure under 50000 Pa in a radius determined by a
maximum TC translation speed of 40 m/s. Moreover, refined high resolution terrain and
landuse files were added, as moving nests use by default the 9-km resolved topography
of the large domain. The small size of the moving nest limits the computation cost. Con-
veniently, its fixed dimensions facilitate the post-processing (constant grid size is more
convenient for file concatenations between different simulations). The resolution of 3km
and 1km on the nested domains avoids the parameterization of convection, which is a
noticeable uncertainty in regional models (Lengaigne et al., 2019), while keeping a rea-
sonable computational cost. As shown by Fig. 2.5 showing the power spectrum computed
from wind values on the 1km nested domain, the adopted configuration has an effective
resolution of about 5km (denoted by the cutoff wavelength), which is close enough to SAR
measurements (1-km grid smoothed with a 3-km sliding average). The k−5/3 dependence
of kinetic energy spectrum is in agreement with the observations of Skamarock, 2004 for
mesoscale simulations.

Initial and boundary conditions are determined using data from the NCEP FNL. The
FNL dataset is a re-analysis from the Global Data Assimilation System (GDAS) that
provides atmospheric, oceanic and land surface products as global 6-hourly files at 0.25
degree spatial resolution. The re-analysis is performed by assimilating several observations
from the Golbal Telecommunications System (GTS) and other sources into the Global
Forecast System (GFS) model. During the simulations, the larger domain is also nudged
to these re-analysis files using the WRF Four-Dimensional Data Assimilation (FDDA).
The nudging is applied spectrally during the whole simulations, and in the entire larger
domain only, with no direct impact on nested domains. The spectral nudging only applies
to scales larger than a given wave number, presently, wave number 3: this means that scales
lower than the large domain size divided by 3 (i.e. about 1000 km in this configuration)
are not constrained. The nudging is also not applied in the Boundary Layer.

This configuration allows realistic simulations of TC mature life cycle: with the forcing
files, moving nests, and physics parameters described here, the only modification to pro-
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Figure 2.5 – Wavenumber spectrum of surface kinetic energy in Joules computed from
WRF small domain d03 (solid curve) along with the theoretical Kolmogorov law (dashed
curve) as a function of k (m−1). Cutoff frequency of the WRF spectrum is denoted by the
red vertical line.

vide when simulating different events is the extent of the large domain, and the start and
end dates of the simulation. These parameters are automatically determined by extracting
best-track positions of the simulated event during its mature phase (above category 1),
and adding 8 degrees on each side of the track.

2.4.3 The TC simulations

Seven simulations were launched to model TCs in different basins, and the events were
chosen based on several characteristics (details of events, domain extents, and dates are
presented in chapter IV):

— the duration of the life cycle was the first criterion. The longer the TC’s life cycle,
the longer its mature phase, and the more likely it is to feature intensity changes,
decays, and re-intensifications. TCs with a long mature phase, and no interaction
with land or islands during this phase were preferred. They allow indeed to wit-
ness scale interactions, and gradual internal changes instead of brutal disturbances
caused by external constraints.

— the geographical location was also a criterion: as stated before, the reliability of
this study of inner-core processes, and intensity changes is largely conditioned by
the variability of our database: the more numerous the situations, locations and
properties, the less event-related the studied properties would be, and the more
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physical meaning our interpretation would have. For this reason, the WRF dataset
includes one TC in the North Atlantic ocean (IRMA), one in the East Pacific ocean
(LANE), two in the West Pacific ocean (TRAMI and MANGKHUT), one in the
North Indian ocean (FANI), and two in the South Indian ocean (CEBILE and
JOANINHA). The case diversity ensures that statistical diagnostics of simulations
are not impacted by any basin-specific feature, and that featured processes are not
discriminated based on the TCs location.

— the last decisive factor was the presence of SAR acquisitions on the events. Indeed,
it was thought useful to have acquisitions on the simulated events, in case direct
comparisons would appear necessary for some reason. Such comparisons of SAR
and WRF were excluded in our study, as direct comparison would have required
a more observationally-based driven simulation framework to obtained simulated
TCs very close to observed TCs. This was not the point of our study, as we focused
on studying the internal processes and life cycle evolution, which requires to let the
model freely evolve. Thus, while the SAR observational constraint was unnecessary
in the frame of this work, we kept the possiblility to compare simulation outputs
with SAR observations for other case study purposes.

As shown later in chapter IV, the comparison between simulated and real TC events
shows discrepancies both in intensity, size, and sometimes track and translation speed.
The simulated TCs sometimes do not reach the observed maximum intensity, or experience
intensity changes that did not happen in real cases. These notable differences arise from
several reasons: 1) the model uncertainties (resolution, parameterizations) that can lead to
miss physical processes, 2) the stochastic nature of NS equations. However, the diversity
of cases and external conditions is realistic, and allows to have TC phases ranging from
category 1 to category 5, with notable intensity changes, and a significant variability in
the mature TC life cycle description, which was the only request for my study.

2.5 A designed methodology to link TC wind field
structure and TC intensity variations

The particular framework set up for my work is specifically designed for two pur-
poses: allow a better and new understanding of TC dynamics through the joint use of
high resolution observations and realistic dynamical models, and promote the use of SAR
observations in the context of improving TC predictability on an operational level. Un-
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derstanding the reasons why a TC reaches an intensity peak, re-intensifies, or experiences
a fast intensification or a fast decline, are the main concerns of forecasters, and thereby
of the scientific community as they are keys to TC dynamics understanding. The charac-
terization of these intensity changes yields different issues for SAR and WRF.

The procedure of extraction is designed to estimate both radial and azimuthal struc-
ture properties of the inner-core, both from SAR and WRF surface wind fields. These
extractions are meant to estimate relevant TC properties with regard to the literature,
with a minimal amount of variables, and the sole access to surface wind speed. The main
fields of research regarding intensity changes related to TC BL internal dynamics are the
research on intensity restoration processes, mainly through VRWs, eyewall dynamics, and
energetic processes in the inner-core. The first issue was consequently to find ways to ac-
cess information regarding energy propagation in this region from non-directional surface
wind fields. As neither wind direction, nor vertical velocity, and nor time continuity are
available from SAR snapshots, the propagation of VRWs cannot directly be measured.
However, the VRWs and energy transfers consecutive to convective bursts or eyewall per-
turbations have been found to generate asymmetry, and distortion in the vortex structure.
Thus, although they cannot be observed directly on the wind field, VRWs sign on the eye
shape and inner-core structure by perturbing its symmetry. VRWs are moreover linked or
coupled with many other measurable features of the surface wind field, such as eyewall
distortions caused by mesovortices and convective asymmetries. Overall, the small-scale
features causing asymmetry in the wind field (and especially in the eyewall and maximum
wind areas, where the TC kinetic energy is concentrated) are all impacting the energy
distribution in the vortex, and actively participate to its intensity changes. The most
logical and convenient way to estimate internal processes related to intensity changes at
a given time is thus to study the asymmetry of the 2D wind field azimuthal structure.
WRF simulations were used to furtherly assess the temporal changes in this asymmetric
wind field, complementing SAR extractions with an assessment of the evolution of internal
perturbations.

The processing method used to exploit SAR images, and WRF outputs was designed
to work indifferently on both sources of data (SAR and WRF), so that the defined vari-
ables that describe the internal TC structure could be directly compared. It is described
hereafter.
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2.5.1 Inner-core asymmetry: parameters of interest

As VRWs are usually quantified by their wave number azimuthal decomposition of
energy distribution (Montgomery and Kallenbach, 1997; Wang, 2002a; Wang, 2002b), a
similar approach is adopted here. The inner-core VRW activity is approximated by a
range of proxies quantifying the degree of perturbation of the inner-core, measured on
four distinct extracted signals:

— the eye shape
— the distribution of mean radial wind gradient in the eye-eyewall area (a measure-

ment of the degree of vorticity mixing in the eyewall) 1

— the RMW distribution
— the maximum wind distribution.
These signals are all extracted from a polar projection of the geographical SAR or WRF

grid, with an arbitrarily fixed azimuthal resolution of one degree, and a radial resolution
matching the original grid step average value. Figure 2.6 shows the four different signals
and their location in the TC wind field. As shown by the Figure, these four signals
are concentrated near the center of the vortex, in the area of maximum wind. They
describe two distinct areas (eyewall and maximum wind ring), and characterize two types
of properties (spatial variability for eye shape and RMW distribution, and amplitude
variability for eyewall radial gradient and maximum wind distribution).

Normalization and Smoothing

Before quantifying the asymmetry of these azimuthal distributions, all extracted sig-
nals are smoothed and normalized, so that the variations in size and amplitude does not
impact the measurements of asymmetry (i.e., two identical eye shapes but at different
scales will have the same variance and spectral decomposition). Smoothings are carried
out mostly with a 3rd order Butterworth filter, which is a low-pass filter suitable for a
wide range of applications that maximizes the flatness of the response in the passband.

1. In most studies regarding eyewall mixing (Schubert et al., 1999; Kossin and Eastin, 2001; Mallen,
Montgomery, and Wang, 2005), the quantity evaluated is vorticity, as it allows to better measure the
mixing and assess the regime of eyewall circulation (i.e. annulus or monopole of vorticity). However,
vorticity is difficult to measure on SAR as directions are not available. Moreover, these studies also
explicitly relate the shape of the vorticity profile to the tangential wind profile (see for instance Fig. 7
of Kossin and Eastin, 2001). Thus, we relied on surface wind speed only, approximated as the tangential
wind speed.
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Figure 2.6 – Illustration of parameters extracted from the surface wind field on the SAR
acquisition of TC TRAMI (2018/09/28,09:35). (A) Surface wind field projected on a 3-D
grid (elevation=wind speed) with extracted signals superimposed. Panels (B),(C),(D),(E)
respectively show raw (thin black) and smoothed (bold) extracted azimuthal distributions
of eye shape, RMW, eyewall radial wind gradient, and maximum wind, with the same
color code as (A). (F) shows the extracted radial mean profile and highlighted eyewall
(yellow) and near-core (blue) areas.

The transfer function is the following:

|H(jω)| = 1√
1 + ( ω

ωc
)2n

(2.1)

where n is the filter order, ω = 2πf is the angular frequency ωc = 2πfc the cutoff
angular frequency. This cutoff frequency is arbitrarily fixed in my study, and depends
on the structure of the original signal. For amplitude and spatial signals, such as the
ones extracted here, the cutoff frequency is computed from the signal spectrum, as the
frequency corresponding to 40% of the signal’s explained variance, a value that was judged
to reasonably absorb local anomalies and grid step discretizations from the extracted
signals, while still well rendering their variations (cf. Fig. 2.6 B,C,D,E to see the effect of
smoothing on the raw signals).

Asymmetry coefficients

To associate these signals to the energetic activity in the inner-core, asymmetry co-
efficients were defined as the smoothed and normalized signal variance, thus measuring
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the average departure of the signal from an axisymmetric distribution. Fourier decompo-
sitions were also performed on each signal to compute the power level associated to each
wave number (WN) in these signals, in order to refine the study of asymmetry by dissoci-
ating several characteristic scales and processes (i.e. rainband and vortex-scale with WN
1, or polygonal eyewalls with WNs 3-4-5 for instance). Although being very partial, this
description of the inner-core activity provides a relevant overview of the degree of internal
perturbation across the boundary layer as it mixes measurements of spatial distortion
(with the eye shape), dynamical activity (with the eyewall mixing and maximum wind
distribution), and structural stability (with the RMW).

Radial profile

The properties of the inner-core radial structure were also thoroughly analyzed to
estimate the size, contraction, and stability 2 of the vortex, focusing on the eyewall area
and the inner-core, between RMW and 3RMW. The inner part of the eyewall profile is the
area of highest radial wind gradient in the vortex (see Fig. 2.6, the inner eyewall portion is
featured in yellow on the radial profile), where crucial energy exchanges take place, and are
likely to influe on the TC’s behaviour. For these reasons, the measurement and study of the
average radial gradient in this area was judged important for the understanding of the TC
life cycle, especially considering that it is a parameter difficult to measure accurately on
most other observations sources due to insufficient resolution. To the average gradient was
adjoined a measurement of the inner eyewall profile curvature, defined as the difference
between the mean gradient and the gradient of a linear profile between the TC center and
the RMW (i.e. Rankine approximation). This variable thus normalizes the gradient with
respect to the TC size, measuring the eyewall radial profile sharpness and approximating
the degree of eyewall mixing: for a given value of mean radial gradient, a sharper profile
with positive mean second derivative will have less mixing than a more linear one.

The outer inner-core was also investigated, mainly following the works of Reasor,
Montgomery, and Grasso, 2004 and Mallen, Montgomery, and Wang, 2005, which relate
this portion of the vortex structure to the TC’s resilience, that is, the vortex ability

2. the term "stability" is used here in the context of Reasor, Montgomery, and Grasso, 2004, who
defined vortex resilience as a parameter describing the stability of the vortex regarding perturbations
by external shear. It shall be regarded as an asymmetric property describing the stability of the vortex
towards external wind shear, and it must be distinguished from the more usual "inertial stability" param-
eter, which is an axisymmetric property describing the response of a vortex to an external source of heat
or momentum (Shapiro and Willoughby, 1982)
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to endure external perturbations without losing too much of its stability, thus partly
or entirely conserving its intensity. The shape of the radial profile is related to vortex
resilience through the VRW theory: indeed, the radial distribution of potential vorticity
and specifically the sign of the potential vorticity at the critical radius at which VRWs
corotate with the mean vortex determines the growth or decay of tilt instabilities (Reasor,
Montgomery, and Grasso, 2004). The critical radius is usually located between 1 and 3
RMW (highlighted in blue on the radial profile of Fig. 2.6 A,F), that Mallen, Montgomery,
and Wang, 2005 call the near-core area. The sign of potential vorticity depends on the
properties of the mean wind distribution: the faster decaying the profile, the lower the
potential vorticity. In the present work, the properties of the near-core wind profile were
thus estimated through the mean value of gradient between 1 and 3 RMW (i.e. mean
near-core gradient), and the curvature of the near-core profile defined as the difference of
gradient computed over RMW and 2RWM and computed over RMW and 3RMW, which
approximates the shape of the near-core profile, and thus its decay in the near-core area.

The radial structure is thus described by two azimuthally averaged gradients (i.e. mean
gradients on the yellow and blue parts of the profile on Fig. 2.6F), and two measurements
of the profile’s curvature, in the inner eyewall and near-core areas.

2.5.2 Specificities associated to SAR image treatment

SAR acquisitions are much more difficult to process than WRF model outputs, as
many artifacts related to the measurement or to the post-processing chain can affect the
SAR-retrieved wind field, and impact the estimation of inner-core parameters. The generic
extraction method was thus implemented with numerous additional steps to take care of
these issues, and ensure that the final dataset would be consistent. The steps described
hereafter are specific to SAR.

TC center estimation

The requirement for estimating inner-core parameters is a reliable estimation of the
TC center position. Most of our results indeed rely either on mean radial profiles, or on
azimuthal signals such as eye shape contour, or the distribution of maximum wind speed,
which both require a minimal offset of the polar grid to avoid adding artificial asymmetry
to the extractions. The detailed procedure of TC center tracking is explained in chapter III
3.2.3. To sum up, it consists in iterative researches gradually approaching the TC center.
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The first approximate center position is defined from the best-track positions time-serie
interpolated at the acquisition time. More recent versions of the algorithm get rid of the
best-track interpolation by taking a first guess as the maximum wind position computed
on the 25km-smoothed SAR wind field. We then search for a low wind area around this
first guess center, by recursively computing the centroid of lowest wind points in its vicinity
(based on a fixed research radius). If a stable point is found (i.e. repeating the research
around the centroid does not change its position), the point is retained as the TC center.
If otherwise each iteration yields a centroid further from the maximum wind area until
reaching the vortex periphery (and eventually the image border), the radius of research is
refined and the procedure is reproduced. Thresholds on the number of iterations and the
distance from the maximum wind centroid allow to limit the duration and to determine
the success or failure of the procedure. In the case of WRF simulations, the small domain
is already centered on the vortex, but the TC centering method was also applied to ensure
a full consistency with the SAR processing.

A second step is the eye re-centering, which is an adjustment to ensure that the final
TC center is located at the center of the eye. This step relies on a first polar projection
of the wind field on a coarse grid, to estimate a first approximate eye shape and re-center
the eye position at the centroid of this shape.

SAR heterogeneity mask

SAR level-2 products are provided with a heterogeneity binary filter designed to mask
rain signatures and local artifacts that cause anomalous wind speed values. The corrections
applied on level-1 NRCS are indeed not fully efficient: subswaths signatures are attenuated
by the GMF but still present on the wind field; other artefacts such as rain anomalies
causing abnormal heterogeneity (which is then wrongly interpreted as abnormally low or
high wind by the GMF) impact the wind field.

These heterogeneity anomalies are identified, and flagged by the level-2 processing
chain, by defining a mask on grid points exceeding a certain value of local wind gradient
(proxy for heterogeneity). The level-2 procedure however occasionally results in masking
areas that are not affected by rain but only associated to high values of wind gradients,
such as the eyewall area. Fig. 2.7 shows the field of local wind gradient, with the hetero-
geneity mask above it. As shown on this Figure, the eyewall and eye areas are completely
masked by the heterogeneity flag, preventing the analysis of the eyewall structure and
radial gradients. The heterogeneity mask thus has to be removed near the center to allow
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Figure 2.7 – Map of local spatial wind gradient computed on SAR acquisition of TC
TRAMI (2018/09/28,09:35). Red hatched contours denote the values flagged by the het-
erogeneity mask

the study of eyewall structure, but this removal might unmask some rain-impacted areas.
The mask is thus removed in a very reduced area close to the eye (up to 2RMW), in order
to keep all rain signatures from inner-core rain bands masked as well as possible.

Outliers

Outlier detection and masking steps are applied prior to smoothing described in section
2.5.1 every time a parameter or signal is extracted (such as the eye shape computed
to re-center the eye) to ignore local outliers, distortions of azimuthal or radial signals
induced by artificial local maxima or minima (cf. Fig. 2.6). Outlier detections rely on a
modified Z-score method which compares each median difference to the Median Absolute
Difference (MAD), and masks above a given threshold (usually 10) according to the
following condition:

thrMAD = |X − median(X)|
median(|X − median(X)|) (2.2)
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Handling of image borders and double eyewalls

Finally, additional steps of the extractions are designed to handle particular cases
that can prevent or degrade parameter estimations: they include masking of signals when
they are too close to the image border, and completion with linear interpolation (so
that incomplete signals could still provide an asymmetry estimation), and handling of
double eyewalls and rain band features so that the maximum wind contours would be as
continuous as possible (i.e. not switching from one eyewall to the other or from a rainband
of high wind to the eyewall).

Summary of the steps followed to build the final SAR dataset

Setting up the SAR database relies on the following sequence of stages. The first and
main step is the previously described extraction procedure, composed of several algorithms
that automatically and generically estimate a range of TC inner-core properties from SAR
surface wind fields: average radial profiles and azimuthal distributions of characteristic
signals (along with their spectral decomposition) compose the first level of the inner-
core dataset. The extraction procedure takes into account many image-related issues, and
rejects a notable part of the initial dataset when extractions are prevented or compromised
by these issues. Many extractions are however carried out and flagged as successful despite
inconsistent estimations. For instance, undetected double eyewalls or rain band features
can impact the extraction of maximum wind distribution without causing any error. For
these cases, a visual assessment and manual selection is thus necessary before integration
into the statistical dataset. Any irrelevant estimation of shape or peculiarity in contour
estimation is thus visually identified. If the issues are minor and estimated not to impact
the computation of IC parameters, the image is flagged as OK for statistical database
integration, otherwise the image is excluded from the following procedure steps.

After this manual selection, a netCDF file is generated which gathers all extracted
parameters from the accepted Sentinel-1 and Radarsat-2 samples. The image processing
procedure is now over: all extracted signals are grouped in a unique file and SAR level-1
individual netCDF files are not accessed afterwards anymore.

Once the database is generated, including aizmuthal signals and radial profiles ex-
tracted from each image along with associated best-track time series, the parameters
describing these signals are computed: mean profile gradients and curvatures, azimuthal
signal variances and spetcral decompositions, and intensification rates on several time ref-
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erences. A final processing step consists in a second manual selection this time based on
statistical distributions: scatter plots of several characteristic variables are plotted (such
as RMW or eye shape asymmetry versus intensity). Using an interactive tool, all outliers
or surprising values can be related to the corresponding image, so that their specificity
can be related either to a processing error that was not detected during the first manual
filtering (which happens as the first selection does not necessarily reveal all artefacts that
can impact a signal or its variance) in which case they are rejected, either to a particular
dynamical or structural behaviour (such as intense TCs showing outlying low value of
eyewall mean gradient due to anomalously high winds in the eye) in which case they are
conserved. After this step, the database is set up with a wide range of level-2 variables rel-
evantly describing the physical processes and structural properties of the TC inner-core.
Between the opening of level-1 files and this last selection, many images were rejected
from the dataset.

2.5.3 Assessing the time evolution of the inner-core structure

WRF simulations are processed through the same chain as SAR observations, although
the SAR-specific steps are ignored. The WRF database thus has exactly the same struc-
ture as the SAR one. In addition however, hourly WRF output files grant access to both a
reliable estimation of intensity changes, and a computation of temporal changes occuring
inside the inner-core structure from the time series of radial and azimuthal properties.
These two abilities were prevented on the SAR dataset by the limited temporal resolution
(separate snapshots), and the coarse resolution and limited reliability of life cycle estima-
tions from best-track files. They are a key to measuring and understanding TC dynamics,
as theory of inner-core processes relates intensity changes to energy transfers within the
vortex and thus to structural variations rather than instant characteristics. The transition
from a snapshot based statistical study to a time-series based analysis however requires
the definition of reliable variables to measure both vortex intensity and internal inner-core
changes.

Choice of characteristic time scale

The first notable issue is the choice of a characteristic time scale to describe these
variations: intensity time series, for instance, can show large hourly variations, with bursts
lasting between one and a few hours, but the life cycle is characterized by a larger time
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Figure 2.8 – Raw (thin black lines) and smoothed (bold red lines) signals of (A) maximum
wind speed VMAX and (B) V ar0−2(V maxAZ), the percentage of variance explained by
WNs 0+1+2 extracted from the spectral decomposition of the maximum wind distribution
at each time step of the LANE WRF simulation. Smoothing of time series is carried out
applying a Butterworth filter with a 12h cutoff period

scale, with phases of intensification, peak, decay, and trough lasting from about 10 hours
to several days. As shown on Fig. 2.8A illustrating the effect of smoothing on the intensity
time serie, the raw intensity can indeed have large variations of about 10m/s in just one
hour that are not representative of the TC life cycle: for instance, on 2018/08/19, we
observe a strong intensity burst from 40 to 50 m/s in one hour while the smoothed intensity
with a 12h cutoff period almost does not change, and the event of the life cycle on a larger
scale is an intensity trough (i.e. re-intensification). In such case, identifying this burst
as an intensity peak thus seems irrelevant. The same issue exists for internal structure
variables (Fig. 2.8B, in this case WNs 0-2 explained variance of the maximum wind
distribution), with an additional difficulty being that the defined variables can feature
large noise levels that prevent or complicate the determination of a characteristic time
scale for dynamical processes. As one of the purposes is to assess predictability and as
internal structure time series have a very large variability on hourly time-scales, a larger
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scale was chosen to extract persistent changes characterizing TC life cycle and structure
instead of spontaneous changes that are not necessarily relevant. The small time scales are
thus smoothed by filtering high frequencies with a cutoff period of 12h. This smoothing
attenuates frequencies lower than 12h, so almost no variability is found under 6h.

Temporal variables

Temporal variables were designed to provide a suitable match between the litera-
ture on VRWs and inner-core processes (i.e. eyewall mesovortices, vortex stability and
resilience notably) and the structure of our SAR snapshot equivalent variables. Energy
transfers and propagation governed by VRW propagation were approached by quantifying
the temporal changes in the maximum wind ring energy distribution, i.e. the amount of
energy contained in the low wave numbers (indicating an unstable stage of the maximum
wind ring) with respect to the amount in the high wave numbers (indicating a balanced
energy spectrum and thus a homogeneous maximum wind ring). These low and high wave
number groups are based on the literature and on the author’s experience of SAR and
WRF processing: the vortex-scale deformations mostly sign in the wave numbers 1 and
2, while larger wave numbers denote a VRW transitional activity and, starting around
wave number 5, a homogeneous distribution. As described in chapter IV, the measure-
ment of a temporal transfer between the 1-2 "low WN" group and the 6-180 "high WNs"
group indeed characterizes a physical change in the maximum wind distribution, and thus
describes a dynamical process.

The same reasoning applies to other extracted azimuhtal signals such as eye shape or
eyewall radial wind gradient distribution, although they do not necessarily describe the
same dynamical processes, the same spatial scale, or the same stage in a re-intensification
process:

— eye shape energy transfers, for instance, characterize the distortion of the eye, thus
an earlier stage of intensity change-related inner-core processes more related to the
appearance of eyewall mesovortices and the progressive generation of VRWs;

— eyewall radial gradient describes the structure of the eyewall, and thus, in a sense,
the degree of eyewall mixing and its azimuthal distribution, hence its temporal
energy transfer would denote a process of homogeneization of the eyewall, which
is not necessarily followed by the generation of VRWs.
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2.5.4 Characterizing intensity variations

Intensification rates

From IBTrACs
The description of intensity changes from best tracks is limited to long ranges of more

than 6 hours: even though the resolution is of 3 hours, the resolution in maximum intensity
is very reduced as it is a composite of several diverging sources, leading to large intensity
peaks, and phases of constant intensity that can last several hours, which is clearly not
realistic. This impacts the computation of temporal variables such as intensification rate:
As featured on Fig. 2.9, the rates extracted from the raw best track by simple interpolation
on the raw curve can be quite different from the ones extracted from a smoothed intensity
curve (see black and green arrows on the figure). Due to the coarseness of best track, a
phase of intensity decrease can yield an intensification rate equal to 0 if the surrounding
time steps are all at the same intensity (see the second acquisition on 2017/09/07). As
my work focuses on small-scale features and processes that can occur within a few hours,
this coarseness of intensity time series was a limitation to my analyses. For these reasons,
all analyses implicating best track intensification rates related to SAR were carried out
by averaging SAR properties by groups of intensification rates. These groups were defined
quite coarsely in order to absorb best-track uncertainties into categories with a lot of
samples, at the expanse of sensitivity as, for instance, fast and slow intensifications were
both equally considered as part of the "positive intensification" group.

From WRF
The issue of life cycle characterization is very different with WRF outputs. Hourly

timesteps indeed grant access to a continuous assessment of the internal structure as well
as of large scale properties. The maximum intensity time serie does not need to be com-
puted from another source, which eliminates any concern for misfits between the internal
structure descriptors and TC intensity changes. This allows a finer characterization of
these changes: all intensity variations can be considered as directly related to the ongo-
ing changes throughout the internal structure. Moreover, the ability to study time series
not only of maximum intensity, but also of any parameter extracted from the wind field
(radial gradients, azimuthal asymmetry and energy distributions...), and to define time-
relative variables, allows to have a much finer description of dynamical scale interactions.
An intensity change of any kind can now be related to the internal structure at the same
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Figure 2.9 – Comparison of intensification rates extracted from raw and smoothed best-
track maximum wind time series for TC IRMA (2017). Red dots are the positions of
SAR acquisitions on IRMA with the corresponding estimated maximum wind value.
Black (Green) arrows are the interpolated intensification rates computed from the raw
(smoothed) signal

time (i.e. asymmetric/symmetric maximum wind ring for instance), or to the evolution of
the internal structure at this time (i.e. homogenizing or distorting maximum wind ring),
or even to the evolution of the state and evolution of the internal structure before or after
this change. The accuracy of interpretations is thus greatly enhanced. This however also
depends on the characterization of life cycle variations, and an accurate definition of life
cycle phases.

