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1. Introduction and summary

This past century has seen the very quick rise to the prominent issue of global warming (see Fig. 1.1a).
At its root is the ever growing need for “work” energy in our activities (see Fig. 1.1b), this pressures
research into making energy production facilities more efficient while at the same time reducing the
ecological footprint of the processes. A fundamental law of physics is conservation of energy: it merely
gets transformed from one form to another ; while the second law of thermodynamics states that “work”
energy can only be collected from an out of equilibrium system, such as the natural flow of energy from
“hot” to “cold”, and bounds how much “work” energy can be collected by the universal Carnot efficiency.

(a) Adapted from [212]: Accelerated warming.
“If the planet warms by 2 ℃ — the widely touted
temperature limit in the 2015 Paris climate agree-
ment — twice as many people will face water
scarcity than if warming is limited to 1.5 ℃. That
extra warming will also expose more than 1.5 bil-
lion people to deadly heat extremes, and hun-
dreds of millions of individuals to vector-borne
diseases such as malaria, among other harms.”
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(b) Adapted from [209]. Evolution of energy consumption
since 1990. Global energy consumption steadily rose by an
average of 2%/year over the 2000-2018 period, a 0.8% slow-
down in 2019 and a decline by 4% in 2020 in a context of global
pandemic. Consumption increased by more than 50% when
compared to 1990.

Figure 1.1. – Accelerated global warming and energy consumption.

Thermoelectricity in this context offers a different way to make or complement heat engines and
coolers. Some of the latest research in thermoelectricity is in the mesoscopic field where quantum
effects are leveraged such as nano-structuration, band-structure manipulation or defect manipulation.
While the vast majority of studies in thermoelectrics have been in the stationary regime, with the well-
established Landauer-Buttiker formalism as the main theoretical tool, a new research wave started
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1. Introduction and summary

investigating time-dependent and far from equilibrium regimes. This joins the ongoing research in
building a consistent theory of quantum thermodynamics in all regimes. The field is at its early stages
and the published works are mostly theoretical and on simple ‘toy’ models. Studying more complex
systems in the quantum time-dependent regime proves to be analytically difficult and only the simula-
tion road seems to be viable. In particular, tkwant [1, 101], the time-dependent extension to kwant
[2] – the simulation library of reference for quantum transport – has been in the works during the past
few years and got recently released. The release of tkwant sets an additional milestone in the field
of time-dependent quantum transport as it renders possible the investigation of systems previously
difficult to tackle. It is however limited to particle transport.

The emerging phenomena in this regime are yet to be fully explored, and some of the already studied
phenomena are not well understood: concepts from classical thermodynamics such as ‘work’ or ‘heat’
prove difficult to grasp in such regimes, the attempted definitions are still under debate and use different
theoretical tools whose equivalence is yet to be outlined. Some recent preliminary theoretical studies
[38, 219] even predict an improvement of thermoelectric properties in the transient time-dependent
regime. This thesis intervenes in this context with an objective to bring new insights of the role of
time-dependent control in mesoscopic quantum thermoelectrics.

We build a gauge-invariant framework for describing energy transport, on top of the current pub-
lished research on time-dependent particle quantum transport, in an open electronic quantum sys-
tem under the influence of a time-dependent electromagnetic field. This framework is based on the
semi-classical approach where light is described by the (classical) Maxwell equations and electrons are
non-interacting and described by the (quantum) Schrödinger equation. We then use this framework
to extend tkwant to energy transport and further unlock its potential to time-dependent thermoelec-
tric simulation of complex systems, that can model a broad class of mesoscopic devices beyond toy
models. We illustrate our numerical approach by investigating briefly the dynamical Peltier effect in a
two-dimensional Quantum Point Contact then go back to the extensively studied Resonant Level (toy)
Model to be able to grasp a more fundamental understanding of the effects at play : we use our ap-
proach, in both its numerical and analytical adaptations, and obtain new insights on the potential of
time-dependent thermoelectricity in quantum dots.

1.1. Summary of chapter 3: overview and motivation

In this chapter, we briefly overview the history of thermoelectricity and get to the current developments
and challenges in the domain: quantum effects are being investigated and are part of broader early
research in building a theory of quantum thermodynamics.

1.1.1. Stationary thermoelectricity

Thermoelectric devices in the stationary regime have been extensively studied in the past seventy years.
A characterizing number, called the figure of merit 𝑧𝑇 , has been introduced to compare the thermo-
electric efficiency of different devices and materials, both in the generator and cooler configurations

𝑧𝑇 = 𝜎𝑆2

𝜅E + 𝜅𝐿
𝑇 (1.1)

where 𝑇 is the average absolute working temperature (linear response is assumed for the cold and hot
baths), 𝑆 the Seebeck coefficient, 𝜎 the electrical conductivity, 𝜅E and 𝜅𝐿 are respectively the electronic
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1.1. Summary of chapter 3: overview and motivation

and lattice thermal conductivities of the material. The expression of the figure of merit highlights the
main challenges in creating more performant devices: 𝑆, 𝜎 and 𝜅 are strongly correlated through the
material’s charge carrier concentration, scattering and band structure [145], and their contributions
compete within the figure of merit. The higher the 𝑧𝑇 , the more performant the device is (see Fig. 1.2):
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Figure 1.2. – Taken from [197]. Comparing traditional industrial heat engines with thermoelectrics. Current
thermoelectrics cannot compete due to their low efficiency, if their figure of merit 𝑧𝑇 attains ∼ 3 they would be
a viable alternative for certain applications.

a value of 𝑧𝑇 ≳ 3 needs to be reached for thermoelectricity to be broadly used in energy conversion and
electricity production [191]. The value of the figure of merit of commercially available thermoelectric
generators and coolers is however around 𝑧𝑇 ≈ 1 which makes their practical use restricted to niche
applications.

1.1.2. Time-dependent mesoscopic thermoelectricity

Near-equilibrium thermoelectricity in the stationary regime is relatively well understood and accu-
rately described by theory [75, 16]. However, the description becomes much more complicated when
the system is driven far from equilibrium, with large voltage and temperature biases, or with a dy-
namical (time-dependent) control. Some of the current endeavors in the field of mesoscopic physics
are to iron out thermodynamics in the driven quantum regime: local temperatures and heat current
densities can be ill-defined, especially when a ‘fast’ time-dependent control has to be taken into ac-
count. Recent theoretical studies have even reported on an improvement of thermoelectric properties
of ‘quantum dot’ based models [38, 219] (see Fig. 1.3), although the reasons behind this predicted boost,
and whether it is realistic, remain unknown. On the other hand, experimentation in high frequency
nanoelectronics has made significant progress, which paves the way to future driven (non-adiabatic)
thermoelectric experiments.

Theoretical challenges in quantum thermodynamics The theory of thermodynamics aims to
describe simply, with a few parameters that are relevant at our scale, systems with a very high number
of degrees of freedom. To achieve this simplification, averaging is done over the degrees of freedom,
space and time. Thermodynamics revolve around three fundamental laws with regards to the evolu-
tion of such a system: (i) energy is conserved ; (ii) the total entropy of the considered system and its
environment can only increase (between two equilibrium configurations); (iii) the system cannot reach
the absolute zero temperature in a finite-time transformation. The Carnot efficiency 𝜂𝐶 = 1 − 𝑇C/𝑇H,
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time

st
at

e
st

ea
dy

Eff
ic

ie
nc

y
time

Figure 1.3. – Adapted from [219] “Boosting thermoelectric efficiency using time-dependent control”. The Reso-
nant Level Model, a single-energy-level system connected to two thermal baths (with a rate Γ), is reported to see
its electric generation efficiency multiplied by a factor of 4, relative to stationary, in the transient regime when
the energy level 𝜀0 (initially at 0.5Γ) undergoes a sudden heaviside jump of Δ𝑉 = 0.2Γ (black), 0.3Γ (red) and
0.5Γ (blue).

where 𝑇H and 𝑇𝐶 are the temperatures of the hot and cold baths, is one of the most known results of
thermodynamics: no cyclic heat engine, no matter what its inner workings are, can have an efficiency
𝜂 = 𝑊/𝑄H that exceeds 𝜂𝐶 , where 𝑊 and 𝑄H are respectively the cycle averaged work produced by
the heat engine and the heat lost by the hot reservoir.

Quantum mechanics deals with systems whose size is below the classical thermodynamic limit,
where extra quantum effects come into play, such as interference and entanglement. Initial works
pointed towards the violation of the classical laws of thermodynamics, such as the aforementioned
second law, in the quantum realm [219, 72, 7, 58]. Further research, reviewed in e.g. Refs. [107, 68,
198], built upon these first works to recover, within the markovian (quantum) Lindblad master equa-
tions approach (see Sec. 3.3.3 below), the quantum equivalent to the classical laws of thermodynamics
where no violation occurs and classical finite-time thermodynamics are recovered in some models [70,
71, 156]. The field of quantum thermodynamics is still at its early beginnings: a consensus over the
definition of “work” and “heat” is yet to be attained, research is still ongoing on properly building
a coherent thermodynamical description where the equivalence or difference between many of the
developed approaches is highlighted and understood.

1.1.3. Overview of theoretical approaches

In Chapter 3, we will also briefly overview the main theoretical techniques that are used to describe
electronic quantum transport of charge and energy in time-dependent mesoscopic devices. The time
dependent drive makes the transport inelastic and complicates considerably the problem. Different
techniques have been used to tackle this problem, with different levels of approximation and intrinsic
complexity: the Non Equilibrium Green’s Function formalism, the (time-dependent) scattering theory,
the master equation approaches, or the time-dependent Density Functional Theory. They can be com-
bined with the Floquet theory in case of time-periodic perturbations. In this thesis, we focus on the
wavefunction-based scattering theory at the core of tkwant.
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1.1. Summary of chapter 3: overview and motivation

Scattering theory The scattering theory applies to non-interacting electrons (interaction can still be
accounted for at the mean-field level). It describes systems made of a central region, called a scattering
region, that is connected to several thermal baths through electronic waveguides, called leads, that lead
towards different thermal baths (see Fig. 1.4).

Figure 1.4. – Sketch of the scattering approach. A central system, called a scattering region, is connected
to several baths ℬ through waveguides. Electrons leave each bath ℬ𝛼, with energies 𝐸 that follow a thermal
distribution, and enter the waveguide till they reach the scattering region where the undertake a first transmission
or reflection. Transmitted electrons in the scattering region undergo several reflections and interfere then they
eventually leave it to be transmitted in one of waveguides to reach the baths ℬ𝛽 a) with the same energy 𝐸 when
in the stationary regime, with a probability 𝑇𝛼𝛽 or b) with a different energy 𝐸′ in the time-dependent regime,
due to the drive that causes energy redistribution within the scattering region, with a probability 𝑇𝛼𝛽(𝐸,𝐸′).

Each bath fills the ‘incoming modes’ of its leads according to a thermal distribution whereas the cen-
tral system affects the ‘outgoing modes’ in each lead, although no back action on the baths is considered
within this theoretical framework. An electron, described by a wavefunction (see 4.2.1.1), leaves a bath
𝛼 and enters the central system to eventually be transmitted/reflected in a bath 𝛽 with a probability
𝑇𝛼𝛽. The probabilities 𝑇𝛼𝛽 can be derived by solving the Schrödinger equation, both in the stationary
and time-dependent case, and this enables to write the particle and energy currents that leave each
lead 𝛼. Note that the calculation of these probabilities can be shortcut in a numerical approach (e.g. in
tkwant) where the working material are a set of wavefunctions. We will use this theory throughout
this thesis, a more detailed description is done in Sec. 5.1. A review of the original development for
particle transport is done by Ref. [20].

Linear response An orthogonal approach that can be used jointly with the scattering theory is the
linear response regime. In a two-bath system, with a “left” 𝐿 and “right” 𝑅 bath (see Fig. 1.5), this
approach can be undertaken when Δ𝑇 = 𝑇L − 𝑇R and Δ𝜇 = 𝜇L − 𝜇R are small when compared to
their respective average value

In the stationary regime, and without loss of generality, the left particle current 𝐼N
L and the left heat

current 𝐼Q
L are related to the displacements Δ𝑉 /𝑇 (Δ𝑉 = Δ𝜇/𝑒) and Δ𝑇/𝑇 2 through the Onsager

matrix L[29, 76]

[𝐼N
L

𝐼Q
L
] = [𝐿L

NN 𝐿L
NQ

𝐿L
QN 𝐿L

QQ
]

⏟⏟⏟⏟⏟
L

[ Δ𝑉 /𝑇
Δ𝑇/𝑇 2] (1.2)
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1. Introduction and summary

Figure 1.5 – Representation of a two-terminal ther-
moelectric system. Connected to two thermal baths
– left (L) and right (R) – the system is crossed by heat
currents 𝐼Q

𝛼 and particle currents 𝐼N
𝛼 that go from the

bath 𝛼 =L,R to the other.

system

where 𝐿AB (A,B=N,Q) are the Onsager coefficients. This approach has been extended to the time-
dependent slow and periodic drive in Ref. [118] where the Onsager coefficients are cycle-averaged
quantities. Ref. [219] used the linear response approach in the ‘fast’ time-dependent regime with
time dependent Onsager coefficients that violate some constraints that were followed in the stationary
regime. Although, we show in Sec. 6.1 that a time-dependent Onsager matrix is ill-defined and cannot
be used for considerations in thermodynamics.

1.2. Summary of chapter 4: theoretical framework

In this chapter, we build a local transport quantum theory of non-interacting electrons and the energy
they carry, while under a time-dependent electromagnetic field. First we quickly outline the equivalent
classical description from which some main ideas will be ported over to the quantum description. Then,
we introduce the quantum transport theory of a single electron described by wavefunctions, in both
continuous and discrete space. We finally generalize it to non-interacting many-body transport. This
chapter establishes the theoretical framework for time-dependent thermoelectric transport that will be
implemented numerically in tkwant in Chapter 5.

1.2.1. Classical electrodynamics

The classical approach to charge transport is to describe the motion of the charged particles with clas-
sical mechanics – through the equivalent Newton mechanics, Lagrangian mechanics or Hamiltonian
mechanics – while the behavior of the electromagnetic field and its interaction with charged matter is
described by the Maxwell equations. These describe the interplay between the electric field ⃗𝐸( ⃗𝑟, 𝑡), the
magnetic field �⃗�( ⃗𝑟, 𝑡), the local density of charge 𝜌( ⃗𝑟, 𝑡) and the local charge current density ⃗𝑗( ⃗𝑟, 𝑡).
The Maxwell equations give rise to local conservation equations of matter

𝜕𝑡𝜌( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗( ⃗𝑟, 𝑡) = 0 (1.3)

and electromagnetic energy through the Poynting relation

𝜕𝑡𝑢EM + ∇⃗ ⋅ ⃗𝜋 = − ⃗𝑗 ⋅ ⃗𝐸 (1.4)

where − ⃗𝑗 ⋅ ⃗𝐸 is the local power density that is ‘lost’ to the charged matter, 𝑢EM = (𝜀0𝐸2 + 1
𝜇0

𝐵2)/2 is
the electromagnetic energy density and ⃗𝜋 = ⃗𝐸×�⃗�/𝜇0 is the Poynting vector, i.e. the energy current
density associated with light. The derivation of the energy conservation equation (1.4) leaves a degree
of freedom for the definition of ⃗𝜋 : the same issue will arise when we will want to define an energy
current density carried by quantum particles.
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1.2. Summary of chapter 4: theoretical framework

Gauge invariance In Hamiltonian mechanics (classical [141] and quantum [111]), the effect of elec-
tromagnetic fields on charged matter is described by the so called ‘potentials’ : the scalar potential
𝜙( ⃗𝑟, 𝑡) and vector potential ⃗𝐴( ⃗𝑟, 𝑡). Their relationship with the electromagnetic fields is the following

⃗𝐸 = −∇⃗𝜙 − 𝜕𝑡 ⃗𝐴
�⃗� = ∇⃗× ⃗𝐴

(1.5)

This relationship highlights that the potentials are non-unique: given an arbitrary scalar field Λ( ⃗𝑟, 𝑡),
one can add its time partial derivative 𝜕𝑡Λ to the scalar potential 𝜙( ⃗𝑟, 𝑡) and subtract its gradient ∇⃗Λ
from the vector potential ⃗𝐴( ⃗𝑟, 𝑡) while leaving the electromagnetic fields defined in Eq. (1.5) remain
unchanged.

∀Λ( ⃗𝑟, 𝑡), {
⃗𝐴′ = ⃗𝐴 − ∇⃗Λ

𝜙′ = 𝜙 + 𝜕𝑡Λ
⟹ {

⃗𝐸′ = ⃗𝐸
�⃗�′ = �⃗�

(1.6)

Since the interaction between electromagnetic fields and charged matter is classically described through
fields and not potentials, the physics remains unchanged after such a change. This transformation in
the electromagnetic potentials is called a ‘gauge transformation’.

Mechanical energy: the issue of time-dependence When considering a classical charged particle
under the influence of a time-dependent electromagnetic field. The usual definition of the mechanical
energy 𝑈 , obtained by summing the kinetic energy and the energy associated with the scalar potential
𝜙, becomes gauge-dependent

d𝑡𝑈 = d𝑡 [1
2𝑚 ̇⃗𝑟2(𝑡) + 𝑞𝜙( ⃗𝑟(𝑡), 𝑡)] = 𝑞𝜕𝑡𝜙( ⃗𝑟(𝑡), 𝑡) − 𝑞𝜕𝑡 ⃗𝐴( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡) (1.7)

as can be seen in the right hand-side of Eq. (1.7). This makes the originally stationary definition of
the mechanical energy non-physical: this issue will appear in the quantum case too, if we consider the
Hamiltonian as an energy.

1.2.2. Semi-classical electrodynamics

In the previous section, we did a quick overview to classical electrodynamics of charged particles,
with a focus on charge and energy transport. In the scope of this thesis, we describe the behavior of
electrons through quantum mechanics. In this field, the particle transport equations are well known
and tackled in general physics textbooks, the energy transport equations on the other hand, especially
with a gauge invariant conservation equation approach, remains rather marginal: we uncover such
an approach then do a more thorough description of energy transport with a gauge-invariant energy
conservation point of view.

One-body quantum mechanics In the quantum realm, at each instant 𝑡, the physical properties
of an electron (energy, position, kinematic momentum, dynamic momentum [56, Chap. 21-3], angular
momentum…) can all be computed from a ‘wavefunction’ 𝜓( ⃗𝑟, 𝑡). Its equation of motion is given by
Schrödinger’s equation

iℏ𝜕𝑡𝜓( ⃗𝑟, 𝑡) = ℎ̂[𝜓]( ⃗𝑟, 𝑡) (1.8)
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1. Introduction and summary

Wavefunctions that abide by Schrödinger’s equation are not unique and form a vector space, this is a
feature of quantum mechanics as it enables the so called ‘quantum superposition’: a particle can be in
a linear superposition of such solutions.

The Hamiltonian ℎ̂ is the equivalent to the classical “mechanical” energy: the sum of the kinetic
energy operator ̂𝜅, the potential energy from the associated electromagnetic scalar potential 𝑞 ̂𝜙[𝜓] =
𝑞𝜙( ⃗𝑟, 𝑡) 𝜓 and an eventual stationary potential energy 𝑉 ( ⃗𝑟).

ℎ̂[𝜓] = ̂𝜅[𝜓] + 𝑞 𝜙( ⃗𝑟, 𝑡) 𝜓 + 𝑉 ( ⃗𝑟)𝜓 (1.9)

→ Time-dependent particle transport Once a wavefunction obtained, the local probability cur-
rent density ⃗𝑗( ⃗𝑟, 𝑡) and probability density 𝜌( ⃗𝑟, 𝑡) obey a conservation law, where both are gauge in-
variant

𝜕𝑡𝜌( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗( ⃗𝑟, 𝑡) = 0 (1.10)
This is known text book result [111, Chap. 10.3] [172, Chap. 16.4][56, Chap. 21-2]

→ Time-dependent energy transport Although not considered in textbooks, Ref. [127] defined
various energy conservation equations in the quantum regime. For a given wavefunction 𝜓, they have
the following form

𝜕𝑡𝜌𝜖
𝜓( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗𝜖

𝜓( ⃗𝑟, 𝑡) = 𝑆𝜖
𝜓 (1.11)

where 𝜌𝜖
𝜓, ⃗𝑗 𝜖

𝜓 and 𝑆𝜖
𝜓 are candidates for, respectively, the energy density, the energy current density and

the energy source/power density. Unlike the particle number operator, there are several candidates for
the energy operator, referred to by the 𝜖 superscript: it can refer to the Hamiltonian ℎ̂, to the Kinetic
energy operator ̂𝜅 or the ‘total energy’ operator ̂𝜀 (defined bellow). Each density 𝜌𝜀

𝜓, ⃗𝑗 𝜀
𝜓, 𝑆𝜓, once

integrated over space, must give the expectation value of its associated operator on the state 𝜓. In
the context of describing a single non-relativistic particle, the local quantities (𝜌𝜀, 𝑗𝜀, 𝑆𝜀) bear no real
physical meaning as they are not unique (for a same linked operator), while the expectation value of
their associated system-wide operator does [127, 8]. One possible expression for energy density 𝜌𝜖

𝜓
and the current density ⃗𝑗𝜖 are the following

𝜌𝜖
𝜓 = Re[𝜓∗ ̂𝜖[𝜓]] (1.12)

⃗𝑗𝜖
𝜓 = 1

2Re[ ̂𝜖[𝜓]∗ ̂⃗𝑣[𝜓] + 𝜓∗ ̂⃗𝑣[ ̂𝜖[𝜓]]] (1.13)

An additional constraint over the energy operators comes from the time-dependent electromagnetic
fields: gauge invariance. Indeed, the electromagnetic potentials (𝜙, ⃗𝐴) can be replaced by their gauge
changed counterparts Eq. (1.6) while any energy operator candidate must see its expectation value
unchanged. Further research [127, 102, 213] on defining a gauge invariant energy operator rules out
the Hamiltonian ℎ̂ as a potential energy operator and narrows down the possibilities to essentially the
kinetic energy ̂𝜅, or what we call in this thesis the ‘total energy’ energy operator ̂𝜀

̂𝜀(𝑡) = ̂𝜅(𝑡) + 𝑉 (1.14)

where the stationary potential energy 𝑉 is taken into account and is considered to not be affected
by gauge changes. Its source term 𝑆𝜀 recovers the classical power given locally to electrons, by the
electromagnetic field, given in Eq. (1.4)

𝑆𝜀( ⃗𝑟, 𝑡) = 𝑞 ⃗𝑗 ⋅ ⃗𝐸 (1.15)
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1.2. Summary of chapter 4: theoretical framework

While the expressions for the other energy operators have been derived in the main body of the thesis,
we use the ‘total energy’ operator as it is Gauge invariant and recovers results form the literature in
the stationary regime (through 𝑉 ).

Non-interacting many-body quantum description When considering a non-interacting many-
body quantum system of electrons, many-body states can be written from one-body states but with
a strong constraint of total anti-symmetry: electrons are undistinguishable and at most one electron
can occupy a one-body state at a time. Many-body states are described by occupation numbers of
one-body states, with their associated creation ̂𝑐†

𝜆𝑖
(and annihilation ̂𝑐𝜆𝑖

) operators. Using a discrete set
of spatially localized spinless wavefunctions 𝜆𝑖 on sites 𝑖 (we use ̂𝑐†

𝜆𝑖
→ ̂𝑐†

𝑖 ) to make a tight-binding

representation, non-interacting operators �̂� write

�̂�(𝑡) = ∑
𝑖𝑗

𝑜𝑖𝑗(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑗 where 𝑜𝑖𝑗(𝑡) = ⟨𝑖| ̂𝑜 |𝑗⟩ (1.16)

where 𝑜𝑖𝑗(𝑡) coefficients can be fitted with experiments, empirically set or derived from ‘ab initio’
calculations.

→ Local energy operator In our previous continuous one-body description, we defined local en-
ergy densities 𝜌𝜖

𝜓( ⃗𝑟, 𝑡) such that their integral over space computes the expectation value of its associ-
ated system-wide operator ̂𝜖. Then, an energy conservation equation (1.11) is verified for each density,
with an associated current density and source density. There is however no unique definition of a local
energy density nor current [127, 8], both in the one-body approach and in the many-body second quan-
tization approach. This issue also applies to defining the energy of a subsystem, it translates through
an apparent arbitrariness in splitting the localized energy at the boundary between the considered sub-
system and the rest of the system, with the so called ‘coupling term’. This applies when trying to define
an energy density operator ̂ℰ𝜖

𝑖 of a subsystem made of a single site 𝑖, when on a tight-binding approach.
We take the following definition of the local energy operator

̂ℰ𝜖
𝑖 = 1

2 ∑
𝑗

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + 𝜖𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖 (1.17)

The idea of considering half the contribution of the hoppings has already been introduced in Ref. [8]
when considering disordered harmonic solids. It has then been used by Ref. [210] in its definition of a
local energy operator in a 1D discrete chain. And finally, it got generalized for a generic tight-binding
Hamiltonian in Ref. [129] with the same expression as ̂ℰ𝜖

𝑖 while only considering the Hamiltonian
operator 𝜖 = ℎ. This expression follows the ‘natural’ splitting [119] as it emerges from the discretization
from continuous models (see the derivation that leads to Eq. (4.62)), it was also later endorsed by Refs.
[25, 143], while using the Hamiltonian as the energy operator. On our end, we provide one more
arguments that justifies this symmetrical splitting: defining the local energy density as the expectation
value of the local ‘total’ energy operator ̂ℰ𝜀

𝑖 (with 𝜖 → 𝜀) enables us to recover, for the total energy
source term 𝑆𝜀

𝑖 , the classical expression of the power given to electrons (see comment under Eq. (1.4)),
just like in Eq. (1.15) in the one-body continuous-space approach. On the other hand, this definition
of a local/subsystem energy operator intervenes in a current debate in defining a time-dependent heat
current, see Sec. 4.3.4.2.
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1. Introduction and summary

→ Many-body quantum transport We use the ‘lesser Green function’ 𝐺<
𝑖𝑗(𝑡) to express expecta-

tion values of many-body ‘single-particle’ operators

𝐺<
𝑖𝑗(𝑡) = i

ℏ ⟨ ̂𝑐†
𝑗(𝑡) ̂𝑐𝑖(𝑡)⟩ (1.18)

It enables writing the non-interacting many-body conservation equations of particle and particle-
carried energy. They share the same expression as the discretized one-body conservation equations
derived in Sec. 4.2.4 and can be derived by using the Heisenberg equation of motion (an equivalent
to the Schrödinger equation) on the expectation value 𝜌𝑖 = ⟨ ̂𝜌𝑖⟩ of the local many-body energy and
particle operators

𝜕𝑡𝜌𝑖(𝑡) = i
ℏ ⟨[�̂�(𝑡), ̂𝜌𝑖(𝑡)]⟩ + ⟨𝜕𝑡 ̂𝜌𝑖(𝑡)⟩

Heisenberg equation of motion (4.135)
⟹

𝜕𝑡𝜌𝑖(𝑡) + ∑𝑗 𝐼𝑖𝑗(𝑡) = 𝑆𝑖(𝑡)
Conservation equation

(1.19)

where 𝐼𝑖𝑗 is the net current flowing from site 𝑖 to site 𝑗 and 𝑆𝑖(𝑡) is the ‘source’ term. In the well-known
case of particle transport, the particle density writes 𝜌𝑖 = ⟨ ̂𝑐†

𝑖 ̂𝑐𝑖⟩ = −iℏ𝐺<
𝑖𝑖(𝑡), the particle current

writes 𝐼N
𝑖𝑗 = 2 Re[ℎ𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] ; the source term is zero as no particles are created or annihilated from
the vacuum. For the energy, the local energy density can be expressed as

𝜌𝜖
𝑖(𝑡) = ⟨ ̂ℰ𝜖

𝑖(𝑡)⟩ = ∑
𝑗

Im[𝜖𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)] (1.20)

then we use Eq. (1.19) to derive a generic expression for the local energy current 𝐼𝜖
𝑖𝑗 flowing from site

𝑖 to site 𝑗

𝐼𝜖
𝑖𝑗 = 1

ℏ ∑
𝑘

Re[𝜖𝑘𝑖𝜖𝑖𝑗𝐺<
𝑗𝑘 − 𝜖𝑘𝑗𝜖𝑗𝑖𝐺<

𝑖𝑘] (1.21)

where 𝜖𝑖𝑗 is to be replaced by the coefficients of the considered energy operator. As with the continuous
one-body approach, the derived expression of the energy current 𝐼𝜖

𝑖𝑗 is not unique but must give the
correct divergence ∑𝑗 𝐼𝜖

𝑖𝑗. The energy source term – the power given to electrons – is dependent on
the specified energy operator and write as follows for the ‘total energy’

𝑆𝜀
𝑖 (𝑡) = ∑

𝑗
−1

2𝑞 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝐼𝑁
𝑖𝑗 (𝑡) + ∑

𝑗
Im[𝜕𝑡𝜀𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] (1.22)

from which the interpretation of one term is rather straightforward

∑
𝑗

−1
2𝑞 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝐼𝑁

𝑖𝑗 (𝑡) = −𝑞∇⃗𝜙𝑖 ⋅ ⃗𝑗𝑖 (1.23)

whereas the second term needs further derivation (done in Appendix. B.3) to show that

∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)] = −𝜕𝑡 ⃗𝐴𝑖 ⋅ ⃗𝑗𝑖 (1.24)

so we show that we recover the classical input power ⃗𝑗 ⋅ ⃗𝐸 (see Eq. (1.4)), where ⃗𝐸 = −∇⃗𝜙 − 𝜕𝑡 ⃗𝐴 is
the time-dependent electric field.

16



1.2. Summary of chapter 4: theoretical framework

→ Computing lead currents Transport studies consider the following generic systems : a central
system, under the influence of a time-dependent electromagnetic field, connected to semi-infinite elec-
tron waveguides ℒ𝛼, called leads. Each lead is filled with incoming electrons that follow a thermal
distribution given by a temperature 𝑇𝛼 and chemical temperature 𝜇𝛼 (see Fig. 1.6). The main focus is
to compute the currents that hop-in and hop-out of the leads. To compute these currents using hopping
energy currents 𝐼𝜖

𝑖𝑗 and particle currents 𝐼N
𝑖𝑗, we compute the particle current flux 𝐼N

𝛼,𝑎 and energy flux
𝐼ϵ
𝛼 through a section in the lead ℒ𝛼.

Waveguide

UniformScattering
Region

Figure 1.6. – Target system for energy and particle transport. Made of a central area (‘scattering region’) 𝒞
connected to semi-infinite waveguides (‘leads’). It is under the influence of an external time dependent electro-
magnetic field, represented by the scalar potential 𝜙( ⃗𝑟, 𝑡) and the vector potential ⃗𝐴( ⃗𝑟, 𝑡). An additional static
potential energy 𝑉 is considered. Each lead ℒ𝛼 is filled with incoming electrons that follow a thermal distribu-
tion given by the temperature 𝑇𝛼 and chemical potential 𝜇𝛼.

The systems we describe are non-interacting and no relaxation process within the system are taken
into account : local temperatures and heat currents cannot be defined within the system. However, a
common hypothesis that is made in the stationary regime [16] is that each electron leaving the scat-
tering area 𝒞 with an energy 𝐸 into a lead ℒ𝛼, will eventually reach the electro-chemical reservoir of
temperature 𝑇𝛼 and chemical potential 𝜇𝛼, then undergo thermal relaxation and contribute 𝐸 − 𝜇𝛼
in heat to the thermal bath. In terms of currents, this translates to 𝐼Q,st

𝛼 = 𝐼𝜖,st
𝛼 − 𝜇𝛼𝐼N,st

𝛼 where 𝐼Q,st
𝛼

is the stationary heat current going in lead 𝛼. Defining a time-resolved lead heat current in the time
dependent regime lies within the emerging field of time-dependent non-equilibrium quantum ther-
modynamics. This field is new with ongoing research over defining a proper and definite theoretical
framework. Fundamental issues have arose with respect to the conceptual spatial separation between
the central system, the thermal baths and their coupling. In the weak coupling regime, a consistent
theory has been established [23, 52, 107, 68] whereas in the strong coupling regime, especially when the
coupling is time-dependent, defining a time resolved heat current raises a fundamental issue [31, 54, 44,
25, 143]: the part �̂�𝒞𝛼 of the system’s total Hamiltonian �̂� that couples a lead ℒ𝛼 to the central system
𝒞 is no longer negligible, can be time-dependent, and must be accounted for when one tries to define
a time-resolved heat current (the discussion exposed above, in paragraph ‘local energy operator’ p.15,
over the definition of a local energy operator also applies here). An expression to the time-resolved
lead heat current has been given by Refs. [119, 121] where the lead’s energy current includes half the
contribution of the coupling �̂�𝒞𝛼

𝐼Q,ℎ
𝛼 (𝑡) = −𝜕𝑡 ⟨ ̂�̃�𝛼 + 1

2�̂�𝒞𝛼⟩ − 𝜇𝛼𝐼N
𝛼(𝑡) ̂�̃�𝛼 = ∑

𝑖,𝑗∈ℒ𝛼

ℎ𝑖𝑗(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑗 + h.c. (1.25)
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1. Introduction and summary

This definition recovers the usual one in the stationary case where the coupling Hamiltonian �̂�𝒞𝛼,st

would not contribute (𝜕𝑡 ⟨�̂�𝒞𝛼⟩ = 0). However, issues have been raised over such a definition [54,
142] and an extra term, that involves the coupling Hamiltonian, has been suggested [81] as a remedy
but is zero in our specific description. Given that the Hamiltonian is in general not gauge dependent, we
change the Hamiltonian based definition of the heat current 𝐼Q,ℎ

𝛼 (𝑡) to a ‘total energy‘ based definition
𝐼Q
𝛼(𝑡) = 𝐼Q,𝜀

𝛼 (𝑡) (note that the two definitions coincide on time-independent leads and differ otherwise,
see Sec. 5.3.2.3)

𝐼Q
𝛼(𝑡) = 𝐼𝜀

𝛼(𝑡) − 𝑆𝜀
𝛼(𝑡) − 𝜇𝛼𝐼N

𝛼(𝑡) (1.26)
where 𝐼𝜀

𝛼(𝑡) and 𝑆𝜀
𝛼(𝑡) are respectively the lead’s energy current and input power

𝐼𝜀
𝛼(𝑡) = ∑

𝑖∈ℒ𝛼
𝑗∈𝒞

𝐼𝜀
𝑖𝑗(𝑡) 𝑆𝜀

𝛼(𝑡) = ∑
𝑖∈ℒ𝛼

𝑆𝜀
𝑖 (𝑡) (1.27)

Computing energy and heat currents farther away in the lead avoids the issue brought up by Ref. [54]
with the eventual time-dependent coupling between the central region and the leads. A Landauer-
Büttiker scattering approach similar to ours has also been employed in Ref. [24] in the special case
of slow time-dependent driving. On the contrary, our approach applies to arbitrary time-dependent
perturbations (due to an external electromagnetic field), beyond the adiabatic limit and the single-
frequency drive.

Now that the time-resolved lead currents properly defined, we highlight two shortcomings of such
an approach: (i) due to the travel time and dispersion, time resolved lead currents are dependent on
where they are computed; (ii) the heat current can theoretically only be accounted for after electrons
thermally relax within the bath. The lead is is technically not the heat bath and computing a space
and time resolved heat current within the lead is a priori ill-defined, although it can be interpreted
differently in terms of bookkeeping [47], i.e. “the amount of heat that will eventually be dissipated
later on”. To workaround these issues, we will also study time integrated lead quantities (following e.g.
Ref. [44]).

1.3. Summary of chapter 5: numerical simulation with tkwant

Our goal is to describe particle and energy (carried by the particles) currents and densities in scattering
systems in hopes to better understand mesoscopic thermoelectricity in the time dependent domain.
After having drawn up in Chapter 4 the gauge-invariant thermoelectric framework of this thesis (ex-
pressed in terms of the lesser Green’s 𝐺<

𝑖𝑗(𝑡) function of the system), we introduce in this Chapter the
numerical method (based on wavefunctions) used by tkwant, the time-dependent extension to the
simulation library of reference (kwant) in quantum transport for generic tight-binding systems (see
Fig. 1.7). Its development, initiated during the PhD thesis of B. Gaury [63], gave rise to one impor-
tant equation which links the lesser Green functions 𝐺<

𝑖𝑗(𝑡) and a specific set of system-wide one-body
wavefunctions called ‘scattering states’. This last result completes the scattering wavefunction descrip-
tion of non-interacting quantum transport. We extend tkwant to energy transport through a module
called tkwantoperator: we show that this extension enables us to effortlessly recover some of the
previous results of the literature on the extensively studied ‘Resonant level model’ but also opens the
doors to simulating complex systems beyond ‘toy’ models, such as the Quantum Point Contact.

Scattering states Defined as the Eigenstates of the system-wide (central region and leads) Hamil-
tonian ℎ̂ in the stationary regime, the ‘scattering states’ Ψ𝜆 can be extended to the time-dependent
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Lead

Scattering region

Figure 1.7 – Generic tight-binding system
that can be simulated with tkwant. It is
made of a time-dependent central scattering
area 𝒞, whose sites are colored in gray, con-
nected to time-independent leads, whose sites
are colored in red. A uniform time-dependent
scalar potential can be considered in each lead
through a time dependent phase in the hop-
pings (colored in orange) connecting each lead
to the central system, through a gauge change
(see Eq. (5.23))

non-interacting regime. To achieve, tkwant uses a clever approach : the systems that can be simu-
lated are restricted to those that are stationary until a time 𝑡0, then the time-dependence can start. This
enables tkwant to leverage kwant’s stationary computation of the eigenstates of the stationary sys-
tem, then it time-evolves them separately, one by one thanks to the non-interacting hypothesis, with
a modified version of the Schrödinger equation through the ‘source-sink’ algorithm. Given that the
leads (see Fig. 1.7) are semi-infinite, the ‘source-sink’ algorithm computes only a ‘perturbation’ over
the stationary state. Since the time-dependence only exists in the central region, this perturbation is
initially non-zero only in the central region then propagates at finite speed within the leads. As we are
not interested by what happens far in the leads, this perturbation is ‘absorbed’ starting from a certain
position in each lead and throughout a finite length, so the practical simulated size of the system re-
mains small, with respect to long simulation times, while keeping an arbitrarily good approximation
on the value of the wavefunctions in the main (non-absorbing) region.

Computing currents and densities With the ‘scattering states’ Ψ𝜆 now defined, Ref. [66] uses
them to express the lesser Green function 𝐺<

𝑖𝑗 defined in Eq. (1.18), for systems described in Fig. 1.7

𝐺<
𝑖𝑗 = i ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸)Ψ𝜆

𝑗 (𝑡)∗Ψ𝜆
𝑖 (𝑡) (1.28)

where ∑𝜆 has been used for compactness as an equivalent to ∑𝛼 ∑𝑛 ∫ d𝐸
2𝜋ℏ , which fundamentally

expresses a over all the scattering states Ψ𝜆, defined by the incoming modes 𝑛 from the leads 𝛼, injected
at energies 𝐸, where 𝐸 is a continuous degree of freedom ; 𝑓𝛼(𝐸) = 𝑓𝑇𝛼,𝜇𝛼

(𝐸) is a shorthand notation
for the Fermi function

𝑓𝑇,𝜇(𝐸) = 1
exp(𝐸−𝜇

𝑘B𝑇 ) + 1
(1.29)

with 𝑘B being the Boltzmann constant. Eq. (1.28) is the last missing piece to enable computing the
energy currents and densities exposed in Sec. 1.2.2 whose expressions have been given in terms of the
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lesser Green’s function 𝐺<
𝑖𝑗(𝑡). Thanks to Eq. (1.28), these can be readily expressed in the wave-function

formalism

𝜌𝜖
𝑖(𝑡) = ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸)∑

𝑗
Re[Ψ𝜆

𝑖 (𝑡)∗𝜖𝑖𝑗(𝑡)Ψ𝜆
𝑗 (𝑡)] (1.30)

𝐼𝜖
𝑖𝑗 = ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸) ∑

𝑘
Re[Ψ𝜆

𝑘(𝑡)∗𝜖𝑘𝑖𝜖𝑖𝑗Ψ𝜆
𝑗 (𝑡) − Ψ𝜆

𝑘(𝑡)∗𝜖𝑘𝑗𝜖𝑗𝑖Ψ𝜆
𝑖 (𝑡)] (1.31)

Both quantities can be computed with tkwant, in the same spirit as 𝜌N
𝑖 (𝑡) and 𝐼N

𝑖𝑗(𝑡) but with an
additional sum over the system sites. The electric power density 𝑆𝜖

𝑖 (𝑡) can be computed as well for
each energy operator, for the total energy operator it writes as the following

𝑆𝜀
𝑖 (𝑡) = ∑

𝑗
−1

2 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝑞𝐼𝑁
𝑖𝑗 (𝑡)

+ ∑
𝜆=𝛼,𝑛,𝐸

𝑓𝛼(𝐸) ∑
𝑗

Re[Ψ𝜆
𝑖 (𝑡)∗𝜕𝑡𝜀𝑖𝑗(𝑡)Ψ𝜆

𝑗 (𝑡)]
(1.32)

Those local quantities can eventually be summed up over space to deduce for instance subsystem ener-
gies or the lead energy currents 𝐼𝜖

𝛼,𝑎(𝑡) and the lead heat currents 𝐼Q
𝛼,𝑎(𝑡) as described in the ‘Computing

lead currents’ paragraph p. 17.

1.3.1. tkwantoperator: extension to energy transport

To calculate our newly defined energy related quantities, we have implemented a Python package,
calledtkwantoperator: it is open source and freely available, along with a complete documentation
that provides install instructions, a tutorial and a technical reference at gitlab.kwant-project.
org/kwant/tkwantoperator. The code has been published at the same time as our research
article [96]. Five Python classes have been implemented : EnergyDensity, EnergySource and
EnergyCurrentDivergence can be used for calculating respectively 𝜌𝜖

𝑖 (given by Eq. (1.30)),
𝑆𝜖

𝑖 (given in Eqs. (1.32) for 𝜖 = 𝜀), and ∑𝑗 𝐼𝜖
𝑗𝑖 over a given list of sites {𝑖}; EnergyCurrent for

calculating the current 𝐼𝜖
𝑗𝑖 (given by Eq. (1.31)) flowing through a given list of hoppings {(𝑗, 𝑖)};

LeadHeatCurrent computes the heat current 𝐼Q
𝛼,𝑎 (given by Eq. (1.26)) in a given lead ℒ𝛼. The en-

ergy quantity 𝜖 can either be the total energy ̂𝜀, the Hamiltonian ℎ̂ or a ‘custom’ operator where the user
provides the onsite matrix elements 𝜖𝑖𝑖. A code snippet showcasing the use of tkwantoperator,
along with Kwant and tkwant, is displayed in Fig. 5.7: that relatively small code snippet is sufficient
to quickly recover few results from the literature, see Sec. 5.3.2.

The calculation of the many-body expectations values of the various operators involves an integra-
tion over all the scattering states Ψ𝜆, indexed by the 𝜆 parameter (see Eq. (1.28)). Given that the evo-
lution in time of the scattering states Ψ𝜆(𝑡) is the most time-consuming task of tkwant’s algorithm,
it is crucial to use as few scattering states as possible to evaluate expectations values, while preserving
the accuracy of the computed quantities. For this purpose, a Gauss-Kronrod adaptive scheme [204] is
used when integrating the contribution of each scattering state. Moreover, the time evolution of the
scattering states can be done in parallel on multi-core computers where each core deals with a subset
of the scattering states. Both functionalities, already implemented within tkwant, are leveraged to
compute the expectation values of our energy operators.

With tkwantoperator finalized, we have performed tkwant simulations of electronic and heat
transport in the paradigmatic time-dependent Resonant Level Model (RLM), in order to validate our
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1.3. Summary of chapter 5: numerical simulation with tkwant

approach and our numerical implementation. We also report on an exploratory investigation of time-
dependent heat transport in a Quantum Point Contact (QPC) driven by voltage pulses: without dis-
cussing deeply the physics involved, we illustrate the strong potential of thetkwant, with ourtkwant-
operator module, in studying dynamical thermoelectricity and caloritronics.

1.3.2. Validation: Resonant Level Model (RLM)

The (non-interacting) time-dependent RLM has been extensively studied in the literature to simulate
dynamical charge transport (see e.g. Refs. [92, 149, 158]) and more recently dynamical energy transport
[38, 116, 55, 121, 120, 219, 44, 215, 113, 37, 51]. In chapter 5 we use this model (described Fig. 1.8) as a
test bed to benchmark our numerical approach. We consider two cases: (i) when (only) the dot onsite
Hamiltonian coefficient ℎ0(𝑡) is varied in time as ℎ0(𝑡) = 𝑉0+Δ𝑉 Θ(𝑡), Θ being the Heaviside function,
and (ii) when the time-dependent step-like perturbation is performed in the leads. We calculate the
time-dependent energy and heat currents with our numerical approach: we show that we reproduce
in the expected limits the results obtained previously in the literature.

site
indexLeft

lead
Right
lead

Scattering
area

Figure 1.8. – Tight-binding representation of the Resonant Level Model: a one-dimensional (1D) chain made
of a central site 0 connected through a nearest-neighbor hopping term 𝛾𝑐 to two semi-infinite left (𝐿, on sites
𝑖 ≤ −1) and right (𝑅, on sites 𝑖 ≥ 1) leads with uniform on-site Hamiltonian coefficients ℎL(𝑡) and ℎR(𝑡), and
a nearest-neighbor hopping term 𝛾. Each lead 𝛼 is attached from the remote past to an electronic reservoir at
equilibrium with static electrochemical potential 𝜇𝛼 and temperature 𝑇𝛼 that remain constant.

In particular, we check that we recover in case (i) the analytical results obtained within the NEGF
technique, in the so-called wide-band limit approximation: it is obtained in tkwant by doing the
following replacement and limit in the hopping coefficients 𝛾 and 𝛾𝑐 [37]

𝛾 → 𝜆𝛾, 𝛾𝑐 →
√

𝜆𝛾𝑐 and 𝜆 → ∞ (1.33)

which keeps the ratio Γ = 2𝛾2
𝑐/𝛾 constant. The perfect match between analytics and numerics is

illustrated in Fig. 1.9 where we have plotted the time-resolved heat current in e.g. the left lead (given
by Eq. (1.26))

𝐼Q
𝐿(𝑡) = −𝜕𝑡 ⟨�̂�𝐿⟩ − 𝜇𝐿𝐼N

𝐿(𝑡) (1.34)

and compare it to the one obtained within the NEGF formalism under the wide-band limit approxima-
tion (see Appendix C.1 for a derivation). A similar comparison is done for the particle current 𝐼𝑁

𝐿 (𝑡) and
for an alternative heat current ̃𝐼Q

L (𝑡) with the Hamiltonian ̂�̃�L that does not include the contribution
of the lead-dot tunneling Hamiltonian �̂�0𝐿 (modified version of Eq. (1.26) without �̂�𝒞𝛼 )

̃𝐼Q
𝐿(𝑡) = −𝜕𝑡 ⟨ ̂�̃�L⟩ − 𝜇L𝐼𝑁

L (𝑡) (1.35)
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Figure 1.9. – Adapted from our published article [96]: (a) Left particle current 𝐼𝑁
𝐿 , (b) left heat currents 𝐼Q

𝐿
and (c) ̃𝐼Q

𝐿 , as a function of time 𝑡, for the 1D RLM defined Fig. 1.8, when the dot energy level is modified as
ℎ0(𝑡) = 𝑉0 + Δ𝑉 Θ(𝑡) (inset of panel (a)). Units of the 𝑥 and 𝑦 axes are indicated in brackets. In all panels,
data are computed numerically with tkwant+tkwantoperator for different values of 𝜆𝛾/Γ (1 (red lines),
6.25 (green lines), and 100 (black lines). The horizontal dashed lines plotted for 𝜆𝛾/Γ = 1 (in red) and 100 (in
black) correspond to the static limits at large times Γ𝑡/ℏ ≫ 1 given by the Landauer-Büttiker formulas (see Sec.
5.2.3.2). When 𝜆𝛾/Γ ≫ 1, the tkwant results converge to the NEGF results (circles) derived in the wide-band
limit (Appendix C.1). Inset of panel (c): comparison of 𝐼𝑄

𝐿 (𝑡) (red dashed line, given by Eq. (1.34)) and ̃𝐼𝑄
𝐿 (𝑡)

(black line, given by Eq. (1.35)) in the wide-band limit. In all panels, ℎ0 = 0.5Γ, Δ𝑉 = 2.5Γ, ℎ𝐿(𝑡) = ℎ𝑅(𝑡) = 0,
𝑇𝐿 = Γ/𝑘𝐵, 𝑇𝑅 = 0, 𝜇𝐿 = 0.5Γ, and 𝜇𝑅 = −0.5Γ. The NEGF curves are independent of Γ. The tkwant curves
are functions of 𝜆𝛾/Γ and not of the three parameters 𝜆, 𝛾, and Γ taken separately.

Such a definition of the heat current was considered in e.g. Refs.[38, 219].

We have also benchmarked our numerical results against the ones obtained in Ref. [49] in the case
(ii) defined above. Finally, we have also checked that in the long time limit Γ𝑡/ℏ → ∞, the tkwant
particle and heat currents converge to the static limits given by the Landauer-Büttiker formulas (hori-
zontal dashed lines in Fig. 1.9), as expected.

1.3.3. Going further: Quantum Point Contact

To illustrate the potential of our tkwant based numerical approach, we also report in Chapter 5 on
simulations of dynamical (electronic) heat transport in a QPC attached to two reservoirs held at different
temperatures. We focus on the possibility of extracting heat from the cold reservoir by Peltier effect
and ask whether or not Peltier cooling may be enhanced by applying time-resolved voltage pulses to
one of the two electrodes attached to the QPC (instead of a constant voltage bias across the system). We
consider a nano-ribbon of length 𝐿 and width 𝑊 connected through semi-infinite leads to two left (𝐿)
and right (𝑅) electronic reservoirs maintained at temperatures 𝑇𝐿 ≲ 𝑇𝑅 and chose the electrochemical
potentials 𝜇𝐿 ≳ 𝜇𝑅 (see Fig.1.10 (a)) so that the stationary transmission 𝑇 (𝐸) is midway of a step
𝑇 (𝐸 = 𝜇𝑅) ≈ 0.6 and 𝐼Q

L (𝑡 ≤ 0) = 0. The system is discretized on a square lattice (with lattice spacing
𝑎 = 1). For times 𝑡 < 0, no time-dependent perturbation is applied and starting 𝑡 ≥ 0, we apply in the
left lead a Gaussian voltage pulse 𝑉𝐿(𝑡) of width 𝜏𝑝, amplitude 𝑉𝑝 and center 3𝜏𝑝. Therefore, the system
Hamiltonian becomes �̂�(𝑡 > 0) = �̂�0 + ∑𝑖∈𝐿 𝑉𝐿(𝑡) ̂𝑐†

𝑖 ̂𝑐𝑖, where �̂�0 is the stationary Hamiltonian.

Using tkwant along with our tkwantoperator extension [3] we compute the time-resolved
particle current 𝐼𝑁

𝐿 (𝑡) and heat current 𝐼Q
L (𝑡) in the left lead for different pulse parameters (𝜏𝑝, 𝑉𝑝)

with a fixed pulse time-integral (to conserve the total number of dynamically injected electrons in the
left lead). The tkwant currents are compared to the adiabatic currents 𝐼𝑁, ̄𝑠𝑡

𝐿 (𝑉𝐿(𝑡)) and 𝐼𝐻, ̄𝑠𝑡
𝐿 (𝑉𝐿(𝑡))

given by the Landauer-Büttiker formulas (see Sec.5.2.3.2). For small 𝜏𝑝 (short pulses, see panel (b)), the
particle current 𝐼𝑁

𝐿 (𝑡) shows a first positive peak centered around 3𝜏𝑝 corresponding to the injected
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pulse and some time later, a second negative peak corresponding to the reflected part of the pulse. They
contribute to two main negative peaks in the heat current 𝐼Q

L (𝑡). For long pulses, the tkwant currents
converge to the adiabatic currents characterized by a single peak centered at 3𝜏𝑝. We find that heat can
be extracted from the cold reservoir (∫ d𝑡 𝐼𝐻

𝐿 (𝑡) > 0) only in the limit of long pulses and, within the
set of parameters we chose, the time-integral of non-adiabatic heat current is consistently lower than
its adiabatic counterpart ∀𝜏𝑝 ∫ d𝑡 𝐼𝐻

𝐿 (𝑡) ≤ ∫ d𝑡 𝐼𝐻, ̄𝑠𝑡
𝐿 (𝑉𝐿(𝑡)). Thus, the application of short voltage

pulses involving a non-adiabatic response of the quantum system turns out to be detrimental to Peltier
cooling, at least for the set of parameters considered here. The present preliminary investigation shows
the feasibility of further studies.

real
result

if adiabatic

Figure 1.10. – (a) QPC discretized model. The site color in the central region encodes the value of the QPC
potential (from 0 (white) to larger values (shades of blue)). A few layers of the left and right semi-infinite leads
are shown in red. A voltage pulse 𝑉𝐿(𝑡) is applied in the left lead, currents are evaluated at the interface shown
by a dashed blue line. (b) Left particle current 𝐼𝑁

𝐿 (in blue, in units of 100𝛾/ℎ) and left heat current 𝐼𝐻
𝐿 (garnet-

colored, in units of 𝛾2/ℎ) as a function of time 𝑡 (in units of ℏ/𝛾), for a voltage pulse of width 𝜏𝑝 = 100 ℏ/𝛾. Full
lines are tkwant results, dashed lines are Landauer-Büttiker adiabatic results. Parameters: 𝑊 = 18, 𝐿 = 48,
𝑙𝑥 = 50, 𝑙𝑦 = 5, 𝜇𝐿 = 0.20607𝛾, 𝜇𝑅 = 0.2𝛾, 𝑇𝐿 = 0.018𝛾/𝑘𝐵, 𝑉𝑝 = 0.2 and 𝑇𝑅 = 0.02𝛾/𝑘𝐵.

The naive approach in trying to ‘boost’ the Peltier cooling of a QPC by simply adding the time-
dependent ingredient is inconclusive and simply highlights that the effects at play are more complex
to grasp. Therefore, in the next chapter, we go back to the Resonant Level Model where analytical
expressions can be obtained more easily, in an effort to understand better the effects at play.

1.4. Summary of chapter 6: numerical and semi-analytical
study of the RLM

This chapter is dedicated to the study of the (non-interacting) time-dependent Resonant Level model. It
is a simple system made of a single energy level that can be driven in time, connected to two heat baths,
where electrons can hop in and hop out (see Fig. 1.8). Our goal is to achieve a better understanding
of the effect of time-dependent drive of the single energy level: Zhou et al. [219] reports a boost of
the thermoelectric efficiency of the model, when setup in an electric generator configuration, when
the energy level undergoes ‘fast’ driving. Using the definitions taken in that reference, we reproduce
within our own approach the reported results: it enabled us to further validate our approach then to
better understand the limitations of the used method and definitions. Then, we use the wavefunction
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1. Introduction and summary

approach introduced in Chapter 5 to perform an analytical derivation of the transport quantities (the
particle/energy/heat current and the driving power) under an arbitrary drive of the dot, in the wideband
limit (see Eq. (1.33)). We obtain generic formulas for all the transport quantities, which take the form
of integrals over the energy (weighted by the Fermi functions) of various terms written as a function
of the transmission amplitude of the model. We follow by a joint semi-analytical (we integrate our
analytical formulas) and numerical (using tkwant+tkwantoperator) study with a rectangle-like
drive of the dot, where we take into account the system-bath coupling term (see Sec. 1.2.2).

To define a heat generator efficiency in the driven regime, one must account for the driving input
power, and its effect, in the energy bill. On the other hand, defining an efficiency involves a distinction
between what is the ‘useful energy’ and what is the ‘spent energy’, and this distinction becomes rather
blurry and delicate in the time-dependent regime. We define what we believe is a physically inter-
pretable efficiency, different from that of Ref. [219]. After validating the match between the numerical
and the semi-analytical approaches, we use the latter to perform an automated exploration of various
parameters in search of an eventual advantage in the driven regime. Among the tested few hundreds
of thousands of points in phase space, many show promising behavior with an improved efficiency in
the transient regime but converges back to a lower value at long times, close to its stationary value
(see left panel of Fig. 1.11). The same behavior can be observed if the rectangular drive is periodically
repeated (see right panel of Fig. 1.11).

Figure 1.11. – An improved transient efficiency of the RLM. When the dot level is driven by a rectangle function,
the particle and heat currents can behave in such a way that the efficiency 𝜂(𝜏) (defined in Eq. (6.74), under the
assumptions stated Sec. 6.3.3) is temporarily improved. The left panel is the resulting efficiency of a single pulse
whereas the right panel is the resulting efficiency of the same pulse, periodically cycled with a period 𝜏𝑝. Both
curves are plotted in the inset of the right panel to show they coincide till 𝜏 = 𝜏𝑝. We notice that this has the
effect of delaying the return to a lower efficiency but does not seem to maintain a steady-state improvement.
Both curves have been obtained through tkwant+tkwantoperator simulations. This result is reminiscent
of the reported results of Ref. [178] on a Peltier cooler. Simulation parameters (energies are in units of Γ, times
are in units of ℏ/Γ): 𝑇L = 87, 𝑇R = 25, 𝜇L = −26, 𝜇R = 26, 𝑉0 = 55, Δ𝑉 = 2, Δ𝑡 = 0.08, 𝑡0 = 0.1, 𝜏𝑝 =
0.11, 𝑤𝑏 = 400, 𝛾 = 1.

Other limitations of such a behavior are yet to be studied as e.g. electronic interaction is not factored
in and may change the picture. More complex models can be investigated for which our extension to
tkwant comes in handy as it renders possible such explorations.
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2. Résumé substantiel en français

Ce dernier siècle est marqué par une accélération rapide du réchauffement climatique (voir Fig. 2.1a)
et cela est du à nos besoins toujours grandissants en énergie (voir Fig. 2.1b). La recherche actuelle
tente d’améliorer le rendement de nos procédés d’extraction et de transformation de l’énergie, tout
en réduisant leur empreinte écologique. Une loi fondamentale de la physique est la conservation de
l’énergie : elle ne fait que changer de forme ; de plus, le deuxième principe de la thermodynamique
stipule que du “travail” ne peut être extrait que de systèmes hors-équilibre, par exemple ceux exhibant
un flux naturel de chaleur entre une partie “chaude” vers une partie plus “froide”. Ceci impose une borne
supérieure à la quantité de “travail” qui peut être extraite de tels systèmes, via le rendement universel
de Carnot.

(a) Adapté de [212] : Accélération du réchauffe-
ment climatique. “Si la terre chauffe de 2 ℃ — la
température limite définie lors de l’accord de Pa-
ris sur le climat en 2015 — deux fois plus de per-
sonnes subiront les problèmes liés au stress hy-
drique par rapport à un réchauffement de 1.5 ℃.
Ce demi-degré additionnel exposera aussi 1.5 mil-
liard de personnes à des extrema de température
mortels, et des centaines de millions feront face à
des maladies à transmission vectorielle telles que
la malaria, parmi d’autres maladies.”
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(b) Adapté de [209]. Évolution de la consommation énergé-
tique depuis 1990. La consommation énergétique mondiale a
augmenté de manière stable avec une moyenne de 2%/an entre
2000 et 2018. La consommation mondiale a augmenté de plus
de 50% par rapport à 1990. Un ralentissement de 0.8% a été en-
registré en 2019 et une diminution de 4% en 2020, tous deux
attribués à la pandémie de COVID-19.

Fig. 2.1. – Une consommation énergétique et un réchauffement climatique accélérés

La thermoélectricité dans ce contexte offre une façon différente de réaliser des moteurs thermiques
et réfrigérateurs. Une partie des recherches actuelles en thermoélectricité s’inscrit dans le domaine
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2. Résumé substantiel en français

de la physique mésoscopique, où les effets quantiques sont explorés tels que la nano-structuration,
la manipulation des défauts ou l’ingénierie la structure de bandes [214]. La vaste majorité des études
en thermoélectricité ont été faites dans le régime stationnaire, utilisant le formalisme bien établi de
Landauer-Büttiker comme outil théorique. Une nouvelle vague de recherches a commencé à investi-
guer les régimes dépendant du temps, loin de l’équilibre. Cette vague s’inscrit dans le cadre plus général
de la thermodynamique quantique, un domaine encore à ses balbutiements dans lequel on cherche à
établir une formulation générale (à tout régime) et unifiée. La littérature dans le domaine de la thermo-
électricité mésoscopique hors équilibre s’avère être essentiellement théorique et limitée à des modèles
jouets. Étudier analytiquement des systèmes plus complexes dans le régime quantique dépendant du
temps s’avère être difficile et seule la simulation semble être viable : les recherches déjà publiées sont
principalement théoriques sur des modèles jouets. Sur le plan numérique, la publication en 2021 (après
plusieurs années de développement) de la bibliothèque tkwant – extension de kwant, la librairie de
simulation de référence pour le transport quantique – marque une étape importante dans le domaine du
transport quantique dépendant du temps car elle ouvre la voie à l’investigation de systèmes complexes,
difficiles à explorer auparavant. tkwant est cependant seulement limité au transport de particules.

Les phénomènes émergents dans ce régime sont encore pour la plupart inconnus et/ou non maîtri-
sés théoriquement : les concepts de la thermodynamique classique tels que le “travail” et la “chaleur”
s’avèrent être difficiles à appréhender. Les définitions proposées sont encore débattues et utilisent des
outils théoriques qui viennent de différents domaines de la physique, si bien que l’équivalence entre
ces différentes approches est encore à démontrer. Des études théoriques préliminaires [38, 219] vont
jusqu’à prédire une amélioration des propriétés thermoélectriques dans le régime transitoire. Cette
thèse intervient dans ce contexte et a pour objectif d’apporter de nouvelles réponses quant au rôle du
contrôle dépendant du temps dans les systèmes thermoélectriques mésoscopiques (quantiques).

Pour décrire le transport d’énergie dans des systèmes ouverts d’électrons, de manière quantique et
sous l’influence de champs électromagnétiques dépendant du temps, on construit un cadre théorique
invariant de jauge qui se base sur la recherche actuelle sur le transport quantique de particules. Notre
approche est semi-classique : les champs électromagnétiques sont décrits par les équations (classiques)
de Maxwell, tandis que les électrons sont décrits par l’équation (quantique) de Schrödinger, en né-
gligeant l’interaction entre électrons. On utilise ensuite ce cadre pour étendre tkwant au transport
d’énergie, grâce à un module qu’on a nommé tkwantoperator, permettant in fine de traiter des
modèles thermoélectriques complexes et dépendant du temps. De tels modèles peuvent modéliser une
large gamme de systèmes mésoscopiques qui dépassent les modèles jouets. On illustre alors la puis-
sance de tkwant+tkwantoperator en investiguant brièvement l’effet Peltier dynamique dans le
contact ponctuel quantique bidimensionnel, pour ensuite revenir vers le très étudié modèle (jouet) du
niveau résonnant et tenter d’avoir une compréhension plus fondamentale des phénomènes en jeu : on
utilise notre approche, dans ses déclinaisons analytique et numérique, pour obtenir une vision plus
claire du potentiel de la thermoélectricité dépendante du temps dans des ‘points’ quantiques.

2.1. Résumé du chapitre 3 : vue d’ensemble et motivations

Dans ce chapitre, on expose une brève vue d’ensemble de l’historique de la thermoélectricité puis des
développements et challenges actuels dans le domaine : la question des effets quantiques est discutée
ainsi que celle de l’émergence d’un courant de recherche plus général ayant pour but de construire une
théorie de thermodynamique quantique.
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2.1. Résumé du chapitre 3 : vue d’ensemble et motivations

2.1.1. Thermoélectricité stationnaire

Les dispositifs thermoélectriques dans le régime stationnaire ont été étudiés de façon exhaustive
dans les soixante-dix dernières années. Un nombre caractéristique 𝑧𝑇 , appelé ‘facteur de mérite’, a été
introduit afin de pouvoir comparer différents matériaux et dispositifs thermoélectriques. Ce nombre
caractérise aussi bien les réfrigérateurs que générateurs thermoélectriques

𝑧𝑇 = 𝜎𝑆2

𝜅e + 𝜅ph
𝑇 (2.1)

où 𝑇 est la température (absolue) moyenne de fonctionnement (la réponse linéaire est supposée pour
les réservoirs chaud et froid), 𝑆 est le coefficient Seebeck, 𝜎 la conductivité électrique, 𝜅e et 𝜅ph res-
pectivement la conductivité thermique due aux électrons et aux phonons. L’expression du facteur de
mérite illustre les difficultés liées à sa maximisation : les coefficients 𝑆, 𝜎 et 𝜅 sont fortement liés à
la densité de charges, à la diffusion des charges, et à la structure de bandes [145] ; la contribution de
chaque coefficient au sein du facteur de mérite est en compétition avec les autres. Plus le facteur de
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Fig. 2.2. – Extrait de [197]. Comparaison du rendement réel des procédés de conversion utilisés dans les centrales
électriques avec les rendement théoriques des thermoélectriques. Les dispositifs thermoélectriques actuellement
commercialisés ne sont pas compétitifs, mais si leur facteur de mérite 𝑧𝑇 arrivait à atteindre ∼ 3 alors ils seraient
une alternative viable pour certaines applications.

mérite 𝑧𝑇 d’un dispositif thermoélectrique est haut, plus son rendement est élevé (voir Fig. 2.2) : une
valeur 𝑧𝑇 ≳ 3 doit être atteinte pour que des dispositifs thermoélectriques soient adoptés à grande
échelle pour de la conversion électrique et réfrigération [191]. La valeur du facteur de mérite des ré-
frigérateurs et générateurs thermoélectriques disponibles à l’achat est actuellement aux alentours de
𝑧𝑇 ≈ 1 ce qui restreint leur applicabilité.

2.1.2. Thermoélectricité dépendante du temps à l’échelle mésoscopique

La thermoélectricité proche de l’équilibre, dans le régime stationnaire, est relativement bien com-
prise et décrite de manière satisfaisante par la théorie [75, 16]. Cependant, la description théorique
devient plus complexe quand les systèmes sont poussés loin de l’équilibre par de grandes tensions
électrochimiques, températures ou à travers un contrôle temporel ‘rapide’. L’un des objectifs des re-
cherches actuelles dans le domaine est d’établir une théorie de la thermodynamique dans les systèmes
mésoscopiques (quantiques) dépendant du temps : une description locale en température et courants
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2. Résumé substantiel en français

de chaleur est difficile voire impossible, en particulier quand un contrôle dépendant du temps non
quasi-statique est à prendre en compte. Des études théoriques récentes prédisent une amélioration des
propriétés thermoélectriques sur des modèles de ‘points quantiques’ [38, 219] (voir Fig 2.3), mais la
physique sous-jacente reste incomprise. De plus, ces études ne permettent pas de se prononcer sur
le cas de systèmes plus réalistes. D’un autre côté, l’expérimentation a fait de grands progrès dans le
domaine de la nanoélectronique haute fréquence, ce qui laisse envisager des expériences futures de
thermoélectricité dépendante du temps dans ces systèmes.
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Fig. 2.3. – Adapté de [219] : “Booster le rendement avec un contrôle dépendant du temps”. Le modèle du niveau
résonnant, un système à niveau unique connecté à deux réservoirs thermiques (avec un taux Γ), voit son rende-
ment en générateur électrique multiplié par 4, par rapport au régime stationnaire, pendant le régime transitoire,
quand le niveau d’énergie 𝜀0 (initialement à 0.5Γ) subit un saut abrupt de Δ𝑉 = 0.2Γ (courbe noire), 0.3Γ
(courbe rouge) et 0.5Γ (courbe bleue).

Défis théoriques en thermodynamique quantique La théorie de la thermodynamique a pour
but de décrire simplement, avec un petit nombre de paramètres physiquement interprétables à notre
échelle, des systèmes à grand nombre de degrés de liberté microscopiques. Pour atteindre une telle
simplification, une moyenne est effectuée sur les degrés de liberté, le temps et l’espace. La théorie
(classique) de la thermodynamique se résume par trois postulats fondamentaux : (i) l’énergie est une
grandeur qui se conserve ; (ii) l’entropie du système considéré et son environment ne peut qu’augmen-
ter (entre deux états à l’équilibre) ; (iii) un système ne peut atteindre le zero absolu en température en
un temps fini. Le rendement de Carnot 𝜂𝐶 = 1−𝑇C/𝑇H, où 𝑇H et 𝑇𝐶 sont les températures respectives
du réservoir chaud et froid, est l’une des grandeurs les plus connues en thermodynamique : aucune
machine thermique cyclique, quelque soit son fonctionnement interne, ne peut avoir un rendement
𝜂 = 𝑊/𝑄H supérieur au rendement de Carnot 𝜂𝐶 , où 𝑊 et 𝑄H sont les moyennes sur un cycle du
travail produit par la machine et de la chaleur perdue par le réservoir chaud.

La physique quantique traite les systèmes dont la taille est inférieure à la limite thermodynamique
classique, où des effets quantiques entrent en jeu tels que l’interférence et l’intrication. Des premiers
travaux ont prédit que les lois classiques de la thermodynamique sont violées dans le monde quan-
tique, comme le second principe cité plus haut [219, 72, 7, 58]. Des recherches ultérieures, discutées
(entre autres) dans les références [107, 68, 198], ont construit une première formulation d’une théo-
rie quantique de la thermodynamique, utilisant l’approche des équations maîtresses de Lindblad avec
l’hypothèse markovienne (voir Sec. 3.3.3 plus bas) : ces recherches montrent qu’aucune violation n’a
lieu et que les lois classiques sont retrouvées dans certains modèles [70, 71, 156]. La thermodynamique

28



2.1. Résumé du chapitre 3 : vue d’ensemble et motivations

quantique en est encore à ses débuts : un consensus est reste à être atteint sur les définitions du ‘travail’
et de la ‘chaleur’, la recherche est en cours pour construire une description cohérente où l’équivalence
(ou la différence) des différentes approches théoriques développées est comprise et démontrée.

2.1.3. Revue des approches théoriques

Dans la suite du chapitre 3, on expose brièvement les principales techniques théoriques utilisées pour
décrire le transport quantique dépendant du temps des électrons, et de l’énergie qu’ils transportent,
dans des systèmes mésoscopiques. Le contrôle dynamique (i.e. dépendant du temps) rend le trans-
port inélastique et complexifie considérablement le problème. Plusieurs techniques ont été développées
avec différents degrés d’approximation et de complexité (inhérente à chaque outil) : le formalisme des
Fonctions de Green Hors-Équilibre, la théorie de la diffusion (dépendante du temps), les approches à
équation maîtresse ou la théorie de la fonctionnelle de la densité dépendante du temps. Ces approches
peuvent être combinées avec l’approche de Floquet dans le cas d’un contrôle périodique. Dans cette
thèse, on se concentre sur la théorie de la diffusion qui se base sur les fonctions d’onde, utilisée dans la
bibliothèque tkwant.

Théorie de la diffusion La théorie de la diffusion s’applique à des électrons sans interaction (l’inter-
action à champ moyen peut néanmoins être prise en compte). Elle décrit des systèmes composés d’une
région centrale, appelée région de diffusion, connectée à des guides d’onde qui mènent vers différents
réservoirs thermiques (voir Fig. 2.4)

Fig. 2.4. – Illustration de l’approche par diffusion. Un système central, appelé région de diffusion, est connecté à
différents réservoirs thermiques ℬ par des guides d’onde. Des électrons quittent chaque réservoir ℬ𝛼, avec des
énergies 𝐸 suivant une distribution thermique, pour se diriger vers la région de diffusion à travers les guides
d’onde. Les électrons entrant dans la région de diffusion interfèrent et subissent diverses réflexions en son sein
puis sont finalement transmis via les guides d’onde vers les divers réservoirs ℬ𝛽, soit a) avec la même énergie 𝐸
dans le régime stationnaire, avec une probabilité 𝑇𝛼𝛽(𝐸), soit b) avec une énergie 𝐸′ a priori différente dans le
régime dépendant du temps, avec une probabilité 𝑇𝛼𝛽(𝐸, 𝐸′).

Chaque réservoir thermique remplit les modes incidents (vers la région de diffusion) des guides
d’onde suivant une distribution thermique, le système central quant à lui affecte quels modes sortants
sont remplis. Dans cet approche les réservoir thermiques ne sont pas affectés par les électrons qui leur
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reviennent : leur température et potentiel chimique restent constants. Un électron, représenté par une
fonction d’onde (voir 4.2.1.1), quitte un réservoir thermique 𝛼 pour ensuite entrer dans la région de
diffusion, avant d’être finalement réfléchis/transmis dans un réservoir thermique 𝛽 avec une probabi-
lité 𝑇𝛼𝛽. Les probabilités 𝑇𝛼𝛽 peuvent être calculées en résolvant l’équation de Schrödinger, dans les
régimes stationnaire et dépendant du temps, et cela permet d’écrire les courants nets de particules et
d’énergie quittant chaque guide d’onde 𝛼. Il est à noter que le calcul de ces probabilités peut être omis
dans une approche numérique (du type tkwant) qui calcule les fonctions d’onde directement. On uti-
lisera cette théorie tout au long de cette thèse, une description plus complète est faite dans la section
5.1 (en anglais). Une revue du développement original de la théorie de diffusion de particules est faite
dans la Réf. [20].

Réponse linéaire Une approche complémentaire, qui peut être utilisée conjointement avec la théorie
de la diffusion, est celle de la réponse linéaire. Dans un système à deux réservoirs ‘gauche’ 𝐿 et ‘droit’
𝑅 (voir Fig. 2.5), cette approche est valide quand le biais en température Δ𝑇 = 𝑇L − 𝑇R et en potentiel
chimique Δ𝜇 = 𝜇L − 𝜇R sont petits par rapport à leur valeur moyenne.

Fig. 2.5 – Représentation d’un système thermoélec-
trique à deux terminaux. Connecté à deux réservoirs
– gauche (L) et droit (R) – le système est traversé par
des courants de chaleur 𝐼Q

𝛼 et de particules 𝐼N
𝛼 qui

partent d’un réservoir 𝛼 =L,R à l’autre.

system

Dans le régime stationnaire, on considère sans perte de généralité les courants nets de particules
𝐼N

L et chaleur 𝐼Q
L dans le guide d’onde de gauche. et de chaleur . Ils sont connectés aux biais Δ𝑉 /𝑇

(Δ𝑉 = Δ𝜇/𝑒) et Δ𝑇/𝑇 2 par la matrice d’Onsager L[29, 76]
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QQ
]

⏟⏟⏟⏟⏟
L

[ Δ𝑉 /𝑇
Δ𝑇/𝑇 2] (2.2)

où 𝐿AB (A,B=N,Q) sont les coefficients d’Onsager. Cette approche a été étendue au régime périodique et
lentement dépendant du temps (i.e. quasi-statique) dans la Réf. [118], l’approche de la réponse linéaire
est utilisée dans le régime non quasi-statique et il est observé que les coefficients d’Onsager étendus
à ce régime violent des contraintes liées au second principe (vérifiées dans le régime stationnaire). On
montre cependant dans la section 6.1 qu’une matrice d’Onsager résolue en temps n’est pas unique et
ne peut donc pas être utilisée telle quelle dans des considérations physiques.

2.2. Résumé du chapitre 4 : fondements théoriques

Dans ce chapitre, on construit une théorie locale du transport quantique d’électrons sans interaction
et de l’énergie qu’ils transportent, sous l’influence d’un champ électromagnétique dépendant du temps.
Premièrement, on passe brièvement en revue l’approche classique équivalente pour exposer certaines
idées qu’on transférera vers notre description quantique. Ensuite, on introduit la théorie du transport
quantique d’un seul électron, décrit par une fonction d’onde, dans l’espace continu et discret. Fina-
lement, on généralise cette approche à un électron à plusieurs électrons sans interaction. Ce chapitre
établit la théorie de transport thermoélectrique quantique, dont la partie énergétique sera implémentée
dans tkwant dans le chapitre 5.
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2.2. Résumé du chapitre 4 : fondements théoriques

2.2.1. Électrodynamique classique

L’approche classique du transport de charge sous l’influence d’un champ électromagnétique est de
décrire le mouvement de particules chargées par la mécanique classique, en utilisant l’une des ap-
proches équivalentes parmi la mécanique Newtonienne, Lagrangienne ou Hamiltonienne ; et de décrire
le champ électromagnétique et son interaction avec la matière chargée par les équations de Maxwell.
Ces dernières équations décrivent les relations entre le champ électrique ⃗𝐸( ⃗𝑟, 𝑡), le champ magnétique
�⃗�( ⃗𝑟, 𝑡), la densité locale de charge 𝜌( ⃗𝑟, 𝑡) et la densité locale de courant de charge ⃗𝑗( ⃗𝑟, 𝑡). Les équations
de Maxwell impliquent une relation de conservation de la charge

𝜕𝑡𝜌( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗( ⃗𝑟, 𝑡) = 0 (2.3)

mais aussi de l’énergie, à travers l’équation de Poynting

𝜕𝑡𝑢EM + ∇⃗ ⋅ ⃗𝜋 = − ⃗𝑗 ⋅ ⃗𝐸 (2.4)

où − ⃗𝑗 ⋅ ⃗𝐸 est la puissance cédée localement aux charges, 𝑢EM = (𝜀0𝐸2 + 1
𝜇0

𝐵2)/2 est l’énergie électro-
magnétique locale et ⃗𝜋 = ⃗𝐸×�⃗�/𝜇0 est le vecteur de Poynting, i.e. le champ décrivant le flux d’énergie
transportée par la lumière. La dérivation de l’équation de conservation d’énergie (2.4) met en avant un
degré de liberté intrinsèque quant à la définition de ⃗𝜋 : un problème analogue sera rencontré quand on
tentera de définir le courant d’énergie transportée par des particules quantiques.

Invariance de jauge En mécanique Hamiltonienne (classique [141] et quantique [111]), l’effet du
champ électromagnétique sur la matière chargée est décrit à travers des ‘potentiels’ : le potentiel scalaire
𝜙( ⃗𝑟, 𝑡) et le potentiel vecteur ⃗𝐴( ⃗𝑟, 𝑡). Leur relation au champ électromagnétique ( ⃗𝐸, �⃗�) est la suivante

⃗𝐸 = −∇⃗𝜙 − 𝜕𝑡 ⃗𝐴
�⃗� = ∇⃗× ⃗𝐴

(2.5)

Cette relation met en évidence la non-unicité des potentiels : un champ scalaire arbitraire Λ( ⃗𝑟, 𝑡) peut
être utilisé pour définir des potentiels différents. En ajoutant sa dérivée temporelle 𝜕𝑡Λ au potentiel
scalaire 𝜙( ⃗𝑟, 𝑡) et en soustrayant son gradient ∇⃗Λ au potentiel vecteur ⃗𝐴( ⃗𝑟, 𝑡), le champ électroma-
gnétique ( ⃗𝐸, �⃗�) reste invariant d’après l’Eq. (2.5).

∀Λ( ⃗𝑟, 𝑡), {
⃗𝐴′ = ⃗𝐴 − ∇⃗Λ

𝜙′ = 𝜙 + 𝜕𝑡Λ
⟹ {

⃗𝐸′ = ⃗𝐸
�⃗�′ = �⃗�

(2.6)

Étant donné que l’interaction entre le champ électromagnétique et la matière chargée est classiquement
décrite à travers les champs ( ⃗𝐸, �⃗�) et non les potentiels, la physique reste invariante après un tel
changement sur les potentiels. La transformation donnée par l’Éq. (2.6) est appelée ‘transformation de
jauge’.

