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Titre: Fractionnalisation d’une onde de Densité de Paires dans les cuprates supra-
conducteurs

Mots clés : supraconductivité, cuprates supraconducteurs, systèmes fortement corrélés

Résumé: Les cuprates supraconducteurs désig-
nent une classe de matériaux qui ont attiré beau-
coup d’attention lorsqu’il a été découvert qu’ils
devenaient supraconducteurs à une température
supérieure à celle de l’azote liquide. Depuis lors,
une quantité importante de travaux, théoriques
et expérimentaux, ayant pour but de comprendre
le diagramme de phase de ces matériaux ont été
conduits. Cependant, il n’y a aujourd’hui tou-
jours pas de consensus sur la nature de la phase
de laquelle la supraconductivité émerge, appelée
pseudogap. Cette phase n’est pas décrite par la
théorie des liquides de Fermi et présente de multi-
ples autres instabilités électroniques en compéti-
tion qui sont difficiles à réconcillier dans un seul
cadre théorique.

Dans cette thèse, je présente une nouvelle idée
pour décrire le pseudogap et la phase supracon-

ductrice associée en utilisant le principe de la frac-
tionnalisation. L’observation récente d’Onde de
Densité de Paires, c’est-à-dire de paires électron-
électron modulées dans l’espace, nous apprend
que la symétrie par translation est, elle aussi,
brisée dans le pseudogap. Notre idée est donc
que ces Ondes de Densité de Paires sont fraction-
nalisées en paires électron-électron uniformes, qui
sont à l’origine de l’état supraconducteur, et en
paires électron-trou modulées qui sont respons-
ables de la brisure de la symétrie par transla-
tion. Cette fractionnalisation a de nombreuses
conséquences sur les propriétés électroniques qui
correspondent aux observations expérimentales
faites dans le pseudogap. La présence de ces
paires électron-électron présentant une modula-
tion spatiale peut aussi expliquer certains résul-
tats inhabituels sur le transport électrique dans
le régime sur-dopé.
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Title: Fractionalization of Pair Density Waves in cuprate superconductors

Keywords: superconductivity, cuprates superconductors, strongly-correlated systems

Abstract: Cuprates are materials that have at-
tracted a lot of attention when it was discovered
that they become superconducting at tempera-
tures above the boiling point of nitrogen. Since
then, a large amount of experimental and theoret-
ical works have been devoted to the understand-
ing of the phase diagram of these materials. One
of the main controversial point is the nature of
the state from which superconductivity emerges,
the pseudogap. Indeed, it defies the Fermi liquid
theory for metals and presents a series of com-
peting electronic instabilities that are difficult to
disentangle.

In this thesis, I present a new idea to describe
the pseudogap phase and the superconducting
transition within the framework of fractionaliza-
tion. The recent observation of Pair Density
Wave, i.e. modulated particle-particle pairs, on

top of the usual Cooper pairing from conventional
superconductivity shows that translation symme-
try and pairing are both important to the physics
of cuprates. Our idea is based on the fact that
this Pair Density Wave is difficult to stabilize,
due to multiple reasons such as disorder, and that
the system will thus break it down into uniform
particle-particle pairs that will condense in the
superconducting state and modulated particle-
hole pairs that will break the translation sym-
metry. This fractionalization has strong conse-
quences on the electronic and phononic degrees of
freedom that we show matches the puzzling ex-
perimental observations in the pseudogap phase.
The idea that modulated particle-particle pairs
can contribute to the electrical transport outside
the pseudogap phase is also explored to explain
the anomalous “strange metal” phase above the
optimal doping.

Université Paris-Saclay
Espace Technologique / Bâtiment Discovery
Route de l’Orme aux Merisiers - RD 128 / 91190 Saint-Aubin, France
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Synthèse

Les cuprates supraconducteurs ont pris une place centrale dans le milieu de la matière condensée
depuis leur découverte en 1986. L’intérêt pour ces matériaux vient de la température à laquelle ils
deviennent supraconducteurs avec par exemple le composé YBCO qui fut le premier avec une tem-
pérature de transition au-dessus de la température d’ébullition de l’azote liquide avec Tc = 90 K.
C’est une avancée majeure pour les potentiels applications puisque le coût pour la réfrigération
avec de l’azote liquide est bien inférieur à celui nécessitant de l’hélium liquide. De nos jours,
le supraconducteur avec la plus haute température critique à pression ambiante est un cuprate,
HgBa2Ca2Cu3O8+x, avec Tc = 133 K.

Malgré les efforts concentrés sur ces matériaux, il n’y a aujourd’hui toujours pas de consensus
sur la raison pour laquelle la température critique pour la transition supraconductrice dans les
cuprates est si élevée. De nombreux résultats montrent que la théorie BCS n’est pas applicable
pour décrire ces matériaux. Une des raisons qui illustre le changement de paradigme nécessaire est
le fait que BCS décrit le phénomène de supraconductivité dans les métaux alors que les cuprates
sont, dans leur état naturel, des isolants. Il est en effet nécessaire de changer la densité électronique
de celle donnée par la composition chimique originale afin d’obtenir un état supraconducteur.
La densité électronique est donc, avec la température, une variable importante pour étudier la
physique responsable de la supraconductivité dans les cuprates. Ceci est généralement représenté
par le diagramme de phase dopage-température dont un exemple est donné à la Fig.1.

Un élément important de ce diagramme de phase est le nombre d’anomalies, associées aux
brisures de diverses symétries discrètes et continues, qui sont observées en plus de la transition
supraconductrice. En particulier, de nombreuses symétries discrètes telles que l’inversion par ren-
versement du temps ou la parité sont brisées à une même température qui est supérieure à la
température critique. En dessous de cette température, le système n’est pas un isolant, du fait du
dopage, mais ne correspond pas non plus à un métal conventionnel. Cette partie du diagramme
de phase est désignée comme le “pseudogap” et la compréhension de la nature et de l’origine de ce
dernier est une étape essentielle pour pouvoir comprendre la phase supraconductrice qui émerge à
plus basse température. On peut également noter la présence dans le diagramme de phase d’une
région où la symétrie par translation du réseau cristallin est brisée due à la présence d’ondes de
densité de charge (“CDW”). Cette phase ne forme pas d’ordre à longue portée, contrairement aux
ordres antiferromagnétique ou supraconducteur, mais dont la présence est récurrente pour toutes
les familles de cuprates. C’est l’interaction entre ces différentes phases ordonnées et leurs fluctua-
tions associées qui rend la description du pseudogap si compliquée. Dans cette thèse, je présente
une nouvelle idée, qui s’appuie sur les observations expérimentales d’interaction entre l’ordre supra-
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10 Synthèse

Figure 1: Diagramme de phase dopage-température pour le cuprate YBa2Cu3Oy issu de Ref.[32]
Les transition vers les états antiferromagnétique et supraconducteur sont bien définis alors que la tem-
pérature associé à l’apparition du pseudogap est plus difficile à mesurer exactement. Cette dernière est
cependant détectée par de nombreuses techniques expérimentales différentes comme indiqué dans la
légende.

conducteur et les ondes de densité de charge, afin de former une phase avec des caractéristiques
similaires au pseudogap observé dans les cuprates. Pour cela, je m’appuie sur un formalisme de
théorie de jauge et de champ moyen pour étudier les conséquences de la fractionnalisation d’une
onde de densité de paires sur les propriétés électroniques.

Afin de proposer une description des cuprates pertinente, il est important de comprendre les
relations entre les trois acteurs principaux que sont le pseudogap, les ondes de densité de charge et
la supraconductivité. Une des sondes principales pour cela est la spectroscopie Raman qui permet
d’obtenir des informations concernant les excitations collectives des matériaux avec une sélectivité
dans la première zone de Brillouin. Cette méthode à en effet été appliquée pour étudier de nom-
breux composés dans une large gamme de dopage et de température.
Premièrement, il est observé que le rapport entre le gap supraconducteur mesuré et la température
critique est bien différent de celui attendu dans le cadre de la théorie BCS. Cela met en avant le car-
actère non-conventionnel de l’état supraconducteur dans ces matériaux. Plus de précision peuvent
être obtenues en distinguant que le gap situé dans la zone nodale est effectivement proportionnel à
la température critique mais qu’il y a également une partie du gap, situé dans la zone anti-nodale,
qui a une toute autre variation avec le dopage. Le gap anti-nodale est en effet proportionnel à la
température à laquelle le pseudogap est observé, indiquant que ces deux phénomènes coexistent
toujours même à plus basse température. Enfin, de récentes expériences de spectroscopie Raman
ont aussi montré que l’énergie associée aux ondes de densité de charge est très proche de celle
associée à la supraconductivité. Considérant que les ondes de densité ne forment pas d’ordre à
longue porté cela est une surprise.
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Figure 2: Représentation schématique de la relation entre les opérateurs pour l’onde de densité de
paires (η̂), l’onde de densité de charge (χ̂) et la supraconductivité (∆̂). L’onde de densité de paires brise
simultanément la conservation de la charge et la symétrie par translation en créant une paire d’électrons
avec une modulation donnée par le vecteur d’onde Q. En comparaison, la supraconductivité crée des
paires d’électrons de manière uniforme et l’onde de densité de charge brise la symétrie par translation
avec une modulation donnée par Q sans changer le nombre de charge. Combiner ces deux opérateurs
peut alors reconstituer l’effet d’une onde de densité de paires.

Aux vues des observations expérimentales présentées précédemment, je propose dans cette
thèse une nouvelle description du pseudogap comme un état obtenu après la fractionnalisation
d’un paramètre d’ordre. Les éléments constituant cet état original sont ensuite responsable pour la
formation des phases d’ondes de densité de charge et supraconductrice à plus basse température. Le
paramètre d’ordre qui permet de briser en même temps la symétrie par translation et la conservation
de la charge n’est autre qu’une onde de densité de paires, récemment observée par spectroscopie à
effet tunnel dans les cuprates. La relation entre les paramètres d’ordres pour la supraconductivité
et les ondes de densité de charge ou de paires est représentée schématiquement dans la Fig.2. La
fractionnalisation de l’onde de densité de paires se présente sous la forme

η̂ =
[
∆̂ij , χ̂

†
ij

]
, η̂† =

[
χ̂ij , ∆̂

†
ij

]
, (1)

où η̂, χ̂ et ∆̂ représentent respectivement les opérateurs pour des ondes de densité de paires, charge
et la supraconductivité. Une conséquence de la fractionnalisation est l’introduction d’un degrée de
liberté de phase additionnel que l’on peut noter si l’on performe simultanément les transformations
suivante

∆̂ij → eiθ∆̂ij , χ̂ij → eiθχ̂ij , (2)

qui laissent η̂ invariant. Cette phase est alors associée à un choix de jauge qui contraint l’amplitude
des différents paramètres d’ordre

∆̂
†

ij∆̂ij + χ̂†ijχ̂ij = 1. (3)

La théorie effective associée aux deux degrés de liberté complexes (∆̂ et χ̂) liés par la contrainte
Eq.(3) est un modèle chiral donné par

S =

∫
ddx

1

2

2∑
a,b=1

|ωab|2 , (4)

avec

ωab = z∗a∂µzb − zb∂µz∗a, (5)
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où l’on identifie z1 = ∆ij , z2 = χij . Le diagramme de phase résultant de ce modèle chirale
comprend deux températures auxquelles χ et ∆ obtiennent un amplitude moyenne non-nulle et
une transition de phase lorsque la phase des paramètres d’ordre acquiert une valeur moyenne fixée,
identifiée comme la transition supraconductrice.

Il est aussi possible d’étudier les conséquences de cette fractionnalisation sur les propriétés
électroniques du système via une théorie de champ moyen. Pour cela on commence avec un modèle
contenant une interaction spin-spin et densité-densité donné par

H =
∑
k

εkc
†
kσckσ +

∑
k,k′,q

∑
α,µ

(
Vqc
†
k,αck+q,αc

†
k′+q,µck′,µ

)
+
∑
k,k′,q

∑
α,β,µ,ν

(
Jqσαβ · σµνc†k,αck+q,βc

†
k′+q,µck′,ν

)
. (6)

Suivant le formalisme du champ moyen en autorisant un ordre supraconducteur et un ordre d’ondes
de densité de charge on obtient alors une action effective

S =

∫
dτ
∑
k,q

(
∆k+q∆∗k
J−q

+
χk+qχ

∗
k

J+
q

)
− Tr ln

(
iωn − εk −

|∆k|2

iωn + εk
− |χk|2

iωn − εk+Q

)
. (7)

Il serait possible d’étudier ici la compétition entre ces deux ordres, mais pour décrire le pseudogap
dans l’esprit de la fractionnalisation on s’intéresse au paramètre d’ordre |Ψ|2 = |∆|2 + |χ|2 pour
lequel on obtient l’action effective suivante

Seff =

∫
dτ
∑
k,q

Ψk
†Ψk+q

J̃q
− Tr ln

(
G−1 (iωn,k)

)
G−1 (iωn,k) =iωn − εk −

|Ψk|2

2

(
1

iωn + εk
+

1

iωn − εk+Q

)
. (8)

Il est ici possible d’obtenir une équation auto-consistante de la forme BCS pour |Ψk| est d’étudier
son impact sur la fonction de Green électronique G (iωn,k). Le résultat principal est montré à
la Fig.3 où l’on observe une très bonne correspondance entre la fonction spectrale en fonction
de l’énergie et du moment mesurée expérimentalement est celle obtenue via cette description du
pseudogap. Le même formalisme permet également d’expliquer la renormalisation des modes de
vibrations observée à la transition supraconductrice. Dans ce cas aussi, la contrainte entre les
amplitudes des paramètres d’ordre joue un rôle crucial pour reproduire les données expérimen-
tales. On peut aussi noter que la fonction de Green électronique Eq.(8) peut aussi être comparée
aux résultats obtenus par les techniques numériques qui visent à résoudre le modèle de Hubbard
directement, tel que le champ moyen dynamique. Bien que ces techniques ne parviennent pas en
général à stabiliser les ondes de densité de charge, la structure des pôles de la fonction Green
extraite de ces calculs numériques est très similaire à celle obtenue via notre traitement en champ
moyen.

L’autre résultat majeur de cette thèse est le fait que la présence de ces ondes de densité de
paires sous forme de modes incohérents en dehors du pseudogap peut expliquer la dépendance de
la résistivité avec la température. On prend pour cela un propagateur pour ces bosons incohérents
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Figure 3: (a)-(d) Maximums de la fonction spectral obtenus par ARPES [63] pour T > T ∗ (rouge) et
T < Tc (bleu et vert) pour différents kx = π− δkx. Les arcs de Fermi se terminent à δkx = 0.6 le gap
qui persiste à δkx = 1.2 est le gap supraconducteur. (e)-(h) Fonction spectrale obtenue avec la fonction
de Green Eq.(8) pour différents kx = π − δkx. La ligne rouge indique la dispersion électronique
lorsque le pseudogap est nul. L’amplitude du pseudogap est prise comme solution de l’équation auto-
consistante découlant de Eq.(8) avec Q = (0.2, 0)π. Adapté de Ref.[135].

une dépendance en énergie dominée par l’amortissement de Landau :

D−1(q, iωn) = γ |ωn|+ q2 + µ(T ).. (9)

En utilisant le formalisme de Kubo, qui exprime la conductivité sous la forme d’une expansion
diagrammatique, on peut évaluer la contribution de ces bosons de charge 2 en plus de la con-
tribution fermionique. On trouve alors que ces modes incohérents produisent une résistivité qui
varie linéairement avec la température sur une large gamme de température. Cette contribution
va dominer celle des électrons lorsqu’elle est présente, amenant une déviation de la loi quadratique
comme observé expérimentalement.

De nombreux phénomènes liés au pseudogap des cuprates supraconducteurs peuvent donc être
décrits si l’on considère cette phase comme étant le résultat de la fractionnalisation d’un paramètre
d’ordre. Le candidat naturel du point de vue des symétries et aux vus des récents résultats
expérimentaux, est de fractionnaliser une onde de densité de paires qui amène à la formation
d’ondes de densité de charge et de supraconductivité à plus basses températures. J’étudie dans
cette thèse les conséquences de cette fractionnalisation sur les propriétés électroniques ainsi que
sur les modes de vibrations avec de très bonnes comparaisons avec les observations expérimentales.
Bien que les méthodes numériques ne parviennent pas à stabiliser les ondes de densité de charge,
cette description parvient à expliquer la structure fine de la self-energy obtenue dans des calculs de
champ moyen dynamique. Enfin, la présence de ces modes de densité de paires, qui ont une charge
2, en dehors du pseudogap peut également expliquer la déviation de la dépendance quadratique en
température de la résistivité.





Introduction

The main goal of the study of condensed matter systems is to understand and manipulate the
different phases that electrons can adopt. In this sense, the discovery of superconductivity more
than a hundred years ago was a major breakthrough and it has shaped the field up to now. From a
practical aspect, it is a very interesting state of matter as the ability to conduct electricity without
resistance would change our everyday life. From a fundamental perspective, the challenges that
still exist to understand the phenomenon fully drive physicists to continue the investigation. In this
thesis, we will be interested in the modern aspect of superconductivity which is focused on non-
conventional superconductors. These are materials that still defy all our attempts to formulate
a complete theory that explains their phase diagram. We will focus on a particular family of
Copper-based ceramics, the cuprate superconductors, in which superconductivity was discovered
in 1986.

Despite the intense focus that has been put on the study of the phase diagram of cuprates, there
are still a number of discussion around the nature of the electronic phases that emerge when the
system is doped away from half-filling. The most striking evidence for the unconventional nature of
the superconducting state is the very high critical temperature (∼ 150 K in some cuprates) and the
enigmatic pseudogap phase to which it is associated. The pseudogap is a region where the system
is not described by standard Fermi liquid theory but also do not appear to be in any ordered state,
understanding the nature of the pseudogap is important to have a complete understanding of the
superconducting phase. In this thesis, we present a new and original idea to describe the pseudogap
which is based on the fractionalization of collective modes. The idea of fractionalization is known
in condensed matter systems and one of the more striking realizations of such is probably the
Fractional Quantum Hall effect where the quasi-particles are seen to have an electric charge of 1/3

the one of the bare electrons. Here it is the modulated particle-particle pairs, called Pair Density
Waves, that we will fractionalize into uniform particle-particle pairs, know as Cooper pairs and
related to the phenomenon of superconductivity, and modulated particle-hole pairs that break the
translation symmetry of the system. The consequences of this fractionalization on the electronic
degrees of freedom describe a region that we identify with the pseudogap phase.

We start by presenting in Chapter 1 an overview of the field of non-conventional superconduc-
tivity and of the phenomenology of cuprates that makes the problem so intricate. We include a
review of both the experimental facts as well as the theoretical ideas that were explored in previous
work to emphasize that our proposition is based on established ideas on either side. Chapter 2
gives a quick introduction to the main analytical tools and conventions that will be used in this
thesis. We also present an example of how fractionalization was used previously to describe the
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phase diagram of cuprates.

Chapter 3 is the core of the thesis as we present our new idea on the fractionalization of the
Pair Density Waves in cuprates. Starting from the known relation between the different ordered
phases observed in the phase diagram, we use an effective theory to get the first phenomenological
consequences of our ansatz. We then use mean-field theory and a microscopic model to obtain some
stringent features of the pseudogap that are compared to experimental and numerical results. We
also explore the so-called Strange metal phase in Chapter 4. This is done by extending our idea
for the pseudogap and considering that some incoherent bosons can contribute to the transport
properties of the system, explaining the different anomalies observed for temperatures above the
superconducting transition. Lastly, we stray away from the field of cuprates in Chapter 5 to explore
another promising platform for unconventional superconductivity, multilayer graphene systems.
This last study is done by numerical tight-binding calculation and focuses on the effect of stacking
faults on the electronic properties of such systems.



Chapter 1

Cuprate superconductors

1.1 Unconventional and high-temperatures superconductors

1.1.1 Bardeen, Cooper, Schrieffer and Onnes

Superconductivity is a spectacular experimental realisation of a quantum state extending over
macroscopic lengths and has always been a wonderful challenge for theoreticians. Its discovery was
made possible by the access to very low temperatures when Kammerling Onnes managed to cool
down Helium below its boiling point at 4.13 Kelvin. He used these newly available refrigeration
capabilities to probe the behaviour of metals at very low temperatures by cooling down elementary
Mercury while measuring the change in resistivity of the sample. The sudden vanishing of the
resistivity at 4.2 K is so spectacular that it was first thought to be due to a loss of electrical
contacts [1]. This is however only one of the tell-tale signatures of superconductivity in metals,
the ability for the materials to carry electrical current without any dissipation over macroscopic
distances.

Another primary characteristic of superconductors is to expulse any form of magnetic field.
This was first reported by W. Meissner and R. Ochsenfeld in 1933 in superconducting tin and lead
samples [2]. Thus a superconductor is more than a simple perfect metal and is a distinct phase of
matter. This was a major indication on how to describe the superconducting transition which was
up to there still unexplained.

Most of the great physicists of the 20th century tried to develop a theory of superconductivity
at some point. This includes the likes of Einstein, Bohr, Brillouin, Krönig, Bloch, Heisenberg, Born
or Feynmann [3]. Some of these attempts still succeeded in describing the phenomenon from a
phenomenological point of view such as the work by Fitz and Heinz London in 1935 [4] or the theory
by Ginzburg and Landau in 1950 [5] which established the basics for the study of second-order phase
transitions still widely used nowadays. A true microscopic understanding of superconductivity was
however still missing and the solution would start to appear with the work of L. Cooper on the
effect of attractive interactions between electrons [6], called the Cooper problem, in 1956. Showing
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that electrons can form pairs when subjected to such attraction was the first step that culminated
in the full microscopic theory of superconductivity in 1957 by J. Bardeen, L. Cooper and J. R.
Schrieffer and now known as the BCS theory [7, 8]. The principal ingredient for superconductivity
in metals is the electron-phonon interaction that leads to an effective attractive interaction between
electrons with opposite momenta. These electrons will then form pairs, named Cooper pairs, which
will condense in a single, macroscopic, quantum fluid that allows for dissipationless current and
perfect diamagnetism.

The agreement between the prediction made using the BCS theory and the experimental results
is still nowadays among the best a theory can provide. It requires only one adjustable parameter,
usually taken to be the critical temperature which is easily obtained experimentally and is able
to explain superconductivity in a large majority of metals. Moreover, the idea of fermions pairing
found application in other fields of physics such as superfluidity in 3He, neutron stars or quark
matter. The discoveries of materials that exhibit a superconducting state continued at a growing
rate after the microscopic derivation was given and the access to liquid Helium became more
widespread. In fact, most of the metallic alloys have transition temperatures (Tc) below 30 K and
thus requiring specific cryogenic techniques to study.

1.1.2 Non-BCS superconductors

Looking away from the metallic alloys pushed the BCS theory to its limits and it was soon found
that some materials exhibit superconducting states that cannot be understood starting from the
usual electron-phonon model known up to this point. It is important to note that the super-
conductivity in these unusual materials is still due to the condensation of Cooper pairs but that
the mechanism for the formation of such pairs is different and often remains elusive. This has
consequences on several micro and macroscopic quantities depending on the particular physics at
play.

One of the first example materials in which the BCS theory is not applicable is probably
the organic superconductor (TMTSF)2PF6, synthesised in 1979 by K. Bechgaard, that has a
transition temperature (Tc) of 0.9 K under the pressure of 12 kBar [9, 10]. Other Bechgaard salts
((TMTSF)2X with X = PF6, ClO4, etc...) have also been shown to have unconventional pairing.
In the same year, superconductivity was discovered in a heavy-fermion material CeCu2Si2 below
0.5 K [11]. This family of materials was already known to have many exotic properties due to
the presence of 4f and 5f electrons in contrast to the usual d orbitals governing the physics of
metals. The interplay between the itinerant electrons from the metallic orbitals and the highly
localized f orbitals leads to a renormalization of the mass of the electrons that can increase a
hundred times above the bare mass. Another popular family of unconventional superconductors
are iron-based superconductors which are relatively more recent. The first member discovered was
the iron-pnictide LaOFeAs in 2008 with a transition temperature of 38 K [12]. Iron chalcogens
(FeSe) have also been found to have a superconducting transition and are generally placed in the
same family even though details of the atomic structure can vary. The relative high-temperature
of the superconducting transition sparked a lot of interest, especially when a Tc of 109 K was
obtained for thin films of FeSe on a SrTiO3 substrate [13].
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The biggest and most studied family of unconventional superconductors are cuprate materials.
Superconductivity was found in LaBaCuO4 in 1986 by J.G. Bednorz and K.A. Müller with a
critical temperature of 35 K [14]. Although this was the highest recorded Tc at the time, it would
be quickly outshined by the discovery of Yttrium Barium Copper Oxide (YBCO) the very next
year which was the first material to have a superconducting temperature above the boiling point
of Nitrogen with Tc = 90 K [15]. It quickly became evident that the superconductivity in these
materials could not be explained by the BCS theory and the search for both new compounds with
even higher critical temperatures and for a theory to explain this phenomenon is still ongoing. The
highest critical temperature at ambient pressure is still found in cuprates (HgBa2Ca2Cu3O8+x with
Tc = 133 K [16]).

It is important to mention that high-temperature superconductivity, even though usually asso-
ciated with unconventional pairing mechanisms, is not forbidden in the BCS theory. In fact, the
highest critical temperature was obtained in the BCS superconductors H3S in 2015 at 203 K under
the pressure of 90 GPa [17, 18]. There is also a prediction that pure metallic Hydrogen would
be superconducting at room temperature but requires even greater pressure [19] and has not been
achieved yet.

Figure 1.1: Critical superconducting temperature for different families of superconductors as they
were discovered. Note that some of these results are obtained under pressure. Adapted from Ref.[20].

Even 60 years after the BCS theory and 40 years after the first unconventional superconductors
were discovered, there are still new experimental developments that challenge our understanding
of superconductivity. The very recent discovery of superconductivity in twisted bilayer graphene
[21, 22] is a testimony that we are far from a complete understanding of the phenomenon. One
common thread to many unconventional superconductors is the possibilities for multiple different
electronic instabilities. In this case, predicting which ordered state the material will be in when
cooled down is a formidable task and cooperative or competitive interactions between the different
orders are of the greatest importance.
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1.1.3 Anatomy of cuprates

Cuprate superconductors all share a chemical structure that is at the origin of many of their
properties. They are layered materials where copper-oxygen planes are separated by ions such as
Yttrium and Barium as represented in the example in Fig.1.2(a). This results in highly anisotropic
properties along the direction perpendicular to the CuO2 planes and leads us to think most of the
physics happens in the two-dimensional square lattice. The resulting first Brillouin zone is a square
with momenta going from −π

a0
and π

a0
where a0 is the lattice spacing that is usually taken to be

unity. There are three high symmetry points in the first Brillouin zone named Γ,M and X that are
located at the centre, edge and corner of the Brillouin zone respectively (Fig.1.2(b)). The Brillouin
zone is also divided between the nodal region close to the momenta k =

(
±π2 ,±

π
2

)
,
(
∓π2 ,±

π
2

)
and the antinodal region around momenta k = (0,±π) , (±π, 0). In the study of cuprates, the
latter region is the main focus as most of the unconventional properties of the superconducting
and normal states are observed there. Note that the presence of the third spatial dimension is
needed to obtain any phase transition at finite temperature that breaks a continuous symmetry
due to the Mermin-Wagner theorem [23] and we will usually assume that this is the only effect of
the weak coupling between the different planes.

Figure 1.2: (a) Crystal structure of a prototypical cuprate. The copper-oxide planes are separated by
layers of intercalating ions. Chemical substitution in these insulating planes will change the electron’s
density in the CuO2 planes. Adapted from Ref.[24]. (b) Representation of the first Brillouin zone for
the square lattice generally considered for cuprates. We indicate the zone designed as the antinodal
region around momenta k = (0,±π) , (±π, 0) (blue) and the nodal region close to the momenta k =(
±π

2
,±π

2

)
,
(
∓π

2
,±π

2

)
(red). The white line is an example of the location of the Fermi surface for

underdoped cuprates. (c) Schematic of the different steps leading to the relevancy of the effective
theory with one orbital per site for cuprate superconductors. Adapted from Ref.[25].

Another assumption often made in the study of cuprates is to consider that there is only
one orbital per unit cell relevant to the low energy physics. A schematic for the argument is
given in Fig.1.2(c) and lies in the way the 3d9 configuration of the copper hybridize with the 2p6

configuration of the oxygen. In particular, the proximity of the d levels and of the p levels in
energy leads to a bonding state that is fully occupied and below the non-bonding states but, more
importantly, a singly occupied anti-bonding state at higher energy [26]. This anti-bonding state
has a strong 3dx2−y2 character and leads to a half-filled band crossing the Fermi level. The highly
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metallic nature of this state also gives rise to a high energy penalty for two electrons with opposite
spin to occupy it, leading to a high on-site repulsion for between electrons, denoted U .

Applying the standard band structure theory to this square lattice system with one electron per
unit cell would lead us to think that cuprates should be metals. It turns out that the cuprates are
insulators with a large gap of order 3 eV . This situation was envisioned way before the discovery
of cuprates in part by Mott [27] where an electron-electron repulsion can lead to an insulating
behaviour, even for an odd number of electrons per unit cell, giving rise to a Mott insulator. The
resulting band structure is composed of a valence band (the lower Hubbard band (LHB)) and a
conduction band (the upper Hubbard band (UHB)) separated by a gap of order U in which lies the
chemical potential. The tendency to delocalize the electrons is still present because of the overlap
between the different orbital (denoted by t) and can be seen through the effective antiferromagnetic
interaction that emerges between neighbouring sites. The undoped cuprates, with one electron per
site, are thus antiferromagnetic Mott insulators.

1.2 Phase diagram and competing orders

1.2.1 Doping a Mott insulator

The physics of undoped cuprates is well understood from the early work of Mott and do not show
any signs of superconductivity. The incredible complexity usually associated with the cuprates
comes from doping, i.e. changing the electron density of the parent materials. We are in par-
ticular interested in the hole-doped side of the phase diagram, which is obtained by decreasing
the number of electrons per unit cell, where the high-temperature superconducting phase emerges.
An experimental phase diagram is shown in Fig.1.3, we can see that the critical temperature for
the superconducting phase is found to be dome-shaped with a maximum which is referred to as
the optimal doping. For an electron density lower than the optimal one (overdoped samples) the
system is usually found to be a standard metal described by the Fermi liquid theory. Between
the half-filling point and the optimal doping (the underdoped region), however, we observe a zoo
of unusual properties associated with many different electronic instabilities. These possible orders
all manifest below a temperature T ∗ which decreases linearly with doping and are a part of the
pseudogap region. The only long-range orders established in the underdoped cuprates are the anti-
ferromagnetic phase close to half-filling and the superconducting phase. The ordering temperature
for the antiferromagnetic phase TNeel ∼ 300 K can be used to estimate the typical scale of the
interaction but is usually much lower than the measured value. This is due to the previously
mentioned two-dimensional nature of the copper-oxide plane with only weak coupling in the third
dimension. This coupling is thus the limiting factor when going through a phase transition and
the real scale of the interaction is of order 1 500 K [28]. Another important factor in the physics of
the pseudogap is the disorder that is present in most materials due to the chemical substitution re-
quired to dope the parent compound. This disorder usually strongly affects modulating orders that
break translation symmetry [29–31] and all the modulating orders such as the spin density waves,
the charge density waves (CDW) or the pair density waves (PDW) have a very short coherence
length and/or require external perturbation such as pressure or magnetic field to be stabilized.
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Figure 1.3: Experimental Temperature-doping phase diagram of YBa2Cu3Oy from Ref.[32] The
transition temperature for the antiferromagnetic and the superconducting states are well known but the
pseudogap temperature is more difficult to accurately measure. Note that the different experimental
probes susceptible to detect the pseudogap.

The other region of interest in cuprates is the one that is encountered at high temperatures in the
proximity of optimal doping. In this region most of the signatures of the pseudogap are gone but,
instead of recovering a standard metal, new exotic phenomena are observed. The main indication
that we do not recover a Fermi liquid is given by the temperature dependence of the resistivity.
In traditional metal, the resistivity grows quadratically with temperature, with a residual value
at T → 0 being an indication of the disorder in the sample. In this strange metal phase, the
cuprates are indeed conductors but with a linear dependence of the resistivity with respect to the
temperature [33]. This persists over a wide range of temperatures and is often associated with
the lack of quasiparticles [33–35]. The connection to the pseudogap is unclear and there is no
consensus on the description of this region of the phase diagram up to now.

The high-temperature superconducting state is, in retrospect, one of the less controversial
regions of the phase diagram and most of the mystery lies in how it emerges from the enigmatic
pseudogap or what is its link to the puzzling strange metal. The amount of experimental data
that have been acquired in cuprates over the last 30 years is astounding and it would take too
much time trying to present only a fraction of it. Experimental techniques ranging from Inelastic
Neutron Scattering, Angle-Resolved Photoemission Spectroscopy, Nuclear Magnetic Resonance
or Transport studies have been applied to cuprates and we will only present selected results to
describe the main subjects of our theoretical analysis which are the superconducting state, the
Charge Density Wave order and the pseudogap.
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1.2.2 The superconducting state

Superconductivity in cuprates is deemed unconventional as the pairing mechanism is different from
the electron-phonon interaction which is at the heart of the BCS theory. The superconducting state
is however still the result of the condensation of Cooper pairs and exhibits perfect conduction and
a Meissner effect [36] as in more standard superconductors. The origin of the pairing still has
consequences on some physical properties of the superconducting state in cuprates.

One way of describing superconductivity is through the idea of a second-order phase transition
and its associated order parameter [37]. In the case of superconductivity, the order parameter is
usually taken to be the superfluid density which is non-zero only in the superconducting state.
This quantity is usually directly related to the superconducting gap ∆ and we will in the following
discussion use the latter one. Note that in systems where fluctuations are important, as in low
dimensional systems, it is possible to have a non-zero superconducting gap but to still have a
vanishing superfluid density, breaking the equivalence mentioned previously. In this case, the
system is not in a superconducting state. In the case of the BCS theory, the superconducting
gap can be seen experimentally as a real gap in the electronic spectrum as shown by Scanning
Tunneling Spectroscopy [38] (STS). STS is based on the tunnelling effect that can occur between
two metals when they are separated by a thin insulating material. In this case, the insulating
barrier is the air (or vacuum) that is present between the sample material and a microscopic tip
that is approached a few nanometers from the surface to be scanned. When a potential difference is
applied between the tip and the sample, the tunnelling processes lead to a current being measured.
The variation of this current with the bias voltage is proportional to the density of states (DOS)
of the sample at an energy given by the bias voltage, allowing for the direct measurement of the
energy dependence of the local density of states.

Figure 1.4: (a) Differential conductivity dI
dV

as a function of the bias voltage obtained in STS experi-
ments on elemental Niobium which is a BCS superconductor. We see that there is a gap in the electronic
density of states, referred to as the superconducting gap, which is a result of the electrons pairing in
this energy window. (b) Same quantity measured in the high-temperature superconductor YBa2Cu3Oy
doped with holes. We see that the density of states close to zero bias has a V-shape signature of the
d-wave symmetry of the gap in cuprates. (c) We observe the same result in another cuprate material.
The d-wave nature of the superconducting gap is a universal feature of the cuprates. Adapted from
Ref.[38]

Experimental results in the superconducting state of the BCS superconductor Nb is shown in
Fig.1.4(a) and we can clearly see that the DOS is zero in a large energy window around the Fermi
level. This gap can be explained by the fact that the electrons close to the Fermi level form Cooper
pairs and are not available anymore for tunnelling when the bias voltage is not strong enough to
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break the Cooper pairs. Performing the same experiment in cuprate materials shows that even
if we observe a vanishing density of states at the Fermi level, there are still occupied states at
low energy [38] (Fig.1.4(b) and (c)). This change in the shape of the density of states at low
energy is a direct consequence of the anisotropic nature of the superconducting gap in cuprates, in
contrast with the BCS theory where the gap is found to be the same whatever the momentum of
the electrons forming the Cooper pair is. Because the gap still has to respect the symmetry of the
underlying lattice, there are only a number of possibilities for the momentum dependence of ∆k.
For cuprates, we have a dx2−y2 gap, a name taken from the notation for atomic orbital, which can
be written as :

∆k =
∆0

2
(cos kx − cos ky) . (1.1)

The superconducting gap will thus be maximum for momenta close to (0,±π) and (±π, 0) while it
vanishes along the diagonal when kx = ky. As a result of these nodal lines, there are electrons at
the Fermi level that do not contribute to the pair formation and which lead to the characteristic
V-shape of the density of states. Moreover, the sign change of the gap between the x−axis and the
y−axis can be seen as a phase factor added to the amplitude of the gap and has been an efficient
wave of validating experimentally the symmetry of the gap through other experimental techniques
based on the Josephson effect [39].

Another experimental probe that is able to confirm the symmetry of the superconducting gap is
Raman Spectroscopy as it couples directly to the uniform charge susceptibility. When the incoming
photon has energy equals to twice the superconducting gap it will trigger a pair breaking effect that
will result in a resonance peak in the Raman spectrum for ω = 2∆ [40]. Moreover, by selecting the
polarization of the light that is used, Raman spectroscopy can probe selectively some part of the
Brillouin zone. It is thus possible to measure the gap in the antinodal region, where it is maximum,
and to compare with the results obtained in the nodal region where the gap vanishes. The fact
that there is charge excitation with vanishing energy along the diagonal of the Brillouin zone once
again affects strongly the shape of the resonance that is observed and is another consequence of the
d-wave symmetry of the superconducting gap in cuprates. More puzzling, however, is the doping
dependence of the two possible measures of the gap depending on the polarization used. Fig.1.5(c)
shows the doping dependence of the nodal gap (∆N ) measured in the B2g symmetry and compare
it to the antinodal gap (∆AN ) obtained in the B1g symmetry. The former is directly following
the doping dependence of the superconducting critical temperature with the characteristic dome
shape. The latter, however, shows a totally different linear dependence with doping, similar to the
pseudogap onset temperature. This is the first indication that the superconducting state is still
linked to the pseudogap from which it emerges. There are other indications that the pseudogap
predominantly affects the antinodal region and some are discussed in more detail in Sec.1.3. We
can still use the nodal gap to find the link between ∆0 and Tc and we get 2∆0

kBTc
∼ 8 (Fig.1.5(a))

which is way above the theoretical prediction of 2∆0

kBTc
= 4.23 from BCS theory, confirming the non-

conventional nature of the pairing in those materials. In fact, there are still some debates on the
eventual link between the antinodal gap observed in the pseudogap and the superconducting state
at lower temperatures. This is usually encompassed in a discussion between a “one-gap” versus
“two-gap” scenario, i. e. whether the phenomenon responsible for the pseudogap is also responsible
for the superconducting state (one-gap) or these two states come from different microscopic origins
(two-gaps) and could then compete or coexist.
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Figure 1.5: (a) Superconducting gap to critical temperature ratio 2∆
kBTc

for different families of
superconductors. We see that unconventional superconductors such as the iron-based or cuprates gen-
erally have a ratio above the one predicted by the BCS theory. This is an important indication that the
weak-coupling idea based on the electron-phonon coupling is not valid in these materials. Adapted from
Ref.[41]. (b) Energy of the pair breaking peak measured by Raman spectroscopy in the antinodal (B1g)
region and in the nodal (B2g) region. We see that the nodal gap has the same dome shape dependence
with doping as the superconducting temperature Tc. Meanwhile, the antinodal gap decreases linearly
with doping, much like the pseudogap temperature T ∗. Adapted from Ref.[42]. (c) Comparison be-
tween the antinodal superconducting gap (red dot) and the nodal CDW gap (blue triangle) obtained by
Raman spectroscopy in underdoped HgBa2Ca2Cu3O8+δ . We see that they are both of the same order of
magnitude, indicating the importance of the charge modulation phenomenon. Adapted from Ref.[43].