Definition of life cycle phases

Then, life cycle phases were defined similarly to the ones defined for IBTrACs: intensi-
fications, declines and flat phases based on thresholds on the intensification rate, troughs,
peaks and stable phases based on thresholds of secondary derivative. These phases are
shown on Fig. 2.10A with the life cycle depicted by the LANE WRF simulation.

Both SAR and WRF studies required a precise characterization of intensity variations.
The 12h smoothing applied to intensity time series first allows to reduce the life cycle to its
notable and persistent intensity variations. Direct bivariate comparisons between intensi-
fication rate and internal parameters yielded a very large variability due either the highly
variable nature of studied parameters (i.e. azimuthal signal wave number decompositions,
etc.) or to uncertainties associated to parameter estimations (such as intensification rate
from best-track for instance). Moreover, the raw intensification rate in itself has a large
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internal variability: for instance, a given value of positive intensification rate includes all
kinds of intensifying TCs (before a decline, after a re-intensification, at the beginning of
their life cycle or at the end, etc.). Thus, to extract consistent trends and statistical prop-
erties from the life cycle, I decided to focus the interpretation of TC life cycle on specific
phases: instead of directly relating, for instance, eyewall radial gradient to interpolated
best track intensification rate, I studied the average values of eyewall radial gradient in
groups of intensification rate and intensity second time derivative to regroup in one spe-
cific group all TCs associated to a given behaviour. These phases were first defined by
delimiting thresholds on the value of intensification rate:

— intensifying TCs for intensification rate larger than 5m/s/day,
— stationnary TCs for intensification rate between -5 and 5 m/s/day
— declining TCs under -5 m/s/day,

with a balanced number of samples in each group.
Defining these groups attenuates the impacts of potential disagreements between SAR

and best track, or potential errors or oversmoothings of the IBTrACs intensity time serie,
and allows a more reliable interpretation without interference with these artificial biases.
However, they also coarsen the results interpretations to a more restricted extent: complex
dynamical features (such as for instance varying time lags between life cycle and internal
structure response) and potential biases due to internal dynamics (secondary eyewalls,
stronger precipitations...) or synoptic events (external shear, land interaction or basin-
related specificities) are not acknowledged and only general trends common to all TCs are
observed. These general trends are one one hand more difficult to observe, as case-specific
features interfere with the mean behaviour, causing a very high intra-class variability. This
means, on the other hand, that any observed trend has to be considered as significant: even
if standard deviations are very high, any mean behaviour trend denotes a characteristic
process of TC life cycle.

This description of TC life cycle variations could be notably refined on WRF anal-
yses, by extracting local maxima and minima to focus on the largest intensity changes.
For instance, for the intensity, local maxima correspond to marked phases of decline in
which the vortex is usually highly disrupted internally, and local minima correspond to
re-intensifications where the TCs prepares to intensify. Maxima and minima of intensitfi-
cation rate and intensity second derivative also allow to extract time steps during which
the TC experiences the most notables intensity changes.

Study of the mean values of internal structure variations for each of these phases is
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a good way to assess the link between internal structure and life cycle, as it shows the
dynamical processes dominating the vortex’s evolution through these different phases.
This analysis is illustrated on Fig. 2.10: the lower panel shows the time serie of eyewall
radial gradient compared to Rankine vortex (i.e. the sharpness of the eyewall radial wind
profile). Superimposing this curve with the upper panel allows to relate mean trends in
the radial gradient to life cycle phases. For instance, the green highlighted portion of the
life cycle during the first day of simulation is associated to a strong intensification and, in
the same time, to a strong increase in eyewall profile sharpness. By counting the number
of time steps associated to increasing sharpness (i.e. red shaded curve on panel B) during
a given life cycle phase, and during all similar phases throughout the simulations, we can
estimate if, on average, the increase in eyewall radial gradient sharpness is favourably
associated to specific phases of the life cycle. A finer analysis was also conducted to assess
the temporal lag between temporal structure and life cycle changes: indeed, it was noted
that, although connections between these two scales exist and are obvious in several
cases, they are not necessarily synchronous and tend to vary significantly in time lag
and amplitude depending on each case. The difficulty, however, in the WRF statistical
analysis, was the structure of the dataset and its lack of representativeness. As only seven
distinct events were simulated, it is difficult to study specific behaviours statistically: any
feature isolated from the distribution is not necessarily representative of any TC process,
it can only be the expression of specific conditions unrelated to any life cycle interaction.
Thus, as for the SAR (but for different reasons), the interpretation must focus on mean
behaviours over the whole dataset to extract a truly representative feature that could
have applications in TC forecasting.

The statistical approach

SAR images are widespread in time, geographic location, seasons, and events. It is
thus highly complicated to contextualize a given image in its external environment and
chronology, except by crossing SAR observations with other remote sensing sources with
higher time resolution and/or access to vertical structure. The uncertainty associated to
such cross-comparisons (due to time interpolations, differences of resolution, and relia-
bility of the different sources) is considerable, and demands a thorough examination and
processing of each source. Such work was not thought relevant regarding our goals and
time resources, which is why it was preferred to consider images as samples building a TC
database (i.e. assimilating different TCs to a manifestation of a unique physical process)
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instead of separately describing a multitude of dissociated TC events.
The comparison to dynamical models was also a determining factor to choose the

statistical approach, as direct comparisons between SAR and models however turned out
to have multiple limitations. Indeed, although simulated TCs were realistic and showed
wind structures almost directly comparable to SAR observations, their life cycle was not
necessarily realistically simulated due to uncertainties in initial and boundary conditions,
model uncertainties (resolution, parameterizations), and stochastic nature of NS equa-
tions. Ensemble simulations of each event could be an option to overcome some of these
issues, but the requested number of simulations to compare to all SAR images would have
been very consequent, and computationally proscribed.

The adopted procedure thus consists of a dual statistical analysis of SAR and WRF
databases, which was designed to circumvent most of the difficulties inherent to both
datasets: the database absorbs the potential artefacts or post-processing issues impacting
SAR images; it also allows to get rid of the need of perfectly realistic TC simulations. Most
diagnostics of the datasets were carried out through bivariate distributions comparing in
most cases a variable describing the life cycle (i.e. intensity and its first and second time
derivatives), and a property of the internal structure (i.e. radial and azimuthal extracted
parameters). A machine learning method was also designed to complexify the analysis
by considering the entire multivariate dataset and take into account potential non-linear
interactions between the variables.

Machine learning classification method

Motivation
The parameters extracted to describe either the radial or azimuthal structure differ in

their properties, their statistical dependency on the life cycle variations, and the dynamics
they describe or relate to. The information contained in each individual variable, and its
significance for TC life cycle is however difficult to assess, as the study of mean behaviours
restricts our interpretation to general trends with no access to dynamical content. Due to
the limited representation they have from the perspective of SAR and WRF datasets as
used in this work, the information contained in each individual variable, and its signifi-
cance for TC life cycle is difficult to assess, and the study of mean behaviours restricts
our interpretation to general trends. The assessment of the role of each extracted variable
in the TC’s life cycle requires a multivariate analysis taking into account all potential
interactions between these variables, and evaluating them not individually but with re-
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spect to the other parameters. Intensity changes, indeed, are not solely governed by VRW
processes, or external shear, or eyewall mesovortices. The vortex’s stability, and ability to
intensify does not only depend on its size, its radial structure, or its azimuthal symmetry
and homogeneity: all these features interact in different ways and various amplitudes to
govern the TC life cycle. I thus focused for the last part of my analyses on setting up
a method that would take into account this mutlivariability and these potential interac-
tions. The final goal of this approach is to assess the relative importance of each variable
and, ideally, to provide TC forecast centers with a hierarchy of internal structure features
that could help to better predict intensity changes. The emergence over recent years of
big data science, and machine learning algorithms in the scientific community provided
an adapted tool for this purpose, as machine learning methods can handle multivariate
datasets, and take into account linear or non-linear interactions between all variables.

Classes
The purpose of my study, and the structure of SAR and WRF datasets however require

a specific framework to provide consistent results. As the goal is to assess the individual
impact of each extracted variable in the description of TC life cycle, and their ability to
improve TC predictability, a classification method was chosen to see if the information
contained in TC-extracted variables was able to dissociate TCs based on their intensity
changes. The classes to separate were defined, in agreement with my previous analyses of
TC life cycle, based on thresholds on the intensification rate: declining TCs, stable TCs,
and intensifiying TCs. These classes allow to assess the impact on TC predictability, as if a
snapshot from SAR or WRF can provide information on the intensification rate (i.e. is the
TC intensifying or declining), the intensity at later times can be predicted based on this
intensification rate. Although the predictability can not directly be estimated as we do
not truly try to predict the intensity at later times, but only to classify TCs in raw groups
of intensification rate, the method allows to estimate the potential for predictability of a
given group of variables. With WRF, the analysis was pushed a little further as I used
temporal variables such as azimuthal transfers for the classification (thus assuming that
at a given time and for a given output, the previous states of the vortex were known), and
also defined classes based on the secondary derivative of the intensity time series, thus
trying to dissociate phases of re-intensification from phases of intensity weakening.
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Choosing a classification method
There is a major issue remaining with the implementation of this machine learning

method. Indeed, the number of variables extracted from the internal structure is very
large: radial gradients in the eyewall and near-core areas, near-core profile curvature
(proxy for resilience) and eyewall comparison to Rankine, azimuthal explained variances
for each wave number, asymmetry coefficients, and asymmetry coefficients for the 4 ex-
tracted azimuthal signals... In total, 48 variables were kept for the analysis as potentially
containing information regarding the TC life cycle. A classification with this amount of
variables and less than 200 samples (161 for SAR, 254 for WRF taking a random fourth
of model outputs to decorrelate the samples) is highly overfitted, and yields irrelevant
results with prediction scores of 100%.

The usual method to avoid overfitting is a dimensionality reduction such as Principal
Component Analysis (PCA) or Linear Discriminant Analysis (LDA). These methods con-
sist in projecting original vectors (i.e. variables) on new axes in a space of lower dimension
corresponding to the number of classes. While PCA maximizes the variance within each
class to perform its projection, LDA maximizes the separation between each class. LDA
thus appears more adapted to my purpose which is a classification. However, the interest
of dimensionality reduction is also its major disadvantage: by reducing the number of
variables, PCA and LDA loose information regarding these variables. The final predic-
tion score thus only displays the new vectors and their weight in the classification, but
not the variables that compose these vectors, thus loosing the individual weight of each
original variable in the classification. Moreover, as they only perform linear combinations
to compute new vectors, potential non-linear interactions between variables are ignored.
The classical approach for this kind of dataset, i.e. a dimensionality reduction followed
by a classification using a machine learning algorithm, could thus not be adopted.

Another classification method that allows more visibility is the decision tree algorithm,
which performs classification by fixing gradual thresholds on individual variables that
allow maximal isolation of the classes. The obtained decision trees allow to witness which
variables are most important in the classification, as the lower branches of the tree are the
ones that allowed to isolate the largest number of samples. However, in such approach,
also no interaction between variables is considered. As our purpose is not to perform the
perfect classification of intensification rates, but to understand the interactions inside the
internal structure, and to quantify their links with TC life cycle, this method was thus
not adapted either.
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The method finally adopted was inspired by a communication with colleagues working
on statistics in biology, and more particularly by the work performed by (Receveur et
al., 2020). Their problematic is similar to mine (i.e. dataset with high dimensionality, and
need to quantify the weight of each variable). The principle is the following: instead of per-
forming one classification over the full set of vectors, several classifications are performed
based on subgroups of variables combined in all possible ways. These subgroups can then
be compared based on their prediction score, which allows to identify the most important
variables or combinations of variables. Non-linear interactions can be taken into account
by running the classification with nonlinear predictive models (such as support vector
machine, SVM), and dimensionality is not an issue anymore as subgroups can contain the
desired number of variables. The classification is not performed to separate in itself the
two or three classes with the best efficiency (as the lower number of variables can notably
lower the classifier performances), but in the perspective of comparing the different com-
binations, and identify the most informative variables, which was my initial purpose. To
reduce the impact of the choice of the classifier, each combination was processed through
ten different classifiers, providing a "neutral" prediction score mixing linear and non-linear
regression models, decision trees and random forests, and other usual classifiers. A ran-
dom variable was also added to the dataset, and included in the combinations to provide
a "witness" variable. This innovative framework of machine learning classification allowed
a reliable comparison of different variables extracted from SAR and WRF outputs, and
provided insights in their ability to monitor TC intensity variations.
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Figure 2.10 – (A) Description of life cycle phases extracted from the intensity time serie
of the LANE simulation. Thin black line denotes the raw maximum intensity signal, and
smoothed colored curves denote different life cycle phases defined as lower (declines and
peaks) and and upper (intensifications and troughs) quarters and remaining middle values
(for stationnary and stable) of the distributions of intensification rate and intensity second
time derivative. (B) Same plot for the time serie of eyewall radial gradient compared to
Rankine vortex, i.e. profile sharpness. Only positive and negative values of time derivative
are dissociated this time. A notable phase of intensification is highlighted by a green
shading a the beginning of the simulation.



Chapter 3

OBSERVATIONS OF TROPICAL CYCLONE

INNER-CORE FINE-SCALE STRUCTURE,
AND ITS LINK TO INTENSITY VARIATIONS

This chapter content is the suject of an article under final review in Journal of Atmo-
spheric Sciences.

Abstract

Tropical Cyclone (TC) internal dynamics have emerged over recent decades as a key
to understand their intensity variations, but are difficult to observe, as they are sporadic,
multi-scale, and occur in areas of very strong wind gradients. The present work aims at de-
scribing the internal structure of TCs, as observed with newly available satellite synthetic
aperture radars (SARs) wind products, and at evaluating relations between this structure
and the TC life cycle. It is based on a unique dataset of 188 SAR high-resolution (1 km)
images, containing 15 to 47 by intensity category. An extraction method is designed to
retrieve and characterize, the TC radial profile, its azimuthal degree of asymmetry, and
the energy distribution in the eyewall and maximum wind areas. Vortex contraction and
sharpening of the eyewall wind radial gradient with increasing TC intensity are observed,
as well as a symmetrization of energy distribution around the vortex. Eyewall high wave
number structures show a dependence on the life cycle phase, supporting previous findings
discussing the vortex rapid evolution with onset and propagation of eyewall mesovortices
and associated vortex Rossby wave generation. A machine learning approach finally high-
lights that the eye shape and eyewall radial wind gradient fine-scale dynamics have the
potential to improve the statistical prediction of TC intensity variations, compared to
the sole use of vortex averaged parameters and synoptic information. The high-resolution
radial and azimuthal coverage provided by SARs make these acquisitions a very valuable
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tool for TC research and operational application.

3.1 Introduction

Forecast and understanding of tropical cyclone (TC) life cycle has been a critical
challenge of meteorological science for decades. The development of dynamical weather
forecast models, and our increasing observational capacity from space have led to a better
resolution of the synoptic steering flow and to subsequent improvements in TC track
and maximum potential intensity forecasts (Miller, 1958; Emanuel, 1986; Emanuel, 1987;
Elsberry et al., 2013). On the other hand, the forecast of TC intensity variations has
seen much less progress (Cangialosi and Franklin, 2019). TC intensification and mature-
phase intensity variations are associated to multi-scale interactions (interactions between
very fine and synoptic scale processes (e.g.Elsberry et al., 2013), complex internal and
stochastic dynamics in the inner-core (e.g. Wang and Wu, 2004; Montgomery and Smith,
2014), and exchanges with the underlying ocean (e.g. Bender and Ginis, 2000; Wada,
2009; Jullien et al., 2014), which are more difficult to model and predict, and are not
necessarily well understood.

TC intensification theories, developed since the 60s (Charney and Eliassen, 1964;
Ooyama, 1964; Ooyama, 1969; Emanuel, 1986; Smith, Montgomery, and Van Sang, 2009),
are still debated. They assume that TC vortex intensification occurs through the spin-up
of tangential winds, which mainly takes place above the boundary layer (BL). There, the
flow is assumed to be in gradient wind balance, and to converge due to eyewall deep
convection causing tangential winds to increase (as angular momentum is conserved). In
the BL, the assumed gradient wind balance is broken by surface friction, causing conver-
gence of moist air which eventually releases latent heat when reaching the eyewall, and
provides fuel for deep convection (Emanuel, 1986). Intensification thus occurs through a
feedback between spin-up above the BL, moisture inflow in the BL, and convection in the
eyewall. A more recent study (Smith, Montgomery, and Van Sang, 2009) also suggests
that spin-up could occur inside the BL due to supergradient winds present in the inner-
core, with the strongest winds thus located at the top of the BL and the inner-core being
partly decoupled from the outer-core. Studying and observing the BL structure is thus
crucial to better understand surface energy transfers and inner-core dynamics, such as
wind spin-up, gradient and supergradient balances, and convectively driven inflow, that
drive TC intensification.
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Intensity variations of the mature TC have also been thoroughly studied: while trig-
gered by external events such as vertical wind shear or tropospheric troughs (Uhlhorn
et al., 2014), they are also tightly connected to several internal processes mainly occur-
ring in the inner-core, eye, and eyewall areas. Eye warming (Stern and Zhang, 2013) and
observed mid-level thermodynamic inversions within the eye (Jordan, 1961; Willoughby,
1998; Franklin, Lord, and Marks Jr, 1988) have been related to intensity variations as eye
subsidence interacts with the eyewall convection, and modifies the dynamical balance in
the BL. Eye contraction is described as a supporting mechanism to vortex intensification
and stabilization (Shapiro and Willoughby, 1982; Lee and Bell, 2007). Secondary eyewalls
(Holland, Belanger, and Fritz, 2010; Willoughby, Clos, and Shoreibah, 1982), and eyewall
replacements (Houze et al., 2007) have been observed as a result of TC vortex destabi-
lization and progressive re-establishment after external events affecting the TC life cycle.
A range of observational studies, mainly based on coastal (Macdonald, 1968; Muramatsu,
1986; Kuo, Williams, and Chen, 1999) and airborne (Reasor et al., 2000; Corbosiero et al.,
2006) dual-Doppler radar imagery, has also identified Vortex Rossby Waves (VRWs) as a
progressive restoration process.

The VRW theory, first formalized by Montgomery and Kallenbach, 1997, describes
internal waves propagating along potential vorticity gradients that promote vortex ax-
isymmetrisation by propagating energy from the TC center to its periphery. The basic
dispersion relation for a symmetrizing spectrally localized wave-packet of VRWs is the
following:

ω = nΩ0 + n

R

ζ̄ ′
0

(k2 + n2/R2) (3.1)

where Ω0 is the mean flow angular velocity and ζ̄ ′
0 the mean flow potential vorticity

gradient, R is the radius, k and n are the initial central radial and azimuthal wave numbers.
Thus, given a negative potential vorticity gradient as in an idealized cyclonic monopole,
the waves rotate opposedly to the mean flow rotation. Computation of the group velocity
also shows that a negative potential vorticity gradient imposes an outward group velocity
Montgomery and Kallenbach, 1997.

In this context, a perturbation of the eyewall convection (most often caused by exter-
nal shear) can cause a breaking of the eyewall vorticity ring, leading to emergence of eye-
wall mesovortices (Schubert et al., 1999; Kossin and Schubert, 2001). These mesovortices
modify the eye shape, induce mixing within the eye, and eventually organize, resulting
in VRWs propagating around the eye and causing eye rotation. Then, they propagate
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outward, generating inner rainbands of higher vorticity (Macdonald, 1968), and possi-
bly trigger the formation of outer spiral rainbands when reaching their stagnation radius
(Montgomery and Kallenbach, 1997; Chen and Yau, 2001). Their propagation is suggested
to allow dissipation of the center instability and reformation of the eyewall vorticity ring,
thus enhancing eyewall convection and TC intensity. A complete review of VRW theory
and their role in TC intensity variations is provided by Wang and Wu, 2004.

Fast structural changes of TCs, associated to the fine-scale rapid evolution of the
inner part of the eyewall, and subsequent VRW propagation certainly contribute to the
difficulty of forecasting TC intensity changes. Usual operational statistical-dynamical fore-
cast models (DeMaria and Kaplan, 1994; DeMaria and Kaplan, 1999; Knaff, Sampson,
and DeMaria, 2005; Knaff and Sampson, 2009) use linear regression techniques to predict
intensity changes from large-scale climatological fields (temperature, humidity, maximum
potential intensity, shear...), TC intensity, and rate of change at the forecast initial time.
The observational limitations regarding TC internal small-scales (lack of spatial and tem-
poral resolution) have prevent their use in such statistical models. Based on a numerical
study, Judt, Chen, and Berner, 2016 suggested that forecast errors rapidly grow on small
scales, limiting their predictability. However, the tight relation between mesovortices gen-
erated in the eyewall inner-edge, induced mixing and spin-up within the eyewall (Schubert
et al., 1999; Kossin and Eastin, 2001; Nguyen et al., 2011) foresees towards a potential
improvement of TC variation predictability with a better assessment of such fine-scale
structures and associated dynamics.

The wide range of interacting processes that induce TC intensity variations, including
external large-scale events, eye and eyewall instabilities, VRW generation and propaga-
tion, involve synoptic to turbulence scales ranging from days to seconds temporally, from
hundreds of kilometers to meters spatially, and from the troposphere to the sea surface
vertically. Observing the TC structure evolution associated to these intensity modulation
processes thus requires a combination of high temporal and spatial resolution, together
with a large coverage, and a cloud-penetrating technology. The definition of a sensor or a
network of complementary sensors able to achieve comprehensive observations of TCs at
global scale thus remains a challenge.

The most prevalent TC observation source is geostationary satellite imagery; it pro-
vides high resolution, extended geographical and temporal coverage and is widely used
for TC intensity monitoring and forecast (Dvorak, 1975; Olander and Velden, 2007).
However, geostationary observations are limited to top-of-the-cloud information (as they
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operate in visible and infrared wavelength), and cannot directly retrieve the BL evolu-
tion. Other available satellite observations for wind measurements are those of L-band
or multi-frequency radiometers and scatterometers (cloud-penetrating microwave wave-
length). They are able to provide a direct estimate of the wind speed at the ocean sur-
face(Meissner and Wentz, 2009; Zabolotskikh, Reul, and Chapron, 2015; Katsaros et al.,
2002; Reul et al., 2017) and thus valuable information on the TC structure. However, they
are limited by their spatial resolution (usually 40-50 km) preventing their use for studying
the TC inner-core structure. Small-scale BL observations are thus usually only obtained
with airborne Doppler radars, dropsondes, and ground-based radars. These observations
provide high resolution measurements in the BL (Marks, 2003), but with limited geo-
graphic extent and sampling capacity: airborne observations have a very partial coverage
of the azimuthal structure (Reasor et al., 2000; Uhlhorn et al., 2014), and time lags be-
tween passes that limit the temporal coverage, and coastal radars do not have access to
the entire TC life cycle due to their limited radial extent.

The technology of Synthetic Aperture Radars (SAR) provides an adapted complement
to these techniques. It is indeed the only satellite remote sensing technique that allows
probing the sea surface at very high resolution, and can provide estimates of 2D wind fields
with kilometer resolution (Katsaros et al., 2002). However, SAR data are not commonly
used for TC observations for several reasons: 1) over open ocean there is no systematic
SAR acquisition and some of the acquisition modes do not allow for TC wind retrieval,
2) to date the planning of TC acquisitions in the adequate mode is not a priority for
SAR missions’ objectives, and is only performed on request, and if other higher priority
acquisitions are not planned, 3) the wind retrieval from SAR images in TCs requests a
dedicated treatment, which has only been recently developed (Zhang et al., 2016; Mouche
et al., 2017), and 4) SAR data are currently not available in real-time limiting their
potential use to post-event reanalysis only. Nevertheless, SAR data have been shown to
allow the retrieval of several TC properties: TC center, eye shape (Lee et al., 2016; Du
and Vachon, 2003; Jin, Wang, and Li, 2014; Liu et al., 2014), rainbands and precipitation
(Long and Nie, 2017; Jin et al., 2017; Zhang and Li, 2017), convective cells (Zhang and
Li, 2017), BL rolls (Foster, 2005), and surface wind speed (Zhang et al., 2016; Zhang and
Perrie, 2017; Yang et al., 2017). Based on a set of 83 net radar cross section (NRCS) SAR
acquisitions, Li et al., 2013 adopted a statistical approach to link hurricane eye derived
morphology to TC intensity. They associated a reduction of the evaluated eye area, and
a decrease of the evaluated main wavenumber characterizing the eye shape, with eye
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contraction and eye shape symmetrization processes with increasing TC intensity. As
most wind inversion algorithms under high winds are new or still under validation, most
existing SAR studies have focused on surface roughness data for the estimation of TC
properties (eye shape, BL rolls, rain bands or mesovortices), and are often limited to weak
TCs.

The present study takes advantage of a new consequent database of TC SAR observa-
tions, which has been gathered from two SAR missions (Sentinel-1 and RADARSAT-2)
over a four-year period extending from 2016 to 2019. This database covers a wide range of
TC cases. It has been used to set up a new wind inversion algorithm (Mouche et al., 2017),
and has been validated against the International Best Track Archive for Climate Steward-
ship (IBTrACS), the National Oceanic and Atmospheric Administration (NOAA) airborne
measurements, and the L-band radiometer wind estimations (Combot et al., 2020; Mouche
et al., 2017; Mouche et al., 2019). Based on this new consequent database of SAR wind
speed retrievals in TCs, the present study describes a methodology developed to extract
TC structural properties (e.g. eye and ring of maximum wind shapes, surface wind gradi-
ents), and energy repartition within the TC vortex (characterized through surface wind
intensity spectral decomposition).

Our analyses then demonstrate the ability to describe and characterize, with such ac-
quisitions, the TC inner-core, through its radial profile, its azimuthal degree of asymmetry,
and the energy distribution in the eyewall and maximum wind areas. These results have
strong implications for operational and research applications, as the near real-time esti-
mation of typical TC characteristics (maximum wind speed, radius of maximum winds,
inner-core and near-core wind gradients, vortex asymmetries), which can be used for TC
forecast, high wave and storm surge forecast, and observational research on inner-core dy-
namics and intensity restoration processes. Our analyses also suggest potential use of our
wind profiles for estimating mean wind profiles, or fitted 2D wind structures, which could
be used as forcing for operational risk assessment or other research applications. A sec-
ond objective of our statistical analyses is to investigate the importance of the fine-scale
variability of the eyewall and area of maximum wind for understanding the TC inten-
sity fluctuations, and their potential to improve our ability to dissociate intensification
phases. As SAR acquisitions are snapshots, with a relatively sparse sampling, they do not
allow for a continuous monitoring of each TC evolution, and prevent for an estimate of
the short-range dynamical changes in the internal structure. However, here we propose
to evaluate their predictability potential by assessing the relation of TC SAR-extracted
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parameters (intensity, size, radial profiles, azimuthal degree of asymmetry and energy dis-
tribution) to the 12h on-going TC intensity change. An evaluation of their added-value
in an actual statistical forecast model is beyond the scope of this paper, but may be an
exciting perspective.