Énergie mécanique : le problème de la dépendance temporelle Quand on considère une parti-
cule chargée classique sous l’influence d’un champ électromagnétique dépendant du temps, la définition
usuelle de l’énergie mécanique – la somme de l’énergie cinétique et de l’énergie potentielle associée au
potentiel scalaire 𝜙 – devient dépendante de la jauge considérée comme on peut le voir dans l’équation
suivante :

d𝑡𝑈 = d𝑡 [1
2𝑚 ̇⃗𝑟2(𝑡) + 𝑞𝜙( ⃗𝑟(𝑡), 𝑡)] = 𝑞𝜕𝑡𝜙( ⃗𝑟(𝑡), 𝑡) − 𝑞𝜕𝑡 ⃗𝐴( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡) (2.7)
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Cela rend la définition de l’énergie mécanique, originellement dans le stationnaire, non acceptable dans
le cas dépendant du temps : cette problématique apparaît en physique quantique aussi, si l’on considère
l’Hamiltonien comme un opérateur d’énergie.

2.2.2. Électrodynamique semi-classique

Dans la section précédente, on a parcouru les bases de l’électrodynamique classique, en nous focali-
sant sur le transport de charge et d’énergie. Dans le cadre de cette thèse, le comportement des électrons
est décrit par la mécanique quantique. Dans ce domaine, le transport de particules est connu et traité
dans les livres de référence ; le traitement du transport d’énergie quant à lui reste marginal, en parti-
culier par rapport à l’invariance de jauge : on remet au goût du jour une telle approche à travers une
description complète du transport d’énergie avec une équation de conservation invariante de jauge.

Mécanique quantique à un corps En mécanique quantique, à chaque instant 𝑡, les propriétés phy-
siques d’un électron (énergie, position, quantité de mouvement [56, Chap. 21-3], moment angulaire…)
peuvent toutes être calculées à partir de la ‘fonction d’onde’ 𝜓( ⃗𝑟, 𝑡). L’équation d’évolution de la fonc-
tion d’onde est donnée par l’équation de Schrödinger

iℏ𝜕𝑡𝜓( ⃗𝑟, 𝑡) = ℎ̂[𝜓]( ⃗𝑟, 𝑡) (2.8)

L’équation de Schrödinger admet plusieurs solutions qui forment un espace vectoriel, cela met en place
la description mathématique de la ‘superposition quantique’ : une particule peut être dans une super-
position linéaire de telles solutions.

L’Hamiltonien ℎ̂ est l’équivalent quantique de ‘l’énergie mécanique’ : la somme de l’énergie ciné-
tique ̂𝜅, de l’énergie potentielle associée au potentiel (scalaire) électrique 𝑞 ̂𝜙[𝜓] = 𝑞𝜙( ⃗𝑟, 𝑡) 𝜓 et d’une
éventuelle énergie potentielle additionnelle 𝑉 ( ⃗𝑟)

ℎ̂[𝜓] = ̂𝜅[𝜓] + 𝑞 𝜙( ⃗𝑟, 𝑡) 𝜓 + 𝑉 ( ⃗𝑟)𝜓 (2.9)

→ Transport dynamique de particules La densité locale de courant ⃗𝑗𝜓( ⃗𝑟, 𝑡) et de particules
𝜌𝜓( ⃗𝑟, 𝑡) (qui s’expriment en fonction de la fonction d’onde 𝜓) obéissent à une loi de conservation

𝜕𝑡𝜌𝜓( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗𝜓( ⃗𝑟, 𝑡) = 0 (2.10)

Ce résultat est connu et exposé dans les livres de référence en physique quantique [111, Chap. 10.3]
[172, Chap. 16.4][56, Chap. 21-2].

→ Transport dynamique d’énergie Bien que non décrit dans la plupart des livres de référence en
physique quantique, la référence [127] introduit des définitions de grandeurs énergétiques locales –
l’énergie étant portée par des électrons (quantiques) – qui obéissent à une équation de conservation.
Pour une fonction d’onde 𝜓 donnée, l’équation de conservation a la forme suivante

𝜕𝑡𝜌𝜖
𝜓( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗𝜖

𝜓( ⃗𝑟, 𝑡) = 𝑆𝜖
𝜓 (2.11)

où 𝜌𝜖
𝜓, ⃗𝑗 𝜖

𝜓 et 𝑆𝜖
𝜓 sont des candidats pour respectivement la densité d’énergie, la densité de courant

d’énergie et la puissance donnée localement aux électrons. Plusieurs candidats (indexés par l’exposant
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𝜖) sont possibles pour chacun de ces termes : ils peuvent être définis en prenant comme opérateur
énergie l’Hamiltonien ℎ̂, l’énergie cinétique ̂𝜅 ou bien ‘l’énergie totale’ ̂𝜀 (définis plus bas). Chaque
densité 𝜌𝜀

𝜓, ⃗𝑗 𝜀
𝜓, 𝑆𝜓, une fois intégrée sur l’espace, doit donner la valeur moyenne de l’opérateur associé,

sur l’état 𝜓. Dans le contexte d’une particule unique non-relativiste, les quantités quantiques locales
(𝜌𝜀

𝜓, 𝑗𝜀
𝜓, 𝑆𝜀

𝜓) ne portent aucune signification physique car elles sont non uniques (pour un même opé-
rateur associé). En revanche, leur intégrale sur l’espace est bien unique (donnant la valeur moyenne de
l’opérateur défini sur le système entier) [127, 8]. Des expressions génériques possibles pour la densité
d’énergie 𝜌𝜖

𝜓 et la densité de courant d’énergie ⃗𝑗𝜖 sont les suivantes

𝜌𝜖
𝜓 = Re[𝜓∗ ̂𝜖[𝜓]] (2.12)

⃗𝑗𝜖
𝜓 = 1

2Re[ ̂𝜖[𝜓]∗ ̂⃗𝑣[𝜓] + 𝜓∗ ̂⃗𝑣[ ̂𝜖[𝜓]]] (2.13)

Une contrainte additionnelle s’applique sur les opérateurs candidats pour représenter une énergie :
l’invariance de jauge. En effet, les potentiels électromagnétiques (𝜙, ⃗𝐴) peuvent être remplacés par
changement de jauge, à travers l’Éq. (2.6), sans changer la valeur moyenne d’un opérateur énergie. La
valeur moyenne de l’Hamiltonien ne respecte pas cette invariance : fondamentalement, seule l’énergie
cinétique ̂𝜅 respecte cette invariance, à laquelle on peut ajouter une énergie potentielle stationnaire 𝑉
– qu’on suppose indépendante du champ électromagnétique – pour définir l’opérateur énergie totale ̂𝜀

̂𝜀(𝑡) = ̂𝜅(𝑡) + 𝑉 (2.14)

qui elle aussi est invariante de jauge [127, 102, 213]. L’expression du terme source 𝑆𝜀 associé à cet
opérateur coïncide avec l’expression classique de la puissance cédée localement aux électrons par le
champ électromagnétique (voir l’Éq. (2.4))

𝑆𝜀( ⃗𝑟, 𝑡) = 𝑞 ⃗𝑗 ⋅ ⃗𝐸 (2.15)

Bien que les expressions pour les autres opérateurs énergie soient dérivées dans cette thèse, on utilisera
par défaut ‘l’énergie totale’ comme opérateur énergie car cet opérateur est invariant de jauge et permet
de retrouver les résultats établis dans la littérature dans le cas particulier du régime stationnaire (à
travers 𝑉 ).

Description quantique de systèmes à plusieurs électrons sans interaction Quand on considère
un système quantique à plusieurs électrons sans interaction, ses états peuvent être écrits à partir des
états à un électron mais en imposant la contrainte d’antisymétrie totale : les électrons sont indiscer-
nables et au plus un électron peut occuper un état à un corps donné. Les états à plusieurs électrons sont
décrits en dénombrant les occupations des états à un électron, sans dire quel électron occupe quel état,
grâce aux opérateurs associés de création ̂𝑐†

𝜆𝑖
et d’annihilation ̂𝑐𝜆𝑖

. Dans une représentation en liaisons
fortes utilisant un ensemble discret de fonctions d’onde sans spin 𝜆𝑖 localisées spatialement sur des
sites 𝑖 (on utilisera ̂𝑐†

𝜆𝑖
→ ̂𝑐†

𝑖 ) pour réaliser des représentation en liaison fortes, les opérateurs �̂� sans
interaction s’écrivent

�̂�(𝑡) = ∑
𝑖𝑗

𝑜𝑖𝑗(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑗 où 𝑜𝑖𝑗(𝑡) = ⟨𝑖| ̂𝑜 |𝑗⟩ (2.16)

où les coefficients 𝑜𝑖𝑗(𝑡) peuvent être définis empiriquement, estimés par comparaison aux expériences
ou par des calculs ‘ab initio’.
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→ Opérateur énergie locale Dans notre description continue à un corps précédente, on a défini
des densités locales 𝜌𝜖

𝜓( ⃗𝑟, 𝑡) telles que leur intégrale sur l’espace coïncide la valeur moyenne de leur
opérateur énergie ̂𝜖 associé, défini sur le système entier. Nous avons vu qu’une équation de conservation
(2.11) est vérifiée pour chacune des densités, avec une densité locale de courant ⃗𝑗𝜖

𝜓( ⃗𝑟, 𝑡) et de puissance
délivrée 𝑆𝜖

𝜓( ⃗𝑟, 𝑡) associées. Il n’y a cependant pas d’unique définition de densités locales d’énergie
ou de courant d’énergie [127, 8], dans les approches à un corps et à plusieurs corps. Ce problème
affecte aussi la définition de l’énergie d’une sous-partie d’un système : il se traduit par un arbitraire
dans les proportions avec lesquelles ‘l’énergie de couplage’, qui réside sur la frontière séparant le sous-
système considéré et le reste du système, est attribuée à ces deux sous-systèmes. Dans des systèmes en
représentation liaisons-fortes, cette problématique intervient quand on veut définir l’opérateur densité
d’énergie ̂ℰ𝜖

𝑖 d’un unique site 𝑖 : on adopte la définition suivante

̂ℰ𝜖
𝑖 = 1

2 ∑
𝑗

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + 𝜖𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖 (2.17)

L’idée de considérer la moitié de la contribution des termes de couplage a été introduite par la Réf. [8]
dans le cadre d’une étude sur des solides harmoniques désordonnées. Cette séparation a été ensuite
utilisée par la Réf. [210] pour définir un opérateur d’énergie locale dans une chaîne 1D discrète. Enfin,
une définition générique dans un système liaisons-fortes a été introduite dans la Réf. [129] où l’expres-
sion donnée est celle donnée par l’Éq. (2.17) mais pour l’opérateur Hamiltonien seulement (𝜖 = ℎ).
Cette expression est déduite d’une séparation ‘naturelle’ [119] qui émerge de la discrétisation des dé-
finitions originelles dans l’espace continu (voir la dérivation qui aboutit à l’Éq. (4.62)). Elle a aussi été
utilisée par les Réfs. [25, 143] mais en utilisant l’Hamiltonien comme opérateur énergie. De notre cô-
té, on apporte un argument additionnel qui soutient cette définition avec un partage symétrique des
termes de couplage entre les sites dans ̂ℰ𝜀

𝑖 : elle permet d’obtenir une expression pour le terme source
𝑆𝜀

𝑖 qui concorde avec la version discrète du résultat classique donné à l’Éq. (2.4). D’un autre côté, cette
définition d’un opérateur énergie local (ou d’un sous-système) intervient dans un débat, toujours en
cours, qui concerne la définition d’un courant de chaleur, voir Sec. 4.3.4.2 (en anglais).

→ Transport quantique à plusieurs corps On utilise la fonction de Green ‘lesser’ pour exprimer
les valeurs moyennes des opérateurs à plusieurs corps sans interaction

𝐺<
𝑖𝑗(𝑡) = i

ℏ ⟨ ̂𝑐†
𝑗(𝑡) ̂𝑐𝑖(𝑡)⟩ (2.18)

Cette fonction permet d’écrire les équations de conservation (particules et énergie) dans le cas à plu-
sieurs corps sans interaction. Ces équations ont la même forme que leurs contreparties à un corps,
dérivées à la Sec. 4.2.4 (en anglais). Elles peuvent être dérivées en appliquant l’équation de Heisenberg
(équivalente à l’équation de Schrödinger) sur la valeur moyenne 𝜌𝑖 = ⟨ ̂𝜌𝑖⟩ des opérateurs densité locale
de particules et d’énergie

𝜕𝑡𝜌𝑖(𝑡) = i
ℏ ⟨[�̂�(𝑡), ̂𝜌𝑖(𝑡)]⟩ + ⟨𝜕𝑡 ̂𝜌𝑖(𝑡)⟩

Équation d’Heisenberg (4.135)
⟹

𝜕𝑡𝜌𝑖(𝑡) + ∑𝑗 𝐼𝑖𝑗(𝑡) = 𝑆𝑖(𝑡)
Équation de conservation

(2.19)

où 𝐼𝑖𝑗 est le courant net du site 𝑖 vers le site 𝑗 et 𝑆𝑖(𝑡) est le terme ‘source’. Dans le cas bien connu
du transport de particules la densité de particules s’écrit 𝜌𝑖 = ⟨ ̂𝑐†

𝑖 ̂𝑐𝑖⟩ = −iℏ𝐺<
𝑖𝑖(𝑡), le courant a pour

expression 𝐼N
𝑖𝑗 = 2 Re[ℎ𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] et le terme source est nul car aucune particule n’est créée ni détruite
du néant. Pour l’énergie, la densité peut s’écrire de la manière suivante

𝜌𝜖
𝑖(𝑡) = ⟨ ̂ℰ𝜖

𝑖(𝑡)⟩ = ∑
𝑗

Im[𝜖𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)] (2.20)
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puis on utilise l’Éq. (2.19) pour obtenir une expression générique pour le courant d’énergie

𝐼𝜖
𝑖𝑗 = 1

ℏ ∑
𝑘

Re[𝜖𝑘𝑖𝜖𝑖𝑗𝐺<
𝑗𝑘 − 𝜖𝑘𝑗𝜖𝑗𝑖𝐺<

𝑖𝑘] (2.21)

où 𝜖𝑖𝑗 est à remplacer par les coefficients de l’opérateur énergie considéré. Comme dans le cas continu,
l’expression du courant d’énergie 𝐼𝜖

𝑖𝑗 n’est pas unique mais doit donner la bonne divergence ∑𝑗 𝐼𝜖
𝑖𝑗. Le

terme source – la puissance cédée aux électrons – est dépendant de l’opérateur considéré et s’écrit de
la manière suivante pour l’opérateur ‘énergie totale’

𝑆𝜀
𝑖 (𝑡) = ∑

𝑗
−1

2𝑞 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝐼𝑁
𝑖𝑗 (𝑡) + ∑

𝑗
Im[𝜕𝑡𝜀𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] (2.22)

Le premier terme de cette expression a une interprétation simple

∑
𝑗

−1
2𝑞 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝐼𝑁

𝑖𝑗 (𝑡) = −𝑞∇⃗𝜙𝑖 ⋅ ⃗𝑗𝑖 (2.23)

alors que le second terme doit être retravaillé (fait en anglais dans l’appendice B.3) pour montrer la
réécriture suivante

∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)] = −𝜕𝑡 ⃗𝐴𝑖 ⋅ ⃗𝑗𝑖 (2.24)

pour enfin que l’on retrouve pour 𝑆𝜀
𝑖 (𝑡) l’expression classique de la puissance cédée aux électrons ⃗𝑗 ⋅ ⃗𝐸

(voir l’Éq. (2.4)), où ⃗𝐸 = −∇⃗𝜙 − 𝜕𝑡 ⃗𝐴 est le champ électrique dépendant du temps.

→Courants dans les guides d’onde Les études théoriques de transport mésoscopique dynamique
considèrent un système générique constitué d’un système central, sous l’influence d’un champ élec-
tromagnétique dépendant du temps, qui est connecté à des guides d’électrons ℒ𝛼 semi-infinis. Chaque
guide est rempli d’électrons qui se dirigent vers le système central, suivant une distribution thermique
a une température 𝑇𝛼 et un potentiel chimique 𝜇𝛼 (voir Fig. 2.6). Le but principal est alors d’obtenir les
courants nets de particules et d’énergie qui sortent de chaque guide. Pour les calculer en utilisant les
courants locaux d’énergie 𝐼𝜖

𝑖𝑗 et de particules 𝐼N
𝑖𝑗, un flux est exprimé à travers une section dans chacun

des leads ℒ𝛼.
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Waveguide

UniformScattering
Region

Fig. 2.6. – Systèmes considérés dans les études de transport, composés d’une partie centrale (‘région de
diffusion’) 𝒞 connectée à des guides d’onde semi-infinis. La partie centrale est sous l’influence d’un champ élec-
tromagnétique dépendant du temps, représenté par le potentiel scalaire 𝜙( ⃗𝑟, 𝑡) et potentiel vecteur ⃗𝐴( ⃗𝑟, 𝑡). Une
énergie potentielle stationnaire 𝑉 additionnelle est aussi prise en compte. Chaque guide ℒ𝛼 est connecté à un
réservoir d’électrons à l’équilibre thermodynamique caractérisé par une température 𝑇𝛼 et un potentiel chimique
𝜇𝛼.

Les systèmes qu’on décrit sont sans interaction, ce qui implique qu’aucun mécanisme de relaxation
thermique peut être considéré : des températures et les courants de chaleur locaux ne peuvent pas être
définis au sein du système. Cependant, une hypothèse usuellement faite dans le régime stationnaire
[16] est de considérer que chaque électron quittant la partie centrale 𝒞 du système, dans le guide ℒ𝛼,
avec une énergie 𝐸, va finalement atteindre le réservoir thermique connecté à ce guide d’onde. Cet
électron finira par relaxer au sein de ce réservoir et apportera ainsi une contribution 𝐸 − 𝜇𝛼 au terme
de chaleur. En termes de courants, cela se traduit en un courant de chaleur stationnaire qui s’écrit
𝐼Q,st
𝛼 = 𝐼𝜖,st

𝛼 − 𝜇𝛼𝐼N,st
𝛼 où 𝐼Q,st

𝛼 est le courant de chaleur net qui traverse le guide 𝛼. Définir un courant
de chaleur résolu en temps, dans le cas dépendant du temps, fait partie du domaine plus général de
la thermodynamique quantique. Ce domaine n’en est qu’à ses débuts et des recherches sont en cours
pour définir un cadre théorique solide : des questions fondamentales doivent être résolues quant à la
séparation spatiale entre le système central, les réservoirs thermiques et leur couplage. Dans le régime
de couplage faible, une théorie robuste a été établie [23, 52, 107, 68]. Dans le régime de fort couplage,
en particulier quand ce dernier est dépendant du temps, définir un courant de chaleur résolu en temps
soulève une question fondamentale [31, 54, 44, 25, 143] : la partie �̂�𝒞𝛼 de l’Hamiltonien total �̂� , qui
couple le réservoir thermique au système central, n’est plus négligeable, peut être dépendante du temps,
et doit être prise en compte lors d’une tentative de définition d’un courant de chaleur à cette interface
(le problème de définir un opérateur local d’énergie, exposé au paragraphe ‘opérateur énergie locale’
p.34, s’applique ici). Une expression du courant de chaleur résolu en temps dans un guide a été donné
par les Réfs. [119, 121] où le courant d’énergie inclut la moitié de la contribution du terme de couplage
�̂�𝒞𝛼

𝐼Q,ℎ
𝛼 (𝑡) = −𝜕𝑡 ⟨ ̂�̃�𝛼 + 1

2�̂�𝒞𝛼⟩ − 𝜇𝛼𝐼N
𝛼(𝑡) ̂�̃�𝛼 = ∑

𝑖,𝑗∈ℒ𝛼

ℎ𝑖𝑗(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑗 + h.c. (2.25)

Cette définition est consistante avec la définition usuelle utilisée dans le régime stationnaire où l’Hamil-
tonien de couplage �̂�𝒞𝛼,st n’intervient pas (𝜕𝑡 ⟨�̂�𝒞𝛼⟩ = 0). Des problèmes ont cependant été soulevés
pour une telle définition [54, 142] (dans le cas où �̂�𝒞𝛼 dépend du temps) et un terme additionnel, qui
implique l’Hamiltonien de couplage, a été suggéré [81] pour y remédier (mais ce terme est nul dans
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2.3. Résumé du chapitre 5 : simulation numérique avec tkwant

notre approche dans laquelle la perturbation temporelle provient uniquement d’un champ électroma-
gnétique externe). Étant donné que l’Hamiltonien n’est en général pas invariant de jauge, on modifie
cette définition de courant de chaleur 𝐼Q,ℎ

𝛼 (𝑡) basée sur l’Hamiltonien en une définition 𝐼Q
𝛼(𝑡) = 𝐼Q,𝜀

𝛼 (𝑡)
basée sur ‘l’énergie totale’ (ces deux définitions coincident sur des guides stationnaires et difèrent si-
non, voir la Sec. 5.3.2.3 en anglais)

𝐼Q
𝛼(𝑡) = 𝐼𝜀

𝛼(𝑡) − 𝑆𝜀
𝛼(𝑡) − 𝜇𝛼𝐼N

𝛼(𝑡) (2.26)

où 𝐼𝜀
𝛼(𝑡) et 𝑆𝜀

𝛼(𝑡) sont respectivement le courant d’énergie dans le guide et la puissance cédée au guide
(entier)

𝐼𝜀
𝛼(𝑡) = ∑

𝑖∈ℒ𝛼
𝑗∈𝒞

𝐼𝜀
𝑖𝑗(𝑡) 𝑆𝜀

𝛼(𝑡) = ∑
𝑖∈ℒ𝛼

𝑆𝜀
𝑖 (𝑡) (2.27)

Calculer les courants d’énergie et de chaleur plus loin dans les guides évite la problématique du terme
de couplage dépendant du temps soulevée par la Réf. [54], les guides étant considérés indépendants du
temps1. Une approche par diffusion à la Landauer-Büttiker comme la notre à été adoptée par la Réf.
[24] dans le cas particulier d’une dépendance temporelle lente. Notre approche quant à elle s’applique
à une dépendance temporelle quelconque (due uniquement à un champ électromagnétique), au-delà
des régimes quasi-statiques ou périodiques.

Maintenant que les courants résolus en temps dans les guides d’onde sont définis, on relève deux
problèmes liés : (i) à cause de la dispersion et du temps de propagation, les courants dans les guides dé-
pendent de la position de la section où ils sont calculés ; (ii) le courant de chaleur n’existe théoriquement
qu’après relaxation des électrons dans les réservoirs thermiques. Les guides ne sont techniquement pas
les réservoirs et définir un courant de chaleur résolu en temps, et en espace, en leur sein est a priori
physiquement contestable. Un tel courant de chaleur peut cependant être interprété de manière ‘comp-
table’ [47], i.e. “la quantité de chaleur qui sera dissipée plus tard dans les réservoirs”. Pour contourner
ces deux problèmes, on étudiera aussi des quantités intégrées en temps (en suivant par exemple la
méthode de la Réf. [44]).

2.3. Résumé du chapitre 5 : simulation numérique avec tkwant

Notre but est de décrire les courants et densités de particules et d’énergie (transportée par les élec-
trons) dans des systèmes génériques pour tenter de mieux comprendre la thermoélectricité mésosco-
pique dans le régime dépendant du temps. Après avoir dérivé, dans le chapitre 4, un cadre invariant de
jauge au transport thermoélectrique (où les formules sont exprimées à l’aide de la fonction de Green
‘lesser’), on introduit dans ce chapitre la méthode numérique (basée sur les fonctions d’onde) utilisée
par tkwant, l’extension au régime dynamique de la bibliothèque de référence (kwant) pour la si-
mulation du transport quantique dans des systèmes dans l’approximation des liaisons fortes (voir la
Fig. 2.7). Son développement, initié durant le doctorat de B. Gaury [63], a notamment abouti à l’écri-
ture d’une équation importante qui relie les fonctions de Green ‘lesser’ 𝐺<

𝑖𝑗(𝑡) et une base particulière
de fonctions d’onde à un corps appelées ‘état de diffusion’. Dans le chapitre 5, on étend tkwant au
transport d’énergie à travers un module appelé tkwantoperator : on montre que cette extension
permet de retrouver simplement des résultats qui ont été publiés récemment concernant le ‘modèle du
niveau résonnant’ (RLM) ; puis on étudie le cas d’un contact ponctuel quantique bidimensionnel, afin
d’illustrer le potentiel de tkwant pour la simulation de systèmes complexes, dépassant les modèles
simplistes tels que le RLM.

1Après un éventuel changement de jauge, voir Sec. 5.2.1 (en anglais).
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Fig. 2.7 – Système générique en représenta-
tion liaisons-fortes que tkwant peut simuler.
Une région centrale 𝒞, dont les sites et cou-
plages sont dépendants du temps (coloriés en
gris), est connectée à des guides d’onde dont
les sites et couplages sont stationnaires (colo-
riés en rouge). Un potentiel scalaire uniforme
et dépendant du temps peut être considéré
dans chacun des guides : un tel potentiel est
en pratique inclus après changement de jauge
en multipliant les couplages à la frontière avec
le système central (couleur orange) par une
phase dépendante du temps particulière (voir
Éq. (5.23))

Lead

Scattering region

États de diffusion Définis comme les états propres de l’Hamiltonien ℎ̂ du système entier (région
centrale et guides) dans le régime stationnaire sans interaction, les ‘états de diffusion’ Ψ𝜆 peuvent être
étendus au régime dépendant du temps. Pour ce faire, tkwant utilise une approche astucieuse : les
systèmes que cette bibliothèque peut simuler sont restreints à ceux qui sont stationnaire jusqu’à un
instant 𝑡0, ce n’est qu’après cet instant que le contrôle temporel peut démarrer. Cela permet à tkwant
d’utiliser kwant pour le calcul des états propres du système initialement stationnaire pour ensuite
les faire évoluer en temps, un par un (grâce à l’hypothèse de non-interaction), à l’aide d’une version
modifiée de l’équation de Schrödinger via l’algorithme ‘source-sink’. Cet algorithme ne calcule que
la ‘perturbation’ qui s’ajoute au dessus de l’état stationnaire à cause de la dépendance temporelle et,
puisque la dépendance temporelle ne se trouve que dans le système central à des instants 𝑡 ≥ 𝑡0, cette
perturbation est nulle partout pour 𝑡 < 𝑡0 et est émise à des temps 𝑡 > 𝑡0 à partir de la région centrale
(‘la source’) puis s’étend à vitesse finie dans les guides d’onde, ce qui la rend rend finie dans l’espace
et représentable dans un ordinateur. L’algorithme ‘source-sink’ apporte aussi une optimisation quant
au traitement des guides d’ondes qui par définition ne doivent pas réfléchir les ondes sortantes : la per-
turbation est alors absorbée (‘sink’) à partir d’une certaine position dans les guides et sur une étendue
finie pour ainsi réduire la taille des guides effectivement simulée. Le système simulé est alors de taille
finie et cette dernière est gardée petite même à des temps de simulations longs, grâce à l’absorption,
tout en gardant la valeur des fonctions d’onde arbitrairement proche de leur valeurs théoriques.

Calcul des courants et densités Une formule essentielle dérivée dans la Réf. [66] permet de relier
les états de diffusion résolus en temps Ψ𝜆(𝑡) (tels que définis au-dessus) à la fonction de Green ’lesser’
𝐺<

𝑖𝑗 (définie par l’Éq. (2.18)) pour dans systèmes génériques illustrés dans la Fig. 2.7

𝐺<
𝑖𝑗 = i ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸)Ψ𝜆

𝑗 (𝑡)∗Ψ𝜆
𝑖 (𝑡) (2.28)

où ∑𝜆 a été utilisé comme raccourci pour ∑𝛼 ∑𝑛 ∫ d𝐸
2𝜋ℏ , qui fondamentalement traduit une somme,

pondérée par 𝑓𝛼(𝐸), sur tous les états de diffusion Ψ𝜆, indexés par les modes incidents 𝑛 des leads 𝛼,
injectés à des énergies 𝐸, où 𝐸 est un degré de liberté continue ; 𝑓𝛼(𝐸) = 𝑓𝑇𝛼,𝜇𝛼

(𝐸) est aussi une
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notation raccourcie pour la fonction de Fermi

𝑓𝑇,𝜇(𝐸) = 1
exp(𝐸−𝜇

𝑘B𝑇 ) + 1
(2.29)

où 𝑘B est la constante de Boltzmann. Eq. (2.28) est la pièce manquante qui permet de calculer expli-
citement les courants et densités d’énergie définies dans la Sec. 2.2.2 en termes de fonction de Green
‘lesser’ 𝐺<

𝑖𝑗(𝑡). Grâce à l’Éq. (2.28) ces quantités peuvent être maintenant exprimées en utilisant les
états de diffusion

𝜌𝜖
𝑖(𝑡) = ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸) ∑

𝑗
Re[Ψ𝜆

𝑖 (𝑡)∗𝜖𝑖𝑗(𝑡)Ψ𝜆
𝑗 (𝑡)] (2.30)

𝐼𝜖
𝑖𝑗 = ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸)∑

𝑘
Re[Ψ𝜆

𝑘(𝑡)∗𝜖𝑘𝑖𝜖𝑖𝑗Ψ𝜆
𝑗 (𝑡) − Ψ𝜆

𝑘(𝑡)∗𝜖𝑘𝑗𝜖𝑗𝑖Ψ𝜆
𝑖 (𝑡)] (2.31)

Ces deux quantités peuvent être calculées avec tkwant, dans le même esprit que la densité (𝜌N
𝑖 (𝑡)) et le

courant (𝐼N
𝑖𝑗(𝑡)) de particules mais avec une somme additionnelle sur les sites du système. La puissance

locale moyenne 𝑆𝜖
𝑖 (𝑡) délivrée aux électrons s’écrit quant à elle

𝑆𝜀
𝑖 (𝑡) = ∑

𝑗
−1

2 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝑞𝐼𝑁
𝑖𝑗 (𝑡)

+ ∑
𝜆=𝛼,𝑛,𝐸

𝑓𝛼(𝐸)∑
𝑗

Re[Ψ𝜆
𝑖 (𝑡)∗𝜕𝑡𝜀𝑖𝑗(𝑡)Ψ𝜆

𝑗 (𝑡)]
(2.32)

Ces quantités locales peuvent ensuite être sommées sur l’espace pour obtenir par exemple l’énergie
d’un sous-système ou bien le courant d’énergie 𝐼𝜖

𝛼,𝑎(𝑡) et de chaleur 𝐼Q
𝛼,𝑎(𝑡) dans les leads tels que

décrits dans le paragraphe ‘Courants dans les guides d’onde’ p.35.

2.3.1. tkwantoperator : extension au transport d’énergie

Pour calculer nos grandeurs énergétiques nouvellement définies, on a implémenté un module Py-
thon, appelé tkwantoperator : son code source est libre d’accès, disponible en ligne et accom-
pagné d’une documentation complète (en anglais) qui décrit la procédure d’installation, d’un tuto-
riel et d’un guide technique, le tout à l’adresse suivante gitlab.kwant-project.org/kwant/
tkwantoperator. Le code source a été publié en même temps que notre article de recherche [96].
Cinq classes python ont été implémentées :EnergyDensity,EnergySource etEnergyCurrent-
Divergence peuvent être utilisées pour respectivement calculer 𝜌𝜖

𝑖 (donné par l’Éq. (2.30)), 𝑆𝜖
𝑖 (donné

dans l’Éq. (2.32) pour 𝜖 = 𝜀), et ∑𝑗 𝐼𝜖
𝑗𝑖 sur une liste donnée de sites {𝑖} ; EnergyCurrent calcule

les courants 𝐼𝜖
𝑗𝑖 (donné par l’Éq. (2.31)) sur une liste donnée de couples de sites {(𝑗, 𝑖)} ; LeadHeat-

Current calcule le courant de chaleur 𝐼Q,𝜖
𝛼,𝑎 (donné par l’Éq. (2.26)) traversant le lead ℒ𝛼. La quantité

𝜖 utilisée en exposant peut faire référence à l’énergie totale ̂𝜀, l’Hamiltonien ℎ̂ ou bien un opérateur
défini par l’utilisateur en donnant les termes sur sites 𝜖𝑖𝑖. Un code illustrant l’utilisation de tkwant-
operator, en parallèle avec Kwant et tkwant, est montré en Fig. 5.7 : ce code relativement court
est suffisant pour retrouver quelques résultats publiés dans des articles de recherche, voir la Sec. 5.3.2
(en anglais).

Le calcul des valeurs moyennes à plusieurs électrons des différents opérateurs implique une inté-
gration sur tous les états de diffusion Ψ𝜆, indexés par le paramètre 𝜆 (voir l’Éq. (2.28)). Étant donné
que l’évolution en temps de ces fonctions d’onde est l’étape la plus coûteuse en temps de calcul dans
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2. Résumé substantiel en français

tkwant, il est crucial d’utiliser le plus petit nombre de ces états pour évaluer une valeur moyenne des
opérateurs, tout en garantissant un degré de précision spécifié en amont par l’utilisateur. Pour cela, une
méthode adaptive de Gauss-Kronrod est utilisée [204] pour calculer l’intégrale. De plus, l’évolution en
temps des fonctions d’onde peut être faite peut être faite en parallèle sur plusieurs cœurs de calcul,
chaque cœur se chargeant d’une sous-partie des fonctions d’ondes. Ces deux fonctionnalités, qui sont
déjà implémentées dans tkwant, sont utilisées pour calculer les valeurs moyennes de nos opérateurs
d’énergie.

Une fois tkwantoperator implémenté, on a lancé des simulations tkwant de transport électro-
nique et de chaleur pour le modèle jouet du niveau résonnant (RLM), afin de valider notre approche
théorique et notre implémentation numérique. On a ensuite exploré le transport de chaleur dépendant
du temps dans le contact ponctuel quantique mis hors-équilibre par une impulsion de tension : sans
discuter de façon exhaustive la physique des phénomènes en jeu, notre étude nous permet d’illustrer le
potentiel de tkwant, combiné avec notre module tkwantoperator, pour l’exploration de la ther-
moélectricité dynamique dans des dispositifs quantiques complexes.

2.3.2. Validation : modèle du niveau résonnant (RLM)

Le modèle du niveau résonnant (sans interaction) a été étudié de façon exhaustive dans la littérature
scientifique, pour l’étude du transport dynamique de charges (voir par exemple les Réfs. [92, 149, 158])
et plus récemment pour le transport dynamique d’énergie [38, 116, 55, 121, 120, 219, 44, 215, 113, 37, 51].
Dans le chapitre 5 (en anglais), on utilise ce modèle (décrit dans la Fig. 2.8) comme outil de validation
de notre implémentation numérique. On considère deux cas : (i) quand (seulement) le terme sur site
ℎ0(𝑡) de la ‘dot’ subit un échelon en temps ℎ0(𝑡) = 𝑉0 + Δ𝑉 Θ(𝑡), Θ étant la fonction de Heaviside, et
(ii) quand l’échelon de potentiel est appliqué à l’un des guides. On calcule les courants résolus en temps
d’énergie et de chaleur : on montre qu’on reproduit, dans les limites attendues, les résultats antérieurs
de la littérature.

site
indexLeft

lead
Right
lead

Scattering
area

Fig. 2.8. – Représentation en liaisons-fortes du modèle du niveau résonnant. Une chaîne unidimensionnelle (1D)
est composée d’un site central 0 connecté, par des termes de couplage 𝛾𝑐, à des chaînes gauche (𝐿, sites 𝑖 ≤ −1)
et droite (𝑅, sites 𝑖 ≥ 1), semi-infinies et uniformes avec un terme sur site ℎ𝛼(𝑡) et un couplage inter-sites 𝛾.
Chaque guide 𝛼 est connecté, infiniment loin, à un réservoir d’électrons à l’équilibre, caractérisé par un potentiel
chimique 𝜇𝛼 et une température 𝑇𝛼, supposés constants.

En particulier, on vérifie dans le cas (i) qu’on retrouve les résultats analytiques obtenus par l’approche
des fonctions de Green hors-équilibre, dans la limite ‘wide-band’ : celle-ci est obtenue dans tkwant
en modifiant les coefficients de couplage 𝛾 et 𝛾𝑐 selon [37] :

𝛾 → 𝜆𝛾, 𝛾𝑐 →
√

𝜆𝛾𝑐 et 𝜆 → ∞ (2.33)

de façon à garder le ratio Γ = 2𝛾2
𝑐/𝛾 constant. La concordance parfaite entre l’approche numérique

(tkwant + tkwantoperator) et l’analytique (fonctions de Green hors-équilibre, voir l’Appendice
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2.3. Résumé du chapitre 5 : simulation numérique avec tkwant

C.1) est illustrée dans la Fig. 2.9 où l’on compare les courbes du courant de chaleur résolu en temps
dans le guide gauche obtenus avec ces deux approches

𝐼Q
𝐿(𝑡) = −𝜕𝑡 ⟨�̂�𝐿⟩ − 𝜇𝐿𝐼N

𝐿(𝑡) (2.34)

La comparaison est faite également pour les courants de particules gauche 𝐼𝑁
𝐿 (𝑡) et pour une définition

alternative du courant de chaleur ̃𝐼Q
L (𝑡)

̃𝐼Q
𝐿(𝑡) = −𝜕𝑡 ⟨ ̂�̃�L⟩ − 𝜇L𝐼𝑁

L (𝑡) (2.35)

considérée notamment dans les Réfs. [38, 219]. Ici, l’Hamiltonian ̂�̃�L utilisé n’inclut pas la contribution
du couplage �̂�0𝐿 entre la ‘dot’ et le guide d’onde gauche (son expression est une version modifiée de
l’Éq. (2.26) sans le terme �̂�𝒞𝛼 )

̃𝐼Q
𝐿(𝑡) = −𝜕𝑡 ⟨ ̂�̃�L⟩ − 𝜇L𝐼𝑁

L (𝑡) (2.36)

Fig. 2.9. – Adapté de notre article [96] : (a) Courants de particules gauche 𝐼𝑁
𝐿 , (b) courants de chaleur 𝐼Q

𝐿 et (c)
̃𝐼Q
𝐿 gauche, en fonction du temps 𝑡, pour le modèle RLM 1D schématisé sur la Fig. 2.8, quand le niveau d’énergie

de la ‘dot’ℎ0(𝑡) subit un saut abrupt ℎ0(𝑡) = 𝑉0 + Δ𝑉 Θ(𝑡) (voir l’insert dans (a)). Les unités des axes 𝑥 et
𝑦 sont indiquées entre crochets. Dans tous les panneaux, les données sont calculées par tkwant+tkwant-
operator pour différentes valeurs de 𝜆𝛾/Γ (1 (lignes rouges), 6.25 (lignes vertes), et 100 (lignes noires)). Les
lignes horizontales en pointillés, tracées pour 𝜆𝛾/Γ = 1 (en rouge) et 100 (en noir) correspondent à la limite
stationnaire à grand temps Γ𝑡/ℏ ≫ 1, données par les formules de Landauer-Büttiker (voir Sec. 5.2.3.2). Quand
𝜆𝛾/Γ ≫ 1, les résultats de tkwant convergent vers les résultats obtenus par la méthode des fonctions de Green
hors-équilibre (cercles) dans la limite ‘wide-band’ (voir l’appendice C.1, en anglais). Insert dans (c) : comparaison
de 𝐼𝑄

𝐿 (𝑡) (lignes en pointillés rouges, données par l’Éq. (2.34)) et ̃𝐼𝑄
𝐿 (𝑡) (lignes noires, données par l’Éq. (2.36))

dans la limite ‘wide-band’. Dans tous les panneaux, ℎ0 = 0.5Γ, Δ𝑉 = 2.5Γ, ℎ𝐿(𝑡) = ℎ𝑅(𝑡) = 0, 𝑇𝐿 = Γ/𝑘𝐵,
𝑇𝑅 = 0, 𝜇𝐿 = 0.5Γ, et 𝜇𝑅 = −0.5Γ. Les courbes calculées par les fonctions de Green hors-équilibre sont
indépendantes de Γ. Les courbes tkwant sont des fonctions de 𝜆𝛾/Γ et non des paramètres 𝜆, 𝛾, et Γ pris
séparément.

On a aussi comparé nos résultats numériques à ceux obtenus dans la Réf. [49] dans le cas (ii) défini
plus haut. Enfin, on aussi vérifié que dans la limite des temps longs Γ𝑡/ℏ → ∞, les résultats tkwant
pour les courants de particules et de chaleur convergent, comme attendu, vers les limites stationnaires
données par les formules de Landauer-Büttiker (lignes horizontales en pointillées, dans la Fig. 2.9).

2.3.3. Aller plus loin : contact ponctuel quantique

Pour illustrer le potentiel de notre approche numérique basée sur tkwant, on investigue aussi dans
le chapitre 5 (en anglais) le transport dynamique de chaleur (transportée par les électrons) dans un
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contact ponctuel quantique (QPC), connecté à deux réservoirs maintenus à des températures diffé-
rentes. On se concentre sur l’effet Peltier permettant d’extraire de la chaleur du réservoir froid et on
s’interroge sur la possibilité d’améliorer cet effet à l’aide d’un contrôle temporel, en l’occurrence en ap-
pliquant un pulse de tension sur l’une des deux électrodes (guide d’onde) attachées au QPC (à la place
d’une tension constante). On considère un nano-ruban de longueur 𝐿 et largeur 𝑊 connecté, via des
guides d’onde (électrodes) semi-infinies à des réservoirs thermiques gauche (𝐿) et droit (𝑅), maintenus
à des températures 𝑇𝐿 ≲ 𝑇𝑅. On choisit leurs potentiels chimiques 𝜇𝐿 ≳ 𝜇𝑅 (voir Fig.2.10 (a)) de sorte
que la transmission stationnaire 𝑇 (𝐸) du QPC soit sur une marche (et non un plateau) de transmission,
𝑇 (𝐸 = 𝜇𝑅) ≈ 0.6 et que 𝐼Q

L (𝑡 ≤ 0) = 0. Le système est discrétisé sur un réseau carré (avec un pas
𝑎 = 1). Le système est stationnaire jusqu’à 𝑡 = 0 puis la dépendance temporelle démarre : on applique
sur l’électrode gauche une impulsion gaussienne 𝑉𝐿(𝑡) de largeur 𝜏𝑝, amplitude 𝑉𝑝 et centrée sur 3𝜏𝑝.
Ainsi l’Hamiltonien du système s’écrit �̂�(𝑡 > 0) = �̂�0 + ∑𝑖∈𝐿 𝑉𝐿(𝑡) ̂𝑐†

𝑖 ̂𝑐𝑖, où �̂�0 est l’Hamiltonien
stationnaire.

En utilisant tkwant avec notre extension tkwantoperator [3], on calcule les courants, résolus
en temps, de particule 𝐼𝑁

𝐿 (𝑡) et de chaleur 𝐼Q
L (𝑡), dans le guide gauche, pour différentes valeurs des

paramètres (𝜏𝑝, 𝑉𝑝) de l’impulsion tout en gardant constante son aire sous la courbe (pour maintenir
constant le nombre d’électrons dynamiquement injectés à travers le guide gauche). Les courants calcu-
lés avec tkwant sont ensuite comparés aux courants 𝐼𝑁, ̄𝑠𝑡

𝐿 (𝑉𝐿(𝑡)) et 𝐼𝐻, ̄𝑠𝑡
𝐿 (𝑉𝐿(𝑡)), qu’on obtiendrait

si l’impulsion était quasi-statique, donnés par les formules de Landauer-Büttiker (voir Sec.5.2.3.2, en an-
glais) à chaque instant. Pour des valeurs petites de 𝜏𝑝 (impulsions courtes, voir Fig. 2.10(b)), le courant
de particules 𝐼𝑁

𝐿 (𝑡) montre un premier pic positif centré autour de 3𝜏𝑝, donc du au pulse, puis montre
un pic négatif qui provient de la réflexion sur le QPC. Le courant de chaleur 𝐼Q

L (𝑡) quant à lui montre
une évolution plus complexe. Dans la limite des longues impulsions, les courbes tkwant convergent
vers leurs valeurs quasi-statiques, caractérisées par un pic unique centrée sur 3𝜏𝑝. On trouve, parmi les
paramètres testés, que de la chaleur ne peut être extraite du réservoir froid (∫ d𝑡 𝐼𝐻

𝐿 (𝑡) > 0) que dans la
limite des impulsions longues et que l’intégrale temporelle du courant de chaleur est systématiquement
plus petite que sa contre-partie quasi-statique ∀𝜏𝑝 ∫ d𝑡 𝐼𝐻

𝐿 (𝑡) ≤ ∫ d𝑡 𝐼𝐻, ̄𝑠𝑡
𝐿 (𝑉𝐿(𝑡)). Ainsi, il semblerait

qu’appliquer des impulsions courtes, qui affectent le QPC de manière non quasi-statique, se révèle être
néfaste pour la réfrigération Peltier, au moins dans le régime de paramètres exploré ici. Cette investiga-
tion préliminaire du QPC montre néanmoins la faisabilité de simulations sur des systèmes complexes.

42



2.4. Résumé du chapitre 6 : analyse numérique et semi-analytique du RLM

résultat
réel

si quasi-statique

Fig. 2.10. – (a) Modèle discret du contact ponctuel quantique (QPC). La couleur des sites du système central
reflète la valeur du potentiel QPC (de 0 (blanc) à des valeurs plus grandes (nuances de bleu)). Quelques couches
de sites des guides d’onde semi-infinis gauche et droit sont représentées en rouge. Une impulsion de voltage
𝑉𝐿(𝑡) est appliquée sur le guide gauche, les flux de courants sont évaluées à la frontière indiquée par une ligne
verticale discontinue bleue. (b) Courants gauche de particules 𝐼N

𝐿(𝑡) (en bleu, en unités de 100𝛾/ℎ) et de chaleur
𝐼Q
𝐿 (en grenat, en unités de 𝛾2/ℎ) en fonction du temps 𝑡 (en unités de ℏ/𝛾), pour une impulsion de voltage d’une

largeur 𝜏𝑝 = 100 ℏ/𝛾. Les lignes continues sont les résultats tkwant, les lignes discontinues sont les résultats
quasi-statiques Landauer-Büttiker. Paramètres : 𝑊 = 18, 𝐿 = 48, 𝑙𝑥 = 50, 𝑙𝑦 = 5, 𝜇𝐿 = 0.20607𝛾, 𝜇𝑅 = 0.2𝛾,
𝑇𝐿 = 0.018𝛾/𝑘𝐵, 𝑉𝑝 = 0.2 and 𝑇𝑅 = 0.02𝛾/𝑘𝐵.

L’approche naïve qui tente d’améliorer la réfrigération Peltier par un contrôle temporel rapide est
peu concluante mais montre que la physique en jeu est plus complexe. Ainsi, dans le chapitre suivant, on
reprend l’étude du modèle du niveau résonnant où des expressions analytiques peuvent être obtenues,
pour tenter de mieux comprendre les effets en jeu.

2.4. Résumé du chapitre 6 : analyse numérique et
semi-analytique du RLM

Ce chapitre est dédié à l’étude du modèle du niveau résonnant (RLM) sans interaction et dépendant
du temps. Il représente un système simple composé d’un niveau d’énergie unique qui peut être dé-
pendant du temps, connecté à deux réservoirs thermiques, dans lequel des électrons peuvent entrer et
sortir. Notre objectif est d’avoir une meilleure compréhension de l’effet d’un contrôle dynamique du
niveau d’énergie : Zhou et al. [219] prédisent un ‘boost’ du rendement thermoélectrique du modèle
en configuration Seebeck quand le niveau subit une variation temporelle ‘rapide’. En utilisant les défi-
nitions prises dans cette référence, on reproduit, en utilisant notre approche, leur résultats : ceci nous
permet de valider une fois de plus notre approche mais également d’appréhender les limitations de leur
méthode et définitions. Ensuite, on utilise l’approche de diffusion avec des fonctions d’onde, introduite
au chapitre 5, pour obtenir des formules génériques semi-analytiques des grandeurs de transport (les
courants et densités de particules et d’énergie) pour un contrôle temporel arbitraire du niveau d’énergie,
dans la limite ‘wide-band’ (voir l’Éq. (2.33)). Ces formules génériques sont des intégrales sur l’énergie
(pondérées par les fonctions de Fermi de chacun des réservoirs) de plusieurs termes impliquant l’ampli-
tude de transmission dépendante du temps du modèle. On intègre ensuite numériquement ces formules
analytiques et les comparons à des simulations tkwant+tkwantoperator quand le niveau d’éner-
gie suit un créneau. Comme discuté au paragraphe ‘courants dans les guide d’onde’ p. 35, on calcule
les courants d’énergie en prenant en compte le terme de couplage avec les guides.
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2. Résumé substantiel en français

Pour définir un rendement Seebeck, on doit prendre en compte la puissance délivrée aux électrons
par la dépendance temporelle, et ses effets, dans le bilan énergétique. De plus, définir un rendement
implique une différenciation entre ‘l’énergie utile’ et ‘l’énergie dépensée’ et elle devient délicate dans
le régime dépendant du temps. On définit alors un rendement qu’on pense être physiquement interpré-
table, différent de celui utilisé par la Réf. [219]. Après avoir validé la concordance entre nos résultats
tkwant + tkwantoperator et semi-analytiques, on utilise notre approche semi-analytique (plus
rapide grâce aux formules pré-calculées) pour lancer une exploration automatisée sur les paramètres
du problème, et ainsi tenter de trouver une combinaison de paramètres qui améliore le rendement
qu’on a défini, par rapport au rendement stationnaire. Parmi les deux cent milles simulations ainsi
obtenues, plusieurs montrent des effets prometteurs où le rendement est amélioré de façon transitoire
mais converge vers une valeur inférieure, proche de celle stationnaire (voir le panneau gauche de la Fig.
2.11). Ce même comportement peut être observé si le contrôle en créneau est périodiquement répété
(voir le panneau droit de la Fig. 2.11).

Fig. 2.11. – Un rendement amélioré du modèle du niveau résonnant. Quand le niveau d’énergie suit une fonction
rectangle, les courants de particules et de chaleur peuvent se comporter d’une manière telle que le rendement
𝜂(𝜏) (défini dans l’Éq. (6.74), sous les hypothèses exposées en Sec. 6.3.3) est temporairement amélioré. Le panneau
gauche est le rendement résultant d’un unique créneau de longueur Δ𝑡 alors que dans le panneau droit le contrôle
est périodiquement bouclé, avec une période 𝜏𝑝. Les deux courbes sont tracées dans la figure insérée au panneau
droit afin de montrer que les deux rendements coïncident jusqu’au moment 𝜏 = 𝜏𝑝 où le créneau est répété
dans le cas périodique. On remarque que boucler périodiquement le contrôle périodique retarde le retour à un
rendement inférieur mais ne semble pas aider à obtenir un rendement amélioré, dans le régime permanent. Les
deux courbes ont été obtenues par des simulations tkwant+tkwantoperator. Ce résultat rappelle le résultat
expérimental de la Réf. [178] sur un module Peltier. Paramètres de simulation (les énergies sont en unité de Γ, les
temps en unité de ℏ/Γ) : 𝑇L = 87, 𝑇R = 25, 𝜇L = −26, 𝜇R = 26, 𝑉0 = 55, Δ𝑉 = 2,Δ𝑡 = 0.08, 𝑡0 = 0.1, 𝜏𝑝 =
0.11, 𝑤𝑏 = 400, 𝛾 = 1.

Les limitations d’un tel comportement restent à étudier car par exemple l’interaction électronique
n’est pas prise en compte ici et pourrait changer le résultat. D’un autre côté, des modèles plus complexes
peuvent être maintenant investigués numériquement avec l’aide de notre extension à tkwant.
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3. Past and current developments in
thermoelectricity

Since its discovery in the late 18th century [75], the use of devices leveraging thermoelectricity re-
mained marginal as their efficiency for energy generation and cooling is a major blocker. The second
half of the 20th saw a rebirth of research in thermoelectrics, initiated by the boom in the semi-conductor
industry with the development of the transistor and the research made to miniaturize it, resulting in
the first experimental realizations of thermoelectric generators and coolers [90, 73]. The efficiency of
such devices remained unattractive, compared to traditional machines, and the field saw no further
breakthroughs till the early 1990s where the effects of quantum confinement have been theoretically
studied [86, 85] and predicted promising improvements. Those initial results started a second wave
of research that is still ongoing. Several new leads are being explored, many of which come from the
quantum understanding of matter such as band-structure engineering [145] and nano-structuring [95].

One interesting lead in improving thermoelectric conversion efficiency in mesoscopic devices is
through a time-dependent drive: initial theoretical works reported an improvement of the efficiency
in the transient regime [38, 219]. The field of time-dependent quantum thermoelectricity is at its early
stages and is part of the undergoing efforts in building a theory of quantum thermodynamics, where a
proper definition of what ‘heat’ and ‘work’ are is still under debate and research. Experimentally, the
field is still in its infancy [146] although first major developments have been reported in quantum ther-
mometry [201, 97] and in electron manipulation with e.g. the realization of a Maxwell demon [36, 106]
and single-electron sources [14]. The literature in the field so far is dominated by theoretical works,
with multiple goals: investigate the fundamentals of quantum thermodynamics [134, 119, 121, 205, 47]
; assess the applicative potential of high-frequency nanoelectronics for AC-driven thermoelectrics [38,
115, 35, 219, 44, 61, 123], heat pumping [132, 155, 147, 12, 82] or Josephson-effect-based refrigeration
[180, 199] ; or use energy current and noise as new probes of mesoscopic electron systems [13, 45]. From
a technical point of view, the theoretical tools used to describe dynamical energy and heat transport in
driven mesoscopic electron systems are diverse e.g. the Floquet theory in the AC regime [13, 134, 119,
121, 120, 61] ; master equation approaches such as Lindblad’s [190, 82, 107] or the DLvN method [167, 6,
218, 217, 216, 143] ; or the well-established (but cumbersome) NEGF technique [12, 38, 116, 55, 219, 44,
215] and more recently the wave-function [129] and the auxiliary-mode [113] approaches. The effect
of Coulomb interaction has been included within different frameworks, near the adiabatic regime [115,
163, 82, 47] and beyond [35, 34, 205]. Moreover, alternative methods have been developed to describe
transient particle and heat currents in response to the application of a temperature gradient [19, 49,
37, 117]. However, to date, the different methods listed above have only been applied to paradigmatic
systems ranging mostly from the single site Resonant Level Model (RLM) to the one-dimensional chain.
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3. Past and current developments in thermoelectricity

3.1. Stationary thermoelectricity: a brief overview

Discovered in the end of the 18th century1, thermoelectricity is a property of certain materials that
display an electrostatic potential gradient when under a temperature gradient and inversely. The ef-
fect where a temperature difference produces a voltage difference is called the Seebeck effect: its main
demonstration is done by connecting the ends of two metallic wires and heating it. The Seebeck ef-
fect manifests in a measurable non-zero voltage between the other edges of the wires, see Fig. 3.1.
The measurable voltage difference Δ𝑉 is related to the temperature difference Δ𝑇 , when on an open
electric loop (the electric current 𝐼𝑒 = 0), through a proportionality coefficient 𝑆, called the Seebeck
coefficient or the thermopower

𝑆 = − Δ𝑉
Δ𝑇 ∣

𝐼𝑒=0
(3.1)

The ‘conjugate’ effect, where an imposed voltage forces heat to flow from cold to hot, also exists and is
called the Peltier effect.

V

A

B

a b

Figure 3.1. – Description of the Seebeck effect. a) The ends of two metallic wires are connected then heated, this
results in a measurable voltage difference between the other two ends a) A practical demonstration of the effect
by heating an aluminum foil, screenshot from the Youtube™ video “How to make a ThermoElectric Generator”
from the channel “Keystone Science”.

3.1.1. Thermoelectricity for energy conversion

The Seebeck effect naturally lent itself to a practical application in making temperature sensors as the
voltage depends on the temperature difference. In principle, this first practical implementation could
be used for electrical generation but it suffers from a prohibitively low efficiency and remained un-
used for energy conversion. Starting from the late 1950s, the semi-conductor industry boomed around
the manufacturing of micro-processors and new research had been undertaken to make thermoelectric
generators based on semi-conductors : a new wave of investigations was initiated by the Russian re-
searcher A. F. Ioffe who introduced a dimensionless parameter, 𝑧𝑇 [75, 194, 90], later called the ‘figure
of merit’, as a simple but efficient performance indicator of each material he studied as a thermoelectric
generator

𝑧𝑇 = 𝜎𝑆2

𝜅E + 𝜅𝐿
𝑇 (3.2)

1See the first chapter of Ref. [75] for a concise and thorough history of thermoelectricity.
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3.1. Stationary thermoelectricity: a brief overview

where 𝑇 is the average absolute working temperature (linear response is assumed for the cold and
hot baths), 𝑆 the Seebeck coefficient, 𝜎 the electrical conductivity, 𝜅E and 𝜅𝐿 are respectively the
electronic and lattice thermal conductivities of the material. Unfortunately 𝑆, 𝜎 and 𝜅 are strongly
correlated through the material’s charge carrier concentration, scattering and band structure [145].
One correlation that can be intuitively understood is between the thermal conductivity 𝜅E and the
electrical conductivity 𝜎 as both are due to electrons and therefore cancel each other’s contribution
in 𝑧𝑇 (see Fig. 3.2b for an illustration): the Wiedemann–Franz law for example, an empirical law
followed by some materials, states that these two conductivities are proportional [124]. Research has
been undertaken to find materials and systems that violate this law (e.g. see Refs. [189, 200, 160]) in
hopes of improving the efficiency.

Solar/ Brayton

Carnot efficiency
Thermodynamic limit

ZT=infinity

Coal/ Rankine

Solar/ Rankine
Nuclear/ Rankine

Solar/ Stirling

0

10

20

30

40

50

60

70

80

300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

Nuclear/ Brayton+Rankine

Heat source temperature (K)

Ef
fic

ie
nc

y 
(%

)

Geothermal/ Org. Rankine
Geothermal/ Kalina

Cement/ Org. Rankine ZT=0.7, available today

ZT=2, plausible eventually

ZT=4, ambitious

ZT=20, unlikely

(a) Taken from [197]. Comparing traditional industrial heat engines
with thermoelectrics. Current thermoelectrics cannot compete due
to their low efficiency, if their figure of merit 𝑧𝑇 attains ∼ 3 they
would be a viable alternative.

(b) Adapted from [177] : illustration
of the effect of changing the carrier
concentration on each term of the ex-
pression (3.2) of 𝑧𝑇

Figure 3.2. – Assessment of the values of the figure of merit 𝑧𝑇 and its subterms

In the case of a two-terminal system in the linear regime near equilibrium, the highest attainable
electrical generation efficiency 𝜂max is related to the figure of merit as follows [74]

𝜂max = 𝜂C

√𝑧𝑇 + 1 − 1√𝑧𝑇 + 1 + 1 (3.3)

where 𝜂C = 1−𝑇C/𝑇H is called the Carnot efficiency: the theoretical maximum efficiency no system can
outperform, where 𝑇C and 𝑇H are the temperatures of the cold and hot reservoirs. Note that the figure
of merit 𝑧𝑇 also characterizes cooling performance of the same materials, when used in the Peltier
configuration. This system also highlights another important issue with any kind of heat engine so
far: the power output and the efficiency cannot be simultaneously maximized [9, 16] and a tradeoff
has to be made depending on the use cases. In the two-terminal linear response regime, under the
time-reversal symmetry hypothesis, the efficiency at maximum power 𝜂(𝑃max) is the following

𝜂(𝑃max) = 𝜂C
2

𝑧𝑇
𝑧𝑇 + 2 (3.4)

One can note that 𝜂(𝑃max)
𝑧𝑇→0−−−→ 0 and 𝜂(𝑃max)

𝑧𝑇→∞−−−−→ 𝜂C/2. The latter limit coincides with the
linear response expansion of the Curzon-Ahlborn efficiency 𝜂CA

𝜂CA = 1 − √𝑇C
𝑇H

(3.5)
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3. Past and current developments in thermoelectricity

the (non-universal) efficiency at maximum power of a more realistic model of a cyclic Carnot engine
[42].

Current status of thermoelectrics When compared to traditional heat engines, thermoelectric gen-
erators have the advantage of not having any macroscopic moving parts but suffer from a comparatively
low efficiency (see Fig. 3.2a): the mainstream commercially available thermoelectric generators and
refrigerators present a 𝑧𝑇 ≲ 1 and are reserved to niche applications such as radioisotope thermo-
electric generators for deep-space exploration [208]. Attempts have been made to use thermoelectric
devices for seat cooling and heating in some high-end cars [114] ; to power autonomous low-power de-
vices such as pacemakers [18] or sensors [43] ; for fine-grained heat extraction on computer processors
[112] ; with mixed results or still ongoing development. For broad use of thermoelectricity for elec-
tricity generation and refrigeration, 𝑧𝑇 ∼ 2, 3 needs to be practically reached with low manufacturing
costs and low practical parasitic losses [191].

3.1.2. Improving thermoelectric devices

Initial implementations of thermoelectric devices by Ioeffe [90] and Goldsmid [73] in the early 1950s
presented a 𝑧𝑇 ∼ 0.5 [85], a decade later the figure of merit 𝑧𝑇 reached a theoretical value of ∼ 1
then stalled until the early 1990s. In 1993, Hicks & Dresselhaus [86] published an article where they
theoretically predict that a low-𝑧𝑇 Bi2Te3 bulk material can see its figure of merit boosted by an order
of magnitude and reach 𝑧𝑇 ∼ 14 when cut down to thin square section (∼ 0.5 × 0.5 nm), showcasing
that low dimensionality theoretically improves the figure of merit due to quantum confinement effects.
That result initiated a new wave of research where quantum effects are the leading motor in further
improvement of thermoelectric generators and refrigerators, see Fig. 3.3.

Figure 3.3 – Taken from Ref. [85]: “Evolution of
the maximum ZT over time. Materials for thermo-
electric cooling are shown as blue dots and for ther-
moelectric power generation as red triangles. The
black dashed line guides the eye. The compound
semiconductors (PbTe, Bi2Te3) indicate only the ba-
sic constituent; most high ZT materials are alloys or
nanocomposites.” This graph highlights a first wave
of improvements of the figure of merit thanks to the
development of the semi-conductor industry, start-
ing the early 1950s ; a second wave of improvements
started from the early 1950s thanks to quantum-led
nano-engineering. However, the figure of merit has
not yet reached the critical value of 𝑧𝑇 = 3 for broad
use [191].

Quantum thermoelectrics In traditional thermoelectrics at room temperature and large scale, the
charge carrier’s relaxation length is relatively negligible when compared to the system’s size. This
enables describing the transport within the bulk of classical thermoelectrics with smooth local thermo-
dynamical equilibrium at each point in space, such systems are usually well described by Boltzmann
transport theory (see Ref. [74]). When the thermal relaxation length becomes similar to the system’s
size, Boltzmann’s transport theory does not apply any longer. Moreover, when the quantum phase
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3.1. Stationary thermoelectricity: a brief overview

coherence length of the charge carriers is comparable to the size of the system, coherence quantum
effects manifest: particles have a (relatively) coherent wavelike behavior that can exhibit interferences
or strong correlations. In meso/nanoscale devices, electron-phonon and eventually electron-electron
interactions get inhibited when the temperature is lowered. Interactions being the main factor behind
relaxation processes and decoherence, transport is elastic and is accurately described within the quan-
tum theory: this opens up new doors to thermoelectricity and can potentially help with improving the
performance of thermoelectric devices in the long run. Opportunities offered by mesoscopic physics
for thermoelectrics are discussed in the review paper [148].

Current research Several leads are being explored for increasing the figure of merit 𝑧𝑇 with an
end goal to improve one or several of its terms: increase the Seebeck coefficient 𝑆 or improve the
electric conductivity 𝜎 while simultaneously lowering/maintaining the thermal conductivities. Many
bulk materials have been researched – e.g. Skutterudites, Clathrates, Zintls, Half-Heuslers, GeTe, SnTe,
PbTe, Bi2−𝑥Sb𝑥Te3 – where even a 𝑧𝑇 ∼ 5 has been predicted [87] but so far no single material stands
out as each has their pros and cons [176]. In parallel, optimization techniques are being developed
around band-structure manipulation, nanostructuring, superionic conduction and defect manipula-
tion (see Ref. [214] for an overview on the latest developments at the time of writing). In the next
paragraphs, we illustrate two of the various benefits of nanostructuring: energy filtering and phonon
thermal conduction reduction.

→ Reduce the phonon thermal conductivity In the field of low temperature mesoscopic ther-
moelectricity, recent theoretical [211] and experimental [22] works highlighted a very effective way
in reducing the phonon’s contribution 𝜅𝐿 (see Eq. (3.2)) to the thermal conductivity in nanowires by
changing the geometry of their surface, which breaks down the mean free path of phonons in the bal-
listic regime, and therefore reduces the thermal conductivity, see Fig. 3.5. The electrical conductivity
in the other hand is unaffected by the geometrical change. The resulting material is an electron crystal
& phonon glass.

→ Energy filtering for electric generation Quantum dots are a popular test bed in mesoscopic
thermoelectric systems for both theoretical and experimental [181, 152, 188] approaches, due to their
relatively simple theoretical model and experimental implementation : an isolated ‘island’, with one
or many energy levels, where electrons can hop in and out from different heat baths (see Fig. 3.7 (a)
for a sketch). Such systems are predicted to be able to reach the Carnot efficiency (although with zero
output power), when used as heat engines [137]. Josefsson et al.[93, 94] experimentally showcased the
former prediction by measuring an efficiency close to the Carnot efficiency 𝜂 ≈ 70%𝜂C (see Fig. 3.4).
The experiment is performed at low energies (ℏΓ ≈ 6μeV ≈ 𝑘B𝑇/10), so the Carnot efficiency can
be approached, and at ultra-low temperatures (𝑇 ≈ 1K, Δ𝑇 ≈ 0.5K) so only one energy level of the
quantum dot is populated but also to freeze the phonons, higher temperatures would otherwise dras-
tically decrease the efficiency. More research is therefore needed for room temperature applications,
although efficient experimental techniques have been developed to reduce the phonon’s contribution
to the thermal conductivity, as noticed in the previous paragraph.
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Figure 3.4. – Adapted from [93]: a) “False-coloured SEM image of a nominally identical device to the one used
in the experiment. Metallic leads (yellow) make contact to the nanowire (green). Heaters (blue and red) run
over the contact leads and are insulated from them by a layer of high-k oxide. One of the heaters (red) is used
in the experiment for thermal biasing, and the other (blue) is unused. The resulting Δ𝑇 = 𝑇𝐻 − 𝑇𝐶 is set by
the temperature profile of the phonon bath”. b) Plot of the delivered power 𝑃th vs the efficiency 𝜂 =  𝑃th/𝐼Q,
where 𝐼Q is the heat current, at different values of 𝑉G (the gate voltage that controls the energy level of the
dot, the arrow indicates the direction of increasing values). Data points are based on the measured values of 𝑃th
and the calculated 𝐼Q using experimentally determined parameters. The solid line is the result of a theoretical
calculation, using the same parameters. The spread in the data points at high efficiency is due to fluctuations in
the measured current as it nears zero (the reversal point in 𝑉G).

3.2. Time-dependent mesoscopic thermoelectricity

Classical electric generation and cooling makes use of a heat transfer fluid that undergoes a cyclic
transformation for respectively power generation and heat extraction with e.g. Carnot and Otto en-
gines. Initial research in classical thermodynamics derived the first theoretical results, e.g. the Carnot
efficiency, with a hypothesis of an infinitely slow transformation so no extra entropy is generated and
the efficiency is the highest, however with a zero power output. Real world implementations need to
deliver finite power with finite time cycles, which put the efficiency of practical implementations below
the theoretical limit. Extensive literature has been published on the subject of ‘finite time’ (classical)
thermodynamics field, see e.g. Ref. [9] for a recent review.

The current thermoelectric devices used for electric generation and refrigeration work autonomously
within the steady state regime. This regime of functioning is relatively well understood and accurately
described by theory [75, 16] but it differs from the cyclic behavior, where a dynamical (time-dependent)
control is needed to drive the system and make its thermodynamical properties (volume, temperature,
pressure… etc) follow cycles. Some of the current endeavors in the field of mesoscopic physics are to
iron out thermodynamics in the driven quantum regime: local temperatures and heat current densities
can be ill-defined, especially when a ‘fast’ time-dependent control has to be taken into account. Recent
theoretical studies have even reported on an improvement of thermoelectric properties of ‘quantum
dot’ based models, although the reasons behind this predicted boost remain unknown. On the other
hand, experimentation in driven electron transport has made significant progress, which paves the way
to future driven thermoelectric experiments.
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3.2. Time-dependent mesoscopic thermoelectricity

Figure 3.5. – Adapted from [22]: a) “Thermal conductance 𝜅L of 5 𝜇m long nanowires normalized to four
times the universal value of thermal conductance versus temperature. The thermal conductance of the straight
nanowire is much bigger than the thermal conductance of the S-shape nanowires” b) Another tested shape of
nanowire, it has also been shown to reduce the phonon thermal conductivity.

3.2.1. Theoretical challenges in thermodynamics

The theory of thermodynamics aims to describe simply systems with a very high number of degrees
of freedom with a few relevant parameters to our scale. To achieve this simplification over the degrees
of freedom, averaging over the degrees of freedom, space and time is done. Thermodynamics revolve
around three fundamental laws with regards to the evolution of such a system: (i) energy is conserved
; (ii) the total entropy of the considered system and its environment can only increase ; (iii) the system
cannot reach the absolute zero temperature in a finite-time transformation. The Carnot efficiency 𝜂𝐶 =
1−𝑇C/𝑇H, where 𝑇H and 𝑇𝐶 are the temperatures of the hot and cold baths, is one of the most known
results of thermodynamics: no cyclic heat engine, no matter what its inner workings are, can have an
efficiency 𝜂 = 𝑊/𝑄H that exceeds 𝜂𝐶 , where 𝑊 and 𝑄H are respectively the cycle averaged work
produced by the heat engine and the heat lost by the hot reservoir.

Classical thermodynamics The aim of the original theory of thermodynamics is to describe macro-
scopically stationary, and in equilibrium, systems [29] with a high number of degrees of freedom like
gases, liquids and solids made of ∼ 1023 atoms/molecules. The Carnot upper limit is obtained within a
simple model of piston-and-cylinder in the quasi-static limit, where the transformation (the movement
of the piston in the cylinder) is done infinitely slowly so that no extra entropy is produced other than
the one that is transferred from the hot reservoir to the cold reservoir. This quasi-static limit is an
ideal case that also theoretically results in a zero power output since the period of a cycle is considered
to be infinitely long. Even though obtained within a simple model, this limit applies to any practical
implementation of a heat engine with the extra constraint that it needs to deliver finite power with
finite-time cycles. This makes these realistic engines undergo an irreversible (non quasi-static) trans-
formation that produces extra entropy and result in an efficiency 𝜂 < 𝜂𝐶 . Within this real-life context,
the efficiency is not the only quantity of interest as power output, costs and ecology come into play
and cannot be simultaneously maximized. See Refs. [42, 10, 166, 98] for more information on classical
finite-time thermodynamics.
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Quantum thermodynamics Quantum mechanics is the current most accurate description of the be-
havior of fundamental particles at small scales and/or cold temperatures. Its relationship with classical
physics and how the behavior of matter smoothly transitions from the quantum realm to the classical
realm has been discussed and debated since the inception of the quantum theory, but this matter is yet
to be solved and ‘is still in its infancy’[27, p. 530] (see also Ref. [21]). However, from a more pragmatic
approach, some systems are accurately described by a classical theory and some others are not. In the
latter case quantum or semi-classical models are needed to alleviate the discrepancies between what is
observed and the predictions of classical models, see Fig. 3.6 for an example.

ice

water

Figure 3.6. – Adapted from [195]: Heat capacity 𝐶p at a pressure 𝑃 = 1bar for liquid water (right graph) and
ice (left graph) as obtained from quantum path-integral simulations (solid line) and from classical simulations
(dashed line). Experimental results are given by solid black disks. We notice that simulations based on the
quantum approach describe precisely the heat capacity of water in both its liquid and solid state whereas the
classical simulation fails.

Quantum mechanics chronologically appeared more than a century after the initial development
of classical thermodynamics – e.g. works by Carnot [32] were published on 1824 – and was devel-
oped without consideration for thermodynamics for a few decades before researchers started working
towards recovering known results of thermodynamics: the first works in this context highlighted the
equivalence between a Carnot engine and a three-level Maser [174, 69]. Quantum mechanics deals with
systems whose ensemble size is below the classical thermodynamic limit, in non-equilibrium where
extra quantum effects come into play, such as interference and entanglement. Initial hopes were on
the emergence of a quantum theory of thermodynamics where classical laws are violated, such as the
aforementioned second law. Some results pointing towards such a violation have been published [72,
7, 58] but are only attributed to a derivation with ill-defined quantities. Further research, reviewed in
e.g. Refs. [107, 68, 198], built upon these first works to recover, within the markovian (quantum) Lind-
blad master equations approach (see Sec. 3.3.3 below), the quantum equivalent to the classical laws of
thermodynamics where no violation occurs and classical finite-time thermodynamics are recovered in
some models [70, 71, 156]. Technological advances recently enabled realizing real implementations of
the Maxwell demon in both the quantum [30, 36] and classical [162, 105, 196] descriptions, further im-
proving the understanding of thermodynamics and its intimate relationship with theory of (quantum)
information. The field of quantum thermodynamics is although far from being a closed subject as it
has been approached by scientists from different fields [198] (statistical physics, mesoscopic physics,
quantum information theory and other fields) who approached the question with different tools : the
Lindblad master equations approach sets up a first complete quantum description of thermodynamics,
but it is one approach amongst others and comes with limitations e.g. a weak, slowly driven (to remain
markovian i.e. not depend on previous times), system-bath coupling assumption. A consensus over
the definition of “work” and “heat” is yet to be attained, research is still ongoing on properly building
a coherent thermodynamical description where the equivalence or difference between each approach
is highlighted and understood. In this thesis, we tackle both the strong coupling and the fast driving
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regime using the non-interacting scattering approach with wavefunctions. We bring to the table the
necessity of electromagnetic gauge invariance of any energy quantity and bring extra elements to the
ongoing discussion over the definition of a heat current, see Sec. 4.3.3.3 and Sec. 4.3.4.2.

3.2.2. Exploring the new time-dependent regime

Many thermoelectric experiments have been done, in the stationary regime, in resonant tunnel junc-
tions, molecular junctions [159, 41, 151] and quantum dots. Gate-controlled heat engines [93, 94] and
heat valves [48] have been implemented. The theoretical approach used to described these experiments
is through the Resonant Level Model: a simple system with a single energy level connected to two heat
baths. This model has been extensively studied in the literature in the stationary regime, for both
particle and heat transport, in the non-interacting [15, 53, 125] and in the interacting regime where
Coulomb interactions [192] are taken into account in different regimes (e.g. Coulomb blockade [220]
and Kondo [108] regimes).

The Resonant Level Model (RLM) is a simple system and has been used as the test-bed for the current
developments around time-dependent quantum thermodynamics (including thermoelectrics). The non-
interacting time-dependent RLM has been extensively studied in the literature to simulate dynamical
charge transport (see e.g. Refs.[92, 150, 158, 79]) and more recently dynamical energy transport: Refs.
[116, 119] highlight the complex behavior of the energy currents in the time-dependent domain ; Refs.
[51, 121, 24] focus on thermodynamics and entropy, leading to initial developments of a theory of
thermodynamics when the time-dependent drive is slow [55, 24, 81, 17], periodic [120, 17] or generic
[143, 175] (but with different theoretical approaches) ; Ref. [215] investigate the full-counting statistics
(FCS) of energy flow ; Ref. [37] studies the limitations to the usually used wide-band approximation in
calculations in the RLM model ; Refs. [44, 51, 40, 80] study the cyclic drive to make heat engines and
heat pumps, stochastic cycles have also been studied [128]; Refs. [55, 142] raise issues while trying to
define heat currents when the system-bath coupling is also time-dependent.

Improve the thermoelectric efficiency ? Promising results are reported within the non-interacting
two-terminal Resonant Level Model, when its energy level undergoes a heaviside jump in time (see Fig.
3.7 (a) and (b)): Refs. [38] reports in improvement in the calculated Seebeck coefficient 𝑆 (see Fig. 3.7
(c)) whereas Ref. [219] reports a ‘boost’ of the efficiency of the model when in the generator config-
uration (see Fig. 3.7 (d)), a similar boost is also predicted in the transient regime for a train of square
pulses. Those exploratory results hints at a positive impact of time-dependent driving on thermoelec-
tricity. However, it is important to notice that those results depend on the choice of the definition of
a time-resolved Seebeck coefficient and a time-resolved efficiency and the used choice in those papers
is questionable. Moreover, those studies focus on the transient regime at short times after the quench
and do not investigate the contribution at long times. Those two crucial points will be addressed in
Chapter 6 of this thesis dedicated to the RLM. Finally, it is clear that those results for the Resonant
Level (toy) Model remain to be confirmed (or refuted) in more realistic devices. In Chapter 5, we will
report on the numerical method we have implemented to investigate time-dependent thermoelectric
transport in generic (non-interacting) systems.

Towards time-dependent thermoelectric experiments The current progress in experimental re-
alizations already enables implementing promising thermoelectric devices in the stationary regime for
bulk materials at ambient temperature [89, 84] (see e.g. [214] for a review) but also nano-devices at
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Figure 3.7. – Reported thermoelectric improvements in the driven Resonant Level Model. (a) Representation of
the Resonant Level Model, a central single-level system connected to two heat baths via electron tunneling with
rate Γ. (b) When the single level of the central ‘dot’ jumps by an energy Δ𝑉 , (c) the calculated Seebeck coefficient
of the system is reported to be enhanced [38] while (d) its efficiency is reported to significantly improve in a heat
engine configuration [219], in the transient regime. Note that the parameters used in each article are different.

ultra-low temperature that showcase the ‘quantum-advantage’ in electric generation [93] and thermal
conduction inhibition [22]. On the other hand, the field of high frequency nanoelectronics made sig-
nificant improvements over the past decade and now offers fine time-dependent control over electrons
through mesoscopic capacitors / single-electron boxes that can emit single electrons on demand with a
tunable energy or time resolution tradeoff (see Fig. 3.8 below) or electron pumps that can emit period-
ically electrons in the gigahertz range (see e.g. Ref. [14] for a review). Note that all these experiments
need to operate at very low temperature 𝑇 ≲ 0.5𝐾 and high frequency 𝜔 ≳ 10GHz to reach the
quantum dynamical regime where 𝑘𝐵𝑇 ≲ ℏ𝜔.

One of the initial main goal of these developments is single-electron quantum optics for quantum
information, although it is not far fetched to imagine that they also help shaping experiments in quan-
tum thermodynamics and mesoscopic thermoelectricity. Along with Josephson junction based quan-
tum devices that enable fast, time-resolved measurements of the electronic temperature [201], current
experimental progress deepens our understanding of energy and particle transfers at small time and
energy scales and paves the way for initial time-resolved thermoelectricity experiments. This thesis
intervenes within this context, we provide additional tools for theoretical research, which in turn we
hope it will motivate experimentation.

3.3. Theoretical frameworks for quantum transport

In this subsection we shortly highlight two theoretical approaches to describe quantum transport of
electrons and energy that we will use within this thesis: the scattering theory and the linear response.
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time

Capacitor
Fermi sea

Capacitor Fermi
sea

Figure 3.8. – Sketch of the inner workings of a mesoscopic capacitor. (a) Adapted from [131]. 3D representation
of a mesoscopic capacitor: an isolated cavity connected to a Fermi sea of electrons, through a quantum point
contact. (b) Redrawn from [14]. Energy resolved mesoscopic capacitor: initially, the capacitors levels are filled
till the Fermi energy. Then the energy levels of the capacitor are shifted, by the gate potential 𝑉ext, by exactly
the spacing Δ between two energy levels, this releases an electron with a well defined energy with a tunable
uncertainty (through the emission time 𝜏 ). Finally the gate potential is shifted back to original value, the Fermi
sea fills back the empty space left by the previous electron, which creates a hole below the Fermi energy level.

The scattering theory will be extensively described in Chap. 5 whereas the linear response will be
used to recover a result from the literature in Sec. 6.1. Other theoretical frameworks for describing
transport, both in the stationary and time-dependent regime, will be quickly listed.