Another important insight given by Raman spectroscopy is the energy scale at which the
different phenomenon in the pseudogap occurs. Fig.1.5(b) shows the results obtained by measuring
the superconducting pair-breaking peak in the antinodal region and compare it to another pair-
breaking peak that is observed in the nodal region. This second peak is observed at a temperature
higher than the superconducting transition and is therefore associated with another collective
phenomenon. As the onset temperature for this peak coincides with the one at which X-ray
diffraction experiments show the CDW, this pair-breaking peak is associated with the modulated
particle-hole pairs at the origin of this short-range order in the pseudogap. We can see that both of
these excitations have the same energy scale for different doping in the underdoped region, driving
us to consider the CDW as an important competitor to superconductivity [43].

1.2.3 Charge Density Wave

Multiple modulating orders have been observed at different places in the cuprates phase diagram.
The earliest example was found in Lanthanum-based cuprate where stripes (one-dimensional mod-
ulation) were observed. These stripes showed modulation of both the charge and the spin density
at the same time. It was found later that this case is particular to the La-based family of cuprates
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while the presence of checkerboard Charge Density Wave is seen ubiquitously in all other families.

Figure 1.6: (a) Observation of the modulation of the electronic density in the superconducting phase.
Superconductivity is destroyed locally by applying a small magnetic field and the normal state shows
charge modulation in the vortices core. Adapted from Ref.[44]. (b) STS map of the electron-hole
asymmetry Z(r, V0) =

(
dI
dV

)
V=V0

/
(
dI
dV

)
V=−V0

in the superconducting phase. The inset shows the
real part of the Fourier transform on the oxygen’s site that exhibits two peaks along the crystal axis. (c)
Filtering the original map to keep only the component corresponding to the dotted circle in (b) reveals
the unidirectional nature of the modulation. Adapted from Ref.[45].

The first observation of the generic CDW was done in the Bismuth-based cuprate BSCO by
Scanning Tunnelling Microscopy [44] (STM). By applying a magnetic field on an optimally doped
sample in the superconducting states, one can create vortices where only a quantized number of
flux lines can penetrate, destroying the superconducting state. It is then possible to probe the
normal state behind the Cooper pairs condensate. It was in the core of these vortices that a
modulation of the electronic density forming a checkerboard pattern was observed as shown in
Fig.1.6(a). This was later expanded further by using resonant inelastic X-ray scattering (RIXS)
that detected additional Bragg peaks corresponding to the same charge order as the one observed
by STM in the pseudogap region above the superconducting transition. Further studies have since
then shown that the CDW order in cuprates is a combination of unidirectional modulations along
the crystal axis [45] (Fig.1.6(b)). This order does not show long-range phase coherence and forms
puddles between which there are discommensurations (Fig.1.6(c))). The usual order parameter to
describe such phase is the amplitude of the electronic modulation at a given wave-vector Q written
in real space as

χQ(r) = χ0 cos (Q · r + φ) . (1.2)

The relation between the CDW and the SC is still an open question but there is strong evidence
that the two orders are in competition and that suppressing one of them enhances the other. This is
already seen in the STM experiment shown in Fig.1.6(a) where destroying superconductivity locally
by applying a magnetic field allows the charge modulation to be observed. One can go further
and destroy the SC state entirely by applying strong magnetic fields, in this case, a long-range
three-dimensional CDW is observed with a critical temperature very close to the zero-field Tc of
superconductivity as shown by the phase diagram in Fig.1.7(a). The study of Quantum Oscillation
(QO) in the pseudogap region also shows a Fermi surface reconstruction above a threshold magnetic
field [46–53], indicating that the CDW coherence length is large enough. On the other hand, it is
possible to suppress the CDW order by applying hydrostatic pressure along the crystal axis. In
this case, an increase in Tc has been reported and is another evidence of the competition between
the two orders [54].
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Figure 1.7: (a) Schematic Temperature-Magnetic field phase diagram for an underdoped cuprate. We
see that for a high magnetic field, the vortex liquid state gives rise to a long-range three-dimensional
charge order. The critical temperature for this CDW is almost independent of the magnetic field and
very close to the superconducting Tc at zero field. Adapted from Ref.[55]. (b) CDW peak obtained in
RIXS experiments at different temperatures, the black lines are fit using a gaussian shape on top of a
linear background. (c) Amplitude and width obtained from the fit in (b). We see that the amplitude
is maximum at T = Tc before decreasing for lower temperature, showing the competition between the
two orders. The width of the CDW peak, however, decreases monotonically with temperature with a
sharp drop at Tc. Adapted from Ref.[56].(d) STM map of the relative phase of the charge order with
respect to the lattice in vortices for T < Tc (top panel). We can see that the distribution of the CDW
phases in different vortices (bottom panel) is peaked despite the distance separating the vortices being
larger than the expected correlation length for the CDW order. Adapted from Ref.[57].

Even though the CDW and the SC order are in competition, there are also evidences that they
coexist in a very peculiar way at low temperature. The first argument for this coexistence is still
based on the X-ray experiments that show that the area of the Bragg peak associated with the
charge modulation is increasing when the temperature approaches Tc but remains non-zero in the
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superconducting phase (Fig.1.7(b)). Moreover, the width of the CDW peak decreases rapidly when
approaching Tc. The intricate relation is even more visible when looking at the STM results in
more detail. In particular, when the phase slip of the CDW with respect to the lattice is measured
in different vortices we can see that they form a centred distribution (Fig.1.7(d)) in contrast to
the expected uniform distribution of random phase slip. This is surprising as the distance between
vortices is much bigger than the phase coherence of the CDW order in the pseudogap region and
we would not expect the superconducting transition to affect any of this. The link between the
CDW and the SC orders may then be a crucial piece of the puzzle that is the pseudogap.

1.3 The Pseudogap

1.3.1 Electronic properties

The term pseudogap is used in many contexts to designate a loss of density of states at the Fermi
level. This definition applies to the pseudogap region in cuprates but it is far from capturing all
the unusual phenomenons that are observed in this region of the phase diagram. The pseudogap
in cuprates was first characterized by mean of Nuclear Magnetic Resonance (NMR) that measured
a decrease of the Knight shift when crossing the T ∗ temperature [58, 59]. The Knight shift is a
measure of the change of the magnetic environment of the nucleus that is probed and, in metals,
is mainly due to the conduction electrons [60]. As such it is related to the density of states at the
Fermi level and its decrease at T ∗ is a consequence of the loss of electronic states as mentioned
previously. This was later confirmed by direct measurement of the density of states by STS as
shown in Fig.1.8(a).

More information about this loss of DOS can be obtained by Angle-Resolved Photo-Emission
Spectroscopy, an experimental probe based on the inverse photo-electric effect that can study
the energy and momentum distribution of the density of states in the Brillouin zone [61]. By
irradiating a sample with photons with energy above the work function of the material there is a
probability for an electron to be emitted. The energy and angle at which this outgoing electron
is extracted from the material are directly related to its energy and momentum eigenstate in the
material and the probability of this photon-electron conversion is proportional to the probability
of such eigenstate being occupied. This results in ARPES being directly related to the energy
and momentum dependent electronic spectral function A (k, ω) which indicates the probability of
a state at momentum k and energy ω to be occupied. Integrating this spectral function over the
Brillouin zone recover the DOS discussed previously and integrating over all the negative energies
is a measure of the electronic density. For T > T ∗, ARPES can reconstruct the shape of the Fermi
surface and show a hole pocket centred around k = (π, π) as shown in Fig.1.8(b) (bottom right).
When entering the pseudogap, however, the Fermi surface in the antinodal region is washed out
and only Fermi arcs starting from the nodal region remain (Fig.1.8(b) top left). The Fermi surface
is no longer a closed surface encompassing the occupied states and the DOS at the Fermi level is
effectively decreased. This important change of the electronic properties in the antinodal region in
the pseudogap phase is of particular importance as one of the results of the Fermi liquid theory is
the relation between the volume enclosed by the Fermi surface and the number of electrons, known
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as the Luttinger theorem. With only arcs remaining, it poses the question as to how and if this
can be applied in the pseudogap and shows one example of non-Fermi liquid physics.

Figure 1.8: (a) Density of states measured through the change in the differential current in an STS
experiment. Curves at different temperatures are shifted for clarity and the superconducting transition
is indicated by the red line. We can see the superconducting gap for T < Tc but also that a reduced
density of states at zero bias persists for Tc < T < T ∗. Adapted from Ref. (b) ARPES results for
the electronic spectral function at ω = 0 different temperatures in the pseudogap phase. We see that
the Fermi surface in the antinodal region is washed out as the temperature is decreased. Adapted from
Ref.[62]. (c) Change in the band structure at the Brillouin zone edge with temperature when going
from the normal state to the superconducting state obtained by ARPES. We see that there are no states
closing the Fermi level when T < T ∗, corresponding to the pseudogap. Moreover, the band structure
does not change significantly through the superconducting transition except for a slight change in the
energy of the bottom of the conduction band. Adapted from Ref.[63].

ARPES can also be used to follow the evolution of the band structure at different temperatures
as shown in Fig.1.8(c). One of the momenta is fixed at the edge of the Brillouin zone (here kx = π)
and we look at the energy at which the electronic spectral function is maximum for different values
of ky. At the higher temperature, T > T ∗, we observe a band crossing the Fermi level which is
consistent with the full Fermi surface mentioned previously. When entering the pseudogap phase,
we see that there are no electronic states close to E−EF = 0, leading to a gapped band structure.
As discussed earlier, this gap is the one responsible for the loss of DOS seen in STS or in NMR
experiments and the Fermi surface still consists of Fermi arcs in the nodal region. The other
interesting results from this experiment comes from the lowest temperature where T < Tc. In
this case, we see only very small changes in the band structure, indicating that the antinodal
superconducting gap is continuously related to the pseudogap. This result confirms the previous
observation made by Raman spectroscopy mentioned in Fig.1.5 and we will study it in more detail
in Sec.3.2.2.

Another way of measuring the number of carriers is to use transport experiments and in partic-
ular the Hall effect. In fact, the slope of the change of resistivity when the applied perpendicular
field is changed, called Hall number, is directly related to the number of electrons and holes in
the system [64]. Using Hall measurement in overdoped cuprates does give a Hall number that is
proportional to 1 + p, p being the doping. When entering the pseudogap, however, the Hall num-
ber rapidly decreases and becomes proportional to p [65], indicating once more that the electronic
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properties are strongly affected by the pseudogap.

1.3.2 Discrete symmetries and fluctuations

On top of the aforementioned electronic properties, the pseudogap is also characterized by the
number of symmetries, mostly discrete, that are observed to be broken. Furthermore, fluctuations
associated with the different continuous symmetries that we discussed previously also play an
important role at finite temperature. Studying these collective effects is important as they are
usually universal features of the phase diagram and are less affected by microscopic details such as
the changes in the band structure or disorder.

Figure 1.9: (a)-(b) Magnetic susceptibility of an underdoped YBCO sample along the a∗ direc-
tion for energies above the spin-gap at two different temperature. In the superconducting phase (top
panel) the magnetic mode presents two branches with a positive and a negative dispersion, forming the
hourglass or X shape of the magnetic susceptibility. When looking in the pseudogap region (bottom
panel), the branch with the negative dispersion becomes vertical over a large energy range, forming
the Y-shape dispersion. Subtracting the measurement made at low temperature to the high temperature
one only shows the downward dispersing branch, showing that the upward branch is unaffected by the
superconducting transition. Adapted from Ref.[66]. (c) Phase diagram of underdoped YBCO where
the extent over which superconducting fluctuations can be observed is indicated by the blue line Tmin.
We can see that there is a large part of the pseudogap in which no significant contribution from pairing
fluctuations can be observed. Adapted from Ref.[67]. (d) Schematics for the possible intra-unit cell
loop current that can arise in the CuO2 plane. The presence of the oxygen atoms play a crucial role
to allow for this loop-current configuration and it is not definitive whether these can be obtained in
the simplified one-band Hubbard model or not. Note that none of these patterns break the translation
symmetry from the CuO2 lattice and thus do not carry long-range modulation. Adapted from Ref.[68].

The first important fluctuations we want to mention are the antiferromagnetic fluctuations
that originate due to the proximity with the Neel state at very low doping. These fluctuations are
present in a large part of the phase diagrams and were thought to play a role similar to the phonon
of the BCS theory to cause the formation of Cooper pairs [69]. We now know that the situation is
more complex but the role of these fluctuations as the primary interaction leading to the formation
of ordered states is a common starting point to study the pseudogap phase. The behaviour of
the antiferromagnetic fluctuations can be studied from the spin-spin correlation function which is
measured by Inelastic Neutron Scattering (INS). Neutrons, being neutral particles, will interact
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with the magnetic structure and not the charge distribution in materials in contrast to the photons,
used in RIXS for example. In these experiments, it is found that the magnetic susceptibility is
gapped, in agreement with the NMR measurement of the Knight shift, and presents a resonance
at finite energy around the antiferromagnetic wave-vector QAF = (π, π). The dispersion away
from this point changes in different parts of the pseudogap. In particular, the Y -shaped dispersion
observed in the pseudogap takes a X -shaped dispersion below Tc as shown in Fig.1.9(a)-(b). The
downward dispersing branches that is observed in the superconducting state is thought to be the
result of a spin-triplet excitation being stabilized at low temperature. Meanwhile, the upward
dispersing branch is unaffected by the superconducting transition and is connected to the gapless
magnon mode in the antiferromagnetic phase at low doping. There have been extensive studies on
the coupling of these spin fluctuations on the single-particle electronic properties in conjunction
with other experimental probes such as ARPES [70].

The other fluctuations often considered are the superconducting fluctuations that could origi-
nate from the SC state in the underdoped region. This would correspond to Cooper pairs being
formed but not having a global phase coherence. The extent to which these fluctuations occur
was a controversial subject and the hypothesis that the whole pseudogap could be due to the pres-
ence of such incoherent pairs was even considered [71–75]. This was originally supported by the
measurement of the Nernst effect [76, 77] but later disputed by other experimental probes. It is
nowadays accepted that such fluctuations are limited to a narrow temperature range above Tc as
observed by Nernst measurements in YBCO [67] shown in Fig.1.9(c). This is a strong indication
that the pairing fluctuations should not be present in the whole pseudogap region. More recent
developments however have observed pairing tendency up to the pseudogap temperature T ∗ in
pump-probe experiments where the system is taken out of equilibrium [78–80]. These experiments
do not however claim that incoherent pairs are present at equilibrium at these temperatures.

The other aspect of the pseudogap region is the number of broken discrete symmetry states
that are observed. In fact, it has been experimentally observed that Time-reversal symmetry [81–
83] and Parity are broken at T ∗, the C4 rotational symmetry is also broken in the pseudogap
as seen in polarized neutron diffraction [84], torque-magnetometry [32] and optical birefringence
measurements [85]. One candidate state to explain the time-reversal symmetry breaking is the
intra-unit cell loop current state where phase circulation forming closed loops in the CuO2 plaquette
leads to effective magnetic moments. Interestingly, these intra-unit cell loop current orders do not
generally break the lattice translation symmetry as seen in the example in Fig.1.9 and it is a priori
not clear how they could be responsible for the pseudogap. The idea has been extensively studied
and is supported by the experimental observations of intra-unit cell magnetic structure by INS
[81]. These states with broken discrete symmetries are usually thought to be unable to open a gap
in the antinodal region and should thus be considered as a side effect of the pseudogap. There are
still theories that pursue the idea of the modulation of intra-unit cell loop current over large scales
could be the origin of the pseudogap [68].

1.3.3 Pair Density Waves

PDW describes a state that breaks both translation and charge conservation symmetry by having a
modulation of the pairing amplitude in real space, much like density is modulated in a CDW state.
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The pairing is still associated with electron-electron pairs and the modulation can be identified
with the centre-of-mass momentum of the pair. As such, the standard superconducting state is as-
sociated with zero centre-of-mass momentum while the PDW as a finite momentum corresponding
to the wave-vector of the modulation observed in real space, the associated order parameter can
thus be written as

∆Q (r) = ∆0 cos (Q · r + φ) , (1.3)

where the pairing amplitude ∆0 can have a phase changing in space to reflect the orbital symmetry
as in the superconducting case (see Sec.1.2.2).

The nature of the translation-breaking state in cuprate superconductors has been questioned
by the observation of a modulation of the pairing amplitude in the halo surrounded vortices in
the same manner the CDW was first detected. Because it involves particle-particle pairing, the
PDW order can couple to the electronic density of states by couplings of the form ∆

(
∆Q
)∗ or

∆Q
(
∆−Q

)∗, with ∆ being associated to uniform particle-particle pairing [86]. The former one
will be associated with a modulation of the density with wave-vector Q while the second one will
induce a modulation of the DOS with a wave-vector of 2Q. Both wave-vectors have been observed
in the modulation of the electronic density of states in a vortex halo, where superconductivity is
suppressed but not destroyed as opposed to the vortex core. This is would then correspond to the
presence of a PDW with modulation Q coexisting with the superconducting state [87].

Other experiments managed to observe the modulation of the pairing amplitude even without
magnetic field using Scanning Josephson Tunnelling Microscopy [88], where the standard metallic
tip of the STM is replaced by a superconductor. When scanning the surface of a superconducting
material, the measured current is given by the Josephson relation and is, among other things, pro-
portional to the pairing amplitude in both the tip and the sample. This allows for the measurement
of the pairing amplitude on a nanometer scale without the need to apply an external magnetic
field. The original observation pointed toward a PDW having the same modulation wave-vector
as the CDW present in the pseudogap region, however, subsequent experiments have shown that
it could possibly be that the modulation is twice longer (with a wave-vector twice shorter). This
is still a debated point and an important piece of information needed to decipher the link between
this PDW and the CDW in the pseudogap.

Other states with modulation of the pairing amplitude were considered theoretically before this
observation in cuprates. Most of them, however, require the application of an exterior magnetic
field, breaking time-reversal symmetry, to occur. These are referred to as Fulde–Ferrell–Larkin–
Ovchinnikov (FFLO) [89, 90] phases and are thought to be relevant in the context of heavy-fermion
[91] or organic superconductors [92]. The evidence for such modulation without any magnetic field
in cuprates is a strong supporter for the time-reversal conserving version PDW instead of the
previously studied FFLO states.

Theoretically, the Pair Density Wave instability is difficult to obtain. Indeed, weak-coupling
approaches usually favour the uniform superconducting state and numerous perturbations such as
disorder will also have strong adverse effects on the stability of the modulated pairing order. There
are unambiguous results in the one-dimensional Kondo-Heisenberg model that shows that there
is a stable PDW state at low temperature. The interplay of Luttinger liquid and Kondo physics
that leads to this state is, however, difficult to reproduce in higher dimensions. Multiple numerical
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studies via variational Monte-Carlo or Gutzwiller projected mean-field based on the t−J model (a
large interaction limit of the Hubbard model) have shown that PDW states are possible but usually
have higher energy than the uniform superconducting state [93]. However, all these states are very
close in energy and the effect of perturbations such as disorder or the fine details of interlayers
coupling are difficult to account for. In general, pair density waves are considered to play a role
in the physics of the pseudogap but it is difficult to argue that it is the only instability at play
and different scenario of coexistence and/or competition with the other charge density wave or
superconducting order are studied. Such works are presented in more detail in Sec.1.4.3

1.4 Theoretical Description

1.4.1 Resonating valence bond and fractionalization

Although it is believed that the Hubbard model (more details in Sec.2.3) contains all the physics
of cuprates, the inability to solve it except in a few specific limits makes the question about how to
describe the pseudogap a very present one. The amount of work that has been put in developing
theories that can explain the experimental results obtained in underdoped cuprates is fantastic
and we will here only present some of them to put our new proposition in the context of earlier
and current works.

Historically, one of the most influential ideas to describe the pseudogap of cuprate supercon-
ductors was through the Resonating Valence Bond theory [94]. The starting point is the exact
ground state in the Mott insulator which is known to be localized electron on every site with
antiferromagnetic ordering. The idea is then that the nearest-neighbour correlation that exists
between electrons with opposite spin survive when going away from half-filling, forming quantum
superposition of singlets at different length scales. When kinetic energy is restored outside the Mott
state, these singlets are the building block of the Cooper pairs that forms the high-temperature
superconducting state. In this case, the energy scale associated with the superconducting pairing is
the same as the one leading the antiferromagnetic state at low doping, explaining the high critical
temperature. Formalizing this idea is far from trivial and came later with the introduction of the
fractionalization of the electronic degrees of freedom [28, 95–97].

Seeing how the spin and charge degrees of freedom of the electrons behave differently, it was
suggested that one should treat them separately. To do so, one can introduce two new quasipar-
ticles, the spinon and the holon, each carrying one of the degrees of freedom from the electron,
i.e. its spin and its charge respectively. These two new excitations are fundamentally linked one
to each other and the information that the two originate from the same electronic quasiparticle
is then kept in a strongly fluctuating emergent gauge field mediating interaction between the new
quasiparticles. It is then possible to study the possible pairing and condensation of spinons and
holons to derive the phase diagram as a function of doping. To respect the statistics associated
with the fermionic nature of the electron, one of the new quasiparticles has to be a fermion while
the other has to be a boson (more details in Sec.2.4.2). The regime in which the fractionalization
is valid varies with the choice of which from the spinon or the holon is a fermion but the super-
conducting phase is always described by the condensation of the bosonic particle and the pairing
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of the fermionic ones at the same time.

This spin-charge separation is known to be a good description of the various phenomena in
one-dimensional systems as in the Luttinger liquid [98, 99]. Adapting the idea in two dimensions is
not straightforward and the study of the pseudogap in this formalism is thus the study of a gauge
theory in which the gauge group depends on the flavour of fractionalization that has been used.
The idea has had some success in explaining experimental observation such as the superconducting
dome and the Fermi arcs but fundamental issues regarding the confining nature of gauge theory,
also intensively studied in high-energy physics, makes the progress difficult [100].

1.4.2 Numerical developments

Even when resorting to numerical computations, the two-dimensional Hubbard model is a formidable
problem. The Hilbert space of quantum systems usually grows as 4N , where N is the number of
lattice sites considered. This means that the number of states for a two-dimensional system goes
from 44 = 256 for a 2x2 square lattice to 416 > 4.109 for a 4x4 lattice. The importance of fluctua-
tions in low dimensional systems also requires reasonable sizes to capture all the long-range spatial
correlations. Nonetheless, multiple numerical methods have been developed to treat the strongly
correlated regime of electronic systems. One prominent technique is the Quantum Monte Carlo
(QMC) method and its extensions. It is a stochastic algorithm that will sample the phase space
randomly and evaluate various quantities while doing so. It is exact in the limit where the number
of sampled points goes to infinity but it allows for a very well-define way of quantifying the error
made when taking a finite number of steps. One very powerful application of the QMC technique
is in the determinantal, or auxiliary-field, Quantum Monte-Carlo (DQMC) where the interacting
part of the problem is treated through a mean-field decomposition in both the spin and charge
sector, capturing magnetic order as well as charge modulation or superconductivity [101]. One
big hurdle that the DQMC algorithm faces is the “sign-problem” that exist due to the fermionic
nature of the electrons [102]. This limits the applicability of DQMC in the Hubbard model away
from half-filling, especially for moderate to large interaction strength and low temperature.

Dynamical Mean-Field Theory (DMFT) is another interesting route to approach the problem.
The technique is known to be exact in the limit of infinite dimension (or infinite lattice coordination)
and focus on the dynamical effects induced by the strong correlations. This is done by mapping
the two-dimensional square system onto an impurity problem coupled to a bath [103]. By solving
the impurity problem it is thus possible to get the local Green function in the Hubbard model.
It is important to note that solving the impurity problem itself is not a trivial task and that this
is usually done via Monte-Carlo or exact diagonalisation methods. The main caveat of using this
technique in the two-dimensional case is that the role of spatial correlations is ignored. This is an
active area of development with improvements such as the cellular DMFT [104, 105] (CDMFT)
that use the same mapping but use a small cluster coupled to a bath instead of a single impurity.
Including vertex corrections is also a possible route to capture the spatial correlation within this
computation scheme [106].

Lastly, there have been insights from real space techniques that are able to give precise infor-
mation on the scale at which some properties emerge. One popular method is the Density Matrix
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Renormalization Group (DMRG) which is exact in one dimension and tackles the exponential
growth of the Hilbert space by diagonalizing separately a reduced part of the system by tracing
over the density matrix. Applying this procedure iteratively is equivalent to a real space renor-
malization group procedure and can give good results for the low energy states. This technique
is usually limited in higher dimensions where the number of sites in the sub-system still grows
quadratically with its size and in the case where there is non-trivial entanglement across the whole
system. DMRG still has been widely used to study the Hubbard model in few-leg ladders and has
shown the formation of stripes as observed in some cuprates. There are also multiple extensions
of DMRG that aim to study two-dimensional systems such as the Projected Entangled Pair States
(PEPS) or the Multiscale Entanglement Renormalization Ansatz (MERA) which address the two
limitations we mentioned by using the idea of tensor network states [107]. Infinite-PEPS give
good variational ground state energy in the strongly-correlated regime of the 2D Hubbard model
[108, 109] while MERA has been successfully used in the study of frustrated quantum magnets to
study the spin liquid states [110].

Despite the difficulties, these numerical methods are able to extract numerous relevant infor-
mation from the study of the two-dimensional Hubbard model. The particular case of half-filling
is usually used as a benchmark and already reveals non-Fermi liquid behaviour even for weak
interactions [111]. Pseudogap-like physics is also observed away from half-filling and a d-wave
superconducting state is obtained in DMFT at strong coupling. The case of moderate coupling is
more delicate and is still under intense investigation.

1.4.3 Intertwined orders and Quantum disordered PDW

Another approach more rooted in the phenomenology of the pseudogap is to consider that there
exists preformed Cooper pairs at high temperature, in the pseudogap region, leading to a finite
pairing amplitude outside the superconducting phase. These pairs would not condense due to phase
fluctuations but still impact the electronic properties. For example, the Fermi arcs are explained
by the partial destruction of the superconducting gap above Tc, the gap vanishing in the nodal
region this is where we recover zero-energy electronic states first while the anti-nodal region is still
subject to the incoherent pairing [112, 113]. This idea is deeply rooted in the ubiquitous presence
of fluctuations in the pseudogap, however, as we mentioned previously in Sec.1.3.2, the observation
of superconducting fluctuations only a few tens of Kelvin above Tc makes it difficult to explain the
very high pseudogap temperature T ∗. The idea is still very interesting from a phenomenological
point of view and has been extended to include different kinds of preformed pairs to account for
the multiple orders observed experimentally [75].

The vast complexity of the phase diagram in cuprates superconductors also pushed theoreti-
cians to look for a higher principle to organize all the different symmetry-broken phases that are
experimentally observed. One of the results of these tentatives is the idea of intertwined orders,
where only a few of the observed ordered states are the true instability of the system but, due to
competition or other effects, they combined in different ways to give rise to the whole plethora of
phenomenons observed [93]. One example is to start with the uniform superconducting state and
the PDW state as parent phases and to explain the observation of charge density modulation by the
coupling of these two orders. The CDW state is then called a daughter phase or a vestigial order.
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In the particular example we choose, this could be obtained by considering both the expectation
value of the SC and the PDW order parameters to be zero, i.e.

〈
|∆|2

〉
= 0〈

|∆Q|2
〉

= 0, (1.4)

but to allow for a charge-neutral combination with finite momentum to have a non-vanishing
expectation value : 〈

∆Q∆∗
〉
6= 0. (1.5)

The number and the nature of the vestigial orders are obviously highly dependent on the starting
parent phases chosen. This idea does have the benefit to reduce the number of states to consider
as long as they can combine to generate the observed symmetry-broken states in the pseudogap. It
can however be difficult to justify how the parent phases intertwined and how the different vestigial
orders organized themselves with temperature and doping.

The difficulty to stabilize the PDW state in theoretical approaches also makes the idea of a
peculiar disordered state interesting. The idea was motivated by the possibility of a kinetic-driven
Amperean pairing [114] that could lead to a finite pairing correlation with finite centre-of-mass
momentum. It was originally derived in a mean-field theory starting from an RVB picture where the
spinon pairing was driven by a particular configuration of the emergent gauge field in this theory.
This PDW is also directly responsible for the presence of a CDW state with a density modulation
twice larger than than the pairing modulation. This charge density wave can be observed even if
the PDW order is fluctuating as long as the relative phase fluctuations from ∆Q and ∆−Q are zero
and is thus closely related to the idea of vestigial orders mentioned previously. The pseudogap is
then described by a region where the modulated pairing amplitude is finite but where the order
is destroyed by quantum phase fluctuations [115]. We can thus see this line of thought as the
intersection of the preformed pairs theories and the intertwined orders theories which provide a
microscopic argument starting from the RVB picture.

Our work can be thought of as building upon these previous ideas as it draws the quantum
disorder PDW starting point but cast it using a different fractionalization hypothesis. In fact,
we will consider that the electron quasiparticles are the good starting point but we notice that
the PDW order can be split into two collective modes breaking the charge conservation and the
translation symmetry separately, namely a CDW and an SC order. This fractionalization should
take place at the pseudogap temperature T ∗ and does give Fermi arcs as well as other aspects of
the physics of cuprates that we will study in Sec.3.2.1 and Sec.3.4. The region above the super-
conducting transition is governed by phase fluctuations that play an important role to obtain the
pseudogap phenomenology as in the preformed pairs approaches. Lastly, the discrete symmetries
such as time-reversal symmetry can be broken by a combination of the SC and CDW fluctuations
when none of them is condensed in the spirit of vestigial orders [116]. Note that this approach
where collective modes are fractionalized has also been explored starting from spin density wave
fluctuations [117].



Chapter 2

Theoretical tools

2.1 Basic notions

2.1.1 Second quantization

Second quantization and path integral formalism are two natural ways of dealing with many-body
problems in quantum mechanics and there exists numerous connections between them. We will here
present the important points of both formalisms in order to introduce notations and conventions.
Exhaustive derivations of the different properties we will give can be found in Refs.[37, 118, 119]
for example.

The starting point for the second quantization formalism is the idea of occupation number
representation. It is based on the idea that we can build many-body states |Ψ〉 from a complete
basis of single-particle states { |ν1〉 , |ν2〉 , ... } where νi are quantum numbers labelling the single-
particle states. The idea of the occupation number representation is to notice that only the occupied
single-particle states are relevant in the description of |Ψ〉 and that it is then sufficient to track the
number of particles in each of the basis states. We can thus get a basis for the n-particle states
given by

|nν1 , nν2 , ...〉 with
∑
j

nνj = n, (2.1)

where nνi is the number of particles in the state |νi〉. We also define number operators hatnνi
whose eigenstates are the states |nνi〉 with eigenvalue nνi and the creation (annihilation) operators
c†νi (cνi) that will change the occupation number by +1 (−1) through

n̂νi |nνi〉 = nνi |nνi〉

c†νi |nνi〉 = cst |nνi + 1〉 and cνi |nνi〉 = cst |nνi − 1〉 . (2.2)

Lastly, the symmetry properties of the many-body states with respect to the exchange of particles

37
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are encoded in the algebra that the creation and annihilation operators obey. For fermions we have{
c†νi , c

†
νj

}
=
{
cνi , cνj

}
= 0 and

{
c†νi , cνj

}
= δνi,νj . (2.3)

A direct result of this anti-commutation relations is that
(
c†νi
)

2 = 0 which is a representation of
the Pauli principle forbidding two fermions to occupy the same quantum state. The power of the
formalism resides in the fact that all one-body operator can be written as quadratic combination
of creation and annihilation operators, for which we give examples in Sec.2.2, while two-body
operators are given by quartic combinations of c† and c as will be seen in Sec.2.3. The general
forms in the basis { |ν1〉 , |ν2〉 , ... } are

Ô1−body =
∑
i,j

Oνi,νjc
†
νicνj

Ô2−body =
∑
i,j,k,l

Oνi,νj ,νk,νlc
†
νic
†
νjcνlcνk (2.4)

where Oνi,νj and Oνi,νj ,νk,νl are the matrix elements of Ô in the chosen basis. The other interesting
properties of the creation operators is that we can easily adapt them to different choice of single-
particle state basis. In fact, if we introduce a new single-particle basis { |µ0〉 , |µ1〉 , ... } we have the
following formula for the change of basis

cµi =
∑
j

〈µi | νj〉 cνj . (2.5)

We will in the following mainly be interested in systems where spin is a relevant quantum number
and we will use the change of basis formula Eq.2.5 to change between a real space representation
for the single particle states and the momentum space representation. To do so we only need to
know the matrix element 〈x |k〉 = eik·r which give us the expression for the Fourier transform of
annihilation operators

ckσ =
1√
N

∑
j

eik·rj cjσ. (2.6)

2.1.2 Green’s functions

The other tool that we use in order to extract information from many-body Hamiltonians is the
Green’s function formalism. It comes from the general context of differential equations and can
be applied to the time-dependent Schrödinger equation as well as for the time-evolution of many-
body wave-functions. There are multiple different Green’s functions that can be defined but we
will mainly concerned about the retarded electronic Green’s function defined as

Gretσσ′ (x, t|x′, t′) = −iθ (t− t′)
〈{
cσ (x, t) , c†σ′ (x

′, t′)
}〉

. (2.7)

For translational invariant systems, it is often useful to work in momentum space representation
where the Green function is diagonal and thus only depends on one momentum, we have a similar
definition

Gretσσ′ (k, t|t′) = −iθ (t− t′)
〈{
ckσ (t) , c†kσ′ (t

′)
}〉

. (2.8)
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There are multiple ways of obtaining the retarded electronic Green’s function or an approximation
of it depending on the model studied. One instructive result is the one for non-interacting systems
with eigenvalues in momentum space given by a dispersion relation εk, in this case, the single-
particle Green’s function for a chosen spin species is given by

Gret (k, ω) =
1

ω − εk + iη
, (2.9)

where η is an infinitesimal offset that we need to send to zero. We can then see that the poles of
the Green’s function on the real axis correspond to the eigenvalue for a state with momentum k.
This form of the retarded Green’s function is of particular importance as it allows us to get an
understanding of the electronic spectral function defined by

Aσ (k, ω) = −2Im Gretσ (k, ω)

= 2πδ (ω − εk) for free electrons. (2.10)

The electronic spectral function is thus a measure of the probability of an electron to occupy a
state at with momentum k and energy ω. For free electrons it is a Dirac delta at ω = εk as these
are exact eigenstates of the systems. Another useful representation of the Green’s function comes
from the imaginary-time representation, in which the time coordinate is taken to be a complex
number τ → it. this allows the study of finite-temperature effect and is also a very practical
way of performing computations when doing perturbation expansion or treating interactions. The
Matsubara Green’s function is defined as

G (x, τ |x′, τ ′) = −θ (τ − τ ′)
〈
Tτ

{
cσ (x, τ) , c†σ′ (x

′, τ ′)
}〉

, (2.11)

where Tτ is a time ordering operator. the imaginary time is limited to value between zero and
the inverse temperature 0 ≤ τ ≤ β = 1

kBT
and the electronic Matsubara Green’s function is anti-

periodic in τ with period β. This means that the Matsubara Green’s function is only defined for
a set of discrete imaginary frequencies iωn = (2n+1)π

β . There is an important link between the
Matsubara Green’s function and the retarded Green’s function through analytical continuation
iωn → ω + iη which allows us to get physical quantities on the real frequency axis. Care must
be taken when doing the analytical continuation as this implies a rotation in the complex planes,
any singularities in the complex plane may make the procedure ill-defined. We usually perform
this step at the end of the calculation and will mention any difficulty that we may encounter for
specific cases.

2.1.3 Path-integral formalism

Rewriting many-body problems using the formalism of path integral is interesting as it allows
to make use of the whole Quantum Field Theory techniques that have been developed in high-
energy physics as well as make connection to the different phenomenon and idea present in classical
statistical mechanics. Building the path-integral representation for a many-body problem usually
start with the expression of the quantum partition function

Z = Tr e−β(Ĥ−µN̂), (2.12)
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where we introduced a chemical potential µ to work in the grand canonical ensemble with an
averaged number of particles n. The trace in Eq.(2.12) is to be taken over a complete basis of
state. Using the notion of fermionic coherent states[37] we can rewrite this expression for the
partition function as a functional integral over two complex functions

Z =

∫
dcdc∗e−S(c,c∗), with S [c, c∗] =

∫ β

0

dτ [c∗∂τ c+H (c, c∗) − µN (c, c∗) ] (2.13)

or in imaginary frequency representation

S [c, c∗] =
∑
ωn

[
c∗
(
− iωn − µ+ Ĥ0

)
c+ Ĥint (c, c∗)

]
(2.14)

Here it is important to note that to represent the fermionic statistic, the variable c∗ and c are
not ordinary number but Grassman variables. They retain the anti-commutation property of the
fermionic creation and annihilation operators expressed in Eq.(2.3). The important result regarding
the functional integral that appears in the path-integral formalism is the Gaussian integral that
describe non-interacting system

Z =

∫
dcdc∗ec

∗Ĥ0c = Det
(
Ĥ0

)
(2.15)

where the determinant is taken over the basis of eigenstates. We can then define the quantum
average as

〈...〉S0
= Det (S0)−1

∫
dc∗dc (...) e−c

∗S0c (2.16)

and express it as the functional derivative with respect to external fields, as example for the free
fermions

〈
cic
∗
j

〉
S0

= Det
(
− iωn − µ+ Ĥ0

)
−1

∫
dc∗dc cic

∗
je

∑
ωn,i′,j′ c

∗
i′ [(−iωn−µ)δi′,j′+Ĥ0i′,j′ ]cj′−φc∗−φ∗c

= Z[0, 0]
δ2Z [φ, φ∗]

δφδφ∗

∣∣∣∣
φ,φ∗=0

=
1

(iωn + µ) δi,j − Ĥ0i,j

(2.17)

which is consistent with the result obtained in Eq.(2.9) after analytical continuation and Fourier
transform in momentum space.