The paper is organized as follows. Section 3.2 describes the dataset and the methodol-
ogy of processing of SAR images, Section 3.3 then describes the TC radial and azimuthal
structures and investigates their evolution as a function of TC intensity, with a focus on
the inner-core and the eyewall area, and compares these new SAR observations to previous
studies. The benefit of observing these internal structural properties to depict the TC life
cycle and its predictability is assessed in the last part of Section 3.3, using a methodology
based on machine learning classification. Finally, Section 3.4 discusses our results and the
technical limitations of our dataset and Section 3.5 draws the conclusions.

3.2 Data and Methods

3.2.1 SAR dataset

The SAR dataset used in this study is the result of the Satellite Hurricane Observation
Campaign (SHOC) started in 2016 by the European Space Agency (ESA). Following the
first promising SAR observations made with Radarsat-1 in TCs (Friedman and Li, 2000;
Katsaros et al., 2000; Du and Vachon, 2003), SHOC aims at programming acquisitions
over TCs with Sentinel-1 and Radarsat-2 SAR missions based on TC track forecasts.

SAR is a side-looking microwave active sensor, which measures the backscatter signal
to estimate sea surface roughness. The synthetic aperture principle consists in processing
together the phase and amplitude of several consecutive acquired signals to build a syn-
thetic along-track antenna much larger than the real one. The high sampling frequency
and the synthetic aperture therefore provide a spatial resolution that ranges from 10m
to 1 km (depending on the acquisition mode). The drawback of SAR high resolution is
that the raw data volume is very high, and consequently the satellite is not in continuous
acquisition mode.

Both Sentinel-1 and Radarsat-2 are C-Band SARs. The acquisitions are carried out
in wide swath mode to encompass the whole TC structure, and in both co- and cross-
polarization modes, which have been shown to complement one another in retrieving wind
speed and direction. Indeed, as outlined by Mouche et al., 2017, the cross-polarization
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implemented on both Sentinel-1 and Rardarsat-2 is much more sensitive to high wind
gradients, allowing a better resolution of the TC wind field (characterized by large wind
gradients and wind speeds exceeding 35m.s-1). On the other hand, cross-polarization is
also more sensitive to noise (due to swath junctions or precipitation in the atmospheric
column). The co-polarization is thus used to validate or replace cross-polarized data in the
low to moderate wind regimes, and will help retrieving wind streaks for estimation of the
wind direction. This latter capacity is however not fully implemented yet, and therefore
it is not available for the present study. The geophysical model functions (GMFs) used
are CMod5n for co-polarized and MS1A for cross-polarized data, as described in Mouche
et al., 2017.

The validity of the SAR TC wind field database used in the present study was thor-
oughly evaluated against the National Oceanic and Atmospheric Administration (NOAA)
airborne measurements using the Stepped Frequency Microwave Radiometer (SFMR), L-
band radiometer wind estimations, and the International Best Track Archive for Climate
Stewardship (IBTrACS) by Mouche et al., 2017; Mouche et al., 2019 and Combot et al.,
2020. Mouche et al., 2017; Mouche et al., 2019 described and validated the wind inversion
algorithm against L-band radiometer data, and SFMR data. Combot et al., 2020 exam-
ined and validate the SAR database (TC maximum wind intensity (Vmax), Radius of
Maximum Winds (RMW), and characteristic 34-, 50-, 64-kt wind radii (R34, R50, R64))
against IBTrACS and SFMR data. Overall, these 3 papers showed an excellent agreement
of the wind intensity retrieved from SAR with all compared datasets (IBTrACS, SFMR,
L-band radiometers). Combot et al., 2020 found a 0.87 correlation between SAR and best
track (BT) Vmax, with an 8.76m.s-1 RMSE, and an even higher agreement with SFMR
data (correlation of 0.9, RMSE of 4.85 m.s-1, bias lower than 0.5m.s-1). They associated
the better agreement found with SFMR to BT estimate errors in cases of rapid intensi-
fications (not well captured), or to eye replacements cycles. Some differences were also
spotted as a consequence of rain artifacts in SAR data, which can cause inconsistent wind
peaks. 14% of the cases were found significantly affected by rain, with a mean computed
intensity variation of 6.2m.s-1. Rain impacts on SAR wind retrievals are challenging is-
sues, and have to be kept in mind when analyzing the SAR wind field. However, they
usually cause very localized anomalies, and the methodology that we developed in the
present study was designed to minimize their potential impact on the results (see section
3.2.3).

Combot et al., 2020 further evaluated the spatial structure of SAR retrieved wind fields
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by comparing the retrieved characteristic wind radii (RMW, R34, R50, R64). RMW com-
parisons with SFMR revealed excellent agreement (correlation of 0.95 and bias of 3.5km,
except for the case of TC Florence), while comparisons with BT showed stronger discrep-
ancies (0.47 correlation, 25km RMSE, improving to 11.6 km when discarding the cases
of double eyewalls). BT RMW retrievals are however notoriously bad in the absence of
aircraft data, as they are derived from indirect methods or low-orbit satellite missions us-
ing medium to low resolution observations. Additionally, radii associated to higher winds
might have a higher temporal variability possibly not captured by the 6 hourly BT anal-
ysis. R34 and R50 comparison with BTs showed a correlation higher than 0.85, and a low
normalized bias of ∼3%, and of ∼10% for R64 (larger differences in R64 being associated
to same reasons than RMW discrepancies). The present SAR dataset is thus considered
to satisfactorily allow for TC surface wind field characterization, and will be shown, in
this study, to offer a unique opportunity to capture inner- and near-core wind structure
of the TC vortex, thanks to its high-resolution and spatial extent.

From the beginning of SHOC campaign in 2016, 279 eye-matching TC acquisitions
were gathered. 188 of these acquisitions successfully passed our parameter extraction
procedure (described in the following section 3.2.3), and were used in the present study.
Other cases which were withdrawn are usually associated to partially covered vortex
structure, a too large portion covered by land, or weak distorted TCs preventing parameter
estimation. Figure 3.1 shows that a wide range of TC characteristics (intensity, basin,
position, size, intensification rate, translation speed) is represented in the 188-case dataset.
These characteristics are computed from the images themselves, except for intensification
rate and translation speed which are computed from best track data described in the
following paragraph.

3.2.2 Best-track (BT) data

We use the International Best Track Archive for Climate Stewardship (IBTrACS;
Knapp et al., 2010) that combines the best-track (BT) data from various meteorological
centers (Regional Specialized Meteorological Centers responsible for TC forecast in the
different basins, and country agencies) into one common format. In a few cases, IBTrACS
database does not completely cover the extent of an event. In these cases, the Automated
Tropical Cyclone Forecast System (ATCF, Miller et al., 1990) is used to retrieve BT
parameters. It may be noted that the most recent tracks from IBTrACS and ATCF are
provisional, meaning that they have not been reprocessed with all available observations.

95



Chapter 3 – Observations of tropical cyclone inner-core fine-scale structure, and its link to
intensity variations

Figure 3.1 – Overview of the SAR TC database (number of samples) in terms of TC
category, basin, absolute latitude, radius of maximum wind (km), intensification rate
(m.s-1.day-1), and translation speed. The two latter are retrieved from best track data,
while other parameters are retrieved from SAR images. Basin codes are the following:
Northern Atlantic (NA), Northern Eastern Pacific (NEP), Northern Western Pacific
(NWP), Southern Pacific (SP), Southern Indian Ocean (SIO), Northern Indian Ocean
(NIO).

The BT position, Radius of Maximum Wind (RMWBT) and 34kt-radius (R34) are
used for image processing (in particular for retrieving the TC eye and maximum wind
areas). BT data (position and intensity (VmaxBT)) are also used to characterize the
TC life-cycle, in particular the intensification rate, as no linear and continuous temporal
dimension exists in SAR data due to a temporally sparse sampling of acquisitions. To
provide the closest BT temporal parameter estimates for each SAR acquisition, the BT
data are linearly interpolated at the acquisition time. The temporal resolution of BTs is
limited to 3 hours for IBTrACS and 6 hours for ATCF, and the resolution in VmaxBT
is respectively 1 m.s-1 for IBTrACS and 5 m.s-1 for ATCF data, yielding to a limited
precision of the interpolated tracks. We will show in the next section that a first important
step in SAR image processing is to retrieve the TC center on the image itself, as the BT
interpolated TC center positions can be rather far from the true center. The intensification
rate is defined as the time derivative of VmaxBT between t-6h and t+6h, t being the
acquisition time.
In the next sections, parameters extracted from BTs are noted with a BT subset (e.g.
RMWBT) to differentiate them from those retrieved from SAR.
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3.2.3 Methodology of TC parameters extraction from SAR
images

We designed a methodology to extract, from SAR-retrieved surface wind field, four
characteristic azimuthal signals describing the TC: the maximum surface wind ring in-
tensity and its shape, the eyewall surface wind gradient, and the eye shape. To do so,
several steps are performed to ensure their best estimate, and to circumvent most of the
eventual errors in SAR measurements. The first step consists in masking potential areas
of erroneous signal, the second step consists in detecting the TC center, the third step is
to project and interpolate the SAR image on a polar grid centered on the extracted TC
center. Then, the four azimuthal signals are extracted with a procedure detailed in the
following. Finally, the last step consists in a completion of partially cut signals (due to
image border) and a smoothing. These different steps are detailed hereafter.

Masking: subswaths, outliers, and rain signatures

— Subswaths and outliers
Subswath signatures can be identified in the SAR wind speed retrievals, indicating
that wind values in their vicinity are probably erroneous. We therefore detect
these subswath signatures based on their high value of column-wise average wind
gradient, and mask them (Fig. 3.2A, blue lines). Subswaths and issues with the
acquisition can sometimes cause larger signatures in the wind field, for which this
filtering step may not be sufficient, but it overall removes most of the subswath
signatures, which could hamper our azimuthal signals extraction. A second masking
procedure is applied consisting of a pixel-wise mask to remove any eventual pixel
outlier (e.g. spike pixel values in the wind field not corresponding to a realistic
wind structure).

— Heterogeneity mask and rain signatures
Additionally, the SAR wind product includes a heterogeneity mask designed to
remove non-wind-related features associated with high local gradient values (Fig.
3.2A, gray contours). Such structures are often due to heavy rain impacting the
SAR Net Radar Cross Section (NRCS) signal. Rain impact on SAR measurements
is indeed a preoccupying feature of SAR inversion algorithms. Mouche et al., 2019
showed, in the case of hurricane Irma, that heavy rain can either attenuate or
enhance the NRCS signal but concluded that: "at this stage, there is not enough
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Figure 3.2 – Illustration of the TC center research algorithm on the case of TC LION-
ROCK (Western Pacific) observed with Sentinel-1 SAR on the 27th of August 2016 . The
TC wind field (m.s-1) as retrieved from the SAR is shaded in (A) and (B); (B) is a zoom
over the TC eye. In (A) the heterogeneity mask (masking high gradient values of the
backscatter signal) is represented with grey contours, the black dashed circle denotes the
radius at which the heterogeneity mask is removed, the subswath signatures are identified
with dark blue lines, and the red dot locates the interpolated BT TC center. The red
dashed circle in (A) and (B) denotes the first research area for TC center. In (B) the de-
tected high wind points are contoured in red, their centroid is located with the magenta
dot, the second research circle is featured by the purple dashed line, the low wind points
are contoured in light grey, and their centroid is located with the cyan dot. The raw eye
shape signal is depicted by the black contour, and the final TC center is located with the
yellow dot.

evidence to conclude if these overall signal changes are solely due to rain impacts,
to wind changes, or to their combined effects". Combot et al., 2020 also conducted a
statistical assessment of rain impact on the SAR estimation of VMAX and RMW
using rain rate estimates inferred from IMERG (Integrated Multi-satellitE Re-
trievals for GPM) product co-located with SAR acquisitions in time and space
(±10 km around the SAR-derived RMW). They found 14% of their cases to be
significantly affected by rain with a mean computed intensity variation of 6.2m.s-1.
On another hand, they also showed that their SAR-derived RMW were generally
insensitive to rain issues.
Automated removal of rain artifacts is however quite difficult, and in-depth dedi-
cated research is requested to address this issue. The heterogeneity mask, used in
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the present study, removes part of the rain-induced artifacts of the SAR wind field,
and eventual remaining rain artifacts are considered to not significantly impact our
analyses. Indeed, visual inspection of several case studies have shown that remain-
ing rain signatures are mostly external to the maximum wind ring, and additionally
the smoothing step applied on our extracted signals, and the statistical analyses
performed on numerous cases limit the impact of local anomalies in SAR wind
fields. A complementary discussion of rain impacts is provided in section 3.4.3.

Locating the TC center

The second step of SAR image processing is to detect the TC center. Indeed, even
though the TC center derived from BT has been interpolated, it is not always co-located
with the center of the TC eye, as illustrated in Fig. 3.2A. The step of TC center posi-
tioning is crucial for our study, because all TC properties are then described in a polar
grid referenced on the TC center. Its retrieval is designed to be generic and automatic,
working on level-2 data. The procedure consists in the following steps, and is illustrated
in Fig. 3.2 for a Sentinel-1 SAR acquisition performed on the 27th of August, 2016 on TC
LIONROCK (Western Pacific).

As the TC eye is a region of strong wind gradient, it is often partially masked by the
heterogeneity mask described in the previous paragraph (see gray contours in Fig. 3.2A).
For this step of TC center research, we thus temporarily remove the heterogeneity mask
around the BT interpolated TC center, in a radius defined as max(4RMWBT, R34BT)
(Fig. 3.2A, black dashed line). The heterogeneity mask is later reapplied on the polar-
projected data out of 1.5 ∗ RMWSAR.

Several TC center extraction algorithms have been developed for SAR images. Most
of them rely on a wavelet analysis of the level-1 surface roughness images to find the TC
center (Zheng et al., 2017). In the present study, as we use level-2 wind speed data, a
new method is designed based on several wind speed thresholds to gradually approach
the TC center. First, the pixels corresponding to the highest wind speed values, defined
as the upper 80% of the wind range in a radius of max(2RMWBT, R34BT/2) around
the BT center (Fig. 3.2A,B, red dashed line), are identified (Fig. 3.2B, red contour), and
their centroid is located (magenta dot). Then, in a similar way, the centroid (cyan dot)
of the low wind area (lower 20% of the wind speed range, gray contour) in a radius of
2RMWBT around the high wind centroid (magenta dashed line) is located. This low
wind centroid is then iteratively recomputed, in a radius of 2RMWBT around the last
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estimated low wind centroid to ensure finding a stable location. Indeed, in some cases, the
first low wind centroid guess might fall outside the eye, in the high wind vicinity. In such
cases, the iterative procedure locates the centroid further from the high wind area and no
stability is found. If so, the low wind centroid research is re-processed within a smaller
radius of research around the high wind centroid until finding a stable low wind centroid.
This procedure manages to find the TC center in a vast majority of cases, although some
exceptions can occur. Finally, to prevent errors in the polar projection in cases where the
low wind centroid is eccentric with respect to the vortex structure (mostly when the eye is
large and distorted or when the eye distribution in the eye is not uniform), a re-centering
step is carried out. This last step consists in locating the centroid (yellow dot) of the eye
shape, defined as the maximal radial wind gradient for each azimuth (black line in Fig.
3.2B) around the low wind centroid. In cases where the eye shape centroid falls outside of
the polygon (when the eye is distorted and the polygon is concave), the final TC center is
defined as the pole of inaccessibility of the polygon, i.e. the "most distant internal point
from the polygon outline". The final TC center is thus defined as the eye shape polygon
centroid (or pole of inaccessibility in concave eye configuration).

Extracting azimuthal signals

The SAR image is then projected and interpolated on a polar grid centered on the
extracted TC center. The azimuthal resolution of the polar grid is set to one degree, and
the radial vector is defined between 0 and 10 ∗ RMWSAR with a resolution matching
the one from the original Cartesian grid of the image. The polar grid is geographically
oriented with an easterly zero azimuth (the extracted signals are thus not oriented to the
TC direction of motion).

Four characteristic azimuthal signals are extracted: two characterizing the TC intensity
distribution, the eyewall wind gradient and the maximum wind azimuthal distributions;
and two characterizing the TC shape, the eye shape and the maximum wind contour
shape.

— Maximum wind distribution (VmaxAZ)
The azimuthal distribution of maximum wind intensity is retrieved by extracting
for each azimuth the maximum wind value. To avoid local outliers in the distribu-
tion, these maximum wind values are computed using a sliding average algorithm:
for each azimuth, the profile used to compute maximum wind is averaged with its
6 closest neighbors. The retrieved signal is hereafter noted VmaxAZ.
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— Maximum wind shape (RMWAZ)
The contour of maximum winds is defined by the distance between the TC center
and the maximum wind location for each azimuth. This azimuthal distribution of
RMW is hereafter referred to as RMWAZ.

Figure 3.3 – Illustration of the azimuthal signal processing detailed in sections 3.2.3 and
3.2.3 (here for the eye shape) for 2 acquisitions on LIONROCK (Western Pacific, 27th
of August 2016) and TRAMI (Western Pacific, 28th of September 2018). Panels A and
E show the SAR 2D wind field and contour of the extracted eye shape (thin dark green
contour), and the smoothed eye shape (thick green contour), with highlighted high wind
azimuths (black dots) used to compute the maximum radial gradient; the TC center is
indicated with a yellow dot. Panels B and F show azimuthal-mean wind profiles with
shaded characteristic wind areas (eye area in blue, eyewall in green and near-core in red)
and highlighted eyewall (green) and near-core(red) profiles used to compute mean gradient
values. Panels C and G show the azimuthal distribution of the eye shape, i.e. the radius
between the eye shape contour and the TC center. Panels D and H show the spectral
decomposition of the normalized smoothed eye shape radius (the first 15 components are
represented).

— Eyewall wind gradient (dV/dRAZ)
We define the eyewall as the region located between the minimum and the max-
imum of the second derivative of the radial profile between the TC center and
RMWAZ (see Fig. 3.3 B and F), so that the eyewall does not include the "flat"
wind areas located in the eye and near the peak of the wind profile. The azimuthal

101



Chapter 3 – Observations of tropical cyclone inner-core fine-scale structure, and its link to
intensity variations

eyewall wind gradient, dV/dRAZ, is then defined at each azimuth, θ, as the gra-
dient dV/dRAZ(θ) = [∆Vrθ

/∆rθ]rθmin→rθmax
, where Vrθ

is the radial wind speed
profile for each azimuth, rθ is the radius, rθmin and rθmax are the values correspond-
ing to the minimum and the maximum of the wind profile second derivative. We
also define dV/dREW as the mean value of radial gradient in the eyewall com-
puted on the azimuthally-averaged wind profile. This parameter is thus a single
value (instead of a 1-D signal) estimating the average radial wind gradient in the
eyewall.

— Eye shape
The eye shape is defined as a closed contour of wind located between the maxi-
mum radial wind gradient and the TC center. The maximum radial wind gradient
is computed for a subset of radial profiles located at high wind azimuths (corre-
sponding to wind values between 99.5% and 99.9% of the image, denoted by black
dots on Fig. 3.3). For each of these profiles, the wind value matching the maximum
wind gradient is retrieved. These values are averaged and a wind contour matching
this average value is extracted, along with 9 other contours matching lower wind
values (for cases with incomplete contours, see blue contours inside the eye on Fig.
3.3). The most exterior contour encompassing more than 70% of all azimuths is
taken as the final shape.

The four previously extracted azimuthal signals are then smoothed by applying a 3rd

order Butterworth filter with a critical frequency of 0.03 (an example is shown in Fig.
3.3b). A signal completion is also performed when the signals are partially cut by image
border, by linearly interpolating the azimuthal signal.

Computing variance and spectral decomposition

After normalizing the signals by their mean value, their variance is computed to char-
acterize the overall asymmetry of the TC shape (relatively to a circle), and the distribution
of energy (relatively to a homogeneous ring of wind). Then, a wavenumber spectral de-
composition is performed to assess the power level of each wavenumber composing the
signal (Fig. 3.3). A re-centering around the respective polygon centroid is applied to the
two spatial signals (eye shape and RMWAZ) prior to the spectral decomposition, as our
purpose is to characterize the relative azimuthal distribution and not the decentering of
the structure, which would strongly sign in wave number 1. The relative power levels
therefore describe the shape characteristics (for instance, a relatively elliptical eye is char-

102



3.2. Data and Methods

acterized by the predominance of wave number 2 as shown in Fig. 3.3A,C, while a more
polygonal eye is characterized by a broader spectrum with strong wave numbers 3 and 5
as shown on the example of Fig. 3.3d,f). For the intensity signals (VmaxAZ, dV/dRAZ),
the spectral decomposition characterizes the energy distribution: the predominance of
low wavenumbers indicates local maxima, while a broader spectrum with higher relative
importance of high wavenumbers represents a more distributed energy.

The variance, being the sum of the spectral components, a large value can be associated
either with a large amplitude of only one wavenumber (a distortion of the shape, or local
energy maxima), or with a smaller amplitude but a larger number of components (which
could describe a shape with more noise but closer to a circle in average). In practice
though, the smoothing applied to azimuthal signals and the structure of the TC vortex
causes the variance to be more likely associated to predominance of large wavenumber
amplitudes than to a broader spectrum as displayed in Fig. 3.3, where the upper eye shape
is more elongated and has a higher variance than the lower one, which is more polygonal
but is closer to a circle on average.

Vortex averaged properties

The maximum TC intensity (VMAX) extracted from the SAR images is estimated as
the maximum of the azimuthal maximum wind distribution, VMAX = max(VmaxAZ).

A mean radial profile is also computed for each image by performing an azimuthal av-
erage. A vortex averaged RMW, as well as an averaged eyewall wind gradient, dV/dREW,
and an averaged near-core radial gradient, dV/dRNC = [∆Vr/∆r]RMW →3RMW , are com-
puted from this averaged radial profile. The three distinct areas of the radial profile, used
to describe the inner core region of the vortex in the following, are thus:

— the eyewall area (green shading on Fig. 3.3B and F): it includes all points where
the local radial gradient is higher than 20% of the distribution of radial gradient
values for R < RMW ; this ensures to consider the linear part of the eyewall, and
avoid the flat areas in the eye and near the maximum wind

— the eye area (blue shading on Fig. 3.3B and F): it is defined as the region between
the TC center and the inner edge of the eyewall

— the near-core area (red shading on Fig. 3.3B and F): it extends between the RMW
and 3 RMW; this definition of the near-core is also used by Mallen, Montgomery,
and Wang, 2005 as it usually contains a critical radius used for the estimation of
vortex resilience.

103



Chapter 3 – Observations of tropical cyclone inner-core fine-scale structure, and its link to
intensity variations

The TC parameters extracted from SAR images are summarized in Table 3.1.

Table 3.1 – Table summarizing the TC parameters extracted from the SAR images, as
described in Section 3.2.3

SAR-extracted param-
eters abbreviation

Brief description

VmaxAZ maximum wind intensity at each azimuth
RMWAZ radius of maximum wind speed at each azimuth
dV/dRAZ eyewall wind gradient at each azimuth: dV/dRAZ(θ) =

[∆Vrθ /∆rθ]rθmin→rθmax
Eye shape Outermost closed contour of wind located between the maximum radial wind

gradient and the TC center
VMAX Vortex maximum wind intensity: VMAX = max(VmaxAZ)
RMWSAR or RMW Vortex averaged RMW: RMW = mean(RMWAZ)
dV/dREW Vortex eyewall wind gradient: eyewall gradient of the azimuthally-averaged

wind profile: dV/dREW = [∆Vr/∆r]rmin→rmax

dV/dRNC Vortex averaged near-core radial gradient: dV/dRNC =
[∆Vr/∆r]RMW →3RMW

3.2.4 Statistical classification of intensification rates

The potential of SAR-extracted parameters to statistically predict TC intensification
rate is assessed in the last part of our results (section 3.3.3) by using a statistical classifi-
cation, the predictor being the intensification phase: intensification or decay. Two groups
of intensification rates are identified: intensification rates above 5 m.s-1.day-1, and decay
rates under -5 m.s-1.day-1. The number of images used for this statistical classification
is therefore 100 (over the 188 available images), as medium values of intensification rate
(between -5 and 5 m.s-1.day-1) are ignored.

The SAR-extracted variables used as predictors for the classifications are: the TC
center absolute latitude, VMAX, RMW, dV/dREW, and variance and percentages of
explained variance of the 5 first wavenumbers of the 4 azimuthal signals (eye shape,
RMWAZ, dV/dRAZ, VmaxAZ). All these variables have a correlation factor lower than
0.7, ensuring their independency. Only the near-core wind gradient, dV/dRNC, was dis-
carded from the analysis, due to its too large correlation with the eyewall gradient. Given
the limited amount of samples (100) and the elevated number of variables (28) compos-
ing our dataset, an evaluation of the incremental added value of each variable was not
possible. We thus designed a methodology to estimate the relative contribution of each
variable to discriminate intensifications vs. decays. Fig. 3.4 illustrates the flow chart of
this methodology.

104



3.2. Data and Methods

Figure 3.4 – Flow chart detailing the different steps of the statistical classification method-
ology.

The first step consists in reducing the number of variables (initially 28) by dividing the
dataset into 4 groups based on the 4 azimuthal signals: eye shape, RMWAZ, dV/dRAZ,
VmaxAZ. Each subgroup contains the variance and the 5 first wavenumbers explained
variance percentages of the given azimuthal signal, as well as the vortex averaged prop-
erties (TC center absolute latitude, VMAX, RMW, dV/dREW). A random variable is
added to each group as a control variable, yielding to 4 groups of 11 variables. Then, to
further reduce the number of variables for the classification (number of samples vs. vari-
ables issue), random combinations of 5 variables among the 11 in each group are classified
separately. 330 random combinations and associated classifications are performed for each
group.

The classification itself is performed using ten usual machine learning models (they
are detailed in the 4th column of Fig. 3.4). These models feature a wide range of different
methods of machine learning, including regression methods, tree classifiers or neural nets.
These different models allow to take into account a wide range of possible relations between
variables, including non-linear relations. The classification is performed with a bootstrap
method (learning on 80% of the dataset and testing the remaining 20%, then iterating 5
times with an exclusive 20% each time).

The average prediction score is obtained for each combination of variables by averaging
the 10 models prediction scores. Combinations are then sorted by order of performance,
and the best combinations are detailed.
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3.3 Results

3.3.1 TC vortex parameters and radial profile as observed with
SAR

The kilometer-resolution SAR surface wind retrieval allows a detailed 2D characteriza-
tion of the TC inner-core region, the most intense area of the TC vortex. First, maximum
wind speed (VMAX) and averaged radius of maximum wind (RMW), extracted from the
SAR images, are analysed and compared to previously published results, then a detailed
description of the radial and azimuthal wind structures is assessed.