For a more complete study of the theoretical descriptions, Ref. [46] describes quantum transport in
the stationary regime, Ref. [16] is a review of the methods to describe thermoelectric quantum transport
in the stationary regime, Ref. [66] makes an overview of the time-dependent theoretical methods for
describing quantum transport and generalizes the non-interacting scattering approach to the time-
dependent regime. Ref. [139] describes electronic transport in both the classical and quantum regimes,
under stationary and time-dependent drive. For the classical approaches and practical thermoelectric
implementations, one can refer to Refs. [75, 74].
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3.3.1. Scattering Theory – Landauer-Büttiker formalism

This approach applies to non-interacting electrons (interaction can still be accounted for at the mean-
field level) and is based on considering a central system, also called a scattering region, that is connected
to several thermal baths through electronic waveguides called leads (see Fig. 3.9). The baths then influ-
ence which ‘incoming modes’ are populated within the leads whereas the system affects the ‘outgoing
modes’ in each lead although no back action on the baths is considered within this theoretical frame-
work. An electron, described by a wavefunction (see 4.2.1.1), leaves a bath 𝛼 and enters the central
system to eventually be transmitted/reflected in a bath 𝛽 with a probability 𝑇𝛼𝛽. The probabilities 𝑇𝛼𝛽
can be derived by solving the Schrödinger equation, and this enables to write the particle and energy
currents that leave each lead 𝛼. We will use this theory throughout this thesis, a more detailed descrip-
tion is done in Sec. 5.1. A review of the original development for particle transport is done by Ref. [20],
extended to heat and energy transport by Ref. [26].

Figure 3.9. – Sketch of the scattering approach. A central system, called a scattering region, is connected
to several baths ℬ through waveguides. Electrons leave each bath ℬ𝛼, with energies 𝐸 that follow a thermal
distribution, and enter the waveguide till they reach the scattering region where the undertake a first transmission
or reflection. Transmitted electrons in the scattering region undergo several reflections and interfere then they
eventually leave it to be transmitted in one of waveguides to reach the baths ℬ𝛽 a) with the same energy 𝐸 when
in the stationary regime, with a probability 𝑇𝛼𝛽 or b) with a different energy 𝐸′ in the time-dependent regime,
due to the drive that causes energy redistribution within the scattering region, with a probability 𝑇𝛼𝛽(𝐸, 𝐸′).

Stationary regime An electron leaving a bath ℬ𝛼 with an energy 𝐸 gets transmitted to each bath
𝛽, at the same energy 𝐸 (see Fig. 3.9 a), with an amplitude 𝑑𝛼𝛽(𝐸) whose absolute square 𝑇𝛼𝛽 =
∣𝑑𝛼𝛽(𝐸)∣2 is the probability of getting transmitted to the bath 𝛽. The particle current 𝐼N

𝛼 , the energy
current 𝐼E

𝛼 and the heat current 𝐼Q
𝛼 leaving a bath 𝛼 are simply the net sum of the electron number, the

energy and the heat carried by each electron leaving the bath minus the one carried by the electrons
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entering, weighted by the probability of each event

𝐼N
𝛼 = ∑

𝛽≠𝛼
∫ d𝐸

2𝜋ℏ [𝑓𝛼(𝐸) − 𝑓𝛽(𝐸)] 𝑇𝛼𝛽(𝐸)

𝐼E
𝛼 = ∑

𝛽≠𝛼
∫ d𝐸

2𝜋ℏ 𝐸 [𝑓𝛼(𝐸) − 𝑓𝛽(𝐸)] 𝑇𝛼𝛽(𝐸)

𝐼Q
𝛼 = ∑

𝛽≠𝛼
∫ d𝐸

2𝜋ℏ (𝐸 − 𝜇𝛼) [𝑓𝛼(𝐸) − 𝑓𝛽(𝐸)] 𝑇𝛼𝛽(𝐸)

where 𝑓𝛼 = (exp(𝐸−𝜇𝛼
𝑘B𝑇𝛼

) + 1)−1
is the Fermi distribution of the bath ℬ𝛼 (also given in Eq. (5.28)), see

Sec. 5.1.2 for a description of its implementation in the Kwant simulation library.

Time-dependent regime The time dependent regime adds one extra ingredient over the stationary
approach of scattering: inelastic events due to the time-dependent drive that redistributes the energy
of the electrons coming from each bath. Two equivalent approaches can be used to describe quantum
transport in scattering systems sketched in Fig. 3.9. Each one with its advantage and drawback over
the other.

→Scattering states – wavefunction approach This approach relies on time evolving a set of one-
body wavefunctions, called scattering states, to describe many-body transport in non-interacting tight-
binding systems, it does not need the computation of the transmission amplitudes to be able to express
transport quantities. One implementation of this idea has been developed by X. Waintal’s group [66,
203, 101], at CEA Grenoble, and has been used to implement the tkwant[101] simulation library. This
implementation is reported to be equivalent to the partition-free initial condition approach[109, 182] as
the electronic baths are attached to the scattering region from the remote past ; it also is a generalization
of the single-electron approach [78, 79] used within specific models. Although less useful for analytical
studies, the scattering states are extremely efficient for numerical simulation. In this thesis, we will
describe the method used by tkwant in more details in Sec. 5.1 and generalize it to energy transport:
see Sec. 5.2.3.1 for the end result of the generalization. In Sec. 5.2.3.2 we show that it recovers the
static limit described above, and Sec. 5.3 we describe its practical implementation within tkwant.

→ Two-energy transmission amplitudes Under a time-dependent drive, electrons leaving the
bath 𝛼 with an energy 𝐸 will get transmitted in the other baths 𝛽 with a different energy 𝐸′ due to the
time-dependent drive that pumps in/out energy (see Fig. 3.9 b): the transmission happens with an am-
plitude 𝑑𝛼𝛽(𝐸′, 𝐸) whose expression is determined by the drive. The goal of this approach is therefore
to express or compute the transmission amplitudes 𝑑𝛼𝛽(𝐸′, 𝐸) e.g. by solving the Schrödinger equa-
tion on a generic scattering state, by combining known subsystem transmission amplitudes (see Fig.
6.6 for an illustration) or, when the time-dependent drive is periodic, Fourier series enable a Floquet
approach to quantum transport [133, 135]. Using transmission amplitudes is adapted to an analytical
and semi-analytical study of systems as they are interpretable as-is, for example as energy filters [16].
In this thesis, we use this approach and determine the transmission amplitude 𝑑(𝐸′, 𝐸) of the Resonant
Level Model (see Sec. 5.3.2.1 for a description of the model), when we use the ‘wideband limit’. See
Sec. 6.
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3.3.2. Linear-Response – Onsager Matrix

To simplify the description, we consider two-terminal systems that are connected to only two, “left”
and “right”, electrochemical baths characterized by their temperature 𝑇𝛼 and electrochemical potential
𝜇𝛼, 𝛼 = L (left), R (right), see Fig. 3.10. A generalization to multi-terminal systems can then be made.
The “linear response” approach can be undertaken when Δ𝑇 = 𝑇L − 𝑇R and Δ𝜇 = 𝜇L − 𝜇R are small
when compared to their respective average value ; or when the variation 𝛿𝑇 of the temperature and 𝛿𝜇
of the chemical potential, over the span of the relaxation length, are small with respect to their average
value 𝑇 and 𝜇, in which case local equilibrium can be assumed. Equilibrium transport coefficients –
namely the electrical conductance 𝐺, the thermal conductance 𝐾 , the Seebeck coefficient 𝑆 and the
Peltier coefficient Π – can then be derived to predict the behavior of a thermoelectric system.

system

Figure 3.10. – Representation of a two-terminal thermoelectric system. Connected to two thermal baths – left
(L) and right (R) – the system is crossed by heat currents 𝐼Q

𝛼 and particle currents 𝐼N
𝛼 that go from the bath 𝛼 =L,R

to the other.

Stationary regime Under stationary biases Δ𝑇 and Δ𝜇, the system eventually reaches a steady state
characterized by constant particle currents 𝐼N

𝛼 and heat currents 𝐼Q
𝛼 . Without loss of generality, the left

particle current 𝐼N
L and the left heat current 𝐼Q

L are related to the displacements Δ𝑉 /𝑇 (Δ𝑉 = Δ𝜇/𝑒)
and Δ𝑇/𝑇 2 through the Onsager matrix L[29, 76]

[𝐼N
L

𝐼Q
L
] = [𝐿L

NN 𝐿L
NQ

𝐿L
QN 𝐿L

QQ
]

⏟⏟⏟⏟⏟
L

[ Δ𝑉 /𝑇
Δ𝑇/𝑇 2] (3.6)

where 𝐿AB (A,B=N,Q) are the Onsager coefficients. They verify the Onsager reciprocal relation

𝐿NQ = 𝐿QN (3.7)

if the system is invariant with respect to the time-reversal symmetry and is not under the influence of
a magnetic field: the second principle of thermodynamics further constrains these coefficients

𝐿NN ≥ 0 det(L) ≥ 0 (3.8)

The right currents 𝐼N
R and 𝐼Q

R , with the same sign convention (positive when leaving the bath), are
related to the left currents as follows

𝐼N
L = −𝐼N

R 𝐼Q
L + 𝐼Q

R = Δ𝑉 𝐼N
R (3.9)

The Onsager coefficients can either be computed from a lower level approach (see next paragraph)
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or from experimentally measuring the transport coefficients, to which they are related as follows [16]

𝐺 = 𝐼N

Δ𝑉 ∣
Δ𝑇=0

= 𝐿NN
𝑇

𝐾 = 𝐼Q

Δ𝑇 ∣
𝐼N=0

= 1
𝑇 2

det(𝐿)
𝐿NN

𝑆 = − Δ𝑉
Δ𝑇 ∣

𝐼N=0
= 1

𝑇
𝐿NQ

𝐿NN

(3.10)

Time-dependent regime Ref. [118] developed a consistent theory in the slow and periodic regime
where the relations in Eq. (3.8) and Eq. (3.9) are still valid but with cycle-averaged matrix elements. Ref.
[219] used the linear response approach in the ‘fast’ time-dependent regime for a non-interacting two-
terminal device: while the biases [Δ𝑉 , Δ𝑇 ] are still considered time-independent, the system is driven
by e.g. a time-dependent gate-voltage. In this article, the considered Onsager coefficients 𝐿𝛼

AB(𝑡) are
time-dependent: the ‘conservation’ relations Eqs. (3.9)-(3.8) are reported to be violated which would
give hopes for a higher thermoelectric efficiency in the driven regime. In this thesis, we recovered the
reported results although we believe that the physical interpretability of a time-dependent Onsager
matrix, in the driven regime, is not straightforward: see Sec. 6.1 for a more complete analysis. The
Seebeck has also been generalized to the time-dependent regime 𝑆(𝑡) [38]. If one wishes to treat the
time-dependent control itself in the linear-response regime, i.e. as a perturbation over the stationary
state, a more fundamental and thorough approach to linear-response theory is described in Ref. [183].

3.3.3. Other theoretical frameworks for time-dependent quantum transport

We succinctly describe few other theoretical frameworks – some will be omitted, such as the Time-
dependent Density Functional theory [110, 109] that are out of scope within this thesis – to describe
time-dependent transport. Each framework comes with their own advantages, equivalences/similarities
and drawbacks when compared with the other frameworks.

Time-dependent quantummaster equations Master equations describes the evolution of a quan-
tum open system 𝒮 as a part of a global ‘total’ system 𝒯 that is made of 𝒮 and the environment ℰ with
whom it interacts and exchanges matter, energy and heat. The practical description relies on writing
a ‘master equation’ of the density operator ̂𝜌𝒯 of the total system or its reduction ̂𝜌𝒮 to the system
𝒮. The most extensively studied theoretical framework within this approach relies on Lindblad master
equations [68, 173, 138] where, initially, two main assumptions are made over the nature of the cou-
pling between the system and the environment : it is assumed to be weak and of markovian nature.
The markovian assumption being usually attained by a sufficient condition of slow driving in time. No
other assumption in particular is made over the system of interest, it can be time-dependent and in-
volve interactions of arbitrary strength. Further works generalized the Lindblad approach to the strong
coupling, non-markovian regime [187, 179, 170, 186] while other studies developed alternative master
equation approaches such as the driven Liouville von Neumann (DLvN) method [167, 6, 218, 217, 216,
143] or NEGF-based [47, 175].

Non-equilibrium Green’s functions (NEGF) This is a powerful method for describing quantum
transport as it can theoretically fully handle electron-electron and electron-phonon interactions in the
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time-dependent regime, in the weak and strong coupling regime with the baths. The price to pay
is its added complexity both in its theoretical framework and in computation. A quantum system is
fully described within this approach with the so called Green functions: the retarted, advanced, lesser
and greater Green functions. Various methods have been developed to derive these Green functions,
as the Nonequilibrium Equation of Motion method or the Kadanoff-Baym-Keldysh method. Practical
implementations to simulate electronic transport can be to directly calculate the non-equilibrium green
functions from their equations of motion but it is too expensive in terms algorithmic complexity [66]
and therefore unpractical. Other methods have been developed such as the Auxiliary-Mode Expansion
[39] for charge and energy currents [113]. It has been shown [66] that the NEGF approach is equivalent
to the wavefunction scattering approach in the non-interacting case, with a relationship linking the two
given in Eq. (5.26). For more information about the NEGF formalism, see e.g. [165, 183].
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Waveguide

UniformScattering
Region

Figure 4.1. – Target system in which energy and particle transport will be considered
Made of a central area 𝒞 called ‘scattering region’. It is under the influence of an external time dependent
electromagnetic field, represented by the scalar potential 𝜙( ⃗𝑟, 𝑡) and the vector potential ⃗𝐴( ⃗𝑟, 𝑡). The scattering
region is connected to semi-infinite ‘waveguides’ ℒ𝛼. An additional static potential energy 𝑉 is considered to
model any potential created by the system itself e.g. the potential created by the nuclei of atoms. Each lead ℒ𝛼
is filled with electrons that travel towards the scattering region, according to a thermal distribution given by the
temperature 𝑇𝛼 and chemical potential 𝜇𝛼. In our approach, the time dependence only starts after an instant
𝑡0. Note that a time-dependent uniform scalar potential in each lead can be taken into account through a gauge
change, see Sec. 5.1.1.

In this chapter, we build a local transport quantum theory of non-interacting electrons and the energy
they carry, while under a time-dependent electromagnetic field. The goal is to describe a class of generic
scattering systems as described in Fig. 4.1. First, in Sec. 4.1, we briefly go through the classical theory
of charge and energy transport to highlight two driving principles that will be ported over to the
quantum description, i.e. local energy conservation and gauge invariance, but also discuss the case
of the ill-defined ‘mechanical energy’ in the time-dependent regime, the quantum equivalent being
the Hamiltonian. Then, in Sec. 4.2, we quickly redraw the well-known quantum theory of single
particles described by wavefunctions. We introduce the Schrödinger equation as a means to obtain
these wavefunctions, then we use these wavefunctions to expose once again the well-known local
particle transport quantities and their less known energy counterpart with a strong focus on gauge
invariance and the ongoing debates over defining an energy local operator. These local equations
are then re-derived in the discretized space (see Sec. 4.2.4) and in the many-body non-interacting
second quantization approach (see Sec. 4.3), after a concise introduction to second-quantization and
the constraints coming from considering many-body quantum physics. Finally, we expose in Sec. 4.3.4

61



4. Non-interacting time-dependent quantum transport : Theoretical apparatus

how lead currents can be calculated as a flux of local quantities and discuss the ongoing research and
debates over the heat current. Note that Sections 4.3.3 and 4.3.4 constitute the main parts of this chapter.
They are leveraged in Chapter 5 where we discuss the (wavefunction based) numerical implementation
of this theoretical framework.

4.1. Classical electrodynamics

Classical electrodynamics are entirely described by joining classical mechanics – through the equiva-
lent Newton’s mechanics, Lagrangian mechanics or Hamiltonian mechanics – the Maxwell equations
that uncover the interplay between the electric field ⃗𝐸( ⃗𝑟, 𝑡), the magnetic field �⃗�( ⃗𝑟, 𝑡), the local density
of charge 𝜌( ⃗𝑟, 𝑡) and the local charge current density ⃗𝑗( ⃗𝑟, 𝑡). The description is given by the following
well-known set of four equations

∇⃗ ⋅ ⃗𝐸 = 𝜌/𝜀0 ∇⃗ ⋅ �⃗� = 0

∇⃗× ⃗𝐸 = −𝜕𝑡�⃗� ∇⃗×�⃗� = 1
𝑐2 𝜕𝑡 ⃗𝐸 + 𝜇0 ⃗𝑗

(4.1)

where 𝑐 is the speed of light in the vacuum, 𝜀0 is the vacuum permittivity, 𝜇0 is the vacuum perme-
ability1 and ∇⃗ is the gradient operator2.

4.1.1. Conservation equations

Using solely the equations above, one can derive a local particle conservation equation:
𝜕𝑡𝜌( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗( ⃗𝑟, 𝑡) = 0 (4.2)

Further derivation [91] enables us to write a local energy conservation equation, called the Poynting
relation:

𝜕𝑡𝑢EM + ∇⃗ ⋅ ⃗𝜋 = − ⃗𝑗 ⋅ ⃗𝐸 (4.3)
where 𝑃EM is the local power density that is ‘lost’ to the charged matter,

𝑃EM = − ⃗𝑗 ⋅ ⃗𝐸 (4.4)
𝑢EM is the electromagnetic energy density and ⃗𝜋 is the Poynting vector, i.e. the energy current density
associated with light. They are given by

𝑢EM = 1
2(𝜀0𝐸2 + 1

𝜇0
𝐵2) (4.5)

⃗𝜋 = 1
𝜇0

⃗𝐸×�⃗� (4.6)

What one can note with the energy conservation equation above, is that its derivation leaves a degree
of freedom for the definition of ⃗𝜋 : one can add to it the curl of an arbitrary vector field �⃗�( ⃗𝑟, 𝑡), i.e.
⃗𝜋′ = ⃗𝜋+∇⃗×�⃗� while still having ∇⃗ ⋅ ⃗𝜋 = ∇⃗ ⋅ ⃗𝜋′, therefore leaving equation (4.3) unchanged. Reference

[91] reports that relativistic considerations make the definition (4.6) unique. This same problem will
happen later on when we will want to define an energy current density carried by quantum particles :
the equivalent of the classical kinetic energy current density 1

2𝑚𝑣2 ⃗𝑣/𝑣
1These constants are related by the following relation 𝜀0𝜇0𝑐2 = 1
2In cartesian coordinates ∇⃗ = (𝜕𝑥, 𝜕𝑦, 𝜕𝑧)
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Integral conservation equation Using divergence theorem, the local conservation equations for
particles (4.3) and energy (4.2) can be also written in an integral way for a given volume 𝑈 and its
envelope 𝜕𝑈 :

𝜕𝑡𝑁𝑈(𝑡) + ∫
𝜕𝑈

d𝑆 ⃗𝑗( ⃗𝑟, 𝑡) ⋅ �⃗� = 0 (4.7)

𝜕𝑡𝜀EM + ∫
𝜕𝑈

d𝑆 ⃗𝜋( ⃗𝑟, 𝑡) ⋅ �⃗� = − ∫
𝑈

d3𝑟 ⃗𝑗 ⋅ ⃗𝐸 (4.8)

where 𝑁𝑈(𝑡) = ∫
𝑈

d3𝑟 𝜌( ⃗𝑟, 𝑡) and 𝜀𝑈(𝑡) = ∫
𝑈

d3𝑟 𝑢EM( ⃗𝑟, 𝑡) (4.9)

The divergence theorem states that the integral of the divergence ∇⃗ ⋅ ⃗𝐸 of a vector field ⃗𝐸 over 𝑈 is
equal to its outgoing flux off the envelope 𝜕𝑈 :

∫
𝑈

d3𝑟∇⃗ ⋅ ⃗𝐸( ⃗𝑟, 𝑡) = ∫
𝜕𝑈

d𝑆 ⃗𝐸( ⃗𝑟, 𝑡) ⋅ �⃗� (4.10)

where d𝑆 is an infinitesimal surface on 𝜕𝑈 and �⃗� is the unit normal to d𝑆. And this translates the
intuitive understanding of conservation: the rate of change of the intensive quantity enclosed within
a volume can either be changed by an external source or by leaving the volume.

4.1.2. Gauge invariance

A way to theoretically handle the influence of electromagnetic fields on charged particles is to work
with the electromagnetic scalar potential 𝜙( ⃗𝑟, 𝑡) and vector potential ⃗𝐴( ⃗𝑟, 𝑡) which substitute the elec-
tromagnetic fields in the Hamiltonian approach of classical mechanics [141]. Their relationship with
the electromagnetic fields is the following:

⃗𝐸 = −∇⃗𝜙 − 𝜕𝑡 ⃗𝐴
�⃗� = ∇⃗× ⃗𝐴

(4.11)

One caveat with those electromagnetic potentials is that they are not unique: given an arbitrary scalar
field Λ( ⃗𝑟, 𝑡), one can add its time partial derivative 𝜕𝑡Λ to the scalar potential 𝜙( ⃗𝑟, 𝑡) and subtract its
gradient ∇⃗Λ from the vector potential ⃗𝐴( ⃗𝑟, 𝑡) while still keeping the relation (4.11) valid. Since the
interaction between electromagnetic fields and charged matter is classically described through fields
and not potentials, the physics remains unchanged after such a change. This transformation in the
electromagnetic potentials is called a gauge transformation.

⎧{
⎨{⎩

⃗𝐴′ = ⃗𝐴 − ∇⃗Λ
𝜙′ = 𝜙 + 𝜕𝑡Λ
Λ arbitrary scalar field

(4.12)

One can summarize this with the following assertion:

∀Λ( ⃗𝑟, 𝑡), {
⃗𝐴′ = ⃗𝐴 − ∇⃗Λ

𝜙′ = 𝜙 + 𝜕𝑡Λ
⟹ {

⃗𝐸′ = ⃗𝐸
�⃗�′ = �⃗�

(4.13)

where the electromagnetic fields verify equation (4.11).
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4.1.3. Mechanical energy: the issue of time-dependence

In this paragraph, I will explore the issues raised in classical mechanics by time dependent electromag-
netic fields. Ref. [103] does a similar but more extensive approach of this matter using the classical
Hamiltonian approach. I re-derived here on my own here an equivalent approach using Newton’s
equation instead.

A particle with a charge 𝑞 will be under the influence of the Lorentz force [91] ⃗𝐹 = 𝑞( ⃗𝐸 + ̇⃗𝑟×�⃗�),
where ⃗𝑟(𝑡) is its position at time 𝑡 and ̇⃗𝑟(𝑡) is its velocity. For this particle, Newton’s equation writes:

𝑚 ̈⃗𝑟(𝑡) = 𝑞 [ ⃗𝐸( ⃗𝑟(𝑡), 𝑡) + ̇⃗𝑟(𝑡)×�⃗�( ⃗𝑟(𝑡), 𝑡)] (4.14)

We can do the scalar product of both sides with ̇⃗𝑟(𝑡) and obtain, knowing that ̇⃗𝑟 ⋅ ( ̇⃗𝑟×�⃗�) = 0:

𝑚 ̈⃗𝑟(𝑡) ⋅ ̇⃗𝑟(𝑡) = 𝑞 ⃗𝐸( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡) (4.15)

After noticing that the left hand side is total derivative with respect to time, we end up with the well-
known Work-Kinetic energy theorem

d𝑡 [1
2𝑚 ̇⃗𝑟2] (𝑡) = 𝑞 ⃗𝐸( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡) (4.16)

We can note that the right hand side of (4.16) is the opposite of the right hand side of (4.3) (for a single
particle in this case): the energy lost by the electromagnetic fields is won as kinetic energy by the
particle.

Knowing that we can write the electric field with the potentials ⃗𝐸( ⃗𝑟, 𝑡) = −∇⃗𝜙( ⃗𝑟, 𝑡) − 𝜕𝑡 ⃗𝐴( ⃗𝑟, 𝑡),
we can go further and express the time derivative of 𝜙( ⃗𝑟(𝑡), 𝑡):

d𝑡𝜙( ⃗𝑟(𝑡), 𝑡) = ̇⃗𝑟(𝑡) ⋅ ∇⃗𝜙( ⃗𝑟(𝑡), 𝑡) + 𝜕𝑡𝜙( ⃗𝑟(𝑡), 𝑡) (4.17)

It is useful in rewriting the right hand side of (4.16)

⃗𝐸( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡) = −d𝑡𝜙( ⃗𝑟(𝑡), 𝑡) + 𝜕𝑡𝜙( ⃗𝑟(𝑡), 𝑡) − 𝜕𝑡 ⃗𝐴( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡) (4.18)

that we can finally rewrite as

d𝑡 [1
2𝑚 ̇⃗𝑟2] (𝑡) = − d𝑡𝑞𝜙( ⃗𝑟(𝑡), 𝑡)⏟⏟⏟⏟⏟⏟⏟

𝛼(𝑡)
+𝑞𝜕𝑡𝜙( ⃗𝑟(𝑡), 𝑡) − 𝑞𝜕𝑡 ⃗𝐴( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛽(𝑡)
(4.19)

The right hand side of (4.19) can be written as a sum of two terms, 𝛼(𝑡) and 𝛽(𝑡): these two terms are
clearly gauge dependent, whose sum is gauge independent by construction (because derived from the
gauge independent electric field). The term 𝛼(𝑡) has been defined because it is a total time derivative
that can be moved to the left hand side of (4.19) and make it part of an alleged Mechanical/Total energy
𝑈 : it is – strictly speaking – gauge dependent

d𝑡𝑈 = d𝑡 [1
2𝑚 ̇⃗𝑟2(𝑡) + 𝑞𝜙( ⃗𝑟(𝑡), 𝑡)] = 𝑞𝜕𝑡𝜙( ⃗𝑟(𝑡), 𝑡) − 𝑞𝜕𝑡 ⃗𝐴( ⃗𝑟(𝑡), 𝑡) ⋅ ̇⃗𝑟(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛽(𝑡)
(4.20)

This makes the usual definition of mechanical energy non-physical and should be in principle avoided,
for the time-dependent phenomena at least. In the special case of stationary electromagnetic fields
𝐸( ⃗𝑟) and 𝐵( ⃗𝑟), one usually takes for them stationary scalar and vector potentials 𝜙( ⃗𝑟), ⃗𝐴( ⃗𝑟):

{𝜕𝑡 ⃗𝐸 = 0
𝜕𝑡�⃗� = 0

⟹ ∃ ⃗𝐴( ⃗𝑟), 𝜙( ⃗𝑟) | {
⃗𝐸 = −∇⃗𝜙

�⃗� = ∇⃗× ⃗𝐴
(4.21)
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Given the definition of the scalar potential and how it behaves through a gauge transformation, this
makes the scalar potential unique (among the stationary possibilities, while the vector potential is still
not3 but is time-independent). In this case, equation (4.20) simplifies to:

d𝑡𝑈 = d𝑡 [1
2𝑚 ̇⃗𝑟2(𝑡) + 𝑞𝜙( ⃗𝑟(𝑡))] = 0 (4.22)

Which is the usual mechanical energy conservation, which is unique and well defined among the sta-
tionary potentials. Although in principle only the kinetic energy has a real physical meaning in that
equation.

This issue with time dependence and mechanical energy will appear in the quantum case too, as we
will see in our quantum description of particles in sec 4.2.3.

4.2. One-body quantum approach – First quantization

In the previous section, we did a quick introduction to classical electrodynamics. In the scope of this
thesis, particle behavior will be described by quantum mechanics. In this section, we will make a
minimal introduction to one-body quantum mechanics along with the underlying mathematics that we
will use to describe particle and energy transport. The particle transport equations are well known and
tackled in general physics textbooks, the energy transport equations on the other hand, especially with
a gauge invariant conservation equation approach, remain rather marginal. In this thesis, we uncover
such an approach then do a more thorough description of energy transport with a gauge-invariant
energy conservation point of view.

4.2.1. An introduction to quantum mechanics of a single particle

We will expose in the following the base concepts and mathematics of quantum mechanics involving
a single particle. We will use these mathematical tools all along our approach to describe quantum-
mechanically particle and energy transport.

4.2.1.1. The wavefunction

In the quantum realm, at each instant 𝑡, physical properties of an electron (energy, position, kinetic
momentum, dynamic momentum [56, Chap. 21-3], angular momentum…) do not have a fixed, deter-
ministic, value. Instead, physical properties are fundamentally random, with a deterministic probability
distribution that can be probed through repeated same-experiments. For a given single particle, at each
time 𝑡, probability distributions for any physical property are entirely defined by a complex scalar field
𝜓( ⃗𝑟, 𝑡), called the wavefunction, that completely characterizes the state of the particle.

Equation of motion The equivalent to Newton’s equation to describe the time evolution of the
position ⃗𝑟(𝑡) of a single particle is the Schrödinger’s equation

iℏ𝜕𝑡𝜓( ⃗𝑟, 𝑡) = ℎ̂[𝜓]( ⃗𝑟, 𝑡) (4.23)
3∇⃗ × (∇⃗Λ) = 0
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where the Hamiltonian ℎ̂ is a linear operator that acts on wavefunctions4. Wavefunctions that describe
the evolution of the particle’s state must abide by this equation. An equivalent evolution equation can
be written with the evolution operator �̂�(𝑡, 𝑡0)

𝜓( ⃗𝑟, 𝑡) = �̂�(𝑡, 𝑡0)𝜓( ⃗𝑟, 𝑡0) (4.24)

that time-evolves a wavefunction from an initial state at time 𝑡0 to its state at time 𝑡. Its connection
with the Hamiltonian ℎ̂ is the following

iℏ𝜕𝑡�̂�(𝑡, 𝑡0) = ℎ̂�̂�(𝑡, 𝑡0) (4.25)

The term “wavefunction” has been used in its plural form here to translate a fundamental aspect of
quantum mechanics: there are many wavefunction candidates 𝜓( ⃗𝑟, 𝑡) that can theoretically describe
the evolution of the state of a particle as long as they verify Schrödinger’s equation. Given that ℎ̂ is
a linear operator, any (complex) linear superposition of solutions to Schrödinger’s equation is also a
solution. A unique wavefunction can be defined with initial boundary conditions.

Given a valid candidate wavefunction 𝜓(𝑡), the modulus square |𝜓( ⃗𝑟, 𝑡)|2 expresses the density of
probability 𝜌( ⃗𝑟, 𝑡) of finding the particle at a point ⃗𝑟 at time 𝑡.

𝜌( ⃗𝑟, 𝑡) = |𝜓( ⃗𝑟, 𝑡)|2 = 𝜓∗( ⃗𝑟, 𝑡) 𝜓( ⃗𝑟, 𝑡) (4.26)

Hilbert space The interpretation of 𝜌( ⃗𝑟, 𝑡) = |𝜓( ⃗𝑟, 𝑡)| as being a spatial density of probability brings
an additional restriction to wavefunctions that describe a physically valid states: given that 𝜌( ⃗𝑟, 𝑡) is a
probability density, its integral over space must be 1.

∫ d3𝑟 𝜌( ⃗𝑟, 𝑡) = ∫ d3𝑟 𝜓∗( ⃗𝑟, 𝑡)𝜓( ⃗𝑟, 𝑡) = 1 (4.27)

which means that, at each instant 𝑡, wavefunctions that bear a physical meaning live in the space ℋ
of square integrable complex functions5 with the following inner product between two ‘vectors’ 𝜓( ⃗𝑟)
and 𝜙( ⃗𝑟)

⟨𝜓|𝜙⟩ = ∫ d3𝑟 𝜓( ⃗𝑟, 𝑡)∗𝜙( ⃗𝑟, 𝑡) (4.28)

to define a Hilbert space: a complex vector space with a hermitian inner product, more information in
[111, Chap. 4].

→ Orthonormal bases There exist orthonormal bases (𝜆𝑖( ⃗𝑟))𝑖, where each function 𝜆𝑖 ∈ ℋ and
∀𝑖, 𝑗 ⟨𝜆𝑖∣𝜆𝑗⟩ = 𝛿𝑖𝑗 for the Hilbert space ℋ of square integrable complex functions of space, where 𝛿
is the Kronecker delta

𝛿𝑖𝑗 = {1 if 𝑖 = 𝑗
0 otherwise (4.29)

Note that 𝑖 is in general a tuple of integer values 𝑖 = (𝑖1,… , 𝑖𝑘), 𝑖𝑛 ∈ ℤ. Examples of such bases are
the ones used for wavelet transformation [184]. Any vector 𝜓( ⃗𝑟) from ℋ can be written as a linear

4it can parametrically depend on the time parameter 𝑡 but this time dependence will not be made explicit as it will be
reserved to writing operators in the Heisenberg representation

5a non-normalized, square integrable, wavefunction can always be normalized by a real valued factor
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combination of vectors of the given basis, the coefficients are obtained by using the inner-product to
perform projections

∀𝜓( ⃗𝑟) ∈ ℋ 𝜓( ⃗𝑟) = ∑
𝑖

⟨𝜆𝑖|𝜓⟩ 𝜆𝑖( ⃗𝑟) (4.30)

The arbitrary basis (𝜆𝑖( ⃗𝑟))𝑖 can be time-evolved with the evolution operator �̂�(𝑡, 𝑡0) to define a time-
dependent basis (𝜆𝑖( ⃗𝑟, 𝑡))𝑖 of solutions to the Schrödinger equation, where 𝜆𝑖( ⃗𝑟, 𝑡0) = 𝜆𝑖( ⃗𝑟). At each
instant 𝑡, the base (𝜆𝑖( ⃗𝑟, 𝑡))𝑖 remains orthonormal thanks to the Hermitian nature of the Hamiltonian
ℎ̂. A wavefunction 𝜓( ⃗𝑟, 𝑡) that verifies Schrödinger’s equation defines a vector 𝜓𝑡( ⃗𝑟) of ℋ at each
instant 𝑡. It can either be expressed in the basis (𝜆𝑖( ⃗𝑟))𝑖 with time dependent coefficients or in the
basis (𝜆𝑖( ⃗𝑟, 𝑡))𝑖 with time-independent coefficients

∀𝜓( ⃗𝑟, 𝑡) iℏ𝜕𝑡𝜓 = ℎ̂[𝜓] ⟹ {
𝜓( ⃗𝑟, 𝑡) = ∑𝑖 ⟨𝜆𝑖|𝜓(𝑡)⟩ 𝜆( ⃗𝑟)
𝜓( ⃗𝑟, 𝑡) = ∑𝑖 ⟨𝜆𝑖|𝜓(𝑡0)⟩ 𝜆( ⃗𝑟, 𝑡) (4.31)

When the Hamiltonian doesn’t parametrically depend on time, one can use its Eigenstates to define an
orthogonal basis thanks to the Hermitian nature of the Hamiltonian operator

ℎ̂[𝜆0
𝑖 ]( ⃗𝑟) = 𝐸𝑖𝜆0

𝑖 ( ⃗𝑟) with 𝐸𝑖 ∈ ℝ (4.32)

A base of solutions to the Schrödinger equation are then simply obtained from this basis by time evolv-
ing it:

𝜆0
𝑖 ( ⃗𝑟, 𝑡) = 𝜆0

𝑖 ( ⃗𝑟) exp(−i𝐸𝑖𝑡
ℏ ) (4.33)

While solving the Schrödinger equation, sometimes it is useful to define a base of solutions (𝜇𝛼( ⃗𝑟))𝛼
that are not square integrable – i.e. 𝜆𝛼 ∉ ℋ – where 𝛼 can be a tuple of real and integer vari-
ables 𝛼 = (𝛼1,… , 𝛼𝑘), 𝛼𝑖 ∈ ℝ or ℤ. An example of such a basis are the plane waves ||±,𝑘,𝐸( ⃗𝑟, 𝑡) =
exp(±i(𝐸𝑡

ℏ − �⃗� ⋅ ⃗𝑟)) that are solution to the free Schrödinger equation.

→Braket notation A vector 𝜓( ⃗𝑟) from the Hilbert space ℋ can also be written like |𝜓⟩, called a ket.
There is a 1-to-1 correspondence between a ket |𝜓⟩ and the linear form ⟨𝜓|, called bra, whose action
on a ket |𝜙⟩ is the inner-product between ket |𝜓⟩ and ket |𝜙⟩

⟨𝜓| ∶ ℋ ⟶ ℂ
|𝜙⟩ ⟼ ⟨𝜓|𝜙⟩

To move back to a wavefunction description from a ket |𝜓⟩. One can introduce the set of kets | ⃗𝑟⟩ whose
interpretation is “the particle is entirely located at the position ⃗𝑟”. The associated ‘wavefunction’ 𝜓 ⃗𝑟
to the ket | ⃗𝑟⟩ is the dirac distribution 𝜓 ⃗𝑟( ⃗𝑟′) = 𝛿(3)( ⃗𝑟 − ⃗𝑟′) which enables recovering the associated
wavefunction 𝜓( ⃗𝑟) from any given ket |𝜓⟩ as an inner product

𝜓( ⃗𝑟) = ⟨ ⃗𝑟|𝜓⟩ = ∫ d3𝑟′ 𝛿(3)( ⃗𝑟 − ⃗𝑟′)𝜓( ⃗𝑟′) (4.34)

4.2.1.2. Physical properties – Operators

In this Hilbert space ℋ, to each physical property 𝒪 corresponds a linear hermitian operator ̂𝑜 that
acts within ℋ. Given a particle describe by a wavefunction 𝜓( ⃗𝑟, 𝑡) – i.e. normalized to 1 and verifies
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the Schrödinger equation – the expectation value of the physical quantity 𝒪 , at a given time 𝑡, that we
write ⟨ ̂𝑜⟩𝜓(𝑡)

6 can be computed as the hermitian inner product, written as ⟨.|.⟩, between 𝜓 and ̂𝑜[𝜓]

⟨ ̂𝑜⟩𝜓(𝑡) = ⟨𝜓| ̂𝑜[𝜓]⟩ = ∫ d3𝑟 𝜓∗( ⃗𝑟, 𝑡) ̂𝑜[𝜓]( ⃗𝑟, 𝑡) (4.35)

In braket notation, this expectation value also writes as ⟨𝜓(𝑡)| ̂𝑜(𝑡)|𝜓(𝑡)⟩. From the operator ̂𝑜, the
adjoint operator ̂𝑜† can be defined as the following

∀𝜓,𝜑 ∈ ℋ ⟨𝜓| ̂𝑜[𝜑]⟩ = ⟨ ̂𝑜†[𝜓]∣𝜑⟩ (4.36)

An operator ̂𝑜 is called Hermitian if it’s equal to its adjoint operator ̂𝑜†

∀𝜓, 𝜑 ∈ ℋ ⟨𝜓| ̂𝑜[𝜑]⟩ = ⟨ ̂𝑜[𝜓]|𝜑⟩ (4.37)

which implies that its expectation ⟨ ̂𝑜(𝑡)⟩𝜓(𝑡) is real valued as any physical quantity must be.

Heisenberg representation So far the described operators ̂𝑜 act on time-dependent wavefunctions
𝜓( ⃗𝑟, 𝑡) that are solution to the Schrödinger equation, these operators are defined in the Schrödinger
representation. Given the deterministic evolution of the wavefunctions, one can define operators ̂𝑜H(𝑡),
that we will simply write ̂𝑜(𝑡) even if the operator ̂𝑜 already depends parametrically on 𝑡, said in the
Heisenberg representation, that act on wavefunctions 𝜓( ⃗𝑟) at an initial time 𝑡0: they time evolve the
wavefunction first to time 𝑡 before applying the operator in the Schrödinger representation

̂𝑜(𝑡) = ̂𝑜H(𝑡) = �̂�†(𝑡, 𝑡0) ̂𝑜 �̂�(𝑡, 𝑡0) (4.38)

so that the expectation value of operators in the Heisenberg representation remains unchanged7

⟨ ̂𝑜(𝑡)⟩𝜓(𝑡0) = ⟨ ̂𝑜⟩𝜓(𝑡) (4.39)

which justifies the ‘representation’ naming as it is only a different way the describe the same physics.
The time-derivative of the expectation value can also written in the Heisenberg representation

d
d𝑡 ⟨ ̂𝑜(𝑡)⟩𝜓(𝑡0) = i

ℏ ⟨[ℎ̂(𝑡), ̂𝑜(𝑡)]⟩
𝜓(𝑡0)

+ ⟨[𝜕𝑡 ̂𝑜](𝑡)⟩𝜓(𝑡0) (4.40)

where ̂𝑜(𝑡), ℎ̂(𝑡) and 𝜕𝑡 ̂𝑜(𝑡) are obtained by transforming respectively ̂𝑜, ℎ̂ and 𝜕𝑡 ̂𝑜 according to Eq.
(4.38). The [ℎ̂, ̂𝑜] operator is called the commutator and is defined as follows

[ℎ̂, ̂𝑜][𝜓] = ℎ̂[ ̂𝑜[𝜓]] − ̂𝑜[ℎ̂[𝜓]] (4.41)

The equation of motion (4.40) is also valid if the operators are in the Schrödinger representation if one
takes the expectation values with the wavefunction at time 𝑡 instead of 𝑡0.

6Note that the operator itself can depend on time, like the Hamiltonian when it describes a time-dependent electromagnetic
field.

7⟨ ̂𝑜(𝑡)⟩𝜓(𝑡0) = ⟨𝜓(𝑡0)∣�̂�†(𝑡, 𝑡0) ̂𝑜 �̂�(𝑡, 𝑡0)[𝜓(𝑡0)]⟩ = ⟨�̂�†(𝑡, 𝑡0)[𝜓(𝑡0)]∣ ̂𝑜 �̂�(𝑡, 𝑡0)[𝜓(𝑡0)]⟩ = ⟨𝜓(𝑡)| ̂𝑜[𝜓(𝑡)]⟩
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Common operators The position operator ̂⃗𝑟 is defined as the following [111, Eq. 8.119]:
̂⃗𝑟[𝜓] = ⃗𝑟 𝜓 (4.42)

which leads to the following intuitive expectation value of the position:

⟨ ̂⃗𝑟⟩
𝜓

= ∫ d3𝑟 𝜓∗( ⃗𝑟, 𝑡) ⃗𝑟 𝜓( ⃗𝑟, 𝑡) = ∫ d3𝑟 𝜌( ⃗𝑟, 𝑡) ⃗𝑟 (4.43)

In the presence of a general electromagnetic field, represented by a scalar potential 𝜙( ⃗𝑟, 𝑡) and vector
potential ⃗𝐴( ⃗𝑟, 𝑡), the velocity operator ̂⃗𝑣 is defined as the following [56, Eq. (21.13)]:

̂⃗𝑣[𝜓] = − iℏ
𝑚∇⃗𝜓 − 𝑞

𝑚
⃗𝐴( ⃗𝑟, 𝑡) 𝜓 (4.44)

The kinetic energy operator ̂𝜅 is then defined, like its classical counterpart ̂𝜅 = 1
2𝑚 ̂⃗𝑣

2 8:

̂𝜅[𝜓] = 1
2𝑚 ̂⃗𝑣

2
[𝜓] = 1

2𝑚 [−iℏ∇⃗ − 𝑞 ⃗𝐴]2 [𝜓] = 1
2𝑚 [−iℏ∇⃗ − 𝑞 ⃗𝐴] ⋅ [−iℏ∇⃗𝜓 − 𝑞 ⃗𝐴𝜓] (4.45)

The Hamiltonian ℎ̂ is then the equivalent to the classical “mechanical” energy defined in the section
above: the sum of the kinetic energy operator ̂𝜅, the potential energy from the associated electro-
magnetic scalar potential 𝑞 ̂𝜙[𝜓] = 𝑞𝜙( ⃗𝑟, 𝑡) 𝜓 and an eventual stationary potential energy 𝑉 ( ⃗𝑟) from
another physical origin9

ℎ̂[𝜓] = ̂𝜅[𝜓] + 𝑞 𝜙( ⃗𝑟, 𝑡) 𝜓 + 𝑉 ( ⃗𝑟)𝜓 = 1
2𝑚 [−iℏ∇⃗ − 𝑞 ⃗𝐴( ⃗𝑟, 𝑡)]2 [𝜓] + 𝑞 𝜙( ⃗𝑟, 𝑡) 𝜓 + 𝑉 ( ⃗𝑟) 𝜓 (4.46)

In the scope of this thesis, the time-dependence of the external electromagnetic field is considered to
start only after a certain time 𝑡0: the scalar potential 𝜙 is zero before then and vector potential ⃗𝐴 is
stationary

{
𝜙( ⃗𝑟, 𝑡 < 𝑡0) = 0

⃗𝐴( ⃗𝑟, 𝑡 < 𝑡0) = ⃗𝐴( ⃗𝑟)
(4.47)

4.2.1.3. Gauge change

After having a look at the expression of the expectation value ⟨ ̂𝑜⟩𝜓 of a physical quantity 𝒪 when on
a state 𝜓, one can realize that it is independent from a global fixed phase of 𝜓: 𝜓 can be replaced by
𝜓′ = ei𝛼𝜓, 𝛼 ∈ ℝ while still preserving any operator’s expectation value ⟨ ̂𝑜⟩𝜓 = ⟨ ̂𝑜⟩𝜓′

In the case of the interaction with electromagnetic fields, described by the Hamiltonian ℎ̂ given in
(4.46), an additional gauge invariance is respected [111, Chap 10.3][172, Chap. 7.4]: multiplying a
wavefunction 𝜓 by a space and time dependent phase exp(−i 𝑞

ℏΛ( ⃗𝑟, 𝑡)) does not change the underlying
physics of the described system and only leads to a gauge change to the electromagnetic potentials in
the Hamiltonian. The expectation value of any operator ̂𝑜 that bears a physical meaning must remain
unchanged:

∀Λ( ⃗𝑟, 𝑡), ∀𝜓, ∀ ̂𝑐 𝜓′ = exp(−i 𝑞ℏΛ( ⃗𝑟, 𝑡))𝜓 ⟹ ⟨ ̂𝑜⟩𝜓 = ⟨ ̂𝑜′⟩𝜓′ (4.48)

where ̂𝑜′’s expression is the same as ̂𝑜 except for the electromagnetic potentials that are changed from
( ⃗𝐴, 𝜙) to ( ⃗𝐴′, 𝜙′) according to (4.12). One can check that ̂⃗𝑣 verifies (4.48) and consequently ̂𝜅 too.

8Note that ∇⃗ ⋅ [ ⃗𝐴𝜓] = (∇⃗ ⋅ ⃗𝐴)𝜓 + ⃗𝐴 ⋅ ∇⃗𝜓
9It can be for example the gravitational potential energy.
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→ Effect on the Hamiltonian Interestingly enough the Hamiltonian does not abide by Eq. (4.48),
one can derive the following relation by replacing ( ⃗𝐴, 𝜙) with ( ⃗𝐴′, 𝜙′) according to (4.12) in (4.46)

ℎ̂′[𝜓′]( ⃗𝑟, 𝑡) = exp(−i 𝑞ℏΛ( ⃗𝑟, 𝑡)) [ℎ̂[𝜓]( ⃗𝑟, 𝑡) + 𝑞 𝜕𝑡Λ( ⃗𝑟, 𝑡) 𝜓( ⃗𝑟, 𝑡)] (4.49)

which leads to the following relation for its expectation value

⟨ℎ̂′⟩
𝜓′

= ⟨ℎ̂⟩
𝜓

+ ⟨𝑞 𝜕𝑡Λ⟩𝜓 (4.50)

The Schrödinger equation (4.23) in the other hand remains form-invariant – the same expression with
the gauge transformed potentials – due to its left hand-side

iℏ𝜕𝑡𝜓′( ⃗𝑟, 𝑡) = exp(−i 𝑞ℏΛ( ⃗𝑟, 𝑡)) [iℏ𝜕𝑡𝜓( ⃗𝑟, 𝑡) + 𝑞 𝜕𝑡Λ( ⃗𝑟, 𝑡) 𝜓( ⃗𝑟, 𝑡)] (4.51)

and therefore writes

iℏ𝜕𝑡𝜓′( ⃗𝑟, 𝑡) = ℎ̂′[𝜓′]( ⃗𝑟, 𝑡) (4.52)

→ Covariant derivatives In the next section, we define a particle current density whose value is
gauge invariant thanks to writing the space derivative �⃗� as covariant – at least in the sense of being
form invariant [111, Chap 7.4] – by involving the electromagnetic vector potential

−iℏ ̂�⃗�[𝜓] = −iℏ∇⃗𝜓 − 𝑞 ⃗𝐴𝜓 ⟹ ̂⃗𝑣 = − iℏ
𝑚

̂�⃗� (4.53)

One could do the same with the time derivative and define a covariant time derivative 𝐷𝑡, inspired by
special relativity [91]:

iℏ�̂�𝑡[𝜓] = iℏ𝜕𝑡𝜓 − 𝑞 𝜙( ⃗𝑟, 𝑡) 𝜓 (4.54)

then use it to define a new “Schrödinger equation”:

iℏ�̂�𝑡[𝜓] = − iℏ
𝑚

̂�⃗�2[𝜓] + 𝑉 𝜓 (4.55)

where each term from both hand sides is form-invariant and whose expectation value is gauge invari-
ant. This elegant form of the Schrödinger equation highlights the operators ̂𝜅 and 𝑉 that have the
dimension of an energy, a valid gauge invariant energy operator therefore involves these operators.
Further development on defining an energy operator is done in Sec 4.2.3.

4.2.2. Time-dependent particle transport

It is a well known textbook approach to define a local probability current density ⃗𝑗( ⃗𝑟, 𝑡) that obeys a
conservation law [111, Chap. 10.3] [172, Chap. 16.4][56, Chap. 21-2] with the local probability density
𝜌( ⃗𝑟, 𝑡)

𝜕𝑡𝜌( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗( ⃗𝑟, 𝑡) = 0 (4.56)
where 𝜌 = 𝜓∗𝜓 (4.26) and ⃗𝑗 uses the velocity operator ⃗𝑣 given in (4.44)

⃗𝑗 = Re[𝜓∗ ̂⃗𝑣[𝜓]] (4.57)
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The divergence of the current probability density writes

∇⃗ ⋅ ⃗𝑗 = −2
ℏ Im[𝜓∗ℎ̂[𝜓]] (4.58)

One can notice the interesting fact that the integral of ⃗𝑗 over space gives the expectation value of the
velocity:

⟨ ̂⃗𝑣⟩
𝜓(𝑡)

= ∫ d3 ⃗𝑟 𝜓∗ ̂⃗𝑣[𝜓]
⏟⏟⏟⏟⏟
̂⃗𝑣 hermitian ⟹ ∈ℝ

= ∫ d3 ⃗𝑟 Re[𝜓∗ ̂⃗𝑣[𝜓]] = ∫ d3 ⃗𝑟 ⃗𝑗( ⃗𝑟, 𝑡) (4.59)

Given that ⃗𝑗 depends on ̂⃗𝑣 which itself depends on the vector potential ⃗𝐴, we can prove that ⃗𝑗 is gauge
invariant, i.e. that it keeps the same value when the vector potential ⃗𝐴 is changed to ⃗𝐴′ according to
(4.12).

4.2.3. Time-dependent energy transport

The conservation equation involving the particle probability density and the probability current den-
sity are well known and documented in many textbooks. The same approach for energy would make
understanding the underlying physics more intuitive. Although not considered in textbooks, Ref. [127]
defined various energy conservation equations. For a given wavefunction 𝜓, they have the following
form

d𝑡𝜌𝜖
𝜓( ⃗𝑟, 𝑡) + ∇⃗ ⋅ ⃗𝑗𝜖

𝜓( ⃗𝑟, 𝑡) = 𝑆𝜖
𝜓 (4.60)

where 𝜌𝜖
𝜓, ⃗𝑗 𝜖

𝜓 and 𝑆𝜖
𝜓 are candidates for, respectively, the energy density, the energy current density

and the energy source/power density. The 𝜖 superscript is there to indicate the energy quantity that
we consider: it can either be the one related to the Hamiltonian ℎ̂, to the Kinetic energy operator ̂𝜅
or the ‘total energy’ operator ̂𝜀 (that will define further down). Each density 𝑜𝜓 = 𝜌𝜀

𝜓, ⃗𝑗 𝜀
𝜓, 𝑆𝜓, once

integrated over space must give the expectation value (4.35) of its associated operator ̂𝑜 on the state 𝜓

∫ d3𝑟 𝑜𝜓( ⃗𝑟, 𝑡) = ⟨𝜓| ̂𝑜 |𝜓⟩ = ⟨ ̂𝑜⟩𝜓 (4.61)

In the context of describing a single non-relativistic particle, the local quantities (𝜌𝜀, 𝑗𝜀, 𝑆𝜀) bear
no real physical meaning while the expectation value (4.61) of their associated system-wide operator
does [127, 8]. This implies that any density candidate whose integral over space matches with the
expectation value of its operator is a valid candidate10. We follow [127] to define a candidate for each
term of the conservation equation (4.60).

One possible expression for energy density is to take the real part of the integrand whose integral
computes the expectation value of the energy operator ̂𝜖

𝜌𝜖
𝜓 = Re[𝜓∗ ̂𝜖[𝜓]] (4.62)

10We will tackle further on the many body non-interacting problem where the big number of particles may enable us to
interpret the many-body energy density as a “classical” energy density just like with particle transport [56, Chap. 21-
4]. Although whether that interpretation is correct remains an open question since we build upon these single body
definitions that are not unique.
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The energy current density we take is essentially the symmetrized quantum equivalent to the clas-
sical energy current density 𝜌𝜖 ⃗𝑣/ | ⃗𝑣|, where 𝜌𝜖 is the associated energy density to the energy quantity
𝜖11

⃗𝑗𝜖 = 1
2Re[ ̂𝜖[𝜓]∗ ̂⃗𝑣[𝜓] + 𝜓∗ ̂⃗𝑣[ ̂𝜖[𝜓]]] (4.63)

On top of the non-uniqueness of the densities whose integral is unique. The energy current density
bears an additional degree of freedom as only its divergence is involved in the conservation equation
(4.60): as with the electromagnetic Poynting vector ⃗𝜋 defined Eq. (4.6), it is theoretically not unique
and an arbitrary curl of a vector field can be added to the energy current vector field while keeping its
divergence unchanged.

An additional constraint over the considered energy operators comes into play from considering
time-dependent electromagnetic fields: gauge invariance. Indeed, the electromagnetic potentials (𝜙, ⃗𝐴)
can be replaced by their gauge changed counterparts Eq. (4.12) while each term of the conservation
equation (4.60) must remain unchanged. Further research [127, 102, 213] on defining a gauge invariant
energy operator rules out the Hamiltonian ℎ̂ as a potential energy operator (because of Eq. (4.50)) and
narrows down the possibilities to essentially the kinetic energy ̂𝜅, or the kinetic energy ̂𝜅 plus the sta-
tionary potential energy 𝑉 which is considered to not be affected by gauge changes. We call the ‘total
energy’ operator ̂𝜀 the sum of the kinetic energy ̂𝜅 and the stationary potential energy 𝑉 .

Total energy The total energy operator ̂𝜀 is the sum of the kinetic energy operator ̂𝜅 and the sta-
tionary potential energy 𝑉 .

̂𝜀[𝜓] = ̂𝜅[𝜓] + 𝑉 ( ⃗𝑟) 𝜓 = ℎ̂[𝜓] − 𝑞 𝜙( ⃗𝑟, 𝑡) 𝜓 (4.64)

The total energy operator is gauge invariant as we consider the stationary potential 𝑉 to not be affected
by gauge changes. The potential 𝑉 either originates from another physical interaction like gravity or
is still of electromagnetic origin but comes from another source, we discuss this matter further at the
end of the section. With this new energy operator, we take the following local densities that verify the
conservation equation (4.60)

𝜌𝜀 = Re[𝜓∗ ̂𝜀[𝜓]] = Re[𝜓∗ ̂𝜅[𝜓]] + 𝑉 𝜌 (4.65)

⃗𝑗𝜀 = 1
2Re[ ̂𝜀[𝜓]∗ ̂⃗𝑣[𝜓] + 𝜓∗ ̂⃗𝑣[ ̂𝜀[𝜓]]] (4.66)

𝑆𝜀 = 𝑞 ⃗𝑗 ⋅ ⃗𝐸 (4.67)

where ⃗𝐸 = −∇⃗𝜙 − 𝜕𝑡 ⃗𝐴 and ⃗𝑗 the particle current given in (4.57). The explicit space and time depen-
dence of each term has been omitted for clarity. We notice here that 𝑆𝜀 is the opposite of the classical
energy power 𝑃EM, given in Eq. (4.4), lost by light to the charged particles: we describe here how that
energy is then redistributed in space by matter, through a quantum description.

Kinetic energy The kinetic energy operator ̂𝜅 proportional to the square of velocity operator ̂⃗𝑣 as
shown Eq. (4.45). In Appendix. A.1.1, we re-derive a textbook result which states that the velocity
operator ̂⃗𝑣, as defined in Eq. (4.44), is gauge invariant. Therefore the kinetic operator is gauge invariant.
11When 𝜖 = 𝜅 is the kinetic energy, we have 𝜌𝜅 = 1

2𝜌 ⃗𝑣2 for the kinetic energy current, where 𝜌 is the mass density field
and ⃗𝑣 is the velocity density field.
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We define the following candidates for the energy conservation equation

𝜌𝜅( ⃗𝑟, 𝑡) = Re[𝜓∗ ̂𝜅[𝜓]] (4.68)

⃗𝑗𝜅( ⃗𝑟, 𝑡) = 1
2Re[ ̂𝜅[𝜓]∗ ̂⃗𝑣[𝜓] + 𝜓∗ ̂⃗𝑣[ ̂𝜅[𝜓]]] (4.69)

𝑆𝜅( ⃗𝑟, 𝑡) = ⃗𝑗 ⋅ [𝑞 ⃗𝐸 − ∇⃗𝑉 ] (4.70)

where ⃗𝐸 = −∇⃗𝜙 − 𝜕𝑡 ⃗𝐴 and ⃗𝑗 the particle current given in (4.57). The explicit space and time depen-
dence of the wavefunction 𝜓 and the result of applying operators on it have been omitted for clarity.

In the case of a charged particle under a time-dependent electromagnetic field represented by the
potentials ( ⃗𝐴, 𝜙) but also under a stationary potential energy field 𝑉 ( ⃗𝑟) from a different physical origin,
the Hamiltonian ℎ̂ writes, according to Eq. (4.46):

ℎ̂[𝜓] = ̂𝜅[𝜓] + 𝑞𝜙( ⃗𝑟, 𝑡) 𝜓 + 𝑉 ( ⃗𝑟) 𝜓 (4.71)

Hamiltonian energy In time-independent systems, the Hamiltonian ℎ̂ Eq. (4.46) is considered to
be the energy operator. In this stationary regime, the ‘total energy’ operator and the Hamiltonian can
coincide if one merges the scalar potential 𝜙( ⃗𝑟) with the potential energy 𝑉 ( ⃗𝑟) → 𝑉 ′( ⃗𝑟) = 𝑉 ( ⃗𝑟) +
𝑞𝜙( ⃗𝑟). The Hamiltonian can be considered as an energy operator (although with a fundamental issue)
in the time-dependent case: one could take the following densities and verify the conservation equation
(4.60)

𝜌H = Re[𝜓∗ℎ̂[𝜓]] (4.72)

⃗𝑗 H = 1
2Re[ℎ̂[𝜓]∗ ̂⃗𝑣[𝜓] + 𝜓∗ ̂⃗𝑣[ℎ̂[𝜓]]] (4.73)

𝑆H = Re[𝜓∗ (𝜕𝑡𝐻)𝜓] = 𝑞 ⃗𝑗 ⋅ (−𝜕𝑡 ⃗𝐴) + 𝑞 𝜕𝑡𝜙 𝜌 (4.74)

where 𝜌 = 𝜓∗𝜓 is the particle density and ⃗𝑗 is the particle current density given in (4.57). A more
detailed derivation of the explicit expression of the energy source 𝑆H is given in Appendix. A.2.2

→ Gauge dependence The Hamiltonian’s expectation value is not gauge invariant in general (es-
pecially when the electromagnetic fields are time dependent). Indeed, we have seen in Sec. 4.2.1.3 that
a gauge transformation (4.12) of the electromagnetic fields along with a phase change of the wavefunc-
tion 𝜓 → 𝜓′ must keep the expectation value of operators that bear physical meaning unchanged, as
summarized in Eq. (4.48). However, the Hamiltonian’s expectation value is not invariant under such a
change

⟨𝐻′⟩𝜓′ = ⟨𝐻⟩𝜓 + ⟨𝜕𝑡Λ⟩𝜓 (4.75)

This makes any Hamiltonian based energy density irrelevant since it bears no particular physical mean-
ing. Note that this result is not specific to quantum mechanics and the Schrödinger equation. Indeed,
we have seen in Sec. 4.1.3 that the mechanical energy 𝑈 from Eq. (4.20) – the classical equivalent of
the Hamiltonian – of a particle under a time dependent electromagnetic field is also gauge dependent.

In what follows, we will be using the energy operator ̂𝜀 by default, along with its corresponding
densities.

Note: The potential energy 𝑉 that we will consider can theoretically be of electrostatic origin –
i.e. 𝑉 ( ⃗𝑟) = 𝑞𝜑( ⃗𝑟) where 𝜑 is an electromagnetic scalar potential. This leads to fundamental issues
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[185] since 𝜑 should also be able to be gauge transformed and still keep the energy operator with an
invariant expectation value: the ‘total energy’ operator ̂𝜀 defined Eq. (4.64) in this case would not be
gauge invariant if the gauge change involves a time-dependent gauge function Λ( ⃗𝑟, 𝑡). The kinetic
energy operator ̂𝜅 in the other hand remains gauge invariant. As stated in Sec. 4.1.3, this issue also
applies when one considers the Hamiltonian as an energy operator in the stationary case with a time-
dependent gauge-change. Just like with the Hamiltonian ℎ̂ in the stationary case, taking ̂𝜀 as the energy
operator in the time-dependent case has an experimental meaning since the stationary scalar potential
𝜑 would come from another source (e.g. the atomic lattice) while the time-dependent control through
the electromagnetic potentials ( ⃗𝐴, 𝜙) is generated by an external device. Using the energy operator ̂𝜀
also enables recovering the well-known results from the Landauer-Büttiker scattering theory since it
coincides with the Hamiltonian in the stationary regime.

4.2.4. Discretizing the continuous space

In order to better understand energy quantum transport, numerical simulation is a powerful tool that
enables prototyping to test more quickly intuitions and ideas. As we will be using Kwant along with
tKwant that use a formalism defined on tight-binding systems, a way to derive tight-binding equations
is to discretize the continuous equations that we exposed in the previous sections.

4.2.4.1. Discretization process

The discretization process involves moving from describing points by their real space (𝑥, 𝑦, 𝑧) ∈ ℝ3

coordinates to a single integer index 𝑖 ∈ ℤ that indexes unique points on a lattice. We will describe
here the discretization process on a cubic lattice with a lattice parameter 𝑎

(𝑥, 𝑦, 𝑧) ∈ ℝ3 discretisation−−−−−−−→ ⎡⎢
⎣

(𝑘𝑎, 𝑙𝑎, 𝑚𝑎)
𝑘, 𝑙, 𝑚 ∈ ℤ
𝑎 ∈ ℝ∗

+

change
−−−−−−→
of variables

(𝑘, 𝑙, 𝑚) ∈ ℤ3 flattening
−−−−−→

map 𝑓
𝑖 ∈ ℤ (4.76)

Moving from 3D integer coordinates to a single integer coordinate involves a flattening map 𝑓
𝑓 ∶ ℤ3 → ℤ

(𝑘, 𝑙, 𝑚) ↦ 𝑖 (4.77)

that makes a 1-to-1 correspondence between ℤ3 and ℤ, or at least in the region where the system is
defined. Let us define the maps 𝑛𝛼(𝑖) and 𝑝𝛼(𝑖), 𝛼 = 𝑥, 𝑦, 𝑧, that are respectively the ‘next site’ and
‘previous site’ of a given site 𝑖 in the direction 𝛼:

𝑛𝑥(𝑖) = 𝑓(𝑘 + 1, 𝑙, 𝑚) 𝑛𝑦(𝑖) = 𝑓(𝑘, 𝑙 + 1, 𝑚) 𝑛𝑧(𝑖) = 𝑓(𝑘, 𝑙,𝑚 + 1)
𝑝𝑥(𝑖) = 𝑓(𝑘 − 1, 𝑙, 𝑚) 𝑝𝑦(𝑖) = 𝑓(𝑘, 𝑙 − 1, 𝑚) 𝑝𝑧(𝑖) = 𝑓(𝑘, 𝑙,𝑚 − 1) (4.78)

where (𝑘, 𝑙, 𝑚) = 𝑓−1(𝑖). Upon discretization, the continuous wave function 𝜓(𝑥, 𝑦, 𝑧, 𝑡) becomes a
vector [𝜓𝑖(𝑡)] and the Hamiltonian operator ℎ̂ becomes a matrix [ℎ𝑖𝑗(𝑡)]. The discretized Schrödinger
equation writes

iℏ𝜕𝑡𝜓𝑖 = ℎ̂[𝜓]𝑖 = ∑
𝑗

ℎ𝑖𝑗𝜓𝑗 (4.79)

To derive the Hamiltonian in discrete space, one needs to write the ‘flattened’ and discrete counterpart
to the gradient operator ∇⃗. We use here the previously defined ‘neighbor’ maps to write it using finite
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differences, we therefore assume 𝑎 to be small enough with respect to all characteristic lengths so the
discrete gradient is close to its continuous counterpart

∇⃗[𝜓]𝑖 = 1
2𝑎

⎡⎢
⎣

𝜓𝑛𝑥(𝑖) − 𝜓𝑝𝑥(𝑖)
𝜓𝑛𝑦(𝑖) − 𝜓𝑝𝑦(𝑖)
𝜓𝑛𝑧(𝑖) − 𝜓𝑝𝑧(𝑖)

= 1
2𝑎 ∑

𝛼=𝑥,𝑦,𝑧
(𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)) ⃗𝑒𝛼 (4.80)

This allows us to write down the discrete counterpart of ℎ̂[𝜓] given in Eq. (A.5)

ℎ̂[𝜓]𝑖 = ∑
𝛼=𝑥,𝑦,𝑧

⎡
⎢⎢
⎣

− ℏ2

2𝑚𝑎2 (𝜓𝑛𝛼(𝑖) − 2𝜓𝑖 + 𝜓𝑝𝛼(𝑖))

+ i ℏ𝑞
2𝑚𝑎 [(𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖))𝐴𝛼

𝑖 + 1
2𝜓𝑖 (𝐴𝛼

𝑛𝛼(𝑖) − 𝐴𝛼
𝑝𝛼(𝑖))]

+ 𝑞2

2𝑚𝐴2𝜓𝑖 + 𝑉𝑖𝜓𝑖

(4.81)

which gives the following for ℎ𝑖𝑗
12:

ℎ𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

∑
𝛼=𝑥,𝑦,𝑧

[ ℏ2
𝑚𝑎2 + i ℏ𝑞

4𝑚𝑎 (𝐴𝛼
𝑛𝛼(𝑖) − 𝐴𝛼

𝑝𝛼(𝑖))] + 𝑞2

2𝑚𝐴2 + 𝑞𝜙𝑖 + 𝑉𝑖 for 𝑗 = 𝑖

− ℏ2
2𝑚𝑎2 + i ℏ𝑞

2𝑚𝑎𝐴𝛼
𝑖 for 𝑗 = 𝑛𝛼(𝑖)

− ℏ2
2𝑚𝑎2 − i ℏ𝑞

2𝑚𝑎𝐴𝛼
𝑖 for 𝑗 = 𝑝𝛼(𝑖)

0 otherwise

(4.82)

Given that these equations are first order Taylor expansions with respect to the lattice parameter 𝑎, we
can rewrite the previous Hamiltonian elements in terms of exponentials13

ℎ𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

∑
𝛼=𝑥,𝑦,𝑧

ℏ2
𝑚𝑎2 exp [+i1

2
𝑞𝑎
ℏ

1
2 (𝐴𝛼

𝑛𝛼(𝑖) − 𝐴𝛼
𝑝𝛼(𝑖))] + 𝑞2

2𝑚𝐴2 + 𝑞𝜙𝑖 + 𝑉𝑖 for 𝑗 = 𝑖

− ℏ2
2𝑚𝑎2 exp (−i𝑞𝑎

ℏ 𝐴𝛼
𝑖 ) for 𝑗 = 𝑛𝛼(𝑖)

− ℏ2
2𝑚𝑎2 exp (+i𝑞𝑎

ℏ 𝐴𝛼
𝑖 ) for 𝑗 = 𝑝𝛼(𝑖)

0 otherwise

(4.83)

which gives rise to the usual Peierls substitution [88] used in tight-binding systems. Now that the
Hamiltonian is defined in discrete space, we can derive the discrete equivalent of the conservation
equations described in the previous sections.

4.2.4.2. Gauge transformation

We consider the following discrete counterpart to the continuous gauge transformation Eq. (4.12) when
we consider a discrete lattice, e.g. as described Eq. (4.76)

⎧{
⎨{⎩

⃗𝐴′
𝑖(𝑡) = ⃗𝐴𝑖(𝑡) − ∇⃗[Λ]𝑖

𝜙′
𝑖(𝑡) = 𝜙𝑖(𝑡) + 𝜕𝑡Λ𝑖(𝑡)

Λ𝑖(𝑡) arbitrary scalar field
(4.84)

12One can notice that ℎ𝑖𝑖 is not real in general due to the discrete counterpart of ∇⃗ ⋅ ⃗𝐴 which, in the Coulomb gauge, is
taken to be equal to zero [172, Chap. 7.1]. We will assume in what follows that ℎ𝑖𝑖 ∈ ℝ

13Since 1 + 𝑥𝑎 + 𝒪(𝑎2) = 𝑒𝑥𝑎 + 𝒪(𝑎2)
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where ∇⃗[Λ]𝑖 is given by Eq. (4.80). When applied to the discrete Hamiltonian ℎ̂, it affects its matrix
elements in the following way

ℎ′
𝑖𝑗 =

⎧{
⎨{⎩

ℎ𝑖𝑖(𝑡) + 𝑞 𝜕𝑡Λ𝑖(𝑡) for 𝑗 = 𝑖

ℎ𝑖𝑗(𝑡) exp(i 𝑞ℏ[Λ𝑗(𝑡) − Λ𝑖(𝑡)]) for 𝑖 ≠ 𝑗
(4.85)

This expression can be derived in the same way it has for Eq. (4.83), starting from the action of the
Hamiltonian ℎ̂′ on a wavefunction 𝜓𝑖 Eq. (4.81), after having done the replacement ( ⃗𝐴, 𝜙) → ( ⃗𝐴′, 𝜙′)
according to (4.12). In particular, for 𝑡 ≤ 𝑡0 when 𝜙𝑖(𝑡) = 0 and ⃗𝐴𝑖(𝑡) = ⃗𝐴𝑖, the gauge-transformed
static Hamiltonian ℎ̂′ may become artificially time-dependent: in the rest of this thesis, we fix the gauge
when so that no time-dependent electromagnetic field exists for 𝑡 ≤ 𝑡0. We choose the ‘natural’ gauge
in which Λ𝑖(𝑡 ≤ 𝑡0) = 0 and the ‘initial’ (before any gauge change) Hamiltonian is time-independent
for 𝑡 < 𝑡0.

4.2.4.3. Particle transport

The discrete equivalent to Eq. (4.56) writes as the following

𝜕𝑡𝜌𝑖(𝑡) + ∑
𝑗

𝐼N
𝑖𝑗(𝑡) = 0 (4.86)

where 𝜌𝑖(𝑡) is the discrete equivalent to the continuous density 𝜌( ⃗𝑟, 𝑡) defined in Eq. (4.26) and 𝐼N
𝑖𝑗 is

interpreted as the current density flowing from site 𝑖 to site 𝑗14

𝜌𝑖(𝑡) = 𝜓∗
𝑖𝜓𝑖 (4.87)

𝐼N
𝑖𝑗(𝑡) = −2

ℏ Im[𝜓∗
𝑖ℎ𝑖𝑗𝜓𝑗] (4.88)

𝐼𝑁
𝑖𝑗 being a scalar value, it is not directly the equivalent to the continuous current density vector field
⃗𝑗 defined in (4.57). The connection between 𝐼𝑁

𝑖𝑗 and the discrete counterpart ⃗𝑗𝑖 of ⃗𝑗 is the following

⃗𝑗𝑖 = ∑
𝛼=𝑥,𝑦,𝑧

𝑎
2 [𝐼𝑁

𝑖,𝑛𝛼(𝑖) − 𝐼𝑁
𝑖,𝑝𝛼(𝑖)] ⃗𝑒𝛼 (4.89)

Each component 𝑗𝛼
𝑖 of the probability current density vector field ⃗𝑗𝑖 is the net probability current going

through site 𝑖 in the direction 𝛼. A short derivation for Eq. (4.86) and Eq. (4.89) is done in Appendix.
A.1.2

4.2.4.4. Energy transport

We showcase here the discrete equivalent to the continuous one-body energy transport approach Sec.
4.2.3. The continuum energy conservation equation (4.60) becomes

𝜕𝑡𝜌𝜖
𝑖(𝑡) + ∑

𝑗
𝐼𝜖
𝑖𝑗(𝑡) = 𝑆𝜖

𝑖 (𝑡) (4.90)

14Where the necessary condition 𝐼N
𝑖𝑗 = −𝐼N

𝑗𝑖 needs to be met.
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where 𝜌𝜖
𝑖(𝑡) is the energy probability density and 𝑆𝜖

𝑖 is the input power on site 𝑖. ∑𝑗 𝐼𝜖
𝑖𝑗(𝑡) is the

discrete equivalent of the divergence of continuous energy current density ∇⃗ ⋅ ⃗𝑗𝜖( ⃗𝑟, 𝑡), i.e. the sum of
the currents 𝐼𝜖

𝑖𝑗 flowing from a site 𝑖 to its neighboring sites 𝑗. The energy quantity 𝜖 can either be the
total energy 𝜀, the kinetic energy 𝜅 or the Hamiltonian ℎ.

Such a derivation has been done in the literature without consideration for gauge invariance: Ref.
[210] has carried a derivation, in 1D discrete space, for various time-independent Hamiltonians while
considering extra degrees of freedom like the spin. Ref. [12] performed the derivation in a 1D chain
with a periodic time-dependence. We perform a derivation in a generic system described by the spin-
less and time-dependent electromagnetic Hamiltonian ℎ̂ given in Eq. (4.46). Starting with the dis-
cretized version 𝜌𝜖

𝑖(𝑡) of the continuous energy density 𝜌𝜖
𝑖(𝑡) given in Eq. (4.62)

𝜌𝜖
𝑖(𝑡) = Re[𝜓∗

𝑖 ̂𝜖[𝜓]𝑖] = Re[∑
𝑗

𝜓∗
𝑖𝜖𝑖𝑗𝜓𝑗] (4.91)

where ̂𝜖 = ̂𝜀, ̂𝜅, ℎ̂, we express its time-derivative with the help of the discrete Schrödinger equation Eq.
(4.79) and identify an expression for the energy current 𝐼𝜖

𝑖𝑗 and the energy source 𝑆𝜖
𝑖

𝜌𝜖
𝑖(𝑡)

Energy
density

⟹
Schrödinger

equation

𝜕𝑡𝜌𝜖
𝑖(𝑡) + ∑𝑗 𝐼𝜖

𝑖𝑗(𝑡) = 𝑆𝜖
𝑖

Conservation
equation

(4.92)

To be interpretable as the energy current flowing from site 𝑖 to site 𝑗, 𝐼𝜖
𝑖𝑗 must verify 𝐼𝜖

𝑖𝑗 = −𝐼𝜖
𝑗𝑖. For

the three energy operators we have considered (‘total’, kinetic and hamiltonian), we could identify a
generic expression for the energy currents 𝐼𝜖

𝑖𝑗 whereas the energy source 𝑆𝜖
𝑖 depends on the considered

energy operator:

𝐼𝜖
𝑖𝑗(𝑡) = −1

ℏ Im[ ̂𝜖[𝜓]∗𝑖𝜖𝑖𝑗𝜓𝑗 − ̂𝜖[𝜓]∗𝑗𝜖𝑗𝑖𝜓𝑖] (4.93)

= −1
ℏ ∑

𝑘
Im[𝜓∗

𝑘𝜖𝑘𝑖𝜖𝑖𝑗𝜓𝑗 − 𝜓∗
𝑘𝜖𝑘𝑗𝜖𝑗𝑖𝜓𝑖] (4.94)

On top of verifying 𝐼𝜖
𝑖𝑗 = −𝐼𝜖

𝑗𝑖, they also verify ℎ𝑖𝑗 = 0 ⟹ 𝐼𝜖
𝑖𝑗 = 0 which makes them better suited

for practical calculations and interpretability. Just like with the continuous approach, the expression of
the energy current 𝐼𝜖

𝑖𝑗 is not unique: only the divergence ∑𝑗 𝐼𝜖
𝑖𝑗 seems to carry a real physical meaning,

we showcase in Sec. 4.3.3.4 another candidate, used in Ref. [129]. The energy current density vector
field ⃗𝑗𝜖

𝑖 , that is obtained by discretizing its continuous counterpart equation (4.73),

⃗𝑗𝜖
𝑖 = 1

2Re[ ̂𝜖[𝜓]∗𝑖 ̂⃗𝑣[𝜓]𝑖 + 𝜓∗
𝑖 ̂⃗𝑣[ ̂𝜖[𝜓]]𝑖] (4.95)

can be expressed with the 𝐼𝜖
𝑖𝑗 scalars in the same way as with the particle current density:

⃗𝑗𝜖
𝑖 = ∑

𝛼=𝑥,𝑦,𝑧

𝑎
2 [𝐼𝜖

𝑖,𝑛𝛼(𝑖) − 𝐼𝜖
𝑖,𝑝𝛼(𝑖)] ⃗𝑒𝛼 (4.96)

Each component 𝑗𝜖
𝛼,𝑖 of the current density vector field ⃗𝑗𝜖

𝑖 is the net energy current going through site
𝑖 in the direction 𝛼. A more detailed derivation of Eq. (4.96) is made in Appendix. A.2.1.

Since the Hamiltonian is not gauge invariant, we chose to work with the ‘total’ energy operator ̂𝜀. In
the following sections, we use the discretization process described in Sec. 4.2.4.1 to express the discrete
equivalent of the energy densities exposed in Sec. 4.2.3.
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Hamiltonian energy To obtain the energy conservation equation (4.90) for the Hamiltonian ℎ̂, we
follow the derivation process expressed in Eq. (4.92) and develop the time derivative of the Hamiltonian
energy density 𝜌ℎ

𝑖 given Eq. (4.91) (with 𝜖 = ℎ), using the discrete Schrödinger equation (4.79)

𝜕𝑡𝜌ℎ
𝑖 = 1

ℏRe[∑
𝑗

iℎ̂[𝜓]∗𝑖ℎ𝑖𝑗𝜓𝑗 − i𝜓∗
𝑖ℎ𝑖𝑗ℎ̂[𝜓]𝑗] + Re[∑

𝑗
𝜓∗

𝑖 (𝜕𝑡ℎ𝑖𝑗)𝜓𝑗] (4.97)

We can already identify the discrete power density 𝑆ℎ
𝑖 from its continuous counterpart in Eq. (4.74)

𝑆ℎ
𝑖 (𝑡) = Re[∑

𝑗
𝜓∗

𝑖 (𝜕𝑡ℎ𝑖𝑗)𝜓𝑗] (4.98)

By deriving the explicit expression of 𝜕𝑡ℎ𝑖𝑗 involving the electromagnetic potentials from the expres-
sion of ℎ𝑖𝑗 given in Eq. (4.82), we show in Appendix. (A.2.3) that the source term writes as follows

𝑆ℎ
𝑖 = 𝜕𝑡𝑉𝑖 𝜌𝑖 + ∑

𝛼=𝑥,𝑦,𝑧
−𝜕𝑡𝐴𝛼

𝑖 𝑞𝑗𝛼
𝑖 = 𝑞𝜕𝑡𝜙𝑖 𝜌𝑖 − 𝜕𝑡 ⃗𝐴𝑖 ⋅ 𝑞 ⃗𝑗𝑖 (4.99)

This expression of the source term 𝑆ℎ
𝑖 is the discrete counterpart to the continuous energy source

𝑆ℎ = 𝑞𝜕𝑡𝜙 𝜌 + 𝑞 ⃗𝑗 ⋅ (−𝜕𝑡 ⃗𝐴) given in Eq. (4.74).