We will use the tools describe here to formalize the microscopic and effective models we use
to pseudogap phase of cuprate superconductors. The simple example we provided here are based
on non-interacting systems and were kept general as to not be dependent on the details of the
system, we will now give more applied example for both non-interacting (Sec.2.2) and interacting
Hamiltonian (Sec.2.3) with a focus on superconductivity. We also come closer to the physics of
cuprates in Sec.2.4 with a description of the fractionalization hypothesis coming from the idea of
RVB states.
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2.2 Non-interacting systems

2.2.1 Tight-binding models

One of the simplest models that one can write is one considering free electrons in metals. The usual
way of representing the periodic potential associated with the lattice of ions in which the electron
fluid is placed is by defining localized orbital states (Wannier orbitals) that overlap slightly and
allow for electrons to jump from one to another. There can be multiple orbitals per lattice site and
a maximum of two electrons per orbital as per the Pauli principle. The tight-binding Hamiltonian
is thus given in real space by

Htb = −
∑

i,j,n1,n2,α,β

tij,n1n2,αβ

(
c†in1α

cjn2β + h.c
)
, (2.18)

where i and j are lattice site, α and β are the electrons spin and n1 and n2 number the different
orbitals. The hopping amplitude tij,n1n2,αβ represent the probability for an electron with spin α
in the orbital n1 at site i to hop in the orbital n2 at site j with spin β. Several simplifications can
be made to this general form to treat different type of systems. The first one is to forbid spin-flip
processes by requiring that the starting spin α is the same as the final state spin β. These spin-flip
can be necessary when the effect of magnetic field or of spin-orbit coupling are to be considered but
we will not be interested in this cases further. We will in fact also consider the hopping amplitude
to be spin-independent. One can also consider that the hopping processes only occurs between
similar orbitals at different sites. This is equivalent as requiring n1 to be the same as n2 and can
be justified when the different orbitals are far away in energy such that these hopping events are
rare. In the case of cuprates, we will use a single-orbital approximation and thus we will omit
the orbital quantum number. Lastly, it is possible to restrict the range over which the hopping
is effective by setting tij = 0 if |ri − rj | > rmax. The extreme limit of this approximation is to
consider only nearest-neighbours hopping, i.e. tij = t (δi,i±x̂ + δi,i±ŷ) where x̂ and ŷ are lattice
vectors. This is an approximation that does not reproduce the normal state of cuprates but which
does give good results in the low-energy description of graphene for example. The tight-binding
model we will consider is thus written

Htb = −
∑
i,j,σ

tij

(
c†iσcjσ + h.c

)
. (2.19)

Note that this model is solely based on the lattice geometry that is contained into the hopping
amplitude tij , despite this and even if we limits ourselves to two-dimensional systems there are very
different results possible. Owing to the translation symmetry of the system we can diagonalize the
Hamiltonian by going into momentum space. This is not possible if we want to study finite-size
systems as will be explored in Chap.5. To proceed in solving the Hamiltonian in Eq.(2.19) we use
the definition of the electronic operators in momentum space given in Eq.(2.6) and get

Htb =
∑
k,σ

εk c
†
kσckσ. (2.20)

The electronic dispersion εk that appears is given by the Fourier transform of the hopping am-
plitude. In the most simple example of nearest-neighbour hopping on a square lattice this would
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yield εk = −2t ( cos (kx) + cos (ky) ) . During our study of cuprates we will allow for hopping up
to the fourth neighbours and use the following electronic dispersion :

εk =− 2t ( cos (kx) + cos (ky) ) − 4t′ cos (kx) cos (ky) − 2t′′ ( cos (2kx) + cos (2ky) )

− 4t′′′ ( cos (2kx) cos (ky) + cos (kx) cos (2ky) ) . (2.21)
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Figure 2.1: (a) Band structure for a typical underdoped cuprate dispersion t′

t
= −0.156, t′′

t
=

0.163, t′′′

t
= −0.0326 along the high-symmetry point in the Brillouin zone. We observe a hole

pocket centred around theX point at momentum (π, π) . (b) Band structure for graphene with nearest-
neighbour hopping. There are two bands per unit-cell leading to two bands that cross linearly at the
K and K′ points. Note that in both cases, the bandwidth is equal to 2zt where z is the coordination
number. (c) Top part, honeycomb lattice formed by a triangular lattice with two atoms (A and B) per
unit cell. Bottom part, Brillouin zone for the honeycomb lattice with the position of the high symmetry
points. Arrow indicates the Dirac point with the inset showing the linear crossing along the x-axis.
Adapted from Ref.[120].

The values of the different hopping amplitudes are obtained from first-principle calculations
such as Density Functional Theory or from a fit to ARPES data. We show in Fig.2.1(a) the
electronic dispersion for Pb0.55Bi1.5Sr1.6La0.4CuO6+δ (Bi2201) for a cut along the high-symmetry
points in the Brillouin zone where we used the following parameters : t′

t = −0.156, t′′

t = 0.163,
t′′′

t = −0.0326. The nearest-neighbour hopping is usually taken as the energy scale in the problem
and we can get quantity in absolute energy by using the fact that t ∼ 300 meV in most cuprates
compound (t = 220 meV in Bi2201). The electron’s density n is given by the number of states



2.3. INTERACTING SYSTEMS 43

that are present below the Fermi level. It is common to work in the grand canonical ensemble and,
instead of fixing n, use the chemical potential µ to get the wanted average density. This is done
by adding a term to the tight-binding Hamiltonian

Htb → Htb − µ
∑
i

(ni↑ + ni↓) . (2.22)

In momentum space this is equivalent to shifting the position of the reference energy, or equivalently
to shift the electronic dispersion εk → εk − µ.

To highlight the role of the lattice geometry in the electronic properties of materials we also
plot the electronic dispersion obtained by considering a honeycomb lattice, as seen in single-layer
graphene, in Fig.2.1(b) along the high symmetry points of the hexagonal Brillouin zone (see
Fig.2.1(c)). Because the honeycomb lattice is actually a triangular lattice with two atoms per
unit cell, the electronic dispersion presents two bands. These bands are crossing at the K and K ′

points, named Dirac points, with a linear dispersion away from them. This linear relation between
the momentum and the energy of the electrons eigenstates is responsible for a lot of the physical
properties of graphene [120] and is also interesting from the theoretical perspective as a low-energy,
continuous, theory for graphene will recover the Lorentz symmetry observed in high-energy physics.

2.3 Interacting systems

2.3.1 Perturbation expansion

There are multiple ways of implementing interactions in a second quantized Hamiltonian and it is
possible to write the interaction term in a form similar to the general hopping term presented in
Eq.(2.18). Because we will mostly be interested in the study of cuprate superconductors, we directly
start with an approximated interaction that retains only an on-site density-density interaction,
called the Hubbard interaction,

HU = U
∑
i

ni↑ni↓. (2.23)

Note that the interaction term is not quadratic in fermionic operators and thus cannot be cast in
to the Hamiltonian matrix form we used in the non-interacting case. We can also see that this
on-site interaction is not diagonal in momentum space as

HU = U
∑
k,k′,q

c†k′+q↑c
†
k−q↓ck↓ck′↑, (2.24)

and can be interpreted as a scattering event where electrons with opposite spins and momentum
k and k′ scatter off of each other and exchange a momentum q.

One very natural way of studying interacting problems is to start from the known non-interacting
solution and expand around it to capture the effects of interactions. This is a valid approach as
long as the ground state of the system does not change drastically when interactions are turned
on and gives very good results in describing the electron fluid in metals through the Fermi liquid
theory. The caveat of this method is its inability to describe phase transition where the symmetry
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of the ground states change when some parameters such as temperature, doping or interaction
strength are tuned. We will however see that perturbation expansion can still capture the presence
of such phase transition if one knows where to look for it.

We will present here the perturbation expansion for the single-particle Green’s function and we
thus start by defining the non-interacting Matsubara Green’s function

G0 (k, iωn) = (iωn + εk)−1, (2.25)

where ωn is a fermionic Matsubara frequency (see Sec.2.1.2) and εk describe the non-interacting
band structure. We will also deviate from the strict Hubbard interaction and consider a more
general energy and momentum dependent interactionW (iΩn, q) where Ωn is a bosonic Matsubara
frequency. There are multiple ways of deriving the perturbation series for the electronic Green’s
function and derivations can be found in Refs.[37, 118] while we start here with the resulting
Dyson equation in momentum space which relate the interacting Green’s function G (iωn,k) to
the non-interacting G0:

G (iωn,k) = G0 (iωn,k) +G0 (iωn,k) Σ (iωn,k)G (iωn,k) . (2.26)

In the Dyson equation, all the effects of the interactions are captured by the self-energy operator
Σ (iωn,k) . This equation is exact but it is not possible to compute the self-energy exactly in any
realistic problem and approximation on the treatment of the interactions are generally done at the
level of the self-energy. We can first note that the Dyson equation can be rewritten as

G (iωn,k) =
G0 (iωn,k)

1−G0 (iωn,k) Σ (iωn,k)
=

1

G0 (iωn,k)−1 − Σ (iωn,k)

=
1

iωn + εk − Σ (iωn,k)
. (2.27)

Using Eq.(2.25) in the last line allows us to highlight how the interactions, captured by Σ will modify
the non-interacting Green’s function. The real part of the self-energy will change the band structure
by shifting the position of the pole at a given momentum while the imaginary part will induce a
finite lifetime for the electronic eigenstates which result in a broadening of the electronic levels. In
order to build the perturbation expansion we start by associating a diagrammatic representation
for the full and non-interacting Green functions as well as the interaction term :

G0 (iωn,k) = G (iωn,k) =

W (iΩn, q) = (2.28)

The self-energy is then given by “the sum of all the irreducible diagrams with the external legs



2.3. INTERACTING SYSTEMS 45

removed” which we build in the following way up to the second order in the interaction :

Σ (iωn,k) = + +

+ +

+ +

+ + ... (2.29)

Here we kept the external legs to indicate at which energy and momentum the self-energy is
computed but they will not be taken into account in the computation of the diagrams. We see that
there are two first order diagrams usually named the Hartree and the Fock term, respectively. There
are then six second order diagrams, although some of them can cancel by symmetry depending
on the form of the interaction. These diagrams can be thought of as physical scattering processes
but they are first and foremost a graphical representation of a mathematical expression. The
diagrammatic expansion has to be supplemented by the “Feynman” rules that allows one to evaluate
them, for the electron systems these are as follow :

• Multiply each diagram by (−1)F , F being the number of fermion loops.

• Multiply G0 (iqn, q) by eiqnη in the same time diagram (closed loop with ine fermion line).

• Perform summation over each internal momenta and Matsubara frequency and multiply by
a factor 1

βN where β = kBT is the inverse temperature and N is the number of sites.

As an example we can compute the contribution from the Hartree term to the self-energy. This is
convenient as the form of the interaction does not play an important role in the final result. In fact,
because the incoming and outgoing momenta have to be equal, the transferred momentum through
the interaction is zero and the momentum running in the loop is only the internal momentum q.
Following the Feynman rules given above, we will have a summation over the q and an internal
fermionic Matsubara energy qn and we get an overall factor −1

βN . Using the definitions in E.(2.28)
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we get

ΣHartree (iωn,k) =

=
−1

βN

∑
σ,q,iqn

(−W (0) )G0 (iqn, q) eiqnη. (2.30)

The factor η in the exponential is here to ensure the convergence of the Matsubara sum and will
be taken to zero at the end of the calculation. The standard techniques to perform this energy
integration is to use the equivalence with the integration over a closed contour in the complex plane
[37, 118] and we will directly use the result here while converting the finite sum over momenta to
a continuous integral :

ΣHartree (iωn,k) =
2W (0)

β

∫
dq

(2π) d

∑
iqn

eiqnη

iqn − εq

= 2W (0)

∫
dq

(2π) d
nF (εq) ,

where we introduced the Fermi function nF and d is the spatial dimension of the problem. The
integral can be done exactly as it counts the numbers of states that are occupied in the Brillouin
zone which is related to the density of electrons n, leading to the final result

ΣHartree (iωn,k) = W (0)n. (2.31)

We can thus see that the Hartree term captures the renormalization of the chemical potential
by the uniform part of the interaction W (0) . The procedure used here can be used to compute
all the diagrams but is in practice not tractable for higher-order diagrams when the number of
momentum-energy sums increases. In fact, the second-order diagrams shown in Eq.(2.29) already
involve three internal momenta. The perturbative expansion of the self-energy is thus exact if one
can compute all the diagrams but has to be approximated in all the practical cases.

In the case of small interaction it is possible to truncate the expansion at a given interaction
order. In fact, all the diagrams are proportional to UnW where nW denote the number of interaction
lines and U is the scale of the interaction. As such the contribution of higher-order diagrams will
be highly reduced for small interactions.
There is also some families (or topology) of diagrams that can be resummed to all orders. This
means that we can rewrite the infinite sum of diagrams with the same topology as a series expansion
and use this to find a close equation to define a renormalized interaction. One example of this idea
is given by the Random Phase Approximation (RPA) [121–123] that is known to give good results
in the limit of high density where screening of the interaction is important. RPA is based on the
fact that at every order of the expansion we can find diagrams that differ only by the inclusion of
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a particle-hole bubble,

ΣRPA = + + + + .... (2.32)

If we focus on this family of diagrams we can rewrite the related self-energy contribution as a first
order diagram with a renormalized interaction :

ΣRPA = ×

 + + + + ...

 = (2.33)

This renormalized interaction follows a Dyson like equation that we can invert to get a close
expression involving only the bare interaction and the single particle-hole bubble :

−WRPA =

= + + + + ...

= + ×

 + + + ...


= + ×

=

1−

. (2.34)

Computing the self-energy given in Eq.(2.33) by using the renormalized interaction is thus formally
equivalent to taking into account all the diagrams shown in Eq.(2.32) to all order in interaction
strength. Limiting the computation of Σ (iωn,k) to this RPA resummation is still a consequent
approximation as all the other diagram’s topology are ignored. This type of resummation is
also available for other family of diagrams such as in the particle-hole or particle-particle ladder
approximations [124].

2.3.2 Mean-field decoupling and BCS theory

The perturbative expansion we described above is based on the assumption that the ground state,
described by the non-interacting G0, is not drastically changed when interactions are taken into
account. This is however not the case when considering phase transitions, where the symmetry of
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the ground state changes, as a function of temperature or interaction strength. We will here give
an overview of the mean-field method that can capture such symmetry-breaking ground states and
we will apply it to the infamous BCS Hamiltonian to study the superconducting transition.

Thanks to the earlier work on the Cooper problem [6], the idea that an attractive interaction
can lead to the formation of pairs of electrons was present when the BCS theory was developed.
Some questions remained however, such as how to get electrons, all negatively charged particles, to
attract each other and how do these Cooper pairs can lead to a dissipationless current and perfect
diamagnetism. We will not answer any of these here as we will start with an effective Hamiltonian
that already contains the attractive interaction. We will also not discuss the electromagnetic
properties of superconductors but instead, we will be interested in the electronic DOS and the
critical temperature. We thus start with a Hamiltonian in momentum space that reads [7] :

HBCS =
∑
k

εkc
†
kσckσ +

∑
k,q

Vk,qc
†
k↑c
†
−k↓c−q↓cq↑ (2.35)

The basis of the mean-field approximation lies in the decoupling of the interaction term in different
channels which depends on which correlations we think are relevant to the physics of the system.
For the particular interaction in Eq.(2.35) we obtain

c†k↑c
†
−k↓c−q↓cq↑ ∼

〈
c†k↑c

†
−k↓

〉
c−q↓cq↑ + c†k↑c

†
−k↓

〈
c−q↓cq↑

〉
−
〈
c†k↑c−q↓

〉
c†−k↓cq↑ − c

†
k↑c−q↓

〈
c†−k↓cq↑

〉
+
〈
c†k↑cq↑

〉
c†−k↓c−q↓ + c†k↑cq↑

〈
c†−k↓c−q↓

〉
(2.36)

Replacing the interaction term from Eq.(2.35) by the expression Eq.(2.36) will then yield a quadratic
Hamiltonian. There are however two details that prevent the resulting mean-field Hamiltonian
Hmf to be solved directly, the first one being the presence of the correlation functions. In fact, we
need the system’s Green’s function to evaluate this correlation value and the Green’s function is
directly tied to the Hamiltonian. We thus have a self-consistent equation to solve to get the final
result. The second details that require our attention is the presence of the particle-particle terms
that appears on the first line of our decoupling

〈
c†k↑c

†
−k↓

〉
and

〈
c−q↓cq↑

〉
. These correlations

are usually deemed anomalous because they are directly related to the charge conservation in
the system. In fact, a non-zero value of these quantum average means that there is a non-zero
overlap between states with different numbers of particles, breaking the charge conservation of
the Hamiltonian. This is precisely the symmetry breaking phenomenon we want to describe using
mean-field theory. For this, we assume that these correlations are finite and we evaluate them by
using the self-consistent equation mentioned previously. It is then important to compare the free
energy of the system in the broken symmetry states against the normal state to be sure that the
new phase is thermodynamically favored. Before continuing, we can note the the second and third
lines in Eq.(2.36) correspond to the Fock and to the Hartree terms respectively, we obtained by
treating the interaction in a pertubative expansion in Sec.2.3.1. Those can lead to magnetic or
translation symmetry breaking but we will ignore them here to focus on the pairing instability.

We proceed by replacing our interaction term by the mean-field expression retaining only the
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pairing terms and get

Hmf =
∑
k

εkc
†
kσckσ −

∑
k

(
∆kc

†
k↑c
†
−k↓ + h.c.

)
−
∑
k,q

Vk,q

〈
c†k↑c

†
−k↓

〉 〈
c−q↓cq↑

〉
(2.37)

where we introduced the gap function :

∆k = −
∑
q

Vk,q
〈
c−q↓cq↑

〉
. (2.38)

We now want to evaluate the correlation in the right-hand side of Eq.(2.38) to obtain the self-
consistent equation for our mean-field approximation. There are multiple ways of doing so, either
by means of a Bogoliubov transformation [125, 126], minimization of the free energy [118] or by
using the Nambu-Gorkov formalism [127, 128]. We will follow a way similar to the latter one by
introducing a matrix Green’s function

Ĝ (τ,k) =

 −
〈
Tτ ck↑ (τ) c†k↑ (0)

〉
−
〈
Tτ ck↑ (τ) c−k↓ (0)

〉
−
〈
Tτ c
†
−k↓ (τ) c†k↑ (0)

〉
−
〈
Tτ c
†
−k↓ (τ) c−k↓ (0)

〉 
=

(
G↑↑ (τ,k) F↑↓ (τ,k)

−F↓↑ (− τ,k) † G↓↓ (− τ,−k) †

)
. (2.39)

It is clear here that the correlation that appears in Eq.(2.38) will be related to the anomalous
Green’s function F↓↑ (− τ,k) †. We can obtain a close from for the diagonal and off-diagonal terms
by considering the equation-of-motion for Ĝ. After going to Matsubara frequencies, we obtain(

iωn − εk ∆k

∆∗k −iωn − εk

)
Ĝ (iωn,k) = 1. (2.40)

We obtain a closed system by taking the top left and bottom left elements of this equation
(iωn − εk)G↑↑ (iωn,k) −∆kF↓↑ (iωn,k) = 1

∆∗kG↑↑ (iωn,k) − (iωn + εk)F↓↑ (iωn,k) = 0

⇔


(iωn − εk)G↑↑ (iωn,k) − |∆k|2G↑↑(iωn,k)

iωn+εk
= 1

F↓↑ (iωn,k) =
∆∗kG↑↑(iωn,k)

(iωn+εk)

⇔


G↑↑ (iωn,k) = iωn+εk

(iωn)2−ε2k−|∆k|2

F↓↑ (iωn,k) =
∆∗k

(iωn)2−ε2k−|∆k|2

. (2.41)

We finally get the electronic Green’s function for up-spin electrons, which will be equivalent for
down-spin electrons, and the expression for the anomalous Green function.

It is instructive to take a moment to look at how a non-zero pairing amplitude will affect the
electronic dispersion. First of all, we can note that the electronic Green’s function reduces to
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the non-interacting one when ∆k → 0. Secondly, we can see that if we make the approximation
that the order parameter is independent of momentum, which is a good approximation for the
attractive interaction due to electron-phonon coupling, there are no poles of the Green’s function
for ω < ∆. The band structure can be seen as resulting from the hybridization of an electron band
with dispersion εk and a hole band with dispersion −εk with a gap ∆ opening at the intersection
as is shown in Fig.2.2(a). This gap can be directly related to the one seen in STS experiments
mentioned in Chap.1. In fact, we can get an expression for the DOS for positive energy in the
superconducting state and we find

ρ (ω) =
1

2πNd

∑
k

A (k, ω)

=
−1

πNd

∑
k

ImGret↑↑ (k, ω)

=
−1

πNd

∑
k

ImG↑↑ (k, iωn → ω + iη)

=
ω√

ω2 + ∆2
θ (ω −∆) , (2.42)

where θ (x) is the Heaviside function. The result is plotted in Fig.2.2(b) and is well understood
when compared to the band structure.
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Figure 2.2: a) Example of the change in the band structure in the superconducting state. The black
dashed lines show the original non-interacting band εk = k2 and the equivalent “hle” band −εk which
cross at the Fermi level by symmetry as εkF = 0 = −εkF . In the superconducting state these two bands
hybridize with a coupling ∆, leading to new quasiparticle bands ±Ek = ±

√
ε2k + ∆2 represented by

the blue and red lines. These are separated by a direct gap 2∆. (b) DOS in the superconducting state
from the BCS theory given by Eq.(2.42). We see that the DOS vanishes for energies below the gap
|ω| < ∆ in agreement with the band structure from panel (a). This is in very good agreement with
the measured DOS in BCS superconductor as presented in Fig.1.4. (c) Temperature dependence of the
superconducting gap obtained form the BCS theory and compared to experimental data from different
BCS superconductors. Adapted from Ref.[129].

The anomalous Green’s function vanishes when the gap function goes to zero, it is thus only
present in the broken-symmetry state. We can now use the result of Eq.(2.41) in Eq.(2.38) to find
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a self-consistent equation for ∆k. In fact,

∆k = −
∑
q

Vk,q
〈
c−q↓cq↑

〉
=

1

β

∑
q,ωn

Vk,qF
∗
↓↑ (iωn,k) eiωnη. (2.43)

It is now important to remember that the interaction Vk,q is taken as being the renormalized inter-
action due to the electron-phonon scattering [7] and as such is attractive when the characteristic
energy scale of the electrons is below the scale of the phonons mediating the interaction, this is
expressed by :

Vk,q =

{
−V if εk, εq < ωD

0 otherwise
(2.44)

Using Eqs.(2.41) and (2.44) in Eq.(2.43) we get

∆k =
−V
β

εq<ωD∑
q

∑
ωn

∆qe
iωnη

(iωn) 2 − ε2q − |∆q|2

=− V
εq<ωD∑
q

∆q

(
nf (Eq)

2Eq
+
nf (− Eq)

−2Eq

)

=V

εq<ωD∑
q

∆q
1− 2nf (Eq)

2Eq
(2.45)

where Ek =
√
ε2k + |∆k|2 is the electronic dispersion in the superconducting state as given by the

poles of G↑↑ (iωn,k) . The solution to the Eq.(2.45) can be found numerically but for the case of
momentum independent interaction as we consider here it is usual to assume that the gap function
will not depend on momentum, i.e. ∆k → ∆0. we can then simplify both side of the equation
and replace the momentum summation by a continuous energy integral to obtain the BCS gap
equation:

1 = V ρ0

∫ ωD

−ωD
dεk

tanh
(
β
2

√
ε2k + ∆2

0

)
2
√
ε2k + ∆2

0

(2.46)

where ρ0 is the density of states at the Fermi level. The full temperature dependence of the value
of the gap function is given by β = 1

kbT
in the numerator and the solution as a function of T − Tc

is shown in Fig.2.2(c) and compared to experimental results. We can also derive an analytical
solution to this integral equation in two limits, the zero-temperature limit and the vanishing gap
limit. Finding the value of the gap ∆0 (0) as T → 0 is done by noticing that the argument of the
hyperbolic tangent is positive and that β = 1

kBT
→ ∞. The numerator of the integrand is thus

strictly equal to one and we get

V ρ0

∫ ωD

−ωD
dεk

1

2
√
ε2k + ∆2

0

= V ρ0 sinh−1

(
ωD

|∆0 (0) |

)
= 1

−−−−−→
V ρ0�1

|∆0 (0) | = 2ωDe
−1
V ρ0 (2.47)

The approximation V ρ0 � 1 is known as the weak-coupling limit.

The other limit in which the superconducting gap vanishes allow us to get an analytical ex-
pression for the critical temperature at which the superconducting temperature takes place. For
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this, we consider the limit of Eq.(2.46) when ∆0 → 0+ leading to

V ρ0

∫ ωD

0

dεk
tanh

(
εk

2kBTc

)
εk

= 1

−→ kbTc =
2

π
eγ ωD e

−1
V ρ0

∼ 1.13 ωD e
−1
V ρ0 (2.48)

Where γ ∼ 0.577 is the Euler constant. Once again, the result in the weak coupling limit depends
only on the three energy scales associated with the strength of the interaction (V ) and the number
of fermions that feels the attractive interaction (ρ0 and ωD). We see here that the density of
states at the Fermi level plays an important role in determining the critical temperature for the
superconducting transition. We also see that the gap-to-temperature ratio is independent of the
physical parameters and, when the weak-coupling approximation is valid, gives

2|∆0 (0) |
kbTc

∼ 3.53. (2.49)

As we discussed in Chap.1, this is valid for a wide range of metallic superconductors and is one
example of the power of the BCS theory.

We have here taken the example of a particular interaction that leads to a state breaking the
charge conservation symmetry of the Hamiltonian. The mean-field theory can be applied to many
other symmetry-breaking states and the difficulty often resides in the choice of the relevant channels
to consider. It is also possible to consider multiple possible orders that can be generated by the
decoupling of the interaction term but the set of coupled self-consistent equations that are needed
to be solved is in general difficult to treat precisely. When looking at the underdoped region in
cuprate superconductors, the two main candidates we will consider are the superconducting and
the CDW orders while the effect of antiferromagnetism will be captured through the effective
interaction. We will treat the competition and coexistence of SC and CDW orders in a mean-field
theory in Sec.3.2.2.

2.4 Fractionalization

2.4.1 From Hubbard to t− J model

The study of cuprate superconductors is usually based on the two-dimensional Hubbard model. It is
in fact believed that in the moderate to strong correlation regime, this simple model based on on-site
repulsion can capture the pseudogap phenomenology and the high-temperature superconductivity.
The Hubbard model [130–132] is simply written in terms of a hopping term analogous to Htb in
Eq.(2.19) and a density-density interaction as presented in Eq.(2.23) yielding

HHubbard =
∑
i,j,σ

tij

(
c†iσcjσ + h.c

)
+ U

∑
i

n̂i↑n̂i↓ − µ
∑
i

n̂i. (2.50)
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To gain insight on the physics captured by the Hubbard model, we start in a way analogous to
the study of non-interacting systems by considering the atomic limit, i.e. setting the hopping
amplitude t = 0. This is a drastic simplification as it is equivalent to considering only one site
and the associated four quantum states. The eigenstates of the Hamiltonian then have eigenvalues
that depend in the number of electrons

〈∅|HU |∅〉 = 0 〈↑↓|HU |↑↓〉 = U − 2µ

〈↑|HU |↑〉 = −µ 〈↓|HU |↓〉 = −µ (2.51)

The sign of the chemical potential will thus decide if the site is empty (µ < 0) or occupied (µ > 0)
in the ground state. Furthermore, there is a energy barrier to get two electrons on the same site
given by U . The solution we obtain in the atomic limit, which present highly localized states
separated by an energy gap of order U , is very different from the solution of the non-interacting
tight-binding model we presented in Sec.2.2, showing totally delocalized and gapless continuum of
states. The competition between the tendency to delocalize the electron’s wavefunction from the
hoping term and the localization effect due to the interaction term is at the core of the difficulty
in treating the full Hubbard model. Turning on the hopping term can be done in a perturbative
way starting from the atomic limit and is a good way to study the very low doping region. For
this, we start with a half-filled ground state with as many up and down electrons written as∑

i

(n̂i↑ + n̂i↓) |0〉 = |0〉 (2.52)

Here |0〉 design the fact that we have no doubly-occupied sites and it is then easy to see that
HU |0〉 = 0 and our zeroth-order energy is E(0)

0 = 0. The first-order correction in our perturbation
theory is given by :

E
(1)
0 = 〈0|Htb |0〉 = 0 (2.53)

The first-order correction vanishes because moving a single fermion from the half-filled ground state
inevitably lead to a state with a doubly-occupied state and a vacant state and that the overlap
〈0 | 1〉 = 0. To get a relevant results for our perturbation theory we thus need to go to second order
correction for which

E
(2)
0 =

∑
n 6=0

〈0|Htb |n〉 〈n|Htb |0〉
E0 − En

. (2.54)

Because the hopping Hamiltonian only connect states with a number of doubly occupied sites that
differs by one, the only non-vanishing contribution to the sum will be given by the term with n = 1.
Moreover, the energy of a state with one doubly-occupied state at zeroth-order is simply given by
HU |1〉 = U and we get

E
(2)
0 =

−1

U
〈0|HtbHtb |0〉

=
−2t2

U

∑
i,j

∑
σσ′

〈0| c†iσcjσc
†
iσ′cjσ′ |0〉

= 〈0| 4t
2

U

∑
i,j

Si · Sj |0〉 (2.55)
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we see here that when hopping is turned on on top of a strong on-site repulsion, there is a emergent
antiferromagnetic interaction induced by virtual second order hopping between neighbouring sites.
This is in agreement with the observation of antiferromagnetic order at half-filling in cuprates.
The addition of vacancy, or holes, in this magnetic background is a very non-trivial and exploring
the phase diagram away from half-filling is still an open problem. In fact, the technique we applied
here is not available anymore as we would have vacancy present in the ground state already and
thus the application of the hypothesis we used in Eqs.(2.53) and (2.54) are not necessarily valid
anymore.

There is a general way of getting a low-energy effective model at any filling that takes into
account the large on-site repulsion via the Schrieffer-Wolff transformation. This leads to what is
known as the t− J model which is written as

Ht−J = P

−∑
i,j,σ

tij

(
c†iσcjσ + h.c.

)
+ J

∑
i,j

Si · Sj

P (2.56)

where the spin-spin interaction is related to the on-site repulsion J = 4t2/U . The operators P
are here to indicate that we have excluded all configurations that lead to double occupancy. It is
possible in numerical studies to exactly enforce this constraint by explicitly removing those states
with two electrons on the same site, however, from an analytical standpoint, it is usually very
difficult to take this projection into account despite the importance it can have on the results. The
fractionalization of the electronic quasiparticles is one way of treating the no double-occupancy
condition that we will review in the next section.

2.4.2 Gauge theory in cuprates

The difficulty in treating the projection describe in the previous section can be understood when
writing it explicitly in term of electronic operators in real space,∑

σ

c†iσciσ ≤ 1 ∀i. (2.57)

This constraint has to be enforced at every lattice site separately which makes it difficult. One
way of handling this strong constraint is by using the slave-boson method that was originally
introduced in the study of heavy-fermions. For this we distinguish the different states that the
electron operators connect and we assign a new operators to each of these transition [94, 95, 97],
for example

c†iσ = f†iσbi +
∑
σ′

εσσ′fiσ′d
†
i . (2.58)

In fact, the electron’s creation operator connects the empty state |0〉 and the singly occupied
state |σ〉 as well as the singly-occupied state |σ′〉 and the doubly-occupied state |σσ′〉 as shown
in Fig.2.3(a). As such the electron’s creation operator can be written as destroying the empty
state and creating the singly-occupied state, represented by the f†iσbi term, and as destroying a
single-occupied state with a different spin to create a doubly-occupied state, given by the term
εσσ′fiσ′d

†
i . In this case, because a state with two fermions is equivalent to a bosonic state, the
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new operators bi and di have bosonic statistics and do not carry any spin degree of freedom, they
are usually named holon and doublon, respectively. On the other hand, the fermionic fi,σ have no
electric charge but carry the spin information and are named spinons. Note that because bi and di
are bosonic operators we could in principle have an infinite number of them at any given site, to
take care of such discrepancy in the Hilbert space of electrons on a lattice and the Hilbert space
of one fermion species and two boson species, we need to introduce a constraint on the number of
particles at every site, ∑

σ

f†iσfiσ + b†i bi + d†idi = 1. (2.59)

Figure 2.3: (a) Schematic for the action of the new f ,b and d operators and how we can recover
the the standard empty, singly and doubly occupied states. Note the the vaccum for these operators is
not the empty site in contrast with the canonical fermion operators. (b) Schematic mean-field phase
diagram in the fractionalization scenario. We can distinguish four different states with: (A) χij 6= 0,
∆ij = 0, 〈bi〉 = 0, (B) χij 6= 0, ∆ij 6= 0, 〈bi〉 = 0, (C) χij 6= 0, ∆ij 6= 0, 〈bi〉 6= 0, (D) χij 6= 0,
∆ij = 0, 〈bi〉 6= 0. The different physical properties of these phases are described in the main text.
Adapted from Ref.[133].

It is then possible to exclude all the double occupancy by setting the action of d†i |Ψ〉 = 0 for
any state |Ψ〉, or equivalently, taking an expression for the electron’s creation operator and the
associated constraint

c†iσ = f†iσbi∑
σ

f†iσfiσ + b†i bi = 1. (2.60)

The next step is to use the equality for the electron’s operator in Eq.(2.60) in the t-J Hamiltonian
and to implement the associated constraint. This is usually done by introducing a site-dependent
Lagrange multiplier in a path-integral formalism leading to the expression for the partition function
[28]

Z =

∫
dλidbidb

∗
i dfi,σdf

∗
i,σexp

(
−
∫ β

0

L0 +Ht−Jdτ

)
. (2.61)

where λi is the site-dependent Lagrange multiplier and L0 capture the time-dependence in the
Lagrangian formalism

L0 =
∑
i,σ

(
f∗i,σ

(
∂

∂τ
− µ

)
fi,σ + b∗i

∂

∂τ
bi + iλi

(
f∗i,σfi,σ + b∗i bi − 1

))
(2.62)
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As such, performing the functional integral over λi in Eq.(2.61) will enforce the no-double occupancy
constraint. Replacing the electrons operators in the t-J Hamiltonian leads to fermion-boson and
fermion-fermion coupling. In particular, the hopping term becomes

Htb = −t
∑
i,j,σ

(
c∗iσcjσ + h.c.

)
→ −t

∑
i,j,σ

(
f∗iσfjσbib

∗
j + h.c.

)
(2.63)

The spin operator that appears in Eq.(2.56) is directly quadratic in fermion operators and the
spin-spin interaction leads to

HJ =J
∑
i,j

Si · Sj

→−J
4

∑
i,j

∑
α,β

f∗iαfjαf
∗
jβfiβ +

(
f∗i↑f

∗
j↓ − f∗i↓f∗j↑

) (
fj↓fi↑ − fj↑fi↓

)
. (2.64)

Thus, we end up with an effective model of interacting spinons that are linked to free holons by
the hopping term and the local constraint encoded in the site-dependent Lagrange multiplier λi.
This is still a very hard problem to solve but we can note that the spinon-spinon interaction is now
an effective attractive interaction −J4 and it is a sensible idea to start with a mean-field decoupling
of the interaction. Looking at Eq.(2.64) there are two channels in which we wish to decouple the
interaction term, given by the two mean fields

χij =
∑
σ

〈
f∗iσfjσ

〉
∆ij =

〈
fj↓fi↑ − fj↑fi↓

〉
. (2.65)

the mean-field Lagrangian is thus written

Lmf =
∑
i,σ

(
f∗i,σ

(
∂

∂τ
− µ

)
fi,σ + b∗i

∂

∂τ
bi + iλi

(
f∗i,σfi,σ + b∗i bi − 1

))

− t
∑
i,j,σ

(
f∗iσfjσbib

∗
j + h.c.

)
− J̃

∑
i,j

(
χ∗ij
∑
σ

f∗iσfjσ + h.c.
)

+ J̃
∑
i,j

(
∆ij

(
f∗i↑f

∗
j↓ − f∗i↓f∗j↑

)
+ h.c.

)
. (2.66)

Treating this effective mean-field model still requires approximations, for example on how to treat
the holon-spinon coupling or the constraint imposed by λi. We can however get insight into the
physics of the fractionalization ansatz by imagining the different scenarios possible from Eq.(2.66).
Firstly, we note that the first mean-field introduced in Eq.(2.65) can be understood as a renormal-
ization of the spinon hopping, or a Fock shift in conventional notations. Note that this hopping
term for spinons is also coupled to the holon hopping through the t term. In the simplified limit
of half-filling in which there is no boson, there are no empty sites, the spinons acquire a Fermi
surface and the bandwidth is given by the value of χij through the value of the interaction J̃ . This
corresponds to the RVB picture originally put forward for the proximity to the Mott insulator and
even if subsequent works have found instability related to this spinon Fermi surface [28], it captures
the physics of the χij term well. The second mean-field ∆ij represents the possibility for spinons
to pair. This is not equivalent to a superconducting state as the spinons do not carry electric
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charge but it will induce a gap in the spin excitation spectrum when ∆ij 6= 0 in the same way
the electronic spectrum is gapped in a superconductor (see Sec.2.3.2). The other possibility is the
condensation of the holons away from half-filling. Being bosons, there will be a temperature below
which Bose-Einstein condensation occurs leading to coherent charge transport, this condensation
temperature is usually proportional to the number of bosons and, in our case, to the doping.

One resulting phase diagram is shown in Fig.2.3(b) where we can distinguish four different
phases depending on which combination of χij , ∆ij and 〈bi〉 are non zero. The first important
line is the temperature at which the spinon hopping term is non-zero, this is linked to the doping
dependence of the spin-spin interaction and is usually suppressed at high doping but also has a
contribution from the boson number. In phase A, χij is the only non-vanishing order parameter
and we observe spin-charge separation. The spin properties come from the spinon Fermi surface
that exists while the charge transport is incoherent, this is sometimes related to the strange metal
phase of cuprates at optimal doping. The phases that can be found when both χij and ∆ij are
non-zero and which is labelled B in Fig.2.3(b) is named the spin-gap phase. Because the spin
excitations are gapped by the spinon pairing but the charge transport is still incoherent this is
often associated with the pseudogap region of underdoped cuprates. The onset temperature for
the formation of spinon pairs is only related to the spin-spin interaction from the t-J model and as
such decrease with doping. The high-temperature superconducting phase is then obtained when
we have the holons condensation from the spin-gap phase. Indeed, the pairing amplitude

〈
ciσcj−σ

〉
can be written in terms of spinon and holons as

〈
b†ifiσb

†
jfj−σ

〉
=
〈
b†i b
†
j

〉 〈
fiσfj−σ

〉
and is thus

non-zero when both 〈bi〉 and ∆ij are finite. Because the Bose-Einstein condensation temperature
grows with doping and that the spinon pairing temperature decrease monotonously, the resulting
superconducting phase has a dome shape in the temperature-doping phase diagram as observed
in cuprates and shown in the region C in Fig.2.3(b). Lastly, for large doping, the spinon pairing
is not effective anymore and we only have a holon condensate and the spinon hopping that are
finite. Both charge and spin transport are coherent and the phase is associated with a normal
Fermi liquid (phase D).