Maximum wind speed (VMAX) and radius of maximum wind (RMW)

The relationship between SAR-derived VMAX and SAR-derived RMW is illustrated
on Fig. 3.5A. In agreement with previous results from airborne and SAR measurements
(e.g. Shea and Gray, 1973, Weatherford and Gray, 1988b, Li et al., 2013, Combot et al.,
2020), the RMW shows a decreasing trend, along with a decreasing variability as intensity
increases: RMW extends from 10 to 100 km for TCs weaker than category 3 (50 m.s-1),
while it is restricted to values lower than 50 km for stronger TCs (above category 3). This
RMW decreasing trend with intensity can be associated to the eye contraction process
described as contributing to TC intensification (e.g. Shapiro and Willoughby, 1982; Stern
et al., 2015).

The variability of RMW values observed for moderate (<cat. 3) TCs being quite large,
while the one for intense (≥ cat. 3) TCs being smaller, we separate the following analyses
into 3 TC groups: moderate and large TCs (VMAX < cat. 3, RMW ≥ 50km), moderate
and small TCs (VMAX < cat. 3, RMW < 50km), intense and small TCs (VMAX ≥
cat.3, RMW < 50km). The RMW histograms of these 3 categories are shown in Fig.
3.5B. The moderate TC distribution features a relatively clear distinction between the
moderate small and moderate large categories at 50km, while intense TCs display RMWs
distributed between 10 and 50km with more numerous TCs in the lowest RMW categories.
The standard deviations for both small moderate and intense TCs are similar (∼13km),
while large moderate TCs have a larger spreading (std=31.5km), partly explained by the
lower number of events in this category.

The events lying outside of the overall standard deviation in Fig. 3.5A mostly belong
to this moderate large category, and are usually associated to highly asymmetrical TCs
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Figure 3.5 – (A) Distribution of SAR-extracted Radius of Maximum Wind (RMW) as a
function of maximum wind value (VMAX). Dots represent individual images, the black
line features the binned median value by category (with horizontal lines indicating the bin
extent), and the grey shading the corresponding standard deviation. Dot colors denote
the division in 3 groups based on threshold values (50 m.s-1 for VMAX and 50km for
RMW). (B) Histogram of RMW values for the 3 aforementioned groups.

(see suppl. S1), for which high winds are mostly confined to one sector of the TC vortex.
It can be noted that these cases are particularly challenging for RMW retrieval in BT
data, which often provide erroneous too low estimates of the RMW (see suppl. S1), while
our SAR retrieved RMW seems to be more faithfully estimated.

Radial wind profile

From the 188 SAR images of our dataset, we compute the average radial wind profile
for each TC category (Fig. 3.6A). It shows a strong dependence on TC intensity, with
tropical storms (TS, blue curve) having an almost linear profile between the center and
the RMW, and strongest TCs (orange and red curves) having a so-called U-shape profile
separated in two regions, the eye with a constant low wind value and the eyewall with
a sharp wind gradient. The eyewall area denoted by cross markers on Fig. 3.6A tends
to move towards the maximum wind area, as indicated by both inner and outer markers
being further from the TC center when intensity increases (with a marked distinction
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Figure 3.6 – (A) Mean radial wind profiles computed by TC category (Saffir-Simpson).
Colored shading indicate the upper and lower quartiles for each profile, and the number of
samples by category (#) is indicated in the legend. The x-axis is normalized by the RMW.
Markers on the profiles denote mean positions of the eye inner and outer edge by category.
(B) Difference between the eyewall radial wind gradient and the Rankine vortex wind
gradient approximation: (dV/dR)EW − VMAX/RMW, as a function of maximum wind
(VMAX, m.s-1). Small circle markers represent individual images, thick lines with large
dark dots and shaded areas respectively denote the binned mean and quartiles by category.
Colors represent two subcategories of RMW: RMW<50km in orange, RMW≥50km in
purple. (C) Same as (B) but for the near-core radial wind gradient, (dV/dR)NC.

between categories 1-2 and 3-4-5 regarding the inner eyewall edge), indicating a reduction
of the eyewall extent and a relative increase of the clear eye area with intensity. These
observations are consistent with theoretical results which suggest that the eye formation,
and sharpening of the eyewall radial wind profile act as stabilizing processes to the TC,
favoring its intensification to high categories. Emanuel, 1997 describes the eyewall flow as
highly frontogenetic, due to the effect of surface friction: although this frontogenesis can
collapse and lead to radial momentum transport into the eye, the feedback between surface
wind and surface friction mechanically leads to a mean increase in the frontogenesis of
the eyewall flow with intensity.

To further characterize the eyewall wind gradient and its sharpening, it is compared to
the Rankine vortex approximation, which assumes a solid-body rotation and a linear pro-
file between V=0m.s-1 at R=0 and V=VMAX at R=RMW. As detailed in section 3.2.3,
the eyewall wind gradient, dV/dREW, is computed over the quasi-linear region of the eye-
wall (delimited by the green shading on Figure 3.3B and F) avoiding the flattened areas
in the eye and close to the wind peak. Figure 3.6B shows that dV/dREW progressively
departs from the Rankine vortex approximation as intensity increases. The spreading
denoted by the interquartile range also increases with intensity, and is the highest for
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category 5 TCs (though partly explained by the lower number of samples). As previously
suggested (Fig. 3.5), moderate TC categories can be separated into 2 sub-categories de-
pending on their RMW. Large TCs show a gentler eyewall radial wind gradient (purple
curve) in average compared to smaller TCs (orange curve) for a given intensity.

The progressive increase of the difference between the eyewall wind gradient and the
Rankine approximation, as well as the separation between the two RMW sub-categories
and outward displacement of the eyewall area, highlight the fact that small and intense
TCs have on average a relatively wider eye with respect to their RMW (e.g. the eye
external border and RMW are relatively closer to each other), and a sharper radially
normalized eyewall wind profile than weaker and larger TCs. However, the large spreading
of the data at strong intensity (Fig. 3.6) also denotes a diversity of inner-core situations
with a few very intense TCs not having the typical U-shape with a strong eyewall radial
gradient and a clearly separated eye. Kossin and Eastin, 2001 also observed, in two aircraft
sampled hurricanes, the existence of two distinct regimes of eyewall dynamics, one being
characterized by a well-formed eyewall with a clear eye, and the second more similar to
a Rankine-like vortex with increased horizontal mixing within the eye. They showed that
the TC vortex can alternate between these two regimes in very short time ranges (1h), and
linked these transitions to important thermodynamic changes within the vortex structure.
Nguyen et al., 2011 also documented such transitions modeling hurricane Katrina and
showed that U-shape profile phases were associated with faster intensifications. These
two latter studies, as well as Schubert et al., 1999 and Kossin and Schubert, 2001 further
discussed how these profile transitions are related to the formation of eyewall mesovortices
and subsequent vorticity mixing within the eye, and VRW generation. The shape of the
radial wind profile thus also depends on evolution of eyewall mesovortices. These aspects
will be further examined in the next section which describes the azimuthal structure and
repartition of energy within the observed TCs.

To complement the study of the radial structure, the near-core radial gradient, (dV/dR)NC,
in the outer vicinity of the RMW (grey shaded area in Fig. 3.6A), is also computed (Fig.
3.6C). This near-core area is directly linked to the broadness of the primary circulation,
also associated to the strength of the TC (Weatherford and Gray, 1988b), and has also
been shown to characterize the vortex resilience to external forcing (Mallen, Montgomery,
and Wang, 2005). The near core radial gradient in our database is found to increase with
TC intensity (Fig. 3.6C). A stronger increase is observed for TC categories 2-5 than for
lower TC categories. As for the eyewall wind gradient, at a given intensity, the larger TCs
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(RMW≥40km) have a weaker near-core radial wind gradient. Overall, both eyewall and
near-core wind gradient analyses illustrate an increased contraction of the high wind area
towards the RMW for more intense TCs.

3.3.2 Azimuthal TC structure and distribution of energy: in-
sights from SAR

The radial profile analysis has provided an azimuthally-averaged view of the TCs show-
ing that stronger TCs tend to have a wider eye, a sharper eyewall radial wind profile, and
a smaller, more contracted vortex. However, vortex asymmetry and azimuthal repartition
of energy have been shown to be important components of the intensification mechanisms
(cf. asymmetric theories of intensification reviewed by Montgomery and Smith, 2014).
We therefore extract, from SAR 2D surface wind fields, the TC eye and RMW shapes to
describe the spatial asymmetry (compared to a circle), and the eyewall wind gradient and
maximum wind for each azimuth to describe the intensity distribution around the vortex.

Figure 3.7 A and B show decreasing variances of the eye shape and RMW for increas-
ing TC categories, denoting an axisymmetrization of TCs with intensity. The large TCs
(purple on Fig. 3.7) feature higher mean values and larger spreading of variances than
smaller TCs. These results suggest that axisymmetrization is a condition for TCs to reach
category 4 or above, in addition to contraction of the structure, and sharpening of the
eyewall radial wind profile.

The variances of eyewall wind gradient and maximum wind speed found around the
vortex (Fig. 3.7C,D) also show decreasing trends with TC intensity, illustrating that in
addition to the vortex axisymmetrization, the amplitude distribution is homogenized when
intensity increases. To further describe this energy distribution, a wavenumber spectral
decomposition is performed on the azimuthal eyewall wind gradient and maximum wind
signals (see methods section 3.2.3). The wavenumbers (WNs) are gathered into 3 groups:
low WNs (1 and 2), which represent the main components of TC asymmetry including
signature of translation speed and planetary vorticity; medium WNs (3-5), which represent
smaller-scale asymmetries not necessarily related to large-scale interactions; and high WNs
(6-180), which describe the spreading of energy towards the tail of the spectrum but have
been much less studied, as they are more difficult to observe and may be impacted by
noise in the observations (in our case in SAR wind speed estimates).

Figure 3.8 shows a distinct evolution of the eyewall wind gradient and the maximum
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Figure 3.7 – Log-normal distribution of normalized variance of four azimuthal signals as a
function of maximum wind: (A) eye shape, (B) RMWAZ, (C) dV/dRAZ, (D) VmaxAZ.
Small circle markers represent individual images, thick lines with large dark dots and
shaded areas respectively feature the binned median and quartiles. Colors represent two
subcategories of RMW: RMW<50km in orange, RMW≥50km in purple.

wind decompositions with TC intensity. On one hand, the maximum winds (green curves)
feature a transfer of energy between low and high WNs, with WNs 1-2 explaining 65% of
the variance at low intensity and decreasing to 55% at category 5, while medium and high
WNs explained variances respectively increase from 23 to 25 % and from 12 to 18%. On
the other hand, the eyewall radial wind profile sharpness (blue curves), although showing
a small transfer of energy from WNs 1-2 to WNs 3-5 between cat.<1 and category 3,
has a much more balanced distribution with similar WN levels at weak and strong TC
intensity. The energy distribution thus appears less related to the TC intensity in the
eyewall than in the maximum wind area. The energy in the maximum wind area tends
to be localized in one or two maxima for weak TCs and to homogenize for stronger TCs,
while the eyewall sharpness is already more homogeneously distributed for weak TCs. The
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Figure 3.8 – Percentage of variance explained by wavenumbers (A) 1 and 2, (B) 3 to 5, and
(C) 6 to 180, for dV/dRAZ (blue) and VmaxAZ (green) azimuthal signals as a function
of TC category. Thick lines and shaded areas respectively denote the binned median and
quartiles.

broader energy spectrum of the eyewall could also indicate the presence of mesovortices
that may locally modify the vorticity mixing between the eye and the eyewall and thus
the energy distribution, as discussed in the studies of Schubert et al., 1999, Kossin and
Schubert, 2001 and Nguyen et al., 2011. This highlights that the dynamics of the eyewall
are not directly coupled with the maximum wind area and may have a separate behavior.

3.3.3 Linking SAR-extracted characteristics to TC intensifica-
tion

In the previous section, we have depicted the TC radial surface wind profile, as well
as the azimuthal characteristics of the eye and maximum wind ring shapes, and the az-
imuthal distribution of energy around the vortex. We have in particular highlighted that
very intense TCs feature specific properties (sharper eyewall, more contracted and ax-
isymmetric vortex, broader energy spectrum), which we have suggested could promote
or constrain TC intensification. However, we have not yet assessed their direct relation
with the intensification rate. This is the purpose of the next sections. As SAR acquisi-
tions are snapshots, with a relatively sparse sampling, they do not allow for a continuous
monitoring of each TC evolution, and the fine scale structures observed in SAR images
are certainly related to high-frequency intensity changes. We however here try to evaluate
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if SAR-extracted TC parameters allow to better characterize the TC life cycle and its
intensity changes on relatively large time scales (12h here), in the view of assessing the
potential use of SAR images for TC forecast issues and statistical models. The intensi-
fication rates are here computed from BT data and over a 12h time window (from 6h
before to 6h after the TC SAR acquisition), and are separated into 3 classes: intensifying
(>5m.s-1.day-1), stable (between -5 and +5m.s-1.day-1), and declining (<-5m.s-1.day-1)
phases.

Life cycle variations

First, we focus our analysis on intensity variations in the mature phase of TCs. Indeed,
forming and dying TCs may have very asymmetric structures but are more strongly con-
strained in forecast systems, notably due to their zonal location and associated environ-
ment, e.g. stronger shear when reaching mid-latitudes. Consequently, considering these
TCs introduces additional biases that may mislead our interpretations of TC intensity
variations.

The evolution of TC contraction with intensification is assessed by evaluating the
eyewall radial wind gradient (relative to the Rankine approximation) and near-core ra-
dial wind gradient as a function of TC intensification rate (IR) for the 3 TC size-
intensity groups (Fig. 3.9). One can first notice that moderate large TCs (VMAX<Cat.3,
RMW≥50km, orange bars on Fig. 3.9) are all decaying or stable TCs, which may indicate
an issue in the representativeness of our dataset but also that most decaying TCs are
larger than intensifying ones partly due to the higher latitudes at which TCs decay. The
trends obtained for the 2 other groups (small moderate and intense TCs, light and dark
purple bars on Fig. 3.9) are similar (but with stronger gradient values for more intense
TCs). The eyewall gradient significantly increases, being further from the Rankine pro-
file, from decays (<-5m.s-1.day-1) to intensifications (≥ 5m.s-1.day-1). The eyewall radial
wind profile sharpness thus appears to be connected to TC intensity life cycle, and could
be a determinant factor in the differentiation of decaying and intensifying TCs. This is
consistent with previous findings from Schubert et al., 1999; Nguyen et al., 2011 showing
that more U-shaped profiles associated with ring-like vorticity distribution favour fast
intensifications.

The near-core gradient also shows an increased median value for intensifying TCs, even
if the quartile bars denote some overlap for intense TCs indicating a larger variability. The
sharper near-core (and eyewall) trend for intensifying TCs indicate a reduced broadness
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Figure 3.9 – (A) Eyewall radial gradient (dV/dREW, m.s-1.km-1), and (B) near-core ra-
dial gradient dV/dRNC, m.s-1.km-1), as a function of intensification rate (m.s-1.day-1)
for 3 subcategories of RMW and maximum wind: VMAX <cat.3 and RMW≥50km (or-
ange), VMAX <cat.3 and RMW<50km (light purple), VMAX ≥cat.3 and RMW<50km
(dark purple). Bars and errorbars respectively denote the median and the quartile.

of the primary circulation, which has been suggested to confer lower resilience of the
vortex to wind shear events following (Reasor, Montgomery, and Grasso, 2004; Mallen,
Montgomery, and Wang, 2005).

The TC asymmetry, characterized by the azimuthal normalized variances of shape (eye
and RMW) and energy distribution around the vortex (eyewall sharpness and maximum
wind), does not show any direct relation with the IR (not shown). However, a separation
into different life cycle phases reveals several noticeable features (Fig. 3.10. Intensity
troughs (IR negative before, and positive after acquisition time, cyan bars) are notably
more symmetric and homogeneous than other life phases, while the most asymmetric and
heterogeneous phases are decline (negative IR before and after acquisition time, green
bars) and intensification (positive IR before and after acquisition time, violet bars). An
analysis of stronger TCs only (≥ cat. 3) highlights a higher asymmetry of declining TCs
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Figure 3.10 – Normalized variance of the 4 azimuthal signals (dV/dR, eye shape, RMW,
and VMAX) for four life cycle phases: stable intensification (purple), stable decline
(green), intensity peak (yellow), and intensity trough (cyan). Bars and errorbars respec-
tively denote the median and the quartiles.

over intensifying ones (not shown). The significant difference between declines and troughs
shows the importance of vortex symmetry in the intensification process: both phases
correspond to a negative intensification rate before acquisition, but TCs that re-intensify
are much more symmetric than TCs that continue to decline. The asymmetry associated
with intensity peaks (IR positive before acquisition time and negative after, yellow bars)
is higher than that of intensity troughs, which might be quite surprising at a first glance,
as peaks are usually more intense phases than troughs, and as more intense TCs have
been shown to have a higher symmetry (see Fig. 3.7). However, this result is interesting
as it might suggest that the observed asymmetry could be a predictor of the subsequent
decline after a peak. Intensity peaks are often perturbed and unstable life cycle phases,
where interactions of the vortex with its environment (shear, SST, islands) would result in
their following decline. These interactions may consequently enhance the internal activity.

Machine-learning classification: contribution of fine-scale extracted wind struc-
tures

Finally, in a predictability perspective, we assess the potential contribution of SAR-
extracted TC parameters to a machine-learning statistical classification of positive (>+5m.s-1.day-1)
and negative (<-5m.s-1.day-1) intensification rates. The method described in section 3.2.4
and Fig. 3.4 is applied to evaluate the prediction score of different combinations of ex-
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Figure 3.11 – Average prediction scores (in %) obtained over 10 machine learning models
for the 10 best random combinations of 4 SAR-extracted parameters. The x-axis features
the variables composing each combination. The black horizontal line denotes the score
obtained for the combination containing only mean vortex-averaged parameters (Latitude,
VMAX, RMW and dV/dREW).

tracted variables. The 10 best combinations are shown on Fig. 3.11. For each combination,
the score is an average over the 10 different machine learning algorithms.

Interestingly, only a few subset of the 28 variables used as predictors appear in these
10 best combinations: the latitude of the TC center, the RMW, 2 components of the eye
shape decomposition (WNs 4 and 5), and several parameters characterizing the eyewall
wind gradient (its mean value dV/dR, its azimuthal variance, its WNSs 1, 2, and 5). The
latitude of the TC center is the most prominent parameter, appearing in each of the 10
best combinations. The typical life cycle of TCs with an intensification in the tropical
latitudes and a decay in the mid-latitudes explains this prominence. The RMW is the
second most frequent parameter appearing in 8 or the 10 best combinations. RMW may
also be associated to the typical life cycle as it is influenced by the planetary vorticity, but
we also showed in section 3.3.1 that the RMW is strongly associated to the intensity of
the cyclone, and we suggested that this might be related to vortex contraction processes
during intensification. This seems to be also supported by the strong contribution of
the eyewall radial wind profile sharpness (dV/dR) in the classification, which appears in
numerous combinations through its different components (mean value, azimuthal variance,
WN decomposition). Notably, high WNs of the eyewall wind gradient and of the eye shape
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are majorly represented in the best combinations (e.g. WN 5 present in respectively 6
and 4 combinations for the eyewall gradient and the eye shape). These wave numbers
correspond to small-scale dynamic processes in the eyewall such as convective bursts and
mesovortices (Schubert et al., 1999; Kossin and Schubert, 2001). Signals characterizing
the ring of maximum winds (RMWAZ and VmaxAZ), on the other hand, do not appear
in these 10 best combinations.

More generally, the scores associated to these 10 combinations range between 63 and
almost 65 %. In comparison, the score associated to the combination of vortex averaged
parameters (i.e. latitude, RMW, VMAX and dV/dREW), featured by the horizontal black
line on Fig. 3.11), is 60%, and the score of the worst combination is around 43%. It should
be reminded here that the method is not designed to bring the best possible prediction
score (as a limited number of variable is used in each combination), but to assess the
potential contribution of our SAR-extracted parameters. In addition, while these score
variations might seem small, they can be considered as true indicators of an improvement
in the classification as they are averaged over 10 models, performing bootstrap methods
for each models, and iterated 10 times each with a different random control variable,
ensuring to take into account the variability associated to the machine learning approach.

The prevalence of high wave numbers describing eye shape and dV/dRAZ, the two sig-
nals estimated in the eyewall area (while RMWAZ and VmaxAZ describe the maximum
wind ring), indicates a contribution of inner-core internal dynamics to the classification.
Indeed, these wave numbers correspond to small-scale dynamic processes: eyewall pro-
cesses such as convective bursts and mesovortices, for instance, sign on such small scales
(Schubert et al., 1999; Kossin and Schubert, 2001), while smaller wave numbers represent
a more general measure of asymmetry at the vortex scale. It can also be noted that the
lowest score is associated to combinations containing dV/dRAZ wave numbers 1 and 2
(these lowest combinations are not shown on the figure). Thus, a true scale separation
occurs between this vortex scale and the smaller scale describing localized structures in
the eyewall.

We thus show with this machine learning approach that eyewall small-scale dynamics
(characterized through the eye shape and eyewall radial gradient spectral decomposition)
have the potential to improve a statistical prediction of TC intensity variations, compared
to the sole use of vortex averaged parameters and synoptic information.
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3.4 Summary and Discussion

In this study, we have analyzed 188 high-resolution (1km) SAR images of TCs. In
addition to their outstanding resolution, these images present the advantage of having a
large spatial extent allowing for a characterization of the whole 2D TC wind structure
at the sea surface. The wind retrieval is performed using the dual-polarization capacity
of Sentinel-1 and Radarsat-2 SARs, which has been shown to faithfully retrieve TC high
wind speeds (Mouche et al., 2017). Taking advantage of this newly available dataset, which
contains at least 15 images for each TC intensity category, our study demonstrates the
ability to describe and characterize, with such acquisitions, the TC inner-core, through
its radial profile, its azimuthal degree of asymmetry, and the energy distribution in the
eyewall and maximum wind areas.

3.4.1 SAR observations and TC internal dynamics

The statistical analysis evidences a TC size reduction, and a sharpening of the eye-
wall radial wind profile with intensity, consistent with previous studies (Shea and Gray,
1973; Shapiro and Willoughby, 1982; Willoughby, Clos, and Shoreibah, 1982; Willoughby,
1990). Willoughby, Clos, and Shoreibah, 1982; Willoughby, 1990; Schubert and Hack, 1982
described TC contraction as resulting from the increased wind gradient in the inner edge
of the maximum wind area (this increased gradient itself associated to latent heat release
and isobaric height fall in the inner side of the convective ring). Studies by Schubert et al.,
1999, Kossin and Eastin, 2001 and Nguyen et al., 2011 further discussed the role played by
mesovortices generated in the eyewall inner-edge, which induce mixing and consequently
spin-up within the eye, and then increased convective available potential energy in the
vicinity of the ring of maximum winds when these mesovortices fade and move outwards as
VRWs. During this process, the vortex transitions from U-shape to a Rankine-like vortex,
and back to a U-shape vortex. Our observations support these previous results. We show
a variety of observed wind profiles and shapes, even at high intensity. In average, a rela-
tionship between eyewall gradients and intensification rates is evidenced, and inner-core
wind gradients are shown to increase faster than intensity, as illustrated by the gradually
increased departure from the likely solid-body rotation profile. Such sharper gradients
may also be seen as a consequence of the BL spin-up process (Smith, Montgomery, and
Vogl, 2008; Montgomery and Smith, 2017), as supergradient winds near the RMW would
increase the radial gradient. This process, supposed to increase with intensity (Stern and
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Nolan, 2011), could explain the increased departure from the solid-body rotation that
we observe. In a recent analytical model development, Chavas, Lin, and Emanuel, 2015
proposed to adjust their inner-core profile towards a slightly superlinear solution to avoid
an overestimation of the wind in the eye, and better fit observations. Our results suggest
that such an adjustment should depend on TC intensity, and that SAR observations could
help further constraining TC parametric wind models.

The near-core wind profile radial gradient (computed from RMW to 3 RMW) is also
of interest, as it characterizes the broadness of the azimuthal-mean wind peak, and the
decay rate of the outer profile, which are useful for risk assessment (Croxford and Barnes,
2002), and related to the vortex resilience to external shear (Reasor, Montgomery, and
Grasso, 2004). The analysis of Mallen, Montgomery, and Wang, 2005, from flight-level
aircraft observations, linked the vortex resilience to the near-core profile shapes. Our
analysis of near-core gradients SAR-extracted profiles is in agreement with their results,
showing a near-core radial gradient increasing faster than TC intensity. Further analyses
could certainly help evaluating the primary circulation broadness and the TC stability
with respect to shear effects and possibly provide new guidance for TC forecasters.

Our analyses also revealed a lower sensitivity of the near-core gradient to the inten-
sification rate compared to the eyewall gradient, suggesting a partial decoupling between
these two areas. The generation of mesovortices in the eyewall area, observed in several of
our images, and also discussed in previous studies (Schubert et al., 1999; Nguyen et al.,
2011; Li et al., 2013), indicate a very reactive dynamics of the inner eyewall area, therefore
more correlated to intensity variations. The observed decoupling may also advocate for
the dual spin-up theory proposed by Smith, Montgomery, and Van Sang, 2009 and re-
viewed by (Montgomery and Smith, 2017), which suggests that inner-core and outer-core
dynamics are monitored by two distinct kinds of spin-up, the former occurring in the BL
with supergradient winds, and the latter occurring above the BL in classical gradient wind
balance. In this regard, SAR appears as a very valuable observational dataset as it allows
to study very small scale boundary layer processes related to these supergradient winds.
In particular, the work of (Foster, 2005) focusing on BL rolls and their interaction with
BL dynamics could certainly benefit from the reliability of our inversion algorithm at very
high wind speeds and the representativeness of our dataset especially at high intensity.

The investigation of spectral energy distributions in the eyewall and in the maximum
wind area further reveals this decoupling. While the azimuthal distribution of the eyewall
radial wind gradient shows no notable sensitivity to intensity, the maximum wind contour
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is found to homogenize (broadening of its energy spectrum towards large wavenumbers)
with intensity. In addition, the analysis of both eye shape and RMWAZ variance shows an
axisymmetrization of the TC shape. These two features seem in agreement with the VRWs
theory. By propagating energy from the vortex center to its upper and outer boundaries,
VRWs act to restore the TC structure from interactions of the main vortex with inner-
core mesovortices (Nolan and Montgomery, 2002) or external events such as vertical wind
shear (Montgomery and Kallenbach, 1997), that may prevent TC intensification by tilting
the vortex (Reasor, Montgomery, and Grasso, 2004). VRWs generate asymmetries in the
eyewall and high wind area (Schubert et al., 1999), causing barotropic instabilities that can
limit the TC intensity while reducing the eyewall tilt (Yang, Wang, and Wang, 2007). Our
analyses show that intense TCs have a more symmetric structure and distributed energy
spectrum, indicating less intense VRW activity. The assessment of VRWs propagation
from our database is however limited by the instantaneous nature of SAR images and the
lack of continuity in TC sampling.

Overall, SAR provides unique observations of TC inner-core structures and dynamics
from space, which complement and converges with previous researches focused on eye-
wall dynamics (inner-core BL spin-up, mesovortices generation and associated vorticity
mixing, and their relationship to intensity changes), vortex strength and resilience, and
intensity restoration processes in the inner-core such as VRWs. They allow a statistical
characterization of these properties on a relatively large range of cases. Our interpretation
is however still limited by the sampling of acquisitions which prevent studying dynamical
evolution, and by the fact that the current SAR wind product does not provide reliable
wind directions, preventing a computation of the vorticity distribution.