Just like the particle current, we interpret the first term of the right hand side of Eq. (4.97), with
an added minus factor, as the discrete equivalent to the divergence of the continuous energy current
density ∇⃗ ⋅ ⃗𝑗ℎ( ⃗𝑟, 𝑡), i.e. a sum of energy currents 𝐼ℎ

𝑖𝑗 flowing from the site 𝑖 to its neighboring sites 𝑗

∑
𝑗

𝐼ℎ
𝑖𝑗(𝑡) = ∑

𝑗
−1

ℏRe[iℎ̂[𝜓]∗𝑖ℎ𝑖𝑗𝜓𝑗 − i𝜓∗
𝑖ℎ𝑖𝑗ℎ̂[𝜓]𝑗] (4.100)

To define 𝐼ℎ
𝑖𝑗, one could simply take the term inside the sum ∑𝑗 as a candidate ̄𝐼ℎ

𝑖𝑗

̄𝐼ℎ
𝑖𝑗(𝑡) = −1

ℏRe[iℎ̂[𝜓]∗𝑖ℎ𝑖𝑗𝜓𝑗 − i𝜓∗
𝑖ℎ𝑖𝑗ℎ̂[𝜓]𝑗]

= 1
ℏ Im[ℎ̂[𝜓]∗𝑖ℎ𝑖𝑗𝜓𝑗 − 𝜓∗

𝑖ℎ𝑖𝑗ℎ̂[𝜓]𝑗]

But this candidate ̄𝐼ℎ
𝑖𝑗 verifies ̄𝐼ℎ

𝑖𝑗 = ̄𝐼ℎ
𝑗𝑖 and 𝐼ℎ

𝑖𝑖 ≠ 0 which does not agree with interpreting 𝐼ℎ
𝑖𝑗 as the

energy current flowing from site 𝑖 to site 𝑗. However, given that term Im[ℎ̂[𝜓]∗𝑖ℎ𝑖𝑗𝜓𝑗] vanishes when
summed over 𝑗15, we can swap its sign and define another candidate 𝐼ℎ

𝑖𝑗

𝐼ℎ
𝑖𝑗(𝑡) = −1

ℏ Im[ℎ̂[𝜓]∗𝑖ℎ𝑖𝑗𝜓𝑗 − ℎ̂[𝜓]∗𝑗ℎ𝑗𝑖𝜓𝑖] (4.101)

= −1
ℏ ∑

𝑘
Im[𝜓∗

𝑘ℎ𝑘𝑖ℎ𝑖𝑗𝜓𝑗 − 𝜓∗
𝑘ℎ𝑘𝑗ℎ𝑗𝑖𝜓𝑖] (4.102)

This candidate verifies 𝐼ℎ
𝑖𝑗 = −𝐼ℎ

𝑗𝑖, 𝐼ℎ
𝑖𝑖 = 0 and its sum over 𝑗 gives the correct discrete divergence. We

show in Appendix. A.2.1 that this energy current density 𝐼ℎ
𝑖𝑗 is connected to the direct discretization

⃗𝑗ℎ
𝑖 (𝑡) of ⃗𝑗ℎ( ⃗𝑟, 𝑡), given in (4.73), through Eq. (4.96)

15∑𝑗[ℎ̂[𝜓]∗𝑖ℎ𝑖𝑗𝜓𝑗 = ℎ̂[𝜓]∗𝑖ℎ̂[𝜓]𝑖 ∈ ℝ
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Kinetic energy The kinetic energy matrix elements 𝑘𝑖𝑗 can be expressed using the Hamiltonian
matrix elements ℎ𝑖𝑗, given in Eq. (4.82) the help of Eq. (4.46)

𝜅𝑖𝑗 =
⎧{
⎨{⎩

ℎ𝑖𝑖(𝑡) − 𝑞𝜙𝑖(𝑡) − 𝑉𝑖 for 𝑗 = 𝑖

ℎ𝑖𝑗(𝑡) otherwise
(4.103)

The energy conservation equation (4.90) for the kinetic energy operator ̂𝜅 is obtained following the
process described Eq. (4.92). We take the following expression for the kinetic energy source 𝑆𝜅

𝑖

𝑆𝜅
𝑖 (𝑡) = ∑

𝑘
−1

2 [𝑉𝑘 − 𝑉𝑖 + 𝑞𝜙𝑘 − 𝑞𝜙𝑖] 𝐼𝑁
𝑖𝑘 + ∑

𝑘
Re[𝜓∗

𝑖𝜕𝑡𝜅𝑖𝑘𝜓𝑘] (4.104)

while the kinetic energy current 𝐼𝜅
𝑖𝑗 is given by Eq. (4.94) with 𝜖 = 𝜅. The kinetic energy source 𝑆𝜅

𝑖 (𝑡)
is the discrete equivalent to continuous energy source 𝑆𝜅 given in Eq. (4.70). Indeed, ∑𝑘 −1

2 [𝑉𝑘 −
𝑉𝑖 + 𝑞𝜙𝑘 − 𝑞𝜙𝑖]𝐼𝑁

𝑖𝑘 is the discrete equivalent to ⃗𝑗 ⋅ [−𝑞∇⃗𝜙 − ∇⃗𝑉 ] ; showing that ∑𝑘 Re[𝜓∗
𝑖𝜕𝑡𝜅𝑖𝑘𝜓𝑘] is

the discrete equivalent to −𝑞 ⃗𝑗 ⋅ 𝜕𝑡 ⃗𝐴 is similar to the derivation done for the Hamiltonian source term
Eq. (4.99) in Appendix. A.2.3

Total energy operator The energy operator we will be considering is what we call the “total energy
operator” ̂𝜀. Defined in the continuous space in Eq. (4.64) as being the kinetic energy plus the stationary
potential energy 𝑉 , its matrix elements in discrete space are the following

𝜀𝑖𝑗(𝑡) =
⎧{
⎨{⎩

ℎ𝑖𝑖(𝑡) − 𝑞𝜙𝑖(𝑡) for 𝑗 = 𝑖

ℎ𝑖𝑗(𝑡) for 𝑗 ≠ 𝑖
(4.105)

where ℎ𝑖𝑗(𝑡) are the Hamiltonian’s matrix elements given in Eq. (4.82). Following Eq. (4.92), we isolate
the discrete equivalent 𝑆𝜀

𝑖 (𝑡) to the continuous total energy source 𝑆𝜀 = ⃗𝑗 ⋅ 𝑞 ⃗𝐸 given Eq. (4.67)

𝑆𝜀
𝑖 (𝑡) = ∑

𝑘
−1

2 [𝑞𝜙𝑘 − 𝑞𝜙𝑖] 𝐼𝑁
𝑖𝑘 + ∑

𝑘
Re[𝜓∗

𝑖𝜕𝑡𝜀𝑖𝑘𝜓𝑘] (4.106)

while the total energy current 𝐼𝜀
𝑖𝑗 is given by Eq. (4.94) with 𝜖 = 𝜀. It verifies 𝐼𝜀

𝑖𝑗 = −𝐼𝜀
𝑗𝑖 and ℎ𝑖𝑗 =

0 ⟹ 𝐼𝜀
𝑖𝑗 = 0.

4.3. Non-interacting many-body quantum approach – Second
quantization

In the previous section 4.2 we described the mechanics of a single quantum particle under a time-
dependent electromagnetic field, described by the one-body Hamiltonian given in Eq. (4.46). To
describe realistic systems one needs to consider the many-body case involving the use of statistical
physics. In the scope of this thesis, we consider non-interacting systems which simplifies the under-
lying mathematics and enables us to have more easily a first understanding of our problem: time-
dependent energy transport.
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4. Non-interacting time-dependent quantum transport : Theoretical apparatus

4.3.1. The many-body description in first quantization

In Sec 4.2.1 we introduced the base concepts to describe the behavior of a single particle in the quantum
regime. We will build upon these first concepts and expose the framework that describes many quan-
tum particles without interaction, i.e. each particle does not affect any other particle. We will follow
the development done in [171] and adapt it to our scope.

Let us consider 𝑁 identical non-interacting particles under the influence of the same time-dependent
electromagnetic potentials (𝜙( ⃗𝑟, 𝑡), ⃗𝐴( ⃗𝑟, 𝑡)) and the stationary potential energy 𝑉 ( ⃗𝑟). The quantum
description of such a system through a wavefunction 𝜓 involves the use of 𝑁 space variables ⃗𝑟1,… , ⃗𝑟𝑁
in its arguments 𝜓𝑁( ⃗𝑟1, … , ⃗𝑟𝑁 , 𝑡).

In the non-interacting regime, the 𝑁 -body operators �̂�𝑁 simply involve a sum over the one-body
operators ̂𝑜. The 𝑁 -body Hamiltonian ℎ̂𝑁 can thus be written using the one-body Hamiltonians ℎ̂𝑝
given in Eq. (4.46)

ℎ̂𝑁 =
𝑁

∑
𝑝=1

ℎ̂𝑝 (4.107)

where the 𝑝 index denotes that the involved space variable in the potentials is ⃗𝑟𝑝

ℎ̂𝑝[𝜓𝑁 ]( ⃗𝑟1,… , ⃗𝑟𝑁 , 𝑡) = 1
2𝑚 [−iℏ∇⃗ ⃗𝑟𝑝

− 𝑞 ⃗𝐴( ⃗𝑟𝑝, 𝑡)]
2 [𝜓𝑁 ] + 𝑞 𝜙( ⃗𝑟𝑝, 𝑡) 𝜓𝑁 + 𝑉 ( ⃗𝑟𝑝)𝜓𝑁 (4.108)

The 𝑁 -body Schrödinger equation therefore writes:

iℏ𝜕𝑡𝜓𝑁( ⃗𝑟1,… , ⃗𝑟𝑁 , 𝑡) = ℎ̂𝑁 [𝜓𝑁 ]( ⃗𝑟1,… , ⃗𝑟𝑁 , 𝑡) (4.109)

and the expectation value of an 𝑁 -body operator �̂�𝑁 writes

⟨𝜓𝑁(𝑡)|�̂�𝑁 |𝜓𝑁(𝑡)⟩ = ∫ d3𝑟1 … d3𝑟𝑁 𝜓𝑁( ⃗𝑟1, … , ⃗𝑟𝑁 , 𝑡)�̂�𝑁 [𝜓𝑁 ]( ⃗𝑟1,… , ⃗𝑟𝑁 , 𝑡) (4.110)

Given the simple relationship between 𝑁 -body and one-body operators in the non-interacting case,
one can use a time-independent one-body basis |𝜆⟩16 of the one-body Hilbert space ℋ to define an
𝑁 -body basis (|𝜆1, … , 𝜆𝑁⟩) of the 𝑁 -body Hilbert space ℋ𝑁 whose wavefunction is defined as

⟨ ⃗𝑟1,… , ⃗𝑟𝑁 |𝜆1,… , 𝜆𝑁⟩ =
𝑁
∏
𝑝=1

𝜆𝑝( ⃗𝑟𝑝) (4.111)

This ket |𝜆1,… , 𝜆𝑁⟩ amounts to describing the 𝑁 -body system as 𝑁 numbered and discernable parti-
cles where each particle 𝑝 = 1 …𝑁 is in the one-body state ∣𝜆𝑝⟩.

Fermions, Bosons Quantum particles are fundamentally undiscernible and the 𝑁 -body ket |𝜆1, … , 𝜆𝑁⟩
described above does not reflect a physical state: one can only tell that the one body-state ∣𝜆𝑝⟩ is in-
volved without particle distinction within the 𝑁 -body state. A physical 𝑁 -body ket therefore needs
to respect a certain symmetry when swapping one-body states 𝜆𝑖 and 𝜆𝑗, this amounts to swapping
16We will use here ket notations as it makes writing 𝑁-body states from one-body states simpler. The basis is time-

independent therefore Schrödinger equation solutions write on this basis with time-dependent coefficients
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4.3. Non-interacting many-body quantum approach – Second quantization

the space coordinates ⃗𝑟𝑖 and ⃗𝑟𝑗 in the 𝑁 -body wavefunction. Let’s define the permutation operator ̂𝑃𝑖𝑗
that acts in ℋ𝑁

̂𝑃𝑖𝑗 ∣… , 𝜆𝑖,… , 𝜆𝑗,…⟩ = ∣… , 𝜆𝑗,… , 𝜆𝑖,…⟩ (4.112)

There are two types of particles [171, Part. 1.1], bosons and Fermions, the state of the former must
be totally symmetric whereas the state of latter must be totally antisymmetric. This means that for
bosons, in a given physical state 𝜓, any permutation ̂𝑃𝑖𝑗 leaves the 𝑁 -body wavefunction unchanged.
For Fermions, any permutation ̂𝑃𝑖𝑗 swaps the sign of the 𝑁 -body wavefunction 𝜓

for Fermions ∀𝑖, 𝑗 ̂𝑃𝑖𝑗[𝜓] ∣… , 𝜆𝑖,… , 𝜆𝑗,…⟩ = − ∣… , 𝜆𝑖,… , 𝜆𝑗,…⟩ (4.113)

In the scope of this thesis, we are going to work with electrons, therefore with Fermions. To write
a physical 𝑁 -body state for Fermions from a given basis ket |𝜆1,… , 𝜆𝑁⟩ we need to perform all the
possible permutations between the one-body states 𝜆𝑖, 𝑖 = 1 …𝑁 while respecting the complete anti-
symmetry constraint and create the ket ̂𝑆− |𝜆1,… , 𝜆𝑁⟩, where ̂𝑆− is the anti-symmetrization operator
. These permutations that create a totally antisymmetric state are what a determinant does, used in
this specific case it is called the Slater determinant

⟨ ⃗𝑟1, … , ⃗𝑟𝑁 | ̂𝑆− |𝜆1,… , 𝜆𝑁⟩ = 1√
𝑁!

∣
∣
∣
∣

𝜆1( ⃗𝑟1) 𝜆1( ⃗𝑟2) ⋯ 𝜆1( ⃗𝑟𝑁)
𝜆2( ⃗𝑟1) 𝜆2( ⃗𝑟2) ⋯ 𝜆2( ⃗𝑟𝑁)

⋮ ⋮ ⋱ ⋮
𝜆𝑁( ⃗𝑟1) 𝜆𝑁( ⃗𝑟2) ⋯ 𝜆𝑁( ⃗𝑟𝑁)

∣
∣
∣
∣

(4.114)

If any of the one-body states are the same, i.e. 𝜙𝜆𝑖
= 𝜙𝜆𝑗

, then the result of this determinant is zero,
which means that there cannot be a non-zero 𝑁 -body totally antisymmetric wavefunction where two
quantum particles share the same one-body state: this constraint is also called the Pauli exclusion
principle.

𝜆𝑖 = 𝜆𝑗 ⟹ ̂𝑆− |𝜆1,… , 𝜆𝑁⟩ = 0 (4.115)

As with the one-body approach described Sec. 4.2.1.1, one can build a base of solutions to the 𝑁 -body
Schrödinger equation by time-evolving the base (|𝜆1,… , 𝜆𝑁⟩) using the 𝑁 -body evolution operator

̂𝑈𝑁(𝑡, 𝑡0): it is written using the one-body evolution operator �̂�(𝑡, 𝑡0) to evolve each one-body wave-
function according to Eq. (4.24)

𝜓𝑁 = ⟨ ⃗𝑟1, … , ⃗𝑟𝑁 | ̂𝑈𝑁(𝑡, 𝑡0) |𝜆1,… , 𝜆𝑁⟩ =
𝑁
∏
𝑝=1

�̂�(𝑡, 𝑡0)[𝜆𝑝]( ⃗𝑟𝑝) (4.116)

One can easily verify that the 𝑁 -body wavefunction 𝜓𝑁 defined above abides by the 𝑁 -body Schrödinger
equation given in (4.109). To make it respect the anti-symmetry constraints for Fermions and define a
basis of “physical” states, the anti-symmetrization operator ̂𝑆− can be applied

⟨ ⃗𝑟1,… , ⃗𝑟𝑁 | ̂𝑆− ̂𝑈(𝑡, 𝑡0) |𝜆1,… , 𝜆𝑁⟩ = 1√
𝑁!

∣
∣
∣
∣

𝜆1( ⃗𝑟1, 𝑡) 𝜆1( ⃗𝑟2, 𝑡) ⋯ 𝜆1( ⃗𝑟𝑁 , 𝑡)
𝜆2( ⃗𝑟1, 𝑡) 𝜆2( ⃗𝑟2, 𝑡) ⋯ 𝜆2( ⃗𝑟𝑁 , 𝑡)

⋮ ⋮ ⋱ ⋮
𝜆𝑁( ⃗𝑟1, 𝑡) 𝜆𝑁( ⃗𝑟2, 𝑡) ⋯ 𝜆𝑁( ⃗𝑟𝑁 , 𝑡)

∣
∣
∣
∣

(4.117)

to define a base of totally anti-symmetric states ( ̂𝑆− ̂𝑈(𝑡, 𝑡0) |𝜆1,… , 𝜆𝑁⟩) that are solution to the 𝑁 -
body Schrödinger equation. Note that the anti-symmetrization operator ̂𝑆− commutes with the evolu-
tion operator ̂𝑈(𝑡, 𝑡0) by construction.
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4.3.2. The many-body approach in second quantization

In an 𝑁 -body non-interacting quantum system of Fermions written from one-body states, a strong
constraint of total anti-symmetry must be followed by the wavefunction. The basis ( ̂𝑆− |𝜆1,… , 𝜆𝑁⟩)
respects this constraint and can be used to write any physical 𝑁 -body state by linear combination.
One can take one step further and define a general many-body state where the number of particles 𝑁
is not fixed but finite: the associated Hilbert space for such description is called Fock space. A basis for
this many-body Hilbert space can then be described by a series of occupation numbers (𝑛𝜆) ∈ ℕ on a
given one-body orthonormal basis (|𝜆⟩)

∣𝑛𝜆1
, 𝑛𝜆2

,… , 𝑛𝜆𝑖
,…⟩ (4.118)

where the occupation numbers 𝑛𝜆𝑖
can only be 0 or 1 because of the total anti-symmetry – the Pauli

exclusion principle – constraint. The occupation numbers 𝑛𝜆𝑖
also vanish above a certain index to

make the state describe a finite number of particles.

∃𝑘 | ∀𝑖 > 𝑘 𝑛𝜆𝑖
= 0

The number of particles 𝑁 of a given many-body state |Φ⟩ is therefore the sum of the occupation
numbers

𝑁 = ∑
𝑖

𝑛𝜆𝑖
(4.119)

The state |0⟩ that describe a many-body system with no particles – 𝑁 = 0 – plays a special role in
defining the annihilation and creation operators.

4.3.2.1. Operators in second quantization

Given a one-body basis (|𝜆⟩), we define the non-hermitian17 creation operators ̂𝑐†
𝜆𝑖

that act on kets in
the Fock space. Their action is to ‘create’ the totally antisymmetric ket ̂𝑆− |𝜆1, 𝜆2,… , 𝜆𝑁⟩ defined Eq.
(4.114) from the empty state |0⟩ as follows

̂𝑆− |𝜆1, 𝜆2,… , 𝜆𝑁⟩ = ̂𝑐†
𝜆1

̂𝑐†
𝜆2

… ̂𝑐†
𝜆𝑁

|0⟩ (4.120)

Given this general property of determinants

̂𝑆− |𝜆1, 𝜆2,… , 𝜆𝑁⟩ = − ̂𝑆− |𝜆2, 𝜆1,… , 𝜆𝑁⟩ (4.121)

we deduce the anti-commutation relation between creation operators

{ ̂𝑐†
𝜆𝑖

, ̂𝑐†
𝜆𝑗

} = ̂𝑐†
𝜆𝑖

̂𝑐†
𝜆𝑗

+ ̂𝑐†
𝜆𝑗

̂𝑐†
𝜆𝑖

= 0 (4.122)

and therefore ( ̂𝑐†
𝜆𝑖

)
2

= 0 which translates Pauli’s exclusion principle: two particles cannot occupy the
same state. The state ∣𝑛𝜆1

, 𝑛𝜆2
,… , 𝑛𝜆𝑖

,…⟩ given by occupation numbers, where the order between
one-body states 𝜆 must be arbitrarily fixed, can be defined using these operators

∣𝑛𝜆1
, 𝑛𝜆2

,… , 𝑛𝜆𝑖
,…⟩ = ( ̂𝑐†

𝜆1
)

𝑛𝜆1 ( ̂𝑐†
𝜆2

)
𝑛𝜆2 …( ̂𝑐†

𝜆𝑁
)

𝑛𝜆𝑁 |0⟩ (4.123)

17They do not define physical quantities as-is but are used as mathematical tools to simplify the writing of other operators.

82



4.3. Non-interacting many-body quantum approach – Second quantization

Further development can be read on [171]. We will state here useful results and definitions that will
be useful in our scope. These operators abide by the following anti-commutation relationships, for
Fermions

{ ̂𝑐𝜆𝑖
, ̂𝑐†

𝜆𝑗
} = 𝛿𝑖𝑗 { ̂𝑐𝜆𝑖

, ̂𝑐𝜆𝑗
} = 0 { ̂𝑐†

𝜆𝑖
, ̂𝑐†

𝜆𝑗
} = 0 (4.124)

They are used to define the number operator 𝑛𝜆𝑖

�̂�𝜆𝑖
= ̂𝑐†

𝜆𝑖
̂𝑐𝜆𝑖

(4.125)

that gives the density of particles in the one-body state |𝜆𝑖⟩ within a given general many-body state
|Φ⟩ that is a linear combination of the basis vectors ∣… , 𝑛𝜆𝑖

,…⟩. Its effect on a vector of the same basis
is the following

�̂�𝜆𝑖
∣… , 𝑛𝜆𝑖

,…⟩ = 𝑛𝜆𝑖
∣… , 𝑛𝜆𝑖

,…⟩ (4.126)

where 𝑛𝜆𝑖
is either or zero due to Pauli’s exclusion principle. The total particle number operator ̂𝑁 is

the sum of the former operator on all possible one-body states 𝜆𝑖.

̂𝑁 = ∑
𝑖

̂𝑐†
𝜆𝑖

̂𝑐𝜆𝑖
(4.127)

Note that this sum can be formally infinite but computing its expectation value on physical states
truncates it.

One-body basis change So far our many-body description relied on the use of a given fixed one-
body orthonormal basis (|𝜆⟩). We can do a basis change and move to another stationary basis (|𝜇⟩)
that can be expressed with the old basis according to Eq. (4.30)

|𝜇⟩ = ∑
𝜆

⟨𝜆|𝜇⟩ |𝜆⟩ (4.128)

The operator ̂𝑐†
𝜆 adds a particle in the state |𝜆⟩. Given the above relation between the (|𝜆⟩ basis and

the (|𝜇⟩) basis, the superposition ∑𝜆 ⟨𝜆|𝜇⟩ ̂𝑐†
𝜆 creates a particle in the state |𝜇⟩ and therefore

̂𝑐†
𝜇 = ∑

𝜆
⟨𝜆|𝜇⟩ ̂𝑐†

𝜆 (4.129)

Single-particle operators The non-interacting many-body counterpart �̂�, that we will call “single
particle operator”, to the one-body operator ̂𝑜, can be expressed with the creation and annihilation
operators and the matrix elements of ̂𝑜

�̂� = ∑
𝑖𝑗

𝑜𝑖𝑗(𝑡) ̂𝑐†
𝜆𝑖

̂𝑐𝜆𝑗
where 𝑜𝑖𝑗 = ⟨𝜆𝑖| ̂𝑜 ∣𝜆𝑗⟩ (4.130)

An operator is therefore hermitian when its ‘matrix elements’ 𝑜𝑖𝑗 verify the following relation

�̂� hermitian ⇔ 𝑜𝑖𝑗(𝑡) = 𝑜∗
𝑗𝑖(𝑡) (4.131)

which is the case when one-body operator ̂𝑜 is Hermitian, i.e. verifies Eq. (4.37). The non-interacting
many-body counterparts, that we will write in capital letters, to the one-body operators defined in Sec.
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4.2.1.2 can therefore be expressed. The many-body counterpart �̂�(𝑡) to the one-body Hamiltonian ℎ̂
Eq. (4.46) writes

�̂� = ∑
𝑖𝑗

∫ d3𝑟 [ 1
2𝑚𝜙∗

𝜆𝑖
[−iℏ∇⃗ − 𝑞 ⃗𝐴(𝑡)]2 [𝜙𝜆𝑗

] + 𝑞 𝜙(𝑡) 𝜙∗
𝜆𝑖

𝜙𝜆𝑗
+ 𝑉 𝜙∗

𝜆𝑖
𝜙𝜆𝑗

] ̂𝑐†
𝜆𝑖

̂𝑐𝜆𝑗
(4.132)

where the parametric time-dependence has been made explicit and the space dependence with respect
to the integration variable ⃗𝑟 has been omitted for readability.

Heisenberg representation One can define the many-body evolution operator ̂𝑈(𝑡, 𝑡0) by sum-
ming over the 𝑁 -body evolution operators ̂𝑈𝑁(𝑡, 𝑡0). This enables writing many-body operators in
the Heisenberg representation, introduced Sec. 4.2.1.2. Where the many-body equivalent to the one-
body Heisenberg representation of operators given Eq. (4.38) becomes

�̂�(𝑡) = ̂𝑈†(𝑡, 𝑡0) �̂� ̂𝑈(𝑡, 𝑡0) (4.133)

where we have followed the convention where writing explicitly writing the time dependence of op-
erators means that they are written in the Heisenberg representation. Single particle operators in the
Heisenberg representation write similarly to Eq (4.130)

�̂�(𝑡) = ∑
𝑖𝑗

𝑜𝑖𝑗(𝑡) ̂𝑐†
𝜆𝑖

(𝑡) ̂𝑐𝜆𝑗
(𝑡) (4.134)

where the creation and annihilation operators are replaced with their Heisenberg representation ac-
cording to Eq (4.133). The expectation value of many-body operators also follow the Heisenberg equa-
tion of motion defined for one-body operators in Eq. (4.40)

d
d𝑡 ⟨�̂�(𝑡)⟩ = i

ℏ ⟨[�̂�(𝑡), �̂�(𝑡)]⟩ + ⟨[𝜕𝑡�̂�](𝑡)⟩ (4.135)

4.3.2.2. Field operators

By formally using the non-physical one-body basis (| ⃗𝑟⟩) defined Sec. 4.2.1.1 one can define the field
operators using Eq. (4.129) for changing the basis

̂𝜓†( ⃗𝑟) = ∑
𝜆𝑖

𝜙∗
𝜆𝑖

( ⃗𝑟) ̂𝑐†
𝜆𝑖

(4.136)

̂𝜓( ⃗𝑟) = ∑
𝜆𝑖

𝜙𝜆𝑖
( ⃗𝑟) ̂𝑐𝜆𝑖

(4.137)

As with any creation and annihilation operators, ̂𝜓†
⃗𝑟 and ̂𝜓 ⃗𝑟 verify the anti-commutation relations given

in Eq. (4.124). In this case, we will not write many-body states in the ( ̂𝑆− | ⃗𝑟1,… , ⃗𝑟𝑖,…⟩) basis since the
one-body state “the particle is at the position ⃗𝑟” is not physical but a continuous linear combination,
i.e. an integral over space, can be used to describe a physical normalized state. The associated particle
number operator �̂� ⃗𝑟 defined through Eq. (4.126)

̂𝜌 ⃗𝑟 = ̂𝜓†( ⃗𝑟) ̂𝜓( ⃗𝑟) (4.138)
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acts as the particle density operator at position ⃗𝑟 on states ∣𝑛𝜆1
,… , 𝑛𝜆𝑖

,…⟩ defined on the physical one-
body basis (|𝜆⟩). The total particle number operator ̂𝑁 defined through Eq. (4.127) writes intuitively
as the integral over space of the particle density operator

̂𝑁 = ∫ d3𝑟 ̂𝜓†( ⃗𝑟) ̂𝜓( ⃗𝑟) (4.139)

which is an expression equal18 to the one given in Eq. (4.127). Single-particle operators can also be
written in terms of field operators, the Hamiltonian �̂� writes

�̂� = ∫ d3𝑟 1
2𝑚

̂𝜓†( ⃗𝑟) [−iℏ∇⃗ − 𝑞 ⃗𝐴(𝑡)]2 ̂𝜓( ⃗𝑟) + 𝑞 𝜙( ⃗𝑟, 𝑡) ̂𝜓†( ⃗𝑟) ̂𝜓( ⃗𝑟) + 𝑉 ( ⃗𝑟) ̂𝜓†( ⃗𝑟) ̂𝜓( ⃗𝑟) (4.140)

where the gradient operator ∇⃗ acts on the space dependent coefficients of the creation and annihilation
operators

∇⃗ ̂𝜓( ⃗𝑟) = ∑
𝜆𝑖

∇⃗𝜙𝜆𝑖
( ⃗𝑟) ̂𝑐𝜆𝑖

(4.141)

The formal analogy between these expressions of the many-body operators in terms of field operators
and the expectation value of the associated one body operators Eq. (4.35) gives rise the naming second
quantization where the one-body wavefunction becomes an operator that is used formally in the same
way. The first quantization referring to what happens to the mathematical description of physical
quantities when moving from the classical context to the quantum one: from scalars to operators.
We will use these field operators to derive our many-body, non-interacting, formulas in the second-
quantization formalism.

Many-body expectation values – Lesser Green Functions To compute expectation values of the
relevant operators in our scope we will use the lesser Green function 𝐺<( ⃗𝑟, 𝑡, ⃗𝑟′, 𝑡′)[165]. It is defined
as the expectation value, on a given many-body state |Φ(𝑡0)⟩, of a specific combination of the field
operators written in the Heisenberg representation (described Sec. 4.2.1.2)

𝐺<( ⃗𝑟, 𝑡, ⃗𝑟′, 𝑡′) = i
ℏ ⟨ ̂𝜓†( ⃗𝑟′, 𝑡′) ̂𝜓( ⃗𝑟, 𝑡)⟩ (4.142)

The state |Φ(𝑡0)⟩ will be made more explicit, but not properly defined, in Sec. 5.2.3. The lesser Green
function verifies the following relationship

𝐺<( ⃗𝑟, 𝑡, ⃗𝑟′, 𝑡′) = −𝐺<( ⃗𝑟′, 𝑡′, ⃗𝑟, 𝑡)∗ (4.143)

4.3.3. Time-dependent quantum transport in tight-binding models

The transport equations we are about to derive are not analytically tractable for realistic systems, we
therefore resort to numerical simulation. To perform simulations, the one-body basis (|𝜆⟩) has to be
restricted to a discrete subset (|𝑖⟩)𝑖. In this case, operators are said to have a ‘tight-binding’ represen-
tation. The non-interacting operators write

�̂�(𝑡) = ∑
𝑖𝑗

𝑜𝑖𝑗(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑗 where 𝑜𝑖𝑗(𝑡) = ⟨𝑖| ̂𝑜 |𝑗⟩ (4.144)

18∫ d3𝑟 𝜓†( ⃗𝑟) ̂𝜓( ⃗𝑟) = ∑𝑖𝑗 ∫ d3𝑟 𝜙∗
𝜆𝑖

( ⃗𝑟)𝜙𝜆𝑗
( ⃗𝑟)⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟨𝜆𝑖∣𝜆𝑗⟩=𝛿𝑖𝑗

̂𝑐†
𝜆𝑖

̂𝑐𝜆𝑗
= ∑𝑖 ̂𝑐†

𝜆𝑖
̂𝑐𝜆𝑖
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where the 𝑜𝑖𝑗(𝑡) coefficients can be obtain through different means: from the finite element method
[83], from finite differences [99], from atomic orbitals in empirical tight-binding or Kohn-Sham orbitals
within the density functional theory [126, Chap. 14-15]. In this thesis, explicit expressions of the
coefficients ℎ𝑖𝑗(𝑡), given Eq. (4.82), have ben derived Sec. 4.2.4 with the finite difference method. In
this case the creation ̂𝑐†

𝑖 and annihilation operators ̂𝑐𝑗 correspond to the discrete counterpart to the
field operators – defined Eq. (4.136) and (4.137) – on the discrete lattice points 𝑖 and 𝑗 as defined in Eq.
(4.76). These per-site field operators follow the discrete counterpart to the (anti)commutation relations
given Eq. (4.124). We use (4.142) to define its discrete counterpart at the same time 𝑡:

𝐺<
𝑖𝑗(𝑡) = i

ℏ ⟨ ̂𝑐†
𝑗(𝑡) ̂𝑐𝑖(𝑡)⟩ (4.145)

The property it verifies in Eq. (4.143) writes

𝐺<
𝑖𝑗(𝑡) = −𝐺<

𝑗𝑖(𝑡)∗ (4.146)

With the required mathematical tools now exposed to describe non-interacting many-body transport
of Fermions, we will derive in what follows the many-body counterpart to the particle and energy
transport described in Sec 4.2.2 and Sec. 4.2.3 in tight-binding systems.

4.3.3.1. Gauge transformation

A gauge transformation (4.84) can be applied to the many-body Hamiltonian �̂� → �̂�′ according to
Eq. (4.85) when its coefficients ℎ𝑖𝑗 are obtained by the finite difference method (see Sec. 4.2.4.1). The
electromagnetic gauge transformation can also be understood [104] as a change of basis of the one-
body orbitals on sites 𝑖 associated with the operators ̂𝑐𝑖: under Eq. (4.84) a unitary transformation

̂𝑈

̂𝑈 = exp(i 𝑞ℏ ∑
𝑖

Λ𝑖(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑖) (4.147)

is made on the annihilation operator

̂𝑐′
𝑖 = ̂𝑈 ̂𝑐𝑖 ̂𝑈† = exp(−i 𝑞ℏΛ𝑖(𝑡)) ̂𝑐𝑖 (4.148)

so that the transformed Hamiltonian �̂�′ can be written as [57]

�̂�′ = ̂𝑈�̂� ̂𝑈† − iℏ ̂𝑈𝜕𝑡 ̂𝑈† (4.149)

after having noticed that

iℏ ̂𝑈𝜕𝑡 ̂𝑈† = 𝑞 ∑
𝑖

𝜕𝑡Λ𝑖 ̂𝑐†
𝑖 ̂𝑐𝑖 = 𝑞 ∑

𝑖
(𝜙𝑖 − 𝜙′

𝑖) ̂𝑐†
𝑖 ̂𝑐𝑖 (4.150)

The Schrödinger equation
iℏ𝜕𝑡 |Ψ(𝑡)⟩ = �̂� |Ψ(𝑡)⟩ (4.151)

written here for an arbitrary solution |Ψ(𝑡)⟩ is form invariant under the local gauge transformation
when the wavefunction |Ψ(𝑡)⟩ is transformed as follows

|Ψ(𝑡)′⟩ = ̂𝑈 |Ψ(𝑡)⟩ (4.152)
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and the Hamiltonian is transformed according to Eq. (4.149)

iℏ𝜕𝑡 |Ψ′(𝑡)⟩ = �̂�′ |Ψ′(𝑡)⟩ (4.153)

While any Hermitian operator �̂� = ∑𝑖𝑗 𝑜𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 that transforms as

�̂�′ = ̂𝑈�̂� ̂𝑈† (4.154)

under Eq. (4.84) – or Eq. (4.12) if the matrix elements are computed according to Eq. (4.144) – has a
gauge invariant expectation value

⟨Ψ| �̂� |Ψ⟩ = ⟨Ψ′| �̂�′ |Ψ′⟩ (4.155)

the Hamiltonian does not (see Eq. (4.149)): its expectation value is in general not gauge invariant

⟨Ψ| �̂� |Ψ⟩ ≠ ⟨Ψ′| �̂�′ |Ψ′⟩ (4.156)

and thus we show here with another approach that it cannot be considered as the energy operator.

4.3.3.2. Time-dependent particle transport

We derive here the well known many-approach of particle transport in tight-binding systems. The
derivation is very similar to what have been done in the one-body approach of for particle transport
Sec. 4.2.4.3 where we obtain the particle conservation equation

𝜕𝑡𝜌𝑖 + ∑
𝑗

𝐼N
𝑖𝑗 = 0 (4.157)

where 𝜌𝑖 is the expectation value of the particle density operator ̂𝜌𝑖(𝑡) = ̂𝑐†
𝑖 (𝑡) ̂𝑐𝑖(𝑡) (from Eq. (4.138))

at site 𝑖, it expression is straightforward using the lesser Green function (given in Eq. (4.145))

𝜌𝑖(𝑡) = ⟨ ̂𝜌𝑖(𝑡)⟩ = −iℏ𝐺<
𝑖𝑖(𝑡) (4.158)

The time derivative of its expectation value is given by the Heisenberg equation of motion (4.135) where
the commutator i

ℏ ⟨[�̂�(𝑡), ̂𝜌𝑖(𝑡)]⟩ writes, using the lesser Green function, as follows

i
ℏ ⟨[�̂�(𝑡), ̂𝜌𝑖(𝑡)]⟩ = − ∑

𝑗
2 Re[ℎ𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] (4.159)

which enables us to write

𝜕𝑡𝜌𝑖(𝑡) + ∑
𝑗

2 Re[ℎ𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)]⏟⏟⏟⏟⏟⏟⏟

𝐼𝑁
𝑖𝑗(𝑡)

= 0 (4.160)

from which we identify the particle current flowing from site 𝑖 to site 𝑗

𝐼𝑁
𝑖𝑗 (𝑡) = 2 Re[ℎ𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] (4.161)

The small derivation of the particle’s conservation equation is done in Appendix. B.1.1
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4.3.3.3. Local energy operator

In Sec. 4.2.3, we defined local energy densities 𝑜𝜓( ⃗𝑟, 𝑡) such that their integral over space computes the
expectation value of the associated system-wide operator ̂𝑜 in Eq. (4.61), then an energy conservation
equation is verified for that density, with an associated current density and source density. There is
however no unique definition of a local energy density nor current [127, 8], both in the one-body
approach and in the many-body second quantization approach. This arbitrariness also applies when
defining the energy of a spatial sub-region of the system, it translates through an apparent arbitrariness
in splitting the localized energy at the boundary between the considered subsystem and the rest of the
system with the so called ‘coupling term’.

To define the ‘coupling’ energy, let’s spatially split the system in two parts 𝒜 and ℬ and then try to
define the energy ̂ℰ𝒜 and ̂ℰℬ for each subsystem. Given the expression of an operator in tight-binding
Eq. (4.144), where the summation indexes indicate position in space, we can restrict the summation to
the indexes that refer to positions in space that belong respectively to 𝒜 and ℬ

̂̃ℰ 𝜖
𝒜 = ∑

𝑖,𝑗∈𝒜
𝜖𝑖𝑗 ̂𝑐†

𝑖 ̂𝑐𝑗
̂̃ℰ 𝜖
ℬ = ∑

𝑖,𝑗∈ℬ
𝜖𝑖𝑗 ̂𝑐†

𝑖 ̂𝑐𝑗 (4.162)

However, the sum of these two subsystem energy operator does not give the system’s original energy
operator

̂ℰ𝜖 − ( ̂̃ℰ 𝜖
𝒜 + ̂̃ℰ 𝜖

ℬ) = ∑
𝑖𝑗

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 − ∑

𝑖,𝑗∈𝒜
𝜖𝑖𝑗 ̂𝑐†

𝑖 ̂𝑐𝑗 − ∑
𝑖,𝑗∈ℬ

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 (4.163)

= ∑
𝑖∈ℬ
𝑗∈𝒜

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + ∑

𝑖∈𝒜
𝑗∈ℬ

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 (4.164)

An extra hermitian term ̂̃ℰC that is made of the matrix elements that cross the boundary between 𝒜 and
ℬ – which justifies the naming ‘coupling term’ – is needed to give the system’s total energy operator

̂ℰ
̂ℰ𝜖
C = ∑

𝑖∈𝒜
𝑗∈ℬ

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + 𝜖𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖 (4.165)

̂ℰ𝜖 = ̂̃ℰ 𝜖
𝒜 + ̂ℰ𝜖

C + ̂̃ℰ 𝜖
ℬ (4.166)

One can define the subsystem energy operators ̂ℰ𝒜 and ̂ℰℬ differently where there is no ‘coupling’
energy. They can be defined using the previous operators by splitting the ‘coupling’ term ̂̃ℰC symmet-
rically between ̂̃ℰ𝒜 and ̂̃ℰℬ

̂ℰ 𝜖
𝒜 = ̂̃ℰ 𝜖

𝒜 + 1
2

̂ℰ𝜖
C

̂ℰ 𝜖
ℬ = ̂̃ℰ 𝜖

ℬ + 1
2

̂ℰ𝜖
C (4.167)

These operators simply add up to form the system’s energy operator

̂ℰ 𝜖
𝒜 + ̂ℰ 𝜖

ℬ = ̂ℰ𝜖 (4.168)

The definition of ̂ℰ𝒜 given Eq. (4.167) can be obtain by a bottom-up approach where one first defines
the local site-wise energy operator ̂ℰ𝑖. It must be Hermitian and its sum over all sites must give the
energy operator ̂ℰ. An expression can be obtained by analogy to its one-body discrete counterpart Eq.
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(4.91) or by bringing the argument that it must be isotropic as there’s no reason to favor a site over any
other, this leads to writing the system energy operator ̂ℰ as

̂ℰ𝜖 = ∑
𝑖𝑗

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 = ∑

𝑖
[1

2 ∑
𝑗

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + 𝜖𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̂ℰ𝜖
𝑖

= ∑
𝑖

̂ℰ𝜖
𝑖 (4.169)

which gives the following expression for ̂ℰ𝜖
𝑖

̂ℰ𝜖
𝑖 = 1

2 ∑
𝑗

𝜖𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + 𝜖𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖 (4.170)

where 𝜖 refers to the considered one-body energy operator: ‘total energy’ ̂𝜀 Eq. (4.64), kinetic energy
̂𝜅 Eq. (4.45) or the Hamiltonian ℎ̂ Eq. (4.46). The energy of the subsystem 𝒜 is then simply the sum of

the energy of each of its sites. This recovers the previous definition that includes the ‘coupling‘ term
Eq. (4.167)

̂ℰ 𝜖
𝒜 = ∑

𝑖∈𝒜
̂ℰ𝜖
𝑖 = ̂̃ℰ 𝜖

𝒜 + 1
2

̂̃ℰ 𝜖
C (4.171)

The idea of considering half the contribution of the hoppings within the definition of a local energy
density operator, as we did with ̂ℰ𝜖

𝑖 in Eq. (4.170), has already been introduced in Ref. [8] when
considering disordered harmonic solids. It has then been used by Ref. [210] in its definition of a
local energy operator in a 1D discrete chain. And finally, it got generalized for a generic tight-binding
Hamiltonian in Ref. [129] with the same expression as ̂ℰ𝜖

𝑖 , given in Eq. (4.170), while only considering
the Hamiltonian operator 𝜖 = ℎ.

When considering the equivalent problem of defining an energy operator of a sub-system, for ex-
ample the Hamiltonian energy ℰℎ

𝛼 of a lead ℒ𝛼 in a system described Fig. 4.1, Ref. [119] justifies
the half-half split of the ‘coupling’ term ̂ℰℎ

C, given Eq. (4.166), between both sub-systems to define
subsystem energy operators as described Eq. (4.167), with several arguments

• It is the ‘natural’ splitting as it emerges from the discretization from continuous models. We
performed a different derivation than the one described in Ref. [119] through Eq. (4.91), which
results from the discretization of Eq. (4.62).

• This definition admits an energy conservation equation, and therefore abides by the first law of
thermodynamics. As we show in the following paragraphs.

This definition was also later endorsed by Refs. [25, 143], while using the Hamiltonian as the energy
operator. On our end, we provide a few more arguments that justify this symmetrical splitting, that
rose through our derivations

• The hopping/coupling Hamiltonian coefficients ℎ𝑖𝑗, 𝑖 ≠ 𝑗 (given in Eq. (4.82)) are the discrete
representation of the continuous Kinetic energy part ̂𝜅 (defined in Eq. (4.45)) part of the Hamil-
tonian ℎ̂ (defined in Eq. (4.46)). It is usual to take into account the local kinetic energy in a local
energy density.

• Defining the local energy density as the expectation value of the local ‘total’ energy operator ̂ℰ𝜀
𝑖

(given in Eq. (4.170) with 𝜖 → 𝜀) enables us to recover, for the total energy source term 𝑆𝜀
𝑖 (given

Eq. (4.188)), the classical expression of the power given to electrons in Eq. (4.4)
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In the following, we will use this ‘natural’ definition of the local energy operator ̂ℰ𝜖
𝑖 , given in Eq. (4.170),

to define a local energy density and subsystem energies. However, this definition of a local/subsystem
energy operator rises issues while trying to define a time-dependent heat current and is still under
debate, see Sec. 4.3.4.2.

4.3.3.4. Time-dependent energy transport

The same energy conservation equation (4.90) derived Sec. 4.2.3 in the one-body approach can be done
in the many-body approach and obtain the same energy conservation equation

𝜕𝑡𝜌𝜖
𝑖(𝑡) + ∑

𝑗
𝐼𝜖
𝑖𝑗(𝑡) = 𝑆𝜖

𝑖 (4.172)

where the 𝜖 superscript is indicates the considered the energy quantity: the ‘total energy’ operator ̂𝜀,
to the Kinetic energy operator ̂𝜅 or the Hamiltonian ℎ̂. Note that these operators differ only through
onsite potentials, therefore we have

𝑖 ≠ 𝑗 ⟹ ℎ𝑖𝑗 = 𝜀𝑖𝑗 = 𝜅𝑖𝑗 (4.173)

𝜌𝜖
𝑖(𝑡) is the many-body expectation of the local energy operator ̂ℰ𝑖(𝑡) written in the Heisenberg picture,

it can be further expressed using the lesser green functions defined Eq. (4.142)

𝜌𝜖
𝑖(𝑡) = ⟨ ̂ℰ𝜖

𝑖(𝑡)⟩ = ∑
𝑗

Im[𝜖𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)] (4.174)

An energy conservation equation for the operator ̂ℰ𝑖(𝑡) is then obtained by interpreting the energy
divergence ∑𝑗 𝐼𝜖

𝑖𝑗 and the energy source 𝑆𝜖
𝑖 from the expansion of the Heisenberg equation of motion

Eq. (4.135) (See Sec. 4.3.2.1) of ̂ℰ𝑖(𝑡)

𝜕𝑡𝜌𝜖
𝑖(𝑡) = i

ℏ ⟨[�̂�(𝑡), ̂ℰ𝜖
𝑖(𝑡)]⟩ + ⟨𝜕𝑡 ̂ℰ𝜖

𝑖(𝑡)⟩
Heisenberg equation of motion (4.135)

⟹
𝜕𝑡𝜌𝜖

𝑖(𝑡) + ∑𝑗 𝐼𝜖
𝑖𝑗(𝑡) = 𝑆𝜖

𝑖
Conservation equation

As we will see in the following sections, and as shown Eq. (4.94) in the discrete one-body approach, the
expression we derive for the local energy current, for each energy operator, has the generic following
form

𝐼𝜖
𝑖𝑗 = 1

ℏ ∑
𝑘

Re[𝜖𝑘𝑖𝜖𝑖𝑗𝐺<
𝑗𝑘 − 𝜖𝑘𝑗𝜖𝑗𝑖𝐺<

𝑖𝑘] (4.175)

where 𝜖𝑖𝑗 is to be replaced by the coefficients of the considered energy operator: 𝜀𝑖𝑗 for the ‘total
energy’, 𝜅𝑖𝑗 for the kinetic energy and ℎ𝑖𝑗 for the Hamiltonian energy.

Total energy operator The total energy one-body operator ̂𝜀 is defined in Eq. (4.64) as the being
the Hamiltonian ℎ̂ without the energy term associated with the time-dependent scalar potential

̂𝜀 = ℎ̂ − 𝑞𝜙( ⃗𝑟, 𝑡) ̂𝐼 (4.176)
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where ̂𝐼 is the identity operator and 𝜙( ⃗𝑟, 𝑡) is the electromagnetic scalar potential. The associated
second quantization many-body operator ̂ℰ𝜀 is a single-particle operator, therefore follows Eq. (4.130)
in its second quantization expression

̂ℰ𝜀(𝑡) = ∑
𝑖𝑗

𝜀𝑖𝑗(𝑡) ̂𝑐†
𝑖 (𝑡) ̂𝑐𝑗(𝑡)

𝜀𝑖𝑗(𝑡) = ⟨𝑖| ̂𝜀 |𝑗⟩ = ℎ𝑖𝑗(𝑡) − 𝑞 ⟨𝑖| 𝜙( ⃗𝑟, 𝑡) |𝑗⟩
(4.177)

where

⟨𝑖| 𝜙( ⃗𝑟, 𝑡) |𝑗⟩ = ∫ d3𝑟 𝜆𝑖( ⃗𝑟)∗𝜙( ⃗𝑟, 𝑡)𝜆𝑗( ⃗𝑟) (4.178)

given that the one-body states |𝑖⟩ are orthogonal due their separate spatial localization, the dot product
⟨𝑖| 𝜙( ⃗𝑟, 𝑡) |𝑗⟩ is non zero only when 𝑖 = 𝑗, therefore

⟨𝑖| 𝜙( ⃗𝑟, 𝑡) |𝑗⟩ = 𝜙𝑖(𝑡)𝛿𝑖𝑗 𝜙𝑖(𝑡) = ∫ d3𝑟 |𝜆𝑖( ⃗𝑟)|2 𝜙( ⃗𝑟, 𝑡) (4.179)

This enables us to establish the following connection between the energy operator ̂ℰ𝜀 and the Hamil-
tonian �̂�

̂ℰ𝜀(𝑡) = �̂�(𝑡) − 𝑞 Φ̂(𝑡) (4.180)

where Φ̂(𝑡) is the associated many-body (single-particle) operator associated to the electromagnetic
scalar potential 𝜙( ⃗𝑟, 𝑡)

Φ̂(𝑡) = ∑
𝑖

𝜙𝑖(𝑡) ̂𝜌𝑖(𝑡) (4.181)

where ̂𝜌𝑖(𝑡) = ̂𝑐†
𝑖 ̂𝑐𝑖 is the number operator at site 𝑖. The operator ̂ℰ𝜀

𝑖 (𝑡) represent the energy density on
site 𝑖. Its expectation value 𝜌𝜀

𝑖 (𝑡) = ⟨ ̂ℰ𝜀
𝑖 (𝑡)⟩, where ̂ℰ𝜀

𝑖 is given by Eq. (4.170), writes using the lesser
green functions defined with Eq. (4.142) as

𝜌𝜀
𝑖 = ⟨ ̂ℰ𝜀

𝑖 (𝑡)⟩ = 𝜌ℎ
𝑖 − 𝑞𝜙𝑖(𝑡)𝜌𝑖 = ∑

𝑗
Im[𝜀𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] (4.182)

The time derivative of this expectation value follows Heisenberg’s equation of motion (4.135)

𝜕𝑡 ⟨ ̂ℰ𝜀
𝑖⟩ = i

ℏ ⟨[�̂�(𝑡), ̂ℰ𝜀
𝑖 (𝑡)]⟩ + ⟨𝜕𝑡 ̂ℰ𝜀

𝑖⟩ (4.183)

= i
ℏ ⟨[ ̂ℰ𝜀(𝑡) + 𝑞Φ̂(𝑡), ̂ℰ𝜀

𝑖 (𝑡)]⟩ + ⟨𝜕𝑡 ̂ℰ𝜀
𝑖⟩ (4.184)

One can notice when summing over 𝑖 that the commutator part vanishes partially:

∑
𝑖

⟨[ ̂ℰ𝜀(𝑡) + 𝑞 Φ̂(𝑡), ̂ℰ𝜀
𝑖 (𝑡)]⟩ = ⟨[ ̂ℰ𝜀(𝑡) + 𝑞 Φ̂(𝑡), ̂ℰ𝜀(𝑡)]⟩ = ⟨[𝑞 Φ̂(𝑡), ̂ℰ𝜀(𝑡)]⟩ (4.185)

The local energy current 𝐼𝜀
𝑖𝑗 should vanish when summed over all sites 𝑗 and 𝑖 as it should verify

𝐼𝜀
𝑖𝑗 = −𝐼𝜀

𝑗𝑖 to be interpretable as the net energy current flowing from 𝑖 to 𝑗. This gives a hint to write
the continuity equation where we identify − i

ℏ ⟨[ ̂ℰ𝜀, ̂ℰ𝜀
𝑖 ]⟩ as the local current divergence ∑𝑗 𝐼𝜀

𝑖𝑗. This
former identification leaves a unique possibility for the source term 𝑆𝜀

𝑖 (𝑡)

𝜕𝑡𝜌𝜀
𝑖 (𝑡) − i

ℏ ⟨[ ̂ℰ𝜀(𝑡), ̂ℰ𝜀
𝑖 (𝑡)]⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟

∑𝑗 𝐼𝜀
𝑖𝑗(𝑡)

= i
ℏ ⟨[𝑞 Φ̂(𝑡), ̂ℰ𝜀

𝑖 (𝑡)]⟩ + ⟨𝜕𝑡 ̂ℰ𝜀
𝑖 (𝑡)⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆𝜀
𝑖 (𝑡)

(4.186)
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and we therefore obtain the conservation equation (4.172) for the ‘total energy’ operator

𝜕𝑡𝜌𝜀
𝑖 (𝑡) + ∑

𝑗
𝐼𝜀
𝑖𝑗(𝑡) = 𝑆𝜀

𝑖 (4.187)

We can show that the source term 𝑆𝜀
𝑖 is the many-body equivalent of the continuous energy source

⃗𝑗( ⃗𝑟, 𝑡) ⋅ ⃗𝐸( ⃗𝑟, 𝑡) given in Eq. (4.67). Expanding the term i
ℏ ⟨[𝑞 Φ̂(𝑡), ̂ℰ𝜀

𝑖 (𝑡)]⟩ enables us to identify a
part of the continuous energy source −∇⃗𝜙𝑖(𝑡) ⋅ 𝑞 ⃗𝑗𝑖(𝑡). Then, using the explicit expression of 𝜀𝑖𝑗(𝑡)
coefficients in Eq. (4.105) and ℎ𝑖𝑗 in Eq. (4.82), we show that ⟨𝜕𝑡 ̂ℰ𝜀

𝑖 (𝑡)⟩ corresponds to −𝜕𝑡 ⃗𝐴𝑖(𝑡)⋅𝑞 ⃗𝑗𝑖(𝑡)

𝑆𝜀
𝑖 (𝑡) = ∑

𝑗
−1

2 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝑞𝐼𝑁
𝑖𝑗 (𝑡)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−∇⃗𝜙𝑖(𝑡) ⋅ 𝑞 ⃗𝑗𝑖(𝑡)

+ ∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
−𝜕𝑡 ⃗𝐴𝑖(𝑡) ⋅ 𝑞 ⃗𝑗𝑖(𝑡)

(4.188)

where 𝐼𝑁
𝑖𝑗 (𝑡) is the many-body particle current flowing from site 𝑖 to site 𝑗, given in Eq. (4.161), and ⃗𝑗𝑖

is the particle current density vector whose relation with 𝐼N
𝑖𝑗 is given by (4.89). A complete derivation of

Eq. (4.188) has been done in Appendix. B.3 where an explicit expression of ℎ𝑖𝑗 has been taken from Eq.
(4.82). When the hopping Hamiltonian coefficients ℎ𝑖𝑗(𝑡), 𝑖 ≠ 𝑗 are written in terms of exponentials,
as in Eq. (4.83), or more generally with a Peierls substitution approach [122]

ℎ𝑖𝑗(𝑡) = ℎ𝑖𝑖(𝑡)𝛿𝑖𝑗 + ℎ0
𝑖𝑗ei 𝑞

ℏ 𝜑𝑖𝑗(𝑡)(1 − 𝛿𝑖𝑗) (4.189)

where 𝜑𝑖𝑗(𝑡) = ∫ ⃗𝑟𝑗
⃗𝑟𝑖

⃗𝐴( ⃗𝑟, 𝑡) ⋅ d ⃗𝑟 is a Peierls phase (𝐴( ⃗𝑟, 𝑡) is supposed to have a slow spatial variation
between ⃗𝑟𝑖 and ⃗𝑟𝑗), the source term 𝑆𝜀

𝑖 (𝑡) simplifies to

𝑆𝜀
𝑖 (𝑡) = ∑

𝑗
−1

2 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡) − 𝜕𝑡𝜑𝑖𝑗(𝑡)] 𝑞𝐼𝑁
𝑖𝑗 (𝑡) (4.190)

To define the energy current however, just like in the one-body derivation done in Sec. 4.2.3 there is
no unique way to write the expression of an energy current 𝐼𝜀

𝑖𝑗(𝑡) flowing between two sites 𝑖 and 𝑗,
given an energy current divergence ∑𝑖 𝐼𝜀

𝑖𝑗 at site 𝑖. A possible candidate that we derived, that verifies
ℎ𝑖𝑗 = 0 ⟹ 𝐼𝜀

𝑖𝑗 = 0 on top of 𝐼𝜀
𝑖𝑗 = −𝐼𝜀

𝑗𝑖 and whose divergence gives the correct result, is the
following

𝐼𝜀
𝑖𝑗 = 1

ℏ ∑
𝑘

Re[𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 − 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘] (4.191)

A complete derivation of this energy current has been done in Appendix. B.2.1.

The approach followed by [129] to define a Hamiltonian based local energy current can be used here
too to define another candidate ̃𝐼𝜀

𝑖𝑗 for the local “total” energy current

̃𝐼𝜀
𝑖𝑗 = i

ℏ ⟨[ ̂ℰ𝜀
𝑖 , ̂ℰ𝜀

𝑗 ]⟩ = 1
2ℏ ∑

𝑘
Re[𝜀𝑖𝑘𝜀𝑘𝑗𝐺<

𝑗𝑖 + 𝜀𝑖𝑗𝜀𝑗𝑘𝐺<
𝑘𝑖 + 𝜀𝑘𝑖𝜀𝑖𝑗𝐺<

𝑗𝑘] (4.192)

For a complete derivation, please refer to Appendix. B.2.2

Kinetic energy operator The kinetic energy one-body operator ̂𝜅 is defined in Eq. (4.45). It is equal
to the Hamiltonian ℎ̂ without the energy terms associated with the time-dependent scalar potential
𝑞𝜙( ⃗𝑟, 𝑡) and the potential energy 𝑉 ( ⃗𝑟)

̂𝜀 = ℎ̂ − [𝑞𝜙( ⃗𝑟, 𝑡) + 𝑉 ( ⃗𝑟)] ̂𝐼 (4.193)
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where ̂𝐼 is the identity operator. The derivation for this kinetic operator is mathematically equivalent to
the previous derivation for the ‘total energy’ operator ̂ℰ𝜀 by doing the following symbolic replacement
in all the derived expressions

𝑞𝜙 → 𝑞𝜙 + 𝑉 and 𝜀 → 𝜅 (4.194)

we obtain the following expressions for the kinetic energy density 𝜌𝜅
𝑖 , energy current 𝐼𝜅

𝑖𝑗 and energy
source 𝑆𝜅

𝑖

𝜌𝜅
𝑖 = ⟨ ̂ℰ𝜅

𝑖 (𝑡)⟩ = ∑
𝑗

Im[𝜅𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)] (4.195)

𝐼𝜅
𝑖𝑗 = 1

ℏ ∑
𝑘

Re[𝜅𝑘𝑖𝜅𝑖𝑗𝐺<
𝑗𝑘 − 𝜅𝑘𝑗𝜅𝑗𝑖𝐺<

𝑖𝑘] (4.196)

𝑆𝜅
𝑖 (𝑡) = ∑

𝑗
−1

2 [𝑞𝜙𝑗(𝑡) + 𝑉𝑗 − 𝑞𝜙𝑖(𝑡) − 𝑉𝑖] 𝐼𝑁
𝑖𝑗 (𝑡)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−[𝑞∇⃗𝜙𝑖(𝑡) + ∇⃗𝑉𝑖] ⋅ ⃗𝑗𝑖(𝑡)

+ ∑
𝑗

Im[𝜕𝑡𝜅𝑖𝑗(𝑡)𝐺<
𝑗𝑖(𝑡)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
−𝜕𝑡 ⃗𝐴𝑖 ⋅ ⃗𝑗𝑖

(4.197)

Hamiltonian energy operator As with the one-body approach Sec. 4.2.3, and even though the
Hamiltonian is not gauge invariant, we can interpret the expectation value of the onsite Hamiltonian
density operator 𝜌ℎ

𝑖 = ⟨�̂�𝑖⟩, where �̂�𝑖 is given by Eq. (4.170), as an energy density this time in the
many-body case. Its time derivative is given by the Heisenberg equation of motion (4.135)

𝜕𝑡𝜌ℎ
𝑖 (𝑡) = i

ℏ ⟨[�̂�(𝑡), �̂�𝑖(𝑡)]⟩ + ⟨𝜕𝑡�̂�𝑖(𝑡)⟩ (4.198)

One can notice when summing over 𝑖 that the commutator part vanishes. This gives a hint to write the
energy conservation equation:

𝜕𝑡𝜌ℎ
𝑖 (𝑡) − i

ℏ ⟨[�̂�(𝑡), �̂�𝑖(𝑡)]⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟
∑𝑗 𝐼ℎ

𝑖𝑗(𝑡)

= ⟨𝜕𝑡�̂�𝑖(𝑡)⟩⏟⏟⏟⏟⏟
𝑆ℎ

𝑖 (𝑡)
(4.199)

where the energy current vanishes when summed over 𝑖. The energy current should be real and verify
𝐼ℎ
𝑖𝑗 = −𝐼ℎ

𝑗𝑖 to be interpretable as the net energy flowing from 𝑖 to 𝑗 per unit of time. However, there is
no unique definition of a current flowing between two neighboring sites 𝑖 and 𝑗, we only have a unique
definition of total energy leaving a site, i.e. ∑𝑖 𝐼ℎ

𝑖𝑗. Further derivation, similar to the one performed
in Appendix. B.2.1, leads to the following expressions for the Hamiltonian based energy current and
energy source

𝐼ℎ
𝑖𝑗(𝑡) = 1

ℏ ∑
𝑘

Re[ℎ𝑘𝑖(𝑡)ℎ𝑖𝑗(𝑡)𝐺<
𝑗𝑘(𝑡) − ℎ𝑘𝑗(𝑡)ℎ𝑗𝑖(𝑡)𝐺<

𝑖𝑘(𝑡)] (4.200)

𝑆ℎ
𝑖 (𝑡) = ∑

𝑗
Im[𝜕𝑡ℎ𝑖𝑗(𝑡)𝐺<

𝑗𝑖(𝑡)] = 𝑞 𝜌𝑖(𝑡) 𝜕𝑡𝜙𝑖(𝑡) + ∑
𝑗

Im[𝜕𝑡[ℎ𝑖𝑗(𝑡) − 𝑞𝛿𝑖𝑗𝜙𝑖(𝑡)]𝐺<
𝑗𝑖(𝑡)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
−𝜕𝑡 ⃗𝐴𝑖 ⋅ ⃗𝑗𝑖

(4.201)

The current respects the extra constraint that the current is zero for sites that are not “connected” by
the Hamiltonian ℎ𝑖𝑗 = 0 ⟹ 𝐼ℎ

𝑖𝑗(𝑡) = 0. Another candidate ̄𝐼ℎ
𝑖𝑗 for a Hamiltonian based energy

current has been defined in [210, 129]

̄𝐼ℎ
𝑖𝑗 = i

ℏ ⟨[�̂�𝑖, �̂�𝑗]⟩ = 1
2ℏ ∑

𝑘
Re[ℎ𝑖𝑘ℎ𝑘𝑗𝐺<

𝑗𝑖 + ℎ𝑖𝑗ℎ𝑗𝑘𝐺<
𝑘𝑖 + ℎ𝑘𝑖ℎ𝑖𝑗𝐺<

𝑗𝑘] (4.202)
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that has the correct divergence but does not does not respect ℎ𝑖𝑗 = 0 ⟹ 𝐼ℎ
𝑖𝑗(𝑡) = 0 which makes

it more complex. The derivation has been done for the total energy operator in Appendix. B.2.2. That
same derivation could be done for the Hamiltonian operator.

4.3.4. Computing lead currents

4.3.4.1. Particle and energy

Transport studies aim to compute the currents that hop-in and hop-out of the leads, in systems sketched
in Fig. 5.5. To do so using our hopping energy currents 𝐼𝜖

𝑖𝑗 and particle currents 𝐼N
𝑖𝑗, for which expres-

sion have been derived in Sec. 4.3.3, we simply compute the current flux through the section that
separates the lead 𝛼 from the central system 𝒞 (see Fig. 4.1). This amounts to summing the currents
over all the hoppings that connect the lead to the central system

𝐼N
𝛼 = ∑

𝑛∈ℒ𝛼
𝑖∈𝒞

𝐼N
𝑛𝑖 𝐼𝜖

𝛼 = ∑
𝑛∈ℒ𝛼
𝑖∈𝒞

𝐼𝜖
𝑛𝑖 (4.203)

Given that we explicitly consider the spatial span of the leads within our approach, currents can also
be computed through a section that is taken further away in the leads (see Sec. 5.2.2 for the practical
definition we use within tkwant). This is a generalization with respect to the usual approach taken by
previous works in the literature. The latter defines the lead’s particle and energy current as being the
time derivative of the expectation value of the lead’s particle operator ̂𝑁𝛼 and the lead’s Hamiltonian
�̂�𝛼 = ̂�̃�𝛼 + 1

2�̂�𝒞𝛼
19

̄𝐼N
𝛼 = −𝜕𝑡 ⟨ ̂𝑁𝛼⟩ ̄𝐼ℎ

𝛼 = −𝜕𝑡 ⟨�̂�𝛼⟩ (4.204)

where the operators ̂𝑁𝛼 and ̂�̃�𝛼 are written with creation and annihilation operators in 𝑘 space instead
of real space, which prevents writing spatially resolved currents within the leads. In our approach, we
write the lead particle number operator ̂𝑁𝛼 and energy operator ̂ℰ𝜖

𝛼 as a sum of the local operators
̂𝜌𝑖 = ̂𝑐†

𝑖 ̂𝑐𝑖 and ̂ℰ𝜖
𝑖 (given in Eq. (4.170)) over the sites 𝑖 in ℒ𝛼 (c.f. Sec. 4.3.3.4)

̂𝑁𝛼 = ∑
𝑖∈ℒ𝛼

̂𝜌𝑖 ̂ℰ𝜖
𝛼 = ∑

𝑖∈ℒ𝛼

̂ℰ𝜖
𝑖 (4.205)

Summing the local particle conservation equation (4.157) and the local energy conservation equation
(4.172) over the sites 𝑖 of the lead ℒ𝛼 enables us to link our lead current definitions, given in Eq. (4.203),
with the usual definition taken in the literature, given in Eq. (4.204)

̄𝐼N
𝛼 = 𝐼N

𝛼 − ̄𝐼𝜖
𝛼 + 𝐼𝜖

𝛼 = 𝑆𝜖
𝛼 (4.206)

where ̄𝐼𝜖
𝛼 is the generalization of ̄𝐼ℎ

𝛼 , given in Eq. (4.204), to the other energy quantities 𝜖 (see Sec.
4.3.3.4). A few remarks:

• Each lead is considered to be time-independent. The term 𝑆𝜖
𝛼 is non-zero only due the sites that

are at the boundary between the lead and the central system that make up for either a time-
dependent hopping or have a time-dependent onsite Hamiltonian coefficient ℎ𝑖𝑖/𝑗𝑗(𝑡) (See e.g.
Eq. (4.188)). If one chooses the arbitrary boundary that separates the lead ℒ𝛼 from the central
system 𝒞 further away in the lead, we would have 𝑆𝜖

𝛼 = 0
19We consider directly here that the lead’s Hamiltonian �̂�𝛼 that contains half the contribution of the coupling Hamiltonian

�̂�𝒞𝛼, that links the central system 𝒞 with the lead ℒ𝛼. See Sec. 4.3.3.3 for a more complete discussion over this choice.
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• We write the lead’s energy operator ̂ℰ𝜖
𝛼, given by Eq. (4.205), as a sum of local energy operators

̂ℰ𝜖
𝑖 defined in Eq. (4.170). The latter include surrounding hoppings terms in their definition and

therefore Eq. (4.167) applies here. When the considered energy quantity 𝜖 is either the ‘total
energy’ (𝜖 = 𝜀) or the Hamiltonian (𝜖 = ℎ), which both coincide when considered in the lead as
it is time-independent, the lead’s energy operator ̂ℰ𝜖

𝛼 writes as the following

̂ℰ𝜀
𝛼 = ̂ℰℎ

𝛼 = �̂�𝛼 = ̂�̃�𝛼 + 1
2�̂�𝒞𝛼 (4.207)

where �̂�𝒞𝛼 contains the hoppings that connect the sites of the lead ℒ𝛼 to the scattering region
𝒞, See Sec. 5.2.1 for more information.

• Within our approach, we can compute current fluxes further away in the leads. In the time-
dependent case, this raises some fundamental questions as the values of the computed currents
will depend on the position on the lead. Indeed, the time-dependent perturbation that originates
from the scattering region travels at a finite speed in the leads. Also, the lead’s dispersion relation
produces modes at different energies, which travel at different speeds. When considering lead-
related quantities in the time-dependent regime, it is therefore more physical to work with time
integrated quantities to avoid the arbitrariness of choosing where to compute the time-resolved
quantities in the lead.

4.3.4.2. Heat

The systems we describe are non-interacting and no relaxation process within the system are taken into
account. We therefore cannot define a local temperatures nor local heat currents within the system,
from first principles. However, a common hypothesis that is made in the stationary regime [16] is that
each electron leaving the scattering area 𝒞 with an energy 𝐸 into a lead ℒ𝛼, will eventually reach
the electro-chemical reservoir of temperature 𝑇𝛼 and chemical potential 𝜇𝛼, then undergo thermal
relaxation and contribute 𝐸 − 𝜇𝛼 in heat to the thermal bath. In terms of currents, this translates as
the following expression for the heat current stationary 𝐼Q,st

𝛼

𝐼Q,st
𝛼 = 𝐼𝜖,st

𝛼 − 𝜇𝛼𝐼N,st
𝛼 (4.208)

where 𝐼𝜖,st
𝛼 and 𝐼N,st

𝛼 are respectively the stationary lead ℒ𝛼 energy current and particle currents, as
defined in Eq. (4.203) while in the stationary regime. The equation (4.208) has then been used in a
system with a periodic time-dependent drive over cycle-averaged quantities [12]. Note that in the
stationary and periodic case (for cycle-averaged quantities), the coupling Hamiltonian 𝐻𝒞𝛼 has no
contribution to the lead’s energy current 𝐼𝜖,st

𝛼 and is not considered in the literature: 𝐼𝜖,st
𝛼 is simply

defined as the opposite of the total time derivative of the lead’s Hamiltonian ̂�̃�𝛼 without consideration
for the coupling Hamiltonian �̂�𝒞𝛼

𝐼𝜖,st
𝛼 = −𝜕𝑡 ⟨ ̂�̃�𝛼,st⟩ (4.209)

Defining a time-resolved lead heat current in the time dependent regime lies within the emerging
field of time-dependent non-equilibrium quantum thermodynamics. This field is new with ongoing
research over defining a proper and definite theoretical framework. Fundamental issues have arisen
with respect to the conceptual spatial separation between the central system, the thermal baths and
their coupling. In the weak coupling regime, a consistent theory has been established [23, 52, 107,
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68] whereas in the strong coupling regime, especially when the coupling is time-dependent, defining
a time resolved heat current raises a fundamental issue [31, 54, 44, 25, 143]: the part �̂�𝒞𝛼 of the
system’s total Hamiltonian �̂� that couples a lead to the central system is no longer negligible, can
be time-dependent, and must be accounted for when one tries to define a time-resolved heat current.
Following our discussion in Sec. 4.3.3.3 over the definition of a local energy operator that also applies
for a subsystem, an expression to the time-resolved lead heat current in has been given by Refs. [119,
121] where the lead’s energy includes half the contribution of the coupling �̂�𝒞𝛼

𝐼Q,ℎ
𝛼 (𝑡) = −𝜕𝑡 ⟨�̂�𝛼⟩ − 𝜇𝛼𝐼N

𝛼(𝑡) = −𝜕𝑡 ⟨ ̂�̃�𝛼 + 1
2�̂�𝒞𝛼⟩ − 𝜇𝛼𝐼N

𝛼(𝑡) (4.210)

This definition recovers equation (4.208) that gives the heat current in the stationary case as the cou-
pling Hamiltonian �̂�𝒞𝛼,st would not contribute 𝜕𝑡 ⟨�̂�𝒞𝛼⟩ = 0. Ref. [54] raised two issues with time
resolved heat current 𝐼Q,ℎ

𝛼 (𝑡) given in Eq. (4.210), within a particular model20: (i) while slowly driven,
the evolution is reversible and the heat current is expected to be a state function. 𝐼Q,ℎ

𝛼 (𝑡) is reported
to not be a state function in this case because of the coupling Hamiltonian �̂�𝒞𝛼 has been added in
its definition. (ii) Whether the coupling Hamiltonian is considered in 𝐼Q,ℎ

𝛼 (𝑡) or not, the heat current
𝐼Q,ℎ
𝛼 (𝑡) is reported to not abide by the third law of thermodynamics, i.e. 𝐼Q,ℎ

𝛼 (𝑡)/𝑇𝛼 does not converge
to zero when 𝑇 → 0 and diverges instead, 𝑇𝛼 being the temperature of the (single) reservoir. In the
other hand, Ref. [142] reports that the symmetrical splitting of the coupling fails to describe energy
fluctuations. Finally, Ref. [81] proposes a remedy to these issues by proposing adding an extra term
�̇�B(𝑡) to the heat current 𝐼Q,ℎ

𝛼 (𝑡). �̇�B(𝑡) is non zero only when the modulus of coupling strength
is time-dependent: in our approach where the time-dependence comes solely from a time-dependent
electromagnetic field, the coupling Hamiltonian �̂�𝒞𝛼 can only be time-dependent to account for a uni-
form time-dependent scalar potential in the lead ℒ𝛼 after a gauge change (c.f. Sec. 5.2.1). The coupling
strength involves only a time-dependent phase, its modulus remains time-independent and �̇�B(𝑡) is
therefore zero.

Given that the Hamiltonian is in general not gauge dependent, we change the Hamiltonian based
definition of the heat current 𝐼Q,ℎ

𝛼 (𝑡), given in Eq. (4.210), to a ‘total energy‘ based definition 𝐼Q
𝛼(𝑡) =

𝐼Q,𝜀
𝛼 (𝑡) (note that the two definitions coincide on time-independent leads and differ otherwise, see Sec.

5.3.2.3)

𝐼Q
𝛼(𝑡) = 𝐼𝜀

𝛼(𝑡) − 𝑆𝜀
𝛼(𝑡) − 𝜇𝛼𝐼N

𝛼(𝑡) (4.211)

where we used the lead’s energy current 𝐼𝜀
𝛼(𝑡) and the lead’s input power 𝑆𝜀

𝛼(𝑡) instead of −𝜕𝑡 ⟨ ̂ℰ𝜖
𝛼⟩

to facilitate defining the heat current it farther away in the lead (see Sec. 5.2.2). Computing energy
and heat currents farther away in the lead avoids the issue with the eventual time-dependent coupling
and circumvents the issues brought up by Ref. [54], just like it has been done by Ref. [24] through its
scattering Landauer-Büttiker approach in the special case of slow time-dependent driving while still
in the strong coupling regime. In Sec. 5.2.3 we expose the final pieces where we extend the approach
of Ref. [24] to the arbitrary time-dependent regime, although we do not tackle the entropy transport
problem but can be planned for future research.

Now that the time-resolved lead currents properly defined, we highlight two shortcomings of such
an approach: (i) due to the travel time and dispersion, time resolved lead currents are dependent on
where they are computed; (ii) the heat current can theoretically only be accounted for after electrons
thermally relax within the bath. The lead is is technically not the heat bath and computing a space
20The Resonant Level model (c.f. Sec. 5.3.2.1) with a single lead where both the ‘dot’ and its coupling with the lead are

slowly driven.
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and time resolved heat current within the lead is a priori ill-defined, although it can be interpreted
differently in terms of bookkeeping [47], i.e. “the amount of heat that will eventually be dissipated
later on”. To workaround these issues, we also study time integrated lead quantities (following e.g.
Ref. [44]), thanks to conservation. Time integrals fit better with what an experimentalist can measure
by probing temperature changes, over the course of an experiment, to detect a potential signature of
the time-dependent drive

𝑄(𝜏) = ∫
𝜏

𝑡0

d𝑡 𝐼Q
𝛼(𝑡) (4.212)

Given that we consider that electrons leaving the scattering region in the leads only reach the thermal
bath infinitely away in the bath, the quantity 𝑄(𝜏) is to be taken with a relative origin of time when
it is considered experimentally, where leads have a finite length. This definition of 𝑄(𝜏) also supposes
that the relaxation time-scale within the bath is orders of magnitude faster than the variation of 𝑄(𝜏)
so one could consider the temperature of the finite and realistic bath 𝑇𝛼 to evolve according to the
classical equation that links the incoming heat current in a system to its temperature variation

𝐶𝛼 [𝑇𝛼(𝜏 + 𝑡offset) − 𝑇𝛼(𝑡offset)] = 𝑄(𝜏) (4.213)

where 𝐶𝛼 is the thermal capacity of the realistic electrochemical bath 𝛼.
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systems

Our goal is to describe particle and energy currents and densities in scattering systems, in hopes to
better understand thermoelectricity in the time dependent domain. In the previous chapter we out-
lined the theoretical framework that enables calculating local electron currents and densities and their
associated energy currents and densities, given a one-body wavefunction 𝜓( ⃗𝑟, 𝑡) (or its discretized
version 𝜓𝑖(𝑡)) or a many-body lesser Green function 𝐺<

𝑖𝑗(𝑡). Here, we briefly review the approach
behind Kwant, a simulation library of reference in quantum transport, and its extension tkwant to
the time-dependent regime. The development of the latter package, initiated during the PhD thesis of
B. Gaury [63], exposed one important equation (5.26) which links the many-body lesser Green func-
tion 𝐺<

𝑖𝑗(𝑡) and a specific set of system-wide one-body wavefunctions, the ‘scattering states’, defined
in systems described by Fig. 5.1. This last result completes the scattering wavefunction description of
energy transport. We use it to extend tkwant to energy transport through a module called tkwant-
operator: we show that tkwant + tkwantoperator enables us to more easily recover previous
results of the literature on the extensively studied ‘Resonant level model’. The main strength of this
simulation tool is that it enables simulating bigger and more complex systems, beyond that ‘toy’ model:
we illustrate this aspect by simulating the Quantum Point Contact.

5.1. A scattering approach to time-dependent quantum
transport

The theoretical framework to describes entirely particle and energy transport, for non-interacting spin-
less particles in tight-binding systems without phonons, has been exposed in Sec. 4.3.3. To be able to
compute the transport quantities, the last step is to define more precisely the one-body basis to use
to compute the transport quantities on the specific class of systems described in Fig. 5.1, whose tight-
binding representation is done in the next section. We will rely on the Kwant and tkwant simula-
tions libraries for numerical computation. These libraries use a wavefunction approach to quantum
transport, they compute a specific one-body basis of wavefunctions called the ‘scattering states’. De-
fined as the eigenstates of the system’s total Hamiltonian �̂�(𝑡 < 𝑡0) = �̂�0 in the stationary regime,
the ‘scattering states’ are the building blocks of the scattering theory in its stationary [28, 26] and
time-dependent [20] formulation. Following tkwant’s theoretical framework [101], the systems we
consider are stationary until a given time 𝑡0. This enables using Kwant for computing the scattering
states in the stationary regime for 𝑡 ≤ 𝑡0. Starting 𝑡 > 𝑡0, they are time-evolved one by one (thanks to
the non-interacting hypothesis) by tkwant according to Schrödinger’s equation (4.23).