Beyond the phase diagram that emerges from the fractionalization of the electronic degree of
freedom, which is quite specific to the approximations done to solve this problem, it is important
to note the gauge structure Eq.(2.60) implies. In fact, we can see that when writing the electron
creation operator as a product of the holon and spinon operators we introduce a new local and
unphysical phase transformation

bi → bie
iθi fiσ → fiσe

iθi . (2.67)

This new gauge local transformation is an artefact of our description of the system as the original
(physical) electron operator is invariant under such transformation

c†iσ = f†iσbi → f†iσbie
iθie−iθi = c†i.σ (2.68)

The constraint given in Eq.(2.60) is also tightly related to this emergent gauge structure as we
can see that the Noether charge associated to the new U(1) symmetry is none other than Qi =∑
σ f
†
iσfiσ + b†i bi. This means that the site-dependent Lagrange multiplier λi can be understood as

the associated gauge field which couples to the spinons and holons in L0 (Eq.(2.62). Note that the
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usual Maxwell term for the dynamic of the gauge field 1
gFµνF

µν is not present in our derivation
of the final action, which can be interpreted as the coupling constant g being infinite. The same
structure will emerge in our description of the pseudogap and will, in the same way, be associated
with a constraint that is exactly enforced when the gauge field is integrated out as presented in
Sec.3.1.



Chapter 3

Fractionalized Pair Density Wave

We now arrive at the core of this thesis where we use the experimental observations presented in
Chap.1 and the tools from Chap.2 to build our description of the pseudogap phase in cuprates.
Our goal in Sec.3.1 is to build an effective theory to explain the universal features of the phase
diagram of underdoped cuprates without precise microscopic details. For this, we start by high-
lighting the relation between the SC, CDW and PDW states in Sec.3.1.1 by reviewing the case of
the attractive Hubbard model and the idea of emergent symmetry where these three states play
important roles. Using this and the instructive example of the fractionalization from Sec.2.4.2, we
present our fractionalization ansatz for the pseudogap starting from the PDW state in Sec.3.1.2.
This mirror the derivation for Refs.[30, 134] and we give some phenomenological consequences of
our effective theory in Sec.3.1.3. We then turn to a more detailed analysis of the single-particle
Green’s function in Sec.3.2 and Sec.3.3 where, starting from a microscopic model and following the
analysis from Ref.[135, 136], we compare the electronic spectral function and the self-energy from
our fractionalized PDW to experimental and numerical results. Lastly, in Sec.3.4, we look at the
coupling of the electronic degree of freedom to the phonons to elucidate the anomalous phonon
softening that is observed in cuprates at the superconducting transition temperature. This was
presented in Ref.[137] and use a similar structure as the one we use to explain the ARPES results,
giving a body of experiments that can be captured by the same microscopic model.

3.1 Effective theories for the pseudogap

3.1.1 Exact and emergent SU(2) symmetry

In order to lay ground for the idea of fractionalization of the PDW order, we start by making
the link between the modulated particle-particle order and the more standard SC or CDW orders.
Firstly, we define the PDW order parameter with modulation Q in real space as the expectation
value

∆PDW
i =

〈
c†iσc

†
i−σe

iQ·ri
〉
. (3.1)

59
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We then see that the PDW state breaks the charge conservation symmetry, as in the superconduct-
ing case, but also the translation symmetry due to the modulation wave-vector Q. Interestingly,
the three local SC, CDW and PDW orders are linked together as they form a closed SU(2) algebra
analogous to the classic spin rotation symmetry. To see this, we will consider briefly the Hubbard
model for which this symmetry is exact at half-filling with a specific choice of commensurate charge
modulation Q = (π, π) . We start by defining the set of operators

ηz = 1
2

∑
i c
†
iσciσ − 1

η+ =
∑
i e
iπ·ric†i↑c

†
i↓

η− =
∑
i e
−iπ·rici↓ci↑

(3.2)

These operators satisfy the commutation relations [ηz, η±] = ±η± and [η+, η−] = ηz which iden-
tifies η± as the raising and lowering operators of the respective SU(2) algebra generated by
{ ηx, ηy, ηz }. We can first note that these operators all commute with the Hubbard Hamiltonian
and with the standard spin operators {Sx, Sy, Sz }

[
Sα, ηβ

]
= 0 and [ηα, H] = 0 (3.3)

and the model is thus invariant under these two SU(2) symmetries. Note that the two algebra are
not totally independent in the case of the Hubbard model as there exist a Z2 transformation called
the Shiba transformation [138] which maps the spin operators on the η operators while reversing
the change of the Hubbard interaction U → −U . These operators will then act on states belonging
to a spin l representation according to the rules

ηz |m〉 = m |m〉 ,

η± |m〉 =
√
l (l + 1) −m (m± 1) |m± 1〉 . (3.4)

In our case we will be particularly interested in a spin 1 representation for the η-symmetry (also
called pseudo-spin symmetry) where the latter acts on the operators

∆i =
∑
σ

σc†iσc
†
i−σ,

χi =
∑
σ

c†iσciσe
iπ·ri ,

∆∗i =
∑
σ

σci−σciσ. (3.5)

We thus see that an ordered state with spin aligned along a fixed direction will lead to a super-
conducting or charge modulating state. The η symmetry is however explicitly broken away from
half-filling as the chemical potential term couples directly to one of the generators µ

∑
i ni ∝ µηz.

We could thus rewrite the Hubbard problem as a transverse field spin system where ordering in
the xy plane (corresponding to a superconducting state) competes with a field along the z-axis
due to the chemical potential.

The idea to couple the d-wave superconductor to another ordered state is present in many
theories for cuprates. Looking at the phase diagram of the cuprates, one could be convinced that
the most prominent features are the antiferromagnetic (AF) phase and the SC phase. Hence as a
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natural first guess, the rotation from the SC to the AF state has been tried, leading to an enlarged
group of SO(5) symmetry [139–141], enlarging the space allowed for fluctuations that would lead
to the pseudogap regime. The ten generators of the SO(5) group correspond to transitions between
the various states inside the quintuplet ΨSO(5) = (Sx, Sy, Sz,∆,∆∗) (three magnetic states, and
two SC states which are complex conjugate of one another). These theories are based on an
underlying principle that the two ordered states are nearly degenerate in energy, i.e the symmetry
is only weakly broken. The exact symmetry then emerges when the system is perturbed from
the ground state by increasing the temperature and the high-temperature region is described by
angular fluctuations belonging to the emergent symmetry group.

Later on, theories based on a generalization of the U(1) gauge theory presented in Sec.2.4.2 to
a SU(2) gauge structure in the pseudo-spin space led to the formation of a flux phase [142], and
rotation from the SC state to the flux phase was envisioned. This theory had an emergent SU(2)

symmetry with fluctuations acting as well up to temperatures T ∗.

The ubiquitous observation of charge modulation in the pseudogap region of cuprates by STM
[44, 143], NMR [144, 145] and X-ray scattering [146–149] has led people to consider it as a strong
competitor to the SC state and a rotation of the SC state towards a CDW state has been proposed
[150–154]. At high applied magnetic field, the charge modulations reconstruct the Fermi surface,
forming small electron pockets [46–53]. In YBCO, the charge modulations are stabilized as long
range uniaxial Q = (Q0, 0) 3D order above a certain magnetic threshold [155–157] and the ther-
modynamic lines can be determined with ultra-sound experiment [158, 159]. The rotation of the
SC state to the CDW state is then a generalization of the exact realization presented in Eq.(3.5)
to a d-wave order and an incommensurate modulation wave-vector (∆−1,∆0,∆1) with

∆1 =
−1√

2
d̂
∑
σ

σc†iσc
†
j−σ,

∆0 =
1

2
d̂
∑
σ

[
c†iσcjσe

iQ·r + c†jσciσe
−iQ·r

]
,

∆−1 =
1√
2
d̂
∑
σ

σcj−σciσ (3.6)

where r = (ri + rj) /2 and d̂ is the d-wave form factor. The corresponding η-operators that satisfy
the SU(2) algebra are given by

η+ =
1

2

∑
σ

σ[c†iσc
†
i−σe

iQ·r + c†jσc
†
j−σe

−iQ·r],

η− =
1

2

∑
σ

σ[ci−σciσe
−iQ·r + cj−σcjσe

iQ·r],

ηz =
1

2
[η+, η−] =

1

2

∑
σ

(n̂iσ + n̂jσ − 1) . (3.7)

Note that the CDW state can also be taken to be imaginary leading to a second realization of the
l = 1 representation. In general, the two possibilities have to be considered and we thus end up
with two copies of the SU(2) symmetry [30]. The connection between the three states is shown in
Fig.3.1(a) and we can see that we can obtain a given state by a combination of different operators,
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which will be important in developing the fractionalization idea later on.
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Figure 3.1: (a) Schematic on how the SC, CDW and PDW operators connect different states. We have
a d-wave SC state that creates particle-particle pair on neighbouring sites while the PDW state is on-
site and breaks translation symmetry due to the modulation at wave-vector Q The CDW operator does
not change the total number of charge but do connect states with on-site pair and nearest-neighbour
pair while also breaking translation symmetry with the same wave-vector as the PDW operator. (b)
Schematic of the Brillouin zone where the full black line indicates a typical Fermi surface for un-
derdoped cuprates. The dotted line represents the antiferromagnetic Brillouin zone, i.e points that are
related by a translation by the AF wave-vector QAF = (π, π) . The hot-spots are points where the Fermi
surface intersect the AF Brillouin zone and are shown in red. The symmetry between the SC and CDW
states with a diagonal wave-vector connecting the hot-spots (Qdiag) is exact at the hot-spots. Adapted
from Ref.[133]. (c) Experimental B-T phase diagram for YBCO where we see a phase with long-range
unidirectional charge order at high magnetic fields. The critical magnetic field for the transition from
the SC state and the CDW state is almost temperature independent and there is a coexistence phase at
low temperature. These two features are recovered in the emergent symmetry theory [55]. Adapted
from Ref.[158].

An exact realization of the emergent symmetry has been found when the Fermi surface is
reduced to eight “hot spots” (crossing of the Fermi surface and the AF zone boundary as shown
in Fig.3.1(b)) and the electrons interact with an AF critical mode in d = 2 [69, 150–152]. In this
simple model, the gap equations could be solved showing the exact SU(2) symmetry between the
Cooper pairing and particle-hole channels. They observed some ordering of a composite order
parameter, which is a superposition of gaps in the particle-particle and particle-hole channels

∆̂∗ |0〉 =
∑
kσ

(
c†kσc

†
−k−σ + c†kσck+Qσ

)
|0〉 , (3.8)

where the modulations in the charge sector occur at a finite diagonal wave vector Qdiag = (Qx, Qy)

(blue arrow in Fig.3.1(b)), where Qx and Qy are the distance between two hot spots. A composite
gap is formed at T ∗ with the mean square of the gaps in each channel

E∗ =

√
|χ|2 + |∆|2, (3.9)

where χ is the gap in the particle-hole channel whereas ∆ is the gap in the particle-particle channel.
Below T ∗, a great amount of fluctuations are present which are described by the O(4) non-linear
σ model [150, 160, 161]

S = 1/2

∫
ddx

4∑
α=1

(∂µnα)
2
, with

4∑
α=1

|nα|2 = 1. (3.10)
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with the four fields nα given by n1 = (∆ + ∆∗) /2, n2 = −i (∆−∆∗) /2, n3 = (χ+ χ∗) /2 ,
n4 = −i (χ− χ∗) /2. The study of the angular fluctuations of this model leads to good agreement
with several phenomenological observations, some of which are presented in the following.

Charge modulations inside the vortex core

At this stage, the model can already explain a few properties of cuprate superconductors. Since
the model treats very seriously the competition between CDW and SC pairing order parameters,
it predicts charge modulations inside the vortex core [44, 45, 143, 144, 162] (see Sec.1.2.3). Indeed,
since the SC order parameter vanishes there, the competing order emerges at the core. The special
structure associated with this feature is called a meron, or half skyrmion, in the pseudo-spin
space. It can be noted that it is a generic prediction of the theories of emergent symmetries, that
the competing order shows up inside the vortex core. For example, the SO(5) theory predicts
AF correlations inside the vortex core [163, 164], whereas the SU(2) symmetry which rotates
superconductivity to the π-flux phase predicts that the π-flux orbital state [28, 165] is present
inside the vortex core. Although AF correlations were observed in the vortex core in the La-
compounds [166], for YBCO, BSCCO and Hg-series, STM experiments [44, 143] and NMR [162]
gave evidence for charge modulations. This ubiquitous observation of charge modulations inside
the vortex core is a nice test for the theory of emergent SU(2) symmetry, but the presence of
charge modulations inside the vortex core could also be explained by a strong competition between
SC and CDW without invoking any emergent symmetry [167, 168].

B-T phase diagram

The second set of experimental evidence that can be matched by the idea of emergent symmetry is
the phase diagram in the presence of an applied magnetic field as shown in Fig.3.1(c) [55, 158]. For
the compound YBCO, a phase diagram could be derived as a function of an applied magnetic field
up to roughly 20T . For this specific compound, one observes at Hc = 17T [158], a second-order
phase transition towards a 3D charge order state with one uniaxial vector of modulations [155, 169].
The shape of this transition is very flat in temperature [158, 159], a fact that cannot be accounted
for by a simple model of competition between the two orders but can be explained by a spin-flop
like transition, where the system suddenly goes from the SC state to the CDW state. The model of
pseudo-spin flop comes directly from the expression of the non-linear σ model where the constraint
plays the role of the value of the spin in a magnetic spin-flop transition. The pseudo-spin flop
transition accounts for the flatness [170] in temperature of the transition, but it does not explain
the phase of coexistence [158, 162, 171]. Accounting for this phase requires breaking the exact
SU(2) symmetry underlying the non-linear σ model by an amount of roughly 5%. As a conclusion,
an SU(2) emergent symmetry and its non-linear σ model can account for the whole B-T phase
diagram owing to the fact that it is explicitly broken [55].
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Collective modes

An emergent symmetry is characterized by a set of collective modes [172]. Let us assume that the
CDW is real, as in the first set of Eq.(3.6). Here the operators η+ and η− which enable the rotation
from the SC to the CDW states are the generators of an O(3) Lie algebra

L =

 0 ∗ ∗
− i

2 (η+ − η−) 0 ∗
−ηz 1

2 (η+ + η−) 0

 , (3.11)

where the notation ∗ stands for a hermitian matrix. The structure of L in Eq.(3.11) gives rise to
collective modes. These collective modes are spin zero, charge two, and reflect the structure of
the SU(2) symmetry. They can be considered as Pair Density Wave (PDW) excitations since they
have non zero center of mass wave vector. They could be responsible for the mode observed in the
A1g channel in Raman Scattering [173] and can also be seen by spectroscopy experiments, like X
ray, MEELS [174, 175] or soft X-rays [176], where the resolution in q-space can be traced. The
theory predicts that the mode occurs around the same wave vector as the charge modulations and
has a typical linear shape. If the symmetry is explicitly broken, these modes acquire a mass that
is proportional to the difference in energy between the SC and CDW states.

3.1.2 Fractionalization ansatz

The theory we propose to describe the pseudogap phase is an extension of the previous emergent
symmetry idea and is based on the relation that exists between the SC, CDW and PDW states.
The physical picture is that the PDW state is an instability of the system but that it cannot form
due to frustration induced by disorder, competition with other orders or similar effects. Because
it is able to decay into both the particle-particle channel, breaking charge conservation, and a
modulated particle-hole channel, breaking translation symmetry, the PDW will fractionalize into
an SC and a CDW order when the temperature is lowered. The resulting states will be connected
by an emergent U(1) gauge field as in the electron fractionalization theory (see Sec.2.4.2) that will
have multiple consequences that we will explore.

Fractionalization of the PDW order and CP 1 model

We start by noticing that the relation between the PDW operator from Eq.(3.7) and the SC and
CDW operators also leads to the following relations

η̂ =
[
∆̂ij , χ̂

†
ij

]
, η̂† =

[
χ̂ij , ∆̂

†
ij

]
, (3.12)

as was illustrated in Fig.3.1. In this decomposition, the PDW operator is invariant under the
transformation

∆̂ij → eiθ∆̂ij , χ̂ij → eiθχ̂ij . (3.13)
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The corresponding gauge structure is analogous to Eq.(2.60) and we thus have a constraint in
analogy with Eq.(2.60) given by

∆̂
†

ij∆̂ij + χ̂†ijχ̂ij = 1. (3.14)

In order to construct a field theory, we rewrite the relation Eq.(3.12) as ∆PDW = ∆χ∗. The
typical field theory associated with the decomposition Eq.(3.12) with the constraint Eq.(3.14) that
describes two complex fields constrained on a sphere is the rotor model:

S =

∫
ddx

1

2

2∑
a,b=1

|ωab|2 , (3.15)

where

ωab = z∗a∂µzb − zb∂µz∗a, (3.16)

with here z1 = ∆ij , z2 = χij , (z∗1 = ∆∗ij , z∗2 = χ∗ij). Expanding Eq.(3.15) and using the constraint
Eq.(3.14) we get

S =

∫
ddx

[
|∂µ∆ij |2 + |∂µχij |2

−
(
∆ij∂µ∆∗ij − χ∗ij∂µχij

) (
∆∗ij∂µ∆ij − χij∂µχ∗ij

)]
, (3.17)

where we omitted a possible potential term.

We now note that under the phase transformation ∆ij → ∆ije
iθ and χij → χije

iθ, which leaves
our original PDW field ∆PDW unchanged, the second term of Eq.(3.17) then transforms as

(
∆ij∂µ∆∗ij − χ∗ij∂µχij

)
→
(
∆ij∂µ∆∗ij − χ∗ij∂µχij

)
− i∂µθ. (3.18)

Thus we can identify it with a gauge field and rewrite the action Eq.(3.17) as

SCP 1 =

∫
ddx |∂µΨij |2 + αµᾱµ

=

∫
ddx |DµΨij |2, (3.19)

where we used the spinor Ψij = (∆ij , χij)
T and we have introduce the covariant derivative Dµ =

∂µ − iαµ. This action is the one for a CP 1 model and is invariant under the joint transformations

Ψij → eiθΨij , αµ → αµ − ∂µθ, (3.20)

reflecting the fact that this phase transformation is introduced by our decomposition Eq.(3.12) and
has to leave our original model Eq.(3.15) invariant. Note that in this case, the value of the gauge
field αµ is fixed and given by αµ = −i

(
∆ij∂µ∆∗ij − χ∗ij∂µχij

)
. This is equivalent to considering the

global phase of the spinor Ψij as being fixed. Furthermore, the two fields ∆ij and χij are linked
by the constraint of Eq.(3.14). We thus recover an effective model which, in analogy with the case
of the electrons fractionalization from Sec.2.4.2, has an emergent U(1) gauge structure associated
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to a constraint on the amplitudes of the new fields.

This constraint does not however imply that the SC or CDW orders condense. In fact, just
below the pseudogap temperature the amplitude of both ∆ij and χij are still fluctuating. It is
only at lower temperatures that these amplitudes become finite. In our case, we can argue on phe-
nomenological grounds that the modulated particle-hole pairs will condense first at a temperature
Tco, where charge modulation is observed experimentally. This order is however not a long-range
order as we still have fluctuations of the relative phase between the two components of Ψij .

Note that the constraint obtained in Eq.(3.14) is similar to the one that appears in the emergent
symmetry idea presented above. Moreover, the effective CP 1 model in Eq.(3.19) can also be shown
to be equivalent to an O(3) non-linear σ model and the phenomenological results described in
the previous section, such as the presence of charge modulation in vortex core or the particular
shape of the B-T phase diagram, remain valid. We however have a stronger relationship between
the SC and CDW orders as the phase fluctuations of both order parameters are linked and will
be quenched at the same temperature. This is unexpected as the freezing of the phase of the SC
order parameter is usually associated with the fact that the number of particles is not conserved
in the SC state while the CDW state is not related to the electromagnetic charge a priori. The
freezing of this phase will lead to the superconducting transition at Tc (see Fig.3.2). This is a
unique consequence of the fractionalization hypothesis as the partial freezing of the phase degree
of freedom at T ∗ will entangle the remaining phase. We also present another alternative way
of getting the same effective theory of amplitude and phase constraint from the perspective of a
U(1)× U(1) gauge theory in Appendix A.

Identifying the general setup presented here with cuprate superconductors we can describe the
phase diagram in the underdoped regime when we lower the temperature as described in the next
part. We will also revisit the idea of vestigial order where discrete symmetries are broken when the
fluctuations of ∆ and χ are linked with for example the time-reversal symmetry breaking associated
with intra-unit cell loop currents in cuprates.

3.1.3 Phenomenological consequences

Phase diagram

With this prelude, we describe the phase diagram of the underdoped cuprates. A first phase tran-
sition occurs at T ∗ when the global phase θ gets frozen and the constraint between the particle-
particle pair field ∆ij and the particle-hole field χij sets an energy scale E∗. The finite amplitude
for the spinor Ψij at T ∗ does not however mean a condensation of |∆ij | or |χij | as the constraint
in Eq.(3.14) can be satisfied by the fluctuations of both fields. We can thus think that these fields
will acquire a finite amplitude at lower temperatures Tco and T ′c for the CDW and SC amplitudes
respectively. In this sense this is similar to a preformed pairs description of the pseudogap phase
but where two kinds of pairs, particle-particle and particle-hole, are entangled. Lastly, the re-
maining relative phase φ will get frozen at a lower temperature Tc which is then identified with
the superconducting transition as the EM gauge field gets massive, leading to a Meissner effect
[177–179].
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Figure 3.2: Schematic temperature (T)- hole doping (p) phase diagram for a cuprate superconductor.
As we decrease temperature (black line), we have a first phase transition at T ∗. This sets the pseudogap
energy scale and induces a constraint between the two orders as shown in Eq.(3.14). At lower temper-
atures Tco and T ′c the amplitudes of the two orders become finite. These are not phase transition but
crossover lines. A second transition occurs at Tc, where the relative phase of the spinor gets frozen.
Adapted from Ref.[30]

At Tco, the short-range CDW can be observed in X-ray, STM or NMR measurements due
to the pinning of the phase of the CDW order. An NMR perspective on pinning of the charge
order in YBCO and its similarity with pinning in layered metals is given in Ref.[180]. Since Tco
and T ′c are mean-field lines, their relative position in the phase diagram depends crucially on the
details of the microscopic models. Here, we consider Tco > T ′c. A possible justification comes from
the microscopic model (see Sec.3.2.2) we study later on where adding an off-site density-density
interaction to the standard t-J model can lead to an enhanced Tco. Even if the mean-field precursor
gaps of both the SC and CDW orders are well defined below T ′c, the relative phase still fluctuates
and thus there is no phase coherence in SC or CDW orders. T ′c would be related to the onset of
the pairing fluctuations as observed in Nernst effect [181], transport studies [182] and Josephson
SQUID experiments [183] (see Sec.3.2.3). The relative phase of the two orders gets frozen at a
lower temperature Tc, where the phase coherence sets in for both the SC and CDW orders with
the coexistence of both orders. Some signatures of the phase relation between the SC and CDW
states can be seen by the observation of the charge order in X-ray [49, 146], STM [143, 184] and
NMR [180] measurements and we will discuss the anomalous behaviour of the phonon spectra at
Tc in Sec.3.4. The correlation length of the charge order is not expected to increase for T < Tc due
to the strong competition with the SC state [161, 185] but it does feature a maximum at Tc [186]
showing an intimate connection between the SC and CDW orders. We remark that if the pinning
of the CDW order due to disorder is too strong, no superconductivity can emerge below Tc. Our
formalism thus implies that the pinning is present but weaker than the Higgs mechanism giving
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rise to a bulk superconductor at Tc. Lastly, as already noted, since the CDW is a priori a complex
field, preemptive orders breaking discrete symmetries like parity, time reversal or lattice rotation,
usually associated with Q = 0 orders such as electronic nematicity or loop current states, can be
present at higher temperature as in the vestigial order theories [116].

A true long-range charge order, PDW or “super-solid” is never established in the absence of a
magnetic field due to the omnipresence of disorder in cuprates. Disorder acts on the charge order
as a “random-field” [29]. Following Imry-Ma criterion [31], any strength of “random-field” disorder
disrupts the long-range coherence in charge order in dimensions d ≤ 4. This is not the case for the
superconducting order as disorder does not directly couple to the superconducting order parameter
as “random-fields”. Thus for T < Tc, the superconducting order shows a true long-range nature in
d = 3 or a quasi long-range nature in d = 2. But, a 3D charge order acquires a true long-range
nature only at high magnetic fields when it shows uniaxial behaviour (breaking a nematic discrete
symmetry [187]) or in the additional presence of chain-disorder [188]. As a consequence, the PDW
order, which is a bilinear combination of the charge order and the superconducting order, can show
long-range features only at zero temperature or at high magnetic fields.

Loop current state

Apart from the finite Q orders, the pseudogap also hosts Q = 0 orders such as the intra-unit
cell loop currents, which break discrete symmetries like parity and time reversal. Within our
framework, the loop currents appear as an “auxiliary” or a “preemptive” order [116].

Though the PDW order can be observed only below T = Tc, the fluctuations of the PDW field
in the temperature regime T > Tc can give rise to auxiliary order parameters. With the motivation
to generate a Q = 0 (translationally invariant) emergent loop current order in the pseudogap phase,
we construct a secondary order parameter following Ref.[189],

l =
∣∣∣∆Q

PDW

∣∣∣2 − ∣∣∣∆−QPDW ∣∣∣2 , (3.21)

where ∆Q
PDW is the amplitude of the PDW field and its value depends on the choice of the

modulation wave vector Q. The PDW field transforms under translation T , time reversal TR and
parity P as

T (∆Q
PDW ) = eiT.Q∆Q

PDW ,

TR(∆Q
PDW ) =

(
∆−QPDW

)∗
,

P (∆Q
PDW ) = ∆−QPDW . (3.22)

As l is composed of terms depending on
(

∆Q
PDW

)∗
∆Q
PDW and

(
∆−QPDW

)∗
∆−QPDW , it is a transla-

tionally invariant order parameter (under translation T (l) = l). The loop current order parameter
l also satisfies,

TR(l) = −l P (l) = −l TRP (l) = l. (3.23)

Thus, the loop current order parameter defined in Eq. (3.21) satisfies the same symmetries as the
magneto-electric loop current state proposed by Varma [190], which is often used to interpret the
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intra-unit cell magnetic order seen in polarized elastic neutron scattering measurements [81]. It
is important to highlight that the discrete Z2 symmetries like parity or time-reversal are sponta-
neously broken by the secondary order parameter l, which is composed of PDW fluctuations. So,
a non-zero average value of 〈l〉 does not mean 〈∆Q

PDW 〉 6= 〈∆
−Q
PDW 〉 (i.e. the PDW ground state

does not break parity or time reversal) [189]. Possibilities of preemptive discrete Z2 symmetry
breaking outside the Landau paradigm [191] occurring due to secondary order parameters is al-
ready discussed in Refs.[177] and [189]. Interestingly, the preemptive transition occurs at a higher
temperature [177] than the primary order transition temperature, thus justifying the presence of
loop current state in the T > Tc region.

3.2 Electronic spectral function in the pseudogap

3.2.1 Evidence for modulated order

The prime way of studying the effect of the pseudogap is by measuring the momentum and energy
dependence of the electronic spectral function A (k, ω) by means of ARPES. By comparing the
results obtained at temperatures above T ∗ to the result in the pseudogap region or in the super-
conducting state, we can then try to decipher the effect of each of these transitions. One important
experiment in this regard is the one done by R.-H. He et. al. [63] on an underdoped Bi2201 sample.
They tracked the evolution of the spectral function in the antinodal region, where the pseudogap is
known to set in, for temperatures between T = 172 K down to T = 10 K. One of the results is the
observation of a particle-hole symmetry breaking that appears at the pseudogap transition and is
still present in the superconducting state. In contrast, the nodal region, which is still gapless in the
pseudogap, do not show such anomaly and is well described by a d-wave superconducting gap for
T < Tc. This particle-hole symmetry breaking was interpreted as the effect of a competing order
breaking some combination of translation, rotation and time reversal symmetries. In particular,
it was used as a tell-tale signature for the PDW state emerging from the Amperean pairing in
Ref.[114]. We will start by giving more details on the results we can extract from the experimental
data and we will then show how it can be obtained from our fractionalization ansatz starting from
a microscopic Hamiltonian in Sec.3.2.2. Lastly, we give a phenomenological discussion on the ef-
fects of the phase and amplitude fluctuations we mentioned in the previous section and how they
can be related to the temperature dependence of the spectral function observed experimentally in
Sec.3.2.3.

The experimental results we will be interested in are the position of the maximum of the
electronic spectral function as a function of energy and momentum along one of the crystal axis in
the antinodal region. Fig.3.3(a) shows the different lines along which the measurements have been
done. We see that the first cuts C1-C4 are close to the Brillouin zone edge and that they will give
information about the effect of the pseudogap on the electronic degrees of freedom. The last cuts
C5-C7 are closer to the nodal region and will cross the Fermi arcs where gapless quasiparticle states
remain in the pseudogap region. In the superconducting states, these cuts will all show a gapped
dispersion except the cut along the C7 line that crosses the diagonal of the Brillouin zone where
the SC gap vanishes due to the d-wave symmetry. The position of the maximum of the spectral
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Figure 3.3: (a) Electronic spectral function measured at ω = 0 in the first Brillouin zone for two
temperatures, below Tc (left side) and above T ∗ (right side).The white dashed lines indicate the different
cuts for which the energy dependence is studied. (b) Energy dependence of the electronic spectral
function for cuts C1-C6 from panel (a). The red dots indicate the position of the maximum of the
spectral function for T > T ∗ while the blue dots show the position of the maximum for T < Tc.
The green dots indicate the position of a broad maximum that is observed only in the superconducting
state. The black arrows designate the back-bending of the band below T ∗. (c) Energy dependence
of the electronic spectral function for the cut C1 at different temperatures between 172 K and 40 K.
We see the pseudogap opening at T ∼ 130 K while the superconducting transition does not change
the dispersion significantly. The momentum-energy position of the back-bending is stable when the
temperature is lowered but the position of the bottom of the band changes continuously. Adapted from
Ref.[63].

function along the cuts C1-C6 is shown in Fig.3.3(b) for different temperatures. The red dots
indicate the dispersion in the normal state above the pseudogap temperature. This dispersion is
gapless for all the cuts. In the first panel, the Fermi momenta kF are defined as the momentum for
which the normal state dispersion crosses the Fermi level. The blue dots then show the dispersion
at a lower temperature, these do not change much across the superconducting transition except
for a slight change in the energy of the bottom of the band as shown in Fig.3.3(c). The main
observation is that, in the pseudogap phase, the dispersion shows a back-bending at which the
slope of the dispersion changes sign. This back-bending occurs at momenta denoted by kG that
are shifted with respect to the normal stateFermi momenta kF . This mismatch is the core of our
study, it is in fact not possible to obtain this back-bending with kG 6= kF by considering a simple
superconducting order (see for example Fig.2.2). This is thus taken as the indication that there is
another symmetry being broken at the pseudogap transition.

Another observation is the detection of an additional “flat band” designated by the green dots
in panel 1-3 of Fig.3.3(b). In contrast with the blue dispersion which varies only slightly below
T ∗, this flat band is only observed in the superconducting state and is much broader than the
well-defined blue band at higher energy. The position of this broad peak in the spectral function
seems to be locked to the energy of the bottom of the normal state dispersion. Superconductivity
being generally associated with the opening of a gap at the Fermi level, it is not clear how this band
can emerge below Tc at energies away from the Fermi level. Lastly, the temperature dependence
of the band structure shown in Fig.3.3(c) shows that only the position of the bottom of the band
changes significantly when the temperature is lowered. In particular, the value of the back-bending
momentum kG does not change and the energy at which the latter occurs is also independent of
the temperature. This is a strong indication that the phenomenon causing the change in the
electronic dispersion at T ∗ is still present in the superconducting phase and is still dominating in
the antinodal region.
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One idea is that this mismatch could be due to the translation symmetry breaking that is
known to break the particle-hole symmetry of the band structure. It was however shown that
the CDW order observed in cuprate could not alone explain the observed back-bending for the
range of momentum at which it is observed [114]. The PDW obtained from the Amperean pairing
mechanism yields a similar band structure in the antinodal region and we will here show that our
fractionalization ansatz of constrained SC and CDW orders give very good agreement with the
experimental data due to the translation and charge conservation symmetry breaking effect.

3.2.2 Microscopic t-J-V model

In order to study the effect of our pseudogap ansatz Eq.(3.14) we will start from a microscopic
model and use mean-field theory to obtain a self-consistent equation for our pseudogap parameter
Ψk in momentum space. We will see that it will have a non-zero amplitude in the antinodal region
and leads to the formation of Fermi arcs. Moreover, the electronic dispersion in the pseudogap is
in very good agreement with the previous experimental observations.

To study the pseudogap phase of underdoped cuprates we start from the t-J model (already
presented in Sec.2.4.1 to which we add a small nearest-neighbour density-density interaction leading
to

Ht−J−V = −
∑
i,j,σ

tij

(
c†iσcjσ + h.c

)
+
∑
〈i,j〉

(J Si · Sj + V ninj) . (3.24)

The reason for this additional term comes from the symmetry between the SC and CDW order
we mentioned in Sec.3.1.1. This exact symmetry is also realized in the t-J model for some spe-
cific point in the momentum space for which the gap equation for the superconducting or charge
density wave order parameter is the same. We here break this symmetry with the density-density
interaction which will favour the CDW state over the SC states. This is a common way to study
the coexistence of both orders [192–194] even though this usually require a critical value of V to
stabilize a coexistence phase while the SC order is still otherwise favoured. The standard t-J model
is also generally accompanied by the projection operators that remove all the states with double
occupancy as these are prohibited by the strong on-site repulsion in the Hubbard model. As we
discussed in Sec.2.4.2, this projection is difficult to handle analytically and we use here a Gutzwiller
mean-field idea. The strong correlations are thus taken into account by a renormalization of the
kinetic energy and of the spin-spin interaction by two doping dependent parameters gt and gJ

respectively which are given by

gt (p) =
2p

1 + p
, gJ (p) =

4

(1 + p)2
. (3.25)

This is equivalent to projecting out all the states with double-occupancy at the mean-field level.
We start by writing the model in momentum space

H =
∑
k

εkc
†
kσckσ +

∑
k,k′,q

∑
α,µ

(
Vqc
†
k,αck+q,αc

†
k′+q,µck′,µ

)
+
∑
k,k′,q

∑
α,β,µ,ν

(
Jqσαβ · σµνc†k,αck+q,βc

†
k′+q,µck′,ν

)
. (3.26)
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The electronic dispersion εk is taken to match the dispersion in the normal state obtain by ARPES
which yields [63]

εk =− 2t (cos (kx) + cos (ky))− 4t′ cos (kx) cos (ky)− 2t′′ (cos (2kx) + cos (2ky))

− 4t′′′ (cos (2kx) cos (ky) + cos (2ky) cos (kx))− µ (3.27)

with t = 0.22 eV , t
′

t = −0.156, t
′′

t = 0.163, t
′′′

t = −0.0326 and µ = −0.24327 eV . Because the band
structure in the real material already include the effect of the renormalization due to the strong
electronic correlation, we take this dispersion to already include the effect of gt. We then proceed
to decouple the two interaction terms in two channel. One will be the pairing channel giving rise
to superconductivity while the second one will be related to singlet particle-hole pairs that will
give us our CDW order parameter. The different decoupling of the spin-spin and density-density
interactions are as follow∑

σ,σ′

σσ′
[〈
c†kσck+qσc

†
k′+qσ′ck′σ′

〉]
=
∑
σ,σ′

σσ′
[〈
c†kσck+qσ

〉
c†k′+qσ′ck′σ′ + c†kσck+qσ

〈
c†k′+qσ′ck′σ′

〉
−
〈
c†kσc

†
k′+qσ′

〉
ck+qσck′σ′ − c

†
kσc
†
k′+qσ′

〈
ck+qσck′σ′

〉
+
〈
c†kσck′σ′

〉
ck+qσc

†
k′+qσ′ + c†kσck′σ′

〈
ck+qσc

†
k′+qσ′

〉]
(3.28)

〈
c†k↑ck+q↓c

†
k′+q↓ck′↑

〉
=
〈
c†k↑ck+q↓

〉
c†k′+q↓ck′↑ + c†k↑ck+q↓

〈
c†k′+q↓ck′↑

〉
−
〈
c†k↑c

†
k′+q↓

〉
ck+q↓ck′↑ − c

†
k↑c
†
k′+q↓

〈
ck+q↓ck′↑

〉
+
〈
c†k↑ck′↑

〉
ck+q↓c

†
k′+q↓ + c†k↑ck′↑

〈
ck+q↓c

†
k′+q↓

〉
(3.29)

There are numerous possibilities in which we can decouple these interaction terms. In particular,
we can see that the first line in Eq.(3.28) will renormalize the band structure and is thus the
momentum space representation of the Fock term mentioned in Sec.2.3.1. In the same way, the
terms on the last line that are allowed to have σ 6= σ′ can lead to magnetic order and in particular
to antiferromagnetism if the total momentum k − k′ − q = ±π. We will here limit ourselves to a
simple singlet pairing and a modulated partice-hole field

∆k =
∑
σ

σ 〈ckσc−k−σ〉

χk =
∑
σ

〈
c†kσck+Qσ

〉
. (3.30)

These two expectations value appears in both decompositions which leads to a coupling constant
∼ 3J . There is however a sign change in the decoupling coming from the density-density interaction
in the pairing channel in Eq.(3.28) which will lead to two different coupling constants J− (q) =

3Jq − Vq and J+ (q) = 3Jq + Vq for the SC and the CDW order parameters respectively. We can
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then write our effective mean-field action in three pieces

S = S0 + S∆ + Sχ, (3.31)

S0 =

∫
dτ
∑
k,σ

c†kσ (i∂τ − εk) ckσ,

S∆ =

∫
dτ
∑
k,q

[∑
σ

(
σ∆k+qc

†
kσc
†
−kσ̄ + ∆∗kc−k−qσ̄ck+qσ

)
+

∆k+q∆∗k
J−q

]
,

Sχ =

∫
dτ
∑
k,q

[∑
σ

(
χk+qc

†
k+Qσckσ + χ∗kc

†
k+qσck+Q+qσ

)
+
χk+qχ

∗
k

J+
q

]
.

The standard procedure to treat the action in Eq.(3.31) is to integrate the fermionic field as we
can now use the Gaussian integral result (see Sec.2.1.3) and we get an action solely in terms of the
bosonic fields ∆k and χk

S =

∫
dτ
∑
k,q

(
∆k+q∆∗k
J−q

+
χk+qχ

∗
k

J+
q

)
− Tr ln

(
iωn − εk −

|∆k|2

iωn + εk
− |χk|2

iωn − εk+Q

)
(3.32)

The self-consistent mean-field equation for the two order parameters can be found by minimizing
the variation of the action with respect to the mean-field, i.e.