3.4.2 SAR observations and TC life cycle variations

Our study finally assessed the potential of TC inner-core SAR-extracted parameters
(radial profile, azimuthal and energetic distributions) in characterizing the on-going TC
intensity variations in a future perspective of predictability improvement.

A comparison of radial eyewall and near-core gradients for 3 distinct intensification
regimes (decays (<-5m.s-1.day-1), stable phases, and intensifications (>+5m.s-1.day-1))
showed increased gradients with intensification. This indicates a trend towards a U-shape
profile, and a reduced broadness of the primary circulation for intensifying TCs. These
results are consistent with the modeling studies of Nguyen et al., 2011 and Kossin and
Eastin, 2001, which found "symmetric" phases of lower mesovortical activity (phase A
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for Kossin and Eastin, 2001) to be more favourable to fast intensifications. The observed
increase of the near-core gradient during intensification phases also suggests a reduced
broadness of the primary circulation, and a lower resilience to external events as suggested
by Mallen, Montgomery, and Wang, 2005.

The evolution of TC shape or energetic azimuthal signals with intensification rate and
TC life phases reveals that TCs in a transition phase towards re-intensification (after a
decline phase) are the most symmetric. This result supports the VRW axisymmetrization
theory according to which intensity restoration occurs through re-distribution of asymmet-
ric potential vorticity anomalies throughout the structure (Montgomery and Kallenbach,
1997): the re-intensification can only occur if the axisymmetrization was successful, which
in our case is traced by a reduced variance of azimuthal signals. To further estimate the
contribution of all SAR-extracted parameters in TC life cycle prediction, we designed a
machine learning approach, which classifies intensifying and decaying TC phases. The
contribution of the various extracted parameters was then assessed by sorting the pre-
diction scores obtained from different combinations of variables. The best combinations
revealed a notable contribution of the eye shape and eyewall wind gradient high wave
numbers (WNs 4 and 5), improving by 4.5% (from 60 to 64.5 %) the score obtained with
vortex averaged parameters only.

This improvement highlights the importance of small-scale processes in the prediction
of intensity variations. Indeed, wave numbers 4 and 5 in the eye shape correspond to
localized structures with a reduced spatial scale, such as convective asymmetries and rain
bands perturbing the eyewall. Judt, Chen, and Berner, 2016 referred to wave numbers
2-5 as the "rain band scale", and Schubert and Hack, 1982 modelled a wave number 4
disturbance and related it to the formation of mesovortices. These small-scale features
may also be linked to the propagation of VRWs (Schubert et al., 1999; Wang, 2002a). In
the literature, only low wavenumbers (1 and 2) are usually studied (Reasor et al., 2000;
Wang, 2002b) due to observational limitations (lack of azimuthal resolution for aircrafts,
lack of spatial resolution for satellite radiometers and scatterometers). Numerical studies
suggest that these wave numbers are the most influent for vortex evolution (Wang, 2001;
Wang, 2002a) as they are directly related to the environmental forcing.

However, rapid intensity variations are still a challenge to forecast, and may be related
to these fine-scale dynamics. Our first assessment of the predictability potential of the
inner-core fine-scale properties shows that including high wavenumber signals improves
the characterization and classification of intensity changes. Usual operational statistical-
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dynamical forecast models (DeMaria and Kaplan, 1994; DeMaria and Kaplan, 1999; Knaff,
Sampson, and DeMaria, 2005; Knaff and Sampson, 2009) use linear regression techniques
to predict intensity changes from large-scale climatological fields (temperature, humidity,
maximum potential intensity, shear. . . ), TC intensity, and rate of change at the fore-
cast initial time. Neetu et al., 2017 showed that the most important predictors of these
statistical-dynamical models are the intensity and its rate of change. An accurate esti-
mation of both of these parameters is therefore required (and SAR proves useful for TC
intensity retrieval), but our classification suggests that including other finer-scale internal
structure parameters (in particular the eye shape and eyewall gradient high wave num-
bers) might eventually improve this type of statistical forecast, especially on short time
scales. Our dataset is though limited to a relatively low number of events and a large num-
ber of descriptors for a statistical classification. We therefore could not assess the true
added value of each extracted parameter, but rather the more-likely best parameters to
consider for predicting TC life cycle. In addition, our machine learning approach was not
designed to actually work as an operational statistical forecast model, which would require
to include all available parameters including large-scale environmental fields (temperature,
humidity, shear, etc) along with our fine-scale observations to fully assess forecast issues
and effectiveness.

3.4.3 SAR observation limitations

Besides the potential of new high-resolution SAR wind retrievals, they still have several
limitations.

Our description of the TC inner-core does not include the eye area (but only the
eyewall, maximum wind, and near-core areas), while it could be of interest as the eye
dynamics and the degree of convection in the eye are closely related to TC intensification
(see Emanuel, 2018, part 3.e.). Limitations in the inversion algorithm used for ocean
surface wind retrieval from SAR observations acquired in dual-polarizations may arise in
the eye region. They are associated to discrepancies between co- and cross-polarization
signals due to the low backscatter signal in this area, and the particularly low signal to
noise ratio of the cross-polarization. To compensate for those discrepancies, wind values
from the European Centre for Medium range Weather Forecast (ECMWF) model are
combined with the dual-polarization data (Mouche et al., 2017). However, ECMWF winds
may not be perfectly co-located with the observed TC. In such cases, the eye wind retrieval
may therefore be polluted by higher wind values from the model in the eye, yielding to
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overestimated wind values. Eyewall and the surrounding high wind area, are not subject
to this limitation, as the weight of the model is almost zero in these areas (the algorithm
taking benefit of the dual polarization). This limit of the inversion algorithm prevents us
from studying the wind distribution inside the eye. It can be noted that high values of
radar backscattered intensities can actually be measured in the eye of a TC (Li et al.,
2013). They have been interpreted as a signature of abnormally high rain or wind, or wind
sea-swell interaction in the eye. The inversion algorithm might thus not be the only cause
of this inconsistency.

The understanding of rain impacts on ocean scenes acquired by SAR systems is a par-
ticularly active subject of debate and investigation in the SAR community (Melsheimer,
Alpers, and Gade, 1998; Atlas, 1994a; Atlas, 1994b) and more specifically for TCs (Kat-
saros et al., 2000; Mouche et al., 2019; Combot et al., 2020). These signatures can sig-
nificantly impact the wind field, but their characteristics vary a lot depending on rain
and wind field properties. Backscattered signal can be affected through modifications of
the surface roughness (waves damping by raindrop-induced turbulence in the water or
increased roughness by rain droplets impinging the surface) or contributions from the
atmosphere (attenuation and scattering from hydrometeors).

The result on the wind field can take several forms. The most common is an under-
estimation of the wind speed surrounding the maximum wind area, where the rains are
the heaviest. This "eyebrows-like" signature is typical of major hurricanes (see Mouche
et al., 2019, or the example of TC Lionrock in Fig. 3A). These signatures are however
usually located outward from the ring of maximum wind (Fig. 3.3A,B), and have a small
radial extent. Their impact on the retrieved inner-core signals is thus very limited and
no impacted case was identified. On the contrary, for weaker TCs or in outer rainbands,
one can have overestimation of the wind speed (see the example shown in suppl. S1 Fig.
SF1-F). Such cases may impact our estimates of the maximum wind speed distribution
and radial gradients, but they are very rare (only 2 were identified in our dataset).

Moreover, these individual impacts were either attenuated or removed by our prelimi-
nary smoothing and masking steps, and by the definition of vortex-averaged and integrated
variables such as azimuthal variances and radial mean gradients. They are thus assumed
to not noticeably impact our statistical analysis. The study of rain impact on SAR wind
retrieval is still however a question to be addressed. To date, this field of research still
lacks concurrent reference high-resolution measurements of wind and rain co-located with
SAR data to fully quantify the rain impact on a statistical basis and yield to more reliable
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wind inversion algorithm.
Overall, the use of SAR acquisitions in dual-polarization is recent and further work

is certainly required to improve the signal quality (especially in cross-polarization and at
subswath limits), the relationship between ocean surface wind and backscattered intensity,
the possible rain and waves signatures that can co-exist, the wind direction estimation,
and more generally, the inversion scheme.

Another limiting factor of our study concerns the intensity variation assessment is
the absence of temporal continuity in SAR acquisitions. This prevents an estimate of the
short-range changes in the internal structure, and of the dynamics of extracted small-scale
properties directly from the SAR data. In this study, the temporal variation of TC along
with its life cycle is thus given by the BT data. Linear interpolation is performed to align
in time the two sources of data, but this does not prevent from possible inconsistency
between the two datasets, and may degrade the relationship between the SAR-derived
parameters and TC intensity variations.

The recently published SATCON database (Velden and Herndon, 2020) provides hourly
TC intensity estimates based on a combination of infrared and microwave satellite mea-
surements with an objective algorithm. Such a dataset could allow further analysis of the
relationship between TC temporal variability and SAR small-scale variability within short
intervals to possibly evaluate the benefit of this complementary temporal information for
TC intensity variation predictability. Such an objective would require a prior in-depth
validation of wind estimates from the two data sources, and thus a dedicated study which
is beyond the scope of this paper.

Finally, our dataset, though being quite consequent and covering all TC categories,
is still insufficient to fully capture the full spread of situations, and to fully describe the
TC evolution. Additional observations would certainly allow to refine the life cycle phases
characterization and strengthen the statistical analyses.

3.5 Conclusions

The present work aimed at describing the internal structure of TCs as observed from
SAR imagery, and at evaluating relationships between this structure and the TC life
cycle. It took advantage of acquisitions performed with two satellite SARs (Sentinel-1
and Radarsat-2), which were targeting TC events. These two instruments are C-Band
SARs operating in both co- and cross-polarization modes, which have been shown to
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complement one another in retrieving high wind speeds Mouche et al., 2017, particularly
as the cross-polarization implemented on both Sentinel-1 and Rardarsat-2 is much more
sensitive to high wind gradients. Other SAR missions such as ALOS-2, TerraSAR-X, or
Gaofen-3 that are currently operating, do not provide, to our knowledge, the facilities and
supporting programs to order TC acquisitions on short notice (which is a constrain due
to relatively short time range in TC forecast), but could contribute to the TC monitoring
at high resolution. Several space agencies also plan the launch of other SAR missions
in the coming years (e.g. Sentinel-1 Next-Generation and ROSE-L at ESA, ALOS-3 at
JAXA and NISAR at NASA-ISRO), and the TC community would certainly benefit
from them, if TC monitoring could become one of their targeted applications. Some of
these missions are using SAR operated in other acquisition bands (L-band or X-band).
This would require additional research to develop robust high wind retrieval algorithms
but could also bring new insights for radar image interpretation, certainly contributing to
improve our understanding of the various components impacting the imaging mechanisms.

Our study shows SAR large coverage together with its ability to probe the sea sur-
face at very high resolution, make this sensor very valuable for TC research, as well as
for operational applications and risk assessment, especially as the importance of spatial
resolution grows with TC intensity. This urges the need for moving toward an operational
SAR acquisition strategy, and for further developments on wind retrieval algorithm over
TCs.

The interpretations and results provided in the present study reveal the importance
of radial resolution for the description of the eyewall and near-core areas, with possible
implications for the understanding of TC intensity fluctuations and future perspective in
the improvement of parametric models. They also highlight links between TC asymmetry,
size and intensity, and the importance of azimuthal resolution as resolving high wave
numbers to improve our ability to dissociate intensification phases. Including some of the
SAR-extracted parameters (in particular the eye shape and eyewall gradient high wave
numbers) into statistical forecast models is suggested to have a potential of predictability
improvement.

Future work will focus on dynamical models to include the temporal evolution of TC
small-scale structure and relate it to intensity changes. Analysis of future SAR observa-
tions will also continue to improve our understanding of this new measurement technics
and further assess its potential.
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S1 - Supplemental Material: Examples and discussion
of observed large RMW TC cases

The distribution of RMW values as a function of maximum wind speed revealed a
quite large variability for moderate (<cat. 3) TCs, notably with cases with very large
RMW (up to 100km). We thus further illustrate here some of these. Fig. 3.12 shows that
they are usually associated to highly asymmetrical TCs for which high winds are mostly
confined to one sector of the TC vortex.

It is interesting to note that such cases typically show disagreement between BT and
SAR RMW estimates, with differences of more than 30km. BT RMW falls inside the
TC eye (see dark blue circles), far from the maximum wind area, while SAR-extracted
RMW (yellow circle) seems to more faithfully characterize the asymmetrical high wind
area. We thus assume that BT estimation is in such cases inaccurate, possibly attributing
a too low RMW, precisely because BTs use RMW indirect estimation based on the usual
RMW-VMAX relation, which in such cases no longer holds. The case of Sergio shows a
different behavior, with SAR and BT RMW estimates being in relatively good agreement,
though with a large value of RMW (90km). This case features a ring of high winds more
distributed around its vortex, that may favor the good agreement between both datasets.

The case of TC Joaninha (Fig. 3.12-F), which is the most intense case with large RMW
that we observed may however be biased. It indeed shows a large discrepancy between
SAR-extracted VMAX and BT VMAX (∼20m.s-1 difference). In this case, we assume that
the VMAX SAR estimate may be erroneous as the SAR wind field features a quite strange
"line" of intense winds in the south-west quadrant of the TC, which may be associated to
a localized rain event. Indeed, the heterogeneity mask shows a little area of heterogeneity
just north of this intense wind "line", which may indicate the presence of strong rain in the
area (which is however not detected as heterogeneity and masked over the whole area, and
which would here cause anomalously high winds). This example shows that rain issues are
not easy to detect and may still impact our wind field retrievals (such cases are however
rare, and are assumed to not significantly impact our statistical estimates). On another
hand, the SAR RMW estimate seems not to be strongly impacted by this potential rain
issue. The BT RMW estimate, on the other hand, seems unrealistic, falling inside the TC
eye, where no high wind is observed.

Overall this overview of specific cases shows that large RMW can be observed for
moderate TCs, and are mostly associated to very asymmetrical TCs.
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Figure 3.12 – Comparison of SAR and BT RMW estimates for 5 SAR acquisitions fea-
turing particularly large RMWs. (A) is a reproduction of Fig. 5 in which the 5 cases
are labelled; (B-F) show respectively TC BARBARA, OMA, SERGIO, GELENA, and
JOANHINA. The SAR- retrieved wind field is shaded. The yellow dot locates the SAR
TC center position, the green dotted line is the extracted VmaxAZ contour, the yellow
circle represents the SAR azimuthally averaged RMW, and the dark blue circle the BT
RMW.





Chapter 4

TC FINE-SCALE STRUCTURE EVOLUTION

WITH INTENSITY VARIATIONS: INSIGHTS

FROM 3D REALISTIC SIMULATIONS

This chapter is the subject of an article to be submitted.

4.1 Introduction

Forecasting and understanding the life cycle of Tropical Cyclones (TCs) are primary
concerns for meteorological science, as they cause important casualties every year. While
TC tracks are relatively well forecasted, maximum intensity, and its variations are more
difficult to predict (Elsberry, Lambert, and Boothe, 2007; DeMaria et al., 2014; Emanuel
and Zhang, 2016). These intensity changes can be caused by interactions of the vortex with
its external environment such as vertical wind shear (Smith, Ulrich, and Sneddon, 2000;
Reasor, Montgomery, and Grasso, 2004; Corbosiero and Molinari, 2002), ocean surface
(Elsberry, Fraim, and Trapnell Jr, 1976; Price, 1981; Ginis, 2002), or by local internal
processes such as rain band interactions (Rozoff et al., 2006; Wang, 2008; Wang, 2009; Li
and Wang, 2012), or convective bursts (Steranka, Rodgers, and Gentry, 1986; Hazelton,
Hart, and Rogers, 2017; Wadler, Rogers, and Reasor, 2018).

These perturbations cause asymmetric distortions of the vortex, and anomalies in the
TC wind and vorticity fields. The TC may thus feature polygonal eyewalls (Lewis and
Hawkins, 1982; Muramatsu, 1986; Menelaou, Yau, and Martinez, 2013b), appearance of
eyewall mesovortices, vortical hot towers (Black, 1991; Hendricks, Montgomery, and Davis,
2004; Montgomery et al., 2006; Van Sang, Smith, and Montgomery, 2008), or interactions
between inner (Jorgensen, 1984) and outer rainbands (Wang, 2009; Li and Wang, 2012).
Eventually, these modifications of the vortex structure can lead to TC intensity restora-
tion. Eyewall vorticity mixing, for instance, has been shown to trigger Vortex Rossby
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Waves (VRWs) generation, which transport and dissipate vorticity perturbations from
the vortex center to its periphery eventually restoring its symmetry and intensity (Guinn
and Schubert, 1993; Montgomery and Kallenbach, 1997; Möller and Montgomery, 1999).
Outer rain bands have also been spotted as a driving mechanism for secondary eyewall
formation, and eyewall replacements (Judt and Chen, 2010; Wang and Tan, 2020), which
were shown as a restoring process for major TCs (Kuo et al., 2004; Kuo et al., 2008;
Nguyen et al., 2011).

The vortex radial structure also impacts its ability to resist external perturbations.
A broader ring of maximum wind, and a lower decay rate of the wind profile in the
near-core area were shown as factors increasing its resilience (Reasor, Montgomery, and
Grasso, 2004; Mallen, Montgomery, and Wang, 2005). The radial profile shape was also
related to the radial propagation of VRWs along potential vorticity gradients (Schecter,
Montgomery, and Reasor, 2002; Menelaou, Yau, and Martinez, 2013a). Moreover, TCs
with a smaller size, and a thinner primary circulation have been documented as more
likely to experience fast intensifications (Bryan and Rotunno, 2009; Xu and Wang, 2018;
LI and WANG, 2021).

The dynamics behind intensity restoration and maintenance are thus governed by
complex interactions between different spatial and temporal scales. They are consequently
hard to observe, model, and understand. In particular, assessing the very fine scale evo-
lution in the eyewall area is a challenge for both observations, and modeling.

Airborne radars, dropwindsondes, coastal radars, and satellite measurements provide
support and material for the understanding of TCs (cf. Emanuel, 2018 for a quick summary
and Stith et al., 2018; Ackerman et al., 2019; Fu et al., 2019 for reviews of atmospheric
observation techniques). These observations are however often sparse, and assessing the
life cycle evolution, and intensity variations is therefore limited with these data.

Idealized numerical models have allowed considerable progress in the understanding of
TC intensification (Ooyama, 1964; Emanuel, 1986; Montgomery and Smith, 2014; Peng,
Rotunno, and Bryan, 2018), and internal dynamics, such as the role of asymmetry and
axisymmetrization processes (Smith and Montgomery, 1995; Thomsen, Smith, and Mont-
gomery, 2015), eyewall mesovortices, potential vorticity mixing (Schubert et al., 1999;
Kossin and Schubert, 2001; Hendricks et al., 2014), or VRW nature and propagation
(Montgomery and Kallenbach, 1997; Wang, 2002a; Wang, 2002b). These idealized models
allow to study a specific process, isolate its properties, and effects.

With the increase of computing capacity, 3-D high-resolution full-physics dynamical
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models have emerged. While eventually suffering from uncertainties in their parameter-
izations of sub-grid scale physics, and limits in their effective resolution (Gentry and
Lackmann, 2010), they were shown to represent the complexity of internal interactions,
and their multi-scale characteristics. Processes such as vortex contraction (Xu and Wang,
2010b; Xu and Wang, 2010a; Stern et al., 2015; Li, Wang, and Lin, 2019), eyewall dynam-
ics (Chen and Yau, 2001; Yau et al., 2004; Kwon and Frank, 2008; Yang, Wang, and Wang,
2007; Wu et al., 2009; Nguyen et al., 2011; Menelaou, Yau, and Martinez, 2013b), VRWs
(Chen and Yau, 2001; Wang, 2002a; Wang, 2002b; Chen, Brunet, and Yau, 2003; Hall et
al., 2013; Schecter, 2015), and secondary eyewall replacements (Abarca and Corbosiero,
2011; Rozoff et al., 2012; Abarca and Montgomery, 2013; Wang et al., 2019; Wang and
Tan, 2020) were reproduced. The realism of 3-D dynamical models, and their accurate
representation of TC life cycle dynamics makes them comparable and complementary to
high resolution observations.

In the operational community, forecasts are produced with a synthesis of real-time
observations, dynamical models, and statistical-dynamical models that predict future
changes from current intensity, intensification rate, and large-scale environmental pa-
rameters such as vertical wind shear, sea surface temperature (SST), or mid-tropospheric
relative humidity (Kucas, 2010; DeMaria, Knaff, and Sampson, 2007; DeMaria et al.,
2014; Kaplan et al., 2015; Neetu et al., 2020). Such statistical-dynamical models are still
viewed by meteorological centers as competitive with full-physics dynamical models. Mod-
ern statistical models also implement sophisticated machine learning methods in order to
improve the forecasts (Jin et al., 2019; Su et al., 2020; Chen, Zhang, and Wang, 2020;
Neetu et al., 2020).

Statistical models however still rarely take as input parameters of the internal vortex
structure, apart from the large-scale asymmetry (cf. Bhalachandran et al., 2019 assess-
ment of WN-1 asymmetry influence on intensity changes), the maximum wind, or some
characteristic wind radii. A recent study (Vinour et al., 2021) showed that newly avail-
able kilometer-resolution surface wind fields retrieved from Synthetic Aperture Radar
(SAR) have the potential to improve the statistical predictability of TC intensification
rates. The improvement is mainly associated to the inclusion of variables describing the
fine-scale inner-core structure, in particular the eyewall gradient, and the azimuthal wind
distribution.

In the present study, we intend to pursue this work by evaluating the added-value of
having the temporal evolution of these fine-scale inner-core structures to further analyze
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the connections between vortex internal changes, and TC intensity modulation. We will
here rely on seven full-physics high resolution dynamical model simulations, and model
outputs that are similar to the parameters that can be extracted from SAR images (Vinour
et al., 2021). We intend to study the TC internal structure through a synthetic view of
the surface wind field, that can be estimated from numerical models as well as surface
wind measurements, and that can be easily included in statistical models.

The article is organized as follows: the modeling framework, and the studied parame-
ters are described in section 2; we then assess the realism of these simulations, and their
statistical representativeness by comparing model outputs to SAR images and best-track
files in section 3; the temporal changes throughout the TC internal structure are studied
in section 4 by relating these changes to TC life cycle in various ways; a final discussion
and conclusions are provided in section 5.

4.2 Materials and Methods

4.2.1 Datasets

WRF model

The Weather Research and Forecasting (WRF) model version 3.7.1 is used in this
study with the Advanced Research WRF (ARW) dynamic solver (Skamarock and Klemp,
2008). The configurations are designed to model TC inner-core on a 1 km horizontal grid.
This high-resolution is achieved using the vortex-following algorithm provided by WRF
with a two-way nesting procedure composed of 3 domains: a large domain at 9 km reso-
lution encompassing the whole TC track (it is defined as a rectangular box including the
track plus 8 degrees on each side); and two vortex-following embedded domains gradually
increasing the resolution to 3 and 1 km. The intermediate vortex-following domain is set
as an 8 degree square box around the TC center, and the finer domain as a 4 degree
square box around the TC center. The two nested domains move every 15 minutes fol-
lowing the TC vortex, thanks to an automatic tracking of low pressure under 50000 Pa,
in a radius determined by a maximum TC translation speed of 40 m/s. Refined high res-
olution terrain and landuse files were additionally used for moving nests (which otherwise
use the default the 9-km resolved topography of the large domain, limiting the realism of
crossed islands and mainlands). On the vertical, all the domains have the same vertical
grid composed of 32 terrain-following levels with refinement in the planetary boundary
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layer (PBL), and at the top of the model (set at 5000Pa). The set of parameterizations
used is the following: Betts–Miller–Janjic (BMJ) convective scheme for the 9km domain,
while convection is explicitly solved in the 3 and 1km nested domains; the Yonsei Uni-
versity (YSU) PBL with revised MM5 Monin-Obukhov surface layer parameterization,
the classical Charnock relation for the surface drag coefficient, the WRF single-moment
six-class microphysics scheme (WSM-6), the Dudhia shortwave radiation scheme, and the
Rapid Radiation Transfer Model (RRTM) for long-wave radiation.

Horizontal and vertical resolutions, as well as all parameterization settings are identical
for all TC simulations. Initial, surface, and boundary conditions are prescribed with the
0.25 degree NCEP Final (NCEP FNL) operational global analysis using the Global Data
Assimilation System (GDAS, https://rda.ucar.edu/datasets/ds094.0/). A spectral
nudging, using the WRF Four-Dimensional Data Assimilation (FDDA) scheme, towards
these re-analysis data is also applied during the whole simulations, on the parent 9km
resolution domain, and above the BL only, with no direct impact on nested domains. It
ensures a better consistency of the modelled synoptic flow with observations, limiting the
TC track deviations, without constraining the TC physics in the nested domains (Wang,
Wang, and Xu, 2013). The spectral nudging only applies to large scales of the domain
(approximately 1000 km in our case, i.e. the large domain size divided by 3).

The horizontal resolution of the 2 inner domains is a compromise between computa-
tional cost and a resolution comparable to the SAR images that are resolved at 1-km and
re-sampled (averaged) on a 3-km grid.

Synthetic Aperture Radar (SAR) observations

SAR observations provide 2-D non-directional ocean surface wind products under TCs
at a high resolution of 1km, with a spatial extent of 200 to 400 km depending on the
acquisition mode. The database used in this study is the same as the one presented in
Vinour et al., 2021. It is composed of 188 images acquired over TCs between 2014 and
2019 by Sentinel-1 A and B, and RADARSAT-2 satellites during the Satellite Hurricane
Observation Campaign (SHOC) conducted by the European Space Agency (ESA), the
Collecte Localisation Satellites (CLS) group, and the French national institute for ocean
science (Ifremer). This SAR database statistically represents a wide range of TC events,
in all basins and at all categories. It is used here to compare observed and modeled
TC internal structure. SAR is a microwave active sensor, which measures the backscatter
signal at C-band to estimate the sea surface roughness with a spatial resolution that ranges
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from 10 m to 1 km (depending on the acquisition mode). The wind field is retrieved using
co- and cross-polarizations channels with a dedicated inversion algorithm developed by
Mouche et al., 2017 to mitigate the signal saturation observed in co-polarization (as for
scatterometers). Mouche et al., 2017; Mouche et al., 2019, and Combot et al., 2020 showed
that SAR provides very reliable estimates of TC maximum intensity, and characteristic
wind radii. Vinour et al., 2021 showed that they allow to measure many properties of
the internal TC structure such as the eyewall and near-core surface wind gradients, and
inner-core wind azimuthal asymmetries.

Best Track (BT) dataset

The International Best Track Archive for Climate Stewardship (IBTrACS; Knapp
et al., 2010) combines the best-track (BT) data (TC location, maximum wind speed,
and characteristic wind radii) from various meteorological centers (Regional Specialized
Meteorological Centers responsible for TC forecast in the different basins, and government
agencies) into a common format. US centers BT data with a 6h time resolution are used
in the present study to assess the representativeness of our simulations in terms of TC
characteristics (location, maximum intensity, intensification rate, translation speed).