In this section, we adopt a continuous description of transport for a more intuitive understanding
of the concepts at play (the discretized case will be dealt with in the next section 5.2). First, we write
down the generic Hamiltonian that describe our target systems. This enables us to define the station-
ary scattering states, whose discrete version is computed by Kwant. Then, we summarize how these
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scattering states are time-evolved by tkwant’s algorithm.

5.1.1. Writing the Hamiltonian

We describe here more precisely the generic systems thattkwant is able to simulate (see Fig. 5.1). They
are made of a central area 𝒞 under a static potential energy 𝑉 ( ⃗𝑟) and time-dependent electromagnetic
fields, represented by the vector potential ⃗𝐴( ⃗𝑟, 𝑡) and scalar potential 𝜙( ⃗𝑟, 𝑡). The central area 𝒞, also
called scattering region, is connected to ‘waveguides’, indexed by 𝛼. The role of the probes is to lead in
incoming ‘hot’ electrons at a given electrochemical potential 𝜇𝛼 and temperature 𝑇𝛼 ; but also transport
out electrons from the scattering region. These probes, also called leads, are semi-infinite and periodic
along one direction, with a period ⃗𝑒𝛼.

Figure 5.1. – Continuous representation of a generic system that can be simulated by tkwant: a central area
𝒞 – called scattering region – connected to semi-infinite ‘waveguides’ ℒ𝛼, called leads. The leads can have an
arbitrary periodic shape along their infinite direction ⃗𝑒𝛼, where a static and spatially periodic potential energy
𝑉𝛼( ⃗𝑟) resides. The scattering area 𝒞 is under a time dependent electromagnetic field, represented by the potentials
( ⃗𝐴, 𝜙), and an additional static potential energy 𝑉 ( ⃗𝑟). Each lead ℒ𝛼 is attached to an electronic reservoir in
thermodynamic equilibrium, at temperature 𝑇𝛼 and chemical potential 𝜇𝛼, from which electrons leave and travel
towards the scattering region. In our approach, the time-dependent electromagnetic field is only switched on
after an instant 𝑡0.

A stationary potential 𝑉𝛼( ⃗𝑟) can be considered in each lead ℒ𝛼 and follows its periodicity 𝑉𝛼( ⃗𝑟 +
⃗𝑒𝛼) = 𝑉𝛼( ⃗𝑟) (a stationary vector potential can also be considered but is omitted in our considerations).

The incoming electrons in each lead 𝛼 follow the Fermi thermal distribution 𝑓𝛼

𝑓𝛼(𝐸) = 1
e(𝐸−𝜇𝛼)/𝑘𝐵𝑇 + 1 (5.1)

where 𝜇𝛼 and 𝑇𝛼 are respectively the chemical potential and the temperature of the connected reservoir
to the lead 𝛼. In our approach, the time dependence only starts after an instant 𝑡0

{
⃗𝐴( ⃗𝑟, 𝑡 < 𝑡0) = ⃗𝐴( ⃗𝑟)

𝜙( ⃗𝑟, 𝑡 < 𝑡0) = 0 (5.2)

For this particular system, the general Hamiltonian ℎ̂ can be written as a piecewise function of space,
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using the general definition from Eq. (4.46)

ℎ̂[𝜓] =
⎧{
⎨{⎩

− ℏ2
2𝑚∇⃗2𝜓 + 𝑉𝛼( ⃗𝑟)𝜓 with 𝑉𝛼( ⃗𝑟 + ⃗𝑒𝛼) = 𝑉𝛼( ⃗𝑟) for ⃗𝑟 ∈ ℒ𝛼

1
2𝑚 [−iℏ∇⃗ − 𝑞 ⃗𝐴( ⃗𝑟, 𝑡)]2 [𝜓] + 𝑞 𝜙( ⃗𝑟, 𝑡) 𝜓 + 𝑉 ( ⃗𝑟) 𝜓 for ⃗𝑟 ∈ 𝒞

(5.3)

Time-dependence in the leads It is theoretically possible to have an additional spatially uniform
time-dependent scalar potential 𝜙𝛼(𝑡) in each lead ℒ𝛼. Indeed, its effect can be accounted for through a
gauge transformation, given by Eq. (4.12), with a gauge function Λ that takes the following expression
in each lead

Λ( ⃗𝑟 ∈ ℒ𝛼, 𝑡) = −∫
𝑡

𝑡0

d𝑢 𝜙𝛼(𝑢) (5.4)

This will bring the leads back to being time-independent but changes the scattering region’s Hamilto-
nian ℎ̂ → ℎ̂′1 while leaving our quantum (particle and energy) description invariant

ℎ̂′[𝜓] =
⎧{
⎨{⎩

− ℏ2
2𝑚∇⃗2𝜓 + 𝑉𝛼( ⃗𝑟)𝜓 + (𝜙𝛼(𝑡) + 𝜕𝑡Λ)⏟⏟⏟⏟⏟

=0
for ⃗𝑟 ∈ ℒ𝛼

1
2𝑚 [−iℏ∇⃗ − 𝑞( ⃗𝐴 − ∇⃗Λ)]2 [𝜓] + 𝑞 (𝜙 + 𝜕𝑡Λ)𝜓 + 𝑉 ( ⃗𝑟) 𝜓 for ⃗𝑟 ∈ 𝒞

(5.5)

In an actual device, a time-dependent voltage driving in the leads may induce a variation of the chemical
potential 𝜇𝛼 in the affected electronic reservoir, in addition to a variation of the electric potential. This
is not taken into account in our non-interacting approach as it requires modeling relaxation inside the
reservoirs. A qualitative discussion of the role of electrostatics in realistic devices (reported in Sec. 8.4
of Ref. [66]) shows that this approach already has a broad applicability in the field of time-dependent
quantum nanoelectronics.

5.1.2. 𝑡 < 𝑡0: stationary scattering states – kwant

In this subsection we define the stationary scattering states. Given our assumption that the time-
dependence only starts after a time 𝑡0, we consider here 𝑡 < 𝑡0 so that the system is entirely stationary.
The usual approach to solving the Schrödinger equation with a time-independent Hamiltonian is to
diagonalize it as described in Eq. (4.32)

ℎ̂st[Ψ𝜆
st]( ⃗𝑟) = 𝐸𝜆Ψ𝜆

st( ⃗𝑟) (5.6)

where ℎ̂st = ℎ̂(𝑡 < 𝑡0) is the Hamiltonian before the time dependence starts. This eigenstate equation,
within the specific class of systems we consider, with a finite central region connected to semi-infinite
periodic leads is solved by the Kwant library [77] by computing an orthogonal basis of wavefunc-
tions called ‘scattering states’. A scattering state is the system-wide wavefunction that results from an
incoming conducting eigenstate of a specific lead that travels towards the system.

Given the periodicity and the semi-infinite nature of each lead, the eigenstate problem, when spa-
tially restricted to a lead, is solved with the Bloch theorem:

𝜓𝛼,in/out
𝐸,𝑛 ( ⃗𝑟 ∈ ℒ𝛼) = 𝜉𝛼

𝑛( ⃗𝑟) exp(i𝑘in/out
𝑛𝐸 𝑧𝛼) where 𝜉𝛼

𝑛( ⃗𝑟 + ⃗𝑒𝛼) = 𝜉𝛼
𝑛( ⃗𝑟) (5.7)

1The gauge function Λ has been intentionally left undefined in the scattering region 𝒞. It can be essentially zero but needs
to be differentiable in space (and in time): it needs to smoothly decrease from its value at the boundary with each lead
𝛼, to zero within 𝒞
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where 𝐸 is the energy, 𝑛 is the transverse mode and 𝑧𝛼 is the 𝑧-coordinate in the lead-specific axis
parallel to the lead’s infinite and periodic direction ⃗𝑒𝛼. 𝑘in/out

𝑛𝐸 is the wave vector along that axis and
is linked to 𝐸 and 𝑛 through a dispersion relation that comes from solving the Schrödinger equation.
𝑘in/out

𝑛𝐸 can be real, in which case 𝜓𝛼,in/out
𝐸,𝑛 is a conducting/traveling mode: the ‘in’ superscript in 𝑘in/out

𝑛𝐸
indicates that the wave travels towards the central system whereas the ‘out’ superscript indicates the
opposite. 𝑘in/out

𝑛𝐸 can also be imaginary, in which case the mode is evanescent and can only exist at the
boundary with the scattering region.

An explicit set of solutions can for example be written for the waveguide of constant rectangular
section [0, 𝐿𝑥] × [0, 𝐿𝑦], represented in Fig. 5.2

𝜓𝛼,in/out
𝐸,𝑛,𝑚 (𝑥, 𝑦, 𝑧) = sin(𝑛𝜋 𝑥

𝐿𝑥
) sin(𝑚𝜋 𝑦

𝐿𝑦
) exp(±i𝑘𝑧)

where 𝐸, 𝑉𝛼, 𝑝, 𝑞 and 𝑘 are connected through the following dispersion relation

𝐸 = 𝑉𝛼 + ℏ2𝑘2

2𝑚 + ℏ2𝑝2𝜋2

2𝑚𝐿2𝑥
+ ℏ2𝑞2𝜋2

2𝑚𝐿2𝑦

An eigenstate 𝜓𝛼,in
𝐸,𝑛 in the lead 𝛼 that travels towards the scattering region will, in the stationary

Figure 5.2 – Illustration of a waveguide lead with a
rectangular constant section 𝐿𝑥 × 𝐿𝑦

regime, cause reflected modes 𝑟𝛼
𝑛𝑛′(𝐸)𝜓𝛼,out

𝐸,𝑛′ in the same lead, a specific wavefunction Ψ𝜆
st|𝒞 in the

scattering region and transmitted modes 𝑑𝛼𝛽
𝑛𝑛′(𝐸)𝜓𝛽,out

𝐸,𝑛′ in the other leads 𝛽. The resulting system-
wide wavefunction Ψ𝜆

st is called a ‘scattering state’ and is fully characterized by the incoming mode
𝜓𝛼,in

𝐸,𝑛 in lead 𝛼, therefore 𝜆 = 𝛼, 𝐸, 𝑛. It is an eigenstate of the total one-body Hamiltonian ℎ̂

Ψ𝜆=(𝛼,𝐸,𝑛),st =[ 𝜓𝛼,in
𝐸,𝑛⏟

incoming
mode

+∑
𝑛′

𝑟𝛼
𝑛𝑛′(𝐸)⏟
reflection
amplitude

𝜓𝛼,out
𝐸,𝑛′⏟

reflected
mode⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Lead 𝛼

] + Ψ𝜆,st∣
𝒞⏟

Central
region

+ [∑
𝛽

∑
𝑛′

𝑑𝛼𝛽
𝑛𝑛′(𝐸)⏟

transmission
amplitude

𝜓𝛽,out
𝐸,𝑛′⏟

transmitted
mode⏟⏟⏟⏟⏟⏟⏟⏟⏟

Lead 𝛽

]
(5.8)

where 𝜓𝛼,in/out
𝐸,𝑛 and Ψ𝜆,st|𝒞 are respectively non-zero only in the lead ℒ𝛼 and the scattering region 𝒞.

Note that the stationary scattering states Ψ𝜆,st are time dependent but follow a trivial time evolution
with exp(i𝐸𝑡/ℏ) as a global pre-factor, as shown in Eq. (4.33). The stationary transmission amplitudes
𝑑𝛼𝛽

𝑛𝑛′(𝐸) and the reflection amplitudes 𝑟𝛼
𝑛𝑛′(𝐸) can be computed by the Kwant simulation library [206,

77, 168] as part of the ‘scattering matrix’ that contains both the transmission and reflection amplitudes.
In practice, scattering states are computed in two steps in kwant: first, the conducting modes in the
leads are computed by diagonalizing the lead hamiltonians ; second, the scattering state in the central
region and the scattering amplitudes are calculated by solving a large linear system (corresponding to
Eq. (5.6) truncated to the central part 𝒞 of the system).

obtained by solving the linear eigenstate stationary problem. An illustration of a scattering state and
how it is computed by Kwant is illustrated in Fig. 5.3
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+Energy

transverse
quantum
numbers

wave
matching

Schrödinger
equation

wave
matching

Schrödinger
equation

Schrödinger
equation

Stationary Scattering StateKwant
Figure 5.3. – Illustration of a scattering state and how it is in theory computed by Kwant: an incident eigenstate
𝜓𝛼,in

𝐸,𝑛 in a mode 𝑛 and energy 𝐸, in the lead ℒ𝛼, is considered as an initial boundary condition to the eigenstate
equation (5.6). The whole scattering state is calculated by kwant: it solves the Schrödinger equation in each
part of the system and imposes that the wavefunctions match of at the boundaries between the scattering region
and the leads, see comments bellow Eq. (5.8).

5.1.3. Time-evolving the scattering states – tkwant

After the time 𝑡0 the central part �̂�𝒞(𝑡) of the system’s Hamiltonian �̂� becomes time-dependent. In
what follows, we consider that 𝑡0 = 0 without loss of generality as it can be recovered with a translation
of the time 𝑡 parameter.

Time translation: 𝑡 − 𝑡0 → 𝑡 (5.9)

The orthogonal basis formed by the stationary scattering states Ψ𝜆
st defined in the section above (see Eq.

(5.8)) can be time evolved according to the Schrödinger equation (4.23) while remaining an orthogonal
basis

{ iℏ𝜕𝑡Ψ𝜆(𝑡) = ℎ̂[Ψ𝜆](𝑡)
Ψ𝜆(𝑡 = 0) = Ψ𝜆

st
(5.10)

Given that the leads are still time independent, the time-dependent scattering states Ψ𝜆(𝑡) in each
lead ℒ𝛼 can still be decomposed as a linear combination of eigenstates of the lead. However, the time
dependence redistributes the energies within the system: the transmitted and reflected modes can have
a different energy 𝐸′ than the initial incoming mode [66].

Ψ𝜆=𝛼,𝐸,𝑛(𝑡) =[ 𝜓𝛼,in
𝐸,𝑛e−i𝐸𝑡/ℏ⏟⏟⏟⏟⏟

incident
mode

+∑
𝑛′

∫ d𝐸′

2𝜋 𝑟𝛼
𝑛𝑛′(𝐸, 𝐸′)⏟⏟⏟⏟⏟

reflection
amplitude

𝜓𝛼,out
𝐸′,𝑛′e−i𝐸′𝑡/ℏ⏟⏟⏟⏟⏟

reflected
mode⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Lead 𝛼

]

+ 𝜓𝒞
𝜆(𝑡)⏟

Central
region

+ [∑
𝛽

∑
𝑛′

∫ d𝐸′

2𝜋 𝑑𝛼𝛽
𝑛𝑛′(𝐸, 𝐸′)⏟⏟⏟⏟⏟
transmission

amplitude

𝜓𝛽,out
𝐸′,𝑛′e−i𝐸′𝑡/ℏ⏟⏟⏟⏟⏟

transmitted
mode⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Lead 𝛽

]
(5.11)
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The transmission 𝑑𝛼𝛽
𝑛𝑛′(𝐸,𝐸′) and reflection 𝑟𝛼

𝑛𝑛′(𝐸,𝐸′) amplitudes now express the probability am-
plitude for being transmitted/reflected from energy 𝐸 to energy 𝐸′. The time-dependence of each lead
stationary eigenstate needs to be added, using Eq. (4.33). Note that this equation (5.11) is equal to
Eq. (5.8) when 𝑡 ≤ 0 but does not simplify to the same stationary expression, as the former must also
describe the time dependent regime 𝑡 > 0 while Eq. (5.8) does not. tkwant does not compute these
complex transmission and reflection coefficients but time evolves the stationary scattering states Ψst

for 𝑡 > 0 instead, using the ‘source-sink’ approach.

Source-Sink algorithm Solving numerically equation (5.10) for 𝑡 > 0 (𝑡0 = 0) is difficult as the
scattering states span, with non-trivial behavior, over the entire infinite system. The deviation from
the stationary state Ψ̄𝜆, defined as [203]

Ψ𝜆( ⃗𝑟, 𝑡) = e−i𝐸𝜆𝑡/ℏ [Ψ̄𝜆( ⃗𝑟, 𝑡) + Ψ𝜆
st( ⃗𝑟)] (5.12)

exhibits more interesting properties for numerical solving

{ iℏ𝜕𝑡Ψ̄𝜆 = [ℎ̂(𝑡) − 𝐸𝜆] [Ψ̄𝜆] + 𝑆𝜆(𝑡)
Ψ̄𝜆(𝑡 = 0) = 0

(5.13)

where 𝑆𝜆(𝑡) is a ‘source’ term in the previous Schrödinger-like equation

𝑆𝜆(𝑡) = [ℎ̂ − ℎ̂st][Ψ𝜆
st]( ⃗𝑟, 𝑡) (5.14)

The Hamiltonian being time-dependent only within the central scattering region, the ‘source’ term
𝑆𝜆(𝑡) is zero in the leads. For this reason and as (i) the wave function Ψ̄𝜆(𝑡) vanishes at 𝑡 = 0 and
(ii) is only composed of outgoing modes in each lead, it is sufficient to solve Eqs. (5.13)-(5.14) in a
finite system around the scattering region 𝒞; i.e., it is possible to truncate the leads2 yet still describe
exactly the scattering states on the remaining sites. Given that the time-dependence in the scattering
region 𝒞 creates outgoing modes that propagates in the leads at finite speed, it is necessary to truncate
the leads far enough so they do not reach the border. For long simulation times, this approach can
become untractable and a different one is needed [203]: ‘absorb’ the outgoing modes when nearing
the end of the lead while keeping the calculated scattering state accurate outside of the absorption
area. The practical implementation of this idea is to add an imaginary on-site potential Σ𝛼,𝑎, the
‘sink’/‘absorbing’ term, over the last lead units cells 𝑎 = 𝑎abs,… , 𝑎truncation. It is diagonal and uniform
in each lead cell 𝑎 and varies smoothly with 𝑎 in order to absorb the outgoing waves, it has a caveat
of producing spurious back-reflections but they can be arbitrarily minimized (i.e. smaller than a target
precision). The exact expression for Σ𝛼,𝑎 is given in Ref. [203] and is more thoroughly studied in
Appendix B of Ref. [101]. The equation of motion of Ψ̄𝜆 that is solved within the absorbing region is
the following

iℏ𝜕𝑡Ψ̄𝜆 = [ℎ̂(𝑡) − 𝐸𝜆 − iΣ] [Ψ̄𝜆] + 𝑆𝜆(𝑡) (5.15)

Using kwant’s output of the stationary scattering states Ψ𝜆
st as a starting point, tkwant uses Ψ̄𝜆(𝑡 =

0) = 0 and Eq. (5.12) to time-evolve them into the time-dependent scattering states Ψ𝜆(𝑡), described
in Eq. (5.11). tkwant uses for that purpose a Dormand-Prince method of the Runge-Kutta family
of ordinary differential equation solvers. Contrary to Kwant, reflection and transmission amplitudes
are not computed. Using the source-sink approach theoretically reduces the complexity of the time-
evolution algorithm from 𝑂(𝑁𝑡2max) to 𝑂(𝑁𝑡max), where 𝑁 is the number of sites in the central system
𝒞 and 𝑡max is the maximum simulated time, but in practice the exact sink term Σ𝛼,𝑎 is not computed
and a rougher approximation is used, leading to a practical complexity 𝑂(𝑁𝑡1.5

max) (see Appendix. B of
[101]).

2Ψ𝜆
st in the leads is computed beforehand by Kwant with other means, more information in Ref. [207].
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5.2. Practical tight-binding simulation with tkwant

Lead

Scattering region

Figure 5.4 – Generic tight-binding system
that can be simulated with tkwant (the dis-
crete equivalent of Fig. 4.1). It is made of
a time-dependent central scattering area 𝒞,
whose sites are colored in gray, connected to
time-independent leads, whose sites are col-
ored in red. A uniform time-dependent scalar
potential can be considered in each lead al-
though in practice it is gauged out into an ad-
ditional time dependent phase: it is added to
the hoppings connecting each lead to the cen-
tral system (colored in orange), according to
Eq. (5.23)

Kwant [77] is a free and open source Python simulation library, available at kwant-project.
org. It describes quantum transport in general non-interacting tight-binding systems in the stationary
regime. It enables simulating a wide range of phenomena: superconductivity [154, 59, 193], quantum
Hall effect [144, 169], topological insulators [67, 130], graphene [62, 33], spintronics [136]. It has be-
come the numerical tool of reference for quantum transport in mesoscopic systems as hundreds of pub-
lications have made use of the tool given its wide range of applicability and its flexibility. tkwant ex-
tends Kwant to the time domain and enables computing time-resolved electronic quantities, in generic
systems described Fig. 5.4, and uses a wavefunction approach that is strictly equivalent to the NEGF
approach (see. Sec. 3.3.3) but faster [66]. Its development has been led by X. Waintal’s group at CEA
Grenoble and has been iteratively developed for the past years – by B. Gaury [66], J. Weston [203] and
T. Kloss [101] – while being internally used at the same time to study time-dependent systems [65, 202,
60, 5, 164], till a first public release in 2021 [101]. tkwant is free and open source and is available at
tkwant.kwant-project.org.

5.2.1. Tight-binding model

The practical tight-binding systems that tkwant simulates are the discretized version of the continu-
ous system described in Fig. 5.1. The tight-binding systems tkwant handles are represented diagram-
matically in Fig. 5.5: a central system, whose Hamiltonian is ̂�̃�𝒞

3, is connected to each lead 𝛼 with
a coupling Hamiltonian �̂�𝒞𝛼. Each lead Hamiltonian ̂�̃�𝛼 is entirely characterized by a Hamiltonian

̂�̃�cell𝛼 of one of its repeated unit cells and a coupling Hamiltonian �̂�𝛼 that connects each unit cell to its
next neighbor (expressed in Eq. (5.19)).

3The tilde notation indicates that subsystem operators do not include coupling terms with other subsystems, see Sec.
4.3.3.3.
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5. Transport simulations of open quantum systems

Figure 5.5. – Generic representation of a tkwant tight-binding system. A central system 𝒞, described by
a Hamiltonian ̂�̃�𝒞, is connected to semi-infinite leads through a coupling Hamiltonian �̂�𝒞,𝛼. Each lead 𝛼 is

considered to be periodic, its Hamiltonian ̂�̃� is defined by a unit cell Hamiltonian ̂�̃�cell𝛼 and an inter-cell coupling
Hamiltonian 𝑊𝛼.

The system’s total tight-binding Hamiltonian �̂� therefore writes as sum of three terms that illustrate
the spatial separation we have made to the system [101]:

�̂� = ̂�̃�𝒞 + ∑
𝛼

̂�̃�𝛼 + ∑
𝛼

�̂�𝒞𝛼 (5.16)

The scattering region Hamiltonian ̂�̃�𝒞 is a generic second quantization non-interacting Hamiltonian
that follows Eq. (4.144)

̂�̃�𝒞 = ∑
𝑖𝑗 ∈ 𝒞

ℎ𝑖𝑗(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑗 (5.17)

ℎ𝑖𝑗(𝑡 < 𝑡0) = ℎ0
𝑖𝑗 = cst. (5.18)

The lead 𝛼 Hamiltonian ̂�̃�𝛼 is stationary and describes the periodicity of the lead

̂�̃�𝛼 =
∞
∑
𝑎=0

∑
𝑛𝑚

ℎ𝛼
𝑛𝑚 ̂𝑐†

𝑎𝑛 ̂𝑐𝑎𝑚 + 𝑤𝛼
𝑛𝑚 ̂𝑐†

𝑎𝑛 ̂𝑐𝑎−1,𝑚 + h.c. (5.19)

where ̂𝑐†
𝑎,𝑛 and ̂𝑐𝑎,𝑛 are the creation and annihilation operators of an electron at the site indexed by 𝑛

in the unit cell 𝑎 of the lead 𝛼 (see Fig. 5.5). ℎ𝛼
𝑛𝑚 and 𝑤𝛼

𝑛𝑚 are the matrix elements of respectively the
unit cell Hamiltonian ̂�̃�𝛼 and the inter-cell coupling Hamiltonian 𝑊𝛼, in the lead 𝛼 (see Fig. 5.1). The
Hamiltonian ̂�̃�𝒞𝛼 connects the lead 𝛼 to the scattering region 𝒞

̂�̃�𝒞𝛼 = ∑
𝑖∈𝒞,𝑛∈ℒ𝛼

ℎ𝒞𝛼
𝑖,𝑛 ̂𝑐†

𝑖 ̂𝑐𝑎=0,𝑛 + h.c. (5.20)

Time-dependence in the leads A prerequisite for tkwant is the absence of time dependence in
the leads. However, as we did in Sec. 5.1.1 in the continuous case, we can account for a uniform time-
dependent scalar potential 𝜙𝛼(𝑡) in each lead ℒ𝛼 by means of a gauge transformation (see Sec. 4.2.4.2
and Sec. 4.3.3.1): given an initial Hamiltonian �̂� given by Eq. (5.16), that does not have the extra scalar
potential 𝜙𝛼(𝑡), it can be changed to �̂�′ to account for it

�̂�′ = ̂�̃�𝒞 + ̂�̃�𝛼 + ∑
𝛼

̂�̃�′
𝒞𝛼 (5.21)
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according to Eq. (4.85) with the following gauge function Λ𝑖(𝑡)

Λ𝑖(𝑡) =
⎧{
⎨{⎩

− ∫𝑡
𝑡0

d𝑢 𝜙𝛼(𝑢) for 𝑖 ∈ ℒ𝛼

0 for 𝑖 ∈ 𝒞
(5.22)

where ̂�̃�′
𝒞𝛼 is related the original ̂�̃�𝒞𝛼 given by Eq. (5.20) through Eq. (4.84)

̂�̃�′
𝒞𝛼 = ∑

𝑖∈𝒞,𝑛∈ℒ𝛼

ℎ𝒞𝛼
𝑖,𝑛 exp(i 𝑞ℏΛ𝑛(𝑡)) ̂𝑐†

𝑖 ̂𝑐𝑎=0,𝑛 + h.c. (5.23)

Equation (5.23) assumes setting the gauge function Λ𝑖(𝑡) to zero in the scattering region 𝒞 although it
is only a matter of choice and it can be chosen arbitrarily: the particle and (non-hamiltonian) energy
currents remain invariant no matter the gauge change.

5.2.2. Expressing lead currents

In Sec. 4.3.4, we exposed how we define lead currents given a generic tight-binding system that contains
“leads”, as described in Fig. 4.1. The structure of the tight-binding Hamiltonian has been described in
more details right above in Sec. 5.2.1 and it includes in particular the spatially periodic lead Hamiltonian
�̂�𝛼, given in Eq. (5.19) (represented in Fig. 5.5). We define time and spatially resolved lead currents as
fluxes at the coupling interface between each unit cell of a given lead (see Fig. 5.6):

𝐼N
𝛼,𝑎(𝑡) = ∑

𝑛∈ℒ𝑎
𝛼

𝑚∈ℒ𝑎−1
𝛼

𝐼N
𝑛𝑚(𝑡) 𝐼𝜖

𝛼,𝑎(𝑡) = ∑
𝑛∈ℒ𝑎

𝛼
𝑚∈ℒ𝑎−1

𝛼

𝐼𝜖
𝑛𝑚(𝑡) (5.24)

where 𝐼N
𝛼,𝑎 and 𝐼𝜖

𝛼,𝑎 are respectively the particle and energy current flowing from the lead’s ℒ𝛼 unit

Scattering
Region

Lead

Figure 5.6 – Representation of the spa-
tially resolved lead currents 𝐼𝛼,𝑎 and
𝐼𝛼 = 𝐼𝛼,0 in a lead ℒ𝛼, with respect to
the scattering region 𝒞. 𝐼𝛼,𝑎 is either the
particle current 𝐼N

𝛼,𝑎 or the energy cur-
rent 𝐼𝜖

𝛼, as defined in Eq. (5.24).

cell 𝑎 to its unit cell 𝛼 − 1, which enable having spatially resolved currents within the lead. 𝐼N
𝛼 = 𝐼N

𝛼,0
and 𝐼𝜖

𝛼 = 𝐼𝜖
𝛼,0 are the currents that flow from the lead ℒ𝛼 to the scattering region 𝒞, as defined in Eq.

(4.203). For the lead heat current 𝐼Q
𝛼 defined in Eq. (4.211), its generalization 𝐼Q

𝛼,𝑎 to further sections of
the lead is simply the following

𝐼Q
𝛼,𝑎 = 𝐼𝜀

𝛼,𝑎 − 𝜇𝛼𝐼N
𝛼,𝑎 with 𝑎 ≥ 1 (5.25)
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Indeed, since the leads we consider are time-independent, once away from the potentially time-dependent
coupling �̂�𝒞𝛼, i.e. for 𝑎 ≥ 1, there is no local input power and 𝑆𝜖

𝑛 = 0 for sites 𝑛 that are in unit cells
𝑎 ≥ 1 of the lead ℒ𝛼. This explains why 𝐼Q

𝛼,𝑎, given in Eq. (4.211), differs from 𝐼Q
𝛼 in Eq. (5.25)

5.2.3. Computing currents and densities

With the one-body basis of ‘scattering states’ defined in Sec. 5.1, we can introduce an important result
from Ref. [66] that expresses the lesser Green function 𝐺<

𝑖𝑗 (defined in Eq. (4.145)) using these scattering
states, for systems described in Fig. 5.1

𝐺<
𝑖𝑗(𝑡, 𝑡′) = i ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸)Ψ𝜆

𝑗 (𝑡′)∗Ψ𝜆
𝑖 (𝑡) (5.26)

Here, ∑𝜆 has been used for compactness as an equivalent to

∑
𝜆=𝛼,𝑛,𝐸

≡ ∑
𝛼

∑
𝑛

∫ d𝐸
2𝜋ℏ (5.27)

which fundamentally expresses a sum over all the scattering states 𝜆, where 𝐸 is a continuous degree
of freedom. Ψ𝜆

𝑖 (𝑡) is the scattering state 𝜆 computed at site 𝑖 and time 𝑡 ; 𝑓𝛼(𝐸) = 𝑓𝑇𝛼,𝜇𝛼
(𝐸) is a

shorthand notation for the Fermi function

𝑓𝑇,𝜇(𝐸) = 1
exp(𝐸−𝜇

𝑘B𝑇 ) + 1
(5.28)

with 𝑘B being the Boltzmann constant. Note that some of the scattering states 𝜆 may be evanescent
in some leads but they do not contribute to the currents. Eq. (5.26) is the last missing piece to enable
computing the densities and the currents exposed in Sec. 4.3.3, it reflects that the incident modes
𝜓𝛼,in

𝐸,𝑛 (appearing in Eq. (5.11)) have been filled according to Fermi statistics in each lead ℒ𝛼. The core
version of tKwant (already available at the beginning of this thesis) the calculation of the particle
related quantities: the local particle density 𝜌𝑖(𝑡) = −𝑖ℏ𝐺<

𝑖𝑖(𝑡, 𝑡), given in Eq. (4.158), is directly given
by Eq. (5.26)

𝜌𝑁
𝑖 (𝑡) = ℏ ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸) ∣Ψ𝜆

𝑖 (𝑡)∣2 (5.29)

while the hopping particle current 𝐼𝑁
𝑖𝑗 (𝑡) is given by Eq. (4.161)

𝐼𝑁
𝑖𝑗 (𝑡) = −2 ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸) Im[Ψ𝜆

𝑖 (𝑡)∗ℎ𝑖𝑗(𝑡)Ψ𝜆
𝑗 (𝑡)] . (5.30)

Both quantities are computed with tkwant by integrating over the scattering states which were ini-
tially occupied at 𝑡 < 𝑡0. In practice, the integration is preferably done in momentum instead of energy,
to avoid divergent behavior of the integrand in the vicinity of band openings. This integration over
the scattering states is one of the central points of tkwant’s implementation as a compromise be-
tween precision and computation time needs to be attained: if too many scattering states are taken, the
computation time becomes prohibiting; on the other hand, if too few scattering states are considered,
the computed results are not accurate. One of the main issues are that the accuracy of the computed
operators may decrease at longer simulated times 𝑡 > 𝑡0 : the already computed scattering states may
no longer form a dense sampling in the relevant integration region or the number of scattering states is
simply not enough anymore. When that happens, new stationary scattering states need to be computed
at 𝑡0 then evolved to the currently working time 𝑡, resulting in a stall in tkwant’s parallel algorithm
till these new states reach the time 𝑡. For more information, see Ref. [101].
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5.2. Practical tight-binding simulation with tkwant

5.2.3.1. Generalizing to energy transport

One of the sub-goals of this thesis is to extend tkwant to energy transport. In Sec. 4.3.3.4, explicit
expressions for each energy quantity and operator have been derived. The ‘generic’ local energy density
𝜌𝜖

𝑖 = ⟨ ̂ℰ𝜖
𝑖⟩ and local energy current 𝐼𝜖

𝑖𝑗(𝑡), written as a function of the lesser Green’s function 𝐺<
𝑖𝑗(𝑡, 𝑡)

in Eqs. (4.174) and (4.175) respectively, can be readily expressed in the wave-function formalism with
the help of Eq. (5.26)

𝜌𝜖
𝑖(𝑡) = ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸) ∑

𝑗
Re[Ψ𝜆

𝑖 (𝑡)∗𝜖𝑖𝑗(𝑡)Ψ𝜆
𝑗 (𝑡)] (5.31)

and

𝐼𝜖
𝑖𝑗 = ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸)∑

𝑘
Re[Ψ𝜆

𝑘(𝑡)∗𝜖𝑘𝑖𝜖𝑖𝑗Ψ𝜆
𝑗 (𝑡) − Ψ𝜆

𝑘(𝑡)∗𝜖𝑘𝑗𝜖𝑗𝑖Ψ𝜆
𝑖 (𝑡)] (5.32)

Both quantities can be computed with tkwant, in the same spirit as 𝜌N
𝑖 (𝑡) and 𝐼N

𝑖𝑗(𝑡) but with an
additional sum over the system sites. The electric power density 𝑆𝜖

𝑖 (𝑡) can be computed as well for
each energy operator: it is given by Eq. (4.188) for the ‘total energy’ (𝜖 = 𝜀)

𝑆𝜀
𝑖 (𝑡) = ∑

𝑗
−1

2 [𝜙𝑗(𝑡) − 𝜙𝑖(𝑡)] 𝑞𝐼𝑁
𝑖𝑗 (𝑡)

+ ∑
𝜆=𝛼,𝑛,𝐸

𝑓𝛼(𝐸)∑
𝑗

Re[Ψ𝜆
𝑖 (𝑡)∗𝜕𝑡𝜀𝑖𝑗(𝑡)Ψ𝜆

𝑗 (𝑡)]
(5.33)

by Eq. (4.197) for the kinetic energy (𝜖 = 𝜅)

𝑆𝜅
𝑖 (𝑡) = ∑

𝑗
−1

2 [𝑞𝜙𝑗(𝑡) + 𝑉𝑗 − 𝑞𝜙𝑖(𝑡) − 𝑉𝑖] 𝐼𝑁
𝑖𝑗 (𝑡)

+ ∑
𝜆=𝛼,𝑛,𝐸

𝑓𝛼(𝐸)∑
𝑗

Re[Ψ𝜆
𝑖 (𝑡)∗𝜕𝑡𝜅𝑖𝑗(𝑡)Ψ𝜆

𝑗 (𝑡)]
(5.34)

and Eq. (4.201) for the Hamiltonian (𝜖 = ℎ)

𝑆ℎ
𝑖 (𝑡) = ∑

𝜆=𝛼,𝑛,𝐸
𝑓𝛼(𝐸)∑

𝑗
Re[Ψ𝜆

𝑖 (𝑡)∗𝜕𝑡ℎ𝑖𝑗(𝑡)Ψ𝜆
𝑗 (𝑡)] (5.35)

Those local quantities can eventually be summed up over space to deduce for instance the lead energy
currents 𝐼𝜖

𝛼,𝑎(𝑡) and the lead heat currents 𝐼Q
𝛼,𝑎(𝑡) as described in Sec. 5.2.2 in Eqs. (5.24) and (5.25)

respectively. We notice here that these non-interacting many-body expectation values, for particle and
energy currents and densities, are linked to their one-body counterparts, described in Sec. 4.2.4, by
simply summing the aforementioned one-body contributions according to Fermi statistics in each lead.

We have implemented an additional Python package, tkwantoperator[3], as an extension to the
tkwant package [101] to compute these quantities and have shown that the extra CPU time needed
for computing these quantities is small in comparison to the time needed for calculating the scattering
states.

5.2.3.2. Static limit – Landauer-Büttiker

Note: this section is adapted from our published article [96]
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5. Transport simulations of open quantum systems

When 𝑡 ≤ 𝑡0 and no external time-dependent electromagnetic field is applied, the system Hamilto-
nian is time independent i.e. �̂�(𝑡 ≤ 𝑡0) = �̂�st. Within the static Landauer-Büttiker formalism, the
particle, energy, and heat currents in the lead ℒ𝛼 read (see Sec. 3.3.1 and Refs. [26, 16])

𝐼N,st
𝛼 = ∑

𝛽≠𝛼
∫ d𝐸

ℎ [𝑓𝜇𝛼,𝑇𝛼
(𝐸) − 𝑓𝜇𝛽,𝑇𝛽

(𝐸)] 𝑇𝛼𝛽(𝐸) (5.36a)

𝐼ℎ,st
𝛼 = ∑

𝛽≠𝛼
∫ d𝐸

ℎ [𝑓𝜇𝛼,𝑇𝛼
(𝐸) − 𝑓𝜇𝛽,𝑇𝛽

(𝐸)]𝐸 𝑇𝛼𝛽(𝐸) (5.36b)

𝐼Q,st
𝛼 = 𝐼ℎ,𝑠𝑡

𝛼 − 𝜇𝛼𝐼𝑁,𝑠𝑡
𝛼 (5.36c)

where 𝑓𝜇,𝑇 (𝐸) = [1+exp(𝐸−𝜇
𝑘𝐵𝑇 )]−1 is the Fermi function (𝑘𝐵 being the Boltzmann constant), the sum

over 𝛽 is a sum over leads ℒ𝛽 and 𝑇𝛼𝛽(𝐸)

𝑇𝛼𝛽(𝐸) = ∑
𝑛𝛼

∑
𝑛𝛽

∣𝑑𝛼𝛽
𝑛𝛼𝑛𝛽

(𝐸)∣2 (5.37)

is the probability for an electron at energy 𝐸 to be transmitted from the lead ℒ𝛽 into the lead ℒ𝛼,
𝑑𝛼𝛽

𝑚𝛼𝑚𝛽
(𝐸) being the scattering amplitude from the mode 𝑛𝛽 at energy 𝐸 in ℒ𝛽 to the mode 𝑛𝛼 at

energy 𝐸 in ℒ𝛼, as defined in Eq. (5.8).

In Appendix B.1.2 and B.2.3, we show that the initial 𝑡 < 𝑡0 lead particle current 𝐼N
𝛼 , energy current

𝐼𝜀
𝛼, as defined in Eqs.(4.203) and (4.208), are equal to the standard static Landauer-Büttiker current

formulas

𝐼N
𝛼(𝑡 ≤ 𝑡0) = 𝐼𝑁,𝑠𝑡

𝛼 (5.38a)
𝐼𝜀
𝛼(𝑡 ≤ 𝑡0) = 𝐼𝐸,𝑠𝑡

𝛼 (5.38b)

even in the ‘artificial’ time-dependent gauge (see the comment below Eq. (4.85)). The equality for the
heat current 𝐼Q

𝛼 becomes straightforward

𝐼Q
𝛼(𝑡 ≤ 𝑡0) = 𝐼Q,st

𝛼 (5.39)

On the other hand, if the external time-dependent electromagnetic field converges to a static limit
at long times 𝑡 → ∞, i.e ℎ̂(𝑡 → ∞) = ℎ̂ ̄𝑠𝑡, the static currents are also given by the Landauer-Büttiker
formulas (5.36). Although this time with 𝜇𝛼 → 𝜇𝛼 + 𝑞𝜙 ̄st

𝛼 and 𝑇𝛼𝛽 → ̄𝑇𝛼𝛽, where 𝜙 ̄st
𝛼 is the limit of

the uniform scalar potential 𝜙 ̄st
𝛼 = 𝜙𝛼(𝑡 → ∞) applied in the lead ℒ𝛼 while ̄𝑇𝛼𝛽 denote the Landauer-

Büttiker transmissions with ℎ̂ ̄𝑠𝑡, given by Eq. (5.37). In Appendix B.1.2 and B.2.3 we show

𝐼N
𝛼(𝑡 → ∞) = 𝐼𝑁, ̄𝑠𝑡

𝛼 (5.40a)
𝐼𝜀
𝛼(𝑡 → ∞) = 𝐼𝐸, ̄𝑠𝑡

𝛼 − 𝑞𝜙 ̄st
𝛼𝐼𝑁, ̄𝑠𝑡

𝛼 + 𝑆𝐸
𝛼 (𝑡 → ∞) (5.40b)

The relation for the heat current, as defined in Eq. (4.211), ensues

𝐼Q
𝛼(𝑡 → ∞) = 𝐼𝐸, ̄𝑠𝑡

𝛼 − (𝜇𝛼 + 𝑒𝑉 ̄st
𝛼 )𝐼𝑁, ̄𝑠𝑡

𝛼 = 𝐼𝐻, ̄𝑠𝑡
𝛼 . (5.41)

Thus, in the static limit 𝑡 → ∞, the energy currents 𝐼𝜀
𝛼(𝑡 → ∞) in the leads ℒ𝛼 differ from the usual

static energy currents 𝐼𝐸, ̄𝑠𝑡
𝛼 . This is due to the fact that 𝐼𝐸, ̄𝑠𝑡

𝛼 is calculated by defining the energy
operator ̂ℰ𝜖 as being the Hamiltonian �̂� ̄𝑠𝑡 while 𝐼𝜀

𝛼(𝑡 → ∞) is calculated using ̂ℰ𝜀(𝑡 → ∞) = �̂� ̄𝑠𝑡 −
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5.3. tkwantoperator: tkwant extension to energy transport

𝑞Φ̂(𝑡 → ∞) (see Eq. (4.180)). The discrepancy 𝐼𝜀
𝛼(𝑡 → ∞) ≠ 𝐼𝐸, ̄𝑠𝑡

𝛼 is the price to pay for a gauge-
invariant energy current 𝐼𝜀

𝛼(𝑡) that also satisfies 𝐼𝜀
𝛼(𝑡 ≤ 𝑡0) = 𝐼𝐸,𝑠𝑡

𝛼 . It stems from the definition of ̂𝜀 in
Eq. (4.64) as the sum of the kinetic energy and of the static potential that is present on the system from
the remote past. In the peculiar case where the external electromagnetic field converges to a static limit
(and then varies again), it might be relevant to redefine the energy operator with respect to this new
static configuration and forget the past. More importantly, the heat currents 𝐼Q

𝛼(𝑡) which are written
as a difference of energy currents are not affected by this choice of the reference static potential. We
find that 𝐼Q

𝛼(𝑡) converges to the usual static heat current in the static limit (see Eq. (5.41)).

5.3. tkwantoperator: tkwant extension to energy transport

Note: parts of this section have been adapted from our published paper [96].

To calculate our newly defined energy related quantities, we have implemented a Python pack-
age, tkwantoperator[3], as an extension to tkwant[101] to energy transport. It is open source
and freely available at gitlab.kwant-project.org/kwant/tkwantoperator along with a
complete documentation, available at kwant-project.org/extensions/tkwantoperator,
that provides install instructions, a tutorial and a technical reference. The code has been published at
the same time as our research article [96], with Philipp Reck and Geneviève Fleury.

5.3.1. Overview

A first implementation4 has been done by Philipp Reck (postdoctoral researcher in the group) at the
early stage of this thesis. At that time, the local conservation equation approach (c.f. 4.3.3.4) described
within this thesis had not been properly and entirely formalized, the initial work started off the usual
approach in the literature by defining only lead currents (see Sec. 4.3.4) through the time derivative of
the lead’s Hamiltonian �̂� or ̂�̃� (see comments above Eq. (4.207)) ; while still considering the Hamilto-
nian as the energy operator. I wrote another implementation from scratch to undertake a more fitting
approach where the local, site-wise, energy quantities are implemented first: related code has been
written for the energy densities 𝜌𝜖

𝑖(𝑡), the hopping energy currents 𝐼𝜖
𝑖𝑗(𝑡) and the energy sources 𝑆𝜖

𝑖 (𝑡).
It can compute these quantities for the Hamiltonian (𝜖 = ℎ), the total energy operator (𝜖 = 𝜀, called
kinetic+ within the code) and a ‘custom’ energy operator where its onsite terms 𝜖𝑖𝑖 are provided
by the user to offer more flexibility. Since the two extra energy operators, namely the kinetic energy
̂𝜅 and the total energy ̂𝜀, share their matrix coefficients with the hamiltonian ℎ̂ on hoppings (see Eq.

(4.173)), the code has been optimized to share code between energy operators, thus the equations (5.31)
and (5.32) in the beginning of Sec. 5.2.3.1 using 𝜖 as a ‘generic’ energy operator. Lead quantities have
then been defined, and implemented, as fluxes through a given section within the lead, as described
in Sec. 5.2.2. tkwant’s code was also receiving updates by Thomas Kloss (postdoctoral researcher in
X. Waintal’s group at CEA Grenoble) with whom I was regularly in contact so I could coordinate my
development with his changes5 but also contribute back speed optimizations to tkwant6

4This ‘legacy’ code is available at [4] in the energy-args-legacy branch. This branch also contains a generalization
for computing generic operators that could be re-used in future works to implement additional operators.

5Development history is available in [4]. A first implementation has been made in the energy-args branch, then got
updated to accommodate tkwant’s changes in the energy-params branch

6Namely, faster initialization time and reduced memory footprint, available at gitlab.kwant-project.org/
AdelKS/tkwant in the faster-init and memory-saving-v2 branches, respectively.
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5. Transport simulations of open quantum systems

In tkwantoperator, five Python classes have been implemented to compute energy related quan-
tities : EnergyDensity, EnergySource and EnergyCurrentDivergence can be called for
calculating respectively 𝜌𝜖

𝑖 (given by Eq. (5.31)), 𝑆𝜖
𝑖 , and ∑𝑗 𝐼𝜖

𝑗𝑖 over a given list of sites {𝑖}; Energy-
Current for calculating the current 𝐼𝜖

𝑗𝑖 (given by Eq. (5.32)) flowing through a given list of hoppings
{(𝑗, 𝑖)}; LeadHeatCurrent for calculating the heat current 𝐼Q

𝛼,𝑎 (given by Eq. (5.25)) in a given lead
ℒ𝛼. The energy quantity 𝜖 can either be the total energy ̂𝜀, the Hamiltonian ℎ̂ (more information in
Sec. 4.3.3) or a ‘custom’ operator where the user provides the onsite matrix elements 𝜖𝑖𝑖. A code snip-
pet showcasing the use of tkwantoperator, along with Kwant and tkwant, is displayed in Fig.
5.7: that relatively small code snippet is sufficient to quickly recover several results from the literature
dealing with the time-dependent Resonant Level Model (see Sec. 5.3.2).

The calculation of the many-body expectations values of the various operators involves an inte-
gration over all the scattering states Ψ𝜆 indexed by the 𝜆 parameter (see Eq. (5.27)). The resolution
of the Schrödinger-like differential equation (5.13), that gives the evolution in time of the scattering
states Ψ𝜆(𝑡), is the most time-consuming task of tkwant’s algorithm (see below). In practice, it is
crucial to use as few scattering states as possible to evaluate expectations values. For this purpose,
a Gauss-Kronrod adaptive scheme [204] is used when integrating the contribution of each scatter-
ing state. It determines the needed number 𝑁scat of scattering states for a given precision on the
expectation value of a given quantity (controlled by the argument error_op when instancing the
tkwant.manybody.State class, see Fig. 5.7). Moreover, the time evolution of the scattering states
can be done in parallel on multi-core computers where each core deals with a subset of the scattering
states. Both functionalities, implemented within tkwant, are leveraged to compute the expectation
values of our energy operators.
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5.3. tkwantoperator: tkwant extension to energy transport

#!/usr/bin/env python3

import kwant
import tkwant
import tkwantoperator

import numpy as np
import matplotlib.pyplot as plt

import functools

from mpi4py import MPI
rank = MPI.COMM_WORLD.Get_rank()

γ = 1.0 # nearest-neighbor hopping term in the leads
γc = 0.2 # nearest-neighbor hopping term between the

# central site and the leads
a = 1.0 # lattice constant
Γ = 4 * γc*γc / γ # Energy scaling unit
V = 0.5 * Γ # initial dot energy level
ΔV = 2.5 * Γ # change in dot energy level at t>0
tmax = 6. / Γ # Maximum simulation time
dt = 0.01 / Γ # Simulation time step

def qdot_potential(site, time, V, ΔV):
if time > 0:

return V + ΔV
else:

return V

lat = kwant.lattice.chain(a, norbs = 1)
builder = kwant.Builder()

# lat(0) is the dot, the rest belongs already formally to the leads
builder[(lat(-1))] = 0
builder[(lat(0))] = qdot_potential
builder[(lat(1))] = 0
builder[lat.neighbors()] = - γc

# Define the right lead
lead = kwant.Builder(kwant.TranslationalSymmetry((-a,)))
lead[lat(0)] = 0
lead[lat.neighbors()] = - γ

# Attach the lead to the central site from the right
# add one site to the central system
added_sites_left = builder.attach_lead(lead, add_cells=1)
# Append lat(-1) to the list
# to calculate the heat current between lat(-1) and lat(0)
added_sites_left.append(lat(-1))

# Attach a reversed copy of the same lead to the left
# add one site to the central system
builder.attach_lead(lead.reversed(), add_cells=1)

# Create finalized system
syst = builder.finalized()

# Define the occupation for each lead
μL = 0.5 * Γ # Chemical potential in the left lead
μR = -0.5 * Γ # Chemical potential in the right lead
TL = 1.0 * Γ # Temperature in the left lead
TR = 0.0 * Γ # Temperature in the right lead

occupation = [None] * len(syst.leads)
occupation[0] = tkwant.manybody.lead_occupation(chemical_potential=μL,

temperature=TL)
occupation[1] = tkwant.manybody.lead_occupation(chemical_potential=μR,

temperature=TR)

# Create list of all time steps
times = np.arange(0, tmax, dt)

# Instance the lead heat current operator
heat_current_left_op = tkwantoperator.LeadHeatCurrent(syst,

chemical_potential=μL,
added_lead_sites=added_sites_left)

# Instance empty list that wil be filled with values
# of the energy current at each time
heat_current_left = []

# Initialize the solver (to solve t-dep SEQ)
# with workaround for our time-discontinuous potential
onebody_wavefunction_type = functools.partial(

tkwant.onebody.WaveFunction.from_kwant,
perturbation_type=tkwant.onebody.kernels.PerturbationExtractor)

scattering_state_type = functools.partial(tkwant.onebody.ScatteringStates,
wavefunction_type=onebody_wavefunction_type)

solver = tkwant.manybody.State(syst, tmax, occupation,
params={'V': V, 'ΔV': ΔV},
error_op=heat_current_left_op,
scattering_state_type=scattering_state_type)

# Have the system evolve forward in time
# while calculating the operator values at each time step
for time in times:

# evolve scattering states in time
solver.evolve(time)
solver.refine_intervals()

# Evaluate operators at the specific time then save the values
heat_current_left.append(solver.evaluate(heat_current_left_op))

if rank == 0:
# Rescale results
times = np.array(times) * Γ
heat_current_left = np.array(heat_current_left) / Γ**2

# Plot the results
plt.plot(times, heat_current_left, 'r-', label = "Left")

plt.xlabel('Time [ħ / Γ]')
plt.ylabel('Heat current [Γ² / h]')
plt.legend()
plt.show()

Figure 5.7. – Code example using tkwantoperator[3], along with Kwant and tkwant, to compute the
heat current in the left lead of the Resonant Level Model, as described in Fig. 5.9, where the dot level performs a
Heaviside jump at 𝑡 = 0, given by Eq. (5.50). This code snippet outputs the green curve of the graph (b) in Fig.
5.10. The simulation can be sped up by running the code snippet on 𝑁 cores with MPI. This code snippet takes
22s to complete when run on 8 cores with an AMD Ryzen 5950X™ processor at 4.6GHz.

Hereafter, we analyze the extra CPU time cost due to the evaluation of the energy operators. Given
that the computation times for evolving the scattering states (between times 𝑡𝑛−1 and 𝑡𝑛) and for cal-
culating a many-body expectation value (at a time 𝑡𝑛) grow linearly with the total number 𝑁scat of
scattering states, we compare these two computation times for only one wave function Ψ. The wave
function is initialized (at 𝑡0 = 0) with uniformly distributed random complex values on each system
site, in the [−1, 1] × [−i, i] complex square. The computation time for the stationary problem, done
once for a given system, is not considered here. Investigations of the tkwant CPU times are done
for a closed (i.e. without leads) square system with 𝑁 = 𝐿2 sites lying on a square lattice. The onsite
potential ℎ𝑖𝑖 is disordered and shifted by a time-dependent perturbation for 𝑡 ≥ 𝑡1 as

ℎ𝑖𝑖(𝑡 > 0) = 𝑤𝑖 + Θ(𝑡 − 𝑡1)[ sin(𝛼𝑡) e−𝛽𝑡2

+ 𝜂(1 + tanh(𝛿𝑡))] (5.42)
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where 𝑡1 = 0.8, 𝛼 = 8, 𝛽 = 15, 𝜂 = 0.3, 𝛿 = 10, and 𝑤𝑖 are random values that are normally
distributed around zero with a standard deviation of 0.025. Hopping terms between sites 𝑖 ≠ 𝑗 are
fixed to ℎ𝑖𝑗 = 𝛾(= 1) up to the 𝑧-th nearest neighbors and are zero beyond. Each site 𝑖 thus has
𝑀𝑧

𝑖 connected neighbors. We note 𝑀𝑧 = ∑𝑖 𝑀𝑧
𝑖 . In Fig.5.8, we compare the computation times

used for making the wave function Ψ(𝑡) evolve by a time step and for calculating its contribution
to the various particle and energy operators. Its contribution reads for instance ∑𝑗 Re[Ψ∗

𝑖𝜖𝑖𝑗Ψ𝑗] for
the energy density operator evaluated on site 𝑖 (see Eq. (5.31)). Each point in Fig. 5.8 is obtained by
averaging the computation times of 200 measurements performed at times 𝑡𝑛 (or over the intervals
[𝑡𝑛, 𝑡𝑛+1] for the evolution of Ψ(𝑡)) evenly spaced between 𝑡0 = 0 and 𝑡𝑚𝑎𝑥 = 2. CPU times are
expressed in seconds and result from simulations run on a single core (Intel Xeon Silver 4114™ CPU at
2.2GHz).

Figure 5.8. – Extracted from our published article [96]: Comparison of the computation times needed for the
evolution of a single wave function by a time step and for the evaluation of its contribution to the particle and
energy operators. Data (bullets) are shown for the square system made of 𝑁 = 𝐿2 sites defined in the text. Its
Hamiltonian includes hopping terms up to the 𝑧-th nearest neighbors. Dashed lines are linear fits. (Left) CPU
times for evaluating operators and evolving the wave function, as a function of the size of their input site/hopping
tuples (varied by increasing 𝐿, for fixed 𝑧 = 1). The input size equals 𝑁 = 𝐿2 for the wave function and the
density/source operators, while it equals the number of hoppings 𝑀[𝑧=1]/2 = 𝐿(𝐿−1) for the current operators.
(Right) CPU times divided by the input size 𝑁 or 𝑀𝑧/2, as a function of the average number of neighbors per
site 𝑀𝑧/𝑁 , varied by taking 𝑧 = 1, 2, 3, and 4 at fixed 𝑁 = 104 sites.

We check on the left panel of Fig.5.8 (i) that the CPU time used for evolving a wave function by a
time step grows linearly with the number of sites 𝑁 (as already reported in Refs.[66, 203]), and (ii) that
the CPU times corresponding to the computation of the contributions to the various operators grow
linearly with the size of the lists of sites or hoppings on which they are calculated. The relative positions
of the straight lines in this panel (obtained for 𝑧 = 1) show us that it takes (much) longer to calculate
the energy operators than the particle ones (which is obvious in view of the mathematical expression
of the operators) but that the global CPU time used by the simulation is nevertheless dominated by
the calculation of the wave-function evolution. In the right panel of Fig. 5.8, we investigate how this
picture is modified when second (𝑧 = 2), third (𝑧 = 3), and fourth (𝑧 = 4) nearest-neighbors are
included. The CPU time used for the wave-function evolution is unaffected (except for 𝑧 = 4 due to
unknown – probably memory – reasons), as well as the CPU time corresponding to the particle density
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5.3. tkwantoperator: tkwant extension to energy transport

and the CPU time per hopping corresponding to the particle current. On the contrary, the CPU times
corresponding to the energy operators are much increased since their expressions involve a sum over
neighboring sites.

It is to be noted at that stage that often, in practice, the operators only need to be calculated on a
subsystem while the wave function must be calculated over the entire system. For instance, the lead
(particle, energy, heat) currents are calculated at the interface between the leads and the scattering
region which involves a negligible number of hoppings in comparison to the total number 𝑀𝑧/2 of
hoppings in the system. For this reason, we conclude that evaluating operators has a low-to-negligible
impact on the global tkwant computation time for most practical situations. For completeness, let us
add that the CPU times needed for evaluating the operators and evolving the scattering states depend
at a quantitative level on the simulated systems and on the hardware used. Additional (not shown)
data indicate that this should not affect qualitatively the conclusion given above.

Extensive validation has been performed with various arbitrarily chosen systems (square and hon-
eycomb lattice, with and without magnetic field) where gauge invariance, local energy conservation
and Landauer-Büttiker static limits have been verified. The validation code and results is available at
the git repository [4], in the validation-params branch, inside the validation-scripts
folder.

In the following, we perform tkwant thermoelectric transport simulations (using our tkwant-
operator module) in the paradigmatic time-dependent Resonant Level Model (RLM), in order to
validate our approach and our numerical implementation. We also report on an exploratory investi-
gation of time-dependent heat transport in a Quantum Point Contact (QPC) driven by voltage pulses.
Without discussing deeply the physics involved, we illustrate the strong potential of tkwant, with
our tkwantoperator module, in studying dynamical thermoelectricity and caloritronics.

5.3.2. Resonant Level Model as a benchmark

The (noninteracting) time-dependent RLM has been extensively studied in the literature to simulate
dynamical charge transport (see e.g. Refs. [92, 149, 158]) and more recently dynamical energy transport
[38, 116, 55, 121, 120, 219, 44, 215, 113, 37, 51] in a single level quantum dot or molecular junction
connected to two electronic reservoirs. Hereafter we use this model, as described in the following
section, as a test bed to benchmark our numerical approach described above. We consider two cases:
(i) when (only) the dot onsite Hamiltonian coefficient ℎ0(𝑡) is varied in time as ℎ0(𝑡) = 𝑉0 +Δ𝑉 Θ(𝑡),
Θ being the Heaviside function, and (ii) when the time-dependent step-like perturbation is performed
in one of the two leads. We calculate the time-dependent energy and heat currents with our numerical
approach and show that we reproduce in the expected limits the results obtained previously in the
literature.
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5.3.2.1. Model

site
indexLeft

lead
Right
lead

Scattering
area

Figure 5.9. – Schematic representation of the Resonant Level Model: a one-dimensional (1D) chain made of a
central site 0 connected through a nearest-neighbor hopping term 𝛾𝑐 to two semi-infinite left (𝐿, on sites 𝑖 ≤ −1)
and right (𝑅, on sites 𝑖 ≥ 1) leads with uniform on-site Hamiltonian coefficients ℎL(𝑡) and ℎR(𝑡), and a nearest-
neighbor hopping term 𝛾. Each lead 𝛼 is attached from the remote past to an electronic reservoir at equilibrium
with static electrochemical potential 𝜇𝛼 and temperature 𝑇𝛼 defined for 𝑡 ≤ 0. They remain at equilibrium for
𝑡 > 0. The chemical potential and the temperature are supposed to remain constant.

We consider a one-dimensional (1D) infinite chain connected through nearest neighbor hoppings so
that the Hamiltonian �̂� writes

�̂� = ∑
𝑖

ℎ𝑖𝑖(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑖 + ℎ𝑖,𝑖+1(𝑡) ̂𝑐†

𝑖 ̂𝑐𝑖+1 + ℎ𝑖+1,𝑖(𝑡) ̂𝑐†
𝑖+1 ̂𝑐𝑖 (5.43)

The chain is separated into a central site 0 with an onsite Hamiltonian coefficient ℎ00(𝑡) = ℎ0(𝑡), that
acts as a ‘dot’, connected to it’s neighbor sites through constant hoppings ℎ0,−1 = ℎ0,1 = 𝛾𝑐. The
sites on each side of the dot make up for the left and right lead. Each lead 𝛼 = L, R has uniform
onsite Hamiltonian coefficients terms ∀𝑖 ∈ ℒ𝛼 ℎ𝑖𝑖(𝑡) = ℎ𝛼(𝑡) and uniform stationary hoppings
ℎ𝑖,𝑖+1 = ℎ𝑖+1,𝑖 = 𝛾. See Fig. 5.9. This enables us to separate spatially the Hamiltonian �̂� as a sum
of three subsystem Hamiltonians (each of them including half of the coupling Hamiltonian(s) with the
neighboring subsystem(s))7

�̂� = �̂�L + �̂�0 + �̂�R (5.44)

where �̂�L is the Hamiltonian of the left lead

�̂�L(𝑡) = −1
2[𝛾𝑐 ̂𝑐†

−1 ̂𝑐0 + 𝛾∗
𝑐 ̂𝑐†

0 ̂𝑐−1] + ∑
𝑖≤−1

ℎL(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑖 − 𝛾 ̂𝑐†

𝑖−1 ̂𝑐𝑖 − 𝛾 ̂𝑐†
𝑖 ̂𝑐𝑖−1 (5.45)

�̂�R is the Hamiltonian of the right Lead

�̂�R(𝑡) = −1
2[𝛾𝑐 ̂𝑐†

1 ̂𝑐0 + 𝛾∗
𝑐 ̂𝑐†

0 ̂𝑐1] + ∑
𝑖≥1

ℎR(𝑡) ̂𝑐†
𝑖 ̂𝑐𝑖 − 𝛾 ̂𝑐†

𝑖+1 ̂𝑐𝑖 − 𝛾 ̂𝑐†
𝑖 ̂𝑐𝑖+1 (5.46)

And �̂�0 is the Hamiltonian of the central dot

�̂�0 = ℎ0(𝑡) ̂𝑐†
0 ̂𝑐0 − 1

2𝛾𝑐[ ̂𝑐†
1 ̂𝑐0 + ̂𝑐†

−1 ̂𝑐0] − 1
2𝛾∗

𝑐 [ ̂𝑐†
0 ̂𝑐1 + ̂𝑐†

0 ̂𝑐−1] (5.47)

The time dependence is allowed to begin only for 𝑡 ≥ 0. Note that within the tkwant approach, the
time-dependent lead on-site terms terms ℎ𝛼(𝑡) = ℎ0

𝛼 + 𝜙𝛼(𝑡), with 𝛼 = L, R, are accounted for with a
7This is not the approach that is usually taken in the literature. See paragraph ‘Local energy operator’ in Sec. 4.3.3.4.
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gauge transformation where the dot-lead hopping term 𝛾𝑐 acquires a dynamical phase (see Sec. 5.2.1)
with the following gauge function Λ𝑖(𝑡)

⎧{{
⎨{{⎩

Λ0(𝑡) = 0
Λ𝑖(𝑡) = − ∫𝑡

𝑡0
d𝑢 𝜙L(𝑢) for 𝑖 < 0

Λ𝑖(𝑡) = − ∫𝑡
𝑡0

d𝑢 𝜙R(𝑢) for 𝑖 > 0
(5.48)

The onebody Hamiltonian matrix elements ℎ𝑖𝑗, used by tkwant to compute scattering states, is there-
fore the following

ℎ𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

ℎ0(𝑡) if 𝑖 = 𝑗 = 0
−𝛾𝑐 exp(−i 𝑞

ℏ ∫𝑡
𝑡0

d𝑢 𝜙𝛼(𝑢)) if 𝑖, 𝑗 = 0, 1(𝛼 = R) or 0,−1(𝛼 = L)
−𝛾𝑐 exp(i 𝑞

ℏ ∫𝑡
𝑡0

d𝑢 𝜙𝛼(𝑢)) if 𝑖, 𝑗 = 1, 0(𝛼 = R) or − 1, 0(𝛼 = L)
−𝛾 if 𝑖 = 𝑗 ± 1
0 otherwise

(5.49)

Finally, each lead 𝛼 is attached from the remote past to an electronic reservoir at equilibrium with static
electrochemical potential 𝜇𝛼 and temperature 𝑇𝛼 defined for 𝑡 ≤ 0. They remain at equilibrium for
𝑡 > 0. Only the electric part of the electrochemical potential may become time-dependent (depending
on the gauge). The chemical potential and the temperature are supposed to remain constant.

5.3.2.2. Time-dependent dot energy level

Let us first consider the case where ℎ𝛼(𝑡) = 0 for 𝛼 = L, R, while a step-like variation is applied to the
dot energy level (see Inset of Fig.5.10(a))

ℎ0(𝑡) = 𝑉0 + Δ𝑉 Θ(𝑡) (5.50)

This configuration has the advantage of being analytically tractable with the NEGF technique in the so-
called wide-band limit approximation. Moreover, since the time-dependent perturbations are restricted
to the dot at 𝑖 = 0: the lead’s total energy operator ̂ℰ𝜀

𝛼, given Eq. (4.207), coincides with the lead’s
Hamiltonian �̂�𝛼 given in Eqs. (5.45)-(5.46)

Hereafter, we calculate with tkwant the time-dependent heat current in e.g. the left lead given by
Eq. (4.211) (see Eqs. (4.206) and (4.204))

𝐼Q
𝐿(𝑡) ≡ 𝐼Q,𝜀

𝐿 (𝑡) = 𝐼Q,ℎ
𝐿 (𝑡) = −𝜕𝑡 ⟨�̂�𝐿⟩ − 𝜇𝐿𝐼N

𝐿(𝑡) (5.51)

and compare it to the one obtained within the NEGF formalism under the wide-band limit approxi-
mation (see Appendix C.1). A similar comparison is done for the particle current 𝐼𝑁

𝐿 (𝑡) and for an
alternative heat current ̃𝐼Q

L (𝑡) with the Hamiltonian ̂�̃�L that does not include the contribution of the
lead-dot tunneling Hamiltonian, as defined Eq. (4.162)

̃𝐼Q
𝐿(𝑡) = −𝜕𝑡 ⟨ ̂�̃�L⟩ − 𝜇L𝐼𝑁

L (𝑡) (5.52)

Such a definition of the heat current was considered in e.g. Refs.[38, 219]. Note that in the wave-
function formalism, we have for the present model

𝜕𝑡 ⟨ ̂�̃�𝐿⟩ = 2 ∑
𝜆=𝛼,𝐸,𝑛

𝑓𝛼(𝐸) 𝛾𝛾𝑐 Im[Ψ𝜆
−2(𝑡)∗ Ψ𝜆

0 (𝑡)] (5.53)
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This allows us to compute ̃𝐼Q
𝐿(𝑡) with tkwant. 𝐼𝑁

𝐿 (𝑡) = 𝐼𝑁
−1,0(𝑡) and 𝐼Q

𝐿(𝑡) = 𝐼𝜀
−1,0(𝑡) − 𝑆𝜀

−1(𝑡) −
𝜇𝐿𝐼𝑁

−1,0(𝑡) are calculated using Eqs. (5.30), (5.32) and (5.33).

Wideband approximation To make the comparison between the tkwant and the NEGF results
in the wide-band limit, we follow the scaling approach used in Ref.[37]. We vary simultaneously the
hopping terms in the chain by replacing the 𝛾 and 𝛾𝑐 parameters with

̄𝛾 = 𝜆𝛾 (5.54a)
̄𝛾𝑐 =

√
𝜆𝛾𝑐 (5.54b)

where 𝜆 is a scaling factor. When 𝜆 is increased, the width [−2 ̄𝛾, 2 ̄𝛾] of the (single) conduction band
in the leads widens while the ratio Γ

Γ = 2 ̄𝛾2
𝑐
̄𝛾 (5.55)

remains fixed. In the limit 𝜆𝛾/Γ → ∞ (keeping 𝛾 finite), the retarded self-energy Σ𝑅(𝐸) of the
(identical) time-independent left and right leads,

For |𝐸|
2| ̄𝛾| ≤ 1 Σ𝑅(𝐸) = ̄𝛾2

𝑐
̄𝛾
⎡⎢
⎣

𝐸
2 ̄𝛾 − 𝑖√1 − ( 𝐸

2 ̄𝛾)
2
⎤⎥
⎦

⟶
𝜆→∞

−iΓ2 (5.56)

converges to −𝑖Γ
4 i.e. the real part of Σ𝑅(𝐸) becomes zero and its imaginary part becomes energy

independent. This corresponds to the wide-band limit hypothesis.

Figure 5.10. – Adapted from our published article [96]: Left particle current 𝐼𝑁
𝐿 (a) and left heat currents 𝐼Q

𝐿 (b)
and ̃𝐼Q

𝐿 (c) as a function of time 𝑡, for the 1D RLM defined by Eq. (5.44), when the dot energy level is modified
as ℎ0(𝑡) = 𝑉0 + Δ𝑉 Θ(𝑡) (inset of panel (a)). Units of the 𝑥 and 𝑦 axes are indicated in brackets. In all panels,
data are computed numerically with tkwant+tkwantoperator for different values of 𝜆𝛾/Γ (1 (red lines),
6.25 (green lines), and 100 (black lines). The horizontal dashed lines plotted for 𝜆𝛾/Γ = 1 (in red) and 100 (in
black) correspond to the static limits at large times Γ𝑡/ℏ ≫ 1 given by the Landauer-Büttiker formulas (see Sec.
5.2.3.2). When 𝜆𝛾/Γ ≫ 1, the tkwant results converge to the NEGF results (circles) derived in the wide-band
limit (Appendix C.1). Inset of panel (c): comparison of 𝐼𝑄

𝐿 (𝑡) (red dashed line, given by Eq. (5.51)) and ̃𝐼𝑄
𝐿 (𝑡)

(black line, given by Eq. (5.52)) in the wide-band limit. In all panels, 𝑉0 = 0.5Γ, Δ𝑉 = 2.5Γ, ℎ𝐿(𝑡) = ℎ𝑅(𝑡) = 0,
𝑇𝐿 = Γ/𝑘𝐵, 𝑇𝑅 = 0, 𝜇𝐿 = 0.5Γ, and 𝜇𝑅 = −0.5Γ. The NEGF curves are independent of Γ. The tkwant curves
are functions of 𝜆𝛾/Γ and not of the three parameters 𝜆, 𝛾, and Γ taken separately.

In Fig.5.10, we plot 𝐼N
𝐿(𝑡), 𝐼Q

𝐿(𝑡), and ̃𝐼Q
𝐿(𝑡) calculated with tkwant for various values of the ra-

tio 𝜆𝛾/Γ = 𝜆(𝛾/𝛾𝑐)2/4, keeping the other parameters fixed.8 We check that in the wide-band limit
8The set of fixed parameters corresponds to the one used in Ref.[38].
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𝜆𝛾/Γ ≫ 1, the tkwant results (black lines in Fig.5.10) converge to the NEGF results9 given in Ap-
pendix C.1 (circles in Fig.5.10). Moreover, in the inset of Fig.5.10(c), we compare 𝐼Q

L (𝑡) and ̃𝐼Q
L (𝑡) and

show that both quantities coincide in the long time limit Γ𝑡/ℏ → ∞. This is illustrated in the wide-
band limit 𝜆𝛾/Γ → ∞ but holds for any value of 𝜆𝛾/Γ (though the smaller 𝜆𝛾/Γ, the slower the
convergence). Such an equality between 𝐼Q

L (𝑡) and ̃𝐼Q
L (𝑡) at long times is expected as the energy may

be stored only temporarily in the lead-dot coupling region. Finally, we also check that in the long time
limit Γ𝑡/ℏ → ∞, the tkwant particle and heat currents converge to the static particle and heat cur-
rents 𝐼N/Q, ̄st

𝐿 given by the Landauer-Büttiker formulas (horizontal dashed lines in Fig.5.10), as expected
from Eqs.(5.40a) and (5.41). Further development in the linear response regime enables us to recover
the alleged efficiency boost reported by Zhou et al. [219], see Sec. 6.1.

5.3.2.3. Time-dependent voltage bias

We continue studying the RLM but now consider that a voltage bias is suddenly applied in the left
lead, i.e. ℎL(𝑡) = 𝑉𝐿Θ(𝑡), while ℎ0(𝑡) = 𝑉0 and ℎR(𝑡) = 0 (see Inset of Fig. 5.11). This model under
the same configuration has been studied in Ref. [37] with an exact (partition-free) numerical approach
[49] which is formally equivalent to the tkwant approach. The authors calculated the time-dependent
particle currents 𝐼N

𝛼(𝑡) in the leads 𝛼 = 𝐿 and 𝑅, as well as the Hamiltonian based time-dependent heat
currents 𝐼Q,ℎ

𝛼 , without performing a gauge change to move the lead time-dependence to the lead-dot
coupling Hamiltonian as we described in Eq. (5.49). Using Eq. (4.182), we connect the Hamiltonian
based heat current 𝐼Q,ℎ

𝛼 (𝑡), given by Eq. (4.210) and the gauge invariant ‘total energy’ based heat
currents 𝐼Q

𝛼(𝑡) ≡ 𝐼Q,𝜀
𝛼 (𝑡), given by Eq. (4.211)

𝐼Q
L (𝑡) ≡ 𝐼Q,𝜀

L (𝑡) = 𝐼Q,ℎ
L (𝑡) − 𝑉𝐿 [𝐼𝑁

𝐿 (𝑡) + 𝑁𝐿(𝑡)𝛿(𝑡)] (5.57a)
𝐼Q

R (𝑡) ≡ 𝐼Q,𝜀
R (𝑡) = 𝐼Q,ℎ

R (𝑡) (5.57b)

where 𝑁𝐿 = ∑𝑖∈ℒ𝛼
𝜌𝑖 is the particle number in the left lead, and 𝜌𝑖 is the particle density given in Eq.

(5.29). Using 𝐼N
𝛼(𝑡) and 𝐼Q,ℎ

𝛼 data 10 issued from Ref. [37], we compute the corresponding ‘total energy’
heat currents 𝐼Q,𝜀

𝛼 data for 𝑡 > 0 according to Eq. (5.57) and compare them to the ones calculated with
tkwant+twantoperator. We find a perfect agreement (see Fig. 5.11). This provides an additional
validity check of our approach and highlights the difference between the gauge invariant heat current
𝐼Q,𝜀
𝛼 and the gauge dependent heat current 𝐼Q,ℎ

𝛼 when a time-dependent voltage is applied in the lead
𝛼.

5.3.3. Going further: Quantum Point Contact

To illustrate the potential of our tkwant based numerical approach, we simulate hereafter dynamical
(electronic) heat transport in a QPC attached to two reservoirs held at different temperatures. We focus
on the possibility of extracting heat from the cold reservoir by Peltier effect and ask whether or not
Peltier cooling may be enhanced by applying time-resolved voltage pulses to one of the two electrodes
attached to the QPC (instead of a constant voltage bias across the system).

9Note that we did not investigate in details the behavior of the NEGF data at small 𝑡 ≳ 0. While the tkwant heat currents
are observed to be continuous at 𝑡 = 0, the NEGF heat currents calculated by integrating numerically Eq. (C.3) (with
standard routines) turn out be numerically unstable in the vicinity of 𝑡 ≳ 0. This is probably an (irrelevant) artifact of
the wide-band limit approximation that leads in some cases to pathological singularities, as pointed out in Ref.[37].

10Data are courtesy of Florian Eich. They are the same data as the ones shown in Fig. 8 and in the lower panel of Fig. 9 of
Ref.[37] (for 𝜆 = 1).
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Figure 5.11 – Adapted from our published ar-
ticle [96]: Left heat current 𝐼Q

L (in red) and right
heat current 𝐼Q

R ≡ 𝐼Q,𝜀
R (in blue) as a func-

tion of time 𝑡, as defined in Eq. (4.211) for the
1D RLM defined by Eq. (5.44), when a voltage
step ℎ𝐿(𝑡) = 𝑉𝐿Θ(𝑡) is applied in the left lead
(sketch in inset). Units are indicated in brack-
ets. The data issued from Ref.[37] (solid lines)
and those calculated with tkwant+tkwant-
operator (circles) are superimposed. The
horizontal dashed lines show the static limits
𝐼Q, ̄𝑠𝑡

L/R at large times given by the Landauer-
Büttiker formula (see Sec.5.2.3.2). Parameters
are fixed to 𝑉0 = 0.2𝛾𝑐, 𝑉𝐿 = 2𝛾𝑐, ℎ𝑅(𝑡) = 0,
𝛾 = 5𝛾𝑐 𝑇𝐿 = 𝑇𝑅 = 0.01𝛾𝑐/𝑘𝐵, and 𝜇𝐿 =
𝜇𝑅 = 0.

We consider a nanoribbon of length 𝐿 and width 𝑊 connected through semi-infinite leads to two
left (𝐿) and right (𝑅) electronic reservoirs maintained at temperatures 𝑇𝐿 ≲ 𝑇𝑅 and electrochemical
potentials 𝜇𝐿 ≳ 𝜇𝑅 (see Fig.5.12 (a)). The system is discretized on a square lattice (with lattice spacing
𝑎 = 1). For times 𝑡 ≤ 0, no time-dependent perturbation is applied and the system Hamiltonian
�̂�(𝑡 ≤ 0) = �̂�0 reads

�̂�0 = ∑
𝑖

(4𝛾 + 𝑈𝑖) ̂𝑐†
𝑖 ̂𝑐𝑖 − 𝛾 ∑

⟨𝑖,𝑗⟩
̂𝑐†
𝑖 ̂𝑐𝑗 (5.58)

where 𝛾 is the nearest-neighbor hopping term and 𝑈𝑖 is the QPC confining potential modeled by

𝑈𝑖 =
⎧{
⎨{⎩

(𝑦𝑖
𝑙𝑦 )

2
[1 − 3 (2𝑥𝑖

𝑙𝑥 )2+ 2 ∣2𝑥𝑖
𝑙𝑥 ∣3]

2
if |𝑥𝑖| < 𝑙𝑥

2

0 if |𝑥𝑖| ≥ 𝑙𝑥
2 .