∆k =
−1

βN

∑
q,n

J− (q) ∆k+q

iωn + εk+q

1

iωn − εk+q − |∆k+q|2
iωn+εk+q

− |χk+q|2
iωn−εk+Q+q

,

χk =
−1

βN

∑
q,n

J+ (q)χk+q

iωn − εk+Q+q

1

iωn − εk+q − |∆k+q|2
iωn+εk+q

− |χk+q|2
iωn−εk+Q+q

. (3.33)

Note that solving these two coupled self-consistent equations would give us information about the
competition or coexistence of long-range CDW and SC orders. This is not the description we have
in mind for the pseudogap phase but we will still go forward to describe the steps needed to make
progress on these gap equations as we will use the same ideas for our pseudogap parameter and
it will give us an understanding of the difference between the modulated and the pairing orders.
This will also provide us with a basis to compare the solution we will obtain for the pseudogap
to the standard competition scenario. We first start by decoupling the two equations by imposing
a strong competition between the two orders. This is done by considering that only one of the
order can have a non-zero expectation value at a given momentum. In fact, the presence of both
∆2
k and χ2

k in the denominator of Eq.(3.33), having a non-zero value for one of the competing
order will lower the self-consistent solution for the other. Moreover, the free energy includes term
proportional to ∆2

k and χ2
k, meaning that the total energy will be lowered by considering only the

largest of the SC or CDW amplitude. We get the decoupled gap equations

∆k =
−1

βN

∑
q,n

J− (q) ∆k+q

(iωn)
2 − ε2k+q −∆2

k+q

if ∆2
k > χ2

k else 0,

χk =
−1

βN

∑
q,n

J+ (q)χk+q

(iωn − εk+q) (iωn − εk+Q+q)− χ2
k+q

if χ2
k > ∆2

k else 0. (3.34)

As in the case of the BCS theory, we will now make an approximation on the form of the interaction
to continue (see Sec.2.3.2). In our case, we assume that the antiferromagnetic correlations are
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dynamic, strongly renormalized, and short-ranged, as given by the phenomenology of neutron
scattering studies for cuprates [195]. For this we will take the spin-spin interaction to be peaked
around QAF = (π, π) and finite in a window qAF . The energy dependence is ignored as we also
ignore the energy dependence of the order parameters. As we take the density-density interaction
to be small we consider it will not change the momentum space structure of J (q) . With this, we
can restrict the momentum summation in Eq.(3.34) to momenta q around QAF . We keep here
only the equation for the SC parameter for conciseness while the one treatment of the CDW order
is done in Appendix B.

∆k =
−1

βN

|q|<qAF∑
q,n

J−∆k+q+QAF

(iωn)
2 − ε2k+q+QAF

−∆2
k+q+QAF

. (3.35)

One way to continue is to invoke the d-wave symmetry of the SC order parameter to get ∆k+QAF =

−∆k but as this may not hold for the CDW or pseudogap parameters we will use a general
technique and use the self-consistent equation Eq.(3.35) to express ∆k+q+QAF as a function of
∆k+2q+2QAF ∼ ∆k+q

∆k =
1

(βN) 2

|q|<qAF∑
q,n

J−

(iωn)
2 − ε̃2k+q − ∆̃2

k+q

|q′|<qAF∑
q′,m

J−∆k+q′

(iωm)
2 − ε2k+q′ −∆2

k+q′

, (3.36)

where we introduce the notation f̃ (k) = f (k +QAF ) . We now makes the assumption that the
width of the spin-spin correlation function being small in momentum space, the order parameter
is constant in the region |q′| < qAF and that the integration over q′ and q can be taken as
independent. This allow us to simplify the order parameter in the numerator on both side and,
after performing the analytical Matsubara summation we get

1 =

(
J−
N

) 2∑
q

nf

(
Ẽ+,k+q

)
− nf

(
Ẽ−,k+q

)
Ẽ+,k+q − Ẽ−,k+q

∑
q′

nf (E+,k+q′)− nf (E−,k+q′)

E+,k+q′ − E−,k+q′
, (3.37)

where for superconductivity E±,k = ±
√
ε2k + ∆2

k. We can then rewrite this in a form close to the
BCS gap equation Eq.(2.45)

1 =

(
J−
4π2

) 2 ∫ qAF/2

−qAF /2
dq

tanh
(
β
2 Ẽ+,k+q

)
2Ẽ+,k+q

∫ qAF/2

−qAF /2
dq′

tanh
(
β
2E+,k+q′

)
2E+,k+q′

. (3.38)

The main difference with the standard BCS gap equation is the dependence of the first integrand
upon the shifted Ẽk =

√
ε2k+QAF

+ ∆2
k+QAF

while the second integrand in evaluated at the mo-
mentum k + q′. This can be solved by using the self-consistent equation to link ∆k+QAF to ∆k

once again which will give another integral of form we obtained in Eq.(3.38). Denoting this integral
by Ik (∆) , we can write our self-consistency condition as

1 =

(
J−
4π2

) 2

Ik (∆) Ik+QAF

(
−J−
4π2

Ik (∆)

)
, (3.39)

Ik (∆) =

∫ qAF/2

−qAF /2
dq

tanh
(
β
2E+,k+q

)
2E+,k+q

. (3.40)
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This is a complicated integral equation but it is easily amenable to be solved numerically. In fact,
for every momentum point k we only need to integrate the normal dispersions εk and εk+QAF in a
circle of diameter qAF , we can thus find ∆k that satisfy Eq.(3.39) independently for any momentum
point in the Brillouin zone. Looking at the integrand in Eq.(3.40), we see that it will be enhanced
when k is close to kF for which the dispersion vanishes. This leads to the product of integral
being important when both k and k +QAF are close to the Fermi surface, this is something that
is better realized in the antinodal region than in the nodal region. Thus the superconducting gap
will be suppressed close to the diagonal of the Brillouin zone as expected for the case of d-wave
symmetry. Note that we can impose the form factor of the superconducting gap at multiple points
in this derivation but we wanted to give here a general way to treat the self-consistent equation
due to spin fluctuation interaction which is valid for other types of calculations.

Our description of the pseudogap region comes through the constraint that links the SC and
CDW amplitude fluctuations as describe in Eq.(3.14). Because we assume that both the SC and
CDW orders are fluctuating, the mean-field equations should give us a vanishing solution for ∆

and χ. However, we should have a non-zero value of the pseudogap amplitude given by |Ψ|2 =

|∆|2 + |χ|2. In the spirit of mean-field theory, we write an effective action which is a function of
Ψk that we will minimize to get a self-consistent equation that will fix the value of the constraint.
This is done by rewriting the mean-field action Eq.(3.31)

Seff =

∫
dτ
∑
k,q

Ψk
†Ψk+q

J̃q
− Tr ln

(
G−1 (iωn,k)

)
G−1 (iωn,k) =iωn − εk −

|Ψk|2

2

(
1

iωn + εk
+

1

iωn − εk+Q

)
. (3.41)

Once again differentiating the action with respect to the amplitude of the order parameter (here
the pseudogap amplitude) leads to the self-consistent equation

|Ψk| =
−1

βN

∑
iωn,q

J̃
(
iωn +

∆̃εk+q

2

)
|Ψk+QAF |(

(iωn)
2 − ε̃2k+q

)
(iωn − ε̃k+Q+q)−

(
iωn +

∆̃εk+q

2

)
|Ψk+QAF |2

(3.42)

where we already used the approximation concerning the form of the interaction and we introduced
the notation ∆εk = εk − εk+Q. Note that the coupling constant that appears in the gap equation
is 1

J̃
= 1

2

(
1
J+

+ 1
J−

)
and is thus larger than the coupling constant for the SC order.

Results of this self-consistent equation are shown in Fig.3.4(b) for a modulation wave-vector
linking hot-spots along the x axis. Hot-spots are points of the Fermi surface linked by (π, π) and
are thus expected to be important due to the form of our interaction. Due to the finite wave-
vector of the pseudogap amplitude, the gap equation Eq.(3.42) admits non-zero solution only in
the antinodal region (ANR), when this modulation vector links two parts of the Fermi surface.
The region close to the Brillouin zone diagonal will thus remain unperturbed by the transition at
T ∗. The electronic spectral function A (ω,k) = −2Im (G (ω + iη,k)) for ω = 0 and η → 0+ shows
that the ANR is gapped while the nodal region forms Fermi arcs (Fig.3.4(c)). These arcs terminate
close to the hot-spots.

We now look at the reconstructed band structure obtained from the zeros of G−1(k, ω) in the
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Spectral function

Figure 3.4: (a) Schematic representation of the Brillouin zone for cuprates with the modulation wave-
vector used in this work. (b) Solution of the gap equation for the pseudogap amplitude Eq.(3.42).
Colored regions show non-zero solutions for |Ψk|. We used an axial modulation wave-vector Qx
relating hot-spots shown in panel (a) and J = 300 meV , V = J/10 and qAF = 0.15 r.l.u. The white
line indicate the non-interacting Fermi surface. (c) Electronic spectral function A (k, ω = 0) obtained
from Eq.(3.41) for |Ψk| given by Eq.(3.42). We see the formation of Fermi arcs as the ANR gets gapped
out. We used a broadening factor η = 5 meV for numerical purposes. Adapted from Ref.[135]

.

ANR. From the form of G (k, ω) in Eq.(3.41), we can understand the dispersion as coming from
an equal superposition of SC and CDW order in the ANR. We can thus construct the resulting
band structure in the pseudogap as the hybridization of the three bands εk, the normal state
dispersion, −εk coming from the superconducting order and εk+Q coming from the modulating
order. At the zone boundary (kx = π), this results in two bands below the Fermi level shown in
Fig.3.5(i) with one of them presenting a back-bending (blue line) indicated by black arrows while
the other one (yellow line) present little dispersion around ky = 0. In our mean-field description,
this back-bending appears as a result of the hybridization between the hole band −εk (green dotted)
and the shifted εk+Q (blue dotted) band in Fig.3.5(i). As such this back-bending will occur at
ky = kG > kF as long as εk+Q < εk which is satisfied for all kx > khot−spot. This means that
this anomalous back-bending will persist below Tc in the ANR but we will recover a standard
back-bending at ky = kF in the nodal region as the above condition is not satisfied.

The spectral weight A(k, ω) for each band is obtained for different fixed values of kx = π −
δkx and compared to the experimental dispersion of Ref.[63] (Fig.3.5(a)-(d)). As we get closer
to the centre of the Brillouin zone we can see that the energy of the maximum of the band
gets closer to the Fermi level leading to the pseudogap closing “from below” (Fig.3.5(e)-(h)) as
observed experimentally. Note that we obtain here a gap closing “from below” contrary to what
was argued previously for a pure CDW scenario with a modulation along the y direction [114]. This
is because we consider a modulation wave-vector along the x direction. This same orientation for
the modulation wave-vector has been used recently to explain the same ARPES results in Bi2201
through the idea of a quantum disorder PDW [196] and other theoretical approaches such as a
superposition of CDW and PDW order [178] or a Resonant Excitonic State [197] used the same
wave-vector for the charge order component.

3.2.3 Phase and amplitude fluctuations

Our previous description of the band structure in the pseudogap also shows a second band located
at the bottom of the non-interacting band. We connect here this band to the flat band observed
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Figure 3.5: (a)-(d) Experimental dispersion obtained by ARPES [63] for T > T ∗ (red dots) and
T < Tc (blue and green dots) for different cuts at fixed kx = π − δkx. The Fermi arcs end around
δkx = 0.6 and the gap observed in the last panel is the standard nodal d-wave SC. (e)-(h) Theoretical
results for the energy dependence of the spectral function A (k, ω) for cuts at fixed kx = π− δkx. The
red dotted line is the non-interacting dispersion. We used the solution of Eq.(3.42) for the pseudogap
amplitude and Qx = (0.2, 0)π. (i) Band structure obtain by the Green’s function in Eq.(3.41) for
kx = π and a constant |Ψk| = 30 meV . The dotted lines indicate the non-interacting dispersion εk
(red), the hole band −εk (green) and the band from the modulating order εk+Qx (blue). The black
arrows point to the back-bending mentioned in the main text. Adapted from Ref.[135].

experimentally below Tc (green dots in Fig.3.5(a)-(c)) and argue that finite lifetimes for the single-
particle and pair excitations lead to this band not being observed above Tc. For this, we add three
phenomenological damping rates Γ0, Γ1 and Γ2 in our mean-field Green’s function :

G−1 (iωn,k) = iωn − εk − iΓ0 −
|Ψk|2

2
G̃ (iωn,k) ,

G̃ (iωn,k) = (iωn − εk+Q + iΓ1)
−1

+ (iωn + εk + iΓ2)
−1
. (3.43)

The two factors Γ1 and Γ2 represent the inverse lifetime of particle-hole and particle-particle pairs
respectively [73, 74, 198] and can be different as the two species can couple differently to outside
perturbations such as disorder. These lifetimes capture the fluctuations in the pseudogap phase
and are used in other approaches such as preformed pairs scenarios [112, 113, 199, 200] or appears
when considering the effect of gaussian fluctuations [201] on top of mean-field theory. They are
expected to be non-zero above Tc but to vanish at the transition temperature when fluctuations
are quenched. The first Γ0 term is a single-particle lifetime that is always non-zero. To understand
the effect it has on the electronic spectral function we compute the imaginary part of the retarded
Green’s function in Eq.(3.43) with Γ1 and Γ2 going to zero

−Im [G (ω + iη,k) ] = −Im

 lim
η→0

1

ω − εk + iΓ0 − |Ψk|2
2

(
1

ω−εk+Q+iη + 1
ω+εk+iη

)


=
Γ0[

ω − εk − |Ψk|2
2

(
1

ω−εk+Q
+ 1

ω+εk

) ]2
+ Γ2

0

=
(ω − εk+Q) 2 (ω + εk) 2Γ0

[(ω − E1,k) (ω − E2,k) (ω − E3,k) ]
2

+ Γ2
0 (ω − εk+Q) 2 (ω + εk) 2

(3.44)
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where Ei,k (i = 1, 2, 3) are the new dispersions in the pseudogap state and found as the roots of the
denominator. This expression shows that the spectral weight is suppressed when the dispersion is
close to the original bands −εk or εk+Q. This explains the fact that only the bottom of the bands
close to ky = 0 shows a significant spectral weight. The inclusion of finite lifetime will broaden
the peak of the spectral function but will do so evenly on the three bands in the pseudogap as the
spectral weight for any of the bands is given by

(ω − εk+Q) 2 (ω + εk) 2Γ0

[(ω − E1,k) (ω − E2,k) (ω − E3,k) ]
2

+ Γ2
0 (ω − εk+Q) 2 (ω + εk) 2

−−−−−→
ω→Ei,k

1

Γ0
. (3.45)
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Figure 3.6: (a)-(d) Energy dependence of the spectral function at kx = π for different ky between
−π/4 and π/4, successive lines are shifted for clarity. (a) without any phase fluctuations Γ0 = Γ1 =
Γ2 = 0. We used a broadening η = 0.002 eV for numerical purposes. (b) Turning on a finite single-
particle lifetime Γ0 = 0.02 eV leads to both bands being broadened in a similar way. (c) In contrast,
when we consider only a finite particle-hole lifetime Γ1 = 0.02 eV we see that the dispersion close
to ky = 0 is more strongly affected than the dispersion at higher momenta. The flat band is also more
strongly dampened than the main band. (d) The situation is reversed if we consider only a particle-
particle lifetime Γ2 = 0.02 eV . The parts of the bands close to ky = 0 are less affected and still well
defined. The flat band is broadened but remains visible. Adapted from Ref.[135].

We can contrast this by looking at the expression of the spectral function when including the
finite particle-particle or the finite particle-hole pairs lifetimes. For clarity, we only here consider
a finite value for Γ1 while we take Γ0 = Γ2 = η → 0

−Im [G (ω + iη,k) ] = −Im

 lim
η→0

1

ω − εk + iη − |Ψk|2
2

(
1

ω−εk+Q+iΓ1
+ 1

ω+εk+iη

)


=
Γ1
|Ψk|2

2 (ω + εk) 2

[(ω − E1,k) (ω − E2,k) (ω − E3,k) ]
2

+
(
ω2 − ε2k −

|Ψk|2
2

) 2

Γ2
1

. (3.46)

It is more difficult to directly infer the effect of the inverse particle-hole lifetime Γ1 on different
portions of the electronic dispersion but we can nonetheless see that there will be an increased
spectral weight for the bands that are close to the root of the term proportional to Γ2

1 in the
denominator, i.e. roots of ω2−ε2k−

|Ψk|2
2 . This actually corresponds to the dispersion in a standard

superconductor with a gap given by |Ψk|2
2 (see Sec.2.3.2) and will be realized in our 3 bands model

for momenta larger than the back-bending momentum as the solution for the electronic dispersion
collapses on ±εk as shown in Fig.3.5(i). This is in agreement with the observation in Fig.3.6(c)
that shows that the bands in the pseudogap are broadened close to ky = 0 when we turn on a
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finite value of Γ1 while the shape of the electronic spectral function at higher momenta is mainly
unaffected. This also holds for the “flat band” that gets significantly dampened by the particle-hole
fluctuations.

The effect of each of these additional terms is depicted in Fig.3.6(a)-(d). As discussed from
the result of Eq.(3.44), allowing a non-zero Γ0 will broaden the two bands below the Fermi level
in similar ways (Fig.3.6(b)), in contrast to the pair lifetimes which have a very different effect on
specific parts of the dispersion. Indeed, Fig.3.6(c) shows that a non-zero Γ1 will strongly suppress
the “flat” band close to the Fermi level and also dampens the main band close to ky = 0. Turning
on the Γ2 term will have the opposite effect as the band far from ky = 0 gets dampened while
the bottom of the flat and main bands remain well defined. The experimental observation of the
flat band only close or below Tc can then be attributed to the presence of a particle-hole pair
lifetime in the pseudogap. Note also that due to disorder effect, which couple directly to charge
order [29], this lifetime could remain non-zero below Tc and thus leads to this band remaining
broad even in the superconducting state as observed experimentally. Moreover, this description
provides a good agreement with the experimental observation that the dispersion in the ANR does
not change across the superconducting transition. In our case, the position of the main band does
not change with temperature and only the spectral weights of the two bands get modified as the
different lifetimes decrease.
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Figure 3.7: (a) Experimental measurement for a range of temperature going from above T ∗ ∼ 132K
to T & Tc ∼ 38 K [63] . (b) The red line indicates the non-interacting band above T ∗. The orange
line is the band after the opening of the pseudogap presenting a back-bending shifted from the original
Fermi momentum kF . When going down in temperature we add a finite mean-field amplitude for the
CDW order and obtain the band dispersion represented in blue. The back-bending wave-vector and
the gap with respect to the Fermi level are mainly unchanged while the bottom of the band is strongly
affected. (c) The red line indicates the non-interacting band above T ∗. The orange line is the band after
the opening of the pseudogap presenting a back-bending shifted from the original Fermi momentum
kF . When going down in temperature we add a finite mean-field amplitude for the SC order and obtain
the band dispersion represented in blue. The back-bending wave-vector remain unchanged but the gap
with respect to the Fermi level increases rapidly while the bottom of the band is only weakly affected.
Adapted from Ref.[135].

Another feature of the temperature dependence measured experimentally for T ∗ > T > Tc

in the ANR is a significant decrease of the energy of bottom of the band when the temperature
is decreased while the maximum energy and the back-bending wave-vector change only slightly
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as shown in Fig.3.7(a). We describe here this change in the band structure by adding a finite
amplitude for the particle-hole order parameter |χk|. We then have three different regions such
that at T > T ∗ we have free electrons. At T . T ∗ where the pseudogap has a finite amplitude but
the particle-hole gap is still 0 and at T & Tc where the particle-hole gap is finite. We then obtain
the band dispersions shown in Fig.3.7(b). Because the bottom of the band is directly related to
the hybridization with the band coming from the charge modulation, it is directly affected by the
non-zero value of |χk|. On the other hand, the back-bending momentum is determined mainly
by the value of the modulation wave-vector Q and the energy of the maximum comes from the
hybridization between the superconducting band −εk and the shifted band εk+Q, thus related to
the value of |Ψk|.

Note that, once again, the superconducting part of the pseudogap plays an opposite role to
the CDW part. In fact, allowing a finite value for the particle-particle pair amplitude |∆k| in the
pseudogap phase and distinguishing the same temperature regimes as with the finite particle-hole
pair amplitude, we obtain the dispersion shown in Fig.3.7(c). We can then see that the main
change with temperature would be the energy at which the back-bending occurs, while the back-
bending momentum remains unchanged as discussed previously. If this happens, it should be in a
very narrow temperature range above Tc as the experimental results (Fig.3.7(a)) does not show any
sign of it. The fact that |χk| acquire a quasi long-range component before the |∆k| is representative
of the fact that CDW is observed experimentally at a temperature higher than the temperature
for SC fluctuations T ′c. This long-range component of the CDW order would be the one observed
by Raman spectroscopy [43], X-ray [146, 147, 149, 155, 169, 202] and NMR [145, 162, 180, 203]
measurements above Tc.

This particular ARPES experiment is important as it shows the effect that a modulating or-
der can have even without any long-range order on the single-particle quantities as measured by
spectroscopy. It was addressed in multiple contexts with the ideas of a quantum disorder PDW
[196], the superposition of CDW and PDW order [178] or the Resonant Excitonic States [197]. We
showed here that we can reproduce the detailed momentum-energy-temperature dependence of the
electronic spectral function starting from a microscopic model treated by mean-field theory consid-
ering our superposition of SC and CDW order and some additional phenomenological parameters.
In the next section, we use the same setup to show that the Green’s function from Eq.(3.41) can
be associated with the peculiar pole structure of the electronic self-energy obtained in numerical
treatments of the Hubbard model via DMFT.

3.3 Pole structure of the electronic self-energy

3.3.1 Electronic spectral function from CDMFT

Cluster extension of Dynamical Mean Field Theory (CDMFT) with 2x2 sites gives detailed energy-
dependence of the electronic Green’s function in the Hubbard model at low doping. Due to the
small system size, this is however limited to some specific points of the Brillouin zone. One of the
most important results concerns the antinodal point at k = (0, π) where the pseudogap is observed
above the superconducting state. CDMFT allows one to decompose the deviation from the non-
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Figure 3.8: (a) Normal self-energy (red line) and electronic spectral function (green dotted lines)
obtained by CDMFT for momenta on the line k = (0, π) − (π/2, π/2). The self-energy shows two
isolated poles in the antinodal region at ω = ±ω0 but with a clear asymmetry in weight. In the nodal
region the peak at positive energy splits. The pole at negative energy is damped is difficult to follow.(b)
Anomalous self-energy obtained by CDMFT for the same momenta. It shows pairs of poles at the same
position as in the normal part but with an anti-symmetric weight. The same splitting occurs when going
from the antinodal to the nodal region. The weight close to k = (π/2, π/2) is close to zero, indicating
that the coupling to the hidden-fermion is specific to the antinodal region. Adapted from Ref.[204].

interacting Green’s function into two parts: the normal (ΣN ) and anomalous (ΣAN ) self-energy.
The final form of the electronic Green’s function is usually given by :

G (k, ω) = [ω − εk − ΣN (k, ω)−W (k, ω)]
−1
,

W (k, ω) =
ΣAN (k, ω)

2

ω + εk − ΣN (k,−ω)
∗ (3.47)

The anomalous part of the self-energy is directly related to the superconducting order and vanishes
outside of the ordered phase but the normal part presents features that lead to the pseudogap in
the antinodal region at higher temperatures. Another quantity of interest is the electronic spectral
function we already studied in the previous section and which relate directly to ARPES experiment
for occupied states (ω < 0). Interestingly there are strong links between the structure in the normal
self-energy above and below Tc as well as a connection with the anomalous self-energy. These seem
to indicate that the pseudogap physics is strongly related to the superconducting state.

The energy dependence of the normal self-energy (red lines) and of the electronic spectral
function (green dotted line) for momenta on a line from k = (0, π) to k = (π/2, π/2) is shown
in Fig.3.8(a) in the superconducting phase. The distinctive feature of the self-energies in the
antinodal region (at k = (0, π)) is the two symmetric peaks at low energy. The two poles of ΣN

have a marked weight asymmetry with the pole at ω > 0 having a larger spectral weight than
the one at negative energies. The spectral function plotted at the same momentum (green dotted
line in Fig.3.8(a)) presents 3 poles, one at negative energy which is well defined and 2 at positive
energies which are broader. In contrast, the two poles of ΣAN shown in Fig.3.8(b) for the same
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momenta have the same position as the poles of ΣN but opposite weight. When going toward the
nodal region we observe that the pole at positive energy split into two poles of approximately equal
weight. This is also the case for the pole at negative energy even though the vanishing weight close
to k = (π/2, π/2) makes it harder to pinpoint the position of the two peaks.

Another crucial piece of information given by CDMFT is the cancellation that occurs between
the poles of ΣN andW . Indeed it has been observed that, besides having poles at the same energy,
the residue of both the normal and the anomalous self-energy at these poles is such that they cancel
in the expression of the single-particle Green’s function. This has consequences for the electronic
spectral function as the poles of the self-energy should correspond to zeros of the spectral function,
effectively leading to the splitting of the non-interacting band.

These results were interpreted in terms of "hidden-fermions" which couple to the original elec-
tronic degrees of freedom and are themself susceptible to pairing [204–206]. It is then possible to
write a mean-field Hamiltonian for this model and extracts analytical expressions for the normal
and anomalous self-energy. As we will show in the next section, this construction guarantees the
cancellation between ΣN and W mentioned earlier. It also displays a structure for both parts of
the self-energy in agreement with the numerical results with proper choice for the hidden-fermion.
We will present the model and its main features in Sec.3.3.2 and then show how to incorporate
our fractionalization idea into the same formalism and compare the results to CDMFT in both the
superconducting and the pseudogap states.

3.3.2 Hidden-fermion model

We start with the same hidden-fermion model from Ref.[204]. This model describe electrons (c†kσ)
on a square lattice coupled to other fermionic excitation (fα†kσ) :

H =
∑
k,σ

εkc
†
kσckσ +

∑
k,σ

(
σ∆kc

†
kσc
†
−k−σ + h.c

)
+
∑
α,k,σ

εf,αk fα†kσf
α
kσ +

∑
α,k,σ

(
σ∆f,α

k fα†kσf
α†
−k−σ + h.c

)
+
∑
α,k,σ

(
V αk c

†
kσf

α
kσ + h.c

)
(3.48)

where α numbers the number of hidden-fermion excitations we consider.

The electronic spectral function can then be obtained and the coupling to the different fαkσ
excitation leads to a normal and anomalous self-energy given by :

ΣN (k, ω) =
∑
α

V αk
2
(
ω + εf,αk

)
ω2 − εf,αk

2
−∆f,α

k

2

ΣAN (k, ω) = ∆k +
∑
α

−V αk
2∆f,α

k

ω2 − εf,αk
2
−∆f,α

k

2 (3.49)

As can be seen from Eq.(3.49) the normal and anomalous part of the self-energy share a similar
pole structure which is primarily governed by the choice of ∆f,α

k and εαk . The value of the coupling
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between the c†kσ and the fα†kσ fermions only enters in the spectral weight at the different poles as
can be seen by computing the residue of the self-energy :

Res (ΣN ,±ωα) =
V αk

2

2

1±
εf,αk√

εf,αk
2

+ ∆f,α
k

2


Res (ΣAN ,±ωα) = ∓

V αk
2∆f,α

k

2ωα
(3.50)

We can see that the self-energies have poles due to the hidden-fermions at the energies ±ωα =

±
√
εf,αk

2
+ ∆f,α

k

2
. There is however an important distinction between the normal part and the

anomalous part of the self-energy in the weight associated with each of these poles. In fact, the
anomalous self-energy has equal and opposite weight at each pole while it depends on the value of
εf,αk for the normal self-energy. In particular the sign of εf,αk will determine which of ωα or −ωα

has a higher weight. It is also possible to check the cancellation mentioned previously :

Res (W,±ωα) = Res
(

ΣAN (k, ω)
2

ω + εk − ΣN (k,−ω)
∗ ,±ωα

)

= −V
α
k

2

2

1±
εf,αk√

εf,αk
2

+ ∆f,α
k

2


= −Res (ΣN ,±ωα) (3.51)

The original proposition was that only one of these hidden fermionic excitations is relevant to
explain the structure of the self-energy at low energy and that identifying εfk = zkεk+QAF − µf ,
where zk is the renormalization factor due to the strong interactions leads to a pole structure
analogous to the CDMFT results.

We show in the following that another choice of hidden fermion can lead to a satisfactory
comparison with the results obtained by CDMFT but have a different interpretation. Our choice
of hidden fermions is based on the previous idea of fractionalization of the PDW order which
emphasizes the role of the CDW in the pseudogap. Our analysis will thus be based on the previous
hidden-fermion model Eq.(3.48) but we will consider that two fermionic excitation will contribute
and identify them with fα†kσ = c†k+Qσ and fβ†kσ = c†k−Qσ.

We focus on an axial wave-vector that links different parts of the Fermi surface, i.e. Q =

(±Q0, 0) as mentioned in the study of the electronic spectral function from Sec.3.2. We also take
into account strong correlations by adding a renormalization factor z (k, ω) that will modify the
dispersion of the hidden fermions so that εf,αk = zεk+Q and εf,βk = zεk−Q where we took z (k, ω)

to be a constant. The bare dispersion is given by taking only nearest and second neighbours
hopping εk = −2t (cos (kx) + cos (ky)) − 4t′ cos (kx) cos (ky) − µ as to match the one used in the
numerical study [204]. We took t = 1 as our energy scale, t′ = −0.2 and µ is chosen to fix the
electron density to n = 0.95 using the Luttinger sum rule in the non-interacting case. Lastly, as we
start by investigating the superconducting phase, we take the SC gap with a d-wave form factor
∆k = ∆0

2 (cos (kx)− cos (ky)) and the other gaps are given by ∆f,α
k = ∆k+Q and ∆f,β

k = ∆k−Q.
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Normal self-energy in the superconducting state

To relate the different features of the normal self-energy to the properties of the hidden fermions we
need to study the structure of the normal part of the self-energy given by Eq.(3.49). The positions
of the poles are given by ωα± = ±

√
εf,αk

2
+ ∆f,α

k

2
and thus come by pair with symmetric position in

energy. The weight associated with each pole is obtained by computing the residue at each of them
and is given in Eq.(3.50). The asymmetry in weight is thus controlled by the sign of εf,αk and the
value of ∆f,α

k . As noted in Ref.[204], the observation that the pole at positive energy has a larger
weight than the pole at negative energy in the antinodal region impose the fact that εf,α(0,π) has to
be positive. This constraint is naturally fulfilled in our model when we choose a CDW wave-vector
larger than the antinodal Fermi wave-vector which also fits experimental observations.

-1.5 -1 -0.5 0 0.5 1 1.5-20

-10

0

10

20

30

40

(b)

SC+CDWx

-1.5 -1 -0.5 0 0.5 1 1.5-20

-10

0

10

20

30

40

Im
(

no
rm

)

(a)

Hidden-fermion

Figure 3.9: a Normal self-energy in the hidden-fermion model of Ref.[204]. The asymmetry in the
antinodal region is well reproduced. As there is only one hidden-fermion coupled to electrons it is not
possible to recover the splitting in the nodal region. The weight of the positive energy pole is also
maximum for k = (π/2, π/2) in contrast to the numerical results shown in Fig.3.8. (b) Normal self-
energy obtained while considering hidden-fermions due to CDW order with a wave-vector along the
x axis. Due to the symmetry between εk+Q = εk−Q at k = (0, π) we only have two visible poles
with an asymmetry consistent with the CDMFT results. This symmetry is lost when going to the nodal
region and we observe a splitting of the poles. The change of sign of εk−Q close to k = (π/2, π/2)
explains the significant weight for the pole at negative energy. We choose here Q0 = 0.27π, z = 0.22,
∆0 = 0.55, V0 = 0.7 and a numerical broadening factor iη = 0.03i.

The results for the original hidden-fermion idea [204] that identifies fα†kσ = c†k+πσ are shown
in Fig.3.9(a) and match multiple characteristics of the numerical results. Notably, the asymmetry
in the spectral weight in the antinodal region is well reproduced and the loss of weight for the
peak at negative energy is found. Note that, following Eq.(3.50), this happens when εαk is positive.
There is thus a crucial role of the added µf term as the hidden-fermion dispersion zkεk+π alone
is negative for k = (0, π). The combination of the renormalization induced by zk and the positive
shift of µf gives an effective dispersion that is small relative to ∆k and that does not change sign.
However, because there is only one hidden fermion it is not possible to capture the splitting in the
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nodal region for ω > 0 and the weight of the positive peak is maximal at k = (π/2, π/2) when the
d-wave superconducting gap vanishes, in contrast to the numerical results.

We now turn to the fractionalized PDW hypothesis which gives the same form for the electronic
Green’s function, in the superconducting phase, to the hidden-fermion model with fα†kσ = c†k+Qσ

and fβ†kσ = c†k−Qσ. Our results for the two hidden fermions coming from the charge order are
shown in Fig.3.9(b). At k = (π, π) we can only see a pair of symmetric peaks due to the fact
that εk+Q = εk−Q. Moreover, the charge order wave-vector being larger than the antinodal Fermi
momentum means that we have εk±Q > 0. Using the result of Eq.(3.50), this leads to the same
weight asymmetry observed in the CDMFT study with the pole at +ωα having a higher weight
than the pole at −ωα. When going towards the nodal region the previous symmetry between εk+Q

and εk−Q is lost and we observe a splitting of the poles at ω > 0 analogous to the numerical
results. It is important to point out that the behaviours of the spectral weight for the two peaks
are different. In fact, the pole due to the coupling to c†k+Qσ will have a higher weight at −ωα in
the nodal region. This is because εk−Q will change sign and become negative. Because the pairing
gap for the hidden-fermion is taken as ∆f,α

k = ∆k±Q, there is no cancellation of the weight at
k = (π/2, π/2) which result in a non-vanishing weight in the nodal region for the pole at ω < 0.
Note that we took here a coupling between the electrons and the hidden-fermions to be independent
of momentum, i.e V f,αk = V0. This does not impact the position of the poles as shown by Eq.(3.49)
but only the weight at each pole (see Eq.(3.50)). Furthermore, results from CDMFT away from
the antinodal point k = (0, π) are extrapolated from the available momentum points. Thus, the
discrepancy between the spectral weight in the nodal region can be due to multiple factors.

3.3.3 Study of the pseudogap phase

We showed that both the antiferromagnetic hidden-fermion and the fractionalized PDW models
give similar results in the superconducting phase. The two models differ strongly in the pseudogap
phase where the hidden-fermion model restores the charge conservation symmetry but keeps the
coupling between electrons and the hidden fermions unchanged. In contrast, the fractionalization
of a Pair Density Wave leads to the superposition of SC and CDW fluctuations that have a strong
impact on the electronic spectral functions in the same fashion as we discussed in Sec.3.2.3.

Pseudogap in the hidden-fermion model

In the hidden-fermion model, the pseudogap phase is obtained by setting the superconducting order
parameters ∆k and ∆f,α

k to zero. The remaining part of the self-energy is due to the hybridization
to the hidden-fermions through V α. The self-energy thus take the form:

ΣN (k, ω) =
∑
α

V αk
2

ω − εf,αk

ΣAN (k, ω) = 0 (3.52)

The structure of the self-energy is then reduced to peaks located at the energy of the hidden-
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Figure 3.10: (a) Electronic spectral function (full line) and self-energy (dotted line) in the pseudogap
(red) and superconducting phase (blue) in the hidden-fermion model. Above Tc, the self-energy is
reduced to a single pole at ω = εk±Q > 0 and the resulting electronic spectral function shows 2
poles. There is no spectral weight at ω = 0 but there will be gapless states away from kx = 0 in
contrast to experimental observations. (b) Electronic spectral function (full line) and self-energy (dotted
line) in the pseudogap phase from a fractionalized PDW at k = (0, π). Green lines show effects of
CDW fluctuations (Γ1) while the red lines show the effect of superconducting fluctuations (Γ2). Due
to the superposition of SC and CDW in the fractionalized PDW idea, the electronic spectral function
retains the 4 poles structure seen in the superconducting phase. Finite lifetime for the particle-particle
or particle-hole pairs have a much stronger dampening effect in the two poles closest to ω = 0 which
could explain the observed two peaks structure in CDMFT or the single occupied band in ARPES above
Tc. We choose here Q0 = 0.27π, z = 0.22, |Ψ0| = V0 = 0.15, Γ1 = Γ2 = 0.1 and a numerical
broadening factor iη = 0.03i. Adapted from Ref.[136].
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fermions as shown in Fig.3.10(a) (red dotted line). In our case, the self-energy in the antinodal
region will display a single peak at ω > 0 because επ+Q = επ−Q > 0. This leads to the electronic
spectral function having two poles with a vanishing spectral weight at ω = 0 for k = (0, π) (red
line in Fig.3.10(a)). Note that a non-zero value of hybridization between ckσ and ck+Qσ should
be interpreted as a long-range CDW at the mean-field level. As such, we should observe a Fermi
surface reconstruction with gapless states in the pseudogap phase. This long-range order has only
been observed by applying strong magnetic fields [155, 156, 158] in the superconducting phase.
Furthermore, the short-range charge order above Tc is only observed below a transition temperature
TCO which is lower than the pseudogap temperature T ∗. The band structure observed by ARPES
does not however show significant change for temperatures in the pseudogap region. It is thus
inconsistent to consider that the pseudogap phase is solely due to the charge order.

Fractionalized Pair Density Wave

To describe the pseudogap phase, we use the same form of the Green’s function Eq.(3.43) that was
successful in describing the experimental ARPES results for the electronic spectral function [135].
To compare it with the hidden-fermion model, it is equivalent to taking the mean-field amplitude
of the SC and CDW gap to be equal while adding finite lifetimes Γ1 and Γ2. Note that our
Green’s function does not have any anomalous part which would be a sign for a long-range order
in a mean-field description. Because none of the gaps vanishes, the self-energy and the spectral
function have the same pole structure in both the pseudogap and the superconducting phases.
In fact, the electronic spectral function at k = (0, π) given in Fig.3.10(b) (full line) with both
damping rate Γ1 and Γ2 being turned on alternatively clearly shows 4 poles indicated by arrows.
The main observation is that there is a significant reduction in the spectral weight of the two poles
at lower energy for both positive and negative energy. This is the same phenomenon that was used
to describe the observation of the “flat band” below Tc by ARPES in Sec.3.2.3. Similarly to this
previous study, this description of the pseudogap effectively leads to Fermi arcs and no long-range
order is expected. We show the resulting electronic spectral function at ω = 0 in the antinodal
region in Fig.3.11(b). We can see that part of the Fermi surface is washed out even in the absence
of fluctuations (Γ1 = Γ2 = 0).