4.2.2 Methods

Surface wind field parameters of interest

One objective of our study being to estimate the added-value of TC internal structure
time evolution compared to snapshot observations, we needed to analyze model outputs
similarly to SAR available observations. The TC internal structure is thus described from
the surface wind speed only, and following the methodology designed by Vinour et al.,
2021. This methodology assesses the properties of the 2-D surface wind field in a TC-
centered relative frame, and extracts radial and azimuthal parameters, which are detailed
hereafter and illustrated on Fig. 4.1.

The radial structure is described by its radial surface wind gradients computed from
the azimuthally-averaged profile in two characteristic areas: the eyewall area (between the
eye and the radius of maximum winds (RMW), yellow on Fig. 4.1F) , and the near-core
area (between 1 and 3 RMW, blue on Fig. 4.1F).In the eyewall, the radial gradient is
also compared to a Rankine-like vortex to better estimate the eyewall profile sharpness
with respect to the RMW. Rankine-like vortex eyewall gradient is defined as a linear
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Figure 4.1 – Illustration of parameters extracted from the surface wind field from an output
of the LANE simulation on 2018/08/20,07:00. (A) Surface wind field projected on a 3-D
grid (elevation=wind speed) with extracted signals superimposed. Panels (B),(C),(D),(E)
respectively show raw (thin black) and smoothed (bold) extracted azimuthal distributions
of eye shape, RMW, eyewall radial wind gradient, and maximum wind, with the same
color code as (A). (F) shows the extracted radial mean profile and highlighted eyewall
(yellow) and near-core (blue) areas

profile between 0 m.s−1 in the eye, and the maximum wind at the RMW. In the near-
core area, the radial profile is also further described by a variable measuring the profile
curvature, defined as: ResNC = V3RMW −VRMW

3RMW −RMW
− V2RMW −VRMW

2RMW −RMW
, where V is the wind speed,

and the subscripts describe the distance from the eye where it is evaluated . ResNC is used
as a proxy for the vortex resilience, as Reasor, Montgomery, and Grasso, 2004; Mallen,
Montgomery, and Wang, 2005 showed that the broadness of the primary circulation is
correlated to the vortex stability, and resilience to external shear.

The azimuthal structure is described by extracting at each azimuth four characteristic
parameters, composing four 1-D azimuthal signals: the eye shape (noted ESAZ hereafter,
Fig. 4.1B), the ring of maximum wind shape (RMWAZ hereafter, Fig. 4.1C), the dis-
tribution of eyewall radial gradient (dV/dRAZ hereafter, Fig. 4.1D), and the intensity
distribution of maximum wind (V maxAZ hereafter, Fig. 4.1E). These azimuthal distribu-
tions are then smoothed to absorb local anomalies and polar grid discretization (see for
instance the effect of smoothing on V maxAZ in Fig. 4.1C). The description of asymmetry
is then quantified by the total variance of these signals, and by their spectral decomposi-
tion. For each signal, the percentages of explained variance of each wavenumber (WN) of
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the spectral decomposition, from 1 to 180, are computed. They are then gathered into 3
distinct groups: "low" WNs (WNs 1 and 2) describing the vortex-scale asymmetry often
related to large-scale dynamics in the literature; "mid" WNs (WNs from 3 to 5) associ-
ated to smaller-scale processes and characteristic of restoration processes such as eyewall
mesovortices or VRWs in the most disturbed phases of the TC life cycle; "high" WNs
(WNs from 6 to 180) containing the rest of the energy distribution, and thus describing
more generally the azimuthal energetic homogeneity. Grouped percentages of explained
variance are hereafter noted V ar0−2, V ar3−5, and V ar6−180.

The radial and azimuthal descriptors are estimated at each hourly model output for
all simulations.

Estimation of inner-core temporal changes

Three variables are considered to measure intensity variations: maximum intensity
(VMAX), its first time derivative (i.e. intensification rate, hereafter noted ∂t(VMAX)), and
its second time derivative (i.e. increase or decrease of intensification rate, hereafter noted
∂2

t (VMAX)). Their extrema characterize different specific phases of the TC life cycle: peaks
and troughs of VMAX ; strongest intensifications and declines (∂t(VMAX) maxima and min-
ima); re-intensifications and weakening of intensification (∂2

t (VMAX) maxima and minima,
that correspond to concave and convex parts of the VMAX time series). To assess the evolu-
tion of the TC internal structure in regards to these TC life cycle changes, time derivatives
of the radial and azimuthal descriptors are evaluated. In addition, to measure the varia-
tions in the energy distribution of the azimuthal structure, the transfer of energy between
low and high wave numbers is computed for the 4 azimuthal signals (eyewall gradient,
eye shape, maximum wind, and RMW). WN transfers (noted WNT hereafter) are thus
defined for a given azimuthal signal SAZ , as:

WNT (SAZ) = ∂t(V ar6−180(SAZ)) − ∂t(V ar0−2(SAZ)) (4.1)

where ∂t(V ar0−2(SAZ)) and ∂t(V ar6−180(SAZ)) denote the time derivatives of the smoothed
signals of SAZ V ar0−2 and V ar6−180. Note that WNT is not defined if the two transfers
are of the same sign. WNT is thus positive (negative) when the variance explained by
high WNs is increasing (decreasing), while that explained by low WNs is concurrently
decreasing (increasing). These energy transfers measure the broadening or narrowing of
the energy spectrum over time, that is in a way the homogenization or heterogenization
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of azimuthal signals.

Figure 4.2 – Illustration of temporal changes estimations on the simulation of TC FANI.
(A) Intensity raw time serie (thin black line) and smoothed with a 12-H cutoff pe-
riod Butterworth filter (bold red), along with extracted local minima and maxima of
∂t(VMAX) and ∂2

t (VMAX) computed from the smoothed curve denoted by red and blue tri-
angles. (B) Time series of smoothed V ar0−2(V maxAZ) (red), V ar3−5(V maxAZ) (blue) and
V ar6−180(V maxAZ) (green) computed from raw signals (thin black curves). (C) Time se-
rie of WNT (V maxAZ) computed from ∂t(V ar0−2(V maxAZ)) and ∂t(V ar6−180(V maxAZ)).
The maximum positive and minimum negative phases of WNT (V maxAZ) are highlighted
in green and red shadings on (B) and (C)

A smoothing of the time series is performed to only consider persistent variations of the
parameters of interest, and ignore short localized variations. The effect of smoothing on
VMAX , and azimuthal variances is shown on Fig. 4.2. As can be inferred, the variability
of raw time series can be very large (cf. thin black lines on Fig. 4.2A,B), preventing
the extraction of life cycle phases or computation of meaningful time derivatives. The
smoothing was thus chosen, after a sensitivity test, to absorb the high time variability,
while being representative of intensity changes (peaks, troughs, increase, or decrease in
intensification rates). It is applied using a Butterworth filter with a 12h cutoff period.
All time derivatives are computed over the smoothed signals, allowing a much clearer
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estimation of intensity variations (see triangle markers on Fig. 4.2A). The smoothing
also allows to extract consistent phases of negative and positive WNTs, such as those
highlighted by the green and red rectangle, that go with changes in V ar0−2(V maxAZ)
and V ar6−180 that are barely visible on raw signals.

Classification

A machine learning classification method is used to assess the predictive potential of
the extracted TC descriptors. The objective is to evaluate if these descriptors provide sig-
nificant information to dissociate the TC life cycle phases. The classification here focuses
on dissociating positive and negative values of ∂t(VMAX), and ∂2

t (VMAX), with classes
defined under the 1/3 and above the 2/3 quantiles of their distribution.

We follow the classification method developed in Vinour et al., 2021, which is adapted
to a dataset with a limited amount of samples (254 in this case, taking a random fourth
of all WRF outputs to avoid overfitting), and a large number of variables describing the
dataset (#48). The classification is performed on 756 random combinations of four vari-
ables, and with 10 machine learning models (this allows to account for a wide range of
possible connections between variables, including non-linear ones). The average score of
the 10 models is computed for each combination. Studying the composition of the best
combinations then allows to identify the most decisive variables to dissociate intensifica-
tion phases.

A sensitivity analysis of the classification results to the time smoothing of signals is
performed. Classifications with descriptors computed from signals smoothed with 1, 3, 6,
12, and 18h cutoff periods are compared.

4.3 Modeled cases and validation

4.3.1 Description of simulations

Seven distinct events were simulated, in various basins, and with various characteris-
tics: IRMA (2017, North Atlantic), CEBILE (2018, South Indian), LANE (2018, North-
East Pacific), MANGKHUT (2018, North-West Pacific), TRAMI (2018, North-West Pa-
cific), JOANINHA (2019, South Indian), and FANI (2019, North Indian).

They are detailed in Table 4.1 and Fig. 4.3, along with the geographic extent of the
model parent domain. These simulations were chosen to describe major TCs (category 4
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Table 4.1 – Summary of WRF simulated events and domain extents

Event name Start date - end date Basin Category (WRF) Category (obs.) Outer domain extent
IRMA 2017/08/31 - 2017/09/11 Northern Atlantic 4 5 99.9°W-24.1°W 8.3°N-

35.5°N
CEBILE 2018/01/27 - 2018/02/04 Southern Indian 5 4 67.6°E-92.5°E 29.9°S-

4.1°S
LANE 2018/08/16 - 2018/08/24 Eastern Pacific 5 5 166.0°W-120.5°W

2.7°N-27.0°N
MANGKHUT 2018/09/08 - 2018/09/16 Western Pacific 4 5 102.7°E-164.1°E 5.7°N-

30.3°N
TRAMI 2018/09/22 - 2018/09/30 Western Pacific 4 4 118.7°E-146.0°E 8.9°N-

43.7°N
JOANINHA 2019/03/23 - 2019/03/30 Southern Indian 5 4 53.6°E-77.4°E 32.8°S-

8.7°S
FANI 2019/04/29 - 2019/05/03 Northern Indian 3 4 75.9°E-95.1°E 2.7°N-

27.6°N

and 5) in different basins, and with a wide range of life cycle evolutions including several
intensity changes during their mature phases. In addition, TCs with few interactions
with land were preferred, as they allow to witness scale interactions, and gradual internal
changes instead of brutal disturbances caused by external constraints. These simulations
were not designed to reproduce the most realistic TCs, but to provide a sufficiently diverse
database to study the inner-core structural changes in relation to the TC intensity changes
during the mature phase of the TC life cycle.

Figure 4.3 – Summary of WRF simulated tracks and intensity times series for the seven
simulations compared to IBTrACs.
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Figure 4.3 shows the 7 modeled TC tracks and VMAX time series. All tracks match
well the BT data, as spectral nudging applied on the large domain ensures synoptic dy-
namics close to observations. Simulated maximum wind, on the other hand, can be quite
different from BT data. The maximum reached intensity is underestimated for IRMA,
MANGKHUT, TRAMI, and LANE, and overestimated for CEBILE, while FANI does
not maintain its intensity before landfall, and JOANINHA does not capture the maxi-
mum intensity peak although matching the first intensification. Time steps above category
4 are rare; this can be a bias induced by the horizontal resolution, which is probably still
too coarse to properly solve these very intense phases. The maximum wind time series
also reveal some lagged or missed changes in intensity, or similar changes but of lower
intensity (for LANE). Such discrepancies were however expected. They arise from sev-
eral reasons: 1) the model uncertainties (resolution, parameterizations) that can lead to
miss physical processes, 2) the stochastic nature of the Navier-Stokes equations. How-
ever, all simulated TCs intensify to mature TCs, and all of them feature either long
mature phases with short-range intensity fluctuations around the peak intensity (IRMA
and CEBILE), or notable declines and re-intensifications with secondary intensity peaks
(TRAMI, MANGKHUT, FANI, LANE, JOANINHA). The diversity of cases and exter-
nal conditions is satisfying, and allows to have TCs with notable intensity changes and a
significant variability in the mature TC life cycle description, which was the request for
our study. Figure 4.4 statistically compares the simulation database to the SAR and BT
databases. It shows the chosen bias of simulating major TCs in their mature phases with
therefore a normalized distribution of maximum wind centered around 55m/s, a latitude
distribution centered around 15°, and translation speed centered around 5m.s−1. More
importantly, the intensification rate distribution is well represented.

The statistical validation of our simulations and extracted parameters of interest
against SAR observations is further detailed in the next section.

4.3.2 Statistical validation against SAR

The radial and azimuthal parameters describing the TC surface wind field in the
present study are validated against SAR observations.

The distributions of the inner-core and near-core radial gradients shown on Fig. 4.5
shows that the model misses the strongest radial gradients. The azimuthal variances of
the eye shape (B), and the RMW (E) are relatively well represented, and distributions
of the eyewall gradient (C), and maximum wind ring (F) azimuthal variances are slight
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Figure 4.4 – Comparison of histograms between WRF (red, 1017 samples), SAR (blue, 159
samples) and IBTrACs (grey, 369202 samples) showing distributions of (A) VMAX , (B)
Absolute Latitude, (C) ∂t(VMAX) and (D) Translation Speed. Time-dependent variables
((C) and (D)) are estimated from IBTrACs for the SAR distribution.

Figure 4.5 – Comparison of histograms between WRF (red, 1017 samples) and SAR (blue,
159 samples) showing distributions of (A) dV/dREW , (B) dV/dRNC , (C) V ar(ESAZ), (D)
V ar(RMWAZ), (E) V ar(dV/dRAZ and (F) V ar(V maxAZ

shifted towards lower values than SAR observations indicating a possible underestimation
of the maximum wind and eyewall gradient variability. But overall, modeled distributions
are satisfactorily close enough to observations.
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Figure 4.6 – (A) Comparison of RMW distributions with respect to VMAX between SAR
and WRF. SAR samples and binned medan values and quartiles are denoted by blue
crosses, lines and shading. WRF samples are denoted by small dots coloured according
to the simulated event. WRF binned median values and quartiles are denoted by red line
and shading. (B) WRF (red) and SAR (blue) PDF distributions of RMW values

The model ability to represent inner-core observed TC structure is further illustrated
with the relation between RMW and maximum wind on Fig. 4.6. This relation is a good
way to get a first view of the TC dynamics, as the TC vortex is expected to contract
inward when intensifying under the effect of gradient wind balance and angular momentum
conservation. This relation was clearly observed in SAR observations (Vinour et al., 2021),
and is represented in blue in Fig. 4.6. Our simulations also show a decrease of RMW with
VMAX , but at a weaker rate, with a median value of 40 km for tropical storms (about 50km
in SAR data), and 25 km for category 4 TCs (compared to about 18km in SAR data).
Here again, the highest intensities appear as probably less well resolved in the model due
to resolution issues. On another hand, the limit in statistical representativeness of the 7
cases is also visible, as the individual simulations can impact the median values for a given
category: for instance, the high values of RMW for category 3 are mostly all attributable
to TRAMI, which kept a strong intensity while it reached relatively high latitudes, and
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therefore dilated in size. However, the range of TC simulations overall allows to feature
the average TC eye contraction.

Figure 4.7 – (A) Comparison of WRF (solid) and SAR (dashed) mean radial profiles
composited by intensity category, with shadings denoting the quartiles of each category.
Upper (lower) triangle markers show the positions of outer (inner) limits of the eyewall
maximum gradient area delimited by maximum and minimum values of curvature for
WRF (white) and SAR (grey). (B) and (C) are the same as Fig. 4.6A for the distributions
of dV/dREW − VMAX/RMW and dV/dRNC .

The properties of the radial radial mean profile of simulated TCs are also compared to
the SAR distributions studied in Vinour et al., 2021, and shown on Fig. 4.7. The composite
radial profiles by TC intensity category (Fig. 4.7A) show a fair agreement between WRF
and SAR apart from category 4 which is much lower on WRF due to the unbalanced
distribution of wind values in category 4. It is however notable that WRF profiles are
slightly more intense (by approx. 2m/s) on average than SAR ones for both categories 1,
2, and 3. This suggests that WRF TCs have a more homogeneous wind distribution: as
the category is determined by the maximum wind value, the average profile for a given
category reflects the proximity of other wind values to this maximum wind. It thus appears
that SAR images contain lower wind values in their distribution for a given category than
WRF. Another remarkable difference between WRF and SAR profiles is the eye area.
Indeed, all WRF profiles have a much lower central wind value (around 6 m/s versus
more than 10m/s for SAR at categories 1-3). This might be related to overestimations of
wind values in the eye by SAR (an issue related to SAR wind inversion that was discussed
in Vinour et al., 2021).

Looking at the eyewall gradient sharpness, TC simulations are shown to slightly depart
from the Rankine-like profile (Fig. 4.7B), but much less than SAR observations for TC
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intensities above category 3. Similarly, the near-core area (Fig. 4.7C) shows a smoother
profile than SAR observations for TC timesteps of category 4 and 5. This indicates a limit
in WRF ability to resolve sharp wind gradient due to its resolution.

4.4 Links between life cycle and internal structure

4.4.1 Time scales

The TC life cycle variations are characterized with 3 time series: the TC intensity
(VMAX), its time derivative (intensification rate, ∂t(VMAX)), and its time second deriva-
tive (variations of intensification rate, ∂2

t (VMAX)). As shown by the time spectral decom-
position of these signals featured on Fig. 4.8A, the 3 time series obviously describe the
life cycle evolution at various scales with peak periods of respectively 164, 32, and 20h.
Thus, the intensity characterizes the intensification and decaying phases on the whole life
cycle time scale, and shows very little energy under 24h. On the other hand, its deriva-
tives have significant signal up to 12h related to shorter variations of daily or half-daily
timescales. The effect of the 12h-smoothing is evidenced with almost no power spectrum
density found under 12h for all signals.

Figure 4.8 – Power spectra of WRF-extracted time series as a function of period in hours,
with peak periods denoted by dashed vertical lines. (A) Intensity variations descriptors:
VMAX (light), ∂t(VMAX) (medium) & ∂2

t (VMAX) (dark). (B) Radial profile descriptors:
dV/dRNC, ResAZ , dV/dREW and dV/dREW − VMAX/RMW . (C) Eyewall radial gradi-
ent azimuthal descriptors: V ar0−2(dV/dRAZ),V ar3−5(dV/dRAZ),V ar6−180(dV/dRAZ) and
WNT (dV/dRAZ). (D) same as (C) for V maxAZ .
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The parameters extracted to describe the TC surface wind field structure (radial gradi-
ents, azimuthal variances, spectral decompositions, and energy transfers within the spec-
trum) are also found to vary at different time scales. dV/dREW and dV/dRNC evolve on
a characteristic time period similar to the intensity (164h, Fig. 4.8B). This is in agree-
ment with the relation found between intensity and radial gradient observed on Fig. 4.7.
The estimation of the curvature of the eyewall profile (dV/dREW −VMAX/RMW ) shows a
broader spectrum towards smaller scales, with a peak period of 82h. It is indeed the radial
parameter the most related to smaller scales, in particular eyewall mixing. The azimuthal
explained variances dV/dRAZ and V maxAZ are shown to have peak period similar to
the intensity (164h, Fig. 4.8C&D). However, they also have secondary peaks at shorter
timescales, notably at 24h, and a broader spectrum towards short timescales than radial
parameters. The wave number transfers (WNTs) within these azimuthal signals are found
to evolve on short timescales only, with a spectrum centered around 24h, and significant
spectral density up to about 10 h. WNTs thus focus on shorter-scale changes through the
azimuthal structure, matching the time scale of ∂t(VMAX) and ∂2

t (VMAX).

4.4.2 Case studies

The time series of dV/dRNC , ResNC , V ar0−2(V maxAZ) and V ar6−180(V maxAZ)
superimposed with the VMAX time serie during the LANE simulation are shown on Fig.
4.9.

Figure 4.9 – Time series of (A) dV/dRNC , (B) ResNC , (C) V ar0−2(V maxAZ) and (D)
V ar6−180(V maxAZ) (green curves) superimposed with the VMAX time serie (black curves)
during the LANE simulation.
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For a given TC case, the correlation between TC intensity and radial gradients time
series is remarkable (0.9 cross-correlation with dV/dRNC , 0.56 with ResNC , Fig. 4.9A,B).
The near-core radial profile follows the evolution of intensity (higher intensity goes with
sharper wind profile, cf. panels A & B). On the other hand, the correlation between az-
imuthal variances and life cycle evolution is lower (0.53 cross-correlation with V ar6−180(V maxAZ),
Fig. 4.9C, D). It is however notable that the increase in intensity towards the VMAX peaks
goes with a higher explained variance in WNs 6-180 (Fig. 4.9D), that is with a more ho-
mogeneous distribution of winds around the vortex, and a concurrent decrease in WNs
0-2 explained variance (Fig. 4.9C).

Looking closely at wave number transfers (WNTs) on specific phases from the LANE
and FANI events displayed on Fig. 4.10 yields several notable observations. For each simu-
lation, the phases of maximum positive and minimum negative WNT are highlighted (red
shaded areas), and snapshots of the WRF 10-m wind speed are shown at the limits of these
phases. The FANI simulation (Fig. 4.10A) shows a clear alternation between positive and
negative WNT (V maxAZ): positive transfers occur during phases of re-intensification, and
negative transfers before and during intensity peaks, i.e. when intensification decreases.
The time lag between WNT (V maxAZ) and VMAX is negative. Focusing on the two high-
lighted phases (red shaded), the first positive transfer starts approximately 10 h before
the beginning of the re-intensification, and the negative transfer also starts about 10 h
before the intensity peak. All other local maxima and minima of WNTs are also nearly
synchronized with the inflection points of the intensity curve.

The evolution of LANE shown on Fig. 4.10B is more complex. It is much longer
with shorter and more numerous re-intensification and weakening phases. However, the
two highlighted phases show similar features than the FANI life cycle. The maximum of
positive WNT (V maxAZ) on 08/20 occurs right before a marked re-intensification. It is
followed by a very short and small amplitude negative transfer, and an other notable
positive transfer that accompanies the fast intensification. The minimum of negative
WNT (V maxAZ) is in turn simultaneous with the maximum intensity peak on 08/22,
at the beginning of the decline phase. During the four highlighted phases, the snapshots
show marked changes in the distribution of maximum wind related to WNT (V maxAZ)
minima and maxima. During negative transfers, the TC usually goes from an asymmetric
wind distribution to more balanced one, while positive transfers show the opposite. These
two cases studies thus indicate that marked changes in the maximum wind distribution
are connected to intensity changes, although the time lag can vary significantly in each
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Figure 4.10 – Superimposed time series of VMAX (black curves) and WNT (V maxAZ)
(green curves) for simulations of (A) LANE and (B) FANI. Strongest phases of positive
and negative transfer are denoted by a red shading for each simulation, along with the
corresponding snapshots of surface wind field.

situation. Moreover, it appears from the LANE life cycle that, when intensity variations
are numerous and on small time scales, the relationship is less evident. Thus, although
pattern emerges from these specific cases, a clear correlation seems difficult to obtain.
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4.4.3 Statistical assessment of all case studies

When computed over all simulated cases, the cross-correlations between the various
radial and azimuthal parameters, and intensity variations, shown on Fig. 4.11 reflect the
previously illustrated behaviors.

Figure 4.11 – Table of cross-correlations between VMAX and its variations (vertical axis)
and internal structure descriptors (horizontal axis).

The largest correlations are found between VMAX and dV/dRNC (61.9%), ∂t(VMAX)
and ∂t(dV/dRNC) (67.6%), VMAX and V maxAZW Ns6−180%EV (63.2%), and anti-correlation
between VMAX and V maxAZW Ns0−2%EV (-56.6%). Other correlations are quite low. In par-
ticular, no notable correlations are found with ∂2

t (VMAX), and WNTs show no significant
correlation with neither of the three intensity variations descriptors. This can either in-
dicate a lack of statistical significance, a lag between variables, or a different dynamical
content.

To refine the statistical characterization of intensity variations, we perfomed a com-
posite analysis of VMAX , ∂t(VMAX), and ∂2

t (VMAX) local minima and maxima, shown on
Figs. 4.12 and 4.13. This way, we isolate only the life cycle phases corresponding to marked
intensity variations. The composite analysis consists in computing median values of the
parameters of interest from 10h before to 10h after the minima or maxima. The compos-
ites of radial gradient time evolution (∂t(dV/dREW ) and ∂t(dV/dRNC)) appear tightly in
phase with ∂t(VMAX) maxima and minima (Fig. 4.12C,D). They are also shown to de-
crease during VMAX peaks and ∂2

t (VMAX) minima, and increase during VMAX minima and
∂2

t (VMAX) maxima. Compared to the radial gradients that evolve in phase with the TC
intensity, azimuthal WNTs interestingly show a phase lag with intensity variations (Fig.
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Figure 4.12 – Composites of ∂t(dV/dRNC) (green) and ∂t(dV/dREW ) (red) over all local
maxima (upper panels) and minima (lower panels) of (left) VMAX , (center) ∂t(VMAX), and
(right) ∂2

t (VMAX), along with corresponding composites of (left) VMAX , (center) ∂t(VMAX),
and (right) ∂2

t (VMAX). Grey shadings denote the average start and end dates of maxima
and minima. Number of WRF in each composite are indicated by (#)

Figure 4.13 – Same as Fig. 4.12 for WNT (V maxAZ) (green), WNT (RMWAZ) (red),
WNT (ESAZ) (blue) and WNT (dV/dRAZ (purple).

4.13) . Positive transfers occur before intensity (VMAX) and intensification (∂t(VMAX))
peaks, and conversely negative transfers before VMAX and ∂t(VMAX) troughs. WNTs are
also shown to notably increase during intensity trough and (∂2

t (VMAX)) maxima, that
is before and during re-intensification phases. Conversely, they decrease during intensity
peaks, and intensification weakening phases. This analysis suggests that azimuthal WNTs
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variables may have a potential for predictability as they are lagged with short-scale inten-
sity changes, and are associated more to intensity modulations than to its magnitude in
itself. These observations are made on the eyewall gradient, and eye shape. They are also
mostly true for the maximum wind ring intensity but with less marked trends (not shown).
On the other hand, RMWAZ composites do not show significant changes regarding in-
tensity changes. The spatial asymmetry of the maximum wind ring thus does not seem
to be a good proxy for characterizing intensity variations. The specificity of the eyewall
area thus emerges consistently with intensity restoration studies of eyewall dynamics and
VRWs: the eyewall is indeed the most sensitive area of the vortex, as any perturbation can
cause vorticity mixing and, subsequently, lead to the generation of VRWs that eventually
allow intensity restoration.

4.4.4 Prediction score improvement including azimuthal struc-
ture evolution

Following the previous observation of the particular connection between azimuthal
spectral transfers, and intensification variations, the machine learning classification method
described in section 4.2.2 was applied to WRF outputs with two goals: assess the connec-
tion between azimuthal structure parameters and intensity variations, clarify the charac-
teristic time scales at which these connections occur. Two classifications were run. One
to dissociate intensifying and declining TCs, and another to dissociate re-intensifications
and intensification weakenings (i.e. positive and negative ∂2

t (VMAX)). These classifica-
tions were performed using subgroups of 4 variables taken among instantaneous mean
vortex parameters (i.e. latitude, maximum wind, RMW, and eyewall radial gradient),
time-dependent azimuthal structure parameters (i.e. time derivatives of explained vari-
ance by WN groups, or spectral low-to-high WN transfer for each of the four azimuthal
signals), or a random control variable. Results are synthetized in Fig. 4.14, showing the 5
best prediction scores compared to a control combination of instantaneous variables (i.e.
VMAX +RMW +Latitude+dV/dREW , first score on the left). The score evolution is eval-
uated and compared for different values of smoothing cutoff period considered: 3, 6, 12,
and 18h. Moreover, Tables 4.2 and 4.3 show, for the two classifications and for each time
smoothing reference, the most contributing variables sorted by number of occurrences
among the 5 best combinations.