(5.59)

Here 𝑙𝑥 and 𝑙𝑦 are two parameters controlling the QPC shape and the site of coordinates (𝑥𝑖, 𝑦𝑖) = (0, 0)
is taken at the center of the ribbon. The staircase-like transmission function 𝑇 (𝐸) of the QPC in the
static configuration (computed with Kwant) is plotted in Fig.5.12(b) for a given set of parameters used
hereafter. We also fix 𝑇𝐿 ≲ 𝑇𝑅 and choose 𝜇𝑅 so as 𝑇 (𝐸 = 𝜇𝑅) ≈ 0.6 (guided by the fact that
thermoelectric effects are to be sought near transmission steps in the adiabatic regime). The value of
𝜇𝐿 ≳ 𝜇𝑅 is determined by the condition 𝐼Q

L (𝑡 ≤ 0) = 0.
From time 𝑡 = 0, we apply in the left lead a Gaussian voltage pulse 𝑉𝐿(𝑡) = 𝑉𝑝 exp[−4 ln 2 (𝑡−3 𝜏𝑝)2

𝜏2𝑝
]

of width 𝜏𝑝, amplitude 𝑉𝑝 and center 3𝜏𝑝. Therefore, the system Hamiltonian becomes �̂�(𝑡 > 0) =
�̂�0 + ∑𝑖∈𝐿 𝑉𝐿(𝑡) ̂𝑐†

𝑖 ̂𝑐𝑖.
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5.3. tkwantoperator: tkwant extension to energy transport

Figure 5.12. – (a) QPC discretized model. The site color in the central region encodes the value of the onsite
potential 𝑈𝑖 given by Eq. (5.59) (from 0 (white) to larger values (shades of blue)). A few layers of the left and right
semi-infinite leads are shown in red. A voltage pulse 𝑉𝐿(𝑡) is applied in the left lead. Currents are evaluated at
the (green dashed) interface indicated by the green arrow. (b) Transmission function 𝑇 (𝐸) of the QPC defined
by �̂�0 (see Eq. (5.58)). (c) ∫∞

0 d𝑡 [𝐼𝑁
𝐿 (𝑡)− 𝐼𝑁

𝐿 (𝑡 = 0)] (in blue, in units of 1/2𝜋) and ∫∞
0 d𝑡 𝐼Q

L (𝑡) (in red, in units
of 𝛾/2𝜋) as a function of the pulse width 𝜏𝑝 at fixed 𝑛𝑝 = 0.2. Squares with full lines are tkwant results, circles
with dashed lines are Landauer-Büttiker adiabatic results. Lines are guides to the eye. (d) to (g) Left particle
currents 𝐼𝑁

𝐿 (in blue, in units of 100𝛾/ℎ) and left heat currents 𝐼Q
L (in red, in units of 𝛾2/ℎ) as a function of time 𝑡

(in units of ℏ/𝛾), for different widths of the voltage pulse (𝜏𝑝 = 20 ℏ/𝛾 (d), 100 ℏ/𝛾 (e), 200 ℏ/𝛾 (f), and 800 ℏ/𝛾
(g)) at fixed 𝑛𝑝 = 0.2. Full lines are tkwant results, dashed lines are Landauer-Büttiker adiabatic results. In all
panels, parameters are fixed to 𝑊 = 18, 𝐿 = 48, 𝑙𝑥 = 50, 𝑙𝑦 = 5, 𝜇𝐿 = 0.20607𝛾, 𝜇𝑅 = 0.2𝛾, 𝑇𝐿 = 0.018𝛾/𝑘𝐵,
and 𝑇𝑅 = 0.02𝛾/𝑘𝐵.

Using tkwant along with our tkwantoperator extension [3] we compute the time-resolved
particle (𝐼𝑁

𝐿 ) and heat (𝐼Q
L ) currents in the left lead. Data are shown in panels (d) to (f) of Fig. 5.12

for different pulse parameters (𝜏𝑝, 𝑉𝑝) with fixed 𝑛𝑝 ≡ (𝑒/ℎ) ∫ 𝑉𝐿(𝑡)d𝑡 = (𝑒𝑉𝑝𝜏𝑝)/(4ℏ
√

𝜋 ln 2) (total
number of electrons injected by the voltage pulse in the left lead). To avoid spurious effects that appear
when the edges of the system’s conduction band are probed [66, 64] we consider relatively long pulses
with ℏ/𝜏𝑝, 𝑉𝑝 ≲ 𝜇𝐿, 𝜇𝑅 (but short enough to investigate the non-adiabatic regime). The tkwant
currents are compared to the adiabatic currents 𝐼𝑁, ̄𝑠𝑡

𝐿 (𝑉𝐿(𝑡)) and 𝐼Q, ̄𝑠𝑡
𝐿 (𝑉𝐿(𝑡)) given by the Landauer-

Büttiker formulas (see Sec. 5.2.3.2). The latter depend parametrically on time through 𝑉𝐿(𝑡). They are
computed for static systems by using Kwant and a numerical integrator over the energy. For small 𝜏𝑝
(short pulses, see panel (d)), the particle current 𝐼𝑁

𝐿 (𝑡) shows a first positive peak centered around 3𝜏𝑝
corresponding to the injected pulse and some time later, a second negative peak corresponding to the
reflected part of the pulse. Both peaks are well resolved in this (non-adiabatic) regime. They contribute
to two main negative peaks in the heat current 𝐼Q

L (𝑡). For large 𝜏𝑝 (long pulses, see panel (g)), the
tkwant currents converge to the adiabatic currents characterized by a single peak centered at 3𝜏𝑝.
We note that the particle current converges more slowly to its adiabatic limit than the heat current.
The crossover between the two regimes is shown in panels (e) and (f). Obviously, the time-resolved
tkwant currents in the non-adiabatic regime depend on the position of the interface in the left lead
at which they are calculated (green dashed line in Fig. 5.12 (a)). However, the currents integrated over
time are independent of this position. In panel (c) of Fig. 5.12, we plot ∫ d𝑡 [𝐼𝑁

𝐿 (𝑡) − 𝐼𝑁
𝐿 (𝑡 = 0)] and

∫ d𝑡 𝐼Q
L (𝑡) as a function of 𝜏𝑝 (𝐼Q

L (𝑡 = 0) = 0 by construction). We find that heat can be extracted from
the cold reservoir (∫ d𝑡 𝐼Q

L (𝑡) > 0) in the limit of long pulses only and for all 𝜏𝑝, we have ∫ d𝑡 𝐼Q
L (𝑡) ≤

∫ d𝑡 𝐼Q, ̄𝑠𝑡
L (𝑉L(𝑡)). Thus, the application of short voltage pulses involving a non-adiabatic response of

121



5. Transport simulations of open quantum systems

the quantum system turns out to be detrimental to Peltier cooling (at least for the set of parameters
considered here). The present preliminary investigation shows the feasibility of further studies. Indeed,
the set of tkwant curves shown in panels (d) to (g) of Fig. 5.12 required a few hours (d) to a few days
(g) of computation time on a single CPU core.

The naive approach in trying to ‘boost’ the Peltier cooling of a QPC by simply adding the time-
dependent ingredient is inconclusive and simply highlights that the effects at play are more complex
to grasp. Therefore, in the next chapter, we go back to the Resonant Level Model where analytical
expressions can be derived, in an effort to understand better the effects at play.
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6. Application: Time-dependent Resonant
Level Model

The Resonant Level Model (RLM) is a paradigmatic toy model extensively studied in the field of time-
dependent theoretical thermodynamics and energy transport [52, 51, 38, 116, 219, 55, 54, 215, 142, 44,
121, 120, 24, 113, 37, 40, 143, 157, 79]. With a recent successful experiment in the stationary regime
[93] (see Fig. 3.4 in Chapter 3), thermoelectric properties of this model have been predicted to be
improved [38, 219] in the transient regime while under a time-dependent regime. Zhou et al. [219]
predicted a ‘boost’ of the transient thermoelectric generation during the transient regime by a factor
of 4 with respect to the stationary regime, when the dot’s onsite Hamiltonian undergoes a step-like
or square-like variations, and for a given set of parameters. In the following, we recover their results
using tKwant+tkwantoperator and identify several shortcomings of their study. Then, we use an
analytical wavefunction approach in the wide-band limit approximation to better understand energy
transport in the time-dependent RLM. The results we obtain with our further work (and confirmed
by our numerics) point instead towards a negative impact of time-dependence in the thermoelectric
conversion, both in the transient regime and at long times.

In this chapter, we study the resonant level model described in Sec. 5.3.2.1 where we consider a
time-dependent drive of the dot’s onsite potential ℎ0(𝑡)

ℎ0(𝑡) = 𝑉0 + 𝑉 (𝑡) with 𝑉 (𝑡 < 𝑡0) = 0 (6.1)

while the leads are stationary with a zero onsite Hamiltonian. (see Fig. 6.1 for a sketch).

site
indexLeft

lead
Right
lead

Scattering
area

Figure 6.1. – Schematic representation of the Resonant Level Model: a one-dimensional (1D) chain made of a
central site 0 connected through a nearest-neighbor hopping term 𝛾𝑐 to two semi-infinite left (𝐿, on sites 𝑖 ≤ −1)
and right (𝑅, on sites 𝑖 ≥ 1) leads with uniform zero on-site Hamiltonian and a nearest-neighbor hopping term
𝛾. Each lead 𝛼 is attached from the remote past to an electronic reservoir at equilibrium, with an electrochemical
potential 𝜇𝛼 and temperature 𝑇𝛼 that are supposed remain constant.

The matrix elements ℎ𝑖𝑗 of the Hamiltonian �̂� , given in Eq. (5.49), simplify to the following

ℎ𝑖𝑗 =
⎧{{
⎨{{⎩

𝑉0 + 𝑉 (𝑡) if 𝑖 = 𝑗 = 0
−𝛾𝑐 if 𝑖, 𝑗 = 0,±1 or ± 1, 0
−𝛾 if 𝑖 = 𝑗 ± 1
0 otherwise

(6.2)
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6. Application: Time-dependent Resonant Level Model

We introduce the following notations, that we will adopt all along this Chapter

𝐼L = 𝐼-1,0(𝑡) 𝐼L,𝑥 = 𝐼−|𝑥|,−|𝑥|+1(𝑡) with 𝑥 ≤ −2 (6.3a)
𝐼R = 𝐼1,0(𝑡) 𝐼R,𝑥 = 𝐼|𝑥|,|𝑥|−1(𝑡) with 𝑥 ≥ 2 (6.3b)

where 𝐼𝑖𝑗 is a current flowing from 𝑖 to 𝑗.

6.1. Linear-response regime

In this section, we attempt an extension of the Onsager matrix L, whose definition in the stationary
state is given in Sec. 3.3.2, to the time dependent regime of a driven dot and stationary leads (described
by the Hamiltonian Eq. (6.2)). Such a generalization has been performed by Zhou et al. in their paper
entitled “Boosting thermoelectric efficiency using time-dependent control” [219] where a heaviside
drive of the dot is reported to improve the electric generator efficiency of the model, under a given
set of parameters. However, we show that a time-dependent Onsager matrix that connects currents to
Δ𝑇 and Δ𝜇 biases is not uniquely defined in the time-dependent regime. This matrix is therefore not
physically interpretable though it can be blindly used to compute linear response quantities. We also
highlight a few shortcomings in the definitions used by Ref. [219].

6.1.1. (Ill-defined) Onsager matrix

The heat 𝐼Q
𝛼 and electric 𝐼N

𝛼 currents, where 𝛼 = L,R, vary in time due to the time dependent control
but are also affected by the statically set bath temperatures (𝑇𝑅, 𝑇𝐿) and electrochemical potentials
(𝜇𝑅, 𝜇𝐿). Thus, as functions, we have 𝐼N

𝛼(𝑡, 𝜇𝑅, 𝜇𝐿, 𝑇𝑅, 𝑇𝐿) and 𝐼Q
𝛼(𝑡, 𝜇𝑅, 𝜇𝐿, 𝑇𝑅, 𝑇𝐿), 𝛼 = 𝐿, 𝑅.

Mathematically, these currents can be linearized for small Δ𝜇 = 𝜇𝑅 − 𝜇𝐿 and Δ𝑇 = 𝑇𝑅 − 𝑇𝐿,
but that needs a change of variable from (𝜇𝑅, 𝜇𝐿, 𝑇𝑅, 𝑇𝐿) to (𝜇,Δ𝜇, 𝑇 , Δ𝑇). One can think of the
following map, with 𝜒 ∈ [0, 1]:

𝜇 = 𝜒𝜇𝐿 + (1 − 𝜒)𝜇𝑅
𝑇 = 𝜒𝑇𝐿 + (1 − 𝜒)𝑇𝑅

Δ𝜇 = 𝜇𝑅 − 𝜇𝐿
Δ𝑇 = 𝑇𝑅 − 𝑇𝐿

(6.4)

We will note the currents after the change of variable with a bar, ̄𝐼 . Their first order linearization writes

̄𝐼N
𝛼(𝑡, 𝜇, Δ𝜇, 𝑇 ,Δ𝑇) = ̄𝐼N𝛼(𝑡, 𝜇, 0, 𝑇 , 0)⏟⏟⏟⏟⏟⏟⏟

̄𝐼N
𝛼,0

+𝜕Δ𝜇 ̄𝐼N𝛼(𝑡, 𝜇, 0, 𝑇 , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿𝛼

11/𝑞

Δ𝜇 + 𝜕Δ𝑇 ̄𝐼N𝛼(𝑡, 𝜇, 0, 𝑇 , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿𝛼

12/𝑇
Δ𝑇 (6.5a)

̄𝐼Q
𝛼(𝑡, 𝜇, Δ𝜇, 𝑇 ,Δ𝑇) = ̄𝐼Q

𝛼(𝑡, 𝜇, 0, 𝑇 , 0)⏟⏟⏟⏟⏟⏟⏟
̄𝐼Q
𝛼,0

+𝜕Δ𝜇 ̄𝐼Q
𝛼(𝑡, 𝜇, 0, 𝑇 , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿𝛼
21/𝑞

Δ𝜇 + 𝜕Δ𝑇 ̄𝐼Q
𝛼(𝑡, 𝜇, 0, 𝑇 , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿𝛼
22/𝑇

Δ𝑇 (6.5b)

which can be rewritten in a Matrix equation, the connecting matrix L𝛼(𝑡) being called the Onsager
Matrix:

[
̄𝐼N
𝛼(𝑡)
̄𝐼Q
𝛼(𝑡)] = [

̄𝐼N
𝛼,0(𝑡)
̄𝐼Q
𝛼,0(𝑡)

] + [𝐿𝛼
11(𝑡) 𝐿𝛼

12(𝑡)
𝐿𝛼

21(𝑡) 𝐿𝛼
22(𝑡)

]
⏟⏟⏟⏟⏟⏟⏟

L𝛼(𝑡)

[
Δ𝜇
𝑞

Δ𝑇
𝑇

] (6.6)
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6.1. Linear-response regime

Note that in the time-independent regime, zero bias gives zero current, which implies that ̄𝐼N
𝛼(𝜇, 0, 𝑇 , 0) =

0 and ̄𝐼Q
𝛼(𝜇, 0, 𝑇 , 0) = 0, which simplifies the equation above. In the time-dependent case however,

these un-biased currents are non-zero in general as the time-dependence can still cause energy and
particle (displacement) currents in each lead.

Since we only have access to the original currents 𝐼Q/N that depend on (𝑡, 𝜇𝑅, 𝜇𝐿, 𝑇𝑅, 𝑇𝐿), we need
to write the relationship between the partial derivatives of ̄𝐼 and 𝐼 to compute the Onsager matrix:

𝜕Δ𝜇 ̄𝐼(𝜇,Δ𝜇 = 0) = 𝜒 𝜕𝜇𝑅
𝐼(𝜇𝑅 =𝜇, 𝜇𝐿 =𝜇) − (1 − 𝜒) 𝜕𝜇𝐿

𝐼(𝜇𝑅 =𝜇, 𝜇𝐿 =𝜇) (6.7)

This shows a dependence on 𝜒, which can be arbitrarily chosen and hence calls into question the phys-
ical meaning of the Onsager matrix L𝛼. To answer this, let’s consider, without loss in generality, the
conservation equations of particles (given Eq. (4.157)) and energy (given Eq. (4.172)) with a dependence
only with respect to (𝑡, 𝜇𝐿, 𝜇𝑅):

−𝐼N
L (𝑡, 𝜇𝐿, 𝜇𝑅) − 𝐼N

R (𝑡, 𝜇𝐿, 𝜇𝑅) + 𝜕𝑡𝜌0(𝑡, 𝜇𝐿, 𝜇𝑅) = 0 (6.8)

−𝐼𝜖
L(𝑡, 𝜇𝐿, 𝜇𝑅) − 𝐼𝜖

R(𝑡, 𝜇𝐿, 𝜇𝑅) + 𝜕𝑡𝜌𝜖
0(𝑡, 𝜇𝐿, 𝜇𝑅) = 𝑆𝜖

0(𝑡, 𝜇𝐿, 𝜇𝑅) (6.9)

where 𝜌0 is the particle density in the dot and 𝜌𝜖
0 the energy density.

Stationary regime: In the static case, 𝜌0(𝑡, 𝜇𝐿, 𝜇𝑅) is stationary and has a zero time-derivative:

𝐼N
L (𝜇𝐿, 𝜇𝑅) + 𝐼N

R (𝜇𝐿, 𝜇𝑅) = 0 ⟹ 𝜕𝜇𝑅
𝐼N
𝐿(𝜇𝐿, 𝜇𝑅) + 𝜕𝜇𝑅

𝐼N
𝑅(𝜇𝐿, 𝜇𝑅) = 0 (6.10)

Given the central symmetry of the RLM with respect to the dot, we can swap 𝐿 and 𝑅 indices

𝜕𝜇𝑅
𝐼N
𝑅(𝜇𝐿, 𝜇𝑅) = 𝜕𝜇𝐿

𝐼N
𝐿(𝜇𝑅, 𝜇𝐿) (6.11)

and finally end up with
𝜕𝜇𝑅

𝐼N
𝐿(𝜇𝐿, 𝜇𝑅) = −𝜕𝜇𝐿

𝐼N
𝐿(𝜇𝑅, 𝜇𝐿) (6.12)

On the other hand, using Eqs. (4.211) and (6.9) in the stationary regime (with a zero time-derivative of
the dot density and zero source) leads to the following relationship between the heat currents 𝐼Q

𝛼

𝐼Q
𝐿 + 𝐼Q

𝑅 = − Δ𝜇𝐼N
𝐿⏟

second order
in Δ𝜇,Δ𝑇

≈ 0 (6.13)

This allows us to follow an analog derivation to the particle current and obtain

𝜕𝜇𝑅
𝐼Q
𝐿(𝜇𝐿, 𝜇𝑅) = −𝜕𝜇𝐿

𝐼Q
𝐿(𝜇𝑅, 𝜇𝐿) (6.14)

This renders Eq. (6.7) 𝜒 independent for both the particle and heat currents: the Onsager matrix is
unique in the stationary regime and is side independent (the left and right Onsager matrices differ only
with a global sign, i.e LL = −LR).

Time dependent regime: The time derivatives of the dot densities are no longer zero and the deriva-
tion done in the stationary case no longer applies as we have

−𝐼N
𝐿 − 𝐼N

𝑅 = −𝜕𝑡𝜌0 (6.15a)
−𝐼Q

𝐿 − 𝐼Q
𝑅 = 𝑆𝜖

tot − 𝜕𝑡𝜌𝜖
0 + ⋯ + second order

in Δ𝜇,Δ𝑇 (6.15b)
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6. Application: Time-dependent Resonant Level Model

This implies that Eqs. (6.12) and (6.14) are no longer verified

𝜕𝜇𝑅
𝐼N
𝐿(𝑡, 𝜇𝐿, 𝜇𝑅) ≠ −𝜕𝜇𝐿

𝐼N
𝐿(𝑡, 𝜇𝑅, 𝜇𝐿) (6.16a)

𝜕𝜇𝑅
𝐼Q
𝐿(𝑡, 𝜇𝐿, 𝜇𝑅) ≠ −𝜕𝜇𝐿

𝐼Q
𝐿(𝑡, 𝜇𝑅, 𝜇𝐿) (6.16b)

and thus the Onsager coefficients 𝐿𝛼
ab, defined in Eqs. (6.5) are 𝜒 dependent (through Eq. (6.7)). This

makes the time-resolved Onsager matrix ill-defined as it is no longer unique.

Another interesting equation can be obtained by writing equation (6.8) in the linear response regime.
For that, we first need to linearize 𝜕𝑡 ̄𝜌0 with respect to Δ𝑇 and Δ𝜇, like we did for ̄𝐼N

𝛼 in equation (6.5a):

𝜕𝑡 ̄𝜌0(𝑡, 𝜇, Δ𝜇, 𝑇 ,Δ𝑇) = 𝜕𝑡 ̄𝜌0
0 + 𝐶11

Δ𝜇
𝑞 + 𝐶12

Δ𝑇
𝑇 (6.17)

where 𝐶11,12(𝑡, 𝜇, 𝑇 ) = 𝑞[𝜕Δ𝜇,Δ𝑇 𝜕𝑡 ̄𝜌0]Δ𝑇=0
Δ𝜇=0 and the partial derivatives of 𝜕𝑡 ̄𝜌0 and 𝜕𝑡𝜌0 are connected

through an analog of equation (6.7). We can now write (6.8) in the (time-dependent) linear response
regime

𝜕𝑡 ̄𝜌0
0 − 𝐼N

L,0 − 𝐼N
R,0 + (𝐿𝐿

11 + 𝐿𝑅
11 + 𝐶11)

Δ𝜇
𝑞 + (𝐿𝐿

12 + 𝐿𝑅
12 + 𝐶12)

Δ𝑇
𝑇 = 0 (6.18)

This equation can be further simplified by noticing that 𝜕𝑡 ̄𝜌0
0 − 𝐼N

L,0 − 𝐼N
R,0 = 0 since it is equation (6.8)

with the following parameter values (𝜇,Δ𝜇 = 0, 𝑇 ,Δ𝑇 = 0). We finally obtain:

∀Δ𝜇,Δ𝑇 ‘small enough’ (𝐿𝐿
11 + 𝐿𝑅

11 + 𝐶11)
Δ𝜇
𝑞 + (𝐿𝐿

12 + 𝐿𝑅
12 + 𝐶12)

Δ𝑇
𝑇 = 0 (6.19)

from where we conclude the following, as Δ𝜇 and Δ𝑇 are independent

𝐿𝐿
11(𝑡) + 𝐿𝑅

11(𝑡) + 𝐶11(𝑡) = 0 and 𝐿𝐿
12(𝑡) + 𝐿𝑅

12(𝑡) + 𝐶12(𝑡) = 0 (6.20)

Equation (6.20), along with its heat current analog (involving 𝐿21 and 𝐿22), yields the interesting result
that the Onsager coefficients for the right and left side of the dot are in general not equal in the time
dependent regime (while they are equal up to a minus sign, 𝐿𝐿

𝑖𝑗 = −𝐿𝑅
𝑖𝑗, in the stationary regime since

𝐶11 = 𝐶12 = 0 in that case).

To conclude, a time-resolved Onsager matrix, that links the currents to the temperature and electro-
chemical potential biases, is ill-defined since it depends on an arbitrary choice of the reference chemical
potential 𝜇 and temperature 𝑇 . No physical interpretation can be made based on this time-resolved
matrix alone. On the other hand, time-averaged Onsager coefficients have been considered in Refs.
[118, 153] in the periodic regime: it solves only partially the arbitrariness issue in the definition of the
Onsager Matrix as e.g. the time-averaged total source term, over a period 𝜏 , 1

𝜏 ∫𝜏
0 d𝑡𝑆𝜖

0 from Eq. (6.15b)
is still non-zero and will make the time-average of Eq. (6.7), for the heat current, still 𝜒 dependent. Ref.
[118] performs a study to the first order over the adiabatic regime, on a two-terminal system, where
the considerations over the change of variable (given Eq. (6.4)) are omitted ; whereas Ref. [153] uses a
single reservoir and therefore the issue we highlight does not apply.

Numerical illustration

We compute the partial derivatives of the left particle current 𝐼N
L (𝑡, 𝜇𝑅, 𝜇𝐿, 𝑇𝑅, 𝑇𝐿) and the left heat

current 𝐼Q
L (𝑡, 𝜇𝑅, 𝜇𝐿, 𝑇𝑅, 𝑇𝐿), with respect to (𝜇𝑅, 𝜇𝐿, 𝑇𝑅, 𝑇𝐿), using the finite differences method:

⎧{
⎨{⎩

𝜕𝜇𝛼𝐼Q/N(_, 𝜇𝛼, _) ≈ 1
𝜀 [𝐼Q/N(_, 𝜇𝛼 + 𝜀

2, _) − 𝐼Q/N(_, 𝜇𝛼 − 𝜀
2, _)]

𝜕𝑇𝛼𝐼Q/N(_, 𝑇𝛼, _) ≈ 1
𝜀 [𝐼Q/N(_, 𝑇𝛼 + 𝜀

2, _) − 𝐼Q/N(_, 𝑇𝛼 − 𝜀
2, _)]

(6.21)
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6.1. Linear-response regime

where 𝜀 is a small displacement: from a numerical point of view, it has to be small enough for Eq. (6.21)
to be correct but not too small to guarantee that the limit of tkwant’s precision is not reached. In
practice, we find that 𝜀 = 0.01 is a good choice. In Fig. 6.2 we plot the resulting partial derivatives of
the electric and heat currents, for a given set of parameters, where we highlight numerically Eqs. (6.16)

Figure 6.2. – Partial derivatives of the left electric (𝐼N
𝐿(𝑡)) and heat (𝐼Q

L (𝑡)) currents, computed with the finite
difference method (see Eq. (6.21)). In each panel, the blue and orange curves are clearly not superimposed : this
illustrates Eqs. (6.16), which makes Eq. (6.7) 𝜒 dependent, and hence the Onsager matrix is in general ill-defined
as it is not unique. Simulation values (in units of Γ): 𝑡0 = 0.1, 𝛾 = 4, 𝛾𝑐 = 1, 𝜇𝐿 = 𝜇𝑅 = 0, 𝑇𝐿 = 0.1, 𝑇𝑅 =
0.1, 𝜆 = 1, 𝑉0 = 0.5, Δ𝑉 = 0.5, lead = 𝐿, 𝜀 = 0.01.

6.1.2. An alleged boost of the thermoelectric efficiency

In this subsection, we perform a numerical computation of the currents’ partial derivatives using the
parameters used by Zhou et al. in their article “Boosting thermoelectric efficiency using time-dependent
control” [219]. We recover their results, including their reported ‘boost’ in the efficiency, then perform
a critical analysis of their approach and highlight a few shortcomings. In our next section, we will raise
some fundamental issues that make difficult defining a heat engine efficiency.

In Ref. [219], the onsite Hamiltonian matrix element ℎ0(𝑡) undergoes a step-like variation

ℎ0(𝑡) = 𝑉0 + Δ𝑉 Θ(𝑡 − 𝑡0) (6.22)

and transport quantities are computed within the wide-band limit, that we achieve in our numerical
simulations with a parameter 𝜆 that we use the scale, according to Eq. (5.54), the hoppings 𝛾 and 𝛾𝑐
in the Hamiltonian �̂� given Eq. (6.2). Note that we follow here Ref. [219] and calculate the left heat
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6. Application: Time-dependent Resonant Level Model

current on the hopping (−1, 0) without taking into account the coupling Hamiltonian 𝐻0L (between
the dot and the left lead) and using the Hamiltonian as energy operator1 (see Sec. 4.3.4.2 for a more
thorough discussion)

̃𝐼Q
L = −𝜕𝑡 ⟨ ̂�̃�𝐿⟩ − 𝜇𝐿𝐼N

L (6.23)

Ref. [219] presented some results involving the time-dependent Onsager matrix: the evolution of the
ratio 𝐿21(𝑡)/𝐿12(𝑡) and its determinant det(𝐿), within the wide band limit. The purpose was to point
out that the thermodynamic constraints on the Onsager matrix in the stationary case (see Eq. (3.8))
are relaxed in the time-dependent regime. Our results are plotted in Figs. 6.3: we find a very good
agreement with Ref. [219] for 𝜒 = 0.5 while the results significantly differ for 𝜒 = 0 (data not shown).

3

5

tkwant

tkwant
Zhou et al.

tkwant

tkwant 8

5

Figure 6.3. – Comparison between Zhou et al. [219] and tkwant in the calculated 𝐿21/𝐿12 and det(𝐿).
tkwant simulations have been performed for various 𝜆 values and with 𝜒 = 0.5. In the limit of large 𝜆 (corre-
sponding to the wide-band limit), tkwant’s data is in good agreement with the reported results (Data from [219]
have been manually extracted using WebPlotDigitizer [161]. Uncertainty: 𝐿21/𝐿12 → ±0.1, det(𝐿) → 10−6).
Values (in units of Γ): 𝑡0 = 0.1, 𝛾 = 1, 𝛾𝑐 = 0.2, 𝜒 = 0.5, 𝜇𝐿 = 𝜇𝑅 = 0, 𝑇𝐿 = 𝑇𝑅 = 0.1, 𝑉0 = 0.5, Δ𝑉 =
0.5, lead = 𝐿, 𝜀 = 0.01.

To express the efficiency, Ref. [219] considered an additional virtual load resistance 𝑅𝐿 put in series
with the system so that a voltage bias Δ𝜇(𝑡) is created when the current goes through it. To take into
account the time-dependent electrochemical potential bias Δ𝜇(𝑡) in our numerical approach, we use
the computed partial derivatives of the currents: if the load resistance is small enough, the voltage bias
it creates is small enough so the partial derivatives can be used to compute the new linear-response
currents, taking into account the back-action of the load resistance. To match with Ref. [219] results,
we make the hypothesis (although implicit in the reference) that the bias created by the load resistance
is symmetric with respect to the left and right baths, i.e. 𝜒 = 0.5, as other values do not match (data
not shown).

1Computing quantities without the coupling term is not offered by tkwantoperator as we consider it to be non-
physical. We used here our first implementation of the extension tkwant to energy, which offered it, it is available at
[4] in the energy-args-legacy branch
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6.1. Linear-response regime

To obtain the linear-response currents using the time-dependent Onsager matrix (for 𝜒 = 0.5), one
can first write that the voltage bias is due to the current going through the load resistance

Δ𝜇(𝑡)/𝑞 = −𝑅𝐿𝐼N,load(𝑡) (6.24)

This relation can then be used along with the Onsager matrix, defined in Eq. (6.6), to give an expression
for the electric current under the influence of the load resistance 𝑅𝐿

𝐼N,load = 𝐼N
0 − 𝐿11𝑅𝐿𝐼N,load + 𝐿12

Δ𝑇
𝑇 ⟹ 𝐼N,load = 𝐼N

0 + 𝐿12
Δ𝑇
𝑇

1 + 𝐿11𝑅𝐿
(6.25)

The expression of 𝐼N,load can then be used in the heat current’s part of the Onsager matrix, so we obtain

𝐼Q,load = 𝐼Q
0 + 𝐿21

𝐿11
𝐼N,load + det(𝐿) 1

𝐿11

Δ𝑇
𝑇 + [det(𝐿) − 𝐿22

𝐿12
]𝐼N

0 (6.26)

Eqs. (6.25) and (6.26) are used by Ref. [219], with 𝐼N
0 (𝑡) = 0 and 𝐼Q

0 (𝑡) = 0 (even though they are not
zero), to write the following thermoelectric efficiency of the heat-to-work conversion of the model

𝜂 = 𝑅𝐿 (𝐼N,load)2

𝐼Q,load − 1
2𝑅𝑀 (𝐼N,load)2 with 𝑅𝑀 = 1/𝐿11 (6.27)

We implement this expression of the efficiency and compute it with our time-dependent Onsager matrix
coefficients and finally recover the results of Ref. [219], see Fig 6.4.

tkwant

Zhou et al.
Figure 6.4 – Plot of Ref. [219] rescaled effi-
ciency 𝜂(𝑡)/𝜂(𝑡 = 0), given by Eq. (6.27). We
find a perfect match between their results and
our tkwant+tkwantoperator simulation
in the wideband limit (with 𝜆 = 5). The real
efficiency starts at 2.2 × 10−4. Values used (in
units of Γ): 𝑡0 = 0.1, 𝛾 = 1, 𝛾𝑐 = 0.2, 𝜒 =
0.5, 𝜇𝐿 = 𝜇𝑅 = 0, 𝑇𝐿 = 𝑇𝑅 = 0.1, 𝑉0 =
0.5,Δ𝑉 = 0.5, lead = 𝐿, 𝜀 = 0.01

Critical analysis

The means used to recover Ref. [219]’s results puts into question the alleged ‘boost’ of the RLM as a
generator, when the central dot is driven by step-like variation. Indeed, we raised a few issues while
deriving the results:

• The calculated heat current 𝐼Q
L , defined in Eq. (6.23) does not contain the coupling with the dot.
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6. Application: Time-dependent Resonant Level Model

• When computing the efficiency 𝜂, given in Eq. (6.27), the electric current 𝐼N
0 (𝑡) = ̄𝐼N(𝑡, 𝜇, 0, 𝑇 , 0)

and heat current 𝐼Q
0 (𝑡) = ̄𝐼Q(𝑡, 𝜇, 0, 𝑇 , 0) have been taken equal to zero, in this non-interacting

model, while they are actually not.

• In the expression of the efficiency 𝜂, given in Eq. (6.27), an additional term in the denominator,
−1

2𝑅𝑀 (𝐼N,load)2, is considered to take into account that ‘half of the joule heating goes back the
thermostats’ and we do not understand this assertion as the calculated heat current is expected
to be a ‘net’ heat current where no other contribution is to be added.

• The input power from the time-dependent drive has not been considered in the efficiency.

• The used definition for the efficiency involves time-resolved quantities in the ratio between work
energy and spent energy. However, it is more physical to use finite-time integrated currents,
∫𝜏
0 𝐼Q(𝑡) and ∫𝜏

0 𝐼N,load(𝑡)2, in the ratio.

• The efficiency ‘boost’, shown Fig 6.4, actually jumps from a rather low initial efficiency (2.2 ×
10−4) and can be largely improved upon within the stationary regime, in the same model.

• The time resolved Onsager matrix in the time-dependent regime is ill-defined and its coefficients
cannot a priori be physically interpreted or used in entropy considerations as more than a math-
ematical first order development (given in Eqs. (6.5)) with a specific (𝜒 dependent) change of
variables (given in Eqs. (6.4)).

Given these open questions, we have decided to further continue the study of the RLM model in the
next section, for an arbitrary time-dependent variation of dot energy level. In Sec. 6.3.3, we attempt a
definition of a heat engine efficiency and enumerate a number of fundamental challenges to consider
and overcome. We will study in further detail the case of square-like variation of the dot level where
some numerical curves will be presented.

6.2. Analytical treatment of the generic RLM in the wideband
limit: deriving the scattering amplitudes

In this section and the next one, we consider the 1D Resonant Level Model sketched in Fig. 6.1 and keep
arbitrary the time-dependent onsite potential ℎ0(𝑡) = 𝑉0+𝑉 (𝑡) in the dot. We adopt a generic analytic
approach and start in this section by calculating the scattering amplitudes 𝑑 and 𝑟 (defined in Eq. (5.11)).
First, we give the self-consistent formulas 𝑑 and 𝑟 verify by solving the Schrödinger equation. Then,
under the wideband limit, we give a simpler approach to compute them. In this section, we take ℏ = 1.

6.2.1. Scattering states

To express the scattering amplitudes 𝑟 and 𝑑 with Eq. (5.11), the scattering states need to be expressed
then injected in the Schrödinger equation (4.79). The lead’s eigenstates ∥±,𝐸

𝑥 have no transverse mode
due the unidimensional nature of the model. They are plane waves that are solution to the discrete
Schrödinger equation (spatially restricted to the leads)

∥±,𝐸
𝑥 = 1

√|𝑣𝐸|
𝑒i𝑘±

𝐸𝑥−i𝐸𝑡 where 𝑘+
𝐸 ≥ 0 and 𝑘−

𝐸 = −𝑘+
𝐸 (6.28)
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6.2. Analytical treatment of the generic RLM in the wideband limit: deriving the scattering amplitudes

𝑘±
𝐸 verify the following dispersion relation

𝐸 = −2𝛾 cos(𝑘±
𝐸) (6.29)

from which we can express the velocity 𝑣𝐸 = 𝜕𝑘𝐸
𝑣±

𝐸 = 2𝛾 sin(𝑘±
𝐸) = ±√4𝛾2 − 𝐸2 (6.30)

The previous two relations gives a useful additional relation

ei𝑘±
𝐸 = − 𝐸

2𝛾 + i𝑣
±
𝐸

2𝛾 = − 𝐸
2𝛾 ± i√1 − ( 𝐸

2𝛾)
2

(6.31)

that links ei𝑘−
𝐸 to the retarded lead self-energy Σ𝑅(𝐸) given in Eq. (5.56)

Σ𝑅(𝐸) = Γ
4 ei𝑘−

𝐸 (6.32)

The generic expression for a scattering state, given in Eq. (5.11), simplifies to the following for our 1D
Resonant Level Model

ΨL,𝐸
𝑥 =

⎧{{
⎨{{⎩

∥+,𝐸
𝑥 +∫ d𝐸′

2𝜋 ∥−,𝐸′
𝑥 𝑟(𝐸′, 𝐸) if 𝑥 < 0

∫ d𝐸′

2𝜋 ∥+,𝐸′
𝑥 𝑑(𝐸′, 𝐸) if 𝑥 > 0

(6.33a)

ΨR,𝐸
𝑥 =

⎧{{
⎨{{⎩

∥−,𝐸
𝑥 +∫ d𝐸′

2𝜋 ∥−,𝐸′
𝑥 𝑟′(𝐸′, 𝐸) if 𝑥 > 0

∫ d𝐸′

2𝜋 ∥+,𝐸′
𝑥 𝑑′(𝐸′, 𝐸) if 𝑥 < 0

(6.33b)

where 𝑟(𝐸′, 𝐸) and 𝑑(𝐸′, 𝐸) are respectively the left-to-left reflection and left-to-right transmission
amplitudes, from energy E to energy E’, whereas the primed amplitudes are about the other side. Given
that the system is symmetric with respect to the central site 0, the left and right amplitudes are equal

𝑑′(𝐸′, 𝐸) = 𝑑(𝐸′, 𝐸) 𝑟′(𝐸′, 𝐸) = 𝑟(𝐸′, 𝐸) (6.34)

Wide band approximation

To be able to explicitly express the scattering states without the energy integrals over 𝐸′, we use
the so called wide band approximation. Described in Sec. 5.3.2.2, it amounts to consider that the
RLM’s characteristic energies are negligible when compared to 𝛾 (characteristic band width in the
leads) so that the transmission amplitude 𝑑(𝐸′, 𝐸) and reflection amplitude 𝑑(𝐸′, 𝐸) are relatively
sharply peaked around 𝐸, as function of 𝐸′. Integrals of the type ∫ d𝐸′

2𝜋 ∥±,𝐸′
𝑥 𝑙(𝐸′, 𝐸), where 𝑙 = 𝑟, 𝑑

can therefore be approximated. One can think of two levels of approximation:

Approximation 1 [WBL1] 𝛾 is relatively big enough so we can consider the approximation done
in Eq. (5.56) as valid. Using Eq. (6.32) and Eq. (6.30), it translates to the following

𝑣±
𝐸 = ±2𝛾 ei𝑘±

𝐸 = ±𝑖 (6.35)

The integrals ∫ d𝐸′
2𝜋 ∥±,𝐸′

𝑥 𝑙(𝐸′, 𝐸) simplify to the following

∫ d𝐸′

2𝜋 ∥±,𝐸′
𝑥 𝑙(𝐸′, 𝐸) ≈ ±i 1

2𝛾 ∫ d𝐸′

2𝜋 e−i𝐸′𝑡 𝑙(𝐸′, 𝐸) = ±i 1
2𝛾

̃𝑙(𝑡, 𝐸) (6.36)

where ̃𝑙(𝑡, 𝐸) is the inverse Fourier transform of 𝑙(𝐸′, 𝐸) along 𝐸′.
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6. Application: Time-dependent Resonant Level Model

Approximation 2 [WBL2] A more accurate approximation is to linearize the term 𝑘±
𝐸′ around 𝐸

𝑘±
𝐸′ = 𝑘±

𝐸 + 𝐸′ − 𝐸
𝑣±

𝐸
(6.37)

While still considering the approximation ∣𝑣±
𝐸′∣ = |𝑣𝐸| = 2𝛾, we can write the following:

∫ d𝐸′

2𝜋 ∥±,𝐸′
𝑥 𝑙(𝐸′, 𝐸) ≈ 1

2𝛾 ∫ d𝐸′

2𝜋 ei[𝑘±
𝐸+ 𝐸′−𝐸

±2𝛾 ]𝑥e−i𝐸′𝑡 𝑙(𝐸′, 𝐸)

= 1
2𝛾 ei[𝑘±

𝐸− 𝐸
±2𝛾 ]𝑥 ∫ d𝐸′

2𝜋 e−i𝐸′(𝑡− 𝑥
±2𝛾 ) 𝑙(𝐸′, 𝐸)

Which finally gives:

∫ d𝐸′

2𝜋 ∥±,𝐸′
𝑥 𝑙(𝐸′, 𝐸) ≈ 1

2𝛾 ei[𝑘±
𝐸− 𝐸

±2𝛾 ]𝑥 ̃𝑙(𝑡 − 𝑥
±2𝛾 ,𝐸) (6.38)

6.2.2. Solving the Schrödinger equation

We take here a first (unsuccessful) approach and obtain equations for the scattering amplitudes by
solving the discrete Schrödinger equation (4.79), with the Hamiltonian matrix elements ℎ𝑖𝑗 given in
Eq. (6.2) and the scattering states ΨL,𝐸 given in Eqs. (6.33)

𝑖𝜕𝑡Ψ−1 = − 𝛾 Ψ−2 − 𝛾𝑐 Ψ0 (6.39a)
𝑖𝜕𝑡Ψ0 = − 𝛾𝑐 Ψ−1 + [𝑉0 + 𝑉 (𝑡)] Ψ0 − 𝛾𝑐 Ψ1 (6.39b)
𝑖𝜕𝑡Ψ1 = − 𝛾𝑐 Ψ0 − 𝛾 Ψ2 (6.39c)

Further derivation leads to the following self-consistent equation involving the transmission and the
reflection amplitudes

𝑑(𝐸, 𝐸′) = ̄𝑑(𝐸) 2𝜋 𝛿(𝐸′ − 𝐸) + 𝛼(𝐸′)∫ dU
2𝜋 ̃𝑣(𝐸′ − 𝑈)𝑑(𝑈,𝐸) (6.40a)

𝑟(𝐸,𝐸′) = ̄𝑟(𝐸) 2𝜋 𝛿(𝐸′ − 𝐸) + 𝛼(𝐸′) [ ̃𝑣(𝐸′ − 𝐸) + ∫ d𝑈
2𝜋 ̃𝑣(𝐸′ − 𝑈)𝑟(𝑈,𝐸)] (6.40b)

where ̄𝑑(𝑈) and ̄𝑟(𝑈) are the stationary, non-wideband limit, transmission and reflection amplitudes

̄𝑑(𝑈) = 2
𝑟 𝑖 sin(𝑘𝑈) 𝛼(𝑈) (6.41a)

̄𝑟(𝑈) = [(𝑣0 − 𝑢) − 2
𝑟 cos(𝑘𝑈)] 𝛼(𝑈) (6.41b)

with

𝛼(𝑈) = 𝑟 [𝑟 (𝑢 − 𝑣0) + 2 exp(𝑖𝑘𝑈)]−1 ̃𝑣(𝑈) = ∫ dt 𝑣(𝑡) 𝑒𝑖𝑈𝑡/ℏ (6.42)

and

𝑟 = 𝛾
𝛾𝑐

𝑢 = 𝑈
𝛾𝑐

𝑣0 = 𝑉0
𝛾𝑐

𝑣(𝑡) = 𝑉 (𝑡)
𝛾𝑐

(6.43)

Solving Eqs. (6.40) has proven to be difficult. A more simple approach can be taken within the wide-
band limit.

132



6.2. Analytical treatment of the generic RLM in the wideband limit: deriving the scattering amplitudes

6.2.3. Composing subsystem scattering amplitudes in the wideband limit

We describe here a different route to obtain analytic expressions of the scattering amplitudes of the
time-dependent RLM in the wide-band limit. We proceed in two steps: first, we do a gauge transfor-
mation to move the time-dependence in the dot to the hoppings connected to the dot ; second, we use
the fact that the group velocity is infinite, within the wide band approximation, and move the time
dependent hoppings (that come from the gauge transformation) one site away from the central dot.
This enable us to separate the system into three subsystems so we can adopt the approach from Ref.
[63]: we obtain the scattering amplitudes of the total system by composing the (known) subsystem
scattering amplitudes.

Let us start with the first step. We perform a gauge change, according to Eq. (4.84), with the following
gauge function Λ

Λ𝑖(𝑡) = {𝜑(𝑡) if 𝑖 = 0
0 if 𝑖 ≠ 0 with 𝜑(𝑡) = − ∫

𝑡

𝑡0

𝑉 (𝑢)d𝑢 (6.44)

which leads to the following equivalent Hamiltonian (see Eq. (4.85)):

ℎ𝑖𝑗 =

⎧{{
⎨{{⎩

𝑉0 if 𝑖 = 𝑗 = 0
0 if 𝑖 = 𝑗 ≠ 0

−𝛾𝑐e−i𝜑(𝑡) if 𝑖, 𝑗 = 0, 1 or 0,−1
−𝛾𝑐ei𝜑(𝑡) if 𝑖, 𝑗 = 1, 0 or − 1, 0

−𝛾 if 𝑖 ≠ 𝑗

(6.45)

Second, we use the fact that in the wide band approximation, the dispersion relation becomes linear
and the group velocity is infinite. That means we can move the time-dependent hoppings one site away
from the dot and still describe the same system, because the changes propagate fast/instantaneously
(see Fig. 6.5): we will check numerically in Sec. 6.4 that this simplifying assumption is indeed justified
and provides the correct results under the WBL approximation.

Site
index

Wide-band limit

Figure 6.5. – Quantum dot approximation procedure. (a) Original tight-binding representation of the resonant
level model, described Fig. 6.1, after the gauge change given in Eq. (6.44). (b) Thanks to the wide band approxi-
mation, moving the time-dependent hoppings (due to the gauge change) one site away from the central site will
not affect the underlying described system as the changes propagate instantaneously.

This additional approximation enables us to subdivide the system then describe its transmission ma-
trix using the matrices of each subsystem. The subsystems are (from left to right): ‘Mirrored’ heaviside
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pulse in the (infinite) left lead, the stationary dot, and the heaviside pulse in the (infinite) right lead.
electrons do not reflect against the abrupt heaviside voltage drops in the leads (see Appendix. C.2), a
left incoming mode ∥+,𝐸

𝑥 will first be transmitted by the left pulse, with the transmission amplitude
𝑑′

p(𝜀, 𝐸), then transmitted or reflected by the stationary dot, whose scattering amplitudes are 𝑑0 and
𝑟0,

𝑑0(𝜀) = Γ
Γ + i(𝑉0 − 𝜀) , 𝑑0 − 𝑟0 = 1 ⟹ |𝑟0(𝜀)|

2 + |𝑑0(𝜀)|
2 = 1 (6.46)

with

Γ = 2𝛾2
𝑐/𝛾 (6.47)

to finally be transmitted by either of the pulses again. The scattering process between the subsystems
is sketched in Fig. 6.6.

Stationary
Quantum Dot

Mirror
Pulse Pulse

Incoming
mode

Reflected
mode

Transmitted
mode

Figure 6.6. – Scattering process for the approximating model to the time-dependent quantum dot. 𝑑p and 𝑑′
p are

respectively the left-to-right and right-to-left transmissions of the pulse in the right lead (described in Appendix.
C.2). Note that the pulse on the left of the stationary dot is its spatial mirror, which means its left-to-right
transmission/reflection is the original pulse’s right-to-left transmission/reflection. 𝑑0 and 𝑟0 are respectively the
transmission and reflection amplitudes of the stationary quantum dot given in Eq. (6.46).

The transmission and the reflection amplitudes of the entire system can then be written as the sum
over all the possible transmitted-to energies 𝜀:

𝑑(𝐸′, 𝐸) = ∫ d𝜀
2𝜋 𝑑′

p(𝜀, 𝐸) 𝑑0(𝜀) 𝑑p(𝐸′, 𝜀) (6.48a)

𝑟(𝐸′, 𝐸) = ∫ d𝜀
2𝜋 𝑑′

p(𝜀, 𝐸) 𝑟0(𝜀) 𝑑p(𝐸′, 𝜀) (6.48b)

where the transmissions amplitudes 𝑑′
p and 𝑑p are given by (See appendix. C.2)

𝑑′
p(𝜀, 𝐸) = 𝐾(𝜀 − 𝐸) 𝑑p(𝐸′, 𝜀) = 𝐾∗(𝜀 − 𝐸′) (6.49)

with 𝐾 being the Fourier transform of e−i𝜑

𝐾(𝑈) = ∫ d𝑡 e𝑖𝑈𝑡−𝑖𝜑(𝑡) (6.50)

Time domain To calculate the currents in the next section, we also need the fourier transformed
transmission and reflection amplitudes along their first argument:

𝑑(𝑡, 𝐸) = ∫ d𝐸′

2𝜋 𝑑(𝐸′, 𝐸) e−i𝐸′𝑡 𝑟(𝑡, 𝐸) = ∫ d𝐸′

2𝜋 𝑟(𝐸′, 𝐸) e−i𝐸′𝑡 (6.51)
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Using Eqs. (6.48) and (6.50), along with the fourier transforms ( ̃𝑑0, ̃𝑟0) of (𝑑0, 𝑟0), we obtain

𝑑(𝑡, 𝐸) = ei𝜑(𝑡) ∫ d𝑢 e−i𝜑(𝑢)−i𝐸𝑢 ̃𝑑0(𝑡 − 𝑢) (6.52a)

𝑟(𝑡, 𝐸) = ei𝜑(𝑡) ∫ d𝑢 e−i𝜑(𝑢)−i𝐸𝑢 ̃𝑟0(𝑡 − 𝑢) (6.52b)

where an analog derivation is made for the reflection amplitude. These can be seen as a convolution
between 𝑢 ↦ e−i𝜑(𝑢)−i𝐸𝑢 and ̃𝑑0 or ̃𝑟0.

Useful relations Within the particular class of RLM system we are considering (stationary leads,
time-dependent dot), one can use the Schrödinger equation (through Eqs. (6.39)) along with the wide-
band limit (exposed Sec. 6.2.1) to prove the following relation between the scattering amplitudes (see
Appendix. C.3)

𝑟(𝑡, 𝐸) = 𝑑(𝑡, 𝐸) − e−i𝑡𝐸 ⟹ |𝑟|2 = |𝑑|2 − 2Re[𝑑 ei𝐸𝑡] + 1 (6.53)

Also, the following relations can be derived using Eqs. (6.52a) and (6.46)

− [𝑉 (𝑡) + 𝑉0] |𝑑|2 = Im[𝑑∗𝜕𝑡𝑑] + Γ Im[e𝑖𝑡𝐸𝑑] (6.54a)
Γ Im[ei𝐸𝑡𝑑] + Im[ei𝐸𝑡𝜕𝑡𝑑] = − (𝑉 (𝑡) + 𝑉0) Re[ei𝐸𝑡𝑑] (6.54b)

𝜕𝑡 |𝑑|2 = −2Γ (|𝑑|2 − Re[ei𝐸𝑡𝑑]) (6.54c)

6.3. Analytical treatment of the generic RLM in the wideband
limit: deriving the transport quantities

In this section, we derive generic expressions for the time-resolved energy (and particle) currents and
the time-resolved input driving power. Then, we expose their time-integrated counterpart to finally
attempt a definition of an efficiency in the time-dependent regime.

6.3.1. Time-resolved currents and densities

Here, we write the expression of the time-resolved lead particle, energy and heat currents for the RLM,
using a generic transmission amplitude 𝑑(𝑡, 𝐸) within the wide-band limit. Note that we make use of
the system’s left-right symmetry through Eq. (6.34). More thorough derivations are done in Appendix.
C.4.

Particle current The wideband approximation is used to obtain simple expressions, as described in
Sec. 6.2.1. The development done in Appendix. C.4.1 leads to the following expression for the lead
particle currents within the WBL1 approximation

𝐼N,1
𝛼 (𝑡) = 𝐼N,1

𝛼,𝑥(𝑡) = ∫ d𝐸
2𝜋 𝑓𝛼(𝐸) [1 − |𝑟(𝑡, 𝐸)|2] − 𝑓�̄�(𝐸) |𝑑(𝑡, 𝐸)|2 (6.55)
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where 𝛼 = 𝐿,𝑅 is the considered lead, 𝑓𝛼 is the Fermi distribution, and ̄𝛼 is the other lead. If the
WBL2 approximation is used, we find

𝐼N,2
𝛼,𝑥(𝑡) = ∫ d𝐸

2𝜋 𝑓𝛼(𝐸) [1 − ∣𝑟(𝑡 + 𝑥+0.5
2𝛾 , 𝐸)∣2] − 𝑓�̄�(𝐸) ∣𝑑(𝑡 + 𝑥+0.5

2𝛾 , 𝐸)∣2 (6.56)

We notice that the strongest approximation WBL1 leads to a position independent expression of the
particle current, whereas WBL2 enables taking into account that the group velocity is in practice finite:
the particle current at further sites takes the same current as closer sites but shifted in time. WBL2
is nevertheless still too coarse to describe the spreading of the electronic pulse due to the (nonlinear)
dispersion relation in the leads (see Eq. (6.29)).

Dot’s particle density In appendix C.4.2, we make a short derivation for the dot’s particle density
𝜌0(𝑡)

𝜌0 = ∫ d𝐸
2𝜋 (𝑓𝑅 + 𝑓𝐿) 1

Γ |𝑑|2 (6.57)

This quantity is useful for understanding the transient regime. Indeed, electrons may be temporarily
stored in the dot: they contribute to the displacement current but also receive input work from the
external driving dot potential.

Input power Given its expression in (5.33), power is given to the system only on the sites −1, 0 and
1. We obtain the following expression for the input power in the right and left leads

𝑆𝜀
𝛼(𝑡) = −1

2𝑉 (𝑡)𝐼N
𝛼(𝑡) (6.58)

The total input power 𝑆𝜀 = 𝑆𝜀
−1+𝑆𝜀

0+𝑆𝜀
1 in the system writes using the particle conservation equation

(4.157)

𝑆𝜀(𝑡) = −𝑉 (𝑡) [𝐼N
L + 𝐼N

R ] = −𝑉 (𝑡) 𝜕𝑡𝜌0 = −𝑉 (𝑡) ∫ d𝐸
2𝜋 (𝑓𝑅 + 𝑓𝐿) 1

Γ𝜕𝑡 |𝑑|2 (6.59)

We can simply interpret this equation as: each electron leaving the site 0, at an instant t, takes an
energy 𝑉 (𝑡)

Energy current In Appendix. C.4.3, we derive formulas for the energy currents using the WBL1
approximation (see Sec. 6.2.1) in two special cases : far in the leads and for the hoppings that are
connected to the central site 0. When far within the leads the expression for energy current is the
generalization of the stationary Landauer-Buttiker formula (5.36b) with time-dependent transmission
and reflection probabilities (and the Hamiltonian energy currents (𝐼ℎ

𝛼,𝑥) coincide with the ”total energy”
current (𝐼𝜀

𝛼,𝑥) in these stationary leads)

𝐼ℎ,𝜀
𝛼,𝑥(𝑡) = ∫ d𝐸

2𝜋 𝐸 [𝑓𝛼(𝐸) [1 − |𝑟(𝑡, 𝐸)|2] − 𝑓�̄�(𝐸) |𝑑(𝑡, 𝐸)|2] (6.60)

Just like with the particle current, the above expressions are position independent. Note that in the
time-dependent regime the transmission and reflection probabilities are not trivially connected

1 − |𝑟(𝑡, 𝐸)|2 ≠ |𝑑(𝑡, 𝐸)|2 but ∫ d𝑡 [1 − |𝑟(𝑡, 𝐸)|2] = ∫ d𝑡 [|𝑑(𝑡, 𝐸)|2] (6.61)
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The expressions we obtain for the energy currents 𝐼𝜀
𝛼, evaluated on the hoppings (−1, 0) and (0, 1), are

different as additional terms are non-zero when considering the expression (4.94) on those sites (see
Appendix C.4.4)

𝐼𝜀
𝛼(𝑡) = 𝑆𝜀

𝛼(𝑡) + ∫ d𝐸
2𝜋

⎡
⎢
⎢
⎣

𝐸 [𝑓𝛼 (1 − |𝑟|2) − 𝑓�̄� |𝑑|2]
− (𝑓𝛼 + 𝑓�̄�) Im[𝐴𝜕𝑡𝐴∗]
− 𝑓𝛼 Re[𝜕𝑡𝐴]

(6.62)

where

𝐴 = −i ei𝐸𝑡𝑑 (6.63)

The formula in Eq. (6.62), that applies on the neighboring hoppings of the central site 0 is different
from the one in Eq. (6.60): we have observed (data not shown) that Eq. (6.60) yields results that do not
match with tkwant simulations, for energy currents evaluated far in the leads2. Using WBL2 instead
of WBL1 did not improve the mismatch. The reasons of the discrepancy are not yet clear but are (at
least) related to the fact that Eq. (6.60) do not account properly for the source term 𝑆𝜀

𝛼 i.e. the input
driving power. The time integral should not depend on whether the currents are evaluated near the
dot or far in the leads, this will become clearer in Eq. (6.70) where we express the time-integral of
the ‘dynamically injected’ energy current in each lead. In the following, we will calculate the currents
between the sites 0 and -1 (or 0 and 1) using WBL1 since our analytics in that case are confirmed by
exact tkwant simulations, this will be illustrated in Sec. 6.4.1.

Heat current Writing the heat current, as defined by Eq. (4.211), is straightforward by using the
energy current from Eqs. (6.62) and (6.58)

𝐼Q
𝛼(𝑡) = ∫ d𝐸

2𝜋
⎡
⎢
⎢
⎣

(𝐸 − 𝜇𝛼) [𝑓𝛼 (1 − |𝑟|2) − 𝑓�̄� |𝑑|2]
− (𝑓𝛼 + 𝑓�̄�) Im[𝐴𝜕𝑡𝐴∗]
− 𝑓𝛼 Re[𝜕𝑡𝐴]

(6.64)

Note that if we do not take into account the coupling Hamiltonian �̂�0𝛼 between the lead 𝛼 and the
central system, the resulting heat current ̃𝐼Q

𝛼 (defined in Eq. (6.23) in Sec. 6.1 in our linear response
study) will have the same expression but without the 𝑓𝛼 Re[𝜕𝑡𝐴] term. This implies that, for a finite
pulse 𝑉 (𝑡), the time-integral of 𝐼Q

𝛼(𝑡) − ̃𝐼Q
𝛼(𝑡) gives zero, given that the coupling Hamiltonian stores

only temporarily some energy.

6.3.2. Time integrated currents and densities

The time-resolved formulas for the transport quantities we gave in the previous section are generic:
they are valid under the WBL1 approximation for any drive 𝑉 (𝑡) of the dot. When 𝑉 (𝑡) is finite in time,
the contribution of the time-dependent drive can be assessed by computing ‘time-integrated deltas over

2The comparison was done in the case where 𝑉 (𝑡) is a square pulse. As shown later in Sec. 6.4, the scattering amplitudes
𝑑(𝑡,𝐸) and 𝑟(𝑡, 𝐸) can be calculated exactly in that case, so that Eq. (6.60) can be evaluated independently from
tKwant.
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the stationary regime’ (see proper definitions in the next paragraphs) for each quantity. For that pur-
pose, we define 𝑇 dyn as the time-integral of the ‘dynamical’ – the time-dependent part – transmission
probability |𝑑(𝑡, 𝐸)|2 − |𝑑0(𝐸)|2

𝑇 dyn(𝐸) = ∫ d𝑡 [|𝑑(𝑡, 𝐸)|2 − |𝑑0(𝐸)|2] (6.65)

Using Eqs. (6.53), (6.54c) and (6.46), we show that

𝑇 dyn(𝐸) = ∫ d𝑡 [|𝑟0(𝐸)|2 − |𝑟(𝑡, 𝐸)|2] (6.66)

where 𝑑0 and 𝑟0 are the initial stationary scattering amplitudes of the RLM, given in Eq. (6.46). We show
that the time-integrated currents have expressions that (partially) behave like stationary Landauer-
Büttiker formulas with 𝑇 dyn as an effective stationary-like transmission probability, like the one defined
in Eq. (5.37). An explicit expression for 𝑇 dyn(𝐸) will be given for the specific case of a square drive of
the dot in the next section. These ‘dynamical’ quantities are in general non-zero, which shows that the
time dependent-drive leaves a signature even when a time-integration is performed. We will use these
expressions (although with a finite-time integration) in the next section in our definition of electric
generation efficiency.

Particle number The dynamically injected number of particles 𝑁dyn
𝛼 throughout the pulse, in the

lead 𝛼, is straightforward to write using 𝑇 dyn:

𝑁dyn
𝛼 ≡ ∫ d𝑡 [𝐼N

𝛼(𝑡) − 𝐼N
𝛼 |𝑡=0] = ∫ d𝐸

2𝜋 𝑇 dyn(𝐸) [𝑓𝛼(𝐸) − 𝑓�̄�(𝐸)] (6.67)

This expression is a 1-to-1 analog to its stationary Landauer-Büttiker formula for particle currents in Eq.
(5.36a): all the theoretical developments made in the stationary regime can apply to this expressions
(e.g. linear response).

Input work The integration of the time resolved input power can be easily written from equation
(6.59)

𝑊 ext = ∫ d𝑡 𝑆𝜀 = ∫ d𝐸
2𝜋 𝑤(𝐸) [𝑓𝑅 + 𝑓𝐿] with 𝑤(𝐸) = −1

Γ 𝑉 (𝑡) 𝜕𝑡 |𝑑(𝑡, 𝐸)|2 (6.68)

Energy In this paragraph we will highlight a subtlety that explains our choice in defining the heat
current in Eq. (4.211). Let us write the energy conservation equation (4.172) at site −1, subtract the
stationary energy current 𝐼𝜀

L,−2(𝑡 = 0) = 𝐼𝜀
L (𝑡 = 0) and time-integrate it

∫ d𝑡 [𝐼𝜀
L,−2(𝑡) − 𝐼𝜀

L,−2|𝑡=0] = ∫ d𝑡 [𝐼𝜀
L (𝑡) − 𝑆𝜀

𝐿(𝑡) − 𝐼𝜀
L |𝑡=0] + [𝜌𝜀

−1(𝑡)]
𝑡=∞
𝑡=𝑡0⏟⏟⏟⏟⏟

=0

(6.69)

where we used the convention expressed in Eq. (6.3). This conservation equation shows that the time-
integral of the energy current on hopping (−2,−1) differs from the one on hopping (−1, 0) by the
source term 𝑆𝜀

L on site −1. In other words, the total ’dynamically injected’ energy ℰdyn
L is given by the

left-hand side of Eq. (6.69) if it is evaluated on hopping (−2,−1) while it is given by the right-hand side
of Eq. (6.69) – including the source term 𝑆𝜀

L – if it is evaluated on hopping (−1, 0). The two definitions
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coincide in virtue of energy conservation. Further derivation, done in Appendix. C.5.1, leads to the
following interesting result

ℰdyn
𝛼 = ∫ d𝑡 [𝐼𝜀

L (𝑡) − 𝑆𝜀
𝐿(𝑡) − 𝐼𝜀

L |𝑡=0] = ∫ d𝐸
2𝜋 [𝐸 𝑇dyn(𝐸) (𝑓𝛼 − 𝑓�̄�)] − 1

2𝑊 ext (6.70)

where we see that the total dynamically injected energy in the lead 𝛼 is a sum of two terms. The
first term can be seen as an effective Landauer-Büttiker formula and translates the fact that the 𝑁dyn

𝛼
electrons dynamically injected in the lead 𝛼 at different energies 𝐸 carry with them that same energy.
This term vanishes at equilibrium (𝜇𝐿 = 𝜇𝑅, 𝑇𝐿 = 𝑇𝑅). The second term is half of the total input
energy 𝑊 ext, meaning that 50% of the input driving energy is dissipated as heat in the left lead and
50% in the right lead, regardless of the electrochemical potential and temperature of each lead. Note
that this a consequence of the symmetry of the system, the dot being symmetrically coupled (with
hopping term 𝛾𝑐) to the left lead and to the right lead. Moreover, we notice that Eq. (6.70) coincides
with Eq.(53) of Ref. [50] derived for a random telegraph process 𝑉 (𝑡) modeled by a sum of square pulses
of different widths in time, after averaging over the random processes. In that paper, the derivation is
done with the NEGF formalism within the WBL approximation. On the contrary, we derived Eq. (6.70)
with a wave-function approach valid (in the WBL approximation) for an arbitrary pulse 𝑉 (𝑡) of finite
duration.

Heat Writing the dynamically injected heat 𝑄dyn
𝛼 in each lead is straightforward, using its definition

in Eq. (4.211) and the expression of ℰdyn
𝛼 given in Eq. (6.70)

𝑄dyn
𝛼 = ∫ d𝑡 [𝐼Q

L (𝑡) − 𝐼Q
L |𝑡=0] = ∫ d𝐸

2𝜋 [(𝐸 − 𝜇𝛼) 𝑇dyn(𝐸) (𝑓𝛼 − 𝑓�̄�)] − 1
2𝑊 ext (6.71)

With the plausible assumption that the input work is positive (𝑊 ext > 0, energy is given to the system),
this term can bring some difficulties when trying to define a heat engine efficiency as it can be the
dominant term and therefore heat both the reservoirs.

6.3.3. Electric generator efficiency

We try now to characterize the efficiency of the device when it operates as a heat engine. The elec-
tric heat engine efficiency is usually defined as the ratio between “useful power” and “spent power”:
identifying both terms is cumbersome in the time-dependent regime and several efficiencies may be a
priori defined, depending on whether one wants to take into account the potential effect of finite-size
baths, characterize the efficiency of the total process or only of the thermoelectric conversion.

In the stationary regime, the useful power is harvested from electrons climbing a chemical potential
bias between the two reservoirs, and the spent power is the heat current leaving the hot reservoir. A
necessary and sufficient condition to have a Seebeck effect is to have hot electrons climb a chemical
potential bias: let us assume that and consider 𝑇L > 𝑇R and 𝜇L < 𝜇R. The stationary efficiency writes:

𝜂st = (𝜇R − 𝜇L)𝐼N,st
L

𝐼Q,st
L

(6.72)

with 𝐼N,st
L > 0 and 𝐼Q,st

L > 0.
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One could naively extend this stationary definition to the time-dependent regime by adding the
(driving) input power while considering the time-dependence of each quantity

"𝜂(𝑡)" = (𝜇R − 𝜇L) [−𝐼N
R (𝑡)]

𝐼Q
L (𝑡) + 𝑆𝜀(𝑡)

(6.73)

Note that it would be important to pick −𝐼N
R (𝑡) instead of 𝐼N

L (𝑡), and 𝐼Q
L (𝑡) instead of −𝐼Q

R (𝑡), as they
are not equal : work is done only when electrons have effectively climbed the chemical potential and
reached the target lead ; and the spent heat is the one leaving the ‘hot’ reservoir. However, there are
several fundamental issues that need to be considered before going any further in attempting to define
an efficiency

1. The particle current 𝐼N
R , the heat current 𝐼Q

L and also a priori the source term 𝑆(𝑡), can change
sign in the time-dependent regime and the system will not always (at each time 𝑡) perform as
an electric generator: "𝜂(𝑡)" will not always be strictly positive nor smaller than the Carnot
efficiency. There might also be some specific time intervals where 𝐼Q

R (𝑡) > 0 i.e. heat is extracted
from the cold source even if 𝑇L > 𝑇R and 𝜇L < 𝜇R.

2. The time-dependent drive on the dot has a symmetrical contribution on the electric currents that
can blur out the notion of “useful energy”. To illustrate this, one can think of the case where the
time-dependent drive temporarily lowers the dot level up to the point where particle currents will
flow towards the dot from both leads. And conversely, when the dot level may be increased high
enough so that its particles will temporarily leave towards both leads where the potential is lower.
The notion of electrons traveling from one bath to the other while ‘climbing’ an electrochemical
potential bias would not apply in this considered transient regime.

3. The external time-dependent drive inputs energy 𝑊 ext in the system through the dot, that energy
will eventually leave towards both leads through electron-carried, and outgoing, energy and heat
currents. If the input power is high enough, it can even counterbalance the ‘natural’ hot to cold
heat flow (see Eq. (6.71)) so that both the left and right reservoirs are heated at the same time
(𝐼Q

L < 0, 𝐼Q
R < 0). In this case, one needs to think about the heat’s contribution to the “spent

energy”: the hot bath effectively would not lose but would win heat, which would naively indicate
that this heat should be subtracted from the ‘spent’ energy, which would positively impact the
efficiency. However, the cold bath does get heat nonetheless.

It is possible to define a more fitting, but still debatable, efficiency with some additional assumptions
and restrictions. Inspired by periodic drive studies [44, 150], we use a time-resolved ‘average behavior’
of the system and account for ‘net’ quantities: the ratio between the net useful energy and the net
spent energy, from 𝑡 = 𝑡0 and 𝑡 = 𝜏

𝜂(𝜏) = [𝜇R − 𝜇L](−𝑁R(𝜏))
𝑄L(𝜏) + 𝑊 ext(𝜏) (6.74)

where

∣
∣∣
∣

𝑁𝛼(𝜏)
𝑄𝛼(𝜏)
𝑊 ext(𝜏)

= ∫
𝜏

𝑡0

d𝑡
∣
∣∣
∣

𝐼N
𝛼(𝑡)

𝐼Q
𝛼(𝑡)

𝑆𝜀(𝑡)
(6.75)

For this heat engine efficiency to be interpretable, we make the following restrictions and hypotheses,
on top of our initial setup where 𝑇L > 𝑇R and 𝜇L < 𝜇R
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6.4. Rectangle drive of the dot

• For periodic steady-state regime, or finite-time pulses where the stationary regime is a Seebeck
regime, we consider that ‘useful’ energy is effectively harvested when there exists a time 𝜏𝜂
where we have

∀𝜏 >𝜏𝜂 𝑁R(𝜏) < 0 and 𝑁L(𝜏) > 0 (6.76)
so that a net (positive) amount of electrons went from one lead to the other and ‘climbed’ an
electrochemical bias.

• In the end, the efficiency is a matter of practical implementation of real life heat engines: in the
usual case where the hot bath is obtained artificially and the cold bath is the outside environment,
then it is physically understandable that the part of the input power that goes towards heating
the artificial, and finite-size, hot bath should not be counted in “spent energy”. We therefore
make this assumption and the efficiency 𝜂(𝜏) defined right above properly accounts for this
subtraction. Note that, within this hypothesis, the sign and value of 𝑄R(𝜏) has no impact on the
efficiency: heat can be lost to, or extracted from, the outside environment but the only energy
we spend is the sum of heat that the artificial hot reservoir loses and the driving input power.

In the next section, we undergo a numerical study of the RLM in the specific case of rectangle drive
of dot, using both tkwant and the analytical expressions derived previously. We will showcase the
issues 1, 2 and 3 outlined above and study the efficiency 𝜂(𝑡) with the restrictions and considerations
we exposed here.

6.4. Rectangle drive of the dot

In this section, we consider a specific drive 𝑉 (𝑡) in the dot’s onsite Hamiltonian ℎ0(𝑡) (see Eq. (6.2))
that is a rectangle function

𝑉 (𝑡) = Δ𝑉 Θ(𝑡)Θ(Δ𝑡 − 𝑡)
The phase 𝜑(𝑡) from the gauge change in Eq. (6.44) writes:

𝜑(𝑡) = − ∫
𝑡

0
d𝑢 𝑉 (𝑢) = −𝑡 × Δ𝑉 Θ(𝑡) Θ(Δ𝑡 − 𝑡) − Δ𝑉 Δ𝑡Θ(𝑡 − Δ𝑡) (6.77)

𝐾 , defined in (6.50), has the following expression in this case:

𝐾(𝐸) = i Δ𝑉
𝐸(𝐸 + Δ𝑉 ) (eiΔ𝑡(𝐸+Δ𝑉 ) − 1) + 𝜋 (eiΔ𝑡Δ𝑉 + 1) 𝛿(𝐸) (6.78)

Given the expression of the scattering amplitudes of the stationary dot in (6.46), their Fourier transforms
write as:

̃𝑑0(𝑡) = Γ e−𝑡Γe−i𝑡𝑉0 Θ(𝑡) ̃𝑟0(𝑡) = −𝛿(𝑡) + ̃𝑑0(𝑡) (6.79)
This enables us to use (6.52a) to calculate the transmission amplitude 𝑑(𝑡, 𝐸). Using a CAS software
(like Mathematica), or the residue theorem one can show that it simplifies to

𝑑(𝑡, 𝐸) =
⎧{
⎨{⎩

𝑑𝐸
0 e−i𝑡𝐸 if 𝑡 ≤ 0

𝑑𝐸
1 e−i𝑡𝐸 + e−Γ𝑡−i𝑡(𝑉0+Δ𝑉 ) [𝑑𝐸

0 − 𝑑𝐸
1 ] if 0 ≤ 𝑡 ≤ Δ𝑡

𝑑𝐸
0 e−i𝑡𝐸 + e−(Γ+i𝑉0)(𝑡−Δ𝑡) [e−Δ𝑡[i(𝑉0+Δ𝑉 )+Γ] − e−iΔ𝑡𝐸] [𝑑𝐸

0 − 𝑑𝐸
1 ] if Δ𝑡 ≤ 𝑡

(6.80)
where 𝑑𝐸

0 and 𝑑𝐸
1 are shorthand notations for 𝑑0(𝐸) and 𝑑1(𝐸) = 𝑑0(𝐸 − Δ𝑉 ) (transmission of

the stationary dot after the Δ𝑉 jump) given in Eqs. (6.46). The reflection amplitude 𝑟(𝑡, 𝐸) can be
expressed with 𝑑(𝑡, 𝐸) by using equation (6.53).
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6. Application: Time-dependent Resonant Level Model

6.4.1. Comparing the analytical formulas to tkwant

We use the expressions derived in the WBL approximation for the time-resolved and time-integrated
currents and densities (see Sec. 6.3) and numerically integrate them. On the other hand, we per-
form tkwant+tkwantoperator simulations using the scaling procedure described in Sec. 5.3.2.2,
parametrized by the wide band parameter 𝑤𝑏 defined as

𝑤𝑏 = 𝜆𝛾/Γ (6.81)

We compare our data obtained with both approaches in the limit of large 𝑤𝑏 ≫ 1, where the WBL is
reached.

First, we compute the time-resolved particle (𝐼N
𝛼 ), energy (𝐼𝜀

𝛼) and heat (𝐼Q
𝛼 ) currents, as well as

the energy input power/source (𝑆𝜀) and their finite time-integrals as defined in Eq. (6.75). We find
good agreement in the WBL between tkwant simulations and the analytical expressions, over an
example set of parameters (see Fig. 6.7) and showcase some interesting dynamics. The considered
RLM is initially put in a stationary heat engine configuration then the dot level undergoes a rectangle
function with an upward jump. The transient regime can be split into two phases: during the pulse
and right after. During the pulse, electrons that were on the dot, win energy, then are expelled towards
both leads. The energy they carry has a heat contribution that reduces the outgoing heat from the hot
reservoir and increases the heat going to the cold reservoir.

Moreover, we perform another comparison between tkwant+tkwantoperator and our analyti-
cal formulas for the ‘dynamical’ time-integrated quantities exposed in Sec. 6.3.2. In Fig. 6.8, each point
corresponds to the time-integrated response of the system to a single square pulse of width Δ𝑡. Data
are plotted for various values of Δ𝑡, keeping constant the area Δ𝑡Δ𝑉 of the pulse (so that the limit
of short pulses coincides with the Dirac pulse limit). Once again, the WBL is approached numerically
with tKwant by increasing the parameter 𝑤𝑏. We find perfect agreement between analytics and tKwant
simulations for large Δ𝑡 while larger and larger deviations appear when Δ𝑡 is decreased (at fixed 𝑤𝑏).
This behavior can be understood after noticing that the time-dependent drive induces inelastic scat-
tering processes in an energy range of width Δ𝑉 around 𝜇L, 𝜇R. When Δ𝑡 decreases, Δ𝑉 increases
and becomes comparable to the band width in the leads given by 2𝜆𝛾 = 2𝑤𝑏Γ. In that case, 𝑤𝑏 is not
large enough to reach the WBL. However, increasing 𝑤𝑏 also increases the effective size of the leads
in tKwant (see Sec. 5.1.3) so that treating large values of 𝑤𝑏 is computationally expensive.

Besides, we notice that all data shown in this section have been plotted after a proper scaling with
Γ. Indeed, the previously used variables can be made dimensionless by expressing them in terms of Γ:

(𝑉0,Δ𝑉 , 𝜇α, 𝑇α) = Γ ( ̄𝑉0, Δ𝑉 , ̄𝜇α, ̄𝑇α) (𝑡,Δ𝑡) = 1/Γ ( ̄𝑡, Δ𝑡) (6.82)

And these can be used to define dimensionless currents and powers as they do not depend on Γ any-
more:

𝐼𝑁 (𝑡, Δ𝑡, 𝑉0,Δ𝑉 , 𝜇α, 𝑇α, Γ) = Γ ̄𝐼𝑁( ̄𝑡, Δ𝑡, ̄𝑉0, Δ𝑉 , ̄𝜇α, ̄𝑇α) (6.83)
[𝐼𝜀, 𝐼h, 𝑆𝜀](𝑡, Δ𝑡, 𝑉0,Δ𝑉 , 𝜇α, 𝑇α, Γ) = Γ2 [ ̄𝐼𝜀, ̄𝐼h, ̄𝑆𝜀]( ̄𝑡, Δ𝑡, ̄𝑉0, Δ𝑉 , ̄𝜇α, ̄𝑇α) (6.84)

Using analytical formulas derived in Sec. 6.3.1, it is easy to show that the dimensionless (overlined)
currents and powers are independent of Γ. This scaling has been tested numerically and is illustrated
in Fig. 6.9 for two values of Γ, both for the analytical calculations and for the tKwant simulations in
the WBL.
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6.4. Rectangle drive of the dot

Right (cold) Left (hot) Analytical tKwant

0.50.50.5

0.50.50.5

Figure 6.7. – Full tkwant+tkwantoperator (full lines) and analytical (dots) simulations of the RLM when
its dot energy level ℎ0(𝑡) undergoes a rectangle drive ℎ0(𝑡) = 𝑉0 + Δ𝑉 Θ(𝑡)Θ(Δ𝑡 − 𝑡) while initially in a high
efficiency (> 0.8𝜂C) heat generator configuration. The time-resolved particle current 𝐼N

𝛼 , energy current 𝐼𝜀
𝛼, heat

current 𝐼Q
𝛼 and total input power 𝑆𝜀 are computed (top panels), along with their finite-time integration (bottom

panels), as defined in Eq. (6.75). In the transient regime, a sudden burst of electrons flow from the dot to both of
the leads, while carrying energy and heat from the external drive. These additional energetic electrons contribute
negatively (i.e reduce) to the heat leaving the hot left bath while they heat the cold bath more. This transient
regime has a positive impact on the heat-engine efficiency 𝜂(𝜏), as defined in Eq. (6.74) (see Fig. 6.10), while
noting that 𝑊 ext(𝜏) has a negligible value with respect to the other terms. The dot’s particle density is then
slowly filled back by electrons from both reservoirs and the system goes back to its original stationary state.
Simulation parameters (energies are in units of Γ and times in units of 1/Γ): 𝑇L = 87, 𝑇R = 25, 𝜇L = −26, 𝜇R =
26, 𝑉0 = 55, Δ𝑉 = 2,Δ𝑡 = 0.08, 𝑡0 = 0.1. tkwant specific parameters: 𝑤𝑏 = 400, 𝛾 = 1
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6. Application: Time-dependent Resonant Level Model

Figure 6.8 – Comparison between
tkwant+tkwantoperator (dots
connected with solid lines) and our
analytical expressions (dotted lines)
for the time-integrated ‘dynamical’
transport quantities, described in Sec.
6.3.2. tkwant simulations are run for
three values of 𝑤𝑏 (shades of colors)
to study the convergence towards the
WBL. We test here the limit of short
pulses with constant area. For that
matter, we change simultaneously Δ𝑉
and Δ𝑡 (see Eq. (6.77)) so their product
is constant. We see here that higher
values of 𝑤𝑏 enable tkwant to match
analytical curves for shorter pulses
(though the limit of very short pulses
Δ𝑡 ≲ 0.5 – for which Δ𝑉 ≳ 20 – is
not reached even for 𝑤𝑏 = 300 – for
which the band width 2𝑤𝑏Γ = 48 is not
big enough compared to Δ𝑉 ). Values
taken: Γ = 0.08, 𝛾 = 1, 𝑡0 = 0.1, 𝑉0 =
0.5,Δ𝑉 = 9.75/Δ𝑡, 𝜇L = 0.5, 𝜇R =
−0.5, 𝑇L = 1, 𝑇R = 0

Left

Right

tkwant

analytical

Figure 6.9 – Transport quantities as cal-
culated from analytical formulas (sym-
bols) and by tkwant (lines), for two val-
ues of Γ (Γ = 0.04 (circles and light
colors) and Γ = 0.08 (triangles and
dark colors)). The set of data for both
values of Γ are perfectly superimposed.
The discrepancy points between analyt-
ics and numerics for the energy and heat
currents, at the time of jump 𝑡 = 𝑡0,
is a signature of a singularity appear-
ing in the WBL [37]. For Γ = 0.04
and Γ = 0.08, the other values being
fixed to ̄𝑡0 = 0.1, Δ𝑡 = 3.9, ̄𝑉0 =
0.5, Δ𝑉 = 0.5, ̄𝜇L = −0.1, ̄𝜇R =
0.1, ̄𝑇L = 0.11, ̄𝑇R = 0.09, 𝑤𝑏 = 500

Left

Right or

tkwant

analytical
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6.4. Rectangle drive of the dot

6.4.2. An improved, but unusable, efficiency in the transient regime

Our goal is to identify if there exist some regimes where the heat engine efficiency is improved by such
time-dependent drive. For that, we derived analytical expressions for the finite-time integrated quan-
tities3, described in Eq. (6.75), and ran an algorithm that randomly explores various sets of parameters
(𝑇𝛼, 𝜇𝛼, 𝑉0,Δ𝑉 , Δ𝑡) while still trying to make equidistant points with respect to the corresponding
stationary efficiency (we used a Python package called Adaptive [140] to achieve that). The effi-
ciency 𝜂(𝜏) we were monitoring is the one defined in Eq. (6.74) and discussed in Sec. 6.3.3. Various
(𝑇𝛼, 𝜇𝛼, 𝑉0,Δ𝑉 , Δ𝑡) sets turn out to show an improved efficiency in the transient regime, including
the one used in Fig. 6.7: its efficiency in the transient regime even exceeds the Carnot limit but decreases
back to its stationary value at long times, one can also note that the input energy 𝑊 ext is negligible and
does not affect the efficiency. One may think of cycling the drive, at a period 𝜏𝑝 that coincides with a
high transient efficiency of the first pulse 𝜂(𝜏𝑃 ) > 𝜂st, but the efficiency 𝜂(𝜏) – that accounts for net
(integrated) quantities between 𝑡 = 0 and 𝑡 = 𝜏 – also converges to a lower value (smaller than 𝜂C),
the steady state periodic value: further research (with e.g. a Floquet approach) is needed to assess the
steady state value 𝜂(𝜏) is converging to, but we find empirically that this value is close to the initial
stationary efficiency 𝜂st. Cycling does although make the back-to-stationary convergence time of the
efficiency longer (see Fig. 6.10). This transient improvement of the efficiency cannot be leveraged as-is
in real world heat engines, as what is initially won eventually ends up being given back. A similar
behaviour was observed in the classical experiment reported in Ref. [178] where a Peltier cooler has
its cooling power temporarily improved when driven by a rectangular electric current pulse, see Fig.
6.11

Figure 6.10. – An improved transient efficiency of the RLM. When the dot level is driven by a rectangle func-
tion, the particle and heat currents can behave in such a way (see Fig. 6.7 for a description) that the efficiency
𝜂(𝜏) (defined in Eq. (6.74), under the assumptions stated Sec. 6.3.3) is temporarily improved. The left panel is
the resulting efficiency of a single pulse whereas the right panel is the resulting efficiency of the same pulse,
periodically cycled with a period 𝜏𝑝. Both curves are plotted in the inset of the right panel to show they coincide
till 𝜏 = 𝜏𝑝. We notice that this has the effect of delaying the return to a lower efficiency but does not seem to
maintain a steady-state improvement. Both curves have been obtained through tkwant+tkwantoperator
simulations. This result is reminiscent of the reported results of Ref. [178] on a Peltier cooler. Simulation pa-
rameters (energies are in units of Γ, times are in units of 1/Γ): 𝑇L = 87, 𝑇R = 25, 𝜇L = −26, 𝜇R = 26, 𝑉0 =
55,Δ𝑉 = 2,Δ𝑡 = 0.08, 𝑡0 = 0.1, 𝜏𝑝 = 0.11, 𝑤𝑏 = 400, 𝛾 = 1.