Despite having a similar structure for the self-energy in the pseudogap phase, there is an im-
portant difference between the structure of the Green’s function in our approach and in previous
studies based on fractionalization such as the one using a SU(2) theory [207] of fluctuating an-
tiferromagnetism. In our case, the line of zeros for the real part of the Green’s function (black
dotted line in Fig.3.11) is very close to the non-interacting Fermi surface. This is in strong con-
trast to other cases where the Luttinger surface created by interaction with the antiferromagnetic
fluctuations intersect the Fermi surface to create small pockets in the nodal region [208].

It is important to note that in order to obtain a good fit with the numerical result obtained
by CDMFT, it is necessary here to take a value of V α (in the superconducting phase) and Ψ

(in the pseudogap phase) significantly lower than the value of the pairing amplitude ∆ in the
superconducting phase. Indeed, an agreement between the experimental ARPES results and the
fractionalized PDW scenario was obtained with the SC and CDW order being very close, a fact
supported by Raman experiment in mercury-based cuprate [43]. This would indicate that only
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Figure 3.11: (a) Electronic spectral function at ω = 0 for the fractionalized PDW model. The white
dotted line indicates the non-interacting Fermi surface while the black dotted line indicates the surface
of zeros of the Green’s function. We see that the Fermi surface is washed out in the antinodal region.
We choose here Q0 = 0.27π, z = 0.22, |Ψ0| = 0.15 and a numerical broadening factor iη = 0.03i.

a part of the particle-particle pairs come from the fractionalization while the other part can be
described by a standard superconducting condensate. This can also be compared to the two be-
haviours observed in Raman experiments for the nodal and antinodal part of the superconducting
gap [42]. In fact, the nodal gap follows the critical temperature with doping and decreases away
from optimal doping while the antinodal gap decreases linearly with doping, following the pseudo-
gap temperature. This imbalance could be here a result of the finite size of the cluster (2x2 sites)
used in the CDMFT calculation which is smaller than the wavelength of the charge modulation,
thus hindering the formation of modulating orders with periodicity larger than the cluster size.

The results obtained from CDMFT calculations give valuable information on the energy de-
pendence of the electronic Green’s function in the doped Hubbard model. This is often limited to
specific points in the Brillouin zone which depend on the cluster size. From this, it seems difficult
to account for potential modulating orders with a wavelength larger than the cluster size. There is
however a large number of experimental evidence [43, 46, 48, 145–147, 149, 155, 156, 180, 202, 203]
for these orders to exist and compete in the pseudogap phase of cuprates superconductors. We
argued here that despite the numerical limitation, there are signatures of the charge order in the
electronic self-energy calculated in CDMFT.

Much like in ARPES experiments, the observations are indirect consequences of the charge
order and there is no Fermi surface reconstruction as the charge order remain short-ranged and
fluctuating. In the case of ARPES in Bi2201, the main indicators for a modulating order were
the back-bending of the band at the Brillouin zone’s edge and the specific way the pseudogap was
closing close to the nodal region (for more details see Sec.3.2). The limited momentum resolution
of CDMFT does not allow for such distinction but the singular pole structure of the self-energy
in the antinodal region could itself contain evidence for this modulating order. It is important to
note the similarities between the original hidden-fermion from Ref.[204] and our proposition which
contains the charge order. In particular both of them give the same result for k = (0, π). There
are however distinctions to be made when going close to the nodal region where the two models
differ. The main argument for the CDW scenario is that it allows for the double pole structure
observed for ω > 0 (see Fig.3.9) which is observed numerically. This is to be taken with caution
as both the numerical results and the idea of CDW order reaches their limit in the nodal region.

A more convincing argument may come from the electronic spectral function in the pseudogap
phase. The original idea for the hidden-fermion is to describe the pseudogap by the absence of
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pairing. At the mean-field level, this would lead to a CDW long-range order with the associated
Fermi surface reconstruction. The spectral function at the antinodal point does show the 2 poles
observed by CDMFT with a vanishing weight at ω = 0 but there are still gapless states away from
kx = 0. In contrast, the fractionalized PDW scenario is characterized by the equal superposition of
SC and CDW fluctuations in the pseudogap. As such the spectral function has the same structure
as in the superconducting state and is fully gapped at the Brillouin zone’s edge, leaving Fermi
arcs in the nodal region if we include a momentum dependence for the pseudogap order [134, 135].
Taking into account fluctuations in the SC and CDW orders leads to a drastic reduction in the
spectral weight of specific poles, giving an effective spectral function with two apparent peaks
similar to the phenomenon leading to the formation of the “flat band” in Bi2201 below Tc.

There are still many differences between the results from CDMFT and the experimental spectral
function measured by ARPES. It is however interesting to find common ground to link these two
essential techniques to investigate the pseudogap phase of cuprates. The capacity of CDMFT
to explore the positive energies which are inaccessible to ARPES and the wide range of doping
available to the experiments are complementary to elucidate the pseudogap phase of cuprates.

3.4 Anomalous phonon softening

3.4.1 Kohn anomaly

The phonon spectrum has been largely studied in metallic systems, where the charge correlations
soften the phonon spectrum giving rise to the “Kohn anomaly” [209]. In one dimensional metals
[210–212] and in some two-dimensional transition metal dichalcogenides [213], this softening grows
towards zero as shown by the black line in Fig.3.12 and a full phonon softening occurs at the CDW
wave-vector (Q) below the CDW ordering temperature TCO. With a similar outlook, the phonon
spectrum has been measured in cuprates using different experimental techniques, like inelastic x-ray
scattering and inelastic neutron scattering [56, 214–223]. All of these experiments have observed a
partial phonon softening, schematically represented by the full red line in Fig.3.12, at the associated
wave-vector Q in several cuprate families. However, this occurs only below the superconducting
transition temperature Tc, in stark contrast to the metallic systems [212, 213, 224, 225]. The
occurrence of phonon softening below Tc is hence referred to as “anomalous” phonon softening.

The anomalous phonon softening indicates a close connection between the CDW and supercon-
ductivity in underdoped cuprates and as such we are interested in the possibility to address this
characteristic element of the physics of underdoped cuprates by using the same idea of superposi-
tion of SC and CDW fluctuations above Tc arising from the connection between them within the
fractionalized PDW ansatz.

While earlier studies [25, 134, 178, 199] discussed the role of CDW, superconductivity and
associated fluctuations on the electronic spectrum, their effect on the bosonic excitations, especially
phonons, remains a difficult question and perhaps can give a more complete understanding of the
CDW orders in cuprates. Our goal here is to compute the effect of the CDW, superconductivity
and thermal fluctuations on the phonon spectrum. Similarly to our study of the electronic spectral
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Figure 3.12: Schematic representation of a full softening in metals and a partial softening in under-
doped cuprates below Tc. Adapted from Ref.[137].

function, we mimic the fluctuations by introducing an inverse lifetime of quasiparticles [112, 134]
and take its temperature dependence phenomenologically [112] based on earlier studies. We will
show in Sec.3.4.2 that a strong phonon softening occurs only below Tc when all fluctuations are
quenched, thus explaining the anomalous nature of the phonon softening seen in experiments.
Additionally, we also show in Sec.3.4.3 that at low temperatures, different temperature dependences
of the superconducting gap and the inverse lifetime of quasiparticle give contrasting effects on the
strength of the phonon softening.

3.4.2 Phonon renormalization

We start by studying the effect of the SC and CDW orders on the phonon propagator separately
and we start with a total Hamiltonian Htot [226], given by Htot = He +Hph +He−ph , with,

He =
∑
k,σ

εkc
†
kσckσ +

∑
k,σ

(χkc
†
k+Qσckσ + h.c.) (3.53)

+
∑
k

(∆kc
†
k↑c
†
−k↓ + h.c.),

Hph =
∑
q

ωq(b†qbq + b†−qb−q),

He−ph = (g/
√
N)
∑
q

∑
k,σ

[c†k+qσckσ(b†q + b−q) + h.c.],

where He is an effective mean-field Hamiltonian we used in Sec.3.3 to describe the coexistence of
SC and CDW orders at low temperature. Hph is the Hamiltonian for free phonons with phonon
creation operator b†q for wave-vector q and frequency ωq. He−ph is the Hamiltonian describing
electron-phonon interaction with strength g and N is the number of lattice sites in the system.
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The Green’s function corresponding to He is given by Ĝ−1(iωn,k) = (iωn − Ĥe) and has a matrix
form in the extended Nambu basis Ψ†k =

(
c†k↑, c−k↓, c

†
k+Q↑, c−k−Q↓

)
which is given by,

G−1 =


iωn − εk −∆k −χk 0

−∆∗k iωn + εk 0 χk

−χ∗k 0 iωn − εk+Q −∆k+Q

0 χ∗k −∆∗k+Q iωn + εk+Q

 . (3.54)

Note that taking G (iωn,k) 1,1 gives the same Green’s function as Eq.(3.41) that we used in the
study of the electronic spectral function (Sec.3.2) and of the pole structure of the self-energy
(Sec.3.3). We start by considering a d-wave symmetric SC gap, given by ∆k = (∆max/2)[cos(kx)−
cos(ky)], where ∆max denotes the maximum gap. Following several theoretical studies [30, 227, 228]
and experimental evidences [229, 230], we also take the CDW order parameter with Q given by the
axial wave-vector connecting two neighboring hot-spots [150]. Moreover, the CDW gap is taken to
have a maximum (χmax) at the hot-spots, falling off exponentially away from the hot-spots [30].

The modified electronic spectrum in the presence of SC and CDW orders will renormalize
the free phonon propagator, D0(z, q) = 2ωq/(z

2 − ω2
q). To analyze this, we write the phonon

propagators in matrix form in the ordered phase. The corresponding matrix elements are given
by Dm,n(q, τ) = −〈T φq+mQ(τ)φ†q+nQ(0)〉, where T is the time-ordering operator [226], φq is the
phonon field operator given by b†q + b−q and m,n = ±. Noting that D++ ≡ D−− := D1(z, q)

and D+− ≡ D−+ := D2(z, q), we can then write a perturbative expansion in electron-phonon
interaction for the renormalized phonon propagator. As given by Hph in Eq.(3.53), the phonon
field φq couples to an electron-hole pair with momenta k + q and k respectively. The simplest
correction to the phonon propagator is thus given by the particle-hole bubble

Π1(z, q) = (3.55)

where we have taken q → Q+ q as we expect the softening to occurs at the ordering wave-vector.
However, in the oredered phase, we can have additional scattering event due to the off-diagonal
order. These can be represented using the anomalous part of the Green’s function or by considering
inclusion of ∆k that will transform an electron line with momentum k to a hole line with momentum
−k or inclusion of χk which will shift the momentum of the electron line by ±Q. This leads to
new polarization bubbles

Π2(z, q) = (3.56)

Π3(z, q) = . (3.57)

Note that the outgoing propagator in Eq.(3.57) is centered at −Q and the diagram actually renor-
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malize the second phonon mode we labelled as D+− = D2(z, q). Lastly, when both ∆k and χk are
non-zero there is the possibility for the inclusion of a term proportional to the product ∆kχk that
leads to a polarization bubble

Π4(z, q) = (3.58)

which once again renormalize the propagator D2(z, q).

We can build the other four expressions starting with a phonon propagator at −Q+ q and we
finally obtain two coupled Dyson equations for the two phonons mode

D1(z, q) = D0(z, q +Q)

[
1 + Π1(z, q)D1(z, q)+ (3.59)

Π2(z, q)D1(z, q) + Π3(z, q)D2(z, q)+

Π4(z, q)D2(z, q)

]
,

D2(z, q) = D0(z, q −Q)

[
Π1(z, q)D2(z, q) + Π2(z, q)D2(z, q)

+ Π3(z, q)D1(z, q) + Π4(z, q)D1(z, q)

]
,

We obtain the new modes for phonon in the ordered phase by decoupling Eq.(3.59), with the
definition D±(z, q) = D1(z, q) ± D2(z, q). We then focus on the expected softening at Q and
restrict q to be small, this allows us to use the approximation that that ωQ±q ≈ ωQ. Plugging in
the form for the free phonon propagator D0(z, q), we obtain the solutions as,

D±(z, q) =
2ωQ

z2 − ω2
Q − 2ωQΠ±(z, q)

, (3.60)

where Π+ = Π1 + Π2 + Π3 + Π4 and Π− = Π1 + Π2 −Π3 −Π4. The dispersion of the new phonon
modes correspond to the values of z, for which denominator of Eq.(3.60) vanishes. Subsequently,
taking only q dependence in Π, the frequency for each mode is given by

Ω2
±(q) = ω2

Q + 2ωQΠ±(q). (3.61)

These two new phonon modes in Eq.(3.61) with frequency Ω± signify branching of the free phonon
near Q due to the presence of CDW and SC orders. We find that the split between Ω± is pro-
portional to the magnitude of the CDW order. Also, we only plot Π± as a function of q, as the
modes Ω±(q) can be easily identified from the corresponding Π± in Eq.(3.61). To quantify the
strength of the phonon softening, we look at Π±(q) after subtracting Π±(q = −1). In Fig.3.13,
we observe that Π±(q) decreases strongly within a finite range around q = 0, with a minimum at
q = 0, readily suggesting a softening of phonon frequency around Q. We also observe that away
from q = 0, Π±(q) goes towards zero, implying that we recover the free phonon propagator away
from Q. This suggests that the effect of CDW and SC orders on the phonon are maximum at Q
and diminishes away from it as we expected. Additionally, we notice that the suppression of Π−
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is larger than the suppression of Π+ and the q dependence of Π± are extremely similar to each
other. Hence, for a simpler presentation, we will only plot Π− as a function of q in the following
study of the effect of the fluctuations.
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Figure 3.13: Plots of the self-energy Π± as a function of q corresponding to the two renormalized
phonon modes Ω± in the presence of χmax = 0.05 and ∆max = 0.05. Both Π± exhibit a depletion
around q = 0, implying a softening in the phonon dispersion of the two new modes Ω± around Q.
Adapted from Ref.[137].

3.4.3 Effect of fluctuations

So far, we obtain a phonon softening in the presence of SC and CDW orders. However, to address
the anomalous nature of the phonon softening in cuprates, we need to include fluctuation related
effects, which we showed played an important role in the description of the electronic spectral
function. We once again consider the fluctuations to be captured by a finite lifetime for the particle-
particle and particle-hole pairs. We will take the inverse lifetime to be temperature dependent with
a large value at high temperatures and a sudden reduction below Tc, when global phase coherence
sets in. We once again use the phase-locking idea to explain that the phase fluctuations of both
the particle-particle pairs and the particle-hole pairs are frozen at the superconducting transition.

In order to study the evolution of the phonon softening with temperature, we add the finite
inverse lifetime of quasiparticles, given by Γ, pertinent to the fluctuation related effects in the
electronic Green’s function. The self-energy in Matsubara frequency due to Γ can be written as
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Σ = iΓsgn(ωn) and the Green’s function in Eq. (3.54) will transform as

G−1
i,j (iωn,k)→ G−1

i,j (iωn + Σ,k). (3.62)

In the presence of Γ, the phonon dispersion will be modified by the real part of Π(q).

The phonon self-energies Πn in Eqs.(3.55)-(3.58) now have the following general structure:∑
k,iωn

Gak(iωn + iΓsgn(ωn))Gbk+q(iωn + iΓsgn(ωn) + iεn), (3.63)

where, either of ‘a’ and ‘b’ symbolically represents the (i, j)th element of the Green’s function
matrix. To evaluate the Matsubara summation in this case, we need to use a contour avoiding
the branch cuts defined by Im(z) = 0 and Im(z + iεn) = 0 as shown in the Fig. 3.14. Using this
contour, we arrive at the following integrations,

Figure 3.14: Contour for complex Matsubara frequency summation: Im(z) = 0 and Im(z+iεn) =
0 denote the two branch-cuts in the complex plane. γ1, γ2 and γ3 are the three contours of integration.
Adapted from Ref.[137].

Iγ1 =
∑
k

[∫ ∞
−∞

dω

2πi
nF (ω)Gak(ω + iΓ)Gbk+q(ω + ε+ iΓ)

]
,

Iγ3 = −
∑
k

[∫ ∞
−∞

dω

2πi
nF (ω)Gak(ω − ε− iΓ)Gbk+q(ω − iΓ)

]
,

Iγ2
=
∑
k

[∫ ∞
−∞

dω

2πi
nF (ω)

{
Gak(ω − ε− iΓ)Gbk+q(ω + iΓ)−Gak(ω − iΓ)Gbk+q(ω + ε+ iΓ)

}]
,

(3.64)

We treat these integrals in the limit T → 0, where Iγ1
and Iγ3

in Eq. (3.64) become,

Iγ1 =
∑
k

[∫ 0

−∞

dω

2πi
Gak(ω + iΓ)Gbk+q(ω + ε+ iΓ)

]

Iγ3 = −
∑
k

[∫ 0

−∞

dω

2πi
Gak(ω − ε− iΓ)Gbk+q(ω − iΓ)

]
.

(3.65)
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We replace ω → ω + ε in the first term of Iγ2
and successively use

lim
ε→0

nF (ω + ε)− nF (ω)

ε
= −δ(ω).

Thus, Iγ2
in Eq. (3.64) becomes,

Iγ2 =
∑
k

−ε
2πi

[
Gak(iΓ)Gbk+q(ε+ iΓ)

]
. (3.66)

Finally, we evaluate the real frequency (ω) integration in Eq.(3.65) for each of the four self-energies
Π1, Π2, Π3 and Π4 by using,∫ 0

−∞
dω

[
1

(ω − x) ∗ (ω − y)

]
=

log[x]− log[y]

x− y
, (3.67)

where, x, y ∈ C. The summation over k is again evaluated using numerical tools. The renormal-
ization of phonon spectrum in this case is given by the real part of the self-energy. The real part
of the self-energies are plotted for different set of SC order, Γ and CDW order in Fig.3.15 and
Fig.3.16 and we will discuss the results and their relevance for experiments.

To understand the collective effect of the SC gap and Γ on the phonon softening, it is important
to disentangle the role played by Γ and the SC gap. Therefore, we start by studying the effect of
Γ taking ∆max = 0. Fig.3.15(a) shows the variation of Π(q) for four different Γ with χmax = 0.2.
We notice that for a very small value of Γ = 0.02, there is a significantly strong phonon softening
around q = 0. With increasing Γ, the phonon softening starts to reduce and for a very large
Γ = 1.0, the phonon softening gets almost fully suppressed. We also observe that the phonon
softening at q = 0 is most strongly affected by Γ. Therefore, for the rest of the analysis, we will
concentrate on Π at q = 0 to quantify the phonon softening.
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Figure 3.15: (a) The variation of Π(q) with q for four different values of Γ with χmax = 0.2 and
∆max = 0. The plots portray a suppression in phonon softening with increase in Γ. (b) Plots of
Π(q) with variation in Γ for five different values of ∆max with χmax = 0.2. The plots manifest a
suppression in phonon softening with an increase in ∆max. The effect of ∆max is strongest for low Γ,
and weakest for high Γ. Adapted from Ref.[137].
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Now, we inspect the role of the SC order and the interplay between superconductivity and Γ.
In Fig.3.15(b), we plot the variation of Π(q) with Γ, for five different ∆max taking χmax = 0.2.
We notice that ∆max has a prominent effect when Γ is very small, as can be seen from the change
in Π(q = 0) around Γ ∼ 0.05. In this regime, ∆max weakens the softening of phonon. A similar
effect on phonons in the SC phase has been indicated in conventional s-wave superconductors
[231, 232]. With increasing Γ, for example around Γ ∼ 0.3, the effect of ∆max becomes less
significant. Finally, for very large Γ ' 1.0, changing ∆max has almost no effect as the softening is
almost totally suppressed by the fluctuations already. These results highlight two crucial points.
First, both superconductivity and Γ suppress the phonon softening. Second, the role of ∆max is
prominent at low Γ, while negligible for large Γ.

We have seen that the introduction of superconductivity suppresses the phonon softening,
while experiments observe a seemingly opposite characteristic of enhancement of phonon softening
below Tc. At this point, we should also notice that Γ suppresses the phonon softening, as shown in
Fig.3.15(a). Moreover, Γ is expected to increase with temperature due to an increase in fluctuations,
whereas ∆max is expected to decrease with temperature, for example in a simple BCS type scenario.
Thus, they behave in the opposite manner with temperature.

We consider temperature a phenomenologically temperature dependence for ∆max and Γ, sim-
ilar to the T dependence extracted from the study from the spectral function in ARPES ex-
periments [112]. The T-dependence of ∆max and Γ are shown in Fig.3.16(a). Below Tc, ∆max

decreases slightly with increasing temperature, whereas it remains approximately constant above
Tc. Moreover following indications from Raman spectroscopy [43], χmax is taken to be equal to
∆max. To illustrate how different temperature dependence of Γ and ∆max can give different fea-
tures in phonon softening, we use four different types of temperature dependence for Γ, denoted
by Γ1,Γ2,Γ3 and Γ4 in Fig.3.16(a). Note that, they differ in magnitudes compared to ∆max. In
all these cases, Γ reduces significantly below Tc, with the strongest fall in Γ4 and the weakest fall
in Γ1, but still remains finite even in the limit T → 0 [233]. Moreover, we considered in all the
cases, a linear T-dependence for Γ for T > Tc, as suggested in some earlier works [234, 235].

In Fig.3.16(b), we plot Π(q = 0) for the parameters in Fig.3.16(a). We start by closely inspect-
ing the Γ4 case in Fig.3.16(b). We observe that the values of Π(q = 0) are close to zero for high
temperatures (T � Tc), implying that the phonon softening is strongly suppressed. Remarkably,
we observe that for temperatures T . Tc, the values of Π(q = 0) reduce sharply towards more
negative values, which suggest that the phonon softening becomes clearly visible at the supercon-
ducting transition. But surprisingly, towards further lower temperatures below Tc, Π(q = 0) shows
an overturn, which implies a suppression in phonon softening. However, the phonon softening be-
low Tc always remains stronger as compared to T > Tc. Very similar features have been observed
in YBa2Cu3O6+y (YBCO) [214], as shown schematically in Fig.3.16(d). In Fig.3.16(c), we present
the full q dependence of Π at four different temperatures for the case Γ4. We observe that away
from q = 0, phonon softening is less sensitive to the variation of temperature. Similar feature has
been found in experiments [56, 214].

Next, we closely investigate the Γ1 case in Fig. 3.16(b) for T . Tc. Very interestingly, the
features for T . Tc possess marked differences from the Γ4 case. We notice a smoother enhancement
in phonon softening just below Tc (T ∼ Tc), while the enhancement is more rapid and sharper
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Figure 3.16: (a) Different sets of T-dependence for inverse lifetime of quasiparticles denoted by Γ1,
Γ2, Γ3 and Γ4. The T-dependence of the SC gap is denoted by ∆max(T). In all cases, χmax = ∆max.
(b) The T-dependence of Π(q = 0) for different parameter sets in (a). A large negative value of Π(q =
0) in the regime T . Tc implies a strong enhancement of phonon softening, while Π(q = 0) → 0
implies a strong suppression in phonon softening in the regime T > Tc. (c) The variation of Π(q)
with q at four different temperatures for parameter set Γ4 and ∆max(T) shown in (a). (d) Schematic
representation of the experimental results of phonon softening at CDW wave-vector for YBCO and
BSCCO, adopted from Refs.[56, 137, 214].

for the Γ4 case. In particular, towards lower temperatures (T → 0), a further enhancement in
phonon softening can be noticed in contrast to the suppression observed for Γ4. Analogous features
in phonon softening have been also observed in Bi2Sr2CaCu2O8+y (BSCCO) [56], schematically
presented in Fig.3.16(d). To demonstrate the different features in phonon softening resulting from
an intricate interplay between SC gap and Γ below Tc, we plot results for two more cases Γ2 and
Γ3, shown in Fig.3.16(b). Below Tc, for Γ2, phonon softening sharply enhances than for Γ3 as
T → 0.





Chapter 4

Transport from incoherent bosons

We present in this chapter new results on the overdoped region of the phase diagrams of cuprates.
In fact, in the optimally doped to the slightly overdoped regime, we do not recover a standard Fermi
liquid even though the pseudogap is weak or non-existent. The major feature of this new regime
is the electrical resistivity which presents an anomalous linear dependence with temperature, in
contrast with the quadratic behaviour expected for a conventional metal. As such, this region is
dubbed “strange metal” and providing a satisfying description of it seems to be at least as difficult
as it is to understand the pseudogap phase. This strange metal regime has also been observed in
other materials but our approach here stays close to the idea we discussed for the pseudogap in
cuprates. An extensive review of the experimental data on the strange metal would be as long as
the first chapter of this thesis so we only give a succinct introduction to the experimental facts and
some ideas that were used previously to describe the strange metal in Sec.4.1 before introducing
our phenomenological model and the idea of incoherent bosons in Sec.4.2. We then show how we
can recover numerous experimental features by using Kubo formalism to compute the conductivity
in Sec.4.3 and we study the effect of an external magnetic field in Sec.4.4.

4.1 Strange metals

One common thread among diverse strongly correlated materials is the emergence of an anomalous
metallic state upon destroying superconductivity [33, 236–238]. The main characteristic of these
anomalous states is the scaling of the resistivity ρ with temperature which differs from the expected
ρ ∼ T 2 obtained in the Fermi liquid theory. In fact, many materials exhibit a linear scaling of
the resistivity in proximity to a superconducting phase as can be seen in Fig.4.1 in three different
families of unconventional superconductors, the heavy-fermion material CeRh6Ge4, the iron-based
superconductor BaFe2(As1−xPx)2 and the cuprate superconductor YBa2Cu3O6.95. These emergent
states are referred to as bad metals when the conventional quasiparticle concept becomes invalid
at high temperatures [33–35], whereas, in strange metal (SM), such anomaly extends down to
very low T [239]. Particularly in cuprates, the resistivity shows a linear-in-T dependence from low
temperature up to the melting point of the material [33, 182, 240–242] over a vast temperature-

99



100 CHAPTER 4. TRANSPORT FROM INCOHERENT BOSONS

doping region, thus manifesting both bad and strange metallic characteristics. Interestingly, for
low frequencies, the optical conductivity remarkably follows the classic Drude form [243, 244],
which is usually associated with a transport given by semi-classical electrons and should thus be
compatible with the Fermi liquid theory.
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Strange metal
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Figure 4.1: (a) Phase diagram of BaFe2(As1−xPx)2. The colour plot represents the evolution of the
exponent α in ρab(T ) = ρ0 +ATα while the locations of the structural (Ts), magnetic (TN ) and super-
conducting (Tc) transitions are determined resistively. The Curie-Weiss temperature θ determined by
NMR is also indicated (inverted triangles). The green symbols representm∗/mb (right axis) determined
by specific heat and quantum oscillation measurements. The putative QCP occurs at xc = 0.3. Adapted
from Ref.[245]. (b) T-p phase diagram of CeRh6Ge4. The circles, triangles and squares for pressures
below pc denote Tc derived from the resistivity, specific heat (d.c. method), and a.c. heat capacity,
respectively. The corresponding symbols above pc mark TFL, below which Fermi-liquid behaviour
occurs. The FM transition is suppressed by pressure until the system reaches a QCP at pc ∼ 0.8 GPa.
Below Tc, and at higher pressures below TFL, Fermi-liquid ground states develop. The colours denote
the exponent of ρ(T ) calculated as n = d(log(ρ − ρ0))/d(logT ), where the Fermi-liquid states with
n = 2 are dark blue, and the strange-metal phase near the QCP with n = 1 is shown in pink. Adapted
from Ref.[246]. (c) Multiple typical temperature dependences of the resisitivity in cuprates as doping
is changed. The optimally doped YBa2Cu3O6.95 shows the characteristic linear regime observed in the
strange metal. Adapted from Ref.[247].

Recently, there has been evidence for the presence of incoherent carriers associated with the
strange metal in optimally and over-doped cuprates [248, 249]. Over the region where the dc-
resistivity is most linear, there is a significant reduction of the Hall carriers [250, 251], suggesting
short-lived carriers responsible for the transport. Furthermore, at high magnetic fields, the mag-
netoresistance also displays a linear in field evolution in hole-doped cuprates [252, 253] which is
further confirmed in other compounds [254–256]. This incoherent contribution to the conductiv-
ity is insensitive to the magnetic field’s orientation, again implying a vanishing Hall conductivity
[253]. Thus, the mysterious SM phase acquires another element: On the one hand, it shows
linear-in-T resistivity with an optical conductivity following the classic Drude form, and with an
additional incoherent transport component insensitive to the orientation of the magnetic field. On
the other hand, the earlier experimental results in cuprates [257–259] exhibits a second transport
time ~τ−1

H ∼ T 2 which controls the cotangent of the Hall angle, defined as cot θH = σxx/σxy where
σxx and σxy are, respectively, the longitudinal and the Hall conductivities. A consistent theory
for strange metal must reconcile all these unusual behaviours, which still remains a fundamental
challenge in condensed matter physics.

Early attempts to demystify the strange metal phase rely on the rationale that the fermionic
excitations are primarily responsible for its odd transport properties. These theories capture some
basic features of the SM phase; for example, the marginal Fermi liquid theory [235], among others
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[260–262], can heuristically describe the temperature dependence of longitudinal conductivity and
the Hall angle [263]. More recently, the Hall transport time, τH , was satisfactorily described
by the presence of quasielectrons with an anisotropic transport time around the Fermi surface
[264–267]. It is also highlighted that interactions can improve nesting near the hot-spots in the
spin fermion model [69, 268], which can lead to T -linear resistivity with a broad Drude component
[269]. Furthermore, such a model can capture the T 2-dependence of the cotangent of the Hall angle
[270]. However, most theories presently encounter difficulties in accounting for all the observed
experimental results at the same time. Furthermore, the Drude form of the optical conductivity,
along with the recent report of incoherent non-orbital contribution to transport [253] remains to be
addressed. Given that situation, a regime of very strong coupling, obtained by either holographic
techniques [271–276] or other transport methods [277–282] have been explored to account for some
of these observed properties.

To address this challenging problem, an intuitive phenomenological model is imperative. Moti-
vated by the recent discovery of incoherent carriers [248, 249] along with the ubiquitous observations
of spatially modulating patterns [88, 283] in the phase diagram of cuprates, we introduce a strange
metal model that draws on our previous discussion of the pseudogap and focuses on a bosonic
contribution to transport properties. These bosons are remnants of the PDW state we discussed in
Chap.3 and consequently carry twice the charge of an electron and include a finite centre-of-mass
wave-vector linked to its periodicity.

We propose a phenomenological model consisting of quasielectrons scattering off each other as
well as charge-two bosons. The bosons originate from modulated paticle-particle pairs of high-
energy electrons which interact with the low-energy quasielectrons with strength gI , and with
themselves with strength gb. With the application of an external magnetic field, the corresponding
gauge-invariant Hamiltonian is written as

Ĥ =
∑
k,α

c†k,α

[
(k− eA)

2

2m
− εF

]
ck,α + Ve−e

+
∑
q

b†q

[
1

4
(Q0 + δq− 2eA)2 + µ0

]
bq

− 1

2

∑
k,α,α′

c†k,α(~σαα′ .H)ck,α′ + gb
∑
q,p,k

b†kbk+qb
†
p−qbp

+ gI
∑
k,q,α

[
b†qck,αc−k+q,±α + h.c.

]
,

(4.1)

where c†k,α is the creation operator for conduction electrons as before and b†q is the creation operator
for charge-two bosons. Our idea is that the finite-momentum Cooper pairing fluctuations, with
wave vector Q0, are forming at intermediate temperatures under strong coupling. Once the finite-
momentum Cooper pair fluctuations are formed, gauge invariance imposes the vector potential is
minimally coupled to the boson momentum q. We have then used q = Q0 +δq such that δq � Q0

as in the study of the phonon mode. As the fermionic excitations do not play any exotic part in
our description of the transport, we take free electrons with e and m respectively, the elementary
charge and the quasielectron mass, whereas A is the vector potential. The quantities εF and µ0
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denote, respectively, the chemical potential of the electrons and the bare bosonic mass term. The
third term refers to the coupling of the electron spins to the Zeeman field, where ~σαα′ are the
Pauli matrices and H is the magnetic field. The term Ve−e represents the interactions between the
electrons and the environment that can consist of other types of collective modes or impurities.
Finally, the last two terms in Eq. (4.1) are, respectively, the boson-boson interaction and the
fermion-boson interaction. In the interaction term that contains gI , we allow for the possibility of
the bosons to be either spin-0 or spin-1.

We thus consider that the fermionic quasielectrons are described by the Fermi liquid theory
and do not present any anomalous transport properties, but they are not the sole charge carriers
in this phase. We will show in the next section (Sec.4.2) that the charged bosons become diffusive
and incoherent as they interact with the underlying fermions and that the bosonic propagator will
be renormalized by the boson-boson interaction. Within this scenario, the quasielectrons around
the Fermi surface naturally account for the observed coherent transport in the material, since they
react to the magnetic field according to the Hall lifetime τH . In contrast, the bosons provide a
natural way of obtaining a linear in T resistivity (see Sec.4.3) while showing a Drude form for the
optical conductivity. Studying the effect of an external magnetic field in Sec.4.4, we show that the
bosons do not contribute to the Hall conductivity but that they can impact the magnetoresistance
if we assume that a spin-triplet symmetry is possible for the pairs. This last point is not in line
with the symmetry we used in our study of the pseudogap and we present it here as an additional
interesting result to emphasize the richness of this simple model.

4.2 Incoherent bosons coupled to fermions

We start by justifying our idea of the incoherent nature of the bosons by showing that the bosonic
propagator is renormalized by the scattering with electronic degrees of freedom, leading to a
Landau damping term that dominate the behaviour of the bosonic propagator at low energy. As
the bosons we consider emerge from pairs of fermions with a finite center-of-mass momentum Q0,
the polarization bubble is slightly modified with respect to the one we considered for the phonons
in Sec.3.4. The bosonic self-energy is given by the diagrammatic expression

Π (ωn, Q0) = (4.2)

where the wavy-lines represent the bosons and ωn is a bosonic Matsubara frequency while the
solid lines denote the fermions and εn is a fermionic Matsubara frequency and gI is the interaction
strength between the finite momentum bosons and fermions. The expression for the diagram reads
as

Π(ωn,Q0) =
g2
I

Nβ

∑
εn,k

[G(−εn,−k)G(εn + ωn,k + Q0)

+ G(−εn,−k)G(εn − ωn,k−Q0)] . (4.3)
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We consider the fermions to follow a Fermi liquid behaviour with well defined quasiparticle poles.
As such the electronic Green’s function G is given by

G−1(k, εn) = iεn − εk, (4.4)

where we take for simplicity the dispersion of free fermions εk = ~2k2/2me. For simplicity of
notations, we set ~2/2me = 1, from now on. In order to perform the Matsubara summation, we
go to the complex plane by performing the substitution, iεn → z. The first term of the RHS of
Eq.(4.3) becomes

Π(ωn,Q0) = −g
2
I

N

∑
k

∮
C

dz

2πi

nF (z)

(z + ε−k)(z + iωn − εk+Q0)
.

(4.5)

The integral is evaluated using the residue theorem and we obtain

Π(ωn,Q0) = −g2
I

1

N

∑
k

1− nF (ε−k)− nF (εk+Q0)

iωn − ε−k − εk+Q0

.

(4.6)

As the real part of the self-energy would only shifts the positions of the pole of the bosonic Green’s
function, we here look at the imaginary part which will give us information about the nature of the
quasiparticle spectrum. We perform the analytic continuation by letting iωn → ω + i0+, taking
the imaginary part then leads to a delta function taken at the pole leading to

Im Π(ω,Q0) =
πg2
I

N

∑
k

[1− nF (ε−k)− nF (εk+Q0)]

×δ (ω − ε−k − εk+Q0) . (4.7)

We will obtain the energy dependence of Im Π(ω,Q0) explicitly after carrying out the momentum
summation. We start by treating a simplified case where momenta −k and k + Q0 are close to the
hot-spots where we can take an approximation for the dispersion before treating the more general
case, both leading to the same form for the imaginary part of the self-energy.

Landau damping for electrons near the hotspots

Here we show that the particle-particle bubble evaluated in the previous section gives a Landau
damped form if the electrons lives near the hotspots. We use a linear approximation to write the
electronic dispersion near the hotspot as a function of the Fermi velocity and the distance to the
hot-spot. Going from one hot-spot to another changes the Fermi velocity in the x and y direction
from (−vx, vy)→ (vx, vy). Consequently, the dispersion becomes

εk = −kxvx + kyvy,

εk+Q0
= kxvx + kyvy. (4.8)
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Putting these two approximations in Eq.(4.7) we obtain

Im Π(ω,Q0) =
πg2

I

4π2

∫ ∞
−∞

dkx

∫ ∞
−∞

dkyδ (ω − 2kxvx)

× [1− nF (kxvx − kyvy)− nF (kxvx + kyvy)] . (4.9)

Defining k̃i = viki, after simplification we obtain

Im Π(ω,Q0) =
g2
I

16πvxvy

∫ ∞
−∞

dk̃y

[
tanh

(
ω/2− k̃y

2T

)
+ tanh

(
ω/2 + k̃y

2T

)]
. (4.10)

In the limit, T → 0, we can approximate tanh(x/T ) ≈ sgn(x). In this low-temperature regime,
the integrand in the square brackets in Eq. (4.10), has a constant value of 2sgn (ω) , when k̃y is
restricted between (−ω/2, ω/2), otherwise it vanishes. Therefore, performing the integration over
k̃y, we get

Im Π(ω,Q0) =
g2
I

8πvxvy
|ω|. (4.11)

This energy dependence is the standard form for a bosonic mode subject to Landau damping when
interacting with the electronic degrees of freedom. We will now show that this result is also valid
away from the hotspots and that it is a reasonable approximation for the low-energy dependence
of the bosonic propagator after the fermions have been integrated out.

General case

To obtain an approximate analytical solution in the case where we are away from the hotspots,
the k-summation is performed by converting it to an integral. We can approximate εk+Q0 ≈
k2 +Q2

0 +2kFQ0 cos(θ), where θ is the angle between Fermi-momentum kF and the ordering wave-
vector, Q0. Furthermore, we use the flat-band approximation with the density of states at the
Fermi energy given by N (εF ), the integral in two dimensions becomes

Im Π(ω,Q0) =
g2
IN (εF )

16π

∫ 2π

0

dθ

[
tanh

(
ω +Q2

0 + 2kFQ0 cos(θ)

4T

)
+ tanh

(
ω −Q2

0 − 2kFQ0 cos(θ)

4T

)]
(4.12)

In the limit, T → 0, we can approximate tanh(x/T ) ≈ sgn(x). In this low-temperature regime,
the integrand in the square brackets in Eq.(4.12), which we simply denote as I(θ) from now on, is
approximately given by

I(θ) =



2 if θ ∈
[
cos−1

(
ω−Q2

0

2kFQ0

)
, cos−1

(
−ω−Q2

0

2kFQ0

)]
,

2 if θ ∈
[
2π − cos−1

(
−ω−Q2

0

2kFQ0

)
, 2π − cos−1

(
ω−Q2

0

2kFQ0

)]
,

0 otherwise .