The prediction scores of intensifications and declines (Fig. 4.14A) shows improve-
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Figure 4.14 – (A) Evolution of prediction scores for the classification of positive/negative
∂t(VMAX) (i.e. intensifications/declines). Classes are defined as the lower and upper thirds
of the ∂t(VMAX) distribution. Each line shows the score of the control combination VMAX +
RMW +Latitude+dV/dREW (on the left), and the 5 best scores obtained by integrating
internal structure time-derivative predictors, for different values of smoothing applied to
the VMAX signal (colored lines). The relative difference between the control and the best
combination scores is written in the legend. (B) same as (A) for the classification of
∂2

t (VMAX).

Table 4.2 – Summary of the top #5 most contributing vectors to the classification of
positive and negative ∂t(VMAX) (i.e. intensification and declines) for different values of
smoothing cutoff period Tc (left column). The number of occurrences among the 5 best
combinations is displayed.

Time Refer-
ence

#1 #2 #3 #4 #5

Tc = 3h W NT (dV/dRAZ )
(#5)

Abs. latitude
(#5)

W NT
(V maxAZ )
(#4)

W NT
(RMWAZ )
(#2)

dV/dRNC
(#2)

Tc = 6h RMW (#5) Abs. latitude
(#5)

V ar6−180
(V maxAZ )
(#4)

V ar6−180
(ESAZ ) (#2)

dV/dRNC
(#2)

Tc = 12h Abs. latitude
(#5)

W NT
(V maxAZ )
(#4)

W NT
(dV/dRAZ )
(#3)

W NT
(ESAZ )
(#2)

W NT
(RMWAZ )
(#2)

Tc = 18h W NT (V maxAZ )
(#5)

Abs. latitude
(#4)

W NT
(RMWAZ )
(#3)

dV/dRNC
(#3)

W NT
(dV/dRAZ )
(#3)

ment when adding azimuthal parameters compared to mean-vortex properties, for all
time smoothings except the 6h one. The highest improvements are observed for cutoff pe-
riods of 3h (+7.1%), and 18h (+5.9%). Moreover, the most contributing parameters are:
absolute latitude (always 4 or 5 occurrences among the 5 best combinations whatever the
smoothing, which are explained by the large number of declining TCs at high latitudes),
WNT (V maxAZ) (4 or 5 occurences among the 5 best combinations with 3h, 12h, and
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18h smoothing), and WNT (dV/dRAZ) (3 to 5 occurences in the 5 best combinations).
What comes out from this classification is thus the decisive role of WNT (V maxAZ) and
WNT (dV/dRAZ) in the dissociation of intensification rates: indeed, on the two classifica-
tion yielding the highest improvement (3h and 18h), these two parameters are the most
contributing to the classification. Moreover, intrestingly, the WNT (dV/dRAZ) distribu-
tion is predominant at short time scale (Tc = 3h), while WNT (V maxAZ) takes over at
Tc = 12h and Tc = 18h. A different dynamical scale thus seems to characterize the eye-
wall and the maximum wind area, which confirms the observations made on time spectra
(section 4.4.1), and is in agreement with eyewall dynamics studies that describe this area
as subject to very short-scale changes and more spontaneous vorticity mixing processes
(Schubert et al., 1999; Kossin and Schubert, 2001).

Table 4.3 – Same as table 4.2 for the classification of ∂2
t (VMAX) positive and negative

phases

Time Refer-
ence

#1 #2 #3 #4 #5

Tc = 3h VMAX (#5) Random (#4) W NT
(ESAZ )
(#3)

W NT
(RMWAZ )
(#2)

W NT
(V maxAZ )
(#2)

Tc = 6h W NT
(V maxAZ )
(#5)

VMAX (#5) W NT
(ESAZ )
(#3)

W NT
(RMWAZ )
(#2)

dV/dRNC
(#2)

Tc = 12h W NT
(V maxAZ )
(#5)

dV/dRNC
(#4)

VMAX (#4) W NT
(RMWAZ )
(#2)

W NT (dV/dRAZ )
(#2)

Tc = 18h VMAX (#5) Abs. latitude
(#5)

W NT
(ESAZ )
(#3)

W NT
(V maxAZ )
(#3)

RMW (#2)

The evolution of prediction scores of changes in intensification rate (positive and neg-
ative values of ∂2

t (VMAX)), shown on Fig. 4.14B with best predictors summarized in Ta-
ble4.3, indicates improvement for all time references with respect to the mean-vortex con-
trol combination. The best improvements are observed at Tc = 3h (+4.8%), and Tc = 18h

(+3.3%). The best combinations yielding these improvements mostly include absolute
VMAX (in 4 or 5 combinations out of the best 5 at all time scales, logically indicating the
fact that intense TCs have more chances to weaken, and conversely), and WNT (V maxAZ)
(present in 3 to 5 of the best combinations). WNT (ESAZ) also regularly appears in the
best combinations highlighting the significance of the eye shape signal. The 3h scale seems
irrelevant given the presence of the random variable in 4 of the 5 best combinations. This
second classification thus also shows the notable contribution of WNTs, even at large
time scales of 18h, indicating that they consistently describe the evolution of the internal
energy distribution (especially the maximum wind distribution WNT).
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Overall, the classification highlights the significant role of azimuthal WNTs in dissoci-
ating TC intensification variations. Intensification rates are better dissociated preferably
using eyewall dynamics at small time scales, and maximum wind ring properties at larger
scales. Small-scale intensity variations (i.e. second derivative sign changes) consistently
show better score improvements at scales larger for 6, 12 and 18h time scales, with a
prevalent role of WNT (V maxAZ) and WNT (ESAZ).

4.5 Summary and Discussion

4.5.1 Summary

In this study, seven major TC cases (reaching at least cat. 4 during their life cycle)
are simulated with the WRF model at the high resolution of 1km thanks to a grid-
nesting strategy using vortex-following moving nests. These simulations are designed to
statistically evaluate the evolution of the TC surface wind field structure in relation
with intensity variations. This work follows a recent study (Vinour et al., 2021) showing
that newly available kilometer-resolution surface wind fields, retrieved from Synthetic
Aperture Radars (SARs), have the potential to improve the statistical predictability of TC
intensification rates. The present study evaluates the added-value of having the temporal
evolution of the wind field structure, and particularly its fine scales, to further analyze
the connections between vortex internal changes, and TC intensity modulation.

The simulations are shown to fairly represent the average TC contraction with in-
tensity, with though an underestimation of the eyewall and near-core gradients, and an
overestimation of the RMW for the strongest winds (when VMAX reaches cat. 4 and
above). The azimuthal asymmetry of the eye shape, the eyewall gradient, the RMW, and
the maximum wind is also realistically modeled, with only a slight shift towards a lower
maximum wind variability than observed with SAR. This may be attributable to limita-
tions associated to the model resolution, and parameterizations, which are discussed in
the next section. Apart from the underestimated radial gradients for highest wind speeds,
the model simulations are shown to realistically represent the TC internal structure, and
its variability, as well as intensity variations.

The radial eyewall and near-core gradients are shown to evolve on a charateristic time
scale similar to intensity, while the evolution of the azimuthal structure, and especially
the transfer of energy within its spectrum, is shown to match the timescale of intensity
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variations. This suggests a separation between radial and azimuthal descriptors: while
radial gradients tend to describe the state of the vortex, roughly following its maximum
intensity, azimuthal WNTs have a larger connection with short-scale intensity changes,
and are associated more to intensity modulations than to its magnitude.

Positive WNTs are observed during re-intensification phases, and negative transfers
before and during intensity peaks, that is when intensification weakens. This is consis-
tent with previous studies associating, on the one hand, the eyewall and maximum wind
area distortions with external events perturbating the vortex intensity, and, on the other
hand, restoration of intensity with symmetrization and homogenization of the vortex
(Montgomery and Kallenbach, 1997; Schubert et al., 1999). Compared to the radial gra-
dients that evolve in phase with the TC intensity, azimuthal WNTs show a phase lag
with intensity variations, suggesting a predictability potential, although the time lag can
vary significantly. Modeling and observational case studies suggested that polygonal eye-
walls (approximated in this study by ESAZ middle wave numbers) might be favourable
to rapid intensifications (Lee and Wu, 2018; Cha et al., 2020). Our analyses however in-
dicate no statistical correlation between polygonal eye shapes and intensification rate on
the considered time scales (i.e. larger than 6h). However, a higher correlation is evidenced
for low-to-high wave number transfers suggesting that the azimuthal structure spectral
decomposition shall be considered more dynamically than as a state of the vortex: what
matters to the life cycle might not be the presence or the absence of polygonal eyewalls,
low wave number asymmetry, or ring-like TCs, but the evolution of this structure in time,
i.e. the fact that it is being either disrupted or restored. Our definition of azimuthal WN
transfer is thus comforted as it is indeed a measurement of persistent changes through
the inner-core. Moreover, eyewall signals (shape and gradient) appeared more sensitive
to intensity variations than the maximum wind area, and in particular than the RMW.
This highlights the specificity of the eyewall area as being the most sensitive area of the
vortex, as any perturbation can cause vorticity mixing, impact the eyewall convection’s
stability and, subsequently, lead to the generation of VRWs that eventually allow intensity
restoration.

All these observations indicate that including internal structure variations quantified
through azimuthal WN transfer and homogenization might have a positive impact on TC
intensity forecasts. To further assess this impact, we used an empirical machine learning
framework to estimate the individual contribution of these variables and the other internal
structure descriptors to the dissociation of TCs given the sign of ∂t(VMAX) and ∂2

t (VMAX).
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We showed that both classifications are improved when using time evolution of the TC
internal structure, notably thanks to V maxAZ , dV/dRAZ , and ESAZ WNTs Moreover,
the classification was shown to be very sensitive to the smoothing applied to the VMAX

time serie to compute its variations, showing a more notable importance of the eyewall
radial gradient at shorter time scales (under 6h), while the maximum wind distribution
was more predominant at larger scales (12, and 18h).

Although we showed that our description of the internal structure has the potential
to improve predictability through case studies, statistical comparisons, and classification
score improvement, we did not truly assess the predictability of the life cycle. Indeed, our
classification did not evaluate the future intensity changes, and did not include all the
parameters usually used to predict TC life cycle, notably environmental parameters such
as vertical wind shear, ocean surface temperature or atmospheric humidity (DeMaria,
Knaff, and Sampson, 2007; DeMaria et al., 2014; Kaplan et al., 2015; Neetu et al., 2017;
Neetu et al., 2020). An interesting perspective would thus to use our newly developed TC
internal structure evolution descriptors as additional inputs of usual statistical forecast
models. In an operational forecast perspective, it could also be interesting to compute
these descriptors from real-time observations (such as SAR for instance, supposing a
sufficient time continuity), or operational forecast models, and use them as a likelihood
index for TC intensity restoration or decline, for instance.

4.5.2 Model setup limitations

Resolution

The spatial resolution of 1km might clearly be a factor preventing TC intensification
at high categories, as several studies have shown that the spatial resolution can cause
large differences in the simulated maximum intensity (Fierro et al., 2009; Gentry and
Lackmann, 2010; Gopalakrishnan et al., 2011; Gopalakrishnan et al., 2012). For instance,
Gopalakrishnan et al., 2011 show that a change of resolution from 9km to 3km can cause
a difference in maximum intensity of 10m.s−1. A spatial resolution of 1km means an
effective resolution of approximately 5km, which means small-scale features and eyewall
radial gradients are not totally resolved.
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Parameterizations

The set of parameterizations chosen to solve sub-grid processes, while widely used
for TC simulations (Lengaigne et al., 2019; Hill, Lackmann, and Aiyyer, 2008), can also
impact the maximum intensity, and the ability of the TC to intensify, in particular the
Planetary Boundary Layer (Nolan, Zhang, and Stern, 2009; Nolan, Stern, and Zhang,
2009b; Smith and Thomsen, 2010; Kepert, 2012; Zhang et al., 2015), and microphysics
(Zhu and Zhang, 2006; Park et al., 2020) schemes. The cumulus convection parameteri-
zation, which is a quite sensitive one in TC cases (Rao and Prasad, 2007; Raju, Potty,
and Mohanty, 2011; Srinivas et al., 2013), only impacts the large domain, as convection
is explicitly solved in the nested domains.

Forcing conditions

The data used to initialize the model, force the boundary conditions, and spectrally
nudge the synoptic flow in the parent domain can also impact the simulated TC evolu-
tions. If they feature errors in the synoptic evolution, these errors will be transmitted to
the simulations. Additionally, another impact of spectral nudging was identified in our
simulations. While spectral nudging was applied only on the large domain, and only on
the large wavelengths of the domain, i.e. synoptic scale, to avoid directly impacting the
TC internal dynamics, it is shown to causes little curls in the TC track of a few simula-
tions (CEBILE and FANI, cf. Fig. 4.3). These track curls appear as unrealistic as they
do not appear in any of the real tracks, and seem to be a track response to the nudging.
They may have an impact on the internal TC evolution, though, we assume that they are
not impacting the consistence of the vortex’s evolution with intensity variations.

All these aspects of the simulation set up can cause issues in the representativeness
of our dataset. We notably observed a lower variability of the maximum wind contour,
and weaker radial gradients for very high wind speeds, indicating the modeled surface
wind field is smoother than SAR observations, and thus features less small-scale inter-
nal activity. Moreover, TC intensification can be conditioned by these eyewall dynamics:
according to Kossin and Eastin, 2001, the structure of the eyewall profile and the alter-
nation of phases of strong vorticity mixing, and phases of sharper profile and clearer eye
are an important process in the formation and intensification of TCs, partly condition-
ing their ability to reach high intensity. An inaccurate representation of these processes
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may thus partly explain the lower intensity of simulated TCs compared to observations.
On the other hand, we also saw that the spatial variability was well featured, that most
dynamical processes were well-represented for TCs up to cat. 4, and that the distribution
of life cycle variations (i.e. values of intensification rate) in our simulations was coherent
with observational datasets, which are the main focus of this paper. Thus, although our
interpretation is limited and might be incomplete for very high intensities, we can rely
on a realistic dynamical behaviour of our simulated TCs, and on realistic interactions
between their internal structure and intensity variations.

Perspectives within the designed framework

While we use 3D realistic simulations, the presented analyses rely on a specific frame-
work notably designed to allow a direct comparison with SAR observations. The TC
vortex description is thus limited to the surface wind field, and more specifically to a
subset of radial and azimuthal descriptors of the vortex, so that our results and methods
are applicable to SAR observations, or to any other observational source providing sur-
face wind fields. Each of these descriptors characterizes an aspect of TC dynamics. The
eyewall radial gradient compared to Rankine ideal vortex is a proxy for vorticity mixing
in the eye, and is related to the generation of mesovortices. The near-core gradient is
related to the primary circulation broadness, and thus to the vortex resilience to shear
and propension to intensify. Azimuthal transfers measure the homogenization of the in-
ternal structure and are thus tightly connected to restoration processes such as eyewall
mesovortices and Vortex Rossby Waves that impact the vortex’s symmetry and spectral
decomposition. However, this synthetic view does not capture the whole complexity of
the vortex’s internal activity: this activity is a continuous succession of interactions going
through the vortex’s vertical and horizontal structure (cf. radial and vertical propagation
of VRWs (Montgomery and Kallenbach, 1997; Wang, 2002a; Wang, 2002b), or importance
of convective bursts and eyewall updrafts in rapid intensifications (Chen and Zhang, 2013;
Hazelton, Hart, and Rogers, 2017; Zheng et al., 2020)). Applying similar analyses to those
performed here on the surface wind to different vertical levels could certainly bring in-
teresting insights, and an estimation of the relative importance of the Boundary Layer
with respect to the rest of the vertical structure. Studying other output fields such as
potential vorticity, precipitation, or vertical wind speed for instance, could also provide a
more direct connection to convection or VRWs propagation (Wang, 2002a; Wang, 2002b).
Both these perspectives could also suggest a synergetic use of observations from various
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sensors to provide various parameters and at several vertical levels.
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Chapter 5

CONCLUSION AND PERSPECTIVES

5.1 Summary

5.1.1 An original framework

In recent years, an important effort was made by the TC community to apprehend the
dynamics controlling TC intensity, motivated by the lack of performance of TC intensity
forecasts and the still important casualties that TCs cause every season. With the im-
provement of observational and modeling technologies came a new theoretical framework,
focused notably on TC internal energetic processes and asymmetric features. The aggre-
gation and merging of VHTs and vorticity anomalies and the resulting upscale cascade
of cyclonic vorticity; their dissipation through VRWs propagation and the subsequent ax-
isymmetrization and intensification or restoration of intensity; the implications of these
asymmetric processes on the mean vortex’s structure (resilience to shear) and fundamen-
tal dynamics (i.e. BL dynamics and wind spin-up process): all these features contribute to
build a comprehensive view of the TC vortex as a coherent energetic system whose inten-
sity and lifecycle are driven by internal processes. In this context, I used recently gathered
SAR surface wind speed observations along with dynamical simulations performed with
the WRF model to carry out a statistical study of TC surface wind field properties. Pa-
rameters were extracted to measure, on one hand, the asymmetric structure of the vortex
and its evolution in time, drawing links with axisymmetrization processes and vorticity
anomalies in the inner-core and eyewall. On the other hand, the symmetric structure
was also studied to approximate vortex parameters such as eyewall vorticity mixing and
baroctropic instabilities, and vortex resilience in the near-core area. These parameters
were then related to intensity changes, with specific metrics defined to characterize sev-
eral time scales of intensity modulations and life cycle phases.
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High-resolution observations of the TC surface wind field

The observational dataset is composed of 200 SAR-derived ocean surface wind fields
with a spatial resolution of 1km resampled on a 3km grid, and an extent between 200
and 400km encompassing the whole vortex inner-core. Wind speed inversion is based on
an algorithm combining the dual-polarization modes available with recent SAR missions
(Mouche et al., 2017). These measurements have proven to be reliable and efficient to
measure very high wind speeds in previous studies compared to airborne measurements,
and best-track datasets (Combot et al., 2020). While these studies mostly focus on best-
track typical parameters such as maximum wind, RMW, or 34-knot radius, I used the
SAR wind fields to study finer-scale properties: radial gradients extracted from the radial
wind profile ; and spectral decompositions of azimuthal distributions of eye shape, eye-
eyewall surface wind gradient, and maximum wind. Each of these descriptors is related
to a specific aspect of asymmetric theories on TC intensification and intensity variations:
the vortex resilience to external shear depends on the radial gradient of vorticity and can
thus be approximated through the slope of the radial wind profile outside the RMW; the
development and propagation of eyewall mesovortices is observable as eye shape asymme-
tries, and the subsequent barotropic instabilities and vorticity mixing between the eye and
the eyewall impact the radial gradient of the wind profile in this region; finally the prop-
agation of Vortex Rossby Waves (VRWs) acting to axisymmetrize the vortex impacts the
azimuthal wind distribution and sign as specific discrete wave numbers. To achieve this
characterization of the TC, an important part of my work consisted in properly defining
and estimating these parameters with a robust method (i.e. independent from artifacts or
specific features of SAR acquisitions) suited for a statistical analysis. Original algorithms
were developed in order to:

— retrieve TC center position from each image
— extract radial profile and characteristic azimuthal signals i.e. eye shape, maximum

wind, radius of maximum wind and eyewall radial wind gradient distributions
— process and filter these signals to ignore artifacts and outliers caused by partially

missed eyes, rain features, local wind anomalies, or double eyewalls.
— define synthetic parameters characterizing various aspects of the internal structure

as described by the asymmetric theory: mean surface wind radial gradients, pro-
file curvature in the eyewall and near-core areas, wave number decompositions or
variances of azimuthal signals.

These analyses provided a unified SAR database of 200 samples, and 40 descriptive vari-
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ables.

High-resolution TC simulations

A modeling framework was designed to complement SAR analyses by providing a TC
life cycle time continuity. The comparison of SAR and model also allows to evaluate the
ability of high-resolution dynamical models to feature the variability and complexity of
the internal structure compared to high-resolution 2D measurements. I used the WRF-
ARW dynamical solver, which is extensively used in both TC research and forecasting
communities, to simulate TC events in their mature life cycle phase. Seven TCs were
simulated, chosen to feature all basins, and several configurations of life cycle: short ones
with intensification, peak and decline, and more complex ones with re-intensifications,
and several peaks of intensity. As the goal was to draw direct comparisons with SAR
observations, I chose a fine resolution of 1km, which allows to reach an effective resolu-
tion of 5km, a reasonable compromise between computation time and comparability with
SAR. To achieve this high-resolution, simulations were run with two successive vortex-
following nests at respectively 3 and 1 km resolution, in a larger domain with a 9km
resolution encompassing the whole TC trajectory. I processed model outputs similarly to
SAR images, that is focusing on the surface wind field (taken as the 10-m wind speed
in the model), and I extracted the same radial and azimuthal descriptors as defined for
SAR. To exploit the time continuity of the model, I computed time derivatives of these
descriptors, and defined new variables describing the evolution of the internal structure
in time. In particular, I defined transfers in the spectral distribution of azimuthal signals,
as the transfer of explained variance between low wave numbers (1,2) to high ones (6 to
180). These transfers can be interpreted as variations of the energetic distribution in the
azimuthal dimension: they quantify the homogenization of the TC’s azimuthal structure
in time, and the changes in the vortex asymmetry degree. Such joint framework com-
bining observations and simulations is very valuable in the context of TC research, as it
allows a direct comparison of both sources. It also allows to assess the improvements that
would be allowed by continuous SAR measurements, as hourly outputs simulate regular
acquisitions.

Machine learning classification

The joint statistical study of WRF and SAR datasets was complemented by an original
machine learning classification method, designed to estimate the individual contributions
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of internal structure parameters to the dissociation of intensity variations, either through
the value of intensification rate (i.e. separating phases of intensification and decline) or
intensity time serie second derivative (i.e. separating phases of increasing intensification
rates from decreasing ones, not applied to SAR due to insufficient time continuity). This
method was used to assess the connection of surface wind field predictors with intensity
changes, their characteristic time scale, and thus their potential for intensity predictability.

5.1.2 Description of internal structure

The mature TC evolution is very complex as it is highly multi-scale, linking large-
scale synoptical events to kilometric features, air-sea interactions, and processes in the
TC’s inner-core. As SAR images only describe the sea surface wind field, and as their
major asset is their high resolution and coverage, my goal was to capture the complexity
of kilometer to vortex-scale inner-core processes through this partial view of the TC.
The parameters extracted from SAR and WRF surface wind fields were thus designed in
priority to:

— characterize or be related to processes involved in the regulation of TC intensity;
— synthesize through single value parameters the TC radial and azimuthal structure

of the surface wind field to enable the use of these parameters in a statistical model
— be generically and automatically estimable, with a minimal dependence on SAR

individual image artifacts such as rain impact, double eyewalls, image border, etc.
Double eyewalls, outer rainbands and other features that are associated to specific
events or not systematically measurable on all images were thus ignored.

Radial structure

The mean radial profile was used to retrieve the radius of maximum winds (RMW),
and mean gradients in the eyewall (R<RMW), and in the near-core (RMW<R<3*RMW)
areas. RMW and mean gradients provide a first order characterization of the vortex.
The RMW, i.e. the size of the vortex, is a purely symmetric parameter, responding to
intensification with a contraction due to increasing baroclinicity and inertial stability
(Shapiro and Willoughby, 1982). In contrast, the radial profile in the near-core denotes
the propagation and damping of VRWs: the broader the profile is, the more resilient
the vortex is to external shear, the better it realigns after a perturbation and restores
its intensity (Reasor, Montgomery, and Grasso, 2004; Mallen, Montgomery, and Wang,
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2005). In the eye-eyewall area, the slope of the wind profile denotes the degree barotropic
instability and vorticity mixing of the eyewall: according to Kossin and Eastin, 2001 and
Nguyen et al., 2011, a vortex with a U-shaped profile in the eye-eyewall area is more likely
to intensify than a linear one.

The analysis of SAR-extracted mean radial profiles by category showed the expected
decrease in RMW with intensity with a log-normal trend. A clear sharpening of the eyewall
mean profile was also observed, with a trend towards U-shaped profiles at high intensity
indicating lower vorticity mixing (consistent with the higher frontogenesis associated with
increased eyewall convection (Emanuel, 1997)), although the asymmetric regime with a
linear profile (Nguyen et al., 2011) can also be observed even at highest intensity. The
near-core profile was also observed to sharpen with intensity with a slightly superlinear
trend: normalized with VMAX , intense TC profiles are thus sharper than weak TCs profiles
in the near-core. According to the theory of vortex resilience (Reasor, Montgomery, and
Grasso, 2004), this indicates relative lower resilience of intense TCs: indeed, a sharper
profile means a faster decreasing PV profile, and a higher likelihood of a positive PV
gradient at the critical radius, which is the condition for a growing tilt asymmetry (Mallen,
Montgomery, and Wang, 2005). This might also indicate a reduced VRW activity at high
intensity, suggesting the vortex’s stability is ensured by more symmetric processes as
intensity increases (which was also suggested by Nguyen et al., 2011).

The radial wind profile was also studied with respect to intensity variations: intensi-
fying TCs showed higher gradients on average both in the eyewall, and in the near-core
areas. A sharper eyewall associated preferably to intensifying TCs is consistent with the
symmetric phase described by Nguyen et al., 2011. On the other hand, larger values of
near-core gradient, i.e. thinner radial profile outside the RMW, suggests a trend of lower
resilience to external shear for intensifying TCs.

These observations can thus be summarized as follows: the more intense and/or in-
tensifying the TC, the smaller and thinner its eyewall, the lower the vorticity mixing
between the eye and eyewall. While the lower mixing indicates a lower generation of
mesovortices and subsequent lower VRW activity, the thinner eyewall points at both a
lower barotropic stability (Schubert et al., 1999) and lower resilience to external shear
(Reasor, Montgomery, and Grasso, 2004). This suggests a kind of negative feedback pro-
cess in which a TC that intensifies becomes more and more able to intensify (as lower
voticity mixing goes with an annular vorticity structure and maximum wind occurring
closer to the RMW (Nguyen et al., 2011)), while in the same time becoming more vul-
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nerable to external shear and thus more susceptible to undergo perturbations (due to its
thinner eyewall vorticity ring and lower resilience to external shear). Similarly, a declining
TC, although less susceptible to intensify due to the higher mixing between its eye and
eyewall, is more resilient to external shear and thus develops an internal VRW activity
that is more likely to allow its axisymmetrization and its return to a symmetric phase
with a U-shaped profile (as observed by Nguyen et al., 2011).