3They are not given in this thesis since each of them is heavy to write (i.e. is several lines long) and is hard to inter-
pret. However, these analytical expressions make the numerical evaluation much faster. This allows us to perform a
systematic and fine investigation of the parameter space.

145



6. Application: Time-dependent Resonant Level Model

Figure 6.11 – Taken from Ref. [178]. Temporary
‘super-cooling’ of a real-life Peltier module when
rectangle-driven by an electric current. The cold
surface of the cooler gets abruptly cooled for a tran-
sient duration then undergoes a longer and stronger
hot back action, after the end of the pulse.

6.5. Limitations of the model and perspectives

The time-dependent drive heats both the hot and cold reservoir, regardless of the electrochemical or
temperature biases. One would want to not waste extra heat in the cold bath, both in a heat engine and
cooler configuration, even more in the latter case. A possibility is the make the system not symmetrical
with respect to the dot by making the lead-dot matrix element 𝛾𝑐, defined in the Hamiltonian in Eq.
(6.2) side-dependent

𝛾𝑐 → 𝛾L or 𝛾R (6.85)

We have explored this lead and re-derived the formulas expressed in this chapter: they simply get re-
normalized according to a dimensionless asymmetry factor 𝑎 = (ΓR − ΓL)/(ΓR + ΓL) where Γ𝛼 =
2𝛾2

𝛼/𝛾. This offers an extra knob in controlling the current flows between the left and right leads, it
is however too ‘global’ as it plays on the coupling strengths Γ𝛼 that affect all the transport quantities:
e.g. lowering the coupling with cold bath indeed reduces the heat flow towards it but also the particle
flow, which lowers the ‘useful’ power output. On the other hand, since the equations have the same
(re-normalized) form, no extra effect will arise from this change.

Further models can be studied to attempt to work around the limitations of this simple RLM model.
A few possibilities can already be considered

• Add stationary dots, for energy filtering purposes, around the central time-dependent dot. If
the central dot’s Hamiltonian matrix element ℎ0(𝑡) is driven between 𝑉0 and 𝑉0 + Δ𝑉 , the
stationary filter dots can be fine-tuned so that (i) the dot in contact with the hot bath (𝑇L, 𝜇L)
has a relatively narrow transmission window around 𝑉0 ≈ 𝜇L whereas (ii) the dot in contact
with cold bath (𝑇R, 𝜇L), with 𝑇R < 𝑇L and 𝜇R > 𝜇L, has its transmission window tuned around
𝑉0 +Δ𝑉 ≈ 𝜇𝑅. This approach may offer better control on where the drive-generated heat goes,
thanks to the filter dots.

146



6.5. Limitations of the model and perspectives

• For cooling, one could consider using a third bath to redirect the extra generated heat to, and
avoid “staining” the cold bath with the spurious heat that would come from the time-dependent
drive. The means to achieve this have although to be thought through.
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7. Conclusion

With the current progress in high frequency quantum experiments at low temperatures, theoretical and
numerical tools have been developed jointly, and initially, for particle transport. Research in quantum
thermodynamics and mesoscopic thermoelectricity (which is a subcategory of the former) have been
led in parallel and the question of time-dependence is a central building-block for a consistent theory.
This thesis work is one more contribution in these developments: it bridges the gap between one of the
theoretical tools developed for time-dependent particle transport and time-dependent thermoelectric
transport.

The objective was to bring new insights of the possible effects of time-dependence in quantum ther-
moelectrics. We started by going through the already developed scattering theory of non-interacting
particle transport, the theoretical description in this thesis has nearly entirely avoided the use of the
NEGF formalism thanks to the fruitful work behind the tkwant [1] simulation library, initiated dur-
ing the PhD thesis of B. Gaury [63] (in X. Waintal’s group at CEA Grenoble), that resulted into an
intuitive and simple description through system-wide one-body wavefunctions. Then, we brought the
pieces together from past literature to build upon the wavefunction particle transport: no new con-
cept has been developed in this thesis, our work consisted in formulating properly and consistently a
framework for time-dependent energy transport in arbitrary non-interacting systems. Our approach
abode by two driving principles: electromagnetic gauge invariance and a specific form of local en-
ergy conservation where the source term recovers the quantum equivalent to the classical definition
⃗𝑗( ⃗𝑟, 𝑡) ⋅ ⃗𝐸( ⃗𝑟, 𝑡) – where ⃗𝑗 is the charge current density and ⃗𝐸 is the time-dependent part of the elec-

tric field – as the considered Hamiltonian �̂� is semi-classical (light is not quantified). We derived the
energy conservation equations in the one-body and many-body approaches, in both the continuous
space and discrete spaces, the similarities between each approach were highlighted and understood.
We then use this framework to extend tkwant, a powerful library that offers time-resolved simula-
tions of realistic quantum tight-binding systems. A relatively substantial part of my work has been
spent on understanding the inner workings of tkwant to extend it to energy transport and to a lesser
extent, improve some functionalities ; a proper Python module, tkwantoperator has been written
from scratch with extensive documentation and testing. tkwantoperator is open source and freely
available at gitlab.kwant-project.org/kwant/tkwantoperator.

Once we finished developing and validating the module, we showcased the potential of the extended
tkwant by simulating a Quantum Point Contact model, in the Peltier regime, made of more than
thousand sites, and for long simulation times. The first results over the thermoelectric performance of
such a model where difficult to grasp due do its complexity. To avoid blind exploration, we decided to
go back to a simpler model, the Resonant Level model. Our goal was to better understand the reported
predicted boost [219] of its thermoelectric efficiency: using exactly the model and definitions used in
that reference, we reproduced within our own approach the reported results. The same comparison was
done against other theoretical works. This allowed us to validate our approach and to better understand
the hypotheses assumed in those papers. Then, we performed an analytical derivation of the transport
quantities under an arbitrary drive of the dot, in the wideband limit, and obtained generic formulas for
all the transport quantities where some general features were highlighted. We discussed the underlying
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7. Conclusion

issues in defining a heat engine efficiency in the driven regime: the distinction between ‘useful energy’
and what is the ‘spent energy’ is a delicate subject ; and one must account for the driving input power,
and its effect, in the energy bill. A joint semi-analytical (we integrate our analytical formulas) and
numerical (using tkwant+tkwantoperator) study followed, with a rectangle-like drive of the dot,
where the system-bath coupling has been taken into account (see Sec. 1.2.2). We found that the time-
dependent drive can temporarily improve the heat generator efficiency of this model but does not
seem to bring a lasting advantage. Other models, inspired by our understanding of the RLM, could be
investigated for which our extension to tkwant comes in handy as it enables testing out ideas on any
tight-binding system.

Perspectives

The tkwant + tkwantoperator platform offers is a first milestone towards the simulation of time-
dependent (charge and energy) quantum transport in realistic nanodevices. The full potential of the
numerical approach is yet to be leveraged by further studies as the only complex system we quickly
explored is the Quantum Point Contact. On the other hand, our framework suffers from intrinsic
limitations whose roles remain to be evaluated. The following points may be worth evaluating in
additional studies:

Heat current There is no still no consensus in the literature about the proper definition of a time-
resolved heat current. In this thesis, we have defined electronic heat currents in the leads at a given
position and time, with the idea that electrons relax afterwards in the electronic reservoirs (a ‘book-
keeping procedure’ also used in Ref. [47]). Far in the leads, we wrote time-resolved heat current
𝐼Q = 𝐼𝜀 − 𝜇𝐼N, where 𝐼𝜀 is the total energy current and 𝐼N the particle current and 𝜇 is the bath’s
chemical potential. This expression is based on the stationary hypothesis that electrons entering the
bath at energy 𝐸 bring in an 𝐸 − 𝜇 heat contribution. This definition may need further studying from
first principles while taking into account relaxation processes (e.g. with electron-electron or electron-
phonon interaction) within a finite-size baths to fully understand the separation between the ‘work’
and ‘heat’ part of the incoming energy flux in the bath. Ref. [6] already led an initial study with ‘Fermi
mesoreservoir’ with a finite number of energy levels that relax in turn in Lindblad baths. Having a clear
understanding of the separation between ‘work’ and ‘heat’, especially in the time-dependent regime,
will help bringing in more definite answers to the role of dynamical driving in thermoelectrics.

Electromagnetic back-action – electron-electron interaction In our approach, the considered
electromagnetic control is externally imposed and electrons do not affect it. A first approach is to
consider electrostatics and solve the Poisson equation self-consistently while the electrons are still
described quantum mechanically

∇⃗2𝑉𝑖(𝑡) + 𝜌𝑖(𝑡)
𝜀0

= 0 (7.1)

where 𝜌𝑖(𝑡) is given Eq. (4.158), this problem is called the ‘self-consistent Hartree’ or the ‘Poisson-
Schrödinger problem’. X. Waintal’s group is currently actively working on implementing this within
kwant in the stationary regime [11] and tkwant in the time-dependent regime [100, 164]. One could
take the development further by also treating the electron’s radiation in the time-dependent regime
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with the electromagnetic potentials’ wave equations [91]

1
𝑐2 𝜕2

𝑡 [
⃗𝐴( ⃗𝑟, 𝑡)

𝜙( ⃗𝑟, 𝑡) − ∇⃗2 [
⃗𝐴( ⃗𝑟, 𝑡)

𝜙( ⃗𝑟, 𝑡) = 4𝜋 [ ⃗𝑗( ⃗𝑟, 𝑡)/𝑐
𝜌( ⃗𝑟, 𝑡) (7.2)

in the Lorentz gauge 𝜕𝑡𝜙/𝑐+∇⃗ ⃗𝐴 = 0. Although the conditions of applicability need to be studied too.

Spin and energy The development made in this thesis describes electrons without consideration for
the spin. A first step towards considering spin is with the Zeeman coupling within the Pauli equation
[172] for which it is straightforward to extend the energy quantities. In the basis that diagonalize ̂𝑆𝑧,
the Pauli equation writes

𝑖ℏ𝜕𝑡 [𝜓+
𝜓−

] = ( 1
2𝑚( ⃗𝑝 − 𝑞 ⃗𝐴)2 + 𝑞𝜙 + 𝑉 ) 𝟙 [𝜓+

𝜓−
] − ℏ𝑞

2𝑚 ∑
𝛼=𝑥,𝑦,𝑧

𝐵𝛼𝜎𝛼 [𝜓+
𝜓−

] (7.3)

where 𝟙 is the two-dimensional identity matrix and (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) are the 2 × 2 Pauli matrices. Given
that the resulting Hamiltonian is diagonal with respect to the spin for the term 1

2𝑚( ⃗𝑝−𝑞 ⃗𝐴)2 +𝑞𝜙+𝑉 ,
the source term 𝑆𝜀

𝑖 will still give rise to the classical term (−∇⃗𝜙𝑖 − 𝜕𝑡 ⃗𝐴𝑖) ⋅ ⃗𝑗𝑖 (as given in Eq. (4.188)),
and an additional term

∑
𝛼=𝑥,𝑦,𝑧

∑
𝜎𝜎′

(𝜕𝑡𝐵𝛼
𝑖 )𝜎𝛼

𝜎𝜎′𝐺<
𝑖𝜎′𝑖𝜎 = ∑

𝛼=𝑥,𝑦,𝑧
(𝜕𝑡𝐵𝛼

𝑖 ) tr [𝜎𝛼G<
𝑖𝑖] (7.4)

However, further research is needed when a Hamiltonian with relativistic corrections – such as spin-
orbit coupling, the relativistic mass correction or the darwin term [171] – is considered : issues such
as defining a proper energy operator, deriving a local energy conservation equation and figuring out
regimes where the extra terms have non-negligible contribution need to be tackled.
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Appendix A. First quantization derivations

In this appendix, we derive the main equations of Sec. 4.2, written for a single electron described by a
wavefunction 𝜓.

A.1. Particle transport

In this section we expose the derivation of the particle conservation equation, both in its continuous
and discrete version.

A.1.1. Continuous

We derive here the continuous one-body particle conservation equation expressed Eq. (4.56).

→ Current divergence Using the definition of the velocity operator ⃗𝑣 given in (4.44), the particle
current writes

⃗𝑗 = ℏ
𝑚 Im[𝜓∗(∇⃗𝜓)] − 𝑞

𝑚𝜓∗𝜓 ⃗𝐴 (A.1)

this enables us to write its divergence

∇⃗ ⋅ ⃗𝑗 = 1
𝑚(ℏ Im[ ∇⃗𝜓∗ ⋅ ∇⃗𝜓⏟⏟⏟⏟⏟

∈ℝ ⟹ Im[⋯]=0
+𝜓∗Δ𝜓] − 𝑞[ 𝜓 (∇⃗𝜓∗ ⋅ ⃗𝐴) + 𝜓∗ (∇⃗𝜓 ⋅ ⃗𝐴)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=2 Re[𝜓∗(∇⃗𝜓⋅ ⃗𝐴)]=2 Im[i𝜓∗(∇⃗𝜓⋅ ⃗𝐴)]

+𝜓∗𝜓∇⃗ ⋅ ⃗𝐴⏟⏟⏟⏟⏟
∈ℝ

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=Im[2i𝜓∗(∇⃗𝜓⋅ ⃗𝐴)+i𝜓∗𝜓∇⃗⋅ ⃗𝐴]

) (A.2)

which finally gives

∇⃗ ⋅ ⃗𝑗 = 1
𝑚 Im[ℏ𝜓∗Δ𝜓 − 2i𝑞𝜓∗ (∇⃗𝜓 ⋅ ⃗𝐴) − i𝑞𝜓∗𝜓∇⃗ ⋅ ⃗𝐴] (A.3)

→ Density time derivative The time derivative of the probability density is

𝜕𝑡𝜌 = (𝜕𝑡𝜓∗)𝜓 + 𝜓∗(𝜕𝑡𝜓)

The Hamiltonian can be used to express the time derivative of the wavefunctions

𝜕𝑡𝜓 = − i
ℏℎ̂[𝜓] and 𝜕𝑡𝜓∗ = i

ℏℎ̂[𝜓]∗ (A.4)

153



Appendix A. First quantization derivations

→ Conservation equation By writing the explicit expression of the effect of the Hamiltonian on a
wavefunction:

ℎ̂[𝜓] = 1
2𝑚 [−ℏ2Δ𝜓 + iℏ𝑞 (2∇⃗𝜓 ⋅ ⃗𝐴 + 𝜓∇⃗ ⋅ ⃗𝐴) + 𝑞2𝐴2𝜓] + 𝑞 𝜙 𝜓 + 𝑉 𝜓 (A.5)

we obtain an explicit expression for the density time derivative (A.6) . Given that 𝑞2𝐴2𝜓∗𝜓 and 𝜓∗𝜓
don’t have an imaginary part, we obtain:

𝜕𝑡𝜌 = 1
𝑚 Im[−ℏ𝜓∗Δ𝜓 + 2i𝑞𝜓∗ (∇⃗𝜓 ⋅ ⃗𝐴) + i𝑞𝜓∗𝜓∇⃗ ⋅ ⃗𝐴] (A.6)

By comparing (A.3) with (A.6), we verify (4.56).

→ Gauge invariance Lets write the expression of ⃗𝑣′ in the ‘original’ gauge:

⃗𝑣′ = −i ℏ
𝑚∇⃗ − 𝑞

𝑚( ⃗𝐴 − ∇⃗Λ) (A.7)

Its action on the wave function 𝜓′ = exp(−i 𝑞
ℏΛ)𝜓 is then:

⃗𝑣′𝜓′ = [− 𝑞
𝑚∇⃗Λ − i ℏ

𝑚∇⃗𝜓] exp(−i 𝑞ℏΛ) − 𝑞
𝑚( ⃗𝐴 − ∇⃗Λ) exp(−i 𝑞ℏΛ)𝜓 (A.8)

= [−i ℏ
𝑚∇⃗𝜓 − 𝑞

𝑚
⃗𝐴𝜓] exp(−i 𝑞ℏΛ) = [ ⃗𝑣𝜓] exp(−i 𝑞ℏΛ) (A.9)

Hence:

⃗𝑗′ = Re[𝜓′∗ ⃗𝑣′𝜓′] = Re[exp(i 𝑞ℏΛ)𝜓∗[ ⃗𝑣𝜓] exp(−i 𝑞ℏΛ)] = Re[𝜓∗ ⃗𝑣𝜓] = ⃗𝑗 (A.10)

A.1.2. Discrete

To derive here the particle conservation equation given Eq. (4.86), we use Eq. (4.87) and time derivate
it

𝜕𝑡𝜌𝑖 = [d𝑡𝜓∗
𝑖 ] 𝜓𝑖 + 𝜓∗

𝑖 [d𝑡𝜓𝑖]

then, by inserting the discrete Schrodinger equation (4.79), we find

𝜕𝑡𝜌𝑖 = 1
ℏ ∑

𝑗
−𝑖 [𝜓∗

𝑖ℎ𝑖𝑗𝜓𝑗 − 𝜓𝑖ℎ∗
𝑖𝑗𝜓∗

𝑗] (A.11)

which gives the conservation equation (4.86).

To derive relation Eq. (4.89) between the hopping particle current 𝐼N
𝑖𝑗 and the discrete particle current

density vector ⃗𝑗𝑖, we use discretized version of the gradient operator Eq. (4.80) to write the current
density vector from the continuum Eq. (A.1)

⃗𝑗𝑖 = ∑
𝛼=𝑥,𝑦,𝑧

[ ℏ
2𝑚𝑎 Im[𝜓∗

𝑖 (𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖))] − 𝑞
𝑚𝜓∗

𝑖𝜓𝑖𝐴𝛼
𝑖 ] ⃗𝑒𝛼 (A.12)
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A.2. Energy transport

On the other hand, to express 𝐼𝑁
𝑖𝑗 we use ℎ̂[𝜓]𝑖 given in Eq. (4.81) to expand the discrete current density

⃗𝑗𝑖 given by Eq. (4.89)
𝑎
2 [𝐼𝑁

𝑖,𝑛𝛼(𝑖) − 𝐼𝑁
𝑖,𝑝𝛼(𝑖)]

= −𝑎
ℏ Im[𝜓∗

𝑖ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − 𝜓∗
𝑖ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)]

= Im[𝜓∗
𝑖 ([ ℏ

2𝑚𝑎 − i 𝑞
2𝑚𝐴𝛼

𝑖 ]𝜓𝑛𝛼(𝑖) − [ ℏ
2𝑚𝑎 + i 𝑞

2𝑚𝐴𝛼
𝑖 ]𝜓𝑝𝛼(𝑖))]

= ℏ
2𝑚𝑎 Im[𝜓∗

𝑖 (𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖))] − 𝑞
𝑚𝐴𝛼

𝑖 Re[𝜓∗
𝑖
𝜓𝑛𝛼(𝑖) + 𝜓𝑝𝛼(𝑖)

2 ]

The latter formula coincides with the 𝛼 component 𝑗𝛼
𝑖 of ⃗𝑗𝑖 in equation (A.12) to the first order in the

lattice spacing 𝑎1 which concludes the derivation.

A.2. Energy transport

In this section we outline a more thorough derivation of the energy conservation equation, in the
continuous and discrete space.

A.2.1. Expressing the current density vector with the hopping current

We will derive here the relation (4.96)

⃗𝑗𝜖
𝑖 = ∑

𝛼=𝑥,𝑦,𝑧

𝑎
2 [𝐼𝜖

𝑖,𝑛𝛼(𝑖) − 𝐼𝜖
𝑖,𝑝𝛼(𝑖)] ⃗𝑒𝛼

that connects the hopping energy current 𝐼𝜖
𝑖𝑗 given by Eq. (4.94)

𝐼𝜖
𝑖𝑗 = −1

ℏ ∑
𝑘

Im[𝜓∗
𝑘𝜖𝑘𝑖𝜖𝑖𝑗𝜓𝑗 − 𝜓∗

𝑘𝜖𝑘𝑗𝜖𝑗𝑖𝜓𝑖]

and the discretized energy current density vector ⃗𝑗𝜖
𝑖 given by Eq. (4.95)

⃗𝑗𝜖
𝑖 = 1

2Re[ ̂𝜖[𝜓]∗𝑖 ̂⃗𝑣[𝜓]𝑖 + 𝜓∗
𝑖 ̂⃗𝑣[ ̂𝜖[𝜓]]𝑖]

where 𝜖 can either be the Hamiltonian ℎ, given by Eq. (4.82), the kinetic energy operator 𝜅 given in
Eq. (4.103) or the total energy operator 𝜀 given by Eq. (4.105). We will use the Hamiltonian as the base
energy operator although the derivation still applies for kinetic and total energy operators as we have
Eq. (4.173) : ℎ𝑖𝑗 = 𝜅𝑖𝑗 = 𝜀𝑖𝑗 for 𝑖 ≠ 𝑗

→ Expression of [ℎ̂[𝜓]∗𝑖 ̂⃗𝑣[𝜓]𝛼𝑖 ] : Let us start by expressing ̂⃗𝑣[𝜓]𝛼𝑖 by using the definition of ⃗𝑣 Eq.
(4.44) and the discretized gradient operator Eq. (4.80):

̂⃗𝑣[𝜓]𝛼𝑖 = −𝑖ℏ
2𝑚𝑎 (𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)) − 𝑞

𝑚𝐴𝛼
𝑖 𝜓𝑖 (A.13)

1𝜓𝑖 ≈ (𝜓𝑛𝛼(𝑖) + 𝜓𝑝𝛼(𝑖)) /2
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Appendix A. First quantization derivations

We need to write the expression above using only Hamiltonian terms ℎ𝑖𝑗 and the wave function and the
wavefunction 𝜓𝑖. While having in mind the expression of ℎ𝑖𝑗 Eq (4.82) that come from the discretization
process with 𝑎 being a small cubic lattice parameter, we can try the following:

ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)

= [− ℏ2

2𝑚𝑎2 + i ℏ𝑞
2𝑚𝑎𝐴𝛼

𝑖 ]𝜓𝑛𝛼(𝑖) − [− ℏ2

2𝑚𝑎2 − i ℏ𝑞
2𝑚𝑎𝐴𝛼

𝑖 ]𝜓𝑝𝛼(𝑖)

= − ℏ2

2𝑚𝑎2 [𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)] + i ℏ𝑞
𝑚𝑎𝐴𝛼

𝑖 [𝜓𝑛𝛼(𝑖) + 𝜓𝑝𝛼(𝑖)] /2⏟⏟⏟⏟⏟⏟⏟⏟⏟
≈𝜓𝑖

= ℏ
i𝑎 [− iℏ

2𝑚𝑎 [𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)] − 𝑞
𝑚𝐴𝛼

𝑖 𝜓𝑖] = ℏ
i𝑎

̂⃗𝑣[𝜓]𝛼𝑖

where we have used 𝜓𝑖 = [𝜓𝑛𝛼(𝑖) + 𝜓𝑝𝛼(𝑖)] /2, since 𝑎 is a small lattice parameter. We have

ℎ̂[𝜓]∗𝑖 ̂⃗𝑣[𝜓]𝛼𝑖 = i𝑎
ℏ ℎ̂[𝜓]∗𝑖 [ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)] (A.14)

→Expression of [𝜓∗
𝑖 ̂⃗𝑣[ℎ̂[𝜓]]𝛼𝑖 ]: We express now the second term of the right hand side of Eq. (4.95)

̂⃗𝑣[ℎ̂[𝜓]]𝛼𝑖 = −iℏ
2𝑚𝑎 (ℎ̂[𝜓]𝑛𝛼(𝑖) − ℎ̂[𝜓]𝑝𝛼(𝑖)) − 𝑞

𝑚𝐴𝛼
𝑖 ℎ̂[𝜓]𝑖 (A.15)

From the matrix expression of the discrete Hamiltonian in equation (4.82), we can express the term
−iℏ
2𝑚𝑎 :

−iℏ
2𝑚𝑎 = i𝑎

ℏ (𝐻𝑖,𝑛𝛼(𝑖) − i ℏ𝑞
2𝑚𝑎𝐴𝛼

𝑖 ) (A.16)

= i𝑎
ℏ (𝐻𝑖,𝑝𝛼(𝑖) + i ℏ𝑞

2𝑚𝑎𝐴𝛼
𝑖 ) (A.17)

Which enables us to further simplify the expression of ̂⃗𝑣[ℎ̂[𝜓]]𝛼𝑖 :

̂⃗𝑣[ℎ̂[𝜓]]𝛼𝑖 = [ i𝑎
ℏ ℎ𝑖,𝑛𝛼(𝑖) + 𝑞

2𝑚𝐴𝛼
𝑖 ] ℎ̂[𝜓]𝑛𝛼(𝑖)

− [ i𝑎
ℏ ℎ𝑖,𝑝𝛼(𝑖) − 𝑞

2𝑚𝐴𝛼
𝑖 ] ℎ̂[𝜓]𝑝𝛼(𝑖)

− 𝑞
𝑚𝐴𝛼

𝑖 ℎ̂[𝜓]𝑖

= i𝑎
ℏ [ℎ𝑖,𝑛𝛼(𝑖)ℎ̂[𝜓]𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)ℎ̂[𝜓]𝑝𝛼(𝑖)]

+ 𝑞
𝑚𝐴𝛼

𝑖
1
2 [ℎ̂[𝜓]𝑛𝛼(𝑖) + ℎ̂[𝜓]𝑝𝛼(𝑖)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≈ℎ̂[𝜓]𝑖

− 𝑞
𝑚𝐴𝛼

𝑖 ℎ̂[𝜓]𝑖

= i𝑎
ℏ [ℎ𝑖,𝑛𝛼(𝑖)ℎ̂[𝜓]𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)ℎ̂[𝜓]𝑝𝛼(𝑖)]

(A.18)
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→ Expression of ⃗𝑗H
𝑖 : Using Eq. (A.14) and Eq. (A.18), we can express the projection along the

𝛼 = 𝑥, 𝑦, 𝑧 direction of the energy current vector density

𝑗H
𝑖 ⋅ ⃗𝑒𝛼 = 1

2Re[ℎ̂[𝜓]∗𝑖 [ ⃗𝑣𝜓]𝛼𝑖 + 𝜓∗
𝑖 [ ⃗𝑣𝐻𝜓]𝛼𝑖 ]

= 1
2Re[ i𝑎

ℏ [ℎ̂[𝜓]∗𝑖 [ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)]

+ 𝜓∗
𝑖 [ℎ𝑖,𝑛𝛼(𝑖)ℎ̂[𝜓]𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)ℎ̂[𝜓]𝑝𝛼(𝑖)] ]]

= − 𝑎
2ℏ Im[ℎ̂[𝜓]∗𝑖 [ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)]

+ 𝜓∗
𝑖 [ℎ𝑖,𝑛𝛼(𝑖)ℎ̂[𝜓]𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)ℎ̂[𝜓]𝑝𝛼(𝑖)] ]

(A.19)

And in the other hand, we have:

𝐼𝐸
𝑖,𝑛𝛼(𝑖) − 𝐼𝐸

𝑖,𝑝𝛼(𝑖) = 1
ℏ Im[ − ℎ̂[𝜓]∗𝑖ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − 𝜓∗

𝑖ℎ𝑖,𝑛𝛼(𝑖)ℎ̂[𝜓]𝑛𝛼(𝑖)

+ ℎ̂[𝜓]∗𝑖ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖) + 𝜓∗
𝑖ℎ𝑖,𝑝𝛼(𝑖)ℎ̂[𝜓]𝑝𝛼(𝑖)]

= −1
ℏ Im[ℎ̂[𝜓]∗𝑖 [ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)]

+ 𝜓∗
𝑖 [ℎ𝑖,𝑛𝛼(𝑖)ℎ̂[𝜓]𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)ℎ̂[𝜓]𝑝𝛼(𝑖)] ]

(A.20)

→ Comment on the second term: One could have taken 𝜓∗
𝑖 ℎ̂[ ⃗𝑣[𝜓]]𝛼𝑖 for the second term given

that [ ⃗𝑣,𝐻] = −i[ℏ/𝑚∇⃗, 𝑞𝜙 + 𝑉 ] is pure imaginary and the current’s expression involves taking its
real part

𝜓∗
𝑖 ℎ̂[ ⃗𝑣[𝜓]]𝛼𝑖 = ∑

𝑗
𝜓∗

𝑖ℎ𝑖𝑗 ̂⃗𝑣[𝜓]𝛼𝑗

= ∑
𝑗

i𝑎
ℏ 𝜓∗

𝑖ℎ𝑖𝑗 [ℎ𝑗,𝑛𝛼(𝑗)𝜓𝑛𝛼(𝑗) − ℎ𝑗,𝑝𝛼(𝑗)𝜓𝑝𝛼(𝑗)]

However, the resulting expression for the current vector density does not easily match with Eq. (A.20)

𝑗H
𝑖 ⋅ ⃗𝑒𝛼 = 1

2Re[ ∑
𝑗

i𝑎
ℏ (ℎ∗

𝑖𝑗𝜓∗
𝑗 [ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)]

+ 𝜓∗
𝑖ℎ𝑖𝑗 [ℎ𝑗,𝑛𝛼(𝑗)𝜓𝑛𝛼(𝑗) − ℎ𝑗,𝑝𝛼(𝑗)𝜓𝑝𝛼(𝑗)] )]

= − 𝑎
2ℏ Im[ℎ̂[𝜓]∗𝑖 [ℎ𝑖,𝑛𝛼(𝑖)𝜓𝑛𝛼(𝑖) − ℎ𝑖,𝑝𝛼(𝑖)𝜓𝑝𝛼(𝑖)]

+ ∑
𝑗

𝜓∗
𝑖ℎ𝑖𝑗 [ℎ𝑗,𝑛𝛼(𝑗)𝜓𝑛𝛼(𝑗) − ℎ𝑗,𝑝𝛼(𝑗)𝜓𝑝𝛼(𝑗)] ]

A.2.2. Hamiltonian energy source: continuous

We derive the explicit expression of the Hamiltonian source term given in Eq. (4.74). Let’s start by
expressing the term [𝜕𝑡𝐻]𝜓, we can derive it by taking the time partial time derivative of equation
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(A.5) and keep only the terms that do not involve 𝜕𝑡𝜓:

[𝜕𝑡𝐻]𝜓 = 1
2𝑚 [iℏ𝑞 (2𝜕𝑡 ⃗𝐴 ⋅ ∇⃗𝜓 + 𝜓∇⃗ ⋅ ⃗𝐴) + 2𝜓𝑞2 𝜕𝑡 ⃗𝐴 ⋅ ⃗𝐴 ] + 𝜓𝜕𝑡𝑉 (A.21)

And thus we get for 𝑆 = Re[𝜓∗[𝜕𝑡𝐻]𝜓] :

𝑆 = 1
2𝑚Re[iℏ𝑞 (2𝜓∗𝜕𝑡 ⃗𝐴 ⋅ ∇⃗𝜓 + 𝜓∗𝜓∇⃗ ⋅ ⃗𝐴) + 2𝜓∗𝜓𝑞2 𝜕𝑡 ⃗𝐴 ⋅ ⃗𝐴 ] + 𝜓∗𝜓𝜕𝑡𝑉 (A.22)

= 1
2𝑚 [−2ℏ𝑞 𝜕𝑡 ⃗𝐴 ⋅ Im[𝜓∗∇⃗𝜓] + 2𝜓∗𝜓 𝑞2 𝜕𝑡 ⃗𝐴 ⋅ ⃗𝐴 ] + 𝜓∗𝜓𝜕𝑡𝑉 (A.23)

The term Im[𝜓∗∇⃗𝜓] being part of the expression of the particle current ⃗𝑗 (c.f. A.1), we can do the
replacement:

𝑆 = 1
2𝑚 [−2ℏ𝑞 𝜕𝑡 ⃗𝐴 ⋅ [𝑚

ℏ
⃗𝑗 +

�����𝑞
ℏ𝜓∗𝜓 ⃗𝐴] + (((((((((2𝜓∗𝜓 𝑞2 𝜕𝑡 ⃗𝐴 ⋅ ⃗𝐴 ] + 𝜓∗𝜓𝜕𝑡𝑉 (A.24)

= 𝑞 ⃗𝑗 ⋅ (−𝜕𝑡 ⃗𝐴) + 𝜕𝑡𝑉 𝜌 (A.25)

A.2.3. Hamiltonian energy source: discrete

To give an expression for the source term 𝑆𝑖 = Re[𝜓∗
𝑖𝜕𝑡ℎ̂[𝜓]𝑖], we need to express 𝜕𝑡ℎ̂ from (4.82):

ℎ𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

𝑞 𝜕𝑡𝜙𝑖 + ∑
𝛼=𝑥,𝑦,𝑧

i ℏ𝑞
4𝑚𝑎 (𝜕𝑡𝐴𝛼

𝑛𝛼(𝑖) − 𝜕𝑡𝐴𝛼
𝑝𝛼(𝑖)) + 𝑞2

𝑚 (𝜕𝑡𝐴𝛼
𝑖 )𝐴𝛼

𝑖 for 𝑗 = 𝑖

+i ℏ𝑞
2𝑚𝑎𝜕𝑡𝐴𝛼

𝑖 for 𝑗 = 𝑛𝛼(𝑖)

−i ℏ𝑞
2𝑚𝑎𝜕𝑡𝐴𝛼

𝑖 for 𝑗 = 𝑝𝛼(𝑖)

0 otherwise

(A.26)

The onsite term is:

Re[𝜓∗
𝑖𝜕𝑡ℎ𝑖𝑖𝜓𝑖] = 𝑞 𝜕𝑡𝜙𝑖𝜓∗

𝑖𝜓𝑖 + ∑
𝛼=𝑥,𝑦,𝑧

𝑞2

𝑚 (𝜕𝑡𝐴𝛼
𝑖 )𝐴𝛼

𝑖 𝜓∗
𝑖𝜓𝑖 (A.27)

The hopping terms are:

∑
𝑗≠𝑖

Re[𝜓∗
𝑖𝜕𝑡ℎ𝑖𝑗𝜓𝑗] = ∑

𝛼=𝑥,𝑦,𝑧
Re[i ℏ𝑞

2𝑚𝑎𝜕𝑡𝐴𝛼
𝑖 𝜓∗

𝑖 [𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)]] (A.28)

= ∑
𝛼=𝑥,𝑦,𝑧

−𝑞𝜕𝑡𝐴𝛼
𝑖

ℏ
2𝑚𝑎 Im[𝜓∗

𝑖 [𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)]] (A.29)

The source term is then:

𝑆𝑖 = 𝑞 𝜕𝑡𝜙𝑖 𝜓∗
𝑖𝜓𝑖 + ∑

𝛼=𝑥,𝑦,𝑧
−𝑞𝜕𝑡𝐴𝛼

𝑖
ℏ

2𝑚𝑎 Im[𝜓∗
𝑖 [𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)]] + 𝑞2

𝑚 (𝜕𝑡𝐴𝛼
𝑖 )𝐴𝛼

𝑖 𝜓∗
𝑖𝜓𝑖 (A.30)

= 𝑞 𝜕𝑡𝜙𝑖 𝜓∗
𝑖𝜓𝑖 + ∑

𝛼=𝑥,𝑦,𝑧
−𝜕𝑡𝐴𝛼

𝑖 𝑞 ( ℏ
2𝑚𝑎 Im[𝜓∗

𝑖 [𝜓𝑛𝛼(𝑖) − 𝜓𝑝𝛼(𝑖)]] − 𝑞
𝑚𝐴𝛼

𝑖 𝜓∗
𝑖𝜓𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗𝛼
𝑖

(A.31)

Where we recognize the expression of the component along the 𝛼 axis 𝑗𝛼
𝑖 of the particle current ⃗𝑗, from

equation (A.12):

𝑆𝑖 = 𝑞 𝜕𝑡𝜙𝑖 𝜓∗
𝑖𝜓𝑖 + ∑

𝛼=𝑥,𝑦,𝑧
−𝜕𝑡𝐴𝛼

𝑖 𝑞𝑗𝛼
𝑖 = 𝑞 𝜕𝑡𝜙𝑖 𝜌𝑖 − 𝜕𝑡 ⃗𝐴𝑖 ⋅ 𝑞 ⃗𝑗𝑖 (A.32)
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Appendix B. Second quantization
tight-binding derivations

This appendix is reserved to derivations done with the lesser Green functions 𝐺< in a second quan-
tization approach. We derive the particle and energy conservation equations in discrete/tightbinding
systems.

B.1. Particle current

This appendix is dedicated to the derivations of the main equations of Sec. 4.3. The second quanti-
zation approach is used. In particular, we derive the particle and energy conservation equations in
tight-binding systems as well as the expressions of the particle and energy currents and source power.
They are expressed in terms of the lesser Green’s function 𝐺<

𝑗𝑖(𝑡, 𝑡). We also show the convergence
of the currents to their static limits (when the external time-dependent electromagnetic field becomes
stationary at long times) using the wavefunction approach introduced in Chapter 5.

B.1.1. Derivation of the particle current

We shortly derive here the expression of the particle current 𝐼N
𝑖𝑗, given in Eq. (4.161), that flows from

site 𝑖 to site 𝑗, in second quantization.

We start by developing [�̂�, ̂𝜌𝑖], the explicit time dependence of all terms is omitted for compactness:

[�̂�, ̂𝜌𝑖] = ∑
𝑗,𝑘

ℎ𝑗𝑘 [ ̂𝑐†
𝑗 ̂𝑐𝑘, ̂𝑐†

𝑖 ̂𝑐𝑖] (B.1)

A general relation between commutators helps us rewrite the commutator in the previous equation as
the following:

[ ̂𝑐†
1 ̂𝑐2, ̂𝑐†

3 ̂𝑐4] = ̂𝑐†
1 [ ̂𝑐2, ̂𝑐†

3] ̂𝑐4 + [ ̂𝑐†
1, ̂𝑐†

3] ̂𝑐2 ̂𝑐4 + ̂𝑐†
3 ̂𝑐†

1 [ ̂𝑐2, ̂𝑐4] + ̂𝑐†
3 [ ̂𝑐†

1, ̂𝑐4] ̂𝑐2 (B.2)

Using the commutation relations Eq. (4.122), the above equation simplifies to

[ ̂𝑐†
1 ̂𝑐2, ̂𝑐†

3 ̂𝑐4] = 𝛿23 ̂𝑐†
1 ̂𝑐4 − 𝛿41 ̂𝑐†

3 ̂𝑐2 (B.3)

from which we obtain

[�̂�, ̂𝜌𝑖] = ∑
𝑗

ℎ𝑗𝑖 ̂𝑐†
𝑗 ̂𝑐𝑖 − ℎ𝑖𝑗 ̂𝑐†

𝑖 ̂𝑐𝑗 (B.4)

Taking its expectation value gives rise to the terms with the lesser Green functions 𝐺< in Eq. (4.142)
and obtain Eq. (B.1)

159



Appendix B. Second quantization tight-binding derivations

B.1.2. Convergence to the static limit

Note: This section has been adapted from our published article [96].

We derive the connection, given in Eq. (5.40a), between the Landauer-Büttiker formula for the par-
ticle current and the generic lead particle current we give in Eq. (4.203), when the Hamiltonian �̂�(𝑡)
defined in Sec. 5.2.1 converges to a static limit �̂�(𝑡 → ∞) = �̂� ̄𝑠𝑡 at long times.

First, we focus first on the static problem defined by �̂� ̄𝑠𝑡 for all times. The local particle current for
this static problem is given by Eq. (5.30)

𝐼N, ̄st
𝑗𝑖 = 2 ∑

𝜆=𝛽,𝑚𝛽,𝐸
𝑓𝜇𝛽+𝑒𝑉𝛽,𝑇𝛽

(𝐸) Im[[Ψ𝜆, ̄𝑠𝑡
𝑗 ]

∗
ℎ ̄𝑠𝑡

𝑗𝑖 Ψ𝜆, ̄𝑠𝑡
𝑖 ] (B.5)

where the shorthand notation ∑𝜆 is defined in Eq. (5.27), Ψ𝜆, ̄𝑠𝑡
𝑗 is the stationary scattering state,

computed at site 𝑖, that corresponds to an incoming mode 𝑛 in lead ℒ𝛽 with energy 𝐸, as defined in
Eq. (5.8) (but here in discrete space). Note that the static electric potential 𝑉𝛽 is included in the leads (i.e
ℎ ̄𝑠𝑡

𝑖𝑖 = ℎ0
𝑖𝑖 + 𝑞𝑉𝛽 if 𝑖 ∈ ℒ𝛽) and in the reservoirs through the Fermi-Dirac distribution. We now make

use of the periodic pattern of each semi-infinite lead built of identical unit cells, labeled 𝑥 = 1, 2, ...
from the scattering region. In the stationary case, the total particle current 𝐼𝑁, ̄𝑠𝑡

𝛽 in the lead ℒ𝛽 (given
by Eqs.(4.203) and (B.5)) is invariant along the lead axis and we have for any 𝑎

𝐼N, ̄st
𝛽 = −2 ∑

𝜆=𝛽,𝑚𝛽,𝐸
𝑓𝜇𝛽+𝑒𝑉𝛽,𝑇𝛽

(𝐸) Im[(Ψ𝜆, ̄𝑠𝑡
𝑥−1)

†
W𝛽 Ψ𝜆, ̄𝑠𝑡

𝑥 ] (B.6)

Ψ𝜆, ̄𝑠𝑡
𝛽 being the vectorial value scattering state in the 𝑎-th cell of the lead ℒ𝛽 and W𝛼 the coupling

matrix connecting neighboring unit cells in ℒ𝛼 (see Fig. 5.5). Using the notations of Ref.[66], we write
the scattering state Ψ𝜆, ̄st

𝑥 as a superposition of plane waves

Ψ𝑚𝛽𝐸, ̄𝑠𝑡
𝛼,𝑥 =𝛿𝛼𝛽

ξ𝑖𝑛
𝑚𝛽

√ℏ|𝑣𝑖𝑛𝑚𝛽
|
𝑒−𝑖𝑘𝑖𝑛

𝑚𝛽𝑥

+ ∑
𝑚𝛼

ξ𝑜𝑢𝑡
𝑚𝛼

√ℏ|𝑣𝑜𝑢𝑡𝑚𝛼
|
𝑒𝑖𝑘𝑜𝑢𝑡

𝑚𝛼𝑥𝑑𝛼𝛽
𝑚𝛼𝑚𝛽

(B.7)

where the sum runs over the modes 𝑚𝛼 in lead ℒ𝛼. The vectors ξ𝑖𝑛
𝛼,𝑚𝛼

(𝐸) and ξ𝑜𝑢𝑡
𝛼,𝑚𝛼

(𝐸) defined on
one unit cell are the transverse parts of the incoming and outgoing modes 𝑚𝛼 with energy 𝐸 in lead
ℒ𝛼. 𝑘𝑖𝑛

𝑚𝛼
(𝐸), 𝑘𝑜𝑢𝑡

𝑚𝛼
(𝐸), and 𝑣𝑖𝑛

𝛼,𝑚𝛼
(𝐸), 𝑣𝑜𝑢𝑡

𝛼,𝑚𝛼
(𝐸) are the corresponding mode momenta and velocities.

𝑑𝛼𝛽
𝑚𝛼𝑚𝛽

(𝐸) is the scattering amplitude of an electron injected at energy 𝐸 from the lead ℒ𝛽 in mode
𝑚𝛽 into the mode 𝑚𝛼 in lead ℒ𝛼, as defined in Eq. (5.8) (with 𝑑𝛼,𝛼 = 𝑟𝛼). By inserting Eq. (B.7) into
Eq. (B.6) and by using the relations [206, 66]

𝑖(ξ𝑖𝑛
𝑚𝛼

)†[𝑒−𝑖𝑘𝑖𝑛
𝑛𝛼W𝛼 − 𝑒𝑖𝑘𝑖𝑛

𝑚𝛼W†
𝛼]ξ𝑖𝑛

𝑛𝛼
= 𝛿𝑛𝛼𝑚𝛼

ℏ𝑣𝑖𝑛
𝑚𝛼

(B.8)

𝑖(ξ𝑜𝑢𝑡
𝑚𝛼

)†[𝑒𝑖𝑘𝑜𝑢𝑡
𝑛𝛼 W𝛼 − 𝑒−𝑖𝑘𝑜𝑢𝑡

𝑚𝛼W†
𝛼]ξ𝑜𝑢𝑡

𝑛𝛼
= 𝛿𝑛𝛼𝑚𝛼

ℏ𝑣𝑜𝑢𝑡
𝑚𝛼

(B.9)

𝑖(ξ𝑜𝑢𝑡
𝑚𝛼

)†[𝑒−𝑖𝑘𝑖𝑛
𝑛𝛼W𝛼 − 𝑒−𝑖𝑘𝑜𝑢𝑡

𝑚𝛼W†
𝛼]ξ𝑖𝑛

𝑛𝛼
= 0 (B.10)

it can be shown that 𝐼N, ̄st
𝛼 reduces to the standard Landauer-Büttiker formula

𝐼N, ̄st
𝛼 = ∑

𝛽≠𝛼
∫d𝐸

ℎ
̄𝑇𝛼𝛽(𝐸)[𝑓𝜇𝛼+𝑒𝑉𝛼,𝑇𝛼

(𝐸) − 𝑓𝜇𝛽+𝑒𝑉𝛽,𝑇𝛽
(𝐸)] (B.11)
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B.2. Total energy current

where ̄𝑇𝛼𝛽 = ∑𝑚𝛼
∑𝑚𝛽

|𝑑𝛼𝛽
𝑚𝛼,𝑚𝛽

|2.

Let us now consider the time-dependent problem defined by �̂�(𝑡). In that case, the local particle
current 𝐼𝑁

𝑗𝑖 (𝑡) given by Eq. (4.203) reads

𝐼N
𝑗𝑖(𝑡) = 2 ∑

𝜆=𝛽,𝑚𝛽,𝐸
𝑓𝜇𝛽,𝑇𝛽

(𝐸) Im[Ψ𝜆
𝑗 (𝑡)∗ℎ𝑗𝑖(𝑡)Ψ𝜆

𝑖 (𝑡)] . (B.12)

To calculate 𝐼𝑁
𝑗𝑖 (𝑡 → ∞) using �̂�(𝑡 → ∞) = �̂� ̄𝑠𝑡, it is important to notice first that 𝐸 in the equation

above labels the energy of an incoming mode 𝑚𝛽 in lead ℒ𝛽 in the remote past i.e for 𝑡 ≤ 𝑡0. In that
case, the on-site potential in ℒ𝛽 is ℎ𝑖𝑖(𝑡 ≤ 𝑡0) = ℎ0

𝑖𝑖 while ℎ ̄𝑠𝑡
𝑖𝑖 = ℎ0

𝑖𝑖 + 𝑞𝑉𝛽 (if 𝑖 ∈ ℒ𝛽). For this reason
the time-dependent scattering states converges to a stationary, energy shifted, scattering state

𝑒𝑖𝜃𝐸(𝑡) Ψ𝜆=𝛽,𝑚𝛽,𝐸
𝑗 (𝑡) −−−→

𝑡→∞
Ψ𝜆=(𝛽,𝑚𝛽,𝐸+𝑞𝑉𝛽), ̄𝑠𝑡

𝑗 (B.13)

where 𝜃𝐸(𝑡) is an (irrelevant) spatially constant phase. Doing the change of variable 𝐸′ = 𝐸 + 𝑒𝑉𝛽 in
Eq. (B.12) and comparing with Eq. (B.5), we find 𝐼𝑁

𝑗𝑖 (𝑡 → ∞) = 𝐼𝑁, ̄𝑠𝑡
𝑗𝑖 . We deduce Eq. (5.40a) by using

Eqs. (4.203) and (B.11).

B.2. Total energy current

B.2.1. Deriving our definition

In Sec. 4.3.3.4 we have given the expression we chose for the total energy current. We give more details
here on its derivation. We start from the continuity equation (4.186) and start from identification of
the divergence of the energy current:

∑
𝑗

𝐼𝜀
𝑖𝑗(𝑡) = − i

ℏ ⟨[ ̂ℰ(𝑡), ̂ℰ𝑖(𝑡)]⟩ (B.14)

To come up with an expression for 𝐼𝜀
𝑖𝑗(𝑡), we start by expanding [ ̂ℰ, ̂ℰ𝑖] :

[ ̂ℰ, ̂ℰ𝑖] = [∑
𝑘𝑙

𝜀𝑘𝑙 ̂𝑐†
𝑘 ̂𝑐𝑙 , 1

2 ∑
𝑗

𝜀𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + 𝜀𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖] (B.15)

= 1
2 ∑

𝑘,𝑙,𝑗
𝜀𝑘𝑙 (𝜀𝑖𝑗[ ̂𝑐†

𝑘 ̂𝑐𝑙, ̂𝑐†
𝑖 ̂𝑐𝑗] + 𝜀𝑗𝑖[ ̂𝑐†

𝑘 ̂𝑐𝑙, ̂𝑐†
𝑗 ̂𝑐𝑖]) (B.16)
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then we use Eq. (B.3)

[ ̂ℰ, ̂ℰ𝑖] = 1
2 ∑

𝑘,𝑙,𝑗
𝜀𝑘𝑙𝜀𝑖𝑗𝛿𝑙𝑖 ̂𝑐†

𝑘 ̂𝑐𝑗 − 𝜀𝑘𝑙𝜀𝑖𝑗𝛿𝑘𝑗 ̂𝑐†
𝑖 ̂𝑐𝑙 + 𝜀𝑘𝑙𝜀𝑗𝑖𝛿𝑙𝑗 ̂𝑐†

𝑘 ̂𝑐𝑖 − 𝜀𝑘𝑙𝜀𝑗𝑖𝛿𝑘𝑖 ̂𝑐†
𝑗 ̂𝑐𝑙

= 1
2 ∑

𝑘,𝑙,𝑗
[𝜀𝑘𝑙𝜀𝑖𝑗𝛿𝑙𝑖 ̂𝑐†

𝑘 ̂𝑐𝑗 + 𝜀𝑘𝑙𝜀𝑗𝑖𝛿𝑙𝑗 ̂𝑐†
𝑘 ̂𝑐𝑖] − 1

2 ∑
𝑘,𝑙,𝑗

[𝜀𝑘𝑙𝜀𝑖𝑗𝛿𝑘𝑗 ̂𝑐†
𝑖 ̂𝑐𝑙 + 𝜀𝑘𝑙𝜀𝑗𝑖𝛿𝑘𝑖 ̂𝑐†

𝑗 ̂𝑐𝑙]

= 1
2 ∑

𝑘,𝑗
[𝜀𝑘𝑖𝜀𝑖𝑗 ̂𝑐†

𝑘 ̂𝑐𝑗 + 𝜀𝑘𝑗𝜀𝑗𝑖 ̂𝑐†
𝑘 ̂𝑐𝑖 ] − 1

2 ∑
𝑙,𝑗

[𝜀𝑗𝑙𝜀𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑙 + 𝜀𝑖𝑙𝜀𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑙]

= 1
2 ∑

𝑘,𝑗
[𝜀𝑘𝑖𝜀𝑖𝑗 ̂𝑐†

𝑘 ̂𝑐𝑗 + 𝜀𝑘𝑗𝜀𝑗𝑖 ̂𝑐†
𝑘 ̂𝑐𝑖 ] − 1

2 ∑
𝑘,𝑗

[𝜀𝑗𝑘𝜀𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑘 + 𝜀𝑖𝑘𝜀𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑘]

= 1
2 ∑

𝑘,𝑗
(𝜀𝑘𝑖𝜀𝑖𝑗 ̂𝑐†

𝑘 ̂𝑐𝑗 − 𝜀𝑖𝑘𝜀𝑗𝑖 ̂𝑐†
𝑗 ̂𝑐𝑘) + (𝜀𝑘𝑗𝜀𝑗𝑖 ̂𝑐†

𝑘 ̂𝑐𝑖 − 𝜀𝑗𝑘𝜀𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑘)

(B.17)

The expectation value is

⟨[ ̂ℰ, ̂ℰ𝑖]⟩ = −i12 ∑
𝑘,𝑗

(𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 − 𝜀𝑖𝑘𝜀𝑗𝑖𝐺<

𝑘𝑗) + (𝜀𝑘𝑗𝜀𝑗𝑖𝐺<
𝑖𝑘 − 𝜀𝑗𝑘𝜀𝑖𝑗𝐺<

𝑘𝑖)

= −i12 ∑
𝑘,𝑗

(𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 + [𝜀𝑘𝑖𝜀𝑖𝑗𝐺<

𝑗𝑘]
∗) + (𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘 + [𝜀𝑘𝑗𝜀𝑗𝑖𝐺<
𝑖𝑘]

∗)

= −i ∑
𝑘,𝑗

Re[𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘]

(B.18)

from which we finally obtain:

i
ℏ ⟨[ ̂ℰ, ̂ℰ𝑖]⟩ = 1

ℏ ∑
𝑘𝑗

Re[𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘] (B.19)

Given the identification we made in Eq (B.14) between i
ℏ ⟨[ ̂ℰ, ̂ℰ𝑖]⟩ and the current divergence ∑𝑗 𝐼𝜀

𝑖𝑗(𝑡),
the sum on the right hand side of the equation (B.19) gives Re[𝜀𝑘𝑖𝜀𝑖𝑗𝐺<

𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<
𝑖𝑘] as a first can-

didate for 𝐼𝜀
𝑖𝑗(𝑡)1. We notice that this first candidate is invariant when 𝑖 and 𝑗 are swapped, therefore

we would not have 𝐼𝜀
𝑖𝑗(𝑡) = −𝐼𝜀

𝑗𝑖(𝑡) with this expression as-is. Swapping the sign of the first term, i.e.
Re[−𝜀𝑘𝑖𝜀𝑖𝑗𝐺<

𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<
𝑖𝑘], would fit that constraint. To prove that this term is also correct, we need

to prove that the divergence of this new candidate gives the correct result

i
ℏ ⟨[ ̂ℰ, ̂ℰ𝑖]⟩

?= 1
ℏ ∑

𝑘𝑗
Re[−𝜀𝑘𝑖𝜀𝑖𝑗𝐺<

𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<
𝑖𝑘] (B.20)

To prove the above equation, we will prove instead that ∑𝑘𝑗 𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 ∈ iℝ so its real part gives zero.

Let’s write its complex conjugate and prove it is equal to its opposite

[∑
𝑘𝑗

𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘]

∗

= ∑
𝑘𝑗

𝜀∗
𝑘𝑖𝜀∗

𝑖𝑗 (𝐺<
𝑗𝑘)

∗
(B.21)

1It is theoretically also possible to identify the 𝑗 index in ∑𝑗 𝐼𝜀
𝑖𝑗(𝑡) with the 𝑘 index in

∑𝑗𝑘 Re[𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘]
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B.2. Total energy current

The total energy operator ̂ℰ is hermitian thus it coefficients verify 𝜀∗
𝑎𝑏 = 𝜀𝑏𝑎 (Eq. (4.131)). The Lesser

Green Function verifies 𝐺<
𝑗𝑘(𝑡)∗ = −𝐺<

𝑘𝑗(𝑡) (Eq. (4.146))

[∑
𝑘𝑗

𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘]

∗

= − ∑
𝑘𝑗

𝜀𝑖𝑘𝜀𝑗𝑖𝐺<
𝑘𝑗

𝑘↔𝑗= − ∑
𝑗𝑘

𝜀𝑖𝑗 𝜀𝑘𝑖⏟
∈ℂ

𝐺<
𝑗𝑘 = − ∑

𝑗𝑘
𝜀𝑘𝑖𝜀𝑖𝑗𝐺<

𝑗𝑘 (B.22)

Therefore the following equation is verified
i
ℏ ⟨[ ̂ℰ, ̂ℰ𝑖]⟩ = 1

ℏ ∑
𝑘𝑗

Re[−𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘] (B.23)

and gives the expression for the total energy current Eq. (4.191)

𝐼𝜀
𝑖𝑗 = −1

ℏ ∑
𝑘

Re[−𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘 + 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘] (B.24)

B.2.2. Deriving the energy current of Ref. [129]

Ref. [210, 129] defines the energy current for the Hamiltonian operator as

̄𝐼H
𝑖𝑗 = i

ℏ ⟨[�̂�𝑖, �̂�𝑗]⟩ (B.25)

where �̂�𝑖 are onsite many-body Hamiltonian operators defined in Eq. (4.170) with 𝜖 → ℎ. We can
replace these onsite Hamiltonian operators �̂�𝑖 with the onsite total energy operators ̂ℰ𝑖 and define a
total energy current analog

̄𝐼𝜀
𝑖𝑗 = i

ℏ ⟨[ ̂ℰ𝑖, ̂ℰ𝑗]⟩ (B.26)

Given that we have identified the energy current divergence expression in Eq. (4.186), this candidate
also gives the correct divergence

∑
𝑗

̄𝐼𝜀
𝑖𝑗(𝑡) = − i

ℏ ⟨[ ̂ℰ(𝑡), ̂ℰ𝑖(𝑡)]⟩ (B.27)

We will derive in what follows the explicit expression of this energy current candidate

̄𝐼𝜀
𝑖𝑗 = 1

2ℏ ∑
𝑘

Re[𝜀𝑖𝑘𝜀𝑘𝑗𝐺<
𝑗𝑖 + 𝜀𝑖𝑗𝜀𝑗𝑘𝐺<

𝑘𝑖 + 𝜀𝑘𝑖𝜀𝑖𝑗𝐺<
𝑗𝑘] (B.28)

Note that we obtain the expression its Hamiltonian counterpart by simply replacing the total energy
operator coefficients 𝜀𝑎𝑏 with the Hamiltonian coefficients ℎ𝑎𝑏. The following derivation proves the
expression for both the Hamiltonian and Total energy operators.

Let’s start by expanding the commutator [ ̂ℰ𝑗, ̂ℰ𝑖] by expressing the local onsite total energy operators
from Eq. (4.170):

[ ̂ℰ𝑗, ̂ℰ𝑖] = 1
4 [∑

𝑘
𝜀𝑗𝑘 ̂𝑐†

𝑗 ̂𝑐𝑘 + 𝜀𝑘𝑗 ̂𝑐†
𝑘 ̂𝑐𝑗 , ∑

𝑙
𝜀𝑖𝑙 ̂𝑐†

𝑖 ̂𝑐𝑙 + 𝜀𝑙𝑖 ̂𝑐†
𝑙 ̂𝑐𝑖]

= 1
4 ∑

𝑘𝑙
𝜀𝑗𝑘𝜀𝑖𝑙 [ ̂𝑐†

𝑗 ̂𝑐𝑘, ̂𝑐†
𝑖 ̂𝑐𝑙] + 𝜀𝑗𝑘𝜀𝑙𝑖 [ ̂𝑐†

𝑗 ̂𝑐𝑘, ̂𝑐†
𝑙 ̂𝑐𝑖]

+ 𝜀𝑘𝑗𝜀𝑖𝑙 [ ̂𝑐†
𝑘 ̂𝑐𝑗, ̂𝑐†

𝑖 ̂𝑐𝑙] + 𝜀𝑘𝑗𝜀𝑙𝑖 [ ̂𝑐†
𝑘 ̂𝑐𝑗, ̂𝑐†

𝑙 ̂𝑐𝑖]

(B.29)
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Then we use the relation Eq. (4.124) to further simplify the commutator

[ ̂ℰ𝑗, ̂ℰ𝑖] = 1
4 ∑

𝑘𝑙
𝜀𝑗𝑘𝜀𝑖𝑙[𝛿𝑘𝑖 ̂𝑐†

𝑗 ̂𝑐𝑙 − 𝛿𝑗𝑙 ̂𝑐†
𝑖 ̂𝑐𝑘] + 𝜀𝑗𝑘𝜀𝑙𝑖[𝛿𝑘𝑙 ̂𝑐†

𝑗 ̂𝑐𝑖 − 𝛿𝑗𝑖 ̂𝑐†
𝑙 ̂𝑐𝑘]

+ 𝜀𝑘𝑗𝜀𝑖𝑙[𝛿𝑗𝑖 ̂𝑐†
𝑘 ̂𝑐𝑙 − 𝛿𝑘𝑙 ̂𝑐†

𝑖 ̂𝑐𝑗] + 𝜀𝑘𝑗𝜀𝑙𝑖[𝛿𝑗𝑙 ̂𝑐†
𝑘 ̂𝑐𝑖 − 𝛿𝑘𝑖 ̂𝑐†

𝑙 ̂𝑐𝑗]

= 1
4 ∑

𝑘
−𝜀𝑗𝑘𝜀𝑖𝑗 ̂𝑐†

𝑖 ̂𝑐𝑘 + 𝜀𝑗𝑘𝜀𝑘𝑖 ̂𝑐†
𝑗 ̂𝑐𝑖 − 𝜀𝑘𝑗𝜀𝑖𝑘 ̂𝑐†

𝑖 ̂𝑐𝑗 + 𝜀𝑘𝑗𝜀𝑗𝑖 ̂𝑐†
𝑘 ̂𝑐𝑖

+ 1
4 ∑

𝑙
𝜀𝑗𝑖𝜀𝑖𝑙 ̂𝑐†

𝑗 ̂𝑐𝑙 − 𝜀𝑖𝑗𝜀𝑙𝑖 ̂𝑐†
𝑙 ̂𝑐𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑍

+ 1
4𝛿𝑗𝑖 ∑

𝑘𝑙
𝜀𝑘𝑗𝜀𝑖𝑙 ̂𝑐†

𝑘 ̂𝑐𝑙 − 𝜀𝑗𝑘𝜀𝑙𝑖 ̂𝑐†
𝑙 ̂𝑐𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Ω

(B.30)

Let’s show that Ω = 0, let’s first replace inside the sum 𝑗 with 𝑖 since it’s zero when 𝑖 ≠ 𝑗:

Ω = 1
4𝛿𝑗𝑖 ∑

𝑘𝑙
𝜀𝑘𝑖𝜀𝑖𝑙 ̂𝑐†

𝑘 ̂𝑐𝑙 − 𝜀𝑖𝑘𝜀𝑙𝑖 ̂𝑐†
𝑙 ̂𝑐𝑘

= 1
4𝛿𝑗𝑖[∑

𝑘𝑙
𝜀𝑘𝑖𝜀𝑖𝑙 ̂𝑐†

𝑘 ̂𝑐𝑙 − ∑
𝑘𝑙

𝜀𝑖𝑘𝜀𝑙𝑖 ̂𝑐†
𝑙 ̂𝑐𝑘

⏟⏟⏟⏟⏟
𝑘⇌𝑙

]

= 1
4𝛿𝑗𝑖 ∑

𝑘𝑙
𝜀𝑘𝑖𝜀𝑖𝑙 ̂𝑐†

𝑘 ̂𝑐𝑙 − 𝜀𝑖𝑙𝜀𝑘𝑖 ̂𝑐†
𝑘 ̂𝑐𝑙 = 0

(B.31)

We finally obtain, after replacing the dummy index 𝑙 with 𝑘 in the term 𝑍

[ ̂ℰ𝑗, ̂ℰ𝑖] = 1
4 ∑

𝑘
𝜀𝑗𝑘𝜀𝑘𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖 − 𝜀𝑘𝑗𝜀𝑖𝑘 ̂𝑐†
𝑖 ̂𝑐𝑗

+ 𝜀𝑘𝑗𝜀𝑗𝑖 ̂𝑐†
𝑘 ̂𝑐𝑖 − 𝜀𝑗𝑘𝜀𝑖𝑗 ̂𝑐†

𝑖 ̂𝑐𝑘

+ 𝜀𝑗𝑖𝜀𝑖𝑘 ̂𝑐†
𝑗 ̂𝑐𝑘 − 𝜀𝑖𝑗𝜀𝑘𝑖 ̂𝑐†

𝑘 ̂𝑐𝑗

(B.32)

This explicit expression of the commutator is then used to express the total energy current ̄𝐼𝜀
𝑖𝑗 given

Eq. (B.26), with the help of the lesser green functions defined equation (4.145):

̄𝐼𝜀
𝑖𝑗 = 1

4ℏ ∑
𝑘

𝜀𝑘𝑗𝜀𝑖𝑘𝐺<
𝑗𝑖 − 𝜀𝑗𝑘𝜀𝑘𝑖𝐺<

𝑖𝑗

+ 𝜀𝑗𝑘𝜀𝑖𝑗𝐺<
𝑘𝑖 − 𝜀𝑘𝑗𝜀𝑗𝑖𝐺<

𝑖𝑘

+ 𝜀𝑖𝑗𝜀𝑘𝑖𝐺<
𝑗𝑘 − 𝜀𝑗𝑖𝜀𝑖𝑘𝐺<

𝑘𝑗

(B.33)
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To further simplify the expression, we use Eq. (4.146) and Eq. (4.131) to swap indexes in some terms

𝐼𝜀
𝑖𝑗 = 1

4ℏ ∑
𝑘

𝜀𝑘𝑗𝜀𝑖𝑘𝐺<
𝑗𝑖 + [𝜀𝑘𝑗𝜀𝑖𝑘𝐺<

𝑗𝑖]
∗

+ 𝜀𝑗𝑘𝜀𝑖𝑗𝐺<
𝑘𝑖 + [𝜀𝑗𝑘𝜀𝑖𝑗𝐺<

𝑘𝑖]
∗

+ 𝜀𝑖𝑗𝜀𝑘𝑖𝐺<
𝑗𝑘 + [𝜀𝑖𝑗𝜀𝑘𝑖𝐺<

𝑗𝑘]
∗

(B.34)

and we finally obtain the expression given (4.192)

𝐼𝜀
𝑖𝑗 = 1

2ℏ ∑
𝑘

Re[𝜀𝑘𝑗𝜀𝑖𝑘𝐺<
𝑗𝑖 + 𝜀𝑗𝑘𝜀𝑖𝑗𝐺<

𝑘𝑖 + 𝜀𝑖𝑗𝜀𝑘𝑖𝐺<
𝑗𝑘] (B.35)

B.2.3. Convergence to the static limit

Note: This section has been adapted from our published article [96].

We derive the connection, given in Eq. (5.40b), between the Landauer-Büttiker formula for the energy
current and the generic lead energy current we give in Eq. (4.203), when the Hamiltonian �̂�(𝑡) defined
in Sec. 5.2.1 converges to a static limit �̂�(𝑡 → ∞) = �̂� ̄𝑠𝑡 at long times.

Let us consider first the static problem defined by �̂� ̄𝑠𝑡 for all times. For this static problem, we use
the Hamiltonian based energy operator ̂ℰℎ = �̂� ̄𝑠𝑡. With this definition, the local energy current given
by Eq. (5.32) simplifies to

𝐼ℎ, ̄st
𝑗𝑖 =2 ∑

𝜆=𝛽,𝑚𝛽,𝐸
𝑓𝜇𝛽+𝑒𝑉𝛽,𝑇𝛽

(𝐸) 𝐸 Im [(Ψ𝜆, ̄st
𝑗 )

∗
ℎ ̄𝑠𝑡

𝑗𝑖 Ψ𝜆, ̄st
𝑖 ] (B.36)

after using the static eigenstate relation (5.6) that the stationary scattering states verify. To calculate
the energy current 𝐼ℎ, ̄𝑠𝑡

𝛼 in the lead ℒ𝛼, it is convenient to go further away within the lead using Eq.
(5.24). This does not change 𝐼ℎ, ̄𝑠𝑡

𝛼 as static energy flow is constant throughout the lead. By using Eqs.
(B.36) and (B.7)-(B.10), we find

𝐼ℎ, ̄st
𝛼 = ∑

𝛽≠𝛼
∫ d𝐸

ℎ 𝐸 ̄𝑇𝛼𝛽(𝐸)[𝑓𝜇𝛼+𝑒𝑉𝛼,𝑇𝛼
(𝐸) − 𝑓𝜇𝛽+𝑒𝑉𝛽,𝑇𝛽

(𝐸)] . (B.37)

Note that Eq. (B.37) is the usual Landauer-Büttiker formula for the lead energy current in the static
case, which we recovered upon defining in this case the energy operator as the Hamiltonian �̂� ̄𝑠𝑡.

Let us consider on the other hand the time-dependent problem defined by �̂�(𝑡). We consider now
the ‘total energy’ operator ℰ𝜀, defined by Eq. (4.177). Using Eqs.(5.32), (B.13), and finally (5.6), we find
for the local energy currents in the long time limit

𝐼𝜀
𝑗𝑖(𝑡 → ∞) = 𝐼𝜀, ̄𝑠𝑡

𝑗𝑖 − 𝑞
2(𝑉𝑖 + 𝑉𝑗)𝐼N, ̄st

𝑗𝑖 (B.38)

where 𝑉𝑖 ≡ 𝑉𝑖(𝑡 → ∞) is a shorthand notation for the long time limit of the external time-dependent
scalar potentials 𝑉𝑖(𝑡). We deduce from Eq. (4.203)

𝐼𝐸
𝛼 (𝑡 → ∞) = 𝐼𝐸, ̄𝑠𝑡

𝛼 − 𝑒𝑉𝛼𝐼𝑁, ̄𝑠𝑡
𝛼 + 𝑆𝐸

𝛼 (𝑡 → ∞) (B.39)

since 𝑉𝑖 = 𝑉𝛼 if 𝑖 ∈ ℒ𝛼 and 𝜕𝑡𝜙𝑖𝑗 → 0 (for a Hamiltonian given with a Peierls phase, given by Eq.
(4.189)) in the static limit 𝑡 → ∞. This concludes the proof of Eq. (5.40a).
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Appendix B. Second quantization tight-binding derivations

B.3. Total energy source term

In the total energy conservation equation (4.186), we defined the total energy source term as the fol-
lowing

𝑆𝜀
𝑖 (𝑡) = i

ℏ ⟨[𝑞 Φ̂(𝑡), ̂ℰ𝑖(𝑡)]⟩ + ⟨𝜕𝑡 ̂ℰ𝑖(𝑡)⟩ (B.40)

In this appendix section we further expand this expression to be able to identify the known classical
form for the power ⃗𝑗 ⋅ ⃗𝐸, where ⃗𝐸 = −∇𝜙 − 𝜕𝑡 ⃗𝐴 is the electric field.