(4.13)
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The form of I(θ) is used to evaluate the integral in Eq.(4.12) and it reads as

Im Π(ω,Q0) =
g2
IN (εF )

4π

[
cos−1

(
−ω −Q2

0

2kFQ0

)
− cos−1

(
ω −Q2

0

2kFQ0

)]
. (4.14)

Finally, expanding the function for ω � 2kFQ0, we arrive at the result

Im Π(ω,Q0) =
g2
IN (εF )

2π

ω√
(2kFQ0)2 −Q4

0

. (4.15)

This shows there is a linear dependence on ω. Performing similar calculations for the second term
in Eq.(4.3) and the imaginary part of the self-energy reads

Im Π(ω,Q0) = γ|ω|, (4.16)

with γ =
g2
IN (εF )

2π
√

(2kFQ0)2−Q4
0

. We have checked our approximate expression against numerical evalu-
ation of Eq.(4.12). A good agreement between them is observed in Fig.4.2(b) at low temperature,
and in Fig.4.2(c) at high temperature with deviations at higher energies.
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Figure 4.2: Comparison of imaginary part of Π(ω) for numerical and approximate analytical evalua-
tions for low temperature, (a) T = 0.07 and gI = 1, Q0 = π/2 (b) Same for the higher temperature
T = 0.35. The following physical constants are set to unity: ~ = 1, kB = 1, and e = 1. Adapted from
Ref.[284].

4.2.1 Effects of fermionic self-energy

In the two computations above, we considered that the fermions were only interacting with the
bosonic modes and that the fermion-fermion interactions were weak enough to consider a Fermi
liquid behaviour. The strong electronic correlations that govern the pseudogap phase of cuprates
could be taken as an argument against our approximation, we show here that the Landau damp-
ing form for the renormalized bosonic propagator is robust even in the presence of an arbitrary
fermionic self-energy. For simplicity, we use the hot-spots approximation as given in Eq.(4.8) but
the result should also hold away from these particular points as the presence of a real part for the
self-energy do not change our results.



106 CHAPTER 4. TRANSPORT FROM INCOHERENT BOSONS

Suppose this fermionic self-energy arises from a different physical mechanism. Following the
notations in Ref.[152], we assume a general form for the fermionic self energy Σε = |Σ(ε)|sgn(ε).
Next, we estimate the particle-particle bubble as given by Eq.(4.2)

Π(ω,Q0) =
ig2
I

8π3vxvy

∫ ∞
−∞

dε

∫ ∞
−∞

dk̃x

∫ ∞
−∞

dk̃y
1(

iΣε + k̃x − k̃y
)(

iΣε+ω − k̃x − k̃y
) . (4.17)

If ω > 0 the poles of k̃y are in the opposite half-planes if ε is restricted between −ω ≤ ε ≤ 0.
We close the contour in the upper half-plane and obtain

Π(ω > 0,Q0) = − g2
I

4π2vxvy

∫ 0

−ω
dε

∫ ∞
−∞

dk̃x
1(

iΣε − iΣε+ω + 2k̃x

) , (4.18)

Π(ω > 0,Q0) = − g2
I

8π2vxvy

∫ 0

−ω
dε log

(
iΣε − iΣε+ω + 2Λ

iΣε − iΣε+ω − 2Λ

)
, (4.19)

where Λ is the UV cutoff. If Σε − Σε+ω � 2Λ, then the logarithm can be approximated as −iπ.
The imaginary part of Π then becomes

Im Π(ω > 0,Q0) =
g2
I

8πvxvy
ω. (4.20)

Similarly one can repeat the procedure for ω < 0 and obtains the same expression with a negative
sign, combining these two one can thus write

Im Π(ω,Q0) =
g2
I

8πvxvy
|ω|. (4.21)

Therefore, the Landau damping remains unaffected for arbitrary imaginary self-energy corrections.
These conclusions remain unaffected if the electrons attain mass away from the putative hot-spots.
To recognize this, we introduce in Eq.(4.17) two real terms µ1 and µ2 as the general mass of the
electrons,

Π(ω,Q0) =
ig2
I

8π3vxvy

∫ ∞
−∞

dε

∫ ∞
−∞

dk̃x

∫ ∞
−∞

dk̃y
1(

iΣε − µ1 + k̃x − k̃y
)(

iΣε+ω + µ2 − k̃x − k̃y
) .

(4.22)

Using the same procedure as above we arrive at

Π(ω > 0,Q0) = − g2
I

8π2vxvy

∫ 0

−ω
dε log

(
iΣε − iΣε+ω − µ1 − µ2 + 2Λ

iΣε − iΣε+ω − µ1 − µ2 − 2Λ

)
. (4.23)

Again, if Σε−Σε+ω � 2Λ−µ1−µ2, we have the same Landau damping form as found in Eq. (4.11)
at low energies.
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4.2.2 On the fermion-boson vertex corrections

Recent studies of the antiferromagnetic QCP [152, 285] in two spatial dimensions obtained that the
fermion-boson vertex corrections become relevant at low-energy scales and modify the dynamical
exponent close to the QCP. Therefore, it is important to check that these vertex corrections do not
spoil our approximations. As the calculations are similar to the one we just carried out and the
results do not impact the rest of our discussion we present the details in Appendix C. The main
takeaway is that in the case where there are hot-spots linked by the modulation wave-vector Q0,
there is a logarithmic divergence of the vertex correction at low temperatures. This has however
not been seen in numerical Quantum Monte-Carlo studies, suggesting that these corrections are
relevant only at very low temperatures at which other many sources of damping with different
origins, such as nematic fluctuations, loop-current fluctuations [286], among others exist. These
additional fluctuations that emerge in cuprates can also regularize the fermion-boson vertex without
changing the transport properties we study here.

To conclude this section, we note that the scattering of the charge-2 bosons with finite center-
of-mass momentum leads to a robust form for the self-energy at low energy and justify or starting
point for our incoherent boson propagator given by

D−1(q, iωn) = γ |ωn|+ q2 + µ(T ).. (4.24)

We will next see how this propagator is renormalized by boson-boson interactions that we will com-
pute in the next section (Sec.4.2.3). We will mainly be interested in the temperature dependence
of the “mass” term µ(T ) which will be important in determining the temperature dependence of
the conductivity due to the presence of these bosons as describe in Sec.4.3.

4.2.3 Boson-boson interactions

Renormalization of the “mass” term – Number of bosons

In this section, we present the detailed evaluation of the leading order term in the self-energy,
which renormalizes the bare mass µ(T ) of the boson and gives the crucial temperature dependence
leading to the linear conductivity (see Sec.4.3). Fig.4.3(a) shows the relevant diagram, where the
wavy lines represent the bosons, which interact with other bosons with the interaction strength
being represented by gb. The mass term renormalization is given by the real part of this diagram,
i.e.

Nb =
gb
Nβ

∑
q,ωn

1

γ|ωn|+ q2 + µ
. (4.25)

The Matsubara summation over ωn is carried out by using the spectral decomposition of the
bosonic Green’s function. The spectral function A(E,q) is given by [37]

A(q, E) = −2Im [DR(q, E)] = −2
γE

(γE)2 + (q2 + µ)2
. (4.26)
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Figure 4.3: (a) The first-order diagram of the bosonic self-energy. The wavy lines denote the bosons,
which interact with the strength gb. (b) The temperature dependence of the number of bosons, evalu-
ated by solving the Eq.(4.29) numerically and compared with the expression arrived at analytically in
Eq.(4.33). The perfect match between the two evaluations gives us confidence in our analytical results.
The temperature is in the units of µ0/γ. Adapted from Ref.[284].

Noting that D(q, ωn) =
∫∞
−∞

dE
2π
A(q,E)
iωn−E , the summation is taken to the complex plane by promoting

iωn → z and T
∑
ωn
→
∮
C
dz
2πinB(z), where C covers the whole of the complex plane. Therefore

the expression becomes

Nb =
1

L

∑
q

∮
C

dz

2πi

∫ ∞
−∞

dE

2π

A(q, E)nB(z)

z − E
. (4.27)

We note that there is one pole in z and we can thus the Residue theorem to perform the integral
over the complex variable z, using Eq.(4.26) for the spectral function leads to the expression

Nb = − 1

2π

∫ ∞
0

dq

∫ ∞
−∞

dE

2π
nB(E)

γE

(γE)2 + (q2 + µ)2
. (4.28)

After performing the integral over q exactly, Nb becomes

Nb = − 1

4π2

∫ ∞
−∞

dE

[
π

2
sgn(E)− tan−1

(
µ

γT

)]
nB(E). (4.29)

We now approximate the Bose-Einstein distribution as

nB(x) =



0 if x > T,
T

x
if |x| < T,

−1 if x < −T.

(4.30)
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This allows us to performing the integral in the regime where |E| < T which leads to a renormal-
ization of the mass term given by

N
(1)
b =


T

4π
log
(
γT
µ

)
for γT � µ,

µ

2π2γ
for γT � µ.

(4.31)

Similarly, performing the integral for E < −T , we obtain

N
(2)
b =


1

4π
(Λ− T ) for γT � µ,

0 for γT � µ,

(4.32)

where Λ is the ultraviolet energy cutoff of the system, usually given by the lattice distance. There-
fore, Nb will be independent of temperature in this regime, as Λ will be the dominant energy scale.
This gives the number of bosons that condenses to the ground state. The mass term µ to the
first order is given by setting µ = µ0, where µ0 is the bare mass of the bosons, which is naturally
temperature independent. Therefore, to first order in gb, we obtain

µ =


µ0 + gb

(
T

4π
log
(
γT
µ0

))
for γT � µ0,

µ0 for γT � µ0.

(4.33)

The constant terms are absorbed in the µ0, which becomes close to zero near the quantum critical
point. The temperature dependence of Nb calculated numerically from Eq. (4.29) and analytical
form displayed in Eq. (4.33) matches over a wide range of temperature, as can be seen in Fig.4.3(b)

Mode-Mode Coupling: Higher order terms in self-energy

The second-order bosonic self-energy diagram – which renormalizes both the mass-term µ, and
the imaginary term of the bosonic propagator, γ – is denoted by Π2(q0) where q0 is the external
frequency. We emphasize that the finite-momentum bosons is dominant around Q0, which is
different from the external frequency in this diagram, q0. The integral is given by

Π2(q0) =

= g2
b

1

L2

∑
k,p

T 2
∑
ωn,νn

D(νn − ωn + q0,k− p)D(νn,k)D(ωn,p). (4.34)
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Performing the summation over νn and ωn and using the spectral decomposition, one readily
obtains

Π2(q0) =
g2
b

L2

∑
k,p

∫ ∞
−∞

dE1

2π

dE2

2π

dE3

2π
[A(E1,a)A(E2,b)A(E3,d) (nB(E2)− nB(E1))]

×
(
nB(E3)− nB(E2 − E1)

iq0 − E1 + E2 − E3

)
, (4.35)

where we have defined

a = k2 + µ. (4.36)

b = (k− p)2 + µ. (4.37)

d = p2 + µ. (4.38)

Analytically continuing iq0 → q0 + i0+, the imaginary part of the Π2 becomes

Im Π2(q0) =
−g2

bq0

8π2L2

∑
k,p

∫ ∞
−∞

dE1dE2 [A(E1,a)A(E2,b)A(E2 − E1 + q0,d) (nB(E2)− nB(E1))]

∂nB
∂(E2 − E1)

. (4.39)

In the regime where |E2 − E1| < T and expanding the spectral function in the q0 → 0 limit, we
obtain

Im Π2(q0) =
γg2
bTq0

π2

1

L2

∑
k,p

∫ ∞
−∞

dE1dE2

 γ2E1E2

(
nB(E2)−nB(E1)

E2−E1

)
((γE2)2 + a2)((γE1)2 + b2)((γ(E2 − E1))2 + d2)

 .
(4.40)

Next, approximating nB(E) by using Eq.(4.30), the integrand will only contribute when both
|E1| < T and |E2| < T . Making a change of variables from Ẽ = γE, we obtain

Im Π2(q0) =
γg2
bTq0

π2

1

L2

∑
k,p

∫ γT

−γT
dẼ1

∫ γT

−γT
dẼ2

1

(Ẽ2
2 + a2)(Ẽ2

1 + b2)((Ẽ2 − Ẽ1)2 + d2)
. (4.41)

Evaluating the integral in the familiar regimes γT � µ and γT � µ, we obtain the forms

Im Π2(q0) =


γg2
bT

2q0

2
1
L2

∑
k,p

1
abd(a+b+d) for γT � µ,

2γ3g2
bT

4q0

π2
1
L2

∑
k,p

1
a2b2d2 for γT � µ.

(4.42)
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Performing the momentum summation we arrive at expressions for the imaginary part Π2

Im Π2(q0) =



c1γg
2
bT

2

16π3µ2
q0 for γT � µ,

c2γ
3g2
bT

4

4π5µ4
q0 for γT � µ,

(4.43)

where c1 = 0.323 and c2 = 0.284 are evaluated numerically. On the other hand, the real part
of Π2 can be evaluated by utilizing Kramers-Kronig relations. The external frequency is taken
to be small in the above calculations. Thus, a frequency cut-off λ = min [µ, γT ] is used in the
Kramers-Kronig relation. The Kramers-Kronig relation is given by

Re Π2(q0) =
2

π
P
∫ λ

0

ωIm Π2(ω)

ω2 − q2
0

dω. (4.44)

Therefore, the real-part of the Π2 becomes

Re Π2(q0) =



c1γg
2
bT

2

8π4µ2

(
λ− q0 tanh−1

(
λ
q0

))
for γT � µ,

c2γ
3g2
bT

4

2π6µ4

(
λ− q0 tanh−1

(
λ
q0

))
for γT � µ,

(4.45)

where λ is the cut-off energy scale. Now evaluating the renormalization of the µ and γ up to the
second order for γT � µ0, we get

µ ≈ µ0 +
gb
4π

log

(
γT

µ0

)
+

2c1γλ

π2 log2 (γT/µ0)
(4.46)

γ̃ ≈ γ +
c1γ

π log2 (γT/µ0)
. (4.47)

Taking the limit γT/µ0 � 1, it is clear that the second-order terms are negligible. Next, evaluating
the same for γT � µ0, we get

µ ≈ µ0 +
c2λ(γT )4

2π6γµ4
0

, (4.48)

γ̃ ≈ γ +
c2(γT )3

4π5γµ4
0

. (4.49)

Again, taking the limit γT/µ0 � 1, it becomes clear that the higher-order terms are negligible
compared to the first-order ones.

4.3 Transport from incoherent bosons

We now arrive at the main part of this study. We are interested in the contribution to the
transport properties from the incoherent bosons described by the renormalized propagator we
obtained in the previous section. For this, we use the idea of linear response theory to compute
the current-current correlation. This is embedded in the Kubo formalism that allows us to obtain
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the longitudinal conductivity by means of diagrammatic expansion as shown in Sec.4.3.1. We then
include the effect of an external magnetic field to obtain a prediction for the Hall conductivity and
the magnetoresistance in Secs.4.4.1 and 4.4.3.

4.3.1 Kubo formula

(a)

(b)

Figure 4.4: (a) The leading order diagram to evaluate the conductivity. (b) The contours used to
evaluate the Kubo formula for finite-momentum bosons. The two dashed lines are the branch cuts.
Adapted from Ref.[284].

The longitudinal conductivity is given in terms of correlation functions K by [37]

K(ωn) = −T
∑
νn

1

L

∑
q

[
D(νn,q) + q2D(νn,q)D(νn + ωn,q)

]
. (4.50)

The first term is the diamagnetic term and the second term is the paramagnetic current-current
correlation. The finite-momentum bosons is dominant around q = Q0 so we approximate Eq.(4.50)
by

K(ωn) ≈ −T
∑
νn

1

L

∑
q

[
D(νn,q) +Q2

0D(νn,q)D(νn + ωn,q)
]
. (4.51)

The optical conductivity is then evaluated by

σ(ω) = −K(ωn)

ωn

∣∣∣∣∣
iωn→ω+i0+

. (4.52)

The evaluation of the K is carried out in the following way: The integral is evaluated in the
contour shown in Fig.4.4(b). There are two branch cuts at z′ = 0 and z′ = iωn. The integrals over
the Γ1 and Γ3 contours cancel the diamagnetic term. Therefore, only the Γ2 contour contributes
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to the optical conductivity. The integral becomes

K(ωn) =
−Q2

0

2πiL

∑
q

∮
Γ2

dz nB(z)

(iγz + q2 + µ) ((−iz + ωn)γ + q2 + µ)
. (4.53)

The poles of z lie outside the Γ2 contour and hence the full integrals collapse to the real line
integrals along the branch cuts. The resulting expression becomes

K(ω) =
Q2

0

L

∑
q

1

2πi

∫ ∞
−∞

dx
nB(x− ω/2)− nB(x+ ω/2)(

iγx− iγ ω2 + q2 + µ
) (
−iγx− iγ ω2 + q2 + µ

) . (4.54)

The summation over q is converted to an integral and is performed by usual means, i.e.

K(ω) = − Q2
0ω

16π2γ

∫ ∞
−∞

dx

(
∂nB
∂x

)
1

x
log

(−iγx− iγ ω2 + µ

iγx− iγ ω2 + µ

)
. (4.55)

From the approximate form of the nB given in Eq.(4.30), we obtain

∂nB
∂x

=


0 if |x| > T,

− T
x2

if |x| < T.

(4.56)

Using Eq.(4.56), the optical conductivity becomes

σ(ω) = − iQ
2
0T

16π2γ

∫ T

−T
dx

1

x3
log

(
−x− ω

2 −
iµ
γ

x− ω
2 −

iµ
γ

)
. (4.57)

Defining µ̃ = ω
2 + iµγ and performing the integral, we obtain

σ(ω) = − iQ
2
0T

16π2γ

[
− 2

µ̃T
+

1

2µ̃2
log

(
µ̃+ T

µ̃− T

)
− 1

2µ̃2
log

(
µ̃− T
µ̃+ T

)
+

1

2T 2
log

(
µ̃− T
µ̃+ T

)
− 1

2T 2
log

(
µ̃+ T

µ̃− T

)]
. (4.58)

We expand the above expression in two regimes: For the first regime, T �
√
ω2/4 + µ2/γ2 we

find that the optical conductivity displays the Drude form

σ(ω) =
Q2

0

4π2µ
(

1− iγω2µ
) . (4.59)

The Drude conductivity is naturally given by: σ(ω) = σ0
τ

1−iωτ . From that expression, one can
easily read off the σ0 =

Q2
0

2π2γ while the scattering time of the bosons is given by τ = γ
2µ . The

temperature dependence of the longitudinal conductivity is thus captured by the dependence of
the mass term µ and γ.
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On the other hand, for the second regime T �
√
ω2/4 + µ2/γ2 the optical conductivity does

not exhibit the traditional Drude form

σ(ω) =
Q2

0µ

12π2γ2T 2

(
1− iγω

2µ

)
. (4.60)

In the next section, we discuss the temperature dependence of the dc conductivity and how to
understand the phase diagram of cuprates using the different regimes we capture with our approx-
imate analytical treatment.

We can also note that the vertex corrections that could arise due to the boson-boson interaction
does not change significantly these results. The calculations for these are presented in Appendix
D

4.3.2 Static Conductivity – The regimes

Next, we elaborate on the regimes of the static conductivity. Taking a ω → 0 limit, we obtain the
static conductivity in the two theoretical regimes as

ρxx(T ) =



4π2µ

Q2
0

for γT � µ(T ),

12π2γ2T 2

Q2
0µ

for γT � µ(T ).

(4.61)

The bosonic mass-renormalization is evaluated in Eq.(4.33) and we can see that the transition
temperature between our two regimes in Eq.(4.61) also depends on µ(T ). To understand when
these two distinct regimes are reached, we want to find the temperature scale T ′1, where

γT ′1 = µ0 + g̃bT
′
1 log(γT ′1/µ0) (4.62)

Solving for T ′1, we get

T ′1 = − µ0

g̃bW [−γ/g̃b exp(−γ/g̃b)]
, (4.63)

where W [x] is the Lambert W function. For different coupling strength g̃b = gb/ (4π) , the form
for this function is given by

W

[
− γ
g̃b

exp

(
− γ
g̃b

)]
=


− γ
g̃b

for g̃b ≥ γ,

− γ
g̃b

exp
(
− γ
g̃b

)
for g̃b < γ.

(4.64)
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Putting this in Eq.(4.63), we get the temperature scale

T ′1 =


µ0

γ
for g̃b ≥ γ,

µ0

γ
exp

(
γ
g̃b

)
for g̃b < γ.

(4.65)

This lead to the phase diagram presented in Fig.4.5(a).
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Fermi Liquid

Figure 4.5: (a) The phase diagram for the scenario when bosonic interaction strength is weaker than
the Landau damping parameter. Here, we have an intermediate regime bounded by the dotted black
curve, where the optical conductivity does not conform to the conventional Drude form. This line
collapses on the µ0/γ line when the boson-boson interaction is strong. (b)-(c) Displays the linear-in-T
evolution of resistivity obtained from the analysis of the model. In all the plots, we set the Landau-
damping constant equal to γ = 1.0 and the temperature independent mass term µ0 = 0.05. The
temperature is given in units of µ0/γ. Besides, we choose also the input parameters: (b) g̃b = 1.0 and
(c) g̃b = 1.5. Above T > µ0/γ the linear-in-T behavior sets in. We also compare both the numerical
and the analytical expressions in these plots which are in good agreement with each others. Adapted
from Ref.[284].

It can be seen that if g̃b ≥ γ, the temperature scale T ′1 collapses on µ0/γ. Consequently,
we are always in the γT < µ(T ) regime for strong boson-boson interaction. In other words,
γT > µ(T ) regime is never attained if the coupling between the bosons is stronger than that of
the Landau damping coefficient. In this regime, substituting the temperature dependence for µ(T )

from Eq.(4.33), the static conductivity is given by

ρxx(T ) =



4π2µ0

Q2
0

+
4π2g̃b
Q2

0

T log
(
γT
µ0

)
for γT � µ0,

4π2µ0

Q2
0

for γT � µ0.

(4.66)

The incoherent charged bosons thus have a linear-in-T resistivity when γT ≥ µ0. We have com-
pared the static conductivity given in the above equation against the numerical evaluation for the
static limit of Eq.(4.55). This comparison is displayed in Fig.4.5(b) and (c) for two boson-boson
interaction strengths. A remarkable match between the two computations over a wide range of
temperatures is observed. This regime also corresponds to the Drude form of optical conductivity,
as shown in Eq.(4.59). The bosonic contribution becomes independent of temperature below the
T ′1 line, however, the presence of conduction electrons will lead to a quadratic T -dependence of
resistivity, just like in the Fermi liquid case.

Interestingly, when the interaction between the bosons is lower than the Landau damping
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constant, i.e., g̃b < γ, there will be an intermediate temperature regime, µ0/γ < T < T ′1, where
γT > µ(T ). This is the case explicitly presented in the phase diagram from Fig.4.5(a). The
region bounded by the dotted line can harbor a non-Drude like optical conductivity as evaluated
in Eq.(4.60). The static conductivity in this limit is given by

ρxx(T ) ≈



12π2γ2

Q2
0g̃b log(γT/µ0)

T for γT � µ0,

48π3γ2

Q2
0µ0

T 2 for γT � µ0.

(4.67)

Consequently, up to logarithmic corrections, we still have a linear-in-T resistivity even when the
bosonic interaction strength is weaker than the damping and γT > µ0. However, such linear-
in-T resistivity does not subscribe to the Drude form of the optical conductivity. Below this
temperature, the incoherent bosons also contribute to the T 2-resistivity expected in the Fermi-
liquid regime. Thus, for weak coupling, the crossover from the strange metallic to Fermi-liquid
behaviour occurs through this intermediary region.

In the pseudogap phase, the opening of a gap at the temperature T ∗ results from the deconfining
transition of the PDW order parameter into the SC and CDW fields. Above T ∗, the incoherent
bosons have a bare mass of 2µ0. Following the same analysis while using the new bare mass for
the bosons leads to similar results with a possible temperature region T ∗ < T < T ′0 where the
non-Drude form of the optical conductivity survives for weakly coupled bosons, i.e., g̃b < γ.

4.4 Effect of magnetic field

To get a complete picture of the effect on the transport of the incoherent boson, we now turn to
the study of transport in presence of an external magnetic field. We start by showing that the
bosons do not contribute to the Hall conductivity in Sec.4.4.1. We then look at how the magnetic
field affects the bosonic mass for pairs with both singlet or triplet symmetry. These results are
then used in Sec.4.4.3 to study the change in resistivity with a magnetic field. We find that we
have multiple regimes possible for pairs with triplet symmetry, some of them compare well with
experimental observation but caution must be taken as the triplet pairing is not justified a priori
here.

4.4.1 Hall conductivity

To discuss the effect of magnetic field, at first order in H, we calculate the Hall conductivity which
is given by

σ(1)
xy =

iH

ωn
T
∑
εn

1

L

∑
q

[qxD(εn,q)∂qxD(εn + ωn,q)

−qyD(εn,q)∂qyD(εn + ωn,q)
]
. (4.68)
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For a particle-hole symmetric theory, the Hall conductivity is naturally expected to vanish. This
means that the incoherent bosons at finite-Q do not contribute to the Hall conductivity. Using
the fact that ∂qxD(x) = qxD2(x), only the wave-vector near qx = Q0 will contribute. As a result,
we obtain

σ(1)
xy (ωn) =

iHQ2
0

ωn
T
∑
εn

1

L

∑
q

[
D(εn,q)D2(εn + ωn,q)

−D2(εn,q)D(εn + ωn,q)
]
. (4.69)

Performing the Matsubara summation by using spectral functions, we arrive at

σ(1)
xy (ω) =

iHQ2
0

L

∑
q

∫ ∞
−∞

dE1

2π

dE2

2π

nB(E1)− nB(E2)

ω(E1 − E2 + ω)

(
A(E1,q)Ã(E2,q)− Ã(E1,q)A(E2,q)

)
,

(4.70)

where A(E1,q) is given in Eq.(4.26) and the Ã(E1,q) is given by

Ã(q, E) = −2Im [D2
R(E,q)] = − 4γE(q2 + µ)

(γE)2 + (q2 + µ)2
. (4.71)

Therefore, taking the ω → 0, the expression for the Hall conductivity becomes

σ(1)
xy (0) =

iHQ2
0

L

∑
q

∫ ∞
−∞

dE1

2π

dE2

2π
A(E1,q)Ã(E2,q)

[
coth(E1

2T )− coth(E2

2T )

(E1 − E2)2

]
. (4.72)

This can be trivially shown to be exactly zero by noting that the A(E,q), Ã(E,q) and coth(E)

are all anti-symmetric functions with respect to E. Since I(−E1,−E2) = −I(E1, E2), as a conse-
quence, the incoherent bosons will have a vanishing Hall conductivity.

4.4.2 Polarization bubble due to the Zeeman field

Because the incoherent bosons are formed from particle-particle pairs, the presence of an external
magnetic field will also affect the mass term µ. We compute this renormalization of the mass in
the same way as in Sec.4.2.3 by looking at the polarization bubble. We show here that the spin
symmetry of the pairs changes drastically the result.

Singlet Case

We start by looking at the self-energy contribution due to the Zeeman term for singlet particle-
particle pairs. The correction to the mass term is given by

Π(H,Q0) =
g2
I

L

∑
k

T
∑
εn

[G(−εn, ε−k,↑)G(εn, εk+Q0,↓)

−G(−εn, ε−k,↓)G(εn, εk+Q0,↑)] , (4.73)
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where εk,σ = k2 − σH where σ = ±1. Next, performing the Matsubara summation over εn, we
arrive at the expression which is independent of magnetic field. The mass term thus becomes

µ = µ0 + µT , (4.74)

where µT = g̃bT log(γT/µ0). So the mass-term has no contribution from the Zeeman field.

Triplet Case

Here, we calculate the self-energy correction due to the bosons formed with paired electrons of
triplet spin-symmetry. The corresponding expression is given by

Π(H,Q0) =
g2
I

L

∑
k

T
∑
εn

G(−εn, ε−k,↑)G(εn, εk+Q0,↑), (4.75)

where again εk,σ = k2 − σH where σ = ±1. Performing the εn-summation, we get

Π(H,Q0) =
g2
I

L

∑
k

{
1− nF (εk −H)− nF (εk+Q0

−H)

εk+Q0 + εk − 2H

}
. (4.76)

Next, using a flat band approximation, we can write the momentum summation in the following
form

Π(H,Q0) =
N (εF )g2

I

4π2

∫ 2π

0

dθ

∫ Λ

0

dε
tanh( ε+ζ−H2T ) + tanh( ε−H2T )

2ε+ ζ − 2H
, (4.77)

where Λ is the largest energy scale of the system. Additionally, we have substituted ζ ≡ Q2
0 +

2kFQ0 cos(θ). Now at T → 0, we will use that tanh(x/T ) → sgn (x) and then performing the
ε-integral we arrive at

Π(H,Q0) =
N (εF )g2

I

4π2

∫ 2π

0

dθ


log
(

1− 2H
ζ

)
+ log

(
−ζ + 2Λ− 2H

ζ

)
for ζ ≤ 0,

log

(
ζ + 2Λ− 2H

ζ

)
for ζ > 0 and H − ζ ≤ 0.

(4.78)

Recall that Λ is the ultraviolet energy cutoff, and hence, expanding in H � 2kFQ0 � Λ, we
get

Π(H,Q0) = C − N (εF )g2
I

4π2

∫ 2π−p1

p1

dθ
2H

Q2
0 + 2kF cos(θ)

, (4.79)

where p1 ≡ cos−1(Q0/(2kF )) and C is the H-independent constant. Now integrating over θ, one
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obtains

Π(H,Q0) = C +
2γ

π
coth−1

(
2kF +Q0√
4k2
F −Q2

0

)
H, (4.80)

where we have used the definition of γ from Eq.(4.16).

The constants can be absorbed in the bare bosonic mass, µ0. Therefore, the total bosonic mass
renormalization due to the Zeeman field H, becomes

µ = µ0 + µT + αH, (4.81)

where α ≡ 2γ
π coth−1

(
2kF+Q0√
4k2
F−Q2

0

)
and we also define µH ≡ αH. Thus, we obtain the mass-

renormalization due to the Zeeman field, which is used to evaluate magnetoresistance in the next
section.

4.4.3 Magnetoresistance

In this section, we explicitly show the calculations to arrive at the magnetoresistance for incoherent
bosons. The magnetoresistance quantifies the change of resistance due to the application of the
magnetic field and is given by

∆ρxx(H)

ρxx(H = 0)
=
ρxx(H)− ρxx(0)

ρxx(0)
. (4.82)

The complete resistivity tensor in terms of the conductivity is written as

ρxx =
σxx

σ2
xx + σ2

xy

. (4.83)

Notice that, for incoherent transport, we have shown in Sec.4.4.1 that σxy = 0 and hence the
expression for the magnetoresistance in terms of conductivity simply reads

∆ρxx(H)

ρxx(H = 0)
=
σxx(0)− σxx(H)

σxx(H)
. (4.84)

Next, the expression for σxx = σ
(0)
xx + σ

(2)
xx where σ(0)

xx is already calculated in Eq.(4.59). We are
thus left with the computation of the second moment of the conductivity σ(2)

xx .

Second Moment of Conductivity

The second moment of the conductivity, the term proportional to the square of the field strength
H, is given in terms of the bosonic Green’s function by

σ(2)
xx (ωn) = −H

2

ωn
Im

[
T
∑
εn

1

L

∑
q

∂qyD(εn,q)∂qyD(εn + ωn,q)

]
.
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Using the form of bosonic propagator D(ωn,q), we obtain

σ(2)
xx (ωn) = −4Q2

0H
2

ωn
Im

[
T
∑
εn

1

L

∑
q

D2(εn,q)D2(εn + ωn,q)

]
. (4.85)

The spectral function in Eq.(4.71) is used to perform the Matsubara summation over εn. After
analytical continuation, the real part of the second moment of conductivity becomes

σ(2)
xx (ωn) = −4Q2

0H
2

ωnL

∑
q

∫ ∞
−∞

dE1Ã(E1,q)Ã(E1 + ω,q)
∂nB
∂E1

. (4.86)

The Bose function is approximated by Eq.(4.30) and the momentum summation is carried out by
replacing (q2 + µ) = t, i.e.,

σ(2)
xx (ω → 0) = −4TQ2

0H
2

π2

∫ ∞
µ

t2dt

∫ ∞
−∞

dE1
γ2

{(γE1)2 + t2}
. (4.87)

Finally, performing the integral over E1 and t, and then by expanding in the two familiar limits,
we obtain the expression for the real part of static second moment of conductivity

σ(2)
xx =



8γ2Q2
0T

2H2

5π2µ5
for γT � µ,

5TγQ2
0H

2

16πµ4
for γT � µ.

(4.88)

Figure 4.6: The figure illustrates the different regimes in the temperature, doping and magnetic field
plane. The mass term renormalization for the particle-particle pairs is given by µ = µ0 + µT + µH .
The maximum of the three mass scales determines the regime: In regime 1, the mass is dominated by
µ0 while in regime 2 and 3 it is dominated by µT and µH , respectively. Adapted from Ref.[284].

We now have all the ingredients to understand the change of in magnetoresistance with fields.
Indeed, the bosonic mass correction due to the Zeeman field is evaluated in Eq.(4.81). Similarly,
the expressions for σ(0)

xx in terms of µ are evaluated in Eq.(4.61) and the same for σ(2)
xx are evaluated
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in Eq.(4.88). Notice we have different regimes depending on the renormalization of the mass term
from bosonic interactions and the Zeeman field. These regimes are illustrated in Fig.4.6 in the
magnetic field, hole doping and temperature plane. The different scenarios arise because the mass
term is either dominated µ0, µT or µH . We elaborate on the different possibilities one by one in
the following while focusing on the case of triplet symmetry as it induces an additional magnetic
field dependence as opposed to the singlet symmetry case.

g̃b ≥ γ and µT � µH

First, if the interaction between the bosons is larger than the Landau damping coefficient, i.e.,
g̃b > γ, we are always in γT � µ. Additionally, if we are in a regime dominated by the magnetic
field scale , i.e., µT � µH (see regime 3 in Fig.4.6), the mass correction coming from the Zeeman
field is given by µ = µ0 + µT + αH in Eq.(4.81). Therefore, the magnetoresistance evaluates to

∆ρxx(H)

ρxx(0)
=

Q2
0

4π2(µ0 + µT )
− Q2

0

4π2(µ0 + µT + αH)
− σ(2)

xx (H)

Q2
0

4π2(µ0 + µT + αH)
+ σ

(2)
xx (H)

. (4.89)

If we take the limit γT/µ� 1 in Eq.(4.88), it is clear that the σ(2)
xx becomes negligible. Therefore,

the equation for MR becomes

∆ρxx(H)

ρxx(0)
≈

1

µ0 + µT
− 1

(µ0 + µT + αH)
1

µ0 + µT + αH

,

∆ρxx(H)

ρxx(0)
=

α

µ0 + µT
H. (4.90)

Therefore, we obtain a linear-in-H magnetoresistance in the regime 3 of Fig.4.6. Note that
µH � µT can be interpreted as H � ηT , where η = µ0+g̃b log(γT/µ0)

α . Thus up to logarithmic
corrections η is just a constant. We emphasize that this a similar high-field regime where linear-
in-H magnetoresistance is observed experimentally in high field [253].

g̃b ≥ γ and µT � µH

Secondly, we still keep the interaction between the bosons stronger than the Landau damping
coefficient, i.e., g̃b > γ. However, if the temperature-correction is larger than the magnetic field
scale, i.e., µT � µH , the mass correction coming from the Zeeman field is independent of the
field and is given by µ = µ0 + µT (see regime 2 in Fig.4.6). Consequently, the evaluation of
magnetoresistance becomes

∆ρxx(H)

ρxx(0)
≈ κ

β
H2, (4.91)

where κ
β ≡ −

32γ2T 2

5(µ0+µT )4 . Again for µH � µT can be written as H � ηT . Therefore, in the low-field
regime, we obtain a quadratic H-dependence of magnetoresistance.
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g̃b ≥ γ for µT � µ0 and µH � µ0

Similarly, if the temperature or field correction of the bosonic mass term is smaller than the
bare bosonic mass, i.e., µT � µ0 and µH � µ0, the mass correction coming from the Zeeman
field is independent of the field and is given by µ = µ0 (see regime 1 in Fig.4.6). Again, the
magnetoresistance becomes

∆ρxx(H)

ρxx(0)
≈ κ

β
H2, (4.92)

here we get κ
β ≡ −

32γ2T 2

5µ4
0

. So again we have a H2-dependence of magnetoresistance in the regime
1 of Fig.4.6. In this regime we have already established the conventional Fermi liquid behavior
when discussing the static conductivity in Sec.4.3.

Therefore, when the interaction between the bosons is stronger than the Landau damping
coefficient the MR is given by

∆ρxx(H)

ρxx(0)
=


κ

β
H2 in regimes 1 and 2,

α

µ0 + µT
H in regime 3,

(4.93)

where the coefficient κ/β is different in regimes 1 and 2. Notice that such an H-evolution of
magnetoresistance is recently observed in overdoped cuprates [253].

To summarize this study, we showed that the presence of incoherent modulated particle-particle
pairs can affect the transport properties of the system. We considered that these bosons interact
with electrons, leading to a Landau damping form for the bosonic propagator, but that the elec-
tronic degrees of freedom are not strongly affected by this interaction. The bosons then contribute
to a linear temperature dependence of the resistivity on top of the standard T 2 dependence orig-
inating from the electrons. If the boson-boson interaction is stronger than the Landau damping
parameter, we can thus observe two regimes with either T or T 2 resistivity leading to a phase
diagram schematically represented in Fig.4.5(a). The bosons also lead to an optical conductivity
that follows the Drude law while they do not contribute to the Hall conductivity which fits the ex-
perimental observations of additional incoherent carriers in overdoped cuprates [248, 249]. Lastly,
we showed that we can observe a crossover from a H2 to H dependence of the magnetoresistance
with the field as observed experimentally [252, 253] but that this requires a triplet symmetry for
the pairs which is not supported by any microscopic considerations. The main idea was to present
a simple phenomenological understanding of the linear resistivity that may be more accessible than
the standard SYK model or holographic approaches.



Chapter 5

Stacking fault in multi-layer graphene

This last chapter strays away from the rich case of cuprates to look at another playground where
unconventional superconductivity has been observed. In particular, we are interested here in the
case of multilayer graphene where lattice effects and impurities can drastically affect the electronic
properties of the system. The results presented here are based on numerical tight-binding calcula-
tions that allow us to extract the eigenenergies and eigenfunctions of a non-interacting Hamiltonian.
We start by presenting known results on the possibility for edge states and surface states due to
the specificities of the honeycomb lattice in Sec.5.1. We then come to the new results on the study
of stacking faults in multilayer graphene and how impurity states affect the electronic spectrum in
Sec.5.2.