The radial profiles extracted from WRF outputs showed similar results, but with an
increase in radial gradients that remained significantly limited above category 3. This may
have several causes: 1) the horizontal resolution, which is effectively 5km still limiting the
resolution of very sharp, and fine-scale gradients, 2) the limits due to parameterizations
(the full BL dynamics representation may be questioned, as well as the role of surface
fluxes and microphysics schemes), 3) the dataset was limited to a small number of TCs,
and thus could not encompass the full variety of possible cases (chosen cases might not be
the most favorable to strongest TCs, and were constrained by the initial and boundary
conditions provided by a lower resolution global model).

Besides these limitations, both SAR and WRF datasets evidenced that properties of
the mean radial profile are structural properties of the vortex that are related to TC in-
tensity and its variations, which indicates their importance as a diagnostic of the vortex’s
internal structure. The defined near-core and eyewall gradients reflect, in a sense, the sym-
metric part of the asymmetric theory on TC intensification, approximating both energetic
propagation and damping of VRWs in the near-core (Reasor, Montgomery, and Grasso,
2004), and generation of mesovortices and VHTs in the eyewall that cause vorticity mixing
(Kossin and Eastin, 2001).

Asymmetry and azimuthal variability

The degree of asymmetry, described in this work through the variance of azimuthal
distributions of the eye shape, the eyewall radial gradient, the maximum wind, and the
RMW, shows a strong dependence on intensity, noted both on SAR and WRF estimates.
As for the sharpness of the mean radial profile, the degree of symmetry of the vortex is
observed as primarily connected to TC intensity magnitude, in agreement with previous
studies relating vortex symmetry to its internal stability (and thus to its intensity). In ad-
dition to these first order evidences, a finer analysis of the azimuthal structure was carried
out through spectral decompositions of extracted azimuthal signals. The computation of
wave number explained variances allows to separate dynamical scales, as low wave num-
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bers characterize vortex-scale distortions mostly linked to external forcings (Beta-drift,
external shear), or strong internal perturbations such as VRWs or asymmetric rain bands,
while higher wave numbers contain more local and short timescale asymmetries (such
as eyewall mesovortices or VHTs for instance), and generally assess the degree of homo-
geneity and disruption (more energy in high WNs means broader spectrum, i.e. more
homogeneous energy distribution) inside the structure.

SAR observations revealed that the energy distribution in the maximum wind ring
tends to homogenize with intensity (through decrease of low WN explained variance,
and increase of middle and high WNs), while the distribution of eyewall radial gradient
(approximate eyewall mixing) does not depend on it, indicating a decoupling between
the maximum wind and eyewall areas. The gradual fueling of middle and high WNs at
the expense of low WNs with intensity indicates an increasing role of internal processes,
with an increased generation of VRWs and mesovortices but, in the same time, a lower
importance of strong persistent VRWs, and a more homogeneous structure, consistent
with the fact that intensity restoration in major TCs is also monitored by other processes
such as eyewall replacement cycles (ERCs).

The characterization of azimuthal structure variability thus appeared as a diagnostic
of the vortex dynamical behavior and internal activity. This aspect was also highlighted
by the strong contribution of eye shape and eyewall radial gradient wave numbers 4-5 ex-
plained variances in the machine learning classification applied to dissociate intensification
rates with SAR-extracted parameters.

5.1.3 Dynamics and predictability

The description of the internal structure provided by SAR observations and WRF out-
puts was evidenced to be related to the magnitude of intensity and to the ongoing intensity
variations: the radial structure summarizes the symmetric aspects of VRW propagation
and eye-eyewall mixing, while the azimuthal structure is a more instantaneous measure-
ment of the asymmetry and thus of ongoing axisymmetrization processes in the maximum
wind area and mesovortices generation in the eyewall. One exciting objective was thus
to evaluate the potential of our surface wind field descriptors in providing relevant in-
formation for understanding, and predicting TC intensity fluctuations, in the context of
asymmetric theory that links the internal transport and dissipation of energy from the
eyewall to outside the RMW, to intensity of the vortex and its external interactions. SAR
acquisitions being snapshots, with a relatively sparse sampling, they do not allow for a
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continuous monitoring of each TC evolution, and prevent estimating the short-range dy-
namical changes in the internal structure. Two tools were therefore used to cope with this
limitation: 1) the WRF simulations, which provide a temporal continuous evolution (ev-
ery 1h) of the simulated cases, 2) a machine-learning statistical classification of positive
(>+5m.s-1.day-1) and negative (<-5m.s-1.day-1) intensification rates, which in the case
of SAR are thus estimated from external best-track files.

WRF surface wind fields provided further insights into the dynamical control of the
internal surface-level structure on the vortex’s intensity. The various extracted parameters
were shown to describe different time scales of TC internal changes. Radial gradients are
linked to longer time-scale intensity variations than radially localized azimuthal asymme-
try, which is quite logical given the larger spatial scale described by radial signals (they
have a larger radial extent than azimuthal signals which describe only one specific ra-
dius for each azimuth) and their averaged (i.e. symmetric) nature. Azimuthal spectrum
energy transfers describing the time evolution of azimuthal homogeneity in the eyewall
and maximum wind area showed a higher connection with intensity short-scale modula-
tions, both on statistical mean values and on case studies, than radial gradients. Positive
transfers (from low to high WNs, i.e. spectral broadening and azimuthal symmetrization)
were found to be on average associated with phases of intensification and/or increasing
intensification rate, while the opposite trend was observed for negative transfers. This is
consistent with the axisymmetrization theory (Montgomery and Kallenbach, 1997): inten-
sity restoration indeed occurs through a re-distribution of localized vorticity anomalies
present in the eyewall (i.e. VHTs, and eyewall mesovortices) by VRWs that propagate out-
ward and act to axisymmetrize the vortex. Thus, while the declining TC is characterized
by the generation and growth of asymmetry inside the structure (i.e. fueling of low-WN
asymmetries), intensification and re-intensification are characterized by an axisymmetriz-
ing structure (i.e. fueling of high WNs and dissipation of low-WN asymmetries). The
connection noted between azimuthal WN transfers and the intensity second derivative
(which characterizes fluctuations in the intensification rate such as re-intensifications for
instance, instead of just intensifications/declines) confirms this interpretation and the
capacity of SAR and WRF surface wind fields parameters to assess the ongoing internal
axisymmetrization/asymmetrization processes on a short scale (around 6-12∼h). This sug-
gested that such energy transfers may be interesting predictors for short-range intensity
changes.

To evaluate the predictability potential of all the extracted parameters characteriz-
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ing the vortex (intensity, size, radial profiles, azimuthal degree of asymmetry, and energy
distribution) on both SAR and WRF datasets, a machine learning classification was per-
formed to separate intensifying and weakening TCs, and the scores were compared to
evaluate the added value of the various parameters. SAR classification showed that eye
shape, and eyewall radial gradient wave numbers 4-5 explained variances notably improve
the classification, indicating their connection to the TC intensification regime. This spec-
tral band was associated in the literature to the formation of mesovortices (Schubert et al.,
1999), VRWs propagation (Schubert et al., 1999; Wang, 2002a), and rain bands (Judt,
Chen, and Berner, 2016). WRF classification implemented spectral transfers and deriva-
tives of radial profile gradients, and also showed consistent improvements of all scores
thanks to these temporal internal structure predictors. Thanks to the better time conti-
nuity and coherence with internal structure provided by the model (as it is not necessary
to add external best-track data that generate additional uncertainty), the classification
was also performed on groups of intensity second derivative (i.e. separating increasing
and decreasing intensification rates). Sensitivity tests were also performed on the values
of temporal smoothing applied to intensity, enabling a comparison of characteristic time
scales of the different predictors. These sensitivity tests revealed a larger importance of the
eyewall (maximum wind) area at shorter (longer) time-scales. The classification improve-
ments accounted both for intensification rate and intensity second derivative point at the
importance of studying, and observing these small-scale (high wavenumber) events in the
eyewall and maximum wind region. These suggestions are completely consistent with the
rotating-convection paradigm and the new BL spin-up mechanism (Smith, Montgomery,
and Van Sang, 2009; Montgomery and Smith, 2010), which consider the aggregation of
asymmetric vorticity anomalies in the eyewall as the driving mechanism for BL spin-up
during TC intensification and the BL spinup itself to be the driver for eyewall spinup
above the BL (i.e. vortex intensity). Our results even suggest that surface-level asymmet-
ric measurements near the eyewall are also of importance in the mature phase of the TC
and not only in its intensification phase, supporting the hypothesis of a unified theory
for the TC’s life cycle including genesis, intensification and mature state under a same
context of energetic internal distribution and upscale/downscale transfers modulating its
intensification and declines.

Overall, the connections noted between intensity changes and internal modifications
of the radial and azimuthal structure provide support for the recent theories on TC
intensification based on an asymmetric view of the TC and on internal energy propa-
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gation and dissipation as the driving mechanism of TC intensity changes (Montgomery
and Kallenbach, 1997; Reasor, Montgomery, and Grasso, 2004; Smith, Montgomery, and
Van Sang, 2009; Montgomery and Smith, 2010; Montgomery and Smith, 2014). The ac-
counted improvement of classification scores in statistical models dissociating intensifica-
tions and declines moreover advocates for the inclusion of such diagnoses into currently
used statistical-dynamical models. These models indeed only include environmental vari-
ables (atmospheric humidity and temperature, vertical shear...) along with mean vortex
parameters (intensity and size, translation speed and intensification rate mostly) with no
consideration of fine-scale and asymmetric structures. Our analyses also emphasize the
importance of high resolution, as azimuthal transfers, which appear as major contribu-
tors to score improvements, characterize the whole azimuthal spectrum (from kilometer
to vortex-scale) and require the resolution of high wind gradients in the eyewall and
maximum wind areas. These results thus have implications for TC forecast operational
strategies, as well as for the future strategies of TC observations: the need for regular, and
frequent observations of TC boundary layer winds at high resolution should be consid-
ered of great interest in the perspective of a better understanding and forecasting of TC
intensity. This original work gathering observations, and simulations brings a consistent
framework for studying TC internal structure. Though many of its aspects and limitations
were analyzed throughout the discussions of the previous chapters, it also raises awareness
on several areas of improvement and future perspectives, that are presented hereafter.

5.2 Applications and Perspectives

5.2.1 Applications

A new parametric profile

An application of SAR radial profile analyses could be the development of a new
parametric wind profile. Parametric profiles are extensively used for storm waves and surge
forecasts, as they allow to rapidly represent a forcing wind field with only few parameters
such as maximum intensity and size, that are usually available from TC forecast agencies.
The realism of these profiles is however regularly questioned and improved. For instance,
Olfateh et al., 2017 proposed an implementation of TC asymmetry, Emanuel et al., 2004;
Emanuel and Rotunno, 2011; Chavas, Lin, and Emanuel, 2015 developed theory on the
properties of the radial profile to get rid of empirical formulations. Although this theory
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Figure 5.1 – (A) Reproduction of Fig. 8 from Chavas, Lin, and Emanuel, 2015 shown on
panel (B), using SAR observations instead of HWind reanalyses. The median of differences
between the fitted ER11 model (Emanuel and Rotunno, 2011) and SAR-extracted mean
radial profiles is featured on the y-axis as a function of normalized radius. Profiles are
composited intensity categories, with quartiles of each composite denoted by dashed lines

has notable inconsistencies (Montgomery, Persing, and Smith, 2019), the attempt made
by Chavas, Lin, and Emanuel, 2015 to transcribe a theory for hurricane dynamics into
a parametric radial profile allows, unlike other usual profiles, to discuss the underlying
TC dynamics. Following our comparison of SAR-extracted profiles to the Rankine vortex
idealized model, I reproduced the analysis of Chavas, Lin, and Emanuel, 2015 (cf. the
reproduction and comparison with their fig. 8 showed on fig. 5.1), which compared the
ER11 (Emanuel and Rotunno, 2011) model profiles to WindSAT averaged wind profiles.
ER11 profiles are obtained by fitting the ER11 model parameters (i.e. CK/CD) to the
observed data. This is done by minimizing RMSEs for different values of the ER11 profile
parameters. Then comparison with the actual observed averaged profiles is performed,
and the realism of the model profile in the inner eyewall region can be discussed. In our
case, the observed data are SAR mean radial profiles.

The differences observed between SAR and ER11 profiles, especially in the eyewall
area, are larger than the ones observed by Chavas, Lin, and Emanuel, 2015. Although the
reasons for these discrepancies were not furtherly investigated, it is very likely that a more
thorough analysis of SAR-extracted mean profiles properties could provide guidance and
material for an observation-based discussion of the ER11 model, based on their original
study and the following critique by Montgomery, Persing, and Smith, 2019.
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TC predictability

Distribution of a product to operational centers
The methods developed in this thesis could be adapted to create a new SAR product

distributable to weather forecast centers. The TC center research method is generically
processed by the algorithm, and yields precise values of the eye position on all SAR images.
These could be used by meteorological centers to compare and correct other data thanks
to this surface-level estimation with kilometer accuracy, when SAR images are available.
Similarly, the retrieved VMAX and RMW, that were shown to be accurately estimated
(Combot et al., 2020), could be included in best-track analyses. Fitted parametric profiles
and smoothed vortex-centered wind fields (obtained by filtering high wave numbers from
the polar wind field decomposition) could also be processed generically, and included
in a new product, providing SAR estimated bulk vortices that could be assimilated by
forecast models or merged in wind reanalyses to provide more realistic wind fields in
TCs for ocean and wave model forcing (Vincent et al., 2012). The multiplication of SAR
acquisitions under TCs could certainly generalize the distribution of such products, and
provide useful material for both weather and climate forecasters.

Including SAR-extracted parameters into statistical forecast models
The predictive potential of internal structure variables was investigated in the thesis

through the development of a machine learning framework based on the dissociation of
positive and negative intensification rates at the time of measurement. Such estimation is
related to intensity predictability, as it assessed the importance of a predictor to discrim-
inate intensity variations. It is however not comparable to statistical forecast models that
evaluate the future intensity variations, and take into account all the available environ-
mental and climatological conditions (such as vertical shear, MPI, tropospheric relative
humidity and temperature, low-level equivalent potential temperature, low-level relative
vorticity), as well as current intensity and intensification rate (Knaff, Sampson, and De-
Maria, 2005; Knaff and Sampson, 2009; Neetu et al., 2017).

I suggest that including the SAR-extracted descriptors of the TC fine-scale structure
into existing statistical models could potentially improve their forecast scores.
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5.2.2 Improving our understanding of TC intensity changes

Advanced simulations of internal dynamics

One of the main perspectives that arise from the comparison of SAR and WRF is the
improvement of model resolution. Indeed, I showed in chapter 4 that simulated TCs are
generally smoother and do not manage to feature the strong gradients estimated with
SAR. As discussed previously, the main reasons for this are the lower spatial resolution of
the model, and potential inconsistencies in the representation of boundary layer dynamics.
We saw that the resolution of 1km yields an effective resolution of 5km. Reaching a
resolution comparable to SAR would thus request a grid resolution of approximately
200m. A good way to improve resolution without increasing the computational cost too
much would be to reduce large domain size by focusing or smaller phases of the life cycle,
and specific events such as re-intensifications or intensity peaks for instance.

Otherwise, the use of Large Eddy Simulations (LES) is also considered as a potential
application, as they allow to simulate idealized or realistic TCs with a horizontal grid
spacing of the order of 40m (Rotunno et al., 2009; Wu, Liu, and Li, 2018). As spatial
resolution strongly impacts both the radial structure and the azimuthal variability (Gentry
and Lackmann, 2010)), LES would certainly bring more realism both in the structure and
in the life cycle of simulated TCs.

Vortex wave propagation assessment through 2D Fourier decompositions

The synthetic view of the vortex developed in this thesis described the wind field
with a limited set of parameters computed on 1D signals, in given separated areas. To
further study the propagation of waves across the vortex extent requires to consider the
full 2D structure. 2D Fourier decompositions of the TC polar wind field are widely used
for TC asymmetry and internal dynamics studies (Wang, 2002a; Wang, 2002b; Olfateh
et al., 2017), notably to compute asymmetric wind fields as the wavenumber-1 component
(Peng, Jeng, and Williams, 1999). They allow to study the radial distribution of asym-
metry and intensity. The phase and power distributions of the different wave numbers
throughout the radial extent of the vortex are of interest to study VRW propagation, as
they propagate radially and thus sign in the radial structure of the vortex. I performed
2D Fourier decompositions on both SAR and WRF polar wind fields. An example for a
SAR-derived wind field is shown on Fig. 5.2, and reveals interesting properties regarding
the azimuthal continuity of wave number distributions. Our preliminary analysis indicates
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Figure 5.2 – 2D-Fourier decomposition of a SAR polar-projected wind field (acquisition
on TC TRAMI (2018/09/28,09:35)). (A) Original wind field. (B) WN1 component 2D
amplitude distribution, along with the radial distributions of amplitude and phase com-
puted from the Fourier coefficients at each radius. (C) and (D): same as (B) for WNs
2 and 3. black line shows the TC direction (retrieved from IBTrACs) and dashed circle
denotes the RMW position.

that in some cases, wave number asymmetries are continuous throughout the whole radial
structure (such as the wavenumber-1 that is almost aligned beyond the RMW (Fig. 5.2B),
while sometimes they experience several phase shifts between the vortex’s center and its
periphery (such as the wavenumber-2 which maximum has several phase shifts between
the RMW and the periphery).

These parameters were not included in the analyses presented in my thesis to simplify
the internal structure description. As a consequence, their relationship to the TC life cycle
and their dynamical content was not investigated properly, but are considered as a great
perspective for TC internal structure studies through SAR. Indeed, they are the only
variables with the potential to describe a temporal evolution (i.e.signatures of radially
propagating energy) through an instantaneous snapshot. Their study through SAR and
WRF is a priority in my future studies, as they might enrich diagnoses used in this thesis.

Vorticity estimates from SAR

Retrieving wind directions from SAR products is a current concern in the SAR com-
munity, and could bring interesting additional information to the measurement of internal
structure and dynamics from SAR. Several projects are currently carried out in my lab to
try to estimate wind directions from the wind streaks (i.e. signature of the organized large
eddies in the marine atmospherique boundary layer on the small scales waves) extracted
from SAR images. This estimation is not straightforward as wind streaks leave a 180°
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ambiguity, and sometimes produce inconsistent estimations (notably in the case of rain
signatures that distort the streaks in heavy rain bands). It thus has to be backed up by
model-estimated directions. This yields many issues regarding the interpolation of these
models on SAR wind fields, and the degree of realism and smoothing produced by this in-
terpolation (as models used are much less resolved, and may have temporal lag with SAR
data). Current attempts to estimate directions are focused on the development of optimal
interpolation algorithms to set up the model arbitration, and on deep learning algorithms
to estimate the directions automatically training on simulated fields with available direc-
tions. The implementation of wind directions would allow to compute the surface wind
vorticity. This variable is very useful to describe internal processes, as it allows to directly
spot convective structures, to study the intensity of convection in the eyewall (for instance
to differentiate monopoles of vorticity from annular TCs which characterize different TC
intensification regimes (Kossin and Eastin, 2001)), and to better estimate the propagation
of internal waves such as VRWs which propagate along potential vorticity gradients, and
thus disturb the symmetric surface vorticity field (Montgomery and Kallenbach, 1997;
Wang, 2002a; Wang, 2002b).

Vertical structure

Although several perspectives exist to improve SAR images diagnoses and deliver a
more complete estimation of internal structure dynamics, the SAR description of the TC
is limited to the sea surface. This is a notable limitation, as intensity changes highly
depend on its vertical structure, notably through the degree of eyewall tilt, the distribu-
tion of convection in the eyewall and maximum wind areas (cf. vortical hot towers that
contribute to rapid intensifications (Montgomery et al., 2006; Guimond, Heymsfield, and
Turk, 2010)), or the structure of inner and outer rain bands.

The properties of the vertical structure can be directly retrieved from WRF simula-
tions, along with a wide range of other variables (precipitation, temperature, pressure,
etc.). These variables would allow a much more complete description of the TC than the
limited range of variables considered in this work, as performed in usual modeling studies.

The colocation of SAR with geostationnary visible or infrared images of the top of
clouds TC structure, or with dropwindsondes and airborne dual-Doppler vertical cross
sections, could certainly bring interesting insights into the connections between SAR-
extracted surface properties and vortex vertical structure. An exciting perspective that
could complement SAR measurements to bring a detailed description of the vertical struc-
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Figure 5.3 – Example of GPM 3D combined product: acquisition on TC LESTER
(2016/08/29, 22:54:22)

ture is the implementation of measurements from the GPM 2B-CMB dataset (https:
//disc.gsfc.nasa.gov/datasets/GPM_2BCMB_06/summary), which provides estimates
of surface rainfall and vertical precipitation on 3D grids with a resolution of 5km on
the horizontal and 125 m on the vertical. Such data are extremely valuable as they com-
pare to SAR in terms of resolution, and grant access to the vertical structure of the
vortex in its whole instead of only vertical cross-sections that could be obtained from
airborne dual-Doppler for instance. An example GPM combined product is shown on Fig.
5.3, showing an accurate description of the vertical TC structure through precipitation
rate estimates. Although colocated acquisitions are not frequent as both SAR and GPM
provide a sparse sampling of TCs, an effort of gathering SAR-GPM colocalized acquisi-
tions is a perspective for a future investigation of small-scale TC internal structure under
intensity changes.
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The comparison of SAR with precipitation measurements such as GPM or, at a lower
resolution, SSMI, would also be interesting for SAR processing and applications: indeed,
many efforts are made throughout the SAR community to deal with rain signatures im-
pacting the wind field. In the products used here, rain artifacts are spotted through the
high local heterogeneity they generate: on most images, strong rain bands are visible on
wind fields as they cause very strong localized gradients. However, their signature is not
constantly the same, depending notably on the wind intensity: under high winds, rain
will tend to attenuate the signal, whereas it will increase it under lower winds. Colocating
SAR with surface precipitation measurements would thus bring insightful true estimates
on the location of heavy rains, which would help correct the wind field. In a secondary
step, it could also be used as a validation tool to estimate the topology of inner and outer
rain bands from SAR: once the signatures are spotted, they can be related to rain and
thus provide high-resolution estimates of the locations and properties of these rain bands.

Boundary layer rolls and inflow angle measured from SAR

The very high resolution of SAR observations provides the ability to observe and
study very fine-scale features of the TC. Several SAR studies have notably focused on the
properties of Boundary Layer rolls (Katsaros et al., 2002; Morrison et al., 2005; Foster,
2005; Huang et al., 2018), which are kilometer wavelength coherent enhanced convective
structures present at the sea surface, within which large wind speed variations (approx.
3-5 m.s−1 according to Katsaros et al., 2002) can occur. These structures are poorly rep-
resented by current model parameterizations, and are suggested to have notable impacts
for the representation of boundary layer enthalpy and momentum fluxes. Given the large
database of SAR images gathered and studied here, a systematic assessment of BL rolls
typical scale and properties (wave length, size, intensity) could be an interesting asset
to my statistical analyses, and could certainly bring further insights to the pre-existing
studies of their characteristics.

Another aspect of the BL dynamics which could benefit from future SAR wind direc-
tion retrievals is the computation of radial distributions of angular momentum and radial
wind speed, which could be related to the extended spin-up theory proposed by Smith,
Montgomery, and Van Sang, 2009. Indeed, they show that, if the convergence of the flow
(i.e. radial wind speed) in the BL was faster than the loss of momentum due to surface
friction during this convergence, the tangential wind defined as Vt = M

r
− 1

2fr would
increase with decreasing radius. Under these conditions, they show that wind spin-up
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occurs inside the BL and BL winds are supergradient, i.e. stronger than gradient winds
located above the BL. The study of BL angular momentum and radial wind speed distri-
butions, which presupposes a reliable estimation of wind directions and amplitude from
SAR images, would thus enable one to determine from observations where and when the
BL spin-up occurs (i.e. in which radial and azimuthal areas of the vortex, and during
what phases of its life cycle), and in which conditions it is stronger/weaker, with great
implications for the understanding of TC symmetric and asymmetric intensification and
maximum intensity theories (Smith, Montgomery, and Vogl, 2008; Bryan and Rotunno,
2009).
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Titre : Liens entre structure interne et variations d’intensité des cyclones tropicaux : apports combi-
nés des observations SAR et des simulations numériques à haute résolution

Mot clés : Cyclones tropicaux ; Observations satellite ; Modélisation numérique ; Classification

Résumé : La dynamique interne des cyclones tropi-
caux joue un rôle fondamental dans leur intensifica-
tion et leur réponse aux perturbations externes. Bien
que principalement symétrique à l’échelle du vortex,
cette dynamique est aussi fortement régie par des
processus asymétriques. Ces processus sont toute-
fois difficiles à observer car proches de la surface et
de la zone de vents maximum, et multi-échelles. Cette
thèse analyse conjointement images SAR et sorties
de modèles dynamiques régionaux à résolution kilo-
métrique afin d’estimer des paramètres internes du
champ de vent de surface, et de relier ces paramètres
à la théorie asymétrique des variations d’intensité des
cyclones. L’analyse des images SAR permet d’obser-
ver la structure interne instantanée et de la relier à
l’intensité (et à ses variations) à cet instant, à tra-
vers l’utilisation de données de best-track. Des pro-

priétés telles que la contraction du vortex et sa sy-
métrie accrue avec l’intensité et durant les phases de
ré-intensification sont ainsi observées. Le modèle per-
met lui de diagnostiquer les variations temporelles de
la structure interne, reliant ainsi statistiquement la sy-
métrisation ou la perturbation du champ de vent de
surface aux variations d’intensité du cyclone, en cohé-
rence avec les récentes théories sur les processus de
restauration d’intensité. Dans une perspective d’amé-
lioration de la prédictabilité de l’intensité des cyclones,
une méthode originale de machine learning permet de
mettre en valeur l’impact positif de l’inclusion de la
haute résolution (en particulier quantifiant le mixage
entre l’oeil et le mur de l’oeil et l’asymétrie de la dis-
tribution des vents maximum) sur la prédiction statis-
tique des taux d’intensification.

Title: Tropical cyclones internal structure and intensity variations: insights from high-resolution ob-
servations and modeling

Keywords: Tropical cyclones ; Satellite observations ; Numerical analysis / modeling ; Classification

Abstract: Tropical cyclones (TCs) internal dynamics
play a fundamental role in their intensification and their
response to external perturbations. Although mainly
symmetric on a vortex scale, these dynamics are also
strongly controlled by asymmetric processes. These
processes are however difficult to observe, as they
are multi-scale and occur mainly in the atmospheric
boundary layer and the eyewall where strongest winds
are located. This thesis jointly analyses SAR images
and regional dynamical model outputs with a kilomet-
ric resolution, in order to estimate internal parameters
of the surface wind field and relate them to the asym-
metric theory of TC intensity variations. The analysis
of SAR images allows to observe the internal structure
at the time of acquisition and to relate it to ongoing
intensity changes through the use of best-track data.

Properties such as vortex contraction and increased
symmetry with intensity and during re-intensification
phases are observed this way. The model is used in
turn to study the evolution in time of the internal struc-
ture, and relate statistically the symmetrization or per-
turbation of the surface wind field to corresponding
intensity variations, denoting an agreement with re-
cent theory on intensification and intensity restoration
processes. In a perspective of predictability improve-
ment, an original machine learning method shows
the capacity of high-resolution internal structure mea-
surements (notably, parameters quantifying the eye-
eyewall mixing and the maximum wind ring asymme-
try) to improve the statistical prediction of intensifica-
tion rates.
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