We start by expressing [𝑞 Φ̂(𝑡), ̂ℰ𝑖(𝑡)] by replacing the scalar potential operator Φ̂(𝑡) with its expres-
sion Eq. (4.181) and the onsite total energy operator ̂ℰ𝑖 with its expression Eq. (4.170) (with 𝜖 → 𝜀)

[𝑞 Φ̂(𝑡), ̂ℰ𝑖(𝑡)] = [∑
𝑙

𝑞𝜙𝑙 ̂𝑐†
𝑙 ̂𝑐𝑙 , 1

2 ∑
𝑗

𝜀𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗 + 𝜀𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖]

= ∑
𝑙𝑗

𝑞𝜙𝑙𝜀𝑖𝑗 [ ̂𝑐†
𝑙 ̂𝑐𝑙, ̂𝑐†

𝑖 ̂𝑐𝑗] + 𝑞𝜙𝑙𝜀𝑗𝑖 [ ̂𝑐†
𝑙 ̂𝑐𝑙, ̂𝑐†

𝑗 ̂𝑐𝑖]

then we use Eq. (B.3)

[𝑞 Φ̂(𝑡), ̂ℰ𝑖(𝑡)] = 1
2 ∑

𝑙𝑗
𝑞𝜙𝑙𝜀𝑖𝑗 [𝛿𝑙𝑖 ̂𝑐†

𝑙 ̂𝑐𝑗 − 𝛿𝑗𝑙 ̂𝑐†
𝑖 ̂𝑐𝑙] + 𝑞𝜙𝑙𝜀𝑗𝑖 [𝛿𝑙𝑗 ̂𝑐†

𝑙 ̂𝑐𝑖 − 𝛿𝑖𝑙 ̂𝑐†
𝑗 ̂𝑐𝑙]

= 1
2 ∑

𝑗
𝑞𝜀𝑖𝑗 [𝜙𝑖 ̂𝑐†

𝑖 ̂𝑐𝑗 − 𝜙𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗] + 𝑞𝜀𝑗𝑖 [𝜙𝑗 ̂𝑐†

𝑗 ̂𝑐𝑖 − 𝜙𝑖 ̂𝑐†
𝑗 ̂𝑐𝑖]

= 1
2 ∑

𝑗
𝑞𝜙𝑗[𝜀𝑗𝑖 ̂𝑐†

𝑗 ̂𝑐𝑖 − 𝜀𝑖𝑗 ̂𝑐†
𝑖 ̂𝑐𝑗] + 𝑞𝜙𝑖[𝜀𝑖𝑗 ̂𝑐†

𝑖 ̂𝑐𝑗 − 𝜀𝑗𝑖 ̂𝑐†
𝑗 ̂𝑐𝑖]

Its expectation value writes with the Lesser Green functions Eq. (4.145). We use directly Eq. (4.146)
and Eq. (4.131) to swap indices and further simplify the result

i
ℏ ⟨[𝑞 Φ̂(𝑡), ̂ℰ𝑖(𝑡)]⟩ = 1

2 ∑
𝑗

𝑞𝜙𝑗[𝜀𝑗𝑖𝐺<
𝑖𝑗 + [𝜀𝑗𝑖𝐺<

𝑖𝑗]∗] + 𝑞𝜙𝑖[𝜀𝑖𝑗𝐺<
𝑗𝑖 + [𝜀𝑖𝑗𝐺<

𝑗𝑖]∗]

= ∑
𝑗

𝑞𝜙𝑗Re[𝜀𝑗𝑖𝐺<
𝑖𝑗] + 𝑞𝜙𝑖Re[𝜀𝑖𝑗𝐺<

𝑗𝑖]

= ∑
𝑗

−𝑞𝜙𝑗Re[𝜀𝑖𝑗𝐺<
𝑗𝑖] + 𝑞𝜙𝑖Re[𝜀𝑖𝑗𝐺<

𝑗𝑖]

Given the expression of the particle current 𝐼N
𝑖𝑗 Eq. (4.161):

𝐼𝑁
𝑖𝑗 = 2 Re[ℎ𝑖𝑗𝐺<

𝑗𝑖] (B.41)

we can identify particle current terms and obtain

i
ℏ ⟨[𝑞 Φ̂(𝑡), ̂ℰ𝑖(𝑡)]⟩ = ∑

𝑗
−1

2 [𝜙𝑗 − 𝜙𝑖] 𝑞𝐼𝑁
𝑖𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟
−∇⃗𝜙𝑖 ⋅ 𝑞 ⃗𝑗𝑖

where we can recover the discrete −∇⃗𝜙𝑖 ⋅ 𝑞 ⃗𝑗𝑖 if we interpret 𝑗 as coming from the discretization process
described Sec. 4.2.4.1 Eq. (4.76) where 𝑗 ∈ {𝑛𝛼(𝑖), 𝛼 = 𝑥, 𝑦, 𝑧} and ⃗𝑗𝑖 is given by Eq. (4.89)
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B.3. Total energy source term

Now we show that ⟨𝜕𝑡 ̂ℰ𝑖(𝑡)⟩ = −𝜕𝑡 ⃗𝐴𝑖 ⋅ 𝑞 ⃗𝑗𝑖. By expanding it using Eq. (4.170), Eq. (4.145) and Eq.
(4.146) we obtain

⟨𝜕𝑡 ̂ℰ𝑖(𝑡)⟩ = ∑
𝑗

ℏ Im[𝜕𝑡𝜀𝑖𝑗𝐺<
𝑗𝑖]

To be able to go further, we need an explicit expression for 𝜕𝑡𝜀𝑖𝑗. If we use the expression of ℎ𝑖𝑗 in Eq.
(4.82) derived by the discretization process Sec. 4.2.4.1, we can compute 𝜕𝑡𝜀𝑖𝑗 by using its relation with
ℎ𝑖𝑗 given Eq. (4.105):

𝜕𝑡𝜀𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

∑
𝛼=𝑥,𝑦,𝑧

i ℏ𝑞
4𝑚𝑎 (𝜕𝑡𝐴𝛼

𝑛𝛼(𝑖) − 𝜕𝑡𝐴𝛼
𝑝𝛼(𝑖)) + 𝑞2

𝑚 (𝜕𝑡𝐴𝛼
𝑖 )𝐴𝛼

𝑖 for 𝑗 = 𝑖

+i ℏ𝑞
2𝑚𝑎𝜕𝑡𝐴𝛼

𝑖 for 𝑗 = 𝑛𝛼(𝑖)

−i ℏ𝑞
2𝑚𝑎𝜕𝑡𝐴𝛼

𝑖 for 𝑗 = 𝑝𝛼(𝑖)

0 otherwise

(B.42)

Given that 𝐺<
𝑖𝑖 is a pure imaginary number, and that only the imaginary part of 𝜕𝑡𝜀𝑖𝑖𝐺<

𝑖𝑖 gives rise to
a non zero term, we get for Im[𝜕𝑡𝜀𝑖𝑖𝐺<

𝑖𝑖]:

Im[𝜕𝑡𝜀𝑖𝑖𝐺<
𝑖𝑖] = ∑

𝛼=𝑥,𝑦,𝑧
Im[𝑞2

𝑚(𝜕𝑡𝐴𝛼
𝑖 )𝐴𝛼

𝑖 𝐺<
𝑖𝑖] (B.43)

The hoppings terms are:

∑
𝑗≠𝑖

Im[𝜕𝑡𝜀𝑖𝑗𝐺<
𝑗𝑖] = ∑

𝛼=𝑥,𝑦,𝑧
Im[i ℏ𝑞

2𝑚𝑎𝜕𝑡𝐴𝛼
𝑖 (𝐺<

𝑛𝛼(𝑖),𝑖 − 𝐺<
𝑝𝛼(𝑖),𝑖)] (B.44)

The sum of both is then:

∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗𝐺<
𝑗𝑖] = ∑

𝛼=𝑥,𝑦,𝑧
Im[𝑞2

𝑚(𝜕𝑡𝐴𝛼
𝑖 )𝐴𝛼

𝑖 𝐺<
𝑖𝑖 + i ℏ𝑞

2𝑚𝑎𝜕𝑡𝐴𝛼
𝑖 (𝐺<

𝑛𝛼(𝑖),𝑖 − 𝐺<
𝑝𝛼(𝑖),𝑖)] (B.45)

We now need to replace 𝐺<
𝑖𝑖 with 1

2 [𝐺<
𝑛𝛼(𝑖),𝑖 + 𝐺<

𝑝𝛼(𝑖),𝑖], which must be the case since 𝑎 is the step
taken to perform finite differences to define the operator ∇⃗ Eq. (4.80):

∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗𝐺<
𝑗𝑖] = ∑

𝛼=𝑥,𝑦,𝑧
Im[ 𝑞2

2𝑚(𝜕𝑡𝐴𝛼
𝑖 )𝐴𝛼

𝑖 [𝐺<
𝑛𝛼(𝑖),𝑖 + 𝐺<

𝑝𝛼(𝑖),𝑖]

+ i ℏ𝑞
2𝑚𝑎𝜕𝑡𝐴𝛼

𝑖 (𝐺<
𝑛𝛼(𝑖),𝑖 − 𝐺<

𝑝𝛼(𝑖),𝑖) ]

∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗𝐺<
𝑗𝑖] = ∑

𝛼=𝑥,𝑦,𝑧
𝜕𝑡𝐴𝛼

𝑖 𝑞Im[i ( ℏ
2𝑚𝑎 − i 𝑞

2𝑚𝐴𝛼
𝑖 )𝐺<

𝑛𝛼(𝑖),𝑖

− i ( ℏ
2𝑚𝑎 + i 𝑞

2𝑚𝐴𝛼
𝑖 )𝐺<

𝑝𝛼(𝑖),𝑖]
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Appendix B. Second quantization tight-binding derivations

ℎ𝑎𝑏 terms given Eq. (4.82) can be identified

∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗𝐺<
𝑗𝑖] = ∑

𝛼=𝑥,𝑦,𝑧
𝜕𝑡𝐴𝛼

𝑖 𝑞 𝑎
ℏ Im[i ( ℏ2

2𝑚𝑎2 − i ℏ𝑞
2𝑚𝑎𝐴𝛼

𝑖 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ𝑖,𝑛𝛼(𝑖)

𝐺<
𝑛𝛼(𝑖),𝑖

− i ( ℏ2

2𝑚𝑎2 + i ℏ𝑞
2𝑚𝑎𝐴𝛼

𝑖 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ𝑖,𝑝𝛼(𝑖)

𝐺<
𝑝𝛼(𝑖),𝑖]

Particle current terms 𝐼𝑁
𝑖𝑗 given Eq. (4.161) can be identified then replaced with the discrete particle

current vector field ⃗𝑗𝑖 given Eq. (4.89)

∑
𝑗

Im[𝜕𝑡𝜀𝑖𝑗𝐺<
𝑗𝑖] = ∑

𝛼=𝑥,𝑦,𝑧
𝜕𝑡𝐴𝛼

𝑖 𝑞 𝑎
ℏ Im[iℎ𝑖,𝑛𝛼(𝑖)𝐺<

𝑛𝛼(𝑖),𝑖 − iℎ𝑖,𝑝𝛼(𝑖)𝐺<
𝑝𝛼(𝑖),𝑖]

= 1
ℏ ∑

𝛼=𝑥,𝑦,𝑧
−𝜕𝑡𝐴𝛼

𝑖 𝑞𝑎
2[ 2 Re[ℎ𝑖,𝑛𝛼(𝑖)𝐺<

𝑛𝛼(𝑖),𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝑁
𝑖,𝑛𝛼(𝑖)

−2 Re[ℎ𝑖,𝑝𝛼(𝑖)𝐺<
𝑝𝛼(𝑖),𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼𝑁
𝑖,𝑝𝛼(𝑖)

]

= 1
ℏ ∑

𝛼=𝑥,𝑦,𝑧
−𝜕𝑡𝐴𝛼

𝑖 𝑞 𝑎
2 [𝐼𝑁

𝑖,𝑛𝛼(𝑖) − 𝐼𝑁
𝑖,𝑝𝛼(𝑖)]⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗𝛼
𝑖

= ∑
𝛼=𝑥,𝑦,𝑧

−𝜕𝑡𝐴𝛼
𝑖 𝑞𝑗𝛼

𝑖

= −𝜕𝑡 ⃗𝐴𝑖 ⋅ 𝑞 ⃗𝑗𝑖

We have show that the source term 𝑆𝜀
𝑖 is equal to the discrete classical electromagnetic power ⃗𝐸𝑖 ⋅ ⃗𝑗𝑖

𝑆𝜀
𝑖 = −∇⃗𝜙𝑖 ⋅ 𝑞 ⃗𝑗𝑖 − 𝜕𝑡 ⃗𝐴𝑖 ⋅ 𝑞 ⃗𝑗𝑖 = ⃗𝐸𝑖 ⋅ 𝑞 ⃗𝑗𝑖 (B.46)
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Appendix C. Resonant level model
derivations

We derive in this appendix the main equations pertaining to the Resonant Level Model studied in Sec.
5.3.2.1 and in Chapter 6.

C.1. Resonant Level Model within the NEGF formalism

In this appendix, we give the RLM formula for the lead particle current 𝐼𝑁
𝛼 (𝑡) and the lead heat currents

𝐼Q
𝛼(𝑡), ̃𝐼Q

𝛼(𝑡) that are used in Fig. 5.10 to plot the NEGF curves. The model under consideration is the
one introduced in Sec. 5.3.2.1 with 𝜖0(𝑡) = 𝜖0+𝑒𝑉0Θ(𝑡) and 𝜖𝐿(𝑡) = 𝜖𝑅(𝑡) = 0. The lead Hamiltonians
�̂�𝛼 and the tunneling Hamiltonians between the dot and the leads �̂�0𝛼 are written in the reciprocal
space, as

�̂�𝛼 =∑
𝑘𝛼

𝜖𝑘𝛼
̂𝑐†
𝑘𝛼

̂𝑐𝑘𝛼
(C.1)

�̂�0𝛼 =∑
𝑘𝛼

𝑉𝑘𝛼
̂𝑐†
𝑘𝛼

̂𝑐0 + ℎ.𝑐. (C.2)

where ̂𝑐𝑘𝛼
= ∑𝑗∈𝛼 𝑒𝑖𝑗𝑘𝛼 ̂𝑐𝑗 is the annihilation operator of an electron with momentum 𝑘𝛼 in lead 𝛼 = 𝐿

or 𝑅, 𝑉𝑘𝛼
= 𝛾𝑐 sin(𝑘𝛼) the hybridization term, and 𝜖𝑘𝛼

= −2𝛾 cos(𝑘𝛼) the dispersion relation (with a
lattice spacing fixed to unity). Then the currents are calculated within the NEGF formalism under the
wide-band limit approximation, i.e assuming that Γ𝛼(𝐸) ≡ −2 ImΣ𝑅(𝐸) = 2𝜋 ∑𝑘𝛼

|𝑉𝑘𝛼
|2𝛿(𝐸 − 𝜖𝑘𝛼

)
is energy independent (Γ𝐿 = Γ𝑅 = Γ/2). This is true in the limit 𝜆𝛾/Γ ≫ 1 as noticed in Sec. 5.3.2.2.
We refer to the seminal paper [92] of Jauho et al. for the derivation of the particle current and to
Refs. [38, 219, 44, 121] for its extension to the energy and heat currents. We gather here the results.
Introducing the notations �̂�𝑁

𝛼 = ̂𝑁𝛼 = ∑𝑖∈𝛼 ̂𝑐†
𝑖 ̂𝑐𝑖, �̂�𝐸

𝛼 = �̂�𝛼 + 1
2�̂�0𝛼, and �̂��̃�

𝛼 = �̂�𝛼, we have for
𝜆 = 𝑁 , 𝐸 and ̃𝐸

⟨d�̂�𝜆
𝛼

d𝑡 ⟩ = ∑
𝛽

∫ d𝐸
2𝜋 𝑓𝛽(𝐸) ℐ𝜆

𝛼𝛽(𝐸, 𝑡) (C.3)

where the sum over 𝛽 is made over both leads 𝐿 and 𝑅, and

ℐ𝑁
𝛼𝛽(𝐸, 𝑡) = Γ

ℏ [Γ
4 |𝐴(𝐸, 𝑡)|2 + 𝛿𝛼𝛽Im[𝐴(𝐸, 𝑡)]] (C.4)

ℐ�̃�
𝛼𝛽(𝐸, 𝑡) = 𝐸 ℐ𝑁

𝛼𝛽(𝐸, 𝑡)+Γ2

4 Im[𝐴(𝐸, 𝑡)𝜕𝐴∗

𝜕𝑡 (𝐸,𝑡)] (C.5)

ℐ𝐸
𝛼𝛽(𝐸, 𝑡) = ℐ�̃�

𝛼𝛽(𝐸, 𝑡) + Γ
2 𝛿𝛼𝛽Re [𝜕𝐴

𝜕𝑡 (𝐸, 𝑡)] (C.6)
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while the spectral density 𝐴(𝐸, 𝑡) reads

𝐴(𝐸, 𝑡) = 𝐸 − 𝜖0 + 𝑖Γ
2 − 𝑒𝑉0𝑒𝑖(𝐸−𝜖0−𝑒𝑉0+𝑖 Γ

2 )𝑡/ℏ

(𝐸 − 𝜖0 + 𝑖Γ
2 )(𝐸 − 𝜖0 − 𝑒𝑉0 + 𝑖Γ

2 ) . (C.7)

We used the formula above to plot the NEGF particle current 𝐼𝑁
𝛼 (𝑡) = −⟨d�̂�𝛼

d𝑡 ⟩ and the NEGF heat
currents 𝐼Q

𝛼(𝑡) = −[⟨d�̂�𝐸
𝛼

d𝑡 ⟩ − 𝜇𝛼⟨d�̂�𝛼
d𝑡 ⟩] and ̃𝐼Q

𝛼(𝑡) = −[⟨d�̂��̃�
𝛼

d𝑡 ⟩ − 𝜇𝛼⟨d�̂�𝛼
d𝑡 ⟩] in Fig.(5.10) (circles). The

integrals over the energy were computed numerically.

C.2. Spatially semi-infinite uniform voltage pulse

In Sec. 6.2, the scattering amplitudes of the time-dependent RLM are evaluated in the wideband limit by
combining the scattering amplitudes of three elementary building blocks: (i) an abrupt voltage pulse
in a semi-infinite lead, (ii) the stationary dot, and (iii) a (reversed) abrupt voltage pulse in the other
semi-infinite lead. In this section, we compute the scattering amplitudes associated to (i) and (iii). The
system is defined by the following Hamiltonian

ℎ𝑖𝑗 =
⎧{{
⎨{{⎩

𝑉 (𝑡) if 𝑖 = 𝑗 and 𝑖 ≤ 0
0 if 𝑖 = 𝑗 and 𝑖 > 0

−𝛾𝑐 if 𝑖, 𝑗 = 0, 1 or 1, 0
−𝛾 if 𝑖 ≠ 𝑗

(C.8)

Site
index

Figure C.1. – Homogenous chain with a semi infinite homogenous voltage pulse.

With the following gauge change:

Λ𝑖(𝑡) = {𝜑(𝑡) if 𝑖 ≤ 0
0 if 𝑖 > 0 (C.9)

where

𝜑(𝑡) = − ∫
𝑡

𝑡0

𝑉 (𝑢)d𝑢 (C.10)

we can rewrite an equivalent gauge transformed Hamiltonian, according to Eq. (4.84)

ℎ′
𝑖𝑗 =

⎧{
⎨{⎩

0 if 𝑖 = 𝑗
−𝛾𝑐𝑒−i𝜑(𝑡) if 𝑖, 𝑗 = 0, 1
−𝛾𝑐𝑒i𝜑(𝑡) if 𝑖, 𝑗 = 1, 0

(C.11)

170



C.2. Spatially semi-infinite uniform voltage pulse

Site
index

Figure C.2. – Gauge transformed system: homogenous chain with a semi infinite homogenous voltage pulse.

Transmission and reflection amplitudes

We use the gauge transformed Hamiltonian, given by the matrix elements ℎ′
𝑖𝑗 expressed in Eq. (C.11), to

compute the scattering coefficients 𝑟p(𝐸′, 𝐸) and 𝑑p(𝐸′, 𝐸). An incoming mode ∥+,𝐸,𝑥 (defined in Sec
6.2.1) from the left at energy 𝐸 creates a scattering state ΨL,𝐸

𝑥 . It can be expressed in the following way,
using the left-to-right transmission amplitude 𝑑p(𝐸′, 𝐸) and the left reflection amplitude 𝑟p(𝐸′, 𝐸)

ΨL,𝐸
𝑥 =

⎧{{
⎨{{⎩

Ψr,L,𝐸
𝑥 = ∥+,𝐸

𝑥 + ∫ d𝐸′

2𝜋 ∥−,𝐸
𝑥 𝑟p(𝐸′, 𝐸) if 𝑥 ≤ 0

Ψd,L,𝐸
𝑥 = ∫ d𝐸′

2𝜋 ∥+,𝐸′,𝑥 𝑑p(𝐸′, 𝐸) if 𝑥 ≥ 1
(C.12)

We can now write the Schrödinger equation for 𝑥 = 0 and 𝑥 = 1 (we will omit the indexes L and 𝐸
because not useful)

i𝜕𝑡Ψr
0 = −𝛾Ψr

−1 − 𝛾𝑐e−i𝜑(𝑡)Ψd
1 (C.13a)

i𝜕𝑡Ψd
1 = −𝛾𝑐ei𝜑(𝑡)Ψr

0 − 𝛾Ψd
2 (C.13b)

Given that Ψr
𝑥 and Ψd

𝑥 are a superposition of plane waves that satisfy the Schrödinger equation of the
homogenous chain ∀𝑥, Ψr

𝑥 and Ψd
𝑥 also satisfy it, in particular for 𝑥 = 0 and 𝑥 = 1:

i𝜕𝑡Ψr
0 = −𝛾Ψr

−1 − 𝛾Ψr
1 (C.14a)

i𝜕𝑡Ψd
1 = −𝛾Ψd

0 − 𝛾Ψd
2 (C.14b)

Taking the previous four equations together we obtain

𝛾Ψr
1 = 𝛾𝑐𝑒−i𝜑(𝑡)Ψd

1 (C.15a)
𝛾Ψd

0 = 𝛾𝑐𝑒i𝜑(𝑡)Ψr
0 (C.15b)

We can then replace each term by its respective expression:

∥+,𝐸
1 +∫ d𝐸′

2𝜋 ∥−,𝐸′

1 𝑟p(𝐸′, 𝐸) = 𝛾𝑐
𝛾 𝑒−i𝜑(𝑡) ∫ d𝐸′

2𝜋 ∥+,𝐸′,1 𝑑p(𝐸′, 𝐸) (C.16a)

𝛾
𝛾𝑐

𝑒−i𝜑(𝑡) ∫ d𝐸′

2𝜋 ∥+,𝐸′

0 𝑑p(𝐸′, 𝐸) = ∥+,𝐸
0 +∫ d𝐸′

2𝜋 ∥−,𝐸′

0 𝑟p(𝐸′, 𝐸) (C.16b)
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Wide band approximation To proceed further in the calculations, we will use the WBL1 approxi-
mation from the general considerations in Sec 6.2.1:

ei𝑘+
𝐸−i𝐸𝑡 + ei𝑘−

𝐸 𝑟p(𝑡, 𝐸) = 𝛾𝑐
𝛾 𝑒−i𝜑(𝑡)ei𝑘+

𝐸𝑑p(𝑡, 𝐸) (C.17a)
𝛾
𝛾𝑐

𝑒−i𝜑(𝑡)𝑑p(𝑡, 𝐸) = e−i𝐸𝑡 + 𝑟p(𝑡, 𝐸) (C.17b)

Using (C.17b) to replace 𝑟p(𝑡, 𝐸) in (C.17a), we get:

ei𝑘+
𝐸−i𝐸𝑡 + ei𝑘−

𝐸 ( 𝛾
𝛾𝑐

𝑒−i𝜑(𝑡)𝑑p(𝑡, 𝐸) − e−i𝐸𝑡) = 𝛾𝑐
𝛾 𝑒−i𝜑(𝑡)ei𝑘+

𝐸𝑑p(𝑡, 𝐸) (C.18a)

[𝛾𝑐
𝛾 𝑒−i𝜑(𝑡)ei𝑘+

𝐸 − ei𝑘−
𝐸

𝛾
𝛾𝑐

𝑒−i𝜑(𝑡)] 𝑑p(𝑡, 𝐸) = ei𝑘+
𝐸−i𝐸𝑡 − ei𝑘−

𝐸e−i𝐸𝑡 (C.18b)

𝑒−i𝜑(𝑡) [𝛾2
𝑐

𝛾2 e2i𝑘+
𝐸 − 1] 𝑑p(𝑡, 𝐸) = 𝛾𝑐

𝛾 [e2i𝑘+
𝐸 − 1] e−i𝐸𝑡 (C.18c)

𝑑p(𝑡, 𝐸) = 𝛾𝑐
𝛾

e2i𝑘+
𝐸 − 1

𝛾2𝑐
𝛾2 e2i𝑘+

𝐸 − 1
ei𝜑(𝑡)−i𝐸𝑡 (C.18d)

∫ d𝐸′

2𝜋 𝑑p(𝑡, 𝐸)ei𝐸′𝑡 = 𝛾𝑐
𝛾

e2i𝑘+
𝐸 − 1

𝛾2𝑐
𝛾2 e2i𝑘+

𝐸 − 1
∫ d𝐸′

2𝜋 ei𝜑(𝑡)−i(𝐸−𝐸′)𝑡 (C.18e)

Which finally gives

𝑑p(𝐸′, 𝐸) = 𝛾𝑐
𝛾

e2i𝑘+
𝐸 − 1

𝛾2𝑐
𝛾2 e2i𝑘+

𝐸 − 1
𝐾∗(𝐸 − 𝐸′) (C.19)

where 𝐾 is the fourier transform of e−i𝜑

𝐾(𝑈) = ∫ d𝑡 e𝑖𝑈𝑡−𝑖𝜑(𝑡) (C.20)

It is important to note that the calculations and results of this section have been done, and in a
more general way, in [63, Chapter 4]. Given that that the previous approximation also implies that
cos (𝑘𝐸) = 0 and sin (𝑘𝐸) = 1, the previous expression simplifies to:

𝑑p(𝐸′, 𝐸) = 𝐾∗(𝐸 − 𝐸′) 2𝛾𝑐𝛾
𝛾2 + 𝛾2𝑐

(C.21a)

𝑟p(𝐸′, 𝐸) = [ 2𝛾𝑐𝛾
𝛾2 + 𝛾2𝑐

− 1] 2𝜋𝛿(𝐸 − 𝐸′) (C.21b)

When 𝛾 = 𝛾𝑐, we get:

𝑑p(𝐸′, 𝐸) = 𝐾∗(𝐸 − 𝐸′) (C.22a)
𝑟p(𝐸′, 𝐸) = 0 (C.22b)

For the right incoming modes, the right transmission amplitude 𝑑′
p(𝐸′, 𝐸) is related to the left trans-

mission amplitude 𝑑p(𝐸′, 𝐸):

𝑑′
p(𝐸′, 𝐸) = 𝑑p(𝐸, 𝐸′)∗ (C.23)
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C.3. A relation between the reflection and the transmission amplitudes

C.3. A relation between the reflection and the transmission
amplitudes

We now come back to the whole system and derive the relation (6.53) that links the transmission
amplitude 𝑑(𝐸′, 𝐸) and the reflection amplitude 𝑟(𝐸′, 𝐸). Note that the scattering amplitudes are
introduced in the scattering states Ψ𝜆=𝛼,𝐸 in Eq. (6.33) and their Fourier transform is defined in Eq.
(6.51).

Let’s write the Schrödinger equation on site −1 and site 1, for the left scattering state:

i𝜕𝑡ΨL,𝐸,−1 = −𝛾 ΨL,𝐸
−2 − 𝛾𝑐 ΨL,𝐸

0
i𝜕𝑡ΨL,𝐸

1 = −𝛾 ΨL,𝐸
2 − 𝛾𝑐 ΨL,𝐸

0

Which gives the following relation:

i𝜕𝑡ΨL,𝐸
−1 + 𝛾 ΨL,𝐸

−2 = i𝜕𝑡ΨL,𝐸
1 + 𝛾 ΨL,𝐸

2

Given that i𝜕𝑡 ∥±,𝐸,𝑥= 𝐸 ∥±,𝐸,𝑥, the previous relation writes, after expression the scattering state
with plane waves and the scattering amplitudes:

𝐸 ∥+,𝐸,−1 −𝛾 ∥+,𝐸,−2 +∫ d𝐸′

2𝜋 [𝐸′ ∥−,𝐸′,−1 −𝛾 ∥−,𝐸′,−2] 𝑟(𝐸′, 𝐸)

= ∫ d𝐸′

2𝜋 [𝐸′ ∥+,𝐸′,1 −𝛾 ∥+,𝐸′,2] 𝑑(𝐸′, 𝐸)

Plane waves satisfy the homogenous Schrödinger equation on the leads

i𝜕𝑡 ∥±,𝑈,𝑥= −𝛾 𝜕𝑡 ∥±,𝑈,𝑥−1 −𝛾 𝜕𝑡 ∥±,𝑈,𝑥+1

which means we have:

𝑈 ∥±,𝑈,𝑥 +𝛾 𝜕𝑡 ∥±,𝑈,𝑥±1= −𝛾 𝜕𝑡 ∥±,𝑈,𝑥∓1

Let’s apply it to the equation involving the scattering coefficients:

−𝛾 ∥+,𝐸
0 +∫ d𝐸′

2𝜋 − 𝛾 ∥−,𝐸,0 𝑟(𝐸′, 𝐸) = ∫ d𝐸′

2𝜋 − 𝛾 ∥+,𝐸
0 𝑑(𝐸′, 𝐸)

Using equation (6.28), we have ∥±,𝐸,0= |𝑣𝐸|−
1
2 e−i𝐸𝑡:

|𝑣𝐸|−
1
2 e−i𝐸𝑡 + ∫ d𝐸′

2𝜋 |𝑣𝐸′|−
1
2 e−i𝐸𝑡𝑟(𝐸′, 𝐸) = ∫ d𝐸′

2𝜋 |𝑣𝐸′|−
1
2 e−i𝐸𝑡𝑑(𝐸′, 𝐸)

If we use the hypothesis that 𝑟(𝐸′, 𝐸) is peaked around 𝐸, as a function of 𝐸′, we can factor out
the |𝑣𝐸′|−

1
2 in the integrals and take it equal to |𝑣𝐸|−

1
2 . Which then we can remove entirely from the

equation:

e−i𝐸𝑡 + ∫ d𝐸′

2𝜋 e−i𝐸𝑡𝑟(𝐸′, 𝐸) = ∫ d𝐸′

2𝜋 e−i𝐸𝑡𝑑(𝐸′, 𝐸)

Which lead to the result in the time domain:

e−i𝐸𝑡 + 𝑟(𝑡, 𝐸) = 𝑑(𝑡, 𝐸)
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C.4. Expressing time-resolved transport quantities

Here, we write the expression of the time-resolved lead particle, energy and heat currents within the
Resonant Level Model, using the scattering states expressed in Eqs. (6.33). As stated in the end of
Sec. (5.2.3.1), the discrete one-body expressions for currents and densities that have been expressed
in Sec. 4.2.4, can be used to compute the contribution of each scattering state Ψ𝜆 to the many-body
expectation value to finally obtain Landauer-Büttiker formulas with the time-dependent transmission
𝑑(𝑡, 𝐸). The approach taken in our derivation consists in expressing first one-body contributions then
integrating them over the scattering states with Fermi weights (following Eq. (5.26)).

C.4.1. Particle current

The contribution 𝐼N,𝜆
𝑥,𝑥+1 of the scattering state Ψ𝜆=𝛼,𝐸 to the many-body particle current 𝐼N

𝑥,𝑥+1 flowing
from site 𝑥 to site 𝑥+1 can be expressed by jointly using the definition of the hopping particle current
𝐼N
𝑖𝑗, defined Eq. (4.88), and the expression of the scattering state Ψ𝜆 using the scattering amplitudes

𝑟(𝐸′, 𝐸) and 𝑑(𝐸′, 𝐸), given by Eq. (6.33).

𝐼N,𝜆
𝑥,𝑥+1 = 𝐼N,𝜆

𝑥,𝑥+1 = −2 Im[(Ψ𝜆
𝑥)∗ ℎ𝑥,𝑥+1Ψ𝜆

𝑥+1] (C.24)

For sites 𝑥 ∉ {−1, 0}, we have ℎ𝑥,𝑥+1 = −𝛾

𝐼N,𝜆
𝑥,𝑥+1 = 2𝛾 Im[(Ψ𝜆

𝑥)∗ Ψ𝜆
𝑥+1] (C.25)

Let’s consider first the current following through the left lead, i.e. 𝑥 ≤ −2. Let’s start with 𝜆 = (L, 𝐸),
the scattering state generated by an incoming plane wave from the left (given in 6.33a):

𝑥 ≤ −2, (ΨL,𝐸
𝑥 )∗ ΨL,𝐸

𝑥+1 =[∥+,𝐸
𝑥 +∫ d𝐸′

2𝜋 ∥−,𝐸
𝑥 𝑟(𝐸′, 𝐸)]

∗

[∥+,𝐸,𝑥+1 +∫ d𝐸′

2𝜋 ∥−,𝐸′,𝑥+1 𝑟(𝐸′, 𝐸)]

for 𝜆 = (𝑅, 𝐸) (scattering state given in 6.33b):

𝑥 ≤ −2, (ΨR,𝐸
𝑥 )∗ ΨR,𝐸

𝑥+1 = [∫ d𝐸′

2𝜋 ∥−,𝐸
𝑥 𝑑′(𝐸′, 𝐸)]

∗
[∫ d𝐸′

2𝜋 ∥−,𝐸′,𝑥+1 𝑑′(𝐸′, 𝐸)]

Using WBL1 We use the approximation 1 from 6.2.1. After rewriting 𝑘−
𝐸 = −𝑘+

𝐸, we get for 𝜆 =
(𝐿,𝐸):

𝑥 ≤ −2, (ΨL,𝐸
𝑥 )∗ ΨL,𝐸

𝑥+1 ≈ |𝑣𝐸|−1 [ei𝑘+
𝐸𝑥−i𝐸𝑡 + e−i𝑘+

𝐸𝑥 𝑟(𝑡, 𝐸)]∗

[ei𝑘+
𝐸(𝑥+1)−i𝐸𝑡 + e−i𝑘+

𝐸(𝑥+1) 𝑟(𝑡, 𝐸)]
= |𝑣𝐸|−1 [e−i𝑘+

𝐸𝑥+i𝐸𝑡 + ei𝑘+
𝐸𝑥 𝑟(𝑡, 𝐸)∗]

[ei𝑘+
𝐸(𝑥+1)−i𝐸𝑡 + e−i𝑘+

𝐸(𝑥+1) 𝑟(𝑡, 𝐸)]
= |𝑣𝐸|−1[ei𝑘+

𝐸 + e−i𝑘+
𝐸 |𝑟(𝑡, 𝐸)|2 + e−i𝑘+

𝐸(2𝑥+1)+i𝐸𝑡 𝑟(𝑡, 𝐸) + ei𝑘+
𝐸(2𝑥+1)−i𝐸𝑡 𝑟(𝑡, 𝐸)∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎+𝑎∗ ⟹ Im[𝑎+𝑎∗]=0
]
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And for 𝜆 = (𝑅, 𝐸) :

𝑥 ≤ −2, (ΨR,𝐸
𝑥 )∗ ΨR,𝐸

𝑥+1 ≈ |𝑣𝐸|−1 ei𝑘−
𝐸 |𝑑′(𝑡, 𝐸)|2

This approximation makes 𝐼N,𝜆
𝑥,𝑥+1 position independent but still side dependent: the expressions written

so far only apply to the left side (i.e. 𝑥 ≤ −2). It is to be noted the 𝑥 independence can only be achieved
if the group velocity is infinite: the approximation done thus implies considering an infinite group
velocity 𝑣𝐸 → ∞.

WBL1 ⟹ 𝐼N,𝜆
𝑥,𝑥+1 is 𝑥 independent ⟹ 𝑣𝐸 ≡ 2𝛾 ⟹ ei𝑘𝐸 = i (C.26)

Which enables us a to write a Landauer-Büttiker-like equation of the particle current, using Eq. (C.25)

𝑥 ≤ −2, 𝐼N,𝜆=(L,𝐸)
𝑥,𝑥+1 (𝑡) = 2𝛾 |𝑣𝐸|−1 Im[ei𝑘+

𝐸 + e−i𝑘+
𝐸 |𝑟(𝑡, 𝐸)|2] = 1 − |𝑟(𝑡, 𝐸)|2 (C.27)

The same approach applies for 𝜆 = (𝑅, 𝐸) and results with the following:

𝐼N,𝜆=(R,𝐸)
𝑥,𝑥+1 (𝑡) = − |𝑑′(𝑡, 𝐸)|2 (C.28)

Summing over the scattering states, as described in Eq. (5.27), gives the following for the particle
current in the left lead 𝑥 ≤ −2

𝐼N
L (𝑡) = ∫ d𝐸

2𝜋 𝑓𝐿(𝐸) 𝐼N,𝜆=(R,𝐸)
𝑥,𝑥+1 (𝑡) + 𝑓𝑅(𝐸) 𝐼N,𝜆=(R,𝐸)

𝑥,𝑥+1 (𝑡) (C.29)

where 𝑓𝐿 and 𝑓𝑅 are respectively the left reservoir and right reservoir Fermi distributions. And in our
current WBL1 approximation, it is position independent. A similar derivation calculation can be made
in the right lead, resulting in the following expressions for the right and left lead particle current

𝐼N,1
L (𝑡) = 𝐼N,1

−1,0(𝑡) = ∫ d𝐸
2𝜋 𝑓𝐿(𝐸) [1 − |𝑟(𝑡, 𝐸)|2] −𝑓𝑅(𝐸) |𝑑′(𝑡, 𝐸)|2 (C.30a)

𝐼N,1
R (𝑡) = 𝐼N,1

1,0(𝑡) = ∫ d𝐸
2𝜋 𝑓𝑅(𝐸) [1 − |𝑟′(𝑡, 𝐸)|2]−𝑓𝐿(𝐸) |𝑑(𝑡, 𝐸)|2 (C.30b)

Using WBL2 We will use the approximation 2 from 6.2.1:

(ΨL,𝐸
𝑥 )∗ ΨL,𝐸

𝑥+1 ≈ |𝑣𝐸|−1 [ei𝑘+
𝐸𝑥−i𝐸𝑡 + ei[𝑘−

𝐸− 𝐸
𝑣−

𝐸
]𝑥 𝑟(𝑡 − 𝑥

𝑣−
𝐸

, 𝐸)]
∗

[ei𝑘+
𝐸(𝑥+1)−i𝐸𝑡 + ei[𝑘−

𝐸− 𝐸
𝑣−

𝐸
](𝑥+1) 𝑟(𝑡 − 𝑥 + 1

𝑣−
𝐸

, 𝐸)]

= |𝑣𝐸|−1 [e−i𝑘+
𝐸𝑥+i𝐸𝑡 + e

i[𝑘+
𝐸− 𝐸

𝑣+
𝐸

]𝑥 𝑟(𝑡 + 𝑥
𝑣+

𝐸
, 𝐸)∗]

[ei𝑘+
𝐸(𝑥+1)−i𝐸𝑡 + e

−i[𝑘+
𝐸− 𝐸

𝑣+
𝐸

](𝑥+1) 𝑟(𝑡 + 𝑥 + 1
𝑣+

𝐸
, 𝐸)]

= |𝑣𝐸|−1[ei𝑘+
𝐸 + e

−i[𝑘+
𝐸− 𝐸

𝑣+
𝐸

]𝑟(𝑡 + 𝑥 + 1
𝑣+

𝐸
, 𝐸)𝑟(𝑡 + 𝑥

𝑣+
𝐸

, 𝐸)∗ + 𝐺]

Where

𝐺 = e−i𝑘+
𝐸𝑥+i𝐸𝑡e

−i[𝑘+
𝐸− 𝐸

𝑣+
𝐸

](𝑥+1) 𝑟(𝑡 + 𝑥 + 1
𝑣+

𝐸
, 𝐸) + ei𝑘+

𝐸(𝑥+1)−i𝐸𝑡e
i[𝑘+

𝐸− 𝐸
𝑣+

𝐸
]𝑥 𝑟(𝑡 + 𝑥

𝑣+
𝐸

, 𝐸)∗

= e
−i𝑘+

𝐸(2𝑥+1)+i 𝐸
𝑣+

𝐸
(𝑥+1)+i𝐸𝑡 𝑟(𝑡 + 𝑥 + 1

𝑣+
𝐸

, 𝐸) + e
i𝑘+

𝐸(2𝑥+1)−i 𝐸
𝑣+

𝐸
𝑥−i𝐸𝑡 𝑟(𝑡 + 𝑥

𝑣+
𝐸

, 𝐸)∗
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Appendix C. Resonant level model derivations

We want to place ourselves in conditions where we can have Im[𝐺] ≈ 0. To have that we need
ei𝐸/𝑣+

𝐸,𝐸𝑟(𝑡+ 𝑥+1
𝑣𝐸

) ≈ 𝑟(𝑡+ 𝑥
𝑣𝐸

, 𝐸) Therefore we will make two additional hypotheses, that lead to two
consecutive approximations that justify Im[𝐺] ≈ 0:

1. |𝑙(𝑡, 𝐸)|2 have negligible values around the edges of ] − 2𝛾, 2𝛾[, so we can do the approximation
𝑣+

𝐸 ≈ 𝑣+
𝐸=0 = 2𝛾 in 𝑙(𝑡 + 𝑥/𝑣𝐸, 𝐸), where 𝑙 = 𝑟, 𝑑, 𝑟′, 𝑑′, and in e

i 𝐸
𝑣+

𝐸 .

2. 𝛾 is big enough to consider that 𝑙(𝑡 + 𝑥+1
2𝛾 , 𝐸) ≈ 𝑙(𝑡 + 𝑥

2𝛾 , 𝐸) ≈ 𝑙(𝑡 + 𝑥+0.5
2𝛾 , 𝐸) where 𝑙 =

𝑟, 𝑑, 𝑟′, 𝑑′. And ei 𝐸
2𝛾 ≈ 1

𝐼N,𝜆=(L,𝐸)
𝑥,𝑥+1 (𝑡) then writes:

𝐼N,𝜆=(L,𝐸)
𝑥,𝑥+1 (𝑡) = 2𝛾 |𝑣𝐸|−1 Im[ei𝑘+

𝐸 + e
−i[𝑘+

𝐸− 𝐸
𝑣+

𝐸
] ∣𝑟(𝑡 + 𝑥 + 0.5

2𝛾 ,𝐸)∣
2
]

= |𝑣𝐸|−1 [𝑣+
𝐸 + 2𝛾 Im[e−i[𝑘+

𝐸− 𝐸
𝑣+

𝐸
]] ∣𝑟(𝑡 + 𝑥 + 0.5

2𝛾 ,𝐸)∣
2
]

= 1 − 2𝛾 |𝑣𝐸|−1 [ 𝐸
2𝛾 sin 𝐸

𝑣+
𝐸

+ 𝑣+
𝐸

2𝛾 cos 𝐸
𝑣+

𝐸
] ∣𝑟(𝑡 + 𝑥 + 0.5

2𝛾 ,𝐸)∣
2

= 1 − [ 𝐸
𝑣+

𝐸
sin 𝐸

𝑣+
𝐸

+ cos 𝐸
𝑣+

𝐸
] ∣𝑟(𝑡 + 𝑥 + 0.5

2𝛾 ,𝐸)∣
2

(C.31)

A closer look at the pre-factor 𝐸
𝑣+

𝐸
sin 𝐸

𝑣+
𝐸

+cos 𝐸
𝑣+

𝐸
(Fig C.3) shows that it’s a mainly flat curve (equal to

1) on the interval ] − 2𝛾, 2𝛾[ and diverges at its edges. Given that this pre-factor comes as a multiplier
of ∣𝑟(𝑡 + 𝑥+0.5

2𝛾 , 𝐸)∣2 for which we made the hypothesis that it has negligible values on the edges of
] − 2𝛾, 2𝛾[, we can do the approximation pre-factor = 1 (The same result would have been achieved if
we took ei 𝐸

2𝛾 ≈ 1 for its other occurrences). This finally gives:

𝐼N,𝜆=(L,𝐸)
𝑥,𝑥+1 (𝑡) = 1 − ∣𝑟(𝑡 + 𝑥 + 0.5

2𝛾 ,𝐸)∣
2

(C.32)
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Figure C.3. – Representation of the pre-factor that appears in (C.31)

Now with 𝜆 = (𝑅,𝐸), i.e. the scattering state Ψ𝜆=R,𝐸 created by the incoming right-to-left plane
wave ∥−,𝐸:

(ΨR,𝐸
𝑥 )∗ ΨR,𝐸

𝑥+1 = [∫ d𝐸′

2𝜋 ∥−,𝐸
𝑥 𝑑′(𝐸′, 𝐸)]

∗
[∫ d𝐸′

2𝜋 ∥−,𝐸′,𝑥+1 𝑑′(𝐸′, 𝐸)]

≈ |𝑣𝐸|−1 [ei[𝑘−
𝐸− 𝐸

𝑣−
𝐸

]𝑥 𝑑′(𝑡 − 𝑥
𝑣−

𝐸
, 𝐸)]

∗
[ei[𝑘−

𝐸− 𝐸
𝑣−

𝐸
](𝑥+1) 𝑑′(𝑡 − 𝑥 + 1

𝑣−
𝐸

, 𝐸)]

= |𝑣𝐸|−1 [e
i[𝑘+

𝐸− 𝐸
𝑣+

𝐸
]𝑥 𝑑′(𝑡 + 𝑥

𝑣+
𝐸

, 𝐸)∗][e
−i[𝑘+

𝐸− 𝐸
𝑣+

𝐸
](𝑥+1) 𝑑′(𝑡 + 𝑥 + 1

𝑣+
𝐸

, 𝐸)]

= |𝑣𝐸|−1 e
−i[𝑘+

𝐸− 𝐸
𝑣+

𝐸
] 𝑑′(𝑡 + 𝑥 + 1

𝑣+
𝐸

, 𝐸) 𝑑′(𝑡 + 𝑥
𝑣+

𝐸
, 𝐸)∗

Where 𝑑′(𝐸′, 𝐸) is the right-to-left transmission. We use the hypotheses made in the two bullet points
above, along with the approximations they enable, to obtain:

𝐼N,𝜆=(L,𝐸)
𝑥,𝑥+1 (𝑡) = − ∣𝑑′(𝑡 + 𝑥 + 0.5

2𝛾 ,𝐸)∣
2

(C.33)

The total particle current writes:

𝐼N
𝑥,𝑥+1(𝑡) = ∫ d𝐸

2𝜋 𝑓𝐿(𝐸) 𝐼N,𝜆=(L,𝐸)
𝑥,𝑥+1 (𝑡) + 𝑓𝑅(𝐸) 𝐼N,𝜆=(R,𝐸)

𝑥,𝑥+1 (𝑡) (C.34)

where 𝑓𝐿 and 𝑓𝑅 are respectively the left reservoir and right reservoir Fermi distributions. And in our
approximation, its expanded expression is (note that the 𝑥, 𝑥+1 index means from site 𝑥 to site 𝑥+1):

𝐼N,2
L,𝑥,𝑥+1(𝑡) = ∫ d𝐸

2𝜋 𝑓𝐿(𝐸) [1 − ∣𝑟(𝑡 + 𝑥+0.5
2𝛾 , 𝐸)∣2] − 𝑓𝑅(𝐸) ∣𝑑′(𝑡 + 𝑥+0.5

2𝛾 , 𝐸)∣2 (C.35a)

𝐼N,2
R,𝑥+1,𝑥(𝑡) = ∫ d𝐸

2𝜋 𝑓𝑅(𝐸) [1 − ∣𝑟′(𝑡 − 𝑥+0.5
2𝛾 , 𝐸)∣2] − 𝑓𝑅(𝐸) ∣𝑑(𝑡 − 𝑥+0.5

2𝛾 , 𝐸)∣2 (C.35b)
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Appendix C. Resonant level model derivations

which has the same form as Eqs. (C.30) with the benefit of taking into account the finite speed propa-
gation in the leads, with a finite and fixed group velocity 𝑣 = 2𝛾. Note that here 𝑥 is negative in the
left lead and positive in the right lead.

C.4.2. Dot’s particle density

To obtain the value of the particle density on the dot (i.e. site 0), we need to express the scattering sates
on that site. Let’s express it starting off the Schrödinger equation:

Φ0 = −i 1
𝛾𝑐

𝜕𝑡Φ1 − 𝛾
𝛾𝑐

Φ2 (C.36)

Given that the wave functions start with 𝑣− 1
2

𝐸 where 𝑣𝐸 = 2𝛾 in our current wideband approximation.
If we express that prefactor out of the wavefunctions Φ = 𝑣−1/2

𝐸 Φ′ we get that :

Φ0 = −i 1
𝛾𝑐

√2𝛾𝜕𝑡Φ′
1 − 𝛾

𝛾𝑐
√2𝛾Φ′

2

= −i 1
𝛾𝑐

√2𝛾𝜕𝑡Φ′
1 − 1

ΓΦ′
2

(C.37)

Another thing to consider from the wideband is that it symbolically amounts to taking 𝛾 → ∞ and
𝛾𝑐 → ∞ while keeping Γ (given in 5.55) constant. That means that 1

𝛾𝑐
√2𝛾 → 0 in the previous expres-

sion:
Φ0 = − 1√

Γ
Φ′

2 (C.38)

We can now use the calculations carried in C.4.4 to express Φ′
2 with e𝑖𝑘𝐸 = i as a result of WBL1

Φ′
R,𝐸,2 = − [e−i𝐸𝑡 + 𝑟′(𝑡, 𝐸)] = −𝑑′(𝑡, 𝐸) (C.39)

Φ′
L,𝐸,2 = −𝑑(𝑡, 𝐸) (C.40)

Therefore, the particle density 𝜌0 writes:

𝜌0 = ∫ d𝐸
2𝜋 (𝑓𝑅 + 𝑓𝐿) 1

Γ |𝑑|2 (C.41)

Note: Eq. (C.38) implies that 𝜌0 ∝ 𝜌2 but a tkwant simulation shows that it’s not the case. The final
expression of 𝜌0, however, matches with simulation.

C.4.3. Energy current: far in the leads

The lead time-resolved energy current 𝐼𝜀
𝛼,𝑥 in an arbitrary position 𝑥 of left 𝛼 = L and right 𝛼 = R lead

can in theory computed using the scattering states defined in Eq. (6.33): by summing the contribution
𝐼𝜀,𝜆
𝛼,𝑥 of each scattering state Ψ𝜆, given by Eq. (4.94) (with the total energy operator as the energy

operator 𝜖 = 𝜀), according the Fermi distribution of each lead (see Eq. (5.27)), one obtains 𝐼𝜀
𝛼,𝑥. The

contribution 𝐼𝜀,𝜆
𝑥,𝑥+1 to the energy current flowing from 𝑥 to 𝑥 + 1, of the scattering state Ψ𝜆, writes

(4.94):

𝐼𝜀,𝜆
𝑥,𝑥+1 = ∑

𝑘
−Im[(Ψ𝜆

𝑘)∗ 𝜀𝑘,𝑥𝜀𝑥,𝑥+1Ψ𝜆
𝑥+1 − (Ψ𝜆

𝑘)∗ 𝜀𝑘,𝑥+1𝜀𝑥+1,𝑥Ψ𝜆
𝑥] (C.42)
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C.4. Expressing time-resolved transport quantities

Let’s develop this formula, knowing that in the leads we have 𝜀𝑥,𝑥 = 0, 𝜀𝑥,𝑥±1 = −𝛾:

𝐼𝜀,𝜆
𝑥,𝑥+1 = −Im[ (Ψ𝜆

𝑥−1)
∗ 𝜀𝑥−1,𝑥𝜀𝑥,𝑥+1Ψ𝜆

𝑥+1 + (Ψ𝜆
𝑥)∗ 𝜀𝑥,𝑥⏟

=0
𝜀𝑥,𝑥+1Ψ𝜆

𝑥+1 + (Ψ𝜆
𝑥+1)

∗ 𝜀𝑥+1,𝑥𝜀𝑥,𝑥+1Ψ𝜆
𝑥+1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∈ℝ

− (Ψ𝜆𝑥)∗ 𝜀𝑥,𝑥+1𝜀𝑥+1,𝑥Ψ𝜆𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈ℝ

−(Ψ𝜆
𝑥+1)

∗ 𝜀𝑥+1,𝑥+1⏟
=0

𝜀𝑥+1,𝑥Ψ𝜆
𝑥 − (Ψ𝜆

𝑥+2)
∗ 𝜀𝑥+2,𝑥+1𝜀𝑥+1,𝑥Ψ𝜆

𝑥]

(C.43)

Which simplifies to:

𝐼𝜀,𝜆
𝑥,𝑥+1 = −𝛾2 Im[(Ψ𝜆

𝑥−1)
∗ Ψ𝜆

𝑥+1 − Ψ𝜆
𝑥+2

∗Ψ𝜆
𝑥] (C.44)

Using WBL1 This approximation makes 𝐼𝜀,𝜆
𝑥,𝑥+1 𝑥 independent but still side dependent. We will take

𝑥 = 0 to simplify the notations. Same as with the particle current, we will consider the Left current
(positive when flowing towards the central system). Let’s start 𝜆 = (L, 𝐸):

(ΨL,𝐸
−1 )∗ ΨL,𝐸

1 =[∥+,𝐸,−1 +∫ d𝐸′

2𝜋 ∥−,𝐸′,−1 𝑟(𝐸′, 𝐸)]
∗

[∥+,𝐸
1 +∫ d𝐸′

2𝜋 ∥−,𝐸′,1 𝑟(𝐸′, 𝐸)]

Using the approximation (6.36), we get:

(ΨL,𝐸
−1 )∗ ΨL,𝐸

1 ≈ |𝑣𝐸|−1 [e−i𝑘+
𝐸−i𝐸𝑡 + ei𝑘+

𝐸 𝑟(𝑡, 𝐸)]∗

[ei𝑘+
𝐸−i𝐸𝑡 + e−i𝑘+

𝐸 𝑟(𝑡, 𝐸)]
= |𝑣𝐸|−1 [ei𝑘+

𝐸+i𝐸𝑡 + e−i𝑘+
𝐸 𝑟(𝑡, 𝐸)∗]

[ei𝑘+
𝐸−i𝐸𝑡 + e−i𝑘+

𝐸 𝑟(𝑡, 𝐸)]
= |𝑣𝐸|−1[e2i𝑘+

𝐸 + e−2i𝑘+
𝐸 |𝑟(𝑡, 𝐸)|2 + ei𝐸𝑡𝑟(𝑡, 𝐸) + e−i𝐸𝑡𝑟(𝑡, 𝐸)∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎+𝑎∗ ⟹ Im[𝑎+𝑎∗]=0
]

Now we can use (6.31) to express Im[e±2i𝑘+
𝐸] = ∓ 1

2𝛾𝑣+
𝐸𝐸:

Im[(ΨL,𝐸
−1 )∗ ΨL,𝐸

1 ] = −Im[(ΨL,𝐸
2 )∗ ΨL,𝐸

0 ] = − 𝐸
2𝛾2 [1 − |𝑟(𝑡, 𝐸)|2] (C.45)

We finally get:

𝐼𝜀
𝐿,𝐸 = 𝐸 [1 − |𝑟(𝑡, 𝐸)|2] (C.46)

For 𝜆 = (R, 𝐸) we have similarly:

𝐼𝜀
𝑅,𝐸 = −𝐸 |𝑑′(𝑡, 𝐸)|2 (C.47)

The total Left energy current, going towards the central system, writes:

𝐼𝜀(𝑡) = ∫ d𝐸
2𝜋 𝐸 [𝑓𝐿(𝐸) [1 − |𝑟(𝑡, 𝐸)|2] − 𝑓𝑅(𝐸) |𝑑′(𝑡, 𝐸)|2] (C.48)
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C.4.4. Energy current: hopping (0, 1)

The contribution 𝐼𝜀,𝜆
01 to the energy current flowing from site 0 to 1, of the scattering state Ψ𝜆, can be

expressed using Eq. (4.94):

𝐼𝜀,𝜆
01 = ∑

𝑘
−Im[Ψ𝜆

𝑘
∗𝜀𝑘,0𝜀0,1Ψ𝜆

1 − Ψ𝜆
𝑘

∗𝜀𝑘,1𝜀1,0Ψ𝜆
0] (C.49)

= − Im[Ψ𝜆
−1

∗𝜀−1,0𝜀0,1Ψ𝜆
1 + Ψ𝜆

0
∗ 𝜀0,0⏟

=𝑉0

𝜀0,1Ψ𝜆
1 + Ψ𝜆

1
∗𝜀1,0𝜀0,1Ψ𝜆

1⏟⏟⏟⏟⏟⏟⏟
∈ℝ

(C.50)

− Ψ𝜆
0

∗𝜀0,1𝜀1,0Ψ𝜆
0⏟⏟⏟⏟⏟⏟⏟

∈ℝ

−Ψ𝜆
1

∗ 𝜀1,1⏟
=0

𝜀1,0Ψ𝜆
0 − Ψ𝜆

2
∗𝜀2,1𝜀1,0Ψ𝜆

0] (C.51)

which simplifies to:

𝐼𝜀,𝜆
01 = −Im[𝛾2

𝑐Ψ∗
𝜆,−1Ψ𝜆

1 − 𝛾𝑐𝑉0Ψ∗
𝜆,0Ψ𝜆

1 − 𝛾𝛾𝑐Ψ𝜆
2

∗Ψ𝜆
0] (C.52)

The contribution 𝐼𝑁
𝜆,01 of Ψ𝜆 to the particle current, from (4.88), writes:

𝐼𝑁
𝜆,01 = −2Im[Ψ𝜆

0
∗𝐻01Ψ𝜆

1] = 2𝛾𝑐Im[Ψ𝜆
0

∗Ψ𝜆
1]

We can replace in the previous equation:

𝐼𝜀,𝜆
01 = Im[𝛾𝛾𝑐Ψ𝜆

2
∗Ψ𝜆

0 − 𝛾2
𝑐Ψ∗

𝜆,−1Ψ𝜆
1] + 1

2𝑉0𝐼𝑁
𝜆,01

Ψ0 can’t be expressed with the scattering coefficients, but can be with the Schrödinger equation:
𝛾𝑐Ψ0 = −i𝜕𝑡Ψ1 − 𝛾Ψ2

Thus we get:

𝐼𝜀,𝜆
01 = Im[−𝛾Ψ𝜆

2
∗(i𝜕𝑡Ψ𝜆

1 + 𝛾Ψ𝜆
2 ) − 𝛾2

𝑐Ψ∗
𝜆,−1Ψ𝜆

1] + 1
2𝑉0𝐼𝑁

𝜆,01

= Im[ − 𝛾Ψ𝜆
2

∗i𝜕𝑡Ψ𝜆
1 − 𝛾2 Ψ𝜆

2
∗Ψ𝜆

2⏟
∈ℝ

−𝛾2
𝑐Ψ∗

𝜆,−1Ψ𝜆
1] + 1

2𝑉0𝐼𝑁
𝜆,01

Which finally gives:

𝐼𝜀,𝜆
01 = −𝛾Im[Ψ𝜆

2
∗i𝜕𝑡Ψ𝜆

1] − 𝛾2
𝑐 Im[Ψ∗

𝜆,−1Ψ𝜆
1] + 1

2𝑉0𝐼𝑁
𝜆,01 (C.53)

→ WBL1 We will use here the approximation given in (6.36) for expressing the wave functions on
all sites except 0.

𝜆 = (R, 𝐸) Let’s write the expression of the scattering state on each site (except 0), after remem-
bering that sites at negative position bring a minus sign with them (e.g. for site −1 we will have
e(−1)𝑖𝑘−

𝐸 = e𝑖𝑘+
𝐸):

ΨR,𝐸,−1 = |𝑣𝐸|−
1
2 [ei𝑘+

𝐸 𝑑′(𝑡, 𝐸)]
ΨR,𝐸,1 = |𝑣𝐸|−

1
2 [e−i𝑘+

𝐸−i𝐸𝑡 + ei𝑘+
𝐸 𝑟′(𝑡, 𝐸)]

i𝜕𝑡ΨR,𝐸,1 = |𝑣𝐸|−
1
2 [𝐸e−i𝑘+

𝐸−i𝐸𝑡 + ei𝑘+
𝐸 i𝜕𝑡𝑟′(𝑡, 𝐸)]

ΨR,𝐸,2 = |𝑣𝐸|−
1
2 [e−2i𝑘+

𝐸−i𝐸𝑡 + e2i𝑘+
𝐸 𝑟′(𝑡, 𝐸)]
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C.4. Expressing time-resolved transport quantities

Each term of (C.53) can now be expressed:

|𝑣𝐸| Ψ∗
R,𝐸,2i𝜕𝑡ΨR,𝐸,1 = [e−2i𝑘+

𝐸−i𝐸𝑡 + e2i𝑘+
𝐸 𝑟′(𝑡, 𝐸)]∗ [𝐸e−i𝑘+

𝐸−i𝐸𝑡 + ei𝑘+
𝐸 i𝜕𝑡𝑟′(𝑡, 𝐸)]

|𝑣𝐸| Ψ∗
R,𝐸,−1ΨR,𝐸,1 = [e−i𝑘+

𝐸 𝑑′(𝑡, 𝐸)∗] [e−i𝑘+
𝐸−i𝐸𝑡 + ei𝑘+

𝐸 𝑟′(𝑡, 𝐸)]

The symmetry of the system enables using equation (6.34) that links left-to-right and right-to-left scat-
tering amplitudes. Also, using the WBL1 approximation implies taking ei𝑘 = i (see equation C.26) and
𝑣𝐸 = 2𝛾. Therefore to two terms simplify to:

2𝛾 Ψ∗
R,𝐸,2i𝜕𝑡ΨR,𝐸,1 = [e−i𝐸𝑡 + 𝑟(𝑡, 𝐸)]∗ [i𝐸e−i𝐸𝑡 + 𝜕𝑡𝑟(𝑡, 𝐸)]

2𝛾 Ψ∗
R,𝐸,−1ΨR,𝐸,1 = 𝑑(𝑡, 𝐸)∗ [−e−i𝐸𝑡 + 𝑟(𝑡, 𝐸)]

Now, using (6.53), we reach the following expressions:

2𝛾 Ψ∗
R,𝐸,2i𝜕𝑡ΨR,𝐸,1 = 𝑑(𝑡, 𝐸)∗ [2i𝐸e−i𝐸𝑡 + 𝜕𝑡𝑑(𝑡, 𝐸)]

2𝛾 Ψ∗
R,𝐸,−1ΨR,𝐸,1 = 𝑑(𝑡, 𝐸)∗ [−2e−i𝐸𝑡 + 𝑑(𝑡, 𝐸)]

𝜆 = (L, 𝐸) Let’s write the expression of the scattering state on each site (except 0):

ΨL,𝐸,−1 = |𝑣𝐸|−
1
2 [e−i𝑘+

𝐸−i𝐸𝑡 + ei𝑘+
𝐸 𝑟(𝑡, 𝐸)]

ΨL,𝐸,1 = |𝑣𝐸|−
1
2 [ei𝑘+

𝐸 𝑑(𝑡, 𝐸)]
i𝜕𝑡ΨL,𝐸,1 = |𝑣𝐸|−

1
2 [ei𝑘+

𝐸 i𝜕𝑡𝑑(𝑡, 𝐸)]
ΨL,𝐸,2 = |𝑣𝐸|−

1
2 [e2i𝑘+

𝐸 𝑑(𝑡, 𝐸)]

Each term of (C.53) can now be expressed:

|𝑣𝐸| Ψ∗
L,𝐸,2 i𝜕𝑡ΨL,𝐸,1 = e−i𝑘+

𝐸 𝑑(𝑡, 𝐸)∗ i𝜕𝑡𝑑(𝑡, 𝐸)
|𝑣𝐸| Ψ∗

L,𝐸,−1ΨL,𝐸,1 = [e−i𝑘+
𝐸−i𝐸𝑡 + ei𝑘+

𝐸 𝑟(𝑡, 𝐸)]∗
ei𝑘+

𝐸 𝑑(𝑡, 𝐸)

Same as with 𝜆 = (𝑅, 𝐸), we can use ei𝑘 = 1 and 𝑣𝐸 = 2𝛾 due to the WBL1 approximation:

2𝛾 Ψ∗
L,𝐸,2 i𝜕𝑡ΨL,𝐸,1 = 𝑑(𝑡, 𝐸)∗ 𝜕𝑡𝑑(𝑡, 𝐸)

2𝛾 Ψ∗
L,𝐸,−1ΨL,𝐸,1 = [−e−i𝐸𝑡 + 𝑟(𝑡, 𝐸)]∗ 𝑑(𝑡, 𝐸)

Now, using (6.53), we reach the following expressions:

2𝛾 Ψ∗
L,𝐸,2 i𝜕𝑡ΨL,𝐸,1 = 𝑑(𝑡, 𝐸)∗ 𝜕𝑡𝑑(𝑡, 𝐸)

2𝛾 Ψ∗
L,𝐸,−1ΨL,𝐸,1 = [−2e−i𝐸𝑡 + 𝑑(𝑡, 𝐸)]∗ 𝑑(𝑡, 𝐸)

Total energy current The total energy current writes, knowing that Im[𝑑∗𝑑] = 0:

𝐼𝜀
0,−1 = 1

2𝑉0𝐼N
0,−1 − ∫ d𝐸

2𝜋 + 𝑓R [1/2 Im[𝑑∗𝜕𝑡𝑑] − 1/2 Γ Im[ei𝐸𝑡𝑑]]
𝑓L [1/2 Im[𝑑∗𝜕𝑡𝑑] + 1/2 Γ Im[ei𝐸𝑡𝑑] + 𝐸 Re[ei𝐸𝑡𝑑]] (C.54a)

𝐼𝜀
0,1 = 1

2𝑉0𝐼N
01 − ∫ d𝐸

2𝜋 + 𝑓L [1/2 Im[𝑑∗𝜕𝑡𝑑] − 1/2 Γ Im[ei𝐸𝑡𝑑]]
𝑓R [1/2 Im[𝑑∗𝜕𝑡𝑑] + 1/2 Γ Im[ei𝐸𝑡𝑑] + 𝐸 Re[ei𝐸𝑡𝑑]] (C.54b)
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Appendix C. Resonant level model derivations

With Γ = 2𝛾2
𝑐/𝛾. These formulas can already be used as-is for numerical integration, although it is

more useful to make the source terms 𝑆𝜀
−1 and 𝑆𝜀

1 appear so the heat current can easily computed. To
achieve this goal, let’s use the relation (6.54a) to replace Im[𝑑∗𝜕𝑡𝑑]:

𝐼𝜀
01 = 1

2𝑉0𝐼N
01 − ∫ d𝐸

2𝜋 +
𝑓L [−1/2 [𝑉 (𝑡) + 𝑉0] |𝑑|2 − Γ Im[e𝑖𝑡𝐸𝑑]]
𝑓R [−1/2 [𝑉 (𝑡) + 𝑉0] |𝑑|2 + 𝐸 Re[ei𝐸𝑡𝑑]]

(C.55)

We can now try to factor out 𝑆𝐸
1 , whose expression is given by Eq. (4.106):

𝑆𝐸
1 = 1

2[0 − 𝑉 (𝑡)]𝐼N
10 = 1

2𝑉 (𝑡)𝐼N
01 (C.56)

With 𝐼N
01 given by (C.30) with a minus sign:

𝐼N
01 = ∫ d𝐸

2𝜋 𝑓𝐿 |𝑑|2 − 𝑓𝑅(𝐸) [1 − |𝑟|2] (C.57)

Then we can use (6.53) to express everything in terms of 𝑑:

𝑆𝐸
1 = ∫ d𝐸

2𝜋 +
𝑓𝐿 1/2𝑉 (𝑡) |𝑑|2

𝑓𝑅[1/2𝑉 (𝑡) |𝑑|2 − 𝑉 (𝑡)Re[𝑑 ei𝐸𝑡] ]
(C.58)

which gives the following for the energy current

𝐼𝜀
01 = 1

2𝑉0𝐼N
01 + 𝑆𝐸

1 − ∫ d𝐸
2𝜋 +

𝑓L [−1/2𝑉0 |𝑑|2 − Γ Im[e𝑖𝑡𝐸𝑑]]
𝑓R [−1/2𝑉0 |𝑑|2 + [𝐸 − 𝑉 (𝑡)] Re[ei𝐸𝑡𝑑]]

(C.59)

We can factor out another 𝐼N
01 term:

1/2𝑉0𝐼N
01 = ∫ d𝐸

2𝜋 +
𝑓𝐿 1/2𝑉0 |𝑑|2

𝑓𝑅[1/2𝑉0 |𝑑|2 − 𝑉0Re[𝑑 ei𝐸𝑡] ]
(C.60)

and obtain the following for 𝐼𝜀
01:

𝐼𝜀
01 = 𝑉0𝐼N

01 + 𝑆𝐸
1 − ∫ d𝐸

2𝜋 + 𝑓L [−Γ Im[e𝑖𝑡𝐸𝑑]]
𝑓R [𝐸 − 𝑉 (𝑡) − 𝑉0] Re[ei𝐸𝑡𝑑] (C.61)

When squashing all the terms together, we get:

𝐼𝜀
01 = − ∫ d𝐸

2𝜋 +
𝑓𝐿 [−[1/2𝑉 (𝑡) + 𝑉0] |𝑑|2 − Γ Im[ei𝐸𝑡𝑑]]
𝑓𝑅 [−[1/2𝑉 (𝑡) + 𝑉0] |𝑑|2 + [𝑉0 + 𝐸] Re[ei𝐸𝑡𝑑]]

(C.62)

𝐼𝜀
0,−1 = − ∫ d𝐸

2𝜋 +
𝑓𝑅 [−[1/2𝑉 (𝑡) + 𝑉0] |𝑑|2 − Γ Im[ei𝐸𝑡𝑑]]
𝑓𝐿 [−[1/2𝑉 (𝑡) + 𝑉0] |𝑑|2 + [𝑉0 + 𝐸] Re[ei𝐸𝑡𝑑]]

(C.63)

The energy current plus the source term writes

𝐼𝜀
01 + 𝑆𝐸

1 = − ∫ d𝐸
2𝜋 +

𝑓𝐿 [−[𝑉 (𝑡) + 𝑉0] |𝑑|2 − Γ Im[ei𝐸𝑡𝑑]]
𝑓𝑅 [−[𝑉 (𝑡) + 𝑉0] |𝑑|2 + [𝑉0 + 𝑉 (𝑡) + 𝐸] Re[ei𝐸𝑡𝑑]]

(C.64a)

𝐼𝜀
0,−1 + 𝑆𝐸

−1= − ∫ d𝐸
2𝜋 +

𝑓𝑅 [−[𝑉 (𝑡) + 𝑉0] |𝑑|2 − Γ Im[ei𝐸𝑡𝑑]]
𝑓𝐿 [−[𝑉 (𝑡) + 𝑉0] |𝑑|2 + [𝑉0 + 𝑉 (𝑡) + 𝐸] Re[ei𝐸𝑡𝑑]]

(C.64b)

which is useful for the heat current 𝐼Q
1,0 and 𝐼Q

−1,0, that are defined using Eq. (4.211) as the following:

𝐼Q
R = 𝐼𝜀

1,0 − 𝑆𝜀
1 − 𝜇R𝐼N

1,0 (C.65)
𝐼Q

L = 𝐼𝜀
−1,0 − 𝑆𝜀

−1 − 𝜇L𝐼N
−1,0 (C.66)
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C.5. Time-integrated quantities

C.5. Time-integrated quantities

C.5.1. Energy

We are interested in the dynamically injected energy throughout the pulse (i.e. finite in time) in lead
𝛼:

𝜀dyn
𝛼 = ∫ d𝑡 𝐼𝜀

𝛼(𝑡) − 𝐼E
𝛼(𝑡 = 0) (C.67)

Where 𝐼E
0,𝛼 is the stationary energy current before the start of the pulse, given by the standard Landauer-

Buttiker formula:

𝐼E
01(𝑡 = 0) = ∫ d𝐸

2𝜋 𝐸 [𝐷0𝑓𝐿 − [1 − 𝑅0] 𝑓𝑅] (C.68)

𝐼E
0,−1(𝑡 = 0) = ∫ d𝐸

2𝜋 𝐸 [𝐷0𝑓𝑅 − [1 − 𝑅0] 𝑓𝐿] (C.69)

Given that ∫ d𝑡 𝐼𝐸
01 ≠ ∫ d𝑡 𝐼𝐸

12 (because of 𝑆𝐸
1 ≠ 0) and also that ∀𝑥 ≥ 1 ∫ 𝑑𝑡 𝐼𝐸

12 = ∫ d𝑡 𝐼𝐸
𝑥,𝑥+1, and

since we are interested in the currents far in the lead, it is more fitting to consider 𝐼𝐸
01 + 𝑆𝐸

1 because of
the following :

𝜕𝑡𝜀1 + 𝐼𝐸
10 + 𝐼𝐸

12 = 𝑆𝐸
1 ⟹ 𝜕𝑡𝜀1 + 𝐼𝐸

12 = 𝐼𝐸
01 + 𝑆𝐸

1 ⟹ ∫ d𝑡 𝐼𝐸
12 = ∫ d𝑡 𝐼𝐸

01 + 𝑆𝐸
1 (C.70)

To proceed further, we will use the following equivalent expression for the energy current:

𝐼𝐸
01 + 𝑆𝐸

1 = ∫ d𝐸
2𝜋 +

𝑓𝑅[𝐸[ |𝑟|2 − 1 ] + Im[𝐴𝜕𝑡𝐴∗] + Re[𝜕𝑡𝐴] ]

𝑓𝐿[𝐸 |𝑑|2 + Im[𝐴𝜕𝑡𝐴∗] ]
(C.71)

𝐼𝐸
0,−1 + 𝑆𝐸

−1 = ∫ d𝐸
2𝜋 +

𝑓𝐿[𝐸[ |𝑟|2 − 1 ] + Im[𝐴𝜕𝑡𝐴∗] + Re[𝜕𝑡𝐴] ]

𝑓𝑅[𝐸 |𝑑|2 + Im[𝐴𝜕𝑡𝐴∗] ]
(C.72)

Where

𝐴 = −i ei𝐸𝑡𝑑 (C.73)

The above expressions can be split like the following:

𝐼𝐸
01 +𝑆𝐸

1 = ∫ d𝐸
2𝜋 𝐸 [𝑓𝐿 |𝑑|2 − 𝑓𝑅 (1 − |𝑟|2)] + (𝑓𝐿 + 𝑓𝑅) Im[𝐴𝜕𝑡𝐴∗] + 𝑓𝑅 Re[𝜕𝑡𝐴] (C.74)

𝐼𝐸
0,−1 +𝑆𝐸

−1 = ∫ d𝐸
2𝜋 𝐸 [𝑓𝑅 |𝑑|2 − 𝑓𝐿 (1 − |𝑟|2)] + (𝑓𝐿 + 𝑓𝑅) Im[𝐴𝜕𝑡𝐴∗] + 𝑓𝐿 Re[𝜕𝑡𝐴] (C.75)

Now we subtract the initial stationary current (given in C.69 and C.68), knowing that 𝑆𝐸∣𝑡=0 = 0:

𝐼𝐸
01 + 𝑆𝐸

1 − 𝐼𝐸
01∣𝑡=0 = ∫ d𝐸

2𝜋
⎡⎢⎢
⎣

𝐸 [𝑓𝐿 (|𝑑|2 − 𝐷0) − 𝑓𝑅 (𝑅0 − |𝑟|2)]
+ (𝑓𝐿 + 𝑓𝑅) Im[𝐴𝜕𝑡𝐴∗]
+ 𝑓𝑅 Re[𝜕𝑡𝐴]

(C.76)

𝐼𝐸
0,−1 + 𝑆𝐸

−1− 𝐼𝐸
0,−1∣𝑡=0 = ∫ d𝐸

2𝜋
⎡⎢⎢
⎣

𝐸 [𝑓𝑅 (|𝑑|2 − 𝐷0) − 𝑓𝐿 (𝑅0 − |𝑟|2)]
+ (𝑓𝐿 + 𝑓𝑅) Im[𝐴𝜕𝑡𝐴∗]
+ 𝑓𝐿 Re[𝜕𝑡𝐴]

(C.77)
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Now we can calculate the time integral from 𝑡 = 0 to 𝑡 = ∞, let’s start with 𝜕𝑡𝐴, while having in mind
(6.79) and (6.63):

∫
∞

0
d𝑡 Re[𝜕𝑡𝐴] = Re[𝐴|𝑡=∞⏟

=−i𝑑0

−𝐴|𝑡=0⏟
=−i𝑑0

] = 0 (C.78)

using the definition of 𝑇dyn in (6.65):

∫ d𝑡 [𝐼𝐸
01 +𝑆𝐸

1 − 𝐼𝐸
01∣𝑡=0 ] =

⎡
⎢⎢
⎣

+
∫ d𝐸

2𝜋 𝐸 (𝑓𝐿 − 𝑓𝑅) 𝑇dyn

∫ d𝐸
2𝜋 d𝑡 (𝑓𝐿 + 𝑓𝑅) Im[𝐴𝜕𝑡𝐴∗]

(C.79)

∫ d𝑡 [𝐼𝐸
0,−1 +𝑆𝐸

−1− 𝐼𝐸
0,−1∣𝑡=0 ]=

⎡
⎢⎢
⎣

+
∫ d𝐸

2𝜋 𝐸 (𝑓𝑅 − 𝑓𝐿) 𝑇dyn

∫ d𝐸
2𝜋 d𝑡 (𝑓𝐿 + 𝑓𝑅) Im[𝐴𝜕𝑡𝐴∗]

(C.80)

Given the relation (C.70) and that ∀𝑥 𝐼𝐸
𝑥,𝑥+1∣𝑡=0 = 𝐼𝐸

0,1∣𝑡=0, we have:

∫ d𝑡 [𝐼𝜀
0,1 +𝑆E

1 − 𝐼𝜀
0,1∣𝑡=0 ] = ∫ d𝑡 [𝐼𝜀

1,2 − 𝐼𝜀
1,2∣𝑡=0 ]

∫ d𝑡 [𝐼𝜀
0,−1 +𝑆E

−1− 𝐼𝜀
0,−1∣𝑡=0 ]= ∫ d𝑡 [𝐼𝜀

−1,−2 − 𝐼𝜀
−1,−2∣𝑡=0 ]

(C.81)

To further simplify the equations above, one can write the conservation equation on the group of sites
−1, 0 and 1:

𝜕𝑡[𝜀−1 + 𝜀0 + 𝜀1] + 𝐼𝐸
−1,−2 + 𝐼𝐸

1,2 = 𝑆𝐸 (C.82)

where 𝑆𝐸 is given by (6.59). The time integral of this relation gives:

[𝜀−1 + 𝜀0 + 𝜀1]
𝑡=∞
𝑡=0⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0 (back to initial state)

+∫ d𝑡 [𝐼𝐸
−1,−2 + 𝐼𝐸

1,2] = ∫ d𝑡 𝑆𝐸 (C.83)

The term ∫ d𝑡 [𝐼𝐸
−1,−2 + 𝐼𝐸

1,2] can be expressed by summing (C.80) and (C.79). With (C.81) in mind and
𝐼𝐸
1,2∣𝑡=0 + 𝐼𝐸

−1,−2∣𝑡=0 = 0:

∫ d𝑡 [𝐼𝐸
−1,−2 + 𝐼𝐸

1,2] = ∫ d𝑡 𝑆𝐸 = ∫ d𝐸
2𝜋 d𝑡 2 (𝑓𝐿 + 𝑓𝑅) Im[𝐴𝜕𝑡𝐴∗] (C.84)

And this enables writing a simple formula for 𝜀dyn
𝛼 :

𝜀dyn
𝑅 = ∫ d𝑡 [𝐼𝜀

1,2 − 𝐼𝜀
1,2∣𝑡=0 ] = ∫ d𝐸

2𝜋 𝐸 (𝑓𝑅 − 𝑓𝐿) 𝑇dyn + 1
2 ∫ d𝑡 𝑆𝜀

𝜀dyn
𝐿 = ∫ d𝑡 [𝐼𝜀

−1,−2 − 𝐼𝜀
−1,−2∣𝑡=0 ]= ∫ d𝐸

2𝜋 𝐸 (𝑓𝐿 − 𝑓𝑅) 𝑇dyn + 1
2 ∫ d𝑡 𝑆𝜀

(C.85)
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Titre: Transport thermoélectrique dépendant du temps dans des systèmes quantiques
Mots-clés: contrôle temporel, transport quantique, thermoélectricité, simulation quantique, théorie
de la diffusion

Résumé: Ce dernier siècle est marqué par
l’évolution alarmante du phénomène de réchauf-
fement climatique. À son cœur repose la contin-
uelle augmentation des besoins en énergie « utile »
pour nos activités. Ainsi, une grande pression re-
pose sur la recherche pour réaliser des usines de
production électriques plus efficaces et plus re-
spectueuses de l’environnement. Dans ce contexte,
la thermoélectricité offre une façon différente et
prometteuse de réaliser des machines thermiques
et réfrigérateurs. Les dispositifs se basant sur cet
effet sont cependant peu démocratisés car ils souf-
frent d’un rendement relativement bas par rapport
aux machines traditionnelles. Durant ces dernières
années, de nouvelles pistes prometteuses ont été
explorées pour améliorer la performance des dis-
positifs thermoélectriques, en s’appuyant notam-
ment sur une meilleure compréhension du com-
portement quantique de la matière et sur les pro-
grès technologiques en miniaturisation. Une de ces
pistes propose de s’intéresser aux (nano)dispositifs
mis hors-équilibre, en particulier dans un régime
dépendant du temps. Bien que la grande ma-
jorité des études en thermoélectricité ont été mo-
tivées par des arguments uniquement valides dans
le régime stationnaire proche de l’équilibre, des
développements théoriques récents prédisent une
forte amélioration du rendement dans le régime
quantique dépendant du temps, loin de l’équilibre.
D’autre part, les progrès en nanoélectronique haute
fréquence permettent aujourd’hui de mesurer le
transport quantique à de courtes échelles tem-

porelles et spatiales, remettant en question les lois
classiques de la thermodynamique.

L’objectif de cette thèse est d’explorer les op-
portunités offertes par le transport thermoélec-
trique dynamique à l’échelle mésoscopique. Pour
ce faire, nous construisons dans un premier temps
une approche invariante de jauge décrivant (outre
le transport de charge déjà traité dans la littérature)
le transport d’énergie dépendant du temps dans
un système quantique ouvert sous l’influence d’un
champ électromagnétique dynamique. Cette ap-
proche est basée sur une description semi-classique
où le champ électromagnétique est décrit par les
équations (classiques) de Maxwell, tandis que les
électrons sont décrits par l’équation (quantique) de
Schrödinger. Puis, nous utilisons ce formalisme
pour étendre tkwant, une bibliothèque de simula-
tion quantique de systèmes modélisés en liaisons-
fortes, au transport énergétique : cette biblio-
thèque étendue permet alors de simuler la ther-
moélectricité, avec dépendance temporelle, dans de
larges systèmes mésoscopiques, au-delà des mod-
èles jouets. On illustre ensuite la puissance de
cette bibliothèque en investiguant l’effet Peltier dy-
namique dans un « Contact Ponctuel Quantique »
bidimensionnel. Enfin, nous nous intéressons au
très étudié modèle jouet du niveau résonnant pour
avoir une meilleure compréhension fondamentale
des phénomènes en jeux : une étude numérique et
semi-analytique nous permet d’apporter un nou-
vel éclairage sur le potentiel de la thermoélectricité
dépendante du temps dans les points quantiques.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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Title: Time-dependent thermoelectric transport in quantum systems
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Abstract: This past century has seen a very
quick rise to the prominent issue of global warm-
ing. At its root is the ever growing need for “work”
energy in our activities, this pressures research
into making energy production facilities more ef-
ficient and more environmentally friendly. Ther-
moelectricity in this context offers a different and
promising way to make or complement traditional
heat engines and coolers. Devices leveraging this
effect are however still not broadly used as they
suffer from a relatively low efficiency when com-
pared to traditional coolers and heat engines. In
the recent years, new waves of ideas came from
technological progress in miniaturization from the
semi-conductor industry and further understand-
ing of the quantum behavior of matter. A new
research avenue in thermoelectricity suggests in-
vestigating (nano)devices far from equilibrium, in
particular in the time-dependent regime. While
the vast majority of studies in thermoelectrics have
been motivated by arguments valid in the station-
ary, near equilibrium regime, recent theoretical lit-
erature predicts a boost of thermoelectric efficiency
in the far from equilibrium, dynamical quantum
regime. On the other hand, progress in experimen-
tation at mesoscopic scales with high frequency
control enables probing quantum transport at short
length and time scales and bring into question the
(classical) laws of thermodymanics.

Research is ongoing in building a consistent the-
ory of quantum thermodynamics in all regimes
and this thesis intervenes in this context: we
build a gauge-invariant framework for describing
energy transport, on top of the currently pub-
lished research on time-dependent charge trans-
port, in an open electronic quantum system un-
der the influence of a time-dependent electromag-
netic field. This framework is based on the semi-
classical approach where light is described by the
(classical) Maxwell equations and electrons are
non-interacting and described by the (quantum)
Schrödinger equation. We then use this framework
to extend tkwant, a tight-binding time-resolved
quantum simulation library, to energy transport:
this extended package makes possible the simula-
tion of time-dependent thermoelectric transport in
large scale systems that can model a broad class
of mesoscopic devices beyond toy models. We
illustrate our numerical approach by investigat-
ing briefly the dynamical Peltier effect in a two-
dimensional Quantum Point Contact then go back
to the extensively studied Resonant Level (toy)
Model to be able to grasp a more fundamental un-
derstanding of the effects at play : we use our ap-
proach, in both its numerical and analytical adap-
tations, and obtain new insights on the potential of
time-dependent thermoelectricity in quantum dots.
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