5.1 Lattice effects in the honeycomb lattice

5.1.1 Edge states with zigzag termination

In finite-size systems, the effect of the abrupt termination of the lattice can have strong conse-
quences on the electronic properties [288, 289]. This is striking in graphene where, depending on
the geometry of the edges, the density of states changes drastically. The two types of edges that
are generally considered are called “zigzag” or “armchair” edges and are represented in Fig.5.1(a)
and (b) respectively. The DOS for semi-infinite ribbons is plotted below the lattice schematic and
shows finite oscillations away from ω = 0. This is because breaking the translation symmetry along
one direction means that we only have one momentum direction that is a good quantum number.
The Hamiltonian can still be diagonalized in momentum space as explained in Sec.2.2.1 along the
infinite direction but not along the finite one, leading to a one-dimensional dispersion with 2N

bands, N being the number of unit cells in the finite direction. The other notable aspect of the
DOS is the large peak at ω = 0 in the zigzag case that is not present in the armchair case. This is
due to localized states that appear at the edge of the zigzag ribbon. This result is to be contrasted
with the vanishing DOS in the infinite graphene case where only linear band touching occurs at
the Fermi level as we showed in Sec.2.2 (Fig.2.1(b)).

123



124 CHAPTER 5. STACKING FAULT IN MULTI-LAYER GRAPHENE
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Figure 5.1: (a) Armchair termination for a finite size graphene layer. Both A and B sublattice atoms
are on the edge. The density of states depends on the number of atoms in the perpendicular direction to
the edge but shows a vanishing DOS at ω = 0 as in the infinite layer case. (b) Zigzag termination for
a finite size graphene layer. The edge is made of only one sublattice. The density of states depends on
the number of atoms in the perpendicular direction to the edge but shows a large increase of the DOS
at ω = 0 indicating the presence of the edge state. DOS adapted from Ref.[287]

5.1.2 Surface state in ABC graphene

Another system where this phenomenon can be observed is by using the third dimension to create
different termination. This is done in graphene by changing the way the successive graphene layers
are stacked on top of one another. Because there are three nonequivalent positions in the triangular
unit cell and two atoms per unit cell, there are three different stacking possible. When considering
bilayer graphene, the only important choice is between stacking at the same positions in both
layers (AA) or a stacking where the second layer is shifted with respect to the first one (AB).
When looking at trilayer systems we have even more possibilities, but if we omit stacking with
repeated positions in adjacent layers (that are thermodynamically disfavoured) we have once again
two main options that are represented in Fig.5.2(a)-(d), one where all the layers have different
positions (ABC) and one where the top and bottom layers are equivalent (ABA). Once again these
two options have very different electronic properties that can be seen in the infinite two-dimensional
plane. The tight-binding Hamiltonians for these trilayer honeycomb lattices are given by:
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H(k) = t0
∑

l=0,1,2

t(k)c†k,l,Ack,l,B + hinter + h.c., (5.1)

with

t(k) = 1 + 2e−i
3
2a0kx cos

(√
3

2
a0ky

)
, (5.2)

hinter = t1

(
c†k,0,Bck,1,A + c†k,1,Ack,2,B

)
(5.3)

for ABA stacking and
hinter = t1

(
c†k,0,Bck,1,A + c†k,1,Bck,2,A

)
(5.4)

for ABC stacking. The operator c†k,l,α creates an electron on layer l and sublattice α, and a0 is
the distance between two neighboring atoms in a honeycomb lattice. In what follows, we take the
two hopping parameters to be t0 = 2.6 eV , t1 = 0.34 eV .
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Figure 5.2: (A), (B), (C) and (D) How to obtain the two different stacking possibilities for trilayer
graphene. The bottom part shows the different out-of-plane hopping and the spatial arrangement of the
layer with respect to each other. Adapted from Ref.[290]. (E) Top panel, band structure for ABA
graphene close to the Dirac point where we see a linear and quadratic band touching. The corresponding
DOS is shown in the bottom panel with the characteristic V -shape and the vanishing DOS at ω = 0.
(F ) Top panel, band structure for ABC graphene where we see the “flat” bands forming at low energy
and touching at ky − Ky = 0. The dispersion of these bands goes as (ky −Ky)N where N is the
number of layers. The corresponding DOS (bottom panel) shows an increase in the DOS at ω = 0 with
a V -shape dependence at higher energies. Note that the low-energy states are localized on the top and
bottom layers of the stack. Adapted from Ref.[291]

The band structures obtained by diagonalizing these Hamiltonians are presented in Fig.5.2(e)
and (f) for the ABA and ABC stacking respectively. We note that the band structure for the
ABA trilayer graphene contains one pair of linear bands and one pair quadratic bands, while the
ABC band structure contains two quasi-quadratic bands with an energy gap of about 0.25t0 as
well as a lower pair of bands which is not entirely quadratic but flattens close to the Dirac point
with an energy dispersion going as (ky −Ky) 3 creating the precursor of a flat band. This plays
an important role in differentiating ABA and ABC stacking in multilayer systems, as the general
dispersion for ABC stacking is of the order kN with N the number of layers. This leads to an
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enhanced density of states at low energy compared to the ABA case (due to the “flat bands”).
We can note that the larger the number of layers, the larger the flat region and its importance
[292, 293] to the energy spectrum will be.

As we are working with non-interacting systems, the Matsubara Green’s function is simply
given by as: G(k, iωn) = [iωn −H(k)]

−1, where ωn denote the Matsubara frequencies. In this
study we will mainly be interested by the Densiy of States (DOS) obtained by integrating G(k, ω)

over the Brillouin zone.

DOS(ω) = − 1

π

∫
dk

(2π)2
ImTrG(k, ω). (5.5)

In the bottom part of Fig.5.2(e) and (f) we plot the DOS for the ABA and ABC trilayer
graphene. Note that the DOS for the ABA graphene shows some quasi-V feature close to zero-
energy due to the presence of the combination of the quadratic and the linear band, while the
ABC graphene shows a small peak at zero-energy due to the incipient flat band, as well as cusps
at energies corresponding to the end of the two quadratic bands.

5.2 Stacking fault in multi-layer graphene

x

y

x

y

Figure 5.3: (a) Schematic representation of the top layer in a ribbon with a stacking fault that preserves
the zigzag termination at its edges. We have an ABA stacking on the left side and an ABC stacking on
the right side of the defect. (b) Schematic representation of the top layer in a ribbon with a stacking
fault that preserves the armchair termination at its edges. We have an ABA stacking on the bottom side
and an ABC stacking on the top side of the defect. Adapted from Ref.[291].

Another way of generating interesting localized states is by considering impurities or defects
in the lattice structure. Because those effects generally break the translation symmetry, we will
work either with one momentum quantum number (as in the zigzag/armchair ribbons example) or
entirely in real space by the means of numerical diagonalization of the Hamiltonian. One example
of localized impurity states can be found when considering the trilayer graphene systems mentioned
previously. Because only the top layer is different between the ABA and ABC stacking orders, we
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can consider a stacking fault, a defect shifting the top-most C layer to become an A layer. As in
the case of the edge state discussed in Sec.5.1, the geometry of the stacking fault will play a role
in the physical properties of the systems. We will study here stacking faults that conserve either
the zigzag or the armchair termination that are represented in Fig.5.3(a) and (b) respectively. We
will first focus on the ribbon geometry for each case before showing some results obtained from a
finite-size system.

5.2.1 Ribbons with zigzag edges and interfaces
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Figure 5.4: (a) and (c): Respectively, band structure and density of states for ABA ribbons with zigzag
edges. (b) and (d): Respectively, band structure and density of states for ABC ribbons with zigzag
edges. We use ribbons with a width of 78 a0 and we consider a numerical broadening η = 2.10−3 t0
for the density of states. In both cases, we see the presence of flat bands at k = π corresponding to
the localized edge modes which give rise to a pronounced peak in the DOS at ω = 0. Adapted from
Ref.[291].

We start by considering a ribbon that is finite in one direction (x) and infinite in the other (y),
with zigzag edges (see Fig.5.1(b)). Along the finite-size direction, the momentum is no longer a
good quantum number and the continuous (kx, ky) band structure is replaced by a quantized set
of bands. Thus in Fig.5.4 we plot the band structure of zigzag ABA and ABC ribbons. For the
ABA structure, we see two types of quantized modes emerging from the linear and the quadratic
band, while for the ABC one we can only see the quantized modes emerging from the lowest band.

It is also known that graphene ribbons with zigzag edges exhibit localized edge states. In a
trilayer system, these states exist regardless of the stacking order as can be seen in Fig.5.4: for
both ABA and ABC stacking we see that the band structure contains flat bands at zero energy.
For each ribbon there are six of those bands, corresponding to the three layers and the two edges
of each layer. These states are not topological and can for example move away from zero energy
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when we apply an electric field.

The corresponding local DOS (LDOS) depicted in the lower panels of Fig.5.4 shows clearly the
zero-energy edge-state peak, as well as the quantized structure of the band structure. Given the
effective 1D character of the ribbons, each band will give rise to a peak in the LDOS at the energy
corresponding to the bottom-of-the-band (Van Hove singularity) inflexion. This will yield a series
of peaks in the LDOS, as visible in the bottom panel of Fig.5.4. The overall trend for the LDOS
of the ABA/ABC ribbon is consistent with the LDOS for the infinite ABA/ABC trilayer depicted
in Fig.5.2(e) and (f), i.e. a linear dispersion for the ABA ribbon, and a linear dispersion with a
smaller slope for the ABC ribbon, jumping abruptly at ω ≈ 0.15t0.

When we introduce a stacking fault (see Fig.5.3(a)), the band structure is perturbed, as can be
seen in Fig.5.5. Note that because the defect is only localized in the top-most layer, there might
be significant hybridization between the two different stacking regions through the bottom layers.
Indeed, the bulk bands for the mixed system are no longer similar to the separate ABC/ABA
bands but are fully modified by the presence of the defect. To separate the bands coming from
the ABC and ABA bulks and those of the interface region we study the effect of the size of the
ribbon on the band structure. The idea is that if we change the number of atoms in the bulk,
features associated with the edges, as well as with the defect, should remain unchanged. Looking
at Fig.5.5, we see that this is indeed the case for the flat bands around k = π. These flat bands
can easily be identified with states localized on the edges of the ribbon. Moreover, we note that
the lowest-energy bands exhibit a dispersion that is independent of the system size even away from
the Dirac point. This size-independent band is peculiar and we argue that it is localized at the
interface between the ABA and ABC regions.
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Figure 5.5: The band structure for a ribbon with a stacking fault, plotted for two different ribbon
widths 284a0 (dashed red) and 156a0 (full black). The flat bands and the lowest-energy bands are
independent of the width, while the bulk bands strongly depend on it. Adapted from Ref.[291].

To confirm this observation we study the spectral weight of the different bands as a function of
the position on the ribbon. Fig.5.6(a) shows the spectral weight averaged over two unit cells in the
stacking fault, while Fig.5.6(b) shows the averaged spectral weight for sites in the bulk on both
the ABA and ABC sides of the ribbon. We see that the interface spectral weight is significantly
larger for the lowest dispersing energy band, at both positive and negative energies. In contrast,
the bulk spectral weight is rather equally distributed on the quantized multiple bands in the Dirac
cone with a marked absence of weight on the flat band (localized at the exterior edges) and on the
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lowest energy band (localized at the interface). This provides an extra indication that the bands
we identified as size-independent are localized on the defect. It is also interesting to note that the
situation is less clear for momenta close to the Dirac point where the spectral weight is once again
evenly distributed (Fig.5.6(a)) and there are no signs of localized states.

Figure 5.6: (a) The eigenstate spectral weight evaluated on sites in the stacking fault. There is a
significant weight in the two lowest positive- and negative-energy bands, indicating that these states are
localized on the defect. (b) Averaged spectral weight evaluated on sites in the bulk (average of ABA
and ABC sides). The ribbon’s width is 156 a0 and we used a numerical broadening η = 3.10−3 t0.
Adapted from Ref.[291].

Lastly, we look for possible signatures of these states in the density of states as a function of
position along the ribbon. We see in Fig.5.7(a) that the local density of states at zero energy is
dominated by the edge states. This is due to the flat nature of the edge bands give which rise
to a high density of states close to ω = 0. This is localized both on the edge but also exhibits
significant leaks in the bulk, for the not-too-large system size that we consider. To get a better
understanding in Fig.5.7(a) we plot the LDOS as a function of energy in the stacking fault, as well
as in the ABA and ABC regions. We thus note that the LDOS in the defect (the region between
the white dashed lines in Fig.5.7(a)), as well as in the ABA and ABC regions far from the edges,
does still present a significant peak at ω = 0 that is due to the zigzag edge modes. This makes
it hard to separate for example the effect of the bulk ABC zero-energy flat band from that of the
zigzag edges.

The dependence of the DOS in the defect on energy (green curve in Fig.5.7(b)) exhibits a
roughly linear dependence on energy, similar to that of the bulk ABA region depicted in Fig.5.2;
this is consistent with the fact that the defect’s spectral weight is maximum on a pair of bands that
disperse linearly away from k = 0 (Fig.5.6(a)). These bands decay in intensity close to zero energy,
consistent with the reduction in the LDOS of the defect at small energies, as shown in Fig.5.7(b).
The bulk ABA preserves also a linear dependence (orange curve in Fig.5.7(b)), modulated by
the finite-size effects. The ABC bulk LDOS (Fig.5.7(b) blue curve) also preserves the average
ABC uniform bulk dependence depicted in Fig.5.2, i.e a linear dependence with a lower slope for
0 < ω < 0.15 before increasing rapidly.

Note that the LDOS on the interface has roughly the same intensity as in the bulk, the interface
does not seem to generate significant interface states localized at the position of the defect.
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Figure 5.7: (a) Local density of states as a function of energy and position along the ribbon. The
ABC region corresponds to x > 80 (top of the picture), while the ABA region to x < 75 (bottom of
the picture). We left out the ribbon’s edges where there is a high density of states due to the edge states
in the zigzag geometry. The white dashed lines indicate the position of the stacking fault. (b) Density
of states at specific sites. The DOS on the ABA (x = 39) and ABC (x = 119) sides are taken far from
the defect (x = 78), in the bulk. The ribbon’s width is 156 a0 for both figures. DOS lines are shifted
for readability. We used a numerical broadening η = 2.10−3 t0. Adapted from Ref.[291]

5.2.2 Ribbons with armchair edges and interfaces

We now perform the same analysis on ribbons with armchair edges. The geometry of the stacking
fault is depicted in Fig.5.3(b). In the case of armchair ribbons, there are no edge states and the
band structures for the two different stackings are shown in Fig.5.8(a) and (b). Compared to the
zigzag case, there is a stronger contrast between the two band structures: for the ABA stacking
the linearly-dispersing and the lowest quadratically-dispersing bands seem to be preserved even
in the presence of the quantization. The band structure of the ABC-stacked ribbon seems to be
affected also much less by the quantization, preserving the k3-dispersing bands touching at ω = 0;
we thus expect some reminiscence of the flat band signatures (such as a zero-energy peak in the
DOS) in this type of geometry. Indeed, while both stackings give rise to zero-energy peaks due to
the zero-energy van Hove singularities corresponding to the bottom-of-the-band inflections in the
now effectively-1D energy bands, the one corresponding to the ABC stacking is more robust.

The band structure of a ribbon with a stacking fault and armchair edges is shown in Fig.5.9
for two different ribbon widths. Once again the band structure of the combined system cannot be
directly traced back to the individual band structures for the ABA and ABC ribbons. Moreover,
we can clearly see that the combined-system band structure is not symmetric with respect to ω = 0.
This symmetry is usually a consequence of the sublattice symmetry that exists in the honeycomb
lattice and is broken here due to the particular shape of the impurity (see Fig.5.3(b)). Further
studies would be require to fully understand the consequences of this potential explicit symmetry-
breaking. The stacking fault gives rise to a distinct signature in the band structure: we can see the
formation of two dispersing bands (one for positive and one for negative energies) which seem to
be unaffected by the size of the system. This feature indicates that these may indeed be interface
bands, and not bulk bands, same as in the zigzag ribbon case. These bands are once more the
lowest in energy in the spectrum and have a relatively flat dispersion near k = 0.

Same as in the zigzag case we also calculate the spectral weight on sites located in the stacking
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Figure 5.8: (a) and (c) Band structure and respectively density of states for ABA ribbons with arm-
chair edges. (b) and (d) Band structure and respectively density of states for ABC ribbons with armchair
edges. We used ribbons with a width of 59 a0, and a numerical broadening η = 2.10−3 t0 for the den-
sity of states. Both stacking seem to exhibit a zero-energy peak in the LDOS, but the ABC stacking one
is more robust due to the flatter dispersion around k = 0. Adapted from Ref.[291]
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Figure 5.9: The band structure for an armchair ribbon with a stacking fault for two different ribbon
widths. The lowest-energy dispersing bands are the same for the two different widths, while the bulk
bands are different. Adapted from Ref.[291]

fault, and we compare it to the spectral weight in the bulk. This is shown in Fig.5.10: we can
see that the interface spectral weight is localized most strongly on the two lowest positive- and
negative-energy bands (Fig.5.10a). Moreover, segments from the central band, reminiscent of the
linear ABA band, exhibit a very strong intensity at the ABA/ABC interface. On the other hand,
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the spectral weight in the bulk (Fig.5.10b) seems evenly distributed, except on the lowest energy
band which has very little weight, confirming that this band is an interface band and not a bulk
band. We note the strong difference in the scale of the spectral weight between the two figures,
indicating that the interface states have much more intensity than the bulk states.

Figure 5.10: (a) The eigenstate spectral weight evaluated on sites in the stacking fault. There is a
significant weight in the two lowest positive- and negative-energy bands, indicating that these states
are localized on the defect. Moreover, reminiscent segments from the linear band arising for a clean
ABC structure also shows a very strong intensity on the defect, however, this band is now gapped. (b)
Averaged spectral weight evaluated on sites in the bulk (average of ABA and ABC sides). Note the large
difference between the scales of the two figures indicating a strong intensity for the states localized on
the defect. The ribbon’s width is 96 a0 and we used a numerical broadening η = 3.10−3 t0. Adapted
from Ref.[291]

We also perform an analysis of the LDOS as a function of position (Fig.5.11(a)). This turns
out to be very different from the case of the zigzag ribbon, as there are no zero-energy edge states
and also there is a higher spectral weight for the states localized on the impurity. We note first
that the LDOS in the ABA and the ABC bulk becomes also asymmetric between the positive and
negative energies. The ABA LDOS (Fig.5.11(b) orange line) shows only small modifications from
the previously studied situations (i.e a linear background plus quantized peaks, see Fig.5.8). The
ABC bulk (Fig.5.11(b) blue line) also follows the structure in Fig.5.8, exhibiting a linear slope for
0 < ω < 0.15 before increasing rapidly, as well as a strong zero-energy peak corresponding to the
flat band, but with a more pronounced asymmetry between the positive and negative energies, and
a reduction in the LDOS at small negative energies.

The averaged DOS in the defect (Fig.5.11(b) green line) shows a reduction in the LDOS around
ω = 0, and sharp peaks for positive energies ω ≈ 0.05. This is in agreement with the momentum
space analysis (Fig.5.10(a)) where we can see that the spectral weight is maximum on a pair of
gapped bands which are reminiscent of the linear ABA bands: the sharp peaks arise at the gap
edge of these bands. We also see that the defect DOS is not symmetric with respect to ω = 0 as
expected from the band structure in Fig.5.9. Also, we note the large intensity of the LDOS in the
defect which persists at all energies.

5.2.3 Finite-size configuration

In this section, we consider instead of an infinite ribbon a finite-size ABA-ABC ribbon. Once again
we look at systems with zigzag or armchair terminations, but with finite size in both the x and y
directions. We thus expect a quantization of the continuous interface bands present in the infinite
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Figure 5.11: (a) Local density of states as a function of energy and position along the ribbon. The
ABC region corresponds to y > 70 (top of the picture), while the ABA region to y < 60 (bottom of
the picture). The white dashed lines indicate the position of the defect. (b) Density of states at specific
sites. The DOS on the ABA (y = 31) and ABC (y = 98) sides are taken far from the defect, in the bulk.
The DOS taken on the defect (y = 65) is divided by 10 for scaling reasons. The ribbon’s width is 96 a0

for both figures. DOS lines are shifted for readability. We used a numerical broadening η = 2.10−3 t0.
Adapted from Ref.[291].

ribbon configurations and the appearance of quantized interface levels. Since there is no longer
any good momentum quantum number there is no band structure to analyze, but only the LDOS
as a function of energy and position.

We start by studying the case of zigzag edges. In Fig.5.12(a) we plot the LDOS as a function of
energy along a cut perpendicular to the direction of the stacking fault. We observe some predom-
inant features. First, we note that the edge states, localized at the exterior edges of the sample,
continue to exhibit a strong spectral weight even in the finite configuration, this is expected from
previous studies of graphene. We can see here that these states also penetrate quite significantly in
the bulk (∼ 30a0). The second relevant feature is the formation of the quantized states localized at
the ABA/ABC interface, these are just a result of the quantization of the interface bands observed
in the previous section. Their intensity once more is not more significant than that of the bulk,
indicating that the zigzag interface does not generate strongly localized interface states.

Figure 5.12: LDOS as a function of energy and position for a finite-size system with zigzag edges
(a) and armchair edges (b). The white dashed lines indicate the position of the defect. The ABA region
corresponds to x < 45 (left of the stacking fault), while the ABC region to x > 50 (right of the stacking
fault). We used a numerical broadening η = 1.10−3 t0 and, for the zigzag ribbon, we have excluded
the leftmost and rightmost edges. The length of the ribbons perpendicular to the impurity is 95a0 while
the width is 35a0 in both geometries. Adapted from Ref.[291].

We now turn to the case of armchair edges, and in Fig.5.12(d) we plot the LDOS as a function of
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energy and position along the y axis. Here we do not have any zero-energy modes as the armchair
edges do not exhibit any localized states. We can see however very clearly the quantization of
the energy levels in the stacking fault. The spectral weight associated with these localized states
is higher than the spectral weight for delocalized states in the ABC or ABA bulk. This is in
agreement with the results for the semi-infinite ribbon presented in Fig.5.11. The limited size for
the bulk ABA and ABC stacking regions does not however allow us to have a good quantitative
understanding of the low-energy DOS outside the impurity.

The physics of the impurity states can yield non-trivial results, especially when considering the
topological properties of the resulting band structure when discrete symmetries are broken. An
example is the theoretical and experimental study of topological edge state at AB/BA stacking
faults in bilayer graphene [294–297]. Similarly, the topological properties of trilayer ABC graphene
can be revealed by applying an electric field gradient between the different layers [298]. Aside from
these topological properties, the presence of flat bands is an interesting prospect regarding the
potential superconducting instability in these systems [299]. A simple way of understanding this is
by considering the scaling of the kinetic energy that comes from the derivative of the dispersion with
respect to the momentum at the Fermi level ∂εk

∂k

∣∣
kF

which is reduced when the band shows a very
low dispersion. This can allow for even small interactions to induce phase transitions as the ratio
Einteraction/Ekinetic becomes more important and is thought to be one of the driving mechanisms
in the recent superconducting state in twisted bilayer graphene [21, 22]. The increased density
of states at the Fermi level is also an important factor that can favour ordered states such as
superconductivity as we showed in the simple BCS approach in Sec.2.3.2. This preliminary study
could thus be interesting in the context of the surge in experimental works that look at graphene
systems as a platform for unconventional superconductivity.



Conclusion

To summarize the main point of our new description of the pseudogap, it is important to emphasize
the role played by the fractionalization compare to other theories. Indeed, the competition between
the SC and the CDW orders is now well-known from the different experimental observations but we
argue here that there is more to this relationship between the two orders. In our effective theory
from Sec.3.1.2, we see that the competition we obtain is very strong with the local constraint
between the two amplitudes. It is also important to note that this constraint is also obeyed by the
fluctuations of the orders which are of crucial role in the pseudogap. Moreover, the phase-locking
mechanism is a unique signature of our scenario and we suggest that it is at the origin of multiple
experimental observations. First of all, the vortex experiment described in Sec.3.1.3 where the
phase coherence of the charge order seems to be larger than expected from what is observed above
Tc. Secondly, the phonon softening we studied in Sec.3.4 and which shows that the fluctuations
of both the SC and CDW orders need to be quenched at the same time to explain the apparition
of this softening at T = Tc. Lastly, the fluctuations also played a crucial role in describing the
temperature dependence of the electronic spectral function in Sec.3.2. We can also note that the
PDW order never condenses in our scenario even though it can be observed when both the SC and
CDW order have a finite amplitude as their product would also be finite.

We also presented our study of the Strange metal phase in Chap.4 based on the idea that inco-
herent modulated particle-particle pairs can contribute to the transport properties of the system in
the overdoped regime. These incoherent pairs would be related to the PDW which is fractionalized
at lower doping but the idea of incoherent carriers was already put forward from the available
experimental data. The main reason for the linear-in-T resistivity in our scenario is the Landau
damping due to the boson-fermion scattering and the renormalization of the mass of the bosons
due to the boson-boson interaction as shown in Sec.4.2. This allows us to obtain in Sec.4.3 a
linear temperature dependence for the static conductivity and, when the boson-boson interaction
is stronger than the Landau damping, a Drude form for the optical conductivity. These bosons do
not however contribute to the Hall conductivity which is in agreement with the loss of Hall carriers
observed experimentally. The H to H2 scaling to the magnetoresistance can also be recovered if
we allow for a triplet symmetry for the pairs as discussed in Sec.4.4. This is a phenomenological
model which is simpler than a lot of the other strong coupling theories that have been used to
attempt to describe the strange metal phase. It is strongly tied to our description of the pseudogap
and could however be difficult to apply to other materials where the same anomalous transport
properties are observed.

We can also note that our idea of fractionalization of an order parameter is not unique in the
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field of cuprates. In fact, it was recently proposed that the fractionalization of Spin Density Waves
[117] could occur outside the antiferromagnetic state, leading to the formation of the pseudogap.
In this case, the resulting effective theory is an SU(2) gauge theory where the Higgs fields are
massive which impacts the electronic degrees of freedom. This bears a strong resemblance to our
effective theory from Sec.3.1.2, especially when seen from the point of view of a gauge theory as
presented in App.A. The idea that the PDW is responsible for the pseudogap is also discussed
in other theoretical scenarios as we mentioned in Sec.1.4.3 and our idea is thus at the crossing
between the two types of thinking.

The work presented here is based on strong assumptions for the fractionalization which should
inherently be a strong coupling phenomenon and that we treated in a mean-field way in most of our
work. We think that this is sufficient to give an idea of the consequences of the fractionalization on
the electronic and phononic degrees of freedom. It can however be argued that this is not enough
to justify the whole setup. To answer such deserved critique, there is a more recent work that
proposed to use the Josephson effect [284] to probe the phase relation that is unique to our idea.
Observation of this signature would set apart our theory as the phase-locking is a very peculiar
effect not present in other widely spread theories. This also showcases the predictive power that
our effective theory has. In fact, the constraint on the amplitude and on the phase should appear
in many different situations and we should now ask what is the correct experiment to confirm or
dismiss the theory altogether.



Appendix A

The U (1)× U (1) theory

In this appendix, we show how the constraint between the phase and the amplitude degree of
freedom we obtain in our effective theory for the pseudogap can be seen as a consequence of the
gauge structure of our ansatz. We start by considering a general action for two complex fields with
their respecting gauge degree of freedom,

S =

∫
ddx |Dµz1|2 + |D̃µz2|2,

Dµ = ∂µ − ifµ, D̃µ = ∂µ − if̃µ. (A.1)

If we identify the two complex field with our previous order parameters z1 = ∆ij and z2 = χij and
their respective gauge degree of freedom fµ = 2Aµ + αµ and f̃µ = αµ we can rewrite this action
with the spinor

Ψ†ij =
(
|∆ij |eiθ∆ , |χij |eiθχ

)
= eiθeiτzφ (|∆ij |, |χij |) , (A.2)

where we have made apparent the global (θ) and the relative (φ) phase between the two component
of the spinor and used the third Pauli matrix τz. We thus end up with an action,

S =

∫
ddx|DµΨij |2 + V

(
Ψij ,Ψ

†
ij

)
,

Dµ = ∂µ − iaµ − iτzbµ. (A.3)

where the gauge fields refer this time to the global and relative phases of the spinor and are
associated to the following transformations

Ψij → eiθΨij aµ → aµ + i∂µθ,

Ψij → eiτzφΨij bµ → bµ + i∂µφ. (A.4)

We can also directly relate this new gauge fields to the previous ones

aµ = Aµ + αµ, bµ = Aµ. (A.5)
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The action Eq.(A.3) is generic and we didn’t impose any constraint between the two fields ∆ij and
χij in Eq.(A.3) up to now, this results in the two gauge fields fluctuating.

It is now possible to imagine that a Higgs mechanism will take place at T ∗, freezing one of the
phase and giving a mass to the corresponding gauge field. Applying this idea to the global phase
θ will lead to a mass for the aµ gauge field equal to the spinor amplitude, i.e

ma = |Ψij |2 =
√
|∆ij |2 + |χij |2 := E∗. (A.6)

Hence, we recover a constraint by minimizing the action with respect to a gauge field. We already
discussed this phenomenon in the description of the fractionalization of the electronic degree of
freedom in Sec.2.4.2. The Lagrange multiplier that was introduced to enforce the constraint on the
spinons and holons was identified with a gauge field and integrating over this Lagrange multiplier
will realize the constraint exactly. Here we took the reverse path to consider a Higgs mechanism
that will freeze the global phase of our spinor and which leads, when the gauge field is integrated
out, to a constraint between the amplitudes of the two fields. We end up with a theory of two
amplitudes |∆ij |, |χij |, linked by a constraint, and one phase φ fluctuating. Note that in the case
of fractionalization, one of the gauge fields that appears in this theory is fictitious as it is not
linked to any physical symmetry. The Higgs mechanism here is thus not related to any physical
symmetry breaking in contrast to the second transition that could occur when the second phase
is frozen which will be equivalent to a standard superconducting transition. This is equivalent, in
the pseudogap, to the CP 1 model presented in Sec.3.1.2.



Appendix B

CDW gap equation

In this appendix, we show how to get a self-consistent gap equation for the charge order gap from
Chap.3. We recall the equation we obtained by minimizing the effective action Eq.(3.32)

χk =
−1

βN

|q|<qAF∑
q,n

J+χk+q+QAF

(iωn + εk+q+QAF ) (iωn + εk+q+Q+QAF )− χ2
k+q+QAF

. (B.1)

Similarly to the procedure in Sec.3.2.2, we now use the self-consistent equation Eq.(B.1) to express
χk+q+QAF as a function of χk+2q+2QAF ∼ χk+q

χk =
1

(βN) 2

|q|<qAF∑
q,n

J+

(iωn + ε̃k+q) (iωn + ε̃k+q+Q)− χ̃2
k+q

|q′|<qAF∑
q′,m

J+χk+q′

(iωm + εk+q′) (iωm + εk+q′+Q)− χ2
k+q′

,

(B.2)
where we introduced the notation ˜f (k) = f (k +QAF ) . We now makes the assumption that the
width of the spin-spin correlation function being small in momentum space, the order parameter
is constant in the region |q′| < qAF and that the integration over q′ and q can be taken as
independent. This allow us to simplify the order parameter in the numerator on both side and,
after performing the analytical Matsubara summation we get

1 =

(
J+

N

) 2∑
q

nf

(
Ẽ+,k+q

)
− nf

(
Ẽ−,k+q

)
Ẽ+,k+q − Ẽ−,k+q

∑
q′

nf (E+,k+q′)− nf (E−,k+q′)

E+,k+q′ − E−,k+q′
, (B.3)

where the new dispersion differ from the superconductiviting case,

E±,k =
1

2

(
εk + εk+Q ±

√
(εk − εk+Q)

2
+ 4χ2

k

)
. (B.4)

We can then rewrite this in a form close to the BCS gap equation Eq.(2.45)

1 =

(
J+

4π2

) 2 ∫ qAF /2

−qAF /2
dq

tanh
(
β
2 Ẽ+,k+q

)
2Ẽ+,k+q

∫ qAF/2

−qAF /2
dq′

tanh
(
β
2E+,k+q′

)
2E+,k+q′

, (B.5)
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The main difference with the standard BCS gap equation is the dependence of the first integrand
upon the shifted Ẽk = Ek+QAF while the second integrand in evaluated at the momentum k+ q′.
This can solved by using the self-consistent equation to link χk+QAF to χk once again which will
give another integral of form we obtained in Eq.(3.38). denoting this integral by Ik (χ) this integral
we can write our self-consistency condition as

1 =

(
J+

4π2

) 2

Ik (χ) Ik+QAF

(
−J−
4π2

Ik (χ)

)
, (B.6)

Ik (χ) =

∫ qAF/2

−qAF /2
dq

tanh
(
β
2E+,k+q

)
2E+,k+q

. (B.7)

This is very similar to the result we obtained for the superconducting gap in Eq.(3.39) and we solve
it numerically in the same way.



Appendix C

Boson-Fermion vertex corrections

In this appendix, we discuss the fate of the boson-fermion vertex correction that could affect the
Landau damping we obtained in Sec.4.2. Our calculation for the finite-momentum bosons will
follow the results of Ref.[152], and in our study, two different situations can emerge.

In the first one, the bosons cannot generate hot-spots if the wave-vector Q0 is either too small
or too large to connect distinct parts of the Fermi surface as shown in Fig. (C.1A). Thus, the
fermionic propagator reestablishes the Fermi liquid behavior of Eq. (4.4). In this scenario, the
Landau damping remains unchanged, whereas the vertex corrections become irrelevant. Hence,
the transport properties of the model give the T -linear behavior of the resistivity and a broad Drude
component extending to zero temperature as exhibited in the phase-diagram of Fig. (C.1A).

In the second situation, if the bosonic wave-vector Q0 create hot-spots by connecting two
distinct parts of the Fermi surface as displayed in Fig. (C.1B), the fermionic self-energy is given
by

Im Σ(ω,Q0) = C|ω|1/2sgn(ω), (C.1)

where C is just a constant, and the self-energy has a Non-Fermi liquid behavior. Additionally, in
this situation, the vertex corrections also become relevant. The integral to evaluate the same is
given by

Γ(0, 0) =
i

8π3vxvy

∫ ∞
−∞

dlτ

∫ ∞
−∞

dl̃x

∫ ∞
−∞

dl̃y

× 1(
iΣlτ + l̃x − l̃y

)(
iΣlτ − l̃x − l̃y

)
(γ|lτ |+ l̃2x + l̃2y)

. (C.2)

After computing this integral, one obtains a logarithmic divergence from the vertex corrections,
thereby affecting the dynamical exponent near the QCP. However, recent sign-problem-free quan-
tum Monte Carlo studies suggest that only within a small temperature regime near the QCP [300]
(which is, in fact, too low to be seen in these simulations), these vertex corrections would become
relevant which is represented by the blue region of phase-diagram in Fig. (C.1B). Furthermore,
before reaching such a low-temperature regime, we point out that this divergence can also be
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Figure C.1: Panel (A) on the left side depicts the scenario when the bosons do not create hot-spots
since the bosonic wave-vector Q0 is smaller than the distinct parts of the Fermi surface. In this scenario,
the linear-in-T behavior of resistivity and Drude form of optical conductivity extends to T = 0 at the
critical dopings. Panel (B) on the right side presents the scenario when the bosons create hot-spots by
connecting the Fermi-surface. In this scenario, the fermion-boson vertex correction becomes relevant
and changes the dynamical exponent of the QCP. However, this happens only at low temperatures near
the QCP here represented by the blue region. Above this temperature, we can have the same linear-in-T
resistivity with Drude conductivity for a broad temperature regime.

regularized by other mechanisms of damping, such that Σω � C|ω|1/2sgn(ω). In the cuprates
these other sources of damping can have many different origins, such as nematic fluctuations,
loop-current fluctuations [286], among others. These additional fluctuations that emerge in these
materials can also regularize the fermion-boson vertex without changing the transport properties.



Appendix D

Fate of bosonic vertex corrections

(a) (b) (c)

(d) (e) (f)

Figure D.1: (a) Shows the diagram associated with the current-current correlation function with sec-
ond order self-energy corrections. (b) Exhibits the same with bosonic vertex corrections. (c) Shows
the bosonic bubble that can be replaced with the diagram shown in (f). (d-e) Again shows the current-
current correlation function by replacing the bosonic bubble with the curly line.

Here, we discuss the bosonic vertex correction diagram at second-order in gb and compare it with
the self-energy diagram given by Π2 evaluated in the previous section. The second-order self energy
diagram is shown in Fig.D.1(a), whereas the vertex correction diagram is presented in Fig.D.1(b).
Next, we replace the boson-boson bubble in Fig.D.1(c) using the curly-line composite propagator,
as shown in Fig.D.1(f). After this, it can be readily seen that the diagrams in Fig.D.1(a) and
Fig.D.1(b) can be replaced by those in Fig.D.1(d) and Fig.D.1(e), respectively. Subsequently, we
define the bosonic composite propagator represented by the curly-line in Fig.D.1(f) as F(q, ω). In
this notation, the diagram in Fig.D.1(d) becomes

ε1 =
T 2

L2

∑
k,q,ωn,Ωn

D3(k, ω)D(k + q, ω + Ω)F(q,Ω). (D.1)
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Similarly, the diagram in Fig.D.1(e) becomes

ε2 =
T 2

L2

∑
k,q,ω,Ω

D2(k, ω)D2(k + q, ω + Ω)F(q,Ω). (D.2)

Now, after performing analytical continuation, we obtain using the retarded form of the bosonic
Green’s function

T
∑
ωn

D(k, ω) =

∫ ∞
−∞

dω

2π

1

−iω + k2 + µ

= i

∫ ∞
−∞

dε

2π

1

ε+ k2 + µ
, (D.3)

where in the last step we have made a simple change of variable. From the last definition, it is
clear that

∂D(k + q, ω + Ω)

∂(−iω)
= −D2(k + q, ω + Ω). (D.4)

Next, using these previous relations to evaluate ε2, we get

ε2 = − iT
L2

∑
k,q,Ω

∫ ∞
−∞

dε

2π
D2(k, ε)∂εD(k + q, ε+ Ω)F(q,Ω). (D.5)

Integrating by parts, we find

ε2 = −2
iT

L2

∑
k,q,Ω

∫ ∞
−∞

dε

2π
D3(k, ε)D(k + q, ε+ Ω)F(q,Ω). (D.6)

Finally, reverting back to the earlier notation, we get

ε2 = −2
T 2

L2

∑
k,q,ωn,Ωn

D3(k, ω)D(k + q, ω + Ω)F(q,Ω)

= −2ε1. (D.7)

We have already argued in the previous section that the ε1-correction due to Π2 is negligible in
all regimes. Since we find that ε2 is of the same order of magnitude as ε1, the vertex correction
diagram in Fig.D.1(b) can also be safely ignored in our analysis.
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